
 Copyright � 1995 Fujitsu Microelectronics, Inc.

SPARClite
Embedded Processor
User’s Manual

MB86934 Addendum

January 1996, Edition 1.0

MB86934 ADDENDUM, EDITION 1.0

SPARC is a registered trademark of SPARC International based on technology developed by Sun Microsystems, Inc.
SPARClite is a trademark of SPARC International, Inc. based on technology developed by Sun Microsystems, Inc.
SPARCstation is a trademark of SPARC International, Inc. Products bearing the SPARC trademarks are based on an architecture developed
by Sun Microsystems, Inc.
NICE is a trademark of Fujitsu Microelectronics, Inc.

Copyright 1995 Fujitsu Microelectronics, Inc.
All rights reserved. This publication contains information considered proprietary by Fujitsu Limited and Fujitsu Microelectronics, Inc. No part of
this document may be copied or reproduced in any form or by any means or transferred to any third party without the prior written consent of
Fujitsu Microelectronics, Inc.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Consequently, complete
information sufficient for design purposes is not necessarily given.

Fujitsu Limited and its subsidiaries reserve the right to change products or specifications without notice. Fujitsu advises its customers to
obtain the latest version of device specifications to verify, before placing orders, that the information being relied upon by the customer is
current.

The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by
Fujitsu Limited or its subsidiaries. Fujitsu assumes no liability for Fujitsu applications assistance, customer’s product design, or infringement of
patents arising from use of semiconductor devices in such systems’ designs. Nor does Fujitsu warrant or represent that any patent right,
copyright, or other intellectual property right of Fujitsu covering or relating to any combination, machine, or process in which such
semiconductor devices might be or are used.

Fujitsu Microelectronics, Inc.’s Semiconductor Division’s products are not authorized for use in life support devices or systems. Life support
devices or systems are device or systems which are:

1. Intended for surgical implant into the human body.

2. Designed to support or sustain life; and when properly used according to label instructions, can reasonably be expected to cause significant
injury to the user in the event of failure.

The information contained in this document has been carefully checked and is believed to be entirely accurate. However, Fujitsu Limited and
Fujitsu Microelectronics, Inc. assume no responsibility for inaccuracies.

This document is published by the marketing department of Fujitsu Microelectronics, Inc., Semiconductor Division, 3545 North First Street, San
Jose, California, U.S.A. 95134–1804.

Contents MB86934 Addendum,
Edition 1.0

D-i

Table Of

Contents

Overview of MB86934 D1-1.
1.1 General Description D1-1.
1.2 Programmer’s Model of the MB86934 D1-3.

1.2.1 User-visible Registers D1-3.

1.3 Internal Architecture of the MB86934 D1-7.

SDRAM Interface Unit D2-1.
2.1 Introduction D2-1.
2.2 SDIU Registers D2-1.

2.2.1 SDIU Mode Register D2-2.
2.2.2 SDRAM Configuration Register D2-3.
2.2.3 Auto Refresh Timer Register D2-9.

2.3 SDIU Operation D2-9.
2.4 SDIU Data Transfer Operations D2-13.

2.4.1 Page Hit/Miss Detection D2-13.
2.4.2 BIU Write Operations D2-13.
2.4.3 BIU Read Operations D2-18.
2.4.4 Read-Modify-Write, byte and half-word — Page Hit D2-24.
2.4.5 Read-Modify-Write, Byte and Halfword — Page Miss D2-27.
2.4.6 FIFO-DMA-SDRAM Data Transfers D2-27.
2.4.7 External Bus Master Single-Word Writes to SDRAM

Through the SDIU — Page Hit D2-28.
2.4.8 External Bus Master Single-Word Reads From SDRAM

Through the SDIU — Page Hit D2-2.

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

Contents

D-ii

MB86934 Caches D3-1.
3.1 Overview of MB86934 Caches D3-1.
3.2 Programmer’s Model D3-1.

3.2.1 Operation of the Instruction Cache D3-2.
3.2.2 Operation of the Data Cache D3-2.

3.3 Internal Architecture of MB86934 Caches D3-3.
3.3.1 Instruction Cache D3-3.
3.3.2 Read Hit D3-5.
3.3.3 Miss Processing D3-5.
3.3.4 Data Cache D3-6.
3.3.5 Read Hit D3-7.
3.3.6 Write Hit D3-7.
3.3.7 Miss Processing D3-7.
3.3.8 Atomic Load and Store D3-7.

MB86934 DMA D4-1.
4.1 Overview D4-1.
4.2 Programmer’s Model D4-4.

4.2.1 DMA Priority D4-4.
4.2.2 DP/Source/Destination ASI Register D4-5.
4.2.3 Current Source Address Register D4-5.
4.2.4 Current Destination Address Register D4-6.
4.2.5 Current Byte Count Register D4-6.
4.2.6 Descriptor Pointer Register D4-7.
4.2.7 Channel Control Register D4-7.
4.2.8 Channel Status Register D4-9.
4.2.9 Channel Initialization D4-10.
4.2.10 Buffer Chaining Data Structure D4-11.
4.2.11 DMA Initialization D4-11.
4.2.12 DMA To/From the Floating-Point FIFO D4-11.
4.2.13 DMA To/From the SDRAM D4-12.
4.2.14 Basic DMA Timing D4-12.
4.2.15 Error Conditions D4-12.

4.3 External Interface D4-13.
4.3.1 Transfer Protocols D4-13.

SPARClite User’s Manual MB86934 Addendum Edition 1.0

D-iii

Floating-Point Unit D5-1.
5.1 Overview of the MB86934 Floating-Point Unit D5-1.
5.2 FPU Data Formats D5-1.
5.3 FPU Registers D5-5.

5.3.1 Floating-Point State Register (FSR) D5-5.
5.3.2 Enhanced Register Set (f Registers and FIFOs) D5-10.
5.3.3 Floating-Point Deferred-Trap Queue (FQ) D5-17.
5.3.4 EF and EC bit in PSR; EFIFO bit in ASR17 D5-19.

5.4 Floating-Point Traps and FPU States D5-21.
5.4.1 Traps Associated with Floating-Point Instructions D5-21.
5.4.2 Floating-Point Exception Trap Types D5-22.
5.4.3 IEEE 754 Exception D5-25.
5.4.4 Floating-Point Trap Handlers D5-27.
5.4.5 FPU States (fp_execute, fp_exception_pending, fp_execute) D5-28.
5.4.6 Sequence_error Trap D5-30.

5.5 Results of FPop Instructions D5-30.
5.5.1 FPop Results with NaN Operands D5-30.
5.5.2 Overflow, Underflow, and Inexact D5-34.
5.5.3 Integer Results D5-37.
5.5.4 Emulation for Subnormal Number, Invoked by the

Unfinished_FPop Trap D5-39.
5.5.5 Emulation for Quad-precision operation, Invoked by the

Unimplemented_FPop Trap D5-40.
5.5.6 Result of FPop Instruction without NaN(s)/DNRM(s) in Operand(s) D5-41.

5.6 Pipeline of FPU and Latency D5-45.
5.6.1 FPU Pipeline D5-45.
5.6.2 FPop Throughput and Latency D5-47.
5.6.3 IU Interlocks, IU Holds, FPU Interlocks, and FPU Hold D5-48.
5.6.4 FPU_full Interlock D5-49.
5.6.5 Data Hazard Interlocks D5-49.
5.6.6 STFSR_LDFSR_STDFQ interlock and FPop_Quad interlock D5-53.
5.6.7 Latency of FCMP to FBfcc and FCMP_FBfcc interlock D5-54.
5.6.8 Latencies of Interrupt, Trap, and Task Switch D5-54.

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

Contents

D-iv

Floating-Point Instructions D6-1.
6.1 Floating-point Operate (FPop) Instructions D6-2.

6.1.1 Convert Integer to Floating-Point Instructions D6-4.
6.1.2 Convert Floating-Point to Integer Instructions D6-5.
6.1.3 Convert Between Floating-Point Formats Instructions D6-6.
6.1.4 Floating-Point Move Instructions D6-8.
6.1.5 Floating-Point Square Root Instructions D6-9.
6.1.6 Floating-Point Add and Subtract Instructions D6-10.
6.1.7 Floating-Point Multiply and Divide Instructions D6-12.
6.1.8 Floating-Point Compare Instructions D6-14.

6.2 Load Floating-Point (LDfp) Instructions D6-16.
6.3 Store Floating-Point (STfp) Instructions D6-18.
6.4 Branch on Floating-Point Condition Codes

(FBfcc) Instructions D6-21.

MB86934 Bus Interface Unit D7-1.
7.1 Overview of Bus Interface Unit D7-1.
7.2 Burst Mode D7-2.

7.2.1 Overview D7-2.
7.2.2 Burst Mode Interface Pins D7-2.
7.2.3 Burst Mode Fetch Sequence D7-2.
7.2.4 Bus Mode Control Bits D7-3.
7.2.5 PROM Address Space D7-3.
7.2.6 Prefetch Buffer D7-3.
7.2.7 Cache Off D7-4.
7.2.8 Bus Request D7-4.
7.2.9 Memory Exception (Instruction fetches or Data loads) D7-4.
7.2.10 Memory Exception (DMA) D7-4.
7.2.11 Non-cacheable Accesses D7-5.
7.2.12 Interface Timing D7-5.

7.3 Parity D7-5.
7.4 Non Volatile Memory Support Signals D7-7.
7.5 External Bus Master Support D7-8.
7.6 Same Page Support D7-9.

SPARClite User’s Manual MB86934 Addendum Edition 1.0

D-v

7.7 Wait State Specifier Register D7-9.
7.7.1 Purpose D7-9.
7.7.2 Format D7-10.
7.7.3 Same Page Mode D7-10.
7.7.4 Burst Mode Applied only for CS4 D7-11.

7.8 Wait State Generation D7-11.
7.9 ROM Interface D7-12.

7.9.1 Purpose D7-12.
7.9.2 Features D7-12.
7.9.3 Bus Configuration on Reset D7-12.
7.9.4 System Interface D7-12.
7.9.5 PROM Address Space D7-13.
7.9.6 Load/Stores D7-14.
7.9.7 8/16 Bit Bus Mode D7-14.
7.9.8 Burst Mode D7-15.
7.9.9 Memory Exception D7-15.
7.9.10 Bus Request D7-15.
7.9.11 Timing D7-15.

7.10 Processor Bus Request D7-16.
7.10.1 Purpose D7-16.
7.10.2 Features D7-16.

7.11 BIU Priorities D7-17.

MB86934 Debug Support Unit (DSU) D8-1.
8.1 Data Breakpoints Immediately Before FPop/EFPop D8-1.
8.2 Data Breakpoints For LDDF/STDF/STDFQ D8-2.

Power Down Mode D9-1.
9.1 Power-Down Register D9-2.
9.2 Power-Down Operation D9-3.

MB86934 External Interface D10-1.
10.1 Signal Descriptions D10-1.

MB86934 JTAG D11-1.
11.1 MB86934 JTAG Pin List D11-1.

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

Contents

D-vi

List of Figures
�,*74(� �
<
�� ������
� �/2&.� �,$*4$0 �
<��� ��

�,*74(����
�� � ���!� �2'(� �(*,56(4 ��<��� ��

�,*74(������� � ������ �21),*74$6,21� �(*,56(4 ��<��� ��

�,*74(������� � �762� �()4(5+� ,0(4� �(*,56(4 ��<��� ��

�,*74(����
�� � �6$6(� �,$*4$0 ��<

�� ��

�,*74(������� ���!� ;�2'(� �(*,56(4� �(6�� ,0,1* ��<
��� ��

�,*74(������� � ��<�,6� ��!� "4,6(� �27%/(� >� �$*(� �,6� ���!� 62� ������ ��<
��� �� �� �� �� ��

�,*74(������� � � +4((� "24'5� ������ "4,6(� ,1� �
<�,6� �2'(� ,1� �1(� �$*(� ��<
��� �� �� ��

�,*74(������� ��<�,6� ��!� �($'� �,1*/(� >� �$*(� �,6� ������� 62� ��!� ��<
��� �� �� �� �� �� �� ��

�,*74(����
	�� � ����,6� ��!� �($'� �,1*/(��$*(� �,55� ������� 62� ��!� ��<
��� �� �� �� ��

�,*74(����

�� � � ��<�,6� ��!� �($'� �27%/(��$*(� �,6� ������� 62� ��!� ��<�	�� �� �� �� �� ��

�,*74(����
��� � ��<�,6� �7456� �($'��$*(� �,6� ������� 62� ��!� ��<�
�� �� �� �� �� �� �� �� �� �� �� ��

�,*74(����
��� ����,6� �7456� �($'��$*(� �,55� ������� 62� ��!� ��<���� �� �� �� �� �� �� �� �� �� ��

�,*74(����

�� � � �
<�,6� ��!� �7456� �($'� >� �$*(� �,6� ������� 62� ��!� ��<�
�� �� �� �� �� ��

�,*74(����
��� � �
��,6� ��!� �7456� �($'��$*(� �,55� ������� 62� ��!� ��<���� �� �� �� �� ��

�,*74(����
��� � +4((� "24'5� ������ �($'� ,1� �
<�,6� �2'(� ,1� �1(� �$*(� ��<���� �� �� ��

�,*74(����
��� � �($'� �� �2',):� �� "4,6(� �� �$*(� �,6 ��<���� ��

�,*74(����
��� � �96(41$/� �75� �$56(4� �,1*/(�"24'� "4,6(��$*(� �,55 ��<���� �� �� �� �� �� �� ��

�,*74(����
��� � �96(41$/� �75� �$56(4� �,1*/(�"24'� �($'��$*(� �,6 ��<�	�� �� �� �� �� �� �� �� ��

�,*74(����
�� �$&+(� �18$/,'$6(� �(*,56(4� �240$6 ��<��� ��

�,*74(������� � �$&+(� �3(4$6,21 ��<��� ��

�,*74(������� � �''4(55� 62� �#&$&+(� $1'� $*� �44$: ��<��� ��

�,*74(����
�� � � �#&$&+(� $*� �240$6 ��<
�� ��

�,*74(������� � � �''4(55� 62� �#&$&+(� $1'� $*� �44$: ��<��� ��

�,*74(������� � � �#&$&+(� $*� �240$6 ��<��� ��

�,*74(� �
<
�� �(/$6,21� 2)� ����� 62� �6+(4� �$-24� �20321(165 �
<��� �� �� �� �� �� �� �� �� �� �� �� �� ��

�,*74(� �
<��� ���� �/2&.� �,$*4$0 �
<��� ��

�,*74(� �
<
�� ����274&(��(56,1$6,21� ���� �(*,56(4 �
<��� ��

�,*74(� �
<��� �744(16� �274&(� �''4(55� �(*,56(4 �
<��� ��

�,*74(� �
<��� �744(16� �(56,1$6,21� �''4(55� �(*,56(4 �
<��� ��

�,*74(� �
<��� �744(16� �:6(� �2716� ������ �(*,56(4 �
<��� ��

�,*74(� �
<��� �(5&4,3624� �2,16(4� ����� �(*,56(4 �
<��� ��

�,*74(� �
<��� �+$11(/� �21642/� �(*,56(4 �
<��� ��

�,*74(� �
<
	�� �+$11(/� �6$675� �(*,56(4 �
<��� ��

�,*74(� �
<

�� �,1*/(� 4$15)(4�� �'*(<�(15,6,8(�� �/:%:� ���="� +,*+� �
<

�� �� �� �� �� �� �� �� �� �� ��

SPARClite User’s Manual MB86934 Addendum Edition 1.0

D-vii

List of Figures continued
�/-:7+� ��?	
�� "/3-1+� #7'38,+7�� �*-+?"+38/9/;+�� �1>(>� �!�@&� 14<� ��?	��� �� �� �� �� �� �� �� �� �� �� ��

�/-:7+� ��?	��� "/3-1+� #7'38,+7�� �*-+?"+38/9/;+�� �1>(>�� :'*<47*� �!�@&� ./-.� ��?	
��

�/-:7+� ��?	��� "/3-1+� #7'38,+7�� �*-+?"+38/9/;+�� �1>(>�� :'*<47*� �!�@&� 14<� ��?	
�� ��

�/-:7+� ��?	
�� �14)0� #7'38,+7�� �1>(>� �!�@&� ./-.� ��?	��� ��

�/-:7+� ��?	��� �14)0� #7'38,+7�� �1>(>� �!�@&� 14<� ��?	��� ��

�/-:7+� ��?	��� �+2'3*� #7'38,+7�� �1>(>� �!�@&� ./-.� ��?	��� ��

�/-:7+� ��?	��� �+2'3*� #7'38,+7�� �1>(>� �!�@&� 14<� ��?	��� ��

�/-:7+� ��?	��� "/3-1+� #7'38,+7�� �*-+� "+38/9/;+� �14<� #.74:-.�� �+89/3'9/43� !+6 ��?	���

�/-:7+� ��?
��� �+2'3*� #7'38�� �14<� #.74:-.�� &47*� 94� �'1,�&47*�� �+89�� !+6 ��?	���

�/-:7+��
�	�� � � �'9'� �472'98 �
?
�� ��

�/-:7+��
�
�� � �14'9/3-?�4/39� "9'9+� !+-/89+7 �
?
�� ��

�/-:7+��
���� � ����� �4/39+7� '3*� �+59.� !+-/89+7� �472'9 �
?	
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�/-:7+��
���� � ����� �4/39+7� �5+7'9/43 �
?	��� ��

�/-:7+��
�
�� � ����� �4/39+7� �5+7'9/43� ?� "'2+� !+-/89+7� �))+88 �
?	��� �� �� �� �� �� �� �� �� �� �� �� ��

�/-:7+��
���� � �14'9/3-?�4/39� �+,+77+*?#7'5� :+:+� �5+7'9/43 �
?	��� �� �� �� �� �� �� �� �� �� �� �� ��

�/-:7+��
���� � �"!� #���� '+=)�� '3*�)+=)� �/+1*8 �
?
��� ��

�/-:7+��
���� � �14'9/3-?�4/39� #7'5� �'3*1/3- �
?
��� ��

�/-:7+��
���� � ��$�,:11� �39+714)0� �='251+ �
?
	�� ��

�/-:7+����	�� � �:8� �439741� !+-/89+7 ��?��� ��

�/-:7+����
�� � �:789� �4*+� ��� <'/9� 89'9+� ��?��� ��

�/-:7+������� � #+72/3'9+*� �:789� �4*+� �:+� 94� @������	 ��?��� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�/-:7+������� � ���� �:789� �4*+�� &7/9+� �479/43 ��?��� ��

�/-:7+����
�� � ">89+2� ":55479� �439741� !+-/89+7 ��?��� ��

�/-:7+������� � �43?%41'9/1+� �+247>� &7/9+� #/2/3- ��?��� ��

�/-:7+������� �43?%41'9/1+� �+247>� !+'*� #/2/3- ��?��� ��

�/-:7+������� � �=9+73'1� �:8� �'89+7� "/-3'1� #/2/3- ��?��� ��

�/-:7+������� � &'/9� "9'9+� "5+)/,/+7� !+-/89+7 ��?	��� ��

�/-:7+����	��� � ":5+7;/847� �**7+88� "5')+� ��"���=��� �+247>� �'5 ��?	��� �� �� �� �� �� �� �� ��

�/-:7+����		�� � �?(/9� �:8� �4*+� �	� &'/9� "9'9+� ��?	
�� ��

�/-:7+����	
�� � 	�?(/9� �:8� �4*+� �	� &'/9� "9'9+� ��?	��� ��

�/-:7+����	��� � �='251+� 4,� @��!� � 9/2/3- ��?	��� ��

�/-:7+����	�� �4<+7��4<3� !+-/89+7 ��?
�� ��

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

Contents

D-viii

List of Tables
#'(1+��
�	�� � ��"� �'8+3)= �
�
�� ��

#'(1+��
�
�� � �#� �9678� #=5+ �
�
�� ��

#'(1+��
���� � ��"� �'8+3)= �
���� ��

#'(1+��
���� � ��� �/+1*� �'8'� �9678� �+3-8. �
���� ��

#'(1+��
�
�� � ��� �/+1*� �'8'� �9678� �+3-8. �
���� ��

#'(1+��
���� � ��� �/+1*� �'8'� �9678� �+3-8. �
���� ��

#'(1+��
���� � �'6/8=� �.+)0� �3'(1+ �
���� ��

#'(1+��
���� � �
��/8� ���97� �43,/-96'8/43 �
�
�� ��

#'(1+��
���� � �"�"� %���&� �**6+77� �'5 �
�
�� ��

#'(1+��
�	��� � ��"� �'8+3)= �
���� ��

#'(1+��
�		�� � �������� �433+)8/43� #4� ���			��
�� �"�!��� �
���� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�	
�� � �������� �433+)8/43� #4� ���			��
�� �"�!��� � �
���� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�	��� � �������� �433+)8/437� #4� ���		�	�
�� � �"�!��� �
���� �� �� �� �� �� �� �� �� ��

#'(1+��
�	��� � �������� �433+)8/437� #4� ���		��
�� � �"�!��� �
���� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�	
�� "�!��� �3'(1+��/7'(1+ �
���� ��

#'(1+��
�	��� � "��$� �422'3*7� �!+,�� ���			��
�� "�!��� �
���� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+����	�� � � �438641� �� "8'897� !+-/78+67 ���	�� ��

#'(1+� ���	�� � ���� "/-3'1� �+7)6/58/437 ������ ��

#'(1+��
�	�� � �49(1+;46*�� 9'*;46*� �66'3-+2+38� /3� �+246=�� !+-/78+67 �
���� �� �� ��

#'(1+��
�
�� � �14'8/3->�4/38� "/3-1+;46*� �462'8� �+,/3/8/43 �
���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
���� � �14'8/3->�4/38� �49(1+;46*� �462'8� �+,/3/8/43 �
���� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
���� � �14'8/3->�4/38� 9'*;46*� �462'8� �+,/3/8/43 �
���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�
�� � !493*/3-� �/6+)8/43� �46� �14'8/3-��4/38� !+79187 �
���� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
���� � #��� �/+1*� �14'8/3-��4/38� �<)+58/437 �
���� ��

#'(1+��
���� � �14'8/3-��4/38� �<)+58/43� #6'5� #=5+7 �
���� ��

#'(1+��
���� � �14'8/3-��4/38� �425'6+� �37869)8/43 �
���� ��

#'(1+��
���� � �14'8/3-��4/38� �<)+58/437� �96/3-� #6'5� �/7'(1+ �
���� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�	��� � �14'8/3-��4/38� �<)+58/437� �+3+6'8+*� �=� ��45� �37869)8/43 �
�	��� �� �� ��

#'(1+��
�		�� � ��$� !+-/78+6� �))+77 �
�		�� ��

#'(1+��
�	
�� � � ����� �4/38+6�� �+58.� !+-/78+6�� �**6+77/3-� '3*� �
� � � � � � � � � � � � � � � � � ��������� �**6+77/3- �
�	��� ��

#'(1+��
�	��� � ��� �/8� �,,+)8� 43� �37869)8/43� �<+)98/43 �
�	��� ��

#'(1+��
�	��� � ������������ �/8� �,,+)87� 43� �37869)8/43� �<+)98/43 �
�
��� �� �� �� �� �� �� �� �� ��

#'(1+��
�	
�� � �14'8/3->�4/38� #6'5� #=5+ �
�
��� ��

#'(1+��
�	��� � ��$� "8'8+7 �
�
��� ��

#'(1+��
�	��� � ��45� !+79187� �642� �'�� �5+6'3*�7� �
��
�� ��

#'(1+��
�	��� � �3:'1/*� �<)+58/43� �43*/8/437#'(1+��
�	� �
����� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

#'(1+��
�	��� �37869)8/43� �5+6'8/437 �
����� ��

#'(1+��
�
��� � !493*+*� !+7918 �
��
�� ��

SPARClite User’s Manual MB86934 Addendum Edition 1.0

D-ix

List of Tables continued
�"#+&��	����� � �.4-%*-(� �.%&� �-%� �*(-� �'� �&24+3 �	��
�� ��

�"#+&��	����� � �.4-%&%� �&24+3 �	��
�� ��

�"#+&��	����� � �&'"4+3� �"+4&� �'� �.4-%*-(� �.%& �	����� ��

�"#+&��	����� � �&23*-"3*.-� '� �&(*23&1� �"+4&2 �	����� ��

�"#+&��	��	�� � �1"/� �1*.1*3*&2 �	����� ��

�"#+&��	��
�� � �+."3*-(8�.*-3� �-2314$3*.-� �)1.4()/43� "-%� �"3&-$7 �	����� �� �� �� �� �� �� �� �� ��

�"#+&������� � �&04&-$&� .'� �.1%2� �&3$)&%� *-� �4123� �.%& ������ �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�"#+&������� � � ������ �3"3& ������� ��

�"#+&������� � �723&,� �-3&1'"$&� ���� �*32 ������� ��

�"#+&������� � �."%� 9�� ���!� �*3� �&)"5*.1 ������� ��

�"#+&��
���� � �.6&1��.6-� �&(*23&1 �
���� ��

�"#+&�������� �*(-"+� �&2$1*/3*.-2 ������� ��

�"#+&�������� � ����� �*-� �1%&1 ������� ��

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D1-1

HAPTER

Overview of MB86934

D1
C

D1.1 General Description
The MB86934 is a member of the SPARClite family whose function set is a superset of
that of the MB86930. It is available in a 256-pin package, and is capable of operating at
60 MHz. In addition to all the features of the MB86930 processor, the MB86934
contains the following:

• Floating Point Unit: The MB86934 features a floating-point unit that fully
conforms to the ANSI/IEEE Standard 754-1985, the SPARC Architecture Version 8
specification, and the SPARC IEEE754 Implementation Recommendation except for
the Nonstandard FP (NS=1) mode implementation. The FPU contains thirty-two
32-bit floating-point f registers, designated f[0] to f[31], and six vector-type f
registers called FIFOs or vector registers to support floating-point operations.
Newly-defined Enhanced Floating-Point operations allow access to the FIFOs.

• Instruction Cache: The MB86934 has an 8K-byte, 2-way set associative, sectored
instruction cache with 8-word lines. Each line is individually lockable. Tags for each
line contain the address tag, a supervisor/user bit, and 8 “valid” flags, one for each
word of the line. When code is to be removed from the cache, the cache can be
invalidated in a single cycle; likewise, “locked” code in the cache can be unlocked
in a single cycle.

Overview of MB86934 - General Description

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-2

• Data Cache: The MB86934 has a 2K-byte, 2-way set associative, sectored data
cache with 4-word lines. Each line is individually lockable. Tags for each line
contain the address tag, a supervisor/user bit, and 4 “valid” flags, one for each word
of the line.When data is to be removed from the cache, the cache can be invalidated
in a single cycle; likewise, “locked” data in the cache can be unlocked in a single
cycle.

• On-Chip DMA: The MB86934 has two DMA channels. Each channel supports two
transfer types: contiguous block and chained block transfers. The DMA also
supports three transfer protocols: single-datum transfer, block transfer, and demand
transfer (where data moves continue as long as an external device requests it). Four
data types are supported: byte, halfword, word, and quad-word. For byte and
halfword, the DMA does all the required packing/unpacking. Each channel also
supports either fly-by or flow-thru transfer modes, and each can be started by either
software or external hardware requests. The addressing convention for accesses is
“big_endian.”

• SDRAM Interface: A high-performance synchronous DRAM interface is integrated
on-chip. This memory interface is 64-bits wide, and can achieve a peak bandwidth
of 480 Mbytes/second.

• FIFOs Mapped to Floating-Point Register File: The MB86934 has six FIFOs. The
on-chip FIFOs can be loaded from memory or stored to memory through the DMA.
This allows the FPU to be decoupled from external memory latency. Using the
FIFOs, DMA, and the SDRAM interface, the MB86934 can achieve up to 60
MFLOPS.

• Configurable External Data Bus: The MB86934 includes a data bus that can be
configured at Reset as 8, 16, or 32 bits wide (when in the address space selected by
chip select 0). This enables the MB86934 to boot from a single by-8 or by-16
ROM.

• Burst Mode: The MB86934 supports two data- and instruction-accessing modes to
external memory: normal and burst. In normal mode, it accepts a single datum per
address, driven externally. In burst mode, it accepts 4 words per address, driven
externally. Burst mode stores are supported only as part of DMA requests, and no
burst mode transfers are supported in 8/16 bit mode.

• Bus Interface Unit: The MB86934 BIU is capable of running at half the frequency
of the core. This facilitates system design for users who want to run the core at
60 MHz to achieve high performance.

• Power Down Modes: The MB86934 supports several power down modes. These
modes allow the user to turn off the clocks to various parts of the chip that may not
be in use, reducing power consumption.

Overview of MB86934 - General Description

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-3

D1.2 Programmer’s Model of the MB86934

D1.2.1 User-visible Registers
All the special-purpose registers and ASR registers defined on the MB86930 exist also
on the MB96834.

All on-chip control/status/data registers which exist in alternate address spaces in the
MB86930, with one exception, exist also on the MB86934 in backwards-compatible
format. The one exception is the Instruction Tags, whose format has changed.

The increase in cache and the addition of new peripherals in the MB86934 have made it
necessary to add new registers, accessible through alternate address spaces. All on-chip
memory-mapped control/status registers for these new features are mapped into
ASI=0x01, 0x02, 0x03, 0x0C, 0x0D, 0x0E, or 0x0F. The BIU recognizes that these
ASI’s are mapped to internal registers rather than memory, and does not assert the
external ASI pins (or any other pins) when doing accesses in these ASI spaces.

Cache/BIU control/status registers:

ASI: 0x01

Address range: 0x00000000-0x000000FF

0x00000000 ASI=0x1 Cache/BIU Control Register

0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

0x00000020 ASI=0x1 Bus Control Register

0x00000060 ASI=0x1 Power Down Register

0x00000080 ASI=0x1 System Support Control Register
(DMA priority; even/odd parity bits added)

Peripheral control/status registers:

ASI: 0x01

Address range: 0x00000100-0x000001FF

0x00000120 ASI=0x1 Same Page Mask Register

0x00000124 ASI=0x1 Address Range Specifier Register 1

0x00000128 ASI=0x1 Address Range Specifier Register 2

0x0000012C ASI=0x1 Address Range Specifier Register 3

0x00000130 ASI=0x1 Address Range Specifier Register 4

0x00000134 ASI=0x1 Address Range Specifier Register 5

0x00000140 ASI=0x1 Address Mask Register 0

0x00000144 ASI=0x1 Address Mask Register 1

Overview of MB86934 - Programmer’s Model of the MB86934

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-4

0x00000148 ASI=0x1 Address Mask Register 2

0x0000014C ASI=0x1 Address Mask Register 3

0x00000150 ASI=0x1 Address Mask Register 4

0x00000154 ASI=0x1 Address Mask Register 5

0x00000160 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x00000164 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x00000168 ASI=0x1 Wait State Specifier Register** (SGL cycle/parity bit
added)

0x00000174 ASI=0x1 Timer Register

0x00000178 ASI=0x1 Timer Preload Register

0x00000180 ASI=0x1 Source/Destination ASI Register (DMA0)

0x00000184 ASI=0x1 Current Source Address Register (DMA0)

0x00000188 ASI=0x1 Current Destination Address Reg (DMA0)

0x0000018C ASI=0x1 Current Byte Count Register (DMA0)

0x00000190 ASI=0x1 Descriptor Pointer (DP) Register (DMA0)

0x00000194 ASI=0x1 Channel Control Register (DMA0)

0x00000198 ASI=0x1 Channel Status Register (DMA0)

0x000001A0 ASI=0x1 Source/Destination ASI Register (DMA1)

0x000001A4 ASI=0x1 Current Source Address Register (DMA1)

0x000001A8 ASI=0x1 Current Destination Address Reg (DMA1)

0x000001AC ASI=0x1 Current Byte Count Register (DMA1)

0x000001B0 ASI=0x1 Descriptor Pointer (DP) Register (DMA1)

0x000001B4 ASI=0x1 Channel Control Register (DMA1)

0x000001B8 ASI=0x1 Channel Status Register (DMA1)

Emulation Registers:

ASI: 0x01

Address range: 0x0000F00-0x0000FFFF

0x0000FF00 ASI=0x1 Instruction Address Descriptor Register 1

0x0000FF04 ASI=0x1 Instruction Address Descriptor Register 2

0x0000FF08 ASI=0x1 Data Address Descriptor Register 1

0x0000FF0C ASI=0x1 Data Address Descriptor Register 2

0x0000FF10 ASI=0x1 Data Value Descriptor Register 1

0x0000FF14 ASI=0x1 Data Value Descriptor Register 2 or Mask Register

0x0000FF18 ASI=0x1 Debug Control Register

0x0000FF1C ASI=0x1 Debug Status Register

Overview of MB86934 - Programmer’s Model of the MB86934

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-5

Instruction Cache Lock Registers:

ASI: 0x02

Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to every eighth word address in this space can be used to initialize the
lock bit for each line in the instruction cache. This differs from the MB86930,
where every fourth word location is accessed.

Data Cache Lock Registers:

ASI: 0x03

Address range: 0x0000FF00-0x000003FF (Bank 1)

0x8000FF00-0x800003FF (Bank 2)

Note: Writing to every fourth word address in this space can be used to initialize the
lock bit for each line in the data cache. This is unchanged from the MB86930.

Instruction Cache Tag RAM:

ASI: 0x0C

Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to every eighth word address in this space can be used to initialize the
tags for each line in the instruction cache. This differs from the MB86930, where
every fourth word location is accessed.

Instruction Cache Invalidate Registers:

ASI: 0x0C

Note: These registers are in addition to the Instruction Cache Tags which are accessed
using ASI 0x0C.

0x00001000 Bank 1 Instruction Cache Invalidate (write only)

0x80001000 Bank 2 Instruction Cache Invalidate (write only)

Overview of MB86934 - Programmer’s Model of the MB86934

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-6

Instruction Cache Data RAM:

ASI: 0x0D

Address range: 0x00000000-0x00000FFF (Bank 1)

0x80000000-0x80000FFF (Bank 2)

Note: Writing to word addresses in this space can be used to initialize the values in the
instruction cache.

Data Cache Tag RAM:

ASI: 0x0E

Address range: 0x00000000-0x000003FF (Bank 1)

0x80000000-0x800003FF (Bank 2)

Note: Writing to every fourth word address in this space can be used to initialize the tag
bit for each line in the data cache. This is unchanged from the MB86930.

Data Cache Invalidate Registers:

ASI: 0x0E

Note: These registers are in addition to the Data Cache Tags which are accessed using
ASI 0x0E.

0x00001000 Bank 1 Data Cache Invalidate (write only)

0x80001000 Bank 2 Data Cache Invalidate (write only)

Data Cache Data RAM:

ASI: 0x0F

Address range: 0x00000000-0x000003FF (Bank 1)

0x80000000-0x800003FF (Bank 2)

Note: Writing to word addresses in this space can be used to initialize the data RAM.
This is unchanged from the MB86930

Overview of MB86934 - Programmer’s Model of the MB86934

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-7

D1.3 Internal Architecture of the MB86934
Figure D1-1 shows a block diagram of the MB86934. The two major buses shown in the
diagram are as follows:

• Data Data Bus (DD)—A 64-bit bus used to transfer data to and from MB86934
functional units. In general, when a load is executed, data is transferred to the
Integer Unit (IU) Floating Point Unit (FPU) from one of the other units, and when a
store is executed, data is transferred from the IU or FPU to one of the other units.
When loads/stores to user or supervisor data space are performed, the DD gives the
IU access to the Data Cache, the BIU (if the data is not in the cache), or the DSU (if
the data is to be accessed out of DSU memory).

When doing Load Alternates or Store Alternates, the DD bus can access all units
except the Instruction Cache and Instruction Tags, which can be accessed only
through the ID bus. In such a case, the IU can read data (load alternate) or write data
(store alternate) to the control/status/data registers of all units.

• Instruction Data Bus (ID)—This 64-bit bus normally transfers instructions from
either the Instruction Cache, the Bus Interface Unit, or the DSU (when code is being
run out of DSU memory).

Note: When a store alternate is being performed to the I_cache or the I_tags (during
cache initialization, for example), the data are first transferred from the IU to the
BIU on the DD bus. The BIU then transfers the data on the ID bus to the I_cache or
the I_tags. When a load alternate from the I_cache or the I_tags to the IU occurs, the
reverse operation takes place. This obviates the need to extend both the ID and the
DD busses to the I_cache and I_tags. (In the figure below, the connections for
reading/writing the tags through alternate space are shown as dashed lines.)

• FIFO, DMA Bus (FD)—This 64-bit bus allows transfer of data from the BIU to the
FIFO or DMA.

Overview of MB86934 - Internal Architecture of the MB86934

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D1-8

IU I_CACHE
8 KBYTES

D_CACHE
2 KBYTES

FIFO

DEBUG
SUPPORT

UNIT

3232 64 64 32
32

FPU DMA

BIU

64 64 64 64 6464

DRAM SUPPORT
16-BIT TIMER

ADDRESS DECODE
WAIT STATE GENERATOR

INTERFACE TO
SPARCLITE BUS

ADR
SDRAM

INTERFACE
SDIU

ID

DD

32

64

DATA
64

64

30

DATA

EMULATOR
BUS10

64

64

64

64

FD

32

30
30

30

Figure D1-1. MB86934 Block Diagram

Overview of MB86934 - Internal Architecture of the MB86934

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D2-1

HAPTER

SDRAM Interface Unit

D2
C

D2.1 Introduction
The MB86934 features an SDRAM-interface unit (SDIU) that supports BIU-SDRAM
data transfers. The SDIU also allows bus masters to access single words in SDRAM.

