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CHAPTER

C1l

Overview of the MB86933

The MB86933 is functionally and architecturally similar to the MB86930 SPARCIite
RISC processor. The MB86933 has the same integer unit as the MB86930, supports the
same instruction set as the MB86930, and is system bus compatible with the MB86930.

Several MB86930 features and signals are not available on the MB86933, however, to
reduce processor cost and package size. The MB86933 has no caches, no write buffer,
no pre-fetch buffer, and has six register windows rather than eight. It has twenty-six
Address Bus signals (ADR<27:2>) rather than thirty, has four Address Space Identifier
signals (ASI<3:0>) rather than eight, and has no emulator-support signals. The
MB86932 can be used for MB86933 in-circuit emulation, so MB86933 emulator-sup-
port signals are not necessary.

The MB86933 does support 8— and 16—bit ROMs as well as 32—bit ROMs — a feature
not available on the MB86930. The processor reads two external signals, -BMODES
and —-BMODE16, during reset to identify the ROM size. This allows use of the smaller
ROMs to reduce board space and component cost.

1.1 Organization and Content

This section is organized in the same way as section 1 of this manual which describes
the MB86930 processor. In general, this section contains descriptions of the MB86933
processor that differ from the MB86930 processor. Descriptions that are the same for
both processors are generally not repeated in this section, and the reader is referred to
the main section of the manual for these identical descriptions.
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These MB86933 differences with respect to the MB86930 processor are summarized as
follows:

* No instruction cache or data cache

» No write buffer or prefetch buffer

» Six register windows rather than eight
* ADR<31:28> not used

* ASI<7:4> not used

« EMU_SD<3:0> not used

« EMU_D<3:0> not used

+ EMU_BRK not used

« —EMU_ENB not used

* No in-circuit emulation support

« —BMODES8 and —-BMODE16 inputs added to support 8— and16—bit ROMs, as well as
32-hit ROMs.

1.2 General Description

The MB86933 is a high-performance processor that is suitable for use in embedded
control applications such as printers, scanners, robotic machinery, telecom switches and
monitors, and 1/0O subsystems. It operates at clock speeds up to 20 MHz, executes
SPARC instructions at a maximum rate of 18 MIPs, and is available in a 160-pin QFP
package.

The processor consists of a Harvard (Aiken) architecture Integer Unit (IU) core and a

Bus Interface Unit (BIU). These units are connected internally with separate instruction
and data buses, and to external memory and I/O with separate 26—bit address and 32-bit
data buses.

A register file in the IU is accessed through 6 register windows. An integer multiply

unit (MU) within the IU speeds applications that require integer multiplication. The
processor uses software to emulate floating-point instructions. The data path and other
arrayed blocks are full-custom designs to optimize die area and speed. Random control
blocks are standard-cell designs. All circuits are fully static.

The MB86933 provides a mechanism for code and data protection, but is optimized for
embedded applications that do not require virtual-to-physical address translation. The

o
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MB86933 processor can be designed into in a virtual-memory system, however, by
using external memory management logic for address translation.

1.3 Special Features

The following MB86933 features make the processor an ideal choice for a wide variety
of low cost, high-performance embedded systems:

Fast Instruction Execution: The instruction set is streamlined and hardwired for

fast execution, with most instructions executing in a single cycle. At 20 MHz the
MB86933 executes instructions at a peak rate of 20 MIPs and at a sustained rate of
18 MIPs. The Integer Unit (IU) features a 5-stage pipeline that has been designed to
handle data interlocks, and an optimized branch handler for efficient control
transfers.

Large Register Set:An internal register file, consisting of eight global registers and
96 registers organized into six overlapping windows, speeds interrupt response time
and context switches. The register file windows minimize accesses to memory
during procedure linkages, and facilitate passing of parameters and assignment of
variables.

System Support Functions:Glue logic between the MB86933 and the system is
minimized by programmable chip selects, programmable wait-state circuitry, and
support for connection to fast page-mode DRAM. Multiple bus masters are
supported through a simple handshake protocol.

Clock Generator: A crystal can be connected directly to the on-chip oscillator, or
an external clock source can be used. A phase-locked loop minimizes the skew
between on- and off-chip clocks.

Enhanced Instruction Set:The MB86933 incorporates a fast integer multiply
instruction that executes in a fast 5, 3 or 2 cycles for 32—bit, 16—bit and 8-bit
operands. An integer divide-step instruction cuts divide times by a factor of 5 to 10
over previous SPARC implementations. A scan instruction supports a single-cycle
search for the most significant non-sign bit in a word.

Fully Static Circuit Design: Its static design gives the MB86933 superior noise
immunity. Future members of the SPARCIite family will support a low-power mode
in which the processor clock can be slowed or stopped for arbitrary periods of time
to reduce operating current.

ROM Size Option Support: Two external signals allow the processor to identify
whether 8-, 16—, or 32—-bit ROMs are in use. This feature allows use of smaller
ROMs for a reduction in cost and in board space.

1.4 Programmer’s Model

This section briefly introduces those aspects of the MB86933 processor architecture that
are visible to software: the user and supervisor modes of program execution, the

o
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organization of the address space, the register set, the supported data types, the
instruction set, and interrupts and traps. Each of these topics are discussed in more
detail in following chapters.

1.4.1 Program Modes

The MB86933 architecture supports protection in multitasking environments by
providing two mutually exclusive modes of program executisey modend

supervisor modeCertain instructions are privileged, and can only be executed when the
processor is in supervisor mode. Any attempt to execute a privileged instruction in user
mode causes a trap.

Typically, application programs run in user mode, while operating systems run in
supervisor mode. Following reset, the processor is in supervisor mode. To enter user
mode, software must clear a bit in the Processor State Register. The processor enters
supervisor mode from user mode only when a hardware reset, an interrupt, or a trap
occurs.

1.4.2 Memory Organization

The processor can directly address up to 4 Gigabytes of memory, organized into 16
address spaces of 256 Megabytes each. Every external access involves an 4-bit Address
Space ldentifier (ASI), as well as a 26—bit word address. The ASI selects one of the
address spaces, and the 26-bit address selects a 32-bit word within that space.

Four of the address spaces are defined in the SPARC architecture: the User Instruction,
Supervisor Instruction, User Data, and Supervisor Data spaces. The other address spaces
are application-defined or reserved. The application-defined address spaces can be used
for either data memory or for /0. All I/O is memory-mapped.

The organization of the entire addressable range is illustrated in Figure C1-1.

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words
between external memory (or 1/0O) and processor registers. The user instruction and data
spaces are accessible in both user and supervisor modes. The remaining address spaces
are accessible only in supervisor mode.

Overview of the MB86933 - Programmer’s Model



oF FFFFFFFF -

Reserved
oc 00000000
0B 00000000 Supervisor Data (256 MB)
0A 00000000 User Data (256 MB)
Supervisor Instruction (256 MB)
09 00000000
08 00000000 User Instruction (256 MB)
o7 00000000
Application Definable (768 MB)
04 00000000
Reserved P
02 00000000 Pl Control Registers
-7 (See Figure C1-2)
01 00000000 R
00 00000000 Application—-Definable (256 MB)
4-Bit 32-Bit Memory and I/O Space Memory-Mapped
Address Address (232 Addressable Bytes) Registers

Space
indicator
(ASI)

Figure C1-1. Address Space Organization

The MB86933 processor does not contain memory-management hardware. Virtual-ad-
dresses can be translated by software, or by an external memory-management unit.

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has six
register windows rather than eight. It has twenty-six Address Bus signals (ADR<27:2>)
rather than thirty, four Address Space Identifier signals (ASI1<3:0>) rather than eight, no
emulator-support signals, and no memory management unit. These and other differ-
ences between the MB86933 and other SPARCIite processors should be considered
when porting code to the MB86933 from another SPARCIite processor, and when
porting code from the MB86933 to another SPARCIite processor. Documentation for
other SPARCIite should be referenced to identify differences with the MB86933 that
may affect ported code.

1.4.3 Registers

All registers are 32 bits wide. There general-purpose registerarhose contents have

no pre-assigned meaning, apkcial-purpose registethat contain control and status
information or special data values. Some of the special-purpose registers are defined in
the SPARC architecture; the rest are MB86933- specific registers. The non-SPARC
special-purpose registers are memory-mapped. The general-purpose registers and the

o
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Figure C1-3. Register Windows

At any given time, 32 general-purpose registers can be accessed directly: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active.

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed are written to the “out” registers of the current window,
which are the same as the “in” registers of the adjacent window. A SAVE instruction
can then be used to decrement the Current Window Pointer, making the parameter
values available to the subroutine without moving any data. A RESTORE instruction
can be used to increment the CWP upon return from the subroutine. In effect, the
general-purpose registers cache the top portion of the run-time stack.

The window overlap also speeds interrupt handling because interrupts automatically
decrement the CWP, giving the interrupt routing its own window. The SPARC
architecture requires a free window to be available to handle these traps.

o
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Special-Purpose Registers

The special-purpose registers include the control and status registers defined by the
SPARC architecture, and a collection of memory-mapped registers that control
peripheral functions.

Special instructions exist for reading and writing each of the SPARC control and status
registers except the Program Counter and the Next Program Counter. The Y Register
can be read and written in user mode; the instructions that access the other SPARC-de-
fined registers are privileged.

The memory-mapped registers can be read and written with the alternate-space load and
alternate-space store instructions, which are also privileged.

The SPARC-defined registers, shown in Figure C1-2, are as follows:

Processor State Register (PSR)—The primary processor control and status register.
It containsmodefields that are set by the operating system to configure the
processor, anstatusfields that are set by the processor to indicate the effects of
instruction execution.

Window Invalid Mask Register (WIM)—Used by software to detect the occurrence
of register file underflows and overflows. It contains one mask bit for each register
window. If an operation that normally increments or decrements the Current
Window Pointer would cause the CWP to point to a window whose corresponding
WIM bit equals 1, a trap occurs.

Trap Base Register (TBR)—Contains three fields used by the processor to generate
the address of the service routine when an interrupt or trap occurs.

Y Register—Used in stepwise multiplication and division routines based on the
MULScc and DIVScc instructions. Also used for integer multiply operations.

Program Counter (PC)—Contains the word address of the instruction currently
being executed by the Integer Unit. The PC cannot be directly read or written.

Next Program Counter (nPC)—Contains the word address of the next instruction to
be executed, assuming that no trap occurs. The nPC cannot be directly read or
written.

Ancillary State Registers (ASR[31:1])—The SPARC definition includes 31
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use. The
remaining ASR’s can be defined and used in any way by SPARC implementations.
SPARCIite defines the following ASR:

ASR17— Used to enable and disable single-vector trapping. (When this feature is
enabled, all traps vector to a single location.) Single vector trapping provides a
small memory alternative to the standard 1K word trap table.

o
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The memory-mapped MB86933-specific registers, shown in Figure C1-2, are as -
follows:

* Same-Page Mask Register—Controls the operation of the same-page detection logic
by specifying which bits of the current ASI and address are to be compared with
those of the previous ASI and address.

« Address Range Specifier Registers (ARSR[5:1])—Control the assertion of the
Chip-Select outputs (-CSJ[5:1]). —CSn is asserted when the value on the address bus
falls in the address range specified by ARSRn. —CSO0 is asserted during accesses to
the lowest address range in Supervisor Instruction Space.

« Address Mask Registers (AMR][5:0])—AMRn controls the comparison of the
current address with ARSRn by specifying which bits are to be compared and which
are “don't cares.”

* Wait-State Specifier Registers (WSSR[2:0])—Determine for each address range the
number of clock cycles between assertion of an address in that range on the address
bus, and assertion of -READY signal by the processor. This makes it possible for
memory and 1/O devices with different access times to be connected to the processor
without additional logic.

« Timer Register—Contains the current timer count.

» Timer Pre-Load Register—Contains the value that is loaded into the timer when the
timer overflows.

« System Support Control Register—Allows selective enabling and disabling of
same-page detection, chip-select, programmable wait-states, and the timer.

1.4.4 Data Types

The MB86933 supports the same data types as the MB86930 processor. Please refer to
Section 1.3.4 of the main section of this manual for a description of the data types.

1.4.5 Instructions

The MB86933 supports the same instructions as the MB86930 processor. Please refer to
Section 1.3.5 of the main section of this manual for a description of the instructions.

1.4.6 Interrupts and Traps

The MB86933 supports the same interrupts and traps as the MB86930 processor. Please
refer to Section 1.3.7 of the main section of this manual for a description of the
interrupts and traps.

o
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1.5 Internal Architecture

The internal architecture of the MB86933 is illustrated in Figure C1-4. The processor
core consists of an Integer Unit that supports a superset of the SPARC integer
instruction set. The Bus Interface Unit handles the interface between the processor and
the system. A Clock Generator with built-in phase-locked loop simplifies system clock
design.

