
SPARClite User’s Manual

Fujitsu Microelectronics, Inc.
Semiconductor Division

May ’94

SPARClite User’s Manual

Book design & illustration by Advanced Information Management (A.I.M.), a subsidiary of Fujitsu America,
Incorporated. This book, excluding the cover, was illustrated, and produced on a Sun SPARC IPC workstation using
Interleaf publishing software.

Cover design by Gregg Robles.

All rights reserved. This publication contains information considered proprietary by Fujitsu Limited and Fujitsu Microelectronics, Inc. No part
of this document may be copied or reproduced in any form or by any means or transferred to any third party without the prior written consent of
Fujitsu Microelectronics, Inc.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Consequently, complete
information sufficient for design purposes is not necessarily given.

Fujitsu Limited and its subsidiaries reserve the right to change products or specifications without notice. Fujitsu advises its customers to obtain
the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is current.

The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by
Fujitsu Limited or its subsidiaries. Fujitsu assumes no liability for Fujitsu applications assistance, customer’s product design, or infringement of
patents arising from use of semiconductor devices in such systems’ designs. Nor does Fujitsu warrant or represent that any patent right,
copyright, or other intellectual property right of Fujitsu covering or relating to any combination, machine, or process in which such
semiconductor devices might be or are used.

Fujitsu Microelectronics, Inc.’s Semiconductor Division’s products are not authorized for use in life support devices or systems. Life support
devices or systems are device or systems which are:

1. Intended for surgical implant into the human body.

2. Designed to support or sustain life; and when properly used according to label instructions, can reasonably be expected to cause significant
injury to the user in the event of failure.

The information contained in this document has been carefully checked and is believed to be entirely accurate. However, Fujitsu Limited and
Fujitsu Microelectronics, Inc. assume no responsibility for inaccuracies.

This document is published by the marketing department of Fujitsu Microelectronics, Inc., Semiconductor Division, 3545 North First Street,
San Jose, California, U.S.A. 95134–1804.

CREDITS

NICE is a trademark of Fujitsu Microelectronics, Inc.
SPARC is a registered trademark of SPARC International, Inc. based on technology developed by Sun Microsystems, Inc.
SPARClite is a trademark of SPARC International exclusively licensed to Fujitsu Microelectronics, Inc.
SPARCstation is a trademark of SPARC International, Inc. Products bearing the SPARC trademarks are based on an
architecture developed by Sun Microsystems, Inc.

IPC and SPARC are trademarks of Sun Microsystems, Inc.. Interleaf 5 is a registered trademark of Interleaf Corporation.

Copyright  1993 Fujitsu Microelectronics, Inc., Semiconductor Division.

TRADEMARKS

About This Manual

Preface

SPARClite is a family of microprocessors which conform to Version 8 of the SPARC
architecture and which have been optimized for use in embedded control. This manual
is the definitive guide for understanding this family of embedded processors. It
describes both the SPARClite architecture and the first four members of the family - the
MB86930, MB86931, MB86932, and MB86933. The intended audience for this manual
is both hardware systems designers and applications programmers.

Organization

This manual is divided into four sections, each with its own table of contents.

• Section 1 describes the SPARClite architecture and specifically, the MB86930
microprocessor (the first member of the SPARClite family). This section can be read
by itself for an understanding of the SPARClite architecture or the MB86930
processor.

• Section 2 describes the MB86931 which is a superset of the MB86930. This section
describes only the additional feature set of the MB86931 and therefore should be
read after section 1.

• Section 3 describes the MB86932 which is a superset of the MB86930. This section
describes only the additional feature set of the MB86932 and therefore should be
read after section 1.

• Section 4 describes the MB86933 which is a subset of the MB86930. Unlike
sections 2 and 3, this section contains a complete description of the MB86933 and
can be read independently of all other sections.

SPARClite User’s Manual

Notation

This manual uses the following notational conventions:

• Active-low signal names are preceded with a dash, as in –RESET.

• Numerals without any special prefix are in base 10. Hexadecimal numerals are
preceded by 0x, and binary numerals are preceded by 0b. Thus, 28 = 0x1C =
0b11100.

Related Literature

Additional information can be found in the following documents:

• MB86930 SPARClite 32-Bit RISC Embedded Processor Data Sheet—Describes the
MB86930 processor in detail, including complete physical, electrical, and timing
characteristics. Available from Fujitsu Microelectronics’ Semiconductor Division.

• MB86931 SPARClite 32-Bit RISC Embedded Processor Data Sheet—Describes the
MB86931 processor in detail, including complete physical, electrical, and timing
characteristics. Available from Fujitsu Microelectronics’ Semiconductor Division.

• MB86932 SPARClite 32-Bit RISC Embedded Processor Data Sheet—Describes the
MB86932 processor in detail, including complete physical, electrical, and timing
characteristics. Available from Fujitsu Microelectronics’ Semiconductor Division.

• MB86933 SPARClite 32-Bit RISC Embedded Processor Data Sheet—Describes the
MB86933 processor in detail, including complete physical, electrical, and timing
characteristics. Available from Fujitsu Microelectronics’ Semiconductor Division.

• SPARClite Application Notes — Discuss specific design issues in detail. Available
from Fujitsu Microelectronics’ Semiconductor Division.

• The SPARC Architecture Manual (version 8) — This document is a more detailed
description of the version 8 SPARC architecture on which the SPARClite family is
based. Available from SPARC International, Menlo Park, California.

ONTENTSC
SECTION 1

Chapter 1: Section 1: MB86930 MAY ‘94.

Chapter 1: Overview
1.1 General Description 1-1.

1.2 Special Features 1-2.

1.3 Programmer’s Model 1-3.

1.3.1 Program Modes 1-4.
1.3.2 Memory Organization 1-4.
1.3.3 Registers 1-6.
1.3.4 Data Types 1-9.
1.3.5 Instructions 1-10.
1.3.6 Data and Instruction Caches 1-12.
1.3.7 Interrupts and Traps 1-13.

1.4 Internal Architecture 1-15.

1.4.1 Integer Unit 1-15.
1.4.2 Data and Instruction Caches 1-16.
1.4.3 Bus Interface Unit 1-17.
1.4.4 Debug Support Unit 1-17.

1.5 External Interface 1-17.

1.5.1 Signals 1-17.
1.5.2 Bus Operation 1-18.
1.5.3 System Support Functions 1-19.

1.6 Development-Support Tools 1-19.

Contents

SPARClite User’s Manual

Chapter 2: Programmer’s Model

2.1 Program Modes 2-1.

2.2 Memory Organization 2-2.

2.3 Registers 2-3.

2.3.1 Register Windows 2-4.

2.3.2 Special Uses of the r Registers 2-7.
2.3.3 SPARC-Defined Special-Purpose Registers 2-7.
2.3.4 Memory-Mapped Control Registers 2-12.

2.4 Data Types 2-22.

2.5 Instructions 2-22.

2.5.1 Instruction Formats 2-24.

2.5.2 Logical Instructions 2-25.
2.5.3 Arithmetic and Shift Instructions 2-26.
2.5.4 Control Transfer Instructions 2-32.
2.5.5 Load and Store Instructions 2-39.

2.5.6 Read and Write Control Register Instructions 2-42.

2.6 Data and Instruction Caches 2-44.

2.6.1 Structure 2-44.
2.6.2 Operation 2-47.

2.7 Interrupts and Traps 2-50.

2.7.1 Trap Types 2-51.
2.7.2 Trap Behavior 2-53.
2.7.3 Reset and Error Modes 2-54.

2.8 Debug Support Unit 2-55.

2.8.1 Monitor Mode 2-56.

2.8.2 Breakpoint Registers 2-57.
2.8.3 Breakpoint Traps 2-60.

2.9 SPARC Compliance 2-63.

Contents

Chapter 3: Internal Architecture

3.1 Integer Unit 3-2.

3.1.1 I Block 3-3.
3.1.2 A Block 3-8.

3.1.3 E Block 3-10.
3.1.4 Programmer-Visible State and Processor State 3-15.
3.1.5 IU Support for Debugging 3-16.

3.2 Data and Instruction Caches 3-16.

3.3 Bus Interface Unit 3-17.

3.3.1 Buffers 3-17.
3.3.2 Exception Handling 3-18.
3.3.3 Effect on the Pipeline 3-18.

Chapter 4: External Interface

4.1 Signals 4-1.

4.1.1 Processor Control and Status 4-3.
4.1.2 Memory Interface 4-4.
4.1.3 Bus Arbitration 4-6.

4.1.4 Peripheral Functions 4-7.
4.1.5 Emulator Bus 4-7.
4.1.6 Test and Boundary-Scan 4-7.

4.2 Bus Operation 4-8.

4.2.1 Exception Handling 4-9.
4.2.2 Bus Cycle 4-10.

4.3 System Support Functions 4-16.

4.3.1 System-Configuration Registers 4-16.
4.3.2 Same-Page Detection 4-18.

4.3.3 Programmable Timer 4-19.

Contents

SPARClite User’s Manual

Chapter 5: Programming Considerations

5.1 Initialization 5-1.

5.1.1 Establishing the Processor State 5-2.
5.1.2 Configuring the System 5-2.

5.1.3 Initializing the On-Chip Cache 5-4.

5.2 Trap Handling 5-5.

5.3 Register and Stack Management 5-11.

5.3.1 Registers 5-11.
5.3.2 Memory Stack 5-16.

5.3.3 Functions Returning Aggregate Values 5-17.
5.3.4 Leaf Procedure Optimization 5-18.
5.3.5 Register Allocation Within a Window 5-22.
5.3.6 Other Register and Window Usage Models 5-23.

5.4 Cache Management 5-24.

5.5 Division Routines Using the DIVScc Instruction 5-25.

5.5.1 Simple Divide Step Examples 5-25.
5.5.2 Signed Division with Doubleword Dividend (divs2) 5-27.
5.5.3 Signed Division with Word Dividend (divs1) 5-30.

5.5.4 Unsigned Division with Doubleword Dividend (divu2) 5-32.
5.5.5 Unsigned Division with Word Dividend (divu1) 5-33.
5.5.6 Divide Step In Support Of A To D Converter Compensation 5-34.

5.6 Using the SCAN Instruction 5-37.

5.6.1 Scan in Support of Software Floating Point 5-37.

5.6.2 Scan in Support of Run Length Encoding 5-39.

5.7 Multiply Routines Using the MULScc Instruction 5-41.

5.7.1 Simple Multiply Step Examples 5-42.
5.7.2 Signed Multiplication Using Multiply Step 5-44.

5.7.3 Unsigned Multiplication Using Multiply Step 5-45.
5.7.4 Corner Turning Buffer Using Multiply Step 5-46.

Contents

Chapter 6: System Design Considerations

6.1 Clocks 6-2.

6.2 Memory and I/O Interfacing 6-2.

6.2.1 Interfacing SRAM 6-3.
6.2.2 Interfacing Page-Mode DRAM 6-4.

6.2.3 Interfacing EPROM and Other Devices with Slow Turn-off 6-6.
6.2.4 Illegal Memory Accesses 6-7.
6.2.5 I/O Interfacing Example: Ethernet Device 6-7.

6.3 DMA and Bus Arbitration 6-9.

6.4 MB86940 Peripheral Chip 6-10.

6.4.1 Interrupt Control 6-10.
6.4.2 Counter/Timers 6-11.
6.4.3 USARTs 6-11.

6.5 In-Circuit Emulation 6-11.

6.6 Physical Design Issues 6-12.

Chapter 7: Instruction Set

7.1 Suggested Assembly Language Syntax 7-1.

7.1.1 Register Names 7-2.
7.1.2 Special Symbol Names 7-2.

7.1.3 Values 7-3.
7.1.4 Labels 7-3.
7.1.5 Comments 7-3.

7.2 Syntax Design 7-3.

7.3 Synthetic Instructions 7-3.

7.4 Binary Opcodes 7-6.

7.5 Instruction Set 7-16.

Contents

SPARClite User’s Manual

Chapter 8: JTAG

8.1 Introduction 8-1.

8.2 Test Access Ports (TAP) 8-2.

8.2.1 TCK 8-2.
8.2.2 TMS 8-2.

8.2.3 TDI 8-3.
8.2.4 TDO 8-3.
8.2.5 –TRST 8-3.

8.3 Test Instructions 8-3.

8.3.1 BYPASS 8-4.
8.3.2 SAMPLE/PRELOAD 8-4.
8.3.3 EXTEST 8-5.
8.3.4 JTAG Cells 8-5.

8.3.5 Input Cell 8-5.
8.3.6 Output Cell 8-6.
8.3.7 I/O Cell 8-6.
8.3.8 Output Cell with Set 8-6.

8.4 Operation 8-8.

8.5 The TAP Controller 8-10.

8.5.1 TAP Controller State Diagram 8-10.

8.6 MB86930 JTAG Pin List 8-16.

Contents

Doc. Descript. Changes from 1993 MB86930 SPARClite User’s Manual 1994

Err. No. Exxxx

Subject Warning Note Cache/Memory Interface

Entered By Bruce McKeever

Created 4/27/94, Updated 1/30/96

Last Modified

Page 2–48

Table

Figure

Section 2.6 Data and Instruction Caches

Subsection 2.6.2 Operation

Location paragraph 5

Was
”Otherwise, a new line needs to be allocated on a read miss ... The fetched word
overwrites the appropriate word in this line; its Valid bit is then set, and the Valid bits
for the other words in the line are cleared.”

Should Be (add)

”Warning note: the entire 32 bits on the data bus are stored in cache. Even when read-
ing bytes or half words from external memory, the external memory should supply
the complete word. A subsequent load byte or load half word with the same word
address may be processed as a cache hit.”

Explanation
A SPARClite customer got in trouble because they implemented their external

memory subsystem to use the byte enable signals literally and only supplied the
requested byte or half word.

Doc. Descript. Changes from 1993 MB86930 SPARClite User’s Manual 1994

Err. No. Exxxx

Subject Warning Note Cache/Memory Interface

Entered By Bruce McKeever

Created 4/27/94

Last Modified

Page 3–16

Table

Figure

Section 3.2 Data and Instruction Caches

Location paragraph 3

Was
”in the MB86930 processor, each cache is 2 Kbytes in size, organized into two banks
of sixty–four 16–byte lines. Cache lines are refilled in 4–byte increments to avoid the
interrupt latency incurred by long, uninterruptible cache line replacements.”

Should Be
add

”Warning note: all 4–bytes must be supplied by external memory even when respond-
ing to load byte or load half word.”

Explanation
A SPARClite customer got in trouble because they implemented their external

memory subsystem to use the byte enable signals literally and only supplied the
requested byte or half word.

Doc. Descript. Changes from 1993 MB86930 SPARClite User’s Manual 1994

Err. No. Exxxx

Subject Warning Note Cache/Memory Interface

Entered By Bruce McKeever

Created 4/27/94

Last Modified

Page 4–5

Table

Figure

Section 4.1 Signals

Subsection 4.1.2 Memory Interface

Location Signal –BE3–0

Was
parenthetical note at end of descriptive paragraph. ”(the byte enable signals can be
ignored during load operations).”

Should Be

”(the byte enable signals should be ignored during load operations for any section of
memory that may be cacheable).”

Explanation
A SPARClite customer got in trouble because they implemented their external

memory subsystem to use the byte enable signals literally and only supplied the
requested byte or half word.

Doc. Descript. MB86930 SPARClite Application Note 1

Dram Control Interface

Err. No. Exxxx

Subject Warning Note Cache/Memory Interface

Entered By Bruce McKeever

Created 4/27/94

Last Modified

Page 3

Table

Figure

Section Introduction

Subsection Byte Enable

Location last paragraph

Was
”The Byte Enable signals, –BE<3:0>, from SPARClite are used during write cycles to
indicate the data size being transferred and not used during read cycles.

Should Be: add

”Warning note: Since, during memory read operations when data cache is on, all 32
bits on the data bus are stored in cache, external memory should supply the complete
word, ignoring byte enables.”

Explanation
A SPARClite customer got in trouble because they implemented their external
memory subsystem to use the byte enable signals literally and only supplied the
requested byte or half word.

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject replace “word” with “window”

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 2–36

Table

Figure

Section 2.5 Instructions

Subsection 2.5.4 Control Transfer Inctructions

Location following figure 2–37, 1st paragraph with head “Return from Trap”

Was

Unless it causes a trap, the RETT instruction does four things: it increments the Current
Word Pointer (modulo 8), causes a delayed control transfer to the register-indirect target
address, restores the processor to the operating mode (user or supervisor) it was in before
the trap was taken, and enables traps.

Should be

Unless it causes a trap, the RETT instruction does four things: it increments the Current
Window Pointer (modulo 8), causes a delayed control transfer to the register-indirect
target address, restores the processor to the operating mode (user or supervisor) it was in
before the trap was taken, and enables traps.

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject switch names of registers 1 and 0

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 2–59

Table

Figure 2–37. Debug Status Register

Section 2.8 Debur Support Unit

Subsection 2.8.2 Breakpoint Registers

Location following figure 2–37, 1st paragraph with head “Return from Trap”

Was
031 2 1

Data Address 2 Match

45

Data Address 1 Match

Instruction Address 2 Match

36

Instruction Address 1 Match

–EMU_BRK at Reset

–EMU_ENBL at Reset

0x0000FF1C, ASI=0x1

Figure 2-37. Debug Status Register
Should be

031 2 1

Data Address 2 Match

45

Data Address 1 Match

Instruction Address 2 Match

36

Instruction Address 1 Match

–EMU_BRK at Reset
–EMU_ENBL at Reset

0x0000FF1C, ASI=0x1

Figure 2-37. Debug Status Register

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of LDD hold cycle equation

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 3–6

Table

Figure

Section 3.1 Integer Unit

Subsection 3.1.1 I Block

Location lower part of page, following Note

Was

LDD [%r1+%r2],%0r4
ADD %r5,%r5,%r6

Should be

LDD [%r1+%r2],%r4
ADD %r5,%r5,%r6

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Additions to table 3–2 Detection of Trap Conditions

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 3–7

Table 3–2 Detection of Trap Conditions

Figure

Section 3.1 Integer Unit

Subsection 3.1.1 I Block

Location: Row 14 and 15 moved to 3rd and 4th row of table

Was

Figure 3-2: Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1
2
3
4

—
1
3
2

D
F
D
D

reset
instruction_access_exception
priv_instruction
illegal_instruction

5
5
6
7

4
36
5
6

D
D
D
D

fp_disabled
cp_disabled
window_overflow
window_underflow

8
10
11
12
13
13

7
9
10

128-255
255
255

E
M
E
D
F
M

mem_address_not_aligned
data_access_exception
tag_overflow
trap_instruction (Ticc)
instruction_breakpoint
data_breakpoint

14
15
—
—
—
28

31
30
—
—
—
17

interrupt_level_15
interrupt_level_14
—
—
—
interrupt_level_1

Should be

Figure 3-2: Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1
1.5
1.5
2
3
4

—
—
—
1
3
2

D
F
M
F
D
D

reset
instruction_breakpoint
data_breakpoint
instruction_access_exception
priv_instruction
illegal_instruction

5
5
6
7

4
36
5
6

D
D
D
D

fp_disabled
cp_disabled
window_overflow
window_underflow

8
10
11
12

7
9
10

128-255

E
M
E
D

mem_address_not_aligned
data_access_exception
tag_overflow
trap_instruction (Ticc)

14
15
—
—
—
28

31
30
—
—
—
17

interrupt_level_15
interrupt_level_14
—
—
—
interrupt_level_1

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Added minus symbol to EMU_BRK in Table 4–1, Input and Output
Signals

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 4–2

Table 4–1, Input and Output Signals

Figure

Section 4.1 Signals

Subsection

Location 3rd column of table, 5th entry

Was

Table 4-1: Input and Output Signals
Symbol Type Symbol Type Symbol Type Symbol Type

ADR <31:2> O
S(L)
G(Z)
I (1)

–CS0, –CS1
–CS2, –CS3
–CS4, –CS5

O
S(L)
G(1)
I (1)

–LOCK O
S(L)
G(Z)
I (1)

TDO O

–AS O
S(L)
G(Z)
I (1)

D <31:0> I/O
S(L)
G(Z)
I (Z)

–MEXC I
S(L)

–TIMER_OVF O
S(L)
G(Q)
I (Q)

ASI <7:0> O
S(L)
G(Z)
I (1)

EMU_BRK I –SAME_PAGE O
S(L)
G(1)
I (1)

TMS I

–BE 3-0 O
S(L)
G(Z)
I (0)

EMU_D<3:0> I/O RD/–WR O
S(L)
G(Z)
I (1)

–TRST I

–BGRNT O
S(L)
G(0)
I (Q)

–EMU_ENB I –READY I
S(L)

XTAL1 (CLKIN)
XTAL2

I
O

G(Q)
I (Q)

–BREQ I
S(L)

EMU_SD <3:0> I/O –RESET I
A(L)

CLKOUT1
CLKOUT2

O
G(Q)
I (Q)

–ERROR O
S(L)
G(Q)
I (Q)

TCK I

CLK_ECB I IRL <3:0> I
A(L)

TDI I

Should be

Table 4-1: Input and Output Signals

External Interface - SignalsExternal Interface - Signals

Symbol Type Symbol Type Symbol Type Symbol Type

ADR <31:2> O
S(L)
G(Z)
I (1)

—CS0, –CS1
—CS2, –CS3
—CS4, –CS5

O
S(L)
G(1)
I (1)

—LOCK O
S(L)
G(Z)
I (1)

TDO O

—AS O
S(L)
G(Z)
I (1)

D <31:0> I/O
S(L)
G(Z)
I (Z)

—MEXC I
S(L)

—TIMER_OVF O
S(L)
G(Q)
I (Q)

ASI <7:0> O
S(L)
G(Z)
I (1)

—EMU_BRK I —SAME_PAGE O
S(L)
G(1)
I (1)

TMS I

—BE 3-0 O
S(L)
G(Z)
I (0)

EMU_D<3:0> I/O RD/–WR O
S(L)
G(Z)
I (1)

—TRST I

—BGRNT O
S(L)
G(0)
I (Q)

—EMU_ENB I —READY I
S(L)

XTAL1 (CLKIN)
XTAL2

I
O

G(Q)
I (Q)

—BREQ I
S(L)

EMU_SD <3:0> I/O —RESET I
A(L)

CLKOUT1
CLKOUT2

O
G(Q)
I (Q)

—ERROR O
S(L)
G(Q)
I (Q)

TCK I

CLK_ECB I IRL <3:0> I
A(L)

TDI I

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of code fragment

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 5–2

Table

Figure

Section 5.1 Initialization

Subsection 5.1.1 Establishing the Processor State

Location Center of page 5–2

Was

! Reset Initialization
wr %g0, 0x0fa7,%psr ! Set psr: mask interrupts, mode=S, Pmode=U,

! traps enabled, CWP=7
wr %g0, 0x0, %wim ! Initialize wim to window 0
wr %g0, 0x0, %tbr ! Initialize tbr to 0

Should be

! Reset Initialization
wr %g0, 0x0fa7,%psr ! Set psr: mask interrupts, mode=S, Pmode=S,

! traps enabled, CWP=7
wr %g0, 0x0, %wim ! Initialize wim to window 0
wr %g0, 0x0, %tbr ! Initialize tbr to 0

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of calling convention

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 5–34

Table

Figure

Section 5.5 Division Routines Using the DIVScc Instruction

Subsection 5.5.5 Unsigned Division with Word Dividend (divu1)

Location 9 lines above “5.5.6 Divide Step In Support of A to D Converter Com-
pensation”

Was
 ·
 divscc %o1, %o2, %o1
 divscc %o1, %o2, %o1 !divide step 31
 retl !exit for quotient–only divide
 divscc %o1, %o2, %o1 !divide step 32

!ALL the following steps may be omitted for quotient–only divide

Should be
 ·
 divscc %o1, %o2, %o1
 divscc %o1, %o2, %o1 !divide step 31
! retl !exit for quotient–only divide
 divscc %o1, %o2, %o1 !divide step 32

!ALL the following steps may be omitted for quotient–only divide

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of code fragment

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 5–37

Table

Figure

Section 5.6 Using the SCAN Instruction

Subsection 5.6.1 Scan in Support of Software Floating Point

Location Bottom of page 5–37

Was

 �

 �

 �

sethi 0x3fe, %g5 !mask for sign and exponent with and
 !or for fraction with andn
 sll %g5,1,%g4

Should be
 �

 �

 �

sethi %hi(0xff800000), %g5 !mask for sign and exponent with and
 !or for fraction with andn
 sll %g5,1,%g4

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of code fragment

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 5–38

Table

Figure

Section 5.6 Using the SCAN Instruction

Subsection 5.6.1 Scan in Support of Software Floating Point

Location 3/4ths of the way down on page 5–38

Was
 subcc %g2,32,%g0 !test if all significant bits lost
 blu 1f !use unsigned compare for future compatibility
 sub %g2,8,%g2 !remove effect of format’s 8 leading 0’s

Should be

 subcc %g2,32,%g0 !test if all significant bits lost
 blu 1f !use unsigned compare for future compatibility
 !blu same as bcs
 sub %g2,8,%g2 !remove effect of format’s 8 leading 0’s

Doc. Descript. Changes from 1994 MB86930 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of code fragment

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page 7–44

Table

Figure

Section 7.5 Instruction Set

Subsection

Location following formats section

Was

Syntax:

jmpl reg rs1 , reg rs2 , reg rd
jmpl reg rs1 , immediate, reg rd

Should be

Syntax:

jmpl reg rs1 + reg rs2 , reg rd
jmpl reg rs1 � immediate, reg rd

Doc. Descript. Changes from 1994 MB86932 SPARClite User’s Manual 1995

Err. No. Exxxx

Subject Correction of typo

Entered By Bruce McKeever

Created 4/11/95

Last Modified

Page B2–8

Table

Figure

Section 2.2 Programmer’s Model

Subsection 2.2.5 Instruction Fault Status Register

Location bottom of page

Was

The instruction Fault Status Register is a read-only register. The bits in this regis–
ter are set by hardware when an instruction_access_exception occurs and indicate
the cause of the instruction_access_exception. This register is clered when either

Should be

The instruction Fault Status Register is a read-only register. The bits in this regis–
 ter are set by hardware when an instruction_access_exception occurs and indicate
 the cause of the instruction_access_exception. This register is cleared when either

MB86930 MAY ‘94

SECTION 1

MB86930 - SPARClite User’s Manual

1-1

HAPTER

Overview 1

1
C

The SPARClite family is a collection of SPARC-based microprocessors optimized for
use in embedded systems. Processors in the SPARClite family conform to the SPARC
version 8 architecture definition; in particular, they are fully compatible with existing
SPARC code and existing SPARC development environments. The MB86930 processor
is the first member of the SPARClite family. This chapter provides a quick introduction
to the processor architecture and the MB86930 in particular. Subsequent chapters will
review this material in more detail.

1.1 General Description

The MB86930 is a high-performance processor suitable for use in embedded control
applications such as printers, scanners, robotic machinery, telecom switches and
monitors, and I/O subsystems. It operates at clock speeds up to 50 MHz, executing
SPARC instructions at a maximum rate of 46 MIPs, and includes 2 Kbytes of
instruction and 2 Kbytes of data cache on chip. It is available in a variety of packages,
depending on clock-speed and power-dissipation requirements.

The processor consists of a Harvard (Aiken) architecture Integer Unit (IU) core,
instruction and data caches, a Bus Interface Unit (BIU), and an In-Circuit Emulator
Unit (EMU). These units are connected internally over separate instruction and data
buses, and to external memory and I/O over a unified (instruction and data) bus which
carries 32 bits of address and 32 bits of data.

Overview - General Description

SPARClite User’s Manual

1-2

The register file in the IU implements 8 register windows. An integer multiply unit
(MU) within the IU speeds applications which require integer multiplication. The
processor uses software to emulate floating-point instructions at rates up to 1 MFLOP.

The internal instruction and data caches make it possible to sustain a processing rate
close to one cycle per instruction by providing the IU at 50 MHz with a maximum
aggregate data throughput of 400 Mbytes/sec (two 32-bit words per cycle). The
maximum external data throughput is 200 Mbytes/sec (1 word per cycle). In many
applications, the internal caches make it possible to maintain high throughput even with
slow external memory; SPARClite is therefore a cost-effective solution in embedded
control applications that require high processing throughput but cannot tolerate the cost
of large, high-speed memories.

The MB86930 is designed with Fujitsu’s AS technology, a 1µ and 3-level metal process
with minimum drawn transistor lengths of 0.8µ. The design of the data path and other
arrayed blocks is fully custom to optimize die area and speed. Random control blocks
are based on standard cells. All circuits are fully static.

While it does provide a mechanism for code and data protection, the MB86930 is
optimized for embedded applications which do not require virtual-to-physical address
translation. Using an MB86930 processor in a virtual-memory system, while possible,
would require an external Memory Management Unit for address translation.

1.2 Special Features

This section lists some of the features which give the MB86930 its superior speed,
flexibility and efficiency and make it an ideal choice for a wide variety of low cost,
high-performance embedded systems.

• Fast Instruction Execution: The instruction set is streamlined and hardwired for
fast execution, with most instructions executing in a single cycle. At 50 (40,30,20)
MHz, the MB86930 executes instructions at a peak rate of 50 (40,30,20) MIPs, and
can sustain performance of 46 (37,28,18) MIPs. The Integer Unit (IU) features a
5-stage pipeline which has been designed to handle data interlocks, has an
optimized branch handler for efficient control transfers, and a bus interface to
handle single cycle bus accesses to on-chip cache.

• Large Register Set: An internal register file consisting of 136 registers organized
into eight overlapping windows speeds interrupt response time and context switches.
The register file minimizes accesses to memory during procedure linkages and
facilitates passing of parameters and assignment of variables, reducing code in many
programs. Reduced code, in turn, can fit more easily into the instruction cache.

Overview - Special Features

1-3

• On-Chip Caches: On-chip data and instruction caches decouple the processor from
external memory latency. The caches are organized as two-way set-associative for
improved hit rates, as compared with direct-mapped caches.

• Cache Locking: Both data and instruction entries can be locked into their
respective caches to ensure deterministic response and highest performance for
critical or frequently recurring routines. Maximum flexibility has been designed into
the cache to allow all or selected portions to be locked.

• Separate Instruction and Data Paths On-Chip: Separate 32-bit instruction and
data buses provide a high-bandwidth interface between the IU and on-chip cache.
These buses support single cycle instruction execution as well as single cycle data
transfers with the cache. The on-chip bus design also supports future expansion of
the MB86930.

• System Support Functions: The requirement for glue logic between the MB86930
and the system is minimized by providing programmable chip selects,
programmable wait-state circuitry, and support for connection to fast page-mode
DRAM. Multiple bus masters are supported through a simple handshake protocol.

• Clock Generator: To simplify clock design, a crystal can be connected directly to
the on-chip oscillator, or an external clock source can be used. A phase-locked loop
minimizes the skew between on- and off-chip clocks.

• Enhanced Instruction Set: The MB86930 incorporates a fast integer multiply
instruction which executes in a fast 5, 3 or 2 cycles for 32-bit, 16-bit or 8-bit
operands. An integer divide-step instruction cuts divide times by a factor of 5 to 10
over previous SPARC implementations. A scan instruction supports a single-cycle
search for the most significant non-sign bit in a word.

• Fully Static Circuit Design: Its static design gives the MB86930 superior noise
immunity. Future members of the SPARClite family will support a low-power mode,
in which the processor clock can be slowed or stopped for arbitrary periods of time
to reduce operating current with no loss of internal state.

• Test and Debug Interface: The MB86930 supports production test through industry
standard JTAG boundary scan. Hardware emulation is supported with on-chip
breakpoint and single step logic. A dedicated emulator bus provides a means to trace
transactions between the integer unit and on-chip cache.

1.3 Programmer’s Model

This section briefly introduces those aspects of the SPARClite processor architecture
which are visible to software: the user and supervisor modes of program execution; the
organization of the address space; the processor’s register set, supported data types, and
instruction set; the on-chip caches; and interrupts and traps. Each of the topics discussed
here is developed more fully in subsequent chapters.

Overview - Programmer’s Model

SPARClite User’s Manual

1-4

1.3.1 Program Modes

The SPARClite architecture supports protection in multitasking environments by
providing two mutually exclusive modes of program execution, user mode and
supervisor mode. Certain instructions are privileged, and can only be executed when the
processor is in supervisor mode. Any attempt to execute a privileged instruction in user
mode causes a trap.

Typically, application programs run in user mode, while operating systems run in
supervisor mode. On reset, the processor is in supervisor mode. To enter user mode,
software must clear a bit in the Processor State Register. The processor enters
supervisor mode from user mode only when a hardware reset, an interrupt, or a trap
occurs.

1.3.2 Memory Organization

The processor can directly address up to 1 Terabyte of memory, organized into 256
address spaces of 4 GB each. Every external access involves an 8–bit Address Space
Identifier (ASI), as well as a 32-bit address. The ASI selects one of the address spaces,
and the 32-bit address selects a location within that space.

The use of four of the address spaces are defined in the SPARC architecture: the User
Instruction, Supervisor Instruction, User Data, and Supervisor Data spaces. SPARClite
defines additional address spaces, which are used for memory-mapped control registers
and for the data and instruction caches; two further address spaces are reserved for
hardware debug. The remaining spaces are application-definable; any of them can be
used for either data memory or I/O. All I/O is memory-mapped. The organization of
the entire addressable range is illustrated in Figure 1-1.

Overview - Programmer’s Model

1-5

FF 00000000

FD 00000000

Application–Definable (952 GB)

10 00000000

0F 00000000

0E 00000000

0D 00000000

0C 00000000

0B 00000000

0A 00000000

09 00000000

Data Cache–Data (2 KB implemented)

Data Cache–Tags (512 implemented)

Supervisor Data (4 GB)*

User Data (4 GB)*

Supervisor Instruction (4 GB)*

08 00000000
User Instruction (4 GB)*

04 00000000

Application–Definable (16 GB)

02 00000000

01 00000000

00 00000000
Application–Definable (4 GB)

Application–Definable

Control Registers (84 B)

(See Fig. 1-2, Register Set)

32-Bit
Address

8-Bit
Address
Space

indicator
(ASI)

Memory and I/O Space
(240 Addressable Bytes)

Memory-Mapped Registers
and On-Chip Cache

Instruction Cache-Tags (512 implemented)

03 00000000

Data Cache–Locks (512 implemented)

Instruction Cache-Data (2 KB implemented)

* Note: Cacheable address spaces.

FE 00000000

Reserved for Hardware Debug

Reserved for Hardware Debug

Instruction Cache-Locks (512 implemented)

Figure 1-1. Address-Space Organization

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words
between external memory (or I/O) and processor registers. In user mode, only the user
instruction and data spaces are accessible; accessing any of the remaining 254 address
spaces requires the processor to be in supervisor mode.

The MB86930 processor does not contain memory-management hardware; virtual-ad-
dress translation can be handled by software, or by an external memory-management
unit with the on-chip caches disabled.

Overview - Programmer’s Model

SPARClite User’s Manual

1-6

1.3.3 Registers

All registers are 32 bits wide. There are general-purpose registers, whose contents have
no pre-assigned meaning, and special-purpose registers, which contain control and
status information or special data values. Some of the special-purpose registers are
defined in the SPARC architecture; the rest are SPARClite- or device-specific. The
non-SPARC special-purpose registers are memory-mapped. The general-purpose
registers, and the special-purpose Y Register, are the only ones which can be accessed
in user mode. The register set is illustrated in Figure 1-2.

Processor State Register (PSR)

Window Invalid Mask Register (WIM)

Trap Base Register (TBR)

Y Register

Program Counter (PC)*

Next Program Counter (nPC)*

Ancillary State Register (ASR) 16 (reserved)

Ancillary State Register (ASR) 17

Cache/Bus Interface Unit Control Register

Lock Control Register

Restore Lock Control Register

Same–Page Mask Register

Address Range Specifier Registers (ARSR <5:1>)

Address Mask Registers (AMR <5:0>)

Wait–State Specifier Registers (WSSR <2:0>)

Timer Register

Timer Preload Register

System Support Control Register

128 Windowed Registers

8 Global Registers

Memory-Mapped Control Registers
(See Fig. 1-1, Address-Space Organization)

SPARC-Defined Registers (Not Memory-Mapped)

Special-Purpose RegistersGeneral-Purpose Registers

* Not read/writable

(See Fig. 1-3, Register Windows)

Figure 1-2. Register Set

Overview - Programmer’s Model

1-7

General-Purpose Registers

In the MB86930, there are 136 general-purpose registers; 8 of these are global registers;
the other 128 are divided into 8 overlapping blocks, or windows. Each window contains
24 registers. Of these, 8 are local to the window, 8 are “out” registers shared with the
adjacent window below, and 8 are “in” registers shared with the adjacent window
above. This organization is illustrated in Figure 1-3.

Figure 1-3. Register Windows

At any given time, 32 general-purpose registers can be accessed directly: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active.

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed are written to the “out” registers of the current window,

Overview - Programmer’s Model

SPARClite User’s Manual

1-8

which are the same as the “in” registers of the adjacent window. A SAVE instruction
can then be used to decrement the Current Window Pointer, making the parameter
values available to the subroutine without moving any data. A RESTORE instruction
can be used to increment the CWP upon return from the subroutine. In effect, the
general-purpose registers cache the top portion of the run-time stack.

The window overlap also speeds interrupt handling, as interrupts automatically
decrement the CWP, giving the interrupt routing its own window. The SPARC
architecture requires a free window to be available to handle these traps.

Special-Purpose Registers

The special-purpose registers include the control and status registers defined by the
SPARC architecture, plus a collection of memory-mapped registers which control
peripheral functions.

Special instructions exist for reading and writing each of the SPARC control and status
registers, except for the Program Counter and the Next Program Counter. The Y
Register can be read and written in user mode; the instructions that access the other
SPARC-defined registers are privileged.

The memory-mapped registers can be read and written with the alternate-space load and
alternate-space store instructions, which are also privileged.

The SPARC-defined registers, shown in Figure 1-2 above, are:

• Processor State Register (PSR)—The primary processor control and status register.
It contains mode fields, which are set by the operating system to configure the
processor, and status fields, which are set by the processor to indicate the effects of
instruction execution.

• Window Invalid Mask Register (WIM)—Used by software to detect the occurrence
of register file underflows and overflows. It contains one mask bit for each register
window. If an operation which normally increments or decrements the Current
Window Pointer would cause the CWP to point to a window whose corresponding
WIM bit equals 1, a trap occurs.

• Trap Base Register (TBR)—Contains three fields used by the processor to generate
the address of the service routine when an interrupt or trap occurs.

• Y Register—Used in stepwise multiplication and division routines based on the
MULScc and DIVScc instructions. Also used for integer multiply operations.

• Program Counter (PC)—Contains the word address of the instruction currently
being executed by the Integer Unit. The PC cannot be directly read or written.

• Next Program Counter (nPC)—Contains the word address of the next instruction to
be executed, assuming that no trap occurs. The nPC cannot be directly read or
written.

Overview - Programmer’s Model

1-9

• Ancillary State Registers (ASR[31:1])—The SPARC definition includes 31
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use. The
remaining ASR’s can be defined and used in any way by SPARC implementations.
SPARClite defines the following ASR:

ASR17— Used to enable and disable single-vector trapping. (When this feature is
enabled, all traps vector to a single location.) Single vector trapping provides a
small memory alternative to the standard 1K word trap table.

The memory-mapped SPARClite-specific registers, shown in Figure 1-2, are:

• Cache/Bus Interface Unit Control Register—Controls the operation of the data and
instruction caches, and the write and prefetch buffers of the Bus Interface Unit.

• Lock Control Register—Controls the locking of individual entries in the data and
instruction caches.

• Restore Lock Control Register—Enables or disables the restoration of the Lock
Control Register upon return from an interrupt or a hardware trap.

• Same-Page Mask Register—Controls the operation of the same-page detection logic
by specifying which bits of the current ASI and address are to be compared with
those of the previous ASI and address.

• Address Range Specifier Registers (ARSR[5:1])—Control the assertion of the
Chip-Select outputs (–CS[5:1]). –CSn is asserted when the value on the address bus
falls in the address range specified by ARSRn. –CS0 is asserted on accesses to the
lowest address range in Supervisor Instruction Space.

• Address Mask Registers (AMR[5:0])—AMRn controls the comparison of the
current address with ARSRn by specifying which bits are to be compared and which
are “don’t cares.”

• Wait-State Specifier Registers (WSSR[2:0])—Determine, for each address range,
the number of clock cycles between the time an address in that range appears on the
address bus and the time the processor automatically generates the –READY signal.
This makes it possible for memory and I/O devices with different access times to be
connected to the processor without additional logic.

• Timer Register—Contains the current timer count.

• Timer Pre-Load Register—Contains the value which is loaded into the timer when
the timer overflows.

• System Support Control Register—Enables or disables same-page detection,
chip-select, programmable wait-states, and the timer, independently of one another.

1.3.4 Data Types

SPARClite instructions support the Signed Integer, Unsigned Integer, and Tagged data
formats of the SPARC definition. The Integer types are supported in byte (8-bit),

Overview - Programmer’s Model

SPARClite User’s Manual

1-10

half-word (16-bit), word (32-bit), and double-word (64-bit) widths. The Tagged type is
one word (32 bits) in width. Hardware support is not provided for the floating-point
types; these can be handled in software.

1.3.5 Instructions

SPARClite provides an upward-compatible superset of the SPARC (version 8)
instruction set. The additional instructions—integer divide-step, and scan for first
changed bit — are supported for the sake of higher performance in embedded
applications. Table 1-1 lists the SPARClite instruction set. In the MB86930 processor,
the floating-point and coprocessor instructions defined in the SPARC architecture are
trapped for software emulation.

Each instruction is a single 32-bit word. The instruction set can be divided into five
functional groups:

1. Logical—Bit-wise boolean operations. Each logical instruction comes in two
versions: one leaves the integer condition codes in the Processor State Register
unchanged; the other changes the condition codes as a side effect.

2. Arithmetic and Shift—Integer arithmetic, logical and arithmetic shifts. Besides the
standard arithmetic operations, SPARC provides instructions to perform tagged
arithmetic. In tagged arithmetic, the two least-significant bits of each operand are
used to indicate the (user-defined) data type of the operand. The tagged arithmetic
instructions set a condition code if the tag of an operand is not zero.

Besides the arithmetic instructions defined in the SPARC architecture, SPARClite
provides:

• A divide-step instruction, which can be used to construct efficient iterative
integer division algorithms.

• A scan instruction, which determines the first bit in a word which differs from the
most-significant bit. The scan instruction can be used to simplify and accelerate
many important operations, like normalizing numbers with redundant sign bits.

Most of the arithmetic instructions come in two versions: one of them leaves the
integer condition codes unchanged, while the other changes the condition codes as a
side effect of execution.

3. Control Transfer—Branches, calls, jumps, returns from trap, and conditional traps.
The target address of the control transfer is computed either by adding a specified
offset to the value in the Program Counter, or by adding two source operands. The
transfer of control either occurs immediately after the control transfer instruction, or
is delayed for one further instruction.

4. Load and Store—External accesses. Load and store are the only instructions that
read and write to external devices (including memory). Bytes, half-words, words

Overview - Programmer’s Model

1-11

and double words can be transferred to and from processor registers. Special
instructions access alternate address spaces. Attempts at unaligned accesses are
trapped, and must be carried out under software control.

5. Read and Write Control Registers—Access the Program State Register, Window-In-
valid Mask Register, Trap-Base Register, Y Register, and Ancillary State Registers.
There are also instructions for incrementing and decrementing the Current Window
Pointer. With one exception, writes to the control registers are delayed for three
instruction cycles. The three instructions following a write, therefore, should not
attempt to use or modify the values written. A write to the Y Register, however, is
not delayed: it is completed before the next instruction is executed.

Table 1-1: Instruction Set

Group Opcode Name

Logical AND (ANDcc)
ANDN (ANDNcc)
OR (ORcc)
ORN (ORNcc)
XOR (XORcc)
XNOR (XNORcc)

And (and modify cc)
And Not (and modify icc)
Inclusive-Or (and modify icc)
Inclusive-Or Not (and modify icc)
Exclusive-Or (and modify icc)
Exclusive-Nor (and modify icc)

Arithmetic ADD (ADDcc)
ADDX (ADDXcc)

Add (and modify icc)
Add with Carry (and modify icc)

TADDcc (TADDccTV) Tagged Add and modify icc (and Trap on overflow)

SUB (SUBcc)
SUBX (SUBXcc)

Subtract (and modify icc)
Subtract with Carry (and modify icc)

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow)

MULScc Multiply Step and modify icc

SMUL
UMUL
SMULcc
UMULcc
DIVScc
SCAN

Signed Multiply
Unsigned Multiply
Signed Multiply (and modify icc)
Unsigned Multiply (and modify icc)
Divide-Step (and Modify icc)
Scan for bit different than MSB

Shift SLL
SRL
SRA

Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

Control
Transfer

Bicc Branch on integer condition codes
Transfer CALL

JMPL
Call
Jump and Link

RETT Return from Trap

Ticc Trap on integer condition codes

Overview - Programmer’s Model

SPARClite User’s Manual

1-12

Table 1-1: Instruction Set (Continued)

Group Opcode Name

Load
and Store

LDSB (LDSBA)
LDSH (LDSHA)
LDUB (LDUBA)
LDUH (LDUHA)
LDD (LDDA)

Load Signed Byte (from Alternate space)
Load Signed Halfword (from Alternate space)
Load Unsigned Byte (from Alternate space)
Load Unsigned Halfword (from Alternate space)
Load Doubleword (from Alternate space)

STB (STBA)
STH (STHA)
ST (STA)
STD (STDA)

Store Byte (into Alternate Space)
Store Halfword (into Alternate space)
Store Word (into Alternate space)
Store Doubleword (into Alternate space)

LDSTUB (LDSTUBA)
SWAP (SWAPA)

Atomic Load-Store Unsigned Byte (in Alternate space)
Swap r Register with Memory (in Alternate space)

SAVE
RESTORE

Save caller’s window
Restore caller’s window

SETHI Set High 22 bits of r register

Read and
Write

Control
Registers

RDY
RDPSR
RDWIM
RDTBR
RDASR

Read Y register
Read processor State Register
Read Window invalid Mask Register
Read Trap Base Register
Read Ancillary State Register

WRY
WRPSR
WRWIM
WRTBR
WRASR

Write Y register
Write processor State Register
Write Window invalid Mask Register
Write Trap Base Register
Write Ancillary State Register

UNIMP Unimplemented instruction

1.3.6 Data and Instruction Caches

Each member of the SPARClite family contains separate data and instruction caches
on-chip. In the MB86930 processor, each cache is 2 Kbytes in size, organized into two
banks of sixty-four 4-word lines. Each cache line has a 22-bit address tag, which
indicates the memory location to which the line is currently mapped. A cache line,
together with its address tag and status bits, is often called a cache entry. The
organization of each cache is two-way set associative; that is, each address in memory
can be mapped to either of two locations in the cache.

There are three modes of cache operation: normal, global locking, and local locking. In
normal mode, when the integer unit requests a read to a data or instruction address
which is not found in the appropriate cache, the memory block containing the requested
address is read into the cache, replacing one of the current cache entries. The locking
modes prevent either an entire cache, or just selected entries, from being over written in
this way. The locking modes thus allow time-critical routines to be locked into cache.

Overview - Programmer’s Model

1-13

Thanks to the set-associative organization, as much as one whole bank of a cache can
be locked while the remaining bank continues to operate as a direct-mapped cache.

In normal mode, the data cache uses a write-through update policy, and allocates a
cache entry only on a load. Writes to locked data entries, however, are not written
through to main memory. In this way, a portion of the data cache can be used as fast
on-chip RAM which is not mapped to external memory.

Cache tags and data are memory-mapped, and can be directly read and written using the
alternate-space load and store instructions. These instructions are privileged.

Subsequent chapters discuss the cache in greater detail: Programmer’s Model discusses
cache locking; Programming Considerations contains hints for using the on-chip cache
to best advantage.

1.3.7 Interrupts and Traps

In this manual, we distinguish between interrupts—which are initiated by external
interrupt signals, asynchronously with respect to processor operations, and traps—
which are caused by instructions, and so are necessarily synchronous. During system
operation, external interrupts are generally unavoidable; traps, however, can and should
be kept to a minimum by careful software design and testing.

Interrupt response time is critical in many embedded applications. The total response
time includes the time required for the processor to finish its current task after
recognizing an interrupt, and the time required to switch contexts (if necessary) and
begin executing the interrupt service routine. In the SPARClite family, non-interrupt-
ible multi-cycle events are minimized, (i.e., Cache refills which take multiple cycles to
completely fill a cache line, are designed so they can be interrupted after every word
load). This reduces both average and maximum interrupt latency. When an interrupt is
detected, the processor switches to a new window. In this way, the current values in the
general-purpose registers don’t have to be saved before interrupt service begins.
Furthermore, service routines can be locked into the cache, making them available for
immediate access.

The MB86930 processor provides direct support for 15 distinct interrupt priority levels;
each level can service multiple interrupt sources. Supervisor-mode software can mask
up to 14 of these levels; the highest level is non-maskable (if ET=1).

An interrupt or trap (other than reset) causes control to be transferred to an address
generated by the Trap Base Register. One field in the TBR contains the base address of
the trap dispatch table. Normally, an 8-bit trap type number serves as an offset into this
table. When single-vector trapping is enabled, however, control passes to the base
address of the trap table (with tt=0), regardless of the trap type. Reset always traps to
address 0.

Overview - Programmer’s Model

SPARClite User’s Manual

1-14

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type number. Of
these, half are reserved for hardware interrupts and traps; all but one of the others are
programmer-initiated (see the discussion of the Ticc instruction in the Programmer’s
Model chapter). One trap type is defined in SPARClite to support in-circuit emulation.
The various trap types are listed, in order of priority, in Table 1-2.

Table 1-2: Trap Types and Priorities

Trap Priority tt

reset
instruction_breakpoint
data_breakpoint
instruction_access_exception
privileged_instruction
illegal_instruction
fp_disabled
cp_disabled
window_overflow
window_underflow
mem_address_not_aligned
data_access_exception
tag_overflow
trap_instruction (Ticc)

1
1.5
1.5
2
3
4
5
5
6
7
8
10
11
12

–
255
255
1
3
2
4
36
5
6
7
9
10

128 255

interrupt_level_15
interrupt_level_14
interrupt_level_13
interrupt_level_12
interrupt_level_11
interrupt_level_10
interrupt_level_9
interrupt_level_8
interrupt_level_7
interrupt_level_6
interrupt_level_5
interrupt_level_4
interrupt_level_3
interrupt_level_2
interrupt_level_1

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

The expression trapped instruction refers, in the case of a synchronous trap, to the
instruction which caused it. In the case of an interrupt, the trapped instruction is the one
which was about to execute when the interrupt occurred.

The Integer Unit supports precise traps—when an interrupt or trap occurs, the saved
state of the processor reflects the completion of all instructions prior to the trapped
instruction, but no subsequent instructions (including the trapped instruction). Hardware

Overview - Programmer’s Model

1-15

guarantees that upon return from the service routine, the Program Counter points to the
trapped instruction or the following instruction if the trapped instruction was emulated.

1.4 Internal Architecture

The internal architecture of SPARClite family processors is illustrated in Figure 1-4.
The processor core consists of an Integer Unit which implements a superset of the
SPARC integer instruction set. Separate on-chip caches are provided for data and
instructions. The Bus Interface Unit handles the interface between the processor and the
system. A Clock Generator with built-in phase-locked loop simplifies system clock
design. Finally, the Debug Support Unit provides hardware support for in-circuit
emulation. Internally, the various functional units are connected by separate instruction
and data buses. For connection with external memory and I/O, a unified address bus and
a unified data bus are extended off-chip. The main functional units are discussed briefly
below, and more fully in the Internal Architecture chapter.

CLOCK
GENERATOR

2K INSTRUCTION
CACHE

2K DATA
CACHE

SPARC INTEGER UNITCLK_OUT

DATA

ADDRESS

ASI

CONTROL

CHIP_SEL

PAGE_DET

REFRESH

32

32

32

32 D_ADDR

D_DATA

I_ADDR

I_DATA
D

E
B

U
G

 S
U

P
P

O
R

T
 U

N
IT

EMULATOR
BUS

BUS
INTERFACE

UNIT

DRAM

PWG

ADDRESS
DECODE

16-BIT TIMER

Figure 1-4. Internal Architecture (Block Diagram)

1.4.1 Integer Unit

The Integer Unit (IU) is a compact, fully custom implementation of the SPARC
architecture. The IU is hard-wired for high performance. Its internal functional units are
designed around a modular architecture and can be customized to meet different

Overview - Internal Architecture

SPARClite User’s Manual

1-16

application requirements. In the MB86930, for example, this flexibility was used to
provide direct hardware support for integer multiplication, and to extend the SPARC
instruction set by supporting divide-step and scan instructions.

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure 1-5. The pipeline consists of the following stages:

• Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction. (Figure 1-5 below assumes a hit in the instruction cache.)

• Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

• Execute (E)—The ALU computes a result.

• Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

• Writeback (W)—The result (or loaded memory datum) is written into the register
file.

Instruction 4 5

5

5

5

Fetch

Decode

Execute

Memory

Write-Back

Instruction 5

Instruction 3

Instruction 2

Instruction 1

4

3 4

2 3 4

6

6

6

6

CLK

Figure 1-5. Instruction Pipeline

No instructions execute out-of-order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B does. Conditions which hold up the pipeline, and the effect of traps on
pipeline operations, are discussed in the Internal Architecture chapter.

1.4.2 Data and Instruction Caches

The on-chip data and instruction caches allow designers to build high-performance
systems without incurring the cost of fast external memory and the associated control
logic.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two banks of
sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to avoid the
interrupt latency incurred by long, uninterruptible cache line replacements.

Overview - Internal Architecture

1-17

The data and instruction caches are accessed independently over separate data and
instruction buses, allowing data to be loaded from and stored to cache concurrently with
instruction fetches.

1.4.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory and I/O
accesses from the cache control logic. When the BIU performs a read, it returns the data
to both the cache and the IU. Parallel paths make the data available to the IU in the
same cycle that it is written to the cache.

The BIU has a one-word (32-bit) write buffer to hide external memory latency from the
IU. The BIU also has a one-word prefetch buffer for instruction fetches. These buffers
are enabled or disabled by bits in the Cache/Bus Interface Unit Control Register.

1.4.4 Debug Support Unit

The Debug Support Unit supports hardware emulation with on-chip breakpoint and
single-step logic. A dedicated emulator bus is extended off-chip from the debug unit;
the emulator bus makes it possible to trace transactions between the Integer Unit and
on-chip cache.

1.5 External Interface

The processor’s external interface consists of signals, bus operations, and system
support functions. This section gives an overview; details are discussed more fully in
the External Interface chapter. The System Design Considerations chapter discusses
issues that are likely to arise in the design of any SPARClite system.

1.5.1 Signals

The processor’s external signals, illustrated in Figure 1-6, can be grouped by function:

• Processor Control and Status—Reset, error, and clock signals.

• Memory Interface—Data and address buses, ASI and byte-enables, chip-selects, and
other control signals used to access external memory and memory-mapped devices.

• Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions—Interrupt-requests and timer overflow.

Overview - External Interface

SPARClite User’s Manual

1-18

• Emulator Bus—Signals to support in-circuit emulation.

• Boundary-Scan—Test signal use for hardware verification.

–EMU_ENB

–EMU_BRK

EMU_D <3:0>

EMU_SD <3:0>

–SAME_PAGE

–AS

–LOCK

RD/–WR

–READY

–MEXC

–BE <3:0>

–CS <5:0>

ASI <7:0>

ADR <31:2>

D <31:0>–CLK_EXT

CLKOUT1

CLKOUT2

CLKIN / XTAL1

XTAL2

–ERROR

–RESET

IRL <3:0>

–TIMER_OVF

–BREQ

–BGRNT

TDO

TCK

TMS

TDI

–TRST

Test Pins
(Boundary

Scan)

Bus
Arbitration

Peripheral
Functions

Processor
Control

& Status

MB86930
I/O SIGNALS

Memory
Interface

Emulator
Bus

Figure 1-6. Input and Output Signals

1.5.2 Bus Operation

At any given time, the Bus Interface Unit is handling requests for external memory and
I/O operations, arbitrating for bus access, or idle. From the point of view of the external
system, bus transactions are handled in fairly standard ways:

• Memory and I/O Operations—Read and write transactions are initiated with the BIU
asserting the –AS signal. The RD/–WR output indicates the transaction type. The
–BE[3:0] outputs indicate the transaction width. The BIU drives the address and ASI
signals, and either drives (on stores) or reads (on loads) the signals on the data bus.
The transaction ends when the external system or programmable wait-state
generator asserts –READY.

An atomic load-store is executed as a load followed by a store, with no operation
allowed in between. The –LOCK output is asserted to indicate that the bus is being
used for more than one consecutive memory operation.

• Arbitration—Any external device can request ownership of the bus by asserting the
–BREQ signal. The BIU three-states its bus drivers and asserts –BGRNT to indicate

Overview - External Interface

1-19

that it is relinquishing control of the bus. On completion of its transaction, the
external device de-asserts –BREQ; the BIU responds by de-asserting –BGRNT in
the following cycle.

The External Interface chapter gives further details concerning bus operations, with
timing diagrams, a bus state diagram, and a discussion of transactions that are
interrupted by exceptions.

1.5.3 System Support Functions

Built-in system support functions help to minimize the amount of glue logic required in
the external system. The support includes a set of system-configuration registers, a
timer for generating refresh requests, and same-page detection logic.

The system-configuration registers (Address Range Specifiers, Address Masks, and
Programmable Wait-State Specifiers) allow software to define six different address
ranges. When an address driven by the processor is in one of these ranges, the
corresponding Chip-Select (–CS) pins are asserted. After a number of clock cycles
determined by the corresponding Programmable Wait-State Specifier, the processor
automatically generates the –READY signal. This makes it possible for memory and
I/O devices with different access times to be connected to the processor without
additional logic.

The programmable timer causes the –TIMER_OVF output signal to be asserted at
software-defined intervals. This signal can be used to initiate DRAM refresh cycles, or
to control other periodic events in the external system.

The same-page detection logic determines whether the address of the current memory
transaction is on the same page as the previous transaction. If it is, the processor asserts
the –SAME_PAGE signal. The system can then take advantage of the fast consecutive
accesses possible within the page boundaries of fast-page mode DRAM.

1.6 Development-Support Tools

A full range of development tools are available to support the development of your
SPARClite application. The emergence of SPARC as the industry standard engineering
workstation architecture provides a fully supported and cost effective source of native
development environments. Furthermore, tools targeted at embedded systems
development are available as well.

Solutions are available to meet your emulation, logic analysis, logic modeling,
architectural simulation, real-time operating system, PC environment, benchmarking
and prototyping requirements. Call the SPARClite customer hotline for a complete list
of support solutions.

Overview - Development-Support Tools

2-1

HAPTER

Programmer’s Model

2
C

This chapter presents the SPARClite processor architecture as a collection of resources
available to software. It discusses the user and supervisor modes, the organization of the
address space, the processor registers, the supported data types, the instruction set, the
on-chip caches, interrupts and traps and debug support. A separate section describes the
internal state of the processor after reset.

