
VHDL

For
Programmable
Logic.

VHDLfor Programmable Logic

Kevin Skahill
Cypress Semiconductor

Cypress Semiconductor, 3901 North First Street, San Jose, CA 95134 (408) 943-2600
Telex: 821032 CYPRESS SNJ UD, TWX: 9109970753, FAX: (408) 943-2741

Fax-on-Demand: (800) 213-5120, http://www.cypress.com

Published August 14, 1995.

© Copyright 1995. Cypress Semiconductor Corporation, 3901 N. First St., San Jose, CA 95134. Telephone 408.943.2600. All
rights reserved.

This copy of this book is not to be sold or distributed for profit.

Limits of Liability and Disclaimer of Warranty:
The author and publisher have exercised care to ensure the accuracy of the theory and code presented in this text. They make no representation, however, that the
theory and code are without any errors or that when synthesized or simulated will produce a particular result. The author and publisher expressly disclaim all
warranties, expressed or implied, including but not limited to the implied warranty of merchantability or fitness of this documentation, and the code and theory
contained within, for a particular purpose. In no event shall the author and publisher be liable for incidental or consequential damages resulting from the use of the
code, theory, or discussion contained within this book.

UltraLogic, Warp, Warp2, Warp3, FLASH370, Impulse3, hyperCache, SST, HOTLink, and QuiXTAL are trademarks of Cypress Semiconductor Corporation.
pASIC and ViaLink are trademarks of Quicklogic Corporation. GAL is a registered trademark of Lattice Corporation. MAX is a registered trademark of Altera
Corporation. Pentium is a trademark of Intel Corporation. IBM is a registered trademark of International Buisness Machines Corporation. PREP is a trademark of
the Programmable Electronics Performance Corporation. (Cypress is a founding member of PREP.) The names of other products or services mentioned in this
publication may be trademarks, registered trademarks, or service marks of, or may be copyrighted by, their respective holders. Cypress Semiconductor Corporation
assumes no responsibility for customer product design and assumes no responsibility for infringement of patents or rights of others that may result from Cypress
assistance, and no product licenses are implied. © Copyright 1995 Cypress Semiconductor Corporation. All rights reserved.

Contributing Authors

Jay Legenhausen

Ron Wade

Corey Wilner

Blair Wilson

Acknowledgements

Greg Somer for providing materials on the network repeater and patiently describing its operation time and time again. Haneef
Mohammed, Alan Copola, and Jeff Freedman for consultation on VHDL, synthesis, and fitting. Garett Choy for endless work on
drawing and redrawing figures, as well as formatting the document. David Johnson for help with figures and managing many issues
involved with the production of this book. Chris Jones for providing valuable feedback, corrections, and suggested exercises. Steve
Klinger for reviewing the text and generating the index. Krishna Rangasayee for assistance in the development of exercises. Caleb
Chan for assistance with the quick-reference guide. Rich Kapusta for assistance with the glossary. Terri Fusco for coordinating the
copy-editing, printing, and design of the book jacket. Nan Schwieger for copy-editing a large amount of material in a very short
time. Al Graf, David Barringer, and Cypress Semiconductor for providing the opportunity and time to pursue this endeavor. Last,
and most important, the many Cypress customers who call daily with questions regarding VHDL and programmable logic.

Table of Contents

1 Introduction .. 1

Intended Audience ..•..•..........•. 2

Why Use VHDL? ..•.............. ' ..•......•......•........................•. 2
Power and Flexibility. .. 2
Device-Independent Design ... 3
Portability ... 3
Benchmarking Capabilities .. 3
ASIC Migration . 4
Fast Time-to-Market and Low Cost ... 4

Shortcomings '•. 4

Using VHDL for Design Synthesis ..••. 5
Define the Design Requirements . 5
Describe the Design in VHDL 5

Formulate the Design. 5
Code the Design . 6

Simulate the Source Code. 6
Synthesize, Optimize, and Fit (Place and Route) the Design 7

Optimization. 7
Fitting '.' 8
Place and Route . 9

Simulate the Post-Fit (Layout) Design Implementation 9
Program the Device .. 10

Our System ...•...................................•..............•....•....• 10

Summary•........................•..•• 11

Exercises•.......................•.......•....................•...• 11

2 Programmable Logic Primer .•••........••••••......•...•...... .- •..•.... 13

Why Use Programmable Logic? ... 13
Designing with TTL Logic. .. 14

What Is a Programmable Logic Device? ~•......•............ 16
Designing with Programmable Logic. .. 18
Advantages of Programmable Logic ... 18

Simple PLDs•.........•.................................. 20
The 22VI0 ... 20

Timing Parameters. 23
Designing with the 22VlO .. 24
Using More Than 16 Product Terms .. 26
Terminology. .. 26

v

What is a CPLD? 27
Programmable Interconnects. 28
Logic Blocks .. 30

Product Term Arrays ' ... 31
Product Term Allocation ... 31
Macrocells .. 33

110 and Buried Macrocells ... 34
Input Macrocells 35

110 Cells ~ '. 36
Timing Parameters ... 37
Other Features , 41

What is an FPGA? .. 41
Technologies and Architecture Trade-offs ... 42

Routing ... 42
Logic Cell Architecture .. 46

Timing ... 48
Comparing SRAM to Antifuse .. 51
Other FPGA Features ... 52

Futures .. 52

Exercises 53

3 Entities and Architectures ... 55

A Simple Design 55

Entity and Architecture Pairs 56
Entities ... 56

Ports ... 57
Modes ... 57
Types ... 58

Architectures. 59
Behavioral Descriptions ... 59

Processes and Sequential Statements ... 60
Modelling vs. Designing .. 60
Dataflow and Concurrent Assignment. 65

Structural Descriptions ... 66
Comparing Architectural Descriptions ... 67

Identifiers, Data Objects, Data Types, and Attributes 70
Identifiers .. 70
Data Objects .. 70

Constants ... 70
Signals ... ; . 71
Variables .. 72
Aliases ... 72

Data Types ... 72
Scalar types .. 73

Enumeration Types .. 73

vi

Integer Types ... 74
Floating Types .. 75
Physical Types .. 75

Composite Types ... 75
Array Types .. 75
Record Types. 76

Types and SUbtypes. 77
Attributes . 78

Common Errors ... 79

Exercises ... 80

4 Creating Combinational and Synchronous Logic 83

Combinational Logic ... 85
Using Concurrent Statements ... 85

Boolean Equations. 85
Logical Operators .. 87

Dataflow Constructs ... 87
WITH-SELECT -WHEN. .. 87
WHEN-ELSE .. 88
Relational Operators . 90

Component Instantiations 90
Using Processes . 91

IF-THEN-ELSE .. 92
CASE-WHEN ... 96

Synchronous Logic ... 98
Resets and Synchronous Logic. .. 102

Arithmetic Operators .. 104
Asynchronous Resets and Presets. .. 105

Instantiation of Synchronous Logic Components --109

Three-State Buffers and Bidirectional Signals 110
Behavioral Three-States and Bidirectionals .. 110
Structural Three-States and Bidirectionals. .. 113

A return to the FIFO .. 115
Loops , .. 115
Completing the FIFO 117

Common Errors .. 120
Hidden Registers. .. 120
Improper use of variables ... 123
Non-synthesizeable code .. 123

Exercises .. 124

vii

5 State Machine Design . 127

Introduction ... 127

A Simple Design Example .. 127
Traditional Design Methodology . , ... 127
State Machines in VHDL . 129

Verifying Design Functionality . 132
Results of Synthesis . 134

A Memory Controller 135
Translating the State Flow Diagram to VHDL ... 138
An Alternative Implementation ... 143

Timing and Resource Usage .. 145
Outputs Decoded from State Bits Combinatorially 146
Outputs Decoded in Parallel Output Registers . 148
Outputs Encoded within State Bits .. 151
One-Hot Encoding .. 157

Mealy State Machines 161

Additional Design Considerations 162
State Encoding using Enumeration Types .. 162

Implicit Don't Cares .. 163
Fault Tolerance: Getting Out of Illegal States 163

Explicit State Encoding: Don't Cares and Fault Tolerance 165
Explicit Don't Cares .. 165

Fault Tolerance for One-Hot Machines .. 165
Incompletely specified IF-THEN-ELSE statements 166
State Encoding for Reduced Logic .. 167

Summary." 168

Exercises 168

6 The Design of a 100BASE-T4 Network Repeater 173
Background. 173

Ethernet Networks ' . . 173
Architecture .. 173

Shared Medium. 173
Network Constraints .. 174

Adaptors and Transceivers .. 175
Hubs ... 175

Repeaters ... 175
Bridges .. 176
Routers . 177

Design Specifications for the Core Logic of an 8-Port 100BASE-T4 Network Repeater. 177
Interface. 177
Protocol ... 180

viii

Data Frame Structure .. 180

Block Diagram •...•.•.•..••••••.....•......•.....•....•....•.•.•••.••...•.• 181
Port Controller .. 182
Arbiter .. 183
Clock Multiplexer ... 184
FIFO .. 184
Symbol Generator and Output Multiplexer. .. 184
Core Controller 184

Building a Library of Components .. 184
Generics and Parameterized Components .. 185

Design Units••..••..•.••.••...••..•••...••..•..•••.• 191
Port Controller .. 191
Arbiter. .. 201
Clock Multiplexer. .. 203
FIFO ... 204
Core Controller. .. 206
Symbol Generator and Output Multiplexer ... 216
Top-Level Design ... 219

Exercises ••••.•...•.•••..•••.••.........•....••..•...•.....•...•...•..••.•• 224

7 Functions and Procedures •••.......•..........••••••......•.•••....... 225

Functions ..•.•.•.•...•...•...•..• 225
bv2i .. 226
i2bv .. 227
inc_bv .. 228
U sing Functions .. 229
Overloading Operators ... 233
Overloading Functions. .. 235
Standard Functions. .. 237

Procedures•..•..•••..•.•....•..•..•.••.......••..•••...•..••••• 241
Overloading Procedures. .. 243

About Subprograms•... 245

Exercises ••...............•.•••. ; ..••..••..••...•.•..••••••..••••.•••.••••• 245

8 Synthesis to Final Design Implementation•...•...••.....•.•••....... 247

Synthesis and Fitting•................ 251

CPLDs: A Case Study•........•.•.....•.•..••...•.•...•..••........•..• 252
Synthesizing and Fitting Designs for the 370 Architecture 253

Satisfying PresetlReset Conditions 254
Forcing Signals to Macrocells .. 258
Preassigning signals to device pins .. 260
Clocking. .. 265

ix

Implementing Network Repeater Ports in a CY7C374 278

FPGAs: A Case Study (pASIC 380 Architecture) 283
Synthesizing and fitting designs for the 380 architecture 283
Design trade-offs .. 288
Directive-driven synthesis ... 292

Automatic floor-planning .. 292
Placing and Routing . 293
Operator inferencing. 294

Arithmetic Operations : • . 297
Implementing the Network Repeater in an 8K FPGA 301
Preassigning pinouts . 304

To use a CPLD or FPGA? ... 305

Exercises 305

9 Creating Test Fixtures ' 309

Creating a Test Fixture 310

Overloaded Read and Write Procedures .. o •• 0.0 •• 00. 0.0 •••• 000 •• 0 0 0.000 •• 000. 0 0 317

Exercises 0 • 0 0 0 0 •• 0 • 0 0 0 0 0 •• 0 • 0 •• 0 0 • 0 • 0 0 •• 0 0 0 •• 0 0 • 0 • 0 •••••• 0 • 0 0 0 0 . 0 0 0 •• 0 0 0 0 • 0 320

Appendix A-Glossary .. 323

Appendix B-Quick Reference Guide 327

Building Blocks . 0 0 •• 0 0 • 0 •• 0 0 0 ••• 0 0 0 0 0 0 • 0 • 0 0 • 0 0 0 0 0 0 0 0 •• 0 • 0 0 • 0 0 0 0 . 0 0 0 •• 0 0 0 0 0 0 327
Entities .. 327
Architectures ' ... 328
Components .. 329

Language Constructs. 0 •• 0 0 . 00 0 • 0 • 0 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • 0 • 0 • 0 • 0 0 0 0 • 0 0 0 0 • 0 0 ••• 0 0 0 0 0 0 331
Concurrent Statements ... 331
Sequential Statements .. 332

Describing Synchronous Logic Using Processes 00.000. 0 0 0 0 0 0 .000.0000.000 • • 000000333

Data Objects, Types, and Modes 0 0 • 0 0 0 0 0 0 0 0 • 0 0 ,~ 0 • 0 • 0 0 0 • 0 0 0 0 0 0 •• 0 0 0 • 0 0 0 •• 0 0 0 0 • • 335
Data Objects ... 335
Data Types .. 336
Modes .. 339

Operators 0 0 0 0 0 0 • 0 ••••• 0 0 • 0 0 • 0 ••• 0 0 • 0 0 ••• 0 0 ••• 0 ••• 0 • 0 •• 0 0 0 •• 0 • 0 •• 0 •••• 0 0 • 0 0 340

Appendix C-Std_logic_1164•....................... 343

Appendix D-Std_math Package .. 363

x

Bibliography ... 367

Index ... 371

xi

1 Introduction

The VHSIC (Very High Speed Integrated Circuit) hardware description language, VHDL, is a
product of the VHSIC program funded by the Department of Defense in the 1970's and 1980's.
When the language was first developed, it was intended to be primarily a standard means to
document complex circuits so that a design documented by one contractor could be understood by
another. Today "VHDL" is a bit of a misnomer because it is used not only for integrated circuits or
as a hardware description language, it is also used for the modeling and synthesis of integrated
circuits, programmable logic, board-level designs, and systems. VHDL was established as the IEEE
1076 standard in 1987. In 1988, MilStd454 required that all ASICs delivered to the Department of
Defense be described in VHDL, and in 1993, the IEEE 1076 standard was updated while an
additional VHDL standard, IEEE 1164, was adopted.

Today VHDL is an industry standard for the description, modeling, and synthesis of circuits and
systems. In 1993, the market for VHDL simulators exceeded the Verilog simulator market
(Electronic Engineering Times, 10/3/94). The entire synthesis market has reached approximately

$100 million, with a growth rate of 20%-30% per year. 1 This explosion in the use of HDLs in
general, and VHDL in particular, has created the need for engineers in all facets of the electronics
industry-from ASIC designers to system level designers alike-to learn VHDL.

VHDL is particularly well suited as a language for designing with programmable logic, and it is
gaining in popularity. Designing with larger capacity CPLDs (complex programmable logic devices)
and FPGAs (field programmable gate arrays) of 600 gates to 20K gates, engineers can no longer use
Boolean equations or gate-level descriptions to quickly and efficiently finish a design. VHDL
enables designers to describe large circuits rapidly and bring products to market quickly. In addition
to providing high-level design constructs and efficiency, VHDL delivers portability of code between
synthesis and simulation tools, device independent design, and easy ASIC migration. VHDL is an
open, standard language, not a proprietary language. Because VHDL is a standard, VHDL code can
be ported from one synthesis tool (or simulation tool) to another with little or no modification to the
code. Because VHDL is a standard, VHDL design descriptions are device independent, allowing the
designer to easily benchmark design performance in multiple device architectures. The same code
used for designing with programmable logic can be used by an ASIC vendor to produce an ASIC
when production volumes warrant a conversion.

VHDL serves the needs of designers at many levels and as such is a complex language. For this
reason, this book (unlike other VHDL books presently on the market) limits its scope to the
discussion of VHDL as a language for the synthesis of design descriptions into logic to be
implemented in programmable logic devices. Rather than exploring numerous possible uses of
VHDL on different levels-the description, modeling, and synthesis of circuits ranging from ASICs
to systems-we will explore a number of applications of VHDL for designing with programmable
logic. Much of what you will learn from this book will be applicable to other uses of VHDL, and at
times our discussion will draw on modeling concepts in order to clarify what it means to a design
engineer to write VHDL code for synthesis versus simulation. So, although the focus of this book is
VHDL synthesis as it pertains to programmable logic, you will be able to easily apply what you will
learn in our discussion to other aspects of VHDL.

1. Private correspondence, In-Stat.

Page 1

Intended Audience

This book is intended to meet the needs of the professional engineer interested in updating his or her
design methodologies to include both VHDL and programmable logic. The focus is not so much on
teaching logic design, but rather on using VHDL and programmable logic to solve design problems.
To this end, the text explains the architectures, features, and technologies of programmable logic and
teaches how to write VHDL code that is intended for synthesis. Code constructs are evaluated to
determine how synthesis software will interpret the code and produce logic equations or netlists. The
approach is to use many practical design examples in order to encourage coding practices that will
result in code that can be synthesized efficiently. Thus, examples focus on state machine design,
counters, shifters, arithmetic circuits, control logic, FIFOs, and other "glue logic" that designers
typically implement in programmable logic. This approach is in contrast to teaching modeling
techniques, which tend to focus on abstract and theoretical designs but which cannot be synthesized
either because the designs are physically meaningless or use constructs that are not particularly well
suited for synthesis. A programmable logic primer is presented as the first technical chapter. It starts
with the basics-discrete TTL logic components-so that no knowledge of programmable logic is
assumed, but quickly reaches a detailed discussion of the architectures of CPLDs and FPGAs. The
engineer already versed in the available programmable logic devices and their features may wish to
skip or skim this chapter. A later chapter is devoted to case studies of one CPLD (FLASH370™) and
one FPGA (pASIC380) to illustrate common issues with optimizing designs for these types of
architectures. The chapter frames the studies around a discussion of the synthesis and fitting (place
and route) processes. It is intended to equip the reader to effectively use device resources and achieve
the maximum performance. Finally, a chapter is devoted to writing test benches with which to
simulate source-level VHDL code. The same test benches can be used to simulate post-fit models of
the design implementation that are produced by fitters and place and route tools.

The content is also appropriate for ajuniorlsenior undergraduate or first-year graduate course with a
focus on using VHDL to design with programmable logic. Although the text does not teach logic
design, it does describe the design process for several design examples, including the design of the
core logic for a lOOBASE-T4 network repeater. This is a topical design example that illustrates the
use of programmable logic in today's fast-growing network communications market. Traditional
design methodologies are reviewed in that they are compared to designing with VHDL and
programmable logic.

Why Use VHDL?

2

There's one crucial reason why you should learn and use VHDL: It's become an industry standard.
Every design engineer in the electronics industry should soon learn and use a hardware description
language to keep pace with the productivity of competitors. With VHDL, you can quickly describe
and synthesize circuits of five, ten, twenty, or more thousand gates. Equivalent designs described
with schematics of Boolean equations at the register transfer level would likely require several
months of work by one person. Above and beyond that, VHDL gives you a language that provides
the capabilities described below.

Power and Flexibility
VHDL not only gives you the power to describe circuits quickly using powerful language constructs
but also permits other levels of design description including Boolean equations and structural
netlists. Figure 1-1 illustrates four ways to describe a 2-bit comparator.

ul: xor2 port map(a(O), b(O), x(O));
u2: xor2 port map(a(l), b(l), x(l));
u3: nor2 port map(x(O), x(l), aeqb);

Netlists

aeqb <= '1' when a = b else '0';

Concurrent Statements

aeqb <= (a(O) XOR b(O)) NOR
(a(l)XORb(l));

Boolean Equations

if a = b then aeqb < = '1';
else aeqb <= '0';
end if;

Sequential Statements

Figure 1-1 VHDL permits several classes of design description.

Device-Independent Design
VHDL permits you to create your design without having to first choose a device for implementation.
With one design description, you can target many device architectures: You do not have to become
intimately familiar with a device's architecture in order to optimize your design for resource
utilization or performance. Instead, you can concentrate on creating your design.

Portability
VHDL's portability permits you to take the same design description that you used for synthesis and
use it for simulation. For designs that require thousands of gates, being able to simulate the design
description before synthesis and fitting (or place and route) can save you valuable time. Because
VHDL is a standard, your design description can be taken from one simulator to another, one
synthesis tool to another, and one platform to another. Figure 1-2 illustrates that the source code for a
design can be used with any synthesis tool and that the design can be implemented in any device that
is supported by the chosen synthesis tool.

Benchmarking Capabilities
Device independent design and portability give you the ability to benchmark your design using
different architectures and different synthesis tools. You no longer have to know before you start
your design which device you are going to use or whether it's going to be a CPLD or an FPGA. You
can take your completed design description and synthesize it, creating logic for an architecture of
your choice. You can then evaluate the results and choose the device that best fits your design
requirements. The same can be done for synthesis tools in order to measure the quality of the
synthesis.

3

VHDL
CODE

n

I Compiler A
I I Compiler B

I PLD
I I CPLD

One design

I I CompilerC

I I FPGA

I

I

Any synthesis
tool

Any vendor!
device

Figure 1-2 VHDL provides portability between compilers and device independent design.

ASIC Migration
The same design description used to synthesize logic for a programmable logic device can be used
for an ASIC when production volumes ramp. VHDL permits your product to hit the market quickly
in programmable logic by synthesizing your design description for an FPGA. When production
volumes reach appropriate levels, the same VHDL code can be used in the development of an ASIC.

Fast Time-to-Market and Low Cost
VHDL and programmable logic pair well together to facilitate a speedy design process. VHDL
permits designs to be described quickly. Programmable logic eliminates nonrecurring expenses
(NREs) and facilitates quick design iterations. Synthesis makes it all possible. VHDL and
programmable logic combine as a powerful vehicle to bring your products to market in record time.

Shortcomings

4

There are three common concerns expressed by design engineers about VHDL: (1) You give up
control of defining the gate-level implementation of circuits that are described with high-level,
abstract constructs, (2) the logic implementations created by synthesis tools are inefficient, and (3)
the quality of synthesis varies from tool to tool.

There's no way around the first "shortcoming." In fact, the intent of using VHDL as a language for
synthesis is to free the engineer from having to specify gate-level circuit implementation. However,
if you understand how the compiler synthesizes logic, you're likely to realize that many (if not most)
constructs will be implemented optimally by the compiler and you will have little need-or desire
to dictate implementation policy. Many synthesis tools do allow designers to specify technology-

specific, gate-level implementations. Descriptions of these types, however, are neither high level nor
device independent.

The concern that logic synthesis is inefficient is not without warrant. Admittedly, VHDL compilers
will not always produce optimal implementations. Compilers use algorithms to decide upon logic
implementations, following standard design methodologies. An algorithm cannot look at a design
problem in a unique way. Sometimes, there is no substitute for your human creativity, and in such
cases you will want to code your design in such a way as to control the design implementation. The
complaint that synthesis provides poor implementations is also commonly the result of sloppy
coding. Similar to sloppy C coding, which results in slow execution times or poor memory
utilization, sloppy VHDL coding will result in unneeded, repetitive, or non-optimal logic.

The third shortcoming (some synthesizers are better than others) is being addressed by the
marketplace. Fortunately VHDL synthesis for CPLDs and FPGAs is emerging from its infancy and
the competition is growing. Only the strong vendors will survive.

Even if you are the most cynical of engineers, believing that these shortcomings are too large to
make it worthwhile to use VHDL at this point, take heed of the larger picture. As an engineer you
should resist the temptation to believe that the details of a design's implementation are as important
as the design objectives: fulfilling the design requirements, meeting the price-point, and getting the
product to market quickly. Meeting design objectives is essential, the implementation is secondary.

Using VUDL for Design Synthesis

The design process can be broken into the six steps enumerated below. We'll explain each briefly in
this section. The remainder of the text will focus primarily on steps 2 and 4. The last chapter will
focus on steps 3 and 5.

1. Define the Design Requirements
2. Describe the Design in VHDL (Formulate and Code the Design)
3. Simulate the Source Code
4. Synthesize, Optimize, and Fit (Place and Route) the Design
5. Simulate the Post-fit (layout) Design Implementation
6. Program the Device

Define the Design Requirements
Before launching into writing code for your design, you should have a clear idea of the design
objectives and requirements. What is the function of the design? What are the required setup and
clock-to-out times, maximum frequency of operation, and critical paths? Having a clear idea of the
requirements may help you to choose a design methodology and perhaps help you to choose a device
architecture to which you will initially synthesize your design.

Describe the Design in VHDL

Formulate the Design
Having defined the design requirements, you may be tempted to jump right into coding, but until you
become a seasoned VHDL coder, we suggest that you first decide upon a design methodology. By
having an idea of how your design will be described, you will tend to write more efficient code that

5

6

does what you intended. Spending a few moments deciding upon a design methodology can prove
well worth the time.

You're probably already familiar with the methodologies: top-down, bottom-up, or flat. The first two
methods involve creating design hierarchies, the latter involves describing the circuit as one
monolithic design.

The top-down approach requires that you divide your design into functional blocks, each block
having specific (but not always unique) inputs and outputs and performing a particular function. A
netlist is then created to tie the functional blocks together, after which the blocks themselves are
designed. The bottom-up approach involves just the opposite: defining and designing the individual
blocks of a design, then bringing the different pieces together to form the overall design. A flat
design is one in which the details of functional blocks are defined at the same level as the
interconnection of those functional blocks.

Flat designs work well for small designs, where having details of the underlying definition of a
functional block does not distract from understanding the functionality of the chip-level design. For
many of the smaller designs in this text, a flat design approach is used. The design of the core logic
for a network repeater (chapter 6, "The Design of a I OOBASE-T4 Network Repeater"), however, is
divided into its constituent functional blocks. Hierarchical designs can prove useful in large designs
consisting of multiple, complex functional blocks. Levels of hierarchy can clarify the interconnection
of blocks and the design objectives. Avoid using too many levels of hierarchy, however, because
excessive levels make it difficult to understand the interconnection of design elements and the
relevance to the overall design.

Code the Design
After deciding upon a design methodology, you can launch into coding your design, being careful of
syntax and semantics. If you're like many engineers, you will simply follow or edit an existing example
to meet your particular needs. The key to writing good VHDL code is to think in terms of hardware.
More specifically, think like the synthesis software (or compiler, as it is sometimes called) "thinks" so
that you will have an understanding of how your design will be realized. A good portion of this book is
devoted to helping you think like synthesis software so that you will write efficient code.

Simulate the Source Code
For large designs, simulating the design source code with a VHDL simulator will prove time
efficient. The process of concurrent engineering (performing tasks in parallel rather than in series)
brings circuit simulation (once normally a downstream task) to the early stages of design. Preempted
at the earliest possible point in the design cycle, you will be able to make design corrections with the
least possible impact to your schedule. If the design does not simulate as expected, then you can
check your code and make the appropriate corrections before proceeding. Otherwise you can
simulate your design after fitting or place and route. For small designs, you lose little time by first
synthesizing and fitting your design. (In fact, you will eliminate the time it takes for the pre-synthesis
simulation.) However, for larger designs, for which synthesis and place and route can take a couple
of hours, you can significantly reduce your design iteration/debugging cycle time by simulating your
design source code before synthesis. Also, large designs are usually hierarchical, consisting of
several sub-designs or modules. This modularity allows you to verify and debug the functionality of
each sub-design before assembling the hierarchy, potentially saving considerable time over verifying
and debugging one monolithic design.

Synthesize, Optimize, and Fit (Place and Route) the Design

Synthesis

We have already used the term "synthesis" two dozen times or more, and you probably have at least
a vague idea of what synthesis is, but if you have been waiting for an explanation, here's one:
Synthesis is the realization of design descriptions into circuits. In other words, synthesis is the
process by which logic circuits are created from design descriptions. It is a process that should be
described as taking something as input (a design description) and producing another thing as output
(logic equations or netlists). For brevity, however, we may at times drop either the input or output,
and use phrases such as "synthesize logic descriptions," "synthesize logic," and "logic synthesis."

VHDL synthesis software tools convert VHDL descriptions to technology-specific netlists or sets of
equations. Synthesis tools allow designers to design logic circuits by creating design descriptions
without having to perform all of the Boolean algebra or create technology-specific, optimized net
lists. A designer presents only an abstract description of his or her design, specifying the way that the
design is expected to "behave," and the synthesis software produces a set of equations to be fitted to
a PLD/CPLD or a netlist to be placed and routed.

Synthesis should be technology specific. Figure 1-3 illustrates the synthesis and optimization
processes. Before synthesizing a design, a software tool must read the design and parse it, checking
for syntax (and possibly a few semantic) errors. The synthesis process then converts the design to
internal data structures, allowing the "behavior" of a design to be translated to a register transfer
level (RTL) description. RTL descriptions specify registers, signal inputs, signal outputs, and the
combinational logic between them. Other RTL elements depend on the device-specific library. For
example, some programmable logic devices contain XOR gates. At this point, the combinational
logic is still represented by internal data structures. Some synthesis tools will search the data
structures for identifiable operators and their operands, replacing these portions of logic with
technology-specific, optimized components. These operators can be as simple as identifying the use
of an XOR gate for an architecture that has one, or as complicated as inferring a 16-bit add operation.
Other portions of logic that are not identified are then converted to Boolean expressions that are not
yet optimized.

Optimization
The optimization process depends on three things: the form of the Boolean expressions, the type of
resources available, and automatic or user-applied directives (sometimes called constraints). Some
forms of expressions may be mapped to logic resources more efficiently than others. For example,
whereas a minimal sum of products can be implemented efficiently in a PAL, a canonical sum of
products can be more efficiently mapped to a multiplexer or RAM. Sometimes a canonical or,
minimal product of sums may be the best representation for the target technology. Other user or
automatic constraints may be applied to optimize expressions for the available resources. These
constraints may be to limit the number of appearances of a literal in an expression (to reduce signal
loading), limit the number of literals in an expression (to reduce fan-in), or limit the number of tefills
in an expression (to limit the number of product terms).

Optimizing for CPLDs usually involves reducing the logic to a minimal sum of products, which is'
then further optimized for a minimal literal count. This reduces the product term utilization and
number of logic block inputs required for any given expression. These equations are then passed to
the fitter for further device-specific optimization. Optimizing for FPGAs typically requires that the
logic be expressed in forms other than a sum of products. Instead, systems of equations may be

7

8

Device architecture
Selection

User-applied
directives

Behavioral
Description

Flattening of hierarchy and
transformation to a monolithic

RTL representation

Operator inferencing and
module generation

Device specific optimization

Figure 1-3 Synthesis process

factored based on device-specific resources and directive-driven optimization goals. The factors can
be evaluated for efficiency of implementation. Criteria can be used to decide when to factor the
system of equations differently or whether to keep the current factors. Among these criteria is usually
the ability to share common factors, the set of which can be cached to compare with any newly
created factors.

Another method for optimization does not involve as much manipulation of Boolean expressions. It
involves the use of a binary decision diagram to map a given equation to a specific logic
implementation.

Fitting
"Fitting" is the process of taking the logic produced by the synthesis and optimization processes, and
placing it into a logic device, massaging the logic (if necessary) to obtain the best fit. Fitting is a term
typically used to describe the process of allocating resources for CPLD-type architectures. Placing
and routing differs from fitting and is used for FPGAs. Placing and routing is the process of taking
logic produced by synthesis and optimization, packing the logic (massaging it if necessary) into the
FPGA logic structures (logic cells), placing the logic cells in optimal locations, and routing sig~als
from logic cell to logic cell or 110. For brevity, we will use the terms "fit" and "place and route"
interchangeably, leaving you to discern when we mean to use one or both terms.

Fitting designs in a CPLD can be a complicated process because of the numerous ways in which to
start placing logic in the device. Before any placement, however, the logic equations are further
optimized, again depending upon the available resources. For example, some macrocells permit the

configuration of a flip-flop to be D-type or T-type as well as allow the output polarity to be selected.
In such a case, logic expressions for the true and complement of both the D-type and T -type should
be generated. The optimal implementation can then be chosen from the four versions for each
expression. After all equation transformations, expressions that share scarce resources (perhaps resets
and presets, clocks, output enables, and input macrocells) can be grouped together. Expressions are
also grouped together based upon user constraints such as pin assignment. The groups can then be
examined to verify that they can be placed together in a logic block. Thus the collective resources of
the group must be evaluated: number of required macrocells, independent resets' and presets, output
enables, unique product terms, clocks (and clock polarity), total input signals, and total output
signals. If any of the groups cannot fit within the physical limitations of a logic block, then the
groups are adjusted. Next, an initial placement is attempted. If a legal placement is not found, the
grouping process may start over, possibly initially based on a different scarce resource. Once
locations are found for all of the >logic elements, routing between inputs, outputs, and logic cells is
attempted. If routing cannot be completed with the given placement, then the router may suggest a
new grouping to achieve a successful routing. Once a routing solution has been found, a fit has been
achieved.

Place and Route
Place and route tools have a large impact on the performance of FPGA designs. Propagation delays
can depend significantly on routing delays. A "good" placement and route will place critical portions
of a circuit close together to eliminate routing delays. Place and route tools use algorithms,
directives, user-applied constraints, and performance estimates to choose an initial placement.
Algorithms can then iterate on small changes to the placement to approach a layout that is expected
to meet performance requirements. Routing may then begin, with global routing structures used first
for high-fanout signals or signals that must route over large distances. Local routing structures may
then be used to route local ~nter-logic cell and I/O signal paths.

Figure 1-4 shows the process of synthesizing, optimizing, and fitting the description

aeqb <= '1' when (a=b) else '0';

(an equality comparator) into a CPLD and an FPGA.

There are many synthesis tool vendors on the market today. Among the most popular are Exemplar,
Synopsys, Data I/O, 1ST, ViewLogic, and several programmable logic vendors that provide their
own device-specific synthesis. Each synthesis vendor uses different, proprietary algorithms for
synthesizing logic, so resulting logic implementations from one vendor to another will vary (but b~
functionally equivalent), just as the results of compiling C code with different compilers do.
Nonetheless, there are some fundamental synthesis policies that apply across synthesis tools, making
a general discussion of synthesis possible.

Simulate the Post-Fit (Layout) Design Implementation
Even if you have performed a pre-synthesis simulation, you will want to simulate your design after it
has been fitted (or placed and routed). A post-layout simulation will enable you to verify not only the
functionality of your design but also the timing, such as setup, clock-to-output, and register-to
register times. If you are unable to meet your design objectives, then you will need either to
resynthesize and fit your design to a new logic device, massage (using compiler directives) any
combination of the synthesis or fitting processes, or choose a different speed grade device. You may

9

A1

81

aeqb <= '1' when a=b else '0';

Synthesis

Equations Netlist

1 I
C Fitting ~ Place and Route

I

AN02

CPLD FPGA

Figure 1-4 The process of synthesis to design implementation

also want to revisit your VHDL code to ensure that it has been described efficiently and in such a
way as to achieve a synthesis and fitting result that meets your design objectives.

Program the Device
After completing the design description, and synthesizing, optimizing, fitting, and successfully
simulating your design, you are ready to program your device and continue work on the rest of your
system design. The synthesis, optimization, and fitting software will produce a file for use in
programming the device.

Our System

10

We will be using Cypress's WarpTM VHDL synthesis software (on both the PC and Sun) to
synthesize, optimize, and fit designs to CPLD and FPGA devices. Warp is an inexpensive software
tool useful for learning and producing real designs for PLDs and FPGAs. The Warp2™ software

Summary

Exercises

contains a VHDL synthesis tool and device-level simulator. The Warp3™ software contains the
same VHDL synthesis tool as well as a VHDL simulator.

In this chapter we outlined the scope of this text, described some of the benefits of using VHDL and
why the VHDL market is growing rapidly, and enumerated the design process steps, providing brief
explanations of each. In the next chapter, we discuss programmable logic devices and their
architectures.

1. What are the advantages and benefits of using VHDL?

2. Give two examples where not doing source code simulation would be appropriate.

3. Give two design examples where doing source code simulation is appropriate in addition to post
layout simulation.

4. What are some concerns that designers voice when designing with VHDL?

5. How would the descriptions in Figure 1-1 change if the output is aneqb (a not equal to b)? What
about altb (a lesser than) or agtb (a greater than b)?

11

2 Programmable Logic Primer

In this chapter, we explain the motivation for using programmable logic. We start at the beginning,
without assuming that you already know what programmable logic is. Simple PLDs are explained
using the 16L8,16R8, and 22V1O as examples. If you are already familiar with these architectures,
you may wish to skip to the sections on CPLDs and FPGAs, where the architectural features of many
popular devices are explained.

Why Use Programmable Logic?

Not long ago, Texas Instruments' TTL Series 54174 logic circuits were the mainstay of digital logic
design for implementing "glue logic": combinational and sequential logic for multiplexing, encoding,
decoding, selecting, registering, and designing state machines and other control logic. These MSI and
LSI logic circuits include discrete logic gates, specific boolean transfer functions, and memory
elements, as well as counters, shift registers, and arithmetic circuits. Table 2-1 describes just a few
of the members of the 54174 Series.

Table 2-1 TTL Series 54174 logic circuits

54174 Series Description

7400 Quadruple 2-input positive-NAND gates Y = AB

7402 Quadruple 2-input positive-NOR gates Y = A + B

7404 Hex inverters Y = A

7408 Quadruple 2-input positive-AND gates Y = AB

7430 8-input positive-NAND gates Y = ABCDEFGH

7432 Quadruple 2-input positive-OR gates Y = A + B

7451 Dual AND-OR-INVERT gates Y = AB + CD

7474 Dual D-type positive-edge-triggered flip-flops with preset and clear

7483 4-bit binary full adder with fast carry

7486 Quadruple 2-input exclusive-OR gates Y=AB=AB

74109 Dual J-K positive-edge-triggered flip-flops with preset and clear

74157 Quadruple 2-to-l multiplexers

74163 Synchronous 4-bit counter with synchronous clear

74180 9-bit odd/even parity generator/checker

74374 Octal D-type flip-flops

13

14

Designing with TTL Logic
Armed with this inventory of TTL logic, you or any other digital designer could attack a problem
following the standard design flow of Figure 2-1. Suppose, for example, that you are designing a
network repeater consisting of four communication ports (A, B, C, and D). A collision signal, X,
must be asserted if more than one port's carrier sense is active at a time. Signal X is to be
synchronized to the transmit clock.

Design
Specifications

1
Truth Table

1
Boolean Expression

1
Implementation

Available Cost and Logic Minimization

Inventory Performance and Multilevel
Requirements Logic Optimization

Figure 2-1 Design flow for designing with TTL logic

From the design specifications, we can generate a truth table (Figure 2-2), creating a sum of 11
product terms. Using boolean algebra or a Karnaugh map, we can r~duce the expression for X to six
product terms. An expression for the complement of X can be reduced to four product terms.

In determining how to implement the equation for X in TTL logic, we will want to minimize the
number of resources (devices) required, minimize the number of levels of logic (each gate has an
associated propagation delay) to minimize total propagation delay, or strike a balance between the
two, depending on the performance and cost requirements of the design. Although the expression for
the complement of X requires fewer product terms than the expression for X, the expression for the
complement of X requires AND gates with a fan-in of three. Examining our inventory of TTL logic,
we see that the AND functions in our inventory have a fan-in of only two. Creating wider AND gates
would require cascading two-input AND gates. This cascading and the inverters that would be
necessary to implement the complements of signals would unnecessarily increase the device count
(increasing cost) and levels of logic (decreasing performance). If we implement the expression for X
as a sum of products, this design will require two 7408s and two 7432s. In all, six levels of logic are

AB\CD 00 01 11 10 A B C D X

0 0 0 0 0 -
0 0 1 0 00

0 0 0 1 0
01 0 1 1 1

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

10
I

1 1 1 1

0 1 0 1 1
0 1 1 1 11

0 1 1 0 1
x = AB+ CD+BD+BC+AD+AC

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

AB\CD 00 01 11 10
1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

01
1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

11

Figure 2-2 Determining an expression for a collision signal

required: one level to produce each of the six product (AND) terms and five levels to produce the 6-
input OR function by cascading the 2-input OR gates of the 7432. The product of sums
implementation, X = (A + B + C) (A + B + D) (A + C + D) (B + C + D) , also requires several devices and
levels of logic. An implementation that uses fewer devices (costs less) and requires fewer levels of
logic (for better performance) is the NAND-NAND implementation. The equation
X = AB + CD + BD + BC + AD + AC may be rewritten in NAND-NAND form as

X = lAB. CD. BD. BC. AD. AC). This implementation requires two 7400s and one 7430, for a total
of two levels oflogic. Finally, to synchronize this signal to the transmit clock, we will use one 7474,
wiring the circuit as in the circuit diagram of Figure 2-3. Depending on our current inventory of TTL
devices, we could have implemented this design in one of several different ways.

15

7400

A

_B ___ +->_----
NAN02 --L.c,.-E-

C

0

I
I Y 7430

'"N'Ar(0 2 r--
>-- ._- f---._-

-~-
.- 7 _47.:1

. __ .- rl '-.._. --- -Jr-NAN 02
~ X

jp- F
0 0.

Ii r----- TTL 7 4
NAN 0 B o.N-

'NiIN0 2
T XC L K

-r--.~--.. -.--...

7 400

Q- -
P E

-0 0.1--
....... -.. - -.-.. ~- TT L 7 4 _

-p o.NI--

NAN02 C R

=0-
N A N 02

=0-
N A N 02

Figure 2-3 TTL logic implementation

How is implementing this design in programmable logic any different? Before we can answer that
question, we need to understand what programmable logic is.

What Is a Programmable Logic Device?

16

PAL (Programmable Array Logic) devices, or PALs, are the simplest of programmable logic devices
that are readily availa]:>le in today's market. PALs consist of an array of AND gates and an array of
OR gates in which the AND array is programmable and the OR array is fixed. To understand PAL
architectures, consider the PAL 16L8 device architecture of Figure 2-4. (The 16L8 is available from
several programmable logic vendors including Advanced Micro Devices, Cypress Semiconductor,
Lattice Semiconductor, National Semiconductor, and Texas Instruments.)

The 16L8 derives its name from the fact that there are a total of 16 inputs into the AND array (the
logic array, hence the L in 16L8) and 8 outputs. Eight of the inputs to the array are dedicated device
inputs. Another eight inputs to the array are from the outputs of the three-state buffers (when
enabled) or the 1/0 pins (when the three-state buffers are not enabled, the associated pins may be
used as device inputs). The programmable AND array consists of 64 AND gates in which each AND
gate may be used to create a product of any of the 16 inputs (the complements of the 16 logic array
inputs may also be used). The OR array is fixed: Each of the eight OR gates sums seven products.
The remaining eight product terms are used for each of the eight, three-state, inverting buffers.

16L8 Logic Diagram 20-Pin DIP/PLCC/LCC (28-Pin PLCC) Pinouts

10 1 El
(24)

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31
(1,23

Vee

0

1~ .
~

0--ii::
(22)

~1---

Os

(25) 256

18

(20)

3
r-.:8O

A
y <;.

(26) 512

17 I/Os

(18)
":36

4
A

-"" <;.

(27) 768

16 1/05

... 992
(16)

A
5 ~

(28) 1024

15

(14)

15
.,!.248 .A

6 "/ <;.

(2) 1280

J
14

(12)

7
.!.504 A

2 ~ Is

(3) 1536

13

(10)
~760 .A

8 .7 <;.

(4) 1792

"1 12

(8)
~16

9
A 11

I Is

(5) (7)

Vss 3 4 7 8 11 12 15 1S 19 20 23 24 27 2S 31

(6,9,11,13,15,17,19,21)

Figure 2-4 PAL 16L8 Device Architecture

17

18

Each of the three-state \)uffers is controlled by a product term. The product term may be programmed
for a function of the inputs and their complements, or to ensure that the buffer is always on or always
off. If always on, then the associated 110 pin functions as an output only. If always off, then the
associated pin may function as an input only. If controlled by a product term, then the 110 pin can be
used as a three-state output for use on an external bus or as a bidirectional signal in which the 110 pin
may be driven externally and used internally in the logic array.

Next, consider the PAL 16R8 device architecture of Figure 2-5. Like the 16L8, this industry
standard architecture has 16 inputs to a logic array consisting of 64 product terms. In this
architecture, eight of the logic array inputs are from device inputs and eight are from register
feedbacks. Each of the OR gates sums eight product terms, and this sum is then registered by one of
the output registers (the R in 16R8). The clock for the register is from a dedicated pin. The outputs
cannot be configured as inputs, but may be configured as three-state outputs for use on an external
bus. The three-state output is controlled by a dedicated pin.

Whereas the 16R8 provides registers, the 16L8 does not. Instead, the 16L8 provides combinatorial
output, more flexible output enable control, and the capability to use more device pins as inputs. Two
additional industry-standard architectures, the 16R6 and the 16R4, balance these differences. The
16R6 includes six registers, leaving two combinatorial output structures with individual three-state
control. The 16R4 is the compromise between the 16L8 and 16R8 with four registered and four
combinatorial output structures.

Designing with Programmable Logic
Consider, again, the design of the network repeater collision signal, X, for which an expression is
given in Figure 2.:2. Because this signal must be registered, ofthe PALs we have discussed, we can
use the 16R8, 16R6, or 16R4 to implement this design. In order to obtain X as an output, the logic
implementation for the boolean expression for the complement of X should be implemented in the
AND-OR array (because of the inverting three-state buffer). This implementation will require six
device inputs (A, B, C, D, TXCLK, and the enable connected to logic high) and one output (X). Only
four of the eight product terms allocated to the register are required to implement the expression.
There is considerably more logic left in the PAL to consolidate any additional functionality.
Additional logic may be independent of A, B, C, and D, but does not need to be.

Advantages of Programmable Logic
Programmable logic provides several advantages, many of which have been illustrated_ through our
simple example. Clearly, fewer devices are used: In our example, one 20-pin DIP (Dual In-Line Pin),
PLCC (Plastic Leaded Chip Carrier), or LCC (Leadless Chip Carrier) 16R8 device replaced four 14-
pin devices. The design utilized only a portion of the device, so one PAL could easily replace as
many as ten or more TTL devices. While an individual TTL device may be less expensive than a
PAL, the fact that multiple devices may be replaced by one PAL makes the PAL implementation
more cost-effective. Additionally, the cost structure for producing many simple TTL logic devices
today is inefficient, and the end user absorbs this cost. Today the largest portion of cost associated
with TTL logic is packaging and testing. The manufacturing cost of a small PAL is close to that of
many TTL logic devices because the amount of die area required to implement the TTL logic
functions using today's technology is smaller than the minimum die area required for the pads (110
buffers), rendering the designs of TTL logic pad-limited. That is, additional logic resources could be
added to the die without increased manufacturing cost (because the number of dice per wafer would
remain the same). In our example, it would be cost-effective to use a PAL over discrete TTL
components even if the rest of the PAL went unused.

16R8 Logic Diagram 20-Pin DIP/PLCC/LCC (28-Pin PLCC) Pinouts

elK 1 §J
(24)

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31 (1,23

Vee

0

n-~ 0 >----0

"0 (22)

0---ri= .A

0 8

(25) 256

~ >----n- (20)
..... 480

;I

3 .J -oc;,.

(26) 512

~ >----~ (18)
736

A
4

06

(27) 768

~ >----n-o
(16)

... 992
.A

5 .>
~

Is

(28) 1024

~ >----n- (14)
~248

~

6 .J -c
~

(2) 1280

~ 0 D---~ 0

(12)

7
..t504

.A

.J ~ 16

(3) 1536

~ ~ n- (10)

8
,!,760 ;I

.J -c
(4) 1792

D---n-~ Q (8)
~016

I--<

9 .J _~;I l<H3 18

(5) (7)

Vss 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31
20-1

(6,9,11, 13,15,17,19,21)

Figure 2-5 PAL 16R8 Device Architecture

19

Besides saving cost on parts, programmable logic saves valuable board space (real estate). The
integration provided by the PALs results in lower power requirements, particularly because a PAL
implementation requires fewer total device lias (a TTL implementation requires several TTL deviCes
each with several inputs and outputs switching; a PAL implementation requires fewer total lias and
fewer switching outputs, resulting in lower standby and switching currents). This savings can help
the power budget or make it possible to use a smaller power supply. Integration increases design
reliability because there are fewer dependencies on the interconnection of devices. Savings on
debugging time again results in lower costs. Integration also increases performance by reducing the
number of 110 delays and levels of logic. A feature of most PLDs is a security fuse that can be used
to protect proprietary intellectual property; logic implemented with TTL devices is easily discernible.

Perhaps the greatest advantage of programmable logic is flexibility. With discrete logic components,
this flexibility is absent: Once you have developed your board-level design, any design change will
necessitate jumpers and/or drilling of boards. If the board is to be produced in high volume, then the
board will have to be redesigned resulting in additional NREs and lost time-to-market. The same
design with a PAL provides a fallback: The same boards can be used as is with a PAL programmed
with the design change. Rather than making and breaking connections on the board, you can modify
the connections inside the PAL. This concept will become more clear as we discuss other device
architectures.

An additional advantage not to overlook is the ability to use design tools to help implement your
design in programmable logic. With programmable logic devices, it is not usually necessary to
arrange logic (perform logic optimization, minimization, and multilevel logic functions) based on the
device architectures. Instead, you can enter your design equations, description (with hardware
description languages such as VHOL), or schematics, and leave the logic synthesis, optimization, and
fitting to software. For example, you would not need to determine an optimal implementation for the
expression of X, as we did when implementing the design with TTL logic. Instead, you could choose
any equivalent equation and leave it to logic minimization software to reduce the equation and
implement the logic in a way in which it best fits in the 16R8 or any other PAL.

SimplePLDs

20

There are several popular industry standard PLOs, such as the 16V8, 20010, and 20RAlO, but we
will limit our discussion of small PLDs to the 22VlO in order to limit the number of pages devoted to
this chapter. Once you understand the 22VlO architecture described below, you should be able to
quickly compare and contrast its architectural features with those of other PLDs by comparing
architecture diagrams found in PLO vendor data sheets.

The 22V10
The 22VlO architecture of Figure 2-6 represented a breakthrough in the architectures of it's time: it
included a programmable macro cell and variable product term distribution.

Each macrocell (see Figure 2-5) may be individually configured (by using programmable
configuration bits) according to the configuration table below (Table 2-2). This innovative idea
allows for the macrocell input (a sum of products) to either pass through to the output buffer or be
registered first, as well as to define the polarity of the signal being passed to the output buffer. With
polarity control, the complement of an expression may be implemented. The complementary
expression may save considerable logic resources over the other, or vice-versa. For example, the
complement of a large sum of individual terms (x = A + B + C + D + E + F) may be expressed as one

C1

product term (X = 'ABl:DEF). The complement of that signal can then be obtained by inverting it at

the output buffer (x = (X». The output polarity selection enables software to perform logic
optimization (resulting in fewer device resources being used) based on a sum of products for the
original equation or its complement. The programmable macrocell also allows feedback: The
feedback (or input to the logic array) can be directed from the register or the I/O buffer depending on
whether or not the register is bypassed (i.e., whether or not the signal is registered or combinational).
An output enable product term can be programmed such that the output is always disabled, allowing
the I/O to be used as a device input.

Another innovation in the 22VlO alluded to earlier is variable product term distribution: Recognizing
that in typical applications, some logic expressions require more product terms per OR gate than
others, the architects of the 22VlO (the Vis for variable) varied the number of product terms per OR
gate from 8 to 16. Looking at Figure 2-6, you can see that each macrocell is allocated 8, 10, 12, 14,
or 16 product terms. The 22 in 22VlO is for the 22 inputs to the logic array; the lO is for the 10
outputs.

Why did the architects of the 22VlO not allocate 16 product terms to every macrocell? The most
likely reason is that doing so would increase the cost to manufacture the device (the increased die
size would result in fewer dice per wafer and, therefore, higher unit costs). Because many
applications do not require more product terms, the additional product terms per macrocell would
usually go unused, in which case the additional cost would not provide additional functionality.

r----------------------.

r....-'-------e>--lD

CP

INPUT/
FEEDBACK

MUX

S1

AR

Q t------/

o t-+-----/

SP

OUTPUT
SELECT

MUX

S1 So

Co ---------r------------------M-A-C~R~O~C~E~L~L--------~ L _____________________ _

Figure 2-7 22VlO Macrocell

21

-ri)
4 1 1 ~ 4 8 3 36 0

AR
OE

::~
0

~

--t;7 a=r
:::1------

cell 23

OE

~ =±r 0

~ cell

..... 9 '"' :::1---~-t 2

22

8

-.--.-OE
0 =tb cell

11 ~
OE IT

0 =tb cell

fr;J-13 IT OE
0 =tb , cell

rrr----f' 15 TT
OE

0 =tb , cell I,r 15 IT OE
0

!"""" =tb - cell

!?- ~

13 IT OE
0 =tb -,

_t-.' cell

..... 11 !""""~ -t TT
OE =±r 0

~
~,

~

B Cl--
cell

9

OE T-r
0 ~

=bb-~
./

7 ;'1 :::1------ cell

3

4

5

6

7

10

21

20

19

18

17

16

15

14

SP '--::r-
./'L 11 13

Figure 2-6 22VlO device architecture

22

Table 2-2 22VIO Macrocell configuration table

C1 Co Description

0 0 Registered/Active Low

0 1 Registered/ Acti ve High

1 0 Combinationall Active Low

1 1 Combinational! Active High

Timing Parameters
Although there are additional data sheet timing parameters (such as minimum clock width, input to
output enable delay, and asynchronous reset recovery time), the basic timing parameters most
frequently referenced are propagation delay (tpD), setup time (ts), hold time (tH)' clock to output

delay (teo), clock to output delay through the logic array (tc02), and system clock to system clock

time (tses), which is used to determine the maximum frequency of operation. The table below shows
these basic parameters for a 4-nanosecond 22VlO (a 22VlO with a tpD of 4 ns).

Table 2-3 Sample data sheet parameters for a 22VIO

Parameter Min. Max.

tpD 4ns

ts 2.5 ns

tH 0

teo 3.5 ns

!cO2 7 ns

tses 5.5 ns

The propagation delay is the amount of time it takes for a combinational output to be valid after
inputs are asserted at the device pins. The setup time is the amount of time for which the input to a
flip-flop must be stable before the flip-flop is clocked. Hold time is the amount of time for which the
input to a flip-flop must be held stable after the flip-flop is clocked. The designer must ensure that
the setup time and hold time requirements are not violated-in this case, that data must be valid at
least 2.5 ns before the clock. Violating the setup and hold time requirements may cause a metastable
event: the flip-flop may not transition properly in that it may transition to the wrong value, remain
indeterminate, or oscillate for an indeterminate (but statistically predictable) period of time. Clock to
output delay is the amount of time after which the clock input is asserted at a device pin that the

23

Si naIs

Si nals

Clock

24

output becomes valid at another device pin. These timing parameters are illustrated in the timing
diagram of Figure 2-8.

Combinatorial
Logic

Combinatorial
Logic

Signals

D Q
Clock

>
Register Signals

~I Combinatorial
Logic

Figure 2-8 Timing parameters illustrated

D Qr--

>

I D Qr-
I
~ >

tscs

The parameter teo2 represents the clock to output delay for an output that does not route directly

from a register to its associated output pin; rather, it represents the clock to output delay for a signal
that is fed back from the register through the logic array, through a macrocell configured in
combinational mode, and to a device pin (Figure 2-8). This configuration is often used to decode
registers (to produce a state machine output, or to generate a terminal count output from the logical
AND of several counter bits stored in registers, for examples). The parameter tses indicates the

minimum clock period if register-to-register operation is required and accounts for the amount of
time from when the clock is asserted at the device pin until the output of one register is valid at the
input of another (or the same) register, in addition to the setup time for that register. tses is used to

calculate the maximum frequency of operation, fmax = lItscs ' A sequential circuit is also illustrated

in Figure 2-8. The second bank of registers may be clocked tses after the first bank.

Designing with the 22VIO
Here, we will discuss a few design implementation issues (i.e., how resources are used and the
resulting timing characteristics). We will not discuss how to use VHDL to create these designs. That
is the discussion for the remainder of the text. The design equations that we will present will be
determined by using standard design practices rather than software. Our discussion about which
device resources must be used for a given design is intended to illustrate the task that a software fitter
must perform.

Suppose, as an example, that you are asked to design a three-bit synchronous counter for which there
are an additional two outputs-one that is asserted when the present count is greater than three, and
one that is asserted when the count is equal to six. We can determine the expressions for each of the
counter bits and outputs by creating a table with the present-state (PS), next-state (NS), and present-

state outputs, using Karnaugh maps to find the minimal sum of products for each expression, as
illustrated in Figure 2-9. There are five total outputs (a, b, c, x, and y). If all macrocells are
configured for active high logic, then the complement of the Q-output for each flip-flop is
multiplexed to the output buffers. This allows the positive-logic implementations for A, B, and C.
Signal A is the D-input to the flip-flop associated with output signal a. Likewise for Band C. Figure
2-9 indicates that signal A requires three product terms, B two, and C one. The output x does not
require any additional logic because it is equivalent to output a. (In fact, one output pin can be used
for both signals a and x.) Signal y requires one product term. Because the product term requirement
associated with each of the outputs is less than eight, the output signals can be placed on any of the
I/O pins. A schematic of this design implementation is shown in Figure 2-9.

Present-State/Next-State
Table

a

0

0

0

0

1

1

1

1

PS NS

b c A B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

0 0 1 0

0 1 I 1

1 0 1 1

1 1 0 0

By inspection,

x=a
y=abc

C x Y

1 0 0

0 0 0

1 0 0

0 0 0 ~c 00 01 11 10

1 1 0

0 1 0

1 1 1 o I : I~I : I~I
0 1 0

Figure 2-9 Expressions for a 3-bit counter

25

26

There are not setup or hold time requirements for this design because there are not any inputs that are
registered. Outputs a, b, c, and x are valid at the output pins teo, 3.5 ns, after the clock input

transitions. Output y is valid at its output pin teo2' 7 ns, after the clock input transitions. More time is

required for y to be valid because the outputs of the counter must be decoded to produce y. The
decoding is possible by feeding back the outputs of the counters into the logic array and using a
product term associated with another macrocell. This decoding causes an additional delay of 4 ns
over teo. The maximum clock frequency at which this circuit may be clocked (the frequency at

which the registers may be clocked) is usually dictated by the amount of time it takes for the output
of one register to propagate to the input of another register in addition to the setup time requirement
for the second register. This frequency is the reciprocal of tses (5.5 ns), or 180 MHz. In this case,

however, the design cannot be clocked at this frequency because the output y takes 7 ns to propagate
to an output pin. Clocking the circuit at 180 MHz would result in the output y never being valid.
Theoretically, this circuit could be clocked at the rate of the reciprocal of 7 ns (143 MHz) and you
would find a valid output at the device pin for y. However, unless there is a clock to output delay
minimum time, the output is guaranteed to be valid only for an instant in time. In order to sample the
output, you will need to include any trace delay and setup time of the sampling device in determining
the maximum clock frequency for the system.

Using More Than 16 Product Terms
Although the largest number of product terms associated with any macrocell in the 22V 1 0 is 16, you
can implement expressions that require more than 16 product terms by using 2 passes through the
logic array. For example, to sum 20 product terms, 2 macrocells can sum 10 product terms each and
a third macrocell can sum the macrocell feedbacks of the first 2 macrocells. This third macrocell
requires two additional product terms for positive output polarity, or one product term for negative
output polarity. (If a and b are the outputs of the first 2 macrocells, and y is the output to be

propagated to the device pin, then the expression for y, y = li· Jj , can be implemented with the third
macrocell using one product term. The complement of y can be obtained with the macrocell polarity
control.) Alternatively, you could use one of the center macrocells of the 22VlO to sum 16 product
terms, using another macrocell to sum the feedback of the first macrocell and the remaining 4
product terms (for a total of five product terms for this second macrocell). Either way, two passes
through the logic array are required, and this will increase the propagation delay from input pins to
output (if the function is combinational) or the setup time (if the function is to be registered). If the
data sheet does not provide a specification for a propagation delay from input, through the logic array
twice, and to an output pin, then the sum of tpD + tpD is a safe worst-case estimate. Likewise, if a

setup time for two passes through the logic array is not specified, then tpD + ts provides a safe

estimate.

Terminology
The 22VlO architecture is shown in block diagram form in Figure 2-11 for the purpose of assigning
terms to the different blocks or features of the 22VlO architecture. We can then use these terms in
our discussion of CPLDs.

The term logic array inputs, or inputs for brevity, is used to indicate all of the signals that are inputs
to the logic array. These inputs include dedicated device inputs, feedbacks from macrocells, and
inputs from IIOs that are configured as device inputs. The term product term array will be used to
describe the programmable AND gates (product terms). The product term allocation scheme is the

~~----------------------------------~~HD~

Figure 2-10 Schematic of a 3-bit counter

mechanism for distributing product terms to the macrocells. Macrocells typically contain a register
and combinational path with polarity control and one or more feedback paths. I/O cells is a term used
to describe the structure of the I/O buffers and flexibility of the output enable controls.

What is a CPLD?

Complex PLDs (CPLDs) extend the concept of the PLD to a higher level of integration to improve
system performance, use less board space, improve reliability, and reduce cost. Instead of making the
PLD larger with more inputs, product terms, and macrocells, a CPLD contains multiple logic blocks,
each similar to a small PLD like the 22VlO that communicate with each other using signals routed
via a programmable interconnect (Figure 2-12). This architectural arrangement makes more efficient

27

28

Logic Block Diagram (PDIP/CDIP)
Vss CPti

Figure 2-11 Block diagram of the 22VlO

use (than one large PLD) of the available silicon die area, leading to better performance and reduced
cost.

In this section, we present an overview of CPLDs: We examine their makeup and indicate the
features of some specific families of popular CPLDs (and point out their differences). This
presentation does not include a comprehensive examin.ation of all of the CPLDs on the market today
or an in-depth examination of all the features that are present in the architectures that we will discuss.
To find out more information about the features of the architectures discussed in this text, and to
compare them, we strongly recommend that you obtain the data sheets for these devices.

Programmable Interconnects
The programmable interconnect (PI) routes signals from 1I0s to logic block inputs or from logic
block outputs (macrocell outputs) to the inputs of the same or other logic blocks. (Some logic blocks
have local feedback so that macrocell outputs used in the same logic block do not route through the
global programmable interconnect; there are advantages and disadvantages-to be discussed later
of this approach.) As with a PLD such as the 22V 1 0 which has a fixed number of logic array inputs,
each logic block has a fixed number of logic block inputs.

Most CPLDs use one of two implementations for the programmable interconnect: array-based
interconnect or multiplexer-based interconnect. Array based interconnect allows any signal in the PI
to route to any logic block (see Figure 2-13). Each term in the PI is assigned as an input to a given
logic block, so there is one PI term for each input to a logic block. An output of a logic block can

PI
, Product

Term
Array

(a)

~:
'L/.

Product
Term
lIocato

(b)

'8' , Meell '

, '

Macro
cells

, I/O Cells

Figure 2-12 (a) Generic CPLD architecture (b) Generic logic block

connect to one of the PI terms through a memory element. This interconnect scheme is highly
flexible in that it is fully routable (see glossary), but it may be at the expense of performance, power,
and die area.

With multiplexer-based interconnect (Figure 2-14), signals in the PI are connected to the inputs of a
number of multiplexers for each logic block. There is one multiplexer for each input to a logic block.
The selection lines of these multiplexers are programmed to allow one input for each multiplexer to
propagate into a logic block. Routability is increased by using wide multiplexers, allowing each
signal in the PI to connect to the input of several multiplexers for each logic block. Wider
multiplexers, however, increase the die area (and potentially reduce performance).

29

30

Logic Blocks

Macrocell1

Logic
Block

Macrocell2

Programmable Interconnect Wires

~ ______ ~A~ ____ ~
r \

cell cell

cell cell

to Product Term Array

Macrocell1

Logic
Block

Macrocell2

cell cell

cell cell

Figure 2-13 Array-based interconnect

A logic block is similar to a PLD such as the 22VlO: Each logic block has a product term array,
product term allocation scheme, macrocells and 110 cells. The size (used here as a measure of
capacity-how much logic can be implemented) of a logic block is typically expressed in terms of
the number of macrocells, but the number of inputs to the logic block, the number of product terms,
and the product term allocation scheme are important as well. Logic blocks typically range in size
from 4 to 20 macrocells. Sixteen or more macrocells permit 16-bit functions to be implemented in a
single logic block, provided that enough inputs from the PI to the logic block exist. For example, a
16-bit free-running counter can fit in a logic block with 16 macrocells and 15 inputs (one for each bit
less the most significant bit), assuming that the logic block outputs propagate through the PI and that
T-type flip-flops are used to implement the counter. A 16-bit loadable counter with asynchronous
reset requires a logic block with 16 macrocells and 33 inputs to the logic block (one for each counter

Programmable Interconnect Wires

~

Macrocell1

Macrocell2

Logic
Block

r{ to Product Term Array

I

L(I
to Product Term Array

Macrocell1

Macrocell2

Logic
Block

Figure 2-14 Multiplexer-based interconnect

bit, plus 16 for the load inputs, plus one for the asynchronous reset). This function could fit in a
CPLD that has fewer macrocells or inputs per logic block only with multiple passes through the logic
array, resulting in slower performance. Logic blocks with few inputs also tend to use logic block
resources inefficiently. This is because if one expression using one macrocell requires all the
available inputs to a logic block, then other expressions cannot be placed in other macrocells in that
logic block unless these expressions use a subset of the signals required for the first expression.

Product Term Arrays
There is little difference between the product term arrays of the different CPLDs. Of course, the size
of the array is important because it identifies the average number of product terms per macrocell and
the maximum number of product terms per logic block.

Product Term Allocation
Different CPLD vendors have approached product term allocation with different schemes. The MAX
family ("family" meaning several devices of the same architecture) of CPLDs, jointly developed by

31

32

the Altera Corporation (the market leader in CPLDs) and Cypress Semiconductor, was the first
family ofCPLDs on the market. (Altera named this family the MAX5000 family, Cypress named it
the MAX340 family). Rather than using the variable product term distribution scheme of the 22VlO
(which allocated a fixed but varied number of product terms-8, 10, 12, 14, or 16-per macrocell),
the MAX family allocated four product terms per macrocell while allowing several expander product
terms to be allocated individually to any macrocell (or multiple macrocells) of choice (Figure 2-15).
With expander product terms, the additional product terms need be allocated to only those macrocells
that can make use of them. The concept that a product term can be used by a macrocell of choice is
termed product term steering, and the concept that the same product term may be used by multiple
macrocells is termed product term sharing. An additional delay is incurred for signals that make use
of the expander product terms because the output of the expander product term must pass through the
logic array before propagating to a macrocell.

MACROCELL
P-TERMS

•
• EXPANDER

P-TERMS

Figure 2-15 Product term allocation in the MAX340 and
MAX5000 families of devices

The MACH 3 and 4 families offered by Advanced Micro Devices allow product terms to be steered
(in groups of four product terms) and used in another macrocell without an additional delay (Figure
2-16). For each group of macrocells that must be steered, one macrocell is left unusable. This product
term allocation scheme does not provide product term sharing.

The MAX7000 family offered by the Altera Corporation improved the product term allocation
scheme of the MAX5000 family (Figure 2-17): In addition to the expander product terms (which
may be individually steered or shared), the new architecture also includes a product term steering
mechanism in which five product terms may be steered to a neighboring macrocell (which in tum can
be steered to a neighboring macrocell). Steering in this way adds a significantly smaller incremental
delay because the signal does not propagate through the product term array (as with an expander
product term). This steering does prevent the product terms from being shared (unlike with the
expander product terms).

The FLASH370™ family offered by Cypress Semiconductor provides yet a different innovation
(Figure 2-18): Each macrocell is allocated from 0 to 16 product terms, depending on the needs of the

Figure 2-16 MACH3 product term allocation scheme

logic expression implemented for a given macrocell (however, adjacent macrocells cannot each be
allocated 16 unique product terms). Each product term may be individually steered (Le., a product
term can be allocated to a particular macrocell). This steering scheme does not render a macrocell
unusable or cause an incremental delay to be incurred. Most product terms (except for some of those
for the first and last macrocell in a logic block) can also be shared with up to four neighboring
macrocells without additional delay.

The product term allocation schemes of these architectures provide flexibility to the designer. More
importantly, these schemes provide flexibility to software algorithms that will ultimately choose how
to use logic resources. The design engineer should understand how logic resources may be used and
the trade-offs between architectures, but engineering design automation tools (software) should
automatically select the optimal implementation, leaving the designer to provide innovation to his or
her system design.

Macrocells
CPLD macrocells offer more configurability than found in 22VIO macrocells. In addition, many
CPLDs have I/O macrocells, input macrocells, and buried macrocells. A 22VlO has only what is
considered an I/O macrocell (a macrocell associated with an I/O). An input macrocell, as you may

33

34

•
•
•

Shared Expanders
Added delay

Figure 2-17 MAX7000 product term allocation

have deduced, is associated with an input pin. A buried macrocell is usually similar to an I/O
macrocell except that its output cannot propagate directly to an I/O.

va and Buried Macrocells
Figure 2-19 illustrates the I/O macrocell ofthe MAX340 family of devices, which provides more
configurability than the 22VlO macrocell. There are several inputs to this macrocell. The sum of
products input is used as one input to the XOR gate. The other input to the XOR gate is an individual
product term. The XOR gate can be used in arithmetic expressions (comparators and adders make
good use of an XOR gate) or to complement the sum of products expression. If the array is
programmed such that the individual product term is always deasserted, then the output of the XOR
gate is the same as the sum of products expression on the other input of the XOR gate. If the
individual product term is always asserted, then the output of the XOR gate is the complement of the
sum of products, thereby allowing the expression (complemented or uncomplemented) that uses the
fewest number of product terms to be implemented in the product term array. That is, the XOR gate
serves the same function as the output polarity multiplexer found in the 22VIO macrocell, but it can
also be used to implement logic, especially arithmetic logic, or to configure a flip-flop for T-, JK-, or
SR-type operation. The preset and clear are individual NAND terms, and the clock can be either the
system clock or a gated (product term) clock. The system clock provides the best performance, and
the product term clock provides flexibility (product term clocks should be used carefully because
they can easily cause timing problems; for example, race conditions can cause false clocks). The
output of the macrocell can be configured as registered or combinational. Feedback is from either the

From Product Term Array -
~lo16D- Mcell

-...
r-------

~lo16-D- Mcell

~ ...
r----

~;016-D- Mcell

~ ...
r----

~)016-D-
Mcell

-

Figure 2-18 FLASH370 product term allocation

combinational or registered signal, depending on the macrocell configuration. This architecture
provides both local feedback (i.e., the feedback does not use the PI and is not available to other logic
blocks) and global feedback through the PI. The advantage of local feedback is quicker propagation
to other macrocells in the logic block. The disadvantage of having both local and global is a more
complicated timing model and redundant resources. Buried macrocells for this family are identical to
the I/O macrocells except that the outputs of the buried macrocells do not feed the I/O cells.

Figure 2-20 represents the I/O and buried macrocells of the FLASH370 architecture. The macrocell
input can be programmed for 0 to 16 product terms. This input can be registered, latched, or passed
through as a combinational signal. If configured as a register, the register can be a D-type or T-type
register. The clock for the register/latch can be one of four clocks available to a logic block (polarity
of a clock is determined on a logic-block-by-logic-block basis). The output polarity control permits
the optimization of product term utilization based on either the true or complement implementation
of an expression in sum-of-products form. The macrocell has a feedback separate from the I/O cell to
permit the I/O cell to be configured as a dedicated device input while still allowing the I/O macrocell
to be used as an internal macrocell, in either a registered or combinational mode (contrast with the
functionality of a 22VlO macrocell). The buried macrocells are nearly the same as the I/O
macrocells, except that the output does not feed an I/O cell. Additionally, a buried macrocell can be
configured to register the input associated with a neighboring I/O cell.

Input Macrocells

Input macrocells, such as that shown in Figure 2-21, are used to provide additional inputs other than
those associated with I/O macrocells. The figure shows that for this architecture these inputs can be

35

I

I

I

I

I j.u
I

I

I

I tn
I

I

I r.:
I

I

I

I

I In
I

I

I
~

I

I j.u
I

I

I

I I

I
~ I

I

I

I

I

I

I tn
I

I

I

I

I

I
I " I " I "

36

j

I/O OUTPUT

~
ENABLE

" IJ.L !La /

t'rr t'rr ~
foI-lo f.l..!. ~

~
P

In t'rr TO r---
I/OCONTR

~ ~ Q
~

~ --r-j.u. j.u. r--

"'-f-- 1\

OL

I c

~ I
~ ~

I

~ ~ 'IT
DIRECT

MACROCELL
- ~ FEEDBACK

I <'
" " "

TO

"
PROGRAMMABLE

" INTERCONNECT' r
,If

Figure 2-19 MAX340 macrocell

used as clocks or inputs to the PI or both. The inputs can be combinational, latched, registered, or
twice registered. (A signal that is asynchronous to the system clock is sometimes twice registered to
increase the MTBF-mean time between failure-foF a metastable event.) If registered or latched,
the register/latch can be clocked by another clock input (but not itself-this would surely lead to
metastable events if delays were not carefully controlled!).

110 Cells
Most I/O cells are used only to drive a signal off of the device, depending on the state of the output
enable, and to provide a data path for incoming signals, as shown on the right-hand side of Figure 2-
20. With some architectures like that of the MACH 3 family, however, I/O cells contain switch
matrices or output routing pools in which a one-to-one connection is made between an I/O macrocell
output and an I/O (see Figure 2-22). The advantage to this scheme is flexibility in determining where
logic can be placed in a logic block in relation to where the I/O cell is located. The disadvantage is an
incremental delay associated with the programmable routing structure and increased die size.

r - - - -

FROM PTM

r - - - -

FROM PTM

ASYNCHRONOUS
BLOCK RESET

ASYNCHRONOUS 4 SYSTEM CLOCKS
BLOCK PRESET

I/O MACROCELL

BURIED MACROCELL

CB CB

FEEDBACK TO PI

FEEDBACK TO PI

FEEDBACK TO PI

CB = Configuration Bit

I IIOCE
r------------
I

I "0"
1"1"----0-'0-1...-"---_-'

I CB CB
t---- --------

_________ J

2 BANK OE TERMS

Figure 2-20 FLASH370 I/O and buried macrocells

Timing Parameters
The timing parameters of most interest are the same for those of a 22VlO: propagation delay, setup,
clock-to-output, and register-to-register times (illustrated in Figure 2-23).

Post-design implementation timing information is generally more predictable with CPLDs than with
FPGAs (for reasons that will become clear later). For some designers, this is an advantage of CPLDs
over FPGAs: that prior to beginning a design, the performance of that design can be estimated with
good precision. These designers prefer to be able to select a device before doing any design work,
and have the confidence that in the end the device will perform as predicted.

With a 22VlO, the performance of a design can be estimated with good precision prior to
implementing a design, provided that you have an accurate understanding of how many passes
through the product term array that any logic expression will require. Any expression of more than
16 product terms will require additional passes. An expression of up to 112 product terms (16 + 16 +
14 + 14 + 12 + 12 + 10 + 10 +8 = 112) can be implemented in 2 passes. Certainly, it is easier to

37

38

FROM CLOCK
POLARllY INPUT

CLOCK PINS

INPUT/CLOCK PIN

TO CLOCK MUX ON
ALL INPUT MACROCELLS

r---------------, , I
I

TO CLOCK MUX I
IN EACH I

I CB LOGIC BLOCK I L _______________ ~

TOPIM

CB = Configuration Bit

Figure 2-21 FLASH370 input macrocell

MUX

Figure 2-22 I/O cell with switch matrix

CLOCK POLARllY MUX
ONE PER LOGIC BLOCK
FOR EACH CLOCK INPUT

predict with some certainty, based on your knowledge of the design, whether a given expression will
require a multiple of 16 product terms versus a multiple of one product term. For example, if you
believe that the largest expression required for a state machine that you are designing may take 14
product terms, then you could safely estimate that it would take no more than a maximum of two
passes (an additional pass was added to guard-band the estimate). If the number of passes for an
expression can be accurately predicted, then the timing parameters can be predicted with precision.

Although estimating performance in some CPLDs is as easy as it is for a 22VlO, it is not for many
others. Compare the timing models for the MAX340 and FLASH370. Performance in the MAX340 is
highly dependent upon resource utilization. It may be difficult to determine the achievable
performance prior to implementing the design in a CPLD with a timing model similar to that of the
MAX340; although, it is more predictable than with an FPGA.

Input 110

Clock

Registered
Outputs

Combinatorial
Outputs

\11 \I
11\ J

..!4 tH

I

teo
+----+

J

tpD

Figure 2-23 Key Timing Parameters

The CY7C371-143 CPLD has a simple timing model like the 22VlO and will be used as the target
architecture for the synthesis ~nd fitting of many design examples. Its timing parameters are listed in
Table 2-4.

39

REGISTER

OUTPUT
INPUT DELAY

OUTPUT

INPUT tAD
too

DELAY txz

tiN
teOMB tzx
tLATCH

D COMBINATORIAL SIGNAL D
tpD = 8.5 ns

REGISTERED SIGNAL

~ ~
D

CLOCK ts = 5.0 ns teo = 6.0 ns

Figure 2-24 Timing Models for the MAX340 and FLASH370

Table 2-4

Parameters Min. Max.

tpD - 8.5 ns

ts 5 ns -

tH Ons -

tco - 6 ns

tc02 - 12 ns

tscs 7 ns -

40

Other Features
Besides logic resources, routing and product term allocation schemes, macrocell configurations, and
timing models, a few other features set CPLDs apart from one another. These features include in
system programmability (ISP), in-circuit reconfigurability (lCR), 5V/3.3V operation, test access port
and boundary scan capability that is IEEE 1149.1 (JTAG, or Joint Test Action Group) compliant, and
input and output buffers that are PCI (Peripheral Component Interconnect) compliant. Devices are
offered in a variety of packages.

In-system programmability is the ability to program a device while it is on the board. This
mainstreams the manufacturing flow. Time may be saved because parts do not have to be handled for
programming, and inventories of both programmed and unprogrammed parts do not need to be kept.

In-circuit reconfigurability is the ability to reprogram a device while it is in a circuit. In-circuit
reconfigurability can be used for field upgrades or even to alter the functionality of the device during
operation.

The JT AG specification defines a method for testing the integrity of a device and its connections to
other devices on the board through a test access port and boundary scan. This capability enables
stimuli to be applied to a particular device to verify its functionality, as well as data to be shifted
through the boundary to verify device interconnections. JT AG may be used for testing and quality
assurance or debugging. The large number of vectors that need to be clocked through to verify
functionality has prompted the development of devices with BIST (built-in self-test). Devices with
BIST can be placed in self-test mode. A device placed in this mode isolates the 1I0s from other
devices. The device generates pseudorandom test-vectors as stimuli, compares internal outputs
against expected results, and indicates success or failure.

The PCI specification includes an electrical components checklist with requirements such as AC
switching current. Because PCI has caught hold "by storm," vendors of programmable logic have
rushed to characterize their devices and declare them PCI compliant.

What is an FPGA?

A field programmable gate array (FPGA) architecture is an array of logic cells that communicate
with each other and 110 via routing channels (Figure 2-25). Like a semi-custom gate array, which
consists of a sea of transistors, an FPGA consists of a sea of logic cells. In a gate array, however,
routing is custom, without programmable elements. In an FPGA, existing wire resources that run in
horizontal and vertical columns (routing channels) are connected together via programmable
elements, with logic cells, and 110. Logic cells have less functionality than the combined product
terms and macrocells of CPLDs, but large functions can be created by cascading logic cells. Logic
cell and routing architectures differ from one vendor to another.

As with all commercial products, 'FPGAs are developed to meet market needs. A market-driven
vendor will survey not only what FPGAs are currently used for (predominately data-path, 110-
intensive, and register-intensive applications) but also what system designers would like to use
FPGAs for or what they believe that they will use FPGAs for in the near future (high performance
applications such as a PCI bus target interface operating at 33 or 66 MHz, a DRAM controller with II
3 ns setup time, a DMA controller with a 6 ns clock-to-output delay, and computer networlr;

applications involving Ethernet and ATM, among others). Among the top few m r
•

D D D D D D D D D D
D D D D D D D D D D

· .----. VertIcal Channel

D D D D D D D D D D ~ D D D D D D D D D D
D D D D D D D D D D Horiz ontal Channel

D D D D D D D D D g
D D D D D D D D D D
D D D D D D D D D D Logic Cell

D D D D D D D D D D
D D D D D D D D D D

Figure 2-25 FPGA Architectures

FPGAs currently attempt to serve are (1) performance-the ability for real system designs to operate
at higher and higher frequencies; (2) density and capacity-the ability to increase integration, to
place more and more in a chip (system in a chip), as well as use all available gates within the FPGA,
thereby providing a cost-effective solution; (3) ease of use-the ability for system designers to bring
their products to market quickly, leveraging off of the availability of easy-to-use software tools for
logic synthesis as well as place and route, in addition to architectures that enable late design changes
that affect logic, routing, and I/O resources without significantly adverseiy affecting timing; and (4)
in-system reprogrammability and in-circuit reconfigurability-the abilities to program or reprogram
a device while it is in system, mainstreaming manufacturing and inventories as well as allowing for
field upgrades and user configurability.

After completing the list of market needs, a vendor must choose or develop a technology that it
believes will satisfy the most important market needs. As with much of product development, there
are trade-offs. Presently, there are two technologies of choice for use in developing FPGAs-SRAM
and antifuse--each of which can satisfy a subset of the market needs. SRAM technology is presently
used by AHera, AT & T, Atmel, and Xilinx (the market leader in the sale of FPGAs). Antifuse
technology is presently used by Actel, Cypress (also a market leader in the sale of high-performance
SRAMs), and QuickLogic. Xilinx has recently announced the availability of an antifuse-based
FPGA. We'll briefly explain each technology, the impact on device architectures, and summarize
which market needs are best addressed with each technology.

Technologies and Architecture Trade-offs
Once a technology has been selected, that technology influences choices .of routing architectures. The
routing architecture, in tum, influences the design of the logic cells.

