Chapter B1: Overview of MB86932

1.1 General Description

1.2 Programmer’s Model of the MB86932

1.2.1 User-visible Registers

1.3 Internal Architecture of the MB86932

Chapter B2: MB86932 Memory Management Unit

2.1 Overview

2.1.1 Memory Management Units: A General Description

212 VirtualMemory
2.1.3 Multiple Processes
2.1.4 Memory Protectionccoiiiiiiinann
2.1.5 How MMU's are Constructed

CONTENTS
SECTION 3

RETURN TO SECTION TOC &

Contents
B-i

SPARCIite User’'s Manual

2.2 Programmer's Model B2-6
2.2.1 Cache/Bus Interface Unit Control Register B2-6
2.2.2 Context Table Pointer RegiSterottt e B2-6
2.2.3 ConteXt REQISIEr ... i B2-7
2.2 4 TLB EXCEPLONS ...ttt e e B2-7
2.2.5 Instruction Fault Status Registert B2-8
2.2.6 Data Fault Status Registert B2-9
2.2.7TLB Control Register e B2-10
2.2.8 TLB Data Fault Address Register i B2-11
2.2.9 Most Recently Used RegiSterooiriiii i B2-12
2210 The TLB ENtrY oo e B2-12
2211 The TLB CAM ENtIY ..ottt e e e e B2-12
2.212The TLB RAM ENtrY . ..ot e e e B2-14
2.2.13 ITLB DeSCIIPtON .ottt et e e e e e e B2-16
2214 TLB LOOKUD ..ttt e e e e e e e B2-16
2.2.15TLB Software NOteS B2-16

2.3 Internal Architecture e B2-17 %
2.3.1Details Of TLB LOGICot v ettt e e et B2-17
2.3.2 Address Translation: Logical and Physical Steps B2-18
2.3.3 Basic TLB Exception TiIMINGSottt e e B2-19
2.3.4 TLB Timing Considerationscuuii it B2-20
2.3.5 TLB Emulation SUPPOrt LOGICovr et e e B2-21

2.4 Programming Considerations i B2-22
2.4.1 MMU Architecture Example: the SPARC Reference MMU B2-22
2.4.2 Virtual Address format B2-23
2.4.3 Physical Address formatt e B2-24

2.5 Conformity to SPARC Reference MMU Architecture B2-24 G

Chapter B3: MB86932 Caches

3.1 Overview of MB86932 Cachescouiiiiiiiiiiinnnnn. B3-1 %
3.2 Programmer's Model ... B3-2 &
3.2.1 Operation of the Instruction Cache i i, B3-3
3.2.2 Operation of the Data Cacheot i B3-3

RETURN TO SECTION TOC &

Contents

B-ii

(o)
FUJITSU

3.3 Internal Architecture of MB86932 Caches B3-3 M
3.3.11Instruction Cache B3-4
3.3 2 Read Hit ..o B3-5
3. 3.3 MISS PrOCESSING . . . oottt et e B3-5
334 Data Cachet B3-6
3.3 5 Read Hit ..o B3-8
BB B WIItE Hil . . oo B3-8
3. 3.7 MISS PrOCESSING . . . o oottt et e B3-8
3.3.8 Atomic Load and StOrecuiuiii i B3-8

Chapter B4: MB86932 Bus Interface Unit

4.1 Overview of Bus Interface Unit i B4-1 ™
A2BUISEMOOE ..o B4-1
421 OVEIVIEW . oo ettt et e e e e et e e e e e e B4-1
4.2.2 Burst Mode Interface PinS B4-2
4.2.3 Burst Mode Fetch SeqUENCEt e B4-2
4.2.4 Bus Mode Control BitS o B4-3
4.2.5 PROM AdAress SPacCettt e e e e e B4-3
4.2.6 Prefetch Buffer e B4-3
4.2.7 Cache Off ... B4-3
4.2.8 BUS REQUEST . . . o B4-3
4.2.9 Memory Exception (Instruction fetches or Data loads)c.oovieeiiiiien... B4-4
4.2.10 Memory EXception (DMA)ttt e B4-4
4.2.11 Non-cacheable ACCESSES oot B4-4
4.2.12 Interface TIMINGottt e B4-4
BBPAMY -« oot e e B4-6 o
4.4 Wait State Specifier Register i B4-7
440 PUIMPOSE . .ttt ittt e e e e e e e B4-7
442 FOMMAL . ..ottt e e e e e e B4-7
443 Same Page Mode e B4-8
A4 A BUISEMOUE ..ottt B4-8
RETURN TO SECTION TOC =
Contents

B-iii

SPARCIite User’'s Manual

A5 ROMINEITACE ...t B4-9 i
4. 5. PUIPOSE . .ttt ettt e e e e e e B4-9
4.5 2 FRaAUIES . it B4-9
4.5.3 Bus Configuration 0N RESEtttt B4-10
4.5.4 System Interface B4-10
4.5.5 PROM AdAress SPacettt e e B4-10
4.5.6 LOAA/SIOIES . ..ottt B4-11
A5.7 BUISEMOOE B4-12
4.5.8 Memory EXCEPLIONo ot B4-12
459 BUS REOUEST . . .o\t B4-12
A5 T0 TIMING + ottt ettt e e e e e et B4-13

4.6 Processor Bus Request B4-13 &
4.6.0 PUIMPOSE . . ittt e e e e e e B4-13
4.6.2 FRAtUIES B4-13

AT BIUTIMING ..ttt e B4-14 &%
A7 L EMECt Of TLB . .ottt e B4-14

A8 BIUPHONUES ..ottt e B4-15

Chapter B5: MB86932 DMA

B OVBIVIEBW oottt e e et e B5-1 "
5.2 Programmer's Model B5-4 &
5.2 L DMA POy . ottt e e e e B5-4
5.2.2 DP/Source/Destination ASI Register B5-5
5.2.3 Current Source Address Registerttt B5-5
5.2.4 Current Destination Address Register i B5-6
5.2.5 Current Byte Count Register i e B5-6
5.2.6 Descriptor Pointer Register i B5-7
5.2.7 Channel Control RegISter o B5-7
5.2.8 Channel Status Register B5-9
5.2.9 Channel Initialization i B5-9
5.2.10 Buffer Chaining Data Structuret B5-10
5.2.11 DMA Initializationo B5-11
5.2.12 BasSiC DMA TIMINGottt e e e e e e e B5-11
5.2.13 Error CoNditiONSo vttt B5-11

RETURN TO SECTION TOC &

Contents

B-iv

5.3 External Interface

5.3.1 Transfer Protocols

Chapter B6: MB86932 DSU

6.1 OVEIVIEBW ..ttt

6.2 Programmer’'s Model

6.2.1 New Registersand Flags
6.2.2 Logic of Context Comparison..........

Chapter B7: MB86932 External Interface

7.1 SIGNAL DESCRIPTIONS

Chapter B8: MB86932 JTAG

8.1 MB86932 JTAG PinList

(o)
FUJITSU

RETURN TO SECTION TOC =
Contents
B-v

SPARCIite User’'s Manual

RETURN TO SECTION TOC &

Contents

B-vi

CHAPTER

Bl

Overview of MB86932

1.1 General Description

The MB86932 is a member of the SPARCIite family whose function set is a superset of
that of the MB86930. It is pin-compatible with the 208-pin version of the MB86930
processor, and is capable of running at 40MHz. In addition to all the features of the
MB86930 processor, the MB86932 contains the following:

Address Translation: A 16-entry Translation Lookaside Buffer (TLB) on the
MB86932 provides the mechanism to translate virtual to physical addresses. Both
virtual and physical address spaces are 4GB in size. Page sizes of 4K-bytes,
256K-bytes, and 16M-bytes are supported. Protection at the 1K-byte sub-page level
is supported. Up to 64 independent concurrent processes (“contexts”) are supported,
with protection against memory encroachment by any process on any other.

Instruction Cache: The MB86932 has an 8K-byte, 2-way set associative, sectored
instruction cache with 8-word lines. Each line is individually lockable. Tags for each
line contain the address tag, a supervisor/user bit, and 8 “valid” flags, one for each
word of the line. The instruction cache is a physical cache; that is, it is accessed
with a physical, not a virtual, address. When code is to be removed from the cache,
the cache can be invalidated in a single cycle; likewise, “locked” code in the cache
can be unlocked in a single cycle.

Data Cache: The MB86932 has an 2K-byte, 2-way set associative, sectored data
cache with 4-word lines. Each line is individually lockable. Tags for each line
contain the address tag, a supervisor/user bit, and 4 “valid” flags, one for each word

Overview of MB86932 - General Description

SPARCIite User’'s Manual

of the line. The data cache is a physical cache; that is, it is accessed with a physical,
not a virtual, address. When data is to be removed from the cache, the cache can be
invalidated in a single cycle; likewise, “locked” data in the cache can be unlocked

in a single cycle.

e On-Chip DMA: The MB86932 has two DMA channels. Each channel supports two
transfer types: contiguous block and chained block transfers. The DMA also
supports three transfer protocols: single-datum transfer, block transfer, and demand
transfer (where data moves continue as long as an external device requests it). Four
data types are supported: byte, halfword, word, and quad-word. For byte and
halfword, the DMA does all the required packing/unpacking. Each channel also
supports either fly-by or flow-thru transfer modes, and each can be started by either
software or external hardware requests. The addressing convention for accesses is
“big_endian.”

» Configurable External Data Bus: The MB86932 includes a data bus that can be
configured at Reset as 8, 16, or 32 bits wide (when in the address space selected by
chip select 0). This enables the MB86932 to boot from a single by-8 or by-16
ROM.

* Burst Mode: The MB86932 supports two data- and instruction-accessing modes to
external memory: normal and burst. In normal mode, it accepts a single datum per
address, driven externally. In burst mode, it accepts 4 words per address, driven
externally. Burst mode stores are supported only as part of DMA requests, and no
burst mode transfers are supported in 8/16 bit mode.

1.2 Programmer’s Model of the MB86932

1.2.1 User-visible Registers

All the special-purpose registers and ASR registers defined on the MB86930 exist also
on the MB96832. Note that the version number in the PSR register is 5 for the
MB86932.

All on-chip control/status/data registers which exist in alternate address spaces in the
MB86930, with one exception, exist also on the MB86932 in backwards-compatible
format. The one exception is the Instruction Tags, whose format has changed.

The increase in cache and the addition of new peripherals in the MB86932 have made it
necessary to add new registers, accessible through alternate address spaces; these are
described below in 3.4.1.1. All on-chip memory-mapped control/status registers for
these new features are mapped into ASI=0x01, 0x02, 0x03, 0x0C, 0x0D, OxOE, or OxOF.
The BIU recognizes that these ASI's are mapped to internal registers rather than
memory, and does not assert the external ASI pins (or any other pins) when doing
accesses in these ASI spaces. Since the address calculated by the IU for any register of

i

Overview of MB86932 - Programmer’s Model of the MB86932

this class is its physical address, no address translation is necessary, and the TLB -
involved

In the lists that follow, an appended asterisk (*) = “new in MB86932"; a double asterisk
(**) = “changed from equivalent in MB86930.”

Cache/BIU control/status registers:
ASI: 0x01

Address range: 0x00000000-0x000000FF

0x00000000 ASI=0x1 Cache/BIU Control Register** (TLB enable bit added)
0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

0x00000020 ASI=0x1 Bus Control Register*

0x00000080 ASI=0x1 System Support Control Register**
(DMA priority; even/odd paritybits added)

Peripheral control/status registers:
ASI: 0x01

Address range: 0x00000100-0x000001FF

0x00000120 ASI=0x1 Same Page Mask Register

0x00000124 ASI=0x1 Address Range Specifier Register 1

0x00000128 ASI=0x1 Address Range Specifier Register 2

0x0000012C ASI=0x1 Address Range Specifier Register 3

0x00000130 ASI=0x1 Address Range Specifier Register 4

0x00000134 ASI=0x1 Address Range Specifier Register 5

0x00000140 ASI=0x1 Address Mask Register 0

0x00000144 ASI=0x1 Address Mask Register 1

0x00000148 ASI=0x1 Address Mask Register 2

0x0000014C ASI=0x1 Address Mask Register 3

0x00000150 ASI=0x1 Address Mask Register 4

0x00000154 ASI=0x1 Address Mask Register 5

0x00000160 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit added)
0x00000164 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit added)
0x00000168 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit added)
0x00000174 ASI=0x1 Timer Register

0x00000178 ASI=0x1 Timer Preload Register

0x00000180 ASI=0x1 Source/Destination AS| Register (DMAQ)*

0x00000184 ASI=0x1 Current Source Address Register (DMAQ)*

0x00000188 ASI=0x1 Current Destination Address Reg (DMAOQ)*

0x0000018C ASI=0x1 Current Byte Count Register (DMAO)*

0x00000190 ASI=0x1 Descriptor Pointer (DP) Register (DMAO0)*

0x00000194 ASI=0x1 Channel Control Register (DMAQ)*

0x00000198 ASI=0x1 Channel Status Register (DMAQ)*

0x000001A0 ASI=0x1 Source/Destination AS| Register (DMAL)*

0x000001A4 ASI=0x1 Current Source Address Register (DMA1)*

o

Overview of MB86932 - Programmer’s Model of the MB86932

SPARCIite User’'s Manual

0x000001A8
0x000001AC
0x000001BO
0x000001B4
0x000001B8

ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1

Current Destination Address Reg (DMA1)*

Current Byte Count Register (DMA1)*

Descriptor Pointer (DP) Register (DMA1)*

Channel Control Register (DMAL)*

Channel Status Register (DMAL)*

ASSP Control/status registers: *

ASI: 0x01

Address range:

Note: This space is reserved for additional control/status registers for possible future

0x00000200-0x000002FF

derivatives of the SPARCIite family of products.

TLB Entries: *
ASI: 0x01

Address range:

Note: This allows up to 32 entries in the TLB, although only 16 entries are used in the
MB86932. The TLB can be read or written by the “Ida” or “sta” instructions.

0x00000300-0x000003FF--

0x00000300
0x00000304

0x00000378
0x0000037C

ASI=0x1
ASI=0x1

ASI=0x1
ASI=0x1

TLB RAM Entry 1

TLB CAM Entry 1

other TLB entries

TLB RAM Entry 16

TLB CAM Entry 16

TLB Status/Control Registers: *

ASI: 0x01

Address range:

0x00000400-0x000004FF

Note: The TLB enable bit is in the Cache/BIU Control Register.

0x00000400
0x00000404
0x00000408
0x0000040C
0x00000410
0x00000414
0x00000418
0x0000041C
0x00000420

ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1
ASI=0x1

ITLB Register “RAM” Entry

ITLB Register “CAM” Entry

Context Register

Context Table Pointer Register

TLB Control Register

Data Fault Status Register

Instruction Fault Status Register

TLB Most Recently Used Register

TLB Data Fault Address Register

Overview of MB86932 - Programmer’s Model of the MB86932

Emulation Registers: -

ASI: 0x01

Address range: 0xO000FF00-0xO000FFFF

0x0000FF00 ASI=0x1 Instruction Address Descriptor Register 1
0x0000FF04 ASI=0x1 Instruction Address Descriptor Register 2
0x0000FF08 ASI=0x1 Data Address Descriptor Register 1

0x0000FFOC ASI=0x1 Data Address Descriptor Register 2

0x0000FF10 ASI=0x1 Data Value Descriptor Register 1

0x0000FF14 ASI=0x1 Data Value Descriptor Register 2 or Mask Register
0x0000FF18 ASI=0x1 Debug Control Register **

0x0000FF1C ASI=0x1 Debug Status Register

0x0000FF20 ASI=0x1 Context Compare Register **

Instruction Cache Lock Registers: **

ASI: 0x02

Address range: 0x00000000-0x00000FFF (Bank 1)
0x80000000-0x80000FFF (Bank 2)

Note: Writing to every eighttvord address in this space can be used to initialize the
lock bit for each line in the instruction cache. This differs from the MB86930,
where everyourthword location is accessed.

Data Cache Lock Registers:

ASI: 0x03

Address range: 0xO000FF00-0x000003FF (Bank 1)
0x8000FF00-0x800003FF (Bank 2)

Note: Writing to every fourtivord address in this space can be used to initialize the
lock bit for each line in the data cache. This is unchanged from the MB86930

Instruction Cache Tag RAM: **
ASI: 0x0C
Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)
i

Overview of MB86932 - Programmer’s Model of the MB86932

SPARCIite User’'s Manual

Note: Writing to every eighttvord address in this space can be used to initialize the
tags for each line in the instruction cache. This differs from the MB86930, where
everyfourthword location is accessed.

Instruction Cache Invalidate Registers: *
ASI: 0x0C

Note: These registers are in addition to the Instruction Cache Tags which are accessed
using ASI 0x0C.

0x00001000 Bank 1 Instruction Cache Invalidate (write only)

0x80001000 Bank 2 Instruction Cache Invalidate (write only)

Instruction Cache Data RAM: **

ASI: 0x0D

Address range: 0x00000000-0x00000FFF (Bank 1)
0x80000000-0x80000FFF (Bank 2)

Note: Writing toword addresses in this space can be used to initialize the values in the
instruction cache.

Data Cache Tag RAM:

ASI: Ox0E

Address range: 0x00000000-0x000003FF (Bank 1)
0x80000000-0x800003FF (Bank 2)

Note: Writing to every fourthivord address in this space can be used to initialize the tag
bit for each line in the data cache. This is unchanged from the MB86930

Data Cache Invalidate Registers: *
ASI: OxOE

Note: These registers are in addition to the Data Cache Tags which are accessed using
ASI OxOE.

i

Overview of MB86932 - Programmer’s Model of the MB86932

0x00001000 Bank 1 DataaChe Invalidate (write only) -

0x80001000 Bank 2 DataaChe Invalidate (write only)

Data Cache Data RAM:

ASI: OxOF

Address range: 0x00000000-0x000003FF (Bank 1)

0x80000000-0x800003FF (Bank 2)

Note: Writing toword addresses in this space can be used to initialize the data RAM.

This is unchanged from the MB86930

1.3 Internal Architecture of the MB86932

Figure B1-1, shows the general block diagram of the MB86932. Figure B1-2 shows in
more detail the major units and buses connecting them. The solid lines show the bus
connections that are used when the accesses are within the user or supervisor data/
instruction ASI spaces (ASI 08, 09, OA, and 0B). The dashed lines show the additional
connections required to access the control/status or data registers through the alternate
ASI spaces. The major buses are:

Data Data Bus (DD)—A 32-bit bus used to transfer data to and from MB86932
functional units. In general, when a load is executed, data is transferred to the
Integer Unit (IU) from one of the other units, and when a store is executed, data is
transferred from the IU to one of the other units. When loads/stores to user or
supervisor data space are performed, the DD gives the IU access to the Data Cache,
the BIU (if the data is not in the cache), or the DSU (if the data is to be accessed out
of DSU memory).

When doing Load Alternates or Store Alternates, the DD bus can access all units
except the Instruction Cache and Instruction Tags, which can be accessed only
through the ID bus. In such a case, the IU can read data (load alternate) or write data
(store alternate) to the control/status/data registers of all units. Since the TLB can be
accessed by the 1U only through alternate space, their connection is shown as a
dashed line.

Virtual Data Address bus (VDA)—This 32-bit bus connects the IU, where the virtual
address is generated, to the TLB, where the virtual address is translated to a 32-bit
physical address. It also connects to the Debug Support Unit.

Physical Data Address bus (PDA)—This 32-bit bus carries the physical address
generated by the TLB. During loads/stores to user or supervisor data space, it is used

o

Overview of MB86932 - Internal Architecture of the MB86932

SPARCIite User’'s Manual

both to access the Data Cache, and to compare against the Data Tags. The PDA bus
also goes to the BIU for use when data is not cached, and has to be accessed from
external memory.

For load alternates and store alternates, the PDA goes to all units (except for the
|_cache and the |_tags), so that control/status/data registers can be accessed.

e Instruction Data bus (ID)—This 32-bit bus normally transfers instructions from
either the Instruction Cache, the Bus Interface Unit, or the DSU (when code is being
run out of DSU memory).

Note When a store alternate is being performed to the |_cache or the I_tags (during
cache initialization, for example), the data are first transferred from the IU to the

BIU on the DD bus. The BIU then transfers the data on the ID bus to the |_cache or
the |_tags. When a load alternate from the |_cache or the |_tags to the IU occurs, the
reverse operation takes place. This obviates the need to extend both the ID and the
DD busses to the |_cache and I_tags. (In the figure below, the connections for
reading/writing the tags through alternate space are shown as dashed lines.)