The Programming Considerations chapter contains information about how to use these
processor resources to best advantage.

2.1 Program Modes

The SPARC architecture provides two mutually exclusive modes of program execution,
user mode and supervisor mode. The processor is in supervisor mode when the S bit of
the Processor State Register (PSR) is 1, and in user mode when this bit is 0. Instructions
which access either special-purpose registers or alternate memory spaces are privileged;
the use of privileged instructions is restricted to supervisor mode.

The distinction between user and supervisor modes provides system protection in
multitasking environments. System code runs in supervisor mode and has full access to
processor resources, while application code runs in user mode and is kept from having
unwanted side effects. Embedded systems connected to a network can use a protection
scheme based on the distinction between user and supervisor modes. In such a scheme,
network service routines intended to have system-wide effects run in supervisor mode.
Routines intended to have only local effects, on the other hand, run in user mode.

Programmer’s Model - Program Modes

SPARClite User’s Manual

2-2

In many embedded systems, however, this hierarchy is not required, and the processor
can operate exclusively in supervisor mode. In this way, application code can directly
manipulate the Current Window Pointer (in the PSR) and other processor control fields.

On reset, the processor is in supervisor mode. To enter user mode, software must clear
the S bit in the PSR. The processor enters supervisor mode from user mode only when a
hardware reset, an interrupt, or a trap occurs. A return from trap (RETT) instruction
restores the value the S bit had before the trap was taken.

2.2 Memory Organization

The processor can directly address up to 1 Terabyte of memory, organized into 256
address spaces of 4 GB each. These address spaces may or may not overlap in physical
memory, depending on the system design. Every external access involves an 8–bit
Address Space Identifier (ASI) as well as a 32-bit address. The ASI selects one of the
address spaces, and the address selects a word within that space (see Table 2-1). Only
the user instruction and data spaces are available in user mode; accessing any of the
other 254 address spaces requires the processor to be in supervisor mode.

Table 2-1: ASI Address Space Map

ASI <7:0> Address Space

0x1
0x2
0x3

0x4 - 0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

0x10 - 0xFC, 0xFE
0xFD, 0xFF

Control Register
Instruction Cache Lock
Data Cache Lock
Application Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Instruction Cache Tag RAM
Instruction Cache Data RAM
Data Cache Tag RAM
Data Cache Data RAM
Application Definable
Reserved for Debug Hardware

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words
between memory (or I/O) and processor registers. Addressing conventions for external
accesses are “big-endian”:

• Bytes—Increasing the address decreases the significance of a byte within the word.
That is, the most significant byte of a word—the “big end” of the word—is accessed
when bits [1:0] of the address are both 0. The least significant byte is accessed when
address bits [1:0] are both 1.

Programmer’s Model - Memory Organization

2-3

• Halfwords—The most significant halfword of a word is accessed when bit 1 of the
address is 0, and the least significant halfword when address bit 1 is 1.

• Doublewords—The most significant word of a doubleword is accessed when bit 2 of
the address is 0, and the least significant word when address bit 2 is 1.

The address of a halfword, word, or doubleword is the address of its most significant
byte. The addressing conventions are illustrated in Figure 2-1.

2

0150

0

15

address <1:0> Halfwords

031

address <1:0> Word

address <2:0> Doubleword

0

32630

0314

3

07

2

07

1

07

0

07

address <1:0> Bytes

Figure 2-1. Addressing Conventions

Load and store operations require proper alignment of data in memory. An aligned
doubleword address is divisible by 8, an aligned word address is divisible by 4, and an
aligned half-word address is divisible by 2. If a load or store instruction generates an
improperly aligned address, a memory_address_not_aligned trap occurs, and the access
must be performed piecemeal under software control.

The processor does not contain memory-management hardware; virtual-address
translation can be handled by software, or by an external memory-management unit.

2.3 Registers

There are two types of registers: the general-purpose, or r registers, whose contents
have no pre-assigned meaning, and the special-purpose registers, which contain control
and status information, or special-purpose data. All registers are 32 bits wide. The
register set is illustrated in Figure 1-2 of the Overview chapter.

The general-purpose (r) registers can be accessed in user mode. There are 136 r
registers; 8 of them are global registers; the other 128 are divided into 8 overlapping

Programmer’s Model - Registers

SPARClite User’s Manual

2-4

blocks, called windows. The windowing system, and the special uses of certain r
registers, are discussed below.

The special-purpose registers are of two kinds: (1) registers defined by the SPARC
architecture, and (2) memory-mapped registers which control peripheral functions.
Special instructions exist for reading and writing each of the SPARC registers, except
for the Program Counter and the Next Program Counter. The memory-mapped registers
can be read and written with the alternate-space load and store instructions. Except for
reads and writes to the SPARC-defined Y register, all of the instructions which access
special-purpose registers are privileged.

Some of the special-purpose registers have reserved or undefined fields. Therefore, one
should not assume particular values for these fields when reading the registers, and one
should not assume that only non-reserved fields in the registers are read. In general, it is
good practice to write zeros to unused or reserved fields, and to mask reserved fields
after reading the registers.

2.3.1 Register Windows

As specified by the SPARC architecture, the general-purpose register set is organized
into a set of 8 global registers, plus a collection of overlapping windows. In the
MB86930, there are 8 such windows. Each window contains 24 registers. Of these, 8
are local to the window, 8 are “out” registers shared with the adjacent window below,
and 8 are “in” registers shared with the adjacent window above. This organization is
illustrated in Figure 2-2.

At any given time, 32 general-purpose registers can be accessed directly: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active. (See Section 5.3 for register addressing conventions.)

Programmer’s Model - Registers

2-5

Figure 2-2. Register Windows

Register Addressing

There are up to three address fields associated with a SPARC instruction. In the case of
a three-address instruction, these are the rs1 field, the rs2 field, and the rd field. Rs1
and rs2 are the logical register addresses of the two source operands of the instruction
while rd is the logical register address of the destination operand. These addresses
specify the location of the operands within the context of the current window, as shown
in Table 2-2.

Programmer’s Model - Registers

SPARClite User’s Manual

2-6

Table 2-2: Logical Register Addressing

Addresses Registers

r[0] - r[7]
r[8] - r[15]
r[16] - r[23]
r[24] - r[31]

global[0] - global[7]
out[0] - out[7]
local[0] - local[7]
in[0] - in[7]

The CWP field of the PSR register points to the current window. The combination of a
logical register address with the CWP produces a physical register address. Physical
register addresses are directly decoded by the Register File. Doubleword operands in
the register file are assumed to have even-odd alignment. The even numbered register
contains the most significant 32 bits of the doubleword. Instructions which act on
doublewords must specify even-numbered register addresses.

Since the CWP is part of the PSR register it is possible to change the value of the CWP
with software. In particular, the WRPSR, SAVE, RESTORE, and RETT instructions
can change the CWP. See the Instructions section below for details. Hardware also can
change the CWP when a trap or interrupt occurs. See the Traps and Interrupts section.

Performance Features

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed should be written to the “out” registers of the current
window, which are the same as the “in” registers of the adjacent window. A SAVE
instruction can then be used to decrement the Current Window Pointer, making the
parameter values available to the subroutine without moving any data.

Register windows improve performance in embedded applications because they
function as local variable caches which retain either interrupt, subroutine, context or
operating system variables with no additional overhead. Since procedure calls are
efficient, optimizing compilers are not forced to replace them with inlined macros; this
reduces the size of the compiled code, saving memory space, and making it possible to
fit more complicated routines in the instruction cache.

Register windows can be dedicated to individual contexts to enable very fast switching
between contexts. When handling interrupts, the hardware immediately moves to the
adjacent window to start executing the service routine. In this way, an unused set of
registers is made available in less than 3 processor cycles.

Each register in the register file has three read-only and one write-only port. The
four-port structure allows even store instructions—which may require three operands to
be read out of the register file—to be completed in a single cycle.

Programmer’s Model - Registers

2-7

2.3.2 Special Uses of the r Registers

Four of the r registers have special uses defined in the SPARC architecture:

• When global register 0 (r[0]) is addressed as a source operand, the constant value 0
is read. When r[0] is used as a destination operand, the data written is discarded, and
no r register changes value.

• The CALL instruction writes its own address into out register 7 (r[15]).

• When a trap is taken, the current window pointer is decremented. The program
counters PC and nPC are then automatically written into local registers 1 and 2
(r[17] and r[18]) of the new register window.

2.3.3 SPARC-Defined Special-Purpose Registers

The registers discussed in this section are defined as part of the SPARC architecture.

Processor State Register (PSR)

The Processor State Register is the primary processor control and status register. It
contains 11 mode and status fields which configure the processor and report processor
status and exception results. The mode fields, shown in upper case in Figure 2-3, are set
by the operating system to configure the processor. The status fields, shown in lower
case, are set by the processor to indicate the effects of instruction execution.

Except for several fields described below, the PSR can be written and read directly with
the privileged instructions WRPSR and RDPSR. The PSR can also be modified by the
SAVE, RESTORE, Ticc, and RETT instructions, and by any instruction that modifies
the condition codes.

8 7 6 5 4 020 19 12 1131 28 27 24 23

impl ver
icc

reserved PIL
n z v c

S PS ET CWP

Figure 2-3. Processor State Register

Bits 31-28: Implementation (impl)—Identifies the implementation number of the processor. In the
MB86930 processor, it is hardwired to 0. The value in this field cannot be changed by a
WRPSR instruction.

Programmer’s Model - Registers

SPARClite User’s Manual

2-8

Bits 27-24: Version (ver)—Identifies the processor version, and is intended for factory use. It can be
read, but not written. The Version field is hardwired to 2 in the MB86930 processor.

Bits 23-20: Integer Condition Codes (icc)—Contains the negative (n), zero (z), overflow (v), and carry
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and by
arithmetic and logical instructions whose names end with the letters cc (for example,
ANDcc). The Bicc (Branch on integer condition codes) and Ticc (Trap on integer condition
codes) instructions transfer program control based on the values of these bits. The integer
condition code flags are defined as follows:

n (Bit 23) Set to 1 if the ALU result was negative for the last instruction that modified the
icc field; equal to 0 otherwise.

z (Bit 22) Set to 1 if the ALU result was zero for the last instruction that modified the icc
field; equal to 0 otherwise.

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that
modified the icc field; it equals 0 otherwise. Logical instructions that modify
the icc field always reset the overflow bit to 0.

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last
addition that modified the icc, or a borrow out of bit 31 occurred as the result
of the last subtraction that modified the icc. The carry bit equals 0 otherwise.
Logical instructions that modify the icc field always reset the carry bit to 0.

Bits 19-12: Reserved (reserved)—This field is reserved. When you use the WRPSR instruction, this
field should always be written with 0s.

Bits 11-8: Processor Interrupt Level (PIL)—Specifies the levels of interrupt which the processor will
accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or
with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most
significant bit, and bit 8 is the least significant.

Bit 7: Supervisor Mode (S)—Determines whether the processor is in supervisor mode (S=1) or
user mode (S=0). Since instructions that write the PSR are available only in supervisor
mode, the processor enters supervisor mode from user mode only when a reset, trap, or
interrupt occurs.

Bit 6: Prior S State (PS)—Records the value of the S bit when a trap is taken, so that the
processor can return to the proper operating mode (user or supervisor) on return from the
trap. Processor hardware changes the PS bit to the state of the S bit when entering a trap,
and changes the S bit to the state of the PS bit when returning from the trap.

Bit 5: Enable Traps (ET)—Enables traps (ET=1). When ET=0, traps are disabled and all
interrupts are ignored.

Bits 4-0: Current Window Pointer (CWP)—Points to the register window which is currently active.
The CWP is written and read by the WRPSR and RDPSR instructions, is decremented by
traps and the SAVE instruction, and is incremented by the RESTORE and RETT
instructions. The SPARClite processor implements 8 out of the 32 windows allowed in the
SPARC definition, so only the 3 least significant bits of the CWP field are used. Arithmetic
on the CWP is always performed modulo 8. Attempting to write a value to the CWP field
which points to an unimplemented window results in an “illegal instruction” error.

Programmer’s Model - Registers

2-9

Window Invalid Mask Register (WIM)

The Window Invalid Mask Register contains 8 register-window mask bits, each of
which corresponds to an implemented register window. If an operation which normally
increments or decrements the Current Window Pointer would cause the CWP to point to
a window whose corresponding WIM bit equals 1, a Window Overflow or Window
Underflow trap occurs.

The WIM can be written with the WRWIM instruction, and read with the RDWIM
instruction. Both of these instructions are privileged. Bits corresponding to unim-
plemented windows are read as 0s; values written to these bits are ignored.

8 7 6 5 4 031

reserved w7 w6 w5 w4

3 2 1

w3 w2 w1 w0

Figure 2-4. Window Invalid Mask Register

Bits 31-8: Reserved Field (reserved)—This field is reserved for potential future expansion to
additional windows.

Bits 7-0: Window Masks (W7-W0)—Window mask bits, with W7 the mask bit for window 7, and so
on.

Trap Base Register (TBR)

The Trap Base Register contains three fields used by the processor to generate the
address of the service routine when an interrupt or trap occurs. (The reset trap and
breakpoint traps are the exception: They always bypass the TBR mechanism,
transferring control to address 0 and 0x00000FF0, respectively.) One of the three fields
in the TBR can be written using the WRTBR instruction. The whole TBR can be read
with the RDTBR instruction. Both of these instructions are privileged.

12 4 031

TBA tt Null

11 3

Figure 2-5. Trap Base Register

Bits 31-12: Trap Base Address (TBA)—Contains the most significant 20 bits of the trap table base
address. The TBA field is written with the WRTBR instruction.

Bits 11-4: Trap Type (tt)—Contains an offset into the trap table corresponding to the last trap taken.
Each trap is identified by a unique 8-bit trap type number. The processor writes the

Programmer’s Model - Registers

SPARClite User’s Manual

2-10

appropriate trap type into the tt field when it recognizes a trap, and then uses the number
as an offset into the trap table. The tt field remains unchanged until the next trap occurs.
The WRTBR instruction does not affect the tt field. When the single vector trapping (SVT)
is enabled, the Trap Type bits are ignored. The trap vector is the address pointed to by
TBA with all tt bits set to 0. The trap handler can read the tt field to find out the origin of the
current trap.

Bits 3-0: Null (null)—This field is hardwired to 0 to force 4-word increments of the trap vector. The
WRTBR instruction does not affect this field.

Y Register

The “Y Register” is composed of a number of 32-bit latches, muxes, and bus drivers
which reside in the data path of the Execute Block (see the Internal Architecture
chapter). It is used during the multiply step instruction (MULScc) to contain the
multiplier and the least significant bits of the partial products as they are evaluated. It is
used during the divide step instruction (DIVScc) to contain the most significant 32 bits
of a 64-bit dividend and the partial remainders as they are evaluated. It is also used by
the multiply unit to hold the most significant words of the partial products and, when
the multiplication is completed, the high 32 bits of the 64-bit product.

The Y register can be read and written with the RDY and WRY instructions, respective-
ly. WRY is not a “delayed write” instruction: the value written into the Y register is
available to the following instruction.

031

 Figure 2-6. Y Register

• Multiply Step Support—At the beginning of a multiplication algorithm which uses
the MULScc instruction, the 32-bit multiplier is loaded into the Y register with a
WRY instruction. When the multiplication is completed, the least significant word
of the 64-bit product will be in the Y register.

• Divide Step Support—At the beginning of a division algorithm which uses the
DIVScc instruction, the most significant word of the dividend is loaded into the Y
register with a WRY instruction. At the end of the divide routine, the remainder will
be in the Y register and can be read with a RDY instruction.

• Multiply Unit Support—The Y register is also used by the Multiply Unit (MU)
during the UMUL, UMULcc, SMUL, and SMULcc instructions. The most
significant word of the 64-bit product will be in the Y-Register when the
multiplication completes.

Programmer’s Model - Registers

2-11

Program Counter (PC)

The Program Counter contains the word address of the instruction currently being
executed by the Integer Unit. The PC cannot be directly read or written.

031

Instruction Address

Figure 2-7. Program Counter

Next Program Counter (nPC)

The Next Program Counter contains the word address of the next instruction to be
executed, assuming a trap does not occur. The nPC cannot be directly read or written.

In delayed control transfers, the instruction that immediately follows the control
transfer (the delay instruction) may be executed before control is transferred to the
target. (See the Instructions section, below.) The nPC is necessary for implementing
this feature. Most instructions complete by copying the contents of the nPC into the PC,
then updating the nPC. The nPC is incremented by 4, unless the instruction implies a
control transfer, in which case the computed target address is written into the nPC. The
PC now points to the instruction which will be executed next, while the nPC points to
the instruction which will be executed after that.

031

Instruction Address

Figure 2-8. Next Program Counter

Ancillary State Registers (ASR[31:1])

The SPARC definition includes 31 Ancillary State Registers, 15 of which (ASR[15:1])
are reserved for future use. The remaining ASR’s can be defined and used in any way
by SPARC implementations. The MB86930 defines the following ASR:

ASR17—Used to enable and disable single-vector trapping. When this feature is
enabled, all traps (except reset and breakpoint traps) vector to a single location, the
base address of the trap table, as specified by the TBA field of the TBR register

Programmer’s Model - Registers

SPARClite User’s Manual

2-12

(tt=0). ASR17 can be read and written with the privileged instructions RDASR and
WRASR.

031 2 1

Reserved

Reserved

SVT, RST=0

Figure 2-9. Ancillary State Register 17

Bits 2-1: Reserved Field (reserved)—When writing to ASR17, both of these bits must be written with
0s.

Bit 0: Single Vector Trapping (SVT)—Enables single vector trapping when set to 1. The SVT bit
equals 0 at reset.

2.3.4 Memory-Mapped Control Registers

In addition to the registers defined by the SPARC architecture, the MB86930 provides a
collection of memory-mapped registers which control peripheral functions. Figure 2-10
shows these registers and their locations in memory. The memory-mapped registers can
be read and written with the alternate-space load and store instructions, which are
privileged.

Cache/Bus interface Unit Control Register

Lock Control Register

Lock Control Save Register

Cache Status Register

Restore Lock Control Register

Same-Page Mask Register

Address Range Specifier Registers (ARSR <5:1>)

Address Mask Register (AMR <5:0>)

Wait-State Specifier Registers (WSSR <2:0>)

Timer Register

Timer Preload Register

System Support Control Register

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

ASI=0x1

0x00000000

0x00000004

0x00000008

0x0000000C

0x00000010

0x00000120

0x00000124

0x00000140

0x00000160

0x00000174

0x00000178

0x00000080

Figure 2-10. Locations of Memory-Mapped Control Registers

Programmer’s Model - Registers

2-13

Cache/Bus Interface Unit Control Register

The Cache/BIU Control Register controls the operation of the data and instruction
caches, and the write and prefetch buffers of the Bus Interface Unit. This register is
located at address 0x00000000 with an ASI of 0x1.

031 2 1

Write Buffer Enable (Enabled=1, Disabled=0, RST=0)

Prefetch Buffer Enable (Enabled=1, Disabled=0, RST=0)

Global Data Cache Lock (Lock On=1, Lock Off=0, RST=0)

345

Data Cache Enable (Enabled=1, Disabled=0, RST=0)

Global Instruction Cache Lock (Lock On=1, Lock Off=0, RST=0)

Instruction Cache Enable (Enabled=1, Disabled=0, RST=0)

Figure 2-11. Cache/Bus Interface Unit Control Register

Bit 5: Write Buffer Enabled—When set to 1, enables the write buffer of the BIU only if both the
instruction and data caches are enabled. At reset, this bit is 0. This bit should be changed
only when the instruction and data caches are off.

Bit 4: Prefetch Buffer Enabled—When set to 1, enables the prefetch buffer of the BIU only if both
the instruction and data caches are enabled. At reset, this bit is 0. This bit should be
changed only when the instruction and data caches are off.

Bit 3: Global Data Cache Lock—Locks the current entries into the on-chip data cache; with this
bit set to 1, no valid entry in the data cache will be replaced. To insure the best
performance with the cache locked, invalid words in allocated cache locations will be
updated. On write hits, with the data cache locked, the data is not written to external
memory, allowing the locked cache to be used as scratchpad RAM or a run-time stack,
independent of main memory. When the Data Cache Lock bit is 0, the cache operates
normally. At reset, this bit is 0.

Bit 2: Data Cache Enable—Turns the on-chip data cache on (1) and off (0). At reset, this bit is 0.

Bit 1: Global Instruction Cache Lock—Locks the current entries into the on-chip instruction
cache; with this bit set to 1, no valid entry in the instruction cache will be replaced. To
insure the best performance with the cache locked, invalid words in allocated cache
locations will be updated. When this bit is 0, the cache operates normally. Writes to the
Instruction Cache Lock bit do not affect cache operation for the following three instructions.
At reset, this bit is 0.

Bit 0: Instruction Cache Enable—Turns the on-chip instruction cache on (1) and off (0). Writes to
the Instruction Cache Enable bit do not affect cache operation for the following three
instructions. At reset, this bit is 0.

Programmer’s Model - Registers

SPARClite User’s Manual

2-14

Lock Control Register

The Lock Control Register controls the locking of individual entries in the data and
instruction caches. It is located at address 0x00000004 with an ASI of 0x1.

031 1

Data Cache Entry Auto Lock (On=1, Off=0, RST=0)

Instruction Cache Entry Auto Lock (On=1, Off=0, RST=0)

Figure 2-12. Lock Control Register

Bit 1: Data Cache Entry Auto Lock—Enables (1) and disables (0) auto-locking for entries in the
on-chip data cache. All data accessed while this bit is 1 have the lock bits in their cache
tags set to 1. Writes to this bit affect all subsequent data accesses. At reset, this bit is 0.

Bit 0: Instruction Cache Entry Auto Lock—Enables (1) and disables (0) auto-locking for entries in
the on-chip instruction cache. All instructions fetched while this bit is 1 have the lock bits in
their cache tags set to 1. Writes to this bit do not affect cache operation for the following
three instructions. At reset, this bit is 0.

Lock Control Save Register

When an external interrupt or hardware trap occurs, the auto-locking of entries in
on-chip cache is disabled. The Lock Control Save Register is used to re-enable
auto-locking after the interrupt has been serviced. The register is updated with the
contents of the Lock Control Register when there is a hardware interrupt, an exception
condition (illegal instruction, memory data alignment error), or a DSU hardware
breakpoint. The updated Lock Control Save Register is then used to restore the Lock
Control Register after the interrupt or trap. This “autosave” feature allows restoration of
the Lock Control Register following interrupts and traps that cannot be anticipated by
software. In other cases, the program can save the Lock Control Register directly for
later restoration.

The value of the Lock Control Register before the interrupt or trap is automatically
saved in the Lock Control Save Register, located at address 0x00000008 with an ASI of
0x1. The correct auto-lock value is restored in the Lock Control Register by setting bit
<0> in the Restore Lock Control Register to 1. This causes the value that is saved in the
Lock Control Save Register to be moved to the Lock Control Register when a RETT is
executed (See Section 2.6.2).

Programmer’s Model - Registers

2-15

The cache does not have to be enabled for the Lock Control Save Register to be
updated, and the register is both readable and writable.

031 1

Previous Data Cache Entry Auto Lock (On=1, Off=0, RST=0)

Previous Instruction Cache Entry Auto Lock (On=1, Off=0, RST=0)

Figure 2-13. Lock Control Save Register

Restore Lock Control Register

On return from an external interrupt or hardware trap service routine, the Lock Control
Register can have its previous value restored from the Lock Control Save Register. The
Restore Lock Control Register, located at address 0x00000010 with an ASI of 0x1,
controls this feature. When bit 0 of this register is set to 1 and a RETT instruction is
executed, the value in the Lock Control Save Register is placed into the Lock Control
Register.

There should be no traps between writing a 1 to bit 0 of the Restore Lock Control
Register and the corresponding RETT instruction. This bit is cleared to 0 on reset, and
also when a return from external interrupt or hardware trap is executed.

031

Restore Lock bit (Restore=1, Ignore=0, RST=0)

Figure 2-14. Restore Lock Control Register

Cache Status Register

If an attempt is made to lock a cache entry which is already locked, bit 0 in the Cache
Status Register is set to 1. This bit can be cleared by software. The Cache Status
Register is located at address 0x0000000C with an ASI of 0x1.

The Cache Status Register is meaningful only when auto-locking is utilized. In the case
of writing the cache tags manually to lock cache lines (either by writing the Tag Lock

Programmer’s Model - Registers

SPARClite User’s Manual

2-16

Bit address or the Cache Tag address directly), an attempt to lock a line which is
already locked will not be indicated by the Cache Status Register.

031

Cache Status, RST=0

Figure 2-15. Cache Status Register

Same-Page Mask Register

The Same-Page Mask Register controls the operation of the same-page detection logic
by specifying which bits of the current ASI and address are to be compared with those
of the previous ASI and address. If the specified (i.e., unmasked) bits all match, then
the processor recognizes the two accesses as being “in the same page,” and asserts the
–SAME_PAGE signal. These registers should not be written if the bus interface unit
will handle addresses that are affected by the change in the next 3 processor cycles. The
Same-Page Mask Register is located at address 0x00000120 with an ASI of 0x1.

031 30 23 22 1

ASI Mask <7:0>
(Care=0, Don’t Care=1, RST=Undefined) (Care=0, Don’t Care=1, RST=Undefined)

Address Mask (ADR <31:10>)

Figure 2-16. Same-Page Mask Register

Bit 31: Reserved

Bits 30-23: ASI Mask—Specifies which bits in the ASI of the current external access are to be
compared with the corresponding bits in the ASI of the previous access. Only those bits
are compared for which the mask bit is 0. Mismatches in any other bits do not prevent the
two accesses from being recognized as “on the same page.” The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask—Specifies which of the 22 most significant bits in the address of the current
external access are to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is 0. Mismatches in
any other bits do not prevent the two accesses from being recognized as “on the same
page.” The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

Address Range Specifier Registers (ARSR[5:1])

Values in the Address Range Specifier Registers define up to five different address
ranges, which are used for various system-support functions. The ARSRs are located in
a contiguous block beginning at address 0x00000124 with ASI 0x1 (see Table 2-3).

Programmer’s Model - Registers

2-17

The ARSRs, together with the Address Mask Registers, can be used to control the
assertion of the Chip-Select outputs (–CS[5:1]). –CSn is asserted when the value on the
address bus falls in the address range specified by ARSRn and AMRn. See the
discussion of the Address Mask Registers, below. –CS0 is asserted when the value on
the address bus, as masked by AMR0, falls into the lowest range of Supervisor
Instruction Space. The range of –CS0 (as masked by AMR0) is 8K words.

These registers should not be written if the bus interface unit will handle addresses that
are affected by the change in the next 3 processor cycles. The user should be careful
that two chip selects are never selected at the same time. A programmable wait-state
generator is also associated with each address range. See the discussion of the
Wait-State Specifier Registers, below.

031 30 23 22 1

ASI <7:0>
(RST=Undefined) (RST=Undefined)

ADR <31:10>

Figure 2-17. Address Range Specifier Registers

Bit 31: Reserved

Bits 30-23: ASI[7:0]—Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Bits 22-1: ADR[31:10]—Specifies the 22 most significant bits of a target address range. The value of
this field is undefined on reset.

Bit 0: Reserved

Address Mask Registers (AMR[5:0])

AMRn works with ARSRn to define an address range. AMRn specifies which bits of
the currently driven ASI and address are to be compared with the contents of ARSRn,
and which bits are “don’t cares.” Except for AMR0, reset leaves the values in the AMR
registers undefined (see Table 2-3). These registers should not be written if the bus
interface unit will handle addresses that are affected by the change in the next 3
processor cycles. The AMRs are located in a contiguous block beginning at address
0x00000140 with ASI 0x1.

Programmer’s Model - registers

SPARClite User’s Manual

2-18

031 30 23 22 1

ASI <7:0>
(RST=Undefined)* (RST=Undefined)*

ADR <31:10>

* Except AMR[0]. See Table 2-3.

Figure 2-18. Address Mask Registers

Bit 31: Reserved

Bits 30-1: Mask—Specifies which bits in the ASI and address of the current external access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is 0. See Table 2-3 for reset value.

Bit 0: Reserved

Wait-State Specifier Registers (WSSR[2:0])

The wait-state specifiers determine, for each of the address ranges defined by the ARSR
and AMR registers, the number of clock cycles between the time an address in a given
range appears on the address bus and the time the processor generates an internal
–READY signal. This makes it possible for memory and I/O devices with different
access times to be connected to the processor without additional logic.

The wait-state specifiers for the six address ranges are kept in three Wait-State Specifier
Registers. These registers are located in a contiguous block beginning at address
0x00000160 with ASI 0x1 (see Table 2-3). Each register contains the wait-state
specifiers for two address ranges. When the address currently being driven by the
processor matches the unmasked bits in one of the Address Range Specifiers, the
corresponding wait-state specifier is selected. These registers should not be written if
the bus interface unit will handle addresses that are affected by the change in the next 3
processor cycles.

631 8 7

Wait Enable (On=1, Off=0, RST=*)

Single Cycle (On=1, Off=0, RST=0)

Override (On=1, Off-0, RST=*)

27 26 22 21 20 19 18 14 13 9

Count 1
(RST=Undefined)

Count 2
(RST=Undefined)

Count 1
(RST=Undefined)*

Count 2
(RST=Undefined)*

5 0

Reserved

* See Table 2-3

Figure 2-19. Wait-State Specifier Registers

Programmer’s Model - Registers

2-19

Bits 31-19: Wait-State Specifier—When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and whether,
the processor generates an internal –READY signal to terminate the access.

Count1 (Bits 31-27): The number of wait-states inserted before the internal –READY, under the
following conditions: the Single Cycle bit equals 0 and the current access is not
on the same page as the previous access. The number of wait-states is the
value of this field +1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of
Count1 is undefined on reset.

Count2 (Bits 26-22): The number of wait-states inserted before the internal –READY, under the
following conditions: the Single Cycle bit equals 0 and the current access is on
the same page as the previous access. The number of wait-states is the value
of this field +1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of Count2 is
undefined on reset.

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual address range.
If the Wait Enable bit of a wait-state specifier equals 0, the internal –READY is
not asserted when addresses in the corresponding range are accessed by the
processor. If Wait Enable is 1, the single cycle bit must be 0. See Table 2-3 for
reset value.

Single Cycle (Bit 20): Specifies the timing of the internal –READY signal. If the Single Cycle bit equals
1 when an address in the appropriate range is accessed, the internal –READY
is asserted in the same cycle. If the Single Cycle bit equals 0, and the current
transaction is in the same page as the previous transaction, then Count2 is
used as the number of cycles after which –READY is asserted internally. If the
transaction is not in the same page, Count1 is used instead. If Single Cycle is
enabled, the Wait Enable bit must be 0. See Table 2-3 for reset value.

Override (Bit 19): Allows the system to terminate a memory transaction before the internally
specified time. If the Override bit equals 1, and external hardware asserts the
external –READY signal, then the wait-state generator will stop counting and
will wait for the next transaction. This bit is cleared to 0 on reset.

Bits 18-6: Wait-State Specifier—The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

System Support Control Register

The System Support Control Register enables or disables the various system-support
features, independently of one another. However, the chip-select logic for address range
0 is always enabled, regardless of the value in the System Support Control Register.
This register is located at address 0x00000080 with ASI 0x1 (see Table 2-3).

Programmer’s Model - Registers

SPARClite User’s Manual

2-20

031 2 1

Same-Page Enable (On=1, Off=0, RST=0)

Chip Select Enable (On=1, Off=0, RST=0)

Programmable Wait-State Enable (On=1, Off=0, RST=1)

3

Reserved

56

Timer On/Off (On=1, Off-0, RST=0)

Reserved

Note: The chip select generation for Address
Range Specifier 0 is always enabled,
regardless of the value of the Chip Select
Enable Bit.

4

Figure 2-20. System Support Control Register

Bits 31-6: Reserved

Bit 5: Same-Page Enable—Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the –SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, –SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.

Bit 4: Chip Select Enable—Enables (1) and disables (0) the generation of chip-select signals for
external accesses in address ranges 1 through 5. Regardless of the state of this bit,
however, –CS0 is always asserted when the current address lies in address range 0. The
Chip Select Enable bit is cleared to 0 on reset.

Note: Before enabling chip selects all chip select Address Mask and Address Range
registers should be initialized so that two chip selects are never selected at the same time.

Bit 3: Programmable Wait-State Enable—Enables (1) and disables (0) the programmable
wait-state generators for all address ranges. The Programmable Wait-State Enable bit is
set to 1 on processor reset.

Bit 2: Timer On/Off—Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Bits 1-0: Reserved

Table 2-3: System Support Register Summary

Chip
Selects

Affected by
Chip Select

Address Range Specifier Address Mask Wait-State SpecifierChip
Selects

Affected by
Chip-Select

Enable?
Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset

0 No N/A ASI=0x09
ADR<31:10>=0

0x0000 0140 All mask bits 0
except

ADR<14:10> = 1

0x0000 0160
(low halfword)

Count 1,2 = 31
Wait Enable=1
Single Cycle =0

Override=1

Programmer’s Model - Registers

2-21

Table 2-3: System Support Register Summary

Chip
Selects

Affected by
Chip Select

Address Range Specifier Address Mask Wait-State SpecifierChip
Selects

Affected by
Chip-Select

Enable?
Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset

1 0x0000 0124 0x0000 0144 0x0000 0160
(high halfword)

2 0x0000 1280 0x0000 0148 0x0000 0164
(low halfword)

3 Yes 0x0000 012C Undefined 0x0000 014C Undefined 0x0000 0164
(high halfword)

Count 1,2 =
Undefined

4 0x0000 0130 0x0000 0150 0x0000 0168
(low halfword)

Wait Enable =0
Single Cycle =0

O id5 0x0000 0134 0x0000 0154 0x0000 0168
(high halfword)

Single Cycle =0
Override=0

Timer Register

The Timer Register contains the current count of the internal 16-bit timer. When the
timer overflows, the processor asserts the –TIMER_OVF signal and reloads the Timer
Register with the contents of the Timer Preload Register. The Timer Register can also
be loaded directly by writing to the address 0x00000174 with ASI 0x1. The timer is
clocked at the processor clock frequency.

031 15

Timer Value

16

Reserved
(RST=Undefined)

Figure 2-21. Timer Register

Timer Preload Register

The Timer Preload Register contains the value which is loaded into the timer when the
timer overflows. In effect, this register specifies the number of clock cycles between
assertions of the –TIMER_OVF signal. The Timer Preload Register is located at
address 0x00000178 with ASI 0x1.

031 15

Timer Pre-Load Value

16

Reserved
(RST=Undefined)

Figure 2-22. Timer Pre-Load Register

Programmer’s Model - Registers

SPARClite User’s Manual

2-22

2.4 Data Types
Direct support is provided for signed and unsigned integers of various lengths, as
illustrated in Figure 2-23. A tagged word type is supported for tagged arithmetic, used
in artificial intelligence applications. Other data types (character strings, floating-point
types, and so on) must be handled in software.

7Signed Integer Byte 6 0

15Signed Integer Halfword 14 0

31Signed Integer Word 30 0

31Signed Integer Double 30 0

S

S

S

S

31 0

SD-0

SD-1

signed_integer [62:32]

signed_integer [31:0]

7Unsigned Integer Byte 0

15Unsigned Integer Halfword 0

31Unsigned Integer Word 0

31Unsigned Integer Double 0

31 0

UD-0

UD-1

unsigned_integer [62:32]

unsigned_integer [31:0]

31Tagged Word 012

tag

Figure 2-23. Data Types

2.5 Instructions
SPARClite provides an upward-compatible superset of the SPARC integer instruction
set. Each instruction is a single 32-bit word. There are only three basic instruction
formats, and few addressing modes.

The additional MB86930 instructions—integer divide-step, and scan for first changed
bit—are implemented to achieve higher performance in embedded applications.
Table 2-4 lists the MB86930 instruction set by function, and shows how to interpret the
instruction mnemonics.

Programmer’s Model - Data Types

2-23

Table 2-4: Instruction Mnemonics

Signed
Unsigned

Byte
Halfword
word
Double word

normal
Alternate

Integer CC

CALL
Trap on Integer CC
JuMP and Link
RETurn from Trap

Logical:

normal
Annul delay instr.

Control Transfer:

Branch

atomic SWAP word
atomic Load-Store Unsigned Byte

AND
OR
XOR

normal
Not

normal
set

Arithmetic and
Shift:

ADD
SUB

normal
set CC

normal
eXtended

ADD
SUB

Tagged set CC normal
Trap oVerflow

Load and Store:

LoaD
STore

Shift Left
Right

Logical
Arithmetic

Read/Write Control Registers:

ReaD
WRite

Y
PSR
WIM
TBR
ASR

SAVE
RESTORE

SCAN
DIVide Step set CC
MULtiply Step set CC
SETHI

UMUL
SMUL

normal
set CC

In the MB86930 processor, the floating-point and coprocessor instructions defined in
the SPARC architecture are trapped for software emulation.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-24

2.5.1 Instruction Formats

Figure 2-24 shows the three basic instruction formats.

031

disp30

Format 1 (op=1): CALL

op

031

imm22

Format 2 (op=0): SETHI & Branches (Bicc, FBfcc, CBccc)

op

29

rd

28 25 24 22 21

disp22op a cond op2

op2

30

031

Format 3 (op=2 or 3): Remaining instructions

op

29

rd

25 24

simm13op op3

op3

30

opfop op3

rd

rd

19 18 14 13 12 5 4

rs1

rs1

rs1

i=0

i=1
asi rs2

rs2

30 29

Figure 2-24. Instruction Formats

op, op2, op3 One or more of these fields appear in every format to encode the
instruction. The 2-bit op field is used in all three formats, and is
interpreted as follows:

op Encoding (All Formats)

op Format Instructions

0
1
2
3

2
1
3
3

Bicc, FBfcc, CBccc, SETHI
CALL
arithmetic, logical, shift and remaining
memory instructions

The 3-bit op2 field is used, along with the op field, to encode the
format 2 instructions, and is interpreted as follows:

op2 Encoding (Format 2)

op2 Instructions

0
1
2
3
4
5
6
7

unimplemented
unimplemented
Bicc
unimplemented
SETHI
unimplemented
FBfcc
CBccc

Programmer’s Model - Instructions

2-25

The 6-bit op3 field is used, along with the op field, to encode the
format 3 instructions. An Instruction Index by Operation Code is
given in Chapter 7 of this manual.

rd, rs1, rs2 These 5-bit fields contain register addresses, interpreted as discussed
in the General-Purpose Registers section, above. The rd field
specifies the source operand for a store, or the destination operand for
some other operation. The rs1 and rs2 fields specify source operands.

disp30, disp22 These 30-bit and 22-bit fields contain word-aligned, sign-extended,
PC-relative displacements for a call or branch, respectively.

a This bit is used in branch instructions to specify whether or not the
instruction following the branch can be annulled.

cond This 4-bit field selects the condition codes to test for a conditional
branch instruction.

imm22 Contains a 22-bit constant which the SETHI instruction places in the
upper end of a specified destination register.

i Selects the second ALU operand for arithmetic and load/store
instructions. If i equals 1, the operand is r[rs2]. If i equals 0, the
operand is simm13, sign-extended from 13 to 32 bits.

simm13 Contains a sign-extended 13-bit immediate value used as the second
ALU operand for an arithmetic or load/store instruction when i equals
1.

asi Contains the 8-bit Address Space Identifier required for the load
alternate and store alternate instructions.

opf Encodes a floating-point operate or coprocessor operate instruction.
All such instructions are trapped for software emulation.

2.5.2 Logical Instructions

The logical instructions perform bit-wise boolean operations. As shown in Table 2-5,
each logical instruction comes in two versions: one leaves the integer condition codes in
the Processor State Register unchanged; the other changes the condition codes as a
side-effect.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-26

Table 2-5: Logical Instructions

opcode operation

AND
ANDcc
ANDN
ANDNcc
OR
ORcc
ORN
ORNcc
XOR
XORcc
XNOR
XNORcc

And
And and modify icc
And Not
And not and modify icc
Inclusive Or
Inclusive Or and modify icc
Inclusive Or Not
Inclusive Or Not and modify icc
Exclusive Or
Exclusive Or and modify icc
Exclusive Nor
Exclusive Nor and modify icc

The logical instructions are all format 3 instructions. When the i field is 0, they take
their arguments from two source registers (r[rs1] and r[rs2]); when the i field is 1, they
take one argument from source register r[rs1] and the other from the simm13 field
(sign-extended to 32 bits). In both cases, the result is written to the destination register
r[rd].

2.5.3 Arithmetic and Shift Instructions

The integer arithmetic instructions are generally three-register instructions which
compute a result that is a function of the two source operands, and either write the
result into the destination register r[rd], or discard it. One of the source operands is
always taken from register r[rs1]; the other source depends on the i bit in the instruc-
tion. If i equals 0, the second operand is taken from register r[rs2]; if i equals 1, the
second operand is the value in the simm13 field of the instruction, sign-extended to 32
bits. By specifying global register 0 as the destination, the instruction effectively
discards the result. (See Section 2.3.2, Special Uses of the r Registers).

Besides the standard arithmetic operations, SPARC provides instructions to perform
tagged arithmetic. In tagged arithmetic, the two least-significant bits of each operand
are used to indicate the (user-defined) data type of the operand. The tagged arithmetic
instructions set a condition code if the tag of an operand is not zero.

The shift instructions shift the contents of an r register by a constant or variable number
of bits. They do not affect the condition codes.

Programmer’s Model - Instructions

2-27

Besides the instructions defined in the (Version 8) SPARC architecture, SPARClite
provides:

• A divide-step instruction, which can be used to construct efficient iterative integer
division algorithms.

• A scan instruction, which determines the first bit in a word which differs from the
most-significant bit. The scan instruction can be used to simplify and accelerate
many important operations, like normalizing numbers with redundant sign bits.

Add and Subtract

The integer addition and subtraction instructions, listed in Table 2-6, perform
two’s-complement arithmetic. Each instruction comes in four versions: these either
affect integer condition codes in the Processor State Register or leave them unchanged
and either include the carry bit in the result or ignore it.

Table 2-6: Addition and Subtraction Instructions

opcode operation

ADD
ADDcc
ADDX
ADDXcc

Add
Add and modify icc
Add with Carry
Add with Carry and modify icc

SUB
SUBcc
SUBX
SUBXcc

Subtract
Subtract and modify icc
Subtract with Carry
Subtract with Carry and modify icc

The integer addition and subtraction instructions are format 3 instructions. When the i
field is 0, they take their arguments from two source registers (r[rs1] and r[rs2]); when
the i field is 1, they take one argument from a source register and the other from the
simm13 field (sign-extended to 32 bits). The result is written to the destination register
r[rd].

In subtraction, the second argument, whether register (r[rs2]) or immediate (simm13), is
always subtracted from the first (r[rs1]).

The extended addition instructions ADDX and ADDXcc also add the carry bit (c) of the
Processor Status Register; that is, they compute either “r[rs1] + r[rs2] + c” or “r[rs1] +
sign-extended(simm13) +c,” and store the result in r[rd].

The extended subtraction instructions SUBX and SUBXcc also subtract the carry bit
(c); that is, they compute either “r[rs1] - r[rs2] - c” or “r[rs1] - sign-extended(simm13)
-c,” and store the result in r[rd].

Programmer’s Model - Instructions

SPARClite User’s Manual

2-28

Overflow occurs on addition if both operands have the same sign and the sign of the
sum is different. Overflow occurs on subtraction if the operands have different signs
and the sign of the difference differs from the sign of r[rs1].

A special comparison instruction for integer values is not needed, since it can be easily
synthesized from the SUBcc instructions (See Chapter 7).

Tagged Add and Subtract

The tagged arithmetic instructions, listed in Table 2-7, perform two’s-complement
addition or subtraction on their operands.

Table 2-7: Tagged Arithmetic Instructions

opcode operation

TADDcc
TADDccTV

Tagged Add and modify icc
Tagged Add, modify icc and Trap on Overflow

TSUBcc
TSUBccTV

Tagged Subtract and modify icc
Tagged Subtract, modify icc and Trap on Overflow

If either operand has a non-zero tag, or if arithmetic overflow occurs, the overflow bit
of the Processor Status Register is set to 1. The trapping versions (TADDccTV and
TSUBccTV) also cause a tag_overflow trap whenever they set the overflow bit. Except
for these special side effects, the tagged arithmetic instructions work just like the
ordinary addition and subtraction instructions, which are described above.

TADDcc and TSUBcc modify the integer condition codes; TADDccTV and
TSUBccTV also modify the condition codes when they do not trap.

Multiply and Multiply-Step

The integer multiplication instructions, listed in Table 2-8, are directly supported in
hardware.

Table 2-8: Integer Multiply Instructions

opcode operation

UMUL
SMUL
UMULcc
SMULcc
MULScc

Unsigned Integer Multiply
Signed Integer Multiply
Unsigned Integer Multiply and modify icc
Signed Integer Multiply and modify icc
Multiply Step and modify icc

The multiply instructions perform a signed or unsigned multiplication of a 32-bit
multiplicand (r[rs1]) and a 32-bit multiplier (either r[rs2] or simm13, sign-extended to

Programmer’s Model - Instructions

2-29

32 bits), resulting in a 64-bit product. The low order 32 bits of the product are placed in
the destination register (r[rd]), and the upper 32 bits of the product are placed in the Y
register.

In general, the multiplication requires 5 cycles, but there are three special cases of early
termination. If either the multiplier or the multiplicand is zero, the execution takes 1
cycle. If the multiplier is an 8-bit integer or less, the execution takes 2 cycles. If the
multiplier is a 9-bit to 16-bit integer, the execution takes 3 cycles.

UMUL and SMUL do not affect the integer condition codes. The effect of UMULcc
and SMULcc on the condition codes is shown in Table 2-7

Table 2-9: Effect of Integer Multiplication on Condition Codes

icc bit UMULcc SMULcc

N
Z
V
C

Set if product [31] = 1
Set if product [31:0] = 0
Zero
Zero

Set if product [31] = 1
Set if product [31:0] = 0
Zero
Zero

The multiply-step instruction, MULScc, treats r[rs1] and the Y register as a single,
64-bit, right-shiftable doubleword register. The least significant bit of r[rs1] is treated as
if it were the adjacent to the most significant bit of the Y register.

Multiplication with MULScc assumes that the Y register initially contains the
multiplicand, r[rs1] contains the most significant bits of the product, and r[rs2] (or
simm13) contains the multiplier. Upon completion of the multiplication, the Y register
contains the least significant word of the product. The operation of MULScc is
described in the Programming Considerations chapter.

Divide-Step

The divide-step instruction, DIVScc, performs one bit-cycle of a non-restoring,
shift-before-add, signed or unsigned integer division algorithm. It operates on a signed
or unsigned dividend, with an unsigned divisor. It uses the integer condition code bits to
carry the true sign of the remainder, and the previous quotient bit, from one cycle to the
next. Remainder and quotient are kept in correct relative alignment because of the
shift-before-add technique. Standard SPARC instructions are therefore sufficient for
initializing and terminating both signed and unsigned division routines, eliminating the
need for special divide-initialize, divide-terminate or remainder correction instructions.

Division with DIVScc assumes that the Y register initially contains the most significant
word of the dividend, r[rs1] contains the least significant word of the dividend, and
r[rs2] (or simm13) contains the divisor. Upon completion of the division, the Y register

Programmer’s Model - Instructions

SPARClite User’s Manual

2-30

contains the remainder and r[rd] contains the quotient. When DIVScc is used as
expected, it will typically use the same register for rd and rs1. One exception is a
signed division with one word dividend, in which the initial value of r[rs1] is saved in
the first divide step by using an rd different from rs1.

DIVScc operates as follows:

1. The true sign is formed using the negative (n) and overflow (v) integer condition
codes from the Processor Status Register. True sign = n XOR v.

2. The remainder is formed by upshifting the Y register (initially the most significant
word of the dividend) one bit, and setting the least significant bit of remainder equal
to most significant bit of r[rs1] (initially the least significant word of the dividend).

3. The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32 bits, if the i
field is 1.

4. If true sign = 0 (+), the ALU computes remainder - divisor. If true sign =1 (–), the
ALU computes remainder + divisor.

5. Carry out from the ALU operation is noted as c0. The negative (n) condition code is
set to bit 31 of the ALU result. The zero (z) condition code is set if the ALU result
is 0 AND the true sign equals Y[31], else cleared.

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT c0 AND
(true sign OR NOT Y[31])).

7. The overflow (v) condition code is formed as new true sign XOR bit 31 of the ALU
result. The carry (c) condition code is set to NOT new true sign. Y is set to the
32-bit ALU result. If rd is not 0, then r[rd] is set to r[rs1], upshifted one bit with
NOT new true sign (the new quotient bit) in the least significant bit position.

See the Programming Considerations chapter for sample signed and unsigned division
routines based on the DIVScc instruction.

Shift

The shift instructions, listed in Table 2-10, perform logical or arithmetic shifts on
values in r registers. The shift count for these instructions is either a constant (the least
significant 5 bits of simm13) or variable (the least significant 5 bits of r[rs2]),
depending on the value in the i field: The least significant 5 bits of the 2’s complement
of a shift count are the same as 32 minus the shift count. No shift occurs when the shift
count is 0.

Table 2-10: Shift Instructions

opcode operation

SLL
SRL
SRA

Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

Programmer’s Model - Instructions

2-31

SLL and SRL fill vacated bit positions with 0’s. SRA fills vacated bit positions with the
most significant bit of the r[rs1] operand; that is, SRA treats its result as a two’s-com-
plement number, and sign-extends it to 32 bits. The shift instructions do not affect the
condition codes.

An arithmetic shift left can be effected using the ADDcc instruction.

Scan

The SCAN instruction scans a register from MSB to LSB looking for either the first
changed bit, first 1 or first 0 depending on the value of the source 2 operand. SCAN is a
superset to the standard SPARC instruction set. It is decoded in an unused opcode and
does not affect compliance with the SPARC architecture standard.

The SCAN instruction is useful for supporting operations like floating-point normaliza-
tion by finding the number of sign bits in a single processor cycle. Data compression
schemes like run length encoding execute significantly faster using SCAN as well.

SCAN works by computing the bitwise XOR of r[rs1] with a mask created by
right-shifting r[rs2] by one bit and sign-extending the result. It finds the first 1 in the
result, and writes this bit number to the destination register (r[rd]). Bit numbers range
from 0 for the most significant bit to 31 for the least significant. If the two operands are
identical, the value 63 is written into r[rd].

Starting with the same number in r[rs1] and r[rs2], SCAN returns the number of sign
bits. Consider the first example shown in Figure 2-25. Both source registers contain
0b00011.... The right-shifted, sign-extended, rs2 value is 0b000011..., and the result of
the bitwise XOR is 0b0001.... The bit-position of the first 1 in this result (counting from
zero, from the left) is 3, which is also the number of sign bits in the rs1 value.
Similarly, example 2 shows the case where the sign bits are ones.

By using global register 0, which always reads as 0, as the mask operand (rs2), the bit
position of the first 1 in rs1 can be found, as in the third example shown in Figure 2-25.
Similarly, by using the immediate value -1, which extends to all 1’s, as the mask
operand, the bit position of the first 0 in rs1 is found. (See example 4).

Programmer’s Model - Instructions

SPARClite User’s Manual

2-32

SCAN does not affect the condition codes.

= 0b00011…
= 0b00011…
= 0b000011
= 0b00010…
= 3

r[rs1]
r[rs2]
mask
xor
r[d]

(source 1)
(source 2)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 1: finding the first changed bit (the first 1)

= 0b11100…
= 0b11100…
= 0b111100
= 0b00010…
= 3

r[rs1]
r[rs2]
mask
xor
r[d]

(source 1)
(source 2)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 2: finding the first changed bit (the first 0)

= 0b00011…
= 0b00000…
= 0b000000
= 0b00010…
= 3

r[rs1]
r[rs2]
mask
xor
r[d]

(source 1)
(source 2, immediate value 0 or %g0)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 3: finding the first 1

= 0b10000…
= 0b11111…
= 0b111111
= 0b01111…
= 1

r[rs1]
r[rs2]
mask
xor
r[d]

(source 1)
(source 2, immediate value -1)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 4: finding the first 0

Figure 2-15. Using the SCAN Instruction

Constants

The SETHI instruction loads a 22-bit immediate constant into an r register. SETHI
zeroes the 10 least-significant bits of r[rd], and replaces its 22 high-order bits with the
value from the imm22 field of the instruction. SETHI does not affect the integer
condition codes. A SETHI instruction with rd = 0 and imm22 = 0 is the SPARC
(Version 8) definition of a NOP.

2.4.5 Control Transfer Instructions

A control transfer instruction (CTI) is one which changes the value in the Next Program
Counter (nPC) register. There are five basic types of control transfer instructions:
conditional branches (Bicc), calls (CALL), jumps (JMPL), returns from trap (RETT),
and conditional traps (Ticc).

As shown in Table 2-11, the control transfer instructions can be classified according to
two criteria: how the target address is calculated, and when the control transfer takes
place, relative to the CTI.

Table 2-11: Classification of Control Transfer Instructions

Control-Transfer
Instruction

Target Address
Calculation

Transfer Time
Relative to CTI

Bicc
CALL
JMPL, RETT
Ticc

PC-relative
PC-relative

register-indirect
register-indirect-vectored

conditional-delayed
delayed
delayed

non-delayed

Programmer’s Model - Instructions

2-33

Three different schemes are used for computing target addresses:

• PC-Relative—Adds an address displacement to the current PC value. The disp30
(CALL) or disp22 (Bicc) field of the instruction specifies the number of words to be
added to the PC; this number can be positive or negative. The disp value is
sign-extended, then left-shifted by two bits to create the (byte) address
displacement.

• Register-Indirect—Adds its two source operands (r[rs1] is always one of the
operands; the other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits, when
i = 1).

• Register-Indirect-Vectored—Calculates the target address in two stages: it first
obtains a trap type by adding 128 to the least significant 7 bits of the sum of its two
source operands. r[rs1] is always one of the operands; the other is r[rs2] when i = 0,
and simm13, sign-extended to 32 bits, when i = 1. The trap type number is then
stored in the tt field of the Trap Base Register. The resulting value in the TBR is the
target address.

Control transfer can either occur immediately after the CTI, or be delayed. The control
transfer instructions fall into three classes:

• Delayed—Transfers control to the target address after a one-instruction delay. The
delay instruction—the one whose address is in the nPC register when a delayed CTI
is executed—is executed before the transfer of control to the target address. Special
care is required when the delay instruction is itself a CTI; see the section on
Delayed-Control Transfer Couples, below.

• Non-Delayed—Transfers control to the target address immediately after the CTI is
executed.

• Conditional-Delayed—Delay occurs and the execution of the instruction in the
delay slot is conditional, depending on the value of the a (annul) bit in the delayed
control transfer instruction, and on whether or not the transfer itself is conditional.
Details are provided below, under the heading Branches.

Branches

The Bicc instructions, listed in Table 2-12, perform program branches, either
unconditionally or conditioned on the current values of the integer condition codes (bits
23-20 of the Processor Status Register). The branch target is specified by a PC-relative
displacement.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-34

Table 2-11: Branch Instructions

opcode cond operation icc test

BA
BN
BNE
BE
BG
BLE
BGE
BL
BGU
BLEU
BCC
BCS
BPOS
BNEG
BVC
BVS

1000
0000
1001
0001
1010
0010
1011
0011
1100
0100
1101
0101
1110
0110
1111
0111

Branch Always
Branch Never
Branch on Not Equal
Branch on Equal
Branch on Greater
Branch on Less or Equal
Branch on Greater or Equal
Branch on Less
Branch on Greater Unsigned
Branch on Less or Equal Unsigned
Branch on Carry Clear (Greater than or Equal, Unsigned)
Branch on Carry Set (Less than, Unsigned)
Branch on Positive
Branch on Negative
Branch on Overflow Clear
Branch on Overflow Set

1
0

not Z
Z

not (Z or (N xor V))
Z or (N xor V)
Not (N xor V)

N xor V
not (Cor Z)

(C or Z)
not C

C
not N

N
not V

V

The unconditional branch BA causes a PC-relative delayed control transfer, regardless
of the integer condition code values. If the a (annul) field is 0, the delay instruction is
executed; if the a field is 1, the delay instruction is annulled (not executed).

The unconditional branch BN does not cause a transfer of control. BN acts like a NOP
when its a (annul) field is 0. When its a (annul) field is 1, the following instruction (i.e.,
the delay instruction) is annulled.

The Bicc instructions other than BA and BN perform conditional branches, based on the
current values of the integer condition codes. The test condition is coded into the cond
field of the instruction, as shown in Table 2-12. If the test condition evaluates as true,
the branch is taken, otherwise, no transfer of control takes place.

If a conditional branch is taken, the delay instruction is always executed, no matter
what the value of the a (annul) field. If a conditional branch is not taken, and the a
(annul) field is 1, then the delay instruction is annulled.

Programmer’s Model - Instructions

2-35

Table 2-13 summarizes the conditions under which the delay instruction is executed, for
the various types of branches.

Table 2-13: Conditions for Executing Delay Instructions

a bit type of branch
Delay instruction

executed?

a = 0 unconditional
conditional, taken
conditional, non taken

YES
YES
YES

a = 1 unconditional
conditional, taken
conditional, non taken

NO (annulled)
YES

NO (annulled)

The effect of a branch instruction on the processor pipeline is shown in Figure 2-26.

br

Fetch

Decode

Execute

Memory

Write-Back

br delay

CLK

delay

br

target

target

delay

br

Inst 1

Inst 1

target

delay

br

Inst 1

target

delay

Inst 1

target Inst 1

Delay instruction may be annulled in which
case it is treated as a NOP

Figure 2-26. Pipeline Sequence: Branch

Call and Link

The CALL instruction writes the contents of the PC (i.e., the address of the CALL
itself) into out register 7 (r[15]) of the current window. It then causes a delayed control
transfer to a PC-relative target address. The instruction field that specifies the address
displacement is 30 bits wide, so CALL can be used to transfer control anywhere in the
address space. The call instruction pipeline sequence is identical to Figure 2-26, except
that the delay instructions cannot be annulled.

Jump and Link

The JMPL instruction writes the contents of the PC (i.e., the address of the JMPL itself)
into the destination register r[rd]. It then causes a delayed control transfer to a
register-indirect target address. If the target address is not word-aligned, a mem_ad-
dress_not_aligned trap occurs.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-36

Fetch

Decode

Execute

Memory

Write-Back

jmpl delay

CLK

nop target

Forced “no operation”

inst1

jmpl

jmpl

jmpl

jmpl

delay

delay

delay

delay

nop

nop

nop

nop

target

target

target

target

inst1

inst1

inst1

inst1

Figure 2-27. Pipeline Sequence: Jump and Link

Return from Trap

Unless it causes a trap, the RETT instruction does four things: it increments the Current
Word Pointer (modulo 8), causes a delayed control transfer to the register-indirect
target address, restores the processor to the operating mode (user or supervisor) it was
in before the trap was taken, and enables traps.

If traps are enabled (i.e., if the ET bit of the Processor Status Register is set to 1), RETT
will always cause a trap. A privileged_instruction trap will occur if the processor is in
user mode, and an illegal_instruction trap will occur if the processor is in supervisor
mode.