Internally, the various functional units are connected by separate instruction and data
buses. For connection with external memory and 1/O, a unified address bus and a
unified data bus are extended off-chip. The main functional units are discussed briefly
in the following sections, and more fully in thternal Architecturechapter.

XTALL/CLKIN ——p—>
SCAN DIVIDE STEP
—

CLOCK
GENERATOR

CLK_OUT <—>—

DATA ¢
ADDRESS BUS
INTERFACE

UNIT
Asl
DRAM
CONTROL CONTROLLER

PWG 32 D_DATA
/
CHIP_SEL <-—x— 16-BIT TIMER <
PAGE_DET <€—— ADDRESS L 32 D_ADDR
REFRESH w—— DECODE S

SPARC INTEGER UNIT

Figure C1-4. Internal Architecture (Block Diagram)

1.5.1 Integer Unit

The Integer Unit (IU) is a compact, fully custom implementation of the SPARC
architecture. The IU is hard-wired for high performance. Its internal functional units are
designed around a modular architecture and can be customized to meet different
application requirements. In the MB86933, for example, this flexibility was used to
provide direct hardware support for integer multiplication, and to extend the SPARC
instruction set by supporting divide-step and scan instructions.

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure C1-5.

o
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The pipeline consists of the following stages: -

« Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction.

« Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

e Execute (E)—The ALU computes a result.

e Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

* Writeback (W)—The result (or loaded memory datum) is written into the register
file.

CLK ' '

Fetch Instruction 5 6

Decode ' Instruction 4 5 6
I
Execute ' Instruction3 ' 4 5 6
' '
Memory ' Instruction2 ' 3 4 5 6
! !
! !
| |

Write-Back Instruction 1

Figure C1-5. Instruction Pipeline

No instructions execute out-of-order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B. Conditions that hold up the pipeline, and the effect of traps on pipeline
operations, are discussed in theernal Architecturechapter.

1.5.2 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic that allows the processor to communi-
cate with the system.

o
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1.6 External Interface

The processor’s external interface consists of signals, bus operations, and system
support functions. This section gives an overview; details are discussed more fully in
the External Interfacechapter. Th&ystem Design Consideratiocisapter discusses
issues that are likely to arise in the design of MB86933—-based system.

1.6.1 Signals

The processor’s external signals, illustrated in Figure C1-6, can be grouped by function
as follows:

* Processor Control and Status—Reset, error, and clock signals.

« Memory Interface—Data and address buses, ASI and byte-enables, chip-selects, and
other control signals used to access external memory and memory-mapped devices.

» Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

» Peripheral Functions—Interrupt-requests and timer overflow.
« Boundary-Scan—Test signals used for hardware verification.

« ROM Size—Used to identify ROM size.

1.6.2 Bus Operation

At any given time the Bus Interface Unit is handling requests for external memory and
I/O operations, is arbitrating for bus access, or is idle. From the point of view of the
external system, bus transactions are handled in fairly standard ways:

e Memory and I/O Operations—Read and write transactions are initiated with the BIU
asserting the —AS signal. The RD/-WR output indicates the transaction type. The
—BE[3:0] outputs indicate the transaction width. The BIU drives the address and ASI
signals, and either drives (during stores) or reads (during loads) the signals on the
data bus. The transaction ends when the external system or programmable wait-state
generator asserts —READY.

An atomic load-store is executed as a load followed immediately by a store, with no
operation allowed between. The —LOCK output is asserted to indicate that the bus is
being used for more than one consecutive memory operation.

« Arbitration—Any external device can request ownership of the bus by asserting the
—BREQ signal. The BIU three-states its bus drivers and asserts -BGRNT to indicate
that it is relinquishing control of the bus. Upon completion of its transaction the

o
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external device de-asserts —-BREQ, and the BIU responds by de-asserting —-BG
during the following cycle.

Chapter 4 of this addendum contains bus timing diagrams and a bus state diagram,
further describes bus operations, and describes transactions that are interrupted by
exceptions.

—CLK_EXT ———P»
CLKOUT1 -—
CLKOUT2 -@—

CLKIN / XTALL ———
XTAL2 <@—
-ERROR <@—
-RESET ——»

D <31:0>

Processor ADR <27:2>

Control

& Status ASI <3:0>

—CS <5:0>
Memory

_BE <3:0> Interface

-MEXC
—-READY
RD/-WR
-LOCK

-AS
—-SAME_PAGE

Functions ~TIMER_OVF ~——

MB86933
_BREQ —— P /0 SIGNALS

-BGRNT <——

Bus
Arbitration

TDO -—
TCK ——P
TMS ———
DI ——P
~-TRST ——P

Test Pins
(Boundary Scan) -BMODES8

-BMODE16

1 g L

J ROM Size

Peripheral [ IRL<3:0> [

Figure C1-6. Input and Output Signals

1.6.3 System Support Functions

MB86933 system support is the same as MB86930 system support. Please refer to
Section 1.5.3 of the main section of this manual for a description of the system support
functions.

1.7 Development-Support Tools

The MB86933 development-support tools are the same as the MB86930 development-
support tools. Please refer to section 1.6 of the main section of this manual for a
description of the development-support tools.
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C2

Programmer’s Model

This chapter describes the MB86933 processor resources that are available to software.
It discusses the user and supervisor modes, the organization of the address space, the
processor registers, the supported data types, the instruction set, and interrupts and
traps. A separate section describes the internal state of the processor after reset.

The Programming Considerationshapter contains information about how to use these
processor resources to best advantage.

2.1 Program Modes

The SPARC architecture provides two mutually exclusive modes of program execution,
user modendsupervisor modeThe processor is in supervisor mode when the S bit of

the Processor State Register (PSR) is 1, and in user mode when this bit is 0. Instructions
which access either special-purpose registers or alternate memory spaces are privileged.
The use oprivilegedinstructions is restricted to supervisor mode.

Separate user and supervisor modes provides system protection in multitasking
environments. System code runs in supervisor mode and has full access to processor
resources, while application code runs in user mode and is prevented from having
unwanted side effects. Embedded systems connected to a network can use a protection
scheme based on the distinction between user and supervisor modes. In such a scheme,
network service routines intended to have system-wide effects run in supervisor mode.
Routines intended to have only local effects, on the other hand, run in user mode.

o
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In many embedded systems, however, this hierarchy is not required, and the processor
can operate exclusively in supervisor mode. In this way, application code can directly
manipulate the Current Window Pointer (in the PSR) and other processor control fields.

On reset, the processor is in supervisor mode. To enter user mode, software must clear
the S hit in the PSR. The processor enters supervisor mode from user mode only when a
hardware reset, an interrupt, or a trap occurs. A return from trap (RETT) instruction
restores the value the S bit had before the trap was taken.

2.2 Memory Organization

The processor can directly address up to 4 Gb of memory, organized into 16 address
spaces of 256 Mb each. These address spaces may or may not overlap in physical
memory, depending on the system design. Every external access involves a 4—bit
Address Space Identifier (ASI) as well as a 26-bit word address. The ASI selects one of
the address spaces, and the address selects a word within that space (see Table C2-1).

Only the user instruction and data spaces are accessible in user mode. The other 254
address spaces can be accessed only in supervisor mode.

Table C2-3: ASI Address Space Map

ASI <3:0> Address Space
0x0 Application Definable
0x1 Control Registers

0x2 - 0x3 Reserved

0x4 - 0x7 Application Definable
0x8 User Instruction Space
0x9 Supervisor Instruction Space
OxA User Data Space
0xB Supervisor Data Space

0xC - OxF Reserved

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has six
register windows rather than eight. It has twenty-six Address Bus signals (ADR<27:2>)
rather than thirty, four Address Space Identifier signals (ASI<3:0>) rather than eight, no
emulator-support signals, and no memory management unit. These and other differ-
ences between the MB86933 and other SPARCIite processors should be considered
when porting code to the MB86933 from another SPARCIite processor, and when
porting code from the MB86933 to another SPARCIite processor. Documentation for
other SPARCIite should be referenced to identify differences with the MB86933 that
may affect ported code.

o
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Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double words
between memory (or I/0O) and processor registers. Addressing conventions for external
accesses are “big-endian”:

e Bytes—Increasing the address decreases the significance of a byte within the word.
That is, the most significant byte of a word—the “big end” of the word—is accessed
when bits [1:0] of the address are both 0. The least significant byte is accessed when
address bits [1:0] are both 1.

» Halfwords—The most significant halfword of a word is accessed when bit 1 of the
address is 0, and the least significant halfword when address bit 1 is 1.

« Doublewords—The most significant word of a doubleword is accessed when bit 2 of
the address is 0, and the least significant word is accessed when address bit 2 is 1.

The address of a halfword, word, or doubleword is the address of its most significant
byte. The addressing conventions are illustrated Figure C2-1.

Bytes
address <1:0> 0 1 Y 2 3
7 0|7 0|7 0|7 0
Halfwords
address <1:0> 0 2
15 0|15 0
Word
address <1:0>
0 31 0
Doubleword
address <2:0>
0 63 32

4 |31

Figure C2-1. Addressing Conventions

Load and store operations require proper alignment of data in memory. An aligned
doubleword address is divisible by 8, an aligned word address is divisible by 4, and an
aligned half-word address is divisible by 2. If a load or store instruction generates an
improperly aligned address, a memory_address_not_aligned trap occurs, and the access
must be performed piecemeal under software control.

The processor does not contain memory-management hardware. Virtual-address
translation can be handled by software or by an external memory-management unit.

2.3 Registers

There are two types of registers: teneral-purposer r registerswhose contents have
no pre-assigned meaning, and $pecial-purpose registetbat contain control and

o
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status information, or special-purpose data. All registers are 32 bits wide. The register
set is illustrated in Figure C1-2.

The general-purpose (r) registers can be accessed in user mode. There are 104 r
registers. Eight arglobal registersthe other 96 registers are divided into six
overlapping blocks calledindows

There are of two kinds of special-purpose registers: (1) registers that are defined by the
SPARC architecture, and (2) memory-mapped registers that control peripheral

functions. Special instructions exist for reading and writing each SPARC register except
the Program Counter and the Next Program Counter. The memory-mapped registers can
be read and written with the alternate-space load and store instructions. All instructions
that access special-purpose registers are privileged except reads and writes to the
SPARC-defined Y register.

2.3.1 Register Windows

The general-purpose register set is organized into a set of 8 global registers and a set of
overlapping windows, as specified by the SPARC architecture. There are 6 windows in
the MB86933. Each window contains 24 registers. Of these,|8caldo the window,

8 are“out” registers shared with the adjacent window below, and ‘8réireregisters

shared with the adjacent window above. This organization is illustrated in Figure C2-2.

Thirty-two general-purpose registers can be accessed directly at any time: the 8 global
registers, and the 24 registers of the currently active window. The value in the Current
Window Pointer (CWP) field of the Processor State Register (PSR) determines which
window is active. (See Section 5.3 for register addressing conventions.)

Programmer’s Model - Registers
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Figure C2-2. Register Windows
Register Addressing

Please refer to Section 2.3.1 of the main section of this manual for a description of
MB86933 register addressing.

Performance Features

Please refer to Section 2.3.1 of the main section of this manual for a description of the
MB86933 performance features.

2.3.2 Special Uses of the r Registers

Please refer to Section 2.3.2 of the main section of this manual for a description of
MB86933 r register use.
oG
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2.3.3 SPARC-Defined Special-Purpose Registers

The registers discussed in this section are defined as part of the SPARC architecture.

Processor State Register (PSR)

The Processor State Register is the primary processor control and status register. It
contains 11 mode and status fields that configure the processor and report processor
status and exception results. Thedefields, shown in upper case in Figure C2-3, are
set by the operating system to configure the processostatusfields, shown in lower
case, are set by the processor to indicate the effects of instruction execution.

Except for several fields described below, the PSR can be written and read directly with
the privileged instructions WRPSR and RDPSR. The PSR can also be modified by the
SAVE, RESTORE, Ticc, and RETT instructions, and by any instruction that modifies
the condition codes.

31 28 27 24 23 20 19 12 11 8 7 6 5 4 0
icc
n | z | v | C

impl =0 ver=4 reserved PIL S |PS|ET CWP

Figure C2-3. Processor State Register

Bits 31-28: Implementation (impl)—Identifies the implementation number of the processor as 0. The
value in this field cannot be changed by a WRPSR instruction.