The SDIU supports most of the SDRAM commands, can be configured for 32-bit or
64-bit bus mode, and has a 3-cycle fixed CAS latency and a 4-word burst size.

SDRAM is accessed using CS5 which is not an external pin in MB86934. Signals
–SCAS, –SRAS and –SWE are generated during SDRAM operation only.

D2.2 SDIU Registers
The SDIU features three registers: the SDIU Mode Register, the SDIU Configuration
Register, and the Auto Refresh Timer Register.

SDRAM Interface Unit - Introduction

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-2

D2.2.1 SDIU Mode Register
This register is used to select the SDIU mode of operation including CAS latency, burst
type, and burst length parameters.

31 3 2 0

CL BL

Burst Length
(R/W)

Burst Type
(R/W)

CAS Latency
(R/W)

BT

467

reserved

Address: 0x00000600 (ASI=0x1)
Reset State: 0x00000000

Figure D2––2. SDIU Mode Register

Bits 31-7: Reserved

Bits 6-4: Cas Latency (CL)

The CL field controls CAS Latency as follows:
Table D2–1. CAS Latency

CL CAS Latency

000 Reserved

001 Reserved

010 Reserved

011 3

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Bit 3: Burst Type (BT)

The BT bit selects the type of burst as follows:
Table D2–2. BT Burst Type

BT Bit Burst Type

0 Reserved

1 Interleave Mode

Bits 2-0: Burst Length

The BL field selects the data burst length as follows:

SDRAM Interface Unit - SDIU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-3

Table D2–3. BL Field Data Burst Length

BL Burst Length

000 Reserved

001 Reserved

010 4

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

D2.2.2 SDRAM Configuration Register
This register configures the SDIU for the SDRAM type and bus size that it will support.

31

SE

2 1 0

SDRAM Type (R/W)

Bus Size (R/W)

SDIU Enable (R/W)

45

STreserved BS

Address: 0x00000604
(ASI=0x1)
Reset State: 0x00000000

6

Parity check enable (R/W)

EDEPCE

Extra delay enable (R/W)

Figure D2––1. SDRAM Configuration Register

Bits 31–7: Reserved

Bit 6: Parity check enable (PCE)

The PCE enables parity-check during SDRAM read command as follows:
Table D2–4. Parity Check Enable

PCE Remark

0 Parity error will not cause exception

1 Parity error will cause exception

Bit 5: Extra delay enable (EDE)

The EDE bit when set to 1 will allow single stage pipelining for ADR, –CAS, –RAS, –SWE,
–SCS [3:0], SDQM [1:0] signals. If EDE bit is set to 0 these signals will can not be
pipelined.

SDRAM Interface Unit - SDIU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-4

Bits 4-2: SDRAM Type (ST)

The ST field configures the SDIU for the type of SDRAM in use as follows:
Table D2–5. ST Configuration of SDRAM

ST SDRAM Type

000 4 MB (X 8) (default)

001 16 MB (X 4)

010 16 MB (X 8)

011 4 MB (X16)

100 16 MB (X16)

101 Reserved

110 Reserved

111 Reserved

Bit 1: Bus Size (BS)

The BS bit selects the bus size as follows:
Table D2–6. Bus Size

BS Bit Bus Size

0 64-bit Bus (default)

1 32-bit Bus

Specifications for the 64-bit and 32-bit bus modes are as follows:
Table D2–7. 64–Bit D–Bus Configuration

SDRAM
Type

Memory
Size

SDIU Page Size
(Column

Address X2)

Number
of

Chips

Column
Address

(934 ADR Pins)

Row Address
(934 ADR Pins)

Bank Address
(934 ADR Pin)

 4 MB (X 16) 2 M Bytes 4 K Bytes 4 A10–A3 A11–A3 A20

4 MB (X 8) 4 M Bytes 8 K Bytes 8 A11–A3 A11–A3 A21

16 MB (X 16) 8 M Bytes 4 K Bytes 4 A10–A3 A13–A3 A20

16 MB (X 8) 16 M Bytes 8 K Bytes 8 A11–A3 A13–A3 A23

16 MB (X 4) 32 M Bytes 16 K Bytes 16 A12–A3 A13–A3 A24

SDRAM Interface Unit - SDIU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-5

Table D2–8. 32–Bit D–Bus Configuration

SDRAM
Type

Memory
Size

SDIU Page Size
(Column

Address X2)

Number
of

Chips

Column
Address

(934 ADR Pins)

Row Address
(934 ADR Pins)

Bank Address
(934 ADR Pin)

 4 MB (X 16) 1 M Bytes 2 K Bytes 2 A9–A2 A10–A2 A19

4 MB (X 8) 2 M Bytes 4 K Bytes 4 A10–A2 A10–A2 A20

16 MB (X16) 4 M Bytes 2 K Bytes 2 A9–A2 A12–A2 A19

16 MB (X 8) 8 M Bytes 4 K Bytes 4 A10–A2 A12–A2 A22

16 MB (X 4) 16 M Bytes 8 K Bytes 8 A11–A2 A12–A2 A23

Table D2–9. –SCS [3:0] Address Map

SDRAM
Type –SCS

32-Bit D-Bus
Configuration

(934 ADR Pins)

64-Bit D-Bus
Configuration

(934 ADR Pins)

 4 MB (X 16) –SCS [3]
–SCS [2]
–SCS [1]
–SCS [0]

�� (ADR 20 & ADR 21)
�� (ADR 20 & �� ADR 21)
�� (�� ADR 20 & ADR 21)
�� (�� ADR 20 & �� ADR 21)

�� (ADR 22 & ADR 21)
�� (ADR 22 & �� ADR 21)
�� (�� ADR 22 & ADR 21)
�� (�� ADR 22 & �� ADR 21)

4 MB (X 8) –SCS [3]
–SCS [2]
–SCS [1]
–SCS [0]

�� (ADR 22 & ADR 21)
�� (ADR 22 & �� ADR 21)
�� (�� ADR 22 & ADR 21)

�� (�� ADR 22 & �� ADR 21)

�� (ADR 23 & ADR 22)
�� (ADR 23 & �� ADR 22)
�� (�� ADR 23 & ADR 22)

�� (�� ADR 23 & �� ADR 22)

16 MB (X 16) –SCS [3]
–SCS [2]
–SCS [1]
–SCS [0]

�� (ADR 23 & ADR 22)
�� (ADR 23 & �� ADR 22)
�� (�� ADR 23 & ADR 22)
�� (�� ADR 23 & �� ADR 22)

�� (ADR 24 & ADR 23)
�� (ADR 24 & �� ADR 23)
�� (�� ADR 24 & ADR 23)
�� (�� ADR 24 & �� ADR 23)

16 MB (X 8) –SCS [3]
–SCS [2]
–SCS [1]
–SCS [0]

�� (ADR 24 & ADR 23)
�� (ADR 24 & �� ADR 23)
�� (�� ADR 24 & ADR 23)
�� (�� ADR 24 & �� ADR 23)

�� (ADR 25 & ADR 24)
�� (ADR 25 & �� ADR 24)
�� (�� ADR 25 & ADR 24)
�� (�� ADR 25 & �� ADR 24)

16 MB (X 4) –SCS [3]
–SCS [2]
–SCS [1]
–SCS [0]

�� (ADR 25 & ADR 24)
�� (ADR 25 & �� ADR 24)
�� (�� ADR 25 & ADR 24)
�� (�� ADR 25 & �� ADR 24)

�� (ADR 26 & ADR 25)
�� (ADR 26 & �� ADR 25)
�� (�� ADR 26 & ADR 25)
�� (�� ADR 26 & �� ADR 25)

SDRAM Interface Unit - SDIU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-6

Table D2–10. MB86934 Connection To MB81116820 (SDRAM)

SDRAM Type

Configuration 64–bit D–bus 32–bit D–bus 16MB (x8)

Chip MB86934
(pin names)

MB81116820 or
equivalent (pin names)

Address A13–A3 A12–A2 A10–A0

Bank Select A23 A22 A11

Clock Enable SCKE SCKE CKE

Input Mask/Output Enable
for D[63:32] Bus

SDQM0 unused DQM +

Input Mask/Ouput Enable
for D[31:0] Bus

SDQM1 SDQM1 DQM ^

Row Address Select –SRAS –SRAS RAS

Column Address Select –SCAS –SCAS CAS

Write Enable –SWE –SWE WE

Chip Select –SCS[3:0] –SCS[3:0] CS *

Note: * = –SCS[3] is connected to CS pin of SDRAM chips of highest memory-set
–SCS[0] is connected to CS pin of SDRAM chips of lowest memory-set

+ = for SDRAM chips connected to D[63:32} bus in only “64-bit D-bus mode”
^ = for SDRAM chips connected to D[31:0] bus in “32-bit or 64-bit D-bus modes”

Table D2–11. MB86934 Connection To MB81116420 (SDRAM)

SDRAM Type

Configuration 64–bit D–bus 32–bit D–bus 16MB (x4)

Chip MB86934
(pin names)

MB81116420 or
equivalent(pin names)

Address A13–A3 A12–A2 A10–A0

Bank Select A24 A23 A11

Clock Enable SCKE SCKE CKE

Input Mask/Output
Enable for D[63:32] Bus

SDQM0 unused DQM +

Input Mask/Ouput
Enable for D[31:0] Bus

SDQM1 SDQM1 DQM ^

Row Address Select –SRAS –SRAS RAS

Column Address Select –SCAS –SCAS CAS

Write Enable –SWE –SWE WE

Chip Select –SCS[3:0] –SCS[3:0] CS *

SDRAM Interface Unit - SDIU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-7

Note: * = –SCS[3] is connected to CS pin of SDRAM chips of highest memory-set
–SCS[0] is connected to CS pin of SDRAM chips of lowest memory-set

+ = for SDRAM chips connected to D[63:32} bus in only “64-bit D-bus mode”
^ = for SDRAM chips connected to D[31:0] bus in “32-bit or 64-bit D-bus modes”

Table D2–12. MB86934 Connections To MB81116162X (SDRAM)

SDRAM Type

SDRAM Type 64–bit D–bus 32–bit D–bus 16MB (x16)

Chip MB86934
(pin names)

MB81116162X or
equivalent (pin names)

Address A13–A3 A12–A2 A10–A0

Bank Select A20 A19 A11

Clock Enable SCKE SCKE CKE

Input Mask/Output
Enable for D[63:32] Bus

SDQM0 unused UDQM +
LDQM +

Input Mask/Output
Enable for D[31:0] Bus

SDQM1 SDQM1 UDQM ^
LDQM ^

Row Address Select –SRAS –SRAS RAS

Column Address Select –SCAS –SCAS CAS

Write Enable –SWE –SWE WE

Chip Select –SCS[3:0] –SCS[3:0] CS *

Note: * = –SCS[3] is connected to CS pin of SDRAM chips of highest memory-set
–SCS[0] is connected to CS pin of SDRAM chips of lowest memory-set

+ = for SDRAM chips connected to D[63:32} bus in only “64-bit D-bus mode”
^ = for SDRAM chips connected to D[31:0] bus in “32-bit or 64-bit D-bus modes”

SDRAM Interface Unit - Introduction

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-8

Table D2–13. MB86934 Connections To MB81141623 (SDRAM)

SDRAM Type

SDRAM Type 64–bit D–bus 32–bit D–bus 4MB (x16)

Chip MB86934
(pin names)

MB81141623 or
equivalent (pin names)

Address A11–A3 A10–A2 A8–A0

Bank Select A20 A19 BS

Clock Enable SCKE SCKE CKE

Input Mask/Output
Enable for D[63:32] Bus

SDQM0 unused DQML +
DQMU +

Input Mask/Output
Enable for D[31:0] Bus

SDQM1 SDQM1 DQML ^
DQMU ^

Row Address Select –SRAS –SRAS RAS

Column Address Select –SCAS –SCAS CAS

Write Enable –SWE –SWE WE

Chip Select –SCS[3:0] –SCS[3:0] CS *

Note: * = –SCS[3] is connected to CS pin of SDRAM chips of highest memory-set
–SCS[0] is connected to CS pin of SDRAM chips of lowest memory-set

+ = for SDRAM chips connected to D[63:32} bus in only “64-bit D-bus mode”
^ = for SDRAM chips connected to D[31:0] bus in “32-bit or 64-bit D-bus modes”

Table D2–14. MB89634 Connections To MB8114823 (SDRAM)

SDRAM Type

SDRAM Type 64–bit D–bus 32–bit D–bus 4MB (x8)

Chip MB86934
(pin names)

MB8114823 or equivalent
(pin names)

Address A11–A3 A10–A2 A8–A0

Bank Select A21 A20 BS

Precharge-Command Bit A9 A8 PC

Clock Enable SCKE SCKE CKE

Input Mask/Output
Enable for D[63:32] Bus

SDQM0 unused DQM +

Input Mask/Output
Enable for D[31:0] Bus

SDQM1 SDQM1 DQM ^

Row Address Select –SRAS –SRAS RAS

Column Address Select –SCAS –SCAS CAS

Write Enable –SWE –SWE WE

Chip Select –SCS[3:0] –SCS[3:0] CS *

SDRAM Interface Unit - SDIU Operation

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-9

Note: * = –SCS[3] is connected to CS pin of SDRAM chips of highest memory-set
–SCS[0] is connected to CS pin of SDRAM chips of lowest memory-set

+ = for SDRAM chips connected to D[63:32} bus in only “64-bit D-bus mode”
^ = for SDRAM chips connected to D[31:0] bus in “32-bit or 64-bit D-bus modes”

Bit 0: SDIU Enable (SE)

The SE enables and disables the SDRAM as follows:
Table D2–15. SDRAM Enable/Disable

SE Bit Enable/Disable

0 Disable (default)

1 Enable

D2.2.3 Auto Refresh Timer Register
The Auto Refresh Timer (ART) Register is written with a value that generates an
appropriate refresh interval for the SDRAM that is in use (see SDRAM Auto Refresh in
Section D2.3).

31 0

Timer Count
(R/W)

15

TCreserved

Address: 0x00000608
(ASI=0x1)
Reset State: Unknown

16

Figure D2–0. Auto Refresh Timer Register

Bits 31-16: Reserved

Bits 15-0: Timer Count (TC)

D2.3 SDIU Operation
When SCKE (SDRAM clock enable) is active (high), combinations of the –SRAS,
–SCAS, and –SWE SDIU outputs, in conjunction with the –SCE signal at the rising
edge of the clock, determine SDRAM operation. Signal ‘CLK’ in waveforms refer to
MB86934 chip’s internal clock.

Tables D2-16 shows the SDRAM commands and associated signals. Figure D2-4 shows
a simplified SDRAM state diagram. This table and figure should be referenced for an
understanding of the SDRAM commands and SDRAM operation.

SDRAM Interface Unit - Introduction

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-10

Table D2–16. SDIU Commands (Ref: MB81116820 SDRAM)

COMMAND SCKE SDQM A11 A10* A9 A8-A0 –SCS –RAS –CAS –SWE Mnemonic

Mode Register Set (5)(6) H X V V V V L L L L MRS

Auto Refresh(6) H X X X X X L L L H REFR

Self-Refresh Entry(6) L X X X X X L L L H SREN

Self-Refresh Exit H X X X X X L H H H SREX

Precharge All Banks H X X H X X L L H L PALL

Bank Active (RAS)(7) H X V V V V L L H H ACTV

Write(8) H X V L X V L H L L WR

Read(8) H X V L X V L H L H RD

Data Write/Output Enable H L X X X X X X X X ENBL

Data Mask/Output Disable H H X X X X X X X X MASK

Notes:

(1) V = Valid, L = Logic Low, H = Logic High, X = Either Low or High.

(2) All commands are assumed to be valid state transitions.

(3) All inputs are latched on the rising edge of clock.

(4) Required after power-up.

(5) The MRS, REFR, SREN, and PD commands should be issued only after all banks have been
precharged (PALL command). Refer to the State Diagram in Figure D2-4.

(6) The ACTV command should be issued only after the corresponding bank has been
precharged (PALL command).

(7) The WR and RD commands should be issued only after the corresponding bank has be
activated (ACTV command). Refer to the State Diagram in Figure D2-4.

SDIU After Reset

The SDIU is disabled after reset. Therefore, the user program must complete the
following SDIU initialization sequence before executing SDRAM read or write
commands following reset:

(1) Allow at least 2 ms of idle with a program loop.

(2) Write the SDIU Mode Register (ASI 0x1, addr. 0x600).

(3) Write the Auto Refresh Timer Register (ASI 0x1, addr. 0x608) with the
auto-refresh timer count based on the SDRAM requirement. This count
determines SDRAM refresh signal timing.

SDRAM Interface Unit - SDIU Operation

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-11

SCKE

SCKE

RD

PALLPALL

WR

SCKE SCKE

SCKE

SREN

SREX

MRS

Idle
Self

Refresh

Mode
Register

Set

Power
Down

Auto
Refresh

Bank
Active

Bank
Active

Suspend

SCKE

SCKE

Write
Suspend

Precharge

Read
Read

Suspend

WR

SCKE

RD

Write

Power
Applied

PALL

Power
On

Program Input

Automatic Sequence

REFR

A
C

T
V

P
A

LL

Figure D2–1. State Diagram

SDRAM Interface Unit - Introduction

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-12

(4) Write the SDRAM Configuration Register (ASI 0x1, addr 0x604) to enable the
SDIU, and to select the bus size and SDRAM type.

(5) Wait for a minimum of 8 auto refresh (REFR) commands.

The SDIU is then initialized for SDRAM read and write operations.

Figure D2-5 shows SDIU “mode register set” command timing.

0 E 7 E 7 E 7 E 7 E 7 E 0 7F 0 7 0 7

3FFFFFFF3FFFFFFF

1 2 1 2 1 2 13 1 2 1

ZZZZZZZZZZZZZZZZZZZZZZZZ

8th Refresh

Command

Mode Register Set

Command

PALL Command 1st Refresh

Command

CLK

SCKE

–SCS [3:0]

–RAS

–CAS

–SWE

ADR [31:2]

SDQM [1:0]

D [63:0]

Figure D2–2. SDIU “Mode Register Set” Timing

SDRAM Auto Refresh

The SDRAM requires periodic refresh to avoid loss of data. For example, 16 MB
SDRAM requires a refresh no less often than every 16 µs, or at least 4096 refreshes
during each 65.6 ms period.

The Auto Refresh timer can be programmed to provide periodic refresh by writing the
appropriate timer count for the SDRAM into the Auto Refresh Timer (ART) register.
When the ART register is written, the counter loads the refresh count value from the
ART register, then decrements the count with chips internal clock. The refresh signal
for the SDRAM is asserted when the count reaches 0, at which time the counter reloads
the refresh count value from the ART and repeats the refresh cycle.

SDRAM Interface Unit - SDIU Operation

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-13

SDRAM Power-Down

The SDIU places the SDRAM in the power-down mode (the self-refresh state) when
bit 0 (SE bit) of the SDRAM Configuration Register is cleared to 0. The SDIU issues
the Self Refresh Entry (SREN) command to place the SDRAM in the power-down
mode. The SDRAM refreshes itself in the power-down mode.

The SDIU executes the Self Refresh Exit (SREX) command and exits the SDRAM
power-down mode when bit 0 of the SDRAM Configuration register is set to 1.

D2.4 SDIU Data Transfer Operations
The SDIU accesses SDRAM through the Bus Interface Unit (BIU). It can transfer 32-bit
single-word, 32-bit double-word, 64-bit single-word, and 64-bit double-word data. It
also supports read-modify-write operations.

In 32-bit bus operations, data is transferred only on the lower 32 bits (D[31:0]) of the
64-bit data bus. The upper 32 bits (D[63:32]) are masked by the SDQM signals
(SDQM[1:0] = 0x01). Only one data word is transferred on D[31:0] in single-word
operations; two words are transferred sequentially on D[31:0] in double-word
operations; four words are transferred sequentially during burst transfers.

In 64-bit operations, data can be transferred on the upper 32 bits of the data bus
(D[63:32]), on the lower 32 bits of the data bus (D[31:0]), or on the entire data bus
(D[63:0]). The upper 32 bits of data are masked by SDQM = 0x01, and the lower 32
bits of data are masked by SDQM = 0x10. Only one data word is transferred on either
D[31:0] or D[63:32] in single-word operations; two words are transferred on D[63:0] in
double-word operations, and during burst transfers.

Irrespective of type of bus configuration (32-bit or 64-bit) PARITY[3:0] bus is
corresponding to D[63:48], D[47:32], D[31:16] and D[15:0] during SDRAM operations.
In waveforms signal ‘CLK’ refers to MB86934 chip’s internal clock.

D2.4.1 Page Hit/Miss Detection
Same Row Detection logic in the SDIU determines whether the SDRAM memory
location being accessed is in the same row of the SDRAM as the location that was
previously accessed. The system can use this feature to execute fast burst mode data
transfers to/from locations that are in the same row of the SDRAM. If the current
SDRAM access is in a different row (page), SDIU will detect page – miss.

D2.4.2 BIU Write Operations
The SDIU supports byte, half-word, single-word, and double-word writes. Byte- and
half-word writes are executed with read-modify-write operations. Double-word writes
occur when the BIU executes floating-point store double operations.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-14

32-Bit Write Single — Page Hit

The operation begins with a valid address on the address lines. The WR command is
asserted during cycle 0 to start the write cycle, and the data is asserted on the data bus.
SDQM[1:0] is set to 0x01 in cycle 0 to mask the upper word (D[63:32]) and write the
lower word (D[31:0]), and is set to 0x11 the following three cycles to disable SDRAM
writes.

32-Bit Write Single — Page Miss

WR Cycle
(VALID DATA)

CLK

SCKE

–SCS [3:0]

–SRAS

–SCAS

–SWE

ADR [31:2]

SDQM [1:0]

D [63:0]

0

E O E

007C1F09 0000127C 007C1009 007E1009 007C127C0000127C 00000059

1 3

ZZZZZZZZZZZZZZZZ

1 2 3 4 5 6 7 8 9 10

PALL
Cycle

ACTV (FIRST)
Cycle

ACTV (SECOND)
Cycle

Figure D2–3. 32-Bit BIU Write Single–Page Miss (BIU to SDRAM)

The write operation begins with a PALL cycle, followed by two ACTV cycles and a
WR cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with the row address and other bank select on the address lines. The WR
command is asserted during cycle 8 to start the write cycle.

The rest of the operation is similar to the 32-bit write single page hit case.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-15

32-bit Write Double — Page Hit

The write operation begins with a valid column address on the address lines. The WR
command is asserted during cycle 0 to start the write cycle, and the data is asserted on
the data bus. SDQM[1:0] is set to 0x01 during cycles 0 and 1 to mask the upper word
(D[63:32]) and write the lower word (D[31:0]), and is set to 0x11 the following two
cycles to disable SDRAM writes.

Figure D2-7 shows timing for a 32-bit double-word write with page hit.

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

1

First
Data
Word

Second
Data
 Word

10 2 3

Figure D2–4. 32-Bit BIU Write Double — Page Hit (BIU to SDRAM)

32-bit Write Double — Page Miss

The write operation begins with a PALL cycle, followed by two ACTV cycles and a
WR cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with row address and other bank select on the address lines. The WR
command is asserted during cycle 8 to start the write cycle.

The rest of the operation is similar to the 32-bit write double page hit case.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-16

64-bit Write Single — Page Hit

The write operation begins with a valid column address on the address lines. The WR
command is asserted in cycle 0 to start the write cycle, and the data is asserted on the
data bus. SDQM[1:0] is set to either 0x01 to mask the upper word (D[63:32]) and write
the lower word (D[31:0]), or to 0x10 to write the upper word and mask the lower word.
SDQM[1:0] is set to 0x11 during the following three cycles to disable SDRAM writes.

64-bit Write Single — Page Miss

The write operation begins with a PALL cycle, followed by two ACTV cycles and a
WR cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and bank select are asserted on the address lines during
the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is asserted with
row address and other bank select on the address lines. The WR command is asserted
during cycle 8 to start the write cycle.

The rest of the operation is similar to the 64-bit write single page hit case.

64-bit Write Double— Page Hit

The write operation begins with a valid column address on the address lines. The WR
command is asserted in cycle 0 to start the write cycle, and the data is asserted on the
data bus. SDQM[1:0] is set to 0x00 in cycle 0 to write the double word on D[63:0], and
is set to 0x11 the following three cycles to disable SDRAM writes.

64-bit Write Double — Page Miss

The write operation begins with a PALL cycle, followed by two ACTV cycles and a
WR cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with row address and the other bank select on the address lines. The WR
command is asserted during cycle 8 to start the write cycle.

The rest of the operation is similar to the 64-bit write double page hit case.

Figure D2-8 shows six words of write in 64-bit mode where the first three words are
written in one page and the last three words are written in a different page.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-17

1

2
1

2
1

2
3

1
2

1

T
hr

ee
 w

or
ds

 w
rit

e
in

 o
ne

 p
ag

e

PALL Cycle

E
7

E
7

E
7

E
0

E
7

E
7

E

3
3

3
3

3

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

First Write Cycle (Page Miss)

Second Write Cycle (Page Hit)

Third Write Cycle (Page Hit)

First Write Cycle (Page Miss)

ACTV Cycle

Second Write Cycle (Page Hit)

Third Write Cycle (Page Hit)

PALL Cycle

ACTV Cycles

T
hr

ee
 w

or
ds

 w
rit

e
in

 a
no

th
er

 p
ag

e

C
LK

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

A
D

R
[3

1:
2]

S
D

Q
M

[1
:0

]

D
[6

3:
0]

Figure D2–5. Three Words SDRAM Write in 64-Bit Mode in One Page Followed by
 Three Words SDRAM Write in 64-Bit Mode in Different Page

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-18

D2.4.3 BIU Read Operations
The SDIU supports one-word, two-word, and four-word reads. When the BIU executes
a four-word read, the SDIU fetches four words from the SDRAM. The two-word read
occurs when the BIU executes floating-point load double operations.

32-Bit Read Single — Page Hit

The operation begins with a valid address on the address lines. The RD command is
asserted during cycle 0 to start the read cycle. SDQM[1:0] is set to 0x01 during cycle 1
to mask the upper word (D[63:32]) and read the lower word (D[31:0]), which is asserted
on the data bus during cycle 3. SDQM is set to 0x11 to disable the SDRAM output
drivers during cycles 4-6.

Figure D2-9 shows timing for a 32-bit single-word read with page hit.

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

Read Cycle One Word
Valid Data

1 3 1

10 2 3 4 5

Figure D2–6. 32-Bit BIU Read Single — Page Hit (SDRAM to BIU)

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-19

C
LK

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

A
D

R
[3

1:
2]

S
D

Q
M

[1
:0

]

D
[6

3:
0]

E

1
3

1
0

2
3

4
5

7
6

8
9

10
11

12

0

00
00

10
78

00
00

10
78

00
00

10
78

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

P
A

LL
 C

yc
le

F
irs

t A
C

T
V

 C
yc

le
(B

an
kA

cc
es

se
d)

S
ec

on
d

(O
th

er
 B

an
k)

R
D

 C
yc

le
A

C
T

V
 C

yc
le

D
at

a
(V

al
id

)

 F
ig

ur
e

D
2–

7.
 3

2–
B

it
B

IU
 R

ea
d

S
in

gl
e–

P
ag

e
M

is
s

(S
D

R
A

M
 to

 B
IU

)

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-20

32-Bit Read Single — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with row address and other bank select on the address lines. The RD command
is asserted during cycle 8 to start the read cycle.

The rest of the operation is similar to the 32-bit read single page hit case.

Figure D2–10 shows timing for a 32-bit single-word read with page-miss.

32-Bit Read Double — Page Hit

The operation begins with a valid address on the address lines. The RD command is
asserted during cycle 0 to start the read cycle. SDQM[1:0] is set to 0x01 during cycles 1
and 2 to mask the upper word (D[63:32]) and read the lower word (D[31:0]), which is
asserted on the data bus during cycles 3 and 4. SDQM is set to 0x11 during cycles 3 and
4 to disable the SDRAM output drivers during cycles 5 and 6.

Figure D2-11 shows timing for a 32-bit double-word read with page hit.

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

1

Read Cycle

13

First
Data
Word

Second
Data
 Word

10 2 3 4 5 6

 Figure D2–8. 32-Bit BIU Read Double–Page Hit (SDRAM to BIU)

32-Bit Read Double — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-21

memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with row address and other bank select on the address lines. The RD command
is asserted during cycle 8 to start the read cycle.

The rest of the operation is similar to the 32-bit read double page hit case.

32-Bit Burst Read — Page Hit

The operation begins with a valid address on the address lines. The RD command is
asserted during cycle 0 to start the read cycle. SDQM[1:0] is set to 0x01 during cycles 1
through 4 to mask the upper word (D[63:32]) and read the lower word (D[31:0]), which
is asserted on the data bus during cycles 3 through 6.

Figure D2-12 shows timing for a 32-bit burst read with page hit.

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

1

Read Cycle First
Data
Word

Second
Data
 Word

Third
Data
 Word

Fourth
Data
 Word

10 2 3 4 5 6

Figure D2–9. 32-Bit Burst Read–Page Hit (SDRAM to BIU)

32-Bit Burst Read — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and the bank select are asserted on the address lines
during the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is
asserted with row address and other bank select on the address lines. The RD command
is asserted during cycle 8 to start the read cycle.

Figure D2-13 shows timing for a 32-bit burst read with page miss.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-22

C
LK

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

A
D

R
[3

1:
2]

S
D

Q
M

[1
:0

]

D
[6

3:
0]

E

1

1
0

2
3

4
5

6
8

7
9

10
11

12
13

14 F
ou

rt
h

D
at

a
W

or
d

T
hi

rd
D

at
a

W
or

d

F
irs

t
D

at
a

W
or

d

S
ec

on
d

D
at

a
W

or
d

R
D

 C
yc

le
A

C
T

V
 C

yc
le

P
A

LL
 C

yc
le

0

A
C

T
V

 C
yc

le
(S

E
C

O
N

D
)

(F
IR

S
T

)

00
00

20
00

00
7C

30
10

00
7C

30
10

00
7E

30
10

00
00

20
00

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

F
ig

ur
e

D
2–

10
. 3

2–
B

it
B

ur
st

 R
ea

d–
P

ag
e

M
is

s
(S

D
R

A
M

 to
 B

IU
)

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-23

64-bit Read Single — Page Hit

The read operation begins with a valid column address on the address lines. The RD
command is asserted in cycle 0 to start the read cycle, and the data is asserted on the
data bus during cycle 3. SDQM[1:0] is set to either 0x01 in cycle 1 to mask the upper
word (D[63:32]) and read the lower word (D[31:0]), or to 0x10 to read the upper word
and mask the lower word. SDQM is set to 0x11 during cycles 2-4 to disable The
SDRAM output drivers during cycles 4-6.

64-Bit Read Single — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and bank select are asserted on the address lines during
the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is asserted with
row address and other bank select on the address lines. The RD command is asserted
during cycle 8 to start the read cycle.

The rest of the operation is similar to the 64-bit read single page hit case.

64-Bit Read Double — Page Hit

The operation begins with a valid address on the address lines. The RD command is
asserted during cycle 0 to start the read cycle. SDQM[1:0] is set to 0x00 during cycle 1
to read the double word, which is asserted on D[63:0] during cycle 3. SDQM is set to
0x11 during cycles 2-4 to disable the SDRAM output drivers during cycles 4-6.

64-Bit Read Double — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and bank select are asserted on the address lines during
the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is asserted with
row address and other bank select on the address lines. The RD command is asserted
during cycle 8 to start the read cycle.

The rest of the operation is similar to the 64-bit read double page hit case.

64-Bit Burst Read — Page Hit

The operation begins with a valid address on the address lines. The RD command is
asserted during cycle 0 to start the read cycle. SDQM[1:0] is set to 0x00 during cycles 1
and 2 to read the double word, which is asserted on D[63:0] during cycles 3 and 4.
SDQM is set to 0x11 during cycles 3 and 4 to disable the SDRAM output drivers during
cycles 5 and 6.

Figure D2-14 shows timing for a 64-bit burst read with page hit.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-24

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

1

Read Cycle

3

1st & 2nd
Data

Words

3rd & 4th
Data

 Words

7

0 0

Figure D2–11. 64-Bit BIU Burst Read — Page Hit (SDRAM to BIU)

64-Bit Burst Read — Page Miss

The read operation begins with a PALL cycle, followed by two ACTV cycles and a
read cycle. –SCS[3:0] is set to 0x0000 during the PALL cycle (cycle 0) to precharge all
memory banks. The row address and bank select are asserted on the address lines during
the first ACTV cycle (cycle 4). During cycle 7 second ACTV command is asserted with
row address and other bank select on the address lines. The RD command is asserted
during cycle 8 to start the read cycle.

The rest of the operation is similar to the 64-bit burst read hit case. Figure D2-15 shows
timing for a 64-bit burst read with page miss.

Figure D2-16 shows timing for six words read from 64-bit mode where the first three
words were read from one page and the last three words were read from a different
page.

D2.4.4 Read-Modify-Write, byte and half-word —
Page Hit

The operation begins with a valid column address on the address lines. The RD
command is asserted during cycle 0 to start the read cycle. SDQM[1:0] is set during
cycle 1 to either 0x01 to mask the upper word (D[63:32]) and read the lower word
(D[31:0]), or to 0x10 to read the upper word and mask the lower word. The data is
asserted on the data bus three cycles later, during cycle 3. SDQM[1:0] is set to 0x11
during cycles 2-4 to disable the SDRAM drivers during cycles 4-6.

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-25

C
LK

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

A
D

R
[3

1:
2]

S
D

Q
M

[1
:0

]

D
[6

3:
0]

E

1
0

3
0

1
0

2
3

4
5

6
8

7
9

10
11

12
13

0

3r
d

&
 4

th
D

at
a

W
or

ds

1s
t &

 2
nd

D
at

a
W

or
ds

R
D

A
C

T
V

 C
yc

le
P

A
LL

 C
yc

le

7

00
00

10
8E

00
00

10
8E

00
00

10
8E

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

A
C

T
V

 C
yc

le
(S

E
C

O
N

D
)

C
yc

le
(F

IR
S

T
)

 F
ig

ur
e

D
2–

12
.

64
–B

it
B

IU
 B

ur
st

 R
ea

d–
P

ag
e

M
is

s
(S

D
R

A
M

 to
 B

IU
)

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-26

1

1
2

2

T
hr

ee
 w

or
ds

 r
ea

d
fo

rm
 o

ne
 p

ag
e

PALL Cycle

E
E

E
E

3
3

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z First RD Cycle (Page Miss)

Second Read Cycle (Page Hit)

Third RD Cycle (Page Hit)

First RD Cycle (Page Miss)

ACTV Cycles

Second RD Cycle (Page Hit)

Third RD Cycle (Page Hit)

PALL Cycle

ACTV Cycles

T
hr

ee
 w

or
ds

 r
ea

d
fr

om
 d

iff
er

en
t p

ag
e

C
LK

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

A
D

R
[3

1:
2]

S
D

Q
M

[1
:0

]

D
[6

3:
0]

E

3
1

2

2
2

1
3

3
2

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

E

 Figure D2–13. Three Words SDRAM Read in 64-Bit Mode in One Page Followed by
Three Words SDRAM Read in 64-Bit Mode in Different Page

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-27

The RD command in the SDRAM is aborted when the WR command is issued during
cycle 5. SDQM[1:0] is set during cycle 5 to either 0x01 to mask the upper word
(D[63:32]) and write the lower word (D[31:0]), or to 0x10 to write the upper word and
mask the lower word. The data to be written is asserted on the data bus during the same
cycle (cycle 5). SDQM[1:0] is set to 0x11 during cycles 6-8 to disable SDRAM writes
during these cycles.

Figure D2–17 shows timing for a read-modify-write with page hit.

CLK

SCKE

–SCS[3:0]

–SRAS

–SCAS

–SWE

ADR[31:2]

SDQM[1:0]

D[63:0]

E

23

0 1 2 3 54

Written To SDRAM
Second Data WordFirst Data Word

Read From
SDRAM

RD Cycle

32

ZZZZZZZZZZZZZZZZ

00761082 00001082 00761082

Figure D2–14. Read – Modify – Write – Page Hit

D2.4.5 Read-Modify-Write, Byte, Halfword–Page
Miss

The operation begins with a PALL cycle, followed by two ACTV cycles. –SCS[3:0] is
set to 0x0000 during the PALL cycle (cycle 0) to precharge all memory banks. The row
address and bank select are asserted on the address lines during the first ACTV cycle
(cycle 4). During cycle 7 second ACTV command is asserted with row address and
other bank select on address lines. The RD command is asserted during cycle 8.

The rest of the operation is similar to the read-modify-write page hit case.

D2.4.6 FIFO-DMA-SDRAM Data Transfers
FIFO-DMA-SDRAM data transfers can be single-word transfers, and quad-word
transfers. The SDRAM aligns the source and destination addresses. For single-word
transfers, the addresses are aligned to word boundaries; for quad-word transfers, the
addresses are aligned to quad-word boundaries.

