
1996

CYPRESS

Cypr
Appl
Han

marshall

Cathy Russell
Account Manager

Marshall Industries
Bay Area
336 Los Coches Street
Milpitas, CA 95035
(408) 942-4600
(408) 262-1224 Fax
(408) 942-6039 Voice Mail
(408) 994-0839 Pager

Email: crussell@001.marshall .com
Internet Web site: www.marshall.com

Cypress Applications Handbook

Cypress Semiconductor is a trademark of Cypress Semiconductor Corporation.
Cypress Semiconductor, 3901 North First St., San Jose, CA 95134 (408) 943-2600

Thlex: 821032 CYPRESS SNJ UD, TWX: 9109970753, FAX: (408) 943-2741
FAX-On-Demand: 1-800-213-5120 or 1-408-943-2798, Web Address: http://www.cypress.com

How to Use This Book

This Applications Handbook is a learning tool for using Cypress devices. The application notes in­
cluded here range from general product overview articles, such as "Understanding Dual-Port RAMs,"
to specific design examples. To summarize each application note, an abstract listing has been provided
at the front of each section.

The general overviews describe product-family characteristics and explain some of the products-capa­
bilities. These application notes appear at the beginning of this Handbook.

Next appear application examples that show how to use specific Cypress devices in the context of real
designs. The application examples are organized by product type (e.g., PROMs or CPLDs). Within
each product type examples are arranged by product number, using the product that is the article's
primary focus.

Although your specific application might not appear explicitly in an application note, the design exam­
ples can still be useful to you. If the design example is similar to your application, you might be able
to adapt the hardware or software to your design easily. Many of the application notes provide PLD
software code for design tools from a variety of vendors, so that you can copy the code and use it as
a skeleton for your own PLD designs. Even if none of the examples relate directly to your design, they
can stimulate new ideas by showing features or applications that might not have occurred to you. The
information can also significantly reduce the learning curve normally associated with unfamiliar ICs.

Published January 1996

© Cypress Semiconductor Corporation, 1996. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for
the use 01 any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it conveyor imply any license under patentor other rights. Cypress Semiconw

ductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant
Injurytothe user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so dOing indemnifies
Cypress Semiconductor against all damages.

Contents

General Information

System Design Considerations When Using Cypress CMOS Circuits 1-1

Protection, Decoupling, and Filtering of Cypress CMOS Circuits 1-30

Using Decoupling Capacitors ... 1-34

SRAMs

Using an L2 Cache Module with the Contaq 82C599 PCI Chipset for the Intel 486 CPU 2-1

PROMs/EPROMs

Generating PROM Programming Files .. 3-1

Interfacing the CY7C276 High-Speed PROM to the AT&T, AD, Motorola, and TI DSPs 3-14

Using the CY27H010 with the Rockwell Y.FAST Chipset 3-22

Interfacing a 5V Cypress PROM to a 3.3V System using a CYBUS3384 Bus Switch 3-25

UltraLogic/PLDs

Are Your PLDs Metastable? ... 4-1

Designing with the CY7C335 and Warp2 OM VHDL Compiler 4 - 27

Getting Started Converting .ABL Files to VHDL .. 4-56

Abel'" -HDLvs. IEEE-1076 VHDL ... 4-83

The FLASH370'" Family Of CPLDs and Designing with Warp2 4-97

Implementing a Reframe Controller for the CY7B933 HOTLink OM Receiver
in a CY7C371 CPLD ... 4-116

Implementing a 128Kx32 Dual-Port RAM Using the FLASH370 4-132

Efficient Arithmetic Designs Targeting FLASH370 CPLDs 4-144

Design Considerations for On-Board Programming of the CY7C374 and CY7C375 4-174

Simulation of Cypress CPLDs with Mentor's QuickSim II 4-177

Architectures and Technologies for FPGAs .. 4-188

iii

i!i!!!!!::~ Contents
_~CYPRESS =================
UltraLogic/PLDs (continued)

Designing with FPGAs
An Introduction to Cypress's pASIC380 Family of FPGAs and the Wa1p3"" Design Tool 4-200

PCI Bus Applications on FPGAs ... 4-220

CY7C380 Family Quick Power Calculator ... 4-238

FPGA Design Entry Using Wmp3 4-243

State Machine Design Considerations and Methodologies 4-260

Using Hierarchical VHDL Design .. 4-297

Designing UltraLogic'" With Exemplar and Synopsys""4-307

Specialty Memories

Understanding Dual-Port RAMs ... 5-1

Understanding Large FIFOs .. 5-19

Understanding Clocked FIFOs .. 5-29

FIFO Dipstick Using Wa1p2 VHDL and the CY7C371 .. 5-39

Data Communications

100BASE-T4/10BASE-T Ethernet PCI Network Adapter 6-1

100BASE-T4 Ethernet Repeater .. 6-18

Interfacing with the SST"" ... 6-26

Frequently Asked Questions about HOTLink ... 6-35

HOTLink Design Considerations .. 6-44

Serializing High Speed Parallel Buses to Extend Their Operational Length 6-100

Using High-Speed Serial Links to Supplement Parallel Data Buses 6-127

Drive ESCON'" With HOTLink ... 6-134

Using the CY7B923 as an ECL Clock Source ... 6-167

Replace Your Am7968 TAXI'" ltansmitterWith a CY7B923 HOTLink 6-173

Upgrade Your TAXI-275"" with HOTLink .. 6-184

HOTLink Built-In Self-Test (BIST) ... 6-197

HOTLink Jitter Characteristics .. 6-214

Understanding Bit-Error-Rate with HOTLink .. 6-256

Driving Copper Cables with HOTLink .. 6-262

HOTLink Copper Interconnect-Maximum Length vs. Frequency 6-296

Using HOTLink with Long Copper Cables ... 6-305

HOTLink CY7B933 RDY Pin Description ... 6-320

iv

Contents

Data Communications (continued)

CY7C42X/46X FIFO Interface to the CY7B923 (HOTLink) 6-326

Interfacing the CY7B923 and CY7B933 (HOTLink) to Clocked FIFOs 6-329

Interfacing the CY7B923 and CY7B933 (HOTLink) to a Wide Data Clocked FIFO 6-337

Frequently Asked Questions about HOTLink Evaluation Boards 6-347

CY9266 HOTLink Evaluation Board User's Guide .. 6-352

Timing Products

Clock Terminology ... 7-1

Crystal Oscillator Topics .. 7 - 8

Jitter in PLL-Based Systems: Causes, Effects, and Solutions 7-13

ECL Outputs .. 7-20

Understanding the CY2291 and CY2292 ... 7 - 22

Understanding the CY2254 ... 7-30

Everything You Need to Know About CY7B991/CY7B992 (RoboClock)
But Were Afraid to Ask .. 7 - 34

Innovative Designs with the CY7B991/2/1O/20 (RoboClock) Programmable Skew Clock Buffer 7-74

Generation of Synchronized Processor Clocks Using the CY7B991 or CY7B992 7-81

Innovative RoboClock Application .. 7 - 86

CY7B991 and CY7B992 (RoboClock) Test Mode .. 7-98

Bus Products

Frequently Asked Questions about the VMEbus Products 8-1

Using the Slave VIC (CY7C960/961) .. 8-7

Using the CY7C964 with VIC ... 8-29

Features of the VIC068A VMEbus Interface Controller 8-41

Interfacing the VIC068A to the MC68020 .. 8-46

Connecting the Cypress VIC068NAC068 to the TI TMS320C40: A Prototype Design ; 8-53

Software Considerations for the VIC64 ... 8-91

VIC64 to Motorola 68040 Interface ... 8-106

Interfacing the CY7C611A with the VIC64 .. 8-147

An SVIC to 68020 Arbiter Design .. 8-160

RACEway Products from Cypress Semiconductor ... 8-177

Interfacing to RACEway: PitCREW .. 8-179

Interfacing to RACEway: PitCREWjr ... 8-204

Glossary ... G-l

Index ... 1-1

Sales Representatives and Distributors .. A-I

v

General Information - 1

General Information Section Contents and Abstracts

System Design Considerations When Using Cypress CMOS Circuits 1-1

This application note describes factors to consider when designing a digital system using high-performance
CMOS integrated circuits. A formula is derived that enables the designer to predict when a trace on a PCB
may become a transmission line. A simplified transmission line analysis is presented that eliminates the jwt
phase terms from the classical transmission line equations. Step function responses and pulse responses are
tabulated for various line terminations. Various types of transmission lines and types of terminations are pres­
ented and analyzed. An analysis of an unterminated line is performed to illustrate the procedure.

Protection, Decoupling, and Filtering of Cypress CMOS Circuits 1-30

This application note explains how to protect your CMOS circuits using an inexpensive zener diode. It also
explains how to calculate the value of the decoupling capacitor for your integrated circuits and why the de­
coupling capacitor does not function well as a filtering capacitor. A capacitor impedance versus frequency
curve is presented that shows how capacitor size is related to its series resonance frequency. The Fourier
Transform of a periodic pulse is presented in order to show how high-frequency noise is generated.

Using Decoupling Capacitors .. 1-34

This application note shows how to properly decouple a circuit from its power supply. The decoupling consists
of a combination of a large decoupling capacitor and a smaller, high-frequency filtering capacitor. Design and
board layout guidelines are given with specific reference to Cypress's HOTLink transmitter and receiver.

System Design Considerations When Using
Cypress CMOS Circuits

This application note describes some factors to con­
sider when either designing new systems using Cy­
press high-performance CMOS integrated circuits
or when using Cypress products to replace bipolar
or NMOS circuits in existing systems. The two ma­
jor areas of concern are device input sensitivity and
transmission line effects due to impedance mis­
matching between the source and load.

To achieve maximum performance when using
Cypress CMOS ICs, pay attention to the placement
of the components on the printed circuit board
(PCB); the routing of the metal traces that intercon­
nect the components; the layout and decoupling of
the power distribution system on the PCB; and per­
haps most important of all, the impedance matching
of some traces between the source and the loads.
The latter traces must, under certain conditions, be
analyzed as transmission lines. The most critical
traces are those of clocks, write strobes on SRAMs
and FIFOs, output enables, and chip enables.

Replacing Bipolar or NMOS ICs

Cypress CMOS ICs are designed to replace both bi­
polar ICs and NMOS products and to achieve equal
or better performance at one-third (or less) the
power of the components they replace.

When high-performance Cypress CMOS circuits
replace either bipolar or NMOS circuits in existing
sockets, be aware of conditions in the existing sys­
tem that could cause the Cypress ICs to behave in
unexpected ways. These conditions fall into two
general categories: device input sensitivity and sen­
sitivity to reflected voltages.

1-1

Input Sensitivity

High-performance products, by definition, require
less energy at their inputs to change state than low­
or medium-performance products.

Unlike a bipolar transistor, which is a current-sens­
ing device, a MOS transistor is a voltage-sensing de­
vice. In fact, a MOS circuit design parameter called
K' is analogous to the gm of a vacuum tube and is in­
versely proportional to the gate oxide thickness.

Thin gate oxides, which are required to achieve the
desired performance, result in highly sensitive in­
puts. These inputs require very little energy at or
above the device input-voltage threshold (approxi­
mately 1.5V at 25°C) to be detected. CMOS prod­
ucts may detect high-frequency signals to which bi­
polar devices may not respond.

MOS transistors also have extremely high input im­
pedances (5 to 10 MQ), which make the transistors'
gate inputs analogous to the input of a high-gain am­
plifier or an RF antenna. In contrast, because bipo­
lar ICs have input impedances of 1000Q or less,
these devices require much more energy to change
state than do MOS ICs. In fact, a typical Cypress IC
requires less that 10 picojoules of energy to change
state. Thus, when Cypress CMOS ICs replace bipo­
lar or NMOS ICs in existing systems, the CMOS ICs
might respond to pulses of energy in the system that
are not detected by the bipolar or NMOS products.

Reflected Voltages

Cypress CMOS ICs have very high input imped­
ances and-to achieve TTL compatibility and drive
capacitive loads-low output impedances. The im-

22~YPRESS;;~~~~~~~~~~=Sy=s=re=m~D=e=si=gn~c=o=ns=i=de=r~a~ti=on;=s

pedance mismatch due to low-impedance outputs
driving high-impedance inputs might cause un­
wanted voltage reflections and ringing under certain
conditions. This behavior could result in less-than­
optimum system operation.

When the impedance mismatch is very large, a near­
ly equal and opposite negative pulse reflects back
from the load to the source when the line's electrical
length (PCB trace) is greater than

Eq.1

where tr is the rise time of the signal at the source,
and tpd is the one-way propagation delay of the line
per unit length.

The classical way of stating the condition for a volt­
age reflection to occur is that it will occur if the sig­
nal rise time is less than or equal to the round-trip
(two-way) propagation delay of the line.

Input clamping diodes to ground were added to bi­
polar IC families (e.g., TIL, AS, LS, ALS, FAST)
when the circuit designers decided that the fast rise
and fall times of the outputs could cause voltage re­
flections. The clamping diodes to Vee are inherent
in the junction isolation process. For a more de­
tailed explanation, see "Input/Output Characteris­
tics of Cypress Products."

Historically, as circuit performance improved, the
output rise and fall times of the bipolar circuits de­
creased to the point where voltage reflec~ions began
to occur (even for short traces) when an impedance
mismatch existed between the line and the load.
Most users, however, were unaware of these reflec­
tions because they were suppressed by the diodes'
clamping action.

Conventional CMOS processing results in PN junc­
tion diodes, which adversely affect the ESD (elec­
trostatic discharge) protection circuitry at each in­
put pin and cause an increased susceptibility to
latch-up. In addition, when the input pin is negative
enough to forward bias the input clamping diodes,
electrons are injected into the substrate. When a
sufficient number of electrons are injected, the re-

, sulting current can disturb internal nodes, causing
soft errors at the system level.

1-2

To eliminate the prospect of having this problem, all
Cypress CMOS products use a substrate bias gener­
ator. The substrate is maintained at a negative 3V
potential, so the substrate diodes cannot be forward
biased unless the voltage at the input pin becomes
a diode drop more negative than -3Y. (See Figure
9 in "Input/Output Characteristics of Cypress Prod­
ucts" for a schematic of the input protection circuit
used in all Cypress CMOS products.) To the systems
designer, this translates to approximately five times
(3.8V divided by 0.8V =4.75) the negative under­
shoot safety margin for Cypress CMOS integrated
circuits versus those that do not use a bias generator.

Voltage reflections should be eliminated by using
impedance matching techniques and passive com­
ponents that dissipate excess energy before it can
cause soft errors. Crosstalk should be reduced to ac­
ceptable levels by careful PCB layout and attention
to details.

Crosstalk

The rise and fall times of the waveforms generated
by Cypress CMOS circuit outputs are 2 to 4 ns be­
tween levels of 0.4 and 4 Y. The fast transition times
and the large voltage swings could cause capacitive
and inductive coupling (crosstalk) between signals
if insufficient attention is paid to PCB layout.

Crosstalk is reduced by avoiding running PCB
traces parallel to each other. If this is not possible,
run ground traces between signal traces.

In synchronous systems, the worst time for the
crosstalk to occur is during the clock edge that sam­
ples the data. In most systems it is sufficient to iso­
late the clock, chip select, output enable, and write
and read control lines from each other and from
data and address lines so that the signals do not
cause coupling to each other or to the data lines.

It is standard practice to use ground or power planes
between signal layers on multilayered PCBs to re­
duce crosstalk. The capacitance of these isolation
planes increases the propagation delay of the signals
on the signal layers, but this drawback is more than
compensated for by the isolation the planes provide.

The Theory of Transmission Lines

A connection (trace) on a PCB should be consid­
ered as a transmission line if the wavelength of the
applied frequency is short compared to the line
length. If the wavelength of the applied frequency
is long compared to the length of the line, conven­
tional circuit analysis can be used.

In practice, transmission lines on PCBs are de­
signed to be as nearly lossless as possible. This sim­
plifies the mathematics required for their analysis,
compared to a lossy (resistive) line.

Ideally, all signals between ICs travel over constant­
impedance transmission lines that are terminated in
their characteristic impedances at the load. In prac­
tice, this ideal situation is seldom achieved for a va­
riety of reasons.

Perhaps the most basic reason is that the character­
istic impedances of all real transmission lines are
not constants, but present different impedances de­
pending upon the frequency of the applied signal.
For "classical" transmission lines driven by a single
frequency signal source, the characteristic imped­
ance is "more constant" than when the transmission
line is driven by a square wave or a pulse.

According to Fourier series expansion, a square
wave consists of an infinite set of discrete frequency
components-the fundamental plus odd harmonics
of decreasing amplitude. When the square wave
propagates down a transmission line, the higher fre­
quencies are attenuated more than the lower fre-

IR IL

IC
1/IRp = IG

.j4

t
V2

~

System Design Considerations

quencies. Due to dispersion, the different frequen­
cies do not travel at the same speed.

Dispersion indicates the dependence of phase ve­
locity upon the applied frequency (see Reference 1
pg. 192). The result is that the square wave or pulse
is distorted when the frequency components are
added together at the load.

A second reason why practical transmission lines
are not ideal is that they frequently have multiple
loads. The loads may be distributed along the line
at regular or irregular intervals or lumped together,
as close as practical, at the end of the line. The sig­
nal-line reflections and ringing caused by imped­
ance mismatches, non-uniform transmission line
impedances, inductive leads, and non-ideal resis­
tors could compromise the dynamic system noise
margins and cause inadvertent switching.

One system design objective is to analyze the critical
signal paths and design the interconnections such
that adequate system noise margins are maintained.
There will always be signal overshoot and under­
shoot. The objective is to accurately predict these
effects, determine acceptable limits, and keep the
undershoot and overshoot within the limits.

The Ideal Transmission Line

An equivalent circuit for a transmission line appears
in Figure 1. The circuit consists of subsections of se­
ries resistance (R) and inductance (L) and parallel
capacitance (C) and shunt admittance (G) or paral­
lel resistance, Rp. For clarity and consistency, these
parameters are defined per unit length. Multiply

IR IL

IG
IC

TO
INFINITY

Figure 1. Thansmission Line Model

1-3

~ 1& ~ System Design Considerations
, CYPRESS ==============

the values of R, L, C, and Rp by the length of the sub­
section, I, to find the total value. The line is assumed
to be infinitely long.

If the line of Figure 1 is assumed to be lossless (R =
0, Rp = infinity), Figure 1 reduces to Figure 2. A
small series resistance has little effect upon the
line's characteristic impedance. In practice and by
design, the series resistance is quite small. For
I-ounce (0.OOI5-inch-thick), l-mil-wide (O.OlD-inch)
copper traces on G-I0glass epoxy PCBs, the trace re­
sistance is between 0.5 and O.3Q per foot. 2-ounce
copper has a resistance 50 percent lower than that
of I-ounce copper. '

Input or Characteristic Impedance

To calculate the characteristic impedance (also
called AC impedance or surge impedance) looking
into terminals a-b of the circuit in Figure 2, use the
following procedure.

Let Zl be the input impedance looking into termi­
nals a-b,with Z2 for terminals c-d, Z3 for terminals
e-f, etc. Zl is the series impedance of the first induc­
tor (lL) in series with the parallel combination of Z2
and the impedance of the capacitor (1C).

From AC theory:

XL = jmlC Eq.2

where XL is the inductive reactance.

t-+ ZI

a IL
t-+ Z2

c IL
~

I
• f"V"VY"'

+ +
VI Ie V2 Ie

I • • • • b d

~ ~I ..

1
Xc + jmlC

where Xc is the capacitive reactance.

Then

Eq.3

Eq.4

If the line is reasonably long, Zl = Z2 = Z3. Substi­
tuting Zl = Z2 into Equation 4 yields

or

Eq.S

Substituting the expressions for Xc and XL yields

Z,2 - jmlL = ~ Eq.6

Equation 6 contains a complex component that is
frequency dependent. The complex component can
be eliminated by allowing I to become very small and
by recognizing that the ratio UC is constant and in­
dependent of I or w:

Z, = fiJC Eq.7

The AC input impedance of a purely reactive, uni­
form, lossless line is a resistance. This is true for AC
or DC excitation.

t-+ ~L t-+~
e 9

I
• f"V"VY"'

Ie I
• ~

+ +
V3 V4 TO

I I INFINITY • • • • ~
f h

~I .. ~
Figure 2. Ideal Transmission Line Model

1-4

Propagation Velocity and Delay

The propagation velocity (or phase velocity) of a si­
nusoid traveling on an ideal line (see Reference 1)
is

a = 1

!iC Eq.8

The propagation delay for a lossless line is the recip­
rocal of the propagation velocity:

Eq.9

where Land C are once again the intrinsic line in­
ductance and capacitance per unit length.

Adding additional stubs or loads to the line (see Ref­
erence 2 of this application note) increases the
propagation delay by the factor

Eq.lO

where CD is the load capacitance.

Therefore, the propagation delay of a loaded
line, T pdL, is

Eq.ll

This application note shows later that a transmis­
sion line's unloaded or intrinsic propagation delay
is proportional to the square root of the dielectric
constant of the medium surrounding or adjacent to
the line. Propagation delay is not a function of the
line's geometry.

The characteristic impedance of a capacitively
loaded line decreases by the same factor that the
propagation delay increases:

Eq.12

Note that the capacitance per unit length must be
multiplied by the line length, t, to calculate an equiv­
alent lumped capacitance.

1-5

System Design Considerations

The Condition for Voltage Reflection

It is relatively straightforward to obtain a closed­
form solution for a transmission line's maximum al­
lowable length, which, if exceeded, might cause a
voltage reflection. If the line is not terminated in its
characteristic impedance, a reflection is guaranteed
to occur. The reflection's amplitude depends on the
amount of impedance mismatch between the line
and the load and whether the rise time of the signal
at the source equals or is greater (slower) than two
times the propagation delay of the line.

The condition for a voltage reflection to occur is

L > ~
- 2tpdL Eq.13

Solving for the loaded propagation delay yields

t,
tpdL = 2L Eq.14

However, the actual physical length of the line is

Eq.15

The intrinsic capacitance of the line from Equation
9 is

Eq.16

It is standard practice to use Co to designate the in­
trinsic line capacitance, La the intrinsic line self in­
ductance, and Zo the intrinsic line characteristic im­
pedance.

Substituting Equations 14, 15, and 16 into Equation
11 gives the relationship for the line length at which
voltage reflections might occur. Two conditions
must be present for voltage reflections to occur: the
line must be long and there must be an impedance
mismatch between the line and the load.

Eq.17

Solving Equation 17 for the line length, L, yields

L = ~ x -r~1~~
2tpd J 1 + _cr::_o

Eq.18

~~ System Design Considerations
_,-cYPRESS ==============

Equation 18 is very useful to the system designer. It
is generic and applies to all products irrespective of
circuit type, logic family, or voltage levels: The
equation allows you to estimate when a line requires
termination, using variables you can easily deter­
mine.

When driving a distributed or non-lumped load, the
signal's rise time depends on the source-not the
load, as you might expect. The intrinsic, or un­
loaded, line propagation delay per unit length is a
function of the dielectric constant and can be easily
calculated. The intrinsic line characteristic imped­
ance is a function of the dielectric constant and the
PCB's physical construction or geometry and can
also be calculated. Finally, you can estimate the
equivalent (lumped) load capacitance by adding up
the number of loads (device inputs) being driven
and multiplying by 10 pR For I/O pins, use 15 pF per
pin.

Signal Transition Times

The standard Cypress 0.81l (L drawn) CMOS pro­
cess yields output buffers whose signals transition
approximately 4V in 2 ns, or, have a slew rate of 2V
per nanosecond. The rise time/fall time is 2 ns.
Products fabricated using the Cypress BiCMOS
process have the same rise times.

The Cypress ECL process yields products with
SOO-ps output signal rise times and fall times, or slew
rates of 1 V /0.5 ns = 2V per nanosecond. Internal
signal slew rates are 10V per nanosecond, but only
for short (usually less than 500 mY) voltage excur­
sions. Thus, high-frequency noise is generated on
chip, which you can eliminate by using 100- to
SOO-pF ceramic or mica filter capacitors between
Vee and ground.

The values in Table 1 come from using Equation 18
to calculate the line length at which voltage reflec­
tions may occur. The calculations assume a SOQ in­
trinsic line characteristic impedance and that the
PCB is multilayer, using stripline construction on
G-lO glass epoxy material (dielectric constant of 5).
These conditions result in an unloaded line propa­
gation delay of 2.27 ns per foot.

1-6

Thble 1. Line Length at Which a Voltage
Reflection Occurs

tr (ns) CD (pF) L (inches)

2 10 4.73

2 20 4.32

2 40 3.74

2 80 3.05

1 10 2.16

1 20 1.87

1 40 1.53

1 80 1.18

0.5 10 0.93

0.5 20 0.76

0.5 40 0.59

0.5 80 0.44

Table 1 reveals that decreasing the source rise time
from 2 to 0.5 ns (a factor of 4) decreases the line
length at which a voltage reflection might occur by
a factor of 5 (4.73 divided by 0.93 = 5.09) for the
same load (10 pF) and intrinsic propagation delay
(2.27 ns/ft.). A second observation is that for signals
with rise times of 0.5 ns, all lines should be termi­
nated.

Reflection Coefficients

Another attribute of the ideal transmission line, re­
flection coefficients, are not actually line character­
istics. The line is treated as a circuit component, and
reflection coefficients are defined that measure the
impedance mismatches between the line and its
source and the line and its load. The reason for de­
fining and presenting the reflection coefficients be­
comes apparent later when it is shown that if the im­
pedance mismatch is sufficiently large, either a
negative or positive voltage might reflect back from
the load to the source, and the voltage might either
add to or subtract from the original signal. A mis­
match between the source and line impedance may
also cause a voltage reflection, which in turn reflects
back to the load. Therefore, two reflection coeffi­
cients are defined.

__ ~YPRESS~~~~~~~~~~~~S~y~s~te~m~D~e~Si~gn~C~O~n~si~d~er~a~t~io~n=s
For classical transmission lines driven by a single
frequency source, the impedance mismatches cause
standing waves. When pulses are transmitted and
the source's output impedance changes depending
upon whether a LOW-to-HIGH or a HIGH-to­
LOW transition occurs, the analysis is complicated
further.

You can use classical transmission line analysis­
where pulses are represented by complex variables
with exponentials-to calculate the voltages at the
source and the load after several back and forth re­
flections. However, these complex equations tend
to obscure what is physically happening.

Energy Considerations

Now consider the effects of driving the ideal trans­
mission line with digital pulses and analyze the be­
havior of the line under various driving and loading
conditions. The first task is to define the load and
source reflection coefficients.

Figure 3 shows the circuit to be analyzed. The ideal
transmission line of length l is driven by a digital
source of internal resistance Rs and loaded with a
resistive load RL. The characteristic impedance of
the line appears as a pure resistance,

Eq.19

to any excitation.

The ideal case is when Rs = Zo = RL. The maxi­
mum energy transfer from source to load occurs un­
der this condition, and no reflections occur. Half

A~X 'I B

.... Zo i + IA IB

VB(-X) RL

lA, IB l_
SOURCE LINE LOAD

Figure 3. Ideal Transmission Line Loaded
and Driven

1-7

the energy is dissipated in the source resistance, Rs,
and the other half is dissipated in the load resis­
tance, RL (the line is lossless).

If the load resistor is larger than the line's character­
istic impedance, extra energy is available at the load
and is reflected back to the· source. This is called the
underdamped condition, because the load under­
uses the energy available. If the load resistor is
smaller than the line impedance, the load attempts
to dissipate more energy than is available. Because
this is not possible, a reflection occurs that signals
the source to send more energy. This is called the
overdamped condition. Both the underdamped and
overdamped cases cause negative traveling waves,
which cause standing waves if the excitation is sinu­
soidal. The condition Zo = RL is called critically
damped.

The safest termination condition, from a systems
design viewpoint, is the slightly overdamped condi­
tion, because no energy is reflected back to the
source.

Line Voltage for a Step Function

To determine the line voltage for a step function ex­
citation, you apply a step function to the ideal line
and analyze the behavior of the line under various
loading conditions. The step function response is
important because any pulse can be represented by
the superposition of a positive step function and a
negative step function, delayed in time with respect
to each other. By proper superposition, you can pre­
dict the response of any line and load to any width
pulse. The principle of superposition applies to all
linear systems.

According to theory, the rise time of the signal driv­
en by the source is not affected by the characteristics
of the line. This has been substantiated in practice
by using a special coaxially constructed reed relay
that delivers a pulse of 18A into 50!) with a rise time
of 0.070 ns (see Reference 1).

The equation representing the voltage waveform
going down the line (see Figure 3) as a function of
distance and time is

Eq.20

~ . System Design Considerati()ns
';CYPRESS ================

where

VA = the voltage at point A

X = the voltage at a point X on the line

I = the total line length

'Eq.21

tpd = the propagation delay of the line in nanosec­
onds per foot

To = I tpd, or the one-way line propagation delay

U(t) = a unit step function occurring at x = 0

Vs(t) = the source voltage

When the incident voltage reaches the end of the
line, a reflected voltage, V', occurs if RL does not
equal Zoo The reflection coefficient at the load, QL,
can be obtained by applying Ohm's Law.

The voltage at the load is V L + V L', which must be
equal to (IL + IL')RL. But

Eq.22

and

h' =
Eq.23

(The minus sign is due to h being negative; i.e., IL
is opposite to the current due to VL.) Therefore,

By definition:

reflected voltage
p L = incident voltage

Eq.24

Eq.25

Solving for VL'NL in Equation 24 and substituting
in the equation for QL yields

Eq.26

The reflection coefficient at the source is

1-8

Rs - Zo
Ps = Rs + Zo

Re-arranging Equation 24 yields

VB VL + VL' = (1 + ~JVL
(1 + pJVL

Eq.27

Eq.28

Equation 28 describes the voltage at the load (VB)
as the sum of an incident voltage (VL) and a re­
flected voltage (QL VI) at time t = To. When RL =
Zo, no voltage is reflected. When RL < Zo, the re­
flection coefficient at the load is negative; thus, the
reflected voltage subtracts from the incident volt­
age, giving the load voltage. When RL > Zo, the re­
flection coefficient is positive; thus, the reflected
voltage adds to the incident voltage, again giving the
load voltage.

Note that the reflected voltage at the load has been
defined as positive when traveling toward the
source. This means that the corresponding current
is negative, subtracting from the current driven by
the source.

This piecewise analysis is cumbersome and can be
tedious. However, it does provide an insight into
what is physically happening and demonstrates that
a complex problem can be solved by dividing it into
a series of simpler problems. Also, eliminating the
exponentials-which provide phase information in
the classical transmission line equations-simpli­
fies the mathematics. To use the piecewise method,
you must do careful bookkeeping to combine the re­
flections at the proper time. This is quite straight­
forward, because a pulse travels with a constant ve­
locity along an ideal or low-loss line, and the time
delay between reflected pulses can be predicted.

The rules to keep in mind are that at any location
and time the voltage or the current is the algebraic
sum of the waves traveling in both directions. For
example, two voltage waves of the same polarity and
equal amplitudes, traveling in opposite directions,
at a given location and time add together to yield a
voltage of twice. the amplitude of one wave. The
same reasoning applies to all points of termination
and discontinuities on the line. The total voltage or
current is the algebraic sum of all the incident and
reflected waves. Polarities must be observed. A

, ~ System Design Considerations
_ CYPRESS ==============

positive voltage reflection results in a negative cur­
rent reflection and vice versa.

Step Function Response of the Ideal
Line

Before examining reflections at the source due to
mismatches between the source and line imped­
ances, consider the behavior of the ideal line with
various loads when driven by a step function. The
circuit for analysis appears in Figure 3. Figure 4
shows the voltage and current waveforms at point A
(line input) and point B (the load) for various loads.
(These values are drawn from Reference 1 pg. 158
- 159.) Note that Rs = Zo and that VA at t = 0
equals V s/2. This means that no impedance mis­
match exists between the source and the line; thus,
there is no reflection from the source at t = 2 To.
To is the one-way propagation delay of the line.

The time-domain response of the reactive loads are
obtained by applying a step function to the LaPlace
transform of the load and then taking the inverse
transform.

Note that the reflection coefficient at the load is not
the total reflection coefficient (a complex number)
but represents only the real part of the load. The
piecewise method eliminates the complex Gmt)
terms by performing the bookkeeping involving the
phase relationships, which the complex terms ac­
count for in classical transmission line analysis.

Note that for the open-circuit condition inFigure 4b,
ZL = infinity, so that QL = + 1. The voltage is re­
flected from the load to the source (at amplitude V 0

= Vsl2). Thus, at time t = 2 To, the reflected volt­
age adds to the original voltage, V 0 = V sl2, to give
a value of 2V 0 = V s. While the voltage wave is trav­
eling down to and back from the load, a current of

10 = Vo = Vsz
Zo 2 0 Eq.29

exists. This current charges up the distributed line
capacitance to the value V s, then the current stops.

1-9

The waveforms at the source and load for the series
RC termination shown in Figure 4g are of particular
interest because this network dissipates no DC pow­
er; you can use this network to terminate a transmis­
sion line in its characteristic impedance at the input
to a Cypress IC. Figure 4h represents the equivalent
circuit of a Cypress IC's input. Combining both net­
works models a Cypress IC driven by a transmission
line terminated in the line's characteristic imped­
ance, when the values of Rand C are properly
chosen.

Reflections Due to Discontinuities

Figure 5 illustrates three types of common disconti­
nuities found on transmission lines. Any change in
the characteristic impedance of the line due to
construction, connectors, loads, etc., causes a dis­
continuity, which causes a reflection that directs
some energy back to the source. The amount of en­
ergy reflected back is determined by the discontinu­
ity's reflection coefficient. Because discontinuities
are usually small by design, most of the energy is
transmitted to the load.

In general, a discontinuity has series inductance,
shunt capacitance, and series resistance. An exam­
ple is a via from a signal plane through a ground
plane to a second signal plane in a multilayer PCB
or module. IC sockets and other connectors can
also cause discontinuities.

The Ideal Transmission Line's Pulse
Response

Consider next the behavior of the ideal transmission
line when driven by a pulse whose width is short
compared to the line's electrical length-when the
pulse width is less than the line's one-way propaga­
tion delay time, To.

Figure 6 shows another series of response wave­
forms for the circuit in Figure 3, this time for a pulse
instead of a step (drawn from Reference 1 pg. 160
- 161). Note that Rs = Zo and that VA at t = 0
equals V sl2. This means that there is no impedance
mismatch between the source and the line; thus,
there is no reflection from the source at t = 2 To.

1& ~ System Design Considerations
, CYPRESS =============~

VA = VsJ2. 10 = VoIZo. To - 'JLC. pL = (RL - Zo)/(RL + Zo)

TenninatioD

. .
(a) SHOIIT CIRCUIT VA h
~~.o --~,--~2~~--------------
~ 2'O~.

! ALWAVScO

.. 2TO .,

Output waveCorms
y /. i,

(e) SMALL II£SISTOR L- 211, II, t
~ _V_A ... L:==_. ________ ._-_-_-._v_A_.,._Zo_~VSJl;OZO··----,.;,t--~---____ _

o-111,<Zo .~ b-==-m ;~ .. _-_0~.:.1.-1 _______ _

.!t.. •
(d) UIIG[II£SISTOR V. r-----:--=--oo. ·'.,.10 -(,o'\)V.--oot :J ... > 10 I %TO t --,.;,,--tLo----------

~ 1--==_000 ~ --_--...1.+--1... ____ _

(.) SElII£$ RESISTANCE AND
"DUCTAIICE, Z, = R+ J-'.

] TVI
R 1:.

(,) SElIIIS AE1ISTANC(AND
C:UACITANC[

(h) PARALLEL AUlST.NCC _
CAPACITANCE

r .. _ L_

·<10

2TO (R+ZolL
ra--

I>Zo

T. • l' ~:~)
TO

V
t+TO

~,)

T.

V T.

!
T. t

Figure 4. Step Function Response of Figure 3 for Various Terminations

1-10

==-rcYPRESS
System Design Considerations

Vin
L'

(a) Series Inductance

D~
2VA

VA

1:=1'--1 l---l l'

Vin
2To[

(b) Shunt Capacitance

ITJ~
2VA

VA

j4-/...j
/'

Vin
2To[

R
(c) Series Resistance

{,
'V'v

I~
2VA

VA
t
2V (R + 2 0)

• A R + 220

j4- /'...j

Figure 5. Reflections from Discontinuities with an Applied Step Function

Finite Rise Time Effects

Now consider the effects of step functions with finite
rise times driving the ideal transmission line. Dur­
ing the rise time of a pulse, half the energy in the
static electric field is converted into a traveling mag­
netic field and half remains as a static electric field
to charge the line.

If the rise time is sufficiently short, the voltage at the
load changes in discrete steps. The amplitude of the
steps depends on the impedance mismatch, and the
width of the steps depends on the line's two-way
propagation delay.

As the rise time and/or the line gets shorter (smaller
To), the result converges to the familiar RC time
constant, where C is the static capacitance. All de­
vices should be treated as transmission lines for

1-11

transient analysis when an ideal step function is ap­
plied. However, as the rise time becomes longer
and/or the traces shorter, the transmission line anal­
ysis reduces to conventional AC circuit analysis.

Reflections from Small Discontinuities

Figure 7 shows a pulse with a linear rise time and
rounded edges driving the transmission line of
Figure 5a and Figure 5b. The expressions for Vr are
derived on pages 171 and 172 of Reference 1. The
reflection caused by the small series inductance is
useful for calculating the value of the inductor, L t ,

but little else.

The reflection caused by the small shunt capacitor
is more interesting. If this capacitor is sufficiently
large, it can cause a device connected to the trans­
mission line to see a logic 0 instead of a logic 1.

22 ~ System Design Considerations
_? CYPRESS ==============

(~)-­- z.---
c·) :J ... Zo

zr.

n
To

o..IpIdW_ ••

T. t

Figure 6. Pulse Response of Figure 3 for Various Terminations

_r;-;:;' (RL-Zo)
VA = Vs/2. 10" vorzo• To - hLC. PL = (RL+ Zo)

1-12

-- :~ System Design Considerations
~,CYPRESS~~~~~~~~~~~~~~~~~

The Effect of Rise Time on Waveforms

Next, consider the ideal line terminated in a resis­
tance less than its characteristic impedance and
driven by a step function with a linear rise time. The
stimulus, the circuit, and the response appear in
Figure 8a, Figure 8b, and Figure Be, respectively.
Once again, note that because the source resistance
equals the line characteristic impedance, there are
no reflections from the source.

The resulting waveforms are similar to those of
Figure 4c when modified as shown in Figure Be. The

VA
(a) Applied Pulse
from Generator

v - Vs
A - 2"

(b) Reflections
from Small Series
Inductor L'

v = Vs
A 2

(c) Reflections
from Small Shunt
Capacitance C'

/'
2To[

V =KVA

, 2ZoT,

Figure 7. Reflections from Small
Discontinuities with a Finite Rise Time Pulse

1-13

final value of the waveform must be the same as be­
fore (Figure 4c).

The resultant wave at the line input (Vin) is easily
obtained by superposition of the applied wave and
the reflected wave at the proper time. In Figure 8,
because the step function's rise time is less than the
line's two-way propagation delay, the input wave
reaches its final value, V s/2. At t = 2 To, the re­
flected wave arrives back at the source and subtracts
from the applied step function (the load reflection
coefficient is negative). Figure 9 illustrates wave­
forms for two relationships between the step func­
tion rise time and the propagation delay.

Vs

Zo

APPLIED STEP
FUNCTION

(a) stimulus

(b) circuit

j"-TR1

--,--.,.. -- I -;EFLECTED WAVE

2To

(c) response

Figure 8. Effect of Rise Time on Response of
Mismatched Line with RL < Zo

"i: ~ System Design Considerations
~ CYPRESS ==============

REFLECTED WAVE

REFLECTED WAVE

2TO TR 4T

(b)TR> 2To

Figure 9. Effects of Rise Time on Response for
RL<ZO

Multiple Reflections

Now consider the case of an ideal transmission line
with multiple reflections caused by improper ter­
minations at both ends of the line. The circuit and
waveforms appear in Figure 10. The reflection coef­
ficients at the source and the load are both nega­
tive-the source resistance and the load resistance
are both less than the line characteristic impedance.

When the switch is initially closed, a step function of
amplitude

Eq.30

appears on the line and travels toward the load. Af­
ter a one-way propagation delay time, To, the wave
reflects back with an amplitude of QL V 0.

Vo+----.

(a) circuit

EXPONENTIAL
APPROXIMATION

2TO 4To 6To

(b)Vin

10+-----'

2TO 4To 6To
(c) input current

VI '-
-..,-_'-_~(1 +QUVo

'-

RL --___ _
Vs RL + Rs- - - -

2To 4To 6To
(d) load voltage

Figure 10. Step Function Applied to Line Mis­
matched on Both Ends; Shown for Negative

Values of Qs and QL

This first reflected wave than travels back to the
source, and at time t = 2 To, the wave reaches the
input end of the line. At this time, the first reflection
at the source occurs, and a wave of amplitude Qs (QL
V 0) reflects back to the load. At time t = 3 To, this
wave again reflects from the load back to the source
with amplitude

1-14

~ ~ System Design Considerations
~-,CYPRESS =============

Eq.31

This back and forth reflection process continues un­
til the amplitudes of the reflections become so small
that they cannot be observed. The circuit is then
said to be in a quiescent state.

Effective Time Constant

Voltage reflections in small increments and of short
durations approximate an exponential function, as
indicated by the dashed line in Figure lOb. The
smaller and narrower the steps become, the more
closely the waveform approaches an exponential
curve.

The mathematical derivation is presented on pages
178 and 179 of Reference 1. The time constant is

K = _ 2To
1 - PSPL Eq.32

Thus, the resultant voltage waveform at the load can
be approximated by

Vet) = voe(f)
Eq.33

For Equation 32 to be accurate, QL and Qs must be
reasonably large (approaching ±1) so that the in­
cremental steps are small. Because the product
QSQL is a positive number, less than one, the time
constant is a negative number, which indicates that
the exponential decreases with time. This is usually
the case in transient circuits.

Both reflection coefficients must also have the same
sign to yield a continually decreasing or increasing
waveform. Opposite signs give oscillatory behavior
that cannot be represented by an exponential
function.

From 'fransmission Line to Circuit
Analysis

When a transmission line is terminated in its charac­
teristic impedance, the line behaves like a resistor.
It usually does not matter if you use transmission

1-15

line or circuit analysis, provided that you take the
propagation delays into account.

Consider the case of a short-circuited transmission
line driven by a step function with a source imped­
ance unequal to the characteristic line impedance.
The general case is shown in Figure lOa. For RL =
o the reflection coefficients are

Zs - Zo
Ps = Zs + Zo PL = - 1

The approximate time constant is

-k 2To
1 - PSPL

or

- k = To + ToZo
Zs

Recall that

To = lfiC

(one-way delay) and

Zo = ffc

Eq.34

Eq.35

Eq.36

Eq.37

where I is the physical length of the line, and Land
C are the per-unit-Iength parameters. Substituting
these variables into Equati()n 35 yields

- k = To + It Eq.38

It is necessary to have Zs smaller than Zoo Thus, the
reflection coefficients have the same sign to give ex­
ponential behavior. Opposite signs give oscillatory
behavior.

If Zs < Zo, the exponential approximation becomes
more accurate. If Zs is very small compared to Zo,
then To is negligible compared to IUZo, so that
Equation 35 reduces to

k = -/~
Zs Eq.39

But IL is the total loop inductance, and Zs is the cir­
cuit's total series impedance. The time constant is
then

L' k =­
Rs Eq.40

- -., ~ System Design Considerations
,CYPRESS=================================;

This is the same time constant you would obtain by
a circuit analysis approach if you considered the line
a series combination ofL' and Rs. Byopen-circuit­
ing the line and performing a similar analysis, it can
be shown that an RC time constant results.

lYpes of Transmission Lines

The types of transmission lines include

• Coaxial cable

• Twisted pair

• Wire over ground

• Microstrip lines

• Strip lines

Coaxial Cable

Coaxial cable offers many advantages for distribut­
ing high-frequency signals. The well-defined and
uniform characteristic impedance permits easy
matching. The cable's ground shield reduces cross­
talk, and the low attenuation at high frequencies
make the cable ideal for transmitting the fast rise­
time and fall-time signals generated by Cypress
CMOS ICs. However, because of high cost, coaxial
cable is usually restricted to applications that permit
no alternatives. These applications usually involve
clock distribution systems on PCBs or backplanes.

Because coaxial cable is not easily handled by auto­
mated assembly techniques, its application requires
human assemblers. This requirement further in­
creases costs.

Coaxial cables have characteristic impedances of
SOQ, 7SQ, 93Q, or 150Q. These values are the most
common, although special cables can be made with
other impedances.

Coaxial cable's propagation delay is very low. You
can compute it using the formula

tpd = 1.017 re; (ns/ft) Eq.41

where er is the relative dielectric constant and de­
pends upon the dielectric material used. For solid
Teflon and polyethylene, the dielectric constant is
2.3. The propagation delay is 1.S4 ns per foot. For
maximum propagation velocity, you can use coaxial

cables with dielectric Styrofoam or polystyrene
beads in air. Many of these cables have high-charac­
teristic impedances and are slowed considerably
when capacitively loaded.

1\visted Pair

You can make twisted pairs from standard wire
(AWG 24 - 28), twisted about 30 turns per foot.
The typical characteristic impedance is 110Q.

Because the propagation delay is directly propor­
tional to the characteristic impedance (Equation 9),
the propagation delay is approximately twice that of
coaxial cable. lWisted pairs are used for backplane
wiring, sometimes for driving differential receivers,
and for breadboarding.

Wire Over Ground

Figure 11 shows a wire over ground. This configura­
tion is used for breadboarding and backplane wir­
ing. The characteristic impedance is approximately
120Q. This value can vary as much as ±40 percent,
depending upon the distance from the groundplane,
the proximity of other wires, and the configuration
of the ground.

Microstrip Lines

A microstrip line (Figure 12) is a strip conductor
(signal line) on a PCB separated from a ground
plane by a dielectric. If the line's thickness, width,
and distance from the ground plane are controlled,
the line's characteristic impedance can be predicted
with a tolerance of ±S percent.

h

Ground ~

W#/;///!II /I ///$// &' £/;/#$ ffim
Z.= ;';m(~)

Figure 11. Wire Over Ground

1-16

~cYPRESS~~~~~~~~~~~~S~y~s~te~m~D~e~si=gn~C~O~n~si~d~er~a~t~io~n=s
The formula given in Figure 12 has proven to be very
accurate for width-to-height ratios between 0.1:1
and 3.0:1 and for dielectric constants between 1 and
15.

The inductance per foot for microstrip lines is

Eq.42

where Zo is the characteristic impedance and Co is
capacitance per foot.

The propagation delay of a microstrip line is .

tpd = 1.017 j0.45er + 0.67 (nsf/t) Eq.43

Note that the propagation delay depends only upon
the dielectric constant and is not a function of the
line width or spacing. For G-lO fiberglass epoxy
PCBs (dielectric constant of 5), the propagation
delay is 1.74 ns per foot.

Strip Lines

A strip line consists of a copper strip centered in a
dielectric between two conducting planes
(Figure 13). If the line's thickness, width, dielectric
constant, and distance between ground planes are

Zo· --"'-111 (S.98IJ J .J., + 1.41 0.8.,+ t

Figure 12. Microstrip Line

~rrEtJ:=~
Zo- ~m(O.671t~:8+ !;))
Figure 13. Strip Line Construction

all controlled, the tolerance of the characteristic im­
pedance is within ±5 percent. The equation given
in Figure 13 is accurate for W/(b - t) < 0.35 and t/b
< 0.25.

The inductance per foot is given by the formula

Eq.44

The propagation delay of the line is given by the
formula

tpd = 1.017 re; (nsfft) Eq.45

For G-lO fiberglass epoxy boards, the propagation
delay is 2.27 ns per foot. The propagation delay is
not a function of line width or spacing.

Modern PCBs
Most PCBs employ microstrip, stripline, or some
combination of the two. Microstrip construction on
a double-sided board with power and ground nets
can suffice for low- to medium-performance, and
low-density PCBs.

For high-performance, high-density PCBs, stripline
construction is preferred. Power planes isolate sig­
nal layers from each other and provide higher-quali­
ty power and grounds than those of a two-layer
board. Manufacturing quality control assures that
the metaIization is of uniform thickness and that the
layers are properly laminated, thus ensuring uni­
form, predictable electrical characteristics.

When to Terminate Transmission Lines

1tansmission lines should be terminated when they
are long. From the preceding analysis, it should be
apparent that

Lo L · tr ng me > -2-
tpdL Eq.46

where tpdL is the loaded propagation delay of the
line per unit length. For Cypress CMOS and BiC­
MOS products, the rise time, tn is typically 2 ns.

For stripline construction (multilayer PCBs), the
line length at which voltage reflections might occur
has been shown to vary from 4.73 inches for a lO-pF
load to 3.05 inches for an 80-pF load (see Equation
18 and Table 1).

1-17

Not all lines exceeding these lengths need to be ter­
minated. Thrminations are usually required on con­
trollines (such as clock inputs, write and read strobe
lines on SRAMs and FIFOs) and chip select or out­
put-enable lines on RAMs, PROMs, and PLDs. Ad­
dress lines and data lines on RAMs and PROMS
usually have time to settle because they are normal­
ly not the highest-frequency lines in a system. How­
ever, if very heavily loaded, address and databus
lines might require terminations.

Line Termination Strategies

There are two general strategies for transmission
line termination:

1. Match the load impedance to the line imped­
ance

2. Match the source impedance to the line imped­
ance

In other words, if either the load reflection coeffi­
cient or the source reflection coefficient can be
made to equal zero, reflections are· eliminated.
From a systems design viewpoint, strategy 1 is pre­
ferred. Eliminating the reflection at the load (i.e.,
dissipating the excess energy) before the energy
travels back to the source causes less noise, electro~
magnetic interference (EMI), and radio frequency
interference (RFI).

Multiple Loads, Buses, and Nodes

In the case where multiple loads are connected to a
transmission line, only one termination circuit is re­
quired. The termination should be located at the
load that is electrically the greatest distance from
the source. This is usually the load that is the great­
est physical distance from the source. A point-to­
point or daisy chain connection ofloads is preferred.

Bidirectional buses should be terminated at each
end with a circuit whose impedance equals the in­
trinsic, characteristic line impedance. The reason is
that each transmitting device sees tp.e characteristic
impedance of the line when the device is trans­
mitting.

Consider next a line that has three bidirectional
nodes: one on each end and one in the middle. The
middle node, when driving tlte line, sees an imped­
ance equal to ZoI2, because the node is looking into
two lines in parallel with each other. The end nodes,
however, see an impedance of Zoo In this case, as
in a backplane, each end of the line should be termi­
nated in an impedance equal to Zo/2. When heavily
loaded, Equation 12 must be used to calculate the
loaded characteristic impedance, and this must be
used instead of Zoo

1Ypes of Terminations

There are three basic types of terminations: series
damping, pull-up/pull-down, and parallel AC ter­
minations. Each has its advantages and disadvan­
tages.

Except for series damping, the termination network
should be attached to the input (load) that is electri­
cally the greatest distance from the source. Compo­
nent leads should be as sport as possible to prevent
reflections due to lead inductance.

Series Damping

Series damping is accomplished by inserting a small
resistor (typically 10Q to 7SQ) in series with the
transmission line, as close to the source as possible
(Figure 14). Series damping is a special case of
damping in which the series resistor value plus the
circuit output impedance equals the transmission
line impedance. The strategy is to prevent the wave
reflected back frOIIl the load from reflecting back
from th~ source. This is done by making the source
reflection coefficient equal to zero.

The channel resistance (on resistance) of the pull­
down device for Cypress ICs is lOQ to 20g, depend-

Zo
A B c

Figure 14. Series Damping Termination

1-18

System Design Considerations

A V \ V
\ /

-To To- r-- To To-

B V/2 ~
V/2

V V
f\. /

c

Figure 15. Series Damping Timing

ing upon the current-sinking requirements. Thus,
subtract this value from the series-damping resistor,
Rd·

Eq.47

A disadvantage of the series-damping technique, as
illustrated in Figure 15, is that during the two-way
propagation delay time of the signal edges, the volt­
age at the input to the line is halfway between the
logic levels, due to the voltage divider action of Rs.
The "half voltage" propagates down the line to the
load and then back from the load to the source. This
means that no inputs can be attached along the line,
because they would respond incorrectly during this
time. However, you can attach any number of de­
vices to the load end of the line because all the re­
flections are absorbed at the source. If two or more
transmission lines must be driven in parallel, the
value of the series-damping resistor does not
change.

The advantages of series termination are:

• Requires only one resistor per line

• Consumes little power

• Permits incident wave switching at the load after
a To propagation delay

• Provides current limiting when driving highly ca­
pacitive loads; the current limiting also helps re­
duce groundbounce

The disadvantages of series termination are:

• Degrades rise time at the load due to increased
RC time constant

• Should not be used with distributed loads

The low input current required by Cypress CMOS
ICs results in essentially no DC power dissipation.
The only AC power required is to charge and dis­
charge the parasitic capacitances.

Pull-Up/Pull-Down Termination

The pull-up/pull-down resistor termination shown
in Figure 16 is included for historical reasons and for
the sake of completeness. For TTL driving long
cables, such as ribbon cables, the values Rl = 220Q
and R2 = 330Q are recommended by several bus in­
terface standards. If the cable is disconnected, the
voltage at point B is 3V, which is well above the 2V
minimum high TTL specification. Because most

Vee

A B

Figure 16. Pull-Up/Pull-Down

1-19

=;. ~~ System Design Considerations
_F CYPRESS ==============

control signals are active LOW, a disconnected
cable results in the unasserted state.

The maximum value of R 1 is determined by the max­
imum acceptable signal rise time, which is a function
of the charging RC time constant. The minimum
value of Rl is determined by the amount of current
the driver can sink. The value of R2 is chosen such
that a logic HIGH is maintained when the cable is
disconnected. The equivalent Th6venin resistance
is

R,R2

R, + R2 Eq.48

The value of R 1 and R2 in parallel is slightly less than
the cable's characteristic impedance. Ribbon cables
with characteristic impedances of 1S0Q are typical.

If both resistors are used, DC power is dissipated all
the time. If only a pull-down resistor (R2) is used,
DC power is dissipated when the input is in the logic
HIGH state. Conversely, if only a pull-up resistor
(Rl) is used, power is dissipated when the input is in
the LOW state. Due to these power dissipations,
this termination is not recommended.

If an unterminated control signal on a PCB is sus­
pected of causing a problem, a resistor whose value
is slightly less than the characteristic impedance of
the line (e.g., 47Q) can be connected between the in­
put pin and ground. Be sure that the driver can
source sufficient current to develop a TTL high volt­
age level (2.0V) across the resistor.

In special cases where inputs should be either pulled
up (HIGH) for logic reasons or because of very slow
rise and fall times, you can use a pull-up resistor to
Vee in conjunction with the terminating network
shown in Figure 17. DC power is dissipated when the
source is LOW.

Parallel AC Termination

Figure 17 illustrates the recommended general-pur­
pose termination. It does not have the disadvantage
of the half-voltage levels of series damping termina­
tions, and it causes no DC power dissipation. You
can attach loads anywhere along the line, and they
see a full voltage swing.

The disadvantage is that a parallel AC termination
requires two components, versus the one-compo­
nent series-damping termination.

Commercially Available RC Networks

A variety of combinations of R and C values are
available as series RC networks in SIP packages
from at least two sources.

Bourns calls these networks the Series 701 and 702
RC Thrmination Networks. You can obtain data­
sheets by calling the factory in Logan, Utah
(801-750-7200) or a local sales office.

Thin Film Technology also refers to the networks as
RC Thrmination Networks. You can obtain data­
sheets by calling the factory in North Mankato, Min­
nesota at 507-635-8445.

Dale Electronics calls their product Resistor/Ca­
pacitor Networks. Call 915-595-8139 for in­
formation.

California Micro Devices calls their product R-C
Networks. Call 408-263-3214 for information.

Low-Pass Filter Analysis

The parallel AC termination has another advan­
tage: it acts as a low-pass filter for short pulses. You
can verify this by analyzing the response of the cir­
cuit illustrated in Figure 18 to a positive and a nega­
tive step function. The positive step function is gen­
erated by moving the switch from position 2 to
position 1. The negative step function is generated
by moving the switch from position 1 to position 2.
The response of the circuit to a pulse is the super­
position of the two separate responses. The input
impedance of the Cypress circuits connected to the

Zo

Figure 17. Parallel AC Termination

1-20

'*i-:~ System Design Considerations
_, CYPRESS ==============

v

SOURCE LOAD

Figure 18. Lumped Load; AC Termination

tennination network are so large that they can be ig­
nored for this analysis.

Classic circuit analysis usually assumes an ideal
source (Rl = R2 = 0). In real-world digital circuits,
the source output impedance is not only non-zero,
but also varies depending upon whether the output
is changing from LOW to HIGH or vice versa.

For Cypress ICs, 1000 > Rl > 500 and 200> R2
> 100, depending upon speed and output current­
sinking requirements.

Positive Step Function Response

The initial voltage on the capacitor is zero. At t =
0, the switch is moved from position 2 to position l.
At t = 0+, the capacitor appears as a short circuit,
and the voltage V is applied through Rl to charge
the load (R3C). The voltage across the capacitor
Vc(t), is

Eq.49

In theory, the voltage across the capacitor reaches
V when t equals infinity. In practice, the voltage
reaches 98 percent of V after 3.9 RC time constants.
You can verify this by setting Vc(t)N = 0.98 in
Equation 49 and solving for t.

1-21

Negative Step Function Response

The capacitor is charged to approximately V. At t =
0, the switch is moved from position 1 to position 2,
and the capacitor is discharged. The voltage across
the capacitor, Vc(t) is

Eq.50

The voltage decays to 2 percent of its original value
in 3.9 RC time constants. You can verify this by set­
ting Vc(t)N =0.02 in Equation 50 and solving for t.

The Ideal Case

Consider the ideal case where Rl = R2 = O. Let R3
= R in Equations 49 and 50. If a positive pulse of
width T is applied to the modified circuit of
Figure 18, the pulse disappears if 4RC > T.

Because the discharging time constant is the same as
the charging time constant for the ideal case, a nega­
tive-going pulse of width T also disappears if 4RC >
T. That is, if the applied signal is nonnally HIGH
and goes LOW, as does the write strobe on an
SRAM, the termination filters out all negative
glitches less than 4 RC time constants in width.

The maximum frequency that the circuit passes is

F(max.} = A Eq.51

This is true because the charging and discharging
time constants are equal for the ideal case.

Capacitance for the Ideal Case

The value ofthe capacitor, C, must be chosen to sat­
isfy two conflicting requirements. First, the capaci­
tor should be large enough to either absorb or sup­
ply the energy contained or removed when
positive-going or negative-going glitches occur. Se­
cond, the capacitor should be small enough to avoid
either delaying the signal beyond some design limit
or slowing the signal rise and fall times to more than
5 ns.

A third consideration is the impedance caused by
the capacitor's capacitive reactance, Xc. The digital
waveforms applied to the AC termination can be ex-

'Lz~YPRESS~;;;;;;;;;;;;;;;;;;;;~sy~s~te~m;;D~e~Si~gn~.~c~o~n~Si~de~r~a~ti~on~s
pressed as a Fourier Series so that they can be ma­
nipulated mathematically. However, because these
signals are not periodic in the classical meaning of
the word, it is not clear that the ACsteady-state
analysis model of Xe applies here.

In most applications, the degradation ofthe signal's
rise and fall times beyond 5 ns determines the maxi­
mum value of the capacitor. The procedure is to cal­
culate the rise time between the 10- and 90-percent
amplitude levels, equate this rise time to 5 ns, and
solve for C in terms of R:

Vet) = V(1 - e[i,l])

for t yields

t = RCln.[~]
1 - v

Vet)
ForY

Vet)
ForY

0.1, t

0.9, t

Eq.52

Eq.53

0.10 Re.

2.3 RC.

The time for the signal to transition from 10 to 90
percent of its final value is then T = 2.2 RC. Solving
for Cyields

C=~
2.2R Eq.54

For T = 5 ns, Table 2 can be constructed. This table
indicates that 50Q transmission lines on PCBs that
are terminated with RC networks should use a 47Q
resistor and a capacitor of 48 pF max; 47 pF is a stan­
dard value. This network eliminates glitches of 9 ns
or less. The table's second column applies to wire­
wrapping construction, which is not recommended
for systems operating at frequencies over 10 MHz.
An exception is if the system consists of less than six
MSI or SSI ICs.

Table 2. Termination Value for an Ideal Case

PCB Wirewrapped
Zo(Q) 50 120
R(Q) 47 110

C(max.,pF) 48 20
RC (ns) 2.25 2.2

4RC (ns) 9 8.8

The Real World
To go from the ideal to the real world, calculate the
values of R 1 and R2 from the curves on the datasheet
of the device driving the line. R 1 is the slope of the
output source current vs. output voltage between 2
and 4 Y. R2 is the slope of the output sink current vs
output voltage between 0 and 0.8Y.

Add the value of Rl to 47Q and calculate C, using
Equation 54. Then check to see that the RC charging
time constant does not violate some minilltum posi~
tive pulse-width specification for the line. If so, re­
duce C.

Add the value of R2 to 47Q and calculate C. Tpen
check to see if the discharging RC time constant vio­
lates some minimum pulse-width specification for
the line. If so, reduce C.

If the line is heavily loaded, Equation 12 must be
used to calculate the loaded characteristic imped­
ance, which determines the maximum value of R.
The Maximum value of C is then calculated using
Equation 54.

Schottky Diode Termination
In some cases it can be expedient to use Schottky
diodes or fast-switching silicon diodes to terminate
lines. The diode switching time must be at least four
times as fast as the signal rise time. Where line im­
pedances are not well defined, as in breadboards
and backplanes, the use of diode terminations is
convenient and can save time.

A typical. diode termination appears in Figure 19.
The Schottky diode's low forward voltage, Vf (typi­
cally 0.3 to 0.45V), clamps the input signal to a V f be­
low ground (lower diode) and Vee + Vf (upper
diode). This significantly reduces signal undershoot

1-22

and overshoot. Some applications may not require
both diodes.

The advantages of diode terminations are:

• Impedance matched lines are not required

• The diodes replace terminating resistors or RC
terminations

• The diodes' clamping action reduces overshoot
and undershoot

• Although diodes cost more than resistors, the to­
tal cost of layout might be less because a precise,
controlled transmission-line environment is not
required

• If ringing is discovered to be a problem during sys-
tem debug, the diodes can be easily added

erates the write strobe for four Cypress FIFOs. The
PLD is a PALCl6L8 device and the FIFOs are
CY7C429s.

The equivalent circuit appears in Figure 20 and the
unmodified driving waveform in Figure 21. The rise
and fall times are 2 ns. The length of the stripline
trace on the PCB is 8 inches and the intrinsic charac­
teristic line impedance is 50Q The voltage wave­
forms at the source (point A) and the load (point B)
must be calculated as functions of time. Stripline
construction is used for this example because in
most modem high-performance digital systems, the
pc:as have multiple layers.

The equivalent ON channel resistance of the PLD
pull-up device, 620, is calculated using the output

Vee = 5V
As with resistor or RC terminations, the leads
should be as short as possible to avoid ringing due
to lead inductance.

A few of the types of Schottky diodes commercially
available are

t+
1V

6-;0 ,-
1 A

• HSMS-2822 (Hewlet-Packard)

• 1N5711
• MBD101, MBD102 (Motorola)

• SN74S1050/52/56 (T!, single-diode arrays)

• SN74S1051/53 (T!, double-diode arrays)

Unterminated Line Example

The following example illustrates the procedure for
calculating the waveforms when a Cypress PLD gen-

Vee

Figure 19. Schottky Diode Termination

1-23

1=8" i + 40 pF

VB I 1 ~~

Figure 20. Equivalent Circuit for Cypress PAL
Driving

~1· _______ 24 ______ ~·1

1V+-----"""\

o

o 2 22 24

Figure 21. VA(t), Unmodified

~ System Design Considerations
~)rCYPRESS===============================
source current versus voltage graph, over the region
of interest (2 to 4V), from the PALC20 series data­
sheet. The equivalent resistance of the pull-down
device, llQ, is calculated in a similar manner, using
the output sink current versus output voltage graph,
over the region of interest (0.4 to 2V), also on the
datasheet.

The equivalent input circuit for the FIFO is con­
structed by approximating the input and stray capac­
itance with a lO-pF capacitor and the input resis­
tance with a 5-Mg resistor. The input leakage
current for all Cypress products is specified as a
maximum of ± 10 !lA, which guarantees a minimum
of 500 Kg at Yin = 5Y. Typical leakage current is 10
pA.

Because the PLD is driving four FIFOs in parallel,
the equivalent lumped capacitance is 4 X 10 pF =
40 pF, and the equivalent lumped resistance is
5,000,000/4 = 1.25 MQ

The next step is to calculate the propagation delay
and the loaded characteristic impedance of the line.
The unloaded propagation delay of the line is calcu­
lated using Equation 45 with a dielectric constant of
5:

tpd = 2.27 (ns/ft) Eq.55

To calculate the loaded line propagation delay, the
intrinsic capacitance must first be calculated using
Equation 9.

Eq.56

where Zo is the intrinsic characteristic impedance,
and Co is the intrinsic capacitance.

C = tpd = 2.27 ns/ft = 454 F!'fi
a Zo 50 . P t. Eq.57

Because the line is loaded with 40 pF, Equation 11 is
used to compute the loaded propagation delay of
the line.

2.27 ns/ft 1 + 40pF
45.4pF/ft x 8 in.

12in·/ft

tpdL = 3.46 ns/ft Eq.58

Note that the capacitance per unit length must be
multiplied by the line length to arrive at an equiva­
lent lumped capacitance.

The intrinsic line impedance is reduced by the same
factor by which the propagation delay is increased
(1.524; see Equation 12):

Zo' = t~~4 = 32.8Q Eq.59

Initial Conditions

At time t = 0, the circuit shown in Figure 20 is in a
quiescent state. The voltage at points A and B must
be the same. By inspection:

VA = VB = (Vee - Vj) (Rs ~L RJ
(1.25 X 106)

= (5 - 1) 28 + 1.25 x 106 = 4V Eq.60

At t = 0, the driving waveform changes from 4V to
approximately OV with a fall time of 2 ns. This is
shown in Figure 20 by the switch arm moving from
position 1 to position 2.

The wave propagates to the load at the rate of 3.46
ns per foot and arrives there

To = 3.46 ns/ft x 128i~~ift = 2.3 ns
Eq.61

later, as illustrated in Figure 22b.

Because the reflection coefficient at the load is QL

= 1, an early equal and opposite polarity waveform
is propagated back to the source from the load. The
reflection arrives at t =2To = 4.6 ns (Figure 22a).
Note that the fall time is preserved.

The reflection coefficient at the source is

Rs - Zo' 11 - 32.8
Ps = Rs + Zo' = 11 + 32.8 = - 0.498 Eq.62

Th simplify the calculations that follow, consider
-0.5 to be the low-level source reflection coeffi­
cient. The magnitude of the reflected voltage at the
source is then

VS1 = - 4V x (- 0.5) = 2V Eq.63

1-24

.-. -=z System Design Considerations
,-cYPRESS ==============

VB

44------.

3

2

o

-1

-2

-3

-4

TO
2.3

4.3

Figure 22a. Unterminated Line Example; VA(t)

3To 7.9
6.9

5TO·
11.5

?To
16

9TO
20.7

Figure 22b. Unterminated Line Example; VB(t)

1-25

To
2.3

4.47

3TO
6.9

4

~ System Design Considerations
WRYPRESS ================
This wave propagates from the source to the load
and arrives at t = 3 To. The wave adds to the OV sig­
nal. The rise time is preserved, and thus the time re­
quired for the signal to go from 0 to 2V is

t = 2V x 2 ns = 1
, 4V ns Eq.64

The signal at the load thus reaches the 2V level at
time

t = 3To + Ins = 7.9ns Eq.65

and remains at that level until the next reflection oc­
curs at

t = 5To Eq.66

The wave that arrives at the load at 3 To reflects
back to the source and arrives at

I = 4To = 9.2ns Eq.67

The 2V level adds to the -4V level, for a total of
- 2Y. The rise time is preserved, so that this level is
reached at

t = 4To + 1 ns = 10.2 ns Eq.68

and maintained until the next reflection occurs at

t = 6To Eq.69

The 2V wave that arrives at the source at t = 4To re­
flects back to the load and arrives at t = 5T o. The
portion that is reflected back to the load is

VS2 = 2 x (- 0.5) = - 1 V Eq.70

This value subtracts from the 2V level to give 2· - 1
= 1 Y. Because the fall time is preserved, the time
required for the signal to go from 2 to IV is

t - IV x 2ns - as
f - 4V -. ns Eq.71

The IV level is thus reached at time

t = 5To + 0.5ns = 12ns Eq.72

At t = 6T 0, the IV wave arrives back at the source,
where it subtracts from the - 2V level to give -1 Y.
The rise time is

t, = 1 x 0.5 ns/V = 0.5 ns Eq.73

The signal at the source reaches the -IV level at

t = 6To + 0.5 = 14.3 ns Eq.74

The IV wave that arrives at the source at t = 6T 0 is
reflected back to the load and arrives at t = 7T o.
The portion that is reflected back is

V S3 = 1 x (- 0.5) = - O.5V Eq.75

This value subtracts from the IV level to give 0.5Y.
The fall time is 0.25 ns. The 0.5V level remains until
the next reflection reaches the load at

t = 9To Eq.76

At t = 8T 0 the 0.5V wave that reflects from the load
at t= 7To arrives back at the source, where it sub­
tracts from the -IV level to give -0.5Y. The rise
time is 0.25 ns. The portion that reflects back to the
load is

VS4 = 0.5 x (- 0.5) = - 0.25V Eq.77

The -O.25V signal arrives at the load at t = IOTo =
23 ns and subtracts from the O.5V signal to give
O.25Y.

This process continues until the voltages at points A
and B decay to approximately OY.

Observations

The positive reflection coefficient at the load and
the negative reflection coefficient at the source re­
sult in an oscillatory behavior that eventually decays
to acceptable levels. The voltage at point A reaches
-IV after 6To delays and the voltage at point B
reaches O.5V after 7T 0 delays.

The reflection at the load that causes the voltage to
equal the TTL minimum one level (2V) at T = 3T 0

causes a problem. The actual input voltage thresh­
old level is 1.5V for TTL-compatible devices that do
not exhibit hysteresis.

The voltage at the load falls from 4V to OV in 2 ns,
beginning at t = To. Because To = 2.3 ns, the volt­
age reaches zero at

2.3 ns + 2 ns = 4.3 ns Eq.78

The 1.5V level occurs at

4.3 ns - ~~ x l.5V = 3.55 ns Eq.79

1-26

The rising edge begins at

t = 3To = 6.9 ns Eq.80

The 1.5V level occurs at

6.9 ns + 24~ x 1.5 = 7.65 ns Eq.81

The time difference (7.65 - 3.55 = 4.1 ns) is long
enough for the FIFO to interpret the signal as a
LOW.

Next, consider the width of the positive pulse that
begins at the load at t = 3T o. Because the rise time
is preserved, the signal takes 1 ns to reach 2V, or 0.75
ns to reach 1.5V. The signal begins to fall at t = 5T 0,

reaching 1.5V at

t = 5To + 0.25 ns = 11.75 ns Eq.82

The difference (11.75 - 7.65) is 4.1 ns, which is wide
enough for the FIFO to interpret as a second clock.
To eliminate this pulse, the line must be terminated.

Strobe Shortening Considerations

In this example the width of the negative strobe is 22
to 24 ns. If a CY7C429-20 FIFO is used, the write
(or read) strobe must not be shorter than 20 ns.
Even if the FIFO does not recognize the 4.5-ns neg­
ative pulse, the shortening of the write strobe by 5T 0

= 11.5 ns is sufficient to violate the minimum nega­
tive-pulse-width specification.

This strobe-shortening phenomenon might also oc­
cur on other active-LOW control lines such as out­
put enables and chip selects. Clock lines must also
be analyzed for this problem; in general, these lines
should be terminated.

Now consider an analysis of the write strobe's rising
edge to assure that the reflections associated with
this edge do not cause multiple clocks or false trig­
gering of the FIFO. At t = 22 ns, the rising edge of
the write strobe begins, which is the equivalent of
closing the switch in Figure 20 in the 1 position. For
this analysis, it is convenient to start the timescale
over at zero, as appears in Figure 22a and b.

System Design Considerations

If the forcing function were a step function, the
equations of Figure 4h would apply. The time
constant in the equation is

T = RZo'Ce

R + Zo'

Because

R > Zo', T = Zo'Ce

where Zo' = 32.89, and Ce = 45.4 pF.

Eq.83

Eq.84

This is the equivalent of saying that you can ignore
the1.25-MQ device input resistance for transient
circuit analysis. Substituting Zo' and Ce into the
preceding equation yields a time constant of T =
1.489 ns.

Writing the equation for the voltages for the circuit
of Figure 20 yields

vB(t) = iZ' + lIt i dt o Ce
o Eq. H5

Also,

VB(t) = KtU(t) - K(t - Tl) U(t - Tl) Eq.86

where Kt is the rising edge of the write strobe (K =
2V/ns) applied at t = 0 using a unit step function,
U(t); and -K(t - T1)represents an equal butoppo­
site waveform applied at t = T1 (after the rise time)
using a unit step function, U(t - T1).

Equating the expressions and taking the LaPlace
transforms of both sides yields

K _ Ke- Tb = Z 'J(s) + J(s) = (Z ' + -L)J(S)
S2 S2 0 Ces 0 C,s Eq. 87

However,

VB(t) = l:e f i dt, or, VB(s)

Therefore,

J(s)

C.s

~ - K~:b = (Zo' + dJ C.sVB(s)

Solving for VB(S) yields

Eq.88

Eq.89

Eq.90

1-27

£# ~ System Design Considerations
_, CYPRESS ===============

which is equivalent to

z;7c.(l - e-n ,)

S2(S + zdc,)
Taking the inverse LaPlace transform yields

VB(t) = [KZo'c,(ez;;:~, - 1) + Kt] U(t) -

KZo'C, e zo'C, - 1 + K(t - Tl) U(t - Tl)

Eq.91

[[
[-(t-TII] 1 1

. Eq.92

The first term in Equation 92 applies from time zero
up to and including T1, and the second term applies
aftcrT1:

ViI) = KZAC' (e[z;;:~,] - 1) + fi (t)
Eq.93

for t~ T1.

for t > T1.

whereK1 is the final value, which is 4V.

Substituting the correct values for t = T1 = 2 ns
yields

VB(t = Tl) 2 x 32.8 x 45.4 x 10- 12 (E-1.489 _ 1)
2 x 10 9

2V + ns X 2ns

- 1.15 + 4 = 2.85V Eq.95

If the forcing function is a step function, the equa­
tion is

Eq.96

at t = 2 ns, VB = 3V, which is more than the 2.85V
calculated using Equation 93.

At t = 22 ns + To, the voltage waveform begins to
build up at the load and continues to build until the
first reflection from the source occurs at t = 3T o.

Equation 94 is used to calculate the voltage at the
load at t = 2T 0, because 1 T 0 is used for propagation
delay time:

VB(t = 2To) =

- 2V x 32.8 x 45.4 x 10- 12 (1 _ -1.489)(-2) + 4
2x10 9 e e

- 1.489 (0.774)(0.1353) + 4

- 1.559 + 4 = 3.84V Eq.97

The voltage at the load remains at this value until
the first reflection from the source reaches the load
att = 3To.

Meanwhile, at t = To, the wave at the load reflects
back to the source and arrives at t = 2T o. The wave
subtracts from the 4V level at the source, as illus­
trated in Figure 6c. The amplitude of the droop is
given by

V = C'Zo'Vo
, 2 T, Eq.98

forRs = Zo·
If Rs does not equal Zo' ,Equation 98 must be modi­
fied. Instead of V 0/2, the voltage is

VO(Rs :s zJ Eq.99

so that Equation 98 becomes

V = C'Zo'Vo (Rs)
, T, Rs + Zo' Eq.100

where C' = 40 pF, ZO' =32.8Q Rs = 62Q Tr = 2 ns,
and V 0 = 4 V. Substituting these values into Equa­
tion 100 yields

1-28

V, = 1.716V Eq.101

Because 4V - 1.716 = 2.284, the voltage does not
drop below the minimum TTL VIH level of 2V, but
it does come close.

The reflection coefficient at the source is

Rs - zo'
Ps = Rs + zo' Eq.102

where, Rs = 62 ohms, Zo' = 32.8 ohms, Qs = 0.308.

-, ~ System Design Considerations
2&'CYPRESS================================~

The amount of voltage reflected from the source
back to the load is then

VS1 = 1.716 x 0.308 = 0.53V Eq.103

The 40-pF capacitor reduces the rise time of the
waveform at the load. The reflection at the source
caused by the load capacitor is insufficient to reduce
the 4V level to less than the TTL one level (2V).

The reflection coefficient at the source is small
enough so that the energy reflected back to the load
is insufficient to cause a problem.

References
1. Matick, Richard E. Transmission Lines for Digi­

tal and Communications Networks. McGraw
Hill,1969.

1-29

2. Blood, Jr., William R. MECL System Design
Handbook. Motorola Inc., 1983.

Protection, Decoupling, and Filtering of Cypress
CMOS Circuits

This application note explains how to protect your
ICs with a low-cost zener diode and why it is good
insurance against inadvertent voltage transients.
Also explained is the reason why decoupling and
high-frequency-filtering capacitors are required. A
method is provided for determining the capacitors'
values.

Zener Diode Protection

Linear power supplies can cause large voltage tran­
sients. The transient is negative when it is caused by
the collapse of a magnetic field and is positive when
the supply is turned on.

Some commercially available laboratory bench sup­
plies behave the same way. When they turn on, they
can overshoot several volts. When they turn off,
lead inductance can cause a negative transient volt­
age at the Vee pin. If there is enough energy, this
inductance can break down internal gate oxides, de­
stroying or weakening the IC to the extent that it
might fail later.

You can avoid this problem by adding a 20¢ zener
diode (also called a voltage-regulator diode) be­
tween Vee and ground. Connect the diode's cath­
ode to Vee and the anode to ground (see Figure 1).
A 400-mW, 6.2V IN525 or equivalent is recom­
mended. You can also use the IN753, a 500-mW,
6.2V zener diode.

If a voltage greater than the zener voltage (6.2V) oc­
curs on Vee, the diode breaks down, clamping the
voltage to 6.2V and shunting the current to ground
(see Figure 2). The diode can be destroyed ifthe cur­
rent multiplied by the zener voltage exceeds the

diode's power rating. Because zener diodes always
fail shorted, they cause the power supply to "crow­
bar" and thus protect the ICs.

A negative voltage on the Vee line puts a forward
bias on the diode. This turns on the diode, which
clamps the voltage to approximately -O.SY. If the
negative voltage multiplied by the current exceeds
the diode's power rating, the diode fails shorted, as
in the reversed-bias case, and protects the ICs.

Vee

GND

Figure 1. Zener Diode Connection

Vz

v

Figure 2. Zener Diode Characteristic

1-30

TL ?cYPRESS ==;;;;;P;;;;;r;;;;;o;;;;;te;;;;;c;;;;;b;;;;;·o;;;;;n;;;;;, D=ec;;;;;o;;;;;u;;;;;p;;;;;li;;;;;n;;;;;g,;;;;;a;;;;;n;;;;;d;;;;;F;;;;;i;;;;;lt;;;;;er;;;;;i;;;;;ng~o;;;;;f C=M;;;;;O;;;;;S=C;;;;;ir;;;;;c;;;;;u;;;;;it=s

High-Frequency Filtering

In addition to the protection offered by zener
diodes, decoupling and high-frequency filter capaci­
tors are required on high-performance CMOS cir­
cuits. Th use these capacitors effectively, you must
understand why they are required.

To realize the fast rise and fall times that Cypress
CMOS integrated circuits are capable of achieving,
the power-distribution system must be able to sup­
ply the instantaneous current required when the de­
vice outputs switch from LOW to HIGH. The ener­
gy converted to current is stored as charge on the
local decoupling capacitors. They decouple or iso­
late the circuit from the power-distribution system.
It is standard practice to use one decoupling capaci­
tor for each IC that drives a transmission line and
one capacitor for every three devices that do not.

The PCB trace inductance plus the IC lead induc­
tance can "current-starve" the output circuits, caus­
ing rise-time degradation. Remember that the cur­
rent through an inductor cannot change
in~tantaneously. Therefore, you must minimize any
series inductance, including the lead inductance of
the decoupling capacitors.

Decoupling-Capacitor Calculations

To determine the value of the decoupling capacitor,
you must estimate the instantaneous current re­
quired when all the outputs of an IC switch from
LOW to HIGH, assuming a reasonable droop ofthe
voltage on the capacitor. The charge stored on the
local decoupling capacitor is

Q=CV

Differentiating yields

. dQ dV
let) = dt = C dt Eq.1

The characteristic impedance of a typical transmis­
sion line is 500. Lines with a heavy capacitive load
have lower characteristic impedances.

Next, assume that the Ie is a nine-output FIFO,
such as the CY7C429. The outputs reach

Vcc- Vr = 5V-1V= 4V

1-31

Each output requires 4V/SOO = 80 mAo Because
the FIFO has nine outputs, it requires a total of 720
mA during the rise times of the outputs.

Solving Equation 1 for C yields

C = j dt
dv Eq.2

The last step is to assume a reasonable, tolerable
droop in the capacitor voltage. Assume dV = 100
m V. Additionally, the signal rise and fall times are
2 ns. Substituting these values in Equation 2 yields

_ 720 x 10-3 X 2 X 10-'
C - 100 x 10 3

14.4 X 10-'

0.0144f1-F

It is standard practice to use 0.01 to O.l-J.tF decoup­
ling capacitors. A O.l-J.tF capacitor can supp.ly SA
under the conditions assumed in the preceding cal­
culations. Another way to look at the situation is
that a 0.1-J.tF capacitor supplies no mA of inslanla
neous current in 2 ns with only 14.4 IllV of' vollagl'
droop across the capacitor.

Decoupling capacitors for high-speed (·ypr.:ss
CMOS circuits should be ofthe high-K ceramic lype
with a low Effective Series Resistance (ESR). Ca­
pacitors using ZSU dielectric are a good choice.

High-Frequency Filter Capacitors

The 0.1 to O.Ol-J.tF decoupling capacitors usually do
not provide high-frequency decoupling or filtering.
These capacitors do not behave like capacitors at
high frequencies because their series resonance fre­
quency is not high enough. This is primarily because
of lead inductance in their construction, which is a
result of the capacitor's relatively large value.

For high-freqllency filter analysis, you can use the
simplified capacitor equivalent circuit shown in Fig­
ure 3. Rs is the ESR, L is the Effective Series Induc­
tance (ESL), and C is the capacitance.

Figure 3. Simplified Capacitor Equivalent Circuit

~ Protection, necoupling, and Filtering of CMOS Circuits
_;CYPRESS ==============;;;;;;;;;;;;;;;=

The impedance of the simplified equivalent circuit
is:

R, + jwL + j~C

Z, = R, + j [WL - wle]

The magnitude of the impedance is

At the series resonant frequency:

wL

or,

w =

I
wC

I

ILc

Eq.3

Eq.4

Eq.5

At the resonant frequency, Zc = Rs, which is the
minimum impedance.

FiKlIrl' 4 shows how the impedance varies with fre­
qucncy. The. series resistance usually increases as
thc capacitance decreases. Also, as the capacitance
decreases, the inductance typically decreases, which
means that the resonant frequency increases. This
is usually due to the capacitor's physical construc­
tion. Note that a surface-mounted capacitor's lead

102

10-1

10-2

10-3

10-4

10-5

\
\

\

\

~

\

I r\
IY U.
~(Of.lF

\ /1--

L>\ '/
./ V V ~ V

V /
V 1\(

V --~ I---K 10e p F

10 F

t 10 102 103 104 105 106 107 108 109 1010

Z (ohms) Frequency (Hz)

Figure 4. Capacitor Impedance Versus Frequency

inductance is at least an order of magnitude less
than that of an axial-lead capacitor.

The next step in high-frequency filter analysis is to
determine a typical system's expected high-frequen­
cy components. Begin by assuming that the circuit
is driven by a series of digital pulses with finite rise
and fall times, then perform a Fourier transform on
the series to determine their frequency compo­
nents.

Fourier Transform of a Periodic Pulse
Figure 5 illustrates a periodic pulse of amplitude A,
period T, rise and fall times of tr. and pulse width of
Tp, as measured between the 50-percent-amplitude
points.

The approximate frequency-domain transform ap­
pears in Figure 6. The amplitude of the frequency­
domain voltage is a function of the signal's ampli­
tude and duty cycle in the time domain. The
fundamental frequency, Fo, is related to the pulse
train's period. The first harmonic, Flo is of equal en­
ergy and is a function of the pulse width. The second

A

0,5A

Figure S. Periodic Pulse Waveform

2M

o
Fa

f-

Figure 6. Fourier 'Ii'ansform of Periodic Pulse

1-32

-~ Protection, Decoupling, and Filtering of CMOS Circuits
,CYPRESS ===============

harmonic, F2, contains half the energy of Fo and is
a function of the pulse rise time.

The rise and fall times of Cypress's CMOS and BiC­
MOS circuits are 2 ns, by design. If a Cypress PLD
is driving the write- or read-strobe inputs of a
CY7C429-20 FIFO at the maximum frequency of
33.3 MHz (T = 30 ns) with a 1O-ns/30-ns duty cycle
signal (T p = 10 ns), the following signal frequencies
are generated:

Fo = 1T = 3.1416 x ~o x 10-9 = 10.61 MHz

1 1
F, = 1fTp = 3.1416 x 10 x 10-9 = 31.83 MHz

_ 1 _ 1
F2 - 1ft, - 3.1416 x 2 x 10 9 = 159.15 MHz

Within the IC, signal rise and fall times can be as fast
as 300 ps (picoseconds), which means that F2 =
1.061 GHz (1,061 MHz). In some ICs short timing
pulses are generated internally, but they are usually
longer than the 300-ps rise time, so the preceding F2
is the highest harmonic present.

Because the IC's data outputs can normally change
no faster than those of the inputs, the outputs do not
generate ad(Utional higher-frequency harmonics.

Parallel the Filter Capacitors

It will not be possible to find a capacitor with three
series resonant frequencies that correspond to FO,
F1, and F2. Instead, select one capacitor with a res­
onant frequency greater than 160 MHz and connect
it in parallel with the decoupling capacitor, between
Vee and ground, as close to the IC as possible. It
will act like a bandpass filter, shunting the un­
wanted, high frequency signals to ground. The sum
of the values of the capacitors should be greater
than or equal to the value of capacitance given by
Equation 2.

The AVX Corporation, Myrtle Beach, South Caro­
lina (803-448-9411), makes a series of "RF/Mi­
crowave NPO Capacitors." Their "Ultra Low ESR,
'U' Series" have an ESR of 0.06 Ohm at 500 MHz.
A value of 470 pF in the EIA standard size 1210
"chipcap" is recommended. Its series resonant frc­
quency is approximately 180 MHz.

Low-Frequency Filter Capacitors

A solid tantalum capacitor of 10 J-tF is recommended
for every 50 to 100 ICs to reduce power-supply rip­
ple. Place this capacitor as close as physically pos­
sible to where the Vee and ground enter the PCB or
module.

1-33

Using Decoupling Capacitors

Introduction

This application note describes some revised recom­
mendations regarding the use of decoupling capaci­
tors. The "conventional" recommendation of using
two different values and two different types can, in
many circumstances, cause less than idea~ operation.
Simpler, more reliable designs will often result from
following the design guidelines of this note.

The Problem

Faster edges, more sensitive devices, higher clock
rates all demand "good" decoupling of the power
supplies.

Decoupling:
The art and practice of breaking coupling between por­
tions of systems and circuits to ensure proper operation.

1.00

§:
X
"0
<::

'" 0 x 0.10

0.01 '----I.......L..J...J..J.I.J.J.J...---.J---l....J...J..J..U.J.I....---I.......L..J..J..CIoJJJ

1.00 10.00 100.00 1000.00

Frequency (MHz)

Figure 1. Z vs. f for Parts of a Real Capacitor

Bypassing:
The practice of addil,!g a low-impedance path to shunt
transient energy to ground at the source. Required for
proper decoupling.

What used to work for lower system speeds and
slower logic may not work well when the system
speed increases. The cominon practice of using two
different values for decoupling can:

• Increase the RFIJEMI problems

• Reduce the reliability of operation

• Reduce the noise tolerance

Each physical component shown on the schematic
brings with it additional electrical components de­
termined by the design and mounting of that compo­
nent into the system.

Look in Figure 1 at the behavior of two ideal compo­
nents, a capacitor and an inductor representing parts
of the capacitor shown in Figure 2. Note that without
any lead inductance or resistance, the resulting ca­
pacitive reactance approaches 00 with increasing
frequency. Note also that the inductive reactance of
the ideal inductor, without any stray capacitance, ap­
proaches infinity.

Schematic System

~
~

.I j 30mb!

Figure 2. The "Real" Schematic

1-34

as ~ Using Decoupling Capacitors
~ CYPRESS ===============

0.01 L-_--J.._.l.-"'--L-J.....u.J....L.. __ .L..---'---J..-'-.1....l..J...J..J~ _ __'_____''__l.._L_'_J....L...J..J

1.00 10.00 100.00 1000.00

Frequency (MHz)

Figure 3. Expected Impedance of "Real" Capacitors

A real capacitor includes an inductor and resistor in
the form of leads, traces, and even ground planes in
series with it (Figure 2).

Multi-layer capacitors have approximately 5 nH of
parasitic inductance when mounted on a printed cir­
cuit board. While the component drawn on the sche­
matic (Figure 2) shows a 22-nF capacitor, the system
sees the 22-nF capacitor in series with a 5-nH induc­
tor and a 30-mQ resistor.

The impedance curve of "Real" capacitors resembles
the traces marked 22 nF and 100 pF of Figure 3. The
shape of these calculated curves match the curves
given in capacitor manufacturers' datasheets. This
means that in a circuit, a capacitor acts as a low­
impedance element only over a limited range of fre­
quencies. A solution, proposed in many works,
added a second capacitor to bypass frequencies out­
side the limited range of the single capacitor. This
approach expected that the resulting impedance
curve would look like the solid line marked "Ex­
pected" in Figure 3. This solution, however, has a
significant problem at "intermediate" frequencies.

These intermediate frequency problems come from
the circuit shown in Figure 4. The circuit on the left
represents the schematic form of a typical decoup-

1-35

ling arrangement, a 22-nF and a 1 OO-pF capacitor in
parallel.

Conventional wisdom suggests that the 100-pF
should decouple the high frequencies, and the 22-nF
should decouple the low frequencies. However, the
combination results in some unexpected interac­
tions. The circuit on the right in Figure 4 shows a
clearer representation of the system, including the
parasitic inductances and resistances. This picture
shows all the components necessary to create a reso­
nant tank circuit.

Figure 5 shows a combined plot of Z vs. frequency of
this circuit. The values given for effective series re­
sistance (ESR; 30 mQ) and effective series induc-

Schematic System

• ~ ·22 ~F'1Oo pF I
22nF 100P~ ~ ~

.I =r
30mQ

Figure 4. The "Real" Schematic

~,~ Using Decoupling Capacitors
~-'CYPRESS ==============~

,." 22 nF 11100 pF

1 00 pF ---:.: •••

0.01 '--_----'_--'---'---'-...!-.................. __ -'-----'_.l-... -'-' __ --'-_-'---'-...!-................

1.00 10.00 100.00 1000.00
Frequency (MHz)

Figure 5. Real Z vs. ffor Parallel 22-nF and lOO-pF Capacitors

tance (ESL; 5 nH) are achievable on real PCBs using
"good" layouts and surface-mounted capacitors.

The graph of Figure 5 shows a range of frequencies
where this combination of two capacitors results in
a higher impedance than that of the larger capacitor
alone. For the combination shown, this range includes
approximately 15 MHz through 175 MHz. Notice
the large peak in reactance at 150 MHz due to reso­
nance of the two capacitors. Any energy from the
rest of the system (ICs, clocks, and harmonics), over
this intermediate range of frequencies, will see a
higher impedance than that of a single22-nF capaci­
tor alone. Over this range of frequencies, the parallel
combination will bypass less of the energy to ground.

The height of the peak shown in Figure 5 varies in­
versely with the ESR of the capacitors. As board de­
signs and components improve, the height of the re­
sulting peak will actually increase due to a reduction
of the system ESR. The exact shape and location of
the parallel resonant peak will vary for each system
depending on the design of the printed circuit board
(PCB) and choice of capacitors.

Recommendations

The following recommendations can improve the
resulting designs:

• Use only one value of capacitor.

• Choose the capacitor based on the self-resonant
characteristics from the manufacturers' data­
sheet to match the clock rate or expected noise
frequency of the design.

• Add as many capacitors as needed for your range
of frequencies. As an example, the capacitor
shown (22 nF) has a self resonant frequency of
approximately 11 MHz, and a useful (less than
lQ) impedance range of 6 to 40 MHz. Use as
many of these as needed to achieve the desired
level of decoupling.

• A minimum of one capacitor per power pin placed
as physically close to the to the power pins of the
IC as possible to reduce the parasitic impedances.

• Keep lead lengths on the capacitors below 1/4"
between the capacitor endcaps and the ground or
power pins.

1-36

• . ~ Using Decoupling Capacitors
JF CYPRESS ===============

• Place the bypass capacitors on the same side of
the PCB as the ICs. Figure 6 shows an example of
a recommended layout for a HOTLink'" 1l:ans­
mitter and Receiver.

A special note about Figure 6: in both ofthe layouts,
only one connection is made to the Vee plane. This
is done so that the noise, generated both inside the
IC and external to this portion of the circuit, must go
through the single via to the power plane. The addi­
tional reactance of the via helps to keep the noise
from spreading throughout the rest of the system.

HOTLink parts tolerate a fairly large amount of V cc
noise. However, to achieve the absolute "best" per­
formance, use these recommendations.

What About Multiple Clocks?

When the design calls for multiple clock frequencies,
split the power plane as shown in Figure 6 and use the
correct value of capacitor for each section, maintain­
ing only one value per section. An example of this
technique may be found in "HOTLink Design Con­
siderations, Power Distribution Requirements for
Optical Drivers." The isolation provided by the

CY7B923 HOTLink Transmitter

slotted power plane keeps the noise of one section
away from the sensitive parts of the other sections,
and allows the separation of the capacitor values.

What About Variable Clock Frequencies?

Bypassing ICs when the clock rate changes over a
wide range offrequencies presents the most difficult
situation covered here. Fortunately, most data com­
munications applications use only a single clock rate.

When the range of operation of a single part covers
a large range of frequencies, placing two capacitors
that are within approximately 2:1 of each other in ca­
pacitance results in a wider low-impedance zone and
allows a broad range of bypass frequencies. In Fig­
ure 7 notice that the peak in the reactance still occurs,
but that the maximum impedance stays well below
l.SQ and that the usable range (less than l.SQ) now
extends from approximately 3.25 MHz to 100 MHz.
Use this multiple decoupling capacitor method only
when a wide range of frequencies must be bypassed
around a single integrated circuit and adequate
range cannot be achieved by a single capacitor.
Again, the capacitors must remain within a 2: 1 range
to prevent the reactance peak from exceeding useful
limits.

CY7B933 HOTLink Receiver

D Ground -=- Capacitor and Pads
• Vee Via

Vee D Signals o GNDVia

Figure 6. Sample Layouts

1-37

111 ~YPRESS~~~~~~~~~~~U~S~in~g~D;e;C~o;uP~I;in~g~C~a~p~a;ci;to;r~s

9:

i
N

Frequency (MHz)

Figure 7. Real Z vs. ffor Parallel 22-nF and to-nF Capacitors

Conclusions
Application of these techniques resulted in improving
the measured optical margin of a HOTLink-based
OLe (optical link card) by about 1 dB. It simplifies

HOTLink is a trademark of Cypress Semiconductor.

the Bill of Material because only one value is used
instead of two. Finally, using only one value of ca­
pacitor gave the best jitter measurements of the
HOTLink 'fransmitter.

1-38

SRAMs - 2

SRAMs Section Contents and Abstracts

Using an L2 Cache Module with the Contaq 82CS99 PCI Chipset for the Intel 486 CPU 2-1

This application note works through the design decisions that occur when an L2 cache is designed into an Intel
486-based system built with the Contaq PCI chipset. Then a design example shows how to use the CYM9246 family
of L2 cache modules with the Contaq PCI chipset.

Using an L2 Cache Module with the Contaq
82C599 PCI Chipset for the Intel 486 CPU

Overview

Cypress Semiconductor markets the Contaq
82C599 PCI Chipset for Intel® 486-based systems.
The Intel 486 CPU has an oh-chip 8-Kbyte first level
(Ll) cache that significantly improves system per­
formance. The Contaq PCI chipset includes an inte­
grated high-performance cache controller for an ex­
ternal second-level (L2) cache.

This application note works through the design deci­
sions that occur when an L2 cache is designed into
an Intel 486-based system built with the Contaq PCI
chipset. The questions that are addressed are:

• What are the cache requirements?

• Why use a cache module?

- discrete vs. modular designs

• Which cache module(s)?
- selecting an L2 cache module

L2 Cache Requirements

The L2 cache will be defined by size, speed, and
type. There is also the matter of buffering the input
address bits and providing chip select inputs to the
data RAMs.

Cache Size

The current market requirement for L2 cache in
486-based systems is largely 128 Kbytes with an ex­
pansion option to 256 Kbytes. A small percentage
of customers request 512 Kbytes. The larger
512-Kbyte cache size is considered useful in high­
performance multiprocessing applications. The

2-1

Contaq PCI chipset supports cache sizes from 32
Kbytes to 1 Mbyte.

Assume a nominal cache size of 128 Kbytes with an
expansion option to 256 Kbytes.

In that case, the data RAMs can be a standard 32Kx8
device (e.g., CY7CI99). The 128-Kbyte cache can
be built with one bank of four 32Kx8 RAMs. The
256-Kbyte expansion option can be a second bank of
four more 32Kx8 RAMs. With the Contaq PCl chip­
set, the 256-Kbyte cache can be configured as two in­
terleaved banks.

Cache Speed

The cache should support zero-wait-state operation
at a bus frequency of 33 MHz. That requires a tag
RAM with an access time (tAA) of 15 ns. The access
time of the data RAMs depends on the organiza­
tion. A single-bank array (128-Kbyte) should have
tAA = 20 ns. An interleaved two bank array
(256-Kbyte) can use slower data RAMs with tAA =
25 ns.

The Contaq PCI chipset also supports a 50-MHz
clock option with one wait state (3222). In this
mode, the tag RAMs can be slower with an access
time of 20 ns. The data RAM access times are the
same as noted above.

Assume two cache configurations at 33 MHz: a
single-bank 128-Kbyte cache and a two-way inter­
leaved 256-Kbyte cache. The tag RAM will have tAA
= 15 ns in either configuration. The 128-Kbyte
cache will use 20-ns data RAMs and the 256-Kbyte
cache can use lower cost 25-ns data RAMs.

'\. 7cYPRESS ==;;;;V;;;;s;;;;iD;;;;;g;;;;;8;;;;D;;;;L;;;;2=C;;;;8c;;;;h;;;;e;;;;M=od;;;;u;;;;l;;;;e ;;;;Wl;;;;"t;;;;h;;;;th;;;;e;;;;C=OD;;;;t;;;;8;;;;;q;;;;4;;;;86=C;;;;h;;;;;ip;;;;s=et

Cache'JYpe

The cache type can be either write-through or write­
back. The Contaq PCI chipset supports both types
of cache with an on-chip 8-bit address comparator
and logic to process an optional dirty bit.

The Contaq PCI chipset has two write-back modes:
7 -bit tag with one dirty bit or 8-bit tag without a dirty
bit. In write-through mode, the chipset supports an
8-bit tag.

The type of cache and cache size affect the cache­
able l,lddress range. With a 7-bit tag, one dirty bit,
and 128 Kbytes of cache, the cacheab1e address
range is 16 Mbytes. Increasing th~ cache size to 256
Kbytes doubles the cache able address range to 32
Mbytes. With an 8-bit tag, no dirty bit, and 128
Kbytes of cache, the cacheable address range is 32
Mbytes. With 256 Kbytes of cache, the cacheable
address range is 64 Mbytes.

Please note that although the system behavior is dif­
ferent for all three modes of operation, the external
support hardware (8-bit tag RAM) is exactly the
same. The tag RAM size is 8Kx8 for 128 Kbytes of
cache and 16Kx8 for 256 Kbytes of cache.

Address Buffers for 128-Kbyte Cache

The single bank 128-Kbyte cache will require 15 bits
of address (AI6:2). The upper 13 bits (AI6:4) from
the 486 address bus are buffered through a pair of
transparent latches (74FCT373C) to minimize the
loading on the 486 address bus. The address latches
are gated by the ALE signal from the CPU.

The lower two bits (A3:2) are time critical for burst
accesses and require special handling. To support
the different memory configurations, these address
inputs are driven by the Contaq PCI chipset.
TOGA2 from the chipset drives cache address A2.
TOGA3 from the chipset drives cache address A3.

The write enable (CWEo) and output enable
(CRDo) signals for bank 0 from the Contaq PCI
chipset are used to drive the write enable and output
enable inputs to the data RAMs.

TOGA2 drives RAM address bit Ao and TOGA3
drives RAM address bit AI. The upper 13 bits of

2-2

latched address (LAI6:4) are applied directly to the
tag RAM address bits AI4:2.

The loading on the CPU address bus (AI6:4) is
therefore limited to two loads (latch and tag RAM).
The loading on the TQOA3:2 outputs from the chip­
set is four loads (data RAMs). The ALE input from
the 486 has two loads (latches).

Address Buffers for 2S6-Kbyte Cache

The address requirements for the interleaved two­
bank 256-Kbyte cache are somewhat different. The
upper 14 bits (A17:4) from the 486 address bus are
buffered through a pair of transparent latches
(74FCT373C) to minimize the loading on the 486
address bus. The address latches are gated by the
ALE signal from the CPU.

The lower two address bits (A3:2) are provided by
the chipset as TOGA2 (address bit 3 for bank 0) and
TOGA3 (address bit 3 for bank 1). To support the
two-way interleave, the Contaq PCI chipset pro­
vides separate write enables (CWEo and eWEI)
and output enables (CRDo and CRDI) for each
bank.

The address to bank 0 of the data RAMs is thus
formed by TOGA2 driving RAM address bit Ao and
latched address LA17:4 driving RAM address bits
AI4:1. The address to bank 1 of the data RAMs is
formed by TOGA3 driving RAM address bit Ao and
latched address LA17:4 driving RAM address bits
AI4:1'

The upper 14 bits of address (AI7:4) are applied di­
rectly to the tag RAM address bits A13:o, The tag
RAM is implemented as a 32K:X8 part, so the upper
address bit AI4 of the tag RAM is either grounded
or tied to Vee.

The loading on the CPU address bus (A17:4) is two
loads (latch and tag RAM). The loading on the
TOGA3:2 outputs from the chipset is four loads
(data RAMs). The ALE input from the 486 has two
loads (latches).

Generating Chip Selects CS3:0

The Contaq PCI chipset requires logic to combine
the read/write signal (w!R.) and byte enables
(BE3:0) from the Intel 486 to form the chip select

Using an L2 Cache Module with the Contaq 486 Chipset

W!R
CSa

BEa

BEl
CSl

BE2
CS2

BE3
CS3

Figure 1. Chip Select Logic

(CS3:0) inputs to the cache data RAMs as shown in
Figure 1. A write cycle (W/R=l) selects which
byte(s) are written based on the byte enables
(BE3:0). A read cycle (W/R=O) selects all bytes for
read independent of the byte enables.

This logic is typically implemented in a PLD (e.g.,
P16L8) to minimize the loading on the read/write
line from the processor.

For a 128-Kbyte cache, each chip select input will go
to one data RAM (one load). For a 256-Kbyte
cache, each chip select will go to one data RAM per
bank (two loads).

Discrete vs. Modular Designs

The L2 cache design that results from the discussion
so far is shown in Figure 2. The questions now are
how much (if any) of the L2 cache will be included
on the motherboard and how much (if any) of the
logic will be on a module.

Cypress Semiconductor supports either discrete or
module-based designs:

• A wide range of 486 L2 cache modules for most
popular chipsets

• High-speed SRAMs for tag and data RAMs

• FCT logic for the address buffers

• Fast PLDs for the chip select logic

The decision of a discrete vs. module-based design
is usually based on flexibility, board space, and cost.

2-3

Flexibility

Implementing the L2 cache described in this paper
as a module allows the customer to choose one of
four configurations:

• No cache for lowest possible cost

• Low-cost 128-Kbyte cache

• Higher-performance 256-Kbyte cache

• Custom configuration (e.g., 512 Kbytes cache)

The modules under consideration for this applica­
tion require a 112-position Burndy socket (part
number CELP2X56SC3Z48). This socket is a high­
quality, reliable socket that is a standard in the in­
dustry.

For contrast, a discrete implementation with the
flexibility to support three of these configurations
(no cache, 128 Kbytes, 256 Kbytes) would require
sockets for the 9 RAMs in the cache design. These
sockets would tend to reduce the reliability of the
design. The FCT latches and PLD would usually not
be socketed to improve the reliability for minimal
cost.

In other words, a module-based design is much
more flexible than an equivalent discrete design.
Cache modules allow customers to tailor the cache
to balance cost vs. performance tradeoffs to meet
their requirements.

Board Space

The amount of board space required by a module­
based design depends on how much of the required
logic is on the module and how much is on the mo­
therboard.

The minimum space occurs when all of the logic is
on the module and the motherboard only has a
112-position socket with normal clearance around
the socket (usually 0.1 inch). The section on "Se­
lecting an L2 Cache Module" shows that this will not
be the case. The chip select logic (one PLD­
P16L8) will also be on the motherboard.

A discrete implementation will have nine 28-pin
RAMs, two 20-pin latches, and one 20-pin PLD. It
may also have sockets for at least the nine RAMs.

1LrcYPRESS ==;;;;V;;;;S;;;;iD;;;;;g;;;;;8;;;;D;;;;L;;;;2;;;;C=8C;;;;h;;;;e;;;;M=od;;;;u;;;;le=Wl;;;;·t;;;;h;;;;th;;;;e;;;;C;;;;o;;;;D;;;;t;;;;8q;;;;;:;;;;;4;;;;86;;;;C=hi;;;;;p;;;;se=t

8Kx8 (128 KB)
32Kx8 (256 KB)

Vee A14
.-_____ -+A13:0 07:0 _______ CQ15:8

A17:4

ALE

--.------------iWE
--It---------IC"S

2x373C
OE

A14:2

.....-__ -1-__ -1 A1

TOGA2 -----+----I----lAo

CWEo WE

CRDo OE

D D31 :0

C"S C"S C"S C"S

TOGAs (128 KB)

, - - - - LA1; (256 KB)
LA16:4

LA17

TOGAs --:.+------IAo
CWE1 WE

CRD1 OE

CSo

o 031:0

C"S C"S C"S

256 KBenly

wm __________ ~-~--~~~
BE3:0 BE BE BE BEo

Figure 2. L2 Cache Design

The amount of board space required for a discrete
design is significantly larger than the amount of
space required for a module connector and a PLD.
Therefore, a cache module design minimizes the
amount of board space required on the mother­
board.

Cost

The lowest-cost module option (no cache) requires
one 112-pin socket and one 16L8 PLD. This should
cost less than two 373 latches, one PLD, and nine
28-pin sockets.

2-4

A discrete 128-Kbyte cache will consist of two 373
latches, one PLD, one 8Kx8 RAM, four 32Kx8
RAMs and four 28-pin sockets. The 128-Kbyte
cache module will be the same with a 112-pin socket
plus a printed circuit board (substrate) minus the
four 28-pin sockets. Module vendors will also add
a profit margin to the cost of the module. As a re­
sult, a 128-Kbyte cache module will usually cost
more than an equivalent discrete design.

For a 256-Kbyte cache, the cache module has the
same components as the discrete design with the
addition of a 112-pin connector, substrate, and ven-

~

""?cYPRESS ==;;;;V;;;;s;;;;in;;;;g:;;;;a;;;;n;;;;L;;;;2=C;;;;ac;;;;h;;;;e;;;;M=od;;;;u;;;;l;;;;e ;;;;Wl;;;;'t;;;;h;;;;th;;;;e;;;;C=on;;;;t;;;;a~q;;;;4;;;;86=C;;;;h~ip;;;;s=et

dormargin. The 256-Kbyte module usually will cost
more than an equivalent discrete design.

Selecting an L2 Cache Module

Cypress Semiconductor currently builds 8 different
486 compatible L2 cache modules in a total of 17
configurations. The question is which module is
closest to the cache design described in this paper
for the Contaq PCI chipset. The criteria are:

• 128/256 Kbytes data RAM

• 8-bit tag RAM

• No dirty RAM

• Address latches gated by ALE as opposed to ad­
dress buffers

• Bank write enables as opposed to write enables
for each chip

• Four chip selects as opposed to bank selects

The winner is the CYM9246/CYM9247/CYM9248
family of cache modules! These modules are very
close to the requirements outlined in this paper with
the following design considerations:

• The chip select logic resides on the motherboard,
instead of the module.

• The Contaq PCI chipset does not require a dirty
RAM separate from the tag RAM.

• The TOGA3:Z address outputs to the module will
require a strap on the motherboard.

• The TAGOE input to the module should be
grounded on the motherboard.

• The DIRTYCS and DIRTYWE module inputs
should be connected to V cc on the motherboard.

• The signal naming conventions are different.

With regards to the dirty RAM, the customer has
two choices:

• Tie the dirty RAM control signals inactive (V cd
on the motherboard and ignore the dirty RAM.

• Ask Cypress to ship the module without the dirty
RAM at a reduced cost.

2-5

TOGA2

!
A2-0

256KB
o----Aa-1l

128KB

TOGAa 1'. Aa-1

Figure 3. Address Straps

The TOGA3:Z address outputs from the Contaq PCI
chipset do not quite match the address inputs to the
module and will require the strap logic shown in Fig­
ure 3 on the motherboard.

Please refer to Table 1 for a signal name cross refer­
ence between the Contaq PCI chipset and the
CYM9246 cache module family.

Table 1. Signal Name Cross Reference

Contaq PCI Chipset 924X Module Family

TAGWT TAGWE

TAGEN TAGCS

CWE1:O WEl:O

CRD1:O OE1:O

CQ15:8 TAG7:0

TOGAz Az.o (128 KB only)
A3.0 (256 KB only)

TOGA3 A3.0 (128 KB only)
A3.1 (256 KB only)

Summary

The CYM9246 family of L2 cache modules can be
designed into an Intel 486 system based on the Con­
taq PCI chipset. By adding a 112-pin DIMM con­
nector, a P16L8, and a two-position jumper strap to
the motherboard design, the customer can offer:

• A lowest-possible-cost option with no cache

• A low-cost performance upgrade with a single
bank 128-Kbyte cache module (CYM9246)

• A higher-performance upgrade with a two-way in­
terleaved 256-Kbyte cache module (CYM9247)

• Upgrades to larger cache modules such as the
CYM9248 (512-Kbyte)

PROMs/EPROMs - 3

PROMs/EPROMs Section Contents and Abstracts

Generating PROM Programming Files .. 3-1

This application note introduces PROMs to the user and then explains the methods of generating PROM pro­
gramming files. A brief description of PROM usage in systems is presented followed by a discussion of various
PROM programming file formats, including the Intel, Motorola, DEC, and Thktronix formats. Finally, the
application note discusses various methods of using high-level languages (ABEL HDL, ISDATA, LOG/iC
HDL, BASIC, C) to generate PROM programming files.

Interfacing the CY7C276 High-Speed PROM to the AT&T, AD, Motorola, and TI DSPs 3-14

This application note discusses how to use the CY7C276 PROM as program memory for various DSPs. It
will cover the topic of interfacing the CY7C276 high-speed PROM to some of today's most popular DSPs for
program memory only. Data memory storage is typically done with SRAM and its interface is not included
in this application note. The AT&T DSP1616, Analog Devices ADSP 2100A, Motorola DSP56000 and TI
TMS320C5x family of devices are discussed. Also included is Ii detailed description of the CY7C276 (includ­
ing architecture, programming options, and signal descriptions) and brief descriptions of the DSPs (architec­
tures, signals and timing requirements). For ease of explanation, only one example from each product family
is included. The other devices in each product family are similar and are left as an exercise for the reader.
Detailed timing calculations that show code sizes up to 16K words in depth are included in the examples. Fi­
nally, a table is provided to help summarize the analysis.

Using the CY27HOI0 with the Rockwell V.FAST Chipset 3-22

This application note describes how to use a Cypress CY27HOlO 1-Megabit PROM with the Rockwell Y.FAST
chipset to create a high performance fax/modem running with 0 wait states.

Interfacing a 5V Cypress PROM to a 3.3V System using a CYBUS3384 Bus Switch 3-25

This application note describes a method for interfacing a high-speed 5V Cypress PROM to a 3.3V system.
The I/O level translation is achieved using a CYBUS3384 Bus Switch.

Generating PROM Programming Files

PROMs are nonvolatile memory devices that were
first conceived as instruction and data storage de­
vices for microprocessor systems. Since their
introduction, PROMs have benefited from im­
provements in processing and manufacturing
technology. The evolution of PROMs has included
a tremendous increase in their density and speed
and has added new features such as built-in registers
and reprogrammability. Now these devices can be
used in a wide variety of applications other than
instruction storage. PROMs are commonly found
in state machines, decoders, encoders, complex
counters, controllers, sequencers, and look-up
tables as well as in their traditional role of instruc­
tion or microcode storage.

PROMs are simply an array of data coupled with an
input address decoder. The address presented to
the device drives a simple 1-of-n decoder. The de­
coder selects one preprogrammed memory location
whose data flows to the output pins of the device.
PLAs (Programmable Logic Array) and PALs (Pro­
grammable Array Logic) are also programmable
devices and, along with PROMs, make up the ma­
jority of devices that are considered to be program­
mable logic elements. The difference between the
three types of programmable logic elements can be
seen by observing the internal structure of the pro­
grammable array of each of the devices. PLAs have
both a programmable '~D" array and a program­
mable "OR" array. PALs have a similar AND-OR
structure, but the number of inputs to the, OR func­
tion is fixed, so only the AND array is program­
mable. Both the PLA and PAL have a fixed number
of AND-OR terms dedicated to each output.
Therefore, the number of functions controlling each
output is significantly reduced. PROMs, on the oth-

3-1

er hand, can realize every possible combination or
function of n input lines for a given output. There
are 2n product terms (where n = number of address
lines) per PROM output. This makes PROMs use­
ful in very complex functions that exhaust the sum­
of-product resources of a traditional PAL or PLA
architecture. Some PROMs have additional fea­
tures, such as output registers, that enable them to
operate synchronously, which is required for state
machines. The Cypress CY7C245A is one of these
PROMs. Presets, clears, and initialization words
are also available for dealing with power-on and rc­
set conditions.

After understanding the basic function of a PROM,
the designer must now create the PROM data in the
form of a programming file. Creating the PROM
data can be intimidating to engineers who are not fa­
miliar with the process. Looking back, we can see
that PROMs were mainly used for instruction or mi­
crocode storage in a microprocessor or bit-slice­
based system. Therefore, the PROM data for such
systems is generated by the compilers, assemblers,
and linkers that are resident on the CPU develop­
ment station or emulator. Generating the PROM
files for such systems is almost trivial because the
programming data file is simply a listing of the
CPU's executable instructions generated by the
compiler. But creating the programming file for a
complex decoder, look-up table, sequencer, or state
machine can be pretty complicated and overwhelm­
ing. In fact, just figuring out where to start or what
tools to use can become very time consuming. In
this brief application note we will discuss the struc­
ture of PROM data files and show several ways to
create them. Examples using simple languages such

= rcYPRESS ========;;;;;G=en;;;;;e;;;;;r;;;;;a;;;;;ti;;;;;n;;;;;g;;;;;P;;;;;R;;;;;O;;;;;M=P;;;;;r;;;;;o;;;;;gr;;;;;a;;;;;m;;;;;m=in;;;;;g;;;;;F;;;;;i;;;;;le;;;;;;s

as C and BASIC, as well as PLD development tools
such as ABEL and LOG/iC, will be discussed.

In order to understand how to create programming
files, you must first be familiarwith the actual struc­
ture or format of such a file. Again, a PRQM is sim­
ply an array of programmable memory locations.
The data file that is transmitted to the PROM pro­
grammer must therefore contain data for each of
the locations to be programmed. There are many
standard formats for PROM data files.

Generic PROM programmers, such as those
manufactured by Data I/O, Stag, Logical Devices,
Digelic, SMS, and Kontron, are generally compat­
ible with the following formats:

• ASCII-HEX (Space)

• Binary

• DEC Binary

• Motorola Exorciser

• Motorola Exormax

• Intel "Intellec" 8/MDS

• Intel MCS86 "intellec 86"

• Tektronix "HEX"

• Extended Tektronix "HEX"

The following section describes each format in de­
tail. Each format has its own set of required fields,
delimiters, and special characters. When writing
code in C or BASIC, you must know exactly where
to place each field and special character so that a
programmer will interpret your data correctly.

ASCII-HEX (Space)

One ofthe simplest and probably the most universal
file formats is HEX or HEX -Space ASCII. This for­
mat does not support checksum or address field con­
ventions. Therefore, the data in the file must be in
order incrementing from address O. However, many

(STX)FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF

FF
FF
FF
FF

times the program that reads the file into program­
mer memory can manipulate the data to start at any
address location.

Three hidden instructions are used in this format:

1. ASCII STX Character (ASCII 02) marks the be­
ginning of the file.

2. ASCII ETX Character (ASCII 03) marks the
end of the file.

3. ASCII Space (ASCII 20) is between each data
byte.

Figure 1 shows a data file for a 64-byte PROM imple­
mented in ASCII - HEX (space) format.

Note that each data byte is separated by a "space"
character and that no addressing information is
present.

ASCII Binary

ASCII Binary files, like ASCII - HEX, contain no
addressing or checksum information. ASCII Binary
allows for very fast file transfers to the programmer
due to its si,mplicity. The data format begins with the
ASCII STX character and is terminated by an ETX.
Data is grouped into four-byte lines separated by a
space. Each line of data begins with a "B" character
and ends with an "F" character.

Figure 2 shows a 64-byte PROM file containing all
zeros using ASCII Binary format. All data is loaded
into the PROM sequentially starting at location O.

Simple Binary

The simple Binary format consists of just binary
data. there are no start or end characters. Al­
though the binary file is simple to produce, it is not
a recommended output format for the following ex­
amples because binary files cannot be easily read by
text editors.

FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF(ETX)

Figure 1. ASCII - HEX Format

3-2

Generating PROM Programming Files

(STX) BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF
BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF BOOOOOOOOF(ETX)

DEC Binary

Figure 2. ASCII Binary Format

Figure 3 shows an example of a 64-byte PROM file
implementing "s" Records.

DEC Binary is a modification of the basic ASCII
Binary file format. DEC Binary adds a starting ad­
dress and a checksum for each line of data.

Calculating Record Checksum

The Checksum is calculated by first stripping off the
start code ("S"), the record type, and the checksum.
The remaining bytes are added together, converted
to binary, and complimented (one's compliment).
For example, the optional sign on "SO" line reads:

Motorola Exorcisor

Motorola Exorcisor is one of the most widely used
formats. Motorola Exorcisor files are commonly re­
ferred to as "s" records because each line starts with
an "s" followed by the record type. Each line also
contains a byte count, starting address, and a check­
sum, which are delineated by carriage returns and
line feeds.

SO 06 00 01 00 01 F7

Stripping the appropriate characters leaves:

06 00 01 00 01

Adding the bytes yields

S 0 05
S 1 13
S 1 13
S 1 13
S 1 13
S 9 03

0001
0000
0010
0020
0030
0000

0001
FFFF
FFFF
FFFF
FFFF
FC

Start Character

I HexData r Checksum First Record

F7 I
FFFFFFFFFFFFFFFFFFFFFFFFFFFF FC
FFFFFFFFFFFFFFFFFFFFFFFFFFFF EC
FFFFFFFFFFFFFFFFFFFFFFFFFFFF DC
FFFFFFFFFFFFFFFFFFFFFFFFFFFF CC

L_ Data Record Checksum

Carriage Return, Line Feed

Checksum Last Record
--Starting Address of Record

H ex data is stored sequentially starting at the address in the 2-byte
ddress field. a

- Byte Count = Number of data bytes + 3
adding 3 accounts for checksum and address) (

B ytes to the left of the address are not included in the byte count.
Record Type -

o = optional sign on characters (incompatible with most
programmers and must be stripped prior to transmission)

1 = Data Record
9 = End Record

Figure 3. S Record Format

3-3

08 hex SO- Optional sign on record

The compliment of the value

F7..... Record checksum

Sl- Data record (2 Byte Address field)
S2- Data Record (3 Byte Address Field)

Figure 4 shows an example of a 64-byte PROM file
implementing "Exormax S" records.

End of Each Record

It is important to end each record with a carriage re­
turn and a line feed, which is used as a delineator.

Intel "Intellec" 8/MDS

Intellec is similar to S records in that each line con­
tains a starting address, byte count, and checksum.
However, each line begins with a colon.

"s" records are useful because they are so universal.
However, this format can only be used for PROMs
smaller than 64 Kbytes because the address field is
limited to 4 bytes.

Intellec Record Example:
":", Byte Count, Address, Record 'IYPe, Data,

Checksum
Motorola Exormax

Exormax is another "s" record file and is identical
to Exorcisor with only one exception. Exormax al­
lows for a 6-digit address field, which makes it useful
for PROMs that are much larger than 64 Kbytes.

Byte Count: Total number of data bytes ONLY.

Starting Address: 2-byte field where record will
be placed in memory.

Record Type:
00 - Data Record
01 - End Record Exormax Record Number:

s a 06 000'001
S 1 14 000000
S 1 14 000010
S 2 14 000020
S 1 14 000030
S 9 04 000000

00
FF
FF
FF
FF

Start Character r Checksum for First Record

Carriage Return, Line Feed

01F6
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FB
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EB
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF DB
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF CB

FB

L
Data Record Checksum

-Checksum Last Record
-Starting Address of Record
Hex data is stored sequentially starting at the address in the three
byte address field.
- Byte Count = Number of data bytes + 4
(adding 4 accounts for checksum and address)
Bytes to the left of the address are not included in the byte count.
- Record Type
o = optional sign on characters (incompatible with most

programmers and must be stripped prior to transmission)
1 = Data Record
9 = End Record

Figure 4. Exormax S Format

3-4

-= rcYPRESS ========;;;;;G;;;;;e;;;;;D;;;;;er;;;;;a;;;;;ti;;;;;D;;;;g;;;;;P;;;;;R;;;;;O;;;;;M=P;;;;;r;;;;;og;:;;;r;;;;;a;;;;;ID;;;;;ID;;;;;i;;;;;D;;;;g;;;;;F;;;;;il=es

St

I

art of Line
Byte Count

Checksum

: 10 0000
: 10 0010
: 10 0020
: 10 0030

00
00
00
00

FFFFF
FFFFF
FFFFF
FFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFF 00
FFFFFFFFFFFFFFFFFFFFFFFFFFF FO
FFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFF DO

: 00 0000 01 FF

L_
-

Checksum Last Record

Record Type

- Starting Address

Figure 5. Intellec Format

Checksum: The sum of all preceding bytes in­
cluding byte count, Address, and all data bytes.
This number is expressed in two's compliment
notation.

The end of each record is marked by a carriage
return.

Figure 5 shows a 64-byte PROM file using Intellec
format.

Since there is only a 2-byte address field, Intellec is
generally used for PROMs smaller than 64 Kbytes.

IDtel MCS86 (IDtellec 86)

Intellec 86 is an extension of the standard Intellec
format. It adds the feature of a Segment Base Ad­
dress record (SBA). Adding the SBA to the 2-byte
address field increases the total addressing capabili­
ty to 1M locations. The file must begin with an SBA
record because physical addresses are calculated us­
ing the Starting Address field and the most recent
SBA.

Intellec 86 Data or End Record Example:
":", Byte Count, Address, Record Type, Data,

Checksum

Intellec 86 SBA Record Example:
":", Byte Count, Address, Record Type "02",

SBA, Checksum

Byte Count: Total number of data bytes ONLY.

3-5

Segment Base Address (SBA): A 2-byte field
that extends the starting address fields of the fol­
lowing records by 4 bits. A new SBA can be in­
serted as many times as needed. Records sent
after a new SBA will use the new SBA to calcu­
late the address.

Starting Address: A 2-byte field where record
will be placed in memory. The actual physical
address for data placement must be calculated
by using the SBA and Starting Address.

Record Type:
00 - Data Record
01 - End Record
(02 - SBA Record)

Checksum: The sum of all preceding bytes in­
cluding byte count, address, and all data bytes.
This number is expressed in two's compliment
notation.

The end of each record is marked by a carriage
return and line feed.

Figure 6 shows a 64-byte PROM file using Intellec 86
format. This example has an SBA Value of 8000h,
which offsets the starting addresses as shown.

To calculate the starting address: (third data record)
Thke the value of the most recent SBA (800 Oh)
Shift the SBA left 8000
Add value of start address field
Result: Physical Start Address

+ 0030
80030

~

~rcYPRESS ========;;;;;G;;;;;e;;;;;n;;;;;er;;;;;8;;;;;ti;;;;;n;;;;g;;;;;P;;;;;R;;;;;O;;;;;M=P;;;;;r;;;;;o;;;;gr;;;;;8;;;;;m;;;;;m;;;;;i;;;:;;n;;;;;g;;;;;F;;;;;il=es

: 02 0000
: 10 0000
: 10 0010
: 10 0020
: 10 0030
: 00 0000

02
00
00
00
00
01

8000 7C
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ~O
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF DO
FF

Figure 6. Intellec 86 Format

Again, the segment base address can be updated at
any time and will affect the records that follow the
change.