Routing
The choice of technology has a significant impact on the routing architecture for one very simple
reason: The physical dimensions of an SRAM cell are an order of magnitude larger than those of an
antifuse element.

Amorphous-Silicon Antifuse. An amorphous-silicon antifuse can be deposited in the space (via)
between two layers of metal, as shown in Figure 2-26. In a semi-custom gate array, the top and
bottom layers of metal make direct contact through a metal interconnect via. In an amorphous-silicon
based FPGA, the two layers of metal are separated by amorphous silicon, which provides electrical
insulation. A programming pulse of lOV to l2V and of necessary duration can be applied across the
via, creating a bidirectional conductive link (with a resistance of about 50 ohms) connecting the top
and bottom metal layers (also shown in Figure 2-26). Because the size of an amorphous-silicon
antifuse element is the same as that of a standard metal interconnect via, the programmable elements
can be placed very densely (limited only by the minimum dimensions of the metal-line pitch), as
shown in the microphotograph of Figure 2-27. Once programmed, an antifuse element cannot be
erased or reprogrammed.

(a) (b)

Figure 2-26 (a) An unprogrammed antifuse programmable element
and (b) a programmed antifuse programmable element

Figure 2-27 An array of amorphous-silicon antifuse elements

To program an antifuse element, a voltage differential must be applied across the antifuse element.
Each antifuse element must be isolated by using pass transistors in order not to inadvertently

43

44

program other elements. These programming transistors, as well as the associated logic for
addressing the antifuse locations, constitute the programming circuitry overhead.

Oxide-Nitride-Oxide (ONO) Antifuse. The Actel FPGA products make use of an aNa antifuse.
This antifuse consists of three layers (Figure 2-28): the top layer, which is electrically connected to
one layer of metal, is a conductor made of polysilicon; the middle layer has an oxide-nitride-oxide
chemical composition and is an insulator; the bottom layer is a conductive layer of negatively doped
diffusion. Unprogrammed, the ONa antifuse insulates the top layer of metal from the bottom layer.
The fuse is programmed similar to that of an amorphous-silicon antifuse: A programming voltage is
applied, allowing the insulator to be penetrated by the top and bottom layers and establishing an
electrical connection of fairly low resistance (about 300 ohms).

Figure :!-28 aNa Antifuse Element

Because antifuse elements can be placed very densely, FPGAs making use of this technology
typically have flexible routing architectures, allowing the electrical connection of wires at nearly
every intersection. Figure 2-29 illustrates a routing architecture of an antifuse-based FPGA. The
open boxes at the intersections of wires indicate a programmable antifuse. The inputs and outputs of
the logic cell can connect to any vertical wire (except the clock structure, which in this figure is
shown to connect only to the clock, set, and reset ofthe flip-flop). Wires within a vertical channel
may connect with wires in a horizontal channel where the wires intersect. Some wires (segmented
wires) extend the length of only one logic cell. These wires may connect to the segmented wires of
the logic cells above and below but on the same layer of metal through a programmed antifuse. A
routing architecture made up of entirely segmented wires would provide the greatest routing
flexibility. However, using segmented wires for long routes would require several antifuse elements
to be programmed, each adding an additional resistance (about 50 ohms for amorphous-silicon
antifuse, about 300 ohms for aNO antifuse) to the signal path. Greater resistances will result in
slower performance. Therefore, other wires extend further distances (two logic cells, four logic cells,
or the entire length or width of the array), optimized for either local or global routing.

SRAM. Static RAM cells may be used to control the state of pass transistors, which can establish
connections between horizontal and vertical wires (Figure 2-30 shows six pass transistors allowing

. any combination of connections of the four wires). The source-to-drain resistance is about 1000
ohms. SRAM cells can also be used to drive the select inputs of multiplexers that are used to choose
from one of several signals to route on a given wire source. A memory cell consists of five transistors
(Figure 2-31): two each for the two inverters making up the latch and one for addressing (used to

1 1 12 "fi P 7 Vee ~7 ,'\i7

11111. lllll 11'1 11'1

~ ""X 9
.....

I I

~ ~r~ ~ IT I

....
2 :K.,...

'~ 4
~vce '~ 6 7

Figure 2-29 The Cypress pASIC380 Routing Structure

select the memory cell for programming). An SRAM cell is reprogrammable, unlike antifuse
elements, which are physically altered when programmed. SRAM cells are volatile, however,
meaning that the states of the memory cells are lost when power is not applied. SRAM-based FPGAs
must be programmed (usually from a serial EPROM) each time the circuit is powered up. As for
antifuse elements, the programming circuity for SRAM elements must include the addressing and
data registers.

The size of an SRAM cell and the associated pass transistor as compared to an antifuse element and
the associated programming transistor is considerably larger. These programming elements cannot be
placed as densely as the antifuse elements; SRAM F~GAs therefore do not have routing architectures
for which there is a programmable element at nearly every intersection (doing so would increase the
metal spacing and overall die size, limiting the density, increasing cost, and slowing performance).
Instead, programmable elements are strategically placed to provide a trade-off between routability,
density, and performance. As with antifuse FPGAs, some wires may extend the length of one logic
cell, and others may extend further, again balancing routing flexibility with density and performance.

Figure 2-32 illustrates the Xilinx XC4000 interconnect. This figure shows only those wires that
extend the length of one cell (named single-length wires for this architecture). Programmable
elements exist at the intersection of the logic cell (named configurable logic block (CLB) by Xilinx)
inputs and single-length wires. The outputs can connect to some ofthe single-length wires. For one
CLB to communicate with another or with va via single-length wires, wires must connect through

45

46

SRAM ~
Cell

'-----.J

SRAM J
Cell I

Cell IS;I

SRAM
Cell

~
SRAM

Cell
'---------'

SRAM
Cell

Figure 2-30 SRAM cells used to control state of pass transistors

programming
Bit

Select

SRAM Cell
,-----------,

~ Interconnect
~--+-~~ Switch

L __________ ...J

Figure 2-31 An SRAM cell

the switch matrices. Each wire on one side of a switch matrix can connect to one wire on the other
side of the matrix, as illustrated by dots indicating where connections can be established.

Logic Cell Architecture
Logic cell architectures are influenced by routing structures: FPGAs that have routing structures that
have many wires and flexible routing (in which a wire can be connected to any other wire) tend to

F4 C4 G4YQ
G1 Y
C1
K CLB G3

F1 C3

X F3
XQ F2 C2 G2

Figure 2-32 XC4000 Interconnect

have smaller logic cells with a larger fan-in and more outputs as a ratio of the number of gates in the
logic cell. These are typically antifuse FPGAs. FPGAs that have routing structures with fewer wires
and designated interconnections tend to have larger logic cells with less fan-in and fewer outputs as a
ratio of the number of gates in the logic cell. These are typically SRAM FPGAs.

Antifuse FPGAs may use logic cells with large fan-in and relatively large fan-out because of the
availability of wires to transport signals and the availability of fuses, which allow nearly any wire to
connect to any other wire. Routing does not pose a problem or limitation. Antifuse FPGAs may use
smaller logic cells to increase the efficiency of the logic cells. Small functions do not waste logic cell
resources (e.g., a two-input AND gate will not consume a large amount oflogic resources), and large
functions can be built up from multiple logic cells. An architecture with small logic cells will enable
the user to utilize the full capacity of the device. If a logic cell is too small, however, most functions
will require multiple levels of logic cells, with each level incurring a propagation delay as well as a
routing delay associated with the wire capacitance and fuse resistance and capacitance. To balance
efficiency with performance, antifuse FPGAs may use slightly larger logic cells with multiple
outputs that can implement multiple independent functions.

SRAM-based FPGAs typically use larger logic cells with fewer inputs and outputs. These logic cells
can implement larger functions without incurring routing delays, which can be more significant
because 'of the larger resistance and capacitance of the programmable element. However, because

47

Timing

48

they tend to have fewer outputs as a ratio of the number of gates in the logic cell, they tend to be less
efficient for implementing small functions. Again, the trade-off is made between efficiency and
performance and is closely tied to the routing architecture.

Figure 2-33 illustrates the logic cells of Actel's ACT3, AT &T's ORCA, Cypress's pASIC380,
Xilinx's XC4000, and Altera's FLEX 8000 families of FPGAs. The first two are logic cells of
antifuse FPGAs; the remainder are from SRAM FPGAs.

The ACT3 logic cell (logic module, or LM) has eight inputs and one output; there are two types of
logic modules: combinational and sequential (one includes a flip-flop, and the other does not). The

logic is based on multiplexers, which are universal logic modules (i.e., a 2n to -1 multiplexer can
implement any function of n + I or fewer variables, using 0, 1, and the true and complement of the
variables as select lines and multiplexer inputs). As such, the modules can implement any of several
hundred functions of the inputs. Larger functions can be built by cascading logic cells.

The ORCA logic cells, or programmable function units (PFUs), have 14 inputs and 5 outputs. Each
PFU can be configured as four 4-input LUTs (look-up tables), two 5-input LUTs, or one 6-input
LUT, which can implement a function of up to 11 inputs. Each PFU has four flip-flops and can be
configured for arithmetic circuits or read/write RAM.

The pASIC380 logic cell has 23 inputs and 5 outputs and can implement multiple independent
functions for efficiency. The 4-to-l multiplexer ensures that the logic cell can implement any
function of 3 variables, and the wide AND gates also allow gating functions of up to 14 inputs.
Exclusive-OR gates, OR gates, and a sum of three small products, as well as counter macros can be
implemented. Larger functions can be built by cascading logic cells. All logic cells include a flip-flop.

The XC4000 CLB has 13 inputs and 4 outputs. It is a complex cell: two 4-input lookup tables
(LUTs) feed another 3-input LUT. Each CLB can implement anyone function of four or five
variables and some functions of up to nine variables. Alternatively, a CLB can be configured to
implement two functions of four variables, or one of two variables and another of five. Each CLB
has two flip-flops. The CLB can also be configured for special arithmetic circuits, such as a two-bit
adder with carry-in and carry-out, or as a read/write RAM of 16 bits for storing data.

The FLEX 8000 architecture may be considered a hybrid CPLDIFPGA architecture. It addresses the
SRAM routing issues differently. In this architecture, the logic cells (logic array blocks, or LABs) are
made up of eight logic elements (LEs). Each LAB has a local interconnect in which any LE can
connect to any other LE. The local interconnect and the relatively large size of the LABs reduce the
routing congestion on the inter-LAB and 110 routing channels. Each LE has a four-input LUT and
can implement a single function' of four variables. An LE also has carry circuitry for arithmetic
circuits, as well as a flip-flop.

Timing for designs implemented in FPGAs cannot easily be predicted for any but the simplest of
designs. Signal propagation delays are a function of the number of cascaded logic cells, the signal
path in the logic cells, the number of programmable interconnects through which the signal
propagates (as well as the technology, antifuse or SRAM), fan-out, and 110 cell delays. Without a
priori knowledge of the value of each of these variables (how many logic cells, number of
programmable interconnects, fan-out, etc.)-that is, without a knowledge of how the design will be
placed and routed-the propagation delays and system performance cannot be predicted with
precision. This is not unlike the dilemma faced when developing a semi-custom gate array. For

000

001
I----------ID

010

011

A1 81 AO 80 ClK

Actel ACT3

Q OUT

ClR

QS---------------~
A1
A2 - __ _

A3
A4 ~-----r_----~----AZ
AS ----'--

A6

B1

B2 ~--~---OZ

C1
C2

01
02

E1

E2

F1
F2 --.....,--......
F3
F4
FS
F6

1--"""'----1D

QC--__________________ ~

Q

QC----------------------------~

Cypress pASIC380

Q QZ

NZ

FZ

Figure 2-33 The logic cells of several FPGAs

49

G,

G,

G,

G,

F,

F,

F,

F,

50

Logic
Function

Logic
Function

z
6

z
6

AT&T ORCA

c, c, c, c,

YO

XO

Xilinx XC4000

Figure 2-33 (continued)

systems that do not have high-performance requirements, any FPGA will potentially meet
performance requirements.

Having an understanding of the technologies as well as the routing and logic cell architectures can
help a designer choose an FPGA for a particular application. Additionally, HDLs like VHDL and
Verilog allow relative design independence, permitting a designer to benchmark design performance
from one architecture to the next without reentering a design.

Comparing SRAM to Antifuse
Vendors of both SRAM and antifuse FPGAs attempt to service the same market. However, the
choice in technology forces a conscious and deliberate decision to focus on a segment of that market.
We return now to our initial assumptions as to what those needs are and compare which product, an
SRAM or antifuse-based FPGA, best services those needs.

Performance. Many designs push the limits of FPGA system performance, and designers often like
to know where to start. Some generalizations may be made: (1) At present, peak system performance
achievable from an 8,000 gate FPGA is less than 50 MHz (despite what advertisers will claim) and
for most designs is around 35 MHz. Of course, design techniques such as pipe-lining can help
achieve higher performance. (2) Presently, antifuse FPGAs offer the highest performance for most
designs, due, in large part, to the smaller resistance of programmable links (50 ohms vs. 1,000 ohms)
as well as the flexibility in routing, which does not prohibit signals from taking the most direct paths.
However, some SRAM FPGAs have dedicated carry logic to provide better performance for some
applications.

Density and capacity. Although the size of an antifuse FPGA logic cell is typically .Smaller and the
number of outputs as a ratio of the number of logic cell gates is greater than those for its SRAM
counterpart, allowing these logic cells to implement more user logic per available gate (greater
capacity), SRAM FPGAs are presently available at higher densities. AT & T, for example, has a
40,000-gate FPGA. Most vendors of SRAM-based FPGAs have plans to achieve upwards of 50,000
usable gate densities in the next three years, whereas vendors of antifuse-based FPGAs have plans to
reach upwards of 25,000 usable gates. For massive integration, SRAM FPGAs provide the solution.

Ease of use. This market need is for the designer to be able to develop a design quickly and easily,
both because of the availability of easy-to-use software and "friendly, forgiving" device
architectures. The availability of software varies from one silicon or software vendor to the next.
Those that have been in the market longer tend to have the most support. Friendly, forgiving
architectures make it easy to implement optimal structures (anything from simple AND gates to
counters, arithmetic circuits, and state machines), have routing flexibility so that software tools can
automatically place and route a design, and can accommodate design changes with the same pinout
and achievable performance.

Antifuse-based architectures, for the most part, have the lead in this area: Routable architectures
make it easy for software to be developed so that placing and routing can be done automatically and
so that design changes can still fit in the same pinout by rerouting (the routing limitations of some
SRAM FPGAs make it impossible or difficult-placing and routing must be done by hand-for a
design to fit with the same pinout). Design changes usually can be accommodated with little impact
on timing, provided that multiple logic cell delays are not added, because routing changes that
require additional programmable links cause only incremental delays.

In-system programmability (ISP) and in-circuit reconfigurability (ICR) . Antifuse FPGAs are
OTP (one time programmable) devices. While it is clearly not possible to reconfigure (reprogram)

51

such a device, it is possible to program such a device in-system, but the programming yield and
programming times of antifuse FPGAs currently make ISP cost prohibitive. (Scrapping one device in
a hundred is usually not a problem, particularly if the device can be replaced without charge, but
scrapping one board or system per one hundred is usually too costly.). Because the ability to program
an SRAM device can be verified before the device is delivered to the customer, SRAM FPGAs have
significantly higher programming yields, allowing ISP for all and ICR for some. In-system
programmability is used to mainstream the manufacturing flow, although in-system programmability
usually requires an on-board serial EPROM or a card connector. With ISP, fewer parts and
inventories need to be handled. In-circuit reconfigurability is also an emerging need: it is the ability
to reconfigure an FPGA "in the field," either by a field technician or an end user, from a serial
EPROM or perhaps data downloaded from a disk. Reconfiguring in the field is only feasible if the
design can fit, route, and use the same pinout. For some device architectures, this requirement can
pose a problem.

Other FPGA Features

Futures

52

Other features commonly advertised by FPGA vendors are low-skew clock buffers, lower power
consumption, 5V/3.3V operation, JTAG-compliant boundary scan, on-chip RAM (memory), and PCI
compliance.

Vendors of FPGAs and CPLDs specify power differently-there isn't a common measuring stick.
It's important to read the fine print if using the least amount of power is critical. This can also be true
of performance.

Vendors may use the term "PCI compliant" loosely: it usually means that the device meets the
requirements of the PCI components electrical checklist for a specified range of temperature, but it
often does not mean that a real-world PCI interface design can operate from dc to 33 MHz, as
required by PCI.

We do not have a crystal ball with which to see where the future of programmable logic lies in the
years to come, but that won't keep us from making predictions, some of which are obvious: (1)
Performance and density requirements will increase. Three-layer metal technology as well as smaller
processes such as 0.35 micron CMOS (most programmable logic is presently on 0.65 micron CMOS)
will help both performance and density. As performance improves at higher densities, FPGAs will
take some of the ASIC market,because FPGAs provide several advantages: There are not any NREs
(resulting in lower initial and low volume costs), designing is less risky (multiple cycles are
acceptable), the design cycle is quicker (simulation can be less exhaustive; manufacturing is not part
of the total design time), working with an ASIC vendor is eliminated, and fewer resources are
required (one person rather than a team). (2) The 3.3V market will continue to grow. (3) Large
devices may incorporate on-board PLLs (phase-locked loops) to control clock skew, and perhaps to
purposely introduce clock skew in output flip-flops to achieve short clock-to-output delays. (4) In
system programming will continue to be used to mainstream manufacturing. (5) In-circuit
reconfigurability will lead to innovative designs, which will fuel the need for more devices that are
truly reconfigurable. Reconfigurability, however, requires robust routing resources and a
reprogrammable technology. These two requirements may be at odds with each other and with end
user performance requirements. It may take a few years for reconfigurability to be viable in a large
percentage of systems, but if it takes hold, it has the potential to change design methodologies to
include programmable and reprogrammable systems.

Exercises

1. Noactivity is a signal that must be asserted if none of the ports in a 4-port network repeater are
active. (a) Implement the logic for noactivity using the TTL inventory listed at the beginning of the
chapter. (b) Implement the logic for noactivity in a PAL 16R4. (c) Compare the implementations:
How many TTL devices are required? What percentage of the 16R4 product terms is required? What
percentage of the macrocells? Compare the levels of logic. Compare the total propagation delays and
standby power requirements.

2. What percentage of the 16R4 resources (Vas, product terms, and macrocells) would be required to
implement the collision signal X (described at the beginning of the chapter) and activity (see exercise
above) in the same 16R4?

3. After producing several production units, a design change is required: The logic for collision and
activity must change. Describe the corrective action if TTL devices were used. Describe the
corrective action if a PAL was used.

4. Determine the expressions required to implement a lO-bit counter in a 22VlO. How can resources
be allocated in order for this design to fit? What is the maximum frequency of operation, given the
timing specifications of page 23? What if a LOAD input is provided along with 10 data inputs to the
counter?

5. Odd is a registered signal that is the exclusive OR of A, B, C, D, E, and F. How can this be
implemented in a 22V 10 such that it will fit? What are the setup and hold times that must be met?
What is the clock-to-output delay and maximum frequency of operation?

6. Implement a 4-bit counter with an enable in a 22VlO. What are the setup and hold time
requirements? What is the clock-to-output delay and maximum frequency of operation?

7. Describe the features of a 16V8 in relation to those of a 16L8 and 22VlO.

8. Implement the following functions in each of the logic cells of Figure 2-33 and compare
efficiency: (a) two-input AND, (b) seven-input AND, (c) two-:bit counter, and (d) two-bit adder,
(e) two input OR, (f) eight input XOR (parity generator)

9. Implement a 4-bit adder with inputs A[3:0] and B[3:0] and outputs S[3:0] (Sum) and Cout (Carry
out) in a 22VlO. What is the resulting performance? What is the implementation and performance
in a FLASH 370 CPLD? How do both of these change if the design is a 4-bit accumulator with input
A[3:0] and outputs S[3:0] and Couto

10. How would an 8-bit magnitude compare be implemented in a CPLD and in an FPGA? In both
cases, are device resources being used evenly, or are some device resources being used more than
others? Are any device resources left unused with this particular design?

11. Show how a 4-to-1 Multiplexor can implement any logic function of three input variables (A, B,
and C). How many total logic functions are there for three inputs? n inputs?

12. List features that you would use to label a device as a PAL, CPLD, FPGA or an ASIC.

13. List major differences in the 110 and Buried Macrocell structures of the Cypress 340MAX and
the Cypress FLASH 370 family of CPLDs.

53

54

14. List major differences in the Logic cell structures of the X4000 and the Cypress pASIC380
family of FPGAs. Refer to the data books if necessary.

15. For a given application, how would you choose between an FPGA or a CPLD as your target
architecture.

16. Create your own 256-macrocell CPLD. What are the issues you would be concerned with? What
features would you put in? Justify your choices.

17. Create your own 20K gates Antifuse FPGA. What are the issues you would be concerned with?
What features would you put in? Justify your choices. Justify why would you choose to use this
device as opposed to an ASIC.

3 Entities and Architectures

This chapter discusses the basic building blocks of VHDL design, the entity and the architecture. We
will make analogies to schematic design entry and high-level programming languages to help place
VHDL concepts into a familiar framework. We'll be careful not to overstate the analogies, however,
because coding VHDL is very different from coding in a programming language. An important
concept to keep clear as you write VHDL code is that you are designing for hardware: Your
descriptions in VHDL code will be synthesized into digital logic for a programmable logic device.

A Simple Design

The code example below is a VHDL description of a 4-bit equality comparator. It is divided into two
sections: an entity and an architecture. In this example, the uppercase words are required by VHDL;
the lowercase words are furnished by the designer. The keywords are in uppercase in this first
example for readability only-VHDL does not require that the keywords be in uppercase. In fact,
VHDL is not case sensitive. The line numbers are also not part of a VHDL design-they are used
here to help us identify specific lines of code in our discussion. This 4-bit equality comparator serves
to demonstrate the basic framework of entities and architectures. Following the code listing is a line
by-line explanation of the code, but first read through the listing; perhaps you can understand the
code structure without an explanation.

1 -- eqcomp4 is a four bit equality comparator
2 ENTITY eqcomp4 IS
3 PORT (a, b: IN BIT_VECTOR(3 DOWNTO 0);
4 equals: OUT BIT) ;
5 END eqcomp4;
6
7 ARCHITECTURE dataflow OF eqcomp4 IS
8 BEGIN
9 equals <= '1' WHEN (a = b) ELSE '0'; -- equals is active high
10 END dataflow;

Listing 3-1 Dataflow design of a 4-bit comparator

The characters "--" introduce a comment. Line I is a comment line. Comments help to document
your design; they are for the reader and are ignored by the compiler. The comment continues to the
end of the line. To continue a comment on another line, you would need to start the line with a
double-dash. Comments can also start anywhere in a line, as shown in line 9. Everything to the right
of the double-dash is part of the comment. Lines 2 through 5 describe the I/O of a 4-bit equality
comparator called eqcomp4. Lines 2 and 5 begin and end the declaration for the eqcomp4 entity. Line
3 begins a port, or pin, declaration and the characters ");" (without the quotes) at the end of line 4 end
the port declaration. Ports are points of communication of the entity with anything outside of the
entity. On line 3 of this example, we declare two ports called a and b. These ports are inputs to the
design that are 4-bit buses. Each member of the bus, a(O) for instance, is a BIT, which means it may
have the value of '0' of'I'. Finally, equals is declared as an output bit in line 4. The entity has a
schematic symbol equivalent, as shown in Figure 3-1.

55

-A[3' 0]

EQUALSr--

-8 [3, 0]

Figure 3-1 Schematic Symbol Equivalent of eqcomp4
Entity

Lines 7 through 10 describe what our entity, eqcomp4, does. This is called the architecture of our
entity; it begins on line 7 with the keyword ARCHITECTURE and ends with "END dataflow;" at
line 10. In line 7, we give the architecture a name, dataflow, and identify the entity that it describes:
"OF eqcomp4." (The name that we gave the architecture was our choice. We chose dataflow because
the architecture falls into the class of dataflow descriptions. We'll explore this and other classes of
architectural descriptions later in the chapter.) Line 8, obviously enough, begins the architecture
description with the keyword BEGIN, and line 9 is where the digital logic is described. This simple
architecture includes one equality comparator. Line 9 states that when the value of bus a is equal to
the value of bus b, then equals gets' I' , otherwise equals gets '0'. Read from left to right: "equals
gets' I' when a equals b, else '0'." The <= symbol is an operator that can be read "gets" or "is
assigned to." For brevity, we'll often use "gets," despite its being jargon. The comparison is bitwise
from left to right (i.e., a(3) is compared to b(3), a(2) is compared to b(2), etc.). The most significant
bits (MSB) for a and b are the leftmost bits a(3) and b(3). For clarity, we will typically order the bits
from "x downto 0" in order that the most significant bit is the one with the highest index.

Entity and Architecture Pairs

Entities

56

The design example above illustrates that a VHDL design consists of an entity and an architecture
pair: The entity describes the design 110 and the architecture describes the contents of the design.
Now that we have worked through an example to give you an idea of how designs are put together,
we'll start looking at the details of VHDL design syntax and semantics. We'll begin by examining
the syntax used to describe entities, after which we will describe the classes of architecture.

We could start with a detailed discussion of identifiers, data objects, and data types. However, we
believe that you'll benefit more by first gaining a broad understanding of how VHDL designs are put
together before delving into the details of data. If you prefer, read the section later in this chapter on
identifiers, data objects, and data types before returning here.

A VHDL entity describes the inputs and outputs (110) of a design. This could be the 110 of a
component in a larger, hierarchical design, or-if the VHDL entity is a device-level description-the
110 of a device. The entity is analogous to a schematic symbol, which describes a component's
connections to the rest ~f a design. A schematic symbol for a 4-bit adder (add4) is shown in Figure 3-
2. You can see that the 4-bit adder has a name (add4), two 4-bit inputs (a and b), a carry-in input (ci),
a 4-bit output (sum), and a carry-out output (co). These items are also contained in an entity:

entity add4 is port(
a, b: in std_logic_vector(3 downto 0);

end add4;

Ports

ci:
sum:
co:

in std_logic;
out std_logic_vector(3 downto 0);
out std_logic);

SUM[3:0]

Figure 3-2 Symbol equivalent of entity ADD4

Each I/O signal in an entity is referred to as a port, which is analogous to a pin in a schematic
symbol. (A port is a data object in VHDL. Like other data objects, it can be assigned values, which
can be used in expressions. We'll investigate other data objefts in the next section ofthe chapter.)
The set of ports that you define in your entity is referred to as a port declaration. Each port that you
declare must have a name, a direction (or mode), and a data type. The first part of the declaration, the
port name, is self-explanatory. Legal VHDL identifiers (names) are described on page 70.

Modes

The mode describes the direction in which data is transferred through a port. The mode can be one of
four values: IN, OUT, INOUT, or BUFFER. A port that is declared as mode IN describes a port in
which data flows only into the entity. The driver for a port of mode IN is external to the entity. A
port that is declared as mode OUT describes a port in which data flows only from its source to the
output port (or "pin") ofthe entity. The driver for a port of mode OUT is from within the entity.
Mode OUT does not allow for feedback within the associated architecture. For internal feedback
(i.e., to use this port as a driver within the architecture), you'll need to declare a port as mode
BUFFER or mode INOUT. A port that is declared as mode BUFFER is similar to a port that is
declared as mode OUT, except that it does allow for internal feedback. Mode BUFFER does not
allow for bidirectional ports, however, because it does not permit the signal to be driven from outside
of the entity. An additional caveat for the use of the mode BUFFER will be explained in chapter 6,
"The Design of a 100BASE-T4 Network Repeater." For bidirectional signals, you must declare a
port as mode INOUT. This mode describes a port in which data can flow into or out of the entity. In
other words, the signal driver can be inside or outside of the entity. Mode INOUT also allows for
internal feedback. Mode INOUT can be used anywhere that mode BUFFER is used; that is,
everywhere that mode BUFFER is used in a design could be replaced with mode INOUT. However,
doing so may complicate the reading of large design listings, making it difficult to discern the source
of the signals. If the mode of a port is not specified, then the port is of the default mode IN.

Mode IN is primarily used for clock inputs, control inputs (like load, reset, enable), or unidirectional
data inputs. Mode OUT is used for outputs such as a terminal count output (a terminal count is
asserted when the value of a counter reaches a predefined value). Mode BUFFER is used for ports

57

58

such as the counter itself (the present state of a counter must be used to determine its next state, so
it's value must be in the feedback loop, thereby necessitating a mode other than just OUT). Mode
INOUT could be used for all of the ports mentioned so far: the dedicated inputs, the terminal count,
and the counter outputs. Although using one mode, INOUT, for all signals would be legal, it reduces
the readability of the code. A more appropriate use for mode INOUT is for signals that require
feedback (like the counter) or that are truly bi-directional such as the multiplexed address/data bus of
a DMA controller. Figure 3-3 illustrates the classification of modes.

MOD [• MOD [.

i n
out

i n
buffs!'

out
Oft 2

in 0 u t

i n

Figure 3-3 Modes and their signal sources

Types

In addition to specifying identifiers (names) and modes for ports, you must also declare the ports'
data types. The most useful and well-supported types provided by the IEEE std_logic_1164 package
are the types std_ulogic, std_Iogic, and arrays of these types. As the names imply, "standard logic" is
intended to be a standard type used to describe circuits for synthesis and simulation. For simulation
and synthesis software to process these types, their declarations must be made visible to the entity by
way of a USE clause. The most useful and well-supported types provided by the IEEE 1076/93
standard and which are applicable to synthesis are the data types boolean, bit, bie vector, and integer.
Many of the examples throughout this book will use the std_Iogic type to reinforce the idea that it is

a standard. However, you should be aware that you are not restricted from using other types. We'll
defer a more detailed discussion of data types to page 72.

Architectures
Every architecture is associated with an entity. An architecture describes the contents of an entity;
that is, it describes what an entity does. If the entity is viewed as the engineer's "black box" (for
which the inputs and outputs are known, but not the details of what is inside the box), then the
architecture is the internal view of the black box. VHDL allows you to write your designs using
different "styles" of architecture and to mix and match these styles as you see fit. Depending on the
style, an architecture is classified as a behavioral or structural description, or a combination of the
two. The name given to the architecture classification is not important, and often the style or class of
design description that you use for synthesis is not important. However, the terms "behavioral" and
"structural" will give us a common vocabulary that we can use when discussing these different
classes of design description.

Behavioral Descriptions
1 entity eqcomp4 is port(
2 a, b: in std_logic_vector(3 downto 0);
3 equals: out std_logic);
4 end eqcomp4;
5
6 architecture behavioral of eqcomp4 is
7 begin
8 comp: process (a, b)
9 begin

10 if a = b then
11
12
13
14

else

end

equals <=

equals <=
if;

15 end process comp;
16 end behavioral;

'1' ;

'0' ;

Listing 2-2 Behavioral architecture description for eqcomp4.

Listing 2-2 is an example of a behavioral description, as is Listing 2-1. Why is it "behavioral," or
rather what makes it "behavioral?" After reading the code listing, you may already have an idea.
Simply put, it's because of the algorithmic way in which the architecture is described. Behavioral
descriptions are sometimes referred to as "high-" descriptions because of the resemblance to high
level programming languages. Rather than specifying the structure or netlist of a circuit, you specify
signal assignments, or circuit "behavior." The advantage to high-level descriptions is that you don't
need to focus on the gate-level implementation of a design; instead, you can focus your efforts on
describing how the circuit is to "behave."

Lines I through 4 declare the entity and ports (I/O) for a 4-bit comparator. Line 6 declares the
architecture that begins on line 7. Lines 8 through 15 embody the algorithm for this comparator.
Processes are one ofVHDL's design constructs for embodying algorithms. Lines 10 through 14 use a
comparison operator and the IF-THEN-ELSE construct to indicate that equals should be asserted
when a is equal to h.

59

60

If you've noticed that Listing 2-2 is just another way to describe the 4-bit equality comparator of
Listing 2-1, then you've discovered one ofVHDL's greatest strengths: the ability to describe the
same circuit using different styles. We'll consider three more w~ys to describe a 4-bit equality
comparator as we continue to discuss behavioral and structural design descriptions.

Processes and Sequential Statements

Processes, like the one in the architecture of Listing 2-2, permit the description of circuits using
sequential assignment statements, or algorithms. The architecture of Listing 2-2 can be rewritten as:

1 architecture behavioral of eqcomp4 is
2 begin
3 comp: process (a, b)
4 begin
5 'equals <= '0';
6 if a = b then
7 equals <= '1';
8 end ifi
9 end process comp;
10 end behavioral;

Listing 2-3 Alternative implementation of eqcomp4; equals has default
value of '0'

The ordering of the statements in this process is important: It indicates that as a default equals should
be assigned '0', but that if a is equivalent to h, then equals should be assigned' l' . If the statement
"equals <= '0';" was placed after line 8, then this design would take on a completely different
meaning: equals would always be '0'.

Modelling vs. Designing

Before proceeding, it will be instructive to explore briefly a few differences between writing VHDL
code for modelling and designing. Understanding these differences will clarify the semantics (and
motivation behind the semantics) for some VHDL statements. Having a firm grasp of these
semantics will enable you to write accurate code. Without clarification, it is easy to misconstrue the
concepts of concurrent and sequential statements, as well as event scheduling. Ignoring these
misconceptions can lead to poor VHDL coding and frustration with synthesis and simulation
software tools, as well as the VHDL language itself.

Modelling is the process of describing the behavior or structure of logic circuits that already exist.
Designing is the process of describing the behavior or structure of logic circuits that have yet to be
generated, or synthesized.

Because VHDL code that is written for synthesis must accurately reflect the behavior or structure of
a piece of logic, part of the designer's challenge is to have a clear idea not only of the behavior or
structure of the logic to be created but also of how to model that logic. The same code that is
processed by synthesis software to produce logic must also be compatible with software that
processes VHDL for simulation. The logic that is created for synthesis must match a functional
simulation. Whereas all code that is written for synthesis can be simulated, the opposite-all code
that is written for simulation can be synthesized-is not true, as you'll soon see.

Two key concepts in simulation and modelling that are often ignored by writers of VHDL code for
synthesis are the concepts of simulation time and event scheduling. A signal assignment statement
causes an event to be scheduled for the target of the signal assignment if the value of the calculation
of the expression to the right of the signal assignment operator is different than the present value of
the target signal. An event is a change in value of a signal and is scheduled to occur after a specified
period of time, even if that period is zero. The signal will not assume its new value until the event
occurs. In the case of a zero delay event, the signal will not assume its new value until the end of the
current simulation time. The current simulation time is over upon the completion of execution of a
concurrent statement (a process taken as a whole also constitutes a concurrent statement) or if
simulation time is executed.

For instance, during the simulation of the following architecture,

architecture a_model of two_gates
x <= a AND b after 5 ns;
y <= not b;

end a_model;

suppose that y is '0' and x is '1' because both a and b have been' I' for a long period of time. But
now, at time t = 100 ns, b has transitioned from a '1' to a '0.'

An event on x will be scheduled for 5 ns from now, at which time it will assume the value of '0', and
an event on y will be scheduled for zero delay. At the end of the current simulation time, y assumes
the value of ' I'. The simulation software will show that immediately after both statements are
executed, but still at t = 100 ns, x retains its value for 5 ns and y assumes the value of ' l' .

How does synthesis software process this code as compared to simulation software? To start with, an
AFTER clause is ignored by synthesis software because such a clause is typically used to model a
propagation delay. In this text, only the test fixture designs of chapter 9, "Creating Test Fixtures",
will use the AFTER clause. All other designs are intended specifically for synthesis. Also, synthesis
software has the task of generating logic (equations for a fitter or a netlist for a place and route tool)
such that a model of the generated logic will match the functionality the design description as
simulated. For this description a simple AND gate and inverter are generated.

Understanding the make-up and interpretation of a PROCESS from a modelling and simulation point
of-view can help in writing processes that will be interpreted by synthesis software in generating
logic. It also ensures that you will be able to use simulation software to test your design description.

As an example, we will evaluate Listing 2-3 first from a simulation stand-point, then from a synthesis
standpoint.

Like all processes, the process of Listing 2-3 contains a sensitivity list. The sensitivity list is a list of
signals for which a change in value of one of these signals will cause the process to become
activated. Once activated, the statements between the BEGIN and END statements are executed in
sequential order. After reaching the END PROCESS statement, the process becomes inactive once
again.

This process will become active if the value of either signal a or signal b transitions. The statements
within the process are executed in sequence. The first statement schedules an event on equals for
zero delay. That is, at the end of the current simulation time (i.e., end of the process), equals will
assume the value of '0,' provided that the currently scheduled event is not preempted before the end
of the current simulation time (i.e., before the end of the process). If signals a and b are equivalent,

61

62

then the next statement-the IF statement-preempts the currently scheduled event, and a new event
is scheduled on equals for zero delay. The end of the process is reached, indicating the end of the
current simulation time, so the process becomes inactive again until the next transition in a or b, and
equals assumes its scheduled value.

Synthesis software must produce logic that is accurately modelled by the design description. In this
case, synthesis software will step through the code, find that '0' is the default value for equals and
that equals should be asserted if a is equivalent to b.lt will produce the logic of an equality
comparator.

The following example is slightly more involved.

architecture behavioral of eqcorop4 is
begin
syntp: process (c, d)

begin
x <= 'a'; y <= '1';
if (c = 'a' and d = 'a') then

elsif (c

elsif (c

end if;

x <= '1';

'a' and d = '1') then
x <= '1';

'1' and d = '1') then
y <= '0';

end process synth;
end behavioral;

Synthesis software will step through the code, find the default values and subsequent conditional
assignments in order to generate the following equations for x and y:

x = ca + cd and y = cd
= c

Why does VHDL have the concept of event scheduling? The primary reason why signal assignments
are delayed is to accurately model propagation delays. For example, the statement,

X <= a AND b after 5 ns;

can be used to model an AND gate. A change in a, b, or both that would cause a change in x will
propagate in 5 ns. If a, b, or both change again within 5 ns (of the first change) such that x will be its
original value, then x will not change value. The real circuit may also behave in this way, or a glitch
may be produced.

Another reason for event scheduling is that a computer (with one CPU) that is used for simulation
can only update one value at a time. Even if several signals are described as having zero delay, only
one signal can be updated at a time by the computer. The simulation software must suspend the
current simulation time while new values are calculated and scheduled.

We examine the following design to illustrate how someone unfamiliar with the concepts of event
scheduling and simulation time may expect to write code that will logically AND all bits of a bus.

entity roy_and is port(
a_bus: in bit_vector(7 downto 0);

x: buffer bit) ;
end my_and;
architecture wont_work of my_and is
begin
anding: process (a_bus)

begin
x <= '1';
for i in 7 downto 0 loop

x <= a_bus(i) AND x;
end loop;

end process;
end wont_work;

Listing 2-4 Inaccurate model of an 8-bit AND gate; initialization and
scheduling causes output to always be '0'.

As the architecture name indicates, this process won't work as the designer desired. The designer
wants for the output x to represent the logical AND of all of the bits in a_bus, but because of the way
that the VHDL standard specifies initialization for signals like x, this code does not accurately model
that the designer desires.

Let's step through the process. The initial value at the beginning of simulation for a signal of a data
object of type bit is '0'; thus, x is initially 'O.'The process is activated any time that a_bus changes
value. The first statement schedules an event on x for zero delay. That is, x will assume the value of
, l' after the current simulation time, provided that the currently scheduled event is not preempted. In
fact, the currently scheduled event is preempted during the first iteration of the loop (when i is 7). In
this iteration, an event on x is rescheduled for zero delay, and its new value will be the result of the
expression a_bus AND x. The calculation of this value must be '0' because x is '0'. (The previously
scheduled event was preempted, so it never changed value from it's initial value.) Thus, the iteration
of i = 7 causes an event on x to be scheduled for zero delay unless the currently scheduled event is
preempted. Further events on x do not occur because subsequent iterations of the loop do not change
the currently scheduled value for x. The current simulation time is over when the simulation software
reaches the END PROCESS statement, at which time x will assume the value of '0.'

Synthesis software must ensure that the logic it produces will match the functionality of simulation,
so output x is hard-wired to '0,' which is not what the designer desired.

The design can easily be corrected to produce the desired effect by introducing a variable into the
process. The scope of a variable is a process. When a process is active, its variables can be used in
that process. When a process is not active, its variable cannot be used. An assignment to a variable
differs from an assignment to a signal because it is immediate, not delayed or scheduled. So, a new
architecture can be written for the my _and entity:

architecture will_work of my_and is
begin
anding: process (a_bus)

variable tmp: bit := '1'
begin

for i in 7 downto 0 loop
tmp := a_bus(i) AND tmp;

end loop;
x <= tmp;

63

64

end process;
end will_work;

Listing 2-5 An 8-bit AND gate; assignments to variables are immediate

A variable, tmp, is declared and initialized to '1' in the process declarative region. Each time the
process is activated, the variable is available and initialized to ' 1'. The variable must be initialized
each time the process is activated, as it will not retain its previous value. The := operator is used here
for the initialization expression and variable assignment, indicating immediate assignment. Thus, tmp
is immediately assigned a value of ' 1,' and iterations of the loop of the implicitly declared variable i
result in immediate, not scheduled, assignment to tmp. The last statement in the process is an
assignment to x. Thus, an event on x is scheduled for zero delay. It will assume the value equivalent
to the logical AND of all bits of a_bus after the current simulation time. The current simulation time
is over once the process ends.

Synthesis software must generate logic that matches the design model-in this case, an 8-bit wide
AND gate.

Because synthesis software interprets a process as describing either combinational or synchronous
logic, some models (such as the following one) may be simulated but not synthesized.

entity neat_model is port(
a, b, c: in bit;
x: buffer bit);

end neat_model;
architecture cant_synthesize of neat_model is
begin
procl: process (a, b)

begin
x <= a and band c;

end process;
end cant_synthesize;

This model can be simulated easily. A change in a or b will cause the process to be activated and
sequenced. An event on the signal x will be scheduled for zero delay. The value that it will assume is
the logical AND of a, b, and c.

This circuit cannot be synthesized, however, because it is not at all clear how to build a circuit for
which a transition in c does not cause a change in x but for which a change in a or b causes x to be
the logical AND of a, b, and c.

If the signal c is added to the sensitivity list, then the model behaves differently, but in this case,
synthesis software can generate logic-a 3-bit wide AND gate-that is accurately modelled by above
description.

Logic design lends itself to descriptions using algorithms. As you review schematics, boolean equations,
or a state machine diagram, you may hear yourself saying, "If signal a is asserted then the machine goes to
the next state." VHDL provides a design methodology that enables you to capture designs with English
language-like constructs in behavioral descriptions. You can capture a design in VHDL almost as if you
were speaking to a colleague, "When the address is between OOOOH and 4000H (inclusive), then promsel
is asserted; when it's between 4001H and 4008H (inclusive), then peripheraCl is asserted ... " In

behavioral descriptions, you can make use of control constructs such as JF-THEN-ELSE, CASE-WHEN,
WHEN-ELSE, WITH-SELECT-WHEN, and loops, as you'll see in later chapters.

Dataflow and Concurrent Assignment

Our first example of the chapter was also a behavioral description. We reprint it again in Listing 2-6,
changing the data types of the ports.

-- eqcomp4 is a four bit equality comparator
library ieee;
use ieee.std_logic_1164.all;
ENTITY eqcomp4 IS

PORT (a, b: IN STD_LOGIC_VECTOR(3 DOWNTO 0);
equals: OUT STD_LOGIC);

END eqcomp4;

ARCHITECTURE dataflow OF eqcomp4 IS
BEGIN

equals <= '1' WHEN (a = b) ELSE '0';
END dataflow;

-- equals is active high

Listing 2-6 Dataflow architecture description for eqcomp4

This architecture can further be described as a dataflow architecture because it specifies how data
will be transferred from signal to signal without the use of sequential statements. You'll likely want
to use dataflow descriptions in those cases where it's more succinct to write simple equations or
CASE-WHEN or WITH-SELECT-WHEN statements rather than a complete algorithm. Oftentimes,
it's just a matter of style-what you're most comfortable with.

There is an important distinction between the signal assignment statements of Listing 2-2 and Listing
2-6. The signal assignment is sequential in Listing 2-2, and the assignment in Listing 2-6 is
concurrent. Whereas the order of sequential signal assignment statements in a process can have a
significant effect on the logic that is described, the order of concurrent signal assignment statements
does not matter. From a simulation point of view, the order of execution of concurrent signal
assignment is dependent upon which signals change. Take the following concurrent statements, for
example:

architecture simple of example is
begin

w <= x and Yi

x <= y OR c;
Y <= a AND b;
z <= x AND d;

end simple;

Suppose that a, b, c, and d have been' l' for some time now. Therefore, W, x, y, and z also have
steady-state values of' 1.' Now suppose that b changes value from a '1' to a '0.' The signal
assignment statement that will execute first is the one (or ones) that has b in its implied sensitivity
list-a concurrent signal assignment statement is sensitive to transitions in any of the signals on the
right-side of the <= signal assignment operator.

65

66

Thus, the signal assignment statement for y executes first, and an event on y is scheduled for zero
delay. Once execution of the statement is complete, y assumes it's new value of '0'. This change in
the value of y causes the signal assignment statements for wand x to execute because y is in their
implied sensitivity lists. Simulation software will have to execute one statement before the other,
even though the hardware that this describes is parallel. Either statement can be executed first.
Suppose that the signal assignment statement for w is executed first: An event on w is scheduled for
zero delay. Once execution of this statement is complete, w assumes it's new value of '0.' The signal
assignment statement for x must now be executed: An event on x is scheduled for zero delay. Once
execution of this statement is complete, x assumes the value of '0'. This change in value of x causes
the signal assignment statements for wand z to be executed, in any order. Suppose that the signal
assignment statement for w is executed. The evaluation of the expression on the right-side of the <=
operator is not different from present value of w, so an event (remember, an event is a change in
value of a signal) is not scheduled for w. Finally, the signal assignment statement for z is executed:
an event on z is scheduled for zero delay. Once execution of this statement is complete, z assumes
it's new value of '0.'

The bottom line is that the order of concurrent signal assignment statements is of no consequence.

If you're like most people, you'll develop a comfortable coding style as you first start to write VHDL
code. As you gain familiarity with some constructs, you'll then explore other constructs and
techniques.

Here is a style that many logic designers will already be comfortable with:

entity eqcomp4 is port(
a, b: in std_logic_vector(3 downto 0);
equals: out std_logic);

end eqcomp4;

ARCHITECTURE bool OF eqcomp4 IS
BEGIN
equals <= NOT(a(O) XOR b(O))

AND NOT(a(l) XOR b(l))
AND NOT(a(2) XOR b(2))
AND NOT(a(3) XOR b(3))

END bool;

Listing 2-7 Dataflow architecture for eqcomp using boolean equations

Listing 2-7 is also a behavioral, dataflow description-behavioral because it does not describe the
structure or netlist of the design, dataflow because it describes the way in which data flows from
signal to signal. Writing boolean equations, particularly for the description of a comparator is
unnecessarily cumbersome. Suppose that the size of ports a and b were increased. The architecture of
Listing 2-7 would require modification of the expression for equals, whereas the other architectures
used to describe the comparator in this section are independent of the size of a and b. These
architectures would not require modification. Nonetheless, there are times when boolean equations
provide the most concise and clearly defined interaction of signals.

Structural Descriptions
Read through the Listing 2-8 and observe what makes this description "structural":

entity eqcomp4 is port (
a, b: in std_logic_vector(3 downto 0);
aeqb: out std_logic);

end eqcomp4i

USE work.gatespkg.all;
ARCHITECTURE struct OF eqcomp4 IS
SIGNAL x : STD_LOGIC_VECTOR(O to 3);
BEGIN
uO: xnor2 port map (a(O) ,b(O) ,x(O));
ul: xnor2 port map (a(l) ,b(l) ,x(l));
u2: xnor2 port map (a(2) ,b(2) ,x(2));
u3: xnor2 port map (a(3) ,b(3) ,x(3));
u4: and4 port map (x(O) ,x(l) ,x(2) ,x(3) ,equals);
END struct;

Listing 2-8 Structural description of eqcomp4

This design requires that and4 and xnor2 components be defined in a package. We have accessed
these components by including a USE clause, which allows us to instantiate components from the
gatespkg package found in the work library. (Libraries and packages are discussed in chapter 6, "The
Design of a lOOBase-T4 Network Repeater.")

Structural descriptions consist of VHDL netlists. These netlists are very much like schematic netlists:
Components are instantiated and connected together with signals. (To instantiate a component is to
place a component in a hierarchical design. An instantiation is therefore either (1) an act of
instantiating (placing) a component or (2) an instance of a component-i.e., a particular occurrence
of a component. If the word instantiation is new to you, then you may find the word to be awkward
at first. As we continue to discuss structural descriptions in the coming chapters, you'll discover that
the word "instantiation" is concise.)

Structural designs are hierarchical. In this example, separate entity and architecture pairs are created
for the and4, xnor2, and eqcomp4 designs. The eqcomp4 design contains instances of the xnor2 and
and4 components. Figure 3-4 illustrates the hierarchy. The xnor2 and and4 components must each
have associated entity and architecture pairs. The entity and architecture descriptions for the xnor2
and and4 are not contained in the design file for our eqcomp4 component, rather they are accessed
(included) by way of the USE clause.

A structural description for a 4-bit equality comparator is probably not an appropriate use of
structural descriptions because it is more cumbersome than necessary. Large designs, however, are
best decomposed into manageable subcomponents. Multiple levels of hierarchy may be called for,
with the underlying components netlisted (connected) at each level of the hierarchy. Hierarchical
design allows the logical decomposition of a design to be clearly defined. It also allows each of the
subcomponents to be easily and individually simulated.

Comparing Architectural Descriptions
We've examined behavioral and structural architectures, and we created five different design
descriptions for the same function (a 4-bit comparator). We can think of a couple of other
descriptions for a 4-bit comparator, and you may be able to as well. All of these descriptions for the
same function demonstrate the flexibility of VHDL, but this flexibility begs the question, "How does
the synthesis and fitting of one design description differ from another?" That is, will different PLD

67

68

A

B aO

bO

al

bl
AEQB

a2

b2

a3

b3

Figure 3-4 Hierarchical schematic representation of Listing 2-8

resources be used depending on which description is synthesized? For example, if you want the four
bit comparator to be realized in a 22VlO, will the same 22VlO device resources be used regardless of
which description is synthesized?

Fortunately, for simple design descriptions (such as those for our 4-bit comparator), almost any
description will most assuredly be realized with the same device resources. However, this is not true
of more complex design descriptions. The synthesis software must interpret complex design
descriptions and create minimized logic equations for your circuit. The synthesis software as well as
the place and route (or fitter) software must then determine how to implement those minimized logic
equations to make the best use of available resources in the target logic device.

Different design descriptions for complex designs can result in different device resources being
utilized for three reasons: (1) The VHDL code may not accurately describe an optimal function. For
example, it is possible to describe a design that produces a functionally correct circuit, but which has
unneeded logic that is accurately synthesized from the VHDL code. (2) The synthesis software may
perform poorly in synthesizing a design description to make the best use of a device's architectural
resources. For example, some synthesis software produces sum-of-products logic equations and
passes those equations to the placer and router (or fitter) without having optimized the logic for the
target architecture. Sum-of-products equations cannot easily be mapped to just any architecture
(FPGAs in particular). Therefore, if the synthesis software does not present (to the place and route
software) logic in a form that is representative of a device's architectural resources, then more
resources than necessary may be used, unless the place and route software can compensate for the

lack of optimization in the synthesis tool. In this scenario, the VHDL description that more closely
resembles a netlist of RTL (register transfer level) components representative of device resources
will synthesize to a more optimal implementation (provided that the designer reduced the logic). (3)
The place and route software (fitter) may not make the appropriate choices for using device
resources. If the appropriate heuristics are not embedded within the fitter software, then the fitter
may not find a solution for fitting a design as appropriate even though the synthesis software has
presented optimized logic and there is a theoretical solution for fitting the design. In summary,
different design descriptions can produce different, but functionally equivalent, design equations
resulting in different circuit implementations. Mature VHDL synthesis tools should, however,
produce nearly equivalent circuits. In the pages to follow, we will point out where there is danger in
freely describing logic.

Used to implement hierarchical designs, a structural methodology is also sometimes used to
instantiate device-specific resources. Most synthesis tools or silicon vendors provide libraries in
which you can instantiate components that represent resources that are available in a device's
architecture. Most synthesis tools provide directives or attributes to indicate that such structures are
not to be optimized. In other words, software will implement these portions of a design exactly as the
structure of the component and how it is connected. This provides the designer with the most control
over design implementation.

This type of design methodology should be avoided for several reasons, unless it is the only way to
access a required feature of a device. Instantiating device-specific components eliminates the device
independence of the design. (The design can remain independent only if the device-specific
component has an associated architecture that can be synthesized to logic for other architectures.)
U sing such components should be the exception-it should not be necessary to create an entire
design from such components. Creating a design from such components requires an inordinate
amount of time; it provides little, if any, benefit over schematic-based design entry, and it requires
that you build functions from small-device resources. Additionally, you may inadvertently create
logic that is not optimal for the architecture or that is in error. It can be an arduous task to find a logic
error in a convoluted netlist. This is a design methodology that VHDL seeks to avoid and is precisely
why the HDL synthesis markets are growing. Computers can run through algorithms much faster
than any human. Carefully constructed software algorithms can produce optimal implemeritations.

We return to the trade-off discussed in the introductory chapter: meeting design requirements versus
controlling a design's implementation. In the chapters ahead, we'll identify how circuits will be
realized in logic devices to give you an idea as to when it will be most suitable to use behavioral or
structural design styles. For the most part, you will want to start out with behavioral design
descriptions because they are usually the quickest and easiest way to describe designs. If after
synthesizing the behavioral design description, the design implementation meets your performance
and cost requirements, then you have completed your design in the shortest possible design time. If
at that point you have I!ot met your requirements, then you will want to use the timing or constraint
driven directives available from the synthesis and place and route tools to help achieve the
requirements. If the desired results are still not achieved, you can introduce RTL descriptions to
optimize critical portions of your design. On your next design, you will be more cognizant of what
portions of your design to describe with the different coding styles. As the state of the art in VHDL
synthesis improves, you'll be able to describe a larger percentage of your designs completely
behaviorally with the appropriate amount of structure.

69

Identifiers, Data Objects, Data Types, and Attributes

70

Identifiers

Basic identifiers are made up of alphabetic, numeric, and/or underscore characters:

-The first character must be a letter.
-The last character cannot be an underscore.
-Two underscores in succession are not allowed.

VHDL-reserved words (see Appendix) may not be used as identifiers. Uppercase and lowercase
letters are equivalent when used in identifiers. The following are equivalent:

txclk, Txclk, TXCLK, TxClk

The following are all legal identifiers:

tx_clk
Three_State_Enable
se17D
HIT_1124
The following are not legal identifiers:

_tx_clk
8B10B
large#nurnber
link_bar
select
rx_clk_

Data Objects

an identifier must start with a letter
an identifier must start with a letter
letters, digits, and underscores only
two underscores in succession are not allowed
keywords (reserved words) cannot be used as identifiers
last character cannot be an underscore

Data objects are assigned types and hold values of the specified types. Data objects belong to one of
three classes: constants, signals, or variables. Data objects must be declared before they are used.

Constants
A constant holds a specific value of a type that cannot be changed within the design description, and
therefore is usually assigned upon declaration. Constants are generally used to improve the
readability of code; also, it may be easier to modify code if a constant name is used rather than an
actual value (if a value is repeated many times). For example, the following constant may represent
the width of a FIFO buffer:

constant width: integer := 8;

The identifier width may be used at several points in the code. However, to change the width of the
FIFO requires only that the constant declaration be changed and the code recompiled (resynthesized).

Constants must be declared in a declarative region such as the package, entity, architecture, or
process declarative region. A constant defined in a process declarative region is only visible to that
process; one defined in an architecture is visible only to that architecture; one defined in an entity can
be referenced by any architecture of that entity; one defined in a package can be referenced by any
entity or architecture for which the package is used.

Signals
Signals can represent wires, and they can therefore interconnect components (ports are signals; in
fact, ports can be specifically declared as signals). As wires, signals can be inputs or outputs of logic
gates. We have already seen signals used for such purposes in our examples of a 4-bit comparator.
Signals can also represent the state of memory elements.

signal count: bit_vector(3 downto 0);

Count may represent the current state of a counter. As such, count represents memory elements, or at
the least, wires attached to the outputs of those memory elements (see Figure 3-5). Initial values may
be assigned to signals, but initial values are rarely meaningful for synthesis. It is a common
misconception that by assigning an initial value to a memory element that the memory element will
power-up in the initialized state. For example, the following initialization is meaningless for
synthesis.

i IrFT Q
-~ count(3)

w-~
-T Q

->
count(2)

T Q

~>
count(1)

T T Q

clock
count(O)

4

I

1

1

count(3)

~
count(2)

count(1)

count(O)

Count(3) refers to the
contents of the memory

element or the value of the
attached wire.

Figure 3-5 (a) A signal can refer to the memory elements or (b) the
wires attached to the outputs of the memory elements.

signal count: bit_vector(3 downto 0) := "0101";

For simulation, this initialization does indeed ensure that the signal is initialized to "0101". To
determine which state memory elements will power-up, refer to the data sheets of the target device.
Many devices power-up with flip-flops in the reset state. If the state of a flip-flop is inverted before
its associated pin, however, the pin will indicate a logic level of high. To ensure that memory
elements are in the proper state, apply reset or preset during power-up. Alternatively, clock in known
data after power-up.

The := operator in the signal declaration above is used for initialization of the signal. All other signal
assignments within design descriptions are accomplished with the <= operator, as in

count <= "1010":

71

72

count <= data;

The := operator indicates immediate assignment. The <= operator indicates that the signal
assignment is scheduled.

For designs that are to be synthesized, signals are most commonly declared in the entity and
architecture declarative regions. Whereas signals declared as ports have modes, signals local to the
architecture do not. Signals may also be declared in packages-packages contain declarations that
can be used by other designs-as well as entities. To reference these signals, include a USE clause.

Variables
Variables are used only in processes and subprograms (functions and procedures), and must therefore
be declared in the declarative region of a process or subprogram. Variables should be initialized
before being used. In simulation, variables do not retain their values during the time that a process
(or subprogram) is not active. For the value of a variable to be used outside of a process, it must be
assigned to a signal of the same type. Following is an example of a variable declaration and
initialization.

variable result: integer := 0;

Variable assignments are immediate, not scheduled, as with signal assignments. Refer to the
discussions of Listing 2-4 and Listing 2-5 for a detailed explanation. The variable assignment and
initialization operator is :=.

For synthesis, the most common use of variables is for index holders and the temporary storage of
~L \

Aliases
An alias is an alternate identifier for an existing object; it is not a new object. Referencing the alias is
equivalent to referencing the original object. Making an assignment to the alias is equivalent to
making an assignment to the original object. An alias is often used as a convenient method to
identify a range of an array type. For example, to identify fields in an address:

signal stored_ad: std_logic_vector(31 downto 0);

alias top_ad: std_logic_vector(3 downto 0) is stored_ad(31 downto 28);
alias bank: std_logic_vector(3 downto 0) is stored_ad(27 downto 24);
alias row_ad: std_logic_vector(ll downto 0) is stored_ad(23 downto 12);

Data Types
A type has a set of values and a set of operations. Here, we discuss the categories of types and
predefined types that are most useful for synthesis and some scalar and composite types.

VHDL is a strongly-typed language, meaning that data objects of different base types cannot be
assigned to each other without the use of a type-conversion function (discussed in chapter 7,
"Functions and Procedures"). A base type is either a type itself or the type assigned to a sUbtype.
Thus, if a and b are both integer variables, then the following assignment

a :=b +2.0;

would illicit a compile-time error because 2.0 is a real type and cannot be used in an assignment to a
data object of type integer.

Scalar types
Scalar types have an order that allows relational operators to be used with them. Scalar types
comprise four classes: enumeration, integer, floating, and physical types.

Enumeration Types

An enumeration type is a list of values that an object of that type may hold. The list of values may be
defined by you. Enumerated types are often defined for state machines:

type states is (idle, preamble, data, jam, nosfd, error);

A signal can then be declared to be of the enumerated type just defined:

signal current_state: states;

The physical implementation of an enumerated type is implementation specific. For example,
currenCstate may represent a set of memory elements that hold the current state of a state machine.
The state encoding can be user assigned (see chapter 5, "State Machine Design").

As a scalar type, an enumerated type is ordered. The order in which the values are listed in the type
declaration defines their relation. The leftmost value is less than all other values. Each value is
greater than the one to the left and less than the one to the right. Thus, if the type sports is defined as

type sports is (baseball, football, basketball, soccer, bicycling, running);

and your _sport is declared to be of type sports,

signal your_sport: sports;

then a comparison of your _sport to the value basketball,

better_than_bball <= '1' when your_sport >= basketball else '0';

reveals whether your preference in sports meets the author's definition of sport superiority. That is,
the values basketball, soccer, bicycling, and running for your _sport would result in better _than_bball
being assigned a '1.'

There are two enumeration types predefined by the IEEE 1076/1993 standard that are particularly
useful for synthesis: bit and Boolean. They are defined as follows:

type BOOLEAN is (FALSE, TRUE);
type BIT is (' 0 " , l') ;

The IEEE 1164 standard defines an additional type, std_Iogic, and several subtypes that are
consistently used as standards for both simulation and synthesis. The type std_ulogic defines a 9-
value logic system. The enumeration of these values is

TYPE std_ulogic IS ('U', Uninitialized
'X', Forcing Unknown
'0', Forcing 0

73

74

'1' I Forcing 1
'Z'I High Impedance
'W'I Weak Unknown
'L', Weak 0

'H', Weak 1
Don't care

) ;

VHDL does not permit a signal to be driven by more than one source (driver) unless the signal is of a
resolved type. A resolved type is one for which a resolution function defines a single value for a
signal that is driven by more than one source. The type std_ulogic is the standard unresolved logic
type. The type std_Iogic is defined as

SUBTYPE std_logic IS resolved std_ulogic;

It is the standard resolved logic type. The function resolved is in the std_logic_1164 package found
in Appendix C. The enumeration of values for the std_Iogic type is the same as it is for the
std_ulogic. However, a signal of type std_Iogic may have more than one driver. If there is more than
one driver for a signal, than the resolution function defined in the std_logiC1164 package is used to
determine the value of that signal. For example, suppose a signal x of type std_logic is driven by two
signals:

signal a , b , x: std_logici

x <= a;
x <= b;

If a and b are both '0,' then x will assume the value of '0.' If they are both '1' then x will assume the
value of '1.' However, if a and b are opposite, then x assumes the value of 'U,' uninitialized. The
resolution for the other combinations for a and b are defined in the std_logic_1164 package.

The example above is useful in simulating models; however, it has little use for synthesis. Two
drivers are not typically allowed in a logic device, and there isn't a standard policy for synthesizing
such a construct.

The IEEE 1164 standard defines arrays of std_ulogics and std_Iogics as std_ulogic_ vector and
std_Iogic_vector. The standard defines several other subtypes (e.g., X01, XOIZ,) operator
overloading functions, conversion functions, and strength strippers. The std_logic_11664 package
will be better understood after chapter 7, "Functions and Procedures." To use these types, we simply
add the following two lines to the before our entity declaration so that the scope of the declarations
of the package will extend the entire entity/architecture pair:

library ieee;
use ieee.std_logic_1164.all;

Integer Types

The set of values and set of operations that characterize the type integer are integers and the relational
and arithmetic operators (defined in the IEEE Standard VHDL Language Reference Manual as adding,
sign, multiplying, and miscellaneous).

An integer type can be defined, as well as a data object declared, with or without specifying a range.
If a range is not specified, then software tools that process VHDL must allow integers to have a

minimum range of -2,147,483,647, _(231 _1) , to 2,147,483,647, (231 _1) . A signal or variable that is
an integer type and that is to be synthesized into logic should specify a range. For example,

variable a: integer range a to 255;

Floating Types

Floating point type values are used to approximate real numbers. Like integers, floating point types
can be constrained. The only predefined floating type is REAL, which includes the range -1.0E38 to
+ 1.0E38, inclusive, at a minimum. Floating point types are rarely used in code to be synthesized, but
sometimes appear in computations.

Physical Types

Physical type values are used as measurement units. The only predefined physical type is TIME. Its
range includes, as a minimum, the range of integers. Its primary unit is fs (femtoseconds) and is
defined as follows (the range can exceed the minimum and is tool dependent).

TYPE time IS range -2147483647 to 2147483647
units

fs;
ps 1000 fs;
ns 1000 PSi

us 1000 ns;
ms 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

Physical types do not carry meaning for synthesis; they are discussed here only to round out the
discussion of scalar types, and because they are used frequently in simulation. We will use them in
creating test benches (see chapter 9, "Creating Test Fixtures").

You could create another physical type based on another unit of measure such as meters, grams,
ounces, etc. However, you can see that these units of measure have very little to do with logic design,
but may bring to mind some interesting ideas of how VHDL can be used to simulate models of
systems that do not represent logic circuits but some other type of "system."

Composite Types
Unlike scalar types, which do not have any elements and for which data objects of these types can
only hold one value at a time, composite types define collections of values for which data objects of
these types can hold multiple values at a time. Composite types consist of array types and record
types.

Array Types

An object of an array type is an object consisting of multiple elements of the same type. The most
commonly used array types are those predefined by the IEEE 1076 and 1164 standards:

75

76

type BIT_VECTOR is array (NATURAL range <» of bit;
type STD_ULOGIC_VECTOR is array (NATURAL range <» of std_ulogic;
type STD_LOGIC_VECTOR is array (NATURAL range <» of std_logic;

These types are declared as unconstrained arrays: The number of bits, std_ulogics, or std_Iogics in
the arrays are not specified (range <»; rather, the arrays are bounded only by NATURAL, the set of
positive integers. These types are commonly used for buses, as in our previous code listings wherein
these unconstrained arrays are constrained. For example,

signal a: std_logic_vector(3 downto 0);

However, a bus could also be defined with your own type:

type word is array(15 downto 0) of bit;
signal b: word;

Two-dimensional arrays are useful in creating a truth table:.

type table8x4 is array(O to 7, ° to 3) of bit;
constant exclusive_or: table8x4 := (

"000_0",
"001_1",
"010_1",
"011_0",
"100_1" ,
"101_0",
"110_0",
"111_1") ;

The entries are arranged vertically for readability, but of course do not have to be. An underline
character was inserted to distinguish between sides of the "table": input and output sides. An
underline character can be inserted between any two adjacent digits. Also, when using bit strings, a
base specifier may be used to indicate whether the bit string is specified in binary, octal, or
hexadecimal format. If the base specifier is octal, then the actual value of the bit string is obtained by
converting the octal designator to its appropriate three-digit binary value. If the base specifier is
hexadecimal, then the actual value of the bit string is obtained by converting the hexadecimal
designator to its appropriate four-digit binary value. For example,

a <= X"7A";

requires that a be eight bits wide, so that its value becomes "01111010".

Record Types

An object of a record type is an object that can consist of multiple elements of different types.
Individual fields of a record can be referenced by element name. The following shows a record-type
definition for iocells, objects declared as that type, and assignment of values:

type iocell is record
buffer_inp: bit_vector(7 downto 0);
enable: bi t;
buffer_out: bit_vector(7 downto 0);

end record;

signal busa, busb, busc: iocell;
signal vec: bit_vector(7 downto 0);
busa.buffer_inp <= vec;
busb.buffer_inp <= busa.buffer_inp;
busb.enable <= '1';
busc <= busb;

Types and Subtypes

one bit_vector assigned to another
assigning one field;

assigning entire object

We have already created new types for enumeration types. Other types can also be created. Take for
instance the type byte_size, which we define here:

type byte_size is range 0 to 255;
signal my_int: byte_size;

Byte_size is defined as a new type. Although this type is based on the integer type, it is its own type.
Type checking rules often require that operands or ports be of a specific type. If an integer is
expected for an operand, type byte_size will not be allowed. For example, suppose that signal
your _int is defined as an integer:

signal your_int: integer range 0 to 255;

The following operation would produce a compile time (or analyzer) error:

The operands of this comparison operator are of type byte_size and integer resulting in a type
mismatch.

A sUbtype is a type with a constraint. Subtypes are mostly used to define objects of a base type with a
constraint. For example, byte below is defined as a type; objects can then be defined to be of this
subtype. Compare

subtype byte is bit_vector(7 downto 0);
signal by tel , byte2: byte;
signal datal, data2: byte;
signal addrl, addr2: byte;

to the individual declaration of objects as constrained types:

signal by tel , byte2: bit_vector(7 downto 0);
signal datal, data2: bit_vector(7 downto 0);
signal addrl, addr2: bit_vector(7 downto 0);

Subtypes are also used to resolve a base type. A resolution function is defined by the IEEE 1164
standard for the type std_Iogic:

subtype std_logic is resolved std_ulogic;

Resolved is the name of a resolution function that is used to determine how multiple values from
different sources (drivers) for a signal will be reduced to one value for that signal.

Four additional sUbtypes are declared in this standard:

77

78

SUBTYPE X01 IS resolved std_ulogic RANGE 'X' TO '1'; --('X', '0', '1')
SUBTYPE X01Z IS resolved std_ulogic RANGE 'X' TO 'Z'; --('X', '0', '1', 'Z')
SUBTYPE UX01 IS resolved std_ulogic RANGE 'U' TO '1'; -- ('U', 'X', '0', '1')
SUBTYPE UX01Z IS resolved std_ulogic RANGE 'U' TO 'Z';-
('U','X','O','l','~')

Whereas different types will often produce compile-time errors for type mismatches, subtypes of the
same base type can legally be used interchanged. For example, if the sUbtype XOIZ is expected for
the port (a signal) of a given component, an instantiation of a component with a port of sUbtype
DXOI will not create a compile time error. A simulation error or synthesis error will occur however,
if you attempt to pass the value of 'D' (defined by type DXOI but not subtype XOIZ) to the
component. Also, the following comparison will not produce a compile time error:

signal mine: X01Z;
signal yours: UX01;

if yours = mine then

This is not a type mismatch because yours and mine are of the same base type.

Attributes
An attribute provides information about items such as entities, architectures, types, and signals.
There are several predefined value, signal, and range attributes that are useful in synthesis.

Scalar types have value attributes. The value attributes are 'left, 'right, 'high, 'low, and 'length
(pronounce' as "tick," as in tick-left).

The attribute 'left yields the leftmost value of a type, and 'right the rightmost. The attribute 'high
yields the greatest value of a type. For enumerated types, this value is the same as 'right. For integer
ranges, the attribute 'high yields the greatest integer in the range. For other ranges, 'high yields the
value to the right of the keyword TO or to the left of DOWNTO. The attribute 'low yields the value
to the left of TO or the right of DOWNTO. The attribute 'length yields the number of elements in a
constrained array. Some examples follow:

type count is integer range 0 to 127;
type states is (idle, decision, read, write);
type word is array(15 downto 0) of std_logic;

count'left = 0
states'left = idle
word'left = 15

count'right = 127
states 'right write
word'right 0

count 'high 127
states'high = write
word'high 15

count'low 0
states'low = idle

word' low = 0

count' length = 128
states' length = 4
word' length = 16

An important signal attribute useful for both synthesis and simulation is the ' event attribute. This
attribute yields a Boolean value of true if an event has just occurred on the signal for which the
attribute is applied. It is used primarily to determine if a clock has transitioned.

A useful range attribute is the ' range attribute which yields the range of a constrained object. For
example,

word' range = 15 downto 0

Below is an example that declares a signal, my_vec, to be a std_Iogic_vector constrained to the same
size as another std_Iogic_ vector, your _vec. Next, a loop is initiated. The loop will ascend from the
lowest to the highest index of the vector:

Common Errors

for i in my_vec'low to my_vec'high loop
tally := tally + 1;

end loop;

There are several common errors that are worth mentioning. Identifying them early may prevent
misconceptions. Some of the errors are with syntax, others with semantics. Following is a code
example with several errors. See if you can identify the errors:

entity many_errors is port --line 1
a: bit _vector (3 to 0) ; --line 2
b: out std_logic_vector(O to 3) ; --line 3
c: in bit _vector (6 downto 0) ;) --line 4

end many_errors --line 5
line 6

architecture not_so_good of many_ errors --line 7
begin --line 8
my_ label: process --line 9

begin --line 10
if c x"F" then --line 11

b <= a --line 12
else --line 13

b <= ' 0101' ; --line 14
end if --line 15

end process; --line 16
end not_so_good --line 17

We'll take this design one line at a time because there are so many errors. The port declaration
requires an "(" at the end of line I or beginning of line 2. In line 2, "to" should read "downto." The
lack of the keyword IN to identify the mode is acceptable. If the mode is not explicitly declared, then
the default of IN is assumed. Line 3 is ok. The semicolon on line 4 should appear after the second

79

Exercises

80

")". The omission of a semicolon is one of the most common syntax errors. A semicolon is required
at the end of line 5. There's even an error in line 6: The comment character " __ " is required. Line 7 is
missing the keyword "is" after the name of the entity. Line 8 is ok. The process sensitivity list is
missing from line 9. Line 10 is ok. The comparison of line 11 will always evaluate to FALSE
because x"F" represents "1111" not "001111 "-six bits must be compared with six bits (this is not
error, but is probably not what the designer wanted). In line 12, a signal of one type may be assigned
to a signal only of the same base type, so we will have to change a or b to be of the same type. Line
13 is ok. The single quote marks (') of line 14 should be replaced with double quote marks ("). Line
15 requires a semicolon. Line 16 is ok. Line 17 requires a semicolon. The design is corrected and
listed below.

entity many_errors is port(
a: std_logic_vector (3 downto 0);
b: out std_logic_vector(O to 3);
c: in bit_vector(6 downto 0));

end many_errors;

architecture not_so_good of many_errors is
begin
my_label: process(c, a)

begin
if c "001111" then

b <= a;
else

end if;
end process;

end not_so_good;

b <= "0101";

--line 1
--line 2
--line 3
--line 4
--line 5
--line 6
--line 7
--line 8
--line 9
--line 10
--line 11
--line 12
--line 13
--line 14
--line 15
--line 16
--line 17

1. Write an entity and architecture pair for each of the TTL devices in Table 2-1. For flip-flops,
registers, or tri-state buffers, use structural descriptions with components from the pre-defined
packages defined in /warp/lib/commonl directory in the Warp software.

2. Write an entity declaration for a 4-bit loadable counter. The counter may be enabled and
asynchronously reset. The counter has three-state outputs, controlled by a common output enable.

3. Write the entity declaration for the following architecture, assuming that all signals in the
architecture are ports:

architecture write_entity of exercise2 is
begin
mapper: process (addr) begin

shadow_ram_sel <= '0';
sram_sel <= ' 0' ;
if addr >= x"0100" AND addr < x"4000" then

shadow_ram_sel <= '1';
elsif addr >= x"8000" and addr < x"COOO" then

sramsel <= '0';
end if;

promsel <= '0';
if mem_mapped = '0' and bootup then

end if;
end process mapper;

prom_sel <= '1';

mem_mapped <= shadow_ram_sel OR sram_sel;
end write_entity;

4. Write the entity for a 2-bit equality comparator.

5. Create four architectures for the entity of exercise 4, one using an IF-THEN statement, one using a
WHEN-ELSE statement, one using boolean equations, and one using instantiations of gates.

6. Using software, synthesize the designs of exercise 5. Compare the report files or physical place
and route views. Are the equations the same, or do the place and routes utilize the same resources?
What is the propagation delay for the selected device?

7. Which of the architectures of exercise 5 will require modification if the comparator is changed to a
4-bit comparator? Make the necessary changes and use software to synthesize the new designs and
then compare results.

8. Identify errors in the following code:

entity 4tol_mux port (

end;

signal a, b, c, d: std_logic_vectors(3 downto 0);
select: in std_logic_vector(l downto 0);
x: out bit_vector(3 downto 0);

architecture of 4tol_mux
begin
pl: process begin

if select = '00' then
x <= a;

elsif select = '10'
x <= b;

elsif select = '11'

else

end if;
end process;

end 4tol_mux;

x <= c;

x <= d

9. What is the need for a sensitivity list to be associated with a process declaration? Can you declare
a clocked process without a sensitivity list?

10. Write the VHDL code for a 4-bit wide register. Ensure that the input DATA[3:0] is stored only
when the CLOCK signal is detected on its rising-edge.

11. Create a type declaration section that has 'ampere' declared as a physical type with a range from
o to 1000. Declare 'Nanoamps' as your primary unit. Declare other units 'microamp', 'milliamp',
'amp', 'kiloamp' and 'megaamp'.

81

82

12. Extend the counter example in exercise 2, to do the following:

a) define 'count value' to an integer type with a range 0 to 15

b) Using pre-defined attributes:

1) Declare the highest value of the count to be '15'

2) Declare the lowest value of the count to be '0'

3) If the counter has reached the highest value, force the counter to be reset to its lowest value

'13. Write a type declaration section that does the following:

a) declare 'MONTH' to be an enumerated type holding values of all 12 months of a year.

b) declare 'DATE' to be an integer type holding values from 1 to 31.

c) declare signals for any 5 national holidays. Detect the national holidays using information
available in the type declarations.

d) declare signals for the 3 seasons. Detect the SUMMER, SPRING and WINTER seasons.

14. Repeat exercise 13 using Record types as an alternative.

15. List key differences between Signals and Variables.

4 Creating Combinational and Synchronous Logic

We begin this chapter with an example that brings together several concepts from the previous
chapters and concepts that will be developed by this chapter's end. The design of Listing 4-1 is an 8
by 9 FIFO (8-deep, 9-bit wide, first-in, first-out buffer). Two packages are used in this design:
std_Iogic_1164 and std_math. Std_Iogic_1164 is included so that we can use the types std_Iogic and
std_Iogic_vector; std_math is a package that we created to overload the + operator so that we can add
integers to std_Iogic_ vectors. The contents of this package are explained in chapter 7, "Functions and
Procedures." Four processes are used to register the data, control the read and write pointers, and
control the three-state outputs. Some of the logic is combinational, whereas other portions are
synchronous. Several new constructs are introduced. Read through the code (Listing 4-1) to get a
global idea of how the design is described, then continue to read the rest of the chapter for an
explanation and elaboration of the syntax and semantics of this design.

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.std_math.all;

entity fifo8x9 is port(
clk, rst:
rd, wr, rdinc, wrinc:
rdptrclr, wrptrclr:
data_in:
data_out:

end fifo8x9;

in std_logic;
in std_logic;
in std_logic;
in std_logic_vector(8 downto G);
out std_logic_vector(8 downto G));

architecture archfifo8x9 of fifo8x9 is
type fifo_array is array(7 downto G) of std_logic_vector(8 downto G);

signal fifo: fifo_array;
signal wrptr, rdptr: std_logic_vector(2 downto G);
signal en: std_logic_vector(7 downto G);
signal dmuxout: std_logic_vector(8 downto G);

begin

-- fifo register array:
reg_array: process (rst, clk)

begin
if rst = '1' then

for i in 7 downto G loop
fifo(i) <= (others => 'G');

end loop;
elsif (clk'event and clk '1') then

if wr = '1' then
for i in 7 downto G loop

if en(i) = '1' then
fifo(i) <= data_in;

else
fifo(i) <= fifo(i);

end if;

83

84

end if;
end process;

end if;
end loop;

-- read pointer
read_count: process (rst, clk)

begin
if rst = '1' then

rdptr <= (others => '0');
elsif (clk'event and clk='l') then

if rdptrclr = '1' then

end if;
end process;

rdptr <= (others => '0');
elsif rdinc = '1' then

rdptr <= rdptr + 1;
end if;

-- write pointer
write_count: process (rst, clk)

begin

--

if rst = '1' then
wrptr <= (others => '0');

elsif (clk'event and clk='l') then
if wrptrclr = '1' then

wrptr <= (others => '0');
elsif wrinc = '1' then

wrptr <= wrptr + 1;
end if;

end if;
end process;

8:1 output data mux
with rdptr select

dmuxout <= fifo(O) when "000",
fifo(l) when "001",
fifo(2) when "010",
fifo(3) when "011",
fifo(4) when "100",
fifo(5) when "101",
fifo(6) when "110",
fifo(7) when others;

-- FIFO register selector decoder
with wrptr select

en <= "00000001"
"00000010"
"00000100"
"00001000"
"00010000"
"00100000"
"01000000"
"10000000"

when
when
when
when
when
when
when
when

"000" ,
"001",
"010",
"011",
"100" ,
"101",
"110",
others;

-- three-state control of outputs
three_state: process (rd, dmuxout)

begin
if rd

else

end if;
end process;

end archfifo8x9;

'1' then
data_out <= dmuxout;

data_out <= (others => 'Z');

Listing 4-1 An 8 by 9 FIFO

Combinational Logic

Combinational logic can be described in several ways. Signals dmuxout, en, and the three-state
buffers of Listing 4-1 show combinational logic implemented using a dataflow construct (WITH
SELECT), and in terms of algorithms (IF-THEN-ELSE). In the following sections, we will examine
how to write combinational logic with concurrent and sequential statements. Concurrent statements
will make use of boolean equations, dataflow constructs, or component instantiations. Sequential
statements will be embedded in the algorithms of processes.