Bits 27-24: Version (ver)—Ildentifies the processor version as 4, and is intended for factory use. It can
be read, but not written.

Bits 23-20: Integer Condition Codes (icc)—Contains the negative (n), zero (z), overflow (v), and carry
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and by
arithmetic and logical instructions whose names end with the letters cc (for example,
ANDcc). The Bicc (Branch on integer condition codes) and Ticc (Trap on integer condition
codes) instructions transfer program control based on the values of these bits. The integer
condition code flags are defined as follows:

n (Bit 23) Setto 1 if the ALU result was negative for the last instruction that modified the
icc field; equal to O otherwise.

z (Bit 22) Setto 1 if the ALU result was zero for the last instruction that modified the icc
field; equal to O otherwise.

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that
modified the icc field; it equals 0 otherwise. Logical instructions that modify
the icc field always reset the overflow bit to 0.

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last
addition that modified the icc, or a borrow out of bit 31 occurred as the result
of the last subtraction that modified the icc. The carry bit equals O otherwise.
Logical instructions that modify the icc field always reset the carry bit to 0.
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Bits 19-12: Reserved —This field is reserved. When using the WRPSR instruction, this field should
always be written with 0s.

accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or
with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most
significant bit, and bit 8 is the least significant.

Bits 11-8:  Processor Interrupt Level (PIL)—Specifies the levels of interrupt that the processor will -

Bit 7: Supervisor Mode (S)—Determines whether the processor is in supervisor mode (S=1) or
user mode (S=0). Since instructions that write the PSR are available only in supervisor
mode, the processor enters supervisor mode from user mode only when a reset, trap, or
interrupt occurs.

Bit 6: Prior S State (PS)—Records the value of the S bit when a trap is taken, so that the
processor can return to the proper operating mode (user or supervisor) on return from the
trap. Processor hardware changes the PS bit to the state of the S bit when entering a trap,
and changes the S bit to the state of the PS bit when returning from the trap.

Bit 5: Enable Traps (ET)—Enables traps (ET=1). When ET=0, traps are disabled and all
interrupts are ignored.

Bits 4-0: Current Window Pointer (CWP)—Points to the register window that is currently active. The
CWP is written and read with the WRPSR and RDPSR instructions, is decremented by
traps and the SAVE instruction, and is incremented by the RESTORE and RETT
instructions. The MB96933 processor implements 6 of the 32 windows allowed in the
SPARC definition, so only the 3 least significant bits of the CWP field are used. Arithmetic
on the CWP is always performed modulo 6. Attempting to write a value to the CWP field
that points to an unimplemented window results in an “illegal instruction” error.

Window Invalid Mask Register (WIM)

The Window Invalid Mask Register contains 6 register-window mask bits, each of

which corresponds to an implemented register window. If an operation that normally
increments or decrements the Current Window Pointer would cause the CWP to point to
a window whose corresponding WIM bit equals 1, a Window Overflow or Window
Underflow trap occurs.

The WIM can be written with the WRWIM instruction, and read with the RDWIM

instruction. Both of these instructions are privileged. Bits corresponding to unimple-
mented windows are read as 0s; values written to these bits are ignored.

31 6 5 4 3 2 1 0

reserved w5| wa| w3| w2 | wl| wO

Figure C2-4. Window Invalid Mask Register

o
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Bits 31-6:  Reserved Field—This field is reserved for potential future expansion to additional windows.

Bits 5-0: Window Masks (W5-WO0)—Window mask bits, with W5 the mask bit for window 5, etc.

Trap Base Register (TBR), Y Register, Program Counter,
Next Program Counter, Ancillary State Registers,

Please refer to Section 2.3.3 of the main section of this manual for a description of these
registers.

2.3.4 Memory-Mapped Control Registers

In addition to the registers defined by the SPARC architecture, the MB86933 provides a
collection of memory-mapped registers that control peripheral functions. Figure 2-5
shows these registers and their locations in memory. The memory-mapped registers can
be read and written with the alternate-space load and store instructions, which are
privileged.

0x00000080 ASI=0x1 System Support Control Register

0x00000120 ASI=0x1 Same-Page Mask Register

0x00000124 ASI=0x1 Address Range Specifier Registers (ARSR <5:1>)

0x00000140  ASI=0x1 Address Mask Register (AMR <5:0>)

0x00000160 ASI=0x1 Wait-State Specifier Registers (WSSR <2:0>)

0x00000174 ASI=0x1 Timer Register

0x00000178 ASI=0x1 Timer Preload Register

Figure C2-5. Locations of Memory-Mapped Control Registers

Same-Page Mask Register, Address Range Specifier Register, Address
Mask Register,

Wait-State Specifier Register, System Control Support Register, Timer
Register,

Timer Preload Register

Please refer to Section 2.3.4 of the main section of this manual for a description of these
registers.
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2.4 Data Types

Please refer to Section 2.4 of the main section of this manual for a description of th
data types. -

2.5 Instructions

Please refer to Section 2.5 of the main section of this manual for a description of the
instructions. Note thahodulo 8in the description becomesodulo 6for the MB86933
processor.

2.6 Interrupts and Traps
Please refer to Section 2.7 of the main section of this manual for a description of the

interrupts and traps. Note thmabdulo 8in the description becomesodulo 6for the
MB86933 processor.

o
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CHAPTER

C3

Internal Architecture

The MB86933 internal architecture is illustrated in Figure C3-1. The processor consists
of a Clock Generator, an Integer Unit, and a Bus Interface Unit. Internally, the various
functional units are connected by separate instruction and data buses. A unified address
bus and a unified data bus extend off-chip for connecting external memory and I/O.

This chapter discusses the individual functional units and gives an overview of the flow
of data and control signals through the processor.

ol
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XTALL/CLKIN ———¢—
—

CLK_OUT -———|

CLOCK
GENERATOR

DATA
ADDRESS  {

CONTROL {

BUS
INTERFACE
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REFRESH <€——

UNIT
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DRAM
CONTROLLER
N Y PWG 32 D_DATA
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32 D_ADDR
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K
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SPARC INTEGER UNIT

ADDRESS
DECODE

Figure C3-1. Internal Architecture (Block Diagram)

3.1 Integer Unit

The Integer Unit (IU) is a compact, full-custom implementation of the SPARC
architecture. It is hard-wired for maximum performance; that is, it uses no microcode. It

contains three functional units:

» Instruction Block—Contains the instruction pipeline and decodes instructions into

control signals for the other blocks.

* Address Block-Performs all instruction-address manipulations.

» Execute Block-Performs all data manipulations, and generates operand addresses
for load and store instructions and effective addresses for some of the control

transfer instructions.

The IU is based on a Harvard (Aiken) architecture, as shown in Figure C3-2. There are
separate address buses for instructions and data. There are also two 32-bit data
interfaces: the instruction data bus, and the data bus. These four buses allow the 1U to

retrieve data and instructions simultaneously from on-chip cache.
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| DATA

REGISTER FILE
{ read 1 read 2 read 3 read 4
ir | adder |
Y
| inc (+4) | ‘ {
L~ J[ 8 |
o |[7BR] v v
‘ pc ALU/ SHIFTER
R Register
w
i ¥ i¢ {w |
| e_pc | | PSR/WIM/Y | | Data Address | l
m_pc st_align Id_align
INSTRUCTION ADDRESS EXECUTE
BLOCK BLOCK BLOCK
| ADDRESS D ADDRESS D DATA

Figure C3-2. Integer Unit Data Path

3.1.1 I Block

The instruction block (I Block) contains the five-stage instruction pipeline and the logic
that decodes instructions into control signals for the rest of the IU. The | block detects
all bypass and interlock conditions.

The main interfaces to the | block are:

e The Instruction data bus from main memory.

« The Immediate data field that goes to the A block for computing PC relative control
transfers and to the E block to be used as immediate data.

« Control signals to the A block and E block including the register file read and write
addresses, register enable signals, multiplexer controls, and partly or fully decoded
operation codes for the ALU/Shifter.

« Status signals back from the E block including possible trap conditions such as
memory_address_not_aligned and tag_overflow.

Instruction Pipeline

The IU implements a five-stage instruction pipeline to allow a sustained execution rate
of nearly one instruction per cycle. The operation of the pipeline under ideal conditions
is illustrated in Figure C3-3. The pipeline consists of the following stages:

oG
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=

Fetch (F)—One of the instruction memory spaces is addressed and returns an
instruction. (The figure below assumes a hit in the instruction cache.)

2. Decode (D)—The instruction is decoded; the register file is addressed and returns
operands.

3. Execute (E)—The ALU computes a result.

4. Memory (M)—External memory is addressed (for load and store instructions only;
this stage is idle for other instructions).

5. Writeback (W)—The result (or loaded memory datum) is written into the register
file.

1 1 1 1 ! 1

CLK / \ /_L
| ] ]

Fetch Instruction 5 6 ! !

!

'

Write-Back Instruction 1

' 1
! 1
! '
Decode ' Instruction 4 5 6 : '
I I
Execute ' Instruction3 4 5 6 ‘ !
| | |
Memory ' Instruction2 ' 3 4 5 6 !
! ! !

| |

| |

Figure C3-3. Instruction Pipeline

No instructions execute out-of order; that is, if instruction A enters the pipeline before
instruction B, then instruction A necessarily reaches the writeback stage before
instruction B.

The control logic for the instruction pipeline is illustrated in Figure C3-4. At each cycle
a horizontal control word is available that is wider than 32 bits and controls every
multiplexer, latch-enable, and unit op-code in the chip. The horizontal control word is
composed of control signals that are active during the decode stage of instruction N, the
execute stage of instruction N-1, the memory stage of instruction N-2 and the writeback
stage of instruction N-3. Some control bits require no decoding and are simply
hardwired from the appropriate bits in the instruction register. Because the SPARC
instruction set is not completely orthogonal (not every instruction field has the same
meaning in every instruction) most bits require some decoding based on a single
instruction in the pipeline. Some control bits require decoding using logic that looks at
two instructions in the pipeline - when controlling multiplexers to select data bypass
paths, for example.

b
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Figure C3-4. Instruction Pipeline Control Logic

Pipeline Hold

The IU does not complete one instruction on absolutely every cycle. During a load
instruction, for example, external memory may be slow in returning the requested data.
Because the IU does not execute or complete instructions out of order, the pipeline must
be stopped until the requested data is returned. Only then can the instruction complete,
and only then can the following instructions be executed.

There are also some hazards built into the 1U data path that require interrupting the
one-cycle-per-instruction sequence of the pipeline. For example, a doubleword load
cannot be performed in one cycle because there is not enough memory or register-file
bandwidth to move the data through the datapath. Another example is a load to a
register that is followed by an instruction that uses that register. Because the operand of
the second instruction is required in the decode stage but is not available, this
instruction must be delayed until the operand is available.

Conditions that hold up the processor pipeline are handled uniformly by the | Block
control logic and are referred tolasld conditions A complete list of possible hold
conditions is given in Table C3-1.

Theinterlock conditionsare:

» Load/Use Instruction Pairs—If a load instruction that has rd=N as its destination
register is followed by an instruction that uses rs=N as one of its source operands,
then the load must proceed through Writeback before the following instruction can
enter the Execute stage.

* CALL/Use %r15 Instruction Pairs—Similarly, since the CALL instruction implicitly
writes the current value of the PC into r15, it must proceed to Writeback before any
following instruction that uses r15 can enter the Execute stage.

oG
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Any time an interlock is detected, a NOP is inserted into the pipeline. The address
block is signaled, so that the address of the instruction that causes the interlock is
replicated in the address pipe. The NOP itself cannot cause a trap.

Table C3-1: Conditions That Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected
ihold Processor is attempting to fetch an Fetch Any instruction
instruction that is not yet available.
dhold Data is not yet available Memory Loads and Stores
mhold Multiplication in progress Execute Integer Multiplication
Interlock An instruction in the pipeline must wait Load/Use and
for some prior instruction to be CALL/Use r15
completed (through Writeback). Instruction Pairs
Multicycle An instruction which inherently requires Execute Load and Store
Instruction more than one cycle is in the pipeline Double-word, Atomic
Load/Store

The multicycle instructions are LDD, LDDA, STD, STDA, LDSTUB, LDSTUBA,

SWAP, and SWAPA. When a multicycle instruction enters the Execute stage, it and the
instruction in the d_ir register are frozen for an additional cycle. Although it is possible

to detect a multicycle instruction while it is in the Decode stage (unlike interlocks,

which cannot be detected without looking at two instructions, those in the d_ir and e_ir
registers), the | Block allows it to progress to the Execute stage before a hold is
generated and inserted. This simplifies control somewhat because there are fewer points
at which the pipeline must be held.

