
JUNE 1995, EDITION 1.0 FUJITSU MICROELECTRONICS, INC.

930 Series
Embedded Processor
User’s Manual

MB86933H–20

SPARClite User’s Manual

SPARC is a registered trademark of SPARC International based on technology developed by Sun Microsystems, Inc.
SPARClite is a trademark of SPARC International, Inc. based on technology developed by Sun Microsystems, Inc.
SPARCstation is a trademark of SPARC International, Inc. Products bearing the SPARC trademarks are based on
an architecture developed by Sun Microsystems, Inc.
NICE is a trademark of Fujitsu Microelectronics, Inc.

Copyright 1995 Fujitsu Microelectronics, Inc.
All rights reserved. This publication contains information considered proprietary by Fujitsu Limited and Fujitsu
Microelectronics, Inc. No part of this document may be copied or reproduced in any form or by any means or
transferred to any third party without the prior written consent of Fujitsu Microelectronics, Inc.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications.
Consequently, complete information sufficient for design purposes is not necessarily given.

Fujitsu Limited and its subsidiaries reserve the right to change products or specifications without notice. Fujitsu
advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

The information contained in this document does not convey any license under copyrights, patent rights or trademarks
claimed and owned by Fujitsu Limited or its subsidiaries. Fujitsu assumes no liability for Fujitsu applications
assistance, customer’s product design, or infringement of patents arising from use of semiconductor devices in such
systems’ designs. Nor does Fujitsu warrant or represent that any patent right, copyright, or other intellectual property
right of Fujitsu covering or relating to any combination, machine, or process in which such semiconductor devices
might be or are used.

Fujitsu Microelectronics, Inc.’s Semiconductor Division’s products are not authorized for use in life support devices or
systems. Life support devices or systems are device or systems which are:

1. Intended for surgical implant into the human body.

2. Designed to support or sustain life; and when properly used according to label instructions, can reasonably be
expected to cause significant injury to the user in the event of failure.

The information contained in this document has been carefully checked and is believed to be entirely accurate.
However, Fujitsu Limited and Fujitsu Microelectronics, Inc. assume no responsibility for inaccuracies.

This document is published by the marketing department of Fujitsu Microelectronics, Inc., Semiconductor Division,
3545 North First Street, San Jose, California, U.S.A. 95134–1804.

Table Of

Contents

Overview of the MB86933H–20 F1–1.
1.1 Organization and Content F1–1.
1.2 General Description F1–2.
1.3 Special Features F1–3.
1.4 Programmer’s Model F1–4.

1.4.1 Program Modes F1–4.
1.4.2 Memory Organization F1–4.
1.4.3 Registers F1–5.
1.4.4 Data Types F1–9.
1.4.5 Instructions F1–9.
1.4.6 Interrupts and Traps F1–9.

1.5 Internal Architecture F1–10.
1.5.1 Integer Unit F1–12.
1.5.2 Instruction Cache F1–13.
1.5.3 Bus Interface Unit F1–13.

1.6 External Interface F1–13.
1.6.1 Signals F1–13.
1.6.2 Bus Operation F1–13.
1.6.3 System Support Functions F1–15.

1.7 Development-Support Tools F1–15.

Programmer’s Model F2–1.
2.1 Program Modes F2–1.
2.2 Memory Organization F2–2.
2.3 Registers F2–4.

SPARClite User’s Manual

2.3.1 Register Windows F2–4.
2.3.2 Special Uses of the r Registers F2–5.
2.3.3 SPARC-Defined Special-Purpose Registers F2–6.
2.3.4 Memory-Mapped Control Registers F2–8.

2.4 Data Types F2–18.
2.5 Instructions F2–18.
2.6 Interrupts and Traps F2–18.

2.6.1 Code for Initializing the On–Chip Cache F2–23.

Internal Architecture F3-1.
3.1 Integer Unit F3-3.

3.1.1 I Block F3-3.
3.1.2 A Block F3-9.
3.1.3 E Block F3-11.
3.1.4 Programmer-Visible State and Processor State F3-16.

3.2 Instruction Cache F3-17.
3.3 Bus Interface Unit F3-17.

3.3.1 Write Buffer F3-18.
3.3.2 DRAM Control, Support F3-18.
3.3.3 Exception Handling F3-19.
3.3.4 Effect on the Pipeline F3-20.

MB86933H–20 Interrupt Request Controller F4–1.
4.1 IRC Registers F4–2.

4.1.1 Trigger Mode Registers F4–3.
4.1.2 Request Sense Register F4–4.
4.1.3 Request Clear Register F4–4.
4.1.4 Mask Register F4–5.
4.1.5 IRL Latch/Clear Register F4–5.

4.2 IRC Operation F4–5.
4.2.1 Polling F4–6.
4.2.2 Initialization F4–6.
4.2.3 Noise Immunity F4–7.

External Interface F5–1.
5.1 Signals F5–1.

5.1.1 Processor Control and Status F5–3.
5.1.2 Memory Interface F5–4.
5.1.3 Bus Arbitration F5–7.
5.1.4 Bus Arbitration F5–7.

5.1.5 Peripheral Functions F5–7.
5.1.6 Test and Boundary-Scan F5–8.

5.2 Bus Operation F5–8.
5.2.1 Exception Handling F5–8.
5.2.2 Bus Cycles F5–9.

5.3 System Support Functions F5–15.
5.3.1 System-Configuration Registers F5–15.
5.3.2 Same-Page Detection F5–18.
5.3.3 Programmable Timer F5–18.

5.4 ROM Interface F5–19.
5.4.1 Purpose F5–19.
5.4.2 Features F5–19.
5.4.3 Bus Configuration on Reset F5–20.
5.4.4 System Interface F5–20.
5.4.5 PROM Address Space F5–21.
5.4.6 Load/Stores F5–21.
5.4.7 Memory Exception F5–22.
5.4.8 Bus Request F5–22.

5.5 8/16 Bit Bus Mode F5–22.
5.5.1 Bus Width and Cacheable Control Register F5–23.
5.5.2 Timing F5–24.
5.5.3 Store in 8/16 Bit F5–32.

MB86933H–20 DRAM Controller F6–1.
6.1 Overview F6–1.
6.2 Registers F6–1.
6.5.1 Address Range Specifier Register 4 and Address Mask Register 4 F6–2
6.5.2 DRAM Bank Configuration Register F6–3.
6.5.3 Timer Register and Timer Preload Register F6–4.
6.5.4 Same Page Mask Register F6–5.
6.5.5 Bus Width Register F6–6.
6.5.6 System Support Control Register F6–7.
6.3 –CAS Behavior during Word, Halfword, and Byte

Accesses F6–8.
6.4 Address Multiplexing F6–8.
6.5 16–bit Operation F6–10.
6.6 Refresh F6–10.
6.7 Programming the DRAM Controller F6–10.

System Design Considerations F7–1.
7.1 Interfacing SRAM F7–1.

SPARClite User’s Manual

7.2 Interfacing Page-Mode DRAM using an External DRAM
Controller F7–3.

Instruction Set F8–1.
8.1 MB86933H–20 Instruction Set F8–1.

Programming Considerations F9–1.
9.1 MB86933H–20 Programming Information F9–1.

MB86933H–20 JTAG F10–1.
10.1 MB86933H–20 JTAG Pin List F10–1.

F1–1

HAPTER

Overview of the MB86933H–20

F1
C

The MB86933H–20 is functionally and architecturally similar to the MB86930
SPARClite RISC processor. The MB86933H–20 has the same integer unit as the
MB86930, supports the same instruction set as the MB86930, and is system bus
compatible with the MB86930.

Several MB86930 features and signals are not available on the MB86933H–20,
however, to reduce processor cost and package size. The MB86933H–20 has six
register windows rather than eight. It has twenty-six Address Bus signals (ADR<27:2>)
rather than thirty, has four Address Space Identifier signals (ASI<3:0>) rather than
eight, and has no emulator-support signals. The MB86932 can be used for
MB86933H–20 in-circuit emulation.

The MB86933H–20 does support 8, 16, and 32–bit bus based on the configuration
register or (–BMODE8 and –BMODE16). MB86933H–20 also has an internal DRAM
controller.

F1.1 Organization and Content

This section is organized in the same way as section 1 of this manual which describes
the MB86930 processor. In general, this section contains descriptions of the
MB86933H–20 processor that differ from the MB86930 processor. Descriptions that are
the same for both processors are generally not repeated in this section, and the reader is
referred to the main section of the manual for these identical descriptions.

Overview of the MB86933H–20 - Organization and Content

SPARClite User’s Manual

F1–2

These MB86933H–20 differences with respect to the MB86930 processor are
summarized as follows:

• No data cache

• 1K–byte instruction cache instead of 2K–byte

• complete DRAM controller

• Supports 8/16–bit bus mode for any chip select

• Six register windows rather than eight

• ADR<31:28> not present

• ASI<7:4> not present

• –EMU_SD<3:0> not present

• –EMU_D<3:0> not present

• –EMU_BRK not present

• –EMU_ENB not present

• –BMODE8 and –BMODE16 inputs added to support 8– and16–bit ROMs, as well as
32–bit ROMs.

F1.2 General Description

The MB86933H–20 is a high-performance processor that is suitable for use in
embedded control applications such as printers, scanners, robotic machinery, telecom
switches and monitors, and I/O subsystems. It operates at clock speeds up to 20 MHz,
executes SPARC instructions at a maximum rate of 18 MIPs, and is available in a
160-pin QFP package.

The processor consists of a Harvard (Aiken) architecture Integer Unit (IU) core and a
Bus Interface Unit (BIU). These units are connected internally with separate instruction
and data buses, and to external memory and I/O with separate 26–bit address and 32–bit
data buses.

A register file in the IU is accessed through 6 register windows. An integer multiply
unit (MU) within the IU speeds applications that require integer multiplication. The
processor uses software to emulate floating-point instructions. The data path and other
arrayed blocks are full-custom designs to optimize die area and speed. Random control
blocks are standard-cell designs. All circuits are fully static.

The MB86933H–20 provides a mechanism for code and data protection, but is
optimized for embedded applications that do not require virtual-to-physical address

Overview of the MB86933H–20 - General Description

F1–3

translation. The MB86933H–20 processor can be designed into in a virtual-memory
system, however, by using external memory management logic for address translation.

F1.3 Special Features

The following MB86933H–20 features make the processor an ideal choice for a wide
variety of low cost, high-performance embedded systems:

• Fast Instruction Execution: The instruction set is streamlined and hardwired for
fast execution, with most instructions executing in a single cycle. At 20 MHz the
MB86933H–20 executes instructions at a peak rate of 20 MIPs and at a sustained
rate of 18 MIPs. The Integer Unit (IU) features a 5-stage pipeline that has been
designed to handle data interlocks, and an optimized branch handler for efficient
control transfers.

• Large Register Set: An internal register file, consisting of eight global registers and
96 registers organized into six overlapping windows, speeds interrupt response time
and context switches. The register file windows minimize accesses to memory
during procedure linkages, and facilitate passing of parameters and assignment of
variables.

• Instruction Cache: A 1Kbyte direct–mapped instruction cache is included on chip.
The cache is organized into sixty–four 16–byte lines. Individual lines or the entire
cache can be locked.

• System Support Functions: Glue logic between the MB86933H–20 and the system
is minimized by programmable chip selects, programmable wait-state circuitry, and
support for connection to fast page-mode DRAM. Multiple bus masters are
supported through a simple handshake protocol.

• Clock Generator: A crystal can be connected directly to the on-chip oscillator, or
an external clock source can be used. A phase-locked loop minimizes the skew
between on- and off-chip clocks.

• Enhanced Instruction Set: The MB86933H–20 incorporates a fast integer multiply
instruction that executes in 5, 3 or 2 cycles for 32–bit, 16–bit and 8–bit operands,
respectively. An integer divide-step instruction cuts divide times by a factor of
5 to 10 over previous SPARC implementations. A scan instruction supports a
single-cycle search for the most significant non-sign bit in a word.

• Fully Static Circuit Design: Its static design gives the MB86933H–20 superior
noise immunity. Other members of the SPARClite family support a low-power mode
in which the processor clock can be slowed or stopped for arbitrary periods of time
to reduce operating current.

• ROM Size Option Support: Two external signals allow the processor to identify
whether 8–, 16–, or 32–bit ROMs are in use. This feature allows use of smaller
ROMs for a reduction in cost and in board space.

Overview of the MB86933H–20 - Special Features

SPARClite User’s Manual

F1–4

• DRAM Controller: A complete DRAM controller is integrated on the
MB86933H–20. This controller provides address multiplexing and control signal
generation for page–mode DRAMS.

• Interrupt Controller: The MB86933H–20 has an interrupt controller on board.

F1.4 Programmer’s Model

This section briefly introduces those aspects of the MB86933H–20 processor architec-
ture that are visible to software: the user and supervisor modes of program execution,
the organization of the address space, the register set, the supported data types, the
instruction set, and interrupts and traps. Each of these topics are discussed in more
detail in following chapters.

F1.4.1 Program Modes

The MB86933H–20 architecture supports protection in multitasking environments by
providing two mutually exclusive modes of program execution, user mode and
supervisor mode. Certain instructions are privileged, and can only be executed when the
processor is in supervisor mode. Any attempt to execute a privileged instruction in user
mode causes a trap.

Typically, application programs run in user mode, while operating systems run in
supervisor mode. Following reset, the processor is in supervisor mode. To enter user
mode, software must clear a bit in the Processor State Register. The processor enters
supervisor mode from user mode only when a hardware reset, an interrupt, or a trap
occurs.

F1.4.2 Memory Organization

The processor can directly address up to 4 Gigabytes of memory, organized into 16
address spaces of 256 Megabytes each. Every external access involves an 4–bit Address
Space Identifier (ASI), as well as a 26–bit word address. The ASI selects one of the
address spaces, and the 26–bit address selects a 32–bit word within that space.

Four of the address spaces are defined in the SPARC architecture: the User Instruction,
Supervisor Instruction, User Data, and Supervisor Data spaces. The other address spaces
are application-defined or reserved. The application-defined address spaces can be used
for either data memory or for I/O. All I/O is memory-mapped.

The organization of the entire addressable range is illustrated in Figure F1-1.

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words

Overview of the MB86933H–20 - Programmer’s Model

F1–5

between external memory (or I/O) and processor registers. The user instruction and data
spaces are accessible in both user and supervisor modes. The remaining address spaces
are accessible only in supervisor mode.

0F FFFFFFFF

0C 00000000

0B 00000000

0A 00000000

09 00000000

Supervisor Data (256 MB)

User Data (256 MB)

Supervisor Instruction (256 MB)

08 00000000
User Instruction (256 MB)

07 00000000

Application Definable (768 MB)

00 00000000

32–Bit
Address

4–Bit
Address
Space

indicator
(ASI)

Memory and I/O Space
(232 Addressable Bytes)

Memory-Mapped
Registers

04 00000000

Reserved

Application–Definable (256 MB)

01 00000000

Control Registers
(See Figure F1-2)

02 00000000
Reserved

Figure F1-1. Address Space Organization

The MB86933H–20 processor does not contain memory-management hardware.
Virtual-addresses can be translated by software, or by an external memory-management
unit.

Note that the MB86933H–20 has six register windows rather than eight. It has
twenty-six Address Bus signals (ADR<27:2>) rather than thirty, four Address Space
Identifier signals (ASI<3:0>) rather than eight, no emulator-support signals, and no
memory management unit. These and other differences between the MB86933H–20 and
other SPARClite processors should be considered when porting code to the
MB86933H–20 from another SPARClite processor, and when porting code from the
MB86933H–20 to another SPARClite processor. Documentation for other SPARClite
should be referenced to identify differences with the MB86933H–20 that may affect
ported code.

F1.4.3 Registers

All registers are 32 bits wide. There are general-purpose registers, whose contents have
no pre-assigned meaning, and special-purpose registers that contain control and status

Overview of the MB86933H–20 - Programmer’s Model

SPARClite User’s Manual

F1–6

information or special data values. Some of the special-purpose registers are defined in
the SPARC architecture; the rest are MB86933H–20– specific registers. The non-
SPARC special-purpose registers are memory-mapped. The general-purpose registers
and the special-purpose Y Register are the only registers that can be accessed in user
mode. The register set is illustrated in Figure F1-2.

Processor State Register (PSR)

Window Invalid Mask Register (WIM)

Trap Base Register (TBR)

Y Register

Program Counter (PC)*

Next Program Counter (nPC)*

Ancillary State Register (ASR) <15:1> (reserved)

Ancillary State Register (ASR) 17

Same–Page Mask Register

Address Range Specifier Registers (ARSR <5:1>)

Address Mask Registers (AMR <5:0>)

Wait–State Specifier Registers (WSSR <2:0>)

Timer Register

Timer Preload Register

System Support Control Register

96 Windowed Registers

8 global registers

Memory-Mapped Control Registers
(See Fig. F1-1, Address Space Organization)

SPARC-Defined Registers (Not Memory-Mapped)

Special-Purpose RegistersGeneral-Purpose Registers

* Not read/writable

(See Fig. F1-3, Register Windows)

DRAM Configuration Registers

Figure F1-2. Register Set

General-Purpose Registers

The MB86933H–20 contains 104 general-purpose registers; 8 of these are global
registers; the other 96 registers are divided into 6 overlapping blocks, or windows. Each
window contains 24 registers. Of these, 8 are local to the window, 8 are “out” registers
shared with the adjacent window below, and 8 are “in” registers shared with the
adjacent window above. This organization is illustrated in Figure F1-3.

Overview of the MB86933H–20 - Programmer’s Model

F1–7

Figure F1-3. Register Windows

At any given time, 32 general-purpose registers can be accessed directly: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active.

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed are written to the “out” registers of the current window,
which are the same as the “in” registers of the adjacent window. A SAVE instruction
can then be used to decrement the Current Window Pointer, making the parameter
values available to the subroutine without moving any data. A RESTORE instruction
can be used to increment the CWP upon return from the subroutine. In effect, the
general-purpose registers cache the top portion of the run-time stack.

The window overlap also speeds interrupt handling because interrupts automatically
decrement the CWP, giving the interrupt routine its own window. The SPARC
architecture requires a free window to be available to handle these traps.

Overview of the MB86933H–20 - Programmer’s Model

SPARClite User’s Manual

F1–8

Special-Purpose Registers

The special-purpose registers include the control and status registers defined by the
SPARC architecture, and a collection of memory-mapped registers that control
peripheral functions.

Special instructions exist for reading and writing each of the SPARC control and status
registers except the Program Counter and the Next Program Counter. The Y Register
can be read and written in user mode; the instructions that access the other SPARC-de-
fined registers are privileged.

The memory-mapped registers can be read and written with the alternate-space load and
alternate-space store instructions, which are also privileged.

The SPARC-defined registers, shown in Figure F1-2, are as follows:

• Processor State Register (PSR)—The primary processor control and status register.
It contains mode fields that are set by the operating system to configure the
processor, and status fields that are set by the processor to indicate the effects of
instruction execution.

• Window Invalid Mask Register (WIM)—Used by software to detect the occurrence
of register file underflows and overflows. It contains one mask bit for each register
window. If an operation that normally increments or decrements the Current
Window Pointer would cause the CWP to point to a window whose corresponding
WIM bit equals 1, a trap occurs.

• Trap Base Register (TBR)—Contains three fields used by the processor to generate
the address of the service routine when an interrupt or trap occurs.

• Y Register—Used in stepwise multiplication and division routines based on the
MULScc and DIVScc instructions. Also used for integer multiply operations.

• Program Counter (PC)—Contains the word address of the instruction currently
being executed by the Integer Unit. The PC cannot be directly read or written.

• Next Program Counter (nPC)—Contains the word address of the next instruction to
be executed, assuming that no trap occurs. The nPC cannot be directly read or
written.

• Ancillary State Registers (ASR[31:1])—The SPARC definition includes 31
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use. The
remaining ASR’s can be defined and used in any way by SPARC implementations.
SPARClite defines the following ASR:

ASR17— Used to enable and disable single-vector trapping. (When this feature is
enabled, all traps vector to a single location.) Single vector trapping provides a
small memory alternative to the standard 1K word trap table.

Overview of the MB86933H–20 - Programmer’s Model

F1–9

The memory-mapped MB86933H–20–specific registers, shown in Figure F1-2, are as
follows:

• Same-Page Mask Register—Controls the operation of the same-page detection logic
by specifying which bits of the current ASI and address are to be compared with
those of the previous ASI and address.

• Address Range Specifier Registers (ARSR[5:1])—Control the assertion of the
Chip-Select outputs (–CS[5:1]). –CSn is asserted when the value on the address bus
falls in the address range specified by ARSRn. –CS0 is asserted during accesses to
the lowest address range in Supervisor Instruction Space.

• Address Mask Registers (AMR[5:0])—AMRn controls the comparison of the
current address with ARSRn by specifying which bits are to be compared and which
are “don’t cares.”

• Wait-State Specifier Registers (WSSR[2:0])—Determines for each address range the
number of clock cycles between assertion of an address in that range on the address
bus, and assertion of –READY signal by the processor. This makes it possible for
memory and I/O devices with different access times to be connected to the processor
without additional logic.

• Timer Register—Contains the current timer count.

• Timer Pre-Load Register—Contains the value that is loaded into the timer when the
timer overflows.

• System Support Control Register—Allows selective enabling and disabling of
same-page detection, chip-select, programmable wait-states, and the timer.

• DRAM Configuration Registers—

F1.4.4 Data Types

The MB86933H–20 supports the same data types as the MB86930 processor. Please
refer to Section 1.3.4 of the main section of this manual for a description of the data
types.

F1.4.5 Instructions

The MB86933H–20 supports the same instructions as the MB86930 processor. Please
refer to Section 1.3.5 of the main section of this manual for a description of the
instructions.

F1.4.6 Interrupts and Traps

The MB86933H–20 supports the same interrupts and traps as the MB86930 processor.
Please refer to Section 1.3.7 of the main section of this manual for a description of the
interrupts and traps.