If traps are disabled (ET = 0), RETT can cause the following traps, in decreasing order
of priority:

• Privileged_instruction, if the processor is in user mode.

• Window_underflow, if the new CWP corresponds to a set bit in the Window Invalid
Mask register.

• Mem_address_not_aligned, if the target address of the control transfer is not
word-aligned.

In these cases, the processor will write the appropriate trap type number into the tt field
of the PSR, enter the error state, and halt.

Fetch

Decode

Execute

Memory

Write-Back

jmpl rett

CLK

nop target

Forced “no operation”

inst1

jmpl

jmpl

jmpl

jmpl

rett

rett

rett

rett

nop

nop

nop

nop

target

target

target

target

inst1

inst1

inst1

inst1

Figure 2-28. Pipeline Sequence: RETT

Programmer’s Model - Instructions

2-37

Software Traps

The Ticc instructions, listed in Table 2-14, generate the trap_instruction trap, either
unconditionally or conditioned on the current values of the integer condition codes (bits
23-20 of the Processor Status Register). Ticc can be used to implement breakpoints,
traces, and system calls. It can also be used for run-time checks, such as out-of-range
array indexes or integer overflow.

Table 2-14: Trap Instructions

opcode cond operation icc test

TA
TN
TNE
TE
TG
TLE
TGE
TL
TGU
TLEU
TCC
TCS
TPOS
TNEG
TVC
TVS

1000
0000
1001
0001
1010
0010
1011
0011
1100
0100
1101
0101
1110
0110
1111
0111

Trap Always
Trap Never
Trap on Not Equal
Trap on Equal
Trap on Greater
Trap on Less or Equal
Trap on Greater or Equal
Trap on Less
Trap on Greater Unsigned
Trap on Less or Equal Unsigned
Trap on Carry Clear (Greater than or Equal, Unsigned)
Trap on Carry Set (Less than, Unsigned)
Trap on Positive
Trap on Negative
Trap on Overflow Clear
Trap on Overflow Set

1
0

not Z
Z

not (Z or (N xor V))
Z or (N xor V)
Not N xor V)

N xor V
not (Cor Z)

(C or Z)
not C

C
not N

N
not V

V

The Ticc instructions evaluate a boolean test condition based on the current values of
the integer condition codes. The test condition is coded into the cond field of the
instruction, as shown in Table 2-14. If the test condition evaluates as true, and no
higher-priority trap or interrupt request is pending, the trap_instruction trap is
generated. Otherwise, the instruction behaves like a NOP. The test condition for TA
always evaluates as true, the condition for TN evaluates as false.

When Ticc generates a trap, the trap type is written into the tt field of the Trap Base
Register. The trap type is calculated by adding 128 to the seven least significant bits of
the sum of the two instruction operands. Register r[rs1] is always one of the operands;
the other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits, when i = 1. The 25
most significant bits of r[rs2], or the 6 most significant bits of simm13, are unused and
should be supplied as 0 by software.

Control is then transferred to the address in the TBR. The processor enters supervisor
mode, disables traps, decrements the CWP (modulo 8), and saves the PC and nPC into
r[17] and r[18] (local registers 1 and 2) of the new window. See the section on
Interrupts and Traps, below.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-38

Delayed Control-Transfer Couples

When a delayed control-transfer instruction is followed by another control-transfer
instruction, the pair of CTI’s is called a delayed control-transfer couple (DCTI couple).
The order of execution for DCTI couples is illustrated by the examples in Table 2-15.

Table 2-15: Order of Execution for Delayed Control-Transfer Couples

Case 12: CTI 40 16: CTI 60 Order of Execution by Address

1
2
3
4
5
6

DCTI unconditional
DCTI unconditional
DCTI unconditional
DCTI unconditional
BA (a=1)
B*cc taken

DCTI taken
B*cc (a=0) untaken
B*cc (a=1) untaken
B*A (a=1)
any CTI
DCTI

12, 16, 40, 60, 64…
12, 16, 40, 44,…
12, 16, 44, 48,… (40 annulled)
12, 16, 60, 64,… (40 annulled)
12, 40, 44,… (16 annulled)
12, 16, 40, 60, 64, 68…

Note: Where the “a” bit is not indicated above, it may be either 0 or 1. See next table for abbreviations.

Abbreviations used in Previous Table

Abbreviation Refers to Instructions

B*cc
DCTI unconditional
DCTI taken

Bicc (including BN, but excluding BA)
CALL, JMPL, RETT, or BA (with a=0)
CALL, JMPL, RETT, BA (with a=0), or B*cc taken

In the first five cases in Table 2-15, the first instruction causes an unconditional control
transfer. Common examples of such DCTI couples are the JMPL, RETT sequences that
can be used to return from a trap handler. In Case 6, the first instruction is a conditional
branch; the order of execution is implementation-dependent.

Changing Windows with SAVE and RESTORE

The SAVE instruction decrements the Current Window Pointer (CWP) field of the
Processor Status Register, thus saving the caller’s window. The RESTORE instruction
increments the CWP, restoring the caller’s window. CWP arithmetic is performed
modulo 8, the number of implemented windows.

If the new CWP value corresponds to a bit of the Window Invalid Mask register that is
set to 1, a trap is generated: the window_overflow trap for a SAVE, and the win-
dow_underflow trap for a RESTORE.

If a trap is not generated, then, besides modifying the CWP, both SAVE and RESTORE
act like integer addition instructions. The source operand fields rs1 and (when i = 0) rs2
are interpreted as register addresses in the old window, while destination field rd is
interpreted as a register address in the new window.

Programmer’s Model - Instructions

2-39

The SAVE instruction can be used to allocate a new window in the register file, and a
new software stack frame in memory, in a single atomic operation. See the Program-
ming Considerations chapter for details.

2.5.5 Load and Store Instructions

The load and store instructions are the only ones that access memory and I/O, allowing
bytes, half-words, words and doublewords to be transferred to and from processor
registers.

Addressing modes are few and simple: the effective memory address is r[rs1] + r[rs2]
when i = 0, and r[rs1] + (simm13, sign-extended to 32 bits) when i = 1. The destination
field, rd, specifies the register that supplies the data for a store, or receives it for a load.

The SPARC addressing convention is big-endian: the address of a halfword, word, or
doubleword is the address of its most significant byte; increasing the address generally
decreases the significance of the unit being addressed.

Attempts at unaligned accesses are trapped. An aligned doubleword address is divisible
by 8, an aligned word address is divisible by 4, and an aligned half-word address is
divisible by 2. If a load or store instruction generates an improperly aligned address, a
memory_address_not_aligned trap occurs, and the access must be performed piecemeal
under software control.

When performing an access, the processor generates an 8-bit Address Space Identifier
along with the address. The ASI assignments for SPARClite are shown in Figure 1-1 in
the Overview chapter. For a normal load or store instruction, the IU automatically
supplies an ASI of 0x0A (user data space) or 0x0B (supervisor data space), depending
on the current operating mode of the processor.

Privileged instructions exist for accessing the other address spaces. These instructions
supply the Address Space Indicator explicitly in their asi fields. The “register +
immediate” addressing mode is not available for these instructions; they cause an
illegal_instruction trap if their i field is set to 1.

Load

The load integer instructions, shown in Table 2-16, copy data from memory into
general-purpose registers. Bytes, half-words and words are copied into the destination
register r[rd]. Doublewords are copied into an even-next odd r-register pair.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-40

Table 2-16 Load Instructions

opcode operation

LDSB
LDSH
LDUB
LDUH
LD
LDD

Load Signed Byte
Load Signed Halfword
Load Unsigned Byte
Load Unsigned Halfword
Load Word
Load Doubleword

LDSBA†

LDSHA†

LDUBA†

LDUHA†

LDA†

LDDA†

Load Signed Byte from Alternate space
Load Signed Halfword from Alternate space
Load Unsigned Byte from Alternate space
Load Unsigned Halfword from Alternate space
Load Word from Alternate space
Load Doubleword from Alternate space

† Privileged instruction.

Fetched bytes and halfwords are right-justified in the destination register r[rd], and
either sign-extended or zero-extended on the left, depending on whether the load is
signed or unsigned.

For a doubleword load, the effective memory address is that of the most significant
word. This word is copied into the even-numbered register r[rd]; the last bit of the rd
field is ignored, and should be supplied as 0. The least significant word is copied from
the effective memory address + 4 into the following odd-numbered r register. A
successful doubleword load operates atomically.

ldd

Fetch

Decode

Execute

Memory

Write-Back

ldd inst 1

CLK

inst 1

ldd

inst 2

inst 1

ldd(d)

ldd

Inst 2

Inst 2

inst 1

ldd(d)

ldd

Inst 2

inst 1

ldd(d)

Inst 2

inst 1 Inst 2

Stalled instructions

Figure 2-29: Pipeline Sequence: Load Double

Programmer’s Model - Instructions

2-41

Store

The store integer instructions, shown in Table 2-17, copy data from r registers into
memory. Bytes, half-words and words are copied from the register r[rd]. Doublewords
are copied from an even-odd r register pair.

Table 2-17: Store Instructions

opcode operation

STB
STH
ST
STD

Store Byte
Store Halfword
Store Word
Store Doubleword

STBA
STHA†

STA†

STDA†

Store Byte into Alternate space
Store Halfword into Alternate space
Store Word into Alternate space
Store Doubleword into Alternate space

† Privileged instruction.

Byte (and halfword) stores take their data from the least significant byte (or halfword)
of the register r[rd].

For a doubleword store, the effective memory address is that of the most significant
word. This word is copied from the even-numbered register r[rd]; the last bit of the rd
field is ignored, and should be supplied as 0. The least significant word is copied from
the following odd-numbered r register to the effective memory address + 4. A
successful doubleword store operates atomically.

Atomic Load-Store

The atomic load-store instructions, LDSTUB and LDSTUBA, copy a byte from
memory into r[rd], and then rewrite the addressed byte with the value 0xFF. Interrupts
and deferred traps cannot separate the load operation from the store.

Table 2-18: Atomic Load-Store Instructions

opcode operation

LDSTUB
LDSTUBA†

Atomic Load-Store Unsigned Byte
Atomic Load-Store Unsigned Byte into Alternate space

† Privileged instruction.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-42

Swap

The SWAP and SWAPA instructions exchange the contents of r[rd] and the addressed
memory location. Interrupts and deferred traps are not permitted to intervene.

Table 2-19. Swap Instructions

opcode operation

SWAP
SWAPA†

SWAP r register with memory
SWAP r register with Alternate space memory

† Privileged instruction.

2.5.6 Read and Write Control Register Instructions

These instructions access the SPARC control and status registers. Except for SAVE and
RESTORE, each one reads or writes the contents of an entire register. SAVE and
RESTORE decrement and increment (respectively) the Current Word Pointer field of
the Processor State Register.

Read Control Register

Each of the instructions shown inTable 2-20 copies data from a particular SPARC
register into the destination register r[rd].

Table 2-20: Read Control Register Instructions

opcode operation

RDASR†

RDY
RDPSR†

RDWIM†

RDTBR†

Read Ancillary State Register
Read Y Register
Read Processor State Register
Read Window Invalid Mask Register
Read Trap Base Register

† Privileged instruction.

The rs1 field of the RDASR instruction specifies which Ancillary State Register (ASR)
is to be read. In SPARClite, only ASR16 and ASR17 are implemented. Attempts to read
any other ASR result in an illegal_instruction trap.

Write Control Register

Each of the instructions shown inTable 2-21 copies data into the writable fields of a
particular SPARC register. The data to be written is calculated as the bitwise XOR of
the two source operands. Register r[rs1] is always one of the sources; the other is r[rs2]
when i = 0, and simm13, sign-extended to 32 bits, when i = 1.

Programmer’s Model - Instructions

2-43

The write control register instructions cause delayed writes. In a delayed write, the new
value of the register is not available for some number of instructions after the write
instruction. Table 2-21 shows the number of delay instructions for the SPARClite
family processors. (Note: The SPARC architecture allows the number of delay
instructions to take up to 3 cycles. If it is important to assure code compatibility with all
implementations of SPARC, the maximum delay should be assumed.)

Table 2-21: Write Control Register Instructions

opcode operation
write delay

(cycles)

WRASR†

WRY
WRPSR†

WRWIM†

WRTBR†

Write Ancillary State Register
Write Y Register
Write Processor State Register
Write Window Invalid Mask Register
Write Trap Base Register

0
0
2
2
2

† Privileged instruction.

Attempts to use or modify the contents of a register (except for the Y Register), after
writing to it with a write control register instruction, have the following results:

1. Writing to any field of the same register within the write delay makes the contents
of that field undefined.

Exception: A second instance of the same write control register instruction, even if
it follows within three instructions of the first, will write the register as intended.

Note that many instructions implicitly write fields (Current Word Pointer, Integer
Condition Codes) of the Program Status Register: the logical and arithmetic
instructions whose mnemonics end in “cc”; SAVE and RESTORE; Ticc (when
taken); and CALL.

2. Reading any changed field of the same register within the write delay yields an
unpredictable value.

Note that many instructions implicitly read fields of the PSR: ADDX, SUBX,
MULScc, DIVScc; SAVE and RESTORE; Bicc and Ticc.

3. If any of the two instructions following a write control register instruction causes a
trap, a read control register instruction in the trap handler will get the register’s new
value.

If any of the two instructions following a WRTBR causes a trap, the Trap Base
Address used will be the new value of the TBA field.

Programmer’s Model - Instructions

SPARClite User’s Manual

2-44

If any of the two instructions following a WRPSR causes a trap, the values of the S
and CWP fields read from the PSR while taking the trap will be the new values.

WRPSR appears to write the ET and PIL fields immediately with respect to interrupts.

If an WRPSR instruction would cause the CWP field of the Processor Status Register
(PSR) to point to an unimplemented window, it causes an illegal_instruction trap
instead, and does not modify the PSR in any way.

The rs1 field of the WRASR instruction specifies which Ancillary State Register (ASR)
is to be written. In SPARClite, only ASR17 is implemented. Attempts to write any
other ASR result in an illegal_instruction trap.

2.6 Data and Instruction Caches

Each member of the SPARClite family contains separate data and instruction caches
on-chip. The caches are designed for maximum flexibility of operation. Under software
control, individual entries or entire banks can be locked. The data cache can be
decoupled from external memory and used as a fast on-chip scratchpad RAM. This
section discusses the structure and operation of the caches, as seen from the program-
mer’s point of view.

2.6.1 Structure

In the MB86930 processor, each cache is 2 Kbytes in size, divided into 128 lines of 4
words (16 bytes) each. The contents of the cache data memory and tag memory is
undefined at reset.

The cache organization, illustrated in Figure 2-30, is two-way set associative; that is,
each address in memory can be cached in either of two locations. Each cache is divided
into two banks, with 64 lines per bank. The 64 pairs of lines are called sets. On a cache
access, the address bits ADR[9:4] are used to select a set; the corresponding data or
instruction values can be in either bank.

Programmer’s Model - Data and Instruction Caches

2-45

word 3 word 2 word 1 word 0 word 3 word 2 word 1 word 0

63

3

2

1

0

SET

BANK 1 BANK 2

Figure 2-30. Cache Organization

Associated with each cache line is a tag, which indicates the memory location to which
the line is currently mapped, and contains status information for the cached data or
instructions. Data cache tags are located in the address space with ASI 0xE, and
instruction cache tags in the address space with ASI 0xC (see Table 2-22). A cache
entry consists of a cache line together with the corresponding tag. The structure of a
cache tag is illustrated in Figure 2-31.

031 1

Sub Block Valid (Valid=1, Invalid=0, RST=Undefined)

User/Supervisor (User=0, Supervisor=1, RST=Undefined)

6 5910

Least Recently Used (RST=Undefined)

Entry Lock (Locked=1, Unlocked=0, RST=Undefined)

Address TAG
(RST =Undefined)

Figure 2-31. Cache Tag

Bits 31-10: Address Tag—Contains the 22 most significant bits of the memory address of the data or
instructions cached in the corresponding line. Undefined on reset.

Bits 9-6: Sub-Block Valid—Contains one Valid bit for each of the 4 words in the corresponding line.
When a Valid bit is 1, it indicates that the corresponding cache word contains a current
data or instruction value for the address indicated by the tag. Undefined on reset.

Bit 5: User/Supervisor—Indicates whether the data or instructions cached in the corresponding
line come from user space (User/Supervisor bit = 0) or from supervisor space (User/Su-
pervisor bit = 1). Undefined on reset.

Bits 4-3: Reserved

Bit 1: Least Recently Used (Bank 1 Only)—Indicates, for a given set, which bank contains the
least recently used entry. When this bit is 1, it indicates that the entry in Bank 1 was the
least recently used. Otherwise, Bank 2 was the least recently used. The value of this bit
determines which of the two entries is replaced when a new line needs to be allocated, and
both entries are valid. Undefined on reset.

Programmer’s Model - Data and Instruction Caches

SPARClite User’s Manual

2-46

Bit 0: Entry Lock—Locks the current address into the cache tag entry. An access which
competes with currently locked entries in both banks of the cache is treated as
non-cacheable. Undefined on reset.

A faster way to set and clear the tag entry-lock bits is to write the Tag Lock Bit
addresses as shown in Table 2-22. Writes to these locations map to the same entry lock
bits in the instruction and data cache tags described in Figure 2-31 above. The
advantage of writing the entry lock bit using these alternate memory locations is that
only the lock-bit is affected on a write, the reset of the associated tag is not affected.
The same operation using the cache tag address would require a read-modify-write so as
not to change the rest of the tag value.

031

Entry Lock (Locked=1, Unlocked=0, RST=Undefined)

Figure 2-32. Tag Lock Bit

Bit 0: Entry Lock- Locks the current address into the cache tag entry. An access which
competes with a currently locked entry in the cache is treated as non-cacheable. Writing
this bit has the same effect as writing the corresponding bit in the cache tags except that
the rest of the tag remains unaffected by a write to this location.

Table 2-22. Cache Tag Addresses

Bank 1 Bank 2

ch
e

SET
Cache Tag
Address
ASI=0xC

Tag Lock Bit
ASI=0x2 SET

Cache Tag
Address
ASI=0xC

Tag Lock Bit
ASI=0x2

In
st

ru
ct

io
n

C
ac

h

0
1
2
3
4
·
·
·

63

0x 0000 0000
0x 0000 0010
0x 0000 0020
0x 0000 0030
0x 0000 0040

·
·
·

0x 0000 03F0

0x 0000 0000
0x 0000 0010
0x 0000 0020
0x 0000 0030
0x 0000 0040

·
·
·

0x 0000 03F0

0
1
2
3
4
·
·
·

63

0x 8000 0000
0x 8000 0010
0x 8000 0020
0x 8000 0030
0x 8000 0040

·
·
·

0x 8000 03F0

0x 8000 0000
0x 8000 0010
0x 8000 0020
0x 8000 0030
0x 8000 0040

·
·
·

0x 8000 03F0

Programmer’s Model - Data and Instruction Caches

2-47

Table 2-22. Cache Tag Addresses

SET
Cache Tag
Address
ASI=0xE

Tag Lock Bit
ASI=0x3 SET

Cache Tag
Address
ASI=0xE

Tag Lock Bit
ASI=0x3

D
at

a
C

ac
he 0

1
2
3
4
·
·
·

63

0x 0000 0000
0x 0000 0010
0x 0000 0020
0x 0000 0030
0x 0000 0040

·
·
·

0x 0000 03F0

0x 0000 0000
0x 0000 0010
0x 0000 0020
0x 0000 0030
0x 0000 0040

·
·
·

0x 0000 03F0

0
1
2
3
4
·
·
·

63

0x 8000 0000
0x 8000 0010
0x 8000 0020
0x 8000 0030
0x 8000 0040

·
·
·

0x 8000 03F0

0x 8000 0000
0x 8000 0010
0x 8000 0020
0x 8000 0030
0x 8000 0040

·
·
·

0x 8000 03F0

2.6.2 Operation

This section discusses software initialization of the caches and the various cache
operating modes.

Initialization

On reset, both caches are turned off, and all memory requests are sent to the Bus
Interface Unit. In order to use the caches, software must initialize the Valid, Least
Recently Used and Entry Lock bits by writing 0’s to the appropriate alternate address
spaces. After initializing the cache, a program can write 1’s to the Cache Enable bits of
the Cache/BIU control register to turn the caches on. Due to the pipeline in the IU, all
writes are delayed by three instruction cycles.

Normal Operation

Accesses to the user and supervisor data spaces, and fetches from the user and
supervisor instruction spaces, are generally cacheable. Stores to the instruction address
space are not supported. Loads and stores to alternate memory spaces are not cacheable.
I/O registers and other locations that need to be prevented from being cached should
therefore be mapped to an alternate space. Atomic load/store transactions, including the
SWAP instruction, are not cacheable. If an atomic operation references data already in
cache, the entry for that data will be invalidated.

On any cacheable access, the address bits ADR[9:4] are used to select a set in the
appropriate cache. Address bits ADR[3:2] are used to select a word from each of the
two lines in the set; the Valid bits corresponding to those words are checked. The
address bits ADR[31:10] are compared with the address tags. The User/Supervisor bit is
tested against the ASI indicated by the IU.

Programmer’s Model - Data and Instruction Caches

SPARClite User’s Manual

2-48

A cache hit occurs if all of the following are true; otherwise, a cache miss occurs:

• ADR[31:10] matches the address tag in either set.

• The User/Supervisor bit corresponds to the ASI indicated by the IU.

• The Valid bit corresponding to the word being accessed is 1.

In the case of a read hit, the requested data or instruction is in the cache. The data or
instruction is returned to the IU, and the pipeline is not held up. The LRU bit is
updated. The lock bit may be updated based on the value of the Cache Entry Auto Lock
bit in the Lock Control Register (see Locking Modes, below).

A read miss freezes the IU pipeline, and sends the request on to external memory.
Though each cache line is four words long, only a single word is fetched on a miss.
Assuming neither global nor local locking is in force, the fetched word will overwrite
the appropriate word in one of the entries in the set. (Under global or local locking, a
different policy is followed; see Locking Modes, below).

Sometimes a read miss occurs only because the Valid bit for the requested word is not
set. In this case, a cache line has already been allocated for a 4-word memory block
which includes the requested address. The fetched word simply overwrites the
appropriate word in this line; the Valid bit for the word is then set.

Otherwise, a new line needs to be allocated on a read miss, and one of the two entries in
the set corresponding to the requested address must be selected for replacement. The
least recently used entry, as determined by the Least Recently Used bit for the set, is
replaced. The fetched word overwrites the appropriate word in this line; its Valid bit is
then set, and the Valid bits for the other words in the line are cleared.

The data cache follows a write-through memory update policy. On a write hit, the data
is written both to the cache and to main memory (write-through). If there is a write
miss, the data is written only to the external memory (no write-allocate) - the data cache
and the corresponding cache tag are not updated or modified. (A different policy is
followed if the write is to a locked location; see Locking Modes, below.) Data cache
write misses can be avoided by first reading the data memory locations that are to be
written.

Locking Modes

Without locking, read misses can cause cache lines to be re-allocated. Entire caches, or
selected entries corresponding to time-critical routines, however, can be locked into
cache. Locked entries cannot be re-allocated. Thanks to the set-associative organiza-
tion, one bank of each cache can continue to operate as a fully functional direct-mapped
cache, no matter how many entries in the other bank are locked.

Programmer’s Model - Data and Instruction Caches

2-49

On a read miss, if one of the entries in the addressed set is locked, the unlocked one is
re-allocated, whether or not it was the least recently used. If both entries, or the entire
cache, are locked, then the access will be treated as non-cacheable.

Writes to locked data entries, moreover, are not written through to main memory. In
this way, a portion of the data cache can be used as fast on-chip RAM which is not
mapped to external memory.

There are two modes of cache locking:

• Global Locking — Affects an entire cache. When a cache is locked in this way,
valid entries are not replaced; invalid words in allocated cache locations will be
updated. Bits in the cache/Bus Interface Unit Control Register enable or disable the
global locking mode independently for each cache. Enabling global locking does not
affect the Entry Lock bits of individual Cache lines; when global locking is
subsequently disabled, lines with clear Entry Lock bits are once again subject to
re-allocation.

• Local Locking — Affects individual cache lines.

Bits in the Lock Control Register enable or disable, independently for each cache, an
auto lock mode in which all subsequent cache accesses automatically set the Entry
Lock bit of the accessed entry. Software can also lock and unlock an individual entry by
writing the lock bit in that entry’s tag.

With auto-locking enabled for either the instruction or data cache, any lines accessed in
that cache have their entry-lock bit set. This makes it easy to lock a routine into the
cache by setting the auto lock bit in the Lock Control Register at the beginning of the
routine and then executing the routine to lock the entries. The auto lock bit is cleared in
one of two ways. Normally, software clears the auto lock bit at the end of the routine
being locked. If a trap or interrupt occurs the auto lock bit will be cleared by hardware.
This disables the locking mechanism so that the service routine is not locked into cache
by mistake.

Two registers are provided to make it easy to re-enable the auto locking when the
processor returns from the interrupt. The value of the Lock Control Register before the
interrupt is automatically saved in the Lock Control Save Register when an interrupt or
trap occurs. To restore the correct auto-lock value on return from the service routine,
software sets a bit in the Restore Lock Control Register. This will cause the value saved

Programmer’s Model - Data and Instruction Caches

SPARClite User’s Manual

2-50

in the Lock Control Save Register to be moved to the Lock Control Register when a
RETT is executed (see Figure 2-33).

0

XX

10

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

10

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

1

10

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

XX

10

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

0

XX

00

Restore Lock Control Register

Lock Control Save Register

Lock Control Register

Lock Register Values

Code to be locked

or
or
sta

%g0, 0x4, %10
%g0, 0x1, %g1
%g1, [%10]1

Trap or Interrupt

Service Routine

! enable instruction auto-lock

or
rd
and
wr
sta
nop
nop
nop
jmpl
rett

%g0, 0x1, %g1
%psr, %g1
%g1, 0xffdf, %g1
%g1, %g0, %psr
%g1, [%10]1

! get current psr

! disable traps
! set Restore Lock bit

or
or
sta

%g0, 0x0, %10
%g0, 0x1, %g1
%g1, [%10]1 ! disable instruction auto-lock

Code to be locked

End of Trap or
Interrupt

·
·
·

·
·
·
·

·
·
·
·
·
·

Figure 2-33. Caches

2.7 Interrupts and Traps

An interrupt or trap (other than reset) causes a vectored transfer of control through a
trap table which contains the first four instructions of each service routine. The Trap
Base Address field in the Trap Base Register contains the base address of the table.
Associated with each trap type is an 8-bit number, which (left-shifted by 4 bits) is used
as an offset into the table. From the trap table, control typically passes (via a JMPL
instruction) to the appropriate trap handler. The control transfer for traps other than

Programmer’s Model - Interrupts and Traps

2-51

reset and breakpoint traps is illustrated in Figure 2-34. Reset always traps to address 0
and breakpoints always traps to 0x00000FF0.

initialized by kernel

Trap Base Address (high 20 bits) 0000tt (trap type)

trap/interrupt (in)

Trap table
TBA

tt * 16 (bytes)

instruction 1

instruction 2

instruction 3

instruction 4

·

·

·

Trap handler
routine

·

·

·

jmpl

rett

trap/interrupt (out)

TBR

Figure 2-34. Trap and Interrupt Vectoring

A feature called single vector trapping allows all traps to vector to a single location,
specified by the 20 high-order bits of the TBR, filled out on the right with 0’s. After the
trap is taken, the trap type can be determined by reading the tt field of the TBR. Single
vector trapping can save code space and improve the response time of traps, since all of
the trap service routines can potentially fit in cache. This feature, disabled at reset, can
be enabled by setting the SVT bit of ASR17.

The Trap Enable bit (ET) of the Processor State Register enables (ET = 1) and disables
(ET = 0) interrupts and traps. When ET = 0, interrupts are ignored, and traps cause the
Integer Unit to halt and enter the error mode.

The processor provides direct support for 15 interrupt priority levels. The external
interrupt request level (on input pins IRL[3:0]) is compared with the value in the
Processor Interrupt Level field of the PSR. If the request level equals 15, or if it exceeds
the PIL value, the interrupt is taken.

2.7.1 Trap Types

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type number. Of
these, half are reserved for external interrupts and hardware-enforced instruction
exceptions. The various trap types are listed in order of priority, with their causes, in
Table 2-23.

Programmer’s Model - Interrupts and Traps

SPARClite User’s Manual

2-52

Table 2-23: Traps

Trap Priority tt Cause

reset 1 – The external system asserted the –RESET input,
signalling a reset request. Alternatively, the processor
entered error mode and so generated an internal reset.

breakpoint_trap 1.5 255 Instruction or Data Breakpoint encountered or illegal write
access to the breakpoint registers.

instruction_access_exception 2 1 A blocking error exception occurred on an instruction
access (for example, an MMU indicated that the page was
invalid or read-protected).

privileged_instruction 3 3 An attempt was made to execute a privileged instruction in
user mode.

illegal_instruction 4 2 An attempt was made to execute an instruction with an
unimplemented opcode, or an UNIMP instruction, or an
instruction that would result in illegal processor state (for
example, writing an illegal CWP into the PSR). Note that
unimplemented FPop and unimplemented CPop
instructions generate fp_exception and cp_exception
traps.

fp_disabled 5 4 An attempt was made to execute an FPop, FBfcc, or a
floating-point load/store instruction.

cp_disabled 5 36 An attempt was made to execute a CPop, CBccc, or a
coprocessor load/store instruction.

window_overflow 6 5 A SAVE instruction attempted to cause the CWP to point
to a window marked invalid in the WIM.

window_underflow 7 6 A RESTORE or RETT instruction attempted to cause the
CWP to point to a window marked invalid in the WIM.

mem_address_not_aligned 8 7 A load/store instruction would have generated a memory
address that was not properly aligned according to the
instruction, or a JMPL or RETT instruction would have
generated a non-word-aligned address.

data_access_exception 10 9 A blocking error exception occurred on a load/store data
access (for example, an MMU indicated that the page was
invalid or write-protected).

tag_overflow 11 10 A TADDccTV or TSUBccTV instruction was executed, and
either arithmetic overflow occurred or at least one of the
tag bits of the operands was nonzero.

trap_instruction (Ticc) 12 128-255 A Ticc instruction was executed and the trap condition
evaluated to true.

Programmer’s Model - Interrupts and Traps

2-53

Table 2-23: Traps (Continued)

Trap Priority tt Cause

interrupt_level_15
interrupt_level_14
interrupt_level_13
interrupt_level_12
interrupt_level_11
interrupt_level_10
interrupt_level_9
interrupt_level_8
interrupt_level_7
interrupt_level_6
interrupt_level_5
interrupt_level_4
interrupt_level_3
interrupt_level_2
interrupt_level_1

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

External Interrupt Request

2.7.2 Trap Behavior

The expression trapped instruction refers, in the case of a synchronous trap (instruction
exception), to the instruction which caused it. In the case of an interrupt, the trapped
instruction is the one which was about to enter the Writeback stage of the pipeline when
the interrupt occurred.

The Integer Unit supports precise traps—when an interrupt or trap occurs, the saved
state of the processor reflects the completion of all instructions prior to the trapped
instruction, but no subsequent instructions (including the trapped instruction). Hardware
guarantees that upon return from the service routine, the Program Counter points to the
trapped instruction (or its successor if the trapped instruction was emulated).

The integer unit tests for exceptions generated by an instruction just before that
instruction enters the Writeback stage. If an exception is detected, and no higher-prior-
ity request is pending, and traps are enabled, the processor takes a trap. If more than
one exception is detected, the processor takes the trap with the highest-priority. When a
trap is taken, the processor does the following things:

1. Writes the trap type number into the tt field of the Trap Base Register.

2. Saves the current processor mode (user or supervisor) by copying the value of the S
bit of the Processor Status Register into the PS bit.

3. Enters supervisor mode by setting the S bit of the PSR to 1.

4. Disables traps by clearing the ET bit of the PSR to 0.

5. Saves the window of the interrupted routine by decrementing the Current Window
Pointer (modulo 8). The Window Invalid Mask is not checked for window
underflow or overflow.

Programmer’s Model - Interrupts and Traps

SPARClite User’s Manual

2-54

6. Stores the current Program Counter and Next Program Counter values in r[17] and
r[18] of the new window.

7. Transfers control to the address specified by the TBR.

An instruction is said to be squashed when its execution is aborted after it has entered
the pipeline. A taken trap always squashes either 2 or 3 instructions. Asynchronous
traps and interrupts squash 3 instructions as shown in Figure 2-35. Software traps (Ticc)
only squash 2 instructions because the processor holds the next instruction fetch when
the trap instruction reaches the memory stage (in Figure 2-35, instruction 4 is replaced
by a hardware generated NOP).

Inst 1

Fetch

Decode

Execute

Memory

Write-Back

Inst 1 Inst 2

CLK

Inst 2

Inst 1

Inst 3

Inst 3

Inst 2

Inst 1

Inst 4/nop

Inst 4/nop

Inst 3

Inst 2

Inst 1

Inst 20

Inst 20

Inst 4/nop

Inst 3

Inst 2

Inst 21

Inst 21

Inst 20

Inst 4/nop

Inst 3

Inst 21

Inst 20

Inst 4/nop

Inst 21

Inst 20

synchronous or asynchronous trap

first trap handler instruction

no result written back to
register file, however PC is

written back

squashed instructions

Figure 2-53. Instructions Squashed by Trap

The trap handler must insure that a window is available (for taking another trap), and
then re-enable traps by setting ET to 1. The code for handling the exceptional condition
that caused the trap can then be executed. Traps must be disabled (ET cleared to 0)
before returning, via a RETT instruction, from the service routine.

Unless it causes a trap, the RETT instruction does four things: it increments the Current
Word Pointer (modulo 8), causes a delayed control transfer to a register-indirect target
address, restores the processor to the operating mode (user or supervisor) it was in
before the trap was taken, and enables traps. The trap handler must ensure that a
window is available so that RETT can increment the CWP without causing a window
underflow and sending the processor into error mode.

2.7.3 Reset and Error Modes

As defined in the SPARC architecture, the SPARClite integer unit has reset, error, and
execute modes which are states of the processor. The processor is in execute mode
during the normal execution of instructions. The processor enters error mode if a
synchronous trap is encountered while the traps are disabled (the ET bit is 0). The

Programmer’s Model - Interrupts and Traps

2-55

processor enters reset mode when the –RESET input is asserted, and enters execute
mode when the –RESET line is de-asserted.

Once it is in error mode, the processor must be reset in order to return to normal
operations. The external system can detect an error condition by monitoring the
–ERROR signal which is asserted for a minimum of one cycle.

Processor reset occurs whenever the –RESET input is held active for 4 cycles after the
clock stabilizes. Reset does the following:

1. Writes 0 into the Program Counter and 4 into the Next Program Counter. When
–RESET is de-asserted, the processor will begin fetching instructions at address
0x00000000 in supervisor instruction space (ASI 0x09).

2. Zeroes or sets to the appropriate NOP instruction all registers in the instruction
pipeline. This insures that:

• No instructions are left half-executed in the instruction pipeline.

• No traps are taken prior to the instruction at address zero.

• No control transfer instructions are in progress.

• No interlock or bypass conditions will be detected prior to the instruction at
address zero.

• No state will be written back prior to the instruction at address zero.

3. Enters supervisor mode by setting the S bit in the PSR.

4. Disables traps by clearing the ET bit in the PSR.

2.8 Debug Support Unit

The Debug Support Unit (DSU) consists of a hardware emulator interface, debug
support registers, and on-chip breakpoint and single-step logic that support hardware
in-circuit emulators (ICE) and debug monitors.

The hardware emulator interface consists of a four-bit emulator data bus
(EMU_D<3:0>), a four-bit multiplexed status/data bus (–EMU_SD<3:0>), an emulator
break request pin (–EMU_BRK), and an emulator enable signal pin (–EMU_ENB). The
emulator interface allows in-circuit emulators and other debug and diagnostic hardware
to trace processor activity by monitoring transactions between the IU and cache. These
buses and pins should remain open when an in-circuit emulator is not in use.

Debug monitors typically reside in ROM and do not require a dedicated interface. The
–EMU_BRK and –EMU_ENB pins, however, are used to enable the DSU for use by
debug monitors.

Programmer’s Model - Debug Support Unit

SPARClite User’s Manual

2-56

The debug support registers consist of six Breakpoint Descriptor registers, a Debug
Control Register, and a Debug Status Register. These registers are used to specify
breakpoints, to configure the DSU for desired operation, and to read debug status.

This section describes only DSU debug monitor support, and contains information that
is necessary for implementing debug monitors in MB86930-based systems. DSU
hardware emulator support is described briefly in Section 6.5. The documentation
provided with the emulator contains detailed information for the specific emulator in
use.

2.8.1 Monitor Mode

DSU trace and breakpoint debug monitor support operation is enabled and disabled
according to the states of the active-low –EMU_BRK and –EMU_ENB processor input
pins at reset as follows:

Table 2-24:

State at Reset
Function

–EMU_ENB –EMU_BRK
Function

0 0 Reserved

0 1 Reserved

1 0 Monitor Mode. DSU Registers are cleared at reset, and
breakpoint registers can be read and written.

1 1 Normal Mode. DSU Registers are cleared at reset, and all
breakpoints are disabled.

The state of the pins are written to bits <1:0> in the Debug Status Register where they
can be read by the processor initialization routine to determine whether to jump to the
monitor or proceed with normal program execution. After reset, the states of the pins
can change with no effect.

The processor jumps to the monitor if in monitor mode. The DSU registers are initially
cleared at reset in this mode, breakpoints are disabled, and breakpoint registers are
readable and writable. In normal mode, all breakpoints are disabled, the DSU Status
Register can be read, and normal program execution proceeds without breakpoints.

Monitor Mode States

There are two monitor mode states: break state and execute state.

Break state is a very high-level state in which breakpoints are disabled, the DSU
registers can be read and written, and the processor registers that are normally accessed

Programmer’s Model - Debug Support Unit

2-57

in Supervisor mode can be accessed. The break state is entered following reset when the
monitor mode is selected with the ±EMU_ENB and ±EMU_BRK signals, and when the
-Break flag is cleared to 0 in the Debug Control Register in response to a breakpoint, a
software break request (Ticc255 instruction), or a DSU register write exception. The
break state allows writes to the DSU registers to allow DSU configuration, and inhibits
breakpoints to eliminate debug interrupts while configuring the DSU.

The execute state is the normal debug mode operating state in which breakpoints may
be enabled, the DSU registers can be read but not written, and program execution
proceeds pending a breakpoint. The execute state is entered from the break state by
setting the ±Break flag in the Debug Control Register to 1 and executing the JMPL/
RETT pair.

2.8.2 Breakpoint Registers

The DSU contains a Debug Control Register (Figure 2-36) and a Debug Status Register
(Figure 2-37) for DSU control and debug status reporting. It also contains six
Breakpoint Descriptor Registers for specifying address and data breakpoints.

The breakpoint descriptor and control registers are memory-mapped to ASI 0x1 at the
following addresses:

Table 2-25:

0x0000FF00 Instruction Address Descriptor Register 1

0x0000FF04 Instruction Address Descriptor Register 2

0x0000FF08 Data Address Descriptor Register 1

0x0000FF0C Data Address Descriptor Register 2

0x0000FF10 Data Value Descriptor Register 1

0x0000FF14 Data Value Descriptor Register 2 or Mask Register

0x0000FF18 Debug Control Register

0x0000FF1C Debug Status Register

Programmer’s Model - Debug Support Unit

SPARClite User’s Manual

2-58

Debug Control Register

The Debug Control Register is used to enable the breakpoints that are specified in the
Breakpoint Descriptor Registers and to qualify the breakpoints as follows:

031 2 1

Enable Data Address 2 Match

45

Enable Data Address 1 Match

Enable Instruction Address 2 Match

367810

Enable Instruction Address 1 Match

Single_Step

Data Value Transaction Type

Data Value Condition

Data Value Mask

131415162324

Reserved
(0010)ASI Value for Data Address 2 ASI Value for Data Address 1

User/Supervisor Bit for Instruction Address 1

User/Supervisor Bit for Instruction Address 2

–Break

9

Figure 2-36. Debug Control Register

Bit 31-24: Data Address 2 ASI: Specifies the ASI match value for Data Address 2.

Bit 23-16: Data Address 1 ASI: Specifies the ASI match value for Data Address 1.

Bit 15: Instruction Address 2 User/Supervisor Bit: Specifies either a User (when 0) or Supervisor
(when 1) Mode match for instruction address 2.

Bit 14: Instruction Address 1 User/Supervisor Bit: Specifies either a User (when 0) or Supervisor
(when 1) Mode match for instruction address 1.

Bit 13-10: Reserved, and must be written <0010> (bit 11 = 1; all other bits = 0).

Bit 9: ±Break—Cleared to indicate break state following reset or a breakpoint; set by the monitor
to return to the execute state.

Bit 8: Enable Data Address 2 Match—Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 2.

Bit 7: Enable Data Address 1 Match—Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 1.

Bit 6: Enable Instruction Address 2 Match—Enables (1) or disables (0) the breakpoint
comparison for Instruction Address Descriptor 2.

Bit 5: Enable Instruction Address 1 Match—Enables (1) or disables (0) the breakpoint
comparison for Instruction Address Descriptor 1.

Bit 4: Single Step—Enables single-step operation when set. During single-step operation, a
breakpoint trap is issued on every instruction.

Programmer’s Model - Debug Support Unit

2-59

Bits 3-2: Data Value Transaction Type—Determines the class of instructions (loads, stores, or both)
that can cause a Data Value breakpoint trap.

Break only on Loads
Break only on Stores
Break on Load or Store
Break Always

00
01
10
11

Bit 1: Data Value Condition—Determines whether a Data Value breakpoint trap is caused by
values inside the range specified by the Data Value Descriptor Registers, or outside this
range (assuming that the Data Value Mask bit is 0.)

Bit 0: Data Value Mask—Controls the interpretation of the Data Value Descriptors. When the
Data Value Mask bit is 1, Data Value Descriptor 2 is used as a mask for Data Value
Descriptor 1. When the Data Value Mask bit is 0, the Data Value Descriptors specify the
upper and lower bounds of a value range.

Debug Status Register

The Debug Status Register contains breakpoint status and DSU enable flags as follows:

031 2 1

Data Address 2 Match

45

Data Address 1 Match

Instruction Address 2 Match

36

Instruction Address 1 Match

–EMU_BRK at Reset

–EMU_ENBL at Reset

0x0000FF1C, ASI=0x1

Figure 2-37. Debug Status Register

Bits 31-6: Reserved

Bit 5: Data Address 2 Match—set to (1) if address matched. Software should clear this bit after
reading it.

Bit 4: Data Address 1 Match—set to (1) if address matched. Software should clear this bit after
reading it.

Bit 3: Instruction Address 2 Match—set to (1) if address matched. Software should clear this bit
after reading it.

Bit 2: Instruction Address 1 Match—set to (1) if address matched. Software should clear this bit
after reading it.

Bit 1: –EMU_BRK Asserted at reset—Holds the state of the –EMU_BRK pin during reset.
Maintains its value until the next reset. –EMU_ENBL and –EMU_BRK are used to
configure the DSU at reset. This bit is read only.

Programmer’s Model - Debug Support Unit

SPARClite User’s Manual

2-60

Bit 0: –EMU_ENBL Asserted at reset—Holds the state of the –EMU_ENBL pin during reset.
Maintains its value until the next reset. –EMU_ENBL and –EMU_BRK are used to
configure the DSU at reset. This bit is read only.

Breakpoint Descriptor Registers

The DSU contains two instruction address, two data address, and two data value
breakpoint descriptor registers as follows:

031

Instruction Address Descriptor Register 1

0x0000FF00, AS=0x1

031

Instruction Address Descriptor Register 2

0x0000FF04, ASI=0x1

031

Data Address Descriptor Register 1

0x0000FF08, ASI=0x1

031

Data Address Descriptor Register 2

0x0000FF0C, ASI=0x1

031

Data Value Descriptor Register 1

0x0000FF10, ASI=0x1

031

Data Value Descriptor Register 2 or Mask Register

0x0000FF14, ASI=0x1

12

Res

Res

12

The instruction addresses, data addresses, and data values in these registers specify
breakpoints that force breaks when encountered during program execution and force the
DSU to the break state. However, the breakpoints must first be enabled and qualified in
the Debug Control Register.

Once a breakpoint occurs, the monitor reads the Debug Status Register to identify the
breakpoint.

2.8.3 Breakpoint Traps

A breakpoint is a trap that changes the DSU state from the execute state to the break
state, and vectors to the breakpoint trap handler at address 0x00000FF0. A breakpoint
can be a hardware breakpoint (breakpoint address match, breakpoint data match, single
step trace, or DSU register write exception), or a software breakpoint.

Programmer’s Model - Debug Support Unit

2-61

Unlike other traps, the breakpoint trap ignores the Trap Base Register (TBA) and the
Single Vector Trap (SVT). The address of the breakpoint service routine is always
0x00000FF0 regardless of the TBA and SVT. A software breakpoint trap updates the
Trap Type (tt) field in the Trap Base Register, but a hardware breakpoint trap does not
update the tt field.

The breakpoint trap handler is exited by setting the –Break flag in the Debug Control
Register, then executing the JMPL/RETT instruction pair to return to normal program
execution. It is the responsibility of monitor code to restore all register window values
(with the exception of the breakpoint trap window) to their pre-break values before
returning from the trap.

Breakpoint traps have Trap Type number 255, and have a higher priority than other
traps except RESET.

Instruction Address Breakpoints

An instruction address breakpoint occurs when an instruction address in the code being
debugged matches the address in either Instruction Address Descriptor Register 1, or
Instruction Address Descriptor Register 2. Each address must be qualified and enabled
in the Debug Control Register as follows:

(1) User or Supervisor mode instruction must be specified in the appropriate
bit, <15> or <14>.

(2) The breakpoint must be enabled in the appropriate bit, <6> or <5>.

The instruction address breakpoint trap is taken after the breakpoint instruction has
completed execution.

Data Address Breakpoints

A data address breakpoint occurs when a data address in the code being debugged
matches the address in either Data Address Descriptor Register 1, or Data Address
Descriptor Register 2. Each address must be qualified and enabled in the Debug Control
Register as follows:

(1) The data address ASI must be specified in the appropriate ASI field,
<31:24> or <23:16>.

(2) The breakpoint must be enabled in the appropriate bit, <8> or <7>.

The data address breakpoint trap is taken after the breakpoint instruction has completed
execution. Loads and Stores, for example, complete execution before a resulting
breakpoint trap is taken.

Programmer’s Model - Debug Support Unit

SPARClite User’s Manual

2-62

Data Value Breakpoints

A data value breakpoint occurs when data that is transferred by the code being
debugged falls within the range bounded by the values in Data Value Descriptor
Registers 1 and 2, falls outside of the range bounded by the values in Data Value
Descriptor Registers 1 and 2, or matches the bits in Data Value Descriptor Register 1
that are not masked by Data Value Descriptor Register 2. The data address must also
match the descriptor in Data Address Descriptor Register 1 or 2.

The type of data value breakpoint must be selected in the Debug Control Register as
follows:

(1) The data transaction type must be selected in field <3:2>.

(2) The data value condition must be selected in bit <1>.

(3) Masking or no masking must be selected in bit <0>

The Data Value Descriptor Registers work in one of two ways. If the Data Value Mask
bit in the Debug Control Register is 1, Data Value Descriptor 2 is used as a mask for
Data Value Descriptor 1. In this mode only those bits of the Data Value Descriptor 1 for
which the corresponding bits are 0 in Data Value Descriptor 2 are compared with the
transferred data. All other bits are ignored in the breakpoint comparison.

If the Data Value Mask bit is 0, Data Value Descriptors 1 and 2 are the lower and upper
bounds, respectively, of a comparison range. The break condition is determined by the
values of the Data Value Condition bit in the Debug Control Register. If the Data Value
Condition bit is a 0, the break condition is as follows:

Data Value Descriptor 1 ≤ Transferred Data ≤ Data Value Descriptor 2

If the Data Value Condition bit is a 1, this break condition is inverted, changing the
comparison into an “out-of-range” test.

The Data Value comparison may be conditioned by the type of transaction (load or
store) that is being performed according to the Data Value Transaction Type selection
in the Debug Control Register as follows:

Table 2-26:

00
01
10
11

Break only on Loads
Break only on Stores
Break on Load or Store
Break Always

Break Always results in breakpoints based on data address only.

Programmer’s Model - Debug Support Unit

2-63

The matching logic automatically masks unused bytes and halfwords in the data
transfer.

Single Step Tracing

Single step tracing is initiated by setting the Single Step flag in the Debug Control
Register while in break state, then returning to normal program execution by setting the
±Break flag in the Debug Control Register and executing the JMPL/RETT instruction
pair.

The next instruction in the program then executes, and the following instruction traps if
ET=1. If ET=0, the breakpoint trap remains pending until ET is set to 1.

DSU Register Write Exception Breakpoint

Attempted writes to a DSU register while in the execute state of monitor mode results
in a breakpoint. This breakpoint can be used by the monitor to force a change from the
execute state to the break state. It ET=0 when the breakpoint request occurs, the
breakpoint remains pending until ET=1.

Writes to the DSU registers are ignored in normal mode.

Software Breakpoint

A software breakpoint trap (Ticc255) functions the same way as other software traps,
and has a trap priority of 12. If ET=0 when the breakpoint occurs, the breakpoint trap is
ignored.

2.9 SPARC Compliance

SPARClite processors are fully compliant with the SPARC architectural specification.

Compatibility with existing and planned SPARC standards is a cornerstone of the
SPARClite family strategy.

Compatibility assures:

1. a wide range of silicon implementations meeting different price/performance
targets.

2. a ready availability of native development environments and tools

3. a large and growing base of application software which is object code compatible

4. an established and commercially viable processor architecture which is likely to be
around well into the future.

Programmer’s Model - SPARC Compliance

SPARClite User’s Manual

2-64

The SPARC architecture was originally developed by SUN Microsystems, Inc. and first
implemented by Fujitsu. SPARC International has since been formed to independently
promote and control the evolution of the architecture.

All SPARC processor implementations conform to one of two architecture revision
levels. The first commercially available version of the architecture is referred to as
SPARC architecture Version 7. All existing silicon implementations and consequently
SUN Microsystems, Inc. SPARCstations (1, 1+, 2, SLC, ELC, IPC, IPX) and SPARC
compatible workstations conform to Version 7. A revised version of the SPARC
architecture, Version 8, became final in March 1991. Future SPARC workstations will
migrate to SPARC Version 8 processors. All OS and application code written for
Version 7 processors will run without modification on SPARC Version 8 processors.
SPARClite series processors conform to Version 8 of the SPARC Architecture.

Version 8 of the SPARC Architecture adds these primary features to Version 7.

• multiply- integer multiply instruction

• divide- integer divide instruction

• write/read ASR- read and write Ancillary State Register instructions which are used
as additional control registers and implementation definable control registers

The architecture does not require that all instructions and features be implemented, only
that the processor will trap on unimplemented features so that they can be emulated in
software. SPARClite implements the Version 8 multiply instruction and read and write
ASR instructions. The integer divide instruction is not directly supported in hardware.

The MB86930 implements two instructions not defined by SPARC Version 8. These are
the Scan and Divide Step instructions. These instructions are decoded in unused
opcodes and provide a superset of SPARC Version 8. If code developed using these
instructions is run on Version 7 or Version 8 SPARC processors other than SPARClite
an unimplemented instruction trap will occur.

Programmer’s Model - SPARC Compliance

3-1

HAPTER

Internal Architecture

3
C

The internal architecture of SPARClite family processors is illustrated in Figure 3-1.
The processor consists of a Clock Generator, an Integer Unit, separate on-chip caches
for data and instructions, a Bus Interface Unit, and a Debug Support Unit to support the
use of in-circuit emulators and target monitors. Internally, the various functional units
are connected by separate instruction and data buses. For connection with external
memory and I/O, a unified address bus and a unified data bus are extended off-chip.
This chapter discusses the individual functional units in turn, giving an overview of the
flow of data and control signals through the processor.

Internal Architecture -

SPARClite User’s Manual

3-2

CLOCK
GENERATOR

BUS
INTERFACE

UNIT

DRAM

PWG

ADDRESS
DECODE

16-BIT TIMER

2K INSTRUCTION
CACHE

2K DATA
CACHE

SPARC INTEGER UNITCLK_OUT

DATA

ADDRESS

ASI

CONTROL

CHIP_SEL

PAGE_DET

REFRESH

32

32

32

32 D_ADDR

D_DATA

I_ADDR

I_DATA

D
E

B
U

G
 S

U
P

P
O

R
T

 U
N

IT

EMULATOR
BUS

Figure 3-1. Internal Architecture (Block Diagram)

3.1 Integer Unit

The Integer Unit (IU) is a compact, fully custom implementation of the SPARC
architecture. It is hard-wired for maximum performance; that is, it uses no microcode. It
contains three functional units:

• Instruction Block—Contains the instruction pipeline; decodes instructions into
control signals for the other blocks.

• Address Block—Performs all instruction-address manipulations.

• Execute Block— Performs all data manipulations; generates operand addresses for
load and store instructions and effective addresses for some of the control transfer
instructions.

As shown in Figure 3-2, the IU is based on a Harvard (Aiken) architecture. There are
separate address buses for instructions and data. There are also two 32-bit data

Internal Architecture - Integer Unit

3-3

interfaces: the instruction data bus, and the data bus. The use of these four buses allows
the IU to retrieve data and instructions simultaneously from on-chip cache.

ir

e_ir

m_ir

w_ir

INSTRUCTION
BLOCK

adder

pc

0 TBR

inc (+4)

d_pc

e_pc

m_pc

ADDRESS
BLOCK

BA

ALU / SHIFTER

PSR/WIM/Y

st_align ld_align

read 1 read 2 read 3 read 4

REGISTER FILE

EXECUTE
BLOCK

I DATA

D ADDRESS D DATA

R Register

W

Data Address

I ADDRESS

Figure 3-2. Integer Unit Data Path

3.1.1 I Block

The instruction block (I Block) contains the five-stage instruction pipeline and the logic
which decodes instructions into control signals for the rest of the IU. The I block detects
all bypass and interlock conditions.

The main interfaces to the I block are:

• Instruction data bus from the instruction cache or main memory.

• Immediate data field which goes to the A block for computing PC relative control
transfers, and to the E block to be used as immediate data.

• Control signals to the A block and E block, including the register file read and write
addresses, register enable signals, multiplexer controls, and partly or fully decoded
operation codes for the ALU/Shifter.

• Status signals back from the E block, including possible trap conditions such as
 memory_address_not_aligned or tag_overflow.

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-4

Instruction Pipeline

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure 3-3. The pipeline consists of the following stages:

1. Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction. (The figure below assumes a hit in the instruction cache.)

2. Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

3. Execute (E)—The ALU computes a result.

4. Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

5. Writeback (W)—The result (or loaded memory datum) is written into the register
file.

Instruction 4 5

5

5

5

Fetch

Decode

Execute

Memory

Write-Back

Instruction 5

Instruction 3

Instruction 2

Instruction 1

4

3 4

2 3 4

6

6

6

6

CLK

Figure 3-3. Instruction Pipeline

No instructions execute out-of order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B does.

The control logic for the instruction pipeline is illustrated in Figure 3-4. At each cycle a
horizontal control word is available which is wider than 32 bits and controls every
multiplexer, latch-enable, and unit op-code in the chip. The horizontal control word is
composed of control signals active during the decode stage of instruction N, the execute
stage of instruction N-1, the memory stage of instruction N-2 and the writeback stage of
instruction N-3. Some control bits require no decoding and are simply hardwired from
the appropriate bits in the instruction register. Because the SPARC instruction set is not
completely orthogonal (not every instruction field has the same meaning in every
instruction) most bits require some decoding based on a single instruction in the

Internal Architecture - Integer Unit

3-5

pipeline. Some control bits require decoding using logic that looks at two instructions in
the pipeline, as, for example, in controlling multiplexers to select data bypass paths.

Execute

Decode

Memory

Writeback

Combinational
Logic

Instructions

Horizontal
Control
Word

Figure 3-4. Instruction Pipeline Control Logic

Pipeline Hold

The IU does not complete one instruction on absolutely every cycle. On a load
instruction, for example, external memory may be slow in returning the requested data.
Because the IU does not execute or complete instructions out of order, the pipeline must
be held up until the requested data is returned. Only then can the instruction complete
and only then can the subsequent instructions continue.

There are also some hazards built into the IU datapath which require interrupting the
one-cycle-per-instruction sequence of the pipeline. For example, a doubleword load
cannot be performed in one cycle because there is not enough memory or register-file
bandwidth to move the data through the datapath. Another example is a load to a
register which is followed by an instruction which uses that register. Because the
operand of the second instruction is required in the decode stage but is not available,
this instruction must be delayed until the operand is available.

Conditions which hold up the processor pipeline are handled uniformly by the I Block
control logic and are referred to as hold conditions. A complete list of possible hold
conditions is given in Table 3-1.

Table 3-1: Conditions Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

ihold Processor is attempting to fetch an
instruction that is not yet available.

Fetch Any instruction

dhold Data is not yet available Memory Loads and Stores

mhold Multiplication in progress Execute Integer Multiplication

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-6

Table 3-1: Conditions Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

Interlock An instruction in the pipeline must wait
for some prior instruction to be
completed (through Writeback).

Load/Use and
CALL/Use r15
Instruction Pairs

Multicycle
Instruction

An instruction which inherently requires
more than one cycle is in the pipeline.

Execute Load and Store
Double-word, Atomic
Load/Store

The interlock conditions are:

• Load/Use Instruction Pairs—If a load instruction which has rd=N as its destination
register is followed by an instruction which uses rs=N as one of its source operands,
then the load must proceed through Writeback before the following instruction can
enter the Execute stage.

• CALL/Use %r15 Instruction Pairs—Similarly, since the CALL instruction implicitly
writes the current value of the PC into r15, it must proceed to Writeback before any
following instruction which uses r15 can enter the Execute stage.

Any time an interlock is detected, a NOP is inserted into the pipeline. The address
block is signaled, so that the address of the instruction which causes the interlock is
replicated in the address pipe. The NOP itself cannot cause a trap.

The multicycle instructions are LDD, LDDA, STD, STDA, LDSTUB, LDSTUBA,
SWAP, and SWAPA. When a multicycle instruction enters the Execute stage, it and the
instruction in the d_ir register are frozen for an additional cycle. Although it is possible
to detect a multicycle instruction while it is in the Decode stage (unlike interlocks,
which cannot be detected without looking at two instructions, those in the d_ir and e_ir
registers), the I Block allows it to progress to the Execute stage before a hold is
generated and inserted. This simplifies control somewhat because there are fewer points
at which the pipeline must be held.

Note that the maximum number of internally generated hold cycles an instruction can
cause is two, as in the following case:

LDD [%r1+%r2],%r4
ADD %r5,%r5,%r6

The LDD takes two cycles, and it generates an interlock because the next instruction
uses the data loaded in the second data memory cycle of the LDD instruction.

When a hold condition occurs, combinational logic generates one or more freeze
signals, which prevent latches from being updated, and hence keep the pipeline from

Internal Architecture - Integer Unit

3-7

advancing. For some holds—dhold, for example—the entire pipeline is frozen, with
freeze signals being generated for all stages in the pipeline. For other holds—interlock
conditions, for example—later stages in the pipeline must advance for the hold
condition to be resolved. Thus only the earlier stages of the pipeline are frozen.