Note that the maximum number of internally generated hold cycles an instruction can
cause is two, as in the following case:

LDD [%r1+%r2],%0r4
ADD %r5,%r5,%r6

The LDD takes two cycles, and it generates an interlock because the next instruction
uses the data loaded in the second data memory cycle of the LDD instruction.

When a hold condition occurs, combinational logic generates one ofneeze signals
that prevent latches from being updated, and hence keep the pipeline from advancing.
For some holds—dhold, for example—the entire pipeline is frozen, with freeze signals
being generated for all stages in the pipeline. For other holds—interlock conditions, for
example—Ilater stages in the pipeline must advance for the hold condition to be
resolved. Thus only the earlier stages of the pipeline are frozen.

b

Internal Architecture - Integer Unit

C3-6



[o®)
FUJITSU

Trap Logic

The MB86933 supports precise traps. That is, when a trap occurs, the saved program-
mer-visible state of the processor reflects the completion of all instructions prior to the
trapped instruction, and no following instructions including the trapped instruction.
Thus, when an instruction causes a trap, one of two statements is true:

* No results from that instruction have been written into the programmer-visible -
registers (the register file or the PSR, TBR, WIM, or Y registers).

e Or, if data has been written into a programmer-visible register, the data contained in
that register prior to being written by the trapped instruction is saved by the
processor and can be restored when the trap is taken.

Table C3-2 shows the pipeline stages in which the various trap conditions are detected.

Table C3-2: Detection of Trap Conditions

Priority Trap Type Stage Detected | Trap
1 reset (hardware reset)
1 — D reset
2 1 F instruction_access_exception
3 3 D priv_instruction
4 2 D illegal_instruction
5 4 D fp_disabled
5 36 D cp_disabled
6 5 D window_overflow
7 6 D window_underflow
8 7 E mem_address_not_aligned
10 9 M data_access_exception
11 10 E tag_overflow
12 128-254 D trap_instruction (Ticc)
13 255 F instruction_breakpoint
13 255 M data_breakpoint
14 31 interrupt_level_15
15 30 interrupt_level_14
2.8 1.7 interrupt_level_l

As shown in Table C3-2, the last stage in which a trap can be detected is the Memory
stage (a data memory exception for a load or store). If a programmer-visible register is
updated prior to this stage, its original contents must be restored when and if the trap is
taken.

Due to the pipelined operation of the 1U, a trap condition for one instruction may
actually be detected before a trap condition for a prior instruction. Thus, it is necessary

ol
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to align the detected trap conditions so that all trap conditions for instruction N are
considered together before any trap conditions resulting from instruction N+1 are
considered.

The trap coder is illustrated in Figure C3-5. Its purpose is to align in time the (possibly
several) trap sources for a single instruction to determine if a trap is to be taken or not
and, if taken, to determine the highest priority trap and code its trap type.

Fetch-stage trap sources *
Decode-stage trap sources * *
Execute-stage trap sources * * *
Memory-stage trap sources ——* * * *
Combinational Block > trap? yesino
Memory-stage > qualify, prioritize, encode
instruction reg - trap type
(to A block)

Figure C3-5. Trap Coder

When a trap is taken, the trap type field goes to the A Block where it is used immedi-
ately as a trap target address (when concatenated with the Trap Base Address) and is
latched into the Trap Base Register.

3.1.2 A Block

The A Block contains the address pipeline. Along with the E Block, it is responsible for
all instruction-address manipulations. The A Block executes the CALL and Bicc
instructions. The A Block and E Block are used together to execute the JMPL, Ticc,
and RETT instructions. In these cases, the A Block controls the update of the Program
Counter. The A Block’s main interface to the rest of the chip outside the IU is the
instruction address bus.

The address pipeline is illustrated in Figure C3-6. The fetch-stage program counter (PC)
addresses instruction memory via the instruction address bus. Because a CALL, JMPL,
or trap may require that the address of an instruction be written back to the register file,
the address of every instruction tracks the instruction itself in the instruction pipeline so
that it is available in the memory stage if it must to be written back to the register file.
These address pipeline registers are the decode, execute, and memory program

o
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counters. Each of these registers contains the address from which the instruction in the
corresponding instruction register was fetched.

trap type

from | Block] ————— writable
( ) =
v Y
immediate data B ut -
(30 bits) ¥ ¥ ¥ Q
) readable
jump address adder inc (+4) trap_addr g
(from E Block) * * *
\ f
f_pc
{ this path used
L for multicycle
d_pc instructions
\
e_pc
m_pc
/ v
instruction address return address
(to instruction memory) (to E Block)

Figure C3-6. Address Pipeline

The PC has five possible sources:
1. +4 incrementer, for normal, sequential instruction fetch.

2. The address adder, for PC-relative control transfer (Bicc or CALL instruction). The
immediate data field contains offset information and comes from the | Block.

3. The jump address for a JMPL or RETT instruction. The jump address bus contains
jump target information and comes from the E block by way of the register file and
ALU.

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single-Vector
Trapping is enabled), during a Ticc instruction execution or an interrupt or trap. The
trap type comes from the trap priority encoder, part of the | Block; when concate-
nated with TBR[31:12], it gives the target address for a trap.

5. Zeroes, concatenated with the trap type, for reset.

ol
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Note that “+4” is used to indicate that the (byte) address is incremented by 4 to fetch
the next instruction. In reality, the two least significant bits of the address are not
implemented in hardware because they are never used. Word alignment, for the case of
a jump address coming from the E Block is verified in the E Block (and to some extent,
the | Block).

The return address bus is written back to the register file in the case of a CALL, JMPL
or Trap.

Several control signals come from the | block. These include:

« PC input-select signals that control the PC input multiplexer.

* The address adder control signal, which determines whether a 30-bit or a 22-bit
immediate address field is added to the previous value of the PC (now found in the
decode-stage PC).

» Pipeline freeze signals that can prevent the updating of registers in the pipeline
when a hold condition is detected.

3.1.3 E Block

The E Block is responsible for all IlU data manipulations. It generates operand addresses
for load and store instructions, and effective addresses for some of the control transfer
instructions.

As shown in Figure C3-7, the E Block contains the Store Align Unit (SAU), the Load
Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic Unit
(ASLU). The E Block also contains the result bypass logic that determines which
operands are driven into the ASLU, and the store bypass logic that determines what
data is latched for stores.

Internal Architecture - Integer Unit
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Figure C3-7. Execute Block

Adder, Shift, and Logic Unit (ASLU)

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan unit.
The integer adder calculates the results of the addition, subtraction, multiply-step, and
divide-step instructions, and generates the carry, overflow, negative, and zero condition
code values. Itis used in load and store operations to calculate effective data addresses,
and in register-indirect control transfers to calculate the new address to be placed in the
PC register of the A Block. The integer adder also serves the multiplication unit by
adding the “sum” and “carry” vectors during integer multiplications. The barrel
shifter/logic unit executes the logic and shift instructions. The scan unit exists solely to
support the scan instruction.

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit are
multiplexed into the R (Result) Register. Results from the integer adder are also made
available to the Y Register.

Register File

The register file contains 104 registers of 32 bits each. The organization of these
registers into windows is discussed in Bfregrammer’s Modethapter. The register

file has one write port and three read ports. The write port is used for the instruction
destination register (denotedin instruction descriptions). Two of the read ports are

ol
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used for the two instruction source registesg andrs2). The remaining port is used
for the data to be stored when a store or swap instruction is executed. In this way, even
store instructions can be executed in a single cycle.

The register file also contains the address decoders for all four ports. Each address
presented to the decoders consists of 8 bits derived from an instruction field, and the
Current Window Pointer. These are physical addresses into the register file memory
array.

Bypass Logic

As shown in Figure C3-7, the A and B operand registers have inputs that come from
sources other than the register file or the immediate data bus. These inputs are results
from previous instructions that have not yet written back to the register file. There are
two suchbypass paths the E Block:

» Result Bypass-The result of an ALU operation in the R register is written back to
the A or B operand register in the Memory stage of the following ALU operation.

» Write Bypass-The data in the W register is written to the A or B operand register,
in the Writeback stage.

The result bypass path is selected when one instruction generates a result that can be
used by the immediately following instruction. More precisely, if an instruction in the
Decode stage of the pipeline hia$ = N, and the instruction in the Execute stage has

rd = N, thers1 operand will not come from the register file, but directly from the

R register in the ALU through the result bypass. Since an intervening SAVE or
RESTORE instruction may have changed the Current Word Pointer, itdhythieal
addressesf the register source and destination that are compared, not the logical
addresses (which depend on the CWP).

As an example, consider the instruction sequence:

add %r1,%r2,%r3 rl+r2—>r3
add %r3,%r4,%r5 r3+r4—>15

The second add instruction takes its A source operand not from the register file, but
directly from the result of the ALU through the result bypass.

The write bypass is selected when an instruction in the Decode stagé hds, and
the instruction in the Memory stage hlids= N. In this case, thes1 operand will not
come from the register file, but from the W register through the write bypass. In the
following instruction sequence, the third instruction uses the write bypass as its A
source operand:

b
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add %r1,%r2,%r3 irl+r2—>r3
add %r4,%r5,%r6 1r4+15-—>1r6
add %r3,%r7,%r8 ;13417 —>1r8

If both bypass conditions apply, the result bypass takes precedence.

There is a third bypass path, called stare bypassthat is shown in Figure C3-7. The -
register file has a dedicated store port that is used for reading the rd register of a store
instruction, which contains the data to be stored. The store port is read in the Execute
stage of the store. When a store and the immediately preceding instruction access the
same rd register, a bypass from the Writeback stage of the preceding instruction to the
Memory stage of the store is needed. In the code sample below, the result of the first
instruction becomes available to the Memory stage of the store by means of the store
bypass path.

add %r1,%r2,%r3 rl+r2—>r3
st %r3[%r4 + %r5] : 13 —> mem[r4 + r5]

Branch Evaluation Logic

The branch evaluation logic, which forms part of the E Block, evaluates branch
conditions based on the current values of the integer condition codes of the PSR
register. The icc bits n (negative), z (zero), c (carry) and v (overflow) form part of the
branch evaluation block. The interpretation of these bits is discussedFrotiram-

mer’s Modelchapter.

There are several ways that the icc bits can be modified. First, they can be written and
read via the jump address bus by the instructions WRPSR and RDPSR.

Certain arithmetic instructions modify the icc bits as a side effect. When one of these
instructions is executing, the new icc values are generated in the E Block during the
Execute stage, latched at the end of this stage, and loaded into the PSR during the
Memory stage.

Another path leads to the icc bits from the Writeback-stage copy of the PSR. When a
trap occurs on an instruction that alters the icc bits, this path allows the pre-trap icc
values to be restored to the PSR.

The combinational logic that performs the branch evaluation for the IU condition codes
has as inputs:

* Integer Condition CodesDirectly from the ALU if the instruction in the Execute
stage is one that can modify the icc, from the multiplication unit, or from the icc bits
of the PSR if the instruction in the Execute stage is not one that can modify the icc.

ol
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* The cond Field-From the branch instruction in the Execute stage. (See the
discussion of the Bicc instruction in tReogrammer’s Modethapter.)

» Bicc Indicator—A control signal that indicates whether the instruction in the
Decode stage is a Bicc instruction. This signal remains valid into the Execute stage.

The output of the combinational logic is a single signal that, when active, causes the
branch target address to be loaded into the PC during the Execute stage. Otherwise,
PC+4 is loaded into the PC.

Load Align Unit (LAU) and Store Align Unit (SAU)

The LAU and SAU align data for loads and stores, respectively. Bytes and halfwords to
be loaded are right-justified in a 32-bit word, and either sign-extended or zero-extended
on the left, depending on whether the load instruction specified signed or unsigned
operation. The LAU performs the alignment and extension during Writeback.

Byte and halfword stores take their data from the least significant byte or halfword of
the register specified in the instruction’s rd field. The SAU performs the necessary
alignment for writing the data to the byte or halfword memory address specified in the
instruction.

Multiply Unit

The E Block contains hardware to perform integer multiplications. The Multiply Unit
(MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit product.
Some multiplication instructions modify the integer condition codes as a side effect;
others do not. The multiplication instructions are discussed iArbgrammer’s Model
chapter.

The multiply hardware implements a versiorBabth'’s algorithm Booth’s algorithm is
similar to a “shift and add” multiply algorithm in that it scans the multiplier from the
least significant to the most significant bit and, based on the bit string encountered,
iteratively adds the multiplicand to produce partial products. It is also similar in that the
resulting partial product is right shifted to ready it for the following iteration of the
algorithm.