Using Concurrent Statements
Concurrent signal assignments are differentiated from sequential signal assignments in that they are
outside of any process. Concurrent signal assignments imply that the order of assignment is not
important. The order of the concurrent signal assignments

b <= c;
a <= b;
h <= i;
i <= j XOR k;

does not matter. Signal b is assigned the value of c and is its equivalent; a is assigned the value of b,
so a is the equivalent of both band c. Signal i is assigned the exclusive-or of j and k. Signal h is
equivalent to i, so it is assigned the xor of j and k. The fact that the assignment of i to h appears
before the xor assignment to i does not affect the values of these signals because the signal
assignments are concurrent. These four assignments could be placed in any order, anywhere outside
of a process, and would describe the same logic.

Boolean Equations
Boolean equations can be used in concurrent signal assignments to describe combinational logic. The
following example uses boolean equations to implement a four-to-one multiplexer that multiplexes 4-
bit buses.

library ieee;
use ieee.std_logic_1164.all;

entity mux is port(

85

86

a, b, c, d: in std_logic_vector(3 downto 0);
s: in std_logic_vector(l downto 0);
x: out std_logic_vector(3 downto 0));

end mux;

architecture archmux of mux is
begin

x(3) <= (a(3) and not (s (1)) and not(s(O)))
OR (b(3) and not (s (1)) and s(O))
OR (c (3) and s(l) and not(s(O)))
OR (d(3) and s(l) and s(O));

x(2) <= (a(2) and not (s (1)) and not(s(O)))
OR (b(2) and not (s (1)) and s (0))
OR (c (2) and s (1) and not(s(O)))
OR (d(2) and s (1) and stOll;

x(l) <= (a(l) and not(s(l)) and not(s(O)))
OR (b(l) and not (s (1)) and s (0))
OR (c (1) and s(l) and not(s(O)))
OR (d(l) and s (1) and s(O));

x(O) <= (a(O) and not (s (1)) and not(s(O)))
OR (b(O) and not (s (1)) and s (0))
OR (c (0) and s (1) and not(s(O)))
OR (d(O) and s (1) and s(O));

end archmux;

A[3:0]

8[3:0]

X[3:0]
C[3:0]

0[3:0]

8(1)

8(0)

Figure 4-1 Block Diagram of mux

This description is cumbersome and provides little advantage over some proprietary, low-level
languages that have been popular in the past for use with PALs. However, for those functions most
easily thought of or described in boolean equations, VHDL provides for this class of description. For
example,

entity my_design is port (
mem_op, io_op: in bit;
read, write
memr, memw

in bit;
out bit;

io_rd, io_wr
end my_design;

out bit) ;

architecture control of my_design is
begin

end control;

memw
memr
io_wr
io_rd

Logical Operators

<= mem_op AND write;
<= mem_op AND read;
<= io_op AND write;
<= io_op AND read;

Logical operators are the cornerstone of Boolean equations. The logical operators AND, OR, NAND,
XOR, XNOR, and NOT are predefined for the types bit, boolean, and one-dimensional arrays of bit
and boolean. To use these operators (except not) with arrays, however, the two operands must be of
the same length. The IEEE 1164 standard also defines these operators for the types std_ulogic,
std_Iogic, and their one-dimensional arrays.

The logical operators do not have an order of precedence over each other. You may be
accustomed to the precedence of operators in Boolean algebra: expressions in parentheses are
evaluated first, followed by complements, AND expressions, and finally OR expressions. For
example, with Boolean algebra, you expect the expression

A OR B AND C

to be evaluated as

A OR (B AND C)
However, in VHDL, one logical operator does not have precedence over another. Parentheses are
required to differentiate the above expression from

(A OR B) AND C

In fact, the code

A OR B AND C

will result in a compile-time error.

Dataflow Constructs
Dataflow constructs are concurrent signal assignments that provide a level of abstraction that often
enables you to write code more succinctly. The following two constructs provide selective and
conditional signal assignments.

WITH-SELECT-WHEN

This selective assignment construct is best explained by using an example:

library ieee;
use ieee.std_logic_1164.all;

entity mux is port(

87

88

a , b , C , d:
s:
x:

in std_logic_vector(3 downto 0);
in std_logic_vector(l downto 0);
out std_logic_vector(3 downto 0));

end mux;

architecture archmux of mux is
begin
with s select

X <= a when "00" I

b when "01" I

c when "10" I

d when others;
end archmux;

Based on the value of signal s, the signal x is assigned one of four values (a, b, c, or d). This
construct enables a concise description of the four-to-one multiplexer. Four values of s are
enumerated (00, 01, 10, and others). Others is specified instead of "11" because s is of type
std_logic, and there are nine possible values for a signal of type std_logic. If "11" were specified
instead of others, only 4 of the 81 values would be covered. For hardware and synthesis tools, "11" is
the only other meaningful value, but the code should be made VHDL compliant so that it can also be
simulated. For simulation software, there are indeed 77 other values that s can have. If you want, you
can explicitly specify "11" as one of the values of s; however, others is still required to completely
specify all possible values of s:

architecture archmux of mux is
begin
with s select

x <= a when "00" I

b when "01" I

c when "10" I

d when "11" I

d when others;
end archmux;

The metalogical value "--" (two dashes) can also be used to assign the don't cares value.

A selective signal assignment allows an assignment to a signal based on mutually exclusive
combinations of values of the selection signal.

WHEN-ELSE

An example of using the WHEN-ELSE conditional assignment appears below:

architecture archmux of mux is
begin

x <= a when (s "00") else
b when (s "01") else
c when (s "10") else
d;

end archmux;

Whereas a selective signal assignment must specify mutually exclusive conditions for signal
assignment, a conditional signal assignment does not have to. A conditional signal assignment gives
highest priority to the first condition listed and priorities to subsequent conditions based on order of
appearance.

This assignment above is slightly more verbose than the selective assignment construct for
describing a multiplexer; however, this construct can also help you to succinctly describe constructs
such as follows:

entity selection is port(
a, b, c, v, w, x, y, z: in boolean;
j: out boolean) ;

end selection;

architecture selection of selection is
begin

j <= w when a else
x when b else
y when c else
z;

end;

This construct describes the logic of Figure 4-2 results in the following equation for j:

j = a * w
+ la * b * x
+ la * Ib * c * y
+ la * Ib * Ic * z

This AND (*) takes precendence over the OR (+) in the this equation and all other equations in this
text that show the results of synthesis.

I

'\

I---

I I ~

,
I

~
Figure 4-2 When-else Logic

89

90

This equation and the WHEN-ELSE construct indicates the priority thatj is assigned the value of w
when a is asserted, even if b or c is asserted. Signal b also holds priority over c. The conditions can
also be expressions as in the following code fragments:

signal stream, instrm, oldstrm: std_logic_vector(3 downto 0);
signal state: states;
signal we: std_logic;
signal id: std_logic_vector(15 downto 0);;

stream <= "0000" when (state=idle and start='O') else
"0001" when (s.tate=idle and start='l') else
instrm when (state=incoming) else
oldstrm;

we <= '1' when (state=write and id < x"lFFF") else '0';

Relational Operators

Relational operators are used heavily in dataflow constructs. They are used for testing equality,
inequality, or ordering. The equality and inequality operators (= and 1=) are defined for all types
discussed in this text. The magnitude operators «, <=, >, and >=) are defined for scalar types or an
array with a discrete range. Arrays are equivalent only if their length is equivalent and all elements of
both arrays are equivalent. The result of any relational operation is Boolean (Le., true or false).

The types of the operands in a relational operation must match. The following would produce an
error because a is a std_Iogic_ vector, and 123 is an integer:

signal a: std_logic_vector(7 downto 0)

if a = 123 then ...

However, as with other operators, relational operators may be "overloaded." Overloaded operators
permit you to use operators with multiple types (for which the operator is not predefined by the IEEE
1076 standard). At the time of this writing, an IEEE VHDL working group is developing a synthesis
standard, which will include standard overloaded operators. These operators will allow the
comparison shown above between a std_Iogic_ vector and an integer. Operators are overloaded with
functions, as you will see in the chapter on functions and procedures. These functions are contained
in packages. In order to access these operators, a reference to the package must be included by way
of a USE clause.

Component Instantiations
Component instantiations are also concurrent signal assignments that specify the interconnection of
signals in the design. It is unlikely that you would use component instantiation to describe a 4-bit
comparator as in the example below, but the code serves to illustrate that component instantiation
can be used to implement combinational logic.

library ieee;
use work.std_logic_1164.all;
entity compare is port(

a, b: in std_logic_vector(3 downto 0);
aeqb: out std_logic);

end compare;

use work.gatespkg.all;
architecture archcompare of compare is

signal c: std_logic_vector(3 downto 0) ;
begin

xO: xor2 port map(a(O) , b(O) , c (0)) ;
xl: xor2 port map(a(l) , b(l) , c (1));
x2: xor2 port map (a(2), b(2) , c (2)) ;
x3: xor2 port map (a(3), b(3) , c (3)) ;

n1: nor4 port map(c (0), c (1), c (2) , c (3) , aeqb) ;
end;

Gate components are not defined by the VHDL standard. This design requires that the gates be
defined in another package (created by you, a synthesis tool vendor, or a PLD vendor). Sometimes,
vendor-provided gates are technology specific (device dependent) and are provided so that you can
access a particular feature. Using these components can reduce readability and eliminate the device
independence of the code, unless there are behavioral descriptions of the supplied component for use
in retargeting or simulating the design.

For example, a synthesis tool may provide an adder component for instantiating. This component
may not have an underlying behavioral or structural description; rather, it may be recognized directly
by the synthesis tool and directly mapped to the target architecture. Although this ensures that your
code will produce the best possible implementation of the adder, it prevents the code from being used
to target another device architecture. It also prevents the source code from being simulated, unless, of
course, there are also behavioral models of the code.

Using Processes
The collection of statements that make up a process (that is, the process itself) constitutes a
concurrent statement. If a design has multiple processes, then those processes are concurrent with
respect to each other. Inside a process, however, signal assignment is sequential (from a simulation
standpoint), and the order of signal assignment does affect how the logic gets synthesized. Processes
and the sequential statements within the processes are used to describe signal assignments with
algorithms. Following is a code fragment for a process that defines the dependence of signal step on
the value of addr:

signal step: std_logic;
signal addr: std_logic_vector(7 downto 0);

proc_label: process (addr)
begin

step <= '0';
if addr > x I OF" then

step <= '1';
end if;

end process;

The value of step is assigned with an algorithm. It's given a default value of '0' at the beginning of
the process. If addr is less than OF hex, then step remains '0'; otherwise, it is assigned' 1'. The

91

92

VHDL synthesis software must evaluate the entire process before creating the equation for step. To
reinforce this idea, consider these two statements:

inc <= '0';
inc <= '1';

If these two signal assignments are concurrent signal assignments (i.e., if they are outside of a
process), then one of two things can happen: (1) If inc is a signal of type bit, an error is issued,
reporting that there is more than one driver for inc or (2) if inc is a signal of type std_Iogic, then inc
is assigned the value of 'X' for simulation, and an error is produced for synthesis. (Although this
could be implemented as is, allowing two drivers to drive the same wire to opposite states would
damage a device.) If these two signal assignments are found in a process, then this is legal VHDL
even if inc is of type bit. The synthesis software would simply sequence through the assignments and
use the last value assigned to inc.

Do not confuse sequential statements with sequential (clocked) logic. Sequential statements are those
statements found within a process that are evaluated sequentially before logic equations are created
by the synthesis software. For example, to determine the equation for step in the process above, the
synthesis software must realize that step is to be asserted for values of addr greater than OF hex and
deasserted for values of addr less than or equal to OF hex. That is, the software cannot simply assign
an equation to a signal upon its first occurrence in a process (as the software can do with concurrent
signal assignments). Rather, the software must evaluate all the conditions within the process before
assigning one concurrent equation that describes the logic for step:

step = addr(3) + addr(2) + addr(l) + addr(O)

IF-THEN-ELSE
The IF-THEN-ELSE construct is used to select a specific execution path based on a Boolean
evaluation (true or false) of a condition or set of conditions. In the following example,

IF (condition) THEN
do something;

ELSE
do something different;

END IF;

if the condition specified evaluates true, the sequential statement or statements (do something)
following the keyword THEN are executed. If the condition evaluates false, the sequential statement
or statements after the END IF (do something else) are executed. The construct is closed with END
IF spelled as two words. The process above, for which the value of step is assigned by first assigning
a default value and then checking against a condition, can also be described with an IF-THEN-ELSE
construct:

similar: process (addr)
begin

if addr > x"OF" then
step <= '1';

else
step <= '0';

end if;
end process;

The process

not_similar: process (addr)
begin

if addr > x"OF" then
step <= ' l' ;

end if;
end process;

does not describe the same logic because neither a default value for step nor an ELSE condition is
specified. The process noCsimilar above implies that step should retain its value (this is referred to
as implied memory) if addr is less than or equal to OF hex. Thus, once asserted, step will remain
forever asserted as shown in Figure 4-3 and defined by the following equation:

step = addr(3) * addr(2) * addr(l) * addr(O)
+ step

ADD R 3
ADD R 2
ADD R 1
ADD R 0

5 T E P

Figure 4-3 Implied memory in an IF-THEN construct

If you do not want the value of step to be "remembered," then be sure to include a default value or
complete the IF-THEN with an ELSE.

The IF-THEN-ELSE can be expanded further to include an ELSIF (spelled without a second E and
as one word) statement to allow for further conditions to be specified and prioritized. The syntax for
this operation is

IF (conditionl) THEN
do something;

ELSIF (condition2) THEN
do something different;

ELSE
do something completely different:

END IF;

For each signal x that is assigned a value based on a condition, synthesis will produce an equation:

x = conditionl * valuel
+ /conditionl * condition2 * value2
+ /conditionl + /condition2 * condition3 * value3
+

93

94

The IF-THEN-ELSIF-ELSE construct and the equation above clearly show that for x to be assigned
value3, not only does condition3 have to be true, but also condition} and condition2 must be false.
For x to be assigned value}, only condition} need be true, regardless of the evaluation of condition2
and condition3. This indicates a clear order of precedence among the conditions.

The 4-bit wide four-to-one multiplexer can be described with an IF-THEN-ELSIF-ELSE construct as

architecture archmux of mux is
begin
mux4_1: process (a, b, c, d, s)

begin
if s = "00" then

x <= ai

elsif s "01" then
x <= bi

elsif s "10" then
X <= Ci

else
x <= di

end ifi
end process mux4_1i

end archmuxi

Signals a, b, c, d, and s are included in the process sensitivity list because a change in anyone of
them should cause a change in (or evaluation of) x. If s were omitted from the sensitivity list, then x
would not change with a change in s; only changes in a, b, c, or d would lead to a change in x, and
this would not describe a multiplexer. The design equations produced by synthesizing this design
description, or any of the other descriptions of the multiplexer found in this chapter, are the same for

each bit of x: x = ~ S;;a + ~ sob + s 1 S;;c + s 1 sod. If mapped to a PLD-type architecture, each bit of x can

easily be implemented with one macrocell and four product terms. If mapped to an FPGA, it is up to
the synthesis and optimization software to optimally map the equation to the device architecture. For
device architectures with multiplexers, this design should fit nicely.

The following code decodes a 16-bit address to address system memory elements and peripheral
ports. This design uses IF-THEN-ELSIF constructs and relational operators to identify areas of

EEPROM

cOOO

SRAM

8000

Peripheral 2 4010
Peripheral 1 4008

4000

PROMJ
Shadow RAM

~--------------~OOOO

Figure 4-4 Memory Map

memory (see Figure 4-4)in order to assert the correct signal. Because the conditions are mutually
exclusive, only one product term per output signal is required, as verified by the design equations
that follow the code.

library ieee;
use ieee.std_logic_1164.all;
entity decode is port(

address: in std_logic_vector(15 downto 3);
valid, boot_up: in std_logic;
sram, prom, eeprom, shadow,
periph1, periph2: out std_logic);

end decode;
architecture mem_decode of decode is
begin
mapper: process (address, valid, boot_up) begin

shadow <= '0';
prom <= '0';
periph1 <= '0';
periph2 <= '0';
sram <= '0';

eeprom <= '0';
if valid = '1' then

if address >=x"OOOO" and address < x"4000" then
if boot_up = '1' then

shadow <= '1';
else

prom <= '1' ;
end if;

elsif address >=x"4000" and address < x"4008" then
periphl <= '1' ;

elsif address >=x"4008" and address < x"4010" then
periph2 <= '1' ;

elsif address >=x"8000" and address < x"COOO" then

95

96

sram <= '1';
elsif address >= x"COOO" then

eeprom < = '1';
end if;

end if;
end process;
end mem_decode;

The design equations indicate the need for one product term for each output. This maps well to a
CPLD architecture. The equations for periphl and periph2 contain as many as 14 literals. CPLD
logic blocks typically have many more inputs than FPGA logic cells, and so there are still additional
inputs to a logic block that can be used for other expressions. In an FPGA, these signals would likely
require more than one logic cell (and therefore more than one level of logic) because of the wide fan
in and large AND gate required. The signals valid, address(15), and address(14) would each have
fanouts of six.

sram
valid * address_15 * /address_14

prom
valid * /address_15 * /address_14 * /boot_up

eeprom =
valid * address_15 * address_14

shadow =
valid * /address 15 * /address_14 * boot_up

periph1 =
valid * /address_15 * address_14 * /address_13 * /address_12 *
/address_11 * /address_10 * /address_9 * /address_8 * /address_7*
/address_6 * /address_5 * /address_4 * /address_3

periph2 =
valid * /address_15 * address_14 * /address_13 * /address_12 *
/address_11 * /address_l0 * /address_9 * /address_8 * /address_7*
/address_6 * /address_5 * /address_4 * address_3

Because the address ranges for the different memory selections are mutually exclusive, six separate
IF-THEN constructs could have, and perhaps should have, been used. Using separate constructs
ensures that a condition for one signal does not create additional logic to exclude that condition for
the next signal.

CA~E-WHEN

Case statements are often used to perform: decode operations or conditional tests on buses and other
sets of input values. They can provide a more succinct description of the signal assignments and the
conditions for assignment than a series of nested statements or logic gates. The following is an
address decoder:

library ieee;
use ieee.std_logic_1164.all;
ENTITY test_case IS

PORT (address: IN STD_LOGIC_VECTOR(2 DOWNTO 0);
decode: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));

END test_case;

ARCHITECTURE design OF test_case IS
BEGIN
PROCESS (address)

BEGIN
CASE address IS

WHEN "001" =>

WHEN "111" =>
WHEN "010" =>
WHEN "101" =>

WHEN OTHERS =>
END CASE;
END PROCESS;

END design;

decode
decode
decode
decode
decode

<= X"ll" ;
<= X"42" ;
<= X"44" ;
<= X"88" ;
<= X"OO" ;

The CASE-WHEN construct describes how decode is driven based on the value of the input address.
When others is used to completely define the behavior of the output decode for all possible values of
address. When others covers the address input combinations "000," "OIl," "100," and "110," as well
as all of the metalogical values. The equations generated by synthesizing this design are

decoded_7 =
address_2 * /address_1 * address_O

decoded_5
GND

decoded_4
/address_2 * /address_1 * address_O

decoded_3 =

address_2 * /address_1 * address 0
decoded_2 =

/address_2 * address_1 * /address_O
decoded_1 =

address_2 * address_1 * address_O
decoded_O =

/address_2 * /address_1 * address_O
decoded_6 =

/address_2 * address_1 * /address_O
+ address_2 * address_1 * address_O

Many of these equations tum out to have common product terms. The fourth and zeroth bits are
equivalent, as well as the third and the seventh. The first and sixth bits share a common product term,
as well as the second and sixth. In a CPLD, these common product terms can be implemented with
product terms that may be shared. (Some architectures produce an incremental delay when shared
product terms are used, in which case, depending upon the performance requirements of this design,
you mayor may not want to have this use shared product terms.) An implementation in an FPGA
could take advantage of equivalent signals-the output of one logic cell could drive two I/O cells.
The shared gates between the first, second, and sixth bits would probably not provide an advantage
in most FPGAs because an additional level of logic would likely be required; however, it does fit
into the pASIC380 logic cell as shown in Figure 4-5. The equations for decode(1) and decode(2) are

97

placed on the select lines, each of which has. its own unique output. If either select line is asserted,
then the output for decode(6) should also be asserted.

Figure 4-5 Implementing three equations simultaneously in one logic cell

Synchronous Logic

98

Programmable logic devices lend themselves well to synchronous applications. Most device
architectures have blocks of combinational logic connected to the inputs of flip-flops as the basic
building block. This section will show you how to write VHDL for synchronous logic, both with
behavioral and structural descriptions.

The following code implements a simple D-type flip-flop (Figure 4-6):

~k--o-q
Figure 4-6 Block Diagram of DFF

library ieee;
use ieee.std_logic_1164.all;
entity dff_logic is port (

) ;

d, clk in std_logic;
q : out std_logic

end dff_logic;

architecture example of dff_logie is
begin

process (clk) begin
if (clk'event and clk '1') then

q <= d;
end if;

end process;
end example;

This process is only sensitive to changes in cZk. A VHDL simulator activates this process only when
elk transitions; a transition in d does not cause a sequencing of this process.

The if elk'event condition is only true when there is a change in value-i.e., an event-of the signal
elk ("tick event," 'event, is a VHDL attribute that when combined with a signal forms a boolean
expression that indicates when the signal transitions). Because this change in value can be either
from a 0 to a 1 (a rising edge) or a 1 to a 0 (a falling edge), the additional condition elk = '1' is used
to define a rising-edge event. The assignments inside of the if statement only occur when there is a
change in the state of elk from a 0 to a 1-a synchronous event, allowing synthesis software to infer
from the code a positive edge-triggered flip-flop. You can make this occur on the falling edge of the
clock instead of the rising edge simply by changing

if (clk'event and clk = '1')
to

if (clk'event and elk = 'a')

Also, you can describe a level-sensitive latch (see Figure 4-7) instead of an edge-triggered flip.:.flop.

q

Figure 4-7 Block Diagram of D-La tch

To do this, all you have to do is take away the elk/event condition, leaving:

if (clk = '1') then
q <= d;

end if;

In this case, whenever elk is at a logic high level, the output q is assigned the value of input d,
thereby describing a latch.

In all of these cases (the rising-edge-triggered flip-flop, the falling-edge-triggered flip-flop, and the
level-sensitive latch), there is not an ELSE condition indicating what assignments to make when the
if conditions are not met. Without an ELSE, there is implied memory (i.e., q will keep its value),
which is consistent with the operation of a flip-flop. In other words, writing:

if (clk'event and clk = '1') then
q <= d;

99

100

end if;
has the same effect as writing:

if (clk'event and clk '1') then
q <= d;

else
q <= q;

end if;

This is exactly how a D-type flip-flop, and other synchronous logic, should operate. If there is a
rising edge on the clock line, then the flip-flop output will get a new value based on the flip-flop
input. If not, the flip-flop output stays the same. In fact, most synthesis tools will not handle an ELSE
expression after (clk'event and clk=' I ') because it describes logic for which the implementation is
ambiguous. For example, it is unclear how the following description should be synthesized:

if (clk'event and clk = '1') then
q <= d;

else
q <= a;

end if;

The following two examples show howaT-type flip-flop (a toggle flip-flop) and an 8-bit register can
be described. First is the T -type flip-flop shown in Figure 4-8:

OFF

Q __ __11._

T

eLK

Figure 4-8 Implementation of a T-type flip-flop in a device that
only has D-type flip-flops

library ieee;
use ieee.std_logic_1164.all;
entity tff_logic is port (

t, clk in std_logic;
q : inout std_logic

) ;

end dff_logic;

architecture t_example of dff_logic is
begin

process (clk) begin
if (clk'event and clk '1') then

if (t = '1') then
q <= not (q) ;

else
q <= q;

end if;
end if;

end process;
end t_example;

All signal assignments in this process that occur after if (elk' event and elk= ' 1 ') are synchronous to
the signal elk. The signal assignments in the process above (q <= not(q) and q <= q) are
synchronous to the clock. The first signal assignment, which occurs if t is asserted, indicates that on
the rising edge of the clock, q will be assigned the opposite of its current value. The second signal
assignment, which occurs if t is deasserted, indicates that on the rising edge of the clock, q will retain
its value. Looking at Figure 4-8, you can see that combinational logic is described in this process
(the multiplexer); however, all signal assignments (q) are synchronous. (This implementation is
device specific. A 22VlO, for example, does not have multiplexers, so it obviously would not be
implemented as shown-it would be implemented with a sum of product terms. The CY7C371
device has a macrocell for which the register can be configured as a TFF, and so would not require
any additional resources.)

Here is the 8-bit register:

library ieee;
use ieee.std_logic_1164.all;
entity reg_logic is port (

d in std_logic_vector(O to 7);
clk in std_logic;
q out std_logic_vector(O to 7)

) ;

end reg_logic;

architecture r_example of reg_logic is
begin

process (clk) begin
if (clk'event and clk '1') then

q <= d;
end if;

end process;
end example;

You can also describe the behavior of this registered circuit by using the WAIT UNTIL construct
instead of the if (elk' event and elk= ' 1') construct:

architecture example2 of dff_logic is
begin

process begin
wait until (clk

q <= d;
end process;

end example2;

'1');

101

102

This process does not use a sensitivity list, but begins with a WAIT statement. A process that has a
WAIT statement cannot have a sensitivity list (the WAIT statement implicitly defines the sensitivity
list), and the WAIT statement must be the first statement in the process. Because of this,.synchronous
logic described with a WAIT statement cannot be asynchronously reset, as will be shown below.

If you interpret the code fragment above in terms of simulation, then you will see that this process is
inactive until the condition following the WAIT UNTIL statement is true. Once true, the signal
assignments that follow the WAIT statement are made, after which the process once again waits for
the clock to be asserted (even if it is still presently asserted). So, in this case, once the elk signal
becomes equal to 1 (Le., on the rising edge of elk), q will be assigned the value of d, thereby
describing a D-type flip-flop.

Resets and Synchronous Logic
None of the examples above make reference to resets or initial conditions. The VHDL standard does
not require you to reset or initialize a circuit. The standard specifies that for simulation, unless a
signal is explicitly initialized, it gets initialized to the 'LEFf value of its type. So a signal of type
std_Iogic will get initialized to 'U', the uninitialized state, and a bit will get initialized to '0'. In the
hardware world, however, this is not always true-not all devices power up in the reset state, and the
uninitialized state is physically meaningless. Furthermore, you may wish to have global and local
resets to place the logic in a known state. You can describe resets and presets (as shown in Figure 4-
9) with simple modifications to the code, as shown here:

d -----fD Q 1----- q

elk ----i)

reset ------'

Figure 4-9 Block Diagram of DFF with Asynchronous Reset

architecture rexample of dff_logic is
begin

process (clk, reset) begin
if reset = '1' then

q <= '0' i

elsif (clk'event and clk
q <= di

end ifi
end proceSSi

end rexamplei

'1') then

The sensitivity list indicates that this process is sensitive to changes in elk and reset. A transition in
either of these signals will cause a simulator to sequence through the process. Sequencing through
the code, you'll find that this code accurately describes an asynchronously resettable D-type flip
flop: The process is activated only by a change in elk or reset. Upon activation of the process, if reset
is asserted, then signal q will be assigned '0', regardless of the value of elk. Otherwise, if reset is not

asserted and the clock transition is a rising edge event, then the signal q will be assigned the value of
signal d. This process template causes synthesis software to infer an asynchronous reset.

To describe a preset instead of a reset, you can simply write

if (preset = '1') then
q < '1';

end if;

instead of:

if (reset '1')
then q <= '0'

end if;

You can also reset (or preset) your flip-flops synchronously by putting the reset (or preset) condition
inside the logic controlled by the clock. For example,

architecture sync_rexarnple of dff_logic is
begin

process (clk) begin
if (clk'event and clk = '1') then

if (reset = '1') then
q <= '0';

else
q <= d;

end if;
end if;

end process;
end sync_rexarnple;

This VHDL code describes a process that is sensitive only to changes in the clock, and synthesis
produces a D-type flip-flop that is synchronously reset whenever the reset signal is asserted and is
sampled by the rising edge of the clock. Because most flip-flops in PLDs do not have synchronous
resets or sets (the 22VlO, with a synchronous set, is a notable exception), implementing synchronous
resets and sets requires using additional logic resources (product terms) (see Figure 4-10).

res~t~q
Clk~

Figure 4-10 Additional logic resources are usually required for
synchronous resets and sets.

You can also describe a combination synchronous/asynchronous reset and/or preset in VHDL.
Suppose, for example, that you want an 8-bit register to be asynchronously reset to all O's whenever
the signal reset is asserted, but you want it to be synchronously preset to all l's whenever the signal

103

104

init is asserted and sampled by the rising edge of the clock. The VHDL code to implement this
function is shown in Listing 4-2:

library ieee;
use ieee.std_logic_1164.all;
entity reg_logic is port (

d in std_logic_vector(O to 7);
reset, init, clk
q

in std_logic;
out std_logic_vector(O to 7)

) ;

end reg_logic;

architecture fancy_example of reg_logic is
begin

process (clk, reset) begin
if (reset = '1') then

q <= b"OOOOOOOO";
elsif (clk'event and clk

if (init = '1') then
q <= b"llllllll";

else
q <= d;

end if;
end if;

end process;
end fancy_example;

'1') then

Listing 4-2 An 8-bit register with asynchronous reset and
synchronous initialization

Arithmetic Operators
We will digress for a moment to briefly discuss arithmetic operators (adding, subtracting,
concatenation, sign, multiplying, dividing, modulus, remainder, and absolute value). The arithmetic
operators most commonly used in designs created for synthesis are addition and subtraction. All are
defined for the types integer and floating.

The native VHDL + operator is not defined for the types bit or std_logic. Therefore, the following
code can be written for use with synthesis:

ENTITY myadd IS PORT (

END myadd;

a, b : IN INTEGER RANGE 0 TO 3;
sum: OUT INTEGER RANGE 0 TO 6);

ARCHITECTURE archmyadd OF myadd IS
BEGIN

sum <= a + b;
END archmyadd;

Here, the result of the addition is assigned to a data object of type integer. Although some synthesis
tools handle this design, internally converting the integers to bits or std_logics, using integers as
ports poses a problem: The same vectors used to simulate the source code cannot be used to simulate

the post-fit simulation model (see chapter 9, "Creating Test Fixtures"). You supply vectors with
integers for the source code, whereas you need to supply vectors of type bit or std_Iogic to the back
annotated model.

Most synthesis tools provide overloaded operators (or you can write your own-see chapter 7,
"Functions and Procedures") that allow the + operator, or any other operator, to be used with
different types other than those predefined. For example, it is desirable to be able to add an integer to
either a bie vector or std_Iogic_ vector.

The synthesis of arithmetic operators will be discussed in chapter 8, "Synthesis to Final Design
Implementation". For now, we will simply use these operators to create components such as counters.

Asynchronous Resets and Presets
Our next code listing describes an 8-bit counter. This counter has one asynchronous signal, which
places the counter at the value "00111010". The counter is also synchronously loadable and
enableable.

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port(

txclk, grst:
enable, load:
data:
cnt:

end cnt8;

library work;

instd_logic;
in std_logic;
in std_logic_vector(7 downto 0);
inout std_logic_vector(7 downto 0));

use work.std_math.all;
architecture archcnt8 of cnt8 is
begin
count: process (grst, txclk)

begin
if grst = '1' then

cnt <= "00111010";
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= data;

elsif enable = '1' then

end if;
end if;

end process count;
end archcnt8;

cnt <= cnt + 1;

Listing 4-3 An 8-bit counter with one asynchronous signal to reset
some flip-flops and set other flip-flops

The process count is sensitive to transitions in grst and txclk. If grst is asserted, then some of the cnt
flip-flops are asynchronously reset while others are asynchronously preset (see Figure 4-11). On the
rising edge of txclk, the cnt registers are loaded if load is asserted, incremented if enable is asserted,
or remain the same if neither load nor enable is asserted. The lack of an ELSE after elsif enable

105

106

implies that cnt will retain its value if neither ofthe previous conditions (load or enable) is true.
Alternatively, you can explicitly include "else q <= q" (Figure 4-11).

data7

data2

data1

dataO

enable --'--+----1

load
grst
txclk

cnt(7)

• •
• •
• •

cnt(2)

cnt(1)

cnt(O)

Figure 4-11 Schematic of the 8-bit counter of Listing 4-3, as
implemented in the FLASH370 architecture

Occasionally, a design may require two asynchronous signals: both a reset signal and a preset. How
are both a reset and a preset defined? Listing 4-4 is our suggestion:

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port(

txclk, grst, gpst:
enable, load:
data:
cnt:

end cnt8;

in std_logic;
in std_logic;
in std_logic_vector(7 downto 0);
inout std_logic_vector(7 downto 0));

library work;
use work.std_math.all;
architecture archcnt8 of cnt8 is
begin
count: process (grst, gpst, txclk)

begin
if grst = '1' then

cnt <= (others => '0');
elsif gpst = '1' then

cnt <= (others => '1');
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= data;

elsif enable = '1' then

end if;
end if;

end process count;
end archcnt8;

cnt <= cnt + 1;

Listing 4-4 A counter with asynchronous reset and preset.

This process is sensitive to changes in grst, gpst, and txclk. Grst and gpst are both used to
asynchronously assign values to the ent registers. The reset/preset combination of Listing 4-4 poses a
synthesis issue: As discussed earlier in the chapter, the IF-ELSIF construct implies a precedence
that ent should be assigned the value of all 1 's (others => '1 ') when gpst is asserted AND grst is not
asserted. The logic in Figure 4-12 assures that the counter will not be preset unless the reset signal is
also low. This was not the intended effect. Some synthesis tools recognize that this is not the
intended effect and that flip-flops by design are either reset- or preset-dominant. Therefore,
depending on the synthesis policy of your software tool, the code of Listing 4-4 produces the logic of
either Figure 4-12 or Figure 4-13. Many CPLDs with product term resets and presets are able to fit
either implementation. Likewise, most FPGAs have the resources to implement product term resets
and presets. However, while most FPGAs are set up to provide a high-performance, global, or near
global, reset or preset, most do not have the resources to provide a high-performance product term
reset or preset, in which case the implementation of Figure 4-13 is preferred.

Occasionally, you may want a series ofregisters to be reset to all O's when asynchronously reset, and
preset to a predetermined value (some O's, some 1 's) when asynchronously preset. Listing 4-5 is an
example:

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port (

txclk, grst, gpst:
enable, load:
data:
cnt:

end cnt8;

library work;
use work.std_math.all;

in std_logic;
in std_logic;
in std_logic_vector(7 downto 0);
inout std_logic_vector(7 downto 0));

107

108

liP 5 T

II.

D 5 Rf r

GH5T

Figure 4-12 Logic assures that the reset is dominant.

G P 5 T

- D 1I.f--

D5Hrr

-t>
R

G H 5 T

Figure 4-13 Synthesis result of Listing 4-4, assuming that the reset is dominant

architecture archcnt8 of cnt8 is
begin
count: process (grst, gpst; txclk)

begin
if grst = '1' then

cnt <= "00000000";
elsif gpst = '1' then

cnt <= "00111010";
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= data;

elsif enable = '1' then

end if;
end if;

end process count;
end archcnt8;

cnt <= cnt + 1;

Listing 4-5 A counter with asynchronous preset and product-term
reset

Assuming reset dominance, synthesis will cause cnt(7) to be asynchronously set to '0' if grst OR
gpst is asserted, provided that the device supports an OR term asynchronous reset. See Figure 4-8.

0 a

o 5 R F F

R

G R S T
._OH __ ri

GPST D--
o R 2

Figure 4-14 A flip-flop with an OR term asynchronous reset

All of the examples showing resets and presets in this chapter use the if (signaCname' event and
signaCname= ' 1') construct to describe synchronous logic. You can also use the wait until statement
to describe synchronous logic with resets and presets, but these resets and presets must be
synchronous. This is because the WAIT statement must be the first statement in the process, as
mentioned above. Since no asynchronous statements can come before it, and since any statements
that come after it are synchronous, resets and presets used with a WAIT statement are always
synchronous.

Instantiation of Synchronous Logic Components

As with combinational logic, synchronous logic may be described in concurrent statements through
component instantiation. Components may be created by you, a synthesis tool vendor, or a PLD
vendor. Two advantages of instantiating components may exist: (1) A component that is repeated
throughout the design need not be described multiple times-it can be described once and then
instantiated and (2) vendor-supplied implementations of components may provide better
implementations than those generated through synthesis of behavioral VHDL (chapter 8, "Synthesis
to Final Design Implementation") discusses these issues in detail). For example, rather than using

109

behavioral code to redescribe a D-type flip-flop Each time you require the use of one, you can
describe it once as a component and then instantiate it:

label: dsrff port map (d, s, r, clk, q);

Where d is the D input to the flip-flop; 'S is the preset input; r is the reset input; elk is the clock input;
and q is the output. The following component may be a vendor-supplied component that the
synthesis software recognizes in order that it can produce an optimal implementation:

mycount: cnt16 port map (cnt, r, en, clk);

Three-State Buffers and Bidirectional Signals

110

Most programmable logic devices have three-state outputs and 110 pins that can be used
bidirectionally. Output buffers are placed in a high-Z (high-impedance) state in order not to drive a
shared bus at the wrong time (i.e, to avoid bus contention), or so that bidirectional pins may be
driven by off-chip signals. Additionally, some devices have internal three-state buffers. We will
show how to describe three-state and bidirectional signals using both behavioral descriptions and
structural instantiations of three-state and bidirectional 110 components.

Behavioral Three-States and Bidirectionals
The values that a three-state signal can have are '0', '1', and 'Z' , all of which are supported by the type
std_logic. We will modify the 8-bit counter example to have three-state outputs, and then discuss
what code changes were necessary. Listing 4-6 shows the modifications:

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port (

txclk, grst:
enable, load:
oe:
data:
cnt_out:

end cnt8;

library work;

in std_logic;
in std_logic;
in std_logic;
in std_logic_vector(7 downto 0);
inout std_logic_vector(7 downto 0));

use work.std_math.all;
architecture archcnt8 of cnt8 is

signal cnt: std_logic_vector(7 downto 0);
begin
count: process (grst, txclk)

begin
if grst = '1' then

cnt <= "00111010";
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= data;

elsif enable = '1' then
cnt <= cnt + 1;

end if;
end if;

end process count;

oes: process (oe, cnt)
begin

if oe = '~' then
cnt_out <= (others => 'Z');

else
cnt_out <= cnt;

end if;
end process oes;

end archcnt8;

Listing 4-6 A counter with three-state outputs

The process labeled oes is used to describe the three-state outputs for the counter. This process
simply indicates that if oe is asserted, then the value of cnt is assigned to cnCout (the output port of
this design), and if oe is not asserted, then the outputs of this design are placed in the high-impedance
state. The process is sensitive to changes in either oe or cnt, because a change in either signal causes
a change in cnCout. Two additional signals are used in this design compared to the design of Listing
4-3. Oe was added as the three-state control and cnCout was added as the output port. The signal cnt
was changed from a port of this design to a signal local to the architecture. This description is
consistent with the functionality of a three-state buffer (Figure 4-8).

o E
C N T -=[>>--__ C _N_T ___ D_U_T

Figure 4-15 A three-state buffer

The three-state control can also be described with a WHEN-ELSE construct. In Listing 4-7, we add
an additional output, collision, which is asserted when load and enable are asserted, provided that its
output is enabled.

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port(

txclk, grst:
enable, load:
oe:
data:
collision:
cnt_out:

end cnt8;

in std_logic;
in std_logic;
in std_logic;
in std_logic_vector(7 downto a};
out std_logic;
inout std_logic_vector(7 downto a});

111

112

library work;
use work.std_math.all;
architecture archcnt8 of cnt8 is

signal cnt: std_logic_vector;
begin
count: process (grst, txclk)

begin
if grst = '1' then

cnt <= "00111010";
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= data;

elsif enable = '1' then
cnt <= cnt + 1;

end if;
end if;

end process count;

cnt_out <= (others => 'Z') when oe = '0' else cnt;
collision <= (enable AND load) when oe = '1' else 'Z';

end archcnt8;

Listing 4-7 Three-state outputs defined with a WHEN-ELSE
construct

Bidirectional signals are described with little modification of Listing 4-6 or Listing 4-7. Here, in
Lisiting 2-8, the counter is loaded with the current value on the pins associated with the counter
outputs, meaning that the value loaded when load is asserted may be the counter's previous value or
a value driven from another device, depending upon the state of the output enable:

library ieee;
use ieee.std_logic_1164.all;
entity cnt8 is port(

txclk, grst: in std_logic;
enable, load: in std_logic;
oe: in std_logic;
cnt_out: inout std_logic_vector(7 downto O}};

end cnt8;

library work;
use work.std_math.all;
architecture archcnt8 of cnt8 is

signal cnt: std_logic_vector(std_logic_vector};
begin
count: process (grst, txclk)

begin
if grst = '1' then

cnt <= "00111010";
elsif (txclk'event and txclk='l') then

if load = '1' then
cnt <= cnt_out; -- cnt is now loaded from the cnt_out port

elsif enable = '1' then
cnt <= cnt + 1i

end ifi
end if i

end process counti

oes: process (oe, cnt)
begin

if oe = '0' then
cnt_out <= (others => 'Z') i

else
cnt_out <= cnti

end ifi
end process oeSi

end archcnt8i

Listing 4-8 lias used bidirectionally

If you compare these listings closely, you'll find that the greatest difference is in the assignment of
cnt when load is asserted. Other subtleties include the fact that cncout must be of mode INOUT in
this example, whereas it can be of mode BUFFER in the other listings. The remaining difference is
that data is not a required signal for this listing, for obvious reasons.

Here is an example for which the output enable of a three-state buffer is implicitly defined:

multiplexer: process (row_addr, col_addr, present_state)
begin

if (present_state = row_address or present_state = ras_assert) then
dram <= row_addri

elsif (present_state = col_address or present_state= cas_assert) then
dram <= col_addri

else
dram <= (others => 'Z')i

end ifi
end proceSSi

The three-state buffers for the signal dram are enabled if the value of presenCstate is row_address,
ras_assert, coCaddress, or cas_assert. The output buffers are not asserted for any other values of the
presenCstate.

Structural Three-States and Bidirectionals
IEEE 1076-compliant VHDL-synthesis vendors that have been slow to support the IEEE 1164
standard may not support the behavioral description of three-state or bidirectional components.
Instead, their compilers wi11likely support vendor-supplied components for these purposes. In this
case, you simply instantiate the component (here, we show the component name as threestate):

uO:threestate port map (cnt(O), oe, cnt_out(O))i

113

114

Even if the compiler does support behavioral three-states, you may prefer to create a threestate
component yourself and instantiate it if you find this method to be more clear.

For-Generate

If you use the threestate component to implement the three-state buffers for a 32-bit bus, it is
cumbersome to instantiate the component 32 separate times. The FOR-GENERATE statement helps
in this case:

gen_label:for i in 0 to 31 generate
inst_label:threestate.port map (value(i), read, value_out(i}};

end generate;

A generation scheme is implemented in the concurrent statement portion of an architecture, not
within a process. A generation scheme can also include conditional instantiations. For instance,
suppose you required 32 three-state signals, with each set of 8 having its own byte read, byte_rd
(output enable) (Figure 4-16). The following generation scheme can employed:

6YTE.IID~O~

YH[O'7J ~ YALOUHO'7J

TII1OUT6

6YTE.IID~1)

YH[6'15J ~ Y ~ L .0 U T [B . 1 5 J

TII1OUT6

6YTE.IID~U

'1H[16·nJ '1H.OUH16·nJ

TII1OUT6

6YTE.II[l(n

'1H[2-4· U J '1H.OUH 2-4' 31 J

TII1OUT6

Figure 4-16 Three-state buffers with output enables for each byte

gl: for i in 0 to 7 generate
uOt7: threestate port map (val(i), byte_rd(O), val_out(i));
u8t15: threestate port map (val(i+8), byte_rd(l), val_out(i+8));
u16t23: threestate port map (val(i+16), byte_rd(2), val_out(i+8));
u24t31: threes tate port map (val(i+24), byte_rd(3), val_out(i+24));

end generated;

You can use more-complicated generation schemes. The generation scheme shown below is more
complicated than need be (it describes the same logic as above), but it is helpful in demonstrating the
flexibility of generation schemes. The name of the component has been abbreviated to thrst.

gl:
g2:

for i in 0 to 3 generate
for j in 0 to 7 generate

if i < 1 then generate
ua: thrst port map(val(j), byte_rd(O), val_out(j));

end generate;
if i = 1 then generate

ub: thrst port map (val(j+8), byte_rd(l), val_out (j+8));
end generate;
if i = 2 then generate

uc: thrst port map (val(j+16), byte_rd(2), val_out(j+8));
end generate;
if i > 2 then generate

ud: thrst port map (val(j+24), byte_rd(3), val_out(j+24));
end generate;

end generate;
end generate;

Generation schemes can be used to instantiate any component, not just vendor supplied or user
written three-state and bidirectional components.

A return to the FIFO

Loops

Having covered many topics in this chapter, we return to our FIFO example of Listing 4-1. The
entity declaration is simple enough and does not introduce any new concepts. The type declaration
fifo_array is the first interesting construct encountered in this design. It is simply an array of eight
std_Iogic_ vectors wherein the std_Iogic_ vectors are nine bits wide. Signal fifo is then declared to be
of this type (one-dimensional array of std_logic_ vectors). We can therefore access eight
std_Iogic_ vectors by indexing fifo, as infifo(3), fifo(7), fifo(1), etc. The next new concept that we run
across is the loop.

Loop statements are used to implement repetitive operations and consist of either FOR loops or
WHILE loops. The FOR statement will execute for a specific number of times based on a controlling
value. The WHILE statement will continue to execute an operation as long as a controlling logical
condition evaluates true. An extra step is required to initialize the controlling variable of a WHILE
statement. Take, for instance, the loop used to asynchronously reset the FIFO array:

for i in 7 downto 0 loop
fifo(i) <= (others => '0');

end loop;

115

116

This loop sequences through the eight std_Iogic vectors that make up the FIFO array, setting each
element of the vectors to '0'. In a FOR loop, the loop variable is automatically declared. A WHILE
loop can be used here but requires the additional overhead of declaring, initializing, and incrementing
the loop variable. (The variable can be initialized upon declaration or within the process. Depending
on how you use the variable, it may be required to reinitialize the variable within the process.)

reg_array: process (rst, clk)
variable i: integer := 0;

begin
if rst = '1' then

while i < 7 loop
fifo(i) <= (others => '0');
i := i + 1;

end loop;

The NEXT statement is used to skip an operation based on specific conditions. Suppose, for
example, that when rst is asserted, all of the fifo registers are reset except for the fifo(4) register:

reg_array: process (rst, clk)
begin

if rst = '1' then
for i in 7 downto 0 loop

if i = 4 then
next;

else
fifo(i) <= (others => '0');

end loop;

Or, as written with a while loop,

reg_array: process (rst, clk)
variable i: integer := 0;

begin
if rst = '1' then

while i < 8 loop
if i = 4 then

next;
else

fifo(i) <= (others => '0');
i := i + 1;

end loop;

The EXIT statement is used to exit from a loop. This can be used to check an illegal condition.
Suppose, for example, that FIFO is a component that is used for instantiating in a hierarchical design.
Suppose further that the depth of the FIFO was defined by a generic, or parameter (these will be
discussed in our chapter on hierarchy). You may wish to exit the loop when the depth of the FIFO is
greater than a predetermined value. For instance,

reg_array: process (rst, clk)
begin

if rst = '1' then
loop1: for i in deep downto 0 loop

if i > 20 then
exit loopl when i > 3;

else
fifo(i) <= (others => '0');

end loop;

You can see that for clarity, a loop label has been added. Loops have been used in a limited capacity
here; however, they can be used to perform a myriad of functions. For example, the second loop used
in the FIFO design is used to check which register is being written to (the en signal is decoded from
wrptr):

if wr '1 ' then
for i in 7 downto 0 loop

if en(i) = '1 ' then
fifo (i) <= data _in;

else
fifo (i) <= fifo(i);

end if;
end loop;

end if;

Our having discussed registered and combinational logic, including three-state and bidirectional
signals, the remainder of the design provides no new challenges. The read and write pointers are
simply three-bit counters that indicate which register in the fifo array to write to or read from. The
dataflow constructs are used to decode the read and write counters, and the three3tate process is
used to control the three-state outputs.

Figure 4-11 shows a block diagram of the FIFO design.

Completing the FIFO
Now that you have mastered the basics, you are ready to move on to additional topics covered in the
rest of this book, starting with state machines in the next chapter. But before we do that, we leave
you with a modified version of our FIFO in which the width and depth are specified with a generic
(parameter) and a constant. Generics are described in more detail in chapter 6, "The Design of a
lOOBASE-T4 Network Repeater." Additionally, the read and write pointers are not explicitly
decoded because their values are of type integer. You'll see that this provides an even more concise
way to describe the FIFO. There is one drawback to this implementation, however: the description of
the counters using integers. A synthesis tool will internally convert the integers to a binary value
such that when the counter reaches its maximum value, it will roll over on the next count. A VHDL
simulator, however, will not convert the integers to a binary value. Consequently, when the counter
reaches its maximum value, incrementing the counter will cause the simulator to issue an error
indicating that the range for the counter signal (type integer) has been exceeded. This incompatibility
between simulation and synthesis can be worked around in simulation by forcing the value of the
counter to roll over at the appropriate time. Alternatively, you can explicitly specify in the VHDL
code that the counter is to return to zero after it reaches its maximum value. This is the preferred
solution as it maintains compatibility between the simulation and synthesis results and is unlikely to

117

rd
data_ln"""9 .. : ... 0 _____________ --.

wr

wptrel r __ --i,
wrinc -----I

rdptrcll--+-_-+---I
rdi nOf---I----+--1 rdptr[2:0]

118

elk _---'-_--1-1--__________ ----1

rst ________ ~ ____________ ~----------------~~

Figure 4-17 FIFO block diagram

cause additional resources to be used in the PLD. (This, however, is dependent on the compiler.) We
leave you to make this modification.

Yet another approach is taken for implementation of a FIFO in chapter 6, "The Design of a
lOOBASE-T4 Network Repeater."

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.std_math.all;

entity fif08x9 is generic (wide: integer .- 32);
port (
clk, rst, oe:
rd, wr, rdinc, wrinc:
rdptrclr, wrptrclr:
data_in:
data_out:

end fif08x9;

in std_logic;
in std_logic;
in std_logic;
in std_logic_vector(wide downto 0);
out std_logic_vector(wide downto 0));

architecture archfifo8x9 of fifo8x9 is
constant deep: integer := 20;
type fifo_array is array(deep downto 0) of std_logic_vector(wide downto

0) ;

signal fifo: fifo_array;
signal wrptr, rdptr: integer range 0 to deep;
signal en: std_logic_vector(deep downto 0);
signal dmuxout: std_logic_vector(wide downto 0);

begin

-- fifo register array:
reg_array: process (rst, clk)

begin
if rst = '1' then

for i in deep downto 0 loop
fifo(i) <= (others => '0');

end loop;
elsif (clk'event and clk = '1') then

if wr = '1' then
fifo (wrptr) <= data_in;

end if;
end if;

end process;

-- read pointer
read_count: process (rst, clk)

begin
if rst = '1' then

rdptr <= 0;
elsif (clk'event and clk='l') then

if rdptrclr = '1' then
rdptr <= 0;

elsif rdinc = '1' then
rdptr <= rdptr + 1;

end if;
end if;

end process;

-- write pointer
write_count: process (rst, clk)

begin
if rst = '1' then

wrptr <= 0;
elsif (clk'event and clk='l') then

if wrptrclr = '1' then
wrptr <= 0;

elsif wrinc = '1' then
wrptr <= wrptr + 1;

end if;
end if;

end process;

119

-- data output multiplexer
dmuxout <= fifo(wrptr);

-- three-state control of outputs
three_state: process (oe, dmuxout)

begin
if oe = '1' then

data_out <= dmuxout;
else

data_out <= (others => 'Z');
end if;

end process;

end archfifo8x9;

Common Errors

120

Hidden Registers
Signal assignments can be synchronized to a clock by using one of several constructs. Remember
that all signal assignments after the synchronizing statements, as in the example below, are
synchronous to a clock.

seq: process (clk)
begin

if clk'event and clk='l' then
b <= c;
a <= b;
h <= i;
i <=

end if;
end process;

XOR k;

This code does not describe logic in which b is equivalent to c and h is equivalent to i. Rather, from
this code, synthesis infers registers for each of the signal assignments, producing the logic of Figure
4-8. All assignments after the initial if statement are synchronous to the clock. If you want signals h
and i not to be registered, then these sequential signal assignments should be removed from the
process and made concurrent signal assignments, as shown below.

seq: process (clk)
begin

if clk'event and clk='l' then
b <= c;
i <= j XOR k;

end if;
end process;

a <= b;
h <= i;

A

B

-~-B-n--A
eLK I I

Figure 4-18 A process can describe interconnected flip-flops. The
order of signal assignment is relevant

When simulators are used to process VHDL, signal assignments within processes are scheduled, not
immediate. The signal assignments will only be made after termination of the process. Synthesis
software will also generate logic based on this assumption. For this reason, care should be taken in
using a signal that is assigned in a process also as a signal for the basis of comparison, as in the code
below. Variable assignments within processes are immediate; however, variables are only visible in a
process.

Careful evaluation of the code in Listing 4-9 reveals that it describes the logic of Figure 4-19.

A=B D Q X D Q
y

-> ->

C LK

Figure 4-19 Logic of Listing 4-9

architecture careful of dangerous is
signal x: bit;
begin
p1: process begin

wait until clk '1';
x <= '0';

y <= '0';

if a = b then
x <= '1';

121

122

end if;

if x = '1' then
y <= '1';

end if;
end process p1;
end careful;

Listing 4-9 A signal in an assignment and as an operand

In this process, signal x is used as the object of an assignment and as an operand in a comparison.
Because the assignment to x is scheduled and not immediate, the subsequent comparison, if x = '1',
compares the present, not scheduled, value of x. Thus, y is the registered version of x.

If x is a variable, rather than a signal, then the architecture can be written as follows, in which y is
output of a combinational comparison of a and b.

architecture careful of dangerous is
begin
p1: process

variable x: bit;
begin

wait until clk = '1';
x := '0';

y <= '0';
if a = b then

x .- ' 1';
end if;

if x = '1' then
y <= '1';

end if;
end process p1;
end careful;

Listing 4-10 A registered equality comparator.

Because x is a variable in this process, the assignment is immediate; hence, y is the output of an
equality comparator (Figure 4-20). As a variable, x is only meaningful inside the process; to use the
value outside of the process requires that its value be assigned to a signal as in the following code:

architecture pass_variable of to_signal
signal vec: bit_vector(O to 3);
and_result: bit;

begin
proc: process (vec)

variable result: bit .- '1';
begin

for i in 0 to 3 loop
result := result AND vec(i);

end loop;
and_result <= result;

end process;

A

B A=B D Q

.--->

c LK

Figure 4-20 Logic described by Listing 4-10

output_enable <= wmask AND and_result;
end pass_variable;

y

This code demonstrates that result can be used for immediate assignment, the value of which is
passed to andJesult at the end of the process. Placing the assignment statement for andJesult at the
beginning of the process would clearly produce a different result-it would always be assigned' 1 ' .

Improper use of variables
In terms of processing VHDL for simulation, variables are only meaningful in a process and do not
retain their values between periods of time when the processes are inactive. Variables must be
reinitialized each time the process is activated. Synthesis creates logic based on these assumptions.
Thus, the following code does not describe a counter: •

architecture incorrect of bad_counter
begin
count: process (rst, clk)

variable cnt: integer;
begin

if rst = '1' then
cnt := 0;

elsif (clk'event and clk='l') then
cnt := cnt + 1;

end if;
end process;

end incorrect;

The variable ent does not retain its value for the time during which the process is inactive.

Non-synthesizeable code
The following code is perfectly legal VHDL.1t is a simulation model useful with simulation tools.
This code cannot, however, be synthesized. Read through the code and see for yourself that this code
accurately models simulation in the time domain. You'll also notice that this code doesn't describe a
design for which synthesis software can create gates.

-- check for clk setup/hold violations
PROCESS (clk, d)

123

Exercises

124

VARIABLE dlastev
VARIABLE clklastev

BEGIN

TIME := 0 ns;
TIME .- 0 ns;

Check only if the cell is registered.
IF (registered = reg) THEN

setup check
IF (pchanging(clk) AND (clk = '1')) THEN

ASSERT ((NOW = 0 ns) OR ((NOW - dlastev) >= Ts))
REPORT
"Setup ERROR ON D: Setting output to unknown"
SEVERITY WARNING;

IF NOT ((NOW = 0 ns) OR ((NOW - dlastev) >= Ts)) THEN
~ts <= '1';
~ts <= transport '0' after 1 ns;

END IF;
clklastev .- NOW;

END IF;

hold check
IF (pchanging(d)) then

ASSERT ((NOW = 0 ns) OR ((NOW - clklastev) >= Th))
REPORT
"Hold ERROR ON D: Setting output to unknown"
SEVERITY WARNING;

IF NOT ((NOW = 0 ns) OR ((NOW - clklastev) >= Th)) THEN
~th <= '1';

~th <= transport '0' after 1 ns;
END IF;
dlastev .- NOW;

END IF;
END IF;

END PROCESS;

1. Write the VHDL code to describe an 8-bit wide, 4-to-l mux using IF-THEN-ELSE statements
within a process (include a sensitivity list).

2. Write the VHDL code to compare two 8-bit buses called a_data and b_data and drive a_grtcb true
when a_data is greater than b_data.

3. Decode a memory space between 02AD3hex and 07FFFF in a 24-bit address range using the
CASE-WHEN statement.

4. Build a 4-bit magnitude comparator with 3-outputs (equals, lesser than and greater than) using:

a) logical operators

b) relational operators

c) structural instantiation

d) WHEN - ELSE construct

e) IF - THEN - ELSE construct

5. Write the VHDL code for a 32-bit register bank built using D flip-flops. The register bank has
three-state outputs, controlled by a common output enable. Build this:

a) with structural Instantiation

b) structural instantiation using FOR-GENERATE and FOR-LOOPs

c) behaviorally

6. Build a 16-bit loadable down-counter with three-state outputs. The counter has two enable signals
and can be asynchronously. The enable signals, control the lower 8-bits and the upper 8-bits
respectively of the counter's three-state outputs.

7. Build a 16-bit up-down loadable Counter which does not include a sensitivity list along with the
process declaration. Create two signals which can preset and reset the counter asynchronously. The
counter has three state outputs, controlled by a common output enable.

8. Write VHDL code to compute the value of the temperature in Fahrenheit scale:

a) When given Celsius values

b) Automatically compute the values over a range of 0 to 200 degrees celsius, over 5 degree
intervals. Hint: Use loop statements.

9. Build a 8-bit adder:

a) behaviorally using the '+' operator

b) behaviorally using logical operators

c) with structural instantion

d) using 2 ADD4 components from the Warp MATH library.

10. How do you handle logical operators on operands of unequal lengths?

125

5 State Machine Design

Introduction

One of the most common uses for programmable logic is for state machines. In this chapter, we show
how you can easily describe state machines that meet your performance and resource utilization
goals.

We begin with a simple example showing that writing a behavioral state machine description in
VHDL is simply a matter of translating a state flow diagram to CASE-WHEN and IF-THEN-ELSE
statements. Next, we examine how state machine logic is realized in a PLD after synthesis-i.e., we
see which device resources are utilized-for the purpose of determining the resulting timing
characteristics. Along the way, we explore variations of design descriptions that when synthesized
may use different device resources and, hence, have different timing characteristics. From the various
design descriptions, you'll be able to choose a style that best fits your design requirements.

Depending on your design requirements (time-to-market, performance, and cost-of-design), you may
be concerned with more than just having a functionally accurate design description. That's why we
investigate methods for optimizing designs for speed or area. Some of the optimization techniques
are more applicable to CPLD architectures than FPGAs architectures (or vice versa); others are
device independent. We point out which techniques are transitory-needed only to work around the
state of the art of synthesis-and which are always applicablt:<. All of the techniques discussed assist
in understanding not only the synthesis process but also how to get the most of CPLD and FPGA
architectures. With these techniques, you'll be able to converge on the optimal design solution
quickly, even if time-to-market, performance, and cost-of-design are all important. We conclude this
chapter with a discussion of fault tolerance and ways to avoid problems when designing complex
state machines.

A Simple Design Example

We will use the following problem description to design a state machine, first using traditional
design methodologies, then with VHDL.

A controller is used to enable and disable the write enable (we) and output enable (oe) of a memory
buffer during read and write transactions. The signals ready and read_write are microprocessor
outputs that are inputs to the controller, and the signals we and oe are outputs of the controller. A
new transaction begins with the assertion of ready following a completed transaction (or upon power
up for the initial transaction). One clock cycle after the commencement of the transaction, the value
of read_write determines whether it is a read or write transaction. If read_write is asserted, then it is
a read cycle; otherwise, it is a write cycle. A cycle is completed by the assertion of ready, after which
a new transaction can begin. Write enable is asserted during a write cycle, and output enable is
asserted during a read cycle.

Traditional Design Methodology
Traditional design methodology tells us that the first step is to construct a state diagram from which
we can derive a state table. We can determine and eliminate equivalent states by matching rows of
the state table and using an implication table, if necessary. We can then make state assignments and

127

128

create a state transition table from which we can generate next-state and output equations based on
the types of flip-flops used for implementation.

From the design description, we can produce the state, or bubble, diagram of Figure 5-1. This
diagram shows that a read or write transaction commences with the assertion of ready, in which case
the state machine transitions from the idle state to the decision state. Depending upon the value of
read_write during the next clock cycle, the transaction is either a read or write cycle, and the state
machine transitions to the appropriate state. A transaction is completed when ready is asserted,
placing the controller back in the idle state.

state
outputs

oe we

idle 0 0

decision 0 0

write 0 1

read 0

Figure 5-1 Simple State Machine

There are not any equivalent states in this machine: All states require different inputs to transition to
the next state or have different outputs. We will combine the state assignment table with the state
transition table (Figure 5-2); the state assignment is listed in the PS (present-state) column (we
decided to use the fewest possible number of state registers, two). The NS (next-state) column shows
transition from present state to next state based upon the present value of the two inputs, read_write
and ready. The combinations of values for these inputs are shown in a row as 00, 01, 11, and 10.
They are listed in this order for easy translation to a Kamaugh map. The outputs are in the rightmost
column.

Next, we can determine the next-state equations for each of the two state bits (Figure 5-2). QJ and Qo
represent the values of the next-state functions. The present-state values are represented in lowercase
by q] and qo. The Kamaugh maps can be generated easily from the state transition table: Each row
corresponds to a state, and each column corresponds to a combination of the inputs; the entries in the
Kamaugh maps correspond to the values of Q J and Qo in the transition table. The Kamaugh map can
then be used to find the minimal equations assuming D-type flip-flops. The outputs are functions of
the present state only.

PS Ii read_write NS Q Q
,ready 1 0 Outputs

state q1qO 00 01 10 00 OE WE

idle 00 00 01 01 00 0 0

decision 01 11 11 10 10 0 0

write 11 11 00 00 11 1 0

read 10 10 00 00 10 0 1

read_write, read_write,
ready Q1 ready Qo

Q1qO 00 01 11 10 Q1QO 00 01 11 10

00 0 0 0 0 00

01 01 OE = Q1QO

11 11 WE = Q1 QO

10 10 0 0 0 0

Q1 = Q1QO + Qleady Qo = Q1q;ready

+ Q1Qlead_write

+ Q1 Ql eady

Figure 5-2 Determining next-state and output equations

This implementation can then be used in a PLD that has D-type flip-flops, such as the 22VlO. To
optimize the design for another type of flip-flop requires a different set of Karnaugh maps based on
the excitation equations for the flip-flops and the transition table of the state machine.

State Machines in VHDL
The same state diagram can easily be translated to a high-level VHDL description without having to
perform the state assignment, generate the state transition table, or determine the next-state equations
based on the types of flip-flops available. In VHDL, each state can be translated to a case in a CASE
WHEN construct. The state transitions can then be specified in IF-THEN-ELSIF-ELSE constructs.
For example, to translate the state flow diagram into VHDL, we begin by defining an enumerated
type, consisting of the state names and two variables of that type:

type StateType is (idle, decision, read, write);
signal present_state, next_state : StateType;

129

130

Next, we create a process. NexCstate is determined by a function of the presencstate and the inputs
(ready and read_write). We begin by writing a process that is sensitive to these signals:

state_comb: process (present_state, read_write, ready)
begin

At this point, we describe the state machine transitions. We open the CASE-WHEN construct,
specify the first case, and the state transitions from the idle state:

state_comb: process (present_state, read_write, ready)
begin

case present_state is
when idle => if ready = '1' then

next_state <= decision;
else

next_state <= idle;
end if;

There are two options in this case (i.e., whenpresencstate is idle): (1) to transition to decision if
ready is asserted or (2) to remain in the idle state. The ELSE condition is not required. Without it,
there is implied memory, and nexCstate remains the same. It is included to explicitly define state
transitions. Coding of the remaining states requires following the same procedure: Create a case for
each state (WHEN state_name =» and indicate the state transitions with IF-THEN-ELSIF-ELSE
constructs. Below is the complete definition of the state transitions:

state_comb: process {present_state, read_write, ready) begin
case present_state is

when idle => if ready = '1' then
next_state <= decision;

else
next_state <= idle;

end if;
when decision=> if (read_write = '1') then

next_state <= read;

when read

when write

end case;
end process state_comb;

else --read_write='O'
next_state <= write;

end if;
=> if (ready ='1') then

next_state <= idle;
else

next_state <= read;
end if;

=> if (ready = '1') then
next state <= idle;

else
next_state <= write;

end if;

The above process indicates the next-state assignment but does not indicate when the next state
becomes the present state. This happens synchronously, on the rising edge of a clock, as indicated by
the following process:

state_clocked:process(clk) begin
if (clk'event and clk = '1') then

present_state <= next_state;
end if;

end process state_clocked;
Finally, the state machine is completed by writing the equations for the state machine outputs, oe and
we:

oe <= '1' when present_state
we <= '1' when present_state

read else '0';
write else '0';

The complete code follows.

entity example is port
read_write, ready, clk
oe, we

in bit;
out bit) ;

end example;

architecture state_machine of example is
type StateType is (idle, decision, read, write);
signal present_state, next_state : StateType;

begin
state_comb:process(present_state, read_write, ready) begin

case present_state is
when idle => if ready = '1' then

next state <= decision;
else

next_state <= idle;
end if;

when decision=> if (read_write = '1') then
next_state <= read;

when read

when write

end case;
end process state_comb;

else --read_write='O'
next_state <= write;

end if;
=> if (ready = '1') then

next_state <= idle;
else

next_state <= read;
end if;

=> if (ready = '1') then
next_state <= idle;

else
next state <= write;

end if;

state_clocked:process(clk) begin
if (clk'event and clk = '1') then

present_state <= next_state;
end if;

end process state_clocked;

-- combinatorially decoded outputs

131

132

oe <= '1' when present_state
we <= '1' when present_state

end state_machine; --architecture

read else '0';
write else '0';

Listing 5-1 Design of a simple memory controller

Verifying Design Functionality
Now that we have designed the state machine, we can examine the description to see if it accurately
models the state machine behavior. To do this, we determine how a simulation tool would treat the
code. To do this, we will evaluate the concurrent statements (processes are also concurrent
statements). A process does not become active until one of the signals in its sensitivity list changes
value. The signals in the state_comb sensitivity list represent the present state and state machine
inputs. If any of these signals change value, then the process is executed. The state_clocked process
is executed any time that elk is changes value. This process is used for presentJtate to capture the
present value of nexCstate on the rising edge of the clock. See Figure 5-3 for example input stimuli
and the corresponding changes in states and outputs.

/ready = 0
/ read_w rite = 0

/presenLstate = i dl e
/nexLstate = i dl e
foe = 0

/we = 0

Figure 5-3 Functional verification of state machine

The LRM (Language Reference Manual, IEEE 1076) specifies that the initial value of a data object
of an enumeration type is the 'left value, so all bits are initialized to '0,' and the signals presenCstate
and nexCstate are initialized to idle. The LRM also specifies that all concurrent statements
(including processes) are to be evaluated once after signals have been initialized. This means that at
the beginning of clock period to, both processes are evaluated as well as the outputs.

When the state_comb process is evaluated, presenCstate is idle, and execution of the CASE
statement jumps to the selection for when presenCstate is idle. The IF condition is evaluated: The
input ready is '0,' so the statement "nexCstate <= idle" is executed (nexCstate retains it's initialized
value). Execution jumps to the end of the CASE statement. No further assignments statements that

would schedule a new value for nexcstate are executed, so at the end of the process, nexcstate is
assigned the value of idle. When the process state_clocked is evaluated as part of initialization, the IF
condition evaluates false, and the process ends. A new value for presenCstate is not scheduled. The
concurrent signal assignments are evaluated, and the outputs are both deasserted. After initialization,
simulation time can be executed or inputs modified so as to effect a change in value of the circuit
signals.

Shortly before the middle of clock period to, the input ready is asserted. This transition causes the
state_comb process to execute. Execution of the CASE statement jumps to the selection for when
presenCstate is idle. The IF condition is evaluated: The input ready is '1,' so the statement
"nexcstate <= write" is executed (i.e., a new value for nexCstate is scheduled. If no further
assignments to nexCstate are made before the end of the process, then nexCstate will assume the
value of decision.) Execution jumps to the end of the CASE statement, and the process becomes
inactive again.

In the middle of clock period to, clk transitions from a '1' to a '0.' This causes the state_clocked
process to become active. The IF condition evaluates false and the process ends. A new value for
presencstate is not scheduled.

At the beginning of clock period to, clk transitions from a '0' to a'!.' This causes the state_clocked
process to become active. The IF condition evaluates true, so presenCstate is scheduled to assume
the value of nexCstate, which is decision.

The change in value of presencstate from idle to decision causes the state_comb process to be
executed. Execution of the CASE statement jumps to the selection for when presenCstate is
decision. Read_write is deasserted, so nexCstate is scheduled to assume the value of write.

Shortly after the transition of presenCstate from idle to decision, ready is deasserted. This is a signal
in the sensitivity list of process state_comb, so the process is activated and executed. Execution of
the CASE statement jumps to the selection whenpresencstate is decision (although nexcstate has
changed value, presenCstate has not). Read_write has not changed value, and the nexCstate is
presently write. Therefore, the signal assignment statement "nexCstate <= write" does not cause a
new value to be scheduled for nexCstate.

About one-third of the way through clock period t1, read_write is asserted, so the state_comb process
is activated and executed. Execution of the CASE statement jumps to the selection when
presenCstate is decision (presencstate has not yet changed). The IF condition evaluates true
(read_write is asserted). NexCstate is scheduled to have the value of read upon termination of the
process. The ELSE is not executed, and execution jumps to the end of the CASE statement. The
process is inactive again.

The change in value of presenCstate from decision to read causes the state_comb process to be
executed. Execution of the CASE statement jumps to the selection for when presenCstate is read.
Ready is deasserted, so nexCstate retains its value, read.

Shortly after the transition of presenCstate from decision to read, read_write is deasserted. This is a
signal in the sensitivity list of process state_comb, so the process is activated and executed.
Execution of the CASE statement jumps to the selection when presenCstate is read. Ready is not
asserted, so nexCstate retains its value.

The next rising edge of clk occurs: The state_clocked process is executed, and presenCstate retains
its value, read.

133

134

About one-third of the way through clock period t3, ready is asserted. Process state_comb is
executed: Execution of the CASE statement jumps to the selection when presenCstate is read. Ready
is asserted, so nexCstate is scheduled to assume the value idle.

On the next rising edge of elk, presenCstate assumes the value of idle.

The outputs, we and oe, are obtained through simple dataflow (concurrent) signal assignments.

We have partially verified that the design of our state machine is consistent with its behavioral
model. It is a good idea to use a VHDL simulator to verify the functionality of your source code
before synthesizing the design. In the end, this can reduce your total cycle time. The alternative is to
go ahead with the synthesis and verify the functionality after fitting or placing and routing.

Results of Synthesis
With the traditional design methodology, you are expected to perform the logic synthesis from
problem description to logic equations. Provided that you make the correct assumptions about device
resources to be used, you can use VHDL to design a state machine at this level. In this case, you
write Boolean equations in place of the state_comb process, as in the following code fragment, which
illustrates the assignment of one state register (remember that the logical operators do not carry
precedence over each other). Because VHDL is case insensitive, we cannot use q to represent the
present state and Q the next state, as in the state transition table. Instead, we use x and y, respectively:

y(o) <= ((NOT x(l)) AND (NOT x(o)) AND ready) OR
(x(o) AND (NOT read_write) AND (NOT ready)) OR
(x(l) AND x(o) AND (NOT ready));

state_clocked:process(clk) begin
if (clk'event and clk = '1') then

x <= y;
end if;

end process state_clocked;

Synthesis of the behavioral design description will produce the same logic. Following are the
equations generated by Wary synthesis and documented in a report file.

oe =

we

present_stateSBV_O.D =
present_stateSBV_O.Q * /ready

+ /present_stateSBV_O.Q * present_stateSBV_1.Q

present_stateSBV_1.D =
/present_stateSBV_O.Q * present_stateSBV_1.Q * fread_write

+ present_stateSBV_O.Q * present_stateSBV_1.Q * /ready
+ /present_stateSBV_O.Q * /present_stateSBV_1.Q * ready

The equations in the report file do not make reference to nexCstate. The next state is a combinational
function of the present state and the inputs. The present state registers are represented by
presencstate*.Q, and the next state is represented by the expression defined for presencstate*.D.

Sometimes a Boolean description is more appropriate than a high-level behavioral description.
However, state machines are clearly examples of the type of design that is best expressed with high
level constructs. A high-level description is easier to understand and maintain. Additionally, as the
number of inputs to or states of a state machine increases, generating the transition table and next
state equations becomes increasingly tedious and difficult to manage, as our next example illustrates.

A Memory Controller

This memory controller is more practical and has more functionality than the one in our previous
example. Figure 5-4 shows a block diagram of a system that uses a state machine for a memory
controller. All signals to the left of the State Machine block are inputs to that block, all signals to the
right are outputs of that block and inputs to the SRAM Memory Array. Address is also an input to the
memory array; data is bidirectional.

ADDRESS D A T A

BUS_ID

---.lI_U_.t~ ___
SRAM

READ WAITE State Memory DE
X A D Y Machine Array WE

B U A S T
ADD A 1

_ . __ . _____ c..1 . ..!5 .. ___ > r----____ ._ .. __ .A.Q..JJ...~ _______

Figure 5-4 Memory Controller Block Diagram

The system works like this: Other devices on the bus initiate an access to the memory buffer by
asserting the buffer's bus identification, F3 (hex). One cycle later, the read_write signal is asserted to
indicate a read from the memory buffer; the signal is deasserted to indicate a write to the memory
buffer. If the memory access is a read, the read may either be a single-word read or a four-word,
burst read. A burst read is indicated by the assertion of burst during the first read cycle, following
which the controller accesses four locations from the buffer. Consecutive locations are accessed
following successive assertions of ready. The controller asserts oe (output enable) to the memory
buffer during a read, and it increments the lowest two bits of the address during a burst.

135

136

A write to the buffer is always a single-word write, never a burst. During a write, we is asserted,
allowing data to be written to the memory location specified by address. Read and write accesses are
completed upon assertion of ready.

Figure 5-5 is the state diagram for this memory controller. This diagram shows that a synchronous
reset places the state machine in the idle state. When the memory buffer is not being accessed, the
controller remains in the idle state. If the bus_id is asserted as F3 (hex) while in idle, then the
machine transitions to the decision state. The following transition is to either read1 or write,
depending on the value of read_write. If the access is a read, the controller branches to the read
portion of the state machine. A single-word read is indicated by the assertion of ready without the
assertion of burst. In this case, the controller returns to the idle state. A burst read is indicated by the
assertion of both ready and burst while in the decision state. In this case, the machine transitions
through each of the read states, advancing on ready. Oe is asserted during each of the read cycles.
Addr is incremented in successive read cycles following the first.

If the access is a write, it can only be a single-word write. Therefore, after determining that the
access is a write (read_write = 0) in the decision state, the controller branches to the write portion of
the state machine. It simply asserts we (write enable) to the memory buffer, waits for the ready signal
from the bus, and then returns directly to the idle state.

state DE WE addr[1 :0]

idle 0 0 00

decision 0 0 00

read1 0 00

read2 0 01

read3 0 10

read4 1 0 11

write 0 00

Figure 5-5 Memory Controller State Flow Diagram

137

138

Translating the State Flow Diagram to VHDL
The state flow diagram can be translated easily to a series of cases in a CASE-WHEN construct as
follows (we are disregarding the synchronous reset for now):

case present_state is
when idle => if (bus_id = "11110011") then

next_state <= decision;
else

next_state <= idle;
end if;

when decision=> if (read_write = '1') then
next_state <= readl;

when readl

when read2

when read3

when read4

when write

end case;

else --read_write=' 0 ,
next_state <= write;

end if;
=> if (ready = '0') then

next_state <= readl;
elsif (burst = '0') then

next_state <= idle;
else

next_state <= read2;
end if;

=> if (ready = '1') then
next_state <= read3;

else
next_state <= read2;

end if;
=> if (ready = '1') then

next_state <= read4;
else

next_state <= read3;
end if;

=> if (ready = '1') then
next_state <= idle;

else
next_state <= read4;

end if;
=> if (ready = '1.') then

next_state <= idle;
else

next_state <= write;
end if;

As you can see, the section of code inside the state_comb process falls out directly from the bubble
diagram: Each state is simply one of the cases in the CASE-WHEN construct, and all of the
transitions from states are documented in IF-THEN statements. Take state decision, for example:
Examining the state flow diagram, you see that there are two transitions from this state depending on
the value of read_write. If read_write is asserted (a read operation), then nexCstate is read1,
otherwise nexCstate is write. The remaining states are likewise coded.

This state machine requires a synchronous reset. Rather than specifying the reset condition in each of
the transitions, we can include an IF-THEN construct at the beginning of the process in order to place

the machine in the idle state if reset is asserted. If reset is not asserted, then the normal state
transitioning occurs. The code for this is as follows:

state_comb:process(reset, present_state, burst, read_write, ready) begin
if (reset = 'I') then

next_state <= idle;
else

case present_state is

end case;
end if;

The complete code for the memory controller state machine is shown below as Listing 5-2.

library ieee; ,
use ieee.std_logic_1164.all;
entity memory_controller is port

) ;

reset, read_write, ready,
burst, clk
bus_id
oe, we
addr

end memory_controller;

in std_logic;
in std_logic_vector(7 downto 0);
out std_logic;
out std_logic_vector(l downto 0)

architecture state_machine of memory_controller is
type StateType is (idle, decision, read1, read2, read3, read4, write);
signal present_state, next_state : StateType;

begin
state_comb:process(reset, bus_id, present_state, burst, read_write,
ready) begin

if (reset = 'I') then
next_state <= idle;

else
case present_state is

when idle => if (bus_id = "11110011") then
next_state <= decision;

else
next_state <= idle;

end if;
when decision=> if (read_write = 'I') then

next_state <= read1;

when readl

when read2

else --read_write=' 0 ,
next state <= write;

end if;
=> if (ready = '0') then

next_state <= read1;
elsif (burst = '0') then

next_state <= idle;
else

next_state <= read2;
end if;

=> if (ready = 'I') then

139

140

next state <= read3;
else

next - state <= read2;
end ifi

when read3 => if (ready = '1') then
next - state <= read4;

else
next - state <= read3;

end if;
when read4 => if (ready = '1') then

next_state <= idle;

when write

end case;
end if;

else
next_state <= read4;

end if;
=> if (ready = '1') thert:

next_state <= idle;
else

next_state <= write;
end if;

end process state_comb;

state_clocked:process(clk) begin
if (clk'event and clk = '1') then

present_state <= next_state;
end if;

end process state_clocked;

-- combinatorially decoded outputs
with present_state select

oe <= '1' when read1 I read2 I read3 I read4,
'0' when others;

we <= '1' when present_state write else '0';

with present_state select
addr <= "01" when read2,

"10" when read3,
"11" when read4,
"00" when others;

end state_machine; --architecture

Listing 5-2 Memory controller

Listing 5-2 illustrates a design that uses one process to define the combinational logic for state
transitioning and a second process to synchronize the next-state assignment to the clock. This is a
common and easy way to describe state machines, especially for machines that will be implemented
in a PLD. A PLD architecture resembles this design structure because it consists of a product-term
array feeding flip-flops. See Figure 5-6 for an illustration of this concept. The decoding of
presenCstate and inputs is performed in the combinatorial block of the PLD just as it is described in
the combinatorial process in the code. Synchronization of nexCstate is described in the state_clocked
process, referring to a bank of registers such as those in the PLD.

The state transitions defined in the state_comb process are fairly easy to follow, but you may be
wondering about the state registers and state encoding. With this design, we chose to create a type
called StateType, an enumerated type consisting of the state names: idle, decision, read1, read2,
read3, and read4, and write. If you use an enumerated type, the state encoding is determined by the
synthesis software unless you explicitly declare the state encoding by using an attribute, directive,
command line switch, or GUI (graphical user interface) option. As a default, most synthesis tools use
a sequential coding, in which case three bits are used for the seven states: idle is "000", decision is
"001", read1 is "010", etc. We'll show how to choose your own state encoding later in the chapter.
Alternatively, we could have declared individual bits as state registers; however, using an
enumerated type simplifies state transition coding and makes the code easier to comprehend and
maintain.

Outputs for this design are defined with concurrent signal assignments using WITH-SELECT and
WHEN-ELSE constructs. The outputs are functions of the present state only (a Moore machine) and
can be defined quickly by making use of StateType. .