Overview of the MB86933H–20 - Programmer’s ModelOverview of the MB86933H–20 - Programmer’s Model

SPARClite User’s Manual

F1–10

F1.5 Internal Architecture
The internal architecture of the MB86933H–20 is illustrated in Figure F1-4. The
processor core consists of an Integer Unit that supports a superset of the SPARC integer
instruction set. A 1K–byte direct–mapped instruction cache is provided on chip. The
Bus Interface Unit handles the interface between the processor and the system. A Clock
Generator with built-in phase-locked loop simplifies system clock design.

Internally, the various functional units are connected by separate instruction and data
buses. For connection with external memory and I/O, a unified address bus and a
unified data bus are extended off-chip. The main functional units are discussed briefly
in the following sections, and more fully in the Internal Architecture chapter.

CLOCK
GENERATOR

& PLL

XTAL1/CLKIN

CLK_OUT

BUS
INTERFACE

UNIT

DATA

ADDRESS

ASI

CONTROL

CHIP_SEL

PAGE_DET

TIMER_OVF

ADDRESS
DECODER

16–BIT TIMER

DRAM
CONTROLLER

INTEGER UNIT

SCAN DIVIDE STEP

32

32

32

32

I_DATA

I_ADDR

D_DATA

D_ADDR

INTERRUPT
CONTROLLER

6

4
IRL/IRQ

1K
INSTRUCTION

CACHE

Figure F1-4. Internal Architecture (Block Diagram)

F1.5.1 Integer Unit

The Integer Unit (IU) is a compact, fully custom implementation of the SPARC
architecture. The IU is hard-wired for high performance. Its internal functional units are

Overview of the MB86933H–20 - Internal Architecture

F1–11

designed around a modular architecture and can be customized to meet different
application requirements. In the MB86933H–20, for example, this flexibility was used
to provide direct hardware support for integer multiplication, and to extend the SPARC
instruction set by supporting divide-step and scan instructions.

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure F1-5.

The pipeline consists of the following stages:

• Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction.

• Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

• Execute (E)—The ALU computes a result.

• Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

• Writeback (W)—The result (or loaded memory datum) is written into the register
file.

Execute Instruction 3

Decode 5Instruction 4

5

5

5

Fetch

Memory

Write-Back

Instruction 5

Instruction 2

Instruction 1

4

3 4

2 3 4

6

6

6

6

CLK

Figure F1-5. Instruction Pipeline

No instructions execute out-of-order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B. Conditions that hold up the pipeline, and the effect of traps on pipeline
operations, are discussed in the Internal Architecture chapter.

F1.5.2 Instruction Cache

An on–chip instruction cache allows the building of a high–performance system without
incurring the cost of fast external memory and the associated control logic. The icache

Overview of the MB86933H–20 - Internal Architecture

SPARClite User’s Manual

F1–12

in the MB86933H–20 processor is 1Kbyte in size and is organized into one bank of
sixty four 16–byte lines. Cache lines are refilled in 4–byte increments to avoid the
interrupt latency incurred by long uninterruptible cache line replacement.

F1.5.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic that allows the processor to communi-
cate with the system.

F1.6 External Interface

The processor’s external interface consists of signals, bus operations, and system
support functions. This section gives an overview; details are discussed more fully in
the External Interface chapter. The System Design Considerations chapter discusses
issues that are likely to arise in the design of MB86933H–20–based system.

F1.6.1 Signals

The processor’s external signals, illustrated in Figure F1-6, can be grouped by function
as follows:

• Processor Control and Status—Reset, error, and clock signals.

• Memory Interface—Data and address buses, ASI and byte-enables, chip-selects, and
other control signals used to access external memory and memory-mapped devices.

• Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions—Interrupt-requests and timer overflow.

• Boundary-Scan—Test signals used for hardware verification.

• ROM Size—Used to identify ROM size.

F1.6.2 Bus Operation

At any given time the Bus Interface Unit is handling requests for external memory and
I/O operations, is arbitrating for bus access, or is idle. From the point of view of the
external system, bus transactions are handled in fairly standard ways:

• Memory and I/O Operations—Read and write transactions are initiated with the BIU
asserting the –AS signal. The RD/–WR output indicates the transaction type. The

Overview of the MB86933H–20 - Internal Architecture

F1–13

–BE[3:0] outputs indicate the transaction width. The BIU drives the address and ASI
signals, and either drives (during stores) or reads (during loads) the signals on the
data bus. The transaction ends when the external system or programmable wait-state
generator asserts –READY.

An atomic load-store is executed as a load followed immediately by a store, with no
operation allowed between. The –LOCK output is asserted to indicate that the bus is
being used for more than one consecutive memory operation.

• Arbitration—Any external device can request ownership of the bus by asserting the
–BREQ signal. The BIU three-states its bus drivers and asserts –BGRNT to indicate
that it is relinquishing control of the bus. Upon completion of its transaction the
external device de-asserts –BREQ, and the BIU responds by de-asserting –BGRNT
during the following cycle.

Chapter 4 of this addendum contains bus timing diagrams and a bus state diagram,
further describes bus operations, and describes transactions that are interrupted by
exceptions.

–BMODE16

–BMODE8

–SAME_PAGE

–AS

–LOCK

RD/–WR

–READY

–MEXC

–BE <3:0>

–CS <5:0>

ASI <3:0>

ADR <27:2>

D <31:0>CLK_ECB

CLKOUT1

CLKOUT2

CLKIN / XTAL1

XTAL2

–ERROR

–RESET

IRL <3:0>/IRQ<15:12>

–TIMER_OVF

–BREQ

–BGRNT

TDO

TCK

TMS

TDI

–TRST

Test Pins
(Boundary Scan)

Bus
Arbitration

Peripheral
Functions

Processor
Control

& Status

MB86933H–20
I/O SIGNALS

Memory
Interface

ROM Size

–RAS<1:0>

–CAS<3:0>

–DWE

Figure F1-6. Input and Output Signals

Overview of the MB86933H–20 - Internal Architecture

SPARClite User’s Manual

F1–14

F1.6.3 System Support Functions

MB86933H–20 system support is the same as MB86930 system support. Please refer to
Section 1.5.3 of the main section of this manual for a description of the system support
functions.

F1.7 Development-Support Tools

The MB86933H–20 development-support tools are the same as the MB86930
development-support tools. Please refer to section 1.6 of the main section of this
manual for a description of the development-support tools.

F2–1

HAPTER

Programmer’s Model

F2
C

This chapter describes the MB86933H–20 processor resources that are available to
software. It discusses the user and supervisor modes, the organization of the address
space, the processor registers, the supported data types, the instruction set, the on–chip
cache ,and interrupts and traps. A separate section describes the internal state of the
processor after reset.

The Programming Considerations chapter contains information about how to use these
processor resources to best advantage.

2.1 Program Modes

The SPARC architecture provides two mutually exclusive modes of program execution,
user mode and supervisor mode. The processor is in supervisor mode when the S bit of
the Processor State Register (PSR) is 1, and in user mode when this bit is 0. Instructions
which access either special-purpose registers or alternate memory spaces are privileged.
The use of privileged instructions is restricted to supervisor mode.

Separate user and supervisor modes provides system protection in multitasking
environments. System code runs in supervisor mode and has full access to processor
resources, while application code runs in user mode and is prevented from having
unwanted side effects. Embedded systems connected to a network can use a protection
scheme based on the distinction between user and supervisor modes. In such a scheme,
network service routines intended to have system-wide effects run in supervisor mode.
Routines intended to have only local effects, on the other hand, run in user mode.

Programmer’s Model - Program Modes

SPARClite User’s Manual

F2–2

In many embedded systems, however, this hierarchy is not required, and the processor
can operate exclusively in supervisor mode. In this way, application code can directly
manipulate the Current Window Pointer (in the PSR) and other processor control fields.

On reset, the processor is in supervisor mode. To enter user mode, software must clear
the S bit in the PSR. The processor enters supervisor mode from user mode only when a
hardware reset, an interrupt, or a trap occurs. A return from trap (RETT) instruction
restores the value the S bit had before the trap was taken.

2.2 Memory Organization

The processor can directly address up to 4 Gb of memory, organized into 16 address
spaces of 256 Mb each. These address spaces may or may not overlap in physical
memory, depending on the system design. Every external access involves a 4–bit
Address Space Identifier (ASI) as well as a 26-bit word address. The ASI selects one of
the address spaces, and the address selects a word within that space (see Table F2-1).

Only the user instruction and data spaces are accessible in user mode. The other 14
address spaces can be accessed only in supervisor mode.

Table F2–1. ASI Address Space Map

ASI <3:0> Address Space

0x0
0x1
0x2
0x3

0x4 – 0x7
0x8
0x9
0xA
0xB
0xC
0xD

0xE – 0xF

 Application Definable
 Control Registers
 Instruction Cache Lock
 Reserved
 Application Definable
 User Instruction Space
 Supervisor Instruction Space
 User Data Space
 Supervisor Data Space
 Instruction Cache Tag Ram
 Instruction Cache Data Ram
 Reserved

Note that the MB86933H–20 has no data cache and has six register windows rather than
eight. It has twenty-six Address Bus signals (ADR<27:2>) rather than thirty, four
Address Space Identifier signals (ASI<3:0>) rather than eight, no emulator-support
signals, and no memory management unit. These and other differences between the
MB86933H–20 and other SPARClite processors should be considered when porting
code to the MB86933H–20 from another SPARClite processor, and when porting code
from the MB86933H–20 to another SPARClite processor. Documentation for other
SPARClite should be referenced to identify differences with the MB86933H–20 that
may affect ported code.

Programmer’s Model - Memory Organization

F2–3

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words
between memory (or I/O) and processor registers. Addressing conventions for external
accesses are “big-endian”:

• Bytes—Increasing the address decreases the significance of a byte within the word.
That is, the most significant byte of a word—the “big end” of the word—is accessed
when bits [1:0] of the address are both 0. The least significant byte is accessed when
address bits [1:0] are both 1.

• Halfwords—The most significant halfword of a word is accessed when bit 1 of the
address is 0, and the least significant halfword when address bit 1 is 1.

• Doublewords—The most significant word of a doubleword is accessed when bit 2 of
the address is 0, and the least significant word is accessed when address bit 2 is 1.

The address of a halfword, word, or doubleword is the address of its most significant
byte. The addressing conventions are illustrated Figure F2-1.

2

0150

0

15

address <1:0>
Halfwords

031

address <1:0>
Word

address <2:0>
Doubleword

0

32630

0314

3

07

2

07

1

07

0

07

address <1:0>
Bytes

Figure F2–1. Addressing Conventions

Load and store operations require proper alignment of data in memory. An aligned
doubleword address is divisible by 8, an aligned word address is divisible by 4, and an
aligned half-word address is divisible by 2. If a load or store instruction generates an
improperly aligned address, a memory_address_not_aligned trap occurs, and the access
must be performed piecemeal under software control.

The processor does not contain memory-management hardware. Virtual-address
translation can be handled by software or by an external memory-management unit.

Programmer’s Model - Memory Organization

SPARClite User’s Manual

F2–4

2.3 Registers

There are two types of registers: the general-purpose or r registers whose contents have
no pre-assigned meaning, and the special-purpose registers that contain control and
status information, or special-purpose data. All registers are 32 bits wide. The register
set is illustrated in Figure F2-2.

The general-purpose (r) registers can be accessed in user mode. There are 104 r
registers. Eight are global registers; the other 96 registers are divided into six
overlapping blocks called windows.

There are of two kinds of special-purpose registers: (1) registers that are defined by the
SPARC architecture, and (2) memory-mapped registers that control peripheral
functions. Special instructions exist for reading and writing each SPARC register except
the Program Counter and the Next Program Counter. The memory-mapped registers can
be read and written with the alternate-space load and store instructions. All instructions
that access special-purpose registers are privileged except reads and writes to the
SPARC-defined Y register.

2.3.1 Register Windows

The general-purpose register set is organized into a set of 8 global registers and a set of
overlapping windows, as specified by the SPARC architecture. There are 6 windows in
the MB86933H–20. Each window contains 24 registers. Of these, 8 are local to the
window, 8 are “out” registers shared with the adjacent window below, and 8 are “in”
registers shared with the adjacent window above. This organization is illustrated in
Figure F2-2.

Thirty-two general-purpose registers can be accessed directly at any time: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active. (See Section F5.3 for register addressing conventions.)

Programmer’s Model - Registers

F2–5

Figure F2–2. Register Windows

Register Addressing

Please refer to Section F2.3.1 of the main section of this manual for a description of
MB86933H–20 register addressing.

Performance Features

Please refer to Section F2.3.1 of the main section of this manual for a description of the
MB86933H–20 performance features.

2.3.2 Special Uses of the r Registers

Please refer to Section F2.3.2 of the main section of this manual for a description of
MB86933H–20 r register use.

Programmer’s Model - Registers

SPARClite User’s Manual

F2–6

2.3.3 SPARC-Defined Special-Purpose Registers

The registers discussed in this section are defined as part of the SPARC architecture.

Processor State Register (PSR)

The Processor State Register is the primary processor control and status register. It
contains 11 mode and status fields that configure the processor and report processor
status and exception results. The mode fields, shown in upper case in Figure F2-3, are
set by the operating system to configure the processor. The status fields, shown in lower
case, are set by the processor to indicate the effects of instruction execution.

Except for several fields described below, the PSR can be written and read directly with
the privileged instructions WRPSR and RDPSR. The PSR can also be modified by the
SAVE, RESTORE, Ticc, and RETT instructions, and by any instruction that modifies
the condition codes.

8 7 6 5 4 020 19 12 1131 28 27 24 23

impl = 0 ver = 7
icc

reserved PIL
n z v c

S PS ET CWP

Figure F2–3. Processor State Register

Bits 31-28: Implementation (impl)—Identifies the implementation number of the processor as 0. The
value in this field cannot be changed by a WRPSR instruction.

Bits 27-24: Version (ver)—Identifies the processor version as 7, and is intended for factory use. It can
be read, but not written.

Bits 23-20: Integer Condition Codes (icc)—Contains the negative (n), zero (z), overflow (v), and carry
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and by
arithmetic and logical instructions whose names end with the letters cc (for example,
ANDcc). The Bicc (Branch on integer condition codes) and Ticc (Trap on integer condition
codes) instructions transfer program control based on the values of these bits. The integer
condition code flags are defined as follows:

n (Bit 23) Set to 1 if the ALU result was negative for the last instruction that modified the
icc field; equal to 0 otherwise.

z (Bit 22) Set to 1 if the ALU result was zero for the last instruction that modified the icc
field; equal to 0 otherwise.

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that
modified the icc field; it equals 0 otherwise. Logical instructions that modify
the icc field always reset the overflow bit to 0.

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last
addition that modified the icc, or a borrow out of bit 31 occurred as the result
of the last subtraction that modified the icc. The carry bit equals 0 otherwise.
Logical instructions that modify the icc field always reset the carry bit to 0.

Programmer’s Model - Registers

F2–7

Bits 19-12: Reserved —This field is reserved. When using the WRPSR instruction, this field should
always be written with 0s.

Bits 11-8: Processor Interrupt Level (PIL)—Specifies the levels of interrupt that the processor will
accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or
with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most
significant bit, and bit 8 is the least significant.

Bit 7: Supervisor Mode (S)—Determines whether the processor is in supervisor mode (S=1) or
user mode (S=0). Since instructions that write the PSR are available only in supervisor
mode, the processor enters supervisor mode from user mode only when a reset, trap, or
interrupt occurs.

Bit 6: Prior S State (PS)—Records the value of the S bit when a trap is taken, so that the
processor can return to the proper operating mode (user or supervisor) on return from the
trap. Processor hardware changes the PS bit to the state of the S bit when entering a trap,
and changes the S bit to the state of the PS bit when returning from the trap.

Bit 5: Enable Traps (ET)—Enables traps (ET=1). When ET=0, traps are disabled and all
interrupts are ignored.

Bits 4-0: Current Window Pointer (CWP)—Points to the register window that is currently active. The
CWP is written and read with the WRPSR and RDPSR instructions, is decremented by
traps and the SAVE instruction, and is incremented by the RESTORE and RETT
instructions. The MB96933H processor implements 6 of the 32 windows allowed in the
SPARC definition, so only the 3 least significant bits of the CWP field are used. Arithmetic
on the CWP is always performed modulo 6. Attempting to write a value to the CWP field
that points to an unimplemented window results in an “illegal instruction” error.

Window Invalid Mask Register (WIM)

The Window Invalid Mask Register contains 6 register-window mask bits, each of
which corresponds to an implemented register window. If an operation that normally
increments or decrements the Current Window Pointer would cause the CWP to point to
a window whose corresponding WIM bit equals 1, a Window Overflow or Window
Underflow trap occurs.

The WIM can be written with the WRWIM instruction, and read with the RDWIM
instruction. Both of these instructions are privileged. Bits corresponding to unimple-
mented windows are read as 0s; values written to these bits are ignored.

6 5 4 031

reserved w5 w4

3 2 1

w3 w2 w1 w0

Figure F2–4. Window Invalid Mask Register

Programmer’s Model - Registers

SPARClite User’s Manual

F2–8

Bits 31-6: Reserved Field—This field is reserved for potential future expansion to additional windows.

Bits 5-0: Window Masks (W5-W0)—Window mask bits, with W5 the mask bit for window 5, etc.

Trap Base Register (TBR), Y Register, Program Counter,
Next Program Counter, Ancillary State Registers,

Please refer to Section F2.3.3 of the main section of this manual for a description of
these registers.

2.3.4 Memory-Mapped Control Registers

In addition to the registers defined by the SPARC architecture, the MB86933H–20
provides a collection of memory-mapped registers that control peripheral functions.
Figure F2-3 shows these registers and their locations in memory. The memory-mapped
registers can be read and written with the alternate-space load and store instructions,
which are privileged.

Cache/Bus interface Unit Control Register

Lock Control Register

Lock Control Save Register

Cache Status Register

Restore Lock Control Register

Same-Page Mask Register

Address Range Specifier Registers (ARSR <5:1>)

Address Mask Register (AMR <5:0>)

Wait-State Specifier Registers (WSSR <2:0>)

Timer Register

Timer Preload Register

System Support Control Register

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000120

0x00000124

0x00000140

0x00000160

0x00000174

0x00000178

0x00000080

DRAM Configuration RegistersASI=0x10x000007D0 – 7D4

Figure F2–5. Locations of Memory-Mapped Control Registers

Programmer’s Model - Data Types

F2–9

Cache/Bus Interface Unit Control Register

The Cache/BIU Control Register controls the operation of the instruction cache, and the
write and prefetch buffers of the Bus Interface Unit. This register is located at address
0x00000000 with an ASI of 0x1.

031 2 1

Write Buffer Enable (Enabled=1, Disabled=0, RST=0)

Prefetch Buffer Enable (Enabled=1, Disabled=0, RST=0)

345

Reserved

Global Instruction Cache Lock (Lock On=1, Lock Off=0, RST=0)

Instruction Cache Enable (Enabled=1, Disabled=0, RST=0)

Reserved

Figure F2–6. Cache/Bus Interface Unit Control Register

Bits 31:6 Reserved

Bit 5: Write Buffer Enabled—When set to 1, enables the write buffer of the BIU only if both the
instruction and data caches are enabled. At reset, this bit is 0. This bit should be changed
only when the instruction and data caches are off.

Bit 4: Prefetch Buffer Enabled—When set to 1, enables the prefetch buffer of the BIU only if both
the instruction and data caches are enabled. At reset, this bit is 0. This bit should be
changed only when the instruction and data caches are off.

Bits 3–2: Reserved

Bit 1: Global Instruction Cache Lock—Locks the current entries into the on-chip instruction
cache; with this bit set to 1, no valid entry in the instruction cache will be replaced. To
insure the best performance with the cache locked, invalid words in allocated cache
locations will be updated. When this bit is 0, the cache operates normally. Writes to the
Instruction Cache Lock bit do not affect cache operation for the following three instructions.
At reset, this bit is 0.

Bit 0: Instruction Cache Enable—Turns the on-chip instruction cache on (1) and off (0). Writes to
the Instruction Cache Enable bit do not affect cache operation for the following three
instructions. At reset, this bit is 0.

Programmer’s Model - Registers

SPARClite User’s Manual

F2–10

Lock Control Register

The cache does not have to be enabled for the Lock Control Save Register to be
updated, and the register is both readable and writable.

031

Previous Instruction Cache Entry Auto Lock (On=1, Off=0, RST=0)

Reserved

Figure F2–7. Lock Control Save Register

Bit 1: Reserved

Bit 0: Instruction Cache Entry Auto Lock—Enables (1) and disables (0) auto-locking for entries in
the on-chip instruction cache. All instructions fetched while this bit is 1 have the lock bits in
their cache tags set to 1. Writes to this bit do not affect cache operation for the following
three instructions. At reset, this bit is 0.

Lock Control Save Register

When an external interrupt or hardware trap occurs, the auto-locking of entries in the
on-chip cache is disabled. The Lock Control Save Register is used to re-enable
auto-locking after the interrupt has been serviced. The register is updated with the
contents of the Lock Control Register when there is a hardware interrupt, an exception
condition (illegal instruction, memory data alignment error), or a DSU hardware
breakpoint. The updated Lock Control Save Register is then used to restore the Lock
Control Register after the interrupt or trap. This “autosave” feature allows restoration of
the Lock Control Register following interrupts and traps that cannot be anticipated by
software. In other cases, the program can save the Lock Control Register directly for
later restoration.

The value of the Lock Control Register before the interrupt or trap is automatically
saved in the Lock Control Save Register, located at address 0x00000008 with an ASI of
0x1. The correct auto-lock value is restored in the Lock Control Register by setting bit
<0> in the Restore Lock Control Register to 1. This causes the value that is saved in the
Lock Control Save Register to be moved to the Lock Control Register when a RETT is
executed (See Section F2.6.2).