Booth’s algorithm differs from a “shift and add” algorithm in that it can also be used
directly with a negative multiplier (whereas “shift and add” requires a positive
multiplier). It also differs in that the hardware must provide for both addition and
subtraction of the multiplicand. In particular, a 1-bit Booth’s algorithm examines two
multiplier bits per iteration, looks for a bit transition, and either adds the multiplicand,
subtracts the multiplicand, or adds zero to the existing partial product to produce the
new partial product. It “retires” one bit of the multiplier per iteration.

b
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Table C3-3 shows the possible bit transitions encountered in the multiplier for a 1-bit
Booth, and the value that is added to the multiplicand for each transition.

Table C3-3: Booth’s Algorithm

Multiplier Bits
Current Previous Add to Shifted Partial Product
0 0 +0
0 1 +multiplicand
1 0 —multiplicand
1 1 +0

This technique can be extended so that more than one bit is examined during a given
iteration. In particular, the MU performs an 8-bit Booth’s algorithm. It examines 9 bits
of the multiplier at a time and, based on the eight transitions of these nine bits,
determines what multiple of the multiplicand to add to the old partial product to
produce the new partial product. The addition is performed in the ALSU.

The MU produces 8 bits of the final product and “retires” 8 bits of the multiplier per
cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (producing a

64-bit result).

The execution of the instruction is controlled by a synchronous state machine that
generates control signals for the multiply hardware. Since instructions do not execute
out of order, the Integer Unit (IU) must be frozen during the multiply instructions that
require more than 1 cycle. Conceptually, the multiply instruction goes through all of the
pipeline stages (F,D,E,M,W), but its Execute stage is from 1 to 5 machine cycles long.
During the Fetch and Decode stages, the multiply instruction progresses like other

instructions.

3.1.4 Programmer-Visible State and Processor State

The SPARC Architecture defines theopgrammer-visible statef the processor as a
collection of registers, and specifies the effects of instructions in terms of these
registers. These definitions implicitly assume that every instruction completes before

the next one begins. The MB86933 processor, however, is pipelined, so that normally
four instructions begin execution before the first one completes. The piiaassor
state(excluding the register file) therefore encompasses more than the programmer-vis-
ible state. For most of the programmer-visible registers, there is a corresponding
register in the processor associated with the Writeback stage of the pipeline. That is,

instructions normally update the register file and programmer-visible state registers in

the Writeback stage.

ol
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3.2 Bus

An instruction may update staged copies of the PSR before Writeback, making the new
values available to following instructions sooner; but these staged copies are not user
visible. The PSR associated with the Writeback stage can never be updated early; if an
instruction traps, it will not have altered any state that can not be restored.

Interface Unit

The Bus Interface Unit (BIU) contains the logic that allows the processor to communi-
cate with the system. When the BIU performs a read, it returns the data to the IU.

The BIU also handles external requests for control of the bus. The external signals of
the BIU and the relative timing of events in typical bus operations are discussed in the
External Interfacechapter that follows. That chapter also treats the various system-sup-
port features of the processor in detail.

3.2.1 Exception Handling

The external memory system can indicate an exception during a memory operation by
asserting the —-MEXC input. If -MEXC is asserted during an instruction fetch, the BIU
indicates an instruction memory exception to the IU. If -MEXC is asserted during a
data fetch, the BIU indicates a data access exception to the IU.

Any system that wants to recover from this error should store the address and data for
the write causing the exception into a register. It should also have a status bit to indicate
that the exception was caused during a write operation. It is the responsibility of the
data access exception service routine to determine the cause of the exception, and to
recover accordingly.

3.2.2 Effect on the Pipeline

The pipeline hold signals, ihold and dhold, are asserted if an instruction or data cannot
be made available in the cycle that it is required by the pipeline. In general the
following hierarchy rules apply to the bus interface unit:

e The bus cycle currently in progress will complete
« If there is a pending request for a load or store operation, it will be serviced
» Ifthere is a pending request for an instruction, it will be fetched.

The pipeline is stalled during every external memory access if the external —Ready
signal or the internal Ready signal is not asserted. (See the Wait-State Specifier
Registers description in Section 2.3.4 of the main section of this manual for a
description of the internal Ready signal).

b
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C4

External Interface

The processor external interface consists of signals for bus operations and for system
control. This chapter details the MB86933 signal set, describes basic bus timing, and
describes the programmable wait-state generator, on-chip timer, and same-page
detection logic. See the MB86933 Data Sheet for specific electrical and timing
information.

The System Design Considerations chapter of this document discusses issues that are
likely to arise in the design of SPARCIite systems.

4.1 Signals

The processor’s external signals are illustrated in Figure C1-6 Gfhiviewchapter,
and are listed in Table C4-1. A dash at the beginning of a signal name, as in -RESET,
indicates that the signal is active-low.

o
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Table C4-1: Input and Output Signals

External Interface - Signals

C4-2

Symbol Type Symbol Type Symbol Type Symbol Type
ADR <27:2> o] -BMODE16 | -LOCK (e] TDI |
S(L) S(L)
G(2) G(2)
6y @)
-AS 0] CLKOUT1 (0] -MEXC | TDO [e]
s(L) | cLkouTt2 G(Q) S(L)
G(2) Q)
1(2)
ASI <3:0> 0] CLK_ECB —SAME_PAGE [e] —-TIMER_OVF [¢]
S(L) S(L) S(L)
G(2) G(1) GQ)
6Y) (@) Q)
-BE 3-0 0] —-CS0, -Cs1 (0] RD/-WR [e] T™S |
s(L) | -cs2,-cs3 S(L) S(L)
G(@) | -csa,-cs5 G(1) G(2)
1(0) @) 1@
—BGRNT 0] D <31:0> 110 —READY | —TRST |
S(L) S(L) S(L)
G(0) G(2)
1Q) 1(2)
-BREQ | —-ERROR (e] —RESET | XTAL1 (CLKIN) |
S(L) S(L) AL) | xTAL2 o
GQ G(Q)
Q) 1(Q)
—-BMODES IRL <3:0> | TCK |
A(L)
NOTE: I = Input Only Pin A(L) = Asynchronous: Inputs I(...)=While the bus is between
O = Output Only Pin may be asynchronous to bus cycles (or being reset)
1/0 = Either Input or Output CLKOUT. and is not granted to
Pin G(...) = While the bus is granted another bus master, the
= Pins * be" to another bus master pinis
- =Pins muzt ed ibed (-BGRNT=asserted), the 1 (1) is driven to Ve
connected as describe pin is 1(0) is driven to Vgg
S(L)=Synchronous: Inputs 1 () floats

must meet setup and
hold times relative to
CLKIN. Outputs are
Synchronous to CLKIN

G(1) is driven to Vcc
G(0) is driven to Vgg
G(2) floats

G(Q) is a valid output

1 (Q) is a valid output
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The following sections describe the signal set in detail, arranged by functional group as
follows:

« Processor Control and Status—Reset, error, and clock signals.

« Memory Interface—Data and address buses, ASI and byte-enables, chip selects, and
other control signals used to access external memory and memory-mapped devices.

« Bus Arbitration—Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

e Peripheral Functions—Interrupt-requests and timer overflow. -
* Boot ROM Size—Input signals used to identify the boot ROM size.

* Boundary-Scan—JTAG-compatible test signals used for board verification.

4.1.1 Processor Control and Status

Signal Function
CLKOUT1 CLOCK OUTPUTS (O): MB86933 bus transactions can be referenced against
CLKOUT2 these outputs. CLKOUT1 has the same frequency and phase as the internal

oscillator, or the signal applied to CLKIN. CLKOUT?2 is the same as CLKOUT1,
but phase-shifted 180 degrees.

—-ERROR ERROR SIGNAL (O): Asserted by the CPU to indicate that it has halted in an
error state as a result of encountering a synchronous trap while traps are
disabled. In this situation, the CPU saves the Trap Type (tt) value in the Trap
Base Register, enters into an error state and asserts the -ERROR signal. The
system can monitor the -ERROR pin and initiate a reset to recover from the
error condition.

—RESET SYSTEM RESET (I): Resets the processor to a known internal state. -RESET
should be asserted for at least 4 processor cycles after the clock has stabilized.
The internal state of the processor immediately after reset is described in the
Programmer’s Model chapter.

XTAL1 (CLKIN) EXTERNAL OSCILLATOR (XTAL1, XTAL2): Determines the execution rate
XTAL2 and timing of the processor. Connecting a crystal across these pins forms a
complete crystal oscillator circuit. The processor operating frequency is the
same as the crystal oscillator frequency.

The processor can also be driven by an external clock. In this case, the clock
signal is applied to XTAL1 (CLKIN); XTAL2 should be left unconnected. The
processor operating frequency is the same as the external clock frequency.

o
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External Interface - Signals

C4-4

4.1.2 Memory Interface

Signal

Function

ADR[27:2]

ADDRESS BUS (O): Specifies the data or instruction address of a 32-bit word.
Reads are always one word in size while byte, half-word, or word transaction
sizes for writes are identified by separate byte-enable signals (-BE3-0). The
value on the address bus is valid for the duration of the bus transaction.

ADDRESS STROBE (O): Asserted by the MB86933 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the
assertion of —AS and ends with the assertion of -READY. During cycles in which
neither the processor nor another bus master is driving the bus, the bus is idle,
and —AS remains de-asserted. See Table C4-1 for signal values while the bus is
idle. The MB86933 asserts —AS for 1 clock cycle.

ASI[3:0]

ADDRESS SPACE IDENTIFIERS (O): Indicates which of the 16 available
address spaces the current bus transaction is accessing. The ASI values are
defined as follows:

ASI <3:0> ADDRESS SPACE
0x0 Application Definable
0x1 Control Registers

0x2 - 0x3 Reserved
0x4 - 0x7 Application Definable

0x8 User Instruction Space

0x9 Supervisor Instruction Space
OxA User Data Space

0xB Supervisor Data Space

0xC - OxF Reserved

The ASI values specified as “application definable” can be used by privileged
(supervisor mode) instructions such as load and store alternate. The ASI
value is available in the same cycle in which the corresponding address value
is asserted on the address bus. The values on the ASI pins are valid for the
duration of the bus transaction.
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Signal Function

—-BE3-0 BYTE ENABLES (O): These pins indicate whether the current store transaction
is a byte, half-word or word transaction. -BE3-0 signals are available in the same
cycle in which the corresponding address value is asserted on the address bus
and is valid for the duration of the bus transaction. This bus should be used only
to qualify store transactions. For load transactions all sub-word requests are
read (and replaced in the cache) as words and then the appropriate byte or
half-word is extracted by the integer unit.

Possible values for —-BE3-0 are as follows:

Byte 0 Byte 1 Byte 2 Byte 3
1 % s 237 16 15 8 7 0 -

Byte Writes | 1 1 1 0‘ 11011 01 1{0 1 1 1
Half-Word Writes 1100 0011
Word Writes 0000

BE<2:3> are also used in 8 and 16-bit ROM accesses as follows:

Bus Mode Byte BE<2:3>

8-bit 0 00
1 01

2 10

3 11

16-bit 0&1 00
2&3 10

-BMODES8 8-BIT BOOT MODE: This signal is sampled during reset and causes read

accesses memory mapped to —CS0 to assume 8-bit ROM memory. The
MB86933 generates four sequential fetches to assemble a complete instruction
or data word before continuing. Bytes are fetched in sequence (0,1,2,3) as
encoded by —BE[2] and —BE[3] (00, 01, 02, 03). Writes to —CSO0 are unaffected
by boot mode selection. If left unconnected, a weak pull-up on this pin (and
—BMODEL16 pin) causes the processor to default to 32-bit mode.

Note: At reset, -BMODES8 must not be asserted while -BMODEL16 is asserted,
or undefined operation may result.

-BMODE16 16-BIT BOOT MODE: This signal is sampled during reset and causes read
accesses memory mapped to —CS0 to assume 16-bit ROM memory. The
MB86933 generates two sequential fetches to assemble a complete instruction
or data word before continuing. Half words are fetched in sequence (0,1) as
encoded by —BE[2]. Writes to —CS0 are unaffected by boot mode selection. If left
unconnected, a weak pull-up on this pin (and -BMODES pin) causes the
processor to default to 32-bit mode.

Note: At reset, -BMODE16 must not be asserted while -BMODES is asserted,
or undefined operation may result.