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-28

DMA accesses SDRAM through the SDIU using the standard BIU-SDRAM read and
write operations (see BIU Write Operations and BIU Read Operations in Sections
D2.4.2 and D2.4.3).

D2.4.7 External Bus Master Single-Word Writes to
SDRAM Through the SDIU — Page Miss

An external bus master requests the bus by asserting –BREQ low. The BIU grants the
bus to the bus master by asserting –BGRNT low. The external bus master then asserts
–AS low and, in the same cycle, asserts RD/–WR (low), ADR[31:2], ASI[3:0], and
D[63:0]. The BIU figures out SDRAM access and drives the write signal active for
SDIU. The SDIU initiates the two ACTV cycles, followed by the WR cycle. Data is
written into the SDRAM during the WR cycle.

The SDIU then asserts the ready signal to the BIU which asserts –READYOUT low,
indicating that the SDRAM write is complete. The external bus master then deasserts
–BREQ by pulling it high, and the BIU deasserts –BGRNT during the next cycle by
pulling it high.

Figure D2-18 shows timing for a single-word write by an external bus master.

D2.4.8 External Bus Master Single-Word Reads
From SDRAM Through the SDIU — Page Hit

An external bus master requests the bus by asserting –BREQ low. The BIU grants the
bus to the bus master by asserting –BGRNT low. The external bus master then asserts
–AS low and, in the same cycle, asserts RD/–WR (high), ADR[31:2], and ASI[3:0]. The
BIU figures out SDRAM access and drives the read signal active for SDIU. The SDIU
initiates the RD cycle. The data is asserted by the SDRAM 3 cycles after the RD cycle.

The SDIU then asserts the ready signal to the BIU, which asserts –READYOUT low
and drives data (which was read from the SDRAM) during the same cycle. The external
bus master then deasserts –BREQ by pulling it high. Once –BREQ is deasserted, the
BIU deasserts –BGRNT by pulling it high.

Figure D2-19 shows timing for a single-word read by an external bus master.

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-29

C
LK

–B
R

E
Q

–B
G

R
N

T

–A
S

A
D

R
[3

1:
2]

R
D

/–
W

R

D
[6

3:
0]

–R
D

Y
O

U
T

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

S
D

Q
M

[1
:0

]

7
E

1
2

1
2

3

W
R

 C
yc

le
A

C
T

V
 C

yc
le

(V
A

LI
D

 D
A

TA
)

(F
IR

S
T

)
A

C
T

V
 C

yc
le

(S
E

C
O

N
D

)

00
00

00
05

7
00

00
10

58
00

00
10

58
00

76
10

58

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

F
ig

ur
e

D
2–

15
.

E
xt

er
na

l B
us

 M
as

te
r

S
in

gl
e–

W
or

d
W

rit
e–

P
ag

e
M

is
s

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D2-30

C
LK

–B
R

E
Q

–B
G

R
N

T

–A
S

A
D

R
[3

1:
2]

R
D

/–
W

R

D
[6

3:
0]

–R
D

Y
O

U
T

S
C

K
E

–S
C

S
[3

:0
]

–S
R

A
S

–S
C

A
S

–S
W

E

S
D

Q
M

[1
:0

]

7
E

2
3

2

0
1

2
3

5
4

6
7

V
al

id
 D

at
a

R
D

 C
yc

le

2
1

8
9

10
11

Z
Z

Z
Z

Z
Z

Z
Z

Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

00
00

10
58

00
76

10
58

00
00

10
58

Figure D2–16. External Bus Master Single–Word Read–Page Hit

SDRAM Interface Unit - SDIU Data Transfer Operations

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D3-1

HAPTER

MB86934 Caches

D3
C

D3.1 Overview of MB86934 Caches
The MB86934 offers enhanced support for cacheing: its instruction cache is 8K-bytes in
size, and has 8-word lines. (The corresponding values for the MB86930 are 2K-bytes
and 4-word lines.) The data cache of the MB86934 remains the same as the MB86930’s
at 2K-bytes and 4-word lines. The increased instruction cache size is reflected in a new
format for the Instruction Cache Tag, which has four new “valid” bits to control the
four new words per cache line (the other four valid bits remain in the same positions
they occupy in the I_Cache Tag in the MB86930, making for backward compatibility).

D3.2 Programmer’s Model
The cache control/status registers of the MB86934 form a superset of those in the
MB86930. The registers common to the two chips are as follows:

Table D3–1. Control / Status Registers

0x00000000 ASI=0x1 Cache/BIU Control Register

0x00000004 ASI=0x1 Lock Control Register

0x00000008 ASI=0x1 Lock Control Save Register

0x0000000C ASI=0x1 Cache Status Register

0x00000010 ASI=0x1 Restore Lock Control Register

 Caches - Overview of MB86934 Caches

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-2

To this set (all in the ASI=0x01 space) the MB86934 adds two Instruction_Cache_
Invalidate Registers, one for each bank of the instruction cache, and two Data_Cache_
Invalidate Registers, one for each bank of the data cache. All four are write-only; their
format is shown below.

Bank 1 of the instruction cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000 both in ASI space
0x0C. Bank 1 of the data cache is controlled by the register at address 0x00001000,
while bank 2 is controlled by the register at address 0x80001000, both in ASI space
0x0E.

Invalidating the cache, and clearing lock and lru bits, is an easy way to remove old
code/data from the caches when a new page is brought into physical memory, or after a
DMA has been made to cacheable locations in main memory. Clearing only the lock
and lru bits is an easy way to allow locked code to be replaced after use. Note that the
invalidate bits are written during the M stage of the instruction; thus, their effect is not
felt until the fourth instruction after the instruction that writes to these registers.

31

I1 (All lock and lru bits of bank 2 are cleared=1, RST=0)

02

reserved

1

I2 (All valid bits of bank 1 of the cache are cleared=1, RST=0) Instruction cache addresses:
 Bank 1, Address: 0x00001000 (ASI=0x0C)
 Bank 2, Address: 0x80001000 (ASI=0x0C)
 Data cache addresses:
 Bank 1, Address: 0x00001000 (ASI=0x0E)
 Bank 2, Address: 0x80001000 (ASI=0x0E)

Figure D3–1. Cache Invalidate Register Format

D3.2.1 Operation of the Instruction Cache
At reset the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing stores to an
alternate address space 0x0C. When the cache is off, all requests are sent to the external
memory. After the cache is initialized, the user writes a 1 to the cache-on bit to turn on
the cache.

D3.2.2 Operation of the Data Cache
At reset, the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 0.
Initialization of the cache to particular values can be done by doing writes to alternate
address space 0x0E. When the cache is off, all requests are sent to the external memory.
After the cache is initialized, the user writes a 1 to the cache-on bit to enable the
caches.

Accesses to the ASI’s corresponding to user and supervisor data space are cached. No
loads or stores from any other ASI are cached.

MB86934 Caches - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-3

D3.3 Internal Architecture of MB86934 Caches
Figure D3-3 shows cache operation (in the example shown, the Instruction Cache):

Part of Address Compared With the Tag

111231 045

Tag
Bank 1

I_tag Array I_cache Array

8k, 2-way

Tag
Bank 2 Bank 1 Bank 2

to IU

MUX

I_cache hit/miss

= ? = ?

31 12

Figure D3–2. Cache Operation

D3.3.1 Instruction Cache
The instruction cache is an 8K-byte, 2-way associative, sectored cache, with 8-word
lines. The basic operation of the cache is as follows: the IU sends the address to the
I_cache, and I_cache tags. The lower 12 bits of the address are used to access the tag
array and the I_cache. The tag read from the tag array is compared to bits 31-12 of the
address to determine hit or miss.

31 0

Compared vs I_cache Tag

1241112 5

WLine #

 Figure D3–3. Address to I_cache and Tag Array

The address coming out of the IU goes to the I_cache and tags. Bits 31-12 go to the tag
array for comparison. Bits 11-5 select two tags (one for each bank) out of the 256-entry
tag array, and also choose two lines (one for each bank) out of the 8K I_cache. Bits 4-2
select a word out of the 8-word line.

The instruction cache tag format is shown below. Twenty bits make up the address tag.
Four bits, 9-6, are Valid bits for four of the words of the 8-word line. These bits are in
the same location as the valid bits of the MB89630 I_cache tag array. Four additional

MB86934 Caches - Internal Architecture of MB86934 Caches

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-4

Valid bits have been added for the other four words of the 8-word line. Bit 5 is used to
indicate whether the line can be accessed by supervisor only. Bit 1 is the least-recently
used bit, which is used when doing a line replacement in the I_cache. Note that because
of the increase in cache size and line size, the tag format of the MB86934 differs from
that of the MB86930.

How the valid bits in a tag correspond to the words in the corresponding line is shown
below:

Word Address [4:2] 000 001 010 011 100 101 110 111

Valid Bit Location 6 7 8 9 2 3 4 10

31 0

I_cache Tag

12491112 6 5

Old
Valid bits

unused

New Valid bit

Lock bit

Supervisor-Only bit

Least-Recently Used bit

10

New
Valid bits

Note: Only tags for set 2 have LRU bit.

Figure D3–4. I_cache Tag Format

Note that any access that competes with a currently locked entry in the cache is treated
as non-cacheable. In addition to the lock bits in the tag array, there is a global cache
lock bit for each of the caches. Whenever these global lock bits are set, all accesses that
do not result in a hit in the cache are treated as non-cacheable.

Writes to the instruction address space are not supported. The tag and instruction
memory can be updated by doing writes to alternate address spaces 0x0C and 0x0D.

MB86934 Caches - Internal Achitecture of MB86934 Caches

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-5

D3.3.2 Read Hit

On an instruction fetch, the tag and the instruction are accessed in parallel, using the
lower 12 bits of the address. If bits 31-12 of the address match one of the accessed tags,
and the U/S fields match, and the “valid” bit corresponding to the word being accessed
is set, then the required instruction is in the cache. The instruction is returned to the IU,
and the LRU bit is updated. The lock bit may be updated, based on the value of the
Instruction lock bit in the “lock control register.”

D3.3.3 Miss Processing

If the address field in the tag does not match the address bits (31-12) or the U/S bit does
not correspond to the ASI indicated by the IU, or the corresponding “valid” bit is not
set, the result is a cache miss. In this case, the “hold” signal to the IU, and the “miss”
signal, are asserted. This freezes the IU pipeline. The request is sent to external memory
via the BIU.

If the address field in the tag matches the address bits (31-12), and the U/S bit
corresponds to the ASI indicated by the IU, and at least one of the valid bits is set (but
the valid bit for the requested word is not set), it implies that an entry has already been
allocated for this word. There is no need to select an entry to be replaced.

If the miss is due to the address field in the tag not matching the address bits (31-12), or
the U/S bit does not correspond to the ASI indicated by the IU, or none of the valid bits
is set, then an entry needs to be selected for replacement (or allocation). The LRU bit
for this entry is checked, and the least-recently used entry is chosen to be replaced (or
allocated).

The entry that is chosen for replacement will also depend on the “lock” bits. Consider
two sets, A and B. If the lock bit for a given entry in A is set, and the corresponding bit
of B is clear, then the entry in B will be replaced regardless of the value of the LRU bit.
The LRU bit will be updated to show the entry in A to be the least-recently used. If the
lock bit for both entries, or the lock bit for the whole cache, is set, then the access will
be treated as a non-cacheable access.

In the case of an instruction fetch, when the required instruction is accessed from main
memory, it is returned to the IU and stored in the cache. The “hold” signal freezing the IU
is deasserted. If a line was replaced or allocated because of the cache miss, the valid bit for
the accessed word is set, and the other valid bits are reset. If the word being accessed is
part of an already allocated line, then only the “valid” bit for the accessed word is set. All
other bits remain unchanged. The lock bit may also be updated based on the value of the
Instruction lock bit in the “lock control register.”

MB86934 Caches - Internal Architecture of MB86934 Caches

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-6

D3.3.4 Data Cache

The data cache is a 2K-byte, 2-way associative, sectored cache, with 4-word lines. The
basic operation of the cache is as follows: the IU sends the address to the D_cache, and
D_cache tags. The lower 12 bits of the address are used to access the tag array and the
D_cache. Once this is completed, the tag read from the tag array is compared to bits
31-10 of the address to determine hit or miss.

Bits 31-10 of the address go to the tag array for comparison. Bits 9-4 select two tags
(one for each bank) out of the 128-entry tag array, and also choose two lines (one for
each bank) out of the 2K D_cache. Bits 3-2 select a word out of the 4-word line.

31 0

Compared vs D_cache Tag

124910 3

WLine #

Figure D3–5. Address to D_cache and Tag Array

The data cache tag format is shown below. Twenty-two bits make up the address tag.
Four bits, 9-6, are valid bits for each word of a D_cache line. Bit 5 is used to indicate
whether the line can be accessed by supervisor only. Bit 1 is the least-recently used bit,
which is used when doing a line replacement in the D_cache. Finally, bit 0 is used to
lock the entry into the cache. Note that this format is identical to that of the MB86930.

31 0

D_cache Tag

126910 5

unusedValid

4

U/S bit

Least-Recently Used bit

Lock bit

Note: Only tags for set 2 have LRU bit.

Figure D3–6. D_cache Tag Format

The data cache follows a write-through update policy. On a write hit, the data is written
to both the cache and main memory. If there is a write miss, the data is written only to
the external memory. A different write policy is followed if the write is to a locked
location.

The lock bit in the data cache has the effect of locking the current data in the cache.
Any access that does not result in a hit in the cache, and maps to a location that is
currently locked, is treated as non-cacheable. Any writes to locked data cache entries
are not written to main memory. Only the data in the cache is updated.

MB86934 Caches - Internal Achitecture of MB86934 Caches

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D3-7

D3.3.5 Read Hit

On a load, the tag and the data are accessed in parallel, using the lower 12 bits of the
address. If bits 31-10 of the address field coming from the IU match the tag, and the
U/S bit corresponds to the ASI indicated by the IU, and the “valid” bit corresponding to
the word being accessed is set, then the required data is in the cache. Since a hit is
detected, the data is returned to the IU, and the “hold” signal to the IU is not asserted.
The LRU bit is updated. The lock bit may be updated, based on the value of the Data
lock bit in the “lock control register.” There is a 64-bit data path between the cache and
the FPU.

D3.3.6 Write Hit

On a store, if a hit is detected, the IU hold signal is not asserted. The LRU bit is
updated. The lock bit may be updated, depending on the value of the Data lock bit in
the “lock control register.” If the lock bit for this entry is not set, or the Data lock bit in
the “lock control register” does not indicate that the entry is to be locked, then the
transaction is also sent to the BIU to be completed in external memory.

D3.3.7 Miss Processing

If the address field in the tag does not match the address bits (31-10) coming from the
IU, or the U/S bit does not correspond to the ASI indicated by the IU, or the corre-
sponding “valid” bit is not set, the result is a cache miss.

In the case of a write miss, the cache is left unchanged, and the request is sent to the
BIU to be completed in external memory.

A read miss is processed in exactly the same way as a miss for an instruction fetch,
except that the lock bit may be updated depending on the value of the Data lock bit in
the “lock control register.”

D3.3.8 Atomic Load and Store

All atomic load and store transactions are treated as non-cacheable transactions.

MB86934 Caches - Internal Architecture of MB86934 Caches

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D4-1

HAPTER

MB86934 DMA

D4
C

D4.1 Overview
The Direct Memory Access Controller (DMAC) module provides high-speed memory-
to-memory and memory-to-peripheral data transfers. The DMAC executes independent-
ly of the CPU, making it possible for the processor to execute from cache while DMA
transfers are taking place. The DMAC operates on physical addresses.

The DMAC supports two independent DMA channels concurrently. It supports byte,
half-word, word and quad-word transfers. The DMA mechanism provides three
different methods of performing DMA transfers: Single transfer, Demand transfer, and
Block transfer. Single transfer and Demand transfer use the DMA request (–DREQ) and
DMA acknowledge (–DACK) signals to synchronize transfers with external devices.
Block transfers do not use –DREQ and –DACK, they are typically used to transfer data
from memory to memory.

“Fly-by” transfer mode is supported for high speed DMA transfers. In this mode, a
single bus transaction transfers the data from source to destination. “Flow-Thru”
transfer mode is also supported. In this mode, two bus transactions, a read followed by a
write, need to be performed to complete the transfer of data from source to destination.

The DMA channels can be configured to perform a single buffer transfer, or to operate
in the buffer-chaining mode. The buffer-chaining mode is provided to simplify
operations such as scatter/gather. In this mode, the DMAC is configured with a series of
descriptors in memory. Each descriptor describes a single buffer transfer, which is part
of the complete DMA transfer.

MB86934 DMA - Overview

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-2

The two figures that follow give, respectively, an overall picture of the relationship of
the DMAC to other major functional components of the MB86934, and a detailed
picture of the flow within the DMAC.

DMA Data

DMA Address

–DACK

–EOP

DD Bus

–DREQ

DA Bus

DATA
CACHE

DMAC

IU

BIU

External Data

External Address

Figure D4-1. Relation of DMAC to Other Major Components

MB86934 DMA - Overview

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-3

DD

–EOP/TC

–DREQ

Register
Control

DA ASI

rd wrRegs
Select

ASI Regs

Desc Point Regs

Curr Source Regs

Incrementer

Curr Dest Regs

Read Align

Write Align
eop

–DACK Priority Control

Timing Control

HOLD

Rdy

Mexc

Decrementer

Curr Count Regs

Control Regs

Status Regs

dwrite

dread

Buffer 0 - Buffer 3

D
M

A
 A

S
I

D
M

A
 A

dd
re

ss

D
M

A
 D

at
a

Figure D4-2. DMA Block Diagram

MB86934 DMA - Overview

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-4

D4.2 Programmer’s Model
Table D4-1. DMA Signal Descriptions

Signal Function

–DREQ1 / –DREQ0 DMA REQUEST (I): This input signal indicates that an external device is
requesting DMA transfer. It is an edge-sensitive signal for single transfer,
and a level-sensitive signal for demand transfer.

–DACK1 / –DACK0 DMA ACKNOWLEDGE (O): This output signal is sent to the external
device to acknowledge the DMA request, and is active when the
requesting device is accessed.

–EOP1 / –EOP0 END OF PROCESS (I/O): This pin is used as input when an external
device wants to cause the DMA process to terminate. It functions as
output when the byte count reaches zero. When not active, –EOP output
will be tristated. For signalling the Terminal Count (TC) , –EOP will be
pulled down, and then be pulled up for one cycle. A high impedance
internal pull up is used to hold the signal high when –EOP is tristated. The
–EOP issued by the DMAC can be used as input to the interrupt
controller. If –EOPx is asserted by the external device, channel x will be
disabled. Reprogramming is needed to enable a channel.

D<63:0> DATA BUS (I/O): Bits 31–0 are used for word sized transfers, Bits 31–16
are used for halfword transfers, and only Bits 31–24 are used for Byte
transfers.

Six pins are dedicated to the DMAC, three for each channel. In the table above, the pin
number corresponds to the channel number. For example, the –DREQ0 pin is the
request pin for channel 0.

D4.2.1 DMA Priority
The DMA Priority Bit in the System Support Control Register can be programmed to
indicate whether the DMA is to release the bus for one clock cycle so that the IU can
use it. When this bit is set, the BIU is shared equally between DMA and the IU. If both
units are requesting the bus, they will alternate bus accesses. When this bit is cleared,
the DMA has exclusive use of the bus for as long as DMA is requesting the bus.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-5

D4.2.2 DP/Source/Destination ASI Register

31 8 723 16

Descriptor Pointer ASI Destination ASI

024 15

Source ASI reserved

Address:0x00000180 (DMA0) (ASI = 0x01)
0x000001A0 (DMA1)

Figure D4-4. DP/Source/Destination ASI Register

Bits 31-24: Descriptor Pointer ASI (DP ASI)—ASI of the Descriptor Pointer, a register used in
buffer-chaining mode. It points to the next element of the linked list whose elements
describe the source and destination of the DMA transfer.

Bits 23-16: Source ASI—ASI of the Current Source Address Register, which is described below.

Bits 15-8: Destination ASI (Dest ASI)—ASI of the Current Destination Address Register, which is
described below.

Bits 7-0: Reserved

D4.2.3 Current Source Address Register

31 034 2 1

Data Address for Quadword transfers

Address:0x00000184 (DMA0) (ASI=0x01)
0x000001A4(DMA1)

Data Address for all other transfers

RSVD

RSVD

Figure D4-5. Current Source Address Register

The Current Source Address Register is used to address memory accesses in flyby
mode, and to hold the source data address in flowthru mode. It contains one 30-bit
(31:2) word-aligned address. For byte, halfword, and word transfers, all 30 bits (31:2)
are used; for quadword transfers, only 28 bits (31:4) are used. Bits beyond the current
address field are ignored. The CSA Register value is updated after a transfer in the read
phase has been done, and points to the next location to be transferred. Note that in flyby
mode, a DMA transfer has just one Read/Write phase; in flowthru mode, a DMA
transfer has one read phase, one write phase, and an intervening idle clock cycle.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-6

D4.2.4 Current Destination Address Register

31 034 2 1

Destination Address for Quadword transfers

Address:0x00000188 (DMA0) (ASI=0x01)
0x000001A8 (DMA1)

Destination Address for all other transfers

RSVD

RSVD

Figure D4-6. Current Destination Address Register

The Current Destination Address Register is not used in flyby mode; it holds the
destination data address in flowthru mode. It contains one 30-bit (31:2) word-aligned
address. For byte, halfword, and word transfers, all 30 bits (31:2) are used; for
quadword transfers, only 28 bits (31:4) are used. Bits beyond the current address field
are ignored. The CDA Register value is updated after a transfer in the write phase has
been done.

D4.2.5 Current Byte Count Register

31 0

Address:0x0000018C (DMA0) (ASI=0x01)
0x000001AC (DMA1)

Figure D4-7. Current Byte Count (CBC) Register

The CBC register indicates the number of bytes of data still left to be transmitted. The
value of the data should be programmed to be one less than the actual number of bytes
to be transmitted. For example, to transfer two words, this register should be loaded
with the value “7”. The value will be decremented at the beginning of the DMA transfer
cycle by the number of bytes involved in the transfer, regardless of the unit in terms of
which the transfer is specified (half-word, word, etc.). The Byte Count Register is
updated only in the Read phase, not in the Write phase; it is updated at the beginning of
the transfer.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-7

D4.2.6 Descriptor Pointer Register
31 034 2 1

Address:0x00000190 (DMA0) (ASI=0x01)
0x000001B0 (DMA1)

Descriptor Pointer Register RSVD

Figure D4-8. Descriptor Pointer (DP) Register

Used in Chaining Mode, the descriptor pointer points to the first element in the
linked-list of chaining descriptors. When using buffer-chaining, there is no need to
setup the source address, destination address, or byte count as they are loaded from the
first chaining descriptor.

D4.2.7 Channel Control Register
Bits 31:21 and bit 18 are reserved, should be written 0’s only, and read unknown
values. The entire register is reset to zero. Note that the two channel control registers
are not identical: the HPC and SW bits in the channel 0 register are global, while the
same bits in the channel 1 register are reserved, and read as undefined.

The Channel Priority Switch Mode bit “SW” and the High Priority Channel bit “HPC”
of the channel 0 Control Register determine the priority setup of the DMA Controller.
These two global bits should be programmed only when both channels are disabled.

15 631 8 714 13 9

reserved
(read as 0’s)

5 034 2

DA (On=1, Off=0, RST=0)

SA (On=1, Off=0, RST=0)

EC(On=1, Off=0, RST=0)

RG (On=1, Off=0, RST=0)

Address:0x00000194 (DMA0)
0x000001B4 (DMA1)
(ASI=0x01)

1

HPC (On=1, Off=0, RST=0)

SW (On=1, Off=0, RST=0)

EN (On=1, Off=0, RST=0)

11 101216

SSDS

CM (On=1, Off=0, RST=0)

CWD (On=1, Off=0, RST=0)

CDM (On=1, Off=0, RST=0)

HM (On=1, Off=0, RST=0)

FF (On=1, Off=0, RST=0)
DS (On=1, Off=0, RST=0)

SS (On=1, Off=0, RST=0)

1718192021

DDW (1=64bits, 0=32 bits)

SDW (1=64bits, 0=32 bits)

Extended Burst Size

CWC (see field description)

Figure D4-9. Channel Control Register

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-8

Bits 31-21 Reserved

Bit 20: Destination Data Width (DDW)—Sets the data width of the DMA transfer destination. This
bit should be set to 1 if the DMA destination transfers 64-bit data, and set to 0 if the DMA
destination transfers 32-bit data.

Note:
For flyby data transfers, the source width must be the same as the destination width.

Bit 19: Source Data Width (SDW)—Sets the data width of the DMA transfer source. This bit
should be set to 1 if the DMA source transfers 64-bit data, and set to 0 if the DMA source
transfers 32-bit data.

Note:
For flyby data transfers, the source width must be the same as the destination width.

Bit 18: Extended Burst Size. This bit is used in conjunction with the size bits. If this bit is 0, then
the size bits act normally. If this bit is 1 and a flyby DMA transfer is set up, then the size
bits take on the following meanings:

Size Bits Burst Size
00 8-word (32-bit words)
01 16-word
10 32-word
11 64-word

Note:

In flyby mode, the source-size and destination-size bits should have the same value. Also
note that in the 86934 the only case where extended-burst size can be used is for DMA
between SDRAM and the floating-point FIFOs (the BIU can only support butst up to
4-words). If the bus width is 64 bits, then size 00 corresponds the 4 64–bit words.

Bits 17-16: Chain Wait Count (CWC)—Used in chain-wait mode to set the number of chaining
descriptors that are loaded before entering the chaining-wait state. A value of 0 in this field
causes DMA to wait after each chaining descriptor is fetched. A value of 1 causes DMA to
wait after every other chaining descriptor is fetched. A value of 2 causes DMA to wait after
every three chaining descriptors are fetched. The value 3 is not valid.

EOP is asserted whenever the DMA controller enters the wait state.

Bit 15: High Priority Channel (HPC)—0 if channel 0 has high priority; 1 if channel 1 has high
priority. (The HPC should be programmed to specify the channel that has high priority at
the outset; if SW=1, it will be updated to show the current high-priority channel as the DMA
transfer progresses.) Note that this bit exists only in the channel 0 control register; the
corresponding bit in the channel 1 control register is reserved, and read as undefined.

Bit 10: Chaining Debug Mode (CDM)—0 if assert –EOP only after the whole Chaining transfer, 1 if
assert –EOP after each buffer transfer.

Bit 9: Transfer/Handshake Mode (HM)—0 if Single Transfer, 1 if Demand Transfer. (Applies only
to external request; for internal program request, DMAC supports block transfer
mode only.)

Bit 8: Flyby/Flowthru (FF)—0 if Flyby (single address), 1 if Flowthru (Dual Address).

Bits 7-6: Destination Size (DS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

Bits 5-4: Source Size (SS)—00 if word, 01 if byte, 10 if halfword, 11 if quadword.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-9

Bit 3: Destination Addressing (DA)—0 if increment, 1 if hold.

Bit 2: Source Addressing (SA)—0 if increment, 1 if hold.

Bit 1: External Control Option (EC)—0 if source request, 1 if destination request.

Bit 0: Request Generation (RG)—RG=0 if internal request, 1 if external request.

D4.2.8 Channel Status Register
The channel status can also be accessed through ASR 18 (channel 0) and ASR 19
(channel 1). This allows a program to read and write the DMA status register without
entering supervisor mode.

631 8 79

reserved
(read as 0’s)

5 034 2

CWB (On=1, Off=0, RST=0)

CD (On=1, Off=0, RST=0)

TC (On=1, Off=0, RST=0)

EOP (On=1, Off=0, RST=0)

Address:0x00000198 (DMA0) (ASI=0x01)
0x000001B8 (DMA1)

1

DISDN (On=1, Off=0, RST=0)

CERR (On=1, Off=0, RST=0)

DERR (On=1, Off=0, RST=0)

SERR (On=1, Off=0, RST=0)

DR (On=1, Off=0, RST=0)

Figure D4-10. Channel Status Register

Bits 31-9: This register is shown as having only 9 bits because these bits are reserved, ignored on a
Write, and Read as zero. The entire register is reset to zero.

Bit 8: Disable Done (DISDN)—the user can disable the DMA channel by writing 0 to the Enable
bit of the Control Register. This bit will be set when the channel has been effectively
software-disabled.

Bit 7: Chaining Error on DMA Transfer (CERR)

Bit 6: Destination Error on DMA Transfer (DERR)

Bit 5: Source Error on DMA Transfer (SERR)

Bit 4: DMA Request presented (DR)—A DMA request is pending.

Bit 3: Chaining Wait (CWB)—If the Chaining Wait Mode in the Control Register has been set,
this status bit will be set after each buffer has been transferred. The Chaining Descriptor
fetch will not be executed. After the program redoes the setup for this channel, and clears
this status bit, the DMA will proceed with the new register setup.

Bit 2: Chaining Done (CD)—The whole chain of data buffers have been successfully transferred;
set up in chaining mode.

Bit 1: Terminal Count (TC)—A data buffer has been successfully transferred. It will be set when
termination of transfer is reached for nonchaining mode and chaining debug mode.

Bit 0: End of Process, external (EOP)—Channel transfer stop due to external –EOP signal.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-10

D4.2.9 Channel Initialization
The DMA Control has two transfer modes: 1) Single Buffer Transfer Mode, and 2)
Buffer Chaining Mode. Each mode has its own programming requirements.

To initialize the DMA Channel for Single Buffer Transfer Mode, the user must program
these registers:

• ASI Register

• Current Source Address Register

• Current Destination Address Register

• Current Byte Count Register

• Channel Control Register

After programming these registers, the user writes the start (enable) bit of the Channel
Control Register to enable the Channel.

To initialize the DMA Channel for Buffer Chaining Mode, the user must program only
the Descriptor-pointer, the ASI register, and the Channel Control register. The values
for the address registers and the Current Byte Count Register will be loaded from the
chaining descriptor. In DMA chaining mode, the chaining descriptors are loaded before
the DMA actually starts. After the channel is enabled, it will perform five read cycles to
load the first chaining buffer. Next, the actual DMA will occur. When the DMA
completes (transfer count reaches –1), if the most recently loaded descriptor-pointer
(DP) is not zero, the next chaining descriptor will be loaded. If the last DP loaded was
zero, then that buffer was the last in the chain.

After each chaining-descriptor load and DMA transfer operation, the chain-wait counter
decrements. If chain-wait mode is enabled and this counter reaches –1, EOP will be
asserted and the DMAC will suspend itself until the chaining-wait bit in the status
register is cleared. While the DMAC is suspended, any of the registers can be safely
inspected or modified before re-activating the channel.

When Terminal Count (TC) happens, the DMA will load the chaining information
pointed to by the DP, and the DMA process continues. An external –EOP will disable
the channel.

In chaining mode, whether block or demand transfers are being carried out, a channel
that has reached TC will load the chaining block descriptor, and the DMA Controller
will see if a request from the high priority channel is outstanding. If it is, the DMAC
will suspend the next transfer of the present sequence, and release the bus to the high
priority channel. For example: assume that priority switching mode is in effect;
channel 0, the original high priority channel, is in chaining mode; and channel 1 is in
reprogramming mode. If both channels get –DREQ asserted, channel 0 will be serviced
first. When TC is reached, DMAC will load the information for the next transfer block;
the outstanding request from channel 1 will be noted, and—because channel 1 is the
high priority channel—its request will be serviced now.

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-11

D4.2.10 Buffer Chaining Data Structure
Each chaining–descriptor consists of 5 32–bit words. These words are loaded directly
into the DMA registers from memory and are formatted exactly like the corresponding
DMA registers.

• PSDASI (Descriptor, Source, and Destination ASI)

• SA (Source Address)

• DA (Destination Address)

• BC (Byte Count)

• NPTR (Next Buffer Descriptor Pointer); a NULL pointer, 0000, indicates the end of
the block buffer list.

D4.2.11 DMA Initiation
DMA operations can be initiated by either software request or hardware request. A
software request is made by clearing the Request Generation bit and setting the DMA
Enable bit. A hardware request is made by setting the Request Generation bit and the
DMA Enable bit, and then causing the assertion of an external –DREQ.

When the CPU clears the Request Generation bit and sets the DMA Enable bit, the
software-initiated DMA starts immediately. A hardware request is started only when
–DREQ is asserted while the DMA Enable bit is set. –DREQ is edge-sensitive for
Single Transfer Mode, level-sensitive for Demand Transfer Mode. For Demand Mode
to complete a whole buffer block, –DREQ must be asserted until –EOP is asserted.
–EOP can be asserted by the DMA Controller or an external device.

D4.2.12 DMA To/From the Floating-Point FIFO
The DMA controller can directly transfer data between memory and the floating-point
FIFOs. To initialize a FIFO-DMA transfer, set the source address to the address of the
data in memory, and set the destination address to the FIFO address. For DMA from
memory to FIFO, set the DMAC to destination-request mode; and for DMA from FIFO
to memory, set the DMAC to source-request mode.

The FIFO can be used as either a 32-bit wide or a 64-bit wide device, and DMA to and
from the FIFO can occur only in flyby mode. Byte and half-word transfers to and from
the FIFO are not supported.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-12

D4.2.13 DMA To/From the SDRAM
The DMA controller can transfer data to and from the SDRAM in either flyby mode or
flowthru mode. All transfers to or from the SDRAM must be specified as 64-bit wide
data. (In flowthru mode, the SDRAM side of the transfer must be 64 bits wide, but the
other side of the DMA transfer can be any width.)

To initialize the DMA controller for an SDRAM transfer, just initialize the registers as
if you were setting up a memory-to-memory transfer, with either the source or
destination address register pointing into SDRAM space.

For example, to perform a DMA transfer between the FP FIFO and SDRAM, set both
the source and destination width to 64 (in DMA control register), and use flyby transfer
mode. To perform a DMA transfer from DRAM to SDRAM, set the source data width
to 32 bits (DRAM), and the destination data width to 64 bits (SDRAM), and use
flowthru mode.

D4.2.14 Basic DMA Timing
1. For a single transfer, the DMAC will sample –DREQ for the next DMA request

after –DACK is asserted. That is, DMAC will try to detect the edge that signals such
a request; an edge asserted between that which caused the last transfer and the
assertion of –DACK will be ignored. Even if an edge is detected before the DMAC
releases the bus, the DMAC will still release the bus and then request it again.

2. –DACK will toggle during the read or write cycle to enable the peripheral device.
Ready (from BIU) will be used to deassert the –DACK.

3. –DACK is used for handshaking with a peripheral device to deassert the –DREQ for
single transfer mode. –EOP(TC) is used for handshaking with a peripheral device to
deassert the –DREQ for demand transfer mode.

4. TC will be used to enable the reloading of the address/count to the current registers
to initialize the set up for a buffer chaining transfer. External –EOP will disable the
DMAC channel in chaining mode, and leave the state of the channel as it was.

D4.2.15 Error Conditions
Memory Access Exceptions:

• Source Transfer Exception

• Destination Transfer Exception

• Chaining Exception

When an Error condition occurs, the relevant bits in the Status Register will be set up,
and –EOP will be asserted. For example, if a MEXC or external EOP occurs during a
read operation, the source transfer exception bit will be set.

When a memory-exception occurs, –EOP will be asserted one cycle later. This –EOP
can be used as input to the interrupt controller. The –EOP due to a memory exception
can be deasserted by clearing the status bit of the corresponding exception.

MB86934 DMA - Programmer’s Model

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-13

For quad-word transfers, if an exception occurs during the read phase, DMA will still
finish all four reads, but will not go into the write phase. If an exception occurs during
the write phase, DMA will complete all four writes.

For transfers other than quad-word, the DMA will stop immediately after the exception
occurs.

D4.3 External Interface

D4.3.1 Transfer Protocols

Single Transfer Mode

In the Single Transfer Mode, one data entry transfer from source to destination is
performed by the DMAC at a time. The –DREQ input is arbitrated according to the
channel priority decisions made by the user. The channel with the DMA request will
signal the BIU for bus service. After a DMA data entity has been transferred, control of
the bus will be released. Transfers continue in this manner until the Byte Count is
reached, or until external –EOP is found active. Since the –DREQ is edge-sensitive for
single transfers, a –DREQ pulse will cause only one transfer, no matter what its length.
The channel will request the bus for each DMA transfer. Bus control is released
between each transfer and the next. The DMAC will sample the next –DREQ edge for a
DMA transfer request after –DACK is asserted. A new request edge coming before
–DACK has been asserted will be ignored. A timing diagram for single transfer mode is
given below in Figure D4-11. This diagram shows two consecutive DMA transfers. A
sample High and then Low of –DREQ constitutes an edge request for a transfer. The
last block transfer is accompanied by –EOP. –R/W is asserted High in flyby mode for a
destination transfer—that is, one where data will flow from memory—and asserted Low
for a source transfer, where data will flow to memory. In Figure D4-13 below, showing
a quadword transfer taking four data cycles. The last DMA transfer is accompanied by
EOP.

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-14

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure D4-11. Single Transfer, Edge-Sensitive, Flyby (R/–W high)

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure D4-12. Single Transfer, Edge-Sensitive, Flyby (R/–W low)

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-15

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure D4-13. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/–W high)

CLK

–DREQ

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP

Is the sensing edge for –DREQ

Figure D4-14. Single Transfer, Edge-Sensitive, Flyby, Quadword (R/–W low)

Block Transfer Mode

Block transfer is initiated by software request. In this mode, the CPU starts the DMA
action by setting the Start bit of the control register. The transaction will continue until
the Terminal Count (TC) happens, or until –EOP is asserted by the external device.