Programmer’s Model - Registers

F2–11

The cache does not have to be enabled for the Lock Control Save Register to be
updated, and the register is both readable and writable.

031 1

Previous Data Cache Entry Auto Lock (On=1, Off=0, RST=0)

Previous Instruction Cache Entry Auto Lock (On=1, Off=0, RST=0)

Reserved

Figure F2–8. Lock Control Save Register

Restore Lock Control Register

On return from an external interrupt or hardware trap service routine, the Lock Control
Register can have its previous value restored from the Lock Control Save Register. The
Restore Lock Control Register, located at address 0x00000010 with an ASI of 0x1,
controls this feature. When bit 0 of this register is set to 1 and a RETT instruction is
executed, the value in the Lock Control Save Register is placed into the Lock Control
Register.

There should be no traps between writing a 1 to bit 0 of the Restore Lock Control
Register and the corresponding RETT instruction. This bit is cleared to 0 on reset, and
also when a return from external interrupt or hardware trap is executed.

031

Restore Lock bit (Restore=1, Ignore=0, RST=0)

Figure F2–9. Restore Lock Control Register

Cache Status Register

If an attempt is made to lock a cache entry which is already locked, bit 0 in the Cache
Status Register is set to 1. This bit can be cleared by software. The Cache Status
Register is located at address 0x0000000C with an ASI of 0x1.

The Cache Status Register is meaningful only when auto-locking is utilized. In the case
of writing the cache tags manually to lock cache lines (either by writing the Tag Lock

Programmer’s Model - Registers

SPARClite User’s Manual

F2–12

Bit address or the Cache Tag address directly), an attempt to lock a line which is
already locked will not be indicated by the Cache Status Register.

031

Cache Status, RST=0

Figure F2–10. Cache Status Register

Same-Page Mask Register

The Same-Page Mask Register controls the operation of the same-page detection logic
by specifying which bits of the current ASI and address are to be compared with those
of the previous ASI and address. If the specified (i.e., unmasked) bits all match, then
the processor recognizes the two accesses as being “in the same page,” and asserts the
–SAME_PAGE signal. These registers should not be written if the bus interface unit
will handle addresses that are affected by the change in the next 3 processor cycles. The
Same-Page Mask Register is located at address 0x00000120 with an ASI of 0x1.

031 30 23 22 1

ASI Mask <7:0>
(Care=0, Don’t Care=1, RST=Undefined) (Care=0, Don’t Care=1, RST=Undefined)

Address Mask (ADR <31:10>)

Figure F2–11. Same-Page Mask Register

Bit 31: Reserved

Bits 30-23: ASI Mask—Specifies which bits in the ASI of the current external access are to be
compared with the corresponding bits in the ASI of the previous access. Only those bits
are compared for which the mask bit is 0. Mismatches in any other bits do not prevent the
two accesses from being recognized as “on the same page.” The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask—Specifies which of the 22 most significant bits in the address of the current
external access are to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is 0. Mismatches in
any other bits do not prevent the two accesses from being recognized as “on the same
page.” The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

Note: Since DRAM uses SAMEPAGE pin to determine the wait–state, 933H supports the same
page only in the range of chip–select 4. The BIU will save the last address if it is in the
range of CS4. If the current address is in the range of CS4 and same page with the last
address then the SAMEPAGE pin will be asserted. Thus if the user wants to use
SAMEPAGE_pin, memory must be set in the range of CS4.

Programmer’s Model - Registers

F2–13

Address Range Specifier Registers (ARSR[5:1])

Values in the Address Range Specifier Registers define up to five different address
ranges, which are used for various system-support functions. The ARSRs are located in
a contiguous block beginning at address 0x00000124 with ASI 0x1 (see Table F2-2).

The ARSRs, together with the Address Mask Registers, can be used to control the
assertion of the Chip-Select outputs (–CS[5:1]). –CSn is asserted when the value on the
address bus falls in the address range specified by ARSRn and AMRn. See the
discussion of the Address Mask Registers, below. –CS0 is asserted when the value on
the address bus, as masked by AMR0, falls into the lowest range of Supervisor
Instruction Space. The range of –CS0 (as masked by AMR0) is 8K words.

These registers should not be written if the bus interface unit will handle addresses that
are affected by the change in the next 3 processor cycles. The user should be careful
that two chip selects are never selected at the same time. A programmable wait-state
generator is also associated with each address range. See the discussion of the
Wait-State Specifier Registers, below.

031 30 23 22 1

ASI <7:0>
(RST=Undefined) (RST=Undefined)

ADR <31:10>

Figure F2–12. Address Range Specifier Registers

Bit 31: Reserved

Bits 30-23: ASI[7:0]—Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Bits 22-1: ADR[31:10]—Specifies the 22 most significant bits of a target address range. The value of
this field is undefined on reset.

Bit 0: Reserved

Address Mask Registers (AMR[5:0])

AMRn works with ARSRn to define an address range. AMRn specifies which bits of
the currently driven ASI and address are to be compared with the contents of ARSRn,
and which bits are “don’t cares.” Except for AMR0, reset leaves the values in the AMR
registers undefined (see Table F2-2). These registers should not be written if the bus
interface unit will handle addresses that are affected by the change in the next 3
processor cycles. The AMRs are located in a contiguous block beginning at address
0x00000140 with ASI 0x1.

Programmer’s Model - registers

SPARClite User’s Manual

F2–14

031 30 23 22 1

ASI <7:0>
(RST=Undefined)* (RST=Undefined)*

ADR <31:10>

* Except AMR[0]. See Table F2–2.

Figure F2–13. Address Mask Registers

Bit 31: Reserved

Bits 30-1: Mask—Specifies which bits in the ASI and address of the current external access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is 0. See Table F2-2 for reset value.

Bit 0: Reserved

Wait-State Specifier Registers (WSSR[2:0])

The wait-state specifiers determine, for each of the address ranges defined by the ARSR
and AMR registers, the number of clock cycles between the time an address in a given
range appears on the address bus and the time the processor generates an internal
–READY signal. This makes it possible for memory and I/O devices with different
access times to be connected to the processor without additional logic.

The wait-state specifiers for the six address ranges are kept in three Wait-State Specifier
Registers. These registers are located in a contiguous block beginning at address
0x00000160 with ASI 0x1 (see Table F2-2). Each register contains the wait-state
specifiers for two address ranges. When the address currently being driven by the
processor matches the unmasked bits in one of the Address Range Specifiers, the
corresponding wait-state specifier is selected. These registers should not be written if
the bus interface unit will handle addresses that are affected by the change in the next 3
processor cycles.

631 8 7

Wait Enable (On=1, Off=0, RST=*)

Single Cycle (On=1, Off=0, RST=0)

Override (On=1, Off-0, RST=*)

27 26 22 21 20 19 18 14 13 9

Count 1
(RST=Undefined)

Count 2
(RST=Undefined)

Count 1
(RST=Undefined)*

Count 2
(RST=Undefined)*

5 0

Reserved

* See Table F2-2

Figure F2–14. Wait-State Specifier Registers

Programmer’s Model - Registers

F2–15

Bits 31-19: Wait-State Specifier—When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and whether,
the processor generates an internal –READY signal to terminate the access.

Count1 (Bits 31-27): The number of wait-states inserted before the internal –READY, under the
following conditions: the Single Cycle bit equals 0 and the current access is not
on the same page as the previous access. The number of wait-states is the
value of this field +1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of
Count1 is undefined on reset.

Count2 (Bits 26-22): The number of wait-states inserted before the internal –READY, under the
following conditions: the Single Cycle bit equals 0 and the current access is on
the same page as the previous access. The number of wait-states is the value
of this field +1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of Count2 is
undefined on reset.

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual address range.
If the Wait Enable bit of a wait-state specifier equals 0, the internal –READY is
not asserted when addresses in the corresponding range are accessed by the
processor. If Wait Enable is 1, the single cycle bit must be 0. See Table F2–2
for reset value.

Single Cycle (Bit 20): Specifies the timing of the internal –READY signal. If the Single Cycle bit equals
1 when an address in the appropriate range is accessed, the internal –READY
is asserted in the same cycle. If the Single Cycle bit equals 0, and the current
transaction is in the same page as the previous transaction, then Count2 is
used as the number of cycles after which –READY is asserted internally. If the
transaction is not in the same page, Count1 is used instead. If Single Cycle is
enabled, the Wait Enable bit must be 0. See Table F2-2 for reset value.

Override (Bit 19): Allows the system to terminate a memory transaction before the internally
specified time. If the Override bit equals 1, and external hardware asserts the
external –READY signal, then the wait-state generator will stop counting and
will wait for the next transaction. This bit is cleared to 0 on reset.

Bits 18-6: Wait-State Specifier—The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

System Support Control Register

The System Support Control Register enables or disables the various system-support
features, independently of one another. However, the chip-select logic for address range
0 is always enabled, regardless of the value in the System Support Control Register.
This register is located at address 0x00000080 with ASI 0x1 (see Table F2-2).

Programmer’s Model - Registers

SPARClite User’s Manual

F2–16

031 2 1

Same-Page Enable (On=1, Off=0, RST=0)

Chip Select Enable (On=1, Off=0, RST=0)

Programmable Wait-State Enable (On=1, Off=0, RST=1)

3

Reserved

56

Timer On/Off (On=1, Off-0, RST=0)

Reserved

Note: The chip select generation for Address
Range Specifier 0 is always enabled,
regardless of the value of the Chip Select
Enable Bit.

4

Figure F2–15. System Support Control Register

Bits 31-6: Reserved

Bit 5: Same-Page Enable—Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the –SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, –SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.

Bit 4: Chip Select Enable—Enables (1) and disables (0) the generation of chip-select signals for
external accesses in address ranges 1 through 5. Regardless of the state of this bit,
however, –CS0 is always asserted when the current address lies in address range 0. The
Chip Select Enable bit is cleared to 0 on reset.

Note: Before enabling chip selects all chip select Address Mask and Address Range
registers should be initialized so that two chip selects are never selected at the same time.

Bit 3: Programmable Wait-State Enable—Enables (1) and disables (0) the programmable
wait-state generators for all address ranges. The Programmable Wait-State Enable bit is
set to 1 on processor reset.

Bit 2: Timer On/Off—Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Bits 1-0: Reserved

Programmer’s Model - Registers

F2–17

Table F2–2. System Support Register Summary

Chip
Selects

Affected by
Chip Select

Address Range Specifier Address Mask Wait-State SpecifierChip
Selects

Affected by
Chip-Select

Enable?
Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset

0 No N/A ASI=0x09
ADR<31:10>=0

0x0000 0140 All mask bits 0
except

ADR<14:10> = 1

0x0000 0160
(low halfword)

Count 1,2 = 31
Wait Enable=1
Single Cycle =0

Override=1

1 0x0000 0124 0x0000 0144 0x0000 0160
(high halfword)

2 0x0000 1280 0x0000 0148 0x0000 0164
(low halfword)

3 Yes 0x0000 012C Undefined 0x0000 014C Undefined 0x0000 0164
(high halfword)

Count 1,2 =
Undefined

4 0x0000 0130 0x0000 0150 0x0000 0168
(low halfword)

Wait Enable =0
Single Cycle =0

O id 05 0x0000 0134 0x0000 0154 0x0000 0168
(high halfword)

Single Cycle =0
Override=0

Timer Register

The Timer Register contains the current count of the internal 16-bit timer. When the
timer overflows, the processor asserts the –TIMER_OVF signal and reloads the Timer
Register with the contents of the Timer Preload Register. The Timer Register can also
be loaded directly by writing to the address 0x00000174 with ASI 0x1. The timer is
clocked at the processor clock frequency.

031 15

Timer Value

16

Reserved
(RST=Undefined)

Figure F2–16. Timer Register

Timer Preload Register

The Timer Preload Register contains the value which is loaded into the timer when the
timer overflows. In effect, this register specifies the number of clock cycles between
assertions of the –TIMER_OVF signal. The Timer Preload Register is located at
address 0x00000178 with ASI 0x1.

031 15

Timer Pre-Load Value

16

Reserved
(RST=Undefined)

TIMEROVF CTRL (0= one cycle pulse)
(1=three cycle pulse)
(RST=UNDEFINED)

Figure F2–17. Timer Pre-Load Register

Programmer’s Model - Registers

SPARClite User’s Manual

F2–18

2.4 Data Types

Please refer to Section F2.4 of the main section of this manual for a description of the
data types.

2.5 Instructions

Please refer to Section F2.5 of the main section of this manual for a description of the
instructions. Note that modulo 8 in the description becomes modulo 6 for the
MB86933H–20 processor.

2.6 Interrupts and Traps

Please refer to Section F2.7 of the main section of this manual for a description of the
interrupts and traps. Note that modulo 8 in the description becomes modulo 6 for the
MB86933H–20 processor.

F2.6
Instruction Cache

The MB86933H–20 has a 1K–byte instruction cache on chip which is designed for
maximum flexibility of operation. Under software control, individual entries or the
entire cache can be locked. This section discusses the structure and operation of the
cache as seen from the programmer’s point of view.

F2.6.1
Structure

In the MB86933H–20 processor, the instruction cache is 1 Kbytes in size, divided into
64 lines of 4 words (16 bytes) each. The contents of the cache data memory and tag
memory is undefined at reset.

The cache organization, illustrated in Figure F2–16, is direct–mapped; that is, each
address in memory is cached in a specific location. On a cache access, the address bits
ADR[9:4] are used to select a line.

Programmer’s Model - Instruction Caches

F2–19

word 3 word 2 word 1 word 0

63

3

2

1

0

Line

Figure F2–18. Cache Organization

Associated with each cache line is a tag, that indicates the memory location to which
the line is currently mapped, and contains status information for the cached instructions.
Cache tags are located in the address space indicated by ASI 0xC (see Table 2-2). A
cache entry consists of a cache line together with the corresponding tag. The structure
of a cache tag is illustrated in Figure F2–17.

031

Sub Block Valid (Valid=1, Invalid=0, RST=Undefined)

User/Supervisor (User=0, Supervisor=1, RST=Undefined)

6 5910

Entry Lock (Locked=1, Unlocked=0, RST=Undefined)

Address TAG
(RST =Undefined)

Figure F2–19. Cache Tag

Bits 31-10: Address Tag—Contains the 22 most significant bits of the memory address of the data or
instructions cached in the corresponding line. Undefined on reset.

Bits 9-6: Sub-Block Valid—Contains one Valid bit for each of the 4 words in the corresponding line.
When a Valid bit is 1, it indicates that the corresponding cache word contains a current
data or instruction value for the address indicated by the tag. Undefined on reset.

Bit 5: User/Supervisor—Indicates whether the data or instructions cached in the corresponding
line come from user space (User/Supervisor bit = 0) or from supervisor space (User/Su-
pervisor bit = 1). Undefined on reset.

Bits 4-1: Reserved

Bit 0: Entry Lock—Locks the current address into the cache tag entry. An access which
competes with currently locked entries in both banks of the cache is treated as
non-cacheable. Undefined on reset.

A faster way to set and clear the tag entry-lock bits is to write the Tag Lock Bit
addresses as shown in Table 2-2. Writes to these locations map to the same entry lock

Programmer’s Model - Instruction Caches

SPARClite User’s Manual

F2–20

bits in the cache tags described in Figure F2–17 above. The advantage of writing the
entry lock bit using these alternate memory locations is that only the lock-bit is affected
on a write, the reset of the associated tag is not affected. The same operation using the
cache tag address would require a read-modify-write so as not to change the rest of the
tag value.

031

Entry Lock (Locked=1, Unlocked=0, RST=Undefined)

Figure F2–20. Tag Lock Bit

Bit 0: Entry Lock- Locks the current address into the cache tag entry. An access which
competes with a currently locked entry in the cache is treated as non-cacheable. Writing
this bit has the same effect as writing the corresponding bit in the cache tags except that
the rest of the tag remains unaffected by a write to this location.

Table F2–3. Cache Tag Addresses

Line
Cache Tag
Address
ASI=0xC

Tag Lock Bit
ASI=0x2

h
e 0 0x 80000 0000 0x 80000 0000

ac
h

e

1 0x 80000 0010 0x 80000 0010

n
 C

a

2 0x 80000 0020 0x 80000 0020

ct
io

n

3 0x 80000 0030 0x 80000 0030

tr
uc

t

4 0x 80000 0040 0x 80000 0040

In
st

r

. . .

In

. . .

. . .

63 0x 80000 003F0 0x 80000 03F0

F2.6.2
Operation

This section discusses software initialization of the caches and the various cache
operating modes.

Initialization

On reset, the cache is turned off, and all memory requests are sent to the Bus Interface
Unit. In order to use the caches, software must initialize the Valid and Entry Lock bits

Programmer’s Model - Instruction Caches

F2–21

by writing 0’s to the appropriate alternate address spaces. After initializing the cache, a
program can write 1’s to the Cache Enable bit of the Cache/BIU control register to turn
the cache on. Detailed code to accomplish this initialization is provided in Section
F2.6.3. Due to the pipeline in the IU, all writes are delayed by three instruction cycles.

Normal Operation

Fetches from the user and supervisor instruction spaces, are generally cacheable. Stores
to the instruction address space are not supported.

On any cacheable access, the address bits ADR[9:4] are used to select a line in the
cache. Address bits ADR[3:2] are used to select a word from the line; the Valid bits
corresponding to that word are checked. The address bits ADR[31:10] are compared
with the address tag. The User/Supervisor bit is tested against the ASI indicated by the
IU.

A cache hit occurs if all of the following are true:

• ADR[31:10] matches the address tag in either set.

• The User/Supervisor bit corresponds to the ASI indicated by the IU.

• The Valid bit corresponding to the word being accessed is 1.

In the case of a hit, the requested instruction is in the cache. The instruction is returned
to the IU, and the pipeline is not held up. The lock bit may be updated based on the
value of the Cache Entry Auto Lock bit in the Lock Control Register (see Locking
Modes, below).

A read miss freezes the IU pipeline, and sends the request on to external memory.
Though each cache line is four words long, only a single word is fetched on a miss.
Assuming neither global nor local locking is in force, the fetched word will overwrite
the appropriate word in one of the entries in the set. (Under global or local locking, a
different policy is followed; see Locking Modes, below).

Sometimes a read miss occurs only because the Valid bit for the requested word is not
set. In this case, a cache line has already been allocated for a 4-word memory block
which includes the requested address. The fetched word simply overwrites the
appropriate word in this line; the Valid bit for the word is then set.

Otherwise, a new line needs to be allocated on a read miss. The fetched word
overwrites the appropriate word in this line; its Valid bit is then set, and the Valid bits
for the other words in the line are cleared.

Programmer’s Model - Instruction Caches

SPARClite User’s Manual

F2–22

Locking Modes

Without locking, read misses can cause cache lines to be re-allocated. The entire cache,
or selected entries corresponding to time-critical routines, however, can be locked into
cache. Locked entries cannot be re-allocated.

The two modes of cache locking are:

• Global Locking — Affects the entire cache. When the cache is locked in this way,
valid entries are not replaced; invalid words in allocated cache locations will be
updated. Bits in the cache/Bus Interface Unit Control Register enable or disable the
global locking mode independently for each cache. Enabling global locking does not
affect the Entry Lock bits of individual Cache lines; when global locking is
subsequently disabled, lines with clear Entry Lock bits are once again subject to
re-allocation.

• Local Locking — Affects individual cache lines.

Bits in the Lock Control Register enable or disable an auto lock mode in which all
subsequent cache accesses automatically set the Entry Lock bit of the accessed entry.
Software can also lock and unlock an individual entry by writing the lock bit in that
entry’s tag.

With auto-locking enabled for the instruction cache, any lines accessed have their
entry-lock bit set. This makes it easy to lock a routine into the cache by setting the auto
lock bit in the Lock Control Register at the beginning of the routine and then executing
the routine to lock the entries. The auto lock bit is cleared in one of two ways.
Normally, software clears the auto lock bit at the end of the routine being locked. If a
trap or interrupt occurs the auto lock bit will be cleared by hardware. This disables the
locking mechanism so that the service routine is not locked into cache by mistake.

Two registers are provided to make it easy to re-enable the auto locking when the
processor returns from the interrupt. The value of the Lock Control Register before the
interrupt is automatically saved in the Lock Control Save Register when an interrupt or
trap occurs. To restore the correct auto-lock value on return from the service routine,
software sets a bit in the Restore Lock Control Register. This will cause the value saved

Programmer’s Model - Instruction Caches

F2–23

in the Lock Control Save Register to be moved to the Lock Control Register when a
RETT is executed (see Figure F2–19).

0

XX

10

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

10

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

1

10

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

XX

10

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

XX

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

Lock Register Values

Code to be locked

or
or
sta

%g0, 0x4, %10
%g0, 0x1, %g1
%g1, [%10]1

Trap or Interrupt

Service Routine

! enable instruction auto-lock

or
rd
and
wr
sta
nop
nop
nop
jmpl
rett

%g0, 0x1, %g1
%psr, %g1
%g1, 0xffdf, %g1
%g1, %g0, %psr
%g1, [%10]1

! get current psr

! disable traps
! set Restore Lock bit

or
or
sta

%g0, 0x0, %10
%g0, 0x1, %g1
%g1, [%10]1 ! disable instruction auto-lock

Code to be locked

End of Trap or
Interrupt

·
·
·

·
·
·
·

·
·
·
·
·
·

Figure F2–21. I–CACHE

Programmer’s Model - Instruction Caches

SPARClite User’s Manual

F2–24

2.6.1 Code for Initializing the On–Chip Cache

The following code initializes the instruction cache, then enables caching and BIU
buffering as described in the Initialization item of Section F2.6.2.