If an asynchronous reset is desired instead of a synchronous reset, then you can use the asynchronous
reset template discussed in the previous chapter by rewriting the state_clocked process of Listing 5-2
as follows:

state_clocked:process(clk,reset) begin
if reset= '1' then

present_state <= idle;
elsif (clk'event and clk = '1') then

present_state <= next_state;
end if;

end process state_clocked;

This state machine is one that would be difficult to design and maintain using a traditional design
methodology. For instance, if the polarity of ready, burst, or read_write is reversed, updating the
VHDL 'code is a simple task. Regenerating next-state design equations is not, because this design has
many combinations of input. A comparison of the relative ease of design is left as an exercise for the
reader!

141

(a)

INPUTS

(b)

INPUTS

~

142

NEXT STATE

CURRENT STATE

Corn bin a torial Logic

.......... -....... -............. ~

----.---~~
---0--------::;::;----

./'~

--D-~~

~,
---D-----~
---0------- -~? .----///"

~
---[)--.~
---D-----~, - .. ~
----o----~---.

/''''
-~

-.--~/---

CURRENT STATE

CLK'EVE NT:
'iliid:

[G.LK.~ •• 'l"

Flip-Flops

,.JLE.L.-
NEXT STATE2 0 Il

f.---J~
~

,.JLE.L.-
NEXT STATE!

0 Il

f.---Jf>
~

....Jl£.£.....-
NEXT STATEO 0 Il

'--->

Figure 5-6 Comparing (a) the code structure of Listing 5-2 to (b) the
architecture of a PLD

CUR r:lENT STAT]';.2

CUR ENT STATE.!

CUR NT STATEQ

An Alternative Implementation
The code in Listing 5-3 below is functionally equivalent to the code in Listing 5-2 above, and it
requires the same device resources. We examine it here to illustrate a different coding style for the
next-state decoding and output logic (the entity declaration is the same and is not reprinted):

architecture state_machine of memory_controller is
type StateType is (idle, decision, readl, read2, read3, read4, write);
signal state : StateType;

begin
state_tr:process(reset, clk) begin

if (clk'event and clk='l') then
if (reset = '1') then

state <= idle;
else

case state is
when idle => if (bus_id = "11110011") then

state <= decision;
else

state <= idle;
end if;

when decision=> if (read_write = '1') then
state <= readl;

else --read_write=' 0 ,
state <= write;

end if;
when readl => if (ready = '0') then

state <= read1;
elsif (burst = '0') then

state <= idle;
else

state <= read2;
end if;

when read2 => if (ready = '1') then
state <= read3;

else
state <= read2;

end if;
when read3 => if (ready = '1') then

state <= read4;
else

state <= read3;
end if;

when read4 => if (ready = '1') then
state <= idle;

else
state <= read4;

end if;
when write => if (ready = '1') then

state <= idle;
else

state <= write;
end if;

end case;

143

144

end if;
end if;

end process state_tr;
-- combinatorially decoded outputs
output_logic: process (state) begin

if (state = readl or state = read2 or state
then

oe <= '1';
e'lse
oe <= '0';
end if;

read3 or state

if state write then we <= '1'; else we <= '0'; end if;

if state
addr <=

read2 then
"01";

elsif state =
addr <= "10";

elsif state =
addr <= "11";

else
addr <= "00";

end if;

read3 then

read4 then

end process output_logic;
end state_machine; --architecture

Listing 5-3 Memory controller with output decoding in a combinatorial
process and state assignment in a clocked process

read4)

In this design description, the state transition process state_tr is used for the next-state logic and for
clocking the state registers. Only one signal, state, of type StateType is required. The following
statement implies that all subsequent signal assignments within the process occur on the rising edge
of the clock:

if (clk'event and clk='l') then

That is, all signal assignments within this process are synchronized to the clock, and the following
collection of statements implies that the assignment of state is synchronous:

state_tr:process(reset, clk) begin
if (clk'event and clk='l') then

case state is
when idle => if (bus_id = "11110011") then

state <= decision;
else

state <= idle;
end if;

Using this construct, state can have the present value idle and on the next clock edge be assigned a
new value of decision. The code fragment above can be read, "In the case when the present state is
idle, if bus_id is 11110011, then the new state will be decision; otherwise, the state will be idle." An
advantage of Listing 5-3 over Listing 5-2 is its brevity-it requires neither the separate state_clocked

process nor the separate StateType signals, present_state and nexcstate, found in Listing 5-2. Later,
however, you will see that using two state signals may provide a coding advantage when decoding
outputs in parallel output registers. Either method is accurate-which one you choose is a matter of
style.

The outputs in Listing 5-3 are not described with concurrent statements, rather they are described
using a process with IF-THEN-ELSE statements, which when synthesized results in combinational
logic. To use this type of process along with the method of using two state signals for the present
state and next state (as in Listing 5-2), you will need to replace "state" with "presencstate" as we
will show later in Listing 5-4. The results of synthesis will be the same; you can choose the style that
you prefer. For compact code, choose the state transition structure found in Listing 5-3 and the output
logic description of Listing 5-2.

Both code listings indicate that the outputs are derived by using combinational logic to decode the
current state registers. Likely, the combinatorial decode will add a level of logic physically between
the flip-flop outputs and the output pins (Figure 5-6), affecting the timing of the output signals. A
case in which an extra level of logic is not required for the output logic is one in which an output is
equivalent to one of the state bits. Suppose, for example, that sequential encoding was chosen for a
state assignment and that an output x must be asserted in any state for which the decimal equivalent
is odd. In this case, x corresponds to the least significant bit of the state machine, and no decoding is
required (Figure 5-7). The output of the flip-flop holding the least significant bit can simply be
propagated to an output pin as x. We discuss timing issues next.

L.
Next Inputs next_state .. State Output Outputs .. State Registers .. - current_state Logic -
Logic

Figure 5-7 State machine with outputs decoded from state registers

Timing and Resource Usage

One state machine may synthesize differently than another, depending how it is described.
Eventually, state of the art in synthesis will provide more optimization algorithms to optimize design
descriptions based on user directives. In the future, coding will focus on describing a design in the
clearest possible way in order to make the description easy to read, comprehend, and update. For
now, state of the art in synthesis is largely based on RTL (register transfer level) optimization.
Behavioral descriptions are broken down into explicitly declared or inferred registers and the logic
between these registers. Optimization is then performed on the combinational logic, based on the
types of registers available in the device architecture. In using synthesis tools, care must be taken to
ensure that your descriptions provide the expected results. One description may produce a design that
is faster or slower than another, while another may use more or less resources than another, and you
may have to choose between design trade-offs or provide the appropriate directives.

145

146

Design trade-offs usually come in the form of trading one performance characteristic for another, or
trading performance for "area" or device resources (how much logic a given design or portion of a
design consumes). One design may have faster clock-to-output times (teo) and another may have
faster setup times (tsu). Both setup and clock-to-output times are important in determining the
maximum frequency of operation, but one may be more important than another for a given system,
depending on these timing parameters for interfacing devices. Area and performance often work
against each other. Some implementations may require more flip-flops but fewer product terms
(usually better for FPGAs), whereas others may require more product terms but fewer flip-flops
(usually better for CPLDs).

Oftentimes, achieving the optimal implementation is not a design objective. Rather, time-to-market
and having easy-to-read code that facilitates quick design cycles often supercede the need for the
most area-efficient or highest-performance design. For these cases, the following discussion may not
be necessary. For those cases that push the current limits of technology in terms of achievable silicon
performance and the ability to use directives to influence synthesis choices, the following discussion
will prove helpful.

Getting the optimal hardware implementation from a VHDL description can be achieved by
understanding how specific VHDL implementations synthesize to logic in CPLDs and FPGAs from
RTL-based synthesis. With this understanding, you are equipped to write code optimized for the
particular timing and resource-utilization requirements of your design. In the following sections, we
look at three techniques for generating state machine outputs for Moore machines: outputs decoded
from state bits combinatorially, outputs decoded in parallel output registers, and outputs encoded
within state bits. Each of these techniques produces a logic implementation with differing timing
characteristics. We also investigate a technique called one-hot encoding that has implications not just
for outputs and their timing, but for tQ_Q (register-to-register delays, useful for determining the

maximum frequency of operation) and for gate utilization as well.

Outputs Decoded from State Bits Combinatorially
A third implementation of the memory controller uses the state_comb process of Listing 5-2 (recall
that Listing 5-1 makes use of the signals presenCstate and nexCstate) and an outpuccomb process
similar to that of Listing 5-3 as shown in Listing 5-4 below. This process uses the value of
presenCstate to determine the value of the outputs.

-- combinatorially decoded outputs
output_logic: process (present_state) begin

if (present_state = readl or present_state read2 or
present_state = read3 or present_state = read4) then
oe <= '1';

else
oe <= '0';

end if;

if present_state write then we <= '1'; else we <= '0'; end if;

if present_state read2 then
addr <= "01";

elsif present_state read3 then
addr <= "10";

elsif present_state
addr <= "11";

read4 then

else
addr <= "00";

end if;
end process output_logic;

Listing 5-4 Outputs decoded using a process

This design description (as with Listing 5-2 and Listing 5-3), when synthesized by an RTL-based
synthesis tool, results in a hardware implementation in which the state bits propagate from the state
registers and through a level of combinational logic before propagating to the output pins of the PLD.
Figure 5-7 depicts this relationship between the state registers and outputs.

When the memory controller is synthesized and implemented in a CPLD such as the Cypress 32-
macrocell CY7C371-143 CPLD, the resulting equations are similar to those shown below. These
equations come from a report file produced by the Warp synthesis tool:

idle .- b" 000";
decision . - b"OOl" ;
readl .- b"OlO" ;
read2 .- b"Oll" ;
read3 .- b"lOO" ;
read4 .- b"lOl" ;
write .- b"llO" ;

we

addr_l =

joe

/present_stateSBV_l.Q * present_stateSBV_O.Q

present_stateSBV_l.Q * /present_stateSBV_2.Q *
present_stateSBV_O.Q

+ /present_stateSBV_l.Q * /present_stateSBV_O.Q

addr_O =
present_stateSBV_2.Q * present_stateSBV_O.Q

+ present_stateSBV_l.Q * present_stateSBV_2.Q

present_stateSBV_l.D =
/reset * present_stateSBV_l.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * burst

+ /reset * /present_stateSBV_l.Q * present_stateSBV_2.Q *
/present_stateSBV_O.Q

+ /reset * /ready * present_stateSBV_l.Q

present_stateSBV_l.C
clk

present_stateSBV_2.D
/reset * /present_stateSBV_l.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * bus_id_7 * bus_id_6 * bus_id_5 *
bus_id_4 * /bus_id_3 * /bus_id_2 * bus_id_l * bus id_O

147

148

+ /reset * ready * present_stateSBV_l.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * burst

+ /reset * ready * /present_stateSBV_l.Q * /present_s.tateSBV_2.Q *
present_stateSBV_O.Q

+ /reset * /ready * present_stateSBV_2.Q * present_stateSBV_O.Q
+ /reset * /ready * present_stateSBV_l.Q * present_stateSBV_2.Q

present_stateSBV_2.C
elk

present_stateSBV_O.D
/reset * fread_write * /present_stateSBV_l.Q *
present_stateSBV_2.Q * /present_stateSBV_O.Q

+ /reset * ready * present_stateSBV_l.Q * present_stateSBV_2.Q
+ /reset * /present_stateSBV_l.Q * /present_stateSBV_2.Q *

present_stateSBV_O.Q
+ /reset * /ready * present_stateSBV_O.Q

present_stateSBV_O.C
elk

The equations from the report file do not make reference to nexCstate. Rather, the outputs of the
state registers are represented by presenCstate *. Q, and the next state is represented by
presenCstate*.D, combinational functions of the present state registers (See Figure 5-7).

The equations indicate that the state assignment is sequential and that the signal presenCstate is
translated to a vector with a width of 3. The outputs are clearly combinatorial functions of the state
registers. Outputs that must be decoded appear at the output pins 10.5 ns (te02) after the rising edge

of cZk. All listings for the memory controller so far follow the logic implementation model of Figure
5-7, so each of these descriptions will also result in outputs available in 10.5 ns. Had any outputs
propagated straight from the flip-flops to the output pins without going through the level of
combinational logic, they would change 6.0 ns (teo) after the rising edge of elk, worst case. See xxx
for a table of timing specifications for the CY7C371-143.

The VHDL code as it is written is easy to comprehend and maintain. However, there is a
performance issue: The outputs of the state machine arrive teo2 instead of teo after the rising edge of
the clock. In many cases, this difference in delay will be acceptable in the overall system timing. In
other cases, it may not be. Until the state of synthesis progresses, modification of the code will be
required to achieve higher performance.

For example, let's revisit the design of the memory controller. Let's assume that for the data coming
from the SRAM memory array to be ready in time for the device that is reading it, the addr outputs
from the PLD must be available no more than 8 ns after the rising edge of the clock. In this particular
implementation, they are not-they are available 10.5 ns after the rising edge of the clock. If we
could find a way such that addr was not the result of decoding state outputs, which requires the
additional pass through the logic array before going to the output pins, then addr would be available
in 6.0 ns (teo instead of teo2), and the system design requirements would be satisfied.

Outputs Decoded in Parallel Output Registers
One way to ensure that the state machine outputs arrive at the device pins earlier is to decode the
outputs from the state bits before the state bits are registered, and then store the decoded information
in registers. In other words, instead of using the presenCstate information to determine the value for

addr, we use the nexCstate value to determine what addr should be in the next clock cycle. If the
next state of the state machine is a state in which addr(J) is a 'I', we store a 'I' into a flip-flop at the
rising edge of clk. If the nexCstate value indicates that the next state of the state machine is a state in
which addr(1) is a '0', then we store a '0' into that flip-flop. The same idea can be used for the other
outputs, but since there isn't a clock-to-output requirement for these outputs, we leave them as is. We
illustrate the concept of storing the values of outputs based on the value of nexCstate in Figure 5-8.

I ..
Inputs

Next
next_state State current_state

State
Logic

Registers

~ Output ... Output

Logic
...

Registers

Figure 5-8 Moore machine with outputs decoded in
parallel output registers

Outputs

This implementation can be coded quickly in VHDL. Instead of using presenCstate in the equations
for addr, we use nexCstate. We also register signals addr in flip-flops called raddr, for registered
address. We do this by adding two lines of code to the process state_clocked, modifying the
outpuClogic process to replace presenCstate with nexCstate, modifying the port declaration to
replace addr with raddr, and including addr as a signal local to the architecture. That's it! Now,
raddr has the same values in the same clock cycle as addr did in the previous implementations, but
raddr is available teo after clk (6.0 ns in the CY7C37l-l43 CPLD we have chosen) instead ofte02
(10.5 ns). The outputs are available in teo time because the value of the output address is held in flip
flops for which the outputs may propagate directly to the device pins rather than first propagating
through the logic array. Listing 5-5 shows the modified portion of the architecture.

-- combinatorially decoded outputs
output_logic: process (present_state) begin

if (present_state = read1 or present_state read2 or
present_state = read3 or present_state = read4) then
oe <= '1';

else
oe <= '0';

end if;

if present_state write then we <= '1'; else we <= '0'; end if;

if present_state read2 then
addr <= "01";

elsif present_state read3 then
addr <= "10";

elsif present_state read4 then

149

150

addr <= "11";
else

addr <= "00";
end if;

end process output_logic;

state_clocked:process(clk) begin
if (clk'event and clk = '1') then

present_state <= next_state;
raddr <= addr;

end if;
end process state_clocked;

Listing 5-5 Moore machine with outputs from registers.

From the diagram of Figure 5-8, it may look, at first glance, as if this implementation may have two
unintended side effects. First, it may look as though this implementation requires two more flip-flops
than the previous version; second, it may look as if the propagation delay from flip-flop to flip-flop,
tQ_Q, between the state-bit flip-flops and the raddr flip-flops takes two passes through the
combinational logic array (one for the next-state logic and one for the output logic), affecting the
maximum frequency at which this design can operate. Both of these side effects may exist depending
on the specific CPLD or FPGA chosen to implement the design. In the particular case of the
CY7C371 and the Cypress Warp VHDL synthesis tool, however, they do not exist. The logic that
determines the nexCstate signals and the logic that determines the outputs are combined and reduced
into a single level of logic by the synthesis software. The resulting logic uses fewer than the 16
product terms available in a CY7C371 macrocell, so the output decoding logic requires only a single
pass through the logic array. The equations produced by synthesis are shown below (equations for
clock assignment are removed):

we =

joe
present_stateSBV_1.Q * /present_stateSBV_2.Q *
present_stateSBV_O.Q

+ /present_stateSBV_1.Q * /present_stateSBV_O.Q

present_stateSBV_1.D =
/reset * present_stateSBV_1.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * burst

+ /reset * /present_stateSBV_1.Q * present_stateSBV_2.Q *
/present_stateSBV_O.Q

+ /reset * /ready * present_stateSBV_1.Q

present_stateSBV_2.D =
/reset * /present_stateSBV_1.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * bus_id_7 * bus id_6 * bus id_5 *
bus_id_4 * /bus_id_3 * /bus_id_2 * bus_id_l * bus_id_O

+ /reset * ready * present_stateSBV_1.Q * /present_stateSBV_2.Q *
/present_stateSBV_O.Q * burst

+ /reset * ready * /present_stateSBV_1.Q * /present_stateSBV_2.Q *
present_stateSBV_O.Q

+ /reset * /ready * present_stateSBV_2.Q * present_stateSBV_O.Q
+ /reset * /ready * present_stateSBV_l.Q * present_stateSBV_2.Q

present_stateSBV_O.D =
/reset * fread_write * /present_stateSBV_l.Q *
present_stateSBV_2.Q * /present_stateSBV_O.Q

+ /reset * ready * present_stateSBV_l.Q * present_stateSBV_2.Q
+ /reset * /present_stateSBV_l.Q * /present_stateSBV_2.Q *

present_stateSBV_O.Q
+ /reset * /ready * present_stateSBV_O.Q

raddr_l.D =
/present_stateSBV_l.Q * present_stateSBV_O.Q

raddr_O.D =
present_stateSBV_2.Q * present_stateSBV_O.Q

+ present_stateSBV_l.Q * present_stateSBV_2.Q

Addr required two macrocells in the previous design implementation; in this design implementation,
addr is replaced by raddr. Thus, this design requires the same total number of macrocells as the first
one. But, more product terms are required because the next state must essentially be decoded twice.
Since the decoding is done in a single pass (single level) of logic, the tQ_Q is still at its maximum for
this device, 7.5 ns.

Outputs Encoded within State Bits
An alternative way to acquire the state machine outputs in teo is to use the state bits themselves as
outputs. A counter is an example of a state machine for which the outputs are also the state bits. This
may work better than the previous method for some criteria, but it requires a slightly different
implementation in which you must choose your state encoding carefully: You must choose a state
encoding so that the outputs correspond to the values held by the state registers, as shown in Figure
5-9. This approach makes the design more difficult to comprehend and maintain, so it is only
recommended for those cases that require specific area and performance optimization not provided
by the current synthesis directives.

I ..
Inputs

Next current_state next_state ... State ... State ... -
Logic

Registers Outputs
... ...

Figure 5-9 Moore machine with outputs encoded within state registers

We'll use the memory controller again to illustrate the concept of encoding the outputs within the
state registers. With seven states in the machine, the fewest number of state bits that we can use is
three. We also have two outputs, addr(1) and addr(O), that we would like to have propagated to the
output pins in teo time (the other two outputs are not critical and can take tC02 time), so altogether we
need at most seven macrocells (five for flip-flops and two for combinatorial outputs). Our task now

151

152

is to create a state encoding such that addr(1) and addr(0) are two of the state bits. To choose the
encoding, we start by creating a table of the present state and outputs that we wish to encode. We
will use this table as the starting point for our state encoding table.

State addr(l) addr(O)

idle 0 0

decision 0 0

readl 0 0

read2 0 1

read3 1 0

read4 1 1

write 0 0

Next, we examine the table, looking for the set of outputs that appears with the greatest frequency.
The set of outputs "00" appears with the greatest frequency-four times. To create our state encoding
table from here, we need to distinguish the state encoding for idle, decision, read], and write, all of
which have address outputs of "00". To create a unique encoding for each state, we need an
additional two bits. For each of the four states with the same outputs, we must assign a unique
combination of the additional encoding bits. We choose to order the bits sequentially as illustrated in
the following table.

State addr(1) addr(O) stl stO

idle 0 0 0 0

decision 0 0 0 1

readl 0 0 1 0

read2 0 1

read3 1 0

read4 1 1

write 0 0 1 1

The remaining states have unique outputs, so we choose to fill in the encoding table with "00" for
these entries, although any arbitrary set of two bits will do. Our final encoding scheme follows.

State addr(1) addr(O) stl stO

idle 0 0 0 0

decision 0 0 0 1

State addr(1) addr(O) stl stO

readl 0 0 1 0

read2 0 1 0 0

read3 1 0 0 0

read4 1 1 0 0

write 0 0 1 1

We now have a unique state encoding for each state. You can see that with this scheme we had to use
more than the fewest possible number of state bits to encode seven states. But now two of the
outputs, addr(l) and addr(0), are encoded in the state bits. If these outputs were not encoded, to
implement the design, a total of seven macrocells would be required for both the state bits (three
registers) and the outputs (two registers for raddr(l) and raddr(O), and two macrocells for oe and
we), as in the implementation of Listing 5-5 in which two of the outputs were decoded in parallel
with the state bits. Although in our new implementation we need to use more state bits than in the
previous case, we need fewer total macrocells (six): four for the state encoding and addr outputs, and
two for the oe and we outputs. This analysis is for a CPLD implementation; we will discuss an FPGA
implementation in the following paragraph.

In an FPGA, the savings in logic resources is not as clear. Four registers and additional logic cells for
the next-state logic as well as the output logic for oe and we are required. Without determining the
complexity of the next-state and output logic, we can only make educated guesses about the number
of logic cells required. Thus, for an FPGA, there is no clear advantage in using this implementation
over the previous one in which the outputs are decoded in parallel output registers. The quickest way
to find out is often to use software to synthesize the code and see first hand what the setup, internal
flip-flop to flip-flop, and clock-to-out delays are. Later in the chapter, we'll choose a method that is
more assured to help us achieve an efficient implementation in an FPGA. Nevertheless, the
performance of this state machine is small enough that its implementation in an FPGA will not differ
by much regardless of how it is described. For now, we'll proceed, assuming that we will target this
design implementation to a CPLD.

Because we will be implementing this design in a CPLD, we will see if fewer total macrocells are
required to encode all four state machine outputs in the state encoding. We start, as we did before, by
creating a table of present state and outputs.

State addr(l) addr(O) oe we

idle 0 0 0 0

decision 0 0 0 0

readl 0 0 1 0

read2 0 1 1 0

read3 1 0 1 0

read4 1 1 1 0

153

154

State addr(l) addr(O) oe we

write o o o

Next, we examine the table, looking for the set of outputs that appears with the greatest frequency. If
all outputs were unique, then our state encoding would be complete. In this case, the set of outputs
"0000" appears twice (once for state idle and once for state decision), so we must distinguish
between idle and decision by adding an additional bit (one bit is sufficient to distinguish two values).
We arbitrarily choose '0' for idle and '1' for decision. Next we arbitrarily choose to fill the remaining
entries in the table with '0'. We could choose either '0' or '1' for any of these entries because the state
encoding would remain unique regardless of which value we choose. Our final state encoding
appears below.

State addr(l) addr(O) oe we stO

idle 0 0 0 0 0

decision 0 0 0 0 1

read 1 0 0 1 0 0

read2 0 1 1 0 0

read3 1 0 1 0 0

read4 1 1 1 0 0

write 0 0 0 1 0

With five bits, the state registers are now able to hold all the outputs. This is a savings of one
macrocell over the case in which only addr(1) and addr(O) are encoded and a savings of two
macrocells over the case in which the outputs are decoded either in parallel with or serially from the
state bits. In general, macrocell savings depend upon the uniqueness of the state machine outputs on
a state-by-state basis. Typically, the worst case will require you to use the same number of
macrocells as when decoding the outputs in parallel registers. For state machines implemented in
CPLDs, this technique will often produce the implementation that uses the fewest macrocells and
achieves the best possible clock-to-out times.

We're now ready to design the state machine, and we'll start by coding the state assignments.
Whereas before you simply indicated the states in an enumerated type, now you will have to
explicitly declare the state encoding with constants. Listing 5-6 illustrates this point, in which
presenCstate and nexCstate are declared as std_logic_ vectors, rather than the enumerated type,
State Type, and the state encoding is specified with constants. (Some synthesis tools allow an
enumerated type to be used in conjunction with an attribute or a directive as an alternative to defining
constants to specify the state encoding.)

library ieee;
use ieee.std_logic_1164.all;
entity memory_controller is port

reset, read_write, ready,
burst, clk
bus_id

in std_logic;
in std_logic_vector(7 downto 0);

out std_logic; oe, we
addr out std_logic_vector(l downto 0)

) ;

end memory_controller;

architecture state_machine of memory_controller is
signal state: std_logic_vector(4 downto 0);
constant idle
constant decision:
constant read1
constant read2
constant read3
constant read4
constant write

begin

std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)
std_logic_vector(4 downto 0)

state_tr:process(reset, clk) begin
if (clk'event and clk='l') then

if (reset = '1') then
state <= idle;

else

.- "00000";

.- "00001";

.- "00100";

.- "01100";

.- "10100";

.- "11100";

.- "00010";

case state is
when idle => if (bus_id = "11110011") then

state <= decision;
else

state <= idle;
end if;

when decision=> if (read_write = '1') then

when read1

when read2

when read3

when read4

when write

state <= read1;
else

state <= write;
end if;

=> if (ready = '0') then
state <= read1;

elsif (burst = '0') then
state <= id],e;

else
state <= read2;

end if;
=> if (ready = '1') then

state <= read3;
else

state <= read2;
end if;

=> if (ready = '1') then
state <= read4;

else
state <= read3;

end if;
=> if (ready = '1') then

state <= idle;
else

state <= read4;
end if;

=> if (ready = '1') then

--read_write=' 0 ,

155

156

state <= idle;
else

state <= write;
end if;

when others => state <= u _____ u;

end case;
end if;

end if;
end process state_tr;

-- outputs associated with register values
we <= state(l);
oe <= state(2);
addr <= state(4 downto 3);

end state_machine; --architecture

Listing 5-6 State machine with outputs encoded in state registers

In this implementation, we used one process to describe and synchronize the state transitions. This
process, state_tr, is identical to that of Listing 5-3. The procedure for translating the state diagram to
a CASE-WHEN construct changes only slightly. All combinations of the vector state must be
accounted for in the CASE-WHEN construct. Thus, the following code is used to indicate that illegal
states are don't care conditions:

when others => state <= state- U
-----";

More will be said about illegal states and don't cares in our discussion of fault tolerance later in the
chapter.

Because the state encoding was explicitly declared and this encoding was chosen such that it would
contain present state outputs, the outputs can be assigned directly from the state variable, as follows:

-- outputs associated with register values
we <= state(l);
oe <= state(2);
addr <= state(4 downto 3);

Accessing the outputs in this way (i.e., directly from the state flip-flops) means that they will be
available teo after the rising edge of the clock, instead of going through the extra pass through the

logic array and coming out in te02' as was the case with the original implementation.

This new implementation ensures that an extra pass is not needed to decode several state bits in
generating the state machine outputs. Consequently, the outputs are available at the device pins
sooner. In addition, this method typically requires fewer macrocells than the method of decoding the
outputs in parallel output registers. Equations produced from synthesis are below. Only five
equations are required because none of the outputs need to be decoded. State bit names are replaced
by the names of the outputs.

state_O.D =
/addr_l.Q * /addr_O.Q * /oe.Q * /we.Q * /reset * /state_O.Q *
bus_id_7 * bus_id_6 * bus_id_5 * bus_id_4 * /bus_id_3 *
/bus_id_2 * bus_id_l * bus_id_O

addr_l.D =
/addr_l.Q * addr_O.Q * oe.Q * /we.Q * /reset * ready *
/state_O.Q

+ addr_l.Q * oe.Q * /we.Q * /reset * /ready * /state_O.Q
+ addr_l.Q * /addr_O.Q * oe.Q * /we.Q * /reset * /state_O.Q

addr_O.D =

oe.D

we.D

/addr_O.Q * oe.Q * /we.Q * /reset * ready * burst * /state_O.Q
+ addr_l.Q * /addr_O.Q * oe.Q * /we.Q * /reset * ready *

/state_O.Q
+ addr_O.Q * oe.Q * /we.Q * /reset * /ready * /state_O.Q

/addr_l.Q * /addr_O.Q * /oe.Q * /we.Q * /reset * read_write *
state_O.Q

+ addr_l.Q * /addr_O.Q * oe.Q * /we.Q * /reset * /state_O.Q
+ /addr_O.Q * oe.Q * /we.Q * /reset * burst * Istate_O.Q
+ /addr_l.Q * addr_O.Q * oe.Q * /we.Q * /reset * /state_O.Q
+ oe.Q * /we.Q * /reset * /ready * /state_O.Q

/addr_l.Q * /addr_O.Q * /oe.Q * we.Q * /reset * /ready *
Istate_O.Q

+ /addr_l.Q * laddr_O.Q * /oe.Q * /we.Q * /reset * fread_write *
state_O.Q

We've spent considerable time explaining this design technique and its benefits, so we'll reiterate the
drawbacks. First is the extra time and effort required to choose a state encoding that maps well to
your state machine's outputs. Second is the loss of readability (and therefore, ease of maintenance
and debugging) of the original code. Also, more product terms are typically required. Eventually,
synthesis optimization may allow you to use the code of Listing 5-2 to achieve this implementation.
Until then, you will have to decide when to use the different state machine design techniques based
on your goals.

To this point, all of the equations that have been generated are for D-type flip-flops. Most CPLD
macrocells can also be configured to implement T-type flip-flops. Using T-type flip-flops is
transparent to the user. The report file would simply indicate their usage.

One-Hot Encoding
One-hot encoding is a technique that uses an n-bit-wide vector (i.e., n flip-flops) to represent a state
machine with n different states. Each state has its own flip-flop, and only one flip-flop of the vector
the one corresponding to the current state-will be "hot" (hold a 'I') at any given time. Decoding the
current state is as simple as finding the flip-flop containing a 'I', and changing states is as simple as
changing the contents of the flip-flop for the new state from a '0' to a 'I' and the flip-flop for the old
state from a 'I' to a '0'.

The primary advantage of one-hot-encoded state machines is that the number of gates required to
decode state information for outputs and for next-state transitions is usually much less than the
number of gates required for those purposes when the states are encoded in other fashions. This
difference in complexity becomes more apparent as the number of states becomes larger: We'll use

157

158

an example to illustrate this point: Consider a state machine with 18 states that are encoded with 2
methods, sequential and one-hot, as shown below.

State Sequential One-Hot

stateO 00000 000000000000000001

state 1 00001 000000000000000010

state2 00010 000000000000000100

state3 00011 000000000000001000

state4 00100 000000000000010000

state5 00101 000000000000100000

state6 00110 000000000001000000

state7 00111 000000000010000000

state8 01000 000000000100000000

state9 01001 000000001000000000

state 10 01010 000000010000000000

state 11 01011 000000100000000000

state 12 01100 000001000000000000

state 13 01101 000010000000000000

state 14 01110 000100000000000000

state 15 01111 001000000000000000

state 16 10000 010000000000000000

state 17 10001 100000000000000000

Eighteen registers are required for one-hot encoding, whereas only five registers are required for the
sequential encodiag. With one-hot, only one register is asserted at a time. To continue our example,
suppose that Figure 5-10 represents a portion of the state flow diagram that depicts all possible
transitions to state 15.

The code fragment that represents this state flow is

case current_state is
when state2 =>

if cond1 = '1' then next_state <= state15i
else ...

when state15 =>
if ...
elsif cond3
else ...

'0' then next state <= state15i

when state17 =>
if ...
elsif cond2
else ...

cond3

Figure 5-10 State flow diagram

'1' then next state <= state15;

The IF-THEN constructs would be completed, of course, to specify the state transitions for
conditions not shown in the state flow diagram above, but the code is suitable for our purpose of
differentiating sequential and one-hot coding effects on state-transition logic.

We examine the next-state logic for sequential encoding first. The sequential encoding for state15 is
"01111". We refer to the state vector as s, so s4 is 0; s3' s2' s}1 and So are alII for statel5. Using the
state flow diagram of Figure 5-10, we can write an equation that represents the conditions in which Sj

is asserted due to a transition to statel5. In the equation, each state must be decoded (e.g., state2 as
"00010", state17 as "10001 ", and state15 as "01111 ").

Si,15 = ~ . S; . S; . sl . Sa· condl

+ S 4 . S; . S; . ~ . So . cond2

+ ~ . S3 . S2 . Sl . So . cond3

Although this equation defines Sj for transitions to statel5, this equation is not sufficient to specify so'
sl' s2' and s3' Take So for example: The equation for sU5 above only covers the cases in which So is
asserted due to transitions to statel5. The state So is asserted due to transitions to eight other states
(all of the odd states). The logic equation associated with transitions to each of the other eight states
may be of similar complexity to the equation for Sj,15 above. To obtain the complete equation for Sj'

each of the S j,x equations (where x is an integer from 0 to 17, representing the 18 states) must be
summed. You can imagine that the logic for So can be quite complex, even for a relatively simple

state flow diagram, simply because So is 1 for nine states. The sequential encoding will create five
complex equations for Sj.

Compare the amount oflogic required to implement So> s}1 s2' s3' and s4 for a sequentially encoded
state machine to the logic required for a one-hot coded state machine in which the decoding logic for
state 15 is shown below. A state vector t is used so as not to confuse the equation with that of S

above. The vector t is 15 bits wide.

159

160

t 15 = t 2 · condl + t17 . cond2 + t 15 . cond3

The equation for t15 can be derived easily from the state flow diagram. Figure 5-12 shows the logic

implementation for transitions to state15. Whereas the sequential encoding requires five complex

condl

cond3

cond2

D Q
state2

J-------1D Q

state 15

D Q

state17

Figure 5-11 State transition logic for one-hot coded state
machines is simple.

equations for the next-state logic, the one-hot encoding requires eighteen simple equations.
Depending on the target logic device architecture, a one-hot coded state machine may require
significantly fewer device resources for implementation of the design. Simple next-state logic may
also require fewer levels of logic between the state registers: allowing for higher frequency of
operation.

One-hot encoding is not always the best solution, however, mainly because it requires more flip
flops than a sequentially encoded state machine. In general, one-hot encoding is most useful when
the architecture of the programmable logic device you want to use has relatively many registers and
relatively little combinational logic between each register. For example, one-hot encoding is most
useful for state machines implemented in FPGAs, which generally have much higher flip-flop
densities than CPLDs, but which also have fewer gates per flip-flop. One-hot encoding may be the
best choice even for CPLDs if the number of states and input conditions are such that the next-state
logic for an encoded machine requires multiple passes through the logic array.

Up to now, we have discussed only what one-hot encoding is and the motivation for using it but not
how to code one-hot state machines. Fortunately, using one-hot encoding requires little or no change
to the source code but depends on the synthesis software tool you are using. Many synthesis tools
allow you to use an enumerated type and specify the state encoding with an attribute, directive,
command line switch, or GUI option. For example, we are using the Warp synthesis software to
implement our memory controller as a one-hot state machine, so we can simply apply a state
encoding attribute as shown below. The remaining code is the same as that of Listing 5-2:

type StateType is (idle, decision, readl, read2, read3, read4, write);
attribute state_encoding of StateType:type is one_hat_one;
signal current_state, next_state : StateType;

Generating outputs for one-hot encoded state machines is similar to generating outputs for machines
in which the outputs are decoded from the state registers. The decoding is quite simple of course,
because the states are just single bits, not an entire vector. This logic consists of an OR gate because
Moore machines have outputs that are functions of the state and all states in a one-hot coded state
machine are represented by one bit. The output decoding adds a level of combinational logic and the
associated delay, just as it did before when the state bits were encoded. In an FPGA, the delay
associated with the OR gate is typically acceptable and is an improvement upon decoding the outputs
from an entire state vector. In a CPLD, the OR gate requires a second pass through the logic array,
which means that the outputs will be available in tC02 time. The outputs can also be generated using
parallel decoding registers, as was described earlier. This will eliminate the level of combinational
logic and associated delay.

If any outputs are asserted in one state only, then these outputs are automatically encoded within the
state bits. For example, we (write enable) is asserted only during the state write, expressed as

we <= '1' when present_state = write else '0';

There is a flip-flop directly associated with the state write, so we will be the value of that flip-flop.
Consequently, we will be available at the device pins or for intemallogic without the additional
delay associated with decoding.

Mealy State Machines

So far we have discussed only Moore machines in which the state machine outputs are strictly
functions of the current state. Mealy machines may have outputs that are functions of the present
state and present-input signals, as illustrated in Figure 5-12.

The additional task of describing Mealy machines versus Moore machines is minimal. To implement
a Mealy machine, you simply have to describe an output as a function of both a state bit and an input.
For example, if there is an additional input to the memory controller called write_mask that when
asserted prevents we from being asserted, you can describe the logic for we as

if (current_state
WE <= '1';

else
WE <= '0';

end if;

86) and (WRITE_MASK = '0') then

This now creates we as a Mealy output

The design techniques used previously to ensure that the output is available in teo instead of teo2
cannot be used with a Mealy machine because the outputs are functions of the present inputs and the
present state.

161

Moore Machine

I ..
p Next

Inputs next_state .. State Output Outputs State ...
p p

Registers current_state Logic -
Logic

Mealy Machine

... - Next
Inputs next_state ... State currenCstate ... State .. - - Registers -

Logic

.. - Output Outputs ..
Logic

Figure 5-12 Moore and Mealy machines

Additional Design Considerations

162

State Encoding using Enumeration Types
Enumerated types provide an easy method to code state machines. When synthesized, state values
must correspond to values held in state registers. For one-hot machines, each state value corresponds
to one flip-flop. For other encodings, such as sequential, the minimum number of states required is
the greatest integral value (the ceiling) of log2n, [log2n], where n is the number of states. With these
encodings, if log2n is not an integral value, then there will be undefined states. In our memory
controller, we define seven states:

type StateType is (idle, decision, readl, read2, read3, read4, write);
signal state : StateType;

Using sequential encoding, state will require three flip-flops. Three flip-flops, however, can define
eight unique states, so the sequential state encoding table for state is as shown in the table below.
The vector representing the state encoding will not be referred to as state because state has already
been defined above as an enumerated type. Instead, we will use q to represent the state vector.

State qo ql q2

idle 0 0 0

decision 0 0 I

State qo qI q2

read 1 0 1 0

read2 0 1 1

read3 1 0 0

read4 1 0 1

write 1 1 0

undefined 1 1 1

Implicit Don't Cares
For the examples in this chapter that make use of an enumerated type, synthesis assumes that the
value "Ill" for q is a don't care condition. No transition is defined for this state. Therefore, if the
state machine were ever to get into this undefined, or "illegal" state, the state machine would not
function in a predictable manner. The behavior of the state machine, once it is placed in an illegal
state, will depend on the state transition equations. The advantage in having the illegal state as a
don't care state is that additional logic is not required to ensure that the state machine will transition
out of this state. This additional logic can require substantial device resources for implementation,
especially if there are a large number of undefined states. The disadvantage of using these implied
don't cares is that the state machine is less fault tolerant. The designer should make a conscious
decision about whether this· is acceptable for a particular design.

Fault Tolerance: Getting Out of Illegal States
The state "Ill" is an illegal state for our memory controller, but in hardware, glitches, ground
bounce, noise, power up, or illegal input combinations may cause one of the flip-flop values to
change, causing the state machine to enter an illegal state. If this happens, the state machine will not
respond predictably, which may cause problems in your system. The machine may enter an illegal
state and stay in that state permanently, or, among other possibilities, it may assert outputs that are
illegal, or even harmful: Signals may cause bus-contention or a device to sink or source too much
current, thereby destroying it.

State machines can be made more fault tolerant by adding code that ensures transitions out of illegal
states. First, you will need to determine how many illegal states are possible. The number of illegal
states is the number of states in the state machine subtracted from the number of bits (flip-flops) used
to encode the state machine raised to the power of two. For our memory controller, there is one
undefined state. Next, we will have to include a state name in the enumerated type for each
undefined state. For example,

type StateType is (idle, decision, readl, read2, read3, read4,
write, undefined);

Finally, a state transition must be specified for the state machine to transition out of this state. This
can be specified as

case state is

when undefined => state <= idle;
end case;

163

164

This state transition will require additional logic resources. Compare the equations below to those for
Listing 5-4. Several additional product terms are required.

stateSBV_O.D =
/stateSBV_O.Q * /stateSBV_1.Q * stateSBV_2.Q * /reset *
fread_write

+ /stateSBV_O.Q * stateSBV_1.Q * stateSBV_2.Q * /reset * ready
+ stateSBV_O.Q * /stateSBV_2.Q * /reset * /ready
+ stateSBV_O.Q * /stateSBV_1.Q * /reset * /ready
+ stateSBV_O.Q * /stateSBV_1.Q * /stateSBV_2.Q * /reset

stateSBV_1.D =
/stateSBV_O.Q * stateSBV_1.Q * /stateSBV_2.Q * /reset * burst

+ /stateSBV_O.Q * stateSBV_2.Q * /reset * /ready
+ stateSBV_1.Q * /stateSBV_2.Q * /reset * /ready
+ /stateSBV_O.Q * /stateSBV_1.Q * stateSBV_2.Q * /reset

stateSBV_2.D =

/stateSBV_O.Q * /stateSBV_1.Q * /stateSBV_2.Q * /reset *
bus_id_7 * bus_id_6 * bus_id_5 * bus_id_4 * /bus_id_3 *
/bus_id_2 * bus_id_1 * bus_id_O

+ /stateSBV_O.Q * stateSBV_1.Q * /stateSBV_2.Q * /reset * ready *
burst

+ stateSBV_O.Q * /stateSBV_1.Q * stateSBV_2.Q * /reset * /ready
+ /stateSBV_O.Q * stateSBV_1.Q * stqteSBV_2.Q * /reset * /ready
+ stateSBV_O.Q * /stateSBV_1.Q * /stateSBV_2.Q * /reset * ready

If there are multiple states that are left undefined, then you can follow the same process:

type states is (sO, 81, s2, s3, s4, u1, u2, u3);
signal state: states;

case state is

when others => state <= sO;
end case;

In this example, there are three undefined states (designated as ul, u2, and u3). Rather than
specifying all three individual states, when others may be used to specify to transition to the same
state.

Rather than returning to an idle or arbitrary state, you may want to create an error state or states to
handle the fault, and have illegal states transition to the error state(s).

To have direct control over the state encoding and the enumeration of undefined states, you can use
constants to define the state, as in Listing 5-6 and described below.

Some synthesis tools provide the ability to define the state encoding with the use of attributes or
directives. In this case, if you wish to make your design fault tolerant, you should make states for all
possible values of the encoding bits. Some synthesis tools may also provide attributes or directives
with which the designer can indicate that undefined states are don't cares or that there is a default
state to transition· to from undefined states.

Explicit State Encoding: Don't Cares and Fault Tolerance
State machine designs with explicit state encoding such as the one of Listing 5-6, in which constants
are used to define states, must explicitly declare don't cares. The following state encoding defines
seven states (however, state can have 32 unique values): .

signal state : std_logic_vector(4 downto 0) ;
constant idle std_logic_vector(4 downto 0) .- "00000";
constant decision: std_logic_vector(4 downto 0) .- "00001" ;
constant read1 std_logic_vector(4 downto 0) .- "00100";
constant read2 std_logic_vector(4 downto 0) .- "01100";
constant read3 std_logic_vector(4 downto 0) .- "10100";
constant read4 std_logic_vector(4 downto 0) .- "11100" ;
constant write std_logic_vector(4 downto 0) .- "00010";

To create a fault-tolerant state machine, then you must specify a state transition for the other 25
unique states:

when others => state <= idle;

Explicit Don't Cares
In specifying that illegal states will transition to a known state, additional logic is required.
Depending on the cost of the solution versus the need for fault tolerance, the additional logic may not
be worth the cost. In this case, rather than specifying that all other states should transition to a known
state, you explicitly declare that the state transition is a don't care condition (i.e., you don't care what
state it transitions to because you are not designing the state machine to be fault tolerant). You can
define this as follows:

when others => state <= "-----";

Five don't care values are assigned to the signal state (state is a std_Iogic_vector(4 downto 0».
Whereas don't care conditions are implicit in state machine designs that make use of enumerated
types that don't completely specify all possible combinations of values, the don't cares must be
explicitly defined for state machines designed with explicit state encoding, because there are several
combinations of metalogic values required to complete the case statement. Using constants allows
you to explicitly define both the don't care conditions as well as the transitions from illegal states.

Fault Tolerance for One-Hot Machines
The potential for entering illegal states is magnified when you use outputs encoded within state bits
or one-hot encoding. Both of these techniques can result in many more potential states than the ones
you really use. With one-hot encoding, for example, there are 2n possible values for the n-bit state
vector. The state machine has only n states. Here we have a dilemma: One-hot encoding is usually
chosen to achieve an efficient state machine implementation, but including logic that causes all of the
illegal states to transition to a reset state (or other known state) creates an inefficient state machine
implementation. To completely specify state transitions for a one-hot coded state machine that has 18

states, another 218_18 transitions would have to be decoded. This is an enormous amount of logic.
Alternatively, rather than adding logic to transition out of all possible states, you can include logic
that detects if more than one flip-flop is asserted at a time.

165

166

A collision signal can be generated to detect multiple flip-flops asserted at the same time. For eight
states, the collision signal is as below. The same technique can be extended for any number of states.
The states below are enumerated as state 1, state2, etc.:

colin <= (statel AND (state2 OR state3 OR state4 OR
state5 OR state6 OR state7 OR state8)) OR

(state2 AND (statel OR state3 OR state4 OR
state5 OR state6 OR state7 OR state8)) OR

(state3 AND (statel OR state2 OR state4 OR
state5 OR state6 OR state7 OR state8)) OR

(state4 AND (statel OR state2 OR state3 OR
state5 OR state6 OR state7 OR state8)) OR

(state5 AND (statel OR state2 OR state3 OR
state4 OR state6 OR state7 OR state8)) OR

(state6 AND (statel OR state2 OR state3 OR
state4 OR state5 OR state7 OR state8)) OR

(state7 AND (state1 OR state2 OR state3 OR
state4 OR state5 OR state6 OR state8)) OR

(state8 AND (state1 OR state2 OR state3 OR
state4 OR state5 OR state6 OR state7)) ;

It may not be necessary for the collision signal to be decoded in one clock cycle, in which case you
may want to pipeline such a signal.

Entering an illegal state is usually a catastrophic fault in that it may require a system to be reset.
Depending on the system requirements, it may not be necessary to reset the machine in one clock
cycle, in which case the collision signal can be pipelined, if necessary, to maintain the maximum
operating frequency. In all cases, you need to make a conscious design decision regarding fault
tolerance. For one-hot encoding, fault tolerance is at odds with performance and resource utilization.
You must decide how much speed or area (device resources) you can give up to make your design
more fault tolerant, and if you decide not to include logic for fault tolerance, then you must be aware
of the ramifications.

Incompletely specified IF-THEN -ELSE statements
In this section, we reiterate a point made in an early chapter about the use ofIF-THEN-ELSE
constructs. We have shown several methods for decoding state machine outputs. IF-THEN-ELSE
statements may be used to decode state machine outputs or to create combinational logic in general.
When using IF ... THEN ... ELSE statements, be careful to explicitly assign the value of signals for all
conditions. Leaving ambiguities implies memory: If you do not specify a signal assignment, then you
imply that the signal is to retain its value. For example, consider the following, perfectly legal VHDL
code:

if (present_state = sO) then
output_a <= '1';

elsif (present_state = s1) then

output_b <= '1';
else current_state

output_c <= '1';
end if;

s3

This is how you may mistakenly write code if you intend outpuCa to be asserted only in state sO,
outpuCb to be asserted only in state sl, and outpuCc to be asserted only in state s2. What this code
really implies is that outpuCa is assigned 'I' in state sO, and it keeps whatever value it currently has
in every other state. Figure 5-13 shows a logic implementation for this code. The logic shows that
after presenCstate becomes sO once, the value of outpuca is always a'l'.

Figure 5-13 Implied memory

To avoid having a latch synthesized for outpuca, outpuCb, and outpuCc, the above code should be
rewritten, initializing the signals at the beginning of the process, as follows:

output_a <= '0';
output_b <= '0';
output_c <= 'a';
if (current_state = sO) then

output_a <= '1';
elsif (current_state = sl) then

output_b <= '1';
else current_state = s3

output_c <= '1';
end if;

This will guarantee that the logic implementing these outputs is strictly a combinatorial decode of the
state bits.

State Encoding for Reduced Logic
Earlier, we explained how to encode state machine outputs within state registers. Below, we reprint
the partially completed state encoding table for one of the examples.

state addr(l) addr(O) stl stO

sO 0 0 0 0

167

Summary

Exercises

168

state addr(1) addr(O) stl stO

, sl 0 0 0 1

s2 0 0 1 0

s3 0 1

s4 1 0

s5 1 1

s6 0 0 1 1

In explaining how to choose the state encoding, we arbitrarily chose to complete the table by filling
in the empty entries with O. This encoding may not be the optimal encoding. Another encoding may
require fewer device resources. Choosing 0' s may be adequate; at other times, you may need to
experiment with the state encoding or use software that determines the optimal encoding for minimal
logic (choosing an optimal state encoding is a nontrivial task). Some VHDL synthesis tools perform
this function.

Writing VHDL code to implement a functionally accurate state machine is simple. You can translate
state flow diagram using CASE-WHEN and IF-THEN-ELSE constructs. Often times, your initial
design will satisfy all of your design requirements (time-to-market, performance, and cost-of-design).
If the performance or cost-of-design requirements are not immediately met, you can quickly modify
the state machine design to meet the timing requirements and to fit most efficiently into the target
architecture.

Some of the techniques that we discussed in this chapter include

• decoding state machine outputs combinatorially from state registers.
• decoding state machine outputs in parallel output registers.
• encoding state machine outputs in the state registers.
• encoding state machines as one-hot.
• designing fault-tolerant state machines.

You are now cognizant of multiple coding styles, state encoding schemes, and design trade-offs,
which will enable you to more quickly arrive at the optimal solution for your design.

1. Design a state machine that detects the sequence "11010":
(a) Drawthe state flow diagram.
(b) Code the design using sequential encoding.
(c) Compile, synthesize, and simulate the design.

2. Rewrite the code for Exercise 1, implementing the state machine as one-hot:
(a) Compile, synthesize, and simulate the design.
(b) Implement the design in an FPGA and a CPLD.

(a)

(b)

(c) Compare the performance and resource utilization for each device.
(d) Compare this implementation with the implementation of Exercise 1.

3. Design the state machine of Figure 5-14. Minimize the clock-to-output and internal register-to
register delays for the target architecture.

frame

framoe
xfer

state OE GO AGT

idle 0 0 0

decode 0 0 0

busy 0 0 1

xfer 1 1 1

xfer2 1 0 1

Figure 5-14 (a) State flow diagram and (b) state output table

4. The encoding for states s2 through s5 of Listing 5-6 is such that the two least significant bits are
arbitrarily "00". Implement the design of Listing 5-6 with a different encoding for states s2 through
s5 and compare the resource utilization.

169

170

5. Rewrite the VHDL code for the memory controller shown in page 137 to handle the synchronous
reset in each state transition. Compare the merits and demerits of using this modified version instead
of the original version, which used an asynchronous reset signal. Is there any advantage in using a
signal both as a synchronous and asynchronous reset? Justify.

6. Rewrite exercise 3 with the first coding style presented on page 130. Repeat the exercise using the
alternate implementation scheme presented in page 143.

7. Build a l6-state counter with terminal count using sequentially encoded states and one-hot
encoded states. Draw the schematics for each, and compare to other known circuits (like shift
registers).

8. Implement two versions of a 8-bit loadable counter with a terminal count output:

a) generates the value of the terminal count with teo

b) generates the value of the terminal count with tco2

Discuss performance and resources used in both schemes.

9. Discuss the differences between the following Moore machine implementations:

a) outputs decoded from state bits combinatorially

b) outputs decoded from state bits in parallel output resgisters

c) outputs encoded within state bits

Which do you think is the best implementation style for a 1) CPLD and 2) FPGA. Justify.

10. List atleast five different encoding strategies. What are the advantages and disadvantages of
using one-hot encoding over the other strategies?

11. What are the differences between a one-hot-one and one-hot-zero encoding schemes?

12. Consider the state machine with 18 states illustrated in the listing in page 157. Encode the state
machine using a gray-code encoding scheme. Discuss the merits of this scheme over sequential
encoding.

13. List key differences between Moore and Mealy machines.

14. Determine the amount of logic for different assignments of the 'Don't Care' bits in listing shown.

State addr(l) addr(O) stl stO

idle 0 0 0 0

decision 0 0 0 1

read 1 0 0 1 0

read2 0 1

read3 1 0

read4 1 1

State addr(l) addr(O) stl stO

write 0 0 1 1

15. Discuss differences between Explicit and Implicit Don't Cares. Justify with an example the
advantage of using Implicit Don't Cares.

16. Extend the collision detector shown on page 166 to include all 18 states. Rewrite the code using
the FOR-GENERATE or the FOR-LOOP for the following intermediate signals:

colin1 = function(StateO State7)

colin2 = function(State4 State11)

colin3 = function(State9 State15)

colin4 = function(State13 State17)

and create colin3inal = colin1 AND colin2 AND colin3 AND colin4

17. Write a detailed report on the different strategies adopted by VHDL EDA vendors to design fault
tolerant state machines.

171

6 The Design of a lOOBASE-T4 Network Repeater

In this chapter, we will work our way through the design of the core logic for a 100BASE-T4
network repeater. The design provides an excellent example of how programmable logic and VHDL
can be used to quickly and efficiently design state-of-the-art networking equipment. At the time of
this writing, 100BASE-T4 Ethernet is a standard that is gaining acceptance quickly.

Programmable logic allows for the "proof of concept" for designs like this one, as well as the fastest
time-to-market and lowest initial cost. Time-to-market in the competitive electronics industry can
mean the difference between success and failure. If a product is clearly successful, then production
volumes may warrant a conversion to an ASIC, in which case the same VHDL code can be used.

The network repeater design will provide a practical example of design hierarchy. It also requires
many of the design constructs that are frequently implemented with programmable logic: counters,
state machines, multiplexers, small FIFOs, and control logic. This design serves to elaborate and put
to use many of the concepts presented in previous chapters, and it does so with a "real-world" design.
Because this is such a large design, we will use hierarchy, breaking the design into design units.
We'll then build each of the design units from the bottom up. Along the way, we'll introduce a few
new concepts such as generics and parameterized components.

Before discussing the design specifications for the network repeater, we will provide some
background on Ethernet.

Background
Ethernet is the most popular Local Area Network (LAN) in use today for communication between
work groups of computers, servers, peripherals, and networking equipment. Ethernet is the trade
name for a set of networking standards adopted by the International Standards Organization (ISO)
and IEEE 802.3 as the CSMAlCD Network Standard. The standard embodies specifications for
network media, physical interfaces, signaling, and network access protocol. Initial work on Ethernet
was pioneered in the early 1980's by researchers at Xerox, DEC, and Intel. Since then, Ethernet has
evolved to meet market demands by including standards for new cabling types and faster data rates.
A recent effort in the Ethernet standard working groups was to bring Ethernet to 100 megabits per
second (Mb/s) over several media types. Figure 6-1 illustrates a typical work group environment that
is connected via several Ethernet media types.

Ethernet Networks

Ethernet allows the creation of flexible and inexpensive networks that accommodate different media
types and hundreds of host station connections in a single network. Ethernet network architecture is
based on a few simple concepts and configuration rules. The primary elements of the network are the
medium, adaptor cards (transceivers), and hubs.

Architecture

Shared Medium
Ethernet is based on the idea that the network should behave as a shared medium. Every host station
on the network listens to all network traffic and processes only data intended for it. Only one host

173

174

Figure 6-1 Typical Ethernet network

may transmit data at a time. Other hosts wishing to transmit must wait unit they detect that the
medium is quiet before they can start transmitting data onto the network. If two hosts transmit at the
same time, then a collision occurs and both hosts must back off of the network and try to resend their
data after an arbitrary waiting period. This technique for accessing the network is called Carrier
Sense, Multiple Access with Collision Detection (CSMNCD) and is the distinguishing feature of
Ethernet.

The concept of a shared medium is inherent in the coaxial implementations of Ethernet (1OBASE5
and 1OBASE2) for which a common coaxial cable connects to each host through a transceiver. In
twisted-pair-based Ethernet (lOBASE-T and 1OOBASE-T), each host attaches to a common repeater
through a segment of twisted pair cable (see Figure 6-1). The function of the repeater is to create the
logical equivalent of a shared medium.

Network Constraints
Several practical constraints limit the size of Ethernet networks. First is the number of hosts that may
be connected to a single network, 1024, which is determined by the performance that can be achieved
by that many hosts sharing the same transmission medium. In practice, networks are not this large.

The cabling type determines the maximum size of a network built from a single cable segment. For
example, 1OBASE2 limits the coaxial cable length to 185 meters. Repeaters may be used to connect
network segments together to build a network that is larger in total diameter. Total network diameter
is determined by the maximum tolerable round-trip delay that data can take through the network.
This delay is equal to the minimum data-frame size that can be transmitted by any host (512 bits) and
is called the slot time (For 10 Mb/s networks, the slot-time corresponds to approximately 2000

meters.) In a network that is large enough to violate the slot-time, it is impossible to determine if data
is transferred collision free resulting in a broken network.

Adaptors and Transceivers

Hubs

Adaptor cards interface computers, servers, or peripheral devices to the network medium. They are
based on standard buses such as ISA, PCI, or PCMCIA. On an adaptor card, a Media Access
Controller (MAC) builds data frames from user data, recognizes frames addressed to it, and performs
media access management (CSMNCD). Adaptor cards may have an RJ45 connector for twisted
pair- based Ethernet such as lOBASE-T or lOOBASE-T4. They may also have an AUI (Attachment
Unit Interface) connector for interfacing coaxial transceivers for lOBASE2 or lOBASE5; however,
only one network connection may be active at a time. Figure 6-2 shows a typical adaptor card.

Bus Interface
(ISA, PCI, etc.)

Figure 6-2 Typical Ethernet Adaptor Card

lOBASE-T

Hub is a generic name for repeaters, bridges, and routers. Hubs are used to expand the size of the
network and to allow interoperation with different media (coaxial cable, fiber optics, etc.) and
different network types (Token Ring, FDDI, etc.). Smart hubs such as routers, learning bridges, and
switches can route traffic between different networks based'on addresses associated with the data.
These devices ease network congestion and improve network bandwidth.

Ethernet over twisted pair requires the use of a hub (a repeater) in order to provide connectivity
between all of the host cable segments.

Repeaters
Repeaters, the simplest type of hub, logically join cable segments to create a larger network while
providing the equivalent of a shared medium. Repeaters improve reliability and performance because
they isolate hosts with faulty network connections, keeping them from disrupting the network.
Repeaters may have management functions so that remote hosts or a local terminal can configure the
network or query network performance statistics. An Ethernet network built with repeaters is shown
in Figure 6-3. The basic objectives for a repeater are listed below:

175

176

• Detect carrier activity on ports and receive Ethernet frames on active ports
• Restore the shape, amplitude, and timing of the received frame signals prior to

retransmission
• Forward the Ethernet frame to each of the active ports
• Detect and signal a collision event throughout a network
• Extend a network's physical dimensions
• Protect network from failures of station, cable, port, etc.
• Allow installation (removal) of station without network disruption
• Support interoperability of different physical layers (lOBASE2, lOBASE-T, etc.)
• Provide centralized management of network operation and statistics
• Provide for low-cost network installation, growth, and maintenance

Signal restored and
repeated to active ports

Station with bad
network connection

Figure 6-3 Ethernet Network Built with Repeaters

Although our focus will be on the functionality and design of a repeater, below we provide a brief
description of bridges and routers to satisfy the curious reader. You may wish to proceed to "Design
Specifications for the Core Logic of an 8-Port lOOBASE-T4 Network Repeater" on page 177.

Bridges
A bridge is used to connect distinct networks (such as Token Ring, FDDI, and Ethernet). This
requires that data be reframed for the standard data-frames of the appropriate networks. For example,
an Ethernet network can be connected to a Token Ring network through a bridge that converts
Ethernet frames to Token Ring frames. A bridge may also be used to connect distinct Ethernet
networks to increase the overall network's physical dimension. A bridge used in this manner isolates
the collisions between the attached networks and avoids the slot-time constraint. Figure 6-4 shows a
bridge used to connect dissimilar networks.

Frame
forwarded by

bridge

Frame not
forwarded by

bridge

Ethernet
Destination

Ethernet

Figure 6-4 Network Connected with Bridges

Bridges may forward all frames between connected networks or they may selectively forward frames
based on the frame's MAC address. To selectively forward frames, a bridge must have knowledge of
the network addresses that can be accessed by each of the attached networks. Learning bridges
monitor the network traffic in order to learn addresses dynamically.

Bridges also increase network bandwidth. A bridge will isolate Ethernet traffic inside a local work
group so that bandwidth isn't wasted in attached networks. The other local work groups attached to
the bridge do not have to wait for foreign traffic to clear before sending data. Only nonlocal traffic
crosses the bridge en route to its destination.

Routers
Routers work much like bridges except that they forward a packet based on the Network Layer
address. Routers are thus able to transfer packets between different network protocols and media
types (e.g., TCP/IP -> X.25, Ethernet -> FDDI). Figure 6-5 shows routers transferring data between
different media types and network protocols.

Design Specifications for the Core Logic of an 8-Port lOOBASE-T4 Network
Repeater

Although we have made efforts to ensure the accuracy of the repeater core design, you should
consult the IEEE 802.3 standard before attempting to use this design in a commercial product.

Interface
The basic function of a repeater is to retransmit data that is received from one port to all other ports.
100BASE-T4 is the 100 Mb/s Ethernet standard that operates over 4 pairs of category 3, 4, or 5 UTP
(unshielded, twisted pair) cable. The architecture of a 100BASE-T4 repeater is that of Figure 6-6.
Transceivers, such as the CY7C97 I , perform the electrical functions needed to interface the ports to

177

178

Ethernet

FDDI

SNA

X.25

Token Ring

Figure 6-5 Network Connected with Routers

the repeater core logic. We will not be concerned with the functions and operation of the
transceivers. Rather, we will focus on the functions of the repeater core. This requires that we
understand the transceiver-repeater core interface.

• • •
CY7C971

FET

CRS

Repeater
Core

Bussed TX
Bussed RX
Fewer Pins

Figure 6-6 T4 repeater architecture

Figure 6-7 illustrates the transceiver interfaces to the repeater core. Each port is capable of receiving
data and provides the following signals to the core logic:

• carrier sense (crs)
• receive clock (rx_elk)
• receive data valid (rx_dv)
• receive data error (rx_er)
• three pairs of data, rxdO-rxd5

Signal crs indicates that data is being received by the transceiver. rx_elk is the clock recovered from
the incoming data by the transceiver; it is used to synchronize the incoming data, rxdO-rxd5. Signal
rx_dv indicates that received data is valid. It is asserted at a data frame's start of frame delimiter
(SFD) and is deasserted at the end of a frame. Signal rx_er indicates that the transceiver detected an
error in the reception of data.

The core logic provides only one signal to the receive side of each transceiver: rx_en (receive enable)
used to control which port is driving the bus. All ports share a common receive bus for rxdO-rxd5,
rx_dv, and rx_er (Figure 6-6).

The core logic provides several signals to the transmit side of each port: transmit elock (tx_elk),
transmit enable (tx_en), and transmit data (txdO-txd5).

An additional signal, link integrity (link_bar), indicates the integrity of the link between the repeater
and a node on the network.

T4 Receiver Repeater Core

r------CY7C~1PMA------..,

1-----1-. CRS

RX_EN

'-----f+ RX_DV

'-----~ RX_ER _____________________ J

T4 Transmitter r--------------..,
I CV7C971 PMA
I
I

X_D4± I

I
I
I

I I
I I l... ______________ J

Figure 6-7 Transceiver interfaces to the repeater core

179

180

Protocol
Upon reception of a carrier sense (crs) from any port, the core logic must buffer the incoming data
frame and retransmit this frame to all other functional ports, provided that (1) there is not a collision,
(2) the port is not jabbering, and (3) the port is not partitioned.

A collision occurs if at any time more than one carrier sense becomes active, in which case ajam
symbol must be generated and transmitted to all ports, including the one previously sending data.
Those nodes that caused the collision will cease sending data, wait for an arbitrary length of time,
and then attempt to resend data when the network is quiet.

If crs is not asserted by any of the ports, then idle symbols are generated and transmitted on all ports.

If the receiving port asserts rx_er while the repeater is retransmitting data to the other ports, then bad
symbols (symbols that indicate that the transmission has gone bad) are generated and transmitted to
all other ports until crs is deasserted or a collision occurs.

A port is jabbering if it continually transmits data for 40,000 to 75,000 bit times. If a port is
jabbering, the repeater will inhibit rx_en (i.e., it will stop receiving data from this port). Therefore, it
will not retransmit data from this port to the other ports. Instead, the repeater will free up the network
for other ports to send data, retransmitting this data to all other ports except the one jabbering. The
port will be considered to have ceased jabbering after crs is deasserted.

A port must be partitioned from the network if it causes 60 or more consecutive collisions, because
continued collisions will bring to a halt all network communication. A broken cable or faulty
connection is a likely source of these collisions. When a port is partitioned, the repeater will stop
receiving data from that port. It will, however, continue to transmit data to this port. A partitioned
port will be "reconnected" to the repeater if activity on another port occurs for 450 to 560 bit times
without a collision.

The transceiver detects a carrier by identifying the preamble of the incoming data frame. By the time
the carrier is detected and a clock recovered, some of the preamble is lost, but the data to be
transmitted to the other ports has not been lost. Before retransmitting the data, however, the preamble
must be regenerated so that receiving nodes can sense a carrier and recover the clock prior to
receiving the actual data being transmitted. The frame structure is described below for the curious
reader.

Data Frame Structure
Data transmitted on the Ethernet network is encapsulated in standard frames. The frame format is
shown in Figure 6-8. A description of the frame components is given below:

• Preamble: The preamble is used by the receiving hosts to detect the presence of a carrier and
initiate clock recovery.

• Start of Frame Delimiter: The start of frame delimiter (SFD) indicates to the receiving hosts that
the next group of bits is the actual data to be transmitted.

• Destination Address: The destination address is a 48-bit address that uniquely identifies which host
on the network should receive the frame. A host address is created by taking the 24-bit aUI
(Organizationally Unique Identifier) assigned to each organization. The remaining 24 bits are
determined internally by network administrators.

• Source Address: The source address is a 48-bit address that uniquely identifies which host is

T
£ '" >-. £
~ >-.

~
~
"<t

~ \0
II

II
~

~ r;j
r;j

Q)
Q) s s o:!
o:! D:::

D::: c:
~ ::§

~

sending the frame.

• Length: The length field is two bytes and determines how many bytes of data are in the data field.

• Data: The minimum data-field size is 46 bytes. If fewer than 46 bytes of data need to be sent, then
additional characters are added to the end of the data field. The maximum data field size is 1500
bytes.

• Frame Check Sequence (FCS): The FCS is a 32-bit CRC (cyclic redundancy check) computed
from a standard CRC polynomial. The FCS is computed over all fields except the preamble, SFD,
and FCS. The receiving host computes a CRC from the bits it receives and compares the value to
the FCS embedded in the frame in order to see if the data was received error free.

In order to transmit 100 Mb/s over 4 pairs, the frequency of operation must be 25 MHz. The repeater
does not ensure that the minimum frame size is sent by a node but merely retransmits the data ("good
data in, good data out; garbage in, garbage out").

7 Bytes

1 Byte

6 Bytes

6 Bytes

2 Bytes

46-1500 Bytes

Preamble

Start of Frame Deli

Destination Address

Source Address

Length

Data

Pad

1010 .. for PLL synchronization

Indicates end of preamble and start of frame

Unique address of destination or broadcast

Unique address of source

Length of the data field in bytes

Data to be transferred. If fewer than 46 bytes of
data, then add pad characters.

32-bit CRC used for error detection

Figure 6-8 Ethernet MAC data frame

Block Diagram

We can summarize the functions of a repeater as this: (1) In general, the repeater receives data from
one port and retransmits that data to the other port, (2) it detects collisions, no activity, and errors,
generating and transmitting the appropriate symbols under these conditions, and (3) it detects
jabbering and partition conditions, asserting tx_en and rx_en appropriately. To accomplish these
functions, the incoming data must be buffered and the symbols generated. The buffered data must be
multiplexed with other symbols, depending on which data should be transmitted to the active ports.
From this summary, we can construct the block diagram of Figure 6-9 to illustrate the top-level
functionality of the core logic. At this point, we'll break this design down into manageable design
units. Breaking a design into manageable units is the concept of creating a hierarchy. The advantages
of hierarchy are that it allows you to (1) define the details of one portion of the design at a time
(preferably, in parallel with other engineers), (2) focus on a manageable portion of a system, leading
to fewer initial errors and quicker debugging time, and (3) verify small portions of the design at a
time (if a VHDL simulator is available). The constituent pieces of the design can be interfaced at
each level of the hierarchy and verified until the entire system is built up.

181

182

• Port •
Signals •

CRSB
RX_ENB
TX_ENB

RX_CLK1 ---.

