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E1.3 General Description
The MB86936 is a member of the SPARClite family whose function set is a superset of
that of the MB86930. It is available in a 208-pin package, pin compatible to MB86932,
and is capable of operating at 60 MHz. In addition to all the features of the MB86930
processor, the MB86936 contains the following:

• Floating Point Unit:   The MB86936 features a floating-point unit that fully
conforms to the ANSI/IEEE Standard 754-1985, the SPARC Architecture Version 8
specification, and the SPARC IEEE754 Implementation Recommendation with the
Nonstandard FP (NS=1) mode enabling “flush to zero” treatment of denormalized
operands or results as permitted by the recommendation. The FPU contains
thirty-two 32-bit floating-point f registers, designated f[0] to f[31].

• Instruction Cache: The MB86936 has an 4K-byte, 2-way set associative, sectored
instruction cache with 8-word lines. Each line is individually lockable. Tags for each
line contain the address tag, a supervisor/user bit, and 8 “valid” flags, one for each
word of the line. When code is to be removed from the cache, the cache can be
invalidated in a single cycle; likewise, “locked” code in the cache can be unlocked
in a single cycle.

• Data Cache:   The MB86936 has a 2K-byte, 2-way set associative, sectored data
cache with 4-word lines. Each line is individually lockable. Tags for each line
contain the address tag, a supervisor/user bit, and 4 “valid” flags, one for each word
of the line. When data is to be removed from the cache, the cache can be invalidated
in a single cycle; likewise, “locked” data in the cache can be unlocked in a single
cycle.
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• On-Chip DMA: The MB86936 has three DMA channels. Each channel supports
two transfer types: contiguous block and chained block transfers. The DMA also
supports three transfer protocols: single-datum transfer, block transfer, and demand
transfer (where data moves continue as long as an external device requests it). Four
data types are supported: byte, halfword, word, and quad-word. For byte and
halfword, the DMA does all the required packing/unpacking. Each channel also
supports either fly-by or flow-thru transfer modes, and each can be started by either
software or external hardware requests. The addressing convention for accesses is
“big_endian.”

• DRAM Interface:  A high-performance DRAM interface is integrated on-chip.

• Configurable External Data Bus: The MB86936 includes a data bus that can be
configured as 8, 16, or 32 bits wide.   This enables the MB86936 to execute from a
single by-8 or by-16 Memory.

• Burst Mode: The MB86936 supports two data- and instruction-accessing modes to
external memory: normal and burst. In normal mode, it accepts a single datum per
address, driven externally. In burst mode, it accepts 4 words per address, driven
externally. Burst mode stores are supported only as part of DMA requests, and no
burst mode transfers are supported in 8/16 bit mode.

• Bus Interface Unit: The MB86936 BIU is capable of running at half the frequency
of the core. This facilitates system design for users who want to run the core at
60 MHz to achieve high performance, while running external bus peripherals at
30MHz for economy.

• Power Down Modes: The MB86936 supports several power down modes. These
modes allow the user to turn off the clocks to various parts of the chip that may not
be in use, reducing power consumption.

• Video Interface: The MB86936 has a built–in interface to directly connect to a
laser printer engine or high resolution scanner.

• Timers: The MB86936 features two independent general purpose 24–bit timers (a
16–bit counter with a 8–bit prescaler) that can be independently programmed to
operate in one of the three different modes. TIMER0 and TIMER1outputs are
connected to bit 5 and bit 3, respectively of internal interrupt request controller.
TIMER0 output is also available on a MB86936 pin.

• IRC:  An advanced Interrupt Request Controller provides a flexible way of handling
interrupt request in an encoded or decoded request. The Interrupt Request Controller
also allows a programmable interrupt priority. Interrupts from MB86936 peripheral
controllers are included internally.

• Emulation Mode Support: A new feature in the MB86936 DSU allows the chip to
emulate the MB86935.  The version field of the Processor State Register (PSR) is 8
with the MB86936 in ”native” mode and 9 when it is emulating the MB86935.  In
addition, emulating the MB86935 causes the hardware floating point unit to be
disabled.  The emulation mode feature is described in detail in section 9.3.
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E1.4 Programmer’s Model of the MB86936

1.4.1 User-visible Registers
All the special-purpose registers and ASR registers defined on the MB86930 exist also
on the MB96836.

All on-chip control/status/data registers which exist in alternate address spaces in the
MB86930, with one exception, exist also on the MB86936 in backwards-compatible
format. The one exception is the Instruction Tags, whose format has changed.

The increase in cache and the addition of new peripherals in the MB86936 have made it
necessary to add new registers, accessible through alternate address spaces. All on-chip
memory-mapped control/status registers for these new features are mapped into
ASI=0x01, 0x02, 0x03, 0x0C, 0x0D, 0x0E, or 0x0F. The BIU recognizes that these
ASI’s are mapped to internal registers rather than memory, and does not assert the
external ASI pins (or any other pins) when doing accesses in these ASI spaces.

The registers are reset to 0 by default.

Cache/BIU Control/Status Registers:

ASI: 0x01

Address range: 0x00000000-0x000000FF

0x00000000 ASI=0x1 Cache/BIU Control Register

0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

0x00000020 ASI=0x1 Bus Control Register

0x00000060 ASI=0x1 Power Down Register

0x00000080 ASI=0x1 System Support Control Register
(DMA priority; even/odd parity bits added)

Peripheral Control/Status Registers:

ASI: 0x01

Address range: 0x00000100-0x000001FF

0x00000120 ASI=0x1 Same Page Mask Register

0x00000124 ASI=0x1 Address Range Specifier Register 1

0x00000128 ASI=0x1 Address Range Specifier Register 2

0x0000012C ASI=0x1 Address Range Specifier Register 3

0x00000130 ASI=0x1 Address Range Specifier Register 4

0x00000134 ASI=0x1 Address Range Specifier Register 5

0x00000140 ASI=0x1 Address Mask Register 0
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0x00000144 ASI=0x1 Address Mask Register 1

0x00000148 ASI=0x1 Address Mask Register 2

0x0000014C ASI=0x1 Address Mask Register 3

0x00000150 ASI=0x1 Address Mask Register 4

0x00000154 ASI=0x1 Address Mask Register 5

0x00000160 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x00000164 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x00000168 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x0000016C ASI=0x1 Bus Width and Cacheable

0x00000174 ASI=0x1 DRAM Refresh Timer

0x00000178 ASI=0x1 DRAM Refresh Preload Timer

0x00000180 ASI=0x1 Source/Destination ASI Register (DMA0)

0x00000184 ASI=0x1 Current Source Address Register (DMA0)

0x00000188 ASI=0x1 Current Destination Address Reg (DMA0)

0x0000018C ASI=0x1 Current Byte Count Register (DMA0)

0x00000190 ASI=0x1 Descriptor Pointer (DP) Register (DMA0)

0x00000194 ASI=0x1 Channel Control Register (DMA0)

0x00000198 ASI=0x1 Channel Status Register (DMA0)

0x000001A0 ASI=0x1 Source/Destination ASI Register (DMA1)

0x000001A4 ASI=0x1 Current Source Address Register (DMA1)

0x000001A8 ASI=0x1 Current Destination Address Reg (DMA1)

0x000001AC ASI=0x1 Current Byte Count Register (DMA1)

0x000001B0 ASI=0x1 Descriptor Pointer (DP) Register (DMA1)

0x000001B4 ASI=0x1 Channel Control Register (DMA1)

0x000001B8 ASI=0x1 Channel Status Register (DMA1)

0x000001C0 ASI=0x1 Source/Destination ASI Register (DMA2)

0x000001C4 ASI=0x1 Current Source Address Register (DMA2)

0x000001C8 ASI=0x1 Current Destination Address Reg (DMA2)

0x000001CC ASI=0x1 Current Byte Count Register (DMA2)

0x000001D0 ASI=0x1 Descriptor Pointer (DP) Register (DMA2)

0x000001D4 ASI=0x1 Channel Control Register (DMA2)

0x000001D8 ASI=0x1 Channel Status Register (DMA2)

Interrupt Controller Registers:

0x00000200 ASI=0x1 Trigger Mode Register 0

0x00000204 ASI=0x1 Trigger Mode Register 1

0x00000208 ASI=0x1 Request Sense Register

0x0000020C ASI=0x1 Request Clear Register

Overview of MB86936 - Programmer’s Model of the MB86936
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0x00000210 ASI=0x1 IRC Mask Register

0x00000214 ASI=0x1 IRC Latch Clear Register

0x00000218 ASI=0x1 IRC Mode Select

Timer Registers:

0x00000240 ASI=0x1 Prescaler Register 0

0x00000244 ASI=0x1 Timer Control Register 0

0x00000248 ASI=0x1 Reload Register 0

0x0000024C ASI=0x1 Count Register 0

0x00000250 ASI=0x1 Prescaler Register 1

0x00000254 ASI=0x1 Timer Control Register 1

0x00000258 ASI=0x1 Reload Register 1

0x0000025C ASI=0x1 Count Register 1

Video Controller Registers: 

0x00000280 ASI=0x1 Top Margin Register

0x00000284 ASI=0x1 Left Margin Register

0x00000288 ASI=0x1 Block Height Register

0x0000028C ASI=0x1 Line Width Register

0x00000290 ASI=0x1 Start Bit Register

0x00000294 ASI=0x1 Video Control Register 1

0x00000298 ASI=0x1 Video Control Register 2

0x0000029C ASI=0x1 Video Status Register

0x000002A0 ASI=0x1 Transmit FIFO

0x000002A4 ASI=0x1 Receive Buffer

DRAM Control Registers:

0x000007D0 ASI=0x1 DRAM Bank Configuration (Bank 0)

0x000007D4 ASI=0x1 DRAM Bank Configuration (Bank 1)

0x000007D8 ASI=0x1 DRAM Bank Configuration (Bank 2)

0x000007DC ASI=0x1 DRAM Bank Configuration (Bank 3)

0x000007E0 ASI=0x1 DRAM Timing Register 1

0x000007E4 ASI=0x1 DRAM Timing Register 2

Overview of MB86936 - Programmer’s Model of the MB86936
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Emulation Registers:

ASI: 0x01

Address range: 0x0000F000-0x0000FFFF

0x0000FF00 ASI=0x1 Instruction Address Descriptor Register 1

0x0000FF04 ASI=0x1 Instruction Address Descriptor Register 2

0x0000FF08 ASI=0x1 Data Address Descriptor Register 1

0x0000FF0C ASI=0x1 Data Address Descriptor Register 2

0x0000FF10 ASI=0x1 Data Value Descriptor Register 1

0x0000FF14 ASI=0x1 Data Value Descriptor Register 2 or Mask Register

0x0000FF18 ASI=0x1 Debug Control Register

0x0000FF1C ASI=0x1 Debug Status Register

Test Registers:

ASI: 0x01

Address range: 0x00010000-0x0001FFFF

0x00010000 ASI=0x1 Global Test Register

0x00010008 ASI=0x1 IRC Test Register

Instruction Cache Lock Registers:

ASI: 0x02

Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to every eighth word address in this space can be used to initialize the
lock bit for each line in the instruction cache. This differs from the MB86930,
where every fourth word location is accessed.

Data Cache Lock Registers:

ASI: 0x03

Address range: 0x0000FF00-0x000003FF (Bank 1)

0x8000FF00-0x800003FF (Bank 2)

Note: Writing to every fourth word address in this space can be used to initialize the
lock bit for each line in the data cache. This is unchanged from the MB86930.

Instruction Cache Tag RAM:

ASI: 0x0C
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Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to every eighth word address in this space can be used to initialize the
tags for each line in the instruction cache. This differs from the MB86930, where
every fourth word location is accessed.

Instruction Cache Invalidate Registers:

ASI: 0x0C

Note: These registers are in addition to the Instruction Cache Tags which are accessed
using ASI 0x0C.

0x00001000 Bank 1 Instruction Cache Invalidate (write only)

0x80001000 Bank 2 Instruction Cache Invalidate (write only)

Instruction Cache Data RAM:

ASI: 0x0D

Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to word addresses in this space can be used to initialize the values in the
instruction cache.

Data Cache Tag RAM:

ASI: 0x0E

Address range: 0x00000000-0x000003FF (Bank 1)

0x80000000-0x800003FF (Bank 2)

Note: Writing to every fourth word address in this space can be used to initialize the tag
bit for each line in the data cache. This is unchanged from the MB86930.

Data Cache Invalidate Registers:

ASI: 0x0E

Note: These registers are in addition to the Data Cache Tags which are accessed using
ASI 0x0E.

0x00001000 Bank 1 Data Cache Invalidate (write only)

0x80001000 Bank 2 Data Cache Invalidate (write only)

Data Cache Data RAM:

ASI: 0x0F
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Address range: 0x00000000-0x000003FF (Bank 1)

0x80000000-0x800003FF (Bank 2)

Note: Writing to word addresses in this space can be used to initialize the data RAM.
This is unchanged from the MB86930

E1.5 Internal Architecture of the MB86936
Figure E1-1 shows a block diagram of the MB86936. The two major buses shown in the
diagram are as follows:

• Data Data Bus (DD)—A 64-bit bus used to transfer data to and from MB86936
functional units. In general, when a load is executed, data is transferred to the
Integer Unit (IU) or Floating Point Unit (FPU) from one of the other units, and when
a store is executed, data is transferred from the IU or FPU to one of the other units.
When loads/stores to user or supervisor data space are performed, the DD gives the
IU access to the Data Cache, the BIU (if the data is not in the cache), or the DSU (if
the data is to be accessed out of DSU memory).

When doing Load Alternates or Store Alternates, the IU can read data (load
alternate) or write data (store alternate) to the control/status/data registers of all
units, except the Instruction Cache and Instruction Tags, via DD bus.  The
Instruction Cache and Instruction Tags can be accessed only through the ID bus.

• Instruction Data Bus (ID)—This 32-bit bus normally transfers instructions from
either the Instruction Cache, the Bus Interface Unit, or the DSU (when code is being
run out of DSU memory).

Note: When a store alternate is being performed to the I_cache or the I_tags (during
cache initialization, for example), the data are first transferred from the IU to the
BIU on the DD bus. The BIU then transfers the data on the ID bus to the I_cache or
the I_tags. When a load alternate from the I_cache or the I_tags to the IU occurs, the
reverse operation takes place. This obviates the need to extend both the ID and the
DD busses to the I_cache and I_tags. (In the figure below, the connections for
reading/writing the tags through alternate space are shown as dashed lines.)

• DMA Bus (FD)—This 32-bit bus allows transfer of data from the BIU to the DMA.

Overview of MB86936 - Internal Architecture of the MB86936
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Figure E1-1. MB86936 Block Diagram
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E2.1 Overview of MB86936 Caches
The MB86936 offers enhanced support for cacheing: its instruction cache is 4K-bytes in
size, and has 8-word lines. (The corresponding values for the MB86930 are 2K-bytes
and 4-word lines.) The data cache of the MB86936 remains the same as the MB86930’s
at 2K-bytes and 4-word lines. The increased instruction cache size is reflected in a new
format for the Instruction Cache Tag, which has four new “valid” bits to control the
four new words per cache line (the other four valid bits remain in the same positions
they occupy in the I_Cache Tag in the MB86930, making for backward compatibility).

E2.2 Programmer’s Model
The cache control/status registers of the MB86936 form a superset of those in the
MB86930. The registers common to the two chips are as follows:

0x00000000 ASI=0x1 Cache/BIU Control Register

0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

MB86936 Caches - Overview of MB86936 Caches
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To this set (all in the ASI=0x01 space) the MB86936 adds two Instruction_Cache_
Invalidate Registers, one for each bank of the instruction cache, and two Data_Cache_
Invalidate Registers, one for each bank of the data cache. All four are write-only; their
format is shown below.

Bank 1 of the instruction cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000 both in ASI space
0x0C. Bank 1 of the data cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000, both in ASI space
0x0E.

Invalidating the cache, and clearing lock and lru bits, is an easy way to remove old
code/data from the caches when a new page is brought into physical memory, or after a
DMA has been made to cacheable locations in main memory. Clearing only the lock
and lru bits is an easy way to allow locked code to be replaced after use. Note that the
invalidate bits are written during the M stage of the instruction; thus, their effect is not
felt until the fourth instruction after the instruction that writes to these registers.

31

I1 (All lock and lru bits of bank 2 are cleared=1, RST=0)

02

reserved

1

I2 (All valid bits of bank 1 of the cache are cleared=1, RST=0) Instruction cache addresses:
 Bank 1, Address: 0x00001000 (ASI=0x0C)
 Bank 2, Address: 0x80001000 (ASI=0x0C)
 Data cache addresses:
 Bank 1, Address: 0x00001000 (ASI=0x0E)
 Bank 2, Address: 0x80001000 (ASI=0x0E)

Figure E2-1. Cache Invalidate Register Format

E2.2.1 Operation of the Instruction Cache
At reset the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing stores to an
alternate address space 0x0C. When the cache is off, all requests are sent to the external
memory. After the cache is initialized, the user writes a 1 to the cache-on bit to turn on
the cache.

E2.2.2 Operation of the Data Cache
At reset, the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing writes to alternate
address space 0x0E. When the cache is off, all requests are sent to the external memory.
After the cache is initialized, the user writes a 1 to the cache-on bit to enable the
caches.

MB86936 Caches - Programmer’s Model
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Accesses to the ASI’s corresponding to user and supervisor data space are cached. No
loads or stores from any other ASI are cached.

E2.3 Internal Architecture of MB86936 Caches
Figure E2-2 shows cache operation (in the example shown, the Instruction Cache):

Part of Address Compared With the Tag

101131 045

Tag
Bank 1

I_tag Array I_cache Array

4k, 2-way

Tag
Bank 2 Bank 1 Bank 2

to IU

MUX

I_cache hit/miss

= ? = ?

31 11

Figure E2-2. Cache Operation

E2.3.1 Instruction Cache
The instruction cache is an 4K-byte, 2-way associative, sectored cache, with 8-word
lines. The basic operation of the cache is as follows: the IU sends the address to the
I_cache, and I_cache tags. The lower 11 bits of the address are used to access the tag
array and the I_cache. The tag read from the tag array is compared to bits 31-11 of the
address to determine hit or miss.

The address coming out of the IU goes to the I_cache and tags. Bits 31-11 go to the tag
array for comparison. Bits 10-5 select two tags (one for each bank) out of the 128-entry
tag array, and also choose two lines (one for each bank) out of the 4K I_cache. Bits 4-2
select a word out of the 8-word line.

MB86936 Caches - Internal Architecture of MB86936 Caches
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31 0

Compared vs I_cache Tag

1241011 5

WLine #

Figure E2-3. Address to I_cache and Tag Array

The instruction cache tag format is shown below. Twenty–one bits make up the address
tag. Four bits, 9-6, are Valid bits for four of the words of the 8-word line. These bits are
in the same location as the valid bits of the MB86930 I_cache tag array. Four additional
Valid bits have been added for the other four words of the 8-word line. Bit 5 is used to
indicate whether the line can be accessed by supervisor only. Bit 1 is the least-recently
used bit, which is used when doing a line replacement in the I_cache. Note that because
of the increase in cache size and line size, the tag format of the MB86936 differs from
that of the MB86930.

How the valid bits in a tag correspond to the words in the corresponding line is shown
below:

Word Address [4:2] 000 001 010 011 100 101 110 111

Valid Bit Location 6 7 8 9 2 3 4 10

31 0

I_cache Tag

124911 6 5

Old
Valid bits

New Valid bit

Lock bit

Supervisor-Only bit

Least-Recently Used bit

10

New
Valid bits

Note: Only tags for set 2 have LRU bit.

Figure E2-4. I_cache Tag Format

Note that any access that competes with a currently locked entry in the cache is treated
as non-cacheable. In addition to the lock bits in the tag array, there is a global cache
lock bit for each of the caches. Whenever these global lock bits are set, all accesses that
do not result in a hit in the cache are treated as non-cacheable.

Writes to the instruction address space are not supported. The tag and instruction
memory can be updated by doing writes to alternate address spaces 0x0C and 0x0D.

MB86936 Caches - Internal Architecture of MB86936 Caches
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E2.3.2 Read Hit
On an instruction fetch, the tag and the instruction are accessed in parallel, using the
lower 12 bits of the address. If bits 31-11 of the address match one of the accessed tags,
and the U/S fields match, and the “valid” bit corresponding to the word being accessed
is set, then the required instruction is in the cache. The instruction is returned to the IU,
and the LRU bit is updated. The lock bit may be updated, based on the value of the
Instruction lock bit in the “lock control register.”

E2.3.3 Miss Processing
If the address field in the tag does not match the address bits (31-11) or the U/S bit does
not correspond to the ASI indicated by the IU, or the corresponding “valid” bit is not
set, the result is a cache miss. In this case, the “hold” signal to the IU, and the “miss”
signal, are asserted. This freezes the IU pipeline. The request is sent to external memory
via the BIU.

If the address field in the tag matches the address bits (31-11), and the U/S bit
corresponds to the ASI indicated by the IU, and at least one of the valid bits is set (but
the valid bit for the requested word is not set), it implies that an entry has already been
allocated for this word. There is no need to select an entry to be replaced.

If the miss is due to the address field in the tag not matching the address bits (31-11), or
the U/S bit does not correspond to the ASI indicated by the IU, or none of the valid bits
is set, then an entry needs to be selected for replacement (or allocation). The LRU bit
for this entry is checked, and the least-recently used entry is chosen to be replaced (or
allocated).

The entry that is chosen for replacement will also depend on the “lock” bits. Consider
two sets, A and B. If the lock bit for a given entry in A is set, and the corresponding bit
of B is clear, then the entry in B will be replaced regardless of the value of the LRU bit.
The LRU bit will be updated to show the entry in A to be the least-recently used. If the
lock bit for both entries, or the lock bit for the whole cache, is set, then the access will
be treated as a non-cacheable access.

In the case of an instruction fetch, when the required instruction is accessed from main
memory, it is returned to the IU and stored in the cache. The “hold” signal freezing the IU
is deasserted. If a line was replaced or allocated because of the cache miss, the valid bit for
the accessed word is set, and the other valid bits are reset. If the word being accessed is
part of an already allocated line, then only the “valid” bit for the accessed word is set. All
other bits remain unchanged. The lock bit may also be updated based on the value of the
Instruction lock bit in the “lock control register.”

MB86936 Caches - Internal Architecture of MB86936 Caches
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E2.3.4 Data Cache
The data cache is a 2K-byte, 2-way associative, sectored cache, with 4-word lines. The
basic operation of the cache is as follows: the IU sends the address to the D_cache, and
D_cache tags. The lower 12 bits of the address are used to access the tag array and the
D_cache. Once this is completed, the tag read from the tag array is compared to bits
31-10 of the address to determine hit or miss.

Bits 31-10 of the address go to the tag array for comparison. Bits 9-4 select two tags
(one for each bank) out of the 128-entry tag array, and also choose two lines (one for
each bank) out of the 2K D_cache. Bits 3-2 select a word out of the 4-word line.

31 0

Compared vs D_cache Tag

124910 3

WLine #

Figure E2-5. Address to D_cache and Tag Array

The data cache tag format is shown below. Twenty-two bits make up the address tag.
Four bits, 9-6, are valid bits for each word of a D_cache line. Bit 5 is used to indicate
whether the line can be accessed by supervisor only. Bit 1 is the least-recently used bit,
which is used when doing a line replacement in the D_cache. Finally, bit 0 is used to
lock the entry into the cache. Note that this format is identical to that of the MB86930.

31 0

D_cache Tag

126910 5

unusedValid

4

U/S bit

Least-Recently Used bit

Lock bit

Note: Only tags for set 2 have LRU bit.

Figure E2-6. D_cache Tag Format

The data cache follows a write-through update policy. On a write hit, the data is written
to both the cache and main memory. If there is a write miss, the data is written only to
the external memory. A different write policy is followed if the write is to a locked
location.

The lock bit in the data cache has the effect of locking the current data in the cache.
Any access that does not result in a hit in the cache, and maps to a location that is
currently locked, is treated as non-cacheable. Any writes to locked data cache entries
are not written to main memory. Only the data in the cache is updated.

MB86936 Caches - Internal Architecture of MB86936 Caches
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E2.3.5 Read Hit
On a load, the tag and the data are accessed in parallel, using the lower 12 bits of the
address. If bits 31-10 of the address field coming from the IU match the tag, and the
U/S bit corresponds to the ASI indicated by the IU, and the “valid” bit corresponding to
the word being accessed is set, then the required data is in the cache. Since a hit is
detected, the data is returned to the IU, and the “hold” signal to the IU is not asserted.
The LRU bit is updated. The lock bit may be updated, based on the value of the Data
lock bit in the “lock control register.” There is a 64-bit data path between the cache and
the FPU.

E2.3.6 Write Hit
On a store, if a hit is detected, the LRU bit is updated. The lock bit may be updated,
depending on the value of the Data lock bit in the “lock control register.” If the lock bit
for this entry is not set, or the Data lock bit in the “lock control register” does not
indicate that the entry is to be locked, then the transaction is also sent to the BIU to be
completed in external memory.

E2.3.7 Miss Processing
If the address field in the tag does not match the address bits (31-10) coming from the
IU, or the U/S bit does not correspond to the ASI indicated by the IU, or the corre-
sponding “valid” bit is not set, the result is a cache miss.

In the case of a write miss, the cache is left unchanged, and the request is sent to the
BIU to be completed in external memory.

A read miss is processed in exactly the same way as a miss for an instruction fetch,
except that the lock bit may be updated depending on the value of the Data lock bit in
the “lock control register.”

E2.3.8 Atomic Load and Store
All atomic load and store transactions are treated as non-cacheable transactions.

E2.3.9 Non–cacheable Memory Space
The MB86936 also supports non–cacheable memory region in DCACHE. There is no
write in DCACHE if the request is from this region.  The non–cacheable region can be
programmed or from the external pin.  Please refer to section E3–11 in BIU.

MB86936 Caches - Internal Architecture of MB86936 Caches
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HAPTER

MB86936 Bus Interface Unit

E3
C

E3.1 Overview of Bus Interface Unit
The BIU on the MB86936 includes all the features of the MB86930, and in addition
offers the following:

• Option to run core at double the frequency of the Bus Interface Unit,

• Four-word burst mode for instruction fetches and data loads,

• Byte-based parity generation/checking for the external data bus,

• A modified Wait State Specifier Register that supports burst mode and parity
generation/checking on specified address ranges,

• A processor bus request feature that enables the MB86936 to request access to
external address and data buses,

• A peripheral-to-DRAM interface,

• Glueless interface to ROM, EEPROM,

• Handshaking signals for external bus masters,

• 8-bit/16-bit/32-bit read and write between MB86936 and memory,

• Four deep buffered writes to increase bus access throughput,

• One deep instruction prefetching.

MB86936 Bus Interface Unit – Overview of Bus Interface Unit
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E3.2 Burst Mode

E3.2.1 Overview
The Bus Interface Unit (BIU) supports the fetching of instructions and data from
external memory to the appropriate cache in ‘bursts’ of four words at a time. A burst
mode transfer is initiated either by a cache miss or by a DMA request. For a cache miss,
burst mode is supported only for instruction fetches and data loads, not for stores. The
IU is held until all four words are fetched. For DMA burst access, both data burst reads
and data burst writes are supported. (Note, however, that the DMA does not support
movement of data to/from cache.)

When burst mode is triggered by a cache miss, it replaces four words in the cache line
where the miss occurred. Such a burst-mode transfer can take place only if (a) the
enabling bit (see “Bus Control Register,” Figure E3–1) is set, and (b) the external
memory supports burst mode. In the case of an i_cache miss, only half the line is
replaced, since i_cache lines are eight words long. In the case of a d_cache miss, the
entire four-word line is replaced by a burst-mode fetch. The four-word sequence fetched
in burst mode starts with the word that caused the miss, followed by three more words
in a standard order.

E3.2.2 Burst Mode Interface Pins
Two pins are dedicated to burst mode:

–BMREQ: Output pin to inform the memory system that the current bus transaction is a burst mode.

–BMACK: Input pin to inform the processor that the memory system can support burst mode.

Note: When a cache miss occurs, –BMREQ will be asserted only if the corresponding
bit of the Bus Control Register (DBE for data, IBE for instructions) is set. However, for
a DMA transaction, –BMREQ is asserted for a data transfer request for a quad word or
more data, regardless of the status of the DBE bit.

Burst mode in DRAM memory space using the internal DRAM controller is another
exception. The DRAM burst enable bit in the System Support Control Register is
enabled to support DRAM burst (see DRAM Controller Chapter). If the bit is set,
MB86936 will assert –BMREQ upon cache miss in DRAM space to indicate a burst
mode in DRAM, but does not need –BMACK signal before starting the burst cycle.

MB86936 Bus Interface Unit - Burst Mode
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E3.2.3 Burst Mode Fetch Sequence
In burst-mode accesses, the cache automatically uses the two least significant bits
(LSBs) of the address of the requested word, ADR[3:2], to determine the sequence in
which the other three words will be fetched. The table below shows the four possible
sequences of words, in terms of their address LSBs and ADR[3:2], depending on the
LSBs of the word causing the miss. Note that the first word accessed in a burst is
always the one requested by the IU.  ADR[3:2] change in subsequent three cycles to
indicate the respective address fetched.

 

Table E3-1: Sequence of Words Fetched in Burst Mode

LSBs of
Missed Word

SEQUENCE OF WORDS TRANSFERRED
(in terms of their LSBs)

 Missed Word
1st word 2nd word 3rd word 4th word

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

E3.2.4 Burst Mode Control Bits
Two bits in the Bus Control Register (ASI=0x0000 0020) are used to control burst
mode for instruction fetches and data loads.

031 12

Reserved

Data Burst Enable (DBE) (Enabled=1, Disabled=0, RST=0)Address: 0x00000020 (ASI=0x01)
Instruction Burst Enable (IBE) (Enabled=1, Disabled=0, RST=0)

Figure E3-1. Bus Control Register

On reset, burst mode for both instruction and data misses is disabled. The user must
explicitly enable one or both after reset. Bus operations already in progress are not
affected by modification of the burst-enable bits.

E3.2.5 Non 32-bit Address Space
Burst mode access from the non 32-bit address space is not supported for 8- or 16-bit
bus mode. If burst mode is enabled, and the address lies within the address space for a
non-32-bit bus mode transfer, the burst mode request output signal (–BMREQ) will still
be asserted, but the burst acknowledge signal (–BMACK) should not be asserted by the
external memory. If –BMACK is asserted under these conditions, the BIU operation is
undefined.

MB86936 Bus Interface Unit – Burst Mode
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E3.2.6 Prefetch Buffer
The prefetch buffer is not used when burst-mode instruction fetches are enabled, and is
automatically disabled if the IBE bit is set, regardless of the state of the Prefetch Buffer
Enable bit in the Cache/BIU Control Register. If the external memory system cannot
handle burst mode operations, the instruction burst mode should be left disabled, so that
the prefetch buffer can be used.

E3.2.7 Cache Off
Instruction and data burst mode is automatically disabled if the corresponding cache is
turned off.

E3.2.8 Bus Request
The bus will be released to service another request only after the completion of the
burst mode transaction.

E3.2.9 Memory Exception (Instruction Fetches or
Data Loads)

All four word accesses of a burst mode access will be completed even if a memory
exception occurs on any of the word accesses. During a burst access, word accesses that
cause an external memory exception (–MEXC asserted) are not written into the cache,
while any words that do not cause a memory exception are written to cache. Note that
the Integer Unit will recognize a memory exception only when it is accessing the
specific word with which the memory exception is associated.

For example, if the IU requested word 00, the BIU would burst-read 00, 01, 10 and 11.
If an external memory exception occurred only on word 10, this word would not be
written to the cache; the other three words, however, would be written to the cache. The
IU would not vector to the memory_exception trap handler, since there was no memory
exception on the specific word it requested.

If, however, the IU ever tried to access word 10, which was not written into the cache
because of the memory exception, a miss would occur which would cause the BIU to
fetch that word from memory again. If a –MEXC were asserted on this access of
word 10, the processor would vector to the memory_exception trap handler, since this
was the word specifically requested by the IU.

E3.2.10 Memory Exception (DMA)
When a memory exception (–MEXC strobed) occurs on any word of a DMA burst read,
the DMA will complete all four reads. The corresponding four writes, needed to
complete the transaction, will not occur.

MB86936 Bus Interface Unit - Burst Mode
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When a memory exception occurs on any word of a DMA burst write, the DMA will
continue, completing all four writes.

A memory exception on a DMA transfer will not cause the IU to vector to the
data_memory_exception trap routine.

E3.2.11 Non-cacheable Accesses
Burst mode fetches from a non-cacheable address space are not supported. The burst
request signal (–BMREQ) will not be asserted, and only a single-word fetch will be
performed.

E3.2.12 Interface Timing
Figure E3-2 shows the timing of a burst mode transaction for an instruction fetch, data
load, or DMA read. To start the transaction, the MB86936 outputs a burst mode request
signal (–BMREQ) to the memory system. The memory system asserts the burst mode
acknowledge signal (–BMACK) to the processor when the first word is fetched,
indicating that a burst mode request can be handled. The –BMACK should be asserted
only in the cycle when the –RDY for the first access is asserted. The memory latency
involved in the first word fetch is the same as in a non-burst access, and subsequent
fetches are usually shorter; as in the figure, a single cycle. This does not mean that each
fetch following the first will occur in one cycle; subsequent fetches can take any
number of cycles, depending on the –RDY assertion. The –BMREQ signal is deasserted
after the completion of the first word fetch.

If the memory system cannot handle a burst mode transaction, –BMACK will remain
deasserted.  Once the burst mode logic detects an inactive –BMACK, the burst mode
access will terminate. The burst mode logic will not attempt to complete the fetch of
the remaining words in the cache line. However, –BMREQ will be asserted again for
any subsequent misses. Therefore, for a certain address segment in which the memory
system cannot handle a burst mode operation, the –BMACK signal can remain
deasserted. An example is shown in Figure E3-3.

Figure E3-4 shows the timing for the write portion of a DMA burst operation. The
timing is identical to that in Figure E3-2, except that the RD/–WR line is low,
indicating a write operation is in progress.

Note that ADR[31:2] is the address of the first word fetched. This address changes
through the burst based on sequence given in Table E3–1.

MB86936 Bus Interface Unit – Burst Mode
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E3.3 Parity
The MB86936 provides parity generation/checking for the 32-bit external data bus.
Parity can be enabled/disabled for specified address ranges by setting/clearing bits in
the Wait-State Specifier Register (see section on that register, below). Parity can be set
even or odd by setting bit 0 in the System Support Control Register: set to 1, odd parity
is generated/checked; set to 0, even parity is generated/checked. On reset, the value of
this bit is cleared to 0.

XTAL1

–AS

–BMREQ

–BMACK

ADR[27:2]

–RDY

DATA

RD/-WR

ADR1 ADR2 ADR3 ADR4

Figure E3-2. Burst Mode (0 wait state)

CLK

–AS

–BMREQ

–BMACK

ADR[27:2]

–RDY

DATA

Figure E3-3. Terminated Burst Mode Due to –BMACK=1

Parity is generated/checked for every byte of data (resulting in four parity bits). If parity
is odd, the parity bit is set to 1 when there are an odd number of 1’s in the data; if parity
is even, the parity bit is set to 1 when there are an even number of 1’s in the data. When
enabled, parity is generated for all writes to external memory. Incoming parity is
checked only for the address ranges for which the “PE” bit in the corresponding

MB86936 Bus Interface Unit - Parity
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Wait-State Specifier Register is set to 1. If a parity error is detected on an instruction
fetch, an instruction_memory_exception occurs. If a parity error is detected on a data
fetch, a data_memory_exception occurs. The parity bits will have a longer setup/delay
time than the other data bits.

CLK

–AS

–BMREQ

–BMACK

ADR[27:2]

–RDY

DATA

RD/–WR

ADR1 ADR2 ADR3 ADR4

Figure E3-4. DMA Burst Mode, Write Portion

031 2 1

Same-Page Enable (On=1, Off=0)

Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

3

Reserved

46

Timer On/Off (On=1, Off=0)

5

DMA priority bit (On=1, Off=0)

Parity bit (Odd Priority=1, Even Priority=0)

Address: 0x00000080 (ASI=0x01)

7

DRAM Burst Enable (On=1, Off=0)

DRAM Controller Enable (On=1, Off=0)

Figure E3-5. System Support Control Register

E3.4 Non Volatile/Flash Memory Support Signals
The MB86936 has two new signals, –NVWE (non-volatile RAM write enable) and –OE
(output enable), that control non-volatile memory, such as EEPROM and/or Flash
Memory.

–NVWE is used during writes to non-volatile memory to allow sufficient data hold time
for the memory. It is asserted one cycle after –AS is asserted, and is released immedi-
ately when –READY is asserted, as shown in Figure E3-6. Therefore, at least three
cycles must be implemented when the –NVWE signal is used.

MB86936 Bus Interface Unit – Non Volatile/Flash Memory Support Signals
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–OE is used during reads from non-volatile memory to enable the memory output
drivers. It is asserted one cycle after –AS is asserted, and is released at the end of the
data transfer operation, as shown in Figure E3-7.

CLK

–AS

–READY

RD/–WR

–NVWE

(Internal)

Figure E3-6. Non-Volatile Memory Write Timing

CLK

–AS

–READY

RD/–WR

–OE

(Internal)

Figure E3-7. Non-Volatile Memory Read Timing

–NVWE and –OE operate only if both the Programmable Wait-State Enable bit in the
System Support Control Register and the Wait Enable bit in the Wait-State Specifier
Register are set to 1.

E3.5 External Bus Master Support

An external bus master requests for the memory bus by asserting –BREQ. The
processor responds to an external bus master request by asserting the –BGRNT (Bus
Grant) signal. The external bus master can drive RD/–WR, the address and data bus
only during the –AS cycle. The BIU asserts –CS (Chip Select) for the external bus
master one cycle after asserting –AS, and the wait state control logic asserts –RDYOUT
to terminate the operation, as shown in Figure E3-8. The external bus master deasserts
–BREQ when the bus is no longer required.

MB86936 Bus Interface Unit - External Bus Master Support
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E3.5.1 DRAM Interface
If the bus request is for access to the DRAM through the internal DRAM controller, the
BIU acts as an interface between the external bus master and the DRAM. In this case,
–AS, ASI, RD/–WR, and ADR signals are I/O signals.

For DRAM reads, the external bus master asserts –AS, ASI, and ADR and asserts
RD/–WR high to read. The signals are driven for one cycle only. The ASI and ADR are
processed. –CS4 and processed ADR are sent out to the external DRAM. Internal
DRAM ready is asserted to tell BIU that the corresponding data is available. BIU read
in the data and resent it out. –RDYOUT is asserted to indicate the completion of the
request.

For DRAM writes, the external bus master asserts –AS, sets the ASI, ADR, and
D[31:0], and deasserts RD/–WR to write. The signals are also asserted for one cycle
only. ASI and ADR are processed. –CS4, DRAM address and word data D[31:0] are
driven out by BIU. Internal DRAM ready triggers –RDYOUT to indicate the comple-
tion of DRAM write.