#define ram_size 64
#define ini_tag 0
#define adr 0x80000000
#define CTL_BITS 0x31 /* turn on i–cache, prefetch buf, write buf.*/

.seg “text”
 set ram_size, %l7 /* RAM size */
 set adr, %o2 /* start address */
 set ini_tag, %l0 /* initial tag value */

loopinit:
 sta %l0, [%o2] 0xc ! write itag
 subcc %l7, 1, %l7
 bne loopinit
 add %o2, 16, %o2

 set 0, %l1
 set CTL_BITS,%i7 ! turn on caches.
 sta %i7,[%l1]1
 nop
 nop
 nop
 nop

F3-1

HAPTER

Internal Architecture

F3
C

The MB86933H–20 internal architecture is illustrated in Figure F3-1. The processor
consists of a Clock Generator, an Integer Unit, a 1k–byte instruction cache and a Bus
Interface Unit. Internally, the various functional units are connected by separate
instruction and data buses. A unified address bus and a unified data bus extend off-chip
for connecting external memory and I/O.

This chapter discusses the individual functional units and gives an overview of the flow
of data and control signals through the processor.

CLOCK
GENERATOR

& PLL

XTAL1/CLKIN

CLK_OUT

BUS
INTERFACE

UNIT

DATA

ADDRESS

ASI

CONTROL

CHIP_SEL

PAGE_DET

TIMER_OVF

ADDRESS
DECODER

16–BIT TIMER

DRAM
CONTROLLER

INTEGER UNIT

SCAN DIVIDE STEP

32

32

32

32

I_DATA

I_ADDR

D_DATA

D_ADDR

INTERRUPT
CONTROLLER

6

4
IRL

1K
INSTRUCTION

CACHE

Figure F3–1. Internal Architecture (Block Diagram)

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-2

F3.1 Integer Unit

The Integer Unit (IU) is a compact, full-custom implementation of the SPARC
architecture. It is hard-wired for maximum performance; that is, it uses no microcode. It
contains three functional units:

• Instruction Block—Contains the instruction pipeline and decodes instructions into
control signals for the other blocks.

• Address Block—Performs all instruction-address manipulations.

• Execute Block—Performs all data manipulations, and generates operand addresses
for load and store instructions and effective addresses for some of the control
transfer instructions.

The IU is based on a Harvard (Aiken) architecture, as shown in Figure F3-2. There are
separate address buses for instructions and data. There are also two 32-bit data
interfaces: the instruction data bus, and the data bus.

ir

e_ir

m_ir

w_ir

INSTRUCTION
BLOCK

adder

pc

0 TBR

inc (+4)

d_pc

e_pc

m_pc

ADDRESS
BLOCK

BA

ALU / SHIFTER

PSR/WIM/Y

st_align ld_align

read 1 read 2 read 3 read 4

REGISTER FILE

EXECUTE
BLOCK

I DATA

D ADDRESS D DATA

R Register

W

Data Address

I ADDRESS

Figure F3–2. Integer Unit Data Path

Internal Architecture - Integer Unit

F3-3

F3.1.1 I Block

The instruction block (I Block) contains the five-stage instruction pipeline and the logic
that decodes instructions into control signals for the rest of the IU. The I block detects
all bypass and interlock conditions.

The main interfaces to the I block are:

• The Instruction data bus from the instruction cache or main memory.

• The Immediate data field that goes to the A block for computing PC relative control
transfers and to the E block to be used as immediate data.

• Control signals to the A block and E block including the register file read and write
addresses, register enable signals, multiplexer controls, and partly or fully decoded
operation codes for the ALU/Shifter.

• Status signals back from the E block including possible trap conditions such as
memory_address_not_aligned and tag_overflow.

Instruction Pipeline

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure F3-3. The pipeline consists of the following stages:

1. Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction. (The figure below assumes a hit in the instruction cache.)

2. Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

3. Execute (E)—The ALU computes a result.

4. Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

5. Writeback (W)—The result (or loaded memory datum) is written into the register
file.

Instruction 4 5

5

5

5

Fetch

Decode

Execute

Memory

Write-Back

Instruction 5

Instruction 3

Instruction 2

Instruction 1

4

3 4

2 3 4

6

6

6

6

CLK

Figure F3–3. Instruction Pipeline

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-4

No instructions execute out-of order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B.

The control logic for the instruction pipeline is illustrated in Figure F3-4. At each cycle
a horizontal control word is available that is wider than 32 bits and controls every
multiplexer, latch-enable, and unit op-code in the chip. The horizontal control word is
composed of control signals that are active during the decode stage of instruction N, the
execute stage of instruction N-1, the memory stage of instruction N-2 and the writeback
stage of instruction N-3. Some control bits require no decoding and are simply
hardwired from the appropriate bits in the instruction register. Because the SPARC
instruction set is not completely orthogonal (not every instruction field has the same
meaning in every instruction) most bits require some decoding based on a single
instruction in the pipeline. Some control bits require decoding using logic that looks at
two instructions in the pipeline - when controlling multiplexers to select data bypass
paths, for example.

Execute

Decode

Memory

Writeback

Combinational
Logic

Instructions

Horizontal
Control Word

Figure F3–4. Instruction Pipeline Control Logic

Pipeline Hold

The IU does not complete one instruction on absolutely every cycle. During a load
instruction, for example, external memory may be slow in returning the requested data.
Because the IU does not execute or complete instructions out of order, the pipeline must
be stopped until the requested data is returned. Only then can the instruction complete,
and only then can the following instructions be executed.

There are also some hazards built into the IU data path that require interrupting the
one-cycle-per-instruction sequence of the pipeline. For example, a doubleword load
cannot be performed in one cycle because there is not enough memory or register-file
bandwidth to move the data through the datapath. Another example is a load to a

Internal Architecture - Integer Unit

F3-5

register that is followed by an instruction that uses that register. Because the operand of
the second instruction is required in the decode stage but is not available, this
instruction must be delayed until the operand is available.

Conditions that hold up the processor pipeline are handled uniformly by the I Block
control logic and are referred to as hold conditions. A complete list of possible hold
conditions is given in Table F3-1.

The interlock conditions are:

• Load/Use Instruction Pairs—If a load instruction that has rd=N as its destination
register is followed by an instruction that uses rs=N as one of its source operands,
then the load must proceed through Writeback before the following instruction can
enter the Execute stage.

• CALL/Use %r15 Instruction Pairs—Similarly, since the CALL instruction implicitly
writes the current value of the PC into r15, it must proceed to Writeback before any
following instruction that uses r15 can enter the Execute stage.

Any time an interlock is detected, a NOP is inserted into the pipeline. The address
block is signaled, so that the address of the instruction that causes the interlock is
replicated in the address pipe. The NOP itself cannot cause a trap.

Table F3–1. Conditions That Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

ihold Processor is attempting to fetch an
instruction that is not yet available.

Fetch Any instruction

dhold Data is not yet available Memory Loads and Stores

mhold Multiplication in progress Execute Integer Multiplication

Interlock An instruction in the pipeline must wait
for some prior instruction to be
completed (through Writeback).

Load/Use and
CALL/Use r15
Instruction Pairs

Multicycle
Instruction

An instruction which inherently requires
more than one cycle is in the pipeline

Execute Load and Store
Double-word, Atomic
Load/Store

The multicycle instructions are LDD, LDDA, STD, STDA, LDSTUB, LDSTUBA,
SWAP, and SWAPA. When a multicycle instruction enters the Execute stage, it and the
instruction in the d_ir register are frozen for an additional cycle. Although it is possible
to detect a multicycle instruction while it is in the Decode stage (unlike interlocks,
which cannot be detected without looking at two instructions, those in the d_ir and e_ir
registers), the I Block allows it to progress to the Execute stage before a hold is
generated and inserted. This simplifies control somewhat because there are fewer points
at which the pipeline must be held.

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-6

Note that the maximum number of internally generated hold cycles an instruction can
cause is two, as in the following case:

LDD [%r1+%r2],%0r4
ADD %r5,%r5,%r6

The LDD takes two cycles, and it generates an interlock because the next instruction
uses the data loaded in the second data memory cycle of the LDD instruction.

When a hold condition occurs, combinational logic generates one or more freeze signals
that prevent latches from being updated, and hence keep the pipeline from advancing.
For some holds—dhold, for example—the entire pipeline is frozen, with freeze signals
being generated for all stages in the pipeline. For other holds—interlock conditions, for
example—later stages in the pipeline must advance for the hold condition to be
resolved. Thus only the earlier stages of the pipeline are frozen.

Trap Logic

The MB86933H–20 supports precise traps. That is, when a trap occurs, the saved
programmer-visible state of the processor reflects the completion of all instructions
prior to the trapped instruction, and no following instructions including the trapped
instruction. Thus, when an instruction causes a trap, one of two statements is true:

• No results from that instruction have been written into the programmer-visible
registers (the register file or the PSR, TBR, WIM, or Y registers).

• Or, if data has been written into a programmer-visible register, the data contained in
that register prior to being written by the trapped instruction is saved by the
processor and can be restored when the trap is taken.

Table F3-2 shows the pipeline stages in which the various trap conditions are detected.

Internal Architecture - Integer Unit

F3-7

Table F3–2. Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1
2
3
4

—
1
3
2

D
F
D
D

reset
instruction_access_exception
priv_instruction
illegal_instruction

5
5
6
7

4
36
5
6

D
D
D
D

fp_disabled
cp_disabled
window_overflow
window_underflow

8
10
11
12
13
13

7
9
10

128-254
255
255

E
M
E
D
F
M

mem_address_not_aligned
data_access_exception
tag_overflow
trap_instruction (Ticc)
instruction_breakpoint
data_breakpoint

14
15
.
.
.

28

31
30
.
.
.

17

interrupt_level_15
interrupt_level_14
.
.
.
interrupt_level_1

As shown in Table F3-2, the last stage in which a trap can be detected is the Memory
stage (a data memory exception for a load or store). If a programmer-visible register is
updated prior to this stage, its original contents must be restored when and if the trap is
taken.

Due to the pipelined operation of the IU, a trap condition for one instruction may
actually be detected before a trap condition for a prior instruction. Thus, it is necessary
to align the detected trap conditions so that all trap conditions for instruction N are
considered together before any trap conditions resulting from instruction N+1 are
considered.

The trap coder is illustrated in Figure F3-5. Its purpose is to align in time the (possibly
several) trap sources for a single instruction to determine if a trap is to be taken or not
and, if taken, to determine the highest priority trap and code its trap type.

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-8

.

Combinational Block

qualify, prioritize, encode

trap? yes/no

trap type
(to A block)

Fetch-stage trap sources

Decode-stage trap sources

Execute-stage trap sources

Memory-stage trap sources

Memory-stage
instruction reg

Figure F3–5. Trap Coder

When a trap is taken, the trap type field goes to the A Block where it is used immedi-
ately as a trap target address (when concatenated with the Trap Base Address) and is
latched into the Trap Base Register.

F3.1.2 A Block

The A Block contains the address pipeline. Along with the E Block, it is responsible for
all instruction-address manipulations. The A Block executes the CALL and Bicc
instructions. The A Block and E Block are used together to execute the JMPL, Ticc,
and RETT instructions. In these cases, the A Block controls the update of the Program
Counter. The A Block’s main interface to the rest of the chip outside the IU is the
instruction address bus.

The address pipeline is illustrated in Figure F3-6. The fetch-stage program counter (PC)
addresses instruction memory via the instruction address bus. Because a CALL, JMPL,
or trap may require that the address of an instruction be written back to the register file,
the address of every instruction tracks the instruction itself in the instruction pipeline so
that it is available in the memory stage if it must to be written back to the register file.
These address pipeline registers are the decode, execute, and memory program
counters. Each of these registers contains the address from which the instruction
register was fetched.

Internal Architecture - Integer Unit

F3-9

return address
(to E Block)

m_pc

e_pc

d_pc

f_pc

instruction address
(to instruction memory)

adder inc (+4)

immediate data
(30 bits)

TB tt

trap_addr

trap type
(from I Block)

“0”jump address
(from E Block)

this path used
for multicycle
instructions

readable

writable

Figure F3–6. Address Pipeline

The PC has five possible sources:

1. +4 incrementer, for normal, sequential instruction fetch.

2. The address adder, for PC-relative control transfer (Bicc or CALL instruction). The
immediate data field contains offset information and comes from the I Block.

3. The jump address for a JMPL or RETT instruction. The jump address bus contains
jump target information and comes from the E block by way of the register file and
ALU.

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single-Vector
Trapping is enabled), during a Ticc instruction execution or an interrupt or trap. The
trap type comes from the trap priority encoder, part of the I Block; when concate-
nated with TBR[31:12], it gives the target address for a trap.

5. Zeroes, concatenated with the trap type, for reset.

Note that “+4” is used to indicate that the (byte) address is incremented by 4 to fetch
the next instruction. In reality, the two least significant bits of the address are not

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-10

implemented in hardware because they are never used. Word alignment, for the case of
a jump address coming from the E Block is verified in the E Block (and to some extent,
the I Block).

The return address bus is written back to the register file in the case of a CALL, JMPL
or Trap.

Several control signals come from the I block. These include:

• PC input-select signals that control the PC input multiplexer.

• The address adder control signal, which determines whether a 30-bit or a 22-bit
immediate address field is added to the previous value of the PC (now found in the
decode-stage PC).

• Pipeline freeze signals that can prevent the updating of registers in the pipeline
when a hold condition is detected.

F3.1.3 E Block

The E Block is responsible for all IU data manipulations. It generates operand addresses
for load and store instructions, and effective addresses for some of the control transfer
instructions.

As shown in Figure F3-7, the E Block contains the Store Align Unit (SAU), the Load
Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic Unit
(ASLU). The E Block also contains the result bypass logic that determines which
operands are driven into the ASLU, and the store bypass logic that determines what
data is latched for stores.

Internal Architecture - Integer Unit

F3-11

BA

ALU / SHIFTER

PSR/WIM/Y

st_align ld_align

read 1 read 2 read 3 read 4

REGISTER FILE

EXECUTE
BLOCK

D ADDRESS D DATA

R Register

W

Data Address

Figure F3–7. Execute Block

Adder, Shift, and Logic Unit (ASLU)

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan unit.
The integer adder calculates the results of the addition, subtraction, multiply-step, and
divide-step instructions, and generates the carry, overflow, negative, and zero condition
code values. It is used in load and store operations to calculate effective data addresses,
and in register-indirect control transfers to calculate the new address to be placed in the
PC register of the A Block. The integer adder also serves the multiplication unit by
adding the “sum” and “carry” vectors during integer multiplications. The barrel
shifter/logic unit executes the logic and shift instructions. The scan unit exists solely to
support the scan instruction.

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit are
multiplexed into the R (Result) Register. Results from the integer adder are also made
available to the Y Register.

Register File

The register file contains 104 registers of 32 bits each. The organization of these
registers into windows is discussed in the Programmer’s Model chapter. The register
file has one write port and three read ports. The write port is used for the instruction
destination register (denoted rd in instruction descriptions). Two of the read ports are

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-12

used for the two instruction source registers (rs1 and rs2). The remaining port is used
for the data to be stored when a store or swap instruction is executed. In this way, even
store instructions can be executed in a single cycle.

The register file also contains the address decoders for all four ports. Each address
presented to the decoders consists of 8 bits derived from an instruction field, and the
Current Window Pointer. These are physical addresses into the register file memory
array.

Bypass Logic

As shown in Figure F3-7, the A and B operand registers have inputs that come from
sources other than the register file or the immediate data bus. These inputs are results
from previous instructions that have not yet written back to the register file. There are
two such bypass paths in the E Block:

• Result Bypass—The result of an ALU operation in the R register is written back to
the A or B operand register in the Memory stage of the following ALU operation.

• Write Bypass—The data in the W register is written to the A or B operand register,
in the Writeback stage.

The result bypass path is selected when one instruction generates a result that can be
used by the immediately following instruction. More precisely, if an instruction in the
Decode stage of the pipeline has rs1 = N, and the instruction in the Execute stage has
rd = N, the rs1 operand will not come from the register file, but directly from the
R register in the ALU through the result bypass. Since an intervening SAVE or
RESTORE instruction may have changed the Current Word Pointer, it is the physical
addresses of the register source and destination that are compared, not the logical
addresses (which depend on the CWP).

As an example, consider the instruction sequence:

add %r1,%r2,%r3 ; r1 + r2 –> r3
add %r3,%r4,%r5 ; r3 + r4 –> r5

The second add instruction takes its A source operand not from the register file, but
directly from the result of the ALU through the result bypass.

The write bypass is selected when an instruction in the Decode stage has rs1 = N, and
the instruction in the Memory stage has rd = N. In this case, the rs1 operand will not
come from the register file, but from the W register through the write bypass. In the
following instruction sequence, the third instruction uses the write bypass as its A
source operand:

Internal Architecture - Integer Unit

F3-13

add %r1,%r2,%r3 ; r1 + r2 –> r3
add %r4,%r5,%r6 ; r4 + r5 –> r6
add %r3,%r7,%r8 ; r3 + r7 –> r8

If both bypass conditions apply, the result bypass takes precedence.

There is a third bypass path, called the store bypass, that is shown in Figure F3-7. The
register file has a dedicated store port that is used for reading the rd register of a store
instruction, which contains the data to be stored. The store port is read in the Execute
stage of the store. When a store and the immediately preceding instruction access the
same rd register, a bypass from the Writeback stage of the preceding instruction to the
Memory stage of the store is needed. In the code sample below, the result of the first
instruction becomes available to the Memory stage of the store by means of the store
bypass path.

add %r1,%r2,%r3 ; r1 + r2 –> r3
st %r3[%r4 + %r5] ; r3 –> mem[r4 + r5]

Branch Evaluation Logic

The branch evaluation logic, which forms part of the E Block, evaluates branch
conditions based on the current values of the integer condition codes of the PSR
register. The icc bits n (negative), z (zero), c (carry) and v (overflow) form part of the
branch evaluation block. The interpretation of these bits is discussed in the Program-
mer’s Model chapter.

There are several ways that the icc bits can be modified. First, they can be written and
read via the jump address bus by the instructions WRPSR and RDPSR.

Certain arithmetic instructions modify the icc bits as a side effect. When one of these
instructions is executing, the new icc values are generated in the E Block during the
Execute stage, latched at the end of this stage, and loaded into the PSR during the
Memory stage.

Another path leads to the icc bits from the Writeback-stage copy of the PSR. When a
trap occurs on an instruction that alters the icc bits, this path allows the pre-trap icc
values to be restored to the PSR.

The combinational logic that performs the branch evaluation for the IU condition codes
has as inputs:

• Integer Condition Codes—Directly from the ALU if the instruction in the Execute
stage is one that can modify the icc, from the multiplication unit, or from the icc bits
of the PSR if the instruction in the Execute stage is not one that can modify the icc.

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-14

• The cond Field—From the branch instruction in the Execute stage. (See the
discussion of the Bicc instruction in the Programmer’s Model chapter.)

• Bicc Indicator—A control signal that indicates whether the instruction in the
Decode stage is a Bicc instruction. This signal remains valid into the Execute stage.

The output of the combinational logic is a single signal that, when active, causes the
branch target address to be loaded into the PC during the Execute stage. Otherwise,
PC+4 is loaded into the PC.

Load Align Unit (LAU) and Store Align Unit (SAU)

The LAU and SAU align data for loads and stores, respectively. Bytes and halfwords to
be loaded are right-justified in a 32-bit word, and either sign-extended or zero-extended
on the left, depending on whether the load instruction specified signed or unsigned
operation. The LAU performs the alignment and extension during Writeback.

Byte and halfword stores take their data from the least significant byte or halfword of
the register specified in the instruction’s rd field. The SAU performs the necessary
alignment for writing the data to the byte or halfword memory address specified in the
instruction.

Multiply Unit

The E Block contains hardware to perform integer multiplications. The Multiply Unit
(MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit product.
Some multiplication instructions modify the integer condition codes as a side effect;
others do not. The multiplication instructions are discussed in the Programmer’s Model
chapter.

The multiply hardware implements a version of Booth’s algorithm. Booth’s algorithm is
similar to a “shift and add” multiply algorithm in that it scans the multiplier from the
least significant to the most significant bit and, based on the bit string encountered,
iteratively adds the multiplicand to produce partial products. It is also similar in that the
resulting partial product is right shifted to ready it for the following iteration of the
algorithm.

Booth’s algorithm differs from a “shift and add” algorithm in that it can also be used
directly with a negative multiplier (whereas “shift and add” requires a positive
multiplier). It also differs in that the hardware must provide for both addition and
subtraction of the multiplicand. In particular, a 1-bit Booth’s algorithm examines two
multiplier bits per iteration, looks for a bit transition, and either adds the multiplicand,
subtracts the multiplicand, or adds zero to the existing partial product to produce the
new partial product. It “retires” one bit of the multiplier per iteration.

Internal Architecture - Integer Unit

F3-15

Table F3-3 shows the possible bit transitions encountered in the multiplier for a 1-bit
Booth, and the value that is added to the multiplicand for each transition.

Table F3–3. Booth’s Algorithm

Multiplier Bits

Current Previous Add to Shifted Partial Product

0
0
1
1

0
1
0
1

+0
+multiplicand
–multiplicand

+0

This technique can be extended so that more than one bit is examined during a given
iteration. In particular, the MU performs an 8-bit Booth’s algorithm. It examines 9 bits
of the multiplier at a time and, based on the eight transitions of these nine bits,
determines what multiple of the multiplicand to add to the old partial product to
produce the new partial product. The addition is performed in the ALSU.

The MU produces 8 bits of the final product and “retires” 8 bits of the multiplier per
cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (producing a
64-bit result).

The execution of the instruction is controlled by a synchronous state machine that
generates control signals for the multiply hardware. Since instructions do not execute
out of order, the Integer Unit (IU) must be frozen during the multiply instructions that
require more than 1 cycle. Conceptually, the multiply instruction goes through all of the
pipeline stages (F,D,E,M,W), but its Execute stage is from 1 to 5 machine cycles long.
During the Fetch and Decode stages, the multiply instruction progresses like other
instructions.