« Virtual Instruction Address bus (VIA)—This 30-bit wide bus carries the 30-bit
virtual address generated by the U to the TLB for translation into a Physical
Instruction Address (PIA). (Since instructions must fall on word boundaries, their
addresses need only specify a full word address, for which 30 bits suffices.) The
VIA also goes to the Debug Unit.

e Physical Instruction Address bus (PIA)—This carries the translated address from the
TLB to the |_cache and I_tags, and to the BIU for use when the instruction is not
cached, and access must be made to off-chip memory. The PIA can also be driven
by the BIU when doing a store or load alternate to the |_cache or |_tags. In this
case, the item to be stored is first sent to the BIU over the DD bus, with the address
on the PDA bus. The BIU accepts this item, and drives it back on the ID bus, with
the address on the PIA bus. This obviates the need to connect both the ID and DD
buses to the |_cache and |_tags.

» Alternate Space Identifier address bus (ASI)—This 8-bit bus is driven by the 1U, and
indicates which address space a load/store is transferring data from/to. Load- and
Store-Alternate instructions are used to read/write status/control/data registers in the
various units of the MB86932.

» DMA Data Data bus (DDD)—This 32-bit local bus goes from the DMA to the BIU,
and is used to send/receive data to/from the BIU during a DMA operation.

+ DMA Data Address bus (DDA)—This 30-bit local bus goes from the DMA to the
BIU, and is used to send the source or destination address to the BIU during a DMA
operation.

* DMA ASI bus (DDASI)—This 8-bit local bus goes from the DMA to the BIU, and
is used to send the ASI value to the BIU for cases where the DMA is addressing an
alternate address space.

i

Overview of MB86932 - Internal Architecture of the MB86932

CLK_OUT <—>——|

CLOCK
GENERATOR

ADDRESS (

ASI (
CONTROL {

BUS
INTERFACE
UNIT

DRAM
CONTROLLER

PWG

SCAN

DIVIDE STEP

SPARC INTEGER UNIT

4 4

16-BIT TIMER

\J 4

CHIP_SEL <———
PAGE_DE <———

ADDRESS
DECODE

REFRESH <———

2-CHANNEL
DMA

PAN

AN

I 1

8K INSTRUCTION
CACHE

!

DEBUG SUPPORT UNIT

-

2K DATA
CACHE

Figure B1-1. MB86932 Block Diagram

EMULATOR
BUS

o

Overview of MB86932 - Internal Architecture of the MB86932

SPARCIite User’'s Manual

I_TAGS D_TAGS
(256) (128)
1 1
1 1 1 1
1 1 1 1
1 1 1 1
e S T
* * * d
fF o , ' N] . .)
! D L ! ¥ ! ' L) ' '
PDA v v ;] ,
1 T 1 1 T 9))
' _PA [! ! !] !
! [! ! ' ['
! [T ' ' 1 [1
! 1 1 ! ! 1 1 1 1 1
! 1 1 1 1 1 1 1 1 1
1
. vy v v L] Yy VY]
DDA
I_CACHE D_CACHE
U TLB 8k BIU DD DMA DEBUG
2k (peripherals)
2-way_ 2-way
8-word line 4-word line DDASI
VDA [}
VIA J
ADR DATA ADR | DATA
1/0's 1/0's

Figure B1-2. MB86932 Detailed Block Diagram

Overview of MB86932 - Internal Architecture of the MB86932

CHAPTER

B2

MB86932 Memory Management Unit

2.1 Overview

The MB86932 provides hardware support for the implementation of an on-chip
Memory Management Unit (MMU). No particular MMU architecture is determined for
the MB86932. Rather, the hardware has been designed so that it can support a wide
range of MMU architectures. In particular, it is possible to implement the SPARC
Reference MMU using the hardware provided on-chip. For further information on
compatibility with the SPARC Reference MMU, pleaseSee Section 2.5

The features provided by the MB86932 hardware are:

A 16-entry Translation Lookaside Buffer (TLB)

32-bit virtual and physical address formats

Support for pages/regions of different sizes (4K, 256K, 16M, 4G)
Support for up to 64 processes (or contexts)

Support for either single level or multi-level page tables, and

TLB-miss processing initiated by hardware traps.

i

MB86932 Memory Management Unit - Overview
B2-1

SPARCIite User’'s Manual

2.1.1 Memory Management Units: A General Description

This section provides a general description of MMU'’s, their function and benefits, for
users that may be unfamiliar with them. It also defines terms that will be used
throughout this chapter.

Figure B2-1 shows a block diagram of how an MMU fits with the CPU, cache, and
memory. The MMU is responsible for doing address translations of the “virtual

address” coming from the CPU to the “physical address” going to the cache and main
memory. The “virtual address” is the address that the running program generates (from
0 up to 22 for the SPARC Architecture). The “physical address” is the address that the
hardware cache and memory receives. The CPU, as it runs code, produces virtual
addresses which are dynamically translated to the physical address translation provided
by the MMU. The benefits of virtual to physical address translation provided by the
MMU are the following:

e Supports Virtual Memory
e Supports Multiple executing processes

e Supports Memory Protection

2.1.2 Virtual Memory

“Virtual memory” is the memory space that the program can address. For example, for
the SPARC Architecture the virtual memory # Bytes. “Physical memory” is the

actual amount of memory (RAM, ROM, etc.) that is implemented in the system.
Usually the physical memory is significantly smaller that the virtual memory.

Data/Instructions

Cache and
Main Memory

CPU

Virtual Address MMU Physical Address
(TLB plus

System Software)

Figure B2-1. MMU's Role in Address Translation

Because this is true, it is necessary to dynamically allocate sections of this physical
memory to code and data which is accessed by the program virtual address.

This is accomplished in the following way. The virtual memory space is broken into
segments called “pages” (4k bytes in the SPARC Reference MMU). Similarly, the

ol

MB86932 Memory Management Unit - Overview

B2-2

[o®)
FUJITSU

physical address space is broken into equivalent sized segments called “page frames”.
The complete program and data can be stored in mass storage (e.g. disk) until requested
by the running program. When the program requests data not in physical memory, the
required page needs to be retrieved from mass storage and put into an available p

frame in physical memory. The MMU keeps track of where each page is placed in
physical memory through the use of an “address translation table”, also called a “page
table”. In the most general case, the address translation table contains, for each virtual
memory page address, either a corresponding physical memory page frame address or a
pointer to mass storage where that virtual page can be found. As long as the page is in
physical memory the MMU uses this table to translate virtual addresses to physical
addresses as the program executes. When the page is not found in physical memory the
MMU is responsible for retrieving pages in mass storage and placing them in physical
memory so that they can be accessed by the program.

Page (4k)

/

Page Frame Memory
(4k) Mappings

\

Physical Memory
(Ex. 16k)

Virtual Memory
(Ex. 4G)

Figure B2-2. Memory Mappings

As an example, Figure B2-2 shows a physical address space of 16k bytes and a virtual
address space of 4G bytes. The page size and the page frame size are both 4k bytes. The
figure shows four virtual pages residing in physical memory. Other parts of the program
would reside in mass storage (e.g. on disk).

Conceptually, both the virtual and physical address can be thought of as having two
fields—the msb’s making up the page number and the Isb’s making up the offset
(within the page). Effectively, the MMU’s does address translation by taking the page
number from the virtual address and replacing it with the corresponding physical page
number from the address translation table. The offset remains the same.

=
MB86932 Memory Management Unit - Overview
B2-3

SPARCIite User’'s Manual

2.1.3 Multiple Processes

A process is an “executing” program. At any time a process can be “running” on the
CPU or “waiting” (e.g., waiting for I/O). Multiple processes can be executing at the
same time but there can be only one running process. Each process may be using a
number of physical page frames in memory. For example, the four page frames in
Figure B2-2 could be holding 4 pages each of which could be associated with a
different process.

Each executing program (or process) sees its Gdmi2ual address space. To support
multiple processes there must be a way to translate between a process’s virtual
addresses and the physical addresses of that process’s pages in memory. To accomplish
this the MMU uses a “context register” the value of which is used to identify the
process which is currently running. Also, required is a “context table pointer register”.
The context table pointer register contains a pointer of the head of a table which in turn
contains pointers to address translation tables for each process. The context register is
used as an offset into this table. Thus, when a particular process is running the MMU
must add the context to the context table pointer register to get the head of the address
translation table for that process. See Figure B2-3. Once the table is found the virtual to
physical address translation can complete as described in section 2.1.2

Context Table
Pointer Register

Context Table Pages Tables for

Context Register Different Processes

Address
TranslationTable]

Virtual Page
Number

Physical Page
Number

Figure B2-3. Schematic of Address Translation

2.1.4 Memory Protection

Memory protection can occur at two levels: the process level and the page level.

Memory protection at the process level is supported by the context register and the
context table pointer register. Since each process can only go through its own address
translation table when doing a virtual to physical address translation (as shown in

Figure B2-3) one process can be prevented from accessing another process’s instruction
and data.

ol

MB86932 Memory Management Unit - Overview
B2-4

[o®)
FUJITSU

Since memory is segmented into pages, it is possible to associate with each page a
protection field which can give permissions to the running program. These permissions
can include whether the page can be read, written, executed, etc. by the program. For
each page the permissions allowed are stored in the address translation table in th
corresponding to that page.

2.1.5 How MMU'’s are Constructed

MMU'’s are constructed from a combination of hardware and software.

Software:

On the software side, the MMU is composed of the address translation table(s). There is
one table for each process although this table can be either single level or multi-level as
is defined in the SPARC Reference MMU (see Figure B2-3). These address translation
tables reside in physical memory.

The MMU also is composed of the system software needed to search these tables to do
virtual to physical address translations. When the running program generates a virtual
address the MMU must conceptually translate that address by adding the context table
pointer register to the context register to get a pointer which is added to the virtual page
number to finally get the physical page number. This physical page number replaces the
virtual page number to generate the physical address.

Finally, MMU software is required to move pages of instructions/data between mass storage
and main memory as different pages of the running program are accessed.

Hardware:

The price of virtual addressing is that virtual addresses must be translated into physical
addresses on the fly, at the time they are needed during execution. If each translation of
virtual to physical addresses required a table lookup, as described above, the processor
would run exceedingly slowly. Fortunately, instruction and data accesses exhibit a
property known as “locality” — that is, they tend to occur not at random locations, but
near each other on one or more recently-used pages.

To take advantage of this property, the MB86932 stores in one on-chip structure, the
Translation Lookaside Buffer (TLB), 16 recently-used virtual page numbers, together
with their corresponding physical page numbers. In another structure, the Instruction
Translation Lookaside Buffer (ITLB), it stores the virtual and physical page numbers of
the instruction page currently being accessed. Together these structures act as small
cache of the most recently used virtual/physical address translations. Because of
locality of address translations, most of the time the translation is done using the TLB.

=
MB86932 Memory Management Unit - Overview
B2-5

SPARCIite User’'s Manual

Only rarely does the CPU have to go to the address translation table to find a physical
page number. Since the TLB translations occur in parallel with cache/memory access
there is no time penalty as long as the translation pair is in the TLB.

Hardware is also provided to cause a trap whenever a requested virtual address is not
found in the TLB. The trap software can be written to use the context register and
context pointer register to find the head of the current process address translation table
in physical memory. The virtual page number can be used as an offset in this table to
find the physical page number. The trap software can then store this virtual page
number/physical page number pair in the TLB for future use.

2.2 Programmer’s Model

This section describes the user visible relations and their functions. Many of the
registers depicted below are very similar to those provided in the MB86930, except for
a few bits or fields that support the MMU in the MB86932.

2.2.1 Cache/Bus Interface Unit Control Register

The cache/bus interface unit control register is identical to that on the MB86930 except
for the addition of the “TLB Enable Bit” (TE), bit 6 of the register. When cleared, the
TLB is disabled, and translations from virtual to physical addresses do not occur. When
set, translations are enabled, contingent on the state of the TLB. The TE bit is cleared

on reset.

31 7 6 5 4 3 2 1 0
reserved TE

Address: 0x00000000 (ASI=0x01) Bits 5-0 are as defined for the MB86930

Write Buffer Enable (Enabled=1, Disabled=0, RST=0)

Prefetch Buffer Enable (Enabled=1, Disabled=0, RST=0)
Global Data Cache Lock (Lock On=1, Lock Off=0, RST=0)
Data Cache Enable (Enabled=1, Disabled=0, RST=0)

Global Instruction Cache Lock (Lock On=1, Lock Off=0, RST=0)
Instruction Cache Enable (Enabled=1, Disabled=0, RST=0)

Figure B2-4. Cache/Bus Interface Unit Control Register

2.2.2 Context Table Pointer Register

This register holds the physical address of the base of the context table, which resides in
main memory. When a software table walk is being done, the lower 8 bits of the context

o
MB86932 Memory Management Unit - Programmer’s Model
B2-6

[o®)
FUJITSU

register can be added to the context table pointer register to create an offset into the

context table in memory.

31 8

Context Table Pointer

reserved
(read as 0's)

Address: 0x0000040C (ASI=0x01)

Figure B2-5. Context Table Pointer Register

2.2.3 Context Register

Bits 7 through 2 of the context register are implemented. This register has two

functions: first, it provides protection between processes. During a TLB access, the

context field is compared against the corresponding field in the TLB entry. If the two
match—or if the global bit is set to show that context is irrelevant in this case— a
virtual-to-physical address translation occurs. Second, it can be used during a software
table walk, when the context field is used as a word offset into the context table in main
memory. This is done by adding the context register to the context table pointer
register, producing the physical address of the desired root pointer in the context table

in main memory.

31 8

reserved
(read as 0's)

Context

00

Address: 0x00000408 (ASI=0x01)

Figure B2-6. Context Register

2.2.4 TLB Exceptions

There are only two kinds of faults that can be caused by a TLB acceisstthe-

tion_access_excepti@nd thedata_access_exceptigmesulting respectively from an
instruction address translation fault and a data address translation fault.

The MB86932 uses two of the existing traps defined in the SPARC (version 8)

instruction set to support the TLB. The traps used are:
1. Instruction_access_exception
Version 8- Priority=5; trap type=0x01

(&) A TLB miss occurred on an instruction access.

(b) A blocking error such as “protection violation” occurred on an instruction

access.

i

MB86932 Memory Management Unit - Programmer’s Model

B2-7

SPARCIite User’'s Manual

(c) Afirst reference to the instruction page was made, and the RT bit in the TLB
Control Register was set.

(d) An external mexc signal occurred during an external instruction fetch.
(e) A parity error was detected on an external instruction fetch.

The cause of the instruction_access_exception is indicated by the Instruction Fault
Status Register.

2. Data_access_exception
Version 8- Priority=13; trap type=0x09
(&) A TLB miss occurred on a data access.

(b) A blocking error such as “protection violation” occurred on a data access.

(c) Afirst reference or first modification to this data page was made, and the RT
or DMT bit in the TLB Control Register was set.

(d) An external mexc signal occurred during an external read or write.
(e) A parity error was detected on an external data read.
The cause of the data_access_exception is indicated by the Data Fault Status Register.

Since these two exceptions can be generated by several different causes, both TLB— and
non-TLB related, two registers, described below, have been included to indicate the
source of the exceptions.

2.2.5 Instruction Fault Status Register

There can be multiple causes for the instruction_access_exception; in particular,
the TLB can cause this exception for a number of reasons. The Instruction Fault
Status Register exists to indicate the exact reason for the fault, whether TLB-
related or not. If the instruction_access_exception occurred, the address of the
faulting instruction is in r[17].

The instruction Fault Status Register is a read-only register. The bits in this regis—
ter are set by hardware when an instruction_access_exception occurs and indicate
the cause of the instruction_access_exception. This register is cleared when either

MB86932 Memory Management Unit - Programmer’s Model

B2-8

[o®)
FUJITSU

The instruction Fault Status Register is a read-only register. The bits in this register are
set by hardware when an instruction_access_exception occurs and indicate the cause of
the instruction_access_exception. This register is cleared when either the instruc-
tion_access_exception. This register is cleared when either the Instruction Fault St
Register or the Data Fault Status Register is read by software.

31 9 8 7 6 4 3 2 1 0

reserved IAT[2:0]

Address: 0x00000418 (ASI=0x01) PAR (On=1, Off=0, RST=0)]
IBA (On=1, Off=0, RST=0)
FIR (On=1, Off=0, RST=0)
IAP (On=1, Off=0, RST=0)
PIA (On=1, Off=0, RST=0)
ITM (On=1, Off=0, RST=0)

Figure B2-7. Instruction Fault Status Register

Bits 31-9: Reserved

Bit 8: Parity bit (PAR)—If IBA bit set, a set PAR indicates parity error; if PAR is cleared, “mexc”
pin strobed, but no parity error detected.

Bit 7: Instruction Bus Access exception (IBA)—Set when either external “mexc” or parity error
occurs during external instruction fetch.

Bits 6-4: Instruction Access Type (IAT[2:0])—This is the ACC field (from TLB) for the instruction
causing the exception.

Bit 3: First Instruction Reference (FIR)—Set when first reference is made to so-far “unrefer-
enced” instruction page; this causes a trap only if the “RT” bit of “TLB Control Register”
is set.

Bit 2: Instruction Access Protection violation (IAP)—Set when an instruction lacks access

permission sought.

Bit 1: Privileged Instruction Access violation (PIA)—Set when user-mode instruction seeks
access to supervisor-mode area.

Bit O: Instruction TLB Miss (ITM)—Set when address translation not in TLB or ITLB.

2.2.6 Data Fault Status Register

There can be multiple causes for the data_access_exception; in particular, the TLB can
cause this exception for a number of reasons. The Data Fault Status Register exists to
indicate the exact reason for the fault, whether TLB-related or not. If the data_ac-
cess_exception occurred, the address of the datum causing the fault is held in the Data
Fault Address Register.

=
MB86932 Memory Management Unit - Programmer’s Model
B2-9

SPARCIite User’'s Manual

The Data Fault Status Register is a read-only register. The bits in this register are set by
hardware when a data_access_exception occurs and indicate the cause of the data_
access_exception. This register is cleared when either the Instruction Fault Status
Register or the Data Fault Status Register is read by software.

31 1 9 8 7 5 4 3 2 1 0

0
reserved DAT[2:0
]

Address: 0x00000414 (ASI=0x01) PAR (On=1, Off=0, RST=0) _
DBA (On=1, Off=0, RST=0)
DPM (On=1, Off=0, RST=0)
FDR (On=1, Off=0, RST=0)
DAP (On=1, Off=0, RST=0)
PDA (On=1, Off=0, RST=0)
DTM (On=1, Off=0, RST=0)

Figure B2-8. Data Fault Status Register

Bits 31-9: Reserved

Bit 9: Parity bit (PAR)—If IBA bit set, a set PAR indicates parity error; if PAR is cleared, “mexc”
pin strobed, but no parity error detected.

Bit 8: Data Bus Access exception (DBA)—Set when either external “mexc” or parity error occurs
during external data read.

Bits 7-5: Data Type (DAT[2:0])—This is the ACC field (from TLB) for the data causing the exception.

Bit 4: Data Page Modification (DPM)—Set when first store is done to so-far unmodified data
page; causes trap only if DMT bit in TLB Control Register is set.)

Bit 3: First Data Reference (FDR)—Set when first reference is made to so-far unreferenced data
page; causes trap only if RT bit in TLB Control Register is set.

Bit 2: Data Access Protection violation (DAP)—Set when data access is attempted without
permission for type of access sought.

Bit 1: Privileged Data Access violation (PDA)—Set when data access sought to supervisor area
when in user mode.

Bit O: Data TLB Miss (DTM)—Set when data address translation not in TLB.

2.2.7 TLB Control Register

One bit in this register is used to control whether a fault can occur on the first write to

an unmodified page, and the other bit is used to control whether a fault can occur on the
first reference to a previously “unreferenced” page. These bits can be used to support
different page-replacement schemes; they are cleared to 0 on reset.

ol

MB86932 Memory Management Unit - Programmer’s Model

B2-10

[o®)
FUJITSU

31 2 1 0

- -

Address: 0x00000410 (ASI=0x01) DMT (On=1, Off=0, RST=0) —‘
RT (On=1, Off=0, RST=0)

Figure B2-9. TLB Control Register

Bits 31-2: Reserved

Bit 1: Data Modify Trap (DMT)—Control bit, enables trapping on first modification of a datum in a
so-far unmodified data page.