—CSJ[5-0] CHIP SELECTS (O): One of these signals is asserted when the value on the
address bus lies in the range specified by the corresponding Address Range
Specifier Register. The —CS signals are used to decode the current address into
one of eight address ranges. Address ranges should not overlap. Each address
range has a corresponding wait-state specifier which is used to generate an
internal -READY signal after a user-defined number of processor clock cycles.
This allows a variety of memory and I/O devices with different access times to
be connected to the MB86933 without the need for additional logic. CSO0 is
enabled at reset (see Chapter 2).

o
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Signal Function

D[31:0] DATA BUS (I/O): D31 corresponds to the most significant bit of Byte 0. DO
corresponds to the least significant bit of byte 3. A double word is aligned on an
8-byte boundary, a word is aligned on a 4-byte boundary, and a half-word is
aligned on a 2-byte boundary. If a load or store of any of these quantities is not
properly aligned, a mem_address_not_aligned Trap will occur in the processor.

During write cycles, the point at which data is driven onto the bus depends on
the type of the preceding cycle. If the preceding cycle was a write, data is driven
in the cycle immediately following the cycle in which —-READY was asserted. If
the preceding cycle was a read, data is driven one cycle after the cycle in which
—READY was asserted, in order to minimize bus contention between the
processor and the system.

—-LOCK BUS LOCK (O): Asserted by the processor to indicate that the current bus
transaction requires more than one transfer on the bus. The Atomic Load Store
instruction, for example, requires contiguous bus transactions and so causes the
BUS LOCK signal to be asserted. The bus will not be granted to another bus
master as long as —-LOCK is active. -LOCK is asserted with the assertion of
—AS and remains active until —-READY is asserted at the end of the locked
transaction

—-MEXC MEMORY EXCEPTION (I): Asserted by the memory system to indicate a
memory error on either a data or instruction access. Assertion of this signal
initiates either a Data or Instruction Access Exception trap in the IU. The current
bus access is invalidated by asserting the —~MEXC in the same cycle as the
—READY signal. The IU ignores the value on the data bus in cycles where
—MEXC is asserted.

RD/-WR READ/WRITE BUS TRANSACTION (O): Specifies whether the current bus
transaction is a read or a write operation. When —AS is asserted and RD/-WR is
high, then the current transaction is a read. With —AS asserted and RD/-WR
low, the current transaction is a write. RD/~WR remains active for the duration of
the bus transaction and is de-asserted with the assertion of -READY.

—-READY READY (l): Asserted by the external memory system to indicate that the current
bus transaction is being completed and that it is ready to start with the next bus
transaction in the following cycle. In case of a fetch from memory, the processor
will strobe the value on the data bus at the rising edge of CLKIN following the
assertion of -READY. In the case of a write, the memory system will assert
—READY when the appropriate access time has been met.

In most cases, no external logic is required to generate the —-READY signal.
On-chip circuitry can be programmed to assert —READY internally, based on the
address of the current transaction. The external system can override the internal
ready generator to terminate the current bus cycle early. Up to 6 address ranges
each with different transaction times can be programmed. (See the System
Support Functions section, below.)

—SAME_PAGE SAME-PAGE DETECT (O): Asserted when the address of the current memory
access is within the same page as the previous memory access. —-SAME_PAGE
can be used to take advantage of fast consecutive accesses within page-mode
DRAM page boundaries. -SAME_PAGE is asserted with —AS and remains
active for one processor cycle. -SAME_PAGE is never asserted in the first
transaction following a transaction by another device on the bus. The page size
is specified by writing the Same-Page Mask Register. (See the System Support
Functions section, below.)

i
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4.1.3 Bus Arbitration

Signal Function
—BGRNT BUS GRANT (O): Asserted by the CPU in response to a request from a device
wanting ownership of the bus. The CPU grants the bus to other devices only
after all transfers for the current transaction are completed. All bus drivers are
three-stated with the assertion of the BUS GRANT signal.
-BREQ BUS REQUEST (I): Asserted by another device on the bus to indicate that it

wants ownership of the bus. The request must be answered with a bus grant
(-BGRNT) from the MB86933 before the device can proceed by driving the bus.
Once the bus has been granted, the device has ownership of the bus until it
de-asserts -BREQ. The user should ensure that devices on the bus do not
monopolize the bus to the exclusion of the CPU. The assertion of -BREQ is
recognized by the processor even when —RESET is being asserted.

4.1.4 Peripheral Functions

Signal

Function

IRL[3:0]

INTERRUPT REQUEST BUS (I): The value on these pins defines the external
interrupt level. IRL[3:0]=1111 forces a hon-maskable interrupt. An IRL value of
0000 indicates no pending interrupts. All other values indicate maskable
interrupts as enabled in the Processor Interrupt Level field of the Processor
Status Register (PSR). Interrupts should be latched and prioritized by external
logic and should be held pending until acknowledged by the processor. An
interrupt controller is available on the MB86940 peripheral chip. IRL inputs are
sampled by the processor in cycle 1, synchronized in the following cycle, and
recognized by the processor in the third cycle.

-TIMER_OVF

TIMER OVERFLOW (O): Indicates that the processor’s internal 16-bit timer has
overflowed. This signal can be used to initiate a DRAM refresh cycle or a
one-cycle periodic waveform. On reset, the timer is turned off and —-TIMER_OVF
is high.

4.1.5 Test and Boundary-Scan

Signal Function

—CLK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the CLKIN signal to
bypass the on-chip phase-locked loop. This signal is intended primarily for
testing the chip.

TCK TEST CLOCK (l): JTAG compatible test clock input.

TDI TEST DATA IN (I): JTAG compatible test data input.

TDOT TEST DATA OUT (O): JTAG compatible test data output.

T™MST TEST MODE (l): JTAG compatible test mode select pin.

—TRSTt TEST RESET (l): Asynchronous reset for JTAG logic. If not using JTAG, this
signal must be pulled low.

t. See appendix for more information

o
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4.2 Bus Operation

The Bus Interface Unit handles requests for external memory and 1/O operations,
arbitrates for bus access, or is idle. Bus transactions are handled as follows:

* Memory and I/O Operations—Read and write transactions are initiated with the
processor asserting the —AS signal. The RD/-WR output indicates the transaction
type. The —BE[3:0] outputs indicate the transaction width. The processor drives the
address and ASI signals and either drives (during stores) or reads (during loads) the
signals on the data bus. The transaction ends when —READY is asserted.

An atomic load-store is a load followed immediately by a store, with no operation
between. The —LOCK output is asserted during atomic operations to indicate that
the bus is being used for more than one consecutive memory operation.

« Arbitration—Any external device can request ownership of the bus by asserting the
—BREQ signal. The processor three-states its bus drivers and asserts -BGRNT to
indicate that it is relinquishing control of the bus. Upon completion of its
transaction, the external device de-asserts -BREQ, and the processor responds by
de-asserting —-BGRNT the following cycle.

In any cycle the BIU can receive a request for accesses to instruction memory, to data
memory, or to both. If it receives a request for both in the same cycle, it completes the
data memory transaction first.

4.2.1 Exception Handling

The external memory system can indicate an exception during a memory operation. The
BIU signals the appropriate data or instruction exception to the 1U, which will trap
accordingly.

Any system that must recover from this error should store the address and data of the
write operation in hardware. If the system can generate both read and write exceptions,
the system must also provide a status bit that indicates whether the exception was
generated during a read or during a write operation. With access to this information, the
data access exception service routine can determine the cause of the exception and
recover accordingly.

External Interface - Bus Operation
C4-8
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4.2.2 Bus Cycles

This section describes the relative timing of events in representative bus transactions.

Load

A read transaction begins with the BIU asserting —AS to indicate a new bus transaction.
The —AS signal is de-asserted after one cycle. At the same time, ADR<27:2> and
ASI<3:0> bits are asserted with the location to be read. The BIU drives the RD/-W
signal high to indicate a read transaction.

Note that the —BE lines indicate byte, halfword or word operations during load
operations, although their use is optional. The processor loads a word regardless of the
size of the data requested (byte, halfword, word).

The external memory system responds with the read data on pins D<31:0>. It also
asserts the —-READY signal when the data is ready (unless internal ready generation is
selected). For slow memory, the —READY signal is delayed until data is valid.

A load double operation is treated as back-to-back reads.

CLK_IN /—\—/—\—/

ADR<27:2> \ !
ASI<3:0> >< Al >< A2 I
—-BE<3:0> ) i

-AS

RD/-WR

—-READY

D<31:0> | >< D1 >< >< D2

Figure C4-1. Load Timing

o

External Interface - Bus Operation
C4-9



SPARCIite User’'s Manual

Load with Exception

If the external memory system sees a memory exception, it can terminate the current
memory transaction by asserting the -MEXC and —READY signals. The data on the
data bus is ignored by the MB86933.

CLK_IN /—\—/—\—/
| | |
ADR<27:2>
ASI<3:0> >< Al >< >< A2 !
-BE<3:0> / ‘

—AS

RD/-WR | ! \
I |

-READY

D<31:0> >< INVALID ><

Figure C4-2. Load with Exception Timing
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Store

A write transaction begins with the BIU asserting —AS, to indicate a new bus transac-
tion. The —AS signal is de-asserted after one cycle. At the same time the ADR<27:2>
and ASI<3:0> pins are driven with the location to be written, and the write data is
asserted on D<31:0>. The —BE3-0 pins indicate byte, half-word or word transaction
width. The BIU drives the RD/-WR signal low to indicate a write transaction.

The external memory system responds by asserting the —READY signal when it has
stored the data. There is always one idle bus cycle between the termination of a re.
cycle and the beginning of a write cycle to provide time for switching of the data bu
drivers.

A store double operation is treated as back-to-back writes.
| STORE 1 ' STORE 2 !
CLK_IN /—\—/—\—/

ADR<27:2> \
ASI<3:0> >< Al >< A2 |
—BE<3:0> ‘ i

-AS

RD/-WR

—-READY

D<31:0> >< D1 >< D2 ,

Figure C4-3. Store Timing

o
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Store with Exception

If an access exception occurs during a write, the external memory system can terminate
the current memory transaction by asserting the -MEXC and —READY signals. The
external memory system is expected to ignore the data on the data bus in this situation.

| STORE 1 | | |

ADR<27:2>
ASI<3:0>
—-BE<3:0>

AL >< >< Ay

—AS

PR

RD/-WR

—-READY

D<31:0> | >< ><

Figure C4-4. Store with Exception Timing
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Atomic Load Store

An atomic load store executes as a load followed by a store, with no operation between.
The —LOCK signal is asserted to indicate that the bus is being used for more than one

external memory operation.

There is one cycle between the termination of the read and the beginning of the write to

provide time for the switching of the data bus drivers.

Idle cycle

[o®)
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AL X

A2 ‘>< A3

ADR<27:2> |\
ASI<3:0> ><
—-BE<3:0> ’

-AS ir\

RD/-WR

—-READY

D<31:0>

X o1

2 X

Figure C4-5. Atomic Load Store Timing
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External Bus Request and Grant

Any external device can request ownership of the bus by asserting the —-BREQ signal.
The BIU asserts the —-BGRNT signal to indicate that it is relinquishing control of the
bus, and three-states all of its bus drivers. The external device can complete its
transaction during the following cycle. Upon completion of its transaction, the external
device de-asserts the —-BREQ signal. The BIU responds by de-asserting the —-BGRNT
signal during the following cycle.

The MB86933 is the default owner of the bus.

I
Processor Bus Cycle n Complete —— Processor Bus Cycle n+1 Start

—
|
| | | | | ,
| | | | | i
CLK_IN /_\_/_\_
| | | | | !
| | | | | }
| . | | .
_BREO ' ) | | | }
Q ! ) |
| | | N | | |
| | | | | \
| | 7
—-BGRNT | , , , .
) !
| | | 1\ | [
| | | | |
- ALL BUS DRIVERS THREE- —

STATE

Figure C4-7. External Bus Request and Grant Timing

Processor Reset

The MB86933 is reset by asserting the —RESET signal for a minimum of 4 clock cycles
(see Figure 4-7). Systems using an external crystal to clock the processor should assert
—RESET for at least 4 cycles after the crystal has stabilized.

If the processor is reset following a halt in Error Mode and if power to the processor is
not removed, after reset thidield will contain the value of the Trap that caused the
processor to halt.

External Interface - Bus Operation
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‘* 4 CYCLE MINIMUM -

‘
: A

RESET \‘ ‘ / | !
! I

€ '«—— 3CYCLES —p»

b)]

! I

| |

| | | |

7 [ L | (o
ADDR ‘ ‘ ! | !

! y | ! y !

| [ s | [

1§

x0000 0000 >< -

- -----

Figure C4-7. Reset Timing

4.3 System Support Functions

Built-in system support functions help to minimize the amount of glue logic required in
the external system. The support includes programmable chip select logic, program-
mable wait-state generation, same-page detection logic and a timer for generating
refresh requests. For a more detailed description of the programming of these registers
refer to Chapter 2.