Block transfer mode can be used for either flowthru or flyby transactions. For flyby
transactions, the DMAC will assert and then deassert the –DACK for each transferred
datum.

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-16

A timing diagram for software-initiated block transfer is shown in Figure D4-15 below.
The timing is the same as that for demand transfer mode, except that the request is set
by software. The transfer will begin two cycles after the channel control register has
been written.

CLK

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

Figure D4-15. Block Transfer, Flyby (R/–W high)

CLK

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

Figure D4-16. Block Transfer, Flyby (R/–W low)

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-17

Demand Transfer Mode

Demand Transfer Mode provides flexible handshaking procedures during the DMA
process. A Demand Transfer is initiated by an external level-sensitive DMA request
(–DREQ). The next request will be sampled after the preceding transfer request has
been completed. The process continues until (a) the external device deasserts the
–DREQ, (b) the byte count (TC) expires, or (c) an external –EOP is encountered. A
timing diagram for demand transfer is shown below in Figure D4-17. When a request
for a demand transfer is made, the DMAC will look at the –DREQ to see if any request
is pending.

CLK

–AS

ADDR

R/–W

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

Figure D4-17. Demand Transfer, Flyby (R/–W high)

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-18

CLK

–AS

ADDR

–DREQ

–DACK

–RDY

DATA

–EOP(TC)

IU asserts the DMA Start Bit

–EOP(Ext)

R/–W

Figure D4-18. Demand Transfer, Flyby (R/–W low)

CLK

–AS

ADDR

R/–W

DACK

–RDY

DATA

IU asserts the DMA Start Bit

–EOP

–DREQ

Figure D4-19. Single Transfer, Edge Sensitive Flow Through, Destination Request

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-19

CLK

–AS

ADDR

R/–W

DACK

–RDY

DATA

IU asserts the DMA Start Bit

–EOP

–DREQ

Figure D4-20. Demand Transfer, Flow Through, Word to Half–Word, Destination
Request

Transfer Addressing

• Flyby—Flyby mode is in effect when the source and destination have the same
width, and flyby mode is enabled. –DACK is used to acknowledge the external
DMA request, and to access the requestor’s data. One bus cycle is needed for a byte,
half-word, or word transfer; four bus cycles are needed for a quad-word flyby
transfer. A single address is needed for this type of bus operation. The R/–W will
signal the direction of data flow; for R/–W=“1”, the data flow is from the memory
counterpart to the requesting device, and for R/–W=”0” it is from the requesting
device to the memory counterpart. Burst sizes of up to 64 words are allowed in
flyby mode.

• Flowthru—For this bus operation, a read sequence is used to obtain the data from
the source, and a write sequence is used to send the data to the destination. During
read, the data will be assembled and put in a Temporary Register. During write, the
data in the Temporary Register will be disassembled and sent to the destination. The
DMA Controller will toggle the –DACK during the read or write session, depending
on whether the External Control Option (EC) is set to Source or Destination
Request. Whichever type of Request is specified by the EC, the other address is
optional; for example, if EC=0 (Source Request), the provision of a destination
address is unnecessary. The programmer can use the –DACK to enable a read or
write to the external device whether the DMA request is internal or external. Burst
sizes of up to 4 words (quad-word) are allowed in flowthru mode.

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-20

Source/Destination Size

The source and destination size can be byte, half-word, word, or quad-word. For flyby
transfer, the source and destination size must be the same. For flowthru mode, if the
source and destination size differ, the DMAC will automatically assemble the data
during read to the bigger of the two sizes, and disassemble the data to the size of the
destination during write. The assembly/disassembly applies only to the byte, half-word,
word, and quad-word sizes.

To take advantage of the burst transfer supported by the BIU, the DMAC offers
quad-word transfers. Quad-word transfers are fastest when both the source and the
destination sizes are quad-word, but the DMAC can support any combination of source
and destination sizes (from byte through quad-word). All transfers must be address-
aligned on their size boundary. For example, if the source size is quad-word and the
destination size is word, then the source address must be quad-word aligned and the
destination address must be word aligned.

The DMAC provides full packing and unpacking for sources and destinations of
differing sizes (in flowthru mode only). The DMAC will never read or write a different
size than what is programmed, so some transfers may be padded with unknown data to
fill out the transfer size. The DMAC can mix any of the flow-thru sizes (byte through
quad-word). The DMAC can also mix any combination of byte-counts for DMA
transfers. If the byte count is less than one transfer unit, the DMAC will always transfer
one full unit and pad the rest of the data with unknown values. For example, if the
DMAC was set up to transfer three bytes from a word size to a byte-size device, the
DMAC would read one word and then write three bytes (ignoring the 4th byte, which
was read as part of the word). In the other direction, if three bytes were to be read from
a byte-wide device and written to a word-wide device, the DMAC would read three
bytes and then write one word to the destination device (the 4th byte would contain
unknown data). It is up to software to allocate a large-enough destination buffer to hold
this extra padding-data.

For consistency with the memory mapping seen by the IU, address (31:2) is used as the
byte address for byte transfers, as the halfword address for halfword transfers, and as
the word address for either word or quad-word transfers.

In single and demand transfer modes, if the source and destination size are not equal
and flowthrough DMA is being used, one active pulse on DREQ will cause the DMA
controller to perform one full read–write cycle. This means that if, for example, the
source size is byte and the destination size is word, when DREQ is asserted, the DMA
controller will immediately perform four reads (reading bytes), and then write one
word. Note also that all four bytes will be expected on the Data bus pins 31:24, and that
the Address pins 31:2 will be incremented after each byte is read (not Address pins
31:0).

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum. Edition 1.0

D4-21

Program/DMA Interaction

The –EOP issued by the DMAC can be used as an input to an interrupt controller.

A chaining wait mechanism is supported, enabling synchronization between the
program and DMA buffer chaining. This chaining wait function provides a way for the
user to modify the channel setup and/or modify the chaining descriptors while a chained
DMA activity is in progress. The user can set the chaining wait function bit in the
Control Register to enable this function. When this bit is set, and a buffer block has
been transferred, the chaining wait bit in the Status Register will be set, and the
corresponding DMA channel will go to chaining wait state, which is equivalent to the
disabled state. The chaining wait bit set in the Control Register will block the loading
of the next descriptor. The user can reprogram the channel, and then reset the chaining
wait in the Status Register to restart the transfer. After the block has been transferred,
–EOP will be issued as an input to the interrupt controller. The interrupt service routine
may modify the channel setup registers and/or the chaining descriptors, and then clear
the chaining wait bit in the Status Register. After the chaining wait bit in the Status
Register has been cleared, the DMAC will start the DMA transfer using the modified
channel setup.

–EOP will be asserted on these conditions:

Single buffer mode: TC (byte count expires)
Error on abnormal read/write transfer.

Chaining mode: If only the chaining mode bit is set,
and the whole chain trans-
fer is completed

Chaining wait function set in Control
Register and the TC (byte
count expires)

Error on abnormal read/write transfer

If chaining debug mode is set in the
control register, –EOP will
be asserted at the end of
each transferred block.

Note: to use chaining wait, the user must set both chaining mode (CM) and chaining
wait mode (CWM) in the control register. To use chaining debug, the user must set both
CM and Chaining Debug Mode (CDM) in the control register.

–EOP can be used to interrupt the CPU, and the interrupt will be serviced based on the
content of the Channel Status Register.

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D4-22

Memory Exception

Memory Exception (MEXC) is asserted by BIU to signal that an error condition was
generated during transfer. The DMA channel will stop the transfer immediately, set up
the relevant bit (Source/Destination/Chaining error) in the DMA channel Status
Register, and assert the –EOP. The –EOP will be deasserted when the memory
exception status bit is cleared by the program. For quad-word transfer (intended for
burst mode), the DMA will finish all four read or write cycles before stopping and
setting up the relevant bit in the Status Register.

MB86934 DMA - External Interface

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D5-1

HAPTER

Floating-Point Unit

D5
C

D5.1 Overview of the MB86934 Floating-Point Unit
The MB86934 FPU fully conforms to the ANSI/IEEE Standard 754-1985, the SPARC
Architecture Version 8 specification, and the SPARC IEEE754 Implementation
Recommendation except for the Nonstandard FP (NS=1) mode implementation.

Quad-precision Floating-Point operations in the MB86934 FPU cause the unimplem-
ented_FPop Trap, and are then emulated in software. Floating-Point operations with
Subnormal Number(s) cause the unfinished_FPop Trap (if NS=0), and are then
emulated in software. The FPU executes all other Floating-Point operations.

The FPU also executes Enhanced Floating-Point operations that are newly defined for
the SPARClite FPU to access the FIFOs. These operations can read operands from the
FIFOs and write their results to the FIFOs instead of the floating-point registers.

D5.2 FPU Data Formats
The MB86934 architecture recognizes three floating-point data formats:

• Floating-Point Single

• Floating-Point Double

• Floating-Point Quad

 Overview of the MB86934 Floating-Point Unit

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-2

The Floating-Point data formats conform to the IEEE Standard for Binary Floating-
Point arithmetic, ANSI/IEEE Standard 754-1985.

Figure D5-1 shows the floating-point data formats and the subwords within each format.
Table D5-1 shows the subformat arrangements in memory, and in the processor
registers. Tables D5-2 through D5-4 define the formats.

Floating-Point Single

S exp[7:0] fraction[22:0]

31 30 23 22 0

Floating-Point Double

S exp[10:0] fraction[51:32]

31 30 20 19 0

fraction[31:0]

31 0

FD-0

FD-1

Floating-Point Quad

S exp[14:0] fraction[111:96]

31 30 16 15 0

fraction[95:64]

31 0

FQ-0

FQ-1

fraction[63:32]

31 0

fraction[31:0]

31 0

FQ-2

FQ-3

Figure D5–1. Data Formats

Floating-Point Unit - FPU Data Formats

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-3

Table D5–1. Doubleword and Quadword Arrangement in Memory and Registers

Sub-Format
Name

Sub-Format
Field

Memory
Address

Alignment

Memory
Address

(byte)

Register
Number

Alignment

Register
Number
(word)

FD-0 s:exp[10:0]:fraction[51:32] 0 mod 8 n 0 mod 2 r

FD-1 fraction[31:0] 4 mod 8 n+4 1 mod 2 r+1

FQ-0 s:exp[14:0]:fraction[111:96] 0 mod 16 n 0 mod 4 r

FQ-1 fraction[95:64] 4 mod 16 n+4 1 mod 4 r+1

FQ-2 fraction[63:32] 8 mod 16 n+8 2 mod 4 r+2

FQ-3 fraction[31:0] 12 mod 16 n+12 3 mod 4 r+3

Table D5–2. Floating-Point Singleword Format Definition

s = sign (1 bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

normalized value (0<e<255): (–1)s x 2e–127 x 1.f

subnormal value (e=0): (–1)s x 2–126 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 255 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 255 (max); f = .1uu – uu

–∞ (negative infinity) s = 1; e = 255 (max); f = .000 –00

+∞ (Positive Infinity) s = 0; e = 255 (max); f = .000 –00

Floating-Point Unit - FPU Data Formats

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-4

Table D5–3. Floating-Point Doubleword Format Definition

s = sign (1 bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

normalized value (0<e< 2047): (–1)s x 2e–1023 x 1.f

subnormal value (e=0): (–1)s x 2–1022 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 2047 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 2047 (max); f = .1uu – uu

–∞ (negative infinity) s = 1; e = 2047 (max); f = .000 – 00

+∞ (Positive Infinity) s = 0; e = 2047 (max); f = .000 – 00

Table D5–4. Floating-Point Quadword Format Definition

s = sign (1 bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

normalized value (0<e<32767): (–1)s x 2e–16383 x 1.f

subnormal value (e=0): (–1)s x 2–16382 x 0.f

zero (e=0): (–1)s x 0

signaling NaN: s = u; e = 32767 (max); f = .0uu – uu
 (At least one bit of the fraction must be nonzero.)

quiet NaN: s = u; e = 32767 (max); f = .1uu – uu

–∞ (negative infinity) s = 1; e = 32767 (max); f = .000 – 00

+∞ (Positive Infinity) s = 0; e = 32767 (max); f = .000 – 00

Floating-Point Unit - FPU Data Formats

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-5

D5.3 FPU Registers
The FPU contains one register and two sets of registers: the Floating-Point State
Register (FSR), the Enhanced f Register Set (f registers and FIFOs), and the Floating-
Point Deferred-Trap Queue (FQ). In addition, three flags in the Processor State Register
(PSR) and the Ancillary State Register 17 (ASR17) enable and disable the FPU and its
FIFOs.

D5.3.1 Floating-Point State Register (FSR)
The Floating-Point State Register (FSR) is the FPU control and status register. The
register contains FPU control and status information.

The FSR is read and written with the STFSR and LDFSR instructions, respectively. The
RD, TEM, NS, fcc, aexc, and cexc fields are readable and writable, but the ver, ftt, and
qne fields are read-only. The qne field is cleared by reset; the ftt field is cleared by reset
and by the STFSR instruction.

31

RD

30 29 28 27 23 22

NSTEM fccres ver qne u

21 20 19 17 16 14 13 12 11 10 9 5 4 0

u ftt aexc cexc

Current
Exception

(Status, R/W)

Accrued
Exception

(Status, R/W)

Floating-Point Condition Codes
(Status, R/W)

Unused

Floating-Point Trap Type
(Status, Read Only, Cleared by Reset)

Version
(Status, Read Only)

Reserved

Nonstandard Floating-Point
(Control, R/W)

Trap Enable Mask
(Control, R/W)

Unused

Rounding Direction
(Control, R/W)

FQ Not Empty
(Status, Read Only)

Figure D5–2. Floating-Point State Register

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-6

Bits 31-30: Rounding Direction (RD) [Control Field, Readable and Writable]

 This field selects the rounding direction for floating-point results according to ANSI/IEEE
Standard 754-1985 as follows:

Table D5–5. Rounding Direction For Floating–Point Results

RD Rounding Direction

0 Nearest (even if tie)

1 Zero

2 + Infinity

3 – Infinity

RD is read and written with the STFSR and LDFSR instructions, respectively.

Bits 29-28: Unused (U)

This field is undefined when read with the STFSR instruction. To ensure future
compatibility, the field should be written 0 when the LDFSR instruction is used.

Bits 27-23: Trap Enable Mask (TEM) [Control Field, Readable and Writable]

This field selectively enables and disables assertion of an fp_exception trap in response to
one or more floating-point exceptions that are indicated in the cexc field of the FSR. A 1 in
the TEM field enables an fp_exception trap for the corresponding floating-point exception;
a 0 disables an fp_exception trap for the corresponding floating-point exception. (See
Section D5.4.3, IEEE 754 Exception, for details).

The TEM field floating-point exception masks are as follows:

Table D5–6. TEM Field Floating–Point Exceptions

Bit Exception

27 NVM

26 OFM

25 UFM

24 DZM

23 NXM

TEM is read and written with the STFSR and LDFSR instructions, respectively.

Bit 22: Nonstandard FP (NS) [Control Bit, Readable and Writable]

This bit sets the FPU in the Nonstandard mode. The Nonstandard mode is also called the
Fast mode and the Abrupt Underflow mode. The other (standard) mode is called IEEE
Underflow mode, or the Gradual Underflow Mode.

When the NS bit is 1, a subnormal (denormalized) floating-point number in each source f
register is considered to be zero by the FPU. The FPU replaces a positive subnormal
operand with +zero, and a negative subnormal operand with –zero. The FPU does not
assert an exception (including inexact (nv) exception) following a replacement, and does
not indicate that a replacement has occurred.

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-7

The FPU does not produce any subnormal numbers as FPop results, even if underflow
occurs. Instead, the FPU outputs the underflow default results (± zero or ± the smallest
normalized number), depending on rounding mode and its sign. Unlike the IEEE 754
underflow handling, this underflow handling maintains consistency with the overflow
handling. (See Section D5.5.2, Overflow, Underflow, and Inexact, for details.)

When the NS bit is 0, subnormal (denormalized) floating-point operand(s) or result(s)
invoke the unfinished_FPop trap. The FPop is emulated in software to conform to
ANSI/IEEE Standard 754-1985. (See Section D5.5.4, Emulation for Subnormal Number,
Invoked by the Unfinished_FPop Trap, for details.)

NS is read and written with the STFSR and LDFSR instructions, respectively.

Programming Notes:

(1) The NS bit does not affect the FMOVs, FNEGs, FABSs, STfp, or LDfp instructions.
These instructions are not affected by the precision type (single, double, or quad) or
numbers (NaN, Zero, Subnormal Number, etc.). They just transfer contents as data
between f registers or between an f register and memory whether the NS bit is 1 or
0. Therefore, they never raise any fp_exception, and they never have a subnormal
number replaced by zero.

(2) The NS bit is defined as implementation-dependent in the SPARC Architecture
Manual (Version 8). This definition is only for SPARClite. Other SPARC devices may
have other definitions. (The SPARClite definition of the NS bit is not the same as the
definition given in the SPARC IEEE 754 Implementation Recommendation section of
the SPARC V8 manual.)

Bits 21-20: Reserved

This field reads 0 when read with the STFSR instruction. To ensure future compatibility,
the field should be written 0 when the LDFSR instruction is used.

Bits 19-17: Version (ver) [Status Field, Read Only]

This field Identifies the FPU version. The MB86934 FPU version is 6. The ver field can be
read with the STFSR instruction, but is not affected by the LDFSR instruction.

Programming Note:

Software identifies the FPU as belonging to the SPARClite MB86934 processor by
reading “0” in the PSR implementation (impl) field (identifies Fujitsu Microelectronics,
Inc. implementation), by reading “6” the PSR version (ver) field (identifies processor
as MB86934), and by reading “6” in the FSR version field (identifies the FPU
version).

Bits 16-14: Floating-Point Trap Type (ftt) [Status Field, Read Only]

This field identifies the floating-point exception trap types. The ftt field is a read-only field
that identifies the type of floating-point exception that occurs as follows (see Section
D5.4.2, Floating-Point Exception Trap Types, for details):

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-8

Table D5–7. Floating–Point Exception Trap Types

ftt Trap Type

0 none

1 IEEE_754_exception

2 unfinished_FPop

3 unimplemented_FPop

4 sequence_error

5 hardware_error (not implemented in the MB86934)

6 invalid_fp_register

7 reserved

The ftt field can be read with the STFSR instruction. Reset, execution of the STFSR
instruction, and execution of an FPop with no floating-point exceptions clear the ftt field.
The LDFSR instruction does not affect ftt.

 Programming Note:

The SPARC Architecture Manual (Version 8) specifies that clearing of the ftt field to 0
following execution of the STFSR instruction is implementation-dependent. The
MB86934 FPU clears the ftt field following execution of the STFSR instruction, but
other SPARC FPUs may not.

Bit 13: FQ Not Empty (qne) [Status Bit, Read Only]

This bit indicates whether the floating-point deferred-trap queue (FQ) contains any FPop
instruction. If qne=0, the FQ is empty; if qne=1, the FQ is not empty. Reset and execution
of successive STDFQ instructions empties the FQ, resulting in qne=0.

The qne bit can be read with the STFSR instruction. The LDFSR instruction does not affect
qne.

Bit 12: Unused (u) - This bit is undefined when read with the STFSR instruction. To ensure future
compatibility, the bit should be written 0 when the LDFSR instruction is used.

Bits 11-10: FP Condition Codes (fcc) [Status Field, Readable and Writable]

The fcc field is updated only by a floating-point compare instruction such as FCMP, CMPE,
EFCMP, and EFCMPE as follows:

Table D5–8. Floating–Point Compare Instruction

fcc Relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)

 If either frs1 or frs2 is a signaling NaN (SNaN) or a quiet NaN (QNaN), the fcc field
becomes 3 (unordered).The fcc field is unchanged if a floating-point compare instruction
generates any fp_exception.

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-9

The FBfcc instruction bases its control transfer on the fcc field.The field can be read and
written with the STFSR and LDFSR instructions, respectively.

Programming Note:

The FBfcc instruction can branch based on the fcc field which was changed by the
STFSR, not by FCMP instructions. In the MB86934 FPU, the STFSR can be
followed by the FBfcc without any instructions between. However, other SPARC
FPUs may require three instructions between the STFSR and the FBfcc.

Similarly, the SPARClite FPU does not require any instructions between the
FCMP/FCMPE/EFCMP/EFCMPE instructions and a following FBfcc, but some
SPARC FPUs require one non-FPop2 instruction between these instructions.

Bits 9-5: Accrued Exception (aexc) [Status Field, Readable and Writable]

This field accumulates IEEE_754 floating-point exceptions that occur while their traps are
disabled using the TEM field as follows:

Table D5–9. Floating–Point Exceptions During Trap Disable

FSR bit Exception

5 nxa

6 dza

7 ufa

8 ofa

9 nva

 The aexc field is unchanged if an FPop generates an IEEE_754_exception trap or other
fp_exception trap.

 After an FPop is executed without any fp_exception traps except an IEEE_754_exception
trap, the TEM and cexc field are logically ANDed together. If the result is nonzero, an
IEEE_754_exceptions trap is generated; otherwise, the new cexc field is ORed into the
aexc field.

 The aexc field is read and written with the STFSR and LDFSR instructions, respectively.
(See Section D5.4.3, IEEE 754 Exception, for details.)

Bits 4-0: Current Exception (cexc) [Status Field, Readable and Writable]

This field identifies IEEE_754 floating-point exceptions that were generated by the most
recently executed FPop instruction as follows:

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-10

Table D5–10. Floating–Point Exceptions Generated By FPop Instruction

FSR bit Exception

0 nxc

1 dzc

2 ufc

3 ofc

4 nvc

The cexc field is updated either when an FPop is completed without a trap, or when an
FPop causes an IEEE_754_exception trap. Only one IEEE_754 exception is selected for
the IEEE_754_exception trap; i.e., only one bit in the cexc field becomes 1, and the rest
become 0’s. The cexc field is unchanged if an FPop generates an fp_exception trap except
the IEEE_754_exception trap.

The cexc field is read and written with the STFSR and LDFSR instructions, respectively.
(See Section D5.4.3, IEEE 754 Exception, for details.)

Programming Note:

The cexc field can be changed with the STFSR instruction. However, this change
does not generate new fp_exception traps. The cexc is evaluated for fp_exception
traps only when an FPop is executed; not when an STFSR is executed.

D5.3.2 Enhanced Register Set (f Registers and
FIFOs)

The MB86934 FPU contains thirty-two 32-bit floating-point f registers that are
designated f[0] to f[31]. The FPU f registers are not windowed as are the IU r registers.
Each floating-point instruction therefore has access to all 32 f registers. The f registers
can be read and written with FPop instructions and with load/store floating-point
instructions (particularly LDF, LDDF, STF, and STDF).

 The FPU also features six vector-type f registers called FIFOs or vector registers. The
FIFOs are mapped to f[20], f[22], f[24], f[26], f[28], and f[30]. They can be read and
written with the single/double-precision Enhanced-FPop instructions, which are newly
defined to access the FIFOs in SPARClite processors.

Table D5-11 shows FPU f register and FIFO access. Note that when accessing f[20],
f[22], f[24], f[26], f[28], and f[30], the FPop instructions access f registers, and the
Enhanced FPop instructions access the FIFO.

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-11

Table D5–11. FPU Register Access

Operand
Location

FPop
Access

EFPop Access

%f0 f Register f Register

%f1 f Register f Register

%f2 f Register f Register

: : :

: : :

%f17 f Register f Register

%f18 f Register f Register

%f19 f Register f Register

%f20 f Register FIFO (vector type f register)

%f21 f Register f Register

%f22 f Register FIFO (vector type f register)

%f23 f Register f Register

%f24 f Register FIFO (vector type f register)

%f25 f Register f Register

%f26 f Register FIFO (vector type f register)

%f27 f Register f Register

%f28 f Register FIFO (vector type f register)

%f29 f Register f Register

%f30 f Register FIFO (vector type f register)

%f31 f Register f Register

f registers

 A single f register, such as f[0] or f[1], can hold one single-precision operand. A
double-precision operand requires an aligned pair of f registers, such as f[0]-f[1] or
f[2]-f[3]. A quad-precision operand requires an aligned quadruple of f registers, such as
f[0]-f[1]-f[2]-f[3] or f[4]-f[5]-f[6]-f[7]. The f registers can therefore hold a maximum of
32 single-precision, 16 double-precision, or 8 quad-precision operands.

The floating-point instructions that access floating-point double-precision data in the
f-registers assume double alignment. The least-significant bit of a double-word f
register number must be zero (i.e., f[0], f[2]...; not f[1], f[3]...). Similarly, the
least-significant two bits of a quad-word f register number must be zeros (i.e., f[0],
f[4]...; not f[1], f[2], f[3], f[5], f[6], f[7]...).

FIFOs

Each of the six FIFOs is 32 bits wide and 64 words deep. Each FIFO has a pointer, and
a depth register. The FIFO pointer contains the byte address of the next word in the

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-12

FIFO that is to be accessed. The depth register contains the byte address of the last
word in the FIFO that can be accessed.

Figure D5–3 shows the format of the FIFO pointer register and the FIFO depth register.
Bits 7 through 2 of the registers are implemented, but Bits 31 through 8, and Bits 1
through 0 are not. Those are reserved. If the registers are read, the valus of those bits
are unknown.

31 0

reserved

1278

rsv.word address

 Figure D5–3. FIFO Pointer and Depth Register Format

When single-precision size data (single-word) is accessed with an Enhanced FPop
instruction, the data is transferred to/from the word that is pointed to by the FIFO
pointer. The FIFO pointer then increments by 4 to point to the next word in the FIFO
(see Figure D5-4).

When double-precision size data (double word) is accessed with an Enhanced-FPop
instruction, data bits 63:32 are transferred to/from the word that is pointed to by the
FIFO pointer, then data bits 31:0 are transferred to/from the word that is pointed to by
the FIFO pointer +4. The FIFO pointer then increments by 8 to point to the next double
word in the FIFO.

When the source f registers (frs1 and frs2) of an Enhanced-FPop designate the same
FIFO (e.g., efadds %f30,%f30,%f0), the FIFO is accessed only once, not twice (see
Figure D5-5). As a result, the operands have the same value, and the FIFO’s pointer is
incremented only once (+4 for a single word access, or +8 for a double word access).

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-13

0x00 & 0x04

0x08 & 0x0c

0x10 & 0x14

0x18 & 0x1c

0x20 & 0x24

:

:

:

0xf8 & 0xfc

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24

:

:

0xf8

0xfc

Pointer After Rollover

Pointer After Incrementing

Depth Register for 8 Words

FIFO Maximum Depth

Single–Word Access Double–Word Access

Figure D5–4. FIFO Pointer Operation

The logical depth of each FIFO (i.e., the logical length of each vector register) is
programmable in the range 1 to 64 by writing the required depth into the FIFO Depth
Register. The FIFO Depth Register must be set to the byte address of the last (bottom)
word of the FIFO (i.e., depth_register = (depth - 1) ∗ 4), regardless of the size of access.
For example, if the logical depth of a FIFO is 8 words, the value of the FIFO depth
register must be (8-1) ∗ 4 = 28 = 0x1c; if the logical depth is 64 words, the value of the
FIFO depth register must be (64-1) ∗ 4 = 252 = 0xfc.

Once a FIFO pointer reaches the bottom, the FIFO pointer rolls over to zero for the next
access.

Table D5-12 shows FIFO pointer and depth register addressing. The pointers and the
depth registers of all FIFOs are allocated in the address range 0x00000500 to
0x0000052c in ASI=0x01. They can be read and written with the STA and LDA
instructions, respectively. (FIFO–DMA address cannot be read and written in this
manner. Please see the FIFO–DMA Transfer Section.)

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-14

FIFO State After
Instruction Execution

InstructionFIFO State Before
Instruction Execution

efadds %f30,%f30,%f0
(%f0=[0x11111111]+[0x11111111])

f30 FIFO
0x00 0x11111111
0x04 0x22222222
0x08 0x33333333

f30 FIFO
0x00 0x11111111
0x04 0x22222222
0x08 0x33333333

ptr

efadds %f30,%f28,%f2
(%f2=[0x22222222]+[0x44444444])

f30 FIFO
0x00 0x11111111
0x04 0x22222222
0x08 0x33333333

f30 FIFO
0x00 0x11111111
0x04 0x22222222
0x08 0x33333333

f28 FIFO
0x00 0x44444444
0x04 0x55555555
0x08 0x66666666

f28 FIFO
0x00 0x44444444
0x04 0x55555555
0x08 0x66666666

ptr

ptr
ptr

ptr
ptr

Figure D5–5. FIFO Pointer Operation - Same Register Access

Table D5–12. FIFO Pointer and Depth Register Addressing; also FIFO–DMA Addressing

Pointer Register Address
(ASI = 0x01)

Depth Register Address
(ASI = 0x01)

FIFO–DMA Address
(ASI = 0x01)

FIFO for f20 0x00000500 0x00000518 0x00000530

FIFO for f22 0x00000504 0x0000051C 0x00000534

FIFO for f24 0x00000508 0x00000520 0x00000538

FIFO for f26 0x0000050C 0x00000524 0x0000053c

FIFO for f28 0x00000510 0x00000528 0x00000540

FIFO for f30 0x00000514 0x0000052C 0x00000544

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-15

The following code fragment contains examples of FIFO pointer and depth register
initialization:

set (5-1)*4, %g1 ! FIFO depth is 5 words for single-word access.
set 0x500, %g2 ! FIFO f20 pointer register address is 0x500.
set 0x518, %g3 ! FIFO f20 depth register address is 0x518.
sta %g0,[%g2] 0x1 ! initialize pointer register to 0.
sta %g1,[%g3] 0x1 ! initialize depth register to (5-1)*4.

set (6-1)*4, %g1 ! FIFO depth is 6 words for double-word access.
set 0x504, %g2 ! FIFO f22 pointer register address is 0x504.
set 0x51c, %g3 ! FIFO f22 depth register address is 0x51c.
sta %g0,[%g2] 0x1 ! initialize pointer register to 0.
sta %g1,[%g3] 0x1 ! initialize depth register to (6-1)*4.

Programming Notes:

(1) Both single words and double words can be accessed in the same FIFO.
However, the programmer must maintain consistency in the single-word and
double-word boundaries. The FIFO pointer must be on double-word boundaries
(i.e., pointer[2:0] = 000) for double-word accesses to the FIFO, and must be on
the single-word boundaries (i.e., pointer[1:0] = 00) for the single-word accesses.
Otherwise, the contents of the FIFO may become unknown without warning,
since accesses with inconsistent pointer boundaries do not generate traps.

Similarly, a FIFO’s pointer may become unknown without warning if the
FIFO’s depth register is not on the proper boundary for single or double-word
accesses (e.g., a double-word access to a FIFO with a length of one word
(depth_register==0x00)).

(2) Both read accesses and write accesses to each FIFO are allowed. Since each
FIFO has only one pointer and one depth register, the read accesses and the
write accesses share the same pointer. For this reason, the FIFOs are not true
“first in-first out” queues. However, if read accesses and the write accesses are
not “mixed” in individual vector operations, the FIFOs can be considered “first
in-first out” queues.

FIFO–DMA Transfer

The DMA controller can directly transfer data between the memory and the FIFOs.

Unlike other DMA transfers, in the FIFO–DMA transfer, its direction is controlled by
the External Control Option (EC) bit in the DMA Channel Control Register. If EC=0
(i.e. source request mode), the FIFO becomes the source of the FIFO–DMA transfer. If
EC=1 (i.e. destination request mode), the FIFO becomes the destination of the
FIFO–DMA transfer.

For the FIFO–DMA transfer, the DMA Current Source Address Register is set to the
address of the memory, whether the memory is source or destination. Also, the DMA

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-16

Current Destination Register is set to the FIFO–DMA address (shown in the Table
D5–11, whether the FIFO is source or destination. The Source ASI and Destination ASI
fields in the DMA DP/Source/Destination ASI Register, and some bits in the DMA
Channel Control Register are also set in the same way (i.e. Source==Memory;
Destination==FIFO).

Byte and half–word size transfers to/from the FIFO are not supported. Also, the DMA
transfer to/from the FIFO can occur only in flyby mode. The FIFO can be used as either
a 32-bit or a 64-bit wide data device. If SDRAM is the destination or source of the
FIFO-DMA transfer, the Destination Data Width (DDW) bit and the Source Data Width
(SDW) bit in the DMA Channel Control Register should be set to 1 (i.e. 64-bit wide
data mode / SDRAM mode). If not, both bits should be set to 0 (i.e. 32-bit wide data
mode / non–SDRAM mode).

For details about the DMA function, please refer to the Chapter D4 : DMA of this
manual.

Programming Note:

If the DMA controller and FPU both access the same FIFO simultaneously, the
result is unpredictable. Programming must ensure that each FIFO is exclusively
accessed from the DMA controller and FPU.

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-17

D5.3.3 Floating-Point Deferred-Trap Queue (FQ)
The Floating-Point Deferred-Trap Queue (FQ) is a queue of three double-word entries.
Each entry holds an FPop instruction, and the Program Counter (PC) address from
which it was fetched. The instructions remain in the queue until executed by the FPU,
which can execute the instructions concurrently. When a floating-point trap occurs, the
FQ holds the FPop instructions that are pending completion by the FPU.

The FQ is a first-in-first-out queue. The FPU therefore cannot change the order of
completion of the instructions in the FQ. The number of entries of the FQ is imple-
mentation-dependent, so FQs in other SPARC devices may hold a different number of
entries.

Figure D5-6 illustrates FQ operation. An FPop instruction enters the FQ when
dispatched by the IU to the FPU. The first instruction is stored in the first (front) FQ
entry and remains there until executed. The next instruction is stored in the second FQ
entry if the first instruction has not executed, or in the first FQ entry if the first
instruction has executed. The next instruction is stored in the third FQ entry if neither of
the previous two instructions has executed, in the second entry if only the first
instruction has executed, or in the first entry if both of the preceding instructions have
executed.

The FPop instruction in the first entry exits the FQ when it executes without a
floating-point exception, and the instructions that remain in the queue move up one
entry towards the front of the queue. If the instruction causes a floating-point exception,
it stays in the front entry, other instructions in the FQ do not move toward the front of
the queue, and the FPU changes from the fp_execution state to the fp_exception_pend-
ing state.

When a floating-point exception occurs, the trap handler reads the contents of the FQ
with the Store-Double Floating-Point Queue (STDFQ) instruction, which stores the
contents of the front entry of the FQ into memory. The PC address part of the entry is
stored into memory at the effective address, and the instruction code part of the entry is
stored at the effective address + 4. All remaining instructions move up one entry.

Each instruction exits the FQ when it is stored to memory. When an STDFQ instruction
empties the FQ, the qne bit is cleared to 0. (See Section D5.3.1, Floating-Point State
Register (FSR), for a description of the qne bit.)

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-18

Entry 3 Empty
qne = 0 Entry 2 Empty

Entry 1 Empty

Entry 3 Empty
qne = 1 Entry 2 Empty

Entry 1 FPop_A addr & code (dispatched by IU to FPU)

Entry 3 Empty
qne = 1 Entry 2 FPop_B addr & code (dispatched by IU to FPU)

Entry 1 FPop_A addr & code

Entry 3 FPop_C addr & code (dispatched by IU to FPU)
qne = 1 Entry 2 FPop_B addr & code

Entry 1 FPop_A addr & code

Entry 3 Empty
qne = 1 Entry 2 FPop_C addr & code

Entry 1 FPop_B addr & code
FPop_A addr & code (completed without fp_exception)

Entry 3 Empty
qne = 1 Entry 2 FPop_C addr & code

Entry 1 FPop_B addr & code (completed with fp_exception)

Entry 3 Empty
qne = 1 Entry 2 Empty

Entry 1 FPop_C addr & code
FPop_B addr & code (read by STDFQ instruction)

Entry 3 Empty
qne = 0 Entry 2 Empty

Entry 1 Empty
FPop_C addr & code (read by STDFQ instruction)

qne
State

Entry
Number

FQ
Content

Entry 1 is the front entry.

Figure D5–6. Floating-Point Deferred-Trap Queue Operation

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-19

Programming Note:

The floating-point trap handler uses STDFQ instructions to access the FPop
instructions in the FQ; that is, the instruction in the first FQ entry that caused
the floating-point exception, and the remaining instructions in the FQ that are
pending execution. The handler may emulate the FPops in software, may
re-execute the FPops in the FPU, or may discard the FPops and invoke an error
handler.

If an FPop in the FQ is an Enhanced-FPop that accesses a FIFO as a source
register, the floating-point trap handler must restore the FIFO’s pointer before
re-executing or emulating the FPop because the pointer was increased when that
FPop was dispatched to the FPU by the IU (i.e., when the FPop moved into the
FQ). The floating-point trap handler must therefore check all Enhanced-FPops
in the FQ to see if any FIFOs were read. If a FIFO was read once, the handler
must decrease the FIFO pointer value by 4 for single-word access, or by 8 for
double-word access. The trap handler can then use the FMOV instruction once
for single-word access or twice for double-word access to get the source register
value from the FIFO before it emulates the Enhanced FPop in software.