Bit 0: Reference Trap (RT)—control bit, enables trapping on first reference to so-far “unrefer-
enced” page; cleared on reset.

2.2.8 TLB Data Fault Address Register

When a TLB fault occurs, it is necessary for the trap code to have access to the virtual
address of the faulting instruction or data access. This allows the trap handler to know
what address caused the fault. In the case of a TLB miss, this address is needed to
perform a software table walk in main memory to find the correct translation. The
instruction address is also necessary so that the access can be retried once the reason for
the fault has been corrected.

In the case of a TLB fault during an instruction access, the virtual address of the
faulting instruction is held in r[17] of the trap handler window. Thus, no special register
is needed for this address. For data addresses the situation is different, since the
effective data address is not saved during a trap; the TLB Data Fault Address Register
is used instead to hold this address value. When a TLB fault is recognized during the
memory stage of the pipeline, the address on the Data Address Bus is latched and held.
This register can be read by the trap software. The TLB Data Fault Address Register
contains the 22 most significant bits (MSB’s) of the faulting data address, which is
sufficient information for the table walk. The format is shown in Figure B2-10.

The TLB Data Fault Address Register is a read-only register. When a TLB data_ac-
cess_exception occurs the virtual data address is captured and held. This register is
cleared when read by software.

i

MB86932 Memory Management Unit - Programmer’s Model
B2-11

SPARCIite User’'s Manual

31 10 9 0

Data Fault Address reserved

Address: 0x00000420 (ASI=0x01)

Figure B2-10. TLB Data Fault Address Register

2.2.9 Most Recently Used Register

Bits 0 through 15 of the Most Recently Used Register correspond to the 16 entries of
the TLB. The register is updated every time a TLB match occurs: the bit corresponding
to the matched entry is set, and all others are cleared. On a TLB miss, this register can
be read, and supports replacement algorithms whose policy is to leave the most recently
used address in the TLB.

The Most Recently Used Register is a read-only register. This register is cleared when
read by software.

31 16 15 0

reserved Most Recently Used
(1 OF 16 SET)

Address: 0x0000041C (ASI=0x01)

Figure B2-11. Most Recently Used Register

2.2.10 The TLB Entry

The TLB has 16 fully associative entries, each of them consisting of an entry in the
CAM (content-addressible memory) array and the corresponding RAM array.

2.2.11 The TLB CAM Entry

The CAM-array entry is shown in the diagram below. Each CAM entry consists of a
20-bit virtual page number (VPN) that contains three index fields, a 2-bit fragment
index, and a 6-bit context number (process identifier) that are compared against the
virtual page address from the Integer Unit (IU) and the content of the context register.
In addition, a global bit (G), two level bits (1:0), and a fragment enable bit (FE) are
included. The CAM provides simultaneous comparison of all 16 TLB entries against the
current virtual page address and context number. If a CAM entry matches the virtual
page address, the corresponding RAM entry in the TLB provides a physical page
number (PPN) to generate a physical address.

ol

MB86932 Memory Management Unit - Programmer’s Model

B2-12

Table B2-1:

31 24 23 18 17 12 11 10 9

[o®)
FUJITSU

Virtual Page Number

Fl
Index-1 | Index-2 Index-3

Address: 0x00000304 to Fragment Index —‘
0x0000037C (ASI=0x01) Level

Context Number LVL | FE| G -

(alternates with RAM entries Fragment Enable (On=1, Off=0, RST=0)

in this range of addresses)
Global (On=1, Off=0, RST=0)

Figure B2-12. CAM Entry Format

Bits 31-12: Virtual Page Number (VPN)—Some page table subfields may be masked by Index-3, -2,

and -1. Index-1, -2 and -3 support different page sizes.

During translation, the context field in the CAM is compared against the value in the
context register. Only when these two values match can a RAM entry be selected. The
only exception is when the corresponding Global bit is set, indicating that context is
irrelevant. The Global bit is, in effect, an enabling switch for the Context field; if set, it

masks out that field.

The two Level bits determine what page sizes are part of the MMU architecture. They
work by acting as (encoded) masks, excluding from the comparison process one or
more of the index subfields, as detailed in the following table:

Level-bits Decoding Table

LVL[1:0] Address Mapping M3M2M1 TLB Field masked
11 4-kbyte 0 o0 0 None
10 256-kbyte 1 0 0 Index 3
01 16-Mbyte 1 1 0 Indexes 2 and 3
00 4-Ghyte 1 1 1 Indexes 1, 2 and 3

As summarized in the table, the mask bits M3, M2 and M1 are used to exclude from
comparison index 3 (bits 17-12), index 2 (bits 23-18), and index 1 (bits 31-24),
respectively. If M3 is set, index 3 is masked out, and a RAM entry is selected based on
the match of indexes 1 and 2, and the context number. The 6-bit index 3 combined with
the 12-bit page offset can provide an index to a 256-Kbyte linear addressing region. If
both M3 and M2 are set, the RAM entry is selected based on the match of the index 1
and the context number. The 12-bit index (bits 23-12) combined with the 12-bit page
offset can provide an index to a 16-Mbyte addressing region. If all three masks are set,
the RAM is selected based on the context number match alone, and the RAM entry

provides an index to a 4-Gbyte addressing region.

i

MB86932 Memory Management Unit - Programmer’s Model

B2-13

SPARCIite User’'s Manual

2.2.12 The TLB RAM Entry

The RAM-array entry is shown in the diagram below. It consists of a 20-bit (maximum)
physical page number (PPN), a 3-bit access-level protection, a cacheable bit, a modify
bit, and a valid bit. The mask bits (M1, M2, and M3) are a decoded version of the LVL

field in the corresponding CAM entry.

The mask bits allow the TLB to generate a correct index into a page for different page
sizes. The index fields that are excluded from the CAM comparison process are used as
part of this index into the page—used as part of the offset into the selected page instead
of part of the PPN. If all mask bits are clear, the 20-bit PPN drives the upper 20 bits of
the physical address, and the 12-bit offset drives the lower 12 bits. If M3 is set, the
lower 6-bits of the PPN are replaced by the bits 17-12 of the virtual address. Therefore,
the physical address contains a 18-bit untranslated address (page offset) and a 14-bit
page number. If both M2 and M3 are set, the lower 12 bits of the PPN are replaced by
bits 23-12 of the virtual address. The physical address then contains a 24-bit untrans-
lated address (page offset), and a 8-bit page number. If all mask bits are set, the virtual
address outputs to the physical address.

Associated with each virtual page are coded values that indicate what kind of accesses
(read, write, execute, or none) may be made to this page by this program. When loaded
into the TLB these values are stored in the ACC field [5:2], and are compatible with the
specification given in thEPARC Reference MMU Architectunte that entries in the

TLB make no explicit reference to ASI spaces; this information is implicit in the access
bits of the TLB.

Table B2-2: Access Protection available through PTE[4:2]

Accesses Allowed
ACC Field -
value User Access Supervisor Access
(ASI=0x8 or 0xA) (ASI=0x9 or 0xB)

0 Read Only Read Only
1 Read/Write Read/Write
2 Read/Execute Read/Execute
3 Read/Write/Execute Read/Write/Execute
4 Execute Only Execute Only
5 Read Only Read/Write
6 No Access Read/Execute
7 No Access Read/Write/Execute

Note: ASI=Alternate Space Identifier; an 8-bit value that indicates whether a load/store instruction transfers data
to/from external units, or registers on the chip.

MB86932 Memory Management Unit - Programmer’s Model

B2-14

31 121110 9 8 7 6 5 3 2 10
PPN G|FElV|Cc|M|[R| Acc [m3|m2Mm1
Address: 0x00000300 to Global bit (On=1, Off=0, RST=0)] L

?xl(t)OOO(t)378 '(tﬁSCl:A%I(Ol) Fragment Enable (On=1, Off=0, RST=0)

alternates wi "

entries in this range of Valid (On=1, Off=0, RST=0)

addresses) Cacheable bit (On=1, Off=0, RST=0)

Modify bit (On=1, Off=0, RST=0)

Referenced bit (On=1, Off=0, RST=0)

Access Protection bits (On=1, Off=0, RST=0)

Mask bits M3, M2 and M1 (On=1, Off=0, RST=0)
Figure B2-13. RAM Entry Format

Bits 31-12: (Maximum) Physical Page Number (PPN)—Some page table subfields may be masked by
M3, M2, and M1)

Bit 11: Global bit (G)—This bit and the fragment enable bit (FE) are duplicates of the same bits in
the corresponding RAM entry.

Bit 10: Fragment Index bit (FE)—If set, this bit asserts that the Fragment Index bits are to be
included in the comparison. If so, the result is to establish access protection at the
sub-page 1K level, the “fragment” level. When the FE bit is set, the Fragment Index bits are
compared against virtual address bits 10 and 11 (which do not themselves go through
translation). A RAM entry is then selected only when there is a VPN match and a Fl match
in the CAM entry. Since each TLB entry can set its own access level or protection,
protection at the 1-Kbyte level is thus available. When the FE bit is not set, the FI bits are
excluded from the comparison, and access protections apply only to the full 4-Kbyte
(or larger) whole pages.

Bit 9: Valid bit (V)—This bit reports the current validity of the TLB entry. The V bit of each entry
should be cleared by software to invalidate those entries before the TLB is enabled.

Bit 8: Cacheable bit (C)—This bit indicates whether the memory addressed by the TLB is
cacheable or not.

Bit 7: Modify bit (M)—This bit in the TLB is set when the memory page is modified by a
write operation.

Bit 6: Referenced bit (R)—This bit is set by the TLB when the page in question is accessed. This
bit can be used in TLB replacement algorithms.

Bits 5-3: Access Protection bits (ACC)—The access-level protection for the address region mapped
by the RAM entry. Access-level protection is checked during TLB access. If a TLB match
occurs, but access-level protection is violated, the TLB will generate a trap.

Bits 2-0: Mask bits (M3, M2 and M1)—A decoded version of the LVL field in the corresponding CAM

entry.

i

[o®)
FUJITSU

MB86932 Memory Management Unit - Programmer’s Model

B2-15

SPARCIite User’'s Manual

2.2.13 ITLB Description

Fully static implementation of a one-entry Instruction Translation Lookaside Buffer
(ITLB) allows immediate access to the physical address of the last page entry stored
there. The registers associated with the ITLB are in locations 0x00000400 (“RAM”
entry) and 0x00000404 (“CAM” entry). These two registers are the same as the TLB
RAM and CAM entries. The instruction cache hit/miss and access permissions are
determined by the PTE in the ITLB, so there is no performance penalty in using the
ITLB. If an access-level violation is detected, the ITLB generates an instruction_ac-
cess_exception trap.

2.2.14 TLB Lookup

If an instruction address translation is not found in the ITLB, an ITLB hold is asserted,
and the virtual instruction address is looked up in the TLB on the next (the second)
cycle, preempting any data address translation. On a match in the TLB, the TLB entry

is output to the ITLB. On the third cycle, the translation is retried using the ITLB, with
guaranteed success. If the translation is not found in the TLB, an instruction_access_ex-
ception trap is asserted, and a software routine to access the address translation table in
main memory can be executed. This is known as a “software table walk”. Due to the
locality of instructions, and the availability of the TLB in case of ITLB miss, the
performance price of instruction address translation is minimal.

For data address translation, the virtual data address is used directly to compare against
each entry in the TLB. If a TLB match occurs, the TLB outputs the physical address,

the cacheable bit, and the access protection bits. If the translation is not found in the
TLB, or if an access-level violation is detected, a data_access_exception trap is
asserted. If the trap occurred because of a TLB miss, a software table walk can be
initiated.

2.2.15 TLB Software Notes

Note 1: When the TLB is enabled, a Ida or sta (load alternate or store alternate)
instruction which accesses the TLB CAM/RAM to read or modify the contents of the
TLB cannot be followed immediately by an instruction which uses the TLB for
translation. Some other (non load/store) instruction or a nop must follow the Ida or sta.

Note 2: When reading or writing TLB registers, only sta and Ida instructions should be
used. stda and Idda are not supported for the CAM/RAM entries in the TLB.

ol

MB86932 Memory Management Unit - Internal Architecture

B2-16

[o®)
FUJITSU

2.3 Internal Architecture

2.3.1 Details of TLB Logic -

Because of the normally sequential nature of instruction addresses, it is likely that the
next required instruction is on the current page. Accordingly, the virtual instruction
address is sent directly to the ITLB for translation; only if the desired address is not
found there is it sent to the TLB. If it is found in the TLB, it is loaded into the ITLB,

and instruction address translation proceeds. If the physical address is not found in the
TLB either, an “instruction_access_exception” trap is asserted, and a software table
walk can be performed. The physical address found in the Page Tables is entered into
the ITLB and TLB for use in later instruction address translations.

Because data is more widely scattered, data address translations go directly to the TLB.
If the desired physical address is not found in the TLB, a “data_access_exception” trap
is asserted, a table walk is performed, and the physical address when found in the Page
Tables is entered into the TLB for later data address translations.

The net result for overall system performance is that few instruction or data references
in a normally structured program need be translated by accessing the Page Tables in
memory; the great majority of the physical addresses needed are found on-chip in the
TLB/ITLB, and two physical addresses—one data address and one instruction
address—can be acquired simultaneously. The details of the process of translating a
virtual into a physical address are illustrated in the diagram and flowchart in Figures
B2-14 and B2-15.

i

MB86932 Memory Management Unit - Internal Architecture
B2-17

SPARCIite User’'s Manual

2.3.2 Address Translation: Logical and Physical Steps

The diagram below illustrates the registers and fields involved in TLB-based translation
of a virtual address into a physical address. The flowchart supplements it by correlating
the physical steps taken with their meaning from the user’s point of view.

31 24 23 18 17 12 1110 9 0
Virtual
Address | Index-1 Index-2 Index-3 | | Page Offset
L8 [[A | contextnumber | v [Fe[]|
Entry
Context
Register
ASI | Compare Compare Compare CF Compare
Hit/Miss - \
Logic [TLB Hit

Figure B2-14. Address Translation by TLB: Fields and Registers

In this flowchart, the logic of each translation step is given in the left-hand box, and its
physical realization in the corresponding right-hand one.

MB86932 Memory Management Unit - Internal Architecture
B2-18

Logical

Physical

Step 1: Is this a virtual
address to be translated
into a physical address?

Is the value on the ASI
bus = 08, 09, OA or 0B?

YES; proceed to Step 2

NO; this is the physical address

Step 2: Is there an entry in
the TLB (or ITLB, for an
instruction) for a page of

the right size that matches

the given virtual address?

Do those index fields of the

virtual address not masked

by the LVL bits match the
corresponding bits of a
CAM entry in the TLB?

YES; proceed to Step 3
NO; this is a “TLB miss”; generate data or instruction exception, go to
Address Translation Page Tables in memory to find physical address.

Step 3: Is the matching
entry in the TLB (or ITLB)
in the same context as
the given virtual address

Does the value in the
Context Register match
the CAM context tag (or is
the global bit set)?

[o®)
FUJITSU

(or is context irrelevant)?

YES; TLB usage successful. RAM entry corresponding to matched
CAM entry contains the wanted physical address.

NO; this is a “TLB miss”; generate data or instruction exception, go
to Page Tables in memory to find physical address.

Figure B2-15. Flowchart of TLB Address Translation

2.3.3 Basic TLB Exception Timings

The diagram below indicates at what stage of the pipe the various TLB exceptions
occur, and when the processor recognizes these exceptions. Instruction-access TLB
faults occur during the fetch stage, while data-access TLB faults occur during the
memory stage. All of the exceptions are recognized at the end of the memory stage.

i

MB86932 Memory Management Unit - Internal Architecture
B2-19

SPARCIite User’'s Manual

Fetch Stage
Instruction access TLB miss
Instruction access exception

Instruction mexc All occur at fetch stage l
Instruction parity check error

Decode Stage

i

Execute Stage

Data access TLB miss
Data access exception l

Data mexc

D ity check All occur at memory stage
ata parity check error All exceptions recognized at memory stage

Memory Stage

Figure B2-16. TLB Exception Timings

2.3.4 TLB Timing Considerations

The TLB does the instruction/data address translation in parallel with accessing the
instruction/data caches (see Figure B3-2 in ChaptsiBB6932 Caches). Thus, there

is no additional cycle penalty when executing with the TLB enabled if the virtual/physi-
cal address translation is in the TLB. There are two exceptions to this rule:

1. If the virtual/physical address pair being accessed is in the TLB but not in the ITLB,
the translation will require an additional two cycles. The first of these is used to
access the TLB for the translation pair and load it into the ITLB; the second is used
to retry the translation with the ITLB.

2. If either cache is disabled and the TLB is enabled, the TLB translation requires an
extra cycle be inserted before the address can be driven on the Address pins.

Figure B2-17 shows the timing for TLB virtual-to-physical address translations. The
“ITLB Status” indicates whether an ITLB hit or miss occurs for the address of the
instruction in the fetch stage. The “TLB Status” normally indicates whether a TLB hit
or miss occurs for the data address of the instruction in the memory stage.

Four situations are indicated in Figure B2-17. Cycle 0 is an example of both an ITLB
hit for the instruction address of INST4, and a TLB hit for the data address of INST1.

Cycles 1 through 3 show what occurs when INST5 misses in the ITLB in cycle 1. The
INSTS instruction translation is retried using the TLB in cycle 2. If a hit occurs, the
ITLB is updated with the value from the TLB. Finally, the instruction address of INST5
goes through translation using the ITLB in cycle 3.

Cycles 4 and 5 indicate what happens when the instruction address translation for
INST6 is in neither the ITLB nor the TLB. After accessing the ITLB and missing, the

ol

MB86932 Memory Management Unit - Internal Architecture

B2-20

[o®)
FUJITSU

TLB is accessed with the same instruction address. When a miss is detected here, this
causes an instruction memory exception to occur. Note that this does not cause a trap
until this instruction reaches its memory stage in cycle 8.

Cycle 8 shows a data address TLB miss. (The data address from the instruction in te_
memory stage always goes to the TLB except in the cases when the instruction address
preempts it after an ITLB miss.) This data-address TLB miss causes a
data_memory_exception which that is recognized in the same cycle in which it occurs.

For the last two cases, the exceptions cause the processor to vector to the trap routine
(INST20) in cycle 9. The instructions in the decode, execute, and memory steps are
“squashed” at that time. The faulting instruction (INST6 in both cases) does not write
back a result to the register file. Instead, the PC (virtual address) of the faulting
instruction is written to the register file. In addition, if a data address translation caused
the fault, the value of the faulting virtual data address is written into the data fault
address register.

2.3.5 TLB Emulation Support Logic

When the MB86932 chip is executing from the In-Circuit Emulation (ICE) port, all
accesses, including those to supervisor instructions and data, should be untranslated.
This is required because the ICE logic has a fixed memory map, and will not be able to
handle translated addresses. The ICE code will have the responsibility of doing the
table walk before accessing any location. It should access everything using physical
addresses.

I I I
Inst5 + Inst5 1 Inst5 1 Inst6
! ! !

I I
Inst6 + Inst7 1 Inst8
! !