Tektronix Hex (TEK HEX)

ffiK HEX is another simple file format that is ac­
cepted by most programming systems. It uses the
"/" character as a start-of-record marker and in­
cludes a starting address for each record, byte count,
data and two checksums. The first checksum is the
summation of the bytes for the address and byte
count fields. The second checksum is simply the
summation of all of the data bytes. Figure 7 shows
an example of a file stored in ffiK HEX format.

Start Character: "/" is used to mark the begin­
ning of each line. Most programmers ignore any
characters sent before the "/".

Start Address: This value is a 2-byte absolute ad­
dress. It represents the starting address for the
first data byte in the record. All following bytes
in the record are stored sequentially.

Byte Count: The number of data bytes in the re­
cord are represented by the byte-count field.
The end of record is marked by setting the byte
count equal to "00". .

First Checksum: The simple summation of the
nibbles in the address and byte-count fields are
represented by the first checksum in each re­
cord.

Second Checksum: Calculated by summing all
of the nibbles of the data bytes in the record, the
second checksum is placed at the end of the re­
cord.

Each record is terminated by a carriage return!
line feed.

Extended Tektronix Hex (XTEK)
XffiK is a variation of the standard ffiK HEX for­
mat. It uses the "/" character as a start of record
marker and includes a starting address for each re­
cord, byte count, data, and two checksums. The first
checksum is the summation of the nibbles for the ad­
dress and byte-count fields. The second checksum
is simply the summation of all of the data nibbles.
Figure 8 shows an example of a file stored in XffiK
format.

Start Character: "/" is used to mark the begin­
ning of each line. Most programmers ignore any
characters sent before the "/".

Start Address: This value is a 2-byte absolute ad­
dress. It represents the starting address for the
first data byte in the record. All following bytes
in the record are stored sequentially.

/ 0000 10
/ 0010 10
/ 0020 10
/ 0030 10
/ 0000 00

01
02
03
04
00

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFIEOI
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF EO

Figure 7. TEK HEX Format

3-6

2-" # Generating PROM Programming Files
'CYPRESS =======~==~===

Byte Count: The number of data bytes in the re­
cord are represented by the byte-count field.
The end of record is marked by setting the byte
count equal to "00".

First Checksum: The simple summation of the
nibbles in the address and byte count fields are
represented by first checksum in each record.

Second Checksum: The summation of the data
nibbles is represented by the second checksum,
which is placed at the end of the record.

Each record is terminated by a carriage return!
line feed.

Using High-Level Languages to Create
Files

Depending on the application, there are many dif­
ferent ways to create the actual file. PROMs that
contain data derived from mathematical formulas
such as look-up tables are easily implemented using
a high-level language such as C or BASIC. These
languages can easily deal with the complicated data
types and mathematical data manipulation that is
required for many applications. The data created by
the program must be stored in a file so that it can be
transferred to a programmer at some later time.
The following examples show that opening a new
file and writing the data is simple when using high­
level languages.

As shown in Figure 9, this method written in C fol­
lows the simple form:

1. Header documentation - The Header docu­
mentation is usually written as comments to
help the user understand the purpose and flow
of the program. Documentation is not essential,
but it is good practice.

2. Constant declaration - Following the Header,
the constants can be declared as symbols to help

the user update the program to accommodate
changes in the design.

3. Variable definition - The variables should be
defined to agree with the type of data being
used.

4. Body - The body of the program will contain
the commands necessary to create the PROM
data. This usually takes the form of an outer
"For" -type loop to iteratively step through all
the possible combinations of address inputs, fol­
lowed by nested commands that create a data
instance to correspond to that combination of
address lines.

The C program in Figure 9 generates ASCII-Space
or HEX-Space format output files for downloading
to a PROM programmer.

Figure 10 is an example of using BASIC to produce
a PROM programming file in the HEX space for­
mat.

PLD Development Packages

In general, most of the standard PLD development
packages support PROMs. ABEL, CUPL, and
LOG/iC are three of the most popular third-party
packages. They support most of the industry stan­
dard PAL, PLA and PROM devices. These PLD de­
velopment tools are well suited to creating PROM
files that can be described by Boolean equations,
truth tables, or state-machine syntax.

ABEL

ABEL, produced by Data I/O Corporation, is one of
the most popular PLD development software pack­
ages on the market. The fact that ABEL supports
PROMs is one of the industry'S best-kept secrets.
Since a PROM can be thought of as a PLD with a
large number of product terms per output, it is rela­
tively easy for a PLD compiler to generate code for
a PROM. In fact, the source file (filename.abl) for

% 1A 6 06 4 1000 FFFFFFFFFFFFFFFF
% 1A 6 OE 4 1008 FFFFFFFFFFFFFFFF
% 1A 6 07 4 1010 FFFFFFFFFFFFFFFF

% OA 8 16 4 0000

Figure 8. XTEK Format

3-7

~-~
., CYPRESS ========;;;;;G=en;;;;;e;;;;;r;;;;;at;;;;;i;;;;;ng=P;;;;;R;;;;;O;;;;;M=P;;;;;r;;;;;og;;;;;r;;;;;a;;;;;ID;;;;;ID;;;;;I;;;;;'n;;;;;g;;;;;F;;;;;i;;;;;le;;;;;;s

/* Example Program 1 */

/* The purpose of this program is to create a data file that could be
used as a COSINE look-up table. The table has an angular resolution of
256 points per period and an amplitude resolution 256 steps or 8 bits.
*/

#include <stdio.h>
#include <math.h>

/* defines the input-output of PC */
/* defines the math package of PC */

int i,j;
float y,X,Z;
int data;
int outfile;

/* integers for loop variables */
/* floating pt variables for COSINE */
/* data variables for result */

main()
/* main denotes the start of the active part of the program */
{

FILE *outfile;
/* makes outfile a pointer to the output file */

outfile=fopen("promfile","w");
/* opens the output file for writing */

fprintf(outfile,"%c",2) ;

/* prints control data to output file for download STX */

/* This section consists of 2 nested loops to generate every possible
combination of address inputs. An incrementing variable z is used to
generate the angle y in radians. x = the cosine of y. Then x is justi­
fied to use the dynamic range of 256 states. The result is stored as an
integer in data. The data is written directly to the output file. The
data is broken into blocks for easier reading. */

z=O;
for(i=0;i<=15;i++) {

for(j=0;j<=15;j++) {
y=M_PI*((z)/128.0) ;
X= (cos (y)) ;
x=x*127.99999;
data = x+128;
fprintf(outfile, "%02X ",data);
z=z+1.0;

}
fprintf(outfile, "\n") ;

fprintf(outfile,"%c",3) ;
/* prints control char ETX to output file */

fclose(outfile) ;
/* closes output file */

Figure 9. C Program to Generate ASCII-Space or HEX-Space Format Files

3-8

10 'Example program 2
20 '
30 'The purpose of this program is to create a data file
40 'that could be used as a COSINE look-up table. The table
50 'has an angular resolution of 256 points per period and
60 'an amplitude resolution of 256 steps or 8 bits.
70 '
80 PI = 3.14159
90 OPEN "O",#l,"PROMFILE.HEX"
100 '

'open the file for output

110 'This section consists of 2 nested loops to generate every
120 'possible combination of address inputs. An incrementing
130 'variable z is used to generate the angle y in radians.
140 'X = cosine of y. Then X is justified to use the dynamic
150 'range of 256 states. The result is stored as an integer
160 'in RANGE. The data is written directly to the output file
170 'in the HEX SPACE format.
180 '
190 PRINT#1,CHR$(2)
200 Z = 0

'start the file with the STX char
'initialize the loop

210 FOR I = 0 TO 15
220 FOR J 0 TO 15
230 Y = PI*((Z)/128)
240 X = COS(Y)
250 RANGE = INT(X*127.99999# + 128)
260 IF RANGE > 15 THEN 290
270 PRINT#l, "0" ;HEX$ (RANGE) ;" ";
280 GOTO 300
290 PRINT#1,HEX$(RANGE);" ";
300 Z = Z + 1
310 NEXT J
320 PRINT#l,""
330 NEXT I
340 PRINT#1,CHR$(3); 'end the file with the ETX char
350 CLOSE
360 END

Figure 10. BASIC Program to Generate HEX-Space Format

a PROM and a PLD are almost identical. The only
difference is in the device declaration. In the logic
diagram package for ABEL, there are pin descrip­
tions for 4-, 8-, and 16-bit PROMS.

3-9

Figure 11 shows how to use truth tables and equa­
tions to generate a PROM file that is a comparator
with some additional built-in logic.

All methods of generating PLD files in ABEL are
also available for generating PROM files.

module COMP_OR
title '4 bit comparator'

PROMB device 'RA8P8' ;

"INPUTS

AO
A1
A2
A3
BO
B1
B2
B3

"OUTPUTS

AGB
ALB
EQUAL

ALL_HIGH
OR_BITS_
OR_BITS_
OR_BITS_
OR_BITS_

x = .x.;

Declarations
A_NIB
B_NIB

Equations
ALL_HIGH
OR_BITS - 3
OR_BITS - 2
OR_BITS_ 1
OR_BITS_ 0

3
2
1
0

PIN #

PIN 1;
PIN 2 ;
PIN 3;
PIN 4;
PIN 5;
PIN 17;
PIN 18;
PIN 19;

PIN #

PIN 14;
PIN 13;
PIN 12;

PIN 11;
PIN 9;
PIN 8;
PIN 7;
PIN 6;

8 address lines and 8 data lines

PROM ADDRESS/DATA BIT

" AO
" A1
" A2
" A3
" A4
" A5
" A6
" A7

" D8
" D7
" D6

" D5
" D4
" D3
" D2
" D1

A IS GREATER THAN B
A IS LESS THAN B
A IS EQUAL TO B

ALL BITS ARE HIGH
Misc. logical functions

[A3,A2,A1,AO] ;
[B3,B2,Bl,BO] ;

(A_NIB==15) & (B_NIB==15);
A3 # B3;
A2 # B2;
A1 # B1;
AO # BO;

Figure 11. Using Truth Tables and Equations in ABEL to Generate a Comparator PROM File

3-10

ltz~YPRESS~~~~~~~~~G~e~n~er~a~ti~n~g~p~R~O~M~p~r~Og~r~a~m~m~i~n~g~F~il~es
truth_table

([A3,A2,A1,AO, B3,B2,B1,BO]->[AGB,ALB,EQUAL])
[0, 0, 0, 0, 0, 0, 0, 0]->[a , a , 1]; "A = B CONDITIONS
[0, 0, 0, 1, 0, 0, 0, 1]->[a , a , 1] ;
[0, 0, 1, 0, 0, 0, 1, 0]->[a , a , 1] ;
[0, 0, 1, 1, 0, 0, 1, 1]->[a , a , 1] ;
[0, 1, 0, 0, 0, 1, 0, 0]->[a , a , 1] ;
[0, 1, 0, 1, 0, 1, 0, 1]->[a , a , 1] ;
[0, 1, 1, 0, 0, 1, 1, 0]->[a , a , 1] ;
[0, 1, 1, 1, 0, 1, 1, 1]->[a , a , 1] ;
[1, 0, 0, 0, 1, 0, 0, 0]->[a , a , 1] ;
[1, 0, 0, 1, 1, 0, 0, 1]->[a , a , 1] ;
[1, 0, 1, 0, 1, 0, 1, 0]->[a , a , 1] ;
[1, 0, 1, 1, 1, 0, 1, 1]->[a , a , 1] ;
[1, 1, 0, 0, 1, 1, 0, 0]->[a , a , 1] ;
[1, 1, 0, 1, 1, 1, 0, 1]->[a , a , 1] ;
[1, 1, 1, 0, 1, 1, 1, 0]->[a , a , 1] ;
[1, 1, 1, 1, 1, 1, 1, 1]->[a , a , 1] ;

[0, 0, 0, 0, x, x, x, 1]->[a , 1 , 0]; "A < B CONDS.
[0, 0, 0, x, x, X, 1, X]->[a , 1 , 0] ;
[0, 0, x, x, X, 1, x, X]->[a , 1 , 0] ;
[0, x, x, X, 1, X, x, X]->[a , 1 , 0] ;
[1, 0, X, X, 1, 1, x, X]->[a , 1 , 0] ;
[1, 0, 0, X, 1, 0, 1, X]->[a , 1 , 0] ;
[1, 0, 0, 0, 1, 0, 0, 1]->[a , 1 , 0] ;
[0, 1, 0, X, 0, 1, 1, X]->[a , 1 , 0] ;
[0, 1, 0, 0, 0, 1, x, 1]->[a , 1 , 0] ;
[0, 0, 1, 0, 0, 0, 1, 1]->[a , 1 , 0] ;

[1, X, X, x, 0, x, x, X]->[1 , a , 0]; "A > B CONDS.
[0, 1, X, X, 0, 0, x, X]->[1 , a , 0] ;
[0, 0, 1, X, 0, 0, 0, X]->[1 , a , 0] ;
[0, 0, 0, 1, 0, 0, 0, 0]->[1 , a , 0] ;
[1, I, X, X, 1, 0, x, X]->[1 , a , 0] ;
[1, 0, 1, X, 1, 0, 0, X]->[1 , a , 0] ;
[1, 0, 0, 1, 1, 0, 0, 0]->[1 , a , 0] ;
[0, 1, 1, X, 0, 1, 0, X]->[1 , ° , 0] ;
[0, 1, 0, 1, 0, 1, 0, 0]->[1 , ° , 0] ;
[0, 0, 1, 1, 0, 0, 1, 0]->[1 , ° , 0] ;

end COMP_OR

Figure 11. Using Truth Thbles and Equations in ABEL to Generate a Comparator PROM File (continued)

3-11

FrcYPRESS ========;;;;;G;;;;;e;;;;;ll;;;;;er;;;;;8;;;;;ti;;;;;ll;;;;;g;;;;;P;;;;;R;;;;;O;;;;;M=P;;;;;r;;;;;o;;;;;gr;;;;;8;;;;;ID;;;;;ID;;;;;i;;;;;ll;;;;;g;;;;;F;;;;;iI=es

LOG/iC

LOG/iC by ISDATA probably has the best support
of PROM devices due to its ability to create a
PROM file of any size. All the programmer has to
do is to tell the compiler how many inputs and how

many outputs the PROM should have. The above
ABEL file is reproduced in Figure 12 using LOG/iC.

Although not illustrated in the last two examples,
both ABEL and LOG/IC are capable of using state
machine input formats.

* IDENTIFICATION
This example uses an 8 bit prom as a 4 bit comparator and does some
additional misc. logic

* X-NAME S
B[3 .. 0], A[3 .. 0];

*Y-NAMES
AGB,ALB,EQUAL,ALL_HIGH,
OR_BITS [3 .. 0] ;

*BOOLEAN EQUATIONS

!Define the input pins.
!Pins are defined MSB first,
!Therefor, B3 will be connected
!to address bit 7 and AO will
!be connected to address bit o.
!Define the output pins

ALL_HIGH B3&B2&B1&BO&A3&A2&A1&AO;
OR_BITS3 A3 # B3;
OR_BITS2 A2 # B2;
OR_BITS 1 A1 # B1;
OR_BITSO AO # BO;

*FUNCTION-TABLE
$ ((A3,A2,A1,AO, B3,B2,B1,BO)): «AGB,ALB,EQUAL));

0 0 0 0 0 0 0 0 0 0 1; A=B CONDITIONS
0 0 0 1 0 0 0 1 0 0 1;
0 0 1 0 0 0 1 0 0 0 1· ,
0 0 1 1 0 0 1 1 0 0 1;
0 1 0 0 0 1 0 0 0 0 1;
0 1 0 1 0 1 0 1 0 0 1;
0 1 1 0 0 1 1 0 0 0 1· ,
0 1 1 1 0 1 1 1 0 0 1· ,
1 0 0 0 1 0 0 0 0 0 1;
1 0 0 1 1 0 0 1 0 0 1;
1 0 1 0 1 0 1 0 0 0 1· ,
1 0 1 1 1 0 1 1 0 0 1· ,
1 1 0 0 1 1 0 0 0 0 1;
1 1 0 1 1 1 0 1 0 0 1;
1 1 1 0 1 1 1 0 0 0 1;
1 1 1 1 1 1 1 1 0 0 1;

Figure 12. Using LOG/iC to ~nerate a Comparator PROM File

3-12

aZVEYPRESS Generating PROM Programming Files

0 0 0 0 1 0 1 0; A < B CONDS.
0 0 0 1 0 1 0;
0 0 1 0 1 0;
0 1 0 1 0;
1 0 1 1 0 1 0;
1 0 0 1 0 1 0 1 0;
1 0 0 0 1 0 0 1 0 1 0;
0 1 0 0 1 1 0 1 0;
0 1 0 0 0 1 0 1 0 1 0;
0 0 1 0 0 0 1 1 0 1 0;

1 0 1 0 0; A > B CONDS.
0 1 0 0 1 0 0;
0 0 1 0 0 0 1 0 0;
0 0 0 1 0 0 0 0 1 0 0;
1 1 1 0 1 0 0;
1 0 1 1 0 0 1 0 0;
1 0 0 1 1 0 0 0 1 0 0;
0 1 1 0 1 0 1 0 0;
0 1 0 1 0 1 0 0 1 0 0;
0 0 1 1 0 0 1 0 1 0 0;

* ROM
TYPE = 8_IN_8_0UT;
INPUTS = 8;
OUTPUTS = 8;

* RUN
PROG INTEL; Produce an INTEL-HEX output format

* END

Figure 12. Using WG/iC to Generate a Comparator PROM File (continued)

Conclusion language approach is probably the best method.

PROM files can be easily generated in a variety of However, if a logical function is the desired result,

ways. If a complex function is desired, a high-level PLD development tools will more than suffice.

3-13

Interfacing the CY7C276 High-Speed PROM to
the AT&T, AD, Motorola, and TI DSPs

Introduction

Digital signal processors (DSPs) have typically re­
quired two external storage devices-a relatively
slow PROM (Programmable Read Only Memory)
for non-volatile code storage, and an SRAM(Static
Random Access Memory), faster than the PROM,
from which to run the code. The reason for this is
that PROM access times are typically too slow to
meet the requirements of the DSP cycle times.

The Cypress CY7C276 is a 16K x 16 UV-erasable
PROM that can meet the fast cycle time require­
ments of a DSP design. It can help reduce compo­
nent count and cost by eliminating the need for
SRAM. If the goal is to eventually place the code in
the internal Mask ROM (MROM) of the DSp,
(which exists on the AT&T, Motorola and TI de­
vices) then the CY7C276 can be utilized for proto­
typing until the code is completely debugged. This
can save the expense of going to MROM prema­
turely.

This application note discusses how to use the
CY7C276 PROM as program memory for various
DSPs. It will cover the topic of interfacing the
CY7C276 high-speed PROM to some of today's
most popular DSPs for program memory only. Data
memory storage is typically done with SRAM and its
interface is not included in this application note.
The AT&T DSP1616, Analog Devices ADSP
2100A, Motorola DSP56000 and TI TMS320C5x
family of devices are discussed. Also included is a
detailed description of the CY7C276 (including ar­
chitecture, programming options, and signal de­
scriptions) and brief descriptions of the DSPs (ar-

chitectures, signals and timing requirements). For
ease of explanation, only one example from each
product family is included. The other devices in
each product family are similar and are left as an ex·
ercise for the reader. Detailed timing calculations
that show code sizes up to 16K words in depth are
included in the examples. Finally, a table is pro­
vided to help summarize the analysis.

An Introduction to the CY7C276

The CY7C276 is a 16Kx 16 asynchronous UV-eras­
able PROM with an access time of 25 ns. There are
three polarity-programmable chip selects (CS[2:0]),
which provide on-chip decoding of up to eight banks
of PROM for a total of 256 Kbytes of PROM. The
polarity of the asynchronous output enable (OE)
pin is also user programmable. The CY7C276 pro­
vides a 16-bit-wide output,thus halving the number
of PROMs required when interfacing to 16-bit or
wider DSPs. With an access time of 25 ns, the
CY7C276 can be used in 40-MHz DSP systems with
zero-wait-states.

In all folloWing examples, the CY7C276 is pro­
grammed to have all three chip enables (CS[2:0])
and the output enable (OE) active Law. This is
achieved by programming a Hex 0008 in location
H4000.

AT&T - DSP1616

The DSP1616 is a 16-bit fixed-point DSP based on
the popular DSP1600 core. It is object code upward­
compatible with the DSP16, 16A, 16C, and 1610 de­
vices from AT&T.

3-14

The DSP1616 can run out of either the 12K 16-bit
words of on-chip MROM or external memory of up
to 56K 16-bit words. Data memory space can also
be accessed externally, although this application
note only describes the external program memory
interface. Table 1 shows memory maps for the vari­
ous configurations of DSP1616. IROM is Internal
ROM, EROM is External ROM and RAMI/RAM2
are internal memory locations that are not utilized
in this design and are therefore left as "don't cares."
Two parameters, LOWPR and EXM, determine
which memory map is used. LOWPR controls the
address in memory assigned to the RAMI and
RAM2 areas. EXM (EXternal Memory) is an input
signal that determines whether the internal ROM
(IROM) or the external ROM (EROM) will be ad­
dressed in the memory map at location O.

Initialization

The DSP must be reset after power-up to begin
executing code. Reset is administered by asserting
the RSTB (Reset Bar) pin LOW When the RSTB
pin is driven HIGH, the DSP1616 comes out of reset
and fetches an instruction from location zero of the
program space. The physical location of address
zero is determined by which memory map is se­
lected. The DSP1616 is configured for external
ROM by holding the EXM (External ROM enable)
signal HIGH at the rising edge of RSTB. With the

Interfacing the CY7C276 to DSPs

AT&T CY7C276

DSP1616 (PROGRAM STORAGE)

16
DATA

DB1Sl0 01510

A15il4 ~ 14 ADDRESS
A13:0 A1310

EROM es.

"t eSl
eso
DE

Figure I. AT&T DSPI616 to PROM Interface

LOWPR bit set to 0 at reset, the corresponding
memory map selected is Map2 (Table 1). This lo­
cates EROM at address O.

DSP to Memory Interface

The DSP1616 uses the following signals to interface
with external memory.

AB[15:0] - Address Bus. Outputs memory and I/O
addresses.

DB[15:0] - Data Bus. Used to transfer data to and
from the processor.

EROM - (Program address External ROM enable)
Access enable for external memory. Active LOW

The implementation of the DSP to PROM interface
is shown in Figure 1.

Table 1. DSPI616 Memory Maps

MAPI MAP2 MAP3 MAP4
EXM=O EXM=I EXM=O EXM=I

Decimal Address LOWPR= 0 LOWPR=O LOWPR= 1 LOWPR= 1

0 IROM EROM RAMI RAMI

lK RAM2 RAM2

2K Reserved Reserved

8K IROM EROM

12K RAMI RAMI

13K RAM2 RAM2

14K Reserved Reserved

20K EROM EROM EROM
64K-l

3-15

Timing Notes

The DSP1616 has numerous mask-programmable
options for the clock source. It can use a crystal os­
cillator, or a small signal (TTL, or CMOS level) os­
cillator. The external source can be supplied by ei­
ther a crystal or an oscillator. These options are
discussed in detail in the AT&T DSP16I6 datasheet.
The DSP1616 can run at either the same or half the
input frequency. The datasheet calls this a Ix or 2x
clock, referring to the ratio of the input clock to the
processor (internal) clock. Table 4 notes this as the
Ix and 2x clock options respectively.

The calculations for the required access time of the
CY7C276 are illustrated below. The timing dia­
gram for this example is shown in Figure 2.

tAA(PROM) = (1:c(CKO) - 2) - tASKW(DSP) - tSU(D)R

where:

tAA(PROM) = PROM address access time
required,

tc(CKO) = DSP CKO cycle time [tc(CKO) - 2 is to
compensate for the worst-case EROM cycle time,
which would be 2 ns shorter than CKO, as specified
in the DSP1616 datasheet]. CKO is the clock out
signal from the DSp,

tASKW(DSP) = Worst-case address valid time from
edge of cycle, and

tSU(D)R = Read data set-up time required by DSP
before EROM goes HIGH.

Substituting values from a DSPI616 datasheet gives
us:

CKO

EROM

ADDRESS

DATA

Figure 2. nSP1616 External Program Memory
Timing

Interfacing the CY7C276 to DSPs

tAA(PROM) = (50 ns - 2) - 2 ns - 17 ns = 29 ns.

for a 40-MHz DSP with the 2x input clock option.

Summary

From the above analysis, it can be seen that AT&T's
DSP1616 can run code directly out of a CY7C276 at
40 MHz with the 2x input clock option with zero wait
states. The CY7C276-25 (25-ns access time) can
be used to satisfy this requirement.

Analog Devices - ADSP2100A

The ADSP2100A is a 24-bit fixed-point DSP that
utilizes 24-bit instructions. It has a 14-bit address
bus that directly addresses 16K 24-bit words exter­
nally and is expandable to 32K 24-bit words by using
the program memory data access (PDMA) signal as
a chip select. This example discusses the memory
interface for 16K 24-bit words of program size.
There is no on-chip memory for code/data storage.
The ADSP2100A is the fastest available 24-bit DSP
from Analog Devices that can access external ROM.
(As of writing this application note.) It has a maxi­
mum clock frequency of 12.5 MHz.

Initialization

The DSP must be reset after power-up to begin
executing code. Reset is administered by driving the
RESET pin LOW. When the RESET pin is driven
HIGH, the ADSP2100A comes out of reset and
fetches an instruction from location H0004 of the
program space (The first three locations of memory
contain the interrupt vector addresses). In the case
of the ADSP2100A, where there is no internal
memory, the address (H0004) appears on the pro­
gram memory address (PMA) bus followed by
assertion of the program memory select (PMS) and
program memory read (PMRD) signals. The DSP
has completed the reset sequence and is now ready
to execute code.

nsp to Memory Interface

The ADSP2100A uses the following signals to inter­
face with external memory.

PMA[13:0] - Address Bus. Outputs memory and
I/O addresses.

3-16

~ ~YPRESS~~~~~~~~~~I~n~re~ri~a~Ci~ng~th~e~C~Y~7~C~27~6~t~o~D~S~P~s

ANALOG CY7C276
DEVICES (PROGRAM STORAGE>

ADSP-2100A 24 DATA
PMD23:0 01510

14 ADDRESS
PMA13:0 A13:D

I'I'fS" CS2

"t CSI
CSO

PMlW DE

Figure 3. ADSP2100A to PROM Interface

PMD[23:0] - Data Bus. Used to transfer data to
and from the processor.

PMS - Program Memory Select. Used to access ex­
ternal memory.

PMRD - Program Memory Read. Used for exter­
nal memory output enable.

The implementation of the DSP to PROM interface
is shown in Figure 3.

Timing Notes

The ADSP2100A datasheet directly specifies the
maximum allowable access times to run code direct­
ly out of PROM. The timing diagram for this exam­
ple is shown in Figure 4.

The result with the DSP running at a frequency of
12.5 MHz is:

tAA(PROM)max = 32 ns.

ADDRESS

PMRD

DATA
READ DATA

Figure 4. ADSP2100A External Program
Memory Timing

where:

tAA(PROM) = PROM address access time re­
quired. This is specified in the datasheet as PMA
valid to PMD input valid.

Because this device uses the PMRD signal to con­
trol the OE of the CY7C276, the OE to data valid
time must also be calculated. The following was also
directly specified in the datasheet as PMRD LOW
to PMD input valid.

tOEv(PROM)max = 18 ns.

The CY7C276-30 satisfies both of these timing re­
quirements.

Summary

From the above analysis, it can be seen that Analog
Devices' ADSP2100A can run code directly out of
two CY7C276s with zero wait states at its maximum
frequency of 12.5 MHz. The CY7C276-25 or
CY7C276-30 (25-ns and 30-ns access times, re­
spectively) can be used to satisfy this requirement.

Motorola - DSP56000

The DSP56000 is a 24-bit general purpose DSP. It
has 3.75Kx 24-bits of on-chip ROM and can also run
from external memory of 64K 24-bit words of pro­
gram space. Table 2 shows the memory maps for the
various configurations of DSP56000. Mode 0 is the
single-chip mode for use with internal ROM only.
Mode 1 on the DSP56000 is for test purposes only
and should not be invoked. Mode 2 is the normal ex­
panded mode and is identical to Mode 0 except that
the reset vector is in a different location. Mode 3 is
Development Mode, which disables the internal
ROM. All references to program memory space in
this mode are directed to external program
memory. There are two pins (MODA and MODB)
that are sampled at the end of reset to determine
which memory map is used.

Initialization

The DSP must be reset after power-up to begin
executing code. Reset is administered by driving the
RESET pin Law. When the RESET pin is driven
HIGH, the DSP56000 comes out of reset and

3-17

E5-~~~YPRESS~~~~~~~~~=I=n=te=rl:=a=ci=n;g=th=e=C=Y=7=C=27=6=t=o=D=S=P=s
fetches an instruction from the reset vector location
of the program space. The physical location of the
reset vector is determined by which memory map is
selected. If MODE 0 or 3 is selected, the reset vec­
tor is at location HOOOO (location 0). If MODE 2 is
selected, the reset vector is at location HEOOO. The
DSP56000 is configured for external ROM by set­
ting MODA and MODB HIGH at the rising edge of
RESET. The state of MODA and MODB will deter­
mine which memory map is selected for use (see
Table 2). This example will use MODE 3 (Develop­
ment Mode).

So, for MODE3, DSP56000 will start executing code
from location zero of the external memory after re­
set is complete. A1164K words of external memory,
except the first 64 locations (used for interrupts),
are available for program storage. Location HOOOO
contains the reset vector which holds the programs
starting address. This example will use two
CY7C276 16K x 16 PROMs to achieve the 24-bit­
wide program memory bus that is required. The up­
per eight bits of the PROM will not be used.

DSP to Memory Interface

The DSP56000 uses the following signals to inter­
face with external memory.

A[13:0] - Address Bus. Outputs memory and I/O
addresses.

D[23:0] - Data Bus. Used to transfer data to and
from the processor.

PS - Program Memory Select. Used to access ex­
ternal memory.

RD - Read Select. Used for external memory out­
put enable.

The implementation of the DSP to PROM interface
is shown in Figure 5.

Timing Notes

The DSP56000 takes two external clock cycles for
a read operation. The address becomes available at
about the midpoint of the first cycle referenced from
the falling edge of clock. The data is read into the
DSP at the middle of the second cycle or the second
rising edge of clock (see Figure 6). This actually
works to the PROM's advantage by lengthening the
required access time.

CY7C276
MOTOROLA (PROGRAM STORAGE)

DSP56000 24 DATA
D2310 01510

A15114 ~ 14 ADDRESS
A1310 A1310

l'"S

l
CS2
CSI
CSO

Rl! DE

Figure 5. Motorola DSP56000 to PROM
Interface

Table 2. DSP56~OO Memory Maps

Decimal Address MODE 0 MODEl'" MODE 2 MODE 3
MB=O MB=O MB=1 MB=1
MA=O MA=1 MA=O MA=1

Internal ROM TEST MODE Internal ROM No Int. ROM
Internal Reset DO NOT USE External Reset External Reset

0 Reset Reset

3839 (HOEFF) INTERNAL ROM INTERNAL ROM

3840 EXTERNAL EXTERNAL EXTERNAL

60K Reset

64K-l

* Mode 1 is for test purposes only on the DSP56000 and should not be invoked by the user.

3-18

EXTAL

ADDRESS

RD

DATA

Figure 6. Motorola DSP56000 External
Program Memory Timing

The calculations for the required access time of the
CY7C276 are shown below. The timing diagram for
this example is shown in Figure 6.

tAA(PROM)max = tc+ - tASKW(DSP) - tSU(D)R

where:

tAA(PROM) = PROM address access time
required,

tc+ = DSP CLOCK IN cycle time x 1.5 (due to data
read into DSP occurring at midpoint of second ex­
ternal clock cycle),

tASKW(DSP) = Worst case address valid from edge
of cycle, and

tSU(D)R = Read data set-up time before end of
cycle.

This device uses the RD signal to control the OE of
the CY7C276. Therefore, the OE access time must
also be calculated. The following equation is for cal­
culating the maximum allowable OE time of the
CY7C276.

toEv(pROM)max = 1:c(ExrAL) - tRDSKW - tSU(D)R

where:

tc(EXTAL) = clock cycle,

tRDSKW(DSP) = Worst case RD valid from edge of
cycle, and

tSU(D)R = Read data set-up time before end of
cycle.

3-19

Interfacing the CY7C276 to DSPs

The result with the DSP running at a frequency of 33
MHz is:

tAA(PROM)max = (30 x 1.5) ns - 19 ns - 0 ns
= 45 ns - 19 ns
= 26ns.

tOEV(PROM)max = 30ns - 16ns - Ons = 14ns.

Summary

Based on the above analysis, it can be seen that Mo­
torola's DSP56000 can run code directly out of a
CY7C276 with zero-wait-states at its maximum fre­
quencyof33 MHz. The CY7C276-25 (25-ns access
time) can be used to satisfy this requirement.

Texas Instruments - TMS320C5X

The TMS320C5X devices are a family of 16-bit
fixed-point DSPs based on the older TMS320C25
CPU core. Significant modifications were added to
improve performance. These devices are capable of
running at twice the speed of the 'C2x family and are
source-code upward compatible with all previous
fixed-point DSPs from TI.

There are three devices in the 'C5x family, the 'CSO,
'C51 and 'C53. They have 2K, 8K and 16K words of
on-chip ROM, respectively. All three devices can
run out of external ROM of up to 64K 16-bit words.
All 64K words of external memory are available for
program storage. Table 3 shows the memory map
for the TMS320C50 as an example. The SARAM is
9K words of program/data Single-Access RAM.
This is memory that can only be read or written in
a single machine cycle. It can reside on-chip or ex­
ternally depending on the setting of the RAM bit in
the PMST register. The DARAM is 1056 words of
Dual-Access data RAM. It can be read from or writ­
ten to in the same cycle. The DARAM can reside
on-chip or externally depending on the setting of the
CNF bit on the PMST register. The map in Table 3
gives an example of the use of these two sections of
memory.

Initialization

The DSP must be reset after power-up to begin
executing code. Reset is administered by asserting
the RS pin LOW. When the RS pin is driven HIGH,

the TMS320C5x comes out of reset and fetches an
instruction from location o. Location 0 (either on­
chip or externally) contains the reset vector. The
TMS320C5x is configured for external memory by
holding the MP/MC pin HIGH at the rising edge of
RS.

Table 3. TMS320CSO Memory Maps

'CSOMAPI 'CSOMAP2
Decimal MP/MC = 1 MP/MC = 0
Address Internal External

0 Interrupts & Interrupts &
Reserved (On- Reserved

Chip) (External)

48 On-Chip External
ROM

2K On-Chip SARAM
SARAM (RAM=O)

(RAM=l)

11K External External

63.5K On-Chip DARAM

64K-l DARAMBO External
(CNF=l) (CNF=O)

DSP to MemoryInterface

The TMS320C5x uses the following signals to inter­
face with external memory.

A[15:0] - Address Bus. Outputs memory and I/O
addresses.

D[15:0] - Data Bus. Used to transfer data to and
from the processor.

}is - Program Memory Select. Used to access ex­
ternal memory.

RD - Read Select. Used for external memory out­
put enable.

The implementation of the DSP to PROM interface
is shown in Figure 7.

Timing Notes

The TMS320C5x can use either its internal oscilla­
tor or an external frequency source for a clock. The
external source can either be a crystal or an oscilla-

Interfacing the CY7C276 to DSPs

TI CYlC276
DSP320C5x (PROGRAM STORAGE)

16 DATA
D1510 D1510

A15J14 ~ 14 ADDRESS
A13JO A1310

l'S" eS2
't eSI

esa
Rl) DE

Figure 7. TMS320CSx to PROM Interface

tor. These options are discussed in detail in the TI
User's Guide for the TMS320C5x. The TMS320C5x
can run at either the same or half the input frequen­
cy. This means that the internal machine cycle and,
subsequently, external accesses, can cycle at the
same or one-half times the external frequency. The
table at the end of this document notes this as the
+ 1 and +2 clock options respectively.

The calculations for the required access time of the
CY7C276 are illustrated below. The timing dia­
gram for this example is shown in Figure 8.

tAA(PROM) = tc(CO) - tASKW(DSP) - tSU(D)R

where:

tAA(PROM) = PROM address access time,

tc(CO) = DSP CLKOUTI cycle time,

tASKW(DSP) = Worst case address valid from edge
of cycle, and

tSU(D)R = Read data set-up time before RD goes
HIGH.

ADDRESS

RD

DATA

Figure 8. TMS320CSx External Program
Memory Timing

3-20

@II;~YPRESS~~~~~~~~~~I~n~te~rl:~a~ci~n=g~th~e~CY~7~C~27~6~t~o~D~S~P;s

The result with a frequency of 40 MHz and using the
divide-by-two clock option the result is:

tAA('276)max = 48.8 ns - 2 ns - 10 ns = 36.8 ns.

Summary

Based on the above analysis, it can be seen that TI's
TMS320C5x series of DSPs can run code directly
out of a CY7C276 at 40 MHz with zero-wait-states.
The CY7C276-25 or CY7C276-30 (25-ns and
30-ns access times, respectively) can be used to sat­
isfy this requirement.

Table 4 below has been provided to give a quick syn­
opsis of the processors covered in this application

note. It provides a quick cross reference of the
CY7C276 PROM access times to DSP clock speeds
and the number of wait states required.

Summary

These examples show how effectively the CY7C276
PROM can be used for executing code in DSP ap­
plications. The need for more costly SRAM is elimi­
nated. There is no additional logic required to inter­
face the PROM to the DSP thereby reducing pin
count and cost in the design. As Table 4 illustrates,
most of the DSP speed grades can run code directly
out of the CY7C276 with zero-wait-states.

Table 4. Wait State Requirements

DSP DSP Frequency and # of Wait States Required for each PROM
PART NUMBER Clock Option

If Applicable CY7C276-25 CY7C276-30 CY7C276-35

AT&T DSP1616 20 MHz w/lx clock 0 1 1

40 MHz w/2x clock 0 1 1

20 MHz w/2x clock 0 0 0

ADSP2100A 12.5 MHz 0 0 1

10.24 MHz 0 0 0

DSP56000 33 MHz 0 1 1

27 MHz 0 0 0

20.5 MHz 0 0 0

TMS320C5X 57 MHz with + 1 clock 2 3 3
option

40 MHz with + 1 clock 1 2 2
option

57 MHz with +2 clock 1 1 1
option

40 MHz with +2 clock 0 0 1
option

3-21

Using the CY27HOIO with the Rockwell V.FAST
Chipset

The purpose of this application note is to describe
how to use the Cypress CY27HOlO i-megabit
PROM with the Rockwell V.PAST chipset to create
a high-speed fax/modem. A system block diagram
and timing analysis are included.

'ftaditionally, PROMs have been ideal for non-vola­
tile code storage in embedded systems such as mo­
dems, yet have been unable to provide the speed
necessary to meet system requirements. In order to
solve this performance bottleneck, designers typi­
cally download code from the slow PROM into a
fast, yet expensive SRAM. Usually, this transfer
takes place during system boot-up and is transpar­
ent to the user. Once in SRAM, code can be Tun
much faster, usually with 0 wait states. The obvious
tradecoffs for this added performance are the cost of
the SRAM, board area, and design complexity.

The introduction of the fast Cypress CY27HOlO
i-megabit (128Kx8) PROM has eliminated the
need for this compromise in many systems. The
CY27HOlO delivers the performance required to
run code at full speed directly out of the PROM.
Not only will this simplify the design, it will also low­
er the system cost and board area. In addition to be­
ing fast enough for most high-speed applications,
the CY27H010 is also large enough to satisfy most
code storage requirements. These two factors are
demonstrated below as the CY27HOlO is used with
the Rockwell V.FAST chipset at full speed, with 0
wait states.

The Rockwell Y.FAST modem device set consists of
three separate devices: (1) the L39 Micro Control­
ler unit (MCU) , which performs all of the command
processing and host interface operations, (2) the

Modem Data Pump (MDP), which can operate as
either a data modem at up to 28.8 Kbps, or a fax mo­
dem up to 14.4 Kbps, and (3) the optional Compres­
sion Expansion Processor (CEP), which can in­
crease .. system performance by performing
dedicated compression and expansion functions in
Y.42 bis or MNP 5 modes. The CY27HOlO provides
the code storage for the MCU and is independent of
the configuration (serial or parallel) or whether the
CEP is being used. An additional SRAM is required
to provide scratch pad memory for the MCU, but
that topic is beyond the scope of this application
note. If used, the CEP requires an additional
SRAM and PROM for code storage and scratch pad
memory. These additional devices are not involved
in this discussion.

1}rpically, when designing with a Micro Controller
like the L39, the engineer must become familiar
with all of the various modes, functions, and regis­
ters of the device. This is essential in order to set the
numerous registers that establish the appropriate
functionality. An example of the variables that need
to be set are: number of wait states when accessing
external PROM, polarity of certain signals, ... etc.
This tedious process has been simplified when using
the Rockwell V.FAST chipset. Rockwell provides
the firmware necessary to properly configure the
MCU. A PC-based utility program is available that
allows designers to modify the base configuration in
order to suit their particular requirements. When
the default settings are used, all of the required pa­
rameters are established that affect the MCU­
PROM interface on the expansion bus. These pa­
rameters are: (1) lX internal clock frequency
(20.5-MHz external and internal, this provides a

3-22

~-~
} CYPRESS ==;;;;V;;;;s;;;;in;;;;g;;;;t;;;;h;;;;e;;;;C;;;;Y;;;;2;;;;7H;;;;O;;;;1;;;;O;;;;Wl;;;;·;;;;th;;;;t;;;;h;;;;e ;;;;R;;;;o;;;;ckw=e;;;;Il;;;;V.;;;;eF;;;;A.;;;;S;;;;T;;;;C;;;;h=ip=s;;;;e=t

48.1-ns cycle time), (2) establishing the functionality
of the ROMSEL output on Port B, bit 2, and (3) 0
wait state operation when accessing the expansion
bus.

One requirement placed on the hardware design is
to enable or disable the 8 KB of on-chip ROM. The
on-chip ROM is mask programmable and therefore
is of little use during system development or when
a large program is required. Once the code has soli­
dified, this on-chip ROM can be used for code stor­
age, provided the size of the code is less than 8 KB.
This on-chip ROM can be disabled by grounding the
TST pin on the MCV. By doing so, the device will
automatically look to the expansion bus for ROM
accesses and during the boot sequence.

Once configured, the MCV uses Port B, bit 2 as the
ROMSEL output. This signal is used to select the
appropriate external device, which in this case is the
PROM. This signal should be tied directly to the CS
input of the PROM. If multiple PROMs were being
used, additional ROMSEL lines would be gener­
ated in order to select the correct device. The MCV
also generates a READ signal that is strobed LOW
during external read cycles. This signal should be
connected to the OE of the CY27HOlO. By using the
OE pin we are able to take advantage of the fast
tDOE in order to satisfy system timing. The MCV­
PROM interface is shown in Figure 1.

L _______ _

8Kx8 SRAM

Expansion Bus

Figure 1. Rockwell V.FAST Modem Block Diagram

3-23

Using the CY27H010 with the Rockwell V.FAST Chipset

Timing Analysis

A basic read on the expansion bus is shown in Figure
2. As can be seen in the diagram, the address,
ROMSEL, and READ signals are generated from
one falling edge of the clock, and the data is cap­
tured by the MCV on the next falling edge. NC tim­
ing must now be verified. Although the critical path
is through tOOE, tAA and tACE must be verified as
well. All timing specifications were taken directly
out of the L39 MCV technical manual.

tAA (required) = tCYC - tAS - tRDS
= 48.1 - 12.0 - 4.5
= 31.6 ns (tAA max. for

CY27HOlO-25 is 25 ns!)

tACE (required) = tCYC - tAS - tRDS
= 48.1 - 12.0 -4.5
= 31.6 ns (tACE max. for

CY27HOlO-25 is 30 ns!)

C2

AOO-A016

tOOE (required) = tRW - tRDS
= 24.6 - 4.5
= 20.1 ns (tooE max. for

CY27HOlO-25 is 15 ns!)

All of the NC requirements shown above can be sat­
isfied with a CY27HOlO-25 device.

Conclusion,

With the firmware provided by Rockwell, the func­
tional interface between the MCV and the PROM
has been greatly simplified. In addition, the timing
provided in the Rockwell has made the NC analysis
straight forward. Mter comparing the required NC
numbers to those published in the CY27HOlO data
sheet, it is apparent that a CY27H010-25 device is
able to provide the speed required by the Rockwell
Y.FAST chipset to run code directly out of PROM
with 0 wait states.

ESO-ES4 :=J ___ ----IL--___ ...IX"-__ _

=i ~ tRW

I~ ~)--t_R-D-H--------
ROP

00-07

Figure 2. Expansion Bus Read Waveform

3-24

Interfacing a 5V Cypress PROM to a 3.3V
System using a CYBUS3384 Bus Switch

This application note describes a method for inter­
facing a high-speed 5V Cypress PROM to a 3.3V
system. The I/O level translation is achieved using
a CYBUS3384 Bus Switch.

PROMs (Programmable Read Only Memories) are
often used for code storage and can interface direct­
ly to the host processor bus. Many applications use
fast Cypress PROMs to read code directly from the
PROM (instead of downloading the code to a fast
SRAM that administers the code to the processor).
If a 3.3V host processor is being used that is not "5V
safe," input levels may be exceeded and problems
can arise. Additionally, high speed 3.3V PROMs
may be difficult to locate. Using slower 3.3V
PROMs can either decrease system performance or
increase system cost, or both. Fortunately, this di­
lemma can be resolved by using a CYBUS3384 Bus
switch to translate from 5V to 3.3V compatible lev­
els with essentially no timing penalty. Since there is
no speed penalty, the same high-speed 5V Cypress
PROM can be used to achieve the same perfor­
mance level. This immediate translation is essential
to preserving system timing in high speed systems.

The CYBUS3384 was originally designed to three­
state signals for busing applications. Due to the sy­
metric nature of the MaS device being used, the
CYBUS3384 can also be used in bidirectional ap­
plications (e.g., I/O pins commonly used on
SRAMs). The "switch" consists of a simple NMOS
pass gate controlled by a common (active LOW) en­
able signal as shown in Figure 1. When a LOW signal
is applied to the control line, the signal applied to
one side of the switch (side A) is allowed to propa­
gate directly through to the output on the other side

3-25

(side B). A HIGH signal applied to the control line
would prevent the input from propagating to the
output and would place the output in a high imped­
ance, three-state condition. The output of the pass
gate is a function of both the gate and drain voltages.
The gate voltage is a function of V co Therefore, by
regulating Vee of the Bus Switch we are able to con­
trol the voltage applied to the gate of the pass gate,

BE1 BE2

AO BO

A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

A6 B6

A7 B7

A8 B8

A9 B9

Figure 1. Configuration of the Bus Switch

.=;: . ~ Interfacing a 5V PROM to a 3.3V System Usin. g CYBUS3384
~,CYPRESS================================~

which in tum limits the output swing of the device.
If vee is properly regulated, the output levels can be
3.3V compatible.

The critical requirement for this circuit is to limit
the Vee applied to the Bus Switch. This can easily
be accomplished with the existing 5V power supply
and a simple zener diode-resistor network as shown
in Figure 2. By adjusting either the resistor value or

5V power
supply

Vee to
Bus Switch

Zener Diode

Figure 2. Regulator Circuit

5V

changing the zener diode, the Vee applied to the
Bus Switch and the output levels can be tuned to the
desired values. For a 5V->3.3V.conversion, the
resistor used should be between 40-100 ohms (114
watt) and the zener diode has a Vz=4.3V (IzT=lO
rnA). A 3.9V Zener can be used if a smaller I/O
swing is desired. This type of configuration will only
draw approximately 10 rnA. His important to select
a low-current zener diode so the desired results can
be achieved without burning excess power.

The best feature of this 5V/3.3V translation is that
no speed penalty is incurred. The maximum delay
through the CYBUS3384 is 250 ps, well below the
guardband of most high-speed designs. Therefore,
Cypress's high-speed 5V PROMs can be used in
3.3V systems without any speed penalty by merely
translating the I/O levels.

Vee t---'--A,N'v--,.---\ Vee BEO,
BE1

Address Lines

High-Speed
Cypress
PROM

,----1 GND

-
10

5V Inputs

-

Figure 3. Final Implementation

3-26

CYBUS;3384

AO BO 10 3.3V
Outputs

A9 B9

GND

UltraLogic/PLDs - 4

UltraLogic/PLDs Section Contents and Abstracts

Are Your PLDs Metastable? ... 4-1

This application note provides a detailed description of the metastable behavior in PLDs from both circuit
and statistical viewpoints. Additionally, the information on the metastable characteristics of Cypress PLDs
presented here can help achieve any desired degree of reliability.

Designing with the CY7C335 and Wa1p2'" VHDL Compiler 4-27

This application note provides an overview of the CY7C335 Universal Synchronous EPLD architecture and
Wa1p2 VHDL Compiler for PLDs. Example designs demonstrate how the Wa1p2 VHDL compiler takes ad­
vantage of the rich architectural features of the CY7C335.

Getting Started Converting .ABL Files to VHDL ... 4-56

This application note is intended to assist Wa1p 1M users in converting designs written in DATA I/O's ABEL
hardware description language to IEEE 1076 VHDL. It contains several language cross reference tables and
many helpful hints. It also includes two real-world designs that have been converted from MACH 1M

21O-ABEL descriptions to F'LAsH371-VHDL descriptions.

Abel-HDL vs. IEEE-I076 VHDL .. 4-83

The purpose of this application note is to compare and contrast the complexity and basic features of Abel­
HDL with those of IEEE-I076 VHDL. Both of these languages are very robust in their support of different
types of constructs that can be used to describe the same functionality at different levels of abstraction. It is
beyond the scope of this document to exhaustively describe these possibilities or to present a complete tutorial
for writing code in either language because of the great variety of constructs and syntax available with which
to describe the functionality of a given circuit. Rather, a simple sample design that contains a mixture of syn­
chronous and asynchronous logic circuits will be shown. Sample code is written in both Abel-HDL and
VHDL that describes the example's functionality and synthesizes to create functionally identical hardware.
The code written here represents a typical level of abstraction that balances readability with compactness.
With experience, designers can develop their own preferences for style. For instance, state machines can be
described in a number of ways: state tables, IF-THEN-ELSE statements, CASE-WHEN statements, or explic­
itly using a combination of Register-1tansfer-Leve1 (RTL) code (individually describe each gate/register as
a component with its inputs and outputs) and/or Boolean equations.

The FLAsH370'" Family of CPLDs and Designing with Warp2 4-97

This application note introduces Cypress's high-density complex programmable logic device family of prod­
ucts. The innovative architectural features of this family are discussed relative to competitor implementa­
tions. Some simple VHDL examples are shown that demonstrate usage or the features of the architecture
using VHDL hardware description language available from Cypress's design development tool called Wa1p.

Implementing a Reframe Controller for the CY7B933 HOTLink 1M Receiver in a CY7C371 CPLD ... 4-116

This application note gives some criteria that can be used to determine when the CY7B933 HOTLink Receiv­
er should be forced to reframe its data, and it describes in detail a specific design of a reframe controller that
implements these criteria. The design is described in VHDL and is implemented in the 32-macrocell
CY7C371 FLASH CPLD.

-
-= rcYPRESS =====;;;;;;V;;;;;;I;;;;;;tr;;;;;;a;;;;;;L;;;;;;o;;;gi;;;;;;c/;;;;P;;;;;;L;;;;;;D=S;;;;;;ec;;;;;;t;;;;;;io;;;;;;D;;;;;;C;;;;;;o;;;;;;D;;;;;;t;;;;;;eD;;;;;;t;;;;;;s;;;;;;a;;;;;;D;;;;;;d;;;;;;A;;;;;;h;;;;;;st;;;;;;r;;;;;;a;;;;;;ct::;;;;s

Implementing a 128Kx32 Dual-Port RAM Using the FLAsH370 4-132

This application note describes how to implement a dual-port RAM using a standard SRAM and a Cypres
FLAsH370 CPLD. Commercially available dual-port devices are limited in both width and depth. By increas­
ing the size of the SRAM array, this design can be modified to simulate a dual-port that is much larger than
those offered as an individual part. VHDL is included to show how the arbitration and control functionality
are coded into the CPLD.

Efficient Arithmetic Designs Targeting FLAsH370 CPLDs 4-144

This application note is intended to help designers create efficient arithmetic designs targeting a FLAsH370
Complex programmable logic device (CPLD). The discussion in this application note addresses arithmetic
algorithms and implementations tailored to the features and resources offered in the FLAsH370 family of
CPLDs. These specialized arithmetic designs achieve a balanced trade-off between speed/area requirements
for a given application. The implementation details and design trade-offs in building adders, subtractors,
equality and magnitude comparators is addressed in detail in this application note. This application note in­
cludes many VHDL examples to illustrate the working and implementation of the algorithms presented. This
application note is also intended to create a solid foundation from which designers can pick up ideas and con­
cepts and create their own algorithms/implementations, with a good understanding of the constraints to be
dealt with.

Design Considerations for On-Board Programming of the CY7C374 and CY7C375 4-174

If on-board programmability is a must for a design, the FLAsH370 CPLD devices can be used to satisfy this
need. The 128-macrocell CY7C374 and CY7C375 devices can be programmed in a normal fashion by placing
them in a programming station. On-board programming is accomplished by providing a few simple additions
when designing the board. The actual on-board programming of the device is then done by placing the board
into a programming mode and connecting the programming station to the board. All of the steps to be fol­
lowed to achieve on-board programming for the CY7C374 and CY7C375 are described.

Simulation of Cypress CPLDs with Mentor's QuickSim II 4-177

This application note explains how to generate simulation models for the Mentor Quicksim II simulation tool
using the Cypress Wa1p tools. These models are fully functional and include timing delays based on the Cy­
press datasheets. These models can be generated from any Wmp tool including the Wa1p2 software, which
is available for $99.

Architectures and Technologies for FPGAs .. 4-188

Key issues in FPGA architectures are identified and are related to the interconnect technology (the technolo­
gy used to connect two wires under user programmability). Logic cell architecture, number of interconnects
available, routability, and performance are related to SRAM based, large anti-fuse based, and ViaLink'"
fused based interconnect technologies. The relationships are used to explain characteristics of certain device
families using the various fuse technologies. Characteristics include fitting capability, internal propagation
delays, and other factors of interest to FPGA users.

Designing with FPGAs .. 4-200

This application note takes the reader through the design process to implement a DRAM controller in a
pASIC380 FPGA. The purpose is to introduce the features of the pASIC380 family as well as how to take ad­
vantage of those features with the Wa1p design environment and VHD L. Using the static timing analyzer and
dynamic timing simulator, path analysis and design verification are illustrated.

1z~YPRESS =====;;;;V;;;;It;;;;ra;;;;Lo;;;;;;;;;;;;:;gI;;;;;" c;;;;;IP;;;;L;;;;D=S;;;;ec;;;;t;;;;io;;;;D;;;;C;;;;O;;;;D;;;;t;;;;eD;;;;t;;;;s ;;;;aD;;;;d=A;;;;bs;;;;t;;;;ra;;;;c=ts

PCI Bus Applications on FPGAs ; 4-220

The Peripheral Component Interconnect (PCI) bus is a high-bandwidth, "plug and play" bus designed to meet
the performance and bandwidth demands of today's applications. Interfacing to the PCI bus requires strict
adherence to the PCI Local Bus Specifiation; 'fianslating from PCI to the peripheral application demands
a flexible, PCI-compliant solution. With the flexibility of FPGAs, the task of interfacing between PCI to the
peripheral application can be accomplished. This application note provides an overview of the PCI bus and
its associated transactions, and presents an example PCI Target interface design, as well as addressing some
design challenges encountered when implementing a PCI interface.

CY7C380 Family Quick Power Calculator ... 4-238

Calculating power consumption for a pASIC device may be required prior the completion of the detailed de­
sign. This can be difficult without detailed knowledge of the number of logic cells used and the toggle rate
for each of the cells. However, with a general knowledge of the percent of the device used and the average
toggle rate for various sections of the design, the power can be easily estimated. This application note presents
a quick power estimation procedure. A worksheet along with graphs for rapid estimation of worksheet power
values is included. An example is also provided.

FPGA Design Entry Using Wa1p3'" ... 4-243

This application note explains the basic design process for an FPGA device using the Walp3 software. The
note also explains the Cypress pASIC380 FPGA architecture and fuse technology in detail. A DMA controller
design is used as the example design. A portion of the design is done using VHDL entry and the rest is cap­
tured using schematic elements. Detailed state diagrams and example VHDL code along with the schematic
printouts are included.

State Machine Design Considerations and Methodologies 4-260

This application note describes many of the options encountered during a state machine design cycle. The
different methods of describing a state machine design are covered briefly. The different types of state ma­
chines are described. Most of the application note is a design example of a clock generator for a bit-slice pro­
cessor. The last section shows the necessary steps to implement the clock generator in a CY7C361 device.
The appendices include source code, reduced equations, pinouts, and simulation results.

Using Hierarchical VHDL Design .. 4-297

This application note describes how to construct a hierarchical design using Walp VHDL It first discusses
the features of VHDL that are designed to simplify hierarchical design. The reader is then walked through
a design sample that is modified to illustrate increasingly advanced topics.

Designing UltraLogic 1M With Exemplar and Synopsys 4-307

Galileo from Exemplar Logic and the Design Compiler from Synopsys provide two pathways for program­
mable logic users to target Cypress's UltraLogic devices. Both of these tools integrate tightly with Cypress's
Walp design tool to complete the UltraLogic design flow. This application note intends to familiarize the read­
er with these third-party design tools and their integration with the Cypress UltraLogic design pathway.

Are Your PLDs Metastable?

This application note provides a detailed descrip­
tion of the metastable behavior in PLDs from both
circuit and statistical viewpoints. Additionally, the
information on the metastable characteristics of Cy­
press PLDs presented here can help you achieve any
desired degree of reliability.

Metastable is a Greek word meaning "in between."
Metastability is an undesirable output condition of
digital logic storage elements caused by marginal
triggering. This marginal triggering is usually
caused by violating the storage elements' minimum
set-up and hold times.

In most logic families, metastability is seen as a volt­
age level in the area between a logic HIGH and a
logic LOW. Although systems have been designed
that did not account for metastability, its effects
have taken their toll on many of those systems.

In most digital systems, marginal triggering of stor­
age elements does not occur. These systems are de­
signed as synchronous systems that meet or exceed
their components' worst-case specifications. Totally
synchronous design is not possible for systems that
impose no fixed relationship between input signals
and the local system clock. This includes systems
with asynchronous bus arbitration, telecommunica­
tions equipment, and most I/O interfaces. For these
systems to function properly, it is necessary to syn­
chronize the incoming asynchronous signals with
the local system clock before using them.

Figure 1 shows a simple synchronizer, whose asynch­
ronous input comes from outside the local system.
The synchronizer operates with a system clock that
is synchronous to the local system's operation. On
each rising edge of this system clock, the synchroniz­
er attempts to capture the state of the asynchronous

4-1

input. Figure 2 shows the expected result. Most of
the time, this synchronizer performs as desired.

Digital systems are supposed to function properly
all the time, however. But because there is no direct
relationship between the asynchronous input and
the system clock, at some point the two signals will
both be in transition at very nearly the same instant.
Figure 3 shows some of the synchronizer'S possible

ASYNCHRONOUS SYNCHRONIZER
INPUT SY~'G~~~OUS----..,

LOCALLY
SYSTEM

__ ~C~LO~C~K~ __ -+ ______________ ~SYNCHRONOUS
SYSTEM

Figure 1. Simple Synchronizer

CLOCK
ASYNC
INPUT

gm~~T~ ''-__ ---If

Figure 2. Expected Synchronizer Output

CLOCK

ASYNC
INPUT

SYNC
OUT

RESOLVE TO 0
METASTABLE

RESOLVE TO 1 OSCILLATING OUTPUT

Figure 3. Possible Metastable States of
Synchronizer

metastable outputs when this input condition oc­
curs. These types of outputs would not occur if the
synchronizer made a decision one way or the other
in its specified clock-to-output time. A flip-flop,
when not properly triggered, might not make a deci­
sion in this time. When improperly triggered into a
metastable state, the output might later transition to
a HIGH or a LOW or might oscillate.

When other components in the local system sample
the synchronizer's metastable output, they might
also become metastable. A potentially worse prob­
lem can occur if two or more components sample
the metastable signal and yield different results.
This situation can easily corrupt data or cause a sys­
tem failure.

Such system failures are not a new problem. In
1952, Lubkin (Reference 1) stated that system de­
signers, including the designers of the ENIAC, knew
about metastability. The accepted solution at that
time was to concatenate an additional flip-flop after
the original synchronizer stage (Figure 4). This add­
ed flip-flop does not totally remove the problem but
does improve reliability. This same solution is still
in wide use today.

Recovery from metastability is probabilistic. In the
improved synchronizer, the first flip-flop's output
might still be in a metastable state at the end of the
sample clock period. Because the flip-flops are se­
quential, the probability of propagating a metast­
able condition from the second flip-flop stage is the
square of the probability of the first flip-flop re­
maining metastable for its sample clock period.
This type of synchronizer does have the drawback of
adding one clock cycle oflatency, which might be un­
acceptable in some systems.

As system speeds increase and as more systems uti­
lize inputs from asynchronous external sources, me-

SYNC_OUT LOCALLY

CLOCK SYNCHRONOUS
~~'-'-,------~--,------; SYSTEM

SYNCHRONIZER

Figure 4. 1\vo-Stage Synchronizer

4-2

Are Your PLDs Metastable?

tastability-induced failures become an increasingly
significant portion of the total possible system fail­
ures. So far, no known method totally eliminates
the possibility of metastability. However, while you
cannot eliminate metastability, you can employ de­
sign techniques that make its probability relatively
small compared with other failure modes.

Explanation of Metastability

In a flip-flop, a metastable output is undefined or os­
cillates between HIGH and LOW for an indefinite
time due to marginal triggering of the circuit. This
anomalous flip-flop behavior results when data in­
puts violate the specified set~up and hold times with
respect to the clock.

In the case of a D-type flip-flop, the data must be
stable at the device's D input before the clock edge
by a time known as the set-up time, ts. This data
must remain stable after the clock edge by a time
known as the hold time, th (Figure 5). The data sig­
nalmust satisfy both the set-up and hold times to en­
sure that the storage device (register, flip-flop,
latch) stores valid data and to ensure that the out­
puts present valid data after a maximum specified
clock-to-output delay teo max. As used in this ap­
plication note, teo max refers to the interval from the
clock's rising edgeto the time the data is valid on the
outputs. In most cases, teo max refers to the maxi­
mum teo specified by a datasheet, as opposed to the
average or typical teo value.

If the data violates either the set-up or hold specifi­
cations, the flip-flop output might go to an anoma­
lous state for a time greater than teo_max (Figure 5).

Is> is_maxi

CLOCK I

INPUT {

Figure 5. 'lli.ggering Modes of a Simple Flip-Flop

The additional time it takes the outputs to reach a
valid level can range from a few hundred picosec­
onds to tens of microseconds. The amount of addi­
tional time beyond teo max required for the outputs
to reach a valid logic level is known as the metast­
able walk-out time. This walk-out time, while statis­
tically predictable, is not deterministic.

Figure 6, from Reference 2, shows the variation in
output delay with data input time. The left portion
of the graph shows that when the data meets the re­
quired set-up time, the device has valid output after
a predictable delay, which equals too. The middle
portion of the graph indicates the metastable re­
gion. If the data transitions in this region, valid out­
put is delayed beyond teo max. The closer the input
transitions to the center -of the metastable region,
violating the device's triggering requirements, the
longer the propagation delay. If the data transitions
after the metastable region, the device does not rec­
ognize the input at that clock edge, and no transition
occurs at the output. As given in Reference 3, you
can predict the region tw, where data transitions
cause a propagation delay longer than t, from the
formula:

- (t - teo)
tw = teo e --T- Eq.l

where t depends on device-specific characteristics
such as transistor dimensions and the flip-flop's
gain-bandwidth product.

V
A
L
I
D

D
A
T
A

o
U
T ..
U
T
T
I
M

&I-r-----'

Figure 6. Output Propagation vs. Data Transi­
tion

4-3

Are Your PLDs Metastable?

Figure 7. Uiggering Modes ofa Simple Flip-Flop

Figure 7 shows another way of looking at metastabil­
ity. A flip-flop, like any other bistable device, has
two minimum-potential energy levels, separated by
a maximum-energy potential. A bistable system has
stability at either of the two minimum-energy
points. The system can also have temporary stabil­
ity-metastability-at the energy maximum. If noth­
ing pushes the system from the maximum-energy
point, the system remains at this point indefinitely.

A hill with valleys on either side is another bistable
system. A ball placed on top of the hill tends to roll
toward one of the minimum-energy levels. If left un­
disturbed at the top, the ball can remain there for an
indeterminate amount of time. As this figure indi­
cates, the characteristics of the top of the hill as well
as natural factors affect how long the ball stays there.
The steepness of the hill is analogous to the gain­
bandwidth product of the flip-flop's input stage.

Causes of Metastability

Systems with separate entities, each running at dif­
ferent clock rates, are called globally asynchronous
systems (Reference 4). The entities might include
keyboards, communication devices, disk drives, and
processors. A system containing such entities is
asynchronous because signals between two or more
entities do not share a fixed relationship.

Metastability can occur between two concurrently op­
erating digital systems that lack a common time refer­
ence. For example, in a multiprocessing system, it is
possible that a request for data from one system can
occur at nearly the exact moment that this signal is
sampled by another part of the system. In this case,
the request might be undefined if it does not obey the
set-up and hold time of the requested system.

When globally asynchronous systems communicate
with each other, their signals must be synchronized.
Arbitration must occur when two or more requests

for a shared resource are received from asynchro­
nous systems. An arbiter decides which of two
events should be serviced first. A synchronizer,
which is a type of arbiter with a clock as one of the
arbited signals, must make its decision within a fixed
amount of time. A device can synchronize an input
signal from an external, asynchronous device in
cases such as a keyboard input, an external inter­
rupt, or a communication request.

Care must be taken when two locally synchronous
systems communicate in a globally asynchronous
environment. A synchronization failure occurs
when one system samples a flip-flop in the other sys­
tem that has an undefined or oscillating output.
This event can distribute non-binary signals through
a binary system (Reference 5).

In synchronizers, the circuit must decide the state of
the data input at the clock input's rising edge. If
these two signals arrive at the same time, the circuit
can produce an output based on either decision, but
must decide one way or the other within a fixed
amount of time.

Attacking Metastability

The design of synchronous systems is much differ­
ent than the design of globally asynchronous sys­
tems. The design of a synchronous digital system is
based on known maximum propagation delays of
flip-flops and logical gates. Asynchronous systems
by definition have no fixed relationship with each
other, and therefore, any propagation delay from
one locally synchronous system to the next has no
physical meaning.

Tho different methods are available to produce lo­
cally synchronous systems from globally asynchro­
nous systems. The first method involves creating
self-timed systems. In a self-timed system, the enti­
ty that performs a task also emits a signal that indi­
cates the task's completion. This handshaking sig­
nal allows the use of the results when they are ready
instead of waiting for the worst-case delay. Such
handshaking signals allow communications be­
tween locally synchronous systems.

The advantage of the self-tirped method is that it
permits machines to run at the average speed

4-4

Are Your PLDs Metastable?

instead of the worst-case speed. The disadvantages
are that a self-timed system must have extra circuit­
ry to compute its own completion signals and extra
circuitry to check for the completion of any tasks as­
signed to external entities.

Petri Nets, data flow machines, and self-timed mod­
ules all use the self-timed method of communica­
tion among locally synchronous systems. Self-timed
structures do not completely eliminate metastabil­
ity, however, because they can include arbiters that
can be metastable. Most systems do not include
self-timed interfaces due to the additional circuitry
and complexity.

The second method of producing locally synchro­
nous systems from globally asynchronous systems is
the simple synchronizer. This is the most common
way of communicating between asynchronous ob­
jects. The metastability errors that might arise from
these systems must be made to play an insignificant
role when compared with other causes of system
failure.

Many metastability solutions involve special circuits
(References 6 and 7). Some of these solutions do
not reduce metastability at all (References 13 and
8). Others, however, do reduce metastability errors
by pushing the occurrence of metastability to a place
where sufficient time is available for resolving the
error. Most of these circuits are system dependent
and do not offer a universal solution to metastability
errors.

The easiest and the most widely used solution is to
give the synchronizing circuit enough time to both
synchronize the signal and resolve any possible me­
tastable event before other parts of the system sam­
ple the synchronized output. This solution requires
knowledge of the metastable characteristics of the
device performing the synchronization.

Many semiconductor companies have developed
circuits such as arbiters, flip-flops, and latches that
are specifically designed to reduce the occurrence of
metastability. Although these parts might have
good metastability characteristics, they have very
limited application. The circuits can only function
as flip-flops or arbiters and do not have the flexibil­
ity of PLDs. Cypress Semiconductor has designed
the flip-flops in the company's PLDs to be metast-

~ Are Your PLDs Metastable?
:, CYPRESS ==========================

ability hardened. This allows you to use Cypress
PLDs in a wide range of systems requiring synchro­
nization.

Circuit Analysis of Metastability

Many authors have written papers detailing the
analysis of metastability from a circuit standpoint
(References 5, 7, 8, 9, 10, 11, and 12). In Reference
11, for example, Kacprzak presents a detailed analy­
sis of an RS flip-flop's metastable operation. He
states that a flip-flop has two stages of metastable
operation (Figure 8).

During the initialization phase, the Q and Q outputs
move simultaneously from their existing levels to
the metastable voltage V m, which is the voltage at
which Vq = Vq.

The second or resolving phase occurs when the out­
puts once again drift toward stable voltages. Once
a flip-flop has entered a metastable state, the device
can stay there for an indeterminate length of time.
The probability that the flip-flop will stay metast­
able for an unusually long period of time is zero,
however, due to factors such as noise, temperature
imbalance within the chip, transistor differences,
and variance in input timing. During the second
phase of metastability, for very small deviations
around the metastable voltage, V m, the flip-flop be­
haves like two cross-coupled linear amplifier stages
that gain V d = V q - V q. When the gain of the cross-

Vdd

Vm
-- - -;-~--<~

o
I

INITlALIZA TION

PHASE

Figure 8. Two Phases of Metastability

4-5

coupled loop exceeds unity, the differential voltage
increases exponentially with time.

The length oftime the flip-flop takes to resolve can­
not be exactly determined. The probability that the
flip-flop will resolve within a specific length of time,
however, can be predicted. This probability de­
pends on the electrical parameters of the flip-flop
acting as a linear amplifier around the metastability
voltage. The solution (Reference 11) to the differ­
ential voltage Vd(t) driving the resolving phase is
given by

Eq.2

where t depends directly on the amplifier gain and
capacitance, and where V d(tO) represents the differ­
ential voltage at some time to. You can use this
equation to determine the length of time that the
output voltage will take to drift from the metastable
voltage V m to a specified voltage difference V d.

Horstmann (Reference 5) states that a flip-flop, like
any other system with two stable states, can be de­
scribed by an energy function with two local energy
minima where P(x) = a (Figure 9). Any bistable sys­
tem has at least one metastable state, which is an un­
stable energy level within the system and represents
the local maximum of the energy function. The sys­
tem's gradient can be represented by a force, F(x),
that is zero at stable and metastable states (inflec­
tion points of the energy function).

Figure 10 shows a simplified first-order model of an
RS flip-flop used to predict and visualize metast-

P(.), F(.)

f

STABLE

Figure 9. Energy/Force Function of a Bistable
System

~

.:::r-- --...",..
-" • ..s!!fk

~7CYPRESS

s
Vout1 Q

Vout2

Figure 10. First-Order Flip-Flop Approximation

V 01111

=VIIIl
; r stable

l.
····i

1 rstable L-_-=====-
Vin1 = Voua

Figure 11. Energy Transfer Diagram of Simple
RS Flip-Flop

ability. A flip-flop energy transfer curve (Figure 11)
shows the relationship between the two outputs.
The two stable states are local energy minima of the
system. The metastable state, M, is a local energy
maximum and represents an unstable state with
loop gain near M that is greater than one.

Figure 12 shows the trigger line for the first-order
approximation of the flip-flop. The dashed line RS
represents the device's normal trigger line, which
does not follow the transfer curve because, during
triggering, the feedback loop has not been estab­
lished. If at varying points along the trigger line the
feedback loop is re-established, the nodes of the de­
vice follow the curves that lead to the line So - SI.
Once on this line, the circuit exponentially drifts to­
ward stability at either So or SI, depending on which
side of the line Q = Q the feedback loop was re-es­
tablished. The curves are solutions to the first-order
model circuit equations for the device shown in Fig­
ure 10.

When the feedback loop is restored near the line Q
= Q, the system moves toward the unstable state M

4-6

Are Your PLDs Metastable?

Figure 12. Energy Transfer Curves showing
Trigger Paths

•.•... /--­",-

5 ,

~

Figure 13. Time Scale Showing Trigger Paths

and can take an indefinite amount of time to exit
from this metastable state. You can see this from the
graph by noticing that So and SI are equally likely
solutions for system stability from M. Once the
feedback loop is re-established, the system expo­
nentially decays toward M and then exponentially
grows toward So or SI.

Figure 13 shows the system's possible trigger events
using the implied time scale of the state-space
curves. The solution of these simplified first-order
equations indicates that the fastest metastable reso­
lution time occurs when the circuit's gain-bandwidth
product is maximized.

Flannagan (Reference 12), in an attempt to maxi­
mize the gain-bandwidth product, solves simplified
flip-flop equations to determine the phase trajecto­
ry near the metastable point. His results, which are
supported by other authors, indicate that p and n de­
vices with equal geometries produce the optimal
gain-bandwidth product for metastable event reso­
lution.

Statistical Analysis of Metastability

To begin the analysis of metastability, assume that
the flip-flop's probability of resolving its metastable
state does not depend on its previous metastable
state. In other words, the metastable device has no
memory of how long it has been in a metastable re­
gion. The analysis of metastability also assumes that
the flip-flop's probability of resolving its metastable
state in a given time interval does not depend on the
metastable resolution in another disjoint time inter­
val. The probability that a metastable event will re­
solve in a given interval (O,t) is only proportional to
the length of the interval.

These assumptions yield an exponential distribu­
tion that describes the probability that the flip-flop
resolves its metastability at a time t. The exponen­
tial distribution has the form

Eq.3

where !l is the expected value of metastability reso­
lution per unit time (settling rate).

Using this equation and given that the flip-flop was
metastable at time t = 0, the probability of a metast­
able event lasting a time t or longer is

Eq.4

The next part of the analysis involves the probability
that the flip-flop is metastable at time t = 0. This
part of the analysis assumes that the probability that
the data transitions in a given time interval depends
only on the length of the interval. A Poisson process
with rate fd describes the probability of the data
transitioning at a time t:

4-7

Are Your PLDs Metastable?

e-fd'if. t)'
p(x) = x! d Eq.S

where x is the number of transitions.

If a data transition within a bounded time interval,
W, of the clock edge causes a metastable condition,
the expected number of transitions of this Poisson
process with rate fd in time interval W is

Eq.6

Because this expected number of transitions is the
same as the probability that the flip-flop is metast­
able at t = 0, the equation for the probability at t =
° is

Eq.7

Using Equations 5 and 7, the probability that a given
clock cycle results in metastability that lasts at most
a time t is

P (met,) = P (met, I met, = 0) P (met, = 0)

=fdWe-~'

1

Eq.8

Substituting t,w for !l allows this variable to be ex­
pressed as a settling time constant of the flip-flop.
Further, a synchronization failure for a given clock
cycle exists whenever a metastable event lasts a spe­
cified time (tr) or longer. Using these two substitu­
tions, the probability that the flip-flop is metastable
in a given clock cycle is

Eq.9

Because the data transitions are independent, the
number of failures in n clock cycles has a binomial
distribution with an expected number of failures:

Eq.lO

Assuming a sample clock frequency, fe, that repre­
sents the number of clock cycles, n, per unit time, the
expected number of failures per unit time is

Eq.ll

Assuming that all data transitions are independent
and that the clock has a fixed period, the mean time
between failures (MTBF) is

lL?cYPRESS

MTBF =
E (jailunilllm,) Eq.12

where MTBF is a measure of how often, on the aver­
age, a metastable event lasts a time tr or longer.

Metastability Data

The strong resemblance between Equation 12 and
Equation 2 is based on the predictions of the first -or­
der circuit analysis of an RS flip-flop. In fact, the
metastability resolving time constant, tsw, is directly
related to the variable "t, which is based on the flip-
flop's gain-bandwidth product. '

The device-dependent variable W depends mostly
on the window of time within which the combination
of the input and clock generate a metastable condi­
tion. This parameter also depends on process, tem­
perature, and voltage levels. The MTBF equation
is usually plotted with tr (the resolving time allowed
for metastable events) on the X axis and the natural
log of the MTBF plotted on the Y axis (see the ap­
pendix in this note). Because the metastability
equation is plotted on a semi-log scale, the graph of
tr vs In(MTBF) is a line described by the equation

t
In (MTBF) = t,~ - In(fc!d W) Eq.13

Graphically, the parameter tsw is 1/slope of the line
on this graph. The equation for tsw from the graph
is

Eq.14

To determine how often, on the average, a given syn­
chronizer in a system will go metastable (MTBF),
you must know the two device-specific parameters
W and tsw, which should be available from the
manufacturer. Table 5, discussed later in this note,
lists these values for Cypress PLDs. Additional val­
ues you need are the average frequency of both the
system data and the synchronizer clock and the
amount of time after the synchronizer's maximum
clock-to-Q time that is allowed to resolve metast- .
able events.

For example, consider the method for determining
the MTBF for a Cypress PALC22VlO registered

4-8

Are Your PLDs Metastable?

PLD used as a synchronizer in a system with the fol­
lowing characteristics:

W = 0.125ps

tsw= 190 ps

fe = system clock frequency = 25 MHz

fd = average asynchronous data frequency
= 10 MHz

In addition to these values, the PLD's maximum op­
erating frequency, fmax, is taken directly from the
datasheet. The frequency is specified as the internal
feedback maximum operating frequency. It is calcu­
lated as

fmax = th = 41.6MHz
if '

where tcr is the clock-to-feedback time. If the data
sheet does not specify tcf, you can use teo as tef's up­
per bound.

Using fmax, you calculate the amount of time that a
metastable event is allowed to resolve, tn with

t, = * -f~ = 251HZ - 41.61MHZ = 16 ns

Now you enter these values into the MTBF equa­
tion, making sure to keep all units in seconds:

t,

MTBF = ei;;;
fc!d W

16 x 10-9 s

e 190 x to 12s

25 X 106s 1 X 20 X 106s 1 x 0.125 x 10 12S

59.7 X 1033s

1.89 X 1027 years = Almostforever

If the operating frequency of the system, fe, is simply
changed to 33.3 MHz,

6 x 10-99

MTBF = el90 x IO 12,
33.3 X 106s 1 X 20 X 106s 1 x 0.125 x 10 12S

= 623 X 109 s

the system fails, on the average, about every 19,700
years---still beyond the system's normal lifetime.

And if fe is changed to fmax (41.6 MHz),

OXIO-9 s

MTBF = e190 x 10 12,

41.6 X 106s 1 X 20 X 106s 1 x 0.125 x 10 12S

the system fails, on the average, every 9.62 ms.

A 16-ns difference in resolve time, tr , results in al­
most 36 orders of magnitude difference in MTBF.
Obviously, accurate data is needed to design a sys­
tem with a high degree of reliability without being
overly cautious.

Characterization of Metastability

Many authors (References 6, 8, 9, 10, 11, and 12)
have performed numerous experiments on circuits
to predict the likelihood of device metastability.
These researchers have used several testing theo­
ries and apparatus that can be classified into three
basic types (Reference 14).

Intermediate voltage sensors constitute the first type.
Two voltage comparators determine whether the out­
put voltage, Q, lies between two given voltages. The
~e produces an error ou1Put if Q has a level that
is neither HIGH nor Ww, hence metastable. Figure
14 shows an intermediate voltage sensor.

The second type of apparatus uses an output prox­
imity sensor to determine if the Q and Q outputs
have approximately the same voltages, which would
indicate that the device is metastable. Figure 15
shows an output proximity sensor.

The last type of apparatus uses a late-transition sen­
sor to test for metastability. Note that if one or more
gates separate the sensor from the metastable sig­
nal, the metastability might not be detected. The
test circuitry must infer the occurrence of metast­
ability by some other means. Figure 16 shows an ex­
ample of a late-transition sensor. The sample input
is detected at time tl, then at a later time t2. If these

Q

LDW THRESHOLD

Figure 14. Intermediate Voltage Sensor

4-9

Are Your PLDs Metastable?

two signals disagree, the device under test was me­
tastable at tl'

Information from Manufacturers

Many semiconductor companies provide metast­
ability data on their parts. However, most compa­
nies do not present the data in a format the engineer
can use. They either present inconclusive and in­
complete data or they assume the engineer can use
the data without further explanation. Few compa­
nies compare their devices with similar devices.

PLD manufacturers provide little data largely be­
cause of a fear that telling the design community
that devices can fail in synchronizing applications
will cause designers to use a competitor's parts. The
truth is that no company can provide a device that
is guaranteed never to become metastable when
used as a synchronizer. At a given operating fre­
quency, with a given asynchronous input, and given
enough time, the device becomes metastable.

Cypress provides you with data you can use to build
a system to any given level of reliability when using
Cypress PLDs. Cypress has performed numerous
tests and collected extensive data on Cypress PLDs,
as well as PLDs from other companies. This data

Voo

Q METASTAB

Figure 15. Output Proximity Sensor

ASYNC

INPUT

CLOCK

OELAY

Figure 16. Late Transition Sensor

gives you a perspective of the parts that are best
suited for a specific application. Specific data on the
metastability characteristics of Cypress PLDs is
found in this application note in the Test Results sec­
tion. Metastability data collected by Cypress for
other companies' PLDs is available upon request.

The Test Circuit

Cypress uses a test that falls into the category of the
late-transition detection. Directly measuring the
outputs of the flip-flop in a PLD are impossible due
to the additional circuitry that lies between the flip­
flop and the outside world. The metastability detec­
tion circuitry must, instead, infer the flip-flop's
state.

Figure 17 shows the metastability test circuit imple­
mented in each test PLD. This circuit allows the

SYNCH = 0, F1/F2 = 01

SYNCH = X, F1/F2 = 11

SYNCH = X, F1/F2 = 11

SYNCH = 1, F1/F1 = 10

SYNCH = X, F1/F2 = 11

SYNCH =1, F1/F1 = 10

Are Your PLDs Metastable?

PLD under test to effectively test itself. The device
under test will both produce and record metastable
conditions.

Figure 18 is a state diagram showing the operation of
the device. During normal operation, the two flip­
flops' outputs (Flo F2) transition between states Sl
and S2, depending on the synchronizer's state. Dur­
ing normal operation, the Exclusive-OR on these

SYNCHRONIZER
STATE

REGISTERS

Figure 17. Metastability Test Circuit

SYNCH = 0, F1/F2 = 01

SYNCH = X, F1/F2 = 00

SYNCH = X, F1/F2 = 00

SYNCH = X, F1/F2 = 00

SYNCH = 1, F1/F1 = 10

Figure 18. Metastability Testing State Diagram

4-10

Figure 19. Maximum Operating Frequency Test

outputs produces a HIGH. This indicates either
that metastability has not occurred within the device
or that metastability that has occurred has resolved
before the next clock cycle.

If a metastable event cannot resolve before the next
clock cycle, the state machine move to states S3 or
S4. In this case, the state flip-flops have interpreted
the signal from the synchronization register differ­
ently; exclusive-ORing this signal produces a LOW
at the device's output, indicating that unresolved
metastability has occurred.

This test circuit does not catch all metastable
events. Specifically, it does not record metastable
events that resolve before the next clock cycle. But
metastability causes an error only when it has not
resolved by the time the signal is needed. The Cy­
press tests thus reveal the information designers
need to know: how often metastability creates an
error in the system.

The test circuit also includes the ability to check the
maximum operating frequency of the device under
test (Figure 19). At each clock edge, the first regis­
ter's output toggles. When the device reaches its
maximum operating frequency, the PLD array can­
not resolve the changing signal fast enough to pro­
duce a valid output. At this speed, one register
might resolve the signal correctly and one might not,
or both might produce invalid signal resolutions. In
any case, when Exclusive-ORing the state TIrr2 of
the two maximum-frequency testing registers re­
sults in anything other than a HIGH, the part's max­
imum operating frequency is exceeded.

The Test Board

A four-layer printed circuit board with two signal
planes, a ground plane, and a power plane is used to

4-11

Are Your PLDs Metastable?

8888 EVENT
~ METASTABILILITY RESET COUNTING

EVENT DISPLAY

L I EmmA
ASYNC IN METASTABILITY

TESTING
F1

CLOCK F2

L: MAXIMUM FA![

FREQUENCY
TESTING

Figure 20. Metastability Test Board Block
Diagram

perform the metastability measurements. Using
this four-layer board gives a quiet testing environ­
ment with reliable, repeatable results. Figure 20
shows a block diagram of the test board, with the
complete schematic shown in Figure 21. The device
under test (DUT) is decoupled with O.D1-I-tF and
100-pF capacitors. The test circuit is designed to fit
all industry-standard and Cypress-proprietary
PLDs. The socket allows DUT pins 1, 2, and 4 to
serve as clock pins. Pin 3 is the device's asynchro­
nous input. The ERROR condition is located on pin
27 of a 28-pin device, and the FAIL condition is on
pin 20. Tho additional outputs, FI and F2, monitor
the state of the metastability test circuit flip-flops.

All inputs and outputs connect with BNC connec­
tors located around the board. The clock line, which
is terminated with a 50Q resistor to match the coax
input impedance, is buffered with a 74AS04 and iso­
lated from other signals by a ground trace. The in­
put line is also terminated with a 50Q resistor and
buffered with a 74AS04. Four PLDs drive a four­
digit LED display that counts metastability occur­
rences.

After going LOW in response to a metastable event,
the ERROR signal automatically transitions HIGH
again at the next system clock. This LOW-to-HIGH
pulse produces a clock to the input of the first PLD,
which in tum increments the display of metastable
events. When a digit reaches 9, the next occurrence
of metastability generates a cascade signal to the
next higher digit.

=e .~ =i!!!8' CYPRESS

.01""

Are Your PLDs Metastable?

.01 ~F

RESET

Figure 21. Metastability Test Board Schematic

In this way, the test board can record a maximum of
9,999 metastable events. If a metastable event is re­
ceived at 9,999, all LEDs switch to E, indicating that
an overflow condition occurred. A reset button re­
sets all counters and initializes the DUT.

Test Set·Up

Figure 22 shows a block diagram of the test set-up
used for metastability testing. Tho independent
pulse generators (Hewlett-Packard 8082As) pro­
duce the CLOCK and the ASYNC _IN signal to the
test board. A Tektronix DAS9200 logic analyzer re­
cords metastable events. A 2465 crs digital oscillo­
scope with frequency counter accurately determines

I HP 8082A I HP 8082A . II DAS9200 LOGIC I
PULSE GEN PULSE GEN ANALYZER TIME

I - 1
VOLTAGE
SUPPLY Vee

I DEVICE 8888
CLOCK UNDER METASTABILITY

TEK I TEST EVENT DISPLAY

2465CTS
ASYNC

OSCILL I .' l'l\I[I TEST BOARD
~ ----

Figure 22. Metastability Test Set.Up

the DUT's maximum operating frequency and the
ASYNC _IN and CLOCK frequencies.

4-12

~~ ArV. ~~CYPRESS~~~~~~~~~~~~e~~I.o~u~r~P~L~D~s~M~e;ta;s;ta;b;le~?

Test Procedure

Cypress has tested all its 20-, 24-, and 28-pin PLDs.
The fastest speed grades of each device type were
tested because these devices have the best metast­
able r.esolution time and thus make the best syn­
chromzers. Several parts from each device type
were tested to ensure an average metastability char­
acteristic for that product. Where possible, parts
from different date codes were selected to eliminate
variations among different wafer lots.

~sting for a specific device starts by creating the
hIgh-level description written in VHDL to be used
with the Wa1p2 VHDL Compiler. Figures 23 and 24
list the behavioral description used for generating a
JEDEC file. All devices were programmed using
JEDEC files generated by Wa1p2, except for the
CY7C344. The MAX + PLUS development envi­
ronment was used to produce a design file for this
device.

Each part is programmed, then tested for its maxi­
mum operating frequency, fmax. By attaching the
FAIL output to the oscilloscope and observing the
clock frequency at which the device started to mal­
function (FAlL going LOW periodically), the maxi­
mum operating frequency for that part is deter­
mined. fmax indicates the maximum rate at which
metastability measurements can be taken with accu­
rate results. Above this frequency, metastable
events are indistinguishable from errors caused by
exceeding fmax.

To determine each device's metastability character­
istics, measurements are taken of the number of me­
tastable events that occurred in a given time interval
for several different clock and data frequencies.

Equation 13 can be used to describe the graph ofthe
metastability characteristics of the device:

In(MTBF) = :,~ - Inifc!d W)

The slope of the line, tsw, can be determined only by
forcing the Y intercept of the graph (In(fcfdW» to
a constant value when using Equation 14:

4-13

Note that tsw is a constant, device-specific parameter.

Because W is also a constant, device-specific param­
eter, it is only necessary to hold the product fcfd
constant to make In(fcfdW) constant. The indepen­
dent variable tr is varied by changing fc to produce
chan~es in the dependent variable In(MTBF). De­
creasmg the frequency fc from its fmax value in­
creases the metastable resolution time, tr, and de­
creases the probability that a metastable event will
last longer than tr.

As fc is decreased below a certain limit, the MTBF
becomes too large to measure accurately. A metast­
able event occurring every minute is chosen as the
upper limit for MTBF measurements. The range of
clock rates for metastability testing is then between
fmax and the metastable-event-per-minute clock
rate. Between these two rates, a selected frequency
constant (fcfd) ensures that no point in this range has
a c~o~k frequency less than twice the data frequency.
ThIS IS because a data signal that transitions more
than once per clock period cannot be effectively
sampled.

After determining this constant, data is taken from
several test points within the test range by varying fc
and fd. The data at each test point is averaged
among all test devices, and the equation for the line
through these points is determined using a linear re­
gression analysis. The correlation between the line
and the data points verifies that the metastability
equation accurately describes the test data. From
the calculated results, the constants Wand tsw are
extracted.

Test Results

Table 5 and the Appendix list the results of the me­
tastability analysis of Cypress PLDs. Table 5 also
lists the maximum data book operating frequency,
fmax; the metastability equation constants, Wand
tsw; the metastability resolve time, tr, required for a
lO-year MTBF; and the process for that part.

You can use this data to determine the maximum
metastability resolve time (tr) that you must use in
a system to yield a given degree of reliability. The
graphs and constants (Wand tsw) can be used with
any speed grade of the device, but it is suggested that
the fastest speed grade of the specific PLD be used

package test is
component metastability port (

clock, async_in, reset in bit:
fail, perror, f1, f2 : out bit):

end component:
end test:

entity metastability is port (
clock, async_in, reset in bit:

fail, perror, f1, f2 : out bit):
end metastability:

use work.bv_math.a11

architecture fsm of metastability is

signal
signal
signal
signal
signal
signal

begin

sync
tsync
tl, t2
fl_tmp,

bit:
bit:
bit:
f2_tmp

error_tmp : bit:
fail_tmp : bit:

proc1: process begin

bit:

wait until clock = '1':
sync <= async_in:

end process;

proc2: process begin

wait until clock = '1':
f1_tmp <= sync;
f2_tmp <= inv(sync);

end process:

proc3: process begin

wait until clock = '1':

Are Your PLDs Metastable?

error_tmp <= ((((inv(reset) and f1_tmp) and inv(f2_tmp))
or ((inv(reset) and inv(fl_tmp)) and f2_tmp))
or (reset and inv(error_tmp))):

end process:

Figure 23. Wa1p2 VHDL Behavioral Description for Metastability Testing

4-14

~ Are Your PLDs Metastable?
.;CYPRESS ================

proc4: process begin

wait until clock '1';
if (tsync = '1') then

tsync <= '0' i
else

tsync <= '1' i

end if;

end process;

proc5: process begin

wait until clock = '1';
t1 <= tsync;
t2 <= inv(tsync};

end process;

proc6: process begin

wait until clock = '1' ;
fail_tmp <= (t1 xor t2);

end process;

fail <= inv(fail_tmp};
perror <= inv(error_tmp};
f1 <= inv(f1_tmp};
f2 <= inv(f2_tmp};

end fsm;

Figure 23. Wa1p2 VHDL Behavioral Description for Metastability Testing (continued)

for optimum synchronizer performance. These
graphs indicate the time (tr) and the device's mini­
mum clock period that must be used to produce a
desired degree of reliability.

For example, to determine the operating parame­
ters of the Cypress PALC22VlO-20 from Table 5
when using the device as a synchronizer, determine
the desired MTBR With a lO-yr (315 X 106s)
MTBF, for instance, a synchronization failure will
occur once every 10 years on the average. The maxi­
mum operating frequency (fmax) from the
PALC22VlO's data sheet is 41.6 MHz. From this in­
formation, you can determine the minimum time

4-15

(tr) beyond the device's minimum operating period
that must be added for metastability resolution:

r,

MTBF = e;;;;;
fJd W

t, tm On(MTBF) + InCfcfd W»

t, (0.190 x 10-9s) [In(315 x 106s)

+ In(41.6 x 106 x 41.6 X 106 x 0.125 x 10- 12)]

= 4.73 ns

This analysis assumes that the clock, fe, operates at
fmax (41.6 MHz) and that the average asynchronous
data frequency is no more than half the clock fre-

quency. The latter condition ensures effective data
sampling by the synchronizer. fd, as explained in the
Statistical Analysis of· Metastability section repre­
sents the rate at which the data changes state. fd is
twice the average frequency of the asynchronous
data input because, during any given asynchronous
data period, the asynchronous data changes state
twice: once from LOW to HIGH and again from
HIGH to LOW. Because either of these state
changes can cause a metastable event, fd must be set
to twice the average asynchronous data frequency
when determining the worst-case MTBF.

Due to the real-world uncertainty in factors such as
trace delays and the skew in clock generators,S ns
is used instead of 4.73 ns for tr. The synchronizer's
maximum operating frequency, fe, in this system is
then

Ie = t + ,1 + t = 10 + I~ + 5 = 37.0 MHz scfr ns ns ns

The effective MTBF using these new values for tr
.and fc is

5XIO-9s

MTBF = eO.19Ox10 9,

37.0 x 106r l x 37.0 x 106s 1 x 0.125 X 1O- 12s

= 1.57 X 109 = 49.7 yrs

Another example focuses on the CY7C330-50 used
as a synchronizer in a system whose output registers
are clocked at an fe of 35.7 MHz, and the data has
an average frequency of 10 MHz. The MTBF for
this device used as a synchronizer is calculated by
first determining the metastable resolution time, tr.
allowed for synchronization. The maximum operat­
ing frequency of the part is specified in Cypress's
Data Book as

f, = _1_
max teo + tis

where teo in this case specifies the clock-to-feedback
delay, and ts specifies the set-up time of the output
registers. tr is calculated with the equation:

1 1
35.7 MHz 50.0 MHz = 8 ns

With this result, the MTBF is

8x 10-9 8

MTBF = e 0 .. 290 x 10 9,
35.7 X 106s 1 X 20.0 X 106s 1 x 1.02 x 10 12S

= 1.31 X 109 s = 41.6 yrs

This equation uses the same values for Wand tsw
with this 50-MHz device as with the 66-MHz device
listed in Table 5. As stated previously, the constants
listed in Table 5 are valid for all speed grades of a
specific device. Also note that the lO-MHz average
data frequency is doubled to produce the frequency
of data transitions, fd.

The last example illustrates how to use a Cypress
PALC22VlOC-1O as a synchronizer. For a lO-year
MTBF, assuming the maximum fe from Cypress's
Data Book and fd, the required tr is

t, = (0.547 x 10 -9S) [In(315 x 106S)

+ In(90.9 x 106 x 90.9 X 106 X 8.08 x 10- 15)]

= 13.0 ns

Using this result, the synchronizer's maximum oper­
ating frequency is reduced from 90.9 MHz to

1
1 = 41.6MHz

90.9 MHz + 13.0 ns f':" + t,

1\vo-Stage Synchronization

As explained earlier, you can use a second register
in series to perform two-stage synchronization (Fig­
ure 4). This is accomplished by feeding the output
of the first synchronization register to the input of
the second synchronization register. In PLDs, this
method is common because the first synchroniza­
tion stage can synchronize the asynchronous input
signal, and the second synchronization stage can
perform a Boolean function on a combination of the
input and output signals. Boolean functions can be
performed at either stage; the metastability charac­
teristics listed in Table 5 apply to PLD registers'
asynchronous inputs that are used directly as well as
asynchronous inputs used as a Boolean combmation
of existing inputs and outputs.

4-16

Are Your PLDs Metastable?

Table 5. Metastability Characteristics of Cypress PLDs

Device fmax (MHz) W(s) tsw (s) tr for lO-yr MTBF (os)

PALC16R8-25 28.5 9.503E-12 0.515E-9 14.68

PAL16R8-5 125 94.48E-12 0.299E-9 9.48

PALC20G 10-20 41.6 3.730E-12 0.173E-9 4.91

PALC20RAlO-15 33.3 2.860E-12 0.216E-9 5.87

PAL22VlOC-7 111 0.389E-12 0.546E-9 15.50

PAL22VlOCF -7 111 0.398E-12 0.570E-9 16.21

PALC22VlOD-7 100 32.35E-12 0.347E-9 10.56

PALC22VlOB-15 50.0 55.76E-12 0.261E-9 8.19

PALC22VlO-20 41.6 0.125E-12 0.190E-9 4.73

CY7C330-66 66.6 1.020E-12 0.290E-9 8.12

CY7C331-20 31.2 0.298E-9 0.184E-9 5.91

CY7C335 -100 58.8 0.288E-12 0.189E-9 4.95

CY7C344-20 41.6 0.966E-9

When implementing a two-stage synchronizer in a
PLD, the probability that a synchronizer is metast­
able after the second stage of synchronization is the
square of the probability that a synchronizer is me­
tastable after the first stage of synchronization. The
MTBF equation is

MTBF = (.• e f;;)2
JJd W

From this result, the equation for tr becomes

t,w (In(MTBF) + 2 x InlfJd W»
t, = 2

Using this result for a two-stage synchronizer in a
Cypress PALC22VlOC, the tr for a lO-year MTBF is
reduced from 13.0 ns to

t, = (0.5)(0.547 x 1O- 9s) [In(315 x 106s)

+ In(90.9 x 106 x 90.9 X 106 x 8.08 x 10- 15)]

= 7.65 ns

The maximum fc increases from 41.G MHz to

f, = __ I_
e f~'" + t,

I = 53.6MHz
90.9",.HZ + 7.65 ns

4-17

0.223E-9 7.55

This example shows that if the cycle of latency
caused by the additional synchronization stage is ac­
ceptable, you can dramatically increase the synchro­
nizer's maximum operating frequency.

References
1. Lubkin, S., (Electronic Computer Corp.),

''Asynchronous Signals in Digital Computers,"
Mathematical Tables and Other Aids to Computa­
tion, Vol. 6, No. 40, October 1952, pp. 238-241.

2. Nootbaar, Keith, (Applied Microcircuits
Corp.), "Design, Testing, and Application of a
Metastable-Hardened Flip-Flop," WESCON
87 (San Francisco, CA, Nov. 17 -19, 1987),
Electronic Conventions Management, Los An­
geles, CA 90045.

3. Stoll, Peter A., "How to Avoid Synchronization
Problems," VLSI Design, NovemberlDecember
1982, pp. 56-59.

4. Chapiro, Daniel M., Globally-Asynchronous Lo­
cally-Synchronous Systems, Stanford University,
Department of Computer Science Report No.
STAN-CS-84-1026, October 1984.

5. Horstmann, Jens U., Eichel, Hans w., Coates,
Robert L., "Metastability Behavior of CMOS

ASCI Flip-Flops in Theory and Thst," IEEE
Journal of Solid-State Circuits, Vol. 24, No.1,
February 1989, pp. 146-157.

6. Wormald, E.G., '~Note on Synchronizer or In­
terlock Maloperation," Professional Program
Session Record 16, WESCON 87, November
17-19,1987, Electronic Conventions Manage­
ment, Los Angeles, CA 90045.

7. Pechouchek, Miroslav, '~omalous Response
Times of Input Synchronizers," IEEE Trans.
Computers, Vol. C-25, No.2, February 1976,
pp. 133-139.

8. Chaney, T. .J., "Comments on ~ Note on Syn­
chronizer or Interlock Maloperation," IEEE
Trans. Computing, Vol. C-28, No. 10, Oct.
1979, pp. 802-804.

9. Couranz, George R., Wann, Donald R,
"Theoretical and Experimental Behavior of
Synchronizers Operating in the Metastable Re­
gion," IEEE Trans. Computers, Vol. C-24, No.
6, June 1975, pp. 604-616.

10. Veendrick, Harry J.M., "The Behavior of Flip­
Flop Used as Synchronizers and Prediction of
Their Failure Rate," IEEE Journal of Solid-State
Circuits, Vol. SC-15, No.2., April 1980, pp.
169-176.

Are Your PLDs Metastable?

11. Kacprzak, Tomasz, Albicki, Alexander, '~aly­
sis of Metastable Operation in RS CMOS Flip­
Flops," IEEEJournalofSolid-State Circuits, Vol.
SC-22, No.1, February 1987, pp. 57-64.

12. Flannagan, Stephen T., "Synchronization Reli­
ability in CMOS Technology," IEEE Journal of
Solid-State Circuits, Vol. SC-20, No.4, Aug
1985, pp. 880-882.

13. Wakerly, John R,A Designers Guide to Synchro­
nizers and Metastability, Center for Reliable
Computing Thchnical Report, CSL TN
#88-341, February, 1988 Computer Systems
Laboratory, Departments of Electrical Engi­
neering and Computer Science, Stanford Uni­
versity, Stanford, CA.

14. Freeman, Gregory G., Liu, Dick L., Wooley,
Bruce, and McClusky, Edward J., Two CMOS
Metastability Sensors, CSL TN# 86-293, June
1986, Computer Systems Laboratory, Electrical
Engineering and Computer Science Depart­
ments, Stanford University, Stanford, CA.

15. Rubin, Kim, "Metastability Testing in PALs,"
WESCON 87 (San Francisco, CA, Nov. 17 -19,
1987), Electronic Conventions Management,
Los Angeles, CA 90045.

4-18

1.00E+09

1.00E+07

1.00E+05

-C/) - 1.00E+03
u..
OJ
I-
::E 1.00E+01

1.00E-01

1.00E-03

1.00E-05

1.00E+09

1.00E+07

1.00E+05

- 1.00E+03 C/) -u..
OJ 1.00E+01
I-
::E

1.00E-01

1.00E-03

1.00E-05

1.00E-07

Are Your PLDs Metastable?

Appendix A. Metastability Graphs of Cypress Devices

Cypress PALC16R8-25

/
/'

/
,/

/'
/'

v

/'
v
o

./

/
'/

o

5 10

Tr (ns)
15

Cypress PAL 16R8-5

/
./
/

/
V

/
,/

/

2 3 4 5 6 7

Tr (ns)

4-19

./

8

20

./
V

9 10

-CJ) --LL
(Q
I-
~

-~
LL
(Q
I-
~

-.. ~ Are Your PLDs Metastable?
,CYPRESS ================

1.00E+09

1.00E+07

1.00E+05

1.00E+03

1.00E+01

1.00E-01

1.00E-03

1.00E-05

1.00E+09

1.00E+08

1.00E+06

1.00E+04

1.00E+02

1.00E+OO

1.00E-02

1.00E-04

Appendix A. Metastability Graphs of Cypress Devices (continued)

Cypress PLDC18G8-12

./"
V

V
,/

/""
V

V~

/
V

/
v
o 2 3 4 5 6 7 8 9

Tr (ns)

Cypress PALC20G 1 0 - 20

/'
/'

/'

/'
/

/~

/'
V

V
o 2

4-20

3

Tr (ns)
4 5

10 11

6

1& ~ Are Your PLDs Metastable?
,CYPRESS ==============

Appendix A. Metastability Graphs of Cypress Devices (continued)

Cypress PALC20RA 1 0 -15
1.00E+09

1.00E+07

1.00E+05

-C/) - 1.00E+03
LL
al
I-

.,/
,/'"

/'
/

/'
V

/
/

~ 1.00E+01

1.00E-01

1.00E-03

/
V

/
V

/"
1.00E-05

o 2 3 4 5 6 7

Tr (ns)

Cypress PALC22V1 0 - 20
1.00E+09

1.00E+07 /
1.00E+05 -C/) -LL

al 1.00E+03
I-
~

1.00E+01

1.00E-01

/
/

./

/
/"

/
/

/
1.00E-03

o 2 3 4 5
Tr (ns)

4-21

--en -LL
CD
t-
~

--en -LL
CD
t-
~

· -., ~ Are Your PLDs Metastable?
'CYPRESS ================

LOOE+09

LOOE+07

LOOE+05

LOOE+03

LOOE+01

LOOE-01

LOOE-03

LOOE-05

LOOE-07

LOOE+D9

LOOE+07

LOOE+05

LOOE+03

LOOE+01

1.00E-01

LOOE-03

LODE-05

Appendix A. Metastability Graphs of Cypress Devices (continued)

Cypress PALC22V108-15

,./

/
/'

I------ V
//

,/ V
/"'"

,./

/
,/

o

/ v
o

2 3 4 5 6 7

Tr (ns)

Cypress PAL22V10C-7

/'
v

5

/'
/

/

4-22

10

Tr (ns)

/'
v

/

15

/"'"

8 9

20

...0::=...

- -., ~ Are Your PLDs Metastable?
'CYPRESS ================

1.00E+09

1.00E+07

1.00E+05

:§:
1.00E+03

Ll..
!Xl
I-

1.00E+01 ~

1.00E-01

1.00E-03

1.00E-05

1.00E+09

1.00E+07

1.00E+05 -.!f!.,
Ll.. 1.00E+03

!Xl
I-
~ 1.00E+01

1.00E-01

1.00E-03

1.00E-05

Appendix A. Metastability Graphs of Cypress Devices (continued)

Cypress PAL22V1 OCF - 7

/"
V

/
/

V
/

/
V

/ v
o 5 10 15

Tr (ns)

Cypress PALC22V1 OD - 7

/
V

/
/

/
V

V

/'
V

V
o 2 4 6

Tr (ns)

4-23

8 10

20

12

~ Are Your PLDs Metastable?
';CYPRESS ================

Appendix A. Metastability Graphs of Cypress Devices (continued)

CYPJess CY7C330-66
1.00E+09

/
1.00E+07

1.00E+05 -CI) -LL 1.00E+03
III
I-
~

1.00E+01

1.00E-01

1.00E-03

./"
,/

,/
V

V
./"
,/

L
V

1.00E-05
o 2 3 4 5 6 7 8 9

Tr (ns)

Cypress CY7C331-20
1.00E+09

1.00E+07

1.00E+05

- 1.00E+03 CI) -LL
III 1.00E+01
I-
~

1.00E-01

1.00E-03

,/;'

/
V

./
/

LV
/

/
1.00E-05

V
v

1.00E-07
o 2 3 4 5 6 7

Tr (ns)

4-24

.-'~ Are Your PLDs Metastable?
"CYPRESS ===============

1.00E+09

1.00E+07

1.00E+05

..-... en -LL
1.00E+03

III
I-
~ 1.00E+01

1.00E-01

1.00E-03

1.00E-05

1.00E+09

1.00E+07

..-... 1.00E+05
en -LL
III 1.00E+03 I-
~

1.00E+01

1.00E-01

1.00E-03

Appendix A. Metastability Graphs of Cypress Devices (continued)

Cypress CY7C332-15

~----~
/

/""
V

/
./"

/'
/

~-

V
./"

/""
/

v

o 2 3 4 5 6 7 8

Tr (ns)

Cypress CY7C33q -1 00

"/v
/

v

/
,/'

/'
/

/'
/

/
o 2 3

Tr (ns)

4-25

4 5

v

9 10

6

~

- -', ~ Are Your PLDs Metastable?
===,CYPRESS =================

Appendix A. Metastability Graphs of Cypress Devices (continued)

1.00E+O 9

1.00E+O 7

1.00E+O 5

1.00E+03

1.00E+O 1

1.00E-O 1

1.00E-O

1.00E-O

3

V
./ 5V

1.00E-O 7
o

Cypress CY7C344-20

/"

./
V

2

./ /
V

3

4-26

4

Tr (ns)

//
./
/

5 6

L/

7 8

Designing with the CY7C335
and Warp2 ™ VHDL Compiler

This application note provides an overview of the
CY7C335 Universal Synchronous EPLD architec­
ture and Wa1p2'" VHDL Compiler for PLDs. Ex­
ample designs demonstrate how the Wmp2 VHDL
compiler takes advantage of the rich architectural
features of the CY7C335.

The CY7C335 is a synchronous EPLD optimized
for high-performance state machines and other
clocked systems that operate at speeds of up to 100
MHz. The CY7C335 uses Cypress's low-power,
0.8-micron CMOS UV erasable technology and is
packaged in 28-pin, 300-mil dual in-line and LCC/
PLCC packages.

The CY7C335 builds on the popularity of the high­
speed CMOS PALC22VlO and exceeds the capabili­
ty of the 26V12 and 26CV12. The CY7C335 offers
significantly higher density solutions and can re­
place as many as four 22VlOs. It has 258 variable
product terms for 16 state registers (ranging from 9
to 19 product terms per macrocell), macrocells that
can be configured as JK-, RS-, T-, or D-type, bidirec­
tional pins, bypassable input registers, three clocks,
and a product term output enable for each macro­
cell.

In addition to supporting the features of the
CY7C335, the Wa1p2 VHDL compiler enables the
designer to create designs, using any combination of
high-level behavioral descriptions, Boolean equa­
tions, state tables, or RTL structures, that can easily
be retargetted to any Cypress PLD.

Wa1p2 is a state-of-the-art VHDL compiler that fa­
cilitates device-independent designs by synthesizing
for a powerful subset of IEEE1076. Optimization
and reduction algorithms automatically select T- or
D-type flip-flops and perform automatic state and
pin assignment. Wa1p2 includes a graphical user in­
terface (which runs under Windows'" for the PC,
and OpenLook'" or Motif'" for the Sun) and comes
complete with a functional simulator for graphical
waveform simulation.

Overview of the CY7C335

Figure 1 is the block diagram of the CY7C335.
Three separate clock signals-two input and two
output clocks (one shared)-can be used on pins 1,
2, and 3. Alternatively, pins 2 and 3 can be used as
two of twelve inputs that may be registered or fed di­
rectly to the programmable AND array. Pin 14 can
be used as an input or as a common output enable
for each I/O pin. Outputs can also be enabled by
product terms. The device features center ground
and supply pins that reduce ground bounce due to
parasitic effects, particularly lead inductance.

Figure 2 illustrates the input macrocell. Each D­
type input register can use either ICLK1 or ICLK2.
Alternatively, the input register bypass multiplexer
can be programmed to allow the signal to feed di­
rectly to the array as combinatorial input.

4-27

Designing with the CY7C335 and Warp2

Vss IS 12 1,/CLK3 loICLK2 CLK1

1/0. 1/0. VO. Vss Vee vOa V02 VO, 1/00

Figure 1. CY7C335 Block Diagram

1 ~

INPUT
TO ARRAY

;-- INPUT REGISTER REG :> BYPASS
INPUT 0 MUX

PIN D Q

'----

0- C7

ICLK1 INPUT
CLOCK r-~ 1 MUX

ICLK2

C6

Figure 2. CY7C335 Input Macroceii

4-28

~YPRESS~~~~~~~~D~eS~ig~n~i~ng~m~'th~th~e~C~Y~7~C~3~35~an~d~m~a~r~p=2

OUTPUT ENABLE PRODUCT TERM

SET PRODUCT TERM

EX OR PRODUCT TERM

!
SCLK1

SCLK2

RESET PRODUCT TERM o

PIN 14: OE

co

OUTPUT
OUTPUT REG
BYPASS MUX

ENABLE I----f-,
o MUX

o

TO ARRAY FEED j------;:==::;---;-----'
BACK 1+-'--_____
MUX

C1

ICLK1
o

ICLK2

TO ARRAY

C2

INPUT
CLOCK

MUX

o

C3

INPUT REGISTER

Q D

CX(11-16) FROM ADJACENT MACROCELL

Figure 3. CY7C335 Input/Output Macrocell

Twelve configurable I/O macrocells enable JK-, RS-,
T-, or D-type state registers to optimize for minimal
product terms. Figure 3 illustrates the I/O macro­
cell, which includes the following features: (1) regis­
tered or combinatorial output; (2) global (by pin 14)
or product term output enable; (3) global, synchro­
nous, product-term set and reset; (4) three clocks­
two can be used as input clocks and two can be used
as output clocks (with one shared); (5) input/output
flexibility (the cell can be configured as input only,
output only, or a dedicated input with a buried regis­
ter by using the shared input multiplexer and there­
by maximizing cell resource utilization).

4-29

In addition to the input and I/O macrocells, the
CY7C335 features four hidden macrocells, one of
which is shown in Figure 4. Buried registers are high­
ly useful for state machines, internal counters, or
other applications that need registers that are not
also used as outputs.

The clocking scheme is shown in Figure 5. The
CY7C335 can utilize three separate clocks. Two
clocks are inputs to each of the input clock multi­
plexers and state clock multiplexers. If two clocks
are used on both the input and the state registers,
then one of the clocks is shared, because a total of

PIN 1

PIN2

PIN3

Designing with the CY7C335 and Warp2

SET PRODUCT TERM

I
SCLK1

SCLK2

S
}---ID Q

RESET PRODUCT TERM

Figure 4. CY7C335 Hidden Macrocell

C8

SCLK2 TO OUTPUT MACROCELLS AND HIDDEN MACROCELLS

ICLK1 ICLK2 SCLK1 TO OUTPUT MACROCELLS AND HIDDEN
MACROCELLS

Figure 5. CY7C335 Input Clocking Scheme

three clocks are supported. Pin 1 is a dedicated state
clock pin, designated SCLKI (state clock). Pins 2
and 3 may be used as either inputs or clocks, as
shown in Figure 5.

Overview of Warp2
Wa1p2 is a state-of-the-art VHDL compiler for de­
signing with Cypress PLDs and PROMs. Wa1p2 ac­
cepts VHDL designs, synthesizes and optimizes the
entered design, and outputs a JEDEC file for the
CY7C335. Wa1p2 also provides a graphical wave-

4-30

~~YPRESS~~~~~~~~D=e=si=gn=i=ng~m=·t=h=th=e=CY~7=C=3=3=5=an=d~m=ary==2

form simulator for functional simulation. Figure 6
illustrates the Wa1p2 design flow.

VHDL Compiler

As an open, non-proprietary, IEEE1076 compliant
language that is the standard for behavioral design
entry and simulation, VHDL allows designers to
easily describe complex hardware systems.

Wa1p2's VHDL enables designers to describe de­
vice-independent designs at different levels of ab­
straction, including behavioral descriptions, Bool­
ean equations, state tables, and structural
descriptions. In addition, VHDL and Wa1p2 sup­
port hierarchical designs, allowing either a "top­
down" or "bottom-up" approach to design.

Design Examples

The following design examples demonstrate how to
use Wa1p2 and VHDL to take advantage of the
CY7C335 architectural features. The purpose is to
show some VHDL constructs that are particularly
useful for the CY7C335 architecture as well as point

{
Figure 6. Warp2 Design Flow

4-31

out designs that are well suited for the device. Fur­
ther information on VHDL constructs may be found
in the Wa1p2 Reference Manual or one of several
texts available on the language. For each of the ex­
amples, the complete VHDL source code and an ex­
cerpt of the report file may be found in the appen­
dices.

Pipelined Buffer

This example demonstrates how to use VHDL code
to implement a pipelined buffer (see Figure 7) with
multiple clocks and output enables. The CY7C335
is well suited for pipelined applications because it
has input registers in both the input macrocells as
well as the I/O macrocells.

The complete VHDL source code is printed in Ap­
pendix A of this note. The pipeline architecture is
reprinted in Figure 8.

The pipeline is implemented in three processes.
The first process registers (using CLK1 on the input
registers) the upper four bits of the input signal I.
The second process registers the lower four bits, us­
ing CLK2. The signal INTMP represents the q out­
put of these registers. The third process registers the
signal INTMp, with OUTTMP being the q output of
these registers. This signal reaches the I/O pins if
output is enabled, as explained below.

Below the three processes is a generation scheme
which is used to instantiate eight triout components

CLKO ----------,

CLK1

17

16

15

14

CLK2

13

12

11

10

Figure 7. Pipelined Buffer Block Diagram

~

- '?cYPRESS Designing with the CY7C335 and Warp2

use work.rtlpkg.all;
architecture archpipe of pipe is
signal intmp, outtmp: bit_vector(7 downto 0);
signal ptoe: bit;
begin
proc1: process

begin
wait until clk1 = '1';

intmp(7 downto 4) <= i(7 downto 4);
end process;

proc2: process
begin

wait until clk2 = '1';
intmp(3 downto 0) <= i(3 downto 0);

end process;

proc3 : process
begin

wait until clkO = '1';
outtmp <= intmp;

end process;

ptoe <= oe1 AND oe2;

g1: for j in 7 downto 0 generate
g2: if j > 3 generate

t1x: triout port map(outtmp(j), oe1, o(j));
end generate;

g3: if j < 4 generate
t2x: triout port map(outtmp(j), ptoe, o(j));

end generate;
end generate;

end archpipe;

Figure 8. Pipeline Architecture

(see Figure 9). The triout components are used to
implement an output enable. The upper four bits of
the output are enabled by OE1 (which is assigned to
pin 14 by Warp) and the lower four bits use a product
term output enable, PTOE.

The complete VHDL source code for this example
is in Appendix A. A report file excerpt, showing re­
source utilization, is shown in Appendix B. This ex­
cerpt shows that 8 of 12 I/O macrocells were uti-

4-32

lized. However, not all resources (the input
registers, for example) in those macrocells were uti­
lized.

Comparator with Registered Inputs

In high-speed systems, such as microprocessor local
buses that operate at 40, 50, or 66 MHz, data or ad­
dresses must be captured from the bus (when quali­
fied with a strobe) with set-up times of3 to 5 ns. Few
logic functions can be implemented in this time, and

DE q>-v
component triout
port (

) ;

x: in bit; --input to buffer
oe: in bit; output enable
y: out bit; -- output

end component;

Figure 9. Triout Component

elK

AEQB

B

Figure 10. Comparator

for this reason data or addresses are captured and
then processed in pipeline fashion. The CY7C335,
with its input registers, is well suited for such high­
speed systems.

In this simple, register-intensive example, all 18 in­
puts are registered and the output is combinatorial
(Figure 10). As noted in Appendix D, this design
leaves much of the CY7C335's resources free for
additional logic. The 22VlO, however, would be un­
able to fit a 5-bit comparator with registered inputs.
Ten macrocells would be consumed when register­
ing the inputs, leaving no macrocells for the AEQB
combinatorial output. The 22VlO fares poorly in
such pipelined systems because it does not have in­
put registers and must therefore waste output ma­
crocell resources.

The VHDL source code can be found in its entirety
in Appendix C. The architecture is reprinted below.

Designing with the CY7C335 and Warp2

SEl

Figure 11. Multiplexer

architecture archcomp of comp is
signal a, b: bit_vector(O to 8);
begin
proc1: process begin
wait until clk = '1';

a <= a_in;
b <= b_in;

end process;

aeqb <= '1' when a=b else '0';

end archcomp;

The process is used to register the inputs on the ris­
ing edge of CLK1. The equation for AEQB is placed
outside of the process because it is a combinatorial
output.

Multiplexer with Registered Inputs and Outputs

Registered multiplexers and demultiplexers de­
mand a large number of inputs and outputs. This ex­
ample (see Figure 11) takes advantage of the
CY7C335 input and output registers, two groups of
six-bit-wide signals are captured via the input regis­
ters and signal SEL selects one of the groups, which
is then registered on the output. The complete
VIiDL source code can be found in Appendix E.
The architecture is reprinted below.
architecture archmux of mux is
signal x, y: bit_vector(5 downto
0) ;
begin
proc1: process begin

wait until clk = '1';
x <= xin;
y <= yin;

4-33

~ ~ Designing with the CY7C335 and Warp2
~'CYPRESS============

if sel = '1' then
qout <= X;

elsif sel = '0' then
qout <= y;

end if;
end process;

end archrnux;

On the rising edge of CLKl, the inputs are regis­
tered while the outputs are propagated. Thus, data
on the inputs is not propagated to the outputs until
the second rising edge.

Decoder

Faster microprocessors require decoders to operate
at higher frequencies. Many high-density PLDs and
FPGAs cannot meet speed requirements, leaving
designers to opt for ASIC-based solutions which can
be time consuming and expensive. The CY7C335 is
another option.

Consider a l6-bit address that requires decoding to
address system memory elements (SRAM, PROM,
EEPROM and "shadow" RAM) and two peripheral
ports. At times other than boot-up, the micropro­
cessor fetches instructions from shadow RAM that
is loaded from PROM during boot-up. Figure 12
shows the VHDL architecture that decodes the
memory map shown in Figure 13. Appendix H shows
that the CY7C335's resources easily handle this ap­
plication while operating at speeds to 100 MHz.

Up/Down Counter with Upper and Lower Limits

This example demonstrates how to use VHDL code
to implement the up/down counter shown in Figure
14. The CY7C335 is particularly well suited for this
design because it supports three clocks and has flex­
ible I/O. This design requires the following re­
sources: three clocks (two inputs and one state),
eight input registers for the lower limit, eight input
registers for the upper limit, one input each for the
preset HIGH, preset LOW, reset, and output enable
signals, eight state registers for the counter, one
state register each for the comparators, and one
state register for the counter direction signal.

A total of 20 inputs and 8 outputs are required; con­
sequently, this design utilizes bidirectional signals.

The counter output is three-stated to load six bits of
the upper limit into input registers of I/O macro­
cells. For example, the least-significant counter bit
is stored in a state register and the least-significant
upper-limit bit is stored in the input register of the
Same macrocell. The least-significant upper-limit
bit feeds into the array via the shared input multi­
plexer. (The shared-input multiplexers are placed
between adjacent I/O macrocells, and allow for in­
put when the macrocell register is buried.) The
CY7C335 provides six of these multiplexers. The
two most significant bits of the upper limit are
passed into the array through an I/O pin configured
as a dedicated input. The two most significant bits
of the upper limit and counter may be externally tied
together so the design can be bidirectional.

The up/down counter counts between limits stored
in the input registers. The lower-limit (LL) is
loaded into the registers on the rising edge of CLKl
while the upper limit is loaded on the rising edge of
CLK2. On CLKO, ifpreH is asserted, then the up­
per limit is loaded into the counter, and if preL is as­
serted, then the -lower limit is loaded into the
counter.

The 22VlO would not suffice for this design. Al­
though the 22VlO has been an attractive choice of
devices to implement counters and state machines,
it suffers a limitation in addition to its poor handling
of pipelined systems: it does not have any buried
registers.

In counters and encoded state machines, registers
often need not be apparent to the outside, meaning
the registers can be buried within the device. In the
22VlO, all macrocells are connected to I/O pins.
Thus, even when a macrocell register is being used
in a buried sense, the I/O pin is committed, thereby
preventing the pin from being used as an additional
input to the device.

In addition to overcoming the 22VlO's shortcoming
with pipelined systems by having input registers in
both the input and I/O macrocells, the CY7C335
provides a solution to the 22VlO's density problems
with regards to counters and state machines by pro­
viding four buried registers. Additionally, pairs of
macrocells have a shared input multiplexer that al­
lows up to six additional inputs, even when all twelve

4-34

-:S~YPRESS~~~~~~~~D=eS=ig=n=i=ng=M~'th~th=e=CY~7=C=3=35~an=d=ffi=Q=ry==2
I/O macrocells have their registered outputs feeding
back into the AND array.

The VHDL source code for this example is in Ap­
pendix I of this note, and the architecture is re­
printed in Figure 15.

The up/down counter is implemented in three pro­
cesses, a generation scheme, and two concurrent
statements. In the first process, the lower limit is
registered on the rising edge of CLKl. The signal
LOWER registers the input signal LL. The second
process registers the upper limit on the rising edge
of CLK2. The third process implements (1) the up/
down counter with reset, preset LOW, and preset

use work.bv_math.all;
architecture behav of decode is

HIGH, (2) two comparators, and (3) the direction
signal (DIR) that indicates to count up (logic 1) or
down (logic 0). The comparators and the direction
signal are clocked by CLKO, forcing the counter to
change direction from up to down or vice-versa two
clock cycles after the count matches one of the lim­
its. For this reason, the upper limit should be loaded
with a value two less than the greatest desired count,
and the lower limit should be loaded with a value
two greater than the least desired count.