Only word access is supported for external bus request to/from DRAM using the
internal DRAM controller.

CLK

–BGRNT

–AS

RD/–WR

–RDYOUT

ADR, ASI

–CS

D[31:0]

Write Timing

CLK

–BGRNT

–AS

RD/–WR

–RDYOUT

ADR, ASI

–CS

D[31:0]

Read Timing

Figure E3-8. External Bus Master Signal Timing
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CLK

–BGRNT

–AS

RD/–WR

–RDYOUT

DRAM Write Timing

CLK

–BGRNT

–AS

RD/–WR

–RDYOUT

ADR

–CS4

D[31:0]

DRAM Read Timing

ASI

ADR[27:2]  DRAM Addr ADR

–CS4

D[31:0]

ASI

ADR[27:2]  DRAM Addr

Figure E3-9. External Bus Master Signal Timing for DRAM Access

E3.6 Processor Bus Request

E3.6.1 Purpose

When the bus is released in response to an external device’s request for the bus (by
asserting –BREQ), the MB86936 processor cannot access the bus as long as the bus
request signal remains asserted. An external bus arbiter may never be aware that the
processor needs the bus back. To remedy this problem, a processor bus request signal is
asserted whenever the external bus is required by the processor. The external bus arbiter
then can release the bus to the processor requesting it. Also, in a bus-based multiproces-
sor system, a processor bus request signal is useful to the external bus arbiter in
deciding which processor requires the bus.

E3.6.2 Features

–PBREQ pin: An external pin is used to output the processor bus request signal,
–PBREQ. The –PBREQ will be asserted whenever the MB86936 requires the bus while
the bus is granted to an external device. The external device using the bus can monitor
the –PBREQ signal, and remove the –BREQ signal at an appropriate time. When the
internal write buffer is enabled, BIU does not assert –PBREQ until the write buffer is
completely filled. An example of the –PBREQ timing is shown in the figure on the
following page:

MB86932 Bus Interface Unit - Processor Bus Request
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CLK

–AS

–PBREQ

–ADR[31:2]

–RDY

DATA

–BREQ

BGRNT

t1 t2 t4t3

Figure E3-10. Example of –PBREQ timing

In the example above, after the current bus transaction is completed, the bus is released
at the beginning of cycle t1 in response to an external bus request. At t2, –PBREQ is
asserted because of a pending bus cycle in the processor. The external bus arbiter
de-asserts –BREQ, and returns the bus to the processor. –PBREQ remains asserted until
the end of the cycle t3. At t4, the processor drives the bus.

E3.7 Same Page Support
The MB86936 supports same memory page operation only in the chip select 4 address
range by asserting the SAMEPAGE signal when the current address is in the same
memory page as the previous address. To use the SAMEPAGE signal, the memory must
be located in the chip select 4 address range, and the internal DRAM controller must be
disabled.  When the internal DRAM controller is enabled, the SAMEPAGE signal is
used exclusively by the internal DRAM controller to generate –RAS signals.

E3.8 Chip Selects
Chip selects of MB86936 behave as MB86930 for –CS0 to –CS3. Two other chip
selects, –CS4 and –CS5, are assigned to the internal DRAM controller.

E3.8.1 Chip Select 4, –CS4
When the internal DRAM controller is used, ASSR[4] and AMR[4] are assigned to
support DRAM address space. The internal DRAM controller, once enabled, responds
to –CS4 only. Wait state generation and internal REARY generation for –CS4 are
programmed in DRAM control registers, described in DRAM controller chapter.
Therefore WSSR[2] has to be disabled. In addition, DRAM memory space referred by
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–CS4 is always cacheable, with a memory data bus width of either word or halfword
only.

When the internal DRAM controller is disabled, –CS4 can be used as the fifth chip
select for other address space.

E3.8.2 Chip Select 5, –CS5
When the internal DRAM controller is used, ASSR[5] and AMR[5] are assigned to
non-cacheable DRAM address space. If all DRAM space is to be cacheable, memory
space referred to by –CS5 has to lie outside of DRAM space. Chip select 5 is also not
seen as a pin when the internal DRAM controller is enabled.

The chip select signal is sent out on –RAS1 pin when the internal DRAM controller is
disabled. Chip select 5 can be used to point to the sixth address space.

E3.9 Wait State Specifier Register

E3.9.1 Purpose
The Wait-State Specifier Register (WSSR) format on the MB86936 has been changed
from that on the MB86930 to accommodate the burst mode bus transaction using
internal –READY and Parity generation/checking.

Since the wait–state of the DRAM cycle is determined by the internal DRAM controller
when it is enabled, the WSSR for –CS4 should be disabled when the internal DRAM
controller is used.

E3.9.2 Format

631 8 727 26 22 21 20 19 18 14 13 9

Count1 Count2 Count1 Count2

5 034 2

SCB1 (On=1, Off=0, RST=0)

SCB0 (On=1, Off=0, RST=0)

PE1 (On=1, Off=0, RST=0)

PE0 (On=1, Off=0, RST=0)

Reserved

Address: 0x00000160 to
0x00000168 (ASI=0x01)

1

WE (On=1, Off=0, RST=0)

SCP (On=1, Off=0, RST=0)

OVR (On=1, Off=0, RST=0)

Figure E3-11. Wait State Specifier Register

The bits in the WSSR can have two different meanings depending on whether burst
mode is enabled or disabled.

MB86936 Bus Interface Unit - Wait State Specifier Register
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E3.9.3 Wait State in –CS0 to –CS3, –CS5
Count1: Count1 +1 is the number of wait states inserted before internal –READY is asserted during

write operations when SCP=0.

Count2: Count2 +1 is the number of wait states inserted before internal –READY is asserted during
read operations when SCP=0.

WE: Wait Enable, enables or disables the internal wait state generation for the individual
address range. IF WE is 1 SCP must be 0.

SCP: If this bit is 1, the internal –READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. IF SCP
is 1, WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external –READY signal, the
wait state generator will stop counting and will wait for the next transaction.

SCB: Unused; should be 0.

PE: Enable checking of Parity. PE1, PE0 correspond to address ranges for WSSR[31:19] and
WSSR[18:6] respectively.

Note: 
Wait state in –CS5 is meaningful only when the internal DRAM controller is disabled
when the internal DRAM Controller is enable, WE bit of –CS5 should be 0.

E3.9.4 Wait State in –CS4
WE: Wait Enable, enables or disables the internal wait state generation for the individual

address range. If WE is 1, SCP must be 0. This bit should be 0 if the internal DRAM
Controller is enabled.

SCP: If this bit is 1, the internal –READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. If SCP
is 1, WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external –READY signal, the
wait state generator will stop counting and will wait for the next transaction.

SCB: If this bit is 1, in the burst mode all accesses after the first access take a single cycle. If
this is 1, Count2 is ignored. SCB1 and SCB0 correspond to address ranges for
WSSR[31:19] and WSSR[18:6] respectively.

PE: Enable checking of Parity. PE1, PE0 correspond to address ranges for WSSR[31:19] and
WSSR[18:6] respectively.

a)  In Burst Mode:

Burst mode enabled and –BMACK is asserted.

Count1: For –CS4, Count1 +1 is the number of wait states inserted before internal _READY is
asserted for the first access of a burst mode transfer.

Count2: For –CS4, Count2 +1 is the number of wait states inserted before internal _READY is
asserted for the 2nd, 3rd, and 4th access of a burst mode access if SCB=0.

MB86934 Bus Interface Unit – Wait State Specifier Register
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b)  Not in Burst Mode:

b1)  Burst mode enable and –BMACK is not asserted.

Count1 + 1: Count1 + 1 is the number of wait states inserted before internal _READY is asserted.

b2)  Burst mode disable.

Count1: Count1 + 1 is the number of wait states inserted before internal _READY is asserted,
under the following conditions: SCP=0, and current access is not in the same page
as the previous access.

Count2: Count2 + 1 is the number of wait states inserted before internal _READY is asserted,
under the following conditions: SCP=0 and current access is in the same page as
the previous access.

Table E3-2: RESET State

WSSR reset state
for –CS[1] to –CS[5]:

WSSR reset state
for –CS[0]:

Count2=0 Count2=31

Count1=0 Count1=31

WE=0 WE=1

SCP=0 SCP=0

SCB=0 SCB=0

OVR=0 OVR=1

PE=0 PE=0

E3.9.5 Wait State Generation
The MB86936 Wait-State Specifier Register (WSSR) format is the same as the
MB86932 Wait-State Specifier Register format. MB86936 wait state generation,
however, differs as follows:

(1) For –CS[5] and –CS[3:0], wait state generation differs for read and write
operations. For read operations, the number of wait states is Count2 +1; for
write operations, the number of wait states is Count1 +1.

(2) For –CS[4], wait state generation is the same as in the MB86932, when the
internal DRAM controller is disabled. Wait state generation for –CS[4] with
WSSR is invalid with internal DRAM Controller.

Note:
The wait state counter is clocked by the BIU clock, which is the external system clock

MB86936 Bus Interface Unit - Wait State Specifier Register
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E3.10
8/16 Bit Bus Mode

The MB86936 processor supports 8/16-bit Bus Mode in the same way as the MB86930
processor. The MB86936 also supports 8/16-bit Bus Mode write operations as follows:

(1) In 8-bit Bus Mode, {ADR<27:2>, –BE2, –BE3} is the store address. BIU stores
as many cycles as required only. For example, a store byte requires only one
cycle, store halfword requires two cycles and store word requires four cycles on
8-bit Bus. 8–bit DRAM access is not supported using the internal DRAM
Controller.

(2) In 16-bit Bus Mode, {ADR<27:2>, –BE2} is the store address, and –BE[1:0]
are the byte enables. –BE1 enables the upper byte (D[15:8]), and –BE0 enables
the lower byte (D[7:0]). For a store byte or store halfword, BIU executes one
cycle. MB86936 takes two cycles to store word in 16-bit Bus Mode.

E3.10.1 Purpose
The data bus of the MB86936 can be configured to 8- and 16-bit bus modes as well as
the standard 32-bit mode. This flexibility accommodates those cases in which code or
data resides in memories organized as blocks of bytes or halfwords.

E3.10.2 Features
Bus Configuration: the data bus configurations are fixed to specific segments of the
bus:

• 8-bit mode: D[7:0], Byte 3

• 16-bit mode: D[15:0], Byte 2-3

• 32-bit mode: D[31:0], Byte 0-3

E3.10.3 Bus Configuration
Upon reset, two external pins, –BMODE16 and –BMODE8 are used to determine the
bus configuration of memory space referred by –CS0. The two bus configuration pins
have weak pull-ups, so that if unconnected, the bus configuration will default to a 32-bit
bus.

(reserved):    –BMODE16=0, –BMODE8=0

8-bit mode:   –BMODE16=1, –BMODE8=0

16-bit mode: –BMODE16=0, –BMODE8=1

32-bit mode: –BMODE16=1, –BMODE8=1

Bus width for memory space referred by –CS0 is determined by –BMODE16,
–BMODE8 value when –RESET is asserted. Bus width for memory space referred by

MB86936 Bus Interface Unit - 8/16 Bit Bus Mode
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–CS1 to –CS5 is programmed by writing to the Bus width and Cacheable Control
Register (ASI = 0x1, ADR = 0x0000016C).

Table E3–3: –CS0 Bus Width Configuration

–BMODE16 –BMODE8 –CS0 Bus Width

0 0 Illegal

0 1 16-bit Memory Bus

1 0 8-bit Memory Bus

1 1 32-bit Memory Bus

In –CS1 to –CS5, the bus configuration is determined by the Bus Width and Cacheable
Control Register (ASI=0x1, ADR=0x16c). Bus width for memory space referred by
–CS1 to –CS5 can be programmed by writing to the Bus Width and Cacheable Control
Register.

12131415161718192021222324

ASI ADDRESS

0x 1 0x 0000 016C

Bus Width 
and Cacheable

31

reserved

Cacheable
(0= cacheable, 1=noncacheable)

Internal /External cacheable
(0=NONCACHE_ pin, 1=internal)

CS5 CS4 CS3 CS2 CS1 CS0

01234567891011

CS5 CS4 CS3 CS2 CS1

RSVD

Bus Width Control Bit (Table E3–6)

{ { { { { { { { { { {
Table E3-4. Bus Width Control Bits of –CS1 to –CS5

BW1 BW Bus Width

0 0 32-bit Memory Bus

0 1 8-bit Memory Bus

1 0 16-bit Memory Bus

1 1 Illegal

Memory space referred by each chip select of –CS1 to –CS5 can be individually
programmed for 8/16/32 bit bus mode. Upon reset, 32-bit bus mode is the default.

BW1 and BW0 are activated high while –BMODE16, –BMODE8 are asserted low.

If the internal DRAM controller is enabled for –CS4 and –CS5, 8-bit bus is meaningless
since the internal DRAM controller only supports 16- and 32-bit mode. If the internal
DRAM controller is disabled, –CS4 and –CS5 do support 8-bit memory bus.

MB86936 Bus Interface Unit – 8/16 Bit Bus Mode
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E3.10.4 System Interface
In order to minimize external “glue logic” required for interfacing to the 8- or 16-bit
bus, the –BE bits are encoded to reflect the two LSBs of a byte address or the LSB of a
halfword address. Therefore, the ADR[27:2] and selected –BE bits can be concatenated
to form a complete address for a non-32 bit bus mode.

Table E3-5:  System Interface –BE Bits

Bus Mode Byte  –BE[0:3]

8-bit bus 0 00008 b t bus

1 0001

2 0010

3 0011

16-bit bus 0 & 1 00006 b t bus

2 & 3 0010

8-bit bus mode address= {ADR[27:2], –BE[2], –BE[3]}
16-bit bus mode address={ADR[27:2], –BE[2]}

–CS[0], which is enabled on reset, and the internal –READY generation logic, can be
used to minimize any glue logic required to define and interface to the boot memory
address space. On reset, the wait state generator, corresponding to –CS[0] for internal
–READY generation, is set to 32 cycles. Later on in the boot code, the wait state
generator can be changed to a more appropriate value.

E3.10.5 Load/Stores
One of the functions of the boot code is to set the processor and system configuration.
This might involve loading system parameters from the boot memory, loading data
from memory mapped I/O, and storing data to non-boot memory address space. All
loads from any 8/16-bit memory address space behave the same way as instruction
fetches, in that, for a non-32 bit bus mode –BE bit encoding and word assembly are
done. In order to meet the –BE AC timing, the –BE bits on the MB86936 need to be all
0’s for all types of loads—word, halfword, and byte—from the 32-bit memory space.
This requires a functional change from the current specification of the MB86930’s –BE
bits, which reflect the byte information for loads. This change does not cause a
problem, since the processor fetches a full 32-bit word on a load, and the IU selects the
byte appropriately. As on the MB86930, –BE bits should be ignored for 32-bit loads.

A summary of the –BE[0:3] bit behavior for loads from the 8/16-bit bus address space
is shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch
occurs. For example, in the 8-bit bus mode, four bytes will be fetched for all loads, and
the –BE bits will sequence with the proper 2 LSBs of the byte address.

MB86936 Bus Interface Unit – 8/16 Bit Bus Mode
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Table E3-6: Load –BE[0:3] Bit Sequence in Load Operation

Bus Mode –BE[0:3] Sequence

8-bit bus 0000=>0001=>0010=>0011

16-bit bus 0000=>0010

32-bit bus 0000

E3.10.6 Burst Mode
Since speed is not a critical issue when executing out of 8/16-bit memory space,
burst-mode is not supported for accesses to non 32-bit address space. When the system
has a 8/16 bit memory being used, it should not assert –BMACK for any accesses.

E3.10.7 Memory Exception
Any memory exception that occurs during a fetch from any address space in a non-32
bit bus mode will be held off until the entire word is fetched. Any memory exception
that occurs during non-32 bit bus mode write cycle, is serviced immediately.

E3.10.8 Bus Request
Any bus request happening during the non-32 bit bus mode fetch will not be recognized
until the end of the complete 32-bit fetch operation.

MB86936 Bus Interface Unit - 8/16 Bit Bus Mode
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E3.10.9 Read Timing
Timing examples for the 8- and 16-bit bus modes read with 1 wait-state memory are
shown below. Note that –AS is asserted at the beginning for one cycle.

CLK

–AS

ADR[27:2]

–RDY

DATA

–BE[0:3] 0000 0001 0010 0011

Byte0 Byte1 Byte2 Byte3

RD/–WR

Figure E3-12. 8-bit Bus Mode Read (1 Wait State)

CLK

–AS

ADR[27:2]

DATA

–BE[0:3] 0000 0010 0000 0010

HW0 HW1 HW0 HW1

RD/–WR

–RDY

Figure E3-13. 16-bit Bus Mode Read (1 Wait State)
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E3.10.10  Write Timing
Timing examples for the 8- and 16-bit bus mode write with 1 wait-state memory are
shown below. Note that –AS is asserted for every cycle of write. The order of
byte/halfword write is the reverse of the order of byte/halfword read.

CLK

–AS

ADR[27:2]

–RDY

DATA

–BE[0:3] 0011 0010 0001 0000

Byte3

RD/–WR

Byte2 Byte1 Byte0

Figure E3-14. 8-bit Bus Mode Write (1 Wait State)

CLK

–AS

ADR[27:2]

–RDY

DATA

–BE[0:3]

RD/–WR

0010 0000 0010 0000

HW1 HW0HW1 HW0

+

Figure E3-15. 16-bit Bus Mode Write (1 Wait State)
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E3.11Boot Code Address Space
The boot code address space is defined by the –CS0 address-range specifier. On reset,
the –CS0 address range defaults to 32K bytes (starting address=0x0), and the ASI is
initialized to 0x9. The PROM address range can be changed later using the mask bit
register associated with –CS0. An example of the supervisor address space (ASI=0x9)
memory map is shown below:

Supervisor
Code Space

PROM

0x00007FFF (bytes): default value

PROM

0x0

Figure E3-16. Supervisor Address Space (ASI=0x9) Memory Map

Any memory access from the boot-code address space, in a non-32 bit mode, will make
the –BE bit encodings reflect the LSBs of a byte/halfword address. Furthermore, the
fetched bytes/halfwords will be assembled into a 32-bit word. 

E3.12
Non–cacheable Memory Access

Non–cacheability of MB86936 has been improved from MB86930. The user of
MB86936 has the flexibility of setting different data memory space to be non–cache-
able through either software programming or hardware control.

If the user decides to use the non–cacheable feature, bit7 of Cache/Bus Interface unit
Control Register (ASI=0x01, ADR=0x0) should be set to 1.  The bit is 0 on reset
indicating that the feature is disabled.

The software or hardware control of non–cacheability is determined for each chip–se-
lect by programming the appropriate bit(s) in Bus–width and Cacheability Control
Register (ASI=0x01, ADR=0x16C).

Table E3–7: Non–cacheability Control Bits

[12] 0 = Cacheable, 1 = Non–cacheable in –CS0 memory space

[13] 0 = Hardware, 1 = Software for –CS0 region

[14] 0 = Cacheable, 1 = Non–cacheable in –CS1 memory space

[15] 0 = Hardware, 1 = Software for –CS1 region

MB86936 Bus Interface Unit – Non-cacheable Memory Access
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[16] 0 = Cacheable, 1 = Non–cacheable in –CS2 memory space

[17] 0 = Hardware, 1 = Software for –CS2 region

[18] 0 = Cacheable, 1 = Non–cacheable in –CS3 memory space

[19] 0 = Hardware, 1 = Software for –CS3 region

[20] 0 = Cacheable, 1 = Non–cacheable in –CS4 memory space

[21] 0 = Hardware, 1 = Software for –CS4 region

[22] 0 = Cacheable, 1 = Non–cacheable in –CS5 memory space

[23] 0 = Hardware, 1 = Software for –CS5 region

Note that non-cacheability control bits for –CS4 and –CS5 is valid only when the
internal DRAM controller is disabled. When the internal DRAM controller is
enabled, –CS4 is always cacheable and –CS5 is always non-cacheable.

E3.12.1 Hardware Non–cacheability
The advantage of hardware control is that the non–cacheability memory space can be
smaller than the memory space referred by a chip–select.  The correct logic value of
–NONCACHE signals has to be available when the signal is expected to be valid.

To relax the timing, bit 8 and bit 9 of Cache/Bus Interface Unit Control Register
indicates the cycle, after –AS is asserted, the –NONCACHE signal should be valid.
–NONCACHE signal of logic 1 indicates cacheable, and logic 0 indicates non–cache-
able, and last only one cycle.

Table E3–8: Cacheability Valid Timing

[9:8] Cycle after –AS

00 same cycle

01 1 cycle

10 2 cycles

11 3 cycles

The –NONCACHE signal has to be valid at least one cycle before –READY is asserted.
With the above statement, the fastest memory access is 1 wait state with hardware
configuration.

E3.12.2 Software Programming of Non–cacheability.
If the entire memory space is pre–determined to be non–cacheable, the user can
program the appropriate bit(s) in Bus–Width and Cacheability Register (see table
E3–7).
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E3.12.3 Internal DRAM Controller Enabled
When the internal DRAM controller is enabled, –CS4 is always cacheable, and –CS5 is
always non–cacheable.  If the entire DRAM is to be cacheable, memory space referred
by –CS5 has to be outside the –CS4 memory space. This mode is valid only when the
cacheability feature is enabled (bit 7 of Cache/Bus Interface Unit Control Register is set
to logic value 1)., and bit 8 in the Instruction Fault Status Register is set (see TLB
section)

E3.13
Write Buffers

To reduce the external memory bus traffic, MB86936 includes four deep write buffers,
allowing the processor to write up to four word/double word data, while external bus is
busy.  The write buffers request a store as soon as the external bus is available and the
buffer is not empty.

To maintain data consistency, any instruction fetch or data load from external memory
is preceded by write buffer empty

E3.13.1 Programming the Write Buffer
Write buffer is utilized only when both data cache, instruction cache and write buffer
are enabled.  On write bit with data cache locked, the data is not written into the write
buffer.

031 2 1

Write Buffer Enable (Enabled=1, Disabled=0, RST=0)

Prefetch Buffer Enable (Enabled=1, Disabled=0, RST=0)

Global Data Cache Lock (Lock On=1, Lock Off=0, RST=0)

345

Data Cache Enable (Enabled=1, Disabled=0, RST=0)

Global Instruction Cache Lock (Lock On=1, Lock Off=0, RST=0)

Instruction Cache Enable (Enabled=1, Disabled=0, RST=0)

6789

Non–cacheable Wait–state

Cacheability Enable (Enabled=1, Disabled=0, RST=0)

Reserved

Figure E3-17. Cache/Bus Interface Unit Control Register

Bits 31–10: Reserved

Bits 9–8: Non–cacheable wait state.  These two bits set the wait state cycle when –NONCACHE pin
is valid.

Bit 7: Setting of this bit selects cacheability feature.

Bit 6: Reserved

Bit 5: Write Buffer Enabled—When set to 1, enables the write buffer of the BIU only if both the
instruction and data caches are enabled. At reset, this bit is 0. This bit should be changed
only when the instruction and data caches are off.

MB86936 Bus Interface Unit - Write Buffers
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Bit 4: Prefetch Buffer Enabled—When set to 1, enables the prefetch buffer of the BIU only if both
the instruction and data caches are enabled. At reset, this bit is 0. This bit should be
changed only when the instruction and data caches are off.

Bit 3: Global Data Cache Lock—Locks the current entries into the on-chip data cache; with this
bit set to 1, no valid entry in the data cache will be replaced. To insure the best
performance with the cache locked, invalid words in allocated cache locations will be
updated. On write hits, with the data cache locked, the data is not written to external
memory, allowing the locked cache to be used as scratchpad RAM or a run-time stack,
independent of main memory. When the Data Cache Lock bit is 0, the cache operates
normally. At reset, this bit is 0.

Bit 2: Data Cache Enable—Turns the on-chip data cache on (1) and off (0). At reset, this bit is 0.

Bit 1: Global Instruction Cache Lock—Locks the current entries into the on-chip instruction
cache; with this bit set to 1, no valid entry in the instruction cache will be replaced. To
insure the best performance with the cache locked, invalid words in allocated cache
locations will be updated. When this bit is 0, the cache operates normally. Writes to the
Instruction Cache Lock bit do not affect cache operation for the following three instructions.
At reset, this bit is 0.

Bit 0: Instruction Cache Enable—Turns the on-chip instruction cache on (1) and off (0). Writes to
the Instruction Cache Enable bit do not affect cache operation for the following three
instructions. At reset, this bit is 0.

E3.14
BIU Priorities

In general the following hierarchical rules apply when multiple requests are made to the
bus interface unit:

• The bus cycle currently in progress will complete.

• If there is a pending external bus request, the bus will be granted to the external
requestor.

• If there is a pending DMA request, the bus will be granted to the DMA controller.

• If the write buffer is enabled and not empty, the store will occur.

• If there is a pending load or store operation it will be serviced.

• If there is a pending request for an instruction it will be fetched.

• If the prefetch buffer is empty, a prefetch cycle will be initiated.

Note that bit 1 in the System Support Control Register can be used to allow the IU to
“steal” cycles from the DMA. When this bit is set, the DMA will de-assert its request
after each datum is moved. When cleared, the DMA will keep the bus until the whole
DMA transaction has completed.
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HAPTER

MB86936 DRAM Controller

E4
C

E4.1 Overview
The primary function of a DRAM controller is to convert the memory access signals
generated by the CPU into signals which the DRAM requires in order to read or write
data.  To reduce pin count, the DRAM address is multiplexed.

Memory is arranged in a rectangular matrix where individual elements are located at a
specific row and column address.  The row and column addresses are derived directly
from the address issued by the CPU through an address multiplexer. The DRAM uses
the row address strobe (–RAS) to capture the row address.  In page–mode DRAMs, the
data in an entire row is then latched as a single vector or ’page’ in the DRAM.  Once in
this ’page’, the individual ’column’ elements can be accessed faster than when
accessing them in a large array. Subsequent accesses to the same page are called
’page–mode’ accesses. Only the column address is needed to perform a page–mode
access. The DRAM uses the column address strobe (–CAS) to capture the column
address. An additional signal  (–DWE) is used to distinguish between a read and a write
access.

Since DRAMs are volatile, they must be refreshed periodically.  This means that a
timer is needed to request refresh at programmed intervals.

The MB86936’s integrated DRAM controller provides an address  multiplexer, a
refresh timer, a page comparator  and a programmable state machine to govern the
timing relationships of the multiplexed row and column address and the DRAM control

MB86936 DRAM Controller – Overview
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signals. It can be used with DRAMs having different access times in a wide range of
operating frequencies.

The DRAM controller is targeted at supporting the most common type and the lowest
cost DRAM:  the page–mode DRAM with CAS  before RAS refresh. CAS before RAS
refresh uses the DRAM’s  internal address counter to specify the row to be refreshed
and avoids the added cost of an external counter. It does not support interleaving of
memory banks.

E4.2 Registers
The registers used in configuring and activating the DRAM controller are described
below.

E4.2.1 System Support Control Register
This register is used to enable the DRAM controller. It also controls burst support for
DRAM accesses and enables the refresh timer. DRAM wait states are set by the DRAM
Timing Registers. If the Programmable Wait–State  Enable bit is set then the Wait
Enable bit of the Wait State Specifier Register for CS4 and CS5 must be cleared.

031 2 1

Same-Page Enable (On=1, Off=0, RST=0)
Chip Select Enable (On=1, Off=0, RST=0)

Programmable Wait-State Enable (On=1;Off=0;RST=1)

3

Reserved

56

Timer On/Off (On=1, Off-0, RST=0)
DMA priority bit (On=1, Off=0)

Note: The chip select generation for Address
Range Specifier 0 is always enabled,
regardless of the value of the Chip Select
Enable Bit.

47

DRAM Burst Enable (On=1, Off=0, RST=0)
DRAM Controller Enable (On=1, Off=0, RST=0)

Parity bit (Odd Priority = 1, Even Priority = 0)

Address: 0x00000080

Figure E4–1 System Support Control Registers

Bits 31-6: Reserved

Bits 6-7:

Bit 5: Same-Page Enable—Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the –SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, –SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.
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Bit 4: Chip Select Enable—Enables (1) and disables (0) the generation of chip-select signals for
external accesses in address ranges 1 through 5. Regardless of the state of this bit,
however, –CS0 is always asserted when the current address lies in address range 0. The
Chip Select Enable bit is cleared to 0 on reset.

Note: Before enabling chip selects all chip select Address Mask and Address Range
registers should be initialized so that two chip selects are never selected at the same time.

Bit 3: Programmable Wait-State Enable—Enables (1) and disables (0) the programmable
wait-state generators for all address ranges. The Programmable Wait-State Enable bit is
set to 1 on processor reset.  The DRAM Controller does not use this bit to set wait states.

Bit 2: Timer On/Off—Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Bit 1: When this bit is set, the BIU is shared equaly between the DMA and BIU. If both units are
requesting the bus, they will alternate bus accesses. When this bitis cleared, the DMA has
exclusive use of the bus for as long as DMA is requesting the bus.

Bit 0: Parity can be set even or odd by setting bit 0 in the System Support Control Register: set
to 1, odd parity is generated/checked; set to 0, even parity is generated/checked. On reset,
the value of this bit is cleared to 0.

Table E4-1: System Support Register Summary

Chip
S l t

Affected by
Chi S l t

Address Range Specifier Address Mask Wait-State SpecifierChip
Selects

Affected  by
Chip-Select

Enable?
Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset Address

(ASI=0x01)
Value at Reset

0 No N/A ASI=0x09
ADR<31:10>=0

0x0000 0140 All mask bits 0
except

ADR<14:10> = 1

0x0000 0160
(low halfword)

Count 1,2 = 31
Wait Enable=1
Single Cycle =0

Override=1

E4.2.2 DRAM Bank Configuration Register
This register configures the DRAM Controller  for the DRAM type and bank size that it
will support.

 
31 4 3 0

[15:7] Bits 27:19 of the starting address of the bank

[6:4] Number of DRAM column address bits

[3:0] Bank Size

7

reserved

Address:

(ASI=0x1)
Reset State: 0x00000000

15

000 – reserved
001 – 8
010 – 9
011 – 10
100 – 11
101 – 12
110 – reserved
111 – reserved

0000 – 512K bank
0001 – 1MB bank
0010 – 2MB bank
0011 – 4MB bank
0100 – 8MB bank
0101 – 16MB bank
0110 – 32MB bank
0111 – 64MB bank
1000–1111 – reserved

bank 0:
bank 1:
bank 2:
bank 3:

0x0000 07D0
0x0000 07D4
0x0000 07D8
0x0000 07DC

Figure E4–2 DRAM Bank Configuration Registers
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DRAMs are specified by bit density, ie. the total number of bits in the  chip.  For a
given bit density,  a DRAM is available in different depth and data width combinations.
For example, a 16Mbit DRAM can be found in a 2Mx8, 4Mx4, or 16Mx1 arrangement.
To form a 32–bit memory bank, the number of chips required are four, eight and thirty
two, respectively.  The corresponding bank sizes will be 8MB, 16MB, and 64MB.  The
number of bits used for the row and column addresses given in the DRAM specification
reflects its unternal structure.

The bank size, number of column bits, and starting address of the bank are written to
the DRAM Configuration Registers, one for each bank and up to four  banks. The
number of DRAM column address bits will be used to control how  the physical address
is divided into row and column address bits.  The DRAM must have at least eight
column bits and can go up to 12  column address bits. The DRAM can have up to 12
address pins.  Any  page–mode DRAM from 256Kxn to 16Mxn (where n is the number
of data bits) can be used.

The DRAM address space is defined by the  Address Range Specifier Register and
Address Mask Register for CS4.  This address space is further subdivided into banks of
addresses.  The starting address of a bank and the bank size will determine the  address
range of a particular bank.  Addresses falling in the range of addresses defined for a
bank  will activate the corresponding –RAS.  Each –RAS corresponds to a particular
bank.

For example, a 32 bit bank of memory using 1Mxn DRAMs will yield 4 megabytes. If
it is desired that this bank start at address 0x0000000, and the DRAM has 10 column
and 10 row bits, then bits 27:19 of the DRAM Bank Configuration Register will be set
to ’000000000’, bits 6:4 set to ’011’ to indicate  10 column bits, and bits 3:0 set to
’0011’ to indicate a  4MB bank size.

The DRAM address space may be divided into the different banks in any order. The
largest bank does not have to be bank 0. However it is important to observe the
restriction that the  largest bank occupy the lowest addresses in the DRAM space.

E4.2.3 DRAM Timing Register 1 & 2
Together, these two registers contain a set of parameters which control the timing
relationships of the DRAM Controller signals.  They affect all of the banks uniformly.
Once these registers are written, the timing relationships of the multiplexed address,
–RAS, –CAS, and –DWE are the same regardless of which bank is accessed. These
registers are cleared during reset.

MB86936 DRAM Controller – Registers
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13

31 0

31 0

15

reserved

reserved

[15:14]  tASR – row address to –RAS setup time
[13:12]  tRAH – row address to –RAS hold time

[11:10]  tASC – column address to –CAS setup time

[7:6] tCP – CAS precharge time

[9:8]  tCAS – CAS pulse width

[5:4] tWCS/tRCS – write/read command setup time
[3:2] tRP – RAS precharge time

[1:0] reserved

135791113

15

[15:14] tRP – CBR refresh

8911

[13:12] tCSR – CAS setup time for CBR refresh
[11:10] tCHR – CAS hold time for CBR refresh

[9:8] tRAS (CBR refresh) RAS pulse width

reserved

Address: 0x000007E0
(ASI=0x1)
Reset State: 0X00000000

Address: 0x000007E4
(ASI=0x1)
Reset State: 0X00000000

Figure E4–3 DRAM Timing Registers

Table E4–2: Timing Register Parameter Settings

[x1:x0] # Internal Clock Cycles

00 1 cycle

01 2 cycles

10 3 cycles

11 4 cycles

The internal clock cycle is the unit of reference for all parameters in the Timing
Registers. The default for  these parameters is one internal clock cycle.  If no clock
doubling is used, the internal clock cycle time is identical to the external  bus cycle
time. These parameters specify the number of wait cycles incurred between the state
transitions in Figure E2–3.

The BIU will latch the data on D[31:0] at the end of phase 2 of the external bus clock.
The DRAM controller asserts an internal DATA–READY signal on the last cycle that
–CAS is active.

MB86936 DRAM Controller – Registers
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Table E4–3: Timing Register Parameters

tASR row address to –RAS setup time.  –RAS will be asserted one to four  internal clock
cycles after the row address change to provide the address to –RAS setup time.

tRAH row address hold time.  The row address to column address switch will occur  one to

four internal clock cycles after  –RAS is asserted to satisfy the row address hold time

requirement.

tASC column address setup time. –CAS is asserted one to four internal clock cycles after the

row to column address change to provide the address to –CAS setup time.

tCAS –CAS pulse width.  –CAS will  be deasserted  one to four internal clock cycles after

–CAS is asserted

tCP –CAS precharge time. –CAS will remain deasserted  a minimum of one to four internal

clock cycles after it is deasserted.  Note that –CAS will remain deasserted if there are

no DRAM accesses.

tWCS,tRCS Write/Read command setup time.  –CAS is asserted from one to four internal clock

cycles after –DWE is changed.

tRP –RAS precharge time.  –RAS will remain deasserted for at least one to four internal

clock cycles after it is deasserted. It will remain deasserted until the –RAS active state

is reached. (See State Diagram)

tRP (CBR) –RAS precharge time for CBR refresh.  The transition from the IDLE state and the CBR

–CAS active state can be one to four internal clock cycles. This can be used to lengthen

the –RAS precharge time.

tCSR

(CBR)

–CAS to –RAS setup time for –CAS before –RAS refresh.  –RAS will be asserted from

one to four internal clock cycles after –CAS is asserted.

tCHR

(CBR)

–CAS to –RAS hold time for CBR refresh.  –CAS will be deasserted from one to four

internal clock cycles after –RAS is asserted.

tRAS

(CBR)

–RAS will be deasserted from one to four internal clock cycles after –CAS is deas-

serted. This can be used to lengthen the –RAS pulse width during CBR refresh.  The

–RAS pulse width during CBR refresh is the sum of tCHR(CBR) and tRAS(CBR).

MB86936 DRAM Controller – Registers
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IDLE

–RAS
Active

Row/Column
Address Switch

–CAS
Active

–CAS
Precharge

–RAS
Precharge

–DWE
Switch Same page

same access type

Same page
different access

type

CBR 
–CAS Active

CBR 
–RAS Active

CBR –CAS
Precharge

Not in same page

refresh

refresh

DRAM access
tRP (CBR)

tCSR (CBR)

tCHR (CBR)

tRAS (CBR)
tRP

tCP

tCP

tCP

tASR

tRAH

tASC

tCAS

tWCS/tRCS

tRAS

Figure E4-4. State Diagram
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E4.2.4 Same Page Mask Register
If the current DRAM access and the previous DRAM access share the same DRAM row
address, then these accesses are said to be in the ’same’ page . These accesses need not
be sequential. Accesses to the same page in DRAM are faster than accesses to different
pages since –RAS remains asserted and only the column address needs to be changed
ie. –CAS will be reasserted.  The Same Page Mask Register sets the size of a page. A
page refers to the number of column locations in a given row.  The number of column
address bits in the DRAM determines the page size.  For example, a 1Mx4 DRAM has
10 column address bits and its page size is 1K.  If more than one bank is used and the
page sizes differ between banks, then the Same Page Mask Register should be
programmed for the smallest page size.

This register controls which bits of the current address and ASI will be compared with
the previous address and ASI.  If the unmasked bits  in the current address and ASI
match with the bits in the previous address and  ASI then  the current access is in the
same ’page’ as the previous access. The  DRAM address range must not be accessed
during the three cycles after this  register pair is written.

031 30 23 22 1

ASI Mask <7:0>
(Care=0, Don’t Care=1, RST=Undefined) (Care=0, Don’t Care=1, RST=Undefined)

Address Mask (ADR <31:10>)

Figure E4–5. Same-Page Mask Register

Bit 31: Reserved

Bits 30-23: ASI Mask—Specifies which bits in the ASI of the current external access are to be
compared with the corresponding bits in the ASI of the previous access. Only those bits
are compared for which the mask bit is 0. Mismatches in any other bits do not prevent the
two accesses from being recognized as “on the same page.” The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask—Specifies which of the 22 most significant bits in the address of the current
external access are to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is 0. Mismatches in
any other bits do not prevent the two accesses from being recognized as “on the same
page.” The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

MB86936 DRAM Controller – Registers
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Table E4–4 Same Page Mask Register Values with ASI not masked

# Column bits 16–bit 32–bit

8 not used 0x00000000

9 0x00000000 0x00000002

10 0x00000002 0x00000006

11 0x00000006 0x0000000e

12 0x0000000e 0x0000001e

E4.2.5 Address Range Specifier Register 4 and
Address Mask Register 4

Address Range Specifier Register 4 is used in conjunction  with Address Mask Register
4 to select which portion of the 4GB address space is assigned as the DRAM address
space.  Chip Select 4 (CS4) will be asserted whenever an access is made  to an address
which falls in the range specified by this register  pair.  The starting address of a bank
must be on a bank size boundary (eg. a 4MB bank can start at 0x00000000,
0x00400000, etc.)  and  the largest bank must occupy the lowest addresses followed by
the next largest  bank and so on.  The DRAM address range must not be accessed
during the three cycles after this register pair is written.