Receive
Clocks

• Selection
• and • RX_CLKB ---. .. Clock Mux

Receive
Data RXDO-5 -----i~

Transmit

RX FIFO

Bad Symbol
Generate

Jam
Generate

Idle
Generate
Preamble
Generate

Repeater
State

Machines TX_CLK
and (system clock)

Logic

Data TCDO-5·..----t
~~~~--------~ 

Figure 6-9 Block Diagram of the Repeater Core Logic 

The block diagram of Figure 6-9 and the design specifications give us some good clues as to how we 
may want to structure the hierarchy. Each port interfaces to a transceiver that, in tum, interfaces to 
the core logic. Thus, the logic for each port is clearly a good candidate for a design unit, as we do not 
want to redesign it seven times. We will also choose to make design units for the repeater state 
machines and the FIFO. The port selection and clock multiplexer will be divided into two design 
units, one for each task. The final design unit will be a symbol generator and output multiplexer. We 
can start to draw out our first level of hierarchy, but we first need to more clearly define the function 
of each unit so that we can define the interfaces between the units and top-levell/a. After reading 
through the descriptions of the following units, you will see that Figure 6-10 represents the first level 
of hierarchy for the design of the core logic of this network repeater. 

Port Controller 
There will be eight port controllers, one for each port. On the receive side, each port controller will 
synchronize crs, link_bar, and enable_bar to tx_elk. Once a carrier has been detected and 
synchronized, activity is asserted. This signal is used by the arbiter to select a port from which to 
receive data. Rx_en is asserted by a port controller if its port is selected as the receiving port and 



ncer, 
nu:lv 

.. Port 
r Controller 1 

txdata 

I 
Core 
State 

Machine 

.. 

jabber1_ba~---t 

parition1_baf4-r----t 
bcen1 

ncen1 _..L-_-i 
... I Clock I 

rx clk 
r .. 
r 

txd[O:5] ncclk[1 :81 _____ '-_-_-_-_-_-_ -_ ---'---t-..... -+-+-~ Multiplexer nosel FIFO 
datamux[O:5] 

Symbol 
Generator & 

Output 
Multiplexer 

~ 
rxd[1 :8] ------.-----t-..... -+-+-----------.+ 

'------' 

enable8_bR1'Q,~--i~~--------,.,ctivityf 

link8_bar 1oiII1~=.:.lle:::.:ct:.:::8+--_ ..... 

crs8 

rx_clkB 

rx 

.. 
Port 

ControlierB 
jabberB_bar4----t 

parition8_b~aIf-"----1 

tx_enB 4..L---1 

rx_enB .... 

Figure 6-10 First level of hierarchy 

there is not a collision. On the transmit side, each port will assert tx_en if the core controller indicates 
that txdata (transmit data) is ready, provided that this port is not the receiving port (link_bar must 
also be present and the port cannot be jabbering). Tx_en will also be asserted in the event of a 
collision so that jam characters may be transmitted to all hosts. Jabber _bar and partition_bar are 
driven by the port controller to indicate that the port is either jabbering or partitioned. These signals 
can be used to light LEDs. To determine if the port is jabbering, the port controller uses a timer to 
determine how long crs has been asserted. If crs has been asserted 40,000 to 75,000 bit times, then 
jabber _bar is asserted until crs is deasserted. To determine if the port should be partitioned, the port 
controller counts the number of consecutive collisions. If the number of collisions is greater than 60, 
then partition_bar is asserted to prevent the port from halting all network communication. To 
determine if the port should be reconnected after being partitioned, the port controller monitors port 
activity. If another port is active for more than 450 to 560 bit times without this port causing a 
collision, then the port controller deasserts partition_bar. These conditions will be determined by the 
state of collision and carrier as well as whether or not the port is selected. An additional input, 
enable_bar, will be usable by the implementers of the repeater core logic. In the event that eight 
ports are not required, enablcbar may be hard-wired as deasserted for the unused ports. 

Arbiter 
The arbiter will use the activity signals of each of the port controllers to supply eight sele~ted signals 
to the port controllers and clock multiplexer. These signals will indicate which port is receiving data. 

183 



They will be used to gate the rx_en of that port and to choose the appropriate clock for writing to the 
FIFO. The arbiter also supplies carrier and collision for use by the port controllers and the core 
controller. Nosel is supplied to the clock multiplexer, indicating that no port is receiving a 
transmission. 

Clock Multiplexer 
The inputs to the clock multiplexer are the eight receive clocks (rx_clk7-rx_clkO), the eight selected 
lines from the arbiter, and nosel from the arbiter. The selected and nose I signals are used to select one 
of the receive clocks as the receive clock, rx_clk, for use by the FIFO. 

FIFO 
The FIFO will capture incoming data on the receive side, storing six bits of data (rxd5-rxdO) on the 
rising edge of rx_clk. Wptrclr (write-pointer clear), wptrinc (write-pointer increment), rptrclr (read
pointer clear), and rptrinc (read-pointer increment) are used to advance or clear the FIFO and to 
indicate which register to read for the outputs dmuxout5-dmuxoutO. 

Symbol Generator and Output Multiplexer 
The character symbol generator and output multiplexer will generate symbols. These symbols are the 
bad characters (transmitted to indicate a receive error), jam characters (transmitted to indicate a 
collision), idle characters (transmitted to indicate that there is no activity on the network), and 
preamble characters (transmitted to allow for carrier sensing and clock recovery by the receiving 
nodes). There are six output multiplexers (one for each of the transmit signals of the three transmit 
pairs). The multiplexers are paired to the transmit pairs, with each pair sharing the same select lines. 
There are five inputs to each multiplexer, so three select lines per pair are required (for a total of nine 
select lines for all multiplexers). The outputs are the transmit signals txd5-txdO. 

Core Controller 
The core controller controls the FIFO read and write pointers as well as symbol generation. It also 
asserts tx_data to indicate to the ports that data is ready. The core controller,determines what data to 
transmit: data in the FIFO, or preamble, idle, jam, or bad characters. To do this, the core controller 
requires carrier, collision, rx_dv, and rx_er as inputs and asserts the FIFO and multiplexer control 
lines. 

Before proceeding to design each of the individual units, we need to know how the signals will be 
synchronized. In this design, there are basically five input signals (crs, rx_dv, rx_er, link_bar, and 
enable_bar) that will need to be synchronized to the system transmit clock, txclk. These signals will 
be synchronized with two registers in order to increase the MTBF (mean time between failures). The 
incoming data is aligned to the incoming clock rxclk and stored in a FIFO, and the outgoing data is 
synchronized to the transmit clock. 

Building a Library of Components 

184 

From the description of the design units, it's clear that several of them will require the use of some 
common components: flip-flops, enableable registers, counters, and synchronizers. In some of the 
design units, we will describe such logic with behavioral descriptions. In other units, we will 
instantiate components, if instantiating components and creating design hierarchy clarifies the design 
structure. 



We will begin by designing some of the basic components that may be common to design units. 
We'll create D-type flip-flops, enableable registers, and counters, all of mUltiple widths. In addition, 
we will create a synchronization component. We'll keep common components in packages, 
collections of type or component declarations that can be used in other designs. We'll keep counters 
in a package for counters, registers in a package for registers, flip-flops in a package for flip-flops, 
etc. Once we have completed this design, we'll place these packages in a library, a place (usually a 
directory) to keep precompiled packages so that they may be used in other designs. For now, all 
design units-from the bottom of the hierarchy to the top-will be compiled and placed in the 
"work" library. 

Generics and Parameterized Components 
We begin with the design of D-type flip-flops with asynchronous resets. We will want to create flip
flops of multiple widths. We know that we will need a I-bit-wide flip-flop, but we don't know a 
priori what other widths we may need in the design of the higher-level design units. This leads us to 
design parameterized components, components for which the sizes (widths) and feature sets may be 
defined by values of the instantiation parameters. (Here, we are using the term component loosely to 
identify any entity/architecture pair. A component is identified by a specific entity and architecture 
pair. Multiple architectures can describe the same entity, and a configuration statement can be used 
to specify which architecture is associated with an entity. If there is only one architecture for an 
entity, then the configuration is implicit. Because we are associating only one architecture to each 
entity, we will continue to use the term component loosely.) 

The design of a parameterized component is similar to that of any other component, except that a 
parameter, or generic, is used to define the size (and optionally, the feature set). A parameterized 
entity must include generics in its declaration. Below, in Listing 6-1, we define two entity/ 
architecture pairs: a I-bit D-type flip-flop with asynchronous reset and an n-bit (where n is defined 
by the generic size) wide bank of D-type flip-flops with common clock and asynchronous reset. We 
will explain how these design units are placed in packages and used by higher-level design units later 
in the chapter. 

Set of D-Type Flip-Flops 

sizes: (1, size) 

clk posedge clock input 
reset asynchronous reset 
d register input 
q -- register output 

library ieee; 
use ieee.std_Iogic_1164.all; 
entity rdff1 is port ( 

clk, reset: in std_Iogic; 
d: in std_Iogic; 
q: out std_logic); 

end rdff1; 

architecture archrdff1 of rdff1 is 
begin 
p1: process (reset, clk) begin 

if reset = '1' then 

185 



186 

q <= ' 0'; 
elsif (clk'event and clk='l') then 

q <= d; 
end if; 

end process; 
end archrdff1; 

library ieee; 
use ieee.std_logic_1164.all; 
entity rdff is 

generic (size: integer := 2); 
port ( clk, reset: in std_logic; 

d: in std_logic_vector(size-1 downto 0); 
q: out std_logic_vector(size-1 downto 0)); 

end rdff; 

architecture archrdff of rdff is 
begin 
p1: process (reset, clk) begin 

if reset = '1' then 
q <= (others => '0'); 

elsif (clk'event and clk='l') then 
q <= d; 

end if; 
end process; 

end archrdff; 

Listing 6-1 Set of D-type flip-flops 

These entity/architecture pairs are placed in the same design file, although they db not need to be. 
The generic size is given a default value of 2. If an instantiation of the rdff component does not 
specify a generic map, then the component will have the default size of 2. Size is used to define the 
width of the std_logic_ vectors for d and q. Because the rdff component is parameterized, we didn't 
need to create a separate component for rdff1; however, because we will be using a I-bit wide D-type 
flip-flop with greater frequency than any other width, we have made it a separate component. 

We will also design a set of registers (D-type flip-flops with enables) with asynchronous resets. 
Again, we know that we will need a I-bit register but do not know a priori what other widths will be 
required. The designs of two components, a I-bit register and an n-bit register with common enable, 
are defined shown in Listing 6-2. 

Set of registers 
sizes: (l,size) 

clk 
reset 
load 
d 
q 

posedge clock input 
asynchronous reset 
active high input loads rregister 
register input 
register output 



library ieee; 
use ieee.std_logic_1164.all; 
entity rreg1 is port( 

clk, reset, load: in std_logic; 
d: in std_logic; 
q: inout std_logic); 

end rreg1; 
architecture archrreg1 of rreg1 is 
begin 

p1: process (reset, clk) begin 
if reset = '1' then 

q <= '0'; 
elsif (clk'event and clk='l') then 

if load '1' then 

end if; 
end process; 

end archrreg1; 

library ieee; 

else 

end if; 

use ieee.std_logic_1164.all; 
entity rreg is 

q <= d; 

q <= q; 

generic (size: integer := 2); 
port( clk, reset, load: in std_logic; 

d: in std_logic_vector(size-1 downto 0); 
q: inout std_logic_vector(size-1 downto 0)); 

end rreg; 
architecture archrreg of rreg is 
begin 

p1: process (reset,clk) begin 
if reset = '1' then 

q <= (others => '0'); 
elsif (clk'event and clk='l') then 

if load '1' then 

end if; 
end process; 

end archrreg; 

else 

end if; 

q <= d; 

q <= q; 

Listing 6-2 Set of registers with reset 

Because the rreg component is parameterized, we didn't need to create a separate component for 
rreg 1; however, because we will be using a 1-bit register with greater frequency than any other width 
of register, we have made it a separate component. 

In the architecture of both the rregl and rreg components, the signal q is used on the righthand side 
of a signal assignment. This requires that the signal be readable. To be readable, the signal must be of 
mode BUFFER or INOUT. We could have chosen mode BUFFER for q; however, if q is of mode 
BUFFER, then in any design unit in which one of these components is instantiated, the actual signal 
associated with q must be a signal without another source (e.g., a signal that is local to the 

187 



188 

architecture) or a port of mode OUT. The actual can only be of mode BUFFER if it is not used 
elsewhere in the architecture as a signal source. The restrictions on the ports of mode BUFFER are 
great enough to have us use mode INOUT where BUFFER could potentially be used, despite the fact 
that mode INOUT may make the code less readable (because it makes it difficult to identify the 
source of ports of mode INOUT). Alternatively, we could remove the ELSE clause, allowing us to 
choose mode OUT for q. 

Having designed both D-type flip-flops and registers with asynchronous reset, we would now like to 
create D-type flip-flops and registers with synchronous presets, calling these components pdffl, pdf!, 
pregl, and preg. At this point, it is clear that rather than create two additional sets of components, we 
can create just one component, reg, as defined in Listing 6-3. 

Register Set 
sizes: (size) a generic 

clk 
rst 
pst 
load 
d 
q 

library ieee; 

posedge clock input 
asynchronous reset 
asynchronous preset 
active high input loads register 
register input 
register output 

use ieee.std_Iogic_1164.all; 
entity reg is generic ( size: integer := 2); 

port ( clk, load: in std_Iogic; 
rst, pst: in std_Iogic; 
d: in std_Iogic_vector(size-1 downto 0); 
q: inout std_Iogic_vector(size-1 downto 0)); 

end reg; 
architecture archreg of reg is 
begin 

p1: process (clk) begin 
if rst = '1' then 

q <= (others => '0'); 
elsif pst = '1' then 

q <= (others => '1'); 
elsif (clk'event and clk='l') then 

if load = '1' then 
q <= d; 

else 
q <= q; 

end if; 
·end if; 

end process; 
end archreg; 

Listing 6-3 Set of all-purpose registers 

This component can be used for pdf!, rdf!, rreg, and preg. (It cannot, however, be used for the I-bit 
versions of each component because q <= (others => 'I ') implies that q is an aggregate.-i.e., that it 
consists of more than one element, that it is an array) When instantiating the component, size is used 
to indicate the width of the register. Normally the actuals (i.e., the actual signals used in a component 
instantiation) associated with the locals (i.e., rst, pst, and load, the signals associated with the 
component definition) will act as controls to the reset, preset, and load logic. Alternatively, the 
actuals associated with the locals can be signals that never change value so that features may be 
permanently enabled (e.g., the load) or disabled (e.g., the reset). For example, if the signals vdd and 



vss are permanently assigned the values' l' and '0', respectively, then synthesis of an instantiation of 
reg with the load permanently enabled and the preset permanently disabled (see below) results in a 
register without load and preset logic. The instantiation for this component is 

ul: reg generic map(4) port map (myclk, vdd, reset, vss, data, mysig); 

Likewise, synthesis of the following code will not result in any logic at all: 

ul: reg generic map(4) port map (myclk, vss, reset, vss, data, mysig); 

In this instantiation, the load is permanently disabled. If the register never loads data, then it doesn't 
serve any purpose. 

The generic map is used to map an actual value to the generic of the component definition. The 
generic map may be ommitted if a default value is specified in the generic declaration of the 
component definition. In this case the generic map was used to specify the size of a register (4-bits 
wide). 

Although the reg component is versatile, we will instantiate the other components in our design 
units. Doing so will improve the readability of the code because it will not require that the reader 
look for the details of the generic and port maps. 

Next, we will create one more set of components, a set of counters. The counters will have enables 
and synchronous and asynchronous resets. We will not create separate sets of counters without 
enables, resets, or both. If we require the use of such counters in one of the higher-level design units, 
then we will simply assign the port maps appropriately. The VHDL description of the counters is in 
Listing 6-4. 

Synchronous Counter of Generic Size 

CounterSize -- size of counter 

clk 
areset 
sreset 
enable 
count 

library ieee; 

posedge clock input 
asynchronous reset 
active high input resets counter to 0 
active high input enables counting 
counter output 

use ieee.std_Iogic_1164.all; 
entity ascount is 

generic (CounterSize: integer := 2); 
port(clk, areset, sreset, enable: in std_logic; 

count: inout std_Iogic_vector(counterSize-1 downto 0)); 
end ascount; 
use work.std_math.all; 
architecture archascount of ascount is 
begin 
p1: process (areset, clk) begin 

if areset = '1' then 
count <= (others => '0'); 

elsif (clk'event and clk='l') then 
if sreset='l' then 

count <= (others => '0'); 

189 



190 

elsif enable = '1' then 
count <= count + 1; 

else 
count <= count; 

end if; 
end if; 

end process; 
end archascount; 

Listing 6-4 Set of counters 

Finally, we will create two synchronization components (Listing 6-5). These components consist of 
two D-type flip-flops in series that are used to synchronize an asynchronous input to the system 
clock. Two flip-flops are used to increase the MTBF for metastable events. One synchronizer 
component will have an asynchronous reset, the other will have an asynchronous preset. 

Synchronizers 

clk 
reset 
preset 
d 
q 

library ieee; 

posedge clock input 
asynchronous reset (rsynch) 
asynchronous preset (psynch) 
signal to synchronize 
synchronized 

use ieee.std_Iogic_1164.all; 
entity rsynch is port ( 

clk, reset: 
d: 
q: 

end rsynch; 

in std_Iogic; 
in std_Iogic; 
out std_Iogic); 

architecture archrsynch of rsynch is 
signal temp: std_Iogic; 

begin 
p1: process (reset, clk) begin 

if reset = '1' then 
q <= '0'; 

elsif (clk'event and clk='l') then 
temp <= d; 
q <= temp; 

end if; 
end process; 

end archrsynch; 

library ieee; 
use ieee.std_Iogic_1164.all; 
entity psynch is port ( 

clk, preset: in std_Iogic; 
d: in std_Iogic; 
q: out std_Iogic); 



end psynch; 

architecture archpsynch of psynch is 
signal temp: std_logic; 

begin 
pi: process (preset, clk) begin 

if preset = '1' then 
q <= '1'; 

elsif (clk'event and clk='l') then 
temp <= d; 
q <= temp; 

end if; 
end process; 

end archpsynch; 

Listing 6-5 Synchronizers 

Because we have already defined pdff components, the architecture for psynch could be replaced by 
the following code, provided that the pdff component is declared and visible to this architecture 
description: 

ul: pdff port map(clk, preset, d, temp); 
u2: pdff port map(clk, preset, temp, q); 

This netlist description is succinct and may be easier to understand for those coming from a logic 
design background. However, it does create an additional level of hierarchy, and someone not 
familiar with the function of a pdff component would need to find its description, which is likely in a 
different file. 

Design Units 

For reasons that will become more clear in the last chapter of the book, we will be defining the port 
map of the top-level entity one signal at a time, rather than busing common signals together. We are 
doing this to ensure the preservation of top-level signal names and to make the simulation of both the 
source code and implementation-specific model go smoothly. That is, we are doing this to avoid any 
problem with tool interfaces, as we will be using several different software tools: a VHDL synthesis 
tool, a place and route tool, and a VHDL simulator. We're certain that we could bus signals together 
and eventually get the interfaces to work (perhaps not seamlessly), but experience tells us that unless 
we test the flow out with a smaller design, for a large design like this one, we should stick with what 
we know will work to avoid any unnecessary headaches. Because the top-level port is specified 
signal-by-signal, this will tend to permeate through other levels of hierarchy. We will use buses 
(vectors) occasionally. 

Port Controller 
We begin our design of the core logic for the network repeater with the port controller. The entity 
declaration is shown below, with the name porte. "Controller" was removed to avoid a long or 
cumbersome name, and an "e" was added to port to avoid a collision with a keyword. Comments to 
the right may provide some additional information about the signals. 

191 



192 

library ieee; 
use ieee.std_logic_1164.all; 
entity porte is port ( 

txclk: 
areset: 
crs: 
enable_bar: 
link_bar: 
selected: 
carrier: 
collision: 
jam: 
txdata: 
prescale: 
rx_en: 
tx_en: 
activity: 
jabber_bar: 
partition_bar: 

end porte; 

in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 
out std_logic; 
out std_logic; 
out std_logic; 
inout std_logic; 
inout std_logic); 

TX_CLK 
Asynch Reset 
Carrier Sense 
Port Enable 
PMA_Link - OK 
Arbiter Select 
Arbiter Carrier 
Arbiter Collision 
Control Jam 
Control Transmit Data 
counter prescale 

RX EN -
TX EN -
Activity 
Jabber 
Partition 

Looking back at the description of the port controller, we see that crs, link_bar, and enable_bar must 
be synchronized to tXJlk, so we will use the synchronizer components. We will use the synchronizer 
with an asynchronous reset for the active high signal, crs, and will use the one with an asynchronous 
preset for the active low signals (those ending in _bar). Using the synchronizers requires that we 
create three signals (crsdd, link_bardd, and enable_bardd) for the outputs of the synchronizers. The 
suffix II -dd" indicates that these signals are twice-registered. Three components are instantiated: 

uO: rsynch 
ul: psynch 
u2: psynch 

port map (txclk, areset, crs, crsdd); 
port map (txclk, areset, link_bar, link_bardd); 
port map (txclk, areset, enable_bar, enable_bardd); 

Instantiation of these components requires that they have been declared and are visible to the 
architecture. The components will be declared in a package named portetop -IJkg, the contents of 
which will be described later, and will be made visible to the architecture by including the USE 
clause: 

use work.portetop-pkg.all; 

Next, we create an equation for activity, which is asserted if a carrier is present, the link is 
established, and the port is not partitioned or jabbering. The presence of a carrier will be gated by 
enable_bar. Carrier presence will be used for other port controller functions, so we will create a 
signal to hold its value. 

carpres <= crsdd AND NOT enable_bardd; 
activity <= carpres AND NOT link_bardd AND jabber_bar AND partition_bar; 

Here, we chose to define carpres and activity with Boolean equations rather than a different dataflow 
construct because, in this case, other dataflow constructs do not lend to the readability of the code. 

Likewise, rx_en and tx_eni will be defined with Boolean equations. Tx_eni is the value of tx_en 
before it is registered. It must be delayed one clock cycle to synchronize it. with the output data. 
Tx_eni must be declared as a signal. The logic is described below. 



rx_en <= NOT enable_bardd and NOT link_bardd AND selected AND collision; 
tx_eni <= NOT enable_bardd and NOT link_bardd AND jabber_bar AND transmit; 

u3: rdffl port map (txclk, areset, tx_eni, tx_en); 

Transmit is the logical AND of two quantities. The first signal is txdata, which indicates that the core 
controller state machine is ready to send data or jam characters. The second is the result of the logical 
OR of collision and a signal (copyd), which indicates that the arbiter has detected a carrier but that 
this port is not the selected port. All signals must be synchronized. Txdata is one clock cycle behind 
the other signals because it is triggered by them (see the core controller state machine later in this 
chapter). Therefore, the other signals must be delayed: 

u4: rdffl 
uS: rdffl 

port map (txclk, areset, copyin, copyd); 
port map (txclk, areset, collision, collisiond); 

copyin <= carrier and NOT selected; 
transmit <= txdata AND (copyd OR collisiond) ; 

There are two remaining functions of ~he port controller that we must design: jabber _bar and 
partition_bar. Jabber _bar should be asserted if the carrier is present for anywhere between 40,000 
and 75,000 bit times. 40,000 bit times over 4 pairs requires 10,000 clock cycles (75,000 bit times 
requires 18,750 clock cycles). We will use a counter to count while the carrier is present. If it counts 
for approximately 10,000 clock cycles, then jabber _bar will be asserted. The counter will be reset 
when the carrier is not present. 

Counting to 10,000 requires a 14-bit counter. However, we don't want the counter to be replicated 
eight times, once for each port, because it would consume device resources unnecessarily. Therefore, 
we use one common counter, placing it in the core controller, to count to lK. This counter runs 
continuously. In each of the port controllers, we place a 4-bit counter that is enabled each time the 10-
bit counter rolls over. When the 4-bit counter reaches 12, then we know that the carrier has been 
present for 12K clock cycles plus or minus lK clock cycles (10K < 12K +/- lK < 18.75K). For the 
design of the port controller, this requires the instantiation of a 4-bit counter and the definition of the 
counter enable and clear signals as well as jabber_bar. 

u6: ascount generic map (4) 
port map (txclk, areset, jabberclr, jabberinc, jabcnt); 

jabber_bar <= NOT (jabcnt(3) AND jabcnt(2)); 
jabberclr <= NOT carpres; 
jabberinc <= carpres AND prescale AND jabber_bar; 

The counter is not allowed to increment when jabber _bar is asserted, active low. Jabber _bar is 
asserted whenjabcnt reaches 12 which is 1100 in binary, or jabcnt( 3) AND jabcnt(2). If the counter 
is still enabled and the port continues to jabber, then the counter rolls over, in which case jabber_bar 
is no longer asserted. ' 

The conditions for which a port is partitioned or reconnected have been described previously and are 
defined by a state diagram in the IEEE 802.3 standard. This state diagram has been modified for our 
purposes and is illustrated in Figure 6-11. The states on the lefthand side of the diagram are used to 
determine if the port should be partitioned. The port is partitioned in the states on the righthand side, 
indicated by partition_bar being asserted (active low). The states on the righthand side are used to 
determine if the port should be reconnected. The clearing and enabling of two counters are controlled 

193 



194 

by this state machine: one that counts collisions (the collision counter) and another that counts the 
number of consecutive clock cycles without a collision (the no-collision counter). Several signals are 
inputs to this state machine: copyd indicates that another port is active, quietd is the opposite of 
copyd-it indicates that another port is not active, carpres indicates that the carrier sense of this port 
is active, collisiond indicates a cOllision, nocoldone is asserted when the no-collision counter reaches 
128 (128 clock cycles is between 450 and 560 bit times, the approximate size of the minimum data 
frame-each clock cycles represents four bit times, one bit time for each of the transmit and receive 
paris), and cclimit is asserted when 64 consecutive collisions have occurred. 

The counters are cleared in the CLEAR_STATE. The state machine enters this state after a system 
reset or if a collision does not occur for approximately one minimum data-frame size while carpres 
is asserted. The IDLE_STATE resets the no-collision counter. In the collision watch state, 
CWATCH_STATE, if a collision occurs, then the collision counter is incremented and the state 
machine transitions to the collision count state, CCOUNT_STATE. As long as a collision does not 
occur, the state machine remains in the CWATCH_STATE until nocoldone is asserted, after which the 
state machine transitions to the CLEAR_STATE and both counters are reset. The CCOUNT_STATE is 
entered upon a collision. If the collision counter reaches its limit (64), then the port is to be 
partitioned and the state machine transitions to the PWAIT_STATE. If the collision counter does not 
reach its limit, then the machine waits for the offending nodes to back off of the network, 
transitioning to the IDLE_STATE when the network is quiet again. From this point, transitions 
through the states will continue; either additional collisions will be counted or the counters will be 
cleared. 

The PWAIT_STATE indicates that the collision counter limit has been reached and that the port is 
partitioned. This state is used to wait until the collision ceases. Once the network is quiet again, the 
state machine transitions to the partition hold state, PHOLD_STATE. This state and the next, the 
partition collision watch state (PCWATCH_STATE), are used to count consecutive clock cycles 
during which there is not a collision and another port is active. If the port does not cause a collision 
for 450 to 560 bit times while another port is active, then the state machine transitions to the 
WAIT_STATE. The WAIT_STATE is used to wait until the active port is quiet before transitioning to 
the IDLE_STATE. 

As with other state machines, we will code this one using an enumerated type and a CASE-WHEN 
construct. The complete architecture code for the port controller is found in Listing 6-6. There is one 
difference in the way that the partition and reconnect state machine was described as compared to 
other state machines in this text: The outputs are explicitly declared for each state. Although we 
could describe the outputs using WHEN-ELSE or WITH-SELECT-WHEN constructs in dataflow 
assignments, the way that they are described in this listing lends to the readability of the code. Using 
this method of describing state machine outputs is best done if the state clocking is described in a 
second process; otherwise, next-state (instead of present-state) outputs must be listed. 

use work.portetop-pkg.all; 
architecture archporte of porte is 

type states is (CLEAR_STATE, IDLE_STATE, CWATCH_STATE, CCOUNT_STATE, 
PWAIT_STATE, PHOLD_STATE, PCWATCH_STATE, WAIT_STATE); 

attribute state_encoding of states:type is one_hot_one; 

signal state, riewstate: states; 



+ 
CLEAR_STATE 

partition_bar = 1 
ccclr = 1 
ccinc = 0 

nocolclr= 1 
nocolinc=O 

enable_bard=O 
AND quietd=1 

1 ,Ir 

IDLE_STATE 

partition_bar = 1 
ccclr= 0 
ccinc = 0 

nocolclr= 1 
nocolinc= 0 

I 
enable_bard=1 

enable_bard=O 
AND carpres=1 

CWATCH_STATE 

partition_bar = 1 
ccclr= 0 

ccinc = collisiond 
nocolclr= 0 
nocolinc= 1 

I I 
enable_bard=O enable_bard=1 

AND collisiond=O OR ** 

AND carpres=O enable bard=O 
~ND comsiond=1 

CCOUNT_STATE 

I 
enable_bard=O 
AND cclimit=O 

AND carpres=O 
AND quietd=O 

partition_bar = 1 
ccclr= 0 
ccinc=O 

nocolclr= 1 
nocolinc=O 

I 
enable_bard=1 

enable bard=O 
AND c-;;limit:-:1 

** (collisiond=O 
AND carp res =1 

AND noclodone=1) 

.. 

~ 

... --

+ 
PWAIT_STATE 

partition_bar = 0 
ccclr = 0 
ccinc = 0 

nocolclr= 1 
nocolinc=O 

I enable_bard=O 
AND carpres=O 

enable_bard=1 AND quietd=1 

, ~ 
PHOLD_STATE 

partition_bar = 0 
ccclr = 0 
ccinc= 0 

nocolclr= 1 
nocolinc=O 

I enable_bard=O 
AND collisiond=1 

enable_bard=1 ANDcopyd=1 

, 
PCWATCH_STATE 

partition_bar = 0 
ccclr= 0 
ccinc = 0 

nocolclr= 0 
nocolinc= 1 

I I 
* enable_bard=O enable_bard=1 

AND quietd=O 
AND carpres=O 

WAIT_STATE 

partition_bar = 0 
ccclr= 1 
ccinc = 0 

nocolcir= 1 
nocolinc=O 

I 
enable_bard=1 enable_bard=O 

AND quietd=1 
AND carpres=O 

* enable_bardd=O AND carpres=O 
AND quietd=1 AND nocoldone=1 

ANDcopyd=1 

Figure 6-11 State diagram for paritioning and reconnecting 

195 



196 

signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 
signal 

crsdd, link_bardd, enable_bardd: std_logic; 
tx_eni, carpres, transmit, copyd, copyin, collisiond: std_logic; 
jabcnt: std_logic_vector(3 downto 0); 
jabberclr, jabberinc: std_logic; 
quietd: std_logic; 
cccnt: std_logic_vector(6 downto 0); 
cclimit, nocoldone: std_logic; 
nocolcnt: std_logic_vector(7 downto 0); 
ccclr, ccinc, nocolclr, nocolinc: std_logic; 

begin 

Components 

uO: rsynch port map 
u1: psynch port map 
u2: psynch port map 
u3: rdffl port map 
u4: rdffl port map 
us: rdffl port map 
u6: ascount generic 
jabberinc, jabcnt) ; 

(txclk, 
(txclk, 
(txclk, 
(txclk, 
(txclk, 
(txclk, 

map (4) 

areset, crs, crsdd); 
areset, link_bar, link_bardd); 
areset, enable_bar, enable_bardd); 
areset, tx_eni, tx_en); 
areset, copyin, copyd); 
areset, collision, collisiond); 

port map (txclk, areset, jabberclr, 

u7: ascount 
cccnt) ; 

generic map (7) port map (txclk, areset, ccclr, ccinc, 

u8: ascount 
nocolcnt) ; 

generic map (8) port map (txclk, areset, nocolclr, nocolinc, 

carpres <= crsdd AND NOT enable_bardd; 
activity <= carpres AND NOT link_bardd AND jabber_bar AND partition_bar; 
rx_en <= NOT enable_bardd and NOT link_bardd AND selected AND collision; 
tx_eni <= NOT enable_bardd and NOT link_bardd AND jabber_bar and transmit; 
copyin <= carrier and NOT selected; 
transmit <= txdata AND (copyd OR collisiond) ; 
jabber_bar <= NOT (jabcnt(3) AND jabcnt(2)); 
jabberclr <= NOT carpres; 
jabberinc <= carpres AND prescale AND jabber_bar; 
quietd <= NOT copyd; 
cclimit <= cccnt(6); 
nocoldone <= nocolcnt(7); 

Partition State Machine 

p1: process (state, carpres, collisiond, copyd, quietd, 
nocoldone, cclimit, enable_bardd) begin 

case (state-) is 

when CLEAR_ STATE=> 

partition_bar <= '1' 
ccclr <= '1' 
ccinc <= '0 ' 
nocolclr <= '1' 



nocolinc <= '0' 

if (enable_bardd = '1') then 
newstate <= CLEAR_STATE; 

elsif (quietd '1') then 
newstate <= IDLE_STATE; 

else 
news tate <= CLEAR_STATE; 

end if; 

when IDLE_STATE=> 

when 

partition_bar 
ccclr 
ccinc 
nocolclr 
nocolinc 

if (enable_bardd 
news tate 

elsif (carpres 
news tate 

else 
news tate 

end if; 

CWATCH_ STATE=> 

partition_bar 
ccclr 
ccinc 
nocolclr 
nocolinc 

<= ' l' 
<= '0 ' 
<= '0 ' 
<= ' l' 
<= '0 ' 

'1') then 
<= CLEAR_STATE; 

'1' ) then 
<= CWATCH_STATE; 

<= IDLE_STATE; 

<= ' l' 
<= '0 ' 
<= collisiond; 
<= '0 ' 
<= '1' 

if (enable_bardd = '1') then 
newstate <= CLEAR_STATE; 

elsif (collisiond = '1') then 
news tate <= CCOUNT_STATE; 

elsif (carpres = '0') then 
news tate 

elsif (nocoldone 
news tate 

else 
news tate 

end if; 

<= IDLE_STATE; 
'1') then 
<= CLEAR_STATE; 

<= CWATCH_STATE; 

when CCOUNT_STATE=> 

partition_bar <= '1' 

197 



when 

when 

198 

ccclr 
ccinc 
nocolclr 
nocolinc 

<= 
<= 
<= 
<= 

'0 ' 
'0 ' 
' l' 
'0 ' 

if (enable_bardd = '1') then 
news tate 

elsif (cclimit 
news tate 

elsif (carpres 
news tate 

else 
news tate 

end ifi 

PWAIT STATE=> -

partition_bar 
ccclr 
ccinc 
nocolclr 
nocolinc 

<= CLEAR_STATEi 
'1' ) then 

<= PWAIT_STATEi 
'0' AND quietd = '1') then 

<= IDLE_STATE; 

<= CCOUNT_STATEi 

<= '0 ' 
<= '0 ' 
<= '0 ' 
<= ' l' 
<= '0 ' 

if (enable_bardd = '1') then 
news tate 

elsif (carpres 
news tate 

else 
news tate 

end ifi 

PHOLD_ STATE=> 

partition_bar 
ccclr 
ccinc 
nocolclr 
nocolinc 

<= CLEAR_STATEi 
'0' AND quietd = '1') then 

<= PHOLD_STATEi 

<= PWAIT_STATEi 

<= '0 ' 
<= '0 ' 
<= '0 ' 
<= ' l' 
<= '0 ' 

if (enable_bardd = '1') then 
newstate <= CLEAR_STATEi 

elsif (collisiond = '1' OR copyd = '1') then 
newstate <= PCWATCH_STATEi 

else 
news tate <= PHOLD_STATE; 

end ifi 



when 

when 

PCWATCH_ STATE=> 

partition_bar <= '0 ' 
ccclr <= '0 ' 
ccinc <= '0 ' 
nocolclr <= '0 ' 
nocolinc <= '1 ' 

if (enable_bardd = '1') then 
newstate <= CLEAR_STATEi 

elsif (carpres = '1') then 
newstate <= PWAIT_STATEi 

elsif (quietd = '0') then 
newstate <= PHOLD_STATEi 

elsif (nocoldone '1' AND copyd = '1') then 
newstate <= WAIT_STATEi 

else 
news tate <= PCWATCH_STATEi 

end ifi 

WAIT_ STATE=> 

partition_bar <= ' 0 ' 
ccclr <= '1 ' 
ccinc <= '0 ' 
nocolclr <= '1 ' 
nocolinc <= '0 ' 

if (enable_bardd = '1') then 
newstate <= CLEAR_STATEi 

elsif (carpres '0' AND quietd = '1') then 
news tate 

else 
news tate 

end ifi 

<= WAIT_STATEi 

end casei 

end processi 

State Flip-Flop for Synthesis 
p1clk: process (txclk,areset) 

begin 
if areset = '1' then 

199 



200 

state <= clear_state; 
elsif (txclk'event and txclk 

state <= newstate; 
end if; 

end process; 
end archporte; 

Listing 6-6 Port controller architecture 

'1') then 

The state machine was quickly translated from the state diagram to VHDL code. Careful evaluation 
of the code shows that it models the description above. 

Some designers would prefer to describe a design like this one by entering a bubble diagram, leaving 
the translation to VHDL to a software tool. There are tools that will perform this task. We find, 
however, that equal time (if not more) is spent in entering a bubble diagram than in entering the 
VHDL code directly. 

We have described each part of the design except where the rsynch, psynch, rdffl, and ascount 
components come from. These components are declared in the portetop-pkg and made visible by the 
USE clause. The portetop-pkg code is shown in Listing 6-7. 

library ieee; 
use ieee.std_logic_1164.all; 

package portetop-pkg is 

component rsynch port 
clk, reset: in std_logic; 
d: in std_logic; 
q: out std_logic); 

end component; 

component psynch port 
clk, preset: 
d: 
q: 

end component; 

in std_logic; 
in std_logic; 
out std_logic>; 

component rdffl port ( 
clk, reset: 
d: 
q: 

end component; 

component ascount 

in std_logic; 
in std_logic; 
out std_logic>; 

generic (CounterSize: integer := 2); 
port ( clk, areset, sreset, enable: in std_logic; 

count: buffer std_logic_vector(CounterSize-l downto 0»; 
end component; 



Arbiter 

end portetop-pkg; 

Listing 6-7 Portetop ykg includes components used in the design of 
the port controller 

Without declaring the components and making them visible to the porte design, the entity/ 
architecture pairs associated with these components can only be used as top-level designs. By 
declaring components for them, these components can be instantiated in a hierarchical design. 

To synthesize the design of the porte, Listing 6-1, Listing 6-4, and Listing 6-5 must be compiled first, 
then Listing 6-7, and finally Listing 6-6. It is assumed that the std_math package has already been 
compiled to the "work" library. 

The entity declaration for the arbiter is shown below, with the name arbiter8. Comments to the right 
may provide some additional information about the signals. The arbiter ensures that only one port is 
selected as the active (receiving) port and identifies collisions as well as an absence of activity. The 
design does not present any surprises. The output signals are defined with Boolean equations. The 
activityin signals could have been described with an IF-THEN construct, and the collision signal 
could have been defined with an algorithm using loops, but the Boolean equations are clear and easy 
to follow. 

A bank of registers is used to create a pipeline stage. The carrier, collision, and nosel will be used in 
multiple modules and will propagate through several levels of logic, generating the need for a 
pipeline stage to maintain a high frequency of operation. The other signals are pipelined to maintain 
synchronization. The complete code for arbiter is in Listing 6-8. 

library ieee; 
use ieee.std_logic_1164.all; 
entity arbiter8 is port( 

txclk: in std_logic; TX_ eLK 
areset: in std_logic; Asynch Reset 
activityl: in std_logic; Port Activity 1 
activity2: in std_logic; Port Activity 2 
activity3: in std_logic; Port Activity 3 
activity4: in std_logic; Port Activity 4 
activity5: in std_logic; Port Activity 5 
activity6: in std_logic; Port Activity 6 
activity7: in std_logic; Port Activity 7 
activity8: in std_logic; Port Activity 8 
sell: out std_logic; Port Select 1 
se12: out std_logic; Port Select 2 
se13: out std_logic; Port Select 3 
se14: out std_logic; Port Select 4 
se15: out std_logic; Port Select 5 
se16: out std_logic; Port Select 6 
se17: out std_logic; Port Select 7 
se18: out std_logic; POlCt Select 8 
nosel: out std_logic; No Port Selected 
carrier: out std_logic; Carrier Detected 
collision: out std_logic) ; Collision Detected 

end arbiter8; 

201 



202 

use work.arbiter8top-pkg.all; 
architecture archarbiter8 of arbiter8 is 

Signals 
signal 
signal 
signal 
signal 

colin, carin: std_logic; 
activityin1, activityin2, activityin3, activityin4: std_logic; 
activityin5, activityin6, activityin7, activityin8: std_logic; 
noactivity: std_logic; 

begin 
Components 

u1: rdffl port map (txclk, areset, activityin1, sell); 
u2: rdffl port map (txclk, areset, activityin2, se12) ; 
u3: rdffl port map (txclk, areset, activityin3, sel3) ; 
u4: rdff1 port map (txclk, areset, activityin4, se14) ; 
u5: rdffl port map (txclk, areset, activityin5, se15) ; 
u6: rdffl port map (txclk, areset, activityin6, se16) ; 
u7: rdffl port map (txclk, areset, activityin7, se17); 
u8: rdffl port map (txclk, areset, activityin8, se18) ; 

u9: pdff1 port map (txclk, areset, noactivity, nosel); 

u10: rdff1 port map (txclk, areset, colin, collision); 
u11: rdff1 port map (txclk, areset, carin, carrier); 

Arbitration Select Logic 
activityin1 <= activity1; 

activityin2 <= activity2 
AND NOT activity1; 

activityin3 <= activity3 
AND NOT(activity1 OR activity2)i 

activityin4 <= activity4 
AND NOT(activity1 OR activity2 OR activity3); 

activityin5 <= activity5 
AND NOT(activity1 OR activity2 OR activity3 OR activity4); 

activityin6 <= activity6 
AND NOT(activity1 OR activity2 OR activity3 OR activity4 OR 

activity5); 

activityin7 <= activity7 
AND NOT(activity1 OR activity2 OR activity3 OR activity4 OR 

activity5 OR activity6) ; 

activityi~8 <= activity8 
AND NOT(activity1 OR activity2 OR activity3 OR activity4 OR 

activity5 OR activity6 OR activity7); 



noactivity <= NOT(activityl OR activity2 OR activity3 OR activity4 OR 
activity5 OR activity6 OR activity7 OR activity8) ; 

colin <= (activityl AND (activity2 OR activity3 OR activity4 OR 
activity5 OR activity6 OR activity7 OR activity8)) OR 

(activity2 AND (activityl OR activity3 OR activity4 OR 
activity5 OR activity6 OR activity7 OR activity8) ) OR 

(activity3 AND (activityl OR activity2 OR activity4 OR 
activity5 OR activity6 OR activity7 OR activity8) ) OR 

(activity4 AND (activityl OR activity2 OR activity3 OR 
activity5 OR activity6 OR activity7 OR activity8) ) OR 

(activity5 AND (activityl OR activity2 OR activity3 OR 
activity4 OR activity6 OR activity7 OR activity8) ) OR 

(activity6 AND (activityl OR activity2 OR activity3 OR 
activity4 OR activity5 OR activity7 OR activity8) ) OR 

(activity7 AND (activityl OR activity2 OR activity3 OR 
activity4 OR activity5 OR activity6 OR activity8) ) OR 

(activity8 AND (activityl OR activity2 OR activity3 OR 
activity4 OR activity5 OR activity6 OR activity7) ) ; 

carin <= activityl OR activity2 OR activity3 OR activity4 OR 
activity5 OR activity6 OR activity7 OR activity8 ; 

end archarbiter8; 

Listing 6-8 Arbiter selects which port is active. 

The arbiterBtop-pkg package (not shown) serves the same purpose as the portetop-pkg: It declares 
components instantiated in the design. 

Clock Multiplexer 
The entity declaration for the clock multiplexer is shown below, with the name clockmux8. The 
design of the glitch-free clock-multiplexer circuit is left as an exercise for the reader. Figure 6-12 
illustrates a potential design solution. 

library ieee; 
use ieee.std_logic_1164.all; 

entity clockmux8 is port 
areset in std_logic; 
sreset in std_logic; 
clkl in std_logic; 
clk2 in std_logic; 
clk3 in std_logic; 
clk4 in std_logic; 

Asynch Reset 
Synch Reset 
Clock 1 
Clock 2 
Clock 3 
Clock 4 

203 



FIFO 

204 

SEL[n] 

ENABLE[T"n] 

ENABLE[T"n] 
~-r--- ENABLE[T"n] 

ENABLE[T"n] 
ENABLE[T"n] 
ENABLE[T"n] 

'-----"----- ENABLE[T"n] 
ENABLE[T"n] 
ENABLE[T"n] 

RXCLK 

Figure 6-12 Glitch-free clock multiplexer circuit 

clk5 in std_logic; Clock 5 
clk6 in std_logic; Clock 6 
clk7 in std_logic; Clock 7 
clk8 in std_logic; Clock 8 
clk9 in std_logic; Clock 9 (txclk) 
sell in std_logic; Clock Select 1 
se12 in std_logic; Clock Select 2 
sel3 in std_logic; Clock Select 3 
se14 in std_logic; Clock Select 4 
se15 in std_logic; Clock Select 5 
se16 in std_logic; Clock Select 6 
se17 in std_logic; Clock Select 7 
se18 in std_logic; Clock Select 8 
se19 in std_logic; Clock Select 9 
rxclk out std_logic) ; RX Clock 

end clockmux8; 

Our approach to the design of this FIFO differs from the design of the FIFO in chapter 4, "Creating 
Combinational and Synchronous Logic." In this design (Listing 6-9), rather than use an array of 
std_Iogic_ vectors and a process to access the different vectors, we instantiate eight 6-bit-wide 
registers. Accessing of the registers with the read and write pointers is handled in the same way as 
with the FIFO in chapter 4, "Creating Combinational and Synchronous Logic." 

The depth of the FIFO was chosen as eight to account for the latency between write cycles and read 
cycles. This latency is caused by the port selection, state transition, and datapath. Observation of the 
read and write pointers during simulation (simulation is discussed in chapter 9, "Creating Test 
Fixtures") indicates that the depth is sufficient. A worst-case analysis for the depth of the FIFO is left 
as an exercise for the reader. 

library ieee; 
use ieee.std_logic_1164.all; 
entity fifo is port( 

rxclk: 
txclk: 

in std_logic; 
in std_logic; 

from Clock Mux Circuit 
Reference TX_CLK 



areset: in std_logic; Asynch Reset 
sreset: in std_logic; Synch Reset 
wptrclr: in std_logic; FIFO Write Pointer 
wptrinc: in std_logic; FIFO Write Pointer 
rptrclr: in std_logic; FIFO Read Pointer 
rptrinc: in std_logic; FIFO Read Pointer 
rxdS: in std_logic; FIFO Data Input 
rxd4: in std_logic; FIFO Data Input 
rxd3: in std_logic; FIFO Data Input 
rxd2: in std_logic; FIFO Data Input 
rxd1: in std_logic; FIFO Data Input 
rxdO: in std_logic; FIFO Data Input 
dmuxout: out std_logic_vector(S downto 0) ; --
wptr2: out std_logic; 
wptr1: out std_logic; 
wptrO: out std_logic; 
rptr2: out std_logic; 
rptr1: out std_logic; 
rptrO: out std_logic) ; 

end fifo; 

use work.fifotop-pkg.all; 
architecture archfifo of fifo is 
-- signals 

Write Pointer 
write Pointer 
Write Pointer 
Read Pointer 
Read Pointer 
Read Pointer 

signal rptr, wptr: std_logic_vector(2 downto 0); 
signal qoutO, qout1, qout2, qout3, qout4, qoutS, 

qout6, qout7, rxd: std_logic_vector(S downto 0); 
signal en: std_logic_vector(7 downto 0); 

begin 
Components 

--FIFO array 
u1: rreg generic map (6) port map (rxclk, areset, en(O) , 
u2: rreg generic map (6) port map (rxclk, areset, en(l) , 
u3: rreg generic map (6) port map (rxclk, areset, en(2) , 
u4: rreg generic map (6) port map (rxclk, areset, en(3) , 
uS: rreg generic map (6) port map (rxclk, areset, en(4) , 
u6 : rreg generic map (6) port map (rxclk, areset, en(S) , 
u7: rreg generic map (6) port map (rxclk, areset, en(6) , 
u8: rreg generic map (6) port map (rxclk, areset, en(7) , 

-- Write Pointer 
u10: ascount generic map (3) 

Clear 
Incr 

Clear 
Incr 

FIFO Mux output 

rxd, qoutO) ; 
rxd, qout1) ; 
rxd, qout2) ; 
rxd, qout3); 
rxd, qout4) ; 
rxd, qoutS) ; 
rxd, qout6) ; 
rxd, qout7) ; 

port map (rxclk, areset, wptrclr, wptrinc, wptr); 
-- Read Pointer 
u11: ascount generic map (3) 

port map (txclk, areset, rptrclr, rptrinc, rptr); 

rxd <= (rxdS, rxd4, rxd3, rxd2, rxd1, rxdO) ; 
wptr2 <= wptr (-2); 
wptr1 <= wptr(l); 
wptrO <= wptr(O) ; 
rptr2 <= rptr(2); 
rptr1 <= rptr (1) ; 

205 



rptrO <= rptr(O) ; 

8:1 Data Mux 
with rptr select 

dmuxout <= 
qoutO when "000", 
qout1 when "001", 
qout2 when "010", 
qout3 when "011", 
qout4 when "100", 
qout5 when "101", 
qout6 when "110", 
qout7 when others; 

FIFO Register Selector Decoder (wptr) 
with wptr select 

en <= 
"00000001" when "000", 
"00000010" when "001" , 
"00000100" when "010", 
"00001000" when "011" , 
"00010000" when "100", 
"00100000" when "101" , 
"01000000" when "110", 
"10000000" when others; 

end archfifo; 

Listing 6-9 FIFO design 

The receive data is bused together internal to the architecture by concatenating the individual rxd bits: 

rxd <= (rxd5, rxd4, rxd3, rxd2, rxd1, rxdO); 

Because the read and write pointers are propagated to the top level, they are sent as individual 
std_Iogics rather than as a std_IogiC vector: 

wptr2 <= wptr(2) ; 
wptr1 <= wptr (1) ; 
wptrO <= wptr(O); 
rptr2 <= rptr(2); 
rptr1 <= rptr (1) ; 
rptrO <= rptr(O); 

Core Controller 

206 

Before discussing the design of the core controller, we will digress to explain how a host on the 
network transmits data. 

The MAC-to-transceiver interface is shown at a high level in Figure 6-13. The transceiver takes 
nibble-wide data from the MAC each clock cycle. Over two clock cycles, the transceiver stores the 
first nibble in one register and the second nibble in another. Eight bits of data are then encoded using 
the 8B6T ternary code of the IEEE 802.3 standard. Three shift registers used to serialize the data are 



TXD[3:0] 

TX_ER 

TX_EN 

TX_CLK 

loaded with the 8B6T code groups (Figure 6-14). One shift register is loaded while another byte is 
converted to an 8B6T code group. Therefore, the second register is loaded two clock cycles after the 
first. The third register is loaded two clock cycles after the second. Two clock cycles later, data in the 
first register has been transmitted, so it can be loaded with a new 8B6T code group. This interface 
results in the data frame structure of Figure 6-15. The third transmit pair is the first to begin 
transmitting data, the first transmit pair is the second to transmit data, and the second pair is the last 
to transmit data. This transmission scheme is used to avoid latency and increase total system 
performance. 

Ethernet 
MAC 

Media 
Independent 

Interface 

100BASE-T4 
Tansceiver Card 

CY&C971 
Transceiver 

D 
25 MHz 

Figure 6-13 MAC-to-transceiver interface 

Clock 
Generation 

TX_CLKA 

8B6T 
Encoder 

D 

TX_shift2 

D 

TX_shift3 

OJ 
c.... 
~ 
01 

ot---+---I 

0 

0 

Figure 6-14 MAC-to-transceiver interface data frame structure 

MCI 

TX_D1 

, TX_D2 
./01----'-. 

TX_D3 
A:)---. 

207 



The repeater receives data with this structure and is responsible for retransmitting the data with the 
same structure. The preamble and SFD symbols (sosa and sosb) must be regenerated because the 
initial portion of the preamble is lost during the reception while clock recovery is performed. When 
the SFD symbol is received by the repeater, data is stored in the FIFO. Initial data is only valid, 
however, for the third pair at first, then the first and third pairs, and finally all pairs (Figure 6-15). 
All data is stored in the FIFO for all pairs, even if the data is not valid for all pairs. On the 
retransmission of data, only those pairs of data that are valid will be transmitted-the other transmit 
pairs will continue to transmit preamble, conforming to the data frame structure. Now, we will return 
to the design of the core controller. 

IDLE I+-- PREAMBLE ----.t~I .... --------DATA--------~~IIDLE 

,---s_o_S_A---L..I_so_S_A---JI,---s_o_S_B---,-_D_A_T_A2---L - - - -I DATA N-1 1 

I 
'---.L.....-S_O_S_A--,-_S_O_S_A---,-_SO_S_B---JI_DA_T_A_3---L1 ~ ~ ~ _I DATA N 1 EOP _3 1 

I 
BLD4 BLD3 '--_-'-_S_O_S_A_-'--_S_O_S_B_'--D_A_T_A_1--.L ~ ~ ~ : : : - : ~ :] EOP _1 1 EOP _4 

208 

Figure 6-15 Data frame structure 

. The function of the core controller is illustrated in Figure 6-16. The state machines interact primarily 
with the symbol generator and output multiplexer. There is a state machine for each of the transmit 
pairs. Although the symbol generation is shown as three separate design units in Figure 6-16, it is 
designed as one unit in order to control the timing of transmit pairs (the multiplexers inside of this 
design unit are separate, however). A 3-bit counter is used to time the transmission of the SFD (start 
of frame delimiter) symbol and subsequent data on transmit pairs. One pair is transmitted when the 
counter reaches the decimal value of I, the next pair begins at 3, and the next at 5. The counter 
continuously counts, rolling over after counting through 6, to indicate symbol boundaries and ensure 
that transmission of data is separated by two clock cycles. 

Figure 6-18 Preamble Generation for Pairs 1 and 3 



Figure 6-17 State Transition Diagram for Core State Machines 

Each of the state machines follows the state transition diagram of Figure 6-17. The preamble state 
actually consists of three preamble substates for the first and third transmit pairs (Figure 6-18); the 
second transmit pair has four preamble states (three to transmit sosa and one to transmit sosb). 
Transitions from one preamble state to the next are based on the symbolend for each of the pairs. The 
symbolend is a symbol boundary that is generated from the 3-bit counter discussed in the previous 

209 



210 

paragraph. Symbolend1 indicates where the symbol boundaries are for the first transmit pair; 
symbolend2 is for the second transmit pair, and symbolend3 is for the third. The symbol boundaries 
are separated by two clock cycles, with symbolend2 starting at 1, symbolend3 starting at 3, and 
symbolend1 starting at 5 to conform to the data frame structure of Figure 6-15. The symbolend 
counter will be placed in the symbol generator design unit because its value is required in the 
generation of symbols. 

The state machines use rx_dv and rx_er as inputs. These signals transition from the high-impedance 
state and are gated with carrierd to filter out glitches. Because rx_dv and rx_er are asynchronous to 
the transmit clock, they must be synchronized to the rest of the system. 

The FIFO read and write pointers and clears are all controlled by the core controller. The FIFO read 
and write pointers are continuously incremented. However, the write pointer is cleared until valid 
data is identified, and the read pointer is cleared until the state machine enters a data state. 

Finally, the prescale counter shared by the port controllers is placed in this design unit. A prescale 
output is generated when the counter reaches its limit. 

Listing 6-10 is a partial code listing of the core controller. It includes all logic except for two of the 
state machines. The designs of those state machines are similar to that of the other and are left as 
exercises for the reader. 

library ieee; 
use ieee.std_logic_1164.all; 

entity control is port( 
txclk: in std_logic; Reference TX_CLK 

Async Reset areset: in std_logic; 
carrier: 
collision: 
rx_error: 
rx_dv: 
symbolendl: 
symbolend2: 
symbolend3: 
symbolclr: 
symbolinc: 
symboll: 
symbo12: 
symbol3 : 
switchl: 
switch2: 
switch3: 
wptrclr: 
wptrinc: ' 
rptrclr: 
rptrinc: 
txdata: 
idle: 
preamble: 
data: 
col: 
prescale: 

in std_logic; indicates carrier asserted 
in std_logic; indicates collision condition 
in std_logic; indicates RX PMA error 
in std_logic; indicates SFD found in data 
in std_logic; indicates end of symbol line 1 
in std_logic; indicates end of symbol line 2 
in std_logic; indicates end of symbol line 3 
out std_logic; resets symbol counter 
out std~logic; increments symbol counter 
out std_logic_vector(l downto O} ;-- selects 
out std_logic_vector(l downto O};-- special 
out std_logic_vector(l downto O} ;-- symbols 
out std_logic; selects special/data symbols 
out std_logic; selects special/data symbols 
out std_logic; selects special/data symbols 
out std_logic; FIFO write pointer clear 
out std_logic; FIFO write pointer increment 
out std_logic; FIFO read pointer clear 
out std_logic; FIFO read pointer increment 

out std_logic; txdata is ready 
out std_logic; indicates idle generation 
out std_logic; indicates preamble generation 
out std_logic; indicates data generation 
out std_logic; indicates jam generation 
out std_logic}; prescale output to port 



end control; 

use work.controltop-pkg.all; 
architecture archcontrol of control is 
type states1 is (IDLE_STATE1, PRE1_STATE1, PRE2_STATE1, PRE3_STATE1, 
DATA_STATE 1 , 

JAM_STATE 1 , NOSFD_STATE1, ERROR_STATE1); 
--attribute state_encoding of states1:type is one_hot_one; 

type states2 is (IDLE_STATE2, PRE1_STATE2, PRE2_STATE2, PRE3_STATE2, 
DATA_STATE2, 

JAM_STATE2, NOSFD_STATE2, ERROR_STATE2, PRE4_STATE2); 
--attribute state_encoding of states2:type is one_hot_one; 

type states3 is (IDLE_STATE3, PRE1_STATE3, PRE2_STATE3, PRE3_STATE3, 
DATA_STATE3, 

JAM_STATE 3 , NOSFD_STATE3, ERROR_STATE3); 
--attribute state_encoding of states3:type is one_hot_one; 

signal state1, newstate1: states1; 
signal state2, newstate2: states2; 
signal state3, newstate3: states3; 

carrierd, carrierdd: std_logic; 
error, rx_dv_in, rx_error_in: std_logic; 

signal 
signal 
signal 
signal 
signal 

no_sfd, no_sfd_in, no_data, data_valid: std_logic; 
prescale_in: std_logic; 
pout: std_logic_vector(9 downto 0); 

constant jam: std_logic_vector(l downto 0) .- "00"; 
constant pre: std_logic_vector(l downto a} .- "00"; 
constant sosb: std_logic_vector(l downto O} .- "01"; 
constant bad: std_logic_vector(l downto O} .- "10"; 
constant zero: std_logic_vector(l downto O} .- "11"; 
constant fifodata: std_logic .- '1' ; 
constant symboldata: std_logic .- '0' ; 
signal vdd:std_logic .- '1' ; 
signal vss: std_logic .- '0' ; 

begin 
Components 

ul: rsynch port map (txclk, areset, carrier, carrierdd); 
u3: rsynch port map (txclk, areset, rx_error_in, error); 
uS: rdff1 port map (txclk, areset, rx_dv_in, data_valid); 
u7: rdffl port map (txclk, areset, no_sfd_in, no_data); 
u8: ascount generic map(10} port map (txclk, areset, vss, vdd, pout) i 

u9: rdff1 port map(txclk, areset, prescale_in, prescale}; 

rx_ dv_ in <= carrierdd AND rx_dv; -- :plter out glitches 
rx_ error - in <= carrierdd AND rx_error; -- filter out glitches 
wptrclr <= NOT (rx_dv_in AND NOT collision} ; 
no - sfd_ in <= (no sfd OR no_data) AND carrier; 

211 



212 

prescale_in <= '1' when pout 

wptrinc <= '1'; 
rptrinc <= '1'; 
symbolinc <= '1'; 

"1111111111" else '0'; 

State Machine Controllers 

State Machine Controller Line 3 

p3: process (carrier, collision, symbolend3, data_valid, error, state3) 
begin 

case (state3) is 

when IDLE_STATE3 => 

symbo13<= zero; 
switch3 <= symboldata; 
symbolclr <= '1'; 
rptrclr <= '1'; 
preamble<= '0'; 
data <= '0'; 
no_sfd<= '0'; 
idle <= '1'; 
col <=' 0' ; 
txdata<= '0'; 

if (collision = '1') then 
newstate3 <= JAM_STATE3; 

elsif (carrier = '1') then 
newstate3 <= PRE1_STATE3; 

else 
newstate3 <= IDLE_STATE3; 

end if; 

when PRE1_STATE3 => 

symbo13<= pre; 
switch3 <= symboldata; 
symbolclr <= '0'; 
rptrclr <= '1'; 
preamble<= '1'; 
data <= '0'; 
no_sfd<= '0'; 
idle <= '0'; 
col <=' 0' ; 
txdata<= '1'; 

if (carrier = '0') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 



elsif (symbolend3 = '1') then 
newstate3 <= PRE2_STATE3; 

else 
newstate3 <= PRE1_STATE3; 

end if; 

when PRE2_STATE3 => 

symbo13<= pre; 
switch3 <= symboldata; 
symbolclr <= '0'; 
rptrclr <= '1'; 
preamble<= '1'; 
data <= '0'; 
no_sfd<= '0'; 
idle <= '0'; 
col <= '0'; 
txdata<= '1'; 

if (carrier = '0') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 

elsif (symbolend3 = '1') then 
newstate3 <= PRE3_STATE3; 

else 
newstate3 <= PRE2_STATE3; 

end if; 

when PRE3_STATE3 => 

symbo13<= sosb; 
switch3 <= symboldata; 
symbolclr <= '0'; 
rptrclr <= '1'; 
preamble<= '1'; 
data <= '0'; 
no_sfd<= '0'; 
idle <= '0'; 
col <= '0'; 
txdata<= '1'; 

if (carrier = '0') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 

elsif (symbolend3 = '1' AND error = '1') then 
newstate3 <= ERROR_STATE3; 

elsif (symbolend3 = '1' AND data_valid '0') then 
newstate3 <= NOSFD_STATE3; 

elsif (symbolend3 = '1' AND data_valid '1') then 
newstate3 <= DATA_STATE3; 

213 



214 

else 
newstate3 <= PRE3_STATE3; 

end if; 

when DATA_STATE3 => 

symbo13<= jam; 
switch3 <= fifodata; 
symbolclr <= '0'; 
rptrclr <= 'G'; 
prearnble<= 'G'; 

data <= '1'; 
no_sfd<= 'G'; 
idle <= '0'; 
col <= 'G'; 
txdata<= '1'; 

if (carrier = 'G') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 

elsif (symbolend3 = '1' AND error 
newstate3 <= ERROR_STATE3; 

else 
newstate3 <= DATA_STATE3; 

end if; 

when JAM_STATE3 => 

symbo13<= jam; 
switch3 <= symboldata; 
symbolclr <= 'G'; 
rptrclr <= 11',; 

prearnble<= '0'; 
data <= 'G'; 
no_sfd<= 'G'; 
idle <= 'G'; 
col <=' l' ; 
txdata<= '1'; 

if (carrier = 'G') then 
newstate3 <= IDLE_STATE3; 

else 
newstate3 <= JAM_STATE3; 

end if; 

when NOSFD_STATE3 => 

symbo13<= jam; 
switch3 <= syrnboldata; 
symbolclr <= '0'; 

'1') then 



rptrclr <= '0'; 
preamble<= '0'; 
data <= '1'; 
no_sfd<= '1'; 
idle <= 'a'; 
col <= 'a'; 
txdata<= '1'; 

if (carrier = 'a') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 

elsif (symbolend3 = '1' AND error 
newstate3 <= ERROR_STATE3; 

else 
newstate3 <= NOSFD_STATE3; 

end if; 

when ERROR_STATE3 => 

symbo13<= bad; 
switch3 <= symboldata; 
symbolclr <= 'a'; 
rptrclr <= '0'; 
preamble<= '0'; 
data <= '1'; 
no_sfd<= '0'; 
idle <= '0'; 
col <= 'a'; 
txdata<= '1'; 

if (carrier = 'a') then 
newstate3 <= IDLE_STATE3; 

elsif (collision = '1') then 
newstate3 <= JAM_STATE3; 

else 
newstate3 <= ERROR_STATE3; 

end if; 
end case; 

end process; 

p3clk: process (txclk,areset) 
begin 

if areset = '1' then 
state3 <= idle_state3; 

elsif (txclk'event and txclk='l') then 
state3 <= newstate3; 

end if; 
end process; 

end archcontrol; 

Listing 6-10 Core controller code 

'1') then 

215 



216 

There are several outputs in each state. Symbolclr is used to clear the 3-bit counter that controls the 
symbol boundaries, preamble indicates that the core controller is generating preamble, data indicates 
that the core controller is transmitting data, no _sid indicates that no data was found, idle indicates 
that the network is idle, and col indicates that there is a collision and that jam characters are being 
transmitted. All of these signals are propagated to the top level for observation. Txdata is used in 
each of the port controllers to assert tx_en. These signals do not need to be repeated in the design of 
the additional two state machines. 

The symbol and switch outputs are used to control two output multiplexers for each transmit pair. 
Symbol indicates which symbol to generate. Switch indicates whether the symbol or FIFO data is 
selected to transmit to the outputs. The symbol and switch signals are separate for each transmit pair 
in order that one transmit pair may transmit symbols while another transmits data. 

Symbol Generator and Output Multiplexer 
Listing 6-11 below is the design of the symbol generator and output multiplexer. The jam, sosb2, and 
bad characters for each of the transmission pairs are defined by the IEEE 802.3 standard. The values 
of the symbol counter and multiplexers are used to generate these symbols. Two multiplexers for 
each transmit pair are used. The first multiplexer selects a symbol, and the second multiplexer selects 
either the symbol or data from the FIFO. 

library ieeej 
use ieee.std_logic_ll64.allj 

entity symbolmux is port ( 
txclk: in std_logicj-- Reference TX_CLK 
areset: in std_logicj-- Async Reset 
symbolclr: in std_logicj-- Symbol Counter Clear 
symbolinc: in std_logicj-- Symbol Counter Increment 
switchl: in std_logicj-- Line 1 DiS Switch Control 
switch2: in std_logicj-- Line 2 DiS Switch Control 
switch3: in std_logicj-- Line 3 DiS Switch Control 
symboll: in std_logic_vector(l downto 0) j-- Line 1 Symbol Mux 

Control 
symbo12: in std_logic_vector(l downto 0) i-- Line 2 Symbol Mux 

Control 
symbol3 : in std_logic_vector(l downto 0) j-- Line 3 Symbol Mux 

Control 
dmuxout: in std_logic_vector(5 downto O)j-- FIFO Data Input 
symbolendl: buffer std_logici -- End of Line 1 Symbol 
symbolend2: out std_logici-- End of Line 2 Symbol 
symbolend3: out std_logici-- End of Line 3 Symbol 
txd5: out std_logicj-- Data 
txd4: out std_logici-- Data 
txd3: out std_logici-- Data 
txd2: out std_logici-- Data 
txdl: out std_logicj-- Data 
txdO: out std_logic)j-- Data 

end symbolmuxj 

use work.symboltop-pkg.allj 
architecture archsymbolmux of symbolmux is 
-- signals 



signalclearcount: std_Iogic; 
signalsymbolcount: std_Iogic_vector(2 downto 0); 

signalsosb1, sosb2, sosb3, bad1, bad2, bad3, jam: std_Iogic_vector(l downto 
0) ; 

signaltxd, muxout, smuxout: std_Iogic_vector(5 downto 0); 

-- Constants 
constant plus std_Iogic_vector(l downto 0) .- "10"; 
constant zero std_Iogic_vector(l downto 0) .,- "00"; 
constant minus: std_Iogic_vector(l downto 0) .- "01"; 

begin 
-- Components 

u1: ascount generic map(CounterSize => 3) 
port map (txclk, areset, clearcount, symbolinc, symbolcount); -

Symbol Count 

u2: rdff generic map (size => 6) 
port map (txclk, areset, muxout, txd) ;-- Output Latch 

txd5 <= txd(5) ; 
txd4 <= txd(4) ; 
txd3 <= txd(3) ; 
txd2 <= txd(2) ; 
txd1 <= txd(l) ; 
txdO <= txd(O) ; 

symbolend1<= symbolcount(O) AND NOT symbolcount(l) AND symbolcount(2); 
symbolend2<= symbolcount(O) AND NOT symbolcount(l) AND NOT symbolcount(2); 
symbolend3<= symbol count (0) AND symbolcount(l) AND NOT symbolcount(2); 
clearcount<= symbolend1 OR symbolclr; 

-- Special Symbol Mux 
with symbol1 select 

smuxout(l downto 0) <= 
jam when "00" , 
sosb1 when "01" , 
bad1 when "10" , 
zero when others; 

Line 1 Switch Mux 
with switch1 select 

muxout(l downto 0) <= 
smuxout(l downto 0) when '0', 
dmuxout(l downto 0) when others; 

Special Symbol Mux (Line 2) 
with symbol2 select 

smuxout(3 downto 2) <= 
j am when" 0 0 " , 

217 



218 

sosb2 when "01", 
bad2 when "10", 
zero when others; 

Line 2 Switch Mux 
with switch2 select 

muxout(3 downto 2) <= 

smuxout(3 downto 2) when 'a', 
dmuxout(3 downto 2) .when others; 

Special Symbol Mux (Line 3) 
with symbol3 select 

smuxout(5 downto 4) <= 
j am when" a 0" , 
sosb3 when "01", 
bad3 when "10", 
zero when others; 

Line 3 Switch Mux 
with switch3 select 

muxout(5 downto 4) <= 

smuxout(5 downto 4) when 'a', 
dmuxout(5 downto 4) when others; 

Jam/Preamble Generation (All Lines) 
with symbolcount(O) select 

jam <= 

plus when '0', 
minus when others; 

saSB Generation (Line 
with symbolcount select 

sosb1 <= 
plus when "000", 
minus when "001", 
plus when "ala", 
minus when "all" , 
minus when "lOa", 
plus when "101", 
zero when others; 

saSB Generation (Line 
with symbolcount select 

sosb2 <= 

minus when "000" , 
plus when "001", 
plus when "ala." , 
minus when "all", 
plus when "lOa" , 
minus when "101", 
zero when others; 

saSB Generation (Line 
with symbolcount select 

1) 

2) 

3) 



sosb3 <= 
plus when "000" , 
minus when "001" , 
minus when "010" , 
plus when "011" , 
plus when "lOa" , 
minus when "101", 
zero when others; 

Bad Code Generation (Line 1) 
with symbolcount select 

bad1 <= 
minus when "000" , 
minus when "001" , 
minus when "010" , 
plus when "011" , 
plus when "lOa" , 
plus when "101" , 
zero when others; 

Bad Code Generation (Line 2) 
with symbolcount select 

bad2 <= 
plus when "000" , 
plus when "001" , 
minus when "010" , 
minus when "011", 
minus when "lOa" , 
plus when "101" , 
zero when others; 

Bad Code Generation (Line 3) 
with symbolcount select 

bad3 <= 
minus when "000" , 
plus when "001" , 
plus when "010" , 
plus when "all" , 
minus when "lOa" , 
minus when "101" , 
zero when others; 

end archsymbolmux; 

Listing 6-11 Symbol generator and output multiplexer code 

Top-Level Design 
Before the design units can be connected in the top-level of the design hierarchy, a package, 
coretopykg, must be created in which the design units are declared as components. Once the 
components are declared and made visible to the top-level design, they can be instantiated. Listing 6-
12 is the design of the repeater core logic in which the design units are interfaced to each other and 
the top-level I/O. 

219 



library ieee; 
use ieee.std_logie_1164.all; 

entity core is port( 
reset in std_logie; Global Reset 
elk in std_logie; to CKTPAD for TX_CLK 
rxd5 in std_logie; RXD5 
rxd4 in std_logie; RXD4 
rxd3 in std_logie; RXD3 
rxd2 in std_logie; RXD2 
rxdl in std_logie; RXDl 
rxdO in std_logie; RXDO 
rx_dv in std_logie; RX_DV 
rx_er in std_logie; RX_ER 

elkl in std_logie; RX_CLKl 
ersl in std_logie; CRSl 
enablel _bar in std_logie; ENABLE 1 
linkl _bar in std_logie; LINKl 

elk2 in std_logie; RX_CLK2 
ers2 in std_logie; CRS2 
enable2 _bar in std_logie; ENABLE2 
link2 _bar in std_logie; LINK2 

elk3 in std_logie; RX_CLK3 
ers3 in std_logie; CRS3 
enable3 _bar in std_logie; ENABLE 3 
link3 _bar in std_logie; LINK3 

elk4 in std_logie; RX_CLK4 
ers4 in std_logie; CRS4 
enable4 _bar in std_logie; ENABLE 4 
link4 _bar in std_logie; LINK4 

elk5 in std_logie; RX_CLK5 
ers5 in std_logie; CRS5 
enable5 _bar in std_logie; ENABLE5 
link5 _bar in std_logie; LINK5 

elk6 in std_logie; RX_CLK6 
ers6 in std_logie; CRS6 
enable6 _bar in std_logie; ENABLE 6 
link6 _bar in std_logie; LINK6 

elk7 in std_logie; RX_CLK7 
ers7 in std_logie; CRS7 
enable7 _bar in std_logie; ENABLE 7 
link7 _bar in std_logie; LINK7 

elk8 in std_logie; RX_CLK8 
ers8 in std_logie; CRS8 
enable8 _bar in std_logie; ENABLE 8 
link8 _bar in std_logie; LINK8 

220 



rx_enl 
tx_enl 
partitionl_bar 
jabberl_bar 

rx_en2 
tx_en2 
partition2_bar 
jabber2_bar 

rx_en3 
tx_en3 
partition3_bar 
jabber3_bar 

rx_en4 
tx_en4 
partition4_bar 
jabber4_bar 

rx_enS 
tx_enS 
partitionS_bar 
jabberS_bar 

rx_en6 
tx_en6 
partition6_bar 
jabber6_bar 

rx_en7 
tx_en7 
partition7_bar 
jabber7_bar 

rx_enS 
tx_enS 
partitionS_bar 
jabberS_bar 

txdS 
txd4 
txd3 
txd2 
txdl 
txdO 

txdata 
idle 
preamble 
data 
jam 
collision 

out std_logic; 
out std_logic; 
inout std_logic; 
inout std_log:ic; 

out std_logic; 
out std_logic; 
inout std_logic; 
inout std_logic; 

out std_logic; 
out std_logic; 
inout std_logic; 
inout std_logic; 

out std_logici 
out std_logici 
inout std_logici 
inout std_logici 

out std_logic; 
out std_logici 
inout std_logic; 
inout std_logic; 

out std_logici 
out std_logic; 
inout std_logici 
inout std_logici 

out std_logici 
out std_logici 
inout std_logici 
inout std_logici 

out std_logici 
out std_logici 
inout std_logici 
inout std_logici 

out std_logici 
out std_logici 
out std_logici 
out std_logici 
out std_logici 
out std_logici 

inout std_logici 
out std_logici 
out std_logici 
out std_logici 
inout std_logici 
inout std_logici 

-- RX_ENl 
-- TX_ENl 

PARTITIONl 
-- JABBERl 

-- RX_EN2 
-- TX_EN2 

PARTITION2 
-- JABBER2 

-- RX_EN3 
-- TX_EN3 

PARTITION3 
-- JABBER3 

-- RX_EN4 
-- TX_EN4 

PARTITION4 
-- JABBER4 

-- RX_ENS 
-- TX_ENS 

PARTITIONS 
-- JABBERS 

-- RX_EN6 
-- TX_EN6 

PARTITION6 
-- JABBER6 

-- RX_EN7 
-- TX_EN7 

PARTITION7 
-- JABBER7 

-- RX_ENS 
-- TX_ENS 

PARTITIONS 
-- JABBERS 

TXDS 
TXD4 
TXD3 
TXD2 
TXDl 
TXDO 

-- TX_ENall 
Idle Generation 

-- Preamble Generation 
-- Data Generation 

Jam Generation 
-- Collision Indication 

221 



222 

wptr2 out std_logic; Write Pointer2 
wptrl out std_logic; Write Pointerl 
wptrO out std_logic; Write PointerO 
rptr2 out std_logic; Read Pointer2 
rptrl out std_~ogic; Read Pointerl 
rptrO out std~10gic) ; -- Read PointerO 

end core; 

--use work.rtlpkg.all; 
use work.coretop-pkg.all; 

architecture archcore of core is 
signal txclkl, nosel, areset, sell, se12, se13, se14: std_logic; 
signal se15, se16, se17, se18, rxclk, txclk: std_logic; 
signal activityl, activity2, activity3, activity4: std_logic; 
signal activity5, activity6, activity7, activity8: std_logic; 
signal carrier: std_logic; 
signal wptrclr, wptrinc, rptrclr, rptrinc,symbolinc:std_logic; 
signal switchl, switch2, switch3: std_logic; 
signal symbolendl, symbolend2, symbolend3: std_logic; 
signal symbolclr : std_logic; 
signal symbol 1 , symbol 2 , symbo13: std_logic_vector(l downto 0); 
signal dmuxout: std_logic_vector(5 downto 0); 
signal prescale: std_logic; 

begin 
Components 

ul: clockmux8 port map 
(areset, 
clkl, clk2, clk3, clk4, clk5, clk6, clk7, clk8, txclkl, 
sell, se12, se13, se14, se15, se16, se17, se18, nosel, 
rxclk) ; 

u2: arbiter8 port map 
(txclk, areset, 
activityl, activity2, activity3, activity4, 
activity5, activity6, activity7, activity8, 
sell, se12, se13, se14, se15, se16, se17, se18, 
nosel, carrier, collision); 

u3: fifo port map 
(rxclk, txclk, areset, wptrclr, wptrinc, rptrclr, 
rptrinc, rxd5, rxd4, rxd3, rxd2, rxdl, rxdO, 
dmuxout, wptr2, wptrl, wptrO, rptr2, rptrl, rptrO); 

u4: symbolmux port map 
(txclk, areset, 
symbolclr, symbol inc , switchl, switch2, switch3, symbol 1 , 
symbo12, symbol 3 , dmuxout, symbolendl, symbolend2, 
symbolend3, txd5, txd4, txd3, txd2, txdl, txdO); 

u5: control port map 
(txclk, areset, carrier, collision, rx_er, rx_dv, 
symbolendl, symbolend2, symbolend3, symbolclr, symbol inc , 



symbol1, symbo12, symbo13, switch1, switch2, switch3, 
wptrclr, wptrinc, rptrclr, rptrinc, txdata, idle, 
preamble, data, jam, prescale); 

u6: porte port map 
(txclk, areset, 
crs1, enable1_bar, link1_bar, 
sell, carrier, collision, jam, txdata, prescale, rx_en1, tx_en1, 
activity1, jabber1_bar, partition1_bar); 

u7: porte port map 
(txclk, areset, 
crs2, enable2_bar, link2_bar, 
se12, carrier, collision, jam, txdata, prescale, rx_en2, tx_en2, 
activity2, jabber2_bar, partition2_bar); 

u8: porte port map 
(txclk, areset, 
crs3, enable3_bar, link3_bar, 
se13, carrier, collision, jam, txdata, prescale, rx_en3, tx_en3, 
activity3, jabber3_bar, partition3_bar); 

u9: porte port map 
(txclk, areset, 
crs4, enable4_bar, link4_bar, 
se14, carrier, c~llision, jam, txdata, prescale, rx_en4, tx_en4, 
activity4, jabber4_bar, partition4_bar); 

u10: porte port map 
(txclk, areset, 
crs5, enable5_bar, link5_bar, 
se15, carrier, collision, jam, txdata, prescale, rx_en5, tx_en5, 
activity5, jabber5_bar, partition5_bar); 

u11: porte port map 
(txclk, areset, 
crs6, enable6_bar, link6_bar, 
se16, carrier, collision, jam, txdata, prescale, rx_en6, tx_en6, 
activity6, jabber6_bar, partition6_bar); 

u12: porte port map 
(txclk, areset, 
crs7, enable7_bar, link7_bar, 
se17, carrier, collision, jam, txdata, prescale, rx_en7, tx_en7, 
activity7, jabber7_bar, partition7_bar); 

u13: porte port map 
(txclk, areset, 
crsS, enableS_bar, linkS_bar, 
selS, carrier, collision, jam, txdata, prescale, rx_en8, tx_en8, 
activityS, jabberS_bar, partition8_bar); 

txclk <= clk; 
txclk1<= clk; 

223 



Exercises 

224 

areset <= reset; 

end archcore; 

Listing 6-12 Top-level repeater core logic design code 

Listing 6-12 completes the design of the repeater core logic. In chapter 8, "Synthesis to Final Design 
Implementation," we discuss issues concerning the synthesis of this design if it is to be implemented 
in an FPGA. In chapter 9, "Creating Test Fixtures," we explain how to create a VHDL test fixture to 
simulate both the source code and the post-synthesis and place and route model. 

1. The 14-bit Jabber counters described on page 193 are built with a lO-bit base counter and 4-bit 
counters. Build them with an II-bit base counter and 3-bit counters. What is the accuracy now? Are 
any other combinations possible? How many resources are required for each? develop an algorithm 
for accuracy and resources based on using an n-bit base counter and m-bit counters for the remainder 
of the jabber counters, with n+m = 14. 

2. Write the VHDL code for a 4-bit carry-look ahead adder. Create a package declaration for this 
code and use it to create a 32-bit version. Compile and synthesize this into a a)CPLD b) FPGA. 

3. Study the components of the MATH library in the Warp tool. Create your own library of 
multipliers and shifters. 

4. Rewrite the 'arbiter8' VHDL code in listing 6-8 using FOR-GENERATE and FOP-LOOP 
constructs 

5. Design a glitch-free clock multiplexer circuit. 

6; Do a worst-case analysis for the depth of the FIFO alluded to on page 204. 

7. Complete the partial code presented in Listing 6-10 by including the two state machine 
declarations. 

8. Write a process to create a random number generator. Can you synthesize this procedure? Justify. 

9. What recommendations and changes would you make to improve the performance of the network 
repeater. 

10. Complete the network repeater design. Compile, synthesize, place and route, and verify timing 
and functionality. 



Functions 

7 Functions and Procedures 

Functions and procedures are high-level design constructs to compute values or define partial 
processes that you can use for type conversions, operator overloading, or as an alternative to 
component instantiation. Below is a type conversion function. 

1 FUNCTION b12bit(a:BOOLEAN) RETURN BIT IS 
2 BEGIN 
3 IF a THEN 
4 RETURN '1'; 
5 ELSE 
6 RETURN '0'; 
7 END IF; 
8 END b12bit; 

Listing 7-1 A Boolean to bit type conversion function 

As you can see, Listing 7-1 describes a function that is used to convert the type Boolean to type bit, 
which are both predefined by the IEEE 1076 standard. Such functions are referred to as type 
conversion functions. Line 1 declares the function b12bit and defines the input parameter as type 
Boolean and return type as bit. Lines 2 and 8 begin and end the function definition. All statements 
within the function definition must be sequential statements. Lines 3 through 7 are sequential 
statements that define the return value based on the Boolean condition a. If a is TRUE, then the -
return value is 'I'; otherwise, the return value is '0' (return type is bit). Other often-used type 
conversion functions are bit to Boolean, bit to std_Iogic, and bicvector to std_Iogic_vector. You'll 
have an opportunity to write a couple of these conversion functions in the exercises at the end of the 
chapter. 

A bit to Boolean (or Boolean to bit) type conversion function can be helpful in writing Boolean 
equations or evaluation clauses. For example, if the signal elk is of type Boolean, then you can write 

instead of 
or 
instead of 
Likewise 
can be substituted for 

wait until elk; 
wait until elk='l' 
if (elk'event and elk) then ... 
if (elk'event and elk='l') then .. . 
if ((A AND B) XOR (C AND D)) then .. . 
if (((A AND B) XOR (C AND D))='l') then 

One way is not better than the other; however, VHDL provides the flexibility to meet different 
coding styles. 

Function parameters can only be inputs; therefore, the parameters cannot be modified. The parameter 
a in Listing 7-1 above is an input only. By default, all parameters are of mode IN, and the mode does 
not need to be explicitly declared. After all, it is the only legal mode for function parameters. 
Functions can return only one argument. (Procedures, as you'll see later, can return multiple 
arguments.) As mentioned in the explanation of the example above, all statements within the 
function definItion are sequential. Because of this, no signals can be declared or assigned in 

225 



bv2i 

226 

functions; however, variables may be declared in a function's declaration region and assigned values 
within the function definition. We'll take a look at a couple of examples to help you understand how 
to create your own functions. After that, we'll explain how to put these functions to use in your 
designs (Le., where to declare and define functions in order to use them). 

Read through Listing 7-2 to determine what this function does. 

1 
2 
3 
4 
5 

bv2i 
Bit_vector to Integer. 
In: bit_vector. 
Return: integer. 

6 FUNCTION bv2I (bv : Bit_vector) RETURN integer IS 
7 VARIABLE reSUlt, abit : integer := 0; 
8 VARIABLE count : integer := 0; 
9 BEGIN BV2I 

10 bits: FOR I IN bv'low to bv'high LOOP 
11 
12 

abit := 0; 
IF ((bv(I) '1')) THEN 

13 abit := 2**(1 - bv'low); 
14 END IF; 
15 
16 
17 
18 
19 
20 

result := result + abit; 
count := count + 1; 
EXIT bits WHEN count = 32; 
END LOOP bits; 
RETURN (result); 

END bv2I; 

Listing 7-2 A type conversion function 

Add in bit if '1'. 

32 bits max. 

Lines I through 5 of Listing 7-2 are comment lines that document the function name, describe the 
type conversion function, and indicate the input parameter and return type. This function takes as its 
input a bie vector, performs a binary to decimal conversion, and returns an integer. Line 6 indicates 
that the input parameter is unconstrained because the widths of the bie vectors that will be passed 
into this function are not known a priori. In fact, it is deliberately generic so that the size of the 
bie vector is not constrained. Of course, when this function is called in a design, the bie vector will 
have to be constrained. For signals to represent a collection of wires connected to gates, the widths of 
those signals must be defined at some level. 

Lines 7 and 8 make up the function's declaration region where variables can be declared, as in a 
process's declaration region. In this bv2i function, three variables are declared as integers and 
initialized to zero. All of the integers could have been declared with one variable declaration, but the 
declarations are separate to emphasize the different purposes that the variables serve. The function 
definition is enclosed between the BEGIN and END statements of lines 9 and 20. Line 10 begins a 
loop that starts with the lowest order bit of the bie vector bv. The attributes 'LOW and 'HIGH are 
predefined VHDL attributes that are used here to return the lowest and highest indices of the 
bie vector that are passed into the function as a parameter. Therefore, regardless of the order of 
bie vector bv-(x downto y) or (y to x)-y will be considered the least significant bit, and the integer 
value created for the bievector will reflect that y is the LSB and x is the MSB. For example, the two 
bie vectors, a and b, may be defined as follows: 



i2bv 

signal a: bit_vector(13 downto 6); 
signal b: bit_vector(6 to 13); 

For each of these hie vectors, a(6) and b(6) will he considered the LSB. The function could have 
been written to always interpret the value on the left as the MSB, but that function is left as an 
exercise for the reader. 

The loop is used to ascend the bie vector from LSB to MSB, with the variable i used to index the 
bie vector. Line 11 initializes the variable abit to zero for each iteration of the loop. For each bit of 
bv that is asserted, abit is assigned the appropriate power of two determined by its position in the 
bie vector. The position is determined by subtracting the lowest index for the bie vector (,LOW) 
from the current index. Consider our bit_vector a( 13 down to 6): If a( 8) is a '1', then abit is assigned 
the integer value 4 because i is 8, bv'LOW is 6, I - bv'LOW is 2, and 2**2 is 4. This represents the 
binary number" 1 00". The value of abit is added to result for each iteration of the loop. Count is used 
to determine the width of the bie vector being converted to an integer. The range of integers that a 

VHDL tool must support extends to 232 so count ensures that the integer returned is within the valid 
range. When the loop finishes, or is exited, result is returned (line 19), and the hit_vector-to-integer 
conversion is complete. 

Function i2bv performs just the opposite conversion: integer to bie vector. Read through Listing 7-3 
to understand how this conversion is accomplished, then we'll provide a brief explanation. 

i2bv 
Integer to Bit_vector. 
In: integer, value and width. 
Return: bit_vector, with right bit the most significant. 

FUNCTION i2bv (VAL, width : INTEGER) RETURN BIT_VECTOR IS 
VARIABLE result BIT_VECTOR (0 to width-i) .- (OTHERS=>'O'); 
VARIABLE bits INTEGER .- width; 

BEGIN 
IF (bits> 32) THEN 

bits := 32; 
ELSE 

ASSERT 2**bits > VAL REPORT 

Avoid overflow errors. 

"Value too big FOR BIT_VECTOR width" 
SEVERITY WARNING; 

END IFi 

FOR i IN 0 TO bits -

IF ( (vall (2**i) ) 
result(i) 

END IF; 
END LOOP; 

RETURN (result); 
END i2bv; 

.-

1 LOOP 
MOD 2 1) THEN 
'1' ; 

Listing 7-3 An integer to bie vector type conversion function 

227 



228 

This function takes as its inputs an integer value and the size (width) of the bie vector that is to be 
returned. The function performs a decimal to binary conversion and returns the value of the integer 
as a bie vector. 

In the function declaration, result is declared as a variable of type bie vector whose size is 
determined by the value of width. Variable bits is declared as an integer and is initialized to the value 
of width. Variable bits may be modified in the function, and therefore it is used rather than width. 
Width is a parameter to this function, must be mode IN, and cannot be modified. 

The function definition begins by evaluating the size of the bie vector to be returned. If it is greater 

than 32 (the largest integer that tools that process VHDL must handle is 232), then the size of the 
bie vector is truncated to 32. Otherwise, the integer value val is evaluated to determine if it can be 
converted to a bie vector of size bits. If the width of the bie vector is too small to handle the integer, 
then the ASSERT condition is true and a severity warning is issued. 

Next, result is computed by assigning a '1' to each bit of the bievector if val divided by 2i (where i is 
the current index of the bie vector) has a remainder of one. After all iterations of the loop, result is 
returned and the conversion is complete. 

We'll look at one more function definition before discussing how to use functions such as these. 
Examine Listing 7-4 to determine how it accomplishes an incrementing function. 

inc_bv 
Increment bit_vector. 
In: bit_vector. 
Return: bit_vector. 

FUNCTION inc_bv (a 
VARIABLE 8 
VARIABLE carry 

BEGIN 
carry : = '1'; 

FOR i IN a'LOW TO 
8(i) 
carry 

END LOOP; 

RETURN (8) i 

END inc_bv; 

.-

.-

: BIT_VECTOR) RETURN BIT_VECTOR IS 
BIT_VECTOR (a 'RANGE) ; 
BIT; 

a'HIGH LOOP 
a(i) XOR carry; 
a(i) AND carry; 

Listing 7-4 A function for incrementing bie vectors 

Function inc_bv takes as its input a bie vector, increments the value of that bie vector, and returns a 
bie vector of the same size as the input bie vector. 

The attribute 'RANGE is a predefined VHDL attribute that returns the range of an array. It enables 
variable s to be declared as a bie vector with the same range-ex downto y) or (y to x)-as the input 
vector a. Carry is defined as a bit. 



The function definition sets the first carry input to be a 'I' in order to increment the vector. The value 
of a(i) exclusive-or carry is assigned to s(i) for each bit of the input vector a. Carry is initially 'I' and 
is recomputed for each bit of the vector. The result of adding one to the bie vector a is therefore 
bie vector s. 

Now that we've looked at how functions are created, we'll explore how to use these functions within 
design entities and architectures. 

Using Functions 
Functions may be defined in architecture declaration regions, in which case the function definition 
also serves as the function declaration. Alternatively, a package may be used to declare a function 
with the definition of that function occurring in the associated package body . You may wish to create 
a collection of type conversion functions and place them in a package and library so that you can 
easily use them in any design. Also, if one function requires the use of another function, you will 
likely find it less cumbersome to have those function declarations and definitions in a package rather 
than in the architecture of the entity that you are describing. We'll take a look at both ways of 
declaring functions. You can decide which method meets your particular style and needs. 

To begin with, let's use the bl2bit function of Listing 7-1 in a design. This function will allow us to 
convert a Boolean value to type bit for use in a port map of a component whose input must be of type 
bit. First read through Listing 7-5. This listing simply defines a D-type flip-flop and includes its 
component declaration in a package calledjlops. The flip-flop requires that the input be of type bit. 
Next, read through Listing 7-6, to see how bl2bit is used to convert a Boolean signal to type bit so 
that it may be used in the port map of the dff. The function definition serves as the function 
declaration. It is located in the declaration region of the architecture and is used within the design 
architecture. 

package flops is 
component dff port( 

d,clk: in biti 
q: out bit) i 

end componenti 
end flopsi 

entity dff is port( 
d,clk: in biti 
q: out bit) i 

end dffi 

architecture archdff of dff is 
begin 
process 
begin 

wait until clk='l'i 
q <= di 

end proceSSi 
end archdffi 

Listing 7-5 Defining a D-type flip-flop in a package for which the 
port types must be bit 

229 



230 

entity convert is port( 
a, b, c: 
clk: 
x: 

end convert; 

use work.flops.all; 

in boolean; 
in bit; 
out bit) ; 

architecture archconvert of convert is 
signal d: boolean; 

FUNCTION b12bit(a:BOOLEAN) RETURN BIT IS 
BEGIN 

IF a THEN 
RETURN '1'; 

ELSE 
RETURN' 0'; 

END IF; 
END b12bit; 

begin 
d <= ((A OR B) XOR C) ; 
u1: dff port map(b12bit(d),clk,x); 

end archconverti 

Listing 7-6 Defining a function in the architecture declaration 
region and using the function within a port map 

The bl2bit conversion function was used in the instantiation statement itself to convert the value of d 
to its equivalent bit value. This enables you to write succinct code. Otherwise, you would need to 
create temporary signals to hold the conversion values before using those signals in the instantiation, 
as in Listing 7-7 below. 

use work.flops.alli 
architecture archconvert of convert is 

signal d: boolean; 
signal dummy: biti 

FUNCTION b12bit(a:BOOLEAN) RETURN BIT IS 
BEGIN 

IF a THEN 
RETURN '1' i 

ELSE 
RETURN' 0' i 

END IFi 

END b12biti 

begin 
d < = (( A OR B) XOR C) ; 
dummy <= b12bit(d)i 
u1: dff port map(dummy,clk,x); 



end archconvert; 

Listing 7-7 An equivalent to Listing 7-6 wherein the ports are first 
converted using local signals 

In both of the above listings (Listing 7-6 and Listing 7-7), the b12bit function is defined (and, hence, 
declared) in the architecture declaration region. Alternatively, it can be a part of a type conversion 
package where many type conversion functions exist. In our case, we'll move the b12bit function into 
a package named conversions that contains four type conversion functions (Listing 7-8). 

package conversions is 
FUNCTION b12bit(a:BOOLEAN) RETURN BIT; 
FUNCTION bit2bl(in1:BIT) RETURN BOOLEAN; 
FUNCTION bv2i (bv : Bit_vector) RETURN integer; 
FUNCTION i2bv (VAL, width : INTEGER) RETURN BIT_VECTOR; 

end conversions; 

package body conversions is 

b12bit 
Boolean to bit. 
In: iBoolean. 
Return: Bit. 

FUNCTION b12bit(a:BOOLEAN) RETURN BIT IS 
BEGIN 

IF a THEN 
RETURN '1'; 

ELSE 
RETURN' 0'; 

END IF; 
END b12bit; 

bit2bl 
Bit to boolean. 
In: Bit. 
Return: Boolean 

FUNCTION bit2bl(in1:BIT) RETURN BOOLEAN IS 
BEGIN 

IF (in1 = '1') THEN 
RETURN TRUE; 

ELSE 
RETURN FALSE; 

END IF; 
END bit2bl; 

bv2i 
Bit_vector to Integer. 
In: bit_vector. 
Return: integer. 

FUNCTION bv2i (bv: Bit_vector) RETURN integer IS 

231 



232 

VARIABLE result, abit integer := 0; 
VARIABLE count : integer := 0; 

BEGIN bv2i 
bits: FOR I IN bv'low to bv'high LOOP 
abit := 0; 
IF ((bv (I) '1')) THEN 

abit := 2**(1 - bv'low); 
END IF; 

result := result + abit; 
count := count + 1; 

Add in bit if '1'. 

EXIT bits WHEN count = 32; 
END LOOP bits; 

32 bits max. 

RETURN (result); 
END bv2i; 

i2bv 
Integer to Bit_vector. 
In: integer, value and width. 
Return: bit_vector, with right bit the most significant. 

FUNCTION i2bv (VAL, width : INTEGER) RETURN BIT_VECTOR IS 
VARIABLE result BIT_VECTOR (0 to width-1) .- (OTHERS=>'O'); 
VARIABLE bits INTEGER .- width; 

BEGIN 
IF (bits> 32) THEN 

bits :=32; 
ELSE 

ASSERT 2**bits > VAL REPORT 

Avoid overflow errors. 

"Value too big FOR BIT_VECTOR width" 
SEVERITY WARNING; 

END IF; 

FOR i IN 0 TO bits -
IF ((val/(2**i)) 

result(i) 
END IF; 

END LOOP; 

RETURN (resul t) ; 
END i2bv; 

end conversions; 

.-

1 LOOP 
MOD 2 1) THEN 
'1' ; 

Listing 7-8 Package containing four type conversion functions 

Listing 7-8 declares the functions bl2bit, bit2bl, bv2i, and i2bv in a function declaration and defines 
the functions in the package body. Listing 7-9 below then includes the package in order to use the 
function bl2bit. 

entity convert is port( 
a, b, c: 
clk: 
x: 

in boolean; 
in bit; 
out bit); 



end convert; 

use work.conversions.b12bit; --could have use ".all" but not needed 
use work.flops.all; 
architecture archconvert of convert is 

signal d: boolean; 
begin 

d <= ((A OR B) XOR C); 
u1: dff port map(b12bit(d),clk,x); 

end archconvert; 

Listing 7-9 Using functions declared in a package 

Overloading Operators 
A powerful use of functions is to overload operators. In previous chapters, you've seen how 
overloaded operators provided by a synthesis tool can be used. In this section, we'll discuss what an 
overloaded operator is and how it works. 

An overloaded operator enables you to use an operator to operate on operands of types that are not 
supported by the native VHDL operator. For instance, the + operator is defined by the IEEE 1076 
standard to operate on numeric types (integer, floating point, and physical types) but not with 
enumerated types like std_logic or bie vector. To add a constant integer to a signal of type std_logic, 
an overloaded operator is required. The overloaded operator is a function declaration that defines the 
operator for the given types and a function definition that indicates how the operator is to work on 
the given types. Listing 7-10 is a design in which an integer is added to a bie vector. Other useful 
addition operations include, among others, addition of a bie vector to an integer, a bie vector to a bit, 
a std_logic_ vector to an integer, or a std_logic_ vector to a bit. 

entity counter is port ( 
clk, rst, pst, load,counten: 
data: 
count: 

end counter; 

use work.myops.all; 
architecture archcounter of counter is 
begin 
upcount: process (clk, rst, pst) 

begin 
if rst = '1' then 

count <= "0000"; 
elsif pst = '1' then 

count <= "1111"; 

in bit; 
in bit_vector(3 downto 0); 
buffer bit_vector(3 downto 0)); 

elsif (clk'event and clk= '1') then 
if load = '1' then 

end if; 

count <= data; 
elsif counten = '1' then 

count <= count + 1; 
end if; 

end process upcount; 

233 



234 

end archcounter; 

Listing 7-10 A counter in which the + operator has operands of 
types bie vector and integer 

The code in Listing 7-10 makes use of the + operator for the statement "count <= count + 1;". The 
native VHDL operator will not handle this addition because the operands are bie vector and integer. 
The overloaded operator must come from within the package myops. 

Overloaded operators, such as the one used in Listing 7-10, allow you to perform operations on data 
types for which the function is not already defined. You can create several functions that define the 
same operation for different types. VHDL synthesis and simulation tools are required to look for the 
function (or operator in this case) that matches the parameters that are being used. 

Listing 7-11 contains a package declaration and package body that declare and define two operator 
overloads for the + operator. 

package myops is 
FUNCTION "+" 
FUNCTION "+" 

end myops; 

(at b : BIT_VECTOR) 
(a : BIT_VECTOR; b : INTEGER) 

use work.conversions.all; 
package body myops is 

11+11 

Add overload for: 
In: two bit_vectors. 
Return: bit_vector. 

RETURN BIT_VECTOR 
RETURN BIT_VECTOR 

FUNCTION "+" (at b 
VARIABLE s 
VARIABLE carry 
VARIABLE bi 

: BIT_VECTOR) RETURN BIT_VECTOR IS 
BIT_VECTOR (a'RANGE); 
BIT; 
integer; Indexes b. 

BEGIN 
carry : = '0 ' ; 

FOR i IN a'LOW TO a'HIGH LOOP 
bi := b'low + (i - a'low); 
s(i) .- (a(i) XOR b(bi)) XOR carry; 
carry .- «a(i) OR b(bi)) AND carry) OR (a(i) AND b(bi)); 

END LOOP; 

RETURN (s); 
END "+"; -- Two bit_vectors. 

n +" 
Overload "+" for bit_vector plus integer. 
In: bit_vector and integer. 
Return: bi t_ vec tor " 

FUNCTION "+" (a : BIT_VECTOR; b 
BEGIN 

INTEGER) RETURN BIT_VECTOR IS 



RETURN (a + i2bv(b, a'LENGTH)); 
END "+"; 

end myops; 

Listing 7-11 Declaring and defining operator overloading functions 

This package also makes use of the conversions package for the second + function. The expression 
for the return value makes use of the i2bv function found in the conversions package. The return 
expression first converts the bie vector that is passed in as a parameter to an integer and then adds it 
to the integer that is passed in as a parameter. 

The following line of code from the first overload function is used to ensure that the most significant 
bit of one vector is added to the most significant bit (not the least significant) of the other vector: 

bi := b'low + (i - a'low); 

The addition operator is enclosed in quotation marks to indicate that it is an operator. When the 
operator is used as in the counter example of Listing 7-10, the compiler must search for the addition 
function with matching operand types for the statement "count <= count + 1;" (where count is a 
bie vector and 1 is an integer). If integers are being added, then the native VHDL addition operator is 
used. In the case of Listing 7-10, the second version of the + operator defined in the package myops 
is used. 

Listing 7-10 can be written such that the counter uses the incbv function defined earlier. The line 

count <= count + 1; 

is then replaced by 

count <= inc_bv(count); 

The first implementation (the one using the + operator) provides more readable code. It is 
unambiguous without documentation what is accomplished with the statement "count <= count + 1;". 
What is accomplished with the statement "count <= inc_bv(count);" may be completely obvious to 
the original designer, but it may not be intuitive for someone else reading the code. The inc_bv 
function may require the reader to delve into the function definition or documentation (comments, if 
provided). If you use an overloaded operator, then there is no need to maintain and document yet 
another function, and if your design is transferred to another designer, it will easily be understood. 
As we'll talk about later in this chapter, using the native operators and vendor-supplied (but 
standardized) overloaded operators will also likely result in a more efficient implementation of your 
circuit. 

Overloading Functions 
Operators are not the only functions that can be overloaded. You can overload any function. Take, 
for example, the functions declared in the package mygates in Listing 7-12 below. 

package mygates is 
function and4(a,b,c,d: bit) return bit; 
function and4(a,b,c,d: boolean) return boolean; 
function and4(a,b,c,d: boolean) return bit; 
function and4(a,b,c,d: bit) return boolean; 

end mygates; 

235 



236 

use work.conversions.all; 
package body mygates is 

FUNCTION and4(a,b,c,d: bit) RETURN BIT IS 
BEGIN 

return (a and band c and d) ; 
end and4; 

function and4(a,b,c,d: boolean) return boolean is 
BEGIN 

return (a and band c and d) ; 
end and4; 

function and4(a,b,c,d: boolean) return bit is 
BEGIN 

return (b12bit(a and band c and d)); 
end and4; 