The generation scheme below the three processes is
a means to instantiate 6 bufoe components (see Fig­
ure 16) and two triout components. The bufoe com-

signal address: bit_vector(15 downto 0);
begin

address <= a & "000";

proc1: process begin
wait until clk = '1';

promsel <= '0';
shadowsel <= '0';
periph1 <= '0';
periph2 <= '0';
sramsel <= '0';
eesel <= '0';
if valid = '1' then

if address >= x"OOOO" and address < x"4000" then
if bootover = '0' then

promsel <= '1';
else

shadowsel <= '1';
end if;

elsif address >= x"4000" and address < x"400B" then
periph1 <= '1';

elsif address >= x"400B" and address < x"4010" then
periph2 <= '1';
elsif address >= x"BOOO" and address < x"COOO" then
sramsel <= '1';

else address >= x"COOO" then
eesel <= '1';

end if;
end if;

end process;
end behav;

Figure 12. VHDL Architecture

4-35

=:a ?cYPRESS =======;;;:;D;;;:;e;;;:;si;;;:;g;;;:;ni;;;:;n;;;:;g;;;:;WI;;;:;·t;;;:;h;;;:;th;;;:;e;;;:;CY=7;;;:;C;;;:;3;;;:;35;;;:;a;;;:;n;;;:;d;;;:;ffi;;;:;a;;;:;rp;;;:;2;;;:;

FFFF ,-___ ---,

EEPROM

COOO 1--------1

SRAM

8000 1--------1

4010 1--------1
4008 PERIPHERAL 2

4000 PERIPHERAL 1

PROM/
"SHADOW"

0000 1..--___ --' RAM

Figure 13. Decoder Memory Map

RESET ,...--''''-----'''c........,

up/down
counter

CLKO

Figure 14. Up!Down Counter

ponents are used to implement the output enable
and provide a feedback path for the upper limit. The
CY7C335 has six shared input multiplexers that al­
low six bits of the ,signal count to utilize the state reg­
isters while enabling six bits of the upper limit to be
loaded into the input register associated with the
same macrocell. The remaining two bits of count
will be placed in I/O macrocells in which the input
registers are not used, and the two bits of the. upper
limit will be in two I/O macrocells configured as in­
puts. To enable bidirectional operation, the input
and output pins for the associated upper limit and
count bits can be connected externally. This is the
reason for instantiating two triout components on
the most significant two bits of the count.

Serial Decoder

The CY7C335's state registers and abundant prod­
uct terms make it a good choice in which to imple­
ment state machines. The following VHDL code
uses a state machine to implement a serial decoder
that searches for a synchronization word within seri­
ally transmitted data. The sync word is· the byte
11101000 and is expected to be repeated every 16 by­
tes. When the sync word is found, MATCH is as­
serted. When the sync word is found separated by
15 bytes three consecutive times, LOCK is asserted.
The state diagram for this example is shown in Fig­
ure 17.

The architecture of this design is printed in Figure 18
and the complete VHDL code is in Appendix K.
The resources that this design uses (Appendix L)
show that there is room for more logic within the de­
vice. For instance, the comparator with registered
inputs described earlier could fit in the device along
with this design.

4-36

The first process within the architecture defines the
state transitions. The second process is one that is
synchronized by the clock. The output MATCH is
determined by the present inputs and the currents
state. This implements a Mealy machine. The
counter process counts the number of bits after a
match, and the synchronizer process checks to see if
a match occurs 15 bytes after the previous one. If a
match is separated by 15 bytes for three consecutive
times, then on the fourth consecutive match sepa­
rated by 15 bytes, LOCK is asserted.

22~YPRESS~~~~~~~~D~eS~ig~n~in~g~m~'th~th~e~CY~7~c~3~35~an~d~m~a~r~p=2

use work.bv_math.all;
use work.rtlpkg.all;

architecture archupdown of updown is
signal lower, upper, ul, count: bit_vector(O to 7);
signal cequ, ceql, dir: bit;
begin
proc1: process

begin
wait until clk1 '1';

lower <= 11;
end process;

proc2: process
begin

wait until clk2 '1';
upper <= ul;

end process;

proc3: process
begin

wait until clkO = '1';
-- implement counter
if reset = '1' then

count <= x"OO";
e1sif preL = '1' then

count <= lower;
elsif preH = '1' then

count <= upper;
e1sif (dir = '1') then

count <= inc_bv(count);
else

count <= dec_bv(count);
end if;
if count =

cequ <=
else

-- implement comparators & direction signal
upper then

, l' i

cequ <= '0';
end if;
if count = lower then

ceql <= '1';
else

ceql <= '0';
end if;

Figure 15. Architecture

4-37

• if ~ Designing with the CY7C335 and Warp2
" CYPRESS ==============

if ceql = '1' then
dir <= '1';

elsif cequ = '1' then
dir <= '0';

else
dir <= dir;

end if;
end process;

gl: for i in 0 to 7 generate
bidir: if i < 6 generate

bx: bufoe port map {count (i) , outen, countio{i) , ul{i));
end generate;

trist: if i > 5 generate
tx: triout port map {count (i) , outen, countio{i));
end generate;

end generate;

ul(6) <= u16;
ul(7) <= u17;

end archupdown;

OE
-----,

x

YFB

Figure 15. Architecture (continued)

>-..---Y

--------'
component bufoe
port {

x: in bit; --input to buffer
oe: in bit; --output enable
y: inout x01z; --x01z output
yfb: out bit; -- feedback
) ;

end component;

0/0

Figure 16. bufoe Component Figure 17. State Diagram

4-38

~

==--- -~
.; CYPRESS ========D;:::es;:::ig;:::D;:::iD;:::g;:::W1=·th=th;:::e;:::CY=7;:::C;:::3;:::35=aD;:::d;:::ffi;:::Q;:::rp=2

use work.int_math.all;
use work.bv_math.all;
architecture archserial of serial is
type states is (stateO, state1, state2, state3, state4, state5, state6,

state7) ;
signal state, nextstate: states;
signal match_cnt: bit_vector(l downto 0);
signal bit_cnt: bit_vector(6 downto 0);

begin
fsm:
process begin

match <= '0';
case state is

when stateO =>
if data = '1' and (lock

nextstate <= state1;
else

nextstate <= stateO;
end if;

when state1 =>
if data = '1' then

nextstate <= state2;
else

nextstate <= stateO;
end if;

when state2 =>
if data = '1' then

nextstate <= state3;
else

nextstate <= stateO;
end if;

when state3 =>
if data = '0' then

nextstate <= state4;
else

nextstate <= state3;
end if;

when state4 =>
if data = '1' then

nextstate <= state5;
else

nextstate <= stateO;
end if;

when state5 =>
if data = '0' then

nextstate <= state6;
else

nextstate <= state2;
end if;

Figure 18.

4-39

"1111000") then

when state6 =>
if data = '0' then

nextstate <= state?;
else

nextstate <= state1;
end if;

when state? =>
if data = '0' then

nextstate <= stateO;
match <= '1';

else
nextstate <= state1;

end if;
--No "when others" needed since CASE is completely defined.

end case;
end process;

mealy:
process begin
wait until clk = '1';

state <= nextstate;
end process;

counter:
process begin
wait until clk = '1';
if match = '1' then

bit_cnt <= "0000000";
else

bit_cnt <= inc_bv(bit_cntl;
end if;

end process;

synchronizer:
process begin

wait until clk = '1';
if bit_cnt = "1111111" then

if match = '1' then
if match_cnt = "11" then

lock <= '1';
else

match_cnt <= inc_bv(match_cntl;
end if;

else
match_cnt <= "00";
lock <= '0';

end if;
end if;

end process;

end archserial;

Figure 18. (continued)

4-40

j irc Designing with the CY7C335 and Warp2
_ CYPRESS ==============

Appendix A. Warp2 VHDL Source Code for Pipelined ButTer

entity pipe is
port (clkO, clk1, clk2: in bit;

oe1, oe2: in bit;
i: in bit_vector(7 downto 0);
0: out x01z_vector(7 downto 0));

end pipe;

use work.rtlpkg.all;
architecture archpipe of pipe is
signal intmp, outtmp: bit_vector(7 downto 0);
signal ptoe: bit;
begin
proc1: process

begin
wait until clk1 = '1';

intmp(7 downto 4) <= i(7 downto 4);
end process;

proc2: process
begin

wait until clk2 = '1';
intmp(3 downto 0) <= i(3 downto 0);

end process;

proc3: process
begin

wait until clkO = '1';
outtmp <= intmp;

end process;

ptoe <= oe1 AND oe2;

gl: for j in 7 downto 0 generate
g2: if j > 3 generate

t1x: triout port map(outtmp(j), oe1, o(j));
end generate;

g3: if j < 4 generate
t2x: triout port map{outtmp{j), ptoe, o(j));

end generate;
end generate;

end archpipe;

4-41

"?cYPRESS =======;;;;;D;;;;;e;;;;;Sl;;;;;'g;;;;;Dl;;;;;'D;;;;;g;;;;;Wl;;;;;'t;;;;;h;;;;;th;;;;;e;;;;;CY=7;;;;;C;;;;;3;;;;;35;;;;;8;;;;;D;;;;;d;;;;;m;;;;;a;;;;;rp;;;;;2;;;;;

Appendix B. Walp2 Report File Excerpt for Pipelined ButTer

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 9 9
Clock/Inputs 3 3
Enable/Inputs 1 1
I/O Macrocells 8 12
Buried Macroce11s 0 4

21 / 29 72 %

Information: Output Logic Product Term utilization.

Node# Output Signal Name Used Max

15 0_0_ 1 9
16 Unused 0 19
17 0_2_ 1 11
18 Unused 0 17
19 0_4_ 1 13
20 0_7_ 1 15
23 0_6_ 1 15
24 0_5_ 1 13
25 Unused 0 17
26 0_3_ 1 11
27 Unused 0 19
28 0_1_ 1 9
29 Unused 0 1
30 Unused 0 1
31 Unused 0 13
32 Unused 0 17
33 Unused 0 11
34 Unused 0 19

8 / 230 3 %

4-42

~ -:z Designing with the CY7C335 and Warp2
WTcYPRESS =============

Appendix C. Warp2 Source Code for Comparator

entity comp is port
clk: in bit;
a_in, b_in: bit_vector(O to 8);
aeqb: out bit);

end comp;

architecture archcomp of comp is
signal a, b: bit_vector(O to 8);
begin
proc1: process begin

wait until clk = '1';
a <= a_in;
b <= b_in;

end process;

aeqb <= '1' when a=b else '0';

end archcomp;

4-43

e ~ Designing with the CY7C335 and Warp2
_" CYPRESS =============

Appendix D. Wa1p2 Report File Excerpt for Comparator

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 9 9
Clock/Inputs 3 3
Enable/Inputs 1 1
I/O Macrocells 7 12
Buried Macrocells 0 4

20 / 29 68 %

Information: Output Logic Product Term Utilization.

Node# Output Signal Name Used Max

15 Used As Input 0 9
16 Used As Input 0 19
17 Used As Input 0 11
18 Used As Input 0 17
19 Used As Input 0 13
20 Used As Input 0 15
23 Unused 0 15
24 Unused 0 13
25 Unused 0 17
26 Unused 0 11
27 aeqb 18 19
28 Unused 0 9
29 Unused 0 1
30 Unused 0 1
31 Unused 0 13
32 Unused 0 17
33 Unused 0 11
34 Unused 0 19

18 / 230 7 %

4-44

Designing with the CY7C335 and Warp2

Appendix E. Wa1p2 Source Code for Multiplexer

entity mux is port(
clk, sel: in bit;
xin, yin: in bit_vector(5 downto 0);
gout: out bit_vector(5 downto 0));

end mux;

architecture archmux of mux is
signal x, y: bit_vector(5 downto 0);
begin
proc1: process begin

wait until clk = '1';
x <= xin;
y <= yin;
if sel = '1' then

gout <= x;
elsif sel = '0' then

gout <= y;
end if;

end process;
end archmux;

4-45

=:a~PRESS~~~~~~~~D;eS;ig;n;in;g;m~·ili~th;e;CY~7;C;3;35~an;d;m;a;~~2
Appendix F. Warp2 Report File Excerpt for Multiplexer

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 9 9
Clock/Inputs 3 3
Enable/Inputs 1 1
I/O Macrocells 7 12
Buried Macrocells 0 4

20 / 29 68 %

Information: Output Logic Product Term Utilization.

Node# Output Signal Name Used Max

15 qout_O_ 2 9
16 Used As Input 0 19
17 qout_2_ 2 11
18 Unused 0 17
19 qout_4_ 2 13
20 Unused 0 15
23 Unused 0 15
24 qout_5_ 2 13
25 Unused 0 17
26 qout_3_ 2 11
27 Unused 0 19
28 qout_1_ 2 9
29 Unused 0 1
30 Unused 0 1
31 Unused 0 13
32 Unused 0 17
33 Unused 0 11
34 Unused 0 19

12 / 230 5 %

4-46

~ Designing with the CY7C335 and Wa1p2
_;CYPRESS ================

Appendix G. Wa1p2 VHDL Source Code for Decoder

entity decode is port(
a: in bit_vector(15 downto 3);
rdwritebar, valid, bootover, clk: in bit;
sramsel, promsel, eesel, shadowsel, periph1, periph2: out bit);

end decode;

use work.bv_math.all;
architecture behav of decode is
signal address: bit_vector(15 downto 0);
begin

address <= a & "000";

proc1: process begin
wait until clk = '1';

promsel <= '0';
shadowsel <= '0';
periph1 <= '0';
periph2 <= '0';
sramsel <= '0';
eesel <= '0';
if valid = '1' then

if address >= x"OOOO" and address < x"4000" then
if bootover = '0' then

promsel <= '1';
else

shadowsel <= '1';
end if;

elsif address >= x"4000" and address < x"4008" then
periph1 <= '1';

elsif address >= x"4008" and address < x"4010" then
periph2 <= '1';
elsif address >= x"8000" and address < x"COOO" then
sramsel <= '1';

else address >= x"COOO" then
eesel <= '1';

end if;
end if;

end process;
end behav;

4-47

Appendix H. Wa1p2 Report File Excerpt for Decoder

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 9 9
Clock/Inputs 3 3
Enable/Inputs 1 1
I/O Macrocells 9 12
Buried Macrocells 0 4

22 / 29 75 %

Information: Output Logic Product Term Utilization.

Node# Output Signal Name Used Max

15 eesel 1 9
16 Used As Input 0 19
17 periph2 1 11
18 Used As Input 0 17
19 shadowse1 1 13
20 Used As Input 0 15
23 Unused 0 15
24 promsel 1 13
25 Unused 0 17
26 periph1 1 11
27 Unused 0 19
28 sramsel 1 9
29 Unused 0 1
30 Unused 0 1
31 Unused 0 13
32 Unused 0 17
33 Unused 0 11
34 Unused 0 19

6 / 230 = 2 %

4-48

~ ~ Designing with the CY7C335 and Warp2
~TcYPRESS ================

Appendix I. Warp2 Source Code for UpDown

entity updown is
port (clkO, clk1, clk2: in bit;

outen, preL, preH, reset: in bit;
11: in bit_vector(O to 7);
u16, u17: in bit;
countio: inout x01z_vector(O to 7));

end updown;

use work.bv_math.all;
use work.rtlpkg.all;

architecture archupdown of updown is
signal lower, upper, ul, count: bit_vector(O to 7);
signal cequ, ceql, dir: bit;
begin
proc1: process

begin
wait until clk1 '1';

lower <= 11;
end process;

proc2: process
begin

wait until clk2 '1';
upper <= ul;

end process;

proc3: process
begin

wait until clkO = '1';
if reset = '1' ,then

count <= x"OO";
elsif preL = '1' then

count <= lower;
elsif preH = '1' then

count <= upper;
elsif (dir = '1') then

count <= inc_bv(count);
else

count <= dec_bv(count);
end if;

end process;

proc4: process
begin

wait until clkO = '1';
if count = upper then

cequ <= '1';

4-49

=¥ ~YPRESS~~~~~~~~D~eS~ig~n~i~ng~ID~'th~th~e~CY~7~C3~35~an~d~m~a~ry~2
Appendix I. Warp2 Source Code for UpDown (continued)

else
cequ <= '0';

end if;
if count = lower then

ceql <= '1';
else

ceql <= '0';
end if;
if ceql = '1' then

dir <= '1';
elsif cequ = '1' then

dir <= '0';
else

dir <= dir;
end if;

end process;

g1: for i in 0 to 7 generate
bidir: if i < 6 generate

bx: bufoe port map (count (i) , outen, countio(i) , ul(i));
end generate;

trist: if i > 5 generate
tx: triout port map (count (i) , outen, countio(i));
end generate;

end generate;

ul(6) <= u16;
ul(7) <= u17;

end archupdown;

4-50

=- :~ Designing with the CY7C335 and Warp2
~, CYPRESS =================

Appendix J. Warp2 Report File Excerpt for UpDown

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 9 9
Clock/Inputs 3 3
Enable/Inputs 1 1
I/O Macrocells 12 12
Buried Macrocells 3 4

28 / 29 96 %

Information: Output Logic Product Term Utilization.

Node# Output Signal Name Used Max

15 countio_2_ 7 9
16 Used As Input 0 19
17 countio_O_ 3 11
18 Used As Input 0 17
19 countio_6_ 7 13
20 countio_4_ 7 15
23 Used As Input 0 15
24 countio_5_ 7 13
25 countio_3_ 7 17
26 countio_7_ 7 11
27 Used As Input 0 19
28 countio_1_ 6 9
29 Unused 0 1
30 Unused 0 1
31 Unused 0 13
32 ceql_BEH_i27 .. 16 17
33 dir 2 11
34 cequ 16 19

85 / 230 36 %

4-51

~ Designing with the CY7C335 and Wa1p2
.;CYPRESS ================

Appendix K. Warp2 VHDL Source Code for Serial Decoder

entity serial is port(
clk, reset, data: in bit;
match: buffer bit;
lock: buffer bit);

end serial;

use work.int_math.all;
use work.bv_math.all;
architecture archserial of serial is
type states is (stateO, state1, state2, state3, state4, state5, state6,

state7) ;
signal state, nextstate: states;
signal match_cnt: bit_vector(1 downto 0);
signal bit_cnt: bit_vector(6 downto 0);

begin
fsm:
process begin

match <= '0';
case state is

when stateO =>
if data = '1' and (lock

nextstate <= state1;
else

nextstate <= stateO;
end if;

when state1 =>
if data = '1' then

nextstate <= state2;
else

nextstate <= stateO;
end if;

when state2 =>
if data = '1' then

nextstate <= state3;
else

nextstate <= stateO;
end if;

when state3 =>
if data = '0' then

nextstate <= state4;
else

nextstate <= state3;
end if;

when state4 =>
if data = '1' then

nextstate <= state5;
else

4-52

"1111000") then

Designing with the CY7C335 and Warp2

Appendix K. Warp2 VHDL Source Code for Serial Decoder (continued)

nextstate <= stateO;
end if;

when stateS =>
if data = '0' then

nextstate <= state6;
else

nextstate <= state2;
end if;

when state6 =>
if data = '0' then

nextstate <= state?;
else

nextstate <= state1;
end if;

when state? =>
if data = '0' then

nextstate <= stateO;
match <= '1';

else
nextstate <= state1;

end if;
end case;

end process;

mealy:
process begin

wait until clk = '1';
state <= nextstate;

end process;

counter:
process begin

wait until clk = '1';
if match = '1' then

bit_cnt <= "0000000";
else

bit_cnt <= inc_bv(bit_cntl;
end if;

end process;

synchronizer:
process begin

wait until clk = '1';
if bit_cnt = "1111111" then

if match = '1' then
if match_cnt = "11" then

lock <= '1';

4-53

, 1rcYPRESS =======;;;;;;D;;;;;;e;;;;;;sl;;;;;;Ogn;;;;;;i;;;;;;B;;;;;;g;;;;;;Wl;;;;;;Ot;;;;;;h;;;;;;th;;;;;;e;;;;;;CY=7;;;;;;C;;;;;;3;;;;;;35;;;;;;8;;;;;;B;;;;;;d;;;;;;m;;;;;;a;;;;;;rp;;;;;;2;;;;

Appendix Ko Warp2 VHDL Source Code for Serial Decoder (continued)

else
match_cnt <= inc_bv(match_cnt);

end if;
else

match_cnt <= "00";
lock <= '0';

end if;
end if;

end process;

end archserial;

4-54

Designing with the CY7C335 and Warp2

Appendix L. Warp2 Report File Excerpt for Serial Decoder

Information: Macrocell Utilization.

Description Used Max

Dedicated Inputs 0 9
Clock/Inputs 1 3
Enable/Inputs 0 1
I/O Macrocells 10 12
Buried Macrocells 4 4

15 / 29

Information: Output Logic Product Term Utilization.

Node# Output Signal Name

15 lock
16 Unused
17 data
18 bit cnt 0 - - -
19 serial _O_sta ..
20 bit - cnt_2_
23 bit - cnt _1_
24 serial _0_ sta ..
25 match
26 bit _cnt_3_
27 Unused
28 bit - cnt _4_
29 Unused
30 Unused
31 0 match_cnt - -
32 bit - cnt _6_
33 match_cnt_1_
34 bit - cnt _5_

Windows is a trademark of Microsoft Corporation.
OpenLook is a trademark of UNIX System Laboratories.
Motif is a trademark of Open Software Foundation, Inc.
Wa1p2 is a trademark of Cypress Semiconductor Corporation.

4-55

Used Max

9 9
0 19
5 11
1 17
4 13
3 15
2 15
4 13
1 17
4 11
0 19
5 9
0 1
0 1
8 13
7 17
9 11
6 19

68 / 230

51

29

%

%

Getting Started Converting .ABL Files to VHDL

Introduction

This application note is intended to assist Wa1]J '" us­
ers in converting designs written in DATA I/O's
ABEL Th1 7 hardware description language to IEEE
1076 VHDL. It contains several language cross ref­
erence tables and many helpful hints. It also in­
cludes two real-world designs that have been con­
verted from MACH"" 21O-ABEL descriptions to
FLAsH371-VHDL descriptions.

VHDL versus ABEL

VHDL is different from ABEL and virtually all oth­
er popular hardware description languages in one
very significant way. It is an open language based on
IEEE standard number 1076.

VHDL is different in other ways, too. VHDL is a
high-level language. As such, it is much more pow­
erful than ABEL. For instance, it supports hierar­
chical design entry, structural (low-level instantia­
tion of components) and behavioral (IF-THEN­
ELSE) design entry. VHDL supports process and
concurrent process statements. It also supports var­
ious types of signals such as integer, real, character,
bit, Boolean, physical unit, and any others that a
user can define. It supports sequential and concur­
rent statements, variables, and signals. VHDL sup­
ports sub-programs, FOR loops, WHILE loops, ar­
rays, concurrent procedure calls, and more.

Surprisingly, certain aspects of VHDL related to
low-level behavioral logic description are very simi­
lar to ABEL. In fact, some key words and relational
operators are identical or logically similar.

Conversion Preparation

Preparing to convert an ABEL (.ABL) file should
include the following steps:

1. Locate and have at hand one good VHDL lan­
guage reference book. See the Wa1]J documen­
tation for a bibliography.

2. Obtain copies of the Wa1]J VHDL design exam­
ples titled Basic, Intermediate, and Advanced.

3. Locate two Cypress application notes, one titled
"Designing State Machines with Wa1]J2 Th1

VHDe and another titled "VHDL Techniques
for Optimal Design Fitting." Both are con­
tained in the Cypress Applications Handbook
(1993).

4. Install the Wa1]J VHDL compiler on your hard­
ware platform.

Conversion Approach

There are many different ways to convert a given de­
sign .. The same design may be expressed in a num­
ber of different ways, all yielding compiled designs
with the same functionality. The general approach
suggested for converting ABEL (.ABL) files to
VHDL (.VHD) consists of five basic steps:

1. Analyze the design and determine:

a. Which signals are registered and which are
not. Group them into two categories.

b. Which types of design entry the .ABL file in­
cludes: state machines, comparators, count­
ers, decoders, multiplexers, adders, multi­
pliers, shift registers, or state tables.

c. Whether or not group (set) declarations are
used.

4-56

:::::r -, ~ Converting .ABL Files to VHDL
~'CYPRESS================================

d. Which signals are input, output, I/O, and/or
active LOW.

2. Replace as many of the keywords and operators
with the corresponding VHDL keywords and
operators using your favorite SEARCH and
REPLACE text editor and a backup copy of the
.ABL or .DOC file.

3. Add the VHDL entity (black box inputs and out­
puts), architecture (description of the logic cir­
cuitry), and process (encapsulates a set of se­
quential-behavioral functions) statements.

4. Add the proper library USE statements to the
file such as USE WORK.CYPRESS.ALL.

5. Iteratively compile the design revising incom-
plete or incorrectly converted syntax.

Some designs will be much easier to convert than
others. The more regular the design the easier it will
be to convert. The most efficient and highest level
of conversion will be achieved by using the source
(.ABL) file, the five steps above, and the cross refer­
ence information below.

The simpler approach is to use the .DOC file exclu­
sively. Using the .DOC file works but does have one
significant drawback. The .DOC file tends to be ver­
bose. It is verbose because it describes the design at

a low level. A converted ABEL (.DOC) design thus
results in unnecessarily verbose VHDL. In other
words, it results in inefficient code.

When converting using the .DOC file, place all of
the registered signals into a process with a WAIT
UNTIL CLOCK = '1' and place all of the combina­
torial signals outside the process. This avoids the
necessity of PROCESS sensitivity lists and IF­
THEN-ELSE statements. The converted designs
below and all of the Warp example designs attempt
to describe functions behaviorally and at a higher
level. For this reason no low-level design conver­
sion examples are included.

Refer to the following sections and tables for helpful
information when converting ABEL .ABL and
.DOC descriptions.

Comments

Comments in ABEL are denoted by the quote sym­
bol ("). Comments in VHDL are denoted by two
consecutive dashes - -. For example:

ABEL VHDL
"Inputs --Inputs

"Outputs --Outputs

VHDL-ABEL Special Constant Cross Reference

ABEL VHDL Description
.C. requires user definition Clocked input (0 - > 1- > 0)

.D. requires user definition Clock down edge (1 - > 0)

.R requires user definition Floating input or output

.K. requires user definition Clocked input (1-> 0-> 1)

.P. requires user definition Register preload

.SVn. requires user definition Super voltage (2 ~ n ~ 9)

.U. requires user definition Clock up edge (0 - > 1)

.x. requires user definition Don't care condition

.z. requires user definition High impedance

In VHDL a constant is an object whose value may not be changed. The syntax for declaring a constant in
VHDLis:

constant identifier_list: type [:=expression];

4-57

= ~ Converting .ABL Files to VHDL
__ CYPRESS ==============

An example of this is:

TYPE stvar is bit_vector (0 to 1);

constant StateD: stvar := "00";

This example declares a constant that is identified by the name StateD, is of type stvar, which has been pre­
viously defined as a bit_vector subtype of length 2. This constant is given the value 00. Defining a constant
of user-defined type called state variable (stvar) is useful when designing state machines in VHDL. See the
State Machine section of this application note.

Special constants in ABEL are used for simulation vectors that are included.in the source file (.ABL). Wap
does not provide simulation support directly within the source file. So, the conversion recommendation for
files containing simulation vectors is to delete or comment them out of the .VHD file. Wap provides simula­
tion separately from the design file (. VHD). Simulation can take one of two forms. The first, functional wave­
form based design verification using NOVA. Second, full AC timing verification via VIEWSIM and VIEW­
TRACE. VIEWSIM and VIEWTRACE support both pattern files and waveforms. Both forms of Wap
VHDL simulation exceed the capabilities of ABEL simulation.

VHDL-ABEL Dot Extension Cross Reference

ABEL VHDL Function

.CLK none Clock input to flip-flop

.PIN none Pin feedback

.FB none Register feedback

.D none D-type flip-flop

.J none J input to .JK flip-flop

.K none K input to JK flip-flop

.S none S input to SR flip-flop

.R none R input to SR flip-flop

.T none T-type flip-flop

.0 none Register feedback

.PR none Register preset

.RE none Register reset

.SP none Synchronous reg preset

.SR none Synchronous reg reset

.LE none Latch-enable input

.LH none Latch-enable input (HIGH)

.LD none Register load input

.CE none Clock enable input

.AP none Asynchronous preset

.AR none Asynchronous reset

.OE none Three-state output enable

.CLR none Synchronous clear

.ACLR none Asynchronous clear

4-58

~ Converting .ABL Files to VHDL
_/CYPRESS ================

VHDL·ABEL Dot Extension Cross Reference (continued)

ABEL VHDL Function

.SET none Synchronous set

.ASET none Asynchronous clear

.COM none Combinational feedback

.FC none Flip-flop mode control

Although VHDL is capable of supporting these constructs, it directly does not. Indirectly, through behavioral
description, structural description, and an intelligent compiler, all of these constructs are supported. For ex­
ample, Walp does provide predefined register transfer level (RTL) components (such as D- and T-type flip­
flops). These RTL components can be structurally instantiated to model the ABEL extensions listed above.
Specifically, to model the .OE ABEL extension, use an RTL component called bufoe. The syntax and port
map (inputs and outputs) of a bufoe component is the following:

Label: BUFOE PORT MAP(X, OE, Y, FB)
DE

~ £J -
X, OE, Y, and FB are sample signal names. The position each one occupies in the port map is the mechanism
VHDL uses to correctly connect the signal names to the actual component in the architecture of the target device.

The behavioral equivalent of structurally instantiating a bidirectional buffer is called a behavioral three-state.
Behavioral three-states are presently not supported, but will be in the future.

If the ABEL description equation is written in .T (T-type) flip-flop style, the recommended conversion meth­
od is to rewrite the equations as D-type (XOR the original equation with the flip-flop output signal name) and
let Wmp optimize the equation for either D- or T-type. See the real-world design conversion example in Ap­
pendix A called FLAGCTLR.

IS_TYPE Attribute Cross Reference

ABEL VHDL Description

'buffer' none, may use RTL - buf Macrocell has no inverter between reg and pin

'com' none, may use RTL - buf Signal is combinatorial

'invert' none, NOT RHS of equation Macrocell has an inverter between reg and pin

'neg' none, NOT signal in equation Complement Sum of Products
'pos' none Do not Complement Sum of Products
'reg' none, place sig in process Generic flip-flop
'reg_D' none, may use RTL - dff D-type flip-flop

'reg_T' none, may use RTL - tff T-type flip-flop

're!LSR' none, may use RTL - srff SR-type flip-flop
'reg_JK' none, may use RTL - jkff JK-type flip-flop

'reg_G' none D-flip-flop w/gated clock
'xor' none, may use RTL - xbuf Thrget architecture has XOR

4-59

%: ~ Converting .ABL Files to VHDL
~,CYPRESS~==============================~

Operator Cross Reference

ABEL Order of Precedence VHDL Order of Precedence Operation

! 1 NOT Context dependent NOT (invert)

& 2 AND 1 AND

* 2 * 5 Multiplication

1 2 1 5 Division

% 2 mod 5 Modulus

« 2 none Shift left

» 2 none Shift right

+ 3 + 3 Arithmetic addition

- 3 - 3 Arithmetic subtr.

$ 3 XOR 1 XOR

!$ 3 NOTXOR XNOR

3 OR 1 OR

-- 4 = 2 Equal

!= 4 1= 2 Not equal

< 4 < 2 Less than

<= 4 <= 2 Less than or equal

> 4 > 2 Greater than

>= 4 >= 2 Greater or equal

none NAND 1 NAND

none NOR 1 NOR

none & 3 Concatenation

none rem 5 Remainder

none abs 6 Absolute Value

none ** 6 Exponentiation

? + 4 Sign

? - 4 Sign

= or:= <= Signal assignment

none .- Variable assignment

= <= Comb. assignment

.- <= Reg. assignment

none => Association

The only ABEL operators without a direct VHDL counterpart are the> > and < <, (shift right and shift left).
To directly (structurally) describe logic that performs an N-bit shift left or right function see the Walp design
example titled advanced SHIFfN.VHD. Th emulate (behaviorally describe) a shift function in VHDL use
bit_vectors or arrays and index the elements using LOOPs. Another technique is to use *2 and 12 (multiply
by 2 and divide by 2).

4-60

~ ., ~ Converting .ABL Files to VHDL
~, CYPRESS ================
Keyword (Statement) Cross Reference

ABEL Keyword VHDL Equivalent

CASE CASE
DECLARATIONS Note 1
DEVICE ATTRIBUTE PART_NAME IS ...
ELSE ELSE
ENABLE (Obsolete) none
ENDCASE END CASE
ENDWITH Note 2
EQUATIONS Note 3
FLAG (Obsolete) none
FUSES Note 4
GOTO EXIT - Note 5
IF IF
IN (Obsolete) none
ISTYPE Note 6
LIBRARY USE
MACRO FUNCTION - Note 7
MODULE FUNCTION - Note 8
NODE SIGNAL
OPTIONS Note 9
PIN Note 10
PROPERTY none
STATE Note 11
STATE DIAGRAM Note 11
TEST VECTORS Note 12
THEN THEN
TITLE Note 13
TRACE Note 14
TRUTH_TABLE Note 15
WHEN WHEN
WITH Note 16
ASYNC_RESET Note 17
SYNC RESET Note 17
STATE_REGISTER Note 18
XOR FACTORS Note 19

VHDL does not use the term keyword. Analogous to ABE~s use of the term keyword, VHDL uses the terms
statement, reserved word, and identifier.

4-61

~ ~ Converting .ABL Files to VHDL
~,CYPRESS ==============

Notes

1. There is not a DECLARATIONS keyword in VHDL. However, the DECLARATIONS keyword is
analogous to declaring an ENTITY in VHDL. Within the ENTITY construct inputs, outputs, and I/Os
are declared with appropriate mode and type. Mode loosely refers to the pin drive direction, which can
be IN, OUT, or INOUT. Refer to your language reference book for a more formal definition of the terms
mode, IN, OUT, and INOUT.

2. ENDWITH is part of the WITH-ENDWITH transition structure used with IF-THEN-ELSE or CASE
keywords. In VHDL conditional transition is handled via an IF-THEN-ELSE or CASE statement within
a PROCESS. The process statement mayor may not use a sensitivity list and instead use a WAIT UNTIL
(condition) statement. See the application note titled "Designing State Machines with Wa1p2 VHDL."

3. Equations in VHDL are listed within an architecture statement.

4. VHDL and Wa1p do not provide predefined fuse-level program specification.

5. VHDL does not have a GOTO keyword (statement). It provides an EXIT keyword for stopping execution
of loops entirely.

6. The IS_TYPE keyword (statement) defines attributes and/or characteristics of pins and nodes. VHDL
provides these attributes through behavioral specification. Additionally, Wa1p provides a set of
predefined attributes and VHDL provides a mechanism for declaring new attributes. See the attribute
table below.

7. VHDL provides function call and return capability. MACRO is more of a low-level substitution
technique such that, wherever the MACRO _id occurs, the text associated with that macro will be
substituted.

8. The MODULE ... END statement(s) are source file requirements in ABEL. In VHDL the
ENTITY -ARCHITECTURE pair are the basic source file requirements. Both the ENTITY and
ARCHITECTURE constructs require an END statement.

9. OPTION is a string of processing options that affect the way in which the ABEL source file is processed
by the language processor. The analogous control in VHDL is not done in the source file. It in fact is not
part of the VHDL language. It is simply a menu of compiler options that are set when using Wa1p to
synthesize the design.

10. PIN is used to declare input and output signals that must be available on a device I/O pin. The analogous
PIN specification is implied in VHDL via the port map list in the ENTITY construct. All signal names
listed in the entity port map are input, output, and I/Os of the entity.

11. See application note titled "Describing State Machines with Wa1p2 VHDL."

12. Thst vectors are not directly supported by VHDL. However, both behavioral simulation and full AC
timing simulation are available for design verification.

13. The TITLE statement is used to give an ABEL MODULE a title that will appear as a header in both the
programmer load file (the JEDEC file) and the documentation file. When compiling a VHDL design
using Wa1p, the filename of the VHDL (.VHD) design file is passed through to the programmer load file
(.JED) as well as the documentation file (.RPT).

14. The TRACE statement controls the display features of ABEes simulator. There is not a similar keyword
in VHDL because simulation is separate from the source file description.

15. The TRUTH_TABLE keyword is used in ABEL to specify outputs as functions of different input
combinations in a tabular form. VHDL does not directly provide a TRUTH_TABLE keyword. However,

4-62

Converting .ABL Files to VHDL

in the common library (directory) included in Warp, there is a file called LIBSTATE.VHD that contains
a FUNCTION called TTF. TTF is a predefined truth table function that can be used for both
combinatorial truth tables and for state transition tables. See the application note titled "Describing State
Machines in Warp2 VHDe regarding use of the TIF function.

16. WITH is part of the WITH-ENDWITH transition structure used with IF-THEN-ELSE or CASE
statements. In VHDL, conditional transition is handled via an IF-THEN-ELSE or CASE statement
within a PROCESS. The process statement may use a sensitivity list or may include a WAIT UNTIL
(clock = '1') statement.

17. ASYNC_RESET and SYNC_RESET statements are used in Symbolic State descriptions. They
symbolically specify what state the machine should asynchronously or synchronously reset to, based upon
a signal or an expression. In VHDL, asynchronous and synchronous resets are best handled from a
behavioral perspective the Resets and Presets section of this note for more detail.

18. STATE_REGISTER is a mechanism whereby specific states of a machine can be identified symbolically.
See the State Machine section of this note for more detail.

19. XOR_FACTORS is a keyword that is useful for factoring logic designs that target a device which features
XOR gates. There is not an analoguos keyword in VHDL. HOwever, the functional aspect of this keyword
is part of the Warp Compiler Option menu. For more details see the Warp Compiler Options
Documentation.

Predefined Attributes Supported by Wary

Value Attributes 'Left
'Right
'High
'Low
'Length

Function Attributes (types) 'Pos
'Val
'Leftof
'Suce
'Rightof
'Pred

Function Attributes (objects) 'Left
'Right
'High
'Low
'Length

Function Attributes (signals) 'Event

Type Attributes 'Base

Range Attributes 'Range
'Reverse Jange

Other user-defined attributes include: Enum-encoding, Flip-flop-type, Order_code, Part_name, Pin_num­
bers, Polarity, State_encoding, and State_Variable. See Warp documentation for details.

4-63

~ ~ Converting .ABL Files to VHDL
·~,CYPRESS ================

Number Representations

ABEL VHDL Radix

"b b"" or" "or' '(default)l20J Binary
"0 0" " Octal

"d (default) Note 21 Decimal

"h x" " Hexadecimal

Notes

20. The default number representation in ABEL is decimal. The default number representation in VHDL
is binary.

21. The default number representation in VHDL is binary. Decimal representations of numbers in VHDL
require the user to define a signal or variable with type integer or use an integer, number and then
type-convert it to bit_vector. This is easier than it sounds. In the common library directory within Watp
there is a file called LIBlNT.VHD that contains a predefined function called i2bv. This function takes an
integer and returns a bit_vector. So, using a decimal number is not too difficult, but one must know that
an integer must be used and then type-converted to bit_vector.

For example:

ABEL syntax VHDLsyntax Description

"bl '1' binary 1
"bO '0' binary 0
" blOlO10000 "10101000" binary 10101000
"hF x"F" hexF
"hFl x"Fl" hexFl
"hAAA x"AAP(' hexAAA
"oFOFO o"FOFO" octal FOFO
"d23 i2bv(23,5) decimal 23
"d99 i2bv(99,7) decimal 99

Polarity Conventions

VHDL does not know whether a signal name should be interpreted as an active HIGH or an active LOW.
Therefore, a signal named SHIFT4 will be interpreted logically the same as one named L_SHIFT4, and as
one named SHIFT4 _NOT. In other words, the behavioral equations must test with the proper level and assert
with the desired level.

During logic synthesis and optimization, the software may determine that by flipping the polarity of a function
the logic required will be optimized.

Identifiers

VHDL is not case sensitive, so a signal named SHIFTO is identical to one named sHIFTO.

Resets and Presets

Although there are a variety of ways to specify a reset or preset, the best method is behavioral specification.
If the reset or preset is asynchronous, use the following:

4-64

Place an IF-THEN-ELSIF-ENDIF inside a process with a (CLK'EVENT and CLK='l') placed as the condi­
tion for the ELSIE In the first IF, place your reset and preset condition test and your signal assignments. In
other words, the first part of the IF contains the asynchronous or combinatorial logic description and the se­
cond part, the ELSIF, contains the clocked logic description. In the process statement use a sensitivity list that
includes the clock, and reset/preset for the design. Don't forget that statements in a process are considered
sequential and are only updated upon changes in signals listed in the sensitivity list. See the basic example
called COUNTER2.VHD and the real-world converted design example called FLAGCTLR below.

If the reset or preset is synchronous, place the condition inside the clocked portion of the IF-THEN-ELSIF­
ENDIF mentioned above and perform the appropriate signal assignments.

This methodology ensures that behavioral operation is preserved and no device specific attributes are re­
quired.

Groups

ABEL allows declaration of groups or sets. Sets are groupings of signals. For example a bus is a set of signals.
To create a set of signals in VHDL use the bit_vector type declaration. To perform Boolean operations on
these new sets use IF-THEN-ELSE and FOR LOOPs to index the individual elements. See the special type
conversion function and the real-world examples below.

Special VHDL 1YPe Conversion Function (Advanced)

VHDL is a strongly typed language. ABEL on the other hand is not a strongly typed language. ABEL allows
a user to mix Boolean operations with relational operations on sets. To concisely convert ABEL equations
that contain relational operations on sets (converted to VHDL type BIT_VECTOR) combined with Boolean
operations on signals (converted to VHDL type BIT), use the following type-conversion function. All equa­
tions requiring this type-conversion function call can be modified easily with a SEARCH and REPLACE text
editor.

----------------------------- cut here ------------------------------------

FUNCTION frbl_to_b (in1:Boolean)
BEGIN
IF (in1=TRUE) THEN

RETURN '1';
ELSE

RETURN 'O';END IF;
END frbl_to_b;

RETURN bit IS

This type conversion function converts a signal or relational operation
result from type BOOLEAN to type BIT. A Boolean can have a value of
either 'TRUE' or 'FALSE'. A bit can have a value of either '0' or '1'.

----------------------------- cut here ------------------------------------

For example if you had an equation in ABEL such as:

ramwr = !addren & ba16 & !write & ((addr ==Ah210)
(addr==Ah212)
(addr==Ah214)
(addr==Ah216));

4-65

~ ~ Converting .ABL Files to VHDL
~, CYPRESS =====;;;;;;;;;;;;;;;==========

Where addr is a set of 16 address bits,

This equation could be converted to VHDL in at least two ways:

ramwr <= not addren and ba16 and not write and (fr_bl_to_b(addr =x"210")
or fr_bl_to_b(addr=x"212")
or fr_bl_to_b(addr=x"214")
or fr_bl_to_b(addr=x"216"»;

OR,

ramwr <= not addren and ba15 and not write and(
(not addr(ll) and not addr(lO) and addr(9) and not addr(8) and not addr(7)
and not addr(6) and not addr(5) and addr(4) and not addr(3) and not addr(2)
not addr(l) and not addr(O»

OR (not addr(ll) and not addr(lO) and addr(9) and not addr(8) and not
addr(7) and not addr(6) and not addr(5) and addr(4) and not addr(3) and not
addr(2) and addr(l) and not addr(O»

OR (not addr(ll) and not addr(lO) and addr(9) and not addr(8) and not
addr(7} and not addr(6} and not addr(5} and addr(4} and not addr(3} and
addr(2) and not addr(l) and not addr(O»

OR (not addr(ll) and not addr(lO) and addr(9) and not addr(8} and not addr(7}
and not addr(6) and not addr(5) and addr(4) and not addr(3) and addr(2) and
addr(l} and not addr(O»};

This example assumes all of the signals from the ABEL equations are converted to signals of type BIT except
the set called 'addr', which is converted to type BIT_VECTOR.

This special type-conversion function has a obvious advantage and is well suited for use in converting descrip­
tions to VHDL. By no means is it a requirement that descriptions use this function. It should be used for one
reason only, to make a VHDL description concise. See the real-world design example in Appendix A called
FLAGCTLR.

State Machines

See the Wwp design examples titled intermediate TRAFFIC.VHD, intermediate DRINK.VHD and ad­
vanced TTEVHD. See the application note titled "Describing State Machines in Wa1]J2 VHDL." Also refer
to pitfall numbers five and seven below.

Decoders

See the Wwp design example titled basic DECODER.VHD and the special type-conversion function above.

Comparators

See the Wa1]J design examples titled intermediate COMPARE.VHD and COMPARE2.VHD.

Counters

See the Wa1]J design examples titled basic COUNTER.VHD, basic COUNTER2.VHD, intermediate
COUNTER3.VHD, advanced COUNTER4.VHD, and advanced COUNTERS.VHD.

4-66

Multiplexers

Use the truth table function that is shown in the application note titled "Describing State Machines in Wmp2
VHD:c' or create a multiplexer using Boolean equations.

Shift Registers

See the Wmp design example titled advanced SHIFTN.VHD. This example illustrates the use ofthe GENER­
ATE statement.

Adders

See the Wmp design examples titled basic ADDER1.VHD and basic ADDER2.VHD.

Repetitive Logic

The VHDL GENERATE statement lends itself to regular or repetitive logic structures. For example, n-bit
registers, n-bit counters, n-bit shift registers, n-bit multiplexers, n-bit adders, and n-bit comparators may be
concisely described by using the GENERATE statement. See the Wmp design examples titled advanced
SHIFTN.VHD and advanced COVNTER4.VHD.

Pitfalls

There are potential pitfalls. Some of the common mistakes made during conversion are:

1. Incorrect order of precedence of operators. For instance, all of the logical operators in VHDL have the
same level of precedence. In other words, an equation that has both AND and OR operators requires
parenthesis around the ANDed terms for proper logic synthesis. Refer to the cross reference and order
of precedence table above.

2. Incomplete separation of clocked signals from combinatorial signals. Two simple ways to ensure proper
logic synthesis of clocked signals and combinatorial signals are:

a. Use a process for all signals, but use an IF-THEN-ELSIF-ENDIF within the process that groups all
combinatorial signals under the IF, and groups all registered signals under the ELSIE See the real­
world design example in Appendix A called FLAGCTLR.

b. Place all registered signals within a process (using a WAIT UNTIL CLOCK = '1') and place all combi­
natorial signals outside the process.

3. Using loops and variables outside of a process. VHDL requires that loops and variables be used inside
a process. If there is ~ore than one process, signals communicate between processes.

4. Using the incorrect mode for either output or bidirectional signals. Refer to your language reference book
for a formal definition of mode.

5. Incomplete state specification for state machines. When designing a state machine, you MUST do one
of the following:

a. Specify all output values in each state of tbe machine.
or

b. Specify default values for all outputs at the beginning of the process.

4-67

d# ~YPRESS~~~~~~~~~~c~o~n~ve~rt~i~ng~.~AB~.~L~F~il~es~t~o~VH~D~L;
The reason for this has to do with the way a process works. Each time a process is run (i.e., a clock event
has occurred) the outputs that are specified in the particular pass through the process are updated. If a
branch exists within the states of the machine that allows a pass through the process with one or more out­
puts not assigned a value, the logic synthesis engine either (a) assumes that the last statement for an unas­
signed output is valid and should be latched, or (b) that it is allowed to change with the clock. In other
words, it is legal in VHDL to not specify all output values in each state of the machine, or not specify de­
fault values for all outputs at the beginning of the process, or not specify either one. If this subtle detail
is overlooked, the design will cOIl1pile and appear to synthesize slJccessfully, but functional operation may
not be correct. It is also possible that the logic synthesized will not be minimal. In other words, use defaults
or specify the value of all outputs within each state of the machine.

6. Incorrect set or reset operation found in simulation. Polarity optimization settings used during logic syn­
thesis and fitting can cause set and or reset operations to appear to operate inconsistently. During logic
synthesis and fitting, the fitter can decide, by flipping the polarity of a function, the logic required will be
minimized. This can have an adverse effect on the user selection of set or reset. (Note this pitfall only
applies to 22VI0s and FLAsH370 where the polarity inversion is located between the output of the register
and the pin.) See the polarity attribute in the Wap documentation for more details.

7. Failure to close, or complete, IF-TIIEN-ELSE-ENDIF and CASE statements. In other words, design de­
scriptions that contain an IF must contain an ELSE, and descriptions containing a CASE-WHEN (condi­
tion), must contain a WHEN-OTHERS statement. This is required so that unnecessary implicit memory
elements are not synthesized. See the application note titled "YHDL Techniques for Optimal Design Fit-
ting" for more information. .

Logic Synthesis

Proper logic synthesis is the goal of conversion. If the converted design compiles and synthesizes without er­
rors, but the logic equations in the report file are not as expected (or simulation results are not as desired)
consult the pitfalls section above. Also, consult your Wap - GAlAXY compiler options documentation and
Wap - NOVA user's guide. If all else fails, contact your local Cypress field application engineer.

Real-World Converted pesigns

The designs in Appendix A originally were intended to fit into MACH 110s. However, due to product term
and internal fanout requirements, MACH 210s were required. The designs were later converted to
FLAsH371s. Consult your Cypress data book for more information on the CY7C371's architecture.

Summary

Any design that has been described in Data I/O's ABEL language can be converted to VHD L. From an overall
capability perspective, VHDL can be considered a superset of ABEL. Tho designs documented in Appendix
A were successfully converted using the cross reference tables and helpful hints contained within this applica­
tion note.

4-68

~

~~YPRESS~~~~~~~~~~~c~on~v~e~rt~in~g~.~AB~L~F~il~es~t~o~VH~D~L=
Appendix A. Real-World Converted Designs

------------------------------------ cut here -----------------------------------

Module FLAGCTLR
Title 'Flag Controller 1 - Uxx_xx
Revision 01'

"ALGORITHM

FLAGCTLR device 'mach210a';

"Inputs:

R_40MHZ pin
H_FEP_SO pin
H_FEP_S1 pin
H_FEP_S2 pin
H_FEP_S3 pin
H_FEP_SET pin
L_FEP_WE pin
H_PPA_SO pin
H_PPA_S1 pin
H_PPA_S2 pin
H_PPA_S3 pin
H_PPA_SET pin
L_PPA_WE pin
H_PPB_SO pin
H_PPB_S1 pin
H_PPB_S2 pin
H_PPB_S3 pin
H_PPB_SET pin
L_PPB_WE pin
L_RESET pin

"Outputs:

H_FAO
H_FA1
H_FA2
H_FA3
H_FA4
H_FA5
H_FA6
H_FA7

H_FBO
H_FB1
H_FB2
H_FB3
H_FB4

pin
pin
pin
pin
pin
pin
pin
pin

pin
pin
pin
pin
pin

pin
pin

istype
istype
istype
istype
istype
istype
istype
istype

istype
istype
istype
istype
istype

istype
istype

'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;

'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg,buffer' ;
'reg, buffer' ;

'reg,buffer' ;
'reg,buffer' ;

"
"
"
"
"
"
"
"

"
"
"
"
"

"
"

4-69

Converting .ABL Files to VHDL

Appendix A. Real-World Converted Designs (continued)

pin istype 'reg,buffer'; "
pin istype 'reg,buffer'; "
pin istype 'reg,buffer'; "

Declarations

x .x.;
C .C.;
Z .Z.;

FA = [H_FA7,H_FA6,H_FAS,H_FA4,

FB =
AB =
PPA_SEL
PPB_SEL
FEP_SEL

Equations

FA.CLK
FB.CLK
AB.CLK

FA.RE
FB.RE
AB.RE

H_FAO.T =

H_FA1.T =

H_FA2.T =

H_FA3.T =

H_FA4.T =

H_FA3,H_FA2,H_FA1,H_FAO];

[H_FB4,H_FB3,H_FB2,H_FB1,H_FBO];
[H_AB4,H_AB3,H_AB2,H_AB1,H_ABO];

[H_PPA_S3,H_PPA_S2,H_PPA_S1,H_PPA_SO];
[H_PPB_S3,H_PPB_S2,H_PPB_S1,H_PPB_SO];
[H_FEP_S3,H_FEP_S2,H_FEP_S1,H_FEP_SO];

R_40MHZ;
R_40MHZ;
R_40MHZ;

!L_RESET;
!L_RESET;
!L_RESET;

(!H_FAO.Q & H_ PPA_SET & !L_PPA_WE & (PPA_SEL
H_FAO.Q & !H_PPA_SET & !L - PPA_WE & (PPA_SEL
!H_FAO.Q & H_FEP _SET & !L_FEP_WE & (FEP_SEL
H_FAO.Q & !H_FEP - SET & !L_FEP_WE & (FEP_SEL

(!H_FA1.Q & H_PPA_SET & !L - PPA_WE & (PPA_SEL
H_FA1.Q & !H_PPA_SET & !L - PPA_WE & (PPA_SEL
!H_FA1.Q & H_FEP_ SET & !L - FEP_WE & (FEP_SEL
H_FA1.Q & !H_FEP_ SET & !L_FEP_WE & (FEP_SEL

(!H_FA2.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL
H_FA2.Q & !H_PPA_SET & !L_ PPA_WE & (PPA_SEL
!H_FA2.Q & H_FEP_ SET & !L_FEP_WE & (FEP_SEL
H_FA2.Q & !H_FEP - SET & !L_FEP_WE & (FEP_SEL

(!H_FA3.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL
H_FA3.Q & !H_PPA_SET & !L - PPA_WE & (PPA_SEL
!H_FA3.Q & H_FEP_ SET & !L _FEP_WE & (FEP_SEL
H_FA3.Q & !H_FEP_SET & !L_FEP_WE & (FEP_SEL

(!H_FA4.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL
H_FA4.Q & !H_PPA_SET & !L - PPA_WE & (PPA_SEL
!H_FA4.Q & H_FEP - SET & !L_FEP_WE & (FEP_SEL

4-70

"hO)
"hO)
"hO)
"hO» ;

"h1)
"h1)
"h1)
Ah1» ;

"h2)
"h2)
"h2)
"h2» ;

"h3)
"h3)
Ah3)
"h3» ;

"h4)
Ah4)
"h4)

=t ~YPRESS Converting .ABL Files to VHDL

Appendix A. Real-World Converted Designs (continued)

H_FA4.Q & !H_FEP_ SET & !L_FEP_WE & (FEP_SEL "h4)) ;

H_FA5.T = (!H_FA5.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL "h5)
H_FA5.Q & !H_PPA_SET & !L_PPA_WE & (PPA_SEL "h5)
!H_FA5.Q & H_FEP - SET & !L_FEP_WE & (FEP_SEL "h5)
H_FA5.Q & !H_FEP - SET & !L_FEP_WE & (FEP_SEL "h5)) ;

H_FA6.T =0 (!H_FA6.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL "h6)
H_FA6.Q & !H_PPA_SET & !L_PPA_WE & (PPA_SEL "h6)
!H_FA6.Q & H_FEP_SET & !L_FEP_WE & (FEP_SEL "h6)
H_FA6.Q & !H_FEP_ SET & !L_FEP_WE & (FEP_SEL "h6)) ;

H_FA7.T = (!H_FA7.Q & H_PPA_SET & !L - PPA_WE & (PPA_SEL "h7)
H_FA7.Q & !H_PPA_SET & !L_PPA_WE & (PPA_SEL "h7)
!H_FA7.Q & H_FEP_ SET & !L_FEP_WE & (FEP_SEL "h7)
H_FA7.Q & !H_FEP - SET & !L_FEP_WE & (FEP_SEL "h7)) ;

H_FBO.T = (!H_FBO.Q & H_PPB - SET & !L_PPB_WE & (PPB_SEL "hO)
H_FBO.Q & !H_PPB - SET & !L_PPB_WE & (PPB_SEL "hO)
!H_FBO.Q & H_FEP - SET & !L_FEP_WE & (FEP_SEL "h8)
H_FBO.Q & !H_FEP_SET & !L_FEP_WE & (FEP_SEL "h8)) ;

H_FBi.T = (!H_FB1.Q & H_PPB_ SET & !L_PPB_WE & (PPB_SEL "hi)
H_FBi.Q & !H_PPB_SET & !L_PPB_WE & (PPB_SEL "hi)
!H_FBi.Q & H_FEP - SET & !L_FEP_WE & (FEP_SEL "h9)
H_FBi.Q & !H_FEP_SET & !L_FEP_WE & (FEP_SEL "h9)) ;

H_FB2.T = (!H]B2.Q & H - PPB - SET & !L_PPB_WE & (PPB_SEL "h2)
H_FB2.Q & !H_PPB_SET & !L _PPB_WE & (PPB_SEL "h2)
!H_FB2.Q & H_FEP - SET & !L _FEP_WE & (FEP_SEL "ha)
H_FB2.Q & !H_FEP - SET & !L - FEP_WE & (FEP_SEL "ha)) ;

H_FB3.T = (!H_FB3.Q & H_PPB_ SET & !L _PPB_WE & (PPB_SEL "h3)
H_FB3.Q & !H - PPB - SET & !L_PPB_WE & (PPB_SEL "h3)
!H_FB3.Q & H_FEP_ SET & !L_FEP_WE & (FEP_SEL "hb)
H_FB3.Q & !H_FEP_ SET & !L _FEP_WE & (FEP_SEL "hb)) ;

H_ABO.T = (!H_ABO .Q & H_ PPB_ SET & !L - PPB_WE & (PPB_SEL "h8)
H_ABO.Q & !H - PPB - SET & !L - PPB_WE & (PPB_SEL "h8)
!H_ABO.Q & H_PPA_SET & !L_PPA_WE & (PPA_SEL "h8)
H_ABO.Q & !H - PPA_SET & !L - PPA_WE & (PPA_SEL "h8)) ;

H_ABi.T = (!H_AB1.Q & H_ PPB - SET & !L_PPB_WE & (PPB_SEL "h9)
H_ABi.Q & !H_PPB_ SET & !L - PPB_WE & (PPB_SEL "h9)
!H_AB1.Q & H - PPA_SET & !L - PPA_WE & (PPA_SEL "h9)
H_AB1.Q & !H_PPA_SET & !L_PPA_WE & (PPA_SEL "h9)) ;

H_AB2.T = {!H_AB2.Q & H_ PPB - SET & !L - PPB_WE & (PPB_SEL "ha)
H_AB2.Q & !H - PPB_ SET & !L_PPB_WE & (PPB_SEL "ha)
!H_AB2.Q & H_ PPA_SET & !L_PPA_WE & (PPA_SEL "ha)

4-71

sst ~YPRESS Converting .ABL Files to VHDL

Appendix A. Real-World Converted Designs (continued)

H~2.Q & lfLPPA_SET & lL_PPA_WE

H_AB3.T = (lH_AB3.Q & H_PPB_SET & lL_PPB_WE
H_AB3.Q & lH_PPB_SET & lL_PPB_WE
lH_AB3.Q & H_PPA_SET & lL_PPA_WE
H_AB3.Q & lH_PPA_SET & lL_PPA_WE

H_FB4.T = (lH_FB4.Q & H_PPB_SET & lL_PPB_WE
H_FB4.Q & lH_PPB_SET & lL_PPB_WE
lH_FB4.Q & H_FEP_SET & lL_FEP_WE
H_FB4.Q & lH_FEP_SET & lL_FEP_WE

H_AB4.T = (lH~4.Q & H_PPB_SET & lL_PPB_WE
H_AB4.Q & lH_PPB_SET & lL_PPB_WE
lH_AB4.Q & H_PPA_SET & lL_PPA_WE
H_AB4.Q & lH_PPA_SET & lL - PPA_WE

test_vectors ([R_40MHZ,L_RESET,
L_FEP_WE, FEP_SEL, H_FEP_SET,
L_PPA_WE, PPA_SEL, H_PPA_SET,
L_PPB_WE, PPB_SEL, H_PPB_SET]

.& (PPA_SEL "ha)) ;

& (PPB_SEL "hb)
& (PPB_SEL "hb)
& (PPA_SEL "hb)
& (PPA_SEL "hb)) ;

& (PPB_SEL "h4)
& (PPB_SEL "h4)
& (FEP_SEL "hc)
& (FEP_SEL "hc)) ;

& (PPB_SEL "hc)
& (PPB_SEL "hc)
& (PPA_SEL "hc)
& (PPA_SEL "hc)) ;

-> [H_FA7, H_FA6, H_FA5, H_FA4, H_FA3, H_FA2, H_FA1, H_FAO,
H_FB4, H_FB3, H_FB2, H_FB1, H_FBO,
H_AB4, H_AB3, H_AB2, H_AB1, H_ABO])

[C,1,1,"hO,0,1,"h1,0,1,"hO,0]->[X,X,X,X,X,X,X,X,
[C,1,0,"hO,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h1,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h2,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h3,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h4,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h5,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h6,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h7,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"hB,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"h9,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,l, 0, "hA, 0, 1, "h1, 0, 1, "hO, 0]->[0, 0, 0, 0, 0, 0, 0, 0,
[C,1,0,"hB,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"hC,0,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,0,
[C,1,0,"hO,1,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,0,1,
[C,1,0,"h1,1,1,"h1,0,1,"hO,0]->[0,0,0,0,0,0,1,1,
[C,1,0,"h2,1,1,"h1,0,1,"hO,0]->[0,0,0,0,0,1,1,1,
[C,1,0,"h3,1,1,"h1,0,1,"hO,0]->[0,0,0,0,1,1,1,1,
[C,1,0,"h4,1,1,"h1,0,1,"hO,0]->[0,0,0,1,1,1,1,1,
[C,1,0,"h5,1,1,"h1,0,1,"hO,0]->[0,0,1,1,1,1,1,1,
[C,1,0,"h6,1,1,"h1,0,1,"hO,0]->[0,1,1,1,1,1,1,1,
[C,1,0,"h7,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,0,"hB,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,0,"h9,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,0,"hA,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,0,"hB,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,0,"hC,1,1,"h1,0,1,"hO,0]->[1,1,1,1,1,1,1,1,
[C,1,1,"h7,1,0,"hO,0,1,"hO,0]->[1,1,1,1,1,1,1,0,

X,X,X,X,X,
0,0, 0, 0, 0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0, 0, 0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0,0,0,0,0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0,0,0,0,0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0,0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 1,
0,0,0,1,1,
0, 0, 1,1, 1,
0,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,

4-72

X,X,X,X,X];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0] ;
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0] ;
0,0,0,0,0];
0,0,0,0,0] ;
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0] ;
0,0,0,0,0];
0,0,0,0,0] ;
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0,0,0,0,0];
0, 0, .. 0, 0, 0] ;
0,0,0,0,0] ;
0,0,0,0,0];

lzrcYPRESS
Converting .ABL Files to VHDL

Appendix A. Real-World Converted Designs (continued)

[C,l,l,Ah7,l,D,Ah1,D,l,AhD,D)->[l,l,l,l,l,l,D,D,
[C,l,l,Ah7,l,D,Ah2,D,l,AhD,D)->[l,l,l,l,l,D,D,D,
[C,l,l,Ah7,l,D,Ah3,D,l,AhO,D)->[l,l,l,l,D,O,D,O,
[C,l,l,Ah7,l,D,Ah4,D,l,AhD,D)->[l,l,l,D,D,D,D,D,
[C,l,l,Ah7,l,D,Ah5,D,l,AhD,O)->[l,l,D,O,D,D,O,O,
[C,l,l,Ah7,l,D,Ah6,D,l,AhD,D)->[l,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,O,Ah7,O,l,AhO,D)->[D,D,D,D,D,O,D,D,
[C,l,l,Ah7,l,l,Ah7,D,O,AhO,O)->[O,O,D,D,O,O,O,o,
[C,l,l,Ah7,l,l,Ah7,O,D,Ah1,O)->[D,O,D,D,D,D,D,O,
[C,l,l,Ah7,l,l,Ah7,D,O,Ah2,D)->[O,D,D,D,D,O,O,D,
[C,l,l,Ah7,l,l,Ah7,D,D,Ah3,D)->[D,O,D,O,D,Q,D,O,
[C,l,l,Ah7,l,l,Ah7,D,O,Ah4,D)->[O,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,l,Ah7,D,D,AhB,D)->[D,D,D,D,D,D,D,D,
[C,l,l,Ah7,l,l,Ah7,D,D,Ah9,D)->[D,O,D,O,D,D,D,O,
[C,l,l,Ah7,l,l,Ah7,O,D,AhA,D)->[D,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,l,Ah7,O,D,AhB,D)->[D,D,D,D,D,O,D,O,
[C,l,l,Ah7,l,l,Ah7,D,D,AhC,D)->[O,O,D,O,O,D,D,O,
[C,l,l,Ah7,l,l,Ah7,O,O,AhC,l)->[O,D,O,O,D,O,O,O,
[C,l,l,Ah7,l,l,Ah7,D,D,AhB,l)->[O,D,D,D,O,D,D,O,
[C,l,l,Ah7,l,l,Ah7,D,O,AhA,l)->[O,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,l,Ah7,O,D,Ah9,l)->[D,D,O,O,D,O,O,O,
[C,l,l,Ah7,l,l,Ah7,D,D,AhB,l)->[D,O,D,D,D,D,D,O,
[C,l,l,Ah7,l,l,Ah7,l,O,Ah4,l)->[O,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,l,Ah7,l,D,Ah3,l)->[D,O,D,D,O,D,D,D,
[C,l,l,Ah7,l,l,Ah7,l,O,Ah2,l)->[O,O,O,O,O,D,O,O,
[C,l,l,Ah7,l,l,Ah7,l,D,Ah1,l)->[O,O,O,O,D,O,O,O,
[C,l,l,Ah7,l,l,Ah7,l,D,AhD,l)->[D,D,D,D,D,O,D,D,
[C,l,l,Ah7,l,O,Ah7,l,l,AhD,l)->[l,D,D,D,O,D,D,O,
[C,l,l,Ah7,l,D,Ah6,l,l,AhD,l]->[l,l,D,D,D,D,O,O,
[C,l,l,Ah7,l,O,Ah5,l,l,AhD,l]->[l,l,l,O,D,D,O,O,
[C,l,l,Ah7,l,D,Ah4,l,l,AhO,l)->[l,l,l,l,D,O,D,O,
[C,l,l,Ah7,l,D,Ah3,l,l,AhO,l]->[l,l,l,l,l,O,O,O,
[C,l,l,Ah7,l,O,Ah2,l,l,AhD,l)->[l,l,l,l,l,l,O,D,
[C,l,l,Ah7,l,O,Ah1,l,l,AhO,l)->[l,l,l,l,l,l,l,O,
[C,l,l,Ah7,l,O,AhO,l,l,AhD,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,O,AhB,D,l,AhO,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,D,Ah9,D,l,AhD,l]->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,O,AhA,D,l,AhD,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,O,AhB,O,l,AhO,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,D,AhC,D,l,AhD,l]->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,O,AhC,l,l,AhO,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,D,AhB,l,l,AhD,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,D,AhA,l,l,AhD,l]->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,D,Ah9,l,l,AhO,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,O,AhB,l,l,AhD,l)->[l,l,l,l,l,l,l,l,
[C,l,l,Ah7,l,l,AhD,l,l,AhO,l]->[l,l,l,l,l,l,l,l,

END FLAGCTLR;

1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1, D,
1,1,1, D, D,
l,l,O,O,D,
1, D, D, D, 0,
O,D,D,O,O,
D,D,D,D,O,
D, D, D, D, D,
D, 0, D, 0, 0,
D,D,D,D,D,
D, 0, D, D, 0,
D,O,D,O,D,
D,D,D,D,O,
D,O,D,D,D,
D,D,O,D,D,
D, D, D, D, D,
1, D, D, 0, D,
l,l,D,D,O,
1,1,1, D, D,
l,l,l,l,D,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,
1,1,1,1,1,

D,D,D,D,D) ;
D,O,D,O,O);
D,D,D,D,D];
D,D,O,O,D);
O,D,O,D,D];
O,O,D,O,O];
D,D,D,D,D];
D,D,O,D,O];
O,O,D,D,O];
O,D,O,O,D];
D,D,D,D,O];
D,O,D,D,D];
D,D,D,D,O];
O,O,D,O,O];
O,D,D,O,D];
D,D,D,D,D];
D,O,D,O,O];
l,D,O,D,D] ;
1.1.D,D,O);
l,l,l,O,D];
l,l,l,l,D];
1,1,1,1,1];
1,1,1,1,1];
1,1,1,1,1] ;
1,1,1,1,1);
1,1,1,1,1];
1,1,1,1,1] ;
1,1,1,1,1];
1,1,1,1,1];
1,1,1,1,1] ;
1,1,1,1,1];
1,1,1,1,1];
1,1,1,1,1];
1,1,1,1,1];
1,1,1,1,1];
l,l,l,l,D] ;
1,1,1,0,0];
l,l,O,O,D] ;
l,D,D,D,D] ;
0,0, D, 0, 0);
l,D,D,D,D] ;
l,l,O,O,D];
l,l,l,D,D];
1,1,1,1,0];
1,1,1,1,1];
1,1,1,1,1);

------------------------------------ cut here -----------------------------------

converted to IEEE 1D76 VHDL

Module FLAGCTLR

4-73

Appendix A. Real-World Converted Designs (continued)

Title 'Flag Controller 1 - Uxx_xx
Revision 01'

use work.cypress.all;
use work.rtlpkg.all;
use work.int_math.all;

ENTITY FLAGCTLR IS PORT (
R_40MHZ,H_FEP_SET,L_FEP_WE,H_PPA_SET,
L_PPA_WE, H_PPB_SET, L_PPB_WE, L_RESET IN BIT;
PPA_SEL,PPB_SEL,FEP_SEL IN BIT_VECTOR (3 downto 0);
FA INOUT BIT_VECTOR (7 downto 0);
FB,AB INOUT BIT_VECTOR (4 downto 0»;

attribute part_name of eventflg: entity is "c371";
END FLAGCTLR;

ARCHITECTURE CONVERTED_ABL OF FLAGCTLR IS

FUNCTION frbl_to_b(in1:Boolean)
BEGIN

RETURN bit IS

IF (in1=true) THEN
RETURN '1';

ELSE
RETURN '0';

END IF;
END frb1_to_b;

This type conversion function converts a signal or relational operation
result from type BOOLEAN to type BIT. A Boolean can have a value of either

'TRUE' or'FALSE'. A bit can have a value of either '0' or '1'.

BEGIN
PROCESS (R_40MHZ, L_RESET)
BEGIN

IF (L_RESET ='0') THEN

FOR i IN 0 TO 4 LOOP
FA(i) <= '0 ' j FB(i)

END LOOP;

FOR i IN 5 TO 7 LOOP
FA(i) <= '0' j

END LOOP;

<= fO'i AB(i)

ELSIF (R_40MHZ'EVENT AND R_40MHZ ='1') THEN

FA(O) <= FA(O) XOR

<= ' 0 I;

«NOT FA(O) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"O"»
OR (FA(O) AND NOT H_PP~SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"O"»
OR (NOT FA(O) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"O"»
OR (FA(O) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"O"»);

FA(l) <= FA(l) XOR
«NOT FA(l) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"l"»

OR (FA(l) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"l"»

4-74

~YPRESS~~~~~~~~~~~c~o~nv~e~rt~in~g~.~AB~L~F~il~e~s~to~VH~D~L=
Appendix A. Real-World Converted Designs (continued)

OR (NOT FA(l) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"l"}}
OR (FA(l) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"l")});

FA(2} <= FA(2) XOR
«NOT FA(2) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"2"}}

OR (FA(2) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"2"}}
OR (NOT FA(2) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"2"}}
OR (FA(2) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"2"}}};

FA(3} <= FA(3) XOR
«NOT FA (3) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b (PPA_SEL=x" 3") }

OR (FA(3) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"3"}}
OR (NOT FA(3) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"3"}}
OR (FA(3) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"3"}}};

FA(4} <= FA(4) XOR
«NOT FA(4) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"4"}}

OR (FA(4) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"4"}}
OR (NOT FA(4) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"4"}}
OR (FA(4) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"4"}}};

FA(5} <= FA(5) XOR
«NOT FA(5) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"5"}}

OR (FA(5) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"5")}
OR (NOT FA(5) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"5"})
OR (FA(5) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"5"}}};

FA(6) <= FA(6} XOR
«NOT FA(6) AND H_PPA_SET AND NOT L_PPA WE AND frbl_to_b(PPA_SEL=x"6"})

OR (FA(6) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"6"}}
OR (NOT FA(6) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"6"»
OR (FA(6) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"6"}}};

FA(7} <= FA(7} XOR
«NOT FA(7) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"7")}

OR (FA(7) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"7"}}
OR (NOT FA(7) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"7"}}
OR (FA(7) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"7"})};

FB(O} <= FB(O} XOR
«NOT FB (O) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b (PPB_SEL=x" 0") }

OR (FB(O) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"O"}}
OR (NOT FB(O) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"8")}
OR (FB(O) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"8"})};

FB(l} <= FB(l) XOR
«NOT FB (l) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b (PPB_SEL=x" 1"))

OR (FB(l) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"l"}}
OR (NOT FB(l) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"9"}}
OR (FB(l) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"9")});

FB(2} <= FB(2} XOR
«NOT FB(2) AND H_PPB_SJj:T AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"2")}

OR (FB(2) AND NOT H PPB SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"2"}}
OR (NOT FB(2) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"A"»

4-75

=s ~ ~ Converting .ABL Files to VHDL
,CYPRESS=================================;

Appendix A. Real-World Converted Designs (continued)

OR (FB(2) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"A"»);

FB(3) <= FB(3) XOR
((NOT FB(3) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"3"»

OR (FB(3) AND NOT H_PPB_SET AND NOT L~PPB_WE AND frbl_to_b(PPB_SEL=x"3"»
OR (NOT FB(3) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"B"»
OR (FB(3) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"B"»);

AB(O) <= AB(O) XOR
((NOT AB(O) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"B"»

OR (AB(O) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"B"»
OR (NOT AB(O) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"B"»
OR (AB(O) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"B"»);

AB(l) <= AB(l) XOR
((NOT AB(l) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"9"»

OR (AB(l) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"9"»
OR (NOT AB(l) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"9"»
OR (AB(l) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"9"»);

AB(2) <= AB(2) XOR
((NOT AB(2) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"A"»

OR (AB(2) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"A"»
OR (NOT AB(2) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"A"»
OR (AB(2) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"A"»);

AB(3) <= AB(3) XOR
((NOT AB(3) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"B"»

OR (AB(3) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"B"»
OR (NOT AB(3) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"B"»
OR (AB(3) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"B"»);

FB(4) <= FB(4) XOR
((NOT FB(4) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"4"»

OR (FB(4) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"4"»
OR (NOT FB(4) AND H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"C"»
OR (FB(4) AND NOT H_FEP_SET AND NOT L_FEP_WE AND frbl_to_b(FEP_SEL=x"C"»);

AB(4) <= AB(4) XOR
((NOT AB(4) AND H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"C"»

OR (AB(4) AND NOT H_PPB_SET AND NOT L_PPB_WE AND frbl_to_b(PPB_SEL=x"C"»
OR (NOT AB(4) AND H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"C"»
OR (AB(4) AND NOT H_PPA_SET AND NOT L_PPA_WE AND frbl_to_b(PPA_SEL=x"C"»);

END IF;
END PROCESS;
END CONVERTED_ABL;

Module CONVERTER
Title 'Converter
Revision 01'

cut here -----------------------------------

" This device converts a 32-bit floating point word from one format to another.

4-76

J .~ Converting .ABL Files to VHDL
~,CYPRESS================================~

Appendix A. Real-World Converted Designs (continued)

CONVERTER device 'MACH210A' ;

"Control Inputs:

CLK
OE
WE
MODE

"Data

D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
Dll
D10
D09
D08
D07
D06
D05
D04
D03
D02
DOl
DOO

I/O

H,L,C,Z,X

DIN

DOUT

PIN 35;" Clock
PIN 10;" Low Active Output Enable
PIN iii" Low Active Write Enable
PIN 13;" Shift Mode

BITS:

PIN 43 ISTYPE 'REG, BUFFER' ;
PIN 42 ISTYPE ' REG, BUFFER' ;
PIN 41 ISTYPE ' REG, BUFFER' ;
PIN 40 ISTYPE 'REG, BUFFER' ;
PIN 39 ISTYPE 'REG, BUFFER' ;
PIN 38 ISTYPE ' REG, BUFFER' ;
PIN 37 ISTYPE 'REG, BUFFER' ;
PIN 36 ISTYPE 'REG, BUFFER' ;
PIN 31 ISTYPE ' REG, BUFFER' ;
PIN 30 ISTYPE 'REG, BUFFER' ;
PIN 29 ISTYPE 'REG, BUFFER' ;
PIN 28 ISTYPE 'REG, BUFFER' ;
PIN 27 ISTYPE 'REG, BUFFER' ;
PIN 26 ISTYPE ' REG, BUFFER' ;
PIN 25 ISTYPE 'REG, BUFFER' ;
PIN 24 ISTYPE 'REG, BUFFER' ;
PIN 21 ISTYPE 'REG, BUFFER' ;
PIN 20 ISTYPE 'REG, BUFFER' ;
PIN 19 ISTYPE 'REG, BUFFER' ;
PIN 18 ISTYPE 'REG, BUFFER' ;
PIN 17 ISTYPE ' REG, BUFFER' ;
PIN 16 ISTYPE 'REG, BUFFER' ;
PIN 15 ISTYPE 'REG, BUFFER' ;
PIN 14 ISTYPE ' REG, BUFFER' ;
PIN 9 ISTYPE 'REG, BUFFER' ;
PIN 8 ISTYPE 'REG, BUFFER' ;
PIN 7 ISTYPE 'REG, BUFFER' ;
PIN 6 ISTYPE 'REG, BUFFER' ;
PIN 5 ISTYPE 'REG, BUFFER' ;
PIN 4 ISTYPE 'REG, BUFFER' ;
PIN 3 ISTYPE 'REG, BUFFER' ;
PIN 2 ISTYPE 'REG, BUFFER' ;

1,0,.C.,.Z.,.X.;

[D19.PIN,D18.PIN,D17.PIN,D16.PIN,
D15.PIN,D14.PIN,D13.PIN,D12.PIN,
D11.PIN,D10.PIN,D09.PIN,D08.PIN,
D07.PIN,D06.PIN,D05.PIN,D04.PIN,
D03.PIN,D02.PIN,D01.PIN,DOO.PIN];

[D31,D30,D29,D28,D27,D26,D25,D24,
D23,D22,D21,D20,D19,D18,D17,D16,

4-77

~. ~ Converting .ABL Files to VHDL
~iCYPRESS ==============

DBIDI

DOUTFB

SHIFTO

EQUATIONS

Appendix A. Real-World Converted Designs (continued)

D15,D14,D13,D12,Dll,D10,D09,D08,
D07,D06,D05,D04,D03,D02,D01,DOO);

[D19,D18,D17,D16,D15,D14,D13,D12,
Dll,D10,D09,D08,D07,D06,D05,D04,
D03,D02,D01,DOO);

[L,L,L,L,L,L,L,L,L,L,L,L,
D19.FB,D18.FB,D17.FB,D16.FB,
D15.FB,D14.FB,D13.FB,D12.FB,
Dll.FB,D10.FB,D09.FB,D08.FB,
D07.FB,D06.FB,D05.FB,D04.FB,
D03.FB,D02.FB,D01.FB,DOO.FB);

!WE & !MODE &
«D19.PIN == H) # (D18.PIN == H) # (D17.PIN == H»;

!WE & !MODE &
«(D19.PIN == L) & (D18.PIN == L) & (D17.PIN == L» &
«D16.PIN == H) # (D15.PIN == H) # (D14.PIN == H»);

!WE &
«(D19.PIN == L) & (D18.PIN == L) & (D17.PIN == L» &
«D16.PIN == L) & (D15.PIN L) & (D14.PIN == L»);

!WE & MODE &
«D19.PIN == H) # (D18.PIN == H»;

!WE & MODE &
«(D19.PIN == L) & (D18.PIN == L» &
«D17.PIN == H) # (D16.PIN == H»);

!WE & MODE &
«(D19.PIN == L) & (D18.PIN == L) &
(D17.PIN == L) & (D16.PIN == L» &
«D15.PIN == H) # (D14.PIN == H»);

DOUT.CLK CLK;

DOUT.OE
DOUT

JOE;
:= MO_SHIFT6 &

[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,H,L,D19.PIN,D18.PIN,
D17.PIN,D16.PIN,D15.PIN,D14.PIN,D13.PIN,D12.PIN,
Dll.PIN,D10.PIN,D09.PIN,D08.PIN,D07.PIN,D06.PIN)

MO_SHIFT3 &
[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,H,D16.PIN,D15.PIN,

D14.PIN,D13.PIN,D12.PIN,Dll.PIN,D10.PIN,D09.PIN,
D08.PIN,D07.PIN,D06.PIN,D05.PIN,D04.PIN,D03.PIN)

SHIFTO &
[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,D13.PIN,D12.PIN,

4-78

Test_Vectors

Appendix A. Real-World Converted Designs (continued)

Dll.PIN,DlO.PIN,D09.PIN,D08.PIN,D07.PIN,D06.PIN,
D05.PIN,D04.PIN,D03.PIN,D02.PIN,D01.PIN,DOO.PIN]

Ml_SHIFT6 &
[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,H,H,D19.PIN,D18.PIN,

D17.PIN,D16.PIN,D15.PIN,D14.PIN,D13.PIN,D12.PIN,
Dll.PIN,DlO.PIN,D09.PIN,D08.PIN,D07.PIN,D06.PIN]

Ml SHIFT4 &
[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,H,L,D17.PIN,D16.PIN,

D15.PIN,D14.PIN,D13.PIN,D12.PIN,Dll.PIN,DlO.PIN,
D09.PIN,D08.PIN,D07.PIN,D06.PIN,D05.PIN,D04.PIN]

Ml_SHIFT2 &
[L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,H,D15.PIN,D14.PIN,

D13.PIN,D12.PIN,Dll.PIN,DlO.PIN,D09.PIN,D08.PIN,
D07.PIN,D06.PIN,D05.PIN,D04.PIN,D03.PIN,D02.PIN]

WE & DOUTFB;

([CLK,OE,WE,MODE, DBIDI] -> DOUT)
[C,H,L,X,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X, Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X, Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]
[C,H,L,L,
[C,L,H,X,Z]

->

->

->

->

->

->

->

->

->

->

->

->

Ab0000000010llOlllOllO] -> Z;"Write
Ab0000000000000000000010llOlllOllO;"Read,ShiftO

AbOOOOOl1010l1010llOll] -> Z;"Write
Ab00000000000000000100l1010l1010ll; "Read, Shift3/ModeO.

Ab0000101010l1010llOll] _> Z;"Write
Ab0000000000000000010101010l1010ll;"Read,Shift3/ModeO

Ab0001001010l1010llOll] -> Z; "Write
AbOOOOOOOOOOOOOOOOOll00l0l0ll0l0ll;"Read,Shift3/ModeO

AbOOOll0l0l0ll0l0ll0ll] -> Z;"Write
AbOOOOOOOOOOOOOOOOOll1010l01l0l01l;"Read,Shift3/ModeO

Ab00010ll0l0ll0l0ll0ll] -> Z;"Write
AbOOOOOOOOOOOOOOOOOll01l0l01l0l011;"Read,Shift3/ModeO

AbOOOOlll010ll01011011] -> Z;"Write
Ab0000000000000000010lll0l0ll0l0ll;"Read,Shift3/ModeO

AbOOOllllOl01101011011] -> Z; "Write
AbOOOOOOOOOOOOOOOOOll1110101101011;"Read,Shift3/ModeO

AbOOlllll0l0ll0l0ll0l1] -> Z;"Write
Ab00000000000000001000111110101101;"Read,Shift6/ModeO

AbOl0l1110101101011011] -> Z; "Write
Ab000000000000000010010llll0l0ll0l;"Read,Shift6/ModeO

Abl001ll10101l010l101l] -> Z;"Write
Ab000000000000000010l00llll0l0ll0l;"Read,Shift6/ModeO

Abl0100l1010ll010ll01l] -> Z;"Write
Ab00000000000000001010100110l0ll0l;"Read,Shift6/ModeO

4-79

[C,H,L,L,
[C, L, H, x, Z)
[C,H,L,L,
[C, L, H, x, Z)
[C,H,L,L,
[C,L,H,X,Z)
[C,H,L,H,
[C,L,H,X,Z)
[C,H,L,H,
[C,L,H,X,Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C, L, H, x, Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C,L,H,X, Z)
[C,H,L,H,
[C,L,H,X,Z]
[C,H,L,H,
[C,L,H,X,Z]
[C,H,L,H,
[C,L,H,X, Z]
[C,H,L,H,
[C,L,H,X,Z]

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

->

Appendix A. Real-World Converted Designs (continued)

"bOll001101011010110ll) -> Z; "Write
"b00000000000000001001100110101101;"Read,Shift6/ModeO

"b11000110101101011011) -> Z;"Write
"b00000000000000001011000110101101; "Read, Shift6/ModeO

"bllllll1010l101011011) -> Z; "Write
"b00000000000000001011111110101101;"Read,Shift6/ModeO

"b00000100101101110110] -> Z; "Write
Ab00000000000000000101001011011101;"Read,Shift2/Mode1

Ab00001000101101110110] -> Z;"Write
Ab00000000000000000110001011011101;"Read,Shift2/Mode1

Ab00001100101101110110) -> Z;"Write
Ab000000000000000001ll001011011101;"Read,Shift2/Mode1

Ab00010000101101110110] -> Z;"Write
Ab00000000000000001001000010110111;"Read,Shift4/Mode1

Ab00100000101101110110] -> Z; "Write
Ab00000000000000001010000010110111;"Read,Shift4/Mode1

"bOOll0000101101110110] -> Z; "Write
Ab00000000000000001011000010110111;"Read,Shift4/Mode1

Ab00111100101101110110] -> Z; "Wri te
Ab00000000000000001011110010110111;"Read,Shift4/Model

"bl0000000101101110110] -> Z; "Write
"b00000000000000001110000000101101;"Read,Shift6/Mode1

"b01000000101101110110] -> Z; "Write
"b00000000000000001101000000101101;"Read,Shift6/Mode1

Abll000000101101110110] -> z; "Write
"b0000000000000000111l000000101101;"Read,Shift6/Mode1

Ab11010100101101110110] -> Z;"Write
"b00000000000000001111010100101101;"Read,Shift6/Mode1

"b11101000101101110110] -> Z;"Write
"b00000000000000001111101000101101;"Read,Shift6/Mode1

"b11111100101101110110] -> Z;"Write
"b00000000000000001111111100101101;"Read,Shift6/Mode1

End CONVERTER;

------------------------------------ cut here -----------------------------------

CONVERTED TO IEEE 1076 VHDL

Module CONVERTER
Title 'Converter
Revision 01'

This device converts a 32-bit floating point word from one format to another.

Control Inputs

use work.cypress.all;
use work.rtlpkg.all;
use work.int_math.all;

ENTITY CONVERTER IS PORT (
CLK,OE,WE,MODE
D

IN BIT;
INOUT X01Z_VECTOR (0 TO 31));

4-80

-====0..

~~YPRESS~~~~~~~~~~~c~o~n~v~ert~in~g~J\B~~L~F~i~le~s~to~VH~D~L~

Appendix A. Real-World Converted Designs (continued)

attribute part_name of CONVERTER: entity is "c371";
END CONVERTER;

ARCHITECTURE CONVERTED_ABL OF CONVERTER IS

BIT;

SIGNAL SHIFT2_TMP, SHIFT1_TMP, SHIFTO_TMP, SHIFT2,
SHIFT1, SHIFTO, MO_SHIFT6, MO_SHIFT3,
M_SHIFTO, Ml_SHIFT6, Ml_SHIFT4, Ml_SHIFT2

SIGNAL D_TMP, D_FB BIT_VECTOR (0 TO 31);
BEGIN

Pl: PROCESS
BEGIN

WAIT UNTIL CLK ='1';

FOR i IN 0 TO 13 LOOP
D_TMP(i) <=(D_FB(i+6)

OR (D_FB(i+4)
OR (D_FB(i+3)
OR (D_FB(i+2)
OR (D_FB(i+O)

AND
AND
AND NOT
AND NOT
AND NOT

OR (WE AND D_TMP(i));
END LOOP;

SHIFT2 AND SHIFTl AND NOT
SHIFT2 AND NOT SHIFTl AND NOT
SHIFT2 AND SHIFTl AND
SHIFT2 AND SHIFTl AND NOT
SHIFT2 AND NOT SHIFTl AND NOT

D_TMP(14) <= ('0' AND MO_SHIFT6) OR ('1' AND MO_SHIFT3)
OR ('0' AND M_SHIFTO) OR ('1' AND Ml_SHIFT6)
OR ('0' AND Ml_SHIFT4) OR ('1' AND Ml_SHIFT2)
OR (WE AND D_TMP(14));

D_TMP(15) <= ('1' AND MO_SHIFT6) OR ('0' AND MO_SHIFT3)
OR ('0' AND M_SHIFTO) OR ('1' AND Ml_SHIFT6)
OR ('1' AND Ml_SHIFT4) OR ('0' AND Ml_SHIFT2)
OR (WE AND D_TMP(15));

FOR i IN 16 TO 28 LOOP
D_TMP(i) <='0';
END LOOP;

END PROCESS Pl;

MO_SHIFT6 <= (NOT WE AND MODE) AND
(D_FB(19) OR D_FB(18) OR D_FB(17));

SHIFTO)
SHIFTO)
SHIFTO)
SHIFTO)
SHIFTO)

MO_SHIFT3 <= (NOT WE AND NOT MODE AND NOT D_FB(19) AND NOT D_FB(18)
AND NOT D_FB(17)) AND (D_FB(16) OR D_FB(15) OR D_FB(14));

M_SHIFTO <= NOT WE AND NOT D_FB(19) AND NOT D_FB(18) AND NOT
D_FB(17) AND NOT D_FB(16) AND NOT D_FB(15) AND NOT D_FB(14);

Ml SHIFT6 <= (NOT WE AND MODE) AND (D_FB(19) OR D_FB(18));

Ml_SHIFT4 <= (NOT WE AND MODE AND NOT D_FB(19) AND NOT D_FB(18))
AND (D_FB(17) OR D_FB(16));

Ml_SHIFT2 <= (NOT WE AND MODE AND NOT D_FB(19) AND NOT D_FB(18) AND
NOT D_FB(17) AND NOT D_FB(16)) AND (D_FB(15) OR D_FB(14));

4-81

& ~ Converting .ABL Files to VHDL
"CYPRESS ==============

Appendix A. Real-World Converted Designs (continued)

SHIFT2_TMP <= MO_SHIFT6
OR Ml_SHIFT6
OR Ml_SHIFT4;

SHIFT1_TMP <= MO_SHIFT6
OR MO_SHIFT3
OR Ml_SHIFT6
OR Ml_SHIFT2;

Mapping for the Bidirectional buffers
D_TMP is the internal signal which drives the output buffer
OE is the signal for output enable (active high)
D is the pin name, matches name in .port assignment
D_FB is the signal from pin that feeds back and drives the internal

structure
Gl: FOR i IN ° TO 28 GENERATE

Bl:BUFOE PORT MAP (D_TMP (i) , OE,D(i), D_FB(i»;
END GENERATE;

B2: BUF PORT MAP(SHIFTO_TMP,SHIFTO);
B3: BUF PORT MAP(SHIFT1_TMP,SHIFT1);
B4: BUF PORT MAP(SHIFT2_TMP,SHIFT2);

Forces logic synthesis to ·split
sums· into SHIFT codes that are
encoded and placed on outputs D29-31

B5: BUFOE PORT MAP(SHIFTO, OE, D(29), open);
B6: BUFOE PORT MAP(SHIFT1, OE, D(30), open);
B7: BUFOE PORT MAP(SHIFT2, OE, D(31), open);

------------------------------------ cut here -----------------------------------

Wop, and Wop2 are trademarks of Cypress Semiconductor Corporation.
MACH is a trademark of Advanced Micro Devices, Inc.

4-82

Abel™ -HDLvs. IEEE-I076 VHDL

Abstract

Currently there exist several popular Hardware De­
scription Languages (HDLs) that allow designers to
describe the function of complex logic circuits textu­
ally, as opposed to schematically. One of the most
widely used of these languages is Data I/O's Abel­
HDL. Abel-HDL, as a language, can be used to de­
scribe the behavior of logic circuits that can be fitted
to a wide variety of PALs, PLDs, PROMs, and
FPGAs from a variety of programmable logic IC
manufacturers. IEEE-1076 VHDL (VHSIC Hard­
ware Description Language) has recently been gain­
ing widespread support. VHDL is an open, portable
language defined and standardized by the IEEE
that can be used to describe the behavior of an entire
system from the highest levels of functionality all
the way down to the logic-gate level. A majority of
CAE vendors, programmable IC manufacturers,
and third-party software vendors already have or
are planning tools that support VHDL logic synthe­
sis, logic modeling, and/or VHDL simulation.

The purpose of this application note is to compare
and contrast the complexity and basic features of
Abel-HDL with those of IEEE-1076 VHDL.
Both of these languages are very robust in their sup­
port of different types of constructs that can be used
to describe the same functionality at different levels
of abstraction. It is beyond the scope of this docu­
ment to exhaustively describe these possibilities or
to present a complete tutorial for writing code in ei­
ther language because of the great variety of
constructs and syntax available with which to de­
scribe the functionality of a given circuit. Rather, a
simple example design that contains a mixture of
synchronous and asynchronous logic circuits will be
shown. Sample code is written in both Abel-HDL

4-83

and VHDL that describes the example's functional­
ity and synthesizes to create functionally identical
hardware. The code written here represents a typi­
cal level of abstraction that balances readability with
compactness. With experience, designers can devel­
op their own preferences for style. For instance,
state machines can be described in a number of
ways: state tables, IF-THEN-ELSE statements,
CASE-WHEN statements, or explicitly using a com­
bination of Register-1fansfer-Level (RTL) code (in­
dividually describe each gate/register as a compo­
nent with its inputs and outputs) and/or Boolean
equations.

Example Description

The following example is a circuit that creates a 50%
duty cycle clock with programmable frequency. Fig­
ure 1 shows the block diagram of this Programmable
Clock Generator. The output of the circuit is
CLK_OUT, whose period is equal to
clock(ns)*incnt*2. To program the device,
LD _ CNT is used to latch the value present at the
INCNT(3:0) inputs into the 4-Bit Input Register.
The output of this register is ENDCNT(3:0). The
clock input is used to clock the 4-bit UplDown
Counter, whose output is COUNT(3:0). The 4-bit
Comparator is an asynchronous comparator that
compares the values of COUNT and ENDCNT. Its
outputs are endeqcnt (ENDCNT = COUNT),
endltcnt (ENDCNT < COUNT), endeqO
(ENDCNT = 0), and cnteqO (COUNT = 0). Note
that it is possible for ENDCNT to be less than
COUNT if a new value for ENDCNT is loaded into
the input registers that is less than the current value
of COUNT. The cnt_state State Machine controls
the CLK_ OUT signal and is clocked and enabled by
the clock and en inputs, respectively.

*ia~YPRESS=============A=b=e=I=H==D=L=V=S.=IE=E=E===10=7=6=VH==D;;L
incnt(3:0)

Id_cnt

ciock

endeocnt
endltcnt
endeoO
cnteaO

clock
rstn

rst*

4-bit
Input Reg.

4-bit
Counter

! clr

endltcnt +
endeqO +

rstn*

(
CNT UP

endcnt(3:0)

I
4-bit

Comparator

count(3:0) I·

I

~
cnt state

State Machine

Figure 1. Block Diagram

RESET

00

endeqO & rstn

endeqcnt

cnteqO

Figure 2. State Diagram

4-84

endeQcnt
endltcnt

endeaO endeaO
cneqo cnteaC

count(3:0)

clk out

endltcnt +
endeqO +

rstn*

iIr~YPRESS~===========A=b=e=I-=H==D=L=V=S.=I=EE=E==-=10=7=6=VH==D~L
Figure 2 shows the state diagram for cnt_state. The
state machine consists of three states: reset, ent_up,
and ent_down. Two state bits are used to describe
this Mealy-type state machine. The state machine
powers-up to the reset state. It also synchronously
enters the reset state from any state if RSTN =0.
Once RSTN = 1, the state machine will count up un­
til COUNT equals ENDCNT, at which point it will
begin to count down until COUNT equals 0 and
then repeat the cycle. If at any time ENDCNT = 0,
cnt_state will return to reset. Also, if ENDCNT is
ever less than COUNT, thus signifying an invalid
condition, cnt_state will go to reset.

The PLD targeted is the CY7C335. It was chosen
because it can be used to illustrate a variety of fea­
tures contained in some PLDs such as input regis­
ters, multiple clocks, buried registers, and synchro­
nous reset/preset. However, any PLD with
sufficient resources could be targeted. This is one
of the main advantages of using a HDL. High-level
languages, by design, allow a designer to write ge­
neric code that can be targeted to different devices/
architectures with little or no modification. Going
one step further, VHDL allows simulation and de­
bugging of the logic from the source code. This can
greatly reduce the overall design cycle time by al­
lowing functional verification of the logic prior to
targeting a specific physical device. Once the logic
has been verified, the designer can then compile and
fit the same design into a variety of devices. From
here, the designer can decide which implementation
best suits his requirements.

Abel-HDLvs. VHDL

In general, the constructs used to describe logic
function in both ABEL-HDL an IEEE-1076
VHDL are very similar. Each can accept Boolean
equations, truth tables, state descriptions (IF­
THEN and CASE-WHEN), and signal assignments
that are quite similar in appearance. However, dif­
ferences do exist in syntax and in the overhead sec­
tions. These are the declarative sections which de­
fine hierarchical organization, design libraries, etc.
As we shall see, some of these statements found in
the VHDL code have no direct counterpart in
Abel-HDL. This is because Abel-HDL was

4-85

created with a single purpose in mind, logic synthe­
sis for PALs and PLDs. Therefore, with Abel­
HDL, assumptions can be made by the compiler
which can simplify the overhead syntax needed. Be­
cause VHDL is a one-Ianguage-fits-all standard
which applies to synthesis, modeling, and system
definition at all levels, some syntax overhead is nec­
essary to fully describe a design in the proper con­
text. For example, the use of standard and user-de­
finable packages and libraries allows many designs
to share commonly used definitions, components,
macros, functions, etc. Fortunately for the logic de­
signer, these statements are used in most designs so
that familiarity with them comes quickly and easily.
This commonality also allows ample "cutting-and­
pasting" from design to design.

The following sections compare and contrast the
source code files for Abel-HDL and VHDL on a
logical section-by-section basis. Both of these files,
when compiled, create functionally identical logic.
Copies of the source code files in their entirety can
be found in the Appendices.

Design and I/O Declarations

The basic structure of both Abel-HDL and VHDL
source files allow for one or more design units to be
defined within it. Each design unit is a complete log­
ic description. Multiple design units may be com­
bined hierarchically in a single top-level source file
which binds them together. In the example, we have
used a single design unit for simplicity. The first sec­
tion of code chosen for comparison contains the de­
sign declaration and device I/O declarations. In this
example, the pin numbers have been fixed. This op­
tional in either language. The declaration of the tar­
get device is also optional in the source code itself.
The targeted device need not be declared until it's
time to compile and fit the logic.

Figure 3 contains the Abel-HDL code that declares
the module name (line 01), the device (line 03), and
the input and output pin numbers and types (lines
04-09). Line 45 is the end statement that com­
pletes the design module.

The corresponding VHDL code is shown in Figure
4. VHDL requires a slightly different structure. A
design unit consists of an Entity section and an Ar-

*1s~YPRESS============A=b=e=I=H=D=L=V=S=.I=E=EE=-==10=76=VH=·=D=L=

01: module clk_gena;

02: declarations
03: device 'p335';

"Inputs
04: clock, ld_cnt, rstn
05: incnt3, incnt2, incnt1, incntO

"Outputs
06: endeqcnt, endltcnt
07: endeqO, cnteqO
08: clk_out
09: count3, count2, count1, countO

45: end elk_gena;

pin 3,1,7;
pin 6,5,4,2;

pin 25,23 istype 'com';
pin 24,27 istype 'com';
pin 17 istype 'reg_d';
pin 19,15,28,26;

Figure 3. Abel-HDL Design and I/O Declarations

chitecture section. By themselves, each of these is
considered a separate design component. The Enti­
ty section defines the component name (line 01).
The port statement (lines 02-06) declares the I/O
of the entity. For each signal, a mode (in, out, buff­
er) defines the direction of the pin (buffer signifies
output with feedback). The signal type is also de­
fined here. The type of a signal defines size and pos­
sible values which that signal can take on. Type bit
defines a one-bit signal that can have the values of
"0" and "I". 'JYpe bit_vector (0 to 3) declares that
the signal is a 4-bit vector, each bit of which can take
on the values of "0" or "I". Line 07 declares the tar­
get device and is optional. Lines 08-12 declares the
fixed pin assignments and is also optional. Note that
this line could be written as a single line terminated
with a";". The" &" in this context signifies a contin­
uation from the previous line. Line 13 is the end
statement that terminates the clkJJenv entity.

Lines 14 and 15 are statements that callout other li­
braries and packages making them visible to this de­
sign. These libraries and packages may be prede­
fined in the VHDL language or may be user defined.
They may contain components, functions, proce-

dures, declarations, etc., which may then be used by
the current design. For instance, work.int_math.all
enables all functions contained in the package
int_math (integer math), which is found in the work
library. These functions describe the operation of
the" +" and" -" operators used in the up and down
counter logic descriptions. The package rtlpkg con­
tains the definition of the Global Synchronous Set
(gss) statement used on line 27.

The second part of a complete design unit is the Ar­
chitecture section. In this section is where we find
the description of the behavior of the black box de­
fined in the Entity section. Associated with the Ar­
chitecture statement are begin and end statements.
Line 16 declares the Architecture name, behave, for
the following statements which describe the func­
tionality of the Entity clkJJenv. The Entity and Ar­
chitecture sections are separated because VHDL
allows multiple architectures to be defined for a giv­
en entity. Only one architecture can be associated
with an entity in a given design. This feature allows
multiple versions of an architecture to be saved in a
library. The Configuration statement is used to se­
lect a specific architecture (see Reference 3).

4-86

01: entity clk_genv is
02: port (clock, Id_cnt, rstn
03: incnt
04: count
05: endeqcnt, endltcnt,
06: endeqO, cnteqO

Abel-HDLvs.IEEE-I076VHDL

:in bit;
:in bit_vector(3 downto 0);
:buffer bit_vector(3 downto 0);

clk_out :buffer bit;
:buffer bit) ;

07: attribute part_name of clk_genv : entity is "c335";
08: attribute pin_numbers of clk_genv : entity is
09: "clock:3 Id_cnt:l rstn:7 clk_out:17 "
10:& "incnt(3):6 incnt(2):5 incnt(1):4 incnt(0):2 "
11:& "count(3) :19 count (2) :15 count (1) :28 count(O) :26 "
12:& "endeqcnt:25 endltcnt:23 endeqO:24 cnteqO:27";
13: end clk_genv;

14: use work.int_math.all;
15: use work.rtlpkg.all;

16: architecture behave of clk_genv is

22: begin

60: end behave;

Figure 4. VHDL Desing and I/O Declarations

Internal Signal Declarations

In both Abel-HDL and VHDL, internal signals
(nodes) may be defined. These signals do not con­
nect directly to an input or an output pin and may re­
sult from buried logic or may simply represent a

wire to transfer data. Both languages are similar in
that the signal name and type are declared.

As can be seen in Figure 5, lines 10 and 11 of the
Abel-HDL code declare the signals RST _ CTR and
ENDCNT3 ... 0. Each is defined as type node, as op­
posed to type pin, which would mean that the signal

node istype 'reg_d';
11: endcnt3,endcnt2,endcntl,endcntO node;
12: incnt = [incnt3,incnt2,incntl,incntO];
13: count [count3,count2,countl,countO];
14: endcnt [endcnt3,endcnt2,endcntl,endcntO];
15: outputs [count,endeqcnt,endltcnt,endeqO,cnteqO,clk_out];
16: cnt_state [rst_ctr,clk_out];

Figure 5. Abel-HDL Signal Declarations

4-87

ttz~YPRESS=============A=b=e=I-=H==D=L=V=S.=IE=E=E=-==10=7=6=VH==D~L

17: signal endcnt : bit_vector(3 downto 0);
18: signal cnt_state bit_vector(O to 1);

Figure 6. VHDL Signal Declarations

would be connected to an I/O pin. An optional sig­
nal attribute may be used with the keyword istype to
define the signal's characteristics more explicitly.
Lines 12 - 16 show the groupings of signals into sets.
Defining sets allows a group of signals to be refer­
enced by one name. Any operation performed on
the set name will be performed on each member of
the set.

VHDL allows signal names that represent, among
others, bit vectors such as the one shown in line 17
in Figure 6. Here ENDCNT is equivalent to
[ENDCNT(3), ENDCNT(2), ENDCNT(1),
ENDCNT(O)]. As seen earlier in the entity declara­
tion, INCNT has been defined as a port (I/O pins)
and is a 4-bit vector similar to ENDCNT. Individual
signals cannot be declared and grouped into sets as
with Abel-HDL. Rather, groups are declared ini­
tially as bit vectors. The individual members of the
set can then be operated upon separately or as a
group (line 58 of the VHDL source code shows
cnt_state(1) being assigned to the output
CLK_OUT).

State-Machine State Definitions

The section where state register assignments are de­
clared is very similar for Abel-HDL and VHDL.
Both languages require assignment of a constant
value to a name which gets compared to the current
value of the state bits (cnt _state) in the actual state
machine implementation (IF-THEN-ELSE, CASE­
WHEN). Shown in this document is one method of
designing a state machine. Both Abel-HDL and
VHDL allow a variety of ways in which to create a

17: reset
18: cnt_up
19: cnt_down

[0,0] ;
[1,1] ;
[1,0] ;

Figure 7. Abel-HDL State Machine Definition

state machine. For large state machines, a more
compact implementation might be with a 1tuth­
Thble in which inputs and outputs are described in
a tabular form. This method is more compact but
some may find it less "readable" than other meth­
ods. Both languages also support Mealy, Moore,
and one-hot (one register per state) state machine
implementations. Figure 7 shows the Abel-HDL
state assignment code.

Figure 8 shows the VHDL code needed to make
state assignments. Note here the increased verbos­
ity relative to Abel-HDL. This, again, is due to the
fact that VHDL is a more general-purpose language
and that statements must be more explicit. Here, a
constant is defined to be a certain type (bit_vector)
and then is assigned a initial value using the": =" op­
erator. Note that VHD~s usage of the ":=" opera­
tor is different than its meaning as a registered sig­
nal assignment operator in Abel-HDL.

Combinatorial Logic Equations

Both Abel-HDL and VHDL allow combinatorial
Boolean) logic equations. As Figures 9 and 10 show,
the syntax is quite similar. Combinatorial state­
ments in Abel-HDL are signified by a "=" opera­
tor. Use of the istype reg attribute in the signal decla­
ration section and/or use of the appropriate explicit

19: constant reset: bit_vector(O to 1) := "00";
20: constant cnt_up : bit_vector(O to 1) := "11";
21: constant cnt_down : bit_vector (0 to 1) : = "10";

Figure 8. VHDL State Machine Definition

4-88

Abel-HDL vs. IEEE-I076 VHDL

20: equations
21: endeqcnt = ((endcnt.fb - 1) == count.fb);
22: endltcnt = (endcnt.fb < count.fb);
23: endeqO = (endcnt.fb == 0);
24: cnteqO = (count.fb == 1);
25: outputs.sp = !rstn;
26: count.clk = clock;

Figure 9. Abel-HDL Combinatorial Logic Equations

23: endeqcnt <= '1 ' when (count = (endcnt-1)) else '0 ' ;
24: endltcnt <= '1 ' when (endcnt < count) else '0 1 i

25: endeqO <= '1 ' when (endcnt = "0000") else 10 ' i

26: cnteqO <= '1 ' when (count = "0001") else ' 0' ;
27: gss <= NOT (rstn) ;

Figure 10. VHDL Combinatorial Logic Equations

signal extensions (.c, .q, .d, etc ...) and the ":=" oper­
ator signifies registered logic. In VHDL, the syntax
for both a combinatorial and registered signal as­
signment is the same, "< =". The difference being
determined by where in the code the statement ap­
pears. It is treated as a registered signal only if the
signal assignment statement occurs inside of a
clocked process. (See References 1 and 3 for full ex­
planation of processes.)

Since the CY7C335 used in this example, like many
other devices, contains special features, such as
global or individual resets, presets, or OEs, there
needs to be a means to expressly access them. Lines
25 and 27 of the Abel-HDL and VHDL, respec­
tively, show how to access the available global syn­
chronous preset of the device. In the Abel-HDL
code we have defined a set to be all of the output sig­
nals (see Line 14). By simply using the .sp extension,
!rstn is assigned to the global synchronous preset
signal. Note that it is not necessary to define' a set.
Since in this device the preset is global, by assigning
!rstn to the preset of one output register, all are au­
tomatically connected. Line 26 assigns the signal
clock to the counter registers.

In VHDL, since extensions are not allowed in signal
assignments, special functions are creqted and
placed in a standard package which access these spe­
cific device features. In this case, the gss (global syn-

4-89

chronous set) function is found in the package rtlpkg.
When using a function (or other statement) found
in a package, a use statement must be added (Line
15) so that the contents of the package are visible to
this design. This requirement may seem cumber­
some on the surface, it in fact represents one of the
most powerful advantages of using VHDL. It gives
the ability to save and reuse commonly used state­
ments in standard or user defined packages which
can then be accessed by any design. These packages
can in tum be placed in libraries which can be orga­
nized by function, project, etc.

Input Register Logic Definition

The CY7C335 was chosen for this example because
it can be used to illustrate a variety of features that
may be found in other programmable logic devices.
In this section, we are making use of the registered
inputs. The inputs are defined as INCNT(3:0).
Once registered, these signals become
ENDCNT(3:0) and are assigned to internal nodes in
the device.

In the Abel_HDL code shown in Figure 11, Line 27
assigns the signal LD _ CNT to be the clock for the
ENDCNT registers. Line 28 uses the registered as­
signment operator, ":=", to create ENDCNT from
INCNT.

....0:=..

- -~ Abel- HDL vs. IEEE-I076 VHDL
,CYPRESS =====~~========

27: endcnt.clk = ld_cnt;
28: endcnt:= incnt;

Figure 11. Abel-HDL Input Register Definition

In VHDL, to create registered logic, a process must
be used. This highlights a key concept in VHDL, the
notion of concurrent vs. sequential statements. All
concurrent statements are continuously and simul­
taneously evaluated, creating combinatorial logic.
Sequential statements, as the name implies, are eva­
luated in order. The IF-THEN-ELSE construct is a
classic example of a sequential statement. In
VHDL, only statements found within a process are
sequential. The processes themselves are concur­
rent and are continuously evaluated at the same
time as all other statements between the begin and
end of an Architecture section. A process is awak­
ened (i.e., evaluated) when a change occurs in the
value of a signal that is sensitive to that process.
Sensitive signals are defined by the use of a sensitiv­
ity list or a wait statement at the beginning of the
process. In our example we have used the wait state­
ment to awaken a process when the clock signal for
the associated logic sees a rising edge (Lines 28 - 31

29: cnt_state.clk = clock;
30: state_diagram cnt_state
31: state reset:
32: count := 0000;
33: if (endeqO) then reset;
34: else cnt_up;

35: state cnt_up:

of Figure 12). Here, the inJeg process is evaluated
when a rising edge occurs on LD _ CNT. Inside the
process ~tatements are evaluated sequentially. In
this process there is a single statement which, when
evaluated, causes the value of INCNT to be trans­
ferred to ENDCNT. This effectively creates a regis­
ter clocked by LD _ CNT.

State-Machine Description

The description of the simple three-state state ma­
chine (see Figure 2) is shown next for both Abel­
HDL and VHDL in Figures 13 and 14, respectively.
In general, both languages allow a variety of state
machine definition methods. Included are truth
tables, IF-THEN-ELSE statements, and CASE­
WHEN statements. Both implementations require
a state machine name declaration, clock declara­
tion, and state descriptions.

28: in_reg: process begin
29: wait until (ld_cnt '1') ;
30: endcnt <= incnt;
31: end process;

Figure 12. VHDL Input Register Definition

36: count := (count.fb + 1);
37: if (endltcnt # endeqO) then reset;
38: else if (endeqcnt) then cnt_down;
39: else cnt_up;

40: state cnt_down:
41: count := (count.fb - 1);
42: if (endltcnt # endeqO) then reset;
43: else if (cnteqO) then cnt_up;
44: else cnt_down;

Figure 13. Abel-HDL State Machine Equations

4-90

· ~YPRESS=============A=b=e=I-=H==D=L=V=S.=IE=E=E=-==10=7=6=VH==D~L

32: counter: process begin
33: wait until (clock = '1');
34: case cnt_state is
35: when reset =>
36: count <= "0000";
37: if (endeqO = '0') then cnt_state <= cnt_up;
38: else cnt_state <= reset;
39: end if;

40: when cnt_up =>
41: count <= count +1;
42: if (endltcnt='l' OR endeqO='l') then
43: cnt_state <= reset;
44: elsif (endeqcnt = '1') then cnt_state <= cnt_down;
45: else cnt state <= cnt_up;
46: end if;

47: when cnt_down =>
48: count <= count - 1;
49: if (endltcnt='l' OR endeqO='l') then
50: cnt_state <= reset;
51: elsif (cnteqO = '1') then cnt_state <= cnt_up;
52: else cnt_state <= cnt_down;
53: end if;

54: when others =>
55: count <= "0000";
56: cnt state <= reset;

57: end case;
58: end process;
59: clk_out <= cnt_state(l);

Figure 14. VHDL State Machine Equations

In the Abel-HDL code of Figure 13, line 29 de­
clares the signal clock to be the clock source for the
state registers. Line 30 declares the following state
descriptions to be for the state machine cut_state.
Lines 31-44 are the descriptions for each of the
three states. Within each state description can be
found signal assignments and IF-THEN-ELSE
statements defining the conditional next-state as­
signments.

Similar to Abel- HDL, the VHDLcode of Figure 14
contains a clock declaration on line 33 (the wait until
statement implies clock is the register clock in this

4-91

process), and a state machine declaration on line 34
(the case statement defines cnt_state as the state
machine under evaluation). Lines 35-57 contain
the individual state descriptions. Lines 32 and 58
declare the beginning and end of the process called
counter. This explicit declaration of the beginning
and end of processes is necessary because of the
VHDL distinction between concurrent statements
and sequential (within a process) statements. Note
the addition of the "when others" statement. This
is added to insure that the state machine can recover
from an invalid (undefined) state. Lastly, line 59 as-

-. -.,~ Abel-HDLvs.IEEE-I076VHDL
;' CYPRESS ==========:;;=======

signs the value of the state bit cnt_state(1) to the
output signal CLK_OUT. Had this statement been
placed inside the process it would have been treated
as a sequential statement and, therefore, would be
registered. This would have caused a registered, or
pipelined, delay to be added to CLK_OUr.

Summary

In summary, as design languages, Abel-HDL and
IEEE-VHDL are really quite similar in complex­
ity. Many experienced Abel- HDL users may per­
ceive VHDL to be unnecessarily complicated. This
may be true if one is limited to the smaller playing
field covered by Abel-HDL. VHDL, on the other
hand, covers a broader set of applications, such as
full system-level description and simulation. The
extra verbosity is minimal when compared to the ex­
tra functionality provided. For instance, VHDL al­
lows true source code simulation, an easy migration
path to ASICs (standard, portable language), and

design with different types such as integers, enumer­
ated types, records, etc. It also is truly device inde­
pendent. For instance, falling edge clocks and
XORs can be described behaviorally in VHDL
whereas in Abel- HDL, the target device must be
declared and specific fuses programmed to make
use of these special features.

References

1. Cypress Semiconductor, Warp2 User's Manual,
1993.

2. Data 1/0, Abel Design Software User Manual,
1990.

3. S. Mazor and P. Langstraat,A Guide To VHDL,
Kluwer Academic Publishers, Norwell, MA,
1992.

4. Douglas L. Perry, VHDL Second Edition,
McGraw-Hill Series, Computer Engineering,
1994.

4-92

-= ~YPRESS=============A=b=e=I-=H==D=L=V=S.=IE=E=E===10=7=6=VH==D~L
Appendix A. VHDL Design File for Prog. Clock Generator

01: entity clk_genv is
02: port(clock, ld_cnt, rstn :in bit;
03: incnt :in bit_vector(3 downto 0);
04: count :buffer bit_vector(3 downto 0);
05: endeqcnt, endltcnt, clk_out :buffer bit;
06: endeqO, cnteqO :buffer bit);
07: attribute part_name of clk_genv : entity is "c335";
08: attribute pin_numbers of clk_genv : entity is
09: "clock:3 ld_cnt:1 rstn:7 clk_out:17 "
10 : & "incn t (3) : 6 incn t (2) : 5 incn t (1) : 4 incn t (0) : 2 "
11: & "count(3) :19 count (2) :15 count(l) :28 count (0) :26 "
12: & "endeqcnt:25 endltcnt:23 endeqO:24 cnteqO:27";
13: end clk_genv;

14: use work.int_math.all;
15: use work.rtlpkg.all;

16: architecture behave of clk_genv is

17: signal endcnt : bit_vector(3 downto 0);
18: signal cnt_state : bit_vector(O to 1);
19: constant reset: bit_vector(O to 1) := "00";
20: constant cnt_up : bit_vector(O to 1) := "11";
21: constant cnt_down : bit_vector(O to 1) := "10";

22: begin

23: endeqcnt <= '1 ' when (count = (endcnt-1)) else
24: endltcnt <= '1 ' when (endcnt < count) else ' a 'i

10' ;

25: endeqO <= '1 ' when (endcnt = "0000") else ' 0' i
26: cnteqO <= '1 ' when (count =
27: gss <= NOT (rstn) ;

28: in_reg: process begin
29: wait until (ld_cnt '1') ;
30: endcnt <= incnt;
31: end process;

32: counter: process begin
33: wait until (clock = '1');
34: case cnt_state is
35: when reset =>
36: count <= "0000";

"0001") else ' a 'i

37: if (endeqO = '0') then cnt_state <= cnt_up;
38: else cnt_state <= reset;
39: end if;

4-93

Abel-HDL vs. IEEE-I076 VHDL

Appendix A. VHDL Design File for Prog. Clock Generator (continued)

40: when cnt_up =>
41: count <= count +1;
42: if (endltcnt='l' OR endeqO='l') then
43: cnt_state <= reset;
44: elsif (endeqcnt = '1') then cnt_state <= cnt_down;
45: else cnt_state <= cnt_up;
46: end if;

47: when cnt_down =>
48: count <= count - 1;
49: if (endltcnt='l' OR endeqO='l') then
50: cnt_state <= reset;
51: elsif (cnteqO = '1') then cnt_state <= cnt_up;
52: else cnt_state <= cnt_down;
53: end if;

54: when others =>
55: count <= "0000";
56: cnt_state <= reset;

57: end case;
58: end process:
59: clk_out <= cnt_state(l);
60: end behave;

4-94

~

- .:Z
I'CYPRESS=============A=b=e=I=H==D=L=v=so=IE=E=E=-==10=7=6=VH==D~L

Appendix B. Abel-HDL Design File for Prog. Clock Generator

01: module clk_gena;

02: declarations
03: device 'p335';

"Inputs
04: clock, ld_cnt, rstn pin 3,1,7;
05: incnt3, incnt2, incnt1, incnt pin 6,5,4,2;

"Outputs
06: endeqcnt, endltcnt pin 25,23 istype 'com';
07: endeqO, cnteqO pin 24,27 istype 'com';
08: clk_out pin 17 istype 'reg_d';
09: count3, count2, countl, countO pin 19,15,28,26;

10: rst_ctr node istype 'reg_d';
11: endcnt3,endcnt2,endcnt1,endcnt node;

12: incnt
13: count
14: endcnt
15: outputs

[incnt3,incnt2,incnt1,incntOJ;
[count3,count2,count1,countOJ;
[endcnt3,endcnt2,endcnt1,endcntOJ;
[count,endeqcnt,endltcnt,endeqO,cnteqO,clk_outJ;

16: cnt state -
17: reset
18: cnt _up
19: cnt _down

20: equations

[rst_ctr,clk_outJ;
[0, OJ;
[1, 1J ;
[1, OJ;

21: endeqcnt = ((endcnt.fb - 1) == count.fb);
22: endltcnt = (endcnt.fb < count.fb);
23: endeqO = (endcnt.fb == 0);
24: cnteqO = (count.fb == 1);
25: outputs.sp = !rstn;
26: count.clk = clock;
27: endcnt.clk = ld_cnt;
28: endcnt:= incnt;

29: cnt_state.clk = clock;
30: state_diagram cnt_state
31: state reset:
32: count := 0000;
33: if (endeqO) then reset;
34: else cnt_up;

4-95

i~YPRESS~~~~~~=A=b=e=I=H~D=L=V=S.=IE=E=E~=10=7=6=VH~D~L
Appendix B. Abel-HDL Design File for Prog. Clock Generator (continued)

35: state cnt_up:
36: count := (count.fb + 1);
37: if (endltcnt # endeqO) then reset;
38: else if (endeqcnt) then cnt_down;
39: else cnt_up;

40: state cnt_down:
41: count := (count.fb - 1);
42: if (endltcnt # endeqO) then reset;
43: else if (cnteqO) then cnt_up;
44: else cnt_down;
45: end clk_gena;

Abel is a trademark of Data I/O Corporation.

4-96

The FLASH370 ™ Family Of CPLDs
and Designing with Warp2 ™

This application note covers the following topics:
(1) a general discussion of complex programmable
logic devices (CPLDs), (2) an overview of the
CY7C370 family of CPLDs, and (3) using the Wa1p2
VHDL Compiler for the CY7C370 family.

Overview of CPLDs

CPLDs extend the concept of the PLD to a higher
level of integration to improve system performance,
use less board space, improve reliability, and reduce
cost. Instead of making the PLD bigger with more
input terms and product terms, a CPLD architec­
ture is composed of multiple PLDs or logic blocks
(LABs) connected together with a programmable
interconnect matrix (PIM). Multiple Logic Array
Blocks (LABs) provide comparable speed to a PLD
because the basic propagation path is through one
LAB and each LABs product term array is compara­
ble to a PLD array. Multiple LABs provide the
higher integration. The number of LABs in a CPLD
is typically between 2 for the smaller CPLDs and 16
for the largeT ones. In addition to LABs intercon­
nected by the PIM, are the input/output macrocells
and the dedicated input macrocells. Figures 1 and 2
show the CPLD generic block diagram and the logic
block diagram respectively.

The architectural components of the LAB are: (1)
the product term array, (2) the product term alloca­
tor, and (3) the macrocell. The product term array
is the same in the CPLD as in the PLD except that
the inputs into the array can now also come from the
PIM. The product term allocator is a new concept
in the CPLD where product terms are not fixed to
a macrocell with its associated input/output pin but

4-97

-

I/O

PIM

Logic Logic
Block Block

><
~
::a;

Logic 1:5 Logic (I)

Block c: Block c:
0
~
2
.E

Logic
(I)

Logic :c
Block til Block E

E
~
Cl e

Logic c.. Logic
Block Block

Figure 1. Generic Block Diagram

r-------.,
I~~H~~I ~ L_.-J t.:: =.i

I I
Product
Term
Array

Product
Term
Allocator

Macro­
cells

L _____ Logic~c!.J

Figure 2. Logic Block Diagram

r--

I/O

I/O Cells

can be routed to different macrocells depending on
where they are needed. The result is a more effi­
cient allocation of product terms and higher integra­
tion. Implementation of the product term allocator
varies across CPLD vendors which is more fully dis­
cussed in the section describing the features of the
CY7C370 family.

The macrocell accepts the single output of the prod­
uct term allocator which is the DRing of a variable
number of product terms. In some macrocells this
input feeds into a two input XDR gate with the other
input potentially carrying the Q feedback. This con­
figures the D flip flop to a T flip flop which can pro­
vide an improvement in capacity for certain designs
such as counters. After the XOR gate, the macrocell
is configurable as registered, combinatorial, and in
some cases latched. There are two kinds of macro­
cells which are input/output dedicated and buried.
Dedicated macrocells output to the input/output
macrocell and also provide feedback into the prod­
uct term array. Buried macrocells only provide
feedback into the product term array.

The function of the PIM is to distribute the needed
fraction of the total available resources, all outputs
from the LAB and possibly also dedicated inputs
and inputs/outputs, to the appropriate LAB. There
are two common methods of PIM implementation:
array based interconnect and mux based intercon­
nect.

Figure 3 shows the data path of communication be­
tween two LABs using the array based interconnect.
In the array based interconnect, each output of the
LAB can potentially connect to any number of PIM
input terms through a memory element. Each PIM
input term is assigned to a specific LAB and func­
tions as an input term into the LABs product term
array. In this example only four PIM input terms are
shown two going to LAB1 and two going to LAB2.
There is a sense amp per input term to detect the
logic level, buffer the signal, and drive it into the
LAB. The true and complement of the PIM signal
feed into the product term array (not shown in the

figure). Since every LAB output can connect to any
PIM input, the interconnect is considered 100 per­
cent routable. It never limits the ability of the device
to fit logic. A macrocell output can connect to one
or multiple PIM input terms. The major drawback
from using a memory element as an interconnect is
the slower propagation delay than the muxed based
interconnect.

Figure 4 shows the data path of communication be­
tween two LABs using the muxed based intercon­
nect. In the muxed based interconnect a mux
chooses one of a number of potential PIM input
terms into the LAB. The PIM input terms differ
from the array based interconnect in that they are
output from a 1 of n (where "n" is the number of in­
puts of the mux) mux instead of the output of a wired
nor memory array. The inputs into the muxes are all
the outputs of the LABs as well as dedicated inputs
and input/output pins. Figure 3 shows two PIM input
terms output from two 4-to-1 muxes. In this exam­
ple, macrocell 2 from LAB1 and macrocell 2 from
LAB2 both Show 2 chances to route into the muxes
with other inputs having only 1 chance The wider
the mux (the number of inputs into the mux) the
more likely all desired inputs into each LAB will be
successfully routed and the more chances each sig­
nal gets to route into a LAB. The disadvantage of
larger muxes is a larger slower propagation delay
through the PIM and increased die size. Imple­
mentations of mux-based interconnect vary in the
size of the mux.