031 30 23 22 1

ASI <7:0>
(RST=Undefined) (RST=Undefined)

ADR <31:10>

Figure E4–6. Address Range Specifier Registers

Bit 31: Reserved

Bits 30-23: ASI[7:0]—Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Bits 22-1: ADR[31:10]—Specifies the 22 most significant bits of a target address range. The value of
this field is undefined on reset.

Bit 0: Reserved

031 30 23 22 1

ASI <7:0>
(RST=Undefined)* (RST=Undefined)*

ADR <31:10>

* Except AMR[0].

Figure E4–7. Address Mask Registers

Bit 31: Reserved
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Bits 30-1: Mask—Specifies which bits in the ASI and address of the current external access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is 0. See Table E2-3 for reset value.

Bit 0: Reserved

Table E4–5: Programming the Address Mask Register

DRAM address
space Value in Address Mask Register  4

1MB 0x0000 07fe

2MB 0x0000 0ffe

4MB 0x0000 1ffe

8MB 0x0000 3ffe

16MB 0x0000 7ffe

32MB 0x0000 fffe

64MB 0x0001 fffe

E4.2.6 Timer Register and Timer Preload Register
These registers are used by the DRAM controller to set the refresh interval. The Timer
Register contains the current count of a 16–bit timer. The Timer Preload Register
contains a value which is loaded into the timer when the timer overflows.  The timer
overflows when its count decrements to zero. The processor will then assert the
–TIMER_OVF signal externally. The DRAM controller will  detect this internally and
begin a refresh cycle.  The minimum value  written to the Timer Register is 0x01.
Typically, the same value  is written to both registers.

031 15

Timer Value

16

Reserved
(RST=Undefined)

Figure E4–8. Timer Register

 

031 15

Timer Pre-Load Value

16

Reserved
(RST=Undefined)

Figure E4-9. Timer Pre-Load Register
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E4.2.7 Bus Width and Cacheability Register
The DRAM controller supports 32–bit and 16–bit wide memory. It does not support
8–bit wide memory. The data bus width is specified in this register.

Bits 9:8 and bits 11:10 specifies the bus width for CS4 and CS5, respectively. These
settings must be the same. Table E4-6 defines bits 11:8  of this register.

Table E4–6: Bus Width Settings

Bus Width bits [11:8]

32–bit 0000

16–bit 1010

E4.3 Burst Mode
Burst mode read operation is supported by the DRAM controller  through the Bus
Interface Unit (BIU).  The BIU generates the necessary  burst addresses and sends them
to the DRAM controller in sequence.  The DRAM controller will treat burst accesses
like any other access to DRAM. During a burst operation no other memory access will
be interleaved with  the burst accesses. To enable DRAM burst, bit 7 of the System
Support Control Register must be set. In addition, burst-mode must be enabled for
either the D-cache or the I-cache, or both, by programming the Bus Control Registers
(0X00000020 ASI=0X01). Burst-mode write is not supported.

E4.4 –CAS Behavior during Word, Halfword, and Byte 
Accesses

The DRAM controller has four –CAS output signals.  Each –CAS controls a  byte in a
32 bit memory system.  –CAS0 controls byte0( the most significant  byte in a Big
Endian architecture such as SPARC, and –CAS<1:3> control the  least significant three
bytes, respectively.  In a 16 bit system, –CAS2  controls the most significant byte (byte
2)  and –CAS3 controls the least  significant byte (byte 3).  –CAS0 and –CAS1 are not
used in a 16 bit system.

In a 32 bit system, a word access will cause all four  –CAS signals to be  asserted
simultaneously during the –CAS active phase.  An access to the  most significant
halfword will cause  –CAS<0:1> to be asserted. An access  to the least significant
halfword will cause –CAS<2:3> to be asserted.

MB86936 DRAM Controller – –CAS Behavior during Word, Halfword, and Byte Accesses
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E4.5 Address Multiplexing
The multiplexed DRAM row and column address appear on ADR[13:2]. These pins
should be connected to A12:A0 of the DRAMs. If ADR13, ADR12,ADR11 or ADR10
are unused they should be left unconnected.  ADR[27:14] are unaffected by the DRAM
controller and will reflect bits 27:14 of the physical address.

For 32–bit systems, the least significant address bit is A2. It is also the least significant
column address bit.    For 16–bit systems, the least significant address bit and  the least
significant column address bit is A1.

During the row address phase,the row address appears on ADR[13:2]  with the least
significant bit at ADR[2]. The row address’ least significant bit will vary according to
the number of column address bits in the DRAM.  The column bits will appear on
ADR[13:2] during the column address phase with the least significant    bit (A2/A1 for
32/16 bit systems) going through ADR[2].

For example, given a DRAM with 11 row address bits and 10 column address bits to be
used in a 32–bit memory system. The DRAM has 11 address pins and will be connected
to ADR[12:2]. During the row address phase, A[22:12] will appear on ADR[12:2] and
will be latched by –RAS. A[23] will appear on ADR[13], but since it is not connected
to the DRAM, it is ignored.

During the column address phase, A[11:2] will appear on ADR[11:2]. A[13:12] will
appear on ADR[13:12]. Both will be ignored since ADR[13] is unconnected and A[12]
is not needed by the DRAM during the column address phase.

In general, all DRAM address pins should be connected to ADR[13:2] with ADR[2]
connected to A[0] of the DRAM.  If there are fewer than 12 address pins on the DRAM,
then some of the ADR pins will be unconnected, as in the example above.  The proper
row and column addresses will appear on ADR[13:2] in sequence and only the relevant
address bits will be latched by the DRAM.

Table E4–7: Address Multiplexing in a 32–bit System

# column addr bits Row address Column address Output pins

8 A[21:10] A[13:2] ADR[13:2]

9 A[22:11] A[13:2] ADR[13:2]

10 A[23:12] A[13:2] ADR[13:2]

11 A[24:13] A[13:2] ADR[13:2]

12 A[25:14] A[13:2] ADR[13:2]

MB86936 DRAM Controller – Addressing Multiplexing
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Table E4–8: Address Multiplexing in a 16–bit System

# column addr bits Row address Column address Output pins

8 A[20:9] A[12:1] ADR[13:2]

9 A[21:10] A[12:1] ADR[13:2]

10 A[22:11] A[12:1] ADR[13:2]

11 A[23:12] A[12:1] ADR[13:2]

12 A[24:13] A[12:1] ADR[13:2]

E4.6 16–bit Operation
The smallest memory data bus width supported by the DRAM controller is 16 bits.
The DRAM controller does not support 8 bit wide memory.   When using a 16–bit data
bus the BIU will make two accesses to load or store a word and one access to load or
store a halfword. Instruction fetches involve two accesses.

E4.7 Refresh

–CAS before –RAS refresh is scheme used by the internal DRAM controller. All four
–CAS signals are asserted while –RAS is deasserted. After appropriate setup and hold
times, all four –RAS signals are asserted. –DWE is deasserted during refresh.  Care
must be taken to insure that sufficient power and ground are supplied to the DRAMs.

E4.8 Programming the DRAM Controller
The internal DRAM Controller is disabled after reset. The user completes the following
initialization sequence before making accesses to DRAM through the internal DRAM
controller.

• Allocate the CS4 and CS5 address spaces by writing the Address Range Specifier
Registers and Address Mask Registers for CS4 and CS5.

• Further subdivide the CS4 address space into bank address spaces by writing the
appropriate values in the DRAM Bank Configuration Registers. Insure that the
largest bank occupies the lowest address range and that all banks are aligned on
bank boundaries, eg. a 4MB bank can start at address 0x00000000,
0x00400000(4MB),  0x00800000(8MB), etc.   The starting address of the bank, the
number of  column bits used by the DRAM and the size of the bank are programmed
into the DRAM Bank Configuration Register.

MB86936 DRAM Controller – Programming the DRAM Controller
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• Program the refresh interval in the Timer Register and in the Timer Preload
Register. The same value may be used for both registers. Refresh cycles will not
occur until the DRAM Controller is enabled. Most DRAMs require eight CAS–
before RAS–  cycles to occur before this mode of refresh is recognized by the
DRAMs. The DRAM space should not be accesses until eight refresh cycles has
occurred.

• Program the Same Page Mask Register.

• Disable Wait State Generation for CS4– and CS5– by setting the WE bit to ’0’ in
the Wait State Specifier Register for CS4– and CS5–, 0x00000168 ASI 0x01.

• Program the DRAM data width, either 16–bit or 32–bit into register 0x0000016C.

• Enable the DRAM controller, the Refresh Timer, the Chip Selects, and the
Same–Page logic by writing the System Support Control Register 0x00000080 ASI
0x01.

–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–2 Back to Back Page_Mode Writes
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–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–3 Back to Back Page_Mode Reads
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–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–4 Page_Mode Write followed by a Page_Mode Read
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–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–5. Burst Mode DRAM Read –– ICACHE and DCACHE Enabled

–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–6. Non Page_Mode Read on Bank0 following another access to Bank0
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–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–7. Non Page_Mode Write on Bank1 following an access to Bank0

–ASB

 ADR[27:2]

–CS4

–RAS0

–RAS1

–RAS2

–RAS3

–CAS0

–CAS1

–CAS2

–CAS3

–DWE

 CLK

 D[31:0]

Figure E4–8. CAS before RAS refresh
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HAPTER

MB86936 DMA

E5
C

E5.1 Overview
The Direct Memory Access Controller (DMAC) module provides high-speed memory-
to-memory and memory-to-peripheral data transfers. The DMAC executes independent-
ly of the CPU, making it possible for the processor to execute from cache while DMA
transfers are taking place. The DMAC operates on physical addresses.

The DMAC supports three independent DMA channels concurrently. It supports byte,
half-word, word and quad-word transfers. The DMA mechanism provides three
different methods of performing DMA transfers: Single transfer, Demand transfer, and
Block transfer. Single transfer and Demand transfer use the DMA request (–DREQ) and
DMA acknowledge (–DACK) signals to synchronize transfers with external devices.
Block transfers do not use –DREQ and –DACK,  they are typically used to transfer data
from memory to memory.

“Fly-by” transfer mode is supported for high speed DMA transfers. In this mode, a
single bus transaction transfers the data from source to destination. At least one of the
source or destination has unchanging address. “Flow-Thru” transfer mode is also
supported. In this mode, two bus transactions, a read followed by a write, need to be
performed to complete the transfer of data from source to destination.

The DMA channels can be configured to perform a single buffer transfer, or to operate
in the buffer-chaining mode. The buffer-chaining mode is provided to simplify
operations such as scatter/gather. In this mode, the DMAC is configured with a series of

MB86936 DMA - Overview
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descriptors in memory. Each descriptor describes a single buffer transfer, which is part
of the complete DMA transfer.

The two figures that follow give, respectively, an overall picture of the relationship of
the DMAC to other major functional components of the MB86936, and a detailed
picture of the flow within the DMAC.

DMA Data

DMA Address

–DACK

–EOP

DD Bus

–DREQ

DA Bus

DATA
CACHE

DMAC

IU

BIU

External Data

External Address

Figure E5-1. Relation of DMAC to Other Major Components

MB86936 DMA - Overview



E5-3

DD

–EOP/TC

–DREQ

Register
Control

DA ASI

rd wrRegs
Select

ASI Regs

Desc Point Regs

Curr Source Regs

Incrementer/
Decrementer

Curr Dest Regs

Read Align

Write Align
eop

–DACK Priority Control

Timing Control

HOLD

Rdy

Mexc

Decrementer

Curr Count Regs

Control Regs

Status Regs

dwrite

dread

Buffer 0 - Buffer 3

D
M

A
 A

S
I

D
M

A
 A

dd
re

ss

D
M

A
 D

at
a

Figure E5-2. DMA Block Diagram
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E5.2 Programmer’s Model

Table E5-1: DMA Signal Descriptions

Signal Function

–DREQ2
–DREQ1
–DREQ0

DMA REQUEST (I): This input signal indicates that an external device is
requesting DMA transfer. It is an edge-sensitive signal for single transfer,
and a level-sensitive signal for demand transfer.

–DACK2
–DACK1
–DACK0

DMA ACKNOWLEDGE (O): This output signal is sent to the external
device to acknowledge the DMA request, and is active when the
requesting device is accessed.

–EOP2
–EOP1
–EOP0

END OF PROCESS (I/O): This pin is used as input when an external
device wants to cause the DMA process to terminate. It functions as
output when the byte count reaches zero. When not active, –EOP output
will be tristated. For signalling the Terminal Count (TC) , –EOP will be
pulled down, and then be pulled up for one cycle. A high impedance
internal pull up is used to hold the signal high when –EOP is tristated. The
–EOP issued by the DMAC can be used as input to the interrupt
controller. If –EOPx is asserted by the external device, channel x will be
disabled. Reprogramming is needed to enable a channel.

Nine pins are dedicated to the DMAC, three for each channel. In the table above, the
pin number corresponds to the channel number. For example, the –DREQ0 pin is the
request pin for channel 0.

E5.2.1 DMA Priority
The DMA Priority Bit in the System Support Control Register can be programmed to
indicate whether the DMA is to release the bus for one clock cycle so that the IU can
use it. When this bit is set, the BIU is shared equally between DMA and the IU.  If both
units are requesting the bus, they will alternate bus accesses.  When this bit is cleared,
the DMA has exclusive use of the bus for as long as DMA is requesting the bus.

031 2 1

Same-Page Enable (On=1, Off=0)

Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

3

Reserved

46

Timer On/Off (On=1, Off=0)

5

DMA priority bit (On=1, Off=0)

Parity bit (Odd Priority=1, Even Priority=0)

Address: 0x00000080 (ASI=0x01)

7

DRAM Burst Enable (On=1, Off=0)

DRAM Controller Enable (On=1, Off=0)

Figure E5-3. System Support Control Register
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E5.2.2 DP/Source/Destination ASI Register

31 8 723 16

Descriptor Pointer ASI Destination ASI

024 15

Source ASI reserved

Address:0x00000180 (DMA0) (ASI =
0x01)
0x000001A0 (DMA1)
0x000001C0 (DMA2) Figure E5-4. DP/Source/Destination ASI Register

Bits 31-24: Descriptor Pointer ASI (DP ASI)—ASI of the Descriptor Pointer, a register used in
buffer-chaining mode. It points to the next element of the linked list whose elements
describe the source and destination of the DMA transfer.

Bits 23-16: Source ASI—ASI of the Current Source Address Register, which is described below.

Bits 15-8: Destination ASI (Dest ASI)—ASI of the Current Destination Address Register, which is
described below.

Bits 7-0: Reserved

E5.2.3 Current Source Address Register

31 034 2 1

Data Address for Quadword transfers

Address:0x00000184 (DMA0)
(ASI=0x01)
0x000001A4(DMA1)
0x000001C4 (DMA2)

Data Address for all other transfers

RSVD

RSVD

Figure E5-5. Current Source Address Register

The Current Source Address Register is used to address memory accesses in flyby
mode, and to hold the source data address in flowthru mode. It contains one 30-bit
(31:2) word-aligned address. For byte, halfword, and word transfers, all 30 bits (31:2)
are used; for quadword transfers, only 28 bits (31:4) are used. Bits beyond the current
address field are ignored. The CSA Register value is updated after a transfer in the read
phase has been done, and points to the next location to be transferred. Note that in flyby
mode, a DMA transfer has just one Read/Write phase; in flowthru mode, a DMA
transfer has one read phase, one write phase, and an intervening idle clock cycle.
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E5.2.4 Current Destination Address Register
31 034 2 1

Destination Address for Quadword transfers

Address:0x00000188 (DMA0)
(ASI=0x01)
0x000001A8 (DMA1)
0x000001C8 (DMA2)

Destination Address for all other transfers

RSVD

RSVD

Figure E5-6. Current Destination Address Register

The Current Destination Address Register is not used in flyby mode; it holds the
destination data address in flowthru mode. It contains one 30-bit (31:2) word-aligned
address. For byte, halfword, and word transfers, all 30 bits (31:2) are used; for
quadword transfers, only 28 bits (31:4) are used. Bits beyond the current address field
are ignored. The CDA Register value is updated after a transfer in the write phase has
been done.

E5.2.5 Current Byte Count Register
31 0

Address:0x0000018C (DMA0)
(ASI=0x01)
0x000001AC (DMA1)
0x000001CC (DMA2)

Figure E5-7. Current Byte Count (CBC) Register

The CBC register indicates the number of bytes of data still left to be transmitted. The
value of the data should be programmed to be one less than the actual number of bytes
to be transmitted. For example, to transfer two words, this register should be loaded
with the value “7”. The value will be decremented at the beginning of the DMA transfer
cycle by the number of bytes involved in the transfer, regardless of the unit in terms of
which the transfer is specified (half-word, word, etc.). The Byte Count Register is
updated only in the Read phase, not in the Write phase; it is updated at the beginning of
the transfer.
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E5.2.6 Descriptor Pointer Register
31 034 2 1

Address:0x00000190 (DMA0)
(ASI=0x01)
0x000001B0 (DMA1)
0x000001D0 (DMA2)

Descriptor Pointer Register RSVD

Figure E5-8. Descriptor Pointer (DP) Register

Used in Chaining Mode, the descriptor pointer points to the first element in the
linked-list of chaining descriptors. When using buffer-chaining, there is no need to
setup the source address, destination address, or byte count as they are loaded from the
first chaining descriptor.

E5.2.7 Channel Control Register
Bits 31:24, 20–18 are reserved, should be written 0’s only, and read unknown values.
The entire register is reset to zero. Note that the two channel control registers are not
identical: the HPC and SW bits in the channel 0 register are global, while the same bits
in the channel 1 register are reserved, and read as undefined.

SW (On=1, Off=0, RST=0)

15 631 8 714 13 9

reserved
(read as 0’s)

5 034 2

DA (On=1, Off=0, RST=0)
SA (On=1, Off=0, RST=0)
EC (On=1, Off=0, RST=0)
RG (On=1, Off=0, RST=0)

Address: (ASI = 0x01)
0x00000194 (DMA0)
0x000001B4 (DMA1)
0x000001E4 (DMA2)

1

HPC (On=1, Off=0, RST=0)

EN (On=1, Off=0, RST=0)

11 101216

SSDS

CM (On=1, Off=0, RST=0)
CWM (On=1, Off=0, RST=0)
CDM (On=1, Off=0, RST=0)

HM (On=1, Off=0, RST=0)
FF (On=1, Off=0, RST=0)
DS (On=1, Off=0, RST=0)
SS (On=1, Off=0, RST=0)

1718192021

reserved

Chain Wait Count

reserved
reserved

222324

Channel priority
Address Decrement

Figure E5-9. Channel Control Register
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The Channel Priority Switch Mode bit “SW” and the High Priority Channel bit “HPC”
of the channel 0 Control Register determine the priority setup of the DMA Controller.
These two global bits should be programmed only when all three channels are disabled.

The channel status can also be accessed through ASR 18 (channel 0) and ASR 19
(channel 1). This allows a program to read and write the DMA status register without
entering supervisor mode. The channel 2 Status Register cannot be read as an ASR.

Bits 23-22 Channel Priority.— Sets the priority of this DMA channel.  3 is the highest priority and 0 is
the lowest priority.  If all channels have priority 0, round robin arbitration is used.  Note:
either all channels must be priority zero, or each channel must be assigned a unique
priority from 1 to 3.

Bit 21 Address Decrement Mode.— Setting this bit to 1 causes the source/destination addresses
to be decremented during a DMA transfer.  This bit overrides bits 2 and 3 (source/dest.
address inc./hold).  This is primarily used for DMA to the Video Interface in Video Duplex
Mode.  Note: this mode is not compatible with quad–word transfers.

Bit 20–18: Reserved. Should be set to 0.

Bits 17-16: Chain Wait Count (CWC)—Used in chain-wait mode to set the number of chaining
descriptors that are loaded before entering the chaining-wait state. A value of 0 in this field
causes DMA to wait after each chaining descriptor is fetched. A value of 1 causes DMA to
wait after every other chaining descriptor is fetched. A value of 2 causes DMA to wait after
every three chaining descriptors are fetched. The value 3 is not valid.

EOP is asserted whenever the DMA controller enters the wait state.

Bit 15: High Priority Channel (HPC)—0 if channel 0 has high priority; 1 if channel 1 has high
priority. (The HPC should be programmed to specify the channel that has high priority at
the outset; if SW=1, it will be updated to show the current high-priority channel as the DMA
transfer progresses.) Note that this bit exists only in the channel 0 control register; the
corresponding bit in the channel 1 control register is reserved, and read as undefined.

Bit 14: Channel Priority Switch Mode (SW)—0 if fixed, 1 if switchable. (If 0, the HCP is fixed, and
specifies a prechosen higher priority channel; if switchable, the HCP will be updated to
whichever channel is not currently being serviced.) Note that this bit exists only in the
channel 0 control register; the corresponding bit in the channel 1 control register is
reserved, and read as undefined.

Bit 13: Enable [Start] DMA (EN)—0 if disable channel, 1 if enable. (The DMA channel can be
enabled by writing 1 to this field, and is reset by the hardware when the channel enters the
disabled state. In Internal Request mode (see RG field), a 1 here means Start DMA; in
External Request mode, a 1 here means Accept External DMA request.)

Bit 12: Chaining Mode (CM)—0 if reprogramming, 1 if buffer chaining.

Bit 11: Chaining Wait Mode (CWM)—0 if Chaining Wait Function disable, 1 if enable. (Decides
whether next chaining descriptor is to be read.)

Bit 10: Chaining Debug Mode (CDM)—0 if assert –EOP only after the whole Chaining transfer, 1 if
assert –EOP after each buffer transfer.

Bit 9: Transfer/Handshake Mode (HM)—0 if Single Transfer, 1 if Demand Transfer. (Applies only
to external request; for internal program request, DMAC supports block transfer
mode only.)

Bit 8: Flyby/Flowthru (FF)—0 if Flyby (single address), 1 if Flowthru (Dual Address).
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Bits 7-6: Destination Size (DS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

Bits 5-4: Source Size (SS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

Bit 3: Destination Addressing (DA)—0 if increment, 1 if hold.

Bit 2: Source Addressing (SA)—0 if increment, 1 if hold.

Bit 1: External Control Option (EC)—0 if source request, 1 if destination request.

Bit 0: Request Generation (RG)—RG=0 if internal request, 1 if external request.

E5.2.8 Channel Status Register

631 8 79

reserved
(read as 0’s)

5 034 2

CWB (On=1, Off=0, RST=0)
CD (On=1, Off=0, RST=0)
TC (On=1, Off=0, RST=0)

EOP (On=1, Off=0, RST=0)

Address:  (ASI = 0x01)
0x00000198 (DMA0)
0x000001B8 (DMA1)
0x000001D8 (DMA2)

1

DISDN (On=1, Off=0, RST=0)
CERR (On=1, Off=0, RST=0)
DERR (On=1, Off=0, RST=0)
SERR (On=1, Off=0, RST=0)

DR (On=1, Off=0, RST=0)

Figure E5-10. Channel Status Register

Bits 31-9: This register is shown as having only 9 bits because these bits are reserved, ignored on a
Write, and Read as zero. The entire register is reset to zero.

Bit 8: Disable Done (DISDN)—the user can disable the DMA channel by writing 0 to the Enable
bit of the Control Register. This bit will be set when the channel has been effectively
software-disabled.

Bit 7: Chaining Error on DMA Transfer (CERR)

Bit 6: Destination Error on DMA Transfer (DERR)

Bit 5: Source Error on DMA Transfer (SERR)

Bit 4: DMA Request presented (DR)—A DMA request is pending.

Bit 3: Chaining Wait (CWB)—If the Chaining Wait Mode in the Control Register has been set,
this status bit will be set after each buffer has been transferred. The Chaining Descriptor
fetch will not be executed. After the program redoes the setup for this channel, and clears
this status bit, the DMA will proceed with the new register setup.

Bit 2: Chaining Done (CD)—The whole chain of data buffers have been successfully transferred;
set up in chaining mode.

Bit 1: Terminal Count (TC)—A data buffer has been successfully transferred. It will be set when
termination of transfer is reached for nonchaining mode and chaining debug mode.

Bit 0: End of Process, external (EOP)—Channel transfer stop due to external –EOP signal.

E5.2.9 Channel Initialization
The DMA Control has two transfer modes: 1) Single Buffer Transfer Mode, and 2)
Buffer Chaining Mode. Each mode has its own programming requirements.
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To initialize the DMA Channel for Single Buffer Transfer Mode, the user must program
these registers:

• ASI Register

• Current Source Address Register

• Current Destination Address Register

• Current Byte Count Register

• Channel Control Register

After programming these registers, the user writes the start (enable) bit of the Channel
Control Register to enable the Channel.

To initialize the DMA Channel for Buffer Chaining Mode, the user must program only
the Descriptor-pointer, the ASI register, and the Channel Control register. The values
for the address registers and the Current Byte Count Register will be loaded from the
chaining descriptor. In DMA chaining mode, the chaining descriptors are loaded before
the DMA actually starts. After the channel is enabled, it will perform five read cycles to
load the first chaining buffer. Next, the actual DMA will occur. When the DMA
completes (transfer count reaches –1), if the most recently loaded descriptor-pointer
(DP) is not zero, the next chaining descriptor will be loaded. If the last DP loaded was
zero, then that buffer was the last in the chain.

After each chaining-descriptor load and DMA transfer operation, the chain-wait counter
decrements. If chain-wait mode is enabled and this counter reaches –1, EOP will be
asserted and the DMAC will suspend itself until the chaining-wait bit in the status
register is cleared. While the DMAC is suspended, any of the registers can be safely
inspected or modified before re-activating the channel.

When Terminal Count (TC) happens, the DMA will load the chaining information
pointed to by the DP, and the DMA process continues. An external –EOP will disable
the channel.

E5.2.10 DMA Channel Arbitration
Whenever a channel reaches Terminal Count (or after every transfer in single transfer
mode), the DMA controller re–arbitrates use the DMA controller.  This provides fair
access to the DMA controller if more than one DMA channel is simultaneously active.

When multiple DMA channels are active and requiring service, there must be a
mechanism to decide which DMA channel is allowed to use the DMA controller.  This
is the job of the DMA arbiter.

The DMA arbiter provides two modes of arbitration: round robin and fixed priority
mode.

Round robin mode is activated when all DMA channels have their channel priority bits
set to zero and the SWM bit is set (bit 14).  If more than one channel is active and
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requesting service, then the DMA channels will equally share the DMA controller in a
round robin fashion (first channel 0, then channel 1...).

Fixed priority mode is activated if the DMA channels are given different priorities and
the SWM bit is set to zero (bit 14).  When this mode is used, each channel must have a
unique priority from 1 to 3 (no channel should be given the same priority and none
should have the priority of zero).  In fixed priority arbitration, the DMA controller
always services the highest priority active channel (3 is the highest priority, 1 is the
lowest).

This arbiter is also backward compatible to earlier SPARClite DMA arbiters: if all of
the DMA channel priority bits are set to zero, the SWM and HPC bits select switching/
fixed priority mode and which channel is high–priority (in fixed mode). Note that in
this mode, channel 2 cannot be set to the high–priority channel.

E5.2.11 Buffer Chaining Data Structure
• PSDASI (Descriptor, Source, and Destination ASI)

• SA (Source Address)

• DA (Destination Address)

• BC (Byte Count)

• NPTR (Next Buffer Descriptor Pointer); a NULL pointer, 0000, indicates the end of
the block buffer list.

E5.2.12 DMA Initialization
DMA operations can be initiated by either software request or hardware request. A
software request is made by clearing the Request Generation bit and setting the DMA
Enable bit. A hardware request is made by setting the Request Generation bit and the
DMA Enable bit, and then causing the assertion of an external –DREQ.

When the CPU clears the Request Generation bit and sets the DMA Enable bit, the
software-initiated DMA starts immediately. A hardware request is started only when
–DREQ is asserted while the DMA Enable bit is set. –DREQ is edge-sensitive for
Single Transfer Mode, level-sensitive for Demand Transfer Mode. For Demand Mode
to complete a whole buffer block, –DREQ must be asserted until –EOP is asserted.
–EOP can be asserted by the DMA Controller or an external device.
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E5.2.13 Basic DMA Timing
1. For a single transfer, the DMAC will sample –DREQ for the next DMA request

after –DACK is asserted. That is, DMAC will try to detect the edge that signals such
a request; an edge asserted between that which caused the last transfer and the
assertion of –DACK will be ignored. Even if an edge is detected before the DMAC
releases the bus, the DMAC will still release the bus and then request it again.

2. –DACK will toggle during the read or write cycle to enable the peripheral device.
Ready (from BIU) will be used to deassert the –DACK.

3. –DACK is used for handshaking with a peripheral device to deassert the –DREQ for
single transfer mode. –EOP(TC) is used for handshaking with a peripheral device to
deassert the –DREQ for demand transfer mode.

4. TC will be used to enable the reloading of the address/count to the current registers
to initialize the set up for a buffer chaining transfer. External –EOP will disable the
DMAC channel in chaining mode, and leave the state of the channel as it was.

E5.2.14 Error Conditions
Memory Access Exceptions:

• Source Transfer Exception

• Destination Transfer Exception

• Chaining Exception

Transfer errors are signalled when –MEXC occurs during a DMA transfer. When an
Error condition occurs, the relevant bits in the Status Register will be set up, and –EOP
will be asserted.

When a memory-exception occurs, –EOP will be asserted one cycle later. This –EOP
can be used as input to the interrupt controller. The –EOP due to a memory exception
can be deasserted by clearing the status bit of the corresponding exception.

For quad-word transfers, if an exception occurs during the read phase, DMA will still
finish all four reads, but will not go into the write phase. If an exception occurs during
the write phase, DMA will complete all four writes.

For transfers other than quad-word, the DMA will stop immediately after the exception
occurs.
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E5.3 External Interface

E5.3.1 Transfer Protocols

Single Transfer Mode

In the Single Transfer Mode, one data entry transfer from source to destination is
performed by the DMAC at a time. The –DREQ input is arbitrated according to the
channel priority decisions made by the user. The channel with the DMA request will
signal the BIU for bus service. After a DMA data entity has been transferred, control of
the bus will be released. Transfers continue in this manner until the Byte Count is
reached, or until external –EOP is found active. Since the –DREQ is edge-sensitive for
single transfers, a –DREQ pulse will cause only one transfer, no matter what its length.
The channel will request the bus for each DMA transfer. Bus control is released
between each transfer and the next. The DMAC will sample the next –DREQ edge for a
DMA transfer request after –DACK is asserted. A new request edge coming before
–DACK has been asserted will be ignored. A timing diagram for single transfer mode is
given below in Figure E5-11. This diagram shows two consecutive DMA transfers. A
sample High and then Low of –DREQ constitutes an edge request for a transfer. The
last block transfer is accompanied by –EOP. –R/W is asserted High in flyby mode for a
destination transfer—that is, one where data will flow from memory—and asserted Low
for a source transfer, where data will flow to memory. In Figure E5-13 below, showing
a quadword transfer taking four data cycles. The last DMA transfer is accompanied by
EOP.

MB86936 DMA - Transfer Protocols



SPARClite User’s Manual

E5-14

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

 

Figure E5-11. Single Transfer, Edge-Sensitive, Flyby (R/–W high)

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

 

Figure E5-12. Single Transfer, Edge-Sensitive, Flyby (R/–W low)
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CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure E5-13. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/–W high)

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure E5-14. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/–W low)

Block Transfer Mode

Block transfer is initiated by software request. In this mode, the CPU starts the DMA
action by setting the Start bit of the control register. The transaction will continue until
the Terminal Count (TC) happens, or until –EOP is asserted by the external device.

Block transfer mode can be used for either flowthru or flyby transactions. For flyby
transactions, the DMAC will assert and then deassert the –DACK for each transferred
datum.
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A timing diagram for software-initiated block transfer is shown in Figure E5-15 below.
The timing is the same as that for demand transfer mode, except that the request is set
by software. The transfer will begin two cycles after the channel control register has
been written.

CLK

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

Figure E5-15. Block Transfer, Flyby (R/–W high)

CLK

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

Figure E5-16. Block Transfer, Flyby (R/–W low)
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Demand Transfer Mode

Demand Transfer Mode provides flexible handshaking procedures during the DMA
process. A Demand Transfer is initiated by an external level-sensitive DMA request
(–DREQ). The next request will be sampled after the preceding transfer request has
been completed. The process continues until (a) the external device deasserts the
–DREQ, (b) the byte count (TC) expires, or (c) an external –EOP is encountered. A
timing diagram for demand transfer is shown below in Figure E5-17. When a request
for a demand transfer is made, the DMAC will look at the –DREQ to see if any request
is pending.

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

CLK

Figure E5-17. Demand Transfer, Flyby (R/–W high)
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CLK

–AS

ADDR

–DREQ

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

R/–W

Figure E5-18. Demand Transfer, Flyby (R/–W low)

CLK

–AS

ADDR

R/–W

DACK

–RDY

DATA

IU asserts the DMA Start Bit

–EOP

–DREQ

Figure E5-19. Single Transfer, Edge Sensitive Flow Through, Destination Request
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CLK

–AS

ADDR

R/–W

DACK

–RDY

DATA

IU asserts the DMA Start Bit

–EOP

–DREQ

Figure E5-20. Demand Transfer, Flow Through, Word to Half–Word, Destination
Request

Transfer Addressing

• Flyby—Flyby mode is in effect when the source and destination have the same
width, and flyby mode is enabled. –DACK is used to acknowledge the external
DMA request, and to access the requestor’s data. One bus cycle is needed for a byte,
half-word, or word transfer; four bus cycles are needed for a quad-word flyby
transfer. A single address is needed for this type of bus operation. The R/–W will
signal the direction of data flow; for R/–W=“1”, the data flow is from the memory
counterpart to the requesting device, and for R/–W=”0” it is from the requesting
device to the memory counterpart. Burst sizes of up to 64 words are allowed in
flyby mode.

• Flowthru—For this bus operation, a read sequence is used to obtain the data from
the source, and a write sequence is used to send the data to the destination. During
read, the data will be assembled and put in a Temporary Register. During write, the
data in the Temporary Register will be disassembled and sent to the destination. The
DMA Controller will toggle the –DACK during the read or write session, depending
on whether the External Control Option (EC) is set to Source or Destination
Request. Whichever type of Request is specified by the EC, the other address is
optional; for example, if EC=0 (Source Request), the provision of a destination
address is unnecessary. The programmer can use the –DACK to enable a read or
write to the external device whether the DMA request is internal or external. Burst
sizes of up to 4 words (quad-word) are allowed in flowthru mode.

MB86936 DMA - External Interface



SPARClite User’s Manual

E5-20

Source/Destination Size

The source and destination size can be byte, half-word, word, or quad-word. For flyby
transfer, the source and destination size must be the same. For flowthru mode, if the
source and destination size differ, the DMAC will automatically assemble the data
during read to the bigger of the two sizes, and disassemble the data to the size of the
destination during write. The assembly/disassembly applies only to the half-word, word,
and quad-word sizes.

To take advantage of the burst transfer supported by the BIU, the DMAC offers
quad-word transfers. Quad-word transfers are fastest when both the source and the
destination sizes are quad-word, but the DMAC can support any combination of source
and destination sizes (from byte through quad-word). All transfers must be address-
aligned on their size boundary. For example, if the source size is quad-word and the
destination size is word, then the source address must be quad-word aligned and the
destination address must be word aligned.

The DMAC provides full packing and unpacking for sources and destinations of
differing sizes (in flowthru mode only). The DMAC will never read or write a different
size than what is programmed, so some transfers may be padded with unknown data to
fill out the transfer size. The DMAC can mix any of the flow-thru sizes (byte through
quad-word). The DMAC can also mix any combination of byte-counts for DMA
transfers. If the byte count is less than one transfer unit, the DMAC will always transfer
one full unit and pad the rest of the data with unknown values. For example, if the
DMAC was set up to transfer three bytes from a word size to a byte-size device, the
DMAC would read one word and then write three bytes (ignoring the 4th byte, which
was read as part of the word). In the other direction, if three bytes were to be read from
a byte-wide device and written to a word-wide device, the DMAC would read three
bytes and then write one word to the destination device (the 4th byte would contain
unknown data). It is up to software to allocate a large-enough destination buffer to hold
this extra padding-data.

For consistency with the memory mapping seen by the IU, address (31:2) is used as the
byte address for byte transfers, as the halfword address for halfword transfers, and as
the word address for either word or quad-word transfers.
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Program/DMA Interaction

The –EOP issued by the DMAC can be used as an input to an interrupt controller.

A chaining wait mechanism is supported, enabling synchronization between the
program and DMA buffer chaining. This chaining wait function provides a way for the
user to modify the channel setup and/or modify the chaining descriptors while a chained
DMA activity is in progress. The user can set the chaining wait function bit in the
Control Register to enable this function. When this bit is set, and a buffer block has
been transferred, the chaining wait bit in the Status Register will be set, and the
corresponding DMA channel will go to chaining wait state, which is equivalent to the
disabled state. The chaining wait bit set in the Control Register will block the loading
of the next descriptor. The user can reprogram the channel, and then reset the chaining
wait in the Status Register to restart the transfer. After the block has been transferred,
–EOP will be issued as an input to the interrupt controller. The interrupt service routine
may modify the channel setup registers and/or the chaining descriptors, and then clear
the chaining wait bit in the Status Register. After the chaining wait bit in the Status
Register has been cleared, the DMAC will start the DMA transfer using the modified
channel setup.

–EOP will be asserted on these conditions:

Single buffer mode: TC (byte count expires)
Error on abnormal read/write transfer.

Chaining mode: If only the chaining mode bit is set,
and the whole chain trans-
fer is completed

Chaining wait function set in Control
Register and the TC (byte
count expires)

Error on abnormal read/write transfer

If chaining debug mode is set in the
control register, –EOP will
be asserted at the end of
each transferred block.
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Note: to use chaining wait, the user must set both chaining mode (CM) and chaining
wait mode (CWM) in the control register. To use chaining debug, the user must set both
CM and Chaining Debug Mode (CDM) in the control register.

–EOP can be used to interrupt the CPU by configuring the Interrupt controller to use the
–EOP signal as an interrupt source.  When –EOP causes an interrupt, the service routine
should read the DMA status register to determine the type of DMA interrupt which
occurred.

Memory Exception

Memory Exception (MEXC) is asserted by BIU to signal that an error condition was
generated during transfer. The DMA channel will stop the transfer immediately, set up
the relevant bit (Source/Destination/Chaining error) in the DMA channel Status
Register, and assert the –EOP. The –EOP will be deasserted when the memory
exception status bit is cleared by the program. For quad-word transfer (intended for
burst mode), the DMA will finish all four read or write cycles before stopping and
setting up the relevant bit in the Status Register.