Unlike the source registers, an FPop destination register is accessed only when
the FPop has completed execution without a floating-point exception.
Therefore, a FIFO’s pointer does not require restoration by the trap handler if
the FIFO is accessed as a destination register.

D5.3.4 EF and EC bit in PSR; EFIFO bit in ASR17
The Enable Floating-Point (EF) bit is Bit 12 of the Processor State Register (PSR). The
Enable_Coprocessor (EC) bit is Bit 13 of the PSR. The Enable_FIFO (EFIFO) bit is
Bit 3 of the Ancillary State Register 17 (ASR17).

Table D5-13 shows the effect of the EF bit state on the FPop, LDfp, STfp, and FBfcc
instructions. When EF = 1, these instructions can be executed. When EF = 0, these
instructions cause the fp_disabled trap, and the FPop1/FPop2 instructions are not
dispatched to the FPU.

Table D5–13. EF Bit Effect on Instruction Execution

EF Bit State Effect on FPop1/FPop2/LDfp/STfp/FBfcc

0 Causes fp_disabled Trap

1 Executed by the FPU

Floating-Point Unit - FPU Registers

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-20

Table D5-14 shows the effects of the EC, EF, and EFIFO bit states on the EFPop1 and
EFPop2 instructions. When EC = 0, EF = 1, and EFIFO = 1, these instructions can be
executed. If the bits are in other states, these instructions cause the cp_disabled trap,
and the EFPop1/EFPop2 instructions are not dispatched to the FPU.

Table D5–14. EC/EF/EFIFO Bit Effects on Instruction Execution

EC Bit State EF State EFIFO State Effect on EFPop1/EFPop2

0 0 ∗ Causes cp_disabled trap

0 ∗ 0 Causes cp_disabled trap

0 1 1 Executed by FPU

1 ∗ ∗ Causes cp_disabled trap

Although the EF, EC, and EFIFO bits control whether a floating-point instruction is
trapped and whether an FPop instruction is dispatched to the FPU, they do not control
the FPU and FIFO directly. The FPU continues to execute FPop and Enhanced FPop
instructions in the FQ even when the FPU is disabled, and DMA can access the FIFO.

The EFIFO bit is cleared by the reset, so software begins execution with the FIFOs
disabled (i.e., without the FIFOs). From the configuration point of view, this initial
mode can be considered the IU+FPU mode. When the EFIFO bit is set to 1, the new
mode can be considered the IU+FPU+FIFO mode.

Programming Notes:

(1) An Operating System (OS) can use the EF bit to determine whether a particular
process uses the FPU. If a process does not use the FPU, the FPU registers
(f-reg/FIFO/FSR/FQ) do not have to be saved and restored across context
switches. The OS just sets the EF bit to 0, and switches to the process.

If the next process uses the FPU, the OS must wait until the FPU finishes all
instructions in the FQ. The STFSR instruction can be used in this situation
because STFSR waits for completion of all instructions in the FQ before
executing. If one of the instructions in the FQ requests a floating-point trap, the
STFSR is trapped so that the OS can handle the exception before switching the
processes. Once the FQ is empty, the OS saves the 32 f registers and the FSR
for later restoration. The FSR ftt and qne fields are not writable, but both must
be 0 across context switches.

If the process uses FIFOs, the OS must also save information such as pointer,
depth register, data, and/or DMA information for all 6 FIFOs for restoration
later. If the process uses only the FPU and not the FIFOs, the OS does not have
to save the FIFO information.

(2) In the MB86934, the Enhanced-FPop (EFPop) instruction set is mapped over
the object code field of the CPop instruction set (i.e., op=2, op3=0x36 or 0x37).

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-21

Therefore, a program written for the MB86934 should not have CPop
instructions.

D5.4 Floating-Point Traps and FPU States
This section describes traps associated with floating-point instructions, and the
fp_execute, fp_exception_pending, and fp_exception FPU states.

D5.4.1 Traps Associated with Floating-Point
Instructions

Floating-point instructions consist of FPop (FPop1, FPop2, EFPop1, EFPop2), LDfp
(LDF, LDDF, LDFSR), STfp (STF, STDF, STFSR, STDFQ), and FBfcc instructions.
There are 5 traps associated with the floating-point instructions: fp_disabled trap,
cp_disabled trap, fp_exception trap, mem_address_not_aligned trap, and data_ac-
cess_exception trap.

fp_disabled trap and cp_disabled trap

With certain combinations of the EF, EC, and EFIFO bits, the floating-point instruc-
tions may cause an fp_disabled trap or a cp_disabled trap. (See Section D5.3.4, EF and
EC bit in PSR; EFIFO bit in ASR17, for details.)

fp_exception trap

An fp_exception trap has an IU trap type (tt) of 8, and its priority is 9.

The fp_exception trap also has 6 floating–point trap types (ftt=1 to ftt=6). One of the
trap types, the IEEE_754_exception trap(ftt=1), has 5 exception types: nv, of, uf, dz,
nx. The sequence_error trap (ftt=4) is the precise trap. The rest are the deferred traps.

 deferred fp_exception trap

The IEEE_754_exception (ftt=1), unfinished_FPop (ftt=2), unimplemented_FPop
(ftt=3), and invalid_fp_register (ftt=6) traps can be generated only by an FPop
instruction, not by an LDfp, STfp, or FBfcc instruction. When the dispatched FPop
is completed in the FPU with an fp_exception, the FPU requests the fp_exception
trap to the IU. Such traps are called deferred traps.

The deferred trap request is accepted by the IU when it executes another floating-
point instruction, which is then trapped. An fp_exception trap handler can find the
FPop with the deferred trap request in the front entry of the FQ, which is why the
queue is called the Floating-Point Deferred-Trap Queue (FQ).

precise fp_exception trap

Unlike the deferred traps that can be generated only by FPop instructions, the
sequence_error (ftt=4) trap can be generated by all floating-point instructions except

Floating-Point Unit - Floating-Point Traps and FPU Status

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-22

STF, STDF, and STFSR. The trap is always generated when a floating-point
instruction is in the IU, not in the FPU. As a result, the floating-point instruction
itself is trapped. Such traps are called precise traps. When an FPop instruction is
trapped, it is not dispatched to the FPU.

mem_address_not_aligned and data_access_exception traps

The LDfp and STfp instructions may cause mem_address_not_aligned traps and
data_access_exception traps, as do the LD_integer and ST_integer instructions. (Note
that the LDfp and STfp instructions are executed by the IU, not by the FPU.)

Programming Notes:

(1) In SPARClite, when the LDfp has the data_access_exception trap, its
destination register (f register or FSR) remains unchanged. However, other
SPARC processors may fill the register with a predetermined constant value
(such as all 1’s).

(2) In the SPARC Version 8 specification, it is recommended that the LDDF/STDF
instruction have the fp_exception trap with ftt=6 (invalid_fp_register) when its
operand (frd) is misaligned (i.e., odd number in the frd field). In the MB86934,
however, the LDDF/STDF instruction with misaligned operand does not cause
any traps. The LSB of the frd field of the LDDF/STDF instruction is ignored
(i.e., forced to 0 internally).

Furthermore, the LDD/STD instruction with misaligned operand has no trap in
the MB86934, and the LSB of the frd field is ignored (i.e., forced to 0
internally).

D5.4.2 Floating-Point Exception Trap Types
The Floating-Point Trap Type (ftt 7) is reserved in the SPARC Version 8 specification
for future expansion. The Hardware Error Trap Type (ftt 5) is not implemented in the
MB86934 FPU. The rest of the Floating-Point Trap Types are implemented in the
MB86934, including a new trap type defined in the SPARC Version 8 specification,
ftt 6 (invalid_fp_register).

The MB86934 FPU uses the ftt 2 (unfinished_FPop) trap type to handle subnormal
numbers. (See Section D5.5.4, Emulation for Subnormal Number Invoked by the
Unfinished_FPop Trap, for details.) The FPU also uses the ftt 3 (unimplemented_FPop)
trap type to handle quad precision floating-point operations. (See Section D5.5.5,
Emulation for Quad-precision Operation, Invoked by the Unimplemented_FPop Trap,
for details.)

An FPop instruction may have more than one cause, and each cause is assigned an ftt.
For example, both ftt 2 and ftt 3 apply when an operand of a quad precision FPop
contains a subnormal number, and both ftt 4 and ftt 6 apply when an FPop having an
invalid fp register is executed in the fp exception mode. However, only one ftt can be
asserted in each of these cases.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-23

To resolve these conflicts, each ftt is assigned a unique priority in the FPU, as shown in
Table D5-15. Therefore, when an operand of a quad precision FPop contains a
subnormal number, ftt 3 (unimplemented_FPop) is asserted because it has a higher
priority than ftt 2 (unfinished_FPop); and when an FPop having an invalid fp register is
executed in the fp exception mode, ftt 4 (sequence_error) is asserted because it has a
higher priority than ftt 6 (invalid_fp_register).

Table D5–15. Floating-Point Trap Types

ftt Priority Trap Type Implementation in MB86934 FPU

0 – none no fp_exception trap

1 5 IEEE_754_ exception IEEE 754 exceptions (nv, of, uf, dz, nx)

2 4 unfinished_FPop subnormal number in operand(s) or result

3 3 unimplemented_
FPop

quad-precision floating-point operation

4 1 sequence_error fp instruction in fp exception mode

5 – hardware_error not implemented in the MB86934 FPU

6 2 invalid_fp_register misaligned f register(s) (frs1/frs2/frd)

7 – reserved reserved for future expansion

ftt=1, IEEE_754_exception

An IEEE_754_exception indicates that the FPU had the floating-point exception which
conforms to the ANSI/IEEE Standard 754-1985. The IEEE_754 exception type is
encoded in the cexc field. However, the destination f register, aexc, and fcc are not
affected by the IEEE_754_exception trap.

ftt=2, unfinished_FPop (subnormal number in operand(s) or result)

An unfinished_FPop indicates that the FPU was unable to generate correct results or
exceptions as defined by ANSI/IEEE Standard 754-1985. In the MB86934, this trap
arises when subnormal number(s) are in operand(s) or the result, and when NS=0.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-24

ftt=3, unimplemented_FPop (quad precision floating-point operation)

An unimplemented_FPop indicates that the FPU has decoded an FPop that is not
implemented. This trap arises in the MB86934 when the quad precision floating-point
operation is in the FQ.

Programming Note:

In the case of an unfinished_FPop or unimplemented_FPop floating-point trap type,
software should emulate or re-execute the exception-causing instruction, and update the
FSR and destination f register.

ftt=4, sequence_error

A sequence_error indicates abnormal error conditions in the FPU. It is caused when:

(1) An attempt is made to execute an STDFQ instruction when the floating-point
deferred-trap queue (FQ) is empty.

(2) An attempt is made to execute a floating-point instruction (such as FPop, LDfp,
and FBfcc; except STfp) when the FPU is in the fp_exception state.

ftt=5, hardware_error (not implemented in the MB86934 FPU)

A hardware_error indicates that the FPU has detected a catastrophic internal error, such
as an illegal state or a parity error during an f register access.

Programming Note:

If a sequence_error or hardware_error occurs during execution of user code, it
may not be possible to recover sufficient state information to continue
execution of the user application.

ftt=6, invalid_fp_register

An invalid_fp_register indicates that one or more register(s) of an FPop is (are)
misaligned; i.e., a double-precision register number is not 0 mod 2, or a quadruple-
precision register number is not 0 mod 4.

Programming Note:

This ftt is newly-defined in the SPARC Version 8 specification. The MB86934
FPU supports it. However, other SPARC processors may generate an
illegal_instruction trap instead.

ftt=7, reserved

The Floating-Point Trap Type 7 is reserved for future expansion.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-25

D5.4.3 IEEE 754 Exception
The IEEE 754 exception has five exception types: invalid, overflow, underflow,
division-by-zero, and inexact. Figure D5-7 shows the FSR fields affected by the
exceptions, which are generated as follows:

invalid (nv) exception [cexc.nvc, aexc.nva, TEM.NVM]:

An operand is improper for the operation to be performed. For example, (0/0), and
(infinity-infinity) are invalid. 1=invalid, 0=valid.

overflow (of) exception [cexc.ofc, aexc.ofa, TEM.OFM]:

The infinitely precise correct result is larger in magnitude than the largest normalized
number in the specified format, and smaller in magnitude than infinity. 1:overflow,
0:no overflow.

underflow (uf) exception [cexc.ufc, aexc.ufa, TEM.UFM]:

If NS=1: The infinitely precise correct result is smaller in magnitude than the smallest
normalized number in the indicated format, and larger in magnitude than zero.

If NS=0 and UFM=1: The nonzero result is tiny. Tininess may be detected before or
after rounding.

If NS=0 and UFM=0: The nonzero result is tiny, and a loss of accuracy occurs. Tininess
may be detected before or after rounding. Loss of accuracy may be either a denormal-
ization loss, or an inexact result. 1:underflow, 0:no underflow. (See Section D5.5.4,
Emulation for Subnormal Number, Invoked by the Unfinished_FPop Trap for details.)

division-by-zero (dz) exception [cexc.dzc, aexc.dza, TEM.DZM]:

X/0, where X is subnormal or normalized. Note that 0/0 does not set the dz bit.
1:division-by-zero, 0:no division-by-zero.

inexact (nx) exception: [cexc.nxc, aexc.nxa, TEM.NXM]

The rounded result of an operation differs from the infinitely precise correct result.
1:inexact result, 0:exact result.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-26

27

NVM

26 25 24 23

OFM UFM DZM NXMTrap Enable Mask (TEM) Field

9

nva

8 7 6 5

ofa ufa dza nxa

4

nvc

3 2 1 0

ofc ufc dzc nxc

Accrued Exception (aexc) Field

Current Exception (cexc) Field

Figure D5–7. FSR TEM, aexc, and cexc Fields

When an FPop generates an IEEE 754 exception, the FPU behaves as follows;

FPop_generates_IEEE_754_exception
(cexc’=IEEE_754_exception_type(s)_generated_by_the_FPop;
 if (TEM & cexc’)==0
 No_Trap (ftt=0; cexc=cexc’; fcc=fcc_result; aexc=(aexc|cexc’); f[frd]=result);
 else IEEE_754_Exception_Trap (ftt=1; cexc=selected_one_

IEEE_754_exception_type); }

The IEEE 754 exception has multiple exception types in only two cases.

(1) of and nx: whenever the overflow exception arises, the inexact exception also
arises.

(2) uf and nx: whenever the underflow exception arises, the inexact exception also
arises.

Exception: If NS=0 and UFM=1 (tininess, and not loss_of_accuracy), then the
underflow exception arises without the inexact exception.

When an IEEE 754 exception invokes the fp_exception trap, only one IEEE 754
exception type is selected to be 1 in the cexc field, even if the IEEE 754 exception has a
multiple exception type. The selection is based on the value of TEM, and the priority of
each exception type (the priority of uf and of is higher than the priority of nx). (See
Section D5.5.2, Overflow, Underflow, and Inexact, for details.)

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-27

D5.4.4 Floating-Point Trap Handlers

When a floating-point trap occurs, the results are as follows:

(1) The ftt field is updated.

(2) The fcc field is unchanged.

(3) The aexc field is unchanged.

(4) The cexc field is unchanged, except for an IEEE_754_exception. When an
IEEE_754_exeption occurs, the cexc field contains exactly one bit that is 1,
which corresponds to the exception that caused the trap. The remaining bits are
0’s.

(5) The value of the destination f register (frd) is unchanged. If the frd is a FIFO, its
pointer is also unchanged.

(6) If the source f register 1 (frs1) or 2 (frs2) is a FIFO, its pointer was already
increased before the trap occurred, so the pointer is not restored by the FPU
after the trap. However, a floating-point trap handler can restore the value of the
pointer by analyzing the FPop(s) in the FQ.

Programming Note:

If the frs1 (or frs2) of an FPop is a FIFO, its pointer is increased when the IU
dispatches the FPop to the FPU (i.e., when the FPop moves into the FQ). If the
frd of an FPop is a FIFO, its pointer is increased when the FPU completes the
FPop without a trap (i.e., when the FPop moves out of the FQ).

Unlike the frd (not yet accessed), the frs1/frs2 (already accessed) requires
additional work by a floating-point trap handler. First, the trap handler must
read each FPop (particularly Enhanced-FPops) remaining in the FQ after the
trap so that it can determine which FIFO was accessed, when it was accessed,
and how it was accessed (double word or single word access). Next, the trap
handler must determine the current value of each FIFO’s pointer by reading it
directly. With this information the trap handler can identify each data which the
FPop(s) in the FQ accessed as the frs1 (or frs2).

The sequence_error, hardware_error, and invalid_fp_register trap types are unlikely to
arise in the normal course of computation. They are essentially unrecoverable from the
point of view of user applications.

In contrast, IEEE_754_exception, unfinished_FPop, and unimplemented_FPop are
likely to arise occasionally in the normal course of computation, and must be
recoverable by software. Software (such as emulator software) should define the values
of the fcc, aexc, and cexc fields, and generate the value of the destination f register, as
appropriate.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-28

Programming Note:

If an unfinished_FPop or unimplemented_FPop trap handler invokes a user’s
IEEE 754 trap handler that is designed to be invoked by an IEEE_754_excep-
tion trap, the unfinished_FPop and unimplemented_FPop trap handler must
produce the results as if hardware produced them. (i.e., the fcc and aexc fields,
and destination f register are unchanged. Only one bit of the cexc field is 1.)

Such user’s IEEE 754 trap handler may require the address and code of the
FPop instruction that caused the exception. Furthermore, the user’s handler
expects that the FQ has been analyzed and emptied (qne=0), and that the ftt
field has been analyzed and cleared (ftt=0). (The ftt field must not be referred in
user’s IEEE 754 handler because the handler is designed to handle the IEEE
754 exception.)

Figure D5-8 summarizes Floating-Point trap handling.

Primary Floating-Point

Trap Handler
(Analyzing ftt and FQ)

(user’s) IEEE_754_exception
Trap Handler

Floating-Point
Trap

unfinished_FPop Trap Handler

unimplemented_FPop trap handler

error handler

Figure D5–8. Floating-Point Trap Handling

D5.4.5 FPU States (fp_execute,
fp_exception_pending, fp_exception)

The FPU is always in one of three states: the fp_execute state, the fp_exception_pend-
ing state, and the fp_exception state. These FPU states are not directly visible to
software.

The FPU is in the fp_execute state following reset, and normally stays in this state. The
FPU can execute FPop instructions only when the FPU is in the fp_execute state.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-29

When an FPop generates a floating-point exception (such as IEEE_754_exception,
unfinished_FPop, unimplemented_FPop, or invalid_fp_register; except sequence_error),
the FPU requests the IU to service the floating-point exception trap, and moves from
the fp_execute state to the fp_exception_pending state. The IU does not accept FPU’s
fp_exception trap request while it is executing non-floating-point instructions, but
accepts the request when it attempts to execute any floating-point instruction (such as
FPop, LDfp, STfp, or FBfcc). As a result, the floating-point instruction being executed
in the IU is trapped. If the instruction is an FPop, it is not dispatched to the FPU. (FPops
that are trapped for any reason are not dispatched to the FPU.)

Such a trap is called a deferred trap. The instruction requesting the trap is not trapped
because it is not in the IU. It stays in the front entry of the floating-point deferred-trap
queue (FQ) of the FPU. Another instruction (floating-point instruction) in the IU is
trapped instead.

While the FPU is in the fp_exception state, only floating-point store instructions (STfp,
such as STF, STDF, STFSR, or STDFQ) and non-floating-point instructions can be
executed by the IU. The other floating-point instructions (FPop, LDfp, and FBfcc)
cause sequence_error exceptions.

In the fp_exception state, the fp_exception trap handler uses the STFSR and STDFQ
instructions to collect information from the FSR and the FQ of the FPU. The fp_excep-
tion state ensures that the handler can get the information before it is modified or
changed.

The FPU moves from the fp_exception state to the fp_execute state when the FQ is
emptied by the STDFQ instruction(s). In the fp_execute state, the fp_exception trap
handler can use any floating-point instructions (such as FPop, LDfp, STfp and FBfcc),
so that it can re-execute or emulate FPop(s) in the FQ. The FQ has one FPop instruction
causing the fp-exception in the front entry, and may have other FPop instruction(s)
dispatched, but not completed in the FPU.

Table D5-16 summarizes the FPU states.

Table D5–16. FPU States

State FQ FP Instruction Sequence Error

fp_execute Empty or Not Executed STDFQ + FQ_Empty

fp_exception_pending Not Empty Trapped No Sequence Error

fp_exception Not Empty Only STfp is executed FPop, LDfp, FBfcc

Programming Note:

This definition of the FPU states is for the MB86934 FPU. Other SPARC FPUs
may have different definitions.

Floating-Point Unit - Floating-Point Traps and FPU States

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-30

D5.4.6 Sequence_error Trap
Unlike the other fp_exception traps that are defined as deferred traps, the sequence_er-
ror trap is defined as the precise trap (i.e., the sequence_error trap is generated by a
floating-point instruction that is in the IU, not in the FPU).

When the IU attempts to execute an FPop, LDfp, or FBfcc instruction in the fp_excep-
tion state, the instruction is trapped by the sequence_error trap. When the IU attempts to
execute the STDFQ instruction with the FQ empty (meaning that the FPU is in the
fp_execute state), the instruction is trapped by the sequence_error trap.

The sequence_error trap is the precise trap, so the FPU does not move to fp_excep-
tion_pending state. The sequence_error trap does not change the FPU state. If it occurs
in the fp_exception state, the FPU stays in fp_exception state. If it occurs in the
fp_execute state, the FPU stays in the fp_execute state.

When the IU attempts to execute the STFSR/STDFQ instruction in the fp_exception
state, the IU can execute the instruction immediately. However, when the IU attempts
to execute the STFSR/STDFQ instruction in the fp_execute state with the FQ not
empty, the IU must wait for the completion of all FPops in the FQ (i.e., wait for the FQ
to empty).

If all FPops in the FQ are completed without an fp_exception, the IU stops waiting and
attempts to execute the STFSR/STDFQ. As a result, the STFSR is executed. Unlike the
STFSR, the STDFQ is trapped, this time by the sequence_error trap because the FQ is
empty.

Programming Notes:

(1) The FQ is empty when the sequence_error trap occurs in the fp_execute state,
so the FPU does not generate the other fp_exception trap request following that
sequence_error trap. This makes fp_exception trap handler Programming
simpler.

(2) This definition of the Sequence_error Trap is for the MB86934 FPU. Other
SPARC FPUs may have different definitions.

D5.5 Results of FPop Instructions
When the FPop instructions are executed, most of the expected results are precisely
specified in the ANSI/IEEE Standard 754-1985 specification. The MB86934 FPU
conforms to the specification. However, some results are left to be defined by each
implementation. The SPARC Architecture Version 8 specification has recommenda-
tions for implementations. The MB86934 FPU incorporates the recommendations,
except for the Nonstandard (NS) mode recommendation.

D5.5.1 FPop Results with NaN Operands
The usage of the sign bit and bits from fraction [MSB-1] to fraction[LSB] in a NaN is
implementation-dependent in the IEEE 754 specification. An implementation may hide

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-31

some additional information in those bits of a NaN, and can make rules so that such
information in the NaN can propagate from operand(s) to the result. The SPARC
IEEE 754 Implementation Recommendation defines the rules as follows;

 (1) NaN as calculated result (NaN generation)

 If the result of an FPop from no NaN operand(s) is a quiet NaN (i.e., a NaN is
newly generated), the sign bit must be 0, the exponent bits must be all 1’s, and
the fraction bits must be all 1’s. The sign bit is not generated from the sign bit
of operand(s). For example, (+0)/(+0) and (+0)/(-0) produce the same quiet
NaN with sign bit = 0.

When the Calculated result is QNaN, the QNaN is made as follows:
Calc QNaN : frd.s=“0”; frd.e=“11...11”; frd.f=“111...111”.

It is assumed in the SPARC Recommendation that all floating-point data areas
in storage are initialized to all 1’s (i.e., one representation of quiet NaNs).
Therefore, by reading the sign bit, software can distinguish the generated quiet
NaN (sign=0), from the initialized quiet NaN (sign=1).

Assumed QNaN initialization is as follows:
Init QNaN : frd.s=“1”; frd.e=“11...11”; frd.f=“111...111”.

(2) NaN propagation

 The SPARC Recommendation defines the rules for propagation of a NaN. A
signaling NaN’s priority in the propagation is higher than the priority of a quiet
NaN. If both operands are quiet NaNs (or signaling NaNs), the priority of the
source f register 2 (frs2) is higher than the priority of the source f register 1
(frs1).

 If one operand is a NaN and another operand is a number (not a NaN), the NaN
should propagate to the result without being affected by its operation. For
example, in the operation frs1:QNaN * frs2:-1, the frs1:QNaN just moves to the
destination f register (frd), i.e., frd=frs1. The sign bit of the quiet NaN in the
result must not be negated by -1.

 (3) Signaling NaN to quiet NaN transformation

 When a signaling NaN propagates to the result, the invalid exception arises
(which is why the NaN is called a signaling NaN). If no trap occurs, the
signaling NaN is transformed into a quiet NaN by setting the MSB of its
fraction field (quiet bit) to 1, and is saved in the destination register without
losing its hidden information.

(4) NaN’s precision transformation

 When a NaN propagates to the result in a different format (i.e., precision) from
its operand (i.e., F[sdq]TO[sdq], FsMULd, or FdMULq with a NaN operand),
the NaN is transformed as follows:

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-32

frs2’s SNaN is converted to a QNaN without losing its information as
follows:
frd=frs2, except frd.f[MSB]=“1” (making QNaN).

 Converting to a narrower format: Excess low-order bits of the operand
fraction are discarded (some information may be lost). The exponent field is
shrunk for the narrower format. The sign bit is copied from the operand to the
result without modification.

frs2’s Double QNaN is converted to Single QNaN as follows:
frd.s=frs2.s; frd.e=“11111111”; frd.f=frs2.f[MSB:MSB-22].

Converting to a wider format: Excess low-order bits of the result fraction are
set to 0’s. The exponent field is expanded for the wider format. The sign bit is
copied from the operand to the result without modification.

frs2’s Single QNaN is converted to Double QNaN as follows:
frd.s=frs2.s; frd.e=“111_11111111”; frd.f={frs2.f[MSB:LSB],
“000000000_0000000000_0000000000”}.

If the NaN is a signaling NaN, the precision transformation and the signal to
quiet transformation occurs simultaneously.

 The following table shows FPop results from NaN operand(s)

Table D5–17. FPop Results From NaN Operand(s)

[frd] {FADD/FSUB/FMUL/FDIV/FSQRT}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) frs2 frs2Q(2)

Number Calc(1) frs2 frs2Q(2)

QNaN frs1 frs2 frs2Q(2)

SNaN frs1Q(2) frs1Q(2) frs2Q(2)

 [frd] {FsTOd/FsMULd}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) frs2’(3) frs2Q’(3)

Number Calc(1) frs2’(3) frs2Q’(3)

QNaN frs1’(3) frs2’(3) frs2Q’(3)

SNaN frs1Q’(3) frs1Q’(3) frs2Q’(3)

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-33

[frd] {FdTOs}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc frs2’’(4) frs2Q’’(4)

(1) When the Calculated result is a QNaN, the QNaN is made as follows - Calc QNaN : frd.s=“0”;
frd.e=“11...11”; frd.f=“111...111”. (c.f. Init QNaN : frd.s=“1”; frd.e=“11...11”; frd.f=“111...111”.)

(2) frs1Q: frs1’s SNaN is converted to a QNaN without losing its information. frd=frs1; except
frd.f[MSB]=“1” (making QNaN).

frs2Q: frs2’s SNaN is converted to QNaN without losing its information. frd=frs2; except
frd.f[MSB]=“1” (making QNaN)

(3) frs1’ : frs1’s Single QNaN is converted to Double QNaN. frd.s=frs1.s; frd.e=“111_11111111”;
frd.f={frs1.f[MSB:LSB],“000000000_0000000000_0000000000”}.

frs1Q’: frs1’s Single SNaN is converted to Double QNaN. frd.s=frs1.s; frd.e=“111_11111111”;
frd.f={“1”,frs1.f[MSB-1:LSB],“000000000_0000000000_0000000000”}.

frs2’ : frs2’s Single QNaN is converted to Double QNaN. frd.s=frs2.s; frd.e=“111_11111111”;
frd.f={frs2.f[MSB:LSB],“000000000_0000000000_0000000000”}.

frs2Q’: frs2’s Single SNaN is converted to Double QNaN. frd.s=frs2.s; frd.e=“111_11111111”;
frd.f={“1”,frs2.f[MSB-1:LSB],“000000000_0000000000_0000000000”}.

(4) frs2’’ : Double QNaN is converted to Single QNaN. frd.s=frs2.s; frd.e=“11111111”;
frd.f={frs2.f[MSB:MSB-22]}.

frs2Q’’: Double SNaN is converted to Single QNaN. frd.s=frs2.s; frd.e=“11111111”;
frd.f={“1”,frs2.f[MSB-1:MSB-22]}.

An IEEE 754 floating-point operation with SNaN(s) in its operand(s) causes an invalid
exception. When an IEEE 754 floating-point operation generates a calculated QNaN, it
causes an invalid exception (e.g. SQRT(-1), (+0)/(+0), (+Infinity)+(-Infinity)). An
FCMPE instruction causes an invalid exception when its operand(s) are QNaN(s) or
SNaN(s).

The following tables show invalid exception conditions.

Table D5–18. Invalid Exception ConditionsTable D5–2.

 [exc] {FADD/FSUB/FMUL/FDIV/FSQRT/F[sdq]TO[sdq]/FCMP}

-- frs2 --

-- frs1 -- Number QNaN SNaN

None Calc(1) -- nv

Number Calc(2) -- nv

QNaN -- -- nv

SNaN nv nv nv

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-34

 [exc] {FCMPE}

-- frs2 --

-- frs1 -- Number QNaN SNaN

Number -- nv nv

QNaN nv nv nv

SNaN nv nv nv

(1) e.g., SQRT(-1)
(2) e.g., (+0)/(+0), (+Infinity)+(-Infinity)

NaN operands do not affect the FMOVs, FNEGs, and FABSs instructions because they
are not affected by precision types (single, double, or quad) and numbers (NaN, Zero,
Subnormal Number, etc.). They just transfer contents as 32-bit data between f registers.
Therefore, they never cause fp_exceptions, including invalid exceptions.

The following table shows FMOVs, FNEGs, and FABSs instruction operation.

Table D5–19. Instruction Operations

FPop frd[31:0]

FMOVs {frs2[31], frs2[30:0]}

FNEGs {~frs2[31], frs2[30:0]}

FABSs {0, frs2[30:0]}

D5.5.2 Overflow, Underflow, and Inexact
Overflow occurs when the rounded result of an FPop is larger in magnitude than the
largest normalized number in the indicated format.

Underflow occurs in the NS mode when the rounded result of an FPop is smaller in
magnitude than the smallest normalized number in the indicated format.

Inexact occurs when the final result of an FPop is not equal to the infinitely precise
correct result. It happens when the rounded result differs from the infinitely precise
correct result. It also happens when the rounded result overflows or underflows, and the
default value is set to the final result instead of the rounded result. Even if the rounded
result would be equal to the infinitely precise correct result in the broader exponential
range, the overflow or underflow makes the final result inexact.

Programming Note:

IEEE 754 specifies that the wrapped exponent results be delivered for trapped
underflows and overflows. However, the SPARC architecture V8 specification
states the following in the Traps Inhibit Result section: “The destination f
register is unchanged when a floating-point trap occurs.” Therefore, the

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-35

MB86934 FPU does not provide this IEEE 754 feature. If software requires the
feature, it must implement the feature in the software.

 Overflow is handled as follows:

| largest_normalized_number | : MAXI;
| infinitely_precise_correct_result | : CORR;
| rounded_result | : ROUN;
| infinite_number | : INFI.

 When MAXI < CORR < INFI:

Table D5–20. Rounded Result

Rounded Result
OFM=1
NXM=1

OFM=1
NXM=0

OFM=0
NXM=1

OFM=0
NXM=0 Overflow

ROUN == MAXI nxc
NX_trap

nxc
nxa

nxc
NX_trap

nxc
nxa

NO

MAXI < ROUN < INFI ofc
OF_trap

ofc
OF_trap

nxc
NX_trap

nxa
ofa, nxa

YES

Notes:

(1) The priority of the OFM bit is higher than the priority of the NXM bit.

(2) When the overflow trap occurs, only the ofc bit is set to identify the trap.
Similarly, when the inexact trap occurs, only the nxc bit is set.

(3) When CORR < INFI, ROUN cannot be INFI.

The unrounded result is always normalized before being rounded, even if the
unrounded result overflows in the given exponent range in the precision. The
FPU can do this because the FPU has much wider and greater exponent range
than the given exponent range, so internally the unrounded result never
overflows.

If OFM=0 and NXM=0 when overflow occurs, the overflow default value is set to the
final result. The default value depends on the rounding mode and the sign of the result
as follows:

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-36

Table D5–21. Rounding Mode And Sign Of Result

RD
Round
Toward + Sign – Sign

0 Nearest +INFI –INFI

1 Zero +MAXI –MAXI

2 +Infinity +INFI –MAXI

3 –Infinity +MAXI –INFI

Not Implemented(1) ±Infinity +INFI –INFI

 (1) This Round Toward Infinity mode is not implemented because it
is not specified in IEEE 754.

 Underflow in the NS mode is handled as follows:

| smallest_normalized_number | : MINI;
| infinitely_precise_correct_result | : CORR;
| rounded_result | : ROUN;
| ZERO | : ZERO.

 When ZERO < CORR < MINI:

Table D5–22. Rounded Result

Rounded Result
UFM=1
NXM=1

UFM=1
NXM=0

UFM=0
NXM=1

UFM=0
NXM=0 Underflow

ROUN == MINI nxc
NX_trap

nxc
nxa

nxc
NX_trap

nxc
nxa

NO

ZERO < ROUN < MINI ufc
UF_trap

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa

YES

Notes:

(1) The priority of the UFM bit is higher than the priority of the NXM bit.

(2) When the underflow trap occurs, only the ufc bit is set to identify the trap.
Similarly, when the inexact trap occurs, only the nxc bit is set.

(3) When ZERO < CORR, ROUN cannot be ZERO in the NS mode.

In the NS mode, the unrounded result is always normalized before being
rounded, even if the unrounded result underflows in the given exponent range in
the precision. The FPU can do this because the FPU has much wider and greater
exponent range than the given exponent range, so internally the unrounded
result never underflows.

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-37

In the IEEE 754 Underflow specification (the Gradual Underflow), the
unrounded result is not normalized for rounding if the unrounded result
underflows in the given exponent range and precision. Instead, the
exponent of the unrounded result is adjusted to the minimum, and the
fraction of the unrounded result is shifted as much as the adjustment made
in the exponent. (This is why the number is called a subnormal or
denormalized number.) Then, the denormalized unrounded result is
rounded to realize the Gradual Underflow.

If UFM=0 and NXM=0 when underflow occurs, the underflow default value is set to the
final result. The default value depends on rounding mode and the sign of the result as
follows:

Table D5–23. Default Value Of Rounding Mode

RD
Round
Toward + Sign – Sign

0 Nearest +ZERO –ZERO

1 Zero +ZERO –ZERO

2 +Infinity +MINI –ZERO

3 –Infinity +ZERO –MINI

Not Implemented(1) ±Infinity +MINI –MINI

(1) This Round Toward Infinity mode is not implemented because it
is not specified in IEEE 754.

D5.5.3 Integer Results
 The FsTOi, FdTOi, and FqTOi instructions generate integer results. Unlike a
floating-point overflow raising the overflow (of) and inexact (nx) exceptions, an integer
overflow raises just the invalid (nv) exception. Unlike a floating-point result rounded
based on the RD field, an integer result is always rounded toward zero (i.e., the RD is
ignored). Furthermore, an integer result never underflows. The rounded result just
becomes 0 if -1 < unrounded_result < 1.

 If the source register contains a NaN, ±infinity, positive number >= +2147483648.0
(i.e., overflow at + side), or negative number <= -2147483649.0 (i.e., overflow at –
side), the invalid (nv) exception arises. If no trap occurs and the sign bit of the operand
is positive (frs2.MSB=0), the FPU outputs the positive default integer result,
+2147483647 (i.e., 0x7fffffff). If no trap occurs and the sign bit of the operand is
negative (frs2.MSB=1), the FPU outputs the negative default integer result,
–2147483648 (i.e., 0x80000000).

 Programming Notes:

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-38

 (1) Even if +2147483648.0 > operand > +2147483647.0 (such as
+2147483647.99...), or -2147483649.0 < operand < -2147483648.0 (such as
-2147483648.99...), the result does not overflow because the result is rounded
toward zero before the overflow detection.

(2) According to SPARC’s recommendation, a NaN does not have the concept of
polarity. The sign bit does not mean more than the MSB of data in the NaN.
However, if the operand is the NaN, the F[sdq]TOi instruction always generates
the + or - integer result based on the sign bit of the operand. There is discrep-
ancy in the recommendation.

 For example, (+0.0)/(+0.0) and (+0.0)/(-0.0) result in the same quiet NaN with
sign 0. Therefore,

 F[sdq]TOi((+0.0)/(+0.0)) = +2147483647 (i.e., 0x7fffffff),
F[sdq]TOi((+0.0)/(-0.0)) = +2147483647 (i.e., 0x7fffffff).