Features of the FLASH370 CPLDs

The FLAsH370 family of CPLDs offers densities
from 2 to 16 LABs. Figure 5 shows the block dia­
gram of the CY7C374/5 with 8 LABs. The even
numbers of the family (372,374,376) bury half of the
macrocells for maximum integration with the same
pinout as the (371,373,375) respectively. The 377
does not have a corresponding equivalent pinout
with buried macrocells. Table 1 shows the family
members offered.

4-98

macrocell1

LAB1

macrocell2

GOES TO LAB
PRODUCT TERM ARRAY

GOES TO LAB
PRODUCT TERM ARRAY

macrocell1

LAB2

macrocell2

Feature
Macrocells
Dedicated Inputs

I/O pins
Dedicated Inputs
Usable as Clocks
Speed (tPD)
Primary Packages

The FLAsu370 Family and Warp2

1-----.---+---r--+-ce-lI-1-c-el-1 +---. connects to all PIM INPUT TERMS

I----r---t--,---+--+c-el-I +---.. connects to all PIM INPUT TERMS

I------r-+----..-t-c-e-II-i-ce-II-+---.. connects to all PIM INPUT TERMS

I-----..-+----r-t-ce-II-i-c-el-I +--...... connects to all PIM INPUT TERMS

PIM INPUT TERMS CONNECTS TO ALL LABS

Figure 3. Array-Based Interconnect

Table 1. FLAsu370 Family Members

CY7C371 CY7C372/3 CY7C374/5 CY7C376/7
32 64 128 256

6 6 6 6
32 32/64 64/128 128/256

2 2/4 4/4 4/4

8.5 ns 10 ns 12 ns 15 ns

44-PLCC 44/84-PLCC 84-PLCC 160-TQFP
100-TQFP 100/160-TQFP 289-BGA

4-99

-= ~YPRESS;=~~~~~~=T~h~e~~~SH~3~7~O~F~am~iry~a~n~d~m~a~~~2

macrocell1
macrocell2

LAB1

TO PRODUCT ,.-/
TERM ARRAY)(

T

t IE
PIM INPUT TERMS ::::

• Lx
o PRODUCT E

TERM ARRAY

macrocell1
macrocell2

LAB2
L--IN

INPUT FROM FROM DEDICATED INPUT
PUT FROM ANOTHER LAB

Figure 4. Mux Based Interconnect

32/64

Figure 5. CY7C374/5 Block Diagram

4-100

Figures 6 and 7 show the product term array, product
term allocator, macrocells, and input/output macro­
cells for the CY7C370 family. Each LAB features
36 inputs, which can adequately handle 32-bit op­
erations plus control signals with one pass through
the LAB. The product term array features the true
and complement polarities of each PIM output sig­
nal for a total of 72 inputs. 80 standard product
terms are provided to the product term allocator
which allocates from 0 to 16 product terms to each
of the 16 macrocells. Additionally, 6 special product
terms are also generated in the product term array.
They are an asynchronous preset, asynchronous re­
set, and two groups of 2 bank output enable product
terms.

The output macrocell (Figure 8) provides a selection
of four output controlling options: (1) control from
one output enable, (2) control from a second output
enable, (3) permanently enabled, or (4) permanent­
ly disabled. Each LAB contains 4 output enable
product terms, 2 for the upper 8 macrocells and 2 for
the lower 8 macrocells.

The state macrocell (Figure 8) contains options to
register, latch, or send data through combinatorial­
ly. For the input/output macrocell there is an addi­
tional output polarity mux to improve capacity be­
fore the signal goes to the input/output macrocell.
For buried macrocells there is an additional mux
which can configure the state register as an input
register. If the buried macrocell is configured as an
input, zero product terms will be allocated from the
array. In Figure 8 architecture bit C7 can choose the
feedback from the input/output pin as the input into
the register instead of from the product term array.

There is one asynchronous preset and reset product
term for each LAB. There are polarity muxes for
the clocks, preset and reset. Each macrocell can
choose among two clocking options for the
CY7C371/372 and four clocking options for the
CY7C373/374/375/376/377. All macrocells in a
LAB receive the same polarity of the clock, set and
reset. Polarities are configurable per LAB. Figure
8 shows the input/output macrocell and input/out­
put plus buried macrocell.

j---.
, , , , ,
, , , ,
, ,
, ,
, ,

OM ' , FR
PIM

TO
PI M

,
, , , , , , ,
, , , , , . , , ,
,

36 72x86
PRODUCT TERM

ARRAY

f--.'<
6

80 PRODUCT
TERM

ALLOCATOR

16

8

f2

,

~
2 , ,

J MACRO-I I/O
, ,

I C~LL I ~ 0-16 :-
PRODUCT

,
TERMS 4

totells
, ,

MACRO-I-
,

CELL ,
0-16 2 3,5,7 ,

PRODUCT I , ,
TERMS · · , · , · · · ,

· · , · ,
0-16 · · , · PRODUCT ,

TERMS J MACRO-I
,

I/O '~ I C~LL I ~
,-,

0-16 ,
PRODUCT4

toL
,

TERMS """"1-]
,

I CELL
, ,

16 11,13,15 , , , ,
,

._-- --- ... - ... ----~

Figure 6. Logic Block for CY7C372, CY7C374, and CY7C376 (Register Intensive)

4-101

r-- ..

FROM.'-..... '--,3"'-6........,~
PIM

TO
PIM

,

72x86
PRODUCT TERM

ARRAY

6

80

16

16

PRODUCT
TERM

ALLOCATOR

0-16
PRODUCT

TERMS

,
2

.. _________________________ ... ______________ ... ___________________ J

Figure 7. Logic Block for CY7C371, CY7C373, CY7C375, and CY7C377 (I/O Intensive)

Figure 9 and 10 show the input/clock and input ma­
crocells. The input macrocell provides the flexibility
to let the input enter combinatorially, latched,
single registered, or double registered (for maxi­
mum metastability performance). For the 371/372
there are two input/clocks pins and four input pins.
For the CY7C373/374/375/376/377 there are four
input/clock pins and two input pins. For added flexi­
bility, each clock can be configurable for either posi­
tive or negative polarity.

In order to fully understand the operation of the
CY7C370 product term allocator, two important as­
pects of product term allocator design need to be
introduced: product term steering and productterm
sharing. Steering refers to the assignment of a prod­
uct term resource to a macrocell. In the traditional
PLD there is no steering flexibility. Each macrocell
has assigned product terms that can only be used by
that macrocell. In many designs each macrocell re­
quires a different number of product terms putting
an emphasis on the ability to allocate product terms
individually on an as needed basis. Product term
sharing refers to a product term being used by multi­
ple macrocells. The logic equations for different

macrocells sometimes contain the same minterm.
Instead of generating this same minterm multiple
times, it is generated on only one product term and
shared across macrocells, (hereby improving capac­
ity.

Figure 11 is a conceptual representation of the
CY7C370 product term allocator. The product
term allocator functions like a segmented OR array
by ORing from 0 to 16 product terms for each ma­
crocell. Product terms can be steered and shared on
an individual basis. This architecture has several
advantages over other implementations that steer
product terms away from one macrocell to serve
another.

Figure 12 is a conceptual representation of the
MACH'" product term allocator. It shows no abil­
ity to share product terms across macrocells. Each
cluster of four product terms can route to only one
macrocell. The product terms are routed in groups
of four which is a much higher granularity of product
term allocation and not as efficient.

To demonstrate this inefficiency, consider a macro­
cell that needs five product terms to implement its
logic. '!Wo product term clusters with a total of eight

4-102

The FLASH370 Family and Warp2

I/O MACROCELL

0-16 PRODUCT
TERMS

From
PROOUCT

TERM
ALLOCATOR

r - - - -

1/0 CELL
r------------------ ... ,

"0"
"1" --n~"--_..J

C5 C6
______________ J

,
________ .J

BURIED MACROCELL

0-16 PRODUCT
TERMS

From
PRODUCT

TERM
ALLOCATOR

r - - -

BLOCK RESET

BLOCK PRESET 4 SYSTEM CLOCKS (CY7C373-7)
2 SYSTEM CLOCKS (CY7C371-2)

FEEDBACK TO PIM

FEEDBACK TO PIM

FEEDBACK TO PIM

_________ J

2 BANK DE TERMS

Figure 8. I/O and Buried Macrocells

available product terms are needed. This wastes the
resources of three product terms from the borrowed
cluster since these product terms can not be re­
routed to another macrocell.

The MAX7000"OM product term allocator represen­
tation (Figure 13) shows the use of expander terms.
Expander terms allow two passes through the array
which can produce very high capacity. These expan­
ders are also shared among all product terms in the
LAB. The problem with using the expanders is in
the additional propagation delay of two passes
through the array. This complicates the timing
model and links the performance of the device to
the use of the expander product terms. As with the
MACH product term allocator, the MAX7000 allo-

cator also has five product term clusters. It there­
fore suffers from the same problem of product term
wasting when more than one cluster is routed to a
macrocell.

The CY7C370 product term allocator provides the
most effective method of steering and sharing prod­
uct terms. The propagation of signals through the
product term allocator is independent of the num­
ber of product terms allocated to each macrocell.
Additionally the flexibility ofthis product term allo­
cator, with the PIM, enables a change in the design
without a modification to the external pinout of the
device. There is no need for input and output switch
matrices, which add extra delay and degrade perfor­
mance.

4-103

INPUT/CLOCK PIN

C12

TO INPUT CLOCK
POLARITY MUX
ALL INPUT MACROCELlS

r---------------,
CLOCKMUX

for CY7C371-2 ONLY
~--------~I~ I

FROM INPUT CLOCK POLARITY
MUX ON THE OTHER I-r-+------...
INPUT/CLOCK MACROCELL

FROM CLOCK
POLARITY INPUT

CLOCK PINS

I TO OUTPUT CLOCK II
MUX ON ALL I/O I . MACROCELLS I

L ____ ~~~ ________ ~

CLOCK POLARITY MUX
ONE PER LOGIC BLOCK
FOR EACH CLOCK INPUT

Figure 9. Input/Clock Pins

FROM CLOCK
POLARITY MUXES

FROM CLOCK
POLARITY MUXES

INPUT PIN

TOPIM

CS

CS C9

Figure 10. Input Pins

The timing model of the CY7C370 family is far sim­
pler than for other CPLD solutions for two reasons.
First, all input signals into the LAB pass through the
PIM. This includes all input/outputs, feedbacks
from macrocell outputs, and dedicated inputs. Sec­
ondly, the propagation time through the product
term allocator is independent of the number of
product terms allocated to a macrocell. As a result,
there are no expander delays, no dedicated versus
input/output pin delays, no penalties for using up to

16 product terms, or no delay penalties for steering
and or sharing product terms. The CY7C370 fami­
ly of products provides timing as predictable as
PLDs like the 22VlO.

The PIM in the CY7C370 was designed to approach
the 100 percent routability of the array based inter­
connect but not made so wide that performance and
die size suffered.

4-104

From Product Term Array -
O;016-D- Meel!

000

-
~;016-D- Meel!

-
000

-
~)016-D- Meel!

-
000

-
~)016-D-

Meel!

-
Figure 11. CY7C370 Product Tenn Allocator

Representation

Figure 12. MACH Product Tenn Allocator
Representation

The FLASH370 Family and Warp2

U sing Warp 1M to Design with the
CY7C370

Development software is extremely important for
ease of use and efficiency of resource allocation
when designing with CPLDs. Cypress offers two
software packages that will fully support the
CY7C370 family of products as well as all other
PLDs, FPGAs, and state machine PROMs. Wal]J2
provides full VHDL language support which is be­
coming the industry standard for describing hard­
ware design. A functional simulator is also pro­
vided. Wmp3 additionally includes schematic
capture and exact timing simulation capability.

The simplified timing model of the CY7C370 often
makes exact timing simulation unnecessary because
performance can be predicted directly from the da­
tasheet. Therefore the functional simulator of
Wal]J2 may be a cost effective design solution. With
Wmp no manual intervention for fitting the designs
into the devices are necessary. In addition to Wal]J,
customers also have third party support from a vari­
ety of vendors.

Wal]J products take in VHDL designs and automati­
cally fit them into the chosen device. The following

Parallel Logic

Expanders

Shared

Expanders

Added delay

To Macrocell

Figure 13. MAX Product Tenn Allocator
Representation

4-105

section explains how to exploit the special features
ofthe CY7C370 with VHDL. A thorough treatment
of VHDL constructs is found in the Wa1p2 Refer­
ence Manual. Topics covered here are: (1) using the
single/double registered options for the dedicated
inputs, and registering signals from the 10 pins, (2)
using the clock polarity mux feature, (3) describing
registered versus latched versus combinatorial out­
puts, (4) using the output enable feature, (5) using
the asynchronous preset/reset feature, and (6) Us­
ing the buried registers as for the (372/4/6).

To register the dedicated inputs one or two signals
must be defined to represent the additional nodes
for one and two registers respectively. Appendix A
demonstrates how to use single and double regis­
tered inputs for a 4 bit loadable counter. Inproc2,
RESETl and RESETI are the outputs of the first
and second registers. It requires 2 passes through
proc2 to activate RESET2. Signal RESET2 is then
used inproc1 to perform the reset. Proc2 additional­
ly registers the data to be loaded with the statement
reg in <=temp. dat. The signal REGIN is then
used in process Proc1 to load the counter with the
statement temp. cnt <= reg in. If the same
clock is used for the inputs as for the state registers,
then the statements in process proc2 could be incor­
porated into proc1 and only one process is needed.
The assignment of the entity output pins is handled
by the instantiation of the bufoe component (called
in the statement use work.rtlpkg.all),
which takes the signal TEMP.CNT as input and
transfers it to the output (in this case called
COUNT) when the output enable control (called
OUTEN) is HIGH. Registering the inputs from the
input/output pins is better suited for the 372/374/376
members of the family since the signal does not need
to go through the PIM and logic block.

Clocking on the falling instead of the rising edge of
the clock is simply done by changing the statement
wait until (clk = '1') to wait until
(c 1 k = '0'). Events occurring on the rising and

falling edge of a clock can be incorporated into the
same design by defining a separate process for the
event, provided that sufficient logic blocks are avail­
able.

VHDL describing combinatorial and registered
outputs is identical to other part implementations as
with the CY7C370. The registered equations must
be inserted inside a process and after a wai t un­
til clock= statement.

Appendix B shows an example of how to implement
the combinatorial macrocell option with maximum
usage of output enable flexibility for the CY7C371.
A total of eight different input signals control the
output enable functionality. The entire function is
handled by the bufoe component where the input
into the buffer is th~ external input pin. No signals
are necessary.

The latch option is unique to the CY7C370 family.
Appendix C shows an example of how to latch a sig­
nal using the IF-THEN-ELSE construct. In this ex­
ample the signal is latched when the clock is HIGH
by setting the signal value to itself with the state­
ments signala <= signala and signalb <=
signalb. When the clock is LOW the path is corn"
binatorial and the signal value gets the input. This
is handled in the code if clk=' 0' then sig­
nala <= inputa; signalb <= inputb.
Two signals are defined, SIGNALA and SIGNALB,
to latch the data when the clock is in the right polar­
ity (in this case HIGH).

Appendix D shows the full registered configuration.
As in Appendix C, the signals SIGNALA and SIG­
NALB are defined and the function of the register
is defined within a process. On the rising edge ofthe
clock, SIGNALA gets INPUTA and SIGNALB gets
INPUTB.

Appendix E uses latches for the output enable cori­
trol. Signals need to be generated from the array
and are passed as the output enable parameter into
the triout component. This function behaves simi­
larly to the bufoe but does not include the feedback
parameter.

Appendix F shows how to use the buried registers to
implement the least significant bits in a counter. A
bit vector signal is defined to represent all the regis­
ter states. Those states that are needed as outputs
are assigned to the entity output pins outside of the
process with the statement count (0 to 11)

<= fullcnt (4 .to 15). Ifoutputenablecon­
trol is desired then this last statement is omitted and

4-106

the signal to output assignment is handled with the
bufoe component.

Appendix G is the same as Appendix F except that
the registers are reset asynchronously. The format
of the process is much different from Appendix F
but functions exactly the same except for the asynch­
ronous instead of synchronous reset. The process
uses a "sensitivity list" that includes all the parame­
ters that will activate the process. The synchronous

The FLASH370 Family and Warp2

part of the process is initiated by the statement
elk' event and elk=' l' instead of wai t
until elk=' 1'. The asynchronous preset/reset
is similar to other Cypress PLDs except for the addi­
tional polarity mux feature that enables active
HIGH or LOW. To specify clock polarity, the
VHDL construct for active HIGH is if reset
'1' then and for active LOW is if reset =
'0' then.

4-107

Appendix A. inregcnt

The bufoe port map parameters are:
bufoe port map (signal going to the input of the tristateable buffer,

tristate control signal,
the output signal that is the entity output pin,
the feedback signal from the entity input/output pin)

In this example the last entry is "open" meaning no feedback.

USE work.bv_math.all;
USE work.rtlpkg.all;

necessary for inc_bv();
necessary for bufoe

ENTITY inregcnt IS
PORT (clk, clkin, reset, load, outen: IN bit;

count: INOUT x01z_VECTOR(0 TO 3));
END inregcnt;

ARCHITECTURE behavior OF inregcnt IS
TYPE bufRec IS -- record for bufoe

RECORD
cnt:
dat:

-- inputs and feedback
bit_vector(O TO 3);
bit_vector(O TO 3);

END RECORD;
SIGNAL temp: bufRec;
SIGNAL regin: bit_vector(O to 3);-- for registering input loaded data
SIGNAL reset1, reset2:bit; -- for registering the reset input
CONSTANT counterSize: integer := 3;
BEGIN
g1:

proc1:

FOR i IN 0 TO counterSize GENERATE
bx: bufoe PORT MAP(temp.cnt(i), outen, count (i) , temp.dat(i));

END GENERATE;
PROCESS
BEGIN

WAIT UNTIL (clk = '1');
IF reset2 = '1' THEN -- uses the double registered signal

temp.cnt <= "0000";
ELSIF load = '1' THEN

temp.cnt <= regin; -- uses the single registered signal
ELSE

temp.cnt <= inc_bv(temp.cnt); -- increment bit vector
END IF;

END PROCESS;
Proc2 single registers the load operation and double registers the reset
operation. Note the two clkin's are needed for the double register.

proc2: PROCESS
BEGIN

WAIT UNTIL (clkin = '1');
reg in <= temp.dat; --single register for data load
reset1 <= reset; --single register the reset signal
reset2 <= reset1;--double register the reset signal

END PROCESS;
END behavior;

4-108

Appendix B. usecomb

--uses the full functionality of the oe features of the 371.
--macrocell is in combinatorial mode

USE work.rtlpkg.all;

ENTITY usecomb IS
PORT (outen1, outen2, outen3, outen4, outen5, outen6, outen7,

outen8; IN bit; inputa, inputb: IN bit_vector(O to 1);
outa,outb: INOUT x01z_vector(O to 7));

END usecomb;

ARCHITECTURE behavior OF usecomb IS
BEGIN
gl: FOR i IN o TO 1 GENERATE

bx1: bufoe PORT MAP(inputa(i) , outen1, outa (i) , open) ;
bx2: bufoe PORT MAP (inputa (i) , outen2, outa(i+2), open) ;
bx3: bufoe PORT MAP(inputa(i) , outen3, outa (i+4) , open) ;
bx4: bufoe PORT MAP(inputa(i), outen4, outa (i+6) , open) ;
bx5: bufoe PORT MAP(inputb(i) , outen5, outb(i) , open) ;
bx6: bufoe PORT MAP (inpu tb (i) , outen6, outb(i+2) , open) ;
bx7: bufoe PORT MAP(inputb(i) , outen7, outb(i+4) , open) ;
bx8: bufoe PORT MAP (inputb (i) , outen8, outb (i+6) , open) ;

END GENERATE;
END behavior;

4-109

.rcYPRESS ========T=h=e=F=LA=S=H=3=70=E=a=m=i;;;;;;ly=a=D=d=ffi=a;;;;:;rp=2

Appendix C. uselatch

--uses the full functionality of the oe features of the 371.
--macrocell in latched mode

USE work.rtlpkg.all;

ENTITY uselatch IS
PORT (clk, outen1, outen2, outen3, outen4, outen5, outen6, outen7,

outen8: IN bit;
inputa, inputb: IN bit_vector(O to 1);
outa,outb: INOUT x01z_vector(O to 7));

END uselatch;

ARCHITECTURE behavior OF uselatch IS
SIGNAL signala, signalb: bit_vector(O to 1);
BEGIN
gl: FOR i IN 0 TO 1 GENERATE

bx1: bufoe PORT MAP (signa1a(i), outen1, outa(i), open);
bx2: bufoe PORT MAP(signala(i), outen2, outa(i+2), open);
bx3: bufoe PORT MAP(signala(i), outen3, outa(i+4), open);
bx4: bufoe PORT MAP(signala(i), outen4, outa(i+6), open);
bx5: bufoe PORT MAP(signalb(i), outen5, outb(i) , open);
bx6: bufoe PORT MAP(signalb(i), outen6, outb(i+2), open);
bx7: bufoe PORT MAP(signa1b(i), outen7, outb(i+4), open);
bx8: bufoe PORT MAP(signalb(i), outen8, outb(i+6), open);

END GENERATE;--the clk input is an active low latch enable
--the if then construct must be within a process.
PROCESS

BEGIN
IF clk='O' then

signala <= inputa;
signalb <= inputb;

ELSE
signala <= signala;
signalb <= signalb;

END IF;
END PROCESS;

END behavior;

4-110

22~YPRESS~~~~~~~~T~he~F~LA~SH~3~7~o~F~a~m~il~y~a~n~d~m~a~rp~2

Appendix D. usereg

--macrocell in registered mode

ENTITY usereg IS
PORT (clk, outen1, outen2, outen3, outen4, outen5, outen6, outen7,

outen8: IN bit; inputa, inputb: IN bit_vector (0 to 1);
outa,outb: INOUT x01z_vector(0 to 7));

END usereg;

ARCHITECTURE behavior OF usereg IS
SIGNAL signala, signalb: bit_vector(O to 1);
BEGIN
g1: FOR i IN 0 TO 1 GENERATE

bx1: bufoe PORT MAP (signala (i) , outen1, outa(i), open);
bx2: bufoe PORT MAP(signala(i) , outen2, outa(i+2), open);
bx3: bufoe PORT MAP(signala(i), outen3, outa(i+4), open);
bx4: bufoe PORT MAP (signala(i), outen4, outa(i+6), open);
bx5: bufoe PORT MAP (signalb(i) , outen5, outb(i), open);
bx6: bufoe PORT MAP(signalb(i), outen6, outb(i+2), open);
bx7: bufoe PORT MAP (signalb(i) , outen7, outb(i+4), open);
bx8: bufoe PORT MAP (signalb(i), outen8, outb(i+6), open);

END GENERATE; --the clk input is a rising edge triggered clock for
--the register

--the wait until construct must be within a process.
PROCESS

BEGIN
WAIT UNTIL elk='1';
signala <= inputa;
signalb <= inputb;

END PROCESS;
END behavior;

4-111

=w.~YPRESS~~~~~~~~T~h~e~F~U~S~H3~70~E~a~m~i~~~a~n~d~m~a~ry~2
Appendix E. uselatch2

--This file shows the use of the triout component to perform the
--output enable function.

--COMPONENT triout
port (

x: IN bit; -- input to buffer
oe: IN bit; -- output enable
y: OUT bit); -- output

--END component

--The oe control is a function of the dedicated inputs and is latch
--controlled.

USE work.rtlpkg.all; --to instantiate triout component

ENTITY uselatch2 IS
PORT (clkl, clk2, in_oe1, in_oe2: IN bit;

inputa, inputb: IN bit_vector(O to 1);
outa,outb: INOUT x01z_vector(0 to 7»;

END uselatch2;

ARCHITECTURE behavior OF uselatch2 IS
SIGNAL signala, signalb: bit_vector(O to 1);
SIGNAL sig_en1, sig_en2, sig_en3, sig_en4: bit;
BEGIN
gl: FOR i IN 0 TO 1 GENERATE

bx1: triout PORT MAP(signala(i) , sig_en1,
bx2: triout PORT MAP(signala(i) , sig_en2,
bx3: triout PORT MAP(signala(i), sig_en3,
bx4: triout PORT MAP(signala(i) , sig_en4,
bx5: triout PORT MAP(signalb(i) , sig_en1,
bx6: triout PORT MAP(signalb(i) , sig_en2,
bx7: triout PORT MAP(signalb(i), sig_en3,
bx8: triout PORT MAP (signalb(i), sig_en4,

END GENERATE;

outa(i» ;
outa (i+2)) ;
outa(i+4»;
outa(i+6» ;
outa(i» ;
outa(i+2»;
outa(i+4» ;
outa(i+6»;

--The clock latches the data when high and is combinatorial when low
oecontrol: PROCESS

BEGIN
IF clk1= '0' then

sig_en1 <= not(in_oe2) and not(in_oe1);
sig_en2 <= not(in_oe2) and in_oe1;
sig_en3 <= in_oe2 and not (in_oe1) ;
sig_en4 <= in_oe2 and in_oe1;

ELSE
sig_en1 <= sig_en1;
sig_en2 <= sig_en2;
sig_en3 <= sig_en3;

4-112

~

2£~YPREsS~~~~~~~~T~h~e~F~~~H3~7~o~F~a~m~i~~~a~n~d~m~a~~~2
Appendix E. uselatch2 (continued)

sig_en4 <= sig_en4;
END IF;

END PROCESS;

latch: PROCESS
BEGIN

IF clk2= '0' then
signala <= inputa;
signalb <= inputb;

ELSE
signala <= signala;
signalb <= signalb;

END IF;
END PROCESS;

END behavior;

4-113

Appendix F. buriedreg

The purpose of this example is to show how to use the
buried registers to create a 16 bit counter. The 12
most significant bits are assigned to i/o registers
and the 4 least significant bits go to the buried registers.

USE work.bv_math.all; necessary for inc_bv();

ENTITY buriedreg IS
PORT (clk, reset: IN BIT;

count: INOUT bit_vector(O TO 11));
END buriedreg;

ARCHITECTURE behavior OF buriedreg IS
SIGNAL fullcnt : bit_vector(O to 15);
BEGIN
PROCESS

BEGIN
WAIT UNTIL (clk = '1');

IF reset = '1' THEN synchronous reset
FOR i IN 0 TO 15 LOOP

fullcnt(i) <= '0';
END LOOP;

ELSE
fullcnt <= inc_bv(fullcnt);

END IF;
END PROCESS;

count(O to 11) <= fullcnt(4 to 15);
END behavior;

4-114

~YPRESS~~~~~~~~T~h~e~F~U~SH~3~7~O~F~am~il~y~a~nd~m~a=rp~2

Appendix G. buriedreg2

The purpose of this example is to show how to use the
buried registers to create a 16 bit counter. The 12
most significant bits are assigned to i/o registers
and the 4 least significant bits go to the buried registers.
This example also demonstrates how to do an asynchronous reset.

USE work.bv_math.all; -- necessary for inc_bv();

ENTITY buriedreg2 IS
PORT (clk, reset: IN BIT;

count: inout bit_vector(O TO 11));
END buriedreg2;

ARCHITECTURE behavior OF buriedreg2 IS
SIGNAL fullcnt : bit_vector(O to 15);
BEGIN

PROCESS(clk,reset)--sensitivity list
BEGIN

IF reset = '1' THEN
fullcnt <= x"OOOO";-- asychronous reset, the x stands for hex

ELSIF (clk'event and clk = '1') then
fullcnt <= inc_bv(fullcnt);-- synchronous count

END IF;
END process;

count(O to 11) <= fullcnt(4 to 15);

END behavior;

MAX7000 is a trademark of Altera Corporation.
MACH is a trademark of Advanced Micro Devices, Inc.

assigns signals to entity outputs
and defines buried registers

Warp, Warp2, Warp3, and FLASH370 are a trademarks of Cypress Semiconductor Corporation.

4-115

Implementing a Reframe Controller
for the CY7B933 HOTLink ™ Receiver

in a CY7C371 CPLD

Introduction

This application note describes a reframe controller
for the Cypress CY7B933 HOTLink Receiver. THe
primary function of the controller is to monitor the
Receive Violation Symbol output, RVS, from the
CY7B933 in order to detect framing errors and, un­
der the correct conditions, assert the Reframe sig­
nal, RF, to the CY7B933. The controller function is
designed with a state machine, a few counters, and
some decode logic. All are implemented in VHDL
and fit into a Cypress CY7C371 32-macrocell FLASH

CPLD. The exact implementation in this applica­
tion note makes several assumptions about the next­
higher-level controller that may not be universally
applicable. However, the source code for the design
is provided in Appendix A at the end ofthis applica­
tion note so that modification and customization for
other interfaces is easily possible.

Why Reframing is Necessary

The CY7B923 and CY7B933 HOTLirik Transmitter
and Receiver are a pair of chips for high-speed
point-to-point serial data communication. The
CY7B923 is the transmitter, and the CY7B933 is the
receiver. The CY7B923 takes in an 8-bit byte at a
frequency between 16 and 33 MHz, encodes it into
10 bits, does a parallel-to-serial conversion, and
then transmits the serial data at ten times the byte­
rate clock (about 160 to 330 Megabits per second
(Mbps». At the other end ofthe link, the CY7B933
receives the serial data, does a serial-to-parallel
conversion, unencodes the data back into its original

form, and shifts the 8-bit parallel data out at the
same byte-rate clock frequency used by the trans­
mitter. (Note: the chips can also transmit and re­
ceive 10 bits of unencoded data. For a full descrip­
tion of the encoding and decoding functions, see the
CY7B923/933 datasheet.)

The key element in the data-and-clock-recovery cir­
cuit on the receiver is the PLL, i.e., phase-locked
loop, on the chip. It is triggered by the transitions
in the incoming data stream, and it is used to both
separate the data stream into individual bits and to
generate the byte-rate clock going out of the chip.
Once the PLL achieves synchronization with the in­
coming serial data stream and is receiving bits prop­
erly, the receiver must be given a reference point
that will set the byte boundaries in the bit stream.
This is done by the framIng circuitry. Whenever the
receiver's RF (reframe) input is asserted, the re­
ceiver's framing logic will check the incoming bit
stream for the special pattern that defines a byte
boundary. When this is found, the receiver logic sets
a reference point and simply counts bits from that
point on so it can properly execute the serial-to-par­
allel conversion on subsequent byte boundaries, and
properly align the byte-rate clock rising edge.

Thus, framing is always required when the receiver
begins receiving data for the first time, either at
power-up or after switching from one transmitter
source to another. Periodic reframing may also be
necessary, however, due to other conditions. If the
PLL goes out of lock-that is, if it loses its synchro­
nization with the incoming serial bit stream for any
reason, the recovered data will be erroneous and the

4-116

Reframe Controller for the HOTLink Receiver

framing boundary information will be lost. Once the
PLL gets back into synchronization with the inco~­
ing bit stream, it will be necessary to force the receIV­
er to reframe in order to re-establish the proper byte
boundary point.

Using RVS to Know When to Reframe

The PLL out-of-Iock condition can be detected by
the behavior of the RVS output of the CY7B933 re­
ceiver. The CY7B933 asserts RVS when it detects
an error in the bit stream. Infrequent errors, due to
random noise in the environment or attenuation by
the transmission medium, for example, are ex­
pected and do not necessarily mean that the PLL is
out of lock or that the data needs to be reframed.
Too many errors in too short a time indicates that
the PLL has lost lock and reframing is necessary.
The benchmark chosen in this controller is 16 errors
occurring in a period of 64 bytes. If the controller
counts RVS asserted 16 times during a 64-byte peri­
od, it will assume the PLL has lost lock and will as­
sert RF to the receiver to force it to reframe.

The 16-out-of-64 benchmark is somewhat arbitrari­
ly chosen, but it is justified by the fact that when t~e
PLL is in lock, you would normally expect to see SIg­
nificantly fewer errors. The fact that 16 out of 64 is
the criteria used does not mean that 15 out of 64, or
14 out of 64, etc., are acceptable error rates and that
the PLL is not out of lock in these cases as well. But,
it is fairly certain that if the PLL does go out of lock,
you will get at least 16 errors in 64 byte-times, very
quickly. Furthermore, there are counters inside the
HOTLink Receiver that detect this same condition
(16 errors in a 64-byte period) and when this detec­
tion occurs inside the CY7B933, it forces the PLL to
re-Iock onto the serial input data stream. Even if the
PLL is out of lock, if fewer than 16 errors are de­
tectedin a 64-byte period, the PLL will not be forced
to re-synchronize with the data stream and will stay
out-of-Iock until that condition is detected. There­
fore, for consistency, the same criteria was selected
for the reframe controller.

Additional Functionality of the Reframe
Controller

The reframe controller itself interfaces to a higher­
level controller that controls the entire receiver sys­
tem. That higher-level controller can force the re­
frame controller to initiate framing in the CY7B933,
regardless of any errors. There are two ways ~o do
this. The first is with the DO _ REFRAME SIgnal,
which the higher-level controller asserts when it
wants the reframe controller to go through the same
procedure it goes through to initiate framing when
an out-of-Iock condition occurs. If the reframe con­
troller sees this signal asserted, it acts just like it had
detected an out-of-Iock condition. The other way
the higher-level controller can force a reframe is by
asserting its FORCE _ RF output. This simply forces
the reframe controller's RF output HIGH and does
not cause the internal logic or state machine to
change. The reframe controller's RF output will
stay asserted as long as its FORCE_RF input re­
mains asserted.

The higher-level controller will normally assert
DO REFRAME on power-up or when the trans­
mitt~r source is switched on in order to find the ini­
tial byte-boundary, as described above. The
FORCE _ RF signal could be used for any reason de­
pending on specific system requireme~ts. The ~ost
likely reason to use it is to force multIbyte frammg.
When the receiver does multibyte framing, instead
of looking for a single byte-boundary-indicating
character, the receiver looks to detect two of these
special characters within any four-byte sequence.
This is a more reliable way of finding the byte
boundary, simply because it causes the fraIning ci~­
cuitry to verify its first find with another one. ThIS
may be useful in particularly noisy environments.
To cause the receiver to do multibyte framing, you
must assert its RF input for 2048 consecutive cycles;
this is something the reframe controller would not
ordinarily do. The higher-level controller can cause
this to happen by asserting FORCE_RF to the re­
frame controller for 2048 cycles, thus causing its RF
output to be asserted for the same length of time.

The reframe controller also implements a basic
handshake with the higher-level controller to make
sure the two controllers' operations stay consistent

4-117

Reframe Controller for the HOTLink Receiver

after forced reframes. Whenever the higher-level
controller uses the DO _ REFRAME signal to force
the reframe controller to initiate framing, it will
keep that signal asserted until the reframe control­
ler asserts RFDONE_HS. This signal from the re­
frame controller indicates that the receiver has fin­
ished its reframing. The higher-level controller will
then assert RFDONE_ACK, which acknowledges
receipt of RFDONE _ HS, and both the reframe con­
troller and the higher-level controller will return to
the state it normally returns to following a reframe.

In addition to the operations described above, the
reframe controller also provides a decoding func­
tion. When the HOTLink Receiver detects a data
error and asserts RVS, it also puts the code for the
type of error on its eight data outputs, D7 - DO. The
reframe controller decodes these signals and asserts
one of two outputs, UNDEF _CHAR or
RDISP _ERR, depending on the exact type of error
decoded. The two types of errors are an undefined­
character error and a running-disparity error. A
running-disparity error means that the character re­
ceived had too many consecutive Is or Os to be a val­
id byte of data (the purpose of the eight-bit-to-ten­
bit encoding mentioned earlier is to encode the data
in such a way as to minimize the imbalance of Is and
Os in the bit stream). If the reframe controller de­
tects the code for a running-disparity error, it will as­
sert the RDISP _ERR output. If the received char­
acter has the correct running disparity but is not a
valid code for any character, then it is an undefined­
character error, and the reframe controller will as­
sert the UNDEF _CHAR output instead.

Design and Implementation

The out-of-lock detection, RF control, higher-level
controller interface, and error-type decoding are
implemented with a simple state machine, a few in­
ternal counters, and some decoding logic, and it is
all fit into a 32-macrocell CY7C371 FLAsH CPLD
(for more information on this CPLD, please refer to
other application notes in the PLD sectIon of this
handbook and to the CY7C371 datasheet). The de­
sign was done in VHDL and compiled with Cypress'
Wap 1M PLD/FPGA design tool. The receiver sys­
tem, the reframe controller's interface, and the de-

tails of the design of the internal state machine,
counters, and logic are described in detail in the rest
of this section.

Receiver System

Figure 1 shows where this reframe controller fits into
the overall system. The CY7B933 receiver connects
(through a physical connector) to the actual trans­
mission medium, which can be either twisted pair,
coaxial cable, or fiberoptic cable. The reframe con­
troller interfaces to the receiver, and it also inter­
faces to the higher-level system controller.

Controller Interface

The complete set of reframe controller inputs and
outputs is shown in Figure 2, and their source or des­
tination, polarity, and functionality are described
below.

Inputs

RF _ENABLE. Overall enable. It comes from a
higher-level controller. When asserted (HIGH), re­
frame controller is enabled. When deasserted, re­
frame controller is disabled and does not operate.

CLK. Clock signal to the reframe controller that
comes from the recovered byte-rate-clock output,
RCLK, of the CY7B933, and is also used in the rest
of the system as the system clock.

RESET. Resets the state machine and the internal
counters and status registers (HIGH = asserted).

RVS. Received Violation Symbol. It comes from
RVS output of the CY7B933 (HIGH = asserted).

FORCE...;.RF. When asserted, this forces the RF out­
put to also be asserted regardless of other condi­
tions. It comes from a higher-level controller
(HIGH = asserted).

DO_REFRAME. When asserted, it causes internal
state machine to initiate framing in the receiver just
as if it had detected an out-of-lock condition. It
comes from higher-level controller (HIGH = as­
serted).

RFDONE_ACK. Handshake signal from the high­
er-level controller acknowledging that it received
confirmation that the reframe controller completed

4-118

Reframe Controller for the HOTLink Receiver

TRANSMITTER SYSTEM
CY7B923
HOTLink
Transmitter

CY7B933
HOTLink
Receiver

RECEIVER SYSTEM

Higher-level
Controller

Figure 1. Block Diagram

ClK --.!i----i
RF _ENABLE --I~

RESET --I~
RVS --I~

FORCE RF ----~
DO_REFRAME --I~
RFDONE_ACK --I~

RDY --I~

Reframe Controller
CY7C371 CPlD

RF
OUT_OF_lOCK
ERROR

8
D7 - DO, SC!D -...,,"-II~

UNDEF CHAR
RDISP_ERR
RFDONE_HS

Figure 2. Controller Inputs and Outputs

the framing procedure. The handshake is only done
when the framing was triggered by the DO_RE­
FRAME signal, not by an out-of-Iock condition
(HIGH = asserted).

RDY. Ready signal. It comes from the CY7B933
RDY output and indicates to the reframe controller
that the receiver has completed the reframe opera­
tion (LOW = asserted).

D[7:0], SC/D. Eight-bit data byte and controVdata
indicator bit from the CY7B933 receiver. The in­
formation on these lines can be decoded during a re­
ceive violation to determine the error type.

Outputs

RF. Reframe output. It goes to the RF input of the
CY7B933 receiver and causes the HOTLink Re-

4-119

-= ~ Reframe Controller for the HOTLink Receiver
_'F CYPRESS ===============

ceiver to begin a framing operation on the incoming
data stream (HIGH = asserted).

RFDONE_HS. This is the handshake signal to the
higher-level controller telling it that the reframe it
requested with the DO _ REFRAME signal has been
completed (HIGH = asserted).

OUT_OF_LOCK. This signal indicates that the
HOTLink Receiver's PLL has gone out of lock with
the incoming serial bit stream. This is inferred by
counting sixteen or more RVS assertions in a single
64-byte period. Once asserted, it remains asserted
until the PLL regains lock and reframing has been
accomplished (HIGH = asserted).

ERROR. When asserted (HIGH) it indicates to the
higher-level controller that an error of some type
(as indicated by the RVS signal from the receiver)
has occurred. .

UNDEF _CHAR. This is an undefined-character-er­
ror signal, one of two types of errors that can be de­
coded from the D7 - DO, SC;D inputs during re­
ceive violations. This signal is only valid when the
ERROR output is also asserted, and it can only be
asserted when RDISP _ERR is deasserted (HIGH
= asserted).

RDISP _ERR. Running-disparity-error signal. This
is the other of the two types of errors that can be de­
coded from the D7 - DO, SC;D inputs during data­
receive violations; This signal is only valid when the
ERROR output is also asserted, and it can only be
asserted when UNDEF _CHAR is deasserted
(HIGH = asserted.)

Counters

The primary function of the controller, which is to
detect the out-of-Iock condition by monitoring RVS
and initiate a reframe when necessary, is imple­
mented through the use of two counters. The
VHDL for this function is shown in Figure 3. The
first counter, rcvdbyts_count, is a seven-bit counter
that counts the number of bytes received (0 to 64)
and the second counter, error_count, is a five-bit
counter that counts the number of times that RVS is
asserted. If error_count reaches 16 before
rcvdbyts_count reaches 64, then the out-of-Iock

condition will be declared. If rcvdbyts _count reach­
es 64 before error_count reaches 16, then fewer
than 16 errors occurred in the given 64-byte window
and out-of-Iock is not declared. If rcvdbyts_count
reaches 64 before error_count reaches 16, both
rcvdbyts _count and error_count are set back to zero
and a new 64-byte window begins. If the out-of-Iock
condition is declared (error_count = 16 and
rcvdbyts_count ~ 64), then the out-of-Iock flip-flop
is set to HIGH and a reframe operation is initiated.
The out-of-Iock flip-flop stays HIGH until the re­
ceiver successfully reframes. At that point, the out­
of-lock flip-flop is set back to LOW and the search
for the out~of-Iock condition is started again.

State Machine

The state machine is described by the diagram in
Figure 4, and the VHDL code that implements it is
shown in Figure 5.

IDLEstate

The normal, quiescent state of the state machine,
and the state it enters upon reset, is IDLE. In this
state, the RF output is deasserted and the state ma­
chine waits for either aDO _REFRAME input from
the outside or for the counters to set the out-of-Iock
flip-flop. If neither of these conditions occur, the
state machine simply stays in the IDLE state. Once
either one of these conditions occurs, the state ma­
chine must initiate a reframe, so it will go to the
START_REFRAME state.

START _ REFRAME state

In the START _ REFRAME state, RF is asserted,
and the state machine unconditionally transitions to
the COUNT_2_CLOCKS state.

COUNT ~_CLOCKS state

The COUNT_2_CLOCKS state enables a two-bit
counter to start counting incoming clock cycles. Af­
ter two clock cycles have been counted, the state ma­
chine transitions to the LOOK_FOR_xRDY state.
Two clock cycles must be counted before looking for
the RDY signal from the outside because a total of
three clocks must pass after RF is asserted until the
value of RDY can be guaranteed valid (see the
"HOTLink CY7B933 RDY Pin Description" ap-

4-120

~ Reframe Controller for the HOTLink Receiver
!!CYPRESS ================

-- relevant VHDL code for counter functions

use work.bv_math.all;
use work.int_math.all;

signal count2: bit_vector(O to 1);
signal error_count: bit_vector(O to 4);
signal rcvdbyts_count: bit_vector(O to 6);

2-bit counter
5-bit counter
7-bit counter

counters: process (CLK, RVS, reset, rcvdbyts_count, error_count,
out_of_lock) begin

if (clk'event and clk = '1') then

if (reset = '1') then
fb_out_of_lock <= '0';
rcvdbyts_count <= "0000000";
error_count <= "00000";

elsif (error_count = "10000") then
fb_out_of_lock <= '1';
rcvdbyts_count <= "0000000";
error_count <= "00000";

elsif (rcvdbyts_count = "1000000") then
rcvdbyts_count <= "0000000";
error_count

else
<= "00000";

rcvdbyts_count <= rcvdbyts_count + 1;
if (RVS = '1') then

error_count <= error_count + 1;
end if;

end if;

if (current_state LOOK_FOR_xRDY) and (xRDY
fb_out_of_lock <= '0';

end if;

if (current_state = COUNT_2_CLOCKS) then
count2 <= count2 + 1;

else
count2 <= "00";

end if;

end if;

end process; --counters

Figure 3. VHDL for Counter Functions

'0') then

plication note for more details on this). One clock
cycle passed during the START _ REFRAME state, so
the COUNT_2_CLOCKS state is used to count two

more clock cycles to get to the requirement of three.
RF is asserted throughout this state.

4-121

Reframe Controller for the HOTLink Receiver

from any state

(OUT OF LOCK = 1)
OR - -
(DO_REFRAME = 1)

(COUNT2 = 2)

(OUT_OF_LOCK = 0)
AND
(DO_REFRAME = 0)

(RF _ENABLE = 0)

from any state

(ROY = 0) AND
(DO_REFRAME = 0)

(RFDONE_ACK = 0)

(ROY = 0)
AND
(DO_REFRAME = 1)

Figure 4. State Diagram

LOOKJOR_xRDY state

On the fourth clock cycle from the start of RF, the
value of RDY is guaranteed to be valid and the state
machine, in the LOOK_FOR_xRDY state, contin­
ues to assert RF and waits until the HOTLink Re­
ceiver asserts RDY. Once the receiver asserts RDY,
it has successfully reframed and is ready to resume
normal receiver operation. Thus, once an asserted
RDY is detected in the LOOK]OR_xRDY state,
the state machine exits that state and goes back to

the IDLE state. If the reframe was started by an out­
of-lock detection, the transition back to the IDLE
state is immediate; if the reframe was started by the
DO _ REFRAME input, then the state machine goes
to the HANDSHAKE state first.

HANDSHAKE state

The HANDSHAKE state is used to make sure the
reframe controller and the higher-level controller
are consistent with each other. The only way this
state will ever be entered is if the higher-level con-

4-122

Reframe Controller for the HOTLink Receiver

-- Relevant VHDL code for state machine

subtype StateType is bit_vector(O to 2); State Type
constant DISABLED: StateType .- b H111H; State Defns.
constant IDLE: StateType := bHOOO H;
constant START_REFRAME: StateType := b H001H;
constant COUNT_2_CLOCKS: StateType .- b H010H;
constant LOOK_FOR_xRDY: StateType .- b H011H;
constant HANDSHAKE: StateType .- b H100H;
signal current_state, next_state StateType; --State declaration

State Machine Description

if (RESET = '1') then
next_state <= IDLE;

elsif (RF_ENABLE = '0') then
next_state <= DISABLED;

else
case current_state is

when IDLE =>
if (fb_OUT_OF_LOCK = '1') or (DO_REFRAME

next_state <= START_REFRAME;
else

next_state <= current_state;
end if;

when START_REFRAME =>
next_state <= Count_2_Clocks;

when COUNT_2_CLOCKS =>
if (count2 = H10H) then

next_state <= LOOK_FOR_xRDY;
else

next_state <= current_state;
end if;

when LOOK_FOR xRDY =>
if (xRDY = '0') and (DO_REFRAME = '1') then

next_state <= HANDSHAKE;

'1') then

elsif (xRDY = '0') and (DO_REFRAME = '0') then
next_state <= IDLE;

else
next_state <= current_state;

end if;

Figure 5. VHDL Code for State Machine

4-123

~ Reframe Controller for the HOTLink Receiver
_;CYPRESS ================

when HANDSHAKE =>
if (RFDONE_ACK = '1') then

next_state <= IDLE;
else

next_state <= current_state;
end if;

when DISABLED =>
if (RF_ENABLE = '0') then

next_state <= current_state;
else

next_state <= IDLE;
end if;

end case;
end if;

if (clk'event and elk = '1') then
current_state <= next_state;

end if;

Figure 5. VHDL Code for State Machine (continued)

troller initiated a reframe by asserting DO_RE­
FRAME to the reframe controller. Once that re­
frame has been completed by the receiver, the
reframe controller communicates this to the higher­
level controller by asserting RFDONE_HS. Once
the higher-level controller acknowledges this asser­
tion and is ready to proceed with normal receiving
'operation, it will assert RFDONE_ACK as con­
firmation to the reframe controller. It will simulta­
neously deassert DO_REFRAME so that once the
state machine goes back to the IDLE state, that in­
put is deasserted and does not erroneously cause
another immediate pass into the reframe proce­
dure. Once the state machine detects the
RFDONE_ACK assertion, it exits the HAND­
SHAKE state and returns to the IDLE state. The
RF operation is deasserted throughout the HAND­
SHAKE state.

DISABLED state

There is one more state, the DISABLED state,
which is treated separately. As long as RF _EN­
ABLE, the overall controller enable, is asserted, the

state machine will never enter this state. If RF _ EN­
ABLE gets deasserted, the state machine will transi­
tion to the DISABLED state no matter what state it
was in, and it will stay there until RF _ENABLE is
once again asserted. Once RF _ENABLE is reas­
serted, the state machine goes to the IDLE state and
resumes normal operation.

It was mentioned previously that the out-of-lock
flip-flop is set when the out-of-lock condition is de­
tected, and it stays set until the reframe has been com­
pleted. The exact time when the OUT_OF_WCK
flip-flop gets cleared is at the rising clock edge when
the state machine exits the LOOK_FOR_xRDY
state. This is because that is the exact point where
the receiver has signalled to the controller, with
RDY, that it has successfully competed the reframe.

Decode Logic

The error-decode logic is very straightforward, and
the VHDL code for it is shown in Figure 6. The ER­
ROR output is a registered version of the RVS in­
put. The RDISP pRR and UNDEF _CHAR out­
puts are decoded from the D7 - DO, SC;D inputs.
These outputs are also registered.

4-124

i ~ Reframe Controller for the HOTLink Receiver
_, CYPRESS ==============

When the receiver asserts RVS, it will also put a
code for the error type on its eight data outputs. If
this code is E4, E2, or E1 (hex), it indicates the error
is a running-disparity error, (explained earlier), and
the RD ISP _ERR output is asserted. If it is any oth­
er hex code, the receiver has detected some kind of
illegal or undefined character, and the UN­
DEF _CHAR output will be asserted instead. These
outputs are mutually exclusive, i.e., if one is as­
serted, the other must be deasserted. However, it is
only meaningful to decode the data outputs when an
error condition is detected, so the ERROR signal
must be examined by the higher-level controller as
well. If ERROR is not asserted, the output from
RDISP_ERR and UNDEF_CHAR is no longer
valid.

VHDL, CY7C371 Utilization, and
CY7C371 Speed Considerations

The complete VHDL description for this design is
given in Appendix A. The full source code consists
of the fragments shown throughout this application
note along with the other code necessary to mesh it

relevant VHDL code for Decode Logic

if (clk'event and elk

if (RVS = '1') then
ERROR < = '1';

'1') then

if (D = x"E4" or D x"E2" or D
UNDEF_CHAR <= '0';
RDISP_ERR <= '1';

else
UNDEF_CHAR <= '1';
RDISP_ERR <= '0';

end if;
else

ERROR <= '0';
UNDEF_CHAR <= '0';
RDISP_ERR <= '0';

end if;

end if;

together, (process declarations, signal declarations,
and package-entity declarations). As the fragments
and complete source file show, VHDL is a very sim­
ple, efficient way for describing PLD designs. For
example, the counter functions are simply bit vec­
tors that are used in the manner: COUNT < =
COUNT + 1. Upper limits for the counters, clear­
ing functions, resets, and presets are all implement­
ed with a few simple IF-THEN-ELSE statements.
The entire state machine is implemented with a
CASE statement and IF-THEN-ELSE statements
that have a straightforward, natural, one-to-one cor­
respondence with the bubble diagram shown in Fig­
ure 4. The entire set of decode logic is implemented
in a single IF-THEN-ELSE clause. Furthermore,
the VHDL code provided is easy to understand and
can be very easily modified. For example, it can be
modified to interface to different higher-level-con­
troller interfaces than the one assumed in this ap­
plication note, or it could be incorporated into the
higher-level controller design, with that design con­
sisting of other VHDL code and implemented in a
larger FLASH370'" CPLD, a pASIC'" FPGA, or
even a gate array.

x"E1") then

Figure 6. VHDL Code for Decode Logic

4-125

Reframe Controller for the HOTLink Receiver

This design used all 32 of the CY7C371's macrocells
and 37 of its 38 I/O and input pins. It could have
used fewer pins if necessary, by making the various
counters be internal counters only. The outputs of
the counters were brought out to output pins in this
example, however, for easier simulation and debug­
ging. The speed of the CY7C371 ranges from 66
MHz (with a 1S-ns combinatorial propagation delay
and a 12-ns clock-to-output time) to 143 MHz (with
a 8.S-ns combinatorial propagation delay and a blaz­
ing 6-ns clock-to-output time). For this application,
the maximum byte-rate clock of the CY7B933 is
33-MHz, and this and the corresponding set-up and
hold times on the CY7B933 make the CY7C371-66
quite sufficient. The higher-level controller may
have tighter timing requirements, but there is plenty
of speed to be gained by going to the faster speed
bins of the CY7C371. The design can, thus, easily
meet much faster system timing requirements.

Conclusion

The serial data received by the CY7B933 needs to
be framed, i.e., aligned to the proper byte bound­
aries. This must always be done when the serial
communication first begins, and it must always be
redone if the PLL loses lock on the incoming serial
bit stream. This application note described a con­
troller that will manage this operation and provided
some guidelines for determining when the periodic
reframing is necessary. It assumed a particular in­
terface to a higher-level controller, but the design
was done in VHDL, which is provided in the appen­
dix, to make it very easily modifiable and adaptable
to any other specific interface. The controller itself
is implemented in a CY7C371 32-macrocell CPLD,
which had sufficient resources and routability to im­
plement this fairly substantial function. It was able
to do this exceeding system speed requirements
even in its slowest speed bin.

4-126

~ -., ~ Reframe Controller for the HOTLink Receiver
-'CYPRESS ================

Appendix A. VHDL Description

Application Note
Using a CY7C371 as a HOTLink Reframe Controller
Cypress Semiconductor

use work.bv_math.all;
use work.int_math.all;

entity CONTROLLER is port
CLK, RVS, RESET, xRDY, DO_REFRAME, FORCE_RFOUT, RFDONE_ACK,

RF ENABLE in bit;
D in bit_vector(O to 7);
curr_st out bit_vector (0 to 2);
rb_cntr out bit_vector (0 to 6);
err_cntr out bit_vector (0 to 4);
RF, RFDONE_HS, OUT_OF_LOCK, UNDEF_CHAR, RDISP_ERR, ERROR out bit

) ;

end CONTROLLER;

architecture CNTRL933 of CONTROLLER is

subtype StateType is bit _vector (0
constant DISABLED: StateType
constant IDLE: StateType
constant START - REFRAME: StateType
constant COUNT - 2 - CLOCKS: StateType
constant LOOK_ FOR_ xRDY: StateType
constant HANDSHAKE: StateType

signal current_state, next state
signal fb_OUT_OF_LOCK : bit;

signal count2: bit_vector(O to 1);

to 2) ;
. - b"lll";
.- b"OOO";
.- b"OOl";
.- b"010";
:= b"Oll";
. - b"100";

StateType;

signal error_count: bit_vector(O to 4);
signal rcvdbyts_count: bit_vector(O to 6);

begin

State Type
State Definitions

2-bit counter
5-bit counter
7-bit counter

counters: process (CLK, RVS, reset, rcvdbyts_count, error_count,
out_of_lock) begin

if (clk'event and clk = '1') then

if (reset = '1') then
fb_out of lock <= '0';
rcvdbyts_count <= "0000000";
error_count <= "00000";

4-127

= .,~ Reframe Controller for the HOTLink Receiver
,CYPRESS=================

Appendix A. VHDL Description (continued)

elsif (error_count = "10000") then
fb_out_of_lock <= '1';
rcvdbyts_count <= "0000000";
error_count <= "00000";

elsif (rcvdbyts_count = "1000000") then
rcvdbyts_count <= "0000000";
error_count <= "00000";

else
rcvdbyts_count <= rcvdbyts_count + 1;
if (RVS = '1') then

error_count <= error_count + 1;
end if;

end if;

if (current_state LOOK_FOR_xRDY) and (xRDY
fb_out_of_lock <= '0';

end if;

if (current_state = COUNT_2_CLOCKS) then
count2 <= count2 +.1;

else
count2 <= "00";

end if;

end if;

end process; --counters

'0') then

next_st_comb: process (CLK, fb_OUT~OF_LOCK, DO_REFRAME, FORCE_RFOUT, xRDY,
RFDONE_ACK, RESET, RF_ENABLE, current_state) begin

if (RESET = '1') then
next_state <= IDLE;

elsif (RF_ENABLE = '0') then
next_state <= DISABLED;

else
case current_state is

when IDLE =>

if (fb_OUT_OF_LOCK = '1') or (DO_REFRAME
next_state <= START_REFRAME;

else
next_state <= current_state;

end if;

when START_REFRAME =>

4-128

'1') then

Reframe Controller for the HOTLink Receiver

Appendix A. VHDL Description (continued)

if (count2 = "11") then
next state <= LOOK_FOR_xRDY;

else
next_state <= current_state;

end if;

when LOOK_FOR xRDY =>

if (xRDY = '0') and (DO_REFRAME = '1') then
next_state <= HANDSHAKE;

elsif (xRDY = '0') and (DO_REFRAME = '0') then
next_state <= IDLE;

else
next_state <= current_state;

end if;

when HANDSHAKE =>

if (RFDONE_ACK = '1') then
next_state <= IDLE;

else
next_state <= current_state;

end if;

when DISABLED =>

if (RF_ENABLE = '0') then
next_state <= current_state;

else
next_state <= IDLE;

end if;

end case;
end if;

end process; --next_st_comb

outp_comb: process (current_state, FORCE_RFOUT) begin

if (FORCE_RFOUT
RF <= '1';

else

'1') then

case current_state is

4-129

~ ~ Reframe Controller for the HOTLink Receiver
~,CYPRESS ========~=~===

Appendix A. VHDL Description (continued)

when IDLE =>
RF <= '0';
RFDONE_HS <= '0';

when START_REFRAME =>
RF <= '1';
RFDONE_HS <= '0';

when COUNT_2_CLOCKS =>
RF <= '1';
RFDONE_HS <= '0';

when LOOK_FOR_xRDY =>
RF <= '1';
RFDONE_HS <= '0';

when HANDSHAKE =>
RF <= '0';
RFDONE_HS <= '1';

end case;
end if;

end process; --outp_comb

se~assgnmnt: process (clk) begin

if (clk'event and clk = '1') then

current_state <= next_state;

if (RVS = '1') then
ERROR <= '1';
if (D = x"E4" or D x"E2" or D

UNDEF_CHAR <= '0';
RDISP - ERR <= '1' i

else
UNDEF _CHAR <= '1' i

RDISP_ ERR <= '0 ' i

end if;
else

ERROR <= '0';
UNDEF_CHAR <= '0';
RDISP_ERR <= '0';

end if;

end if;

end process; --se~assgnmnt

x"E1") then

4-130

-- -~ Reframe Controller for the HOTLink Receiver
~,CYPRESS =================

Appendix A. VHDL Description (continued)

concurrent assignment statements
outputs and local feedback signals made the same

curr_st <=
rb_cntr <=
err_cntr <=
OUT_OF_LOCK <=

current_state;
rcvdbyts_count;
error_count;
fb_out_of_lock;

end CNTRL933; -- end architecture

HOTLink, Wmp, and F'LAsH370 are trademarks of Cypress Semiconductor Corporation.
pASIC is a trademark of QuickLogic Corporation.

4-131

Implementing a 128Kx32 Dual-Port RAM Using
the FLASH370™

Introduction

More and more communication systems require the
use of very deep, high-speed dual-port memories to
provide a common storage area for use between
processors. System designers are looking for dual­
port memories of 128 KByte and larger in size.
These same systems are using 32-bit buses. These
larger dual-port memories are not readily available
as monolithic devices. As a result, the designer is left
with the task of implementing these devices using
discrete components. A full-featured implementa­
tion would include some static RAM combined with
external support logic, arbitration, and control func­
tions. This application note describes how to imple­
ment a 128K x 32-bit-wide dual-port memory or

.---

Left
LEFT CPU

ADD RESS Address
Interface

*""
!

larger, using high-speed 1M SRAMs and a Cypress
CPLD, the CY7C371. The CPLD, or Complex Pro­
grammable Logic Device, will be used to implement
the memory control functions of the dual-port sys­
tem and will be coded using VHDL.

Dual-Port Block Diagram

A good reference for the function and operation of
a dual-port memory can be found in the application
note in the Cypress Applications Handbook titled
"Understanding Dual-Port RAMs." To reiterate,
the block diagram of a standard dual-port memory
is shown in Figure 1. This block diagram indicates
the various blocks associated with a dual-port.
There are four major blocks: the memory array, the