The System Support Control Register turns the various system support features on and
off.

31 3 3 3 2 1 0

Reserved

Same-Page Enable (On=1, Off=0) J

Chip Select Enable (On=1, Off=0)
Programmable Wait-State (On=1, Off=0)
Timer On/Off (On=1, Off-0)

Reserved

Figure C4-8. System Support Control Register

4.3.1 System-Configuration Registers

The system-configuration registers (Address Range Specifiers, Address Masks, and
Programmable Wait-State Specifiers) allow software to define six different address
ranges. When an address driven by the processor is in one of these ranges, the
corresponding Chip-Select (—CS) pin is asserted. After a number of clock cycles

o
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determined by the corresponding Programmable Wait-State Specifier, the processor
automatically generates an internal -READY signal. This makes it possible for memory
and /0O devices with different access times to be connected to the processor without
additional logic.

The contents of the Address Range Specifier Registers 1-5 (ARSR[5:0]) define five of
the six address ranges. An additional address range is available, corresponding to —CS0.
For this address range, ADR is hardwired to 0, and ASI is hardwired to 0x9 (Supervisor
Instruction Space). With Mask Register AMRO, —CSO0 ranges 8K words. —CS0 is

enabled at reset. —-CS1, —-CS2, —-CS3, —CS4 and —CS5 are disabled at reset.

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has six
register windows rather than eight. It has twenty-six Address Bus signals (ADR<27:2>)
rather than thirty, four Address Space Identifier signals (ASI<3:0>) rather than eight, no
emulator-support signals, and no memory management unit. These and other differ-
ences between the MB86933 and other SPARCIite processors should be considered
when porting code to the MB86933 from another SPARCIite processor, and when
porting code from the MB86933 to another SPARCIite processor. Documentation for
other SPARCIite should be referenced to identify differences with the MB86933 that
may affect ported code.

31 30 23 22 1 0

ASI| <7:0> ADR <31:10>

Figure C4-9. Address Range Specifier Register Format

An Address Mask Register is associated with each address range. Any address driven by
the chip is compared with the value in all address range specifiers. Only those bits of

the register are compared for which the corresponding mask bits are 0. If the specified
bits of the current address match one of the address range specifiers, the corresponding
chip-select (-CS) pins are asserted. When no bus transaction is being performed, all the
—CS pins are high (inactive). The Address Mask Register corresponding to —CSO0 is
initialized to compare all bits except ADR<14:10>.

31 30 23 22 1 0

ASI <7:0> ADR <31:10>

Figure C4-10. Address Mask Register Format

A Programmable Wait-State Specifier is associated with each address range. Three
registers are used to specify the wait states for the six address ranges. Each register
contains the wait-state specifiers for two address ranges.

i
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When the address currently being driven by the processor matches the unmasked bits in
one of the Address Range Specifiers, the corresponding wait-state specifier is selected.
The format of Wait-State Specifier Registers is shown in Figure C4-11.

31 27 26

22 21 20 19 18 14 13 9 8 7 6 5 0

Count 1
(RST=Undefined)

Count 2
(RST=Undefined)

Count 1 Count 2

Reserved
(RST=Undefined)* (RST=Undefined)*

Wait Enable (On=1, Off=0, RST=*)
Single Cycle (On=1, Off=0, RST=0)

Override

l

(On=1, Off-0, RST=*)

* See Table 2-3 in MB86930 Chapter 2 “Programmer’s Model”

Figure C4-11. Wait-State Specifier Registers

Bits 31-19: Wait-State Specifier—When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and whether,
the processor generates an internal -READY signal to terminate the access.

Countl (Bits 31-27):

Count2 (Bits 26-22):

Wait Enable (Bit 21):

Single Cycle (Bit 20):

Override (Bit 19):

The number of wait-states inserted before the internal -READY,
under the following conditions: the Single Cycle bit equals 0 and the
current access is not on the same page as the previous access. The
number of wait-states is the value of this field +1 (i.e., 0=1 wait-state,
1=2 wait-states, etc.) The value of Countl is undefined on reset.

The number of wait-states inserted before the internal -READY,
under the following conditions: the Single Cycle bit equals 0 and the
current access is on the same page as the previous access. The
number of wait-states is the value of this field +1 (i.e., 0=1 wait-state,
1=2 wait-states, etc.) The value of Count2 is undefined on reset.

Enables and disables the wait-state generator for an individual
address range. If the Wait Enable bit of a wait-state specifier equals
0, the internal -READY is not asserted when addresses in the
corresponding range are accessed by the processor. If Wait Enable
is 1, the single cycle bit must be 0. See Table 2-3 in MB86930
Chapter 2 “Programmer’s Model” for reset value.

Specifies the timing of the internal -READY signal. If the Single Cycle
bit equals 1 when an address in the appropriate range is accessed,
the internal —-READY is asserted in the same cycle. If the Single
Cycle bit equals 0, and the current transaction is in the same page as
the previous transaction, then Count2 is used as the number of
cycles after which —-READY is asserted internally. If the transaction is
not in the same page, Countl is used instead. If Single Cycle is
enabled, the Wait Enable bit must be 0. See Table 2-3 in MB86930
Chapter 2 “Programmer’s Model” for reset value.

Allows the system to terminate a memory transaction before the
internally specified time. If the Override bit equals 1, and external
hardware asserts the external -READY signal, then the wait-state
generator will stop counting and will wait for the next transaction. This
bit is cleared to 0 on reset.

o
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Bits 18-6:  Wait-State Specifier—The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

The Countl and Count2 fields of the Wait-State Specifier corresponding to —CS0 have
all their bits set to 1 following reset. In this way, 32 wait-state cycles (the maximum
number) are inserted into the processor’s first instruction accesses. The override bit for
—CSO0 is enabled as well.

4.3.2 Same-Page Detection

The same-page detection logic determines whether the address of the current memory
transaction is on the same page as the previous transaction. If it is, the processor asserts
the —SAME_PAGE signal. The system can then take advantage of the fast consecutive
accesses possible within fast-page mode DRAM page boundaries. The same-page
detection logic consists of a mask register, a register to store the address and ASI bits of
the previous transaction, and a comparator.

The Same-Page Mask Register specifies which bits of the current address and ASI must

be compared with the previous address and ASI. Only those bits are compared for
which the mask bit is 1.

31 30 23 22 1 0

ASI Mask Address Mask (ADR [31:10])
(Card=0, Don’t Care=1) (Card=0, Don’t Care=1)

Figure C4-12. Same-Page Mask Register

The —SAME_PAGE signal is never asserted for the first transaction following a
transaction by another device on the bus. When using the internal wait-state generator,
DRAM control logic should issue a bus request when initiating a refresh cycle so that
the —SAME_PAGE logic is reset appropriately. The —-SAME_PAGE feature is disabled
at reset.

4.3.3 Programmable Timer

The 16-bit programmable timer causes the —TIMER_OVF output signal to be asserted
at software-defined intervals. This signal can be used to initiate DRAM refresh cycles,
or to control other periodic events in the external system.

o
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The current timer count is stored in the Timer Register. When the timer overflows, it is

loaded with the value in the Timer Preload Register. The contents of both of these

registers are undefined following reset.

31

16

15

Reserved

Timer Value

31

16

15

Reserved

Timer Pre-Load Value

Figure C4-13. Timer and Timer Preload Registers

The timer can also be loaded by writing directly to the Timer Register. The timer can
be turned off by writing a 0 to the Timer On/Off bit in the System Support Control
register. The timer is clocked at the processor clock frequency.

4.4 ROM Interface

4.4.1 Purpose

The data bus of the MB86933 can be configured upon reset to 8- and 16-bit bus modes
as well as the standard 32-bit mode. This flexibility accommodates those cases in which

boot code resides in PROMs organized as blocks of bytes or halfwords.

4.4.2 Features

Bus Configuration: the data bus configurations are fixed to specific segments of the

bus:

* 8-bit mode: D[7:0]

* 16-bit mode: D[15:0]
* 32-bit mode: D[31:0]

External Interface - ROM Interface
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4.4.3 Bus Configuration on Reset

Two external pins, -BMODE16 and —-BMODES are used to determine the bus
configuration. The two bus configuration pins have weak pull-ups, so that if uncon-
nected, the bus configuration will default to a 32-bit bus.

(reserved): —-BMODE16=0, -BMODE8=0
8-bit mode: -BMODE16=1, -BMODE8=0
16-bit mode: -BMODE16=0, -BMODE8=1

32-bit mode: -BMODE16=1, -BMODE8=1

4.4.4 System Interface

In order to minimize external “glue logic” required for interfacing to the 8- or 16-bit

bus, the BE bits are encoded to reflect the two LSBs of a byte address or the LSB of a
halfword address. Therefore, the ADR[27:2] and selected —BE bits can be concatenated
to form a complete address for a non-32 bit bus mode.

Table C4-2: System Interface BE Bits

Bus Mode Byte BE[0:3]
8-bit bus 0 0000
1 0001

2 0010

3 0011

16-bit bus 0&1 0000
2&3 0010

8-bit bus mode address= {ADR[27:2], —-BE[2], —-BE[3]}

16-bit bus mode address={ADR[27:2], -BE[2]}

—CSJ0], which is enabled on reset, and the internal -READY generation logic, can be
used to minimize any glue logic required to interface to the PROM. On reset, the wait
state generator, corresponding to —CSJ[0] for internal —-READY generation, is set to 32
cycles. Later on in the boot code, the wait state generator can be changed to a more

appropriate value.

External Interface - ROM Interface
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4.4.5 PROM Address Space

The PROM address space is defined by the —CS[0] address-range specifier. On reset,
the —CS[0] address range defaults to 32K bytes (starting address=0x0), and the ASl is
initialized to 0x9. The PROM address range can be changed later using the mask bit
register associated with —CS[0]. An example of the supervisor address space (ASI=0x9)
memory map is shown below:

Supervisor -
Code Space

0x00007FFF (bytes): default value

PROM
0x0

Figure C4-14. Supervisor Address Space (ASI=0x9) Memory Map

Any memory access from the PROM address space, in a non-32 bit mode, will make the
—BE bit encodings reflect the LSBs of a byte/halfword address. Furthermore, the
fetched bytes/halfwords will be assembled into a 32-bit word. On the other hand, any
access from the non-PROM address range will result in a normal, 32-bit memory
access.

4.4.6 Load/Stores

One of the functions of the boot code is to set the processor and system configuration.
This might involve loading system parameters from PROM, loading data from memory
mapped I/O, and storing data to non-PROM address space. All loads from the PROM
address space behave the same way as instruction fetches, in that, for a non-32 bit bus
mode —BE , bit encoding and word assembly are done. Loads from a non-PROM
address space behave in the normal (32-bit) manner. In order to meet the —-BE AC
timing, the —BE bits on the MB86933 need to be all 0’s for all types of loads—word,
halfword, and byte—from the non-PROM address space. This requires a functional
change from the current specification of the MB86930’s —BE bits, which reflect the

byte information for loads. This change does not cause a problem, since the processor
fetches a full 32-bit word on a load, and the U selects the byte appropriately. As on the
MB86930 —BE bits should be ignored for 32-bit loads.

Since stores to the PROM will never occur, for all stores, regardless of address space,
the —BE bits will reflect the byte information of the store. Therefore, byte and halfword
stores to the PROM address space becomes meaningless, since the —-BE[2] and —BE[3]
bits no longer reflect the byte address. Furthermore, store word operations to the PROM

External Interface - ROM Interface
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address space will not result in a dis-assembly process for a non-32 bit bus mode. Since
stores to PROM address space are not disabled, the user would have to qualify —CSJ[0]
with the R/-W signal to use it as a PROM chip select signal. This will not be necessary
if the user can be sure that a store to PROM space never occurs.

A summary of the —BE[0:3] bit behavior for loads from the PROM address space is
shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch occurs.
For example, in the 8-bit bus mode, four bytes will be fetched for all loads, and the BE
bits will sequence with the proper 2 LSBs of the byte address.

Table C4-3: Load —BEJ[0:3] Bit Behavior

Bus Mode Operation BE[0:3] in PROM space
8-bit bus Loads (all) 0000=>0001=>0010=>0011
16-bit bus Loads (all) 0000=>0010

32-bit bus Loads (all) 0000

4.4.7 Memory Exception

Any memory exception that occurs during a fetch from the PROM address space in a
non-32 bit bus mode will be held off until the entire word is fetched.