function and4(a,b,c,d: bit) return boolean is 
BEGIN 

return (bit2bl(a and band c and d)); 
end and4; 

end mygates; 

Listing 7-12 Overloading the AND operator for different operand 
types 

Four functions of the same name have been declared and defined. These functions, however, are 
defined for input parameters and return values of different types. When used in the example below 
(Listing 7-13), the compiler must choose the appropriate function for the function call. 

entity fourands is port ( 
al,bl,cl,dl: 
ql: 
a2,b2,c2,d2: 
q2: 
a3,b3,c3,d3: 
q3: 
a4,b4,c4,d4: 
q4: 

end fourands; 

use work.mygates.all; 

in boolean; 
out boolean; 
in bit; 
out bit; 
in bit; 
out boolean; 
in boolean; 
out bit); 

architecture archfourands of fourands is 
begin 

ql <= and4(al,bl,cl,dl); 
q2 <= and4(a2,b2,c2,d2); 
q3 <= and4(a3,b3,c3,d3) ; 
q4 <= and4(a4,b4,c4,d4); 

end archfourands; 

Listing 7-13 Using the overloaded AND operators 



Listing 7-13 demonstrates that functions can be used as an alternative to certain types of component 
instantiations (particularly for combinational functions). The listing also demonstrates that the and4 
function can be overloaded to accept different types of input parameters and different types of return 
values. 

It is not necessarily a good idea to overload all operators too handle several different types, because 
having the compiler find type mismatches may be useful in some cases. 

The package that we have been using to overload the + operator for types std_logic and integer is 
found in Appendix D. 

Standard Functions 
Fortunately, some standard functions have been established since the first issue of the VHDL 
standard (1076) in 1987. Standard packages have been defined that include operator overloading for 
multiple types. This eliminates the need for each tool vendor to provide a proprietary package with 
unique function names. The standard provides a standard package name and standard function 
names. VHDL code that makes use of these standard packages is portable from one tool to another, 
provided the tool supports the standard. For example, the std_logic_ll64 package provides a 
standard datatype system that, because it is supported by multiple tool vendors, enables you to use 
the data types defined in this package by including the following library and use clause: 

library ieee; 
use ieee.std_logic_1164.all; 

For every synthesis or simulation tool vendor that supports this package, you will be able to use your 
code with that tool without any modifications to your code. If each tool vendor required you to use 
proprietary packages to have access to useful data types or operators, then you would not be able to 
easily port your code from one system to another. 

At the time of this writing, the std_logic_1164 package is the most widely used and accepted 
standard package. It defines not only a standard datatype system but also standard overloaded 
operators and type conversion functions for use with that system. 

Among other things, the std_logic_1164 package includes common subtypes of std_logic_1164: X01 
and X01Z. It overloads the logical operators (and, or, etc.). It also provides some commonly used 
conversion functions: 

FUNCTION To _bit ( s : std_ulogic; xmap BIT .- '0 ' ) 
RETURN BIT; 

FUNCTION To_bitvector ( s : std_logic_vector xmap BIT .- '0 ' ) 
RETURN BIT_VECTOR; 

FUNCTION To_bitvector ( s : std_ulogic_vector; xmap BIT .- '0 ' ) 
RETURN BIT_VECTOR; 

FUNCTION To_StdULogic ( b : BIT 
RETURN std_ulogic; 

FUNCTION To_StdLogicVector ( b : BIT_VECTOR 
RETURN std_logic_vector; 

237 



238 

FUNCTION To_StdLogicVector (s: std_ulogic_vector ) 
RETURN std_logic_vector; 

FUNCTION To_StdULogicVector ( b : BIT_VECTOR 
RETURN std_ulogic_vector; 

FUNCTION To_StdULogicVector ( s : std_logic_vector 
RETURN std_ulogic_vector; 

To_bitvector, To_StdLogicVector, and To_StdULogicVector are all overloaded for different input 
parameter types. 

At the time of this writing, IEEE working group 1076.3 has developed a draft standard for two 
VHDL synthesis packages: NUMERIC_BIT and NUMERIC_STD. This standard specifies, "Two 
packages that define vector types for representing signed and unsigned arithmetic values, and that 
define arithmetic, shift, and type conversion operations on those types." An example of just one of 
the arithmetic operators that this standard defines is given below. (You won't likely want to read this 
in detail but rather in general to understand that the operators such as the + operator have been 
overloaded to accommodate the addition of data objects of many different types.) For a complete 
draft of the standard consult the World Wide Web (http:// www.vhdl.org). 

From NUMERIC_BIT: 

type UNSIGNED is array (NATURAL range <> ) of BIT; 
type SIGNED is array (NATURAL range <> ) of BIT; 

-- Id: A.3 
function "+" (L, R: UNSIGNED) return UNSIGNED; 

Result subtype: UNSIGNED (MAX (L 'LENGTH, R'LENGTH)-l downto 0). 
Result: Adds two UNSIGNED vectors that may be of different lengths. 

Id: A.4 
function "+" (L, R: SIGNED) return SIGNED; 

Result subtype: SIGNED (MAX(L 'LENGTH, R'LENGTH)-l downto 0). 
Result: Adds two SIGNED vectors that may be of different lengths. 

Id: A.S 
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED; 

Result subtype: UNSIGNED(L'LENGTH-l downto 0). 
Result: Adds an UNSIGNED vector, L, with a non-negative INTEGER, R. 

Id: A.6 
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED; 

Result subtype: UNSIGNED(R'LENGTH-l downto 0). 
Result: Adds a non-negative INTEGER, L, with an UNSIGNED vector, R. 

Id: A.7 
function "+" (L: INTEGER; R: SIGNED) return SIGNED; 

Result subtype: SIGNED(R'LENGTH-l downto 0). 
Result: Adds an INTEGER, L(may be positive or negative), to a SIGNED 

vector, R. 

Id: A.8 
function "+" (L: SIGNED; R: INTEGER) return SIGNED; 



Result subtype: SIGNED(L'LENGTH-l downto 0). 
Result: Adds a SIGNED vector, L, to an INTEGER, R. 

From NUMERIC_STD: 
type UNSIGNED is array (NATURAL range <> ) of STD_LOGIC; 
type SIGNED is array (NATURAL range <> ) of STD_LOGIC; 

-- Id: A.3 
function "+" (L, R: UNSIGNED) return UNSIGNED; 

Result subtype: UNSIGNED (MAX (L 'LENGTH, R'LENGTH)-l downto 0). 
Result: Adds two UNSIGNED vectors that may be of different lengths. 

Id: A.4 
function "+" (L, R: SIGNED) return SIGNED; 

Result subtype: SIGNED (MAX (L 'LENGTH, R'LENGTH)-l downto 0). 
Result: Adds two SIGNED vectors that may be of different lengths. 

Id: A.5 
function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED; 

Result subtype: UNSIGNED(L'LENGTH-l downto 0). 
Result: Adds an UNSIGNED vector, L, with a non-negative INTEGER, R. 

Id: A.6 
function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED; 

Result subtype: UNSIGNED(R'LENGTH-l downto 0). 
Result: Adds a non-negative INTEGER, L, with an UNSIGNED vector, R. 

Id: A.7 
function "+" (L: INTEGER; R: SIGNED) return SIGNED; 

Result subtype: SIGNED(R'LENGTH-l downto 0). 
Result: Adds an INTEGER, L(may be positive or negative), to a SIGNED 

vector, R. 

-- Id: A.8 
function "+" (L: SIGNED; R: INTEGER) return SIGNED; 

Result subtype: SIGNED(L'LENGTH-l downto 0). 
-- Result: Adds a SIGNED vector, L, to an INTEGER, R. 

As you can imagine, having standard packages to define these overloaded operators greatly increases 
the power, flexibility, and portability of VHDL both for synthesis and simulation. It is usually best to 
use the standard packages rather than create your own, using them from the library specified by the 
standard or the vendor. Creating your own may provide functionally equivalent code; however, 
vendors may provide unique implementations that will provide better synthesis. 

An important function that is defined in NUMERIC_STD is the function std_match. The function is 
overloaded for several types: 

-- Id: M.l 
function STD_MATCH (L, R: STD_ULOGIC) return BOOLEAN; 

Result subtype: BOOLEAN 
Result: terms compared per STD_LOGIC_1164 intent 

Id: M.2 
function STD_MATCH (L, R: UNSIGNED) return BOOLEAN; 

239 



240 

Result subtype: BOOLEAN 
Result: terms compared per STD_LOGIC_1164 intent 

Id: M.3 
function STD_MATCH (L, R: SIGNED) return BOOLEAN; 

Result subtype: BOOLEAN 
Result: terms compared per STD_LOGIC_1164 intent 

Id: M.4 
function STD_MATCH (L, R: STD_LOGIC_VECTOR) return BOOLEAN; 

Result subtype: BOOLEAN 
Result: terms compared per STD_LOGIC_1164 intent 

Id: M.5 
function STD_MATCH (L, R: STD_ULOGIC_VECTOR) return BOOLEAN; 

Result subtype: BOOLEAN 
-- Resurt: terms compared per STD_LOGIC_1164 intent 

The definition for the first function for use with the type std_ulogic is defined below. 

-- support constants for STD_MATCH: 

type BOOLEAN_TABLE is array (STD_ULOGIC, STD_ULOGIC) of BOOLEAN; 

constant MATCH_TABLE: BOOLEAN_TABLE := ( 

-- U x o 1 z w L H 

(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, 
(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, 
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
(FALSE, FALSE, TRUE, FALSE,' FALSE, FALSE, TRUE, FALSE, 
(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, 
( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, 
) ; 

Id: M.1 
function STD_MATCH (L, R: STD_ULOGIC) return BOOLEAN is 

variable VALUE: STD_ULOGIC; 
begin 

return MATCH_TABLE(L, R); 
end STD_MATCH; 

-- Id: M.2 
function STD_MATCH (L, R: UNSIGNED) 

alias LV: UNSIGNED (1 to L'LENGTH) 
alias RV: UNSIGNED (1 to R'LENGTH) 

begin 
if ( (L' LENGTH < 1) or (R'LENGTH < 

assert NO_WARNING 

return BOOLEAN is 
is L; 
is R; 

1» then 

TRUE) , 
TRUE) , 
TRUE) , 
TRUE) , 
TRUE) , 
TRUE) , 
TRUE) , 
TRUE) , 
TRUE) 

U 

x 
o 
1 

Z 

W 

L 

H 

report "NUMERIC_STD.STD_MATCH: null detected, returning FALSE" 
severity WARNING; 



return FALSE; 
end if; 
if LV'LENGTH /= RV'LENGTH then 

assert NO_WARNING 

FALSE" 
report "NUMERIC_STD.STD_MATCH: L'LENGTH /= R'LENGTH, returning 

severity WARNING; 
return FALSE; 

else 
for I in LV'LOW to LV'HIGH loop 

if not (MATCH_TABLE (LV(I) , RV(I))) then 
return FALSE; 

end if; 
end loop; 
return TRUE; 

end if; 
end STD_MATCH; 

This function returns a boolean value based on whether two data objects of type std_ulogic match 
according to don't care conditions. For example, the function as overloaded for std_ulogic_ vectors, 
allows the comparison of "1- -1" to a signal of type std_ulogic_ vector (of width 4) to evaluate to 
true as long as the first and last elements of the vector are '1,' regardless of the value of the middle 
two. 

The following comparison will evaluate to false, for all values of a except "1- -1 " : 

if a = "1--1" then ... 

Although' -' represents the don't care value, the = operator cannot be used to identify don't care 
conditions. The LRM defines the = operator for enumeration types such as std_Iogic to result in a 
Boolean evaluation of true only if the left hand-side expression is equivalent to the right-hand side 
expression. The don't care value, '-', is the 'high value of the std_ulogic type. A comparison of' -' to 
'0' or to' l' using the = operator evaluates false. The std_match function, on other hand, returns true 
for the comparison of' -' to '0' or' 1'. The constant match_table above can be used to determine the 
result of comparing two std_ulogic values using the std_match function. Find one of the values you 
wish to compare in the comment line at the top of the table. Find the other value in the right-hand 
side column. The result of the comparison is the Boolean value listed at the intersection of the row 
and column of the two values that you are comparing. To use the function, you will need to include 
the appropriate USE clause, and write code similar to the following: 

if std_match(a, "1--1") then ... 

Procedures 

Like functions, procedures are high-level design constructs to compute values or define partial 
processes that you can use for type conversions, operator overloading, or as an alternative to 
component instantiation. 

Procedures differ from functions in a few ways. To begin with, a procedure can return more than one 
value. This is accomplished with parameters: If a parameter is declared as mode OUT or INOUT, 
then the parameter is returned to the actual parameter of the calling procedure. A parameter in a 

241 



242 

function, however, can only be of mode IN. Another difference between a procedure and a function 
is that a procedure can have a WAIT statement whereas a function cannot. 

As with functions, all statements within a procedure must be sequential statements. Because of this, 
procedures cannot declare signals (just as in a process). As with functions, variables can be declared 
in the declarative region and defined in the definition region. 

Procedures and functions are declared and defined in the same way: either in the architecture's 
declaration region or in a package with the associated definition in the package body. 

Now that we've defined the rules for procedures, let's take a look at how to put those rules to use. 

package myflops is 
procedure dff8(signal d: bit_vector(7 downto 0); 

signal clk: bit; 
signal q: out bit_vector(7 downto 0)); 

end myflops; 

package body myflops is 
procedure dff8(signal d: bit_vector(7 downto 0); 

signal clk: bit; 
signal q: out bit_vector(7 downto 0)) IS 

BEGIN 
wait until clk='l'; 

q <= d; 
end dff8; 

end myflops; 

Listing 7-14 A procedure defining eight flip-flops 

Listing 7-14 declares the procedure d.ff8 in the package myflops. A function could not serve the 
purpose of this subprogram. A procedure is required in order to return more than one argument and 
to make use of the WAIT statement. A WAIT statement is not allowed in a function. 

The procedure parameters were explicitly declared as signals. If the class of data object is not defined 
and the mode is OUT or INOUT, then the class is defaulted to variable. Using the procedure is quite 
easy, as demonstrated in Listing 7-15. 

entity flop8 is port( 
clk: 
data_in: 
data: 

end flop8; 

use work.myflops.all; 

in bit; 
in bit_vector(7 downto 0); 
out bit_vector(7 downto 0)); 

architecture archflop8 of flop8 is 
begin 

dff8(data_in,clk,data); 
end archflop8; 

Listing 7-15 Using the procedure defined in Listing 7-14 



Overloading Procedures 
Procedures may be overloaded in the same way that functions may be overloaded. In Listing 7-16, 
four djj8 procedure declarations and definitions are added to the myjlops package. Listing 7-17 then 
uses these procedures as appropriate. 

package myflops is 

type boolean_vector is array ( natural range <> ) of boolean; 

procedure dff8(signal d: bit_vector(7 downto 0); 
signal clk: bit; 
signal q: out bit_vector(7 downto 0)); 

procedure dff8(signal d: boolean_vector (7 downto 0) ; 

signal clk: boolean; 
signal q: out boolean_vector (7 downto 

procedure dff8(signal d: bit_vector (7 downto 0) ; 

signal clk: bit; 
signal q: out boolean_vector(7 downto 

procedure dff8(signal d: boolean_vector(7 downto 0); 
signal clk: boolean; 
signal q: out bit_vector(7 downto 0)); 

end myflops; 

0) ) ; 

0) ) ; 

use work.conversions.all; --required to access bit2bl and b12bit 
package body myflops is 
procedure dff8(signal d: bit_vector(7 downto 0); 

signal clk: bit; 
signal q: out bit_vector(7 downto 0)) is 

Begin 
wait until clk='l'; 

q <= d; 
end dff8; 

procedure dff8(signal d: boolean_vector(7 downto 0); 
signal clk: boolean; 

begin 
signal q: out boolean_vector(7 downto 0)) is 

wait until clk; 
q <= d; 

end dff8; 

procedure dff8(signal d: bit_vector(7 downto 0); 
signal clk: bit; 

begin 
signal q: out boolean_vector(7 downto 0)) is 

wait until clk='l'; 
for i in 7 downto 0 loop 

q(i) <= bit2bl(d(i)); 
end loop; 

end dff8; 

243 



244 

procedure dff8(signal d: boolean_vector(7 downto 0); 
signal clk: boolean; 
signal q: out bit_vector(7 downto 0)) is 

begin 
wait until clk; 
for i in 7 downto a loop 

q(i) <= b12bit(d(i)); 
end loop; 

end dff8; 

end myflops; 

Listing 7-16 A package that overloads the dff8 procedure for 
different parameter types 

As you would expect, the additional dff8 procedure declarations and definitions make use of different 
parameter types. Additionally, because we reference the bl2bit function in this package, we must 
include the conversions package by including the use clause. 

use work.myflops.all; 
entity flop8 is port( 

clkl: 
data_inl: 
datal: 
clk2: 
data_in2: 
data2: 
clk3: 
data_in3: 
data3: 
clk4: 
data_in4: 
data4: 

end flop8; 

in bit; 
in bit_vector (7 downto 0); 
out bit_vector(7 downto 0); 
in boolean; 
in boolean_vector (7 downto 0); 
out boolean_vector(7 downto 0); 
in bit; 
in bit_vector(7 downto 0); 
out boolean_vector(7 downto 0); 
in boolean; 
in boolean_vector (7 downto 0); 
out bit_vector(7 downto 0)); 

architecture archflop8 of flop8 is 
begin 

dff8(data_inl,clkl,datal) ; 
dff8(data_in2,clk2,data2) ; 
dff8(data_in3,clk3,data3) ; 
dff8(data_in4,clk4,data4) ; 

end archflop8; 

Listing 7-17 A design that uses overloaded procedures with 
different port types 

There aren't any surprises in Listing 7-17. The use clause had to be moved from just above the 
architecture to just above the entity in order to make the type Boolean_vector available for use in the 
entity port declarations. The dff8 procedural calls make use of different data types, but the 
overloaded operators enable the correct procedure to be called. 



About Subprograms 

Exercises 

Subprograms (functions and procedures) can greatly add to the readability of code, making VHDL 
both powerful and flexible. Use subprograms carefully, however, to ensure that the circuit you are 
describing will be implemented in such a way as to achieve your design objectives (performance and 
capacity). 

Use vendor-supplied standard overloaded operators before defining your own. Often, these operators 
come in the form of standard packages such as the std_Iogic_1164, numeric_bit, or numeric_std 
packages. You can create your own overloaded operators, and the implementation will be logically 
correct. Nonetheless, synthesis and simulation tool vendors may have optimized package bodies for 
use with their tool. 

Rest assured, however, that there are many more uses of subprograms-some we have explored, 
others we leave for you to discover-in which the function has not already been standardized or 
defined. 

1. What is the use and advantage of operator overloading? Are there any disadvantages? Justify. 

2.Write function definitions for the following: 

FUNCTION To_StdLogicVector (b : BIT_VECTOR 

FUNCTION To_bitvector (s : std_Iogic_vector; xmap: BIT:= '0') RETURN BIT_VECTOR; 

3. Overload the following functions for the std_Iogic type: 

a) and 

b) or 

c) - (unary negate) 

4. Write a function that (a) defines a Boolean_vector as an array of Boolean and (b) includes two 
functions: a bie vector to Boolean vector conversion function and a Boolean vector to bie vector 
conversion function. 

5. Overload the + operator for the addition of Boolean vector and integer. 

6. Create an entity/architecture pair for a 12-bit counter whose ports are Boolean_vector. Use the 
overloaded operator created in Exercise 5 to perform the addition. 

7. Create a package and package body to declare and define four XOR8 functions for inputs and 
return type combinations of bit-bit, bit-Boolean, Boolean-Boolean, and Boolean-bit. 

8. Create an entity/architecture pair that uses each of the four XOR8 functions of Exercise 7. 

9. Create a package and package body to declare and define four tff16 (16-bit-wide T-flip-flops) 
procedures for input and output combinations of bit-bit, bit-Boolean, Boolean-Boolean, and Boolean
bit. 

10. Create an entity/architecture pair that uses each of the four procedures in Exercise 9. 

245 



246 

11. Create a Procedure for decrementing bie vectors. Also, create an underflow output for the 
procedure. 

12. What are the advantages of using a procedure over instantiating a component? 

13. Rewrite the bv2i function shown in Listing 7-2 to interpret the value 'on the left of the bit-vector 
as the MSB. 

14. Write the procedure to perform a 16-bit even parity check. Synthesize this design into a CPLD. 

15. Write a function to replace the synchronizer component of the network repeater design. 



8 Synthesis to Final Design Implementation 

Up to this point, we have discussed how to write VHDL code to create device-independent designs. 
In this chapter, we will explore issues of writing code for specific architectures. To do this, we will 
examine the processes of synthesis and fitting (place and route for FPGAs). We will show that the 
processes of synthesis and fitting produce the best results (in terms of resource utilization, achievable 
performance, and whether design objectives are met) when these processes are tightly coupled with 
the target architecture. To demonstrate these processes and their relationship to device architectures, 
we will use case studies of a CPLD architecture and an FPGA architecture. 

We've already looked at a few synthesis issues such as creating memory elements, implicit memory, 
the effects of different state machine implementations, and writing efficient code. What we haven't 
yet discussed is how VHDL code will be synthesized and fitted to a limited resource. Three common 
mistakes that designers make when beginning to write VHDL code for programmable logic are that 
they forget that (1) the PLD, CPLD, or FPGA has limited resources, (2) the resources have specific 
features, and (3) not every design will fit in every architecture. 

VHDL provides powerful language constructs that enable you to describe a large amount of logic 
quickly and easily, so you will have to choose a programmable logic device with the appropriate 
capacity and feature set. Choosing an appropriate device is made easier with VHDL because it allows 
you to benchmark designs in different devices: You can use the same code to target multiple 
architectures or devices. You can then easily compare the implementation results of the different 
architectures and choose the device that best meets design objectives. With that being said, however, 
it's helpful for you to have a good understanding of the process of synthesis and fitting so that you 
will understand the resource and feature set requirements, as well as the achievable performance of 
your design in various architectures. 

Following is a simple design example that when synthesized requires specific device resources. It 
shows that even with a simple design, an appropriate device must be selected. In our discussion back 
in chapter xxx about creating registered elements using different templates for asynchronous reset 
and preset, we didn't discuss how a device's available resources affect the final realization of the 
described logic. Take, for instance, the code of Listing 8-1: 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, reset: in std_logic; 
count: buffer std_logic_vector(3 downto 0)); 

end counter; 

use work.std_math.all; 
architecture archcounter of counter is 
begin 
upcount: process (clk, reset) 

begin 
if reset = '1' then 

count <= ("3261"); 
elsif (clk'event and clk= '1') then 

count <= count + 1; 
end if; 

end process upcount; 

247 



248 

end archcounter; 

Listing 8-1 4-bit counter that resets to 1010 

If we have a theoretical device consisting of one logic block as shown in Figure 8-1 , then at first 
glance you may think that the counter in Listing 8-1 cannot fit into this device. The code shows that 
this counter is asynchronously reset to 1010 when rst is asserted, but all registers in this device share 
a common asynchronous reset making it impossible for four registers to be asynchronously reset to 
1010. That is, the rst signal cannot simply be tied to the asynchronous reset line because, as the 
figure illustrates, attaching rst to the asynchronous reset line of the logic block would cause the 
counter to reset to 0000 not 1010. Figure 8-2 shows the implementation of a counter with a common 
reset line that resets the counter to 0000. But the design can still fit: The rst signal can be attached to 

RST 

elK 

........ _ ... ~Q3 ................ ~Q2 .. _ ................. ~Q1 .... _. ___ ... _~Q 0 

Figure 8-2 Counter that resets to 0000 

the asynchronous reset line if the second and fourth bits of the count registers are implemented such 
that the outputs of these registers are inverted before the device pins. The registers would be reset to 
0000, but the device pins would indicate 1010. If you read the fine pFirint of Figure 8-1, you will see 
that either polarity of each register may be propagated to a device pin. If an inverter is introduced 
between the Q3 and Q1 registers and their associated device pins, then the logic that causes these flip
flops to toggle (in the case of T -type flip-flops) must be modified so that the count at the output is 
sequential. The state transition table below illustrates the necessary values for the registers, and 
Figure 8-3 illustrates the logic required for implementation. 

count Q3'Q2Ql'QO 

0000 1010 

0001 1011 

0010 1000 

0011 1001 

0100 1110 

0101 1111 



36 signals (and complements) from programmable interconnect matrix 

Each macrocell may be configured to implement a D-type flip-flop, T-type flip-flop, 
or latch or to bypass the flip-flop. Each register can choose from one of four clocks. 
The output of the register can be inverted and is fed back to the programmable 

/ 
/ 

/ 
/ 

interconnect matrix. 
Each I/O cell can be configured to be always an input, always an output, or 

/ 
/ 

a three-state or bidirectional I/O by using on of two output enable product terms. 
All I/Os, whether input or output, are fed back to the programmable 
interconnect matrix. 

clocks 

/ 
/ 

/ 

Figure 8-1 Logic block of the FLASH370 family of CPLDs 

249 



250 

Figure 8-3 Counter that resets to "1010" at pins 

count Q3'Q2QI'QO 

0110 1100 

0111 1101 

1000 0010 

1001 0011 

1010 0000 

1011 0001 

1100 0110 

1101 0111 

1110 0100 

1111 0101 

If we use a device that has two of the logic blocks shown in Figure 8-2, such as the CY7C371, then 
the design can be synthesized and fit by (1) the method described above, (2) working around the 
preset/reset conditions of the logic blocks (that is, partitioning the design into the two logic blocks by 
placing the first and third counter bits in one logic block-with a common reset-and placing the 
second and fourth counter bits in the other logic block-with a common preset), or (3) a combination 
of the two methods. The method that is chosen will affect the availability of resources for additional 
logic that may be implemented in the device. For example, with the second method, all registers in 
one logic block must share the same reset, and all registers in the other logic block must share the 
same preset. Logic that is added to this device must work around the placement of existing logic 
resources. All registers must conform to make use of the same preset and reset as the counter does. In 
most cases, the first method is preferred: All registers can be placed in the same logic block utilizing 
the same reset signal, leaving the second logic block's reset and preset signals available for 
additional logic. 

This example demonstrates that a device architecture does affect how a design will finally be realized 
in the device. It also demonstrates that not every design can fit in every architecture. Fortunately, 



state-of-the-art synthesis and fitting algorithms can try many options in a short time, finding an 
efficient implementation in most cases. 

Having examined a simple example, we will move on to explore the task of synthesis and fitting for 
CPLDs and FPGAs. With an understanding of how VHDL designs are realized in devices, you will 
be equipped to optimize your designs for resource utilization and performance requirements. Your 
understanding will enable you to squeeze out the last macrocell, logic cell, or nanosecond from a 
design because you will be able to write efficient VHDL code and provide the human creativity that 
no synthesis or fitting tool can. 

Synthesis and Fitting 

Besides being tightly coupled to a device architecture, the synthesis and fitting processes must work 
closely together. Although these processes are two separate tasks from a software point of view, they 
are in effect on a continuum. Where one stops, the other must pick up. Whereas synthesis is the 
process of creating logic equations (or netlists) from the VHDL code, fitting is the process of taking 
those logic equations and fitting them into the programmable logic device. Device-specific 
optimization can occur in synthesis, fitting, or both (Figure 8-4). 

Synthesis 

Optimization 

Fitting 

Figure 8-4 Optimization can occur in synthesis, fitting, or both. 
Ideally, the two processes are on a continuum. 

The synthesis process can pass to the fitter a design's logic equations in a way that indicates 
precisely which resources should be used. Alternatively, the synthesis process can pass non
optimized equations to the fitter, leaving the optimization task to the fitter. From your (the 
designer's) point of view, you don't care where the device-specific optimization takes place, just as 
long as it does. What is important is that the synthesis and fitting processes interface well: that the 
fitter receives information from the synthesis process in such a way that enables the fitter to produce 
the best possible implementation. If the fitter does not perform any optimization, then the synthesis 
process should pass logic equations and information in such a way that the fitter simply places the 
logic. However, if the fitter does provide optimization, then information should be passed from the 
synthesis process in a way that does not restrict the fitter from performing the appropriate 
optimization. 

251 



CPLDs: A Case Study 

252 

In this section, we will examine the task of synthesizing and fitting several designs to the FLASH370 
architecture shown in Figure 8-5. This examination will expose you to the scope of the task of 
synthesizing and fitting designs to CPLDs. With this information, you will be equipped to get the 
most from your VHDL designs for CPLD architectures, and you will come to appreciate the 
difficulty in designing a fitter. For a review of CPLD architectures, refer to the Programmable Logic 
Primer chapter. 

CLOCK 
INPUTS 

2 

INPUT INPUT/CLOCK 
MACROCELLS MACROCELLS 

2 2 

PIM 

72 72 

16 16 

16 16 

Figure 8-5 Block diagram of the 32-macrocell member of the 
FLASH370 family of CPLDs 

The FLASH370 architecture consists of logic blocks that communicate with each other through a 
programmable interconnect matrix (PIM). All signals (except the clocks) route through the PIM. 
Each logic block can be configured to receive up to 36 inputs from the PIM. These signals and their 
complements are used to produce up to 86 product terms of which 80 are allocated to 16 macrocells 
and 6 are allocated to output enables, asynchronous preset, and asynchronous reset. All macrocell 
and va signals feed back to the PIM. 

Each va macrocell (Figure 2-20) can sum from 0 to 16 product terms; product terms can be 
individually allocated from one macrocell to the next or shared among multiple macrocells. The sum 
of product terms at the macrocell can be used as a combinational output, combinational buried node 
(a node that is not an output of the device), registered output, registered buried node, latched output, 
or latched buried node. If the macrocell is configured for registering, the register can be aD-type 
register or T -type register with asynchronous reset and set lines. The output of the macrocell can then 
be fed back to the programmable interconnect. The macro cell output can also drive an va cell (Va 
cells may be configured for input, output, or bidirectional signals), in which case the output may be 
inverted. Each macrocell can be configured to use one of several clocks that are allocated to the logic 
block. 



Some of the pins function as dedicated inputs (i.e., these cells cannot be configured as output or 
bidirectional cells) or as either an input or clock pin. The input/clock macrocells are shown in Figure 
xxx {fig # from primer}. Those pins without clocking capabilities do not contain the clock logic in 
the upper half of the diagram. An input can feed to the PIM as a combinational input, latched input, a 
registered input, or twice-registered input. Twice-registered inputs are sometimes used by designers 
to increase the MTBF (mean time between failures) for asynchronous inputs that can cause 
metastable events. A registered input cannot be clocked by itself (doing so would surely decrease the 
MTBF!), but one of the other clock inputs can be configured as the clock for the two registers. Input/ 
clock pins used for clocking feed clock mUltiplexers of the logic blocks. Each logic block can choose 
to have either the clock signal itself or its inverse (effectively allowing clocking on the falling edge 
of the clock). 

We will use this architecture for the basis of the following discussion on synthesizing and fitting 
designs. 

Synthesizing and Fitting Designs for the 370 Architecture 
As the example at the beginning of the chapter demonstrated, fitting designs in one logic block 
presents a problem that may be difficult, but for which there are a manageable number of 
possibiliteis-ciesigns either fit or they don't. Signals are assigned to macrocells based upon the 
number of product terms, how those product terms can be steered or shared, output enables, reset and 
preset conditions, and clocking requirements. With only one logic block, there are only a few ways 
that some designs can fit. With multiple logic blocks, designs can often fit in many different ways, 
but the design must be carefully partitioned among the logic blocks. Grouping signals in a logic 
block (partitioning) based on one condition may affect how another resource may be used. In the first 
part of the chapter, we looked at fitting the counter of Listing 8-1 into a device with two logic blocks. 
We decided that the second method we considered restricted the way in which additional logic could 
fit in the device. Partitioning must satisfy the limits imposed by (1) the number of macrocells per 
logic block, (2) the number of product terms per logic block, (3) the preset/reset combinations for the 
logic within the logic block, (4) the output enable requirements for the logic within the logic block, 
(5) the number of inputs from the programmable interconnect to the logic block, and (6) clocking 
requirements for each logic block. Partitioning a design into groups of signals assigned to separate 
logic blocks must be based on a balance of these considerations; otherwise, the capacity of the device 
will be unnecessarily restricted. 

Partitioning logic based on the number of macrocells is easily accomplished (each logic block can 
hold 16 macrocells), except when multiple passes are required to generate a signal (for now, we will 
only consider signals that are to be registered). Whether a signal requires multiple passes depends 
upon the polarity of the signal that is registered and the type of flip-flop used. Registering the 
complement of a signal or using a T-type flip-flop versus a D-type flip-flop can save product terms. 
However, using the complement of a signal may affect the number of required preset/reset 
combinations. If none of the signals require more than one level of logic even with the worst-case 
polarity selection, then as long as the total number of product terms required is 80 or fewer (and the 
product terms are distributed over the macrocells, see chapter 2, "Programmable Logic Primer"), 
then the macrocell and product term limits are met. If the worst-case polarity selection requires more 
than one level for a signal and choosing the opposite polarity upsets the preset/reset combinations, 
then a decision must be made based on the availability of resources: (1) Can the signal be moved to 
another logic block (or traded with a signal in another logic block) without upsetting that logic
block's preset/reset combinations, (2) can the polarity of every signal be reversed in order to 
maintain consistent preset/reset combinations while meeting the conditions listed above, or (3) can 

253 



254 

the signal fit in the present logic block while taking multiple passes? We will explore a few of the 
more difficult partitioning choices next. 

Satisfying PresetJReset Conditions 
All CPLDs have particular feature sets that affect the way in which designs may be implemented. In 
the next several examples, we look at the preset/reset resources of the CY7C371 CPLD and discuss 
how this resource can and cannot be used. The one preset product term and one reset product term 
(see top right of Figure 8-1) of each logic block usually provide enough flexibility because resets and 
presets tend to be global. 

Listing 8-2 shows two 16-bit loadable counters that asynchronously reset to two different values 
based on the signals rsta and rstb. How can this design be partitioned into a CY7C371? Intuitively, 
you may want to partition the counters into separate logic blocks. In fact, this is the only way that 
these two counters can be partitioned into this device. Rsta must be used as an asynchronous reset for 
cnta, and therefore resets all of the registers within the logic block. The resetting of cntb is not 
controlled by rsta, and therefore all cntb registers must be in a separate logic block from the cnta 
registers. 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, rsta,rstb, Ida, Idb: in std_logic; 
cnta, cntb: buffer std_logic_vector(15 downto 0)); 

end counter; 

use work.std_math.all; 
architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta) 
begin 

if rsta = '1' then 
cnta <= xI3261"; 

elsif (clk'event and clk= '1') then 
if Ida = '1' then 

else 

end if; 
end if; 

end process upcnta; 

upcntb: process (clk, rstb) 
begin 

cnta <= cntb; 

cnta <= cnta + 1; 

if rstb = '1' then 
cntb <= xI5732"; 

elsif (clk'event and clk= '1') then 
if Idb = '1' then 

cntb <= cntb; 
else 

cntb <= cntb + 1; 
end if; 



end if; 
end process upcntb; 

end archcounter; 

Listing 8-2 Two 16-bit loadable counters 

The two counters do not need to be defined in separate processes. They are described this way for 
readability. 

Read through Listing 8-3 and determine how this design can fit into a CY7C371. 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, rsta, rstb, rstc: 
cnta, cntb, cntc: 

end counter; 

use work.std_math.all; 

in std_logic; 
inout std_logic_vector(7 downto 0)); 

architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta) 
begin 

if rsta = '1' then 
cnta <= (others => '0'); 

elsif (clk'event and clk= '1') then 
cnta <= cnta + 1; 

end if; 
end process upcnta; 

upcntb: process (clk, rstb) 
begin 

if rstb = '1' then 
cntb <= (others => '0'); 

elsif (clk'event and clk= '1') then 
cntb <= cntb + 1; 

end if; 
end process upcntb; 

upcntc: process (clk, rstc) 
begin 

if rstc = '1' then 
cntc <= (others => '0'); 

elsif (clk'event and clk= '1') then 
cntc <= cntc + 1; 

end if; 
end process upcntc; 

end archcounter; 

Listing 8-3 Three 8-bit counters with separate asynchronous resets 

255 



256 

Even though there are enough macrocells to store all the register values, this design will not fit into 
two logic blocks because three asynchronous resets are required. Each asynchronous reset must reset 
all registers within a logic block. Therefore, this design requires three logic blocks and will not fit in 
a CY7C371. Modifying the design as in Listing 8-4 below to use two synchronous resets permits the 
design to easily fit. 

architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta) 
begin 

if rsta = '1' then 
cnta <= (others => '0'); 

elsif (clk'event and clk= '1') then 
cnta <= cnta + 1; 

end if; 
end process upcnta; 

upcntb: process (clk, rstb) 
begin 

if (clk'event and clk= '1') then 
if rstb = '1' then 

cntb <= (others => '0'); 
else 

cntb <= cntb + 1; 
end if; 

end if; 
end process upcntb; 

upcntc: process (clk, rstc) 
begin 

if (clk'event and clk= '1') then 
if rstc = '1' then 

cntc <= (others => '0'); 
else 

cntc <= cntc + 1; 
end if; 

end if; 
end process upcntc; 

end archcounter; 

Listing 8-4 Three 8-bit counters; one with asynchronous reset, two 
with synchronous reset 

Listing 8-4 uses a synchronous reset for the second and third counter. The synchronous resets will 
use additional product terms but eliminate the need for three separate logic blocks. 

The logic block of Figure 8-1 indicates that the asynchronous reset and preset lines are product 
terms. The design in Listing 8-5 will make use of a product term reset. 

library ieee; 



use ieee.std_logic_1164.all; 
entity counter is port ( 

clk, rsta, rstb: in std_logic; 
cnta, cntb: buffer std_logic_vector(15 downto 0)); 

end counter; 

use work.std_math.all; 
architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta,rstb) 
begin 

if (rsta = '1' and rstb = '1') then 
cnta <= x"OOOl"; 

elsif (clk'event and clk= '1') then 
cnta <= cnta + 1; 

end if; 
end process upcnta; 

upcntb: process (clk, rsta, rstb) 
begin 

if (rsta = '1' and rstb = '1') then 
cntb <= x"0002"; 

elsif (clk'event and clk= '1') then 
cntb <= cntb + 1; 

end if; 
end process upcntb; 

end archcounter; 

Listing 8-5 A design with product tenn asynchronous reset 

The asynchronous set and reset product tenns have polarity control, which allows the registers to be 
set or reset based on an AND expression (product tenn) or an OR expression (sum tenn). If the reset 
signal is the sum oftwo literals, such as rsta OR rstb, then the product term ((rsta)' AND (rstb)')' 
may be used. Thus, the reset logic of the code in Listing 8-6 may be implemented as in Figure 8-6. 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, rsta, rstb: in std_logic; 
cnta, 

end counter; 
cntb: buffer std_logic_vector(15 downto 0)); 

use work.std_math.all; 
architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta, rstb) 
begin 

if (rsta = '1' or rstb = '1') then 
cnta <= x"OOOl"; 

elsif (clk'event and clk= '1') then 
cnta <= cnta + 1; 

257 



258 

end if; 
end process upcnta; 

upcntb: process (clk, rsta, rstb) 
begin 

if (rsta = '1' or rstb = '1') then 
cntb <= x"0002"; 

elsif (clk'event and clk= '1') then 
cntb <= cntb + 1; 

end if; 
end process upcntb; 

end archcounter; 

Listing 8-6 A design with an OR term reset 

~~_~_~ __ ~_~ ____ ~~R~E~S~E~T~ 
o R 2 

The two input OR functions can be implemented in one pass through the product term array 
as a NAND function: 

_ -,-,-R -=-S---.:T---.:A=---_D' R 5 T B . 
RES E T 

NAN 0 2 

Figure 8-6 A design that uses an OR term for resetting 

Forcing Signals to Macrocells 
If the expression for the reset or preset requires more than one product term or a sum term, then an 
additional macrocell must be used to implement the required reset logic. That is, the reset and preset 
terms provide only enough logic for one AND or OR expression; reset logic that is more complex 
must make use of a macrocell for which an incremental delay on the order of several nanoseconds is 
incurred. Listing 8-7 demonstrates such an example. 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, r1, r2, r3: in std_logic; 
cnta: buffer std_logic_vector(15 downto 0»; 

end counter; 

use work.std_math.all; 
architecture archcounter of counter is 

signal reset: std_logic; 
begin 



) 

~ 

reset <= rl and (r2 or r3); 
upcnta: process (clk, reset) 

begin 
if (reset = '1') then 

cnta <= xIOOOl"; 
elsif (clk'event and clk= '1') then 

cnta <= cnta + 1; 
end if; 

end process upcnta; 
end archcounter; 

Listing 8-7 Forcing the reset equation to a macrocell 

Listing 8-7 illustrates a design for which the interface between the synthesis and fitting processes 
must be well defined. If the fitter process accepts the equation for reset as is, then it must determine 
how to break this equation up using a macrocell. This requires that (1) synthesis merely pass the 
equation to the fitter, and (2) optimization occur in the fitter. Otherwise, the synthesis tool will be 
responsible for passing logic equations to the fitter indicating that the equation for reset must use a 
macro cell. Figure 8-7 shows that the reset must be implemented with more than one AND or OR 
term. 

R 1 

R 2 
R 3 

This reset function requires more than one product term 
or OR term, and must be implemented in a macrocell. 

r-------------------, 
I I i----i I 

0 RES E 1f 

D : 
I 
I AND2 

o R 2 I 
I 

L ___________________ ~ 

Figure 8-7 Forcing the reset equation to a macrocell 

If neither tool performs the optimization necessary to place the reset equation in a macrocell, then 
you will need to intervene, indicating that reset should be forced to a macrocell (forced to a node). 
Synthesis tools differ in how to accomplish this. Oftentimes vendor attributes, as shown in Listing 8-
8, are used. 

library ieee; 
use ieee.std_logic_1164.all; 
entity counter is port( 

clk, rl, r2, r3: in std_logic; 
cnta: buffer std_logic_vector(15 downto 0» i 

end counter; 

259 



260 

use work.std_math.all; 
architecture archcounter of counter is 

signal reset: std_logic; 
attribute synthesis_bff of reset:signal is true; 

begin 

reset <= r1 and (r2 or r3); 
upcnta: process (clk, reset) 

begin 
if (reset = '1') then 

cnta <= x"OOOl"; 
elsif (clk'event and clk= '1') then 

cnta <= cnta + 1; 
end if; 

end process upcnta; 
end archcounter; 

Listing 8-8 Using an attribute to force logic to a macrocell 

Most designs require few resets, and these resets are usually global. For most designs, the preset! 
reset flexibility of the FLASH370 family of devices is more than sufficient and does not present a 
partitioning problem. 

Preassigning signals to device pins 
While concurrent engineering ideally enables multiple efforts to succeed in parallel, reducing costs 
and time-to-market, it can lead to rework, additional costs, and missed schedules if all critical 
requirements are not considered before work begins. Taking a careful look at the entire problem 
before beginning parallel efforts can avoid unnecessary rework. 

One example of concurrent engineering is with board-level designs and programmable logic. Ideally, 
you would like to preassign signals for a programmable logic device before you actually design the 
logic for the device. If you already know which signals are inputs and outputs to the device, then you 
may want to assign those signals to actual pin numbers so that you can begin your board layout to 
manufacture a printed circuit board. At the same time that work begins on the board, you would like 
to start the design for your programmable logic device. Although these parallel efforts make sense at 
first glance, the examples in the previous section illustrate this pivotal point: assigning a pinout 
rather than allowing the fitter to choose how to place logic may remove the possibility of a design fit. 
Obviously, if the counter registers for cnta and cntb in Listing 8-2 are preassigned to pins associated 
with the same logic block, then this design may fail to fit. The design could fit only if macrocells are 
available and a second pass for the outputs (resulting in a clock-to-output of teo2) is acceptable. This 

fitting solution is inefficient but may get you out of trouble if you are in a bind. 

The routing and product term allocation schemes of CPLDs are another reason not to preassign 
signals to pins without a clear understanding of how these schemes work. Most CPLDs have 
multiplexer-based interconnect or routing pools (see chapter xxx, "Programmable Logic Primer") 
that route 110 signals and macrocell feedbacks to the logic blocks. These routing schemes are 
typically not functionally equivalent to cross-point switches: whether a signal can route to a 
particular logic block depends on which of the other signals must route to that logic block. That is, it 
may not always be possible to route a particular set of signals to a logic block. The larger a set is 



with respect to the total number of logic block inputs from the programmable interconnect, the less 
chance that the set can route to the logic block. If you specify a pin assignment, you are in effect 
specifying a set of signals that must route to that logic block. Oftentimes, however, you may not 
know how many or which signals will be required to produce the logic for the signals for which you 
are specifying a pinout. The following paragraph clarifies this point. 

Figure 8-8 shows the interconnect schemes for two different CPLDs that have 36 inputs to a logic 

x-+-++-,--I 

x_;---! 

y_++-f--I 

y--.---f 

z 

z 

__ ~NPUT4 

l.~ INPUT36 
~.--.-.--

~PUT36 
Figure 8-8 Interconnect schemes 

block (one scheme is shown on the left, the other on the right). The diagram indicates how signals 
are routed into a logic block. Both devices use multiplexer-based interconnect schemes, but the width 
of the multiplexers differ for the two devices. The scheme on the left uses 36 two-to-one 
multiplexers; the scheme on the right uses 36 four-to-one multiplexers. Suppose x, y, and z must all 
route to a logic block. With the scheme on the left, x, y, and z are each an input to two multiplexers. 
That is, there are two paths or "chances" to route to a logic block, compared with four chances for the 
scheme on the right. With the scheme on the left, if x must route on input2 and z on input3, then there 
is no path for y in this design. With the scheme shown on the right, y can still route as input4 or 
inputS (not shown). Why don't all silicon vendors use wider multiplexers? Because wide 
multiplexers and more wires nearly always result in a larger die area that may also result in greater 
manufacturing costs for the device vendor, and because using wider multiplexers results ins a 
performance degradation. 

Routing schemes can be differentiated not only by the width of the multiplexers but also in terms of 
routability, or the capability to route signals through the programmable interconnect and into a logic 

261 



100 

~ 
80 

g 
60 

~ 
.0 
8 

t::I.. 
on 40 
I:::: 

'J:l 
::s 
0 
~ 

20 

0 

262 

block. We will investigate routability, aided by. Figure 8-9. Device A is different from the rest; in it, 

Device A 

0 5 10 15 20 25 

Number of PIM Inputs Routed to a Logic Block 

Figure 8-9 Routability of CPLDs 

Device E 
.'~:::-\ 

DevIce D \ 
\ 

30 35 

there are 22 inputs from the programmable interconnect to the logic block, whereas there are 36 
inputs for each of the other devices. Because Device A has only 22 inputs to a logic block, it follows 
that the probability of routing any set of more than 22 signals into a logic block is zero. (Corollary: 
Functions of greater than 22 signals will require more than one level of logic in such devices.) If we 
assume that the devices compared in Figure 8-9 use multiplexer-based interconnect schemes, then 
we can conclude that Devices D and E have wider multiplexers than Devices Band C. This accounts 
for the fact that a larger number of unique sets of signals (signals from IIOs or macrocells) can route 
to a logic block in Devices E and D. For example, if 35 signals are required to route to a logic block, 
upward of 90% of the unique sets of 35 signals can route in Devices D and E, whereas less than 5% 
of the unique sets of 35 signals can route in Devices Band C. This does not mean that less than 5% 
of designs requiring 35 signals per logic block will fit in devices Band C, but it does mean that if 
you specify which sets of 35 signals must be routed to the logic block (by specifying a pinout, for 
example), then there is less than a 5% chance of finding a fit. Because assigning a pinout defines a 
set of signals that must route to a logic block, designing a board layout prior to finishing the PLD 
design for devices Band C would be ill-advised. An additional design trap to be aware of is 
expecting design changes to fit with the same pinout in devices with a low routing probability for the 
required number of inputs to a logic block. Often, a design change is required after discovering a bug 
in testing or QA. Obviously, you'd like the design to fit with the same pinout so that you won't need 
to modify the board. If the design change is small, then the inputs to the logic block may not change 
at all. However, if a different set of signals is required and the probability of routing signals to the 
logic block is low, then you may have to make changes to the board. 

The design in Listing 8-9 consists of two 16-bit loadable, enableable counters that count by one or by 
two depending on the value of signal byl. If you attempt to fit this design into the CY7C371, you 
find that the two counters can be partitioned into logic blocks in only one way-each counter must 



be in a separate logic block. This is because each counter requires all 36 inputs to the logic block: 16 
for the counter bits (the present count value is required to determine the next count value), 16 for the 
load bits, and one each for rst, byJ, [d, and the enable. Counter bits from one counter cannot be 
placed in the logic block of the other counter because that requires the other counter's enable signal 
(either ena or enb) to also route to that logic block. This design example demonstrates that although 
you are free to specify the pinout for the counters within each logic block (the CY7C371 is Device E 
above, so defining a set of signals to route to a logic block rarely presents a problem), you are not 
able to specify a pinout that requires different bits of a counter to be in separate logic blocks. 
Additionally, if you use a different 32-macrocell CPLD that is divided into two logic blocks that has 
fewer than 36 inputs, then the design does not fit at all. 

library ieee; 
use ieee.std_logic_1164.alli 
entity counter is port( 

clk, rsta,rstb: 
ld, en, by1: 
cnta, cntb: 

in std_logici 
in std_logici 

buffer std_logic_vector(15 downto 0)) i 

end counteri 

use work.std_math.alli 
architecture archcounter of counter is 
begin 

upcnta: process (clk, rsta) 
begin 

if rsta = '1' then 
cnta <= x"OOOO"i 

elsif (clk'event and clk= '1') then 
if ld = '1' then 

cnta <= cntbi 
elsif en = '1' then 

else 

if by1 = '1' then 
cnta <= cnta + 1i 

else 
cnta <= cnta + 2i 

end if; 

cnta <= cntai 
end ifi 

end ifi 
end process upcntai 

upcntb: process (clk, rstb) 
begin 

if rstb = '1' then 
cntb <= x"OOOO"i 

elsif (clk'event and clk= '1') then 
if ld = '1' then 

cntb <= cntbi 
elsif en = '1' then 

if by1 = '1' then 
cntb <= cntb + 1i 

else 

263 



264 

else 

cntb <= cntb + 2; 
end if; 

cntb <= cntb; 
end if; 

end if; 
end process upcntb; 

end archcounter; 

Listing 8-9 Counter that counts by1 or by 2 

The product term allocation scheme can also affect the ability of a design to fit with a preassigned 
pinout. For example, suppose two signals, a and b,neighbor each other (in both pinout and macrocell 
location). If one signal, a, requires many product terms, then depending on the product term 
allocation scheme, neighboring macrocells (including b) may have to give up product terms, in 
which case it may not be possible to allocate product terms for b (see Figure 8-10). Suppose that 

Figure 8-10 Product term allocation scheme #1 

signal a requires five product terms. In this case, a will require the use of a product term from a 
neighboring rnacrocell. Because the product term allocation scheme steers product terms in groups of 
four, b must give up all of its available product terms. If macrocells neighboring b cannot forfeit their 
product terms for b, then b is left without any product terms, in which case the design will not fit 
with this preassignment of pins and macrocells. Figure 8-11 shows another product term allocation 
scheme in which product terms may be steered (in groups of five) from one macrocell to a 
neighboring rnacrocell. This scheme also makes use of several additional expander product terms that 
may be used with any macro cell at the expense of an incremental delay. This scheme avoids the need 
for neighboring macrocells to give up all product terms in all cases in which greater than five product 



5 
/ 

/ 

To.Macroc ell 

~ 
/ 

To.Macroc ell 

- - - - -- ----------------

C>=i 
• • • 

~ 
Figure 8-11 Product term allocation scheme #2 

terms are needed on any given macrocell. If a macrocell has a high product-term requirement, 
however, then neighboring macrocells may have to forfeit their product terms, eliminating the 
possibility of a fit with a preassigned pinout. Figure 8-12 illustrates a product term allocation scheme 
in which the product terms may be steered individually, permitting a fit with a preassigned pinout in 
the case where a and b each require more than 5 product terms (or up to a combined total of 20 
product terms). What happens if 16 product terms are required for a and more than 4 product terms 
are required for b (or greater than 20 product terms for any pair of macrocells)? In such a scenario, 
this architecture could not permit signal b to be placed on a neighboring pin (unless a was at the top 
or bottom of the logic block where two adjacent macrocells are allocated 22 unique product terms). 

Unless a CPLD specifically guarantees a cross-point switch for the interconnection of logic blocks 
and the interconnection of macrocells to 110 pins, preassigning a pinout or making a logic change 
after the fitter has chosen a pinout introduces a subsequent fitting constraint for which it may not be 
possible to find a solution given your design's resource and feature set requirements. Even with a 
cross-point switch, a fit will not be possible if a design change requires that more signals route to a 
logic block than there are inputs to that logic block. If you must preassign a pinout, be sure to 
understand all the issues involved with the architectural features that will affect the ability of your 
design to fit in the target architecture. Understanding the routability of signals through the 
programmable interconnect and to the logic blocks (as quantified in Figure 8-9) will also help you to 
judge whether it will be possible to make design changes and keep the same pinout. 

Clocking 
Most CPLDs have synchronous clocks-with dedicated pins-not only because synchronous clocks 
are inherently faster but also because asynchronous clocking is not a "standard design practice." 

265 



266 

Figure 8-12 Product tenn allocation scheme #3 

Some CPLDs include product tenn (gated) clocks for asynchronous clocking to accommodate 
designs that may require such clocking schemes. If your design uses gated clocks, then the 
programmable logic device that you choose must support this clocking scheme. The clock 
multiplexer circuit of the network repeater is an example of a design that uses product tenn clocking. 

An interesting feature of the FLASH370 devices is the ability to select either polarity for a clock on a 
logic-block-by-Iogic-block basis. This feature allows state machines, counters, or other logic to run 
at twice the system frequency (but consumes twice the resources because the logic must be replicated 
in separate logic blocks). 

Take for example a DRAM controller (Figure 8-15) that operates on a 20 MHz clock, for which the 
code is shown in Listing 8-10. The system address is captured on the rising edge of a clock during 
which the address strobe is asserted. The upper bits of the system address are examined to determine 
if the address is for a memory location. This address comparison is evaluated in the address_detect 
state. Subsequent states place the row and column addresses on the bus and assert RAS and CAS at 
the proper time. The timing diagram for interfacing to an asynchronous DRAM controller is shown if 
Figure 8-13. 

library ieeej 
use ieee.std_logic_1164.allj 
library ieeej 
use ieee.std_logic_1164.allj 
package dram-pkg is 

component dram_controller port 
addr: in std_logic_vector(31 downto O)j 

clock, 
ads, 

system address 
clock 20MHz 
address strobe 



Read Cycle 
RAS ---____ \'4-4----- tRAs------~Ir-------

~ t
ASR 

~'--:-tRA-H~------------....J 

ADDR ~ ROW YllllllI.. COLUMN , XIOIllIllIlIOI/U 
__ ~:_--=4~=='=.jtRBSCillO~==~~~'4f---tCAS----+' 

''--------.----'1 CAS 
_____ '4-'4------..:;-;-----tCSH-------~~, 

!=-=tRCS --- ,'4-tRRH 1 
~m---" 

DATA -------------' ------« DATA >-----
~tCAC~ 

: '4-4-------tRAC 

tRAC Access time from RAS 

tCAC Access time from CAS 

tASR ROW Address setup time 

tRAH ROW Address hold time 
tRAS RAS Pulse width 

tCAS CAS Pulse width 

tRCO RAS to CAS delay time 
tRCS Read command setup time 

tRRH Read command hold time 

tCSH CAS hold time 
tOFF Output buffer delay time 

~ , 

Figure 8-13 Timing diagram for DRAM interface 

read_write, 
reset: in std_logic; 

ack; out std_logic; 

read/write 
system reset 

acknowledge 
we: out std_logic; write enable 
ready: out std_logic; -- data ready for latching 
dram:out std_logic_vector (9 downto 0); DRAM address 
ras: out std_logic_vector(l downto 0); row address strobe 
cas: out std_logic_vector(3 downto 0)); column address strobe 

end component; 
end dram-pkg; 

library ieee; 
use ieee.std_logic_1164.all; 
entity dram_controller is port 

addr: in std_logic_vector(31 downto 0); 
clock, 
ads, 
read_write, -- read/write 
reset: in std_logic; 

ack: out std_logic; 

system address 
clock 20MHz 
address strobe 

system reset 

acknowledge 

267 



268 

we: out std_Iogic; -- write enable 
ready: out std_Iogic; -- data ready for latching 
dram:out std_Iogic_vector (9 downto 0); DRAM address 
ras: out std_Iogic_vector(l downto 0); row address strobe 
cas: out std_Iogic_vector(3 downto 0)); column address strobe 

end dram_controller; 

use work.std_math.all; 
architecture controller of dram_controller is 

type states is (idle, address_detect, row_address, ras_assert, 
col_address, 

cas_assert, data_ready, wait_state, refreshO, refreshl); 
signal present_state, next_state: states; 
signal stored: std_logic_vector(31 downto 0); latched addr 
signal ref_timer:std_Iogic_vector(8 downto 0); refresh timer 
signal ref_request: std_Iogic; -- refresh request 
signal match: std_logic; -- address match 
signal read:.std_logic; -- latched read_write 
-- row and column address aliases 

alias row_addr: std_Iogic_vector(9 downto 0) is stored(19 downto 10); 
alias col_addr: std_Iogic_vector(9 downto 0) is stored(9 downto 0); 

--attribute synthesis_off of match, ref_request: signal is true; 
begin 

Capture Address 

capture: process (reset, clock) 
begin 
if reset = '1' then 

stored <= (others => '0'); 
read <= '0'; 

elsif (clock'event and clock='l') then 
if ads = '0' then 
stored <= addr; 
read <= read_write; 

end if; 
end if; 

end process; 

Address Comparator 

-- The address comparator determines if memory is being accessed 

match <= '1' when stored(31 downto 21) = "00000000000" else '0'; 

Address Multiplexer 

The address multiplexer selects the row, column, or refresh 
-- address depending on the current cycle 

multiplexer: process (row_addr, col_addr, present_state) 



begin 
if ( present_state = row_address or present_state 

dram <= row_addr; 
else 

dram <= col_addr; 
end if; 

end process; 

Refresh Counter & Refresh Timer 

ras_assert) then 

The refresh timer is used to initiate refresh cycles. A 
refresh cycle is required every 8ms. If the clock frequency 
is 20MHz, then a refresh request must be generated every 312 
clock cycles. Refresh_~eq is asserted until a refresh cycle 
begins 

synchronous: process (reset, clock) 
begin 

if reset = '1' then 
ref_timer <= (others => '0'); 
elsif clock'event and clock = '1' then 

if (ref_timer = "100111000") then -- start request at 312 
ref timer<= (others => '0'); 

else 
ref_timer <= ref_timer + 1; 

end if; 
end if; 

end process; 

ref_request <= '1' when (ref_timer = "100111000" or 
(ref_request = '1' and present_state /= refreshO)) 

else '0'; 

DRAM State Machine 

The DRAM controller state machine controls the state of 
the address multiplexer select lines as well as the 
state of RAS and CAS 

state_tr: process (present_state, ref_request, ads, match, 
stored(20), read) 

begin 
case present_state is 

when idle => 
if ref_request = '1' then 

next_state <= refreshO; 
elsif ads = '0' then 

next_state <= address_detect; 
else 

next_state <= idle; 
end if; 

. when address_detect => 

269 



270 

if match = '1' then 
next state <= row_address; 

else 
next_state <= idle; 

end if; 
when row_address => 

next_state <= ras_assert; 
when ras_assert => 

next_state <= col_address; 
when col_address => 

next_state <= cas_assert; 
when cas_assert => 

next_state <= data_ready; 
when data_ready => 

next_state <= wait_state; 
when wait state => 

next - state <= idle; 
when refreshO => 

next - state <= refresh1; 
when refresh1 => 

next - state <= idle; 
end case; 

end process; 

clocked: process (reset, clock) 
begin 
if reset = '1' then 

present_state <= idle; 
elsif (clock'event and clock = '1') then 

present_state <= next_state; 
end if; 

end process; 

with present_state select 
cas <= "0000" when cas_assert I data_ready I wait_state I refreshO 

refresh1, 
"1111" when others; 

ras <= "00" when (present_state refresh1) 
else "01" when ((present_state = ras_assert or present_state = 

col_address or 
present_state = cas_assert or present_state = data_ready or 
present_state = wait_state) and stored(20)='l') 

else "10" when ((present_state = ras_assert or present_state = 
col_address or 

present_state 
present_state 

else "11"; 

cas_assert or present_state = data_ready or 
wait_state) and stored(20)='O') 

we <= 'a' when ((present_state = col_address or present_state 
cas_assert or 

present_state data_ready) and read '0') 
else '1'; 



ack <= '0' when (present_state 
'1' ; 

address_detect and match 

ready <= '0' when (read = '1' and (present_state 
present_state = wait_state)) else '1'; 

end controller; 

Listing 8-10 DRAM controller 

'1') else 

While the design is functionally accurate, the interface to the DRAM may be slower than the 
maximum specification of the DRAM. With a 20MHz clock, RAS and CAS are asserted 50 ns apart. 
What if the DRAMs are 60ns DRAMs (i.e., data is valid 60 ns after RAS is asserted)? To take 
advantage of the faster DRAM access times, we would need to run the state machine at twice the 
current frequency. One solution is to use a two-phase clock (possibly obtained by a programmable 
skew clock buffer such as the CY7B991). Another solution is to clock registers on the rising and 
falling edge, as allowed in some CPLDs. This requires that two state machines and outputs that are 
multiplexed based on the current state of the clock (Figure 8-14). Listing 8-11 is this design. One 
state machine looks at the present state of the other to determine its next state. Two sets of outputs 
are produced, and are multiplexed based on clock. The Capture Address and Refresh Controller & 

clock 

State 
Machine 

> 

State 
Machine 

> 

Figure 8-14 Using both the rising and falling edges of a clock 

Refresh Timer processes do not change. 

dram 

This design illustrates the concept of clocking a state machine on both the rising and falling edges of 
a clock, but would need to be modified before being used with an asynchronous DRAM. Care must 
be taken to ensure that there is not any glitching on any of the asynchronous interface signals. 
Glitching could cause erroneous accesses or unpredictable behavior of the DRAM. 

use work.std_math.all; 
library ieee; 
use ieee.std_logic_1164.all; 
package dram-pkg is 

component dram_controller port 

271 



272 

addr: in std_logic_vector(31 downto 0); 
clock, 
ads, 
read_write, 
reset: in std_logic; 

system address 
clock 20MHz 
address strobe 
read/write 
system reset 

ack: out std_logic; acknowledge 
we: out std_logic; write enable 
ready: out std_logic; -- data ready for latching 
dram:out std_logic_vector (9 downto 0); DRAM address 
ras: out std_logic_vector(l downto 0); row address strobe 
cas: out std_logic_vector(3 downto 0)); column address strobe 

end component; 
end dra:m-pkg; 

library ieee; 
use ieee.std_logic_1164.all; 
entity dram_controller is port 

addr: in std_logic_vector(31 downto 0); 
clock, 
ads, 
read_write, -- read/write 
reset: in std_logic; 

ack: out std_logic; 
we: out std_logic; -- write enable 
ready: out std_logic; -- data ready 
dram:out std_logic_vector (9 downto 0); 
ras: out std_logic_vector(l downto 0); 
cas: out std_logic_vector(3 downto 0)); 

end dram_controller; 

use work.std_math.all; 
architecture controller of dram_controller is 

system address 
clock 20MHz 
address strobe 

system reset 

acknowledge 

for latching 
DRAM address 
row address strobe 
column address strobe 

type states is (idle, address_detect, row_address, ras_assert, 
col_address, 

cas_assert, data_ready, wait_state, refreshO, refresh1); 
signal present_state_a, next_state_a: states; 
signal present_state_b, next_state_b: states; 
signal dram_a, dram_b: std_logic_vector(9 downto 0); 
signal ras_a, ras_b: std_logic_vector(l downto 0); 
signal cas_a, cas_b: std_logic_vector(3 downto 0); 
signal we_a, we_b, ack_a, ack_b, ready_a, ready_b: std_logic; 
signal stored: std_logic_vector(31 downto 0); latched addr 
signal ref_timer:std_logic_vector(8 downto 0); refresh timer 
signal ref_request: std_logic; -- refresh request 
signal match: std_logic; 
signal read: std_logic; 

-- address match 
-- latched read_write 

-- row and column address aliases 
alias row_addr: std_logic_vector(9 downto 0) is stored(19 downto 10); 
alias col_addr: std_logic_vector(9 downto 0) is stored(9 downto 0); 

--attribute synthesis_off of match,ref_request: signal is true; 
begin 



Capture Address 

capture: process (reset, clock) 
begin 
if reset = '1' then 

stored <= (others => '0'); 
read <= '0'; 

elsif (clock'event and clock='l') then 
if ads = ~O' then 
stored <= addr; 
read <= read_write; 

end if; 
end if; 

end process; 

Address Comparator 

-- The address comparator determines if memory is being accessed 

match <= '1' when stored(31 downto 21) = "00000000000" else '0'; 

Address Multiplexer 

The address multiplexer selects the row,' column, or refresh 
-- address depending on the current cycle 

multiplexer_a: process (row_addr, col_addr, present_state_a) 
begin 
if ( present_state_a = row_address or present_state_a = ras_assert) then 

dram_a <= row_addr; 
else 

dram_a <= col_addr; 
end if; 

end process; 

multiplexer_b: process (row_addr, col_addr, present_state_b) 
begin 
if ( present_state_b = row_address or present_state_b = ras_assert) then 

dram_b <= row_addr; 
else 

dram_b <= col_addr; 
end if; 

end process; 

Refresh Counter & Refresh Timer 

The refresh timer is used to initiate refresh cycles. A 
refresh cycle is required every 8ms. If the clock frequency 
is 20MHz, then a refresh request must be generated every 312 
clock cycles. Refresh_req is asserted until a refresh cycle 

273 



274 

-- begins 

synchronous: process (reset, clock) 
begin 

if reset = '1' then 
ref_timer <= (others => 'a'); 
elsif clock'event and clock = '1' then 

if (ref_timer = "100111000") then -- start request at 312 
ref_timer <= (others => 'a'); 

else 
ref_timer <= ref_timer + 1; 

end if; 
end if; 

end process; 

ref_request <= '1' when (ref_timer = "100111000" or 
(ref_request = '1' and present_state_a /= refreshO» 

else 'a'; 

DRAM State Machine 

The DRAM controller state machine controls the state of 
the address multiplexer select lines as well as the 
state of RAS and CAS 

state_tr_a: process (present_state_b, ref_request, ads, match, 
stored(20), read) 

begin 
case present_state_b is 

when idle => 

if ref_request = '1' then 
next_state_a <= refreshO; 

elsif ads = '~' then 
next_state_a <= address_detect; 

else 
next_state_a <= idle; 

end if; 
when address_detect => 

if match = '1' then 
next_state~a <= row_address; 

else 
next_state_a <= idle; 

end if; 
when row_address => 

next_state_a <= ras_assert; 
when ras_assert => 

next_state_a <= col_address; 
when col_address => 

next - state - a <= cas_assert; 
when cas assert => -

next - state - a <= data _ready; 
when data _ready => 

next - state - a <= wait _state; 



when wait_state => 
next_state_a <= idle; 

when refreshO => 
next_state_a <= refresh1; 

when refresh1 => 
next state_a <= idle; 

end case; 
end process; 

clocked_a: process (reset, clock) 
begin 
if reset = '1' then 

present_state_a <= idle; 
elsif (clock'event and clock = '1') then 

present_state_a <= next_state_a; 
end if; 

end process; 

with present_state_a select 
cas_a <= "0000" when cas_assert I data_ready I wait_state I refreshO I 

refresh1, 
"1111" when others; 

ras_a <= "00" when (present_state_a = refresh1) 
else "01" when ({present_state_a = ras_assert or present_state_a = 

col_address or 
present_state_a = cas_assert or present_state~a = data_ready or 
present_state_a = wait_state) and stored(20)='1') 

else "10" when ({present_state_a = ras_assert or present_state_a = 
col_address or 

present_state_a 
present_state_a 

else "11"; 

cas_assert or present_state_a = data_ready or 
wait_state) and stored(20)='0') 

we_a <= '0' when ({present_state_a = col_address or present_state_a = 
cas_assert or 

present_state_a = data_ready or present_state_a = wait_state) and 
read = '0') 

else '1'; 

ack_a <= '0' when (present_state_a 
'1' ; 

address_detect and match '1') else 

ready_a <= '0' when {read 
present_state_a 

'1' and (present_state_a 
wait_state)) else '1'; 

state_tr_b: process (present_state_a, ref_request, ads, match, 
stored(20), read) 

begin 
case present_state_a is 

when idle => 
if ref_request = '1' then 

next_state_b <= refreshO; 

275 



276 

elsif ads = '0' then 
next_state_b <= address_detect; 

else 
next_state_b <= idle; 

end if; 
when address_detect => 

if match = '1' then 
next_state_b <= row_address; 

else 
next state_b <~ idle; 

end if; 
when row_address => 

next_state_b <= ras_assert; 
when ras_assert => 

next_state_b <= col_address; 
when col_address => 

next - state _b <= cas_assert; 
when cas assert => -

next state _b <= data _ready; -
when data _ready => 

next - state _b <= wait _state; 
when wait state => -

next state _b <= idle; 
when refreshO => 

next_state_b <= refresh1; 
when refresh1 => 

next_state_b <= idle; 
end case; 

end process; 

clocked_b: process (reset, clock) 
begin 
if reset = '1' then 

present_state_b <= idle; 
elsif (clock'event and clock = '0') then 

present_state_b <= next_state_b; 
end if; 

end process; 

with present_state_b select 
cas_b <= ''~O~O'' when cas_assert I data_ready I wait state I refreshO I 

refresh1, 
"1111" when others; 

ras_b <= ''~O'' when (present_state_b = refresh1) 
else "01" when ({present_state_b = ras_assert or present_state_b = 

col_address or 
present_state_b = cas_assert or present_state_b = data_ready or 
present_state_b = wait_state) and stored(20)='l') 

else "10" when ({present_state_b = ras_assert or present_state_b = 
col_address or 

present_state_b 
present_state_b 

else "11"; 

cas_assert or present_state_b = data_ready or 
wait_state) and stored(20)='O') 



we_b <= '0' when ((present_state_b = col_address or present_state_b 
cas_assert or 

present_state_b = data_ready) and read = '0') 
else '1'; 

ack_b <= '0' when (present_state_b 
, l' ; 

address_detect and match , 1') else 

ready_b <= '0' when (read = '1' and (present_state_b 
present_state_b = wait_state)) else '1'; 

-- Output Multiplexers; 

cas <= cas a - when clock ' l' else cas_b; 
ras <= ras - a when clock ' l' else ras_b; 
we <= we - a when clock ' l' else we_b; 
ack <= ack_ a when clock ' l' else ack_b; 
dram <= dram_ a when clock = ' l' else dram_b; 
ready <= ready_a when clock = '1' else ready_b; 

end controller; 

Listing 8-11 DRAM controller operating on both rising and falling 
edges of the clock. 

Falling edge clocks can also be used to align data that is transferred between two buses operating at 
different speeds, or to work around a race condition between data and a buffered, among other 
possibilities. 

Reset WE .. 
~ 

addr 32 
DRAM dram 10 .. DRAM 

ads Controller IMx32 read_write RAS 2, .. 
~ 

~ CAS 4--'0 Clock 
~> 

I 

3~i'. 

Data 

Figure 8-15 DRAM Controller interfacing to an asynchronous 
DRAM 

r-

277 



278 

Implementing Network Repeater Ports in a CY7C374 
In this section, we will examine the implementation of three network repeater port controllers in the 
128 macrocell member of the FLASH370 family of devices. We will begin by analyzing the design to 
determine how many and which resources the design will require. We will then synthesize the design 
and examine the report file to compare our expectations with the actual realization of the circuit. 
Listing 6-6 of chapter 6 defines one network port controller of the repeater core logic. The design of 
the network repeater port controllers was made modular so that repeater port controllers could easily 
be added or removed from the top-level design. In chapter 6, eight ports are used, and the 
implementation of the design in one device, an FPGA, is discussed later in that chapter. However, an 
alternate methodology for implementation is to place the port controllers in external devices, leaving 
the FIFO, core controller, clock multiplexer, and so forth, in a smaller FPGA. Listing 8-12 is the 
code required to implement three repeater port controllers in one device. 

library ieee; 
use ieee.std_logic_1164.all; 
entity port3 is port( 

txclk, areset: in std_logic; 
crsl, enablel_bar,.linkl_bar, sell: in std_logic; 
carrier, collision, jam, txdata,prescale: in std_logic; 
rx_enl, tx_enl, activityl: inout std_logic; 
jabberl_bar, partitionl_bar: inout std_logic; 
crs2, enable2_bar, link2_bar, se12: in std_logic; 
rx_en2, tx_en2, activity2: 
jabber2_bar, partition2_bar: 
crs3, enable3_bar, link3_bar, se13: 
rx_en3, tx_en3, activity3: 
jabber3_bar, partition3_bar: 

end port3; 

use work.port3top-pkg.all; 
architecture archport3 of port3 is 
begin 

ul: porte port map 
(txclk, areset, 
crsl, enablel_bar, linkl_bar, 

inout std_logic; 
inout std_logic; 
in std_logici 
inout std_logici 
inout std_logic}; 

sell, carrier, collision, jam, txdata, prescale, rx_enl, tx_enl, 
activityl, jabberl_bar, partitionl_bar); 

u2: porte port map 
(txclk, areset, 
crs2, enable2_bar, link2_bar, 
se12, carrier, collision, jam, txdata, prescale, rx_en2, tx_en2, 
activity2, jabber2_bar, partition2_bar); 

u3: porte port map 
(txclk, areset, 
crs3, enable3_bar, link3_bar, 
se13, carrier, collision, jam, txdata, prescale, rx_en3, tx_en3, 
activity3, jabber3_bar, partition3_bar); 



end archport3; 

Listing 8-12 Three network repeater ports to be implemented in a 
CPLD 

Reviewing Listing 6-6 of chapter 6, we can determine the required number of macrocells to 
implement one repeater with fairly good precision. Determining the number of required macrocells 
requires that we understand how many registers and combinatorial outputs are needed, as well as 
whether any of the combinatorial logic exceeds 16 product terms (in which case, the logic would 
require two levels of logic and more than one macrocell). Each of the three repeater ports require 

-19 buried registers to hold the current state of the counters, 
-3 buried registers for an 8-state state machine, 
-6 input registers to synchronize crs, link_bar, and enable_bar, 
-2 registers for copyin and collision, and 
-5 output macrocells (one registered, four combinational) for outputs. 

This is a total of 35110 macrocells for each port controller, or 105 for three controllers. There are 6 
clock/input macrocells on the device. One will be used for clocking, leaving 5 available to replace 10 
110 macrocells for synchronizing external signals. One input macrocell can replace two 110 
macrocells because the input macrocells, designed to synchronize asynchronous signals, contain two 
registers. Thus we expect that a minimum of 95 110 macrocells and 10 input macrocells will be 
required. More than three macrocells may be required for the state machine if the state transition 
logic is sufficiently complex. The product term requirements are considerably more difficult to 
estimate, but following is our attempt: 

- 57 product terms for all counter bits (3 product terms per counter bit, assuming an 
implementation with T-type flip-flops and a counter with enable and synchronous clear). 

- 24 product terms for the state machine (average of 8). This is a gue~s. 
- 8 product terms for all of the outputs. Based on the descriptions, most outputs (except 

partition_bar) are simple decodes of registers .. 

This is a total of 89 product terms for each port controller, or 267 total product terms. This is well 
below the 640 available product terms. 

Below is a summary from a report file excerpt of the utilization of the realized circuit after synthesis 
and fitting: 

CLOCK/LATCH ENABLE signals 
Input REG/LATCH signals 
Input PIN signals 

Required 
1 
5 
o 

Input PIN signals using I/O cells 7 
Output PIN signals 95 

Total PIN signals 
Macrocells used 
Unique product terms 

108 
95 

254 

Max (Available) 
4 
5 
o 
7 

121 

134 
128 
640 

279 



280 

The circuit realization meets our expectations for macrocell utilization (95 110 macrocells and 5 input 
macrocells). Fewer product terms were required than expected, perhaps due to an overestimate on 
our part or the ability of some product terms to be shared among multiple macrocells. There is a 
substantial amount of resources available for additional logic or for significant design changes if 
required. 

The diagram below is an excerpt from a report file and illustrates how the product terms in one logic 
block were assigned. The logic block's eighty product terms are numbered at the top from ° to 79. 
The sixteen macrocells are listed on the left, numbered from ° to 15 with the signal name just to the 
right of the macrocell number. Each macro cell 's allotment of product terms (16) is shown in the row 
directly below the macrocell number and name. A + sign indicates an unused product term. An X 
represents a used product term. Most product terms may be shared by several macrocells. For 
example, product terms 18, 19,20, and 21 can all be shared by macrocells 1,2,3, and 4. This does 
not mean, however, that because product term 18 is used by macroce1l4 that it must be used by 
macrocells 1,2, and 3. The diagram illustrates that this is not the case. (An X is placed inproduct 
term location 18 for macroce1l4, and a + is placed in product term location 18 for the other 
macrocells.) This logic block was the most heavily used logic block in the device, yet there are still 
several product terms available. This placement of macrocells can easily accommodate a design 
change that requires the macrocells to utilize additional product terms. 

1111111111222222222233333333334444444444555555555566666666667777777777 
01234567890123456789012345678901234567890123456789012345678901234567890123456789 

I ° I (u2_stateSBV_2) 
xxxxxxx+xx++++++ ............................................................... . 
I 1 I (u3_crsdd) 
· ..... +x++++++++++++++ ......................................................... . 
1 2 Ipartition2_bar 
· ......... x+xx++++++++++++ ..................................................... . 
1 3 1 (u2_cccnt_l) 
· ............. x+xx++++++++++++ ................................................. . 
1 4 1 (u2_cccnt_3) 
· ................. x+xx++++++++++++ ............................................. . 
1 5 1 (u2_cccnt_5) 
· ..................... x+xx++++++++++++ ......................................... . 
I 6 I (u2_jabcnt_O) 
· ......................... x+xx++++++++++++ ..................................... . 
1 7 I (u2_jabcnt_3) 
· ............................. x+xx++++++++++++ .......•.......................... 
1 8 1 (u2_jabcnt_2) 
· ................................. x+xx++++++++++++ ............................. . 
1 9 1 (u2_jabcnt_l) 
· ..................................... x+xx++++++++++++ ......................... . 
110 1 (u2_cccnt_6) 
· ......................................... x+xx++++++++++++ ..................... . 
111 1 (u2_cccnt_4) 
· ............................................. x+xx++++++++++++ ................. . 
112 I (u2_cccnt_2) 
· ................................................. x+xx++++++++++++ ............. . 
113 I (u2_cccnt_O) 
· ..................................................... x+xx++++++++++++ ......... . 
114 Ijabber2_bar 
· ......................................................... x+++++++++++++++ ..... . 
115 1 (u2_stateSBV_l) 
· ............................................................... xxxxxxx+xx++++++ 



Total product terms to be assigned 56 
Max product terms used I available 56 I 80 = 70.1 % 

The diagram below is an excerpt from the report file that illustrates the signals that were routed to the 
logic block (on the left) and the macrocell placements (on the right). Macrocells for which the 
outputs are not driven to I/O buffers are shown in parentheses. Those for which outputs propagate to 
the pins are shown without parentheses. Of the 36 inputs to the logic block, 26 were required. Design 
changes that require additional inputs to the logic block should not present a problem. 

281 



282 

Logic Block 5 

>jabber2_bar 
>prescale 
>u2_enable_b .. 
>u2_jabcnt_2.Q 63 (u2_stateSBV_2) 
>u2 _cccnt_O.Q 
>u2 _cccnt_6.Q 64 (u3_crsdd) 
>areset 
>u2 _jabcnt_3.Q 65 partition2_bar 
>u2 stateSBV .. -
>u2 _copyd.Q 66 (u2_cccnt_l) 
>partition2_ .. 
>u3_collisio .. 67 (u2_cccnt_3) 
>u2 _jabcnt_O.Q 
>u2 _crsdd.Q 68 (u2_cccnt_5 ) 
>u2 _cccnt_4.Q 

> not used:333 69 (u2_jabcnt_O) 
> not used:334 
> not used:335 70 (u2_jabcnt_3) 

>u2 nocolcnt .. 
>u2 _cccnt_l.Q 72 (u2_jabcnt_2) 

> not used:338 
>u2 _stateSBV .. 73 (u2_j abcn t_l ) 

> not used:340 
>u2 _cccnt_3.Q 74 (u2_cccnt_6 ) 

> not used:342 
> not used:343 75 (u2_cccnt_4) 
> not used: 344 
> not used:345 76 (u2_cccnt_2) 

>u2 _jabcnt_l.Q 
> not used:347 77 (u2_cccnt_O ) 
> not used:348 

>u2 _cccnt_2.Q 78 jabber2_bar 
> not used:350 
> not used:351 79 (u2_stateSBV_l) 

>crs3.QI 
>u2 _cccnt_5.Q 

Below is a summary of the worst-case performance metrics. The worst-case combinational 
propagation delay is 12.0 ns. This indicates that all combinational logic can be implemented in one 
level oflogic (one pass through the product term array). The worst-case setup time with respect to 
the clock is 7.0 ns. The worst-case register-to-register delay is 10 ns (which supports 100MHz 
operation, well above the required 25 MHz). The worst-case clock-to-output delay is 15.0 ns. This 
clock-to-output delay (listed as teO in the report file below) represents tC02 rather than teo because 

the partition outputs are decoded from the state bits, requiring an additional level of logic. 

Worst Case Path Summary 
-----------------------
Worst case COMB, tmax 
Worst case PIN->D, tS 
Worst case Q->Q, tmax 
Worst case CLK->Q, tCO 

12.0 ns for activity1 
7.0 ns for tx_en2.D 
10.0 ns for tx_en2.D 
15.0 ns for partition2_bar.C 



Our case study of the FLASH370 has served to identify the relationship between synthesis and fitting, 
to illustrate how to take advantage of CPLD resources, to point out differences between CPLDs 
regarding their capabilities, and to enable resource utilization and performance estimations. 

Having covered these issues, we will now tum our attention to the issues involved with designing 
with FPGAs. CPLDs will enter our discussion once more, later in the chapter, when arithmetic 
operators are examined for both CPLD and FPGA architectures. 

FPGAs: A Case Study (pASIC 380 Architecture) 

Designs, such as the counters examined in our CPLD study, do not usually present fitting problems 
when targeted to FPGAs because FPGAs typically have the resources to handle a variety of designs, 
making them more akin to semi-custom gate arrays than to CPLDs. The task of synthesizing and 
fitting designs to FPGAs does not center around algorithms to partition logic among logic blocks, 
route signals through the programmable interconnect, and steer or share logic block resources, as it 
does for CPLDs; rather, the task centers around optimizing logic and signal paths for the device 
architecture in order to achieve the appropriate balance (as directed by you, the designer) between 
density and speed trade-offs. In this section, we'll explore some of the issues involved with targeting 
designs to FPGAs. (You may wish to review some of the differences between CPLDs and FPGAs in 
the chapter titled, "Programmable Logic Primer:·) 

A block diagram of the FPGA architecture that we will be using for our discussion is shown in 
Figure 8-16. As with most other FPGAs, it consists of an array of logic cells that communicate with 
each other and the 110 through routing wires within the routing channels. The logic cell (see Figure 8-
17) consists of a flip-flop, three two-to-one multiplexers (which may be cascaded as a four-to-one 
multiplexer), and AND gates for the multiplexer select lines and inputs The logic cell has multiple 
outputs that may be used at the same time. The flip-flop clock, asynchronous set, and asynchronous 
reset signals may be driven by any internal signal or by a signal from one of the dedicated low-skew, 
high-performance distribution trees. A theoretical architecture model consisting of two logic cells is 
shown in Figure 8-18. The smallest device in this family of devices, the CY7C381, has 96 logic cells 
(an array of eight by twelve), with 22 signal routing wires in each of the vertical routing channels and 
12 routing wires in each of the horizontal routing channels. 

Synthesizing and fitting designs for the 380 architecture 
Determining the optimal design implementation for a design in an FPGA is not as easy as you might 
think. For one, there may be multiple solutions that are comparable in performance and capacity. 
Also, "optimal" can be different for two designers or two designs. A designer may be concerned with 
performance for one design, and with another design, for cost reasons, the same designer may be 
concerned only with fitting the design into the smallest FPGA. Oftentimes, the design must fit in a 
particular size device, but certain signal paths must meet specific performance criteria. This means 
that some logic should be packed in as tightly as possible with less concern for performance, while 
other portions of logic should be placed and routed to produce high performance with less concern 
for resource conservation. In achieving the density and performance requirements of a particular 
design, two of the most challenging tasks for FPGA synthesis and fitting tools are to (1) optimize 
logic for the FPGA logic cell architecture and (2) make the appropriate trade-offs while placing and 
routing the logic by prioritizing placement of critical portions of logic. 

Optimizing logic for FPGA logic resources is more challenging than it is for most CPLDs because 
the architecture does not lend itself easily to a sum-of-products (SP) implementation. Most software 

283 



284 

• • • • • • • • • • • • •• • 
• D D D D D D D D • 

D D D D D D D D • 
• 

D D D D D D D D • 
• 

D D D D D D D D • 
• 

D D D D D D D D • • 
D D D D D D D D • • 

D D D D D D D D • • 
D D D D D D D D • 

• 

D D D D D D D D • 
• 

D D D D D D D D • • 
D D D D D D D D • 

• 

D D D D D D D D • 
• 

• • • • • • • • • • • • •• • 
Figure 8-16 Block diagram of an FPGA 

logic minimization algorithms begin with SP equations and then map this logic to a device's 
resources. (Other algorithms may use binary decision diagrams to map directly to logic cells.) With 
CPLDs, the task of mapping SP equations is easy-the products are mapped to the product term 
array, and these products are summed at each macrocell. Some CPLDs have an XOR gate included in 
the macrocell (one input to the XOR as a sum of a variable number of product terms and the other 
input as one product), but software can work with the logic to determine if the XOR can provide any 
logic reduction. If not, the XOR input with one product term is tied low. For FPGAs, software must 
have special mapping technologies to optimize logic for the device resources. Take, for instance, the 
logic cell of Figure 8-17. The three 2-to-l multiplexers can be cascaded to create a 4-to-l 

multiplexer. A 2ll-to-l multiplexer is a universal logic module that can implement any function of (n 
+ 1) variables, provided that the true and complement of each variable are available; thus, this logic 
cell can implement any function of three variables. But using an algorithm that assumes that this is 
the most logic that can be implemented in this logic cell would potentially waste many of its 
resources. After all, many other functions can be implemented: a seven-input AND gate, a seven-



08 

A1 

~ 
N2. 
A3 
A4 
A5 
A6 

B1 
B2 

OZ 
C1 
C2 

OZ 
D1 
D2 

E1 
E2 NZ 

F1 

~ 
F2 
F3 FZ F4 
F5 
F6 

OC 
OR .380,6 

Figure 8-17 Logic cell architecture 

14 13 [g 

~fI 1~7 Vee "7 .~ 

11 1 11 

.~ 
L L L J x 

..... 

.~ n n, n ~ 

~ 
... 

~": GND]] 

t' I----- 8 

2 

" ," 

" 
-~ 

I I I 

'" 
'~ i.~ Vee 

.380~10 
3 4 5 6 

-
Figure 8-18 Model architecture 

input OR gate, a fourteen-input AND gate (with half of the inputs inverted), a sum of three small 
products, a two-to-four decoder, or multiple functions at the same time, among other logic (see 
Figure 8-19). Each synthesis tool vendor or silicon vendor must create algorithms for mapping logic 
into FPGA device architectures. 

285 



A 

B 

C 

~n~ 00 01 

02 

03 
DECZt4 

286 

Q 

SO 

SO 

V 0 0 

V 0 0 

A 

GND 

Qlil 

.--~ 

+-------------1 a 0 

,----------1 a 1 

Figure 8-19 Sample logic functions implemented in a logic cell 



V D D 

Ill! 

~-----_{D 

0----

G N D 

V D D 
~i-

Il L !! 

t----------j C 0 

Figure 8-19 (continued) 

287 



288 

Although one of the tasks of synthesis and place and route tools is to use logic resources efficiently, 
packing as much logic into the logic cells as possible may not produce the results that the designer 
wants. We pose the following question to make this point: Which of the implementations of aD-type 
flip-flop shown in Figure 8-20 is optimal? (Obviously, we're assuming that there isn't any 
requirement for logic in front of the flip-flop.) The "optimal" implementation depends on the design 
requirements. Implementation (a) allows the six input AND gates to be used for other logic in the 
design (if the AND gates aren't required, then the inputs can be tied off to any value). 
Implementation (a) is the optimal choice unless you have a high performance requirement, in which 
case implementation (b) is optimal because the input to the flip-flop will be ready sooner. 
Implementation (a) requires that the flip-flop input fanin to four logic cell inputs. This greater load 
means that the signal rises and falls slower and is available at the input to the flip-flop later than it is 
with implementation (b). 

o.s o 0. S 

o 

o.A 
o.A 

Figure 8-20 Multiple implementations of a D-type flip-flop 

Propagation delays from logic cell to logic cell, 110 to logic cell, or logic cell to 110 depend not only 
on fanout (of the source) and the number of logic levels, but also on the available routing resources 
and how far the signals must route. This fact points to another difference between CPLDs and 
FPGAs: that predicting propagation delays before implementing a design in CPLDs is usually easier 
because delays are less dependent upon fanout, logic placement, and routing resources. 

Design trade-offs 
As a starting point, synthesis tools will often use just one algorithm to reduce logic so that it can be 
implemented in the fewest possible logic cells. This implementation is also usually the highest
performance solution--except where fanouts are excessively high or signals must travel a long 
distance-because there is a correlation between the total number of logic cells and the number of 
logic levels required to implement a function. (The number of logic levels refers to the number of 



logic cells through which a signal must pass. A signal that must pass through many logic levels 
typically has a greater propagation delay than a signal that passes through few logic levels.) Adding 
levels of logic can, however, help to split the fanout through several buffers, but the additional 
propagation delay through a buffer must be made up by quicker rise times due to a smaller load per 
buffer. For example, consider 32 two-to-one multiplexers that have the same select line: 

signal address: std_logic_vector(4 downto 0); 
signal a, b, x: std_logic_vector(31 downto 0); 

with address select 
x <= a when "10110", 

b when others; 

Figure 8-21 shows five possible implementations for these 32 multiplexers. In Figure 8-21 (a), the 
address lines are used in each logic cell where they are decoded to select one of the mUltiplexer 
inputs. In (b), the address lines are decoded once, and then this signal is used as the select line for the 
32 multiplexers. In (c), the select line is decoded once, and then this signal is used as the select line 
for a couple of the multiplexers and as an input to several buffers that drive the select lines of the 
remaining multiplexers. In (d), the address lines are decoded multiple times from which the 
remaining select lines are driven. In (e), the select lines are decoded twice and these outputs are tied 
together to increase the drive of the multiplexer select lines. (This is a technique, called "double
buffering," that is allowed with the pASIC380 architecture, provided that the multiply driven signal 
is routed on an express or a quad wire; it is also a common technique used with gate arrays.) 

You can see that even with such a simple example, there are several of ways to implement a design 
in an FPGA. Each implementation will produce different timing results, but many of them are 
comparable. Which is the optimal implementation? Well, that depends on what your design goals are 
for this piece of logic. Option (a) is probably not realistic or practical. It requires that the five address 
signals be routed to all of the logic cells. This doesn't gain anything. In fact, this implementation can 
eat up valuable routing resources that are better utilized by a critical signal. Option (b) is viable, but 
the select line will have a slow rise time and a fair amount of skew between the time it triggers the 
select input of the first and last multiplexers. If your design can operate under these conditions, then 
after considering the alternatives, you may choose to proceed with this implementation. Buffering the 
select line, as in options (c), (d), and (e), reduces the time it takes for all select lines to switch on 
transitions of address. Option (d) differs from (c) in that the select logic is replicated multiple times, 
and the times at which the select lines change relative to changes in address are closer together, 
whereas these times will be spread out in option (c). Option (d) is probably preferred over option (c), 
unless option (d) causes the lines to transition slower due to additional loading on address. 
Depending on whether or not the address signals must route elsewhere, using them as inputs to 
multiple buffers may increase the load on these lines such that the total propagation delay from the 
sources of the address lines to the multiplexer selection inputs is greater than the total propagation 
delay when the signals are buffered as in option (c). Option (e) may provide the best results, but it 
requires that a specific device resource be available. 

With all of these options, which implementation does synthesis choose? Writing algorithms to try all 
the combinations of implementations for every unique netlist would be impossible. Fortunately, in 
architectures such as the pASIC380, many of the implementations are comparable, enabling 
synthesis software developers to reduce the number of algorithms for optimizing designs. Choosing 
the "correct" implementation is also a matter of understanding the design goals for a design or sub
design. Synthesis must be guided (by you) in these instances, as we'll discuss next. Because there are 
so many variables involved, one technique may prove more successful in one application. When you 

289 



(a) 

(b) 

290 

,--------<O---~~~:f 

~Y=~~y 

Figure 8-21 Managing signal loading with timing requirements 



(c) 

ADD RE 5 
ADD RE-"-'><..JO.~-'" 

~ g ~ ~ ~~---t---" 