.----

~~~t 
Address 
Interface 

r-i 

RIGH T 
RESS ADD 

'--- MEMORY '----

LEFT DATA 

OUTPUT 
ENABLE 

DATA READY LEFT PORT 
C 

WRIT 
HIP SELECT 
ECONTROL 

ARRAY 

~ 

LEFT T'C'T 
DATA 

I/F I I 
~~ '-- CONTRO 

(CY7C371) 

,.--

r--
RIGHT 
OATA 

ifF 

r~ 
RIGHT DATA 

OUTPUT 
ENABLE 

RIGHT PORT D ATAREADY 

OL 
CHIP SELECT 
WRITECONTR 

Figure 1. Dual-Port Memory Array Block Diagram 

4-132 



Ll _.~ Implementing a Dual-Port RAM Using FLAsH370 
_;CYPRESS =============== 

arbitration/control function, the right port or inter­
face, and the left port or interface. 

As can be seen from the block diagram in Figure 1, 
there are a series of signals that are required both 
internal and external to this system. The external 
signals are the normal signals that a monolithic 
dual-port chip would have. These are the signals 
that are labeled in the block diagram. The other sig­
nals are the internal signals that are used to allow 
the pieces of this dual-port system to communicate 
with one another. These are the address output en­
ables for the address interface logic, the data output 
enable and the latch enable for the data interface 
logic, and the RAM output enable and write enable. 
These will be discussed in detail later. 

The memory array consists of a single, standard 
SRAM or group of SRAMs to make up the overall 
array size. This array can be expanded in depth and 
width as needed. The arbitration/control logic ac­
cepts asynchronous read or write requests from 
each port or interface and sequences through a se­
ries of internal states that perform the read or write 
operation on the memory array. A CPLD is used in 
this example to implement this logic. The control 
logic must arbitrate between requests as well as syn­
chronize the inputs to the internal clock frequency 
of the control function. The address buffers are used 
to isolate the address bus of the memory array from 
the left and right address ports. This allows the con­
trol-logic CPLD to select the correct address at the 
proper time. The bidirectional, latched data path al­
lows data to be written to or read from the memory 
array. The data is also held in the latch during the re­
mainder of the access. 

Use of SRAM for Dual-Port 

A 128Kx8 SRAM (like the Cypress CY7C109, 25-ns 
SRAM, as used in this note) was chosen here to im­
plement a 128K x 32 sized array. Appendix A shows 
the schematic representation of the design. The ar­
ray can be any size; this note shows this configura­
tion because it depicts how to expand in the width 
direction. Cascading devices to expand the depth of 
the array is just as easily implemented. In either 
case, the contents of the control logic CPLD remain 

the same. The array could also be implemented with 
a single SRAM device if the array size warrants it. 

A Brief Description of the CY7C371 

The CY7C371 is a complex PLD with 32 macrocells, 
32 I/O pins and 6 dedicated input pins (including 2 
clock pins). The macrocells are grouped into two 
Logic Blocks of 16 macrocells each. There is a pro­
grammable interconnect matrix or PIM that con­
nects the two logic blocks to the inputs and to each 
other. The macrocells themselves contain a register 
that can be configured as a T flip-flop, a D flip-flop, 
a level-triggered latch, or can be bypassed for com­
binatorial product terms. Each macrocell can sup­
port up to 16 product terms. For more detailed in­
formation on the CY7C371 and the whole FLASH370 
family of CPLDs, please consult the application 
note "The FLAsH370 1M Family Of CPLDs and De­
signing with Wa1p2 1M " in the Cypress Applications 
Handbook. 

The CY7C371 is well suited to this application. The 
dedicated inputs can be configured with a double re­
gistering mechanism to synchronize asynchronous 
signals so that they can be used synchronously inside 
the CPLD. The double registering will also dramati­
cally reduce the chance of a metastable condition. 
The CPLD architecture is optimal for state machine 
designs and this arbiter requires three state ma­
chines to define it. The double-registered input con­
figuration will be used in this example to resync the 
asynchronous chip select and write control inputs 
from both ports. 

State Machine Design 

The finite state machine that controls the dual-port 
memory array is really comprised of three "depen­
dent" state machines operating concurrently as 
shown in Figure 2. Dependent state machines moni­
tor or depend on the state of another state machine 
in order to change state. The first two machines, 
called "leftside" and "rightside," are identical. 
Their primary task is to monitor the interface of 
both ports. When the chip select input (R _ CS or 
L_CS) goes active (logic LOW), the appropriate 
machine advances from the Ready state to the 

4-133 



lsilEYPRESS =====Im=pI;;;;;e;;;;;m;;;;;e;;;;;n;;;;;tin;;;;;g=a;;;;;D;;;;;u;;;;;a;;;;;I-;;;;;Po;;;;;r;;;;;t;;;;;RAM~=U;;;;;s;;;;;in;;;;;g;;;;;F'LAs=;;;;;H;;;;;3;;;;;7=O 
LEFTSIDE RIGHTSIDE 

RESET 

ALL RETURN TO 'READY' WHEN CS GOES INACTIVE 

Figure 2. Memory Control Function 
State Machine 

Memory Cycle state. The Memory Cycle state will 
start one of the memory access sequences. The 
length of each memory sequence (i.e., the number 
of state machine cycles) can be "tuned" to the access 
time of the SRAMs in the memory array. The me­
mory cycle state machine will cycle back to the 
Ready state at the same time the memory access se­
quence ends and the select input goes inactive. It 
will either wait for a new request or start another 
memory access depending on the state of the other 
state machine ("leftside" or "rightside"). In the case 
where two requests are pending or appear at the 
same time, the left port gets priority. This means 
that the memory access for the left port is per­
formed first. A READY signal (L_READY and 
R_READY) indicates when data is available on ei-

ther port, it can only be active when either select in­
put is active. 

State Machine Implementation 

The actual implementation of the state machines in 
the CY7C371 is done using VHDL. The structure of 
VHDL allows for simplification in coding these de­
pendent state machines; the use of multiple pro­
cesses and the CASE statement prove to be very 
powerful and efficient ways to perform this task. 

Upon reset, both rightside and leftside state ma­
chines enter the Ready state and wait for a memory 
access. The leftside state machine will be used as an 
example. Both sides are identical at this point. Once 
a request is detected [for example L _ CS goes active 
(=0)], the leftside state machine transitions into a 
memory cycle. A priority scheme favoring the left 
port is encoded into the process for both state ma­
chines.1f two accesses occur simultaneously, the left 
one is performed first. If one port request is de­
tected before the other, it is completed while the 
other is held off. This extends the overall access time 
of the memory, but allows for "fair" operation. Each 
memory access sequence, Left Read, Left Write, 
Right Read, and Right Write, is comprised of four 
states. The four states (RO, Rl, R2, REND or WO, 
Wl, W2, WEND) run sequentially, one per clock 
cycle. They are there to allow the proper timing for 
the generation of control signals to the various com­
ponents in the dual-port system. The REND or 
WEND state indicates the end of a memory cycle 
and is also a hold state if the CS is still active for that 
particular port. Once the REND or WEND state is 
reached and the CS is inactive, the state machine re­
turns to the READY state and another access can be 
initiated. 

CY7C371 Signals 

A total of ten outputs are required to control the 
memory array and both the left and right ports. Re­
fer to Appendix A for the l28K x 8 dual-port 
memory array schematic. The SRAM in the array is 
controlled by RAM_OE and RAM_WE. The 
RAM_OE signal is created when either port execu­
tes a read successfully. Therefore, the RAM_OE 

4-134 



~-~ J CYPRESS =====I;;;;;m;;;;;p;;;;;le;;;;;m;;;;;e;;;;;n;;;;;ti;;;;;n~g;;;;;a;;;;;D;;;;;u;;;;;a;;;;;I-;;;;;P~or~t;;;RAM;;~U;;s;in~g~F~LA~SH~3~7~O 

sig~al is enabled during either read sequence only 
durmg the RO through R2 cycles. Writes to the 
SRAM are controlled by the write state machine for 
either port. The RAM_WE is generated for either 
port during the WI and W2 cycles of a write access 
only. The port address inputs are isolated from the 
~emory array by a set of 74FCT244Ts. The left port 
IS controlled by L _ ADD _ OE and is generated dur­
ing the left memory access sequence states 0 
through 2 for either a read or a write to the left port. 
The right port address is controlled in the same 
manner, by using the right memory access sequence 
states 0 through 2. The data buffer functions are im­
plemented using 74FCT543Ts with the "B" (HIGH 
current) side interfaced to the outside and the "P\.' 
side interfaced to the memory array. During reads, 
tbe latch enables (L_LAT_EN, R_LAT_EN) are 
used to hold the data read from the array in the 
latches .. The output enables (L_OE, R_OE) are 
then dnven directly to access the read data. During 
writes, the output enables (L_DAT_OE, 
R_ DAT _ OE) are used to allow the data to pass from 
the outside into the memory array. These output 
enables and latch enables are controlled by the OR 
of the appropriate memory access sequence states. 
Mealy outputs are used for the L READY and 
R_READY signals. These outputs a;-e active when­
ever the respective state machine is in state 2 and the 
CS is active. Using Mealy outputs here allows the 
ready signal to go inactive as soon as the CS input 
(L_CS or R_CS) goes inactive instead of waiting for 
the state machine to transition back to the READY 
state. 

VHDL Code for Controller in 371 

Appendix B contains the VHDL code used for the 
CY7C371 in this design. This code was compiled 
with the Cypress Wwp2 tool and targeted for the 
CY7C371 to generate the programming (JEDEC) 
and simulation file(s). The Nova simulator in the 
Wwp2 tool was used to verify the design. For details 
on these tools please refer to the Warp2 User's 
Guide. Furthermore, a thorough explanation of 

VHDL constructs can be found in the Warp2 Refer­
ence Manual. 

The code in Appendix B starts out by defining the in­
puts and outputs and the internal signals required. 
The first process is for the Chip Select and Write En­
able resync. This is where the double registering oc­
curs, as mentioned in the description of the 
CY7C371 earlier in this application note. The next 
process is where the state machine definitions start. 
It begins by defining the rights ide state machine and 
uses a separate process to define the leftside state 
machine. Buried within each of these processes is 
the Memory Cycle state machine for the READ and 
WRITE cycles of each port. The next process is used 
to define the RAM _ OE and RAM_WE for the 
memory array control. This is a simple IF-THEN­
ELSE clause. The last process is used to generate 
the signal which gets used in the Mealy equations for 
the leading edge of the L READY and R READY 
signals. Lastly, the L_READY and R_READY sig­
nals are defined outside of a process by gating state2 
with the CS input. 

Performance Evaluation 

To evaluate the performance of this dual-port sys­
tem, three different timing scenarios were looked 
at. The first scenario is for an unarbitrated access 
from either port. This assumes that both port state 
machines are in the Ready state and only one access 
oc~urs. The second scenario involves the right port 
bem.g granted access shortly before the left port, 
forcmg the left port to wait. The third involves si­
multaneous accesses from each port. In this case the 
left side has priority (by design) and the right side is 
held off. These cases are shown in the following 
three timing diagrams (Figures 3, 4, and 5). From 
these it is possible to determine the timing of each 
access by counting the number of clock cycles for 
each scenario. 

Table 1 lists the number of clock cycles for each of 
the three cases of Figures 3, 4, and 5. These numbers 
reflect the worst case situations for Case #2 and #3 
where the maximum possible delay is assumed. 

4-135 



CLOCK 

~ 

"CCS 
R_WE 

DVE 
R_STATES 

L_STATES 

ADDJJE 

R_DAT_DE 

rn:::Ef'J 
R_READY 

[J:jEADY 

~M:...DE 

RAM_WE 

CLOCK 

~ 

"CCS 
R_WE 

DVE 
R_STATES 

L_STATES 

ADD_DE 

R_DAT_DE 

I:ATJ=f\J 
R_READY 

L_READY 

RAM_DE 

RAM_WE 

Implementing a Dual-Port RAM Using FLAsH370 

_--IJ..u.cil..!..lo<.>L-_~l(]Q)(]D(@(~....:.R.:.::E,-"ND,,--____ ---,X R WAITCS R WAITCS 

L WAITCS 

LJ 

Figure 3. Timing Diagram-Unarbitrated Access From Right Port 

_--=..:R..:.W.:.:..;A::.:..ITC:::.:S=--__ )(]2)(]DC@(~....:.R=E::..:;ND=__ ____ __IX R WAITCS 

_--=L....:.W"'-A::.:.IT.:;CS"--_______ ..... ~ REND X L WAITCS 

RIGHT r-l LEFT 

Figure 4. Timing Diagram-Right Port Access Before Left Port 

4-136 



= -,-:::Z Implementing a Dual-Port RAM Using FLASH370 
,-cYPRESS =============== 

CLOCK 

~ 

"CCS 
R_WE 

[_WE 

R_STATES R WAITes __ ;.;...;.;;;..;;..;...::...::.. _________ --'~ REND X R WAITes 

L_STATES L WAITes __ ;:;;,;.;;;.;:,;.;:;..::;.,. __ --'~_~RE;;;,N,;;;D~ _____ _'X L WAITes 

ADD_DE LEFT r! RIGHT 

R_DAT_DE 

~ 

R_READY 

[JiEADY 

RAM_DE 

RAM_WE 

Figure 5. Timing Diagram-Simultaneous Access 

Table 1. Access Time in Clock Cycles 

Timing Parameter Case #1 Case #2 Case #3 

LEFT 

Input Set-Up Timing 2 clocks Note 1 2 clocks 

Arbitration Cycle 1 clock Note 1 1 clock 

Memory Access 3 clocks 3 clocks 3 clocks 

Latch Hold Cycle 1 clock 1 clock 1 clock 

Total Number of Clock Cycles 7 clocks 11 clocks 7 clocks 

RIGHT 

Input Set-Up Timing N/Al2] 2 clocks Note 1 

Arbitration Cycle N/A 1 clock Note 1 

Memory Access N/A 3 clocks 3 clocks 

Latch Hold Cycle N/A 1 clock 1 clock 

Total Number of Clock Cycles N/A 7 clocks 11 clocks 

Notes: 
1. Worst case input set-up timing and arbitration 

cycle assumes 7 clock access delay on opposite 
port. 

2. N\A means No Activity on this port. 

4-137 



.~ Implementing a Dual-Port RAM Using FLAsH370 
,CYPRESS ============== 

To calculate the access time in nanoseconds, the fol­
lowing formula is applied: 

tACC = tIS371 + [tCYC371 x #clocks] + tpD543 

Where: 

tACC = total access time 

tIS371 = CY7C371 input register set-up time = 2 ns 

tCYC371 = clock cycle of CY7C371 = 7 ns 

#clocks = number of clocks from Table 1 

tpD543 = 74FCT543Cf transparent to latched prop­
agation delay = 7 ns 

Since the CY7C371 inputs are double registered, 
two clock cycles are required to resync the Chip Se­
lect and Write Enable inputs. If the input set-up tim­
ing can be guaranteed, this internal delay of two 
cycles can be eliminated by using single- or non-reg­
istered inputs. 

Memory Expansion 

The example used here shows that an array of any 
size can be easily implemented. The addition of me­
mories and associated address buffers makes depth 
expansion easy. The width may also be increased by 

cascading memories and adding additional buffers. 
Both techniques would be utilized to expand in 
depth and width. These enhancements are possible 
without making any changes to the CY7C371 Con­
trol Function PLD design. Likewise this design 
could implement a smaller array than shown here, 
again without revising the CY7C371. 

Summary 

This application note has demonstrated the imple­
mentation of a large asynchronous dual-port 
memory array by utilizing standard memory and 
logic devices and the CY7C371. The performance of 
this design is limited by various factors. The access 
time of the SRAM and the clock speed of the 
CY7C371 used are two factors that could improve 
performance without changing the VHDL code for 
the CY7C371. Another option would require some 
design changes, though minor. Making one or both 
ports synchronous with respect to the CPU would 
eliminate the two-clock delay associated with the re­
sync function of the CY7C371. The implementation 
of these improvements offers the designer a few op­
tions to tailor the design to fit specific system re­
quirements and achieve the desired level of perfor­
mance. 

4-138 



RESET m 
~ 
Clock 

17 

r---< 

74FCT244T 

><2.5 

Left 
Address 
Interlace 

DE 

':,.cc 

Implementing a Dual-Port RAM Using FLAsH370 

Appendix A. Schematic 

RAM Address 16:0 

17 
128Kx32 
MEMORY 
ARRAY 

CY7C109 

~ 128Kx8 

CE2 
CE1-

,......(: WE-

I.......£.!. 
r-r-

I r<........,O""'E-"----' 

CY7C109 8 

= 12BKx8 ~ 

CE2 
CE1-

-C WE--c OE-

CY7C109 
128Kx8 

CE2 
CE1-

-C WE-
-I. OE-

CY7C109 

Iiii -= 128Kx8 

CE2 

~ CE1-
WE­
OE-

8 

~ 

8 

~ 
32 

74FCT244T 

x2.5 

Righ1 
Address 
Interface 

RAM DATA 31:0 

B A~~~~A B:~ ~~g ~~ rs: ~g: 
8rJ f----I ~;U r- ~ g~J. LEBA LEBA 

>-_____ '---_C_E_BA_-' CONTROL ==- L-~_C_EBA _____ -< 
'<;7 (CY7C371) 

4-139 



Implementing a Dual-Port RAM Using FLAsH370 

Appendix B. VHDL Code for Controller 

-- Dual-port memory controller 

ENTITY dpram IS 
PORT (clock, r_we_n, r_cs_n, l_we_n, l_cs_n, reset_n: IN BIT; 

ram_oe_n, ram_we_n : OUT BIT; 
r_ready, r_add_oe, r_dat_oe, r_Iat_en OUT BIT; 
I_ready, l_add_oe, l_dat_oe, l_lat_en OUT BIT 
); 

END dprami 

USE work.rtlpkg.all; 

ARCHITECTURE ARCHdpram OF dpram IS 
TYPE ctrl_states IS (waites, rO, rl, r2, rend, wO, wI, w2, wend); 
SIGNAL rightside, leftside : ctrl_states; 
SIGNAL r_we_ndd, r_we_nd, l_we_ndd, l_we_nd BIT; 
SIGNAL r_cs_ndd, r_cs_nd, l_cs_ndd, l_cs_nd BIT; 
SIGNAL r_ready_int, l_ready_int : BIT; 

BEGIN 

--INPUTS 
--OUTPUTS 

--Internal signal declaration 

--Double register the input we and cs signals for sync & metastability hardening 
PROCESS BEGIN 

WAIT UNTIL clock ~ '1' ; 
r_we_ndd <~ r_we_nd; r_we_nd <~ r_we_n; 
l_we_ndd <~ I _we_nd; I _we_nd <~ l_we_ni 
r_cs_ndd <~ r_cs_nd; r_cs_nd <~ r_cs_n; 
l_cs_ndd <~ I _csJld; l_cs_nd <~ l_cs_ni 

END PROCESS; 

--RIGHTS IDE STATE MACHINE 
PROCESS BEGIN 

WAIT UNTIL clock ~ '1'; 
CASE rights ide IS 

WHEN wai tes ::;;> 

r_add_oe <= '1'; r_dat_oe <= '1'; r_lat_en <= '1'; 
--gata state 0 if : r cs is active + L_cs inactive or r_cs active + (l_cs active but at end) 

IF (((r_cs_ndd ~ '0') AND (l_cs_ndd ~ '1')) OR 
((r_cs_ndd ~ '0') AND (l_cs_ndd ~ '0') AND 

((leftside ~ wend) OR (leftside ~ rend)))) THEN 
--start write state machine if WE active 

IF r_we_ndd ~ '0' THEN 
rights ide <= WOi 

r_add_oe <= '0'; r_dat_oe <= '0'; r_lat_en <= '1 / ; 
ELSE 

--start read state machine if WE inactive 
rightside <= rO; 
r_add_oe <= '0'; r_dat_oe <= '1'; r_lat_en <= '1'; 

END IF; 
ELSE 

rights ide <= waites; 
END IF; 

--RIGHTS IDE READ STATE MACHINE 
WHEN rO ~> 

rightside <= rl; 
r_ad~oe <= 'O'i r_dat_oe <= '1'; r_lat_en <= '1'; 

WHEN r1 ~> 
rightside <= r2; 
r_add_oe <= 'O'i r_dat_oe <= '1'; r_lat_en <= '0'; 

WHEN r2 ~> 
rights ide <= rend; 
r_add_oe <= 'l'i r_dat_oe <= 'l'i r_lat_en <= 'l'i 

4-140 



lz-'~ Implementing a Dual-Port RAM Using FLASH370 
'CYPRESS =============== 

Appendix B. VHDL Code for Controller (continued) 

WHEN rend => 
r_add_oe <= 'l'i r_dat_oe <= 'l'i r_lat_en <= '1'; 
IF r_cs_ndd ;::: '1' THEN 

rightside <= waitesi 
ELSE 

rights ide <= rend; 
END IF; 

--RIGHTSIDE WRITE STATE MACHINE 
WHEN wO => 

rights ide <:::: wI i 
r_add_oe <= 'O'i r_dat_oe <= 'O'i r_lat_en <= '1'; 

WHEN w1 => 
rights ide <= w2; 
r_add_oe <= '0'; r_dat_oe <= 'a'; r_lat_en <= 'I'; 

WHEN w2 => 
rights ide <= wend; 
r_add_oe <= 'l'i r_dat_oe <= 'l'i r_lat_en <= 'l'i 

WHEN wend => 
r_add_oe <= '1'; r dat oe <= 'l'i r_lat_en <= '1'; 
IF r_cs_ndd = '1' THEN 

rightside <= waites; 
ELSE 

rights ide <= wend; 
END IF; 

WHEN others => 
rightside <= waites; 
r_add_oe <= 'l'i r_dat_oe <= '1'; r_lat_en <= '1'; 

END CASE; 
END PROCESS; 

--LEFTS IDE STATE MACHINE 
PROCESS BEGIN 

WAIT UNTIL clock = '1'; 
CASE Ieftside IS 

WHEN waites => 
I_add_oe <= '1'; I_dat_oe <= '1'; I_I at_en <= '1'; 

--gato state 0 if l_cs is active + r_cs is inactive or l_cs active + (r_cs active but at end or in waites 
state) 

IF (((I_cs_ndd = '0') AND (r_cs_ndd = '1')) OR 
((I_cs_ndd = '0') AND (r_cs_ndd = '0') AND 

((rightside = wend) OR (rightside = rend) OR (rightside 
--start write state machine if WE active 

IF I_we_ndd = '0' THEN 
leftside <= WOi 

l_add_oe <= '0'; l_dat_oe <= '0'; l_lat_en <= '1'; 
ELSE 

--start read state machine if WE inactive 
lefts ide <= rO; 
I_add_oe <= '0'; I_dat_oe <= '1'; I_lat_en <= '1'; 

END IF; 
ELSE 

leftside <= waites; 
END IF; 

--LEFTS IDE READ STATE MACHINE 
WHEN rO => 

lefts ide <= rl; 
I _add_oe <= '0' ; I _dat_oe 

WHEN r1 => 
leftside <= r2; 
I _add_oe <= '0' ; l_dat_oe 

WHEN r2 => 
leftside <= rend; 
l_add_oe <= '1' ; l_dat oe 

<= '1' ; I - lat - en <= '1' ; 

<= '1' ; l_lat_en <= '0' ; 

<= '1' ; I _lat_en <= '1' ; 

4-141 

waitcs)))) THEN 



Implementing a Dual-Port RAM Using FLASH370 

Appendix B. VHDL Code for Controller (continued) 

WHEN rend ==> 
l_add_oe <; 'l'i l_dat_oe <= 'l'i I_lat_en <= 'l'i 
IF l_cs_ndd '1' THEN 

leftside <= waites; 
ELSE 

lefts ide <= rend; 
END IF; 

--LEFTSIDE WRITE STATE MACHINE 
WHEN wO => 

leftside <= w1; 
1 _add_oe <= '0' ; 1 _dat 

WHEN w1 => 
leftside <= w2; 

_oe 

1 _add_oe <= '0' ; l_dat_oe 
WHEN w2 => 

lefts ide <= wend; 
l_add_oe <= '1' ; 1 _dat_oe 

WHEN wend => 

<= '0' ; 1 - lat - en <= '1' ; 

<= '0' ; I _lat_en <= '1' ; 

<= '1' ; l_lat_en <= '1' ; 

l_add_oe <= 'l'i l_dat_oe <= 'l'i 1 lat_en <= '1'; 
IF l_cs_ndd '1' THEN 

lefts ide <= waites; 
ELSE 

lefts ide <= wend; 
END IF; 

WHEN others => 
leftside <= waites; 
l_add_oe <= '1'i l_dat_oe <= 'l'i l_lat_en <= 'l'i 

END CASE; 
END PROCESS; 

--RAM_OE and RAM_WE control signal logic 
PROCESS BEGIN 

WAIT UNTIL clock = '1'; 
IF «(rightside = waitcs) AND ««r_cs_ndd = '0') AND (l_cs_ndd = '1') AND (r_we_ndd 

«r_cs_ndd = '0') AND (l_cs_ndd = '0') AND (r_we_ndd = '1') AND 
«leftside = wend) OR (leftside = rend)))))) 

OR 
«leftside = waitcs) AND «(l_cs_ndd = '0') AND (r_cs~dd = '1') AND (l_we_ndd 
«l_cs_ndd = '0') AND (r_cs_ndd = '0') AND (l_we_ndd = '1') AND 

«rightside = wend) OR (rightside = rend) OR (rightside = waitcs))))) 
OR 
(rightside = rO) OR (rightside = r1) 

OR 
(leftside = rO) OR (leftside = rl)) 

THEN 
ram_oe_n <= '0 I ; 

ELSE 
raIn_oe_n <= ' l' ; 

END IF; 

IF «leftside = wO) OR (leftside = w1) OR 
(rightside = wO) OR (rightside = w1)) 

THEN 
ram_we_n <= ' 0 ' i 

ELSE 
raItLwe_n <= '1'; 

END IF; 
END PROCESS; 

4-142 

'1')) OR 

'1')) OR 



=a: i~ Implementing a Dual-Port RAM Using FLAsH370 
'CYPRESS~==============================~ 

Appendix B. VHDL Code for Controller (continued) 

--READY signal logic for leading edge of signal 
PROCESS BEGIN 

WAIT UNTIL clock '1'; 
IF ((rightside r1) OR (rightside w1)) THEN 

r_ready_int <= 'a'; 
END IF; 

r_ready_int <= 'I'; 
END IF; 

IF ((1eftside = r1) OR (leftside w1)) THEN 
l_ready_int <= '0'; 

END IF; 
IF ((l_cs_nd = '1') OR (reset_n '0')) THEN 

l_ready_int <= '1'; 
END IF; 

END PROCESS; 

--MEALY outputs for READY signal to turn off as soon as CS goes inactive 
I_ready <= '0' WHEN ((l_ready_int '0') AND (l_cs_nd '0')) ELSE '1'; 
r_ready <= '0' WHEN ((r_ready_int = '0') AND (r_cs_nd = '0')) ELSE '1'; 

END ARCHdpram; 

FLASH370 and WO/p2 are trademarks of Cypress Semiconductor Corporation. 

4-143 



Efficient Arithmetic Designs Targeting 
FLASH370 ™ CPLDs 

Introduction 

The design of fast and efficient arithmetic elements 
is imperative because of its applications in the many 
areas of science and engineering. It is important for 
designers to be aware of the choices available to 
them in selecting an efficient algorithm for their ap­
plication. Even the seemingly simple arithmetic op­
erations tum out to be more complex than one ex­
pects, when attempting to implement them. There 
is a lot of literature available in the field, but very 
little provides the level of detail required to go all 
the way from a concept to a final implementation. 

This application note is intended to help designers 
create efficient arithmetic designs targeting a 
FLAsH370™ complex programmable logic device 
(CPLD). The designer has many alternatives in 
choosing between arithmetic implementations for a 
given design. The decision on the final choice is typi­
cally based on issues like resource availability, 
speed of operation, and modularity. Creating de­
signs in view of the target device's architecture will 
definitely yield better results than implementing a 
generic design on the same device. The discussion 
in this application note addresses arithmetic algo­
rithms, design methodologies, and implementa­
tions tailored to the features and resources offered 
in the FLAsH370 family of CPLDs. These special­
ized arithmetic designs achieve a balanced tradeoff 
between speed/area requirements for a given ap­
plication. In this application note the user is offered 
a wide variety of algorithms and implementations to 
choose from. This variety provides the designer with 
the flexibility to choose the model best suited for the 
target application. This choice is absolutely neces-

sary, since design requirements and constraints vary 
from application to application. 

The discussion assumes that the designer has a good 
feel for the features and resources available in the 
FLAsH370 family of CPLDs. The implementation 
details and design tradeoffs in building adders, sub­
tracters, equality and magnitude comparators are 
addressed in this application note. This application 
note includes many VHDL (VHSIC Hardware De­
sign Language) examples to illustrate the working 
and implementation of the algorithms presented. 
Block diagrams are also presented wherever neces­
sary to help the designer understand the design 
better. 

All algorithms in this application note are described 
within the same framework, so that the similarities 
between different algorithms become evident and 
consequently, the basic principle behind these algo­
rithms can be easily identified. This application 
note is also intended to create a solid foundation 
from which designers can pick up ideas and concepts 
and create their own algorithms/implementations. 

The VHDL code presented in this application note 
are intentionally presented in a simple style. The in­
tent of this application note is to allow a designer to 
visualize and implement arithmetic models effi­
ciently and not to explain how to code them. All 
VHDL keywords are presented in italics. This ap­
plication note also assumes that the reader has a 
good grasp of the fundamentals of VHDL. Some of 
the LPM (library of parameterized modules) ele­
ments for CPLDs provided in the Wap 1M software 
are built using the concepts and final implementa­
tions discussed here. This provides the user with an 
excellent opportunity to choose the best algorithm 

4-144 



= rcYPRESS ==;;;;;E;;;;;ffi;;;;;lc;;;;;i;;;;;eD;;;;;t;;;;;A;;;;;r;;;;;it;;;;;h;;;;;m;;;;;e;;;;;tI;;;;;" c;;;;;D;;;;;e;;;;;s;;;;;ig;;;;;D;;;;;s;;;;;T:;;;;;a;;;;;rg;;;;;e;;;;;ti;;;;;D;;g;;;;;F;;;;;LA;;;;;S;;;;;H;;;;;3;;;;;7;;;;;O;;;;;C;;;;;P;;;;;L;;;;;D;;;;;s= 

and implementation tailored to the target applica­
tion. 

Adders 

The addition of two operands is the most frequent 
operation in almost any arithmetic unit. The two­
operand adder is commonly used in performing 
additions and subtractions. It is also used when 
executing complex arithmetic functions like multi­
plication and division. 

ADD : I-Bit Full Adder 

The basic component used in adding two operands 
is called a Full Adder. The full adder element will be 
henceforth referred to as the 'ADD' component. 
The block diagram and functionality of ADD is 
shown in Figure 1. A and B are the two operands to 
be added and CI is the Carry-in to the component. 
SUM and CO are the Sum and Carry-out from the 
component. 

The VHDL code describing the functionality of the 
ADD component is shown here. This design takes 
one pass through the Logic (AND-OR) array to fit 
into a FLAsH370 CPLD. The ADD component 
instantiated in the VHDL code shown has exactly 
the same functionality shown in Figure 1. 

-- This VHDL code invokes the im­
plementation of the MATH PKG ele­
ment ADD 

USE WORK.CYPRESS.ALL; 
USE WORK.MATHPKG.ALL; 

ADD: 1-Bit Full Adder (1 Pass) 

A B CI 

GJ 

ENTITY add IS 
PORT (CI: IN BIT; 

A, B: IN BIT; 
SUM: OUT BIT; 
CO: OUT BIT) ; 

END add; 

ARCHITECTURE archadd OF add IS 

BEGIN 

il: add PORT MAP(CI,A,B,SUM,CO); 

END archadd; 

RADD12 : 12-Bit Ripple Carry Adder 

An n-bit two-operand ripple carry adder can be built 
using n ADD components. All the 2n input bits are 
available to the adder at the same time. However 
the carries have to propagate from the LSB position 
to the MSB. In other words, we need to wait until 
the carries ripple through n ADD components to 
claim that the SUM outputs are correct. Because of 
this rippling effect, the adder is referred to as the 
Ripple Carry Adder. This is the simplest form of ad­
ding any two operands. It uses the least amount of 
area compared to all other implementations but, on 
the negative side, is the slowest implementation. 
This is typically the implementation provided with 
a synthesis tool when it recognizes the '+' operator 
in a VHDL code. The block diagram of a 12-bit Rip­
ple Carry Adder (RADD12) is shown in Figure 2. 

The VHDL code describing the functionality of the 
RADD12 component is shown here. This design 
takes 12 passes through the logic array to fit into a 
FLASH370 CPLD. The outputs of the LSB ADD 

(Basic building block) 

CO SUM 

Functionality: SUM = A XOR B XOR CI 
CO = (A AND B) or (A AND CI) or (B AND CI) 

Figure 1. Block Diagram and Functionality of a Full Adder 

4-145 



55 arcYPRESS ==;;;;;E;;;;;f1i;;;;;IC;;;;;ie;;;;;n;;;;;t;;;;;Ari;;;;;·;;;;;th;;;;;m=et;;;;;ic;;;;;D=es;;;;;ig;;;;;n;;;;;s;;;;;Th=rg.e;;;;;ti;;;;;n;;;;;g;;;;;F'LA=S;;;;;H;;;;;3;;;;;70=C;;;;;P;;;;;L;;;;;D=s 

RADD12: 12-8it Ripple-Carry-Adder (12 Passes) 

A3 83 A2 82 A1 81 AO 80 CI 

A7 87 

A 11 811 

Figure 2. Block Diagram of a 12-Bit Ripple Carry Adder 

component are produced in the first pass. The out­
puts of the succeeding ADD components are pro­
duced with every alternate pass through the logic 
array. Each pass through the logic array has a time 

penalty associated with it. It is recommended that 
the reader understand the timing issues associated 
with the F'LAsH370 CPLD (refer to the "CY7C37x 
Timing Parameters" application note). 

--This VHDL code describes the implementation of a generic 
--12 bit ripple carry adder. 

USE WORK.CYPRESS.ALL; 
USE WORK.MATHPKG.ALL; 

ENTITY rippleadd12 IS 
PORT (CI: IN BIT; 

All, A10, A9, AS, A7, A6, A5, A4, A3, A2, A1, AO : IN BIT; 
B11, B10, B9, BS, B7, B6, B5, B4, B3, B2, B1, BO : IN BIT; 
SUM11 , SUM10, SUM9, SUMS, SUM7, SUM6, SUM5, SUM4, 
SUM3, SUM2, SUM1, SUMO: OUT BIT; 
CO: OUT BIT); 

END rippleadd12; 

ARCHITECTURE archripple12add OF rippleadd12 IS 

4-146 



1s: ~YPRESS ==;;;;E;;;;ffi;;;;IC;;;;ie;;;;D;;;;t ;;;;A;;;;ri;;;;th;;;;m=et;;;;ic;;;;D;;;;e;;;;s;;;;ig;;;;D;;;;s;;;;Th=rg;;;;e;;;;ti;;;;D;;;;g;;;;F;;;;LA;;;;S;;;;H;;;;3;;;;70;;;;C=P;;;;L;;;;D=s 

SIGNAL Cl, C2, C3, C4, C5, C6, C7, C8, C9, C10, Cll : BIT; 

attribute synthesis_off of Cl, C2, C3, C4, C5, C6, C7, C8, C9, C10, Cll 
signal is true; 

BEGIN 

il: add 
i2: add 
i3: add 
i4: add 
i5: add 
i6: add 
i7: add 
i8: add 
i9: add 
ilO: add 
ill: add 
i12: add 

PORT MAP(CI,AO,BO,SUMO,Cl); 
PORT MAP(Cl,Al,Bl,SUM1,C2); 
PORT MAP(C2,A2,B2,SUM2,C3); 
PORT MAP(C3,A3,B3,SUM3,C4); 
PORT MAP(C4,A4,B4,SUM4,C5); 
PORT MAP(C5,A5,B5,SUM5,C6); 
PORT MAP(C6,A6,B6,SUM6,C7); 
PORT MAP(C7,A7,B7,SUM7,C8); 
PORT MAP(C8,A8,B8,SUM8,C9); 
PORT MAP(C9,A9,B9,SUM9,C10); 
PORT MAP(C10,A10,B10,SUM10,Cll); 
PORT MAP(Cll,All,Bll,SUMll,CO); 

END archripple12add; 

The need and use for the 'Synthesis_off' attribute 
used in the VHDL code will be discussed a little 
later. 

The VHDL code describing the functionality of the 
ADD2WC component is shown here. This design 
takes one pass through the logic array to fit into a 
FLAsH370 CPLD. 

ADD2WC: 2-Bit Adder with Carry-Out 

The concept of the ADD component can be ex­
tended to create a 2-bit adder which takes in two 
2-bit operands with a carry-in and produces a 2-bit 
SUM and a carry-out as outputs. This component 
will be referred to as the ADD2WC (2-bit adder 
with a carry-out). This also takes just one pass 
through the logic array to yield results. The block 
diagram of ADD2WC is shown in Figure 3. AO, Al 
and BO, Bl are the two operands to be added and CI 
is the Carry-in to the component. SO, SI and CO are 
the Sums and Carry-outs from the component. 

ADD2WC: 2-8it Adder (1 Pass) 

A1 ,AO 81 ,80 CI 

ts 
CO SUM1,SUMO 

Figure 3. A 2-Bit Full Adder with a Carry-Out 

--VHDL code describing a 2-bit adder with carry-out. 

USE WORK.RTLPKG.ALL; 

PACKAGE add2wc-pkg IS 
COMPONENT add2wc PORT ( 

CI : IN BIT; 
Al,AO: IN BIT; 
Bl, BO: IN BIT; 
SUM1,SUMO : OUT BIT; 

4-147 



7, ?cYPRESS ==;;;;;E;;;;;ffi;;;;;lc;;;;;ie;;;;;D;;;;;t;;;;Ari;;;;;, ';;;;;th;;;;;m=et;;;;;ic;;;;;D;;;;;e;;;;;s;;;;;ign=s;;;;;T:;;;;;Q;;;;;fg;;;;;e;;;;;ti;;;;;D;;;;;g;;;;;FLA=S;;;;;H3=70=C;;;;;P;;;;;L;;;;;D=s 

CO: OUT BIT) ; 
END COMPONENT; 

END add2wc-pkg; 

ENTITY add2wc IS 
PORT (Cl : IN BIT; 

A1,AO: IN BIT; 
B1,BO: IN BIT; 
SUM1,SUMO : OUT BIT; 
CO: OUT BIT) ; 

END add2wc; 

ARCHITECTURE archadd2wc OF add2wc IS 

BEGIN 

SUMO <= AO XOR BO XOR Cl; 
SUM1 <= A1 XOR B1 XOR ( (AO AND BO) OR (AO AND Cl) OR (BO AND Cl)); 
CO <= (AO AND BO AND B1) 

OR (AO AND BO AND A1) 
OR (Cl AND BO AND B1) 
OR (Cl AND BO AND A1) 
OR (Cl AND AO AND B1) 
OR (Cl AND AO AND A1) 
OR (A1 AND B1); 

END archadd2wc; 

The concept of ADD2WC can be extended to de­
scribe the ADD2NC component. The ADD2NC 
component is a cut-down version of the ADD2WC 
component, and does not have a carry-out. The 
VHDL code and block diagram for the ADD2NC 
component is easy to extrapolate and is not shown 
here. 

R2ADD12: 12-Bit Ripple Carry Adder using the 
ADD2WC as a Basic Block 

A 12-bit adder using the ADD2WC component is 
shown here. This adder takes 6 passes to produce all 

results, as opposed to the 12 passes needed for the 
12-bit adder using the ADD component. The out­
puts of the LSB ADD2WC component are pro­
duced in the first pass. The outputs of the succeed­
ing ADD2WC components are produced with every 
alternate pass through the logic array. The number 
of macrocells used by this scheme is less than 
RADD12, but the product term count is higher. A 
comparison of different schemes is presented later. 
The block diagram of R2ADD12 is shown in Figure 
4. The VHDL code describing the functionality is 
also attached. 

4-148 



Efficient Arithmetic Designs Targeting FLAsH370 CPLDs 

R2ADD12: 12-Bit Adder using ADD2WC (6 Passes) 

A7,A6 B7,B6 A5,A4 B5,B4 A3,A2 B3,B2 A1,AO B1,BO CI 
J I r-- I I r- 1 L .r-- I I I 

AD02WC ADD2WC ADD2WC AljQ2'#G 
, ,~i<i,;(/ 

I I I I I 
SUM7,SUM6 SUM5,SUM4 SUM3,SUM2 SUM1,SU MO 

A11,A10B11,B10 A9,A8 B9,B8 
I I r-- I I 

ADD2WC ADD2WC 

: 

CO I I I I 
SUM11 ,SUM1 0 SUM9,SUM8 

Figure 4. Block Diagram of a 12-Bit Ripple Carry Adder Using 2-Bit Adders 

--A l2-bit Ripple carry adder built using the ADD2WC element as a basic 
--building block 

USE WORK.RTLPKG.ALL; 
USE WORK.ADD2WC.ALL; 

ENTITYaddl2 IS 
PORT(CI : IN BIT; 

All,AlO,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO: IN BIT; 
Bll,BlO,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO: IN BIT; 
SUMll,SUMlO,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4, 
SUM3,SUM2,SUMl,SUMO : OUT BIT; 
CO: OUT BIT} ; 

END addl2; 

ARCHITECTURE archaddl2 OF addl2 IS 

SIGNAL C2, C4, C6, C8, ClO : BIT; 

attribute synthesis_off of C2, C4, C6, C8, ClO signal is true; 

BEGIN 

il: add2wc PORT MAP(CI,Al,AO,Bl,BO,SUMl,SUMO,C2}; 
i2: add2wc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2,C4}; 
i3: add2wc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4,C6}; 

4-149 



~ ~ Efficient Arithmetic Designs Targeting FLAsH370 CPLDs 
~'CYPRESS ================ 

i4: add2wc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6,C8); 
i5: add2wc PORT MAP(C8, A9, A8, B9, B8, SUM9 ,SUM8, C10) ; 
i6: add2wc PORT MAP(C10,All,A10,Bll,B10,SUMll,SUM10,CO); 

END archadd12; 

ADD3WC: The 3-Bit Ripple Carry Adder 

There is yet another way we could implement an n­
bit ripple carry adder targeting the FLASH370 
CPLDs. We can implement the n-bit adder using 
the 3-bit group adder (ADD3WC) as opposed to a 
2-bit group adder (ADD2WC). The problem with 
a 3-bit group adder is the sum-splitting of the func­
tionality of the MSB Sum bit (SUM2). This takes 
more than 16 product terms (PTh) and takes 2 passes 
through the logic array to produce the result. All 
other results, including the carry-out, take less than 
16 P'Th and take just one pass to produce results. To 
control sum-splitting the functionality of SUM2, the 
intermediate carry C2 is created and assigned to a 
node. C2 is then used to create the functionality of 
SUM2. Note that the functionality of CO takes less 
than 16 P'Th and is generated at the first pass, so the 
carry rippling is faster. This makes this component 

-- 3-Bit Adder with Carry-out 

PACKAGE add3wc-pkg IS 
COMPONENT add3wC 

PORT (Cl : IN BIT; 
A2,Al,AO: IN BIT; 
B2,Bl,BO: IN BIT; 
SUM2,SUM1,SUMO : OUT BIT; 
CO: OUT BIT) ; 

END COMPONENT; 
END add3wc-pkg; 

ENTITY add3wc IS 
PORT (Cl : IN BIT; 

A2,Al,AO: IN BIT; 
B2,Bl,BO: IN BIT; 
SUM2,SUM1,SUMO : OUT BIT; 
CO: OUT BIT) ; 

END add3wc; 

ARCHITECTURE archadd3wc OF add3wc IS 

SIGNAL C2: BIT; 

a faster building block. This scheme still takes two 
passes to create the functionality of SUM2, but with­
out getting sum-split. The resource utilization of a 
12-bit adder using the 3-bit group adder is presented 
later. The block diagram of the ADD3WC compo­
nent is shown in Figure 5. 

ADD3WC: 3-Bit Adder (2 Passes) 

A2 .. 0 B2 .. 0 CI 

• CO SUM2 .. 0 

Figure 5. A 3-Bit Full Adder with a Carry-Out 

attribute synthesis_off of C2:. signal is true; 

4-150 



Efficient Arithmetic Designs Targeting FLASH370 CPLDs 

BEGIN 

SUMO <= AO XOR BO XOR Cl; 
SUMl <= Al XOR Bl XOR ((AO AND BO) or (AO AND Cl) or (BO AND Cl»; 
SUM2 <= A2 XOR B2 XOR C2; 

C2 <= (AO AND BO AND Bl) 
OR (AO AND BO AND Al) 
OR (Cl AND BO AND Bl) 
OR (Cl AND BO AND Al) 
OR (Cl AND AO AND Bl) 
OR (Cl AND AO AND Al) 
OR (Al AND Bl); 

CO <= (A2 AND B2) OR ((Al AND Bl) AND (A2 OR B2» 
OR ((AO AND BO) AND (Al OR Bl) AND (A2 OR B2) ) 
OR (Cl AND (AO OR BO) AND (Al OR Bl) AND (A2 OR B2»; 

END archadd3wc; 

Function and Use of the Synthesis_off Attribute 

The Synthesis_off attribute causes a signal to be 
made into a factoring point for logic equations and 
keeps the signal from being minimized out during 
optimization. 

The attribute is useful for the following reasons: 

1. It gives the user control over which equations or 
sub-expressions need to be factored into a node. 

2. It helps in cutting down on compile time for de­
signs that have a lot of 'signal redirection' (sig­
nals getting inverted/reassigned to other sig­
nals). This attribute provides the Logic 
optimizer a better control over the optimization 
process by reducing the number of signals it 
needs to deal with. 

3. It provides better results for designs where a sig­
nal with a large functionality is being used by 
many other signals. If left alone, the fitter would 
collapse all the internal signals (which is desir­
able in many cases) and may drive the design's 
resource requirements beyond the available 
limits. 

By using the Synthesis _off attribute, the user can as­
sign the commonly-used signal to a node and bring 
down the resource utilization. 

A side effect of using the Synthesis_off attribute is 
that the design will now take an extra pass through 
the array to achieve the same functionality. The ex­
tra pass may be required anyway, if more than 16 
PTs are required. 

This attribute is only recommended for use on com­
binatorial signals. Registered signals are assigned 
to a node by natural factoring and the Synthesis_off 
attribute on these signals is redundant. 

This attribute can be associated with signals de­
clared both in VHDL and schematics. The 'BUF' 
component can also be used in schematics and 
VHDL to achieve the same results as the Synthe­
sis_ off attribute. Please refer to the Walp Synthesis 
manual for more details. 

Carry-Lookahead Principle 

The predominant delay in adders is due to carry 
propagation. The carry-lookahead principle aims at 
minimizing this delay. The sum and carry equations 
for each bit position in an adder is given by: 

S; = ~ xor 8; xor C; 
C;+l = (~ and 8;) or (~and C;) or (8; and C;) 

A carry is generated whenever ~ and B; are both' l' 
and a carry is propagated whenever either A; or B; 
are '1'. 

4-151 



T!h?cYPRESS ==;;;;;E;;;;;ffi;;;;;IC;;;;;ie;;;;;D;;;;;t;;;;;Ar;;;;;i;;;;;th;;;;;m=et;;;;;ic;;;;;D;;;;;e;;;;;s;;;;;ig;;;;;D;;;;;s;;;;;Th=rg;;;;;e;;;;;ti;;;;;D;;;;;g;;;;;F;;;;;LA;;;;;S;;;;;H;;;;;3;;;;;70;;;;;.;;;;;C;;;;;P;;;;;L;;;;;D=s 

Generate term : 
Propagate term: 

(Gi = 1\ and lJj) 
(Pi = 1\ or lJj) 

Note: Pi can be (1\ xor lJj), but 'OR' is easier to im­
plement than an 'XOR' in CPLDs. 

Rewriting the equation for Q + 1, we get 

C;+I = ~ or (Pi and C;) 

Writing the equations for a 4-bit carry-Iookahead 
adder: 

CI = Go or (Po and (() 
C2 = GI or (PI and CI) 
C3 = ~ or (P2 and C2) 
<4 = G:J or (P3 and C3) 

where Gi = (1\ and lJj) and Pi = (1\ or lJj). The val­
ues of Gi and Pi can be generated in a single pass 
through the PIM array. The carry-in to any of the 
bit positions can be computed in a second pass 
through the array, based upon the values of the vari­
ous GiS and PiS generated in the. first pass. 

The generalized carry-Iookahead equation to com­
pute the different carry-in signals is shown here: 

C;+ I = G; or (Pi and G;.I) or (Pi and Pi-I and G;-I) 
or ••• or (Pi and Pi-I and ... and Po and (() 

. We can further speed up the addition by providing 
a carry-lookahead over groups in addition to the in­
ternal lookahead within the group. We define a 
group-generated carry E and a group-propagated 
carry R, for a group of size 4 as follows: E = '1' if a 
carry-out (of the group) is generated internally and 
R = '1' if a carry-in (to the group) is propagated in-

ternally to produce a carry-out (of the group). The 
boolean equations for these carries are: 

E = G3 or (P3 and ~) or (P3 and P2 and GI) or 
(P3 and P2 and PI and Go) 

R = (P3 and P2 and PI and Po) 

The group-generated and group-propagated carries 
for several groups can now be used to generate 
group carry-ins in a manner similar to single-bit 
carry-ins. 

The selection of the group size plays an important 
role in obtaining the best possible implementation 
for a carry-Iookahead adder in a CPLD. Some of 
the different possible implementations for a 12-bit 
carry-Iookahead adder are shown in Figure 6. 

The number of passes each of these implementa­
tions take and the number of product terms (PTs) 
and macrocells (MCs) used vary for each scheme 
(see Table 2 in the "Comparison of Resource Uti­
lization for Different Schemes in Building a 12-Bit 
Adder" section). Each scheme has its own advan­
tage over the other. The user needs to judiciously 
choose between the different schemes based on the 
application, bit-size, and the CPLD chosen and its 
architectural constraints. The number of passes 
taken through the logic is a direct representation of 
the total time taken for producing final results. 
Each extra pass results in a time penalty. The rule 
to follow is, "The smaller the number of passes 
through the logic array, the faster your application 
runs." The implementation of a 12-bit carry-Iooka­
head adder with different group-sizes is presented 
next. 

x~xxxxlxx~x~x 
XXIXXXXpeXPCXFX 

- Adder split up into 6 groups of 2 

xx~xxxxx~XXX 
XX~XXXXXXIXXX 

xxxxxxxx~xxx 
XXXXXXXXpcXXX 

- Adder split up into 4 groups of 3 

- Adder split up into 3 groups of 4 

Figure 6. Some Possible Implementations for 12-Bit Carry-Lookahead Adder 

4-152 



- -" ~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
~;CYPRESS~==============================~ 

FC2ADD12: 12-Bit Full Carry-Lookahead Adder 
Using a Group-Size of2 Bits 

The FLASH370 CPLD can access up to 16 PTs for 
each macrocell. The functionality of any signal that 
has more than 16 PTh is sum-split to fit it into multi­
ple MCs. The number of PTs utilized for signals that 
sum-split is large and is an undesirable option. With 
the 2-bit group-size implementation we can accom­
modate the entire functionality of a 32-bit full carry­
lookahead adder without any of the signals getting 
sum-split. The scheme takes a maximum of three 
passes through the logic array for all adder sizes up 
to 32 bits to generate outputs. The various values of 

Es and Rs, SUM1, SUMO, and C2 are generated in 
the first pass. All the other intermediate carries are 
generated in the second pass and the various SUM 
results are generated in the third pass. A key point 
to note is that the value of CO is produced in the se­
cond pass, even though the various SUM outputs 
are generated in the third pass only. This makes the 
component cascadable and modular. Refer to Table 
2 for details on the resource utilization of different 
12-bit adder implementations. The FC2ADD12 is 
built using the ADD2WC and ADD2NC as basic 
building blocks. The block diagram of a 
FC2ADD12 is shown in Figure 7. The VHDL code 
for the design is also presented. 

FC2ADD12: 12-Bit Fast Carry Adder (3 Passes) 

A7,A6 87,86 C6 A5,A4 B5,B4 C4 A3,A2 83,82 C2 A1,AO 81,80 CI 

ADD2NC AD02NC AD02WC 

To CLA §?UM3,SUM2'--_-i SUM1,SUMO 

co Carry-Iookahead Unit 

'------,C8 

ADD2NC ADD2NC 

Figure 7. 12-Bit Full Carry-Lookahead Adder Using ADD2WC and ADD2NC 

--A 12-bit Full carry-lookahead adder built using the ADD2WC and ADD2NC 
-- elements 

USE WORK.RTLPKG.ALL; 
USE WORK.ADD2WC.ALL; 
USE WORK.ADD2NC.ALL; 

ENTITY fc2add12 IS 
PORT(CI : IN BIT; 

All,AlO,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO: IN BIT; 
Bll,BlO,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO: IN BIT; 
SUMll,SUMlO,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4, 

4-153 



!!I!!!::-~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
_;CYPRESS ============== 

SUM3,SUM2,SUM1,SUMO 
co: OUT BIT) ; 

OUT BIT; 

END fc2add12; 

ARCHITECTURE archfc2add12 OF fc2add12 IS 

SIGNAL C2, C4, C6, C8, C10 : BIT; 
SIGNAL El,E2,E3,E4,E5 : BIT; 
SIGNAL Rl,R2,R3,R4,R5 : BIT; 
attribute synthesis_off of El,E2,E3,E4,E5 : signal is true; 
attribute synthesis_off of Rl,R2,R3,R4,R5 : signal is true; 
attribute synthesis_off of C2, C4, C6, C8, C10 : signal is true; 

BEGIN 

il: add2wc PORT MAP(CI,Al,AO,Bl,BO,SUM1,SUMO,C2); 
i2: add2nc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2); 
i3: add2nc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4); 
i4: add2nc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6); 
i5: add2nc PORT MAP(C8,A9,A8,B9,B8,SUM9,SUM8); 
i6: add2nc PORT MAP(C10,All,A10,Bll,B10,SUMll,SUM10); 

El <= (A3 AND B3) OR «A3 OR B3) AND (A2 AND B2)); 
Rl <= (A3 OR B3) AND (A2 OR B2); 

C4 <= El OR (C2 AND Rl); 

E2 <= (A5 AND B5) OR «A5 OR B5) AND (A4 AND B4)) ; 
R2 <= (A5 OR B5) AND (A4 OR B4) ; 

C6 <= E2 OR «El OR (C2 AND Rl)) AND R2); 

E3 <= (A7 AND B7) OR «A7 OR B7) AND (A6 AND B6)); 
R3 <= (A7 OR B7) AND (A6 OR B6); 

C8 <= E3 OR «E2 OR «El OR (C2 AND Rl)) AND R2)) AND R3); 

E4 <= (A9 AND B9) OR «A9 OR B9) AND (A8 AND B8)); 
R4 <= (A9 OR B9) AND (A8 OR B8) ; 

C10 <= E4 OR «E3 OR «E2 OR «El OR (C2 AND Rl)) AND R2)) AND R3)) AND 
R4) ; 

E5 <= (All AND Bll) OR «AllOR Bll) AND (A10 AND B10)); 
R5 <= (AllOR Bll) AND (A10 OR B10); 

co <= E5 OR «E4 OR «E3 OR «E2 OR «El OR (C2 AND Rl)) AND R2)) AND 
R3)) AND R4)) AND R5); 

END archfc2add12; 

4-154 



Efficient Arithmetic Designs Targeting FLASH370 CPLDs 

FC3ADD12: 12-Bit Fast Carry Adder (4 Passes) 

A11 .. 9 B11..9 C9 A8 .. 6 B8 .. 6 C6 AS .. 3 BS .. 3 C3 A2 .. 0 B2 .. 0 CI 

~ 
To CLA SUM2 .. 0 

A003WC 

co 
SUM11 .. 9 

A003NC A003NC 

To CLA SUMS .. 3 

Carry-Lookahead Unit CI 

Figure 8. 12-Bit Full Carry-Lookabead Adder using ADD3WC and ADD3NC 

FC3ADD12: 12-Bit Full Carry-Lookabead Adder 
using a Group-Size of 3 Bits 

This is very similar to the FC2ADD12, differing in 
the group-size of the adder used as the basic build­
ing block. The basic building blocks in this scheme 
are the ADD3WC and the ADD3NC components. 
The VHDL code attached and the block diagram in 
Figure 8 illustrate the design. This scheme takes 
four passes through the logic array to yield all the re­
sults. The Es and the Rs are generated in the first 
pass. The intermediate carries C3, C6, and C9 are 
generated in the second pass. The carries internal 
to the group are generated in the third pass and the 
final SUM outputs in the fourth pass. As a different 

approach, the CO is generated by the MSB 
ADD3WC as opposed to the Carry-Iookahead unit. 
This results in CO being generated in the third pass 
as opposed to the second pass. The VHDL code 
clearly indicates the manner in which the model is 
built. 

For some bit-sizes, given that the 3-bit group-size is 
odd-numbered, the designer will have to choose a 
non-modular structure in building the adder. For 
example, a 32-bit adder cannot be built using just 
ADD3NCs and can be built using 10 ADD3NCs and 
one ADD2NC. The designer needs to choose the fi­
nal implementation based on the constraints of the 
application. 

--12-Bit Fast carry-Lookahead adder with 3-bit groups 

USE WORK.ADD3WC.ALL; 
USE WORK.ADD3NC.ALL; 

ENTITY fc3add12 IS 
PORT ( 

All,A10,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO IN BIT; 
Bll,B10,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO IN BIT; 
CI : IN BIT; 
CO : OUT BIT; 
SUMll,SUM10,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,SUM3, 
SUM2,SUM1,SUMO : OUT BIT); 

END fc3add12; 

ARCHITECTURE fc3add12arch OF fc3add12 IS 

SIGNAL El,E2,E3 : BIT; 
SIGNAL Rl,R2,R3 : BIT; 
SIGNAL C3,C6,C9 : BIT; 

4-155 



~~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
~'CYPRESS ================ 
attribute synthesis_off of C3,C6,C9 
attribute synthesis_off of E1,E2,E3 
attribute synthesis_off of R1,R2,R3 

BEGIN 

signal is true; 
signal is true; 
signal is true; 

i1: add3nc PORT MAP(Cl,A2,A1,AO,B2,B1,BQ,SUM2,SUM1,SUMO); 
i2: add3nc PORT MAP(C3,A5,A4,A3,B5,B4,B3,SUM5,SUM4,SUM3); 

i3: add3nc PORT MAP(C6,A8,A7,A6,B8,B7,B6,SUM8,SUM7,SUM6); 
i4: add3wc PORT MAP(C9, All, A10, A9, Bll, B10, B9, SUMll, SUM10, SUM9, CO) ; 

E1 <= (A2 AND B2) 
OR «A1 AND B1) AND (A2 OR B2) ) 
OR «AO AND BO) AND (A1 OR B1) AND (A2 OR B2) ) ; 

R1 <= (A2 OR B2) AND (A1 OR B1) AND (AO AND BO); 

C3 <= E10R (R1 AND Cl); 

E2 <= (A5 AND B5) 
OR «A4 AND B4) AND (A5 OR B5) ) 
OR «A3 AND B3) AND (A4 OR B4) AND (A5 OR B5)); 

R2 <= (A5 OR B5) AND (A4 OR B4) AND (A3 AND B3); 

C6 <= E2 OR (E1 AND R2) OR (R2 AND R1 AND Cl) ; 

E3 <= (A8 AND B8) 
OR «A7 AND B7) AND (A8 OR B8)) 
OR «A6 AND B6) AND (A7 OR B7) AND (A8 OR B8)); 

R3 <= (A8 OR B8) AND (A7 OR B7) AND (A6 AND B6) ; 

C9 <= E3 OR (E2 AND R3) OR (E1 AND R3 AND R2) OR (R3 AND R2 AND R1 AND Cl); 

END fc3add12arch; 

FC4ADDI2: 12-Bit Full Carry-Lookabead Adder 
using a Group-Size of 4 Bits 

This is very similar to the FC2ADD12 and, again, 
differs in the group-size of the adder used as the ba­
sic building block. The basic building block in this 
scheme is the ADD4NC component. The 
ADD4NC component is built using a combination 
ofADD2WCandADD2NCin the same order. This 
component is replicated to create the adder of the 
desired size. In the very last stage, two ADD2WCs 
are used instead of an ADD2WC and an ADD2NC. 

The VHDL code attached and the block diagram in 
Figure 9 illustrate the design's functionality. This 
scheme takes four passes through the logic array to 
yield results. The various Es and Rs are generated 
in the first pass, the values of C4 and C8 in the se­
cond pass, the outputs from all the ADD2WCs in 
the third pass, and the outputs from ADD2NC in the 
fourth pass. Note that the value of CO is generated 
in the second pass. This scheme uses fewer MCs and 
more P'Th than the previously mentioned schemes. 
The resource utilization of this model is shown in 
Table 2. 

4-156 



& ~YPRESS ==;;;;;E;;;;;ffi;;;;;IC;;;;;ie;;;;;D;;;;;t;;;;;A;;;;;r;;;;;it;;;;;h;;;;;m;;;;;e;;;;;ti;;;;;c;;;;;D;;;;;e;;;;;s;;;;;ig;;;;;D;;;;;S;;;;;Th;;;;;rg=e;;;;;ti;;;;;D;;;;;g;;;;;F;;;;;LA;;;;;S;;;;;H;;;;;3;;;;;7;;;;;O;;;;;C;;;;;P;;;;;L;;;;;D;;;;;S;;;;;; 

FC4ADD12: 12-Bit Fast Carry Adder (4 Passes) 
r--------------------,r--------------------, I A7,A687,86 A5,A485,84 I I A3,A2 83,82 A1 ,AO 81,80 CI I 
I II I 
I II I 
I ADD2NC ADD2WC I I A[)02NC ADD2WC I 
I II I 
I I I I 
I II I 
I SUM7, UM6 SUM5,SUM4 I I SUM3,SUM2 SUM1,SUMOI 
L-------1TT;cLA------- L-rrToC~--------------~ 

C Carry-Lookahead Unit CI 

iA1f:'"A10-i31i:"810----7\9,A889-;BS I 
I +- ADD4NC 
I ADD2WC ADD2WC I 
I I 
I I 
L1,._!2!JMll.§.lllill'O _______ §YM!1..S~M.8J 

" To CLA 

Figure 9. 12-Bit Full Carry-Lookabead Adder using ADD4NC 

--A 12-bit Full carry-lookahead adder built using the ADD2WC and ADD2NC 
--elements. The ADD2WC and ADD2NC elements are part of the ADD4NC in the 
--same order 

USE WORK.RTLPKG.ALL; 
USE WORK.ADD2WC.ALL; 
USE WORK.ADD2NC.ALL; 

ENTITY fc4add12 IS 
PORT ( 

All,AlO,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO IN BIT; 
Bll,BlO,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO IN BIT; 
cr : IN BIT; 
CO : OUT BIT; 
SUMll,SUMlO,SUM9,SUM8,SUM7,SUM6,SUM5,SUM4,SUM3, 
SUM2,SUM1,SUMO : OUT BIT); 

END fc4add12; 

ARCHITECTURE fc4add12arch OF fc4add12 IS 

SIGNAL El,E2 : BIT; 
SIGNAL Rl,R2 : BIT; 
SIGNAL C2,C4,C6,C8,CIO : BIT; 

attribute synthesis_off of C2,C4,C6,C8,CIO signal is true; 
attribute synthesis_off of El,E2 signal is true; 
attribute synthesis_off of Rl,R2 : signal is true; 

4-157 



~ Efficient Arithmetic Designs Targeting FLASH370CPLDs 
_TcYPRESS ================ 
BEGIN 

il: add2wc PORT MAP(CI,Al,AO,Bl,BO,SUM1,SUMO,C2); 
i2: add2nc PORT MAP(C2,A3,A2,B3,B2,SUM3,SUM2); 

i3: add2wc PORT MAP(C4,A5,A4,B5,B4,SUM5,SUM4,C6); 
i4: add2nc PORT MAP(C6,A7,A6,B7,B6,SUM7,SUM6); 

i5: add2wc PORT MAP(C8,A9,A8,B9,B8,SUM9,SUM8,C10); 
i6: add2wc PORT MAP(C10,All,A10,Bll,B10,SUMll,SUM10,CO); 

El <= (A3 AND B3) 
OR ((A2 AND B2) AND (A3 OR B3)) 
OR ((Al AND Bl) AND (A2 OR B2) AND (A3 OR B3) ) 
OR ((AO AND BO) AND (Al OR Bl) AND (A2 OR B2) AND (A3 OR B3)); 

Rl <= (A3 OR B3) AND (A2 OR B2) AND (Al OR Bl) AND (AO AND BO); 

C4 <= El OR (Rl AND CI); 

E2 <= (A7 AND B7) 
OR ((A6 AND B6) AND (A7 OR B7)) 
OR ((A5 AND B5) AND (A6 OR B6) AND (A7 OR B7)) 
OR ((A4 AND B4) AND (A5 OR B5) AND (A6 OR B6) AND (A7 OR B7)) ; 

R2 <= (A7 OR B7) AND (A6 OR B6) AND (A5 OR B5) AND (A4 AND B4); 

C8 <= E2 OR (El AND R2) OR (R2 AND Rl AND CI) ; 

END fc4add12arch; 

Subtracters 

Subtracters are just a modified form of adders. The 
discussion presented for the adders can be easily ex­
tended to the subtracters. For any given sized adder 
or subtracter, the resource utilization is exactly the 
same for both in all respects. 

SUB: I-Bit Full Subtracter 

The basic component used in subtracting two oper­
ands is called a Full subtracter. The full subtracter 
element will be referred to as the 'SUB' component. 

The block diagram and functionality of SUB is 
shown in Figure 10. A (minuend) and B (subtra­
hend) are the two operands to be subtracted and Bin 
is the Borrow-in to the component. DIF and Bout 
are the Difference and Borrow-out from the compo­
nent. 

The VHDL code describing the functionality of the 
SUB component is shown here. This design takes 
one pass through the Product Term Matrix logic 
array to fit into a FLASH370 CPLD. The SUB com­
ponent instantiated in the VHDL code has the exact 
same functionality shown in Figure 10. 

4-158 



= rcYPRESS ==;;;;;E;;;;;ffi;;;;;IC;;;;;i;;;;;eD;;;;;t;;;;;A;;;;;r;;;;;it;;;;;h;;;;;m;;;;;e;;;;;ti;;;;;c;;;;;D;;;;;e;;;;;s;;;;;ig;;;;;D;;;;;S;;;;;T:;;;;;8;;;;;rg;;;;;e;;;;;ti;;;;;D;;;;;g;;;;;F;;;;;LA;;;;;S;;;;;H;;;;;3;;;;;7;;;;;O;;;;;C;;;;;P;;;;;L;;;;;D;;;;;S= 

SUB: 1-Bit Full Subtracter (1 Pass) 

tj (Basic building block) 

Bout DIF 
Functionality: DIF = NOT (NOT (AXOR B) XOR Bin) 

Bout = (NOT A AND B) OR (NOT A AND CI) or (B AND CI) 

Figure 10. Block Diagram and Functionality of a Full Subtracter 

-- This VHDL code invokes the 
MATHPKG element SUB 

USE WORK.CYPRESS.ALL; 
USE WORK.MATHPKG.ALL; 

ENTITY sub IS 
PORT (Bin: IN BIT; 

A, B: IN BIT; 
DIF: OUT BIT; 

Bout: OUT BIT) ; 
END sub; 

ARCHITECTURE archsub OF sub IS 

BEGIN 

il: sub PORT 
MAP(Bin,A,B,DIF,Bout); 

END archsub; 

SUB2WB: A 2-Bit Subtracter with a Borrow-Out 

The structure of a 2-bit group subtracter 
(SUB2WB) is very similar to that of the ADD2WC 

USE WORK.RTLPKG.ALL; 

PACKAGE sub2wb-pkg IS 
COMPONENT sub2wb PORT ( 

Bin : IN BIT; 
Al,AO: IN BIT; 
Bl,BO: IN BIT; 
DIF1,DIFO : OUT BIT; 
Bout: OUT BIT) ; 

END COMPONENT; 
END sub2wb-pkg; 

and is shown here. This component can be used as 
a building block to build larger sized subtracters, ex­
actly like ADD2WC was used to build larger sized 
adders. The block diagram of the SUB2WB is 
shown in Figure 11. The corresponding VHDL code 
used to describe the functionality of the SUB2WB 
is also attached. As in the case of ADD2WC, the 
functionality for SUB2WB is realized in one pass 
through the logic array. 

SUB2: 2-Bit Adder (1 Pass) 

A1s in 

Bout DIF1,DIFO 

Figure 11. Block Diagram of a 2-Bit Subtracter 
with a Borrow-Out 

4-159 



TL~YPRESS ==;;;;;;E;;;;;;ffi;;;;;;IC;;;;;;ie;;;;;;D;;;;;;t;;;;;;Ar;;;;;;I;;;;;;"th;;;;;;m=et;;;;;;iC;;;;;;D=eS;;;;;;ig;;;;;;D;;;;;;S;;;;;;Th=rg;;;;;;e;;;;;;ti;;;;;;D;;;;;;g;;;;;;F;;;;;;LA;;;;;;S;;;;;;H;;;;;;3;;;;;;70=C;;;;;;P;;;;;;L;;;;;;D;;;;;;;;S 

ENTITY sub2wb IS 
PORT(Bin : IN BIT; 

Al,AO: IN BIT; 
Bl, BO: IN BIT; 
DIF1,DIFO : OUT BIT; 
Bou t: OUT BIT) ; 

END sub2wb; 

ARCHITECTURE archsub2wb OF sub2wb IS 

BEGIN 

DIFO <= NOT (NOT (AO XOR BO) XOR Bin); 
DIFl <= NOT (NOT (Ai XOR Bl) XOR «NOT AO AND BO) OR (NOT AO AND Bin) OR 

(BO AND Bin)) ) ; 

Bout <= (NOT AO AND BO AND Bl) 
OR (NOT AO AND BO AND NOT Ai) 
OR (BI AND BO AND Bl) 
OR (BI AND BO AND NOT Ai) 
OR (BI AND NOT AO AND Bl) 
OR (BI AND NOT AO AND NOT Ai) 
OR (NOT Ai AND Bl) ; 

END archsub2wb; 

FB2SUB12 : 12-Bit Full Borrow-Lookahead 
Subtracter using 2-Bit Subtracters 

It was mentioned before that we can build equiva­
lent subtracter models for all the adder models dis­
cussed earlier. The functionality and the imple­
mentation of an FB2SUB12 (subtracter equivalent 
of an FC2ADD12) is shown here as an example. 
The implementation of all the possible subtracter 
elements is not discussed in. this application note, 
since the concept involved in building them is identi­
cal to that of the adders. 

The block diagram of the FB2SUB12 is very similar 
to that of the adder element FC2ADD12 and is 
shown in Figure 12. The FB2SUB12 is built using the 
basic elements SUB2WB and SUB2NC (2-bit sub­
tracterwith no borrow-out). This takes three passes 
through the logic array. The values of the various Es 
and Rs are generated in the first pass, the intermedi­
ate carries (borrows) in the second pass, and the var­
ious DIFs in the third pass. Note that the value of 
BOis generated in the second pass. The VHDL 
code for FB2SUB12 is also attached. 

4-160 



== -~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
_? CYPRESS ============== 

FBSUB12: 12-Bit Fast Borrow Subtracter (3 Passes) 

A7,A6B7,B6 A5,A4 B5,B4 A1,AO B1,BO Bin 

SUB2NC SUB2NC SUB2NC SUB2WB 

To BLA DIF3,DIF2 L-_-I DIF1,DIFO 

Borrow-Lookahead Unit 
BoutL-------------------------~~r_--------------J 

SUB2NC SUB2NC. 

To BLA DIF9,DIFB 

Figure 12. 12-Bit Fast Borrow Subtracter Built using SUB2WB and SUB2NC 

--A i2-bit Full borrow-lookahead subtracter built using the SUB2WC and 
--SUB2NC elements 

USE WORK.RTLPKG.ALL; 
USE WORK.SUB2WB.ALL; 
USE WORK.SUB2NC.ALL; 

ENTITY fb2sub12 IS 
PORT (Bin : IN BIT; 

Aii,AiO,A9,A8,A7,A6,A5,A4,A3,A2,Ai,AO: IN BIT; 
Bii,BiO,B9,B8,B7,B6,B5,B4,B3,B2,Bi,BO: IN BIT; 
DIFli,DIFlO,DIF9,DIF8,DIF7,DIF6,DIF5,DIF4, 
DIF3,DIF2,DIFl,DIFO : OUT BIT; 

Bou t: OUT BIT) ; 
END fb2sub12; 

ARCHITECTURE archfb2sb12 OF fb2sub12 IS 

SIGNAL C2, C4, C6, CB, CiO : BIT; 
SIGNAL Ei,E2,E3,E4,E5 BIT; 
SIGNAL Ri,R2,R3,R4,R5 BIT; 

--The internal carries are referred to as C's to distinguish between 
--borrow-out's and the operands 

attribute synthesis_off of Ei,E2,E3,E4,E5 
attribute synthesis_off of Ri,R2,R3,R4,R5 

4-161 

signal is true; 
signal is true; 



= -~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
~ CYPRESS ============== 

attribute synthesis_off of C2, C4, C6, C8, C10 signal is true; 

BEGIN 

il: sub2wb PORT MAP(Bin,Al,AO,Bl,BO,DIF1,DIFO,C2}; 
i2: sub2nc PORT MAP(C2,A3,A2,B3,B2,DIF3,DIF2}; 
i3: sub2nc PORT MAP(C4,A5,A4,B5,B4,DIF5,DIF4}; 
i4: sub2nc PORT MAP(C6,A7,A6,B7,B6,DIF7,DIF6}; 
i5: sub2nc PORT MAP(C8,A9,A8,B9,B8,DIF9,DIF8}; 
i6: sub2nc PORT MAP(C10,All,A10,Bll,B10,DIFll,DIF10}; 

El <= (NOT A3 AND B3) OR ((NOT A3 OR B3) AND (NOT A2 
Rl <= (NOT A3 OR B3) AND (NOT A2 OR B2); 

C4 <= El OR (C2 AND Rl) ; 

AND B2)}; 

E2 <= (NOT A5 AND B5) OR ((NOT A5 OR B5) AND (NOT A4 AND B4)}; 
R2 <= (NOT A5 OR B5) AND (NOT A4 OR B4) ; 

C6 <= E2 OR ((El OR (C2 AND Rl)} AND R2}; 

E3 <= (NOT A7 AND B7) OR ((NOT A7 OR B7) AND (NOT A6 AND B6)} ; 
R3 <= (NOT A7 OR B7) AND (NOT A6 OR B6) ; 

C8 <= E3 OR ((E2 OR ((El OR (C2 AND Rl)} AND R2}} AND R3}; 

E4 <= (NOT A9 AND B9) OR ((NOT A9 OR B9) AND (NOT A8 AND B8)}; 
R4 <= (NOT A9 OR B9) AND (NOT A8 OR B8) ; 

C10 <= E4 OR ((E3 OR ((E2 OR ((El OR (C2 AND Rl)} AND R2}} AND R3}} 
AND R4}; 

E5 <= (NOT All AND Bll) OR ((NOT AllOR Bll) AND (NOT A10 AND B10)}; 
R5 <= (NOT AllOR Bll) AND (NOT A10 OR B10); 

Bouy <= E5 OR ((E4 OR ((E3 OR ((E2 OR ((El OR (C2 AND Rl)} AND R2}} 
AND R3}} AND R4}} AND R5}; 

END archfb2sub12; 

Comparison of Resource Utilization for 
Different Schemes in Building a 12-Bit 
Adder 

A comparison chart showing the resource utiliza­
tion for the different models that can be used in 
building a 12-bit adder is shown in Table 2. This 
table summarizes some of the key issues that have 

been presented in the discussion so far. Some com­
parisons and comments from the charts and are 
listed here: 

Ripple Carry Adders 

1. For a given group-size, the number of passes 
taken to yield results is dependent on the size of 
the adder being built. 

4-162 



-==-0... 

= . ~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
TCYPRESS =============== 

Table 2. Comparison of Different 12-Bit Adder Schemes 

Resource RIADD12 R2ADD12 RJADD12 FC2ADD12 FC3ADD12 FC4ADD12 

PTs used 84 138 

MCsused 24 18 

# of passes 12 6 

2. As the group-size increases, the number of 
passes taken through the logic array is (n/k) -1 
+ # of passes for final stage, where n is the size 
of the adder and k is the group size. For exam­
ple, a R2ADD12 takes (12/2) -1 + 1 = 6 passes 
to yield the desired result. 

3. In the R3ADD12 (ripple carry adder built using 
3-bit groups) scheme, the value of the MSB sum 
bit within a 3-bit group is produced only in the 
second pass through the array. This, however, 
does not affect the 12-bit adder yielding results 
in 5 passes (12/3) -1 + 2 = 5) as expected. This 
is possible because the carry-out from the 3-bit 
group is produced in the first pass. The imple­
mentation of the ADD3WCwas discussed in de­
tail earlier. This solution is a very desirable 
solution for most applications that use small 
sized adders. 

4. The R1ADD12 uses fewer P1l; and more MCs 
among the different versions of ripple-carry ad­
ders. The opposite is the case for the 
R3ADD12. The R2ADD12 provides an inter­
mediate solution between the two extremes. 

5. The macrocell count in R1ADD12 can be 
brought down from 24 to 18, if the attribute 'syn­
thesis_off' is used on the even-numbered carries 
only. The number of passes is also brought 
down from 12 to 6. This, however, pushes the 
product term count from 84 to 138. In either 
case, none of the equations sum-split. This is, in 
fact, R2ADD12. The designer can choose the 
implementation that best chooses the applica­
tion. 

6. The R4ADD12 (ripple carry adder built using 
4-bit groups) is not a viable solution, since the 
carry-out from one of the 4-bit groups would 
take two passes to be generated. This results in 
a implementation that takes six passes to yield 
results as opposed to the expected three passes. 
This solution is inefficient and is not considered. 

165 

16 

5 

148 153 169 

28 26 22 

3 4 4 

Carry-Lookahead Adders 

1. For a given group-size, the number of passes 
taken to yield results is largely independent of the 
size of the adder being built. This is the biggest 
advantage with carry-Iookahead adders. 

2. All the group generates (Es) and group propagates 
(Rs) are generated in the first pass and the carry­
ins to all groups in the second pass through the 
logic array. The Sum outputs are generated in 
the third or the fourth pass, depending on the 
group-size being used. 

3. The FC2ADD12 takes three passes to com­
plete, and four passes for the FC3ADD12 and 
FC4ADD12. The number of passes remains the 
same up to 32-bit versions of the adder. 

4. Similar to the ripple carry adders, the 
FC2ADD12 uses fewer P1l; and more MCs 
among the different versions of carry-looka­
head adders. The opposite is the case for the 
FC4ADD12. The FC3ADD12 provides an in­
termediate solution between the two extremes. 

5. The FC5ADD12 (carry-lookahead adder built 
using 5-bit groups) is not a viable solution, since 
the extra number of PTs and number of passes 
(5) taken through the logic array do not justify 
its usage. The design is also not modular and 
difficult to deal with. A designer can, however, 
extend the discussion presented to build his own 
FC5ADD12 model if the application demands 
it. This, however, would be an extreme caseand 
is not presented. 

Summary 

Comparing ripple carry and carry-lookahead ad­
ders, it is evident that ripple carry adders are area 
efficient but have poor speed performance. The 
carry-Iookahead adders on the other hand are faster 
but utilize more resources. Given the different 
choices, the user needs to make a careful selection 
of the scheme best suited for his application. 

4-163 



= rcYPRESS ==E;;;;ffi;;;;l;;;;c;;;;ie;;;;Dt;;;;Ar=it;;;;h;;;;m;;;;e;;;;ti;;;;c;;;;D;;;;e;;;;si;;;;gD;;;;s;;;;11;;;;a;;;;rg;;;;e;;;;ti;;;;D;;;;g;;;;F;;;;LA;;;;S;;;;H3;;;;7;;;;O;;;;C;;;;P;;;;L;;;;D;;;;S= 

Large-Sized Adders/Subtracters 

As PLDs have grown in size and speed over the past 
few years, a lot of designers have been pushing to­
wards larger sized adders and subtracters. A lot of 
focus and time has been dedicated towards building 
efficient smaller sized elements and it was left to the 
designer's discretion to build and implement the al­
gorithm. Cypress believes in providing designers 
with the best possible implementation for their add­
ers/subtracters and relieve them of the problems 
they would normally face. This provides the cus­
tomer with the opportunity to get the best imple­
mentation for their application without spending a 
lot of time. 

Table 1 talks about the resource utilization for 24-bit 
and 32-bit adders using 2-bit, 3-bit, and 4-bit group­
sizes with carry/borrow-Iookahead principle. In the 
previous sections, different implementation strate­
gies and the VHDL codes for a 12-bit full-carry­
lookahead adder were shown as an example. The 
VHDL codes for most variations of the 24- and 
32-bit implementations are not presented here due 
to space constraints. The codes are provided, how­
ever, as a part of the tutorial section in the Walp 
VHDL compiler. Figure 12 illustrates three 
schemes used in implementing a 24-bit adder. The 
VHD L code for a 24-bit carry-Iookahead adder with 
a 4-bit group size is shown here as an example. The 
code for other models is very similar and can be easi­
ly extrapolated. 

Table 1. Comparispn of Different 24·Bit and 32·Bit Adder Sehemes 

Resource FC2ADD24 FC3ADD24 FC4ADD24 FC2ADD32 FC3ADD32 FC4ADD32 

P'Th used 272 314 359 393 427 488 

MCsused 58 54 46 78 73 62 

# of passes 3 4 4 3 4 4 

xxlxxxxxx~X~X xxlxxxx~x~X~X _ Adder split up into 12 groups of2 
X~XXXXXXFXFXX~XXXXFXFXFX 

XX~XXXXX~XXXXX.~XXXXX~XXX 
XX XXXXX XXXXX XXXXX XXX 

- Adder split up into 8 groups of 3 

X X X X X X X X ~ X X X X X X X X X X X ~ X X X - Adder split up into 6 groups of 4 
XXXXXXXXFXXXXXXXXXXXFXXX 

Figure 13. Three Different Carry·Lookahead Schemes to Implement a 24·Bit Adder 

4-164 



d! ?cYPRESS ==~E~ffi~lc~ie~n~t~Ar=it~h~m~e~ti~c~D~e~s~ig~n~s~T:~a~rg~e~ti~n~g~F~LA~S~H~3~7~O~C~P~L~D~s~ 
--24-bit Fast Carry lookahead adder with 4-bit groups 

USE work.add2wc-pkg.all; 
USE work.add2nc-pkg.all; 

ENTITY fc4add24 IS 
PORT ( 

A23,A22,A21,A20,A19,A18,A17,A16,A15,A14,A13,A12, 
All,A10,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO : IN BIT; 
B23,B22,B21,B20,B19,B18,B17,B16,B15,B14,B13,B12, 
Bll,B10,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO : IN BIT; 
CI : IN BIT; 
CO : OUT BIT; 
SUM23,SUM22,SUM21,SUM20,SUM19,SUM18,SUM17,SUM16,SUM15,SUM14,SUM13,SUM12,SUM 
11,SUM10,SUM9,SUM8,SUM7, SUM6,SUM5,SUM4,SUM3,SUM2, SUM1,SUMO: OUT BIT); 

END fc4add24; 

ARCHITECTURE fc4add24arch OF fc4add24 IS 

SIGNAL El,E2,E3,E4,E5 : BIT; 
SIGNAL Rl,R2,R3,R4,R5 : BIT; 
SIGNAL C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22 : BIT; 

attribute synthesis_off of C2,C4,C6,C8,C10,C12,C14,C16,C18,C20,C22 
is true; 
attribute synthesis_off of El,E2,E3,E4,E5 
attribute synthesis_off of Rl,R2,R3,R4,R5 

signal is true; 
signal is true; 

BEGIN 

il: add2wc PORT MAP (CI,Al,AO,Bl,BO,SUM1,SUMO,C2) ; 
i2: add2nc PORT MAP (C2,A3,A2,B3,B2,SUM3,SUM2) ; 

i3: add2wc PORT MAP (C4,A5,A4,B5,B4,SUM5,SUM4,C6) ; 
i4: add2nc PORT MAP (C6,A7,A6,B7,B6,SUM7,SUM6) ; 

i5: add2wc PORT MAP (C8,A9,A8,B9,B8,SUM9,SUM8,C1O); 
i6: add2nc PORT MAP (C10,All,A10,Bll,B10,SUMll,SUM10) ; 

i7: add2wc PORT MAP (C12,A13,A12,B13,B12,SUM13,SUM12,C14); 
i8: add2nc PORT MAP (C14,A15,A14,B15,B14,SUM15,SUM14) ; 

i9: add2wc PORT MAP (C16,A17,A16,B17,B16,SUM17,SUM16,C18) ; 
ilO: add2nc PORT MAP (C18,A19,A18,B19,B18,SUM19,SUM18) ; 

ill: add2wc PORT MAP (C20,A21,A20,B21,B20,SUM21,SUM20,C22); 
il2 : add2wc PORT MAP (C22,A23,A22,B23,B22,SUM23,SUM22,Co) ; 

4-165 

signal 



~. Efficient Arithmetic Designs Targeting FLAsH370 CPLDs 
~~YPRESS================================ 
El <= (A3 AND B3) 

OR «A2 AND B2) AND (A3 OR B3» 
OR «Al AND Bl) AND (A2 OR B2) AND (A3 OR B3) ) 
OR «AO AND BO) AND (Al OR Bl) AND (A2 OR B2) AND (A3 OR B3»; 

Rl <= (A3 OR B3) AND (A2 OR B2) AND (Al OR Bl) AND (AO AND BO); 

C4 <= El OR (Rl AND CI); 

E2 <= (A7 AND B7) 
OR «A6 AND B6) AND (A7 OR B7» 
OR «A5 AND B5) AND (A6 OR B6) AND (A7 OR B7» 
OR «M AND B4) AND (A5 OR B5) AND (A6 OR B6) AND (A7 OR B7) ) ; 

R2 <= (A7 OR B7) AND (A6 OR B6) AND (A5 OR B5) AND (A4 AND B4) ; 

CB <= E2 OR (El AND R2) OR (R2 AND Rl AND CI) ; 

E3 <= (All AND Bll) 
OR «AIO AND BIO) AND (All OR Bll» 
OR «A9 AND B9) AND (AIO OR BIO) AND (AllOR Bll» 
OR «AB AND BB) AND (A9 OR B9) AND (AIO OR BIO) AND (AllOR Bll»; 

R3 <= (AllOR Bll) AND (AlO OR BlO) AND (A9 OR B9) AND (AB AND BB); 

Cl2 <= E3 OR (E2 AND R3) OR (El AND R3 AND R2) OR (R3 AND R2 AND Rl AND 
CI) ; 

E4 <= (A15 AND Bl5) 
OR «A14 AND B14) AND (Al5 OR Bl5) ) 
OR «A13 AND B13) AND (Al4 OR Bl4) AND (Al5 OR B15» 
OR «A12 AND B12) AND (Al3 OR Bl3) AND (Al4 OR B14) AND (A15 OR Bl5»; 

R4 <= (A15 OR Bl5) AND (Al4 OR Bl4) AND (Al3 OR B13) AND (A12 AND B12); 

Cl6 <= E4 OR (E3 AND R4) OR (E2 AND R4 AND R3) OR (El AND R4 AND R3 AND R2) 
OR (R3 AND R2 AND Rl AND CI) ; 

E5 <= (Al9 AND Bl9) 
OR «AlB AND BlB) AND (Al9 OR B19» 
OR «Al7 AND Bl7) AND (AlB OR BIB) AND (Al9 OR B19) ) 
OR «A16 AND B16) AND (Al7 OR Bl7) AND (A18 OR B18) AND (A19 OR B19»; 

R5 <= (A19 OR B19) AND (Al8 OR B18) AND (Al7 OR B17) AND (A16 AND Bl6); 

C20 <= E5 OR (E4 AND R5) OR (E3 AND R5 AND R4) OR (E2 AND R5 AND R4 AND 
R3) OR (El AND R5 AND R4 AND R3 AND R2) OR (R5 AND R4 AND R3 AND R2 AND 
Rl AND eI) ; 

END fc4add24arch; 

4-166 



Efficient Arithmetic Designs Targeting FLASH370 CPLDs 

Equality Comparators 

Equality comparators are used often to compare the 
value of two operands. Equality comparators are 
built using the Exclusive-OR gate as the building 
block. A bit-wjse comparison of the two data 
streams is done using XOR gates and each of the in­
dividual results are OR-ed together to obtain the fi­
nal result. 

EQCOMP4: 4-Bit Equality Comparator 

The EQCOMP4 is a 4-bit equality compare ele­
ment. The model can be described as: 

EQ = NOT «A3 XOR B3) 
OR (A2 XOR B2) 
OR (A1 XOR B1) 
OR (AD XOR BD» 

This implementation takes 8 PTs. Figure 14 shows 
the block diagram for EQCOMP4. NEQCOMP4 is 
the 4-bit non-equality comparator. The EQCOMP4 
is implemented as an inverted version of the NEQ­
COMP4. The NEQCOMP4 element takes 8 PTs 
and the EQCOMP4 takes 16 PTs. The FLASH37D 
CPLD has a polarity control in the macrocell and 
can create the EQCOMP4 element using the NEQ­
COMP4 element, resulting in a implementation 
with a reduced product term count. 

The equality comparator for all bit sizes greater 
than 8 takes more than 16 PTs to produce the result 
and takes two passes, since the FLASH37D CPLD ar­
chitecture takes in a maximum of 16 PTs into one 
macrocell. 

EQCOMP24: 24-Bit Equality Comparator 

The EQCOMP24 uses three EQCOMP8s in paral­
lel and combines the results of the three compo-

.............................................................. " 
'~--~--~------

A3 .. 0 
EQ 

83 .. 0 

EQCOMP4 I 
I .. _----_ .. _------------_ .. 

Figure 14. Block Diagram of a 4-Bit Equality 
Compare 

A7 .. 0 ~ r-~OCOMP8 
87 .. 0 

A15 .. 8 

815 .. 8 

A23 .. 16 

823 .. 16 

EO 

Figure 15. Block Diagram of a 24-Bit Equality 
Compare 

nents to produce the result. This takes two passes 
through the logic array, 4 MCs, and 49 PTs. The 
block diagram of this model is shown in Figure 15. 

Magnitude Comparators 

Magnitude comparators are also widely used in the 
industry in comparing values of two operands. The 
magnitude comparators provide information if a 
signal is greater than (> ) , or less than ( <) another 
signal of the same length. 

MAGCOMP8: 8-Bit Magnitude Comparator 

This is the generic implementation of a magnitude 
comparator and does a bit-wise comparison, similar 
to that of the equality comparison. However, in the 
case of a magnitude comparator the results of a bit­
wise comparison are to be retained and passed onto 
the succeeding set of bits. This passage of informa­
tion continues and tends to increase the resource 
utilization of the design exponentially. 

The VHDL implementation of an 8-bit magnitude 
comparator is shown here. The design takes 255 PTs 
and fits in two passes through the logic array. The 
block diagram of MAGCOMP8 is shown in Figure 
16. 

A7 .. 0 ~ MAG 
87 .. 0 

Figure 16. Block Diagram of an 8-Bit 
Magnitude Compare 

4-167 



lsrcYPRESS ==;;;;;;E;;;;;;fti;;;;;;Ic;;;;;;ie;;;;;;D;;;;;;t ;;;;;;Ari;;;;;;';;;;;;th;;;;;;m=et;;;;;;ic;;;;;;D;;;;;;e;;;;;;s;;;;;;ig;;;;;;D;;;;;;s;;;;;;Th=rg;;;;;;e;;;;;;ti;;;;;;D;;;;;;g;;;;;;F;;;;;;LA;;;;;;S;;;;;;H3=70=C;;;;;;P;;;;;;L;;;;;;D=s 

-- Flattened version of the Magni­
tude comparator 

USE work.int_math.all; 

ENTITYmagcomp IS 
PORT ( 
A,B : IN BIT_VECTOR(7 DOWNTO 0); 
MAG : OUT BIT) ; 

END magcomp; 

ARCHITECTURE magarch OF magcomp IS 

BEGIN 

MAG <= '1' WHEN (A < B) ELSE '0'; 

END magarch; 

A fully flattened implementation of a magnitude 
comparator would take (2n - 1) PTh to implement. 
It is, however, not recommended to use the fully­
flattened version of the magnitude comparator for 
any bit-size greater than 4 bits. This is to ensure that 
there is no sum-splitting involved in the equations. 
There are other means to achieve better results and 
the best scheme is presented next. 

FB2MGCMP8: 8-Bit Borrow-Lookahead 
Magnitude Comparator 

The block diagram of a 8-bit magnitude compare is 
shown in Figure 17. 

A7 .. 0 

B7 .. 0 
MAG 

Figure 17. Block Diagram of an 8·Bit 
Magnitude Compare 

AM AL 

A[7:0] XXXXXXXX 

B[7:0] XXXXXXXX 

BM 

(AM >BM) 

(AM/=BM) 

This scheme uses a different. approach to compare 
the magnitudes of two binary bit vectors. As an ex­
ample, the scheme is illustrated for a 8-bit magni­
tude comparator. The 4 MSB bits of the bit vectors 
A[7:0] and B[7:0] are called AM and BM, respective­
ly. Similarly, the 4 LSB bits are referred to as AL 
and BLrespectively. The bit vector A is greater than 
B if (AM> BM) or if (AM = BM) and (AI> BL). 

It is evident from the set of equations in Figure 18 
that the magnitude comparison of two binary bit 
vectors can be done by evaluating the values of GM, 
GL and PM. ~. and ~ are the generate functions 
for the MSHalf (most significant half) and the 
LSHaif (least significant half) for the two bit vectors 
and PM is the propagate function for the MSHalf. 
This scheme is a stripped down version of the bor­
row-Iookahead scheme used to build fast subtract­
ers. In this implementation we need to determine 
the values of the generate and propagate functions for 
the bit vectors and need not produce any of the dif­
ference results. The borrow-out signal determines 
the output ofthe magnitude comparison. If the bor­
row-out is a '1' then (A < B), else (A "" B). 

This scheme allows for a fast and efficient means to 
do magnitude comparisons. Magnitude Compara­
tors up to 32 bits can be built to produce the result 
in just 2 passes. The number of PTh used is also sub­
stantially less than the 'flattened' implementation of 
the magnitude comparators. 

The discussion presented earlier on group-sizes can 
also be extended here. The group-size over which 
the propagate and generate functions are generated 
can be varied to be 2, 3 or 4. In all cases the design 
takes 2 passes to produce the desired result. The 
various values of Es and Rs are generated in the first 

Figure 18. Bit Vector Magnitude Comparison Equations 

4-168 



~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
.;CYPRESS ================ 
pass and the value of the borrow-out in the second 
pass. However, there is a trade-off between the 
number of PTs and MCs used among the different 
group-sizes chosen. A comparison between these 
different implementations is discussed later. 

The number of P'Th used to implement the PM 
(propagate) function can be halved if 'OR' gates are 
used instead of 'XOR' gates. This was mentioned 
earlier in the discussion on carry-Iookahead. This 
extension makes the implementation of the borrow­
lookahead magnitude comparator fast and efficient. 

Comparison of '!\vo Implementations of a 12-Bit 
Magnitude Compare 

Tho different implementations of a 12-bit magni­
tude comparator are shown here. The first imple­
mentation is an extension of MAGCOMP4. The se­
cond implementation uses the borrow-Iookahead 
scheme and is built using borrow-Iookahead over a 
group-size of 2 bits. This comparison illustrates the 
advantage of using FB2MGCMP12 over the simple 
MAGCOMP12. 

The block diagram of MAGCOMP12 is shown in 
Figure 19. The flattened version of MAGCOMP12 
takes (212 - 1) PTs. This is a large amount of logic 
and will not fit into any of the FlASH370 CPLDs. 

A11 .. 0 ~ MAGCOMP12 ~ MAG 
B11 .. 0 '---------' 

Figure 19. Block Diagram of a 12-Bit 
Magnitude Compare 

The MAGCO MP12 with the synthesis_off attribute 
on the intermediate signals uses 44 unique PTs, but 
is very slow and takes 11 passes through the array. 

The block diagram of FB2MGCMP12 is shown in 
Figure 20. The VHDL code for this design is also 
shown here. This design takes just two passes 
through the array and uses 36 unique PTs. The vari­
ous values of Es and Rs are generated in the first 
pass and the value of the borrow-out in the second 
pass. Each of the Es uses 3 PTs and Rs 2 PTs and the 
output MAG takes 6 P'Th. This is clearly a much bet­
ter implementation than the MAGCOMP12. 

A11 .. 0~. ... ... ~ 
FB2MGC.MPt2. MAG 

B11 .. 0 . 

Figure 20. Block Diagram of a 12-Bit 
Magnitude Compare with Borrow-Lookahead 

--The borrow-lookahead principle using 2-bit groups was used to build this 
--element 

USE WORK.RTLPKG.ALL; 

ENTITY fb2mgcmp12 IS 
PORT ( 

All,AlO,A9,A8,A7,A6,A5,A4,A3,A2,Al,AO: IN BIT; 
Bll,BlO,B9,B8,B7,B6,B5,B4,B3,B2,Bl,BO: IN BIT; 

MAG: OUT BIT) ; 
END fb2mgcmp12; 

ARCHITECTURE archfb2mgcmp12 OF fb2mgcmp12 IS 

SIGNAL EO,El,E2,E3,E4,E5 BIT; 
SIGNAL RO,Rl,R2,R3,R4,R5 BIT; 
SIGNAL BO : BIT; 

attribute synthesis_off of EO,El,E2,E3,E4,E5 
attribute synthesis_off of RO,Rl,R2,R3,R4,R5 

4-169 

signal is true; 
signal is true; 



"?cYPRESS ==;;;;;;E;;;;;;t1i;;;;;;IC;;;;;;ie;;;;;;D;;;;;;t;;;;;;Ari;;;;;;';;;;;;th;;;;;;m=et;;;;;;iC;;;;;;D=eS;;;;;;ig;;;;;;D;;;;;;S;;;;;;Th=rg;;;;;;e;;;;;;ti;;;;;;D;;;;;;g;;;;;;.F;;;;;;LA;;;;;;S;;;;;;H;;;;;;3;;;;;;70=C;;;;;;P;;;;;;L;;;;;;D=S 

BEGIN 

EO <= (NOT A1 AND B1) OR ((NOT A1 OR B1) AND (NOT AO AND BO)); 
RO <= (NOT A1 OR B1) AND (NOT AO OR BO) ; 

E1 <= (NOT A3 AND B3) OR ((NOT A3 OR B3) AND (NOT A2 AND B2) ) ; 
R1 <= (NOT A3 OR B3) AND (NOT A2 OR B2); 

E2 <= (NOT A5 AND B5) OR ((NOT A5 OR B5) and (NOT A4 AND B4) ) ; 
R2 <= (NOT A5 OR B5) AND (NOT A4 OR B4); 

E3 <= (NOT A7 AND B7) OR ((NOT A7 OR B7) AND (NOT A6 AND B6)) ; 
R3 <= (NOT A7 OR B7) AND (NOT A6 OR B6) ; 

E4 <= (NOT A9 AND B9) OR ((NOT A9 OR B9) AND (NOT A8 AND B8) ) ; 
R4 <= (NOT A9 OR B9) AND (NOT A8 OR B8) ; 

E5 <= (NOT All AND B11) OR ((NOT All OR Bll) AND (NOT A10 AND B10)); 
R5 <= (NOT AllOR B11) AND (NOT A10 OR B10) ; 

BO <= E5 OR 
(R5 AND E4) OR 
(R5 AND R4 AND E3) OR 
(R5 AND R4 AND R3 AND E2) OR 
(R5 AND R4 AND R3 AND R2 AND E1) OR 
(R5 AND R4 AND R3 AND R2 AND R1 AND EO); 

MAG <= '1' WHEN (BO = '1') ELSE '0'; 

--MAG is a '1' if B > A 

END archfb2mgcmp12; 

A comparison between 2-, 3-, and 4-bit group sized 
implementation of a 12-bit magnitude comparator 
based on the borrow-Iookahead scheme is shown in 
Table 3. As mentioned before, the number of passes 
through the logic array is the same for all group-bit­
sizes. The number of PTh and MCs used vary as 
shown in the table. The user has a wide choice and 
needs to choose the right group-size depending on 
the application. 

Table 2. Comparison of a 12-Bit Magnitude 
Compare between DiiTerent Group-Sizes 

Group-Bit-Size 2 3 4 

# ofPTh 34 44 60 
#ofMCs 13 9 7 

# of passes 2 2 2 

4-170 



==<j ~ Efficient Arithmetic Designs Targeting FLASH370 CPLDs 
_,CYPRESS ============= 

Three-Output Comparators 
The discussion on magnitude comparators has so far 
been restricted to the values of less than «) and 
greater than or equal to (~) only. The discussion 
in this section talks about producing all three out­
puts, namely '<', '>' and '='. 

FB2EQMCMPI2: 12-Bit Borrow-Lookahead 
Three-Output Magnitude Comparator Using 
2-Bit Groups 

This model combines all the concepts discussed in 
the magnitude comparator section into one design. 
This uses borrow-Iookahead, 2-bit groups, and also 
produces three outputs. The block diagram of this 
model is shown in Figure 21. 

There are two ways in which the Borrow-Iookahead 
principle can be used to achieve the functionality of 
a three-output comparator. 

A11 .. 0 

811 .. 0 
FB2EOMGCMP12 

GT 
LT 
EO 

Figure 21. Block Diagram of a 12-Bit Borrow­
Lookahead Three-Output Magnitude Compare 

1. Use two passes for ~ < B' and ~ = B' each, then 
use a third pass for A > B using the results from 
A < B and A = B. This uses 62 PTs. The EQ­
COMP12 required for this model is built using 
three EQCOMP4s similar to the block diagram 
shown in Figure 15. The EQCOMP12 can also 
be built using four EQCOMPs, or two EQ­
COMP6s, or an EQCOMP8 and an EQCOMP4 
or any other combination. As long as the EQ­
COMP model chosen does not sum-split, the 
value of EQCOMP12 can be realized in two 
passes using 25 PTs. 

2. Use two passes to generate all three outputs. In 
this implementation a set of Es and Rs is re­
quired to create a value ofLT (A - B). A second 
set of Es and Rs is required to obtain the value 
of GT (B - A). The value of EO is also pro­
duced in 2 passes along with GT and LT. This 
scheme uses 97 PTs. 

The first scheme is area efficient, but takes three 
passes though the logic array to generate the final 
results. The VHDL implementation for the first 
scheme is presented here. It is very easy to extrapo­
late the code for the second scheme. 

--This VHDL code describes the implementation of a 3-output magnitude 
--comparator. The borrow-lookahead principle using 2-bit groups was used 
--to build this element 

USE WORK.RTLPKG.ALL; 

ENTITY fb2eqmgcmp12 IS 
PORT ( 

Aii,AiO,A9,AS,A7,A6,AS,A4,A3,A2,Ai,AO: IN BIT; 
Bii,BiO,B9,BS,B7,B6,BS,B4,B3,B2,Bi,BO: IN BIT; 
EQ,LT,GT: OUT BIT); 

END fb2eqmgcmp12; 

ARCHITECTURE archfb2eqmgcmp12 OF fb2mgeqcmp12 IS 

SIGNAL EO,Ei,E2,E3,E4,ES BIT; 
SIGNAL RO,Ri,R2,R3,R4,RS BIT; 
SIGNAL Xii,XiO,X9,XS,X7,X6,XS,X4,X3,X2,Xi,XO BIT; 
SIGNAL INTi, INT2, INT3: BIT; 
SIGNAL BO : BIT; 

4-171 



~ Efficient Arithmetic Designs Targetihg FLASH370 CPLDs 
~~YPRESS================================ 

attribute synthesis_off of EO,E1,E2,E3,E4,E5 : signal is true; 
attribute synthesis_off of RO,R1,R2,R3,R4,R5 : signal is true; 
attribute synthesis_off of INT1, INT2, INT3 : signal is true; 

BEGIN 

EO <= (NOT A1 AND B1) OR ((NOT A1 OR B1) AND (NOT AO AND BO)); 
RO <= (NOT A1 OR B1) AND (NOT AO OR BO) ; 

E1 <= (NOT A3 AND B3) OR ((NOT A3 OR B3) AND (NOT A2 AND B2)); 
R1 <= (NOT A3 OR B3) AND (NOT A2 OR B2); 
E2 <= (NOT A5 AND B5) OR ((NOT A5 OR B5) and (NOT A4 AND B4)); 
R2 <= (NOT A5 OR B5) AND (NOT A4 OR B4); 

E3 <= (NOT A7 AND B7) OR ((NOT A7 OR B7) AND (NOT A6 AND B6)); 
R3 <= (NOT A7 OR B7) AND (NOT A6 OR B6) ; 

E4 <= (NOT A9 AND B9) OR ((NOT A9 OR B9) AND (NOT A8 AND B8)) ; 
R4 <= (NOT A9 OR B9) AND (NOT A8 OR B8) ; 

E5 <= (NOT All ANDBll) OR ( (NOT All OR Bll) AND (NOT A10 AND B10)) ; 
R5 <= (NOT All OR Bll) AND (NOT A10 OR B10) ; 

BO «=- E5 OR 
(E4 AND R5) OR 
(E3 AND R5 AND R4) OR 
(E2 AND R5 AND R4 AND R3) OR 
(E1 AND R5 AND R4 AND R3 AND R2) OR 
(EO AND R5 AND R4 AND R3 AND R2 AND R1); 

LT <= '1' WHEN (BO = '1') ELSE '0'; 

LT is a '1' if A < B 

GT <= '1' WHEN (LT = '0' AND EQ 

GT is a '1' if A > B 

X11 <= All XOR B11; 
X10 <= A10 XOR B10; 
X9 <= A9 XOR B9; 
X8 <= A8 XOR B8; 
X7 <= A7 XOR B7; 
X6 <= A6 XOR B6; 
X5 <= A5 XOR B5; 
X4 <= A4 XOR B4; 
X3 <= A3 XOR B3; 
X2 <= A2 XOR B2; 
Xl <= A1 XOR B1; 
XO <= AO XOR BO; 

, 0' ) ELSE '0'; 

4-172 



.rcYPRESS ==;;;;;E;;;;;ffi;;;;;lc;;;;;ie;;;;;D;;;;;t;;;;;Ari;;;;;";;;;;th;;;;;m=et;;;;;ic;;;;;D;;;;;e;;;;;s;;;;;ig;;;;;D;;;;;s;;;;;T:;;;;;a;;;;;rg;;;;;e;;;;;ti;;;;;D;;;;;g;;;;;FLA=S;;;;;H3=70=C;;;;;P;;;;;L;;;;;D=s 

INTl <= (Xll OR X10 OR X9 OR X8) ; 
INT2 <= (X7 OR X6 OR X5 OR X4); 
INT3 <= (X3 OR X2 OR Xl OR XO); 

EQ <= NOT (INTl OR INT2 OR INT3); 

END archfb2eqrngcrnp12; 

Summary 

A number of arithmetic elements frequently used in 
various applications were presented in this applica­
tion note. The underlying concepts and the final im­
plementations for all these models were also pres­
ented. Designs created with an understanding of the 
target architecture always perform better than ge­
neric designs. The LPM elements available in Watp 
are all geared towards obtaining the best perfor­
mance, both in speed and area, for CPLDs. The 
concepts and implementations presented in this ap­
plication note are used to build the various LPM 
elements. Understanding this application note will 
enable the user to understand the LPM elements 
better and exploit their availability in the best pos­
sible manner. 

CPLDs are getting to be very popular with the pro­
grammable logic industry, and are widely used in 
DSP applications, PCs, Motherboards, Data Com­
munication equipment, Multimedia, Instrumenta­
tion. etc. They have many advantages over other 
programmable logic devices. A few key advantages 
are listed here: 

• Ease of use-Simple extension of AND-OR 
structure of small PLDs like 22V10 

• Predictable timing model 

• No fanout penalty 

• Provide high speed of operation 

• Off the shelf availability 

• Cost effective solution 

These advantages make CPLDs an ideal platform to 
implement high-performance arithmetic circuits in 
a cost-effective manner. 

FPGAs inherently have more useable gates than 
CPLDs and also provide a very fine grain architec­
ture. The major constraints to deal with FPGAs are 
I/O utilization, logic utilization, and timing. A par­
ticular design can be literally placed in many differ­
ent places in an FPGA because of its fine grain ar­
chitecture. In CPLDs the structure is very coarse 
grained and this pushes the number of constraints 
higher. The typical constraints to deal with arithme­
tic designs in CPLDs are product term count, ma­
crocell count, number of inputs into a logic block, 
product term and macrocell placement, number of 
passes through logic array, and sum-splits. All of 
these facts make designing arithmetic operations 
with CPLDs a tougher task. Understanding the 
structure and capabilities of CPLDs is absolutely es­
sential in creating efficient designs. 

With the background provided in this application 
note, a designer should be able to create any algo­
rithm or implementation for an arithmetic applica­
tion. The user is strongly encouraged to read the 
VHDL textbook written by the PLD applications 
group to get a good grasp of VHDL and using it to 
implement efficient designs in CPLDs and FPGAs. 

FLASH370 and WafP are trademarks of Cypress Semiconductor Corporation. 

4-173 



Design Considerations for On-Board 

Programming of the CY7C374 and CY7C375 

If on-board reprogrammability is a must for your de­
sign, certain considerations must be met before the 
design is completed and before the board is laid out. 
The first step in setting up a board for in-circuit pro­
gramming is to know which pins have to be con­
trolled in programming and erasing the device. One 
must know whether these pins are inputs, outputs, 
or bidirectional. If the pins require any special volt­
age levels, care must be taken in protecting the other 
parts on the same net. On the 7C374 and 7C375, 
only one pin is required to handle a voltage above 
normal TTL 'safe' levels. After the board is set up 
with the above conditions in mind, on-board pro­
gramming of the 7C374 and 7C375 is quite simple. 

The easiest way to program a part is to place it into 
a programming station. The next easiest way is to 
place the board into a programming mode and hook 
the programming station up to the board. If the en­
vironment of the board looks the same to the pro­
grammer as if the part were in its socket, a part can 
be easily programmed. This eliminates the many 
problems, including supplying a 'super' voltage, tog­
gling signals HIGH and LOW, reading signals, writ­
ing signals, bringing in the programming file, and 
many others. These problems will be incurred if the 
desire is to be able to program the CPLD without 
outside help. Since an applications note on how to 
program with a programming station would prove to 
be duller than reading the phone book, this applica­
tion note will show how to simply program these 
CPLDs by hooking your board to a programming 
station. 

4-174 

There are four types of signals which can feed the 
CY7C374/5. Three types are used in normal opera­
tion, INPUT, OUTPUT, and I/O. Programming 
mode supplies the fourth type, VPP or supervoltage. 

All inputs and I/O signals to the device that are on 
the nets listed in Table 1, must be in High-Z while 
programming. This will eliminate contention from 
the programmer and the board's circuitry. There 
are several ways to accomplish this. Many parts 
have the ability to isolate themselves from other 
nets with built in three-state controls. Output en­
able or chip selects are found on most SRAMs, 
PLDs, FIFOs, and logic. If a device is driving a net 
that is used for programing and does not have the 
ability to be three-stated, a simple near-zero delay 
buffer can be added. An example of this device is the 
CYBUS3384. Once the output is enabled on a 
CYBUS3384, the delay time through the part is only 
250 picoseconds. These parts are bidirectional with­
out any direction-control hardware necessary (see 
Figure 1). The CYBUS3384 provides ten buffers in 
one space-saving QSOP package. 

Ax Bx 

Figure 1. 'Zero' Delay ButTer 



Design Considerations for On-Board 

22~YPRESS~~~~~~~~~~p~ro~g~ra~m~m~i~n~g~of~t~h~e~CY~7c~3~7~4~/5~ 

A 26-pin header may be installed on the card to al­
low on-board programming access. Nothing needs 
to be done with the OUTPUTh from the CY7C374/5 
because no contention exists. The last signal type to 
contend with is the VPP signal. This signal has 12 
volts applied to it during programming. There are 
two simple ways to isolate this high voltage from the 
system. The first is to reserve this pin for program­
ming only. Because most designs only use one or 
two clocks, dedicating one of four for programming 
is usually not an issue. For those designs that re­
quire all clocks or all inputs, a jumper can simply be 
removed during programming to isolate the high 
voltage (Figure 2). 

A signal needs to be generated to let the designed 
system know that it is in a programming state. One 
simple way to produce this signal is shown in Figure 

Jumper 

/ 

To Circuits 

---fJ 
Figure 2. Isolation Jumper 

Jumper 

/ / 

..Lr-----1[] 

eader 

3. By simply installing a jumper, the signal 
PROGRAM _ENABLE is driven active. This signal 
should then be incorporated into the logic that con­
trols the output enables and three-states of all sig­
nals that drive programming pins. 

By having a jumper installed for programming mode 
and a jumper removed for voltage isolation, a jump­
erwill always be available on the board for use. Sim­
ply swap the jumper from one to the other. The list 
of the signals on the CY7C374 and CY7C375, the 
programming function, type, and the pin number for 
its location on the header are given in Table 1. 

Mter using the information in Table 1 to connect the 
appropriate signals to the twenty-six pin header, the 
rest is easy. A simple ribbon cable is used to connect 
the programming station (Quickpro II) to your 
board. Install the jumper to enable programming 
(Figure 3), isolate the super voltage by removing that 
jumper (Figure 2), if needed (remember, that pin 
can be dedicated to programming), and power up 
your board. The programming station takes care of 
the rest. Use it to read in the part's programming 
file and program the device. Now power down the 
board, and swap the jumper from PROGRAM_EN 
generation to reconnecting the net connected to 
CLKI/ll. Power your system back on and you're 
ready to go. 

Vee 

4.7K 

Figure 3. Install Jumper for Programming 

4-175 



Design Considerations for On-Board 
-gz~YPRESS~~~~~~~~~~p~ro~g~ra~m~m~I~'n;g~O~ft~h~e~C;Y~7C3~7~4~/5~ 

Table 1. Pin Function and Position. 

HDRPin 
Function 1YPe 7C374 Signal 7C375 Signal Number QPII 

rdenableb input CLK2/I3 CLK2/13 9 All 

pgenableb input I/015 1/030 12 A15 

data(7) I/O 1/038 1/076 21 A26 

data(6) I/O I/036 I/On 20 A25 

data(5) I/O 1/034 1/068 19 A24 

data(4) I/O 1/032 1/064 18 A23 

data(3) I/O I/030 1/060 17 A22 

data(2) I/O 1/028 I/056 16 A21 

data(1) I/O 1/026 1/052 15 A20 

data(O) I/O I/024 1/048 14 A19 

mode(3) input 1/012 1/024 25 A31 

mode(2) input 1/014 1/028 24 A30 

mode(1) input 1/016 1/032 23 A29 

mode(O) input 1/018 1/036 22 A28 

verify input CLKO/IO CLKO/IO 13 A17 
vpp VPP CLK1/Il CLK1/Il 8 AlO 

Ise1 input 1/08 I/016 10 A13 

leb input I/O 10 1/020 11 A14 

it6/it9 input I/04 1/08 7 A8 

it5/it8 input I/02 I/04 6 A7 

it4/it7 input 1/00 I/OO 5 A6 

it3/pt3 input I/062 1/0124 4 A4 

it2/pt2 input I/060 I/0120 3 A3 

itl/pt1 input I/058 I/O 116 2 A2 

itO/ptO input 1/056 1/0112 1 A1 

GROUND GROUND 26 B32 

4-176 



Simulation of Cypress CPLDs with Mentor's 
QuickSim II 

Simulation of Cypress CPLDs and smaller pro­
grammable logic devices in the Mentor Graphics 
environment is possible without the need for pur­
chasing third party simulation models. Designs 
ranging the entire density span of Cypress program­
mable logic devices can quickly be placed into a 
form that can be imported into the mentor Quick­
Sim II environment. It will be assumed that the per­
son attempting to perform this task has some famil­
iarity with the Cypress Wap'" software and Mentor 
QuickSim II. 

After a design has been successfully compiled in the 
Wap environment, four easy steps are needed to get 
the design in the final form that QuickSim II can un­
derstand. The first step is to create a Viewlogic 
VHDL simulation model from the Wap design en­
vironment. Please refer to your Wap documenta­
tion for detailed instructions on how to do so. The 
second step is to do some slight editing to the VHDL 
files associated with the part family chosen for the 
design and the VHDL file exported from Wap. 
Thirdly, a 'wrapper' file must be constructed around 
the output file to convert Viewlogic I/O to Quicksim 
I/O. Finally, all the files edited and produced above 
are placed onto a disk for transfer into the Mentor 
environment. 

The Four Steps for Simulating Cypress PLDs & 
CPLDs in the QuickSim II Environment: 

1. Export Viewlogic VHDL file from Wap. 

2. Small editing to the VHDL file. 

3. Create the wrapper file. 

4. Transfer files to Mentor environment and 
compile. 

Let's take a detailed look at the four above steps. 

Step 1: Export Viewlogic VHDL File 
from Warp 
The first step in the process is to generate a Viewlog­
ic VHDL simulation file from the Wap design tool. 
Please refer to the Wap documentation for instruc­
tions on how to generate this file. Once the Wap de­
sign tool is run and your VHDL has been created, 
you will find it in the /vhd subdirectory of your cur­
rent project. The filename will be the same as your 
source code top-level filename. Once you have lo­
cated this file, you are ready for step 2. 

Step 2: Small Editing to the VHDL File 
The file that was just written out is in a format that 
Viewsim understands. To put the file in a format for 
QuickSim, first we modify the beginning of the file 
as shown in Figure 1. Notice that one line is com­
mented out and two are added. The second line 
added will vary depending upon which part was cho­
sen when the design was compiled. The last changes 
that need to be made in this file are to add the lines 
as shown in Figure 2. The lines shown in Figure 2 will 
change depending on your target device. 

The proper 'use work.c{devicename}p.all;' clause 
and 'FOR ALL: .. .' statement for each target device 
is listed in Appendix A. 

Each of the files listed in the 'FOR ALL: .. .' state­
ments (c37xclk.vhd, c37xinp.vhd, and 

4-177 



.-~ Simulation of Cypress CPLDs with Mentor's QuickSim II 
7CYPRESS =0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;=0;;;;;;;;= 

CYPRESS NOVA XVL Structural Architecture 
JED2VHD Reverse Assembler - Ver 0.09 Oct 26, 1993 

Viewlogic HDL File: FORDT.vhd 
Date: Tue Oct 18 22:15:45 1994 

Disassembly from Jedec file for: c371 
Device Ordercode is: CY7C371-143JC 

library primitive; 
use work.pack1076.all; 
use work.c37xp.all; 

**** Commented out this line **** 
**** Added these two lines **** 
**** work.c37xp.all is used for any Flash370 device *** 

Figure 1. First Moditications to Example File 

ARCHITECTURE DSMB of design_FORDT is 

-- stuff that needs to be added for MENTOR system 1076 

FOR ALL: 
FOR ALL: 
FOR ALL: 
FOR ALL: 
FOR ALL: 
FOR ALL: 

c37xclk use entity work.c37xclk(sim) ; -­
c37xinp use entity work.c37xinp(sim);-­
c37xm use entity work.c37xm(sim); 
c37xmux use entity work.c37xmux(sim) ; 
c37xoreg use entity work.c37xoreg(sim); 
c37xprod use entity work.c37xprod(sim); 

These statements will 
change with different target 
devices and/or families. 

Figure 2. Additions to the Architecture 

c37xprod.vhd) also have small changes that must be 
made (see Figure 3). For ease of use, the Cypress 
BBS contains all of these files pre-modified and they 
can be downloaded at your convenience. The files 
are in a self-extracting archive file called: 
VHDL_SIM.EXE. 

Entity / Architecture pairs 
For c37xclk 

After completing all of these modifications, step 2 
is complete. 

Copyright Cypress Se~iconductor Corporation, 1994 
as an unpublished work. 

$Id: c37xclk.vhd,v 1.8 1994/09/22 20:08:23 hemmert Exp $ 

use work.pack1076.all; This one line must be added to the top of 
every device library (FOR ALL: ... J file 

Figure 3. Moditication to FOR ALL: ... Files, IfPremoditied Files Are Not Used 

4-178 



.0:::::: ~ Simulation of Cypress CPLDs with Mentor's QuickSim II 
~, CYPRESS ================= 

Step 3: Create the Wrapper File 

Creating the wrapper file is accomplished by simply 
performing multiple cut-and-pastes and search­
and-replaces. The wrapper is used to translate vlbits 
(Viewlogic bits) to qsim_states (Mentor simulation 
states). To do this, a pair of functions is used. One 

function translates from qsim _state to vlbit, and the 
other translates vlbit to qsim _state. The first step is 
to copy the entity from the Wap-produced VHDL 
file into the file that contains our two functions. 
Now with your text editor, search for vlbit and re­
place it with qsim_state (Figure 4). This completes 
the entity of the wrapper. 

CYPRESS NOVA XVL Structural Architecture 
JED2VHD Reverse Assembler - Ver 0.09 Oct 26, 1993 

Viewlogic HDL File: FORDT.vhd 
Date: Tue Dec 27 16:23:47 1994 

Disassembly from Jedec file for: c22v10 
Device Ordercode is: PAL22V10C-10JC 

use work.pack1076.all; 
use work.c22v10p.all; 

This line is part of the standard template. 
For a Flash370 device, use work.c37xp.all; 

LIBRARY mgc-portable; 
USE mgc-portable.qsim_logic.all; 

ENTITY FORDT IS 
PORT ( 

clock 
right 
left 
flash 
brake 
node6 
node7 
node8 
node9 
node10 
node11 
node12 
node13 
r_outer 
r_inner 
I_middle 
vlli139_H2 
vlli137_H2 
vlli136_H2 
vlli138_H2 
I_inner 
I_outer 
r_middle 
node24 

) ; 

END FORDT; 

in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
in qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
in qsim_state 

Figure 4. The Wrapper Entity 

4-179 



Simulation of Cypress CPLDs with Mentor's QuickSim II 

The next step is to create the architecture of the 
wrapper. Th start this step, first type in the function 
template that converts vlbits to/from qsim_states, as 
mentioned above (Figure 5). 

Next, the design that we are wrapping around is 
called in as a component. The port mapping for the 
component is created by simply copying the original 
entity used above. This time, no search-and-replace 
is needed (Figure 6). 

The final step in creating the wrapper is instantiat­
ing the design as a component and hooking up the 
I/O to the wrapper through the functions listed in 
Figure 5. For the port map, start by copying the enti­
ty from the top of the file once again. For all signals 
of type in, use the qsim_state2vlbit function on the 
right side of the port map. For all inout, 
vlbit2qsim _state is used on the left and 

qsim _ state2vlbit is used once again on the right (Fig­
ure 7). 

This ends the creation of the wrapper. The wrapper 
is shown in its entirety in Appendix B. The more I/O 
pins a device has, the larger the wrapper file will be. 
However, because the creation is simply several 
copy-and-pastes and search-and-replaces, the size 
of the design will not seriously increase the amount 
of time needed to put the wrapper together. 

Step 4: Transfer Files to Mentor 
Environment and Compile 
We are now ready to transfer the design into the 
Mentor environment. In addition to the VHDL file 
we modified (that was generated by Wm]) ), copy the 
files listed in Appendix B to your transfer media 
(tape, floppy, punch cards?). Place these files in a 
directory in the Mentor environment. Compile the 
files in the following order: 

ARCHITECTURE structural OF fordt_wrapper IS 

Mapping functions for viewlogic states to/from qsim_state 

function qsim_state2vlbit (i : in qsim_state) return vlbit is 
begin 

case i is 
when '0 ' => return ' 0' ; 
when '1 ' => return '1' ; 
when 'X' => return 'X' ; 
when 'Z' => return 'z' ; 

end case; 
end; 

function vlbit2qsim_state (i : in vlbit) return qsim_state is 
begin 

case i is 
when '0 ' => return '0 ' i 

when '1 ' => return '1' ; 
when 'X' => return 'X' ; 
when 'Z' => return 'z' ; 

end case; 
end; 

Figure 5. Functions for vlbit to/from qsim_state 

4-180 



-., ~ Simulation of Cypress CPLDs with Mentor's QuickSim II 
./CYPRESS ================ 

component design_FORDT 
PORT ( 

clock in vlbit 
right in vlbit 
left in vlbit 
flash in vlbit 
brake in vlbit 
node6 in vlbit 
node7 in vlbit 
node8 in vlbit 
node9 in vlbit 
nodelO in vlbit 
nodell in vlbit 
nodel2 in vlbit 
node 13 in vlbit 
r outer inout vlbit 
r inner inout vlbit -
1 _middle inout vlbit 
vlli139 H2 inout vlbit -
vlli137 H2 inout vlbit -
vlli136 H2 inout vlbit -
vlli138 H2 inout vlbit -
1 inner inout vlbit 
1 outer inout vlbit -
r_middle inout vlbit 
node24 in vlbit 

) ; 

end component; 

FOR ALL: design_fordt USE ENTITY work.design_fordt; 

Figure 6. Calling in the Original Design as a Component 

1. pack1076.vhd 

2. c{devicename}p.vhd 
Example: c37xp.vhd or c22vlOp.vhd 

3. The rest of the device library files listed for your 
target device in Appendix B. 

4. The wrapper file. 

After successful compilation, the design is ready to 
be connected to a symbol for board and system-level 
simulation. 

4-181 



~ Simulation of Cypress CPLDs with Mentor's QuickSim II 
~~CYPRESS ================ 

BEGIN 

-- instantiate the design 

ul: design_fordt 
port rnap 

( 

) ; 

clock => qsirn_state2vlbit(clock) , 
right => qsirn_state2vlbit(right) , 
left => qsirn_state2vlbit(left), 
flash => qsirn_state2vlbit(flash) , 
brake => qsirn_state2vlbit(brake) , 
node6 => qsirn_state2vlbit(node6), 
node7 => qsirn_state2vlbit(node7), 
node8 => qsirn_state2vlbit(node8), 
node9 => qsirn_state2vlbit(node9), 
nodelO => qsirn_state2vlbit(nodelO), 
nodell => qsirn_state2vlbit(nodell), 
nodel2 => qsirn_state2vlbit(nodel2), 
nodel3 => qsirn_state2vlbit(nodel3), 
vlbit2qsirn_state(r_outer) => qsirn_state2vlbit(r_outer), 
vlbit2qsirn_state(r_inner) => qsirn_state2vlbit(r_inner), 
vlbit2qsirn_state(1_rniddle) => qsirn_state2vlbit(1_rniddle), 
vlbit2qsirn_state(1_rniddle) => qsirn_state2vlbit(1_rniddle), 
vlbit2qsirn_state(vllil37_H2) => qsirn_state2vlbit(vllil37_H2), 
vlbit2qsirn_state(vllil36_H2) => qsirn_state2vlbit(vllil36_H2), 
vlbit2qsirn_state(vllil38_H2) => qsirn_state2vlbit(vllil38_H2), 
vlbit2qsirn_state(1_inner) => qsirn_state2vlbit(1_inner) , 
vlbit2qsirn_state(1_outer) => qsirn_state2vlbit(1_outer) , 
vlbit2qsirn_state(1_rniddle) => qsirn_state2vlbit(1_rniddle), 
node24 => qsirn_state2vlbit(node24) 

end structural; 

Figure 7. Instantiating and Mapping the Design 

4-182 



Simulation of Cypress CPLDs with Mentor's QuickSim II 

Appendix A. List of Files Needed for Mentor QuickSim II by Part lYpe 

Line Added Before the 
Part1)rpe Files Needed Entity Lines Added in the Architecture 

16L8 C16L8P.VHD use work.c1618p.all; 

PACK1076.VHD use work.pack1076.all; 

16R4 C16R4P.VHD use work.c16r4p.all; 

PACKI076.VHD use work.pack1076.a11; 

16R6 C16R6P.VHD use work.c16r6p.all; 

PACK1076.VHD use work.packlO76.all; 

16R8 C16R8P.VHD use work.c16r8p.alI; 

PACK1076.VHD use work.pack1076.all; 

16V8 C16V8M.VHD use work.c16v8p.all; FOR ALL: c16v8m use entitywork.c16v8m(sim); 

C16V8P.VHD use work.pack1076.a11; 

PACKI076.VHD 

20GlO C20GlOCM.VHD use work.c20glOp.all; FOR ALL: c20g10cm use entitywork.c20glOcm(sim); 

C20GIOCP.VHD use work.pack1076.all; FOR ALL: c20glOcp use entitywork.c20glOcp(sim); 

C20GlOM.VHD FOR ALL: c20g10m use entity work.c20glOm(sim); 

C20GlOP.VHD 

PACK1076.VHD 

20RAlO C20RAlOM.VHD use work.c20ralOp.alI; FOR ALL: c20ralOm use entity work.c20ralOm(sim); 

C20RAlOP.VHD use work.pack1076.a11; 

PACK1076.VHD 

22VIO C22VIOM.VHD use work.c22vlOp.alI; FOR ALL: c22vlOm use entity work.c22vlOm(sim); 

C22VlOP.VHD use work.pack1076.a11; 

PACK1076.VHD 

22VPlO C22VPlOM.VHD use work.c22vplOp.alI; FOR ALL: c22vplOm use entity work.c22vplOm(sim); 

C22VPIOP.VHD use work.pack1076.a11; 

PACK1076.VHD 

7C33 1 C331CKMX.VHD use work.c331p.all; FOR ALL: c331ckrnx use entity work.c331ckmk(sim); 

C331M.VHD use work.packlO76.all; FOR ALL: c331m use entity work.c331m(sim); 

C331P.VHD 

PACKI076.VHD 

7C335 C335CKMX.VHD use work.c335p.a11; FOR ALL: c335ckrnx use entity work.c335ckrnx(sim); 

C335H.VHD use wor.packlO76.all; FOR ALL: c335h use entity work.c335h(sim); 

C335IREG.VHD FOR ALL: c335ireg use entity work.c335ireg(sim); 

C335M.VHD FOR ALL: c335m use entity work.c335m(sim); 

C335P.VHD 

PACK1076.VHD 

4-183 



Simulation of Cypress CPLDs with Mentor's QuickSim II 

Appendix A. List of Files Needed for Mentor QuickSim II by Part lYPe (continued) 

Line Added Before the 
Part'lYPe Files Needed Entity Lines Added in the Architecture 

7C34X C34XCKMX.VHD use work.c34xp.a1l; FOR ALL: c34xckmx use entity work.c34xckmx(sim); 

C34XEXIN.VHD use work.packlO76.all; FOR ALL: c34xexin use entitywork.c34xexin(sim); 

C34XEXP.VHD FOR ALL: c34xexp use entity work.c34xexp(sim); 

C34XH.VHD FOR ALL: c34xh use entitywork.c34xh(sim); 

C34XIN.VHD FOR ALL: c34xin use entity work.c34xin(sim); 

C34XM.VHD FOR ALL: c34xm use entitywork.c34xm(sim); 

C34XPIA.VHD FOR ALL: c34xpia use entity work.c34xpia(sim); 

C34XP.VHD 

PACK1076.VHD 

7C37X C37XCLKVHD use work.c37xp.a11; FOR ALL: c37xclk use entitywork.c37xclk(sim); 

C37XINP.VHD use work.pack1076.all; FOR ALL: c37xinp use entitywork.c37xinp(sim); 

C37XM.VHD FOR ALL: c37xm use entitywork.c37xm(sim); 

C37XMUX.VHD FOR ALL: c37xmux use entity work.c37xmux(sim); 

C37XOREG.VHD FOR ALL: c37xoreg use entity work.c37xoreg(sim); 

C37XPROD.VHD FOR ALL: c37xprod use entitywork.c37xprod(sim); 

C37XP.VHD 

PACK1076.VHD 

4-184 



Sf ~ Simulation of Cypress CPLDs with Mentor's QuickSim II 
'CYPRESS~==============================~ 

Appendix B. The Wrapper 

CYPRESS NOVA XVL Structural Architecture 
JED2VHD Reverse Assembler - Ver 0.09 Oct 26, 1993 

Viewlogic HDL File: FORDT.vhd 
Date: Tue Dec 27 16:23:47 1994 

Disassembly from Jedec file for: c22v10 
Device Ordercode is: PAL22V10C-10JC 

use work.pack1076.all; 
use work.c22v10p.all; 

This line is part of the standard template. 
For a 37x part, use work.c37xp.all; 

LIBRARY mgc-portable; These lines are added for Mentor's 
System 1076 VHDL compiler USE mgc-portable.qsim_logic.all; 

ENTITY FORDT 
PORT ( 

clock 
right 
left 
flash 
brake 
node6 
node7 
node8 
node9 
node10 
node11 
node12 
node13 
r_outer 
r_inner 
I_middle 
vlli139_H2 
vlli137_H2 
vlli136_H2 
vlli138_H2 
I_inner 
I_outer 
r_middle 
node24 

) ; 

END FORDT; 

IS 

in 
in 
in 
in 
in 
in 
in 
in 
in 
in 
in 
in 

qsim_state 
qsim_state 
qsim_state 
qsim_state 
qsim_state 

qsim_state 
qsim_state 
qsim_state 
qsim_state 
qsim_state 
qsim_state 
qsim_state 

--Notice that unused pins are assigned a 
--node number equivalent to their pin number. 

in qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 
inout qsim_state 

in qsim_state 

ARCHITECTURE structural OF fordt_wrapper IS 

Mapping functions for viewlogic states to/from qsim_state 

4-185 



Simulation of Cypress CPLDs with Mentor's QuickSim II 

Appendix B. The Wrapper (continued) 

function qsim_state2vlbit (i : in qsim_state) return vlbit is 
begin 

case i is 
when ' 0' => return '0' i 
when ' l' => return '1' i 

when 'X' => return 'X'i 
when 'Z' => return 'Z'i 

end case; 
end; 

function vlbit2qsim_state (i : in vlbit) return qsim_state is 
begin 

case i is 
when' 0' => 
when '1' => 
when 'X' => 
when 'Z' => 

return '0'; 
return '1'; 
return 'X'; 
return 'Z'; 

end case; 
end; 

component design_FORDT 
PORT ( 

clock 
right 
left 
flash 
brake 
node6 
node7 
node8 
node9 
node10 
node11 
node12 
node13 
r_outer 
r_inner 
I_middle 
vlli139_H2 
vlli137_H2 
vlli136_H2 
vlli138_H2 
I_inner 
I_outer 
r_middle 
node24 

) ; 

in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
in vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 
inout vlbit 

in vlbit 

end component; 

4-186 



lLrcYPRESS ==S;;;;;im;;;;;u;;;;;l;;;;;a;;;;;ti;;;;;OD=of;;;;;Cy=p;;;;;f;;;;;eS;;;;;S;;;;;C;;;;;P;;;;;L;;;;;D;;;;;s;;;;;Wl;;;;;O;;;;;th=M;;;;;e;;;;;D;;;;;to;;;;;f;;;;;'s;;;;;Q;;;;;u;;;;;i;;;;;ckS=im=I=I 

Appendix Bo The Wrapper (continued) 

FOR ALL: design_fordt USE ENTITY work.design_fordt; 
BEGIN 

-- instantiate the design 

ul: design_fordt 
port map 

( 

clock => qsim_state2vlbit(clock) , 
right => qsim_state2vlbit(right) , 
left => qsim_state2vlbit(left), 
flash => qsim_state2vlbit(flash) , 
brake => qsim_state2vlbit(brake) , 
node6 => qsim_state2vlbit(node6), 
node7 => qsim_state2vlbit(node7), 
node8 => qsim_state2vlbit(node8), 
node9 => qsim_state2vlbit(node9), 
nodelO => qsim_state2vlbit(nodelO), 
nodell => qsim_state2vlbit(nodell), 
node12 => qsim_state2vlbit(node12), 
node13 => qsim_state2vlbit(node13), 
vlbit2qsim_state(r_outer) => qsim_state2vlbit(r_outer), 
vlbit2qsim_state(r_inner) => qsim_state2vlbit(r_inner), 
vlbit2qsim_state(1_middle) => qsim_state2vlbit(1_middle), 
vlbit2qsim_state(1_middle) => qsim_state2vlbit(1_middle), 
vlbit2qsim_state(vlli137_H2) => qsim_state2vlbit(vlli137_H2), 
vlbit2qsim_state(vlli136_H2) => qsim_state2vlbit(vlli136_H2), 
vlbit2qsim_state(vlli138_H2) => qsim_state2vlbit(vlli138_H2), 
l_inner vlbit2qsim_state(1_inner) => qsim_state2vlbit(1_inner), 
vlbit2qsim_state(1_outer) => qsim_state2vlbit(1_outer), 
vlbit2qsim_state(1_middle) => qsim_state2vlbit(1_middle), 
node24 => qsim_state2vlbit(node24) 

) ; 

end structural; 

Watp is a trademark of Cypress Semiconductor Corporation. 

4-187 



Architectures and Technologies for FPGAs 

Introduction 

The FPGA (Field Programmable Gate Array) is the 
newest concept in programmable logic. Previously 
the most complex programmable logic device was 
the Complex Programmable Logic Device, the 
CPLD. The CPLD concept is a simple extension of 
the basic PLD. laking a small PLD device design 
and repeating it multiple times on the same die pro­
vides large resources in a single device. It is then 
necessary is to provide interconnect resources to al­
low each repeated cell to share resources and to 
communicate with one another and the I/O cells. 
The individual repeated cells are called macrocells 
which are, of course, relatively large and functional­
lycomplex. 

Before the FPGA, the next level up from the PLD 
in solution alternatives was the sea-of-gates gate 
array. This is a fixed die, consisting of transistors, 
that is customized by the user by specifying the inter­
connect of the transistors. The user, in actuality, 
specifies the interconnection between a set of func­
tional primitives such as NAND gates and flip-flops, 
which the gate array vendor has predefined and 
placed in a librflry. The gate array is not user pro­
grammable and must be customized by the vendor 
in the manufacturing process. Delivery of first ar­
ticles is many weeks, and non-recurring costs are 
usually above ten thousand dollars. 

Between the CPLD and the gate array is the FPGA 
which borrows from the solutions above and below. 
The FPGA logic cells are small and have less func­
tionality than those of the CPLD. Thus they are a 
move toward the sea-of-gates concept in the Gate 
Array ASIC. Since the FPGA logic cells are smaller 
than those of the CPLD, there are many more of 
them in the same die. The FPGA logic cells are ar-

ranged in a rectangular array as in the gate array 
sea-of-gates concept. Between each logic cell is a 
routing channel so that multiple interconnect wires 
can run vertically and hrrizontally across the chip. 
Programmable connection points are provided 
where the logic cell I/O enters the routing channel 
and at the cross points where vertical routing chan­
nels meet horizontal routing channels. Byappropri­
ate programming of the cell I/O connections and the 
cross chrumel connections, signals can be routed 
throughout the chip. 

Although the FPGA concept is relatively simple, re­
alization of the FPGA is complex. There are many 
interrelated technology and architecture issues 
which must be addressed to produce a successful de­
vice. Success in this context means a device which 
can make maximum use of the available resources 
to accommodate large designs, achieve the highest 
possible performance that the semiconductor pro­
cess technology has to offer, and give the designer 
flexibility (in, for example, pin assignments). This 
application note is intended to explain key factors in 
technology and architecture issues and how they re­
late. From this understanding, benefits to the de­
signer will emerge. Different FPGA approaches 
have very different characteristics that can make the 
difference between a design achieving the required 
performance or being able to fit into a specific de­
vice. The material in this note is intended to help 
the design engineer make choices that will help 
achieve design goals. 

Detailed Architecture 

The global form of an FPGA is shown in Figure 1. 
The layout is a matrix of logic cells with a grid of 
routing channels running between the cells. I/O 
cells surround the array and allow access to the ex-

4-188 



=-- , --::z Architectures and Technologies for FPGAs 
~rcYPRESS =============== 

D D D D D D D 0 0 0 0 0 

/- 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 D 0 0 

Vertical Channel 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 Horizont al Channel 

0 0 0 0 0 0 0 0 0 D 0 I~ ~ 
0 0 0 0 0 0 0 0 0 D 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

Log 
0 0 0 0 0 0 0 0 0 0 0 0 

icCell 

Figure 1. Global FPGA Architecture 

temal pins of the device. The programmable con­
nections are located where the vertical and horizon­
tal routing channels cross; where the I/O of the logic 
cells meet the routing channels; and where the I/O 
cells around the periphery meet the routing chan­
nels. In contrast to the CPLD, the FPGA usually 
has no programmability within the logic cells them­
selves (Some FPGA architectures do include pro­
grammable elements within the logic cell. Beyond 
this fundamental architecture, FPGAs can differ 
widely in the details. Key considerations are: (1) the 
number of wires in the routing channels, (2) the flex­
ibility in the interconnect programmability where 
channels meet channels and where logic cells meet 
channels, and (3) the functionality contained within 
the logic cell. The details of the architecture choices 
in these key considerations are not obvious and are 
closely tied to the semiconductor process technolo­
gy that is used to realize the device. The remainder 
of this section focuses on some of the more impor­
tant aspects of these details: to show how they influ­
ence architecture choices and what impact the 
choices have on the performance, cost, and utility of 
the final product. 

FPGA Logic Cells 

There are three approaches to the form of a logic 
cell in FPGA implementations. 

One approach is to make the logic cell as complex 
as in the CPLD. Such an implementation is termed 
a Coarse-Grain Logic Cell. An example is shown in 
Figure 2. This cell contains multiple flip-flops, sev­
eral multiplexers, a combinatorial function block, 
and a variety of different inputs. Each of the flip­
flops may be bypassed in order to implement combi­
natorial functions. From a first level analysis, it is 
clear that this logic cell can implement complex log­
ic as well as register intensive functions. Three im­
portant characteristics are significant to note. First, 
the cell is complex and, as will be explained later, un­
less there is programmability in the cell, this can 
lead to inefficient use of the available logic. Second, 
there are a small number of cell outputs (two in this 
case). Third, many of the inputs are dedicated to 
flip-flop control and are not usable for other pur­
poses if the flip-flop is not required. Timing analysis 
of this cell can be complicated. Since the cell pos­
sesses a large amount of functionality, it reduces the 
burden on the cell-to-cell interconnect. 

The second approach in the cell architecture is to 
make the logic cell very simple. This approach is 
termed the Fine-Grain Logic Cell. An example is 
shown in Figure 3. This cell contains no flip-flops 
and very minimal logic. Only one output is avail­
able. The cell can realize simple AND-OR logic im­
plementations and, because of its simplicity, it can 

4-189 



-=z . -=z: Architectures and Technologies for FPGAs 
TCYPRESS ============= 

r----------------. 
I I 
I I 
I 

Comb. 

Function 
Outputs 

Inputs 

Enable D 
Inhibit 

Global Reset L ________________ ~ 

Figure 2. Coarse-Grain Logic Cell 

Figure 3. Fine-Grain Logic Cell 

have very low propagation delays through the cell 
and there tends to be a high cell utilization. This cell 
will rely heavily on the cell-to-cell routing resources. 
The greater use of routing may add to the overall 
delay negating the low delay of the cell. 

The third approach is a hybrid between the coarse­
grain and fine-grain extremes but with some varia­
tions that enhance the other trade offs in the global 
architecture design. To understand the hybrid role, 
the relationship of the fine-grain and coarse-grain 
logic cell approaches to the global architecture de­
sign must be understood. 

The global architecture relation to the logic cell type 
can be illustrated by starting from the basic FPGA 
concept and identifying and working through the 
implementation trade offs. Consider a sea of logic 
cells surrounded by the routing channels. Assume 
that the routing channels are very large and the in­
terconnect completely flexible. Then, as in the cus­
tom sea-of-gates ASIC, the logic cells can be small, 
consisting of elementary logic primitives. The first 
trade off is that the FPGA is not a gate array where 
gates are sacrificed for routing. In the FPGA, the 
routing resources are limited and unused gates offer 
no increase in interconnect capability. This suggests 

4-190 



&# 2-~ Architectures and Technologies for FPGAs 
_,CYPRESS ============== 

that the logic cell possess more than minimal func­
tionality and should include at least one flip-flop 
and wide AND-OR combinations to realize com­
plex logic. It also suggests that the logic cell have 
multiple outputs so that if some logic functions are 
very simple, more than one of these functions could 
be implemented in the same cell. This allows maxi­
mum utilization of the logic cell resources. Continu­
ing this pattern would further increase functionality 
in the logic cell. Bear in mind, however, that the log­
ic cell lacks programmability in the examples shown 
here and that directing signals within the logic cell 
is done with multiplexing and judiciously selecting 
input combinations. Further expansion of this 
would waste resources in the signal directing logic 
and increase logic cell propagation delay. This is 
detrimental to the objective of implementing the de­
sired logic function. Added circuitry and controls in 
the logic cell to maximize its flexibility do not con­
tribute to the realization of the desired function. 
That flexibility is the task of the interconnect. There 
is, therefore, an optimum logic cell complexity 
which lies somewhere between the coarse- and fine-

Wide Fan-In 

grained extremes. With finite routing resources 
available, but without fuse related constraints, the 
optimal cell would look something like the cell in 
Figure 4. This cell design is simple and symmetric 
yielding small propagation delays regardless of the 
signal path through the cell. Since the interconnect 
is not a factor, a large number of inputs is provided 
so that logic functions of many variables can be im­
plemented. The cell also provides for the realiza­
tion of any logic function up to a given number of 
variables. Multiple outputs are also provided. The 
flip-flop may be used or the "D" input of the flip­
flop is available as an output for combinatorial only 
functions. The large number of outputs allows the 
cell to be split, implementing two or more simple 
logic functions in the same cell or sharing logic 
across function in the same cell. 

Programmable Connections 

Now examine the interconnect surrounding the sea 
of logic cells. There are two key issues in the imple­
mentation of the programmable connections. First 
is size. The programmable interconnect circuit may 

Multiple 
Outputs 

Figure 4. An Optimal Logic Cell 

4-191 



~ ~ Architectures and Technologies for FPGAs 
~'CYPRESS ============= 

use an area which limits the number of intercon­
nects which can be put into a given area. Second is 
the electrical characteristics of the interconnect. 
The interconnect may not look like a wire to the sig­
nal that it is carrying. Resistance and capacitance of 
the interconnect can affect the propagation delay of 
the signal. 

Infinite routability is not realistic. The routing 
channels can contain only a finite number of wires 
and the interconnect possibilities where wires cross 
or meet is not endless. There are three classes of 
ways to connect two wires: RAM-based connec­
tions, large fuse technology, and via fuse technolo­
gy. Consider the rectangular area where horizontal 
and vertical wiring channels cross. At this intersec­
tion there is potentially a connection possibility at 
each wire crossing (intersection). An ideal case of 
the user programmable interconnect possibilities 
are shown in Figure 5. Each circle at the intersection 
point represents a potential user-programmable 
connection. This scheme offers a great deal of inter­
connect capability. There is a lot of redundancy in 
the interconnect possibilities. Once a wire is con­
nected to a signal, it is dedicated to that signal 
throughout the extent of that wire. Wires may be 
segmented so that they can support local intercon­
nect. The implementation of the connection mecha­
nism (fuse, RAM cell, etc.) may be larger than the 
dimension of the wire size and inter-wire spacing as 
shown in Figure 6. Because of the size ofthe connec­
tion cell for connection "0," programmable connec­
tion at points "X" are not possible. Further pro-

Figure S. Connection Points at Routing 
Channel Intersection 

grarnmable connection cells cannot fit into the area 
unless the interconnect wires are spread apart. This 
latter approach is not an effective alternative since 
it upsets the regularity and fit of the wiring channels 
and the logic cells. The only alternative is to limit 
the number of connection possibilities. 

An example of this situation is RAM-based pro­
grammable interconnect. RAM-based connectivity 
uses a memory cell to control the connection of one 
wire to another. The memory cell is far larger than 
the wire intersect area. What is done is to limit the 
connection possibilities to a small fraction of the 
possible signal paths and limit the number of wires 
in the routing channel. The result is that the rout­
ability of the FPGA becomes what is known as "in­
terconnect constrained." That is, the number of 
wire connection possibilities is so small that the in­
terconnect limits the realization of functions with a 
given logic cell architecture. Th compensate for this, 
coarse-grained logic cells are usually chosen and 
programming internal to the logic cell may be add­
ed. The ability to perform more function in a logic 
cell tends to make up for the inability to implement 
the equivalent function in a set of interconnected 
logic cells. It is difficult to quantify the results of 
such choices. Can a large complex logic cell ade­
quately compensate for interconnect constrained 
situations? There is no clear answer and the results 
are dependent on what is to be implemented in the 
FPGA. However, it can be determined by realizing 
various types of functions in various architecture 
forms that the interconnect-constrained architec-

1' .. F\" 
1'[ 

", .. 

Figure 6. Connection Limitations due to 
Programmable Connect Cell Size 

4-192 



.a:: -, # Architectures and Technologies for FPGAs 
=,CYPRESS ================ 

tures tend to have routability limitations which are 
exacerbated when any constraints are placed on the 
device pin/signal association. 

Architectures implemented with large-fuse technol­
ogy tend to have the same characteristics as RAM­
based connectivity except they are not as severe. 
Both approaches limit the number of outputs in the 
logic cell to only one or two. This is because in­
creased outputs add to the number of potential con­
nections, which places a further burden upon an al­
ready stressed interconnect mechanism. Because 
the number of outputs is small, simple functions will 
tend to waste logic resources in the interconnect­
constrained, complex logic cell architectures. 
Therefore, these architectures may tend to be more 
efficient in implementing complex state machines 
than the fine-grained logic cell architectures with 
the same interconnect capability. 

Of the programmable interconnect technologies 
available for FPGAs, (RAM-based, large-fuse, and 
via-fuse) the optimum interconnect is achieved by 
via-fuse technology. This technology realizes an an­
tifuse in the same physical area as that used by a nor­
mal semiconductor process via which connects two 
layers of metal. The via fuse will be described in de­
tail in a later section. This technology approaches 
the interconnect characteristics found in sea-of­
gates gate arrays and almost completely eliminates 
programmable interconnect as a factor in FPGA 
wiring channel and logic cell architectures. 

The electrical characteristics of the interconnect 
technology playa major role in the performance of 
the FPGA. A first level summary of the technology 
impact on the interconnect (not including wire 
delay) is given in Table 1. When the connection is 
made, it exhibits some ON resistance in series with 
the logic signal path. When a connection is OFF it 
presents a shunt capacitance from the logic signal 
wire to ground. A single ON fuse followed by a 

single OFF fuse represents an RC combination in 
the signal path. The product of the ON resistance 
and the OFF capacitance of this combination is giv­
en in the Time Constant column of the table. 

Timing Model 

The timing model is a representation of signal de­
lays in an actual FPGA that allow the designer to de­
termine the performance of a design when it is real­
ized in a particular device. The nature of the timing 
model is of concern to the designer since it affects 
the level of difficulty in determining performance. 
All FPGAs, by virtue of their architectures, in­
herently have variable timing models. The pin-to­
pin propagation delay depends upon the number of 
logic cells cascaded together to achieve a given logic 
function. There are two types of variable timing 
models: simple and fine structured. In the simple 
variable timing model, the pin-to-pin propagation 
delay is chiefly dependent upon the number of cas­
caded logic cells, signal fan out, and the wire delay 
that would normally be encountered in a sea-of­
gates gate array. The number of interconnect points 
in the signal path and the logic function implement­
ed in the logic cell tend to have secondary and lesser 
effects on the timing. Architectures suitable for the 
simple timing model will have actual device delay 
characteristics which are independent of where the 
logic cell is placed in the array. In the fine structured 
variable timing model, pin-to-pin propagation delay 
is strongly dependent upon not only the simple mod­
el factors but also the number of programmable in­
terconnects in the signal path and the function im­
plemented in the logic cell. In these cases, the logic 
cell itself has a variable timing model due to its com­
plex structure and antisymmetry. Programmable in­
terconnect points with unfavorable electrical char­
acteristics raise the effect of the number of 
interconnect points in a signal path to being a first 
order effect. 

Table 1. Electrical Characteristics of Fuse Technologies 

Technology ON Resistance OFF Cap. T Tgate 

Via Fuse 50 ohms 1fF 0.05 ps SOps 

Large Fuse 400 ohms SfF 2ps 400 ps 

RAM Cell 800 ohms lOfF 8 ps 800 ps 

4-193 



~ Architectures and Technologies for FPGAs 
_;CYPRESS =============== 
The actual performance of devices does not differ by 
these orders of magnitude. This is because the OFF 
capacitance of a large number of no-connect fuses 
is small compared to the metal and gate input capac­
itances. Therefore the fuse series resistance is the 
dominant component in limiting performance due 
to programmable interconnect. To put this factor 
into perspective, Table 1 includes a column which is 
the time constant for one series fuse connected to a 
gate with a capacitance of 1 pE Note that with as few 
as five programmable interconnects in the path 
from the signal source to one gate, the time 
constant, for some technologies, can be as large as 
the gate delay itself. 

Interconnect and Logic Cell Trade OtT Summary: 
Advantages and Weaknesses 

The technology has a profound effect on the total 
FPGA architecture. SRAM and large fuse based 
technologies cause interconnect-constrained archi-

80 
-

70 -
-

N 
60 ::c - ViaLink 

e- -
Q) 
u 

50 I:: 
til 
~ 

E ... -.g 
40 8? -

E -
Q) 

i 30 
rJ) 

.--
-

20 ~ 
, 

10 J 

1'01! 

tectures which force non-optimal logic cell architec­
tures. In general, interconnect-constrained archi­
tected logic cells tend to be large and complex to 
make up for the interconnect limitations. More­
over, these complex logic cells tend to be wasteful of 
resources in certain applications. Such architec­
tures are characterized by routing and capacity li­
mitations and an inability to fit a design when there 
are pinout constraints (user fixes signals to particu­
lar pins). Router and fitter software may take many 
iterations to fit a design. 

It is clear that the small-size fuse technology, com­
bined with well chosen routing channel wire com­
plement and an optimum complexity logic cell, will 
yield a high performance, small die size device. Fig­
ure 7 shows system performance of a fixed bench­
mark fitted into devices of the three technologies 
described above. The system performance is 
plotted versus the semiconductor process technolo­
gy line width in order to perform an apples to apples 

-

-
RAM and Large Fuse 

I I 

0.81! 
Technology Line Width 

Figure 7. Performance Relative to Connect Technology 

4-194 



comparison of the key factors in the FPGA imple­
mentation. As expected, the architectures opti­
mized for ViaLink '" exhibit a significant perfor­
mance advantage over the large-fuse and 
RAM-based interconnect approaches. 

Comparison to CPLDs 

The architecture of the FPGA manifests itself in the 
device characteristics in much the same way that the 
sea-of-gates gate array architecture does. The two 
major influences on the device characteristics are 
the small logic cell size and the channel routing. 
First, the cell sizes are small and considerably less 
complex than those of the CPLD. Therefore, the 
propagation delay through the FPGA logic cell is 
much smaller than that through the CPLD macro­
cell. Functions such as multiplexing, which need 
only one cell per signal path, will typically achieve 
much higher performance in the FPGA. In contrast, 
functions which require cascading of many logic 
cells to implement may be at a performance disad­
vantage in the FPGA. Complex state machines with 
a lot of decoding are in this category. This does not 
mean that use of the FPGA is to be avoided. In the 
example to follow, a complex state machine is im­
plemented successfully. Secondly, an abundance of 
routing resources can permit complicated intercon­
nects as well as convenient handling of buses. 

Cypress pASIC380 1M Family FPGA 
Architectures 

The previous architecture discussions have pointed 
out the strong relationship between the technology, 

Open 

Architectures and Technologies for FPGAs 

the architecture of the FPGA, and the device char­
acteristics. The 380 family possesses a unique 
technology which impacts all of the remaining archi­
tecture trade offs positively. The discussion of the 
380 family begins, therefore, with a presentation of 
the interconnect technology. 

pASIC380 Family Fuse Technology 

In usual integrated circuits two crossing metal lines 
that are on different layers may be connected by a 
via. A via is a small hole in the insulating glass that 
lies between the two layers of metal. This small 
hole, which is about the size of the metal lines them­
selves, is filled with metal from above making the 
connection to the underlying metal line. The pro­
grammable via is a modified via used in standard 
CMOS semiconductor processing. The modifica­
tion consists of depositing a thin layer of amorphous 
silicon in the via hole so that the silicon separates 
the two layers of metal. As manufactured, this spe­
cial via has a resistance in excess of 1 gigaohm and 
an insignificantly small capacitance (about 1 fF). Its 
size is no larger than the standard via normally used 
to connect two layers of metal. A cross section of the 
programmable via is shown in Figure 8. A program­
ming pulse applied across the programmable via 
causes a change in the characteristics of the silicon 
layer forming a bidirectional conductive link be­
tween the top and bottom metal. This programmed 
link has a series resistance of about 52 ohms and in 
practice is no more than 65 ohms. The parasitic ca­
pacitance is no larger than a normal metal to metal 
via. The technology is appropriately termed 
"ViaLink." 

Programmed 

Figure 8. The ViaLink 

4-195 



l&~' ~ Architectures and Technologies for FPGAs 
, CYPRESS =========;;;;;;;;===== 

Routing 

ViaLink technology has significant impact on FPGA 
architecture. Since the programmable site is no 
larger than the associated metal interconnect wires, 
there is no real restriction on the number of inter­
connect points (fuses) and no fuse related restric­
tions on the number of wires in the interconnect 
channels. The 380 family routing scheme is archi­
tected with this added freedom. 

Four types of signal wires are employed in the rout­
ing channels: 

• segmented wires 

• quad segmented wires 

• express wires 

• clock wires 

Segmented wires are wires that extend only from 
one routing channel to the next, both vertically and 
horizontally. At the channel junction, a horizontal 
segmented wire may be programmed to intercon­
nect to a vertical segmented wire at points called 
cross links. In Figure 9, programmable cross links 

Vee 

3 4 
JJee 

are denoted by the open circle at intersections of 
vertical and horizontal wires. Also at the channel 
juncture, the segmented wire may be continued in 
the original horizontal or vertical direction by con­
nection to another segmented wire running in the 
same channel. This connection is provided by a pass 
link. These links are denoted by an "x" in the figure. 
Segmented wires are most applicable for local wir­
ing around or between adjacent logic cells. 

Quad segmented wires are similar to the segmented 
wires described above except that the wire extends 
across four logic cells before it is segmented. Like 
segmented wires, the quad segmented wires may be 
continued to the next quad segmented wire by a pass 
link. The quad segmented wires are applicable to 
signal distribution over a larger but still local group 
of logic cells. 

Express wires are similar to segmented wires except 
they do not include pass links. An express wire will 
therefore run the entire length of the device. These 
wires are most suitable for global signals within the 
device. Routing software with specific knowledge of 
the device architecture will automatically route sig~ 
nals over the appropriate wire type. 

11 

-:::1 
6 7 

Figure 9. Simplified pASIC380 Family Model 

4-196 



Clock wires are special signal lines that include an 
array of buffers for minimal skew. Clock wires are 
similar to express wires except that the cross links 
are limited. This is to insure that the clock wires are 
lightly loaded by programmable interconnects and 
can be used maximally in routing high-speed clocks 
or reset signals globally throughout the device with 
minimal skew. The source of the signal on the clock 
wires is specific device pins with the designation "1/ 
CLK." After passing through the special input buff­
ers, the signal is routed horizontally across the cen­
ter of the die, as shown in Figure 10. There are four 
high drive buffers. One pair drive clock 1 and clock 
2 to the upper half of the column of logic cells, and 
the other pair drive the two clocks to the lower half 
column of logic cells. There is a cluster of these buff­
ers for each column of logic cells in the array. The 
buffers can be enabled to drive the clock lines or dis­
abled if a clock is not required in a given column. 

Architectures and Technologies for FPGAs 

Vertical channels include all three wire types plus 
Vee and ground wires. The Vee and ground connec­
tions allow unused inputs of any logic cell to be tied 
to an appropriate logic level. The vertical channels 
run to the left of each logic cell column and extend 
the full height of the device. The I/O wires, which 
run from each of the logic cells to the right of the ver­
tical channel, intersect the wires of the vertical chan­
nel with cross links at all segmented wires and at 
judicious points for express wires. At the extreme 
ends of the vertical channels are I/O cells that con­
nect to the device pins. The number of wires in the 
vertical channel is chosen to be commensurate with 
the number of inputs and outputs of a logic cell, the 
added wires for Vee, ground, and the I/O cells at the 
device periphery. There are 24 of these wires. 

Horizontal channels provide connection by way of 
cross links from vertical channel to vertical channel 

DDDDDDDDDDDD 
DDDDDDDDDDDD 
DDDDDDDDDDDD 
DDDDDDDDDDDD 

Clock Buffers 

Lower Column 
Buffered Clocks 

DDDDDDDDDDDD 
Clock 2 

From lnput Buffer 

DDDDDDDDDDD~ 
DDDDDDDDDDDD 
DDDDDDDDDDDD 

Upper Column 
Buffered Clocks 

Lower Column 
Buffered Clocks 

Clock 1 Clock 2 

Clock Buffer 
Details 

Figure 10. pASIC380 Family Clock Distribution 

4-197 

Logic Cell 



, ~ Architectures and Technologies for FPGAs 
_ CYPRESS ============== 

and from the vertical channels to I/O cells on the left 
and right periphery of the device. All wire types are 
included in the horizontal channels (which contain 
12 wires each) except for the clock wires. (These are 
the dedicated wires that carry the clocks to the 
buffers.) 

I/O Cells 

There are three types of interface buffers that con­
nect the internal array to the device pins. The dedi­
cated input buffer provides high drive internally and 
generates both true and complementary versions of 
the input signal. This high drive capability allows 
signals coming from these input orily buffers to fan 
out to a larger number of cells than the normal I/O 
cell. The clock input buffer is similar to the dedi­
cated input buffer except that it provides a third out­
put that is routed to the internal clock distribution 
buffers described previously. The I/O cell provides 
a bidirectional connection to the devices pins. The 
cell can be used as input only, output only, or a bi­
directional pin connection. Internally the cell has 
an output enable, an input data connection, and two 
output data connections which are ORed together 
to produce the output. This cell is shown schemati­
cally in Figure 11. The output driver provides 8 rnA 
drive level (IOH and lod. 

Logic Cells in the 380 Family 

Since the routing resources of the 380 family are 
abundant and without expectation of being inter­
connect constrained, there is freedom in the logic 
cell architecture to choose the optimum complexity. 
The 380 family logic cell is shown in Figure 12. This 
cell has been optimized to maintain the speed ad­
vantage of the ViaLink technology while insuring 
maximum logic flexibility. 

Figure 11. BidirectionalI/O ButTer 

Device 
Pins 

The logic cell consists of two 6-input AND gates, 
four 2-input AND gates, three 2-to-1 multiplexers 
and a D flip-flop. This cell represents approximate­
ly 30 gate equivalents of logic capability. The cell 
has 23 logic and control inputs and 5 outputs. The 
arrangement of the gates permits 14-bit-wide gating 
functions and can realize all possible Boolean trans­
fer functions of up to three variables. The D flip­
flop possesses asynchronous set and reset inputs to 
independently control the output state. The multi­
plexer and logic feeding the D input allow the flip­
flop to be configured as D, T, JK, or SR. 

The outputs of the logic cell include the Q output of 
the flip-flop (QZ) plus four other outputs tapped at 
selected points within the logic cell. The OZ output 
is the same as the D input to the flip-flop. The OZ 
output facilitates combinatorial functions. The 
three other combinatorial outputs tap the logic cell 
at selected places. If simple logic functions are to be 
implemented, the multiple outputs permit more 
than one of these functions to be realized in a single 
logic cell. Maximum use of the available logic can 
be made. Note the ability to provide this multifunc­
tion utilization without any significant impact on 
routing. The additional utilization factor is ob-

a8-----------------------, 
A1 
A2. ~..---..... 
~ J---------..... ------t_- AZ 
AS 
AS 

B1 
B2 

C1 
C2 

01 
02 

E1 
E2 

F1 
F2 - ""..--..... 
F3 
F4 
F5 
F6 

.----t-- oz 

az 

'------~t__+--- NZ 

J--4----------~--t_-FZ 

ac----------~ 
aR----------------------~ 

Figure 12. pASIC380 Internal Logic Cell 

4-198 



-.. ~ Architectures and Technologies for FPGAs 
~rcYPRESS ================ 

tained for free. When implementing multiple func­
tions, the flip-flop may still be employed in many 
cases. 

The logic cell is not so complex as to adversely im­
pact propagation delay. The internal multiplexers 
are positioned to participate in implementing logic 
functions. Since the multiplexers are all in the path 
to the D input of the flip-flop, they contribute signif­
icantly to combinatorial logic function realization 
and are not expended on signal steering. The logic 
cell is also noticeably symmetric and regular. Com­
binatorial delays are thus also symmetric. That is, 
input to output delays tend to be roughly the same, 
although the AZ and FZ output will be faster than 
the others. Whereas some architectures bypass 
large sections of cell logic by the multiplexing, there­
by making the cell delay dynamically changeable, 
the 380 logic cell delay is not subject to this condi­
tion. 

Performance and Timing Model 

An inherent characteristic of any FPGA is that the 
timing model is a variable model: logic implementa­
tion is accomplished by cascading a number of logic 
cells that is dependent upon the function to be im­
plemented. For the non-ideal FPGA model, the de­
vice input to output propagation delay is a function 
of the number of logic cells in the signal path; the dy­
namics of the signal path in the logic cells; the num­
ber of programmable interconnects through which 
the signal traverses; the normal integrated circuit 
routing delay; and the I/O cell delay. This relation­
ship can cause the variable timing model to be quite 
complex and depend upon the routing, placement, 
and cell dynamics. Since the 380 family has a fixed 
timing model for each logic cell, the cell configura­
tion dynamics are not a factor in the 380 family tim­
ing model. Only the cell delays need to be summed 
for their contribution to the overall delay. 

pASIC and ViaUnk are trademarks of QuickLogic Corporation. 

The 380 family programmable interconnect affects 
the propagation delay in much the same way as nor­
mal integrated circuit interconnects. That is, the 
fuses contribute to the delay as if they were slightly 
longer wires. This characteristic greatly reduces the 
complexity of the timing model and the variability in 
the timing results when a design is fitted to a device. 

Conclusions and Summary 

This application note is a first introduction to 
FPGAs. Specifics of the Cypress 380 family of de­
vices were presented. It was shown that the fuse or 
connection technology has a very strong influence 
on the architecture of the FPGA logic cells and the 
interconnect scheme. Specifically the physical size 
of the interconnect (fuse or RAM cell) and its ON 
resistance are major influences on the FPGA logic 
cell complexity and interconnect architecture. The 
low ON resistance, physically small fuse permits 

• an interconnect scheme virtually unconstrained 
by the number and location of fuses 

• an optimized logic cell architecture 

• device performance with minimal limitations 
from the fuse electrical characteristics 

When an FPGA is architected with the freedoms 
listed above, the results are significant benefits to 
the user: 

• FPGAs where designs are easy to fit, i.e., large 
capacity (non interconnect constrained) 

• Flexibility in pin assignments 
(user can definelkeep fixed after modifications) 

• High performance!low propagation delays 

• Easy to use timing models 

When these are primary concerns, the small fuse 
technology offer the greatest opportunity for ex­
tracting these benefits. 

4-199 



Designing with FPGAs 
An Introduction to Cypress's pASIC380 Family 

of FPGAs and the Warp3 TM Design Tool 

Introduction 

Field Programmable Gate Arrays (FPGA) borrow 
the sea of gates concept from the gate array semicus­
tom integrated circuit and add field programmabil­
ity. The similarity of the FPGA to the semicustom 
approaches opens many possibilities for the design 
engineer. With a large number of gates available, 
complex designs can be implemented into a single 
device. In the semicustom approach it may be many 
weeks from sign off to prototypes. Moreover, simu­
lation is usually exhaustive (due to the cost of a de­
sign change), taking many weeks of the design cycle. 
With field programmability, a design may be real­
ized in a device in a week or two of design time, in 
contrast to the many months with a semicustom ap­
proach. The FPGA brings gate-array-like possibili­
ties to many design projects. The lack of a non-re­
curring engineering charge for FPGAs makes this 
technology financially available to a large number of 
developments. 

This application note is intended to be an introduc­
tion to using FPGAs by taking the reader through a 
complete design. The first part of this note presents 
the design tools for FPGA designs. Here a design 
flow is followed from design entry in its multiple 
forms. The design flow is top down. That is, the pro­
cess starts from a description of high-level abstract 
entry of the design and progresses to adding more 
hardware-specific details as required for realization 
in a device. To illustrate the back-end part of the de­
sign process, a DRAM memory controller is pres­
ented. In this part, details of speed optimization, 

simulation, and device specifics required in the de­
sign description are discussed. 

Design Development and Cypress's 
Wa1p3 1M Design Tool 

FPGA devices are resource-rich entities capable of 
implementing designs that use from lK to 20K or 
more gates. These designs will not be simple, conse­
quently the development of the design, its debug­
ging, and final performance analysis will be a com­
plicated task. Fortunately, gate array design and 
analysis tools can be used to make these tasks com­
parativelyeasy. The design proceeds beginning with 
the entry of the design description. This may be in 
schematic form or in a high level language form, 
such as VHDL. After entry, the VHDL code (or 
VHDL equivalent of the schematic) can be simu­
lated directly to verify the functionality of the design 
description. The design is then synthesized and 
committed to a particular device. A~ this point the 
performance of the implementation can be ana­
lyzed and optimized if necessary to achieve a design 
target. Lastly, the actual device is programmed. 

Warp3 is a modern, self-contained CPLD and FPGA 
design tool that supports all phases of the design 
process. At the front end, it includes VHDL and 
schematic entry design capture tools for efficient 
and convenient user entry. The synthesis tools in­
clude native compilation of VHDL (for accurate 
VHDL interpretation), and Cypress device-specific 
compilers for maximum utilization of device archi­
tectural features. The schematic capture, simula­
tion, and the framework are ViewLogic 1M tools 

4-200 



-= ~ Designing with FPGAs 
~,CYPRESS ================= 
adapted specifically for PLD, CPLD, and FPGA de­
signs. 

VHDLDesign 

VHDL is a rich and powerful language for the de­
scription of logic circuits. The language offers the 
capability to use different styles of design entry. 
There are three styles of logic description that can 
be used in any combination: behavioral, dataflow, 
and structural. Behavioral descriptions are C- or 
Pascal-like constructs that specify the action of the 
logic in high level abstract terms. Language 
constructs such as the IF/ELSE statement or the 
CASE statement specify the behavior. Dataflow de­
scriptions include Boolean equations that can be 
used to describe logic circuits. Tabular descriptions 
are also possible. These can be considered a subset 
of the behavioral descriptions but where the action 
of the logic is specified by a truth table. The struc­
tural description is much less abstract and can be 
considered a verbal description of a schematic. In 
one version of this form of VHDL, gates, flip-flops, 
and other primitives are instantiated, and their in­
terconnection described through signals that tie the 
output of one primitive to the input of others. Con­
versely, several entities call be instantiated in a 
structural description of their interconnect, but the 
description of any of the individual entities can be 
behavioral. 

VHDL is a hierarchical language. Just as most pro­
gramming languages support subroutines, func­
tions, and procedures, VHDL supports compo­
nents, packages, and the ability to combine a set of 
entities into a higher-level entity. A complex VHDL 
design can be built by successively combining build­
ing blocks in related layers. This allows two, very 
powerful design approaches. First, a complex de­
sign can be done from a top-down approach. In this 
method, the whole of the design can be described in 
very abstract, high level terms. Then the design is 
decomposed-breaking the design apart into spe­
cific functional blocks that are described in more 
specific terms. This moves the design from concept 
to implementation, from abstract description to 
near hardware level realization and optimization. 
At the top level, the designer need not be concerned 
with the exact details of the design. The concern at 

this top level is the conformance of the design to the 
given functional specification. Once this is 
achieved, the design can be decomposed for realiza­
tion purposes while being assured that the overall 
functional requirements are still met. Even at the 
top level, the design can be built up of manageable 
entities which can be debugged separately. Second, 
the design can be done from a bottom up approach. 
After a block diagram is sketched out, the individual 
blocks can be designed according to their function 
and the interfaces to the other blocks. The individu­
al block designs can be done at the most detailed lev­
el. This can consist of schematics using components 
instantiated from a library or the design can be a 
structural VHDL description. With each block fully 
designed, they are then connected together to build 
the complete design. 

As an example of VHDL, consider a 12-bit wide 
4-to-1 multiplexer. A version of this multiplexer is 
used in the design example section of this applica­
tion note. The first input is a 12-bit bus that is the 
column address for the DRAM. The second input 
is a select signal which controls whether the row 
(row_ad) or column (col_ad) is selected. The third 
input is a 12-bit bus that is the row address for the 
DRAM. The forth input is a 12-bit bus that is the re­
fresh address for the DRAM, and the last input is 
the state of the controller finite state machine. The 
output of the multiplexer is a 12-bit address to be 
sent to the DRAM memory devices. When the finite 
state machine is in states refad, wr1, or wr2, the re­
fresh address is placed on the multiplexer output. 
This selection is independent of the state of cotsel. 
When the finite state machine is not in states refad, 
wr1, or wr2, COL_SEL controls the multiplexing. 
When COL _ SEL is 0, row_ad is placed on the out­
put of the multiplexer, and when COL_SEL is 1, 
cotad is placed on the output of the multiplexer. 
The VHDL code to implement this function is given 
in Figure 1. The code is compact and simple. One 
of the twelve synthesized logic equations is given in 
Figure 2. These logic equations are available in the 
report file generated during compilation. The 
equivalence of the behavioral code and the logic 
equation should be self evident: in the logic equa­
tion, the state machine state vector bits (for the 
states in the if statement) are ANDed with the re-

4-201 



lz~ De~igning with FPGAs 
CYPRESS ============== 

mux: process(col_ad,col_sel,rQw_ad,re_ad,state) 
begin 

if(state = refad or state or state = wr1 or state 
rc_ad <= re_ad; 

elsif(col_sel = '1') then 
rc_ad <= col_ad; 

else 
rc_ad <= row_ad; 

end if; 
end process; 

Figure 1. Behavioral Description of Multiplexer 

wr2) then 

Icontroller_state_12_.Q * Icontroller_state_11_.Q * 
Icontroller_state_10_.Q * Icontroller_state_11_.Q * 
stored_ad_11_DFF.Q * col_se1.Q 

+ 
Icontroller_state_12_.Q * Icontroller_state_11_.Q * 
Icontroller_state_10_.Q * Icontroller_state_11_.Q * 
stored_ad_23_DFF.Q * Icol_sel.Q 

+ 
contro11er_state_12_.Q * ref_ad_11_DFF.Q * 

+ 
controller_state_11_.Q * ref_ad_11_DFF.Q * 

+ 
controller_state_10_.Q * ref_ad_11_DFF.Q * 

+ 
controller_state_9_.Q * ref_ad_11_DFF.Q * 

Figure 2. Logic Equations for the Multiplexer 

fresh address bit (REF _AD(ll» and the compli­
ment of these bits are a factor in the remaining prod­
uct terms. One of the other two product terms 
ANDs COL_SEL with col_ad(ll); the other prod­
uct term ANDs COL_SEL with row_ad(ll). The 
logic equations refer to stored_ad_ll instead of 
col_ad(l1) and stored_ad_23 instead of 
row_ad(l1). This is because col_ad and row_ad are 
aliases for these signals. Refer to the appendix for 
the alias definition. 

Schematic Entry 

In some cases VHDL may not be the preferred 
method of capturing the design. A discrete imple-

mentation of the design may already exist with the 
objective of reducing size and improving perfor­
mance by putting the circuit into an FPGA. Many 
designers may feel more comfortable with schemat­
ic design capture than with a high-level language de­
scription. 

M~edMode 

Some functions are difficult to describe directly in 
schematic form. A state machine, for example, is far 
easier to describe in terms of a transition table (pos­
sible in VHDL) or VHDL conditional constructs 
(for example, a CASE statement). Not only is the 
description easier but design changes and debug-

4..:.202 



~ Designing with FPGAs 
~)rCYPRESS=============================== 

ging are also far easier in nonschematic form. It is 
therefore important for a tool to be capable of 
mixed mode design description. In its most prob­
able form, it is desirable to place and connect a com­
ponent into a schematic where the function of the 
component is described in VHDL. 

Whether the design is done in VHDL, schematic, or 
mixed mode, Wa1p3 transforms the user's captured 
form of the design into VHDL. From this VHDL 
description, the design synthesis and compilation 
takes place. This is important since a schematically 
captured design is collapsed in the synthesis pro­
cess. Several layers of elementary gates are com­
bined where possible into a single AND/OR plane, 
thus removing redundant gates. The final imple­
mentation may therefore look quite different than 
the original schematic. 

Source Level Design Verification 

It is very convenient to verify the functionality of the 
design at the VHDL source code level. Clearly, de­
bugging at this stage saves considerable time and ef­
fort in that the design does not have to be synthe­
sized and fitted to a device before simulation can 
take place. Wa1p3 features a VHDL source level 
debugger that will simulate VHDL code and pro­
duce functional results. The results can be as graph­
ical waveform displays, active line indication in the 
source code, and tabular displays of variable values. 
Various other debug facilities are included. The 
VHDL code can be conveniently debugged at this 
level leaving the post compilation simulation to 
speed optimization. 

Synthesis, Optimization, and Place and Route 

After the design is captured, the software produces 
a hardware realization of the design description. 
This process involves three steps: synthesis, opti­
mization, and place and route, all of which are rela­
tively transparent to the user. The user may inter­
face with these processes to apply synthesis 
directives (constraints), or timing driven constraints 
for place and route. 

If the design was captured with schematics, then the 
schematics are translated to a structural VHDL net-

list. The netlist is flattened (Le., hierarchy and inter­
mediate nodes are removed). If the design was en­
tered in behavioral VHDL, then it is converted into 
a flattened register-transfer-level netlist, which de­
scribes the interconnection of components. Behav­
ioral constructs are translated to gates. Operator in­
ferencing is used to instantiate arithmetic 
components. 

Up to this point the internal design description is 
still device independent. Optimization is based on 
the target device. Different algorithms are used for 
different device families to produce an optimized 
netlist for use with the place and route software. The 
place and route software may perform some addi­
tional optimization, if necessary, to pack the gates 
into logic cells. The software then places logic cells 
in locations that will minimize total routing delays. 
After placement, routing software chooses the best 
path among many comparable solutions to route 
signals between I/O and logic cells, logic cells and 
logic cells, and logic cells and I/O. 

Directive Driven Synthesis and Place and Route 

In some cases, the designer will want to supplyaddi­
tional information to the synthesis and place and 
route processes to effect specific pt;#ormance or re­
source utilization results. Synthesisairectives can 
be used to provide buffering ofb.i~ fanout signals, 
or to specify an area-optimized orperformance-op­
timized implementation of a module (be it a count­
er, adder, or other arithmetic circuit). These opti­
mization directives can help to eliminate any 
unnecessary delays due to either routing or the lev­
els of logic required to implement a function in the 
critical path. Synthesis directives may also be used 
to dictate pad assignment so that high fanout signals 
will utilize high drive pads or clock pads as neces­
sary. State encoding can also be affected by using a 
synthesis directive. 

Another optimization technique often used in high­
speed ASIC designs is pipelining. Pipelining allows 
complex functions to be performed over multiple 
clock cycles while operating at high speeds. 
Pipelining is not an option that is automatically per­
formed by synthesis software, but is an option to the 
designer when capturing a design. 

4-203 



~ Designing with FPGAs 
.;CYPRESS ================ 
Place and route constraints can be used to affect 
place and route results. A path analysis tool within 
the place and route tool enables the designer to ex­
amine set-up and clock-to-output timing as well as 
maximum operating frequency. Constraints can be 
placed on specific paths in order to effect a more op­
timal placement of a. given signal (for example, to 
improve the clock-to-putput delay of a given signal). 

Refer to the Wall' '" documentation for a complete 
description ofthe available synthesis and place and 
route options. 

Automatic Test Vector Generation 

Some programmers are equipped to exercise a pro­
grammed device with a user supplied functional test 
program. Such programmers have enough hard­
ware to permit driving and sensing all pins of a de­
vice. Wa1p3 can generate test vector files for these 
programmers. 

A Des~gn Example 

A design example is presented in order to illustrate 
the significant features of the pASIC380 family of 
FPGAs and the Wa1p3 design tools. The design is a 
DRAM memory controller that interfaces to a sys­
tem address and control bus on one side and a 
DRAM metpory arrayon the other. The controller 
includes a slave bus interface, a DRAM address 
generator with burst transfer capability, and a state 
machine to effect the DRAM control signal timing, 
refresh, and bus handshake. This example was cho­
sen because of its wide variety of implementations: 
a state machine, counters, registers, signal multi­
plexing, and decoding. This example is not meant to 
be a filU fe<!tured DRAM controller. Certain ob­
vious funCtionality is left out so as not to obscure the 
illustration objectives of tJ1e example. Specifically, 

• There are variable splits in the row/column ad­
dress multiplexing qepending upon the DRAM 
type populating a given address range. 

• The RAS/CAS that is asserted depends upon the 
address range occupied by a given DRAM type 
that happens to be present 

• The column address does not use bus addresses 
[3:0] for a 64-bit data bus because these are byte 
addresses 

• The actual refresh counter is left out of the syn-
thesized design 

The design is done as a high-level behavioral design 
with no hierarchy. The design is divided into four 
sections: the address and control register, the state 
machine, the refresh counters, and the address mul­
tiplexer. This is a natural division producing design 
tasks that are easy to grasp. Each section is coded 
in VHDL and simulated separately to verify the 
functionality of each section. Simulation at these 
simpler levels is easier to accomplish and can be 
more thorough than simulation of the entire design. 
Simulations at this level attempt to verify all details 
of the operation of the particular section. After 
each section is functionally verified, they are com­
bined into the top-level controller description, 
which is then functionally simulated again except 
with a different focus. After the design verification, 
it is then compiled and performance analyzed. The 
following paragraphs will describe the design pro­
cess, present representative samples of the outputs 
at each step, and highlight significant results of tool 
and device architecture capabilities. 

Detailed Design 

The entire controller is described as a single entity 
with a behavioral level architecture description. 
Each section of the design is coded as a separate 
process. These sections are described below. The 
entity declaration includes hardware-specific attrib­
ute statements. These specify the target device and 
particular pin assignments to take advantage of de­
vice-specific features for clock distribution and high 
fanout signal distribution. Other non-behavioral 
declarations are made later in the design for opti­
mization purposes. In all other respects, the design 
is purely abstract. 

The address register interfaces to the main system 
bus and captures the address and control informa­
tion for the memory transaction. The register is syn­
chronous. The system bus clock is applied to the 
register, which captures bus data on the rising edge 
of the system bus clock while the address strobe is 

4-204 



- ,,~ Designing with FPGAs 
r;CYPRESS ============= 

asserted. The output of the register supplies the ad­
dress and control information to the rest of the cir­
cuit. The VHDL description of the register is given 
in Figure 3. The register circuitry includes hand­
shake flags to communicate with other parts of the 
controller. When an address strobe is detected, a 
flag is set to inform the state machine that a bus 
transaction has started. The handshake is closed by 
the state machine clearing the flag, indicating that it 
has been recognized. The flag is necessary since, as 
will be seen in the later parts of the design, the state 
machine may not always be able to respond to (rec­
ognize) this one clock cycle event. The address reg­
ister circuitry also includes comparator circuitry to 
see if the address is valid for the memory array. This 
comparator produces the match result combinato­
rially from the register output. There are other ar­
chitectural options: making the address register a 
transparent latch and/or placing the address com­
parator inputs on the input side of the latch. For 
simplicity, these options are not pursued. 

A refresh counter is required to provide a refresh 
address to the DRAM memory as well as to make 
request of the controlling state machine to periodi­
cally execute a refresh operation. The refresh 
counter does not add any instructional value to the 
description here. It is therefore not included in the 

adreg: process 
begin 

wait until clk = '1'; 
if(reset = '1') then 

as_flag <= '0'; 
elsif(as = '0') then 

as_flag <= '1'; 
elsif(clr_as = '0') then 

as_flag <= '0'; 
endif; 

if(as = '0') then 
stored_ad <= address; 
burst_stored <= burst; 

end if; 
end process; 

Figure 3. VHDL Behavioral Description of 
Address Register 

example details. The refresh circuitry provides a re­
fresh request to the state machine and a refresh ad­
dress to the address multiplexer. These are set to 
zero in the example VHDL source code. 

The column address counter produces addresses for 
a burst transaction. In these transactions the system 
provides the first address of the burst and the re­
maining addresses are expected to be generated by 
the slave. The column address counter is loaded, 
under control of the state machine, with the low-or­
der portion of the incoming address and is advanced 
also under control of the state machine. The count­
er also serves to hold the column address in those 
cases where a new address is received and the state 
machine is not yet finished with the present address. 
The counter is a fixed width for a given transaction 
burst length. The counter provides an address 
which wraps around the maximum length of the 
counter. This is consistent with burst transactions 
that do not start the transaction at the lowest ad­
dress of the items in the data burst. The counter is 
configured to count in Intel order (refer to the i486 
Hardware Reference Manual). 

The address multiplexer is combinatorial logic that 
produces twelve address outputs for the DRAM 
array. Under control of the state machine, the mul­
tiplexer can output the refresh counter address, the 
column address, or the row address. The column ad­
dress is the lowest-order bits of the address con­
tained in the address register. The row address is a 
selected set of the upper-order bits of the address 
contained in the address register. The particular up­
per-order bits depend upon the DRAM type used in 
the array. 

The state machine controls all actions of the DRAM 
controller including the timing for the DRAM ac­
cess. The state diagram is given in Figure 4 and the 
VHDL code is given in Figure 5. The state machine 
is designed so that the outputs come directly from a 
dedicated flip-flop, principally so that the bus ac­
knowledge back to the system has a favorable set-up 
time for high-speed buses. Upon recognizing the 
assertion of the address flag from the address regis­
ter, the state machine advances to the next state 
where the validity of the address is checked. The 
additional clock cycle from the receipt of the ad­
dress flag to the test of the address validity allows 

4-205 



~ --:::z. Designing with FPGAs 
_;CYPRESS ============= 

BURST & 
COUNT=3 

REFREQ 

Figure 4. Controller State Machine State 
Diagram 

time to test the address after it has entered the ad­
dress register. If the upper address bits are 0, the ac­
cess is taken to be valid for the DRAM memory and 
the state machine advances to start the memory 
cycle. If there is no address match, the state ma­
chine asserts the address flag clear signal to prepare 
for a subsequent transaction. 

From the state machine IDLE state, the address 
multiplexer is set to select the upper portion of the 
stored address (the ROW address). With an ad­
dress strobe detected, the state machine advances to 
the ASDET state where the address match is ex­
amined. If there is no match, the state machine re­
turns to the IDLE state and if there is a match, the 
state machine advances to the RASA state. Here the 
state machine asserts RAS and simultaneously 
causes the address multiplexer to select the lower 

portion of the stored address (the COLUMN ad­
dress). In the next cycle, the state machine advances 
to the CASA state where the DRAM CAS signal is 
asserted. The next cycles, WI, W2, and w3, are wait 
states keeping CAS and RAS asserted for the re­
quired time given in the DRAM data sheets. De­
pending upon the clock speed, WI and/or W2 may 
be omitted. In state W3, a decision is made to return 
to the idle state if no burst is to be performed, or to 
advance to the state NOCAS if the transaction is a 
burst. In the NOCAS state, CAS is deasserted and 
then the state machine then loops back to the casa 
state to continue with the burst. The burst is ended 
with an examination of the burst counter in state w3. 
If the burst is completed, the state machine returns 
to the IDLE state. Refreshes are performed by ad­
vancing from the IDLE state to the REFAD state. 
Here, the address multiplexer is directed to output 
the address from the refresh address counter. In the 
next states, RAS is asserted for three cycles: 
REF_RAS, WRl, and WR2. Refresh is completed, 
and the state machine returns to the idle state. In 
the IDLE state the code gives priority to refresh re­
quests over bus related requests (address strobe 
detection). 

Although this is a high-level behavioral design, 
some aspects of the hardware have been taken into 
account. The statement 

ATTRIBUTE state_encoding OF state:type IS 
ONE_HOT_ONE; 

directs the synthesizer to use one flip-flop per state 
for the state machine. A portion of the synthesized 
logic is shown in Figure 6. Note the simplicity ofthe 
resulting logic equations. Outputs and transition 
terms include only the one flip-flop for the state in 
question. This results in a great simplification of the 
logic since complex state decoding is not required. 
Although this approach uses more flip-flops than 
encoded states, the decoding is far simpler. Most 
states and the related decoding should be realizable 
in one logic cell. 

The state machine, by virtue of the VHDL coding, 
forces the outputs to be derived directly from the 
output of a flip-flop. This gives signals such as 
BACK (bus ackno~ledge) a short clock-to-output 

4-206 



State Machine process 

control:process 
begin 

wait until clk_in = '1'; 
if(rs_in = '1') then 

state <= idle; 
cas_en <= '1'; 
ras_en <= '1'; 
back <= '1'; 
col_sel <= '0'; 
ref_sel <= '0'; 

else 
case state is 

when idle => 
cas_en <= '1'; 
ras_en <= '1'; 
back <= '1'; 
if (ref_req = '1') then 

state <= refad; 
ref_sel <= '1'; 

elsif (as_flag = '1') then 
state <= asdet; 
clr_as <= '1'; 

end if; 
when asdet => 

clr_as <= '0'; 
if (match = '1') then 

state <= rasa; 
ras_en <= '0'; 
col_sel <= '1'; 
burst_flag <= burst_stored; 

else 
state <= idle; 

end if; 
when rasa => 

state <= casa; 
cas en <= '0'; 
--back <= '0'; 

when casa => 
state <= wI; 
--back <= '1'; 

when wI => 
state <= w2; 

Figure 5. State Machine Behavioral Description 

4-207 



16 :~ Designing with FPGAs 
~ CYPRESS ================ 

when w2 => 
state <= w3; 
back <= '0'; 

when w3 => 
cas_en <= '1'; 
back <= '1'; 
if(burst_flag = '1' and bst_cnt /= "11") then 

state <= nocas; 
col_sel <= '1'; 

else 
state <= idle; 
ras_en <= '1'; 
col_sel <= '0'; 

end if; 

when nocas => 
state <= casa; 
cas_en <= '0'; 

Refresh 
when refad => 

state <= wr1; 
ras_en <= '0'; 

when wr1 => 
state <= wr2; 

when wr2 => 
state <= idle; 
ref_sel <= '0'; 
ras_en <= '1'; 

end case; 
end if; 

end process; 

Figure 5. State Machine Behavioral Description (continued) 

propagation delay, allowing it to meet the require­
ments of a high speed bus. 

controller_0_state_bv_4_.D = 
controller_0_state_bv_3_.Q 

Design Analysis 

The final step in the design process is to analyze the 
device performance and make adjustments to the 

+ controller_0_state_bv_8_.Q * burst_flag.Q * /bst_cnt_O __ BEH_i42_0_DFF.Q 
+ controller_0_state_bv_8_.Q * burst_flag.Q * /bst_cnt_1 __ BEH_i42_0_DFF.Q 

Figure 6. A Portion of the Synthesized State Machine Logic Equations (State CASA) 

4-208 



ClK 

AS 

BURST 

ADDRESS 

D 

DRAM_AD 
9 

R_C 
a 

RAS_EN 

CAS_EN 

BACK 

RESET 

0 

OOOOAOFO 

xxx 

X o 

1u 

Time (Seconds) 

2u 

Designing with FPGAs 

Poin1 = (561.3n, 1) 
Mark = (481.7n, 1) 
Delta = (79.6n, 0) 
Du/Dx = 0 

OOA 

3u 

Figure 7. Graphic Output of the Simulator 

design to optimize certain speed paths. At this 
point, the functionality of the device should be cor­
rect per the design specification as verified by the 
VHDL source level debugger. The performance 
optimization is accomplished using the timing ana­
lyzer. Timing measurements can be made in the 
simulation as well. There are several concerns in 
this design: the set-up time for the address and con­
trol information to the input register, the clock-to­
output delay for the BACK signal, and the delay in 
the column address output. This latter concern is to 
determine if the multiplexing from the row to the 
column address (in state rasa) will cause the column 
address to be too close to the assertion of CAS (state 
casa) potentially violating the DRAM column ad­
dress set up time. Figure 7 illustrates a timing mea-

surement being made in the simulation environ­
ment. The figure shows one burst transaction. A 
Mark and Point are placed at the falling edge of 
CAS_EN (the CAS enable output) and the place 
where the DRAM address (DRAM_AD) has 
switcJ:1ed to the column address and stabilized. The 
small window displays the Mark and Point times and 
DELTA is the time difference between these points. 

As an example of an optimization the clock to out­
put of the BACK signal is examined. Table 2 shows 
the output of the Path Analyzer. The table shows a 
timing analysis result selecting the flip-flop to PAD 
options in the analyzer. The flip-flop to BACK path 
is then selected in the table of signal delays. The tab­
ular results show a delay of 6.3 ns from the BACK 

4-209 



-= ~ Designing with FPGAs 
~:, CYPRESS =~============== 

flip-flop output to the pad. The schematic-like rep­
resentation (the physical view) of the device shows 
the generalized placement and signal routing in the 
device. The Physical View is shown in Figure 8. The 
selection of the flip-flop output to PAD path in the 
analyzer results table has caused that path to be 
highlighted in the schematic. 

An improvement in this delay is sought by placing a 
timing constraint in the analyzer results table and 
rerunning the place and route. Table 2 shows the new 
result after the place and route is rerun. The new 
place and route Physical View results are shown in 
Figure 9. Comparing Figures 8 and 9 it can be ob­
served that the flip-flop storing BACK has been 
moved closer to the pad resulting in a near 1 ns im­
provement in the clock to output delay for this sig­
nal. The analyzer shows that the variation in the 
clock pad to flip-flop delay is less than 100 ps, there­
fore it is not fruitful to attempt to improve the clock 

pad to BACK flip-flop delay. The other signal paths 
are similarly analyzed and optimized if necessary. 

After the optimization is completed, the final design 
is simulated. There are two ways to define the stim­
ulation for the simulation: graphical and textual. 
For designs with wide bus inputs or a large number 
of inputs, the most convenient method is textual in­
put. The textual input of commands to drive the 
simulation is shown in Figure 10. Note in particular 
the command lines beginning with 'wfm'. These 
lines describe the waveform of the input signals. Of 
particular interest is the line beginning with wfm ad­
dress, which describes the input address signal. The 
entire vector, address, can be assigned values in 
hex-a task which would be very cumbersome in a 
graphic input only environment. This has been done 
for the simulation result shown in Figure 7. The fig­
ure shows the graphical results of the simulation 
output along with the input stimuli. 

4-210 



~ Designing with FPGAs 
WftYPRESS ================ 

Thble 2. SpDE Path Analyzer 

Path # Delay Delay Path Constraint 

-1- 4.0 RAS_CAS_3_-12 -- RAS_CAS_3_ 

-2- 4.0 RAS_CAS_O_ -12 -- RAS_CAS_O 

-3- 4.0 RAS_CAS_1_ -12 -- RAS_CAS_1 

-4- 4.3 RAS_CAS_2_ -12 -- RAS_CAS_2 

-5- 5.7 RAS_EN-12 -- RAS_EN 

-6- 6.0 CAS_EN-12 -- CAS_EN 

-7- 6.3 BACK - 12 - - BACK 

-8- 6.8 STORED_AD_19_ -- RC_AD_7_ 

-9- 7.0 STORED_AD_16_ -- RC_AD_4_ 

-10- 7.0 STORED_AD_23 - -- RC_AD_11 -
-11- 7.0 STORED_AD _21 - -- RC_AD_9_ 

-12- 7.1 STORED_AD _15 - -- RC_AD_3_ 

-13- 7.2 STORED_AD_13 - -- RC_AD_1_ 

-14- 7.4 STORED_AD _14_ -- RC_AD_2_ 

-15- 7.4 STORED_AD_18_ -- RC_AD_6_ 

-16- 7.5 STORED_AD_20_ -- RC_AD_8_ 

-17- 7.8 STORED_AD_12_ -- RC_AD_O_ 

-18- 7.8 STORED_AD_22_ -- RC_AD_lO_ 

-19- 8.0 STORED_AD_17 - -- RC_AD_5_ 

-20- 8.7 STORED_AD_19_ -- RC_AD_7_ 

-21- 8.8 STORED_AD_23 - -- RC_AD_11 -
-22- 8.8 STORED_AD_16_ -- RC_AD_4_ 

-23- 8.8 STORED_AD_21 - -- RC_AD_9_ 

-24- 8.9 COL_AD_9_ -- RC_AD_9_ 

4-211 



=;~ ., CYPRESS ============~D~e;si~g~ni~n~g :Wl:;;·th~FP~G~A~s 

r OJ ~ 0: ~ 

~ 

r 
, Illi! ! 

~~ ~~ ~ 
r--

~~ Rl 

I[ j , r 
0:B r:r J~~ ~~ ~. 

=;c-< 

I ,n 
8~L 2~ 

T r 
IT! 

J~~ ~ 1J l Zl 

\ -0 
ro 

, 

Figure 8. Physical View of Initial Design 

4-212 



Table 3. SpDE Path Analyzer with Applied Constraint 

Path # Delay Delay Path Constraint 

1 4.0 RAS_CAS 3 12 RAS CAS 3_ 

2 4.0 RAS CAS 0_ 12 RAS CAS 0 

3 4.0 RAS CAS 1 12 RAS CAS 1 

4 4.3 RAS CAS 2 12 RAS CAS 2 

5 5.5 BACK 12 BACK 4.0 

6 5.7 RAS EN 12 

7 6.0 CAS EN 12 

8 6.8 STORED AD 19 

9 7.0 STORED AD 16 

10 7.0 STORED AD 23 

11 7.0 STORED AD 21 

12 7.1 STORED AD 15 

13 7.2 STORED AD 13 

14 7.4 STORED AD 14 

15 7.4 STORED AD 18 

16 7.5 STORED AD 20 

17 7.8 STORED AD 12 

18 7.8 STORED AD 22 

19 8.0 STORED AD 17 

20 8.7 STORED AD 19 

21 8.8 STORED AD 23 

22 8.8 STORED AD 16 

23 8.8 STORED AD 21 

24 8.9 COL_AD 9 

Summary 
This application note is an introduction to FPGAs 
and high-level design tools. Specifics of the Cypress 
pASIC380 FPGA family of devices were presented 
along with the Warp3 design tool set. A DRAM 
memory controller was presented to illustrate the 
global flow of a complete development. This was 
not meant to be a design tutorial for the design tools, 

RAS EN 

CAS EN 

- RC AD 7 

RC AD 4 

RC AD 11 

--RC AD 9 

RC AD 3 -
RC AD 1 

RC AD 2 

RC AD 6 

RC AD 8 

RC AD 0 

RC AD 10 

-RC AD 5 

RC AD 7 

RC AD 11 

--RC AD 4 

RC AD 9 

RC AD 9 

schematic entry, VHDL encoding or design opti­
mization, but rather it is intended as an overall map 
as to how a designer would proceed and the options 
available. The pASIC380 family FPGAs and the 
WaI]J3 tool set is a powerful combination of device 
architecture and development tool that can help a 
designer achieve design success in a very short peri­
od of time. 

4-213 



=::; , ~ Designing with FPGAs 
_,CYPRESS ============== 

E.ilo I!.iew [osign Iools !Tosr .. Lnfo !iolp 

L ---
P I- I.l. >=e= F---

B .... CK 

~ 
811 

: 

>-- 1---

P ~§ t:--

8- 812 

r--- --

'-- BACK-12 

D- f-

~~ J 
~ h 

D >-----s;3 

r f 
N---.J '" I 

Figure 9. Physical View of Design Re-Placed and Routed with Constraint 

4-214 



I controller command file 
logfile controller. log 
stepsize SOns 
defaults -bignet -cmdfile -time 
wave 
vector address address[31:0l 
radix hex address 

vector dram_ad RC_AD[ll:Ol 
radix hex dram_ad 

vector r_c RAS_CAS[3:0l 
radix hex r_c 

Designing with FPGAs 

wave controller.wfm clk as burst address dram_ad r_c ras_en cas_en back 
reset 

clock clk 0 1 

wfm reset @O=l 100ns=0 
wfm as @O=l 200ns=0 100ns=1 
wfm burst @O=l 
wfm address @O=aOfO\h 
cycle 200 
log 

Figure 10. Simulation Command File 

4-215 



Appendix A. Complete Design Behavioral Description 

entity controller is 
port (clk,burst,as,reset: in bit; 

address: in bit_vector(31 downto 0); 
back,ras_en,cas_en: out bit; 
ras_cas: out bit_vector(3 downto 0); 
rc_ad: out bit_vector(ll downto 0»; 

attribute part_name of controller:entity is "C384"; 
end controller; 

use work.bv_math.all; 
use work.rtlpkg.all; 

architecture behavior of controller is 

type name is (idle,asdet,rasa,casa,w1,w2,w3,nocas,refad,wr1,wr2); 
ATTRIBUTE state_encoding OF name: type IS ONE_HOT_ONE 

signal state: name; 
signal bst_cnt: bit_vector(l downto 0); 
signal col_sel, ref_sel, as_flag, burst_flag, burst_stored, match, 

clr_as, ref_reg, clk_in, ck_x, ck-y, as_x, as_in, rs_x, rs_in: bit; 
signal stored_ad: bit_vector(31 downto 0); 
signal re_ad, col_ad: bit_vector(ll downto 0); 

alias top_ad: bit_vector(3 downto 0) is stored_ad(31 downto 28); 
alias row_ad: bit_vector(ll downto 0) is stored_ad(23 downto 12); 
alias bank: bit_vector(3 downto 0) is stored_ad(27 downto 24); 

begin 

-- Special 10 ports for device 

ck1:PAckcell 
PORT MAP(clk, ck_x, ck-y, clk_in); 

hd1:PAincell 
PORT MAP(as, as_x, as_in); 

hd2:PAincell 
PORT MAP(reset, rs_x, rs_in); 

Address register process 

adreg:process 
begin 

wait until clk_in '1'; 

4-216 



Designing with FPGAs 

Appendix A. Complete Design Behavioral Description (continued) 

iflrs_in = 'I') then 
as_flag <= '0'; 

elsiflas_in = '0') then 
as_flag <= '1'; 

elsiflclr_as = 'I') then 
as_flag <= '0'; 

end if; 

if las_in = '0') then 
stored_ad <= address; 
burst_stored <= burst; 

end if; 

end process; 

-- Match Comparator 

match <= 'I' when top_ad = "0000" else '0'; 

-- DRAM address multiplexer 
re_ad <= "000000000000"; 
ref_req <= '0'; 

mux:processlcol_ad,col_sel,row_ad,re_ad,state) 
begin 

iflstate = refad or state = wr1 or state = wr2) then 
rc_ad <= re_ad; 

elsiflcol_sel = 'I') then 
rc_ad <= col_ad; 

else 
rc_ad <= row_ad; 

end if; 
end process; 

-- Encoded RAS / CAS select 

ras_cas <= bank; 

-- Column Address, Intel Order 

col_adl11 downto 2) <= stored_adl11 downto 2); 
col_ad(1) <= stored_ad (1) xor bst_cnt(1); 
col_adIO) <= stored_ad (0) xor bst_cntIO); 

-- State Machine process 

control:process 
begin 

wait until clk_in 'I'; 

4-217 



Designing with FPGAs 

Appendix A. Complete Design Behavioral Description (continued) 

if(rs_in = '1') then 
state <= idle; 
cas_en <= '1'; 
ras_en <= '1'; 
back <= '1'; 
col_sel <= '0'; 
ref_sel <= '0'; 

else 
case state is 

when idle => 
cas_en <= '1'; 
ras_en <= '1'; 
back <= '1'; 
if (ref_req = '1') then 

state <= refad; 
ref_sel <= '1'; 

elsif (as_flag = '1') then 
state <= asdet; 
clr_as <= '1'; 

end if; 
when asdet => 

clr_as <= '0'; 
if (match = '1') then 

state <= rasa; 
ras_en <= '0'; 
col_sel <= '1'; 
burst_flag <= burst_stored; 

else 
state <= idle; 

end if; 
when rasa => 

state <= casa; 
cas_en <= '0'; 
--back <= '0'; 

when casa => 
state <= wi; 
--back <= '1'; 

when wi => 
state <= w2; 

when w2 => 
state <= w3; 
back <= '0'; 

4-218 



Designing with FPGAs 

Appendix A. Complete Design Behavioral Description (continued) 

when w3 => 
cas_en <= '1'; 
back <= '1'; 
if(burst_flag = '1' and bst_cnt /= "11") then 

state <= nocas; 
col_sel <= '1'; 

else 
state <= idle; 
ras_en <= '1'; 
col_sel <= '0'; 

end if; 

when nocas => 
state <= casa; 
cas_en <= '0'; 

when refad => 
state <= wr1; 
ras_en <= '0'; 

when wr1 => 
state <= wr2; 

when wr2 => 
state <= idle; 
ref_sel <= '0'; 
ras_en <= '1'; 

end case; 
end if; 

end process; 

-- Burst counter 

burst_count:process 
begin 

wait until clk_in = '1'; 
if(state = idle) then 

bst_cnt <= "00"; 
elsif(state = w3) then 

bst_cnt <= inc_bv(bst_cnt); 
end if; 

end process; 

end behavior; 

Wap and Wap3 are trademarks of Cypress Semiconductor Corporation. 
pASIC is a trademark of QuickLogic Corporation. 

4-219 



PCI Bus Applications on FPGAs 

Introduction 

The Peripheral Component Interconnect (PCI) bus 
is a high-bandwidth, "plug-and-play" bus designed 
to meet the performance demands of the peripher­
als of today's high-performance PCs and worksta­
tions and their large bandwidth applicatidhs. It is 
rapidly becoming widely accepted in the computer 
industry as it opens doors to performance demand­
ing applications such as video and audio systems, 
graphics accelerator boards, 3D native signal proc­
essing, network adapters, data acquisition, and data 
storage devices. Development of PCI products re­
quires strict adherence to the PCI Local Bus Specifi­
cation. 

Continuous hvolution of the PCI specification and 
specific needs of each application demand a flexible 
PCI solution: This rriakes programmable logic in 
general and FPGAs in particular ideal candidates 
for the PCI interface. Designing a PCI interface can 
take several man-months. It is the intention of this 
application note to provide an overview of the PCI 
bus and its associated transactions, and to present 
an example design for a PCI target device that has 
been implemented in a Cyptess FPGA. This note 
covers the basics of PCI, an example PCI target de­
sign, and design issues a PCI designer will encoun­
ter. The PCI d~sign files may be obtained by con­
tacting the Applications Group at (408) 943-2456. 

PCIBus 

The PCI spec 2.1 specifies the PCI operating speed 
to be 0 to 33 MHz with 32-bit synchronous bus, ex­
pandable to 64 bits. 66-t\1Hz PCI bus speed is also 
specified to allow future migration. The PCI has a 
potential transfer rate of 132 MB/s. This value will 

4-220 

double/quadruple when the bus is expanded to 64 
bits or/and the speed is increased to 66 MHz. PCI 
is also specified at both 5-volt and 3.3-volt opera­
tions, and is processor independent. All PCI de­
vices have a "configuration space" that enables PCI 
to be a "plug-and-play" solution. Configuration of 
add~in boards and componerits is done automatical­
ly through software. 

PCI Architecture 
The PCI bus is the backbone of the I/O and memory 
devices ofthe computer (see Figure 1). Processor in­
dependent, the PCI bus is accessed by the CPU via 
a CPU local bus to PCI bridge device. The I/O and 
memory devices hang off the PCI bus and transact 
in an initiator/target (master/slave) relationship. 

PCI Interface Signals 
A PCI interface device must have 47 pins. A PCI 
initiator device has 2 additional pins, which brings 
the total number of required pins to 49. Optional 
pins provide 64-bit operation, JTAG boundary scan, 
target locking, cache support, and interrupt expand­
ability to the PCI bus (see Figure 2). 

There are five different types of PCI signals: 

in input only signal 

out output only signal 

t.s. bidirectional, three-state input/output pin 

s.t.s. sustained three-state signal; an active LOW 
signal driven by one agent at a tiine and must 
be precharged HIGH before floating. A pull­
up resistor is provided by the central resource 
to sustain the signal in the HIGH state. 

o.d. open drain signal so multiple devices share 
this signal as a wired-OR 



PCI Bus Applications on FPGAs 

CPU .., 1 SRAM 

• 
PCI 

Bridge --i DRAM 1 
T 

PCI Bus 

I I I I 
PCI Interface 

Expansion LAN Video CY7C387A FPGA 

Bus Bridge Adapter Controller 

User Device 

Figure 1. pel Architecture 

Required Pins Optional Pins 

Address & Data 

A .... 

~ AD[63::32] '" AD[31::0] ) 

~ "I V ~ 
C/BE[3::0]# ) <C/BE[7::4]#> 64-Bit Extension 

Interface Control 

Error Reporting { 

Arbitration { 
(masters only) 

System { 

'" v 
PAR 

FRAME# 
TRDY# 
IRDY# 
STOP# 

DEVSEl# 
IDSEl 

PERR# 
SERR# 

REQ# 

GNT# 

ClK 

RST# 

Figure 2. Pin Diagram 

4-221 

PAR64 

REQ64# 

ACK64# 

lOCK# } Interface Control 

INTA# 

INTB# 

INTC# 
INTO# 

} Interrupts 

SBO# 
SDONE } Cache Support 

TOI 
TOO 
TCK 
TMS 

TRST# 
} JTAG 

(IEEE 1149.1) 



~~ tIP, CYPRESS =========;;;;;P;;;;;C;;;;;I;;;;;B;;;;;u;;;;;s;;;;;A;;;;;p;;;;;p;;;;;lic;;;;;a;;;;;ti;;;;;oD;;;;;S;;;;;o;;;;;D;;;;;F;;;;;P;;;;;G;;;;;A;;;;;8;;;;; 

Table 1. Required Pins 

Pin Name 1Ype Description 

AD[31:00] t.s. 32-bit bidirectional multiplexed address/data bus 

C/BE[3:0]# t.s. Byte enables for the four bytes of the 32-bit AD line 

PAR t.s. Parity bit for even parity over AD and C/BE lines 

FRAME# s.t.s. Indicates the duration of a transaction 

TRDY# s.t.s. Target ready signal, indicates that the target is ready to perform a data 
transfer 

IRDY# s.t.s. Initiator ready signal, indicates that the initiator is ready to perform a data 
transfer 

STOP# s.t.s. Target signal to induce retry, disconnect, or abort 

DEVSEL# s.t.s. Target signal to claim the current transaction on the bus 

IDSEL in Individual device selector signal 

PERR# s.t.s Parity error during the data phase 

SERR# o.d. Parity error during the address phase or special cycle 

REQ# t.s. Initiator bus request arbitration signal 

GNT# t.s. PCI bus arbiter grant signal to requesting initiator 

CLK in PCI system clock 

RST# in PCI system reset signal 

Table 2. Optional Pins 

Pin Name 1Ype Description 

AD[63:32] t.s. 64-bit address/data extension pins 

C/BE[7:4]# t.s. 64-bit byte enable extension pins 

PAR64 t.s. 64-bit parity bit 

REQ64# t.s. Initiator 64-bit bus request arbitration signal 

ACK64# t.s. PCI bus arbiter 64-bit grant signal to requesting initiator 

LOCK# s.t.s. Thrget locking signal 

INTA-D# o.d. Interrupt pins 

Note: 

PCI also supports two optional pins for cache 
support and five optional pins for JTAG support. 

4-222 



PCI Bus Commands 

PCI initiators begin a transaction by placing a com­
mand on the bus. This command defines what ac­
tion will be performed during the current transac­
tion. Table 3 shows all PCI bus commands and their 
4-bit values. 

Table 3. PCI Bus Commands 

CIBE[3:0] # Command 

0000 Interrupt Acknowledge 

0001 Special Cycle 

0010 I/O Read 

0011 I/O Write 

0100 Reserved 

0101 Reserved 

0110 Memory Read 

0111 Memory Write 

1000 Reserved 

1001 Reserved 

1010 Configuration Read 

1011 Configuration Write 

1100 Memory Read Multiple 

1101 Dual Address Cycle 

1110 Memory Read Line 

1111 Memory Write and Invalidate 

PCI Configuration Space 

The configuration space, a required feature of all 
PCI devices, is what makes PCI a plug-and-play 
solution. During system configuration, the PCI bus 
is scanned to determine the configuration require­
ments for all agents on the bus. All PCI devices must 
implement 256 bytes of configuration space which 
holds configuration information such as device 
identification, device status, functionality enables, 
and base address registers for address space assign­
ments. 

PCI Bus Applications on FPGAs 

Configuration Space Header 

The first 64 bytes of the 256 byte configuration space 
are known as the configuration header. This ap­
plication note describes the header currently used 
for most I/O and memory devices, the type 00 head­
er (shown in Figure 2). 

Device ID - Device identification number issued by 
the vendor. 

Vendor ID - Vendor identification number issued 
by the PCI SIG. 

Revision ID - Device-specific revision identifica­
tion number issued by the vendor. 

Header Type - Identifies the layout of the second 
part of the predefined 64-byte header. 

Class Code - Identifies the generic function of the 
device. 

Base Address Register - Register for address space 
location assignment. 

31 16 15 o 
Device 10 Vendor 10 

Status Command 

Class Code Revision 10 

BIST T Header Latency Cache 
Tvoe Timer Line Size 

Base Address Registers 

Card bus CIS Pointer 

Subsystem 10 Subsystem Vendor ID 

Expansion ROM Base Address 

Reserved 

Reserved 

Max_Lat I Min_Gnt Interrupt Interrupt 
Pin Line 

OOh 

04h 

08h 

OCh 

10h 

14h 

18h 

1Ch 

20h 

24h 

28h 

2Ch 

30h 

34h 

38h 

3Ch 

Figure 3. lYpe OOh Configuration Space Header 

4-223 



1& .~ PCI Bus Applications on FPGAs 
,CYPRESS ============= 

The latter 192 bytes ofthe 256 bytes of configuration 
space are a device-dependent region. A PCI-com­
pliant device does not have to implement unused 
portions of the configuration space as registers. 
However, a value of zero must be returned when un­
used locations are read. 

The 32-bit-wide register lines in the configuration 
space are addressed on 32-bit word boundaries. 
Hence the register sequence (see the right side of 
Figure 2) is OOh, 04h, 08h, OCh, etc. The 32-bitregis­
ters comprise four bytes, each of which may be ac­
cessed when the corresponding Byte Enable is as­
serted. 

Address Space 

A PCI device's address space is relocatable. The 
system assigns areas of address space by writing ad­
dress values to the device's Base Address registers. 
The amount of address space a device needs is also 
determined by examination of the Base Address 
registers within the configuration space of that de­
vice. To determine how much address space a device 
on the bus requires, the system writes the value 
xFFFFFFFF to the Base register, and then reads the 
register. The number of zeroes returned in the least 
significant position determines how much address 
space the device requires. For example, if a device 
returns the value xFFFFFF80, the arbiter knows 
that this device requires 128 bytes (7 zero bits, 2 " 7 
= 128). 

The zeroes in the least significant positions of the 
Base Address registers should be implemented as 
hard-wired zeroes. More hard-wired zeroes pro­
vide a larger amount of address space with a smaller 
number of bits to compare to determine an address 
hit. In contrast, less hard-wired zeroes translate to 
a smaller amount of address space for the device, 
but more bits to compare to determine an address 
hit. For some devices, the number of bits to 
compare to determine an address hit affects how 
fast a PCI device can claim a transaction as a target. 

Transaction Waveforms 

All PCI read/write transactions are inherently burst 
transfers. The length of the burst is determined by 
the FRAME# signal provided by the initiator (mas-

ter) of the transaction. 1tansactions begin with a 
single address phase followed by one or more data 
phases. 

Figure 4 shows a basic read operation. Prior to clock 
1, the initiator is assumed to have arbitrated for con­
trol of the bus, and has received permission to use 
the bus for a transaction. After clock 1, the initiator 
places the address of the desired device and the 
command for the device on the bus while asserting 
the FRAME# signal. On clock 2, because 
FRAME# is sampled LOW for the first time, all de­
vices on the PCI bus are required to latch in the ad­
dress and command on the bus, and begin decoding 
the address to determine transaction ownership. 
After clock 2, the initiator (master) waits for a target 
(slave) device to respond and claim the transaction 
by asserting the DEVSEL# signal. 

Because this is a read transaction, the target is re­
quired to wait a clock to induce a turn around cycle 
on the NO bus to prevent contention of the bus as 
control switches from initiator to target. 

Data transactions are controlled by three signals: 
FRAME#, IRDY#, and TRDY# signals. (See sig­
nal description above for definition of signals.) The 
actual transfer of data occurs only on clocks where 
both IRDY # and TRDY # signals are asserted. If 
either or both signals are not asserted, then a wait 
state occurs. 

After clock 3, the target is ready to provide the first 
piece of data, and the initiator is ready to receive it. 
Both the IRDY # and TRDY # signals are asserted, 
and on clock 4 a data transfer takes place. Also on 
this clock, because the target senses that the 
FRAME# signal is still asserted, it knows that the 
transaction is not complete and the initiator expects 
more data. On the next clock (clock 5), the target is 
not ready (TRDY# deasserted), and so a wait state 
is induced. On clock 6, a data transfer occurs since 
both ready signals are asserted. On clock 7 the initi­
ator is not ready, so the IRDY # signal is deasserted, 
inducing a wait state. The initiator knows that it de­
sires only one more piece of data, and when the 
IRDY# signal is asserted on clock 8, the FRAME# 
signal is deasserted. A data transfer takes place on 
this clock since the TRDY # signal is also asserted. 
Also on clock 8, the target samples the FRAME# 
signal. Since the FRAME# signal is deasserted, the 

4-224 



~~YPRESS~~~~~~~~~~=P=C=I~B=U=S=A=PP=I=ic=a=ti=o=n=s=o=n=F=P=G=A=s= 

ClK 
'1 '2 , , :5 :6 :7 :8 :9 , , I I _~ ___ _ 

FRAME# ____ , ___ \\-______________ '--_________ .... 1 ___ ~ _____ ~ ___ _ 
, 

AD ADD~ESS ~ DATIo}-1 ' DATA-3 ~ 
- - - -,- - - - - - - - r - - -'----,_L---r--' '--_,..-.1 ""--r---T""".I.- --~ --- -

C/BE# ____ ~ ___ ~ BUS fMD X BE#s >- __ ~ __ __ 
t e! ffi I I 

IRDY# ____ ~ ____ ~ __ .\ ' ~ , ~~tj ____ ~ ___ 
I I Z Z Z I 

TRDY# ____ ~ ____ S ______ ~_~~L~l~ ~ ~J.----~ __ _ 
: A I ~ : C§ (§: 

DEVSEl# ____ ~---_~--\ i \ ' I ____ ~_--
__ --...... 1------_. 

ADDRESS 
PHASE 

DATA 
PHASE 

__ -----_. ....1------_. 
DATA 

PHASE 
DATA 

PHASE 

.... 1---------- BUS TRANSACTION ---------..... 

Figure 4. Read Transaction Waveform 

target device is informed that the transaction is 
over. On clock 9, FRAME#, NO bus, and C/BE 
bus are turned around for one cycle, and the control 
signals are precharged HIGH before being three­
stated. This completes the read operation. 

Once a ready signal is asserted, it may not be 
de asserted until the data transfer takes place or the 
transaction is aborted. 

Figure 5 shows a basic write operation. The rules of 
transaction are exactly the same as the read opera­
tion, with the . .,:xception that a turn around cycle on 
the NO bus right after the address phase is unneces­
sary since the same agent controls the bus for the en­
tire duration of the transaction. 

Claiming the Transaction 

Not all PCI devices can capture the address, decode 
it, and claim the transaction within a single clock af­
ter an initiator begins a transaction. PCI targets 
may take up to 3 clocks after the initial address 
phase to assert the DEVSEL signal (see Figure 6). 
In Figure 6, the address phase occurs at clock 2. If 

a target can assert its DEVSEL# signal by clock 3, 
it is considered a "fast" response device. Assertion 
of DEVSEL# on clock 4 would be "medium" and 
clock 5 would be "slow." The sixth clock is reserved 
for subtractive decoding devices. If a target device 
has not asserted DEVSEL# by the sixth clock, the 
initiator may terminate the transaction. 

Parity 
Parity generation is required for all PCI devices. In 
general, parity checking is usually required. On 
read transactions, it is the responsibility of the tar­
get to generate parity. On write transactions, parity 
generation is the responsibility of the initiator. 

Pafity in PCI is even parity over the AD bus, C/BE 
bus, and the parity line. The generated parity bit is 
available one clock aftet valid values on the buses 
are transferred. A parity. error is reported two clock 
cycles after the valid values have been transferred 
(i.e., one clock after the parity bit was available). 
Because parity is calculated over the entire AD bus, 
the signals on the AD bus must be held stable even 
if they are undefined. 

4-225 



i~ PCI Bus Applications on FPGAs 
CYPRESS ============== 

ClK 

FRAME# 

AD 

C/BE# 

IRDY# 

TRDY# 

DEV8EL# 

ClK 

'1 , '2 , '3 , '4 , '5 , '7 '9 , , . -~----____ , __ _ \'-_______________ ...J/. _ ... ______ .. ______ .. ____ _ ~ ___ _ 
, i V-:::::::-:V i : X ) ____ ~_'I" ___ _ _ _ _ _ : ___ ~ADD~ESSI\~I\ DAT1-2) : _-r __ DA_T_A.,.:_3 __ --,--J: _ 

__ --i--_ ~ BUS fMD X BE#~-1 EX 1 1 BE#s-3 >- __ ~ __ __ 
I ~ . . I I ____ ~ ____ :.i __ ~~ ___ ~J. ___ ~_\, , tL ____ ~ __ _ 
: ~ ~ ~ !:: !:: !:: ~ : 

____ ~ ____ ~ ___ L~-__ ~L~=~=~_~~J.----~ __ _ 
I a ~ 2§ I I I 2§ I 

----~----~--\ "', I----~---
~---.. ~.~-~.. ~.~-~.. ~.~--------------------------... 

ADDRESS DATA 
PHASE PHASE 

DATA 
PHASE 

DATA 
PHASE 

~.~-------- BUS TRANSACTION ----------. 

'2 , 

Figure 5. Write Transaction Waveform 

'3 , '4 , '7 '8 , , 
cW 

FRAME# ____ , __ _ \ ..... ____________ ' .... 1 .... ____ __ ~ __ 
, 

<""!t" I I 

IRDY# ____ .. ____ ::":; ______ ... _ \ ... __ ----_____ - ____ ~ __ L ___ : __ _ 
......:::'- - ~ - ~ - -:- -..:.... - ~ -.....:-

TRDY# 
~ , 

. I I I I I I I I 

----r------r------T------,------,------~-------I-------~--
... , : ~~~' ~'~-~-NORESPONSE-DEvSEL# ' ,FAST, MED, SLOW SUB, , , 

-- -- ... -- - - -- '- - - ' - ACKNOWLEDGE --
, I I I I I 

Figure 6. Transaction Claiming Speed 

Aborting the 'fransactions 

PCI provides a method for premature transaction 
termination. 

There are three scenarios when an initiator may ter­
minate a transaction. 

1. The transaction has completed normally, and so 
the initiator ends the transaction. 

2. The initiator's latency timer has expired and ar­
bitrator has deasserted the initiator's GNT# 
signal. The initiator is allowed one last data 
transfer once the latency time-out is sensed. 

3. No target has responded to an initiator request 
within five clock cycles after FRAME# was as­
serted. The initiator will end the transaction in 
the sixth clock. 

There are three types of target terminations: 

4-226 



:::;~YPRESS~~~~~~~~~~P=C=I=B=U=S=A=P=p=lic=a=ti=o=ns~on~FP=G=A==s 

1. disconnect - When a data phase is very long, 
the target may induce a disconnect to free the 
bus. To signal a disconnect, the target must as­
sert both STOP# and TRDY#. One last data 
transfer takes place, and the initiator ends the 
transaction. 

2. retry - If a target cannot respond to the current 
transaction at the current time, the target may 
signal a retry, indicating to the initiator to try the 
transaction again at a later time. For example, 
if a target is currently locked for exclusive access 
by another initiator, then the target would signal 
a retry. In a retry, no data is transferred. A tar­
get can signal a retry by asserting the STOP# 
signal and keeping the TRDY # signal 
deasserted. 

3. target-abort - If a target encounters a fatal er­
ror, then the device may signal an abort. The 
abort is signalled by asserting STOP# and 
deasserting DEVSEL#. The TRDY# signal 
must also be kept deasserted. 

Recommended Device Pinout 

The PCI spec recommends the pinout shown in 
Figure 7. 

RST# 
ClK 
GNT 
REO ----

A PCI Target Application 

To introduce designing for PCI applications, a target 
PCI implementation is presented. This example de­
sign can be modified to suit any specific needs. 

Design Overview 

1) The Features 

The first step is to decide what features the PCI Tar­
get interlace is going to have. A PCI-compliant in­
terlace with the following features is desired. 

• 0 to 33 MHz bus clock speed operation 

• 32-bit Addr/Data bus 

• Burst cycles 

• Wait state support 

• Fully customizable address space size: 1 byte to 
4 Gbytes 

• Two base address registers (more may be imple-
mented if necessary) 

• Configuration, I/O, and Memory read and writes 

• Parity generation, with checking option 

• Target-abort and retry support 

PAR64 
AO[32] 

AO[63] 
C/BE4# 
C/BE5# 
C/BE6# 
C/BE7# 

AO[31] All PCI Shared Signals Below This Una RE064# 
ACK64# 
AO[O] 

AO[24] 
C/BE3# 

IOSEl 

4-227 

AO[7] 
C/BEO# 



iI!i!!!!:::~ PCI Bus Applications on FPGAs 
.'CYPRESS ============== 
• State machines and configUration space imple­

mented in vHDL for easy high-level user modi-
fication . 

• Generic back-end user interface 

2) Handling the Address Phase 

The target needs to latch the data on the first cycle 
that the FRAME# signal is sampled LOW. The PCI 
specification allows both the address and FRAME# 
signals only a 7-ns set-up time. In some cases, the 
logic necessary to determine that FRAME# has 
transitioned to the asserted state and then enable all 
36 bits to the register would take longer than 7 ns. 
To make it more robust, it was decided to put an in­
put register on the AID bus that would latch data ev­
ery clock tick. In parallel, the asserted FRAME# 
signal would "wake" the PCI state machine. In this 
manner, the device will have the address stable for 
an entire clock cycle. A second register is needed to 
memorize the address, command, and IDSEL lines. 

Address compare logic isneeqed to compare the 
latched address with all implel1iented base address 
registers from the configuration space. This means 
that the base address registers have to be directly 
connected to the. inputs of the compare logic. For 
flexibility, the address compare logic is pipelined. 
In the event that the address from the PCI matches 
a base address register, a hit signal is asserted. 

An asserted hit signal, or an asserted IDSEL signal 
for configuration transactions, will cause the control 
logic to claim the transaction by asserting the DEV­
SEL# signal. Concurrent to the address compares, 
the command will be decoded. 

3) Handling the Data Phases 

When PCI performs a write operation on the device, 
it is undesirable for the PCI bus to have to wait for 
the back-end user device to be ready to accept the 
data. Therefore, a FIFO-like structure is needed to 
reduce latency. The size. of the FIFO structure 
should be customizable without affecting the rest of 
the design's logic. For this design, a single 36-bit 
register is used. 

To handle burst cycles, an address counter for the 
back-end user device must be included. This count-

er is stepped on every data transfer. Since this de­
sign performs 32-bit transfers, addressing must be 
on double word aligned boundaries. 

For read operations, parity must be generated and 
made available one clock after the data transfer 
takes place. 

4) The Control Logic 

The control logic must be abie to handle the PCI 
protocols, support burst transfers, wait states, and 
still meet the 2- to ll-ns clock-to-out time, and 7-ns 
set-up time of PCI bus signals. It should also pro­
vide all the internal control signals and user inter­
face signals. Because of its high-level nature, the 
control logic should be implemented in VHDL. To 
meet c1ock-to-out times, output should be regis­
tered. 

5) The Configuration Space 

Many designs will only use OOh to OBh configuration 
registers and Base Address registers. The configu­
ration space implementation should have these reg­
isters and the mechanism for writing to and readihg 
from those registers. In addition, the register infor­
mation is used internally by direct means (as op­
posed to using a read operation) so the contents of 
the registers need to be accessible by the rest of the 
design. For example, the Base Address registers 
need to be connected directly to the inputs of the ad­
dress comparator logic. Since customizing the de­
sign for real applications will involve modifications 
to the configuration space, the configuration space 
registers is implemented in VHDL. 

Block Diagrams and Data Paths 

Figure 8 shows the top-level block diagram of a pci 
target interface developed using the criteria of the 
previous section. 

CONTROL: (Vi-IDL) This block contains the PCI 
and user state machines and the logic that deter­
mines the internal control signals as well as the bus 
signals. 

C_SPACE: (VHDL) This block is the VHDL im­
plementation of the configuration space. "Hard­
wired" values are easily set in the VHDL source 
code and registers are manipulated behaviorally. 

4-228 



""l 
~. 

;;! 
90 
Sl 

o'd 
n> ... 

~ ~ I n> 

~ '" OQ' 
\0 = 

~ 
t"l 
I':' 
~ s· 

IJQ 

~ 
51 

PCI Bus Signals (Le. FRAME#, IRDY#, TRDY#, PERR#) User Interface Signals 

IX!: = CONTROL I: :IX! 

Command/ByteEnable 

Address/Data 

"1J a ~ 
OJ 
C 
(J) 

I> 

> 
AP_REG 

C_SPACE 

Device 10 & Vendor 10 

Status & Command 

Class Code & Rev 10 

Base Address Register 0 i-I+t-t. 
Base Address Register 1l-... t-t. 

c 
(J) 
m 
JJ 

Z 
~ 
m 
JJ 

~ a 
m 

!' 
~ 
tr:I 
(J). 
(J). 

"'C n -~ 
tll 

~ -ff .... g' 
tll 

§ 

~ 
~ 
tll 



• ~ PCI Bus Applications on FPGAs 
~CYPRESS ============= 

AP _REG: (Schematic) This block acts as the input 
register for the NO bus, C/BE bus, and the IDSEL 
signal. On every clock, the values on these signal 
lines are registered into this block. 

BUF _REG: (Schematic) This is the storage register 
for the address and the command taken from the 
PCI bus at the beginning of each transaction. It is 
enabled by the CONTROL block and cleared upon 
reset or at the close of a transaction. 

CMD_DEC: (Schematic) The command is de­
coded into single-bit enable lines. The decoded 
command, the I/O and Memory access enable, and 
IDSEL line determine which function signal will be 
raised. All unimplemented memory transactions 
are treated as either the respective mem read or 
write. 

ADDRCOMP: (Schematic) This pipelined address 
comparator takes two cycles to determine an ad­
dress hit. The number of bits compared can range 
from 1 to 32 bits. If less than 16 bits need to be 
compared, the pipelined configuration usually is not 
necessary since a hit can be determined within one 
clock cycle. 

MAILBOX: (Schematic) This is a data-holding 
register for 1/0 or Memory writes. This block may 
be changed to a multileveled FIFO to reduce laten­
cy between burst transfers. 

PAR32N4: (Schematic) This block calculates even 
parity over the 32-bit NO bus and the 4-bit C/BE 

bus in one clock cycle. The output is registered to 
delay the valid parity bit one clock in accordance 
with the PCI spec. 

ADDR _ CNT: (Schematic) The initiator provides 
the beginning address for a transfer. On burst trans­
fers, the target device is responsible for stepping the 
beginning address appropriately for its local user 
side. This block counts the address on data trans­
fers. 

C_CONTR: (Schematic) This block decodes the 
address and enables the addressed register within 
the configuration space. 

C_MUX: (Schematic) This is a 32-bit, 4-to-l mux, 
exclusively selecting configuration registers OOh, 
04h, 08h, and lOh. If other configuration registers 
need to be addressed, a larger mux must be used. 
The 4-to-l mux was chosen because it fits in a single 
level of logic cells. When nonimplemented registers 
are addressed, the block outputs zeroes. 

32PCIMUX: (Schematic) This is a 32-bit, 2-to-l 
mux, selecting between the local user data bus and 
the configuration space register output mux 
C_MUX. 

State Machines 

Within the CONTROL block, there are two state 
machines: the PCI state machine (Figure 9), which 
handles PCI bus protocols, and the User state ma­
chine, which handles transactions on the user inter­
face (Figure 10). 

Figure 9. PCI Interface State Machine 

4-230 



PCI Bus Applications on FPGAs 

!user done* 
!frame 

Figure 10. User Interface State Machine 

PCI State Machine 

IDLE: The device waits in this state while the PCI 
bus is idle. When the FRAME# signal indicates a 
transaction is beginning (becomes asserted), the 
FSM moves to the CMP _ADDR1 state. 

CMP _ADDR1: This is the first stage of the address 
and command decoding pipeline. On the next clock, 
the FSM moves to the CMP _ADDR2 state. 

CMP _ADDR2: This is the second stage of the de­
coding pipeline. At this point, the address hit and 
command are determined. If it is an address hit or 
a configuration operation is occurring on that de­
vice, then the FSM moves to the DTRANS state. 
Otherwise, it goes to the BUSY state. 

BUSY: In this state, the PCI bus is engaged in a 
transaction that the device is not a part of. The de­
vice will wait in this state until the bus goes idle 
again. 

DTRANS: All data transfers occur in this state. 
When the device determines that it is involved with 
the last data transfer of the transaction, the FSM 
will move to the TURN_AR state on the next clock. 
If an abort is sensed, then the FSM will move to the 
BACKOFF state. 

TURN _ AR: Signals on the PCI bus are precharged 
and three-stated, and the NO bus is brought to high 
impedance. The FSM moves to the IDLE state on 
the next clock. 

BACKOFF: The device induces a target abort or a 
retry in this state. When the transaction is closed, 
the FSM moves to the IDLE state. 

User State Machine 
IDLE: The user FSM stays in this state while the 
user interface is inactive. When the device is in­
volved with either a read or a write transaction in­
volving the user interface, the FSM moves to the 
READ1 or WRITE1 state appropriately. 

READ1: In this state, the user interface prompts 
the user device for the requested piece of data. 
When the user device responds with valid data, the 
FSM moves to the READ2 state. 

READ2: The device has the requested data ready, 
and waits for the initiator to pick it up. Once the 
transfer takes place, the FSM either moves to the 
READ 1 state for burst transfers, or to the 
TURN _ AR state. 

WRITE1: In this state, the device receives the data 
from the initiator. Once the data transfer takes 
place, the FSM moves to the WRITE2 state. 

WRlTE2: Data is available in the data FIFO. The 
user device is prompted for a data write. When the 

4-231 



1&~ PCI Bus Applications on FPGAs 
_' CYPRESS ============== 

user device signals that the transfer is completed, 
the FSM moves back to the WRITE 1 state for burst 
transactions, otherwise it moves to the TURN _AR 
state. 

TURN _ AR: This is the final state of the user FSM 
before going back to IDLE. 

Design Interaction Description 

To demonstrate the operation of this PCI target de­
sign, a description of the waveforms are analyzed. 

Scenario 1: Configuration Write 

[These scenario descriptions follow the simulation 
waveforms produced in ViewSim. Simulate design 
using command file PCICR.CMD with the PCI tar­
get design, 75 ns.] 

At the beginning of the transaction (clock D), this 
target device senses on the clock that FRAME# has 
been asserted. Because the AP _REG captures all 
information on the NO and C/BE buses and the ID­
SEL line on every clock, the target knows that the 
address is held within the AP _REG. 

On clock 1, the BUF _REG is enabled so that the ad­
dress and command can be stored. Between this 
clock and the next, the IDSEL line is found to be as­
serted and the CONTROL logic determines that 
DEVSEL should be asserted. The command is also 
decoded to be a configuration write operation, and 
the bits [7:2] of the address are decoded by 
C_CONTR to enable the appropriate C_SPACE 
register. 

On clock 2, the internal DEVSEL signal is captured 
by the DEVSEL output register to meet the 2- to 
l1-ns clock-to-out timing spec. The target samples 
IRDY # asserted, and knows that valid data is on the 
bus. The CONTROL block asserts the internal 
TRDY # signal. 

On clock 3, the initiator samples the DEVSEL sig­
nal asserted and knows that the transaction has been 
claimed. The TRDY# output register asserts the 
PCI bus TRDY # signal. Valid data is contained in 
theAP_REG. 

On clock 4, the data from the AP _REG is written to 
the C _SPACE register according to the byte enables 

also held within the AP _REG. The CONTROLlog­
ic samples FRAME# deasserted and knows that 
this is the last transaction. Both the TRDY# and 
DEVSEL# signals are deasserted. 

On clock 5, the CONTROL logic three-states the 
bus signals, and resets the address compare and 
BUF _REG blocks. The transaction is complete. 

Scenario 2: Configuration Read 

[In ViewSim, use command file PCICR.CMD with 
the PCI target design, 315 ns.] 

This transaction works like the Configuration Write 
transaction with a few differences: 

On clock 1, the ND bus is floated by the initiator to 
tum control of the data bus over to the target. When 
the CONTROL logic asserts DEVSEL, it turns on 
the output enable to the NO bus. 

The address held in BUF _ REG causes C _ MUX to 
select the appropriate configuration register bus. 
For this design, only 32-bit registers at DDh, D4h, D8h 
and lOh are selected. Other addresses will cause the 
C _ MUX to randomly select one of the four buses. 

The 32PCIMUX selects between configuration and 
IO/Memory reads. The output of 32PCIMUX goes 
directly to the output pins of the NO bus. 

Scenario 3: I/O or Memory Write 

[In ViewSim, use command file PCIMW,CMD with 
the PCI target design, 56Dns.] 

At the beginning of the transaction (clock D), this 
target device senses on the clock that FRAME# has 
been asserted. The AP _REG captures all informa­
tion on the NO bus every clock, therefore the target 
knows that the address is held within the AP _REG. 

On clock 1, The BUF _REG is enabled so the ad­
dress and command can be stored. While this hap­
pens, the address compare pipeline begins it's first 
phase. Between this clock and the next, an address 
hit is determined and the CONTROL logic deter­
mines that DEVSEL should be asserted. The com­
mand is also decoded at this time. 

On clock 2, the DEVSEL signal is captured by the 
DEVSEL output register to meet the 2- to l1-ns 
clock-to-out timing spec. The user address counter 

4-232 



is loaded with the offset address from BUF REG. 
The ADDR _ CNT is enabled after this clock to load 
it with the offset address on the next clock. 

On clock 3, the initiator samples the DEVSEL sig­
nal asserted and knows that the transaction has been 
claimed. The target waits with the TRDY # signal 
deasserted until an asserted IRDY# signal. The 
CONTROL logic senses that the IRDY# signal is 
asserted, and thus knows that valid data is on the 
bus. The CONTROL logic then prepares to assert 
the TRDY # signal on the next clock, and enables 
the MAILBOX register. 

On clock 4, both IRDY # and TRDY # signals are 
asserted so both agents know that a data transfer 
took place. The enabled MAILBOX register col­
lects the contents of the AP _REG (previous clock 
held valid data also since IRDY # was already as­
serted). The TRDY# signal is immediately 
deasserted. If the CONTROL logic sample 
FRAME# to be asserted (indicating a burst trans­
fer), then the target would prepare to perform 
another data transfer. Otherwise, the CONTROL 
logic will end the transaction just like the Configura­
tion Write transaction. 

On clock 5, the CONTROL logic for the user inter­
face side senses that the MAILBOX contains data 
to be written to the user device. The USR WRITE 
strobe is asserted, and the CONTROL logic waits 
for the user device to respond with an asserted 
USER_DONE. 

On clock 6, USER_DONE is sampled asserted, and 
the CONTROL logic 'clears' out the MAILBOX 
register and increments the ADDR_CNT. 

Scenario 4: I/O or Memory Read 

[In ViewSim, use command file PCIMR.CMD with 
the PCI target design, 560 ns.] 

This operation works like the I/O or Memory Write 
with these differences: 

On clock 1, the AID bus is floated by the initiator to 
tum control of the data bus over to the target. When 
the CONTROL logic asserts DEVSEL, it turns on 
the output enable to the AID bus. 

PCI Bus Applications on FPGAs 

After clock 2, the CONTROL logic prompts the 
user device with the USR_ READ strobe. 

On clock 3, the USER_DONE signal is sampled as­
serted. This is a 'pass-through' read design so the 
user device must hold the data values so the PCI bus 
can read them. 

On clock 4, the CONTROL logic prepares the 
TRDY # signal so that a data transfer may take 
place on the next clock. 

On clock 5, both IRDY# and TRDY# signals are 
asserted. If the CONTROL logic senses that 
FRAME# is asserted at this point (indicating a 
burst transfer), then the target prepares to perform 
another data transfer. Otherwise, it closes the 
transaction in the normal fashion. 

PCI Target Interface Timing 
Specifications 

Table 4. PCI Bus I/O Timing Specification 

Symbol Description Min. Max. 

tval Clock to Data Valid 2 11 

ton Float to Active Delay 2 -
toff Active to Float Delay - 28 

tsu Input Set-Up Time 7 -
th Input Hold Time 0 -

tcuc Clock Cycle Time 30 -
thigh Clock High Time i2 -
tlow Clock Low Time 12 -

Table 5. User Interface I/O Timing Specification 

Symbol Description Min. Max. 

tval Clock to Data Valid 2 14 

tsu Input Set-Up Time 14 -

Critical PCI Design Issues 

There are several considerations that arise when de­
signing PCI applications using an FPGA. For an 
FPGA to be able to handle the demands of PCI, it 
must have several necessary characteristics. These 

4-233 



~ PCI Bus Applications on FPGAs 
WnYPRESS ================ 

characteristics include: speed, generous routing, a 
large number of pins, a large amount of logic re­
sources, and many registers. This section will de­
scribe some critical issues and possible solutions to 
implementing PCI applications with an FPGA. 

(1) Bused signals set-up time is no greater than 
7 ns. (PCI spec 7.6.4.2) 

Problem 1: The AddresslData bus needs to be 
tapped by several blocks: the address decoders for 
each Base Address, the address registers, the data 
registers for memory and I/O transactions, and the 
data bus for the configuration space. This fanout 
can add considerable loading to the bus, thus inhib­
iting the input drivers and increasing the input de­
iays beyond the 7-ns set-up time, even with the 
FPGA's short input delay. 

Solution 1: A 36-bit input register can be imple­
mented using D-type flip-flops. These flip-flops will 
latch whatever is on the AddresslData bus every 
clock. This increases the availability of the data 
from 7 ns to 30 ns, with the trade off of adding one 
clock cycle. This additional clock cycle, however, 
does not significantly impact the performance of the 
device for several reasons: during the address 
phase, addresses must be latched anyway; and dur­
ing data phases, another PCI spec forces the extra 
wait state. 

Problem 2: Some bused signals such as IRDY # and 
FRAME# are used combinatorially to determine 
other outputs. In some cases, the combinatorial 
delay to the registered outputs and states of the state 
machine take longer than 7 ns, thus giving an invalid 
registered output or state. 

Solution 2: Remember that there is a clock input 
delay to the device. The actual set-up time is input 
delay minus the clock delay. In the event that this 
difference is still greater than 7 ns, then care should 
be taken to minimize fanout of the input signal, and 
to place the logic near the pin. In most cases, this is 
taken care of automatically by the place and route 
tool by placing a constraint on the signal. To do this, 
run SpDE and open up the design .CHP file. Run 
the path analyzer. Click on options, and display all 
paths that start from the critical input signals (i.e., 
IRDY# and FRAME#). Place constraints on the 

critical signals paths (e.g., type "5.0" ns in the 
constraint column for all critical paths) and rerun 
placer tools. 

2) Bused signals must be driven valid between 2 
and 11 ns after CLK. (PCI spec 7.6.4.2) 

Problem: Many delays contribute to a signal'S total 
delay. These delays include: the clock input to flip­
flop delay, the clock to Q output delay, the combina­
torial delay, all routing delays, and the final signal 
to output pin delay. Particularly for programmable 
logic, these delays are on the order of nanoseconds 
(as opposed to picoseconds, as is the case in ASICs). 
The total clock to output delay quickly passes the 
11-ns spec. 

Solution: The quickest, easiest, and most robust 
solution is to register the outputs. However, this 
solution has the trade off of adding one additional 
clock cycle. For long delay calculations, pipelining 
may be used to reduce variables. By doing the nec­
essary calculations in a previous stage, the [mal 
stage can have a shorter total delay. Because PCI 
has wait states, the pipelining solution may be used. 

3) All inputs require no more than 0 ns of hold 
time after CLK. (PCI spec 7.6.4.2) 

Problem: Devices must have to be able to latch data 
with a O-ns hold time. 

Solution: It is necessary to use a part that can meet 
the O-ns hold time spec. The Cypress 38x FPGA 
family meets the O-ns hold time. 

4) Configuration Space of PCI requires many 
registers. 

Problem: PCI specifies that 256 bytes of register 
space be implemented. 

Solution: Most of the 256 bytes of registers can be 
implemented as hard-wired zeroes. This reduces 
the need to use flip-flop resources to implement the 
configuration registers. In addition, some of the bits 
within the 32-bit registers may also be hard-wired to 
some permanent value. As a minimum, the configu­
ration space will probably require a minimum of 
approximately 40 flip-flop registers for the simplest 
design. 



£ ~ PCI Bus Applications on FPGAs 
~CYPRESS =============== 

5) Multiplexed Address/Data bus is routed to 
several places within the device. 

Problem: PCI has a multiplexed address/data bus. 
The bus is accessed internally by several devices 
such as registers, FIFO, parity check/generators, 
comparators, and decoders. This requires the use of 
several 32-bit muxes. 

Solution: Each logic cell of the 38x FPGAs has a cas­
caded muxing structure that can implement a 4-to-1 
mux. By grouping signals into fours (along with 
their control signals), more optimal performance 
and utilization can be achieved. 

6) PCI device must respond to a transaction 
within 3 clocks after the Address Phase. 

Problem: After the first clock that the FRAME# 
signal has been asserted by the initiator, the ad­
dressed target must respond by asserting the 
DEVSEL# signal. If a target can respond within 
one clock, it is considered to be a "fast" response de­
vice. If it responds in two clocks it is a "medium" re­
sponse device, and if it responds in three clocks it is 
"slow." The fourth clock after the asserted 
FRAME# signal is reserved for subtractive decod­
ing devices such as bridges. If the initiator is not re­
sponded to within four clocks, it will abort the trans­
action. Therefore, most PCI devices must respond 
with the DEVSEL# signal within three clocks. 

All targets have one clock (the first time FRAME# 
is sampled LOW) to latch the address and command 
from the PCI bus. They must immediately begin de­
coding the address to determine the recipient of the 
transaction. This is done by comparing the address 
to all implemented base address registers within the 
configuration space. If a hit is determined, then the 
target must assert its DEVSEL# signal. Parity (if 
enabled) is also checked on the second clock to de­
termine if a parity error occurred during the address 
phase. 

Solution: Pipelining the address compare function 
will allow the design to meet the timing. Remember 
that there is only a 7-ns set-up time on the bus, and 
therefore the first stage of the pipeline must be able 
to complete within this time (plus accounting for in­
ternal clock delay). Registering the DEVSEL# sig­
nal will insure the 2- to 11-ns clock-to-out time, but 

keep in mind that this will add an extra clock to your 
response time. 

7) Parity 

Problem: Even parity over the 32-bit NO bus, 4-bit 
C/BE bus, and parity signal must be calculated and 
made available exactly one clock after a valid data 
transfer. Implementing the parity generator re­
quires severalleve1s of XOR logic. It should also 
have a small propagation delay to prevent excessive 
wait states during data transfers. 

Solution: A single logic cell in the pASIC family can 
implement a 3-input XOR. Building the parity gen­
eration logic with 3-input XOR yielded a parity gen­
erator which utilized a minimal amount of logic cells 
and routing. The parity generator induced no extra 
necessary wait states. 

8) High Fanout Signals 

Problem: Several combinatorially produced signals 
have a very high fanout. For example, a signal will 
be used to enable 36 registers at once for data and 
byte enable latching. Signals with high fanout incur 
long propagation delays. 

Solution: Inherent to all FPGAs, signal delays are 
often routing dependent. Reducing the number of 
loads on a signal, thus reducing the number of rout­
ing resources, can greatly improve performance. 
There are several methods for doing this: split buff­
ering, selective buffering, paralleling, and double 
buffering. For more information on buffering tech­
niques, see Chapter 4 "Design Techniques" of the 
Warp3'" User's Guide, SpDE/Warp System section. 

Split buffering involves inserting another layer of 
logic between the signal source and all of its loads. 
For example, if a signal has 10 loads, the loads can 
be split into two groups of five. Each group would 
then be driven by a BUF component, which in turn 
are driven by the signal source. This reduces the 
load of the original signal to just two. 

Selective buffering is similar to split buffering: an 
extra buffering layer is inserted. The difference be­
tween the two methods is that a few of the original 
load signals are more timing-critical than the others. 
In this case, those critical signals should be driven by 
the original source (the same level as the buffers). 

4-235 



~ ~ PCI Bus Applications on FPGAs 
~'CYPRESS ============= 

This effectively reduces the load of the original sig­
nal, without adding extra logic between the source 
and the timing-critical signal. 

Paralleling has the. advantage of no extra layers of 
logic with the trade off being a complication of the 
design. This method involves repeating the signal's 
source logic. For example, if the signal is produced 
by an AND gate, this AND gate would be repeated 
(both with the same input values) and each gate 
would then drive its own group of logic. 

Signals with larger fanouts or speed-critical signals 
should be buffered using the DOUBLE_BUFFER 
attribute in their design. Keep in mind that every 
time this technique is used, express wires in the de­
vice are used. Using this attribute without discre­
tion can quickly exhaust all available express wires 
within the device .. A second improvement to double 
buffering is to place the flip-flops in a single column. 
This has the advantage of shorter signal paths and 
uses less express wires. To place flip-flops, use the 
FIXED _FF attribute on the registered signals. 

Making Modifications to the Design 

Assigning Values to Configuration Registers 

Configuration registers DEVICE ID, VENDOR 
ID, CLASSCODE, and REV ID must be assigned. 
To do so, edit the configuration space block: 
C_SPACE.VHD (VHDL). These registers are de­
clared as constants and their assignments may be 
changed to the appropriate values. 

Changing Address Space Size 

Different applications will have different address 
space size demands. Modifications of the design to 
match size demands is expected. Since a device's ad­
dress space is determined by the number of hard­
wired zeroes in the lower bit positions, decreasing 
the address space size increases the number of bits 
compared to determine an address hit. Likewise, if 
the address space size in increased, the number of 
bits compared goes up. Th customize this design to 
meet an application's address space size demands: 

1. Edit the configuration space VHDL. 

• Modify the signal declaration of 
BASE_ADDR_X to be the appropriate size 
bit vector. 

• Locate where the base address is assigned a 
value from the data bus and modify the 
BASE_ADDR_X and PCI_DATA vector 
sizes to the appropriate size. 

• Locate where the base address values are 
sent to the output pins of the configuration 
space block and modify the 
BASE _ADDR_ X vector and number of con­
catenated zeroes to the appropriate size. 

2. Modify the address compare logic 

• The schematic of the decode logic 
(xxP _DEC) is a nibble oriented design. The 
number of bits compared in this circuit 
should reflect the number of bits necessary to 
determine an address hit. 

3. Modify the user address counter 

• The burst length of a device does not always 
reflect the size of the address space. In this 
design the user addressing counter allows 
double word burst lengths of 16. The size of 
the counter may be modified to meet the re­
quired burst length. 

• Regardless of the size of the burst length 
counter, all lower bit positions must be sent 
as output to the user address pins to cover all 
locations in the allocated address space. 

Target Aborts and Retries 

The control logic of this design is ready to handle 
target aborts and retries. However, as the design 
stands, no logic uses this functionality. (Notice 
REQ_ABORT and REQ_RETRY inputs to the 
CONTROL block are grounded.) Logic for deter­
mining target aborts or retries may be added, and 
used to signal the CONTROL block to perform the 
target abort/retry. 

Increasing the Depth of the FIFO 

The control logic of this design utilizes a 36-bit regis­
ter for write operations. PCI interface side logic 
performs a data transfer when it sees that the regis-

4-236 



. ~ PCI Bus Applications on FPGAs 
~'CYPRESS~==============================~ 

ter is not full. The user interface side logic performs 
a data transfer when it sees that the register is full. 
Minor modifications to this logic should be done to 
support an internal FIFO. 

Conclusion 
Interfacing with the PCI bus is a task of intricate 
protocols, timing specs, and data handling. Howev­
er, the PCI challenge can be met by using PLDs, and 
in particular, FPGAs. The flexibility, high density, 
and compliance of Cypress FPGAs make the 
FPGAs ideal candidates for PCI bus interface ap­
plications such as add-in cards. 
Wa1p3 is a trademark of Cypress Semiconductor Corporation. 

PCI read and write transactions are inherently non­
preempted burst transactions. The basic protocols 
are the same for configuration, I/O and Memory 
read and writes. All PCI bus devices implement 
configuration space registers which give PCI its 
plug-and-play nature. 

Because of the many issues involved in PCI interfac­
ing, a designer will inevitably run into a multitude of 
challenges. Careful planning and use of this ap­
plication note and reference design can provide a 
head start in the design process. 

4-237 



CY7C380 Family Quick Power Calculator 

This brief is intended to provide a rapid method of 
calculating the approximate power consumed by a 
CY7C380 family device. Because the intent is a 
first-estimate calculation, some details are ne­
glected. The quiescent power of about 20 m W is not 
included. There is no estimate of the power for the 
number of columns and number of loads per column 
of the clock distribution tree. Wiring capacitance is 
neglected. High drive cell power is taken to be the 
same as a normal input cell. I/O cell power is aver­
aged over input and output. The power calculation 
does not include the power of an output driving an 
external load. This approach was taken to simplify 
the calculation. The average toggle rate and per 
cent of the device used are assumed to be rough esti­
mates, thus there is no need to strive for great accu­
racy. For detailed considerations refer to the ap­
plication note "Power Characteristics of Cypress 
Products." 

The equations used to create the curves are: 

P(cells) = (%used)*FAv*(0.38) for7C381/C382 
(Figure 1) 

P(cells) = (%used)*FAV*(0.77) for7C383/C384 
(Figure 2) 

P(cells) = (%used)*FAV*(1.54) for7C385/C386 
(Figure 3) 

Where FAV is the average toggle rate frequency 

Quick Power Calculation Process 

1. Estimate the toggle rate (frequency in MHz) for 
each of the major blocks of the design. 

2. Select a CY7C380 family device. 

3. Estimate the percent of the device that will be 
utilized to implement each block. 

4. For each block, use the power vs. toggle rate 
curves for the selected device and read the pow­
er for the estimated toggle rate and percent uti­
lization. Enter the power in the work sheet. 

P(I/O) = (number of I/Os) *Fav* (0.3) 5. Sum the individual powers for an estimate ofthe 
total power. 

Table 1. Power Calculations 

No.ofl/Os POWel"Block 
Percent of Toggle Rate switching at Powel"IJO Powercells (Powel"IJo + 

Block Device (MHz) toggle rate (from eqn) (from table) Power cells) 
Block 1 

Block 2 

Block 3 

Block 4 

,;;~~;:,t~;F~Z:;:1;d;J: 100% I?;q::d;:i,:~;j,!;~/:'s'i!;:'~s f;;t;j:;'i~::\;f}i~;;~i:'~~ 

4-238 



Power (mW) 
1000 
900 
800 
700 
600 

500 

400 

300 

200 

100 
90 
80 
70 
60 

50 

40 

30 

20 

10 
9 
8 
7 

6 

5 

4 

3 

2 

CY7C380 Family Quick Power Calculator 

60% Device: CY7C381/382 

20% 

10% 

1+---------r----,---,--,-,--,,-,,r--------,----,---,--,--,-,-~~ 

1 2 3 4 5 6 7 8 9 10 

Frequency (MHz) 

20 30 40 50 60 70 80901 00 

Figure 1. Average Toggle Range for CY7C381/2 

4-239 



~~YPRESS~~~~~~~~CY~7~C~3~80~F~am~i~~Q~U~iC~k~p~o~w~e~r~C~al~C~ul~a~ro~r 
Power (mW) 60% 30% 
1000,-~~----------------------------------~------~----__ ~----~ 
900 
800 
700 
600 

500 

400 

300 

200 

100 
90 
80 
70 
60 

50 

40 

30 

20 

10 
9 
8 
7 
6 

5 

4 

3 

2 

1+--------,r----,--_.--,_~_.,_",_------_.----~--,__,--,_,_,,~ 

10% 

5% 

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80901 00 

Frequency (MHz) 

Figure 2. Average Toggle Range for CY7C383/4 

4-240 



=' ~YPRESS =======;;;;;C;;;;;Y;;;;;7C;;;;;3;;;;;8;;;;;O;;;;;F;;;;;a;;;;;ID;;;;;il;;;;;y;;;;;Q;;;;;u;;;;;ic;;;;;k;;;;;P;;;;;o;;;;;w;;;;;er;;;;;C=al;;;;;cu;;;;;l;;;;;at;;;;;o=r 

Power (mW) 
10000 
9000 
8000 
7000 
6000 

5000 

4000 

3000 

2000 

1000 
900 
800 
700 
600 

500 

400 

300 

200 

100 
90 
80 
70 
60 

50 

40 

30 

20 

Device: CY7C385/386 

60% 

30% 

20% 

10% 

5% 

10+---~---.-----.---.--.-~~~~---------.----~--~-.--.-.-~~ 
1 2 3 4 5 6 7 8 910 

Frequency (MHz) 

20 30 40 50 60 70 80901 00 

Figure 3. Average Toggle Range for CY7C385/6 

4-241 



31& ~ CY7C380 Family Quick Power Calculator 
,CYPRESS ============== 

Example 

A CY7C382 FPGA is to be used with the following 
estimates: 

• 32 I/Os are connected to a 40-MHz bus 
(half are assumed to be changing at this rate on 
the average). 

• The remaining lias have a low duty cycle. 

• 10% of the device is going to be toggling at the 
40-MHz rate. 

• 60% of the device is estimated to be toggling at 
10 MHz. 

The work sheet is filled in as shown below. The 
number of I/Os is taken to be 16 because half are as­
sumed to change in any clock (on the average). The 
next two entries are taken from the graph for the 
7C382 and entered into the Power column. Total 
power is summed at the bottom. 

Table 2. Power Calculations- An Example 

No.ofl/Os POWel"Block 
switching at Powercells (Powel"JJo + 

Percent of Toggle Rate toggle Powel"JJo (from curve) Powercells) 
Block Device (MHz) 191502rate (fromeqn) 

Block 1 10 40 16 192 150 342 

Block 2 60 10 0 0 220 220 

Block 3* 30 0 0 0 0 0 

Block 4 

·"e ... ;'; 100% ··.:<;;}:.,,;";jig:;;·;:::::::"; :;":,?i;:;7~;2~:i0.:;::i:i: :"i 562 

* Block 3 represents 30% of the device that goes unused. 

4-242 



FPGA Design Entry Using Warp3 ™ 

This application note is intended to demonstrate hi­
erarchical as well as mixed-mode design entry for 
FPGAs using the Wap3 TM software package. Wap3 
eases and speeds up the design process by featuring 
both schematic and VHDL design entry methods. 
Complex designs may be broken up into manage­
able pieces and each piece may be described beha­
viorally (VHDL) or structurally (VHDL and sche­
matic). All the lower-level blocks are then put 
together to create the top level. In this application 
note, a general-purpose DMA controller is de­
signed to further familiarize the reader with the 
Wary3 design process. 

Warp3 Interface and the Cockpit 
Overview 

Running on both IBM PC/AT™ -compatible plat­
form and Sun SPARCstation TM , Wap3 provides all 

.'J Project, ) Library, ) Process ~ J Conflg ,) 

Tool Slatus 
Selected Tool: lexpt1 076 

Tool Slate: IStopped 

Tool Messages: INone 

Selected Host: D lalbinonLcypreSs.com 

Qwrent ToolBox: Dlcypress 

Ourent Drawer: D IWarp Design Environment 
Project Type: DIVlewdraw 

OIrrent Project: D I/home/svstwarpproj 
Qwrent Ubrary: D I/hOme/Systwarpproj 

Tool Log: D expt1 076 

• 

the tools necessary to quickly and efficiently convert 
complex designs into functional silicon. Wap3 uses 
ViewLogic as its front-end. Figure 1 shows the Pow­
erview cockpit which appears when you invoke 
Wap3 on Unix workstations. Th the upper right is 
a collection of icons, one for each Wap3 tool. 

Viewdraw is used to create schematics, as well as 
symbols that can be instantiated on other schemat­
ics. It gives you the ability to capture schematics uti­
lizing standard 74XXX TTL functions, generic logic 
gates, or user-defined custom functions. 

VHDL designs may be entered using ViewThxt or 
any other text editor. VHDLcan be used to describe 
the entire design or just a portion of it. It allows for 
state machine, Boolean equation, IF/ELSE type 
constructs, tabular, and many other design descrip­
tion styles. Packages allow designs to be integrated 
into higher levels of the hierarchy. 

"M'~ 

VIEWlogiti VIEWIo8~1 CYPRESS CYPRESS CYPRESS CYPRESS 
~~~j 