I
Inst9 1+ Inst20 + Inst21 1 Inst 22

Fetch Inst 4

I I I I
! ! ! !
! ! ! !
Decode ' Inst3 ' Inst4 ' Inst4 ' Inst4 1 Inst5 1 Inst5 ' Inst6 ' Inst7 ' Inst8 Inst 20 ' Inst 21
I I I I I I I I I I I
Execute ' Inst2 ' Inst3 ' Inst3 ' Inst3 ' Inst4 ' Inst4 ' Inst5 ' Inst6 ' Inst7 ! Inst9 [! Inst 20
! ! ! ! ! ! ! ! ! !
Memory ' Instl ' Inst2 ' Inst2 ' Inst2 ' Inst3 ' Inst3 ' Inst4 ' Inst5 ' Inst6 ! Inst 9
! ! i ! ! ! ! i ! !
Write-Back ' InstO ' Inst1 ' Instl ' Instl ' Inst2 ' Inst2 ' Inst3 ' Inst4 ' Inst5 ' Inst63'| Inst7 ' Inst8
I I i I I I I i I I I
ITLB Status | IHit | IMiss | (IMiss) . IHit | IMiss | (IMiss) | IHit | IHit | IHit | IHit |/ 1Hit | IHit |
(_fetch stage) | | | | | | | | | | |
* DHit + DHit + IHit + DHit + DHit +IMiss! + DHit + DHit ' DMiss2: D Hit DHit + DHit
TLB Status 1 1 1 1 1 1 1 1 1 1 1 1
(load/store or I_fetch stage) , , , , ,
Pipe Stall | ‘ | | | ‘ ‘ ‘ : ;
Note 1: I_Mem_Exception occurs for |_Miss in TLB. L squashed
2: D_Mem_Exception occurs for D_Miss in TLB; I_Mem_Exp. + D_Mem_Exception is recognized here. instructions
3: No result written back into register file, but virtual PC is written back.
Figure B2-17. Sequence of Events for ITLB and TLB Misses

MB86932 Memory Management Unit - Internal Architecture
B2-21

SPARCIite User’'s Manual

2.4 Programming Considerations

2.4.1 MMU Architecture Example: the SPARC Reference MMU

One MMU architecture that the MB86932 can support is the SPARC Reference MMU.
This architecture can be implemented as follows.

The information the MMU required to perform virtual-to-physical address translation is
put in a hierarchy of physically-addressed structures, the Page Tables, that reside in
main memory. In the SPARC Reference MMU architecture, with three Page Tables,
Page Tables 1 and 2 would contain two kinds of entries:

» Page Table Pointersvhich contain the physical address of the logically next-lower
table, and thereby link the tables together as a hierarchy (Note that PTPs are never
found in the TLB.)

« Page Table Entriesvhich contain the physical address of a page of the size
associated with the table (along with other page-specific information). Since the
TLB caches PTEs, the informaticontentof PTEs in main memory should be
compatible with that of PTEs in the TLB, although the exact format may differ.

Page Table 3, can contain only Page Table Entries (PTES), since there is no next-lower
table for it to point to. SPARC reference compatible formats of the PTP and PTE are:

31 8 7 2 1 0

Physical Page Table address reserved ET

Entry Type (00=invalid, 01=PTP, 10=PTE, 11=reserved) —‘

Figure B2-18. Page Table Pointer (PTP)

31 12 11 9 8 7 6 5 4 2 1 0
PPN reserved |FE| C [M|R ACC ET

Fragment Enable (Protect down to 1K subpage level)
Cacheable (0=no, 1=yes)

Modify (Set when page modified by write operation)
Reference (Set by TLB when page is accessed)

Access protection (See Table B2-2, “Access Allowed”)
Entry Type (00=invalid, 01=PTP, 10=PTE, 11=reserved)

Figure B2-19. MB86932 Page Table Entry (PTE)

Note that the FE field is not part of the SPARC Reference MMU Architecture, but is
introduced by the MB86932. (The reservation of bits [11:9] is similarly an MB86932
feature.)

ol

MB86932 Memory Management Unit - Programming Considerations
B2-22

[o®)
FUJITSU

Index-1 Index-2 Index-3

Level 1 Table Level 2 Table Level 3 Table -

Page Table Pointer

Page Table +

Pointer Page Table Pointer|

Page Table Entry

T
Physically Addressed
Structures in Main Memory

Figure B2-20. Pointer chaining from Page Table to Page Table

The table walk, or search from table to table for a matching virtual address, follows a
simple logic: after the root pointer locates the Level-1 table in memory, and index-1 of
the virtual address picks out a particular entry in that table, each succeeding table (if
necessary) is located by the PTP just found, and the entry in that new table is picked by
the next index field of the virtual address.

The reason for dividing the page pointers among three tables is to support sparse
addressing efficiently; the root and the PTEs in the three tables point respectively to
pages of 4 gigabytes, 16 megabytes, 256 kilobytes, and 4 kilobytes, so memory can be
used in block sizes appropriate to an application’s routines and data structures.

2.4.2 Virtual Address format

The format of a virtual address as generated by the Integer Unit (1U) and passed for
translation to the TLB is as follows: the Page Offset field for the maximum (four page
sizes) configuration is nominally 12 bits wide (bits 11-0) and specifies a particular byte
within a 4K-byte page; the three index fields, collectively known as the Virtual Page
Number (VPN) field, enable the TLB to identify the correct page. Each index field is an
offset into the correspondingly-numbered page table.

If the page whose physical address is sought is larger than 4K-bytes, a 12-bit offset field
is insufficient to identify a specific byte within it. But the PTE of a page size larger than
4K will not be in table 3, and will not require that all three Page Tables be walked

during the translation process, so one or more of the index fields becomes available for
use in forming a bigger page offset field, exactly as required. In effect, then, the offset
field is always as big as needed for the current address translation process.

For example, if the information sought is in a 256K-byte page, the index-3 field, needed
only when the PTE is in Table 3, is effectively made part of the Page Offset field for

=
MB86932 Memory Management Unit - Programming Considerations
B2-23

SPARCIite User’'s Manual

that translation, giving an Offset field of 18 bits; this supports the identification of an
individual byte in a 256K-byte page. Similarly, a 16M-byte page will not require index
fields 2 or 3, yielding the effective 24-bit Offset field that is needed for addressing a
4M-byte address space.

31 24 23 18 17 12 11 1 0
Virtual Page Number
Index-1 | Index-2 | Index-3

Page Offset

Figure B2-21. Virtual Address Format

2.4.3 Physical Address format

The MB86932 physical address format differs from that specified iSRARC

Reference MMU Architectuiia being 32 bits wide rather than 36. It is otherwise as
specified in that document: Since all pages begin on 4K-byte boundaries, the low-order
12 bits of the physical address are the same as those of the virtual address, and do not
require translation.

31 12 11 10

Physical Page Number Page Offset

Figure B2-22. Physical Address format

2.5 Conformity to SPARC Reference MMU Architecture

The MMU architecture of the MB86932 is as specifiedie SPARC Reference MMU
Architecture(Sun Microsystems, Revision 1.4, 23 Jan 1989), with the following
exceptions:

» The physical address format is 32 bits wide rather than the 36 bits specified in the
Reference.Architecture.

» As a consequence of the difference in physical address format, the Physical Page
Number (PPN) portion of the Page Table Entry (PTE) is 20 bits wide rather than the
24 bits specified in the Reference.Architecture.

« Bit 8 of the PTE, the Fragment Enable (FE) bit, has been reserved in the 932 to
support protection down to 1K sub-page boundaries.

» A few of the registers and bits specified in the Reference Architecture are not
implemented, or not implemented in full. Specifically: only bits 7-2 of the Context
Register are implemented.

o
MB86932 Memory Management Unit - Conformity to SPARC Reference MMU Architecture
B2-24

[o®)
FUJITSU

Theinstruction_address_ MMU_missd thedata_address_ MMU_migxceptions

defined in theReferencare not implemented; on the occurrence of one of these

misses, the TLB will instead vector to the instruction_access_exception trap routine,

or the data_access_exception trap routine, respectively. -

i

MB86932 Memory Management Unit - Conformity to SPARC Reference MMU Architecture
B2-25

CHAPTER

B3

MB86932 Caches

3.1 Overview of MB86932 Caches

The MB86932 offers enhanced support for cacheing: its instruction cache is 8K-bytes in
size, and has 8-word lines. (The corresponding values for the MB86930 are 2K-bytes
and 4-word lines.) The data cache of the MB86932 remains the same as the MB86930’s
at 2K-bytes and 4-word lines. The increased instruction cache size is reflected in a new
format for the Instruction Cache Tag, which has four new “valid” bits to control the

four new words per cache line (the other four valid bits remain in the same positions
they occupy in the |_Cache Tag in the MB86930, making for backward compatibility).

Both caches are “physical” caches; that is, the cache arrays are accessed with physical,
not virtual, addresses. The addresses stored in the tag arrays are also physical, not
virtual, addresses. Since the caches are accessed with physical addresses, the reading
and writing of the caches is expedited by the MB86932’s restriction of the minimum
page size to 4K-bytes. This allows the lower 12 bits of the physical address to be
identical to the lower 12 bits of the virtual address, which in turn means that, given
2-way set associativity, the cache can be up to 8K bytes without requiring any address
translation when being accessed. The MB86932 uses this full 8K-byte space in its
instruction cache, while in the data cache only 2K-bytes (of the possible 8K-bytes) are
implemented.

&0
MB86932 Caches - Overview of MB86932 Caches
B3-1

SPARCIite User’'s Manual

3.2 Programmer’s Model

The cache control/status registers of the MB86932 form a superset of those in the
MB86930. The registers common to the two chips are the:

0x00000000 ASI=0x1 Cache/BIU Control Register** (TLB enable bit added)
0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

To this set (all in the ASI=0x01 space) the MB86932 adds two Instruction_Cache_In-
validate Registers, one for each bank of the instruction cache, and two Data_Cache_In-
validate Registers, one for each bank of the data cache. All four are write-only; their
format is shown below.

Bank 1 of the instruction cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000 both in ASI space

0x0C. Bank 1 of the data cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000, both in ASI space
OxOE.

Invalidating the cache, and clearing lock and Iru bits, is an easy way to remove old
code/data from the caches when a new page is brought into physical memory, or after a
DMA has been made to cacheable locations in main memory. Clearing only the lock
and Iru bits is an easy way to allow locked code to be replaced after use. Note that the
invalidate bits are written during the M stage of the instruction; thus, their effect is not
felt until the fourth instruction after the instruction that writes to these registers.

31 2 1 0
reserved

Instruction cache addresses: 12 (All valid bits of bank 1 of the cache are cleared=1, RST=0) —‘

Bank 1, Address: 0x00001000 (ASI=0x0C) 11 (All lock and Iru bits of bank 2 are cleared=1, RST=0)

Bank 2, Address: 0x80001000 (ASI=0x0C)
Data cache addresses:

Bank 1, Address: 0x00001000 (ASI=0x0E)
Bank 2, Address: 0x80001000 (ASI=0x0E)

Figure B3-1. Cache Invalidate Register Format

MB86932 Caches - Programmer’s Model

B3-2

o)
FUJITSU

3.2.1 Operation of the Instruction Cache

At reset the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing stores to an

alternate address space 0xOC. When the cache is off, all requests are sent to the external
memory. After the cache is initialized, the user writes a 1 to the cache-on bit to turn

the cache. h

3.2.2 Operation of the Data Cache

At reset, the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing writes to alternate
address space 0xOE. When the cache is off, all requests are sent to the external memory.
After the cache is initialized, the user writes a 1 to the cache-on bit to enable the

caches.

Accesses to the ASI’s corresponding to user and supervisor data space are cached. No
loads or stores from any other ASI are cached.

3.3 Internal Architecture of MB86932 Caches

Figure 3-Cache-1, below, shows how the TLB works with the caches (in the example
shown, the Instruction Cache):

Virtual Page Number
1

31 24 23 18 17 2 1 5 4 0

Index-1 | Index-2 Index-3 Offset
8k, 2-way
TLB/ITLB |:> TLB |_tag Array |_cache Array
hit/miss
Tag Tag
@ L] Bank1 | Bank 2 Bank 1| Bank2
Physical Page Number

=2 =2
|—~ MUX
|_cache hit/miss to IU

Figure B3-2. TLB/Cache Interaction
&0
MB86932 Caches - Internal Architecture of MB86932 Caches
B3-3

SPARCIite User’'s Manual

3.3.1 Instruction Cache

The instruction cache is an 8K-byte, 2-way associative, sectored cache, with 8-word
lines. The basic operation of the cache is as follows: the IU sends the virtual address to
the TLB, |_cache, and |_cache tags. Since the lower 12 bits of the virtual address are
not translated, they are available immediately at the |_cache and tag array. Thus, the

tag array can be accessed and the |_cache address can be decoded simultaneously with
the TLB translation of the virtual page number to the physical page number. Once this

is completed, the tag read from the tag array can be compared to bits 31-12 of the
translated physical address to determine hit or miss.

The virtual instruction address format is shown below. The virtual page number has
three index fields that are conditionally translated by the TLB, based on the mapped
memory region size. The address coming out of the TLB is the physical address, and
goes to the |_cache and tags. Bits 31-12 go to the tag array for comparison. Bits 11-5,
which do not go through translation, select two tags (one for each bank) out of the
256-entry tag array, and also choose two lines (one for each bank) out of the 8K
I_cache. Bits 4-2 select a word out of the 8-word line. In each of the diagrams below,
bits 0-11 are the untranslated part of the address.

31 24 23 18 17 12 11 1 0
Virtual Page Number
Index-1 | Index-2

| Index3 Page Offset

(from IU to ITLB)

Figure B3-3. Virtual Instruction Address

31 12 11 1 0

Physical Page Number Page Offset

(from ITLB to Instruction Cache)

Figure B3-4. Physical Instruction Address

31 12 11 5 4 2 1 0

Compared vs |I_cache Tag Line # W

Figure B3-5. Address to |_cache and Tag Array

The instruction cache tag format is shown below. Twenty bits make up the address tag.
Four bits, 9-6, are Valid bits for four of the words of the 8-word line. These bits are in
the same location as the valid bits of the MB89630 |_cache tag array. Four additional

&0
MB86932 Caches - Internal Architecture of Caches
B3-4

o)
FUJITSU

Valid bits have been added for the other four words of the 8-word line. Bit 5 is used to
indicate whether the line can be accessed by supervisor only. Bit 1 is the least-recently
used bit, which is used when doing a line replacement in the |_cache. Note that because
of the increase in cache size and line size, the tag format of the MB86932 differs from
that of the MB86930.

How the valid bits in a tag correspond to the words in the corresponding line is ShO\-
below:

Word Address [4:2] 000 001 010 011 100 101 110 111
Valid Bit Location 6 7 8 9 2 3 4 10
31 12 11 10 9 6 5 4 2 1 0

Old New
I_cache Tag Valid bits Valid bits
Note: Only tags for set 2 have LRU bit. unused —‘
New Valid bit

Supervisor-Only bit
Least-Recently Used bit
Lock bit

Figure B3-6. |_cache Tag Format

Note that any access that competes with a currently locked entry in the cache is treated
as non-cacheable. In addition to the lock bits in the tag array, there is a global cache
lock bit for each of the caches. Whenever these global lock bits are set, all accesses that
do not result in a hit in the cache are treated as non-cacheable.

Writes to the instruction address space are not supported. The tag and instruction
memory can be updated by doing writes to alternate address spaces 0xOC and 0x0D.

3.3.2 Read Hit

On an instruction fetch, the tag and the instruction are accessed in parallel, using the
untranslated lower 12 bits of the address. If the translated bits of the address match one
of the accessed tags, and the U/S fields match, and the “valid” bit corresponding to the
word being accessed is set, then the required instruction is in the cache. The instruction
is returned to the IU, and the LRU bit is updated. The lock bit may be updated, based
on the value of the Instruction lock bit in the “lock control register.”

3.3.3 Miss Processing

If the address field in the tag does not match the translated address bits (31-12) coming
from the TLB, or the U/S bit does not correspond to the ASI indicated by the U, or the

i

MB86932 Caches - Internal Architecture of MB86932 Caches
B3-5

SPARCIite User’'s Manual

corresponding “valid” bit is not set, the result is a cache miss. In this case, the “hold”
signal to the IU, and the “miss” signal, are asserted. This freezes the U pipeline. The
request is sent to external memory via the BIU.

If the address field in the tag matches the translated address bits (31-12), and the U/S bit
corresponds to the ASI indicated by the IU, and at least one of the valid bits is set (but
the valid bit for the requested word is not set), it implies that an entry has already been
allocated for this word. There is no need to select an entry to be replaced.

If the miss is due to the address field in the tag not matching the translated address bits
(31-12), or the U/S bit does not correspond to the ASI indicated by the 1U, or none of
the valid bits is set, then an entry needs to be selected for replacement (or allocation).
The LRU bit for this entry is checked, and the least-recently used entry is chosen to be
replaced (or allocated).

The entry that is chosen for replacement will also depend on the “lock” bits. Consider
two sets, A and B. If the lock bit for a given entry in A is set, and the corresponding bit
of B is clear, then the entry in B will be replaced regardless of the value of the LRU bit.
The LRU bit will be updated to show the entry in A to be the least-recently used. If the
lock bit for both entries, or the lock bit for the whole cache, is set, then the access will
be treated as a non-cacheable access.

In the case of an instruction fetch, when the required instruction is accessed from main
memory, it is returned to the IU and stored in the cache. The “hold” signal freezing the U

is deasserted. If a line was replaced or allocated because of the cache miss, the valid bit for
the accessed word is set, and the other valid bits are reset. If the word being accessed is
part of an already allocated line, then only the “valid” bit for the accessed word is set. All
other bits remain unchanged. The lock bit may also be updated based on the value of the
Instruction lock bit in the “lock control register.”

3.3.4 Data Cache

The data cache is a 2K-byte, 2-way associative, sectored cache, with 4-word lines. The
basic operation of the cache is as follows: the IU sends the virtual address to the TLB,
D_cache, and D_cache tags. Since the lower 12 bits of the virtual address are not
translated, they are available immediately at the D_cache and tag array. Thus, the tag
array can be accessed and the D_cache address can be decoded simultaneously with the
TLB translation of the virtual page number to the physical page number. Once this is
completed, the tag read from the tag array can be compared to bits 31-10 of the
translated physical address to determine hit or miss.

The virtual data address format is shown below. The virtual page number has three
index fields that are conditionally translated by the TLB, based on the mapped memory
region size. The address coming out of the TLB is the physical address, and goes to the

i

MB86932 Caches - Internal Architecture of Caches

B3-6

o)
FUJITSU

D_cache and tags. Bits 31-10 go to the tag array for comparison. Bits 9-4, which do not
go through translation, select two tags (one for each bank) out of the 128-entry tag
array, and also choose two lines (one for each bank) out of the 2K D_cache. Bits 3-2
select a word out of the 4-word line. In each of the diagrams below, bits 11-0 are the
untranslated part of the address.

31 24 23 18 17 12 11 10 -

Virtual Page Number P Offset
Index-1 | Index-2 | Index-3 age iise
(from IU to TLB)
Figure B3-7. Virtual Data Address
31 12 11 1 0
Physical Page Number Page Offset
(from TLB to Data Cache)
Figure B3-8. Physical Data Address from TLB
31 10 9 4 3 2 1 0
Compared vs D_cache Tag Line # w

Figure B3-9. Address to D_cache and Tag Array

The data cache tag format is shown below. Twenty-two bits make up the address tag.
Four bits, 9-6, are valid bits for each word of a D_cache line. Bit 5 is used to indicate
whether the line can be accessed by supervisor only. Bit 1 is the least-recently used bit,
which is used when doing a line replacement in the D_cache. Finally, bit 0 is used to
lock the entry into the cache. Note that this format is identical to that of the MB86930.

31 10 9 6 5 4 2 1 0

D_cache Tag Valid unused

Note: Only tags for set 2 have LRU bit. U/S bit J
Least-Recently Used bit
Lock bit

Figure B3-10. D_cache Tag Format

The data cache follows a write-through update policy. On a write hit, the data is written
to both the cache and main memory. If there is a write miss, the data is written only to

i

MB86932 Caches - Internal Architecture of MB86932 Caches
B3-7

SPARCIite User’'s Manual

the external memory. A different write policy is followed if the write is to a locked
location.

The lock bit in the data cache has the effect of locking the current data in the cache.
Any access that does not result in a hit in the cache, and maps to a location that is
currently locked, is treated as non-cacheable. Any writes to locked data cache entries
are not written to main memory. Only the data in the cache is updated.

3.3.5 Read Hit

On a load, the tag and the data are accessed in parallel, using the untranslated lower 12
bits of the address. If the translated portion of the address field coming from the TLB
matches the tag, and the U/S bit corresponds to the ASI indicated by the 1U, and the
“valid” bit corresponding to the word being accessed is set, then the required data is in
the cache. Since a hit is detected, the data is returned to the U, and the “hold” signal to
the IU is not asserted. The LRU bit is updated. The lock bit may be updated, based on
the value of the Data lock bit in the “lock control register.”

3.3.6 Write Hit

On a store(ST, STB, STH), if a hit is detected, the IU hold signal is not asserted. The
LRU bit is updated. The lock bit may be updated, depending on the value of the Data
lock bit in the “lock control register.” If the lock bit for this entry is not set, or the Data
lock bit in the “lock control register” does not indicate that the entry is to be locked,
then the transaction is also sent to the BIU to be completed in external memory.