F3.1.4 Programmer-Visible State and Processor State

The SPARC Architecture defines the programmer-visible state of the processor as a
collection of registers, and specifies the effects of instructions in terms of these
registers. These definitions implicitly assume that every instruction completes before
the next one begins. The MB86933H–20 processor, however, is pipelined, so that
normally four instructions begin execution before the first one completes. The actual
processor state (excluding the register file) therefore encompasses more than the
programmer-visible state. For most of the programmer-visible registers, there is a
corresponding register in the processor associated with the Writeback stage of the
pipeline. That is, instructions normally update the register file and programmer-visible
state registers in the Writeback stage.

Internal Architecture - Integer Unit

SPARClite User’s Manual

F3-16

An instruction may update staged copies of the PSR before Writeback, making the new
values available to following instructions sooner; but these staged copies are not user
visible. The PSR associated with the Writeback stage can never be updated early; if an
instruction traps, it will not have altered any state that can not be restored.

F3.2 Instruction Cache

The MB86933H–20 includes an instruction cache, which allows designers to build
high-performance systems without incurring the cost of fast external memory and its
associated control logic. The software-visible features of the cache are discussed in
detail in the Programmer’s Model chapter, above. The instruction cache is 1Kbyte in
size and is organized into one bank of sixty-four 16-byte lines. Cache lines are refilled
in 4-byte increments to avoid the interrupt latency incurred by long, uninterruptible
cache line replacements. The instruction cache is read-only and has two RAM arrays.
There is one array for instruction memory and one for tags. In addition to the tag
memory, the tag array also contains the logic to compare the address tag with the
address that is being accessed. It also checks the VALID bits in the tag. The hit-detec-
tion logic is illustrated in Figure F3–8.

TAGADR <31:2>

ADR <31:10>

ValidADR <9:4>

ADR <3:2>

Comparator

4 valid bits

HIT

ASI <7:0>

User/
Suprvsr

 Figure F3–8. Cache Hit Detection Logic

F3.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic that allows the processor to communi-
cate with the system. When the BIU performs a read, it returns the data to the IU.

Internal Architecture - Bus Interface Unit

F3-17

The BIU also handles external requests for control of the bus. The external signals of
the BIU and the relative timing of events in typical bus operations are discussed in the
External Interface chapter that follows. That chapter also treats the various system-sup-
port features of the processor in detail.

Generally speaking, the main difference between the MB86933 and the MB86933H–20
is icache and on–chip DRAM controller. Because of the icache, the 933H can have
prefetch buffer and write buffer to improve the performance of the CPU. The following
will briefly describe some of the new features of 933H compared to the 933.

Prefetch buffer:

Same as the 932 chip, the prefetch buffer is used to fetch the next sequential instruction
after an instruction cache miss. This buffer can be enabled by setting bit 4 of the
CACHE/BIU Control Register. The prefetch buffer operates only when the instruction
cache is on.

F3.3.1 Write Buffer

The purpose of the write buffer is to save write cycles to external memory with more
than zero wait–state while IU can continue to fetch instructions from ICACHE. This
buffer can be enabled by setting bit 5 of the CACHE/BIU Control Register. The write
buffer operates only when the instruction cache is on.

F3.3.2 DRAM Control, Support

Since the 933H has the on–chip DRAM controller, BIU dedicates the range of CS4 for
DRAM. If a user wants to use the on–chip DRAM controller, bit 6 of System Support
Control register must be set.

Since DRAM uses SAMEPAGE pin to determine the wait–state, 933H supports the
same page only in the range of chip–select 4. The BIU will save the last address if it is
in the range of CS4. If the current address is in the range of CS4 and same page with
the last address then the SAMEPAGE pin will be asserted. Thus if the user wants to use
SAMEPAGE_pin, memory must be set in the range of CS4.

Bus Width Support

The bus mode of ROM bus (CS0) is determined by the BMODE16_ and BMODE8_
pins (Same as the 933). For other chip selects the bus mode is controlled by the Bus

Internal Architecture - Bus Interface Unit

SPARClite User’s Manual

F3-18

Width Register. This register resides at ASI=0x01 and ADR=0x16C. It can also be
read and written. The following is the format of this register.

231 12

Reserved

Bus Mode for CS4
Bus Mode for CS3
Bus Mode for CS2
Bus Mode for CS1

Reserved

Bus Mode for CS5

34567891011

Figure F3–9. Buswidth Register

Table F3–4. Buswidth

Bus width <1:0> Bus Mode

11 Invalid

10 16 Bit bus

01 8 Bit bus

00 32 Bit bus

Note: This register should not be written if the bus interface unit will handle addresses that are affected
by the change in the next 3 processor cycles.

1. READ: Same as 933

2. WRITE: The 933H can support a write to non 32 bit bus memory without
restriction. For 8–bit bus memory: the {ADR<27:2>, BE_<2>, BE_<3>} is the
stored address. Writing a byte, halfword or word will take 1, 2 or 4 accessed
cycles, respectively. Each access is commenced by an AS_ and terminated by a
READY_; It is always started with the least significant byte first and so on. The
D<7:0> is the data bus.

For 16–bit bus memory: the {ADR<27:2>, BE_<2>} is the stored address and
BE_<1:0> are the byte enable. Writing a byte or halfword will take 1 accessed cycle, a
word for 2 accessed cycles. For store word, each access is commenced by an AS_ and
terminated by a READY_. It is always started with the least significant halfword first
and so on. The D<15:0> is the data bus;

Internal Architecture - Bus Interface Unit

F3-19

F3.3.3 Exception Handling

The external memory system can indicate an exception during a memory operation by
asserting the –MEXC input. If –MEXC is asserted during an instruction fetch, the BIU
indicates an instruction memory exception to the IU. If –MEXC is asserted during a
data fetch, the BIU indicates a data access exception to the IU.

Any system that wants to recover from this error should store the address and data for
the write causing the exception into a register. It should also have a status bit to indicate
that the exception was caused during a write operation. It is the responsibility of the
data access exception service routine to determine the cause of the exception, and to
recover accordingly.

F3.3.4 Effect on the Pipeline

The pipeline hold signals, ihold and dhold, are asserted if an instruction or data cannot
be made available in the cycle that it is required by the pipeline. In general the
following hierarchy rules apply to the bus interface unit:

• The bus cycle currently in progress will complete

• If there is a pending request for a load or store operation, it will be serviced

• If there is a pending request for an instruction, it will be fetched.

The pipeline is stalled during every external memory access if the external –Ready
signal or the internal Ready signal is not asserted. (See the Wait-State Specifier
Registers description in Section F2.3.4 of the main section of this manual for a
description of the internal Ready signal).

Internal Architecture - Integer Unit

F4–1

HAPTER

MB86933H–20 Interrupt
Request Controller

F4
C

The Interrupt Request Controller (IRC) is a 15-channel, programmable-trigger interrupt
controller that arbitrates pending unmasked interrupt requests, encodes the highest-
priority interrupt, and interrupts the processor. The system processor responds by
servicing the interrupt and clearing the latched interrupt request in the IRC.

The SPARC V8 architecture, and the MB86933H–20 in particular, provides for up to 15
separate external interrupt sources. The MB86933H–20 has four external interrupt pins
and an on–chip interrupt controller (IRC) which can support two modes of operation.

Mode 0 (IRL mode): In mode 0 the input on the four external pins is interpreted as an
encoded interrupt vector. This mode allows for external logic to generate any one of the
15 possible interrupts (”0” represents ”no interrupt request”). In this mode of operation
it is assumed that the external interrupt source maintains the interrupt vector on the pins
until it is explicitly cleared by writing to an external memory mapped location. Note
that this mode is the same as that on the MB86930/932/933 and is compatible with the
MB86940 companion chip.

Mode 1 (IRQ mode): In the mode 1 the four pins are considered to be four separate
interrupt sources mapping to interrupts 12 through 15. Note this mode is the same as
that on the MB86931

Figure F4-1 shows a block diagram of the IRC.

MB86933H–20 Interrupt Request Controller

SPARClite User’s Manual

F4–2

The Trigger Mode Control logic selects one of four trigger modes for each channel:
high level, low level, rising edge, or falling edge. The processor controls the triggers by
writing to the Trigger Mode registers.

The IRQ Latch captures each interrupt request. The system processor reads the latch via
the Request Sense register, and clears the latch by writing to the Request Clear register.

The IRQ Mask logic allows selective masking of the interrupts. The processor controls
masking by writing to the Mask register.

The Priority Encoder prioritizes the interrupt requests and encodes the highest-priority
pending interrupt that is not masked. IRQ15 has the highest priority, and IRQ12 the
lowest.

The IRL Latch captures the coded interrupt level number that is generated by the
Priority Encoder.

The IRL Mask logic allows masking of all interrupt requests by forcing the interrupt
level asserted on IRL<3:0> to 0. The processor can still poll for pending interrupts by
reading the Request Sense register even if the interrupt level is masked. The processor
controls interrupt level masking by writing to the Mask register.

4.1 IRC Registers

The IRC features six internal registers that allow the processor to control IRC operation
and to monitor system interrupt requests that may be pending. Register addressing is
shown in Table F4-1.

Figure F4–1. IRC Block Diagram (In Mode 1)

Trigger Mode
Control

IRQ15 (IRL3)
IRQ14 (IRL2)
IRQ13 (IRL1)
IRQ12 (IRL0)

IRQ
Latch

IRQ
Mask

Priority
Encoder

IRL
Latch

IRL
Mask

IRL Mask
Control

To CPU

F4–3

Table F4–1. IRC Register Map

Address Register Access

0x00000200 Trigger Mode 0 R/W

0x00000204 Trigger Mode 1 R/W

0x00000208 Request Sense R

0x0000020C Request Clear W

0x00000210 Mask R/W

0x00000214 IRL Latch/Clear R/W

0x00000218 IRC Mode R/W

4.1.1 Trigger Mode Registers

The Trigger Mode registers control the trigger mode for each interrupt channel. Trigger
Mode Register 0 controls trigger modes for interrupt channels 8-15; Trigger Mode
Register 1 controls trigger modes for interrupt channels 1-7.

MD15

15 14

MD14

13 12

MD13

11 10

MD12

9 8 7

reserved

0

reserved

31 16

Figure F4–2. Trigger Mode Register

Bits 15-8: Trigger Mode Selects - Select trigger modes for channels 8-15.

Bits 7-0: Reserved.

Two-bit fields in the registers select one of four trigger modes for each channel as
follows:

Table F4–2. Four Trigger Modes

MDx Value * Trigger Mode

0 High Level

1 Low Level

2 Rising Edge

3 Falling Edge

Reset clears the Trigger Mode registers, resulting in high level triggering for each
interrupt channel.

MB86933H–20 Interrupt Request Controller - IRC Registers

SPARClite User’s Manual

F4–4

Note: An interrupt channel should be masked before its trigger mode is changed, or a
false interrupt may occur.

4.1.2 Request Sense Register

The processor reads the state of the IRQ Latch through the Request Sense register to
identify pending interrupts.

031

reserved reserved

16 15 14 13 12 11

Figure F4–3. Request Sense Register

Bits 15-12: Sense IRQ Latch - Correspond to interrupt channels 15-1 and indicate, when high, that the
corresponding interrupts are latched and pending.

Bit 11–0: Reserved.

Reset clears the Request Sense Register.

4.1.3 Request Clear Register

The processor writes to the Request Clear register to clear the IRQ Latch. The processor
typically uses this register to clear the latch associated with an interrupt when it services
the interrupt.

031

reserved reserved

16 15 14 13 12 11

(1 = clear)

Figure F4–4. Request Clear Register

Bits 15-12: Clear IRQ Latch - Correspond to interrupt channels 15-1, and writing the bits to 1 clears
the corresponding interrupt latches.

Bit 11–0 Reserved.

Reset clears the Request Clear Register.

Note: The processor should clear the latch associated with an interrupt following a
change in its trigger mode, or a false interrupt may occur.

MB86933H–20 Interrupt Request Controller - IRC Registers

F4–5

4.1.4 Mask Register

The Mask register is used to mask the outputs of the IRQ Latch from the Priority
Encoder, and the output of the IRL latch from the IRL<3:0> bus. The processor uses the
Mask register to mask unused interrupt channels, to temporarily mask individual
interrupt requests, and to mask all interrupt requests.

0131

reserved reserved

16 15 14 13 12 11

(1 = mask) MKIRL (1 = Mask IRL Output)

Figure F4–5. Mask Register

Bits 15-12: Interrupt Request Mask - Correspond to interrupt channels 15-12, and writing them to 1
masks the corresponding interrupt requests.

Bits 11-1: Reserved.

Bit 0: Mask IRL - Masks the output of the IRL Latch. When MKIRL is set to 1, the IRL Latch
output is masked, and the IRL<3:0> bus is forced to 0. When MKIRL is 0, the encoded
interrupt level number in the IRL latch is asserted on the IRL<3:0> bus to interrupt the
processor. MKIRL is typically set to 1 (mask enabled) in systems that poll interrupt
requests.

Reset clears the Mask register.

4.1.5 IRL Latch/Clear Register

The processor uses the IRL Latch/Clear register to clear and read the IRL Latch.

Clear Latch (1=Clear IRL Latch)

045 3

reserved IRL (Interrupt Level)

31

Figure F4–6. IRL Latch/Clear Register

Bit 4: Clear IRL Latch - Clears the IRL Latch when written to 1.

Bits 3-0: Interrupt Level - Holds the value of the IRL Latch. The processor typically reads IRL to
identify the highest-priority interrupt level in systems that poll the interrupts.

Reset clears the IRL Latch/Clear Register. The “Clear Latch” bit is only writable while
the interrupt level bits are only readable. Writes do not affect them.

MB86933H–20 Interrupt Request Controller - IRC Operation

SPARClite User’s Manual

F4–6

NOTE:

The IRQ latch captures each of the four interrupt requests. The system processor reads
the latch via the Request Sense register and clears the latch by writing to the Request
Clear register. The example assembly language program below shows the code
sequence for writing to the Request Clear register of channel 12.

–––

! define Request Clear Register #define rqc 0x20c
! define a valid memory location #define rqs_loc 0x1000
! define control register ASI address space #define casi 0x1

 ! Request Clear;
 set rqc, %10
 set 0x1000, %17
 set rqs_loc, %16 !memory location defined in main prog
 st %g0, [%16]
 sta %17, [%10] casi !write to Request Clear register

A write to Request Clear register must be preceeded by the store of 0x0 to any valid memory

location to prevent the previous high value bits on the data bus from unintentionally setting other

 bits of the Clear Request register.

4.1.6 IRC Mode Register

The interrupt mode of IRC isselected by programming the IRC Mode Register. Reset
sets the IRC to Mode 0.

031

reserved

1

Figure F4–7. IRC Mode Register

Bits 31-1: Reserved.

Bits 0: ‘0’ means Mode 0; ‘1’ means Mode 1

4.2 IRC Operation
The IRC latches interrupt requests into the IRQ Latch according to the trigger mode
option selected for each interrupt channel. The Priority Encoder prioritizes the

MB86933H–20 Interrupt Request Controller - IRC Operation

F4–7

unmasked interrupts and generates an encoded interrupt level number for the highest-
priority interrupt. The IRL Latch latches the encoded interrupt level number, which is
then transferred through the IRL Mask logic to the IRL<3:0> bus to interrupt the
processor. The processor responds by servicing the interrupt identified on IRL<3:0>,
clearing the latched interrupt from the IRQ Latch through the IRL Latch/Clear register
and clearing the IRL latch. The IRC then generates a new level number for the
highest-priority interrupt that may be latched in the IRQ Latch.

The interrupt request latency is ten system clock cycles. That is, the corresponding
interrupt level is asserted on IRL<3:0> ten clock cycles after an interrupt request is
recognized by the IRC.

4.2.1 Polling

The processor can poll interrupts by reading either the IRQ Latch via the Request Sense
register, or the IRL Latch via the IRL Latch/Clear register.

The processor may mask interrupts that it polls via the Request Sense register by
masking either the IRQ Latch or the IRL Latch. The processor then periodically reads
the IRQ Latch and clears interrupts from the latch when they are serviced. The IRL
Latch may remain unmasked to allow interrupt-driven servicing of some interrupts if
the polled interrupts are masked with the IRQ Latch mask.

The processor may mask all interrupts when it polls interrupts via the IRL Latch/Clear
register by masking the IRL Latch. The processor then periodically reads the IRL Latch
for the highest-level pending interrupt and clears both the IRL Latch and the interrupt
from the IRQ Latch once the interrupt is serviced.

4.2.2 Initialization

All IRC registers are cleared to 0 by Reset. This results in high-level trigger mode for
all interrupts, and all masks disabled.

After reset, the interrupt trigger modes should be changed after the interrupts are
masked with the IRQ mask to eliminate false interrupts. The masks can then be
disabled.

MB86933H–20 Interrupt Request Controller - IRC Operation

SPARClite User’s Manual

F4–8

4.2.3 Noise Immunity

The IRQ pins are sampled at the rising edge of the IRC internal clock. The pin value
must be verified by three successive samples for recognition by the IRC. For example, a
level trigger must be asserted for at least 3 internal clock periods (6 system clock
periods) for recognition.

Figure F4–8 shows the IRQ pin sample timing.

Clock

Internal Clock

IRQx Not Accepted Not Accepted

IRQx Not Accepted Not
Accepted

IRQx Accepted Accepted

(A) (B)

(A) When in high level or rising edge mode. (B) When in low level or falling edge mode.

Figure F4–8. -IRQ Pin Sample Timing

MB86933H–20 Interrupt Request Controller - IRC Operation

F5–1

HAPTER

External Interface

F5
C

The processor external interface consists of signals for bus operations and for system
control. This chapter details the MB86933H–20 signal set, describes basic bus timing,
and describes the programmable wait-state generator, on-chip timer, and same-page
detection logic. See the MB86933H–20 Data Sheet for specific electrical and timing
information.

The System Design Considerations chapter of this document discusses issues that are
likely to arise in the design of SPARClite systems.

F5.1 Signals

The processor’s external signals are illustrated in Figure F1-6 of the Overview chapter,
and are listed in Table F5-1. A dash at the beginning of a signal name, as in –RESET,
indicates that the signal is active-low.

External Interface - Signals

SPARClite User’s Manual

F5–2

 Table F5–1. Input and Output Signals
Symbol Type Symbol Type Symbol Type Symbol Type

ADR <27:2> O
S(L)
G(Z)
I (1)

–BMODE16 I –LOCK O
S(L)
G(Z)
I (1)

TDI I

–AS O
S(L)
G(Z)
I (1)

CLKOUT1
CLKOUT2

O
G(Q)
I (Q)

–MEXC I
S(L)

TDO O

ASI <3:0> O
S(L)
G(Z)
I (1)

CLK_ECB I –SAME_PAGE O
S(L)
G(1)
I (1)

–TIMER_OVF O
S(L)
G(Q)
I (Q)

–BE 3-0 O
S(L)
G(Z)
I (0)

–CS0, –CS1
–CS2, –CS3
–CS4, –CS5

O
S(L)
G(1)
I (1)

RD/–WR O
S(L)
G(Z)
I (1)

TMS I

–BGRNT O
S(L)
G(0)
I (Q)

D <31:0> I/O
S(L)
G(Z)
I (Z)

–READY I
S(L)

–TRST I

–BREQ I
S(L)

–ERROR O
S(L)
G(Q)
I (Q)

–RESET I
A(L)

XTAL1 (CLKIN)
XTAL2

I
O

G(Q)
I (Q)

–BMODE8 I IRL <3:0> I
A(L)

TCK I RAS <1:0> O

CAS <3:0> O –DWE O

NOTE: A(L) = Asynchronous: Inputs
may be asynchronous to
CLKOUT.

G(…) = While the bus is granted
to another bus master
(–BGRNT=asserted), the
pin is

G(1) is driven to VCC
G(0) is driven to VSS
G(Z) floats
G(Q) is a valid output

I(…)= While the bus is between
bus cycles (or being reset)
and is not granted to
another bus master, the
pin is

I (1) is driven to VCC
I (0) is driven to VSS
I (Z) floats
I (Q) is a valid output

I = Input Only Pin

O = Output Only Pin

I/O = Either Input or Output
Pin

- = Pins “must be”
connected as described

S(L)= Synchronous: Inputs
must meet setup and
hold times relative to
CLKIN. Outputs are
Synchronous to CLKIN

External Interface - Signals

F5–3

The following sections describe the signal set in detail, arranged by functional group as
follows:

• Processor Control and Status—Reset, error, and clock signals.

• Memory Interface—Data and address buses, ASI and byte-enables, chip selects, and
other control signals used to access external memory and memory-mapped devices.

• Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions—Interrupt-requests and timer overflow.

• Boot ROM Size—Input signals used to identify the boot ROM size.

• Boundary-Scan—JTAG-compatible test signals used for board verification.

F5.1.1 Processor Control and Status

Signal Function

CLKOUT1
CLKOUT2

CLOCK OUTPUTS (O): MB86933H–20 bus transactions can be referenced
against these outputs. CLKOUT1 has the same frequency and phase as the
internal oscillator, or the signal applied to CLKIN. CLKOUT2 is the same as
CLKOUT1, but phase-shifted 180 degrees.

–ERROR ERROR SIGNAL (O): Asserted by the CPU to indicate that it has halted in an
error state as a result of encountering a synchronous trap while traps are
disabled. In this situation, the CPU saves the Trap Type (tt) value in the Trap
Base Register, enters into an error state and asserts the –ERROR signal. The
system can monitor the –ERROR pin and initiate a reset to recover from the
error condition.

–RESET SYSTEM RESET (I): Resets the processor to a known internal state. –RESET
should be asserted for at least 4 processor cycles after the clock has stabilized.
The internal state of the processor immediately after reset is described in the
Programmer’s Model chapter.