4.4.8 Bus Request

Any bus request happening during the non-32 bit bus mode fetch will not be recognized
until the end of the complete 32-bit fetch operation.

External Interface - ROM Interface
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4.4.9 Timing

Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are shown
below. Note that —AS is asserted at the beginning for one cycle.

CLK

-AS

ADR[27:2]

—BE[0:3]

RD/-WR

-RDY

DATA

CLK

-AS

ADR[27:2]

—BE[0:3]

RD/-WR

-RDY

DATA

—c—————————————x |l
—((CT_oboo T X( T ohwo T X T oboo T X T oho T X
T N T N N TN/
T o < Byet T Bz ——{ Byes >

Figure C4-15. 8-bit Bus Mode Read (1 Wait State)
—c——— — —  C
— 0b0o X{ 0b10 X{ 0000 X{ 0b10 X

Figure C4-16. 16-bit Bus Mode Read (1 Wait State)

o
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4.4.10 Store in 8/16 Bit

For all stores, regardless of address space, the —BE bits will reflect the byte information
of the store. The following note may be useful for system designers.

Store Byte: All 4 bytes are the same in the whole word data (i.e., D[31:24] = D[23:16]
= D[15:8] = D[7:0)).

Byte —BE{3:0]
0 1110
1 1101
2 1011
3 0111

Store halfword: 2 half words are the same in the whole word data
(i.e., D[31:16] = D[15:0)).

Half Word —-BE{3:0]
0 1100
1 0011

RD/-WR | | | |
|

ADR[27:2] X ‘

—BE[0:3]

>

D[31:0]

Figure C4-17. Store to 8/16-Bit Address Space
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CS

Programming Considerations

5.1 MB86933 Programming Information

Chapter 5 of the main section of this manual contains programming information for the
SPARCIite processors that applies specifically to the MB86930 processor.

The MB86933, however, has no caches, has six register windows rather than eight, and
differs from the MB86930 processor in other ways (see the Overview section of this
addendum). Therefore, information given in Chapter 5 relating to features that are not
supported by the MB86933 should be disregarded. The chapter should be referenced
only for programming information that is appropriate for the MB86933.

o
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CHAPTER

C6

System Design Considerations i

This chapter describes SRAM and page-mode DRAM interfacing to the MB86933
processor, and MB86933 in-circuit emulation. Chapter 6 of this manual describes
system design considerations for SPARCIite processors in more detail.

6.1 Interfacing SRAM

The address bus, data bus, and chip select signals of the SRAM can be connected
directly to the address bus, data bus, and a chip select of the processor. The output
enable signal can be generated by gating RD/-WR high and Chip select low to produce
output enable low. Write enable for the SRAMs requires more consideration.

The processor data hold time for a write is specified as zero hold after the rising edge of
the clock. RD/-WR hold time at the end of a write operation can be 0 after the rising
edge of the clock, or can be held low if the next cycle is also a write. Thus an
implementation cannot use RD/-WR directly as —WE for the SRAMs.

o
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Figure C6-1 shows timing for an typical system using 2 cycle access SRAM operating
at 20 MHz. Individual —WE signals are generated for each of the 4 bytes in the data

word.
cwpr : : : :
s T 3 3 | |
— B | | j |
o B | ) ) |
W S I
oara [ y— : : v
-WE ‘ ‘ Y | Y | ‘

Figure C6-1. SRAM Interfacing Example

The SRAM is controlled with a PAL using the following equations:
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Iclkd = clkpl;

Isoe_=rw & !scs_;

Iswe3_=!rw & 'as_ & 'be3_ & Iclkpl
#lrw & las_ & 'he3_ & !clkd
#!rw & Iscs_ & 'swe3_ & clkpl
#lrw & Iscs_ & Iswe3_ & clkd;

Iswe2_=Irw & las_ & lbe2_ & Iclkpl
#rw & las_ & be2_ & Iclkd
#lrw & Iscs_ & Iswe2_ & clkpl
#lrw & Iscs_ & Iswe2_ & clkd;

Iswel =Irw & las_ & !bel_ & Iclkpl
#lrw & las & 'bel & !clkd
#lrw & Iscs_ & Iswel & clkpl
#lrw & Iscs_ & 'swel & clkd;

IsweO_=!rw & 'as_ & 'be0_ & !clkpl -

#lrw & las_ & 'be0_ & !clkd
#!rw & Iscs_ & !swe0_ & clkpl
#!rw & Iscs_ & !Iswe0_ & clkd;

Clock low, —AS lo, —BE low, and RD/-WR low cause —WE to be asserted. Clock high,
—CS low, —BE low and RD/-WR low cause —WE to stay low. When clock goes low
again, —“WE is negated. This way there is sufficient data hold time.

For this system, CLKOUTL1 from the processor was used because it has better duty
cycle control than an oscillator clock.

6.2 Interfacing Page-Mode DRAM

Interfacing Dynamic RAM requires a DRAM controller for generating RAS and CAS
(Row Address Strobe and Column Address Strobe), and for handling refresh. The
DRAM controller is typically implemented as a state machine. The DRAM controller
and signal interfaces should be designed carefully to accommodate refresh operations
and fast page mode access.

The programmable 16-bit timer provided in the MB86933 processor core can be used
for timing the refresh interval. The timer output signal, -TIMER_OVF (Timer

Overflow), goes low for a single clock cycle at the end of each timer interval. The timer
interval is programmed in software, with the correct time interval depending on how the
refresh operation is implemented.

The correct number of wait states can be generated by either the processor’s internal
wait-state generator, or the DRAM controller.

i
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The processor supports fast “page mode” access to DRAM. When the current DRAM
address is within the same page as the previous DRAM access, the -SAME_PAGE
(Same-Page Detect) signal is asserted. This tells the DRAM controller that DRAM can
be accessed using CAS only without selecting a new row of the DRAM, saving time.
Page-mode accesses thus provide timing advantages comparable to the burst-mode
accesses of some other processors.

To take advantage of page hits, RAS is asserted and left asserted to continuously select
a row. CAS is asserted one access at a time to select a memory location in that row.
Accesses need not be in consecutive locations. RAS can remain asserted as long as each
access is in the same row, and CAS can be asserted once to access each memory
location. RAS remains asserted between accesses.

The wait-state generator can be programmed to use a different (smaller) number of
clock cycles for a “page hit” (when the current address is within the same page as the
previous DRAM access).

When using the internal wait-state generator instead of the external —READY signal,
the processor has no way of detecting a refresh operation that occurs during an access.
One solution is to have the DRAM controller take control of the bus during refresh

using -BREQ (Bus Request), thereby preventing the processor from requesting a
memory access for the duration of the refresh operation. The disadvantage of this
solution is that the processor is forced to remain idle. An alternative solution is to
disable the internal wait-state generator and let the DRAM controller generate the
—READY signal for all DRAM accesses.

Figure C6-2 is a simplified state diagram for a DRAM memory controller. Upon reset,
the state machine starts in the RAS Precharge and Idle state, and remains in that state
until a memory access or refresh request occurs.

Refresh
Request

New-Page Access
or Refresh Request [Page Wait:
RAS asserted
CAS negated

RAS
Precharge
and Idle

Access Same_Page Access

Note: Each state may represent
multiple clock cycles

Figure C6-2. Simplified State Diagram for DRAM Controller
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If a refresh request occurs, the state machine goes into the Refresh state. (In practice,
this will actually be a number of sequential states.) When the refresh operation is
complete, the state machine returns to the RAS Precharge and Idle state.

When the processor requests a DRAM memory access, the state machine enters the
RAS state, in which the RAS signal is asserted to select the row. From there it goes to
the CAS state, in which the CAS signal is asserted to select the column. At this point,
data is clocked into the appropriate part, and the bus cycle ends.

From there the state machine enters the Page Wait state, in which the state machine
waits for either another memory access, or a refresh request. In this state, RAS is
asserted and CAS is negated. If there is a memory access to the same page of DRAM
(as indicated by the —SAME_PAGE signal), the state machine goes directly to the CAS
state, and CAS is asserted to select the memory location. If there is a memory access to
a different page of DRAM or if a refresh request occurs, the state machine goes to the
RAS Precharge and Idle state, then to the requested operation. The state machine -
with RAS asserted until one of these events occurs.

For more information, refer to SPARCIite Application Note #1, which describes DRAM
interfacing.

6.3 In-Circuit Emulation

The MB86932 processor supports all MB86933 functions and signals, and can be used
for in-circuit emulation of the MB86933.

The MB86932 processor has ten pins that are used for in-circuit emulation: four
emulator status/data bits, four emulator data bits, an emulator break request line, and an
emulator enable pin.

To allow for compatibility with an in-circuit emulator, the system'’s reset circuit should
be designed to allow the in-circuit emulator to take control of the —RESET signal. For
example, a jumper in the —-RESET input line close to the processor can be included,
allowing the normal Reset circuit to be easily disconnected from the processor.

To simplify the task of emulating the processor, it is recommended that the processor’s
emulator pins be connected to a standard format connector. Access to these pins allow
the emulator to take full control of the processor, as well as to trace processor activity.
If this socket is included on production boards, an emulator can be used for board
diagnostics and maintenance later in the product life cycle.

For more information contact Fujitsu Microelectronics Semiconductor Division or your
emulator vendor.

o
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7.1 MB86933 Instruction Set

The MB86933 processor supports the same instruction set as the MB86930 processor.
Chapter 7 of the main section of this manual therefore fully describes the MB86933
instruction set.

Note that the MB86933 has six register windows rather than eight. Therefore,
references to eight register windows in the description should be changed to six register
windows for the MB86933, antiodulo 8in the description should be changed to

modulo 6

o
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MB86933 JTAG

8.1 MB86933 JTAG Pin List

CHAPTER

C8

The MB86933 JTAG cells are arranged in a shift register configuration (see Fig-
ure C8-1). When shifting in a JTAG pattern through TDI, the LSB should correspond to
the JTAG cell value for IRL<3> pin, and the MSB of the pattern should correspond to

the -BMODEL16 pin’s JTAG cell. As far as JTAG output through TDO is concerned, the
first bit out corresponds to IRL<3> JTAG cell value, and the last output bit corresponds
to the -BMODE16 cell value. Table C8-1 lists the order of all of the JTAG cells.

Table C8-1: JTAG Pin Order

Order JTAG Cell JTAG Cel Function
Type
1 IRL<3> input MSB of Interrupt request pin
4 IRL<0> input LSB of interrupt request pin
5 ADR<2> output LSB of Address output pins
30 ADR<27> output MSB of Address output pins
31 D_i<31> input Input bit 31 of D<31:0> bus
32 D_o0<31> output Output bit 31 of <31:0> bus

i
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Table C8-1: JTAG Pin Order

Order |  JTAG Cell JTAG Cell Function
Type

93 D_i<0> input Input bit 0 of <31:0> bus

94 D_o<0> output Output bit 0 of <31:0> bus

95 dbusiojo output D<31:0> bus bidirectional control signal
dbusiojo = 1: D<31:0> bus is an input
dbusiojo = 0: D<31:0> bus is an output

96 tstatejo output Three—state control signal
If tstatejo=1 then the following pins are three—stated.
ADR<27:2>, ASI<3:0>, -BE<3:0>, -AS, —-RD/WR,
-LOCK

97 -MEXC input Memory exception input

98 —READY input External memory transaction complete signal

99 -BREQ input Bus request input

100 -AS output Start of memory transaction output signal

101 —-RD/WR output Memory Read/Write output signal

102 —-LOCK output Bus lock output signal

103 —BGRNT output Bus grant output signal

104 —-ERROR output Error output signal

105 —SAME_PAGE output Same-Page output signal

106 —-CS<0> output LSB of chip select output signal

111 —CS<5> output MSB of chip select output signal

112 CLK_ENB input PLL control pin.
CLK_ENB=1: PLL on
CLK_ENB=0: PLL off

113 XTAL1 input Crystal input

114 -TIMER_OVF output Timer Overflow pin

115 —-BE<0> output Byte 0 enable output signal

118 -BE<3> output Byte 3 enable output signal

119 ASI<0> output LSB of ASI output pins

122 ASI<3> output MSB of ASI output pins

123 —-RESET input Chip reset pin

MB86933 JTAG - MB86933 JTAG Pin List
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Table C8-1: JTAG Pin Order

Order ITAG Cell JTAG Cel Function
Type
124 -BMODES8 input 8-bit Boot Mode
125 | _BMODE16 input 16-bit Boot Mode

i
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Figure C8-1. JTAG Cell Organization

MB86933 JTAG - MB86933 JTAG Pin List

C8-4

IRL<3>

IRL<2>

ADR<2>

ADR<3>

ADR<27>

D<31>