3.3.7 Miss Processing

If the address field in the tag does not match the translated address bits (31-10) coming
from the TLB, or the U/S bit does not correspond to the ASI indicated by the U, or the
corresponding “valid” bit is not set, the result is a cache miss.

In the case of a write miss, the cache is left unchanged, and the request is sent to the
BIU to be completed in external memory.

A read miss is processed in exactly the same way as a miss for an instruction fetch,
except that the lock bit may be updated depending on the value of the Data lock bit in
the “lock control register.”

3.3.8 Atomic Load and Store

All atomic load and store transactions are treated as non-cacheable transactions.

i

MB86932 Caches - Internal Architecture of Caches

B3-8

CHAPTER

B4

MB86932 Bus Interface Unit

4.1 Overview of Bus Interface Unit
The BIU on the MB86932 includes all the features of the MB86930, and in addition
offers the following:
» A four-word burst mode for instruction fetches and data loads,
» Byte-based parity generation/checking for the external data bus,

* A modified Wait State Specifier Register that supports burst mode and parity
generation/checking on specified address ranges,

« A ROM/PROM interface that allows the MB86932 to boot from either 8-bit wide or
16-bit wide ROM/PROM,

» A processor bus request feature that enables the MB86932 to request access to
external address and data buses,

« Maodified timing on the external address bus when the TLB is enabled while caches
are off.

4.2 Burst Mode

4.2.1 Overview

The Bus Interface Unit (BIU) supports the fetching of instructions and data from
external memory to the appropriate cache in 'bursts’ of four words at a time. A burst

MB86932 Bus Interface Unit - Overview of Bus Interface Unit

B4-1

SPARCIite User’'s Manual

mode transfer is initiated either by a cache miss or by a DMA request. For a cache miss,
burst mode is supported only for instruction fetches and data loads, not for stores. The
IU is held until all four words are fetched. For DMA burst access, both data burst reads
and data burst writes are supported. (Note, however, that the DMA does not support
movement of data to/from cache.)

When burst mode is triggered by a cache miss, it replaces four words in the cache line
where the miss occurred. Such a burst-mode transfer can take place only if (a) the
enabling bit (see “Bus Control Register,” below) is set, and (b) the external memory
supports burst mode. In the case of an i_cache miss, only half the line is replaced, since
i_cache lines are eight words long. In the case of a d_cache miss, the entire four-word
line is replaced by a burst-mode fetch. The four-word sequence fetched in burst mode
starts with the word that caused the miss, followed by three more words in a standard
order.

4.2.2 Burst Mode Interface Pins

Two pins are dedicated to burst mode:
—BMREQ: Output pin to inform the memory system that the current bus transaction is a burst mode.

—BMACK: Input pin to inform the processor that the memory system can support burst mode.

Note: When a cache miss occurs, —-BMREQ will be asserted only if the corresponding

bit of the Bus Control Register (DBE for data, IBE for instructions) is set. However, for

a DMA transaction, -BMREQ is asserted whenever a quad word transfer is requested,
regardless of the status of the DBE bit.

4.2.3 Burst Mode Fetch Sequence

In burst-mode accesses, the BIU automatically uses the two least significant bits (LSBSs)
of the address of the requested word, ADR[3:2], to determine the sequence in which the
other three words will be fetched. (The sequence is optimized for a 2-way interleaved
memory.) The table below shows the four possible sequences of words, in terms of their
address LSBs, depending on the LSBs of the word causing the miss. Note that the first
word accessed in a burst is always the one requested by the IU and that during a burst
access, bits ADR[3:2] do not change.

Table B4-1: Sequence of Words Fetched in Burst Mode

LSBs af. SEQUENCE OF WORDS TRANSFERRED(in terms of their LSBs)
Missed Word 1st word 2nd word 3rd word 4th word
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00
MB86932 Bus Interface Unit - Burst Mode :':

B4-2

[o®)
FUJITSU

4.2.4 Bus Mode Control Bits

Two bits in the Bus Control Register are used to control burst mode for instruction
fetches and data loads.

31 2 1 0

Reserved

Address: 0x00000020 (ASI=0x01) Data Burst Enable (DBE) (Enabled=1, Disabled=0, RST=0) —‘
Instruction Burst Enable (IBE) (Enabled=1, Disabled=0, RST=0)

Figure B4-1. Bus Control Register

On reset, burst mode for both instruction and data misses is disabled. The user mu-
explicitly enable one or both after reset. Bus operations already in progress are not
affected by modification of the burst-enable bits.

4.2.5 PROM Address Space

Burst mode access from the PROM address space is not supported for 8- or 16-bit bus
mode. If burst mode is enabled, and the address lies within the PROM address space for
a non-32-bit bus mode transfer, the burst mode request output signal (-BMREQ) will

still be asserted, but the burst acknowledge signal (-BMACK) should not be asserted by
the external memory. If -BMACK is asserted under these conditions, the BIU operation
is undefined.

4.2.6 Prefetch Buffer

The prefetch buffer is not used when burst-mode instruction fetches are enabled, and is
automatically disabled if the IBE bit is set, regardless of the state of the Prefetch Buffer
Enable bit in the Cache/BIU Control Register. If the external memory system cannot
handle burst mode operations, the instruction burst mode should be left disabled, so that
the prefetch buffer can be used.

4.2.7 Cache Off

Instruction and data burst mode is automatically disabled if the corresponding cache is
turned off.

4.2.8 Bus Request

The bus will be released to service another request only after the completion of the
burst mode transaction.

N
MB86932 Bus Interface Unit - Burst Mode
B4-3

SPARCIite User’'s Manual

4.2.9 Memory Exception (Instruction fetches or Data loads)

All four word accesses of a burst mode access will be completed even if a memory
exception occurs on any of the word accesses. During a burst access, word accesses that
cause an external memory exception (-MEXC asserted) are not written into the cache,
while any words that do not cause a memory exception are written to cache. Note that

the Interger Unit will recognize a memory exception only when it is accessing the

specific word with which the memory exception is associated.

For example, if the IU requested word 00, the BIU would burst-read 00, 01, 10 and 11.
If an external memory exception occurred only on word 10, this word would not be
written to the cache; the other three words, however, would be written to the cache. The
IU would not vector to the memory_exception trap handler, since there was no memory
exception on the specific word it requested.

If, however, the IU ever tried to access word 10, which was not written into the cache
because of the memory exception, a miss would occur which would cause the BIU to
fetch that word from memory again. If a —-MEXC were asserted on this access of word
10, the processor would vector to the memory_exception trap handler, since this was
the word specifically requested by the 1U.

4.2.10 Memory Exception (DMA)

When a memory exception (-MEXC strobed) occurs on any word of a DMA burst read,
the DMA will complete all four reads. The corresponding four writes, needed to
complete the transaction, will not occur.

When a memory exception occurs on any word of a DMA burst write, the DMA will
continue, completing all four writes.

A memory exception on a DMA transfer will not cause the U to vector to the
data_memory_exception trap routine.

4.2.11 Non-cacheable Accesses
Burst mode fetches from a non-cacheable address space are not supported. The burst

request signal (-BMREQ) will not be asserted, and only a single-word fetch will be
performed.

4.2.12 Interface Timing

Figure 3-BIU-1 below shows the timing of a burst mode transaction for an instruction
fetch, data load, or DMA read. To start the transaction, the MB86932 outputs a burst

MB86932 Bus Interface Unit - Burst Mode :':

B4-4

[o®)
FUJITSU

mode request signal (—BMREQ) to the memory system. The memory system asserts the
burst mode acknowledge signal (-BMACK) to the processor when the first word is
fetched, indicating that a burst mode request can be handled. The -BMACK should be
asserted only in the cycle when the —RDYfor the first access is asserted. The memory
latency involved in the first word fetch is the same as in a non-burst access, and
subsequent fetches are usually shorter; as in the Figure, a single cycle. This does not
mean that each fetch following the first will occur in one cycle; subsequent fetches can
take any number of cycles, depending on the —RDY assertion. The -BMREQ signal is
deasserted after the completion of the first word fetch.

If the memory system cannot handle a burst mode transaction, -BMACK will remain
deasserted Once the burst mode logic detects an inactive -BMACK, the burst mode
access will terminate. The burst mode logic will not attempt to complete the fetch of-
the remaining words in the cache line. However, -BMREQ will be asserted again fo

any subsequent misses. Therefore, for a certain address segment in which the memory
system cannot handle a burst mode operation, the —-BMACK signal can remain
deasserted. An example is shown in Figure B4-3.

Figure B4-4 shows the timing for the write portion of a DMA burst operation. The
timing is identical to that in Figure B4-2, except that the RD/-WR line is low,
indicating a write operation is in progress.

Note that ADR[31:2] is the address of the first word fetched. This address remains
constant through the burst.

CLK

_AS ! h | |]]]]]]]]] h | |]]

L |
RD/-WR |

BWREQ [N, /T T T T T T T T T

T I e

ADR[312] - : (: : : : : : : : : ‘ X(‘ ‘ ‘ ‘
S S S/

-RDY ‘ ‘ ‘ ‘ \
\
‘
‘
\

DATA | —————
Figure B4-2. Burst Mode (0 wait state)

MB86932 Bus Interface Unit - Burst Mode
B4-5

SPARCIite User’'s Manual

ak N/ N N N N N N N N

|
_AS ! h | |
| T {

-BMREQ | | |

—BMACK

ADR[31:2]

-RDY

DATA

CLK

-AS
RD/-WR

—BMREQ \

—-BMACK

ADR[31:2] : : { : : :

wov T T T N L L L

g SO O o (D o (O
Figure B4-4. DMA Burst Mode, Write Portion

DATA

4.3 Parity

The MB86932 provides parity generation/checking for the 32-bit external data bus.
Parity can be enabled/disabled for specified address ranges by setting/clearing bits in
the Wait-State Specifier Register (see section on that register, below). Parity can be set
even or odd by setting bit 0 in the System Support Control Register: set to 1, odd parity
is generated/checked; set to 0, even parity is generated/checked. On reset, the value of
this bit is cleared to 0.

Parity is generated/checked for every byte of data (resulting in four parity bits). If parity
is odd, the parity bit is set to 1 when there are an odd number of 1's in the data; if parity
is even, the parity bit is set to 1 when there are an even number of 1's in the data. When

MB86932 Bus Interface Unit - Parity &5
B4-6

enabled, parity is generated for all writes to external memory. Incoming parity is
checked only for the address ranges for which the “PE” bit in the corresponding
Wait-State Specifier Register is set to 1. If a parity error is detected on an instruction
fetch, an instruction_memory_exception occurs, and bit 8 in the Instruction Fault Status
Register is set (see TLB section). If a parity error is detected on a data fetch, a data_
memory_exception occurs, and bit 9 in the Data Fault Status Register is set (see TLB

section). The parity bits will have a longer setup/delay time than the other data bits.

31

6 5 4 3

2

1

0

Reserved

Address: 0x00000080 (ASI=0x01)

Note:

Programmable Wait-State (On=1, Off=0)

Same-Page Enable (On=1, Off=0) J
Chip Select Enable (On=1, Off=0)

Timer On/Off (On=1, Off=0)
DMA priority bit (On=1, Off=0)

Parity bit (Odd Priority=1, Even Priority=0)

Figure B4-5. System Support Control Register

PARITY [0]
PARITY [1]
PARITY [2]
PARITY [3]

Correspond to
Correspond to
Correspond to
Correspond to

4.4 Wait State Specifier Register

4.4.1

Purpose

D [7:0]

D [15:8]
D [23:16]
D [31:24]

[o®)
FUJITSU

The Wait-State Specifier Register (WSSR) format on the MB86932 has been changed

from that on the MB86930 to accommodate the burst mode bus transaction using

internal —-READY and Parity generation/checking.

4.4.2

31

Format

27 26 22 21 20 19 18

14 13 9 8 7 6 5 4 3

Countl

Count2

Countl

Count2

Address: 0x00000160 to
0x00000164 168 (ASI=0x01)

WE (On=1, Off=0, RST=0) ——

SCP (On=1, Off=0, RST=0)
OVR (On=1, Off=0, RST=0)

SCB1 (On=1, Off=0, RST=0)

SCBO (On=1, Off=0, RST=0)
PE1 (On=1, Off=0, RST=0)
PEO (On=1, Off=0, RST=0)

Reserved

Figure B4-6. Wait State Specifier Register

o

MB86932 Bus Interface Unit - Wait State Specifier Register

B4-7

SPARCIite User’'s Manual

The bits in the WSSR can have two different meanings depending on whether burst
mode is enabled or disabled.

4.4.3 Same Page Mode

Burst mode disabled or burst mode enabled and —-BMACK not asserted for this region.

Countl: Countl +1 is the number of wait states inserted before internal -READY is asserted, under
the following conditions: SCP=0, and current access is not in the same page as the
previous access.

Count2: Count2 +1 is the number of wait states inserted before internal -READY is asserted, under
the following conditions: SCP=0, and current access is in the same page as the previous
access.

WE: Wait Enable, enables or disables the internal wait state generation for the individual

address range. IF WE is 1 SCP must be 0.

SCP: If this bit is 1 the internal —-READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. IF SCP
is 1 WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external -READY signal, the
wait state generator will stop counting and will wait for the next transaction.

SCB: Unused; should be 0.

PE: Enable checking of Parity. PE1, PEO correspond to address ranges for WSSR[31:19] and
WSSR[18:16] respectively.

4.4.4 Burst Mode

Burst mode enabled and —-BMACK is asserted.

Countl: Countl +1 is the number of wait states inserted before internal -READY is asserted, for
the first access of a burst mode transfer.

Count2: Count2 +1 is the number of wait states inserted before internal -READY is asserted, for
the 2nd, 3rd and 4th access of a burst mode access if SCB=0.

WE: Wait Enable, enables or disables the internal wait state generation for the individual
address range. If WE is 1, SCP must be 0.

SCP: If this bit is 1, the internal —-READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. If SCP
is 1, WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external -READY signal, the
wait state generator will stop counting and will wait for the next transaction.

MB86932 Bus Interface Unit - Wait State Specifier Register &0
B4-8

[o®)
FUJITSU

SCB: If this bit is 1, in the burst mode all accesses after the first access take a single cycle. If
this is 1, Count2 is ignored. SCB1 and SCBO correspond to address ranges for
WSSR[31:19] and WSSRJ[18:6] respectively.

PE: Enable checking of Parity. PE1, PEO correspond to address ranges for WSSR[31:19] and
WSSR[18:6] respectively.

Table B4-2: RESET State

WSSR reset state WSSR reset state
for —CS[1] to —CS[5]: for —CS[0]:
Count2=0 Count2=31
Count1=0 Count1=31
WE=0 WE=1
SCP=0 SCP=0
SCB=0 SCB=0
OVR=0 OVR=1
PE=0 PE=0

4.5 ROM Interface

4.5.1 Purpose

The data bus of the MB86932 can be configured upon reset to 8- and 16-bit bus modes
as well as the standard 32-bit mode. This flexibility accommodates those cases in which
boot code resides in PROMs organized as blocks of bytes or halfwords.

4.5.2 Features

Bus Configuration: the data bus configurations are fixed to specific segments of the

bus:

e 8-bit mode: D[7:0]

e 16-bit mode: D[15:0]
e 32-bit mode: D[31:0]

o

MB86932 Bus Interface Unit - ROM Interface
B4-9

SPARCIite User’'s Manual

4.5.3 Bus Configuration on Reset

Two external pins, -BMODE16 and -BMODES are used to determine the bus
configuration. The two bus configuration pins have weak pull-ups, so that if uncon-
nected, the bus configuration will default to a 32-bit bus.

(reserved): —BMODE16=0, -BMODE8=0

8-bit mode: —-BMODE16=1, -BMODE8=0

16-bit mode: ~-BMODE16=0, -BMODE8=1

32-bit mode: ~BMODE16=1, ~-BMODE8=1

4.5.4 System Interface

In order to minimize external “glue logic” required for interfacing to the 8- or 16-bit

bus, the BE bits are encoded to reflect the two LSBs of a byte address or the LSB of a
halfword address. Therefore, the ADR[31:2] and selected —BE bits can be concatenated
to form a complete address for a non-32 bit bus mode.

Table B4-3: System Interface BE Bits

Bus Mode Byte BE[0:3]
8-bit bus 0 0000
1 0001

2 0010

3 0011

16-bit bus 0&1 0000
2&3 0010

8-bit bus mode address= {ADR[31:2], —-BE[2], —BE[3]}
16-bit bus mode address={ADR[31:2], —-BE[2]}

—CS[0], which is enabled on reset, and the internal -READY generation logic, can be
used to minimize any glue logic required to interface to the PROM. On reset, the wait
state generator, corresponding to —CSJ[0] for internal —-READY generation, is set to 32
cycles. Later on in the boot code, the wait state generator can be changed to a more

appropriate value.

4.5.5 PROM Address Space

The PROM address space is defined by the —CS[0] address-range specifier. On reset,
the —CS[0] address range defaults to 32K bytes (starting address=0x0), and the ASl is
initialized to 0x9. The PROM address range can be changed later using the mask bit

MB86932 Bus Interface Unit - ROM Interface :':

B4-10

[o®)
FUJITSU

register associated with —CS[0]. An example of the supervisor address space (ASI=0x9)
memory map is shown below:

Supervisor
Code Space
0x00007FFF (bytes: default value
PROM
0x0

Figure B4-7. Supervisor Address Space (ASI=0x9) Memory Map

Any memory access from the PROM address space, in a non-32 bit mode, will ma
—BE bit encodings reflect the LSBs of a byte/halfword address. Furthermore, the
fetched bytes/halfwords will be assembled into a 32-bit word. On the other hand, any
access from the non-PROM address range will result in a normal, 32-bit memory
access.

4.5.6 Load/Stores

One of the functions of the boot code is to set the processor and system configuration.
This might involve loading system parameters from PROM, loading data from memory
mapped I/O, and storing data to non-PROM address space. All loads from the PROM
address space behave the same way as instruction fetches, in that, for a non-32 bit bus
mode —BE , bit encoding and word assembly are done. Loads from a non-PROM
address space behave in the normal (32-bit) manner. In order to meet the —-BE AC
timing, the —BE bits on the MB86932 need to be all 0’s for all types of loads—word,
halfword, and byte—from the non-PROM address space. This requires a functional
change from the current specification of the MB86930’s —BE bits, which reflect the

byte information for loads. This change does not cause a problem, since the processor
fetches a full 32-bit word on a load, and the IU selects the byte appropriately. As on the
MB86930 —BE bits should be ignored for 32-bit loads.

Since stores to the PROM will never occur, for all stores, regardless of address space,
the —BE bits will reflect the byte information of the store. Therefore, byte and halfword
stores to the PROM address space becomes meaningless, since the —-BE[2] and —BE[3]
bits no longer reflect the byte address. Furthermore, store word operations to the PROM
address space will not result in a dis-assembly process for a non-32 bit bus mode. Since
stores to PROM address space are not disabled, the user would have to qualify —CSJ[0]
with the R/-W signal to use it as a PROM chip select signal. This will not be necessary
if the user can be sure that a store to PROM space never occurs.

A summary of the —BE[0:3] bit behavior for loads from the PROM address space is
shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch occurs.

N
MB86932 Bus Interface Unit - ROM Interface
B4-11

SPARCIite User’'s Manual

For example, in the 8-bit bus mode, four bytes will be fetched for all loads, and the BE
bits will sequence with the proper 2 LSBs of the byte address.

Table B4-4: Load —BE[0:3] Bit Behavior

Bus Mode Operation BE[0:3] in PROM space
8-bit bus Loads (all) 0000=>0001=>0010=>0011
16-bit bus Loads (all) 0000=>0010

32-bit bus Loads (all) 0000

4.5.7 Burst Mode

Since speed is not a critical issue when executing boot code out of PROM, and because
there is no industry-wide standard for a burst-mode EPROM interface, burst-mode
interface is not supported for accesses from PROM address space. When the system has
a 8/16 bit memory being used for boot code, it should not assert —-BMACK for any
accesses to —CS0.

4.5.8 Memory Exception

Any memory exception that occurs during a fetch from the PROM address space in a
non-32 bit bus mode will be held off until the entire word is fetched.