XTAL1 (CLKIN)
XTAL2

EXTERNAL OSCILLATOR (XTAL1, XTAL2): Determines the execution rate
and timing of the processor. Connecting a crystal across these pins forms a
complete crystal oscillator circuit. The processor operating frequency is the
same as the crystal oscillator frequency.
The processor can also be driven by an external clock. In this case, the clock
signal is applied to XTAL1 (CLKIN); XTAL2 should be left unconnected. The
processor operating frequency is the same as the external clock frequency.

External Interface - Signals

SPARClite User’s Manual

F5–4

F5.1.2 Memory Interface

Signal Function

ADR[27:2] ADDRESS BUS (O): Specifies the data or instruction address of a 32-bit word.
Reads are always one word in size while byte, half-word, or word transaction
sizes for writes are identified by separate byte-enable signals (–BE3-0). The
value on the address bus is valid for the duration of the bus transaction.

–AS ADDRESS STROBE (O): Asserted by the MB86933H–20 or other bus master
to indicate the start of a new bus transaction. A bus transaction begins with the
assertion of –AS and ends with the assertion of –READY. During cycles in which
neither the processor nor another bus master is driving the bus, the bus is idle,
and –AS remains de-asserted. See Table F5-1 for signal values while the bus is
idle. The MB86933H–20 asserts –AS for 1 clock cycle.

ASI[3:0] ADDRESS SPACE IDENTIFIERS (O): Indicates which of the 16 available
address spaces the current bus transaction is accessing. The ASI values are
defined as follows:

ASI <3:0> ADDRESS SPACE

0x0
0x1

0x2 - 0x3
0x4 - 0x7

0x8
0x9
0xA
0xB

0xC - 0xF

Application Definable
Control Registers
Reserved
Application Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Reserved

The ASI values specified as “application definable” can be used by privileged
(supervisor mode) instructions such as load and store alternate. The ASI
value is available in the same cycle in which the corresponding address value
is asserted on the address bus. The values on the ASI pins are valid for the
duration of the bus transaction.

External Interface - Signals

F5–5

Signal Function

–BE3-0 BYTE ENABLES (O): These pins indicate whether the current store transaction
is a byte, half-word or word transaction. –BE3-0 signals are available in the same
cycle in which the corresponding address value is asserted on the address bus
and is valid for the duration of the bus transaction. This bus should be used only
to qualify store transactions. For load transactions all sub-word requests are
read (and replaced in the cache) as words and then the appropriate byte or
half-word is extracted by the integer unit.

Possible values for –BE3-0 are as follows:

Word Writes

111011011011

1100

0111

0011

0000

Byte Writes

Half-Word Writes

031 781
5

16232
4

Byte
3

Byte
2

Byte
1

Byte
0

Bus Mode Byte BE<2:3>

8-bit 0
1
2
3

0 0
0 1
1 0
1 1

16-bit 0 & 1
2 & 3

0 0
1 0

BE<2:3> are also used in 8 and 16-bit ROM accesses as follows:

–BMODE8 8-BIT BOOT MODE: This signal is sampled during reset and causes read
accesses memory mapped to –CS0 to assume 8-bit ROM memory. The
MB86933H–20 generates four sequential fetches to assemble a complete
instruction or data word before continuing. Bytes are fetched in sequence
(0,1,2,3) as encoded by –BE[2] and –BE[3] (00, 01, 02, 03). Writes to –CS0 are
unaffected by boot mode selection. If left unconnected, a weak pull-up on this pin
(and –BMODE16 pin) causes the processor to default to 32-bit mode.
Note: At reset, –BMODE8 must not be asserted while –BMODE16 is asserted,
or undefined operation may result.

–BMODE16 16-BIT BOOT MODE: This signal is sampled during reset and causes read
accesses memory mapped to –CS0 to assume 16-bit ROM memory. The
MB86933H–20 generates two sequential fetches to assemble a complete
instruction or data word before continuing. Half words are fetched in sequence
(0,1) as encoded by –BE[2]. Writes to –CS0 are unaffected by boot mode
selection. If left unconnected, a weak pull-up on this pin (and –BMODE8 pin)
causes the processor to default to 32-bit mode.
Note: At reset, –BMODE16 must not be asserted while –BMODE8 is asserted,
or undefined operation may result.

–CS[5-0] CHIP SELECTS (O): One of these signals is asserted when the value on the
address bus lies in the range specified by the corresponding Address Range
Specifier Register. The –CS signals are used to decode the current address into
one of eight address ranges. Address ranges should not overlap. Each address
range has a corresponding wait-state specifier which is used to generate an
internal –READY signal after a user-defined number of processor clock cycles.
This allows a variety of memory and I/O devices with different access times to
be connected to the MB86933H–20 without the need for additional logic. CS0 is
enabled at reset (see Chapter 2).

External Interface - Signals

SPARClite User’s Manual

F5–6

Signal Function

D[31:0] DATA BUS (I/O): D31 corresponds to the most significant bit of Byte 0. D0
corresponds to the least significant bit of byte 3. A double word is aligned on an
8-byte boundary, a word is aligned on a 4-byte boundary, and a half-word is
aligned on a 2-byte boundary. If a load or store of any of these quantities is not
properly aligned, a mem_address_not_aligned Trap will occur in the processor.

During write cycles, the point at which data is driven onto the bus depends on
the type of the preceding cycle. If the preceding cycle was a write, data is driven
in the cycle immediately following the cycle in which –READY was asserted. If
the preceding cycle was a read, data is driven one cycle after the cycle in which
–READY was asserted, in order to minimize bus contention between the
processor and the system.

–LOCK BUS LOCK (O): Asserted by the processor to indicate that the current bus
transaction requires more than one transfer on the bus. The Atomic Load Store
instruction, for example, requires contiguous bus transactions and so causes the
BUS LOCK signal to be asserted. The bus will not be granted to another bus
master as long as –LOCK is active. –LOCK is asserted with the assertion of
–AS and remains active until –READY is asserted at the end of the locked
transaction

–MEXC MEMORY EXCEPTION (I): Asserted by the memory system to indicate a
memory error on either a data or instruction access. Assertion of this signal
initiates either a Data or Instruction Access Exception trap in the IU. The current
bus access is invalidated by asserting the –MEXC in the same cycle as the
–READY signal. The IU ignores the value on the data bus in cycles where
–MEXC is asserted.

RD/–WR READ/WRITE BUS TRANSACTION (O): Specifies whether the current bus
transaction is a read or a write operation. When –AS is asserted and RD/–WR is
high, then the current transaction is a read. With –AS asserted and RD/–WR
low, the current transaction is a write. RD/–WR remains active for the duration of
the bus transaction and is de-asserted with the assertion of –READY.

–READY READY (I): Asserted by the external memory system to indicate that the current
bus transaction is being completed and that it is ready to start with the next bus
transaction in the following cycle. In case of a fetch from memory, the processor
will strobe the value on the data bus at the rising edge of CLKIN following the
assertion of –READY. In the case of a write, the memory system will assert
–READY when the appropriate access time has been met.

In most cases, no external logic is required to generate the –READY signal.
On-chip circuitry can be programmed to assert –READY internally, based on the
address of the current transaction. The external system can override the internal
ready generator to terminate the current bus cycle early. Up to 6 address ranges
each with different transaction times can be programmed. (See the System
Support Functions section, below.)

–SAME_PAGE SAME-PAGE DETECT (O): Asserted when the address of the current memory
access is within the same page as the previous memory access. –SAME_PAGE
can be used to take advantage of fast consecutive accesses within page-mode
DRAM page boundaries. –SAME_PAGE is asserted with –AS and remains
active for one processor cycle. –SAME_PAGE is never asserted in the first
transaction following a transaction by another device on the bus. The page size
is specified by writing the Same-Page Mask Register. (See the System Support
Functions section, below.)

External Interface - Signals

F5–7

F5.1.3 Bus Arbitration

Signal Function

–RAS[1:0] ROW ADDRESS STROBES (O): Asserted after a valid row address appears on
ADR[27:16]. –RAS0 is the address strobe for bank 0. –RAS1 is the address
strobe for bank1.

–CAS[3:0] COLUMN ADDRESS STROBES (O): Asserted after a valid column address
appears on ADR[27:16]. –CAS[3:0] controls bytes 3:0 respectively. During word
accesses all –CAS[3:0] are active simultaneously. During halfword accesses
either –CAS[3:2] or –CAS[1:0] are simultaneously active. During byte accesses
only one –CAS signal is active.

–DWE DRAM WRITE ENABLE (O): This signal is asserted low during DRAM write
accesses. It is deasserted otherwise.

F5.1.4 Bus Arbitration

Signal Function

–BGRNT BUS GRANT (O): Asserted by the CPU in response to a request from a device
wanting ownership of the bus. The CPU grants the bus to other devices only
after all transfers for the current transaction are completed. All bus drivers are
three-stated with the assertion of the BUS GRANT signal.

–BREQ BUS REQUEST (I): Asserted by another device on the bus to indicate that it
wants ownership of the bus. The request must be answered with a bus grant
(–BGRNT) from the MB86933H–20 before the device can proceed by driving the
bus. Once the bus has been granted, the device has ownership of the bus until it
de-asserts –BREQ. The user should ensure that devices on the bus do not
monopolize the bus to the exclusion of the CPU. The assertion of –BREQ is
recognized by the processor even when –RESET is being asserted.

F5.1.5 Peripheral Functions

Signal Function

IRL[3:0]
/IRQ [15:12]

INTERRUPT REQUEST BUS: Based on the mode selected in the on–chip
interrupt controller, these pins are defined in two ways. In one mode (IRL) the
value on these pins defines an external interrupt vector . IRL < 3:0 >=1111
forces a non–maskable interrupt. IRL value of 0000 indicates no pending
interrupts. All other values indicate maskable interrupts as enabled in the PIL
field of the processor status register (PSR). In this mode, interrupts should be
latched and prioritized by external logic and should be held pending until
acknowledged by the processor. In the other mode (IRQ), each pin represents a
decoded interrupt source. When active, the values on pins IRQ<15:12> will
cause the processor to vector to interrupts 15 through 12, respectively. The
trigger for each IRQ pin can be set for high–level, low–level, rising edge, or
falling edge.

–TIMER_OVF TIMER OVERFLOW (O): Indicates that the processor’s internal 16-bit timer has
overflowed. This signal can be used to initiate a DRAM refresh cycle or a
one-cycle periodic waveform. On reset, the timer is turned off and –TIMER_OVF
is high.

External Interface - Signals

SPARClite User’s Manual

F5–8

F5.1.6 Test and Boundary-Scan

Signal Function

CLK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the CLKIN signal to
bypass the on-chip phase-locked loop. This signal is intended primarily for
testing the chip.

TCK TEST CLOCK (I): JTAG compatible test clock input.

TDI TEST DATA IN (I): JTAG compatible test data input.

TDO† TEST DATA OUT (O): JTAG compatible test data output.

TMS† TEST MODE (I): JTAG compatible test mode select pin.

–TRST† TEST RESET (I): Asynchronous reset for JTAG logic. If not using JTAG, this
signal must be pulled low.

†. See appendix for more information

F5.2 Bus Operation

The Bus Interface Unit handles requests for external memory and I/O operations,
arbitrates for bus access, or is idle. Bus transactions are handled as follows:

• Memory and I/O Operations—Read and write transactions are initiated with the
processor asserting the –AS signal. The RD/–WR output indicates the transaction
type. The –BE[3:0] outputs indicate the transaction width. The processor drives the
address and ASI signals and either drives (during stores) or reads (during loads) the
signals on the data bus. The transaction ends when –READY is asserted.

An atomic load-store is a load followed immediately by a store, with no operation
between. The –LOCK output is asserted during atomic operations to indicate that
the bus is being used for more than one consecutive memory operation.

• Arbitration—Any external device can request ownership of the bus by asserting the
–BREQ signal. The processor three-states its bus drivers and asserts –BGRNT to
indicate that it is relinquishing control of the bus. Upon completion of its
transaction, the external device de-asserts –BREQ, and the processor responds by
de-asserting –BGRNT the following cycle.

In any cycle the BIU can receive a request for accesses to instruction memory, to data
memory, or to both. If it receives a request for both in the same cycle, it completes the
data memory transaction first.

F5.2.1 Exception Handling

The external memory system can indicate an exception during a memory operation. The
BIU signals the appropriate data or instruction exception to the IU, which will trap
accordingly.

External Interface - Bus Operation

F5–9

Any system that must recover from this error should store the address and data of the
write operation in hardware. If the system can generate both read and write exceptions,
the system must also provide a status bit that indicates whether the exception was
generated during a read or during a write operation. With access to this information, the
data access exception service routine can determine the cause of the exception and
recover accordingly.

F5.2.2 Bus Cycles

This section describes the relative timing of events in representative bus transactions.

Load

A read transaction begins with the BIU asserting –AS to indicate a new bus transaction.
The –AS signal is de-asserted after one cycle. At the same time, ADR<27:2> and
ASI<3:0> bits are asserted with the location to be read. The BIU drives the RD/–WR
signal high to indicate a read transaction.

Note that the –BE lines indicate byte, halfword or word operations during load
operations, although their use is optional. The processor loads a word regardless of the
size of the data requested (byte, halfword, word).

The external memory system responds with the read data on pins D<31:0>. It also
asserts the –READY signal when the data is ready (unless internal ready generation is
selected). For slow memory, the –READY signal is delayed until data is valid.

A load double operation is treated as back-to-back reads.

CLK_IN

ADR<27:2>
ASI<3:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1 LOAD 2

A1 A2

D1 D2

Figure F5–1. Load Timing

External Interface - Bus Operation

SPARClite User’s Manual

F5–10

Load with Exception

If the external memory system sees a memory exception, it can terminate the current
memory transaction by asserting the –MEXC and –READY signals. The data on the
data bus is ignored by the MB86933H–20.

CLK_IN

ADR<27:2>
ASI<3:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1

A1 A2

INVALID

–MEXC

Figure F5–2. Load with Exception Timing

External Interface - Bus Operation

F5–11

Store

A write transaction begins with the BIU asserting –AS, to indicate a new bus transac-
tion. The –AS signal is de-asserted after one cycle. At the same time the ADR<27:2>
and ASI<3:0> pins are driven with the location to be written, and the write data is
asserted on D<31:0>. The –BE3-0 pins indicate byte, half-word or word transaction
width. The BIU drives the RD/–WR signal low to indicate a write transaction.

The external memory system responds by asserting the –READY signal when it has
stored the data. There is always one idle bus cycle between the termination of a read
cycle and the beginning of a write cycle to provide time for switching of the data bus
drivers.

A store double operation is treated as back-to-back writes.

CLK_IN

ADR<27:2>
ASI<3:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

STORE 1 STORE 2

A1 A2

D1 D2

Figure F5–3. Store Timing

External Interface - Bus Operation

SPARClite User’s Manual

F5–12

Store with Exception

If an access exception occurs during a write, the external memory system can terminate
the current memory transaction by asserting the –MEXC and –READY signals. The
external memory system is expected to ignore the data on the data bus in this situation.

CLK_IN

ADR<27:2>
ASI<3:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

STORE 1

A1 AN

–MEXC

Figure F5–4. Store with Exception Timing

External Interface - Bus Operation

F5–13

Atomic Load Store

An atomic load store executes as a load followed by a store, with no operation between.
The –LOCK signal is asserted to indicate that the bus is being used for more than one
external memory operation.

There is one cycle between the termination of the read and the beginning of the write to
provide time for the switching of the data bus drivers.

CLK_IN

ADR<27:2>
ASI<3:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1

A1 A2

–LOCK

A3

STORE

Idle cycle

D1 D2

Figure F5–5. Atomic Load Store Timing

External Interface - Bus Operation

SPARClite User’s Manual

F5–14

External Bus Request and Grant

Any external device can request ownership of the bus by asserting the –BREQ signal.
The BIU asserts the –BGRNT signal to indicate that it is relinquishing control of the
bus, and three-states all of its bus drivers. The external device can complete its
transaction during the following cycle. Upon completion of its transaction, the external
device de-asserts the –BREQ signal. The BIU responds by de-asserting the –BGRNT
signal during the following cycle.

The MB86933H–20 is the default owner of the bus.

Processor Bus Cycle n Complete

CLK_IN

–BREQ

–BGRNT

ALL BUS DRIVERS THREE-
STATE

Processor Bus Cycle n+1 Start

Figure F5–6. External Bus Request and Grant Timing

Processor Reset

The MB86933H–20 is reset by asserting the –RESET signal for a minimum of 4 clock
cycles (see Figure 4-7). Systems using an external crystal to clock the processor should
assert –RESET for at least 4 cycles after the crystal has stabilized.

If the processor is reset following a halt in Error Mode and if power to the processor is
not removed, after reset the tt field will contain the value of the Trap that caused the
processor to halt.

External Interface - Bus Operation

F5–15

0x0000 0000

CLK_IN

4 CYCLE MINIMUM

3 CYCLES

RESET

ADDR

Figure F5–7. Reset Timing

F5.3 System Support Functions

Built-in system support functions help to minimize the amount of glue logic required in
the external system. The support includes programmable chip select logic, program-
mable wait-state generation, same-page detection logic and a timer for generating
refresh requests. For a more detailed description of the programming of these registers
refer to Chapter 2.

The System Support Control Register turns the various system support features on and
off.

031 2 1

Same-Page Enable (On=1, Off=0)

Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

3

Reserved

46

Timer On/Off (On=1, Off-0)

Reserved

5

DRAM Controller Enable

 Figure F5–8. System Support Control Register

F5.3.1 System-Configuration Registers

The system-configuration registers (Address Range Specifiers, Address Masks, and
Programmable Wait-State Specifiers) allow software to define six different address
ranges. When an address driven by the processor is in one of these ranges, the
corresponding Chip-Select (–CS) pin is asserted. After a number of clock cycles
determined by the corresponding Programmable Wait-State Specifier, the processor

External Interface - System Support Functions

SPARClite User’s Manual

F5–16

automatically generates an internal –READY signal. This makes it possible for memory
and I/O devices with different access times to be connected to the processor without
additional logic.

The contents of the Address Range Specifier Registers 1-5 (ARSR[5:0]) define five of
the six address ranges. An additional address range is available, corresponding to –CS0.
For this address range, ADR is hardwired to 0, and ASI is hardwired to 0x9 (Supervisor
Instruction Space). With Mask Register AMR0, –CS0 ranges 8K words. –CS0 is
enabled at reset. –CS1, –CS2, –CS3, –CS4 and –CS5 are disabled at reset.

Note that the MB86933H–20 has six register windows rather than eight. It has
twenty-six Address Bus signals (ADR<27:2>) rather than thirty, four Address Space
Identifier signals (ASI<3:0>) rather than eight, no emulator-support signals, and no
memory management unit. These and other differences between the MB86933H–20 and
other SPARClite processors should be considered when porting code to the
MB86933H–20 from another SPARClite processor, and when porting code from the
MB86933H–20 to another SPARClite processor. Documentation for other SPARClite
should be referenced to identify differences with the MB86933H–20 that may affect
ported code.

031 30 23 22 1

ASI <7:0> ADR <31:10>

Figure F5–9. Address Range Specifier Register Format

An Address Mask Register is associated with each address range. Any address driven by
the chip is compared with the value in all address range specifiers. Only those bits of
the register are compared for which the corresponding mask bits are 0. If the specified
bits of the current address match one of the address range specifiers, the corresponding
chip-select (–CS) pins are asserted. When no bus transaction is being performed, all the
–CS pins are high (inactive). The Address Mask Register corresponding to –CS0 is
initialized to compare all bits except ADR<14:10>.

031 30 23 22 1

ASI <7:0> ADR <31:10>

Figure F5–10. Address Mask Register Format

A Programmable Wait-State Specifier is associated with each address range. Three
registers are used to specify the wait states for the six address ranges. Each register
contains the wait-state specifiers for two address ranges.

External Interface - System Support Functions

F5–17

When the address currently being driven by the processor matches the unmasked bits in
one of the Address Range Specifiers, the corresponding wait-state specifier is selected.
The format of Wait-State Specifier Registers is shown in Figure F5-11.

631 8 7

Wait Enable (On=1, Off=0, RST=*)

Single Cycle (On=1, Off=0, RST=0)

Override (On=1, Off-0, RST=*)

27 26 22 21 20 19 18 14 13 9

Count 1
(RST=Undefined

)

Count 2
(RST=Undefined

)

Count 1
(RST=Undefined

)*

Count 2
(RST=Undefined

)*

5 0

Reserved

* See Table 2-3 in MB86930 Chapter 2 “Programmer’s Model”

Figure F5–11. Wait-State Specifier Registers

Bits 31-19: Wait-State Specifier—When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and whether,
the processor generates an internal –READY signal to terminate the access.

Count1 (Bits 31-27): The number of wait-states inserted before the internal –READY,
under the following conditions: the Single Cycle bit equals 0 and the
current access is not on the same page as the previous access. The
number of wait-states is the value of this field +1 (i.e., 0=1 wait-state,
1=2 wait-states, etc.) The value of Count1 is undefined on reset.

Count2 (Bits 26-22): The number of wait-states inserted before the internal –READY,
under the following conditions: the Single Cycle bit equals 0 and the
current access is on the same page as the previous access. The
number of wait-states is the value of this field +1 (i.e., 0=1 wait-state,
1=2 wait-states, etc.) The value of Count2 is undefined on reset.

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual
address range. If the Wait Enable bit of a wait-state specifier equals
0, the internal –READY is not asserted when addresses in the
corresponding range are accessed by the processor. If Wait Enable
is 1, the single cycle bit must be 0. See Table 2-3 in MB86930
Chapter 2 “Programmer’s Model” for reset value.

Single Cycle (Bit 20):Specifies the timing of the internal –READY signal. If the Single Cycle
bit equals 1 when an address in the appropriate range is accessed,
the internal –READY is asserted in the same cycle. If the Single
Cycle bit equals 0, and the current transaction is in the same page as
the previous transaction, then Count2 is used as the number of
cycles after which –READY is asserted internally. If the transaction is
not in the same page, Count1 is used instead. If Single Cycle is
enabled, the Wait Enable bit must be 0. See Table 2-3 in MB86930
Chapter 2 “Programmer’s Model” for reset value.