MB86936 DMA - External Interface
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HAPTER

MB86936 Interrupt Request
Controller

E6
C

E6.1 Overview of Interrupt Controller

The Interrupt Controller (IRC) has 4 interrupt input pins for  external (off–chip)
interrupt sources.  The IRC also accepts internal (on–chip) interrupts.  The IRC runs at
the internal clock frequency for fast interrupt response.  It has 15 channels of interrupts
with  priority 15 having the highest priority and priority 1 having the lowest   priority.

The IRC has 3 modes:

Mode 0: compatible with MB86930.

Mode 1: operates similar to that of MB86931; in addition, this mode has 3 groups of
internal interrupt channels that have programmable priority.

Mode 2: external interrupts dispersed in priorities with internal interrupts, and has 5
groups of internal interrupt channels that have programmable priority.

The IRC has filter circuits at inputs to increase noise resistance to prevent false
interrupts: external interrupt– has to be asserted for 2 or more consecutive external  bus
cycles to trigger an interrupt. Internal interrupt needs to be asserted for only 1 or more
internal  clock cycle to trigger an interrupt.

The trigger modes for triggering an interrupts are:

MB86936 Interrupt Controller – Overview
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Mode 0: a high–level triggers interrupt.

Mode 1, Mode 2: there are 2 programmable trigger modes for each interrupt channel:
high–level and low–level.

E6.2 Memory–mapped Control Registers

The memory–mapped control registers for IRC are described below:

Table E6–1 Memory–mapped Control Register for IRC.

asi address register access

0x1 0x200 TM0 Control Reg read/write

0x1 0x204 TM1 Control Reg read/write

0x1 0x208 Request Sense Reg read/NA

0x1 0x20c Request Clear Reg NA/write

0x1 0x210 Mask Reg read/write

0x1 0x214 IRL Latch/IRL clear Note (1)

0x1 0x218 IRC mode & program-
mable priority Reg

read/write

0x1 0x21c reserved –––––

NA : Not Applicable

note(1): IRL Latch is read only and IRL clear bit is write only.

note:  Request Clear Reg is an addressing location only.

In addition to the control registers, the IRC has a memory–mapped test register.  The
purpose of the test register is to test internal interrupt channels through programming
(bypassing the internal  interrupt sources).  In normal operation, this test register should
not be used.

A register related to IRC testing is the Global Test Enable Control  (GTEC) register.  It
needs to be programmed to enable testing of any  peripheral.  Set bit[0] to enable
testing. This register is provided as a double safety feature– its bit[0] must be set and
the corresponding peripheral’s test enable bit must also be set in order to go into test
mode for the peripheral. At reset, this register is cleared.

Table E6–2 Memory–mapped Test Register for IRC.

asi address register access

0x1 0x10008 IRC test Reg read/write

0x1 0x1000c reserved ––––

0x1 0x10000 Global test enable  Reg –– /write

MB86936 Interrupt Controller – Memory-Mapped Control Registers



E6-3

E6.2.1 Trigger Mode Control Register

The Trigger Mode registers control the trigger mode for each interrupt channel. Trigger
Mode Register 0 controls trigger modes for interrupt channels 8-15; Trigger Mode
Register 1 controls trigger modes for interrupt channels 1-7.

Trigger Mode Register 0Address 0x00000200 (ASI = 0x01)

016 5910 2347811121314151631

MD8MD9MD10MD11MD12MD13MD14MD15reserved

Bits 15-0: Trigger Mode Selects - Select trigger modes for channels 8-15.

Trigger Mode Register 1Address 0x00000204 (ASI = 0x01)

016 5910 2347811121314151631

MD0MD1MD2MD3MD4MD5MD6MD7reserved

Bits 15-2: Trigger Mode Selects - Select trigger modes for channels 1-7.

Bits 1-0: Reserved.

Two-bit fields in the registers select one of two trigger modes for each channel as
follows:

MDx Value * Trigger Mode

0 High Level

1 Low Level

2 Reserved

3 Reserved

Reset clears the Trigger Mode registers, resulting in high level triggering for each
interrupt channel.

Note: An interrupt channel should be masked before its trigger mode is changed, or a
false interrupt may occur.

MB86936 Interrupt Controller - Memory Mapped Control Registers
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E6.2.2 Request Sense Register

In Mode 1 and Mode 2, after an interrupt passes through the filter   circuit, if an
interrupt is recognized, the Request Sense register holds   the interrupt for prioritizing.
In Mode 0 this register is not used.   After servicing an interrupt, the register must be
cleared to accept new interrupts. At reset, all bits are cleared.
 

Reserved

0151631

Request Sense 15:1reserved

Address 0x00000208 (ASI = 0x01)

1

Bits 15-1: Sense IRQ Latch - Correspond to interrupt channels 15-1 and indicate, when high, that the
corresponding interrupts are latched and pending.

Bit 0: Reserved.

Reset clears the Request Sense Register.

E6.2.3 Request Clear Register

In Mode 1 and Mode 2, the processor writes to the Request Clear Register to clear the
interrupt requests in Request Sense Reg.  This register is not used in Mode 0. At reset,
all bits are cleared.

Reserved

0151631

Request Clear 15:1 (1=clear)reserved

Address 0x0000020C (ASI = 0x01)

1

Bits 15-1: Clear IRQ Latch - Correspond to interrupt channels 15-1, and writing the bits to 1 clears
the corresponding interrupt latches.

Bit 0 Reserved.

Reset clears the Request Clear Register.

MB86936 Interrupt Controller – Memory Mapped Control Registers
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E6.2.4 Mask Register

In Mode 1 and Mode 2, the processor sets the bits [15] to [1] in this register to  mask
interrupt request to the corresponding channels (if a channel is  masked, the interrupt
asserted in the channel is excluded from  prioritization).  Set the bit[0] to mask
prioritized interrupts.  This register is not used in Mode 0. At reset, all bits are cleared.

MKIRL (1=Mask IRL Output)

0151631

Mask 15:1 (1=mask)reserved

Address 0x00000210 (ASI = 0x01)

1

Bits 15-1: Interrupt Request Mask - Correspond to interrupt channels 15-1, and writing them to 1
masks the corresponding interrupt requests.

Bit 0:  Mask IRL - Masks the output of the IRL Latch. When MKIRL is set to 1, the IRL Latch
output is masked, and no interrupt is served. When MKIRL is 0, the encoded interrupt level
number in the IRL latch is asserted on the IRL<3:0> bus to interrupt the processor. MKIRL
is typically set to 1 (mask enabled) in systems that poll interrupt requests.

Reset clears the Mask register.

E6.2.5 IRL Latch/IRL Clear

In Mode 1 and Mode 2, bits[3:0] hold the prioritized interrupt. After servicing an
interrupt, set bit[4] to clear this latch to  accept new interrupt.  This latch is not used in
Mode 0. At reset, all bits are cleared.

The processor uses the IRL Latch/Clear register to clear and read the IRL Latch.

Clear Latch (1=Clear IRL Latch)

031

reserved

Address 0x00000214 (ASI = 0x01)

34

Interrupt Level

5

Bit 4: Clear IRL Latch - Clears the IRL Latch when written to 1.

Bits 3-0: Interrupt Level - Holds the value of the IRL Latch. The processor typically reads IRL to
identify the highest-priority interrupt level in systems that poll the interrupts.

Reset clears the IRL Latch/Clear Register.  The “Clear Latch” bit is only writeable
while the interrupt level bits are only readable.  Writes do not affect them.

E6.2.6 IRC Mode and Priority Register

The interrupt mode of IRC is selected by programming the IRC Mode and Priority
Register. Reset clears all bits in the register and sets the IRC to Mode 0.

MB86936 Interrupt Controller - Memory Mapped Control Registers
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IRC Mode and Priority RegisterAddress 0x0000 0218

017 61213 23491015161831

ModetCH1CH2CH3CH4CH5reserved

Bits 31–19: Reserved

Bits 18–4: Programmable priority bits.  Programmable priority is valid only in Mode 1 and Mode 2.
Priority Channel 5 has the highest priority, followed by Priority Channel 4, Priority Channel
3 and so on. 3 bits in each priority channel allows the setting of group 1 to group 5 (see
section E6–3 for grouping).

On reset, the value of bit [18:4] = 101 100 011 010 001

Bit 3: Test Enable bit.  This bit lets the user test the interrupt priority by programming.

Bit 2: Reserved

Bits 1–0: Mode programming.  The user select the IRC interrupt mode by programming the bits.

00 Mode 1 (default)

01 Mode 2

10 Mode 2

11 Reserved. Operation is unpredictable

E6.2.7 Global Test Register

The Global Test Enable Register is programmed to enable peripheral testing.

Address 0x0001 0000

031

Bits 31–1: Reserved

Bit 0: Test enable.  This bit is cleared upon request.

MB86936 Interrupt Controller – Memory Mapped Control Registers
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E6.2.8 IRC Test Register

The user can simulate/test the interrupt request and priority of IRC by programming.
Internal interrupt request (IRQ[11:1]) can be set by programming, absolutely bypassing
the corresponding interrupt sources.

Address 0x0001 0008

031 11213

reserved Interrupt Request [11:1]

IRC Test Register

Bits 31–12: Reserved

Bits 11–1: Programmable Interrupt Request bits.  Every bit position simulates each interrupt request.

Note: This feature exists only in MB86936 and may not be implemented in any future product

E6.3 Interrupt Mode and Priority Programming

The Interrupt Controller (IRC) has 3 modes:

Mode 0– Supports external encoded interrupts IRL[3:0] (as in MB86930). IRL[3:0] are
asserted high for interrupt. The external encoded interrupts IRL[3:0] bypass the
priority encoder in IRC and go directly to the IU control.

Mode 1– Supports 4 external decoded interrupts IRQ[15:12] and 11 internal decoded
interrupts IRQ[11:1] (similar to MB86931).  In addition, this mode has 3
groups of internal interrupt channels that have programmable priority request
15 (IRQ[15]) has the highest priority, followed by IRQ[14], IRQ[13] and
IRQ[12].  The priority of each group is programmed IRC Mode and Priority
Register (ASI=0x1, ADR=0x218). Each group has 2 interrupt channels; the
priority of channels within the group is fixed with higher priority given to
higher interrupt request.  In this mode all interrupts go through the priority
encoder in IRC. The interrupt request with the highest priority is encoded and
sent to the IU control.

Mode 2– Supports both 4 external decoded interrupts and 11 internal decoded
interrupts.  The external interrupt channels are dispersed in priority with 5
groups of interrupt channels that are programmable.  Each group of internal
interrupts that is programmable consists of 2 channels; the priority of the
channels within a group cannot be changed.

All interrupts go through the priority encoder in IRC, and the encoded
interrupts go to the IU control.

MB86936 Interrupt Controller – Interrupt Mode and Priority Programming
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Table E6–3 and Table E6–4 describe the grouping of internal interrupt channels and
programmable priority assignment of external and internal channels for both Mode 1
and Mode 2.  Group 4 and 5 are available only in mode 2.

Table E6–3 Group Assignment in Mode 1 and Mode 2.

Group Interrupt Channel

1 3 and 2

2 6 and 5

3 9 and 8

4 7 and 4

5 11 and 10

Table E6–4 Interrupt Request Priority in Mode 1 and Mode 2.

Priority Mode 1 Mode 2

15 IRQ [15]/IRL[3] pin Higher interrupt channel in group referred by
Priority Channel 5

14 IRQ [14]/IRL[2] pin Lower interrupt channel in group referred by
Priority Channel 5

13 IRQ [13]/IRL[1] pin IRQ[15]/IRL[3] pin

12 IRQ [12]/IRL[0] pin Higher interrupt channel in group referred by
Priority Channel 4

11 N/A Lower interrupt channel in group referred by
Priority Channel 4

10 N/A IRQ[14]/IRL[2] pin

9 Higher Interrupt Request Priority Channel 3 Higher interrupt channel in group referred by
Priority Channel 3

8 Lower Interrupt Request Priority Channel 3 Lower interrupt channel in group referred by
Priority Channel 3

7 N/A IRQ[13]/IRL[1] pin

6 Higher Interrupt Request Priority Channel 2 Higher interrupt channel in group referred by
Priority Channel 2

5 Lower Interrupt Request Priority Channel 2 Lower interrupt channel in group referred by
Priority Channel 2

4 N/A IRQ[12]/IRL[0] pin

3 Higher Interrupt Request Priority Channel 1 Higher interrupt channel in group referred by
Priority Channel 1

2 Lower Interrupt Request Priority Channel 1 Lower interrupt channel in group referred by
Priority Channel 1

1 N/A N/A

MB86936 Interrupt Controller – Interrupt Mode and Priority Programming



E6-9

Below is an example of how to program the IRC Mode and Priority Register
(ASI=0x01, ADR=0x218)

Address 0x0218

031 1819

IRC Mode and Priority Register

011 001 100 101 010 00 10

1516 1213 910 67 34 12

Priority Channel 5 is assigned to interrupt request group 3 (interrupt request channel 9
and 8), followed by an external interrupt pin IRQ[15]/IRL[3].  Priority Channel 4 is
assigned to group 1 (interrupt request channel 2 and 3) followed by an external interrupt
pin IRQ[14]/IRL[2], and so on. Bit [3] disabled IRC test. Bit [2] is reserved and should
be written as 0. Bit [1:0] are programmed for mode 2.

The above program results in the following priority in mode 2 interrupt priority
sequence.

Priority 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Interrupt
Channel

9 8 15 3 2 14 7 4 13 11 10 12 6 5 2

E6.4 Usage of Interrupt Controller in MB86936

In MB86936, several internal interrupt sources are connected to the IRC. The table
below shows the interrupt channel assignment for them.

Table E6–5

interrupt channel  interrupt sources

2 DMA2– DMA generated eop2 ORed with external input pin –EOP2

3 Timer1– timer 1 time out

5 Timer0– timer 0 time out

6 DMA0– DMA generated eop0 ORed with external input pin –EOP0

8 DMA1– DMA generated eop1 ORed with external input pin –EOP1

9 Video Controller interrupt (see Video section)

This configuration allows the users to use –EOP0, –EOP1, –EOP2 as extra external
interrupt pin.  Since interrupt request channel 2 is connected to internal–EOP source as
well as external –EOP2 pin, when DMA channel 2 is disabled, the user can take
advantage of –EOP2 as interrupt request channel 2.  The same happens to DMA
channel 1 (–EOP1 = IRQ[8]) and DMA channel 0 (–EOP0 = IRQ[6]). This effectively
gives the user three extra interrupt request channels with programmable priority.

MB86936 Interrupt Controller – Usage of Interrupt Controller in MB86936
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E6.5 IRC Operation

The interrupt controller operation in each of the 3 modes are described below:

E6.5.1 Mode 0

When an external interrupt is asserted high for 2 or more external bus cycles, the
interrupt is recognized.  The interrupt goes directly to the IU.

E6.5.2 Mode 1 and 2

When an external interrupt is asserted for 2 or more external bus cycles or an internal
interrupt is asserted for 1 or more internal clock cycle, the  interrupt is recognized, and
the interrupts are latched in the Request Sense  Register.  The interrupts which are not
masked by the Mask Register are prioritized, and the prioritized interrupt vector is
latched in the IRL Latch.   If the IRL Latch is not masked by the IRL mask bit (bit 0 in
Mask Reg),  then the interrupt vector is sent to the IU for interrupt.

After servicing an interrupt, the IU must clear the corresponding interrupt bit in the
Request Sense Register and clear the IRL Latch.  Then the new prioritized interrupt
vector is generated from the remaining or new interrupts  latched in the Request Sense
Register.

E6.5.3 Polling

The processor can poll interrupts by reading either the IRQ Latch via the Request Sense
register, or the IRL Latch via the IRL Latch/Clear register.

The processor may mask interrupts that it polls via the Request Sense register by
masking either the IRQ Latch or the IRL Latch. The processor then periodically reads
the IRQ Latch and clears interrupts from the latch when they are serviced. The IRL
Latch may remain unmasked to allow interrupt-driven servicing of some interrupts if
the polled interrupts are masked with the IRQ Latch mask.

The processor may mask all interrupts when it polls interrupts via the IRL Latch/Clear
register by masking the IRL Latch. The processor then periodically reads the IRL Latch
for the highest-level pending interrupt and clears both the IRL Latch and the interrupt
from the IRQ Latch once the interrupt is serviced.

1) Request Sense Register polling

Set the bits in the Mask Register to mask interrupts.  Then the IU polls  the interrupts
recognized in the Request Sense Register at predefined intervals   under software
control and services the interrupt.

MB86936 Interrupt Controller – IRC Operation
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2) IRL Latch polling

Set the IRL mask bit to mask the prioritized interrupt vector.   Then  the IU polls the
IRL Latch at predefined intervals under software control to service the interrupt.

E6.5.4 Initialization

All IRc Registers are cleared to logic value 0 by –RESET.  This results in high–level
trigger mode for all interrupts under Mode 0 (decoded IRL[3:0] mode), and all masks
disabled.

After reset, the interrupt trigger mode should be changed after the interrupts are masked
with the IRQ mask to eliminate false interrupts.  The masks can then be disabled.

E6.6 IRC Control Programming Considerations

To prevent false interrupts when changing trigger modes, the following steps should be
taken in programming the trigger mode register.

1) Mask the interrupt bit whose trigger mode is to be changed.

2) Change the trigger mode by writing to the Trigger Mode Control Register.

3) Clear the corresponding interrupt bit Sense Register.

4) Clear the IRL latch.

5) Remove the mask bit.

   The following example shows an assembly language program on programming the
IRC Trigger Mode control register. The program changes the interrupt channel 15
trigger mode to low–level trigger mode, leaving the rest of the interrupt channel trigger
modes to high–level.

   ....
   ....
! define control register ASI address space
#define CASI   0x1
! define Interrupt Controller registers
!
! Trigger Mode control registers
#define TM0    0x200
#define TM1    0x204
! Request Sense reg.
#define RQS    0x208

MB86936 Interrupt Controller – IRC Control Programming Considerations
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! Request Clear reg.
#define RQC    0x20c
! Request Mask reg.
#define RQM    0x210
!IRL latch
#define IRLAT  0x214
! set channel 15 interrupt to low–level interrupt trigger,
! the rest of the channels are high–level interrupt triggers
#define tm15L  0x4000
!define mask for channel 15
#define mask15 0x8000
! define clear for channel 15
#define clr15  0x8000
! define mask reset for all channels
#define mskrst 0x0
! define IRL latch clear
#define clrirl 0x10
   ....
   ....
! the following program segment changes the trigger mode for
! interrupt channel 15
! set mask for channel 15
    set   RQM, %l2
    set   mask15, %l3
    sta   %l3, [%l2] CASI
! change trigger mode for channel 15
    set   TM0, %l2
    set   tm15L, %l3
    sta   %l3, [%l2] CASI
! clear Request Sense reg.
    set   RQC, %l2
    set   clr15, %l3
    sta   %l3, [%l2] CASI
! clear IRL latch
    set   IRLAT, %l2
    set   clrirl, %l3
    sta   %l3, [%l2] CASI
! clear the mask bit
    set   RQM, %l2
    set   mskrst, %l3
    sta   %l3, [%l2] CASI
   ....
   ....

MB86936 Interrupt Controller – IRC Control Programming Considerations
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HAPTER

MB86936 Video Interface

E7
C

E7.1 Overview

The video Interface provides direct connection to a number of laser-beam marking
engines. It may also be used to receive data from a raster input device such as a scanner
or to serialize/deserialize a data stream.

General functions:

• Internal or external VCLK with programmable polarity and programmable 4-bit
clock division.

• Suspend the operation when VCLK is inactive (for external VCLK only).

• Internal or external PSYNC with programmable polarity.

• External LSYNC with programmable polarity.

• Either DMA (channel 0) or interrupt request on transmit FIFO threshold or receive
buffer full.

• Programmable Line-Width, Image-Address, Block-Height, Top-Margin and
Left-Margin.

• Programmable interrupt sources.

MB86936 Video Interface – Overview of Video Interface



E7-2

• During DMA transfers, video transfer progress may be monitored by reading the
DMA channel’s registers.

Transmit functions:

• 8-word deep 32-bit wide FIFO with programmable threshold.

• Programmable blank level and width (1, 4 or 8) for VDAT<7:0>. When 8-bit video
is enabled, ASI<3:0> pins will be used for VDAT<7:4>.

• Reverse mode transmission.

• Programmable word or quad word DMA to load the FIFO.

Receive functions:

• 1-word 32-bit wide holding buffer.

• Status to indicate receive buffer full (data available).

E7.1.1 Video Interface Overview

The serial data transfer timing is controlled through the PSYNC, LSYNC and VCLK
pins. Data transfers to/from main memory and the video interface can be handled either
through DMA or interrupt driven means. The active level of PSYNC and LSYNC is
programmable, as is the active edge of VCLK (rising or falling). The VDAT levels are
also programmable: inverted or non-inverted data, and 0 or 1 for the Blank-Data level.

Both PSYNC and VCLK can be either internally or externally generated signals. The
default is externally generated signals. If VCLK is internally generated, it will be a
free-running divided-down version of the internal clock. If VCLK is externally
generated, VCLK will be divided down internally by a factor of 1 to 16. External
VCLK may be stopped at any time to suspend the video interface’s operation.

E7.2 Video Transmit

The page cycle begins when PSYNC becomes active (either as an input or an output).
At the beginning of a page cycle, four count-down registers are loaded from the top
margin, left margin, block height and line width registers. When the top margin counter
reaches zero the first line will be transmitted. Blanks will be transmitted until the left
margin is zero. The actual video data is transmitted until the line width is zero. The
values of the previously mentioned registers never change – only internal copies of
these registers change. This allows for easily restarting the video operation – the line
and margin registers do not need to be written if the page layout is the same.

MB86936 Video Interface – Video Transmit
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After the video-interface has been initialized, it waits for PSYNC to become active to
indicate the beginning of a page. If PSYNC is a level signal, PSYNC is normally held
active until the end of the page.

LSYNC being asserted indicates the beginning of a line. Top Margin number of lines
(LSYNCs) are skipped before sending any data. During this time, Blank-level data is
present on the VDAT pins. After LSYNC is asserted, LeftMargin bits (VCLKs) are
skipped before sending the serial data. During that time, Blank-Level data is present on
the VDAT lines. After the left margin is passed, data is shifted out until the end of the
printed line (LineWidth VCLK’s). Blank-level data is sent out on the VDAT lines until
LSYNC is de-asserted and re-asserted again (next line).

The data to be transmitted does not need to be word-aligned in memory, but must be at
least byte-aligned. The StartBit register is used to start the shifting at one of 4 bit
positions in the first word of each line.

The video interface also has a blank-page feature which forces the VDAT output to the
blank level for the entire page. To print a blank page, set the blank-page bit in the video
control register to 1, and set up a normal video transmit (DMA may also be initialized,
but the video interface will ignore the data). This feature is normally used in interrupt-
driven transfer mode. No data needs to be written to the video transmit register (FIFO).

E7.2.1 Video Transmit FIFO Control

The Video Interface contains an 8–word, 32–bit wide FIFO to buffer video data during
video transmit operations.  The FIFO can be  filled either by using the IU to write data
to the Transmit FIFO register, or by setting up a DMA transfer to fill the FIFO.  The
video interface must be enabled in order for the FIFO to accept data.

The status of the FIFO (empty, half–empty or full) can be determined by reading the
video status register’s FIFO–empty (threshold reached) bit.  The meaning of the FIFO
empty/half–empty/full bit is controlled by the  video control register’s FIFO–threshold
bit.  If the FIFO–threshold bit  is set to 0, the FIFO threshold is ”completely empty”
which means that the status bit indicates FIFO–empty only when the FIFO is complete-
ly empty.  If the FIFO–threshold control bit is set to 1, then the status register’s
FIFO–empty bit get set when the FIFO has 4 or fewer words left in the FIFO.

E7.2.2 Data Flow during Video Transmit

There are three possible methods for monitoring and controlling the flow of data into
the video interface during a video data transmit  operation: polling, interrupt driven and
DMA.
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In polled or programmed mode, the control program monitors the  video FIFO empty
(threshold reached) bit in the status register. When this bit indicates that there is space
available in the FIFO, the program writes video data into the Transmit FIFO register
port.

In interrupt mode, the control program receives a video interrupt whenever the transmit
FIFO is half–empty or completely–empty (programmable by user).  To enable interrupt
mode, set the ”IRQ on FIFO empty” bit in the video control register.  With this bit set,
an interrupt will occur whenever the FIFO needs more data.

In DMA mode, the user sets up a DMA operation to fill the transmit FIFO whenever it
needs data.  To set up a DMA to video operation, perform the following steps:

1. disable the Video Interface and DMA channel 0.

2. Set up DMA channel 0 in Flyby, single transfer mode, destination–request, external
DMA Request, and either word or quadword transfer size.  If printing in Duplex
(reverse) mode, set the DMA address mode to ”address decrement” mode and use
only word–sized transfers.

3. Set up all of the Video registers (margins, start bit ...) except video control.

4. Clear the video status register, set video control register 2, and last, set video
control register 1 to enabled, dma–enable and other options as applicable.  This
enables video and starts the transmit operation.

Note: DMA to/from the video interface can only occur on DMA channel 0.

E7.2.3 Duplex Mode — Reverse Data Transmission

The video interface has the ability to transmit data in either forward or reverse bit order.
This feature is useful for two–sided printing (duplex). Normally Duplex mode is used
for printing the reverse side of the page.

In normal mode, the video–data bits are shifted out with the most significant bit first
(normally bit 31).  In duplex mode, the video data is shifted out starting with the least
significant bit (normally bit 0).  In duplex mode, the user should send words to the
Transmit FIFO in reverse order (reverse with respect to a normal page).  If DMA is
used, then the ’Address Decrement Mode’ of DMA should be used to copy words to the
video FIFO in reverse order.

MB86936 Video Interface – Video Transmit
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E7.2.4 Aborting and Restarting Video Transmit

If a page which is being printed needs be aborted and restarted (as in the case of a
paper-jam), the re-print operation can be started by writing just a few registers.

All of the video registers retain their values until they are changed by the user (or by
reset), therefore, to restart a page, only the video control register will need to be written
(to re-enable the video interface). However, if DMA is used, then the DMA registers
will need to be re-programmed (DMA registers do not hold their value). If a chained
DMA operation was used for example, this would simply require programming the
DMA descriptor-pointer and the DMA control register. It is the responsibility of the
software to retain the values for reprogramming the DMA registers and the video
control register.

E7.3 Video Receive

PSYNC must be asserted in order to receive data. When LSYNC is active, the line
count determines the number of bits to receive on VDAT. For high performance, the
received data is buffered in a 32-bit receiving buffer. Either an interrupt or DMA is
requested when the holding register is full.

The video receive operation is similar to the transmit operation, except TopMargin is
not used. Serial data is collected in to a de-serializing buffer as long as PSYNC is
asserted. Each line begins with LSYNC and continues for LineWidth VCLK’s. When
the serial data buffer becomes full (32 bits of data have been collected), the data is
copied to the Receive Buffer and the receive-buffer-full flag is set in the video status
register.

If PSYNC is configured to be an output, then PSYNC is used to indicate that the Video
Interface is ready to accept data. PSYNC will be asserted 4 VCLK’s after the video
interface is enabled, and remain active until BlockHeight lines have been read in.
Duplex mode and the Start-bit register have no effect in receive mode. The direction is
always assumed to be forward.

E7.4 Video Interrupts

The video interface is capable of generating interrupts for a number of different
conditions. The user can select which conditions can cause an interrupt through use of
the enable-mask bits in the video control register.  Detailed descriptions of the interrupt
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sources can be found in the Video Control register description.  The potential interrupt
sources are:

— PSYNC de-asserted (only available for level PSYNC)
— End of Page
— Transmit FIFO empty/half–empty.
— Receive buffer full.

Note: In order to receive interrupts after each chain block completes, the DMA channel
0 should be set into chaining test mode. (DMA Control Register bit 10).

E7.5 Video Registers

LineWidth

The width of the printed image in VCLK’s. When Line-Width is decremented down to
zero, VDAT outputs blank-level from then to the end of the line. If any data remains in
the shift-register when LineWidth reaches zero, that data is ignored. The LineWidth
must be at least 1.

BlockHeight

The number of lines in the printed image. This register is decremented for each LSYNC
(after the top margin is skipped). When BlockHeight reaches zero, VDAT outputs
blank-level data from that point to the end of the page. The BlockHeight must be at
least 1.

TopMargin

The number of lines to skip from the top of the page to the first line of the printed
image. This value is decremented for every LSYNC received.

LeftMargin

The number of dots/VCLK’s to skip from the edge of the page to the beginning of the
printed image. The LeftMargin must be at least 1 for receiving and 2 for transmitting.
There must be at least 2 VCLK’s after the video data for the line is transmitted (at least
a 2 VCLK right margin)

MB86936 Video Interface – Video Registers
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StartBit

This register defines which bit to start with when printing a line. The shift register is 32
bits wide, and this register specifies which bit will be the first bit shifted out. This
start-bit applies to the beginning of each line. The valid settings are: in normal mode:
31, 23, 15, 7. in duplex mode: 0, 8, 16, 24.

Example (not duplex mode, 1 bit VDAT):

value = 31 means shift out all of the data in the shift  register starting from bit 31 and
continuing through bit 0.

value = 23 means start shifting from bit 23, through bit 0.

In duplex (reverse) mode:

value = 0 means shift out all of the data in the shift register starting from bit 0 and
continuing through bit 31.

value = 8 means start shifting from bit 8, through bit 31.

Transmit FIFO register

Read data from or write data to the transmit FIFO directly (without DMA). This register
can be used to access the 8 word deep video transmit FIFO. Normally, the CPU would
write 32-bit words to this buffer if DMA was not being used to send data to the
print-engine.  Data is read out from the FIFO in the same order in which it was written.
There is no protection against overrun (reading too much data) if the user is using the
IU to read from the FIFO.

Note: Reading from this register is only allowed while the video interface is disabled.
Otherwise, the video interface and CPU would be competing for the data from the FIFO
and the results would be unpredictable. Reading from the FIFO is primarily used for
debugging purposes.

ReceiveBuffer register

Read data from or write data to the receive buffer directly (without DMA). The receive
buffer is 1 word deep (32 bits). When the shift register receives 32 bits of data, the data
is transferred into this register to be read by the CPU. The status flag ‘Receive Buffer
Full’ indicates that there is data to be read from this register.
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Video Control Register 1

Bits: 15–12 VCLK Divisor – This value is the amount to divide–down the internal VCLK from the source
clock (either the internal IU clock or the VCLK pin). The valid range is 1–16 (setting to 0
means divide by 1; setting this to 1 means divide by 2, ...)

Bit: 11 VCLK Drive Out – Setting this bit to 1 causes the internal video interface’s VCLK to be
driven onto the VCLK pin.  Normally bits 10 and 11 would never be set to 1 simultaneously.

Bit: 10 VCLK Source External – This bit indicates whether the source for VCLK generation is the
VCLK pin or the internal IU clock.  If this bit is 1,  the VCLK pin is used.  Note that if the
internal IU clock  is used, VCLK must be divided down by 2 or more (see bits 15:12).

Bit: 9  VCLK Invert – Setting this bit causes the Video Interface’s VCLK to be inverted with
respect to the VCLK pin.

Bit: 8  RESERVED

Bit: 7 IRQ on Receive  – Setting this bit causes the video interface to generate an interrupt when
a word has been received by the video interface.

Bit: 6 IRQ on FIFO Empty – Setting this bit causes the video interface to generate an interrupt
when the FIFO is either half–empty or completely empty (based on the value of the
’FIFO–threshold’ bit in video control register 2).

Bit: 5 IRQ on End Of Page – Setting this bit causes the video interface to generate an interrupt
when the last line of the page has been printed.

Bit: 4 IRQ on PSYNC Negated – Setting this bit causes the video interface to generate an
interrupt when the PSYNC pin changes from asserted to de–asserted.

Bit: 3 DMA Enable – Enables DMA to/from the video interface.  Must be set for DMA–video
transmit/receive operations.

Bit: 2 Duplex Mode – When set to 1, video data is transmitted in reverse bit order. This is
intended for reverse/duplex printing operations.  This bit should be cleared during
video–receive operations.

Bit: 1 VDAT Output – Direction of Video Data.  If this bit is 1, video data moves out from the
video interface (transmit); otherwise, VDAT is an input.

Bit: 0 Video Enable – When this bit is 1, the video interface is enabled for transmitting and
receiving data.  Setting this bit to 0 disables the video interface, disables interrupts and
clears part of the status register

Video Control Register 2

Bits: 15–11 RESERVED

MB86936 Video Interface – Video Registers
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Bit: 10 Blank Page – Setting this bit to 1 causes all VDAT (video data) output to be set to the
blank level.  Useful for printing a blank page or blank side of a page in duplex mode.  This
has no effect in receive mode.

Bit: 9  Blank Level – Determines the VDAT (video data) value which represents a blank.  This is
the data value used for margins and blank pages.

Bit: 8  FIFO Threshold Half – This bit determines the meaning of the video status register’s FIFO
threshold reached bit.  If this bit is 1, then the status register indicates when the FIFO has
fewer than 4 words left in the transmit FIFO (half empty).  If this bit is 0, then the status
register bit indicates when the FIFO is  completely empty (currently transmitting the last
word––the user program may write up to 8 words of data).

Bits: 7–6 Video Data Width – Sets the width of the video data.  00 = 1 bit data, 01 = 4 bit data, 10 = 8
bit data, 11 = reserved.

Bit: 5  VDAT Invert – If this bit is set, all video data is inverted before being sent or received.

Bit: 4  LSYNC Pulse mode – Selects pulse or level mode for the LSYNC input pin. If this bit is 1,
Pulse mode is selected, otherwise level mode is selected.

Bit: 3 LSYNC Invert – Selects whether the LSYNC pin is active high or active low. If this bit is 0,
LSYNC is treated as an active high input; if this bit is 1, LSYNC is treated as an active low
input.

Bit: 2 PSYNC Pulse mode – Selects pulse or level mode for the PSYNC input pin. If this bit is 1,
Pulse mode is selected, otherwise level mode is selected.

Bit: 1 PSYNC Invert – Selects whether the PSYNC pin is active high or active low. If this bit is 0,
PSYNC is treated as an active high input; if this bit is 1, PSYNC is treated as an active low
input.

Bit: 0 PSYNC Output – Selects whether the PSYNC pin is an input or an output. If this is set to 0,
PSYNC is an input; otherwise PSYNC  is an output.  Note: PSYNC output is always level
mode.

Video Status Register

Bit: 7 End Of Page – This bit indicates that the end of the transmitted page has been reached.
Specifically, all lines of video data have been transmitted.  This bit can be cleared by
writing a 0 to the video status register.

Bit: 6  PSYNC Status – This bit is 1 when PSYNC is active, 0 otherwise.

Bit: 5  LSYNC Status – This bit is 1 when LSYNC is active, 0 otherwise.

Bit: 4  Video Interrupt Request Active – This bit indicates that the video interface is currently
generating an interrupt.
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Bit: 3  DMA Request Active – This bit indicates that the video interface is currently requesting a
DMA transfer.

Bit: 2  Receive Buffer Full – This bit indicates that the receive buffer contains a valid word of data.
This bit is automatically cleared when the data is read.

Bit: 1 FIFO Threshold Reached – This bit indicates that the FIFO is either half empty or
completely empty (transmitting the last word).

Bit: 0 Page Active – This bit indicates that a page of data is currently printing. This bit is 1 while
the video interface is enabled and the line and page counters have not yet reached zero.

Note: To clear ‘End of Page’ and ‘DMA Int’, ‘0’ should be written to this register.
Writing ‘0’ will not affect the other bits in this register.

E7.6 Video Signal Timing

PSYNC and LSYNC are asynchronous inputs. PSYNC and LSYNC can be programmed
to be treated as pulse-mode signals or level-mode signals. They can also be pro-
grammed to be active-high or active-low. Note: since these signals are asynchronous,
they must be low noise signals.

In pulse mode, the positive edge of the signal is used as the active edge (unless the sync
invert bit is set, in which case the negative signal edge is used). In level mode, LSYNC
must be held active for the entire line, and PSYNC must be held active for the entire
page (except in the case of video transmit abort and restart mode). PSYNC as an output
is only available as a level signal.

External VCLK may be stopped (held low) at any time effectively suspending the video
interface. VCLK must run at a lower frequency than the IU frequency. If VCLK is
generated by the internal clock, the VCLK divisor must be set to at least 2.

LSYNC and PSYNC (as inputs) must provide at least 10nS setup and hold time with
respect to the active edge of VCLK.
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Note: Active high signals shown. Active polarity of the sync signals is programmable.

Video Sync Signals

Lsync 

Lsync 

Psync

Psync

Vclk

start of page

start of line

VDAT

(pulse)

(level)

(pulse)

(level)
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TABLE E7–3.Video Control Registers

31

ASI ADDRESS

0x 1

Left Margin 0

0x 0000 0284

Left Margin

16 15

Reserved

31

ASI ADDRESS

0x 1

Block Height 0

0x 0000 0288

Block Height

16 15

Reserved

31

ASI ADDRESS

0x 1

Line Width 0

0x 0000 028C

LineWidth

16 15

Reserved

31

ASI ADDRESS

0x 1

Start Bit 0

0x 0000 0290

Start Bit

5 4

Reserved

31

ASI ADDRESS

0x 1

Video Control 1 0

0x0000 0294
Reserved

123456789

Invert VCLK

IRQ on Receive Full

IRQ on FIFO Empty

IRQ on PSYNC Negated

DMA Enable

Duplex Mode

VDAT Output

Video Enable

IRQ on End of Page

VCLK Source External

101112

Reserved

VCLK Divisor

31

ASI ADDRESS

0x 1

Top Margin 0

0x 0000 0280

Top Margin

16 15

Reserved

1516

VCLK Drive Out
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TABLE E7–3. MB86936 Video Control Registers (continued)

0x 1

ADDRESS

31

Blank Page

ASI

Video Control 2 0

0x0000 0298

Reserved

Blank Level

VDAT Width

LSYNC Pulse Mode

VDAT Invert

LSYNC Invert

12345678910

PSYNC Pulse Mode

PSYNC Invert

PSYNC Output

31

PSYNC Status

LSYNC Status

ASI ADDRESS

0x 1

Video Status
0

0x0000 029C

Reserved

31

ASI ADDRESS

0x 1

Transmit FIFO 0

0x0000 02A0

31

ASI ADDRESS

0x 1

Receive Buffer 0

0x0000 02A4

Video Interrupt Request Active

DMA Request Active

FIFO Threshold Reached (empty/half-empty)

Receive Buffer Full

Page Active

1234567

FIFO Threshold Half

End of Page

8

11
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LSYNC

VDAT

PSYNC

VDAT

LSYNC

VCLK

ONE LINE

TOP MARGIN = 2 LINES

LEFT MARGIN = 3 DOTS

IMAGE DATABLANK–LEVEL DATA BLANK–LEVEL DATA

Video Transmit with Level Mode Sync Signals
Top Margin = 2, Left Margin = 3

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

Block
Height

Line Width

PAGEPAGE IMAGE IN MEMORY
TOP MARGIN

LEFT MARGIN

INCREASING
MEMORY

ADDRESSES

START ADDRESS
(DUPLEX MODE)

START ADDRESS
(NORMAL MODE)

Video Transmit Page Organization

MB86936 Video Interface – Video Signal Timing



SPARClite User’s Manual

E7-15

D0 D4 D8 D12 D16 D20 D24 D28 D0

D1

D3

D2

D5

D6

D7

D9

D10

D11

D31 D27 D23 D19 D15 D11 D7 D3 D31

D30

D28

D29

D26

D25

D24

D22

D21

D20

D31 D30 D29 D28 D27 D26 D25 D24 D23

D0 D1 D2 D3 D4 D4 D6 D7 D8

VDAT<0>

VDAT<0>

VDAT<3>

VDAT<2>

VDAT<1>

VDAT<0>

VDAT<3>

VDAT<2>

VDAT<1>

VDAT<0>

Normal Mode, 4–bit wide VDAT, start–bit = 31

Duplex Mode, 4–bit wide VDAT, start–bit = 0

Normal Mode, 1–bit wide VDAT, start–bit = 31

Image Address:

D31 D30 D29 D3 D2 D1 D0..........