~.~~~~m 6 II .":8» ; .. ~
t:x d ~ ! o,.:'rl ! port(II

ViewDraw I expt1 076 Warp Errors Place&Rte pASIC-VSlm

V1EWIo8ic' VIEWlogic' V1Ewlo8ic' CYPRESS CYPRESS VIEWloglc'

S!U!A 'lP{l\ TEXT gl~fA iP=rn
BACK

~ ~ JED z·~

t 't t... 't ~1!L·im ~ "'~ EDITOR ~
ViewSim ViewTrace ViewTexi Nova CypBack ViewGen

...... i

Figure 1. Powerview CockPit

4-243

~

=:a~YPRESS~~~~~~~~~~F;P;G;A;D;e;sl;·g;n;E;n;try~U;S;in;g;ffi;a;ry;3=

ViewGen generates schematic symbols from sche­
matic drawing. The resulting symbol could then be
instantiated on other, higher-level schematics.

All designs (schematic and VHDL) are converted to
VHDL, so for designs containing schematics,
Exptl076 is run to translate the viewdraw schematic
into one or more VHDL models. .

The VHDL files are then compiled and synthesized
using Wa1p TM. Wa1p produces JEDEC files (used to
program Pills), HEX files (used to program
PROMs), or QDlF files (used by the Place&Route
tools when targeting pASIC'" FPGAs).

For FPGA devices, the Place&Rte tool is used to
perform automatic place and route, delay modeling,
critical-path timing analysis, automatic test vector
generation, and device programming and test.

After compiling the design, ViewSim can be used to
determine the design's functionality and worst case
timing characteristics. ViewSim automatically
brings up ViewTrace, which allows you to view the
simulated waveforms.

After compilation, if the same pin assignment is de­
sired to be kept, CypBack can be used for back an­
notation.

This section was intended to provide an overview of
the Cockpit. For additional information please re­
fer to the Wa1p3 documentation.

Open

Cypress pASIC380 Family FPGA
Architectures
The previous architecture discussions have pointed
out the strong relationship between the technology,
the architecture of the FPGA, and the device char­
acteristics. The 380 family possesses a unique
technology which impacts all of the remaining archi­
tecture trade offs positively. The discussion of the
380 family begins, therefore, with a presentation of
the interconnect technology.

pASIC380 Family Fuse Technology

In usual integrated circuits two crossing metal lines
that are on different layers may be connected by a
via. A via is a small hole in the insulating glass that
lies between the two layers of metal. This small
hole, which is about the size,ofthe metal lines them­
selves, is filled with metal from above making the
connection to the underlying metal line. The pro­
grammable via is a modified via used in standard
CMOS semiconductor processing. The modifica­
tion consists of depositing a thin layer of amorphous
silicon in the via hole so that the silicon separates
the two layers of metal. As manufactured, this spe­
cial via has a resistance in excess of 1 gigaohm and
an insignificantly small capacitance (about 1 fF). Its
size is no larger than the standard via normally used
to connect two layers of metal. A cross section of the
programmable via is shown in Figure 2. A program­
ming pulse applied across the programmable via
causes a change in the characteristics of the silicon
layer forming a bidirectional conductive link be­
tween the top and bottom metal. This programmed

Programmed

Figure 2. The ViaLink

4-244

link has a series resistance of about 52 ohms and in
practice is no more than 65 ohms. The parasitic ca­
pacitance is no larger than a normal metal to metal
via. The technology is appropriately termed
"ViaLink'" ."

Routing

ViaLink technology has significant impact on FPGA
architecture. Since the programmable site is no
larger than the associated metal interconnect wires,
there is no real restriction on the number of inter­
connect points (fuses) and no fuse related restric­
tions on the number of wires in the interconnect
channels. The pASIC380 family takes advantage of
this freedom with a generous routing structure.

Four types of signal wires are employed in the rout­
ing channels:

• segmented wires

• quad segmented wires

• express wires

• clock wires

1 1 1
F-:: Vee s-

,

~

~
2

3 4
£CC

Segmented wires are wires that extend only from
one routing channel to the next, both vertically and
horizontally. At the channel junction, a horizontal
segmented wire may be programmed to intercon­
nect to a vertical segmented wire at points called
cross links. In Figure 3, programmable cross links
are denoted by the open circle at intersections of
vertical and horizontal wires. Also at the channel
juncture, the segmented wire may be continued in
the original horizontal or vertical direction by con­
nection to another segmented wire running in the
same channel. This connection is provided by a pass
link. These links are denoted by an "x" in the figure.
Segmented wires are most applicable for local wir­
ing around or between adjacent logic cells.

Quad segmented wires are similar to the segmented
wires described above except that the wire extends
across four logic cells before it is segmented. Like
segmented wires, the quad segmented wires may be
continued to the next quad segmented wire by a pass
link. The quad segmented wires are applicable to
signal distribution over a larger but still local group
of logic cells.

11 1
f----:
~r

9
~

~'~ ~

~~
6 7

Figure 3. Simplified pASIC380 Family Model

4-245

f1s~ FPGA Design Entry Using Warp3
_ CYPRESS ==============

Express wires are similar to segmented wires except
they do not include pass links. An express wire will
therefore run the entire length of the device. These
wires are most suitable for global signals within the
device.

Routing software with specific knowledge of the de­
vice architecture will automatically route signals
over the appropriate wire type.

Clock wires are special signal lines that include an
array of buffers for minimal skew. Clock wires are
similar to express wires except that the cross links
are limited. This is to insure that the clock wires are
lightly loaded by programmable interconnects and
can be used maximally in routing high-speed clocks
or reset signals globally throughout the device with
minimal skew. The source ofthe signal on the clock
wires is specific device pins with the designation "1/
CLK." Mter passing through the special input buff-

ers, the signal is routed horizontally across the cen­
ter of the die, as shown in Figure 4. There are four
high drive buffers. One pair drive clock 1 and clock
2 to the upper half of the column of logic cells, and
the other pair drive the two clocks to the lower half
column oflogic cells. There is a cluster ofthese buff­
ers for each column of logic cells in the array. The
buffers can be enabled to drive the clock lines or dis­
abled if a clock is not required in a given column.

Vertical channels include all three wire types plus
Vee and ground wires. The Vee and ground connec­
tions allow unused inputs of any logic cell to be tied
to an appropriate logic level. The vertical channels
run to the left of each logic cell column and extend
the full height of the device. The I/O wires, which
run from each of the logic cells to the right of the ver­
tical channel, intersect the wires of the vertical chan­
nel with cross links at all segmented wires and at

DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD

Clock 1;"'Ar:-:#=~t=E:t:I:~:tt=9::t:I=I=t:I=~l:I=f:I1~=tt=~~~;::E:j:j:::~~-From Input Buffer Clock 2

DDDDDDDDDDD
DDDDDDDDDDD

Upper Column
Buffered Clocks

From lnput Buffer

~
D Logic Cell

Clock Buffer
Details

Lower Column
Buffered Clocks

Clock 1 Clock 2

Figure 4. pASIC380 Family Clock Distribution

4-246

judicious points for express wires. At the extreme
ends of the vertical channels are I/O cells that con­
nect to the device pins. The number of wires in the
vertical channel is chosen to be commensurate with
the number of inputs and outputs of a logic cell, the
added wires for vee, ground, and the I/O cells at the
device periphery. There are 24 of these wires.

Horizontal channels provide connection by way of
cross links from vertical channel to vertical channel
and from the vertical channels to I/O cells on the left
and right periphery of the device. All wire types are
included in the horizontal channels (which contain
12 wires each) except for the clock wires. (These are
the dedicated wires that carry the clocks to the
buffers.)

I/O Cells

There are three types of interface buffers that con­
nect the internal array to the device pins. The dedi­
cated input buffer provides high drive internally and
generates both true and complementary versions of
the input signal. This high drive capability allows
signals coming from these input only buffers to fan
out to a larger number of cells than the normal I/O
cell. The clock input buffer is similar to the dedi­
cated input buffer except that it provides a third out­
put that is routed to the internal clock distribution
buffers described previously. The I/O cell provides
a bidirectional connection to the devices pins. The
cell can be used as input only, output only, or a bi­
directional pin connection. Internally the cell has
an output enable, an input data connection, and two
output data connections which are ORed together
to produce the output. This cell is shown schemati­
cally in Figure 5. The output driver provides 8 rnA
drive level (IOH and lod.

Figure 5. BidirectionalI/O ButTer

Device
Pins

FPGA Design Entry Using Warp3

Logic Cells in the pASIC380 Family

Since the routing resources of the 380 family are
abundant and without expectation of being inter­
connect constrained, there is freedom in the logic
cell architecture to choose the optimum complexity.
The 380 family logic cell is shown in Figure 6. This
cell has been optimized to maintain the speed ad­
vantage of the ViaLink technology while insuring
maximum logic flexibility.

The logic cell consists of two 6-input AND gates,
four 2-input AND gates, three 2-to-1 multiplexers
and a D flip-flop. This cell represents approximate­
ly 30 gate equivalents of logic capability. The cell
has 23 logic and control inputs and 5 outputs. The
arrangement of the gates permits 14-bit-wide gating
functions and can realize all possible Boolean trans­
fer functions of up to three variables. The D flip­
flop possesses asynchronous set and reset inputs to
independently control the output state. The multi­
plexer and logic feeding the D input allow the flip­
flop to be configured as D, T, JK, or SR.

The outputs of the logic cell include the Q output of
the flip-flop (QZ) plus four other outputs tapped at
selected points within the logic cell. The OZ output
is the same as the D input to the flip-flop. The OZ

QS----------------------~

A1
A2
A3
A4
A5
A6

81
82

C1
C2

D1
D2

E1
E2

F1
F2
F3
F4
F5
F6

.----t-- OZ

QZ

~----~--_r----NZ

r--.----------~--r_---FZ

QC------------------~

QR----------------------~

Figure 6. pASIC380 Internal Logic Cell

4-247

~-:.::z FPGA Design Entry Using Warp3
_;CYPRESS ==============

output facilitates combinatorial functions. The
three other combinatorial outputs tap the logic cell
at selected places. If simple logic functions are to be
implemented, the multiple outputs permit more
than one of these functions to be realized in a single
logic cell. Maximum use of the available logic can
be made. Note the ability to provide this multifunc­
tion utilization without any significant impact on
routing. The additional utilization factor is ob­
tained for free. When implementing multiple func­
tions, the flip-flop may still be employed in many
cases.

The logic cell is not so complex as to adversely im­
pact propagation delay. The internal multiplexers
are positioned to participate in implementing logic
functions. Since the multiplexers are all in the path
to the D input of the flip-flop, they contribute signif­
icantly to combinatorial logic function realization
and are not expended on signal steering. The logic
cell is also noticeably symmetric and regular. Com­
binatorial delays are thus also symmetric. That is,
input to output delays tend to be roughly the same,
although the AZ and FZ output will be faster than
the others. Whereas some architectures bypass
large sections of cell logic by the multiplexing, there­
by making the cell delay dynamically changeable,

the pASIC380 logic cell delay.is not subject to this
condition.

Design Example
The application example described here is a gener­
al-purpose, 16-bit direct memory access controller
(DMAC). Direct Memory Access facilitates maxi­
mum I/O data rate and maximum concurrence. For
DMA transfers, the Central Processing Unit (CPU)
must have a DMA feature. Additional external log­
ic is also necessary. This additional logic, the DMA
controller, contains its own address register, word
count register, and logic for reading or writing data
to or from memory. Figure 7 illustrates the basic
components of a DMA controller.

The CPU loads the DMAC with a starting address
for the memory transfer and the number of words to
transfer. When an I/O device requires data from
memory or needs to transfer data to memory, it
must request service from the DMAC by asserting
a DMA request (DREQ). The DMAC then acti­
vates its hold request (HLDREQ) output. The
DMAC then waits until it receives a hold acknowl­
edge (HLDA) signal from the CPU. At this time the
CPU floats its address and data buses and appropri­
ate control lines. It suspends any processing that re-

ADDRESS

" DATA iMEMORY

CPU CONTROL

iord ADDROl io_r ADDR02
INTR HOLDA HOLDR

DREQ DEVICE

hldreq DMACK
C:::ONTROLLEJ;;

hlda. DMA Cont..ro11eJ:: "' " int

I INPUT DEVICEI

Figure 7. DMA Controller Controlling an Input Device

4-248

=- ?cYPRESS ==========F;;;;;PG=A;;;;;D;;;;;e;;;;;si;;;;;g;;;;;D;;;;;E;;;;;D;;;;;try=V;;;;;s;;;;;iD;;;;;g;;;;;ffi;;;;;Q;;;rp;;;;;3=

quires use of the address and data bus. The DMA
controller then provides address and control strobes
to read or write memory. The I/O device provides
or accepts the data on the data bus.

Data transfers between memory and I/O devices can
occur as single-word operations or as bursts of
words under CPU program control. A I6-bit count­
er is decremented every transfer. When the requi­
red number of words have been transferred (a count
of zero is reached), the DMAC terminates the
DMA request and interrupts the CPU to indicate
that the DMA transfer is complete.

In this implementation of the DMA controller, it is
partitioned into six smaller blocks, as follows: the
CPU Decoder, Control register, address generator,
word counter, output multiplexer, and the DMA
state machine. Figure 8 shows the DMAC block dia-

..--

gram. Since some blocks are easier to describe in
schematic and some others in VHDL, mixed mode
design entry is selected here. For example state ma­
chine or the CPU decoder modules are easier to
describe in VHDL using Behavioral and Tabular de­
sign entry methods.

The DMAC building blocks are described here in
detail including an explanation of the design meth­
odology chosen for each implementation.

CPU Decoder

The DMAC is configured by the CPU via address
bits (ADI and AD2), and control signals IOWRI, and
10RDI. The CPU decoder receives these interface
signals from the CPU and decodes them into inter­
nal write strobes and a read enable. The write
strobes latch incoming parameters form the data
bus into Control register, Word Counter, and Ad­
dress registers. The read enable (RD _ ENABL) sig-

A:DDR01

-
-------':FFEaS >

ADnREB
ADDR23

~ fENE~.O.
~

~ __ M

,----

H3 -=jI = :COUTO

OUTPUT - P DO~T15 MUX

'------, = E A8~

,---
r-~o

~
02

CONTRO CPU <-
REG::tSTE. _C"","

DECODER E----""-

t~ '----

CT E

J:0Wl)C:

~
wo= ZEROCNT ::tOROO

~ STATE _D

COUNTER
ME~

D~Q MACBJ:NB
HLoDRS'Q

BLDA
'NT

HeLl«
~x

RESET

Figure 8. DMAC Block Diagram

4-249

--. • ~ FPGA Design Entry Using Warp3
,CYPRESS =============

nal and address line AOl (from the CPU) allow in­
ternally selected address registers to be multiplexed
onto the data bus (during a CPU read operation).
Table 1 shows the decoding of the CPU address lines
and I/O instructions by the DMAC.

Figure 9 shows the VHDL code for the CPU Decod­
er Block. The Entity section declares the design's
inputs, outputs, and their types. VHDL provides
several ways to specify a design's operation, a truth
table is used to describe the CPU Decoder to ex­
press which outputs are active when specific inputs
are asserted; In order to use the Thbular method of
behavioral description, the "use work.table_bv.all"
statement must be included. The body of architec­
ture "arctbl" of entity "cpudec" contains the truth
table. Signal TABLE_OUT is defined to hold the
truth table's output signals values. Since there are
5 outputs, this signal is defined as BIT_ VECTOR(O
to 4). The table is defined as constant "dectable,"
indicating the number of rows (0 to 4=5) and col ..
umns (0 to 8=9) it contains, followed by the bit val­
ues of the table itself.

The process "machine" then calls the TTFO func­
tion to produce outputs from the design's inputs.
Since the CPUDEC.VHD (file name) is a lower­
level piece of our DMA controller design, and it
needs to be instantiated into our top-level DMA
controller, it needs to be put in a Package. This is
easily accomplished by copying and then slightly
modifying the Entity section. The Package section

is then placed at the top of CPUDEC.VHD file and
is then recompiled. The last step is to run
VHDL- > SYM (found in Viewdraw)which analy­
ses our VHDL model and automatically generates
a symbol. The symbol and the VHDL design file
have the same name as the VHDL Entity name with
an extension of ".1".

Control Register

The Control register configures the DMAC and
controls the DMA controller's operation. The CPU
writes to the control register block. The Control
register has control bits to enable or disable the
DMAC, enable an interrupt when the word count
equals zero, clear the word counter, enable burst or
single-byte transfers, and define the transfer direc­
tion (memory to I/O or I/O to memory). The bit def­
inititms for each DMAC function appear in Table 2.

Wa1]J3's schematic capture capability is used to im­
plement the control register block. The registers
can be cleared using the RESET or CLRENB signal
from the state machine. The write control signal
(WR_CTRL) from the CPU Decoder block clocks
in the data bit values. After the design is entered in
ViewDraw, Exportl076 is run to convert the sche­
matic to its VHDL model. The VHDL model is
then compiled using the Wa1]J compiler (Galaxy).
Finally Viewgen is used to create a symbol for this
lower-level design. The Control register schematic
is shown in Figure 10.

Table 1. DMAC CPU Signals Decoding

A02 AOI CS IORDI IOWRI Description

X X 0 X X

0 0 1 0 1 Write Control Register

0 1 1 0 1 Write Word Count

1 0 1 0 1 Write Low Mem Address

X 0 1 1 0 Read Low Mem Address

1 1 1 0 1 Write High Mem Address

X 1 1 1 0 Read High Mem Address and DMAC Status

4-250

package cpu_dec is

component cpudec
port(iowri,iordi,cs,a01,a02:in bit;

wr_ctrl,wr_wcnt,wr_ma_0,wr_ma_1,rd_enabl:out bit);
end component;

entity cpudec is
port(iowri,iordi,cs,a01,a02:in bit;

wr_ctrl,wr_wcnt,wr_ma_0,wr_ma_1,rd_enabl: out bit);

end cpudec;

use work.table_bv.all;

architecture arctbl of cpudec is

signal table_out :bit_vector(O to 4);
constant dectable:x01_table(0 to 4, 0 to 8):= (

inputs outputs

"xx10" & "00001",
"0001" & "10000",
"0101" & "01000",
"1001" & "00100",
"1101" & "00010");

begin

machine: process (cs)
begin
if cs = '1' then

read status reg or i/o
write control register
write word count
write low mem address
write high mem address

table_out <= ttf(dectable,a02&a01& iordi& iowri);
end if;
end process;

wr_ctrl <= table_out (0) ;
wr_wcnt <= table_out (1) ;
wr_ma_O <= table_out (2) ;
wr_ma_1 <= table_out (3) ;
rd_enabl <= table_out (4) ;

end arctbl;

Figure 9. CPU Decoder VHDL Design File

4-251

000

00 3. >----+-----1~

002 >----+---1--1

OQ3 BURST

004 OIR

Figure 10. Control Register Schematic

Table 2. DMAC Control Register Bit Definitions Address Generator

BIT

° 1

2

3

4

5-15

DEFINmON

DMA Cpntroller Enabled (ENABL)

Interrupt Enabled (INTEN)

Clear Word Counter (1 clears Word
Counter and bit 2 to zero)

Burst/Single Word 1tansfer Mode
(0= single, 1 = Burst)

1tansfer Direction
(O=Mem to 1/0,1=1/0 to Mem)

Not Used

The Address Generator block is a 23-bit synchro­
nous counter that provides the system memory ad­
dress for the data transfer operation. The 23 address
registers are initialized by loading the registers with
the address of the first memory location to be ac­
cessed. The CPU places the 23-bit starting address
on the 16-bit data bus in two operations, one for the
lower 16 bits and one for the upper 7 bits. This is
controlled by WR_MA_O and WR_MA_l signals.
Mter each memory transaction, the state machine
block asserts the CT _ EN signal which enables the
counter to increment. This guarantees that the ad­
dress is set for the following transfer.

4-252

Figure 11 shows the Address Generator diagram.
Using the 74XXX TTL functions available in Wa1p3,
the address generation function is implemented
with six 4-bit, 74161 counters. These counters are
arranged so that when each 4-bit counter incre­
ments to a binary count of 1111, its ripple carry out
output (RCO) enables the next higher 4-bit counter
via the ENT and ENP inputs (tied together). The 23
address lines must be three-stated when the CPU
has ownership of the system bus. The state machine
block generates an output signal called DMAEN
which at the appropriate time (during data transfer)

Figure 11. Address Generator Schematic

FPGA Design Entry Using Wary3

enables the DMAC address lines. The three-state
buffers must be implemented in the top-level design
and they correspond to the internal three-state buff­
ers of the pASIC devices.

A symbol is generated for this block as was done for
the Control register block.

Word Counter

Because each transfer operation requires a word
count, a 16-bit counter monitors the number of
words that are transferred. The CPU initializes the
Word Counter to a value representing one less than
the number of words to be transferred. This value
allows the counter to reach zero before the last
transfer and terminate the operation at the proper
time. Four 74161 counters are used to construct this
counter as shown in Figure 12. The WR_ WCNTsig­
nal from the CPUDEC block and the data bits DOO
through DIS initialize this counter. The data bits
are inverted as they are loaded. Therefore this
counter is actually decremented instead of increm­
ented. At the end of each transfer (states mem2 and
io2) the CT_EN signal is asserted HIGH. T~is sig­
nal enables both the Address register and the Word
Counter blocks. Each time the Address register is
incremented, the Word Counter is decremented.
The Word Counter is cleared using the RESET sig­
nal from the CPU or the WCT _ CLR signal from the
Control register block written by CPU address and
control lines as shown in Table 1.

Output Multiplexer

The CPU must have access to the DMAC's internal
registers to monitor operation. Therefore, the CPU
has the capability of reading the DMAC's current
status and configuration. This is signaled to the
DMAC by asserting the AOl address line and the
IORDI signal HIGH (see Table 1). When these two
signals along with the CS signal go HIGH, the CPU
decoder asserts the RD _ENABL signal HIGH. The
required data is then driven to the CPU data bus.
The bit definitions for the control signals are essen­
tially the same as those for the control word (on dif­
ferent data bits) and are shown in Table 3. A multi­
plexing scheme is used here to enable the CPU to
read either the address generator's lower 16 bits

4-253

NeLl(>---;=====~tJ
RESE':.T~=L)o-_~ .-----'

WCT_CL-",>

"D04

005

006

007

008

009

010

011

ZEROCNT

012 >--_--1
DB >--_--1
014 >--_-1
015 >--_--1

Figure 12. Word Counter Implemented in Warp3 Schematic Capture Tool

(DATAOO-DATA15 when A01=O) or upper 7 bits
(DATAOO-DATA06) and the DMAC status infor­
mation (DATA08-DATA09, DATA11-DATA12
when A01=1). Figure 13 shows the Output Multi­
plexer.

Thble 3. DMAC Status Register Definition

BIT DEFINITION

8 DMA Controller Enabled (ENABL)

9 Interrupt Enabled (INTEN)

10 Not Used

11 Burst/Single-Word Transfer Mode
(0= Single, 1 = Burst)

12 1tansfer Direction
(O=Mem to I/O, 1=1/0 to Mem)

13-15 Not Used

DMA Control State Machine

Figure 14 shows the state diagram for the DMA con­
troller. The state machine consists of 9 states:
IDLE, HOLD, DIRCI; MEM, 10, ENDS,!;
ENDHLD, CLENB, INTRPT. In IDLE state, the
controller waits for an ENABL signal from the Con­
trol Register Module. Upon receiving this signal, it
goes to the HOLD state and waits for the HLDA sig­
nal from the CPU. In DIRCT state, the DMAEN
signal is asserted, which enables the three-state
buffers that control the address lines. This signal
stays asserted through state ENDST. Depending on
the Control register content (written by the CPU),
data is transferred between the memory and the I/O
device. In states 102 and MEM2, CT_EN is as­
serted, which in turn increments the Address regis­
ters and decrements the Count registers after each
transfer. In state ENDST, if all words have been

4-254

Figure 13. The Output Multiplexer

transferred and there is no Interrupt enable signal
from the Control register, then the Control register
is cleared.

Figure 15 shows the behavioral description of the
DMAC state machine implemented in VHDL. This
is a Moore state machine, since the outputs are only
a function of the states.

In the Architecture section, we have declared a sig­
nal which is a vector that is 11 bits wide. It is called
STATE. In this state machine, all the outputs are en­
coded within state bits. Since there are 10 outputs,

Figure 14. DMA Control State Machine

we need at least 10 state variables. The 11th bit is
used to make all state definitions unique. The op­
eration of the state machine is described in the Pro­
cess section. Notice that behavioral description
uses a combination of CASE-WHEN and IF­
THEN-ELSE statements. The state machine can a­
synchronously go to state IDLE. All of the inputs
and outputs are defined as BITS in the Entity sec­
tion. WafP assumes that for BIT types '1' is true and
'0' is false. Mter the Process section, all the outputs
are assigned to state bits.

Top-LEVEL DMAC Design

Mter creating lower-level block, each design was
compiled and a symbol was created. It's time now to
incorporate all the symbols in the DMAC's top-lev­
el schematic (Figure 16). To accomplish this, each
symbol is called and placed on the schematic. To

4-255

i-: ~ FPGA Design Entry Using Warp3
:'CYPRESS ==============

package dma_ctrl is
component dmas

port(reset,dreq,hlda,zerocnt,enabl,inten,dir,burst,mclk:in bit;
ct_en,memw,memr, iowr, iord,dack,dmaen,hreq, setint,clrenb :out bit);

end component;
end dma_ctrl;

entity dmas is
port(reset,dreq,hlda,zerocnt,enabl,inten,dir,burst,mclk:in bit;

ct_en, memw, memr , iowr, iord,dack,dmaen,hreq, setint, clrenb: out bit);

end dmas;

architecture machin of dmas is

signal state:bit_vector(10 downto 0);

constant idle :bit_vector(lO downto 0)
constant hold :bit_vector(10 downto 0)
constant dirct :bit_vector(10 downto 0)
constant memO :bit_vector(10 downto 0)
constant mem1 :bit_vector(10 downto 0)
constant mem2 :bit_vector(10 downto 0)
constant ioO :bit_vector(10 downto 0)
constant io1 :bit_vector(10 downto 0)
constant io2 :bit_vector(10 downto 0)
constant endst :bit_vector(10 downto 0)
constant intrpt :bit_vector(10 downto 0)
constant endhld :bit_vector(10 downto 0)
constant clenb :bit_vector(10 downto 0)

begin

dma: process (mclk,reset)

begin

if reset = '1' then
state <= idle;

:= "00000000000";
:= "00000001000";
.- "00000011000";
:= "00100111000";
:= "00110111000";
:= "00000111001";
.- "00001111000";
:= "01001111000";
:= "10000111001";

.- "10000011000";

.- "00000001100";

.- "10000000000";
:= "00000000010";

elsif (mclk'event and mclk '1') then

Figure 15. VHDL Code for DMAC State Machine

4-256

-= ~ FPGA Design Entry Using Wary3
-=-F CYPRESS ================

case state is
when idle =>

if (enabl='l' and dreq ='0') then
state <= hold;
end if;

when hold =>
if hlda ='1' then

state <= dirct;
end if;

when dirct =>
if dir= '1' then

state <= ioO;
else

state <= memO;
end if;

when memO =>
state <= mem1;

when mem1 =>
state <= mem2;

when mem2 =>
state <= endst;

when ioO =>
state <= io1;

when io1 =>
state <= io2;

when io2 =>
state <= endst;

when endst =>
if (dreq='O' and zerocnt='O' and burst='l') then

state <= dirct;
elsif (dreq='l' and zerocnt='O') then

state <= hold;
elsif (zerocnt='l' and inten='l') then

state <= intrpt;
elsif (zerocnt='l' and inten='O') then

state <= clenb;
end if;

Figure 15. VHDL Code for DMAC State Machine (continued)

4-257

when intrpt =>
state <= clenb;

when clenb =>
state <= endhld;

when endhld =>
if (hlda='O') then

state <= idle;
end if;

when others =>
state <= idle;

end case;
end if;

end process;

-- assign state outputs to state bits

ct_en <= state(O);
clrenb <= state(l);
setint <= state(2);
hreq <= state(3);
dmaen <= state(4);
dack <= state(5);
iord <= state(6);
iowr <= state(7);
memr <= state(8);
memw <= state(9);

FPGA Design Entry Using Warp3

-- bit 10 is to make all state definitions unique.
end machin;

Figure 15. VHDL Code for DMAC State Machine (continued)

connect signals, it is sufficient to give them the same
names rather than connecting them by wires. The
external inputs and outputs are connected to input
and output ports. Since the RESET signal is a high
fanout signal, an HDPAD is used for distributing
this signal across the device. Using an HDPAD in­
sures usage of a dedicated input pin for the signal,
giving it twice the current drive capability of the I/O
pads. In addition a CKPAD is used for the clock in­
put (MCLK). This uses a clock pin for this signal.
The Clock/input pin drives a low-skew, fan-out inde­
pendent clock tree that can connect to clock, set, or

reset inputs of the logic-cell flip-flops. Next triout
and bufoe components are used to implement three­
state buffers. The triout component has three ports:
DATA_IN, ENABLE, and DATA_OUT. The bufoe
component has four ports: DATA_IN, ENABLE,
DATA_OUT, and FEEDBACK. These two types of
buffers must be connected to bidirectional pins. In
this design, when the CPU has ownership of the sys­
tem bus, the DMAC's address, memory and I/O
control lines are in a high-impedance state. The da­
ta bus must also remain in a high-impedance state
unless the CPU is reading the DMAC's internal reg-

4-258

.:~ FPGA Design Entry Using Warp3
~CYPRESS =============

~=
~~

~M~

===t>------- -
"i~J ,,"~
~"~

Figure 16. DMAC Top-Level Schematic

isters. The state machine's output, DMAEN, en­
ables the address bus, IORDO, IOWRO, MEMR­
DO, and MEMWRO outputs. The data outputs are
enabled by a RD _ENABL signal from the CPU de­
coder module. Since signals A01, A02, IORDO,
IOWRO, and DATA bus (DOUTOO-DOUT15)
may be driven by the CPU to initialize the DMAC,·
bufoes (rather than triout) are used to connect these
signals to bidirectional pins.

A VHDL model for the top-level schematic is then
created using EXPT1076 from the Wa1p3 Cockpit.
The final task remaining is to compile the overall
DMAC design and automatically place and route it
into a pASIC device. This design easily fits into a
CY7C383A. It uses 81 percent of the Logic Cells
and 79 percent of the Pad cells.

Wap and Wap3 are trademarks of Cypress Semiconductor Corporation.
pASIC and ViaUnk are trademarks of QuickLogic.
PC/AT is a trademark of International Business Machines.
SPARCstation is a trademark of Sun Microsystems.

4-259

State Machine Design Considerations and
Methodologies

The use of state machines provides a systematic way
to design complex sequential logic circuits-an in­
creasingly popular approach since the advent of
PLD (Programmable Logic Device) circuitry. This
application note describes the many options en­
countered during the state machine design cycle. By
exhaustively walking through the PLD-based design
example presented here, you can weigh the merits
of several design approaches.

Definitions of Commonly Used Terms

External input vector-External signals (stimulus)
applied to the state machine.

System outputs-Signals generated by the state ma­
chine that are explicitly designed for availability to
the external system (hardware outside of the state
machine). Registered system outputs can also be
fed back into the state machine as part of the State
Vector, which is then used in the decode of the state
machine's next state.

State register.s-Registers used exclusively for deter­
mining the next state of the machine (feedback).

State outputs-Outputs of the state registers that are
available to the external system. (They are typically
available to the external machine for debug or due
to the lack of buried registers.)

State vector or machine state-The registered feed­
back information defining the present state of the
machine and required to determine the next state of
the machine.

State path-The transitional condition that must be
met for the state machine to progress from one state

to another. The state path typically consists of one
or more product terms generated from external in­
puts, although other state paths are possible.

Total input vector-The combination of the external
input vector and the state vector. The total input
vector is decoded to generate the next state of the
machine.

State Machine Entry Methods

There are many ways of describing a state machine,
each with distinct advantages and disadvantages.
Three popular description methods are state dia­
grams, state tables, and high-level languages
(HLLs). The state diagram provides an easily ob­
servable flow description of the state machine. Be­
cause the ability to view the flow of states provides
distinct documentation advantages, state diagrams
will be used throughout this application note to de­
scribe the example state machine.

Upon completing a state diagram, you can easily
convert the diagram's visual information into the
other types of state machine description or directly
into Boolean equations. Several available software
programs accept their own forms of state table,
HLL, and/or Boolean entry. You can enter all these
formats easily via your favorite text editor. The soft­
ware then translates the inputs into suitable forms
(usually a JEDEC map) for hardware implementa­
tion.

Another method of describing a state machine, the
state table, offers perhaps the most concise descrip­
tion. Its major advantage over the other entry meth­
ods is the availability of state table reduction meth­
ods (see Reference 1). When applied to your state

4-260

table definition, a reduction program generates a
minimal model for the function. The software used
for state machine synthesis throughout this applica­
tion note uses the state table method of entry. The
program is called LOG/iC'" from Isdata Corpora­
tion.

Finally, high-level language (HLL) state machine
entry is probably the most popular form of state ma­
chine design. HLLs typically offer C-language-Iike
instructions (e.g., case, if-then-else, etc.) to describe
the machine.

A Sample State Machine

The sample state machine is a clock generator for a
pipelined (three system execution stages), bit-slice­
based, central processing unit (CPU). Each of the
three system execution stages contains two clocks
for a total of six system clocks for every instruction
execution. With pipelining enabled, each instruc­
tion takes an average of two clock periods. Further,
external hardware unaffected by CPU wait and stop
states (e.g., cache memory) needs both polarities of
an additional free-running clock.

To minimize clock edge skew, the state machine pro­
vides both versions of the clock. To put the timing
of this application into perspective, executing each
pipeline stage in an 80-ns period (or 12.5 MHz) re­
quires the state machine to run at 25 MHz. This
speed is well within the range of the available PALs,
EPLDs and PROMs that can be used to implement
the state machine.

Each of the pipeline's three execution stages has a
specific function. Briefly, the first stage of the pipe­
line accesses the Writable Control Store (WCS)
RAM. The Arithmetic Logic Unit (ALU) execution
occurs during the second stage of the pipeline. Fi­
nally, the third pipeline stage clocks status and
memory address registers. The function(s) per­
formed during each of the three stages are described
in greater detail in the State Machine Output Defi­
nition section of this application note.

If this design only generates a simple set of pipe­
lined clocks, why not use shift registers and miscella­
neous glue logic instead of a state machine? There

State Machine Design Considerations

are two reasons to consider a state machine. First,
it is usually desirable to minimize the number of
chips required; the state machine in PLD form
might need external glue logic, but significantly less
than the shift register solution.

The second reason for considering a state machine
is that this application requires more then just a sim­
ple set of pipeline clocks. The function of the clock
signals is to provide control of the CPU in multiple
modes of operation. The desired modes of opera­
tion follow.

PIPELINED RUN Mode

In this mode, the CPU simultaneously performs the
instructions in all three stages of the pipeline. For
example, while instruction n does an ALU opera­
tion, instruction n + 1 accesses WCS, and instruction
n - 1 clocks ALU status.

NONPIPELINED RUN Mode

NONPIPELINED RUN mode performs all three
stages of instruction execution without overlap. The
time to complete one nonpipelined instruction
equals the average of three pipe lined instructions.

CPU STOP

The system must have a way to perform an orderly
stop of CPU execution from both of the above run
modes. This stop might be the result of several pos­
sible conditions, including a utility stop from a sys­
tem control unit, a single step, a breakpoint, or a re­
sponse to external hardware (e.g., a logic analyzer).
The free-running clocks continue to run during the
CPU STOP mode and remain running at all times,
except during a reset condition.

CPU WAIT

In CPU WAIT mode, an external condition causes
a delay in an instruction's execution. The instruc­
tion pauses until the external condition is removed.
One application for the CPU WAIT mode is to han­
dle a cache miss. When a cache miss occurs, the
CPU remains in the CPU WAIT mode until the
cache completes its memory transfer.

SINGLE STEP

The ability to execute one instruction at a time is
needed to debug the CPU. You can easily imple-

4-261

'1& ~ State Machine Design Considerations
_ CYPRESS ==============

ment SINGLE STEP external to the clock state ma­
chine by pulsing the RUN signal. SINGLE STEP
mode is described further in the State Machine In­
put Definition section of this application note.

INTERRUPT

A variety of system conditions can interrupt the
CPU out of its normal execution sequence and im­
mediately start the execution of the interrupt han­
dler. The influence of the INTERRUPT mode on
the system clocks will be discussed in greater detail
later in this application note.

REPEAT INSTRUCTION

The REPEAT INSTRUCTION mode is a CPU de­
bug feature. It is a good idea to implement this
mode external to the clock state machine. By dub­
bing the clock to the instruction register and the in­
terrupt line to the clock state machine, the CPU
continually executes the instruction in the instruc­
tion register.

Synchronous vs. Asynchronous
Machine

At this point in the state machine design, an ap­
propriate type of state machine must be chosen to
match the application. Tho major types are the
asynchronous and the synchronous implementa­
tions. The asynchronous machine changes state
when one or more of its inputs changes from a pre­
viously stable input state. After a state change, the
outputs of the state machine settle, while the ma­
chine stabilizes once again. A basic example of an
asynchronous state machine would be a simple SR
latch built from two NAND gates (Figure 1). For the
clocking application considered in this application
note, the asynchronous state machine implementa­
tion would be a poor choice, due to the instability of
the system outputs.

The synchronous state machine offers a better
choice. A synchronous state machine block diagram
appears in Figure 2. Generally, a synchronous state
machine samples the total input vector at specific
periods to determine the machine's next state.
When designing synchronous state machines, it is

important to avoid state register metastability. Ex­
ternal inputs to the machine must be synchronized
to guarantee stable state register inputs, and the
feedback time plus data set-up time to the state reg­
ister clock must be less then or equal to the state
clock period.

The modem theory of synchronous state machines
was pioneered by Mealy and Moore (see Reference
1). Mealy and Moore machines differ slightly from
each other in the way they control the system out­
puts. During a specific machine state, a Mealy ma­
chine allows the input conditions to alter the system
outputs (the outputs depend on the "total" input
state). In contrast, a Moore machine system out­
puts depend only on the present machine state.
Thus, the system outputs remain stable until the
next time period, when the. Moore machine samples
the total input vector to determine the next state. If
all design conditions are met (external inputs are
stable prior to the next state clock), the Moore ma­
chine provides glitch-free system outputs-a desir­
able characteristic for the CPU system clock. The
design described here is therefore implemented as
a Moore machine.

Clock Generator Output Definition

As explained earlier, each of the three system execu­
tion stages contains two clocks for a total of six sys­
tem clocks for every instruction execution. The
naming convention for these clocks is

CLK_xy

STATE
INPUTS

STATE
OUTPUTS

Q

Figure 1. SR Latch, Asynchronous State
Machine Example

4-262

z . -::::.z State Machine Design Considerations
~rcYPRESS ================

MACHINE STATE FEEDBACK

TOTAL
STATE INPUT r---------------~------~~~~_+~ MEALY SYSTEM

STATE ~ OUTPUTS
VECTOR VECTOR

REGISTER I
EXTERNAL
INPUT
VECTOR

MACHINE

STATE
I OPTIONAL
__ > STATE I OUTPUTS

SYNCHRONOUS
EXTERNAL
INPUTS

AND
SYSTEM I

I
OPTIONAL
SYSTEM
OUTPUT
FEEDBACK

ASYNCHRONOUS
EXTERNAL
INPUTS

OUTPUT

DECODE ~ MOORE SYSTEM
1-----4~ OUTPUTS

STATE CLOCK - ___ ---1

Figure 2. Synchronous State Machine Block Diagram

where x = 1, 2, or 3, representing the first, second,
or third stage of the instruction execution and y = A
or B, representing the first or second half of the
execution stage.

Following this convention, the state machine's two
free-running clocks are named CLK _ A and CLK _ B.
These clocks run at half the state clock frequency
and 180 degrees out of phase. The free-running
clocks occur at the same time as their respective
CLK xA and CLK xB clocks. - -
The major clock functions for this application are:

CLK _lB: The leading edge of this clock updates the
instruction register.

CLK _ 2A: This clock's leading edge marks the start
of ALU execution. The information on the ALU in­
put bus clocks into the appropriate input registers at
this time. The instruction cycle is considered recov­
erable up through and including CLK_2A (Le., the
status of the machine from the previous instruction
has not been altered).

CLK_2B: Used to control the second half of the
ALU execution stage, this clock initiates a write to
RAM, triggers counters, gates ALU output into its

latch, and clocks the ALU output information into
any of the distributed destination registers.

CLK_3A: On this clock the memory address register
can be updated. The ALU output bus status and
ALU status is also clocked into the CPU status reg­
ister.

Clock Generator Inputs

A set of inputs (external stimulus to the state ma­
chine) controls the state machine. The clock state
machine described here has eight external inputs,
including the state machine clock. These inputs are:

STATECLK: The state machine clock.

RESET: An asynchronous or synchronous reset in­
put that can be connected directly to the state regis­
ters' preset or clear or to all clocked register inputs
(D or T input). If connected to the preset or clear,
RESET need not be synchronized. In this case, RE­
SET forces the state machine into the machine's ini­
tial state, regardless of the present state. RESET
can result from any combination of the following
sources:

• Power up circuit (system reset)

• System controller software decodes system reset

4-263

'1& ~ State Machine Design Considerations
~ CYPRESS ==============

• System controller software decodes module reset

• CPU software decodes module reset

RUN: This signal controls the start and stop se­
quence of the CPU clocks. In PIPELINE RUN
mode, the start sequence generates the proper clock
progression to fill up the pipeline registers, and the
stop sequence empties the pipeline. RUN is exter­
nally manipulated to implement the single step and
breakpoint functions.

NPL: Used to select NONPIPELINED RUN vs. PI­
PELINED RUN modes, this signal must be set to
the selected mode prior to activating the RUN sig­
nal. Setting NPL = 1 selects NONPIPELINED
RUN mode, and NPL = 0 selects PIPELINED
RUN mode. The single step function operates
properly in NONPIPELINED RUN mode only.

INTR: This signal indicates an external interrupt.
When INTR is received, and lEN (interrupt enable,
described below) is active, the CPU executes its in­
terrupt handler. An interrupt inhibits the instruc­
tion register update clock (CLK_IB) and the ALU
update clock (CLK _ 2B). CLK _lA for the interrupt
instruction executes on the next cycle. The interrupt
condition has priority over a wait condition and
therefore starts generating clocks to permit execu­
tion of the interrupt instructions.

lEN: This interrupt enable signal qualifies INTR.
lEN is likely to be a bit in the instruction word, al­
lowing the user to define sections of un-interrupt­
able code.

WAIT: The wait condition is initiated when both
WAIT and WEN (wait enable, described below) are
active. The CPU remains in the wait condition until
WAIT goes inactive.

WEN: This wait enable signal qualifies WAIT for
entrance into the wait condition. Like lEN, WEN
is usually a bit in the instruction word, allowing the
user to define sections of wait-sensitive code.

State Machine Partitioning

When architecting a state machine, it is generally a
good practice to break up large machines into work­
able blocks, with each of the smaller machines con-

taining states that require common inputs and gen­
erate common outputs. The example clock state
machine is small enough to be designed as a single
state machine, although it would be trivial to design
logic to generate the free-running clocks as a sepa­
rate machine from the rest of the clock state ma­
chine. Equations for the free-running clocks are:

CLK_A:= RESET· CLK_A

CLK_B := RESET· CLK_A

where ":=" indicates a registered output.

By examining these output equations, you can see
that the free-running clocks have only two depen­
dencies in common with the remaining portion of
the clock state machine, i.e., RESET and STA­
TECLK. The free-running clocks are required as
inputs to the other state machine to synchronize the
additional system outputs, however.

The example presented here implements the free­
running clocks and the other system outputs within
the same state definition. The resulting output
equations can be verified against the equations for
the free-running clocks alone.

The Initial Machine State

Regardless of the preferred state machine entry
method, attacking the problem starts with defining
the initial state of the machine. This initial state
(INIT in the example) must be consistent with the
power-on condition and/or an external input used to
initialize the machine (RESET).

The state of the machine can be decoded from the
present values of the system outputs, state registers,
or a combination of the two. (The advantages and
disadvantages of the state definition options will be
discussed in greater detail later in this application
note.) The initial machine state is generally, but not
always, a decode of all Os or all Is. In the example
design, INIT is the decode of all Os.

Naming the States

With the exception of INIT, each state in the exam­
ple design is named to indicate the active system
clocks occurring during that state. For example,
during state A, only CLK_A is active. Similarly,

4-264

S::;~YPRESS~~~~~~~~~S~t~at~e~M~aC~h~i~ne~D~e~Si~gn~C~o~n~si~d~er~a~t~io~n=s
state 123B has only CLK_lB, CLK_2B, CLK_3B,
and CLK_B active. Additionally, an "N" suffix des­
ignates a nonpipelined state and a "W" suffix desig­
nates a wait condition state; this convention differ­
entiates between states with identical active system
outputs.

CPU Inactive States

The RESET input causes the state machine to enter
the INIT state from any state in the machine. From
the INIT state, the machine unconditionally starts
to generate the free-running clocks. As shown in
Figure 3, a line pointing from the INIT state to the
A state, with a path equation equal to 1, indicates an
unconditional branch. The state machine progres­
sion continues from the A state unconditionally into
the B state. In the B state a multi-branch condition
exists. If the RUN input remains inactive, then the
A and B states continue to toggle, generating only
the free-running clocks. Hence the INIT, A, and B
states are referred to as "CPU inactive states."

Nonpipelined States

If the NPL input is active while the RUN input be­
comes active, the state machine operates in NON­
PIPELINED RUN mode and follows the model
portrayed in Figure 4.

RESET
(path from all states)

RUN· NPL

TO PIPELINE MACHINE STATES

TO NON PIPELINE MACHINE STATES

Figure 3. CPU Inactive States

FROM STATE B

TO STATE A

Figure 4. Non-Pipelined States

Pipelined States

If the NPL input is inactive when the RUN input goes
active, thus indicating PIPELINED RUN mode, the
state machine operates as depicted in Figure 5.

Unique States

When the RUN input goes active, the next state
executed is either the lA or the IAN state, depend­
ing upon the value of the NPL input (refer to Figures
4 and 5). Notice that the active system outputs in
these two states are identical. Why generate two

4-265

Li2~ State Machine Design Considerations
,.,CYPRESS ===============

I
N
T
R

I
E
N

RUN·
(WAIT +
WAIT· WEN)

FROM STATE B

WAIT· WEN

RUN·
(WAIT +
WAIT· WEN)

TO STATE A

Figure 5. Pipelined States

identical states-when an additional state register
might be required to differentiate between the
states? (This assumes you use the system outputs to
decode the machine's states.) The redundant states
are not a problem because the additional state regis­
ter needed to differentiate between the states is not
an issue. There are two reasons for this. First, if you
eliminate the redundant states, the state machine
would require at least one additional state register
anyway to differentiate between the B and the BW

or BWN states, which would be needed without 1A
and 1AN. (Separation of states BW and BWN from
state B is required for correct functionality.) Se­
cond, adding another state only increases the num­
ber of state registers if the new total number of
states exceeds an additional binary boundary (2, 4,
8,16, ...). This is not a problem here.

You might also choose to widen your state machine
(increase the number of state registers) to reduce

4-266

& ~ State Machine Design Considerations
_, CYPRESS ===============

I
N
T
R

I
E
N

RESET

RUN - NJ5[

WAIT-WEN

RON -
(WAIT +
WAIT- WEN)

Figure 6. CPU Clock State Machine

the number of product terms to the state or system
output registers. This decision should take into ac­
count the desired circuit implementation (PLDs,
PROMS, discrete hardware, etc.) and is often an it­
erative process. In general, you can initially archi­
tect the state machine in the manner that is the easi­
est for you to understand, then make additional

changes or small adjustments later if they become
necessary.

State Description Verification

Now that all the pieces of the state machine are
functionally defined (refer to Figure 6 for the com-

4-267

1& ~ State Machine Design Considerations
~ CYPRESS ==========;;;;;;;;;====

pleted state diagram), consider methods for verify­
ing the validity of the design. Some software you can
use to describe and implement state machines
would already offer verification at this point in a de­
sign. For other methods, read on!

One way to verify a state machine design is to recog­
nize a rule of thumb: Out of every state, there ~hould
be a state path to another state for every possible
combination of relevant external inputs. For exam­
ple, there are two paths out of state 123B, with
INTR and lEN as the relevant external inputs:

Path 1 = INTR - lEN

Path 2 = INTR + INTR - lEN

If there are no known restrictions on the external in­
puts, a simple method of verifying the above rule of
thumb is to generate an equation where all of the
paths out of a state are ORed together as follows:

OUT_STATE_123B
OUT_STATE_123B

= Path 1 + Path 2;
= (INTR - lEN)
+INTR
+ (INTR - lEN);
=1

If the equation's terms equal 1 after Boolean reduc­
tion, then every state path out of the !j!tate is ac­
counted for. The main advantage to this verification
method is that you can easily do it' using readily
available Boolean reduction software.

If there are known restrictions to the external in­
puts, you can use this information to reduce the
complexity of the machine. If it is impossible for the
INTR - lEN condition to occur externally, for exam­
ple, then you can leave this condition out of the Path
2 equation. In that case, the reduction of the
OUT_STATE_123B equation yields a non-1 result.

Because the method of verification just described
does not detect redundant path equations, it is use­
ful to revise the original rule of thumb to: Out of ev­
ery state, there should be one and only one state
path to another state for every possible cOqJ.bination
of relevant external inputs. '

This revised condition is not as easily verified as the
original statement. The easiest' way to verify the
more restrictive case is to simulate the state ma-

chine. To do this, you must generate a test vector for
every possible external input that is relevant to each
state simulated. Automatic test vector generation
programs are available that produce every possible
combination. After running the vectors against the
design, you must visually inspect the output to verify
that the machine never enters an illegal state.

System and State Register Output
Generation

The model defining the clock state machine is com­
plete, but there are still quite a few important deci­
sions to be made regarding the final circuit implec

mentation. Some of the major alternatives for final
implementation are:

• System output vs. exclusive state register state de-
code

• D flip-flop vs. T flip-flop implementation

• PLD vs. PROM implementation

To gain some insight into these choices, consider
how the output or feedback equations are as­
sembled. Thke, for example, the generation of
CLK_3A using a D flip-flop (FF) implementation.
By referring to Figure 6, you can find all the states in
which CLK_3A is active. These are 123A, 3A, and
3AN. The CLK_3A output is generated by ORing
the state decodes that, when ANDed with their re­
spective state paths, advance the state machine into
the three states l~sted above. Specifically:

CLK_3A:=
(Decode of 12B)e(INTR+INTR-IEN)
+ (Decode of BW)e(WAlT)
+ (Decode of 23B)e(1)
+(Decode of 2BN)e(INTR+INTReIEN)

;-123A
;-123A

;-3A
;-3AN

When you define the state decodes, the CLK_3A
equations are completely specified in terms of the
state machine inputs (state path), state registers,
and/or sYSl~m outputs (state decode). 1YPically, you
then multiply the equation out to form a sum of
products. 'fllis format provides for easy imple­
mentation in a PLD, which has a sum-of-products
architectur~, and also provides a useful foundation
for further equation reduction.

4-268

State Decode

As discussed earlier, the next state of the machine
can be decoded from the present values of the sys­
tem outputs, the state registers, or a combination of
the two. The choice typically comes down to weigh­
ing the maximum number of product terms verses
the maximum number of flip-flops available in an
implementation. For a Moore machine with regis­
tered system outputs, using the system outputs to
uniquely define the states uses the smallest number
of flip-flops to define the state machine. However,
it is often necessary to add one or more state regis­
ters to uniquely define the states.

State assignment for this state decoding method is
quite simple, but also rigidly defined, allowing lim­
ited flexibility when assigning the additional state
registers. After reduction, the feedback and output
equations of this "narrow" state machine might con­
tain too many product terms to be implemented in
a specific PLD, although product term complexity is
never a problem with a PROM implementation.

ExClusive State Registers

Another consideration in state machine design is
that you might be able to distribute the number of
product terms more evenly among the equations im­
plementing the state machine by using state regis­
ters exclusively to decode the states. Because the
state decodes in the state registers can be selected
to assist in Boolean reduction, proper state assign­
ment enables the more complex equations to fit into
a specific implementation.

This type of decode is useful in a PLD implementa­
tion, where there is a shortage of product terms for
a specific state flip-flop, but extra flip-flops are
available. Adding an extra state register can simpli­
fy the decode logic enough to fit the design in a
single PLD.

The total number of exclusive state registers re­
quired to implement a state machine varies from a
minimum of LOG(2)X (rounded up to the nearest
integer) to a maximum of X, where X is the total
number of states in the machine. You can iteratively

State Machine Design Considerations

change this number, along with the state assign­
ment, to obtain a suitable solution.

The state assignment itself is a non-trivial issue, with
almost limitless possibilities and no known method
of obtaining the optimal solution. There are, how­
ever, some guidelines that can be used to obtain
workable solutions:

1. 1Wo or more states that potentially enter the
same state with identical path equations should be
adjacent (their binary codes differ in exactly one
position). As an example, refer to Figure 5. States
12B and 123B both proceed into state 1A if the path
condition INTR - lEN is true. When generating the
CLK _lA equation, two of the terms of the equation
look like this:

CLK_1A:=
(Decode of 12B) - (INTR - lEN)

+ (Decode of 123B) - (INTR -lEN)
;-lA
;-lA

If the decode of 12B and 123B differ in exactly one
position, then Boolean reduction (which uses the
A-B + X-B = B relationship) converts the two
product terms into one smaller product term.

2. Two or more states that might proceed into differ­
ent states with identical path equations, and an iden­
tical active output, should be adjacent. This situa­
tion occurs in the previous CLK_3A equation,
shown again here:

CLK 3A:=
(Decode of 12B)-(INTR + INTR -lEN) ; -123A
+ (Decode of BW)-(WAIT) ; -123A
+ (Decode of 23B)-(1) ;-3A
+ (Decode of 2BN)-(INTR + INTR -lEN); - 3AN

Note that if states 12B and 2BN are adjacent, then
you can reduce the CLK _ 3A equation to three prod­
uct terms.