Override (Bit 19): Allows the system to terminate a memory transaction before the
internally specified time. If the Override bit equals 1, and external
hardware asserts the external –READY signal, then the wait-state
generator will stop counting and will wait for the next transaction. This
bit is cleared to 0 on reset.

External Interface - System Support Functions

SPARClite User’s Manual

F5–18

Bits 18-6: Wait-State Specifier—The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

The Count1 and Count2 fields of the Wait-State Specifier corresponding to –CS0 have
all their bits set to 1 following reset. In this way, 32 wait-state cycles (the maximum
number) are inserted into the processor’s first instruction accesses. The override bit for
–CS0 is enabled as well.

F5.3.2 Same-Page Detection

The MB86933H–20 supports same memory page operation only in the chip select 4
(–CS[4]) address range.

The same-page detection logic determines whether the address of the current memory
transaction is on the same page as the previous transaction. If it is, the processor asserts
the –SAME_PAGE signal. The system can then take advantage of the fast consecutive
accesses possible within fast-page mode DRAM page boundaries. The same-page
detection logic consists of a mask register, a register to store the address and ASI bits of
the previous transaction, and a comparator.

The Same-Page Mask Register specifies which bits of the current address and ASI must
be compared with the previous address and ASI. Only those bits are compared for
which the mask bit is 1.

031 30 23 22 1

ASI Mask
(Card=0, Don’t Care=1) (Card=0, Don’t Care=1)

Address Mask (ADR [31:10])

Figure F5–12. Same-Page Mask Register

The –SAME_PAGE signal is never asserted for the first transaction following a
transaction by another device on the bus. When using the internal wait-state generator,
DRAM control logic should issue a bus request when initiating a refresh cycle so that
the –SAME_PAGE logic is reset appropriately. The –SAME_PAGE feature is disabled
at reset.

F5.3.3 Programmable Timer

The 16-bit programmable timer causes the –TIMER_OVF output signal to be asserted
at software-defined intervals. This signal can be used to initiate DRAM refresh cycles,
or to control other periodic events in the external system.

External Interface - System Support Functions

F5–19

The current timer count is stored in the Timer Register. When the timer overflows, it is
loaded with the value in the Timer Preload Register. The contents of both of these
registers are undefined following reset.

031 15

Timer Value

16

Reserved

031 15

Timer Pre-Load Value

16

Reserved

TIMEROVF CTRL (O = One cycle pulse)
(I = Three cycle pulse)
(RST = undefined)

Figure F5–13. Timer and Timer Preload Registers

The timer can also be loaded by writing directly to the Timer Register. The timer can
be turned off by writing a 0 to the Timer On/Off bit in the System Support Control
register. The timer is clocked at the processor clock frequency.

F5.4 8/16–bit BUS MODE

F5.4.1 Purpose

The data bus of the MB86933H–20 can be configured to 8- and 16-bit bus modes as
well as the standard 32-bit mode. This flexibility accommodates those cases in which
boot code resides in memories organized as blocks of bytes or halfwords.

F5.4.2 Features

Bus Configuration: the data bus configurations are fixed to specific segments of the
bus:

• 8-bit mode: D[7:0]

• 16-bit mode: D[15:0]

• 32-bit mode: D[31:0]

External Interface - 8/16–bit Bus Mode

SPARClite User’s Manual

F5–20

F5.4.3 Bus Configuration

Chip Select 0 (–CS[0])

Two external pins, –BMODE16 and –BMODE8 are used to determine the bus
configuration in the chip select 0 (–CS[0]). The two bus configuration pins have weak
pull-ups, so that if unconnected, the bus configuration will default to a 32-bit bus.

Table F5–2. –CS0 Bus Width Configuration

–BMODE16 –BMODE8 –CS0 Bus Width

0 0 Illegal

0 1 16-bit Memory Bus

1 0 8-bit Memory Bus

1 1 32-bit Memory Bus

Chip Select [5:1] (–CS[5:1])

In –CS[5:1], the bus configuration is determined by the Bus Width Control Register
(ASI = 0x1, ADR = 0x16C). Bus width for memory space referred by –CS[5:1] can be
programmed by writing to the Bus Width Control Register (ASI = 0x1, ADR = 0x16C).

Bus Width Control Register

12

ASI ADDRESS

0x 1 0x 0000 016C

Bus Width
and Cacheable

31

reserved

01234567891011

CS5 CS4 CS3 CS2 CS1

RSVD

Bus Width Control Bit (Table 5–3)

{ { { { {

Table F5–3. Bus Width Control Bits of –CS1 to –CS5

BW1 BW0 Bus Width

0 0 32-bit Memory Bus

0 1 8-bit Memory Bus

1 0 16-bit Memory Bus

1 1 Illegal

Memory space referred by each chip select (CS[5:1]) can be individually programmed
for 8/16/32 bit bus mode. Upon reset, 32-bit bus mode is the default.

External Interface - 8–16–bit Bus Mode

F5–21

F5.4.4 System Interface

In order to minimize external “glue logic” required for interfacing to the 8- or 16-bit
bus, the BE bits are encoded to reflect the two LSBs of a byte address or the LSB of a
halfword address. Therefore, the ADR[27:2] and selected –BE bits can be concatenated
to form a complete address for a non-32 bit bus mode.

Table F5–4. System Interface BE Bits

Bus Mode Byte BE[0:3]

8-bit bus 0 0000

1 0001

2 0010

3 0011

16-bit bus 0 & 1 0000

2 & 3 0010

8-bit bus mode address= {ADR[27:2], –BE[2], –BE[3]}
16-bit bus mode address={ADR[27:2], –BE[2]}

–CS[0], which is enabled on reset, and the internal –READY generation logic, can be
used to define as the boot memory address space. On reset, the wait state generator,
corresponding to –CS[0] for internal –READY generation, is set to 32 cycles. Later on
in the boot code, the wait state generator can be changed to a more appropriate value.

F5.4.5 Load

One of the functions of the boot code is to set the processor and system configuration.
This might involve loading system parameters from the boot memory, loading data
from memory mapped I/O, and storing data to non-boot memory address space. All
loads from the boot address space or from any 8/16–bit memory peripherals behave the
same way as instruction fetches, in that, for a non-32 bit bus mode –BE , bit encoding
and word assembly are done. In order to meet the –BE AC timing, the –BE bits on the
MB86933H–20 need to be all 0’s for all types of loads—word, halfword, and
byte—from the non 8/16–bit memory space. This requires a functional change from the
current specification of the MB86930’s –BE bits, which reflect the byte information for
loads. This change does not cause a problem, since the processor fetches a full 32-bit
word on a load, and the IU selects the byte appropriately. As on the MB86930 –BE bits
should be ignored for 32-bit loads.

A summary of the –BE[0:3] bit behavior for loads from the 8/16–bit bus is shown
below. For all load instructions (byte, halfword, word), a full 32-bit fetch occurs. For
example, in the 8-bit bus mode, four bytes will be fetched for all loads, and the BE bits
will sequence with the proper 2 LSBs of the byte address.

External Interface - 8/16–bit Bus Mode

SPARClite User’s Manual

F5–22

Table F5–5. Load –BE[0:3] Bit Behavior

Bus Mode Operation BE[0:3] in PROM space

8-bit bus Loads (all) 0000=>0001=>0010=>0011

16-bit bus Loads (all) 0000=>0010

32-bit bus Loads (all) 0000

F5.4.6 Store

 The MB86933H–20 allows user to write to 8/16-bit memory as follows:

(1) In 8-bit Bus Mode, {ADR[27:2], –BE[2], –BE[3]} is the store address. BIU
stores only as many access cycles as required. For example, a store byte
requires only one access cycle, store halfword requires two access cycles and
store word requires four access cycles on a 8-bit Bus. 8–bit DRAM access is not
supported by the internal DRAM Controller. For store half word or word, it is
always started at the least significant byte first and so on.

(2) In 16-bit Bus Mode, {ADR[27:2], –BE[2]} is the store address, and –BE[1:0]
are the byte enables. –BE[1] enables the upper byte (D[15:8]), and –BE[0]
enables the lower byte (D[7:0]). For a store byte or store halfword, BIU
executes one access cycle. MB86933H–20 takes two access cycles to store word
in 16-bit Bus Mode. For store word, it is always started at the least significant
half word first and so on.

Notes: Since the MB86933H–20 does not have extra pins to indicate size of the store,
to support store in 8/16–bit bus each store access cycle is commenced by an –AS and
ended by a –READY (or internal READY). This is different from load in 8/16–bit bus.
Section 5.4.9 shows timing diagrams for all cases of load/store.

F5.4.7 Memory Exception

Any memory exception that occurs during a fetch from the non–32 bit address space
will be held off until the entire word is fetched.

Any memory exception that occurs during a store access cycle to the non–32 bit address
space will be held off until the entire size of the store is completed.

F5.4.8 Bus Request

Any bus request happening during the non-32 bit bus mode fetch will not be recognized
until the end of the complete 32-bit fetch operation.

Any bus request happening during a store access cycle to the non–32 bit address space
will not be recognized until the entire size of the store is completed.

External Interface - System Support Functions

F5–23

F5.4.9 Timing

Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are shown
below. Note that –AS is asserted at the beginning for one cycle.

CLK

–AS

ADR[27:2]

–RDY

D[7:0]

–BE[0:3] 0000 0001 0010 0011

Byte0 Byte1 Byte2 Byte3

RD/–WR

Figure F5–14. 8-bit Bus Mode Read (1 Wait State)

CLK

–AS

ADR[27:2]

–RDY

D[15:0]

–BE[0:3] 0000 0010 0000 0010

HW0 HW1 HW0 HW1

RD/–WR

Figure F5–15. 16-bit Bus Mode Read (1 Wait State)

External Interface - 8/16–bit Bus Mode

SPARClite User’s Manual

F5–24

Figure F5–16. Timing 1 – Typical Back–to–Back Loads with 32–Bit Wide Bus (Same as Load Double)

CLK_IN

ADR < 27:2 >
ASI < 3:0 >
–BE < 3:0 >

–AS

RD/–WR

–READY

LOAD 1 LOAD 2

A2A1

D < 31:0 > D1 D2

Figure F5–17. Timing 2 – Load with 16–Bit Wide Bus

CLK

ADR,ASI

–AS

RD/–WR

–READY

BE [0:3]

D [15:0]

0 0 0 0 0 0 1 0

BE<2> = ADR<1>, BE<3> = 0, BE<0:1> = 00, BE<3> = 0< ’1’ WAIT STATE

HW0 HW1

ADR

F5–25

 Figure F5–18. Timing 3 – Load with 8–Bit Wide Bus

CLK

ADR,ASI

–AS

RD/–WR

–READY

BE [0:3]

D [7:0]

0 0 0 0 0 0 1 1

BE<2:3> = ADR<0:1>, BE<0:1> = 00, ’0’ WAIT STATE

0 0 0 1 0 0 1 0

Byte0 Byte1 Byte2 Byte3

ADR

 Figure F5–19. Timing 4 – Load with Exception – 32–Bit Wide Bus

CLK_IN

ADR < 27:2 >
ASI < 3:0 >
–BE < 3:0 >

–AS

RD/–WR

–READY

LOAD 1

A2A1

D < 31:0 > INVALID

–MEXC

External Interface - 8/16–bit Bus Mode

SPARClite User’s Manual

F5–26

 Figure F5–20. Timing 9 – Store Word with 8–Bit Bus

NOTES: BE<2:3> = ADR<1:0>, BE<0:1> =0 0, ‘0’ WAIT STATE

CLK

ADR,ASI

–AS

RD/–WR

–READY

BE [0:3]

D [7:0]

0 0 1 1 0 0 0 00 0 1 0 0 0 0 1

ADR

Byte3 Byte0Byte2 Byte1

0 0 X 1 0 0 X 0

 Figure F5–21. Timing 10 – Store Half–Word with 8–Bit Bus

CLK

ADR,ASI

AS–

RD/–WR

–READY

BE [0:3]

D [7:0]

NOTES: BE<2:3> = ADR<1:0>, BE<0:1> =0 0, ‘1’ WAIT STATE

ADR

Byte1 Byte0

F5–27

Figure F5–22. Timing 11 – Store Byte with 8–Bit Bus

CLK

ADR,ASI

AS–

RD/–WR

–READY

BE [0:3]

D [7:0]

0 0 X X

NOTES: BE<2:3> = ADR<1:0>, BE<0:1> =0 0, ’1’ WAIT STATE

 Figure F5–23. Timing 12 – Store with Exception

CLK_IN

ADR < 27:2 >
ASI < 3:0 >
–BE < 3:0 >

–AS

RD/–WR

–READY

STORE 1

ANA1

D < 31:0 >

–MEXC

ADR1

Byte

SPARClite User’s Manual

F5–28

 Figure F5–24. Timing 13 – Atomic Operation

Note: A load followed by a store requires an intervening clock cycle on the bus while a store followed by a load can occur in consecutive clock
cycles.

ADR < 27:2 >
ASI < 3:0 >
–BE < 3:0 >

LOAD 1 STORE 1

A1 A2 A3

CLK_IN

–AS

RD/–WR

–READY

–LOCK

D2D1D < 31:0 >

External Interface - System Support Functions

F5–29

F5.4.10 Store in 32–bit bus mode

For all stores in the 32–bit bus mode the –BE bits will reflect the byte information of
the store. The following note may be useful for system designers.

Store Byte: All 4 bytes are the same in the whole word data (i.e., D[31:24] = D[23:16]
= D[15:8] = D[7:0]).

Byte –BE[3:0]

0 1110

1 1101

2 1011

3 0111

Store halfword: 2 half words are the same in the whole word data
(i.e., D[31:16] = D[15:0]).

Half Word –BE[3:0]

0 1100

1 0011

CLK

–AS

ADR[27:2]

–RDY

D[31:0]

–BE[0:3]

RD/–WR

Figure F5–25. Store to 32–bit Address Space

External Interface - 8/16–bit Bus Mode

F6–1

HAPTER

MB86933H–20 DRAM Controller

F6
C

F6.1 Overview
The MB86933H–20 integrates an address multiplexer and a state machine with the
Same Page Detection logic and the Programmable Timer to form a complete page–
mode DRAM controller. The state machine governs the timing relationships of the
multiplexed row and column address and the DRAM control signals (–RAS, –CAS,
–DWE).

The DRAM controller was designed to support the most common type of DRAM: the
page–mode DRAM with CAS before RAS refresh. CAS before RAS refresh uses the
DRAM’s internal address counter to specify the row to be refreshed and avoids the
added cost of an external counter. The DRAM controller does not support interleaving
of memory banks.

F6.2 Registers
The registers used in configuring and activating the DRAM controller are:

• Address Range Specifier Register 4 and Address Mask Register 4 – used
together to set the DRAM address space boundaries. Accesses to this address space
are considered accesses to DRAM and will activate –CS4.

• DRAM Bank Configuration Registers – determines the bank address space
boundary and address multiplexing.

• Timer Register and Timer Preload Register – used together to set the refresh
interval.

DRAM Controller

SPARClite User’s Manual

F6–2

• Same Page Mask Register – sets the page size.

• Bus Width Register – used to select the DRAM data bus width. Either 16–bit or
32–bit data width may be used. 8–bit bus DRAM data bus width is not supported.

• System Support Control Register – enables the DRAM controller, the Same Page
Detection logic and the Refresh Timer

F6.5.1 Address Range Specifier Register 4 and
Address Mask Register 4

Address Range Specifier Register 4 is used in conjunction with Address Mask Register
4 to select which portion of a 4GB address space is to be assigned as the DRAM address
space. Chip Select 4 (CS4) will be asserted whenever an access is made to an address
which falls in the range specified by this register pair. The DRAM address range must
not be accessed during the three cycles after this register pair is written.

031 30 23 22 1

ASI <7:0>
(RST=Undefined) (RST=Undefined)

ADR <31:10>

Address: 0x00000130
ASI 0x01

Figure F6–1. Address Range Specifier Registers

Bit 31: Reserved

Bits 30-23: ASI[7:0]—Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Bits 22-1: ADR[31:10]—Specifies the 22 most significant bits of a target address range. The value of
this field is undefined on reset.

Bit 0: Reserved

031 30 23 22 1

ASI <7:0>
(RST=Undefined)* (RST=Undefined)*

ADR <31:10>

* Except AMR[0].

Address: 0x00000150
ASI 0x01

Figure F6–2. Address Mask Registers

Bit 31: Reserved

Bits 30-1: Mask—Specifies which bits in the ASI and address of the current external access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is 0. See Table 2-3 for reset value.

Bit 0: Reserved

DRAM Controller

F6–3

Table F6–1. Programming the Address Mask Register

DRAM address
space Value in Address Mask Register 4

1MB 0x000007fe

2MB 0x00000ffe

4MB 0x00001ffe

8MB 0x00003ffe

16MB 0x00007ffe

32MB 0x0000fffe

64MB 0x0001fffe

F6.5.2 DRAM Bank Configuration Register
There is one configuration register for each of the two banks supported by the DRAM
Controller. The DRAM type and the starting address of the bank is written to these
registers. Together, they determine the bank’s size and boundaries.

31 4 3 0

[15:7] Bits 27:19 of the starting address of the bank

Reserved

[3:0] DRAM type

7

reserved

Address:

(ASI=0x1)
Reset State: 0x00000000

15

0000 – 256K x n
0001 – 512K x n
0010 – 1M x n
0011 – reserved
0100 – 2M x n
0101 – reserved
0110 – reserved
0111 – reserved
1000–1111 – reserved

bank 0:
bank 1:

0x0000 07D0
0x0000 07D4

Figure F6–3. DRAM Bank Configuration Registers

DRAMs are specified by bit density, ie. the total number of bits in the chip. For a
given bit density, a DRAM is available in different depth and data width combinations.
For example, a 16Mbit DRAM can be found in a 2Mx8, 4Mx4, or 16Mx1 arrangement.
To form a 32–bit memory bank, the number of chips required are four, eight and thirty
two, respectively. The corresponding bank sizes will be 8MB, 16MB, and 64MB. The
number of bits used for the row and column addresses are given in the DRAM
specification.

DRAM Controller

SPARClite User’s Manual

F6–4

In the MB86933H–20, the DRAM address space is defined by the Address Range
Specifier Register and Address Mask Register for CS4. This address space may be
further subdivided into banks of addresses. The starting address of a bank and the
DRAM type will determine the address range of a particular bank. Addresses falling in
the range of addresses defined for a bank will activate the corresponding –RAS. Each
–RAS corresponds to a particular bank.

For example, a 32 bit bank of memory using 1M x n DRAMs will yield 4 megabytes. If
it is desired that this bank start at address 0x0000000, then bits 15:7 of the DRAM Bank
Configuration Register will be set to ’000000000’, bits 6:4 set to ’000’ and are reserved,
and bits 3:0 set to ’0010’ to indicate a 1M x n DRAM type .

The DRAM address space may be divided into the different banks in any order. The
largest bank does not have to be bank 0. However it is important to observe the
restriction that the largest bank occupy the lowest addresses in the DRAM space with
progressively smaller banks occupying the higher addresses. The starting address of a
bank must be on a bank size boundary (eg. a 4MB bank can start at 0x00000000,
0x00400000, etc.) and the largest bank must occupy the lowest address followed by
the next largest bank and so on.

F6.5.3 Timer Register and Timer Preload Register
These registers are used to set the DRAM refresh interval. The Timer Register contains
the current count of a 16–bit timer. The Timer Preload Register contains a value which
is loaded into the timer when the timer overflows. The timer overflows when its count
decrements to zero. The processor will then assert the –TIMER_OVF signal externally.
The DRAM controller will detect this and begin a refresh cycle. The minimum value
written to the Timer Register is 0x01. Typically, the same value is written to both
registers.

031 15

Timer Value

16

Reserved
(RST=Undefined)

Address: 0x00000174
ASI 0x01

Figure F6–4. Timer Register

031 15

Timer Pre-Load Value

16

Reserved
(RST=Undefined)

Address: 0x00000178
ASI 0x01

Figure F6–5. Timer Pre-Load Register

DRAM Controller

F6–5

F6.5.4 Same Page Mask Register
If the current DRAM access and the previous DRAM access share the same DRAM row
address, then these accesses are said to be in the ’same’ page . These accesses need not
be sequential. Accesses to the same page in DRAM are faster than accesses to different
pages since –RAS remains asserted and only the column address needs to be changed
ie. –CAS will be reasserted.

The Same Page Mask Register sets the size of a DRAM page. A page refers to the
number of column locations in a given row. The number of column address bits in the
DRAM determines the page size. For example, a 1Mx4 DRAM has 10 column address
bits and its page size is 1K. If more than one bank is used and the page sizes differ
between banks, then the Same Page Mask Register should be programmed for the
smallest page size.

This register controls which bits of the current address and ASI will be compared with
the previous address and ASI. If the unmasked bits in the current address and ASI
match the bits in the previous address and ASI then the current access is in the same
’page’ as the previous access. Only addresses mapped to CS4 will be compared. The
DRAM address range must not be accessed during the three cycles after this register is
written.

The external output signal, –SAME_PAGE, is active when the DRAM Controller is
enabled but is not needed and may be left unconnected.

031 30 23 22 1

ASI Mask <7:0>
(Care=0, Don’t Care=1, RST=Undefined) (Care=0, Don’t Care=1, RST=Undefined)

Address Mask (ADR <31:10>)

Address: 0x00000120
ASI 0x01

Figure F6–6. Same-Page Mask Register

Bit 31: Reserved

Bits 30-23: ASI Mask—Specifies which bits in the ASI of the current external access are to be
compared with the corresponding bits in the ASI of the previous access. Only those bits
are compared for which the mask bit is 0. Mismatches in any other bits do not prevent the
two accesses from being recognized as “on the same page.” The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask—Specifies which of the 22 most significant bits in the address of the current
external access are to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is 0. Mismatches in
any other bits do not prevent the two accesses from being recognized as “on the same
page.” The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

DRAM Controller

SPARClite User’s Manual

F6–6

Table F6–2. Same Page Mask Register Values with ASI not masked

Column bits 16–bit 32–bit

8 not used 0x00000000

9 0x00000000 0x00000002

10 0x00000002 0x00000006

11 0x00000006 0x0000000e

12 0x0000000e 0x0000001e

F6.5.5 Bus Width Register
The DRAM controller supports 32–bit and 16–bit wide memory. It does not support
8–bit wide memory. The data bus width is specified in this register.