Image Address + 4:

D31 D30 D29 D3 D2 D1 D0..........

Note: D31 is the most significant bit.

D7 D6 D5 D4 D3 D2 D1 D0 D31VDAT<0>

Normal Mode, 1–bit wide VDAT, start–bit = 7

Timing 21. Video Data Order

Duplex Mode, 1–bit wide VDAT, start–bit = 0
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HAPTER

MB86936 Timers

E8
C

The MB86936 features two independent general-purpose 24–bit Timers (a 16–bit
counter with an 8 bit prescaler). Each timer can be independently programmed to
operate in one of the following three modes:

• Mode 0 – Periodic Interrupt Mode

• Mode 1 – Timeout Interrupt Mode

• Mode 2 – Square Wave Generator Mode

Timer 0 and Timer 1 have clock prescalers that can be independently clocked by CLK.
The timers themselves can be independently clocked by CLK, or by the prescaler
output clock (PRSCKx).

Figure E8–1 shows a block diagram of the timers and prescalers and their clock options.
The prescaler output clocks are labeled PRSCKx, the internal clock is labeled CLK.
CLK runs at half of the processor clock frequency.

MB86936 Timers -
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E8.1 Timer Registers

Each timer has a Timer Control register, a Reload register, and a Count register for
timer configuration and control. Timers have Prescaler registers for prescaler control.
Table E8–1 shows the timer register map.

Prescaler

Prescaler

MUX

MUX

Timer 0

Timer 1

Clock

PRSCK0

PRSCK1

CLK

Figure E8–1. Timer Prescaler Block Diagram

Table E8–1.  Timer Register Map

Address Functional Unit Register Name Access Reset State

0x00000240 Prescaler 0 Prescale Register 0 R/W 0x01

0x00000244 Timer 0 Timer Control Register 0 R/W 0

0x00000248

Timer 0

Reload Value 0 R/W 0

0x0000024C Count Value 0 R 0

0x00000250 Prescaler 1 Prescale Register 1 R/W 0x01

0x00000254 Timer 1 Timer Control Register 1 R/W 0

0x00000258

Timer 1

Reload Value 1 R/W 0

0x0000025C Count Value 1 R 0
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E8.1.1 Prescaler Register

The Prescaler register allows selection of the prescaler clock, the prescaler output, and
the prescaler counter value.

Test: Prescaler Test Mode (1=Test)

031

reserved

15 14 1113 10 7

PCNTR

8

Address 0x00000240
0x00000250
(ASI = 0x01)

Reserved Select

Figure E8–2.  Prescaler Register

Bit 15: reserved

Bit 14: Prescaler Test Mode - The prescaler test mode is intended for factory use only, and Test
should therefore remain 0 during normal operation.  To enable test mode, this bit and
global test bit* needs to be written 1.

Bits 13-11: Reserved.

Bits 10-8: Prescaler Output Select - Selects one of the eight prescaler outputs for PRSCKx, the
prescaler clock output. Each selection is one half the frequency of the previous selection.
A 0 in this field selects the prescaler counter output; a 1 selects one half the frequency of
the prescaler counter output, etc.

Bits 7-0: Prescaler Counter Value - Determines the prescaler counter output frequency. The value
in this field is loaded into the prescaler counter when it is written, and when timeout occurs.
The prescaler counter value must be 1 or greater; a value of 1 forces the prescaler output
clock (PRSCKx) low.

Reset initializes the Prescaler registers to 0x01. This initial state selects internal
prescaler clock, the highest prescaler output clock frequency, and a Prescaler value of 1
(PRSCK forced low).

The reserved fields should be written “0” for future software compatibility.

*Global test bit is set to 1 by writing 0x1 at global test register (address 0x10000, asi=0x1)
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E8.1.2 Timer Control Registers (TCR)

The TCR enables and disables the timer and allows selection and control of the timer In
and Out signals, clock sources, and operation modes.

Output Signal Control

031

reserved

reserved

15 14 1113 10 916

Address 0x00000244
0x00000254

12 8 7 6 5 3 2

Timer Test (1=Test Mode)

Count Enable (1=Enable)

OUTCTL reservedO
ut In
v

T
es

t

C
E

4

Output Signal Invert (1=invert)

reserved

reserved

CLKSEL

MODE

Bit 15: Output Signal Level - A read-only status bit for reading the current Out signal level. When
the Out signal level is high, the OUT status bit is 1.

Bit3 14–13: Reserved.

Bit 12: Timer Test Mode - The timer test mode is intended for factory use only, and should
therefore remain 0. This bit and global test bit needs to be written 1.

Bit  11: Count Enable - Enables the timer when set to 1; disables the timer when cleared to 0. The
timer and its prescaler should be configured for desired operation when the timer is
enabled.

Bits 10: Clock Select - Selects the timer clock source as follows:

Figure E8–3.  Timer Control Registers

Table E8–2. Clock Source

CLKSEL Clock Source

0 Internal Clock

1 Prescaler Output Clock

Bit 9: Reserved.

Bits 8-7: Out Signal Control - Selects the state of the Out pin while the timer is stopped as follows:

MB86936 Timers - Timer Registers
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Table E8–3.  Out State

OUTCTL Out State

0 Remains in the current state

1 Asserted high

2 Asserted low

3 Reserved.

Bit 6: Invert - Inverts the timer Out signal when set to 1.

Bit 5: Reserved

Bits 4-3: Mode Select - Selects the timer mode of operation as follow:

Table E8–4. Timer Operating Mode

Mode Timer Operating Mode

0 Periodic Interrupt Mode

1 Timeout Interrupt Mode

2 Square Wave Generator Mode

3 Reserved

Bits 2:0: Reserved.

Reset initializes the Timer Control register to 0. The reserved fields should be written
“0” for future software compatibility.

*Global test bit is set to 1 by writing 0x1 at global test register (address 0x10000, asi=0x1)

E8.1.3 Reload Register

The Reload register holds the initial value of the timer counter.
031

reserved

1516

Address 0x00000248, 0x00000258, (ASI = 0x01)

Reload Value

Bits 15-0: Timer Reload Value - In Modes 0 and 2, the Timer Reload Value is automatically loaded
into the counter when a timeout occurs. In Mode 2, the Timer Reload Value is compared
with the Count Register value to control the Out signal.

Figure E8–4.  Reload Register

Reset initializes the Reload register to 0. The reserved field should be written “0” for
future software compatibility.
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E8.1.4 Count Register

The Count register is a read-only register that holds the current timer counter value.

031

reserved

1516

Address 0x0000024C, 0x0000025C, (ASI = 0x01)

Count Value

Bits 15-0:Timer Count Value - The current timer count value.

Figure E8–5.  Count Register

Reset initializes the Count register to 0.

E8.2 Prescaler Operation
Figure E8–6 shows a prescaler block diagram consisting of an 8-bit counter, cascaded
divide-by-two flip-flops, and selector logic.

Once the prescaler counter is loaded, the counter decrements at its clocked frequency
and generates an output to the cascaded flip-flops. The flip-flops successively divide by
two to provide eight frequencies for selection by the selector logic. The selector logic
selects the output of the counter or one of the divided outputs as the prescaler clock
output according to the value in the Prescaler register Select field. The clock output,
PRSCKx, may be used to clock the timer.

SELECTOR

Prescaler Register
BIT  15   14  13   12  11   10    9      8     7    6    5     4     3    2     1     0

CLOCK

PRSCK for internal use

8–Bit Counter

+256 
Max
Count

÷2 ÷2÷2 ÷2 ÷2÷2 ÷2

Prescaler Output Select
=0 =1 =2 =3 =4 =5 =6 =7

Figure E8–6.  Prescaler Block Diagram

E8.2.1 Output Clock Duty Cycles

The clocks generated by the cascaded flip-flops have 50% duty cycles when selected
with 1-7 in the Prescaler register Select field.

MB86936 Timers - Prescaler Operation
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The clock generated directly by the prescaler counter, selected with 0 in the Prescaler
Select field, is not a 50% duty cycle clock. The clock is asserted high until the counter
reaches 1, and is then asserted low for one internal clock cycle. The clock is then
asserted back to the high level while the counter reloads and counts down to 1 again.
The clock is therefore low for one internal clock cycle during the countdown period.

The timer operation is independent of the prescaler clock duty cycle.

E8.2.2 Counter Loading

The 8-bit prescaler counter is loaded with the value in the Prescaler Register PCNTR
field in three ways as follows:

– When the 8-bit prescaler counter decrements to 0.

– By writing to the PCNTR field.

– When the timer reload value is loaded or reloaded into the companion timer if the
timer is clocked by the prescaler output clock, and the prescaler is clocked by CLK.
CLKSEL must be 1 in the companion timer’s Timer Control register (prescaler
output clock selected to clock the timer).

The cascaded flip-flops in the divide chain are cleared when the prescaler counter is
loaded.

E8.3 Timer Operation

Figure E8–7 shows a block diagram of a timer.

Timer 0 and Timer 1 can be clocked with the internal clock, or a prescaler clock. Timer
clock selection is controlled by the CLKSEL field in the TCR.

EQUAL
Detect

Counter (16 Bit)

Output
Control

Reload

ZERO DetectDATA

(MODE 0–2)

TIMER 0

TIMER1

D0–15

PRSCK0

CLK0

D0–15

PRSCK1

CLK1

OUT0

OUT1
(to interrupt
request
 controller)

MUX

(pin)

Figure E8–7.  Timer Block Diagram
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E8.3.1 Out Signal

The Out signal is used to indicate timeout, or the half-value of the Reload Value
register during countdown. The Out signal active level is controlled by the Out Signal
Control field and the Invert control bit in the TCR. The Out Signal Control field
controls the state of the Out signal while the timer is stopped. The Invert bit inverts the
Out signal when set to 1.

The Out signal is typically tied to an interrupt request controller to generate a processor
interrupt at timeout in Modes 0, 1, and is used as a square wave in Mode 2.

TIMER0 and TIMER1 outputs are connected to bit 5 and bit 3, respectively of internal
interrupt request controller. TIMER0 output is also available on MB86936 pin.

The following are the conditions for resetting and setting the Out signal level for the
various timer modes during timer operation, with the TCR Invert bit cleared to 0:

Table E8–5.  Out Signal

Mode Out Signal Reset Out Signal Set

0 Writing Reload Register; Reading Count Value Register Timeout

1 Writing Reload Register; Reading Count Value Register Timeout

2 When the half-value of the Reload Register is reached. Timeout

The Out signal is inverted when the Invert bit is set to 1.

E8.3.2 Starting and Stopping the Timer

The timers are stopped following reset. Timer operation is initiated in all modes by first
writing the timer mode in the TCR Mode field and setting the Count Enable control bit
in the TCR to 1.

Timer operation in Modes 0, 1, 2, begins when the Reload register is written. The
Reload register value is transferred to the timer counter when the Reload register is
written, and the counter begins decrementing.

Once operating, each timer is stopped in the various operating modes as follows:

• Modes 0: Writing the TCR CE bit to 0.

• Mode 1: Writing the TCR CE bit to 0 or timeout.

• Mode 2: Writing the TCR CE bit to 0.

Note that the timers can be halted in all operating modes by writing to the TCR CE bit
to 0.

MB86936 Timers - Timer OperationMB86936 Timers - Timer Operation
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E8.3.3 Timer Operating Modes

Each timer supports three operating modes: periodic interrupt mode (Mode 0), timeout
interrupt mode (Mode 1), square wave generator mode (Mode 2). The timer operating
mode is controlled by the Mode field in the TCR.

Periodic Interrupt Mode (Mode 0)

The TCR register is written so that the Out signal is initially set to the high or low state,
depending on the OUTCTL field in the TCR, the timer is enabled (CE=1), and mode 0
selected. The counter then begins decrementing and the Out signal is driven low when
the Reload register is written with the reload value.

When timeout occurs (counter = 0), the timer Out signal transitions to the high level.
The Reload register value loads into the counter at timeout, and the counter continues
decrementing. The Out signal remains at the high level until the Counter register is read
or the Reload register is written.

The Out levels are inverted if Inv = 1 in the TCR.

Timeout Interrupt Mode (Mode 1)

This mode differs from Mode 0 at timeout. In Mode 1, the timer halts at timeout instead
of reloading and decrementing the counter.

The TCR register is written so that the Out signal is initially set to the high or low state,
depending on the OUTCTL field in the TCR, the timer is enabled (CE=1), and mode 1
selected. The counter then begins decrementing and the Out signal is driven low when
the Reload register is written with the reload value.

When timeout occurs (counter = 0), the timer Out signal transitions to the high level,
and the counter halts. The Out signal remains at the high level and the counter remains
halted until the Count register is read or the Reload register is written. When the Count
register is read or the Reload register is written, the Out signal is asserted low, the
Reload register value loads into the timer counter, and the counter decrements.

The Out levels are inverted if Inv = 1 in the TCR.

MB86936 Timers - Timer Operation
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Square Wave Generator Mode (Mode 2)

This mode differs from Mode 0 in the transition of the Out signal.

The TCR register is written so that the Out signal is initially set to the high or low state,
depending on the OUTCTL field in the TCR, the timer is enabled (CE=1), and mode 2
selected. The counter then begins decrementing when the Reload register is written with
the reload value.

When the counter decrements to half of the reload value, the Out signal is driven to the
low level. When timeout occurs (counter = 0), the timer Out signal transitions to the
high level. The counter reloads at timeout, and continues decrementing, repeating the
Out level changes. The Out signal is therefore a square wave.

The following are the square wave high and low times for various Reload register
values represented by “N”: 

Table E8–6.  Square Wave Generator

N Period
(N+1)

High Level
(N+1)/2+1

Low Level
N/2

0 — —

1 2 1

2 3 2 1

3 4 3 1

4 5 3 2

5 6 4 2

6 7 4 3

For N ≥ 2, the period of the square wave is N+1, the high level width is (N+1)/2+1, and
the low level is N/2. N = 0 and N = 1 are special cases, as shown in the table.

The Out levels are inverted if Inv = 1 in the TCR.

MB86936 Timers - Timer Operation
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Table E8–7.  Timer Operating Mode Summary

Go/Halt Initial
Value

Out Signal Control

Go Halt
Value

Loading Reset Set

Mode0
Periodic
Interrupt

Reload Reg
Write after
Mode Set and
CE=1

TCR
Write

Reload Reg
Write,
Timeout

Reload Reg
Write, Count
Reg Read

Timeout

Mode1
Timeout
Interrupt

Reload Reg
Write After
Mode Set and
CE=1

TCR
Write

Timeout

Reload Reg
Write

Reload Reg
Write, Count
Reg Read

Timeout

Mode2
Square
Wave
Generator

Reload Reg
Write After
Mode Set and
CE=1

TCR
Write,

Reload Reg
Write,
Timeout

Equality
Detection
(1/2 Reload
Value)

Timeout

CLK

Reg Write
Strobe

Reg Read
Strobe

Reload
Register

COUNT

GO/HALT

OUTx

Mode
Set

Load

Reload

6 5

Count Value Count Value Count Value

Set Reset

Reload Reload Reload

4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1

Set Reset ResetSet

Figure E8–8.   Periodic Interrupt Timing (Mode 0) Using the Internal Peripheral Clock
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CLK

Reg Write
Strobe

Reg Read
Strobe

Reload
Register

COUNT

Mode
Set

Load

GO/HALT

OUTx

Reload

7 6

Count Value

Set

Load

5 4 3 2 1 0 5 4 3 2 1 0

ResetSet

Reload

7 5

Reset

HALT GO HALT GO HALT

Figure E8–9.  Timeout Interrupt Timing (Mode 1) Using the Internal Peripheral Clock
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CLK

Reg Write
Strobe

Reg Read
Strobe

Reload
Register

COUNT

GO/HALT

OUTx

Mode
Set

Load

Reload

8 7

Reset

6 5 4 3 2 1

8

0 8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 8

Reload Reload

Load

HALT GO

Reset Set Reset Set

*1. When OUT control bit of
TCR is set.

*1 Set

Figure E8–10.  . Square Wave Generator Timing (Mode 2) Using the Internal
Peripheral Clock
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HAPTER

MB86936 Debug Support Unit (DSU)

E9
C

The MB86936 DSU is mostly identical to that of the MB86930. Certain Floating–Point
instructions (LDDF, STDF, STDFQ and all FPops) have special breakpoint behavior
which is described in sections 9.1 and 9.2.  In addition, the MB86936 DSU contains a
feature which allows he chip to emulate the function of the MB86935.  This capability
is described in section 9.3.

E9.1 Data Breakpoints Immediately Before FPop

In the MB86936, the FPop1, FPop2, and instructions are not immediately trapped by
the Data Address Breakpoint trap request or by the Data Value Breakpoint trap request.
These traps are suspended by the DSU until they are accepted by the IU or until the
processor is reset, as shown in the following code fragment example:

Assume Data_Address_Descriptor_Register_1 = 0x100.

st  %i0, [0x100]  ! st  raises the Data Address Breakpoint trap request.
fadds  %f0, %f1, %f2  ! fadds  is an FPop instruction, so it is not trapped.
fsubs  %f3, %f4, %f5  ! fsubs  is an Fpop instruction, so it is not trapped.
and  %i1, %i2, %i3  ! and  is trapped because it is not an Fpop
  ! instruction.

MB86936 Debug Support Unit (DSU) – Data Breakpoints Immediately Before FPop
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E9.2 Data Breakpoints For LDDF/STDF/STDFQ
When the Data Address Breakpoint trap request or the Data Value Breakpoint trap
request is used for the LDDF, STDF, and STDFQ instructions in the MB86936, the
Data Address Descriptor register must have an even word address (i.e., DA[2:0] = 000),
and the Data Value Descriptor register must have the breakpoint value for the
least-significant word of the data (i.e., DD[31:0]).

The following code fragment shows breakpoint operation for the LDD and LDDF
instructions.
Assume Data_Address_Descriptor_Register_1 = 0x100 .
Assume Data_Value_Descriptor_Register_1 = 0x89abcdef .
Assume Memory [0x100]  = 0x01234567
Assume Memory [0x104]  = 0x89abcdef

ldd [0x100], %i0  ! ldd_reg does not raise the Data Value Breakpoint
 ! trap request.

ldd [0x100], %f0  ! ldd_freg raises the Data Value Breakpoint trap
 ! request

nop  !  nop  is trapped by the breakpoint trap request.

The instruction ldd [0x100], %i0 does not trap because the IU has only a 32-bit data
bus, and the double word load is therefore executed as two single-word loads (ld
[0x100], %i0 and ld [0x104], %i1) as follows:

(1) %i0 ← Memory [0x100] = 0x01234567 (ld [0x100], %i0)
(2) %i1 ← Memory [0x104] = 0x89abcdef (ld [0x104], %i1)

The first load does not trap because the data is incorrect for the breakpoint. The second
load does not trap because the address is incorrect for the breakpoint.

The instruction ldd [0x100], %f0 traps because the FPU, unlike the IU, has a 64-bit data
path, so the load is executed as one double-word load. The DSU has only a 32-bit Data
Value Descriptor register, so it checks the least-significant word of the data (i.e.,
DD[31:0] = 0x89abcdef) for the Data Value breakpoint. Both the address and the data
are therefore correct for the breakpoint.

%f0 - %f1 ← Memory [0x100] = 0x01234567-89abcdef (64 bits)

Correct Address Correct Data

E9.3 Emulation Mode Control
The MB86936 has the ability to emulate the MB86935 which differs in that it does not
have hardware floating point support.  This emulation mode is under the control of a
new register, the Emulation Mode Control Register.  It is configured as follows:

MB86936 Debug Support Unit (DSU) - Data Breakpoints For LDDF/STDF/STDFQ
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Processor ID (00=MB86936, 01=MB86935)

031

reserved

Emulation Register Enable (1 enables register, 0 disables register)

Address 0x0000FF24
ASI=1

12

Figure E9–1.  Emulation Mode Control Register

Bits 31–3: Reserved

Bits 2–1: Processor ID – These are the two least significant bits of the version number for each
processor. This value is 8 (binary 1000) for the MB86936 and 9 (binary 1001) for the
MB86935.

Bit 0: Emulation register enable – Setting this bit high enables the emulation mode.  If the bit is
low the processor will assume its “hard–wired” ID value.

Upon reset, the contents of the Emulation Control Register are cleared, thereby
initializing the chip without emulation capability.  As a result of putting the chip into
MB86935 emulation mode, the hardware floating point unit will be disabled. And
reading the Processor State Register (PSR) will yield a value of 9 instead of 8 for the
version field (bits 27–24).

MB86936 Debug Support Unit (DSU) – Emulation Mode Control
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HAPTER

Floating-Point Unit

E10
C

E10.1 Overview of the MB86936 Floating-Point Unit
The MB86936 FPU fully conforms to the ANSI/IEEE Standard 754-1985, the SPARC
Architecture Version 8 specification, and the SPARC IEEE754 Implementation
Recommendation except for the Nonstandard FP (NS=1) mode implementation.

Quad-precision Floating-Point operations in the MB86936 FPU cause the unimplem-
ented_FPop Trap, and are then emulated in software. Floating-Point operations with
Subnormal Number(s) cause the unfinished_FPop Trap (if NS=0), and are then
emulated in software. The FPU executes all other Floating-Point operations.

E10.2 FPU Data Formats
The MB86936 architecture recognizes three floating-point data formats:

• Floating-Point Single hardware.

• Floating-Point Double hardware.

• Floating-Point Quad – NOT in hardware – by trap software only.

The Floating-Point data formats conform to the IEEE Standard for Binary Floating-
Point arithmetic, ANSI/IEEE Standard 754-1985.

Figure E10-1 shows the floating-point data formats and the subwords within each
format. Table E10-1 shows the subformat arrangements in memory, and in the
processor registers. Tables E10-2 through E10-4 define the formats.

Floating-Point Unit - Overview of the MB86936 Floating-Point Unit
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Floating-Point Single

S exp[7:0] fraction[22:0]

31 30 23 22 0

Floating-Point Double

S exp[10:0] fraction[51:32]

31 30 20 19 0

fraction[31:0]

31 0

FD-0

FD-1

Floating-Point Quad

S exp[14:0] fraction[111:96]

31 30 16 15 0

fraction[95:64]

31 0

FQ-0

FQ-1

fraction[63:32]

31 0

fraction[31:0]

31 0

FQ-2

FQ-3

Figure E10-1. Data Formats
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Table E10-1:  Doubleword and Quadword Arrangement in Memory and Registers

Sub-Format
Name

Sub-Format
Field

Memory
Address

Alignment

Memory
Address

(byte)

Register
Number

Alignment

Register
Number
(word)

FD-0 s:exp[10:0]:fraction[51:32] 0 mod 8 n 0 mod 2 r

FD-1 fraction[31:0] 4 mod 8 n+4 1 mod 2 r+1

FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 16 n 0 mod 4 r

FQ-1 fraction[95:64] 4 mod 16 n+4 1 mod 4 r+1

FQ-2 fraction[63:32] 8 mod 16 n+8 2 mod 4 r+2

FQ-3 fraction[31:0] 12 mod 16 n+12 3 mod 4 r+3

Table E10-2:  Floating-Point Singleword Format Definition

s = sign (1 bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

normalized value (0<e<255): (–1)s x 2e–127 x 1.f

subnormal value (e=0): (–1)s x 2–126 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 255 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 255 (max); f = .1uu – uu

–∞  (negative infinity) s = 1; e = 255 (max); f = .000 – 00

+∞  (Positive Infinity) s = 0; e = 255 (max); f = .000 – 00

Floating-Point Unit - FPU Data Formats
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Table E10-3  Floating-Point Doubleword Format Definition

s = sign (1 bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

normalized value (0<e< 2047): (–1)s x 2e–1023 x 1.f

subnormal value (e=0): (–1)s x 2–1022 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 2047 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 2047 (max); f = .1uu – uu

–∞  (negative infinity) s = 1; e = 2047 (max); f = .000 – 00

+∞  (Positive Infinity) s = 0; e = 2047 (max); f = .000 – 00

Table E10-4:  Floating-Point Quadword Format Definition

s = sign (1 bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

normalized value (0<e<32767): (–1)s x 2e–16383 x 1.f

subnormal value (e=0): (–1)s x 2–16382 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 32767 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 32767 (max); f = .1uu – uu

–∞  (negative infinity) s = 1; e = 32767 (max); f = .000 – 00

+∞  (Positive Infinity) s = 0; e = 32767 (max); f = .000 – 00

Floating-Point Unit - FPU Data Formats
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E10.3 FPU Registers
 The FPU contains a set of 32 general purpose registers, a Floating–Point deferred trap
queue (FQ) and a floating–point state register (FSR). Two flags in the Processor State
Register (PSR) control the enabling and disabling of the FPU.

E10.3.1 Floating-Point State Register (FSR)
The Floating-Point State Register (FSR) is the FPU control and status register. The
register contains FPU control and status information.

The FSR is read and written with the STFSR and LDFSR instructions, respectively. The
RD, TEM, NS, fcc, aexc, and cexc fields are readable and writable, but the ver, ftt, and
qne fields are read-only. The qne field is cleared by reset; the ftt field is cleared by reset
and by the STFSR instruction.

31

RD

30 29 28 27 23 22

NSTEM fccres ver qne u

21 20 19 17 16 14 13 12 11 10 9 5 4 0

u ftt aexc cexc

Current
Exception

(Status, R/W)

Accrued
Exception

(Status, R/W)

Floating-Point Condition Codes
(Status, R/W)

Unused

Floating-Point Trap Type
(Status, Read Only, Cleared by Reset)

Version
(Status, Read Only)

Reserved
Nonstandard Floating-Point
(Control, R/W)

Trap Enable Mask
(Control, R/W)

Unused

Rounding Direction
(Control, R/W)

FQ Not Empty
(Status, Read Only)

Figure E10-2. Floating-Point State Register
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Bits 31-30: Rounding Direction (RD) [Control Field, Readable and Writable]

 This field selects the rounding direction for floating-point results according to ANSI/IEEE
Standard 754-1985 as follows:

RD Rounding Direction

0 Nearest (even if tie)

1 Zero

2 + Infinity

3 – Infinity

RD is read and written with the STFSR and LDFSR instructions, respectively.

Bits 29-28: Unused (U)

This field is undefined when read with the STFSR instruction. To ensure future
compatibility, the field should be written 0 when the LDFSR instruction is used.

Bits 27-23: Trap Enable Mask (TEM) [Control Field, Readable and Writable]

This field selectively enables and disables assertion of an fp_exception trap in response to
one or more floating-point exceptions that are indicated in the cexc field of the FSR. A 1 in
the TEM field enables an fp_exception trap for the corresponding floating-point exception;
a 0 disables an fp_exception trap for the corresponding floating-point exception. (See
Section 10.4.3, IEEE 754 Exception, for details).

The TEM field floating-point exception masks are as follows:

Bit Exception

27 NVM

26 OFM

25 UFM

24 DZM

23 NXM

TEM is read and written with the STFSR and LDFSR instructions, respectively.

Bit 22: Nonstandard FP (NS) [Control Bit, Readable and Writable]

This bit sets the FPU in the Nonstandard mode. The Nonstandard mode is also called the
Fast mode and the Abrupt Underflow mode. The other (standard) mode is called IEEE
Underflow mode, or the Gradual Underflow Mode.

When the NS bit is 1, a subnormal (denormalized) floating-point number in each source f
register is considered to be zero by the FPU. The FPU replaces a positive subnormal
operand with +zero, and a negative subnormal operand with –zero. The FPU does not
assert an exception (including inexact (nv) exception) following a replacement, and does
not indicate that a replacement has occurred.

The FPU does not produce any subnormal numbers as FPop results, even if underflow
occurs. Instead, the FPU outputs the underflow default results (± zero or ± the smallest

Floating-Point Unit - FPU Registers
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normalized number), depending on rounding mode and its sign. Unlike the IEEE 754
underflow handling, this underflow handling maintains consistency with the overflow
handling. (See Section 10.5.2, Overflow, Underflow, and Inexact, for details.)

When the NS bit is 0, subnormal (denormalized) floating-point operand(s) or result(s)
invoke the unfinished_FPop trap. The FPop is emulated in software to conform to
ANSI/IEEE Standard 754-1985. (See Section 10.5.4, Emulation for Subnormal Number,
Invoked by the Unfinished_FPop Trap, for details.)

NS is read and written with the STFSR and LDFSR instructions, respectively.

Programming Notes:

(1) The NS bit does not affect the FMOVs, FNEGs, FABSs, STfp, or LDfp instructions.
These instructions are not affected by the precision type (single, double, or quad) or
numbers (NaN, Zero, Subnormal Number, etc.). They just transfer contents as data
between f registers or between an f register and memory whether the NS bit is 1 or
0. Therefore, they never raise any fp_exception, and they never have a subnormal
number replaced by zero.

(2) The NS bit is defined as implementation-dependent in the SPARC Architecture
Manual (Version 8). This definition is only for SPARClite. Other SPARC devices may
have other definitions. (The SPARClite definition of the NS bit is not the same as the
definition given in the SPARC IEEE 754 Implementation Recommendation section of
the SPARC V8 manual.)

Bits 21-20: Reserved

This field reads 0 when read with the STFSR instruction. To ensure future compatibility,
the field should be written 0 when the LDFSR instruction is used.

Bits 19-17: Version (ver) [Status Field, Read Only]

This field Identifies the FPU version. The MB86936 FPU version is 6. The ver field can be
read with the STFSR instruction, but is not affected by the LDFSR instruction.

Programming Note:

Software identifies the FPU as belonging to the SPARClite MB86936 processor by
reading “0” in the PSR implementation (impl) field (identifies Fujitsu Microelectronics,
Inc. implementation), by reading “6” the PSR version (ver) field (identifies processor
as MB86936), and by reading “6” in the FSR version field (identifies the FPU
version).

Floating-Point Unit - FPU Registers
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Bits 16-14: Floating-Point Trap Type (ftt) [Status Field, Read Only]

This field identifies the floating-point exception trap types. The ftt field is a read-only field
that identifies the type of floating-point exception that occurs as follows (see Section
10.4.2, Floating-Point Exception Trap Types, for details):

ftt Trap Type

0 none

1 IEEE_754_exception

2 unfinished_FPop

3 unimplemented_FPop

4 sequence_error

5 hardware_error (not implemented in the MB86936)

6 invalid_fp_register

7 reserved

The ftt field can be read with the STFSR instruction. Reset, execution of the STFSR
instruction, and execution of an FPop with no floating-point exceptions clear the ftt field.
The LDFSR instruction does not affect ftt.

 Programming Note:

The SPARC Architecture Manual (Version 8) specifies that clearing of the ftt field to 0
following execution of the STFSR instruction is implementation-dependent. The
MB86936 FPU clears the ftt field following execution of the STFSR instruction, but
other SPARC FPUs may not.

Bit 13: FQ Not Empty (qne) [Status Bit, Read Only]

This bit indicates whether the floating-point deferred-trap queue (FQ) contains any FPop
instruction. If qne=0, the FQ is empty; if qne=1, the FQ is not empty. Reset and execution
of successive STDFQ instructions empties the FQ, resulting in qne=0.

The qne bit can be read with the STFSR instruction. The LDFSR instruction does not affect
qne.

Bit 12: Unused (u) - This bit is undefined when read with the STFSR instruction. To ensure future
compatibility, the bit should be written 0 when the LDFSR instruction is used.

Bits 11-10: FP Condition Codes (fcc) [Status Field, Readable and Writable]

The fcc field is updated only by a floating-point compare instruction such as FCMP or
CMPE as follows:

fcc Relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)

 If either frs1 or frs2 is a signaling NaN (SNaN) or a quiet NaN (QNaN), the fcc field
becomes 3 (unordered).The fcc field is unchanged if a floating-point compare instruction
generates any fp_exception.

Floating-Point Unit - FPU Registers
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The FBfcc instruction bases its control transfer on the fcc field. The field can be read and
written with the STFSR and LDFSR instructions, respectively.

Programming Note:

The FBfcc instruction can branch based on the fcc field which was changed by the
STFSR, not by FCMP instructions. In the MB86936 FPU, the STFSR can be
followed by the FBfcc without any instructions between. However, other SPARC
FPUs may require three instructions between the STFSR and the FBfcc.

Similarly, the SPARClite FPU does not require any instructions between the
FCMP/FCMPE instructions and a following FBfcc, but some SPARC FPUs require
one non-FPop2 instruction between these instructions.

Bits 9-5: Accrued Exception (aexc) [Status Field, Readable and Writable]

This field accumulates IEEE_754 floating-point exceptions that occur while their traps are
disabled using the TEM field as follows:

FSR bit Exception

5 nxa

6 dza

7 ufa

8 ofa

9 nva

 The aexc field is unchanged if an FPop generates an IEEE_754_exception trap or other
fp_exception trap.

 After an FPop is executed without any fp_exception traps except an IEEE_754_exception
trap, the TEM and cexc field are logically ANDed together. If the result is nonzero, an
IEEE_754_exceptions trap is generated; otherwise, the new cexc field is ORed into the
aexc field.

 The aexc field is read and written with the STFSR and LDFSR instructions, respectively.
(See Section 10.4.3, IEEE 754 Exception, for details.)

Floating-Point Unit - FPU Registers
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Bits 4-0: Current Exception (cexc) [Status Field, Readable and Writable]

This field identifies IEEE_754 floating-point exceptions that were generated by the most
recently executed FPop instruction as follows:

FSR bit Exception

0 nxc

1 dzc

2 ufc

3 ofc

4 nvc

The cexc field is updated either when an FPop is completed without a trap, or when an
FPop causes an IEEE_754_exception trap. Only one IEEE_754 exception is selected for
the IEEE_754_exception trap; i.e., only one bit in the cexc field becomes 1, and the rest
become 0’s. The cexc field is unchanged if an FPop generates an fp_exception trap except
the IEEE_754_exception trap.

The cexc field is read and written with the STFSR and LDFSR instructions, respectively.
(See Section 10.4.3, IEEE 754 Exception, for details.)

Programming Note:

The cexc field can be changed with the STFSR instruction. However, this change
does not generate new fp_exception traps. The cexc is evaluated for fp_exception
traps only when an FPop is executed; not when an STFSR is executed.

E10.3.2 FPU Register Set
The MB86936 FPU contains thirty-two 32-bit floating-point f registers that are
designated f[0] to f[31]. The FPU f registers are not windowed as are the IU r registers.
Each floating-point instruction therefore has access to all 32 f registers. The f registers
can be read and written with FPop instructions and with load/store floating-point
instructions (particularly LDF, LDDF, STF, and STDF).

 A single f register, such as f[0] or f[1], can hold one single-precision operand. A
double-precision operand requires an aligned pair of f registers, such as f[0]-f[1] or
f[2]-f[3]. A quad-precision operand requires an aligned quadruple of f registers, such as
f[0]-f[1]-f[2]-f[3] or f[4]-f[5]-f[6]-f[7]. The f registers can therefore hold a maximum of
32 single-precision, 16 double-precision, or 8 quad-precision operands.

The floating-point instructions that access floating-point double-precision data in the
f-registers assume double alignment. The least-significant bit of a double-word f
register number must be zero (i.e., f[0], f[2]...; not f[1], f[3]...). Similarly, the
least-significant two bits of a quad-word f register number must be zeros (i.e., f[0],
f[4]...; not f[1], f[2], f[3], f[5], f[6], f[7]...).

Floating-Point Unit - FPU Registers
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E10.3.3 Floating-Point Deferred-Trap Queue (FQ)
The Floating-Point Deferred-Trap Queue (FQ) is a queue of three double-word entries.
Each entry holds an FPop instruction, and the Program Counter (PC) address from
which it was fetched. The instructions remain in the queue until executed by the FPU,
which can execute the instructions concurrently. When a floating-point trap occurs, the
FQ holds the FPop instructions that are pending completion by the FPU.

The FQ is a first-in-first-out queue. The FPU therefore cannot change the order of
completion of the instructions in the FQ. The number of entries of the FQ is imple-
mentation-dependent, so FQs in other SPARC devices may hold a different number of
entries.

Figure E10-5 illustrates FQ operation. An FPop instruction enters the FQ when
dispatched by the IU to the FPU. The first instruction is stored in the first (front) FQ
entry and remains there until executed. The next instruction is stored in the second FQ
entry if the first instruction has not executed, or in the first FQ entry if the first
instruction has executed. The next instruction is stored in the third FQ entry if neither of
the previous two instructions has executed, in the second entry if only the first
instruction has executed, or in the first entry if both of the preceding instructions have
executed.

The FPop instruction in the first entry exits the FQ when it executes without a
floating-point exception, and the instructions that remain in the queue move up one
entry towards the front of the queue. If the instruction causes a floating-point exception,
it stays in the front entry, other instructions in the FQ do not move toward the front of
the queue, and the FPU changes from the fp_execution state to the fp_exception_pend-
ing state.

When a floating-point exception occurs, the trap handler reads the contents of the FQ
with the Store-Double Floating-Point Queue (STDFQ) instruction, which stores the
contents of the front entry of the FQ into memory. The PC address part of the entry is
stored into memory at the effective address, and the instruction code part of the entry is
stored at the effective address + 4. All remaining instructions move up one entry.

Each instruction exits the FQ when it is stored to memory. When an STDFQ instruction
empties the FQ, the qne bit is cleared to 0. (See Section 10.3.1, Floating-Point State
Register (FSR), for a description of the qne bit.)