4.5.9 Bus Request

Any bus request happening during the non-32 bit bus mode fetch will not be recognized
until the end of the complete 32-bit fetch operation.

MB86932 Bus Interface Unit - ROM Interface :':

B4-12

[o®)
FUJITSU

4.5.10 Timing

Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are shown
below. Note that —AS is asserted at the beginning for one cycle.

CLK ! ‘ ‘ ‘ ‘ ‘ | \ |
A
moRE12 — X
—BE[0:3] 3 3 { : ogoo : ‘X(: 0&)01 : 5((: 0&)10 : 5((: ij)ll : t
I
DATA 3 3 3 3 { gyte0: 3 3 { gytel: 3 3 { gyte2: 3 3 { gme3: »
Figure B4-8. 8-bit Bus Mode (1 Wait State)
ck N/ N\ N NN L N N N\
PN
moRrE12 — X
~BE[0:3] 3 3 { : oé)oo : ‘X(: oij)lo : ‘X(: oij)oo : ‘X(: oﬂj)lo : t
o
DATA 3 3 3 3 { :HWO : 3 3 { :HW1 : 3 : :HWO : 3 3 { :HWl : »

Figure B4-9. 16-bit Bus Mode (1 Wait State)

4.6 Processor Bus Request

4.6.1 Purpose

When the bus is released in response to an external device’s request for the bus (by
asserting —-BREQ), the MB86932 processor cannot access the bus as long as the bus
request signal remains asserted. An external bus arbiter may never be aware that the
processor needs the bus back. To remedy this problem, a processor bus request signal is

i
MB86932 Bus Interface Unit - Processor Bus Request
B4-13

SPARCIite User’'s Manual

asserted whenever the external bus is required by the processor. The external bus arbiter
then can release the bus to the processor requesting it. Also, in a bus-based multiproces-
sor system, a processor bus request signal is useful to the external bus arbiter in
deciding which processor requires the bus.

4.6.2 Features

—PBREQ pin: An external pin is used to output the processor bus request signal,
—PBREQ. The —-PBREQ will be asserted whenever the MB86932 requires the bus while
the bus is granted to an external device. The external device using the bus can monitor
the —PBREQ signal, and remove the —-BREQ signal at an appropriate time. An example
of the —-PBREQ timing is shown in the figure below:

_AS |) |

—PBREQ

—ADR[31:2] ‘ (
kDY 0 N\, /.

DATA ! ! ! \<\

-BREQ ! \ \) | | |

BGRNT

Figure B4-10. Example of —-PBREQ timing

In the example above, the bus is released at the beginning of cycle t1 in response to an
external bus request. At t2, -PBREQ is asserted because of a pending bus cycle in the
processor. The external bus arbiter de-asserts —-BREQ, and returns the bus to the
processor. -PBREQ remains asserted until the end of the cycle t3. At t4, the processor
drives the bus.

4.7 BIU Timing

4.7.1 Effect of TLB

Since the TLB can be used with the cache turned off, a one-cycle delay is introduced at
the beginning of each memory operation to complete the TLB translation. For cache-on

MB86932 Bus Interface Unit - BIU Timing &5
B4-14

[o®)
FUJITSU

cases, the TLB does not introduce an additional delay since address translation occurs
during the one-cycle already available for cache hit/miss detection. The first figure
below shows the timing for the cache-off, TLB-off case; the second figure shows the
timing for the cache-off, TLB-on case. Note in the second figure the one-cycle delay for
each new memory operation.

_AS | b | | T b | | T b | | T b | | T i

ADR[31:2]

-RDY |

| | | | | | | | | | | | | | | |
| | | | ‘ ‘ | | ‘ ‘ | | ‘ ‘ | | ‘ ‘
| | | | | | | | | |

DATA I I I I I I I I I I

_AS | b | | T T T b | | T T T b | | T i

ADR[31:2]

-RDY

DATA

Figure B4-12. Cache=off, TLB=0n (1 wait state)

4.8 BIU Priorities
In general the following hierarchical rules apply when multiple requests are made to the
bus interface unit:
e The bus cycle currently in progress will complete.

« Ifthere is a pending external bus request, the bus will be granted to the external
requestor.

« If there is a pending DMA request, the bus will be granted to the DMA controller.
« If the write buffer is full, the buffer will be emptied.
« If there is a pending load or store operation it will be serviced.
« If there is a pending request for an instruction it will be fetched.
o
MB86932 Bus Interface Unit - BIU Priorities
B4-15

SPARCIite User’'s Manual

» If the prefetch buffer is empty, a prefetch cycle will be initiated.

Note that bitl in the System Support Control Register can be used to allow the IU to
“steal” cycles from the DMA. When this bit is set the DMA will de-assert its request
after each datum is moved. When cleared the DMA will keep the bus until the whole
DMA transaction has completed.

MB86932 Bus Interface Unit - BIU Priorities :':
B4-16

CHAPTER

BS

MB86932 DMA

5.1 Overview

The Direct Memory Access Controller (DMAC) module provides high-speed memory-
to-memory and memory-to-peripheral data transfers. The DMAC executes independent-
ly of the CPU, making it possible for the processor to execute from cache while DMA
transfers are taking place. The DMAC operates on physical addresses.

The DMAC supports two independent DMA channels concurrently. It supports byte,
half-word, word and quad-word transfers. The DMA mechanism provides three

different methods of performing DMA transfers: Single transfer, Demand transfer, and
Block transfer. Single transfer and Demand transfer use the DMA request (-DREQ) and
DMA acknowledge (-DACK) signals to synchronize transfers with external devices.
Block transfers do not use -DREQ and —DACK, they are typically used to transfer data
from memory to memory.

“Fly-by” transfer mode is supported for high speed DMA transfers. In this mode, a

single bus transaction transfers the data from source to destination. “Flow-Thru”

transfer mode is also supported. In this mode, two bus transactions, a read followed by a
write, need to be performed to complete the transfer of data from source to destination.

The DMA channels can be configured to perform a single buffer transfer, or to operate
in the buffer-chaining mode. The buffer-chaining mode is provided to simplify
operations such as scatter/gather. In this mode, the DMAC is configured with a series of

o
MB86932 DMA - Overview
B5-1

SPARCIite User’'s Manual

descriptors in memory. Each descriptor describes a single buffer transfer, which is part
of the complete DMA transfer.

The two figures that follow give, respectively, an overall picture of the relationship of
the DMAC to other major functional components of the MB86932, and a detailed
picture of the flow within the DMAC.

DATA

v CACHE
DA Bus
DD Bus
«—DMA Address < _DREQ
BIU DMAC —— -DACK
« DMAData «— > —EOP

External Address

-«+——F—» External Data

Figure B5-1. Relation of DMAC to Other Major Components

MB86932 DMA - Overview

B5-2

(o)
FUJITSU

a
g o
7] 3 ©
< < o
< < <
= = =
a o o
ASI Regs LD
DA | Asl
Desc Point Regs
dread
Register
dwrite Control Curr Source Regs
Regs rd wr
Curr Dest Regs
Burst Buffer(1) Read Align
Temp R
Burst Buffer(2) Bur‘;m Efuﬁ:rg(o)
eop
Burst Buffer(3) Write Align —| Decrementer
Curr Count Reg
—-DREQ
—DACK Priority Control
HOLD
Rdy Control Regs
Mexc .
Timing Control
-EOP/TC Status Regs

Figure B5-1. DMA Block Diagram

ol

MB86932 DMA - Overview
B5-3

SPARCIite User’'s Manual

5.2 Programmer’s Model

Table B5-1: DMA Signal Descriptions

Signal Function

—-DREQ1 / -DREQO DMA REQUEST (l): This input signal indicates that an external device is
requesting DMA transfer. It is an edge-sensitive signal for single transfer,
and a level-sensitive signal for demand transfer.

—-DACK1 / -DACKO DMA ACKNOWLEDGE (O): This output signal is sent to the external
device to acknowledge the DMA request, and is active when the requesting
device is accessed.

—EOP1/-EOPO END OF PROCESS (I/0O): This pin is used as input when an external device
wants to cause the DMA process to terminate. It functions as output when
the byte count reaches zero. When not active, —EOP output will be tristated.
For signalling the Terminal Count (TC) , —EOP will be pulled down, and then
be pulled up for one cycle. A high impedance internal pull up is used to hold
the signal high when —EOP is tristated. The —EOP issued by the DMAC can
be used as input to the interrupt controller. If -EOPX is asserted by the
external device, channel x will be disabled. Reprogramming is needed to
enable a channel.

Six pins are dedicated to the DMAC, three for each channel. In the table above, the pin
number corresponds to the channel number. For example, the —-DREQO pin is the
request pin for channel 0.

5.2.1 DMA Priority

The DMA Priority Bit in the System Support Control Register can be programmed to
indicate whether the DMA is to release the bus for one clock cycle so that the IU can
use it. When this bit is set, the DMAC will deassert the HOLD signal to the BIU for one
clock cycle after a DMA entry has been transferred. In this way, the IU can steal a bus
cycle when service is needed. When this bit is cleared, the DMA blocks the 1U from
using the BUS until the whole DMA transaction completes.

31 6 5 4 3 2 1 0

Reserved

Address: 0x00000080 (ASI=0x01) Same-Page Enable (On=1, Off=0) —‘
Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

Timer On/Off (On=1, Off=0)

DMA priority bit (On=1, Off=0)

Parity bit (Odd Priority=1, Even Priority=0)

Figure B5-3. System Support Control Register

MB86932 DMA - Programmer’s Model
B5-4

[o®)
FUJITSU

5.2.2 DP/Source/Destination ASI Register

31 24 23 16 15 8 7 0

Descriptor Pointer ASI Source ASI Destination ASI reserved

Address:0x00000180 (DMAO) (ASI = 0x01)
0x000001A0 (DMAL1)

Figure B5-4. DP/Source/Destination ASI Register

Bits 31-24: Description Pointer ASI (DP ASI)—ASI of the Descriptor Pointer, a register used in

buffer-chaining mode. It points to the next element of the linked list whose elements

describe the source and destination of the DMA transfer. -
Bits 23-16: Source ASI—ASI of the Current Source Address Register, which is described below.

Bits 15-8: Destination ASI (Dest ASI)—ASI of the Current Destination Address Register, which is
described below.

Bits 7-0: Reserved

5.2.3 Current Source Address Register

31 4 3 2 1 0
Data Address for Quadword transfers RSVD
Data Address for all other transfers RSVD|

Address:0x00000184 (DMAO) (ASI=0x01)
0x000001A4(DMAL)

Figure B5-3. Current Source Address Register

The Current Source Address Register is used to address memory accesses in flyby
mode, and to hold the source data address in flowthru mode. It contains one 30-bit
(31:2) word-aligned address. For byte, halfword, and word transfers, all 30 bits (31:2)
are used; for quadword transfers, only 28 bits (31:4) are used. Bits beyond the current
address field are ignored. The CSA Register value is updated after a transfer in the read
phase has been done, and points to the next location to be transferred. Note that in flyby
mode, a DMA transfer has just one Read/Write phase; in flowthru mode, a DMA

transfer has one read phase, one write phase, and an intervening idle clock cycle.

ol

MB86932 DMA - Programmer’s Model
B5-5

SPARCIite User’'s Manual

5.2.4 Current Destination Address Register

31 4 3 2 1 0
Destination Address for Quadword transfers RSVD
Destination Address for all other transfers RSVD

Address:0x00000188 (DMAOQ) (ASI=0x01)
0x000001A8 (DMA1)

Figure B5-8. Current Destination Address Register

The Current Destination Address Register is not used in flyby mode; it holds the
destination data address in flowthru mode. It contains one 30-bit (31:2) word-aligned
address. For byte, halfword, and word transfers, all 30 bits (31:2) are used; for
quadword transfers, only 28 bits (31:4) are used. Bits beyond the current address field
are ignored. The CDA Register value is updated after a transfer in the write phase has
been done.

5.3.5 Current Byte Count Register

31 0

Address:0x0000018C (DMAO) (ASI=0x01)
0x000001AC (DMA1)

Figure B5-7. Current Byte Count (CBC) Register

The CBC register indicates the number of bytes of data still left to be transmitted. The
value of the data should be programmed to be one less than the actual number of bytes
to be transmitted. For example, to transfer two words, this register should be loaded
with the value “7”. The value will be decremented at the beginning of the DMA transfer
cycle by the number of bytes involved in the transfer, regardless of the unit in terms of
which the transfer is specified (half-word, word, ef€hje Byte Count Registés

updated only in the Read phase, not in the Write phase; it is updated at the beginning of
the transfer.

MB86932 DMA - Programmer’s Model

B5-6

[o®)
FUJITSU

5.2.6 Descriptor Pointer Register

31 4 3 2 1 0

Descriptor Pointer Register RSVD

Address:0x00000190 (DMAO) (ASI=0x01)
0x000001B0 (DMAL1)

Figure B5-8. Descriptor Pointer (DP) Register

Used in Chaining Mode, the DP Register points to the next element of the linked list.
Successive elements of the list describes the source and destination of successive
buffers to be transferred.

5.2.7 Channel Control Register

Bits 31 to 16 are reserved, ignored on a Write, and Read as zero. The entire register is
reset to zero. Note that the two channel control registers are not identical: the HPC and
SW bits in the channel O register are global, while the same bits in the channel 1
register are reserved, and read as undefined.

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

reserved
(read as 0's)

Ds SS

Address:0x00000194 (DMAO) HPC (On=1, Off=0, RST=0) _
0x000001B4 (DMA1) SW (On=1, Off=0, RST=0)
(ASI=0x01) EN (On=1, Off=0, RST=0)
CM (On=1, Off=0, RST=0)

CWD (On=1, Off=0, RST=0)

CDM (On=1, Off=0, RST=0)

HM (On=1, Off=0, RST=0)

FF (On=1, Off=0, RST=0)

DS (On=1, Off=0, RST=0)

SS (On=1, Off=0, RST=0)

DA (On=1, Off=0, RST=0) —

SA (On=1, Off=0, RST=0)

EG (On=1, Off=0, RST=0)

RG (On=1, Off=0, RST=0)

Figure B5-9. Channel Control Register

The Channel Priority Switch Mode bit “SW” and the High Priority Channel bit “HPC”
of the channel 0 Control Register determine the priority setup of the DMA Controller.
These two global bits should be programmed only when both channels are disabled.

Bits 31-16 Reserved
oG
MB86932 DMA - Programmer’s Model
B5-7

SPARCIite User’'s Manual

Bit 15:

Bit 14:

Bit 13:

Bit 12:

Bit 11:

Bit 10:

Bit 9:

Bit 8:

Bits 7-6:

Bits 5-4:

Bit 3:

Bit 2:

Bit 1:

Bit O:

High Priority Channel (HPC)—O0 if channel 0 has high priority; 1 if channel 1 has high
priority. (The HPC should be programmed to specify the channel that has high priority at
the outset; if SW=1, it will be updated to show the current high-priority channel as the DMA
transfer progresses. Note that this bit exists only in the channel 0 control register; the
corresponding bit in the channel 1 control register is reserved, and read as undefined.

Channel Priority Switch Mode (SW)—O if fixed, 1 if switchable. (If 0, the HCP is fixed, and
specifies a prechosen higher priority channel; if switchable, the HCP will be updated to
whichever channel is not currently being serviced.) Note that this bit exists only in the
channel 0 control register; the corresponding bit in the channel 1 control register is
reserved, and read as undefined.

Enable [Start] DMA (EN)—O if disable channel, 1 if enable. (The DMA channel can be
enabled by writing 1 to this field, and is reset by the hardware when the channel enters the
disabled state. In Internal Request mode (see RG field), a 1 here means Start DMA; in
External Request mode, a 1 here means Accept External DMA request.)

Chaining Mode (CM)—O0 if reprogramming, 1 if buffer chaining.

Chaining Wait Mode (CWM)—O if Chaining Wait Function disable, 1 if enable. (Decides
whether next chaining descriptor is to be read.)

Chaining Debug Mode (CDM)—O if assert —EOP only after the whole Chaining transfer, 1 if
assert —EOP after each buffer transfer

Transfer/Handshake Mode (HM)—O if Single Transfer, 1 if Demand Transfer. (Applies only
to external request; for internal program request, DMAC supports block transfer

mode only.)

Flyby/Flowthru (FF)—O if Flyby (single address), 1 if Flowthru (Dual Address).

Destination Size (DS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

Source Size (SS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

Destination Addressing (DA)—O if increment, 1 if hold.

Source Addressing (SA)—aO if increment, 1 if hold.

External Control Option (EC)—O if source request, 1 if destination request.

Request Generation (RG)—RG=0 if internal request, 1 if external request.

MB86932 DMA - Programmer’s Model

B5-8

5.2.8 Channel Status Register

31

9 8 7 6 5

[o®)
FUJITSU

reserved
(read as 0's)

Address:0x00000198 (DMAO) (ASI=0x01)
0x000001B8 (DMA1)

Bits 31-9:

Bit 8:

Bit 7:

Bit 6:

Bit 5:

Bit 4:

Bit 3:

Bit 2:

Bit 1:

Bit O:

5.2.9 Channel Initialization

The DMA Control has two transfer modes: 1) Single Buffer Transfer Mode, and 2)

DISDN (On=1, Off=0, RST=0) |
CERR (On=1, Off=0, RST=0)
DERR (On=1, Off=0, RST=0)
SERR (On=1, Off=0, RST=0)
DR (On=1, Off=0, RST=0)
CWB (On=1, Off=0, RST=0)

CD (On=1, Off=0, RST=0)

TC (On=1, Off=0, RST=0)

EOP (On=1, Off=0, RST=0)

Figure B5-10. Channel Status Register

This register is shown as having only 9 bits because these bits are reserved, ignored on a

Write, and Read as zero. The entire register is reset to zero.

Disable Done (DISDN)—the user can disable the DMA channel by writing O to the Enable

bit of the Control Register. This bit will be set when the channel has been effectively

software-disabled.

Chaining Error on DMA Transfer (CERR)

Destination Error on DMA Transfer (DERR)

Source Error on DMA Transfer (SERR)

DMA Request presented (DR)—A DMA request is pending.

Chaining Wait (CWB)—If the Chaining Wait Mode in the Control Register has been set,
this status bit will be set after each buffer has been transferred. The Chaining Descriptor

fetch will not be executed. After the program redoes the setup for this channel, and clears

this status bit, the DMA will proceed with the new register setup.

Chaining Done (CD)—The whole chain of data buffers have been successfully transferred;

set up in chaining mode.

Terminal Count (TC)—A data buffer has been successfully transferred. It will be set when

termination of transfer is reached for nonchaining mode and chaining debug mode.

End of Process, external (EOP)—Channel transfer stop due to external -EOP signal.

Buffer Chaining Mode. Each mode has its own programming requirements.

MB86932 DMA - Programmer’s Model

ol

B5-9

SPARCIite User’'s Manual

To initialize the DMA Channel for Single Buffer Transfer Mode, the user must program
these registers:

* ASI Register

» Current Source Address Register

e Current Destination Address Register
e Current Byte Count Register

* Channel Control Register

After programming these registers, the user writes the start (enable) bit of the Channel
Control Register to enable the Channel.

To initialize the DMA Channel for Buffer Chaining Mode, the user must program the
registers listed above for Single Buffer Mode transfers, and in addition must program
the Descriptor Pointer (DP) Register. The DP points to the next element of the chaining
list for the buffers to be transferred. After the channel finishes transferring each block,

it will spend five data access cycles to set up the DP/Source/ Destination ASI Register,
the Current Source Address Register, the Current Destination Address Register, and the
Current Byte Count Register. The last chaining cycle is used to get the pointer and put

it in the Descriptor Pointer Register.

When TC happens, the DMA will load the chaining information pointed to by the DP,
and the DMA process continues. An external —EOP will disable the channel.

In chaining mode, whether block or demand transfers are being carried out, a channel
that has reached TC will load the chaining block descriptor, and the DMA Controller
will see if a request from the high priority channel is outstanding. If it is, the DMAC

will suspend the next transfer of the present sequence, and release the bus to the high
priority channel. For example: assume that priority switching mode is in effect; channel
0, the original high priority channel, is in chaining mode; and channel 1 is in repro-
gramming mode. If both channels get -DREQ asserted, channel O will be serviced first.
WHen TC is reached, DMAC will load the information for the next transfer block; the
outstanding request from channel 1 will be noted, and—because channel 1 is the high
priority channel—its request will be serviced now.