Bits 9:8 specifies the bus width for CS4, as defined in table F6–6.

ASI = 0x 1
0x 0000 016C

031

reserved RSVD

123456789101112

CS1CS2CS3CS4CS5

Figure F6–7. Bus Width Register

Table F6–3. Bus Width Settings

Bus Width bits [9:8]

32–bit 00

16–bit 10

DRAM Controller

F6–7

F6.5.6 System Support Control Register
This register is used to enable the DRAM controller. It also enables the refresh timer.
DRAM wait states are set by the DRAM Timing Registers. If the Programmable
Wait–State Enable bit is set then the Wait Enable bit of the Wait State Specifier
Register for CS4 must be cleared.

031 2 1

Same-Page Enable (On=1, Off=0, RST=0)
Chip Select Enable (On=1, Off=0, RST=0)

Programmable Wait-State Enable (On=1;Off=0;RST=1)

3

Reserved

56

Timer On/Off (On=1, Off-0, RST=0)
Reserved

Note: The chip select generation for Address
Range Specifier 0 is always enabled,
regardless of the value of the Chip Select
Enable Bit.

4

DRAM Controller Enable (On=1, Off=0, RST=0)

Address: 0x00000080
ASI 0x01

Figure F6–8. System Support Control Register

Bits 31-7: Reserved

Bits 6: DRAM Controller Enable –– Enables (1) and disables (0) the internal DRAM controller.

Bit 5: Same-Page Enable—Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the –SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, –SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.

Bit 4: Chip Select Enable—Enables (1) and disables (0) the generation of chip-select signals for
external accesses in address ranges 1 through 5. Regardless of the state of this bit,
however, –CS0 is always asserted when the current address lies in address range 0. The
Chip Select Enable bit is cleared to 0 on reset.

Note: Before enabling chip selects all chip select Address Mask and Address Range
registers should be initialized so that two chip selects are never selected at the same time.

Bit 3: Programmable Wait-State Enable—Enables (1) and disables (0) the programmable
wait-state generators for all address ranges. The Programmable Wait-State Enable bit is
set to 1 on processor reset. The DRAM Controller does not use this bit to set wait states.

Bit 2: Timer On/Off—Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Bits 1-0: Reserved

DRAM Controller

SPARClite User’s Manual

F6–8

Table F6–4. System Support Register Summary

Chip
S l t

Affected by
Chi S l t

Address Range Specifier Address Mask Wait-State SpecifierChip
Selects

Affected by
Chip-Select

Enable?
Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset

0 No N/A ASI=0x09
ADR<31:10>=0

0x0000 0140 All mask bits 0
except

ADR<14:10> = 1

0x0000 0160
(low halfword)

Count 1,2 = 31
Wait Enable=1
Single Cycle =0

Override=1

F6.3 –CAS Behavior during Word, Halfword, and Byte
Accesses
The DRAM controller has four –CAS output signals. Each –CAS controls a byte in a
32 bit memory system. –CAS0 controls byte0 (the most significant byte in a Big
Endian architecture such as SPARC) and –CAS<1:3> control the least significant
three bytes, respectively. In a 16 bit system, –CAS2 controls the most significant byte
(byte 2) and –CAS3 controls the least significant byte (byte 3). –CAS0 and –CAS1
are not used in a 16–bit system.

In a 32 bit system, a word access will cause all four –CAS signals to be asserted
simultaneously during the –CAS active phase. An access to the most significant
halfword will cause –CAS<0:1> to be asserted. An access to the least significant
halfword will cause –CAS<2:3> to be asserted.

F6.4 Address Multiplexing
The multiplexed DRAM row and column address appears on ADR[27:16]. These pins
should be connected to the DRAM address pins (ADR16 should be connected to the
least significant bit of the DRAMs). If ADR27, ADR26, ADR25 or ADR24 are unused
they should be left unconnected. ADR[15:2] are unaffected by the DRAM controller
and will reflect bits 15:2 of the address.

For 32–bit systems, the least significant address bit is A2. It is also the least significant
column address bit. For 16–bit systems, the least significant address bit and the least
significant column address bit is A1.

During the row address phase, the row address appears on ADR[27:16] with the least
significant bit at ADR[16]. The row address’ least significant bit will change according
to the number of column address bits in the DRAM. The column bits will appear on
ADR[27:16] during the column address phase with the least significant bit (A2/A1 for
32/16 bit systems) going through ADR[16].

For example, given a DRAM with 11 row address bits and 10 column address bits to be
used in a 32–bit memory system. The DRAM has 11 address pins and will be connected
to ADR[27:16]. During the row address phase, A[22:12] will appear on ADR[26:16]
and will be latched by –RAS. A[23] will appear on ADR[27], but since it is not
connected to the DRAM, it is ignored.

DRAM Controller

F6–9

During the column address phase, A[11:2] will appear on ADR[25: 16]. A[13:12] will
appear on ADR[27:26]. Both will be ignored since ADR[13] is unconnected and A[12]
is not needed by the DRAM during the column address phase.

In general, all DRAM address pins should be connected to ADR[27:16] with ADR[16]
connected to A[0] of the DRAM. If there are fewer than 12 address pins on the DRAM,
then some of the ADR pins will be unconnected, as in the example above. The proper
row and column addresses will appear on ADR[13:2] and only the relevant address bits
will be latched by the DRAM.

Table F6–5. Address Multiplexing in a 32–bit System

column addr bits Row address Column address Output pins

8 A[21:10] A[13:2] ADR[27:16]

9 A[22:11] A[13:2] ADR[27:16]

10 A[23:12] A[13:2] ADR[27:16]

11 A[24:13] A[13:2] ADR[27:16]

12 A[25:14] A[13:2] ADR[27:16]

Table F6–6. Address Multiplexing in a 16–bit System

column addr bits Row address Column address Output pins

8 A[20:9] A[12:1] ADR[27:16]

9 A[21:10] A[12:1] ADR[27:16]

10 A[22:11] A[12:1] ADR[27:16]

11 A[23:12] A[12:1] ADR[27:16]

12 A[24:13] A[12:1] ADR[27:16]

F6.5 16–bit Operation

The smallest memory data bus width supported by the DRAM controller is 16 bits.
The DRAM controller does not support 8 bit wide memory. When using a 16–bit data
bus the BIU will make two accesses to load or store a word and one access to load or
store a halfword. Instruction fetches involve two accesses.

DRAM Controller

SPARClite User’s Manual

F6–10

F6.6 Refresh
–CAS before –RAS refresh is used by the internal DRAM controller. All four –CAS
signals are asserted while –RAS is deasserted. After appropriate setup and hold times,
both –RAS signals are asserted. –DWE is deasserted during refresh. Care must be taken
to insure that sufficient power and ground are supplied to the DRAMs.

F6.7 Programming the DRAM Controller
The internal DRAM Controller is disabled after reset. The user completes the following
initialization sequence before making accesses to DRAM through the internal DRAM
controller.

• Allocate the CS4 address space by writing the Address Range Specifier Registers
and Address Mask Registers for CS4.

• Further subdivide the CS4 address space into bank address spaces by writing the
appropriate values in the DRAM Bank Configuration Registers. Insure that the
largest bank occupies the lowest address range and that all banks are aligned on
bank boundaries, eg. a 4MB bank can start at address 0x00000000,
0x00400000(4MB), 0x008000000(8MB), etc. The starting address of the bank and
the DRAM type are programmed into the DRAM Bank Configuration Register.

• Program the refresh interval in Timer Register and the Timer Preload Register. The
same value may be used for both registers. Refresh cycles will not occur until the
DRAM Controller is enabled. Most DRAMs require eight –CAS before –RAS
cycles to occur before this mode of refresh is recognized by the DRAMs. The
DRAM space should not be accessed until eight refresh cycles has occurred.

• Program the page size in the Same Page Mask Register.

• If Programmable Wait state is enabled in the System Support Control Register,
disable Wait State Generation for –CS4 by setting the WE bit to ’0’ in the Wait
State Specifier Register for –CS4.

• Program the DRAM data width, either 16–bit or 32–bit into the Bus Width Register.

• Enable the DRAM controller, the Refresh Timer, the Chip Selects, and the
Same–Page logic by writing the System Support Control Register.

DRAM Controller

F6–11

IDLE

–RAS
Active

Row/Column
Address Switch

–CAS
Active

–CAS
Precharge

–RAS
Precharge

–DWE
Switch

Same page
same access type

Same page
different access

type

CBR
–CAS Active

CBR
–RAS Active

CBR –CAS
Precharge

Not in same page

refresh

refresh

DRAM access

Figure F6–9. DRAM Controller State Diagram

DRAM Controller

SPARClite User’s Manual

F6–12

–AS

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure F6–10. Back to Back Page_Mode Writes

–AS

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure F6–11. Back to Back Page_Mode Reads

DRAM Controller

F6–13

–AS

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure F6–12. Page_Mode Write followed by a Page_Mode Read

–AS

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure F6–13. Non Page_Mode Write on Bank1 following an access to Bank0

DRAM Controller

SPARClite User’s Manual

F6–14

–AS

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure F6–14. CAS before RAS refresh

DRAM Controller

F7–1

HAPTER

System Design Considerations

F7
C

This chapter describes SRAM and page-mode DRAM interfacing to the MB86933H–20
processor, and MB86933H–20 in-circuit emulation. Chapter 6 of this manual describes
system design considerations for SPARClite processors in more detail.

F7.1 Interfacing SRAM

The address bus, data bus, and chip select signals of the SRAM can be connected
directly to the address bus, data bus, and a chip select of the processor. The output
enable signal can be generated by gating RD/–WR high and Chip select low to produce
output enable low. Write enable for the SRAMs requires more consideration.

The processor data hold time for a write is specified as zero hold after the rising edge of
the clock. RD/–WR hold time at the end of a write operation can be 0 after the rising
edge of the clock, or can be held low if the next cycle is also a write. Thus an
implementation cannot use RD/–WR directly as –WE for the SRAMs.

Figure F7-1 shows timing for an typical system using 2 cycle access SRAM operating at
20 MHz. Individual –WE signals are generated for each of the 4 bytes in the data word.

System Design Considerations - Interfacing SRAM

SPARClite User’s Manual

F7–2

CLK P1

–AS

RD/–WR

–BE

–CS

DATA

–WE

Figure F7–1. SRAM Interfacing Example

The SRAM is controlled with a PAL using the following equations:

!clkd = !clkp1;
!soe_ = rw & !scs_;
!swe3_= !rw & !as_ & !be3_ & !clkp1

!rw & !as_ & !be3_ & !clkd
!rw & !scs_ & !swe3_ & clkp1
!rw & !scs_ & !swe3_ & clkd;

!swe2_= !rw & !as_ & !be2_ & !clkp1
!rw & !as_ & !be2_ & !clkd
!rw & !scs_ & !swe2_ & clkp1
!rw & !scs_ & !swe2_ & clkd;

!swe1_= !rw & !as_ & !be1_ & !clkp1
!rw & !as_ & !be1_ & !clkd
!rw & !scs_ & !swe1_ & clkp1
!rw & !scs_ & !swe1_ & clkd;

!swe0_= !rw & !as_ & !be0_ & !clkp1
!rw & !as_ & !be0_ & !clkd
!rw & !scs_ & !swe0_ & clkp1
!rw & !scs_ & !swe0_ & clkd;

Clock low, –AS lo, –BE low, and RD/–WR low cause –WE to be asserted. Clock high,
–CS low, –BE low and RD/–WR low cause –WE to stay low. When clock goes low
again, –WE is negated. This way there is sufficient data hold time.

For this system, CLKOUT1 from the processor was used because it has better duty
cycle control than an oscillator clock.

System Design Considerations - Interfacing SRAMSystem Design Considerations - Interfacing Page-Mode DRAM

F7–3

F7.2 Interfacing Page-Mode DRAM using an External DRAM
Controller

Interfacing Dynamic RAM requires a DRAM controller for generating RAS and CAS
(Row Address Strobe and Column Address Strobe), and for handling refresh. The
DRAM controller is typically implemented as a state machine. The DRAM controller
and signal interfaces should be designed carefully to accommodate refresh operations
and fast page mode access.

The programmable 16-bit timer provided in the MB86933H–20 processor core can be
used for timing the refresh interval. The timer output signal, –TIMER_OVF (Timer
Overflow), goes low for a single clock cycle at the end of each timer interval. The timer
interval is programmed in software, with the correct time interval depending on how the
refresh operation is implemented.

The correct number of wait states can be generated by either the processor’s internal
wait-state generator, or the DRAM controller.

The processor supports fast “page mode” access to DRAM. When the current DRAM
address is within the same page as the previous DRAM access, the –SAME_PAGE
(Same-Page Detect) signal is asserted. This tells the DRAM controller that DRAM can
be accessed using CAS only without selecting a new row of the DRAM, saving time.
Page-mode accesses thus provide timing advantages comparable to the burst-mode
accesses of some other processors.

To take advantage of page hits, RAS is asserted and left asserted to continuously select
a row. CAS is asserted one access at a time to select a memory location in that row.
Accesses need not be in consecutive locations. RAS can remain asserted as long as each
access is in the same row, and CAS can be asserted once to access each memory
location. RAS remains asserted between accesses.

The wait-state generator can be programmed to use a different (smaller) number of
clock cycles for a “page hit” (when the current address is within the same page as the
previous DRAM access).

When using the internal wait-state generator instead of the external –READY signal,
the processor has no way of detecting a refresh operation that occurs during an access.
One solution is to have the DRAM controller take control of the bus during refresh
using –BREQ (Bus Request), thereby preventing the processor from requesting a
memory access for the duration of the refresh operation. The disadvantage of this
solution is that the processor is forced to remain idle. An alternative solution is to
disable the internal wait-state generator and let the DRAM controller generate the
–READY signal for all DRAM accesses.

System Design Considerations - Interfacing Page-Mode DRAM

SPARClite User’s Manual

F7–4

Figure F7-2 is a simplified state diagram for a DRAM memory controller. Upon reset,
the state machine starts in the RAS Precharge and Idle state, and remains in that state
until a memory access or refresh request occurs.

RAS
Precharge
and Idle

RAS CAS

Page Wait:
RAS asserted
CAS negated

Refresh

Refresh
Request

Access Same_Page Access

New-Page Access
or Refresh Request

Note: Each state may represent
multiple clock cycles

Figure F7–2. Simplified State Diagram for DRAM Controller

If a refresh request occurs, the state machine goes into the Refresh state. (In practice,
this will actually be a number of sequential states.) When the refresh operation is
complete, the state machine returns to the RAS Precharge and Idle state.

When the processor requests a DRAM memory access, the state machine enters the
RAS state, in which the RAS signal is asserted to select the row. From there it goes to
the CAS state, in which the CAS signal is asserted to select the column. At this point,
data is clocked into the appropriate part, and the bus cycle ends.

From there the state machine enters the Page Wait state, in which the state machine
waits for either another memory access, or a refresh request. In this state, RAS is
asserted and CAS is negated. If there is a memory access to the same page of DRAM
(as indicated by the –SAME_PAGE signal), the state machine goes directly to the CAS
state, and CAS is asserted to select the memory location. If there is a memory access to
a different page of DRAM or if a refresh request occurs, the state machine goes to the
RAS Precharge and Idle state, then to the requested operation. The state machine waits
with RAS asserted until one of these events occurs.

For more information, refer to SPARClite Application Note #1, which describes DRAM
interfacing.

System Design Considerations - In-Circuit Emulation

F8–1

HAPTER

Instruction Set

F8
C

F8.1 MB86933H–20 Instruction Set

The MB86933H–20 processor supports the same instruction set as the MB86930
processor. Chapter 7 of the main section of this manual therefore fully describes the
MB86933H–20 instruction set.

Note that the MB86933H–20 has six register windows rather than eight. Therefore,
references to eight register windows in the description should be changed to six register
windows for the MB86933H–20, and modulo 8 in the description should be changed to
modulo 6.

Instruction Set - MB86933H–20 Instruction Set

F9–1

HAPTER

Programming Considerations

F9
C

F9.1 MB86933H–20 Programming Information

Chapter 5 of the main section of this manual contains programming information for the
SPARClite processors that applies specifically to the MB86930 processor.

The MB86933H–20, however, has no caches, has six register windows rather than
eight, and differs from the MB86930 processor in other ways (see the Overview section
of this addendum). Therefore, information given in Chapter 5 relating to features that
are not supported by the MB86933H–20 should be disregarded. The chapter should be
referenced only for programming information that is appropriate for the
MB86933H–20.

Programming Considerations - MB86933H–20 Programming Information

F10–1

HAPTER

MB86933H–20 JTAG

F10
C

F10.1 MB86933H–20 JTAG Pin List

The MB86933H–20 JTAG cells are arranged in a shift register configuration (see
Figure F10-1). When shifting in a JTAG pattern through TDI, the LSB should
correspond to the JTAG cell value for IRL<3> pin, and the MSB of the pattern should
correspond to the –BMODE16 pin’s JTAG cell. As far as JTAG output through TDO is
concerned, the first bit out corresponds to IRL<3> JTAG cell value, and the last output
bit corresponds to the –BMODE16 cell value. Table F10–1 lists the order of all of the
JTAG cells.

Table F10–1. JTAG Pin Order

Order JTAG Cell
JTAG Cell

Type Function

1 IRL<3> input MSB of Interrupt request pin

•
•

•
•

•
•

•
•

4 IRL<0> input LSB of interrupt request pin

5 ADR<2> output LSB of Address output pins

•
•

•
•

•
•

•
•

19 ADR<16> output Address output pins

20 –CAS0 output DRAM Column address strobe to byte 0

MB86933H–20 JTAG - MB86933H–20 JTAG Pin List

SPARClite User’s Manual

F10–2

Table F10–1. JTAG Pin Order (Continued)

21 ADR<17> output Address output pins

22 ADR<18> output Address output pins

23 –CAS1 output DRAM Column address strobe to byte 1

24 ADR<19> output Address output pins

25 ADR<20> output Address output pins

26 –CAS2 output DRAM Column address strobe to byte 2

27 ADR<21> output Address output pins

28 ADR<22> output Address output pins

29 –CAS3 output DRAM Column address strobe to byte 3

30 ADR<23> output Address output pins

•
•

•
•

•
•

•
•

34 ADR<27> output MSB of Address output pins

35 D_i<31> input Input bit 31 of D<31:0> bus

36 D_o<31> output Output bit 31 of D<31:0> bus

•
•

•
•

•
•

•
•

73 D_i<12> input Input bit 12 of D<31:0> bus

74 D_o<31> output Output bit 12 of D<31:0> bus

75 –RAS0 output DRAM Row address strobe for bank 0

•
•

•
•

•
•

•
•

98 D_i<0> input Input bit 0 of <31:0> bus

99 D_o<0> output Output bit 0 of <31:0> bus

100 dbusiojo output D<31:0> bus bidirectional control signal
dbusiojo = 1: D<31:0> bus is an input
dbusiojo = 0: D<31:0> bus is an output

101 tstatejo output Three–state control signal
If tstatejo=1 then the following pins are three–stated.
ADR<27:2>, ASI<3:0>, –BE<3:0>, –AS, –RD/WR,
–LOCK

102 –MEXC input Memory exception input

103 –READY input External memory transaction complete signal

104 –BREQ input Bus request input

105 –AS output Start of memory transaction output signal

106 –RD/WR output Memory Read/Write output signal

107 –LOCK output Bus lock output signal

108 –BGRNT output Bus grant output signal

109 –DWE output DRAM Write Enable

110 –ERROR output Error output signal

MB86933H–20 JTAG - MB86933H–20 JTAG Pin List

F10–3

Table F10–1. JTAG Pin Order (Continued)

111 –SAME_PAGE output Same–Page output signal

112 –CS<0> output LSB of chip select output signal

•
•

•
•

•
•

•
•

117 –CS<5> output MSB of chip select output signal

118 CLK_ECB input PLL control pin.
CLK_ECB=1: PLL on
CLK_ECB=0: PLL off

119 XTAL1 input Crystal input

120 –TIMER_OVF output Timer Overflow pin

121 –BE<0> output Byte 0 enable output signal

•
•

•
•

•
•

•
•

124 –BE<3> output Byte 3 enable output signal

125 –ASI<0> output LSB of ASI output pins

•
•

•
•

•
•

•
•

128 –ASI<3> output MSB of ASI output pins

129 –RAS1 output DRAM Row address strobe for bank 1

130 –RESET input Chip reset pin

131 –BMODE8 input 8–bit Boot Mode

132 –BMODE16 input 16–bit Boot Mode

MB86933H–20 JTAG - MB86933H–20 JTAG Pin List

SPARClite User’s Manual

F10–4

tstatejo

D<0>

dbusiojo

36CK

5CK

1CK

JTAG
Controller

Chip Logic

–MEXC

–READY

–CS<0>

–BMODE8

–BMODE16

ADR<2>

IRL<3>

IRL<2>
2CK

6CK ADR<3>

34CK ADR<27>

35CK

D<31>

132 CK

131 CK

117 CK

112 CK

103 CK

102 CK

–CS<5>

Figure F10–1. AG Cell Organization

T
D

I

T
M

S

–T
R

S
T

T
D

O

96 95 94 93

C
K

T
C

K

C
K

C
K

C
K

MB86933H–20 JTAG - MB86933H–20 JTAG Pin List IC10084–5/95–UM