Floating-Point Unit - FPU Registers
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Entry 3 Empty
qne = 0 Entry 2 Empty

Entry 1 Empty

Entry 3 Empty
qne = 1 Entry 2 Empty

Entry 1 FPop_A addr & code (dispatched by IU to FPU)

Entry 3 Empty
qne = 2 Entry 2 FPop_B addr & code (dispatched by IU to FPU)

Entry 1 FPop_A addr & code

Entry 3 FPop_C addr & code (dispatched by IU to FPU)
qne = 3 Entry 2 FPop_B addr & code

Entry 1 FPop_A addr & code

Entry 3 Empty
qne = 2 Entry 2 FPop_C addr & code

Entry 1 FPop_B addr & code
FPop_A addr & code (completed without fp_exception)

Entry 3 Empty
qne = 2 Entry 2 FPop_C addr & code

Entry 1 FPop_B addr & code (completed with fp_exception)

Entry 3 Empty
qne = 1 Entry 2 Empty

Entry 1 FPop_C addr & code
FPop_B addr & code (read by STDFQ instruction)

Entry 3 Empty
qne = 0 Entry 2 Empty

Entry 1 Empty
FPop_C addr & code (read by STDFQ instruction)

qne
State

Entry
Number

FQ
Content

Entry 1 is the front entry.

Figure E10-5. Floating-Point Deferred-Trap Queue Operation
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Programming Note:

The floating-point trap handler uses STDFQ instructions to access the FPop
instructions in the FQ; that is, the instruction in the first FQ entry that caused
the floating-point exception, and the remaining instructions in the FQ that are
pending execution. The handler may emulate the FPops in software, may
re-execute the FPops in the FPU, or may discard the FPops and invoke an error
handler.

E10.3.4 EF bit in the PSR
The Enable Floating-Point (EF) bit is Bit 12 of the Processor State Register (PSR).

Table E10-7 shows the effect of the EF bit state on the FPop, LDfp, STfp, and FBfcc
instructions. When EF = 1, these instructions can be executed. When EF = 0, these
instructions cause the fp_disabled trap, and the FPop1/FPop2 instructions are not
dispatched to the FPU.

Table E10-7:  EF Bit Effect on Instruction Execution

EF Bit State Effect on FPop1/FPop2/LDfp/STfp/FBfcc

0 Causes fp_disabled Trap

1 Executed by the FPU

Although the EF bit controls whether a floating-point instruction is trapped and whether
an FPop instruction is dispatched to the FPU, it does not control the FPU directly. The
FPU continues to execute FPop instructions in the FQ even when the FPU is disabled.

Programming Note:

An Operating System (OS) can use the EF bit to determine whether a particular
process uses the FPU. If a process does not use the FPU, the FPU registers
(f-reg/FSR/FQ) do not have to be saved and restored across context switches.
The OS just sets the EF bit to 0, and switches to the process.

If the next process uses the FPU, the OS must wait until the FPU finishes all
instructions in the FQ. The STFSR instruction can be used in this situation
because STFSR waits for completion of all instructions in the FQ before
executing. If one of the instructions in the FQ requests a floating-point trap, the
STFSR is trapped so that the OS can handle the exception before switching the
processes. Once the FQ is empty, the OS saves the 32 f registers and the FSR
for later restoration. The FSR ftt and qne fields are not writable, but both must
be 0 across context switches.

Floating-Point Unit - FPU Registers
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E10.4 Floating-Point Traps and FPU States
This section describes traps associated with floating-point instructions, and the
fp_execute, fp_exception_pending, and fp_exception FPU states.

E10.4.1 Traps Associated with Floating-Point
Instructions

Floating-point instructions consist of FPop (FPop1, FPop2), LDfp (LDF, LDDF,
LDFSR), STfp (STF, STDF, STFSR, STDFQ), and FBfcc instructions. There are 4 traps
associated with the floating-point instructions: fp_disabled trap, fp_exception trap,
mem_address_not_aligned trap, and data_access_exception trap.

fp_disabled trap

If the EF bit of the Processor State Register (PSR) is 0 an attempt to execute a floating
point instruction will cause an fp_disable trap.

fp_exception trap

An fp_exception trap has an IU trap type (tt) of 8, and its priority is 9.

The fp_exception trap also has 6 floating–point trap types (ftt=1 to ftt=6). One of the
trap types, the IEEE_754_exception trap(ftt=1), has 5 exception types: nv, of, uf, dz,
nx. The sequence_error trap (ftt=4) is a precise trap. The rest are deferred traps.

 deferred fp_exception trap

The IEEE_754_exception (ftt=1), unfinished_FPop (ftt=2), unimplemented_FPop
(ftt=3), and invalid_fp_register (ftt=6) traps can be generated only by an FPop
instruction, not by an LDfp, STfp, or FBfcc instruction. When the dispatched FPop
is completed in the FPU with an fp_exception, the FPU requests the fp_exception
trap to the IU. Such traps are called deferred traps.

The deferred trap request is accepted by the IU when it executes another floating-
point instruction, which is then trapped. An fp_exception trap handler can find the
FPop with the deferred trap request in the front entry of the FQ, which is why the
queue is called the Floating-Point Deferred-Trap Queue (FQ).

Floating-Point Unit - Floating-Point Traps and FPU States
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precise fp_exception trap

Unlike the deferred traps that can be generated only by FPop instructions, the
sequence_error (ftt=4) trap can be generated by all floating-point instructions except
STF, STDF, and STFSR. The trap is always generated when a floating-point
instruction is in the IU, not in the FPU. As a result, the floating-point instruction
itself is trapped. Such traps are called precise traps. When an FPop instruction is
trapped, it is not dispatched to the FPU.

mem_address_not_aligned and data_access_exception traps

The LDfp and STfp instructions may cause mem_address_not_aligned traps and
data_access_exception traps, as do the LD_integer and ST_integer instructions. (Note
that the LDfp and STfp instructions are executed by the IU, not by the FPU.)

Programming Notes:

(1) In SPARClite, when the LDfp has the data_access_exception trap, its
destination register (f register or FSR) remains unchanged. However, other
SPARC processors may fill the register with a predetermined constant value
(such as all 1’s).

(2) In the SPARC Version 8 specification, it is recommended that the LDDF/STDF
instruction have the fp_exception trap with ftt=6 (invalid_fp_register) when its
operand (frd) is misaligned (i.e., odd number in the frd field). In the MB86936,
however, the LDDF/STDF instruction with misaligned operand does not cause
any traps. The LSB of the frd field of the LDDF/STDF instruction is ignored
(i.e., forced to 0 internally).

Furthermore, the LDD/STD instruction with misaligned operand has no trap in
the MB86936, and the LSB of the frd field is ignored (i.e., forced to 0
internally).

E10.4.2 Floating-Point Exception Trap Types
The Floating-Point Trap Type (ftt 7) is reserved in the SPARC Version 8 specification
for future expansion. The Hardware Error Trap Type (ftt 5) is not implemented in the
MB86936 FPU. The rest of the Floating-Point Trap Types are implemented in the
MB86936, including a new trap type defined in the SPARC Version 8 specification,
ftt 6 (invalid_fp_register).

The MB86936 FPU uses the ftt 2 (unfinished_FPop) trap type to handle subnormal
numbers. (See Section 10.5.4, Emulation for Subnormal Number Invoked by the
Unfinished_FPop Trap, for details.) The FPU also uses the ftt 3 (unimplemented_FPop)
trap type to handle quad precision floating-point operations. (See Section 10.5.5,
Emulation for Quad-precision Operation, Invoked by the Unimplemented_FPop Trap,
for details.)

Floating-Point Unit - Floating-Point Traps and FPU States
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An FPop instruction may have more than one cause, and each cause is assigned an ftt.
For example, both ftt 2 and ftt 3 apply when an operand of a quad precision FPop
contains a subnormal number, and both ftt 4 and ftt 6 apply when an FPop having an
invalid fp register is executed in the fp exception mode. However, only one ftt can be
asserted in each of these cases.

To resolve these conflicts, each ftt is assigned a unique priority in the FPU, as shown in
Table E10-9. Therefore, when an operand of a quad precision FPop contains a
subnormal number, ftt 3 (unimplemented_FPop) is asserted because it has a higher
priority than ftt 2 (unfinished_FPop); and when an FPop having an invalid fp register is
executed in the fp exception mode, ftt 4 (sequence_error) is asserted because it has a
higher priority than ftt 6 (invalid_fp_register).

Table E10-9:Floating-Point Trap Types

ftt Priority Trap Type Implementation in MB86936 FPU

0 – none no fp_exception trap

1 5 IEEE_754_ exception IEEE 754 exceptions (nv, of, uf, dz, nx)

2 4 unfinished_FPop subnormal number in operand(s) or result

3 3 unimplemented_
FPop

quad-precision floating-point operation

4 1 sequence_error fp instruction in fp exception mode

5 – hardware_error not implemented in the MB86936 FPU

6 2 invalid_fp_register misaligned f register(s) (frs1/frs2/frd)

7 – reserved reserved for future expansion

ftt=1, IEEE_754_exception

An IEEE_754_exception indicates that the FPU had the floating-point exception which
conforms to the ANSI/IEEE Standard 754-1985. The IEEE_754 exception type is
encoded in the cexc field. However, the destination f register, aexc, and fcc are not
affected by the IEEE_754_exception trap.

ftt=2, unfinished_FPop (subnormal number in operand(s) or result)

An unfinished_FPop indicates that the FPU was unable to generate correct results or
exceptions as defined by ANSI/IEEE Standard 754-1985. In the MB86936, this trap
arises when subnormal number(s) are in operand(s) or the result, and when NS=0.
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ftt=3, unimplemented_FPop (quad precision floating-point operation)

An unimplemented_FPop indicates that the FPU has decoded an FPop that is not
implemented. This trap arises in the MB86936 when the quad precision floating-point
operation is in the FQ.

Programming Note:

In the case of an unfinished_FPop or unimplemented_FPop floating-point trap type,
software should emulate or re-execute the exception-causing instruction, and update the
FSR and destination f register.

ftt=4, sequence_error

A sequence_error indicates abnormal error conditions in the FPU. It is caused when:

(1) An attempt is made to execute an STDFQ instruction when the floating-point
deferred-trap queue (FQ) is empty.

(2) An attempt is made to execute a floating-point instruction (such as FPop, LDfp,
and FBfcc; except STfp) when the FPU is in the fp_exception state.

ftt=5, hardware_error (not implemented in the MB86936 FPU)

A hardware_error indicates that the FPU has detected a catastrophic internal error, such
as an illegal state or a parity error during an f register access.

Programming Note:

If a sequence_error or hardware_error occurs during execution of user code, it
may not be possible to recover sufficient state information to continue
execution of the user application.

ftt=6, invalid_fp_register

An invalid_fp_register indicates that one or more register(s) of an FPop is (are)
misaligned; i.e., a double-precision register number is not 0 mod 2, or a quadruple-
precision register number is not 0 mod 4.

Programming Note:

This ftt is newly-defined in the SPARC Version 8 specification. The MB86936
FPU supports it. However, other SPARC processors may generate an
illegal_instruction trap instead.

ftt=7, reserved

The Floating-Point Trap Type 7 is reserved for future expansion.

Floating-Point Unit - Floating-Point Traps and FPU States
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E10.4.3 IEEE 754 Exception
The IEEE 754 exception has five exception types: invalid, overflow, underflow,
division-by-zero, and inexact. Figure E10-6 shows the FSR fields affected by the
exceptions, which are generated as follows:

invalid (nv) exception [cexc.nvc, aexc.nva, TEM.NVM]:

An operand is improper for the operation to be performed. For example, (0/0), and
(infinity-infinity) are invalid. 1=invalid, 0=valid.

overflow (of) exception [cexc.ofc, aexc.ofa, TEM.OFM]:

The infinitely precise correct result is larger in magnitude than the largest normalized
number in the specified format, and smaller in magnitude than infinity. 1:overflow,
0:no overflow.

underflow (uf) exception [cexc.ufc, aexc.ufa, TEM.UFM]:

If NS=1: The infinitely precise correct result is smaller in magnitude than the smallest
normalized number in the indicated format, and larger in magnitude than zero.

If NS=0 and UFM=1: The nonzero result is tiny. Tininess may be detected before or
after rounding.

If NS=0 and UFM=0: The nonzero result is tiny, and a loss of accuracy occurs. Tininess
may be detected before or after rounding. Loss of accuracy may be either a denormal-
ization loss, or an inexact result. 1:underflow, 0:no underflow. (See Section 10.5.4,
Emulation for Subnormal Number, Invoked by the Unfinished_FPop Trap for details.)

division-by-zero (dz) exception [cexc.dzc, aexc.dza, TEM.DZM]:

X/0, where X is subnormal or normalized. Note that 0/0 does not set the dz bit.
1:division-by-zero, 0:no division-by-zero.

inexact (nx) exception: [cexc.nxc, aexc.nxa, TEM.NXM]

The rounded result of an operation differs from the infinitely precise correct result.
1:inexact result, 0:exact result.
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27

NVM

26 25 24 23

OFM UFM DZM NXMTrap Enable Mask (TEM) Field

9

nva

8 7 6 5

ofa ufa dza nxa

4

nvc

3 2 1 0

ofc ufc dzc nxc

Accrued Exception (aexc) Field

Current Exception (cexc) Field

Figure E10-6. FSR TEM, aexc, and cexc Fields

When an FPop generates an IEEE 754 exception, the FPU behaves as follows;

FPop_generates_IEEE_754_exception {
 cexc’=IEEE_754_exception_type(s)_generated_by_the_FPop;
 if (TEM & cexc’)==0
 No_Trap (ftt=0; cexc=cexc’; fcc=fcc_result; aexc=(aexc|cexc’); f[frd]=result);
 else
 IEEE_754_Exception_Trap (ftt=1; cexc=selected_one_IEEE_754_exception_type);
 }

The IEEE 754 exception has multiple exception types in only two cases.

(1) of and nx: whenever the overflow exception arises, the inexact exception also
arises.

(2) uf and nx: whenever the underflow exception arises, the inexact exception also
arises.

Exception: If NS=0 and UFM=1 (tininess, and not loss_of_accuracy), then the
underflow exception arises without the inexact exception.

When an IEEE 754 exception invokes the fp_exception trap, only one IEEE 754
exception type is selected to be 1 in the cexc field, even if the IEEE 754 exception has a
multiple exception type. The selection is based on the value of TEM, and the priority of
each exception type (the priority of uf and of is higher than the priority of nx). (See
Section 10.5.2, Overflow, Underflow, and Inexact, for details.)
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E10.4.4 Floating-Point Trap Handlers
When a floating-point trap occurs, the results are as follows:

(1) The ftt field is updated.

(2) The fcc field is unchanged.

(3) The aexc field is unchanged.

(4) The cexc field is unchanged, except for an IEEE_754_exception. When an
IEEE_754_exception occurs, the cexc field contains exactly one bit that is 1,
which corresponds to the exception that caused the trap. The remaining bits are
0’s.

(5) The value of the destination f register (frd) is unchanged.

The sequence_error, hardware_error, and invalid_fp_register trap types are unlikely to
arise in the normal course of computation. They are essentially unrecoverable from the
point of view of user applications.

In contrast, IEEE_754_exception, unfinished_FPop, and unimplemented_FPop are
likely to arise occasionally in the normal course of computation, and must be
recoverable by software. Software (such as emulator software) should define the values
of the fcc, aexc, and cexc fields, and generate the value of the destination f register, as
appropriate.

Floating-Point Unit - Floating-Point Traps and FPU States
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Programming Note:

If an unfinished_FPop or unimplemented_FPop trap handler invokes a user’s
IEEE 754 trap handler that is designed to be invoked by an IEEE_754_excep-
tion trap, the unfinished_FPop and unimplemented_FPop trap handler must
produce the results as if hardware produced them. (i.e., the fcc and aexc fields,
and destination f register are unchanged. Only one bit of the cexc field is 1.)

Such user’s IEEE 754 trap handler may require the address and code of the
FPop instruction that caused the exception. Furthermore, the user’s handler
expects that the FQ has been analyzed and emptied (qne=0), and that the ftt
field has been analyzed and cleared (ftt=0). (The ftt field must not be referred in
user’s IEEE 754 handler because the handler is designed to handle the IEEE
754 exception.)

Figure E10-7 summarizes Floating-Point trap handling.

Primary Floating-Point

Trap Handler
(Analyzing ftt and FQ)

(user’s) IEEE_754_exception
Trap Handler

Floating-Point
Trap

unfinished_FPop Trap Handler

unimplemented_FPop trap handler

error handler

Figure E10-7. Floating-Point Trap Handling

E10.4.5 FPU States (fp_execute,
fp_exception_pending, fp_exception)

The FPU is always in one of three states: the fp_execute state, the fp_exception_pend-
ing state, and the fp_exception state. These FPU states are not directly visible to
software.

The FPU is in the fp_execute state following reset, and normally stays in this state. The
FPU can execute FPop instructions only when the FPU is in the fp_execute state.
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When an FPop generates a floating-point exception (such as IEEE_754_exception,
unfinished_FPop, unimplemented_FPop, or invalid_fp_register; except sequence_error),
the FPU requests the IU to service the floating-point exception trap, and moves from
the fp_execute state to the fp_exception_pending state. The IU does not accept FPU’s
fp_exception trap request while it is executing non-floating-point instructions, but
accepts the request when it attempts to execute any floating-point instruction (such as
FPop, LDfp, STfp, or FBfcc). As a result, the floating-point instruction being executed
in the IU is trapped. If the instruction is an FPop, it is not dispatched to the FPU. (FPops
that are trapped for any reason are not dispatched to the FPU.)

Such a trap is called a deferred trap. The instruction requesting the trap is not trapped
because it is not in the IU. It stays in the front entry of the floating-point deferred-trap
queue (FQ) of the FPU. Another instruction (floating-point instruction) in the IU is
trapped instead.

While the FPU is in the fp_exception state, only floating-point store instructions (STfp,
such as STF, STDF, STFSR, or STDFQ) and non-floating-point instructions can be
executed by the IU. The other floating-point instructions (FPop, LDfp, and FBfcc)
cause sequence_error exceptions.

In the fp_exception state, the fp_exception trap handler uses the STFSR and STDFQ
instructions to collect information from the FSR and the FQ of the FPU. The fp_excep-
tion state ensures that the handler can get the information before it is modified or
changed.

The FPU moves from the fp_exception state to the fp_execute state when the FQ is
emptied by the STDFQ instruction(s). In the fp_execute state, the fp_exception trap
handler can use any floating-point instructions (such as FPop, LDfp, STfp and FBfcc),
so that it can re-execute or emulate FPop(s) in the FQ. The FQ has one FPop instruction
causing the fp-exception in the front entry, and may have other FPop instruction(s)
dispatched, but not completed in the FPU.

Table E10-10 summarizes the FPU states.

Table E10-10:  FPU States

State FQ FP Instruction Sequence Error

fp_execute Empty or Not Executed STDFQ + FQ_Empty

fp_exception_pending Not Empty Trapped No Sequence Error

fp_exception Not Empty Only STfp is executed FPop, LDfp, FBfcc

Programming Note:

This definition of the FPU states is for the MB86936 FPU. Other SPARC FPUs
may have different definitions.
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E10.4.6 Sequence_error Trap
Unlike the other fp_exception traps that are defined as deferred traps, the sequence_er-
ror trap is defined as the precise trap (i.e., the sequence_error trap is generated by a
floating-point instruction that is in the IU, not in the FPU).

When the IU attempts to execute an FPop, LDfp, or FBfcc instruction in the fp_excep-
tion state, the instruction is trapped by the sequence_error trap. When the IU attempts to
execute the STDFQ instruction with the FQ empty (meaning that the FPU is in the
fp_execute state), the instruction is trapped by the sequence_error trap.

The sequence_error trap is the precise trap, so the FPU does not move to fp_excep-
tion_pending state. The sequence_error trap does not change the FPU state. If it occurs
in the fp_exception state, the FPU stays in fp_exception state. If it occurs in the
fp_execute state, the FPU stays in the fp_execute state.

When the IU attempts to execute the STFSR/STDFQ instruction in the fp_exception
state, the IU can execute the instruction immediately. However, when the IU attempts
to execute the STFSR/STDFQ instruction in the fp_execute state with the FQ not
empty, the IU must wait for the completion of all FPops in the FQ (i.e., wait for the FQ
to empty).

If all FPops in the FQ are completed without an fp_exception, the IU stops waiting and
attempts to execute the STFSR/STDFQ. As a result, the STFSR is executed. Unlike the
STFSR, the STDFQ is trapped, this time by the sequence_error trap because the FQ is
empty.

Programming Notes:

(1) The FQ is empty when the sequence_error trap occurs in the fp_execute state,
so the FPU does not generate the other fp_exception trap request following that
sequence_error trap. This makes fp_exception trap handler programming
simpler.

(2) This definition of the Sequence_error Trap is for the MB86936 FPU. Other
SPARC FPUs may have different definitions.
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E10.5 Results of FPop Instructions
When the FPop instructions are executed, most of the expected results are precisely
specified in the ANSI/IEEE Standard 754-1985 specification. The MB86936 FPU
conforms to the specification. However, some results are left to be defined by each
implementation. The SPARC Architecture Version 8 specification has recommenda-
tions for implementations. The MB86936 FPU incorporates the recommendations,
except for the Nonstandard (NS) mode recommendation.

E10.5.1 FPop Results with NaN Operands
The usage of the sign bit and bits from fraction [MSB-1] to fraction[LSB] in a NaN is
implementation-dependent in the IEEE 754 specification. An implementation may hide
some additional information in those bits of a NaN, and can make rules so that such
information in the NaN can propagate from operand(s) to the result. The SPARC
IEEE 754 Implementation Recommendation defines the rules as follows;

 (1) NaN as calculated result (NaN generation)

 If the result of an FPop from no NaN operand(s) is a quiet NaN (i.e., a NaN is
newly generated), the sign bit must be 0, the exponent bits must be all 1’s, and
the fraction bits must be all 1’s. The sign bit is not generated from the sign bit
of operand(s). For example, (+0)/(+0) and (+0)/(-0) produce the same quiet
NaN with sign bit = 0.

When the Calculated result is QNaN, the QNaN is made as follows:
Calc QNaN : frd.s=“0”; frd.e=“11...11”; frd.f=“111...111”.

It is assumed in the SPARC Recommendation that all floating-point data areas
in storage are initialized to all 1’s (i.e., one representation of quiet NaNs).
Therefore, by reading the sign bit, software can distinguish the generated quiet
NaN (sign=0), from the initialized quiet NaN (sign=1).

Assumed QNaN initialization is as follows:
Init QNaN : frd.s=“1”; frd.e=“11...11”; frd.f=“111...111”.

(2) NaN propagation

 The SPARC Recommendation defines the rules for propagation of a NaN. A
signaling NaN’s priority in the propagation is higher than the priority of a quiet
NaN. If both operands are quiet NaNs (or signaling NaNs), the priority of the
source f register 2 (frs2) is higher than the priority of the source f register 1
(frs1).

 If one operand is a NaN and another operand is a number (not a NaN), the NaN
should propagate to the result without being affected by its operation. For
example, in the operation frs1:QNaN * frs2:-1, the frs1:QNaN just moves to the
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destination f register (frd), i.e., frd=frs1. The sign bit of the quiet NaN in the
result must not be negated by -1.

 (3) Signaling NaN to quiet NaN transformation

 When a signaling NaN propagates to the result, the invalid exception arises
(which is why the NaN is called a signaling NaN). If no trap occurs, the
signaling NaN is transformed into a quiet NaN by setting the MSB of its
fraction field (quiet bit) to 1, and is saved in the destination register without
losing its hidden information.

frs2’s SNaN is converted to a QNaN without losing its information as
follows:
frd=frs2, except frd.f[MSB]=“1” (making QNaN).

(4) NaN’s precision transformation

 When a NaN propagates to the result in a different format (i.e., precision) from
its operand (i.e., F[sdq]TO[sdq], FsMULd, or FdMULq with a NaN operand),
the NaN is transformed as follows:

 Converting to a narrower format:  Excess low-order bits of the operand
fraction are discarded (some information may be lost). The exponent field is
shrunk for the narrower format. The sign bit is copied from the operand to the
result without modification.

frs2’s Double QNaN is converted to Single QNaN as follows:
frd.s=frs2.s; frd.e=“11111111”; frd.f=frs2.f[MSB:MSB-22].

Converting to a wider format: Excess low-order bits of the result fraction are
set to 0’s. The exponent field is expanded for the wider format. The sign bit is
copied from the operand to the result without modification.

frs2’s Single QNaN is converted to Double QNaN as follows:
frd.s=frs2.s; frd.e=“111_11111111”; frd.f={frs2.f[MSB:LSB],
“000000000_0000000000_0000000000”}.

If the NaN is a signaling NaN, the precision transformation and the signal to
quiet transformation occurs simultaneously.
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 The following tables show FPop results from NaN operand(s)

[frd] {FADD/FSUB/FMUL/FDIV/FSQRT}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) frs2 frs2Q(2)

Number Calc(1) frs2 frs2Q(2)

QNaN frs1 frs2 frs2Q(2)

SNaN frs1Q(2) frs1Q(2) frs2Q(2)

 [frd] {FsTOd/FsMULd}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) frs2’(3) frs2Q’(3)

Number Calc(1) frs2’(3) frs2Q’(3)

QNaN frs1’(3) frs2’(3) frs2Q’(3)

SNaN frs1Q’(3) frs1Q’(3) frs2Q’(3)

[frd] {FdTOs}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc frs2’’(4) frs2Q’’(4)

(1) When the Calculated result is a QNaN, the QNaN is made as follows - Calc QNaN : frd.s=“0”;
frd.e=“11...11”; frd.f=“111...111”. (c.f. Init QNaN : frd.s=“1”; frd.e=“11...11”; frd.f=“111...111”.)

(2) frs1Q: frs1’s SNaN is converted to a QNaN without losing its information. frd=frs1; except
frd.f[MSB]=“1” (making QNaN).

frs2Q: frs2’s SNaN is converted to QNaN without losing its information. frd=frs2; except
frd.f[MSB]=“1” (making QNaN)

(3) frs1’ : frs1’s Single QNaN is converted to Double QNaN. frd.s=frs1.s; frd.e=“111_11111111”;
frd.f={frs1.f[MSB:LSB],“000000000_0000000000_0000000000”}.

frs1Q’: frs1’s Single SNaN is converted to Double QNaN. frd.s=frs1.s; frd.e=“111_11111111”;
frd.f={“1”,frs1.f[MSB-1:LSB],“000000000_0000000000_0000000000”}.

frs2’ : frs2’s Single QNaN is converted to Double QNaN. frd.s=frs2.s; frd.e=“111_11111111”;
frd.f={frs2.f[MSB:LSB],“000000000_0000000000_0000000000”}.

frs2Q’: frs2’s Single SNaN is converted to Double QNaN. frd.s=frs2.s; frd.e=“111_11111111”;
frd.f={“1”,frs2.f[MSB-1:LSB],“000000000_0000000000_0000000000”}.

(4) frs2’’ : Double QNaN is converted to Single QNaN. frd.s=frs2.s; frd.e=“11111111”;
frd.f={frs2.f[MSB:MSB-22]}.

frs2Q’’: Double SNaN is converted to Single QNaN. frd.s=frs2.s; frd.e=“11111111”;
frd.f={“1”,frs2.f[MSB-1:MSB-22]}.
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An IEEE 754 floating-point operation with SNaN(s) in its operand(s) causes an invalid
exception. When an IEEE 754 floating-point operation generates a calculated QNaN, it
causes an invalid exception (e.g. SQRT(-1), (+0)/(+0), (+Infinity)+(-Infinity)). An
FCMPE instruction causes an invalid exception when its operand(s) are QNaN(s) or
SNaN(s).

The following tables show invalid exception conditions.

 [exc] {FADD/FSUB/FMUL/FDIV/FSQRT/F[sdq]TO[sdq]/FCMP}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) -- nv

Number Calc(2) -- nv

QNaN -- -- nv

SNaN nv nv nv

 [exc] {FCMPE}

-- frs2 --

-- frs1 -- Number QNaN SNaN

Number -- nv nv

QNaN nv nv nv

SNaN nv nv nv

(1) e.g., SQRT(-1)
(2) e.g., (+0)/(+0), (+Infinity)+(-Infinity)

NaN operands do not affect the FMOVs, FNEGs, and FABSs instructions because they
are not affected by precision types (single, double, or quad) and numbers (NaN, Zero,
Subnormal Number, etc.). They just transfer contents as 32-bit data between f registers.
Therefore, they never cause fp_exceptions, including invalid exceptions.

The following table shows FMOVs, FNEGs, and FABSs instruction operation.

FPop frd[31:0]

FMOVs {frs2[31], frs2[30:0]}

FNEGs {~frs2[31], frs2[30:0]}

FABSs {0, frs2[30:0]}

E10.5.2 Overflow, Underflow, and Inexact
Overflow occurs when the rounded result of an FPop is larger in magnitude than the
largest normalized number in the indicated format.
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Underflow occurs in the NS mode when the rounded result of an FPop is smaller in
magnitude than the smallest normalized number in the indicated format.

Inexact occurs when the final result of an FPop is not equal to the infinitely precise
correct result. It happens when the rounded result differs from the infinitely precise
correct result. It also happens when the rounded result overflows or underflows, and the
default value is set to the final result instead of the rounded result. Even if the rounded
result would be equal to the infinitely precise correct result in the broader exponential
range, the overflow or underflow makes the final result inexact.

Programming Note:

IEEE 754 specifies that the wrapped exponent results be delivered for trapped
underflows and overflows. However, the SPARC architecture V8 specification
states the following in the Traps Inhibit Result section: “The destination f
register is unchanged when a floating-point trap occurs.” Therefore, the
MB86936 FPU does not provide this IEEE 754 feature. If software requires the
feature, it must implement the feature in the software.

 Overflow is handled as follows:

| largest_normalized_number | : MAXI;
| infinitely_precise_correct_result | : CORR;
| rounded_result | : ROUN;
| infinite_number | : INFI.

 When MAXI < CORR < INFI:

Rounded Result
OFM=1
NXM=1

OFM=1
NXM=0

OFM=0
NXM=1

OFM=0
NXM=0 Overflow

ROUN == MAXI nxc
NX_trap

nxc
nxa

nxc
NX_trap

nxc
nxa

NO

MAXI < ROUN < INFI ofc
OF_trap

ofc
OF_trap

nxc
NX_trap

nxa
ofa, nxa

YES

Notes:

(1) The priority of the OFM bit is higher than the priority of the NXM bit.

(2) When the overflow trap occurs, only the ofc bit is set to identify the trap.
Similarly, when the inexact trap occurs, only the nxc bit is set.

(3) When CORR < INFI, ROUN cannot be INFI.

The unrounded result is always normalized before being rounded, even if the
unrounded result overflows in the given exponent range in the precision. The
FPU can do this because the FPU has much wider and greater exponent range
than the given exponent range, so internally the unrounded result never
overflows.
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If OFM=0 and NXM=0 when overflow occurs, the overflow default value is set to the
final result. The default value depends on the rounding mode and the sign of the result
as follows:

RD
Round
Toward + Sign – Sign

0 Nearest +INFI –INFI

1 Zero +MAXI –MAXI

2 +Infinity +INFI –MAXI

3 –Infinity +MAXI –INFI

Not Implemented(1) ±Infinity +INFI –INFI

 (1) This Round Toward Infinity mode is not implemented because it 
is not specified in IEEE 754.

 Underflow in the NS mode is handled as follows:

| smallest_normalized_number | : MINI;
| infinitely_precise_correct_result | : CORR;
| rounded_result | : ROUN;
| ZERO | : ZERO.

 When ZERO < CORR < MINI:

Rounded Result
UFM=1
NXM=1

UFM=1
NXM=0

UFM=0
NXM=1

UFM=0
NXM=0 Underflow

ROUN == MINI nxc
NX_trap

nxc
nxa

nxc
NX_trap

nxc
nxa

NO

ZERO < ROUN < MINI ufc
UF_trap

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa

YES

Notes:

(1) The priority of the UFM bit is higher than the priority of the NXM bit.

(2) When the underflow trap occurs, only the ufc bit is set to identify the trap.
Similarly, when the inexact trap occurs, only the nxc bit is set.

(3) When ZERO < CORR, ROUN cannot be ZERO in the NS mode.

In the NS mode, the unrounded result is always normalized before being
rounded, even if the unrounded result underflows in the given exponent range in
the precision. The FPU can do this because the FPU has much wider and greater
exponent range than the given exponent range, so internally the unrounded
result never underflows. 
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In the IEEE 754 Underflow specification (the Gradual Underflow), the
unrounded result is not normalized for rounding if the unrounded result
underflows in the given exponent range and precision. Instead, the
exponent of the unrounded result is adjusted to the minimum, and the
fraction of the unrounded result is shifted as much as the adjustment made
in the exponent. (This is why the number is called a subnormal or
denormalized number.) Then, the denormalized unrounded result is
rounded to realize the Gradual Underflow.

If UFM=0 and NXM=0 when underflow occurs, the underflow default value is set to the
final result. The default value depends on rounding mode and the sign of the result as
follows:

RD
Round
Toward + Sign – Sign

0 Nearest +ZERO –ZERO

1 Zero +ZERO –ZERO

2 +Infinity +MINI –ZERO

3 –Infinity +ZERO –MINI

Not Implemented(1) ±Infinity +MINI –MINI

(1)  This Round Toward Infinity mode is not implemented because it 
is not specified in IEEE 754.

E10.5.3 Integer Results
 The FsTOi, FdTOi, and FqTOi instructions generate integer results. Unlike a
floating-point overflow raising the overflow (of) and inexact (nx) exceptions, an integer
overflow raises just the invalid (nv) exception. Unlike a floating-point result rounded
based on the RD field, an integer result is always rounded toward zero (i.e., the RD is
ignored). Furthermore, an integer result never underflows. The rounded result just
becomes 0 if -1 < unrounded_result < 1.

 If the source register contains a NaN, ±infinity, positive number >= +2147483648.0
(i.e., overflow at + side), or negative number <= -2147483649.0 (i.e., overflow at –
side), the invalid (nv) exception arises. If no trap occurs and the sign bit of the operand
is positive (frs2.MSB=0), the FPU outputs the positive default integer result,
+2147483647 (i.e., 0x7fffffff). If no trap occurs and the sign bit of the operand is
negative (frs2.MSB=1), the FPU outputs the negative default integer result,
–2147483648 (i.e., 0x80000000).
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 Programming Notes:

 (1) Even if +2147483648.0 > operand > +2147483647.0 (such as
+2147483647.99...), or -2147483649.0 < operand < -2147483648.0 (such as
-2147483648.99...), the result does not overflow because the result is rounded
toward zero before the overflow detection.

(2) According to IEEE754’s recommendation, a NaN does not have the concept of
polarity. The sign bit does not mean more than the MSB of data in the NaN.
However, if the operand is the NaN, the F[sdq]TOi instruction always generates
the + or - integer result based on the sign bit of the operand. There is discrep-
ancy in the recommendation.

 For example, (+0.0)/(+0.0) and (+0.0)/(-0.0) result in the same quiet NaN with
sign 0. Therefore,

 F[sdq]TOi((+0.0)/(+0.0)) = +2147483647 (i.e., 0x7fffffff),
F[sdq]TOi((+0.0)/(-0.0)) = +2147483647 (i.e., 0x7fffffff).

 (On the other hand, if a NaN has polarity, the question arises - whether
(+Infinity)+(-Infinity) must be +NaN or -NaN.)

The following tables show the destination f register values (frd) and the IEEE 754
exceptions for the FsTOi and FdTOi instructions.

 [frd] (destination f register)

ZERO NORM INFI QNaN SNaN

INT_ZERO Calc(2) INT_MAX(1)

INT_MINI(1)
INT_MAX(1)

INT_MINI(1)
INT_MAX(1)

INT_MINI(1)

[exc] (floating-point exception)

ZERO NORM INFI QNaN SNaN

-- Calc(2) nv nv nv

(1) if frs2.s=0 then frd=0x7fffffff (INT_MAXI) {even NaN} if frs2.s=1 then frd=0x80000000
(INT_MINI) {even NaN}

 (2) calc may be INT with no IEEE exception; INT with nx (inexact: rounded always toward
zero); INT_MAXI with nv (invalid: overflows at + side); INT_MINI with nv (invalid: overflows
at - side).

 When the nx and the nv occur at the same time (true only when FdTOi), the nx is ignored,
and only the nv arises. For example,

 If: frs2 = (+) Fra:1.f_ffff_ffff_ffff ∗ Exp:36
Then: Int (frs2) = 1f_ffff_ffff.ffff

rounded
(nx)

overflow
(nv)

As a result: frd=0x7fff_ffff with nv.
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E10.5.4 Emulation for Subnormal Number, Invoked
by the Unfinished_FPop Trap

When the NS bit is 0, if the source f register(s) of an FPop contain(s) a subnormal (i.e.,
denormalized) number(s), the FPop is trapped by the unfinished_FPop trap in the front
entry of the FQ. The FPop is also trapped by the unfinished_FPop trap in the front entry
of the FQ if the correct unrounded result (i.e., the infinitely precise correct result) of the
FPop is smaller in magnitude than the smallest normalized number in the indicated
format (i.e., if (ZERO < CORR < MINI) && (NS==0)→ unfinished_FPop trap).

In both cases, software should emulate the trapped FPop and update the destination f
register(s) and the fcc, cexc, and aexc fields in FSR to conform to ANSI/IEEE Standard
754-1985.

 Programming Note:

The emulator of an FPop_with_subnormal_number must conform to the
SPARC IEEE 754 Implementation Recommendation in the SPARC Architec-
ture Version 8 specification with regard to underflow as follows;

| smallest_normalized_number | : MINI;

| infinitely_precise_correct_result | : CORR;

| rounded_result | : ROUN;

| ZERO | : ZERO.

 When ZERO < CORR < MINI:

Result Rounded for UFM=1 UFM=0 UFM=0 Underflow SubnormalResult  Rounded  for
Subnormal Number

UFM=1
NXM=*

UFM=0
NXM=1

UFM=0
NXM=0 Trap Flag

Subnormal
Result

ROUN == MINI 
(so ROUN != CORR)

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes NO

ZERO < ROUN < MINI
&& ROUN ! = CORR

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes YES

ZERO < ROUN < MINI
&& ROUN = CORR

ufc
UF_trap None None Yes No YES

ROUN == ZERO
(so ROUN != CORR)

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes NO

Notes:

(1) “Tininess detected before rounding” is true when ZERO < CORR < MINI.
“Loss_of_accuracy detected as inexact” is true when ROUN != CORR. The
underflow trap occurs if UFM==1 and Tininess. The ufa bit is set if UFM=0,
MXM=0, Tininess, and Loss_of_accuracy.
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(2) Even if ZERO < CORR, ROUN can be ZERO in the IEEE 754 Underflow
mode. In the IEEE 754 underflow, the unrounded result is converted to
subnormal (denormalized) number if the unrounded result underflows in the
given exponent range and precision. Then, the denormalized unrounded result is
rounded, so the rounded result can be zero.

Refer to the SPARC Architecture Manual (Version 8) and the ANSI/IEEE Standard
754-1985 for details.

E10.5.5 Emulation for Quad-precision operation,
Invoked by the Unimplemented_FPop Trap

When any quad-precision FPop (including FqTO[isd], F[isd]TOq, and FdMULq) is
dispatched to the FPU, the FPop is trapped by the unimplemented_FPop trap in the
front entry of the FQ. Software should emulate the trapped FPop and update the
destination f registers and the fcc, cexc, and aexc fields in FSR to conform to
ANSI/IEEE Standard 754-1985.