5.2.10 Buffer Chaining Data Structure

» PSDASI (Descriptor, Source, and Destination ASI)
* SA (Source Address)
e DA (Destination Address)

MB86932 DMA - Programmer’s Model
B5-10

[o®)
FUJITSU

* BC (Byte Count)

* NPTR (Next Buffer Descriptor Pointer); a NULL pointer, 0000, indicates the end of
the block buffer list.

5.2.11 DMA Initialization

DMA operations can be initiated by either software request or hardware request. A
software request is made by clearing the Request Generation bit and setting the DMA
Enable bit. A hardware request is made by setting the Request Generation bit and the
DMA Enable bit, and then causing the assertion of an external -DREQ.

When the CPU clears the Request Generation bit and sets the DMA Enable bit, the
software-initiated DMA starts immediately. A hardware request is started only When-
—DREQ is asserted while the DMA Enable bit is set. -DREQ is edge-sensitive for

Single Transfer Mode, level-sensitive for Demand Transfer Mode. For Demand Mode

to complete a whole buffer block, -DREQ must be asserted until —-EOP is asserted.
—EOP can be asserted by the DMA Controller or an external device.

5.2.12 Basic DMA Timing

1. For a single transfer, the DMAC will sample —DRf&Qthe next DMA request
after —-DACK is asserted. That is, DMAC will try to detect the edge that signals such
a request; an edge asserted between that which caused the last transfer and the
assertion of -DACK will be ignored. Even if an edge is detected before the DMAC
releases the bus, the DMAC will still release the bus and then request it again.

2. —DACK will toggle during the read or write cycle to enable the peripheral device.
Ready (from BIU) will be used to deassert the —-DACK.

3. —DACK is used for handshaking with a peripheral device to deassert the -DREQ for
single transfer mode. —-EOP(TC) is used for handshaking with a peripheral device to
deassert the -DREQ for demand transfer mode.

4. TC will be used to enable the reloading of the address/count to the current registers
to initialize the set up for a buffer chaining transfer. External —EOP will disable the
DMAC channel in chaining mode, and leave the state of the channel as it was.

5.2.13 Error Conditions

Memory Access Exceptions:

» Source Transfer Exception

» Destination Transfer Exception
e Chaining Exception

ol

MB86932 DMA - Programmer’s Model
B5-11

SPARCIite User’'s Manual

When an Error condition occurs, the relevant bits in the Status Register will be set up,
and —EOP will be asserted.

When a memory-exception occurs, —EOP will be asserted one cycle later. This —-EOP
can be used as input to the interrupt controller. The —EOP due to a memory exception
can be deasserted by clearing the status bit of the corresponding exception.

For quad-word transfers, if an exception occurs during the read phase, DMA will still
finish all four reads, but will not go into the write phase. If an exception occurs during
the write phase, DMA will complete all four writes.

For transfers other than quad-word, the DMA will stop immediately after the exception
occurs.

5.3 External Interface

5.3.1 Transfer Protocols

Single Transfer Mode

In the Single Transfer Mode, one data entry transfer from source to destination is
performed by the DMAC at a time. The —DREQ input is arbitrated according to the
channel priority decisions made by the user. The channel with the DMA request will
signal the BIU for bus service. After a DMA data entity has been transferred, control of
the bus will be released. Transfers continue in this manner until the Byte Count expires,
or until external —EOP is found active. Since the —-DREQ is edge-sensitive for single
transfers, a -DREQ pulse will cause only one transfer, no matter what its length. The
channel will request the bus for each DMA transfer. Bus control is released between
each transfer and the next. The DMAC will sample the next -DREQ edge for a DMA
transfer request after —-DACK is asserted. A new request edge coming before —-DACK
has been asserted will be ignored. A timing diagram for single transfer mode is given
below in Figure B5-11 This diagram shows two consecutive DMA transfers. A sample
High and then Low of -DREQ constitutes an edge request for a transfer. The last block
transfer is accompanied by —-EOP. —R/W is asserted High in flyby mode for a
destination transfer—that is, one where data will flow from memory—and asserted Low
for a source transfer, where data will flow to memory. In Figure B5-13 below, showing
a quadword transfer taking four data cycles. The last DMA transfer is accompanied by
EOP.

o

MB86932 DMA - External Interface

B5-12

FUJITSU

-EOP ;

V¥ Isthe sensing edge for -DREQ

Figure B5-11. Single Transfer, Edge-Sensitive, Flyby (R/-W high)

A
A

A
A

V¥ Isthe sensing edge for -DREQ

Figure B5-12. Single Transfer, Edge-Sensitive, Flyby (R/-W low)

MB86932 DMA - External Interface

B5-13

SPARCIite User’'s Manual

v v
CLK | A A A A A A A A A ‘
S e Y A B B R
s NS
e o s s R S
L
DACK N T
B T mnanan o e AR D e
onn e O HC O
‘P —————————————————— .. —

V¥V Isthe sensing edge for -DREQ

Figure B5-13. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/-W high)

v v
B e S
s N
e s s R
T N
pACK . N T
N
o e T T
€ ———————————————————— .. —

V¥ Isthe sensing edge for -DREQ

Figure B5-14. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/-W low)

Block Transfer Mode

Block transfer is initiated by software request. In this mode, the CPU starts the DMA
action by setting the Start bit of the control register. The transaction will continue until
the Terminal Count (TC) happens, or until —-EOP is asserted by the external device.

o

MB86932 DMA - External Interface
B5-14

[o®)
FUJITSU

Block transfer mode can be used for either flowthru or flyby transactions. For flyby
transactions, the DMAC will assert and then deassert the —-DACK for each transferred
datum.

A timing diagram for software-initiated block transfer is shown in Figure B5-15 below.
The timing is the same as that for demand transfer mode, except that the request is set
by software. The transfer will begin two cycles after the channel control register has
been written.

v
CLK A A A A A A A A A
N Y S VY e e
o ——————— = ..
pooR gy gy
N A WL S
-RDY | | | | | | : | | | : | | | | | |
N S S S Y g s Y o e (R S S —
oR(10) [
O S O S S S S R N B
V¥ U asserts the DMA Start Bit
Figure B5-15. Block Transfer, Flyby (R/~W high)
v
N N N N N e N/ N N N
s N N
y ———————— |
pooR Lt gy
N A WL e e
—-RDY | | | | | | | : | | | : | | | | | |
oA gy gy
EOR(10) [
—EOPEX) ., —

V¥ U asserts the DMA Start Bit

Figure B5-16. Block Transfer, Flyby (R/~W low)

MB86932 DMA - External Interface
B5-15

SPARCIite User’'s Manual

Demand Transfer Mode

Demand Transfer Mode provides flexible handshaking procedures during the DMA
process. A Demand Transfer is initiated by an external level-sensitive DMA request
(-DREQ). The next request will be sampled after the preceding transfer request has
been completed. The process continues until (a) the external device deasserts the
—DREQ), (b) the byte count (TC) expires, or (c) an external —-EOP is encountered. A
timing diagram for demand transfer is shown below in Figure B5-17. When a request
for a demand transfer is made, the DMAC will look at the —-DREQ to see if any request
is pending.

—EOP(TC)

—EOP(Ext) \ \ \ \ \ \ \ |

WV U asserts the DMA Start Bit

Figure B5-17. Demand Transfer, Flyby (R/~W high)

MB86932 DMA - External Interface
B5-16

[o®)
FUJITSU

—-DACK I I I I I | | | | | | | | | | | |

_RDY | T T T T T T ‘ T T ‘ T T T T T 1
| | -

e S

—EOP(TC)

—EOP(Ext)

V¥ IU asserts the DMA Start Bit

Figure B5-18. Demand Transfer, Flyby (R/-W low)

Transfer Addressing

« Flyby—FIlyby mode is in effect when the source and destination have the same
width, and flyby mode is enabled. -DACK is used to acknowledge the external
DMA request, and to access the requestor’s data. One bus cycle is needed for a byte,
half-word, or word transfer; four bus cycles are needed for a quad-word flyby
transfer. A single address is needed for this type of bus operation. The R/-W will
signal the direction of data flow; for RI—~W="1", the data flow is from the memory
counterpart to the requesting device, and for R/I~W="0" it is from the requesting
device to the memory counterpart.

« Flowthru—For this bus operation, a read sequence is used to obtain the data from
the source, and a write sequence is used to send the data to the destination. During
read, the data will be assembled and put in a Temporary Register. During write, the
data in the Temporary Register will be disassembled and sent to the destination. The
DMA Controller will toggle the —-DACK during the read or write session, depending
on whether the External Control Option (EC) is set to Source or Destination
Request. Whichever type of Request is specified by the EC, the other address is
optional; for example, if EC=0 (Source Request), the provision of a destination
address is unnecessary. The programmer can use the —-DACK to enable a read or
write to the external device whether the DMA request is internal or external.

o
MB86932 DMA - External Interface
B5-17

SPARCIite User’'s Manual

N

DATA

Figure B5-19. Single Transfer, Edge Sensitive, Flowthru, Dest Request Byte

width for Source, Halfword width for Dest

~N

Figure B5-20. Single Transfer, Edge Sensitive, Flowthru, Source Request

Word width for source, Halfword width for Dest

MB86932 DMA - External Interface

B5-18

[o®)
FUJITSU

Source/Destination Data Length

The source and destination data length can be byte, half-word, word, or quad-word. For
flyby transfer, the source and destination data length mast be the same. For flowthru
mode, if the source and destination data lengths differ, the DMAC will automatically
assemble the data during read to the bigger of the two sizes, and disassemble the data to
the size of the destination during write. The assembly/disassembly applies only to the
byte, half-word, and word sizes.

To take advantage of the burst transfer supported by BIU, the DMAC offers quad-word
transfer. Quad-word transfer requires that both source and destination size be quad-
word, and both source and destination addresses have to be aligned on quad-word
boundaries. The DMAC will assert the quad-word address, and indicate to the BIU
guad-word transfer is needed; BIU will then decide when to proceed with burst-mo
transfer.

For consistency with the memory mapping seen by the IU, address (31:2) is used as the
byte address for byte transfers, as the halfword address for halfword transfers, and as
the word address for either word or quad-word transfers.

Program/DMA Interaction
The —EOP issued by the DMAC can be used as an input to an interrupt controller.

A chaining wait mechanism is supported, enabling synchronization between the
program and DMA buffer chaining. This chaining wait function provides a way for the
user to modify the channel setup and/or modify the chaining descriptors while a chained
DMA activity is in progress. The user can set the chaining wait function bit in the
Control Register to enable this function. When this bit is set, and a buffer block has
been transferred, the chaining wait bit in the Status Register will be set, and the
corresponding DMA channel will go to chaining wait state, which is equivalent to the
disabled state. The chaining wait bit set in the Control Register will block the loading

of the next descriptor. The user can reprogram the channel, and then reset the chaining
wait in the Status Register to restart the transfer. After the block has been transferred,
—EOP will be issued as an input to the interrupt controller. The interrupt service routine
may modify the channel setup registers and/or the chaining descriptors, and then clear
the chaining wait bit in the Status Register. After the chaining wait bit in the Status
Register has been cleared, the DMAC will start the DMA transfer using the modified
channel setup.

—EOP will be asserted on these conditions:

Single buffer mode:TC (byte count expires)
Error on abnormal read/write transfer.

ol

MB86932 DMA - External Interface
B5-19

SPARCIite User’'s Manual

Chaining mode: If only the chaining mode bit is set,
and the whole chain trans-
fer is completed

Chaining wait function set in Control
Register and the TC (byte
count expires)

Error on abnormal read/write transfer

If chaining debug mode is set in the
control register, —-EOP will
be asserted at the end of
each transferred block.

Note: to use chaining wait, the user must set both chaining mode (CM) and chaining
wait mode (CWM) in the control register. To use chaining debug, the user must set both
CM and Chaining Debug Mode (CDM) in the control register.

—EOP can be used to interrupt the CPU, and the interrupt will be serviced based on the
content of the Channel Status Register.

Memory Exception

Memory Exception (MEXC) is asserted by BIU to signal that an error condition was
generated during transfer. The DMA channel will stop the transfer immediately, set up
the relevant bit (Source/Destination/Chaining error) in the DMA channel Status
Register, and assert the -EOP. The —EOP will be deasserted when the memory
exception status bit is cleared by the program. For quad-word transfer (intended for
burst mode), the DMA will finish all four read or write cycles before stopping and
setting up the relevant bit in the Status Register.

MB86932 DMA - External Interface

B5-20

CHAPTER

B6

MB86932 DSU i

6.1 Overview

The MB86932 DSU offers several important features not found on the MB86930:

» Use of virtual address bus rather than physical address bus for breakpointing.

« “Context” is automatically taken into account in IA/DA Break Point comparisons.
« Readable ICE registers.

The MB86932 also includes an EMU pin interface that is fully compatible with the
other members of the SPARCIite family (MB86930 and MB86931).

6.2 Programmer’s Model

6.2.1 New Registers and Flags

Debug Control Register (augmented)

The Debug Control Register (see Figure 2-36) has been augmented by the addition of
the Emulate_933 bit (DSU CR [13]). If that bit is set to 1, the MB86932 has six register
windows, and the Implementation (impl) and Version (ver) fields of the Processor State
Register (see Figure 2-3) identify the processor as an MB86933. If the Emulate_933 bit
is 0, the MB86932 has eight register windows, and the impl/ver fields identify the
processor as an MB86932.

&
MB86932 DSU - Overview
B6-1

SPARCIite User’'s Manual

This flag affects only the number of windows and the impl/ver fields in the PSR. The
MB86932’s cache and TLB can be enabled even if the flag is set to 1. Since the cache
and TLB are disabled after Reset, the MB86932 will emulate the MB86930 correctly as
long as the program being executed does not set the bits that enable the cache and the
TLB.

Context Compare Register

31 30 29 24 23 22 21 16 15 14 13 8 7 6 5 0

CDAD2 CDAD1 CIAD2 CIAD1

Address: 0x0000FF20 to (DASI=0x01)

Figure B6-1. Context Compare Register

Bit 31: mask comparison of DASI[7:0] with dasid2[7:0]
Bit 30: Context_DA_Mask_2(CDAM2)

Bits 29-24 Context_DA_Description_2 (CDAD?2)

Bit 23: mask comparison of DASI[7:0] with dasid1[7:0]
Bit 22 Context_DA_Mask_1 (CDAM1)

Bits 21-16: Context_DA_Description_1 (CDAD1)

Bit 15: mask comparison of ISUPER with isuperd2

Bit 14: Context_|IA_Mask_2 (CIAM2)

Bits 13-8: Context_IA_Description_2 (CIAD2)

Bit 7: mask comparison of ISUPER with isuperdl

Bit 6: Context_IA_Mask_1 (CIAM1)

Bits 5-0: Context_IA_Description_1 (CIAD1)

Context IA/DA Mask Flags:

Each of the four Context Description fields is associated with a Mask field. If a Mask
field is set to 1, its associated Context fieldascompared. These flags are to be set

when the ICE/Monitor logic does not recognize the concept of “context”; in such cases,
a break will be invoked whenever the IA/DA matches the breakpoint address, regardless
of context. Within the break routine, a check can be made to see if the context is the
one for which the break was defined. This masking condition governs all the cases
listed below.

o

MB86932 DSU - Programmer’s Model

B6-2

6.2.2 Logic of Context Comparison

If 1A on a User (Local) Page, rather than a Supervisor (global) Page?

YES

~>

If 1AL, is IA[31:2]==iad[31:2], and ISUPER==isuperdl and
CNTXT[5:0]==ciad[5:0] or ~CNTXTIA or ciam1?

YES

~~

If 1A2, is 1A[31:2]==iad2[31:2], and ISUPER==isuperd2 and
CNTXT[5:0]==ciad2[5:0] or ~CNTXTIA or ciam2?

YES

~>

Break condition met.

[o®)
FUJITSU

Figure B6-2. On an Instruction Address (IA) Match Break:

If no page in the TLB matches (that is, the IA’s page is not found in there), the value of
the CNTXTIA signal is undefined. This may cause an incorrect IA break request, but
this will do no harm; the memory exception trap invoked by the TLB will cancel that

incorrect break request.

ol

MB86932 DSU - Programmer’s Model
B6-3

SPARCIite User’'s Manual

Figure B6-3. On a Data Address (DA) and Data Data (DD) Match Break:

If no page in the TLB matches (that is, the DA’s page is not found in there), the value
of the CNTXTDA signal is undefined. This may cause an incorrect DA break request,
but this will do no harm; the TLB-miss or instruction-access exception trap invoked by

If DA on a User (Local) Page, rather than a Supervisor (global)
Page, and is DA on the same ASI (8, 9, 10 or 11)?

YES

~~

If DAL, is DA[31:0]==dad[31:0], and DASI[7:0]==dasid1[7:0] and
CNTXT[5:0]==cdad1[5:0] or ~CNTXTDA or cdam1 and “Data Match"?

YES

>

If DA2, is DA[31:0]==dad2[31:0], and DASI[7:0]==dasid2[7:0] and
CNTXT[5:0]==cdad2[5:0] or ~CNTXTDA or cdam2?

YES

~~

Break condition met.

the TLB will cancel that incorrect break request.

MB86932 DSU - Programmer’s Model

B6-4

CHAPTER

B/

MB86932 External Interface

7.1 SIGNAL DESCRIPTIONST

Symbol Type Description

—-RESET | SYSTEM RESET: Asserting reset for at least 4 processor cycles after the clock has
stabilized, causes the MB86932 to be initialized.

XTAL1, (CLK_IN) 110 EXTERNAL OSCILLATOR: The crystal inputs determine execution rate and timing
XTAL2 (0] of the MB86932 processor. Connecting a crystal to these pins forms a complete crys-
G(Q) | tal oscillator circuit. The crystal oscillator frequency is the same as the processor
1(Q) operating frequency.

When driving the processor with an external clock, XTAL2 pin should be left floating.

CLKOUT1 (0] CLOCK OUTPUT 1: This is an output signal against which MB86932 bus transac-
G(Q) |tions can be referenced. The CLKOUTL1 frequency is the same as the frequency ap-
1(Q) plied to XTAL1 and is the same as the processor operating frequency. CLKOUT1 is in
phase with CLK_IN.

(@) CLOCK OUTPUT 2: This is an output signal against which MB86932 bus transac-
G(Q) |tions can be referenced. The CLKOUT2 frequency is the same as the frequency ap-
1(Q) plied to XTAL1 and is the same as the processor operating frequency. CLKOUT2 is
out of phase with CLK_IN.

—-LOCK (0] BUS LOCK: This is a control signal asserted by the processor to indicate to the sys-
S(L) tem that the current bus transaction requires more than one transfer on the bus. The
G(Z) | Atomic Load Store instruction for example requires contiguous bus transactions

1 (1) which cause the assertion of the bus lock signal. The bus may not be granted to
another bus owner as long as —LOCK is active. -LOCK is asserted with the assertion
of —AS and remains active until -READY is asserted at the end of the locked transac-
tion.