 (On the other hand, if a NaN has the polarity, the next question arises - whether
(+Infinity)+(-Infinity) must be +NaN or -NaN.)

The following tables show the destination f register values (frd) and the IEEE 754
exceptions for the FsTOi and FdTOi instructions.

Table D5–24. Destination f Register Values

 [frd] (destination f register)

ZERO NORM INFI QNaN SNaN

INT_ZERO Calc(2) INT_MAX(1)

INT_MINI(1)
INT_MAX(1)

INT_MINI(1)
INT_MAX(1)

INT_MINI(1)

[exc] (floating-point exception)

ZERO NORM INFI QNaN SNaN

-- Calc(2) nv nv nv

(1) if frs2.s=0 then frd=0x7fffffff (INT_MAXI) {even NaN} if frs2.s=1 then frd=0x80000000
(INT_MINI) {even NaN}

 (2) calc may be INT with no IEEE exception; INT with nx (inexact: rounded always toward
zero); INT_MAXI with nv (invalid: overflows at + side); INT_MINI with nv (invalid: overflows
at - side).

 When the nx and the nv occur at the same time (true only when FdTOi), the nx is ignored,
and only the nv arises. For example,

 If: frs2 = (+) Fra:1.f_ffff_ffff_ffff ∗ Exp:36
Then: Int (frs2) = 1f_ffff_ffff.ffff

rounded
(nx)

overflow
(nv)

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-39

As a result: frd=0x7fff_ffff with nv.

D5.5.4 Emulation for Subnormal Number, Invoked
By the Unfinished_FPop Trap

When the NS bit is 0, if the source f register(s) of an FPop contain(s) a subnormal (i.e.,
denormalized) number(s), the FPop is trapped by the unfinished_FPop trap in the front
entry of the FQ. The FPop is also trapped by the unfinished_FPop trap in the front entry
of the FQ if the correct unrounded result (i.e., the infinitely precise correct result) of the
FPop is smaller in magnitude than the smallest normalized number in the indicated
format (i.e., if (ZERO < CORR < MINI) && (NS==0)→ unfinished_FPop trap).

In both cases, software should emulate the trapped FPop and update the destination f
register(s) and the fcc, cexc, and aexc fields in FSR to conform to ANSI/IEEE Standard
754-1985.

 Programming Note:

The emulator of an FPop_with_subnormal_number must conform to the
SPARC IEEE 754 Implementation Recommendation in the SPARC Architec-
ture Version 8 specification with regard to underflow as follows;

| smallest_normalized_number | : MINI;

| infinitely_precise_correct_result | : CORR;

| rounded_result | : ROUN;

| ZERO | : ZERO.

 When ZERO < CORR < MINI:

Result Rounded for UFM=1 UFM=0 UFM=0 Underflow SubnormalResult Rounded for
Subnormal Number

UFM=1
NXM=*

UFM=0
NXM=1

UFM=0
NXM=0 Trap Flag

Subnormal
Result

ROUN == MINI
(so ROUN != CORR)

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes NO

ZERO < ROUN < MINI
&& ROUN ! = CORR

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes YES

ZERO < ROUN < MINI
&& ROUN = CORR

ufc
UF_trap None None Yes No YES

ROUN == ZERO
(so ROUN != CORR)

ufc
UF_trap

nxc
NX_trap

ufc, nxc
ufa, nxa Yes Yes NO

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-40

Notes:

(1) “Tininess detected before rounding” is true when ZERO < CORR < MINI.
“Loss_of_accuracy detected as inexact” is true when ROUN != CORR. The
underflow trap occurs if UFM==1 and Tininess. The ufa bit is set if UFM=0,
MXM=0, Tininess, and Loss_of_accuracy.

(2) Even if ZERO < CORR, ROUN can be ZERO in the IEEE 754 Underflow
mode. In the IEEE 754 underflow, the unrounded result is converted to
subnormal (denormalized) number if the unrounded result underflows in the
given exponent range and precision. Then, the denormalized unrounded result is
rounded, so the rounded result can be zero.

Refer to the SPARC Architecture Manual (Version 8) and the ANSI/IEEE Standard
754-1985 for details.

D5.5.5 Emulation for Quad-precision operation,
Invoked by the Unimplemented_FPop Trap

When any quad-precision FPop (including FqTO[isd], F[isd]TOq, and FdMULq) is
dispatched to the FPU, the FPop is trapped by the unimplemented_FPop trap in the
front entry of the FQ. Software should emulate the trapped FPop and update the
destination f registers and the fcc, cexc, and aexc fields in FSR to conform to
ANSI/IEEE Standard 754-1985.

 Programming Note:

The priority of the unimplemented_FPop trap is higher than the priority of the
unfinished_FPop Trap, but is lower than the priority of the invalid_fp_register
trap in the MB86934 implementation. Table D5–26 shows the MB86934 trap
priorities.

Table D5–25. Trap Priorities

Priority Trap Type ftt

1 sequence_error 4 Not Dispatched→ Error

2 invalid_fp_register 6 Dispatched → Bad alignment → Error

3 unimplemented_FPop 3 Dispatched → Quad Precision → Emulation

4 unfinished_FPop 2 Dispatched → Subnormal Num.→ Emulation

5 IEEE_754_exception 1 Dispatched → Executed → IEEE Exception

Therefore, the emulator of a quad-precision FPop does not have to check the inval-
id_fp_register (bad alignment), but must be able to handle a subnormal number, and
must be able to handle the IEEE_754_exception.

The emulator of an FPop_with_subnormal_number does not have to check the
invalid_fp_register or the quad_precision, but must be able to handle the IEEE_754_ex-
ception.

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-41

Refer to the SPARC Architecture Manual (Version 8) and the ANSI/IEEE Standard
754-1985 for details.

D5.5.6 Result of FPop Instruction without
NaN(s)/DNRM(s) in Operand(s)

The following tables show the results of the IEEE 754 floating-point operations when
operands do not contain NaNs or subnormal (denormalized) numbers (DNRM). [frd] is
the table of the destination f register (frd) value. [exc] is the table of the IEEE 754
exceptions.

In the tables,“calc” is a result that depends on the calculated value. The “calc” in the
exception table can be either the “of”, “uf”, “nx”, “of & nx”, or “uf & nx” exception, or
nothing.

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-42

Table D5–3. FADD/FSUB Without NaN/DNRM Operands

If FADD, let FRS2=+frs2; then, frs1+frs2=frs1+FRS2.
If FSUB, let FRS2=-frs2; then, frs1-frs2=frs1+FRS2

 [frd]

-- FRS2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO ±ZERO(3) ±NORM(1) ±INFI(1)

±NORM ±NORM(2) ±calc(6) ±INFI(1)

±INFI ±INFI(2) ±INFI(2) ±INFI(4), QNaN(5)

 [exc]

-- FRS2--

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO -- -- --

±NORM -- calc --

±INFI -- -- nv(5)

(1) [+] if FRS2.s=0; [–] if FRS2.s=1.
(2) [+] if frs1.s=0; [–] if frs1.s=1.
(3) +ZERO if +ZERO+ZERO or RD!=R– and (ZERO–ZERO or –ZERO+ZERO).

–ZERO if –ZERO–ZERO or RD==R– and (ZERO–ZERO or –ZERO+ZERO).
{RD==R– means rounding toward minus infinity.}

(4) +INFI if +INFI+INFI; –INFI if –INFI–INFI.
(5) QNaN if +INFI–INFI or –INFI+INFI. (Also, nv if so.)
(6) +ZERO if RD!=R– and (NORM–NORM=ZERO or –NORM+NORM=ZERO).

–ZERO if RD==R– and (NORM–NORM=ZERO or –NORM+NORM=ZERO).

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-43

 FMUL Without NaN/DNRM Operands

 [frd]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO ±ZERO(1) ±ZERO(1) QNaN

±NORM ±ZERO(1) ±calc(1) ±INFI(1)

±INFI QNaN ±INFI(1) ±INFI(1)

 [exc]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO -- -- nv

±NORM -- calc --

±INFI nv -- --

(1) (+)=(+)*(+); (+)=(–)*(–); (–)=(–)*(+); (–)=(+)*(–).

 FDIV Without NaN/DNRM Operands

 [frd]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO QNaN ±ZERO(1) ±ZERO(1)

±NORM ±INFI(1) ±calc(1) ±ZERO(1)

±INFI ±INFI(1) ±INFI(1) QNaN

 [exc]

-- frs2 --

-- frs1 -- ±ZERO ±NORM ±INFI

±ZERO nv -- --

±NORM dz calc --

±INFI -- -- nv

(1) (+)=(+)/(+); (+)=(–)/(–); (–)=(–)/(+); (–)=(+)/(–).

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-44

 FSQRT Without NaN/DNRM Operand

 [frd]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

+ZERO –ZERO(1) +calc QNaN +INFI QNaN

 [exc]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

-- -- calc nv -- nv

(1) SQRT(–0) is –0.

 FsTOd/FdTOs Without NaN/DNRM Operand

 [frd]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

+ZERO –ZERO +calc – calc +INFI –INFI

 [exc]

-- frs2 --

+ZERO –ZERO +NORM –NORM +INFI –INFI

-- -- calc calc -- --

FiTOs/FiTOd Without NaN/DNRM Operand

 [frd]

-- frs2 --

INT_ZERO +INT –INT

+zero(1) +calc(1) –calc(1)

 [exc]

-- frs2 --

INT_ZERO +INT –INT

-- calc(2) calc(2)

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-45

(1) The result must be a normalized number or +zero, not be a NaN, infinity, a subnormal number,
nor –zero.

(2) FiTOs may have “nx” exception because integer:31bits > single_f:24bits. FiTOd has no
exception because integer:31bits < double_f:53bits.

The fcc Field Updated by FCMP/FCMPE

-- frs2 --

-- frs1 -- –INFI –NORM ±ZERO +NORM +INFI
QNaN/
SNaN

–INFI 0:= 1:< 1:< 1:< 1:< 3:?

–NORM 2:> calc(2) 1:< 1:< 1:< 3:?

±ZERO 2:> 2:> 0:=(1) 1:< 1:< 3:?

+NORM 2:> 2:> 2:> calc(2) 1:< 3:?

+INFI 2:> 2:> 2:> 2:> 0:= 3:?

QNaN/SNaN 3:? 3:? 3:? 3:? 3:? 3:?

(1) (+0) is equal to (–0); (–0) is equal to (+0).

(2) If frs1=frs2, fcc=0; if frs1<frs2, fcc=1; if frs1>frs2, fcc=2; never fcc=3.

D5.6 Pipeline of FPU and Latency
The SPARC FPU pipeline structure and interlock mechanism is implementation
dependent, and therefore differs with each SPARC FPU. The FPUs maintain enough in
common to allow code that is generated by a “generic” SPARC compiler to run
efficiently in the MB86934 FPU, but the highest performance is realized with code
written specifically for the MB86934 FPU.

This section describes the MB86934 pipeline structure and interlock conditions. It is
intended for the software engineer who’s goal is to write software (such as an
MB86934-specific compiler or key routines or libraries in assembly language) that has
the highest-performance possible.

The MB86934 IU pipeline and FPU pipeline are complicated and cannot be fully
described in this document. The following descriptions therefore focus on the key FPU
design factors.

D5.6.1 FPU Pipeline
The SPARClite FPU consists of 4 pipeline stages: the A_stage, the B_stage, the
C_stage, and the D_stage. They are also called the FPU_A, FPU_B, FPU_C, and
FPU_D stages, respectively.

 The SPARClite IU has 5 stages: the Fetch stage, the Decode stage, the Execution stage,
the Memory stage, the Write-back stage. They are also called the IU_F, IU_D, IU_E,
IU_M, and IU_W stages, respectively.

Floating-Point Unit - Results of FPop Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-46

If an FPop instruction does not have a trap request by the Execution stage, the IU
dispatches the FPop instruction to the FPU. If the FPop instruction does have a trap
request by the Execution stage, the IU does not dispatch the FPop instruction. The FPop
with the trap request moves to the Memory stage, where it is eventually trapped.

The FPop instruction flows through the IU and FPU pipelines as follows:

 (1) When dispatched: IU_F → IU_D → IU_E → FPU_A → FPU_B →
FPU_C → FPU_D

 (2) When trapped: IU_F → IU_D → IU_E → IU_M → IU_W

The IU reads the FPop operand(s) from corresponding f register(s) in the Execution
stage. The operand(s) are available for the FPU in the A_stage.

The A_stage, B_stage, and C_stage are the execution stages of the FPU. Unlike the IU,
the FPU requires 3 stages for execution because each floating-point operation requires
completion of many tasks. For example, the floating-point add operation requires
swapping, adjusting (shifting), adding/subtracting, normalizing (shifting), and rounding
of the fraction part of the floating-point number. It also requires handling of the
exponential part and the sign part of the floating-point number.

When an FPop is in the C_stage and there is an fp_exception, the FPU asserts the
fp_exception trap request to the IU. The FPU keeps asserting the request until it is
accepted by the IU.

The D_stage is the write back stage of the FPU. When an FPop is in the D_stage and
there is no fp_exception, the FPU updates the FSR and writes the result into the f
register. If there is an fp_exception when the FPop is in the D_stage, the FPU updates
the FSR but does not write the result into the f register.

The FPU pipeline can be summarized as follows:

FPU_A → FPU_B → FPU_C → FPU_D
(Execution 1) (Execution 2) (Execution 3) (Write-back)

When the IU dispatches an FPop, the FPop moves into the FPU pipeline and into the
FQ. When the FPop moves out of the FPU pipeline, it also moves out of the FQ. An
FPop is in the FQ while it is in the FPU pipeline. However, the entries of the FQ (such
as front, 2nd, 3rd) do not correspond to the stages of the FPU pipelines (such as FPU_A,
FPU_B, FPU_C, FPU_D).

 Programming Note:

There are two traps which may be detected (i.e., requested) in the Memory
stage. One is the data_access_exception trap from the BIU. The other is the
data_break_point trap from the DSU. If an FPop is dispatched to the FPU, both
trap requests are ignored. (Note: The FPop does not access the memory, but the
Write Buffer in the BIU may generate the data_access_exception trap request
for the FPop in the Memory stage.)

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-47

Both requests can be ignored because the BIU (Write Buffer) and DSU keep
asserting the trap requests to the IU until the requests are accepted. Both traps
can be considered asynchronous traps.

D5.6.2 FPop Throughput and Latency
Each FPop except FMULd, FDIVs, FSQRTs, FDIVd, and FSQRTd, stays only 1 cycle
at each stage of the FPU. Therefore, the throughput of these FPops is 1 cycle, and their
latency with respect to the following FPop is 3 cycles. When there is a data dependency
between an FPop at FPU_D and another FPop at FPU_A (i.e., FPU_D.frd ==
FPU_A.frs1 or FPU_D.frd == FPU_A.frs2), the result in the D_stage is bypassed to the
operand(s) in the A_stage.

Table D5-28 shows floating-point instruction throughput and latency.

Table D5–26. Floating-Point Instruction Throughput and Latency

Instruction Throughput Latency Latency (if FIFO)

FDIVs/FSQRTs 13 14 16

FMULs/FsMULd 1 3 5

FADDs/FSUBs 1 3 5

All Other FPops_s 1 3 5

FDIVd/FSQRTd 28 29 31

FMULd 4 6 8

FADDd/FSUBd 1 3 5

All Other FPop_d 1 3 5

Programming Note:

The IU and the FPU check the data dependency every time and assert the Data
Hazard interlock if necessary; then, there is no data dependency between an
FPop at FPU_D and another FPop at FPU_B; also, between an FPop at FPU_D
and another FPop at FPU_C. A program does not need to ensure those
conditions.

The FMULd instruction stays in the A_stage for 4 cycles; so its throughput is 4 cycles,
and its latency is 6 cycles.

The FDIVs/FSQRTs instructions stay in the A_stage for 13 cycles, but skip over the
B_stage; so their throughput is 13 cycles, and their latency is 14 cycles.

The FDIVd/FSQRTd instructions stay in the A_stage for 28 cycles, but skip over the
B_stage; so their throughput is 28 cycles, and their latency is 29 cycles.

When an f register is written with a value that is then read, the written value and the
read value are always the same; so the bypass technic works for the f register.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-48

However, unlike the f register, when a FIFO is written with a value that is then read, the
written value and the read value may not be the same. Therefore, the bypass technic
cannot apply to the FIFO.

When there is a data dependency between an FPop at FPU_D and an FPop at IU_E (i.e.,
FPU_D.frd == IU_E.frs1 or FPU_D.frd == IU_E.frs2), the result in the D_stage can
reach the operand(s) in the Execution stage by passing through the f register designated
by frd - from the register’s input port to its output port in the same cycle.

Unlike the f register, the “input port to output port” technic cannot be applied to the
FIFO because the FIFO has only one port (and one pointer) that is shared between the
input and the output.

The FPU requires 1 cycle to write the result to a FIFO in the D_stage. The IU requires
another 1 cycle to read the operand(s) from the FIFO in the Execution stage. As a
result, 2 cycles are added to the latency of each FPop if a dependency occurs in a FIFO.

D5.6.3 IU Interlocks, IU Holds, FPU Interlocks, and
FPU Hold

The IU has the IU holds and the IU interlocks. The FPU has the FPU hold and the FPU
interlocks. Some IU interlocks are generated for the IU, and some are generated for the
FPU. All FPU interlocks are generated for the FPU.

All IU holds and IU interlocks stop the IU pipeline but do not stop the FPU pipeline.
All FPU interlocks and the FPU hold stop the FPU pipeline, but do not stop the IU
pipeline directly.

The IU holds stop the entire IU pipeline and are usually generated by peripheral units
(such as BIU) to “hold” the IU momentarily. Unlike the IU holds, the IU interlocks stop
the IU pipeline partially. They are generated by the processor units (i.e., IU/FPU), and
are used to stall instructions in the IU pipeline.

The FPU hold stops the entire FPU pipeline and is generated when the FPU is in the
fp_exception_pending state or in the fp_exception state. The FPU hold is not asserted
while the FPU is in the fp_execute state. Unlike the FPU hold, the FPU interlocks stop
the FPU pipeline partially to stall instructions in the FPU pipeline.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-49

The FPU interlocks are generated for the FMULd, FDIVs/FSQRTs, and FDIVd/
FSQRTd instructions, which must stay in the A_stage of the FPU for several cycles to
complete their executions. These interlocks are called the FMULd interlock, the
FDIVs_FSQRTs interlock, and the FDIVd_FSQRTd interlock.

The IU interlocks are more complicated and varied than the FPU interlocks. Only the
IU interlocks generated for FPU instructions are described in this section.

D5.6.4 FPU_full Interlock
One of the IU interlocks generated for the FPU is called the FPU_full interlock. If a
FMULd, FDIVs/FSQRTs, or FDIVd/FSQRTd instruction occupies the A_stage of the
FPU, the following FPop must wait in the Execution stage of the IU. To do so, the
FPU_full interlock is asserted for no more than 3 cycles for a FMULd instruction, 12
cycles for a FDIVs/FSQRTs instruction, and 27 cycles for a FDIVd/FSQRTd instruc-
tion.

Some non-FPop instructions can be positioned between the preceding FPop and the
following FPop without changing the FPU execution time. There are at least 27 cycles
between the FDIVd/FSQRTd and the following FPop, but this does not mean that 27
instructions can be positioned between them because if the IU pipeline is stopped by an
IU hold, one instruction can require more than one cycle to complete. (e.g. If 3 waits
are needed for one memory access, one load instruction has 3 held cycles; therefore, the
load instruction requires total 4 cycles to execute.)

Like the FPU_full interlock, most IU interlocks generated for the FPU stall instructions
in the Execution stage. When such interlocks are asserted, the Fetch stage, the Decode
stage, and the Execution stage are stopped; but the Memory stage and the Write-back
stage are not stopped.

Figure D5-9 shows an example of FPU_full interlock.

D5.6.5 Data Hazard Interlocks
(1) An FPop following another FPop causes the RAW (Read After Write) Data

Hazard interlock if there is a RAW dependency between the two FPops. The
following FPop is stalled in the IU_E stage while the preceding FPop is in
the FPU_A or FPU_B stage. When the preceding FPop moves to the FPU_C
stage, the interlock is negated. When the preceding FPop moves to the
FPU_D stage, the result is bypassed to the FPU_A stage if the following
FPop is in the FPU_A.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-50

 For example, if “FSUBs %f2,%f3,%f4” follows “FADDs %f0,%f1,%f2”
without any instruction between them, the FSUBs instruction is stalled for 2
cycles by the RAW Data Hazard interlock in the IU_E stage because there is
a RAW dependency in the %f2 register. The FSUBs instruction “reads” the
%f2 register “after” the FADDs instruction “writes” the %f2 register.

(2) In the same way, a STF/STDF instruction that follows an FPop may have the
RAW Data Hazard interlock. The STF/STDF instruction is stalled in the
IU_E stage while the preceding FPop is in the FPU_A or FPU_B stage.
When the FPop moves to the FPU_D stage, the result is bypassed to the
IU_M stage if the STF/STDF instruction is in the IU_M stage.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-51

1. 2. 3.

IU_F: FSUBd IU_F: FCMPd IU_F:

IU_D: FMULd IU_D: FSUBd IU_D: FCMPd

IU_E: FADDd IU_E: FMULd IU_E: FSUBd

IU_M: FPU_A: IU_M: FPU_A: FADDd IU_M: FPU_A: FMULd

IU_W: FPU_B: IU_W: FPU_B: IU_W: FPU_B: FADDd

FPU_C: FPU_C: FPU_C:

FPU_D: FPU_D: FPU_D:

4. 5. 6.

IU_F: IU_F: IU_F:

IU_D: FCMPd IU_D: FCMPd IU_D: FCMPd

U_E: FSUBd IU_E: FSUBd IU_E: FSUBd

IU_M: FPU_A: FMULd IU_M: FPU_A: FMULd IU_M: FPU_A: FMULd

IU_W: FPU_B: IU_W: FPU_B: IU_W: FPU_B:

FPU_C:FADDd FPU_C: FPU_C:

FPU_D: FPU_D: FADDd FPU_D:

<< Interlock >> << Interlock >> << Interlock >>

7. 8. 9.

IU_F: IU_F: IU_F:

IU_D: IU_D: IU_D:

IU_E: FCMPd IU_E: IU_E:

IU_M: FPU_A: FSUBd IU_M: FPU_A: FCMPd IU_M: FPU_A:

IU_W: FPU_B: FMULd IU_W: FPU_B: FSUBd IU_W: FPU_B:FCMPd

FPU_C: FPU_C: FMULd FPU_C: FSUBd

FPU_D: FPU_D: FPU_D: FMULd

Figure D5–9. FPU–full Interlock Example

For example, if “ST %f2,[0]” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the STF instruction is stalled for 2 cycles. The
STF instruction “reads” the %f2 register “after” the FADDs instruction
“writes” the %f2 register.

 (3) When an FPop follows another FPop and there is a RAW dependency in a
FIFO, the following FPop is stalled while the preceding FPop is in the
FPU_A, FPU_B, FPU_C, or FPU_D stage because the bypass technique and
“input port to output port” technique cannot be applied to the FIFO.

 For example, if “EFSUBs %f20,%f3,%f4” follows “EFADDs
%f0,%f1,%f20” without any instruction between them, the EFSUBs
instruction is stalled for 4 cycles by the RAW Data Hazard interlock in the
IU_E stage because there is a RAW dependency in the %f20 FIFO. The
EFSUBs instruction “reads” the %f20 FIFO “after” the EFADDs instruction
“writes” the %f20 FIFO.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-52

If “EFSUBs %f20,%f3,%f4” follows “FADDs %f0,%f1,%f20”, there is no
RAW Data Hazard interlock because the EFSUBs instruction reads the %f20
FIFO, and the FADDs instruction writes the %f20 register.

 (4) An FPop following an LDF/LDDF instruction causes the RAW Data Hazard
interlock if there is a RAW dependency between them. The FPop is stalled
in the IU_E stage while the LDF/LDDF is in the IU_M stage. When the
LDF/LDDF instruction moves to the IU_W stage, the interlock is negated,
and the loaded date moves from the IU_W stage to the IU_E stage via the
designated f register. (Note: If the IU_M to IU_E bypass were taken, this
interlock would not be required, but the critical timing path would be slower.
This is one example of the trade-off between a penalty and maximum
frequency.)
For example, if “FSUBs %f2,%f3,%f4” follows “LD [4],%f2” without any
instruction between them, the LDF instruction is stalled for at least 1 cycle
(depending on the IU hold conditions) by the RAW Data Hazard interlock in
the IU_E stage because there is a RAW dependency in the %f2 register. The
FPop “reads” the %f2 register “after” the LDF instruction “writes” the %f2
register.

 (5) In the same way, an STF/STDF instruction that follows an LDF/LDDF
instruction may cause the RAW Data Hazard interlock. The STF/STDF
instruction is stalled in the IU_E stage while the LDF/LDDF instruction is in
the FPU_M stage. When the LDF/LDDF instruction moves to the IU_W
stage, the interlock is negated, and the loaded date moves from the IU_W
stage to the IU_E stage via the designated f register.

 For example, if “ST %f2,[4]” follows “LD [0],%f2” without any instruction
between them, the STF instruction is stalled for at least 1 cycle (it depends
on the hold conditions.). The STF instruction “reads” the %f2 register
“after” the LDF instruction “writes” the %f2 register.

 (6) An LDF/LDDF instruction that follows an FPop causes the WAW (Write
After Write) Data Hazard interlock if there is a WAW dependency between
them. The LDF/LDDF instruction is stalled in the IU_E stage while the FPop
is in the FPU_A or FPU_B stage. When the FPop moves to the FPU_C stage,
the interlock is negated. As a result, before the LDF/LDDF moves to the
IU_W stage and writes the loaded data to the f register, the FPop moves to
the FPU_D stage and writes the result to the designated f register.

 For example, if “LD [0],%f2” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the LDF instruction is stalled for 2 cycles by the
WAW Data Hazard interlock in the IU_E stage because there is a WAW
dependency in the %f2 register. The LDF instruction “writes” the %f2
register “after” the FADDs instruction “writes” the %f2 register.

 (7) An LDF/LDDF instruction that follows an FPop has the WAR (Write After
Read) Data Hazard interlock if there is the WAR dependency between them.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-53

At that time the LDF/LDDF instruction must wait for the completion of the
FPop because if the FPop is trapped by the fp_exception trap, its trap handler
may have to read the source register(s) of the FPop. The LDF/LDDF
instruction should not write the loaded data to the register before it happens.

 The LDF/LDDF instruction is stalled in the IU_E stage while the FPop is in
the FPU_A or FPU_B stage. When the FPop moves to the FPU_C stage, the
interlock is negated. At that time, if the FPop in the FPU_C stage has an
fp_exception trap request, the LDF/LDDF instruction in the IU_E stage is
annulled; so the source register of the FPop is not updated by the LDF/
LDDF instruction. When the LDF/LDDF instruction moves to the IU_M
stage, the LDF/LDDF instruction is trapped for the fp_exception.

For example, if “LD [0],%f1” follows “FADDs %f0,%f1,%f2” without any
instruction between them, the LDF instruction is stalled for 2 cycles by the
WAR Data Hazard interlock in the IU_E stage because there is a WAR
dependency in the %f1 register. The LDF instruction “writes” the %f1
register “after” the FADDs instruction “reads” the %f1 register, and after the
FADDs instruction has completed without any fp_exceptions.

D5.6.6 STFSR_LDFSR_STDFQ interlock and
 FPop_Quad interlock

Two STFSR_LDFSR_STDFQ interlocks are generated to ensure proper STFSR/
LDFSR/STDFQ instruction execution. The first interlock stalls the STFSR/LDFSR/
STDFQ in the IU_E stage while any FPop instruction is in the FQ. The other interlock
stalls the following instruction in the IU_D stage while the STFSR/LDFSR/STDFQ
instruction is in the IU_E or the IU_M stage. The interlock is negated when the
STFSR/LDFSR/STDFQ instruction is in the IU_W stage.

The FPop_Quad interlock stalls an FPop/LDF/LDDF/STF/STDF instruction in the IU_E
stage while any Quad precision FPop(s) is in the FPU_A, FPU_B, or FPU_C stage.

 Programming Notes:

(1) The STFSR_LDFSR_STDFQ interlock and the FPop_Quad interlock are not
generated frequently, so they have very little affect on performance. A
programmer can ignore these two interlocks.

(2) When the following FPop is a Quad precision FPop, the RAW Data Hazard
interlock may not be generated even if there is the RAW dependency. It should
not cause any problem because the Quad precision FPop is eventually trapped.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-54

D5.6.7 Latency of FCMP to FBfcc and FCMP_FBfcc
interlock

The latency of the FCMP to the FBfcc is 3 cycles in the best case.

Although the fcc field of the FSR is updated in the D_stage, the following FBfcc does
not wait for the update. The FBfcc uses the “hot” fcc to make the branch decision
instead of using the fcc in the FSR. The “hot” fcc is updated when an FCMP instruction
moves to the B_stage of the FPU (i.e., 2 cycles earlier than FSR’s update).

The FBfcc makes decision in the Decode stage of the IU, so waiting there. The FCMP
moves from Execution stage of the IU to the A_stage of the FPU in 1 cycle if there is
no IU interlock or IU hold condition. After being dispatched to the FPU, the FCMP
moves from the A_stage to the B_stage (updating the “hot” fcc) in 1 cycle. There are at
least 2 cycles between the FCMP instruction and the FBfcc instruction, so the latency of
the FCMP to the FBfcc is therefore 3 cycles in the best case.

If there is no IU interlock or IU hold, a program can have at most two instructions
(FPop or non-FPop, except another FCMP) between the FCMP instruction and the
FBfcc instruction without changing branch timing. When a program has one instruction
or no instruction between the FCMP and the FBfcc (note: other SPARC FPUs may not
allow “no” instruction), the FCMP_FBfcc interlock may be asserted to stall the FBfcc
in the Decode stages as long as necessary.

 Programming Note:

When an FCMP instruction has an fp_exception, the “hot” fcc has an unknown
value, and the following FBfcc instruction may therefore branch to the wrong
location. This causes no problem, however, because the FBfcc instruction is
trapped by the fp_exception trap that was generated by the FCMP instruction.

D5.6.8 Latencies of Interrupt, Trap, and Task Switch
Although an interlock may stop an FPop for many cycles (e.g., 27 cycles for FDIVd/
FSQRTd) in the Execution stage:

(1) The interrupt latency is not increased by the interlock.

An interrupt request is detected in the Execution stage. Once an interrupt is
detected, the interlock for an FPop is annulled, and the FPop is not dispatched to
the FPU. The FPop then moves to the Memory stage with the interrupt trap request,
and it is trapped at there.

Floating-Point Unit - Pipeline of FPU and Latency

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D5-55

 (2) The trap latency is not increased by the interlock.

When an instruction is trapped in the Memory stage, following instructions in the
Fetch, Decode, and Execution stages are squashed. Even if an FPop is interlocked
at the Execution stage, it is squashed by the trap, and the interlock is annulled.
Therefore, an interlock at Execution (or Fetch or Decode) stage does not increase
the latency of a trap.

(3) The task switch latency is minimized by the FPU_full interlock.

When the OS switches tasks, the OS must wait for the completion of all FPops in
the FQ if both tasks use the FPU. If there is no FPU_full interlock, the three-entry
FQ can have at most 3 FDIVd/FSQRTd instructions. Then, in the worst case, the
OS must wait for the completion of 3 FDIVd/FSQRTd instructions for about 84
(28∗3) cycles. However, with the FPU_full interlock, the OS must wait only about
28 cycles for the completion of all FPops in the FQ, even in the worst case.

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D6-1

HAPTER

Floating-Point Instructions

D6
C

This chapter describes all floating-point instructions that the MB86934 supports in
hardware. The Enhanced Floating-point Operate 1/2 (EFPop1/2) instructions are new
instructions not defined in the original SPARC specification that are used to access the
FIFOs in the MB86934.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-2

D6.1 Floating-point Operate (FPop) Instructions

opcode op3 operation

FPop1 110100 Floating-point operate

FPop2 110101 Floating-point operate

EFPop1 110110 Enhanced Floating-point operate

EFPop2 110111 Enhanced Floating-point operate

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

FPop2 10 rd 110101 rs1 opf rs2

EFPop1 10 rd 110110 rs1 opf rs2

EFPop2 10 rd 110111 rs1 opf rs2

Description:

The Floating-point operate (FPop) instructions are encoded using four “type 3” formats:
FPop1, FPop2, EFPop1, and EFPop2. The particular floating-point instruction is
determined by the instruction opf field. Note that the load/store floating-point
instructions are not FPop instructions.

The FPop1 and EFPop1 instructions do not affect the floating-point condition codes, but
the FPop2 and EFPop2 instructions may affect the floating-point condition codes.

The FPop instructions support operations between integer words and single-, double-,
and quad-precision floating-point operands in f register(s). All FPop instructions operate
according to ANSI/IEEE Standard. 754-1985 on single, double, and quad formats.

The least significant bit of an f register address is not used by double-precision FPop
instructions, and the least significant 2 bits of an f register address are not used by
quad-precision FPop instructions. These unused register address bits are reserved and
should be written 0 by software to ensure future compatibility. If these address bit(s) are
not 0 in an FPop instruction with a double- or quad-precision operand, an fp_exception
trap occurs with FSR.ftt = invalid_fp_register.

If either the EF field of the PSR is 0 or no FPU is present, an FPop1 or FPop2
instruction causes an fp_disabled trap, and an EFPop1 or EFPop2 instruction causes a
cp_disabled trap.

Floating-point exceptions may cause either precise or deferred traps.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-3

EFPop1 and EFPop2 instructions operate in the same way as the respective FPop1 and
FPop2 instructions with the exception that EFPop1 and EFPop2 instructions access
FIFO(s) when their f register address(es) are f20, f22, f24, f26, f28, or f30.

Programming Note:

The following restriction does not apply to the MB86934, but may apply to other
SPARC processors.

If an FPop2 instruction such as FCMP or FCMPE sets the floating-point condition
codes, then at least one non-FPop2 (non-floating-point operate 2) instruction must be
executed between the FPop2 instruction and a following FBfcc instruction. Otherwise,
the result of the FBfcc instruction is undefined.

The MB86934 will generate a one cycle interlock delay automatically if floating branch
immediately follows floating compare.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-4

D6.1.1 Convert Integer to Floating-Point Instructions

opcode opf operation

FiTOs/EFiTOs 011000100 Convert Integer to Single

FiTOd/EF iTOd 011001000 Convert Integer to Double

FiTOq 011001100 Convert Integer to Quad *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

EFPop1 10 rd 110110 0* opf rs2

* Not used, must be 0.

Syntax:

fitos fregrs2 , fregrd
fitod fregrs2 , fregrd
efitos fregrs2 , fregrd
efitod fregrs2 , fregrd
fitoq fregrs2 , fregrd

Description:

These instructions convert the 32-bit integer word operand in f[rs2] into a floating-point
number in the destination format. They write the result into the f register(s) specified by
rd.

FiTOs rounds according to the RD field in the FSR.

The EFiTOs and EFiTOd instructions access FIFO(s) when their f register address(es)
are f20, f22, f24, f26, f28, or f30.

Traps:

fp_disabled/cp_disabled
fp_exception (NX (FiTOs/EFiTOs only), Invalid_fp_register (FiTOd/EFiTOd,

 FiTOq))

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-5

D6.1.2 Convert Floating-Point to Integer Instructions

opcode opf operation

FsTOi/EFsTOi 011010001 Convert Single to Integer

FdTOi/EFdTOi 011010010 Convert Double to Integer

FqTOi 011010011 Convert Quad to Integer *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

EFPop1 10 rd 110110 0* opf rs2

* Not used, must be 0.

Syntax:

fstoi fregrs2 , fregrd
fdtoi fregrs2 , fregrd
efstoi fregrs2 , fregrd
efdtoi fregrs2 , fregrd
fqtoi fregrs2 , fregrd

Description: These instructions convert the floating-point operand in the f register(s)
specified by rs2 into a 32-bit integer word in f[rd]. The result is always rounded toward
0 (the RD field in the FSR is ignored).

The EFsTOi and EFdTOi instructions access FIFO(s) when their f register address(es)
are f20, f22, f24, f26, f28, or f30.

Traps:

fp_disabled/cp_disabled
fp_exception (NV, NX, invalid_fp_register (FdTOi/EFdTOi, FqTOi))

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-6

D6.1.3 Convert Between Floating-Point Formats
Instructions

opcode opf operation

FsTOd/EFsTOd 011001001 Convert Single to Double

FsTOq 011 001101 Convert Single to Quad *

FdTOs/EFdTOs 011000110 Convert Double to Single

FdTOq 011001110 Convert Double to Quad *

FqTOs 011000111 Convert Quad to Single *

FqTOd 011001011 Convert Quad to Double *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

EFPop1 10 rd 110110 0* opf rs2

* Not used, must be 0.

Syntax:
fstod fregrs2 , fregrd
efstod fregrs2 , fregrd
fstoq fregrs2 , fregrd
fdtos fregrs2 , fregrd
efdtos fregrs2 , fregrd
fdtoq fregrs2 , fregrd
fqtos fregrs2 , fregrd
fqtod fregrs2 , fregrd

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-7

Description:

These instructions convert the floating-point operand in the f register(s) specified by rs2
to a floating-point number in the destination format. They write the result into the f
register(s) specified by rd. Rounding is performed according to the RD field in the FSR.