Clock Generator Implementation

As mentioned earlier, there are many ways to imple­
ment state machines. The following sections discuss
some of the pros and cons associated with some of
the more common state machine implementations.

4-269

535 - .. -:z State Machine Design Considerations
~TCYPRESS =========~===

D Flip-Flop Implementation

There are more products available that support a D
flip-flop solution than any other implementation.
Therefore, it is usually the most cost-effective solu­
tion for a state machine.

Table 1 lists the number of product terms per output
obtained by compiling the clock generator state ma­
chine definition with the LOG/iC software, using D
flip-flops. The compiler input file appears in Ap­
pendix A Optimizing the design (Table 2) signifi­
cantly reduces the number of product terms needed.

Table 1. Optimized Results for Clock Generator:
T Flip-Flop Implementation

LOG/iC Optimization Summary (FACT)

CPU Time Quota per Function: 100 sec

P- CPU-
Function INV Terms Time Flags

CLK 1AT No 6

Yes 7

CLK lB.T No 4

Yes 3

CLK 2AT No 5
Yes 4

CLK 2B.T No 4

Yes 3

CLK_3AT No 5
Yes 6

CLK_3B.T No 4

Yes 2

CLK_AT No

Yes

CLK B.T No 2

Yes 1

QQ1.T No 3

Yes 5
QQ2.T No 6

Yes 11

C: Constant function
FACT Minimization: 11 sec

<1

1

1

1

1

<1

1

<1

<1

2

<1

<1

C

C

1

<1

<1

1

<1

2

Table 2. Non-optimized Results for Clock
Generator: D Flip-Flop Implementation

Log/lC Optimization Summary (FACT)

CPU Time Quota per Function: 100 sec

Function INV

CLK_1AD No

Yes

CLK_1B.D No

Yes

CLK..2A.D No

Yes

CLK_2B.D No

Yes

CLK_3AD No

Yes

CLK_3B.D No

Yes

CLK_AD No

Yes

QQ1.D No

Yes

QQ2.D No

Yes

N: No OptimIZatIOn
T: 1l:ivial Function

P-
Terms

12

27

5
34

8
31

7

32

8
31

6

33

6

5
10

9

FACT Minimization: 11 sec

T Flip-Flop Implementation

CPU-
Time Flags

<1 N

<1 N

<1 N

1 N

<1 N

<1 N

<1 N

<1 N

<1 N

<1 N

<1 N

<1 N

NT
NT

<1 N

<1 N

<1 N

<1 N

Even though D flip-flop solutions are more widely
available, there are times when the logic needed for
this implementation is prohibitively complex. Un­
der these circumstances, a T flip-flop implementa­
tion might be more cost effective, because using T
flip-flops reduces the logic significantly.

The best example of this situation is a simple syn­
chronous binary counter. While the most significant
bit (MSB) of an N-bit counter in a D flip-flop imple­
mentation requires N product terms, the T flip-flop
solution requires only one product term. Note that
the Cypress family of CY7C33x devices offers you a
configurable T- or D-type implementation if you

4-270

=-- ,~
~, CYPRESS =========S;;;;t;;;;at;;;;e;;;;M=ac;;;;h;;;;i;;;;De=D;;;;e;;;;si;;;;gD=C;;;;O;;;;D;;;;si;;;;d;;;;er;;;;a;;;;b;;;;·o;;;;D=S

place an XOR gate prior to the D flip-flop; route the
AND/OR array to one of the XOR's inputs and the
flip-flop's Q output (via an additional product term)
to the other XOR input.

It isn't clear from simple observation, however,
whether the T flip-flop implementation is beneficial
for the clock generator state machine. One way to
clarify this question is to change three command
lines in the state machine description shown in Ap­
pendix A and recompile to produce a T flip-flop im­
plementation. Table 3 contains the product term re­
sults using T flip-flops. A quick study of the results
reveals that the optimized version using D flip-flops
(Table 2) requires fewer product terms than the T
flip-flop version.

PLD Implementation

With the LOG/iC PLD Database option, the soft­
ware assists in selecting a PLD, and it shows that the
non-optimized version of the clock state machine
fits in a PALC22VlO without further reduction. If
the equations are reduced using Boolean reduction,
however, a lower-cost solution is available. The re­
sults shown in Table 3 indicate that the less expen­
sive PALC20GlO would work. Appendix A shows
the listing for the 20GlO LOG/iC implementation.
Waveforms for the completed design appear in Ap­
pendix B. You can verify the CLK_A and CLK_B
equation results against the equations generated in
the State Machine Partitioning section of this ap­
plication note.

PROM Implementation

You can obtain very high speed solutions by imple­
menting state machines using PROMs. A PROM
uses a look-up table to decode the machine's next
state, as opposed to the AND/OR array in a PLD.
The main advantage of using a look-up table to de­
code the next state is that every combination of the
inputs can be decoded. Thus, you can create an ex­
tremely complex machine, without equation reduc­
tions.

The look-up table's drawback is that the PROM's
depth grows exponentially (2N, where N = # of in­
puts to the look-up table) with every additional in-

put to the look-up table. To determine the depth re­
quired, notice that the present total input vector
provides the inputs to the look-up table. The clock
generator state machine has seven external inputs,
six system outputs, and two state outputs, which in­
dicates a feasible implementation using the
CY7C277 (32K x 8) registered PROM.

Table 3. Optimized Results for Clock Generator:
D Flip-Flop Implementation

Log/lC Optimization Summary (FACT)

CPU Time Quota per Function: 100 sec

P- CPU-
Function INV Terms Time Flags

CLK lAD No 6 1

Yes 11 2

CLK_1B.D No 3 1

Yes 4 <1

CLK_2AD No 4 1

Yes 7 <1

CLK_2B.D No 3 1

Yes 4 <1

CLK_3AD No 4 1

Yes 9 1

CLK_3B.D No 3 <1

Yes 3 1

CLK AD No 1 <1

Yes 2 <1

CL~B.D No 1 1

Yes 2 <1

QQ1.D No 3 <1

Yes 3 1

QQ2.D No 6 16

Yes 6 2
. .

FACT MlmmlzatlOn: 29 sec

Using a registered PROM such as the CY7C277 to
implement the machine also helps to reduce the
parts count, because the PROM· implements both
the state and system output registers. LOG/iC of­
fers support for implementing state machines in
PROMs, and only a few minor changes to the state
machine description shown in Appendix A are re-

4-271

~ State Machine Design Considerations
";CYPRESS ===============;;;;;;;;;;;;;;;

quired. *PROM replaces the *PAL command,
some simple statements indicating the CY7C277 ar­
chitecture (INPUTS = 15 AND OUTPUTS = 8)
replaces the TYPE = statement, and PROGFOR­
MAT = INTEL-HEX.

Reference

1. Donald D. Givone, Introduction to Switching
Circuit Theory (New York: McGraw-Hill, Inc.,
1970)

4-272

-., ~ State Machine Design Considerations
,CYPRESS ===============

Appendix A. LOG/iC PLD Source Code: Clock State Machine

LOG/iC-PAL Re1 3.2/2-2328-1721/00034 #32-5955 90/03/15 23:49:45

LOG/iC - COPYRIGHT (C) 1985,1988 BY ISDATA GMBH, 7500 KARLSRUHE WEST-GERMANY
Cypress Semiconductor ' LICENCE FOR IBM-PC/XT/AT
Data Set: OD20G10.DCB

1 1: *IDENTIFICATION
2 2: PIPELINED CLOCKING SYSTEM OD20Gl0
3 3: ERIC B. ROSS
4 4: CYPRESS SEMICONDUCTOR
5 5: NAMING CONVENTION
6 6: aD SYSTEM OUTPUTS ARE DFLOPS AND ARE USED FOR STATE DEF
7 7: 20Gl0 = PALC20Gl0 IMPLEMENTATION
8 8: *PAL
9 9: TYPE=PALC20Gl0

10 I 10:
11 11: *X-NAMES
12 I 12:

---,
13 I 13:
14 I 14:
15 I 15:
16 I 16:
17 I 17:
18 I 18:
19 I 19:
20 I 20:
21 I 21:

22 I 22:
23 23:
24 I 24:
25 25:
26 I 26:

; INPUT DEFINITIONS
RUN

NPL
INTR
lEN
WAIT
WEN

RUN, NPL,

*Z-NAMES

START & STOP EXECUTION OF OUTPUT CLOCKS (NORMAL, SINGLE
STEP, & BREAK PT. EXECUTION
PIPELINED VS NON-PIPELINED MODE OF EXECUTION
EXTERNAL INTERRUPT CONDITION (TLB MISS, PARITY ERROR, ...)
INTERRUPT ENABLE
WAIT ENABLE (CACHE MISS)
WAIT ENABLE

INTR, lEN, WAIT, WEN, RESET;

---,
27 I 27: ;OUTPUT DEFINITIONS
28 I 28:
29 I 29: 3 CLOCK STAGES 1, 2, 3
30 I 30: 2 CLOCKS PER STATE A, B
31 I 31: CLK_XX WHERE XX = lA,lB,2A,2B,3A,3B
32 I 32:
33 I 33: 2 FREE RUNNING CLOCKS
34 I 34: CLK_A, CLK_B
35 I 35:
36 I 36: ADDITIONAL REGISTERS FOR STATE DEFINITION
37 I 37: QQ1, QQ2
38 I 38:

---,

4-273

=,rcYPRESS
State Machine Design Considerations

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

39 I 39:
40 40: CLK_1A, CLK_1B, CLK_2A, CLK_2B, CLK_3A, CLK_3B, CLK_A, CLK_B, QQ1,

QQ2;
41 I 41:
42 42: *Z-VALUES
43 I 43:
44 I 44: ADDITIONAL OUTPUTS
45 I 45: SYSTEM OUTPUTS FOR STATE DEFINITION
46 I 46:
47 I 47:
48 I 48: C C C C C C C C Q Q
49 I 49: L L L L L L L L Q Q
50 I 50: KKK KKK K K 1 2
51 I 51: 112 2 3 3 A B
52 I 52: A B A B A B
53 I 53:
54 54: Sl o 0 o 0 0 0 0 0 INIT COMMON STATES
55 55: S2 o 0 0 0 0 0 1 0 o - SA - INACTIVE
56 56: S3 0 0 0 0 0 0 0 1 o - SB MODE STATES
57 I 57:
58 58: S4 1 0 0 0 0 0 1 0 - 0 SlA PIPELINE STATES
59 59: S5 0 1 0 0 0 0 0 1 - 0 SlB
60 60: S6 1 0 1 0 0 0 1 0 S12A
61 61: S7 0 1 0 1 0 0 0 1 S12B
62 62: S8 1 0 1 0 1 0 1 0 S123A
63 63 : S9 0 1 0 1 0 1 0 1 S123B
64 64: S10 0 0 0 1 0 1 0 1 S23B 65 65: Sl1 000

o 1 0 1 0 - 0 S3A
66 66: S12 0 0 0 0 0 1 0 1 - 0 S3B
67 67: S13 0 0 0 0 0 0 1 0 1 0 SAW
68 68: S14 0 0 0 0 0 0 0 1 1 0 SBW
69 I 69:
70 70: S15 1 0 0 0 0 0 1 0 - 1 SlAN NON-PIPELINE
71 71: S16 0 1 0 0 0 0 0 1 - 1 SlBN
72 72: S17 0 0 1 0 0 0 1 0 S2AN
73 73: S18 0 0 0 1 0 0 0 1 S2BN
74 74: S19 0 0 0 0 1 0 1 0 - 1 S3AN
75 75: S20 0 0 0 0 0 1 0 1 - 1 S3BN
76 76: S21 0 0 0 0 0 0 1 0 1 1 SAWN
77 77: S22 0 0 0 0 0 0 0 1 1 1 SBWN
78 I 78:
79 79: * STRING
80 80: INIT 1 COMMON STATES
81 81: SA 2 -INACTIVE MODE
82 82: SB 3 STATES
83 I 83:
84 84: SlA 4 PIPELINE STATES

4-274

=;g ~ State Machine Design Considerations
_ CYPRESS ==============

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

85 85: SlB 5
86 86: S12A 6
87 87: S12B 7
88 88: S123A 8
89 89: S123B 9
90 90: S23B 10
91 91: S3A 11
92 92 : S3B 12
93 93 : SAW 13
94 94: SBW 14
95 I 95: 96 96: SlAN 15 NON-PIPELINE
97 97: SlBN 16
98 98: S2AN 17
99 99: S2BN 18

100 100: S3AN 19
101 101: S3BN 20
102 102: SAWN 21
103 103: SBWN 22
104 104: LASTSTATE 22;
105 I 105:
106 106: * FLOW-TABLE
107 I 107:
108 I 108:
--,
109 I 109: ;RESET STATE
110 I 110: ;ALL STATES MUST RESET TO THE INITIAL STATE (ALL OUTPUTS REGISTERS 0)
UPON
111 I 111: ;AN ACTIVE RESET INPUT. SINCE THE 20G10 HAS NO GLOBAL OR INDIVIDUAL
112 I 112: ;RESETS TO THE OUTPUT REGISTERS, RESET TO INITIAL STATE MUST BE EM­
BEDDED
113 I 113: ;INTO THE STATE MACHINE
114 I 114:
115 115: RELEVENT = RESET
116 116: S[l .. 'LASTSTATE'], X 1
117 138: RELEVENT = RESET = 0
118 I 139:
119 I 140:

, F 'INIT' ;ALL STATE> INIT UPON RESET

--,
120 I 141: ;INACTIVE MODE STATES
121 142: RELEVANT RUN, NPL
122 143: S 'INIT' X - - F 'SA' ; INITIAL STATE AFTER RESET
123 I 144:
124 145: S 'SA' X F 'SB' ;INACTIVE MODE STATE, ONLY
125 I 146:
126 147: S 'SB' X 0 - F 'SA' ;FREE RUN CLKS A & B ARE AC-
TIVE
127 148: X 1 0 , F 'SlA' ; PIPELINE VS.

4-275

=:: -~ State Machine Design Considerations
_,CYPRESS ===============

128 149:
129 I 150:
130 I 151:

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

X 1 1 , F 'SlAN' ; NON-PIPELINE DECISION

._--,
131 I 152: ;PIPELINE MODE STATES
132 I 153:
133 154: RELEVANT INTR, lEN ; * PRIMING THE PIPELINE*
134 155: S 'SlA' X F 'SlB'
135 I 156:
136 157: S 'SlB' X F 'S12A'
137 I 158:
138 159: S 'S12A' X - - F 'S12B'
139 I 160:
140 161: S 'S12B' X 1 1 F 'SlA' INTERRUPT CONDITION ? YES
141 162: X 1 0 F 'S123A' NO
142 163: X 0 - F 'S123A' NO
143 I 164:
144 165: RELEVANT = RUN, INTR, lEN, WAIT, WEN; *FULL PIPELINE*
145 166: S 'S123A' X - 1 1 F 'SBW' WAIT CONDITION
146 167: X 0 0 - F 'S23B' IRUN COND., EMPTY PIPELINE
147 168: X 0 1 0 F 'S23B' IRUN COND., EMPTY PIPELINE
148 169: X 1 0 - F 'S123B' RUN CONDITION
149 170: X 1 1 0 F 'S123B' RUN CONDITION
150 I 171:
151 172: S 'S123B' X - 1 1 F 'SlA' INTERUPT CONDITION
152 173: X - 0 F 'S123A' RUN CONDITION
153 174: X - 1 0 F 'S123A' RUN CONDITION
154 I 175:
155 176: RELEVANT RUN *EMPTY PIPELINE*
156 177: S 'S23B' X - F 'S3A'
157 I 178:
158 179: S 'S3A' X - F 'S3B'
159 I 180:
160 181: S 'S3B' X - F 'SA' BACK TO INACTIVE STATE
161 I 182:
162 183 : RELEVANT WAIT *PIPELINE WAIT STATES*
163 184: S 'SBW' X 1 F 'SAW' WAIT
164 185: X 0 F 'S123A' IWAIT
165 I 186:
166 187: S 'SAW' X - F 'SBW'
167 I :j.88:
168 I 189:
i---
169 I 190:
170 I 191:
171 192:
172 I 193:

;NON-PIPELINE MODE STATES

S 'SlAN' , X - , F 'SlBN'

4-276

=e ~ State Machine Design Considerations
~, CYPRESS =================

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

173 194: S 'SlBN'
174 I 195:
175 196: RELEVANT
176 197: S 'S2AN'
177 198:
178 199:
179 I 200:180 201:
181 202: S 'S2BN'
182 203:
183 204:
184 I 205:
185 206:
186 207:
187 I 208:
188 209:
189 210:
190 I 211:
191 212:
192 213:
193 214:
194 I 215:
195 216:
196 I 217:

RELEVANT
S 'S3AN'

S 'S3BN'

RELEVANT
S 'SBWN'

S 'SAWN'

, X -

WAIT, WEN
X 1 1
X 0 -
X 1 0

RELEVANT
XII
X 0 -
X 1 0

RUN
X -

X 1
X 0

WAIT
X 1
X 0

X -

197 218: *STATE-ASSIGNMENT
198 219: Z-VALUES
199 I 220:
200 I 221:

222: *PIN

, F 'S2AN'

F 'SBWN' WAIT CONDITION
F 'S2BN' !WAIT CONDITION
F 'S2BN' !WAIT CONDITION

INTR, lEN
F 'SIAN' INTERRUPT CONDITION
F 'S3AN' !INTERRUPT CONDITION
F 'S3AN' !INTERRUPT CONDITION

F 'S3BN'

F 'SIAN'
F 'SA' BACK TO INACTIVE STATE

;*NON-PIPELINED WAIT STATES*
F 'SAWN' REMAIN IN WAIT
F 'S2AN' END OF WAIT CONDITION

F 'SBWN' REMAIN IN WAIT

201
202
7,
203
204

223: STATECLK 1, RUN 2, NPL = 3, INTR = 4, lEN = 5, WAIT = 6, WEN

23;

223: RESET = 8, CLK_1A 14, CLK_1B = 15, CLK_2A
223: CLK_3A = 18, CLK_3B = 19, CLK_A = 20, CLK_B

205 I 224:

16, CLK_2B = 17,
21, QQ1 = 22, QQ2

206 225: *RUN-CONTROL207 226: LISTING= LONG,SYMBOL-TABLE,EQUATIONS,PIN­
OUT;208 227: PROGFORMAT= L-EQUATIONS
209 228: OPTIMIAZATION= P-TERMS;
210 229: *END

4-277

~ State Machine Design Considerations
_/CYPRESS ================

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

LOG/IC SYMBOL TABLE

SYMBOL TYPE REG LEVEL PIN/NODE

GND LOCAL - HIGH

VCC LOCAL - HIGH

RUN X-VARIABLE - HIGH 2

NPL X-VARIABLE - HIGH 3

INTR X-VARIABLE - HIGH 4

lEN X-VARIABLE - HIGH 5

WAIT X-VARIABLE - HIGH 6

WEN X-VARIABLE - HIGH 7

RESET X-VARIABLE - HIGH 8

CLK_IA X-VARIABLE - HIGH 14

CLK_IB X-VARIABLE - HIGH 15

CLK_2A X-VARIABLE - HIGH 16

CLK_2B X-VARIABLE - HIGH 17

CLK_3A X-VARIABLE - HIGH 18

CLK_3B X-VARIABLE - HIGH 19

CLK_A X-VARIABLE - HIGH 20

CLK_B X-VARIABLE - HIGH 21

QQl X-VARIABLE - HIGH 22

QQ2 X-VARIABLE - HIGH 23

CLK_ lA.D Z-VARIABLE DFF HIGH 14

CLK_IB.D Z-VARIABLE DFF HIGH 15

CLK_2A.D Z-VARIABLE DFF HIGH 16

CLK_2B.D Z-VARIABLE DFF HIGH 17

CLK_3A.D Z-VARIABLE DFF HIGH 18

CLK_3B.D Z-VARIABLE DFF HIGH 19

CLK_A.D Z-VARIABLE DFF HIGH 20

CLK_B.D Z-VARIABLE DFF HIGH 21

QQ1.D Z-VARIABLE DFF HIGH 22

QQ2.D Z-VARIABLE DFF HIGH 23

4-278

State Machine Design Considerations

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

EXPANDED FUNCTION TABLE (INCLUDING LOCAL VARIABLES) :
--

CCCC CC
LLLL LLCC

CCC CCC KKKK KKLL
RLLL LLLC C ___ KK QQ

I W EKKK KKKL L 1122 33 - QQ
GVRN NIAW S __ K KQQ ABAB ABAB 12
NCUP TEIE El12 233 __ QQ
DCNL RNTN TABA BABA B12 DDDD DDDD DD
--

1000 0000 0-- 0000 0000 , 1/ 116
0000 0000 0-- 0000 0010 0-; 2/ 143
1000 0001 00- 0000 0000 , 3/ 117
0000 0001 00- 0000 0001 0-; 4/ 145
1000 0000 10- 0000 0000 , 5/ 118

--0- 0000 0000 10- 0000 0010 0-; 6/ 147
--10 0000 0000 10- 1000 0010 -0; 7/ 148
--11 0000 0000 10- 1000 0010 -1; 8/ 149

1100 0001 0-0 0000 0000 , 9/ 119
0100 0001 0-0 0100 0001 -0; 10/ 155
1010 0000 1-0 0000 0000 , 11/ 120
0010 0000 1-0 1010 0010 , 12/ 157
1101 0001 0-- 0000 0000 , 13/ 121
0101 0001 0-- 0101 0001 , 14/ 159
1010 1000 1-- 0000 0000 , 15/ 122

11-- 0010 1000 1-- 1000 0010 -0; 16/ 161
10-- 0010 1000 1-- 1010 1010 , 17/ 162
0--- 0010 1000 1-- 1010 1010 , 18/ 163

1101 0101 0-- 0000 0000 , 19/ 123
--11 0101 0101 0-- 0000 0001 10; 20/ 166

--0- --0- 0101 0101 0-- 0001 0101 , 21/ 167
--0- --10 0101 0101 0-- 0001 0101 , 22/ 168
--1- --0- 0101 0101 0-- 0101 0101 , 23/ 169
--1- --10 0101 0101 0-- 0101 0101 , 24/ 170

1010 1010 1-- 0000 0000 , 25/ 124
11-- 0010 1010 1-- 1000 0010 -0; 26/ 172
0--- 0010 1010 1-- 1010 1010 , 27/ 173
10-- 0010 1010 1-- 1010 1010 , 28/ 174

1000 1010 1-- 0000 0000 , 29/ 125
0000 1010 1-- 0000 1010 -0; 30/ 177
1000 0101 0-0 0000 0000 , 31/ 126
0000 0101 0-0 0000 0101 -0; 32/ 179
1000 0010 1-0 0000 0000 , 33/ 127
0000 0010 1-0 0000 0010 0-; 34/ 181
1000 0001 010 0000 0000 , 35/ 128
0000 0001 010 0000 0001 10; 36/ 187

4-279

State Machine Design Considerations

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

1000 0000 110 0000 0000 , 37/ 129
--1- 0000 0000 110 0000 0010 10; 38/ 184
--0- 0000 0000 110 1010 1010 , 39/ 185

1100 0001 0-1 0000 0000 , 40/ 130
0100 0001 0-1 0100 0001 -1; 41/ 192
1010 0000 1-1 0000 0000 , 42/ 131
0010 0000 1-1 0010 0010 , 43/ 194
1001 0001 0-- 0000 0000 , 44/ 132

--11 0001 0001 0-- 0000 0001 11; 45/ 197
--0- 0001 0001 0-- 0001 0001 , 46/ 198
--10 0001 0001 0-- 0001 0001 , 47/ 199

1000 1000 1-- 0000 0000 , 48/ 133
11-- 0000 1000 1-- 1000 0010 -1; 49/ 202
0--- 0000 1000 1-- 0000 1010 -1; 50/ 203
10-- 0000 1000 1-- 0000 1010 -1; 51/ 204

1000 0101 0-1 0000 0000 , 52/ 134
0000 0101 0-1 0000 0101 -1; 53/ 207
1000 0010 1-1 0000 0000 , 54/ 135

--1- 0000 0010 1-1 1000 0010 -1; 55/ 209
--0- 0000 0010 1-1 0000 0010 0-; 56/ 210

1000 0001 011 0000 0000 , 57/ 136
0000 0001 011 0000 0001 11; 58/ 216
1000 0000 111 0000 0000 , 59/ 137

--1- 0000 0000 111 0000 0010 11; 60/ 213
--0- 0000 0000 111 0010 0010 , 61/ 214

REST , 62
--
1234 5678 9012 3456 789 1234 5678 90

4-280

State Machine Design Considerations

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

STATE ASSIGNMENT:

CCCC CC
LLLL LLCC
KKKK KKLL

KK QQ ---
1122 33 - QQ
ABAB ABAB 12

0000 0000 , 1
0000 0010 0-; 2
0000 0001 0-; 3
1000 0010 -0; 4
0100 0001 -0; 5
1010 0010 , 6
0101 0001 , 7
1010 1010 , 8
0101 0101 , 9
0001 0101 , 10
0000 1010 -0; 11
0000 0101 -0; 12
0000 0010 10; 13
0000 0001 10; 14
1000 0010 -1; 15
0100 0001 -1; 16
0010 0010 , 17
0001 0001 , 18
0000 1010 -1; 19
0000 0101 -1; 20
0000 0010 11; 21
0000 0001 11; 22

EXPANDED FUNCTION TABLE (LOCAL VARIABLES REMOVED) :

CCCC CC
LLLL LLCC

C CCCC C KKKK KKLL
RL LLLL LCC ___ KK QQ

I W EK KKKK KLL 1122 33 QQ
RNNI AWS ____ KKQ Q ABAB ABAB 12

4-281

State Machine Design Considerations

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

UPTE IEE1 1223 3 _QQ
NLRN TNTA BABA BAB1 2 DDDD DDDD DD

--10 0000 000- - 0000 0000 , 1/ 116
--00 0000 000- - 0000 0010 0-; 2/ 143
--10 0000 0100 - 0000 0000 , 3/ 117
--00 0000 0100 - 0000 0001 0-; 4/ 145
--10 0000 0010 - 0000 0000 , 5/ 118

0--- --00 0000 0010 - 0000 0010 0-; 6/ 147
10-- --00 0000 0010 - 1000 0010 -0; 7/ 148
11-- --00 0000 0010 - 1000 0010 -1; 8/ 149

--11 0000 010- a 0000 0000 , 9/ 119
--01 0000 010- a 0100 0001 -0; 10/ 155
--10 1000 001- a 0000 0000 , 11/ 12p
--00 1000 001- a 1010 0010 , 12/ 157
--11 0100 010- - 0000 0000 , 13/ 121
--01 0100 010- - 0101 0001 , 14/ 159
--10 1010 001- - 0000 0000 , 15/ 122

--11 --00 1010 001- - 1000 0010 -0; 16/ 161
--10 --00 1010 001- - 1010 1010 , 17/ 162
--0- --00 1010 001- - 1010 1010 , 18/ 163

--11 0101 010- - 0000 0000 , 19/ 123
1101 0101 010- - 0000 0001 10; 20/ 166

0--- 0-01 0101 010- - 0001 0101 , 21/ 167
0--- 1001 0101 010- - 0001 0101 , 22/ 168
1--- 0-01 0101 010- - 0101 0101 , 23/ 169
1--- 1001 0101 010- - 0101 0101 , 24/ 170

--10 1010 101- - 0000 0000 , 25/ 124
--11 --00 1010 101- - 1000 0010 -0; 26/ 172
--0- --00 1010 101- - 1010 1010 , 27/ 173
--10 --00 1010 101- - 1010 1010 , 28/ 174

--10 0010 101- - 0000 0000 , 29/ 125
--00 0010 101- - 0000 1010 -0; 30/ 177
--10 0001 010- a 0000 0000 , 31/ 126
--00 0001 010- a 0000 0101 -0; 32/ 179
--10 0000 lOl- a 0000 0000 , 33/ 127
--00 0000 lOl- a 0000 0010 0-; 34/ 181
--10 0000 0101 a 0000 0000 , 35/ 128
--00 0000 0101 a 0000 0001 10; 36/ 187
--10 0000 0011 a 0000 0000 , 37/ 129
1-00 0000 0011 a 0000 0010 10; 38/ 184
0-00 0000 0011 a 1010 1010 , 39/ 185
--11 0000 010- 1 0000 0000 , 40/ 130

EXPANDED FUNCTION TABLE (LOCAL VARIABLES REMOVED)- continued
--01 0000 010- 1 0100 0001 -1; 41/ 192
--10 1000 001- 1 0000 0000 , 42/ 131
~-OO 1000 001- 1 0010 0010 , 43/ 194

4-282

11 ~ State Machine Design Considerations
, CYPRESS ==============

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

--10 0100 010- - 0000 0000 ,
1100 0100 010- - 0000 0001 ll;
0-00 0100 010- - 0001 0001 ,
1000 0100 010- - 0001 0001 ,
--10 0010 001- - 0000 0000 ,

--ll --00 0010 001- - 1000 0010 -1;
--0- --00 0010 001- - 0000 1010 -1;
--10 --00 0010 001- - 0000 1010 -1;

--10 0001 010- 1 0000 0000 ,
--00 0001 010- 1 0000 0101 -1;
--io 0000 lOl- l 0000 0000 ,

1--- --00 0000 lOl- l 1000 0010 -1;
0--- --00 0000 lOl- l 0000 0010 0-;

--10 0000 0101 1 0000 0000 ,
--00 0000 0101 1 0000 0001 ll;
--10 0000 DOll 1 0000 0000 ,
1-00 0000 DOll 1 0000 0010 ll;
0-00 0000 DOll 1 0010 0010 ,

REST ,

1234 5678 9012 3456 7 1234 5678 90
PIPELINED CLOCKING SYSTEM OD20G10
CYPRESS SEMICONDUCTOR
90/03/15 23:49:45

44/
45/
46/
47/
48/
49/
50/
51/
52/
53/
54/
55/
56/
57/
58/
59/
60/
61/
62

**

*** NET DESCRIPTION TABLE FOR AND/OR STRUCTURE ***
**

CCCC CC
LLLL LLCC

C CCCC C KKKK KKLL
RL LLLL LCC __ _ KK QQ

I W EK KKKK KLL ll22 33 QQ
RNNI AWS ____ KKQ Q ABAB ABAB 12
UPTE IEE1 1223 3 _QQ
NLRN TNTA BABA BAB1 2 DDDD DDDD DD

INV
REG DDDD DDDD DD

0-0- --0- O-ll 0 A.
1--- --0- --0- 1--- 1 A.

--0- 1--- 0 A.
--0- 1-1- ---- - A.

--ll --0- --1- 0--- - A.
1--- --0- 0-0- 0-10 - A.

--01 ---0 ---- - .A.

4-283

1
2
3
4
5
6
7

132
197
198
199
133
202
203
204
134
207
135
209
210
136
216
137
213
214

1& " ~ State Machine Design Considerations
, CYPRESS ========;;;;;;;;;;;;;;;======

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

1--- -001 ---- - .A .. 8
1--- 0-01 ---- - .A .. 9
---0 --0- 1--- ---- - · .A. 10
--0- --0- 1--- ---- - · .A. 11

0-0- --0- 0-11 - · .A. 12
--0- 1-0- · .A. l3
0-0- -1-- ---- - ... A 14
-00- -1-- ---- - ... A 15
--01 -1-0 ---- - ... A 16

---0 --0- --1- ---- - A ... 17
--0- --0- --1- A ... 18

--0- 0-1- 1--- - A ... 19
0-0- 0-0- 0-i1 0 A ... 20
0-0- ---1 .A .. 21
-00- ---1 ---- - .A .. 22
--0- -0-1 ---- - .A .. 23
--0- -0-- - .. A. 24
--0- -1-- - ... A 25

-1-1 - A. 26
0-11 - A. 27

-1-- ---- - A. 28
--0- 1--- - .A 29
0-1- 0--- - .A 30

---0 -1-- ---- - .A 31
-0-- -1-- 1 .A 32

-1-- ---0 0--0 0--0 - .A 33
00-- 0--1 1 .A 34

1234 5678 9012 3456 7 1234 5678 90

PIPELINED CLOCKING SYSTEM OD20G10
CYPRESS SEMICONDUCTOR
90/03/15 23:49:45
**

*** BOOLEAN EQUATIONS ***
**

4-284

~

= -" --:::z State Machine Design Considerations
~rcYPRESS ===============

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

CLK_1A.D .-
/WAIT & /RESET & /CLK_2B & /CLK_3B & CLK_B

& QQl & /QQ2
+ RUN & /RESET & /CLK_2B & CLK_3B & QQ2
+ /RESET & CLK_1B & /QQ2
+ /RESET & CLK_1B & CLK_2B
+ INTR & lEN & /RESET & CLK_2B & /CLK_3B

& /RESET & /CLK_1B & /CLK_2B & /CLK_3B

CLK_1B.D :=

/RESET
+ RUN

+ RUN
CLK_2A.D .-

/IEN
+ /INTR
+ /WAIT

+ /RESET
CLK_2B.D .-

/WAIT
+ /WEN
+ /RESET

CLK_3A.D .-
/IEN

+ /INTR
+ /RESET
+ /WAIT

CLK_3B.D :=
/WAIT

+ /WEN
+ /RESET

/RESET
/RESET

QQ1.D .- CLK_A
+ /CLK_3B
+ CLK_2A

QQ2.D .- /CLK_2B
+ /CLK_1B
+ /CLK_1A
+ /CLK_2A
+ NPL

& CLK_B & /QQl

& CLK_1A & /CLK_3A
& /WEN & /RESET & CLK_ lA

& /WAIT & /RESET & CLK_1A

& /RESET & CLK_1B
& /RESET & CLK_1B
& /RESET & /CLK_2B & /CLK_3B & CLK_B
& QQl
& CLK_1B & /CLK_2B

& /RESET & CLK_2A
& /RESET & CLK_2A
& CLK_1A & CLK_2A & /CLK_3A

& /RESET & CLK_2B
& /RESET & CLK_2B
& /CLK_1B & CLK_2B & CLK_3B
& /RESET & /CLK_1B & /CLK_2B & /CLK_3B
& CLK_B & QQl & /QQ2

& /RESET & CLK_3A
& /RESET & CLK_3A
& /CLK_2A & CLK_ 3A

& /CLK_A CLK_B.D :=

& CLK_A
& QQl

& CLK_B & QQl

& CLK_3B
& CLK_2B & /CLK_3B
& CLK_2A
& CLK_A & QQ2

& /CLK_1A & /CLK_1B & /CLK_3A
& /CLK_3B & /QQl

& /CLK_2A & /CLK_3B & QQl &

4-285

+ RUN

QQ2

~ State Machine Design Considerations
~ CYPRESS================================

AppendixA. LOG/iC PLD Source Code: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEM OD20G10
CYPRESS SEMICONDUCTOR
90/03/15 23:49:45

PALC20G10

STATECLK 1

RUN 2

NPL 3

INTR 4

lEN 5

WAIT 6

WEN 7

RESET 8

@09 9

@10 10

@11 11

@GND 12

4-286

24 @VCC

23 QQ2

22 QQ1

21 CLK_B

20 CLK_A

19 CLK_:m

18 CLK_3A

17 CLK_2B

16 CLK_2A

15 CLK_1B

14 CLK_1A

13 @OE

-. ,~ State Machine Design Considerations
, CYPRESS ==============

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEM OD20G10
CYPRESS SEMICONDUCTOR
90/03/15 23:49:45

S
T
A
T

I E @
N N R C V Q Q
T P U L C Q Q
R L N K C 2 1

4 3 2 1 28 27 26

5 25 CLK_B

lEN 6 24 CLK_A

WAIT 7 23 CLK_3B
PALC20G10

8 22 CLK_3A
LCC

WEN 9 21 CLK_2B

RESET 10 20 CLK_2A

11 19

12 13 14 15 16 17 18

@ @ @ @ @ C C
0 1 1 G 0 L L
9 0 1 N E K K

D
I I
A B

4-287

~ State Machine Design Considerations
.,-cYPRESS ================

Appendix A. LOG/iC PLD Source Code: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEM OD20G10
CYPRESS SEMICONDUCTOR
90/03/15 23:49:45

S
T
A
T
E @

N R e V Q
P U L e Q
L N K e 2

4 3 2 1 28 27 26

lNTR 5 25 QQl

lEN 6 24 CLK_B

WAIT 7 23 CLK_A
PALC20Gl0

WEN 8 22 CLK_3B
PLCe

RESET 9 21 CLK_3A

@O9 10 20 CLK_2B

11 19 CLK_2A

12 13 14 15 16 17 18

@ @ @ @ e C
1 1 G 0 L L
0 1 N E K K

D
1 '1
A B

LOG/iC PAL CPU TIME USED: 45 SEC

4-288

• ~ State Machine besign Considerations
~'CYPRESS~================================~

Appendix B. LOG/iC Simulation: Clock State Machine

PIPBLINBD CLOCKING SYSTEJII OD20GI0 3/7/90
C C C C C

E S R L L L L L
v t " E K K K K K
e a R III H A \I S -
n t U P T E I E E 1 1 2 2 3
t • II L R III T iii T A B A B A

C
L C C
K L L

K K
3
B A B

0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1

1 1 IU .:
1 1 IC .'
1 1 IU "

2 1 IU "

2 1 IC ':
2 1 IU ':
3 1 IU "
3 1 Ie .:
3 2 IU "
4 2 IU "

4 2 Ie "

4 3 IU .'
S 3IU
S 3 Ie "

s 2 IU "
6 2 IU
6 2 Ie "
6 3 IU "

7 3 IU ':
7 3 IC "
7 4 IU "

S 4 IU "
S 4 IC "
S S IU "

9 S IU "

9 S Ie "

9 6 IU "

10 6 IU ':
10 6 IC
10 7IU ':
11 7IU ':
11 7 Ie "
n S IU ':
12 S IU ':
12 8 Ie ':
12 9 IU ':
13 9 IU ':
13 9 Ie ':
13 8 IU "

14 8 IU ':
14 8 Ie "
14 9IU "

4-289

0

Appendix B. LOGjiC Simulation: Clock State Machine (continued)

PlPELIHBD CLOCKING SYSTEM OD20G10 3/7/90
C C C C C C

E S R L L L L L L C
v t I W E K K K K K K L
e a R N II' A W S K - -n t U P T E I E E 1 1 2 2 3 3
t e N L R N T II' T A B A B A B A

C
L
K

B

it # 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1

15 9IV .:
15 9 IC .:
15 8 IU .:
16 8 IU .:
16 8 IC ..
16 10 IV .:
17 10 IV .:
17 10 IC ..
17 11 IU .:
18 11 IU .:
18 11 IC .:
18 12 IU ..
19 12 IU .:
19 12 IC .:
19 2 IU .:
20 2 IU .:
20 2 Ie .:
20 3 IU .:
21 3 IU .:
21 3 IC .:
21 2IU .:
22 2 IU .:
22 2 IC .:
22 3 ~U .:
23 3 IU .:
23 3 Ie .:
23 15 IU .:
24 15 IU .:
24 15 Ie .:
24 16 IU .:
25 16 IU .:
25 16 Ie .:
25 17 IV .:
26 17 I1J .:
26 17 Ie .:
26 18 IU .:
27 18 IV ..
27 18 Ie ..
27 19 IU .:
28 19 IV .:
28 19 Ie ..
28 20 IV ..
29 20 IU .:
29 20 Ie .:
29 15 IV .:

4-290

0

State Machine Design Considerations

Appendix B. LOG/iC Simulation: Clock State Machine (continued)

PIPELINE!> CLOCKING SYSTmf OD20G10 3/7/90
C C C C C C

E S R 1. L L L L L C C
v t W' E Ie Ie Ie Ie Ie Ie L L
e a R N N A W' S Ie Ie - - -
n t U P T E E E 1 1 2 2 3 3 - -
t e N L R N T N T A B A B A B A B

It # 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

30 15 IU .:
30 15 IC .:
30 16 IU .:
31 16 IU .:
31 16 IC .:
31 17 IU .:
32 17 IU .:
32 17 IC .:
32 18 IU .:
33 18 XU .:
33 18 IC .:
33 19 IU .:
34 19 IU .:
34 19 IC .'
34 20 IU .:
35 20 IU .:
35 20 Ie .'
35 15 IU .:
36 15 10 ':
36 15 Ie ':
36 16 10 ':
37 16 10 .:
37 16 Ie ':
37 17 10 ':
38 17 JU ,;

38 17 Ie "
38 18 IU "

39 18 10 ':
39 18 IC .;

39 19 IU "

40 19 IU .:
40 19 Ie : ':
40 20 IU "

41 20 IU : ':
41 20 Ie : ':
41 2 IU ':
42 2 10 .;

42 2 IC ':
42 3 IU "

43 3 10 "

43 3 IC .:
43 2 IU : "

4-291

-', ~ State Machine Design Considerations
; CYPRESS ================

Appendix B. LOG/iC Simulation: Clock State Machine (continued)

PIPELINE!) CLOCKING SYSTEM OD2OG1D 3/7/90
C C C C C C

E S R L L L L L L C C
v t- \I E K K K K K K L L
e a R N N A II S K K
\"I t- U P T E I E E 1 1 2" 2" 3 3
t. e N L R N T N T A B A B A B A B

II It 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

44 2 IU .:
44 2 IC
44 3IU
45 3 III
45 3 IC
45 4 IU .:
46 4 IU
46 4 IC
46 5 IU .:
47 5 IU
41 5 IC .:
47 6 IU .:
Its 6IU
48 6 iC .:
48 1 IU
49 7 ill
49 7 Ie
49 8IU
50 8IU .:
50 8 Ie .:
50 9IU
51 9 III
51 9 Ie
51 8 IU .:
52 8 IU .:
52 8 IC
52 9 IU
53 9 tu
53 9 Ie
53 4 IU .:
54 4IU .:
54 4 IC .:
54 5 IU
55 5 IU .:
55 5 Ie
55 6 IU
56 6IU
56 6 IC
56 7 IU .:
57 7 IU
57 7 Ie .:
57 8 IU .:
58 8 IU
58 8 Ie
58 9 IU
59 9IU .:
59 9 Ie .:

4-292

State Machine Design Considerations

Appendix B. LOG/iC Simulation: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEM OD20GI0 3/7/90
C C t t t C

E S R L L L L L L t C
v t I V E J{ J{ J{ J{ K J{ L L
e a R 11 11 A V S K K - - - - - -n t U P T E I E E 1 1 2 2 3 3 -
to e 11 L R 11 T 11 T A B A B A B A B

It # 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

59 8 IU .:
60 8 JU .:
60 8 IC .:
60 9 IU .:
61 9 IU
61 9 IC .:
61 8 IU .:
62 8 IU .:
62 8 IC .:
62 14 I .:
63 14 I
63 14 IC .:
63 131 .:
64 13 I .:
64 13 It .:
64 14 I .:
65 14 I .:
65 14 IC .:
65 13 I .:
66 13 I .:
66 13 It .:
66 14 I .:
67 14 I .:
67 14 It .:
67 B IU .:
6B BlU .:
6B B IC
6B 9lU .:
69 9 IU .:
69 9 It
69 BlU
70 B IU .:
70 B It .:
70 9 IU .:
71 9 IU .:
71 9 IC .:
71 1 lU
72 1 lU
72 1 IC .:
72 1 lU .:
73 1 IU .:
73 1 It .:

4-293

-., ~ State Machine Design Considerations
7CYPRESS================================

Appendix B. LOG/iC Simulation: Clock State Machine (continued)

PIPELINE!) CLOCKING SYSTBK OD2OG10 3/7/90
C C C C C C

E 5 R L L L L L L C C
v t 1 V I! K K K K K K L L .. a R 1/ 1/ A V S K K
n t U P T E I E E 1 "1 2 2 3 '3
t e 1/ L R 1/ T II T A B A B A B A ii

It It 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 a

73 1 IU
74 1 IU .:
74 1 IC .:
74 2 IU
75 2 10 .:
75 2 Ie
75 3 III
76 3 IU
76 3 Ie
76 4 IU .:
77 4 IU
77 4 Ie
77 5 IU
78 5 IU
78 5 Ie
78 6 10 .:
79 6 10 .:
79 6 Ie .:
79 7 10 .:
80 7 IU .:
80 7 Ie .:
80 4 IU .:
81 410
81 4 IC
81 5 IU
82 5 IU
82 5 Ie .:
82 6 10
83 6 III
83 6 Ie
83 7 10
84 7 IU
84 7 Ie
84 8 10
85 8 IU
85 8 Ie .:
85 9 IU .:
86 9 IU .:
86 9 Ie .:
86 8 IU
87 810
87 8 IC
87 9 IU
88 9 IU
88 9 IC
88 810
89 8 IU

4-294

~ State Machine Design Considerations
, CYPRESS ==============

Appendix B. LOG/iC Simulation: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEK OD20GI0 3/7/90
C C C C C C

E S R L L L L L L C C
v t W E K K X K K K L L
e a R II" II" A W S IC IC - -n t- U P T E I E E 1 1 2 2 3 3
t e II" L R II" T N T A B A B A B A B

It , 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

89 8 IC
89 1 IU
90 1 IU
90 1 IC
90 2 IU
91 2 IU
91 2 IC
91 3 IU
92 3IU
92 3 IC
92 15 IU
93 15 IU
93 15 IC
93 16 IU
94 16 IU
94 16 Ie
94 17 IU
95 17 IU
95 17 IC
95 18 IU
96 18 IU
96 18 IC
96 15 IU
97 15 IU
97 15 IC
97 16 IU
98 16 IU
98 16 IC
98 17 IU
99 17 IU
99 17 IC
99 22 I

100 22 I
100 22 IC
100 21 I
101 21 I
101 21 IC
101 22 I
102 22 I
102 22 IC
102 21 I

4-295

i . -:z State Machine Design Considerations
TCYPRESS ====~=======~

Appendix B. WG/iC Simulation: Clock State Machine (continued)

PIPELINED CLOCKING SYSTEM OD20G10 3/7/90
C C C C C C

E S R L L L L L L C C
v t. V E X K X K K K L L
e a R N N I A " S K K -
n t. U P T B I B B 1 1 2 2 3 3
t. e N L R N T N T A B A B A B A B

0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0

103 21 .:
103 21 IC .:
103 22 I .:
104 22 I .:
104 22 Ie .:
104 17 IU .:
105 17 IU .:
105 17 IC .:
105 18 IU .:
106 18 IV .:
106 18 IC .:
106 19 IU .:
107 19 IV .:
107 19 Ie .:
107 20 IV .:
108 20 IV .:
108 20 IC .:
108 15 IU .:
109 15 IV .:
109 15 IC .:
109 16 IU .,:
110 16 IV .:
110 16 IC .:
110 17 IV .:
111 17 IV .:
111 17 IC .:
111 18 IV .:
112 18 IV .:
112 18 Ie .:
112 19 IV .:
113 19 IV .:
113 19 Ie .:
113 20 IU .'
114 20 IU .:
114 20 Ie .:
114 2 IU
115 2 IU .:
115 2 Ie .:
115 3 IU .:
116 3 IV .:
116 3 Ie .:
116 2 IU .:

LOG/iC is a trademark of Isdata Corporation.
PLD Tholkit is a trademark of Cypress Semiconductor Corporation.

4-296

Using Hierarchical VHDL Design

Introduction

Hierarchical design methodology has been com­
monly used for quite some time by system designers
and software developers. There are two primary ad­
vantages to using this methodology. First, it allows
commonly-used building blocks to be created sepa­
rately and saved for later use without having to rede­
sign or reverify them. Second, it allows for more
readable design files by keeping the top-level design
file as a simple integration of smaller building
blocks, either user-defined or from a vendor-sup­
plied library. In system design, these building blocks
normally take the form of schematic symbols instan­
tiated into a schematic drawing, while in software
they are functions or procedures that are called
from the main program.

Wafp2 1lo1 and Warp31lo1 VHDL includes a set of fea­
tures specifically designed to make hierarchical de­
sign both simple and powerful. This note will first
describe these features and then walk through a sim­
ple example of how they might be used. It assumes
that the reader has read the Warp2 User's Manual
and is familiar with how to create a VHDL design
unit consisting of an entity-architecture pair.

Key Concepts

In order to construct a hierarchical design in
VHDL, the designer must understand the concepts
of components, packages and libraries.

Component - A component is a VHDL design unit
that may be instantiated in other VHDL design
units. Before it can be instantiated, it must be de­
clared using the COMPONENT declaration which
specifies the name of the component and lists its lo­
cal signal names.

Package - A package is a collection of VHDL dec­
larations that can be used by other VHDL descrip­
tions. For the purpose of creating hierarchical de­
signs, a package consists of one or more
components. However, a package may also include
other types of declarations.

Library - A library is a logical storage facility for
design units. Before a component can be instan­
tiated in a higher-level design unit, its package must
be compiled into a library that is visible to that de­
sign unit, usually the current work library.

Simple Example

Consider the following example. A designer discov­
ers that for a specific ~e of circuit. design he com­
monly needs an unusual type of counter. ("Com­
monly," in this reference, means that this counter is
likely to be used either multiple times in a particular
design or across multiple designs. Both are cases
where hierarchical design simplifies things.) This
counter is a simple four-bit counter, but it must out­
put a terminal count indication (tc) and roll over to
zero when it reaches 1110 rather than 1111.

A design file that would accomplish this is shown in
Appendix A. (The reader should understand the
contents of the entity-architecture pair-they will
not be discussed further.) In order to use this count­
er in other VHDL design units, it is declared as a
component within a package at the top of the file.
The component declaration simply names the de­
sign unit and lists its signal names. When this file is
compiled, the package is placed into the current li­
brary and the component it contains may then be
instantiated into other designs compiled into that li­
brary. If this were a standalone design, the entire
package declaration could be omitted.

4-297

Now, suppose this design consists of two of these
counters with their outputs multiplexed as in Figure
1. We can then instantiate our counter twice as in
the design in Appendix B. All that is necessary is the
statement:

use work.cnt-pkg.all;

at the top of the file, which makes any components ..
in the cnt-pkg visible within the current design unit,
as long as the package was compiled into the work
library. The counters are then instantiated by giving
them unique labels and listing the signals connected
to the port map in the same order as the component
declaration.

We could also have created the mux as a separate
component and instantiated it, but it is simpler to
use the if-then-else structure,

Multiple Components

For further illustration, assume our complete de­
sign includes two types of counters, one that rolls
over at 1110 and one that rolls over at 1011, as shown
in Figure 2. We could simply repeat the above proce-

COUNTER A

dure and create another design file with another
component and package and then use both of these
packages in our top-level design file.

However, it may be easier to keep track of things if
we keep similar counter designs together in a single
package as iIi Appendix C. This file contains both
entity-architecture pairs and two components in a
single package. As before, when this file is com­
piled, the package is added to the current library and
its components are made visible with a single-use
clause as in Appendix D.

Contigurable Components using Generics

When multiple components that have the same ba­
sic architecture but differ in one or more parame­
ters are needed (such as the two counters in the pre­
vious example) VHDL generics allow a more
compact approach. Generics are a means by which
parameters may be passed to a component when it
is instantiated allowing a configurable component.

In Appendix E a component is created that is the
same basic counter, but allows the terminal count to
be configured using a generic. Instead of hard-cod-

Q t----

ENABLE A

SEl

RESET

ENABlEB

ClK

RESET
TC

EN

A 11'4

I
, r--..-
'----

..---
~

COUNTER B
114

Q t----
RESET

TC
EN

/\
I

Figure!. Multiplexed Dual Counter Design

4-298

TCA

/4 , CNT[3 .. 0]

TCB

~

= ~ Using Hierarchical VHDL Design
~,CYPRESS==================================

COUNTER A

Q

RESET
TC TCA

ENABLE A EN

A
I

COUNTER B 4

I

Q-

RESET
TC TCB

EN

/\ 4

-I'--I I

ENABlEB

4 , CNT[3 .. 0]

-v"""
COUNTERC

10- 4
I

Q-

ENABlEC

SEl

RESET

ENABLED

ClK

RESET
TC TCC

EN

/\
I ,.4

I

COUNTERD

Q

RESET
TC TCD

EN

A
I

Figure 2. Multiplexed Quad Counter Design

ing this value, a bit_vector is used in the architec­
ture. This bit_vector is then declared in the entity
and component declarations. Generics may also be
of other types such as integers and a component may
contain multiple generics (although our example
contains only one).

Appendix F is the top-level design unit of the same
design from Figure 2, but this time it is using the com­
ponent with the generic rather than two different
components. When the component is instantiated,
it is configured by passing it the specific bit_vector
in the generic map.

Wa1p2 and Wa1p3 are trademarks of Cypress Semiconductor Corporation.

4-299

i "~ Using Hierarchical VHDL Design
_'CYPRESS ===============

Appendix A. Counter with Terminal Count and Rollover Selection

use work.cypress.all;
use work.rtlpkg.all;

package cnt-pkg is
component count15 port(

clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc: out bit);

end component;
end cnt-pkg;

use work.bv~ath.all;

entity count15 is port(
clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc: out bit);

end count15;

architecture one of count15 is
begin

process begin
if cnt="lllO" then

tc<='l' ;
else

tc<='O';
end if;

end process;

process (clk,reset) begin
if reset='l' then

cnt<="OOOO";
elsif (clk'event and clk='l') then

if cnt="lllO" and enable='l' then
cnt<="OOOO";

elsif enable=' 1 , then
cnt<=inc_bv(cnt) ;

else
cnt<=cnt;

end if;
end if;

end process;

end one;

4-300

~~ -..::!&, CYPRESS ==========V;;;;;s;;;;;i;;;;;ng=H;;;;;ie;;;;;r;;;;;8r;;;;;c;;;;;h;;;;;ic;;;;;8;;;;;1 VH=;;;;;D;;;;;L;;;;;D;;;;;e;;;;;s;;;;;ig=n

Appendix B. Instantiation of Counter from Appendix A

use work.cypress.all;
use work.rtlpkg.all;
use work.cnt-pkg.all;

entity muxcntr is port(
clk, enablea, enableb, reset, sel:in bit;
cnt:out bit_vector (3 downto 0);
tca, tcb:out bit);

end muxcntr;

architecture one of muxcntr is

signal muxina, muxinb:bit_vector(3 downto 0);

begin

cntra:count15 port map(clk, enablea, reset, muxina, tca);
cntrb:count15 port map(clk, enableb, reset, muxinb, tcb);

process begin
if sel='l' then

cnt<=muxina;
else

cnt<=muxinb;
end if;

end process;
end one;

4-301

-= ~YPRESS~~~~~~~~~~U~Si~n~g~H~ie~r~a~rC~h~ic~a~IVH~~D~L~D~e~si~g=n
Appendix C. Multiple Counters in a Single Package

use work.cypress.all;
use work.rtlpkg.all;

package cnt-pkg is
component count15 port(

elk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end component;
component count12 port(

clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end component;
end cnt-pkg;

use work.bv_math.all;

entity count15 is port(
clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end count15;

architecture one of count15 is
begin

process begin
if cnt="1110" then

tc<='l' ;
else

tc<=' 0' ;
end if;
end process;

process(clk,reset) begin
if reset='l' then

cnt<="OOOO";
elsif (clk'event and clk='l') then

if cnt="1110" and enable='l' then
cnt<="OOOO";

elsif enable='l' then
cnt<=inc_bv(cnt) ;

else
cnt<=cnt;

end if;
end if;

4-302

~ ~ Using Hierarchical VHDL Design
~,CYPRESS ===============

Appendix C. Multiple Counters in a Single Package (continued)

end process;
end one;

use work.bv_math.all;

entity count12 is port{
clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end count12;

architecture one of count12 is
begin

process begin
if cnt="lOlln then

tc<=' l' ;
else

tc<='O' ;
end if;
end process;

process (clk,reset) begin
if reset='l' then

cnt<="OOOOn;
elsif (clk'event and clk='l') then

if cnt="lOll" and enable='l' then
cnt<="OOOOn;

elsif enable='l' then
cnt<=inc_bv{cnt);

else
cnt<=cnt;

end if;
end if;

end process;
end one;

4-303

-= I ~ Using Hierarchical VHDL Design
_.,CYPRESS ==============

Appendix D. Instantiation of Counters in Appendix C

use work.cypress.all;
use work.rtlpkg.all;
use work.cnt-pkg.all;

entity muxcntr is port(
elk, enablea, enableb, enablec, enabled, reset:in bit;
sel:in bit_vector (1 downto 0);
cnt:out bit_vector (3 downto 0);
tca, tcb, tcc, tcd:out bit);

end muxcntr;

architecture one of muxcntr is

signal muxina, muxinb, muxinc, muxind:bit_vector(3 downto 0);

begin

cntra:count15 port map (elk,
cntrb:count15 port map (c1k,
cntrc:count12 port map (elk,
cntrd:count12 port map (elk,

process begin
if sel="11- then

cnt<=muxina;
elsif sel=\;t-0- then

cnt<=muxinb;
elsif sel="01- then

cnt<=muxinc;
else

cnt<=muxind;
end if;

end process;
end one;

enablea, reset, muxina, tea) ;
enableb, reset, muxinb, tcb) ;
enablec, reset, muxinc, tcc) ;
enabled, reset, muxind, ted) ;

4-304

~YPRESS~~~~~~~~~~U;S;i;ng~H;ie;r;ar;C;h;ic;a;IVH~;D;L;D;e;s;ig~n

Appendix E. Parametrizable Counters Using Generics

use work.cypress.all;
use work.rtlpkg.all;

package cnt-pkg is
component countg
generic (stop:bit_vector(3 downto 0) :="1111");

port (
clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end component;
end cnt-pkg;

use work.bv_math.all;

entity countg is
generic (stop:bit_vector(3 downto 0) :="1111");

port (
clk, enable, reset:in bit;
cnt:inout bit_vector (3 downto 0);
tc:out bit);

end countg;

architecture one of countg is
begin

process begin
if cnt=stop then

tc<=' l' ;
else

tc<='O';
end if;
end process;

process (clk,reset) begin
if reset='1' then

cnt<="OOOO";
elsif (clk'event and clk='1') then

if cnt=stop and enable='1' then
cnt<="OOOO";

elsif enable=' l' then
cnt<=inc_bv(cnt) ;

else
cnt<=cnt;

end if;
end if;

end process;
end one;

4-305

~ Using Hierarchical VHDL Design
WF<:YPRESS ================

ApiJendix F. Multiplexed Quad Counter Design

use work.cypress.all;
use work.rtlpkg.all;
use work.cnt-pkg.all;

entity muxcntr is port(
clk, enablea, enableb, enablec, enabled, reset:in bit;
sel:in bit_vector (1 downto 0);
cnt:out bit_vector (3 downto 0);
tca, tcb, tcc, tcd:out bit);

end muxcntr;

architecture one of muxcntr is

signal muxina, muxinb, muxinc, muxind:bit_vector(3 downto 0);

begin
cntra:countg generic
cntrb:countg generic
cntrc:countg generic
cntrd:countg generic

process begin
if sel="ll" then

cnt<=muxina;
elsif sel="10" then

cnt<=muxinb;
elsif sel="Ol" then

cnt<=rnuxinc;
else

cnt<=muxind;
end if;

end process;
end one;

map ("1110")
map("1110")
map ("1011")
map("1011")

port map (clk, enablea, reset,
port map (clk, enableb, reset,
port map (clk, enablec, reset,
port map (clk, enabled, reset,

4-306

muxina, tca) ;
muxinb, tcb) ;
muxinc, tcc);
muxind, tcd) ;

Designing UltraLogic ™ With Exemplar
and Synopsys ™

Introduction

Galileo 1M from Exemplar Logic and the Design
Compiler from Synopsys 1M provide two pathways
for programmer logic users to use Cypress's Ultra­
Logic 1M devices with third-party design environ­
ments. They provide behavioral Hardware Descrip­
tion Language (HDL) synthesis through the
support of a wide variety of HDL design entry for­
mats and powerful constraint-driven synthesis and
optimization capabilities. Both of these tools inte­
grate tightly with Cypress's Wa/p 1M design tool to
complete the design flow when targeting UltraLogic
devices.

This application note is intended to familiarize the
reader with these two third-party design tools, as
well as the Cypress-specific design pathway by cov­
ering the following topics:

• Design entry formats

• UltraLogic device support

• Software Requirements

• Design flow and integration with Wa/p

• Design Synthesis and Optimization Capabilities

EXEMPLAR LOGIC - GALILEO

Galileo consists of three separate modules-the
Logic Explorer (the synthesis engine), the Time
Explorer (the timing analysis engine), and the
V-System (the simulation engine). We will focus
mainly on the capabilities of the Logic Explorer and
its integration with Walp 1M •

Design Entry Formats
The Logic Explorer provides powerful behavioral
synthesis by supporting a wide variety of design
entry formats:

• VHDL (IEEE 1164 & 1076)

• Verilog™

• Palasm 2TM

• OpenABEL TM

Various formats of netlist are also supported for de­
sign retargeting and conversion:

• EDIF200

• Berkeley PLA

• ActelADL

• XilinxXNF
The following design entry format is also provided
to facilitate the integration of multiple designs in
diffetent formats:

• Exemplar Logic Integration Language (ElL)

UltraLogic Device Support
Logic Explorer currently supports the following
family of programmable logic devices from Cypress:

• MAX340® EPLDs

• FLASH370 TM CPLDs

• pASIC380'" FPGAs

Software Requirements
Th design with the MAX340 and FLAsH370 devices,
Walp2 alone is sufficient.

4-307

lzrcYPRESS =====D=:e=:sl=:·g=:n=:in=:g=:U=:I=:tr=:a=:Lo=:g=:i=:C=:Wl=:·t=:h=:G=:a=:h=:·1e=:o=:a=:n=:d=:S=:yn=op=:s=:y=s

To design with the pASIC380 devices, Walp2+ is re­
quired as a minimum.

Design Flow and Integration with Warp

The Logic Explorer- Walp design flow includes de­
sign entry, synthesis and optimization, fitting (for
MAX340 and F'LAsH370) or place & route (for pAS­
IC380), simulation, and programming (see Figure
3). Designs in design entry formats supported by Ex­
emplar can be entered using any text editor, which