 Programming Note:

The priority of the unimplemented_FPop trap is higher than the priority of the
unfinished_FPop Trap, but is lower than the priority of the invalid_fp_register
trap in the MB86936 implementation. Table E10-11 shows the MB86936 trap
priorities.

Table E10-11:  Trap Priorities

Priority Trap Type ftt

1 sequence_error 4 Not Dispatched→ Error

2 invalid_fp_register 6 Dispatched → Bad alignment → Error

3 unimplemented_FPop 3 Dispatched → Quad Precision → Emulation

4 unfinished_FPop 2 Dispatched → Subnormal Num.→ Emulation

5 IEEE_754_exception 1 Dispatched → Executed → IEEE Exception

Therefore, the emulator of a quad-precision FPop does not have to check the inval-
id_fp_register (bad alignment), but must be able to handle a subnormal number, and
must be able to handle the IEEE_754_exception.

The emulator of an FPop_with_subnormal_number does not have to check the
invalid_fp_register or the quad_precision, but must be able to handle the IEEE_754_ex-
ception.

Refer to the SPARC Architecture Manual (Version 8) and the ANSI/IEEE Standard
754-1985 for details.
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E10.5.6 Result of FPop Instruction without
NaN(s)/DNRM(s) in Operand(s)

The following tables show the results of the IEEE 754 floating-point operations when
operands do not contain NaNs or subnormal (denormalized) numbers (DNRM). [frd] is
the table of the destination f register (frd) value. [exc] is the table of the IEEE 754
exceptions.

In the tables,“calc” is a result that depends on the calculated value. The “calc” in the
exception table can be either the “of”, “uf”, “nx”, “of & nx”, or “uf & nx” exception, or
nothing.

 FADD/FSUB Without NaN/DNRM Operands

If FADD, let FRS2=+frs2; then, frs1+frs2=frs1+FRS2. 
If FSUB, let FRS2=-frs2; then, frs1-frs2=frs1+FRS2

 [frd]

-- FRS2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO ±ZERO(3) ±NORM(1) ±INFI(1)

±NORM ±NORM(2) ±calc(6) ±INFI(1)

±INFI ±INFI(2) ±INFI(2) ±INFI(4), QNaN(5)

 [exc]

-- FRS2--

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO -- -- --

±NORM -- calc --

±INFI -- -- nv(5)

(1) [+] if FRS2.s=0; [–] if FRS2.s=1.
(2) [+] if frs1.s=0; [–] if frs1.s=1.
(3) +ZERO if +ZERO+ZERO or RD!=R– and (ZERO–ZERO or –ZERO+ZERO). 

–ZERO if –ZERO–ZERO or RD==R– and (ZERO–ZERO or –ZERO+ZERO). 
{RD==R– means rounding toward minus infinity.}

(4) +INFI if +INFI+INFI; –INFI if –INFI–INFI.
(5) QNaN if +INFI–INFI or –INFI+INFI. (Also, nv if so.)
(6) +ZERO if RD!=R– and (NORM–NORM=ZERO or –NORM+NORM=ZERO). 

–ZERO if RD==R– and (NORM–NORM=ZERO or –NORM+NORM=ZERO).
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 FMUL Without NaN/DNRM Operands

 [frd]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO ±ZERO(1) ±ZERO(1) QNaN

±NORM ±ZERO(1) ±calc(1) ±INFI(1)

±INFI QNaN ±INFI(1) ±INFI(1)

 [exc]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO -- -- nv

±NORM -- calc --

±INFI nv -- --

(1) (+)=(+)*(+); (+)=(–)*(–); (–)=(–)*(+); (–)=(+)*(–).

 FDIV Without NaN/DNRM Operands

 [frd]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO QNaN ±ZERO(1) ±ZERO(1)

±NORM ±INFI(1) ±calc(1) ±ZERO(1)

±INFI ±INFI(1) ±INFI(1) QNaN

 [exc]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO nv -- --

±NORM dz calc --

±INFI -- -- nv

(1) (+)=(+)/(+); (+)=(–)/(–); (–)=(–)/(+); (–)=(+)/(–).
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 FSQRT Without NaN/DNRM Operand

 [frd]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

+ZERO –ZERO(1) +calc QNaN +INFI QNaN

 [exc]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

-- -- calc nv -- nv
(1) SQRT(–0) is –0.

 FsTOd/FdTOs Without NaN/DNRM Operand

 [frd]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

+ZERO –ZERO +calc – calc +INFI –INFI

 [exc]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

-- -- calc calc -- --

FiTOs/FiTOd Without NaN/DNRM Operand

 [frd]

-- frs2 --

INT_ZERO +INT –INT

+zero(1) +calc(1) –calc(1)

 [exc]

-- frs2 --

INT_ZERO +INT –INT

-- calc(2) calc(2)

(1) The result must be a normalized number or +zero, not be a NaN, infinity, a subnormal number,
nor –zero.

(2) FiTOs may have “nx” exception because integer:31bits > single_f:24bits. FiTOd has no
exception because integer:31bits < double_f:53bits.
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The fcc Field Updated by FCMP/FCMPE

-- frs2 --

-- frs1 -- –INFI –NORM ±ZERO +NORM +INFI
QNaN/
SNaN

–INFI 0:= 1:< 1:< 1:< 1:< 3:?

–NORM 2:> calc(2) 1:< 1:< 1:< 3:?

±ZERO 2:> 2:> 0:=(1) 1:< 1:< 3:?

+NORM 2:> 2:> 2:> calc(2) 1:< 3:?

+INFI 2:> 2:> 2:> 2:> 0:= 3:?

QNaN/SNaN 3:? 3:? 3:? 3:? 3:? 3:?

(1) (+0) is equal to (–0); (–0) is equal to (+0).

(2) If frs1=frs2, fcc=0; if frs1<frs2, fcc=1; if frs1>frs2, fcc=2; never fcc=3.

E10.6 Pipeline of FPU and Latency
The SPARC FPU pipeline structure and interlock mechanism is implementation
dependent, and therefore differs with each SPARC FPU. The FPUs maintain enough in
common to allow code that is generated by a “generic” SPARC compiler to run
efficiently in the MB86936 FPU, but the highest performance is realized with code
written specifically for the MB86936 FPU.

This section describes the MB86936 pipeline structure and interlock conditions. It is
intended for the software engineer whose goal is to write software (such as an
MB86936-specific compiler or key routines or libraries in assembly language) that has
the highest-performance possible.

The MB86936 IU pipeline and FPU pipeline are complicated and cannot be fully
described in this document. The following descriptions therefore focus on the key FPU
design factors.

E10.6.1 FPU Pipeline
The SPARClite FPU consists of 4 pipeline stages: the A_stage, the B_stage, the
C_stage, and the D_stage. They are also called the FPU_A, FPU_B, FPU_C, and
FPU_D stages, respectively.

 The SPARClite IU has 5 stages: the Fetch stage, the Decode stage, the Execution stage,
the Memory stage, the Write-back stage. They are also called the IU_F, IU_D, IU_E,
IU_M, and IU_W stages, respectively.

If an FPop instruction does not have a trap request by the Execution stage, the IU
dispatches the FPop instruction to the FPU. If the FPop instruction does have a trap
request by the Execution stage, the IU does not dispatch the FPop instruction. The FPop
with the trap request moves to the Memory stage, where it is eventually trapped.
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The FPop instruction flows through the IU and FPU pipelines as follows:

 (1) When dispatched: IU_F → IU_D → IU_E → FPU_A → FPU_B →
FPU_C → FPU_D

 (2) When trapped: IU_F → IU_D → IU_E → IU_M → IU_W

The IU reads the FPop operand(s) from corresponding f register(s) in the Execution
stage. The operand(s) are available for the FPU in the A_stage.

The A_stage, B_stage, and C_stage are the execution stages of the FPU. Unlike the IU,
the FPU requires 3 stages for execution because each floating-point operation requires
completion of many tasks. For example, the floating-point add operation requires
swapping, adjusting (shifting), adding/subtracting, normalizing (shifting), and rounding
of the fraction part of the floating-point number. It also requires handling of the
exponential part and the sign part of the floating-point number.

When an FPop is in the C_stage and there is an fp_exception, the FPU asserts the
fp_exception trap request to the IU. The FPU keeps asserting the request until it is
accepted by the IU.

The D_stage is the write back stage of the FPU. When an FPop is in the D_stage and
there is no fp_exception, the FPU updates the FSR and writes the result into the f
register. If there is an fp_exception when the FPop is in the D_stage, the FPU updates
the FSR but does not write the result into the f register.

The FPU pipeline can be summarized as follows:

FPU_A → FPU_B → FPU_C → FPU_D
(Execution 1)    (Execution 2)   (Execution 3)    (Write-back)

When the IU dispatches an FPop, the FPop moves into the FPU pipeline and into the
FQ. When the FPop moves out of the FPU pipeline, it also moves out of the FQ. An
FPop is in the FQ while it is in the FPU pipeline. However, the entries of the FQ (such
as front, 2nd, 3rd) do not correspond to the stages of the FPU pipelines (such as FPU_A,
FPU_B, FPU_C, FPU_D).

 Programming Note:

There are two traps which may be detected (i.e., requested) in the Memory
stage. One is the data_access_exception trap from the BIU. The other is the
data_break_point trap from the DSU. If an FPop is dispatched to the FPU, both
trap requests are ignored. (Note: The FPop does not access the memory, but the
Write Buffer in the BIU may generate the data_access_exception trap request
for the FPop in the Memory stage.)

Both requests can be ignored because the BIU (Write Buffer) and DSU keep
asserting the trap requests to the IU until the requests are accepted. Both traps
can be considered asynchronous traps.

Floating-Point Unit - FPU Pipeline
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E10.6.2 FPop Throughput and Latency
Each FPop except FMULd, FDIVs, FSQRTs, FDIVd, and FSQRTd, stays only 1 cycle
at each stage of the FPU. Therefore, the throughput of these FPops is 1 cycle, and their
latency with respect to the following FPop is 3 cycles. When there is a data dependency
between an FPop at FPU_D and another FPop at FPU_A (i.e., FPU_D.frd ==
FPU_A.frs1 or FPU_D.frd == FPU_A.frs2), the result in the D_stage is bypassed to the
operand(s) in the A_stage.

Table E10-12 shows floating-point instruction throughput and latency.

Table E10-12:  Floating-Point Instruction Throughput and Latency

Instruction Throughput Latency

FDIVs/FSQRTs 13 14

FMULs/FsMULd 1 3

FADDs/FSUBs 1 3

All Other FPops_s 1 3

FDIVd/FSQRTd 28 29

FMULd 4 6

FADDd/FSUBd 1 3

All Other FPop_d 1 3

Programming Note:

The IU and the FPU check the data dependency every time and assert the Data
Hazard interlock if necessary; then, there is no data dependency between an
FPop at FPU_D and another FPop at FPU_B; also, between an FPop at FPU_D
and another FPop at FPU_C. A program does not need to ensure those
conditions.

The FMULd instruction stays in the A_stage for 4 cycles; so its throughput is 4 cycles,
and its latency is 6 cycles.

The FDIVs/FSQRTs instructions stay in the A_stage for 13 cycles, but skip over the
B_stage; so their throughput is 13 cycles, and their latency is 14 cycles.

The FDIVd/FSQRTd instructions stay in the A_stage for 28 cycles, but skip over the
B_stage; so their throughput is 28 cycles, and their latency is 29 cycles.

When an f register is written with a value that is then read, the written value and the
read value are always the same; so the bypass technique works for the f register.

When there is a data dependency between an FPop at FPU_D and an FPop at IU_E (i.e.,
FPU_D.frd == IU_E.frs1 or FPU_D.frd == IU_E.frs2), the result in the D_stage can
reach the operand(s) in the Execution stage by passing through the f register designated
by frd - from the register’s input port to its output port in the same cycle.

Floating-Point Unit - FPop Throughput and Latency
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E10.6.3 IU Interlocks, IU Holds, FPU Interlocks, and
FPU Hold

The IU has the IU holds and the IU interlocks. The FPU has the FPU hold and the FPU
interlocks. Some IU interlocks are generated for the IU, and some are generated for the
FPU. All FPU interlocks are generated for the FPU.

All IU holds and IU interlocks stop the IU pipeline but do not stop the FPU pipeline.
All FPU interlocks and the FPU hold stop the FPU pipeline, but do not stop the IU
pipeline directly.

The IU holds stop the entire IU pipeline and are usually generated by peripheral units
(such as BIU) to “hold” the IU momentarily. Unlike the IU holds, the IU interlocks stop
the IU pipeline partially. They are generated by the processor units (i.e., IU/FPU), and
are used to stall instructions in the IU pipeline.

The FPU hold stops the entire FPU pipeline and is generated when the FPU is in the
fp_exception_pending state or in the fp_exception state. The FPU hold is not asserted
while the FPU is in the fp_execute state. Unlike the FPU hold, the FPU interlocks stop
the FPU pipeline partially to stall instructions in the FPU pipeline.

The FPU interlocks are generated for the FMULd, FDIVs/FSQRTs, and FDIVd/
FSQRTd instructions, which must stay in the A_stage of the FPU for several cycles to
complete their executions. These interlocks are called the FMULd interlock, the
FDIVs_FSQRTs interlock, and the FDIVd_FSQRTd interlock.

The IU interlocks are more complicated and varied than the FPU interlocks. Only the
IU interlocks generated for FPU instructions are described in this section.

Floating-Point Unit - IU Interlocks, IU Holds, FPU Interlocks, and FPU Hold
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E10.6.4 FPU_full Interlock

One of the IU interlocks generated for the FPU is called the FPU_full interlock. If a
FMULd, FDIVs/FSQRTs, or FDIVd/FSQRTd instruction occupies the A_stage of the
FPU, the following FPop must wait in the Execution stage of the IU. To do so, the
FPU_full interlock is asserted for no more than 3 cycles for a FMULd instruction, 12
cycles for a FDIVs/FSQRTs instruction, and 27 cycles for a FDIVd/FSQRTd instruc-
tion.

Some non-FPop instructions can be positioned between the FP0ps, the preceding FPop
and the following FPop without changing the FPU execution time. There are at least 27
cycles between the FDIVd/FSQRTd and the following FPop, but this does not mean
that 27 instructions can be positioned between them because if the IU pipeline is
stopped by an IU hold, one instruction can require more than one cycle to complete.
(e.g. If 3 waits are needed for one memory access, one load instruction has 3 held
cycles; therefore, the load instruction requires total 4 cycles to execute.)

Like the FPU_full interlock, most IU interlocks generated for the FPU stall instructions
in the Execution stage. When such interlocks are asserted, the Fetch stage, the Decode
stage, and the Execution stage are stopped; but the Memory stage and the Write-back
stage are not stopped.

Figure E10-8 shows an example of the FPU_full interlock.

E10.6.5 Data Hazard Interlocks

(1) An FPop following another FPop causes the RAW (Read After Write) Data
Hazard interlock if there is a RAW dependency between the two FPops. The
following FPop is stalled in the IU_E stage while the preceding FPop is in
the FPU_A or FPU_B stage. When the preceding FPop moves to the FPU_C
stage, the interlock is negated. When the preceding FPop moves to the
FPU_D stage, the result is bypassed to the FPU_A stage if the following
FPop is in the FPU_A.

 For example, if “FSUBs %f2,%f3,%f4” follows “FADDs %f0,%f1,%f2”
without any instruction between them, the FSUBs instruction is stalled for 2
cycles by the RAW Data Hazard interlock in the IU_E stage because there is
a RAW dependency in the %f2 register. The FSUBs instruction “reads” the
%f2 register “after” the FADDs instruction “writes” the %f2 register.

(2) In the same way, a STF/STDF instruction that follows an FPop may have the
RAW Data Hazard interlock. The STF/STDF instruction is stalled in the
IU_E stage while the preceding FPop is in the FPU_A or FPU_B stage.
When the FPop moves to the FPU_D stage, the result is bypassed to the
IU_M stage if the STF/STDF instruction is in the IU_M stage.

Floating-Point Unit - FPU_full Interlock
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1. 2. 3.

IU_F: FSUBd IU_F: FCMPd IU_F:

IU_D: FMULd IU_D: FSUBd IU_D: FCMPd

IU_E: FADDd IU_E: FMULd IU_E: FSUBd

IU_M: FPU_A: IU_M: FPU_A: FADDd IU_M: FPU_A: FMULd

IU_W: FPU_B: IU_W: FPU_B: IU_W: FPU_B: FADDd

FPU_C: FPU_C: FPU_C:

FPU_D: FPU_D: FPU_D:

4. 5. 6.

IU_F: IU_F: IU_F:

IU_D: FCMPd IU_D: FCMPd IU_D: FCMPd

U_E: FSUBd IU_E: FSUBd IU_E: FSUBd

IU_M: FPU_A: FMULd IU_M: FPU_A: FMULd IU_M: FPU_A: FMULd

IU_W: FPU_B: IU_W: FPU_B: IU_W: FPU_B:

FPU_C:FADDd FPU_C: FPU_C:

FPU_D: FPU_D: FADDd FPU_D:

<<  Interlock >> << Interlock >> << Interlock >>

7. 8. 9.

IU_F: IU_F: IU_F:

IU_D: |U_D: IU_D:

IU_E: FCMPd IU_E: IU_E:

IU_M: FPU_A: FSUBd IU_M: FPU_A: FCMPd IU_M:  FPU_A:

IU_W: FPU_B: FMULd IU_W: FPU_B: FSUBd IU_W:  FPU_B:FCMPd

FPU_C: FPU_C: FMULd FPU_C: FSUBd

FPU_D: FPU_D:  FPU_D: FMULd

Figure E10-8. FPU_full Interlock Example

For example, if “ST %f2,[0]” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the STF instruction is stalled for 2 cycles. The
STF instruction “reads” the %f2 register “after” the FADDs instruction
“writes” the %f2 register.

 (3) An FPop following an LDF/LDDF instruction causes the RAW Data Hazard
interlock if there is a RAW dependency between them. The FPop is stalled
in the IU_E stage while the LDF/LDDF is in the IU_M stage. When the
LDF/LDDF instruction moves to the IU_W stage, the interlock is negated,
and the loaded data moves from the IU_W stage to the IU_E stage via the
designated f register.
For example, if “FSUBs %f2,%f3,%f4” follows “LD [4],%f2” without any
instruction between them, the FSUBs instruction is stalled for at least 1 cycle
(depending on the IU hold conditions) by the RAW Data Hazard interlock in
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the IU_E stage because there is a RAW dependency in the %f2 register. The
FPop “reads” the %f2 register “after” the LDF instruction “writes” the %f2
register.

 (4) In the same way, an STF/STDF instruction that follows an LDF/LDDF
instruction may cause the RAW Data Hazard interlock. The STF/STDF
instruction is stalled in the IU_E stage while the LDF/LDDF instruction is in
the FPU_M stage. When the LDF/LDDF instruction moves to the IU_W
stage, the interlock is negated, and the loaded data moves from the IU_W
stage to the IU_E stage via the designated f register.

 For example, if “ST %f2,[4]” follows “LD [0],%f2” without any instruction
between them, the STF instruction is stalled for at least 1 cycle (depending
on the hold condition.). The STF instruction “reads” the %f2 register “after”
the LDF instruction “writes” the %f2 register.

 (5) An LDF/LDDF instruction that follows an FPop causes the WAW (Write
After Write) Data Hazard interlock if there is a WAW dependency between
them. The LDF/LDDF instruction is stalled in the IU_E stage while the FPop
is in the FPU_A or FPU_B stage. When the FPop moves to the FPU_C stage,
the interlock is negated. As a result, before the LDF/LDDF moves to the
IU_W stage and writes the loaded data to the f register, the FPop moves to
the FPU_D stage and writes the result to the designated f register.

 For example, if “LD [0],%f2” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the LDF instruction is stalled for 2 cycles by the
WAW Data Hazard interlock in the IU_E stage because there is a WAW
dependency in the %f2 register. The LDF instruction “writes” the %f2
register “after” the FADDs instruction “writes” the %f2 register.

 (6) An LDF/LDDF instruction that follows an FPop has the WAR (Write After
Read) Data Hazard interlock if there is the WAR dependency between them.
At that time the LDF/LDDF instruction must wait for the completion of the
FPop because if the FPop is trapped by the fp_exception trap, its trap handler
may have to read the source register(s) of the FPop. The LDF/LDDF
instruction should not write the loaded data to the register before this
happens.

 The LDF/LDDF instruction is stalled in the IU_E stage while the FPop is in
the FPU_A or FPU_B stage. When the FPop moves to the FPU_C stage, the
interlock is negated. At that time, if the FPop in the FPU_C stage has an
fp_exception trap request, the LDF/LDDF instruction in the IU_E stage is
annulled; so the source register of the FPop is not updated by the LDF/
LDDF instruction. When the LDF/LDDF instruction moves to the IU_M
stage, the LDF/LDDF instruction is trapped for the fp_exception.
For example, if “LD [0],%f1” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the LDF instruction is stalled for 2 cycles by the
WAR Data Hazard interlock in the IU_E stage because there is a WAR
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dependency in the %f1 register. The LDF instruction “writes” the %f1
register “after” the FADDs instruction “reads” the %f1 register, and after the
FADDs instruction has completed without any fp_exceptions.

E10.6.6 STFSR_LDFSR_STDFQ Interlock and
FPop_Quad Interlock

Two STFSR_LDFSR_STDFQ interlocks are generated to ensure proper STFSR/
LDFSR/STDFQ instruction execution. The first interlock stalls the STFSR/LDFSR/
STDFQ in the IU_E stage while any FPop instruction is in the FQ. The other interlock
stalls the following instruction in the IU_D stage while the STFSR/LDFSR/STDFQ
instruction is in the IU_E or the IU_M stage. The interlock is negated when the
STFSR/LDFSR/STDFQ instruction is in the IU_W stage.

The FPop_Quad interlock stalls an FPop/LDF/LDDF/STF/STDF instruction in the IU_E
stage while any Quad precision FPop(s) is in the FPU_A, FPU_B, or FPU_C stage.

 Programming Notes:

(1) The STFSR_LDFSR_STDFQ interlock and the FPop_Quad interlock are not
generated frequently, so they have very little affect on performance. A
programmer can ignore these two interlocks.

(2) When the following FPop is a Quad precision FPop, the RAW Data Hazard
interlock may not be generated even if there is the RAW dependency. It should
not cause any problem because the Quad precision FPop is eventually trapped.

Floating-Point Unit - STFSR_LDFSR_STDFQ Interlock and FPop_Quad Interlock
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E10.6.7 Latency of FCMP to FBfcc and FCMP_FBfcc
Interlock

The latency of the FCMP to the FBfcc is 3 cycles in the best case.

Although the fcc field of the FSR is updated in the D_stage, the following FBfcc does
not wait for the update. The FBfcc uses the “hot” fcc to make the branch decision
instead of using the fcc in the FSR. The “hot” fcc is updated when an FCMP instruction
moves to the B_stage of the FPU (i.e., 2 cycles earlier than FSR’s update).

The IU makes the FBfcc branch decision during its Decode stage and then waits there.
The FCMP moves from Execution stage of the IU to the A_stage of the FPU in 1 cycle
if there is no IU interlock or IU hold condition. After being dispatched to the FPU, the
FCMP moves from the A_stage to the B_stage (updating the “hot” fcc) in 1 cycle.
There are at least 2 cycles between the FCMP instruction and the FBfcc instruction, so
the latency of the FCMP to the FBfcc is therefore 3 cycles in the best case.

If there is no IU interlock or IU hold, a program can have at most two instructions
(FPop or non-FPop, except another FCMP) between the FCMP instruction and the
FBfcc instruction without changing branch timing. When a program has one instruction
or no instruction between the FCMP and the FBfcc (note: other SPARC FPUs may not
allow “no” instruction), the FCMP_FBfcc interlock may be asserted to stall the FBfcc
in the Decode stages as long as necessary.

 Programming Note:

When an FCMP instruction has an fp_exception, the “hot” fcc has an unknown
value, and the following FBfcc instruction may therefore branch to the wrong
location. This causes no problem, however, because the FBfcc instruction is
trapped by the fp_exception trap that was generated by the FCMP instruction.

Floating-Point Unit - Pipeline of FPU and Latency
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E10.6.8 Latencies of Interrupt, Trap, and Task Switch
Although an interlock may stop an FPop for many cycles (e.g., 27 cycles for FDIVd/
FSQRTd) in the Execution stage:

(1) The interrupt latency is not increased by the interlock.

An interrupt request is detected in the Execution stage. Once an interrupt is
detected, the interlock for an FPop is annulled, and the FPop is not dispatched to
the FPU. The FPop then moves to the Memory stage with the interrupt trap request,
and it is trapped there.

 (2) The trap latency is not increased by the interlock.

When an instruction is trapped in the Memory stage, following instructions in the
Fetch, Decode, and Execution stages are squashed. Even if an FPop is interlocked
at the Execution stage, it is squashed by the trap, and the interlock is annulled.
Therefore, an interlock at Execution (or Fetch or Decode) stage does not increase
the latency of a trap.

(3) The task switch latency is minimized by the FPU_full interlock.

When the OS switches tasks, the OS must wait for the completion of all FPops in
the FQ if both tasks use the FPU. If there is no FPU_full interlock, the three-entry
FQ can have at most 3 FDIVd/FSQRTd instructions. Then, in the worst case, the
OS must wait for the completion of 3 FDIVd/FSQRTd instructions for about 84
(28∗3) cycles. However, with the FPU_full interlock, the OS must wait only about
28 cycles for the completion of all FPops in the FQ, even in the worst case.

Floating-Point Unit - Pipeline of FPU and Latency
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HAPTER

Floating-Point Instructions

E11
C

This chapter describes all floating-point instructions that the MB86936 supports in
hardware.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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E11.1 Floating-point Operate (FPop) Instructions

opcode op3 operation

FPop1 110100 Floating-point operate

FPop2 110101 Floating-point operate

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

FPop2 10 rd 110101 rs1 opf rs2

Description:

The Floating-point operate (FPop) instructions are encoded using two “type 3” formats:
FPop1, FPop2. The particular floating-point instruction is determined by the instruction
opf field. Note that the load/store floating-point instructions are not FPop instructions.

The FPop1 and instructions do not affect the floating-point condition codes, but the
FPop2 and instructions may affect the floating-point condition codes.

The FPop instructions support operations between integer words and single-, double-,
and quad-precision floating-point operands in f register(s). All FPop instructions operate
according to ANSI/IEEE Standard. 754-1985 on single, double, and quad formats.

The least significant bit of an f register address is not used by double-precision FPop
instructions, and the least significant 2 bits of an f register address are not used by
quad-precision FPop instructions. These unused register address bits are reserved and
should be written 0 by software to ensure future compatibility. If these address bit(s) are
not 0 in an FPop instruction with a double- or quad-precision operand, an fp_exception
trap occurs with FSR.ftt = invalid_fp_register.

If either the EF field of the PSR is 0 or no FPU is present, an FPop1 or FPop2
instruction causes an fp_disabled trap.

Floating-point exceptions may cause either precise or deferred traps.

Programming Note:

The following restriction does not apply to the MB86936, but may apply to other
SPARC processors.

If an FPop2 instruction such as FCMP or FCMPE sets the floating-point condition
codes, then at least one non-FPop2 (non-floating-point operate 2) instruction must be
executed between the FPop2 instruction and a following FBfcc instruction. Otherwise,
the result of the FBfcc instruction is undefined.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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E11.1.1 Convert Integer to Floating-Point Instructions

opcode opf operation

FiTOs 011000100 Convert Integer to Single

FiTOd 011001000 Convert Integer to Double

FiTOq 011001100 Convert Integer to Quad

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

* Not used, must be 0.

Syntax:

fitos fregrs2 , fregrd
fitod fregrs2 , fregrd
fitoq fregrs2 , fregrd

Description:

These instructions convert the 32-bit integer word operand in f[rs2] into a floating-point
number in the destination format. They write the result into the f register(s) specified by
rd.

FiTOs rounds according to the RD field in the FSR.

Traps:

fp_disabled
fp_exception (NX (FiTOs), Invalid_fp_register (FiTOd,

 FiTOq))

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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E11.1.2 Convert Floating-Point to Integer Instructions

opcode opf operation

FsTOi 011010001 Convert Single to Integer

FdTOi 011010010 Convert Double to Integer

FqTOi 011010011 Convert Quad to Integer

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

* Not used, must be 0.

Syntax:

fstoi fregrs2 , fregrd
fdtoi fregrs2 , fregrd
fqtoi fregrs2 , fregrd

Description:

These instructions convert the floating-point operand in the f register(s) specified by rs2
into a 32-bit integer word in f[rd]. The result is always rounded toward 0 (the RD field
in the FSR is ignored).

Traps:

fp_disabled
fp_exception (NV, NX, invalid_fp_register (FdTOi, FqTOi))
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E11.1.3 Convert Between Floating-Point Formats
Instructions

opcode opf operation

FsTOd 011001001 Convert Single to Double

FsTOq 011 001101 Convert Single to Quad

FdTOs 011000110 Convert Double to Single

FdTOq 011001110 Convert Double to Quad

FqTOs 011000111 Convert Quad to Single

FqTOd 011001011 Convert Quad to Double

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

* Not used, must be 0.

Syntax:
fstod fregrs2 , fregrd
fstoq fregrs2 , fregrd
fdtos fregrs2 , fregrd
fdtoq fregrs2 , fregrd
fqtos fregrs2 , fregrd
fqtod fregrs2 , fregrd

Description:

These instructions convert the floating-point operand in the f register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the f
register(s) specified by rd. Rounding is performed according to the RD field in the FSR.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can result in OF,
UF, and NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion
instructions) cannot. Any of these six instructions can trigger an NV exception if the
source operand is a signaling NaN.

Traps:

fp_disabled
fp_exception (OF, UF, NV, NX, invalid_fp_register)
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SPARClite User’s Manual

E11-6

E11.1.4 Floating-Point Move Instructions

opcode opf operation

FMOVs 000000001 Move

FNEGs 000000101 Negate

FABSs 000001001 Absolute Value

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

* Not used, must be 0.

Syntax:

fmovs fregrs2 , fregrd
fnegs fregrs2 , fregrd
fabss fregrs2 , fregrd

Description:

FMOVs copies the contents of f[rs2] to f[rd]. FNEGs copies the contents of f[rs2] to
f[rd] with the sign bit complemented. FABSs copies the contents of f[rs2] to f[rd] with
the sign bit cleared. These instructions do not round.

Programming Notes:

(1) One FMOVs instruction per word is required to transfer a multiple-precision value
between f registers.

(2) If the source and destination registers (fregrs2 and fregrd) are the same, a single
FNEGs (FABSs) instruction performs negation (absolute value) for any operand
precision, including double- and quad- precisions. If the source and destination
registers are different, an FNEGs (FABSs) and a following FMOVs instruction
perform a double-precision negation (absolute value); an FNEGs (FABSs) and three
following FMOVs instructions perform a quad-precision negation (absolute value).

Traps:

fp_disabled
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E11.1.5 Floating-Point Square Root Instructions

opcode opf operation

FSQRTs 000101001 Square Root Single

FSQRTd 000101010 Square Root Double

FSQRTq 000101011 Square Root Quad

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

* Not used, must be 0.

Syntax:

fsqrts fregrs2 , fregrd
fsqrtd fregrs2 , fregrd
fsqrtq fregrs2 , fregrd

Description:

These instructions generate the square root of the floating-point operand in the f
register(s) specified by the rs2 field, and place the result in the destination f register(s)
specified by the rd field. Rounding is performed according to the rd field in the FSR.

Traps:

fp_disabled
fp_exception (NV, NX, invalid_fp_register (FSQRTd, FSQRTq))

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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E11.1.6 Floating-Point Add and Subtract Instructions

opcode opf operation

FADDs 001000001 Add Single

FADDd 001000010 Add Double

FADDq 001000011 Add Quad

FSUBs 001000101 Subtract Single

FSUB d 001000110 Subtract Double

FSUBq 001000111 Subtract Quad

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

Syntax:

fadds fregrs1 , fregrs2 , fregrd
faddd fregrs1 , fregrs2 , fregrd
faddq fregrs1 , fregrs2 , fregrd
fsubs fregrs1 , fregrs2 , fregrd
fsubd fregrs1 , fregrs2 , fregrd
fsubq fregrs1 , fregrs2 , fregrd

Description:

The floating-point add instructions add the f register(s) specified by the rs1 field and the
f register(s) specified by the rs2 field, and write the sum into the f register(s) specified
by the rd field.

The floating-point subtract instructions subtract the f register(s) specified by the rs2
field from the f register(s) specified by the rs1 field, and write the difference into the f
register(s) specified by the rd field.

Traps:

fp_disabled
fp_exception (OF, UF, NX, NV ( ∞–∞ ), invalid_fp_register (all except
FADDs and FSUBs)

Floating-Point Instructions - Floating-point Operate (FPop) Instructions



E11-9

E11.1.7 Floating-Point Multiply and Divide
Instructions

opcode opf operation

FMULs 001001001 Multiply Single

FMULd 00100 1010 Multiply Double

FMULq 001001011 Multiply Quad

FsMULd 001101001 Multiply Single to Double

FdMULq 001101110 Multiply Double to Quad

FDIVs 001001101 Divide Single

FDIVd 001001110 Divide Double

FDIVq 001001111 Divide Quad

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

Syntax:

fmuls fregrs1 , fregrs2 , fregrd
efmuls fregrs1 , fregrs2 , fregrd
fmuld fregrs1 , fregrs2 , fregrd
fmulq fregrs1 , fregrs2 , fregrd
fsmuld fregrs1 , fregrs2 , fregrd
fdmulq fregrs1 , fregrs2 , fregrd
fdivs fregrs1 , fregrs2 , fregrd
fdivd fregrs1 , fregrs2 , fregrd
fdivq fregrs1 , fregrs2 , fregrd

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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Description:

The floating-point multiply instructions multiply the f register(s) specified by the rs1
field by the f register(s) specified by the rs2 field, and write the product into the f
register(s) specified by the rd field.

The FsMULd instruction provides the exact double-precision product of two single-pre-
cision operands without underflow, overflow, or rounding error. Similarly, FdMULq
provides the exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the f register(s) specified by the rs1 field
by the f register(s) specified by the rs2 field, and write the quotient into the f register(s)
specified by the rd field.

Traps:

fp_disabled
fp_exception (OF, UF, DZ (FDIV only), NV, NX, invalid_fp_register

 (all except FMULs and FDIVs)

Floating-Point Instructions - Floating-point Operate (FPop) Instructions



E11-11

E11.1.8 Floating-Point Compare Instructions

opcode opf operation

FCMPs 001010001 Compare Single

FCMPd 001010 010 Compare Double

FCMPq 001010011 Compare Quad

FCMPEs 001010101 Compare Single and Exception if Unordered

FCMPEd 001010110 Compare Double and Exception if Unordered

FCMPEq 001010111 Compare Quad and Exception if Unordered

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop2 10 0* 110101 rs1 opf rs2

* Not used, must be 0.

Syntax:

fcmps fregrs1 , fregrs2
fcmpd fregrs1 , fregrs2
fcmpq fregrs1 , fregrs2
fcmpes fregrs1 , fregrs2
fcmped fregrs1 , fregrs2
fcmpeq fregrs1 , fregrs2

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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Description:

These instructions compare the f register(s) specified by the rs1 field with the f
register(s) specified by the rs2 field, and set the floating-point condition codes as
follows:

fcc Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3  fregrs1 ? fregrs2 (unordered)

The “compare and cause exception if unordered” instructions (FCMPEs, FCMPEd, and
FCMPEq) cause an invalid (NV) exception if either operand is a signaling NaN or a
quiet NaN. FCMP causes an invalid (NV) exception if either operand is a signaling
NaN.

Programming Note:

The following restriction does not apply to the MB86936, but may apply to other
SPARC processors.

A non-FPop2 (non-floating-point-operate2) instruction must be executed between an
FPop2 (FCMP or FCMPE) instruction and a following FBfcc instruction. Otherwise, the
result of the FBfcc is undefined.

Traps:

fp_disabled
fp_exception (NV, invalid_fp_register (all except FCMPs and

FCMPEs)

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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E11.2 Load Floating-Point (LDfp) Instructions

opcode op3 operation

LDF 100000 Load Floating-Point Register

LDDF 100011 Load Double Floating-Point Register

LDFSR 100001 Load Floating-Point State Register

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd op3 rs1 i=0 0* rs2

11 rd op3 rs1 i=1 simm13

* Not used, must be 0.

Syntax:

ld [address] , fregrd
ldd [address] , fregrd
ld [address] , %fsr

Description:

The load single floating-point instruction (LDF) moves a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) moves a doubleword from
memory into an f register pair. The most significant word at the effective memory
address is moved into the even f register. The least significant word at the effective
memory address +4 is moved into the following odd f register. The least significant bit
of the rd field is unused and should always be set to 0 by software.

The load floating-point state register instruction (LDFSR) waits for all FPop instruc-
tions that have not finished execution to complete, then loads a word from memory into
the FSR.

The effective address for the load instruction is “r[rs1] + r[rs2]” if the i field is 0, and
“r[rs1] + sign_ext(simm13)” if the i field is 1.

LDF and LDFSR cause a mem_address_not_aligned trap if the effective address is not
word-aligned; LDDF traps if the address is not doubleword-aligned. If the EF field of
the PSR is 0 or if no FPU is present, a load floating-point instruction causes an
fp_disabled trap.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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Programming Notes:

(1) The MB86936 ignores the least-significant bit of the LDDF rd field. Other SPARC
processors may cause an fp_exception_trap with FSR.ftt = invalid_fp_register if the
bit is 1.

(2)  If any of the three instructions that follow an LDFSR (in time) is an FBfcc, the
value of the FSR fcc field that is seen by the FBfcc is undefined. This restriction
does not apply to the MB86936, but may apply to other SPARC processors:

Implementation Note:

If a load floating-point instruction traps with a data access exception, the destination f
register(s) remain unchanged.

Traps:

fp_disabled
fp_exception (sequence_error)
data_access_exception
mem_address_not_aligned

Floating-Point Instructions - Store Floating-Point (STfp) Instructions
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E11.3 Store Floating-Point (STfp) Instructions

opcode op3 operation

STF 100100 Store Floating-Point

STDF 100111 Store Double Floating-Point

STFSR 100101 Store Floating-Point State Register

STDFQ† 100110 Store Double Floating-Point deferred-trap Queue.

† privileged instruction

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd op3 rs1 i=0 0* rs2

11 rd op3 rs1 i=1 simm13

*Not used, must be 0.

Syntax:

st fregrd , [address]
std fregrd , [address]
st %fsr , [address]
std %fq , [address]

Description:

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from an f
register pair into memory. The more-significant word (in the even-numbered f register)
is written into memory at the effective address, and the less-significant word (in the
odd-numbered f register) is written into memory at “effective address + 4”. The
least-significant bit in the rd field is not used and should be written to 0 by software.