FqTOd, FqTOs, and FdTOs/EFdTOs (the “narrowing” conversion instructions) can
result in OF, UF, and NX exceptions. FdTOq, FsTOq, and FsTOd/EFsTOd (the
“widening” conversion instructions) cannot. Any of these eight instructions can trigger
an NV exception if the source operand is a signaling NaN.

The EFsTOd and EFdTOs instructions access FIFO(s) when their f register address(es)
are f20, f22, f24, f26, f28, or f30.

Traps:
fp_disabled/cp_disabled
fp_exception (OF, UF, NV, NX, invalid_fp_register)

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-8

D6.1.4 Floating-Point Move Instructions

opcode opf operation

FMOVs/EFMOVs 000000001 Move

FNEGs/EFNEGs 000000101 Negate

FABSs/EFABSs 000001001 Absolute Value

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

EFPop1 10 rd 110110 0* opf rs2

* Not used, must be 0.

Syntax:
fmovs fregrs2 , fregrd
efmovs fregrs2 , fregrd
fnegs fregrs2 , fregrd
efnegs fregrs2 , fregrd
fabss fregrs2 , fregrd
efabss fregrs2 , fregrd

Description:

FMOVs/EFMOVs copies the contents of f[rs2] to f[rd]. FNEGs/EFNEGs copies the
contents of f[rs2] to f[rd] with the sign bit complemented. FABSs/EFABSs copies the
contents of f[rs2] to f[rd] with the sign bit cleared. These instructions do not round.

The EFMOVs, EFNEGs, and EFABSs instructions access FIFO(s) when their f register
address(es) are f20, f22, f24, f26, f28, or f30.

Programming Notes:

(1) One FMOVs/EFMOVs instruction per word is required to transfer a multiple-
precision value between f registers.

(2) If the source and destination registers (fregrs2 and fregrd) are the same, a single
FNEGs (FABSs) instruction performs negation (absolute value) for any operand
precision, including double- and quad- precisions. If the source and destination
registers are different, an FNEGs/EFNEGs (FABSs/EFABSs) and a following
FMOVs/EFMOVs instruction perform a double-precision negation (absolute value);
an FNEGs/EFNEGs (FABSs/EFABSs) and three following FMOVs/EFMOVs
instructions perform a quad-precision negation (absolute value).

Traps:
fp_disabled/cp_disabled

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-9

D6.1.5 Floating-Point Square Root Instructions

opcode opf operation

FSQRTs/EFSQRTs 000101001 Square Root Single

FSQRTd/EFSQRT d 000101010 Square Root Double

FSQRTq 000101011 Square Root Quad *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 0* opf rs2

EFPop1 10 rd 110110 0* opf rs2

* Not used, must be 0.

Syntax:

fsqrts fregrs2 , fregrd
efsqrts fregrs2 , fregrd
fsqrtd fregrs2 , fregrd
efsqrtd fregrs2 , fregrd
fsqrtq fregrs2 , fregrd

Description:

These instructions generate the square root of the floating-point operand in the f
register(s) specified by the rs2 field, and place the result in the destination f register(s)
specified by the rd field. Rounding is performed according to the rd field in the FSR.

The EFSQRTs and EFSQRTd instructions access FIFO(s) when their f register
address(es) are f20, f22, f24, f26, f28, or f30.

Traps:

fp_disabled/cp_disabled
fp_exception (NV, NX, invalid_fp_register (FSQRTd/EFSQRTd, FSQRTq))

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-10

D6.1.6 Floating-Point Add and Subtract Instructions

opcode opf operation

FADDs/EFADDs 001000001 Add Single

FADDd/EFADDd 001000010 Add Double

FADDq 001000011 Add Quad *

FSUBs/EFSUBs 001000101 Subtract Single

FSUB d/EFSUBd 001000110 Subtract Double

FSUBq 001000111 Subtract Quad *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

EFPop1 10 rd 110110 rs1 opf rs2

Syntax:

fadds fregrs1 , fregrs2 , fregrd
efadds fregrs1 , fregrs2 , fregrd
faddd fregrs1 , fregrs2 , fregrd
efaddd fregrs1 , fregrs2 , fregrd
faddq fregrs1 , fregrs2 , fregrd
fsubs fregrs1 , fregrs2 , fregrd
efsubs fregrs1 , fregrs2 , fregrd
fsubd fregrs1 , fregrs2 , fregrd
efsubd fregrs1 , fregrs2 , fregrd
fsubq fregrs1 , fregrs2 , fregrd

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-11

Description:

The floating-point add instructions add the f register(s) specified by the rs1 field and the
f register(s) specified by the rs2 field, and write the difference into the f register(s)
specified by the rd field.

The floating-point subtract instructions subtract the f register(s) specified by the rs2
field from the f register(s) specified by the rs1 field, and write the difference into the f
register(s) specified by the rd field.

The EFADDs, EFADDd, EFSUBs, and EFSUBd instructions access FIFO(s) when their
f register address(es) are f20, f22, f24, f26, f28, or f30.

Traps:

fp_disabled/cp_disabled
fp_exception (OF, UF, NX, NV (∞–∞), invalid_fp_register (all except
FADDs/EFADDs and FSUBs/EFSUBs))

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-12

D6.1.7 Floating-Point Multiply and Divide
Instructions

opcode opf operation

FMULs/EFMULs 001001001 Multiply Single

FMULd/EFMULd 00100 1010 Multiply Double

FMULq 001001011 Multiply Quad *

FsMULd/EFsMULd 001101001 Multiply Single to Double

FdMULq 001101110 Multiply Double to Quad *

FDIVs/EFDIV s 001001101 Divide Single

FDIVd/EFDIVd 001001110 Divide Double

FDIVq 001001111 Divide Quad *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop1 10 rd 110100 rs1 opf rs2

EFPop1 10 rd 110110 rs1 opf rs2

Syntax:

fmuls fregrs1 , fregrs2 , fregrd
efmuls fregrs1 , fregrs2 , fregrd
fmuld fregrs1 , fregrs2 , fregrd
efmuld fregrs1 , fregrs2 , fregrd
fmulq fregrs1 , fregrs2 , fregrd
fsmuld fregrs1 , fregrs2 , fregrd
efsmuld fregrs1 , fregrs2 , fregrd
fdmulq fregrs1 , fregrs2 , fregrd
fdivs fregrs1 , fregrs2 , fregrd
efdivs fregrs1 , fregrs2 , fregrd
fdivd fregrs1 , fregrs2 , fregrd
efdivd fregrs1 , fregrs2 , fregrd
fdivq fregrs1 , fregrs2 , fregrd

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-13

Description:

The floating-point multiply instructions multiply the f register(s) specified by the rs1
field by the f register(s) specified by the rs2 field, and write the product into the f
register(s) specified by the rd field.

The FsMULd/EFsMULd instruction provides the exact double-precision product of two
single-precision operands without underflow, overflow, or rounding error. Similarly,
FdMULq provides the exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the f register(s) specified by the rs1 field
by the f register(s) specified by the rs2 field, and write the quotient into the f register(s)
specified by the rd field.

The EFMULs, EFMULd, EFsMULd, EFDIVs, and EFDIVd instructions access FIFO(s)
when their f register address(es) are f20, f22, f24, f26, f28, or f30.

Traps:

fp_disabled/cp_disabled
fp_exception (OF, UF, DZ (FDIV/EFDIV only), NV, NX, invalid_fp_register

 (all except FMULs/EFMULs and FDIVs/EFDIVs))

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-14

D6.1.8 Floating-Point Compare Instructions

opcode opf operation

FCMPs/EFCMPs 001010001 Compare Single

FCMPd/EFCMPd 001010 010 Compare Double

FCMPq 001010011 Compare Quad *

FCMPEs/EFCMPEs 001010101 Compare Single and Exception if Unordered

FCMPEd/EFCMPEd 001010110 Compare Double and Exception if Unordered

FCMPEq 001010111 Compare Quad and Exception if Unordered *

Format:

31 30 29 25 24 19 18 14 13 5 4 0

FPop2 10 0* 110101 rs1 opf rs2

EFPop2 10 0* 110111 rs1 opf rs2

* Not used, must be 0.

Syntax:

fcmps fregrs1 , fregrs2
efcmps fregrs1 , fregrs2
fcmpd fregrs1 , fregrs2
efcmpd fregrs1 , fregrs2
fcmpq fregrs1 , fregrs2
fcmpes fregrs1 , fregrs2
efcmpes fregrs1 , fregrs2
fcmped fregrs1 , fregrs2
efcmped fregrs1 , fregrs2
fcmpeq fregrs1 , fregrs2

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-15

Description:

These instructions compare the f register(s) specified by the rs1 field with the f
register(s) specified by the rs2 field, and set the floating-point condition codes as
follows:

fcc Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)

The “compare and cause exception if unordered” instructions (FCMPEs/EFCMPEs,
FCMPEd/EFCMPEd, and FCMPEq) cause an invalid (NV) exception if either operand
is a signaling NaN or a quiet NaN. FCMP/EFCMP causes an invalid (NV) exception if
either operand is a signaling NaN.

The EFCMPs, EFCMPd, EFCMPEs, and EFCMPEd instructions access FIFO(s) when
their f register address(es) are f20, f22, f24, f26, f28, or f30.

Programming Note:

The following restriction does not apply to the MB86934, but may apply to other
SPARC processors.

A non-FPop2 (non-floating-point-operate2) instruction must be executed between an
FPop2 (FCMP or FCMPE) instruction and a following FBfcc instruction. Otherwise, the
result of the FBfcc is undefined.

Traps:

fp_disabled/cp_disabled
fp_exception (NV, invalid_fp_register (all except FCMPs/EFCMPs and

FCMPEs/EFCMPEs)

*Generates unimplemented_ FPop Trap

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-16

D6.2 Load Floating-Point (LDfp) Instructions

opcode op3 operation

LDF 100000 Load Floating-Point Register

LDDF 100011 Load Double Floating-Point Register

LDFSR 100001 Load Floating-Point State Register

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd op3 rs1 i=0 0* rs2

11 rd op3 rs1 i=1 simm13

* Not used, must be 0.

Syntax:

ld [address] , fregrd
ldd [address] , fregrd
ld [address] , %fsr

Description:

The load single floating-point instruction (LDF) moves a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) moves a doubleword from
memory into an f register pair. The most significant word at the effective memory
address is moved into the even f register. The least significant word at the effective
memory address +4 is moved into the following odd f register. The least significant bit
of the rd field is unused and should always be set to 0 by software.

The load floating-point state register instruction (LDFSR) waits for all FPop instruc-
tions that have not finished execution to complete, then loads a word from memory into
the FSR.

The effective address for the load instruction is “r[rs1] + r[rs2]” if the i field is 0, and
“r[rs1] + sign_ext(simm13)” if the i field is 1.

LDF and LDFSR cause a mem_address_not_aligned trap if the effective address is not
word-aligned; LDDF traps if the address is not doubleword-aligned. If the EF field of
the PSR is 0 or if no FPU is present, a load floating-point instruction causes an
fp_disabled trap.

Programming Notes:

(1) The MB86934 ignores the least-significant bit of the LDDF rd field. Other SPARC
processors may cause an fp_exception_trap with FSR.ftt = invalid_fp_register if the
bit is 1.

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-17

(2) If any of the three instructions that follow an LDFSR (in time) is an FBfcc, the
value of the FSR fcc field that is seen by the FBfcc is undefined. This restriction
does not apply to the MB86934, but may apply to other SPARC processors:

Implementation Note:

If a load floating-point instruction traps with a data access exception, the destination f
register(s) remain unchanged.

Traps:

fp_disabled
fp_exception (sequence_error)
data_access_exception
mem_address_not_aligned

Floating-Point Instructions - Floating-point Operate (FPop) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-18

D6.3 Store Floating-Point (STfp) Instructions

opcode op3 operation

STF 100100 Store Floating-Point

STDF 100111 Store Double Floating-Point

STFSR 100101 Store Floating-Point State Register

STDFQ† 100110 Store Double Floating-Point deferred-trap Queue.

† privileged instruction

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

11 rd op3 rs1 i=0 0* rs2

11 rd op3 rs1 i=1 simm13

*Not used, must be 0.

Syntax:

st fregrd , [address]
std fregrd , [address]
st %fsr , [address]
std %fq , [address]

Description:

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from an f
register pair into memory. The more-significant word (in the even-numbered f register)
is written into memory at the effective address, and the less-significant word (in the
odd-numbered f register) is written into memory at “effective address + 4”. The
least-significant bit in the rd field is not used and should be written to 0 by software.

The store floating-point deferred-trap queue instruction (STDFQ) stores the front
doubleword of the Floating-Point Queue (FQ) into memory. An attempt to execute
STDFQ when the FQ is empty (FSR.qne = 0) should cause an fp_exception trap with
FSR.ftt set to 4 (sequence_error).

The store floating-point state register instruction (STFSR) waits for any concurrently
executing Fpop instructions to complete, then writes the FSR into memory. STFSR
zeros FSR.ftt after writing the FSR to memory.

Floating-Point Instructions - Store Floating-Point (STfp) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-19

The effective address for a store instruction is “r[rs1] + r[rs2]” if the i field is 0, or
“r[rs1] + sign_ext(simm13)” if the i field is 1.

STF and STFSR cause a mem_address_not_aligned trap if the address is not word-
aligned, and STDF and STDFQ trap if the address is not doubleword aligned. If the EF
field of the PSR is 0 or if the FPU is not present, a store floating-point instruction
causes an fp_disabled trap.

Programming Note:

The MB86934 ignores the least-significant bit of the rd field of the STDF. Other
SPARC processors may assert an fp_exception_trap with FSR.ftt = invalid_fp_register
if the bit is 1.

Implementation Note:

The MB86934 implementation might cause a data_access_exception trap due to a
“non-resumable machine-check” error during an “effective address + 4” memory
access, even though the corresponding ”effective address” access did not cause an error.
Thus, memory data at the effective memory address may be changed in this case. (Note
that this cannot happen across a page boundary because of the doubleword alignment
restriction.)

Traps:

fp_disabled
fp_exception (sequence_error (STDFQ))
privileged_instruction (STDFQ only)
mem_address_not_aligned
data_access_exception

Floating-Point Instructions - Store Floating-Point (STfp) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-20

D6.4 Branch on Floating-Point Codes (FBfcc) Instructions
opcode cond operation fcc test

FBA 1000 Branch Always 1

FBN 0000 Branch Never 0

FBU 0111 Branch on Unordered U

FBG 0110 Branch on Greater G

FBUG 010 1 Branch on Unordered or Greater G or U

FBL 0100 Branch on Less L

FBUL 00 11 Branch on Unordered or Less L or U

FBLG 0010 Branch on Less or Greater L or G

FBNE 0001 Branch on Not Equal L or G or U

FBE 1001 Branch on Equal E

FBUE 1010 Branch on Unordered or Equal E or U

FBGE 1011 Branch on Greater or Equal E or G

FBUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBLE 1101 Branch on Less or Equal E or L

FBULE 1110 Branch on Unordered or Less or Equal E or L or U

FBO 1111 Branch on Ordered E or L or G

Format:

31 30 29 28 25 24 22 21 0

00 a cond 110 disp22

Syntax:
fba {,a} label
fbn {,a} label
fbu {,a} label
fbg {,a} label
fbug {,a} label
fbl {,a} label
fbul {,a} label
fblg {,a} label
fbne {,a} label (synonym: fbnz)
fbe {,a} label (synonym: fbz)
fbue {,a} label
fbge {,a} label
fbuge {,a} label
fble {,a} label
fbule {,a} label
fbo {,a} label

Floating-Point Instructions - Branch on Floating-Point Condition Codes (FBfcc) Instructions

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D6-21

Note: To set the “annul” bit for FBfcc instructions, append “ ,a” to the opcode
mnemonic. For example, use “fbl ,a label”. The braces ({}) in the preceding table
indicate that the “ ,a” are optional. Description:

Unconditional Branches (FBA, FBN)

If its annul field is 0, an FBN (Branch Never) instruction executes as a “NOP”. If its
annul field is 1, the following (delay) instruction is annulled (not executed). In
neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_ext(disp22)),” regardless of the value of the floating-point condition
code bits. If the annul field of the branch instruction is 1, the delay instruction is
annulled (not executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches

Conditional FBfcc instructions (all except FBA and FBN) evaluate the floating-
point condition codes (fcc) according to the cond field of the instruction. Such
evaluation produces either a “true” or “false” result. If “true,” the branch is taken;
that is, the instruction causes a PC-relative delayed control transfer to the address
“PC + (4 x sign_ext(disp22)).” If “false,” the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
of the value of the annul field. If a conditional branch is not taken and the a (annul)
field is 1, the delay instruction is annulled (not executed). (Note that the annul bit
has a different effect on conditional branches than on unconditional branches).

An FBfcc should not be placed in the delay slot of a conditional branch instruction.

If the PSR’s EF bit is 0, or if an FPU is not present, an FBfcc instruction does not
branch, does not annul the following instruction, and generates an fp_disabled trap.

Programming Notes:

The following restrictions do not apply to the MB86934, but may apply to other
SPARC processors.

(1) If the instruction executed immediately before an FBfcc is an FPop2 instruction, the
result of the FBfcc is undefined. Therefore, at least one non-FPop2 instruction
should be executed between an FPop2 and a following FBfcc.

(2) If any of the three instructions that follow (in time) an LDFSR is an FBfcc, the
value of the fcc field of the FSR that is seen by the FBfcc is undefined.

Traps:

fp_disabled
fp_exception (sequence_error)

Floating-Point Instructions - Branch on Floating-Point Condition Codes (FBfcc) Instructions

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D7-1

HAPTER

MB86934 Bus Interface Unit

D7
C

D7.1 Overview of Bus Interface Unit
The BIU on the MB86934 includes all the features of the MB86930, and in addition
offers the following:

• Double system clock frequency option,

• Four-word burst mode for instruction fetches and data loads,

• Byte-based parity generation/checking for the external data bus,

• A modified Wait State Specifier Register that supports burst mode and parity
generation/checking on specified address ranges,

• A ROM/PROM interface that allows the MB86934 to boot from either 8-bit wide or
16-bit wide ROM/PROM,

• A processor bus request feature that enables the MB86934 to request access to
external address and data buses,

• A peripheral-to-SDRAM interface,

• Control signals for non-volatile memory,

• Handshaking signals for external bus masters.

 Bus Interface Unit – Overview of Bus Interface Unit

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-2

D7.2 Burst Mode

D7.2.1 Overview
The Bus Interface Unit (BIU) supports the fetching of instructions and data from
external memory to the appropriate cache in ‘bursts’ of four words at a time. A burst
mode transfer is initiated either by a cache miss or by a DMA request. For a cache miss,
burst mode is supported only for instruction fetches and data loads, not for stores. The
IU is held until all four words are fetched. For DMA burst access, both data burst reads
and data burst writes are supported. (Note, however, that the DMA does not support
movement of data to/from cache.)

When burst mode is triggered by a cache miss, it replaces four words in the cache line
where the miss occurred. Such a burst-mode transfer can take place only if (a) the
enabling bit (see “Bus Control Register,” below) is set, and (b) the external memory
supports burst mode. In the case of an i_cache miss, only half the line is replaced, since
i_cache lines are eight words long. In the case of a d_cache miss, the entire four-word
line is replaced by a burst-mode fetch. The four-word sequence fetched in burst mode
starts with the word that caused the miss, followed by three more words in a standard
order.

D7.2.2 Burst Mode Interface Pins
Two pins are dedicated to burst mode:

–BMREQ: Output pin to inform the memory system that the current bus transaction is a burst mode.

–BMACK: Input pin to inform the processor that the memory system can support burst mode.

Note: When a cache miss occurs, –BMREQ will be asserted only if the corresponding
bit of the Bus Control Register (DBE for data, IBE for instructions) is set. However, for
a DMA transaction, –BMREQ is asserted for a data transfer request for a quad word or
more data, regardless of the status of the DBE bit.

D7.2.3 Burst Mode Fetch Sequence
In burst-mode accesses, the cache automatically uses the two least significant bits
(LSBs) of the address of the requested word, ADR[3:2], to determine the sequence in
which the other three words will be fetched. (The sequence is optimized for a 2-way
interleaved memory.) The table below shows the four possible sequences of words, in
terms of their address LSBs, depending on the LSBs of the word causing the miss. Note
that the first word accessed in a burst is always the one requested by the IU and that
during a burst access, bits ADR[3:2] do not change.

MB86934 Bus Interface Unit - Burst Mode

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-3

Table D7–1. Sequence of Words Fetched in Burst Mode

LSBs of
Missed Word

SEQUENCE OF WORDS TRANSFERRED
(in terms of their LSBs)

 Missed Word
1st word 2nd word 3rd word 4th word

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

D7.2.4 Bus Mode Control Bits
Two bits in the Bus Control Register are used to control burst mode for instruction
fetches and data loads.

031 12

Reserved

Data Burst Enable (DBE) (Enabled=1, Disabled=0, RST=0)Address: 0x00000020 (ASI=0x01)
Instruction Burst Enable (IBE) (Enabled=1, Disabled=0, RST=0)

Figure D7–1. Bus Control Register

On reset, burst mode for both instruction and data misses is disabled. The user must
explicitly enable one or both after reset. Bus operations already in progress are not
affected by modification of the burst-enable bits.

D7.2.5 PROM Address Space
Burst mode access from the PROM address space is not supported for 8- or 16-bit bus
mode. If burst mode is enabled, and the address lies within the PROM address space for
a non-32-bit bus mode transfer, the burst mode request output signal (–BMREQ) will
still be asserted, but the burst acknowledge signal (–BMACK) should not be asserted by
the external memory. If –BMACK is asserted under these conditions, the BIU operation
is undefined.

D7.2.6 Prefetch Buffer
The prefetch buffer is not used when burst-mode instruction fetches are enabled, and is
automatically disabled if the IBE bit is set, regardless of the state of the Prefetch Buffer
Enable bit in the Cache/BIU Control Register. If the external memory system cannot
handle burst mode operations, the instruction burst mode should be left disabled, so that
the prefetch buffer can be used.

MB86934 Bus Interface Unit – Burst Mode

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-4

D7.2.7 Cache Off
Instruction and data burst mode is automatically disabled if the corresponding cache is
turned off.

D7.2.8 Bus Request
The bus will be released to service another request only after the completion of the
burst mode transaction.

D7.2.9 Memory Exception (Instruction fetches or
Data loads)

All four word accesses of a burst mode access will be completed even if a memory
exception occurs on any of the word accesses. During a burst access, word accesses that
cause an external memory exception (–MEXC asserted) are not written into the cache,
while any words that do not cause a memory exception are written to cache. Note that
the Integer Unit will recognize a memory exception only when it is accessing the
specific word with which the memory exception is associated.

For example, if the IU requested word 00, the BIU would burst-read 00, 01, 10 and 11.
If an external memory exception occurred only on word 10, this word would not be
written to the cache; the other three words, however, would be written to the cache. The
IU would not vector to the memory_exception trap handler, since there was no memory
exception on the specific word it requested.

If, however, the IU ever tried to access word 10, which was not written into the cache
because of the memory exception, a miss would occur which would cause the BIU to
fetch that word from memory again. If a –MEXC were asserted on this access of
word 10, the processor would vector to the memory_exception trap handler, since this
was the word specifically requested by the IU.

D7.2.10 Memory Exception (DMA)
When a memory exception (–MEXC strobed) occurs on any word of a DMA burst read,
the DMA will complete all four reads. The corresponding four writes, needed to
complete the transaction, will not occur.

When a memory exception occurs on any word of a DMA burst write, the DMA will
continue, completing all four writes.

A memory exception on a DMA transfer will not cause the IU to vector to the
data_memory_exception trap routine.

MB86934 Bus Interface Unit - Burst Mode

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-5

D7.2.11 Non-cacheable Accesses

Burst mode fetches from a non-cacheable address space are not supported. The burst
request signal (–BMREQ) will not be asserted, and only a single-word fetch will be
performed.

D7.2.12 Interface Timing

Figure D7-2 shows the timing of a burst mode transaction for an instruction fetch, data
load, or DMA read. To start the transaction, the MB86934 outputs a burst mode request
signal (–BMREQ) to the memory system. The memory system asserts the burst mode
acknowledge signal (–BMACK) to the processor when the first word is fetched,
indicating that a burst mode request can be handled. The –BMACK should be asserted
only in the cycle when the –RDY for the first access is asserted. The memory latency
involved in the first word fetch is the same as in a non-burst access, and subsequent
fetches are usually shorter; as in the figure, a single cycle. This does not mean that each
fetch following the first will occur in one cycle; subsequent fetches can take any
number of cycles, depending on the –RDY assertion. The –BMREQ signal is deasserted
after the completion of the first word fetch.

If the memory system cannot handle a burst mode transaction, –BMACK will remain
deasserted Once the burst mode logic detects an inactive –BMACK, the burst mode
access will terminate. The burst mode logic will not attempt to complete the fetch of
the remaining words in the cache line. However, –BMREQ will be asserted again for
any subsequent misses. Therefore, for a certain address segment in which the memory
system cannot handle a burst mode operation, the –BMACK signal can remain
deasserted. An example is shown in Figure D7-3.

Figure D7-4 shows the timing for the write portion of a DMA burst operation. The
timing is identical to that in Figure D7-2, except that the RD/–WR line is low,
indicating a write operation is in progress.

Note that ADR[31:2] is the address of the first word fetched. This address remains
constant through the burst.

D7.3 Parity

The MB86934 provides parity generation/checking for the 32-bit external data bus.
Parity can be enabled/disabled for specified address ranges by setting/clearing bits in
the Wait-State Specifier Register (see section on that register, below). Parity can be set
even or odd by setting bit 0 in the System Support Control Register: set to 1, odd parity
is generated/checked; set to 0, even parity is generated/checked. On reset, the value of
this bit is cleared to 0.

MB86934 Bus Interface Unit – Parity

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-6

CLKIN

–AS

–BMREQ

–BMACK

ADR[31:2]

–RDY

DATA

RD/-WR

Figure D7–2. Burst Mode (0 wait state)

CLKIN

–AS

–BMREQ

–BMACK

ADR[31:2]

–RDY

DATA

Figure D7–3. Terminated Burst Mode Due to –BMACK=1

Parity is generated/checked for every byte of data (resulting in four parity bits). If parity
is odd, the parity bit is set to 1 when there are an odd number of 1’s in the data; if parity
is even, the parity bit is set to 1 when there are an even number of 1’s in the data. When
enabled, parity is generated for all writes to external memory. Incoming parity is
checked only for the address ranges for which the “PE” bit in the corresponding
Wait-State Specifier Register is set to 1. If a parity error is detected on an instruction
fetch, an instruction_memory_exception occurs. If a parity error is detected on a data
fetch, a data_memory_exception occurs. The parity bits will have a longer setup/delay
time than the other data bits.

Note: PARITY<3> corresponds to D<31:24>
PARITY<2> corresponds to D<23:16>
PARITY<1> corresponds to D<15:8>
PARITY<0> corresponds to D<7:0>

MB86934 Bus Interface Unit - Parity

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-7

CLKIN

–AS

–BMREQ

–BMACK

ADR[31:2]

–RDY

DATA

RD/–WR

Figure D7–4. DMA Burst Mode, Write Portion

031 2 1

Same-Page Enable (On=1, Off=0)

Chip Select Enable (On=1, Off=0)

Programmable Wait-State (On=1, Off=0)

3

Reserved

46

Timer On/Off (On=1, Off=0)

5

DMA priority bit (On=1, Off=0)

Parity bit (Odd Priority=1, Even Priority=0)

Address: 0x00000080 (ASI=0x01)

Figure D7–5. System Support Control Register

D7.4 Non Volatile Memory Support Signals

The MB86934 has two new signals, –NVWE (non-volatile RAM write enable) and –OE
(output enable), that control non-volatile memory.

–NVWE is used during writes to non-volatile memory to allow sufficient data hold time
for the memory. It is asserted one cycle after –AS is asserted, and is released when
–READY is asserted, as shown in Figure D7-6. Therefore, at least three cycles must be
implemented when the –NVWE signal is used.

–OE is used during reads from non-volatile memory to enable the memory output
drivers. It is asserted one cycle after –AS is asserted, and is released at the end of the
data transfer operation, as shown in Figure D7-7.

MB86934 Bus Interface Unit – Non Volatile Memory Support Signals

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-8

CLKIN

–AS

–READY

RD/–WR

–NVWE

(Internal)

Figure D7–6. Non-Volatile Memory Write Timing

CLKIN

–AS

–READY

RD/–WR

–OE

(Internal)

Figure D7–7. Non-Volatile Memory Read Timing

–NVWE and –OE operate only if both the Programmable Wait-State Enable bit in the
System Support Control Register and the Wait Enable bit in the Wait-State Specifier
Register are set to 1.

D7.5 SDRAM Address Space
Sparcpix 934 reserves chip select 5 exclusively for SDRAM access. CS5 is programable
by using Address Range Specifier Register [5] and Address Mask Register [5].

D7.6 External Bus Master Support
The processor responds to a bus request by an external bus master by asserting the
–BGRNT (Bus Grant) signal. The BIU asserts –CS (Chip Select) for the external bus
master one cycle after asserting –AS, and the wait state control logic asserts
–READYOUT to terminate the operation, as shown in Figure D7-8. The external bus
master can drive the address and data bus only during the –AS cycle.

If the bus request is for access to the SDRAM, the BIU acts as an interface between the
external bus master and the SDRAM. In this case the –AS, ASI, RD/–WR, and ADR
signals are I/O signals.

Note: –READYOUT is valid after the –BGRNT one cycle.

MB86934 Bus Interface Unit - External Bus Master Support

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-9

CLKIN

–BGRNT

–AS

RD/–WR

–RDYOUT

ADR, ASI

–CS

D[31:0]

Write Timing

CLINK

–BGRNT

–AS

RD/–WR

–RDYOUT

ADR, ASI

–CS

D[31:0]

Read Timing

Figure D7–8. External Bus Master Signal Timing

D7.7 Same Page Support
The MB86934 supports same memory page operation only in the chip select 4 address
range by asserting the SAMEPAGE signal when the current address is in the same
memory page as the previous address. To use the SAMEPAGE signal, the memory must
be located in the chip select 4 address range.

D7.8 Wait State Specifier Register

D7.8.1 Purpose
The Wait-State Specifier Register (WSSR) format on the MB86934 has been changed
from that on the MB86930 to accommodate the burst mode bus transaction using
internal –READY and Parity generation/checking.

MB86934 Bus Interface Unit – Same Page Support

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-10

D7.8.2 Format

631 8 727 26 22 21 20 19 18 14 13 9

Count1 Count2 Count1 Count2

5 034 2

SCB1 (On=1, Off=0, RST=0)

SCB0 (On=1, Off=0, RST=0)

PE1 (On=1, Off=0, RST=0)

PE0 (On=1, Off=0, RST=0)

Reserved

Address: 0x00000160 to
0x00000164 168 (ASI=0x01)

1

WE (On=1, Off=0, RST=0)

SCP (On=1, Off=0, RST=0)

OVR (On=1, Off=0, RST=0)

Figure D7–9. Wait State Specifier Register

The bits in the WSSR can have two different meanings depending on whether burst
mode is enabled or disabled.

D7.8.3 Wait State in CS [3:0]
Count1: Count1 +1 is the number of wait states inserted before internal –READY is asserted during

write operations when SCP=0.

Count2: Count2 +1 is the number of wait states inserted before internal –READY is asserted during
read operations when SCP=0.

WE: Wait Enable, enables or disables the internal wait state generation for the individual
address range. IF WE is 1 SCP must be 0.

SCP: If this bit is 1, the internal –READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. IF SCP
is 1, WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external –READY signal, the
wait state generator will stop counting and will wait for the next transaction.

SCB: Unused; should be 0.

PE: Enable checking of Parity. PE1, PE0 correspond to address ranges for WSSR[31:19] and
WSSR[18:6] respectively.

MB86934 Bus Interface Unit - Wait State Specifier Register

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-11

D7.8.4 Wait State in CS [4]
WE: Wait Enable, enables or disables the internal wait state generation for the individual

address range. If WE is 1, SCP must be 0.

SCP: If this bit is 1, the internal –READY is generated in the same cycle when an access is
started. All accesses to external memory in this address range will be single cycle. If SCP
is 1, WE must be 0.

OVR: Allows the system to terminate the memory operation before the internally specified time. If
the OVR bit is set to 1, and the external hardware asserts external –READY signal, the
wait state generator will stop counting and will wait for the next transaction.

SCB: If this bit is 1, in the burst mode all accesses after the first access take a single cycle. If
this is 1, Count2 is ignored. SCB1 and SCB0 correspond to address ranges for
WSSR[31:19] and WSSR[18:6] respectively.

PE: Enable checking of Parity. PE1, PE0 correspond to address ranges for WSSR[31:19] and
WSSR[18:6] respectively.

a) In Burst Mode:

Burst mode enabled and –BMACK is asserted.

Count1: For –CS4, Count1 +1 is the number of wait states inserted before internal _READY is
asserted for the first access of a burst mode transfer.

Count2: For –CS4, Count2 +1 is the number of wait states inserted before internal _READY is
asserted for the 2nd, 3rd, and 4th access of a burst mode access if SCB=0.

b) Not in Burst Mode:

b1) Burst mode enable and –BMACK is not asserted.

Count1 + 1: Count1 + 1 is the number of wait states inserted before internal _READY is asserted.

b2) Burst mode disable.

Count1: Count1 + 1 is the number of wait states inserted before internal _READY is asserted,
under the following conditions: SCP=0, and current access is not in the same page
as the previous access.

Count2: Count2 + 1 is the number of wait states inserted before internal _READY is asserted,
under the following conditions: SCP=0 and current access is in the same page as
the previous access.

Table D7–2. RESET State

WSSR reset state
for –CS[1] to –CS[5]:

WSSR reset state
for –CS[0]:

Count2=0 Count2=31

Count1=0 Count1=31

WE=0 WE=1

SCP=0 SCP=0

SCB=0 SCB=0

OVR=0 OVR=1

PE=0 PE=0

MB86934 Bus Interface Unit – Wait State Generation

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-12

D7.9 Wait State Generation
The MB86934 Wait-State Specifier Register (WSSR) format is the same as the
MB86932 Wait-State Specifier Register format. MB86934 wait state generation,
however, differs as follows:

(1) For –CS[3:0], wait state generation differs for read and write operations. For
read operations, the number of wait states is Count2 +1; for write operations,
the number of wait states is Count1 +1.

(2) For –CS4, wait state generation is the same as in the MB86932.

(3) For –CS5, there is no wait state control, because this is the SDRAM range.

Note:
The wait state counter is clocked by the BIU clock, which is the external system clock

D7.10 ROM Interface

D7.10.1 Purpose
The data bus of the MB86934 can be configured upon reset to 8- and 16-bit bus modes
as well as the standard 32-bit mode. This flexibility accommodates those cases in which
boot code resides in PROMs organized as blocks of bytes or halfwords.

D7.10.2 Features
Bus Configuration: the data bus configurations are fixed to specific segments of the
bus:

• 8-bit mode: D[7:0]
• 16-bit mode: D[15:0]
• 32-bit mode: D[31:0]

D7.10.3 Bus Configuration on Reset
Two external pins, –BMODE16 and –BMODE8 are used to determine the bus
configuration. The two bus configuration pins have weak pull-ups, so that if uncon-
nected, the bus configuration will default to a 32-bit bus.

(reserved): –BMODE16=0, –BMODE8=0

8-bit mode: –BMODE16=1, –BMODE8=0

16-bit mode: –BMODE16=0, –BMODE8=1

32-bit mode: –BMODE16=1, –BMODE8=1

D7.10.4 System Interface
In order to minimize external “glue logic” required for interfacing to the 8- or 16-bit
bus, the –BE bits are encoded to reflect the two LSBs of a byte address or the LSB of a

MB86934 Bus Interface Unit - ROM Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-13

halfword address. Therefore, the ADR[31:2] and selected –BE bits can be concatenated
to form a complete address for a non-32 bit bus mode.

Table D7–3. System Interface –BE Bits

Bus Mode Byte –BE[0:3]

8-bit bus 0 00008 b t bus

1 0001

2 0010

3 0011

16-bit bus 0 & 1 00006 b t bus

2 & 3 0010

8-bit bus mode address= {ADR[31:2], –BE[2],
–BE[3]}
16-bit bus mode address={ADR[31:2], –BE[2]}

–CS[0], which is enabled on reset, and the internal –READY generation logic, can be
used to minimize any glue logic required to interface to the PROM. On reset, the wait
state generator, corresponding to –CS[0] for internal –READY generation, is set to 32
cycles. Later on in the boot code, the wait state generator can be changed to a more
appropriate value.

D7.10.5 PROM Address Space
The PROM address space is defined by the –CS[0] address-range specifier. On reset,
the –CS[0] address range defaults to 32K bytes (starting address=0x0), and the ASI is
initialized to 0x9. The PROM address range can be changed later using the mask bit
register associated with –CS[0]. An example of the supervisor address space (ASI=0x9)
memory map is shown below:

Supervisor
Code Space

PROM

0x00007FFF (bytes): default value

PROM

0x0

Figure D7–10. Supervisor Address Space (ASI=0x9) Memory Map

Any memory access from the PROM address space, in a non-32 bit mode, will make the
–BE bit encodings reflect the LSBs of a byte/halfword address. Furthermore, the

MB86934 Bus Interface Unit – ROM Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-14

fetched bytes/halfwords will be assembled into a 32-bit word. On the other hand, any
access from the non-PROM address range will result in a normal, 32-bit memory
access.