Trap Logic

SPARClite supports precise traps; that is, when a trap occurs, the saved programmer-
visible state of the processor reflects the completion of all instructions prior to the
trapped instruction, and no subsequent instructions including the trapped instruction.
Thus, when an instruction causes a trap, one of two statements is true:

• No results from that instruction have been written into the programmer-visible
registers (the register file or the PSR, TBR, WIM, or Y registers).

• Or, if data has been written into a programmer-visible register, the data contained in
that register prior to being written by the trapped instruction is saved by the
processor and can be restored when the trap is taken.

Table 3-2 shows the pipeline stages in which the various trap conditions are detected.

Figure 3-2: Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1
1.5
1.5
2
3
4

—
Not

Altered
1
3
2

D
F
M
F
D
D

reset
instruction_breakpoint
data_breakpoint
instruction_access_exception
priv_instruction
illegal_instruction

5
5
6
7

4
36
5
6

D
D
D
D

fp_disabled
cp_disabled
window_overflow
window_underflow

8
10
11
12

7
9
10

128-255

E
M
E
D

mem_address_not_aligned
data_access_exception
tag_overflow
trap_instruction (Ticc)

14
15
—
—
—
28

31
30
—
—
—
17

interrupt_level_15
interrupt_level_14
—
—
—
interrupt_level_1

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-8

As shown in Table 3-2, the latest stage in which a trap can be detected is the Memory
stage (a data memory exception for a load or store). If a programmer-visible register is
updated prior to this stage, its original contents must be restored when and if the trap is
taken.

Due to the pipelined operation of the IU, a trap condition for one instruction may
actually be detected before a trap condition for a prior instruction. Thus, it is necessary
to align the detected trap conditions so that all trap conditions for instruction N are
considered together, before considering any trap conditions resulting from instruction
N+1.

The trap coder is illustrated in Figure 3-5. Its purpose is to align in time the (possibly
multiple) trap sources for a single instruction, to determine if a trap is to be taken or
not, and if so, to determine the highest priority trap and code its trap type.

Combinational Block

qualify, prioritize, encode

trap? yes/no

trap type
(to A block)

Fetch-stage trap sources

Decode-stage trap sources

Execute-stage trap sources

Memory-stage trap sources

Memory-stage
instruction reg

Figure 3-5. Trap Coder

When a trap is taken, the trap type field goes to the A Block where it is used immedi-
ately as a trap target address (when concatenated with the Trap Base Address) and is
latched into the Trap Base Register.

3.1.2 A Block

The A Block contains the address pipeline. Along with the E Block, it is responsible for
all instruction-address manipulations. The A Block executes the CALL and Bicc
instructions. The A Block and E Block are used together to execute the JMPL, Ticc,
and RETT instructions; in these cases, the A Block controls the update of the Program
Counter. The A Block’s main interface to the rest of the chip outside the IU is the
instruction address bus.

Internal Architecture - Integer Unit

3-9

The address pipeline is illustrated in Figure 3-6. The fetch-stage program counter (PC)
is used to address instruction memory via the instruction address bus. Because a CALL,
JMPL, or trap may require that the address of an instruction be written back to the
register file, the address of every instruction tracks the instruction itself in the
instruction pipeline so that it is available in the memory stage if it needs to be written
back to the register file. These address pipeline registers are the decode, execute, and
memory program counters. Each of these registers contains the address from which the
instruction in the corresponding instruction register was fetched.

return address
(to E Block)

m_pc

e_pc

d_pc

f_pc

instruction address
(to instruction memory)

adder inc (+4)

immediate data
(30 bits)

TB tt

trap_addr

trap type
(from I Block)

“0”jump address
(from E Block)

this path
used for
multicycle
instructions

readable

writable

Figure 3-6. Address Pipeline

The PC has five possible sources:

1. +4 incrementer, for normal, sequential instruction fetch.

2. The address adder, for PC-relative control transfer (Bicc or CALL instruction). The
immediate data field contains offset information and comes from the I Block.

3. The jump address for a JMPL or RETT instruction. The jump address bus contains
jump target information, and comes from the E block by way of the register file and
ALU.

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-10

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single-Vector
Trapping is enabled), on a Ticc instruction or an interrupt or trap. The trap type
comes from the trap priority encoder, part of the I Block; when concatenated with
TBR[31:12], it gives the target address for a trap.

5. Zeroes, concatenated with the trap type, for reset.

Note that “+4” is used to indicate that the (byte) address is incremented by 4 to fetch
the next instruction. In reality, the two least significant bits of the address are not
implemented in hardware because they are never used. Word alignment, for the case of
a jump address coming from the E Block is verified in the E Block (and to some extent,
the I Block).

The return address bus is written back to the register file in the case of a CALL, JMPL
or Trap.

Several control signals come from the I block. These include:

• PC input-select signals which control the PC input multiplexer.

• The address adder control signal, which determines whether a 30-bit or a 22-bit
immediate address field is added to the previous value of the PC (now found in the
decode-stage PC).

• Pipeline freeze signals which can prevent the updating of registers in the pipeline
when a hold condition is detected.

3.1.3 E Block

The E Block is responsible for all IU data manipulations. It generates operand addresses
for load and store instructions and effective addresses for some of the control transfer
instructions.

As shown in Figure 3-7, the E Block contains the Store Align Unit (SAU), the Load
Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic Unit
(ASLU). The E Block also contains the result bypass logic that determines which
operands are driven into the ASLU, and the store bypass logic that determines what
data is latched for stores.

Internal Architecture - Integer Unit

3-11

BA

ALU / SHIFTER

PSR/WIM/Y

st_align ld_align

read 1 read 2 read 3 read 4

REGISTER FILE

EXECUTE
BLOCK

D
ADDRESS

D
DATA

R Register

W

Data Address

Figure 3-7. Execute Block

Adder, Shift, and Logic Unit (ASLU)

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan unit.
The integer adder calculates the results of the addition, subtraction, multiply-step, and
divide-step instructions, and generates the carry, overflow, negative, and zero condition
code values. It is used in load and store operations to calculate effective data addresses,
and in register-indirect control transfers to calculate the new address to be placed in the
PC register of the A Block. The integer adder also serves the multiplication unit by
adding the “sum” and “carry” vectors during integer multiplications. The barrel
shifter/logic unit executes the logic and shift instructions. The scan unit exists solely to
support the scan instruction.

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit are
multiplexed into the R (Result) Register. Results from the integer adder are also made
available to the Y Register.

Register File

The register file contains 136 registers of 32 bits each. The organization of these
registers into windows is discussed in the Programmer’s Model chapter. The register
file has one write port and three read ports. The write port is used for the instruction
destination register (denoted rd in instruction descriptions). Two of the read ports are

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-12

used for the two instruction source registers (rs1 and rs2). The remaining port is used
for the data to be stored when a store or swap instruction is executed. In this way, even
store instructions can be executed in a single cycle.

The register file also contains the address decoders for all four ports. Each address
presented to the decoders consists of 8 bits derived from an instruction field and the
Current Window Pointer. These are physical addresses into the register file memory
array.

Bypass Logic

As shown in Figure 3-7, the A and B operand registers have inputs which come from
sources other than the register file or immediate data bus. These inputs are results from
previous instructions which have not yet written back to the register file. There are two
such bypass paths in the E Block:

• Result Bypass—The result of an ALU operation in the R register is written back to
the A or B operand register in the Memory stage of the following ALU operation.

• Write Bypass—The data in the W register is written to the A or B operand register,
in the Writeback stage.

The result bypass path is selected when one instruction generates a result that can be
used by the immediately following instruction. More precisely, if an instruction in the
Decode stage of the pipeline has rs1 = N and the instruction in the Execute stage has
rd = N, the rs1 operand will not come from the register file, but directly from the R
register in the ALU through the result bypass. Since an intervening SAVE or RE-
STORE instruction may have changed the Current Word Pointer, it is the physical
addresses of the register source and destination which are compared, not the logical
addresses (which depend on the CWP).

As an example, consider the instruction sequence:

add %r1,%r2,%r3 ; r1 + r2 -> r3
add %r3,%r4,%r5 ; r3 + r4 -> r5

The second add instruction takes its A source operand not from the register file but
directly from the result of the ALU, through the result bypass.

The write bypass is selected when an instruction in the Decode stage has rs1=N and the
instruction in the Memory stage has rd = N. In this case, the rs1 operand will not come
from the register file, but from the W register through the write bypass. In the following
instruction sequence, the third instruction uses the write bypass as its A source operand:

add %r1,%r2,%r3 ; r1 + r2 —> r3

Internal Architecture - Integer Unit

3-13

add %r4,%r5,%r6 ; r4 + r5 —> r6
add %r3,%r7,%r8 ; r3 + r7 —> r8

If both bypass conditions apply, the result bypass takes precedence.

There is a third bypass path, called the store bypass. It can be seen in Figure 3-7. The
register file has a dedicated store port which is used for reading the rd register of a store
instruction; this register contains the data to be stored. The store port is read in the
Execute stage of the store. When a store and the immediately preceding instruction
access the same rd register, a bypass from the Writeback stage of the preceding
instruction to the Memory stage of the store is needed. In the code sample below, the
result of the first instruction becomes available to the Memory stage of the store by
means of the store bypass path.

add %r1,%r2,%r3 ; r1 + r2 —> r3
st %r3,[%r4+%r5] ; r3 —> mem[r4 + r5]

Branch Evaluation Logic

The branch evaluation logic, which forms part of the E Block, evaluates branch
conditions based on the current values of the integer condition codes of the PSR
register. The icc bits n (negative), z (zero), c (carry) and v (overflow) form part of the
branch evaluation block. The interpretation of these bits is discussed in the Program-
mer’s Model chapter.

There are several ways the icc bits can be modified. First of all, they can be written and
read via the jump address bus by the instructions WRPSR and RDPSR.

Certain arithmetic instructions modify the icc bits as a side effect. When one of these
instructions is executing, the new icc values are generated in the E Block during the
Execute stage, latched at the end of this stage, and loaded into the PSR during the
Memory stage.

Another path leads to the icc bits from the Writeback-stage copy of the PSR. When a
trap occurs on an instruction which alters the icc bits, this path allows the pre-trap icc
values to be restored to the PSR.

The combinational logic which does the branch evaluation for the IU condition codes
has as inputs:

• Integer Condition Codes—Directly from the ALU, if the instruction in the Execute
stage is one of those that can modify the icc; from the multiplication unit; or from
the icc bits of the PSR, if the instruction in the Execute stage is not one that can
modify the icc.

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-14

• The cond Field—From the branch instruction in the Execute stage. (See the
discussion of the Bicc instruction in the Programmer’s Model chapter.)

• Bicc Indicator—A control signal indicating whether or not the instruction in the
Decode stage is a Bicc instruction. This signal remains valid into the Execute stage.

The output of the combinational logic is a single signal which, when active, causes the
branch target address to be loaded into the PC during the Execute stage; otherwise,
PC+4 is loaded into the PC.

Load Align Unit (LAU) and Store Align Unit (SAU)

The LAU and SAU align data for loads and stores, respectively. Bytes and halfwords to
be loaded are right-justified in a 32-bit word, and either sign-extended or zero-extended
on the left, depending on whether the load instruction specified signed or unsigned
operation. The LAU performs the alignment and extension during Writeback.

Byte and halfword stores take their data from the least significant byte or halfword of
the register specified in the instruction’s rd field. The SAU performs the necessary
alignment for writing the data to the byte or halfword memory address specified in the
instruction.

Multiply Unit

The E Block contains hardware to perform integer multiplications. The Multiply Unit
(MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit product.
Some multiplication instructions modify the integer condition codes as a side effect;
others do not. The multiplication instructions are discussed in the Programmer’s Model
chapter.

The multiply hardware implements a version of Booth’s algorithm. Booth’s algorithm is
similar to a “shift and add” multiply algorithm in that it scans the multiplier from the
least significant to the most significant bit and, based on the bit string encountered,
iteratively adds the multiplicand to produce partial products. It is also similar in that the
resulting partial product is right shifted to ready it for the following iteration of the
algorithm. Booth’s algorithm differs from a “shift and add” algorithm in that it can also
be used directly with a negative multiplier (whereas “shift and add” requires a positive
multiplier). It differs also in that the hardware must provide for both addition and
subtraction of the multiplicand. In particular, a 1-bit Booth’s algorithm examines two
multiplier bits per iteration, looks for a bit transition, and either adds the multiplicand,
subtracts the multiplicand, or adds zero to the existing partial product to produce the
new partial product. It “retires” one bit of the multiplier per iteration. For a 1-bit
Booth’s, Table 3-3 shows the possible bit transitions encountered in the multiplier and
the value which is added to the multiplicand for each transition.

Internal Architecture - Integer Unit

3-15

Table 3-3: Booth’s Algorithm

Multiplier Bits

Current Previous Add to Shifted Partial Product

0
0
1
1

0
1
0
1

+0
+multiplicand
–multiplicand

+0

This technique can be extended so that more than one bit is examined during a given
iteration. In particular, the MU performs an 8-bit Booth’s algorithm. It examines 9 bits
of the multiplier at a time and, based on the eight transitions of these nine bits,
determines what multiple of the multiplicand to add to the old partial product to
produce the new partial product. The addition is performed in the ALSU.

The MU produces 8 bits of the final product and “retires” 8 bits of the multiplier per
cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (producing a
64-bit result).

The execution of the instruction is controlled by a synchronous state machine which
generates control signals for the multiply hardware. Since instructions do not execute
out of order, the Integer Unit (IU) must be frozen during the multiply instructions which
take more than 1 cycle. Conceptually, the multiply instruction goes through all the
pipeline stages (F,D,E,M,W), but its Execute stage is from 1 to 5 machine cycles long.
During the Fetch and Decode stages, the multiply instruction progresses like other
instruction.

3.1.4 Programmer-Visible State and Processor State

The SPARC Architecture defines the programmer-visible state of the processor as a
collection of registers, and then specifies the effects of instructions in terms of these
registers. These definitions implicitly assume that every instruction completes before
the next one begins. The SPARClite processor, however, is pipelined, so that normally
four subsequent instructions begin before the first one completes. The actual processor
state (excluding the register file) therefore encompasses more than the programmer-vis-
ible state. For most of the programmer-visible registers, there is a corresponding
register in the processor associated with the Writeback stage of the pipeline. That is,
instructions normally update the register file and programmer-visible state registers in
the Writeback stage.

Internal Architecture - Integer Unit

SPARClite User’s Manual

3-16

An instruction may update staged copies of the PSR before Writeback, making the new
values available to subsequent instructions sooner, but these staged copies are not user
visible. The PSR associated with the Writeback stage can never be updated early; if an
instruction traps, it will not have altered any state which can not be restored.

3.1.5 IU Support for Debugging

The IU supports the on-chip Debug Support Unit as well as external ICE circuitry and
software with the following features:

• A special breakpoint trap type instruction_breakpoint/data_breakpoint: This is a
synchronous trap with trap type 255. It is analogous to the instruction_access_exception
and data_access exception traps, but has the following special characteristics:

• Any instruction can cause a breakpoint exception (unlike the data_access_excep-
tion, which can only occur for load/store instructions).

• The trap vector for this taken trap is not the TBR concatenated with the trap type,
but zero concatenated with the trap type. That is, the trap target address is
0x00000FF0 regardless of the value in the TBR.

3.2 Data and Instruction Caches

The SPARClite architecture provides separate data and instruction caches, allowing
designers to build high-performance systems without incurring the cost of fast external
memory and its associated control logic. The software-visible features of the caches are
discussed in detail in the Programmer’s Model chapter, above.

The data and instruction caches are accessed independently over separate data and
instruction buses, allowing data to be loaded from and stored to cache at peak rates of
one cycle per instruction. The instruction cache is read-only, one word at a time. The
data memory is readable and writable by bytes, halfwords, words or doublewords.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two banks of
sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to avoid the
interrupt latency incurred by long, uninterruptible cache line replacements. In a unified
(instruction and data) external memory, the instruction and data memory segments
should be at aligned 4-word (line size) boundaries.

The instruction cache has four major RAM arrays. There are two arrays for instruction
memory and two arrays for tags. In addition to the tag memory, the tag arrays also
contain the logic to compare the address tag with the address that is being accessed. It

Internal Architecture - Data and Instruction Caches

3-17

also checks the VALID bits in the tag. The hit-detection logic is illustrated in
Figure 3-8.

TAGADR <31:2>

ADR <31:10>

ValidADR <9:4>

ADR <3:2>

Comparator

TAG Valid

4 valid bits

ADR <3:2>

Comparator

4 valid bits

SET 1 SET 2

HIT 1 HIT 2

ASI <7:0>

User/
Suprvsr

User/
Suprvsr

Figure 3-8. Cache Hit Detection Logic

The organization of the data cache is similar to the instruction cache. In addition, the
data memory has individual write control for each byte. This makes it possible to do
byte or half-word writes without using read-modify-write cycles.

3.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory and I/O
accesses from the cache control logic. When the BIU performs a read, it returns the data
to both the cache and the IU. Parallel paths make the data available to the IU in the
same cycle that it is written to the cache. The BIU also handles external requests for
control of the bus. The external signals of the BIU, and the relative timing of events in
typical bus operations, are discussed in the External Interface chapter, below. That
chapter also treats the various system-support features of the processor in detail.

3.3.1 Buffers

The BIU has a one-word (32-bit) write buffer to hide external memory latency from the
IU. When the BIU receives a request for a write transaction it stores the write data and
address in the write buffer and indicates the completion of the write to the IU. It then
proceeds to complete the write to external memory. This allows the IU to continue
operation from the cache. The write buffer can be enabled by setting bit 5 of the

Internal Architecture - Bus Interface Unit

SPARClite User’s Manual

3-18

Cache/BIU Control Register, as discussed in the Programmer’s Model chapter, above.
The write buffer enable bit should be written to, only when the instruction and data
caches are off. The write buffer works only when both instruction and data caches are
on.

The BIU also has a one-word prefetch buffer for instruction fetches. After an external
instruction fetch, the prefetch buffer will initiate an access to the next sequential
address, on the next available cycle. Instructions are prefetched only when the BIU does
not have a request for a bus transaction from the IU, and no external device is
requesting use of the bus. Prefetching is suspended if the buffer is full; this occurs if the
prefetched instruction is a hit in the instruction cache or if the prefetched instruction is
not used as in the case of a branch to a different address. The buffer restarts again after
the next instruction cache miss. If an exception occurs during an instruction prefetch,
the exception is not sent to the IU unless the instruction is actually requested by the IU.
The prefetch buffer operates only when the instruction cache is on.

3.3.2 Exception Handling

The external memory system can indicate an exception during a memory operation by
asserting the –MEXC input. If –MEXC is asserted during an instruction fetch, the BIU
indicates an instruction memory exception to the cache control logic and the IU. If
–MEXC is asserted during a data fetch, the BIU indicates a data access exception to the
cache control logic and the IU.

As indicated above, the IU can continue to operate after putting the data and address for
a store into the write buffer. If an exception is detected while completing this buffered
write then the BIU indicates a data access exception. Any system which wants to
recover from this error should store the address and data for the write causing the
exception, in a register. It should also have a status bit to indicate that the exception
was caused during a write operation. It will be the responsibility of the data access
exception service routine to determine the cause of the exception and recover
accordingly.

3.3.3 Effect on the Pipeline

The pipeline hold signals, ihold and dhold, are generated if an instruction or data cannot
be made available in the cycle that it is required by the pipeline. Normally ihold and
dhold are not asserted if the required instruction or data is already in cache. On the
other hand, if a cache miss occurs the cache controller requests that the appropriate data
or instruction be fetched from the external system. On a cache miss, the transaction
will be available on the bus in the following clock cycle if nothing of higher priority is
pending (see below). A bypass exists that allows an instruction or data word to be made
available in the same cycle that it is being written into cache.

Internal Architecture - Bus Interface Unit

3-19

In general the following hierarchy rules apply to the bus interface unit:

• the bus cycle currently in progress will complete

• if the write buffer is full, the buffer will be emptied

• if there is a pending request for a load or store operation, it will be serviced

• if there is a pending request for an instruction, it will be fetched

• if the prefetch buffer is empty, a prefetch cycle will be initiated

This section illustrates the effect of bus operations on the instruction pipeline for some
representative cases.

Case 1: Cache Hits

Figure 3-9 illustrates a sequence of hits in the instruction cache. The instruction fetched
in cycle 0 is a STORE to location 0xF0. The data is written to the Write Buffer in cycle
3, and to the bus in cycle 4. Since the write buffer is empty, the pipeline can move at a
rate of one instruction per cycle, even when handling a STORE. LOAD instructions
also do not hold up the pipeline, provided the source of the load is in the data cache.

Fetch

Decode

Execute

Memory

Write-Back

0x00

Clock Cycle

Cache Status I hit

Ready Line 1

Data Lines

Address Lines

0

0x04

0x00

I hit

1

1

0x08

0x04

0x00

I hit

1

2

0x0C

0x08

0x04

0x00

I hit

1

3

0x10

0x0C

0x08

0x04

0x00

I hit

1

DA 0xF0

4

0x14

0x10

0x0C

0x08

0x04

…

0

DD 0xF0

5

…

0x14

0x10

0x0C

0x08

…

1

6

…

…

0x14

0x10

0x0C

…

1

7

…

…

…

0x14

0x10

…

1

8 9 10 11 12

Configuration:
Data Cache:

Instruction Cache: Pre-Fetch Buffer:
Write Buffer:

Memory Wait-State:
–

ON Enabled
Enabled

1

Figure 3-9. Pipeline Operation: Cache Hits

Internal Architecture - Bus Interface Unit

SPARClite User’s Manual

3-20

Case 2: Prefetch Buffer Disabled

Figure 3-10 illustrates the operation of the pipeline on instruction cache misses when
the prefetch buffer is disabled. The address of each missed instruction is available on
the processor external bus in the cycle following the miss. Since data becomes available
to both the IU and the cache on the same cycle, the pipeline can proceed in the cycle
immediately following the cycle in which the data appears on the external bus.

Fetch

Decode

Execute

Memory

Write-Back

0x00

Clock Cycle

Cache Status I miss

Ready Line 1

Data Lines

Address Lines

0

0x00

stall

1

IA 0x00

1

0x00

stall

0

ID 0x00

2

0x04

0x00

I miss

1

3

0x04

0x00

stall

1

IA 0x04

4

0x04

0x00

stall

0

ID 0x04

5

0x08

0x04

0x00

I miss

1

6

…

0x04

0x00

stall

1

IA 0x08

7

…

0x04

0x00

stall

0

ID 0x08

8

…

…

0x04

0x00

…

…

…

9 10 11 12

Configuration:
Data Cache:

Instruction Cache: Pre-Fetch Buffer:
Write Buffer:

Memory Wait-State:
–

ON Disabled
–

1

Figure 3-10. Pipeline Operation: Prefetch Buffer Disabled

Internal Architecture - Bus Interface Unit

3-21

Case 3: Prefetch Buffer Enabled

Figure 3-11 illustrates the operation of the pipeline on instruction cache misses when
the prefetch buffer is enabled. The address of the instruction missed on cycle 0 is
available on the system bus in cycle 1. In cycle 3, the pre-fetch buffer logic drives the
next sequential word address onto the address lines. The instruction cache miss at this
location therefore causes the pipeline to be stalled for only one cycle. Contrast this with
Case 2, above. Since the prefetched instruction is actually used by the processor, the
prefetch buffer drives the next sequential word address in cycle 5. This saves a cycle on
each access when executing sequential code not already in cache.

Fetch

Decode

Execute

Memory

Write-Back

0x00

Clock Cycle

Cache Status I miss

Ready Line 1

Data Lines

Address Lines

0

0x00

stall

1

IA 0x00

1

0x00

stall

0

ID 0x00

2

0x04

0x00

I miss

1

IA 0x04

3

0x04

0x00

stall

0

ID 0x04

4

0x08

0x04

0x00

I miss

1

IA 0x08

5

0x08

0x04

0x00

stall

0

ID 0x08

6

…

…

0x04

I miss

…

…

…

7

…

…

…

…

…

…

…

8 9 10 11 12

Configuration:
Data Cache:

Instruction Cache: Pre-Fetch Buffer:
Write Buffer:

Memory Wait-State:
–

ON Enabled
–

1

Figure 3-11: Pipeline Operation: Prefetch Buffer Enabled

Internal Architecture - Bus Interface Unit

SPARClite User’s Manual

3-22

Case 4: Data Cache Off

Figure 3-12 illustrates the operation of the pipeline on loads, with the data cache turned
off and the instruction cache turned on. The instruction fetched in cycle 0 is a LOAD
from memory location 0xF0. The data is fetched when this instruction reaches the
Memory stage in cycle 7. Since the data cache is off, the data must be fetched
externally; this delays the next instruction fetch until cycle 9.

Whenever a prefetch operation is held up by a load or store operation, the pre-fetch
buffer address gets updated if the instruction it is pointing to is a hit in the instruction
cache. Therefore, when prefetch starts at cycle 9 the IA0x10 instruction address goes
out on the address bus instead of 0x0c which has already hit in the cache.

Fetch

Decode

Execute

Memory

Write-Back

0x00

Clock Cycle

Cache Status I miss

Ready Line 1

Data Lines

Address Lines

0

0x00

stall

1

IA 0x00

1

0x00

stall

0

ID 0x00

2

0x04

0x00

I miss

1

IA 0x04

3

0x04

0x00

stall

0

ID 0x04

4

0x08

0x04

0x00

I miss

1

IA 0x08

5

0x08

0x04

0x00

stall

0

ID 0x08

6

0x0C

0x08

0x04

0x00

D Fetch
I hit

1

DA 0xF0

7

0x0C

0x08

0x04

0x00

stall

0

DD 0xF0

8

0x10

0x0C

0x08

0x04

0x00

I miss

1

IA 0x10

9

0x10

0x0C

0x08

0x04

stall

0

ID 0x10

10

0x10

0x0C

0x08

0x04

stall

1

IA 0x14

11

0x10

0x0C

0x08

0x04

…

…

ID 0x14

…

12

Configuration:
Data Cache:

Instruction Cache: Pre-Fetch Buffer:
Write Buffer:

Memory Wait-State:
OFF
ON Enabled

–
1

Figure 3-12. Pipeline Operation: LOAD with Data Cache Turned Off

Internal Architecture - Bus Interface Unit

3-23

Case 5: Data Cache Miss

Figure 3-13 illustrates the operation of the pipeline on loads, when the data access
misses in the cache. The instruction fetched in cycle 0 is a LOAD from memory
location 0xF0. The data is required when this instruction reaches the Memory stage in
cycle 7. The access misses in the cache, so the data must be fetched externally. At cycle
7, the prefetch operation has already started so the external load operation is delayed
until the prefetch completes. At cycle 9, the external load operation takes place. At
cycle 11, the now empty prefetch buffer initiates the next sequential instruction fetch at
address 0x10.

Fetch

Decode

Execute

Memory

Write-Back

0x00

Clock Cycle

Cache Status I miss

Ready Line 1

Data Lines

Address Lines

0

0x00

stall

1

IA 0x00

1

0x00

stall

0

ID 0x00

2

0x04

0x00

I miss

1

IA 0x04

3

0x04

0x00

stall

0

ID 0x04

4

0x08

0x04

0x00

I miss

1

IA 0x08

5

0x08

0x04

0x00

stall

0

ID 0x08

6

0x0C

0x08

0x04

0x00

/D miss

1

IA 0x0C

7

0x0C

0x08

0x04

0x00

stall

0

ID 0x0C

8

0x0C

0x08

0x04

0x00

stall

1

DA 0xF0

9

0x0C

0x08

0x04

0x00

stall

0

DD 0xF0

10

0x0C

0x08

0x04

0x00

stall

1

0x10

11

…

0x0C

0x08

0x04

0x00

stall

…

…

…

12

Configuration:
Data Cache:

Instruction Cache: Pre-Fetch Buffer:
Write Buffer:

Memory Wait-State:
ON
ON Enabled

–
1

Figure 3-13. Pipeline Operation: Data Cache Miss

Internal Architecture - Bus Interface Unit

4-1

HAPTER

External Interface

4
C

The processor’s external interface consists of signals, bus operations, and system
support functions. This chapter details the MB86930 signal set, gives the relative timing
of events in the principal types of bus operation, and describes the programmable
wait-state generator, on-chip timer, and same-page detection logic. For specific
electrical and timing values, see the MB86930 Data Sheet. The System Design
Considerations chapter of this document discusses issues that are likely to arise in the
design of any SPARClite system.

4.1 Signals

The processor’s external signals are illustrated in Figure 1-6 of the Overview chapter,
and are listed in Table 4-1 below. A dash at the beginning of a signal name, as in
–RESET, indicates that the signal is active-low.

External Interface - Signals

SPARClite User’s Manual

4-2

Table 4-1: Input and Output Signals
Symbol Type Symbol Type Symbol Type Symbol Type

ADR <31:2> O
S(L)
G(Z)
I (1)

–CS0, –CS1
–CS2, –CS3
–CS4, –CS5

O
S(L)
G(1)
I (1)

–LOCK O
S(L)
G(Z)
I (1)

TDO O

–AS O
S(L)
G(Z)
I (1)

D <31:0> I/O
S(L)
G(Z)
I (Z)

–MEXC I
S(L)

–TIMER_OVF O
S(L)
G(Q)
I (Q)

ASI <7:0> O
S(L)
G(Z)
I (1)

–EMU_BRK I –SAME_PAGE O
S(L)
G(1)
I (1)

TMS I

–BE 3-0 O
S(L)
G(Z)
I (0)

EMU_D<3:0> I/O RD/–WR O
S(L)
G(Z)
I (1)

–TRST I

–BGRNT O
S(L)
G(0)
I (Q)

–EMU_ENB I –READY I
S(L)

XTAL1 (CLKIN)
XTAL2

I
O

G(Q)
I (Q)

–BREQ I
S(L)

EMU_SD <3:0> I/O –RESET I
A(L)

CLKOUT1
CLKOUT2

O
G(Q)
I (Q)

–ERROR O
S(L)
G(Q)
I (Q)

TCK I

CLK_ECB I IRL <3:0> I
A(L)

TDI I

NOTE: A(L) = Asynchronous: Inputs
may be asynchronous to
CLKOUT.

G(…) = While the bus is granted
to another bus master
(–BGRNT=asserted), the
pin is

G(1) is driven to VCC
G(0) is driven to VSS
G(Z) floats
G(Q) is a valid output

I(…) = While the bus is between
bus cycles (or being reset)
and is not granted to
another bus master, the
pin is

I (1) is driven to VCC
I (0) is driven to VSS
I (Z) floats
I (Q) is a valid output

I = Input Only Pin

O = Output Only Pin

I/O = Either Input or Output
Pin

- = Pins “must be”
connected as described

S(L)= Synchronous: Inputs
must meet setup and
hold times relative to
CLKIN. Outputs are
Synchronous to CLKIN

External Interface - Signals

4-3

The following sections describe the signal set in detail, arranged by functional group:

• Processor Control and Status—Reset, error, and clock signals.

• Memory Interface—Data and address buses, ASI and byte-enables, chip-selects, and
other control signals used to access external memory and memory-mapped devices.

• Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions—Interrupt-requests and timer overflow.

• Emulator Bus—Signals to support in-circuit emulation.

• Boundary-Scan—Test signals used for board verification, following JTAG
specifications.

4.1.1 Processor Control and Status

Signal Function

CLKOUT1
CLKOUT2

CLOCK OUTPUTS (O): MB86930 bus transactions can be referenced against
these outputs. CLKOUT1 has the same frequency and phase as the internal
oscillator, or the signal applied to CLKIN. CLKOUT2 is the same as CLKOUT1,
but phase-shifted 180 degrees.

–ERROR ERROR SIGNAL (O): Asserted by the CPU to indicate that it has halted in an
error state as a result of encountering a synchronous trap while traps are
disabled. In this situation, the CPU saves the Trap Type (tt) value in the Trap
Base Register, enters into an error state and asserts the –ERROR signal. The
system can monitor the –ERROR pin and initiate a reset to recover from the error
condition.

–RESET SYSTEM RESET (I): Resets the processor to a known internal state. –RESET
should be asserted for at least 4 processor cycles after the clock has stabilized.
The internal state of the processor immediately after reset is described in the
Programmer’s Model chapter.

XTAL1 (CLKIN)
XTAL2

EXTERNAL OSCILLATOR (XTAL1, XTAL2): Determines the execution rate
and timing of the processor. Connecting a crystal across these pins forms a
complete crystal oscillator circuit. The processor operating frequency is the same
as the crystal oscillator frequency.
The processor can also be driven by an external clock. In this case, the clock
signal is applied to XTAL1 (CLKIN); XTAL2 should be left unconnected. The
processor operating frequency is the same as the external clock frequency.

External Interface - Signals

SPARClite User’s Manual

4-4

4.1.2 Memory Interface

Signal Function

ADR[31:2] ADDRESS BUS (O): Specifies the data or instruction address of a 32-bit word.
Reads are always one word in size while byte, half-word, or word transaction
sizes for writes are identified by separate byte-enable signals (–BE3-0). The
value on the address bus is valid for the duration of the bus transaction. See note
below.

–AS ADDRESS STROBE (O): Asserted by the MB86930 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the
assertion of –AS and ends with the assertion of –READY. During cycles in which
neither the processor nor another bus master is driving the bus, the bus is idle,
and –AS remains de-asserted. See Table 4-1 for signal values while the bus is
idle. The MB86930 asserts –AS for 1 clock cycle.

ASI[7:0] ADDRESS SPACE IDENTIFIERS (O): Indicates which of the 256 available
address spaces the current bus transaction is accessing. The ASI values are
defined as follows:

ASI <7:0> ADDRESS SPACE

0x1
0x2
0x3

0x4 - 0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

0x10 - 0xFC
0xFD - 0xFF

Control Register
Instruction Cache Lock
Data Cache Lock
Application Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Instruction Cache Tag RAM
Instruction Cache Data RAM
Data Cache Tag RAM
Data Cache Data RAM
Application Definable
Reserved for Debug Hardware

The ASI values specified as “application definable” can be used by privileged
(supervisor mode) instructions such as load and store alternate. The ASI value is
available in the same cycle in which the corresponding address value is asserted
on the address bus. The values on the ASI pins are valid for the duration of the
bus transaction. Transactions with ASI values of 0x8, 0x9, 0xA, and 0xB are
cacheable. See note below.

Note: Care must be taken to ensure that software written for SPARclite processors
with 32 address and 8 ASI external signals operates correctly with the MB86933
processor, which has only 28 address bits and 4 ASI bits. Inadvertent attempted
use of unavailable address and ASI space (i.e. using bits ADR<31:28> and
ASI<7:4>) can be detected by programming an MB86933 ±CS output to assert to
0 when the high address and ASI nibbles are 0 (not used). External diagnostic
hardware, such as a logic analyzer, can then be used to detect when ±CS is not
asserted, indicating possible use of address and ASI signals that are not
available on the MB86933. The ±CS signal can be gated with all other ±CS
signals that are in use to determine if the access is off-chip. If so, the access
may be illegal.

External Interface - Signals

4-5

Signal Function

–BE3-0

Word Writes

111011011011

1100

0111

0011

0000

Byte Writes

Half-Word Writes

031

BYTE ENABLES (O): Indicate whether the current load or store transaction is a
byte, half-word or word transaction. The BYTE ENABLE value is available in the
same cycle in which the corresponding address value is asserted on the address
bus. The values on the byte enable pins are valid for load and store operations
and for the duration of the bus transaction (the byte enable signals can be
ignored during load operations).

Possible values for –BE3-0 are as follows:

–CS[5-0] CHIP SELECTS (O): One of these signals is asserted when the value on the
address bus lies in the range specified by the corresponding Address Range
Specifier Register. The –CS signals are used to decode the current address into
one of eight address ranges. Address ranges should not overlap. Each address
range has a corresponding wait-state specifier which is used to generate an
internal –READY signal after a user-defined number of processor clock cycles.
This allows a variety of memory and I/O devices with different access times to be
connected to the MB86930 without the need for additional logic. CS0 is enabled
at reset (See Chapter 2).

D[31:0] DATA BUS (I/O): D31 corresponds to the most significant bit of Byte 0. D0
corresponds to the least significant bit of byte 3. A double word is aligned on an
8-byte boundary, a word is aligned on a 4-byte boundary, and a half-word is
aligned on a 2-byte boundary. If a load or store of any of these quantities is not
properly aligned, a mem_address_not_aligned Trap will occur in the processor.

During write cycles, the point at which data is driven onto the bus depends on the
type of the preceding cycle. If the preceding cycle was a write, data is driven in
the cycle immediately following the cycle in which –READY was asserted. If the
preceding cycle was a read, data is driven one cycle after the cycle in which
–READY was asserted, in order to minimize bus contention between the
processor and the system.

–LOCK BUS LOCK (O): Asserted by the processor to indicate that the current bus
transaction requires more than one transfer on the bus. The Atomic Load Store
instruction, for example, requires contiguous bus transactions and so causes the
BUS LOCK signal to be asserted. The bus will not be granted to another bus
master as long as –LOCK is active. –LOCK is asserted with the assertion of –AS
and remains active until –READY is asserted at the end of the locked transaction

–MEXC MEMORY EXCEPTION (I): Asserted by the memory system to indicate a
memory error on either a data or instruction access. Assertion of this signal
initiates either a Data or Instruction Access Exception trap in the IU. The current
bus access is invalidated by asserting the –MEXC in the same cycle as the
–READY signal. The IU ignores the value on the data bus in cycles where
–MEXC is asserted.

External Interface - Signals

SPARClite User’s Manual

4-6

Signal Function

RD/–WR READ/WRITE BUS TRANSACTION (O): Specifies whether the current bus
transaction is a read or a write operation. When –AS is asserted and RD/–WR is
high, then the current transaction is a read. With –AS asserted and RD/–WR low,
the current transaction is a write. RD/–WR remains active for the duration of the
bus transaction and is de-asserted with the assertion of –READY.

–READY READY (I): Asserted by the external memory system to indicate that the current
bus transaction is being completed and that it is ready to start with the next bus
transaction in the following cycle. In case of a fetch from memory, the processor
will strobe the value on the data bus at the rising edge of CLKIN following the
assertion of –READY. In the case of a write, the memory system will assert
–READY when the appropriate access time has been met.

In most cases, no external logic is required to generate the –READY signal.
On-chip circuitry can be programmed to assert –READY internally, based on the
address of the current transaction. The external system can override the internal
ready generator to terminate the current bus cycle early. Up to 6 address ranges
each with different transaction times can be programmed. (See the System
Support Functions section, below.)

–SAME_PAGE SAME-PAGE DETECT (O): Asserted when the address of the current memory
access is within the same page as the previous memory access. –SAME_PAGE
can be used to take advantage of fast consecutive accesses within page-mode
DRAM page boundaries. –SAME_PAGE is asserted with –AS and remains
active for one processor cycle. –SAME_PAGE is never asserted in the first
transaction following a transaction by another device on the bus. The page size
is specified by writing the Same-Page Mask Register. (See the System Support
Functions section, below.)

4.1.3 Bus Arbitration

Signal Function

–BGRNT BUS GRANT (O): Asserted by the CPU in response to a request from a device
wanting ownership of the bus. The CPU grants the bus to other devices only
after all transfers for the current transaction are completed. Refer to the data
sheet for the output signal states after the assertion of the BUS GRANT signal.

–BREQ BUS REQUEST (I): Asserted by another device on the bus to indicate that it
wants ownership of the bus. The request must be answered with a bus grant
(–BGRNT) from the MB86930 before the device can proceed by driving the bus.
Once the bus has been granted, the device has ownership of the bus until it
de-asserts –BREQ. The user should ensure that devices on the bus do not
monopolize the bus to the exclusion of the CPU. The assertion of –BREQ is
recognized by the processor even when –RESET is being asserted.

External Interface - Signals

4-7

4.1.4 Peripheral Functions

Signal Function

IRL[3:0] INTERRUPT REQUEST BUS (I): The value on these pins defines the external
interrupt level. IRL[3:0]=1111 forces a non-maskable interrupt. An IRL value of
0000 indicates no pending interrupts. All other values indicate maskable
interrupts as enabled in the Processor Interrupt Level field of the Processor
Status Register (PSR). Interrupts should be latched and prioritized by external
logic and should be held pending until acknowledged by the processor. An
interrupt controller is available on the MB86940 peripheral chip. IRL inputs are
sampled by the processor in cycle 1, synchronized in the following cycle, and
recognized by the processor in the third cycle.

–TIMER_OVF TIMER OVERFLOW (O): Indicates that the processor’s internal 16-bit timer has
overflowed. This signal can be used to initiate a DRAM refresh cycle or a
one-cycle periodic waveform. On reset, the timer is turned off and –TIMER_OVF
is high.

4.1.5 Emulator Bus

Signal Function

–EMU_BRK EMULATOR BREAK REQUEST LINE (I): Used to configure the debug unit on
reset. See Section 2.8. This pin should be left unconnected.

EMU_D[3:0] EMULATOR DATA BITS (O): Reserved. These pins should be left
unconnected.

–EMU_ENB EMULATOR ENABLE (I): Used to configure the debug unit on reset. See
Section 2.8. This pin should be left unconnected.

EMU_SD[3:0] EMULATOR STATUS/DATA BITS (I/O): Reserved. These pins should be left
unconnected.

4.1.6 Test and Boundary-Scan

Signal Function

–CLK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the CLKIN signal to
bypass the on-chip phase-locked loop. This signal is intended primarily for
testing the chip.

TCK TEST CLOCK (I): JTAG compatible test clock input.

TDI† TEST DATA IN (I): JTAG compatible test data input.

TDO† TEST DATA OUT (O): JTAG compatible test data output.

TMS† TEST MODE (I): JTAG compatible test mode select pin.

–TRST† TEST RESET (I): Asynchronous reset for JTAG logic. If not using JTAG, this
signal must be pulled low.

† See appendix for more information.

External Interface - Signals

SPARClite User’s Manual

4-8

4.2 Bus Operation

At any given time, the Bus Interface Unit is handling requests for external memory and
I/O operations, arbitrating for bus access, or idle. From the point of view of the external
system, bus transactions are handled in fairly standard ways:

• Memory and I/O Operations—Read and write transactions are initiated with the
processor asserting the –AS signal. The RD/–WR output indicates the transaction
type. The –BE[3:0] outputs indicate the transaction width. The processor drives the
address and ASI signals, and either drives (on stores) or reads (on loads) the signals
on the data bus. The transaction ends when –READY is asserted.

An atomic load-store is executed as a load followed by a store, with no operation
allowed in between. The –LOCK output is asserted to indicate that the bus is being
used for more than one consecutive memory operation.

• Arbitration—Any external device can request ownership of the bus by asserting the
–BREQ signal. The processor three-states its bus drivers and asserts –BGRNT to
indicate that it is relinquishing control of the bus. On completion of its transaction,
the external device de-asserts –BREQ; the processor responds by de-asserting
–BGRNT in the following cycle.

The BIU receives requests for external memory operations from the Cache Control
Logic. In the case of reads from external memory, it performs the read operation and
returns the data to the Cache and IU. A parallel path is used to make the data available
to the IU in the same cycle that it is written to the cache.

In the case of a write to external memory, the BIU makes use of a write buffer which
can hold a one word write transaction. When the BIU receives a request for a write
transaction, it stores the write data and address in the write buffer, allowing the IU to
continue operating out of on-chip cache. The BIU then proceeds to complete the write
to external memory. In most cases the write buffer will hide external memory latency
from the IU. The exceptions are in cases where the write buffer is still filled from a
previous transaction or if the subsequent IU cycle results in an instruction cache miss.
In these cases, IU execution is held until the write buffer is emptied. The write buffer
operates only when the instruction and data caches are both on.

The BIU includes a one stage prefetch buffer for instruction fetches. This buffer is used
to fetch the next sequential instruction after an instruction cache miss. The instruction is
prefetched only if the BIU does not have a request for a bus transaction from the IU nor
is any external device requesting use of the bus. The prefetch buffer operation is
suspended if the buffer is full. This occurs if the prefetched instruction is a hit in the
instruction cache or if a control transfer causes the sequential instruction to be skipped.
The buffer restarts after another instruction cache miss. If an exception occurs during an
instruction prefetch, the exception is not sent to the IU unless the instruction is actually
requested by the IU. The prefetch buffer operates only when the instruction cache is on.

External Interface - Bus Operation

4-9

In any cycle the BIU can receive a request for accesses to either or both instruction
and/or data memory. If it receives a request for both in the same cycle, it completes the
data memory transaction first.

4.2.1 Exception Handling

The external memory system can indicate an exception during a memory operation. The
BIU signals the appropriate data or instruction exception to the IU which will trap
accordingly.

As mentioned above, the IU can continue operation after putting the data and address
for a store in the write buffer. If an exception is detected while completing this buffered
write, then the BIU indicates a data access exception to the IU.

Any system which needs to recover from this error should store the address and data of
such write transactions in hardware. If the system can generate both read and write
exceptions, then the system must also provide a status bit which indicates whether the
exception was generated on a read or on a write transaction. With access to this
information the data access exception service routine can determine the cause of the
exception and recover accordingly.

External Interface - Bus Operation

SPARClite User’s Manual

4-10

4.2.2 Bus Cycles

This section presents the relative timing of events in representative bus transactions.

Load

Whenever an instruction fetch or a load from data memory has a miss in the cache, the
BIU performs a read from external memory.

A read transaction begins with the BIU asserting –AS, to indicate a new bus transaction.
The –AS signal is de-asserted after one cycle. At the same time the ADR<31:2> and
ASI<7:0> bits are driven with the location to be read. The BIU drives the RD/–WR
signal high to indicate a read transaction. Note that the –BE lines indicate byte,
halfword or word operations during load operations although their use is optional. The
processor loads a word regardless of the size of data requested (byte, halfword, word).

The external memory system responds with the read data on pins D<31:0>. It also
asserts the –READY signal when the data is ready (unless internal ready generation is
selected). For slow memory, the –READY signal is delayed until data is valid.

A load double operation is treated as back-to-back reads.

CLK_IN

ADR<31:2>
ASI<7:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1 LOAD 2

A1 A2

D1 D2

Figure 4-1. Load Timing

External Interface - Bus Operation

4-11

Load with Exception

If the external memory system sees a memory exception, it can terminate the current
memory transaction by asserting the –MEXC and –READY signals. The data on the
data bus is ignored by the MB86930.

CLK_IN

ADR<31:2>
ASI<7:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1

A1 A2

INVALID

–MEXC

Figure 4-2. Load with Exception Timing

External Interface - Bus Operation

SPARClite User’s Manual

4-12

Store

A write transaction begins with the BIU asserting –AS, to indicate a new bus transac-
tion. The –AS signal is de-asserted after one phase. At the same time the ADR<31:2>
and ASI<7:0> pins are driven with the location to be written while the D<31:0> pins
have corresponding write data. The –BE3-0 pins indicate byte, half-word or word
transaction width. The BIU drives the RD/–WR signal low to indicate a write
transaction.

The external memory system responds by asserting the –READY signal when it has
stored the data. There is always one idle bus cycle between the termination of a read
cycle and the beginning of a write cycle to provide time for switching of the data bus
drivers.

A store double operation is treated as back-to-back writes.

CLK_IN

ADR<31:2>
ASI<7:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

STORE 1 STORE 2

A1 A2

D1 D2

Figure 4-3. Store Timing

External Interface - Bus Operation

4-13

Store with Exception

If an access exception occurs on a write, the external memory system can terminate the
current memory transaction by asserting the –MEXC and –READY signals. The
external memory system is expected to ignore the data on the data bus in this situation.

CLK_IN

ADR<31:2>
ASI<7:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

STORE 1

A1 AN

–MEXC

Figure 4-4. Store with Exception Timing

External Interface - Bus Operation

SPARClite User’s Manual

4-14

Atomic Load Store

An atomic load store executes as a load followed by a store with no operation allowed
in between. The –LOCK signal is asserted to indicate that the bus is being used for
more than one external memory operation.

There is one cycle between the termination of the read and the beginning of the write to
provide time for the switching of the data bus drivers.

CLK_IN

ADR<31:2>
ASI<7:0>

–BE<3:0>

–AS

RD/–WR

–READY

D<31:0>

LOAD 1

A1 A2

–MEXC

A3

STORE

Idle cycle

D1 D2

Figure 4-5. Atomic Load Store Timing

External Interface - Bus Operation

4-15

External Bus Request and Grant

Any external device can request ownership of the bus by asserting the –BREQ signal.
The BIU asserts the –BGRNT signal to indicate that it is relinquishing control of the
bus and also three-states all of its bus drivers. In the following cycle, the external
device can complete its transaction. On completion of its transaction the external device
de-asserts the –BREQ signal. The BIU responds by de-asserting the –BGRNT signal in
the following cycle.

The MB86930 is the default owner of the bus.

Processor Bus Cycle n Complete

CLK_IN

–BREQ

–BGRNT

ALL BUS DRIVERS THREE-STATE

Processor Bus Cycle n+1 Start

Figure 4-6. External Bus Request and Grant Timing

Processor Reset

The MB86930 is reset by asserting the – RESET signal for a minimum of 4 clock
cycles (see Figure). Systems using an external crystal to clock the processor should be
sure that –RESET is asserted for at least 4 cycles after the crystal has started up and has
stabilized.

If the processor is reset following a halt in Error Mode, and if power to the processor is
not removed, the tt field after reset will contain the value of the Trap that caused the
processor to halt.

External Interface - Bus Operation

SPARClite User’s Manual

4-16

0x0000 000

CLK_IN

4 CYCLE MINIMUM

3 CYCLES

RESET

ADDR

Figure 4-7. Reset Timing

4.3 System Support Functions

Built-in system support functions help to minimize the amount of glue logic required in
the external system. The support includes programmable chip select logic, program-
mable wait-state generation, same-page detection logic and a timer for generating
refresh requests. For a more detailed description of the programming of these registers
refer to Chapter 2.

The System Support Control Register turns the various system support features on and
off.

031 2 1

Same-Page Enable (On=1, Off=0)

Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

3

Reserved

33

Timer On/Off (On=1, Off-0)

Reserved

Figure 4-8. System Support Control Register

4.3.1 System-Configuration Registers

The system-configuration registers (Address Range Specifiers, Address Masks, and
Programmable Wait-State Specifiers) allow software to define six different address
ranges. When an address driven by the processor is in one of these ranges, the
corresponding Chip-Select (–CS) pin is asserted. After a number of clock cycles
determined by the corresponding Programmable Wait-State Specifier, the processor

External Interface - System Support Function

4-17

automatically generates an internal –READY signal. This makes it possible for memory
and I/O devices with different access times to be connected to the processor without
additional logic.

The contents of the Address Range Specifier Registers 1-5 (ARSR[5:0]) define five of
the six address ranges. An additional address range is available, corresponding to –CS0.
For this address range, ADR is hardwired to 0, and ASI is hardwired to 0x9 (Supervisor
Instruction Space). With Mask Register AMR0, –CS0 ranges 8K words. –CS0 is
enabled at reset. –CS1, –CS2, –CS3, –CS4 and –CS5 are disabled at reset.

031 30 23 22 1

ASI <7:0> ADR <31:10>

Figure 4-9. Address Range Specifier Register Format

An Address Mask Register is associated with each address range. Any address driven by
the chip is compared with the value in all address range specifiers. Only those bits of
the register are compared for which the corresponding mask bits are 0. If the specified
bits of the current address match one of the address range specifiers, the corresponding
chip-select (–CS) pins are asserted. When no bus transaction is being performed, all the
–CS pins are high (inactive). The Address Mask Register corresponding to –CS0 is
initialized to compare all bits except ADR<14:10>.

031 30 23 22 1

ASI <7:0> ADR <31:10>

Figure 4-10. Address Mask Register Format

A Programmable Wait-State Specifier is associated with each address range. Three
registers are used to specify the wait states for the six address ranges. Each register
contains the wait-state specifiers for two address ranges.

External Interface - System Support Functions

SPARClite User’s Manual

4-18

When the address currently being driven by the processor matches the unmasked bits in
one of the Address Range Specifiers, the corresponding wait-state specifier is selected.
The format of Wait-State Specifier Registers is shown in Figure 4-11.

631 8 7

Wait Enable ⋅On=1, Off=0)

Single Cycle (On=1, Off=0)

Override (On=1, Off-0)

27 26 22 21 20 19 18 14 13 9

Count 1 Count 2 Count 1 Count 2

5 0

Reserved

Figure 4-11. Wait-State Specifier Register Format

If the Single Cycle bit equals 1, an internal –READY signal is generated in the same
cycle. If the Single Cycle bit equals 0, and the current transaction is in the same page as
the previous transaction (see the Same-Page Detection Logic section, below), then
Count2 + 1 is used as the number of cycles after which –READY is asserted internally.
If the transaction is not in the same page, Count1 +1 is used instead. If the Wait Enable
bit equals 0, the internal –READY is not asserted.

The Override bit allows the user to terminate a transaction earlier than the specified
time. If this bit equals 1, and external hardware asserts the external –READY signal,
then the wait-state generator will stop counting and will wait for the next transaction,
which can occur as soon as the next clock cycle.

The Count1 and Count2 fields of the Wait-State Specifier corresponding to –CS0 have
all their bits set to 1 on reset. In this way, 32 wait-state cycles (the maximum number)
are inserted into the processor’s first instruction accesses. The override bit for –CS0 is
enabled as well.

4.3.2 Same-Page Detection

The same-page detection logic determines whether the address of the current memory
transaction is on the same page as the previous transaction. If it is, the processor asserts
the –SAME_PAGE signal. The system can then take advantage of the fast consecutive
accesses possible within fast-page mode DRAM page boundaries. The same-page
detection logic consists of a mask register, a register to store the address and ASI bits of
the previous transaction, and a comparator.

External Interface - System Support Function

4-19

The Same-Page Mask Register specifies which bits of the current address and ASI must
be compared with the previous address and ASI. Only those bits are compared for
which the mask bit is 0.

031 30 23 22 1

ASI Mask
(Card=0, Don’t Care=1) (Card=0, Don’t Care=1)

Address Mask (ADR [31:10])

Figure 4-12. Same-Page Mask Register

The –SAME_PAGE signal is never asserted for the first transaction following a
transaction by another device on the bus. When using the internal wait-state generator,
DRAM control logic should issue a bus request when initiating a refresh cycle so that
the –SAME_PAGE logic is reset appropriately. The –SAME_PAGE feature is disabled
at reset.

4.3.3 Programmable Timer

The 16-bit programmable timer causes the –TIMER_OVF output signal to be asserted
at software-defined intervals. This signal can be used to initiate DRAM refresh cycles,
or to control other periodic events in the external system.

The current timer count is kept in the Timer Register. When the timer overflows, it is
loaded with the value in the Timer Preload Register. The contents of both of these
registers are undefined on re-
set.

031 15

Timer Value

16

Reserved

031 15

Timer Pre-Load Value

16

Reserved

Figure 4-13. Timer and Timer Preload Registers

The timer can also be loaded by writing directly to the Timer Register. The timer can
be turned off by writing a 0 to the Timer On/Off bit in the System Support Control
register. The timer is clocked at the processor clock frequency.

External Interface - System Support Functions

5-1

HAPTER

Programming Considerations

5
C

This chapter gives programmers information and advice about how to make the best use
of SPARClite processors. It discusses the initialization of a SPARClite system, the
design of trap handlers, window management, the use of on-chip cache, and SPARC-
lite-specific instructions.

Because of the availability of high-performance optimizing compilers, real-time
operating systems, target monitors and application software, many programmers will
never need to program at the detail described in this chapter. However, for those writing
their own kernels or operating systems, and for those wanting to hand optimize
compiler code, sections in this chapter will prove useful.

Most of the sections in this chapter contain code fragments illustrating the points under
discussion. In some sections, complete subroutines are provided which can be used
without modification in real systems; the integer multiplication and division routines
are a good example.

To follow the discussion and examples in this chapter, you should be familiar with the
contents of Chapter 2, Programmer’s Model. You should also know how to read
SPARC assembly language (see Chapter 7).

5.1 Initialization

Processor reset occurs when the external system asserts the –RESET input. Upon reset,
the processor is in supervisor mode. It begins fetching and executing instructions

Programming Considerations - Initialization

SPARClite User’s Manual

5-2

starting at address 0x00000000 in Supervisor Instruction Space (ASI 0x9). The S bit of
the PSR is set to 1; the ET bit is cleared to 0. The tt field of the Trap Base Register
remains unchanged and identifies the last trap encountered if reset occurs without
removing power from the processor. This provides a way to trace the origin of a halt to
error mode (on power-up, the tt field is undefined). All other fields of the SPARC
control and status registers (PSR, WIM, TBR, and Y) are undefined on reset.

The Cache/BIU Control Register and System-Support Register are cleared to 0; that is,
the various features controlled by these registers are turned off (except for –CS0). The
contents of the on-chip cache and the various system-configuration registers are
undefined (see Chapter 2 for details).

5.1.1 Establishing the Processor State

The first task of initialization code is to establish the processor state, as in the following
code fragment:

! Reset Initialization
wr %g0, 0x0fa7,%psr ! Set psr: mask interrupts, mode=S, Pmode=U,

! traps enabled, CWP=7
wr %g0, 0x0, %wim ! Initialize wim to window 0
wr %g0, 0x0, %tbr ! Initialize tbr to 0

Writes to the PSR, WIM, and TBR registers are delayed by three instruction cycles; that
is, the value in the register undefined for three instructions following the write.
Accessing one of these registers, either explicitly or implicitly, within three instructions
after a write can lead to unpredictable results.

5.1.2 Configuring the System

Initialization code must also configure the system by writing appropriate values into the
system-configuration registers (Address Range Specifiers and Masks, Wait-State
Specifiers, Same-Page Mask, and the Timer Registers). Figure 5-1 shows the memory
map of a simple example system.

Unused

–CS1 Subsystem

EPROM

0x20000000

0x10000000

0x00000000

Figure 5-1. Example System Memory Map

Programming Considerations - Initialization

5-3

The following code sets the various system-configuration registers to values appropriate
for the example system.