The store floating-point deferred-trap queue instruction (STDFQ) stores the front
doubleword of the Floating-Point Queue (FQ) into memory. An attempt to execute
STDFQ when the FQ is empty (FSR.qne = 0) should cause an fp_exception trap with
FSR.ftt set to 4 (sequence_error).

The store floating-point state register instruction (STFSR) waits for any concurrently
executing Fpop instructions to complete, then writes the FSR into memory. STFSR
zeros FSR.ftt after writing the FSR to memory.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions
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The effective address for a store instruction is “r[rs1] + r[rs2]” if the i field is 0, or
“r[rs1] + sign_ext(simm13)” if the i field is 1.

STF and STFSR cause a mem_address_not_aligned trap if the address is not word-
aligned, and STDF and STDFQ trap if the address is not doubleword aligned. If the EF
field of the PSR is 0 or if the FPU is not present, a store floating-point instruction
causes an fp_disabled trap.

Programming Note:

The MB86936 ignores the least-significant bit of the rd field of the STDF. Other
SPARC processors may assert an fp_exception_trap with FSR.ftt = invalid_fp_register
if the bit is 1.

Implementation Note:

The MB86936 implementation might cause a data_access_exception trap due to a
“non-resumable machine-check” error during an “effective address + 4” memory
access, even though the corresponding ”effective address” access did not cause an error.
Thus, memory data at the effective memory address may be changed in this case. (Note
that this cannot happen across a page boundary because of the doubleword alignment
restriction.)

Traps:

fp_disabled
fp_exception (sequence_error (STDFQ))
privileged_instruction (STDFQ only)
mem_address_not_aligned
data_access_exception

Floating-Point Instructions - Store Floating-Point (STfp) Instructions
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E11.4 Branch on Floating-Point Cond. Codes (FBfcc) Instruc.

opcode cond operation fcc test

FBA 1000 Branch Always 1

FBN 0000 Branch Never 0

FBU 0111 Branch on Unordered U

FBG 0110 Branch on Greater G

FBUG 010 1 Branch on Unordered or Greater G or U

FBL 0100 Branch on Less L

FBUL 00 11 Branch on Unordered or Less L or U

FBLG 0010 Branch on Less or Greater L or G

FBNE 0001 Branch on Not Equal L or G or U

FBE 1001 Branch on Equal E

FBUE 1010 Branch on Unordered or Equal E or U

FBGE 1011 Branch on Greater or Equal E or G

FBUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBLE 1101 Branch on Less or Equal E or L

FBULE 1110 Branch on Unordered or Less or Equal E or L or U

FBO 1111 Branch on Ordered E or L or G

Format:

31 30 29 28 25 24 22 21 0

00 a cond 110 disp22

Syntax:

fba {,a} label
fbn {,a} label
fbu {,a} label
fbg {,a} label
fbug {,a} label
fbl {,a} label
fbul {,a} label
fblg {,a} label
fbne {,a} label (synonym: fbnz)
fbe {,a} label (synonym: fbz)
fbue {,a} label
fbge {,a} label
fbuge {,a} label
fble {,a} label
fbule {,a} label

Floating-Point Instructions - Branch on Floating-Point Condition Codes (FBfcc) Instructions
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fbo {,a} label

Note: To set the “annul” bit for FBfcc instructions, append “ ,a” to the opcode
mnemonic. For example, use “fbl ,a   label”. The braces ({}) in the preceding table
indicate that the “ ,a” are optional.

Description:

Unconditional Branches (FBA, FBN)

If its annul field is 0, an FBN (Branch Never) instruction executes as a “NOP”. If its
annul field is 1, the following (delay) instruction is annulled (not executed). In
neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp22)),” regardless of the value of the floating-point condition
code bits. If the annul field of the branch instruction is 1, the delay instruction is
annulled (not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches
Conditional FBfcc instructions (all except FBA and FBN) evaluate the floating-
point condition codes (fcc) according to the cond field of the instruction. Such
evaluation produces either a “true” or “false” result. If “true,” the branch is taken;
that is, the instruction causes a PC-relative delayed control transfer to the address
“PC + (4 x sign_ext(disp22)).” If “false,” the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). (Note that the annul bit
has a different effect on conditional branches than on unconditional branches).

An FBfcc should not be placed in the delay slot of a conditional branch instruction.

If the PSR’s EF bit is 0, or if an FPU is not present, an FBfcc instruction does not
branch, does not annul the following instruction, and generates an fp_disabled trap.

Programming Notes:

The following restrictions do not apply to the MB86936, but may apply to other
SPARC processors.

(1) If the instruction executed immediately before an FBfcc is an FPop2 instruction, the
result of the FBfcc is undefined. Therefore, at least one non-FPop2 instruction
should be executed between an FPop2 and a following FBfcc.

(2) If any of the three instructions that follow (in time) an LDFSR is an FBfcc, the
value of the fcc field of the FSR that is seen by the FBfcc is undefined.

Traps:

fp_disabled
fp_exception (sequence_error)

Floating-Point Instructions - Branch on Floating-Point Condition Codes (FBfcc) Instructions
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HAPTER

Power Down Mode

E12
C

The MB86936 features a power-down mode to partially or fully power down the
processor.

The processor is divided into six functional logic groups that can be powered down
through the Power-Down Register. The six groups are categorized as independent or
dependent as follows:

Group Category Processor Function

0 Independent FPU

1 Independent DMA

2 Dependent Core (IU, BIU, I_cache, D_cache)

4 Dependent ICE

Each independent group can be individually powered up or down independently of the
other groups.

The dependent groups must not be powered down alone. If group 2 (processor core) or
group 4 (ICE) is powered down, all other groups must be powered down.

Power Down Mode -
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E12.1 Power-Down Register
The Power-Down Register (also called the Shadow Register) contains bits that control
power-down as follows:

631

Reserved

Group 4 Power-Up (1=power-up, R/W)

5 034 2

reserved

Group 2 Power-Up (1=power-up, R/W)

Group 1 Power-Up (1=power-up, R/W)

Group 0 Power-Up (1=power-up, R/W)

reserved

1

Address: 0x00000060 (ASI=0x01)

Bits 31-6: Reserved

Bit 5: Reserved

Bit 4: Group 4 Power-Down (G4PD) — Controls power to the ICE logic. When set to 1, the ICE
logic is powered-down; when cleared to 0, the ICE logic is powered-up.

Bit 3: Reserved

Bit 2: Group 2 Power-Down (G2PD) — Controls power to the processor core. When set to 1, the
IU, BIU, and caches are powered-down; when cleared to 0, the IU, BIU, and caches are
powered-up.

Bit 1: Group 1 Power-Down (G1PD) — Controls power to the DMA. When set to 1, the DMA is
powered-down; when cleared to 0, the DMA is powered-up.

Bit 0: Group 0 Power-Down (G0PD) — Controls power to the FPU. When set to 1, the FPU is
powered-down; when cleared to 0, the FPU is powered-up.

The register is written 0x3f to power down the entire processor. This is called a global
power down.

The reset state of the Power-Down Register is 0x0.

E12.2 Power-Down Operation
A group power-down bit can be changed in the Power-Down Register by executing two
consecutive store-alternate instructions. Each independent group can be selectively
powered up by clearing the group bit in the Power-Down Register to 0 with store-
alternate instructions.

Forcing the -PDRESET signal pin low for at least two system clock cycles clears the
Power-Down Register, resulting in global power up. No group can be powered down
while -PDRESET is held low.

Programming Note:

Two consecutive store-alternate instruction are required to power up or power down.
The power-up/power-down state is undefined if the store-alternate instructions are not

Power Down Mode - Power-Down Register
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executed consecutively. Interrupts should therefore be disabled before executing the
store-alternate instructions, and should be re-enabled after the instructions have
executed, as shown in the following example:

! disable traps to ensure that the sta instructions execute back-
! to-back.

set ox10c0, %g1 ! enable EF, S, PS
mov %g1, %psr
nop
nop

! the following back-to-back sta instructions result in global
! power down

sta %g6, [%g5] 0x1 ! %g6=0x3f %g5=0x60
sta %g6, [%g5] 0x1

! re-enable traps

set 0x10e0, %g1 ! enable EF, S, PS, ET
mov %g1, %psr
nop
nop

Power Down Mode - Power-Down Operation
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HAPTER

MB86936 External Interface

E13
C

E13.1 SIGNAL DESCRIPTIONS1 
SYMBOL TYPE DESCRIPTION

–RESET I SYSTEM RESET: Asserting reset for at least 4 processor cycles after the clock has sta-
bilized causes the MB86936 to be initialized.

XTAL1 (CLK_IN)
XTAL2

I/O
O

G(Q)
I (Q)

EXTERNAL OSCILLATOR:  The frequency of the XTAL1 input determines the frequen-
cy of operation of the bus. The internal frequency of operation of the part is a function of
the frequency of the XTAL1 signal and  the –CLKDBL signal. The XTAL2 pin should be
left floating.

CLKOUT1 O
G(Q)
I (Q)

CLOCK OUTPUT 1:  This is an output signal against which MB86936 bus transactions
can be referenced. The CLKOUT1 frequency is the same as the frequency applied to
XTAL1. CLKOUT1 is in phase with CLK_IN.

CLKOUT2 O
G(Q)
I (Q)

CLOCK OUTPUT 2:  This is an output signal against which MB86936 bus transactions
can be referenced. The CLKOUT2 frequency is the same as the frequency applied to
XTAL1. CLKOUT2 is out of phase with CLK_IN.

MB86936 External Interface - SIGNAL DESCRIPTIONS
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E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–LOCK O
S(L)
G(Z)
I (1)

BUS LOCK:  This is a control signal asserted by the processor to indicate to the system
that the current bus transaction requires more than one transfer on the bus. The Atomic
Load Store instruction, for example, requires contiguous bus transactions which cause
the assertion of the bus lock signal. The bus may not be granted to another bus owner as
long as –LOCK is active. –LOCK is asserted with the assertion of –AS and remains ac-
tive until –READY is asserted at the end of the locked transaction.

–BREQ I
S(L)

BUS REQUEST:  Asserted by another device on the bus to indicate that it wants owner-
ship of the bus. The request must be answered with a bus grant (–BGRNT) from the
MB86936 before the device can proceed by driving the bus. Once the bus has been
granted, the device has ownership of the bus until it de-asserts –BREQ. The user should
ensure that devices on the bus cannot monopolize the bus to the exclusion of the CPU.
Inputs to –BREQ while –RESET is active are valid and cause Bus Grant to be asserted.

–BGRNT O
S(L)
G(0)
I (Q)

BUS GRANT:  Asserted by the CPU in response to a request from a device wanting own-
ership of the bus. The CPU grants the bus to other devices only after all transfers for the
current transaction are completed. All bus drivers are three-stated with the assertion of
the bus grant signal.

–ERROR O
S(L)
G(Q)
I (Q)

ERROR SIGNAL:  Asserted by the CPU to indicate that it has halted in an error state as
a result of encountering a synchronous trap while traps are disabled.   In this situation the
CPU saves the PC and nPC registers, sets the tt value in the TBR, enters into an error
state and asserts the –ERROR signal. The system can monitor the –ERROR pin and
initiate a reset under the error condition. This pin is high on reset.

–MEXC I
S(L)

MEMORY EXCEPTION: Asserted by the memory system to indicate a memory error on
either a data or instruction access. Assertion of this signal initiates either a data or
instruction access exception trap in the IU. The current bus access is invalidated by as-
serting the –MEXC in the same cycle as the –READY signal. The IU ignores the con-
tents of the data bus in cycles where –MEXC is asserted.

–NONCACHE I NON-CACHEABLE:  Asserted by the memory system to indicate the data on the
memory bus in the non-cacheable memory region. Logic 0 indicates non-cacheable and
logic 1 indicates cacheable. This pin is ignored when the internal cacheability is used.

Symbol Type Description

IRL <3>/IRQ15
IRL <2>/IRQ14
IRL <1>/IRQ13
IRL <0>/IRQ12

I INTERRUPT REQUEST: These are prioritized system requests. IRQ15 has the highest
priority and IRQ1 has the lowest priority. IRQ11-1 are generated by the on-chip peripher-
als. IRL<3:0> are encoded interrupt inputs and IRQ15-12 are decoded interrupt inputs.
The trigger for each IRQ interrupt can be programmed for a high level, a low level, a ris-
ing edge, or a falling edge. The external interrupt requests are sampled during two
successive external bus clock periods to minimize false interrupts.

LSYNC I Video line sync.

PSYNC I/O Video page sync.

VDAT <3:0> I/O Video data input/output.

VCLK I/O Video clock.

MB86936 External Interface - SIGNAL DESCRIPTIONS
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E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–CS0, –CS1,
–CS2, –CS3,
–CS4,

O
S(L)
G(1)
I (1)

CHIP SELECTS:  These outputs are asserted when the value on the address bus
matches the address range in one of the corresponding ADDRESS RANGE registers.
The signals are used to decode the current address into one of five address ranges. Ad-
dress ranges should not overlap. Each address range has a corresponding wait specifi-
er which is used to automatically assert the –READY signal after a user defined number
of processor clock cycles. This allows a variety of memory and I/O devices with different
access times to be connected to the MB86936 without the need for additional logic.

ADR <27:2> O
S(L)
G(Z)
I (1)

ADDRESS BUS:  The 26-bit ADDRESS BUS (ADR<27:2>) is an output which identifies
the data or instruction address of a 32-bit word. Reads are always one word in size while
byte, half-word, or word transaction sizes for writes is identified by separate byte-enable
signals (–BE0-3). The address bus is valid for the duration of the bus transaction. If the
DRAM Controller is enabled, then MA<11:0> is output on ADR<27:16> during DRAM
accesses.

ASI <3:0>/
VDAT<7:4>

I/O
S(L)
G(Z)
I (1)

/
I/O

ADDRESS SPACE IDENTIFIERS:  The ADDRESS SPACE IDENTIFIERS are outputs
which indicate to which of 16 available spaces the current ADDRESS BUS value corre-
sponds. The ASI values are defined as follows:

ASI ADDRESS SPACE
0x1
0x2
0x3

0x4 - 0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF

Control Register
Instruction Cache Lock
Data Cache Lock
Application Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Instruction Cache Tag RAM
Instruction Cache Data RAM
Data Cache Tag RAM
Data Cache Data RAM

The ASI values specified as “application definable” can be used by supervisor mode
instructions such as Load Alternate  and Store Alternate . The ASI value is available in
the same cycle in which the corresponding address value is asserted on the address
bus. The ASI pins are valid for the duration of the bus transaction. ASI  0x8 is cacheable.
When 8-bit video is enabled, the ASI<3:0> pins are used for VDAT<7:4> I/O. However,
the ASI  is used internally.

MB86936 External Interface - SIGNAL DESCRIPTIONS
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E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–BMODE8 I
S(L)

8-BIT BOOT MODE:  This signal is sampled during reset and causes read accesses,
memory mapped to –CS0, to assume 8-bit ROM memory. The MB86936 generates four
sequential fetches to assemble a complete instruction or data word before continuing.
Bytes are fetched in sequence (0,1,2,3) as encoded by –BE[2] and –BE[3] (00, 01, 10,
11). Writes to –CS0 are unaffected by boot mode selection and, if left unconnected, a
weak pull-up on this pin (and   –BMODE16 pin) causes the processor to default to 32-bit
mode.
Note: BMODE8 and BMODE16 should not be asserted at the same time.

–BMODE16 I
S(L)

16-BIT BOOT MODE:  This signal is sampled during reset and causes read accesses,
memory mapped to –CS0, to assume 16-bit ROM memory. The MB86936 generates
two sequential fetches to assemble a complete instruction or data word before continu-
ing. Half words are fetched in sequence (0,1) as encoded by –BE[2]. Writes to –CS0 are
unaffected by boot mode selection. If left unconnected, a weak pull-up on this pin (and
–BMODE8 pin) causes the processor to default to 32-bit mode.
Note: BMODE8 and BMODE16 should not be asserted at the same time.

–BE0-3 O
S(L)
G(Z)
I (O)

BYTE ENABLES (O):  These pins indicate whether the current store transaction is a byte,
half-word or word transaction. –BE0-3 signals are available in the same cycle in which the
corresponding address value is asserted on the address bus and is valid for the duration
of the bus transaction. This bus should be used only to qualify store transactions. For load
transactions all sub-word requests are read (and replaced in the cache) as words and
then the appropriate byte or half-word is extracted by the integer unit.
Possible values for –BE3-0 are as follows:

Word Writes

111011011011

1100

0111

0011

0000

Byte Writes
Half-Word

Writes

031 7815162324
Byte 3Byte 2Byte 1Byte 0

Bus Mode Byte BE<2:3>

8-bit 0
1
2
3

0 0
0 1
1 0
1 1

16-bit 0 & 1
2 & 3

0 0
1 0

BE<2:3> are also used in 8 and 16-bit accesses as follows:

D <31:0> I/O
S(L)
G(Z)
I (Z)

DATA BUS:  The bus interface has 32 bidirectional data pins (D<31:0>) to transfer data
in thirty-two bit quantities. D(31) corresponds to the most significant bit of the least signif-
icant byte of the 32-bit word. A double word is aligned on an 8-byte boundary, a word is
aligned on a 4-byte boundary, and a half-word is aligned on a 2-byte boundary. If a load
or store of any of these quantities is not properly aligned, a Not Aligned Trap will occur in
the processor.
In write bus cycles, the point at which data is driven onto the bus depends on the type of
the preceding cycle. If the preceding cycle was a write, data is driven in the cycle im-
mediately following the cycle in which –READY was asserted. If the preceding cycle
was a read, data is driven one cycle after the cycle in which –READY was asserted to
minimize bus contention between the processor and the system.
Pins D<7:0> are used when the 8-bit mode is enabled and D<15:0> are used when
16-bit mode is enabled.

MB86936 External Interface - SIGNAL DESCRIPTIONS



E13-5

E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–AS O
S(L)
G(Z)
I (1)

ADDRESS STROBE:  A control signal asserted by the MB86936 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the assertion of
–AS and ends with the assertion of –READY. –AS remains asserted for 1 clock cycle.
During cycles in which neither the processor nor another bus master is driving the bus
the bus is idle, and –AS remains de-asserted.

RD/–WR O
S(L)
G(Z)
I (1)

READ/BUS TRANSACTION:  This signal specifies whether the current bus transaction
is a read or a write operation. When –AS is asserted and RD/–WR is low, then the current
transaction is a write. With –AS asserted and RD/–WR high, the current transaction is a
read. RD/–WR remains active for the duration of the bus transaction and is de-asserted
with the assertion of –READY.

–READY I
S(L)

READY:  This is a control signal asserted by the external memory system to indicate that
the current bus transaction is being completed and that it is ready to start with the next
bus transaction in the following cycle. In case of a fetch from memory, the processor will
strobe the value on the data bus at the rising edge of CLK_IN following the assertion of
–READY.  For the case of a write, the memory system will assert –READY when the
appropriate access time has been met.
In most cases, no additional logic is required to generate the –READY signal. On-chip
circuitry can be programmed to assert –READY based on the address of the current
transaction. The external system can override the internal ready generator to terminate
the current bus cycle early. Up to 5 address ranges each with different transaction times
can be programmed.

–DREQ0-2 I
A(L)

DMA REQUEST:  Indicates that an external device is requesting a DMA transfer. This
signal is edge sensitive for single transfers and level sensitive for demand transfers. 
–DREQ0 corresponds to DMA channel 0, –DREQ1 corresponds to DMA channel 1 and
   –DREQ2 corresponds to DMA channel 2. If DMA Channel 0 is being used by the Video
Interface, –DREQ0 is ignored.

–DACK0-2 O DMA ACKNOWLEDGE:  This signal is asserted when an external device asserts –
DREQ and the processor accesses the external device. –DACK1 corresponds to DMA
channel 0, –DACK1 corresponds to DMA channel 1 and –DACK2 corresponds to DMA
channel 2.

–EOP0-2 I/O END OF PROCESS: This signal is asserted by the external device when it wants to ter-
minate a DMA transfer. Alternately, the processor drives this signal when the byte count
reaches zero. –EOP0 corresponds to DMA channel 0, –EOP1 corresponds to DMA
channel 1 and   –EOP2 corresponds to channel 2. A pull-up holds –EOP0-2 high when it
is not being driven.

–PBREQ O PROCESSOR BUS REQUEST:  This signal is asserted by the processor to indicate to
an external bus arbiter that it needs to regain control of the bus. This provides a hand-
shake between the arbiter and the processor to allow the bus to be allocated based on
demand.

–BMREQ O BURST MODE REQUEST:  This signal is asserted by the processor to indicate to the
external system that the processor’s burst mode is enabled and the current transaction
can be a burst. If the external system supports burst mode, it asserts –BMACK concur-
rently with –RDY to begin the burst mode transfer.

–BMACK I BURST MODE ACKNOWLEDGE:  This signal is asserted by the system to indicate
that it can support burst mode for the address currently on the bus. The system asserts
–BMACK in response to the processor asserting –BMREQ.
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E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

CLK_ECB I EXTERNAL CLOCK BYPASS:  Tying this signal high causes the CLK_IN signal to by-
pass the Phase Lock Loop (PLL). This signal is used for testing of the chip.

–CLKDBL I CLOCK DOUBLER:  Tying this signal low causes the internal logic to run at twice the
frequency of the clock input.

Symbol Type Description

–RAS3/
–SAME_PAGE

O

O
S(L)
G(1)
I (1)

–RAS3 DRAM Row Address Strobe: Can be connected directly to the corresponding
–RAS pin of a DRAM. Typically, –RAS is used to select a DRAM bank. When the 936
DRAM controller is disabled, this pin will output –SAME_PAGE.

SAME-PAGE DETECT:  The –SAME_PAGE is used to take advantage of fast consecu-
tive accesses within Fast Page Mode DRAM page boundaries. This signal is an output
asserted by the processor when the current address is within the same page as the pre-
vious memory access.  –SAME_PAGE is never asserted in the first transaction follow-
ing a transaction by another device on the bus. The page size is specified by writing the
SAME-PAGE MASK register.

–RAS2/
–TIMER_OVF

O

O
S(L)
G(Q)
I (Q)

When the 936 DRAM controller is disabled, this pin will output –TIMER_OVF

TIMER UNDERFLOW:  Asserted by the processor to indicate that the internal 16-bit tim-
er has underflowed. This signal can be used to initiate a DRAM refresh cycle or a one
cycle periodic waveform. On reset, the timer is turned off and –TIMER_OVF is high.

–RAS1/
–CS5,
–RAS0

O When the 936 DRAM controller is enabled –CS4, –CS5, represent the same DRAM
space. This is to control which part of the DRAM is non-cacheable, When the 936 DRAM
controller is disabled, –RAS1 pin will output –CS5. Please see the pin description of
CHIP SELECTs     –CS0-4.

–CAS0-3 O DRAM Column Address Strobe:  Can be connected directly to the corresponding –
CAS pin of a DRAM. –CAS is used to select bytes within a 32-bit DRAM word.

–DWE O DRAM Write Enable:  Can be connected directly to the corresponding –WE pin of a
DRAM.

–NVWE O WRITE ENABLE FOR NON-VOLATILE MEMORY: This signal is asserted one cycle
after –AS and stays asserted till one cycle before the end of the transaction for a write
operation. The signal is generated only when internal wait state generation in enabled for
current access.

–OE O OUTPUT ENABLE:  The signal is asserted one cycle after –AS and stays asserted till
the last cycle of a read operation. This signal is generated when internal wait state gen-
eration is enabled for the current access.

–READYOUT O Ready Out for External Bus Masters using Internal Ready Generation.

TIMEROUT0 O Timer output pin. According to the mode, the output wave functions as
(1)  periodic interrupt signal output;
(2)  square wave output:
(3)  one-shot pulse output;
This pin is low during reset.

PARITY 3-0 O Parity3 corresponds to D<31:24>
Parity2 corresponds to D<23:16>
Parity1 corresponds to D<15:8>
Parity0 corresponds to D<7:0>

MB86936 External Interface - SIGNAL DESCRIPTIONS



E13-7

E13.1 SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–PDRESET I Power Down Reset is asserted by the external system to get the part out of power down
mode.

EMU_SD <3:0> I/O EMULATOR STATUS/DATA BITS:  Bi-directional pins used by a hardware emulator to
control and monitor MB86936 execution. These pins should be left unconnected.

EMU_D<3:0> I/O EMULATOR DATA BITS:  Bi-directional pins used by a hardware emulator to control
and monitor MB86936 execution. These pins should be left unconnected.

–EMU_BRK I EMULATOR BREAK REQUEST LINE:  Input used by a hardware emulator to request a
trap when emulation is enabled. This pin should be left unconnected.

–EMU_ENB I/O EMULATOR ENABLE:  Tied low while the MB86936 is being reset to enable hardware
emulator mode on the chip. This pin should be left unconnected.

TCK I TEST CLOCK:  JTAG compatible test clock input.

TMS I TEST MODE: JTAG compatible test mode select pin.

TDI I TEST DATA IN:  JTAG compatible test data input.

TDO O TEST DATA OUT:  JTAG compatible test data output.

–TRST I TEST RESET: Asynchronous reset for JTAG logic. If not using JTAG, this signal must
be pulled low.

1. In the following descriptions, signal names preceded by a minus sign (–) indicate an active low state. Dual function pins have
two names separated by a slash (/).

NOTES: G(…) = While the bus is granted to
another bus master
(–BGRNT=asserted), the pin
is

G(1) is driven to VCC
G(0) is driven to VSS
G(Z) floats
G(Q) is a valid output

I (…) = While the bus is between bus
cycles (or being reset) and is
not granted to another bus
master, the pin is

I (1) is driven to VCC
I (0) is driven to VSS
I (Z) floats
I (Q) is a valid output

I = Input Only Pin

O = Output Only Pin

I/O = Either Input or Output Pin

- = Pins “must be” connected
as described

A(L) = Asynchronous: Inputs may
be asynchronous to
CLKOUT.

S(L) = Synchronous: Inputs must
meet setup and hold times
relative to CLK_IN. Outputs
are Synchronous to CLK_IN
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E14.1 MB86936 JTAG Pin List
The MB86936 JTAG cells are arranged in a shift register configuration (see
Figure E11-1. When shifting in a JTAG pattern through TDI, the LSB should
correspond to the JTAG cell value for -EMU_SD<3> pin whereas, the MSB of the
pattern should correspond to the IRL<3> pin’s JTAG cell. As far as JTAG output
through TDO is concerned, the first bit out corresponds to –EMU_SD<3> JTAG cell
value and the last output bit corresponds to the IRL<3> JTAG cell value. Table E14-1
lists the order of all of the JTAG cells.

Table E14-1: JTAG Pin Order

Order JTAG Cell
JTAG

Cell Type Function

1 –DREQ2 input DMA Channel 2 input Request

2 –DACK2 output DMA Channel 2 output Acknowledge

3 RAS2/–TIMER_
OVF

output RAS2 (DRAM controller enabled)
–TIMER_OVF (DRAM controller disabled)

4 XTAL1 input Crystal input

5 RAS0 output RAS0 (DRAM controller enabled)

6 –NONCACHE input Non-cacheable address
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG Cell

Type Function

7 eopio2 output Bidirectional control signal for –EOP2
eopio2 = 1, –EOP2 is an input
eopio2 = 0, –EOP2 is an output

8 –EOP2_i input Input bit of –EOP2

9 –EOP2_o output Output bit of –EOP2

10 PARITY_i <2> input Input bit of PARITY<2>

11 PARITY_o<2> output Output bit of PARITY<2>

12 PARITY_i <3> input Input bit of PARITY<3>

13 PARITY_o<3> output Output bit of PARITY<3>

14 EMU_BRK input Emulator break input

15 icediojo† output Bidirectional control for EMU_D/EMU_SD buses
icediojo = 1: EMU_D and EMU_SD buses are input
icediojo = 0: EMU_D and EMU_SD buses are output

16 EMU_SD_i<3> input Input bit 3 of EMU_SD<3:0> bus

17 EMU_SD_o<3> output Output bit 3 of EMU_SD<3:0> bus
•
•

•
•

•
•

•
•

22 EMU_SD_i<0> input Input bit 0 of EMU_SD<3:0> bus

23 EMU_SD_o<0> output Output bit 0 of EMU_SD<3:0> bus

24 EMU_D_i<3> input Input bit 3 of EMU_D<3:0> bus

25 EMU_D_o<3> output Output bit 3 of EMU_D<3:0> bus
•
•

•
•

•
•

•
•

30 EMU_D_i<0> input Input bit 0 of EMU_D<3:0> bus

31 EMU_D_o<0> output Output bit 0 of EMU_D<3:0> bus

32 iceenblio† output Bidirectional control signal for –EMU_ENB pin
iceenblio = 1: –EMU_ENB pin is an input
iceenblio = 0: –EMU_ENB pin is an output

33 –EMU_EN_i input Input bit of –EMU_ENB pin

34 –EMU_EN_o output Output bit of –EMU_ENB pin

35 dbusiojo† output Bidirectional control signal for D<31:0>, Parity <3:0>
dbusiojo = 1: D<31:0>, Parity <3:0> are inputs
dbusiojo = 0: D<31:0>, Parity <3:0> are inputs

36 D_i<31> input Input bit 31 of D<31:0> bus

37 D_o<31> output Output bit 31 of D<31:0> bus
•
•

•
•

•
•

•
•

62 D_i<18> input Input bit 18 of <31:0> bus

63 D_o<18> output Output bit 18 of D<31:0> bus

64 –BMODE16 input
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG Cell

Type Function

65 D_i<17> input Input bit 17 of D<31:0> bus

66 D_o<17> output Output bit 17 of D<31:0> bus

67 D_i<16> input Input bit 16 of D<31:0> bus

68 D_o<16> output Output bit 16 of D<31:0> bus

69 D_i<15> input Input bit 15 of D<31:0> bus

70 D_o<15> output Output bit 15 of D<31:0> bus

71 –BMODE8 input

72 D_i<14> input Input bit 14 of D<31:0> bus

73 D_o<14> output Output bit 14 of D<31:0> bus
•
•

•
•

•
•

•
•

84 D_i<8> input Input bit 8 of <31:0> bus

85 D_o<8> output Output bit 8 of D<31:0> bus

86 –DWE output DRAM Write Enable

87 D_i<7> input Input bit 7 of <31:0> bus

88 D_o<7> output Output bit 7 of <31:0> bus

89 D_i<6> input Input bit 6 of <31:0> bus

90 D_o<6> output Output bit 6 of <31:0> bus

91 –BMREQ output Burst mode request output signal

92 D_i<5> input Input bit 5 of D<31:0> bus

93 D_o<5> output Output bit 5 of D<31:0> bus
•
•

•
•

•
•

•
•

102 D_i<0> input Input bit 0 of <31:0> bus

103 D_o<0> output Output bit 0 of D<31:0> bus

104 –RESET input Chip reset pin

105 –BREQ input Bus request input

106 –MEXC input Memory exception input

107 –READY input External memory transaction complete signal

108 tstatejo† output Three–state control signal for ADR, ASI, –BE, –AS, RD/WR
and –LOCK
 If tstatejo = 1: signals are three–stated.
 If tstatejo = 0: signals are outputs.

109 –CAS0 output DRAM Column 0

110 –BGRNT output Bus grant output signal

111 –ERROR output Error output signal

112 –LOCK output Bus lock output signal
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG Cell

Type Function

113 –BMACK input Burst mode acknowledge input signal

114 –RD/WR_i input Memory Read/Write input signal

115 –RD/WR_o output Memory Read/Write output signal

116 –AS_i input Start of memory transaction input signal

117 –AS_o output Start of memory transaction output signal

118 –PBREQ output Processor Bus Request output signal

119 CAS1 output DRAM column 1

120 CAS2 output DRAM column 2

121 –CS<0> output Chip select 0 output signal

122 –DREQ0 input DMA Channel 0 request input signal

123 –CS<1> output Chip select 1 output signal

124 –CS<2> output Chip select 2 output signal

125 –CS<3> output Chip select 3 output signal

126 –CS<4> output Chip select 4 output signal

127 –DREQ1 input DMA Channel 1 request input signal

128 RAS1/–CS<5> output DRAM RAS1 (DRAM Controller enabled)
–CS5 (DRAM Controller disabled)

129 RAS3/
–SAMEPAGE

output DRAM RAS3 (DRAM Controller enabled)
–SAMEPAGE (DRAM Controller disabled)

130 –DACK0 output DMA Channel 0 output acknowledge

131 BE<3> output Byte enable 3 output signal

132 BE<2> output Byte enable 2 output signal

133 BE<1> output Byte enable 1 output signal

134 BE<0> output Byte enable 0 output signal

135 atstatejo† output Bidirectional control signal for  ASI<3:0>/VDAT<7:4>
If atstatejo = 1,  ASI<3:0>/VDAT<7:4> are inputs
If atstatejo = 0,  ASI<3:0>/VDAT<7:4> are inputs

136 ASI_i<0>/
VDAT_i<4>

input ASI<0> input (4 bit video), VDAT<4> input (8 bit video)

137 ASI_o<0>/
VDAT_o<4>

output ASI<0> output (4 bit video), VDAT<4> output (8 bit video)

138 CAS3 output DRAM column 3

139 ASI_i<1>/
VDAT_i<5>

input ASI<1> input (4 bit video), VDAT<5> input (8 bit video)

140 ASI_o<1>/
VDAT_o<5>

output ASI<1> output (4 bit video), VDAT<5> output (8 bit video)
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG Cell

Type Function

141 ASI_i<2>/
VDAT_i<6>

input ASI<2> input (4 bit video), VDAT<6> input (8 bit video)

142 ASI_o<2>/
VDAT_o<6>

output ASI<2> output (4 bit video), VDAT<6> output (8 bit video)

143 ASI_i<3>/
VDAT_i<7>

input ASI<3> input (4 bit video), VDAT<7> input (8 bit video)

144 ASI_o<3>/
VDAT_o<7>

output ASI<3> output (4 bit video), VDAT<7> output (8 bit video)

145 –DACK1 output DMA Channel 1 output acknowledge

146 RDYOUT output

147 –PDRESET input Powerdown Reset input signal

148 –NVWE output Non–volatile memory write enable

149 –OE output PROM output enable

150 ADR_i<2> input Input bit of ADR<2>

151 ADR_o<2> output Output bit of ADR<2>
•
•

•
•

•
•

•
•

156 ADR_i<5> input Input bit of ADR<5>

157 ADR_o<5> output Output bit of ADR<5>

158 eopio0 output Bidirectional control for –EOP0 pin
eopio0 = 1: –EOP0 is input
eopio0 = 0: –EOP0 is output

159 ADR_i<6> input Input bit of ADR<6>

160 ADR_o<6> output Output bit of ADR<6>

161 ADR_i<7> input Input bit of ADR<7>

162 ADR_o<7> output Output bit of ADR<7>

163 –EOP0_i input Input bit for –EOP0

164 –EOP0_o output Output bit for –EOP1

165 ADR_i<8> input Input bit of ADR<8>

166 ADR_o<8> output Output bit of ADR<8>

167 ADR_i<9> input Input bit of ADR<9>

168 ADR_o<9> output Output bit of ADR<9>

169 eopio1 output Bidirectional control for –EOP1 pin
eopio1 = 1: –EOP0 is input
eopio1 = 0: –EOP0 is output

170 ADR_i<10> input Input bit of ADR<10>

171 ADR_o<10> output Output bit of ADR<10>
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG Cell

Type Function

172 –EOP1_i input

173 –EOP1_o output

174 ADR_i<11> input Input bit of ADR<11>

175 ADR_o<11> output Output bit of ADR<11>

176 ADR_i<12> input Input bit of ADR<12>

177 ADR_o<12> output Output bit of ADR<12>

178 addenbjo† output Bidirectional for  ADR<27:2> pin
addenbjo = 1: ADR<27:2> are tri–stated
addenbjo = 0:  ADR<27:2> are outputs

179 ADR_i<13> input Input bit of ADR<13>

180 ADR_o<13> output Output bit of ADR<13>
•
•

•
•

•
•

•
•

185 ADR_i<16> input Input bit of ADR<16>

186 ADR_o<16> output Output bit of ADR<16>

187 PARITY_i<0> input Input bit of PARITY<0>

188 PARITY_o<0> output Output bit of PARITY<0>

189 ADR_i<17> input Input bit of ADR<17>

190 ADR_o<17> output Output bit of ADR<17>

191 TIMEROUT0 output Timer 0 output

192 LSYNC input Video Line Sync input signal

193 ADR_i<18> input Input bit of ADR<18>

194 ADR_o<18> output Output bit of ADR<18>

195 ADR_i<19> input Input bit of ADR<19>

196 ADR_o<19> output Output bit of ADR<19>

197 ADR_i<20> input Input bit of ADR<20>

198 ADR_o<20> output Output bit of ADR<20>

199 PARITY_i<1> input Input bit of PARITY<1>

200 PARITY_o<1> output Output bit of PARITY<1>

201 ADR_i<21> input Input bit of ADR<21>

202 ADR_o<21> output Output bit of ADR<21>

203 –CLKDBL input Clock  Double

204 ADR_i<22> input Input bit of ADR<22>

205 ADR_o<22> output Output bit of ADR<22>
•
•

•
•

•
•

•
•

210 ADR_i<25> input Input bit of ADR<25>
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Table E14-1: JTAG Pin Order (Continued)

Order JTAG Cell
JTAG

Cell Type Function

211 ADR_o<25> output Output bit of ADR<25>

212 psyncio† output Bidirectional control signal for PSYNC
psyncio = 1: PSYNC is an input
psyncio = 0: PSYNC is an output

213 PSYNC_i input Input bit of PSYNC

214 PSYNC_o output Output bit of PSYNC

215 vclkio† output Bidirectional control signal for VCLK
vclkio = 1: VCLK is an input
vclkio = 0: VCLK is an output

216 VCLK_i input Input bit of VCLK

217 VCLK_o output Output bit of VCLK

218 ADR_i<26> input Input bit of ADR<26>

219 ADR_o<26> output Output bit of ADR<26>

220 ADR_i<27> input Input bit of ADR<27>

221 ADR_o<27> output Output bit of ADR<27>

222 vdatio† output Bidirectional control signal for VDAT<3:0>
vdatio = 1:  VDAT<3:0> are inputs
vdatio = 0: VDAT<3:0> are outputs

223 VDAT<3>_i input Input bit of VDAT<3>

224 VDAT<3>_o output Output bit of VDAT<3>
•
•

•
•

•
•

•
•

229 VDAT<0>_i input Input bit of VDAT<0>

230 VDAT<0>_o output Output bit of VDAT<0>

231 IRL<3> input

232 IRL<2> input

233 IRL<1> input

234 IRL<0> input

235 CLK_ENB input

†.  These are internal I/O control signals. Therefore, there are no corresponding external pins.
1. The following pins are not three-statable. –SAME_PAGE, –CS<5:0>, –BGRNT, TIMER_OVF, –ERROR.
2.  The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, –TRST, TCK, TMS, TDI,

TDO.
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