~~~~=fJ-=~=t~ 
------------1------1-~-~ _~

(d)

Figure 8-21 (continued)

291

292

(e)

=D-=D-=D-=D-=D-=D-=D-=D-

=D-=D-=D-=D-D-D-D-D-

D-D-D-D-D-D-D-D-

Figure 8-21 (continued)

push the upper limits of the technology, you may need to evaluate mUltiple implementations. Some
of these implementations can be evaluated by the synthesis software and do not require user
interaction. Other implementations may require you to change code, attributes, directives, command
line options, or GUI switches.

Directive-driven synthesis
Mapping sum-of-products equations to the fewest number of logic cells may be a starting point for
FPGA synthesis, but more sophisticated software will also allow you, the designer, to direct the
synthesis process to achieve area or speed optimization globally or on particular portions of logic.
Directives, often in the form of attributes, command line switches, GUI options, or a synthesis tool
vendor's proprietary language, are most often used to control buffering of high fanout signals,
automatic floor-planning, and operator inferencing (also referred to as module generation). We
discussed fanout buffering above, and we will discuss automatic floor-planning and operator
inferencing in the sections to follow. Some vendors include additional directives, but the directives
that we will'discuss will likely provide the greatest impact without convoluting the synthesis and
place and route processes.

Automatic floor-planning
The "fitter" for an FPGA is a place and route tool. Whereas fitters for CPLDs often perform the
design optimization and partitioning, place and route tools typically do little, if any, logic

optimization. The synthesis tool will convert the VHDL description into logic equations and map
those equations into logic cells, specifying the interconnection of logic cells. That is, the synthesis
tool will create a device-specific netlist (a netlist that can be directly mapped to the device
architecture). The place and route tool must then place the logic cells and route them together and
with the I/O to produce a design that meets the performance criteria. At this point, there is little that
the place and route tool can do (besides pack unrelated logic into the same logic cells) to affect
density. The synthesis tool, for the most part, dictates the number of logic cells that are required. One
exception is the ability of place and route tools to automatically add buffers.

Placing and Routing
Place and route tools do have a large impact on performance, however, because propagation delays
can depend significantly on how closely logic cells are placed to each other and which routing
resources are used to connect the logic cells. This is because to route a signal a long distance requires
a longer wire. This wire will have a larger total capacitance because of not only its length but also
incremental fuse capacitance if additional wires must be connected.

Many place and route tools use a process called simulated annealing to determine how to place logic.
In simulated annealing, the placer first places the logic cells (that are created and netlisted by the
synthesis tool) semi-randomly within the array of logic cell locations. (With the CY7C381A, there
are 96 logic cell locations in which the logic cells can be placed.) The placement is "semi-" random
because logic cells used to capture inputs or propagate outputs are usually given preference for
locations around the periphery of the logic cell matrix. The router determines the "cost" of routing
with the semi-random placement. The cost is typically estimated by determining how far signals
must travel and is a good determinant of speed. Next, the placer shuffles logic cells around, trying to
reduce the overall cost. If an exchange or movement of logic cell placement increases the cost, then
the logic cells are moved back to the original location. As long as the placer continues to make good
progress in reducing the cost, the process goes on. At some point, the placer determines that it is
asymptotically approaching an optimal placement. Usually depending on user settings for effort, the
placer eventually settles on a solution and begins the routing process. Routers typically try to choose
the type of routing resource that adds the least capacitance to a signal path.

Simulated annealing is quite successful with designs of 10K gates or fewer. However, with very
large devices, the large number of logic cell locations and the exponential number of combinations of
possible logic cell placements causes the simulated annealing approach to require too much time to
settle on an appropriate solution. A better approach exists: floor planning.

Floor planning is based upon the assumption that large designs are typically broken up into
functional units (e.g., a state machine, counter, comparator, controller, FIFO, etc.). An optimal
placement is one that keeps these functional units close together (rather than shuffling them together
and randomly placing the individual logic cells that make up these functional units). Functional units
may be locally optimized if a bounding box is specified. The relative placement of the logic cells
within these functional units may then be "frozen" and the functional units moved, as a whole, to the
portion of the FPGA that makes most sense. Obviously, if the functional block interfaces with the
chip I/O, then it should be placed near the periphery of the logic cell matrix. If it controls internal
logic, then it will likely be best placed internal to the matrix. After the global optimization process
places the functional units, routing may be performed.

With automatic floor-planning, units are identified as such (either because they are library
components, as in a schematic, an inferred module, or because a user attribute has been added,
indicating that certain signals are logically related and should therefore be placed in proximity to

293

294

each other). Automatic floor-planning can greatly reduce the randomness of results when placing and
routing. It also enables the tool to come to optimal solutions quickly. Automatic floor-planning
requires tight coupling between the synthesis and place and route processes.

Ideally, designers like to be able to specify the required operating frequency, setup time, and clock-to
output delay, and have the software tool synthesize, place, and route the design so that it meets those
specifications. The processes are called timing-driven synthesis and timing-driven place and route.
Floor planning is only an intermediate step in timing-driven place and route. It allows the designer to
provide clues to the software based on information that the designer has that software algorithms
may not be able to infer. As true timing-driven synthesis and place and route evolves, there will be
less of a requirement for user intervention. Today's place and route technology is already at the state
where placing and routing are usually fully automatic; at times, they require direction.

Operator inferencing
Operator inferencing is the process by which a VHDL synthesis tool infers an operation from a
design description and produces an optimized component for that structure. This process is also
referred to as module generation.

Two components can be inferred from the following VHDL code fragment:

if a=b then
q <= qi

else
q <= X + Yi

end ifi

The synthesis software can infer from this code that an equality comparator should be instantiated for
"if a = bIt and an adder for "q <= x + y;". Operator inferencing produces the logic shown in Figure 8-
22. How is this different from not using operator inferencing to implement this design? Without
module generation, the synthesis tool would create a boolean equation for each bit of q and then map
that logic to the device architecture. Module generation enables arithmetic structures to be identified
and hand-tuned, vendor-specific macros to be implemented. The implementation of a few arithmetic
operators is examined later in this chapter.

~

I
x+y ~/

Q

a=b

Figure 8-22 Example result of operator inferencing

Let's take another look at module generation. What logic do you suppose synthesis of the code in
Listing 8-13 produces?

library ieee;
use ieee.std_logic_1164.all;
entity cnt16 is port(

clk, rst:in std_logic;
ld: in std_logic;
d: in std_logic_vector(3 downto 0);
c: inout std_logic_vector(3 downto 0));

end cnt16;

architecture archcnt16 of cnt16 is
begin
counter: process (clk, rst)

begin
if rst = '1' then

c <= (others => '0') i

elsif (clk'event and clk='l') then
if ld = '1' then c <= d; else c <= c + 1; end if;

end if;
end process counter;

end archcnt16;

Listing 8-13 Counter design; how does operator inferencing help
with the implementation of this design?

Does this code cause the compiler to infer, or identify, a 16-bit loadable counter? Most probably not.
To identify this as a 16-bit loadable counter requires more than operator inferencing; it truly requires
a robust module generator. We are not aware of any compilers or synthesis tools that recognize such
code as a 16-bit counter (i.e., that provide this level of module inferencing). One reason for the lack
of such tools is that VHDL permits a designer to write numerous possible constructs from which it is
extremely difficult for a tool to pick out regular components. Certajnly a tool can publish a list of
recognizable constructs, but this limits VHDL coders to strict templates, defeating the purpose of a
high-level description language. Such templates are not st~ndard across tools. Instead of interpreting
the code of Listing 8-13 as a 16-bit loadable counter, most synthesis tools recognize the + 1 adder
(incrementer), implementing the logic as in Figure 2-22, and then optimizing the logic as necessary.

We'll use the code of Listing 8-14 to illustrate the difficulty of inferring the optimal logic from a
high- level description:

library ieee;
use ieee.std_logic_1164.all;
entity wierdcnt16 is port(

clk, rst:in std_logic;
en,up,by2,by3,by5:in std_logic;
d: in std_logic_vector(3 downto 0);
c: inout std_logic_vector(3 downto 0));

end wierdcnt16;

295

296

d ~
r--

I-- Q
C

- regs
. c+ 1

V -

ld

Figure 8-23 Implementation resulting from operator inferencing
of a loadable counter

architecture archwierdcnt16 of wierdcnt16 is
begin
counter: process (clk, rst)

begin
if rst = '1' then

c <= (others => '0');
elsif (clk'event and clk='l') then

if en = '1' then
if up = '1' then

if by2 = '1' then
C <= C + 2;

elsif by3 = '1' then
c <= c + 3;

elseif by5 = '1' then
c <= c + 5;

else
c <= c + d;

end if;
elsif by2 '1' then

- 2; C <= C

elsif by3 '1' then
C <= C - 3;

elsifby5 '1' then
c <= c - 5;

else
c <= c - d;

end if;
else

C <= c;
end if;

end if;
end process counter;

end archwierdcnt16;

Listing 8-14 A unique counter: Operator inferencing can identify
modules but not the optimal hand-tuned construct.

No compiler/synthesis tool today or in the near future will be able to produce the optimal
implementation for the wierdcntl6 of Listing 8-14 that is achievable by manual design. Instead,
operator inferencing produces an implementation similar to that in the example above. That is, the
+2, +3, +5, +d, -2, -3, -4, and -d adders and subtracters would be inferred and the results
multiplexed based on the values of en, up, by2, by3, and by5.

Previously, we mentioned that some synthesis tools use directives with operator inferencing. These
directives, sometimes inthe form of attributes, are used to 'direct the implementation of a module. In
other words, there may be multiple possible implementations for a l6-bit +5 adder. You may want
this component to be optimized to be area efficient, speed efficient, or a balance of the two.
Directives can provide that level of control, enabling you to control the critical and noncritical
portions of a design. The code of Listing 8-14, as ludicrous as it may seem, is instructive: the 16-bit
adder for tIc + d" is the most complex logic, so the critical path in this circuit will be from the c
registers through this adder and back to the input of the c registers. Paths through the other adders
will not be nearly so complex. Therefore, while you may want to direct this adder to be speed
optimized in order to reduce the delay of the critical path, you will likely want to optimize the other
adders to be area efficient. Because they are not in the critical path, creating speed-optimized
components would be of no advantage.

Arithmetic Operations
The optimal implementation of an arithmetic component such as an adder, subtracter, magnitude
comparator, or multiplier is device dependent. An implementation strategy that produces an area
efficient and high performance solution for one architecture may not work well for another because
of the differences in macrocell or logic cell resources. We will examine 8-bit adder circuits for the
FLASH370 and pASIC380 architectures to identify differences in implementation.

With both CPLD and FPGA architectures, there may be multiple implementations that trade off area
efficiency for performance. Most synthesis tools use module generation in conjunction with
directives to choose an area-efficient or high-performance implementation.

Module generation typically overrides operators defined in functions~ For example, the following
code is from Listing 7-11. This function overloads the + operator for bie vector operands ..

"+"

Add overload for:
In: bit_vectors.
Return: bit_vector.

FUNCTION n+n (a, b
VARIABLE s
VARIABLE carry
VARIABLE bi

: BIT_VECTOR) RETURN BIT_VECTOR IS
BIT_VECTOR (a 'RANGE) ;
BIT;
integer; Indexes b.

BEGIN
carry .- '0';

FOR i IN a'LOW TO a'HIGH LOOP

297

298

FOR i IN a'LOW TO a'HIGH LOOP
bi := b'low + (i - a'low);
s(i) .- (a(i) XOR b(bi)) XOR carry;
carry .- ((a(i) OR b(bi)) AND carry) OR (a(i) AND b(bi));

END LOOP;

RETURN (s);
END n+n; -- Two bit_vectors.

An addition operation that uses this function for the implementation results in both an area
inefficient and low-performance solution for both CPLDs and FPGAs. Take, for example, the
operation x <= a + b where a and bare bie vectors. This implementation results in equations for Xo
and x I as follows:

Xo = ao ffi bo

xl = a l ffi bl ffi aobo

For a CPLD with a macrocell that does not contain an XOR gate, the equations must be expanded as
follows:

Xo = "Clabo + aoho

xl ~"Clabl + alGa~ + ~blho + al~ho + ~ao~bo + alaoblbo

As the size of a and b increases, the expansion of the XOR results in an exponential increase in
product term requirements. The large number of product terms requires not only several levels of
logic but also several macrocells in order to split product terms over multiple levels. At some point, it
is better to implement the adder as a ripple-carry adder.

The full adder, as shown in Figure 8-24, is the basic building block of a ripple adder. The carry-out
of one full-adder is used as the carry-in of the next stage of the adder (Figure 8-25). Rather than
expanding the expression for the carry, the carry expression is forced to a macrocell. This
implementation limits the number of product terms that are required (and therefore also the number
of macrocells), but it increases the propagation delay. One level of logic is required for each bit of
the adder. Further trade-offs between performance and area can be made with ripple adders by using
2-bit and 3-bit group adders (Figure 8-26). Group adders limit the number of carry terms, and, hence,
increase the levels of logic and propagation delay (as long as the sum and carry terms do not require
multiple passes).

An alternative to ripple-carry adders is carry look-ahead adders (Figure 8-27). Group adders are
created with carry generate terms and carry propagate terms. A carry generate term indicates that the
group has created a carry into the next group. A carry propagate term indicates that the group will
produce a carry into the next group if there is a carry into the current group.

For the pASIC380 architecture, the ripple carry adder may be an area-efficient adder, but a carry
select adder provides the best performance (see Figure 8-28).

Ci

AO

BO

-
-
-

Full
Adder

AN02

-----r---+--------------~XOA3

- SO

Full
Adder

Figure 8-24 A full adder

Full
Al- Adder

t- Sl
B1-

Figure 8-25 A ripple adder

S[0:2]
A[3:6

B[3:6

Full
Adder

Figure 8-26 2-bit and 3-bit group adders

Full
Adder

Co

S[3:6]

r- Co

r- Sn

Although it may be obvious, it is worth reiterating that an optimal solution is based on an area or
performance goal and is device dependent.

299

300

Ci

A[1:0]

8[1:0]

A[3:2]

8[3:2]

A[5:4]

8[5:4]

A[7:6]

8[7:6]

Group
Adder

Group
Adder

Group
Adder

r---- 8UM[1 :0]

C[O]

Figure 8-27 Carry look-ahead adder

co

A(3)

8(3)

A(2)

8(2)

A(1)

8(1)

A(O)

8(0)

SI=AXNORB
SO=AXORB
CI =AANDB
CO=AorB

C1~ ____ ~~+-~~~
A

8

A

8

A

8

A

CO ~----~,.---+--i
51 1-------+---1

50

C1
CO
51

50

C1
CO
51

50

C1
CO
51 not used

1----C(3)

1----- 5UM(3)

1---5UM(2)

1--------------SUM(1)

B
50 1-------------------------5UM(0)

Figure 8-28 Carry select adder

Implementing the Network Repeater in an 8K FPGA
Loa4 limiting is perhaps the most prevalent design issue for designers using any FPGA. In the design
of the network repeater, several signals have high fanouts. Automatic or directive-driven buffer
generation can alleviate some of the performance problems associated with fanout. Buffer generation
can be a step in the synthesis or place and route process as long as the interface between the
processes is well defined. The following is a list of buffers created for the repeater design if the
maximum load is set at 13:

--
Begin Buffer Generation.
--
[max_ load 13, fanout 51] Created 3 buffers [Duplicate] for 'rxclk"
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC17,
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC18 '
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC19,
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC20'
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC21,
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC22,
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC23,
[max_ load 13, fanout 18] Created 1 buffers [Duplicate] for 'WFAC24,
[max_ load 13, fanout 25] Created 2 buffers [Normal] for 'carrier'
[max_ load 13, fanout 15] Created 2 buffers [Normal] for 'u4_symbolcount_O'

301

302

[max_load 13, fanout 19] Created 2 buffers [Normal for 'u5 _state3SBV_O'
[max_load 13, fanout 15] Created 2 buffers [Normal for 'u5 - state3SBV_l'
[max_load 13, fanout 16] Created 2 buffers [Normal for 'u5 - state3SBV_2'
[max_load 13, fanout 48] Created 4 buffers [Normal for 'u6_collisiond'
[max_load 13, fanout 20] Created 2 buffers [Normal for 'collision_OUT'

While buffering may solve the performance problem for many signals, there may be critical portions
of a circuit that require further optimization to ensure that performance objectives are met.
Introducing pipeline stages may be required to reduce the number of levels of logic between registers
and maintain performance. The outputs of the arbiter have been pipelined because the collision and
carrier signals are used in several design units and propagate through several levels of logic if the
pipeline is absent. In a design such as that of the repeater, pipeline registers may be added for some
signals (e.g., jabber _bar, partition_bar) without having to add pipeline registers for the others to
keep synchronization if the synchronization is not important. In the case of jabber _bar, the signal
can be asserted for a range of counter values, so adding a pipeline register will not affect the function
of the design.

The common outputs (e.g., txdata, idle, jam) for the core controller state machines are all generated
from the third state machine. This unnecessarily places a higher load on the state registers for the
third state machine. Since the common outputs can be decoded from any of the state machines and
all state machines must run at 25 MHz, it may make sense to balance the loading of all state machine
registers. Of course, the state machines should be one-hot designed for maximum performance.
Although, a performance comparison of a fault-tolerant, one-hot encoded state machine versus a
sequentially encoded state machine may prove that one is not better than the other.

Special purpose pads can aid in the performance of a design. The pASIC380 has two clock pads and
six high-drive pads. Signals assigned to a clock pad make use of a high-performance, low-skew clock
distribution tree. Clocks on one of these trees can be propagated to all logic cells in about 5 ns with a
skew of about 1 ns. A system-wide clock that does not use a clock distribution tree has a
considerably larger distribution time. With this design, the system clock is the transmit clock. The
clock distribution tree may also be used for the sets and resets of flip-flops. The reset in this design
has a fanout of 343, so the clock distribution tree is the best choice.

High-drive inputs provide about twice the internal input driving current of normal IIOs configured as
inputs. High fanout signals coming from off chip should make use of these special purpose pads.
Following is the list of automatic pad selection:

Begin PAD Generation.

Created CLKPAD for signal ,'reset'
Above signal drives ° Clocks, 343 Set/Resets. Total 343

Created CLKPAD for signal 'clk'
Above signal drives 294 Clocks, ° Set/Resets. Total 294
And 1 other inputs (active high) .
Above signal consumed 1 express wire

Created HD1PAD for signal 'rxd5'
Above signal drives ° Clocks, Set/Resets, 8 other inputs.

Created HD1PAD for signal 'rxd4'
Above signal drives 0 Clocks, Set/Resets, 8 other inputs.

Created HD1PAD for signal 'rxd3'
Above signal drives 0 Clocks, 0 Set/Resets, 8 other inputs.

Created HD1PAD for signal 'rxd2'

Total 8

Total 8

Total 8

Above signal drives 0 Clocks, 0 Set/Resets, 8 other inputs. Total 8
Created HD1PAD for signal 'rxdl'

Above signal drives 0 Clocks, 0 Set/Resets, 8 other inputs. Total 8
Created HD1PAD for signal 'rxdO'

Above signal drives 0 Clocks, 0 Set/Resets, 8 other inputs. Total 8

Gated clocks are used with the FIFO. To ensure a small lock delay and clock skew, floor planning is
likely required for the FIFO. Simulated annealing may not find the optimal placement for the FIFO
registers. The optimal placement of the flip-flops making up the FIFO is one on top of the other
(because outputs of the pASIC logic cell feed back to the left side of the logic cell where the vertical
routing channel is). Placing each of the registers (six flip-flops) in a vertical column ensures that the
gated clocks need to route to only one column per register.

Resource estimations are somewhat more difficult to make for FPGAs than for CPLDs because the
logic cells contain less logic on average than a macrocell and its associated product terms. An
estimation of the logic cell count follows:

·clockrnux8 (37)
• 27 for registers and the enable equations
• 9 for the clock selection
• 1 for rxclk

·arbiter8 (13)
• 11 for registers
• 1 for the collision signal
• 1 for the carryin signal

·FIFO (110)
• 48 for eight 6-bit registers for the FIFO
• 6 for the counters (read and write pointers)
• 48 for six 8-to-l FIFO output multiplexers
• 8 for the decoding of the write pointer

·symbolmux (24)
• 3 for the symbol counter
• 6 for the output registers
• 12 for the output multiplexers (2 for each line)
• 3 for symbolend signals

·core controller (47)
• 4 for synchronization of inputs
• 3 for synchronization of internal signals
• 10 for the counter
• 25 for the three state machines
• 5 for the outputs

·port controller (8 x 40 = 320)
• 6 for synchronization of inputs
• 2 to synchronize internal signals
• 19 for the three counters
• 8 for the one-hot state machine
• 5 for output signals

The estimation total is 551 logic cells, not accounting for additional logic cells needed for buffering.
After place and route, the total logic cell count is listed as 604, which is within reach of our

303

304

estimation. Performance is difficult to estimate. The post-place-and-route, worst-case delays for
register-to-register operation is shown in Figure 8-29. The worst-case delay of 36.5ns will support 40
MHz operation.

3S.3 US_COLLISIOND -- U9_CCCNT_5

35.9 U10_ENABLE_BARDD -- COLLISION_OUT

35.S U5_STATE1 SBV_1 -- TX_EN7 _OUT

35.4 U5_STATE1 SBV_1 -- TX_EN5_0UT

35.4 US_COLLISIOND -- U11_STATESBV_2

35.3 U1 O_ENABLE_BARDD -- CARRIER

35.1 US_COLLISIOND -- U8_STATESBV_2

35.0 U1 O_ENABLE_BARDD -- NOSEL

Figure 8-29 Worst-case register-to-register delays

In the next chapter, we will create a test bench to simulate a model of the circuit produced from the
place and route software that models the design with timing information.

Preassigning pinouts
At the beginning of our FPGA case study, we implied that there are many fewer problems with
fitting designs in FPGAs. While this is generally true because there are usually fewer restrictions on
how device features are used, some FPGAs are better than others in this respect, and this affects
whether or not you will want to assign the pinout so that you can begin your board layout to reap the
benefits of concurrent engineering. Always check vendor claims before pursuing a board design
before you have placed and routed your design in the FPGA. Antifuse FPGAs tend to have better
routing ability because more routing wires can be added at a lower cost to the vendor. This results in
devices that are inherently very routable. Refer to chapter 2, "Programmable Logic Primer" for a
discussion of different FPGA technologies.

To use a CPLD or FPGA?

Exercises

Different designs perform better in one device architecture over another. In general, register
intensive designs are best suited to FPGAs, but the best way to determine which device architecture
works best is to synthesize the logic for both architectures and compare the results. The important
thing to keep in mind is the available resources in a device and how these resources can be used.

1. Determine if the following designs can fit ina 22VlO:
(a) an 8-bit loadable counter
(b) an II-bit counter
(c) a 4-bit counter that asynchronously resets to 1010
(d) the memory controller of chapter 5?

2. In Figure 8-1, if the second macrocell from the top is allocated eight product terms, how many
unique product terms may be allocated to the macrocell directly above and below?

(a) What if 10 product terms were allocated to the second macrocell?
(b) 12 product terms ? (c) 16 product terms?

3. The OE product terms in a CY7C371 do not have polarity control. How would (a AND b) and (a
OR b) differ as enabling conditions when fitted? Compare resource usage and timing.

4. Implement a 12-bit adder in the CY7C371 and the CY7C381. In both cases, optimize for speed,
and then optimize for area. Compare all of the results.

5. Design the 28":bit loadable counter described below in the CY7C371.

Implementing a 28-bit loadable counter in a 32-macrocell device that can have 36 inputs into each
logic block can present a design obstacle. Typically, counters are implemented with T -type flip
flops. The least significant flip-flop toggles every clock cycle, and all subsequent bits toggle only
when all of the lesser significant bits are a "I" (for example, the count transitions to "1000" only
when all lesser significant bits are "1," as in "0 Ill"). Thus, the most significant (the 28th) bit of a 28-
bit counter will toggle only when all of the lesser significant bits are a "I." To determine if all are a
"I," an AND gate is used. But you will not be able to simply place the 16 least significant counter
bits in one logic block and the remaining twelve in the other logic block. This would require too
many inputs to the second logic block: 28 for the counter bits, another 12 for the load inputs, and a
few others for control-more than the allowed 36 inputs. However, the counter can still fit into the
device, but (1) only the first 15 bits of the counter can be implemented in the first logic block and (2)
a token must be passed from the first logic block to the second, indicating to the second logic block
when the AND of the first 15 bits is a "1" (see Figure 8-30). This is, in effect, a cascading of AND
gates wherein a 15-input AND gate in the first logic block is cascaded with other AND gates (a 12-
input AND gate for the most significant bit) to enable the toggling of the upper 13 counter bits. This
token passing scheme in which AND gates are cascaded requires two passes through the product
term array. The delay associated with the second pass can be eliminated by producing a token that is
registered and for which a ' l' is on the output of the flip-flop one clock cycle before all bits are a
, 1.'

6. Discuss the merits and demerits of using the attribute 'synthesis_off.

305

306

r -- --------,

~ _D(13:0)