! Address Range Register and Address Mask Register for -CS0 and
! –CS1 are set here. Only the highest nibble of the addresses
! are used for mapping the different –CS signals as shown in Figure 5-1.
! Note: Address range register for –CS0 is preset to 0x04 80 00 00
! ASI=0x9, addr<31:10>=0x0

 sethi %hi(0xfdf<<19), %l0
 xnor %g0, %l0, %l0 ! Set address mask register for –CS0
 or %g0, 0x140, %l1 ! ASI<1>=x, addr<27:0>=0xXXXXXXX
 sta %l0, [%l1] 1 ! SI and SD ASI, addr=0x0XXXXXXX
 sethi %hi(0xb1<<19), %l0 ! Set address range register for –CS1:
 or %g0, 0x124, %l1 ! ASI=0xb, addr<31:28>=0x1
 sta %l0, [%l1] 1
 sethi %hi(0xfcf<<19), %l0
 xnor %g0, %l0, %l0 ! Set address mask register for –CS1
 or %g0, 0x144, %l1 ! ASI<1,0>=xx, addr<27:0>=0xXXXXXXX
 sta %l0, [%l1] 1 ! SI, SD, UI and UD ASI, addr=0x1XXXXXXX

! Set Wait State Specifier Registers
! Note: count=WS–1, WS+1=cycles, count=cycles–2
! Wait state value is for –CS0 (ROM) and is set to:
! count=6, wait en=1, single cyc=0, override=0
! Wait state value is for –CS1 (subsystem) and is set to:
! count=0, wait en=0, single cyc=0, override=0

 or %g0, 0x160, %l1 ! –CS0 and –CS1 WSS Register
 or %g0, 0x634, %l0
 sll %l0, 6, %l0
 sta %l0, [%l1] 1

.align 4

.word 0xa3802001 ! Set Ancillary Register 17 bit 0
 ! to enable single vector trapping.
 ! Machine code is used here for assemblers
 ! which do not have the WR ASR instruc-

tion.

 or %g0, 0, %l0 ! Write 0 into Cache/BIU Control Reg
 sta %l0, [%g0] 1 ! disabling all caches

 set 0xffff, %l0 ! Set Timer Pre–Load Register
 or %g0, 0x174, %l1 ! Reload value is set to 0xffff
 sta %l0, [%l1] 1

 set 0x7f800006, %l1 ! Set Same–Page Mask Register
 or %g0, 0x120, %l0 ! Page size is set to 1K for any ASI
 sta %l0, [%l1] 1

Programming Considerations - Initialization

SPARClite User’s Manual

5-4

 or %g0, 0x3c, %l0 ! Set System Support Control Reg:
 or %g0, 0x80, %l1 ! –SAME_PAGE, –CS<5–1>, WS generator and
 sta %l0, [%l1] 1 ! –TIMER_OVF are all enabled

5.1.3 Initializing the On-Chip Cache

On reset, both caches are turned off, and all memory requests are sent to the Bus
Interface Unit. In order to use the caches, software must initialize the Valid, Least
Recently Used and Entry Lock bits by writing 0’s to the appropriate alternate address
spaces. After initializing the cache, a program can write 1’s to the Cache Enable bits of
the Cache/BIU control register to turn the caches on. The prefetch and write buffers of
the BIU can be turned on in the same operation.

The following code initializes the data and instruction caches, then enables caching and
BIU buffering.

#define set_size 64
#define ini_tag 0
#define adr1 0
#define adr2 0x80000000
#define CTL_BITS 0x35 /* turn on i–cache, d–cache, prefetch buf., write

 buf.*/
#define icache_lock_bit 0x1
#define dcache_lock_bit 0x3
#define icache_lock 0x8
#define dcache_lock 0xa
#define icache_enlock 0x1
#define dcache_enlock 0x2
#define lock_reg_adr 0x4
#define lock_save_adr 0x8

.seg “text”
 set set_size, %l7 /* RAM size */
 set adr1, %o0 /* start address, set 1 */
 set adr2, %o2 /* start address, set 2 */
 set ini_tag, %l0 /* initial tag value */

loopinit:
 sta %l0, [%o0] 0xc ! write set 1, itag
 sta %l0, [%o0] 0xe ! write set 1, dtag
 sta %l0, [%o2] 0xc ! write set 2, itag
 sta %l0, [%o2] 0xe ! write set 2, dtag
 add %o0, 16, %o0 ! inc by 4 words (each tag serves 4 words)
 subcc %l7, 1, %l7
 bne loopinit
 add %o2, 16, %o2 ! delay slot

 set 0, %l1
 set CTL_BITS,%i7 ! turn on caches.
 sta %i7,[%l1]1
 nop ! some nop’s for transition

Programming Considerations – Initialization

5-5

 nop
 nop
 nop

5.2 Trap Handling

An interrupt or trap (other than reset) causes a vectored transfer of control into a trap
table. The first four instructions of each trap handler are in the trap table itself. The
Trap Base Address field in the Trap Base Register contains the base address of the
table. Associated with each trap type is an 8-bit value, which (left shifted by 4 bits) is
used as an offset into the table. From the trap table, control typically passes (via a
JMPL or BA instruction) to the appropriate trap handler. A trap table with base address
0x00000000 is shown in the following code fragment.

Note that since –CS0 is selected for address range 0x0-0x3fff, the branch after reset at
address 0x0 must vector within this address range if the internally generated chip select
is being used. There is sufficient space after the trap handler (at label “start” below) yet
still within the CS0 default range to write the CS0 mask register if required.

0 T_reset: mov 0xe0, %psr
4 mov %g0, %tbr
/*
/* 0 —> TBR assumes boot is from fast memory, and that only the
/* first 4 instructions of the response to reset are there. Single
/* Vector Trapping is to remain disabled.
*/
8 ba start
c mov %g0, %wim

10 T_instr_access_exception: rd %tbr, %l3
14 rd %psr, %l0
18 ba iae_handler
1c nop
20 T_unimplemented_instruction: rd %tbr, %l3
24 rd %psr, %l0
28 ba illegal
2c nop
30 T_privileged_instruction: rd %tbr, %l3
34 rd %psr, %l0
38 ba privileged
3c nop
40 T_fp_disabled: rd %tbr, %l3
44 rd %psr, %l0
48 ba fp_disabled
4c nop
50 T_window_overflow: rd %tbr, %l3
54 rd %psr, %l0

Programming Considerations - Trap Handling

SPARClite User’s Manual

5-6

58 ba win_overflow
5c nop
60 T_window_underflow: rd %tbr, %l3
64 rd %psr, %l0
68 ba win_underflow
6c nop
70 T_mem_addr_not_aligned: rd %tbr, %l3
74 rd %psr, %l0
78 ba misaligned_addr
7c nop
80 T_fp_exception: rd %tbr, %l3
84 rd %psr, %l0
88 ba unimplemented_trap
8c nop
90 T_data_access_exception: rd %tbr, %l3
94 rd %psr, %l0
98 ba dae_handler
9c nop
a0 T_tag_overflow: rd %tbr, %l3
a4 rd %psr, %l0
a8 ba tag_overflow
ac nop

b0 rd %tbr, %l3
b4 rd %psr, %l0
b8 ba unimplemented_trap
bc nop
c0 rd %tbr, %l3
c4 rd %psr, %l0
c8 ba unimplemented_trap
cc nop

...

100 rd %tbr, %l3
104 rd %psr, %l0
108 ba unimplemented_trap
10c nop
110 T_int_1: rd %tbr, %l3
114 rd %psr, %l0
118 ba int_handler
11c nop
120 T_int_2: rd %tbr, %l3
124 rd %psr, %l0
128 ba int_handler
12c nop

...

1f0 T_int_15: rd %tbr, %l3
1f4 rd %psr, %l0

Programming Considerations - Trap Handling

5-7

1f8 ba int_handler
1fc nop
200 T_rferr: rd %tbr, %l3
204 rd %psr, %l0
208 ba unimplemented_trap
20c nop
210 T_iaerr: rd %tbr, %l3
214 rd %psr, %l0
218 ba iae_handler
21c nop
220 rd %tbr, %l3
224 rd %psr, %l0
228 ba unimplemented_trap
22c nop
230 rd %tbr, %l3
234 rd %psr, %l0
238 ba unimplemented_trap
23c nop
240 T_cp_disabled: rd %tbr, %l3
244 rd %psr, %l0
248 ba cp_disabled
24c nop
250 rd %tbr, %l3
254 rd %psr, %l0
258 ba unimplemented_trap
25c nop
260 rd %tbr, %l3
264 rd %psr, %l0
268 ba unimplemented_trap
26c nop
270 rd %tbr, %l3
274 rd %psr, %l0
278 ba unimplemented_trap
27c nop
280 T_cp_exception: rd %tbr, %l3
284 rd %psr, %l0
288 ba unimplemented_trap
28c nop
290 T_daerr: rd %tbr, %l3
294 rd %psr, %l0
298 ba dae_handler
29c nop
2a0 rd %tbr, %l3
2a4 rd %psr, %l0
2a8 ba unimplemented_trap
2ac nop
2b0 rd %tbr, %l3
2b4 rd %psr, %l0
2b8 ba unimplemented_trap
2bc nop

Programming Considerations - Trap Handling

SPARClite User’s Manual

5-8

...

800 software_traps: rd %tbr, %l3
804 rd %psr, %l0
808 ba trap_instr
80c nop
810 rd %tbr, %l3
814 rd %psr, %l0
818 ba trap_instr
81c nop

...

fe0 rd %tbr, %l3
fe4 rd %psr, %l0
fe8 ba trap_instr
fec nop
ff0 rd %tbr, %l3
ff4 rd %psr, %l0
ff8 ba emu_exception
ffc nop

...
1000 start:

When a trap is taken, the processor writes the trap type number into the tt field of the
Trap Base Register, and disables traps by clearing the ET bit of the Processor Status
Register. The processor enters supervisor mode (S=1), saving the old state of the S bit
in the PS field of the PSR. The Current Window Pointer is automatically decremented.

Each of the illustrated trap handlers (except for reset) begins by saving the values of the
TBR and PSR, and then jumps, by means of an unconditional branch, to the next
instruction in the service routine.

Each trap handler must then:

1. With ET cleared (ET=0) by the processor, ensure that a window is available, in case
another trap occurs. (When it takes a trap, the processor automatically saves the
window of the interrupted routine by decrementing the Current Window Pointer.)

2. Re-enable traps by setting the ET bit of the PSR to 1.

3. Handle the exceptional condition that caused the trap.

4. Disable traps by clearing the ET bit of the PSR to 0.

5. Ensure that a window is available, so that the RETT (return from trap) instruction
can restore the window of the interrupted routine by incrementing the CWP.

6. Restore the saved PSR.

Programming Considerations - Trap Handling

5-9

7. Execute a JMPL/RETT instruction pair. The address for the return is found in r[17]
(When it takes a trap, the processor loads r[17] with the value in the PC). The RETT
instruction automatically re-enables traps (ET=1).

To re-execute the trapped instruction when returning from a trap handler use the
sequence:

JMPL %rl7, %g0 ! old PC
rett %r18 ! old nPC

To return to the instruction after the trapped instruction (e.g., when emulating an
instruction) use the sequence:

jmpl %18, %g0 ! old nPC
rett %18 + 4 ! old nPC + 4

Two example trap handlers are shown below.

! FUNCTION
! _win_ovf
!
! DESCRIPTION
! This routine is the trap handler for register window overflow trap.
! Priority: 0x06
! Upon entry, the cwp points to the trap window, which is 1 less than
! the register window that must be saved to the stack. the stack is
! organized with %i6 = %o6 – (0x40 + local stack used). the ins and
! locals are saved, and the wim is adjusted for the new window.
!
! INPUTS
! – None.
!
! INTERNAL DESCRIPTION
! – Move the invalid window to the next window by rotating the %wim
! register left by one slot.
! – Get into the previously invalid window, the one that caused the,
! trap,and save all of the registers in it.
! – Get back into the previously valid window and let the trapped
! routine execute the save again.
!
! RETURNS
! – %o0 = 1 so execution starts at the trapped instruction.
!
win_overflow:

 rd %wim, %l4 !read WIM for window handler
 wr %g0, 0, %wim !clear WIM for now

 save !decrement into window to be saved

 std %l0, [%sp + 0x0 * 4] !save all local registers
 std %l2, [%sp + 0x2 * 4]

Programming Considerations - Trap Handling

SPARClite User’s Manual

5-10

 std %l4, [%sp + 0x4 * 4]
 std %l6, [%sp + 0x6 * 4]

 std %i0, [%sp + 0x8 * 4] !save all input registers
 std %i2, [%sp + 0xa * 4]
 std %i4, [%sp + 0xc * 4]
 std %i6, [%sp + 0xe * 4]

 restore !go back to trap window

 srl %l4, 1, %l5 !rotate original WIM right to obtain the
 sll %l4, 8–1, %l4 !next window (SPARClite has
 or %l4, %l5, %l4 !8 windows)
 wr %g0, %l4, %wim !install the new WIM

 wr %l0, 0, %psr !restore the saved PSR
 nop !required nops
 nop
 nop
 jmp %l1 !return from the trap
 rett %l2 !to re–execute SAVE

!
! FUNCTION
! _win_unf
!
! DESCRIPTION
! This routine is the trap handler for register window underflow trap.
! Priority: 0x07
! Upon entry, the cwp points to the trap window, which is 1 more than
! the register window that must be restored from the stack. The stack
! is organized with %i6 = %o6 – (0x40 + local stack used). The ins
! and locals are restored, and the wim is adjusted for the new window.
!
! INPUTS
! – None.
!
! INTERNAL DESCRIPTION
!
! RETURNS
! – %o0 = 1 so execution starts at the trapped instruction.
!
win_underflow:
 or %l0, 0x20, %l0 ! enable traps
 wr %l0, %psr
 mov %wim, %l4 ! Get wim.
 sll %l4, 1, %l5 ! Next WIM = rol(WIM, 1, NWINDOW).
 srl %l4, NWINDOWS–1, %l6
 or %l6, %l5, %l6
 mov %l6, %wim ! Install it.

Programming Considerations - Trap Handling

5-11

 nop ! must delay three instructions
 nop ! before using these registers, so
 nop ! put nops in just to be safe
 restore ! Back to user window.
 restore ! Get into window to be restored.
 ldd [%sp + 0x0 * 4], %l0 ! Restore all registers
 ldd [%sp + 0x2 * 4], %l2
 ldd [%sp + 0x4 * 4], %l4
 ldd [%sp + 0x6 * 4], %l6
 ldd [%sp + 0x8 * 4], %i0
 ldd [%sp + 0xa * 4], %i2
 ldd [%sp + 0xc * 4], %i4
 ldd [%sp + 0xe * 4], %i6
 save ! Get back to original window.
 save
_rerun_trap_instr:
 andn %l0, 0x20, %l0 ! Disable traps.
 wr %l0, %psr
 or %g0, 0x1, %g1 ! Set Restore Lock bit,
 or %g0, 0x10, %l0 ! in case an autolock sequence
 sta %g1, [%l0] 1 ! is in effect.
 jmpl %l1, %g0 ! Return to instruction at PC.
 rett %l2

5.3 Register and Stack Management

This section describes the standard conventions for using the register file. Most SPARC
compilers comply with this convention as this is the standard adopted on SPARC
workstations. (Compilers are available that optimize code differently for embedded
applications if required.)

This section describes standard conventions for using the register file.

5.3.1 Registers

Register usage is typically a critical resource allocation issue for compilers. The
SPARClite architecture provides windowed integer registers (in, out, local), and global
integer registers. Figure 5-2 summarizes the SPARC register set, as seen by a
user-mode procedure.

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-12

in %i7 (%r31) return address†in

%i6 (%r30) frame pointer†

%i5 (%r29) incoming param 6†

%i4 (%r28) incoming param 5†

%i3 (%r27) incoming param 4†

%i2 (%r26) incoming param 3†

%i1 (%r25) incoming param 2†

%i0 (%r24) incoming param 1 / return value to caller†

local %l7 (%r23) local 7†local

%l6 (%r22) local 6†

%l5 (%r21) local 5†

%l4 (%r20) local 4†

%l3 (%r19) local 3†

%l2 (%r18) local 2†

%l1 (%r17) local 1†

%l0 (%r16) local 0†

out %o7 (%r15) temporary value / address of CALL instruction‡out

%sp, %o6 (%r14) stack pointer†

%o5 (%r13) outgoing param 6‡

%o4 (%r12) outgoing param 5‡

%o3 (%r11) outgoing param 4‡

%o2 (%r10) outgoing param 3‡

%o1 (%r9) outgoing param 2‡

%o0 (%r8) outgoing param 1 / return value from callee‡

global %g7 (%r7) global 7 (SPARC ABI: use reserved)global

%g6 (%r6) global 6 (SPARC ABI: use reserved)

%g5 (%r5) global 5 (SPARC ABI: use reserved)

%g4 (%r4) global 4 (SPARC ABI: global register variable)

%g3 (%r3) global 3 (SPARC ABI: global register variable)

%g2 (%r2) global 2 (SPARC ABI: global register variable)

%g1 (%r1) temporary value‡

%g0 (%r0) 0

state %y Y register (used in multiplication/division)‡state

(icc field of %psr) Integer condition codes‡

†. assumed by caller to be preserved across a procedure call.
‡. assumed by caller to be destroyed (volatile) across a procedure call.

Figure 5-2. SPARC Register Set, as Seen by a User-Mode Procedure

In and Out Registers

The in and out registers are used primarily for passing parameters to subroutines and
receiving results from them, and for keeping track of the memory stack. Certain
routines can also use out registers 0 through 5 as fast temporary storage; these include
leaf routines—which contain no procedure calls—and routines which pass parameters

Programming Considerations - Register and Stack Management

5-13

using only shared memory or global registers. In general, when a procedure is called,
the caller’s outs become the callee’s ins.

One of a procedure’s out registers (%o6) is used as its stack pointer, %sp. It points to an
area in which the system can store %rl6 … %r31 (%l0 … %i7) when the register file
overflows (window_overflow trap); it is used to address most values located on the
stack. See Figure 5-3. A trap can occur at any time, which may precipitate a subsequent
window_overflow trap, during which the contents of the user’s register window at the
time of the original trap are spilled to the memory to which its %sp points.

A procedure may store temporary values in its out registers, with the exception of %sp,
with the understanding that those values are volatile across procedure calls. % sp cannot
be used for temporary values for the reasons described in the Register Windows and
%sp section below.

Up to six parameters can be passed by placing them in out registers %o0...%o5;
additional parameters are passed in the memory stack. The stack pointer is implicitly
passed in %o6, and a CALL instruction places its own address in %o7.

When an argument is a data aggregate being passed by value, the caller first makes a
temporary copy of the data aggregate in its stack frame, then passes a pointer to the
copy in the argument out register (or on the stack, if it is the 7th or later argument).

After a callee is entered and its SAVE instruction has been executed, the caller’s out
registers are accessible as the callee’s in registers.

The caller’s stack pointer %sp (%o6) automatically becomes the current procedure’s
frame pointer %fp (%i6) when the SAVE instruction is executed.

The callee finds its first six parameters in %i0 … %i5, and the remainder (if any) on the
stack.

For each passed-by-value data aggregate, the callee finds a pointer to a copy of the
aggregate in its argument list. The compiler must arrange for an extra dereferencing
operation each time such an argument is referenced in the callee. The additional code in
the callee program uses the pointer to access aggregate values on the stack.

If the callee is passed fewer than six parameters, it may store temporary values in the
unused in registers.

If a register parameter (in %i0 … %i5) has its address taken in the called procedure, the
callee stores that parameter’s value on the memory stack. The parameter is then
accessed in that memory location for the lifetime of the pointer(s) which contains its
address (or for the lifetime of the procedure, if the compiler doesn’t know the pointer’s
lifetime).

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-14

The six words available on the stack for saving the first six parameters are deliberately
contiguous in memory with those in which additional parameters may be passed. This
supports constructs such as C’s varargs, for which the callee copies to the stack the
register parameters which must be addressable.

A function returns a scalar integer value by writing it into its ins (which are the caller’s
outs), starting with %i0. Aggregate values are returned using the mechanism described
in the Functions Returning Aggregate Values section.

A procedure’s return address, normally the address of the instruction just after the
CALL’s delay-slot instruction, is simply calculated as %i7 + 8.

Local Registers

The locals are used for automatic variables—those whose lifetimes are no longer than
the lifetimes of their containing procedures—and for most temporary values. For access
efficiency, a compiler may also copy parameters (i.e., those past the sixth) from the
memory stack into the locals and use them from there. Procedures only calling several
leaf routines may be more efficient if some of the procedure’s automatic variables are
referenced by their address rather than have the values passed for each leaf routine call
and return. If an automatic variable’s address is taken, the variable’s value must be
stored in the memory stack, and be accessed there for the lifetime of the pointer(s)
which contains its address (or for the lifetime of the procedure, if the compiler doesn’t
know the pointer’s lifetime).

If a routine creates variables that can be used by other called routines, these variables
should either be stored in the memory stack and referenced by pointers, or stored in the
global registers, unless the register window does not change when the other routines are
called.

Register Windows and %sp

Some caveats about the use of %sp and the SAVE and RESTORE instructions are
appropriate. It is essential that:

• %sp always contains the correct value, so that when (and if) a register window
overflow or underflow trap occurs, the register window can be correctly stored to or
reloaded from memory.

• User (non-supervisor) code use SAVE and RESTORE instructions carefully. In
particular, “walking” the call chain through the register windows using RESTOREs,
expecting to be able to return to where one started using SAVEs does not work as
one might suppose. This fails because the “next” register window (in the “SAVE
direction”) is reserved for use by trap handlers. Since non-supervisor code cannot

Programming Considerations - Register and Stack Management

5-15

disable traps, a trap could write over the contents of a user register window which
has “temporarily” been RESTORE’d.

For example, if a routine at the fourth calling level returns to its caller at third level
and restores the third-level window, an intervening trap at third level can change
registers in the fourth-level window. A subsequent call and SAVE to a routine at
fourth level will not find the register contents the same as they were on exit from the
last fourth-level routine.

The safe method is to flush the register windows out to user memory (the stack) in
supervisor state using a software trap designed for that purpose. Then, user code can
safely “walk” the call chain through user memory, instead of through the register
windows.

The rule-of-thumb which will avoid such problems is to consider all memory below
%sp on the user’s stack, and the contents of all register windows “below” the current
one to be volatile. Below means decreasing memory address and window pointer,
corresponding to call space of subsequent routines by the current routine. In embedded
control applications complex enough to require partitioning the process into re-usable
tasks driven by a master sequencer, this view can be critical to ensure correct
functioning in all cases.

Global Registers

Unlike the ins, locals, and outs, the globals are not part of any register window. The
globals are a set of eight registers with global scope, like the register sets of more
traditional processor architectures. The globals (except %g0) are conventionally
assumed to be volatile across procedure calls. However, if they are used on a per-proce-
dure basis and expected to be non-volatile across procedure calls, either the caller or the
callee has to take responsibility for saving and restoring their contents.

Global register %g0 has a “hardwired” value of zero. It always reads as zero, and writes
to it have no effect.

The global registers other than %g0 can be used for temporaries, global variables, or
global pointers—either user variables, or values maintained as part of the program’s
execution environment. For example, one could use globals in the execution environ-
ment by establishing a convention that global scalars are addressed via offsets from a
global base register. In the general case, memory accessed at an arbitrary address
requires two instructions, e.g.:

sethi %hi (address), reg
ld [reg +%lo (address)], reg

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-16

Use of a global base register for frequently accessed global values would provide faster
(single-instruction) access to 213 bytes of those values, e.g.,:

ld [%g n+offset], reg

Global register n would hold the address of the center of a block of global values. The
offset, varying from –4096 to 4095 bytes, would point to a particular value.

The current convention is that the global registers (except %g0) are assumed to be
volatile across procedure calls. The convention used by the SPARC Application Binary
Interface (ABI) is that %gl is assumed to be volatile across procedure calls, %g2 …
%g4 are reserved for use by the application program (for example, as global register
variables), and %g5 … %g7 are assumed to be nonvolatile and reserved for (as-yet-un-
defined) use by the execution environment.

5.3.2 Memory Stack

Space on the memory stack, called a stack frame, is normally allocated for each
procedure. Under certain conditions, optimization may enable a leaf procedure to use its
caller’s stack frame instead of one of its own. In that case, the leaf procedure allocates
no space of its own for a stack frame. The following description of the memory stack
applies to all procedures, except leaf procedures which have been optimized as shown
in 5.3.4.

The following are always allocated at compile time in every procedure’s stack frame:

• 16 words, always starting at %sp, for saving the procedure’s in and local registers,
should a register window overflow occur.

The following are allocated at compile time in the stack frames of non-leaf procedures:

• One word, for passing a “hidden” (implicit) parameter. This is used when the caller
is expecting the callee to return a data aggregate by value; the hidden word contains
the address of stack space allocated (if any) by the caller for that purpose. See the
section titled Functions Returning Aggregate Values.

• Six words, into which the callee may store parameters that must be addressable.

Space is allocated as needed in the stack frame for the following at compile time:

• Outgoing parameters beyond the sixth.

• All automatic arrays, automatic data aggregates, automatic scalars which must be
addressable, and automatic scalars for which there is no room in registers.

• Compiler-generated temporary values (typically when there are too many for the
compiler to keep them all in registers).

Programming Considerations - Register and Stack Management

5-17

Space can be allocated dynamically (at runtime) in the stack frame for the following:

• Memory allocated using the alloca() function of the C library

Addressable automatic variables on the stack are addressed with negative offsets
relative to %fp; dynamically allocated space is addressed with positive offsets from the
pointer returned by alloca() ; everything else in the stack frame is addressed with
positive offsets relative to %sp.

The stack pointer %sp must always be doubleword-aligned. This allows window
overflow and underflow trap handlers to use the more efficient STD and LDD
instructions to store and reload register windows.

Figure 5-3 illustrates the stack frame of an active non-leaf procedure.

Space (if needed) for automatic arrays,
aggregates, and addressable scalar automatics

Space dynamically allocated via alloca() , if any

Space (if needed) for compiler temporaries

6 words into which callee may store register
arguments

Outgoing parameters past the sixth, if any

one-word hidden parameter (address at which
callee should store aggregate return value)

16 words in which to save register window (in and
local registers)

Stack Growth
(decreasing memory addresses)

%fp (old %sp)

%fp – offset

alloca()

%sp + offset

%sp + offset

%sp + offset

%sp + offset

%sp + offset

%sp

Next Stack Frame
(not yet allocated)

Current Stack Frame

Previous Stack Frame

Figure 5-3. User Stack Frame

5.3.3 Functions Returning Aggregate Values

Some programming languages, including C, dialects of Pascal, and Modula-2, allow the
user to define functions that return aggregate values. Examples include a C struct or
union , or a Pascal record . Since such a value may not fit into the registers, another
value-returning protocol must be defined to return the result in memory.

Re-entrancy and efficiency considerations require that the memory used to hold such a
return value be allocated by the function’s caller. The address of this memory area is
passed as the one-word hidden parameter mentioned in section 5.3.2 “Memory Stack”,
above. Where it is known that re-entrancy is not required, global or shared memory

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-18

allocated by the master sequencer can be an effective alternative, especially if the
amount of memory required is small enough to be held in locked data cache.

Because of the lack of type safety in the C language, a function should not assume that
its caller is expecting an aggregate return value and has provided a valid memory
address. Thus, some additional handshaking is required.

When a procedure expecting an aggregate return value from a called function is
compiled, an UNIMP instruction is placed after the delay-slot instruction following the
CALL to the function in question. The immediate field in this UNIMP instruction
contains the low-order twelve bits of the size (in bytes) of the area allocated by the
caller for the aggregate value expected to be returned.

When the aggregate-returning function is about to store its value in the memory
allocated by its caller, it first tests for the presence of this UNIMP instruction in its
caller’s instruction stream. If it is found, the callee assumes the hidden parameter to be
valid, stores its return value at the given address, and returns control to the instruction
following the caller’s UNIMP instruction. If the UNIMP instruction is not found, the
hidden parameter is assumed not to be valid and no value is returned.

On the other hand, if a scalar-returning function is called when an aggregate return
value is expected (which is clearly a software error), the function returns as usual,
executing the UNIMP instruction, which causes an unimplemented-instruction trap.

5.3.4 Leaf Procedure Optimization

A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one that
does not call (e.g. via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to
allocate a stack frame and obtain a register window for itself, and a corresponding
RESTORE instruction to de-allocate it. The time costs associated with this are:

• Possible generation of register-window overflow/underflow traps at runtime. This
only happens occasionally, but when either underflow or overflow does occur, it
costs dozens of machine cycles to process.

• The two cycles expended by the SAVE and RESTORE instructions themselves

There are also space costs associated with this convention, the cumulative cache effects
of which may not be negligible. The space costs include:

• The space occupied on the stack by the procedure’s stack frame

• The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles are typically the most significant.

Programming Considerations - Register and Stack Management

5-19

Some leaf procedures can be made to operate without their own register window or
stack frame, using their caller’s instead. This can be done when the candidate leaf
procedure meets all of the following conditions:

• Contains no references to %sp, except in its SAVE instruction

• Contains no references to %fp

• Refers to (or can be made to refer to) no more than 8 of the 32 integer registers,
inclusive of %o7 (the “return address”).

Such procedures can be converted into routines which share the caller’s stack frame and
register window—an optimization that saves both time and space. When optimized,
such a procedure is known as an optimized leaf procedure. It may only safely use
registers that its caller already assumes to be volatile across a procedure call, namely,
%o0 … %o5, %o7, and %gl.

The optimization can be performed at the assembly-language level using the following
steps:

• Change all references to registers in the procedure to registers that the caller
assumes volatile across the call:

• Leave references to %o7 unchanged.

• Leave any references to %g0 … %g7 unchanged.

• Change % i0 … % i5 to %o0 … %o5, respectively. If an in register is changed to
an out register that was already referenced in the original unoptimized version of
the procedure, all original references to that out register must be changed to refer
to an unused out or global register.

• Change references to each local register into references to any register among
%o0 … %o5 or %gl that remains unused.

• Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was not %g0 or %sp, convert the SAVE into
the corresponding ADD instruction instead of deleting it.

• If the RESTORE’s implicit addition operation is used for a productive purpose (such
as setting up the procedure’s return value), convert the RESTORE to the
corresponding ADD instruction. Otherwise, the RESTORE is only used for stack
and register-window de-allocation; replace it with a NOP instruction (it is probably
in the delay slot of the RET, and so cannot be deleted).

• Change the RET (return) synthetic instruction to RETL (return-from-leaf-procedure
synthetic instruction).

• Perform any optimizations newly made possible, such as combining instructions, or
filling the delay slot of the RETL with a productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no
references to in or local registers in the procedure body. All original references to ins
are now to outs. All other register references are to either %gl, or other outs.

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-20

Costs of optimizing leaf procedures in this way include:

• Additional intelligence in the peephole optimizer to recognize and optimize
candidate leaf procedures.

• Additional intelligence in debuggers to properly report the call chain and the stack
traceback for optimized leaf procedures.

The following code fragment shows a simple procedure call with a value returned, and
the procedure itself:

! CALLER:
! int i; /* compiler assigns “i” to register %l7 */
! i = sum3 (1, 2, 3);
 ...
 mov 1,%o0 ! first arg to sum3 is 1
 mov 2, %o1 ! second arg to sum3 is 2
 call sum3 ! the call to sum3
 mov 3, %o2 ! last parameter to sum3 in delay slot
 mov %o0, %l7 ! copy return value to %l7 (variable “i”)
 ...

#define SA (x)(((x) +7) & (~0x07)) /* rounds “x” up to doubleword boundry */
#define MINFRAME ((16+1+6)*4) /* minimum size frame */

! CALLEE:
! int sum3 (a, b, c)
! int a, b, c; /* args received in %i0, %il, and %i2 */
! {
! return a+b+c;
! }

sum3:
 save %sp, –SA(MINFRAME), %sp !set up new %sp; alloc min. stack frame
 add %i0, %i1, %l7 ! compute sum in local %l7
 add %l7, %i2, %l7 ! (or %i0 could have been used directly)
 ret ! return from sum3, and...
 restore %l7, 0, %o0 ! move result into output reg & restore

Since “sum3” does not call any other procedures (i.e., it is a “leaf” procedure), it can be
optimized to become:

sum3:
 add %o0, %o1, %o0 !
 retl ! (must use RETL, not RET,
 add %o0, %o2, %o0 ! to return from leaf procedure)

If a leaf routine is being created at the assembly level for use in an environment such as
embedded control where all the caller routines are known, then a different approach can
be taken.

Programming Considerations - Register and Stack Management

5-21

Form a register map which identifies all of the in and local registers which contain
information to be used by the leaf routine. Additionally, to accommodate the most
restrictive of caller routines, identify those in and local registers which must be
preserved for the caller.

Initially attempt to write the leaf routine so that it changes only out and global registers,
but uses information in the in and local registers. If the code requires storing temporary
values in memory and retrieving them later in the routine, or regenerating a value in a
register later in the routine because the register was overwritten to hold some other
value, then examine the in and local registers to see if any of them can be changed by
the leaf routine.

If so, modify the routine appropriately. If not, or if after modification there is still
temporary memory use or register value regeneration, try to relax the restrictions of
caller routines by changing code to regenerate some of the variables saved in registers.

Usually leaf routines are associated with inner loops and are executed much more
frequently than the routines that call them. Total program performance will be
improved with the most efficient inner loops and leaf routines, even at the expense of
less efficient outer-loop and set-up routines.

The following short function code shows an example of a leaf routine written directly at
the assembly level and satisfying the requirements for safe calling by other routines:

/*RGB_I
*
*Convert red, green, blue pixel planes to intensity pixel plane:
*
* Y(i,j)= [a*A(i,j)+ b*B(i,j)+ c*C(i,j)]/256
*
* Since there is no distinction between the i and j indexes as
* used by this process, the arrays can be accessed linearly with
* a single index that runs through the total 512 by 512 pixel
* space. i= 511 –> 0, j= 511 –> 0. Each pixel is one byte.

*Inputs: base address Y
* base address A
* base address B
* base address C
* pointer to Scalar Constant Array Base for a,b,c and other
* constants.
*Outputs: Y(i,j)

*Time: 3932169 + 458753W cycles,
* where W is number of wait states for DRAM access of data.

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-22

*REGISTER MAP:
*i0 [Y(0,0)] l0 o0 aA+bB+cC, Y(i,j) g0 0
*i1 [A(0,0)] l1 o1 A(i,j) g1 a
*i2 [B(0,0)] l2 o2 B(i,j) g2 b
*i3 [C(0,0)] l3 o3 C(i,j) g3 c
*i4 l4 o4 bB, cC g4
*i5 l5 o5 512j+i(2^18–1 –>0) g5 [Y(0,0)]+1
*i6 FP l6 o6 SP g6
*i7 general return l7 o7 leaf return g7 SCAB

*The following instructions take one cycle unless otherwise noted.
*/

rgb_i: sethi 256,%o5 !preset index to last pixel for fetch.
 sub %o5,1,%o5 !start at end & work toward beginning.
 add %i0,1,%g5 !offset store base to compensate for
 !fetch index being ahead one pass
 !of store index
 ldub [%g7+cnsta],%g1 !get weighting coefficients
 ldub [%g7+cnstb],%g2 !1+W cycles for 1st byte – cache miss.
 ldub [%g7+cnstc],%g3 !1 cycle each for rest – cache hit.
/*inner loop begin*/
t1: ldub [%i1+%o5],%o1 !fetch A. 1+W cycles for 1st byte.
 !1 cycle for remaining 3 bytes in word.
 umul %o1,%g1,%o0 !2 cycles for byte multiplier
 ldub [%i2+%o5],%o2 !fetch B. 1+W/4 cycles.
 umul %o2,%g2,%o4 !2 cycles.
 add %o0,%o4,%o0 !update accumulator
 ldub [%i3+%o5],%o3 !fetch C. 1+W/4 cycles.
 umul %o3,%g3,%o4 !2 cycles.
 add %o0,%o4,%o0 !update accumulator
 sra %o0,8,%o0 !scale sum of products to form Y
 subcc %o5,1,%o5 !decrement & test index
 bg t1 !loop if index >0
 stb %o0,[%g5+%o5] !store Y using offset base since
 !index has decremented.
 !1+W cycles – always cache miss.
/*inner loop end*/
 retl !2 cycles
 nop !exit

5.3.5 Register Allocation Within a Window

The usual SPARC software convention is to allocate eight registers (%10-%17) for
local values. A compiler could allocate more registers for local values at the expense of
having fewer outs/ins available for argument passing.

For example, if instead of assuming that the boundary between local values and input
arguments is between r[23] and r[24] (%l7 and %i0), software could by convention

Programming Considerations - Register and Stack Management

5-23

assume that the boundary is between r[25] and r[26] (%i1 and %i2). As illustrated in
Table 5-1, this would provide 10 registers for local values and 6 “in”/“out” registers.

Table 5-1: Alternative Register Allocation

Standard
Register

Model

“10-Local”
Register

Model

Arbitrary
Register

Model

registers for local values 8 10 n

“in”/“out” registers:
 reserved for %sp/%fp
 reserved for return address
 available for arg passing

1
1
6

1
1
4

1
1

14-n

total “ins”/“outs” 8 6 16-n

5.3.6 Other Register and Window Usage Models

In general-purpose computers, procedure calls are assumed to be frequent relative to
both context switches and User-Supervisor state transitions. A primary goal in these
applications is to minimize total overhead, which includes time spent in both context
switches and procedure calls. As more register windows are shared among competing
processes, total procedure call time decreases (due to execution of fewer window
overflow and underflow traps), while total context-switch time may increase (the
average number of register windows saved during a context switch increases). The task
is to strike a balance to minimize the sum of these two factors.

In embedded and/or real-time systems, the following factors are often more important
than total overhead:

• Minimal average context-switch time

• A constant (or small worst-case deterministic) context-switch time

• A constant (or small worst-case deterministic) procedure-call time

In these cases, it can be worthwhile to use a different scheme for managing the SPARC
register windows than the standard one described so far. This section provides a few
examples of modifications that can be made to the standard conventions. You can then
design a register-usage scheme appropriate to the specific needs of your application.

1. Divide the register file into “supervisor mode” register windows and “user mode”
register windows. In cases where user/supervisor transitions are frequent, this will
reduce register-window overflow and underflow overhead.

To be effective in a workstation environment, where the coding style is character-
ized by deep nesting of procedure calls, such a scheme would require a SPARC

Programming Considerations - Register and Stack Management

SPARClite User’s Manual

5-24

implementation with at least 14 windows in hardware (a minimum of 7 for user
code plus 7 for supervisor code). In embedded control, however, the nesting of
procedure calls is typically shallow, and windows will be used more sparingly.

2. Use multiple 1’s in the Window Invalid Mask Register (WIM) to partition the
register file into groups of at least two registers each. Assign each group of registers
to an executing task. This technique can be useful in real-time processing, where
extremely fast context switches are desirable. A context switch would consist of
loading a new stack pointer, resetting the CWP to the new task’s block of register
windows, and saving and restoring whatever subset of the global registers is
assumed to be nonvolatile. In particular, note that no window registers would need
to be loaded or stored during a context switch.

This technique assumes that only a few tasks are present, and, in the simplest case,
that all tasks share a single address space. The number of hardware register windows
required is a function of the number of windows reserved for the supervisor, the
number of windows reserved for each task, and the number of tasks. Register
windows could be allocated to tasks unequally, if appropriate.

3. Avoid the normal register-window mechanism, by not using SAVE and RESTORE
instructions. Software would effectively see 32 general-purpose registers instead of
SPARC’s usual windowed register file. In this mode, SPARC would operate like
processors with a more traditional flat register architecture. Procedure call times
would be more deterministic (since there would be no window overflow or
underflow traps), but for most types of software, average procedure call time would
significantly increase, due to increased memory traffic for parameter passing and
saving and restoring local variables.

A number of existing SPARC compilers produce code using this register organiza-
tion.

It would be awkward, at best, to attempt to mix (link) code using the SAVE/RE-
STORE convention with code not using it in the same process. If both conventions
were used in the same system, two versions of each library would be required.

It would be possible to run user code with one register-usage convention and supervisor
code with another. With sufficient intelligence in the supervisor, user processes with
different register conventions could be run simultaneously.

5.4 Cache Management

Effective cache usage is based on the following principles:

• Compactness of Code—Critical loops should fit entirely in the cache. They can then
be locked into the cache to prevent their being displaced when other, less-often-used

Programming Considerations - Cache Management

5-25

routines are called. In some cases, it may be advisable to disable compiler in-lining
optimizations in order to keep your code compact.

• Program Profiling—Knowing where your program spends its time will help you
decide what instructions and data to lock into cache.

• Data and Instruction Locality—If possible, a large program or data set should be
partitioned in such a way that one portion at a time can be locked into cache and
used for a while before another portion needs to be loaded. For example, there are
numerical routines which perform as many of their required computations as
possible on one block of data before proceeding to the next block.

5.5 Division Routines Using the DIVScc Instruction

This section shows how integer division routines can be created using the DIVScc
instruction. Signed and unsigned divisions are included for both word and doubleword
dividends. The divisor is always a single word. These routines can serve as models for
your own use of DIVScc, or they can be incorporated into your programs and used
without modification. These sample routines do not set the integer condition codes in
exactly the same way as the SPARC Version 8 integer division instructions.

5.5.1 Simple Divide Step Examples

In each of the following examples, a cycle by cycle view of divide step with reduced
word size (3 bits) is given

! Register Use:
! out0 most significant half Dividend/ Remainder
! out1 least significant half Dividend/ Quotient
! out2 Divisor
! Note: TS, True Sign = N xor V from condition codes
! Note: adjustment of negative quotient is also
! conditional on remainder. Details omitted
! here. See signed division example code.

Examples of SIGNED division

! 7/2 = +3 & +1 rmdr; 010–> o2, 111–> o1, 000–> o0
 !Y o1 TS ALUin ALUout
mov %o0,%y ! msh dividend –> Y reg
 !000 111
tst %o0 ! initialize cc with sign dividend
 !000 1|11 0
divscc %o1,%o2,%o1 ! 0001–0010 1111 divide step 1
 !111 1|10 1
divscc %o1,%o2,%o1 ! 1111+0010 0001 divide step 2

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-26

 !001 1|01 0
divscc %o1,%o2,%o1 ! 0011–0010 0001 divide step 3
 !001 011 0
tst %o0 ! dividend & quotient sign?
 !001 011 0
bl,a 1f
 !001 011
add %o1,1,%o1 ! adjust quotient if negative from
 !001 011 1’s to 2’s complement form
1:mov %y,%o0 !001 –> o0 retrieve remainder

! –11/3 = –3 & –2 rmdr; 011–> o2, 101–> o1, 110–> o0
 !Y o1 TS ALUin ALUout
mov %o0,%y ! msh dividend –> Y reg
 !110 101
tst %o0 ! initialize cc with sign dividend
 !110 1|01 1
divscc %o1,%o2,%o1 ! 1101+0011 0000 divide step 1
 !000 0|11 0
divscc %o1,%o2,%o1 ! 0000–0011 1101 divide step 2
 !101 1|10 1
divscc %o1,%o2,%o1 ! 1011+0011 1110 divide step 3
 !110 100 1
tst %o0 ! dividend & quotient sign?
 !110 100 1
bl,a 1f
 !110 100
add %o1,1,%o1 ! 100+001 101 adjust quotient if negative from
 !110 101 1’s to 2’s complement form
1:mov %y,%o0 !110 –> o0 retrieve remainder

Examples of UNSIGNED division

! 11/3 = 3 & 2 rmdr; 011–> o2, 011–> o1, 001–> o0
 !Y o1 TS ALUin ALUout
mov %o0,%y ! msh dividend –> Y reg
 !001 011
tst %g0 ! initialize cc as non negative
 !001 0|11 0 dividend
divscc %o1,%o2,%o1 ! 0010–0011 1111 divide step 1
 !111 1|10 1
divscc %o1,%o2,%o1 ! 1111+0011 0010 divide step 2
 !010 1|01 0
divscc %o1,%o2,%o1 ! 0101–0011 0010 divide step 3
 !010 011 0 TS is last remainder sign
mov %y,%o0 !010 –> o0 retrieve remainder
 !–––
! reg o0
 !010 011 0
bl,a 1f
 !010 011

Programming Considerations - Division Routines Using the DIVScc Instruction

5-27

add %o0,%o2,%o0 ! adjust remainder if negative
 !010 011
1:nop

! 33/5 = 6 & 3 rmdr; 101–> o2, 001–> o1, 100–> o0
 !Y o1 TS ALUin ALUout
mov %o0,%y msh dividend –> Y reg
 !100 001
tst %g0 ! initialize cc as non negative
 !100 0|01 0 dividend
divscc %o1,%o2,%o1 ! 1000–0101 0011 divide step 1
 !011 0|11 0
divscc %o1,%o2,%o1 ! 0110–0101 0001 divide step 2
 !001 1|11 0
divscc %o1,%o2,%o1 ! 0011–0101 1110 divide step 3
 !110 110 1 TS is last remainder sign
mov %y,%o0 ! 110 –> o0 retrieve remainder
 !–––
! reg o0
 !110 110 1
bl,a 1f
 !110 110
add %o0,%o2,%o0 ! 110+101 011 adjust remainder if negative
 !011 110
1:nop

5.5.2 Signed Division with Doubleword Dividend (divs2)

This subroutine for signed division of a 64-bit dividend by a 32-bit divisor produces a
32-bit signed quotient and a 32-bit remainder. Special treatment is given to borderline
overflow when the absolute value of the quotient is 231, in order to support the math
operator INTEGER PART OF: Q=–231 does not overflow; Q=+231 overflows with a
special overflow code.

Remainder is zero if the division is exact; otherwise, the remainder is the same sign as
original dividend. There is a check for divide by zero and a check for overflow with
non-zero divisor. The check for divide by zero is kept separate to support the SPARC-
recommended trap for divide by zero. In applications where the user knows the
numerical ranges of the operands, or controls them, these checks can be omitted.
Division with divide by zero fault takes 6 cycles, sets the overflow flag in the integer
condition code, and leaves 0xfffff800 in register out3.

Division with non-zero divisor overflow takes 17 to 23 cycles (17 or 19 if the original
dividend is positive, 18 or 23 if the original dividend is negative); it sets the overflow
flag in the integer condition code, and leaves 0x800 in register out3.

Division leading to a quotient of absolute value 231 takes 20 cycles if the original
dividend is positive, and 23 cycles if the original dividend is negative. It leaves the
correct remainder in register out0, –231 in out1 as quotient and 0 in out3. It clears the

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-28

overflow condition code if the actual quotient is –231, and sets the overflow condition
code if the actual quotient is +231.

Division without fault takes 49 to 60 cycles; it clears the overflow condition code, and
leaves 0 in register out3. Exact division with last partial remainder = 0 takes 49 cycles.
Exact division with last partial remainder = ±divisor, as happens with non-restoring
division algorithms, takes 53 or 54 cycles. Inexact division, with non-zero final
remainder, takes 56 to 60 cycles.

!Calling Convention

! mov %l0,%o0 !msh dvdnd–>o0
! mov %l1,%o1 !lsh dvdnd–>o1
! call divs2 !DIVISION SUBROUTINE CALL
! orcc %g0,%l2,%o2 !dvsr–>o2 & test

!Register Map

! reg#
! out0 msh dividend/remainder
! out1 lsh dividend/quotient
! out2 divisor
! out3 overflow indication
! overflow divide by zero/0xfffff800 and V=1
! overflow divide by non–zero/0x800 and V=1
! overflow quotient =+2^31/0 and V=1
! no overflow/0 and V=0
! out4 scratch for final remainder calculations
! out5 absolute value of divisor
! y msh dividend/successive partial remainders
! call to divs2 must be made with cc indicating sign of divisor

.global divs2

divs2: bne 0f !go on if divisor not zero
 mov %o2,%o5 !copy divisor in o5, D
 sethi 0x1fffff,%o3 !divide by zero indicator
 retl !exit with
 addcc %o3,%o3,%o3 !overflow set
0: bl,a 1f
 sub %g0,%o5,%o5 !if divsr neg, D=–divsr
1: mov %o0,%y !msh dvdnd–>Y
 tst %o0 !initialize cc for first divide step
 !with sign dividend for signed divide
 bl 2f !skip ahead for negative dividend
 divscc %o1, %o5, %o1 !divide step 1

!don’t change cc except by DIVSCC until last divide step done

 bl 3f !ok if different

Programming Considerations - Division Routines Using the DIVScc Instruction

5-29

 mov %g0,%o3 !clear overflow indicator
 srl %o1,1,%o4 !get lsh rmdr
 bg 8f !if msh rmdr >0 then overflow
 subcc %o4,%o5,%g0 !if lsh rmdr <D then Q is +/–2^31
 bge 8f !& o4 is correct final rmdr
 !check if overflow on Q = +2^31
 sethi 0x200000,%o1 !set –2^31 –> Q
 !else overflow
 tst %o2 !if original divisor >0
 bg,a 9f !which implies quotient =+2^31
 addcc %o1,%o1,%g0 !set ovrlfw cc with o3 = 0
9: retl !exit
 mov %o4,%o0 !with correct remainder in o0
8: sethi 0x200001,%o3 !overflow divide by non–zero indicator
 retl !exit with
 addcc %o3,%o3,%o3 !overflow set
2: bge 3f !ok if different
 mov %g0,%o3 !clear overflow indicator
 mov %y,%o0 !get msh rmdr
 addcc %o0,1,%g0 !is it –1
 bne 8f !if <–1 then overflow
 srl %o1,1,%o4 !get lsh rmdr except for leading 1
 sethi 0x200000,%o1 !set –2^31 –>Q
 or %o1,%o4,%o4 !insert leading 1 in lsh rmdr
 addcc %o4,%o5,%g0 !if lsh rmdr >–D then q is +/–2^31
 ble 8f !& o4 is correct final rmdr
 !check if overflow on Q = +2^31
 !else overflow
 tst %o2 !if original divisor <0
 bl,a 9f !which implies quotient =+2^31
 addcc %o1,%o1,%g0 !set ovrlfw cc with o3 = 0
9: retl !exit
 mov %o4,%o0 !with correct remainder in o0
8: sethi 0x200001,%o3 !overflow divide by non–zero indicator
 retl !exit with
 addcc %o3,%o3,%o3 !overflow set
3: divscc %o1, %o5, %o1 !divide step 2
 divscc %o1, %o5, %o1 !divide step 3

 divscc %o1, %o5, %o1 !
 divscc %o1, %o5, %o1 !divide step 32

 be 6f !if final remainder is zero,
 !go fix quotient polarity
 mov %y, %o4 !final remainder from Y to o4
 bg 4f !skip ahead if rmdr+; continue if rmdr–
 addcc %o4,%o5,%g0 !is neg rmdr + abs divsr =0
 be,a 6f !if so, go fix quotient polarity and
 mov %g0,%o4 !clear rmdr. if not, don’t clear

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-30

 tst %o0 !test original dvdnd
 bl 5f !if neg, go check neg Q
 tst %o1 !sign Q
 ba 5f
 add %o4,%o5,%o4 !if orig dvdnd pos and final rmdr neg,
 !correct rmdr; then go check neg Q
4: subcc %o4,%o5,%g0 !is pos rmdr – abs divsr =0
 be,a 6f !if so, go fix quotient polarity and
 mov %g0,%o4 !clear rmdr. if not, don’t clear
 tst %o0 !test original dvdnd
 bge 5f !if pos, go check neg Q
 tst %o1 !sign Q
 sub %o4,%o5,%o4 !if orig dvdnd neg and final rmdr pos,
 !correct rmdr; then go check neg Q
5: bl,a 6f !skip ahead if Q pos
 add %o1,1,%o1 !if neg Q, 1’s complement to
 !2’s complement; annul if pos Q
6: tst %o2 !check original divisor sign
 bl,a 7f
 sub %g0,%o1,%o1 !if neg divsr, negate quotient
7: retl !exit
 mov %o4,%o0 !with correct remainder in o0

5.5.3 Signed Division with Word Dividend (divs1)

This subroutine for signed division of a 32-bit dividend by a 32-bit divisor produces a
32-bit signed quotient and a 32-bit remainder. Remainder is zero if the division is exact;
otherwise the remainder is the same sign as the original dividend. There is no check for
divide by zero. It is not possible to overflow with non-zero divisor. If the calling routine
knows that divide by zero cannot happen, no test is needed. If divide by zero is
possible, a simple test just after the call can abort the division.

Division without fault takes 47 to 58 cycles. Exact division with last partial remainder =
0 takes 47 cycles. Exact division with last partial remainder = ±divisor, as happens with
non-restoring division algorithms, takes 51 or 52 cycles. Inexact division, with non-zero
final remainder, takes 54 to 58 cycles.

!Calling Convention

! mov %l1,%o0 !dvdnd–>o0
! orcc %g0,%l2,%o2 !dvsr–>o2 & test
! call divs1 !DIVISION SUBROUTINE CALL
! be dvby0 !abort division if divide by zero

!Register Map

! reg#
! out0 dividend/remainder

Programming Considerations - Division Routines Using the DIVScc Instruction

5-31

! out1 quotient
! out2 divisor
! out4 scratch for final remainder calculations
! out5 absolute value of divisor
! y initially sign extension of dividend/successive partial
! remainders. call to divs1 must be made with cc indicating
! sign of divisor

.global divs1
divs1: mov %g0,%y !0 –> Y
 mov %o2,%o5 !copy divisor in o5, D
 bl,a 1f
 sub %g0,%o5,%o5 !if divsr neg, D=–divsr
1: tst %o0 !initialize cc for first divide step with
 !sign dividend for signed divide
 bl,a 2f
 mov –1,%y !–1 –> Y only if dvdnd neg
2: divscc %o0, %o5, %o1 !divide step 1
 !leave original dividend in o0.
 !do partial remainders & quotient in o1
 !don’t change cc except by divscc until
 !last divide step is completed
 divscc %o1, %o5, %o1 !divide step 2
 divscc %o1, %o5, %o1 !divide step 3
 divscc %o1, %o5, %o1 !divide step 4
 ·
 ·
 ·
 divscc %o1, %o5, %o1
 divscc %o1, %o5, %o1 !divide step 32
 be 6f !if final remainder is zero,
 !go fix quotient polarity
 mov %y, %o4 !final remainder from Y to o4
 bg 4f !skip ahead if rmdr+; continue if rmdr–
 addcc %o4,%o5,%g0 !is neg rmdr + abs divsr =0
 be,a 6f !if so, go fix quotient polarity and
 mov %g0,%o4 !clear rmdr. if not, don’t clear
 tst %o0 !test original dvdnd
 bl 5f !if neg, go check neg Q
 tst %o1 !sign Q
 ba 5f
 add %o4,%o5,%o4 !if orig dvdnd pos and final rmdr neg,
 !correct rmdr; then go check neg Q
4: subcc %o4,%o5,%g0 !is pos rmdr – abs divsr =0
 be,a 6f !if so, go fix quotient polarity and
 mov %g0,%o4 !clear rmdr. if not, don’t clear
 tst %o0 !test original dvdnd
 bge 5f !if pos, go check neg Q
 tst %o1 !sign Q
 sub %o4,%o5,%o4 !if orig dvdnd neg and final rmdr pos,
 !correct rmdr; then go check neg Q

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-32

5: bl,a 6f !skip ahead if Q pos
 add %o1,1,%o1 !if neg Q, 1’s complement to
 !2’s complement; annul if pos Q
6: tst %o2 !check original divisor sign
 bl,a 7f
 sub %g0,%o1,%o1 !if neg divsr, negate quotient
7: retl !exit
 mov %o4,%o0 !with correct remainder in o0

5.5.4 Unsigned Division with Doubleword Dividend (divu2)

This subroutine for unsigned division of a 64-bit dividend by a 32-bit divisor produces a
32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the division is
exact, and positive otherwise. There is a check for divide by zero and a check for
overflow with non-zero divisor. The check for divide by zero is kept separate in order to
support the SPARC-recommended trap for divide by zero. In applications where the
user knows the numerical ranges of the operands, or controls them, these checks can be
omitted.

Division with divide by zero fault takes 6 cycles; it sets the overflow flag in the integer
condition code, and leaves 0xfffff800 in register out3. Division with a non-zero divisor
overflow takes 9 cycles; it sets the overflow flag and leaves 0x800 in register out3.
Division without fault takes 42 cycles, clears the overflow flag, and leaves 0 in register
out3.

!Calling Convention

! mov %l0,%o0 !msh dvdnd–>o0
! mov %l1,%o1 !lsh dvdnd–>o1
! call divu2 !DIVISION SUBROUTINE CALL
! orcc %g0,%l2,%o2 !dvsr–>o2 & test

!Register Map

! reg#
! out0 msh dividend/remainder
! out1 lsh dividend/quotient
! out2 divisor
! out3 overflow indication
! overflow divide by zero/0xfffff800 and V=1
! overflow divide by non–zero/0x800 and V=1
! no overflow/0 and V=0
! y msh dividend/successive partial remainders
! call to divs2 must be made with cc indicating if divisor zero

global divu2
divu2: bne 1f !go on if divisor not zero

Programming Considerations - Division Routines Using the DIVScc Instruction

5-33

 mov %o0,%y !msh dvdnd–>Y
 sethi 0x1fffff,%o3 !divide by zero indicator
 retl !exit with
 addcc %o3,%o3,%o3 !overflow set
1: subcc %o0,%o2,%g0 !is msh dvdnd < dvsr
 bcs 2f !ok if so
 orcc %g0,0,%o3 !initialize cc for first divide step
 !with positive sign for unsigned divide
 !clear overflow indicator
 sethi 0x200001,%o3 !overflow divide by non–zero indicator
 retl !exit with
 addcc %o3,%o3,%o3 !overflow set
2: divscc %o1, %o2, %o1 !divide step 1
 !don’t change cc except by divscc until
 !last divide step is completed
 divscc %o1, %o2, %o1 !divide step 2
 divscc %o1, %o2, %o1 !divide step 3
 ·
 ·
 ·
 divscc %o1, %o2, %o1
 divscc %o1, %o2, %o1 !divide step 32

 bl 3f !skip ahead if rmdr–
 mov %y,%o0 !final remdr from Y to o0
 retl !exit
 addcc %o0,0,%o0 !clear ovrflw cc if on
3: retl !exit
 addcc %o0,%o2,%o0 !correct rmdr & clear ovrflw cc if on

5.5.5 Unsigned Division with Word Dividend (divu1)

This subroutine for unsigned division of a 32-bit dividend by a 32-bit divisor produces a
32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the division is
exact, and positive otherwise. There is no check for divide by zero. It is not possible to
overflow with non zero divisor. If the calling routine knows that divide by zero cannot
happen, no test is needed. If divide by zero is possible, a simple test just after the call
can abort the division.

If not aborted, the division takes 39 cycles; it clears overflow flag and leaves 0 in
register out3. If the remainder is of no interest and only the quotient corresponding to
INTEGER(dvdnd/dvsr) or FLOOR(dvdnd/dvsr) for unsigned numbers is wanted, then
the last steps of this routine can be modified as indicated. Quotient-only unsigned
division takes 36 cycles.

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-34

!Calling Convention

! mov %l1,%o1 !dvdnd–>o1
! orcc %g0,%l2,%o2 !dvsr–>o2 & test
! call divu1 !DIVISION SUBROUTINE CALL
! be dvby0 !abort division if divide by zero

!Register Map

! reg#
! out0 remainder
! out1 dividend/quotient
! out2 divisor
! out3 0 if divide by non zero
! y zero/successive partial remainders

.global divu1
divu1: mov %g0,%y !0–>Y
 orcc %g0,0,%o3 !initialize cc for first divide step
 !with positive sign for unsigned divide
 !clear divide by zero indicator
 divscc %o1, %o2, %o1 !divide step 1
 !don’t change cc except by divscc until
 !last divide step is completed
 divscc %o1, %o2, %o1 !divide step 2
 divscc %o1, %o2, %o1 !divide step 3
 ·
 ·
 ·
 divscc %o1, %o2, %o1
 divscc %o1, %o2, %o1 !divide step 31
 retl !exit for quotient–only divide
 divscc %o1, %o2, %o1 !divide step 32

!ALL the following steps may be omitted for quotient–only divide

 bl 1f !skip ahead if rmdr–
 mov %y,%o0 !final rmdr from Y to o0
 retl !exit
 addcc %o0,0,%o0 !clear ovrflw cc if on
1: retl !exit
 addcc %o0,%o2,%o0 !correct rmdr & clear ovrflw cc if on

5.5.6 Divide Step In Support Of A To D Converter
Compensation

The following code fragment shows compensation for errors in quantization codes of an
analog to digital converter that has been calibrated with the Walsh Transform
techniques developed at Schlumberger (Fairchild) Test Systems. Refer to “A System

Programming Considerations - Division Routines Using the DIVScc Instruction

5-35

For Converter Testing Using Walsh Transform Techniques” by E.A. Sloane presented
as paper 11.3 at the IEEE International Test Conference, October 1981.