D7.10.6 Load/Stores
One of the functions of the boot code is to set the processor and system configuration.
This might involve loading system parameters from PROM, loading data from memory
mapped I/O, and storing data to non-PROM address space. All loads from the PROM
address space behave the same way as instruction fetches, in that, for a non-32 bit bus
mode –BE bit encoding and word assembly are done. Loads from a non-PROM address
space behave in the normal (32-bit) manner. In order to meet the –BE AC timing, the
–BE bits on the MB86934 need to be all 0’s for all types of loads—word, halfword, and
byte—from the non-PROM address space. This requires a functional change from the
current specification of the MB86930’s –BE bits, which reflect the byte information for
loads. This change does not cause a problem, since the processor fetches a full 32-bit
word on a load, and the IU selects the byte appropriately. As on the MB86930, –BE bits
should be ignored for 32-bit loads.

Furthermore, store word operations to the PROM address space will not result in a
dis-assembly process.

A summary of the –BE[0:3] bit behavior for loads from the PROM address space is
shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch occurs.
For example, in the 8-bit bus mode, four bytes will be fetched for all loads, and the –BE
bits will sequence with the proper 2 LSBs of the byte address.

Table D7–4. Load –BE[0:3] Bit Behavior

Bus Mode Operation –BE[0:3] in PROM space

8-bit bus Loads (all) 0000=>0001=>0010=>0011

16-bit bus Loads (all) 0000=>0010

32-bit bus Loads (all) 0000

D7.10.7 8/16 Bit Bus Mode Write
The MB86934 also supports 8/16-bit Bus Mode write operations as follows:

(1) In 8-bit Bus Mode, only store byte is permitted. {ADR<31:2>, –BE2, –BE3} is
the store address.

(2) In 16-bit Bus Mode, only store byte and halfword are permitted. {ADR<31:2>,
–BE2} is the store address, and –BE[1:0] are the byte enables. –BE1 enables
the upper byte (D[15:8]), and –BE0 enables the lower byte (D[7:0]).

MB86934 Bus Interface Unit - ROM Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-15

D7.10.8 Burst Mode
Since speed is not a critical issue when executing boot code out of PROM, and because
there is no industry-wide standard for a burst-mode EPROM interface, burst-mode
interface is not supported for accesses from PROM address space. When the system has
a 8/16 bit memory being used for boot code, it should not assert –BMACK for any
accesses to –CS0.

D7.10.9 Memory Exception
Any memory exception that occurs during a fetch from the PROM address space in a
non-32 bit bus mode will be held off until the entire word is fetched.

D7.10.10 Bus Request
Any bus request happening during the non-32 bit bus mode fetch will not be recognized
until the end of the complete 32-bit fetch operation.

D7.10.11 Timing
Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are shown
below. Note that –AS is asserted at the beginning for one cycle.

CLKIN

–AS

ADR[31:2]

–RDY

DATA

–BE[0:3] 0000 0001 0010 0011

Byte0 Byte1 Byte2 Byte3

RD/–WR

Figure D7–11. 8-bit Bus Mode (1 Wait State)

MB86934 Bus Interface Unit – ROM Interface

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-16

CLKIN

–AS

ADR[31:2]

DATA

–BE[0:3] 0000 0010 0000 0010

HW0 HW1 HW0 HW1

RD/–WR

–RDY

Figure D7–12. 16-bit Bus Mode (1 Wait State)

D7.11 Processor Bus Request

D7.11.1 Purpose
When the bus is released in response to an external device’s request for the bus (by
asserting –BREQ), the MB86934 processor cannot access the bus as long as the bus
request signal remains asserted. An external bus arbiter may never be aware that the
processor needs the bus back. To remedy this problem, a processor bus request signal is
asserted whenever the external bus is required by the processor. The external bus arbiter
then can release the bus to the processor requesting it. Also, in a bus-based multiproces-
sor system, a processor bus request signal is useful to the external bus arbiter in
deciding which processor requires the bus.

D7.11.2 Features
–PBREQ pin: An external pin is used to output the processor bus request signal,
–PBREQ. The –PBREQ will be asserted whenever the MB86934 requires the bus while
the bus is granted to an external device. The external device using the bus can monitor
the –PBREQ signal, and remove the –BREQ signal at an appropriate time. An example
of the –PBREQ timing is shown in Figure D7-13.

In the figure, the bus is released at the beginning of cycle t1 in response to an external
bus request. At t2, –PBREQ is asserted because of a pending bus cycle in the processor.
The external bus arbiter de-asserts –BREQ, and returns the bus to the processor.
–PBREQ remains asserted until the end of the cycle t3. At t4, the processor drives the
bus.

MB86934 Bus Interface Unit - Processor Bus Request

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D7-17

CLKIN

–AS

–PBREQ

–ADR[31:2]

–RDY

DATA

–BREQ

BGRNT

t1 t2 t4t3

Figure D7–13. Example of –PBREQ timing

D7.12 BIU Priorities
In general the following hierarchical rules apply when multiple requests are made to the
bus interface unit:

• The bus cycle currently in progress will complete.

• A pending SDRAM interface request is recognized, and the SDRAM operation is
completed.

• If there is a pending external bus request, the bus will be granted to the external
requestor.

• If there is a pending DMA request, the bus will be granted to the DMA controller.

• If the write buffer is full, the buffer will be emptied.

• If there is a pending load or store operation it will be serviced.

• If there is a pending request for an instruction it will be fetched.

• If the prefetch buffer is empty, a prefetch cycle will be initiated.

Note that bit1 in the System Support Control Register can be used to allow the IU to
“steal” cycles from the DMA. When this bit is set, the DMA will de-assert its request
after each datum is moved. When cleared, the DMA will keep the bus until the whole
DMA transaction has completed.

MB86934 Bus Interface Unit – BIU Priorities

D8-1

HAPTER

MB86934 Debug Support Unit (DSU)

D8
C

The MB86934 DSU functions identically to the MB86930 DSU for all instructions
except the MB86934 FPop, EFPop, LDDF, STDF, and STDFQ instructions.

D8.1 Data Breakpoints Immediately Before FPop/EFPop

In the MB86934, the FPop1, FPop2, EFPop1, and EFPop2 instructions are not
immediately trapped by the Data Address Breakpoint trap request or by the Data Value
Breakpoint trap request. These traps are suspended by the DSU until they are accepted
by the IU or until the processor is reset, as shown in the following code fragment
example:

Assume Data_Address_Descriptor_Register_1 = 0x100.

st %i0, [0x100] ! st raises the Data Address Breakpoint trap request.
fadds %f0, %f1, %f2 ! fadds is an FPop instruction, so it is not trapped.
fsubs %f3, %f4, %f5 ! fsubs is an Fpop instruction, so it is not trapped.
and %i1, %i2, %i3 ! and is trapped because it is not an Fpop
 ! instruction.

Edition 1.0 MB86934 Debug Support Unit (DSU) – Data Breakpoints Immediately Before FPop/EFPop

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D8-2

D8.2 Data Breakpoints For LDDF/STDF/STDFQ

When the Data Address Breakpoint trap request or the Data Value Breakpoint trap
request is used for the LDDF, STDF, and STDFQ instructions in the MB86934, the
Data Address Descriptor register must have an even word address (i.e., DA[2:0] = 000),
and the Data Value Descriptor register must have the breakpoint value for the
least-significant word of the data (i.e., DD[31:0]).

The following code fragment shows breakpoint operation for the LDD and LDDF
instructions.

Assume Data_Address_Descriptor_Register_1 = 0x100 .
Assume Data_Value_Descriptor_Register_1 = 0x89abcdef .
Assume Memory [0x100] = 0x01234567
Assume Memory [0x104] = 0x89abcdef

ldd [0x100], %i0 ! ldd_reg does not raise the Data Value Breakpoint
 ! trap request.

ldd [0x100], %f0 ! ldd_freg raises the Data Value Breakpoint trap
 ! request

nop ! nop is trapped by the breakpoint trap request.

The instruction ldd [0x100], %i0 does not trap because the IU has only a 32-bit data
bus, and the double word load is therefore executed as two single-word loads (ld
[0x100], %i0 and ld [0x104], %i1) as follows:

(1) %i0 ← Memory [0x100] = 0x01234567 (ld [0x100], %i0)
(2) %i1 ← Memory [0x104] = 0x89abcdef (ld [0x104], %i1)

The first load does not trap because the data is incorrect for the breakpoint. The second
load does not trap because the address is incorrect for the breakpoint.

The instruction ldd [0x100], %f0 traps because the FPU, unlike the IU, has a 64-bit data
path, so the load is executed as one double-word load. The DSU has only a 32-bit Data
Value Descriptor register, so it checks the least-significant word of the data (i.e.,
DD[31:0] = 0x89abcdef) for the Data Value breakpoint. Both the address and the data
are therefore correct for the breakpoint.

%f0 - %f1 ← Memory [0x100] = 0x01234567-89abcdef (64 bits)

Correct Address Correct Data

MB86934 Debug Support Unit (DSU) - Data Breakponts For LDDF/STDF/STDFQ

D9-1
SPARClite User’s Manual MB86934
Addendum, Edition 1.0

HAPTER

Power Down Mode

D9
C

The MB86934 features a power-down mode to partially or fully power down the
processor.

The processor is divided into six functional logic groups that can be powered down
through the Power-Down Register. The six groups are categorized as independent or
dependent as follows:

Table D9–1. Power–Down Register

Group Category Processor Function

0 Independent FPU

1 Independent DMA

2 Dependent Core (IU, BIU, I_cache, D_cache)

3 Independent FIFO

4 Dependent ICE

5 Independent SDRAM Interface (SDIU)

Each independent group can be individually powered up or down independently of the
other groups.

The dependent groups must not be powered down alone. If group 2 (processor core) or
group 4 (ICE) is powered down, all other groups must be powered down.

Power Down Mode

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D9-2

D9.1 Power-Down Register
The Power-Down Register (also called the Shadow Register) contains bits that control
power-down as follows:

631

Group 5 Power-Down (R/W)

Group 4 Power-Down (R/W)

5 034 2

Group 3 Power-Down (R/W)

Group 2 Power-Down (R/W)

Group 1 Power-Down (R/W)

Group 0 Power-Down (R/W)

reserved

1

Address: 0x00000060 (ASI=0x01)

Bits 31-6: Reserved

Bit 5: Group 5 Power-Down (G5PD) — Controls power to the SDRAM interface. When set to 1,
the SDRAM interface is powered-down; when cleared to 0, the SDRAM interface is
powered-up.

Bit 4: Group 4 Power-Down (G4PD) — Controls power to the ICE logic. When set to 1, the ICE
logic is powered-down; when cleared to 0, the ICE logic is powered-up.

Bit 3: Group 3 Power-Down (G3PD) — Controls power to the FIFO. When set to 1, the FIFO is
powered-down; when cleared to 0, the FIFO is powered-up.

Bit 2: Group 2 Power-Down (G2PD) — Controls power to the processor core. When set to 1, the
IU, BIU, and caches are powered-down; when cleared to 0, the IU, BIU, and caches are
powered-up.

Bit 1: Group 1 Power-Down (G1PD) — Controls power to the DMA. When set to 1, the DMA is
powered-down; when cleared to 0, the DMA is powered-up.

Bit 0: Group 0 Power-Down (G0PD) — Controls power to the FPU. When set to 1, the FPU is
powered-down; when cleared to 0, the FPU is powered-up.

Figure D9–1. Power–Down Register

The register is written 0x3f to power down the entire processor. This is called a global
power down.

The reset state of the Power-Down Register is 0x0.

Power Down Mode - Power-Down Register

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D9-3
SPARClite User’s Manual MB86934
Addendum, Edition 1.0

D9.2 Power-Down Operation
A group power-down bit can be changed in the Power-Down Register by executing two
consecutive store-alternate instructions. Each independent group can be selectively
powered up by clearing the group bit in the Power-Down Register to 0 with store-
alternate instructions.

Forcing the -PDRESET signal pin low for at least two system clock cycles clears the
Power-Down Register, resulting in global power up. No group can be powered down
while -PDRESET is held low.

Programming Note:

Two consecutive store-alternate instruction are required to power up or power down.
The power-up/power-down state is undefined if the store-alternate instructions are not
executed consecutively. Interrupts should therefore be disabled before executing the
store-alternate instructions, and should be re-enabled after the instructions have
executed, as shown in the following example:

! disable traps to ensure that the sta instructions execute back-
! to-back.

set ox10c0, %g1 ! enable EF, S, PS
mov %g1, %psr
nop
nop

! the following back-to-back sta instructions result in global
! power down

sta %g6, [%g5] 0x1 ! %g6=0x3f %g5=0x60
sta %g6, [%g5] 0x1

! re-enable traps

set 0x10e0, %g1 ! enable EF, S, PS, ET
mov %g1, %psr
nop
nop

Power Down Mode - Power-Down Operation

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D9-4

Power Down Mode - Power-Down Operation

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D10-1

HAPTER

MB86934 External Interface

D10
C

Table D10–1. SIGNAL DESCRIPTIONS 1
SYMBOL TYPE DESCRIPTION

–RESET I SYSTEM RESET: Asserting reset for at least 4 processor cycles after the clock has
stabilized, causes the MB86934 to be initialized.

XTAL1 (CLK_IN)
XTAL2

I/O
O

G(Q)
I(Q)

EXTERNAL OSCILLATOR: The frequency of the XTAL1 input determines the
frequency of operation of the bus. The internal frequency of operation of the part is a
function of the frequency of the XTAL1 signal and the –CLKDBL signal. The XTAL2 pin
should be left floating.

CLKOUT1 O
G(Q)
I(Q)

CLOCK OUTPUT1: This is an output signal against which MB86934 bus transaction
can be referenced. The CLKOUT1 frequency is the same as the frequency applied to
XTAL1. CLKOUT1 is in phase with CLK_IN.

CLKOUT2 O
G(Q)
I(Q)

CLOCK OUTPUT2: This is an output signal against which MB86934 bus transaction
can be referenced. The CLKOUT2 frequency is the same as the frequency applied to
XTAL1. CLKOUT2 is in phase with CLK_IN.

-LOCK O
S(L)
G(Z)
I(1)

BUS LOCK: This is a control signal asserted by the processor to indicate to the system
that the current bus transaction requires more than one transfer on the bus. The Atomic
Load Store instruction for example requires contiguous bus transactions which cause
the assertion of the bus lock signal. The bus may not be granted to another bus owner
as long as –LOCK is active. –LOCK is asserted with the assertion of AS as remains
active until –READY is asserted at the end of the locked transaction.

-BREQ O
S(L)

BUS REQUEST: Asserted by another device on the bus to indicate that it wants
ownership of the bus. The request must be answered with a bus grant (–BGRNT) from
the MB86934 before the device can proceed by driving the bus. Once the bus has been
granted, the device has ownership of the bus until it de-asserts -BREQ. The user should
ensure that devices on the bus cannot monopolize the bus to the exclusion of the CPU.
Inputs to –BREQ while –RESET is active are valid and cause Bus Grant to be asserted.

 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-2

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–BGRNT O
S(L)
G(0)
I(Q)

BUS GRANT: Asserted by the CPU in response to a request from a device wanting
ownership of the bus. The CPU grants the bus to other devices only after all transfers for
the current transaction are completed. All bus drivers are three-stated with the
assertion of the bus grant signal.

–ERROR O
S(L)
G(Q)
I(Q)

ERROR SIGNAL: Asserted by the CPU to indicate that it has halted in an error state as
a result of encountering a synchronous trap while traps are disabled. In this situation the
CPU saves the PC and nPC registers, sets the the tt value in the TBR, enters into an
error state and asserts the –ERROR signal. The system can monitor the –ERROR pin
and initiate a reset under the error condition. This pin is high on reset.

–MEXC I
S(L)

MEMORY EXCEPTION: Asserted by the memory system to indicate a memory error
on either a data or instruction access. Assertion of this signal initiates wither a data or
instruction access exception trap in the IU. The current bus access is invalidated by
asserting the –MEXC in the same cycle as the –READY signal. The IU ignores the
contents of the data bus in cycles where –MEXC is asserted.

IRL <3:0> I
A(L)

INTERRUPT REQUEST BUS: The value on these pins defines the external interrupt
level. IRL <3:0>=1111 forces a non-maskable interrupt. IRL value of 0000 indicates no
pending interrupts. Al l other values indicate maskable interrupts as enabled in the PIL
field of the processor status register (PSR). Interrupts should be latched and prioritized
by external logic and should be held pending until acknowledged by the processor.

–TIMER_OVF O
S(L)
G(Q)
I(Q)

TIMER UNDERFLOW: Asserted by the processor to indicate that the internal 16-bit
timer has underflowed. This signal can be used to initiate a DRAM refresh cycle of a one
cycle periodic waveform. On reset, the timer is turned off and –TIMER_OVF is high.

–SAME_PAGE O
S(L)
G(1)
I(1)

SAME-PAGE DETECT: The –SAME_PAGE signal is used to take advantage of fast
consecutive accesses within the same page for Fast Page Mode DRAMs. This signal is
an output which is asserted when the current access in the region defined by chip select
4 is in the same page as the previous access to chip select 4. The page size is specified
by writing it the SAME_PAGE MASK register.

–CS0, –CS1,
–CS2, –CS3,
–CS4

O
S(L)
G(1)
I(1)

CHIP SELECTS: These outputs are asserted when the value on the bus matches the
address range in one of the corresponding ADDRESS RANGE registers. The signals
are used to decode the current address into one of five address ranges. Address
ranges should not overlap. Each address range has a corresponding wait specifier
which is used to automatically assert internal ready after a user defined number of bus
clock cycles. This allows a variety of memory and I/O devices with different access
times to be connected to the MB86934 without the need for additional logic.

ADR <31:2> I/O
S(L)
G(Z)
I(1)

ADDRESS BUS: The 30-bit ADDRESS BUS (A31-A2) is an output which identifies the
data or instruction address of a 32-bit word. Reads are always one word in size while
byte, half-word, or word transaction sizes for writes is identified by separate
byte-enable signals (–BE0-3). The address bus is valid for the duration of the bus
transaction. ADR<14:2>, ADR< 24:19>are shared by the SDRAM interface.

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-3

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

ASI <3:0> I/O
S(L)
G(Z)
I(1)

ADDRESS SPACE IDENTIFIERS: The ADDRESS SPACE IDENTIFIERS are
outputs which indicate to which of 256 available spaces the current ADDRESS BUS
value corresponds. ASI values are defined as follows:

ASI ADDRESS SPACE
0x1 Control Register
0x2 Instruction Cache Lock
0x3 Data Cache Lock

0x4 - 0x7 Application Definable
0x8 User Instruction Space
0x9 Supervisor Instruction Space
0xA User Data Space
0xB Supervisor Data Space
0xC Instruction Cache Tag RAM
0xD Instruction Cache Data RAM
0xE Data Cache Tag RAM
0xF Data Cache Data RAM

0x10 - 0xFC Reserved
0xFD - 0xFF Reserved for Debug Hardware

The ASI values specified as “application definable” can be used by supervisor mode
instructions such as Load Alternate and Store Alternate . The ASI value is available in
the same cycle in which the corresponding address value asserted on the address bus.
The ASI pins are valid for the duration of the bus transaction. ASI values 0x8, 0x9, 0xA,
and 0xB are cacheable.

–BMODE8 I
S(L)

8-BIT BOOT MODE: This signal is sampled during reset and causes read accesses,
memory mapped to –CS0, to assume 8-bit memory. The MB86934 generates four
sequential fetches to assemble a complete instruction or data word before continuing.
Bytes are fetched in sequence (0,1,2,3) as encoded by –BE[2] and –BE[3] (00, 01, 10,
11) If left unconnected a weak pull-up on this pin (and –BMODE16 pin) causes the
processor to default to 32-bit mode.
Note: BMODE8 and BMODE16 should not be asserted at the same time.

–BMODE16 I
S(L)

16-BIT BOOT MODE: This signal is sampled during reset and causes read accesses,
memory mapped to –CS0, to assume 16-bit memory. The MB86934 generates two
sequential fetches to assemble a complete instruction or data word before continuing.
Half words are fetched in sequence (0,1) as encoded by –BE[2]. If left unconnected, a
weak pull-up on this pin (and –BMODE8 pin) causes the processor to default to 32-bit
mode.
Note: BMODE8 and BMODE16 should not be asserted at the same time.

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-4

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–BE3-0 O
S(L)
G(Z)
I(O)

Bus Mode Byte BE<2:3>
8-bit 0 00

1 01
2 10
3 11

16-bit 0&1 00
2&3 10

BYTES ENABLES (O): These pins indicate whether the current store transaction is a
byte, half-word or word transaction. –BE0-3 signals are available in the same cycle in
which the corresponding address value is asserted on the address bus and is valid for
the duration of the bus transaction. This bus should be used only to qualify store
transactions. For load transactions all sub-word requests are read (and replaced in the
cache) as words and then the appropriate byte or half-word is extracted by the integer
unit
Possible values for –BE3-0 are a follows:

Byte0 Byte1 Byte2 Byte3
31 2423 1615 8 7 0

Byte Writes 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
Half-Word Writes 1 1 0 0 0 0 1 1

Word Writes 0 0 0 0

BE<2:3> are also used in 8 and 16-bit ROM accesses as follows:

D <63:0> I/O
S(L)
G(Z)
I(1)

DATA BUS: The bus interface has 32 bi-directional data pins D<31:0> to transfer data
in thirty-two bit quantities. D(31) corresponds to the most significant bit of the least
significant byte of the 32-byte word.
In write bus cycles, the point at which data is driven onto the bus depends on the type of
the preceding cycle. If the preceding cycle was a write, data is driven in the cycle
immediately following the cycle in which –READY was asserted. If the preceding cycle
was a read, data is driven one cycle after the cycle in which –READY was asserted to
minimize bus contention between the processor and the system.
Pins D<7:0> are used when the 8-bit boot mode is enabled and D<15:0> are used
when16-bit mode is enabled.
The SDRAM interface has 64 bidirectional pins D<63:0>. D<63:32> are used
exclusively by the SDRAM interface. D<31:0> are shared by the SDRAM interface with
the SPARClite bus interface. D<63:32> should have pull pull/down resistors if they are
not used.

–AS I/O
S(L)
G(Z)
I(1)

ADDRESS STROBE: A control signal asserted by the MB86934 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the assertion
of –AS and ends with the assertion of –READY. –AS remains asserted for 1 clock cycle.
During cycles in which neither the processor nor another bus master is driving the bus
the bus is idle, and –AS remains de-asserted.

RD/-WR I/O
S(L)
G(Z)
I(1)

READ/WRITE TRANSACTION: This signal specifies whether the current bus
transaction is a read or a write operation. When –AS is asserted and RD/–WR is low,
then the current transaction is a write. With –AS asserted and RD/–WR high, the current
transaction is a read, RD/–WR remains active for the duration of the bus transaction
and is de-asserted with the assertion of –READY.

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-5

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION

–READY I
S(L)

READY: This is a control signal asserted by the external memory system to indicate
that the current bus transaction is being completed and that it is ready to start with the
next bus transaction in the following cycle. In case of a fetch from memory, the
processor will strobe the value on the data bus at the rising edge CLK_IN following the
assertion of –READY. For the case of a write, the memory system will assert –READY
when the appropriate access time has been met.
In most cases, no additional logic is required to generate the –READY signal. On-chip
circuitry can be programmed to assert –READY internally based on the address of the
current transaction. The external system can override the internal ready generator to
terminate the current bus cycle early. Up to 6 address ranges each with different
transaction times can be programmed.

–DREQ0-1 I
A(L)

DMA REQUEST: Indicates that an external device is requesting a DMA transfer. This
signal is edge sensitive for single transfers and level sensitive for demand transfer.
–DREQ0 corresponds to DMA channel 0, while –DREQ1 corresponds to DMA
channel 1.

–DACK0-1 O
S(L)

DMA ACKNOWLEDGE: This is asserted when an external device asserts –DREQ
and the processor accesses the external device. –DACK1 corresponds to DMA
channel 0, while –DACK1 corresponds to DMA channel 1.

–EOP0-1 I/O
S(L)

END OF PROCESS: The signal is asserted by the external device when it wants to
terminate a DMA transfer. Alternately, the processor drives this signal when the byte
count reaches zero. –EOP0 corresponds to DMA channel 0, while –EOP1 corresponds
to DMA channel 1. A pull-up holds -EOP0-1 high when it is not being driven.

–PBREQ O
S(L)

PROCESSOR BUS REQUEST: This signal is asserted by the processor to indicate to
an external bus arbiter that it needs to regain control of the bus. This provides a hand
shake between the arbiter and the processor to allow the bus to be allocated based on
demand.

–BMREQ O
S(L)

BURST MODE REQUEST: This signal is asserted by the processor to indicate to an
external system that the processor’s burst mode is enabled and the current transaction
can be a burst. If the external system supports burst mode, it asserts -BMACK
concurrently with -RDY to begin the burst mode transfer.

–BMACK I
S(L)

BURST MODE ACKNOWLEDGE: This signal is asserted by the system to indicate
that it can support burst mode for the address currently on the bus. The system asserts
–BMACK in response to the processor asserting –BMREQ.

CLK_ECB I EXTERNAL CLOCK BYPASS: Tying these signal high causes the CLK_IN signal to
bypass the Phases Lock Loop (PLL). This signal is used for testing of the chip.

–CLKDBL I CLOCK DOUBLER: Tying this signal low causes the internal logic to run at twice the
frequency of the clock input.

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-6

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION
PARITY <3:0> I/O

S(L)
PARITY: When enabled this signal provides even or odd parity checking for the data
bus.
Non SDRAM Operation:
Parity3 corresponds to D<31:24>
Parity2 corresponds to D<23:16>
Parity1 corresponds to D<15:8>
Parity0 corresponds to D<7:0>
SDRAM Operation:
Parity3 corresponds to D<63:48>
Parity2 corresponds to D<47:32>
Parity1 corresponds to D<31:16>
Parity0 corresponds to D<15:0>

–SWE O
S(L)

SDRAM Write Enable: This signal should be tied to the –WE input of SDRAM.

–SRAS O
S(L)

SDRAM Row Address Strobe: This signal should be tied to the –RAS input of
SDRAM.

–SCAS O
S(L)

SDRAM Column Address Strobe: This signal should be tied to the –CAS input of
SDRAM.

–SCS <3:0> O
S(L)

SDRAM Chip Select: Enables all command inputs, –RAS, –CAS, and –WE to
SDRAM.

SCKE O
S(L)

SDRAM Clock Enable: This is an active high clock enable signal for SDRAM.

SDQM <1:0> O
S(L)

SDRAM INPUT MASK/OUTPUT ENABLE: SDQM<0> and SDQM<1> correspond to
DATA<63:32>and DATA<31:0> respectively.

–NVWE O
S(L)

WRITE ENABLE FOR NON-VOLATILE MEMORY: This signal is asserted one cycle
after –AS and stays asserted till one cycle before the end of the transaction for a write
operation. The signal is generated only when internal wait state generation is enabled
for the current access.

–OE O
S(L)

OUTPUT ENABLE: This signal is asserted one cycle after –AS and stays asserted till
the last cycle of a read operation. This signal is generated when internal wait state
generation is enabled for the current access.

–READYOUT O
S(L)

Ready Out for external Bus Masters using Internal Ready Generation.

–PDRESET I
S(L)

Power Down Reset is asserted by the external system to get the part out of powerdown
mode. This signal should be asserted low during Reset Cycle.

BUICLOCK I This signal is reserved for future use and should be tied high.
EMU_SD <3:0> I/O EMULATOR STATUS/DATA BITS: Bi-directional pins used by a hardware emulator to

control and monitor MB86934 execution. These pins should be left unconnected.

EMU_D <3:0> I/O EMULATOR DATA BITS: Bi-directional pins used by a hardware emulator to control
and monitor MB86934 execution. These pins should be left unconnected.

–EMU_BRK I EMULATOR BREAK REQUEST LINE: Input used by a hardware emulator to request
a trap when emulation is enabled. This pin should be unconnected.

–EMU_ENB I/O EMULATOR ENABLE: Tied low while the MB86934 is being reset to enable hardware
emulator mode on the chip. This pin should be left unconnected.

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-7

Table D10–1. SIGNAL DESCRIPTIONS (Continued) 1

SYMBOL TYPE DESCRIPTION
TCK I TEST CLOCK: JTAG compatible test clock input.
TMS I TEST MODE: JTAG compatible test mode select pin. Test is enabled when –TMS is

low.

TDI I TEST DATA IN: JTAG compatible test data input.

TDO O TEST DATA OUT: JTAG compatible test data output.
–TRST I TEST RESET: Asynchronous rest for JTAG logic. If not using JTAG, this signal must be

pulled low.

1. In the following description, signal names preceded by a minus sign (-) indicate an active low state. Dual function pins have two
names separated by a slash (/).

Notes: G(…)= While the bus is granted to another
bus master (–BGRNT=asserted), the
pin is
G(1) is driven to VCC
G(0) is driven to VSS
G(Z) floats
G(Q) is a valid output

I (…) = While the bus is between bus cycles
(or being reset) and is not granted to
another bus master, the pin is
I (1) is driven to VCC
I (0) is driven to VSS
I (Z) floats
I (Q) is a valid output

I = Input Only Pin
O = Output Only Pin
I/O = Either Input or Output Pin
- = Pins “must be” connected as

described
A(L) = Asynchronous: Inputs may be

 asynchronous to CLKOUT.
S(L) = Synchronous: Inputs must meet setup

and hold times relative to CLK_IN
Outputs are Synchronous to CLK_IN

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D10-8

MB86934 External Interface - SIGNAL DESCRIPTIONS

SPARClite User’s Manual MB86934
Addendum, Edition 1.0 D11-1

HAPTER

MB86934 JTAG

D11
C

D11.1 MB86934 JTAG Pin List

The MB86934 JTAG cells are arranged in a shift register configuration (see
Figure D11–1. When shifting in a JTAG pattern through TDI, the LSB should
correspond to the JTAG cell value for -EMU_SD<3> pin whereas, the MSB of the
pattern should correspond to the IRL<3> pin’s JTAG cell. As far as JTAG output
through TDO is concerned, the first bit out corresponds to –EMU_SD<3> JTAG cell
value and the last output bit corresponds to the IRL<3> JTAG cell value. Table D11–1
lists the order of all of the JTAG cells.

Table D11–1. JTAG Pin Order

Order JTAG Cell
JTAG

Cell Type Function

1 EMU_SD_i<3> input Input bit 3 of EMU_SD<3:0> bus

2 EMU_SD_o<3> output Output bit 3 of EMU_SD<3:0> bus

: : :

7 EMU_SD_i<0> input Input bit 0 of EMU_SD<3:0> bus

8 EMU_SD_o<0> output Output bit 0 of EMU_SD<3:0> bus

9 EMU_D_i<3> input Input bit 3 of EMU_D<3:0> bus

10 EMU_D_o<3> output Output bit 3 of EMU_D<3:0> bus

 JTAG - MB86934 JTAG Pin List

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D11-2

Table D11–1. JTAG Pin Order (Continued)

Order JTAG Cell
JTAG

Cell Type Function

: : :

15 EMU_D_i<0> input Input bit 0 of EMU_D<3:0> bus

16 EMU_D_o<0> output Output bit 0 of EMU_D<3:0> bus

17 icediojo† output Bidirectional control for EMU_D/EMU_SD buses
icediojo = 1: EMU_D and EMU_SD buses are input
icediojo = 0: EMU_D and EMU_SD buses are output

18 –EMU_EN_i input Input bit of –EMU_ENB pin

19 –EMU_EN_o output Output bit of –EMU_ENB pin

20 iceenblio† output Bidirectional control signal for –EMU_ENB pin
iceenblio = 1: –EMU_ENB pin is an input
iceenblio = 0: –EMU_ENB pin is an output

21 EMU_BRK input Emulator break input

22 –DACK0 output

23 –EOP0_i input

24 –EOP0_o output

25 eopio0 output Bidirectional control for –EOP0 pin
eopio0 = 1: –EOP0 is input
eopio0 = 0: –EOP0 is output

26 –DREQ0 input

27 –DACK1 output

28 –EOP1_i input

29 –EOP1_o output

30 eopio1 output Bidirectional control for –EOP1 pin
eopio1 = 1: –EOP0 is input
eopio1 = 0: –EOP0 is output

31 –DREQ1 input

32 ADR_i<2> input

33 ADR_o<2> output

: : :

90 ADR_i<31> input

91 ADR_o<31> output

92 addenbjo output Bidirectional control for ADR<31:2>
addenbjo = 1: ADR<31:2> are inputs
addenbjo = 0: ADR<31:2> are outputs

93 ASI_i<0> input

94 ASI_o<0> output

MB86934 JTAG - MB86943 JTAG Pin List

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D11-3

Table D11–1. JTAG Pin Order (Continued)

Order JTAG Cell
JTAG

Cell Type Function

: : :

99 ASI_i<3> input

100 ASI_o<3> output

101 BE<0> output

102 BE<1> output

103 BE<2> output

104 BE<3> output

105 –SAMEPAGE output

106 –CS<0> output

107 –CS<1> output

108 –CS<2> output

109 –CS<3> output

110 –CS<4> output

111 XTAL1 input Crystal input

112 SCKE output

113 -SWE output

114 SDQM<0> output

115 SDQM<1> output

116 -SCS<0> output

: : :

119 -SCS<3> output

120 -SCAS output

121 -SRAS output

122 -OE output

123 -NVWE output

124 –ERROR output Error output signal

125 –LOCK output Bus lock output signal

126 tstatejo† output Three-state control signal for ASI, –BE, –AS, RD/WR
and –LOCK
 If tstatejo = 1: signals are three-stated.
 If tstatejo = 0: signals are outputs.

127 –BGRNT output Bus grant output signal

128 –PBREQ output

MB86934 JTAG - MB86934 JTAG Pin List

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D11-4

Table D11–1. JTAG Pin Order (Continued)

Order JTAG Cell
JTAG

Cell Type Function

129 –BMREQ output

130 –RD/WR_i input Memory Read/Write output signal

131 -RD/WR_o output

132 –AS_i input Start of memory transaction output signal

133 -AS_o output

134 -READYOUT output

135 –READY input External memory transaction complete signal

136 –MEXC input Memory exception input

137 –BMACK input

138 –BREQ input Bus request input

139 –RESET input Chip reset pin

140 -PDRESET input

141 dbusiojo† output Bidirectional control signal for D<63:0>, Parity <3:0>
dbusiojo = 1: D<63:0>, Parity <3:0> are inputs
dbusiojo = 0: D<63:0>, Parity <3:0> are inputs

142 D_i<0> input

143 D_o<0> output

: : :

268 D_i<63> input

269 D_o<63> output

270 PARITY_i<0> input

271 PARITY_o<0> output

: : :

276 PARITY_i<3> input

277 PARITY_o<3> output

278 -TIMER__OVF output Timer Overflow pin

279 BIUCLOCK input

280 –CLKDBL input

281 CLK_ECB input

282 –BMODE8 input

283 –BMODE16 input

MB86934 JTAG - MB86943 JTAG Pin List

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D11-5

Table D11–1. JTAG Pin Order (Continued)

Order JTAG Cell
JTAG

Cell Type Function

284 IRL<0> input

285 IRL<1> input

286 IRL<2> input

287 IRL<3> input

†. These are internal I/O control signals. Therefore, there are no corresponding external pins.

1. The following pins are not three-statable: –SAME_PAGE, –CS<5:0>, –BGRNT, TIMER_OVF, –ERROR.

2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, –TRST, TCK, TMS, TDI, TDO.

MB86934 JTAG - MB86934 JTAG Pin List

SPARClite User’s Manual MB86934 Addendum, Edition 1.0

D11-6

CK

dbusiojo

CK

PARITY <3>

addenbjo

icediojo

94

93

CK

CK

CK

CK

CK

CK

CK

tstatejo

32

1

JTAG
Controller

Chip Logic

IRL<2>

IRL <3>

EMU_SD<3>2

33CK ADR<2>

ASI<0>

287

286 CK

271

143

Figure D11–1. JTAG Cell Organization

T
D

I

T
M

S

–T
R

S
T

T
D

O

13
3

13
2

12
6

C
K

T
C

K
C

K

C
K

CK

17

92CK

–AS

141

CK

CK

141

270

142

D<0>

MB866934 Addendum, January 1996, Edition 1.0

Visit our web site for the latest information:

http://www.fujitsumicro.com

Customer Response Center:

For semiconductor products, flat panel displays, and PC cards in the U.S., Canada and South
America, please contact the Fujitsu Microelectronics Customer Response Center (CRC). The
CRC provides a single point of contact for resolving customer issues and answering technical
questions.

Web: Click on Tech Support in the FMI home page, then submit our form

Tel: Telephone: 1–800–866–8608 Monday through Friday, 7 to 5 PST

Fax: (408) 922–9179

E–Mail: fmicrc@fmi.fujitsu.com

EC–UM–20229–1/96