Logic

Logic Block A
L ____ _ ____ ...1

r----- --------,

~~~D(27:14) 

Logic 

LOAD __ -+---+-----+\ 

RESET Logic Block B 
L ____ _ _ _______ ...1 

CLK __________ ~ 

Figure 8-30 A 28-bit counter must use a token (cascaded AND gate) so as not to 
require more than 36 inputs to the logic block. 

7. Between the three issues a designer has to keep in mind when targeting a VHDL code to a specific 
device, which do you think is of prime importance? Justify. Add some other concerns one should be 
aware of? 

8. What are the typical resource constraints that a designer has to keep in mind while targeting 
CPLDs? 

9. What are the typical resource constraints that a designer has to keep in while targeting FPGAs? 

10. What are the typical issues that a designer has to keep track of, when migrating a design in a 
CPLD to a FPGA and vice versa? 

11. How would you implement your counters in CPLDs to bring down your Product term count? 

12. Discuss the tradeoffs you would consider in using a synchronous or an asychronous reset for state 
machines. 

13. Would a CPLD fitter handle a design better if: 

a) Signals are assigned to specific pins and specific buried macrocells 

b) Signals are assigned to specific pins and buried macrocell assignments are floated 

c) Signal assignments are floated and buried macrocell assignments are specified 



d) Some of the signals are assigned to pins and buried macrocells and others are floated 

e) Pin and buried macrocell assignments are floated 

14. Given that the final implementation of a design is device specific, discuss the issues involved in 
the portability of VHDL designs over different FPGA and CPLD vendors. What all should you 
ensure to make your code portable across different vendors? 

15. Create a scheme of your own to achieve product term (asynchronous) clocking in FLASH 370 
CPLDs. 

16. If you were to write a place and route tool for the pASIC FPGAs, what constraint swould you be 
dealing with? How would you prioritize them? 

307 





9 Creating Test Fixtures 

The focus of this text has been to assist readers in writing VHDL code that can be efficiently 
synthesized for use with programmable logic. The intended audience has been those interested in 
VHDL as a design language, rather than those interested in VHDL as a language for modeling 
devices and systems. (However, much of the content of the previous chapters is directly applicable to 
modeling.) Nonetheless, the code that a designer writes can be used as a model-it is a model of the 
functionality of the design. Because the code is a model, it can be simulated with VHDL simulation 
software. 

The ability to simulate a VHDL model can greatly increase design efficiency: It allows for the 
functional verification of a design before synthesis and place and route. The synthesis and place and 
route processes can consume anywhere from less than a minute to several hours, depending upon the 
size of the design and efficiency of the software. Because the initial synthesis and place and route 
may not yield the required performance and resource utilization goals, subsequent runs of the 
synthesis and place and route software may be required. If functional verification is not completed 
until after iterations of synthesis and place and route, then the time spent may have been wasted-a 
design error (especially one that significantly changes the design) may require further iterations of 
synthesis and place and route. Simulation of a VHDL model can bring out design errors at a much 
earlier stage of the design process, allowing design errors to be corrected before synthesis and place 
and route. 

Most VHDL simulators (i.e., VHDL simulation software) allow real-time interaction-values of 
inputs can be assigned, simulation time can be executed, and the values of outputs can be inspected 
by looking at waveforms. This cycle can be repeated until the designer is satisfied that the model 
functions as expected. Alternatively, a test fixture (test bench) can be used to verify the design's 
functionality. A test fixture allows input test vectors to be applied to the design (unit under test) and 
output test vectors to be either observed (by waveform) or recorded in an output vector file. Test 
fixtures provide advantages over interactive simulation: (1) A test fixture allows the input and output 
test vectors to be easily documented. (2) This in tum provides a more methodical approach than 
relying on interactively entering and inspecting test vectors. (3) Once the test fixture has been built 
and the test vectors defined, the same functional tests can be repeated during iterations of design 
changes. That is, little time is required after a design change to rerun tests. (4) The same test fixture 
used to verify the functionality described in the VHDL source code can be used to verify the 
functionality and timing described by a post-fit model, as described further in the following 
paragraph. 

Many fitters and place and route tools produce VHDL models of a device with a given fit or place 
and route. These models are representations of a design as fitted in the device architecture. The actual 
model bears little resemblance to the code written by the designer (the source code). Instead, these 
models typically consist of component instantiations of device architecture features and signals 
connecting the components. The models also usually have timing information so that a simulation 
run can detect setup violations, and outputs can be observed to propagate according to the device AC 
timing specifications. These models will have the same 1/0 as the original source code, so the same 
test fixture used to evaluate the functionality of the design source code can be used to verify both the 
functionality and the timing of the post-fit model. 

309 



Creating a Test Fixture 

310 

We will create a test fixture for use with the 3-bit counter of Listing 9-1. 

library ieee; 
use ieee.std_logic_1164.all; 
package mycntpkg is 

component count port(clk, rst: in std_logic; 
cnt: inout std_logic_vector(2 downto 0)); 

end component; 
end mycntpkg; 

library ieee; 
use ieee.std_logic_1164.all; 
entity count is port (clk, rst: 

cnt: 
end count; 

in std_logic; 
inout std_logic_vector(2 downto 0)); 

use work.std_math.all; 
architecture archcount of count is 
begin 
counter: process (clk, rst) 
begin 

if rst = '1' then 
cnt <= (others => '0'); 

elsif (clk'event and clk= '1') then 
cnt <= cnt + 1; 

end if; 
end process; 
end archcount; 

Listing 9-1 Source code of a 3-bit counter 

The entity/architecture pair for count must be declared as a component so that it can be instantiated 
as the unit under test in the test fixture. 

Listing 9-2 is the text fixture that can be used with the source code and with the post-fit model. In 
this listing, we include the test vectors for the unit under test in the source code of the test fixture. 

The entity declaration for testcnt does not include any ports because there are not any inputs or 
outputs to the test fixture-it is self-contained. Signals are declared for'each port of the unit under 
test. We choose signal names that match the formal signal names of the component. The type 
tesCvector is defined as a record. Each tesCvector has elements for the elk, rst, and cnt signals. The 
type tescvector _array is defined as an array of tesCvector. A constant, tescvectors, is defined to be 
of the type tesCvector _array, and its value defines the set of test vectors to be applied to the unit 
under test as well as the expected output. 

The count component is instantiated as the unit under test. Inside a process, a loop is used to 
sequence through the tesCvectors array. For each vector in the array, the clock and reset stimulus are 
assigned to the elk and rst signals. Because the assignments are to signals, the assignments are not 
immediate. Rather, the signal assignments are scheduled. The signals assume the values of the 
present value of the variables only at the end of the process or if any simulation time transpires. In 
this case, the very next statement calls for 20 ns of simulation time to elapse. But before any 



simulation time elapses, all signals that are not explicitly initialized are by default initialized to the 
'LEFf value (for std_Iogic that's the 'U', uninitialized, value), and signals are evaluated. Thus, the 
counter process is executed once before any simulation time: Because neither the IF nor ELSIF 
condition is true, the value of cnt remains "UUU" (all array elements uninitialized). The statement, 
"wait for 20 ns;" causes the elk and rst signals to assume the values that were scheduled after a ns of 
simulation time elapses. The changes in values for elk and rst cause the counter process to execute 
once again. This time cnt is assigned "000" as a result of rst being' 1'. Twenty nanoseconds elapse, 
and then the value of ent is compared with the expected result (veetor.ent). If ent is not its expected 
value, then the assertion statement causes the simulation software to issue a report: "cnt is wrong 
value". The report is issued if the assertion statement is false. The assertion is hard-coded as false, 
because the comparison of ent to the test vector was accomplished with an IF-THEN construct. An 
unexpected value of ent also causes the variable errors to be asserted. The loop continues for the 
remainder of the vectors following the sequence of events described above with the exception of 
initialization. Once the loop has ended, two mutually exclusive assertion statements are evaluated. If 
the value of errors is false, then the report "Test vectors passed." is issued; otherwise, the report 
"Test vectors failed." is issued. 

library ieee; 
use ieee.std_Iogic_1164.all; 

entity testcnt is 
end testcnt; 

use work.mycntpkg.all; 
architecture my test of testcnt is 

signal clk, rst: std_Iogic; 
signal cnt: std_logic_vector(2 downto 0); 
type test_vector is record 

clk: std_Iogic; 
rst: std_Iogic; 
cnt: std_logic_vector(2 downto 0); 

end record; 
type test_vector_array is array(natural range <» of test_vector; 
constant test_vectors: test_vector_array := ( 

reset the counter 
(clk => '0', rst => '1', 
(clk => '1', rst => '1', 
(clk 

clock 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 
(clk 

=> 

the 
=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

=> 

'0' , rst 
counter 

'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 
'1' , rst 
'0' , rst 

=> '0', 
several 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 
=> '0' , 

cnt => "000"), 
cnt => "000"), 
cnt => "000"), 
times 
cnt => "001") , 
cnt => "001") , 
cnt => "010") , 
cnt => "010") , 
cnt => "011"), 
cnt => "011") , 
cnt => "100") , 
cnt => "100") , 
cnt => "101") , 
cnt => "101") , 
cnt => "110") , 
cnt => "110") , 
cnt => "111") , 
cnt => "111") , 

311 



312 

) ; 

begin 

(clk 
(clk 
(clk 
(clk 
(clk 

reset 
(clk 
(clk 
(clk 

clock 
(clk 
(clk 
(clk 
(clk 

=> '1' , rst 
=> '0' , rst 
=> '1' , rst 
=> '0' , rst 
=> '1' , rst 
the counter 
=> '0' , rst 
=> '1' , rst 
=> '0' , rst 
the counter 
=> '1' , rst 
=> '0' , rst 
=> '1' , rst 
=> '0' , rst 

=> '0' , cnt => "000") , 
=> '0' , cnt => "000") , 
=> '0' , cnt => "001") , 
=> '0' , cnt => "001") , 
=> '0' , cnt => "010") , 

=> '1' , cnt => "000") , 
=> '1' , cnt => "000") , 
=> '0' , cnt => "000") , 
several times 
=> '0' , cnt => "001") , 
=> '0' , cnt => "001") , 
=> '0' , cnt => "010") , 
=> '0' , cnt => "010" ) 

-- instantiate unit under test 
uut: count port map(clk => clk, rst => rst, cnt => cnt); 

-- apply test vectors and check results 
verify: process 

begin 

variable vector: test_record; 
variable errors: boolean := false; 

for i in test_vectors'range loop 
-- get vector i 
vector := test_vectors(i); 

-- schedule vector i 
clk <= vector.clk; 
rst <= vector.rst; 

-- wait for circuit to settle 
wait for 20 ns; 

check output vectors 
if cnt /= vector.cnt then 

assert false 
report "cnt is wrong value II. 

errors .- true; 
end if; 

end loop; 

-- assert reports on false 
assert not errors 

report "Test vectors failed." 
severity note; 

assert errors 
report "Test vectors passed." 
severity note; 

wait; 
end process; 



end; 

Listing 9-2 Design used to run test vectors 

The unit under test was instantiated with the actuals associated with the formals by using named 
association rather than by positional association. This was done so that the component of the post-fit 
model, which will not likely have the ports listed in the same order, can be instantiated in the same 
test fixture. 

Sometimes, it will be easier to simply apply the input test vectors and observe the output vectors in a 
waveform. However, you may want to record these output vectors and compare the results of 
simulating the source code with those of the post-fit model. Also, if you will need to apply a large 
number of vectors, then you will likely not want to list those vectors in the source code. Instead, you 
may want to list the vectors in a file and read them into the source code. This approach also allows 
you to use the same test fixture to run multiple tests simply by changing the file. 

Eight procedure calls will be used to read in a line from a file, read std_Iogics or std_Iogic_ vectors 
from a line, write std_Iogics or std_Iogic_ vectors to a line, and write a line to a file. The procedure 
declarations for these functions are: 

procedure Readline (F:in Text; L:out Line); 
procedure Writeline{F:out Text; L:in Line); 
procedure Read (L: inout Line; Value: out std_logic; Good: out boolean); 
procedure Read (L: inout Line; Value: out std_logic); 
procedure Read (L: inout Line; Value: out std_logic_vector; 

Good: out boolean); 
procedure Read (L: inout Line; Value: out std_logic_vector); 
procedure Write (L: inout Line; Value: in std_logic; 

Justified:in Side := Right; Field: in Width .- 0); 
procedure Write (L: inout Line; Value: in std_logic_vector; 

Justified:in Side := Right; Field: in Width .- 0); 

The first procedure declaration is for a procedure that reads in a line from a file. The second is for a 
procedure that writes a line to a file. These two procedures are from the TEXTIO package that is 
defined by the IEEE 1076 standard. 

The third procedure declaration is for a procedure that attempts to read a std_Iogic value from the 
beginning of the line. If the value is a std_Iogic_ value, then good returns the value true; otherwise, it 
returns the value false. The fourth procedure declaration is for a procedure that reads a std_Iogic 
value from a line. The next two procedure declarations are for procedures that perform the same jobs 
for std_Iogic_ vectors. The two write functions are for writing std_Iogics and std_Iogic_ vectors to a 
line. . 

Unfortunately, whereas there are standard read and write procedures for characters, strings, and bits, 
there are not (as of yet) standard procedures for the last of the six procedure declarations listed 
above. We have overloaded the standard procedure calls with ones for std_Iogics and 
std_Iogic_vectors. The content ofthese procedures is listed at the end of the chapter. For now, we 
can proceed with generating a test fixture for the state machine of listing 5-2 from chapter 5. We will 
reference the above procedures in the design of our test fixture by including a USE clause. 

We would like to place the following test vectors in a file and apply them to the memory_controller. 
Some of the inputs are the don't care value' -'. 

313 



314 

test vectors for memory controller 

reset 
1 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

r/w 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

ready 
o 
o 
o 
o 
o 
o 
1 

1 
1 

1 
o 
o 
o 
1 

1 

o 
1 

1 
o 
o 
o 

o 
o 
1 
o 
o 
1 

1 
1 

1 
o 
o 
1 
1 
1 
1 
1 

1 
1 
1 
o 
o 
o 
o 
o 

1 

burst 
o 
o 
o 
o 
o 
o 
1 

o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

bus_id 
00000000 
00000000 
00000000 
00000000 
10101010 
10101010 
10101010 
10101010 
10101010 
10101010 
10101010 
11110011 

00111011 
00111011 
00111011 
11110011 

11110011 

11110011 

11110011 

00111011 
00111011 
00111011 
00111011 
11110011 
11110011 
11110011 
11110011 
11110011 
11110011 
11110011 

reset 
reset 
reset 
wrong address 
wrong address 
wrong address 
wrong address 
wrong address 
wrong address 
wrong address 
wrong address 
right address, go to decision 
go to read1 
stay in read1, not ready 
go to read2, it's a burst 
go to read3 
stay in read3, not ready 
go to read4 
go to idle 
wrong address 
wrong address 
wrong address 
right address, go to decision 
go to read1 
stay in read1, not ready 
stay in read1, not ready 
go to idle 
right address, go to decision 
go to write 
go to idle 
right address, go to decision 
go to read1 
go to read2, it's a burst 
go to read3 
reset -- go to idle 
right address, go to decision 
go to read1 
go to read2, it's a burst 
go to read3 
go to read4 
go to idle 
wrong address 
wrong address 
wrong address 
wrong address 
right address, go to decision 
go to write 
stay in write, not ready 
stay in write, not ready 
stay in write, not ready 
stay in write, not ready 
go to idle 

The test fixture for the memory controller is shown in Listing 9-3. Signals are declared to match the 
ports of the unit under test. This time, the clock is initialized to 0 because we will be controlling the 



clock from within the test fixture rather than from vectors. The unit under test is instantiated, and a 
process is used to read in vectors, apply the vectors, and control clocking. The procedure calls expect 
variables in the port maps, so variables are declared to match the signal names of the component 
ports. As long as the file is not empty, a line is read from the input vector file. A character is taken 
from the beginning of the line and placed in the variable ch. If the attempt to read the first value of 
the line does not return a valid character, or if the character is not a tab, then the next iteration of the 
loop starts. If the line starts with a tab character, then the next value is read. It is expected to be a 
std_logic value, so it is taken from the line and placed into the variable vreset. If the value is not a 
std_logic, then the next iteration of the loop begins. If it is a std_logic, then we are confident that we 
have found a line containing a test vector. Tab characters and vector elements are read, according to 
the test vectors listed above. 

After reading in the test vector, we force lO ns of simulation time before scheduling the inputs. We 
want to apply the vectors lO ns before the rising edge of the clock. If the clock has a 40 ns clock 
period, and the clock starts out at 0, then we want to wait 10 ns, apply the vectors, wait 10 ns, clock 
the circuit, wait for 20 ns (for a 50% duty cycle clock), and transition the clock back to 0 before 
reading in the next vector. We will record the present outputs IOns before the rising edge of the 
clock. 

-- test fixture for memory controller 
-- reads file "memory.inp" ; writes file "memory. out" 

library ieee; 
use ieee.std_logic_1164.all; 
use std.textio.all; 
use work.myio.all; 
use work.memory-pkg.all; 
architecture testmemory of test_fixture_of_memory is 

signal clk: std_logic := '0'; 
signal reset, read_write, ready, burst, oe, we : std_logic; 
signal bus_id: std_logic_vector(7 downto 0); 
signal addr: std_logic_vector(l downto 0); 

begin 
-- instantiate the unit under test 
uut: memory_controller port map( 

reset => reset, 
read_write => read_write, 
ready => ready, 
burst => burst, 
clk => clk, 
bus id => bus_id, 
oe => oe, 
we => we, 
addr => addr ); 

test: process 
file vector_file: text is in "memory.inp"; 
file output_file: text is out "memory.out"; 
variable invecs, outvecs : line; 

315 



316 

variable good : boolean; 
variable ch : character; 
variable vbus_id: std_logic_vector(7 downto 0); 
variable vreset, vread_write, vready, vburst : std_logic; 
variable out_vec: std_logic_vector(3 downto 0); 

begin 
while not endfile(vector_file) loop 

-- read a line from the file 
readline(vector_file, invecs); 

--skip line if it does not begin with a tab 
read (invecs , ch, good); 
if not good or ch /= HT then next; end if; 

-- skip line if next value is not a std_logic 
read(invecs, vreset, good); 
next when not good; 

found a vector 
read vreset, vread_write, vready, vburst, vbus_id 
with tabs in between 

read (invecs, ch) ; 
read(invecs,vread_write); 
read (invecs, ch) ; 
read(invecs,vready); 
read (invecs, ch) ; 
read(invecs,vburst); 
read (invecs, ch) ; 
read(invecs,vbus_id); 

-- wait for 10 ns before scheduling the vector (we want 
-- to introduce skew between the vectors and clock edges) 
wait for 10 ns; 

-- schedule vectors 
reset <= vreset; 
read_write <= vread_write; 
ready <= vready; 
burst <= vburst; 
bus_id <= vbus_id; 

apply vectors with plenty of setup time 
also, record the current output vector 
we will record output vectors 10 ns before rising 
edge of clock for each clock cycle 

wait for 10 ns; 
out_vec := oe & we & addr; 
write (outvecs, out_vec); writeline(output_file, outvecs); 

-- schedule and execute clock transition 
clk <= not (clk); 
wait for 20 ns; 

-- schedule and ensure execution of next clock transition 



clk <= not (clk) after 0 ns; 

end; 

end loop; 

assert false REPORT "Test complete"; 
end process; 

Listing 9-3 Test fixture for memory controller 

The signals could have been scheduled by appending the words "after 10 ns" to the assignment 
statement, but since we need to record the outputs at same time that we are scheduling the inputs, we 
used the simple WAIT statement. 

The output vectors are stored in a file called "memory.out"; presynthesis simulation results can be 
compared with post-layout simulation results by comparing the output files. On a UNIX system, the 
"diff' command can be used to ensure that the contents of two files are the same. 

Overloaded Read and Write Procedures 

The following are the overloaded read and write procedures used in the test fixture above. The 
procedures are overloaded for the type std_Iogic. Keep an eye on the World Wide Web (http:// 
www.vhdl.org) for upcoming standard read and write procedures. 

library ieee; 
use ieee.std_logic_1164.all; 
use std.textio.all; 

package myio is 
procedure Read (L: inout Line; Value: out std_logic; Good: out boolean); 
procedure Read (L: inout Line; Value: out std_logic); 
procedure Read (L: inout Line; Value: out std_logic_vector; Good: out 

boolean) ; 
procedure Read (L: inout Line; Value: out std_logic_vector); 
procedure Write (L: inout Line; Value: in std_logic; 

Justified:in Side := Right; Field: in Width := 0); 
procedure Write (L: inout Line; Value: in std_logic_vector; 

Justified:in Side := Right; Field: in Width := 0); 
end myio; 

package body myio is 

procedure Read (L: inout Line; Value: out std_logic; Good: out boolean) 
is 

variable temp: character; 
variable good_character: boolean; 

begin 
read(L, temp, good_character); 
if good_character = true then 

good := true; 
case temp is 

when 'U' => value .- 'U'; 
when 'X' => value := 'X'; 

317 



318 

when '0 ' => value .- '0 ' ; 

when '1' => value .- '1' ; 
when 'Z' => value .- 'Z' ; 

when 'W' => value .- 'w' ; 

when 'L' => value .- 'L' ; 
when 'H' => value .- 'H' ; 

when' , => value .- '-'; 
when others => good := false; 

end case; 
else 

good := false; 
end if; 

end Read; 

procedure Read (L: inout Line; Value: out std_logic) is 
variable temp: character; 
variable good_character: boolean; 

begin 
read(L, temp, good_character); 
if good_character = true then 

case temp is 
when 
when 
when 
when 
when 
when 
when 
when 
when 

when others => 
end case; 

end if; 
end Read; 

'U' => 
'X' => 

'0 ' => 

'1' => 

'Z' => 

'W' => 
'L' => 
'H' => 
, , => 

value 

value .- 'U' ; 
value .- 'X' ; 

value .- '0' ; 
value .- '1' ; 
value .- 'Z' ; 

value .- 'W' ; 
value .- 'L' ; 
value .- 'H' ; 

value .- r _ r i 

.- 'U' ; 

procedure Read (L: inout Line; Value: out std_logic_vector; Good: out 
boolean) is 

variable temp: string(value'range); 
variable good_string: boolean; 

begin 
read(L, temp, good_string); 
if good_string = true then 

good := true; 
for i in temp'range loop 

case temp(i) is 
when 'U' => value(i) .-
when 'X' => value(i) .-
when '0 ' => value(i) .-
when '1' => value(i) .-
when 'Z' => value(i) .-
when 'W' => value(i) .-
when 'L' => value(i) .-
when 'H' => value(i) .-
when , => value(i) .-

'U' ; 
'X' ; 

'0' ; 
'1' ; 
'Z' ; 

'W' ; 
'L' ; 
'H' ; 

- Ii 



when others => good .- false; 
end case; 

end loop; 
else 

good := false; 
end if; 

end Read; 

procedure Read (L: inout Line; Value: out std_logic_vector) is 
variable temp: string (value 'range) ; 
variable good_string: boolean; 

begin 
read(L, temp, good_string); 
if good_string = true then 

for i in temp'range loop 
case temp(i) is 

when 'U' => value(i) := 

when 'X' => value(i) .-
when '0 ' => value(i) 
when '1' => value(i) := 

when 'Z' => value(i) 
when 'W' => value(i) 
when 'L' => value(i) := 

when 'H' => value(i) 
when => value(i) := 

when others => exit; 
end case; 

end loop; 
end if; 

end Read; 

'U' ; 

'X' ; 

'0' ; 
'1' ; 
'Z' ; 

'W' ; 
ILl; 

'H' ; 
, - I; 

procedure Write (L: inout Line; Value: in std_logic; 
Justified:in Side := Right; Field: in Width .- 0) 

is 
variable write _value: character; 

begin 
case value is 

when 'U' => write _value .- 'U' ; 

when 'X' => write _value · - 'X' ; 

when '0 ' => write _value .- '0' ; 
when '1' => write _value · - '1' ; 
when 'Z' => write _value .- 'Z' ; 

when 'W' => write _value · - 'W' ; 
when 'L' => write _value .- 'L' ; 
when 'H' => write _value · - 'H' ; 

when , => write _value .- - I; 

end case; 
write(L, write_value, Justified, Field); 

end Write; 

procedure write (L: inout Line; Value: in std_logic_vector; 
Justified:in Side := Right; Field: in width := 0) is 

variable write_value: string(value'range); 
begin 

319 



Exercises 

320 

for i in value'range loop 
case value(i) is 

when 'U' => 

when 'X' => 

when '0 ' => 
when '1 ' => 

when 'Z' => 

when 'WI => 
when 'L' => 

when 'H' => 

=> 

write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) 
write_value (i) when 

end case; 
end loop; 

write(L, write_value, 
end Write; 

Justified, Field) i 

end myio; 

1. List the advantages of using test fixtures. 

.- 'U' ; 

.- 'X' ; 

.- '0' ; 

.- '1' ; 

.- 'Z' ; 

.- 'WI ; 

.- 'L' ; 

.- 'H' ; 
-' . .-

2. Create a comprehensive test fixture for a 16-bit carry-Iookahead adder. 

3. Create a comprehensive test fixture for a 8-bit updown counter with three-state outputs. Verify the 
functionality of the counter with your test fixture. Ensure that your test fixture has the ability to 
evaluate setup time violations. 

4. Survey the EDA industry for companies that support test fixtures for VHDL designs. 

5. If you were to write an automated test fixture software to verify the functionality of a design, how 
would you go about it? What basic features would it include? 



321 





Appendix A-Glossary 

actual -a signal name in the port map of a component instantiation that has been declared at the 
current level of hierarchy. The signal that is being mapped to a port of a component. Actuals are 
required in every component instantiation. See formal. 

antifuse - whereas a fuse provides an electrical connection of wires that is initially intact, broken 
only after a programming voltage is applied across the fuse, an antifuse is an interconnection 
between wires that is initially broken and formed only after a programming voltage is applied across 
the antifuse. 

architecture - the section of a VHDL description that describes the behavior or structure of the 
circuit that is defined by the entity. An entity must be paired with at least one architecture for a 
complete circuit description. See entity. 

ASIC - stands for application specific integrated circuit. A semiconductor device that is custom 
made to perform a dedicated function. ASICs are not field programmable and must be manufactured 
specifically for a given application. Development of an ASIC typically requires an NRE, and the 
manufacturing of prototype devices can take multiple weeks. See NRE. 

component - a declaration of an entity/architecture pair as a unit which can be instantiated in other 
designs, or another portion of a design. See entity, architecture. 

constant declaration - a VHDL construct that defines a data object to hold a constant value. 

die - the physical -emiconductor silicon device found inside a device's packaging. Multiple silicon 
devices are formed on a single silicon wafer that is then cut into individual die for packaging. 

die size - The area of the rectangular piece of silicon which makes up the semiconductor device. 

entity - the section of a VHDL description that describes the communication or interface of a circuit 
to the outside world. An entity describes the external ports of communication, their type, and their 
mode or direction. An entity can also include generic declarations. See architecture, generic. 

fault tolerance - the design of a system that is resistant to failure. A fault tolerant system is one that 
is designed to correct itself and continue to operate under many circumstances. The space shuttle 
computer is an example of a fault tolerant system. The term is also used to describe a state machine 
that forces itself into a known state whenever an unforeseen condition or hardware glitch is 
encountered. See glitch. 

FIFO - stands for First In First Out. A FIFO is a buffer, a semiconductor memory device which 
stores information in the order in which it was received and then releases that information starting 
with the first element it received and progressing sequentially. FIFOs typically have a depth and 
width associated with them related to the size and amount of information that can be stored within. 

fitting - the process of transforming a gate level or sum-of-products representation of a circuit into a 
file used for programming a PLD or CPLD device. This process typically occurs after synthesis, and 
the resulting file is typically a JEDEC file. See synthesis, place and route. 

formal - the signal name of a component that is defined in that component's entity declaration. The 
signal that is being mapped to a component instantiation. Formals are optional when using positional 
signal associations. See actual. 

323 



324 

generic - a VHDL construct that is used with an entity declaration to allow the communication of 
parameters between levels of hierarchy. A generic is typically used to define parameterized 
components wherein the size or other configuration are specified during the instantiation of the 
component. See entity. 

Glitch - a voltage spike on a data line that should otherwise remain in a stable state. A glitch can 
occur on a signal that is at a logic high or logic low level. 

hold time - the minimum time an input to a digital logic storage element must remain stable after the 
triggering edge of a clock has occurred. See metastability, setup time. 

library - a collection of previously analyzed VHDL design units. A library can consist of multiple 
packages. See package. 

logic block - one of multiple blocks of logic within a complex programmable logic device that are 
'interconnected together via a global interconnect. A logic block in a CPLD is similar in nature and 
capability to a small PLD such as the 22VlO. A logic block typically consists of a product term 
array, a product term distribution scheme, and a set of macrocells. 

logic cell - a replicated element of logic within an FPGA device that typically contains a register and 
additional logic that forms the basic building block for implementing logic in the device. 

macrocell - a replicated element of logic in PLD and CPLD architectures that typically contains a 
configurable memory element, polarity control, and one or more feedback paths to the global 
interconnect. 

Mealy machine - a state machine for which outputs may change asynchronously with respect to the 
clock. See Moore machine. 

metalogical value - a value of 'U', 'X', 'W', or '-' as defined in the IEEE 1164 standard of the type 
STD_LOGIC. These values are intended for simulation of VHDL models and represent signal logic 
values of uninitialized, forcing unknown, weak unknown, and don't care respectively. 

metastability - a term meaning "in between." An undesirable output condition of digital logic 
storage elements caused by violation of the basic timing parameters associated with that storage 
element such as setup or hold time. Metastability can be seen as an output with a voltage level 
between the logic high and logic low states. See set-up time, hold time. 

mode - associated with signals defined in a VHDL entity's port declaration. A mode defines the 
direction of communication a signal can have with other levels of hierarchy. 

Moore machine - a state machine in which outputs change synchronously with respect to the clock. 
See Mealy machine. 

NRE - stands for Non Recurring Engineering and refers to the costs associated with a design of a 
system that are incurred once. The term is often used when referring to contracting an ASIC 
(applications specific integrated circuit) vendor to whom a large fee must be paid to produce the first 
devices and incremental fees are required for additional devices. 

one-hot-one encoding - a method of state encoding which uses one register for each state. Only one 
bit is asserted, or "hot", for each state. The "hot" state can be asserted as a logic value of zero or one, 
but is typically a logic one. 



one-hot-zero encoding - exactly like one-hot-one encoding except that the reset or idle state is 
encoded with all logic zero levels. This is typically done to allow the use of dedicated hardware 
register resets to easily place the state machine in a known reset or idle state. 

package - a collection of declarations, including component, type, subtype, and constant 
declarations, that are intended for use by other design units. See library. 

performance - the maximum clock frequency or slowest propagation delay of a design as 
implemented in a particular programmable logic device. Performance is typically measured in 
nanoseconds for propagation delay, or megahertz for clock frequency. 

place and route - the process of transforming a gate level representation of a circuit into a 
programming file that may be used to program an FPGA device. This process requires two steps: one 
to place the required logic into logic cells, and one to route the logic cells via the horizontal and 
vertical routing channels to each other and the 110 pins. See synthesis, fitting, logic cell. 

product term allocation - the method of distributing logic in the form of AND-terms (product 
terms) to macrocells, which contain OR gates, to complete the AND-OR logic equation. Each PLDI 
CPLD has a different method of distributing product terms to macrocells. 

programmable interconnect - generically refers to any two wires which can be connected together 
via a programmable fuse (or anti-fuse). Also refers to the communication network within a CPLD 
architecture that provides communication between logic blocks and 110 pins. 

routability - a measure of probability that a signal will successfully be connected from one location 
within a device to another location. Routability within FPGA devices is affected by the number of 
horizontal and vertical routing channels and the amount of circuitry that can be carried through those 
channels. Routability within CPLD devices refers to the probability that a set of logic signals will be 
successfully routed through the global interconnect and into a logic block. 

setup time - the minimum time an input to a digital logic storage element must remain stable before 
the triggering edge of a clock will occur. See metastability, hold time. 

synthesis - the process of converting a high-level design description into a gate level or sum-of
products representation. See fitting, place and route. 

test bench - an HDL description which is used to apply simulation vectors to a another HDL design 
description. A test bench is used for simulation only and can be applied to either a pre-synthesis or a 
post-fitting (place and route) design description. 

type - an attribute of a VHDL data object that determines the values that the object can hold. 
Examples of types are bit and std_logic. Objects of type bit can hold values '0' or '1'. Objects of type 
std_logic can hold values of 'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', or '-'. 

325 





Appendix B-Quick Reference Guide 

This quick reference guide is not meant to be an exhaustive guide to the VHDL language. Rather, it 
is intended to be used as a reference to help you quickly build VHDL descriptions for use with 
synthesis tools. 

The right hand side columns of all tables contain brief examples. Constructs that are simplified and 
modified versions of the BNF (Backus-Naur form) syntax categories found in Annex A of the IEEE 
Std. 1076-1993 Language Refererence Manual (LRM) are contained in the left hand side column for 
the first three major headings, "Building Blocks," "Language Constructs," and "Describing 
Synchronous Logic." The BNF syntax categories are simplified and modified so as to present only 
those constructs most useful in creating VHDL designs for use with synthesis tools, and to combine a 
syntax category used in another syntax category. In BNF, boldface words are reserved words and 
lower case words represent syntax categories. A vertical bar, I, represents a choice between items, 
square brackets, [ ], enclose optional items, and braces, { }, contain items that may be optionally 
repeated (except for boldface items immediately following an opening brace-these items must be 
included). 

The left hand side column for the last two major headings, "Data Objects, Types, and Modes" and 
"Operators" contain a brief description of each item. Some editorial comments are also made to 
indicate the usefulness of the item in writing simple designs. 

Building Blocks 

Entities 

Creating an entity declaration 

entity entity_name is entity register8 is 
port ( port ( 

[signal] identifier {, identifier}: [mode] typcmark elk, rst,en: in std_logic; 
{; [signal] identifier {, identifier}: [mode] type_mark}); data: in std_logic_vector(7 downto 0); 

end [entity_name]; q: out std_logicvector(7 downto 0»; 
end register8; 

Creating an entity declaration with generics 

entity entity_name is entity regis teen is 
generic ( generic ( 

[signal] identifier {, identifier}: [mode] type_mark width: integer := 8); 
[:=staticexpression] port ( 

{; [signal] identifier {, identifier}: [mode] type_mark elk, rst, en: in std_logic; 

[:=staticexpression]} ); data: in std_logic_vector(width-l downto 0); 
port ( q: out std_logicvector(width-l downto 0»; 

[signal] identifier {, identifier}: [mode] type_mark end registecn; 
{; [signal] identifier {, identifier}: [mode] type_mark}); 

end [entity_name]; 

327 



328 

Architectures 

Creating an architecture 

architecture architecture_name of entity_naII\e is 
type_deelaration 
I signaCdeelaration 
I constanCdeclaration 
I componencdeclaration 
I alias_declaration 
I attribute_specification 
I subprogram_body 

begin 
{ process_statement 
I concurrencsignaCassignmencstatement 
I componencinstantiation_statement 
I generate_statement} 

end [architecturcname]; 

architecture archregister8 of register8 is 
begin 

process (rst, elk) 
begin 

if (rst = ' 1') then 
q <= (others => '0'); 

elseif (elk'event and clk = ' 1') then 
if (en = ' 1') then 

q <= data; 
else 

q <=q; 
end if; 

end if; 
end process; 

end archregister8; 

architecture archfsm of fsm is 
type state_type is (stO, stl, st2); 
signal state: state_type; 
signal y, z: std_logic; 

begin 
process (rst, elk) 
begin 

wait until elk'event = '1'; 
case state is 

when stO => 
state <= stl; 
y<= '1'; 

when stl => 
state <= st2; 
z<= '1'; 

when others => 
state <= st3; 
y<='O'; 
z<= '0'; 

end case; 
end process; 

end archfsm; 



Components 

Declaring a component 

component component_name is 
port ( 

[signal] identifier {, identifier}: [mode] type_mark 
{; [signal] identifier {, identifier}: [mode] type_mark}); 

end component; 

Declaring a component with generics 

component compnencname is 
generic ( 

[signal] identifier {, identifier}: [mode] type_mark 
[:=static _expression] 

{; [signal] identifier {, identifier}: [mode] type_mark 
[:=static_expression]} ); 

port ( 
[signal] identifier {, identifier}: [mode] type_mark 
{; [signal] identifier {, identifier}: [mode] type_mark}); 

end component; 

Instantiating a component (named association) 

instantiation_label: 
componencname 

port map ( 
port_name => 

(, port_name => 

signaCname 
I expression 
I variable_name 
I open 
signaCname 
I expression 
I variable_name 
I open}); 

component register8 is 
port ( 

clk, rst, en: 
data: 
q: 

end component; 

component register8 is 
generic ( 

in std_Iogic; 
in std_Iogic_vector(7 downto 0); 
out std_Iogic_vector(7 downto 0»; 

width: integer := 8); 
port ( 

clk, rst, en: in std_Iogic; 
data: in std_Iogic_vector(width-l downto 0); 
q: out std_Iogicjector(width-1 downto 0»; 

end component; 

architecture archreg8 of reg8 is 
signal clock, reset, enable: 
signal data_in, data_out: 

begin 
Firscreg8: 

register8 
port map ( 

end archreg8; 

clk => clock, 
rst => reset, 
en => enable, 
data => data_in, 
q => data_out); 

std_Iogic; 
std_Iogicvector(7 downto 0); 

329 



330 

Instantiating a component with generics (named association) 

instantiation_label: 
componencname 

generic map( 
generic_name => signaLname 

I expression 
I variable_name 
I open 

{, generic_name =>signaLname 
I expression 

port map ( 
porCname=> 

I variable_name 
I open}) 

signaLname 
I expression 
I variable_name 
I open 

{, port_name => signal_name 
I expression 
I variable_name 
I open}); 

Instantiating a component (positional association) 

instantiation_label: 
componencname 

port map ( signaLname I expression 
I variable_name I open 

{, signaLname I expression 
I variable_name I open}); 

architecture archregS of regS is 
signal clock, reset, enable: 
signal data_in, data_out: 

begiu 
FirscregS: 

registecn 
generic map (S) 
port map ( 

end archregS; 

clk => clock, 
rst => reset, 
en => enable, 
data => data_in, 
q => data_out); 

architecture archregS of regS is 

std_Iogic; 
std_Iogicvector(7 downto 0); 

signal clock, reset, enable: std_Iogic; 
signal data_in, data_out: std_Iogic_v~ctor(7 downto 0); 

begin 
FirsCregS: 

registerS 
port map (clock, reset, enable, data_in, data_out); 

end archregS; 

Instantiating a component with generics (positional association) 

instantiation_label: 
componencname 

generic map ( signal_name I expression 
I variable_name I open 

{, signaLname I expression 
I variable_name I open}) 

port map ( signaLname I expression 
I variable_name I open 

{, signal_name I expression 
I variable_name I open}); 

architecture archregS of regS is 
signal clock, reset, enable: 
signal data_in, data_out: 

begin 
FirsCregS: 

registecn 
generic map (S) 

std_Iogic; 
std_Iogic_vector(7 downto 0); 

port map (clock, reset, enable, data_in, data_out); 
end archregS; 



Language Constructs 

Concurrent Statements 

Boolean equations 
\:9 
~ 

relation { and relation} v <= a and band c; 
I relation { or relation } w <= a or b or c; 
I relation { xor relation } x <= a xor b xor c; 
I relation { nand relation } y <= a nand b nand c; 
I relation { nor relation } z <= a nor b nor c; 

Conditional signal assignment (WHEN-ELSE) 

{expression when condition else} expression; a<= 'I' when b = c else '0'; 

Selected signal assignment (WITH-SELECT-WHEN) 

with selection3xpression select architecture archfsm of fsm is 
{identifier <= expression when type state_type is (stO, st!, st2, st3); 

identifier I expression I discrete_range I others,} signal state: state_type; 
identifier <= expression when signal y, z: std_logic; 

identifier I expression I discrete_range I others; begin 
with state select 

x<= "0000" when stO I stl; 
"0010" when st2 I st3; 
y and z when others; 

end archfsm; 

Component instantiation - see above 

Generate scheme for component instantiation or generation of equations 

generate_label: (for identifier in discrete_range) gl: for i in 0 to 7 generate 
I (if condition) generate reg1: register8 port map (clock, reset, enable, 

{ concurrenCstatement } data_in(i), data_out(i)); 
end generate [generate_label] ; end generate g I; 

g2: for j in 0 to 2 generate 
a(j) <= b(j) xor c(j); 

end generate g2; 

331 



fntial Statements 

"Jfess statement 

focess_label: ] my_process: 
ocess (sensitivity list) process (rst, clk) 

{ type_declaration constant zilch: std_Iogic_vector(7 downto 0) := "0000_0000"; 
I constanCdeclaration begin 
I variable_declaration wait until clk = ' I'; 
I alias_declaration} if (rst = ' 1') then 

begin q <= zilch; 
{ waiLstatement elsif (en = ' 1') then 
I signaLassignmencstatement q <= data; 
I variable_assignmencstatement else 
I iCstatement q <=q; 
I case_statement end if; 
I loop_statement end my_process; 

end process [process_label]; 

IF-THEN-ELSE-ELSIF statement 

if condition then sequence_oLstatements if (count = "00") then 
{elsif condition then sequence_of statements} a<=b; 
[else sequence_oLstatements] elsif (count = "10") then 
end if; a<=c; 

else 
a<=d; 

end if; 

CASE-WHEN statement 

case expression is case count is 
{when identifier I expression I discrete_range I others => when "00" => 

sequence_oLstatements} a<=b; 
end case; when "10" => 

a<=c; 
when others => 

a<=d; 
end case; 

FOR LOOP statement 

[loop_label:] myjocloop: 
for identifier in discrete_range loop for i in 3 downto 0 loop 

sequence_oCstatements if reset(i) = ' l' then 
end loop [loop_label]; data_out(i) := '0'; 

end if; 
end loop my _focloop; 

WHILE LOOP statement 

[loop_label:] my_while_loop: 
while condition loop while (count> 0) loop 

sequence_oLstatements count := count - 1; 
end loop [loop_label]; result <= result + data_in; 

end loop my_whilcloop; 

332 



Describing Synchronous Logic Using Processes 

No reset (assume clock is of type std_Iogic) 

[process_label:] 
process (clock) 
begin 

if clock'event and clock = ' l' then 
synchronous_signaLassignmencstatement; 

end if; 
end process [process_label]; 

or 
[process_label:] 
process 
begin 

wait until clock = ' l' ; 
synchronous_signaLassignmencstatement; 

end process [process_label]; 

Synchronous reset 

[process_label:] 
process (clock) 
begin 

if clock' event and clock = ' l' then 
if synch_resecsignai = ' I' then 

synchronous_signaLassignmenCstatement; 
else 

differencsynchronous_signaLassignmencstatement; 
end if; 

end if; 
end process [process_label]; 

Asynchronous reset or preset 

[process_label:] 
process (reset, clock) 
begin 

if reset = ' l' then 
asynchronous_signaLassignmencstatement; 

elsif clock'event and clock = ' I' then 
synchronous_signaLassignmenCstatement; 

end if; 
end process [process_label]; 

reg8_no_reset: 
process (clk) 

begin 
if elk'event and clk = ' I' then 

q <= data; 
end if; 

end process reg8_no_reset; 
or 

reg8_noJeset: 
process (clk) 

begin 
wait until clock = ' l' ; 

q <= data; 
end process reg8_no_reset; 

reg8_sync_reset: 
process (clk) 

begin 
if elk'event and clk = ' l' then 

if sync_reset = ' l' then 
q <= "0000_0000"; 

else 
q <= data; 

end if; 
end if; 

end process; 

reg8 _async _reset: 
process (asyn_reset, clk) 

begin 
if asyncreset = ' l' then 

q <= "0000_0000"; 
elsif clk'event and clk = ' l' then 

q <= data; 
end if; 

end process reg8_async_reset; 

333 



334 

Asynchronous reset and preset 

[process_label:] 
process (reset, preset, clock) 
begin 

if reset = '1' then 
asynchronous_signal_assignmencstatement; 

elsif preset = '1' then 
differenCasynchronous_signaCassignmencstatement; 

elsif clock'event and clock = '1' then 
synchronous_signaCassignmencstatement; 

end if; 
end process [process_label]; 

Conditional Synchronous Assignment (enables) 

[process_label: ] 
process (reset, clock) 
begin 

if reset = '1' then 
asynchronous_signaCassignmencstatement; 

elsif clock'event and clock = '1' then 
if enable = '1' then 

synchronous_signaCassignmenCstatement; 
else 

differencsynchronous_signal_assignmencstatement; 
end if; 

end if; 
end process [process_label]; 

reg8_async: 
process (asyn_reset, async_preset, clk) 
begin 

if async_reset = '1' then 
q <= "0000_0000"; 

elsif async_reset = '1' then 
q <= "1111_1111"; 

elsif clk'event and clk = '1' then 
q <= data; 

end if; 
end process reg8_async; 

reg8_sync_assign: 
process (rst, clk) 
begin 

if rst = '1' then 
q <= "0000_0000"; 

elsif clk'eveDt aDd clk = '1' then 
if enable = '1' then 

q <= data; 
else 

q<=q; 
eDdif; 

eDdif; 
end process reg8_sync_assign; 



Data Objects, Types, and Modes 

Data Objects 

Signals 

Signals are the most commonly used data object in 
VHDL designs. Nearly all basic designs, and many 
large designs as well, can be fully described using sig
nals as the only data object. 

Constants 

Constants are used to hold a static value; they are typi
cally used to improve the readability and maintainence 
of code. 

Variables 

+ Variables can be used in processes and subprograms 
(sequential areas) only. 
+ The scope of a variable is the process or subpro
gram, and the variable does not retain it's value when 
a process or subprogram becomes inactive. 
+ Variables are most commonly used as the indices of 
loops, calculation of intermediate values, or for imme
diate assignment. 
+ To use the value of a variable outside of the process 
or subprogram in which it was declared, the value of 
the variable must be assigned to a signal. 

architecture archinternaLcounter of internal_counter is 
signal count, data: std_logic_vector(7 downto 0); 

begin 
process (elk) 

begin 
if (elk'event and elk = ' 1') then 

if en = ' l' then 
count <= data; 

else 
count <= count + 1; 

end if; 
end if; 

end process; 
end archinternaLcounter; 

my_process: 
process (rst, elk) 

constant zilch: std_logicvector(7 downto 0) := "0000_0000"; 
begin 

wait until elk = ' 1 ' ; 
if (rst = ' 1') then 

q <= zilch; 
elsif (en = ' 1') then 

q <= data; 
else 

q<=q; 
end if; 

end my_process; 

architecture archloopstuff of loopstuff is 
signal data: std_logicvector (3 downto 0); 
signal result: std_logic; 

begin 
process (data) 

variable tmp: std_logic; 
begin 

for i in a'range downto ° loop 
tmp := tmp and data(i); 

end loop; 
result <= tmp; 

end process; 
end archloopstuff; 

335 



336 

Data Types 

+ Values are: 
'U', -- Uninitialized 
'X', -- Forcing Unknown 
'0', -- Forcing 0 
'1', -- Forcing 1 
'Z', -- High Impedance 
'W', -- Weak Unknown 
'L', -- Weak 0 
'H', -- Weak 1 
" -- Don't care 

+ The standard multi value logic system for VHDL 
model interoperability. 
+ A resolved type (i.e., a resolution function is used to 
determine the value of a signal with more than one 
driver). 
+ Along with its subtypes, std_Iogic should be used 
over user defined types to ensure interoperability of 
VHDL models among synthesis and simulation tools. 
+ To use must include the following two lines: 
library ieee; 
use ieee.std_Iogic_1164.all; 

+ Values are: 
'U', -- Uninitialized 
'X', -- Forcing Unknown 
'0', -- Forcing 0 
'1', -- Forcing 1 
'Z', -- High Impedance 
'W', -- Weak Unknown 
'L', -- Weak 0 
'H', -- Weak 1 
" -- Don't care 

+ An unresolved type (i.e., a signal of this type may 
have only one driver). 
+ To use must include the following two lines: 
library ieee; 
use ieee.std_Iogic_1164.all; 

signal x: 

x<= data when enable = 'I' else 'Z'; 

signal x, data, enable: std_ulogic; 

x <= data when enable = '1' else 'Z'; 



+ Are arrays of types std_Iogic and std_ulogic 
+ Along with its subtypes, std_Iogic_ vector should be 
used over user defined types to ensure interoperability 
of VHDL models among synthesis and simulation 
tools. 
+ To use must include the following two lines: 
library ieee; 
use ieee.std_Iogic_1164.al1; 

bit and bie vector 

+ Bit values are: '0' and' 1'. 
+ Bie vector is an array of bits. 
+ Pre-defined by the IEEE 1076 standard. 
+ This type was used extensively prior to the introduc
tion and tool vendor support of std_Iogic_1164. 
+ Useful when metalogic values not required. 

boolean 

+ Values are: TRUE and FALSE 
+ Often used as return value of function. 
+ Otherwise, not often used. 

integer 

+ Values are the set of integers. 
+ Data objects of this type are primarily constant, used 
for defining widths of signals or as an operand in an 
addition or subtraction. 

signal mux: std_logic_vector(7 downto 0); 

if state = address or state = ras then 
mux <= dram_a; 

else 
mux <= (others => 'Z'); 

end if; 

signal x: bit; 

if x = '1' then 
state <= idle; 

else 
state <= start; 

end if; 

signal a: boolean; 

if a = '1' then 
state <= idle; 

else 
state <= start; 

end if; 

entity counter_n is 
generic ( 

width: integer := 8); 
port ( 

clk,rst: in std_logic; 
count: 

end countecn; 
out std_logic_vector(width-l downto 0»; 

process(elk) 
begin 

if (rst = '1 ') then 
count<= 0; 

elsif (elk' event and elk=' 1 ') then 

end if; 
end process; 

count <= count + 1; 

337 



enumeration types 

+ Values are user defined. architecture arehfsm of fsm is 

+ Commonly used to define states for a state machine type state_type is (stO, st1, st2); 
signal state: state_type; 
signal y, z: std_logic; 

begin 
process (elk) 
begin 

wait until elk' event = '1'; 
case state is 

when stO => 
state <= st2; 
y <= '1'; 

when st1 => 
state <= st3; 
z<= '1'; 

when others => 
state <= stO; 
y<='O'; 
z<= '0'; 

end case; 
end process; 

end arehfsm; 

338 



Modes 

In 

+ Used for signals (ports are signals) that are inputs
only to an entity. 

Out 

+ Used for signals that are outputs-only and for which 

entity counter_ 4 is 
port ( 

clk, rst, ld: 
term_cnt: 
count: 

end counter_ 4; 

in std_logic; 
butTer std_logic; 
inout std_logicvector(3 downto 0)); 

the values are not required internal to the entity. bite t h 4 f 4 . 
1------------------------1 arc c ure arc countec 0 counter_ IS 

Buffer signal incrst: std_logic; 
signal inccount: std_logic_vector(3 downto 0); 

+ Used for signals that are outputs, but for which the 
values are required internal to the given entity. 
+ Caveat with usage: The formal associated with an 
acutal that is of mode buffer must also be of mode 
buffer (i.e., if the source of a port of mode buffer is the 
output of another component, the mode of the port of 
that component must also be mode buffer.) 

Inout 

+ Used for signals that are truly bidirectional signals 
+ May also be used for signals that are inputs-only or 
outputs-only, at the expense of readability of the code. 

begin 
process(inCrst, elk) 

begin 
if (inust = '1') then 

inccount <= "0000"; 
elsif (elk'event and elk='1') then 

if(ld='1')then 
inccount <= count; 

else 
inccount <= inccount + 1; 

end if; 
end if; 

end process; 

term3nt <= count(2) and count(O); -- term3nt is 3 
incrst <= term_cnt or rst; -- resets at term_cnt 
count <= inCcount when ld = '0' else "ZZZZ"; 

-- count is bidirectional 
end archcounter_ 4; 

339 



Operators 

340 

All operators of the same class hve the same level of precedence. The classes of operators 
are listed here in order of decreasing precedence. Many of the operators are overloaded in 
the NUMERIC_BIT and NUMERIC_STD packages; consult the World Wide Web (http:// 
www.vhdl.org) for most recent updates to these standards. The IEEE working group 1076.3 
is working on these standards. 

Miscellaneous operators 

+ Operators: **, abs, not signal a, b, c: bit; 

+ The not operator is used frequently, the other two are ... 

rarely used for designs to be synthesized. a <= not (b and c); 

+ Predefined for any integer type (**), any numeric 
type (abs), and either bit and boolean (not). 

Multiplying operators 

+ Operators: *, I, mod, rem variable a, b: integer range 0 to 255; 

+ The * operator is occassiona11y used for multipliers; ... 

the other three are rarely used. a<=b * 2; 

+ Predefined for any integer type (*, I, mod, rem), and 
any floating point type (*,/) 

Sign 

+ Operators: +, - variable a, b, c: integer range 0 to 255; 

+ Rarely used for synthesis ... 

+ Predefined for any numeric type (floating point or a'<= - (b + 2); 

integer) 

Adding operators 

+ Operators: +, - signal count: integer range 0 to 255; 

+ Used frequently to describe incrementers, decre- ... 

menters, adders, and subtractors. count <= count + 1; 

+ Predefined for any numeric type 

Shift operators 

+ Operators: sl1, srI, sla, sra, rol, ror signal a, b: biCvector(4 downto 0); 

+ Used occasionally signal c: integer range 0 to 4; 

+ Predefined for anyone-dimensional array with ele- ... 

ments of type bit or boolean. 
a<= b sll c; 

Relational operators 

+ Operators: =. 1=, < , <=, >, >= signal a, b: integer range 0 to 255; 

+ Used frequently for comparisons signal agtb: std_logic; 

+ Predefined for any type (both operands must be of ... 
ifa>= b then 

same type) agtb <= '1'; 
else 

agtb <= '0'; 



Logical Operators 

+ Operators: and, or, nand, nor, xor, xnor signal a, b, c: std_logic; 

+ Used frequently to generate boolean equations ... 

+ Predefined for types bit and boolean. a<=b and C; 

Std_Iogic_1164 overloads these operators for 
std_ulogic and its sUbtypes. 

341 





Below is a copy of the std_logic_1164 package. It is used in many of the examples throughout the 
text. The package declaration declares several data types and functions. The package body defines 
those functions declared in the package declaration. 

Title std_logic_1164 multi-value logic system 
Library This package shall be compiled into a library 

symbolically named IEEE. 

Developers: IEEE model standards group (par 1164) 
Purpose This packages defines a standard for designers 

to use in describing the interconnection data types 
used in vhdl modeling. 

Limitation: The logic system defined in this package may 
be insufficient for modeling switched transistors, 
since such a requirement is out of the scope of this 
effort. Furthermore, mathematics, primitives, 
timing standards, etc. are considered orthogonal 
issues as it relates to this package and are therefore 
beyond the scope of this effort. 

Note No declarations or definitions shall be included in, 
or excluded from this package. The "package declaration" 
defines the types, subtypes and declarations of 
std_logic_1164. The std_logic_1164 package body shall be 
considered the formal definition of the semantics of 
this package. Tool developers may choose to implement 
the package body in the most efficient manner available 
to them. 

modification history : 

version I mod. date: I 
v4.200 I 01/02/92 I 

$Id: stdlogic.vhd,v 1.3 1994/04/06 18:02:24 hemmert Exp $ 

-- logic state system (unresolved) 

TYPE std_ulogic IS ( 'U', 
'X', 

'0' , 
'1' , 

Uninitialized 
Forcing Unknown 
Forcing 0 
Forcing 1 

343 



344 

'Z' , High Impedance 
'W' , Weak Unknown 
'L' , Weak 0 
'H' , Weak 1 

Don't care 
) i 

-- unconstrained array of std_ulogic for use with the resolution 
function 

TYPE std_ulogic_vector IS ARRAY ( NATURAL RANGE <> ) OF std_ulogici 

-- resolution function 

FUNCTION resolved ( s : std_ulogic_vector ) RETURN std_ulogic; 

-- *** industry standard logic type *** 

SUBTYPE std_logic IS resolved std_ulogic; 

-- unconstrained array of std_logic for use in declaring signal arrays 

TYPE std_logic_vector IS ARRAY ( NATURAL RANGE <» OF std_logic; 

-- common subtypes 
-------------------------------------------------------------------
SUBTYPE XOl IS resolved std_ulogic RANGE 'X' TO '1' ; 

('X', '0', '1') 
SUBTYPE XOIZ IS resolved std_ulogic RANGE 'X' TO 'Z' ; 

('X', '0', '1', 'Z') 
SUBTYPE UXOl IS resolved std_ulogic RANGE 'U' TO '1' ; 

('U', 'X', '0', '1') 
SUBTYPE UXOIZ IS resolved std_ulogic RANGE 'U' TO 'Z' ; 

('U', 'X', '0', '1', 'Z') 

-- overloaded logical operators 

FUNCTION "and" 1 std_ulogic; r std_ulogic RETURN UX01; 
FUNCTION "nand" 1 std_ulogici r std_ulogic RETURN UX01; 
FUNCTION lIorn 1 std_ulogici r std_ulogic RETURN UX01; 
FUNCTION "nor" 1 std_ulogic; r std_ulogic RETURN UX01; 
FUNCTION "xor" 1 std_ulogic; r std_ulogic RETURN UX01; 
function "xnor" 1 std_ulogic; r std_ulogic return uxOl; 
FUNCTION "not" 1 std_ulogic RETURN UX01; 

-- vectorized overloaded logical operators 



FUNCTION "and" I, r std_logic_vector RETURN std_logic_vector; 
FUNCTION "and" I, r std_ulogic_vector RETURN std_ulogic_vector; 

FUNCTION "nand" I, r std_logic_vector RETURN std_logic_vector; 
FUNCTION "nand" I, r std_ulogic_vector RETURN std_ulogic_vector; 

FUNCTION "Orn I, r std_logic_vector RETURN std_logic_vector; 
FUNCTION "or" I, r std_ulogic_vector RETURN std_ulogic_vector; 

FUNCTION "nor" I, r std_logic_vector RETURN std_logic_vector; 
FUNCTION "nor" I, r std_ulogic_vector RETURN std_ulogic_vector; 

FUNCTION "xor" I, r std_logic_vector RETURN std_logic_vector; 
FUNCTION "xor" I, r std_ulogic_vector RETURN std_ulogic_vector; 

Note : The declaration and implementation of the "xnor" function is 
specifically commented until at which time the VHDL language has been 
officially adopted as containing such a function. At such a point, 
the following comments may be removed along with this notice without 
further "official" ballotting of this std_logic_1164 package. It is 
the intent of this effort to provide such a function once it becomes 
available in the VHDL standard. 

function "xnor" 
function "xnor" 

I, r std_logic_vector return std_logic_vector; 
I, r : std_ulogic_vector ) return std_ulogic_vector; 

FUNCTION "not" 
FUNCTION "not" 

1 
1 

std_logic_vector 
std_ulogic_vector 

RETURN std_logic_vector; 
RETURN std_ulogic_vector; 

ATTRIBUTE no_op OF "and", "or", "nand", "nor", "xor", "not" 
: FUNCTION IS TRUE; For CYPRESS synthesis. 

-- conversion functions 

FUNCTION To_bit 
RETURN BIT; 

( s 

FUNCTION To_bitvector ( s 
RETURN BIT_VECTOR; 

FUNCTION To_bitvector ( s 
RETURN BIT_VECTOR; 

FUNCTION To_StdULogic 
std_ulogic; 

FUNCTION To_StdLogicVector 
std_logic_vector; 

FUNCTION To_StdLogicVector 
std_logic_vector; 

FUNCTION To_StdULogicVector 
std_ulogic_vector; 

FUNCTION To_StdULogicVector 
std_ulogic_vector; 

std_ulogic; xmap 

std_logic_vector xmap 

std_ulogic_vector; xmap 

b BIT 

b BIT_VECTOR 

( s std_ulogic_vector 

b BIT_VECTOR 

( s std_logic_vector 

BIT .- '0 ' ) 

BIT .- '0 ' ) 

BIT .- '0 ' ) 

RETURN 

RETURN 

RETURN 

RETURN 

RETURN 

345 



346 

END 

-------------------------------------------------------------------
-- strength strippers and type convertors 
-------------------------------------------------------------------

FUNCTION To_XOl ( s std_Iogic_vector RETURN std_Iogic_vector; 
FUNCTION To _XOl ( s std_ulogic_vector RETURN std_ulogic_vector; 
FUNCTION To_XOl ( s std_ulogic RETURN X01; 
FUNCTION To _XOl ( b BIT_VECTOR RETURN std_Iogic_vector; 
FUNCTION To _XOl ( b BIT_VECTOR RETURN std_ulogic_vector; 
FUNCTION To_XOl ( b BIT RETURN X01; 

FUNCTION To _X01Z ( s std_Iogic_vector RETURN std_Iogic_vector; 
FUNCTION To_X01Z ( s std_ulogic_vector RETURN std_ulogic_vector; 
FUNCTION To _X01Z ( s std_ulogic RETURN X01Z; 
FUNCTION To_XOlZ ( b BIT_VECTOR RETURN std_Iogic_vector; 
FUNCTION To _X01Z ( b BIT_VECTOR RETURN std_ulogic_vector; 
FUNCTION To - X01Z ( b BIT RETURN X01Z; 

FUNCTION To _UXOl ( s std_Iogic_vector RETURN std_Iogic_vector; 
FUNCTION To _UXOl ( s std_ulogic_vector RETURN std_ulogic_vector; 
FUNCTION To_UXOl ( s std_ulogic RETURN UX01; 
FUNCTION To _UXOl ( b BIT_VECTOR RETURN std_Iogic_vector; 
FUNCTION To _UXOl ( b BIT VECTOR RETURN std_ulogic_vector; 
FUNCTION To _UXOl ( b BIT RETURN UX01; 

-- edge detection 

FUNCTION rising_edge (SIGNAL s std_ulogic) RETURN BOOLEAN; 
FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN; 

-- object contains an unknown 

FUNCTION Is_X ( s std_ulogic_vector RETURN BOOLEAN; 
FUNCTION Is_X ( s std_Iogic_vector RETURN BOOLEAN; 
FUNCTION Is_X ( s std_ulogic RETURN BOOLEAN; 

std_Iogic_1164 ; 

PACKAGE BODY std_Iogic_1164 IS 

-- local types 

TYPE stdlogic_ld IS ARRAY (std_ulogic) OF std_ulogic; 
TYPE stdlogic_table IS ARRAY (std_ulogic, std_ulogic) OF std_ulogic; 

-- resolution function 

CONSTANT resolution_table : stdlogic_table := ( 

U x o 1 Z w L H 



) ; 

'U' , 
'U' , 

'U' , 
'U' , 
'U' , 

'U' , 

'U' , 

'U' , 
'U' , 

'U' , 

'X' , 

'X' , 
'X' , 

'X' , 

'X' , 

'X' , 

'X' , 

'X' , 

'U' , 
'X' , 

'0' , 
'X' , 

'0' , 
'0' , 
'0' , 
'0' , 
'X' , 

'U' , 
'X' , 

'X' , 

'1' , 
'1' , 
'1' , 
'1' , 
'1' , 
'X' , 

'U' , 
'X' , 

'0' , 
'1' , 
'Z' , 

'W' , 

'L' , 

'H' , 
'X' , 

'U' , 
'X' , 

'0' , 
'1' , 
'W' , 
'W' , 

'W' , 
'W' , 
'X' , 

'U' , 

'X' , 

'0' , 
'1' , 
'L' , 
'W' , 

'L' , 

'W' , 
'X' , 

'U' , 

'X' , 

'0' , 
'1' , 
'H' , 

'W' , 

'W' , 

'H' , 
'X' , 

'U' ), 

'X' ), 

'X' ), 
'X' ), 

'X' ), 

'X' ), 

'X' ), 

'X' ), 

'X' ) 

UI 
X I 
o I 
1 I 
Z I 
wi 
L I 
H I 
- I 

FUNCTION resolved ( s : std_ulogic_vector ) RETURN std_ulogic IS 
VARIABLE result std_ulogic:= 'Z'; -- weakest state default 

BEGIN 
the test for a single driver is essential otherwise the 
loop would return 'X' for a single driver of '-' and that 
would conflict with the value of a single driver unresolved 
signal. 

IF (s'LENGTH = 1) THEN RETURN s(s'LOW); 
ELSE 

FOR i IN s'RANGE LOOP 
result .- resolution_table (result, s(i)); 

END LOOP; 
END IF; 
RETURN result; 

END resolved; 

-- tables for logical operations 

-- truth table for "and" function 
CONSTANT and_table: stdlogic_table := ( 

) ; 

U 

'U' , 
'U' , 

'0' , 
'U' , 
'U' , 

'U' , 

'0' I 

'U' , 

'U' , 

X 

'U' , 
'X' , 

'0' , 
'X' , 

'X', 

'X' , 

'0' , 
'X' , 

'X' , 

o 

'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 

1 

'U' , 
'X' , 

'0' , 

'1' , 
'X', 

'X' , 

'0' , 
'1' I 

'X' , 

Z 

'U' , 

'X' , 

'0' , 
'X' , 

'X' , 

'X' , 

'0' , 
'X' , 

'X' , 

W 

'U' , 
'X' , 

'0' , 
'X' , 

'X', 

'X' , 

'0' , 
'X' , 

'X' , 

truth table for "or" function 
CONSTANT or_table : stdlogic_table := ( 

U X a 1 Z W 

L 

'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 
'0' , 

'0' , 
'0' , 

L 

H 

'U' , 
'X' , 

'0' , 
'1' , 
'X' , 

'X' , 

'0' , 
'1' , 
'X' , 

H 

'U' ), 

'X' ), 

'0' ), 
'X' ), 

'X' ) I 

'X' ), 

'0' ), 
'X' ), 

'X' ) 

fur, jUt, 'U·, '1', 'U·, lUI, 'UTI '1', ·U I 
), 

'U', 'X', 'X', '1', 'X', 'X', 'X', '1', 'X' ), 

I 

U I 
X I 
o I 
1 I 
Z I 
wi 
L I 
H I 
- I 

U 

X 

347 



348 

'U', 'X', '0' , '1' , 'X' , 'X' , '0' , '1' , 'X' ) , 
'1' , '1' , '1' , '1' , '1' , '1' , '1' , '1' , ' l' ) , 
'U' , 'X' , 'X', '1' , 'X' , 'X' , 'X', '1' , 'X' ) , 
'U' , 'X', 'X' , '1' , 'X' , 'X' , 'X' , '1' , 'X' ) , 
'U', 'X', '0' , '1' , 'X', 'X', '0' , '1' , 'X' ) , 
'1' , '1' , '1' , '1' , '1' , '1' , '1' , '1' , ' l' ) , 
'U' , 'X' , 'X' , '1' , 'X' , 'X' , 'X', '1' , 'X' ) 

) ; 

truth table for "xor" function 
CONSTANT xor - table : stdlogic_table .- ( 

----------------------------------------------------

U X 0 1 Z W L H 

'U', 'U', 'U', 'U' , 'U', 'U', 'U' , 'U' , 'U' ) , 
'U', 'X' , 'X', 'X' , 'X' , 'X' , 'X' , 'X' , 'X' ) , 
'U' , 'X', '0' , '1' , 'X' , 'X', '0' , '1' , 'X' ) , 
IU' , 'X', '1' , '0' , 'X', 'X', '1' , '0' , 'X' ) , 
'U', 'X' , 'X', 'X' , 'X' , 'X', 'X' , 'X' , 'X' ) , 
'U' , 'X' , 'X', 'X' 'X' , 'X' , 'X' , 'X' 'X' ) , 
'U', 'X', '0' , '1' 'X' , 'X' , '0' , '1' , 'X' ) , 
'U', 'X', '1' , '0' , 'X' , 'X', '1' , '0' , 'X' ) , 
'U' , 'X' , 'X', 'X' , 'X' , 'X' , 'X', 'X' 'X' ) 

) ; 

truth table for "not" function 
CONSTANT not - table: stdlogic_1d .-

-------------------------------------------------
U X 0 1 Z W L H 

( 'U', 'X', '1', '0', 'X', 'X', '1', '0', 'X' )i 

-- overloaded logical operators ( with optimizing hints ) 

0 
1 
z 
w 
L 

H 

U 

X 

o 
1 
Z 

W 

L 

H 

FUNCTION "and" (1: std_ulogic; r : std_ulogic ) RETURN UX01 IS 
BEGIN 

RETURN (and_table (1, r)); 
END "and"; 

FUNCTION "nand" ( 1 : std_ulogic; r : std_ulogic ) RETURN UX01 IS 
BEGIN 

RETURN (not_table ( and_table (1, r))); 
END "nand"; 

FUNCTION "or" 
BEGIN 

( 1 : std_ulogic; r 

RETURN (or_table (1, r)); 
END "or"; 

std_ulogic ) RETURN UX01 IS 

FUNCTION "nor" (1: std_ulogic; r : std_ulogic ) RETURN UX01 IS 
BEGIN 

RETURN (not_table ( or_table ( 1, r ))); 



END "nor"; 

FUNCTION "xor" (1: std_ulogic; r 
BEGIN 

RETURN (xor_table(l, r)); 
END "xor"; 

std_ulogic ) RETURN UXOl IS 

function "xnor" (1: std_ulogic; r : std_ulogic ) return uxOl is 
begin 

return not_table(xor_table(l, r)); 
end "xnor"; 

FUNCTION "not" (1: std_ulogic ) RETURN UXOl IS 
BEGIN 

RETURN (not_table (1) ); 
END "not"; 

-- and 

FUNCTION "and" (l,r: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS Iv : std_logic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_logic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_logic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'and' operator are not of the 

same length" 

ELSE 
SEVERITY FAILURE; 

FOR i IN result 'RANGE LOOP 
result(i) .- and_table (lv(i), rv(i)); 

END LOOP; 
END IF; 
RETURN result; 

END "and"; 

FUNCTION "and" (l,r: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS Iv : std_ulogic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_ulogic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'and' operator are not of the 

same length" 

ELSE 
SEVERITY FAILURE; 

FOR i IN result 'RANGE LOOP 
result(i) .- and_table (lv(i), rv(i)); 

END LOOP; 
END IF; 
RETURN result; 

349 



350 

END "and" i 

-- nand 

FUNCTION "nand" (l,r: std_1ogic_vector ) RETURN std_1ogic_vector IS 
ALIAS 1v : std_1ogic_vector ( 1 TO l'LENGTH ) IS 1i 
ALIAS rv : std_1ogic_vector ( 1 TO r'LENGTH ) IS ri 
VARIABLE result: std_1ogic_vector ( 1 TO l'LENGTH )i 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'nand' operator are not of 

the same length" 

IS 

SEVERITY FAILUREi 
ELSE 

FOR i IN resu1t'RANGE LOOP 
result (i) .- not_tab1e(and_tab1e (lv(i), rv(i)))i 

END LOOPi 
END IFi 

RETURN resu1ti 
END "nand" i 

FUNCTION "nand" (l,r: std_ulogic_vector ) RETURN std_ulogic_vector 

ALIAS Iv : std_ulogic_vector ( 1 TO l'LENGTH ) IS li 
ALIAS rv : std_ulogic_vector ( 1 TO r'LENGTH ) IS ri 
VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH )i 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'nand' operator are not of 

the same length" 

ELSE 
SEVERITY FAILUREi 

FOR i IN result'RANGE LOOP 
result (i) .- not_table(and_table (lv(i), rv(i)))i 

END LOOPi 
END IFi 

RETURN resu1ti 
END "nand" i 

-- or 

FUNCTION "or" (l,r: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS Iv : std_logic_vector ( 1 TO l'LENGTH ) IS li 
ALIAS rv : std_1ogic_vector ( 1 TO r'LENGTH ) IS ri 
VARIABLE result: std_logic_vector ( 1 TO l'LENGTH )i 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'or' operator are not of the 

same length" 
SEVERITY FAILUREi 

ELSE 



FOR i IN result 'RANGE LOOP 
result(i) .- or_table (lv(i), rv(i)); 

END LOOP; 
END IF; 
RETURN result; 

END "or"; 

FUNCTION "or" (l,r: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS lv : std_ulogic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_ulogic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 

same length" 

ELSE 

REPORT "arguments of overloaded 'or' operator are not of the 

SEVERITY FAILURE; 

FOR i IN result 'RANGE LOOP 
result(i) .- or_table (lv(i), rv(i)); 

END LOOP; 
END IF; 
RETURN result; 

END "or"; 

-- nor 

FUNCTION "nor" (l,r: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS lv : std_logic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_logic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_logic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'nor' operator are not'of the 

same length" 

ELSE 
SEVERITY FAILURE; 

FOR i IN result'RANGE LOOP 
result(i) .- not_table(or_table (lv(i), rv(i))); 

END LOOP; 
END IF; 
RETURN result; 

END "nor"; 

FUNCTION "nor" (l,r: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS lv : std_ulogic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_ulogic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'nor' operator are not of the 

same length" 

351 



352 

SEVERITY FAILURE; 
ELSE 

FOR i IN result'RANGE LOOP 
result(i) .- not_table(or_table (lv(i), rv(i))); 

END LOOP; 
END IF; 
RETURN result; 

END "nor"; 

-- xor 

FUNCTION "xor" (l,r: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS lv : std_logic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_logic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_logic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 
REPORT "arguments of overloaded 'xor' operator are not of the 

same length" 
SEVERITY FAILURE; 

ELSE 
FOR i IN result 'RANGE LOOP 

result (i) 
END LOOP; 

END IF; 
RETURN result; 

END "xor"; 

.- xor_table (lv(i), rv(i)); 

FUNCTION "xor" (l,r: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS lv : std_ulogic_vector ( 1 TO l'LENGTH ) IS 1; 
ALIAS rv : std_ulogic_vector ( 1 TO r'LENGTH ) IS r; 
VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH ); 

BEGIN 
IF ( l'LENGTH /= r'LENGTH ) THEN 

ASSERT FALSE 

same length" 

ELSE 

REPORT "arguments of overloaded 'xor' operator are not of the 

SEVERITY FAILURE; 

FOR i IN result'RANGE LOOP 
result(i) .- xor_table (lv(i), rv(i)); 

END LOOP; 
END IF; 
RETURN result; 

END "xor"; 

-- xnor 

Note : The declaration and implementation of the "xnor" function is 
specifically commented until at which time the VHDL language has been 
officially adopted as containing such a function. At such a point, 
the following comments may be removed along with this notice without 



further "official" ballotting of this std_logic_1164 package. It is 
the intent of this effort to provide such a function once it becomes 
available in the VHDL standard. 

function "xnor" (l,r: std_logic_vector ) return std_logic_vector is 
alias Iv : std_logic_vector ( 1 to l'length ) is 1; 
alias rv : std_logic_vector ( 1 to r'length ) is r; 
variable result: std_logic_vector ( 1 to l'length ); 

begin 
if ( l'length /= r'length ) then 

assert false 
report "arguments of overloaded 'xnor' operator are not of 

the same length" 

is 

severity failure; 
else 

for i in result'range loop 
result(i) .- not_table(xor_table (lv(i), rv(i))); 

end loop; 
end if; 
return result; 

end "xnor"; 

function "xnor" 

alias Iv : std_ulogic_vector ( 1 to l'length ) is 1; 
alias rv : std_ulogic_vector ( 1 to r'length ) is r; 
variable result: std_ulogic_vector ( 1 to l'length ); 

begin 
if ( l'length /= r'length ) then 

assert false 
report "arguments of overloaded 'xnor' operator are not of 

the same length" 
severity failure; 

else 
for i in result'range loop 

result(i) .- not_table(xor_table (lv(i), rv(i))); 
end loop; 

end if; 
return result; 

end "xnor"; 

-- not 

FUNCTION "not" (1: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS Iv : std_logic_vector ( 1 TO l'LENGTH ) IS 1; 
VARIABLE result: std_logic_vector ( 1 TO l'LENGTH ) := (OTHERS 

=> 'X'); 

BEGIN 
FOR i IN result'RANGE LOOP 

result(i) .- not_table( lv(i). ); 
END LOOP; 
RETURN result; 

353 



354 

END; 

FUNCTION "not" (1: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS lv : std_ulogic_vector ( 1 TO l'LENGTH ) IS 1; 

VARIABLE result: std_ulogic_vector ( 1 TO l'LENGTH ) := (OTHERS => 
'X') ; 

BEGIN 
FOR i IN result'RANGE LOOP 

result(i) := not_table ( lv(i) ); 
END LOOP; 
RETURN result; 

END; 

-- conversion tables 

TYPE logic_x01_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF 
X01; 

TYPE logic_x01z_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF 
X01Z; 

TYPE logic_ux01_table IS ARRAY (std_ulogic'LOW TO std_ulogic'HIGH) OF 
UX01; 

table name 

parameters 
in 

returns 
purpose 

example 

table name 

parameters 
in 

returns 
purpose 

example 

std_ulogic -- some logic value 
xOl -- state value of logic value 
to convert state-strength to state only 

'X' , lUI 

'X' , 'X' 
'0' , '0 ' 
'I' , 'I' 
'X' , 'Z' 
'X' , 'WI 
'0' , 'L' 
'I' , 'H' 
'X' 

) ; 

std_ulogic -- some logic value 
x01z -- state value of logic value 
to convert state-strength to state only 

if (cvt_to_x01z (input_signal) = 'I' ) then 



table name 

parameters 
in 

'X', 'U' 

'X', 'X' 

'0' I '0 ' 
'1' I '1 ' 
'Z', 'Z' 

'X', 'W' 

'0' I 'L' 
'1' I 'H' 

'X' 
) ; 

std_ulogic -- some logic value 
returns 
purpose 

ux01 -- state value of logic value 
to convert state-strength to state only 

example 

'U', 'U' 

'X', 'X' 

'0' I '0 ' 
'1' I '1 ' 
'X', 'Z' 

'X', 'W' 

'0' I 'L' 

'1' I 'H' 

'X' 

) ; 

-- conversion functions 

FUNCTION To_bit 
RETURN BIT IS 

( s : std_ulogic; xmap: BIT := '0') 

BEGIN 
CASE s IS 

WHEN '0' 'L' => RETURN ('0'); 
WHEN '1' 'H' => RETURN ('1'); 
WHEN OTHERS => RETURN xmap; 

END CASE; 
END; 

FUNCTION To_bitvector ( s : std_logic_vector ; xmap 
RETURN BIT_VECTOR IS 

BIT := '0') 

ALIAS sv : std_logic_vector ( s'LENGTH-1 DOWNTO 0 ) IS s; 
VARIABLE result: BIT_VECTOR ( s'LENGTH-1 DOWNTO 0 ); 

BEGIN 

355 



356 

END; 

FOR i IN result'RANGE LOOP 
CASE sv(i) IS 

WHEN '0' I 'L' => result(i) := '0'; 
WHEN '1' I 'H' => result(i) := '1'; 
WHEN OTHERS => result(i) := xmap; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_bitvector ( s : std_ulogic~vector; xmap : BIT := '0') 
RETURN BIT_VECTOR IS 

IS 

ALIAS sv : std_ulogic_vector 
VARIABLE result : BIT_VECTOR 

BEGIN 

s'LENGTH-1 DOWNTO 0 ) IS s; 
s'LENGTH-1 DOWNTO 0 ); 

END; 

FOR i IN result'RANGE LOOP 
CASE sv(i) IS 

WHEN '0' I 'L' => result(i) := '0'; 
WHEN '1' I 'H' => result(i) := '1'; 
WHEN OTHERS => result(i) := xmap; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_StdULogic ( b : BIT 

BEGIN 
CASE b IS 

WHEN '0 ' => RETURN '0' ; 
WHEN '1' => RETURN ' l' ; 

END CASE; 
END; 

) RETURN std_ulogic 

FUNCTION To_StdLogicVector (b: BIT VECTOR ) RETURN 
std_logic_vector IS 

ALIAS bv : BIT_VECTOR ( b'LENGTH-1 DOWNTO 0 ) IS b; 
VARIABLE result: std_logic_vector ( b'LENGTH-1 DOWNTO 0 ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result (i) .- '0'; 
WHEN '1' => result (i) .- '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_StdLogicVector (s: std_ulogic_vector ) RETURN 
std_logic_vector IS 

ALIAS sv : std_ulogic_vector ( s'LENGTH-1 DOWNTO 0 ) IS s; 
VARIABLE result: std_logic_yector ( s'LENGTH-1 DOWNTO 0 ); 

BEGIN 
FOR i IN result'RANGE LOOP 



END: 

resul t ( i ) : = sv ( i) ; 
END LOOP; 
RETURN result; 

FUNCTION To_StdULogicVector ( b : BIT_VECTOR ) RETURN 
std_ulogic_vector IS 

ALIAS bv : BIT_VECTOR ( b'LENGTH-1 DOWNTO 0 ) IS b; 
VARIABLE result: std_ulogic_vector ( b'LENGTH-1 DOWNTO 0 ); 

BEGIN 

END: 

FOR i IN result 'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result(i) .- '0'; 
WHEN '1' => result(i) .- '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_StdULogicVector ( s 
std_ulogic_vector IS 

ALIAS sv : std_logic_vector s'LENGTH-1 DOWNTO 0 ) IS s; 
VARIABLE result: std_ulogic_vector ( s'LENGTH-1 DOWNTO 0 ); 

BEGIN 

END: 

FOR i IN result'RANGE LOOP 
result (i) : = sv(i): 

END LOOP: 
RETURN result: 

-- strength strippers and type convertors 

FUNCTION To_X01 (s: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS sv : std_logic_vector ( 1 TO s'LENGTH ) IS s: 
VARIABLE result: std_logic_vector ( 1 TO s'LENGTH ); 

BEGIN 
FOR i IN result 'RANGE LOOP 

result(i) := cvt_to_xOl (sv(i»; 
END LOOP: 
RETURN result; 

END; 

FUNCTION To_X01 (s: std_ulogic_vector ) RETURN std_ulogic_vector IS 
ALIAS sv : std_ulogic_vector ( 1 TO s'LENGTH ) IS s; 
VARIABLE result: std_ulogic_vector ( 1 TO s'LENGTH ); 

BEGIN 
FOR i IN result'RANGE LOOP 

result(i) := cvt_to_x01 (sv(i»; 
END LOOP: 
RETURN result; 

END; 

357 



IS 

358 

FUNCTJON To_X01 (s: std_ulogic ) RETURN X01 IS 
BEGIN 

RETURN (cvt_to_x01(s)); 
END; 

FUNCTION To_X01 (b: BIT_VECTOR ) RETURN std_logic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b; 
VARIABLE result: std_logic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result(i) := '0'; 
WHEN '1' => result(i) := '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To X01 (b: BIT_VECTOR ) RETURN std_ulogic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS bi 
VARIABLE result: std_ulogic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result(i) := '0'; 
WHEN '1' => result(i) .- '1'; 

END CASE; 
END LOOPi 
RETURN result; 

FUNCTION To_X01 
BEGIN 

b : BIT ) RETURN X01 IS 

END; 

CASE b IS 
WHEN '0' => RETURN('O'); 
WHEN '1' => RETURN('l'); 

END CASE; 

FUNCTION To_X01Z (s: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS sv : std_logic_vector ( 1 TO s'LENGTH ) IS s; 
VARIABLE result: std_logic_vector ( 1 TO s'LENGTH ); 

BEGIN 

ENDi 

FOR i IN result'RANGE LOOP 
result(i) := cvt_to_x01z (sv(i)); 

END LOOP; 
RETURN result; 



ALIAS sv : std_ulogic_vector ( 1 TO s'LENGTH ) IS s; 
VARIABLE result: std_ulogic_vector ( 1 TO s'LENGTH ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
result(i) := cvt_to_xD1z (sv(i)); 

END LOOP; 
RETURN result; 

FUNCTION To_XD1Z (s: std_ulogic ) RETURN X01Z IS 
BEGIN 

RETURN (cvt_to_x01z(s)); 
END; 

FUNCTION To X01Z (b: BIT_VECTOR ) RETURN std_logic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b; 
VARIABLE result: std_logic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result 'RANGE LOOP 
CASE bv(i) IS 

WHEN 'D' => result(i) := 'D'; 
WHEN '1' => result(i) .- '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To XD1Z (b: BIT_VECTOR ) RETURN std_ulogic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b; 
VARIABLE result: std_ulogic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result 'RANGE LOOP 
CASE bv(i) IS 

WHEN 'D' => result(i) .- '0'; 
WHEN '1' => resul t ( i ) : = '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_XD1Z (b: BIT ) RETURN XD1Z IS 
BEGIN 

END; 

CASE b IS 
WHEN 'D' => RETURN('D'); 
WHEN '1' => RETURN('l'); 

END CASE; 

FUNCTION To_UX01 (s: std_logic_vector ) RETURN std_logic_vector IS 
ALIAS sv : std_logic_vector ( 1 TO s'LENGTH ) IS s; 
VARIABLE result: std_logic_vector ( 1 TO s'LENGTH ); 

BEGIN 

359 



IS 

/ 

360 

END; 

FOR i IN result'RANGE LOOP 
result(i) := cvt_to_ux01 (sv(i)); 

END LOOP; 
RETURN result; 

ALIAS sv : std_ulogic_vector ( 1 TO s'LENGTH ) IS Si 

VARIABLE result: std_ulogic_vector ( 1 TO s'LENGTH ); 
BEGIN 

END; 

FOR i IN resu1t'RANGE LOOP 
result(i) := cvt_to_ux01 (sv(i)); 

END LOOP; 
RETURN result; 

FUNCTION To_UX01 (s: std_u1ogic ) RETURN UX01 IS 
BEGIN 

RETURN (cvt_to_ux01(s)); 
END; 

FUNCTION To_UXOl (b: BIT_VECTOR ) RETURN std_logic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b; 
VARIABLE result: std_logic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result(i) := '0'; 
WHEN '1' => result(i) := '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_UX01 (b: BIT_VECTOR ) RETURN std_ulogic_vector IS 
ALIAS bv : BIT_VECTOR ( 1 TO b'LENGTH ) IS b; 
VARIABLE result: std_ulogic_vector ( 1 TO b'LENGTH ); 

BEGIN 

END; 

FOR i IN result'RANGE LOOP 
CASE bv(i) IS 

WHEN '0' => result(i) := '0'; 
WHEN '1' => result(i) := '1'; 

END CASE; 
END LOOP; 
RETURN result; 

FUNCTION To_UX01 (b: BIT ) RETURN UX01 IS 
BEGIN 

CASE b IS 
WHEN '0' => RETURN('O'); 
WHEN '1' => RETURN('l'); 

END CASE; 



END; 

-- edge detection 

FUNCTION rising_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS 
BEGIN 

END; 

RETURN (s'EVENT AND (To_XOl(s) = 'I') AND 
(To_XOl(s'LAST_VALUE) '0' » ; 

FUNCTION falling_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS 
BEGIN 

RETURN (s'EVENT AND (To_XOl(s) = 'a') AND 
(To_XOl(s'LAST_VALUE) 'I' » ; 

END; 

-- object contains an unknown 

FUNCTION Is_X ( s : std_ulogic_vector ) RETURN BOOLEAN IS 
BEGIN 

END; 

FOR i IN s'RANGE LOOP 
CASE s(i) IS 

WHEN 'u' I 'X' I 'Z' I 'W' I '-' => RETURN TRUE; 
WHEN OTHERS => NULL; 

END CASE; 
END LOOP; 
RETURN FALSE; 

FUNCTION Is_X ( s : std_Iogic_vector ) RETURN BOOLEAN IS 
BEGIN 

FOR i IN s'RANGE LOOP 
CASE s(i) IS 

WHEN 'u' I 'X' I 'Z' I 'W' I '-' => RETURN TRUE; 
WHEN OTHERS => NULL; 

END CASE; 
END LOOP; 
RETURN FALSE; 

END; 

FUNCTION Is_X ( s : std_ulogic 
BEGIN 

CASE s IS 

) RETURN BOOLEAN IS 

WHEN 'U' I 'X' I 'Z' I 'w' I '-' => RETURN TRUE; 
WHEN OTHERS => NULL; 

END CASE; 
RETURN FALSE; 

END; 

361 





Appendix D-Std_math Package 

Below is a copy of the std_math package that is used in several of the designs in this text. This 
package is used to overload the + operator for operands of std_Iogic. This is not the the 
NUMERIC_STD package being worked on by the IEEE 1076.3 working group. For a draft copy of 
that standard, consult the World Wide Web (http://www.vhdl.org). 

library ieee; 
use ieee.std_logic_1164.all; 

package std_math is 
FUNCTION inc_std(a : STD_LOGIC_VECTOR) 

STD_LOGIC_VECTOR; 
FUNCTION std2i (std STD_LOGIC_VECTOR) 
FUNCTION i2std (VAL, width : INTEGER) 

STD_LOGIC_VECTOR; 
(a, b 

RETURN 

RETURN INTEGER; 
RETURN 

RETURN FUNCTION "+" 
STD_LOGIC_VECTOR; 

FUNCTION "+" 

STD_LOGIC_VECTOR; 
end std_math; 

(a STD_LOGIC_VECTOR; b : INTEGER) RETURN 

PACKAGE BODY std_math IS 
inc_std 

Increment std_logic_vector 
In: std_logic_vector. 
Return: std_logic_vector. 

(a FUNCTION inc_std 
STD_LOGIC_VECTOR IS 

VARIABLE s 
VARIABLE carry 

BEGIN 

STD_LOGIC_VECTOR (a'RANGE); 
std_logic; 

carry : = I 1 I ; 

FOR i IN a'LOW TO a'HIGH LOOP 
s(i) 
carry 

END LOOP; 

RETURN (s); 
END inc_std; 

11+11 

.-

.-

Add overload for: 

a(i) XOR carry; 
a(i) AND carry; 

In: two std_logic_vectors. 
Return: std_logic_vector. 

FUNCTION "+" (a, b 
STD_LOGIC_VECTOR IS 

VARIABLE s 
VARIABLE carry 
VARIABLE bi 

STD_LOGIC_VECTOR (a'RANGE); 
STD_LOGIC; 
integer; Indexes b. 

RETURN 

RETURN 

363 



364 

BEGIN 
carry : = '0 ' ; 

FOR i IN a'LOW TO a'HIGH LOOP 
bi := b'low + (i - a'low); 
s(i) .- (a(i) XOR b(bi)) XOR carry; 
carry .- ((a(i) OR b(bi)) AND carry) OR (a(i) AND b(bi)); 

END LOOP; 

RETURN (s); 
END "+"; 

std2i 
std_logic_vector to Integer. 
In: std_logic_vector. 
Return: integer. 

FUNCTION STD21 (std : std_logic_vector) RETURN integer IS 
VARIABLE result, abit : integer range 0 to 2**std ' length - 1 .- 0; 
VARIABLE count : integer := 0; 

BEGIN STD21 
bits: FOR I IN std'low to std'high LOOP 
abit := 0; 
IF ((std(I) = '1')) THEN 

abit := 2**(1 - std'low); 
END IF; 

result := result + abit; 
count := count + 1; 

Add in bit if '1'. 

EXIT bits WHEN count = 32; 
END LOOP bits; 
RETURN (result); 

END STD2I; 

i2std 
Integer to Bit_vector. 
In: integer, value and width. 

32 bits max. 

Return: std_logic_vector, with right bit the most significant. 

FUNCTION i2std (VAL, width : INTEGER) RETURN 
STD_LOGIC_VECTOR IS 

VARIABLE result 
VARIABLE bits 

BEGIN 

STD_LOGIC_VECTOR (0 to width-1) := (OTHERS=>'O'); 
INTEGER .- width; 

IF (bits > 31) THEN 
bits := 31; 

ELSE 
ASSERT 2**bits > VAL REPORT 

Avoid overflow errors. 

"Value too big FOR STD LOGIC_VECTOR width" 
SEVERITY WARNING; 

END IF; 

FOR i IN 0 TO bits - 1 LOOP 
IF ((val/(2**i)) MOD 2 = 1) THEN 



resul t ( i ) . - '1'; 
END IF; 

END LOOP; 

RETURN (result); 
END i2std; 

n+1I 

Overload "+" for std_logic_vector plus integer. 
In: std_logic_vector and integer. 
Return: std_logic_vector. 

FUNCTION "+" (a: STD_LOGIC_VECTOR; b 
STD_LOGIC_VECTOR IS 

BEGIN 
RETURN (a + i2std(b, a'LENGTH)); 

END "+"; 

INTEGER) RETURN 

365 





Bibliography 

The following list of books and articles on VHDL programmable logic, and computer networks is 
not intended to be comprehensive, but merely to point you to further reading that can help you 
become knowledgeable of programmable logic and Ethernet, and skilled in the use of VHDL 
simulation and synthesis tools. 

Books: 

Applications Handbook, Cypess Semiconductor Corporation, 1994. 

Armstrong, J.R, Chip-Level Modeling with VHDL, Englewood cliffs, NJ: Prentice-Hall, 1988. 

Barton, D., A First Course in VHDL, VLSI Systems Design, January 1988. 

Bhasker, J., A VHDL Primer, Englewood Cliffs, NJ: Prentice Hall, 1992. 

Brown, S., Field-Programmable Devices. 2nd ed. Stan Baker Associates 

Carlson, S., Introduction to HDL-Based Design Using VHDL, Synopsys Inc., 1991. 

Coelho, D., The VHDL Handbook, Boston: Kluwer Academic, 1988. 

Data Book, Altera Corporation, San Jose, 1993. 

Harr, R E., et aI., Applications ofVHDL to Circuit Design, Boston: Kluwer Academic, 1991. 

IEEE Standard VHDL Language Reference Manual, Std 1076-1993, IEEE, NY, 1993. 

IEEE Standard 1076 VHDL Tutorial, CLSI, Maryland, March 1989. 

IEEE Standard Multivalue Logic Systemfor VHDL Model Interoperability (Std_logic_1164), Std 
IEEE 1164-1993, IEEE, NY, 1993. 

Leung, S., ASIC System Design With VHDL, Boston: Kluwer Academic, 1989. 

Leung, S., and M. Shanblatt, ASIC System Design With VHDL: A Paradigm, Boston: Kluwer 
Academic, 1989. 

Lipsett, R, C. Shaefer, and C. Ussery, VHDL: Hardware Description and Design, Boston: Kluwer 
Academic, 1989. 

MAC Parameters, Physical Layer, Medium Attachment Units and Repeater for 100 Mbls Operation, 
Supplement to Std IEEE 802.3~1993, IEEE, NY, 1995. 

Mazor, S., and P. Langstraat, A Guide to VHDL, Boston: Kluwer Academic, 1992. 

IEEE Standard Multivalue Logic Systemfor VHDL Model Interoperability (Std_logic_1164), Std 
IEEE 1164-1993 

PAL Device Data Book and Design Guide, Advanced Micro Devices, Inc., 1995. 

Perry, D., VHDL, New York: McGraw-Hill, 1991. 

Programmable Logic Data Book, Cypress Semiconductor Corporation, 1994. 

367 



368 

Programmable Logic Data Book, Xilinx, Inc. 1994. 

Schoen, J.M., Performance and Fault Modeling with VHDL, Englewood Cliffs, NJ: Prentice Hall, 
1992. 

Tanenbaum, Andrew, Computer Networks, 2nd ed. Prentice Hall, 1988. 

Sternheim, Eli et al.Digital Design and Synthesis, Automa Publishing Company, San Jose, 1993. 

Articles: 

Armstrong, J.R., et aI., "The VHDL Validation Suite," Proc. 27th Design Automation Conference, 
June 1990, pp. 2-7. 

Barton, D., "Behavioral Descriptions in VHDL," VLSI Systems Design, June 1988. 

Bhasker, J., "Process-Graph Analyzer: A Front-End Tool for VHDL Behavioral Synthesis," Software 
Practice and Experience, vol. 18, no. 5, May 1988. 

Bhasker, J., "An Algorithm for Microcode Compaction of VHDL Behavioral Descriptions," Proc. 
20th Microprogramming Workshop, December 1987. 

Coelho, D., "VHDL: A Call for Standards," Proc. 25th Design Automation Conference, June 1988. 

Coppola, A., and J. Lewis, "VHDL for Programmable Logic Devices," PLDCON'93, Santa Clara, 
March 29-31, 1993. 

Coppola, A., J. Freedman, et al., "Tokenized State Machines for PLDs and FPGAs," Proceedings of 
IFIP WG10.2IWG10.5 Workshop on Control-Dominated Synthesis from a Register-Transfer
Level Description, Grenoble, France, 3-4 September, 1992, G. Saucier and J. Trilhe, editors, 
Elsevier Science Publishers. 

Coppola, A., J. Freedman, et aI., "VHDL Synthesis of Concurrent State Machines to a Programmable 
Logic Device," Proc. of the IEEE VHDL International User's Forum, May 3-6, 1992, 
Scottsdale, Arizona. 

Coppola, A., and M. Perkowski, "A State Machine PLD and Associated Minimization Algorithms," 
Proc. of the FPGA '92 ACMISIGDA First International Workshop on Field-Programmable Gate 
Arrays, Berkeley, California, Feb. 16-18, 1992, pp. 109-114. 

Dillinger, T.E., et aI., "A Logic Synthesis System for VHDL Design Description," IEEE ICCAD-89, 
Santa Clara, California. 

Farrow, R., and A. Stanculescu, "A VHDL Compiler Based on Attribute Grammar Methodology," 
SIGPIAN 1989. 

Gilman, A.S., "Logic Modeling in WAVES," IEEE Design and Test of Computers, June 1990, pp. 
49-55. 

Hands, J.P., "What Is VHDL?", Computer-Aided Design, vol. 22, no. 4, May 1990. 

Hines, J., "Where VHDL Fits Within the CAD Environment," Proc. 24th Design Automation 
Conference, 1987. 



Kim, K., and J.-Trout, "Automatic Insertion of BIST Hardware Using VHDL," Proc. 25th Design 
Automation Conference, 1988. 

Moughzail, M., et aI., "Experience with the VHDL Environment," Proc. 25th Design Automation 
Conference, June 1988. 

Saunders, L., "The IBM VHDL Design System," Proc. 24th Design Automation Conference, 1987. 

Ward, P.C., and J. Armstrong, "Behavioral Fault Simulation in VHDL," Proc. 27th Design 
Automation Conference, June 1990, pp. 587-593. 

369 





A 
Acte142,48 

ACT3 family 48 
actuals 188 
adaptors and transceivers 175 
address decoder 96 
Advanced Micro Devices (AMD) 16,32 

MACH 3 and 4 families 32 
advantages of programmable logic 18-20 
after 61 
aliases 72 
Altera 32, 42, 48 

FLEX 8000 family 48 
MAX5000 family 31, 32 
MAX7000 family 32 

amorphous-silicon antifuse 43 
antifuse-based FPGA 42, 48 
architecture 55, 56, 59-69 
arithmetic operators 104 
array types 75 
ASIC 1 
ASIC Migration 4 
assert 228 
assignment operator ( 56 
asynchronous clocking 266 
asynchronous reset/preset 102, 105,248 
AT&T 42, 48 

ORCA family 48 
Atmel42 
attribute 69, 70, 78, 292 

'event 79 
'high 78, 226 
'left 78 
'length 78 
'low 78,226 
'range 228 
'right 78 
state_encoding 160 
synthesis_off 260 

audience 2 
automatic pad selection 302 

Index 

371 



B 
behavioral 

bidirectionals 110 
descriptions 59 
three-states 110 

benchmarking 3,247 
bidirectional signals 110, 112 
binary decision diagram 284 
BIST (built-in self test) 41 
bit 55,58 
bievector 58 
bie vector increment function 228 
bie vector to integer function 226 
boolean equations 66, 85 
boolean state machine description 135 
boolean to bit function 225 
boolean type 58 
bridges 176 
bubble-entry tools 200 
buffer 187 
buried macrocells 34 
buried node 252 

c 
carry look-ahead counters 298 
case sensitivity (lack thereof) 55 
case-when 65, 96, 129, 138 
clk'event 99 
clock buffers 52 
clock transitions 79,99 
clocking 265 

clock distribution tree 302 
clock pads 302 
clock polarity control 266 

collision 180 
combination synchronous/asynchronous reset 103 
comb~nationallogic 85-98 

concurrent statements 85 
dataflow constructs 87 

combinatorial output decoding 144 
commenting code 55 
common errors 79, 120 
comparing architectural descriptions 67 
comparison of CPLDs and FPGAs 305 
component instantiations 90 
composite types 75 

372 



concurrent statements 85 
conditional signal assignment 88 
configurable logic block (CLB) 45 
constants 70 
counters 254 
CPLDs 1,27-41,252-283 

3.3V operation 41 
clocking 265 
path timing summary 282 
reset/preset conditions 254 

cross-point switch 265 
CSMAlCD 174 
Cypress 16, 32, 42, 48 

D 

CY7B991271 
CY7C371 39, 148,250,254,263 
CY7C374278 
CY7C381A 293 
FLASH370 CPLDs 2, 32, 252, 253-283 
MAX340 family 32, 34 
pASIC380 family 48 
pASIC380 FPGA architecture 283 
pASIC380 FPGA logic ce1148 

data frame structure 180 
data objects 70 
dataflow and concurrent assignment 65 
DEC 173 
decode operations 96 
dedicated inputs 253 
defining design requirements 5 
design methodologies 

bottop-up 6 
flat 6 
top-down 6 

design trade-offs 288 
designing 60 

with programmable logic 18 
with the 22VI0 24 
with TIL logic 14 

device-independent design 3 
device-specific optimization 251 
DIP (Dual In-Line Pin) 18 
don't cares 163, 165 
double-buffering 289 
DRAM 

373 



E 

access time 271 
controller 266 

efficiency vs. performance 48 
Electronic Engineering Times 1 
entity 55, 56, 56-59 
entity and architecture pairs 56 
enumeration types 73 
equality comparator 55 
ethernet 173 

.100BASE-T 174 
100-BASE-T4 Network Repeater 173 
10BASE2174 
10BASE5174 
10BASE-T 174 
architecture 173 
background 173 
network constraints 174 
shared medium 173 

event scheduling 61, 62 
exercises 

chapter 1 11 
chapter 2 53 
chapter 380 
chapter 4 124 
chapter 5 168 
chapter 6 224 
chapter 7 245 
chapter 8 305 
chapter 9320 

exit statement 116 
expander product terms 32,264 
explicit don't cares 165 
explicit state encoding 165 
express wire 289 

F 
fault tolerance 163 

one-hot state machines 165 
feedback 21 
FIFO 83,115,117,204 
fitting 8-9, 251 
flip-flops 98 

operation 100 
floating types 75 

374 



for loops 115 
forcing signals to macrocells 258 
for-generate 114 
FPGAs 1,41-52,283-304 

3.3V operation 52 
Cypress pASIC380 logic cell 283 
features 52 
preassigning pinouts 304 
propagation delay 289 
technologies 42-48 
timing 48 

full adder 298 
function 225 

declaration 228 
definition 228 
parameters 225 

functions 225 
future of programmable logic 52 

G 
gatespkg 67 
generate 114 
generic map 189 
generics 117, 173, 185 
glitching 271 
global feedback 35 
glossary (Appendix A) 323-325 
glue logic 13 

H 
hidden registers 120 
hierarchy 67, 173 
high-drive pads 302 
hubs 175 
hybrid CPLDIFPGA architecture 48 

I 
11056 
110 cells 27, 36, 252 
110 macrocells 34, 252 
identifiers 70 
IEEE 225 

1076 standard 1,225 
1164 standard 1 

std_Iogic_ll64 package (Appendix C) 343-361,363-365 
802.3 standard 173 

375 



if-then-else 59, 92 
if-then-elsif-else 129 
illegal states 156 
illegal states as don't cares 163 
immediate assignment operator 72 
implicit don't cares 163 
implied sensitivity list 66 
improper use of variables 123 
incomplete if-then-else statements 165, 166 
inout 187 
input macrocells 35 
instantiating components 67 
instantiation of synchronous logic components 109 
in-system programmability (ISP) 41, 51 
integer to bie vector conversion 227 
integer type 58, 74 
Intel 173 
International Standards Organization (ISO) 173 

J 
jabbering 180 
JTAG (Joint Test Action Group) 41 

K 
Kamaugh maps 14,25, 128 

L 
latched output 252 
Lattice Semiconductor 16 
LCC (Leadless Chip Carrier) 18 
level-sensitive latch 99 
library building 184 
local area network (LAN) 173 
local feedback 35 
locals 188 
logic array blocks (LABs) 48 
logic array inputs 26 
logic blocks 30, 252 
logic cell 41, 283 

architecture 46-48 
logic module 48 
loops 115 

for 115 
while 115 

low-skew clock buffers 52 

376 



M 
macrocells 33, 252, 258 

input 20 
Mealy machine 161 
Mealy machines vs. Moore machines 161 
media access controller (MAC) 175 
memory controller 135 
metastability 190, 253 
MilStd4541 
mode 57-58 

buffer 57, 187 
in 57 
inout 57, 187 
out 57 

modelling 60 
modelling vs. designing 60 
module generation 294 
Moore machine 141, 161 
MTBF (mean time between failures) 253 
multiplexer-based interconnect 260 

N 
named association 313 
National Semiconductor 16 
natural 76 
next statement 116 
non-synthesizeable VHDL 64, 123 
NRE20 
numeric_bit 238 
numeric_std 238 

o 
on-chip RAM (memory) 52 
one-hot encoding 157 

advantages 157 
operator inferencing 294 
optimization 7, 251 
others 88 
output decoding 

for one-hot state machines 161 
from state bits combinatorially 146 
in parallel output registers 148 

output encoding within state bits 151 
overloading 

functions 235 
module generation 297 

377 



operators 233 
procedures 243 
read and write procedures 317 

oxide-nitride-oxide (ONO) antifuse 44 

P 
PALs 16 

16L816 
16R418 
16R618 
16R818 

parameterized components 173, 185 
pASIC380 family 2 
PCI (Peripheral Component Interconnect) 41 
physical types 75 
pip~lining 302 
place and route 9,293-304 

floor-planning 293 
simulated annealing 293 
timing-driven 294 

PLCC (Plastic Leaded Chip Carrier) 18 
PLD 140 
port controller 182 
portability 3 
ports 55, 57 
positional association 313 
post-fit (layout) simulation 9-10 
power consumption 52 
preassigning signals to device pins 260 
precedence of operators (lack thereof) 87 
predefined enumeration types 73 
preset 103 
procedures 225,241,313 

comparison to functions 241 
return value( s) 241 

process 61, 91 
processes and sequential statements 60 
product of sums 7 
product term 

(gated) clocking 266 
allocation 26, 31, 264 
array 26, 31 
placement table 280 
sharing 32 
steering 32, 264 

programmable clock skew buffer 271 

378 



programmable configuration bits 20 
programmable function units (PFUs) 48 
programmable interconnect matrix (PIM) 252 
programmable interconnects (PI) 28 

array-based 28 
multiplexer-based 28 
routability 29 

programmable logic devices 16 
programmable macrocell 21 
programming the device 10 
proof of concept 173 
propagation delays 62 
protocol 180 

Q 
quad wire 289 
quick reference guide to VHDL 327-341 
QuickLogic 42 

R 
real estate 20 
real type 75 
record types 76 
register transfer level (RTL) 7, 69, 145 
registered output 252 
relational operators 90 
repeater 173,175,278 

arbiter 183,201 
block diagram 181 
clock multiplexer 184, 203 
core controller 184, 206 
core logic specifications 177 
CPLD resource requirements 279 
FIFO 184, 204, 303 
implementation in an 8k FPGA 301 
implementing repeater ports in a CY7C374 278 
MAC-to-transceiver interface 206 
output multiplexer 184, 216 
port controller 191 
state machine diagrams 209 
symbol generator 184, 216 
top-level design 219 

reset/preset 
conditions in CPLDs 254 
dominance 107 
product terms 258 

379 



resets and synchronous logic 102 
ripple-carry adders 298 
routability 262 
routers 177 
routing 42,261 
routing channels 41 
RTL-based synthesis 146 

S 
scheduled signal assignment 121 
security fuse 20 
selective signal assignment 88 
sensitivity list 61,64 
sequential encoding 159 
sequential statement execution 61 
sequential statements vs. sequential (clocked) logic 92 
shortcomings 4-5 
signal 

initialization 71 
partitioning 253 

signals 71 
simple PLDs 20-27 

22VlO 20-27 
terminology 26 
using more than 16 product terms 26 

simulation 309-320 
of source code 6 
time 61 

single-length wires 45 
SRAM44 

FPGAs48 
memory array 135 
technology 42 

SRAM vs. Antifuse 51 
density and capacity 51 
ease of use 51 
in-system programmability 51 
performance 51 

standard functions 237 
state assignment table 128 
state encoding 

for reduced logic 167 
table 152 
using enumerated types 162 

state machines 127-168 
summary 168 

380 



synthesis results 132, 134 
traditional design methodology 127 

state transition table 128 
state_encoding attribute 160 
static RAM cells 44 
std_Iogic 74 
std_Iogic_1l64 83, 237 
std_Iogic_ vector 74 
std_math 83 
std_ulogic 73 
structural bidirectionals 113 
structural descriptions 66, 67 
structural three-states 113 
subprograms 245 
subtypes 77 
sum of products 7, 68 
synchronization components 190 
synchronous logic 98-124 
synchronous reset/preset 103, 138 
synchronous signal assignments 101 
synthesis 5, 7,247-304 

arithmetic operations 297 
asynchronous reset/preset 247 
CPLD case study 252-283 
CPLD reset/preset conditions 250 
directive-driven synthesis 292 
directives 297 
floor-planning 292 
FPGA case study 283-?? 
optimization for FPGA logic cell architecture 283 
place and route 293-304 

floor-planning 293 
simulated annealing 293 

synthesis and fitting 251 
timing-driven place and route 294 

synthesis_off attribute 260 
synthesize and fit (place and route) design 7-9 
system in a chip 42 

T 
test access port and boundary scan capability 41 
test fixture 309 

creation 310-317 
memory controller 315 

Texas Instruments 16 
TTL Series 54174 logic circuits 13 

381 



textio package 313 
three-state buffers 110 
time-to-market 4, 173 
timing parameters 23,37 

asynchronous reset recovery time 23 
clock to output delay (tCO) 23 
clock to output delay through the logic array (tC02) 23 
hold time (tH) 23 
input to output enable delay 23 
maximum frequency of operation 23 
minimum clock width 23 
propagation delay (tPD) 23 
setup time (tS) 23 
system clock to system clock time (tSCS) 23 

token ring 176 
transceiver-repeater interface 177 
translating state flow diagrams 138 
type 58-59 

bit 58 
bie vector 58 
boolean 58 
integer 58 
real 75 
std_Iogic 58 
std_ulogic 58 

type conversion function 225 

U 
use clause 67, 200 
using functions 229 

V 
variable 63, 72 

assignment 72 
scope 63 

variable product term distribution 21 
verifying state machine functionality 132 
VHDLLRM74 
VHDL post-fit models 309 
VHDL simulation 309-320 

W 
wait statement 242 
wait-until 101 
Warp 10 
Warp210 

382 



Warp311 
when others 97, 164 
when-else 88, 141 
while loops 115 
with-select 141 
with-select-when 65, 87 
work library 67 

X 
X01237 
X01Z237 
Xerox 173 
Xilinx 42, 48 

Z 

XC400048 
XC4000 CLB 48 

zero delay event 61 

383 













Language Constructs 

Concurrent Statements 

Boolean equations 

relation { and relation} v <= a and band c; 
1 relation { or relation } w <= a or b or c; 
1 relation { xor relation } x <= a xor b xor c; 
1 relation { nand relation } y <= a nand b nand c; 
1 relation { nor relation } z <= a nor b nor c; 

Conditional signal assignment (WHEN-ELSE) 

{expression when condition else} expression; a<= '1' when b = c else '0'; 

Selected signal assignment (WITH-SELECT-WHEN) 

with selection_expression select architecture archfsm of fsm is 
{identifier <= expression when type state_type is (stO, st!, st2, st3); 

identifier 1 expression 1 discrete_range 1 others,} signal state: state_type; 
identifier <= expression when signal y, z: std_logic; 

identifier 1 expression 1 discrete_range 1 others; begin 
with state select 

x<= "0000" when stO I stl; 
"0010" when st21 st3; 
y and z when others; 

end archfsm; 

Component instantiation - see above 

Generate scheme for component instantiation or generation of equations 

generate_label: (for identifier in discrete_range) gl: for i in 0 to 7 generate 
1 (if condition) generate reg 1: register8 port map (clock, reset, enable, 

{ concurrenCstatement } data_in(i), data_out(i»; 
end generate [generate_label] ; end generate gl; 

g2: for j in 0 to 2 generate 
aU) <= b(j) xor c(j); 

end generate g2; 

331 



Sequential Statements 

Process statement 

[process_label:] my_process: 
process (sensitivity list) process (rst, clk) 

{ type_declaration constant zilch: std_logic_vector(7 downto 0) := "0000_0000"; 
I constanLdeclaration begin 
I variable_declaration wait until clk = ' 1 ' ; 
I alias_declaration} if (rst = ' I') then 

begin q <= zilch; 
{ waiLstatement elsif (en = ' 1') then 
I signaCassignmenLstatement q <= data; 
I variable_assignmenLstatement else 
I iLstatement q <=q; 
I case_statement end if; 
I loop_statement end my_process; 

end process [process_label]; 

IF-THEN-ELSE-ELSIF statement 

if condition then sequence_oLstatements if (count = "00") then 
{elsif condition then sequence_of statements} a<=b; 
[else sequence_oLstatements] elsif (count = "10") then 
end if; a<=c; 

else 
a<=d; 

end if; 

CASE-WHEN statement 

case expression is case count is 
{when identifier I expression I discrete_range I others => when "00" => 

sequence_oLstatements} a<=b; 
end case; when "10" => 

a<=c; 
when others => 

a<=d; 
end case; 

FOR LOOP statement 

[loop_label: ] myjocloop: 
for identifier in discrete_range loop for i in 3 downto 0 loop 

sequence_oCstatements if reset(i) = ' l' then 
end loop [loop_label]; data_out(i) := '0'; 

end if; 
end loop myjocloop; 

WHILE LOOP statement 

[loop_label:] my_while_loop: 
whil~ condition loop while (count> 0) loop 

sequence_oCstatements count := count - 1; 
end loop [loop_label]; result <= result + data_in; 

end loop my_while_loop; 

332 



Cypress Semiconductor 
3901 North First Street 
Son Jose, CA 95134 
Tel: (408) 943-2600 
Fox: (408) 94:1-2741 