CLKOUT2

o
MB86932 External Interface - SIGNAL DESCRIPTIONS
B7-1

SPARCIite User’'s Manual

7.1 SIGNAL DESCRIPTIONS (Continued) t

Symbol Type Description
—-BREQ | BUS REQUEST: Asserted by another device on the bus to indicate that it wants
S(L) ownership of the bus. The request must be answered with a bus grant (-BGRNT)
from the MB86932 before the device can proceed by driving the bus. Once the bus
has been granted, the device has ownership of the bus until it de-asserts -BREQ.
The user should ensure that devices on the bus cannot monopolize the bus to the
exclusion of the CPU. Inputs to -BREQ while —RESET is active are valid and cause
Bus Grant to be asserted.
—-BGRNT (@) BUS GRANT: Asserted by the CPU in response to a request from a device wanting
S(L) ownership of the bus. The CPU grants the bus to other devices only after all transfers
G(0) | for the current transaction are completed. All bus drivers are three-stated with the
1 (Q) | assertion of the bus grant signal.
—-ERROR (@) ERROR SIGNAL: Asserted by the CPU to indicate that it has halted in an error state
S(L) as a result of encountering a synchronous trap while traps are disabled. In this situa-
G(Q) |[tionthe CPU saves the PC and nPC registers, sets the tt value in the TBR, enters
1(Q) into an error state and asserts the —-ERROR signal. The system can monitor the —-ER-
ROR pin and initiate a reset under the error condition. This pin is high on reset.
—MEXC | MEMORY EXCEPTION: Asserted by the memory system to indicate a memory error
S(L) on either a data or instruction access. Assertion of this signal initiates either a data or
instruction access exception trap in the IU. The current bus access is invalidated by
asserting the -MEXC in the same cycle as the —READY signal. The IU ignores the
contents of the data bus in cycles where -MEXC is asserted.
IRL <3:0> | INTERRUPT REQUEST BUS: The value on these pins defines the external interrupt
A(L) level. IRL<3:0>=1111 forces a non-maskable interrupt. IRL value of 0000 indicates no
pending interrupts. All other values indicate maskable interrupts as enabled in the PIL
field of the processor status register (PSR). Interrupts should be latched and priori-
tized by external logic and should be held pending until acknowledged by the proces-
sor. An interrupt controller is available on the MB86940.
-TIMER_OVF O TIMER UNDERFLOW: Asserted by the processor to indicate that the internal 16-bit
S(L) timer has underflowed. This signal can be used to initiate a DRAM refresh cycle or a
G(Q) | one cycle periodic waveform. On reset, the timer is turned off and —TIMER_OVF is
1(Q) | high.
—-SAME_PAGE (@) SAME-PAGE DETECT: The —-SAME_PAGE is used to take advantage of fast con-
S(L) secutive accesses within Fast Page Mode DRAM page boundaries. This signal is an
G(1) |output asserted by the processor when the current address is within the same page
1 (1) as the previous memory access. The ~-SAME_PAGE signal is asserted with —AS and
remains active for one processor cycle. —-SAME_PAGE is never asserted in the first
transaction following a transaction by another device on the bus. The page size is
specified by writing the SAME-PAGE MASK register.
-CS0, —-CSs1, O CHIP SELECTS: These outputs are asserted when the value on the address bus
-CS2, -CS3, S(L) matches the address range in one of the corresponding ADDRESS RANGE regis-
—CS4,-CS5 G(1) |ters. The signals are used to decode the current address into one of six address
I(1) ranges. Address ranges should not overlap. Each address range has a correspond-

ing wait specifier which is used to automatically assert the —-READY signal after a
user defined number of processor clock cycles. This allows a variety of memory and
I/0 devices with different access times to be connected to the MB86933 without the
need for additional logic.

MB86932 External Interface - SIGNAL DESCRIPTIONS

B7-2

[o®)
FUJITSU

7.1 SIGNAL DESCRIPTIONS (Continued) t

Symbol Type Description

ADR <31:2> (@) ADDRESS BUS: The 30-bit ADDRESS BUS (A31-A2) is an output which identifies
S(L) the data or instruction address of a 32-bit word. Reads are always one word in size
G(2) | while byte, half-word, or word transaction sizes for writes is identified by separate
(1) byte-enable signals (-BEO-3). The address bus is valid for the duration of the bus
transaction.

ASI <7:0> e} ADDRESS SPACE IDENTIFIERS: The ADDRESS SPACE IDENTIFIERS are out-
S(L) puts which indicate to which of 256 available spaces the current ADDRESS BUS
G(Z) | value corresponds. The ASI values are defined as follows:

1(2)
ASI <7:0> ADDRESS SPACE
Oox1 Control Register
0x2 Instruction Cache Lock
0x3 Data Cache Lock
0x4 - Ox7 Application Definable
0x8 User Instruction Space
0x9 Supervisor Instruction Space
OxA User Data Space
0xB Supervisor Data Space
0xC Instruction Cache Tag RAM
0xD Instruction Cache Data RAM -
OxE Data Cache Tag RAM
OxF Data Cache Data RAM
0x10 - OXFD | Application Definable
OXFE - OXFF | Reserved for Debug Hardware

The ASI values specified as “application definable” can be used by supervisor
mode instructions such as Load Alternate and Store Alternate . The ASI value is
available in the same cycle in which the corresponding address value is asserted
on the address bus. The ASI pins are valid for the duration of the bus transaction.
ASI values 0x8, 0x9, 0xA, and 0xB are cacheable.

—-BMODES8 | 8-BIT BOOT MODE: This signal is sampled during reset and causes read accesses,
S(L) memory mapped to —CSO0, to assume 8-bit ROM memory. The MB86932 generates
four sequential fetches to assemble a complete instruction or data word before contin-
uing. Bytes are fetched in sequence (0,1,2,3) as encoded by —BE[2] and —BE[3] (00,
01, 02, 03). Writes to —CSO0 are unaffected by boot mode selection and if left uncon-
nected, a weak pull-up on this pin (and -BMODE16 pin) causes the processor to
default to 32-bit mode.

Note: BMODES8 and BMODEL16 should not be asserted at the same time.

-BMODE16 | 16-BIT BOOT MODE: This signal is sampled during reset and causes read ac-
S(L) cesses, memory mapped to —CSO0, to assume 16-bit ROM memory. The MB86932
generates two sequential fetches to assemble a complete instruction or data word
before continuing. Half words are fetched in sequence (0,1) as encoded by —BE[2].
Writes to —CSO0 are unaffected by boot mode selection. If left unconnected, a weak
pull-up on this pin (and —-BMODES pin) causes the processor to default to 32-bit
mode.

Note: BMODES8 and BMODEL16 should not be asserted at the same time.

o
MB86932 External Interface - SIGNAL DESCRIPTIONS
B7-3

SPARCIite User’'s Manual

7.1 SIGNAL DESCRIPTIONS (Continued) t

Symbol Type Description
-BE3-0 (@) BYTE ENABLES (O): These pins indicate whether the current store transaction is
S(L) a byte, half-word or word transaction. —-BEO-3 signals are available in the same
G(2) | cycle in which the corresponding address value is asserted on the address bus
1 (O) and is valid for the duration of the bus transaction. This bus should be used only
to qualify store transactions. For load transactions all sub-word requests are read
(and replaced in the cache) as words and then the appropriate byte or half-word is
extracted by the integer unit.
Possible values for -BE3-0 are as follows:
a Byte 0 24 23Byte 1 16 15 Byte 2 s 7 Byte 3 o
ByteWrites [1 1 1 o[1 1 0 11 0 1 1[0 1 1 1
Half-Word Writes 1100 0011
Word Writes 0 00O
BE<2:3> are also used in 8 and 16-bit ROM accesses as follows:
Bus Mode Byte BE<2:3>
8-bit 0 00
1 01
2 10
3 11
16-bit 0&1 00
283 10
D <31:0> 110 DATA BUS: The bus interface has 32 bidirectional data pins (D31-D0) to transfer
S(L) data in thirty-two bit quantities. D(31) corresponds to the most significant bit of the
G(Z) | least significant byte of the 32-bit word. A double word is aligned on an 8-byte
1 (2) boundary, a word is aligned on a 4-byte boundary, and a half-word is aligned on a
2-byte boundary. If a load or store of any of these quantities is not properly
aligned, a Not Aligned Trap will occur in the processor.
In write bus cycles, the point at which data is driven onto the bus depends on the
type of the preceding cycle. If the preceding cycle was a write, data is driven in the
cycle immediately following the cycle in which —-READY was asserted. If the
preceding cycle was a read, data is driven one cycle after the cycle in which
—READY was asserted to minimize bus contention between the processor and the
system.
Pins D[7:0] are used when the 8-bit boot mode is enabled and D[15:0] are used
when 16-bit mode is enabled.
-AS O ADDRESS STROBE: A control signal asserted by the MB86930 or other bus master
S(L) to indicate the start of a new bus transaction. A bus transaction begins with the
G(Z) | assertion of —AS and ends with the assertion of -READY. —AS remains asserted
1 (1) for 1 clock cycle. During cycles in which neither the processor nor another bus
master is driving the bus the bus is idle, and —AS remains de-asserted.
RD/-WR (0] READ/BUS TRANSACTION: This signal specifies whether the current bus transac-
S(L) |tionis aread or a write operation. When —AS is asserted and RD/-WR is low, then
G(Z) | the current transaction is a write. With —AS asserted and RD/-WR high, the current
(1) transaction is a read. RD/~WR remains active for the duration of the bus transaction

and is de-asserted with the assertion of —-READY.

MB86932 External Interface - SIGNAL DESCRIPTIONS

B7-4

[o®)
FUJITSU

7.1 SIGNAL DESCRIPTIONS (Continued) t

Symbol Type Description
—READY

| READY: This is a control signal asserted by the external memory system to indicate
S(L) that the current bus transaction is being completed and that it is ready to start with the
next bus transaction in the following cycle. In case of a fetch from memory, the pro-
cessor will strobe the value on the data bus at the rising edge of CLK_IN following the
assertion of -READY. For the case of a write, the memory system will assert —
READY when the appropriate access time has been met.
In most cases, no additional logic is required to generate the —-READY signal. On-chip
circuitry can be programmed to assert —-READY based on the address of the current
transaction. The external system can override the internal ready generator to termi-
nate the current bus cycle early. Up to 6 address ranges each with different transac-
tion times can be programmed.

-DREQO-1 A(L) DMA REQUEST: Indicates that an external device is requesting a DMA transfer. This

| signal is edge sensitive for single transfers and level sensitive for demand transfer.
—DREQO corresponds to DMA channel 0, while -DREQL1 corresponds to DMA chan-
nel 1.

—-DACKO0-1 (@) DMA ACKNOWLEDGE: This signal is asserted when an external device asserts
—DREQ and the processor accesses the external device. -DACK1 corresponds to
DMA channel 0, while -DACK1 corresponds to DMA channel 1.

—EOPO-1 110 END OF PROCESS: This signal is asserted by the external device when it wants to -
terminate a DMA transfer. Alternately, the processor drives this signal when the byte

count reaches zero. —EOPO corresponds to DMA channel 0, while —-EOP1 corre-

sponds to DMA channel 1. A pull-up holds —-EOPO-1 high when it is not being driven.

—-PBREQ (0] PROCESSOR BUS REQUEST: This signal is asserted by the processor to indicate
to an external bus arbiter that it needs to regain control of the bus. This provides a
handshake between the arbiter and the processor to allow the bus to be allocated
based on demand.

-BMREQ (0] BURST MODE REQUEST: This signal is asserted by the processor to indicate to the
external system that the processor’s burst mode is enabled and the current transac-
tion can be a burst. If the external system supports burst mode, it asserts - BMACK
concurrently with —RDY to begin the burst mode transfer.

-BMACK | BURST MODE ACKNOWLEDGE: This signal is asserted by the system to indicate
that it can support burst mode for the address currently on the bus. The system as-
serts -BMACK in response to the processor asserting -BMREQ.

CLK_ECB | EXTERNAL CLOCK BYPASS: Tying this signal high causes the CLK_IN signal to
bypass the Phases Lock Loop (PLL). This signal is used for testing of the chip.

PARITY<3:0> 110 PARITY: When enabled, this signal provides even or odd parity checking for data bus
accesses.

EMU_SD <3:0> 1/0 EMULATOR STATUS/DATA BITS: Bi-directional pins used by a hardware emulator
to control and monitor MB86930 execution. These pins should be left unconnected.

EMU_D<3:0> 110 EMULATOR DATA BITS: Bi-directional pins used by a hardware emulator to control

and monitor MB86930 execution. These pins should be left unconnected.

EMU_BRK | EMULATOR BREAK REQUEST LINE: Input used by a hardware emulator to re-
quest a trap when emulation is enabled. This pin should be left unconnected.

o
MB86932 External Interface - SIGNAL DESCRIPTIONS
B7-5

SPARCIite User’'s Manual

7.1 SIGNAL DESCRIPTIONS (Continued) t

Symbol Type Description

—-EMU_ENB | EMULATOR ENABLE: Tied low while the MB86930 is being reset to enable hard-
ware emulator mode on the chip. This pin should be left unconnected.

TCK | TEST CLOCK: JTAG compatible test clock input.

TMS | ;I'EST MODE: JTAG compatible test mode select pin. Test is enabled when —TMS is
ow.

TDI | TEST DATA IN: JTAG compatible test data input.

TDO (@) TEST DATA OUT: JTAG compatible test data output.

—-TRST | TEST RESET: Asynchronous reset for JTAG logic. If not using JTAG, this signal
must be pulled low.

T. In the following descriptions, signal names preceded by a minus sign (=) indicate an active low state. Dual function pins have

two names separated by a slash (/).
NOTES: | = Input Only Pin
O = Output Only Pin
1/0 = Either Input or Output Pin

= Pins “must be” connected
as described

A(L) = Asynchronous: Inputs may
be asynchronous to
CLKOUT.

S(L) = Synchronous: Inputs must
meet setup and hold times
relative to CLK_IN. Outputs
are Synchronous to CLK_IN

G(...) = While the bus is granted to
another bus master
(-BGRNT=asserted), the pin
is
G(1) is driven to Vcc
G(0) is driven to Vgg
G(Z) floats
G(Q) is a valid output

MB86932 External Interface - SIGNAL DESCRIPTIONS

B7-6

I (...) = While the bus is between bus
cycles (or being reset) and is
not granted to another bus
master, the pin is
1 (1) is driven to Ve
1 (0) is driven to Vgg
| (2) floats
1 (Q) is a valid output

CHAPTER

B8

MB86932 JTAG

8.1 MB86932 JTAG Pin List -

The MB 86932 JTAG cells are arranged in a shift register configuration (see Fig-

ure B8-8). When shifting in a JTAG pattern through TDI, the LSB should correspond to
the JTAG cell value for -TIMER_OVF pin whereas, the MSB of the pattern should
correspond to the CLK_ENB pin’s JTAG cell. As far as JTAG output through TDO is
concerned, the first bit out corresponds to —TIMER_OVF JTAG cell value and the last
output bit corresponds to the CLK_ENB JTAG cell value. Table B8-1 lists the order of
all of the JTAG cells.

Table B8-1: JTAG Pin Order

Order JTAG Cell JT,_AI_;Bp(;eII Function
1 -TIMER_OVF output Timer Overflow pin
2 XTAL1 input Crystal input
3 -TEST input Factory test pin
4 PARITY<2> in/out
5 PARITY<3> in/out
6 EMU_BRK input Emulator break input

ol

MB86932 JTAG - MB86932 JTAG Pin List
B8-1

SPARCIite User’'s Manual

Table B8-1: JTAG Pin Order (Continued)

Order | JTAG Cell JT'_“rspge" Function
7 icediojo’ output Bidirectional control for EMU_D/EMU_SD buses
icediojo = 1: EMU_D and EMU_SD buses are input
icediojo = 0: EMU_D and EMU_SD buses are output
EMU_SD_i<3> input Input bit 3 of EMU_SD<3:0> bus
EMU_SD_o0<3> output Output bit 3 of EMU_SD<3:0> bus
14 EMU_SD_i<0> input Input bit 0 of EMU_SD<3:0> bus
15 EMU_SD_o0<0> output Output bit 0 of EMU_SD<3:0> bus
16 EMU_D_i<3> input Input bit 3 of EMU_D<3:0> bus
17 EMU_D_o0<3> output Output bit 3 of EMU_D<3:0> bus
22 EMU_D_i<0> input Input bit 0 of EMU_D<3:0> bus
23 EMU_D_o0<0> output Output bit 0 of EMU_D<3:0> bus
24 iceenblio® output Bidirectional control signal for -EMU_ENB pin
iceenblio = 1: -EMU_ENB pin is an input
iceenblio = 0: -EMU_ENB pin is an output
25 —EMU_EN_i input Input bit of -EMU_ENB pin
26 -EMU_EN_o output Output bit of -EMU_ENB pin
27 dbusiojo® output Bidirectional control signal for D<31:0>, Parity <3:0>
dbusiojo = 1: D<31:0>, Parity <3:0> are inputs
dbusiojo = 0: D<31:0>, Parity <3:0> are inputs
28 D_i<31> input Input bit 31 of D<31:0> bus
29 D_o0<31> output Output bit 31 of D<31:0> bus
54 D_i<18> input Input bit 18 of <31:0> bus
55 D_o<18> output Output bit 18 of D<31:0> bus
56 —BMODE16 input
57 D_i<17> input Input bit 17 of D<31:0> bus
58 D_o<17> output Output bit 17 of D<31:0> bus
59 D_i<16> input Input bit 16 of D<31:0> bus
60 D_o<16> output Output bit 16 of D<31:0> bus
61 D_i<15> input Input bit 15 of D<31:0> bus
62 D_o<15> output Output bit 15 of D<31:0> bus
63 —-BMODES input
64 D_i<14> input Input bit 14 of D<31:0> bus

MB86932 JTAG - MB86932 JTAG Pin List
B8-2

Table B8-1: JTAG Pin Order (Continued)

(o)
FUJITSU

Order | JTAG Cell JT_Arsp(e:e" Function

65 D_o<14> output Output bit 14 of D<31:0> bus

80 D_i<6> input Input bit 6 of <31:0> bus

81 D_o<6> output Output bit 6 of D<31:0> bus

82 —BMREQ output

83 D_i<5> input Input bit 5 of D<31:0> bus

84 D_o<5> output Output bit 5 of D<31:0> bus

93 D_i<0> input Input bit 0 of <31:0> bus

94 D_o<0> output Output bit 0 of D<31:0> bus

95 —RESET input Chip reset pin

96 -BREQ input Bus request input

97 -MEXC input Memory exception input

98 —-READY input External memory transaction complete signal

99 tstatejo’ output Three—state control signal for ADR, ASI, -BE, —AS,
RD/WR and —-LOCK
If tstatejo = 1: signals are three—stated.
If tstatejo = O: signals are outputs.

100 —-BGRNT output Bus grant output signal

101 —-ERROR output Error output signal

102 —-LOCK output Bus lock output signal

103 -BMACK input

104 —RD/WR output Memory Read/Write output signal

105 -AS output Start of memory transaction output signal

106 —PBREQ output

107 —CS<0> output

108 —-DREQO input

109 —CS<1> output

110 —CS<2> output

111 | -CS<3> output

112 —CS<4> output

113 —-DREQ1 input

114 |-CS<5> output

115 —-SAMEPAGE output

ol

MB86932 JTAG - MB86932 JTAG Pin List
B8-3

SPARCIite User’'s Manual

Table B8-1: JTAG Pin Order (Continued)

Order JTAG Cell JT$$DEEI| Function
116 —DACKO output
117 BE<3> output
118 BE<2> output
119 BE<1> output
120 BE<0> output
121 ASI<0> output
122 ASI<1> output
123 ASI<2> output
124 ASI<3> output
125 —-DACK1 output
126 ASI<4> output
127 ASI<5> output
128 ASI<6> output
129 ASI<7> output
130 ADR<2> output
131 ADR<3> output
132 ADR<4> output
133 ADR<5> output
134 eopio0 output Bidirectional control for -EOPO pin

eopio0 = 1: —EOPO is input
eopio0 = 0: —EOPO is output

135 ADR<6> output

136 ADR<7> output

137 —EOPO_i input

138 —-EOPO_o output

139 ADR<8> output

140 ADR<9> output

141 eopiol output Bidirectional control for -EOP1 pin
eopiol = 1: —=EOPQO is input
eopiol = 0: —EOPO is output

142 ADR<10> output

143 —-EOP1_i input

144 -EOP1_o output

145 ADR<11> output

MB86932 JTAG - MB86932 JTAG Pin List
B8-4

Table B8-1: JTAG Pin Order (Continued)

(o)
FUJITSU

Order | JTAG Cell JT_Arsp(e:e" Function
150 ADR<16> output
151 PARITY_i<0> input
152 | PARITY_0<0> output
153 ADR<17> output
154 ADR<18> output
155 | ADR<19> output
156 ADR<20> output
157 PARITY_i<1> input
158 PARITY_o<1> output
159 ADR<21> output
169 ADR<31> output
170 IRL<3> input
171 IRL<2> input
172 IRL<1> input
173 IRL<0> input
174 CLK_ENB input

N+

These are internal I/O control signals. Therefore, there are no corresponding external pins.

The following pins are not three-statable. -SAME_PAGE, —CS<5:0>, -BGRNT, TIMER_OVF, -ERROR.

The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, -TRST, TCK, TMS, TDI,

TDO.

ol

MB86932 JTAG - MB86932 JTAG Pin List

B8-5

SPARCIite User’'s Manual

MB86932 JTAG - MB86932 JTAG Pin List
B8-6