As the paper shows, for well designed and manufactured analog to digital converters,
the relation between codes and actual voltage values of the mid point of each
quantization bin is as close to linear as technology and economics permit. So the power
of two order Walsh coefficients dominate over the cross terms. Consequently, this
example only uses the quantization bits as is and doesn’t cover the exclusive or
combinations between some of the more significant bits. For each bit of additional
accuracy, only another instruction pair of add & set condition codes and divide step is
required. To do this with table lookup would require doubling the table size, consuming
data cache. Simple gain and offset corrections based on least square linear fit don’t
offer as much accuracy and usually are based on static rather than dynamic tests, which
are more suited to actual use.

The operation shown in the code fragment is:

Yreg = �� 29 � A9 � 28 � A8... �� 20 � A0

At each stage whether the next term is added or subtracted depends on whether the
corresponding bit of quantization in a register pointed to by symbol x is 0/1.

 .
 .
 .
 mov 0,%y !clear Yreg
 addcc x,x,x !left shift code from upper bits of register x
 !with msb setting N & V to force true sign
 divscc %g0,A9,%g0 !only add or subtract immediate value to Yreg
 !no other register is affected
 addcc x,x,x
 divscc %g0,A8,%g0
 addcc x,x,x
 divscc %g0,A7,%g0
 addcc x,x,x
 divscc %g0,A6,%g0
 addcc x,x,x
 divscc %g0,A5,%g0
 addcc x,x,x
 divscc %g0,A4,%g0
 addcc x,x,x
 divscc %g0,A3,%g0
 addcc x,x,x
 divscc %g0,A2,%g0
 addcc x,x,x
 divscc %g0,A1,%g0

Programming Considerations - Division Routines Using the DIVScc Instruction

SPARClite User’s Manual

5-36

 addcc x,x,x
 divscc %g0,A0,%g0
 mov %y,%g1 !g1 holds compensated value of quantization code
 !from x scaled by a factor chosen to make most
 !use of the 13 bit precision available for
 !immediate values. Here with 10 bits, results
 !are scaled by 2^9 relative to coefficients.
 .
 .
 .

As an example, a 10 bit offset binary analog to digital converter might be set to operate
over a range of –5.12 to +5.12 volts with nominal 10 millivolt quantization resolution.
If ideal, with no errors, the coefficients for each bit expressed as millivolts would be:

m

a(m)

9

–2560

8

–1280

7

–640

6

–320

5

–160

4

–80

3

–40

2

–20

1

–10

0

–5

If the process technology is limited to ± 0.5% accuracy of the converter’s resistive
ladder, then the actual coefficients for each bit in millivolts could be:

m

a(m)

9

–2572.59

8

–1274.24

7

–642.94

6

–319.97

5

–159.87

4

–80.34

3

–39.86

2

–20.02

1

–10.05

0

–4.98

These coefficients would be scaled by 29–m, corresponding to the order of entering Yreg
which gets left shifted each time, and rounded to integer.

m

A(m)

9

–2573

8

–2548

7

–2572

6

–2560

5

–2558

4

–2571

3

–2551

2

–2563

1

–2572

0

–2547

Driving the analog to digital converter with a 4.000 Volts, 5 MHz sine wave, sampling
at 64 MHz and collecting 64 consecutive samples allows performing spectrum analysis
with FFT to determine effective bits under the test conditions. Because of the sine wave
frequency relative to the sample frequency, the significant distortion harmonics don’t
alias into the fundamental frequency analysis bin. Number of effective bits is
approximately:

0.5 × log
power spectrum at fundamental

sum of power spectrum at all other frequencies

log (2)

2

3
×

The nominal 10 bit converter with ideal coefficients at each code bit shows 9.52
effective bits under dynamic rather than static testing. The converter with ± 0.5% errors

Programming Considerations - Division Routines Using the DIVScc Instruction

5-37

in the resistive ladder taken at nominal value without Walsh based calibration shows
7.57 effective bits. With Walsh base calibration, it shows 9.05 effective bits. A least
square straight line fit for compensation shows only 7.57 effective bits but with reduced
error in measuring peak amplitude.

This less obvious use of divide step allows fast compensation for an appropriately
calibrated analog to digital converter. Recovery for this example of about 3/4 of the lost
number of effective bits at the price of two cycles per quantization bit plus 2 cycles
overhead.

5.6 Using the SCAN Instruction

The code examples in this section illustrate the use of the SCAN instruction. In the first
example, SCAN is used to simplify and speed up floating-point normalization.

5.6.1 Scan in Support of Software Floating Point

The following code fragment shows post normalization of floating point add or subtract
for the case where the result requires calculating the difference of the magnitudes of the
numbers. The IEEE754 format, which is used in SPARC architecture as well, is
assumed. This uses sign, offset exponent, hidden leading bit when normalized and
fraction. Only the logic of normalize numbers is shown here. Number values are in sign
and magnitude form rather than two’s complement.

31

s

30

e

23 22 0

f
normalized values
o < e < 255
x = –1s x 2e–127 � (1+f x 2–23)

The operation is x+y=z or x–y=z. If subtract, then sign y is complemented. The
magnitudes of the numbers have to be compared and the one with the lesser exponent
right shifted to align its decimal point with the greater. If exponents are equal,
magnitudes must be compared if signs differ to see what the sign of the result will be.
This is assumed to have taken place before the code fragment shown here, which shows
the logic of handling numbers with different signs and different exponents. Symbol x
points to the larger number; y to smaller.

 �

 �

 �

sethi %hi(0xff800000), %g5 !mask for sign and exponent with and
 !or for fraction with andn
 sll %g5,1,%g4

Programming Considerations - Using the SCAN Instruction

SPARClite User’s Manual

5-38

 xor %g4,%g5,%g4 !single one at bit 23 for hidden bit
 srl x,23,%g2
 and %g2,0xff,%g2 !x exponent
 srl y,23,%g3
 and %g3,0xff,%g3 !y exponent
 sub %g2,%g3,%g1 !alignment difference
 andn y,%g5,%g3 !y fraction
 or %g3,%g4,%g3 !y hidden bit
 srl %g3,%g1,%g2 !downshift y magnitude to g2
 sub %g0,%g1,%g1 !complement of shift
 sll %g3,%g1,%g3 !upshift left over y for test
 addcc %g3,%g3,%g0 !test left over for rounding
 !note: not IEEE754 rounding here
 andn x,%g5,%g1 !x fraction
 or %g1,%g4,%g1 !x hidden bit
 subx %g1,%g2,%g1 !difference of magnitudes with
 !simple rounding

!––––––––
 scan %g1,0,%g2 !scan difference for leading one.
 !Use of 0 as the scan mask is because
 !of sign magnitude arithmetic assumed
 !in this example. Leading 8 bits are
 !guaranteed to be zero because of
 !format. Question is, how many more
 !till the first one?
 !If two’s complement arithmetic had
 !been assumed, then there could have
 !been leading ones or leading zeros
 !depending on sign of result. Then
 !instead of 0 as mask, scan would have
 !used %g1 as mask as well as value.
 !Question would have been, how many
 !leading bits are the same as the sign?
 subcc %g2,32,%g0 !test if all significant bits lost
 blu 1f !use unsigned compare for future compatibility
 !blu same as bcs
 sub %g2,8,%g2 !remove effect of format’s 8 leading 0’s
!underflow due to loss of significant bits code would follow here

1: sll %g1,%g2,%g1 !normalize result
 andn %g1,%g4,%g1 !hide leading bit
 srl x,23,%g3
 and %g3,0xff,%g4 !x exponent in g4
 subcc %g4,%g2,%g0 !test exponent underflow
 bgu 2f !use unsigned compare for future compatibility
 !blu same as bcd
 sub %g3,%g2,%g3 !subtract normalization shift from
 !result sign and exponent
!exponent underflow code would follow here

Programming Considerations - Using the SCAN Instruction

5-39

2: sll %g3,23,%g3 !place sign and exponent result in
 !format position
 retl !exit(2 cycles)
 or %g1,%g3,z !combine with fraction

Each instruction in this code fragment runs one cycle out of instruction cache except for
the leaf return which takes two. That’s 32 cycles for this fragment. Without scan as a
hardware instruction, the function would have to be performed as a software routine
that takes 43 to 52 cycles for usual cases. The fragment would take 74 to 83 cycles,
more than double. A software substitute for scan would consume instruction cache
space. Attempts to speed up the binary tree search in the software routine by look-up
tables based on leading bits would consume data cache space.

5.6.2 Scan in Support of Run Length Encoding

The following code fragment shows compression of long binary strings by looking for
runs of all ones or all zeros and coding these so that lossless reconstruction is possible.
For the example, runs less than four in length are ignored and directly transmitted and
runs greater than sixteen are broken up for coding efficiency and coding simplification.
Best compression occurs for low information content long binary strings such as
background sections of black and white raster lines.

 code value
 00000 reserved
 00001 ”
 00010 ”
 00011 ”
 ––––––––––––––––––––––––––––––
 00100 00001... or 11110...
 00101 000001... or 111110...
 00110 0000001... or 1111110...
 .
 .
 .
 01111 0000 0000 0000 0001... or 1111 1111 1111 1110...
 10000 0000 0000 0000 0000 1... or 1111 1111 1111 1111 0...
 –––
 10001 0001...
 10010 0010...
 10011 0011...
 .
 .
 .
 11110 1110...
 –––––––––––––––––
 11111 toggle

Programming Considerations - Using the SCAN Instruction

SPARClite User’s Manual

5-40

The code fragment omits starting up the loop, reloading buffers with new data, storing
code and terminating the loop. Symbol x points to data segment in some register ready
for compression and symbol y points to its immediate successor.

 .
 .
 .
0: scan x,x,%g1 !scan for how many bits are same as msb.
 !g1 = 1 to 31 or >32 if all in x register.
 !x is used as both the value to be scanned(rs1)
 !and the mask(rs2).
 subcc %g1,4,%g0 !test if run at least length 4
 bgeu 1f !use unsigned compare for future compatibility
 subcc %g1,16,%g0 !test if run greater than length 16
!handle fixed length code, g1<4
 srl x,28,%g2 !extract leading 4 bits of x as compression code
 or %g2,16,%g2 !insert leading bit of code for fixed length
 sll x,3,x !shift rest of x in 2 steps
 addcc x,x,x !complete x shift and test last of 4 bits outgoing
 bcs 2f !separate cases for 1 or 0
 addcc x,x,%g0 !test without shifting first of remaining bits
 bcs 3f !if last out bit =0 and first remaining bit =1
 mov 1,%g4 !set new low priority toggle indicator
 ba 3f
 mov 0,%g4 !otherwise clear toggle indicator
 !fixed length code overwrites any pending toggle
2: bcc 3f !if last out bit =1 and first remaining bit =0
 mov 1,%g4 !set new low priority toggle indicator
 mov 0,%g4 !otherwise clear toggle indicator
 !fixed length code overwrites any pending toggle
3: srl y,28,%g3 !extract leading 4 bits of y
 or x,%g3,x !move them to right end of x
 sll y,4,y !shift rest of y with incoming trailing zeros
 ba 5f
 subcc %g5,4,%g5 !decrement counter of how many bits of x left
!handle run length code
1: blu 4f !skip ahead if run less than 16
 !use unsigned compare for future compatibility
 sll %g4,1,%g4 !shift incoming toggle indicator to higher priority
!handle runs at least 16
 mov 16,%g2 !set compression code to 16
 sll x,16,x !ignore leading 16 bits of x and shift rest of x
 srl y,16,%g3 !extract leading 16 bits of y
 or x,%g3,x !move them to right end of x
 sll y,16,y !shift rest of y with incoming trailing zeros
 ba 5f
 subcc %g5,16,%g5 !decrement counter of how many bits of x left
!handle runs of length 4 to 15
4: mov %g1,%g2 !set compression code to scan result
 sub %g0,%g1,%g1 !complement scan result

Programming Considerations - Using the SCAN Instruction

5-41

 sll x,%g2,x !ignore leading g2 bits of x and shift rest of x
 srl y,%g1,%g3 !extract leading 32–g1 bits of y
 or x,%g3,x !move them to right end of x
 sll y,%g2,y !shift rest of y with incoming trailing zeros
 subcc %g5,%g2,%g5 !decrement counter of how many bits of x left
 or %g4,1,%g4 !toggle following compression code too
!one compression code to go
5: bgu 6f !skip ahead if there are still bits of x left
 !use unsigned compare for future compatibility
 subcc %g6,1,%g6 !decrement counter of code fields left
!code for reloading y and shifting part of it into x if the old y had
!trailing zeros and resetting g5 to 32–#trailing zeros.
 .
 .
 .
6: bg 7f !skip ahead if room for more codes
 andcc %g4,2,%g0 !test if toggle has priority
!code for storing codes and reinitializing g6
 .
 .
 .
7: sll z,5,z !make room for new code
 be,a 0b !if g4 bit1 off then no additional code
 !if g4 bit1 on then insert toggle code first
 or z,%g2,z !insert new data code
 andn %g4,2,%g4 !clear high priority toggle indicator
 !without disturbing low priority toggle indicator
 ba 5b !check on how much code space left and append toggle
 orcc z,0x1f,z !back through 5,6,7 just once
 .
 .
 .

Each instruction in this code fragment runs one cycle out of instruction cache if it is in
the active path for a particular case. Scan is in the active path for all cases. Without
hardware implementation of scan, the function would require a software subroutine
taking 43 to 52 cycles instead of 1 cycle. Additionally, that routine would consume
instruction cache space. Alternate versions that might attempt to speed up the binary
tree search with table look-up using leading bits as an index would consume data cache
space.

5.7 Multiply Routines Using the MULScc Instruction

This section shows examples of doing integer multiplication using the multiply step
instruction. With hardware implementation of multiply in SPARClite, these routines are
not required for usual situations. However, these examples illustrate how MULScc
works and may serve as models for use in unusual situations.

Programming Considerations - Multiply Routines Using the MULScc Instruction

SPARClite User’s Manual

5-42

These sample routines do not set the integer condition codes in exactly the same way as
SMULcc and UMULcc Version 8 integer multiplication.

5.7.1 Simple Multiply Step Examples

In each of the following examples a cycle by cycle view of multiply step is given.

Multiply Step With Reduced Word Size (32 to 3 Bits)

! Register Use:
! out0 Multiplier
! out1 Multiplicand
! out2 most significant half Product
! out3 least significant half Product
! Note: TS, True Sign = N xor V from condition codes

Examples of SIGNED multiplication

! 2 * 3 = 6; 010 –> o1, 011 –> o0
! o2 Y TS ALUin ALUout
mov %o0, %y ! multiplier –> Y reg
 ! 011
andcc %g0,0,%o2 ! clear product accumulator & cc
 !00|0 01|1 0
mulscc %o2,%o1,%o2 ! 000+010 010 active multiply step 1
 !01|0 00|1 0
mulscc %o2,%o1,%o2 ! 001+010 011 active multiply step 2
 !01|1 00|0 0
mulscc %o2,%o1,%o2 ! 001+000 001 active multiply step 3
 !00|1 10|0 0
mulscc %o2,0,%o2 ! 000+000 000 final double shift without
 !000 110 0 add to align result
tst %o0 ! multiplier sign?
 !000 110 0
bl,a 1f
 !000 110
sub %o2,%o1,%o2 ! adjust msh product if
 !000 110 multiplier negative
1:mov %y,%o3 ! 110 –> o3 retrieve lsh product

! –2 * 3 = –6; 110 –> o1, 011 –> o0
! o2 Y TS ALUin ALUout
mov %o0, %y ! multiplier –> Y reg
 ! 011
andcc %g0,0,%o2 ! clear product accumulator & cc
 !00|0 01|1 0
mulscc %o2,%o1,%o2 ! 000+110 110 active multiply step 1
 !11|0 00|1 1
mulscc %o2,%o1,%o2 ! 111+110 101 active multiply step 2
 !10|1 00|0 1
mulscc %o2,%o1,%o2 ! 110+000 110 active multiply step 3

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-43

 !11|0 10|0 1
mulscc %o2,0,%o2 ! 111+000 111 final double shift without
 !111 010 1 add to align result
tst %o0 ! multiplier sign?
 !111 010 0
bl,a 1f
 !111 010
sub %o2,%o1,%o2 ! adjust msh product if
 !111 010 multiplier negative
1:mov %y,%o3 ! 010 –> o3 retrieve lsh product

! 3 * –2 = –6; 011 –> o1, 110 –> o0
! o2 Y TS ALUin ALUout
mov %o0, %y ! multiplier –> Y reg
 ! 110
andcc %g0,0,%o2 ! clear product accumulator & cc
 !00|0 11|0 0
mulscc %o2,%o1,%o2 ! 000+000 000 active multiply step 1
 !00|0 01|1 0
mulscc %o2,%o1,%o2 ! 000+011 011 active multiply step 2
 !01|1 00|1 0
mulscc %o2,%o1,%o2 ! 001+011 100 active multiply step 3
 !10|0 10|0 0
mulscc %o2,0,%o2 ! 010+000 010 final double shift without
 !010 010 0 add to align result
tst %o0 ! multiplier sign?
 !010 010 1
bl,a 1f
 !010 010
sub %o2,%o1,%o2 ! 010–011 111 adjust msh product if
 !111 010 multiplier negative
1:mov %y,%o3 ! 010 –> o3 retrieve lsh product

Examples of UNSIGNED multiplication

! 3 * 6 = 18; 011 –> o1, 110 –> o0
! o2 Y TS ALUin ALUout
mov %o0, %y ! multiplier –> Y reg
 ! 110
andcc %g0,0,%o2 ! clear product accumulator & cc
 !00|0 11|0 0
mulscc %o2,%o1,%o2 ! 000+000 000 active multiply step 1
 !00|0 01|1 0
mulscc %o2,%o1,%o2 ! 000+011 011 active multiply step 2
 !01|1 00|1 0
mulscc %o2,%o1,%o2 ! 001+011 100 active multiply step 3
 !10|0 10|0 0
mulscc %o2,0,%o2 ! 010+000 010 final double shift without
 !010 010 0 add to align result
tst %o1 ! msb multiplicand?
 !010 010 0
bl,a 1f
 !010 010

Programming Considerations - Multiply Routines Using the MULScc Instruction

SPARClite User’s Manual

5-44

add %o2,%o0,%o2 ! adjust msh product if unsigned
 !010 010 multiplicand treated as if
 ! negative
1:mov %y,%o3 ! 010 –> o3 retrieve lsh product

! 6 * 3 = 18; 110 –> o1, 011 –> o0
! o2 Y TS ALUin ALUout
mov %o0, %y ! multiplier –> Y reg
 ! 011
andcc %g0,0,%o2 ! clear product accumulator & cc
 !00|0 01|1 0
mulscc %o2,%o1,%o2 ! 000+110 110 active multiply step 1
 !11|0 00|1 1
mulscc %o2,%o1,%o2 ! 111+110 101 active multiply step 2
 !10|1 00|0 1
mulscc %o2,%o1,%o2 ! 110+000 110 active multiply step 3
 !11|0 10|0 1
mulscc %o2,0,%o2 ! 111+000 111 final double shift without
 !111 010 1 add to align result
tst %o1 ! msb multiplicand?
 !111 010 1
bl,a 1f
 !111 010
add %o2,%o0,%o2 ! 111+011 010 adjust msh product if unsigned
 !010 010 multiplicand treated as if
 ! negative
1:mov %y,%o3 ! 010 –> o3 retrieve lsh product

5.7.2 Signed Multiplication Using Multiply Step
/*
 * Procedure to perform a 32–bit by 32–bit signed multiply.
 * Pass the multiplier in %o0, and the multiplicand in %o1.
 * The least significant 32 bits of the result are returned in %o0,
 * and the most significant in %o1. Multiplies take 47 to 51 instruction cycles.
 *
 * call .mul
 * nop ! (or set up last parameter here)
 *
 * Note that this is a leaf routine; i.e., it calls no other routines and does
 * all of its work in the out registers. Thus, the usual SAVE and RESTORE
 * instructions are not needed.
 */

 global .mul
.mul: mov %o0, %y ! multiplier to Y register
 andcc %g0, %g0, %o4 ! zero the partial product and clear N and V conditions

 mulscc %o4, %o1, %o4 ! first iteration of 33
 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4
 �

 �

 �

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-45

 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4 ! 32nd iteration
 mulscc %o4, %g0, %o4 ! last iteration only shifts
!
! if %o0 (multiplier) was negative, the result is:
! (%o0 * %o1) + %o1 * (2**32)
! We fix that here.
!
 tst %o0
 rd %y, %o0
 bl,a lf
 sub %o4, %o1, %o4 ! bit 33 and up of the product are in
 ! %o4, so we don’t have to shift %o1
l: retl ! leaf–routine return
 mov %o4, $o1 ! return high bits

5.7.3 Unsigned Multiplication Using Multiply Step
/*
 * Procedure to perform a 32–bit by 32–bit unsigned multiply.
 * Pass the multiplier in %o0, and the multiplicand in %o1.
 * The least significant 32 bits of the result are returned in %o0,
 * and the most significant in %o1. Multiplies take 46 or 58 instruction cycles.
 *
 * call .umul
 * nop ! (or set up last parameter here)
 *
 * Note that this is a leaf routine; i.e., it calls no other routines and does
 * all of its work in the out registers. Thus, the usual SAVE and RESTORE
 * instructions are not needed.
 */

 .global .umul
.mul: mov %o0, %y ! multiplier to Y register
 andcc %g0, %g0, %o4 ! zero the partial product and clear N and V conditions

 mulscc %o4, %o1, %o4 ! first iteration of 33
 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4

 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4
 mulscc %o4, %o1, %o4 ! 32nd iteration
 mulscc %o4, %g0, %o4 ! last iteration only shifts
/*
 * Normally, with the shift and add approach, if both numbers are
 * positive, you get the correct result. With 32–bit two’s–complement
 * numbers, –x can be represented as ((2 – (x/ (2**32)) mod 2) * 2**32)
 * To avoid a lot of 2**32’s, we just move the radix point up to be
 * just to the left of the sign bit. So:
 *
 * x * y = (xy) mod 2
 * –x * y = (2 – x) mod 2 * y = (2y – xy) mod 2

Programming Considerations - Multiply Routines Using the MULScc Instruction

SPARClite User’s Manual

5-46

 * x * –y = x * (2 – y) mod 2 = (2x – xy) mod 2
 * –x * –y = (2 – x) * (2 – y) = (4 – 2x – 2y + xy) mod 2
 *
 * For signed multiplies, we subtract (2**32) * x from the partial
 * product to fix this problem for negative multipliers (see .mul in
 * Section 1.
 * because of the way the shift into the partial product is calculated
 * (N xor V), this term is automatically removed for the multiplicand,
 * so we don’t have to adjust
 *
 * But for unsigned multiplies, the high order bit wasn’t a sign bit,
 * and the correction is wrong. So for unsigned multiplies where the
 * high order bit is one, we end up with xy – (2**32) * y. To fix it
 * we add y * (2**32).
 */
 tst %o1
 bl,a lf
 add %o4, %o0, %o4
l: rd %y, %o0 ! return least sig. bits of prod
 retl ! leaf–routine return
 mov %o4, $o1 ! Delay slot; return high bits

5.7.4 Corner Turning Buffer Using Multiply Step

Multiply Step In Support Of Corner Turning Buffer For Image Processing

The following code fragment shows implementation of an 8 by 8 bit corner turning
buffer in the local register files. This supports bit plane image rotation by 90 degrees.
The form of the implementation uses register files to hold and manipulate the lowest
level of data structure and use data cache to reduce access to the larger image plane.
The multiply step is used for its ability to couple information from one register to
another in a single step in a way not expected from its main purpose.

The total image plane is divided in 8 by 8 bit blocks. Blocks are accessed as groups of 4
that rotate into corresponding positions on edges square to each other. These form
concentric squares.

Each byte of block loads to Yreg and controls multiply step with constant, 1 in bit 15,
to make local registers 0 to 7 into corner turning buffer. The constant remains in a fixed
position but the nominal partial product keeps shifting to the right, making room for
new input. Choosing a large enough constant allows old processed data to remain in the
local registers long enough so that it can be extracted with shift by a differing amount
that depends on which processed byte is desired. This allows overlapping of storing
results with fetching new input. To accommodate the need for differing shift amounts,
casing is used to select one and only one instruction out of a block on each pass. A
delayed control transfer couple is formed with jump and link immediately followed in
the delay slot by branch always. The target address of jump and link steps backwards by

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-47

one instruction each pass. As soon as new data is removed from target destination, one
byte of rotated block is stored there.

 FROM this TO that

 a7 a6 a5 a4 a3 a2 a1 a0 h7 g7 f7 e7 d7 c7 b7 a7
 b7 b6 b5 b4 b3 b2 b1 b0 h6 g6 f6 e6 d6 c6 b6 a6
 c7 c6 c5 c4 c3 c2 c1 c0 h5 g5 f5 e5 d5 c5 b5 a5
 d7 d6 d5 d4 d3 d2 d1 d0 h4 g4 f4 e4 d4 c4 b4 a4
 e7 e6 e5 e4 e3 e2 e1 e0 h3 g3 f3 e3 d3 c3 b3 a3
 f7 f6 f5 f4 f3 f2 f1 f0 h2 g2 f2 e2 d2 c2 b2 a2
 g7 g6 g5 g4 g3 g2 g1 g0 h1 g1 f1 e1 d1 c1 b1 a1
 h7 h6 h5 h4 h3 h2 h1 h0 h0 g0 f0 e0 d0 c0 b0 a0

local a7a6a5a4a3a2a1a0 input 1st byte – ldub
reg
0:0...0a7 x x x x x x x x
1:0...0a6 x x x x x x x x
2:0...0a5 x x x x x x x x
3:0...0a4 x x x x x x x x
4:0...0a3 x x x x x x x x
5:0...0a2 x x x x x x x x
6:0...0a1 x x x x x x x x
7:0...0a0 x x x x x x x x

local b7b6b5b4b3b2b1b0 input 2nd byte – ldub
reg
0:0...0b7a7 x x x x x x x x
1:0...0b6a6 x x x x x x x x
2:0...0b5a5 x x x x x x x x
3:0...0b4a4 x x x x x x x x
4:0...0b3a3 x x x x x x x x
5:0...0b2a2 x x x x x x x x
6:0...0b1a1 x x x x x x x x
7:0...0b0a0 x x x x x x x x

local c7c6c5c4c3c2c1c0 input 3rd byte – ldub
reg
0:0...0c7b7a7 x x x x x x x x
1:0...0c6b6a6 x x x x x x x x
2:0...0c5b5a5 x x x x x x x x
3:0...0c4b4a4 x x x x x x x x
4:0...0c3b3a3 x x x x x x x x
5:0...0c2b2a2 x x x x x x x x
6:0...0c1b1a1 x x x x x x x x
7:0...0c0b0a0 x x x x x x x x
 *
 *
 *
local h7h6h5h4h3h2h1h0 input 8th byte – ldub

Programming Considerations - Multiply Routines Using the MULScc Instruction

SPARClite User’s Manual

5-48

reg
0:0...0h7g7f7e7d7c7b7a7 x x x x x x x x <1
1:0...0h6g6f6e6d6c6b6a6 x x x x x x x x
2:0...0h5g5f5e5d5c5b5a5 x x x x x x x x
3:0...0h4g4f4e4d4c4b4a4 x x x x x x x x
4:0...0h3g3f3e3d3c3b3a3 x x x x x x x x
5:0...0h2g2f2e2d2c2b2a2 x x x x x x x x
6:0...0h1g1f1e1d1c1b1a1 x x x x x x x x
7:0...0h0g0f0e0d0c0b0a0 x x x x x x x x
 A7A6A5A4A3A2A1A0 next edge byte 1 – ldub
local h7g7f7e7d7c7b7a7 output rotated byte 1 – stb <1
reg
0:0...0A7h7g7f7e7d7c7b7a7 x x x x x x x
1:0...0A6h6g6f6e6d6c6b6a6 x x x x x x x <2
2:0...0A5h5g5f5e5d5c5b5a5 x x x x x x x
3:0...0A4h4g4f4e4d4c4b4a4 x x x x x x x
4:0...0A3h3g3f3e3d3c3b3a3 x x x x x x x
5:0...0A2h2g2f2e2d2c2b2a2 x x x x x x x
6:0...0A1h1g1f1e1d1c1b1a1 x x x x x x x
7:0...0A0h0g0f0e0d0c0b0a0 x x x x x x x
 B7B6B5B4B3B2B1B0 next edge byte 2 – ldub
local h6g6f6e6d6c6b6a6 output rotated byte 2 – stb <2
reg
0:0...0B7A7h7g7f7e7d7c7b7a7 x x x x x x
1:0...0B6A6h6g6f6e6d6c6b6a6 x x x x x x
2:0...0B5A5h5g5f5e5d5c5b5a5 x x x x x x <3
3:0...0B4A4h4g4f4e4d4c4b4a4 x x x x x x
4:0...0B3A3h3g3f3e3d3c3b3a3 x x x x x x
5:0...0B2A2h2g2f2e2d2c2b2a2 x x x x x x
6:0...0B1A1h1g1f1e1d1c1b1a1 x x x x x x
7:0...0B0A0h0g0f0e0d0c0b0a0 x x x x x x
 C7C6C5C4C3C2C1C0 next edge byte 3 – ldub
 h5g5f5e5d5c5b5a5 output rotated byte 3 – stb <3
 *
 *
 *
local
reg
0:0...0G7F7E7D7C7B7A7h7g7f7e7d7c7b7a7 x
1:0...0G6F6E6D6C6B6A6h6g6f6e6d6c6b6a6 x
2:0...0G5F5E5D5C5B5A5h5g5f5e5d5c5b5a5 x
3:0...0G4F4E4D4C4B4A4h4g4f4e4d4c4b4a4 x
4:0...0G3F3E3D3C3B3A3h3g3f3e3d3c3b3a3 x
5:0...0G2F2E2D2C2B2A2h2g2f2e2d2c2b2a2 x
6:0...0G1F1E1D1C1B1A1h1g1f1e1d1c1b1a1 x
7:0...0G0F0E0D0C0B0A0h0g0f0e0d0c0b0a0 x <8
 H7H6H5H4H3H2H1H0 next edge byte 8 – ldub
 h0g0f0e0d0c0b0a0 output rotated byte 8 – stb <8

 *

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-49

 *
 *
/* INNER LOOP 0 for each square, position, edge, byte */
t0: ldub [%i1+%i4],%o1 !get input for next pass
 !i1 is base of fetch, controlled elsewhere
 !i4 is pointer to target byte
 mulscc %l1,%o5,%l1 !finish corner turning with previous input
 mulscc %l0,%o5,%l0 !garbage 1st time, reg o5 = 2^15
 sra %i4,4,%i4 !downshift adrs pointer for extract pointer
 mov %o1,%y !new input
 jmpl %g1+%i4,%g0 !for input registers i=7–>0 (%i4=–i)
 ba t2 !select 1 extract result instruction
!only one srl %lx,z,%o0 done on each pass
!use of casing keeps code compact while still avoiding self modifying code
!g1 points to t1
 srl %l0,8,%o0
 srl %l1,7,%o0
 srl %l2,6,%o0
 srl %l3,5,%o0
 srl %l4,4,%o0
 srl %l5,3,%o0
 srl %l6,2,%o0
t1: srl %l7,1,%o0
t2: sll %i4,4,%i4 !upshift extract pointer for adrs offset
 stb %o0,[%i0+%i4] !store 1 result
 !i0 is base of store, controlled elsewhere
 !i0 = i1 3 times out of 4
 mulscc %l7,%o5,%l7 !start corner turning with new input
 mulscc %l6,%o5,%l6
 mulscc %l5,%o5,%l5
 mulscc %l4,%o5,%l4
 mulscc %l3,%o5,%l3
 mulscc %l2,%o5,%l2
 addcc %i4,64,%i4 !dec adrs offset
 ble t0
 orcc %g0,1,%g0 !set N & V =0
 !keep left input to multiply partial
 !product zero
 *
 *
 *

This less obvious use of multiply step and less common use of delayed control transfer
couple allow efficient implementation of a fast corner turning buffer to support bit
plane image processing.

Programming Considerations - Multiply Routines Using the MULScc Instruction

6-1

HAPTER

System Design Considerations

6
C

The MB86930 SPARClite microcontroller is suitable for a wide range of embedded
controller applications due to its high performance and low unit cost. In designing a
system, several issues and trade-offs must be considered to balance the needs of
performance, low hardware cost, low development cost, and short time to market. This
chapter provides detailed information on some specific design considerations:

• The clock signals and type of clock source

• The sizes, types, and interface requirements of the system memory and peripherals

• The possible need for DMA capability and bus arbitration

• The possible use of an MB86940 Peripheral Chip for interrupt control, timers, and
USARTs

• In-circuit emulation capability

• Other hardware implementation issues

System Design Considerations -

SPARClite User’s Manual

6-2

6.1 Clocks

Either of two possible clock sources can be used to drive a SPARClite system: the
internal oscillator of the MB86930 processor, or a separate external oscillator. In the
former case, a crystal is connected across inputs XTAL1 and XTAL2. In the latter case,
the clock signal is connected to the XTAL1 input pin; XTAL2 is left unconnected.
Using the internal oscillator has a lower hardware cost, but is less flexible than using an
external oscillator.

There are two clock output signals from the processor, CLKOUT1 and CLKOUT2.
CLKOUT1 has the same frequency and phase as the internal oscillator or the signal
applied to XTAL1. CLKOUT2 is the same as CLKOUT1, but phase-shifted 180
degrees. The rising edge of either CLKOUT1 or CLKOUT2 can be used by the external
system for timing purposes.

The output clocks are controlled by a phase-locked loop implemented in the processor.
The phase-locked loop minimizes the skew between the input clock signal and
CLKOUT1, and controls the duty cycles of the output clocks. The input clock signal
applied to XTAL1 can have a relatively wide range of duty cycles. (See the data sheet
for the clock timing specifications.) The duty cycle of the output clocks is somewhat
less than 50%, reflecting the fact that the processor requires its internal clock phases to
have non-overlapping transitions.

The drive capability of the clock output signals is limited. Depending on the number of
inputs that must be driven and the clock speed, it may be necessary to buffer these
signals for use elsewhere in the system. To minimize clock skew for systems that
exceed the drive capability of CLKOUT1 or CLKOUT2, a buffered external clock can
be used to drive both the processor and the system.

6.2 Memory and I/O Interfacing

The SPARClite processor minimizes the need for external logic by providing a
programmable on-chip address decoder and six independent chip-select output signals.
The address decoder compares the current address against the programmed address
ranges, and automatically asserts the appropriate chip-select signal. The on-chip address
decoder is more economical than a separate external decoder, and also operates faster.

Each programmable address range has an associated wait-state generator, which
generates a Ready signal internally at a programmed number of access cycles. Either
this internal Ready signal can be used, or the conventional –READY signal input from
the external memory controller can be used to end the transaction. The processor can
also be programmed to use the internal wait-state generator, while allowing the
–READY signal to override the internal count to end the bus cycle sooner. The
internally generated Ready signal is not visible external to the processor.

System Design Considerations - Memory and I/O Interfacing

6-3

If you use a single chip-select signal from the processor to select multiple memory or
I/O devices, all those devices will have the same number of wait states generated when
they are accessed. Different chip select signals, however, can be individually pro-
grammed to different numbers of wait states.

Any area of memory not mapped to one of the chip selects (–CS5-0) will use the
external –READY.

6.2.1 Interfacing SRAM

The address bus, data bus, and chip select signals of the SRAM can be connected
directly to the address bus, data bus and a chip select of the processor. The output
enable signal can be generated by gating RD/–WR high and Chip select low to produce
output enable low. Write enable for the SRAMs requires more consideration.

The processor data hold time for a write is specified as zero hold after rising edge of
clock. RD/–WR hold time at the end of a write operation can be 0 after rising edge of
clock, or can be held low if the next cycle is also a write. Thus an implementation
cannot use RD/–WR directly as –WE for the SRAMs.

Figure 6-1 shows a timing diagram for an example implementation using 2 cycle access
SRAM running at 40 MHz. It was implemented in a combinatorial PAL (see Fig-
ure 6-4). Individual –WE signals are generated for each of the 4 bytes in the data word.

CLK P1

–AS

RD/–WR

–BE

–CS

DATA

–WE

Figure 6-1. SRAM Interfacing Example

System Design Considerations - Memory and I/O Interfacing

SPARClite User’s Manual

6-4

!clkd = !clkp1;
!soe_ = rw & !scs_;
!swe3_ = !rw & !as_ & !be3_ & !clkp1
 # !rw & !as_ & !be3_ & !clkd
 # !rw & !scs_ & !swe3_ & clkp1
 # !rw & !scs_ & !swe3_ & clkd;

!swe2_ = !rw & !as_ & !be2_ & !clkp1
 # !rw & !as_ & !be2_ & !clkd
 # !rw & !scs_ & !swe2_ & clkp1
 # !rw & !scs_ & !swe2_ & clkd;

!swe1_ = !rw & !as_ & !be1_ & !clkp1
 # !rw & !as_ & !be1_ & !clkd
 # !rw & !scs_ & !swe1_ & clkp1
 # !rw & !scs_ & !swe1_ & clkd;

!swe0_ = !rw & !as_ & !be0_ & !clkp1
 # !rw & !as_ & !be0_ & !clkd
 # !rw & !scs_ & !swe0_ & clkp1
 # !rw & !scs_ & !swe0_ & clkd;

Clock low and –AS low and –BE low and RD/–WR low cause –WE to be asserted.
Clock high and –CS low and –BE low and RD/–WR low cause –WE to stay low. When
clock goes low again, –WE is negated. This way there is sufficient data hold time.

For this implementation, CLKOUT1 from the processor was used since it has better
duty cycle control than an oscillator clock.

6.2.2 Interfacing Page-Mode DRAM

Interfacing Dynamic RAM requires a DRAM controller for generating RAS and CAS
(Row Address Strobe and Column Address Strobe), and for handling refresh. The
DRAM controller is typically implemented as a state machine. The DRAM controller
and signal interfaces should be designed carefully to accommodate refresh operations
and fast page mode access.

The programmable 16-bit timer provided in the SPARClite processor can be used for
timing the refresh interval. The timer output signal, –TIMER_OVF (Timer Overflow),
goes low for a single clock cycle at the end of each timer interval. The timer interval is
programmed in software, the correct amount of time depending on how the refresh
operation is implemented.

There are two ways to implement the correct number of wait states: either the
processor’s internal wait-state generator can be used, or the DRAM controller can
generate a –READY signal for the processor.

System Design Considerations - Memory and I/O Interfacing

6-5

The processor supports fast “page mode” access to DRAM. When the current DRAM
address is within the same page as the previous DRAM access, the –SAME_PAGE
(Same-Page Detect) signal is asserted. This tells the DRAM controller that DRAM can
be accessed using CAS only, without selecting a new row of the DRAM, saving time.
Page-mode accesses thus provide timing advantages comparable to the burst-mode
accesses of some other processors.

To take advantage of page hits, RAS is asserted and left asserted to continuously select
a row. CAS is asserted, one access at a time, to select a memory location in that row.
Accesses need not be in consecutive locations. As long as each access is in the same
row, RAS can be left asserted and CAS asserted once to access each memory location.
RAS remains asserted between accesses.

The wait-state generator can be programmed to use a different (smaller) number of
clock cycles for a “page hit” (when the current address is within the same page as the
previous DRAM access).

When using the internal wait-state generator instead of the external –READY signal,
the processor has no way of detecting a refresh operation that occurs during an access.
One solution is to have the DRAM controller take control of the bus during refresh
using –BREQ (Bus Request), thereby preventing the processor from requesting a
memory access for the duration of the refresh operation. The disadvantage of this
solution is that the processor is forced to remain idle. An alternative solution is to
disable the internal wait-state generator and let the DRAM controller generate the
–READY signal for all DRAM accesses.

Figure 6-2 is a simplified state diagram for a DRAM memory controller. Upon reset,
the state machine starts in the RAS Precharge and Idle state, and remains in that state
until a memory access or refresh request occurs.

RAS
Precharge
and Idle

RAS CAS

Page Wait:
RAS asserted
CAS negated

Refresh

Refresh
Request

Access Same_Page Access

New-Page Access
or Refresh Request

Note: Each state may represent
multiple clock cycles

Figure 6-2. Simplified State Diagram for DRAM Controller

System Design Considerations - Memory and I/O Interfacing

SPARClite User’s Manual

6-6

If a refresh request occurs, the state machine goes into the Refresh state. (In practice,
this will actually be a number of sequential states.) When the refresh operation is
complete, the state machine returns to the RAS Precharge and Idle state.

When the processor requests a DRAM memory access, the state machine enters the
RAS state, in which the RAS signal is asserted to select the row. From there it goes to
the CAS state, in which the CAS signal is asserted to select the column. At this point,
data is clocked into the appropriate part and the bus cycle ends.

From there the state machine enters the Page Wait state, in which the state machine
waits for something to happen; either another memory access or a refresh request. In
this state, RAS is asserted and CAS is negated. If there is a memory access to the same
page of DRAM (as indicated by the –SAME_PAGE signal), the state machine goes
directly to the CAS state, and CAS is asserted to select the memory location. If there is
a memory access to a different page of DRAM, or if a refresh request occurs, the state
machine goes to the RAS Precharge and Idle state, and from there to the requested
operation. Until one of these events occurs, the state machine waits with RAS asserted.

For more information, refer to SPARClite Application Note #1 on DRAM interfacing.

6.2.3 Interfacing EPROM and Other Devices with Slow
Turn-off

One characteristic of EPROM memory to consider is its relatively long turn-off
time—the delay from the negation of the Chip Select input or Output Enable input to
the three-stating of the data outputs. In high-speed systems, contention on the data bus
between different peripheral devices can occur, depending on the organization of
different memory and peripherals in the system.

When using EPROM in the system (or other memory or I/O devices that are slow to
turn off), carefully study the timing diagrams in the External Interface chapter of this
manual and in the data sheet, and determine the worst-case access situations. If
contention on the data bus can occur, consider adding fast data buffers between the
EPROM outputs and the system data bus. These data buffers will allow the EPROM
outputs to be quickly isolated from the data bus at the end of an EPROM access cycle.

The worst-case timing situation typically involves two consecutive loads from different
devices. In back-to-back loads from different devices, there must be sufficient time for
the first device to get off the data bus before the second device tries to drive its data. A
load followed by a store is not critical since the processor inserts a “dead cycle” in this
sequence to allow the external device to fully relinquish the bus.

System Design Considerations - Memory and I/O Interfacing

6-7

6.2.4 Illegal Memory Accesses

The external memory or I/O interface circuit can detect illegal memory accesses and
prevent the processor from completing such accesses by asserting the –MEXC (Memory
Exception) and –READY signals. (See Figure 4-2, Load with Exception Timing, and
Figure 4-4, Store with Exception Timing.) The current bus access is invalidated by the
assertion of this signal, and the processor ignores the value on the data bus in that cycle.
An instruction-access or data-access exception trap is initiated in the processor,
allowing the software to handle the illegal memory access.

The memory-exception mechanism can be used for protection, by preventing user-mode
accesses to certain regions of the processor’s address space. External logic can also be
used to detect and signal out-of-range access attempts.

6.2.5 I/O Interfacing Example: Ethernet Device

As an example of an I/O device interface, consider the MB86960 Ethernet interface
device, also known as the NICE chip, used on the SPARClite Evaluation Board. In
the evaluation board implementation, a PAL and two data transceivers are used to
handle the interface. A block diagram of the interface is shown in Figure 6-3.

Data TransceiversDATA N_DATA

PAL

MB86960
Ethernet Device

MB86930
SPARClite
Processor

N_RD

N_WR

NCS

N_READY

RD/–WR

–CS

READY

OE

Figure 6-3. MB86960 Interface Block Diagram

The MB86960 NICE chip is completely asynchronous, has a non-deterministic access
time, and has a long turn-off delay for the data pins. The PAL handles the synchroniza-
tion of the control signals (Read, Write, Chip-Select, and Ready) between the processor

System Design Considerations - Memory and I/O Interfacing

SPARClite User’s Manual

6-8

and the NICE chip. The two data transceivers are used to isolate the output pins from
the data bus when a data access is complete. Figure 6-4 is a state diagram for the PAL.

IDLE
Ready_=1

nrd_=1
nwr_=1

WAIT
Ready_=1

nrd_=1
nwr_=1

READ
nrd_=0

RREADY
Ready_=0

nrd_=0

WRITE
nwr_=0

WREADY
Ready_=0

nwr_=1

snrdy_!snrdy_ !snrdy_

!cs_ & rd/wr!cs_ & !rd/wr

else

else

else

else

!Reset_

!Snrdy_ := !nice_ready_

Figure 6-4. MB86960 Interface PAL State Diagram

Read and write operations are strobed by the assertion of the signals N_RD and N_WR
(the read and write input pins of the NICE chip). To ensure that the address and the
NICE chip Select signals are stable during strobing, the state machine waits one clock
cycle before asserting N_RD or N_WR. When a transaction is finished, the NICE chip
asserts its N_READY signal. Since N_READY is asynchronous, it is synchronized by a
flip-flop in the PAL, producing a synchronized ready signal, which can then be used
elsewhere inside the PAL and by the processor.

In a write operation, the synchronized Ready signal causes N_WR to be negated and the
processor’s –READY signal to be asserted. The data input setup and hold times of the
NICE chip are based on the transition of the N_WR signal from asserted to negated;
early negation ensures that there will be enough hold time because the processor won’t
stop driving the data bus until the next clock cycle.

In a read operation, the synchronized Ready signal causes the processor’s –READY
signal to be asserted, and on the next cycle, the –READY signal and N_RD are negated.
Since data setup and hold times of the processor are based on the rising edge of the
clock while –READY is asserted, enough hold time is ensured. The setup time
requirement is ensured because there are almost two clock cycles between N_READY
and the processor sampling the data.

In the case of back-to-back reads of the NICE chip, a new cycle can’t start until
N_READY is negated from the previous cycle.

System Design Considerations - Memory and I/O Interfacing

6-9

The data transceivers are enabled by –CS asserted and –AS negated. Thus, during the
uncertain period at the beginning of a bus cycle, the transceivers are not driving the
data bus.

The byte order for the NICE chip (little-endian) is opposite that of the SPARClite
processor (big-endian). The byte order is swapped in hardware: SPARClite data bits
8-15 connect to NICE bits 0-7, and SPARClite data bits 0-7 connect to NICE bits 8-15.
The NICE chip can operate in both 8-bit and 16-bit modes.

6.3 DMA and Bus Arbitration

Some systems require support for multiple bus masters, such as for DMA (Direct
Memory Access). An external device requests control of the bus by asserting the
–BREQ (Bus Request) signal. External bus requests take precedence over internal
requests. The processor, upon completing the current bus transaction, three-states its
bus drivers and asserts –BGRNT (Bus Grant) to indicate that it is relinquishing control
of the bus. The external device then takes control of the bus.

Upon completion of the DMA transfer or other bus operation, the external device
de-asserts the –BREQ signal. The processor responds by de-asserting the –BGRNT
signal and taking control of the bus, continuing with the next processor transaction.

The chip-select logic of the processor does not monitor the address bus and does not
operate during the time that the bus is granted to another bus master. Therefore, an
external address decoder should be used to generate the chip select signals for the
external bus master. Also, the –CS outputs of the processor are held high (negated), but
not three-stated, while the bus is granted to the external bus master. Therefore, for each
memory device that is to be accessed by the external bus master, an OR gate must be
provided at the chip select input to accept the signal from either the processor or the
external address decoder. An alternative method is to not use the –CS signals from the
processor at all, and to use the external address decoder all of the time (although the
propagation delay for on-board chip selects is less).

A DMA operation that writes to system memory must be designed in such a manner
that it will not modify cached data. Otherwise, the external memory data would no
longer match the data stored in the processor’s cache, resulting in errors. One way to
meet this requirement is to locate the DMA-accessed memory in an address space that
is not cached. The only address spaces that are cached are the User/Supervisor
Instruction and Data spaces, corresponding to ASI (Address Space Identifier) values
0x8, 0x9, 0xA, and 0xB. Locating the DMA-accessible memory only in other address
spaces (i.e., ASI values 0x10-0xFE) will ensure that no cached data will be modified.

Another way to handle this requirement is to use software to invalidate the data stored
in cache when the external memory is modified. The software must keep track of what

System Design Considerations - DMA and Bus Arbitration

SPARClite User’s Manual

6-10

is cached and what is being modified. Each time a cached memory space is modified,
the software invalidates the corresponding data stored in cache, in effect forcing an
update to the cache whenever its contents are out-of-date.

Alternatively, embedded control task monitor software can be used to control the
dynamic assignment of buffers between DMA inputs and outputs and processing inputs
and outputs. The software can then ensure that no DMA transfers involve currently
cached memory.

6.4 MB86940 Peripheral Chip

The MB86940 is an optional peripheral device that interfaces directly with the
MB86930 SPARClite processor, and operates at the same clock speeds. It provides a
variety of support features; a 15-level interrupt controller, a set of four counter/timers,
and a set of two USARTs. With a MB86940 Peripheral Chip in the system, you can use
any or all of these support features. The Peripheral Chip is a low-power CMOS device
in either 120-pin PQFP or 135-pin CPGA packages.

A brief overview of the Peripheral Chip features is provided below. For detailed
information on the chip functions, interfacing, and specifications, refer to the MB86940
User’s Guide.

6.4.1 Interrupt Control

The interrupt controller on the Peripheral Chip has 15 separate interrupt-request inputs.
The trigger conditions and active signal levels are individually programmable. The
interrupt controller arbitrates the pending requests, and based on the SPARClite priority
levels, issues an asynchronous interrupt to the processor. The interrupt is held pending
until acknowledged by the processor.

The SPARClite processor has four interrupt inputs, (IRL3-IRL0). The value on these
pins defines the level of the external interrupt. The value 0000 indicates no pending
interrupt, while 1111 forces a non-maskable interrupt. Intermediate values indicate
maskable interrupts with the corresponding priority levels.

System Design Considerations - MB86940 Peripheral Chip

6-11

6.4.2 Counter/Timers

The Peripheral Chip has four general-purpose 16-bit counter/timers. Each timer can be
individually programmed to operate in any of several modes: time-out interrupt mode,
rate generation mode, square wave generation mode, external-trigger one-shot mode,
and software-trigger one-shot mode. Each timer can be reloaded at any time. Two
prescalers are provided to optionally reduce the operating frequency of the timers.

6.4.3 USARTs

Two USART (Universal Synchronous/Asynchronous Receiver/Transmitter) channels
are provided in the Peripheral Chip. The channels are individually programmable. Each
channel is capable of sending and receiving serial data at rates up to 64K baud in
synchronous mode and up to 19.2K baud in asynchronous mode. Data can be five to
eight bits per character.

6.5 In-Circuit Emulation

SPARClite processors have ten pins used for in-circuit emulation: four emulator
status/data bits, four emulator data bits, an emulator break request line, and an emulator
enable pin. All of these pins should be left unconnected in the design for proper system
operation.

To allow for compatibility with an in-circuit emulator, the system’s reset circuit should
be designed to allow the in-circuit emulator to take control of the –RESET signal. For
example, a jumper in the –RESET input line close to the processor can be included,
allowing the normal Reset circuit to be easily disconnected from the processor.

To simplify the task of emulating the processor especially for boards that do not socket
the processor, it is recommended that the processor’s emulator pins be connected to a
standard format 20-pin connector. Access to these pins allow the emulator to take full
control of the processor as well as to trace processor activity. If this socket is included
on production boards, an emulator can be used for board diagnostics and maintenance
later in the product life cycle. For more information contact Fujitsu Microelectronics’
Advanced Products Division or your emulator vendor.

System Design Considerations - In-Circuit Emulation

SPARClite User’s Manual

6-12

6.6 Physical Design Issues

Multiple VCC and VSS pins are provided on the SPARClite device for power and
ground connections. The circuit board should be designed using separate power and
ground planes for power distribution. Every VCC pin must be connected to the power
plane, and every VSS pin must be connected to the ground plane. Any pins identified in
the data sheet as “NC” must be left unconnected in the system.

To minimize the effects of spikes on output transitions, a generous amount of
decoupling capacitance should be connected near the MB86930 device. It is important
to use low-inductance capacitors and interconnections, especially in high-speed
systems. Inductance can be minimized by making the board traces as short as possible
between the processor and the decoupling capacitors.

For reliable operation, alternate bus masters must drive any signals that are three-stated
by the processor when the processor grants control of the bus. Among the signals that
must be driven are –LOCK, ADR31 through ADR2, ASI7 through ASI0, –BE3 through
–BE0, –AS, and RD/–WR. These pins are normally driven by the processor during
active and idle bus states, and don’t require external pullups. D31 through D0 should be
pulled up.

When designing the system, take into account the amount of load on the signal lines
driven by the processor. The standard load is specified in the data sheet. If the actual
load in the system is larger, the system may not be able to operate at the speeds
specified in the data sheet timing diagrams, making it necessary to use a slower clock or
to use buffers for the heavily loaded signals.

System Design Considerations - Physical Design Issues

7-1

HAPTER

Instruction Set

7
C

This chapter presents the SPARClite processor instruction set. Sections discussing
recommended assembly language syntax, a table of instructions listed by opcode, and
an alphabetized instruction set reference are included.

7.1 Suggested Assembly Language Syntax

This section provides guidelines that describe the typical SPARC syntax accepted by
most SPARC assemblers. It is intended to be a guide to help in understanding the code
examples shown throughout this manual. Consult your assembler manual for a compete
syntax description.

Instruction Set - Suggested Assembly Language Syntax

SPARClite User’s Manual

7-2

7.1.1 Register Names

reg A reg is an integer register name1. It can have one of the following values:

%r0 … %r31

%g0 … %g7 (global registers; same as %r0 … %r7)

%o0 … %o7 (out registers; same as %r8 … %r15)

%l0 … %l7 (local registers: same as %r16 … %r23)

%i0 … %i7 (in registers: same as %r24 … %r31)

%fp (frame pointer, conventionally same as %i6)

%sp (stack pointer, conventionally same as %o6)

Subscripts further identify the placement of the operand in the binary instruction as one
of the following:

regrs1 (rs1 field)

regrs2 (rs2 field)

regrd (rd field)

asr_reg An asr_reg is an Ancillary State Register name2. It can have one of the following
values:

%asr1 … %asr31

Subscripts further identify the placement of the operand in the binary instruction as one
of the following:

asr_regrs1 (rs1 field)

asr_regrd (rd field)

7.1.2 Special Symbol Names

The symbol names and the registers or operators to which they refer are as follows:

%psr Processor State Register

%wim Window Invalid mask Register

%tbr Trap Base Register

%y Y register

%hi Unary operator which extracts high 22 bits of its operand

%lo Unary operator which extracts low 10 bits of its operand

1. In actual usage, the %sp, %fp , %gn, %on, %ln and %in forms are preferred over %rn

2. The MB86930 allows only %asr17 .

Instruction Set - Suggested Assembly Language Syntax

7-3

7.1.3 Values

Some instructions use operands comprising values as follows:

simm13 A signed immediate constant that can be represented in 13 bits

const22 A constant that can be represented in 22 bits

asi An alternate address space identifier (0 to 255)

7.1.4 Labels

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z {upper and
lower case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits
(0-9). A label may contain decimal digits, but cannot begin with one.

7.1.5 Comments

Two types of comments are accepted by most SPARC assemblers: C-style “/*…*/”
comments (which may span multiple lines), and “!…” comments, which extend from
the “!” to the end of the line.

7.2 Syntax Design

The suggested SPARC assembly language syntax is designed so that:

• The destination operand (if any) is consistently specified as the last (right-most)
operand in an assembly language statement.

• A reference to the contents of a memory location (in a Load, Store, or SWAP
instruction is always indicated by square brackets ([]). A reference to the address of
a memory location (such as in a JMPL, CALL, or SETHI) is specified directly,
without square brackets.

7.3 Synthetic Instructions

Table 7-1 describes the mapping of a set of synthetic (or “pseudo”) instructions to
actual SPARC instructions. These synthetic instructions may be provided in a SPARC
assembler for the convenience of assembly language programmers.

Note that synthetic instructions should not be confused with “pseudo-ops”, which
typically provide information to the assembler but do not generate instructions.
Synthetic instructions always generate instructions; they provide more mnemonic
syntax for standard SPARC instructions.

Instruction Set - Synthetic Instructions

SPARClite User’s Manual

7-4

Table 7-1: Mapping of Synthetic Instructions to SPARC Instructions

Synthetic Instruction SPARC Instruction(s) Comment

cmp reg rs1 , reg rs2
cmp reg rs1 , simm13

subcc reg rs1 , reg rs2 , %g0
subcc reg rs1 , simm13, %g0

compare

jmp reg rs1 + reg rs2
jmp reg rs1 +/– simm13

jmpl reg rs1 + reg rs2 , %g0
jmpl reg rs1 +/– simm13, %g0

call reg rs1 + reg rs2
call reg rs1 +/– simm13

jmpl reg rs1 + reg rs2 , %o7
jmpl reg rs1 +/– simm13, %o7

tst reg rs2 orcc %g0, reg rs2 , %g0 test

ret
retl

jmpl %i7+8, %g0
jmpl %o7+8, %g0

return from subroutine
return from leaf subroutine

restore
save

restore %g0, %g0, %g0
save %g0, %g0, %g0

trivial restore
trivial save
(Warning: trivial save should only
be used in kernel code!)

set value, reg rd sethi %hi(value), reg rd
or

or %g0, value , reg rd
or

sethi %hi(value), reg rd
or reg rd , %lo(value), reg rd

(when ((value&0x1fff) == 0))

(when –4096 ≤ value ≤ 4095)

(otherwise)

Warning: do not use set in the
delay slot of a DCTI.

not reg rs1 , reg rd
not reg rd

xnor reg rs1 , %g0, reg rd
xnor reg rd , %g0, reg rd

one’s complement
one’s complement

neg reg rs1 , reg rd
neg reg rd

sub %g0, reg rs2 , reg rd
sub %g0, reg rd , reg rd

two’s complement
two’s complement

inc reg rd
inc simm13, reg rd
inccc reg rd
inccc simm13, reg rd

add reg rd , 1, reg rd
add reg rd , simm13, reg rd
addcc reg rd , 1, reg rd
addcc reg rd , simm13, reg rd

increment by 1
increment by const13
increment by 1 and set icc
increment by const13 and set icc

dec reg rd
dec simm13, reg rd
deccc reg rd
deccc simm13, reg rd

sub reg rd , 1, reg rd
sub reg rd , simm13, reg rd
subcc reg rd , 1, reg rd
subcc reg rd , simm13, reg rd

decrement by 1
decrement by const13
decrement by 1 and set icc
decrement by const13 and set icc

Instruction Set - Synthetic Instructions

7-5

Table 7-1: Mapping of Synthetic Instructions to SPARC Instructions

Synthetic Instruction SPARC Instruction(s) Comment

btst reg rs1 + reg rs2
btst reg rs1 +/– simm13
bset reg rs1 + reg rs2
bset reg rs1 +/– simm13
bclr reg rs1 + reg rs2
bclr reg rs1 +/– simm13
btog reg rs1 + reg rs2
btog reg rs1 +/– simm13

andcc reg rs1 + reg rs2 , %g0
andcc reg rs1 +/– simm13, %g0
or reg rs1 + reg rs2 , %g0
or reg rs1 +/– simm13, %g0
andn reg rs1 + reg rs2 , %g0
andn reg rs1 +/– simm13, %g0
xor reg rs1 + reg rs2 , %g0
xor reg rs1 +/– simm13, %g0

bit test
bit test
bit set
bit set
bit clear
bit clear
bit toggle
bit toggle

clr reg rd
clrb [reg rs1 + reg rs2]
clrb [reg rs1 +/– simm13]
clrh [reg rs1 + reg rs2]
clrh [reg rs1 +/– simm13]
clr [reg rs1 + reg rs2]
clr [reg rs1 +/– simm13]

or %g0, %g0, reg rd
stb %g0, [reg rs1 + reg rs2]
stb %g0, [reg rs1 +/– simm13]
sth %g0, [reg rs1 + reg rs2]
sth %g0, [reg rs1 +/– simm13]
st %g0, [reg rs1 + reg rs2]
st %g0, [reg rs1 +/– simm13]

clear (zero) register
clear byte
clear byte
clear halfword
clear halfword
clear word
clear word

mov reg rs1 , reg rd
mov regrs1 +/– simm13, regrd
mov %y, reg rd
mov %asrn, reg rd
mov %psr, reg rd
mov %wim, reg rd
mov tbr, reg rd
mov reg rs1 , %y
mov simm13, %y
mov reg rs1 , %asr_reg
mov simm13, %asr_reg
mov reg rs1 , %psr
mov simm13, %psr
mov reg rs1 , %wim
mov simm13, %wim
mov reg rs1 , %tbr
mov simm13, %tbr

or %g0, reg rs1 , reg rd
or %g0, reg rs1 +/– simm13, reg rd
rd %y, reg rd
rd %asr n, reg rd
rd %psr, reg rd
rd %wim, reg rd
rd tbr, reg rd
wr reg rs1 , %y
wr simm13, %y
wr reg rs1 , %asr_reg
wr simm13, %asr_reg
wr reg rs1 , %psr
wr simm13, %psr
wr reg rs1 , %wim
wr simm13, %wim
wr reg rs1 , %tbr
wr simm13, %tbr

Instruction Set - Synthetic Instructions

SPARClite User’s Manual

7-6

7.4 Binary Opcodes

The following table provides a mapping by binary opcode of the SPARC instructions
mnemonics. In the table, the 32-bits that make up an instruction are divided into 4
fields. Field 1 for bits 31-30, field 2 for bits 24-19, field 3 for bits 29-25, and field 4 for
bits 13-5. When using the table, look first for a match in field 1, then a match in field 2,
followed by fields 3 and 4 until the desired mnemonic is found.

Table 7-2: SPARC Instructions Sorted by Opcode

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

00 xxxxx 000xxx xxxxxxxx
x

UNIMP

00 x0000 010xxx xxxxxxxx
x

BN

00 x0001 010xxx xxxxxxxx
x

BE

00 x0010 010xxx xxxxxxxx
x

BLE

00 x0011 010xxx xxxxxxxx
x

BL

00 x0100 010xxx xxxxxxxx
x

BLEU

00 x0101 010xxx xxxxxxxx
x

BCS

00 x0110 010xxx xxxxxxxx
x

BNEG

00 x0111 010xxx xxxxxxxx
x

BVS

00 x1000 010xxx xxxxxxxx
x

BA

00 x1001 010xxx xxxxxxxx
x

BNE

00 x1010 010xxx xxxxxxxx
x

BG

00 x1011 010xxx xxxxxxxx
x

BGE

00 x1100 010xxx xxxxxxxx
x

BGU

00 x1101 010xxx xxxxxxxx
x

BCC

00 x1110 010xxx xxxxxxxx
x

BPOS

Instruction Set - Binary OpcodesInstruction Set -

7-7

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

00 x1111 010xxx xxxxxxxx
x

BVC

00 xxxxx 100xxx xxxxxxxx
x

SETHI

00 00000 100xxx xxxxxxxx
x

NOP

00 x0000 110xxx xxxxxxxx
x

FBN †

00 x0001 110xxx xxxxxxxx
x

FBNE †

00 x0010 110xxx xxxxxxxx
x

FBLG †

00 x0011 110xxx xxxxxxxx
x

FBUL †

00 x0100 110xxx xxxxxxxx
x

FBL †

00 x0101 110xxx xxxxxxxx
x

FBUG †

00 x0110 110xxx xxxxxxxx
x

FBG †

00 x0111 110xxx xxxxxxxx
x

FBU †

00 x1000 110xxx xxxxxxxx
x

FBA †

00 x1001 110xxx xxxxxxxx
x

FBE †

00 x1010 110xxx xxxxxxxx
x

FBUE †

00 x1011 110xxx xxxxxxxx
x

FBGE †

00 x1100 110xxx xxxxxxxx
x

FBUGE †

00 x1101 110xxx xxxxxxxx
x

FBLE †

00 x1110 110xxx xxxxxxxx
x

FBULE †

00 x1111 110xxx xxxxxxxx
x

FBO †

00 x0000 111xxx xxxxxxxx
x

CBN †

Instruction Set - Binary Opcodes

SPARClite User’s Manual

7-8

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

00 x0001 111xxx xxxxxxxx
x

CB123 †

00 x0010 111xxx xxxxxxxx
x

CB12 †

00 x0011 111xxx xxxxxxxx
x

CB13 †

00 x0100 111xxx xxxxxxxx
x

CB1 †

00 x0101 111xxx xxxxxxxx
x

CB23 †

00 x0110 111xxx xxxxxxxx
x

CB2 †

00 x0111 111xxx xxxxxxxx
x

CB3 †

00 x1000 111xxx xxxxxxxx
x

CBA †

00 x1001 111xxx xxxxxxxx
x

CB0 †

00 x1010 111xxx xxxxxxxx
x

CB03 †

00 x1011 111xxx xxxxxxxx
x

CB02 †

00 x1100 111xxx xxxxxxxx
x

CB023 †

00 x1101 111xxx xxxxxxxx
x

CB01 †

00 x1110 111xxx xxxxxxxx
x

CB013 †

00 x1111 111xxx xxxxxxxx
x

CB012 †

01 01xxx xxxxxx xxxxxxxx
x

CALL

10 xxxxx 000000 xxxxxxxx
x

ADD

10 xxxxx 000001 xxxxxxxx
x

AND

10 xxxxx 000010 xxxxxxxx
x

OR

10 xxxxx 000011 xxxxxxxx
x

XOR

Instruction Set - Binary Opcodes

7-9

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 xxxxx 000100 xxxxxxxx
x

SUB

10 xxxxx 000101 xxxxxxxx
x

ANDN

10 xxxxx 000110 xxxxxxxx
x

ORN

10 xxxxx 000111 xxxxxxxx
x

xNOR

10 xxxxx 001000 xxxxxxxx
x

ADDx

10 xxxxx 001010 xxxxxxxx
x

UMUL

10 xxxxx 001011 xxxxxxxx
x

SMUL

10 xxxxx 001100 xxxxxxxx
x

SUBx

10 xxxxx 001110 xxxxxxxx
x

UDIV †

10 xxxxx 001111 xxxxxxxx
x

SDIV †

10 xxxxx 010000 xxxxxxxx
x

ADDcc

10 xxxxx 010001 xxxxxxxx
x

ANDcc

10 xxxxx 010010 xxxxxxxx
x

ORcc

10 xxxxx 010011 xxxxxxxx
x

XORcc

10 xxxxx 010100 xxxxxxxx
x

SUBcc

10 xxxxx 010101 xxxxxxxx
x

ANDNcc

10 xxxxx 010110 xxxxxxxx
x

ORNcc

10 xxxxx 010111 xxxxxxxx
x

xNORcc

10 xxxxx 011000 xxxxxxxx
x

ADDxcc

10 xxxxx 011010 xxxxxxxx
x

UMULcc

Instruction Set - Binary Opcodes

SPARClite User’s Manual

7-10

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 xxxxx 011011 xxxxxxxx
x

SMULcc

10 xxxxx 011100 xxxxxxxx
x

SUBxcc

10 xxxxx 011101 xxxxxxxx
x

DIVScc

10 xxxxx 011110 xxxxxxxx
x

UDIVcc †

10 xxxxx 011111 xxxxxxxx
x

SDIVcc †

10 xxxxx 100000 xxxxxxxx
x

TADDcc

10 xxxxx 100001 xxxxxxxx
x

TSUBcc

10 xxxxx 100010 xxxxxxxx
x

TADDccTV

10 xxxxx 100011 xxxxxxxx
x

TSUBccTV

10 xxxxx 100100 xxxxxxxx
x

MULScc

10 xxxxx 100101 xxxxxxxx
x

SLL

10 xxxxx 100110 xxxxxxxx
x

SRL

10 xxxxx 100111 xxxxxxxx
x

SRA

10 00000 101000 xxxxxxxx
x

STBAR †

10 xxxxx 101000 xxxxxxxx
x

RDASR (or RDY if rs1=0)

10 xxxxx 101001 xxxxxxxx
x

RDPSR

10 xxxxx 101010 xxxxxxxx
x

RDWIM

10 xxxxx 101011 xxxxxxxx
x

RDTBR

10 xxxxx 101100 xxxxxxxx
x

SCAN

10 xxxxx 110000 xxxxxxxx
x

WRASR

Instruction Set - Binary Opcodes

7-11

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 00000 110000 xxxxxxxx
x

WRY

10 xxxxx 110001 xxxxxxxx
x

WRPSR

10 xxxxx 110010 xxxxxxxx
x

WRWIM

10 xxxxx 110011 xxxxxxxx
x

WRTBR

10 xxxxx 110100 01100011
1

FqTOs

10 xxxxx 110100 01100011
1

FdTOs †

10 xxxxx 110100 01100010
0

FiTOs †

10 xxxxx 110100 01100100
0

FiTOs †

10 xxxxx 110100 00110100
1

FsMULd †

10 xxxxx 110100 00100111
1

FDIVd †

10 xxxxx 110100 01100100
1

FsTOd †

10 xxxxx 110100 00110111
0

FsMULq †

10 xxxxx 110100 01100110
0

FiTOq †

10 xxxxx 110100 01101001
0

FdTOi †

10 xxxxx 110100 01101001
1

FqTOi †

10 xxxxx 110100 01101000
1

FsTOi †

10 xxxxx 110100 01100111
0

FdTOq †

10 xxxxx 110100 00100111
1

FDIVq †

10 xxxxx 110100 01100110
1

FsTOq †

10 xxxxx 110100 01100101
1

FqTOd †

Instruction Set - Binary Opcodes

SPARClite User’s Manual

7-12

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 xxxxx 110100 00000000
1

FMOVs †

10 xxxxx 110100 00100000
1

FADDs †

10 xxxxx 110100 00100001
0

FADDd †

10 xxxxx 110100 00100001
1

FADDq †

10 xxxxx 110100 00010101
1

FSQRTq †

10 xxxxx 110100 00010101
0

FSQRTd †

10 xxxxx 110100 00100110
1

FDIVs †

10 xxxxx 110100 00000100
1

FABSs †

10 xxxxx 110100 00010100
1

FSQRTs †

10 xxxxx 110100 00100010
1

FSUBs †

10 xxxxx 110100 00000010
1

FNEGs †

10 xxxxx 110100 00100101
0

FMULd †

10 xxxxx 110100 00100101
1

FMULq †

10 xxxxx 110100 00100011
0

FSUBd †

10 xxxxx 110100 00100100
1

FMULs †

10 xxxxx 110100 00100101
1

FMULd †

10 xxxxx 110100 00100100
1

FMULq †

10 xxxxx 110100 00100100
1

FMULs †

10 xxxxx 110100 00100011
1

FSUBq †

10 xxxxx 110101 00101011
1

FCMPEq †

Instruction Set - Binary Opcodes

7-13

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 xxxxx 110101 00101000
1

FCMPs †

10 xxxxx 110101 00101001
1

FCMPq †

10 xxxxx 110101 00101011
0

FCMPEd †

10 xxxxx 110101 00101010
1

FCMPEs †

10 xxxxx 110101 00101001
0

FCMPd †

10 xxxxx 110110 xxxxxxxx
x

CPop1 †

10 xxxxx 110111 xxxxxxxx
x

CPop2 †

10 xxxxx 111000 xxxxxxxx
x

JMPL

10 xxxxx 111001 xxxxxxxx
x

RETT

10 x0000 111010 xxxxxxxx
x

TN

10 x0001 111010 xxxxxxxx
x

TE

10 x0010 111010 xxxxxxxx
x

TLE

10 x0011 111010 xxxxxxxx
x

TL

10 x0100 111010 xxxxxxxx
x

TLEU

10 x0101 111010 xxxxxxxx
x

TCS

10 x0110 111010 xxxxxxxx
x

TNEG

10 x0111 111010 xxxxxxxx
x

TVS

10 x1000 111010 xxxxxxxx
x

TA

10 x1001 111010 xxxxxxxx
x

TNE

10 x1010 111010 xxxxxxxx
x

TG

Instruction Set - Binary Opcodes

SPARClite User’s Manual

7-14

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

10 x1011 111010 xxxxxxxx
x

TGE

10 x1100 111010 xxxxxxxx
x

TGU

10 x1101 111010 xxxxxxxx
x

TCC

10 x1110 111010 xxxxxxxx
x

TPOS

10 x1111 111010 xxxxxxxx
x

TVC

10 xxxxx 111011 xxxxxxxx
x

FLUSH †

10 xxxxx 111100 xxxxxxxx
x

SAVE

10 xxxxx 111101 xxxxxxxx
x

RESTORE

11 xxxxx 000000 xxxxxxxx
x

LD

11 xxxxx 000001 xxxxxxxx
x

LDUB

11 xxxxx 000010 xxxxxxxx
x

LDUH

11 xxxxx 000011 xxxxxxxx
x

LDD

11 xxxxx 000100 xxxxxxxx
x

ST

11 xxxxx 000101 xxxxxxxx
x

STB

11 xxxxx 000110 xxxxxxxx
x

STH

11 xxxxx 000111 xxxxxxxx
x

STD

11 xxxxx 001001 xxxxxxxx
x

LDSB

11 xxxxx 001010 xxxxxxxx
x

LDSH

11 xxxxx 001101 xxxxxxxx
x

LDSTUB

11 xxxxx 001111 xxxxxxxx
x

SWAP

Instruction Set - Binary Opcodes

7-15

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

11 xxxxx 010000 xxxxxxxx
x

LLDA

11 xxxxx 010001 xxxxxxxx
x

LDUBA

11 xxxxx 010010 xxxxxxxx
x

LDUHA

11 xxxxx 010011 xxxxxxxx
x

LDDA

11 xxxxx 010100 xxxxxxxx
x

STA

11 xxxxx 010101 xxxxxxxx
x

STBA

11 xxxxx 010110 xxxxxxxx
x

STHA

11 xxxxx 010111 xxxxxxxx
x

STDA

11 xxxxx 011001 xxxxxxxx
x

LDSBA

11 xxxxx 011010 xxxxxxxx
x

LDSHA

11 xxxxx 011101 xxxxxxxx
x

LDSTUBA

11 xxxxx 011111 xxxxxxxx
x

SWAPA

11 xxxxx 100000 xxxxxxxx
x

LDF †

11 xxxxx 100001 xxxxxxxx
x

LDFSR †

11 xxxxx 100011 xxxxxxxx
x

LDDF †

11 xxxxx 100100 xxxxxxxx
x

STF †

11 xxxxx 100101 xxxxxxxx
x

STFSR †

11 xxxxx 100110 xxxxxxxx
x

STDFQ †

11 xxxxx 100111 xxxxxxxx
x

STDF †

11 xxxxx 110000 xxxxxxxx
x

LDC †

Instruction Set - Binary Opcodes

SPARClite User’s Manual

7-16

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits 31:30
Field 1

Bits
29…25
Field 3

Bits
24…19
Field 2

Bits
13…5
Field 4 Instruction Mnemonic

11 xxxxx 110001 xxxxxxxx
x

LDCSR †

11 xxxxx 110011 xxxxxxxx
x

LDDC †

11 xxxxx 110100 xxxxxxxx
x

STC †

11 xxxxx 110101 xxxxxxxx
x

STCSR †

11 xxxxx 110110 xxxxxxxx
x

STDCQ †

11 xxxxx 110111 xxxxxxxx
x

STDC †

† These instructions are not implemented in hardware.

7.5 Instruction Set

This section provides a reference of all instructions supported in hardware on the
SPARClite MB86930. For additional information on the instructions refer to Chapter 2
“Programmer’s Model” and to Chapter 5 “Programming Considerations” for code use
examples.

Instruction Set - Instruction Set

7-17

ADD ADD

Add

Description:

Computes either “r[rs1]+r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000000 rs1 i=1 simm13

Syntax:

add reg rs1 , reg rs2 , reg rd
add reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov 2, %l1
mov 4, %l2
add %l1, %l2, %l3 ! %l3= 6

Instruction Set - Add

SPARClite User’s Manual

7-18

ADDcc ADDcc

Add and modify icc

Description:

Computes either “r[rs1]+r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

ADDcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 010000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010000 rs1 i=1 simm13

Syntax:

addcc reg rs1 , reg rs2 , reg rd
addcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n,z,v,c

Example:

mov 2, %l1
addcc %l1, –5, %l3 ! %l3= –3

! nzvc=1000

Instruction Set - Add and modify icc

7-19

ADDX ADDX

Add with carry

Description:

Computes either “r[rs1]+r[rs2]+c” if the i field is zero, or “r[rs1] +
sign_ext(simm13)+c” if the i field is one, and places the result in the destination
specified by the rd field.

Format:

04512131418192425293031

10 rd 001000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 001000 rs1 i=1 simm13

Syntax:

addx reg rs1 , reg rs2 , reg rd
addx reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov –1, %l1
addcc %l1, %l1, %l2
addx %g0, %g0, %l3 ! %l3= 1

Instruction Set - Add with carry

SPARClite User’s Manual

7-20

ADDXcc ADDXcc

Add with carry and modify icc

Description:

Computes either “r[rs1]+r[rs2]+c” if the i field is zero, or “r[rs1] +
sign_ext(simm13)+c” if the i field is one, and places the result in the destination
specified by the rd field.

ADDXcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 011000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 011000 rs1 i=1 simm13

Syntax:

addxcc reg rs1 , reg rs2 , reg rd
addxcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

mov –1, %l1
mov %l1, %l3
addcc %l1,%l1,%l2 ! nzvc=1001
addxcc %l3,0,%l3 ! %l3=0, nzvc=0101

Instruction Set - Add with carry and modify icc

7-21

AND AND

And

Description:

Implements a bitwise logical And to compute either “r[rs1] and r[rs2]” if the i field is
zero, or “r[rs1] and sign_ext(simm13)” if the i field is one, and places the result in the
destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000001 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000001 rs1 i=1 simm13

Syntax:

and reg rs1 , reg rs2 , reg rd
and reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov 0x5, %l1
mov 0x3 %l2
and %l1, %l2, %l3 ! %l3= 0x1

Instruction Set - And

SPARClite User’s Manual

7-22

ANDcc ANDcc

And and modify icc

Description:

Implements a bitwise logical And to compute either “r[rs1] and r[rs2]” if the i field is
zero, or “r[rs1] and sign_ext(simm13)” if the i field is one, and places the result in the
destination specified by the rd field.

ANDcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 010001 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010001 rs1 i=1 simm13

Syntax:

andcc reg rs1 , reg rs2 , reg rd
andcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v=0, c=0

Example:

mov 0x5, %l1
and %l1, 0xa, %l3 ! %l3= 0x0, nzvc=0100

Instruction Set - And and modify icc

7-23

ANDN ANDN

And Not

Description:

Implements a bitwise logical And Not to compute either “r[rs1] andn r[rs2]” if the i
field is zero, or “r[rs1] andn sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000101 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000101 rs1 i=1 simm13

Syntax:

andn reg rs1 , reg rs2 , reg rd
andn reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov 0x5, %l1
mov 0x3 %l2
andn %l1, %l2, %l3 ! %l3= 0x4

Instruction Set - And Not

SPARClite User’s Manual

7-24

ANDNcc ANDNcc

And Not modify icc

Description:

Implements a bitwise logical And Not to compute either “r[rs1] andn r[rs2]” if the i
field is zero, or “r[rs1] andn sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

ANDNcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 010101 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010101 rs1 i=1 simm13

Syntax:

andncc reg rs1 , reg rs2 , reg rd
andncc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v=0, c=0,

Example:

mov 0x5, %l1
andncc %l1, 0x3, %l3 ! %l3= 0x4, nzvc=0000

Instruction Set - And Not modify icc

7-25

BA BA

Branch Always

Description:

BA causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, regardless of the value of the condition code bits.

If the annul field of the branch instruction is 1, the delay instruction is annulled (not
executed). If the annul field is 0, the delay instruction is executed. (Note: this is the
reverse of the case for other conditional branches)

Format:

0212425293031

00 a 1000 disp22
28

010
22

Syntax:

ba label
ba,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

ba xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch Always

SPARClite User’s Manual

7-26

BCC BCC

Branch on Carry Clear (Branch Greater or Equal Unsigned)

Description:

BCC causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if the carry (C) bit in the PSR is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

30 29 021242531

00 a 1101 disp22
28

010
22

Syntax:

bcc label
bgeu label ! alternate mnemonic
bcc,a label ! annul bit set
bgeu,a label

Traps:

(none)

Condition Code Modified:

(none)

Example:

bcc,a xyz
mov 0x4, %l1 ! delay slot not executed if branch not taken

Instruction Set - Branch on Carry Clear (Branch Greater or Equal Unsigned)

7-27

BCS BCS

Branch on Carry Set (Branch on Less Than, Unsigned)

Description:

BCS causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if the carry (C) bit in the PSR is set.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0101 disp22
28

010
22

Syntax:

bcs label
blu label ! alternate mnemonic
bcs,a label ! annul bit set
blu,a label

Traps:

(none)

Condition Code Modified:

(none)

Example:

bcs xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Carry Set (Branch on Less Than, Unsigned)

SPARClite User’s Manual

7-28

BE BE

Branch on Equal (Branch on Zero)

Description:

BE causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if Z is set.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0001 disp22
28

010
22

Syntax:

be label
bz label ! alternate mnemonic
be,a label ! annul bit set
bz,a label

Traps:

(none)

Condition Code Modified:

(none)

Example:

bz xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Equal (Branch on Zero)

7-29

BG BG

Branch on Greater

Description:

BG causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “not(Z or (N xor V))” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

30 02124252931

00 a 1010 disp22
28

010
22

Syntax:

bg label
bg,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bg xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Greater

SPARClite User’s Manual

7-30

BGE BGE

Branch on Greater or Equal

Description:

BGE causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “not(N xor V)” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 1011 disp22
28

010
22

Syntax:

bge label
bge,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bge xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Greater or Equal

7-31

BGU BGU

Branch on Greater, Unsigned

Description:

BGU causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “not(C or Z)” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 1100 disp22
28

010
22

Syntax:

bgu label
bgu,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bgu xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Greater, Unsigned

SPARClite User’s Manual

7-32

BL BL

Branch on Less

Description:

BL causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “N xor V” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0011 disp22
28

010
22

Syntax:

bl label
bl,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bl xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Less

7-33

BLE BLE

Branch on Less or Equal

Description:

BLE causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “Z or (N xor V)” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0010 disp22
28

010
22

Syntax:

ble label
ble,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

ble xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Less or Equal

SPARClite User’s Manual

7-34

BLEU BLEU

Branch on Less or Equal, Unsigned

Description:

BLEU causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if “C or Z” is true.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0100 disp22
28

010
22

Syntax:

bleu label
bleu,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bleu xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Less or Equal, Unsigned

7-35

BN BN

Branch Never

Description:

BN acts like a “NOP” except that if the annul field is one, the delay instruction is not
executed (annulled). If the annul (a) field is zero, the delay instruction is executed.

Format:

0212425293031

00 a 0000 disp22
28

010
22

Syntax:

bn label
bn,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bn xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch Never

SPARClite User’s Manual

7-36

BNE BNE

Branch on Not Equal (Branch on Not Zero)

Description:

BNE causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if Z is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

30 28 02124252931

00 a 1001 disp22010
22

Syntax:

bne label
bnz label ! alternate mnemonic
bne,a label ! annul bit set
bnz,a label

Traps:

(none)

Condition Code Modified:

(none)

Example:

bnz xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Not Equal (Branch on Not Zero)

7-37

BNEG BNEG

Branch on Negative

Description:

BNEG causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if N is set.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0110 disp22
28

010
22

Syntax:

bneg label
bneg,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bneg xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Negative

SPARClite User’s Manual

7-38

BPOS BPOS

Branch on Positive

Description:

BPOS causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if N is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 1110 disp22
28

010
22

Syntax:

bpos label
bpos,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bpos xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Positive

7-39

BVC BVC

Branch on Overflow Clear

Description:

BVC causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if V is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 1111 disp22
28

010
22

Syntax:

bvc label
bvc,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bvc xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Overflow Clear

SPARClite User’s Manual

7-40

BVS BVS

Branch on Overflow Set

Description:

BVS causes a PC-relative, delayed control transfer to the address “PC + (4 x
sign_ext(disp22))”, if V is set.

The annul bit only affects execution if the branch is not taken. With the annul (a) bit
set, the delay instruction is annulled (not executed). With the annul (a) bit clear, the
delay instruction is executed.

Format:

0212425293031

00 a 0111 disp22
28

010
22

Syntax:

bvs label
bvs,a label ! annul bit set

Traps:

(none)

Condition Code Modified:

(none)

Example:

bvs xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Branch on Overflow Set

7-41

CALL CALL

Call Instruction

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to
address “PC + (4 x disp30)”. Since the word displacement field is 30 bits wide, the
target address can be arbitrarily distant. The CALL instruction also writes the value of
PC, which contains the address of the CALL, into %o7 (r[15]).

Format:

0293031

01 disp30

Syntax:

call label

Traps:

(none)

Condition Code Modified:

(none)

Example:

call xyz
mov 0x4, %l1 ! delay slot

Instruction Set - Call Instruction

SPARClite User’s Manual

7-42

DIVSCC DIVSCC

Divide Step

Description:

The DIVScc instruction performs one bit-cycle of a non-restoring, shift-before-add,
signed or unsigned division. Initially, the most significant half of the dividend is in the
Y register, the least significant half is in r[rs1]. The divisor is in r[rs2]. Subsequently,
the most significant half of the partial remainder is in the Y register, the least
significant half is in r[rs1].

DIVSCC operates as follows:

1. The true sign is formed using the negative (n) and overflow (v) integer condition
codes from the Processor Status Register. True sign = n XOR v.

2. The remainder is formed by upshifting the Y register (initially the most significant
word of the dividend) one bit, and setting the least significant bit of remainder equal
to most significant bit of r[rs1] (initially the least significant word of the dividend).

3. The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32 bits, if the i
field is 1.

4. If true sign = 0 (+), the ALU computes remainder - divisor. If true sign =1 (–), the
ALU computes remainder + divisor.

5. Carry out from the ALU operation is noted as c0. The negative (n) condition code is
set to bit 31 of the ALU result. The zero (z) condition code is set if the ALU result
is 0 AND the true sign equals Y[31], else cleared.

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT c0 AND
(true sign OR NOT Y[31])).

7. The overflow (v) condition code is formed as new true sign XOR bit 31 of the ALU
result. The carry (c) condition code is set to NOT new true sign. Y is set to the
32-bit ALU result. If rd is not 0, then r[rd] is set to r[rs1], upshifted one bit with
NOT new true sign (the new quotient bit) in the least significant bit position.

Instruction Set - Divide Step

7-43

Divide Step (Continued)

Format:

04512131418192425293031

10 rd 011101 rs1 i=0 reserved rs2

012131418192425293031

10 rd 011101 rs1 i=1 simm13

Syntax:

divscc reg rs1 , reg rs2 , reg rd
divscc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c,

Example:

See Chapter 5 “Programming Considerations” for sample signed and unsigned division
routines based on the DIVScc instruction as well as some application examples.

Instruction Set - Divide Step (Continued)

SPARClite User’s Manual

7-44

JMPL JMPL

Jump and Link

Description:

The JMPL instruction causes a register-indirect control transfer to an address specified
by either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i
field is one.

The JMPL instruction writes the PC, which contains the address of the JMPL
instruction, into the destination r register specified in rd field.

If either of the low-order two bits of the jump address is nonzero, a mem_ad-
dress_not_aligned trap occurs.

Format:

04512131418192425293031

10 rd 111000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 111000 rs1 i=1 simm13

Syntax:

jmpl reg rs1 , reg rs2 , reg rd
jmpl reg rs1 , immediate, reg rd

Traps:

mem_address_not_aligned

Condition Code Modified:

(none)

Instruction Set - Jump and Link

7-45

Jump and Link (Continued)

Example:

jmpl %l2+0xf8, %g0
mov 0xfe, %l1 ! delay slot

notes:–JMPL with rd=%g0 can be used to return from a subroutine.

• For a non-leaf subroutine the typical return address is “r[31]+8”, if the subroutine
was entered by a call instruction. (Note: The pseudo operation “ret” invokes this
return address). A leaf subroutine (no use of save, no call to other subroutines)
can use “r[15]+8” as the return address. (Note: Pseudo operation “retl” invokes
this return address).

• JMPL with rd = 15 can be used as a register-indirect CALL.

• When the delay slot instruction of JMPL is RETT, the target of the JMPL is the
address space pointed to by the state of the machine after the RETT is executed
(this is important when returning from a trap (which is supervisor space) to user
address space).

Instruction Set - Jump and Link (Continued)

SPARClite User’s Manual

7-46

LD LD

Load Word

Description:

The LD instruction moves a word from memory into the r register defined by the rd
field. The source value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or
“r[rs1] + sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LD instruction traps, the destination register (rd) remains unchanged.

Format:

04512131418192425293031

11 rd 000000 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000000 rs1 i=1 simm13

Syntax:

ld [reg rs1 + reg rs2], reg rd
ld [reg rs1 +/– immediate], reg rd

Traps:

mem_address_not_aligned

data_access_exception

Condition Code Modified:

(none)

Example:

ld [%g0 + 0xfe0], %l4
ld [0xfe0], %l4 !recognized as equivalent

Instruction Set - Load Word

7-47

LDA LDA

Load Word from Alternate Space

Description:

The LDA instruction moves a word from memory into the r register defined by the rd
field. The source value is loaded from “r[rs1] + r[rs2]” with the ASI field designating
the ASI value.

If the LDA instruction traps, the destination register (rd) remains unchanged. LDA is a
privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010000 rs1 i=0 ASI rs2

Syntax:

lda [reg rs1 + reg rs2]ASI, reg rd

Traps:

mem_address_not_aligned

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

lda [%l1 + %l2]0xf, %l4 ! ASI value 15 decimal

Instruction Set - Load Word from Alternate Space

SPARClite User’s Manual

7-48

LDD LDD

Load Doubleword

Description:

The LDD instruction moves two words from memory into an r register pair. The most
significant word at the effective memory address is moved into the even r register. The
least significant word, which is at the effective memory address + 4, is moved into the
odd r register. The least significant bit of the rd field is ignored.

The source value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LDD instruction traps while loading the second word the even destination register
(rdeven) will have been changed.

Format:

04512131418192425293031

11 rd 000011 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000011 rs1 i=1 simm13

Syntax:

ldd [reg rs1 + reg rs2], reg rd
ldd [reg rs1 +/– immediate], reg rd

Traps:

mem_address_not_aligned
data_access_exception

Condition Code Modified:

(none)

Example:

ldd [%i5 + %l2], %g2

Instruction Set - Load Doubleword

7-49

LDDA LDDA

Load Doubleword from Alternate Space

Description:

The LDDA instruction moves two words from memory into an r register pair. The most
significant word at the effective memory address is moved into the even r register. The
least significant word, which is at the effective memory address + 4, is moved into the
odd r register. The least significant bit of the rd field is ignored.

The source value is loaded from “r[rs1] + r[rs2]” with the ASI field designating the ASI
value.

If the LDD instruction traps while loading the second word the even destination register
(rdeven) will have been changed.

Format:

04512131418192425293031

11 rd 010011 rs1 i=0 ASI rs2

Syntax:

ldda [reg rs1 + reg rs2]ASI, reg rd
ldda [reg rs1 +/– immediate]ASI, reg rd

Traps:

mem_address_not_aligned

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

ldda [%g7 – 5]0x1, %o4

Instruction Set - Load Doubleword from Alternate Space

SPARClite User’s Manual

7-50

LDSB LDSB

Load Signed Byte

Description:

The LDSB instruction moves a byte from memory into the r register defined by the rd
field. The fetched byte is right-justified in rd and is sign-extended. The source value is
loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm 13)”
if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LD instruction traps, the destination register (rd) remains unchanged.

Format:

04512131418192425293031

11 rd 001001 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 001001 rs1 i=1 simm13

Syntax:

ldsb [reg rs1 + reg rs2], reg rd
ldsb [reg rs1 +/– immediate], reg rd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

ldsb [%g0 + 0xfe0], %l4

Instruction Set - Load Signed Byte

7-51

LDSBA LDSBA

Load Signed Byte from Alternate Space

Description:

The LDSB instruction moves a byte from memory into the r register defined by the rd
field. The fetched byte is right-justified in rd and is sign-extended. The source value is
loaded from “r[rs1] + r[rs2]” with the ASI field designating the ASI value.

If the LDSBA instruction traps, the destination register (rd) remains unchanged.
LDSBA is a privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 011001 rs1 i=0 ASI rs2

Syntax:

ldsba [reg rs1 + reg rs2]ASI, reg rd

Traps:

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

ldsba [%l1 + %l2]0xf, %l4 ! ASI value 15 decimal

Instruction Set - Load Signed Byte from Alternate Space

SPARClite User’s Manual

7-52

LDSH LDSH

Load Signed Halfword

Description:

The LDSH instruction moves a halfword from memory into the r register defined by the
rd field. The fetched halfword is right-justified in rd and is sign-extended. The source
value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LDSH instruction traps, the destination register (rd) remains unchanged.

Format:

04512131418192425293031

11 rd 001010 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 001010 rs1 i=1 simm13

Syntax:

ldsh [reg rs1 + reg rs2], reg rd
ldsh [reg rs1 +/– immediate], reg rd

Traps:

data_access_exception

mem_address_not_aligned

Condition Code Modified:

(none)

Example:

ldsh [%g0 + 0xfe0], %l4

Instruction Set - Load Signed Halfword

7-53

LDSHA LDSHA

Load Signed Halfword from Alternate Space

Description:

The LDSH instruction moves a halfword from memory into the r register defined by the
rd field. The fetched halfword is right-justified in rd and is sign-extended. The source
value is loaded from “r[rs1] + r[rs2]” with the ASI field designating the ASI value.

If the LDSHA instruction traps, the destination register (rd) remains unchanged.
LDSHA is a privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 011010 rs1 i=0 ASI rs2

Syntax:

ldsha [reg rs1 + reg rs2]ASI, reg rd

Traps:

data_access_exception

mem_address_not_aligned

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

ldsha [%l1 + %l2]0xf, %l4 ! ASI value 15 decimal

Instruction Set - Load Signed Halfword from Alternate Space

SPARClite User’s Manual

7-54

LDSTUB LDSTUB

Atomic Load-Store Unsigned Byte

Description:

The LDSTUB instruction moves a byte from memory into an r register identified by the
rd field and then rewrites the same byte in memory to all ones atomically (without
allowing intervening asynchronous traps). The value in the rd register is right justified
and zero-filled.

The source value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LDSTUB instruction traps, memory remains unchanged.

Format:

04512131418192425293031

11 rd 001101 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 001101 rs1 i=1 simm13

Syntax:

ldstub [reg rs1 + reg rs2], reg rd
ldstub [reg rs1 +/– immediate], reg rd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

ldstub [%g7 – 0xfb], %o1

Instruction Set - Atomic Load-Store Unsigned Byte

7-55

LDSTUBA LDSTUBA

Atomic Load-Store Unsigned Byte into Alternate Space

Description:

The LDSTUBA instruction moves a byte from memory into an r register identified by
the rd field and then rewrites the same byte in memory to all ones atomically (without
allowing intervening asynchronous traps). The value in the rd register is right justified
and zero-filled.

The source value is loaded from “r[rs1] + r[rs2]”with the ASI field designating the ASI
value.

If the LDSTUBA instruction traps, memory remains unchanged. LDSTUBA is a
privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 011101 rs1 i=0 ASI rs2

Syntax:

ldstuba [reg rs1 + reg rs2]ASI, reg rd

Traps:

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

ldstuba [%l1 + %l2]0xf, %l4
! ASI value 15 decimal

Instruction Set - Atomic Load-Store Unsigned Byte into Alternate Space

SPARClite User’s Manual

7-56

LDUB LDUB

Load Unsigned Byte

Description:

The LDUB instruction moves an unsigned byte from memory into the r register defined
by the rd field. The fetched halfword is right-justified in rd and is zero-filled. The
source value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LDUB instruction traps, the destination register (rd) remains unchanged.

Format:

04512131418192425293031

11 rd 000001 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000001 rs1 i=1 simm13

Syntax:

ldub [reg rs1 + reg rs2], reg rd
ldub [reg rs1 +/– immediate], reg rd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

ldub [%g0 + 0xfe0], %l4

Instruction Set - Load Unsigned Byte

7-57

LDUBA LDUBA

Load Unsigned Byte from Alternate Space

Description:

The LDUBA instruction moves a byte from memory into the r register defined by the rd
field. The fetched byte is right-justified in rd and is zero-filled. The source value is
loaded from “r[rs1] + r[rs2]” with the ASI field designating the ASI value.

If the LDUBA instruction traps, the destination register (rd) remains unchanged.
LDUBA is a privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010001 rs1 i=0 ASI rs2

Syntax:

lduba [reg rs1 + reg rs2]ASI, reg rd

Traps:

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

lduba [%l1 + %l2]0xf, %l4 !ASI value 15 decimal

Instruction Set - Load Unsigned Byte from Alternate Space

SPARClite User’s Manual

7-58

LDUH LDUH

Load Unsigned Halfword

Description:

The LDUH instruction moves a halfword from memory into the r register defined by
the rd field. The fetched halfword is right-justified in rd and is zero-filled. The source
value is loaded from either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] +
sign_ext(simm 13)” if the i field is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the LDUH instruction traps, the destination register (rd) remains unchanged.

Format:

04512131418192425293031

11 rd 000010 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000010 rs1 i=1 simm13

Syntax:

lduh [reg rs1 + reg rs2], reg rd
lduh [reg rs1 +/– immediate], reg rd

Traps:

data_access_exception

mem_address_not_aligned

Condition Code Modified:

(none)

Example:

lduh [%g7 – 0xfeb], %l4

Instruction Set - Load Unsigned Halfword

7-59

LDUHA LDUHA

Load Unsigned Halfword from Alternate Space

Description:

The LDUHA instruction moves a halfword from memory into the r register defined by
the rd field. The fetched halfword is right-justified in rd and is zero-filled. The source
value is loaded from “r[rs1] + r[rs2]” with the ASI field designating the ASI value.

If the LDUHA instruction traps, the destination register (rd) remains unchanged.
LDUHA is a privileged instruction which can only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010010 rs1 i=0 ASI rs2

Syntax:

lduha [reg rs1 + reg rs2]ASI, reg rd

Traps:

data_access_exception

privileged_instruction (if not supervisor mode)

illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

lduha [%g7 – 0xfeb]0xee, %l3

Instruction Set - Load Unsigned Halfword from Alternate Space

SPARClite User’s Manual

7-60

MULScc MULScc

Multiply Step Instruction

Description:

The MULScc can be used to generate up to 64-bit products of two signed or unsigned
words. MULScc works as follows:

1. Compute the value obtained by shifting “r[rs1]” (the incoming partial product) right
by one bit and replacing its high-order bit by “N xor V” (the sign of the previous
partial product).

2. If the least significant bit of the Y register (the multiplier) is set, the value from step
(1) is added to the multiplicand. The multiplicand is “r[rs2]” if the i field is zero or
is “sign_ext(simm13)” if the i field is one. If the LSB of the Y register is not set,
then zero is added to the value from step (1).

3. The result from step (2) is written into “r[rd]” (the outgoing partial product). The
PSR’s integer condition codes are updated according to the addition performed in
step (2).

4. The Y register (the multiplier) is shifted right by one bit and its high_order bit is
replaced by the least significant bit of “r[rs1]” (the incoming partial product).

It should be noted that, for most applications, the UMUL/SMUL instructions are a
faster and more efficient means of multiplying integer values. However MULScc can
be used for other bit manipulations. See Chapter 5 “Programming Considerations” for
details.

Format:

04512131418192425293031

10 rd 100100 rs1 i=0 reserved rs2

012131418192425293031

10 rd 100100 rs1 i=1 simm13

Syntax:

mulscc reg rs1 , reg rs2 , reg rd
mulscc reg rs1 , immediate, reg rd

Instruction Set - Multiply Step Instruction

7-61

Multiply Step Instruction (Continued)

Traps:

(none)

Condition Code Modified:

(none)

Example:

mulscc %o4, %o1, %o4

Instruction Set - Multiply Step Instruction (Continued)

SPARClite User’s Manual

7-62

NOP NOP

No Operation

Description:

The NOP instruction changes no program-visible state (except the PC and nPC).

Format:

0212425293031

00 00000 000000000000000100
22

Syntax:

nop

Traps:

(none)

Condition Code Modified:

(none)

Example:

bz target
nop !delay slot

Instruction Set - No Operation

7-63

OR OR

Inclusive OR

Description:

Implements a bitwise logical inclusive Or to compute either “r[rs1] or r[rs2]” if the i
field is zero, or “r[rs1] or sign_ext(simm13)” if the i field is one, and places the result
in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000010 rs1 i=1 simm13

Syntax:

or reg rs1 , reg rs2 , reg rd
or reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

or %g0, –1, %o3 ! mov –1, %o3 equivalent

Instruction Set - Inclusive OR

SPARClite User’s Manual

7-64

ORcc ORcc

Inclusive OR and modify icc

Description:

Implements a bitwise logical inclusive Or to compute either “r[rs1] or r[rs2]” if the i
field is zero, or “r[rs1] or sign_ext(simm13)” if the i field is one, and places the result
in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 010010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010010 rs1 i=1 simm13

Syntax:

orcc reg rs1 , reg rs2 , reg rd
orcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v=0, c=0

Example:

mov –1, %o3
orcc %o3, 0, %g0 ! tst %o3 equivalent, nzvc=1000

Instruction Set - Inclusive OR and modify icc

7-65

ORN ORN

Inclusive Or Not

Description:

Implements a bitwise logical inclusive Or Not to compute either “r[rs1] orn r[rs2]” if
the i field is zero, or “r[rs1] orn sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000110 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000110 rs1 i=1 simm13

Syntax:

orn reg rs1 , reg rs2 , reg rd
orn reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

orn %g0, 3, %o1 ! all 1’s except bottom two bits to reg
o1

Instruction Set - Inclusive Or Not

SPARClite User’s Manual

7-66

ORNcc ORNcc

Inclusive Or Not and modify icc

Description:

Implements a bitwise logical inclusive Or Not to compute either “r[rs1] orn r[rs2]” if
the i field is zero, or “r[rs1] orn sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 010110 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010110 rs1 i=1 simm13

Syntax:

orncc reg rs1 , reg rs2 , reg rd
orncc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z=0, v, c=0

Example:

orncc %g0, –1, %o3

Instruction Set - Inclusive Or Not and modify icc

7-67

RDASR RDASR

Read Ancillary State Register

Description:

Reads the contents of the ancillary state register specified by the rs1 field into the
destination register rd.

On the SPARClite MB86930 a valid value for rs1 is 17. All other values of rs1 will
generate an illegal instruction trap.

All reserved fields should be programmed as 0. RDASR is a privileged instruction.

Format:

012131418192425293031

10 rd 101000 rs1 reservedreserved

Syntax:

rd asr_reg rs1 , reg rd

Traps:

illegal_instruction

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %asr17, %g1

Instruction Set - Read Ancillary State Register

SPARClite User’s Manual

7-68

RDPSR RDPSR

Read Processor State Register

Description:

RDPSR reads the contents of the Processor State Register into the destination register
rd.

All reserved fields should be programmed as 0. RDPSR is a privileged instruction.

Format:

012131418192425293031

10 rd 101001 reserved reservedreserved

Syntax:

rd %psr, reg rd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %psr, %g1

Instruction Set - Read Processor State Register

7-69

RDTBR RDTBR

Read Trap Base Register

Description:

RDTBR reads the contents of the Trap Base Register into the destination register rd.

All reserved fields should be programmed as 0. RDTBR is a privileged instruction.

Format:

012131418192425293031

10 rd 101011 reserved reservedreserved

Syntax:

rd %tbr, reg rd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %tbr, %g1

Instruction Set - Read Trap Base Register

SPARClite User’s Manual

7-70

RDWIM RDWIM

Read Window Invalid Mask Register

Description:

RDWIM reads the contents of the Window Invalid Mask Register into the destination
register rd.

All reserved fields should be programmed as 0. RDWIM is a privileged instruction.

Format:

012131418192425293031

10 rd 101010 reserved reservedreserved

Syntax:

rd %wim, reg rd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %wim, %g0

Instruction Set - Read Window Invalid Mask Register

7-71

RDY RDY

Read Y Register

Description:

RDY reads the contents of the Y register into the destination register rd.

Unlike the other read state register instructions, RDY is not privileged. All reserved
fields should be programmed as 0.

Format:

012131418192425293031

10 rd 101000 00000 reservedreserved

Syntax:

rd %y, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

rd %y, %o0

Instruction Set - Read Y Register

SPARClite User’s Manual

7-72

RESTORE RESTORE

Restore Caller’s Window

Description:

The RESTORE instruction adds one (modulo 8) to the Current Window Pointer (CWP)
of the PSR and compares this value (new_CWP) against the Window Invalid Mask
(WIM) register. If the WIM bit corresponding to the new_CWP is 0, the new_CWP is
written into the CWP field of the PSR. This causes the CWP+1 window to become the
current window, thereby restoring the caller’s window. If the WIM bit corresponding to
the new_CWP is 1, a window_underflow trap is generated and the CWP is left
unchanged.

If an underflow trap is not generated, RESTORE behaves like an ADD instruction
except that the source operands r[rs1] and r[rs2] are read from the old window and the
sum is written into r[rd] of the new window.

Format:

04512131418192425293031

10 rd 111101 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 111101 rs1 i=1 simm13

Syntax:

restore reg rs1 , reg rs2 , reg rd
restore reg rs1 , immediate, reg rd

Traps:

window_underflow

Condition Code Modified:

(none)

Example:

ret ! return from non–leaf subroutine
restore %i5, %l1, %o5 ! add number sampled processed with this call

! to running total kept in callee’s reg i5
! and same register, caller’s reg o5.

Instruction Set - Restore Caller’s Window

7-73

RETT RETT

Return from Trap Instruction

Description:

If RETT does not cause a trap, it adds 1 to the CWP (modulo 8), causes a delayed
control transfer to the target address, restores the S field of the PSR from the PS field,
and sets the ET field of the PSR to 1. The target address is “r[rs1] + r[rs2]” if the i field
is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

RETT can cause one of several traps. In order of highest to lowest priority:

• If traps are enabled (ET=1) and the processor is in user mode (S=0), a
privileged_instruction trap occurs.

• If traps are enabled (ET=1) and the processor is in supervisor mode (S=1), an
illegal_instruction trap occurs.

• If traps are disabled (ET=0) and the processor is in user mode (S=0),
privileged_instruction trap code is placed in tt (trap type) field of TBR and the
processor enters error_mode state.

• If traps are disabled (ET=0) and a window underflow condition is detected,
window_underflow trap is placed in tt (trap type) field of TBR and the processor
enters error_mode state.

• If traps are disabled (ET=0) and either of the low-order two bits of the target address
is nonzero, then memory_address_not_aligned code is placed in tt (trap type) field
of TBR and the processor enters error_mode state.

The instruction executed immediately before an RETT must be a JMPL instruction.

RETT is a privileged instruction.

Format:

04512131418192425293031

10 reserved 111001 rs1 i=0 reserved rs2

012131418192425293031

10 reserved 111001 rs1 i=1 simm13

Instruction Set - Return from Trap Instruction

SPARClite User’s Manual

7-74

Return from Trap Instruction (Continued)

Syntax:

rett reg rs1 , reg rs2
rett reg rs1 , immediate

Traps:

privileged_instruction

illegal_instruction

window_underflow

mem_address_not_aligned

Condition Code Modified:

(none)

Example:

To re-execute the trapped instruction when returning from the trap handler use the
sequence:

jmpl %r17,%r0 !old PC
rett %r18 !old nPC

To return to the instruction after the trapped instruction (for example, after emulating
an instruction) use the sequence:

jmpl %r18,%r0 !old nPC
rett %r18+4 !old nPC + 4

Instruction Set - Return from Trap Instruction (Continued)

7-75

SAVE SAVE

Save Caller’s Window

Description:

The SAVE instruction subtracts one (modulo 8) from the Current Window Pointer
(CWP) of the PSR and compares this value (new_CWP) against the Window Invalid
Mask (WIM) register. If the WIM bit corresponding to the new_CWP is 0, the
new_CWP is written into the CWP field of the PSR. This causes the CWP –1 window
to become the current window, thereby saving the caller’s window. Otherwise a
window_overflow trap is generated and the CWP is left unchanged.

If an overflow trap is not generated, SAVE behaves like an ADD instruction except that
the source operands r[rs1] and r[rs2] are read from the old window and the sum is
written into r[rd] of the new window.

Format:

04512131418192425293031

10 rd 111100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 111100 rs1 i=1 simm13

Syntax:

save reg rs1 , reg rs2 , reg rd
save reg rs1 , immediate, reg rd

Traps:

window_overflow

Condition Code Modified:

(none)

Example:

save %sp, –64, %sp ! equivalent statements to make
save %o6, –64, %o6 ! room for 16 more words in call stack

Instruction Set - Save Caller’s Window

SPARClite User’s Manual

7-76

SCAN SCAN

Scan for MSB

Description:

The scan instruction returns the location of the first nonsign bit or the location of either
the most significant one or most significant zero of source register r[rs1].

SCAN works as follows:

(1) The r[rs1] value is “xored” on a bit-wise basis with the value obtained by shifting
right by one bit and sign extending the value in r[rs2].

(2) The bit position of the first “1” in the value obtained above is returned to the
destination register r[rd]. A “1” in the MSB positions returns a value of 0, while the
first “1” in the LSB position returns a value of 31. If no bit is set, a value of 63 is
returned. For future compatibility, use unsigned compares of the SCAN value against
unsigned thresholds. Use threshold equal WORDSIZE=32 to detect if no bit is set. See
5.6.1 “Scan in Support of Software Floating Point” and 5.6.2 “Scan in Support of Run
Length Encoding” for illustration. (See Fig. 2-25, Using the SCAN Instruction) for
additional details.

Format:

04512131418192425293031

10 rd 101100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 101100 rs1 i=1 simm13

Syntax:

scan reg rs1 , reg rs2 , reg rd
scan reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Instruction Set - Scan for MSB

7-77

Scan for MSB (Continued)

Example:

scan %g1, 0, %g2 ! scan reg g1 for position of first one
! from the msb end and put position
! number in reg g2

scan %g1, %g1, %g2 ! scan reg g1 for position of first bit
! that differs from msb reg g1

Instruction Set - Scan for MSB (Continued)

SPARClite User’s Manual

7-78

SETHI SETHI

Set High 22 bits

Description:

SETHI zeroes the least significant 10 bits of the destination register (r[rd]), and replaces
its high-order 22 bits with the value from the immediate field.

A SETHI instruction with rd=0 and imm22=0 is defined to be a NOP instruction.

Format:

0212425293031

00 rd imm22100
22

Syntax:

sethi const22, reg rd
sethi %hi(value), reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

sethi %hi(label_trig_table, %l7
or %l7, %lo(label_trig_table), %l7 ! address pointer of

! trig_table to %l7

Instruction Set - Set High 22 bits

7-79

SLL SLL

Shift Left Logical

Description:

SLL shifts the value of r[rs1] left by the count specified by the lower 5 bits of either
“r[rs2]” if the i field is zero, or “simm13” if the i field is one. The vacated positions
(least significant bits) are filled with zeroes. The shifted result is placed in the r register
specified by the rd field.

Format:

04512131418192425293031

10 rd 100101 rs1 i=0 unused (zero) rs2

131418192425293031

10 rd 100101 rs1 i=1
04512

unused (zero) shcnt

Syntax:

sll reg rs1 , reg rs2 , reg rd
sll reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

sll %l1, %g1, %o1 ! left justify least significant part of
 regl1

! by shift count in reg g1
sub %g0, %g1, %g1 ! negate reg g1
srl %l1, %g1, %o0 ! right justify most significant part of reg

 l1
! by 32 – original shift count

or %o0, %o1, %o0 ! join parts to complete left rotate by
! original shift count

Instruction Set - Shift Left Logical

SPARClite User’s Manual

7-80

SMUL SMUL

Signed Integer Multiply

Description:

SMUL performs either “r[rs1] x r[rs2]” if the i field is zero, or “r[rs1] x
sign_ext(simm13)” if the i field is one. The 32 least significant bits of the product are
written to the destination register r[rd]. The most significant bits of the product are
written to the Y register.

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles to
compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of r[rs2]
against the sign bit at run time. If the bits match, the SMUL instruction will terminate
in 3, 2 or 1 cycle respectively.

SMUL assumes a signed integer word operand and computes a signed integer
doubleword product.

Format:

04512131418192425293031

10 rd 001011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 001011 rs1 i=1 simm13

Syntax:

smul reg rs1 , reg rs2 , reg rd
smul reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

smul %o2, %o3, %o1 ! least significant half product to %o1
rd %y, %o0 ! most significant half product to %o0

Instruction Set - Signed Integer Multiply

7-81

SMULcc SMULcc

Signed Integer Multiply and Change Condition Codes

Description:

SMULcc performs either “r[rs1] x r[rs2]” if the i field is zero, or “r[rs1] x
sign_ext(simm13)” if the i field is one. The 32 least significant bits of the product are
written to the destination register r[rd]. The most significant bits of the product are
written to the Y register.

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles to
compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of r[rs2]
against the sign bit at run time. If the bits match, the SMUL instruction will terminate
in 3, 2 or 1 cycle respectively.

SMULcc assumes a signed integer word operand and computes a signed integer
doubleword product. SMULcc writes the integer condition code (see below).

Format:

04512131418192425293031

10 rd 011011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 011011 rs1 i=1 simm13

Syntax:

smulcc reg rs1 , reg rs2 , reg rd
smulcc reg rs1 , immediate, reg rd

Instruction Set - Signed Integer Mulitply and Change Condition Codes

SPARClite User’s Manual

7-82

Signed Integer Multiply and Change Condition Codes
(Continued)

Traps:

(none)

Condition Code Modified:

Table 7-3:

icc bit SMULcc

N
Z
V
C

Set if product [31] = 1
Set if product [31:0] = 0
Zero
Zero

Example:

smulcc %o2, %o3, %o1 ! least significant half product to %o1
rd %y, %o0 ! most significant half product to %o0

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued)

7-83

SRA SRA

Shift Right Arithmetic

Description:

SRA shifts the value of r[rs1] right by the count specified by the lower 5 bits of either
“r[rs2]” if the i field is zero, or “simm13” if the i field is one. The vacated positions
(most significant bits) are filled with the most significant bit of r[rs1]. The shifted result
is placed in the r register specified by the rd field.

Format:

04512131418192425293031

10 rd 100111 rs1 i=0 unused (zero) rs2

131418192425293031

10 rd 100111 rs1 i=1
04512

unused (zero) shcnt

Syntax:

sra reg rs1 , reg rs2 , reg rd
sra reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

sra %g1, 4, %g1 ! right shift reg g1 4 bits and extend
sign

Instruction Set - Shift Right Arithmetic

SPARClite User’s Manual

7-84

SRL SRL

Shift Right Logical

Description:

SRL shifts the value of r[rs1] right by the count specified by the lower 5 bits of either
“r[rs2]” if the i field is zero, or “simm13” if the i field is one. The vacated positions
(most significant bits) are filled with zeroes. The shifted result is placed in the r register
specified by the rd field.

Format:

04512131418192425293031

10 rd 100110 rs1 i=0 unused (zero) rs2

131418192425293031

10 rd 100110 rs1 i=1
04512

unused (zero) shcnt

Syntax:

srl reg rs1 , reg rs2 , reg rd
srl reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

sll %l1, %g1, %o1 ! left justify least significant part of
 regl1

! by shift count in reg g1
sub %g0, %g1, %g1 ! negate reg g1
srl %l1, %g1, %o0 ! right justify most significant part of reg

 l1
! by 32 – original shift count

or %o0, %o1, %o0 ! join parts to complete left rotate by
! original shift count

Instruction Set - Shift Right Logical

7-85

ST ST

Store Word

Description:

The ST instruction moves a word from the r register specified by the rd field into
memory. The effective memory address is either “r[rs1] + r[rs2]” if the i field is zero,
or “r[rs1] + sign_ext(simm13)” if the i field is one. If the ST instruction traps, memory
remains unchanged.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

Format:

04512131418192425293031

11 rd 000100 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000100 rs1 i=1 simm13

Syntax:

st reg rd , [reg rs1 + reg rs2]
st reg rd , [reg rs1 +/– immediate]

Traps:

mem_address_not_aligned

data_access_exception

Condition Code Modified:

(none)

Example:

st %l4, [%g0 + 0xfe0]
st %l4, [0xfe0] ! recognized as equivalent

Instruction Set - Store Word

SPARClite User’s Manual

7-86

STA STA

Store Word in Alternate Space

Description:

The STA instruction moves a word from the r register specified by the rd field into
memory. The source value is stored to “r[rs1] + r[rs2]” with the ASI field designating
the ASI value. If the STA instruction traps, memory remains unchanged. STA is
privileged and may only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010100 rs1 i=0 ASI rs2

Syntax:

sta reg rd , [reg rs1 + reg rs2]ASI

Traps:

mem_address_not_aligned

data_access_exception

illegal_instruction (if i=1)

privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

sta %l4, [%l1 + %l2]0xf ! ASI value 15 decimal

Instruction Set - Store Word in Alternate Space

7-87

STB STB

Store Byte

Description:

The STB instruction moves the least significant byte from the r register specified by the
rd field into memory. The effective memory address is either “r[rs1] + r[rs2]” if the i
field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. If the STB instruction
traps, memory remains unchanged.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

Format:

04512131418192425293031

11 rd 000101 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000101 rs1 i=1 simm13

Syntax:

stb reg rd , [reg rs1 + reg rs2]
stb reg rd , [reg rs1 +/– immediate]

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

stb %g2, [%i5 + %l2]

Instruction Set - Store Byte

SPARClite User’s Manual

7-88

STBA STBA

Store Byte in Alternate Space

Description:

The STBA instruction moves the least significant byte from the r register specified by
the rd field into memory. The source value is stored to “r[rs1] + r[rs2]” with the ASI
field designating the ASI value. If the STBA instruction traps, memory remains
unchanged. STBA is privileged and may only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010101 rs1 i=0 ASI rs2

Syntax:

stba reg rd , [reg rs1 + reg rs2]ASI

Traps:

data_access_exception

illegal_instruction (if i=1)

privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stba %o4, [%g7 – 5]0x1

Instruction Set - Store Byte in Alternate Space

7-89

STH STH

Store Halfword

Description:

The STH instruction moves the least significant halfword from the r register specified
by the rd field into memory. The effective memory address is either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one. If the STH
instruction traps, memory remains unchanged.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

Format:

04512131418192425293031

11 rd 000110 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000110 rs1 i=1 simm13

Syntax:

sth reg rd , [reg rs1 + reg rs2]
sth reg rd , [reg rs1 +/– immediate]

Traps:

data_access_exception

mem_address_not_aligned

Condition Code Modified:

(none)

Example:

sth %l4, [%g0 + 0xfe0]

Instruction Set - Store Halfword

SPARClite User’s Manual

7-90

STHA STHA

Store Halfword in Alternate Space

Description:

The STHA instruction moves the least significant byte from the r register specified by
the rd field into memory. The source value is stored to “r[rs1] + r[rs2]” with the ASI
field designating the ASI value. If the STHA instruction traps, memory remains
unchanged. STHA is privileged and may only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 010110 rs1 i=0 ASI rs2

Syntax:

stha reg rd , [reg rs1 + reg rs2]ASI

Traps:

data_access_exception

illegal_instruction (if i=1)

mem_address_not_aligned

privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stha %i4, [%l2 + %l3]0x3

Instruction Set - Store Halfword in Alternate Space

7-91

STD STD

Store Doubleword into Alternate Space

Description:

The STD instruction moves a doubleword from an even/next-odd r register pair into
memory. The even r register (which contains the most significant word) is written into
memory at the effective address and the odd r register (with the least significant word)
is written into memory at the effective address + 4. The effective memory address is
either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field
is one.

The address space identifier (ASI) indicates either user data (0xA) or supervisor data
(0xB) according to the S bit of the PSR.

If the STD instruction traps while writing the first word to memory, memory remains
unchanged. If the STD instruction traps while the second word is being written, the first
word written (the most significant word at the highest address) will have been changed.

Format:

04512131418192425293031

11 rd 000111 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 000111 rs1 i=1 simm13

Syntax:

std reg rd , [reg rs1 + reg rs2]
std reg rd , [reg rs1 +/– immediate]

Traps:

data_access_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

std %o2, [%l3 – 4]

Instruction Set - Store Doubleword into Alternate Space

SPARClite User’s Manual

7-92

STDA STDA

Store Doubleword in Alternate Space

Description:

The STDA instruction moves a doubleword from an even/next-odd r register pair into
memory. The even r register (which contains the most significant word) is written into
memory at the effective address and the odd r register (with the least significant word)
is written into memory at the effective address + 4. The source value is stored to “r[rs1]
+ r[rs2]” with the ASI field designating the ASI value. STDA is privileged and may
only be executed in supervisor mode.

If the STD instruction traps while writing the first word to memory, memory remains
unchanged. If the STD instruction traps while the second word is being written, the first
word written (the most significant word at the highest address) will have been changed.

Format:

04512131418192425293031

11 rd 010111 rs1 i=0 ASI rs2

Syntax:

stda reg rd , [reg rs1 + reg rs2]ASI

Traps:

data_access_exception

illegal_instruction (if i=1)

mem_address_not_aligned

privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stda %i4, [%l2 + %l3]0x3

Instruction Set - Store Doubleword in Alternate Space

7-93

SUB SUB

Subtract

Description:

Computes either “r[rs1]-r[rs2]” if the i field is zero, or “r[rs1] – sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000100 rs1 i=1 simm13

Syntax:

sub reg rs1 , reg rs2 , reg rd
sub reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov 4, %l1
mov 2, %l2
sub %l1, %l2, %l3 ! %l3= 2

Instruction Set - Subtract

SPARClite User’s Manual

7-94

SUBcc SUBcc

Subtract and modify icc

Description:

Computes either “r[rs1]–r[rs2]” if the i field is zero, or “r[rs1] – sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

SUBcc modifies the integer condition codes. Overflow occurs on subtraction if the
operands have different signs and the sign of the difference differs from the sign of
r[rs1].

Format:

04512131418192425293031

10 rd 010100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010100 rs1 i=1 simm13

Syntax:

subcc reg rs1 , reg rs2 , reg rd
subcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

mov 4, %l1
subcc %l1, 0x2, %l3 ! %l3= 2

! nzvc = 0000
subcc %l1, 0x7, %l4 ! %l4 = –3

! nzvc = 1001

Instruction Set - Subtract and modify icc

7-95

SUBX SUBX

Subtract with Carry

Description:

Computes either “r[rs1]–r[rs2]–c” if the i field is zero, or “r[rs1] –
sign_ext(simm13)–c” if the i field is one, and places the result in the destination
specified by the rd field.

Format:

04512131418192425293031

10 rd 001100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 001100 rs1 i=1 simm13

Syntax:

subx reg rs1 , reg rs2 , reg rd
subx reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

subcc %g0, 255, %g3 ! reg g3 = –255, nzvc = 1001
subx %g0, 0, %g2 ! reg g2 = –1, sign extended

Instruction Set - Subtract with Carry

SPARClite User’s Manual

7-96

SUBXcc SUBXcc

Subtract and modify icc

Description:

Computes either “r[rs1]–r[rs2]–c” if the i field is zero, or “r[rs1] –
sign_ext(simm13)–c” if the i field is one, and places the result in the destination
specified by the rd field.

SUBXcc modifies the integer condition codes. Overflow occurs on subtraction if the
operands have different signs and the sign of the difference differs from the sign of
r[rs1].

Format:

04512131418192425293031

10 rd 011100 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 011100 rs1 i=1 simm13

Syntax:

subxcc reg rs1 , reg rs2 , reg rd
subxcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

mov –1, %l1 ! reg l1 = 0xffffffff
srl %l1, 1, %l2 ! reg l2 = 0x7fffffff
orcc %g0, 0, %g0 ! nzvc = 0100
subxcc %l2, %l1, %g1 ! reg g1 = 0x80000000, nzvc = 1011
subxcc %l2, %l1, %g2 ! reg g2 = 0x7fffffff, nzvc = 0001

Instruction Set - Subtract and modify icc

7-97

SWAP SWAP

SWAP Register with Memory

Description:

The SWAP instruction exchanges the contents of the r register identified by the rd field
with the contents of the addressed memory location. This is performed atomically
without allowing intervening asynchronous traps.

The effective address of the swap instruction is either “r[rs1] + r[rs2]” if the i field is
zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If the SWAP instruction traps, memory remains unchanged.

Format:

04512131418192425293031

11 rd 001111 rs1 i=0 unused (zero) rs2

012131418192425293031

11 rd 001111 rs1 i=1 simm13

Syntax:

swap [reg rs1 + reg rs2], reg rd
swap [reg rs1 + immediate], reg rd

Traps:

data_access_exception

mem_address_not_aligned

Condition Code Modified:

(none)

Example:

swap [%g7–23], %g6

Instruction Set - SWAP Register with Memory

SPARClite User’s Manual

7-98

SWAPA SWAPA

SWAP Register with Alternate Space Memory

Description:

The SWAPA instruction exchanges the r register identified by the rd field with the
contents of the addressed memory location. This is performed atomically without
allowing intervening asynchronous traps.

The effective address of the swap instruction is “r[rs1] + r[rs2]” with the ASI field
designating the ASI value.

If the SWAPA instruction traps, memory remains unchanged. SWAPA is privileged and
may only be executed in supervisor mode.

Format:

04512131418192425293031

11 rd 011111 rs1 i=0 ASI rs2

Syntax:

swapa [reg rs1 + reg rs2] ASI, reg rd

Traps:

data_access_exception

illegal_instruction (if i=1)

mem_address_not_aligned

privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

swapa [%l5 + 125]oxf, %l4

Instruction Set - Swap Register with Alternate Space Memory

7-99

TA TA

Trap Always (Trap on Zero)

Description:

The TA instruction generates a trap_instruction trap if no higher priority traps are
pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR) to
be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if the i
field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1000 111010 rs1 i=0 reserved rs2

131418192425293031

10 1000 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

ta reg rs1 , reg rs2
ta reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

ta %g0+35 ! tt=163

Instruction Set - Trap Always (Trap on Zero)

SPARClite User’s Manual

7-100

TADDcc TADDcc

Tagged Add and modify icc

Description:

The TADDcc instruction computes either “r[rs1] + r[rs2]” if the i field is zero, or
“r[rs1] + sign_ext(simm13)” if the i field is one. An overflow condition exists if bit 1 or
0 of either operand is not zero, or if the addition generates an arithmetic overflow.

If TADDcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it
does not cause an overflow, the overflow bit is cleared. In either case, the remaining
integer condition codes are also updated and the result of the addition is written into the
r register specified by the rd field.

Format:

04512131418192425293031

10 rd 100000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 100000 rs1 i=1 simm13

Syntax:

taddcctv reg rs1 , reg rs2 , reg rd
taddcctv reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

taddcc %g0, 1, %g0 ! nzvc = 0010

Instruction Set - Tagged Add and modify icc

7-101

TADDccTV TADDccTV

Tagged Add and modify icc and Trap on Overflow

Description:

The TADDccTV instruction computes either “r[rs1] + r[rs2]” if the i field is zero, or
“r[rs1] + sign_ext(simm13” if the i field is one. An overflow condition exists if bit 1 or
0 of either operand is not zero, or if the addition generates an arithmetic overflow.

If TADDccTV causes an overflow condition, a tag_overflow trap is generated and the
destination register and condition codes remain unchanged. If TADDccTV does not
cause an overflow condition, all the integer condition codes are updated (in particular,
the overflow bit (v) is set to 0) and the result of the addition is written into the r register
specified by the rd field.

Format:

04512131418192425293031

10 rd 100010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 100010 rs1 i=1 simm13

Syntax:

taddcctv reg rs1 , reg rs2 , reg rd
taddcctv reg rs1 , immediate, reg rd

Traps:

tag_overflow

Condition Code Modified:

n, z, v, c

Example:

taddcctv %g0, 1, %g0 ! nzvc=0010

Instruction Set - Tagged Add and modify icc and Trap on Overflow

SPARClite User’s Manual

7-102

TCC TCC

Trap on Carry Clear (Trap on Greater Than or Equal,
Unsigned)

Description:

The TCC instruction causes a trap_instruction trap if (not C)=1 and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Register
(TBR) to be written with 128 plus the least significant seven bits of either “r[rs1] +
r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If (not C)=0, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied as zero
as should the most significant 25 bits of r[rs2] if the i field is 0.

Note: if single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR and the tt field will be
ignored)

Format:

04512131418192425293031

10 1101 111010 rs1 i=0 unused (zero) rs2

131418192425293031

10 1101 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tcc reg rs1 , reg rs2
tcc reg rs1 , immediate
tgeu reg rs1 , reg rs2 !alternate mnemonic
tgeu reg rs1 , immediate !alternate mnemonic

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tcc %g0 + 33 ! tt = 161

Instruction Set - Trap on Carry Clear (Trap on Greater Than or Equal, Unsigned)

7-103

TCS TCS

Trap on Carry Set (Trap on Less Than, Unsigned)

Description:

The TCS instruction causes a trap_instruction trap if C=1 and if no higher priority trap
is pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR)
to be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If C=0, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

 (note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0101 111010 rs1 i=0 reserved rs2

131418192425293031

10 0101 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tcs reg rs1 , reg rs2
tcs reg rs1 , immediate
tlu reg rs1 , reg rs2 ! alternate mnemonic
tlu reg rs1 , immediate ! alternate mnemonic

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tcs %g0 + 34 ! tt = 162

Instruction Set - Trap on Carry Set (Trap on Less Than, Unsigned)

SPARClite User’s Manual

7-104

TE TE

Trap on Equal

Description:

The TE instruction causes a trap_instruction trap if Z=1 and if no higher priority trap is
pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR) to
be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if the i
field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If Z=0, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0001 111010 rs1 i=0 reserved rs2

131418192425293031

10 0001 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

te reg rs1 , reg rs2
te reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

te %g0 + 36 ! tt = 164

Instruction Set - Trap on Equal

7-105

TG TG

Trap on Greater

Description:

The TG instruction causes a trap_instruction trap if “not(Z or (N xor V))” is true and if
no higher priority trap is pending. The trap_instruction trap causes the tt field of the
Trap Base Register (TBR) to be written with 128 plus the least significant seven bits of
either “r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field
is one.

If “not (Z or (N xor V))” is false, a trap_instruction trap does not occur and the
instruction behaves like a NOP. All bits indicated as reserved in the instruction formats
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i field is
0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1010 111010 rs1 i=0 reserved rs2

131418192425293031

10 1010 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tg reg rs1 , reg rs2
tg reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tg %g0+36 ! tt=164

Instruction Set - Trap on Greater

SPARClite User’s Manual

7-106

TGE TGE

Trap on Greater Than or Equal

Description:

The TGE instruction causes a trap_instruction trap if “not(N xor V)” is true and if no
higher priority trap is pending. The trap_instruction trap causes the tt field of the Trap
Base Register (TBR) to be written with 128 plus the least significant seven bits of either
“r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If “not(N xor V)” is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction formats should be
supplied as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1011 111010 rs1 i=0 reserved rs2

131418192425293031

10 1011 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tge reg rs1 , reg rs2
tge reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tge %g0+37 ! tt=165

Instruction Set - Trap on Greater Than or Equal

7-107

TGU TGU

Trap on Greater Unsigned

Description:

The TGU instruction causes a trap_instruction trap if “not (C or Z)” is true and if no
higher priority trap is pending. The trap_instruction trap causes the tt field of the Trap
Base Register (TBR) to be written with 128 plus the least significant seven bits of either
“r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If “not (C or Z)” is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction formats should be
supplied as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1100 111010 rs1 i=0 reserved rs2

131418192425293031

10 1100 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tgu reg rs1 , reg rs2
tgu reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tgu %g0+38 ! tt=166

Instruction Set - Trap on Greater Unsigned

SPARClite User’s Manual

7-108

TL TL

Trap on Less

Description:

The TL instruction causes a trap_instruction trap if “N xor V” is true and if no higher
priority trap is pending. The trap_instruction trap causes the tt field of the Trap Base
Register (TBR) to be written with 128 plus the least significant seven bits of either
“r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If “N xor V” is false, a trap_instruction trap does not occur and the instruction behaves
like a NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0011 111010 rs1 i=0 reserved rs2

131418192425293031

10 0011 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tl reg rs1 , reg rs2
tl reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tl %g0 + 40 ! tt=168

Instruction Set - Trap on Less

7-109

TLE TLE

Trap on Less Than or Equal

Description:

The TLE instruction causes a trap_instruction trap if “Z or (N xor V)” is true and if no
higher priority trap is pending. The trap_instruction trap causes the tt field of the Trap
Base Register (TBR) to be written with 128 plus the least significant seven bits of either
“r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If “Z or (N xor V)” is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction formats should be
supplied as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0010 111010 rs1 i=0 reserved rs2

131418192425293031

10 0010 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tle reg rs1 , reg rs2
tle reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tle %g0 + 41 ! tt = 169

Instruction Set - Trap on Less Than or Equal

SPARClite User’s Manual

7-110

TLEU TLEU

Trap on Less Than or Equal Unsigned

Description:

The u instruction causes a trap_instruction trap if “C or Z” is true and if no higher
priority trap is pending. The trap_instruction trap causes the tt field of the Trap Base
Register (TBR) to be written with 128 plus the least significant seven bits of either
“r[rs1] + r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If “C or Z” is false, a trap_instruction trap does not occur and the instruction behaves
like a NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0100 111010 rs1 i=0 reserved rs2

131418192425293031

10 0100 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tleu reg rs1 , reg rs2
tleu reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tleu %g0+42 ! tt =170

Instruction Set - Trap on Less Than or Equal Unsigned

7-111

TN TN

Trap Never

Description:

The TN instruction acts like a “NOP”.

All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

Format:

04512131418192425293031

10 0000 111010 rs1 i=0 reserved rs2

131418192425293031

10 0000 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tn reg rs1 , reg rs2
tn reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tn %g0 + 39 ! nop

Instruction Set - Trap Never

SPARClite User’s Manual

7-112

TNE TNE

Trap on Not Equal (Trap on Not Zero)

Description:

The TNE instruction causes a trap_instruction trap if Z=0 and if no higher priority trap
is pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR)
to be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If Z=1, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1001 111010 rs1 i=0 reserved rs2

131418192425293031

10 1001 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tne reg rs1 , reg rs2
tne reg rs1 , immediate
tnz reg rs1 , reg rs2
tnz reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tne %g0 + 43 !tt=171

Instruction Set - Trap on Not Equal (Trap on Not Zero)

7-113

TNEG TNEG

Trap on Negative

Description:

The TNEG instruction causes a trap_instruction trap if N=1 and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Register
(TBR) to be written with 128 plus the least significant seven bits of either “r[rs1] +
r[rs2]” if the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If N=0, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0110 111010 rs1 i=0 reserved rs2

131418192425293031

10 0110 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tneg reg rs1 , reg rs2
tneg reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tneg %g0 + 44 ! tt = 172

Instruction Set - Trap on Negative

SPARClite User’s Manual

7-114

TPOS TPOS

Trap on Positive

Description:

The TPOS instruction causes a trap_instruction trap if N=0 and if no higher priority trap
is pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR)
to be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If N=1, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1110 111010 rs1 i=0 reserved rs2

131418192425293031

10 1110 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tpos reg rs1 , reg rs2
tpos reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tpos %g0 + 45 ! tt = 173

Instruction Set - Trap on Positive

7-115

TSUBcc TSUBcc

Tagged Subtract and modify condition codes

Description:

Computes either “r[rs1]–r[rs2]” if the i field is zero, or “r[rs1] – sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

TSUBcc modifies the condition codes. The overflow bit of the PSR is set if bit 1 or bit
0 of either operand is nonzero. The overflow bit is also set if the operands have
different signs and the sign of the difference differs from the sign of r[rs1].

Format:

04512131418192425293031

10 rd 100001 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 100001 rs1 i=1 simm13

Syntax:

tsubcc reg rs1 , reg rs2 , reg rd
tsubcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

tsubcc %g0, 2, %g0 ! nzvc = 1011

Instruction Set - Tagged Subtract and modify condition codes

SPARClite User’s Manual

7-116

TSUBccTV TSUBccTV

Tagged Subtract, modify condition codes and Trap on
Overflow

Description:

Computes either “r[rs1]–r[rs2]” if the i field is zero, or “r[rs1] – sign_ext(simm13)” if
the i field is one, and places the result in the destination specified by the rd field.

A tag_overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the subtraction
generates an arithmetic overflow (the operands have different signs and the sign of the
difference differs from the sign of r[rs1]).

If TSUBccTV causes a tag_overflow, a tag_overflow trap is generated and the
destination register (rd) and condition codes remain unchanged. If a tag_overflow does
not occur, the integer condition codes are updated (v=0).

Format:

04512131418192425293031

10 rd 100011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 100011 rs1 i=1 simm13

Syntax:

tsubcctv reg rs1 , reg rs2 , reg rd
tsubcctv reg rs1 , immediate, reg rd

Traps:

tag_overflow

Condition Code Modified:

n, z, v, c

Example:

tsubcctv %g0, 2, %g0 ! nzvc = 1011

Instruction Set - Tagged Subtract, modify condition codes and Trap on Overflow

7-117

 TVC TVC

Trap on Overflow Clear

Description:

The TVC instruction causes a trap_instruction trap if V=0 and if no higher priority trap
is pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR)
to be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If V=1, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 1111 111010 rs1 i=0 reserved rs2

131418192425293031

10 1111 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tvc reg rs1 , reg rs2
tvc reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tvc %g0, + 146 ! tt = 174

Instruction Set - Trap on Overflow Clear

SPARClite User’s Manual

7-118

TVS TVS

Trap on Overflow Set

Description:

The TVS instruction causes a trap_instruction trap if V=1 and if no higher priority trap
is pending. The trap_instruction trap causes the tt field of the Trap Base Register (TBR)
to be written with 128 plus the least significant seven bits of either “r[rs1] + r[rs2]” if
the i field is zero, or “r[rs1] + sign_ext(simm13)” if the i field is one.

If V=0, a trap_instruction trap does not occur and the instruction behaves like a NOP.
All bits indicated as reserved in the instruction formats should be supplied as zero as
should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to the
location pointed to by the Trap Base Address in the TBR, and the tt field will be
ignored)

Format:

04512131418192425293031

10 0111 111010 rs1 i=0 reserved rs2

131418192425293031

10 0111 111010 rs1 i=1
06712

reserved software trap #

reserved

reserved

28

28

Syntax:

tvs reg rs1 , reg rs2
tvs reg rs1 , immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tvs %g0 + 147 ! tt = 175

Instruction Set - Trap on Overflow Set

7-119

UMUL UMUL

Unsigned Integer Multiply

Description:

UMUL performs either “r[rs1] x r[rs2]” if the i field is zero, or “r[rs1] x sign_ext
(simm13)” if the i field is one. The 32 least significant bits of the product are written to
the destination register r[rd]. The most significant bits of the product are written to the
Y register.

The UMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles to
compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of r[rs2]
against the sign bit at run time. If the bits match, the UMUL instruction will terminate
in 3, 2 or 1 cycle respectively.

UMUL assumes an unsigned integer word operand and computes an unsigned integer
doubleword product.

Format:

04512131418192425293031

10 rd 001010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 001010 rs1 i=1 simm13

Syntax:

umul reg rs1 , reg rs2 , reg rd
umul reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

umul %o2, %o3, %o1 ! least significant half product to reg o1
rd %y, %o0 ! most significant half product to reg o0

Instruction Set - Unsigned Integer Multiply

SPARClite User’s Manual

7-120

UMULcc UMULcc

Signed Integer Multiply and Change Condition Codes

Description:

UMULcc performs either “r[rs1] x r[rs2]” if the i field is zero, or “r[rs1] x
sign_ext(simm13)” if the i field is one. The 32 least significant bits of the product are
written to the destination register r[rd]. The most significant bits of the product are
written to the Y register.

The UMULcc operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles to
compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of r[rs2]
against the sign bit at run time. If the bits match, the UMULcc instruction will
terminate in 3, 2 or 1 cycle respectively.

UMULcc assumes an unsigned integer word operand and computes an unsigned integer
doubleword product. UMULcc writes the integer condition code bits (see below)

Format:

04512131418192425293031

10 rd 011010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 011010 rs1 i=1 simm13

Syntax:

umulcc reg rs1 , reg rs2 , reg rd
umulcc reg rs1 , immediate, reg rd

Instruction Set - Signed Integer Multiply and Change Condition Codes

7-121

Signed Integer Multiply and Change Condition Codes
(Continued)

Traps:

(none)

Condition Code Modified:.

Table 7-4:

icc bit UMULcc

N
Z
V
C

Set if product [31] = 1
Set if product [31:0] = 0
Zero
Zero

Example:

umulcc %o2, %o3, %o1 ! least significant half product to reg
o1

rd %y, %o0 ! most significant half product to reg
o0

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued)

SPARClite User’s Manual

7-122

 WRASR WRASR

Write Ancillary State Register

Description:

WRASR writes “r[rs1] xor r[rs2]” if the i field is zero, or “r[rs1] xor
sign_ext(simm13)” if the i field is one, to the writable fields of the ASR register
specified in rd (16-31).

On the SPARClite MB86930 a valid rd value is 17. All other values of rd will generate
an illegal instruction trap.

WRASR is a privileged instruction.

Format:

04512131418192425293031

10 rd 110000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 110000 rs1 i=1 simm13

Syntax:

wr reg rs1 , reg rs2 , asr_reg rd
wr reg rs1 , immediate, asr_reg rd

Traps:

illegal_instruction

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %g0, 1, %asr17 ! enable single vector trapping
wr %g0, 0, %asr17 ! disable single vector trapping

Instruction Set - Write Ancillary State Register

7-123

WRPSR WRPSR

Write Processor State Register

Description:

WRPSR causes a delayed write of “r[rs1] xor r[rs2]” if the i field is zero, or “r[rs1] xor
sign_ext(simm13)” if the i field is one, to the writable fields of the PSR register.

WRPSR is a privileged instruction. See section 2.4.7 for programming considerations.

Format:

04512131418192425293031

10 reserved 110001 rs1 i=0 unused (zero) rs2

131418192425293031

10 reserved 110001 rs1 i=1
04512

Note: reserved fields should be programmed as 0.

Syntax:

wr reg rs1 , reg rs2 , %psr
wr reg rs1 , immediate, %psr

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %g0, 0xec7, %psr ! e to pil, 1 to S & PS, 0 to et, 7 to cwp

Instruction Set - Write Processor State Register

SPARClite User’s Manual

7-124

WRTBR WRTBR

Write Trap Base Register

Description:

WRTBR causes a delayed write of “r[rs1] xor r[rs2]” if the i field is zero, or “r[rs1] xor
sign_ext(simm13)” if the i field is one, to the writable fields of the TBR register.

WRPSR is a privileged instruction.

Format:

04512131418192425293031

10 reserved 110011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 reserved 110011 rs1 i=1 simm13

Note: reserved fields should be programmed as 0.

Syntax:

wr reg rs1 , reg rs2 , %tbr
wr reg rs1 , immediate, %tbr

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %g0, 0x1000, %tbr

Instruction Set - Write Trap Base Register

7-125

WRWIM WRWIM

Write Window Invalid Mask Register

Description:

WRWIM causes a delayed write of “r[rs1] xor r[rs2]” if the i field is zero, or “r[rs1] xor
sign_ext(simm13)” if the i field is one, to the writable fields of the WIM register.

WRWIM is a privileged instruction.

Format:

04512131418192425293031

10 reserved 110010 rs1 i=0 unused (zero) rs2

012131418192425293031

10 reserved 110010 rs1 i=1 simm13

Note: reserved fields should be programmed as 0.

Syntax:

wr reg rs1 , reg rs2 , %wim
wr reg rs1 , immediate, %wim

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %g0, –256, %wim ! only windows 0 to 7 valid
! windows 8 and above invalid

Instruction Set - Write Window Invalid Mask Register

SPARClite User’s Manual

7-126

WRY WRY

Write Y Register

Description:

WRY writes “r[rs1] xor r[rs2]” if the i field is zero, or “r[rs1] xor sign_ext(simm13)” if
the i field is one, to the Y register.

Unlike the other write state register instructions, WRY is not a privileged instruction.

Format:

04512131418192425293031

10 00000 110000 rs1 i=0 unused (zero) rs2

012131418192425293031

10 00000 110000 rs1 i=1 simm13

Note: reserved fields should be programmed as 0.

Syntax:

wr reg rs1 , reg rs2 , %y
wr reg rs1 , immediate, %y

Traps:

(none)

Condition Code Modified:

(none)

Example:

wr %g0, 0, %y ! clear reg y

Instruction Set - Write Y Register

7-127

XNOR XNOR

Exclusive NOR

Description:

Implements a bitwise logical exclusive Nor to compute either “r[rs1] xnor r[rs2]” if the
i field is zero, or “r[rs1] xnor sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000111 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000111 rs1 i=1 simm13

Syntax:

xnor reg rs1 , reg rs2 , reg rd
xnor reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

xnor %l1, 0, %l1 ! complement reg l1

Instruction Set - Exclusive NOR

SPARClite User’s Manual

7-128

XNORcc XNORcc

Exclusive NOR and modify icc

Description:

Implements a bitwise logical exclusive Nor to compute either “r[rs1] xnor r[rs2]” if the
i field is zero, or “r[rs1] xnor sign_ext(simm13)” if the i field is one, and places the
result in the destination specified by the rd field.

XNORcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 010111 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010111 rs1 i=1 simm13

Syntax:

xnorcc reg rs1 , reg rs2 , reg rd
xnorcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z=0, v, c=0

Example:

xnorcc %l1, %l2, %g0 ! do any bits in reg l1 match corresponding
 bits

! in reg l2?
bne xyz ! skip ahead if not

Instruction Set - Exclusive NOR and modify icc

7-129

XOR XOR

Exclusive OR

Description:

Implements a bitwise logical exclusive Or to compute either “r[rs1] xor r[rs2]” if the i
field is zero, or “r[rs1] xor sign_ext(simm13)” if the i field is one, and places the result
in the destination specified by the rd field.

Format:

04512131418192425293031

10 rd 000011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 000011 rs1 i=1 simm13

Syntax:

xor reg rs1 , reg rs2 , reg rd
xor reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

(none)

Example:

xor %l1, –1, %l1 ! complement reg l1

Instruction Set - Exclusive OR

SPARClite User’s Manual

7-130

XORcc XORcc

Exclusive NOR and modify icc

Description:

Implements a bitwise logical exclusive Or to compute either “r[rs1] xor r[rs2]” if the i
field is zero, or “r[rs1] xor sign_ext(simm13)” if the i field is one, and places the result
in the destination specified by the rd field.

XORcc modifies the integer condition codes.

Format:

04512131418192425293031

10 rd 010011 rs1 i=0 unused (zero) rs2

012131418192425293031

10 rd 010011 rs1 i=1 simm13

Syntax:

xorcc reg rs1 , reg rs2 , reg rd
xorcc reg rs1 , immediate, reg rd

Traps:

(none)

Condition Code Modified:

n, z=0, v, c=0

Example:

xorcc %l1, –1, %l1 ! complement reg l1 and test result

Instruction Set - Exclusive NOR and modify icc

8-1

HAPTER

JTAG

8
C

8.1 Introduction

With the increased use of surface mount devices and the ever-increasing density of
printed circuit boards, traditional in-circuit and functional testing has become difficult
and expensive. To reduce the complexity of board testing, a boundary-scan test
technique has been adopted by the Joint Test Action Group (JTAG).

The JTAG standard requires that a boundary-scan cell be between each component pin
and the chip logic within an IC. On SPARClite a boundary-cell consists of at least one
shift register bit and some multiplexing. All the boundary- scan cells within SPARClite
are connected as one long shift register. This allows test access to the component pins.
Components with JTAG can be connected serially on a board to provide test access to
all the components plus access to the board traces. For more detailed information,
consult IEEE Standard 1149.1.

JTAG - Introduction

SPARClite User’s Manual

8-2

8.2 Test Access Ports (TAP)

SPARClite has five dedicated pins for JTAG.

Name Input/Output Weak pull-up Function

TCK Input No Test Clock

TMS Input Yes Test Mode Select

TDI Input Yes Test Data Input

TDO Output No Test Data Output

–TRST Input Yes Test Reset

8.2.1 TCK

JTAG uses a test clock independent of component-specific system clock. This is
necessary to be able to shift the serial test data through components with different
operating frequencies. An independent test clock allows shifting of test data concurrent-
ly with the system operation of the component and without changing the state of the
on-chip system logic. Following are the JTAG requirements and clock specifications.

1. The JTAG test logic state will remain unchanged indefinitely when TCK=0.

2. A 50% duty cycle clock is recommended.

8.2.2 TMS

The sequence of TMS inputs is used to put the JTAG test logic into a particular test
mode. The test logic must be in the correct test mode to shift-in instructions, to do
data-shifts and do other operations.

1. TMS input is sampled by the test logic at the rising edge of TCK.

2. Undriven TMS input appears as a logic “1” to the test logic. This is to ensure that
the test logic will sequence to the Test_Logic_Reset state if the TMS is held high
for at least five rising edges of TCK. The test logic will remain in the Test_Log-
ic_Reset state as long as TMS=1. (See “Test Logic Reset” on page 8-10.)

JTAG - Test Access Ports (TAP)

8-3

8.2.3 TDI

The TDI pin is used to input test instructions and test data.

1. The TDI input is sampled by the test logic at the rising edge of TCK.

2. Undriven TDI input appears as a logic “1” to the test logic.

3. No logic inversion takes place when data is being shifted from TDI towards TDO.

4. TDI input change at the falling edge of TCK is recommended.

8.2.4 TDO

TDO is the serial output for the test instructions and data from the test logic.

1. TDO output is valid after the falling edge of TCK.

2. TDO output is in the high-impedance state when data or instruction is not scanned.

8.3.5 –TRST

–TRST is an asynchronous test logic reset pin.

1. The test logic is forced into the Test_Logic_Reset state asynchronously when a
logic “0” is applied to the –TRST pin.

2. If it is not being driven, –TRST pin appears as a logic “1” to the test logic. This is to
ensure normal test operation in the event of an unterminated –TRST.

3. –TRST does not initialize any system logic within the component.

4. To ensure deterministic operation of the test logic, the TMS input should be held at
1 while the –TRST signal changes from 0 to 1.

8.3 Test Instructions

SPARClite implements the three JTAG public instructions; BYPASS, SAMPLE/PRE-
LOAD and EXTEST.

SPARClite contains a two bit JTAG instruction register which receives the instruction
serially from the TDI input. The instruction bits are shifted-in at the rising edge of
TCK. For fault isolation of the board level serial test data path, a constant binary “01”
pattern is loaded into the instruction shift register at the start of the instruction-shift
cycle. Therefore, a “01” pattern will appear at the TDO output in the beginning of the
instruction-shift cycle.

When shifting the instruction into the instruction register, the least significant bit of the
instruction needs to be shifted in first, followed by the most significant bit.

JTAG - Test Instructions

SPARClite User’s Manual

8-4

8.3.1 BYPASS

The BYPASS instruction is used to bypass a component that is connected in series with
other components. This allows more rapid movement of test data through the
components of the board, bypassing the ones that do not need to be tested. The
BYPASS operation enables the bypass register, which is a single stage shift register,
between TDI and TDO.

1. The binary code for the BYPASS instruction is 11.

2. The BYPASS instruction is forced into the instruction register output latches during
the Test_Logic_Reset state. Note the distinction between the “01” content of the
instruction shift register and the “11” content of the instruction register output latch.
Therefore, at the start of the instruction-shift cycle, a “01” pattern will be seen
instead of “11”.

3. The BYPASS operation does not interfere with the component operation at all. If
the TDI input trace to the component is somehow disconnected, the test logic will
see a “11” at TDI input during the instruction-shift state. Therefore, no unwanted
interference with the on-chip system logic occurs.

8.3.2 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction is used to sample the state of the component pins.
The sampled values can be examined by shifting out the data through TDO. This
instruction can also be used to preload the boundary-scan cell output latches with
specific values. The preloaded values are then enabled to the output pins by the
EXTEST.

1. The binary code for the instruction is 01.

2. The SAMPLE/PRELOAD instruction selects the boundary-scan cells to be
connected between TDI and TDO in the Shift_DR TAP controller state (see
section 8.4).

3. The values of the component pins are sampled on the rising edge of TCK in the
Capture_DR TAP controller state.

4. The preload values shifted into the boundary-scan cells are latched into the
boundary-scan output latch at the falling edge of TCK in the Update_DR TAP
controller state.

JTAG - Test Instructions

8-5

8.3.3 EXTEST

EXTEST instruction allows testing of off-chip circuitry and board level interconnec-
tions. The PRELOAD/SAMPLE instruction is used to preload the data into the latched
parallel outputs of the boundary-scan shift register stages. Then, the EXTEST
instruction enables the preloaded values to the components output pins.

1. The binary code for the instruction is 00.

2. SPARClite outputs the preloaded data to the pins at the falling edge of TCK in the
Update_IR TAP controller state at which point the JTAG instruction register is
updated with the EXTEST.

3. The EXTEST instruction selects the boundary-scan cells to be connected between
TDI and TDO in the Shift_DR test logic controller state.

4. Once the EXTEST instruction is effective, the output pins can change at the falling
edge of TCK in the Update_DR TAP controller state.

8.3.4 JTAG Cells

SPARClite’s JTAG test data scan path is composed of input cells, output cells, I/O cells
and output cells with set control. The basic structures of the cells are shown in the
accompanying figures. As the name implies, the input cell is used for input-only pins
and the output cell is used for output-only pins. The I/O cell is used for the I/O pins and
the output cell with set control is used for I/O buffer control.

With each group of I/O pins there is an I/O buffer control JTAG cell which is used to
control the direction of the I/O pins during EXTEST operation. This implies that within
the data-scan path there are cells which do not correspond to a pin, but are used for I/O
buffer control during EXTEST operation.

Note that the output cell and the I/O cell have an output latch separate from the shift
register. This allows the output to remain unchanged during a data-shift operation
during the EXTEST mode. The cell output latches are updated during the Update_DR
state (see section 8.4).

8.3.5 Input Cell

For SPARClite, an input cell structure with signal capture only capability has been
chosen to minimize the propagation delay from the input pins to the on-chip system
logic. Using the SAMPLE/PRELOAD instruction, the user can sample the input pin and
scan out the sampled value.

JTAG - Test Instructions

SPARClite User’s Manual

8-6

8.3.6 Output Cell

The output cell has the capability to output a preloaded value to the output pin during
EXTEST. During EXTEST, the source of the output changes from the chip logic to the
output latch of the JTAG output cell. The output value in the cell is preloaded using the
SAMPLE/PRELOAD instruction.

8.3.7 I/O Cell

The I/O cell is actually composed of an input cell and an output cell. Therefore, for
each I/O pin there are two cells associated with the pin. Hence, when the data is shifted
out through TDO, two bits for each I/O pin will be seen. As mentioned previously, an
I/O buffer control cell is associated with each group of I/O pins. For example, the 32-bit
data bus is controlled by the data I/O buffer control cell. The I/O buffer control cell is
also in the data scan path through which the user can control the direction of the I/O
buffer for the EXTEST.

8.3.8 Output Cell with Set

This cell is used as the I/O buffer control cell. The output latch of the cell is set during
Test_Logic_Reset state so that if EXTEST is entered after reset, the I/O pins are in the
input mode. There is one I/O buffer control cell for each group of I/O signals.

I/O buffer control cell name I/O pins

emudiojo
emuenblio
dbusiojo
tstatejo

EMU_D<3:0>, EMU_SD<3:0>
–EMU_ENB
D<31:0>
Output Pins†

†. Not all output pins are three-statable

From System Pin

ShiftDR From
Last
Cell

ClockDR

G1

–1

1

1D

C1

To Output Pin

To Next Cell

Figure 8-1. Input Cell Allowing Signal Capture Only

JTAG - Test Instructions

8-7

Data From
Internal Logic

Mode

From Last Cell

G1

–1

+1

System Pin

To Next Cell

G1

–1

+1

1D

C1

1D

C1

ClockDR UpdateDR

ShiftDR

Figure 8-2. Output Cell

Output Control
From Internal

Logic

Mode

From Last Cell

G1

–1

+1

To Output
Enable

To Next Cell

G1

–1

+1
1D

C1

1D

C1

ClockDR UpdateDR

ShiftDR

set

S

Figure 8-3. Output Cell with Set

From Last Cell

System Pin

To Next Cell

Cell OS
AboveOutput Enable

Input Cell

Output Cell

Input Data

Output Data

EN

To/From
Internal Logic

Figure 8-4. I/O Structure

JTAG - Test Instructions

SPARClite User’s Manual

8-8

8.4 Operation
The JTAG control logic, which is also referred to as the TAP controller, is implemented
with a synchronous finite state machine. The asynchronous reset input (–TRST) and the
TMS input control the state transition of the TAP controller. To shift instructions into
the instruction register and to do test data-scans, the TAP controller needs to be in the
appropriate state (see Figure 8-5 and Figure 8-6 for timing relationship). A TAP state
transition diagram is provided with examples in the following pages.

The usual sequence of operations is as follows. Initially, the TAP controller is forced
into the reset state, Test_Logic_Reset, by –TRST=0. Next, TMS is set to a “1” and the
–TRST is deasserted at the falling edge of TCK. At the next rising edge of TCK, the
TMS=1 value is sampled by the test logic and the TAP controller remains in the reset
state. The first thing that needs to be done is to shift in the 2 bit instruction into the
JTAG instruction register.

TCK

TDI

Controller State

TMS

Data Input to IR

IR Shift-Register

Parallel Output of IR Bypass New Instruction

Data Input to TDR

TDR Shift Register

Parallel Output of TDR Old Data

Register Selected Instruction Register

TDO Enable Inactive Active Inactive Active Inactive

TDO

T
est-Logic-R

eset

R
un-T

est/Idle

S
elect-IR

-S
can

C
apture-IR

S
hift-IR

E
xit1-IR

P
ause-IR

E
xit2-IR

S
hift-IR

U
pdate-IR

R
un-T

est/Idle

E
xit1-IR

S
elect-D

A
-S

can

Figure 8-5. Test Logic Operation: Instruction Scan

To do so, the TAP controller needs to be transitioned to the Shift_IR state. In order to
make the state transition from Test_Logic_Reset to Shift_IR state, the correct TMS

JTAG - Operation

8-9

sequence would have to be 0 –> 1 –> 1 –> 0 –> 0. Remember that the TMS input
should change at the falling edge of TCK so that enough setup time is available with
respect to the rising edge of TCK at which point the TMS input is sampled. The TAP
controller changes state at the rising edge of TCK. Once in the Shift_IR state, the
instruction bits at TDI will be shifted into the JTAG instruction register at the rising
edge of TCK. Suppose the instruction shifted in was a SAMPLE/PRELOAD. Then as
soon as the instruction is shifted in, the TAP controller must transition to the Exit1_IR
state to terminate the instruction-scan. Otherwise, more than 2 bits will be shifted into
the instruction register.

For the SAMPLE/PRELOAD instruction, data shifts need to take place either to output
the sampled value of the pins or to shift in the preload value for EXTEST. Therefore,
the TAP controller needs to change state from Exit1_IR to the Shift_DR state. This is
accomplished by giving the 1 –> 0 –> 1 –> 0 –> 0 TMS sequence. Once, in the
Shift_DR state, the TDI input will be scanned into the shift register portion of the
boundary scan cells at the rising edge of TCK. Once data-scan is finished, the TAP
controller state can be transitioned to the Run_Test/Idle state for the next JTAG
instruction.

TCK

TDI

Controller State

TMS

Data Input to IR

IR Shift-Register

Parallel Output of IR Instruction ID Code

Data Input to TDR

TDR Shift Register

Parallel Output of TDR Old Data

Register Selected Test Data Register

TDO Enable Inactive Active Inactive Active Inactive

TDO

New Data

T
est-Logic-R

eset

R
un-T

est/Idle

S
elect-IR

-S
can

E
xit1-D

R

P
ause-D

R

E
xit2-D

R

S
hift-D

R

U
pdate-D

R

R
un-T

est/Idle

S
elect-D

A
-S

can

E
xit1-D

R

S
hift-D

R

C
apture-D

R

S
elect-D

A
-S

can

Figure 8-6. Test Logic Operation: Data Scan

JTAG - Operation

SPARClite User’s Manual

8-10

8.5 The TAP Controller

8.5.1 TAP Controller State Diagram

Specifications

Rules

1. The state diagram for the TAP controller is shown in Figure 8-7. (Note the value
shown adjacent to each state transition arc in this figure represents the signal present
at TMS at the time of a rising edge at TCK.)

2. All state transition of the TAP controller must occur based on the value of TMS at
the time of a rising edge of TCK.

3. Actions of the test logic occur on either the rising or the falling edge of TCK in each
controller state.

Description

The behavior of the TAP controller and other test logic in each of the controller states is
briefly described as follows. Note the term, Test Data Registers, refers to either the
Bypass Register or the 152 JTAG cells connected as a shift register.

Test Logic Reset

The test logic is disabled so that normal operation of the on-chip system logic (i.e., in
response to stimuli received through the system pins only) can continue unhindered.
This is achieved by initializing the instruction register with the BYPASS instruction. No
matter what the original state of the controller may be, the controller will enter
Test-Logic-Reset when the TMS input is held high for at least five rising edges of TCK.
The controller remains in this state while TMS is high.

If the controller should leave the Test-Logic-Reset controller state as a result of an
erroneous low signal on the TMS line at the time of a rising edge on TCK (for example,
a glitch due to external interference), it will return to the Test-Logic-Reset state
following three rising edges of TCK with the TMS line at the intended high logic level.
The operation of the test logic is such that no disturbance is caused to on-chip system
logic operation as the result of such an error. On leaving the Test-Logic-Reset
controller state, the controller moves into the Run-Test/Idle controller state where no
action will occur because the current instruction has been set to select operation of the
bypass register. The test logic is also inactive in the Select-DR-Scan and Select-IR-Scan
controller states.

Note that the TAP controller will also be forced to the Test-Logic-Reset controller state
by applying a low logic level to the TRST* input.

JTAG - Operation

8-11

Run-Test/Idle

A controller state between scan operations. In the Run-Test/Idle controller state,
activity in selected test logic occurs only when certain instructions are present.

For instructions which do not cause functions to execute in the Run-Test/Idle controller
state, all test data registers selected by the current instruction must retain their previous
state (i.e., Idle).

The instruction does not change while TAP controller is in this state.

Select-DR-Scan

This is a temporary controller state in which all test data registers selected by the
current instruction retain their previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in this
state, then the controller moves into the Capture-DR state and a scan sequence for the
selected test data register is initiated. If TMS is held high and a rising edge is applied to
TCK the controller moves on to the Select-IR-Scan state.

The instruction does not change while the TAP controller is in this state.

Select-IR-Scan

This is a temporary controller state in which all test data registers selected by the
current instruction retain their previous state.

If TMS is held low and a rising edge is applied to TCK when the controller is in this
state, then the controller moves into the Capture-IR state and a scan sequence for the
instruction register is initiated. If TMS is held high and a rising edge is applied to TCK
the controller returns to the Test-Logic-Reset state.

The instruction does not change while TAP controller is in this state.

Capture-DR

In this controller state data may be parallel loaded into test data registers selected by the
current instruction on the rising edge of TCK.

The instruction does not change while TAP controller is in this state.

Shift-DR

In this controller state, the test data register connected between TDI and TDO as a
result of the current instruction shifts data one stage towards its serial output on each
rising edge of TCK.

The instruction does not change while the TAP controller is in this state.

JTAG - Operation

SPARClite User’s Manual

8-12

Exit1-DR

This is a temporary controller state. If TMS is held high, a rising edge applied to TCK
while in this state causes the controller to enter the Update-DR state, which terminates
the scanning process. If TMS is held low and a rising edge is applied to TCK, the
controller enters the Pause-DR state.

All test data registers selected by the current instruction retain their previous state
unchanged.

The instruction does not change while TAP controller is in this state.

Pause-DR

This controller state allows shifting of the test data register in the serial path between
TDI and TDO to be temporarily halted. All test data registers selected by the current
instruction retain their previous state unchanged.

The instruction does not change while TAP controller is in this state.

Exit2-DR

This is a temporary controller state. If TMS is held high and a rising edge is applied to
TCK while in this state, the scanning process terminates and the TAP controller enters
the Update-DR controller state. If TMS is held low and a rising edge is applied to TCK,
the controller enters the Shift-DR state.

All test data register selected by the current instruction retain their previous state
unchanged.

The instruction does not change while the TAP controller is in this state.

Update-DR

Some test data registers are provided with a latched parallel output to prevent changes
at the parallel output while data is shifted in the associated shift-register path in
response to certain instruction (e.g., EXTEST). Data is latched onto the parallel output
of these test data register from the shift-register path on the falling edge of TCK in the
Update-DR controller state. The data held at the latched parallel output should not
change other than in this controller state.

All shift-register stages in test data registers selected by the current instruction retain
their previous state unchanged.

The instruction does not change while the TAP controller is in this state.

JTAG - Operation

8-13

Capture-IR

In this controller state the shift-register contained in the instruction register loads a
pattern of fixed logic values on the rising edge of TCK.

Test data registers selected by the current instruction retain their previous state. The
instruction does not change while the TAP controller is in this state.

Shift-IR

In this controller state the shift-register contained in the instruction register is connected
between TDI and TDO and shifts data one stage towards its serial output on each rising
edge of TCK.

Test data register selected by the current instruction retain their previous state. This
instruction does not change while the TAP controller is in this state.

Exit1-IR

This is a temporary controller state. If TMS is held high, a rising edge applied to TCK
while in this state causes the controller to enter the Update-IR state, which terminates
the scanning process. If TMS is held low and a rising edge is applied to TCK, the
controller enters the Pause-IR state.

Test data registers selected by the current instructions retain their previous state. The
instruction does not change while the TAP controller is in this state and the instruction
register retains its state.

Pause-IR

This controller state allows shifting of the instruction register to be temporarily halted.

Test data registers selected by the current instruction retain their previous state. The
instruction does not change while the TAP controller is in this state and the instruction
register retains its state.

Exit2-IR

This is temporary controller state. If TMS is held high and a rising edge is applied to
TCK while in this state causes termination of the scanning process and the TAP
controller enters the Update-IR controller state. If TMS is held low and a rising edge is
applied to TCK the controller enters the Shift-IR state.

Test data registers selected by the current instruction retain their previous state. The
instruction does not change while the TAP controller is in this state and the instruction
register retains its state.

JTAG - Operation

SPARClite User’s Manual

8-14

Update-IR

The instruction shifted into the instruction register is latched onto the parallel output
form the shift-register path on the falling edge of TCK in this controller state. Once the
new instruction has been latched it becomes the current instruction.

Test data registers selected by the current instruction retain their previous state.

The Pause-DR and Pause-IR controller states are included so that shifting of data
through the test data or instruction register can be temporarily halted. For example, this
might be necessary in order to allow an ATE system to reload its pin memory from disc
during application of a long test sequence.

Test Logic Reset

1

Run Test/Idle

0 0

1 Select DR Scan 1

0

Capture DR

Shift DR

0 0

1

Exit1 DR

Pause DR

0

Exit2 DR

1

0

Update DR

1

1 0

0

Select IR Scan 1

0

Capture IR

Shift IR

0
0

1

Exit1 IR

Pause IR

0

Exit2 IR

1

0

Update IR

1

1 0

0

1

1 1

1

Figure 8-7. TAP Controller State Diagram

JTAG - Operation

8-15

26CK

D<31>

25CK

88CK

D<31>

87CK

24CK
dbusiojo

2CK

XTAL1

1CK

–TIMER_OVF

JTAG
Controller

Chip Logic

tstatejo

110 CK

ASI<0>

117 CK

ASI<7>

118 CK

ADR<2>

147 CK

ADR<31>

152 CK

CLK_ENB

T
D

I

–T
M

S

T
C

K

–T
R

S
T

T
D

O

8997

93

–R
D

/W
R

–R
E

S
E

T

C
K

C
K

C
K

Figure 8-8. JTAG Cell Organization

JTAG - Operation

SPARClite User’s Manual

8-16

8.6 MB86930 JTAG Pin List

The JTAG cells are arranged in a shift register configuration (see Figure 8-8). When
shifting in a JTAG pattern through TDI, the LSB should correspond to the JTAG cell
value for –TIMER_OVF pin whereas, the MSB of the pattern should correspond to the
CLK_ENB pin’s JTAG cell. As far as JTAG output through TDO is concerned, the first
bit out corresponds to –TIMER_OVF JTAG cell value and the last output bit corre-
sponds to the CLK_ENB JTAG cell value. Table 8-1 lists the order of all of the JTAG
cells.

Table 8-1: JTAG Pin Order

Order JTAG Cell
JTAG Cell

Type Function

1 –TIMER_OVF output Timer Overflow pin

2 XTAL1 input Crystal input

3 _EMU_BRK input Emulator break input

4 icediojo† output EMU_D bus bidirectional control signal
emudiojo = 1: EMU_D bus is input
emudiojo = 0: EMU_D bus is output

5 EMU_D_i<3> input Input bit 3 of EMU_SD<3:0> bus

6 EMU_D_o<3> output Output bit 3 of EMU_SD<3:0> bus

7 EMU_D_i<2> input Input bit 2 of EMU_SD<3:0> bus

8 EMU_D_o<2> output Output bit 2 of EMU_SD<3:0> bus

9 EMU_D_i<1> input Input bit 1 of EMU_SD<3:0> bus

10 EMU_D_o<1> output Output bit 1 of EMU_SD<3:0> bus

11 EMU_D_i<0> input Input bit 0 of EMU_SD<3:0> bus

12 EMU_D_o<0> output Output bit 0 of EMU_SD<3:0> bus

13 EMU_D_i<3> input Input bit 3 of EMU_D<3:0> bus

14 EMU_D_o<3> output Output bit 3 of EMU_D<3:0> bus

15 EMU_D_i<2> input Input bit 2 of EMU_D<3:0> bus

16 EMU_D_o<2> output Output bit 2 of EMU_D<3:0> bus

17 EMU_D_i<1> input Input bit 1 of EMU_D<3:0> bus

18 EMU_D_o<1> output Output bit 1 of EMU_D<3:0> bus

19 EMU_D_i<0> input Input bit 0 of EMU_D<3:0> bus

20 EMU_D_o<0> output Output bit 0 of EMU_D<3:0> bus

21 iceenblio† output –EMU_ENB bus bidirectional control signal
emuenblio = 1: –EMU_ENB bus is an input
emuenblio = 0: –EMU_ENB bus is an output

22 –EMU_ENB_i input Input bit of –EMU_ENB pin

23 –EMU_ENB_o output Output bit of –EMU_ENB pin

JTAG - Operation

8-17

Table 8-1: JTAG Pin Order (Continued)

24 dbusiojo† output D<31:0> bus bidirectional control signal
dbusiojo = 1: D<31:0> bus is an input
dbusiojo = 0: D<31:0> bus is an output

25 D_i<31> input Input bit 31 of D<31:0> bus

26 D_o<31> output Output bit 31 of <31:0> bus

•
•

•
•

87 D_i<0> input Input bit 0 of <31:0> bus

88 D_o<0> output Output bit 0 of <31:0> bus

89 –RESET input Chip reset pin

90 –BREQ input Bus request input

91 –MEXC input Memory exception input

92 –READY input External memory transaction complete signal

93 tstatejo† output Three-state control signal
 If tstatejo=1 then the following pins are three-stated.
ADR<31:2>, ASI<7:0>, –BE<3:0>, –AS, RD/WR,
–LOCK

94 –BGRNT output Bus grant output signal

95 –ERROR output Error output signal

96 –LOCK output Bus lock output signal

97 –RD/WR output Memory Read/Write output signal

98 –AS output Start of memory transaction output signal

99 –CS<0> output LSB of chip select output signal

•
•

•
•

104 –CS<5> output MSB of chip select output signal

105 –SAME_PAGE output Same-Page output signal

106 –BE<3> output Byte 3 enable output signal

•
•

•
•

109 –BE<0> output Byte 0 enable output signal

110 ASI<0> output LSB of ASI output pins

•
•

•
•

117 ASI<7> output MSB of ASI output pins

118 ADR<2> output LSB of Address output pins

•
•

•
•

147 ADR<31> output MSB of Address output pins

JTAG - Operation

SPARClite User’s Manual

8-18

Table 8-1: JTAG Pin Order (Continued)

148 IRL<3> input MSB of interrupt request pin

•
•

•
•

151 IRL<0> input LSB of address output pins

152 CLK_ENB input PLL control pin.
CLK_ENB=1: PLL on
CLK_ENB=0: PLL off

†. These are internal I/O signals. Therefore, there are no corresponding external pins.
1. The following pins are not three-statable: -SAME_PAGE, –CS<5:0>, –BGRNT, TIMER_OVF, –ERROR.
2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, –TRST, TCK, TMS, TDI, TDO.

JTAG - Operation

FUJITSU MICROELECTRONICS, INC. SALES OFFICES

CALIFORNIA
2880 Lakeside Drive, Ste. 250
Cupertino, CA 95014
(408) 996–1600

Century Center
2603 Main Street, #510
Irvine, CA 92714
(714) 724–8777

COLORADO
5445 DTC Parkway, P4
Englewood, CO 80111
(303) 740–8880

GEORGIA
3500 Parkway Lane, #210
Norcross, GA 30092
(404) 449–8539

ILLINOIS
One Pierce Place, #910
Itasca, IL 60143–2681
(708) 250–8580

MASSACHUSETTS
75 Wells Avenue, #5
Newton Center, MA 02159–3251
(617) 964–7080

MINNESOTA
3460 Washington Drive, #209
Eagan, MN 55122–1303
(612) 454–0323

NEW YORK
898 Veterans Memorial Hwy.
Building 2, Suite 310
Hauppauge, NY 11788
(516) 582–8700

OREGON
15220 N.W. Greenbrier Pkwy.,
#360
Beaverton, OR 97006
(503) 690–1909

TEXAS
14785 Preston Rd., #670
Dallas, TX 75240
(214) 233–9394

For further information outside the U.S., please contact:

Fujitsu Microelectronics Pacific Asia Ltd.
1906, No. 333 Keelung Rd., Sec. 1,
Taipei, 10548, Taiwan, R.O.C.
Tel: 02–7576548 • Fax: 02–7576571

Fujitsu Microelectronics PTE Ltd.
51 Bras Basah Rd.
Plaza by the Park
#06–04/07 Singapore 0718
Tel: 336–1600 • Fax: 336–1609

Fujitsu Microelectronics Italia, S.R.L.
Centro Direzionale Milanofiori
Strada 4–Palazzo A/2
20094 Assago (Milano), Italy
Tel: 02–8246170/176 • Fax: 02–8246189

Fujitsu Mikroelektronik GmbH
Europalaan 26A
5623 LJ Eindhoven, The Netherlands
Tel: 040–447440 • Fax: 040–444158

Fujitsu Microelectronics Ltd.
Torggatan 8
17154 Solna, Sweden
Tel: 08–7646365 08–280345

Fujitsu Microelectronics Ltd.
Hargrave House
Belmont Road
Maidenhead
Berkshire SL6 6NE, United Kingdom
Tel: 0628–76100 • Fax: 0628–781484

ASIA

Fujitsu Microelectronics Pacific Asia Ltd.
616–617, Tower B, New Mandarin Plaza,
14 Science Museum Rd., Tsimshatsui East,
Kowloon, Hong Kong
Tel: 723–0393 • Fax: 721–6555

Fujitsu Limited
Semiconductor Marketing
Furukawa Sogo Building
6–1 Marunouchi, 2–chome
Chiyoda–ku, Tokyo 100, Japan
Tel: 03–3216–3211 • Fax: 03–3216–9771

EUROPE

Fujitsu Mikroelektronik GmbH
Immeuble le Trident
3–5 voie Felix Eboue
94024 Creteil Cedex, France
Tel: 01–42078200 • Fax: 01–42077933

Fujitsu Mikroelektronik GmbH
Am Siebenstein 6–10
6072 Dreieich–Buchschlag, Germany
Tel: 06103–6900 • Fax: 06103–690122

Fujitsu Mikroelektronik GmbH
Carl–Zeiss–Ring 11
8045 Ismaning, Germany
Tel: 089–9609440 • Fax: 089–96094422

Fujitsu Mikroelektronik GmbH
Am Joachimsberg 10–12
7033 Herrenberg, Germany
Tel: 07032–4085 • Fax: 07032–4088