~
DeSig~ile(S_)_--Jl.~ fmi
~

Control File

~~~ lD91< El<pID,.r ~IC3BO 
PLA File 

.J, 

GALAXY 

~Timing 
~Moder 

+ o 
JED File 

QDFFile 

SPDE 

Timin~ 
MOder~ 

+ 
o 
LOF File 

Design Entry 

Synthesis & 

Optimization 

Warp 

GalaxyfSpDE 

Simulation & 

Programming 

Figure 3. Logic Explorer-Warp2 Design Flow 

then goes through the Logic Explorer for synthesis 
and optimization. The output from the Logic Ex­
plorer then goes into Walp for fitting or place & 
route, and programming files and/or timing models 
are generated by Walp for device simulation and 
programming. 

Details about each of the design stages are de­
scribed below: 

(A) Design Entry 

Designs (in description languages, netlist, or 
ElL) are entered using any text editor and saved 
as ASCII text files. Hierarchical designs can be 
described across multiple design files. The Ex­
emplar Logic Integration Language (ElL) can 
also be used to link multiple design files in dif­
ferent entry formats into one large design. 

An optional control file can be included to speci­
fy design-specific parameters such as defining 
I/O pad mappings and timing requirements. 
The control file should have the same name as 
the design file with a .ctr extension. 

(B) Design Optimization and Synthesis using the 
Logic Explorer 

The next step is to synthesize and optimize the 
design(s) using the Logic Explorer. 

The Logic Explorer main window allows the 
user to specify design-specific information like 
input and output filenames, source and target 
technology, and entry format, as well as synthe­
sis and runtime options (for details refer to De­
sign Environment below). Depending on the 
target technology and user-specified 
constraints, a number of optimization passes 
(ranging from one to eleven) will be run. The re­
sults of these passes will be plotted on an Area 
vs. Delay graph. The user can save the pass that 
best fulfills the user-specified constraints. 

(C) Device Fitting or Place & Route using Warp 

After synthesis and optimization, the results 
generated by the Logic Explorer will be used in 
Walp for fitting or place & route. 

4-308 



Designing UltraLogic with Galileo and Synopsys 

Depending on the target technology, results 
from the Logic Explorer will be saved in the fol­
lowing output formats for interfacing with Wa/p: 

Thble 1. Logic Explorer to Watp 
Output Formats 

Thrget Technology Output Format 

MAX340 PLA 

FLAsH370 PLA 

pASIC380 QDIF 

For MAX340 and F'LAsH370 devices, a PLA file 
will be generated by the Logic Explorer which 
will be taken by the Wap Galaxy fitter as input 
to perform device fitting. A JEDEC file will be 
produced for device programming and timing 
models will be generated for device simulation. 

For pASIC380 devices, a QDIF file will be gen­
erated by the Logic Explorer which will be taken 
by the Wap SpDE place & route tool as input to 
perform place & route and timing analysis. A 
LOF file will be generated for device program­
ming and timing models will be generated for 
device simulation. 

Design Synthesis and Optimization 
Capabilities 

We will now highlight some of the features offered 
by the Logic Explorer. We will begin by summariz­
ing how to access these features by describing its 
user interface and options in Design Environment. 
We will then move on to describe these features as 
categorized by Design Synthesis and Optimization 
capabilities, Design Integration, and Command and 
Control File creation. 

(A) Design Environment 

The Logic Explorer main window has a simple, 
user-friendly graphical user interface. It con­
sists of a main menu where the user can specify 
Input and Output Filenames, Source and Target 
Technology, and Entry Format. In addition, four 

submenus are available to set Synthesis and 
Runtime options: 

(l) Input Options 

• Lower-level design filename(s) for hier­
archical designs 

• VHDL style (IEEE 1164, 1076, or View­
Logic) 

• State machine encoding style (binary, 
gray, random, and one-hot) 

• Module generation library names 

(2) Output Options 

• Thrget device 

• Thrget package 

(3) Synthesis Options 

• Optimization constraints (specific area 
and/or delay) 

• Number of optimization passes to be per­
formed 

• Derating factorS for delay calculations 

• Retarget switches for remapping to dif­
ferent technologies 

• Command and additional source library 
filename(s) 

• Report file options 

(4) Runtime Options 

• Global optimization goal (area or delay) 

• Technology mapping effort level 

Most of these options are self-explanatory. 
Some of them will be explained in further detail 
below. 

(B) Design Optimization 

The Logic Explorer allows users to exert control 
over the synthesis of their designs by providing 
ample features in the following areas: 

4-309 



=; .. ~ Designing UltraLogic with Galileo and Synopsys 
_"CYPRESS =============== 

(1) Global and Local Optimization 

Global optimization refers to the synthesis 
of a design that has multiple building blocks 
as a whole, while local optimization refers to 
the synthesis of a design's individual build­
ing block before combining them together. 

Global optimization can be accessed 
through the Synthesis and Runtime Options 
menus in the Logic Explorer main window. 
Optimization is applied to the design over­
all, including all lower-level modules. 

Local optimization trades off control over 
global optimization with overall design re­
sults. The flexibility of being able to opti­
mize each of a design's lower-level building 
block locally before linking them together 
can be achieved by using the Exemplar Log­
ic Integration Language (ElL). 

ElL is a simple language that describes a 
netlist of instances of building blocks, each 
of which can be written in any input format, 
and can be optimized using different 
constraints. ElL allows the user to specify 
the I/O interface of the top-level design and 
the interconnection of instances which 
make up the design. 

(2) Constraint-Driven Optimization 

By setting optimization constraints, the user 
can specify different design requirements 
which will affect the synthesis outcome. The 
Logic Explorer will try its best to synthesis 
and optimize in such a way that all 
constraints are met. Design constraints can 
be applied to an overall design or to individ­
ual signals: 

• Area 

• Delay 

• Max Fan-in (for MAX340 only) 

4-310 

• Max PT (for MAX340 only) 

• Max Load (for pASIC380 only) 

All of the above constraints can be specified 
as command line options or placed in the 
control file (see Command and Control File 
below). Area and delay constraints can be 
accessed through the Synthesis and Run­
time Options menus in the Logic Explorer 
main window. The user can either let the 
Logic Explorer synthesize to the best area or 
delay that it can achieve (Runtime Options), 
or set specific constraints by specifying val­
ues for the maximum area and/or the delay 
allowed (Synthesis Options). 

(3) Technology Mapping 

For technology-independent design entry 
(e.g., VHDL), the Logic Explorer will first 
translate the design into their internal 
technology-independent Logic Data Struc­
tures. Architecture-specific logic optimiza­
tion will then begin. When this is done, the 
design will be mapped into gates that are 
available from the target technology library. 
Multiple passes of this technology-mapping 
step can be run (using different strategies) 
to achieve results that will best fulfill the de­
sign constraints set by the user. 

For technology-dependent design entry 
(~.g., netlist), the source technology library 
also needs to be specified. The technology 
mapper will then perform device-specific 
transformations to map gates from the 
source technology to the target technology. 
Some of these retargeting switches, like the 
mapping of internal three-states into combi­
natorial logic, can be accessed through the 
Synthesis Options menlL 

(4) I/O Mapping 

Automatic synthesis of I/O pads is part of 
the Logic Explorer'S default mode. Howev-



= ~ Designing UltraLogic with Galileo and Synopsys 
~TcYPRESS =============== 

er, the user can also assign pads manually to 
have better control over pad assignments. 
Manual pad assignments can be done either 
through component instantiations in the de­
sign input files (e.g., in VHDL or Verilog), 
or through the use of the control file (see 
Command and Control File below). 

Pin assignments can also be done through 
the control file. 

(C) Design Integration with ElL 

The Exemplar Logic Integration Language 
(ElL) can also be used to link multiple design 
files in different entry formats (e.g., mixing 
HDLs and netlists) into one large design. 

ElL is a simple language that essentially de­
scribes a netlist of instances of building blocks 
each of which can be written in any input format 
and can be optimized using different 
constraints. ElL allows the user to specify the 
I/O interface of the top-level design and the in­
terconnection of instances which make up the 
design. 

(D) Command and Control File 

Command files can be used to store command 
line options that the user will want to reuse. Any 
Logic Explorer command line options (e.g., In­
put and Output filenames, target and source 
technology libraries, etc.) can be saved in a com­
mand file. The user can specify any command 
file to be reused in subsequent runs of the Logic 
Explorer. A Command File Editor is available 
from the File menu in the Logic Explorer main 
window. 

Control files can be used to store design 
constraints, manual pad assignments, and pin 
assignments for a specific design. Any control 
file can be specified to be used with a specific de­
sign by specifying it's name in the Control File 
menu in the Logic Explorer main window. 

Please refer to the Galileo Reference Manual 
for specific formats of the command and control 
file. However, here is a summary of some useful 
command file (Table 2) and control file options 
(Table 3): 

Table 2. Useful Command File Options 

Function Command File Option 

Optimize for Area -area 

Optimize for Delay -delay 

Design Constraint for Max Area -maxarea= <n> 
Design Constraint for Max Delay -maxdelay= <n> 

Design Constraint for Max Fan-in -max fanin= <n> 

Design Constraint for Max PT -max-pt=<n> 

Design Constraint for Max Load -maxload= <load> 

Control File Name -control = <name> 

FSM Encoding Style -encoding= <encoding style> 

Package Type -package = <name> 

Part Name -part= <part number> 

Source Library Name - source = < library name> 

Thrget Library Name -target = <library name> 

4-311 



=, ?cYPRESS Designing UltraLogic with Galileo and Synopsys 

Table 3. Useful Control File Options Design Flow and Integration with Wary 

Function Control File Option 

Design Constraint for MAX LOAD 
Max. Load 

Signal Name PRESERVE SIGNAL 
Preservation 

Manual Pad PAD or GATE 
Assignment 

Pin Assignment SET. .. PIN NUMBER 

SYNOPSYS - DESIGN COMPILER 

Like the Logic Explorer, the Design Compiler from 
Synopsys also aims to provide powerful synthesis 
through the support of a variety of behavioral 
HDLs, as well as some netlist support for design 
entry formats. It is also tightly integrated with the 
Walp design tool to provide a seamless design path­
way for designing with UltraLogic devices. 

Design Entry Formats 

Hardware Description Language (HDL) support 
for the Design Compiler is as follows: 

• VHDL (IEEE 1164 & 1076) 

• Verilog 

Netlist support is as follows: 

• Berkeley PLA 

• EDIF200 

UltraLogic Device Support 

The Design Compiler currently supports pASIC 
FPGAs. 

Software Requirements 

Th design with the pASIC380 devices, WQ1p2+ is re­
quired as a minimum. 

The Design Compiler-WQ1p design flow includes de­
sign entry, synthesis and optimization, place & 
route (for pASIC380), simulation, and program­
ming (see Figure 2). Designs in HDL and netlists can 
be entered using any text editor, which then goes 
through the Design Compiler for synthesis and opti­
mization. The output from the Design Compiler 
then goes into Walp for place & route, and program­
ming files and/or timing models are generated by 
Walp for device simulation and programming. 

~ 
QEJ 

DeSig~ile(S_)_-Jl~~ 1m j" 
~ 

Script File(s) 

[QJ----~ 
Cypress pASIC wn@1fiICUC 

Library , U"~" 
pASIC380 

r-------+--l:[)-I----~ 
EDIF File 

SPDE 

Tlming~ 
MOdel~ 

+ 
o 

LOFFile 

DeSign Entry 

Synthesis & 

Optimization 

Watp2SpDE 

Simulation & 

Programming 

Figure 4. Design Compiler-Warp Design Flow 

4-312 



=- rcYPRESS =====D;;:;e;;:;s;;:;ig;;:;n;;:;i;;:;ng=V;;:;lt;;:;ra;;:;L;;:;o;;:;g;;:;iC;;:;Wl=Ot;;:;h;;:;G;;:;a;;:;h;;:;ole;;:;o;;:;a;;:;n;;:;d;;:;S;;:;y;;:;n;;:;o;;:;p;;:;sy;;:;s;;:; 

Details about each of the design stages are de­
scribed below: 

(A) Design Entry 

Designs (in HDL or netlist) are entered using 
any text editor and saved as ASCII text files. Hi­
erarchical designs can be described across mul­
tiple design files. 

Optional Design Compiler Shell Script files can 
be included to specify synthesis commands as 
well as design-specific parameters such as input 
and output filenames, source and target li­
braries, design constraints, I/O pad mappings, 
and pin assignments. 

(B) Design Optimization and Synthesis using the 
Design Compiler 

The next step is to synthesize and optimize the 
design(s) using the Design Compiler. 

The Design Compiler's graphical interface is 
called the Design Analyzer. Its main window al­
lows the user to specify design-specific informa­
tion like input and output filenames, source and 
target technology, and entry format, as well as 
synthesis and design constraint options (for de­
tails refet to Design Environment below). Upon 
completion of synthesis and optimization, the 
resulting netlist will be displayed in graphical 
form in the Design Analyzer. Users can then 
push in and out of design hierarchies, examine 
the timing of critical nets, and generate report 
files. 

(C) Device Place & Route using Warp 

After synthesis and optimization, the results are 
generated by WafP for place & route. The output 
format for interfacing with WafP is EDIF 2 0 O. 

For pASIC380 devices, an ED IF file (containing 
pASIC primitives will be generated by the De­
sign Compiler which will be taken by the Wal]J 

SpDE place & route tool as input to perform 
place & route and timing analysis. A LOF file 

will be generated for device programming and 
timing models will be generated for device simu­
lation. 

Design Synthesis and Optimization 
Capabilities 

We will now highlight some of the features offered 
by the Design Compiler. We will begin by summariz­
ing how to access these featllres by describing its 
user interface and options in Design Environment. 
We will then move on to describe these features as 
categorized by Design Synthesis and Optimization 
capabilities, Design Integration, and DC Shell 
Script creation. 

(A) Design Environment 

The Design Analyzer is a graphical user inter­
face that consists of pull-down menus where the 
user can speCify input and output filenames, 
source and target libraries, design constraints, 
I/O pad mappings, and pin assignments. It is 
also a hierarchical netlist viewer that allows 
users to view the design in terms of functional 
blocks before synthesis and in mapped gates af­
ter technology mapping. The user can also inter­
actively examine the timing of the critical nets. 

The user can open a Command Window to enter 
Design Compiler commands interactively in 
command line form. Options that are available 
from the pull-down menus have an equivalent 
command line format. 

The user can also execute commands in batch 
form by using DC Shell Scripts. Please refer to 
the section on DC Shell Scripts for further de­
tails. 

Some useful options that are available from the 
pull-down menus are summarized below: 

(B) Design Synthesis and Optimization 

Synthesis in the Design Compiler involves the 
translation of an HDL design into a Synopsys 
built-in generic logic representation and the op-

4-313 



~ Designing UltraLogic with GaIileo and Synopsys 
~J'cYPRESS====~==~===================== 

timization and mapping of that representation 
using the Cypress pASIC library elements. 

As in the Logic EXplorer, various synthesis and 
optimization features are .available to the user 
to better control the results of synthesis. 

(1) Constraint-Driven Optimization 

Users can control the synthesis outcome by 
setting optimization constraints on individ­
ual signals, on modules under any level of 
the design hierarchy, or on the overall de­
sign. The Design Compiler will try its best to 
synthesize and optimize in such a way so that 
all constraints are met. Design constraints 
that are available to the user for pASIC380 
devices are: 

• Area 

• Delay 

• Fanout 

All the above constraints can be specified 
graphically from the Design Analyzer or 
placed in the DC shell script (see DC Shell 
Stript below and Appendix D). For exam­
ple, an adder that is constrained by area will 
be synthesized using a ripple-carry algo­
rithm, while one that is constrained by speed 
will be synthesized using a carry-Iookahead 
algorithm. 

(2) FSM Extraction 

Designs that include descriptions of finite 
state machines (FSMs) can be extracted into 
a State Thble format. Once extracted into 
this format, the Design Compiler can per­
form the following FSM optimization tech­
niques on the extracted design(s): 

• Automatic state assignments, or comple­
tion of partial assignments, 

4-314 

• Optimization of the FSM(s) for Area or 
Delay, 

• Optitnization of "don't care" sets, 

• Removal of redundant states, and 

• Allows users to explore alternative FSM 
implementations with different state-en­
coding schemes (e.g., sequential, one­
hot, gray, or manual). 

For details on how to extract and optimize 
FSMs refer to Design Examples and Appen­
dixE. 

(3) Synthetic Cells 

Arithmetic or relational operators are in­
ferred from IiDL descriptions as individual 
logic blocks to allow for more specific and 
optimal synthesis for these modules. For ex­
ample, in the following VHDL code frag­
ment: 

ADD8 <= A8 + B8i 

SIX <= '1' when (ADD8 > 

"00000110") else 'O'i 

The '+' sign in the first statement and the 
'>' sign in the second one will be inferred as 
an adder and a comparator respectively. 
These modules are referred to as synthetic 
cells, and will be synthesized according to 
design constraints that are set on them by 
the user (if any). 

(4) Resource Sharing 

Resource sharing is the using of a single 
hardware resource for multiple operations. 
In the following VHDL code fragment: 

Z <= A + B when X else C + Di 

Instead of inferring two synthetic adder cells 
due to two occurrences of the '+' operator, 
a single synthetic adder cell will be inferred, 
with the inputs A and C passing through one 



9itr?c Designing UltraLogic with Galileo and Synopsys 
CYPRESS ============== 

two-to-one multiplexer, and inputs Band D 
passing through another one. In this way, 
additional logic for generating an extra add­
er is avoided. This is made possible because 
depending on the condition of 'X', either A 
and B or C and D uses the adder exclusively. 
And hence the resource (adoer) can be 
shared. Other arithmetic and relational op­
erators can be shared in the same fashion. 

Resources are automatically shared during 
design compilation (and can be overridden) 
and are constraint-driven. 

(C) Design Hierarchy 

Designs with multiple levels of hierarchy can be 
viewed, manipulated, and synthesized using the 
Design Analyzer. Users can select signal paths 
or logic modules and set constraints on them, or 
push into lower hierarchical levels to view their 
gate-level implementations. 

In addition, users can manipulate hierarchical 
designs using the following commands: 

(1) Uniquify: 

Each instance of the same cell (e.g., an 8-bit 
adder) is set to be unique (not referenced) 
so that each instance can be optimized indi­
vidually through different constraints. 

(2) Set Don't Touch: 

Lower level modules specified with the 
set_dont_touch attribute will not be opti­
mized or recompiled. 

(3) Ungroup: 

Hierarchical designs can be ungrouped or 
flattened into one single level before com­
pilation and synthesis. 

(D) DC Shell Script 

DC shell scripts can be specified when invoking 
the Design Analyzer to perform design compila­
tion and synthesis in batch mode. Any command 
that are accessible from the Design Analyzer's 
graphical menus has a command line equivalent 
that can be used from with a DC shell script. 
Shell scripts allows users to re-use part or all of 
the commands that make up the compilation 
and synthesis procedures. 

UltraLogic, WQlP, Wa1p2, Wa1p2+, and F'LAsH370 are trademarks of Cypress Semiconductor Corporation. 
GaIileo is a trademark of Exemplar Logic. 
Synopsys is a trademark of Synopsys, Inc. 
MAX is a registered tra4emark of Altera. 
pASIC is a trademark of QuickLogic. 
Verilog is a trademark of Cadence. 
PaIasm is a trademark of Advanced Micro Devices. 
OpenABEL is a trademark of Data I/O. 

4-315 





Specialty Memories - 5 



Specialty Memories Section Contents and Abstracts 

Understanding Dual-Port RAMs ........................................................... 5-1 

This application note reviews the history of multi-port memories and explains the operation of Cypress's 
Dual-Port RAMs. Features discussed range from basic dual-port fundamentals to more advanced issues (like 
the "deadly embrace," for example) and ends with a design example. This application note is intended for 
designers of all experience levels and addresses most of the common issues that arise when using dual-port 
RAMs. 

Understanding Large FIFOs ............................................................. 5-19 

This application note explains the operation, architecture, and design considerations of Cypress's CY7C42X, 
7C43X, and 7C46X families of FIFOs. These FIFOs feature industry-standard operation and pinout and are 
available in depths up to 32Kx 9. Basic logic and timing operations such as reading and writing to the FIFO 
memory array, are covered in detail. Timing waveforms are included to help illustrate these operations. Com­
mon FIFO configurations such as Standalone Mode, Depth Expansion and Width Expansion are explained 
in detail. These sections explain how to properly use the flags in these modes and cover the operation of the 
expansion-in!expansion-out (XI/XO) pins. The final sections of this application note cover common problems 
and solutions encountered when using large FIFOs. These common problems include corrupted or repetitive 
data, missing or disappearing data, and FIFO lock up. Boundary flag operation is also discussed in relation 
to these problems. The final section covers Vee noise related failures and recommends specific power bypas­
sing techniques. 

Understanding Clocked FlFOs ........................................................... 5-29 

This application note explains the basic operations and features of Cypress Clocked FIFOs (CY7C44X and 
CY7C45X Clocked FIFOs). The first few sections explain the Clocked FIFO architecture in detail. Reading 
and writing to the FIFO memory array are discussed and timing waveforms are included to illustrate these 
operations. A large portion of the application note is devoted to explaining the synchronous flag architecture. 
Gate-level logic diagrams are provided to help explain flag operation. This section also explains commonly 
misunderstood concepts such as flag encoding and flag latency cycles. A section on programming and reset­
ting Clocked FlFOs explains how to properly perform these operations and covers the common design pitfalls 
to avoid. Tho sections are devoted to configuring Clocked FIFOs for depth or width expansion modes. These 
sections include discussions on proper flag decoding and expansion-in!expansion-out (XI/XO) pin operation. 
The final section discusses how to use a Clocked FIFO like an industry standard asynchronous FIFO. 

FIFO Dipstick Using Warp2'" VHDLand the CY7C371 ...................................... 45-39 

Programmable FIFO flags can often simplify the design of a digital system by generating status which will pre­
vent overrun or underrun conditions for an elastic FIFO buffer. Although many FIFOs are available with 
programmable flag functions on-chip, these features are not available on industry-standard asynchronous FI­
FOs. Of those FIFOs that do have programmable flags, some do not allow the almost -empty and almost-full 
values to be programmed independently, or in some cases, for these values to be programmed at any specific 
word boundary. This application note will present a method by which FIFOs of any size may be monitored 
by an external Programmable Logic Device that will then generate all of the flags necessary for most FIFO 
applications. The FIFO Dipstick PLD behaves like a measuring device that can observe the level of data with­
in a FIFO. 



Understanding Dual-Port RAMs 

This application note examines the evolution of 
multi-port memories and explains the operation 
and benefits of Cypress's dual-port RAMs. 

A dual-port RAM is a random-access memory that 
can be accessed simultaneously by two independent 
entities. In digital ICs, this implies a dual-port 
memory cell that can be accessed at the same time 
using two independent sets of address, data, and 
control lines. 

A Brief History of Multi-Port Memories 

The first multi-port memories were probably used 
in the CPU of the first computers. Many two-oper­
and instructions are efficiently implemented using 
dual-port registers for the operands and the result. 

For example, consider Equation 1, which describes 
a typical two-operand operation in the ALU (arith­
metic logic unit) of a CPU: 

( C) = ( A ) [ OPERATOR 1 ( B ) Eq.1 

A and B could be either the operands (i.e., the data) 
or the addresses of the operands, in which case the 
data could be either in memory or in registers. In 
any case, Equation 1 describes two pieces of data, A 
and B, being operated upon by the OPERATOR 
and the results designated as C. C could also be the 
data, a register, or a memory location. OPERA­
TOR could be arithmetic or logical. 

The Combinatorial ALU 

The 74181 was the first integrated circuit ALU. In 
this IC, the 4-bit operands, A and B, are operated 
upon according to a 4-bit command; the result, C, is 
output. The chip also provides a carry-in input, a 
carry-out output, and A = B outputs. A mode-con-

5-1 

trol pin selects either logical or arithmetic opera­
tions. The 74181 is combinatorial; no storage is pro­
vided. 

Early computers used the contents of a memory 
location as one operand and an accumulator in the 
CPU as the second operand. The results were usu­
ally stored in the accumulator. 

Bringing the Registers On Chip 

The 67901 was the first 4-bit slice that brought 16 
4-bit registers onto the chip. The MMI 67901 was 
second-sourced by AMD and became the 2901. At 
one time, five vendors offered this industry-stan­
dard bipolar ALU. The Cypress CMOS CY7C901 
is the highest-performance, TTL-compatible, 4-bit 
slice that is form, fit, and functionally equivalent to 
the original 901. 

The 16-word-deep, 4-bit-wide register array is func­
tionally equivalent to a 16 x 4 dual-port memory. 
Four A address lines and four B address lines select 
the contents of two of the 16 registers, whose out­
puts are applied to transparent latches. The latch 
outputs are then applied to 3:1 multiplexers, whose 
outputs drive the ALU inputs. The ALU outputs 
can be sent off chip, entered into a temporary regis­
ter (Q), or written back into the register file, thus re­
placing one of the operands. This architecture is 
shown in the CY7C901 block diagram in Cypress's 
1991 Data Book. 

CY7C901 Dual-Port Memory Operation 

A simplified CY7C901 block diagram appears in 
Figure 1. The device's A and B addresses select the 
contents of two registers, whose outputs are applied 
to two 4-bit latches. When the clock (CP) is HIGH, 
the latch outputs follow their data inputs (Le., are 



Figure I. CY7C901 Dual-Port Memory 
(Simplified) 

transparent). When the clock is LOW, the ALU out­
puts are written (WE) into the register array at the 
location specified by the A or B addresses, depend­
ing upon the instruction being executed. A LOW on 
the clock causes the data in the latches not to 
change, so that the ALU outputs are stable when 
they are written back into the register array. 

Note that the CY7C901 does not perform the three­
port function described by Equation 1. In the 
CY7C901, the C operand equals either the A or B 
operand, depending upon the instruction being 
executed. In fact, the A and B addresses can be the 
same. An old programming trick is to Exclusive-OR 
the contents of a register with itself, which clears the 
register. 

Additionally, the CY7C901's dual-port memory 
does not use a dual-port memory cell. This type of 
cell is not required because the CY7C901 does not 
need the ability to simultaneously write indepen­
dently to two separate memory locations. 

Dual-Port Memory Using Single-Port 
RAM 

Before the dual-port memory cell existed, designers 
created dual-port RAMs from single-port RAMs by 
adding a multiplexer between the RAM and the two 
entities that shared the RAM. Figure 2 illustrates a 
block diagram of such an arrangement. Two proces­
sors, MP1 and MP2, share the RAM. If each proces­
sor has access to the RAM half the time, the re­
source is shared equally and is said to be allocated 
according to a fairness doctrine. 

This time division multiplexing assures that there is 
no contention for the RAM. However, performance 

5-2 

Figure 2. Dual-Port Memory Using Single-Port 
RAM 

suffers if the RAM's access time does not equal 1/2 
or less of the processors' clock period, assuming that 
the processors are clocked from the same source. 

For example, consider two processors clocked from 
the same 25-MHz source, for a period of 40 ns. Be­
cause the processors are closely coupled, only one 
operating system is in memory. In this case, the 
maximum access time of the dual port has to be 
20-ns or less. The highest-speed dual-port RAM 
available has a 25-ns access time. Therefore, each 
processor suffers a worst-case 20% performance 
degradation. 

Dual-Port RAM Applications 
The first applications for dual-port memories were 
for CPU register files. Dual-port RAMs can also 
serve as data or instruction cache memories. How­
ever, the largest usage of dual-port RAMs is in com­
munications, which includes the exchange of data 
between processors, processes, and systems. 

Virtual Dual-Port RAM 

Communication between systems does not require 
physical dual-port RAMs. Instead, a conventional 
RAM memory is partitioned into virtual data-stor­
age areas (buffers), usually to store at least two data 
packets. These buffers are shared between the com­
munications controller and the intelligent element 
that assembles the packets and stores them (usually 
a microprocessor). The communications controller 
can also be a microprocessor. It reads the data from 
memory, converts the data from parallel to serial 
form, encodes the data, converts the data to analog 
form, and sends the data out over the communica­
tions channel on the transmit side. If the system 
contains only one processor, the data buffers are not 
shared, and the system needs neither a virtual nor a 
physical dual-port RAM. 



--==--. 

=7 ~YPRESS~~~~~~~~~~~U~n~d~e~rs~t~an~d~in;g~D~U~al~-p~O~r~t~~~~s 

Control information associated with each data buff­
er tells the communications controller the number 
of words in the buffer and the starting address of the 
data in the buffer. The control information resides 
in one or more memory locations whose addresses 
have been previously agreed upon by the two pro­
cessors. 

This simple software-based buffer example requires 
a second level of control-a mechanism or proce­
dure that prevents the two microprocessors from 
getting in each other's way. In other words, the sys­
tem Ileeds a procedure control mechanism. 

Another way of analyzing this requirement 
introduces the concept of data ownership. Say, for 
example, that processor A assembles and stores 
messages and thus owns the data while performing 
these tasks. Likewise, the communications proces­
sor B owns the data while performing its tasks. The 
procedure control mechanism amounts to a tech­
nique for transferring data ownership between pro­
cessor A and B. 

In large systems, where many processors perform 
many different operations, the processing of the in­
formation is called a job or a procedure. The proce­
dure is divided into many tasks, which can be per­
formed by different processors. The tasks can either 
be scheduled and assigned by a processor dedicated 
to that task or be performed by any available proces­
sor. These alternatives are referred to as autocratic 
and egalitarian systems, respectively. The term ega­
litarian implies that the processors are treated 
equally. In either case, the processors must have ac­
cess to a shared-memory location used for message 
passing. 

Synchronizing sequential processes is the corner­
stone of concurrent programming, which applies to 
multi-tasking, single-processor systems; distrib­
uted-processor networks; and tightly coupled multi­
processor systems. 

Message Passing 

In the two-processor system under consideration, 
synchronization can be achieved by using a lock­
word or lockvariable. The lockvariable can apply ei-

5-3 

ther to data (as in this example) or to executable 
instructions. 

The lockvariable is a location in shared memory that 
is operated upon using two synchronization primi­
tives: LOCK (v) and UNLOCK (v), where (v) is the 
location operated upon. These are simple binary 
switch operations. If a processor wishes to lock or 
own a critical section of code or data, the processor 
indivisibly sets the lockvariable if t~sting shows the 
lockvariable to be zero. If the lockvariable is not 
zero, then the operation is repeated until the lockva­
riable is zero. To unlock the critical section, a pro­
cessor sets the lockvariable to zero and continues. 

Most modern processors have indivisible read/ 
modify/write instructions, also called test and set 
(TAS) instructions. In Reference 1, however, E. W. 
Dijkstra shows that lockvariables can be implement­
ed without using a read/modify/write instruction. 
And in Reference 2 he develops the semaphore, a 
technique for managing a queue of tasks waiting for 
a resource. Lockvariables surround or bracket 
semaphores and thus provide entry and exit control 
on a mutual-exclusion basis. 

1Ypical TAS Instruction 

The current example assumes that the processors 
have a TAS instruction. A typical TAS instruction 
operates as follows: read, test, and set to X. The ad­
dressed memory location is read, and if its contents 
are zero, the value X is written into that location. If 
the contents are not zero, the contents are returned 
to the processor, and the value in the memory loca­
tion is riot disturbed. 

The usual convention is that a value of zero in the 
lockvariable means that the resource associated 
with it is available. A non-zero value means that 
another processor temporarily owns the resource 
and that the resource is not available. After per­
forming the task associated with the lockvariable, 
the processor sets the Iockvariable's value to zero. 
The system is initialized with all Iockvariables set to 
zero. 

In the current example, processor A performs a TAS 
operation on the lockvariable and, finding the lock­
variable to be zero, sets the lockvariable to a one. 
This tells processor B that the message is in the pro-



cess of being assembled in the memory buffer area 
and is not ready to be transmitted. Processor A then 
assembles the message. After the message is as­
sembled, processor A clears the lockv!\fiable, sends 
a message to processor B saying that the message is 
ready to be transmitted, and gives the data's loca­
tion and the number of bytes to be sent. Processor 
B reads the message from processor A and performs 
a TAS operation on the lockvariable; finding the 
lockvariable to be zero, processor B sets it to a two. 
This tells processor A that the message is in the pro­
cess of being transmitted. Processor B then trans­
mits the message and clears the lockvariable. Pro­
cessor B sends processor A a message that the 
transmission task has been completed. After receiv­
ing the message from processor B, processor A per­
forms a TAS operation on the lockvariable; finding 
the lockvariable to be zero, processor A concludes 
that the message has been successfully transmitted. 

Note ilIat this procedure does not require the use of 
a dual-port RAM. The procedure does require each 
processor to perform a TAS instruction, clear the 
lockvariable, and send a message to the other prp­
cessor. Sending a message implies writing to a loca­
tion in shared memory. Th know that a message ill 
waiting, the processor receiving the message must 
either read the memory location periodically (re­
ferred to as polling a mailbox) or the act of writing 
to the mailbox must generate an interrupt to the re­
ceiving processor. The interrupt-driven alternative 
is usually preferred because the receiving processor 
does not have to waste time in a polling sequence. 

Dual-Port RAM Cell History 

The first dual-port RAM les to use a dual-port 
RAM cell were the Synertek SY2130 and SY2131, 
introduced in 1983. These products are organized 
as 1024 words of 8 bits and use n-channel, double­
polysilicon technology to achieve 100-ns access 
times. The SY2130 has an automatic power down 
feature controlled by the chip enables, and the 
SY2131 does not. The smaller (512 x 8) SY2132 and 
SY2133 were siIpilar but unsuccessful. 

The original dual-port RAMs include two mailboxes 
for message passing. When written to from one 
port, a mailbox generates an interrupt to the oppo-

5-4 

site port. Additionally, on-chip arbitration logic 
generates a busy signal to the loser when both left 
and right ports address the same memory location. 
If the loser was attempting to write, the write is sup­
pressed. 

Most of the dUill-port RAMs on the market today 
are functionally equivalent to the original Synertek 
products. The ~'new features" added to several 
dual-port RAM products by Cypress, Motorola, and 
Integrated Device Technology (IDT) include dedi­
cated semaphore registers, Hardware semaphores 
provide efficient means of allocating exclusive 
priority accesses to blocks of shared memory loca­
tions in dual-port RAMs. 

The SY2130 was second-sourced by IDT in 1984 and 
Advanced Micro Devices (AMD) in 1985. IDT also 
doubled the density to 2Kx 8 and called the new part 
the IpT7132. Due to pin limitations (48 pins), the 
interrupt functions were deleted. 

In 1985 IDT added slave companion parts to the 
company's dual-port family. The IDT7140 (1024 x 
8) is the slave to the IDT7130, and the IDT7142 (2K 
x 8) is the slave to the IDT7132. The slave device 
provides word-width expansion. BUSY is an input 
to the slave from the master, and the slave contains 
no arbitration logic. One master can drive many 
slaves. This arrang~m~nt avoids the classic deadly 
embrace problem described in the next section. 

The Deadly Embrace 
The deadly embrace can occur when two masters 
are connected in parallel to make a wider word. If 
the left and right port addresses match, and the left 
and right port chip enables then become active to 
both chips at approximately the same time, it is pos­
sible to have one port of one master lose and the op­
posite port of the other master also lose. In other 
words, if an address match occurs and both ports are 
enabled during a small time window or an aperture 
of uncertainty, the dual-port RAM cannot deter­
mined which port wins or loses. 

Under these conditions, if the corresponding left 
and right port busy pins are connected together, 
both ports of both masters are active (LOW). This 
condition occurs because the busy outputs are open 
drain, and the loser pulls the node Law. 



This condition is the simplest example of the deadly 
embrace. As far as the external world is concerned, 
both ports are busy, and the system remains locked 
up indefinitely, with each port waiting to be released 
by the other. Each master's arbiter section thinks it 
has lost the arbitration and is waiting to be released 
by the other. 

In general, the deadly embrace occurs under two 
conditions: a processor requires one or more re­
sources to perform a task, and one or more of the re­
quired resources is temporarily owned by another 
processor, which requires one or more of the same 
resources to perform its task. 

For example, if processor A owns resource X and 
processor B owns resource Y, and both resources 
are required to accomplish the task, a stalemate oc­
curs in which each processor waits for the other to 
relinquish the required resource. This is the sim­
plest example. The concept extends to n processors 
and m resources. 

The solution to the deadly embrace depends upon 
whether the system is autocratic or egalitarian, the 
tasks' priorities, etc., and is beyond the scope of this 
discussion. In the case of dual-port RAMs, howev-

er, the solution is simple: Do not cascade two mas­
ters in width; use a master and a slave. 

The Cypress Dual-Port RAM Family 

Table 1 lists the members of the Cypress dual-port 
RAM family. The package designator D26 stands 
for 600-mil ceramic DIP, and P25 stands for 600-mil 
plastic DIP. The 48-pin ceramic leadless chip carrier 
(LCC) is designated as 1..68. The 52-pin packages 
are designated as L69 for ceramic LCC and J69 for 
plastic LCC (PLCC). The 68-pin packages are des­
ignated by L81 for ceramic LCC, J81 for plastic LCC 
(PLCC), and G68 for ceramic pin grid array. 

Note that the interrupt function is not available at 
the 2048 x 8 level in a 48-pin package. This is due to 
pin limitations. At the 2-Kbyte level, each port re­
quires an additional address pin for the address's 
most significant bit. 

The MIS column in Table 1 indicates whether the de­
vice is a master or slave. The difference between 
these devices is that the masters have arbitration 
logic and the slaves do not. The busy signals are out­
puts from the master and inputs to the slave. (The 
ramifications of this are examined later.) 

Table 1. The Cypress Dual-Port RAM. Family 

Min. 
Package Options 

Config. Part # Access MIS Sem. Int. Busy DIP (P) PLCC (J) TQFP (A) PQFP (N) 

lKx8 CY7C130 25 M N Y Y 48 

CY7C131 25 M N Y Y 52 52 

CY7C140 25 S N Y Y 48 

CY7C141 25 S N Y Y 52 52 

2Kx8 CY7C132 25 M N N Y 48 

CY7C136 25 M N Y Y 52 52 

CY7C142 25 S N N Y 48 

CY7C146 25 S N Y Y 52 52 

2Kx16 CY7C133 15 M N Y Y 68 

CY7C143 15 S N Y Y 68 

5-5 



Table 1. The Cypress Dual-Port RAM Family (continued) 

Min. 
Config. Part # Access MIS Sem. Int. 

4Kx8 CY7B134 20 M/S N N 

CY7B135 20 M/S N N 

CY7B1342 20 MIS Y N 

CY7B138 15 MIS Y Y 

4Kx9 CY7B139 15 MIS Y Y 

4Kx16 CY7C024 15 M/S Y Y 

8Kx8 CY7B144 15 M/S Y Y 

8Kx9 CY7B145 15 M/S Y Y 

8Kx16 CY7C025 15 M/S Y Y 

8Kx18 CY7C0251 15 M/S Y Y 

16Kx8 CY7C006 15 MIS Y Y 

16Kx9 CY7C106 15 MIS Y Y 

Cypress Dual-Port RAM Operation 

A simplified block diagram of the Cypress dual-port 
RAM appears in Figure 1. The device interface in­
cludes three types of signals: address, data, and con­
trol. There are two sets of these signals: those of the 
left port and those of the right port. Each signal has 
either the subscript L or R to designate left or right, 
respectively. 

The address pins are designated AO through A9 
(1024 x 8) and AO through AlO (2048 x 8), where AO 

LEFT 

DATA 1/0 

Busy 

N 

N 

N 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Package Options 

DIP (P) PLCC (J) TQFP (A) PQFP.(N) 

48 

52 

52 

68 64 

68 80 

85 100 

68 64 

68 80 

84 100 

84 100 

68 64 

6~ 80 

is the least significant bit (LSB) and A9 or AlO is the 
most significant bit (MSB). The address pins are 
unidirectional inputs to the device; their states spec­
ify the memory location to be read from or written 
into. 

The data pins are designated 1/00 through 1/07, 
where 1/00 is the LSB and 1/07 is the MSB. The 
data pins are bidirectional; their states represent ei­
ther the data to be written or the data to be read. 

The control pins are chip enable (CE), read/write 
(R/W), and output enable (OE). A sefIlaphore en-

RIGHT 

DATA 1/0 

DUAL-PORT 
RAM 

MEMORY 

CELLS 

CONTROL AND ADDRESS ARBITRATION LOGIC 

Figure 1. Dual-!'ort RAM Block Diagram 

5-6 



=:a~YPRESS~~~~~~~~~~~u~n~d~er~s~ta~n~d~in~g=D~ua~I~-p~O~r~t~~~s 

LEFT SIDE WRITE 

LEFT SIDE 

ADDRESS 

LEFT SIDE READ 

(OPEN DRAIN) 

(OPEN DRAIN) 
INTR 

INTERRUPT TO RIGHT SIDE 

RIGHT SIDE READ 

RIGHT SIDE 

ADDRESS 

RIGHT SIDE WRITE 

Figure 2. Interrupt Logic 

able control pin (SEM) is included on dual-port 
RAMs with semaphores. 1Wo flags are also pro­
vided, INT and BUSY; both have open-drain out­
puts and require external pull-up resistors. A LOW 
on the chip enable input allows that port to become 
functional. Data is either read from the internal 
dual-port RAM array or written into it, depending 
upon the state of the read/write signal; a LOW initi­
ates a write operation. The three-state data output 
drivers are enabled by a LOW output enable. 

When one port writes to a pre-determined mailbox, 
an interrupt to the other port is generated. When 
the interrupted port reads that memory location, 
the interrupt is reset. 

When both ports address the same memory location 
and both chip enables are active (LOW), contention 
occurs for that address. An arbitration is then per­
formed, and ownership of the memory location is 
assigned to the winner. An active (LOW) busy sig­
nal notifies the loser of the arbitration. 

Dual-Port ~ Functional Description 

An important aspect of the Cypress dual-port 
RAMs is their interrupt logic. A simplified logic 
diagram of this logic appears in Figure 2, with the 

5-7 

chip enables deleted. A port's chip enable must be 
asserted for the port to either read from or write to 
any location, including the mailboxes. Note that you 
can use the mailbox locations as conventional 
memory by not connecting the interrupt line to the 
appropriate processor. 

The upper two memory locations (7FF and 7FE for 
2K x 8; 3FF and 3FE for lK x 8) can be used for mes­
sage passing. The highest memory location serves 
as the mailbox for the right processor. When the left 
processor writes to this mailbox, the interrupt (re­
quest) to the right processor, INTR, goes LOW. 
When the right processor reads its mailbox, the flip­
flop is reset, and INTR goes HIGH. 

The second highest memory location serves as the 
mailbox for the left processor. When the right pro­
cessor writes to this mailbox, the interrupt (request) 
to the left processor, INTL, goes LOW. When the 
left processor reads its mailbox, the flip-flop is reset, 
and INTL goes HIGH. 

Note that each port can read the other port's mail­
box without resetting the associated flip-flop. If 
your application does not require message passing, 
leave the appropriate pin open. Do not connect a 
pull-up resistor to the pin, and do not connect the 
pin to the processor's interrupt request pin. 



i~YPRESS ==========;;;;U;;;;n;;;;d;;;;e;;;;rs;;;;ta;;;;n;;;;d;;;;in;;;;;g;;;D=ua;;;;I;;;;-P;;;;o;;;;r;;;;t RAM==s 

Table 2. Functional Operation of Dual-Port Masters 

Operation 
Result of Operation after Arbitration 

Case Left Port Right Port (Master) 

1 Read Read 

2 Read Write 

3 Write Read 

4 Write Write 

Note that the active state of the busy signal prevents 
a port from setting the interrupt to the winning port. 
Additionally, an active busy signal to a port prevents 
that port from reading its own mailbox and thus re­
setting the interrupt. These operations are ramifi­
cations of the data-ownership concept. 

If both ports address the same memory location at 
the same time, the master performs an arbitration, 
so that one port wins and the other loses. Because 
each of the two ports can be in either the reading or 
writing state, there are four possible combinations 
of ports and states (Table 2). 

Both Ports Reading' 

If both ports of a dual-port IC read the same loca­
tion at the same time, you can assume that both 
ports read the same data. When arbitration occurs 
as a result of contention in a Cypress dual-port 
RAM, the port that wins the arbitration gets tempo­
rary ownership of the memory location. The losing 
port can read the memory location but the busy sig­
nal tells it that it lost the arbitration. 

To guarantee data integrity in a multiprocessor sys­
tem, it is standard practice to apply the concept of 
data ownership. This ownership can apply to 
executable code, data, or control locations in 
memory. The control locations in memory can be 
associated with a resource, such as a printer, tape 
drive, disk drive, or communications port. 

One Port Reading, the Other Writing 

The result of arbitration will allocate priority to ei­
ther the reading or the writing port. In Cypress 
dual-port RAMs, if the losing port is attempting to 
write data, the write is inhibited so that the data in 

5-8 

Both ports read. 

Loser is prevented from writing. If loser 
is reading and ports are asynchronous, 
data read might not be valid. 

memory is not corrupted. The BUSY flag to the los­
ing port signals that the write was not performed. 

If the losing port is attempting to read data, it is pos­
sible for the data to be old data, new data, or some 
random combination of the two. The BUSY flag to 
the losing port signals that the old data is still being 
read on the losing port's data lines. The old data will 
remain undisturbed for an access time after either 
BUSY on the losing port goes HIGH, the losing 
port's address is toggled, CE for the losing port is 
toggled, or R!W for the losing port is toggled during 
a valid read. 

If the new data is needed, the BUSY flag can be used 
to generate a delay until the new data is present or 
can signal a processor to attempt the read again af­
ter BUSY is cleared. 

Both Ports Writing 

The losing port is prevented from writing so that the 
data cannot be corrupted. BUSY is asserted to the 
losing port, indicating that the write operation was 
unsuccessful. 

Arbitration Logic 

Figure 3 shows the arbitration logic used in Cypress 
dual-port RAM masters. The arbitration logic has 
three functions: to decide which port wins and which 
loses if the addresses are equal simultaneously, to 
prevent the losing port from writing, and to provide 
a busy signal to the losing port. 

The arbitration logic consists of left and right ad­
dress equality comparators with their associated 
delay buffers; the arbitration latch formed by the 
cross-coupled, three-input NAND gates labeled L 
and R; and the gates that generate the busy signals. 



-=a~YPRESS~~~~~~~~~~U=n=d=e=rS=t=an=d=in=g=D=U=a=I=-P=o=rt=RAM~==s 
Operation With Unequal Addresses 

When the addresses of the right and left ports are 
not equal, the outputs of the address comparators 
(nodes A and B) are both LOW, and the outputs of 
the gates labeled Land R (nodes C and D) are both 
HIGH. This condition forces both BUSY signals 
HIGH and both Write Inhibit signals HIGH. The 
arbitration latch does not function as a latch. 

Left Port Camped on an Address 

Next, consider the condition where the left-port ad­
dress and chip enable are quiescent, and the right­
port address changes to an address equal to that of 
the left port. Nodes A and B are initially LOW. 

Because the right-port address does not go through 
the delay buffer, the output of the right-address 
comparator (node B) goes HIGH before node A 
goes HIGH by a delay interval, d. The delay must 
be greater than the delay through the R gate, so that 
when node B goes HIGH, node D goes LOW, caus­
ing node C to remain HIGH. CE(R) and CE(L) are 
both HIGH; they are the inverse of the chip enable 
inputs. Node D going LOW causes the output of the 
BR gate to go LOW, which tells the right port that 
the memory location it just addressed belongs to the 

ADDRESS(L) 

LEFT 
ADDRESS 
EQUAL 
COMPARATOR 

WRITE INHIBIT(L) 

RIGHT 
ADDRESS 
EQUAL 
COMPARATOR 

ADDRESS(R) 

WRITE INHIBIT(R) 

Figure 3. Arbitration Logic 

5-9 

left port. A write inhibit signal is also generated that 
prevents the right port from writing into the ad­
dressed memory location. 

In summary, when the right port addresses a 
memory location that is already being addressed by 
the left port, a delay occurs that equals the sum of 
the propagation delays of the right-address 
comparator, the R gate, the BR gate, and the output 
driver (not shown in the diagram). Then the busy 
signal to the right port is asserted. Nodes A, B, and 
C are now HIGH, and node D is LOW. BUSY is as­
serted to the right port. 

Due to the symmetry of the arbitration logic, the de­
vice operates the same when either the right or left 
ports are camped on an address. 

Right and Left Addresses Equal Simultaneously 

In the general case, it is possible to have both ports 
access the same memory location simultaneously, 
unless this is guaranteed not to occur by the design 
of the system. When nodes A and B go from LOW 
to HIGH at exactly the same instant, the arbitration 
latch settles into one of two states and determines 
which port wins and which port loses. The latch is 
designed such that its two outputs are never LOW 
at the same time. It also has a very fast switching 
time. 

The dual-port RAM imposes a minimum time dif­
ference between either of two events: the two chip 
enables going from inactive to active and the two 
sets of addresses going from mismatch to equal. If 
the events are close together in time, the probability 
of each port either winning or losing the arbitration 
is approximately equal. This parameter is called 
port set -up time for priority and is abbreviated as tps 
on the datasheets. The specified value is 5 ns. 
(Note, though, that Cypress product engineers have 
measured tps at room temperature and nominal 
Vee (5V) and found a value of approximately 200 
ps.) In other words, if one port addresses a memory 
location 5 ns before the other port, the first port is 
guaranteed to win. If not, the result of the subse­
quent arbitration is unpredictable. 



Other Key BUSY Parameters 

Several other key parameters are specified with re­
spect to the busy signal. For example, BUSY LOW 
from address match, tBLA, is the maximum time it 
takes busy to go LOW, as measured from the time 
the two port addresses are the same. This is the time 
from an address match until the losing port is noti­
fied that it has lost the arbitration. Obviously, the 
sooner this occurs the better. If the value of tBLA is 
greater than the memory cycle time, another cycle 
must be added to detect the condition, which can se­
verely reduce performance. This time is less than 
the minimum cycle time for all speed grades of all 
Cypress dual-port RAMs. 

Another parameter, BUSY HIGH from address 
mismatch, tBHA, is the maximum time it takes 
BUSY to go from LOW to HIGH, as measured 
from the time the two port addresses do not match 
until the BUSY signal goes HIGH. The comments 
of the preceding paragraph also apply here. 

The next two parameters are similar to the preced­
ing two. The difference is that the chip enable con­
trols the busy signal. The parameters are BUSY 
LOW from CE LOW, tBLC, and BUSY HIGH from 
CE HIGH, tBHC. Both of these parameters are less 
than the minimum cycle time for all speed grades of 
all Cypress dual-port RAMs. 

BUSY HIGH to valid data, tBDD, is the maximum 
time it takes the data to become valid to the losing 
port after BUSY goes away. This parameter's value 
equals the address access time, tM, because a read 
cycle is initiated to the losing port when its BUSY 
signal transitions from LOW to HIGH. An action 
by either port can cause the busy transition. The 
winning port can either change its address or deas­
sert its chip enable. 

Th illustrate the last two parameters, Figure 4 shows 
the timing for the right port performing a write op;. 
eration and the left port asynchronously moving to 
the same address and attempting to perform a read 
operation. The first parameter of interest is tDDD, 
which is the maximum time between the stabiliza­
tion of the data to be written by the winning port and 
that same data becoming valid at the outputs of the 
port that received the BUSY. The second parame-

ADDR. ==>< ADDRESS /"\ATCH ~~ _____ _ 
I __ {H.lP>£}_-__ 

I I 
. I kli:.td>I 

----:O=-L=-D ---+rTTTlllTTTtOTmlll>K NEk. *~---
I. I f I 

WE. 

DIN. 

DOUTL I I VlllfN1U!NO ! x= 
. I 1..-b"J~~"E.gj 

OEL "'-----/ 

Figure 4. BUSY Timing 

ter of interest is tWDD, which is the maximum time 
between the HIGH-to-LOW transition of the win­
ning port's write strobe and the data becoming valid 
at the outputs of the port that received the BUSY. 

It is possible for the losing port to read either the old 
data, the new data, or some random combination of 
the two under these circumstances: the two ports are 
operating asynchronously (i.e., with independent 
clocks), and the conditions illustrated in Figure 4 oc­
cur (winning port writing and losing port reading). 
If the read occurs early with respect to the write, old 
data is read. If the read occurs late with respect to 
the write, new data is read. And, if the read occurs 
at the same time the data is changing from old to 
new, the data read is not predictable. However, all 
is not lost. There are two general solutions. Both 
use the fact that the busy signal is asserted to the los­
ing port, telling the port in this instance that the data 
it is reading might not be valid. 

One solution is to use the HIGH-to-LOW transition 
of the busy signal to the losing port to generate an 
interrupt to the processor (or state machine) so that 
operation can be repeated. The drawback of this 
technique is that a snapshot of the states of the los­
ing port's address lines and readlwrite line must be 
taken, so that the processor can tell what load/store 
operation caused the interrupt. Taking this snap­
shot requires latches or flip-flops for the data and 
control logic for doing the sampling, and the tech-

5-10 



ZE~YPRESS====================~u~n~d~e~rs~ta~n~d~in~g~D==ua~I~-p~o~r~t~==~s 
nique uses up an interrupt line. The processor must 
also be able to read the sampled data later. 

A second solution is to use the LOW level of the 
BUSY signal to the losing port to prompt one of 
three types of delays: delay the reading of data until 
the data becomes valid, which occurs an access time 
after the LOW-to-HIGH transition of BUSY; insert 
wait states until BUSY goes HIGH; or stretch the 
clock until BUSY goes HIGH. Any of these meth­
ods probably require less hardware and control log­
ic than the preceding approach. Use of these meth­
ods does mean that the BUSY signal must 
eventually go from LOW to HIGH. This happens 
when the winning port either changes its address or 
deasserts its chip enable. For this reason, as well as 
for system noise immunity and power-saving consid­
erations, it is recommended that blocks of addresses 
be decoded to generate chip enables for the dual­
port RAMs. 

Because the losing port has no control over the win­
ning port in the general case, however, a question 
arises: What can the losing port do to successfully 
read the data just written, assuming the winning port 
does not change its address, write, or chip enable 
signals? There are two possible operations: 

1. Change an address line to a different address, 
then change back to the original address. This 
toggles the BUSY signal to the losing port. 

2. Change the state of the chip enable. This also 
toggles the BUSY signal to the losing port. 

Hardware Semaphores 

Cypress offers dual-port RAMs with eight on-chip 
hardware semaphore latches that are independent 
from RAM memory locations. Semaphore signal­
ing is a popular method of allocating mutually exclu­
sive accesses to blocks of memory that are shared 
among several processors. Exclusive processor con­
trol guarantees data integrity in sensitive applica­
tions such as shared I/O buffers. Semaphore signal­
ing can also improve the efficiency of block memory 
accesses by preventing delays and processor stalls 
due to a memory location being busy from another 
processor access. 

5-11 

1taditional semaphore signaling has been imple­
mented in software using dedicated memory loca­
tions to hold the semaphore signals. A processor 
could attempt to gain control of a semaphore by us­
ing an indivisible test and set instruction to test if the 
semaphore was set by another processor. If the 
semaphore is free, the processor sets the semaphore 
and gains exclusive control of a block of memory. 

Cypress dual-port RAMs have on-chip hardware 
semaphores that are independent from RAM 
memory locations. Hardware semaphores elimi­
nate the need to use a processor with an indivisible 
test and set instruction. Semaphore control re­
quests are handled using a standard write to the 
semaphore latch followed by a read instruction. 
There is no requirement to lockout other processor 
accesses to the semaphore between the write and 
read. 

The hardware semaphores provide flexible software 
configuration of shared memory. The semaphores 
operate independent of any memory in the RAM al­
lowing software to allocate block addresses and 
block sizes. 

Cypress hardware semaphores implement a "token 
passing" scheme allowing the port in possession of 
the token to have exclusive access to a block of 
shared memory. Possession of the token can only be 
relinquished by the port with possession. A port's 
request for possession of the token will be denied if 
the token is held by the other port. 

Possession of a token is indicated by the state of a 
semaphore latch formed from two cross-coupled 
NOR gates (see Figure 5). The latch can be set so 
that only one port controls the semaphore at a time. 
Additional input latches on the semaphore ports are 
used to hold requests to set or clear the latch. An 
output latch on each port is used to prevent the out­
put from changing during a read from the port. 

The semaphore latches are accessed through the 
data and address ports the same way as a RAM cell 
access. The semaphore enable line (SEM = LOW) 
initiates a semaphore access cycle. The AO-2lines 
select which semaphore latch is accessed. Only the 
data on Do is latched into the semaphore during a 
write. The other data lines are ignored. During a 



WRITEL WRITER r--------
LE LE 

DOL -,.-----1 D QI-----....., ...------IQ DI-------.-- DOR 

D1L D1R 

D7L D7R 

Q D Q 

LE LE 
READL READR __ -1... ___ ---1 L..-___ -'-__ 

Figure 5. Semaphore Latch Cell 

read, the semaphore drives all the data lines (DO 
through D7, D8) with the semaphore signal. 

A processor requests control of a seIIlaphore by 
writing a 0 to the DO port of the semaphore ad­
dressed by AO-~. The 0 is latched into the port's in­
put register and held until anoth~r write attempts to 
set it to 1. If the semaphore is free at the time of the 
request, the pprt will immediately be granted con­
trol of the semaphore. If the semaphore is con­
trolled by the other port, the request for control will 
be denied. If control of the semaphore is relin­
quished by the other port while the 0 is still pendin~, 
then the requesting port will gain control of the 
semaphore. Control of the semaphore can only be 
relinquished by the controlling port by writing a 1 to 
the semaphore. 

Th see if a request for control of the semaphore was 
successful, a read of the semaphore is performed. 
A port controls the semaphore if 0 is read out on DO. 
The port does not control the semaphore if a 1 is 
read. The semaphore outputs drive all of the data 

lines with the state of the semaphore, so DO-7 will 
be "00000000" when control is granted and will be 
"11111111" when control is denied. The state ofthe 
internal semaphore latches may change during a 
read, but the output latch prevents the changes from 
propagating to the data lines. A new read cycle must 
be performed in order to update the port's output 
lines. 

If both ports attempt to write a 0 within tsps of each 
other while the semaphore is free, semaphore ar­
bitration logic will guarantee that only one side 
gains control of the semaphore. 

Address Transition Detection 

Why does changing the address or chip enable allow 
a losing port to read data successfully? All Cypress 
dual-port RAMs, both masters and slaves, use a cir­
cuit design technique called Address ltansition 
Detection (AID) to improve performance and re­
duce power dissipation. 

5-12 



ATD improves performance by equilibrating differ­
ential paths, pre-charging critical nodes, and forcing 
the outputs to a high-impedance state. Equilibra­
tion and pre-charging will bias critical nodes to volt­
age levels approximately in the mid-point of the 
small-signal operating range; when the data is 
sensed, it takes a shorter amount of time to transi­
tion to the 0 or 1 level. Forcing the outputs to their 
high-impedance states improves speed slightly, but 
more importantly, the technique reduces output 
switching noise by elimipating crowbar current and 
separating the output current into two pulses 
instead of one. 

ATD minimizes power consumption because it 
turns on power-hungry circuits only when they are 
required. Slightly over 50 percent of a RAM's cir­
cuits are linear, and approximately 70 percent of the 
power is dissipated in the sense amplifiers during a 
re",d operation. When the RAM is operating at its 
maximum frequency, the ATD circuits are constant­
ly triggered, so the power savings are minimal. At 
lower speeds or smaller <futy cycles, however, the 
power savings are significant. 

A diagram representing a typical ATD sequence is 
illustrated in Figure 6. The event that triggers the 
AID sequence for either port is the transition of any 
address, chip-enable, or read/write signal. Equi­
libration and pre-charging are performed next, fol­
lowed by either turning on the sense amplifiers and 
latching the data (read operation) or pulling the BIT 
and BIT lines to the required levels (write opera­
tion) at the a<fdressed location. The master clock 
pulse lasts from 7 to 11 ns, depending upon temper-

IDLE ------. 

+ 
DETECT EVENT 

+ 
TURN-ON CIRCUITS 

+ 
PERFORM OPERATION 

+ 
TUR"!-OFF CIRCUITS 

Figure 6. Simplified AID Sequence 

5-13 

ature, supply voltage, and the distribution ofIC pro­
cessing parameters. At the end of the pulse, the da~a 
is latched and the appropriate circuits are turned 
off. 

Master Standalone Operation 

Figure 7 presents a block diagram of a system using 
two 8-bit microprocessors, the Cypress CY7C132 
dual-port RAM, static RAM, and EPROM. The ad­
dress lipes of each microprocessor are decoded to 
generate the chip enables to the dual-port RAM, the 
SRAM, and the EPROM. Note that p]lll-up resis­
tors are required on the interrupt requests to the mi­
croprocessors and the busy signals, which go to the 
microprocessors' wait inputs. 

Slave Word-Width Expansion 

The block diagram in Figure 8 shows how to inter­
connect a CY7C132 (2Kx 8) master and a CY7C142 
(2K x 8) slave to form a 16-bit-wide word. The dia­
gram does not show the interfaces to the processors 
or the connections for the interrupt signals. As pre­
viously explained, the interrupt outputs are not 
available at the 2K x 8 level in the 48-pin DIP due to 
pin limitations. In the LCC and PLCC packages, 
the interrupt outputs are available from both the 
master and the slave devices. You can use either 
one. You do not have to tie the corresponding inter­
rupt pins of the master and the slave together. 

Delaying the Write Strobe 

In widt4 expansion, the write signals to the slave de­
vices must be delayed by an interval at least equal to 
tBIA, which is the time required for the master to as­
sert the busy signal to the slave after an address 
match. The delay prevents the slave data at the ad­
dress in contention from being overwritten. Both 
the write and read cycle times must be increased by 
this amount of time. In equation form: 

twe = tpWE + tBf.A Eq.2 

where the delay must be at least equal to tBIA. 

Note that if you add more slaves to make a wider 
worc\, (e.g., 24 or 32 bits) the delay elements' out­
puts can connect directly to the write strobe inputs. 
Additional delay elements are not required. 



INT (l) 

ADDR 

DATA 
WR 

WAIT 

MREQ 

8-BITflP 

~ . 
CHIP 

ENABLE 

DECODE 

A10 - AO (l) 
D7 - DO (l) 

WE (l) 
OE(l) 

CHIP ENABLE (l) 
BUSY (l) 

D15 - D8 (l) 

Vee 
{) 

1 
INT(l) INT(R) 

1 
A(l) A(R) 

D (l) D(R) 

WE(l) WE(R) 
CE (l) CE(R) 
BUSY (l) BUSY (R) 

DUAL-PORT 2K x 8 

CY7C132 

I Vee 

..... ADDR ADDR ~ 
f-- ..... DATA DATA ~ '--

II ..... WE WE ~ I 
CE CE 

r-- RAM RAM r--

..... ADDR ADDR ~ 
4 DATA DATA ~ 

CE CE 
EPROM EPROM 

Figure 7. 1Ypical 8-Bit Microprocessor 

A(l) A(R) 
D (l) DUAL PORT D(R) 
WE(l) RAM CHIP WE(R) 
OE(l) CY7C132 OE(R) 
CE (l) 2Kx8 CE (R) 

-

l 
BUSY (l) MASTER BUSY (R) 

I 
,\7 DELAY 

I Vee 
DELAY 7 

'- ..... A(l) A(R) + 
D(L) DUAL PORT D(R) ..... WE(l) RAM CHIP WE(R) ... 

~ OE(l) CY7C142 OE(R) ~ 
~ CE(l) 2Kx8 CE (R) ~ 

BUSY (l) SLAVE BUSY (R) 

Figure 8. Expansion (2K x 16) with Slave 

5-14 

INT(R) 

ADDR 

DATA 

WR 

WAIT 

MREQ 

8-BITflP . ~ 
CHIP 

ENABLE 
DECODE 

A10 - AO (R) 
D7 - DO (R) 
WE(R) 
OE(R) 
CHIP ENABLE (R) 
BUSY (R) 

D15 - D8 (R) 



Slave Standalone Operation 

Some applications might require that you give one 
port permanent and absolute priority over the oth­
er. You can easily do this by implementing the 
memory using only slave dual-port RAMs. The 
BUSY input to the priority port must be tied HIGH 
by either connecting it directly to Vee or to Vee 
through a lO-KQ pull-up resistor. You can connect 
the low-priority port's BUSY input to the high­
priority port's read/write input. 

In this configuration, the busy (read/write) signal to 
the lower-priority port always prevents the port 
from writing when the high-priority port is writing to 
any location. The data of the lower-priority port is 
overwritten when the two ports operate asynchro­
nously, the lower-priority port is writing, and the 
higher-priority port simultaneously writes. This is 
not a very elegant solution because the BUSY input 
to the low-priority port is not qualified by comparing 
the addresses of the two ports or their chip enables. 
However, this approach suggests how the slave dual­
port RAMs can be used with external arbitration 
logic. The busy inputs can be used by control logic 
or under program control to dynamically change the 
port priorities. 

If the lower-priority port is read only, you can tie its 
BUSY input HIGH by either connecting it directly 
to Vee or to Vee through a pull-up resistor. 

Dual-Port Design Example 

The following design example illustrates the meth­
odology to follow when designing with Cypress dual­
port RAMs. In this example, a dual-port memory is 
used for message passing and bus snooping for many 
bus masters on a 32-bit-wide system bus. The dual­
port RAMs interface to a 32-bit system bus on the 
right side and a 16-bit processor on the left side. 
From the right port, the memory appears as BK 
32-bit words, and from the left port the memory ap­
pears as 16K 16-bit words. 

The memory has the following characteristics: 

1. The memory location corresponding to address 
o for both ports is the same. 

5-15 

2. The data read from and written to the memory 
from both ports is in the same order. Thus, DO 
of the right port corresponds to DO of the left 
port. Additionally, D16 of the right port ap­
pears as DO of the left port in address location 
204B. 

3. The minimum cycle time is 35 ns. 

4. Th conserve power, blocks of addresses are de­
coded to generate the required chip selects. 

5. The CY7C132 and CY7C142 dual-port RAMs 
are used. Part of the design task is to specify the 
number of masters and slaves required and the 
way they must be interconnected. 

6. The appropriate BUSY signals must be gener­
ated to the correct port when contention occurs. 

7. All possible mailbox locations that can be used 
for message passing are used. 

B. The right port signals are ARO ... AR12, 
DRO ... DR31, CER, and BUSYR. The left port 
signals are ALO ... AL13, DLO ... DL15, CEL, and 
BUSYL. 

A simplified logic diagram of the memory appears 
in Figure 9. A total of16 2KxB dual-port RAMs are 
required. The devices labeled MA (master, bank A) 
through MD (master, bank D) are CY7C132 mas­
ters. The devices labeled SU (slave, upper half­
word) and SL (slave, lower half-word) are CY7C142 
slaves. The memory consists of four masters and 
twelve slaves, along with the required control logic. 

From the right port the memory is configured as BK 
32-bit words, with a master controlling three slaves. 
The one-of-four decoder labeled RB (right bank) 
generates chip enable signals for each bank of 2K 
32-bit words. Data is written (sampled) on the bus 
side, and the only reads performed are from the 
mailbox locations. 

A general-purpose, right-port, control-logic block 
generates control signals that conform to the timing 
diagram shown in Figure 10. The diagram does not 
show the generation of the output enable control 
signals, but they are similar to the RB decoder sig­
nals. If your application does not require message 
passing to the right port, you can tie the right-port 
output enable pins of all of the dual-port RAMs di­
rectly to Vee. 



DLB - DL15 DLO - DL7 

Vee 0 

---< r"'fiiW=L" r-1'""RiWl r- r-1""'fiiW=L AL(O:10) - RJW-L r- AR(O:10) 
AL(O:10) AL(O:10) ~ ~ AL(O:10) ~ ~ AL(O:10) - IIO-L - IIO-L ~ I/O-L 

""" 
I/O-L - CE-L r CE-L ,..... CE-L I-- f- CE-L 

OE-L OE-L r- OE-L r- I- OE-L 

~ 8-R 8-R r- '- 8-R r-~ 8-R 
~ LEFTPORT RJW-R P- RJW-R I>- - RJW-R l>- f- RJW-R ~ RIGHT PORT 

~ CONTROL AR(O:10) AR(O:10) ~ r- AR(O:10) ~ f- AR(O:10) ~ CONTROL ~ LOGIC I/D-R I- I/O-R I/O-R I/O-R LOGIC 
~ CE-R CE-R I- - CE-R l- I- CE-R I- ~ OE-R OE-R I- - OE-R I- ~ OE-R I-

K 

us 

OL 

d 8-L 8-L I-- f-< 8-L I-- f- 8-L 

MA SU I-- ~ SL 
'---- '---

~L 
Vee,. 

---< "fiiW""t" - ""'iiiiiV-l r- r-""'iiiiiV-l r- r-~ 
I~R 

ENABUE-

AL13 
AL12 
AL11 

A ~p-8 
C 2 

!~ UL 

~~ 
EN 7 

10FS 
DECODE 

= ---< 

r 

-

AL(O:10) 
IIO-L 
CE-L 
OE-L 

8-R 
RJW-R .... 

AR(O:10) 
IIO-R .... 

CE-R 
OE-R 
8-L 
M8 

~ 

AL(O:10) - I/O-L 

r CE-L 
OE-L 
8-R 

RJW-R 
AR(O:10) 

I/O-R 
CE-R 
OE-R 

8-L 
SU 

'----

I- ~ AL(O:10) l-
I-- I/O-L 
--< CE-L I--
I-< OE-L I--

I-- '- 8-R I--
P- - RJW-R P-

~ ~ AR(O:10) ~ I/O-R 
I- - CE-R I-
P- - OE-R P-
I-- ,..... 8-L I--
I-- SL 

'----

f- AL(O:10) 
~ I/O-L ..... CE-L 
I- OE-L 
f- 8-R 
i- RJW-R 
f- AR(O:10) 

IIO-R 
~ CE-R 
i- OE-R 
f- 8-L 

SL 
'---

P-

~ 
I-
P-

0 

~ 1 
2 

A 
8 

R8 

~ 
L-

AR11 
AR12 

---< """"RiWL"" -~r- r-""'iiiiiV-l r- r- '""iiiW'"L 3 EN 
A 0 10F4 
8 1 AL(O:10) AL(O:10) I- ~ AL(O:10) I- ~ AL(O:10) 

2 - - IIO-L - IIO-L I/O-L I/O-L DECODE 

EN L8 3 - CE-L r CE-L --< CE-L I-- ~ CE-L 
OE-L DE-L ,..... OE-L I-- f- OE-L 

10F4 8-R 8-R I-- f-< 8-R I-- f- 8-R 
DECODE RJW-R .... RJW-R .... r- RJW-R P- C- RJW-A .... 

AR(O:10) AR(O:10) I- - AR(O:10) ~ f- AR(O:10) ~ IIO-R~ I/O-A I- I/O-A IIO-R 
CE-R CE-A P- I-- CE-R P- i- CE-A P-
OE-R OE-A P- i-- OE-R P- i- OE-R P-
8-L 8-L I-- --< 8-L I-- f- 8-L OE -R 

~ ~ I-- ~ ~ 
~ - ~ 

- ""'iiiiiV-l r- - -RJW L r-- A/W-L r- I- RJW-L .... - AL(O:10) AL(O:10) l- I-- AL(O:10) l- f- AL(O:10) - IIO-L - I/O-L ..... IIO-L ... IIO-L 
~ CE-L r' CE-L ,..... CE-L I-- f- CE-L 

OE-L OE-L I-< OE-L I-- r- OE-L 
8-R 8-A l- I-< 8-A I-- I-- 8-R 

RJW-A ~ A/w-R l- I- RJW-R l- I-- RJW-R I-
AR(O:10) AR(O:10) I-- I-- AR(O:10) I--~ AR(O:10) I--

IIO-R r- I/O-A ~ IIO-R ~ I/O-R I--
CE-R CE-R I-- CE-A f- CE-R P- ,....-
OE-A OE-A I- r- OE-R P- I-- OE-R .... 
8-L 8-L l- f-< 8-L l- f- 8-L 

~ ~ I-- ~ ~ 
Vee 01 

0A24 - OR31 DA16 - DA23 DRS - DR15 DAO - DR7 

Figure 9. Logic Diagram for Dual-Port Example 

From the left port, the memory is configured as 16K 
16-bit words. For this organization, you might think 
that the slave dual-port RAMs in the second column 
from the right in Figure 9 should be masters. If this 
were the case, however, you would have to defeat 
the arbitration logic in them when the right port ad-

5-16 

dressed the same address; this would add logic, re­
duce the speed, and complicate the design. There­
fore, this design uses a combination of left-bank 
decoding (LB, 1-of-4 decoder) and upper-lower 
16-bit word decoding (UL, 1-of-8 decoder) to cause 
the bank master to arbitrate when the right port is 



CLOCK 

ADDRESS _----'X"-__ -JX'--__ 

CE.OE.IJE u 
Figure 10. Timing for Dual-Port Example 

addressing the same bank as the left port (more on 
this later). 

Right-Port Operation 

For purposes of this discussion, "word" refers to the 
32-bit word at the right-port system-bus interface. 
At the 16-bit processor interface, the 32-bit word is 
referred to as either the lower half word (right-port 
bits 0 through 15) or the upper half-word (right-port 
bits 16 through 31). 

The bank-selection process employs the chip en­
ables. Specifically, the l-of-4 RB decoder decodes 
the four combinations of the upper two right-port 
address-bus signals and generates four active-LOW 
chip enables to each bank of four dual-port RAMs. 
Bank A contains addresses 0 through 2047, bank B 
contains addresses 2048 through 4095, bank C con­
tains addresses 4096 through 6143, and bank D con­
tains addresses 6144 through 8191. In other words, 
bank A addresses 0 to 2K, bank B 2K to 4K, bank C 
4K to 6K, and bank D 6K to 8K. 

The lower 11 right-port address lines, AR(O:lO), are 
connected to the AO through AlO right-port address 
pins of all the dual-port RAMs. 

Figure 10 does not show the generation of the write 
strobe, but does show the signal's timing. The write 
enable is applied directly to all the masters in paral­
lel, then buffered, and then applied to all the slaves. 
The minimum propagation delay of the buffer must 
be at least as large as tBLA, which is the time re­
quired for the master to assert the busy signal to the 
slaves after an address match occurs. 

5-17 

Note that all the right-port output-enable pins are 
connected together. These pins should be driven if 
reading is required; otherwise connect them to Vee. 

The open-drain busy outputs of the right port mas­
ters must be pulled up to Vee using resistors. A val­
ue of 330Q is recommended. The master busy out­
puts connect to all the right-port slave busy inputs 
for each bank. 

For the data bus interface, the I/O pins of each RAM 
column connect to their respective I/O pins on each 
bank. This OR-tie connection is allowed because 
the bank-selection chip enable causes the output 
buffers of the unselected banks to go to the high-im­
pedance state. 

Left-Port Operation 

The 1-of-4 decoder labeled LB performs bank selec­
tion for the left port. The upper two left-port ad­
dress lines, AL13 and AL12, decode bank-select 
chip enable signals for the four masters only. Bank 
A corresponds to addresses 0 through 4095, bank B 
corresponds to addresses 4095 through 8191, bank 
C corresponds to addresses 8192 through 12,287, 
and bank D corresponds to addresses 12,288 
through 16,383. 

To perform upper and lower half-word selection, the 
l-of-8 decoder labeled UL decodes the upper three 
right-port address signals. The decoder then gener­
ates eight chip enable signals with a resolution of 
2048. The chip enables connect to the slaves' chip­
enable and output enable pins (2048 resolution) and 
to the masters' output enable. Because the master 
chip enable resolution is 4096, the master arbitrates 
for two blocks of 2048 16-bit half words. 

The lower eleven left-port address lines, AL(O:lO), 
connect to left-port address pins AO through AlO of 
all the dual-port RAMs. 

At the 16-bit interface, writing is only required if the 
left port wishes to send a message to the right port. 
Otherwise, you can connect the left-port write pins 
of all the dual-port RAMs to Vee. 

To implement the left-port data bus interface, the 
left port's data I/O pins are connected together in 
the same manner as those of the right port for all 
RAMs in the same column. In addition, to multiplex 



a 32-bit data word to a 16-bit half word, the least-sig­
nificant bytes and the most-significant bytes of each 
2048-word group are connected together. The UL 
decoder that controls the left-port output enable 
performs the selection. 

If you use the masters' interrupt pins, pull them up 
to Vee through a 330Q resistor and connect them to 
the processor interrupt-request input. You can 
leave the slaves' interrupt pins unconnected. 

If the control signal connections from their source 
to the dual-port memory constitute electrically long 
lines, they might require proper termination to 
avoid voltage reflections due to impedance mis­
matches. Refer to Cypress's application note titled 
"Systems Design Considerations When Using Cy­
press CMOS Circuits." 

Understanding Dual-Port RAMs 

References 

1. Dijkstra, E.W, "Solution of a Problem in Con­
current Programming Control." CACM, Vol 8, 
no.9, Sept. 1965, p 569. 

2. Dijkstra, E.W, "Co-operating Sequential Pro­
cesses." Programming Languages, F. Genyus 
(Ed.) Academic Press, New York, 1968, pp 43 -
112. 

Notes 

1. The Interrupt function is not available at the 2K 
x 8 level in a 48-pin package. 

5-18 



Understanding Large FIFOs 

Introduction 

This application note explains the internal opera­
tion of the large FIFOs manufactured by Cypress 
and shows how to use the devices to accomplish 
depth and width expansion. Other topics covered 
here include FIFO interfacing, the writing and read­
ing process, failure modes, and typical problem 
symptoms and solutions. This information applies 
to the following Cypress FIFOs: CY7C419, CY7C420, 
CY7C421, CY7C424, CY7C425, CY7C428, CY7C429, 
CY7C432,CY7C433,CY7C439, CY7~,CY7C46~ 
CY7C464, CY7C470, CY7C47~ and CY7C474. 

Timing parameters given in this application note are 
taken from Cypress Semiconductor's High Perfor­
mance Data Book. 

Large FIFO Overview 

The Cypress product line of large FIFOs include 
densities from 256x9 up to 32, 768 (32K) x9,with the 
depth doubling (256, 512, lK, 2K, 4K, 8K, 16K, 32K) 
between densities. These monolithic devices are 
available in a wide variety of packages with the in­
dustry standard pinout and with access times as fast 
as ten nanoseconds and cycle times as fast as twenty 
nanoseconds. Not all speed grades are llvailable in 
all densities or all packages, so consult the Cypress 
databook to determine valid speed, density, pack­
age combinations. The smallest package available 
is the 32-lead 7mm x 7mm TQFP, which occupies 
less than one-third the area of a 300-mil-wide 28-pin 
DIP. 

Although the first FIFOs utilized a shift-register 
type of architecture, today's large FIFOs employ an 
SRAM type of interface. Data is written into and 
read out of the devices, as with SRAM write and 

read operations. These operations can occur inde­
pendently of one another and are made possible by 
a specially designed six-transistor, dual-ported 
SRAM celL This cell makes use of separate read 
and write transistors to allow independent R/W op­
eration. 

Operating these FIFOs at their maximum through­
put rates demands the generation of narrow write 
and read pulses. To facilitate significantly higher 
throughput rates, Cypress has developed the 
CY7C440 and CY7C450 families of clocked, or self­
timed FIFOs. 

These FIFOs feature 70-MHz operation and are 
characterized by self-timed interfaces. You gener­
ate the read and write enables, which are combined 
internally with the appropriate clocks. Thus, you do 
not need to generate narrow read and write pulses. 
These FIFOs also feature totally independent, 
asynchronous, read and write operations. 

Each FIFO is organized such that data is read out in 
the same sequential order in which it was written. 
Full, half-full and empty flags facilitate writing and 
reading. Additional pins are provided to facilitate 
unlimited expansion in width and depth, with no 
performance penalty. 

Writing to and Reading from the FIFO 

Figure 1 shows the large FIFOs' read and write tim­
ing. Reads and writes are asynchronous to each oth­
er. The read process begins with R's falling edge. 
The output data bus, QO - Q8, leaves the high-im­
pedance state tLZR ns after R's falling edge. The 
output data becomes valid tA ns after that same fal­
ling edge. This tA period is referred to as the FIFO's 
read accesll time. R's rising edge ends the read pro­
cess. 

5-19 



R 

tLZR 

00-08 DATAOUT VALID 

I~ i 
; Iso I ~:j ,--------,I 

00-08 -----lCt'-- DATAIN VALID ~*"-------« DATAIN VALID >-
Figure 1. Asynchronous Read an~ Write Timing 

The data on the QO - Q8 bus remains valid for tDVR 
ns following the R rising edge. This is the output 
data hold time at the end of the read cycle. The in­
ternal circuitry then readies itself for the next read 
operation. This period is referred to as the tRR, or 
read recovery time, and must be observed between 
consecutive read operations. The read signal's 
minimum pulse width is denoted by tpR and is iden­
tical to the read access time, tAo 

You can determine the read cycle time (tRe) by ad­
ding the access time (tN and the read recovery time 
(tRR), which you can find in the FIFO data sheet. 
The maximum read frequency is the reciprocal of tA 
+ tRR. For example, a Cypress FIFO with a 20-ns 
access time and a lOons read recovery time results in 
a 30-ns read cycle time, or 33.3-MHz maximum read 
cycle frequency. 

The write process is similar to the read process. A 
write begins with the falling edge of the write line, 
W, and terminates with W's rising edge. For a valid 
write to occur, the input data bus, DO - D8, must be 
stable for tSD ns prior to W's rising edge and for tHO 
ns after this edge. These specifications are referred 
to as the data set-up and hold times, respectively. 
The write strobe also has a minimum negative pulse 

width, denoted as tpw A minimum recovery time, 
tWR, is required between write cycles. 

The maximum write frequency is the reciprocal of 
tpw + tWR. As an example, a device with a 20-ns 
write strobe width and a lOons write recovery time 
yields a 30-ns write cycle time, or a 33.3-MHz maxi­
mum write cycle frequency. 

The FIFOs include separate write and read count­
ers (pointers). Each write or read operation incre­
ments the appropriate counter one position. When 
the FIFO is empty, both counters point to the same 
location. The relative position of these counters de­
termines the device's status, which is indicated ex­
ternally via empty, half-full, and full flags. 

Applications 

FIFOs are asynchronous devices that are ideal for 
interfacing between two asynchronous processes. A 
FIFO allows two syste~s running at different data 
rates to communicate by providing a temporary data 
or control bpffer. 

'JYpical FIFO applications include 

• Interprocessor communications, in which bidi­
rectional devices are especially useful 

5-20 



WRITE ENABLE ___ ~~W 

INPUT DATA 

READ ENABLE 
RIOOIIIIE:....----

OUTPUT DATA 

---""""!~ DO-D8 OO-Osl----.o!.-
MASTER RESET 

___ ~~MR 
+5V FFI--~~ 

EFI--~~ 

FiFI--~~ 

STATUS FLAGS 

FULL, EMPTY, HALF-FULL 

Figure 2. Standalone Operation 

Vee 

FF EF 

I CY7C420 A 
CY7C421 
CY7C424 

TAIN 9 CY7C425 9 DATA CY7C428 DA OUT 
CY7C429 
CY7C432 
CY7C433 1'[ 

XI 

~ 

FF EF --
...l-- CY7C420 

.-------I 

CY7C421 
CY7C424 

DATA :rAIN 9 CY7C425 9 CY7C428 
DA OUT 

CY7C429 
CY7C432 
CY7C433 1'[ 

XI 

FF EF 

CY7C420 
CY7C421 
CY7C424 

DATA 
:rAIN 9 CY7C425 9 CY7C428 DA 

OUT 

CY7C429 
CY7C432 

E CY7C433 1'[ 

XI 

"i7 

Figure 3. Width Expansion 

• Communications systems, including local area 
networks 

• Digital-signal-processing-based systems for buff­
ering real-time data 

• Electronic data processing, CPU, and peripheral 
equipment, including high-performance disk con­
trollers 

5-21 

Common FIFO Configurations 

All large FIFOs can be interconnected, without ex­
ternal logic, to create either wider FIFOs, deeper 
FIFOs, or both. Standalone operation, width ex­
pansion, depth expansion, and design consider­
ations are described next. 

Figure 2 illustrates standalone mode, and Figure 3 
shows width expansion mode. In both these modes, 



the XI (expansion in) pin is grounded and the FL 
(first load) pin is tied HIGH. 

The OR gates in the width-expansion design gener­
ate composite full, half"full, and empty flags (F, HF, 
E). Cqp1posite flags are necessary because varia­
tions in propagation deh,lYs might prevent the indi­
vidual FIFOs in the design from entering the F, HF, 
or E states simultaneously. A composite flag prop­
erly reflects the instantaneous status of the entire 
word. 

Figure 4 illustrates depth expansion. The FL (first 
load) pin on one device Ip.ust be grounded to define 
that FIFO as the first FIFO to be written to. The FI­
FOs are then daisy-chai~ed together by connecting 
one device's XO (expansion out) output pin to the 
next device's XI (expansion in) input. The XO ofthe 
last device in the chain is connected to the XI of the 
first device, thus forming a token-passing ring. 

Token passing allows the writing and reading pro­
cesses to stay consistept. That is, the passing and 

FF 
Il(O 

WRf'i'E CY7C420 
CY7C421 
CY7C424 

DATA IN 9 9 CY7C425 
CY7C428 , CY7C429 
CY7C432 
CY7C433 

FF 
~t l(O 

I 
CY7C420 
CY7C421 

U CY7C424 

9 I 
CY7C425 
CY7C428 
CY7C429 
CY7C432 
CY7C433 

FF 
~f l(O 

CY7C420 
CY7C421 
CY7C424 

9 CY7C425 
CY7C42B 

RESET 
CY7C429 
CY7C432 
CY7C433 

Xlt 

holding of a read or write token tells an individual 
FIFO whether it is actively being read from or writ­
ten to. In the token-passing procedure for write op­
erations, the first FIFO is written to until it is filled. 
An internal write pointer determines the location 
written to, and after every write, the pointer is in­
cremented. When the pointer reaches the last 
physical location, no more 'writes can occur to that 
device. At that point, the first FIFO passes the write 
token to the next FIFO in the chain via the XO-XI 
interface. The second device, now in possession of 
the write token, receives all future written data until 
this device also fills up and passes the write token 
onto the next device in the chain. 

If enough writes occur to fill up the FIFO chain, the 
last device fails in its attempt to pass the write token 
back to the first device. This is because the full 
FIFO cannot accept a write token. No further writes 
to the FIFO chain are allowed until a read operation 
occurs, which frees up an internal location. The rel­
ative positions of the internal write and read count-

EF 

READ 

9 9 DATA 0 UT 

1'[ 

vee 

EF 

9 I 
I 

i'[ 

!OF 

9 

i'[ 

~ 
Figure 4. Depth Expansion 

5-22 



ers determine a device's status and whether it can 
accept data though a write operation. Figure 5 shows 
the timing for write operations. 

As with the procedure for writes, the first FIFO in 
the chain holds the read token. When the FIFO 
chain is read from, the device holding the read token 
supplies the data from the address specified by the 
device's read pointer. The read pointer is then in­
cremented. The incrementing continues until the 
FIFO is empty, and the read token is passed to the 
next device in the chain. The passing of the read to-

w 

WRITE TO LAST PHYSICAL 
LOCATION OF DEVICE 1 

tXOL 

, 
tSD 

ken is done via the XO - XI interface. Figure 6 shows 
the timing for read operations. 

A depth-expansion design must generate composite 
status flags to adequately reflect the instantaneous 
state of the FIFO chain, as is done for width expan­
sion. 

Retransmit 

The retransmit feature is useful in communications 
for retransmitting packets of data and in disk drives 
for rewriting sectors. It is especially useful in ap-

WRITE TO FIRST PHYSICAL 
LOCATION OF DEVICE 2 

tXOH 

DO - 08 VALID DATA VALID DATA 

QO-Q8 

Figure 5. Write Expansion Timing 

READ FROM LAST PHYSICAL 
LOCATION OF DEVICE 1 

READ FROM FIRST PHYSICAL 
LOCATION OF DEVICE 2 

Figure 6. Read Expansion Timing 

5-23 



tpRT[2] -~~ r---------------------
n,m 

R 

Figure 7. Retransmit Timing 

plications where a single block of data in the FIFO 
must be sent out multiple times, as in a word or pat­
tern generator. 

Data can be retransmitted any number of times, and 
with Cypress FIFOs, the retransmit feature can be 
used at any time, no matter how much data the 
FIFO contains. This is in contrast to some compet­
ing FIFOs, such those from IDT, which do not allow 
use of the retransmit function when the FIFO is full. 

In the retransmit operation, the read pointer is reset 
to its initial location and the R pin is pulsed until the 
read pointer advances to the same memory location 
addressed by the write pointer. The retransmit (RT) 
pin is available in the single-device and width-ex­
pansion modes, but not in depth expansion because 
this pin designates the FIFO to be loaded first. 

The retransmit function is initiated by asserting an 
active-LOW pulse to the retransmit input, which re­
sets the internal read counter to zero. Keep the R 
input inactive during this time; otherwise, the con­
flicting requirements on the read counter might 
cause it to become corrupted. The retransmit pro­
cess does not affect the state of the write counter or 
the write process, though the retransmit timing 
constraints shown in Figure 7 must not be violated. 

Note that the architectural description in the 1990 
and previous Cypress data books incorrectly stated 
that the W input must be inactive during a retrans­
mit cycle. No design or usage rules are violated if re­
transmit and write cycles overlap or occur simulta-

neously; the device does not lock up, and data is 
neither lost nor corrupted. 

The reasons for the data book's retransmit/write re­
striction are more historical and application-ori­
ented than functional. Specifically, the first large 
FIFOs did not permit writes during a retransmit 
cycle. This set a documentation precedent that all 
future devices had to match. 

Additionally, keeping track of what data is currently 
in the FIFO and what data is being read out can be­
come complicated. For example, if a FIFO is half 
full and the retransmit function is activated and 
writes continue, filling the FIFO to three quarters 
full before the read pointer catches up with the write 
pointer, the FIFO outputs all of the data. 

Common Problems and Solutions 

To help prevent problems and correct them when 
they occur, this section describes the causes and 
solutions to some common FIFO problems. The 
first problem to consider is corrupted or repetitive 
data in a FIFO. 

Corrupted or Repetitive Data 

The most common cause of corrupted and repetitive 
data being present in a FIFO is a spurious active sig­
nal (glitch) on the FIFO's W input. Because Cy­
press devices are extremely fast, a write pulse as 
short as 3 ns initiates a write. Write glitches cause 
whatever logic levels are present at the data inputs 
to be written into the FIFO, which can put false data 
into the device. If valid data is present at the data 

5-24 



inputs, a write glitch causes this data to be written a 
second time, resulting in duplicated data. 

Write glitches are often the result of voltage reflec­
tions due to impedance mismatches, which you can 
eliminate using impedance-matching termination 
networks. Termination networks are recommended 
on the Wand R traces on printed circuit boards 
(PCBs) when the lines exceed approximately 4 in­
ches from source to a single load. This line length 
assumes a 2-ns rise/fall time for the read and write 
strobes. For Rand W signals with sub-2-ns rise/fall 
times, line lengths as short as 1 inch might require 
termination. 

A termination network matches the load impedance 
to the PCB trace's characteristic impedance, which 
is typically 50Q or less for microstrip or strip line 
construction on G-IO glass epoxy material. To 
minimize voltage reflections, a slightly overdamped 
termination is preferred. Cypress recommends a 
47-pF (max.) series capacitor and a 47-ohm resistor 
be connected from the read or write pin to ground 
(Figure 8). This termination network acts as a high­
pass filter to short, high-frequency pulses and dissi­
pates no DC power. Read or write lines that drive 
more than one FIFO require only one termination 
network. Put the network at the input that is electri­
cally farthest from the source. For multiple loads, 
see the "Systems Design Considerations When Us­
ing Cypress CMOS Circuits" application note for 
help in determining the maximum line length. 

FIFO data corruption can also be caused by viola­
tion of master-reset timing constraints. As shown in 

Understanding Large FIFOs 

iL CYPRESS 
FIFO 

SOURCE 

1 
R,W 

47pF 

47 OHMS I 
Figure 8. Recommended Termination Network 

the timing diagram in Figure 9, the read and write 
signals must be inactive around the rising edge of 
MR (master reset) to satisfy the tRMR, or master-re­
set recovery-time specification. This constraint is 
necessary because the FIFO goes through an inter­
nal initialization process during reset and requires 
a settling period after the reset terminates. 

FIFO Locks Up 

Short noise pulses on the FIFO's master reset pin 
can cause the FIFO to not respond because it is 
"partially reset." If this problem occurs, you need to 
terminate the master reset line. 

Missing or Disappearing Data 

Glitches on the R input can cause data to disappear 
because of an unintended read operation. The read 
increments the internal read counter, resulting in 

tMRSC ------..... 

R,W 

twpw 
tRMR 

Figure 9. Master Reset Timing 

5-25 



the loss of the current data word. Here again, a ter­
mination network eliminates the unwanted glitches. 

Repetitive or Out-or-Sequence Data, False Full or 
Empty 

A misaligned internal read or write pointer can 
cause a variety of symptoms, including repetitive or 
out-of-sequence data and false full and/or empty 
conditions. The two most common causes of misa­
ligned pointers are master-reset violations and 
boundary-condition violations. 

Boundary conditions are defined as the FIFO being 
either full or empty. When high-density FIFOs are 
connected in parallel to make a wider word, certain 
conditions can cause the FIFOs to choose individu­
ally to either ignore or act upon a read or write re­
quest. The system-level symptom of individual FI­
FOs making different decisions is word 
misalignment. The problem occurs in the empty 
condition when a read immediately follows a write 
and in the full condition when a write immediately 
follows a read. 

Operation at the Empty Boundary 

Consider a FIFO that has been reset and is empty. 
The empty flag is active (LOW), and internal logic 
inhibits read operations. In the general case, the 
read and write signals are asynchronous. Upon 
completion of the write operation the internal state 
of the FIFO goes from empty to empty + 1. During 
this interval, a read operation might or might not be 
recognized. A read preceding the write is ignored; 
a read following the write is not. In between these 
conditions, the FIFO decides whether to recognize 
the read. During this aperture of uncertainty, it can­
not be determined whether the read will be ignored 
or not. With one FIFO, this uncertainty is accept­
able. However, if two or more FIFOs are connected 
in parallel to make a wider word, some might ignore 
the read, and others might not. 

Operation at the Full Boundary 

A similar condition occurs when a single FIFO be­
comes full. The full flag is active (LOW), and inter­
nallogic inhibits write operations. A read operation 
immediately followed by a write operation causes 

the FIFO to go from full to full - 1 and back to full. 
During the time the FIFO is going from full to full 
- 1, a write operation might or might not be recog­
nized. The aperture of uncertainty applies here be­
cause the FIFO takes a finite amount of time to 
change states, and a write command arriving at this 
instant might be ignored. 

Waiting at the Empty Boundary 

Figure 10 shows the timing that prevents problems 
with reads at the empty boundary. Any device read­
ing from the FIFO must wait an amount of time, 
tRAE, . after the termination of the write operation 
before causing a HIGH-to-LOW transition of the R 
signal. The W signal's rising edge indicates the ter­
mination of the write operation. 

One way to satisfy this timing is to gate read opera­
tions with the composite empty flag (EF) such that 
the read operation is prevented when the empty flag 
is active. Note, however, that the R signal can be 
LOW either before or during the first write to the 
empty FIFO and the data still propagates to the out­
puts correctly. 

Waiting at the Full Boundary 

Figure 11 shows the timing that prevents problems 
with writes at the full boundary. Any device writing 
to the FIFO must wait an amount of time, tWAR af­
ter the termination of the read operation before 
causing a HIGH-to-LOW transition ofthe W signal. 
The R signal's rising edge indicates the end of the 
read operation. 

You can meet this timing by gating write operations 
with the composite full flag (FF) such that the write 
operation is prevented when the full flag is active. 
However, the W signal can be LOW either before or 
during the first read from a full FIFO and the data 
is still properly written. 

Empty Reads and Full Writes 

When Cypress FIFOs are empty, their data outputs 
go to the high-impedance state. Therefore, at­
tempting to read from an empty FIFO yields unpre­
dictable data. Internal logic inhibits the read, and 
the read pointer is not incremented. 

Internal logic also inhibits attempts to write to a full 
FIFO, and the write pointer is not incremented. 

5-26 



-., ~ Understanding Large FIFOs 
~"CYPRESS ==============~~== 

w 

R 

EF 

DATA OUT VALID DATA 

Figure 10. Read Fall-Through Timing Violation 

R 

w 

FF 

Figure 11. Write Bubble-Through Timing Violation 

Effective Pulse Width Violation 

This phenomenon can occur at either the empty or 
the full boundary if the flags are not properly used. 
The empty flag must be used to prevent reading 
from an empty FIFO and the full flag must be used 
to prevent writing into a full FIFO. Otherwise, the 
effective pulse width of the read or the write strobe 
will be violated, even though the actual signals meet 
the data sheet specifications. 

Consider an empty FIFO that is receiving read 
pulses. Because the FIFO is empty, the read pulses 
are ignored, and nothing happens. Next, a single 

word is written into the FIFO, with a signal that is 
asynchronous to the read pulses, while the read 
pulses continue. The internal state machine in the 
FIFO goes from empty to empty + 1 shortly after 
the rising edge of the write pulse. However, it does 
this asynchronously with respect to the read pulse, 
and it does not look at the read signal until it enters 
the empty + 1 state. If the rising edge of the write 
signal occurs slightly before the rising edge of the 
read signal an effective minimum LOW read pulse 
width violation will occur. 

In a similar manner, the minimum write pulse width 
width may be violated by attempting to write into a 

5-27 



full FIFO and asynchronously performing a read. 
The empty and full flags must be used to avoid these 
effective pulse width violations. 

Intermittent Malfunctions 

If all the timing requirements appear to be met and 
data in the FIFO is still corrupted, the cause is likely 
to be noise on the power supply. Random spikes on 
either the Vee or ground pins of the FIFO are likely 
culprits when non-repeatable failures occur. 

The cure for this problem is to add a high-pass filter 
capacitor between the device's power and ground 
pins. This practice is recommended whenever the 
read or write frequency exceeds 5 MHz. Use a very 
small (100 - 500 pF) ceramic or mica capacitor. 
Surface-mounted capacitors are recommended be­
cause they have at least an order of magnitude less 
lead inductance than radial or axial leaded capaci­
tors. 

The filter capacitor is in addition to the 0.1- or 
O.Ol-IlF decoupling capacitor that should always be 
present with any high-speed digital chip. Although 

decoupling capacitors are often referred to as by­
pass capacitors-implying filtering properties­
their true function is to supply the instantaneous 
current required when many or all device outputs si­
multaneously switch from LOW to HIGH. This 
larger capacitor thus decouples or isolates the Ie 
from the power distribution system. 

Notes 

1. Expansion out of device 1 (XOI) is connected to 
expansion in of device 2 (XI2). 

2. tpRT is the minimum retransmit pulse width. 

3. tRTR is the retransmit recovery time. It is a 
timing window that must not be violated. 

4. tRAE is an invalid read window. A read 
operation should never be initiated inside this 
window. 

5. tWA!' is an invalid write window. A write 
operation should never be initiated inside this 
window. 

5-28 



Understanding Clocked FIFOs 

Introduction 

This application note explains the basic operations 
and features of Cypress clocked FIFO memories. 
Cypress clocked FIFOs are ideally suited for ap­
plications requiring high data throughput and 
asynchronous data buffering. The clocked FIFO in­
terface simplifies high-speed design and provides 
greater noise immunity over industry-standard 
asynchronous FIFOs. 

Design considerations of the clocked FIFO archi­
tecture are examined, including proper flag opera­
tion and decoding, FIFO boundary operation, and 
resetting and programming the FIFO. FIFO depth 
and width expansion are also covered. 

MHz in non-depth expansion mode. Clocked 
FIFOs cascaded for depth expansion can operate at 
frequencies of up to 50 MHz. 

The CY7C441 and CY7C443 feature 512 and 2K 
word by 9 bit memory arrays, respectively. These 
FIFOs feature high-speed operation and Empty, 
AlmostEmpty, and AlmostFull flags, center power 
and ground pins, and width expandability. Both FI­
FOs are available in either a 32-pin PLCC/LCC 
package or a 28-pin DIP package. 

The CY7C451 and CY7C453 clocked FIFOs have 
all of the features of the 7C44X FIFOs plus FUIT and 
HalfFull flags, programmable AlmostEmpty and 
AlmostFull flags, parity generation and parity 
checking, output enable (OE), and depth expand-

The Cypress family of clocked FIFOs are available ability. The 7C451 features a 512 word by 9 bit 
in several densities with a variety of features. memory array and the 7C453 features a 2K word by 
Table 1 outlines the features of Cypress's clocked 9 bit memory array. Both FIFOs are available in ei-
FIFOs. The entire clocked FIFO family feature ful- ther a 32-pin PLCC/LCC package or a 32-pin DIP 
ly asynchronous operation at clock rates of up to 70 package. 

Table 1. Features of Cypress Clocked FlFOs 
Flag Output Depth Width 

FIFO Density Speed Architecture Parity Enable Expandable Expandable 
7C441 512x9 71.4 MHz Synchronous No No No Yes 
7C443 2048 x 9 71.4 MHz Synchronous No No No Yes 
7C451 512x9 71.4 MHz Synchronous, Programmable Yes Yes * Yes 

Programmable 
7C453 2048x9 71.4 MHz Synchronous, Programmable Yes Yes * Yes 

Programmable 
7C455 512x 18 71.4 MHz Synchronous, Programmable Yes Yes* Yes 

Programmable 
7C456 1024 x 18 71.4 MHz Synchronous, Programmable Yes Yes* Yes 

Programmable 
7C457 2048 x 18 71.4 MHz Synchronous, Programmable Yes Yes* Yes 

Programmable 
• 50 MHz In thiS mode 

5-29 



L; ~YPRESS~~~~~~~~~~;u~nd;e;r;st;a;nd;i;n=g;C;IO;c;ke;d;F;I;F~O=s. 
Clocked Architecture 

The clocked FiFO architecture is designed to 
achieve maximum performance from FIFO memo­
ries while simplifying their use in a system .. Timing 
pulses for the memory array are generated internal­
ly from the read and write clocks thus eliminating 
the need for generating very narrow external read 
and write pulses. 

The read and write ports have se~arate clock inputs 
(CKR, CKW), and read and write operations are 
enabled through separate clock-enable pins (ENR, 
ENW). The read and write clocks can be fully 
asynchronous. Figure 1 demonstrates asynchronous 
reading and writing to a clocked FIFO. 

The clocked FIFO interface is ideally suited for 
state machine controL A state machine can perform 
reads or writes by simply asserting the respective en­
able lines LOW. It is not necessary to toggle the en­
able lines to perform consecutive operations. 

FIFO Writes 

Figure 2 shows a simplified block diagram of the 
clocked FIFO data path. The internal write control 
logic circuitry controls the input register, the write 

WRITE WRITE 

READ 

pointer, and the write port of the dual-ported 
memory array. 

This write operation is similar to writing to a stan­
dard 377 register. The FIFO input register is 
clocked by CKW and enabled by ENw. Data is 
clocked into the FIFO on the enabled rising edge of 
CKW. The data is then written into the memory 
location pointed to by the write pointer, provided 
the FIFO is not full (Full = 1). The write pointer is 
then incremented. A full FIFO will ignore lmy at­
tempted write without upsetting the memory array 
or the flags. The 70-MHz clocked FIFOs have a 
data and enable set-up time (tSD and tSEN) of 7 ns. 

FIFO Reads 

The internal read contr~llogic circuitry controls the 
output register, the read pointer, and the read port 
of the dual-ported memory array. The output regis­
ter holds the word that was last read from the FIFO 
memory array. This register is loaded from the 
memory array in a manner similar to loading a stan­
dard 377 register. The output register is clocked by 
CKR and enabled by ENR. Note that the CY7C45X 
family of clocked FIFOs feature a three-state out­
put register controlled by OE. 

The read pointer points to a word in the memory 
array. That word is loaded into the output register 

WRITE WRITE 

READ 

Figure 1. Asynchronous Writing and Reading to a Clocked FIFO 

5-30 



on the enabled rising edge of CKR, provided the 
FIFO is not empty (Empty = 1), and the read point­
er is then incremented. The word is available at the 
output pins tA after the clock edge. An empty FIFO 
will ignore the attempted read and continue to hold 
the last word in its output register. The set-up time 
for ENR (tSEN) is 7 ns and the data access time (tA) 
is 10 ns for a 70-MHz clocked FIFO. 

Flag Architecture 

Cypress clocked FIFOs feature a synchronous en­
coded flag architecture that simplifies FIFO in­
tegration into a synchronous system. Synchronous 
flags guarantee that a flag update is only triggered 
by a rising clock edge. The state of a flag is guaran­
teed to be valid tpD after the rising clock edge. 

Unclocked asynchronous FIFOs can generate nar­
row flag pulses with indeterminate timing based on 
the timing relationship of read and write pulses. Ex­
ternal flag synchronization logic is required in syn­
chronous designs using unclocked FIFOs. The 
Clocked FIFO architecture eliminates these short 

flag pulses and avoids the need for external flag syn­
chronization logic. 

A small package footprint is maintained by encod­
ing the state of the flags. Pin count and package size 
are reduced and fewer PCB board signals require 
routing. Only two signals are needed to encode four 
states of the 7C44X FIFOs and three signals encode 
six states of the 7C45X FIFOs. 

The FIFO flags are easily decoded inside a pro­
grammable control unit or a state machine control­
ler. Decoding the signals properly produces flags 
synchronized to a single clock. Figures 3 and 4 show 
a block diagram of the flag architecture for both the 
7C44X and 7C45X FIFOs. The diagrams also show 
the external logic needed to decode and synchronize 
the flags. 

The decoded Empty-type flags are synchronized to 
the read clock (CKR) and decoded Full-type flags 
are synchronized to the write clock (CKW). The 
CY7C45X family of Clocked FIFOs features a Pro­
grammable Almost Full/Empty flag (PAPE) that is 
synchronized to the read and write clocks. 

FLAGS 

DUAL-PORT 
RAM ARRAY 

(S12x9) 
(2048 x 9) 

Figure 2. Clocked FIFO Data Path 

5-31 



Reads and Writes with Boundary Flags 

The Empty and Full flags are considered Boundary 
flags because they indicate that the FIFO has 
reached its boundary of operation. Attention must 
be paid to the status of these flags when operating 
the FIFO at or near the boundaries. The internal 
FIFO write and read control logic uses the Bound­
ary flags to determine if an access to the memory 
array is possible. The internal write control logic 
will not attempt to write to the memory array or in­
crement the write pointer if the FIFO is Full, as indi­
cated by the registered Full flag. Similarly, the read 
control logic will not load the output register or in­
crement the Read Pointer if the FIFO is empty, as 
indicated by the registered Empty flag (see Figures 
2,3, and 4). 

The boundary flags determine the state of the read 
and write logic control circuits inside the CIQcked 

Synchronization Registers 

Fli1T 
CKW 

To Write Control Logic 

AlmostFull 
(Programm·~kw 

To Read Control Logic 

Empty 

CKR 

AI mostEmotv 
(programmdblilj 

CKR 

R8ffFU1T 
CKW 

7C45X Internal Flag Logic 

FIFO. Design considerations with boundary flags 
are explored in the next two sections. 

Boundary Latency Cycles . 

A write or a read can cause the FIFO memory array 
to exit from an empty- or full-boundary condition. 
At the empty boundary, the FIFO write control logic 
will allow an enabled write clock to store a word in 
the memory array. However, the Empty flag syn­
chronization register will not reflect the current 
state of the FIFO memory array until it is clocked by 
the read clock. Similarly, at the full boundary, the 
FIFO read control logic will allow an enabled read 
clock to remove a word from the memory array, but 
the Full flag synchronization register will not reflect 
the current state of the FIFO until it is clocked by 
write clock. 

A FIFO latency cycle (update cycle) refers to the 
clock cycle that causes a boundary flag register to be 
updated with the current status of the memory 
array. During this cycle, only a boundary flag regis-

Pins 

(synchronized to CKR) 

ErriPiY + 
AlmostEmpty 

(synchronized to CKR) 

Fli1T+ 
AlmostFull 

(synchronized to CKW) 

External Flag Decode Logic 
(22v10,PLD,FPGA,etc.) 

Figure 3. 7C45X Flag Architecture 

5-32 



22~YPRESS;;~~~~~~~~~~u~nd~e~r~st~an~d~i~ng~C~lo~ck~e~d~F~I~F~O=s 
Synchronization Registers 

FUTI 
CKW 

To Write Control Logic 

AlmostFull 

CKW 

To Read Control Logic 

Empty 

CKR 

AlmostEmpty 

CKR 

7C44X Internal Flag Logic Pins 

FuJf 
+ 

AlmostFull 
(synchronized to CKW) 

AlmostEmpty 
(synchronized to CKR) 

External Flag Decode Logic 
(22vl0,PLD,FPGA,etc.) 

Figure 4. 7C44X Flag Architecture 

ter is updated regardless of the state of ENR or 
ENW. A read-clock latency cycle updates the Empty 
flag register from LOW to HIGH regardless of the 
state of ENR. When the Empty flag register is in the 
HIGH state, an enabled read clock can retrieve data 
from the memory array. The overall effect is that af- . 
ter the FIFO memory becomes non-empty, it takes 
two read cycles to get the first word from the 
FIFO-one to update the flag and one to read the 
data. 

Similarly, a write clock latency cycle updates the 
Full flag register from LOW to HIGH regardless of 
the state of ENw. When the Full flag register is in 
the HIGH state, an enabled write clock can store 
data in the memory array. The overall result is that 
after the FIFO memory becomes non-full, it takes 
two write cycles to put the first word in the FIFO, 

This type of flag operation is desirable because it 
guarantees that flags in the inactive (HIGH) state 
will be valid and usable for at least one clock cycle. 
This architecture eliminates indeterminate short 
flag pulses characteristic of asynchronous flag archi­
tectures. 

5-33 

Free-Running CKR and CKW Clocks 

Boundary-operation timing and latency cycles 
should pose no problem in designs that employ free­
running read and write clocks. Free-running clocks 
insure that flag update cycles will be performed au­
tomatically. The flag registers will be constantly up­
dated with the current FIFO status. 

Designs that do not use free-running clocks must ex­
plicitly issue a clock cycle near the FIFO boundaries 
in order to update the flag registers. Absence of 
free-running clocks may decrease system perfor­
mance by causing the external control circuitry to 
wait for one clock cycle during the flag update cycle 
before performing an operation. 

Resetting and Programming Clocked FIFOs 

Master Reset 

Clocked FIFOs are reset by pulsing the MR (Master 
Reset) pin LOW. Resetting the FIFO clears the 
read and write pointers so that they both point to 
location zero of the memory array, causing the 
FIFO to be Empty. The data output register will 
contain all Os after the reset pulse occurs. Master 
Reset also resets the internal read and write control 



~~YPRESS~~~~~~~~~~~u~nd~e~r~st~an~d~i~ng~C~IO~Ck~e~d~F~I~F~O=s 
logic circuits. The 7C45X family of clocked FIFOs 
can also be programmed during Master Reset. Pro­
gramming the FIFO causes the program word to be 
stored in the FIFO program register. 

Clocked FIFOs generate internal timing pulses off 
of the falling edge of MR in order to reset and pro­
gram the internal FIFO control logic. For this rea­
son, it is very important that the assertion of MR be 
glitch free. A narrow glitch of only a few nanosec­
onds while MR is LOW can be interpreted as a false 
edge and interrupt the reset timing sequence. As a 
result, the FIFO will not be fully reset or pro­
grammed. 

To insure that Master Reset is glitch free, it is recom­
mended that MR be driven by a flip-flop. In applica­
tions requiring a single Master Reset signal to reset 
or program multiple FIFOs, the FIFO pin farthest 
way from the flip-flop may need to be terminated in 
order to reduce glitches caused by voltage reflec­
tions. The need for terminations is a function of 
trace length, rise time, and PCB characteristics (see 
"System Design Considerations When Using Cy­
press CMOS Circuits," in the Cypress Semiconduc­
tor Applications Handbook). 

The probability of improperly resetting a docked 
FIFO due to glitches induced by ground bounce or 
other sources of noise can be reduced by using a 

Master Reset pulse that is as short as possible but is 
greater than tpMR' Long reset pulses increase the 
chance that noise from somewhere in the system will 
be coupled to the MR pin through the ground plane. 
Figure 5 shows a circuit for creating a short MR pulse 
from a long reset pulse. The duration of the MR 
pulse can be increased by adding more delay regis­
ters before the AND gate. 

The proper reset sequence requires that enabled 
read and write cycles not be performed during or 
near the Master Reset pulse. Clock cycles that are 
not enabled by ENR or ENW are allowed during 
Master Reset. To insure that the clocks are disabled, 
ENR and ENW should not glitch LOW. Exact tim­
ing parameters are given in the data sheet. An easy 
way to insure that timing restrictions are met with a 
state machine is to insert pad states (clock enables 
HIGH) between the last read and write before Mas­
ter Reset and between the first read and write after 
Master Reset. 

Programming the 7C45X 

The 7C45X family of clocked FIFOs can be pro­
grammed during the Master Reset cycle. Program­
ming affects the AlmostEmpty and AlmostFull flags 
and sets the Parity. Programming is accomplished 
by writing data to the FIFO while asserting MR 
LOW. The program word is stored in the program 
register. The programming information may be ver-

Reset -----I D Qt--.... --tD 

ClK 

ClK--~~------~ 

I 

\~~----~I----~----~~/ 

t.Ll 
Figure 5. MR Pulse Generation 

5-34 



~,:Z 

., CYPRESS ==========;;;;;;U;;;;;;n;;;;;;d;;;;;;e;;;;;;rs;;;;;;t;;;;;;an;;;;;;d;;;;;;i;;;;;ng;C=lo;;;;;;c~;;;;;;e;;;;;;d;;;;;;F;;;;;;I;;;;;;F;;;;;;O=s 

ified my reading the FIFO while MR is still asserted 
LOW. The FIFO program register is programmed 
to its default value if no write is performed during a 
Master Reset. 

Data lines DO-D5 are are used to program the Al­
mostEmpty and AlmostFulI flags. The value of 
DO-D5, which is written into the program register, 
determines the distance from the FIFO boundary 
flags (Empty and Full) that these flags become ac­
tive. The distance is programmable in 16-word in­
crements and is determined by 16.P where P is the 
value of DO-D5. The PAFE pin encodes the pro­
grammable flag states. 

Data lines D6 - D8 program the FIFO parity option. 
D8 enables the Parity feature when set HIGH. D7 
selects between Parity Generation and Parity 
Checking. Parity Generation is selected when D7 is 
LOW. D6 selects even parity when set LOW and 
odd parity when set HIGH. 

Parity generation provides a simple means for sys­
tems to detect data bit errors. When enabled, the 
FIFO parity checker will examine bits DO-D7 be­
ing written into the FIFO before writing them into 
the memory array. The ninth bit (D8) will be set ac­
cording to the parity mode set in the program regis­
ter. Even-parity mode will set D8 such that the sum 
off all the bits including D8 is even. Odd-parity 
mode will set D8 such that the sum is odd. D8 is 
available on output line Q8/PG/PE during a read 
from the FIFO. Parity checkers down stream in the 
system can use D8 to determine when data has been 
corrupted. 

The 7C45X can be configured as a parity error 
checker. During a write, data bits DO-D8 are ex­
amined before being stored in the memory array. 
D8 is set LOW if a parity error is detected. When 
set for for even parity checking, a parity error occurs 
if bits DO-D7 add to an odd number. Odd-parity 
checking will detect an error if DO-D8 add to an 
even number. D8 is written into the memory array 
with the rest of bits DO-D8. The parity-error bit 
(D8) is then available on Q8/PG/PE during a read 
from the FIFO. 

5-35 

Depth Expansion 

The 7C45X Family of Clocked FIFOs feature depth 
expandability. Two or more 7C45Xs may be cas­
caded to achieve a single, large FIFO memory array. 
Depth expansion may be used in applications re­
quiring buffering of large data packets, using ex­
tremely disparate read and write rates, or having 
long read latencies. 

Depth expansion is achieved by cascading several 
FIFOs using the expansion pins. Data is automati­
cally multiplexed from the FIFOs onto a single out­
put bus using the FIFO's three-state output drivers. 
The flags must be combined to form composite 
flags. Figure 6 shows two FIFOs cascaded for depth 
expansion. 

The cascaded devices act as a single FIFO memory 
array. Read and write control is passed from one 
FIFO to another using the expansion pins. When a 
single FIFO has had all of its memory locations writ­
ten to, it asserts the Expansion Out pin (XO) signal­
ing the next FIFO to begin writing to its array. Simi­
larly, when the FIFO has had all of its memory 
locations read from, it deasserts the Expansion Out 
pin to signal the next FIFO to read data from its 
array. The FIFOs' expansion pins form a simple to­
ken ring. 

The token-passing architecture necessitates the use 
of composite flags in order to detect when compos­
ite FIFO is in a boundary state (Full or Empty). In 
a long series of reads and writes, it is difficult to 
track which of the individual FIFOs possess the read 
and write tokens. The state of the composite FIFO 
could be determined by looking at the flags of the 
FIFOs in possession of these tokens, but this is diffi­
cult and unnecessary. Composite flags, shown in 
Figure 6, bypass this problem by looking at all the 
flags in parallel. 

The First Load pin (FL) indicates which device pos­
sesses the read and write tokens following it Master 
Reset. Only one device should have its FL pin tied 
to V ss. All other devices should tie FL to Vee. 

The Almost Empty and Almost Full flags are not us­
able in depth expansion. The cascaded devices, 
however, can be programmed for parity. All cas­
caded devices will be programmed the same since 



all control and data pins are common. Program 
read occurs automatically on the First Load device 
only to avoid bus contention. 

Width Expansion 

Both the 7C44X and 7C45X family of Clocked FI­
FOs can be width expanded for applications requir­
ing data wider than 9 bits. 

Width expansion is achieved by wiring the FIFOs in 
parallel. Figure 7 shows two FIFOs wired for width 
expansion. Composite flags should be used to pro­
vide proper read and write signaling near the FIFO 
Empty and Full boundaries. Process variations be­
tween FIFOs can result in differences in tSKEWl and 
tSKEW2. This can cause the update cycles to occur on 
staggered clock cycles in different FIFOs. Data mis­
alignment can occur at the boundary condition if an 
operation is performed before all FIFO flag regis­
ters are in the same state. Composite flag signaling 
insures that all FIFOs are in the same state so that 
an operation at the boundary is performed concur­
rently by all FIFOs. 

~ 
XI 

, .... 
~O-DB .. 
CKW 

The PAFE flag from either FIFO may be monitored 
and will give the correct status, or each FIFO may 
be programmed differently to give different PAFE 
flags. Parity generation/checking is performed in 
each device independently acct>rding to how they 
are individually programmed. 

Using a Clocked FIFO Like a 
Standard FIFO 

Applications that require high-speed unclocked 
asynchronous FIFOs memory may use clocked FI­
FOs. Unclocked asynchronous FIFOs operate at 
much lower frequencies than clocked FIFOs but 
feature read and write interfaces driven by single 
read and write strobes. 

Applications can use clocked FIFOs to emulate this 
operation at high speeds by tying the clock to the ap­
propriate enable line. The enable lines should not 
be tied straight to ground. Grounding the enable 
lines directly increases the probability of violating 
enable set-up times in a noisy environment. Tying 
the enables to the clocks closes the timing window 
(when noise can affect the enable pins) and filters 
out unwartted ground noise. The zero hold-time 

OO-OB 

CKR 
E'JW 7C45X ERR 

DO-DB 

CKW 

E'JW 

MR 

OE 

r--- MR RF 

r- OE ElF 

J5AFEiXOJ:[~ 
~ Vss 
XI .... 

DO-DB OO-OB 

1 CKW CKR 1 - , 7C45X 1-- E'JW ERR -
MR RF -
OE ElF JC PAFEIlm J:[ 

Figure 6. Depth Expansion with CY7C45X 

5-36 

.... 

.. 

::I 

J 

OO-OB 

CKR 

ERR 

EMJ5'T"i' 



feature of the enable makes this configuration pos­
sible. Figure 8 shows a 7C45X configured as a stan­
dard FIFO. 

A caveat occurs at the boundary condition flag tim­
ing. Absence of a free running clock will prevent the 
flags from being updated. As a consequence, the in­
ternal FIFO control logic will inhibit read or write 
operations if the respective flag is not updated. To 

... 
00-08 .. 
CKW 

avoid this problem, the FIFO in a boundary state 
must be strobed in order to force a flag update cycle. 
Data is not destroyed during the update cycle. The 
desired operation may proceed once the the flag is 
updated correctly. 

For example, an empty FIFO with its empty flag as­
serted is written to by strobing the write port. The 
empty flag, however, is only updated by the rising 

Vss 
XI !--J-

00-08 

CKR 
7C45X 

00-08 

09-017 

CKW 

EI'IW 

lim 

OE 

EI'IW EI\IR -- lim RF 

r--- OE ElF 
~c ~IT 

.. Xlps 
00-08 QO-Q8 .. 

CKW CKR 
7C45X 

EI'IW EI\IR 
lim RF I--

OE ElF 
~c I'AFEtXO IT 

I 
Figure 7. Width Expansion with CY7C45X 

--.. 
QO-Q8 

-'. 
Q9-Q17 

r 

- PAFEo 

CKR 

EI\IR 

D- Ef.ilI5T"i' 

9 FOIT 

1'AFE1 

WRITE STROBE W ---~--I CKW CKR r-~~--- R READ STROBE 

EI'JW Ef\JR 
7C45X 

00-08 ------1 00-08 00-08 00-08 

HF 
liilR F FULL FLAG liilR ------1 

ElF 

E EMPTY FLAG 

Figure 8. Using a Clocked FIFO Like a Standard FIFO 

5-37 



edge of CKR. Consequently, the read port must be 
strobed in order to force the flag to be updated. 
While the empty flag is asserted, the attempted 
reads are ignored (data remains in the FIFO) and 
only serve to update the empty flag. Once the empty 
flag is deasserted, the data can be read from the 
FIFO in the normal manner. 

It also possible to build a controller that forces an 
update cycle at the FIFO boundary without check­
ing the state of the flags. When a read or a write 
strobe occurs affecting the state of the memory 

array, the controller forces an update automatically 
by toggle the other strobe line. 

Conclusion 

Cypress 7C44X and 7C45X Clocked FIFOs solve a 
wide variety of data buffering and storage needs for 
telecommunications, interprocessor, and data gath­
ering applications. The clocked FIFO architecture 
offers 70-MHz performance and avoids the timing 
and noise problems inherent in unclocked asynchro­
nous FIFOs. 

5-38 



FIFO Dipstick Using Warp2™ VHDL 
and the CY7C371 

Introduction 

Programmable FIFO flags can often simplify the de­
sign of a digital system by automatically indicating 
a status that can prevent overrun or underrun in an 
elastic FIFO buffer. Although many FIFOs are 
available with on-chip programmable flag func­
tions, these features are not available on industry­
standard asynchronous FIFOs. Of those FIFOs that 
do have programmable flags, some do not allow the 
almost-empty and almost-full values to be pro­
grammed independently, or in some cases, for these 
values to be programmed to any specific word 
boundary. This application note presents a method 
by which FIFOs of any size may be monitored by an 
external Programmable Logic Device which will 
then generate all of the flags necessary for most 
FIFO applications. The FIFO Dipstick PLD be­
haves like a measuring device that can observe the 
level of data within a FIFO. 

Application Description 

A variable-length up-down counter is implemented 
with VHDL to measure the exact level of data with­
in a FIFO. The number of bits required for the dip­
stick counter is dependent on the size of the FIFO 
and must satisfy the following equation: 

2D = FIFO Depth; Where: n = number of counter 
bits required 

For example, a 2K FIFO would require an ll-bit 
counter. The nth bit is necessary to prevent the dip­
stick counter from rolling over to zero when the last 
byte is written into the FIFO. In other words, the nth 
bit will only be set when the FIFO is completely full. 

5-39 

Due to the truly asynchronous nature of the read 
and write ports of a FIFO, a state machine must be 
implemented to control the operation of the dip­
stick counter. This state machine must resolve the 
overlapping and nesting conditions that may occur 
with the FIFO_READ _Land FIFO_WRITE _ L 
signals to the FIFO. For instance, multiple read 
pulses may occur within a single write pulse, read 
and write pulses may occur simultaneously, or read 
and write pulses may overlap by any amount of time. 

The status of the almost-full and almost-empty flags 
is determined by simply comparing the dipstick 
counter value to pre-programmed levels and gener­
ating the appropriate combinatorial outputs. This 
method allows for the generation of any flag outputs 
required for a given application. The almost-full 
and almost-empty flags are the most typical levels 
required and are used to determine greater-than­
or-equal-to and less-than-or-equal-to specified lev­
els, respectively. Many possibilities exist, however, 
such as an approx-half-full flag, which could be used 
to add hysteresis to the half-full value of a FIFO. 

Synchronous FIFO Ports 

The VHDL/FLAsH370'M implementation in this ap­
plication note is based upon the following assump­
tion. Both the read and write ports of the FIFO are 
controlled by clocked circuitry and the clocks for 
each port are synchronous to each other. This as­
sumption allows a single clock to be used for the 
state machine and the counter. It also provides for 
the read, write, and reset inputs to be used without 
any chance of a metastable event occurring. As a re­
sult of this synchronous implementation, the al­
most-flags will change state combinatorially within 



tIP;EYPRESS ===;;;;;;F;;;;;;IF;;;;;;O=D;;;;;:ip;;;;;s;;;;;;ti;;;;;;ck=U;;;;;;si;;;;;;n:;;;;g ;;;;;;ffi;;;;;;ar;;;;;p;;;;;;2;;;;;;VH=D;;;;;;L;;;;;;a;;;;;;n;;;;;;d;;;;;;th;;;;;;e;;;;;;CY=7;;;;;;C;;;;;;3;;;;;;7;;;;;;1 

three clock cycles after the clock cycle that initiated 
the read or write. For instance, if a FIFO read is 
held active for two clock cycles followed by one 
clock cycle for read-recovery time, the updated al­
most-empty flag will be available during the read-re­
covery cycle. 

Asynchronous FIFO Ports 

The read and write ports of a FIFO may be con­
trolled by clocked circuitry with clocks that are 
asynchronous to each other. In this case, the state 
machine and counter should be controlled by the 
one clock that best suits the application. If it is 
imperative that the write port of the FIFO receives 
the almost-full flag immediately, the write port 
clock should be used. If it is imperative that the read 
port of the FIFO receives the almost-empty flag im­
mediately, the read port clock should be used. In ei­
ther case, the read or write input from the opposite 
port needs to be synchronized to the dipstick's clock 
before it is used as a state machine input. The 
CY7C371 is ideally suited for this because of its ded­
icated inputs, which can be configured as single- or 
double-registered which will achieve a guaranteed 
lO-year MTBR In addition, the port that is asynch­
ronous to the dipstick's clock must also synchronize 
the almost-flags before use to prevent metastability 
problems. A negative aspect of using the FIFO dip­
stick in this. application is that additional delays are 
introduced between a FIFO access and the almost­
flags status change. These additional delays mayor 
may not be tolerable, depending on the application. 

State Machine Design 

The finite state machine observes the 
FIFO_READ_L and FIFO_WRITE_L inputs in 
order to control the operation of the dipstick count­
er (see Figure 1). There are eight states required: an 
idle state, four counter-enabled states, and three 
counter-disabled states. The counter-enabled 
states are further categorized into count-up states 
(write and rd_hold_wr) and count-down states 
(read and wr_ hold Jd). The counter-disabled states 
(rd_hold, wr_hold, rd_hold_wr_hold) are required 
for the FIFO_READ_L and FIFO_WRITE_L 

pulses that are active for greater than one clock 
cycle. 

Within each state, all four permutations of 
FIFO_READ_L and FIFO_WRITE_L are eva­
luated to determine the next state. If neither signal 
is active, the state machine always returns to the idle 
state. If a single signal goes active or stays active, the 
state machine will progress to the appropriate state 
such that the counter-enabled states are active for a 
single clock cycle only, during each FIFO _READ _ L 
and FIFO_WRITE _ L pulse to the FIFO. If both 
FIFO _READ _Land FIFO_WRITE _ L are ob­
served going active on the same clock cycle, the 
counter-enabled states are avoided completely, al­
lowing the dipstick counter to remain constant. The 
FIFO_RESET_L signal is not required as an input 
to the state machine because the dipstick counter 
will remain cleared if FIFO_RESET _Lis active. 

Wa1p2 TM VHDL Implementation 

The VHDL design used for the FIFO Dipstick is 
completely behavioral. This high-level design meth­
odology eliminates any need to describe device spe­
cific implementations and it also allows for the most 
readability. The Warp2 VHDL Compiler will syn­
thesize the design into low-level components neces­
sary for a CY7C371 automatically. 

The design entity defines all the inputs and outputs 
of the design and assigns a type to these signals. The 
architecture describes the behavior of the circuit. 
See Appendix A for a listing of the code. 

The entity declaration is comprised of a port map, 
a generic statement, and an attribute statement. 
The port map defines the FIFO Dipstick inputs, out­
puts, and the bidirectional counter bits for a vari­
able-length up-down counter. The FIFO_READ _ L, 
FIFO_WRITE _ L, and FIFO_RESET _ L inputs are 
written with a J suffix to indicate that they are active 
LOW signals, all others are active HIGH. The ge­
neric statement is used as a convenient way to define 
the actual size of the dipstick counter. Simply defin­
ing the counter size once in this statement allows the 
entire design to be modified accordingly, including 
the number of bidirectional pins defined for the dip­
stick counter. The attribute statement has been in­
cluded to define the CY7C371 as the PLD for which 

5-40 



~YPRESS ===;;;;;F;;;;;I;;;;;F;;;;;O;;;;;D;;;;;i;;;;p;;;;;st;;;;;ic;;;;;k;;;;;V;;;;;s;;;;;iD;;;:g:;;;ffi;;;;;Q;;;;;rp;;;2=VH=D;;;;L;;;;;3;D;;;;;d;;;;;t;;;;;he;;;;C;Y~7C;;;;3;;;;;7;;;;;1 
RD*WR 

RD*WR 

Figure 1. FIFO Dipstick State Machine Bubble Chart 

Wmp2 will generate a JEDEC file. This statement 
could be deleted if the "C371" is chosen from the de­
vice options menu of Wal]J2 instead of the default 
device. 

The architecture body of the design is comprised of 
three separate processes which will execute in paral­
lel. The process titled outputs defines the output 
flags as a function of the dipstick counter level. 

5-41 

Relational operators are used to compare the 
counter bit_vector to the integer constants defined 
at the beginning of the architecture. Comparing a 
bit_vector to an integer is typically not allowed in 
VHDL, however, Wal]J2's int_math package pro­
vides this capability. Since there is no wait state­
ment included, the afull and aempty signals are 
combinatorial outputs from this process. 



"'nYPRESS ===;;;;;F;;;;;IF;;;;;O=D;;;;;ip;;;;s;;;;;ti;;;;;ck;;;;;U=si;;;;;ng~m;;;;;arp~2;;;;;VH=D;;;;;L;;;;;a;;;;;n;;;;;d;;;;;th;;;;;e;;;;;C;;;;;Y;;;;;7;;;;;C;;;;;3=71 
The process titled counter controls the operation of 
the FIFO dipstick counter. If the FIFO_RESET _ L 
input is asserted, then the counter is cleared on the 
next clock edge. This is accomplished by using a 
Wa1p2 function-call titled i2bv, which converts the 
integer constant "zero_count" to a bit_vector of the 
appropriate length. The result is then assigned as 
the new counter value which is a bit_vector of all zer­
os. If the FIFO_RESET _ L input is not active, the 
counter operation is then determined by the state of 
the dipstick state machine and the current counter 
value. The count-up states will increment the count­
er unless the counter's MSB is set indicating that the 
maximum count has been reached. The count-down 
states will decrement the counter unless it is cur­
rently equal to zero. If none of the conditions de­
scribed above exist, then the counter will maintain 
its current value as indicated in the else statement. 
The inc _ bv and dec _ bv functions, used to increment 
and decrement the counter bit_vector respectively, 
are provided by Wa1p2 as part of the bv_math pack­
age in the work library. 

The process titled state_machine implements the fi­
nite state machine, as represented in the bubble 
chart of Figure 1. This behavioral description makes 
use of the enumerated-type form. The major advan­
tage of this form is that the state encoding can be 
easily changed by the user. The current encoding 
options available are sequential, gray, one-hot, and 
user-defined and are determined by the attribute 
state_encoding. The enumerated type is defined at 

the beginning of the architecture body and is com­
prised of the eight state names. The case statement 
within the process defines the state machine transi­
tions based on the current state and the 
FIFO _READ _Land FIFO_WRITE _ L inputs. 

Differences From Programmable FIFOs 

The following two differences between the FIFO 
Dipstick design and the use of a FIFO with pro­
grammable flags must be understood. First, the la­
tency incurred between a FIFO access and the up­
date of flag status may be prohibitive; refer to the 
synchronous and asynchronous FIFO ports sections 
above. Second, the flag outputs of a FIFO will al­
ways go inactive based on a FIFO strobe going inac­
tive, whereas the FIFO Dipstick solution will always 
change flag states based on the strobes going active. 

Summary 

This application note provides the information re­
quired to implement programmable flags for any 
size FIFO by simply changing the values in the 
VHDL statements of Appendix A, which are noted 
as application specific in the source code. For ap­
plications that require dynamically alterable flags, 
a microprocessor port is easily adaptable. The de­
sign in Appendix A is also easily adaptable to differ­
ent FIFO applications, i.e., clocked FIFOs, BiFI­
FOs, FIFOs with asynchronously clocked ports, etc. 

5-42 



-rcYPRESS ===;;;;;;F;;;;;;IF;;;;;;O=D;;;;;ip~s;;;;;;ti;;;;;;ck;;;;;;' ;;;;;;tJ;;;;;;si;;;;;;ng~m;;;;;;arp~2;;;;;;VH=D;;;;;;L;;;;;;a;;;;;;n;;;;;;d;;;;;;th;;;;;;e;;;;;;CY=7;;;;;;C;;;;;;3;;;;;;7;;;;;1 

Appendix A. FIFO Dipstick Warp2 VHDL Source Code 

USE work.bv_math.all; 
USE work.int_math.all; 

ENTITY dipstick IS 
GENERIC (counter_size: INTEGER := 16);-- APPLICATION SPECIFIC 

PORT (clock, fifo_reset_l, fifo_rd_l, fifo_wr_l: IN BIT; 
afull, aempty: OUT BIT := '0'; 
counter: INOUT BIT_VECTOR(counter_size DOWNTO 0)); 

ATTRIBUTE part_name OF dipstick: ENTITY IS "C371"; 
END dipstick; 

ARCHITECTURE behavior OF dipstick IS 
CONSTANT afull_value: INTEGER := 32000;-- APPLICATION SPECIFIC 
CONSTANT aempty_value: INTEGER := 07;-- APPLICATION SPECIFIC 

TYPE fifostate IS 
(idle, read, rd_hold, rd_hold_wr, rd_hold_wr_hold, 
write, wr_hold, wr_hold_rd); 

SIGNAL nextstate: fifostate; 
ATTRIBUTE state_encoding OF fifostate: TYPE IS SEQUENTIAL; 

BEGIN 
outputs: PROCESS BEGIN 

IF (counter >= afull_value) THEN 
afull <= '1'; 
aempty <= '0'; 

ELSIF (counter <= aempty_value) THEN 
afull <= '0'; 
aempty <= '1'; 

ELSE 
afull <= '0'; 
aempty <= '0'; 

END IF; 
END PROCESS; 

counter: PROCESS 
CONSTANT zero_count: INTEGER . - 0; 

BEGIN 
WAIT UNTIL (clock = '1'); 

IF (fifo_reset_l = '0') THEN 
counter <= 12BV (zero_count , counter_size); 

ELSIF ((nextstate = write) OR (nextstate = rd_hold_wr)) AND 
(counter (counter_size-1) = '0') THEN 

counter <= inc_bv(counter); 
ELSIF ((nextstate = read) OR (nextstate = wr_hold_rd)) AND 

(counter /= zero_count) THEN 
counter <= dec_bv(counter); 

ELSE counter <= counter; 
END IF; 

END PROCESS; 

5-43 



QPRESS ===;;;;;;FI;;;;;;F;;;;;;O=D;;;;;;ip;;;;;· s;;;;;;ti;;;;;;ck=U;;;;;;si;;;;;;Iig;;;;.;;;;;;m;;;;;;arp~2;;;;;;VH=D;;;;;;L;;;;;;a;;;;;;n;o;;d;;;;;;th;;;;;;e;;;;;;CY=7;;;;;;C;;;;;;3=71 
Appendix A. FIFO Dipstick Wa1p2 VHDL Source Code (continued) 

state_machine: PROCESS 
BEGIN 
WAIT UNTIL (clock = '1'); 

CASE nextstate IS 
WHEN idle => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) 
nextstate <= read; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l» 
nextstate <= write; 

'1') THEN 

'1') THEN 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l» = '1') THEN 
nextstate <= rd_hold_wr_hold; 

END IF; 
WHEN read => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) 
nextstate <= rd_hold; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l» 
nextstate <= write; 

'1') THEN 

'1') THEN 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l» = '1') THEN 
nextstate <= rd_hold_wr; 

END IF; 
WHEN rd_hold => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) '1') THEN 
nextstate <= rd_hold; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l» '1') THEN 
nextstate <= write; 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l» = '1') THEN 
nextstate <= rd_hold_wr; 

END IF; 
WHEN rd_hold_wr => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo~rd_l) AND fifo_wr_l) 
nextstate <= rd_hold; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l» 
nextstate <= wr_hold; 

'1') THEN 

'1') THEN 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l» = '1') THEN 
nextstate <= rd_hold_wr_hold; 

END IF; 
WHEN rd_hold_wr_hold => 

IF ((fifo_rd_l AND fifo_wr_l) 
nextstate <= idle; 

5-44 

'1') THEN 



~YPRESS ====F=I=FO=D=ip=s=ti=ck=U=si=D=g=m=arp==2=VH=D=L=a=D=d=t=he=C=Y=7=C=3=7=1 

Appendix A. FIFO Dipstick Wa1p2 VHDL Source Code (continued) 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) = '1') THEN 
nextstate <= rd_hold; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l)) = '1') THEN 
nextstate <= wr_hold; 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l)) = '1') THEN 
nextstate <= rd_hold_wr_hold; 

END IF; 
WHEN write => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) '1') THEN 
nextstate <= read; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l)) '1') THEN 
nextstate <= wr_hold; 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l)) = '1') THEN 
nextstate <= wr_hold_rd; 

END IF; 
WHEN wr_hold => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (((NOT fifo_rd_l) AND fifo_wr_l) 
nextstate <= read; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l)) 
nextstate <= wr_hold; 

'1') THEN 

'1') THEN 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l)) = '1') THEN 
nextstate <= wr_hold_rd; 

END IF; 
WHEN wr_hold_rd => 

IF ((fifo_rd_l AND fifo_wr_l) = '1') THEN 
nextstate <= idle; 

ELSIF (( (NOT fifo_rd_l)AND fifo_wr_l) 
nextstate <= rd_hold; 

ELSIF ((fifo_rd_l AND (NOT fifo_wr_l)) 
nextstate <= wr_hold; 

'1') THEN 

'1') THEN 

ELSIF (((NOT fifo_rd_l) AND (NOT fifo_wr_l)) = '1') THEN 
nextstate <= rd_hold_wr_hold; 

END IF; 
WHEN OTHERS => 

nextstate <= idle; 
END CASE; 
END PROCESS; 

END behavior; 

Walp2 and FLASH370 are trademarks of Cypress Semiconductor Corporation. 

5-45 





Data Communications - 6 



Data Communications Section Contents and Abstracts 

100BASE-T4/10BASE-T Ethernet PCI Network Adapter ....................................... 6-1 

This application note covers the design of a dual-speed 100BASE-T4/lOBASE-T Network Adapter Card for 
PCI buses. The CY7C971100BASE-T4/lOBASE-T 1tansceiver chip is used for the physical layer. The Digital 
Equipment Corporation 21140 is used as the Media Access Controller (MAC) andPCI interface chip. This 
application note covers how to interface the CY7C971 to twisted pair RJ -45 connector and how to interface 
the CY7C971 to the DEC 21140. Printed circuit board layout recommendations are included along with com­
plete schematics and a Bill of Materials. 

100BASE-T4 Ethernet Repeater ........................................................... 6-18 

This application note describes the design of a 100BASE-T4 Ethernet Repeater. This repeater has eight ports, 
is unmanaged, Class I and is stackable. The physical layer is comprised of eight CY7C971 100BASE-T4 
Ethernet Transceivers and the repeater core, which was written in Verilog, is implemented using a CY7C388A 
8KFPGA. 

Interfacing with the SST'" ............................................................... 6-26 

This application note describes how to interface the CY7B951 SONET/SDH Serial1tansceiver (SSTTM) with 
other physical-layer devices. The SST performs clock and data recovery from a SONET/SDH (Synchronous 
Optical NE1Work/Synchronous Digital Hierarchy) 51.84 Mb/s or 155.52 Mb/s interface and can be used in a 
variety of SONET and ATM applications. The application note begins with a brief introduction to the SST. 
Next, interface examples will be given that illustrate how to connect the SST to three different ATM controller 
devices; the first from PMC-Sierra called the PM5345 SUNI, the second, also from PMC-Sierra, called the 
S/UNI-LlTE, and the third from Integrated Telecom Technologi(':s (IgT) called the WAC-013. 

Frequently Asked Questions about HOTLink lM •••••••••••••••••••••••••••••••••••••••••••••• 6-35 

This document lists twenty common questions and answers about HOTLink operation and usage. The list 
of questions was based on customer requests for information on HOTLink. This document is also available 
in section two of the HOTLink User's Guide. 

HOTLink Design Considerations .......................................................... 6-44 

This application note describes how to implement and characterize high-speed serial links made using the 
CY7B923 and CY7B933 HOTLink parts. Primary topics are an overview of how both HOTLink parts operate 
internally, how to work with ECL signals, and how to interface to optical fiber and electrical (copper) cables. 

Serializing High Speed Parallel Buses to Extend Their Operational Length ..................... 6-100 

Operating high speed parallel buses over significant distances can be problematic due to signal distortion, 
skew, and crosstalk. These effects can lead to loss of data and failure of the bus. This application note de­
scribes how to operate a parallel bus over a serial communication link. Using a high-speed serial link, the 
distortion, skew, and crosstalk problems are eliminated. In addition, serializing a parallel bus allows for op­
eration of the bus over and extended distance. 



QYPRESS ===;;;;D;;;;a;;;;ta=C;;;;O;;;;ID;;;;ID;;;;U;;;;D;;;;i;;;;ca;;;;t;;;;io;;;;D;;;;S;;;;S;;;;e;;;;c;;;;ti;;;;o;;;;D;;;;C;;;;O;;;;D;;;;te;;;;D;;;;t;;;;s;;;;a;;;;D;;;;d;;;;A;;;;h;;;;s;;;;tr;;;;a;;;;c=ts 

Using High-Speed Serial Links to Supplement Parallel Data Buses ............................ 6-127 

Thday's designers face a multitude of problems when trying to move data within their systems. These problems 
range from overtaxed parallel-bus bandwidth to a lack of pins at the card edge connector. Even routing paral­
lel buses around today's dense circuit boards is very difficult. This application note discusses using high-per­
formance serial links as a solution to some of these bottlenecks. A serial approach provides three immediate 
benefits: first, bandwidth may be offloaded from the backplane bus; second, connector pins are saved; and, 
third, circuit board routing is made much easier since only two traces have to be routed for the data path (ver­
sus one for each data bus bit). 

Drive ESCON'" With HOTLink ......................................................... 6-134 

This application note provides a cursory explanation of the IBM® ESCON (Enterprise System CONnection) 
channel, followed by a detailed design example of an ESCON protocol controller and physical interface. The 
protocol controller is implemented in a Cypress pASIC380 programmable gate array. It includes the circuits 
to perform transmit and receiver CRC generation in hardware, sync control and frame control state machines, 
parity detection and generation, and flagging of erroneous data. Complete VHDL source code is included. 
The physical interface is implemented using HOTLink transmitters and receivers for serialization, deserial­
ization, framing and 8B/lOB encoding and decoding. 

Using the CY7B923 as an ECL Clock Source ............................................... 6-167 

This application note details the use of an inexpensive data communications transmitter device as a high-pre­
cision, flexible, and programmable Emitter-Coupled-Logic (ECL) or Positive-Emitter-Coupled Logic 
(PECL) clock source. Issues concerning clock characteristics, stability, distribution and design techniques are 
discussed in detail. Information is provided to allow the user to configure the device for a variety of applica­
tions. 

Replace Your Am7968 TAXI'" Transmitter With a CY7B923 HOTLink ......................... 6-173 

This application note explains how to use a CY7B923 HOTLink transmitter to replace a 4B/5B encoded TAXI 
transmitter in 8-bit interface applications. The design uses a small PLD operating as an external encoder to 
translate raw incoming data and command requests into the 4B/5B NRZI encoded data streams normally gen­
erated by a Am7968 TAXI transmitter. Bit replication is used to allow a HOTLink transmitter, operating at 
250 Mbaud, to output 4B/5B serial data at a TAXI-compatible 125 Mbaud rate. Full VHDL source code is 
included for the PLD. 

Upgrade Your TAXI -275'" with HOTLink ................................................ 6-184 

This application note will explain how to upgrade TAXI -275'" (Am79168/Am79169) devices with the HOT­
Link (CY7B923/CY7B933) devices from Cypress Semiconductor. It will aid in the migration of TAXI - 275 
designs to the HOTLink architecture. This note begins with an introduction to HOTLink and then gives ad­
vantages of HOTLink and replacement suggestions for the TAXI - 275 devices. 

HOTLinkBuilt-In Self-Test (BIST) ....................................................... 6-197 

This application note describes some important features included in the HOTLink Transmitter and Receiver. 
It describes the Built-In Self-Test (BIST) function in detail, and describes several ways in which BISTcan assist 
in the evaluation of HOTLink products and the evaluation of various transmission link-interconnect compo­
nents. This detailed description is intended to expand upon the cursory information provided in the HOTLink 
datasheet. 

HOTLink Jitter Characteristics .......................................................... 6-214 

This application note describes the basics of jitter in transmission systems and, using HOTLink as the exam­
ple, shows how it can be analyzed and measured. Specific characterization data is presented that will allow 
system integrators to understand the parameters needed to improve the reliability of their systems. 



~CYPRESS ===D=at;;;;a;;;;C;;;;o;;;;m;;;;m=U;;;;ll;;;;ic;;;;a;;;;ti;;;;oll;;;;s;;;;S;;;;e;;;;c;;;;ti;;;;o;;;;ll;;;;C;;;;O;;;;ll;;;;te;;;;ll;;;;t;;;;s ;;;;all;;;;d=A;;;;b;;;;st;;;;r;;;;ac;;;;t;;;;s 

Understanding Bit-Error-Rate with HOTLink .............................................. 6-256 

This application note explains the concept of an error rate for serial interfaces. Causes of errors in both optical 
and copper based interfaces are explained. BER floor plots of data rate vs. distance are included for a copper 
media type. 

DriVing Copper Cables with HOTLink .................................................... 6-262 

This application note covers the methodology and evaluation of various forms of attachment to copper media. 
It is expected to be used in conjunction with a companion application note titled "HOTLink Design Consider­
ations." This application note focuses on transmission line types and how to best couple the HOTlink trans­
mitter to copper media. This document is also available in section eight of the HOTLink User's Guide. 

HOTLink Copper Interconnect-Maximum Length vs. Frequency ............................. 6-296 

This application note focuses on the long-distance communication capabilities and limits of HOTLink over 
numerous types of copper media. Plots are included showing BER floor distances for non-equalized cable 
types. Analysis are included that show the what causes the links to fail at specific distance and data rate com­
binations. This document is also available in section nine of the HOTLink User's Guide. 

Using HOTLink with Long Copper Cables ................................................. 6-305 

While "Driving Copper Cables with HOTLink" describes how to operate HOTLink with copper media, this 
application note discusses the additional problems that must be considered when driving very long cables. 
the design of equalization networks to increase the operational length of a copper interconnect is also covered. 

HOTLink CY7B933 RDY Pin Description ................................................. 6-320 

This application note describes the behavior of the RDY (Ready) pin of the CY7B993 HOTLink Receiver in 
several modes of operation: Encoded, Bypass, and BIST (Built-In Self-Thst). The RDYpin indicates the sta­
tus of the HOTLink Receiver control logic and output pins. Its function and timing are dependent on the state 
of the Mode, BISTEN (Built-In Self-Test Enable), and RF (Reframe) pins. The detailed information con­
tained in this application note should serve as a guide when integrating the RDY pin into the interface logic. 

CY7C42X/46X FIFO Interface to the CY7C923 (HOTLink) ................................... 6-326 

This application note. discusses the parallel interface between industry standard FIFOs (CY7C42X/46X) and 
a Cypress HOTLink 1tansmitter (CY7B923). A simple design example is provided. The bulk of this applica­
tion note focuses on explaining the impact of datasheet timing parameters on the maximum interface frequen­
cy. Six timing relationships are derived from the provided design example. Datasheet timing parameters from 
different speed grade FIFOs are inserted into these equations. The results are summarized in table form 
showing maximum FIFO-HOTLink Transmitter interface operating frequency as a function of FIFO speed. 
This application note is useful as a guide when performing timing analysis on similar HOTLink-FIFO inter­
face configurations. 



=:a jEYPRESS ===:::;;D:::;;3:::;;t3=C:::;;O:::;;m:::;;m:::;;U:::;;D:::;;i:::;;C3:::;;t:::;;io:::;;D:::;;S:::;;S:::;;e:::;;c:::;;ti:::;;o:::;;D:::;;C:::;;O:::;;D:::;;te:::;;D:::;;t:::;;S:::;;3:::;;D:::;;d:::;;A:::;;h:::;;s:::;;tr:::;;3:::;;C=tS 

Interfacing the CY7B923 and CY7B933 (HOTLink) to Clocked FlFOs ......................... 6-329 

This application note considers the interface issues between the Cypress CY7B923/933 (HOTLink) transmit­
ter/receiver and Cypress Clocked FIFOs. This note is divided into two sections: HOTLink Transmitter­
Clocked FIFO interfaces, and HOTLink Receiver-Clocked FIFO interfaces. The transmitter interface sec­
tion provides a simple design example that uses a state machine to control the HOTLink-FIFO interface. A 
state transition diagram for the controller is provided. Critical path timing analysis is then discussed for this 
design example. The derived critical path equations and their critical datasheet parameters are provided and 
explained. A timing diagram is shown to help illustrate these critical timing relationships. 

The HOTLink Receiver-FIFO interface section also includes a simple design example. A simple state ma­
chine controls this interface. The state machine addresses design issues such as reframing the serial data, 
BIST (Built-In Self-Test), and programming clocked FIFOs. These issues are discussed in detail. A state tran­
sition diagram is included. Critical path timing equations are derived and the advantages of pipe lining the 
interface are discussed. Timing waveforms are shown to help illustrate the critical timing relationships. 

Interfacing the CY7B923 and CY7B933 (HOTLink) to a Wide Data Clocked FIFO ............... 6-337 

This application note considers the interface issues between the Cypress CY7B923/933 (HOTLink) transmit­
ter/receiver and Cypress Clocked FIFOs. The focus of this application note is on applications that use wide 
data, e.g., 32 bits. This note is divided into two sections: HOTLink Transmitter-Clocked FIFO interfaces, 
and HOTLink Receiver-Clocked FIFO interfaces. The transmitter interface section provides a simple design 
example that uses a state machine to control the HOTLink-FIFO interface. The data word size is chosen to 
be 32 bits. A simple 4:1 mux is used to funnel the data out of the FIFOs and into the HOTLink Transmitter. 
The state machine controls the sequencing of the data through the muxes. A state transition diagram for the 
controller is provided. Critical path timing analysis is then discussed for this design example. The derived 
critical path equations and their critical datasheet parameters are provided and explained. A timing diagram 
is shown to help illustrate these critical timing relationships. 

Frequently Asked Questions about HOTLink Evaluation Boards .............................. 6-347 

This document lists twelve common questions and answers about usage and modifications to the CY9266 
HOTLink evaluation cards. The list of questions was based on customer requests for information on the 
CY9266 HOTLink evaluation cards. This document is also available in section thirteen of the HOTLink User's 
Guide. 

CY9266 HOTLink Evaluation Board User's Guide .......................................... 6-352 

This document describes the construction, interfaces, and operation of the CY9266 - F (optical), CY9266 - T 
(shielded twisted-pair/twinax), and CY9266-C (coaxial cable) HOTLink Evaluation Boards. These boards 
implement a bidirectional parallel-to-serial and serial-to-parallel communications link, capable of operation 
at serial rates of 160 to 330 Mbits/second (16-33 Mbytes/second). Complete schematics, parts lists, and art­
work are included. 





lOOBASE-T4/ lOBASE-T Ethernet 
PCI Network Adapter 

Background 

This application note describes the design of a dual 
speed 100BASE-T4/lOBASE-T Ethernet Network 
Adapter card for PCI systems using the Cypress 
CY7C971 PHY and the Digital Semiconductor 
21140 MAC (Media Access Controller). The adapt­
er card has the following features: 

• Dual Speed 100BASE-T4/lOBASE-T 

• Full Duplex lOBASE-T 

• IEEE Compliant Allio-Negotiation 

• High Performance PCI Interface 

The network adapter card's function is to interface 
the host computer to the network cabling. The 
adapter card plugs into the host computer's PCI bus. 
The twisted-pair network cable plugs into the end of 
the network adapter card via an 8-pin modular 
RJ -45 jack. Figure 1 illustrates a PCI Network 
Adapter with a host motherboard. 

The network interface card contains all of the cir­
cuitry for the Ethernet physical layer, MAC layer, 
and PCI interface. The Cypress CY7C971 contains 
all of the physical layer circuitry for lOOBASE-T4, 
10BASE-T, and Auto-Negotiation. The DEC 21140 
contains all of the logic for Ethernet MAC and the 
PCI bus interface. The CY7C971 and the DEC 

Figure 1. PCI Network Adapter Card 

6-1 



21140 interface to each other through the Media In­
dependent Interface (MIl). The MIl is an IEEE 
standard interface between the Ethernet physical 
layer and the MAC layer. 

CY7C971 

Media Dependent Interface (MDI) 

The CY7C971 provides a simple interface to the 
8-pin modular RJ -45 jack. No expensive external 
filters or components are necessary because all 
transmit filtering and equalization are performed 
on-chip. All CY7C971 media interface pins are dual 
speed, allowing shared magnetics to be used. A quad 
1:2 transformer for electrical isolation and termina­
tion resistors to match the cable impedance are all 
that is required. 

CY7C971 

RX_D4-
TX_D4-

TX.:..D4+ 
RX_D4+ 
RX_D3--
TX_D3--

TX_D3+ 
RX_D3+ 

RX_D2- 47 

RX_D2+ 

TX_D1-

TX_D1+ 42 

The output buffer design uses a feedback voltage 
driver that minimizes power consumption and con­
trols the common mode output voltage. The trans­
former provides sufficient common-mode rejection 
over the frequencies of interest so that an external 
common mode choke is not needed. Figure 2 shows 
a schematic of the media interface with the 
CY7C971. 

The characteristic impedance of the twisted pair 
medium is a nominal100Q The 1:2 transformer re­
duces (by the square of the turns ratio) medium load 
impedance to 25Q on the primary (971) side. The 
termination resistors and the output buffer imped­
ance together form a matching 25Q load. The 
matching load insures that maximum signal is trans­
ferred to the medium and minimizes reflections due 
to impedance mismatch. 

Quad 
Transformer 

1:2 

,*220 PF 

Modular Shielded 
8-Pin Jack 

RJ--45 
8 

2 

Chassis Ground 

101m 1% Figure 2. MDt Schematic 

6-2 



lOOBASE-T4 PCI Adapter 

The center taps on the media side of the transformer 
are connected to the chassis ground through 220-pF 
(minimum) high-voltage (2 KV) capacitors. These 
capacitors help absorb common-mode noise that is 
picked up or generated on the twisted-pair medium. 
The capacitors must be capable of withstanding the 
isolation requirements specified in the 
100BASE-T4 standard. High-voltage ceramic disc 
capacitors are economical and work well in this ap­
plication. 

Media Independent Interface (MIl) 

The Media Independent Interface (MIl) is the 
IEEE Ethernet standard interface for communica­
tion between the MAC and PHY devices. The MIl 
supports both 100 Mb/s and 10 Mb/s data transfer 
modes. In 100 Mb/s mode, the MIl transfers nibble 
wide data groups at 25 MHz transfer rate yielding 
100 Mb/s throughput. In 10 Mb/s mode, the transfer 
rate is reduced to 2.5 MHz for a 10 M/s throughput. 
During all transfers, the receive and transmit refer­
ence clock are continuously sourced from the 
CY7C971 PHY to the 21140 MAC. Figure 3 shows 
the MIl connections between the CY7C971 and the 
DEC 21140. 

The high precision currents needed for the transmit 
DAC and equalizer are derived from the external 
lOKQ 1 % resistor on pins Rl and R2. An internally 
generated band-gap voltage reference is used by the 
CY7C971 for all internal reference voltages. 

+5V 

77 / 
~ 1,.5KQ 105 

MOlD 1-'-"--__ -+-_f..L.--+-___ """"'''-! Mil_MOlD 

MOC 79 "' /" 106 MILMOC 

RX03 1 ~ 118 MII_RX03 
RX02 2 .~ 117 MILRX02 
RX01 4 < 11ft MII_RX01 

5 ~ 1l~ RXOO , MII_RXOO 
RX_OV 6 , 111 MII_OV 

CY7C971 OEC 21140 

t: 
o 

a... 

RX_ClK 7 , 114 MII_RClK 
RX_ER 8 , 110 Mil_ERR s:: 
TX_ER ~9_--. 

TX_ClK 1--'-1 .... 1 --V __ ~+-___ ----'1 ... 2><...j3 MILTClK 
12 ' 12!5 TX_EN MII_ TXEN 

TXDO 13 ( 126 MII_TXOO 

TX01 14 127 MILTX01 
TX02 15 : 130 MII3X02 
TX03 16 131 MII_TX03 
COL 19 ~ 112 MILClSN 

CRS 20 S 113 MII_CRS 

05 18 ±~.V * 119 SYM_RX04 

"'C 
o 
~ 

Serial Port 

:i ri] cdi'5 :i ri] Cl 

~~~d~~~ 
Q5 !--""80,,--_V > ~_--,-,13 ... 2'-1 SYM_TX04

> 10KQ
______ R_X_-_E-JN 76 I :> I 109 SO

...JI ...JI ...JI ...JI ...JI ...JI ...JI
C::C::C::C::C::C::C::
CJ)CJ)CJ)CJ)CJ)CJ)CJ)

~19~~1~11 I
Figure 3. MIl Schematic ~,..

6-3

All data transfers between the CY7C971 and the
DEC 21140 are over the MIl interface. The DEC
21140 has an additional7-wire serial interface for an
external 10 Mb/s transceiver. This port is not used
in conjunction with the CY7C971 and these port
pins are tied inactive as shown in the schematic (Ap­
pendixA).

The CY7C971 has a buffer enable input signal,
RX_EN, that is not part of the MIl standard. This
pin is used to place the MIl output buffers in high
impedance. In this application, RX _ EN should be
tied HIGH to permanently enable the MIl output
buffers. The Q5 and D5 pins on the CY7C971 are
not used in MIl mode. D5 can be tied either HIGH
or LOW. Since the DEC 21140 does not support ex­
plicit transmit error generation over the MIl inter­
face, the 971 TX _ ER pin should be tied LOW to pre­
vent inadvertent transmit error generation.

The MDC and MDIO pins form a simple two-wire
serial management interface between the 7C971
and 21140. MDC is a clock signal sourced from the
21140. The MDIO line is a bidirectional data line
used to transfer management data frames. The
MDIO signal requires a 1.5 Kohm pull-up resistor
to VCe. This interface is used to transfer standard
management frames that control and monitor the
behavior of the CY7C971. Management frames
contain a PRY address, register number, op code,
and a 16-bit data field.

Clock Pins

The CY7C971 generates all internal and external
clock signals from its on-board oscillator circuit.
The oscillator circuit requires an external 25 MHz
parallel resonant crystal connected between the
CLKO and CLKI pins. The external load capacitors
(qoad) should be chosen so that the total load ca­
pacitance matches the parallel resonant capaci­
tance of the crystal. The load capacitors form a se­
ries capacitance network. The required load
capacitance is derived from the following equation:

Cxtal = (Cpin + Cload + Ctrace) /2

qoad = 2-Cxtal - Cpin - Ctrace

6-4

lOOBASE-T4 PCI Adapter

CY7C971

D
25.000 MHz

52
-l o

Cload T
(33 pF) T

Figure 4. Clock Pins

Cload
(33 pF)

The package pins contribute approximately 1.5 pF
to the parallel load capacitance. Board trace and
pads contribute between 1-2 pF of parasitic capaci­
tance depending on trace length, width and dielec­
tric thickness. According to this formula, an 18-pF
parallel resonant crystal would require 33-pF load
capacitors.

The crystal should have frequency stability of 100
ppm or less in order to comply with the Ethernet
standards Figure 4 shows the CY7C971 clock pin
connections. The load capacitors are connected be­
tween the Clock pins and ground.

LED Pins

The CY7C971 can drive LEDs directly. The LED
pins use an open drain output buffer that can sink up
to 12 rnA. The buffers have a weak internal pull-up
resistor. Figure 5 shows how the LED pins connect
to the LEDs.

The LTX and LRX pins indicate when the CY7C971
is actively transmitting or receiving Ethernet
frames. LTX indicates that the transmitter is active,
and LRX indicates that the receiver is active. These
signals are time stretched to at least 25 ms so that
light pulses emitted from the LED can be detected
by the human eye. These pins may be tied together
in a wire-or fashion to form a generic activity indi­
cator.

The LINKT4, LINKT, and LINKFD pins indicate
when the CY7C971 is in the link pass state for

1.5KQ

o Ol 00
I'- <.C <.C

CY7C971

Figure 5. LED Pins

100BASE-T4, lOBASE-T, or lOBASE-T Full Duplex.
The operating mode is determined either through
the Auto-Negotiation process or by manual configu­
ration with the control register (see section on
MDC/MDIO Management Interface). The
CY7C971 will enter a link pass state when an oper­
ating mode has been selected (either through Auto­
Negotiation or manually) and properly formed
technology dependent link integrity pulses are re­
ceived from the medium. If only a single link indica­
tion is needed, the link indicator pins may be tied
together in a wire-or fashion to form a generic link
pass signal. These signals may also be individually
connected to the 21140's General Purpose pins in
order to quickly inform the MAC of any changes in
the link status.

Configuration Pins

The configuration pins are wired for the adapter
card application as shown in Figure 6. The ENT4,
ENT, ENFD, AUTONEG are wired HIGH to en­
able all of the 7C971 operating modes. At power-up
or during a hard reset, the logic values on these pins
are loaded into their corresponding ability bits in
the MIl Status Register. The ability bits in the Status
Register dictate whether an operating mode can be
become active. After the power-up or reset cycle
completes, the Auto-Negotiation process will ad­
vertise all operating modes that the Status Register
reports as enabled. Management can alter the ad-

6-5

lOOBASE-T4 PCI Adapter

vertised abilities by changing the code word in the
Auto-Negotiation Advertisement Register (Reg. 4).

The ISODEF (Isolate Default) pin is tied LOW in
order to force the CY7C971 to power up with the
MIl ready for normal operation (not isolated). The
Isolate Bit (0.10) will indicate normal operation as
the default setting. The address pins (AO-A4) are
wired for PHY address OlH. Address OOH is re­
served for external transceivers and should not be
used. The CY7C971 will respond to PRY manage­
ment frames that use the assigned address. The val­
ues on the ISODEF and AO-A4 pins are latched
into the 7C971 during a hard reset or power-on
reset.

The MODE pin is tied HIGH to force the 7C971
into MIl mode. MIl mode enables the MIl, PCS
(Physical Coding Sublayer), and PLS (Physical Lay­
er Signaling) logic. The PCS performs the 8B6T en­
coding/decoding and serial/parallel conversion for
100BASE-T4. The PLS performs Manchester en­
coding/decoding and serial/parallel conversion for
lOBASE-T. When the MODE pin is LOW (PMA
Mode), the MIl, PCS, and PLS are disabled and the
100BASE-T4 PMA (Physical Medium Attachment)
interface is exposed on the MIl I/O pins. PMA
Mode is used only in repeater applications.

The Test pin is tied LOW to permanently disable the
CY7C971 test mode. Test mode is used for factory
ATE testing only.

+5V

OOLO C\I~
C\IC\IC\IC\IC\I

0 ... C\I C') «««««

CY7C971

Figure 6. Configuration Pins

Ii:i
Ucn
Il..w

II:

C\I C')
C')C')C')

wcnw u. 1-11-
QWcn
ol-W
~ II:

The RESET pin should be connected to the PCI re­
set pin on the card edge. Power-on reset is taken
care of by an internally generated reset signal. Dur­
ing a hard or power-on reset, the values on the
ENT4, ENT, ENFD, AUTONEG, ISODEF, and
AO-A4 are loaded into the CY7C971 and all of the
logic and analog circuits are forced to their default
states. During a soft reset all of the logic and analog
circuits are reset but the values on the configuration
pins are ignored. The software drivers can issue a
soft reset by setting the Reset Bit (0.15) in the Con­
trol Register. This bit is self clearing.

Layout Considerations

The adapter card design is simple enough to fit on
a standard PCI short card (3.5" x 5") or smaller
PCB. A 4 layer PCB construction with dedicated
power and ground planes is recommended. The
DEC 21140 requires a 3.3V power supply. The
CY7C971 requires a 5V supply. Separate 5V and
3.3V power planes can be partitionecj on a single
power layer. Figure 7 shows an example of parti­
tioned power planes with component placement.

o
Power
Cutout

RJ-45

o

The ground plane runs under both the 5V and 3.3V
planes. There is a cutout in both the power and
ground planes under the RJ -45 and transformer.

The media interface components can be neatly
placed behind the RJ -45 connector. Figure 8 illus­
trates the physical layout of the media interface with
a 4-layer board. 0.027 J.tF decoupling capacitors are
used on each of the CY7C971 power pins. These
0805 SMT capacitors are placed in a row as close to
the pins as possible. The termination resistors fit
neatly in a row behind the decoupling capacitors.
Tantalum 10 J.tF capacitors are placed on opposite
corners of the CY7C971. The CY7C971 media in­
terface and power pins were placed in such a way to
minimize the use of vias and simplify board layout.

Software Considerations

Software drivers are responsible for configuring
registers within the DEC 21140 for proper opera­
tion with the CY7C971. The software drivers are
also responsible for transferring Ethernet packets
between the host computer's local memory and the

11-P~l
I Reg··; 1·" , , " ...

Figure 7. Power Plane and Component Placement

6-6

-= ~YPRESS~~~~~~~~~~~1~OO~B~A~S~E~~~4~P~C~I~A~da~p~te~r

Power
Cutout

High Voltage
Caps

7C971

Figure 8. Media Interface Layout

21140's data buffers, and for managing the 21140
and CY7C971 resources during normal operation.

The CY7C971 contains an on-chip management fa­
cility that is accessed through its serial management
port on the MIl. The management facility consists
of registers that report and control basic activities of
the PRY such as Auto-Negotiation and link status.

The CY7C971 management facility acts as a slave
device to management accesses from the MAC.
Management data is transferred between CY7C971
and the DEC 21140 MAC with the MDC and MDIO

6-7

pins on the MIl. This connection is shown in
Figure 3.

The DEC MAC emulates the management agent
with its software drivers. During power-up, reset, or
a down link, the drivers should poll the management
registers to determine the result of Auto-Negoti­
ation and the state of the link. While the link is up,
the drivers should poll the CY7C971 Status Register
on a timely basis to make sure the link is active. The
CY7C971 was designed so that standard MIl com­
pliant software drivers can support the management
facility.

1a~ lOOBASE-T4 PCI Adapter
, CYPRESS ==============

DEC Register Set-Up

The 21140 Command and Status Registers (CSR)
must be configured so that the 21140 communicates
with the CY7C971 through the MIl port. Register
CSR6 in the 21140 controls the MAC-PRY inter­
face configuration. The 21140 paralld Mil port is
enabled with the Port Select bit in CSR6 (CSR6, bit
18). When set, the MIl port is enabled and the serial
lO-Mb/s port is disabled.

The PCS Function and Scrambler Mode inside the
21140 must be disabled for proper operation with
MIl based transceivers such as the CY7C971. pes
and scrambler modes are used with 100BASE-X
physical layer devices only. The PCS Function is dis­
abled by clearing the PCS bit in CSR6 (CSR6, bit
23). The scrambler is disabled by clearing SCR bit
in CSR6 (CRS6, bit 24).

The 1tansmit Threshold Mode (TIM) must be ad­
justed according to the operating speed of the link.
This bit determines the number of bytes in a frame
that must be stored in the transmit FIFO before the
transmission process is initiated. In lO-Mb/s mode,
the TTM bit (CSR6, bit 22) should be set. In
100-Mb/s mode, the TIM bit should be cleared. The
link operating speed can be determined by polling
theCY7C971 management Auto-Negotiation and
Control registers or by n1onitoring the LED Link
pins through the General Purpose Register.

MDC/MDIO Managemebt Interface

The CY7C971 contains all of the standard and ex­
tended registers defined in the Mil standard (Regis­
ters 0-7). There is also an additional CY1C971
specific register (Reg.16).1'he MAC can perform
write and read operations to the CY7C971 manage­
ment registers by transferring management frames
over the MDIO serial interface. The MDC signal
serves as the management data clock and is sourced
from the MAC. The MDIO signal is bidirectional.
The frame structure is shown in Figure 9.

The management frame is comprised of several
fields. The start sequence 01 is used to identify the
start of a frame. The op-code field determines
whether a read, write, or nd-op will be performed.
The address field determines the target PRY. The

6-8

CY7C971 will only respond to management frames
whose address matches the address assigned to the
CY7C971 by the address pins AO-4. In this applica­
tion, the CY7C971 address has been permanently
wired to O1H. All management accesses to the
CY7C971 should use this address.

The register field determines the target register for
the operation. The turn around field provides time
to switch the direction of the bus during a read op­
eration. The next 16 bits are the data field. During
a read operation, the PHY will drive the MDIO line
with the target register contents. During a write op­
eration, 16 bits are transferred to the PRY from the
MAC and written in the target register.

The CY7C971 can accept management frames that
are not preceded by a 32-bit preamble. A sequence
of 32 ones will force a reset on the CY7C971 man­
agement facility. It is recommended that the MAC
issue this 32-bit sequence after power-up and peri­
odically during normal operation.

The CY7C971 supports the standard and expanded
MIl register set. The Expanded Register set in­
cludes the OUI (Organizationally Unique Identifi­
er) and Auto-Negotiation registers (registers 2-7).
Figure 10 shows the CY7C971 register map.

Control Register (Reg. 0)

The Control Register is used to manually set the op­
erating modes and enable/disable certain features.
Auto-Negotiation can be enabled/disabled through
this register with bit 0.12. When Auto-Negotiation
is enabled, the speed of the link is determined auto­
matically, and the speed selection bit (0.13) has no
effect. When Auto-Negotiation is disabled, the
speed selection bit determines the speed of the link.

The loop back bit (0.14) is used to internally loopthe
transmit signal path to the receive signal path. Plac­
ing the CY7C971 in loopback mode will cause the

Read 0000000000000000
~r-+----+----~~------------~

Write 0000000000000000

Figure 9. Management Frame Structure

link to be broken and the transmit drivers will be
forced to idle. The power-down bit (0.11) places the
CY7C971 in low power stand-by mode. All of the
analog circuits are placed in low power mode and
the clock is stopped to all of the CMOS digital logic.
Only the MDC/MDIO port is active. When power­
down mode is exited, the CY7C971 will reset all of
the registers to their default values. Any register set­
ting other than the default value must be restored by
the driver.

Status Register (Reg. 1)

The Status Register is a read-only register that re­
ports the capabilities and status of the CY7C971.
The status of the Auto-Negotiation process can be
monitored through bit 1.5. This bit reports when
Auto-Negotiation has completed. The Remote
Fault bit (1.4) will indicate if Auto-Negotiation has
detected a remote fault at the other end of the link.
The Link Status bit indicates whenever any technol­
ogy (i.e., the 10BASE-T or the 100BASE-T4 circuits
of the CY7C971) has entered the Link Pass State.
This means that the link is available for data trans­
mission and reception.

OUI Registers (Reg. 2-3)

Registers 2 and 3 contain the Cypress Semiconduc­
tor Organizationally Unique Identifier and the
CY7C971 part and revision number. The OUI is a
24-bit sequence that is uniquely assigned to orga­
nizations for identification purposes by the IEEE.

o

2
3
4
5
6
7

16

Register Description

Control
Status

QUI
QUI

Auto-Negotiation Advertisement
Auto-Negotiation Link Partner Abi!ity

Auto-Negotiation Expansion
Auto-Negotiation Next Page Transmit

•
• (reserved) • Cypress Proprietary

Figure 10. Register Map

6-9

15 12 11 B 7 4 3 0

Reg 2 = I 0 0 4

I QUI

15 12 11 B 7 4 3 0

Reg 3 = I 2 I 8 I 0 I x I
I OUI I Part I Rev I

Figure 11. OUI Registers

The Cypress QUI is 00A050h. According to the
Ethernet MIl standard, twenty-two bits of the OUI
are split between Registers 2 and 3. Register 2 con­
tains 16 bits of the OUI and register 3 contains the
other 6. Register 3 also contains 6 bits for the
CY7C971 part number and 4 bits for the revision
number. The register mapping and contents are
shown in Figure 11.

Auto-Negotiation Registers (Reg. 4 -7)

Registers 4 through 7 manage the Auto-Negotiation
process. These registers only have meaning when
Auto-Negotiation is enabled. Management inter­
vention is not required during the normal Auto-Ne­
gotiation process. Management should only inter­
vene with the Auto-Negotiation process in order to
influence the outcome.

The Auto-Negotiation Advertisement Register
(Reg. 4) holds the 16-bit code word that the
CY7C971 advertises over the medium. This code
word encodes the capabilities of the CY7C971, the
LAN technology (CSMNCD Ethernet), and fault
indications. During power-up or reset, this register
will set to the default conditions of the CY7C971
that are dictated by the enable pins. This causes
Auto-Negotiation to only advertise the capabilities
that are enabled. These enabled capabilities are re­
flected in the Status register. Management may in­
tervene in the Auto-Negotiation process by writing
to this register. Only the operating modes that are
enabled in the Status Register will be advertised.
Any attempt to advertise a disabled mode (disabled
when ENx pin is LOW) by writing to the Advertise­
ment Register will be ignored. Management should
restart the Auto-Negotiation process by setting bit
0.9 (Restart Auto-Negotiation Bit) if the contents of
the Advertisement Register are changed. Figure 12
shows a block diagram of how the enable pins affect

Status Register

ENT4~~------~~

ENTFD~~----~~~

ENT

RESETM":~~
(Power-on)

Reset

, (from
: 1.14 MOIO

,
: 1.11

,
.. ---- ... - ... ~

Auto-Negotiation
Advertisement Register

Figure 12. Register Block Diagram

Auto-Negotiation Advertisement and Status Reg­
isters.

The Auto-Negotiation Link Partner Ability Regis­
ter (Reg. 5) contains the code word that has been
consistently received from the PHY at other end of
the medium. This register is valid when the Page Re­
ceived bit (6.1) is set in Register 6. Auto-Negotiation
uses the received code word to decide the operating
mode ofthe link. The choice is based on the priority
resolution table in the Auto-Negotiation standard.
100BASE-T4 has the highest priority. If Auto-Ne­
gotiation completes through parallel detection, the
contents of this register are invalid. (Parallel Detec­
tion part of the Auto-Negotiation process. Its func­
tion is to detect the presence of Ethernet transceiv­
ers that do not support Auto-Negotiation.)

The Auto-Negotiation Expansion Register (Reg. 6)
is a Read-Only register that reports the status of the
Auto-Negotiation process. This register should be
monitored during the Auto-Negotiation process in
order to make sure that code words are being re-

ceived and that there is not a Parallel Detection
fault.

Register 7 is used to hold the Next Page code word
that is to be transmitted during next page exchanges.
Next Pages are code words that can be sent in addi­
tion to the base code word in the advertisement reg­
ister. The Next Page facility is intended to be used
as a simple scheme for passing messages between
the PHY s on the medium before the link becomes
active. The messages may contain information such
as the presence of a fault, for example. The Next
Page 1tansmit Register defaults to 2001H (Null
Message) after power-up or a reset.

Cypress Proprietary Register (Reg. 16)

The Cypress Proprietary Register (Reg. 16) con­
tains specific information about the CY7C971. Bit
15 indicates the polarity of the RX _D2 ± signal
pair. When clear, this bit indicates that the polarity
of RX _ D2 ± is correct or undetermined. When set,
this bit indicates that inverted polarity on RX _ D2 ±
was detected and has been corrected. Inverted po-

6-10

larity is most likely caused by inadvertently revers­
ing the signal wires at the medium connector.

Conclusion

This application note covers the major issues for a
dual speed Ethernet/PCI Bus adapter card design
using the CY7C971 lOOBASE-T4/lOBASE Trans­
ceiver and DEC21140 MAC. The high degree of in­
tegration in the CY7C971 keeps the number of ex-

6-11

ternal components to a minimum helping to reduce
system cost and design effort.

The complete adapter card schematics and a bill of
materials are included at the end of this application
note (Appendix A and Appendix B, respectively).
More information on the CY7C971 can be found in
the data sheet. For more information on
lOOBASE-T4, MIl and Auto-Negotiation standards,
consult the IEEE 802.3u document: "MAC Parame­
ters, Physical Layer, Medium Attachment Units
and Repeater for lOOMb/s Operation."

0\
I ,...

~ N

mtlI' Ilf------+---------,
1.SK

"-
R3 ~

1r ~E ~~B
MOIO

MOC

Ul ~~ ~~ p~ ~~~

+5V

10K

Rl

PULLUP

~~

g8§~88XX~!!Z~la~U~~

-~r~r"r~r~ WL1 L2 L3 L4 15 ,. ,. ,. ,. ,.
R4 RS R6 R7 R8

----- ---- -----LTX LAX LlNKT4 LlNKT LlNKFO
LEOS

AXOS IIJ-----l
AX02 IJ-----Z.

~~~~~~~~~Q~cl~-dQ!~<~~ 
RXD3 .Jl>. c z vecs 
RXD2 m RX_D4 I 59 ill 

58 
Quad 

AXOl (I-----i 
RXDO IJ-----!i. 
AXOv~ 

AX eLK IJ-----Z. 
RX_ER Il---f 

TX CLK Il .s 11 

rXEN~ 
rXoo~ 
TXOl IJ-----!i 
TX02~ 
TXD3~ 

PULLUP rt---1!L-
COL~ 
CRS - 20 

GNOO TX_D4 
RXOl GNOS 
RXDO TICD4+ 
AX_OV RX_D4+ 
AX_CLK VCCS 
AX_ER AX_OS 
TX_ER 
VCCO CY7C971 

TX_OS 

TX_CLK 100BASE-T4/10BASE-T 
GNOS 

TX_EN 
Transceiver 

1),-03+ 
RX_OS+ 

TXOO VCCS 
TXOl AX_02-
TXD2 RX_D2+ 

TXD3 VCCS 
GNOO TX_Ol 
OS GNOS 
COL TX_D1+ 
CRS "- vccs 

8 88 § ~~~t~2~ ~ V~ON~ZZOZ~ogw ~~ZN~O 
«>«~~<~~~~~ oo~~~> 

~g: ~h{J, -~ ~~~I~I~~~ 
~ Rj~IRl 

'RST1l II II II 10K 
1% 

R2 

~~ 
u 

Transformer 

U2 :=;J I: ~ 'I"~ ~~ 
52 1 :2 

Rf2 

so 10 
19 

49 V1fi3 18 
17 

47 ~ 16 

46 'F19 10 1 : 2 lS 
14 

I 44 .~ r 12~.'--~l's,-+II-lII"",I ___ .L.I 
~I L-10 42 

YR10 

Use only one crystal 
Thru hole 

JD~' 25.0MHZ 
Xl 

CLKI 40 1 CLKO -'yrn- .220PF j!20PF j!20pJ 220PF 

"[cSl 1 C32 1 C33 1= 
CHASSIS 2KV Ceramic UisC Gaps 

~ 
"CS 
." = 
~ 
~ 
t'n 
n 
=-." e 
~ .. 
;" 
'" 00 
=-." 
." .. .... 
Q .... 
"'" '-' 

f' 
Q~ 
;g 
tr:1 
(f). 
(f). 

.... 

~ 
rI:J. 
t'fj 

~ 
Q 
> =­= 1 ., 



~~~~I~~~~~~~~~~I~~ 
".

~~~I ~% .!l. 

U3 

72 
ADOOm §mg ~~I~~~I~I~ ~I~ ~I~ ~I;,~ G)G)G)G')(j)G)(j)G) 

10 ADOO mm m m m m m m MII_MDIO 
AD01 71 AD010 ...... ~rnm-< -0 r~ ::o::o~p ~:2;g;S ~ ~;:R:!j 

MII_MDC 1 6 

AD02 69 AD02 r" SYM_RXD4 119 

ADOS 68 ADOS General MII_RXD3 11 

AD04 66 AD04 Purpose MII_RXD2 11 

AD05 65 ADOS MII_RXD1 11 

AD06 63 ADOS MII_RXDO 115 

AD07 62 AD07 MII_DV 111 

AD08 60 AD08 MII_RCLK 1 4 

AD09 58 ADOS Mil_ERR 1 0 

AD10 57 AD10 MIIJCLK 
AD11 55 AD11 MII_TXEN 
AD12 54 AD12 MII_TXDO 126 

AD13 52 AD13 " MII_TXD1 127 

0\ AD14 51 AD14 MII_TXD2 1 0 

I AD15 50 AD15 
.,. DEC 21140 

MII_TXD3 11 

35 
Q pel-MAC Controller ..... AD16 AD16 '" SYM_TXD4 1 

W AD17 34 AD17 C MII_CLSN 112 en 
AD18 ~ AD18 MII_CRS 113 

AD19 2" AD19 SD 1 9 

AD20 27 AD20 

AD21 26 AD21 

AD22 25 AD22 SRL_RCLK ~7 
AD23 24 AD23 SRL RXEN 1 

AD24 20 AD24 " SRL RXD 

AD25 
,. 

AD25 ~ SRL_CLSN 

AD26 17 AD26 General SRL TCLK 

AD27 16 AD27 Purpose SRL_TXEN 

AD28 14 AD28 JTAG I Serial 
8001 ROM SRL_TXD -

AD29 13 AD29 

AD30 11 AD30 

AD31 10 AD31 

U4 
93C46 

SR_Di 

Serial 
SR_CLK 2 SK DDI-L---.-R_ DO 

ROM 
SR_CS 1 CS 

MDIO 

MDC 

RXD3 

RXD2 

RXD1 

RXDO 

RX_DV 

RX_CLK 

RX_ER 

TX_CLK 

TX_EN 

TXDO 

TXD1 

TXD2 

TXD3 

COL 

CRS 
PULLUP 

~ 
'g 
s. 
~' 

~ 

( 
i=j' 

'" 
~ 
ir 
to -N 

So 
~ 

~ 
::a 
::0 
trJ 
rJ) 
rJ) 

~ 

~ 
~ 
rJ'). 

~ 

~ 
~ 
n 
~ 

~ 
.§ 
;-
"1 



-12V 

TCK 

TOO 

iNrB 
iNiiJ 

7.5 W Card 

~7 PCI ClK 
-REO 

AD31 

AD29 

AD27 

AD25 

CiBE3 
AD23 
AD21 

AD19 
AD17 

CiBE2 
iiIDv 

'i5WsE[ 
ll5CK 
PEAR 
5ERi'i 
CiBE1 

AD14 
AD12 

AD10 
ADOS 

AD07 

AD05 
ADOS 

AD01 

Appendix A. Schematics (Sheet 30(4) 

J2 PCI Connector 
Side B Side A 

1B -12V TRST 1A 

2B TCK +12V 2A 

4B TOO TMS 3A 

7B INTB TDI 4A 
BB INTO iNi'ii 6A 
9B PRSNT1 TNTc" 7A 

T .ll!!l.... Reserved Reserved ~ 11B PRsN'i'2 Reserved 

~ Reserved Reserved ~ 
16B ClK Rsi' ~ 
18B "REO GNi' 17A 
2QB AD31 Reserved ~ 21B AD29 AD30 
23B AD27 AD2B 22A 

24B AD25 AD26 23A 

26B C/BES AD24 25A 
27B AD23 IDSEL 26A 
29B AD21 AD22 26A 

30B AD19 AD20 29A 
32B AD17 AD1B 31A 
33B C/BE2 AD16 32A 

35B IRDY FFiAME 34A 

~B DEVSEl TR1iY 36A 
'OR LOCK STIiP ~_3BA 

40B PERR SDONE 4llJ 

42B SERR 5BO 1 
44B C/BE1 PAR 431 

45B AD14 AD15 04A 

7B AD12 AD13 46A 

488 AD10 AD11 47A 
528 ADOB AD09 49A 

538 AD07 CiiiEo 52A 

55B AD05 ADOS 541 

568 AD03 AD04 55A 
5BB AD01 AD02 57A 

.§!!!L ACK64 ADOO 58A 

REaii4 ~ 

6-14 

lOOBASE-T4 PCI Adapter 

TRsf 
+12V 

TMS 

TOI 

iNi'A 
iNi'C 

AD30 

AD2B 

AD26 

AD24 
IDSEl 

AD22 

AD20 
AD1B 

AD16 

FFiAME 
TRiiY 
STIiP 
SDONE 

SBo 
PAR 

AD15 

AD13 

AD11 

AD09 

CiiiEo 
ADOS 
AD04 
AD02 

ADOG 



0\ 
I 

...... 
Ut 

+3V 

r= I~ 1= 1= I~' I~ I'" I'" 1 m 1°' 1°' I'" r"! 
+SV 

r= r= r= 1°' 1°' 1°' I~ I~ 1° I~ I~ I~ I~ ! 

us 
+SV +$1 

C30 

~ 
'CI 

[ 
s;!" 

~ 
til 

B-
e 
!. 
n 
'" ,-.. 
til 

[ 
"'" So 
,e 

!J 
~ 
trj 
(f) 
(f) 

.... 
~ 
~ 
t7.l 
t.'!j 

~ 
~ 
~ 

~ 
= i 



Appendix B. Parts List 

Description, Vendor, Part Number Qty Reference Designator 

10 IlF/16V Thntalum Capacitor (EIA Size C) 6 C25, C26, C27, C28, C29, C31 
Sprague Elec. 293D106X9016C2 

47 IlF/16V Thntalum Capacitor (pIA Size D) 1 C30 
Sprague Elec. 293D476X9016D2 

.IIlF/50V Ceramic Capacitor (Size 1206) 8 C13, C14, C15, C16, C17, C18, C19, 
Panasop.ic ECU - VIH104KBW C20 

.01IlF/50V Ceramic Capacitor (Size 1206) 4 C21, C22, C23, C24 
Panasonic ECU - VIH103KBM 

.027IlF/50V Ceramic Capacitor (Size 0805) 10 C3, C4, C5, C6, C7, C8, C9, ClO, 
Panasonic ECV - VlfJ273Iq3X Cll, C12 

33 pF/50V Ceramic Capacitpr (Size 0805) 2 C1,C2 
Panasonic ECV - VIH330JCG 

220 pF/2KV Ceramic Disk Cap~citor 4 C31, C32, C33, C34 
Murata/Erie DE0405B2212KV 

10.0K ohIl15% 1/8W Resistor (Size 0805) 1 Rl 
Panasonic ERJ -6GEYJ10.0K 

10.0K ohm 1 % l/lOW Resistor (Size 0805) 1 R2 
Panasonic ERJ -6ENFlO.0K 

10.0 ohm 1 % l/lOW Resistor (Size 0805) 6 RlO, Rll, R12, R13, R14, R15 
Panasonic ERJ -6ENFI0.0 

24.9 ohm 1% l/lOW Resistor (Size 0805) 1 R9 
Panasonic ERJ -6ENF24.9 

1.50K ohm 5% l/lOW Resistor (Size 0805) 6 R3, R4, RS, R6, R7, R8 
Panasonic ERJ -6ENF1.50K 

2 mA Green LED, PC Board Side Mount 3 L3,L4,LS 
IDI 5350T5LC 

2 rnA Yellow LED, PC Board Side Mount 1 L2 
IDI 5350TILC 

2 rnA Red LED, PC Board Side Mount l L1 
IDI 5350TILC 

25.0000 MHz SMT Crystal, Parallel Res 18 pF 1 Xl 
EpsonAmer MA-50625.000M-AD 
EpsonAmer MA-40625.000M-G 

25.0000 MHz HC-49/U Crystal, Parallel Res 18 pF 1 X2 
Ecliptek EC250-25.00QO 

Quad 2:1 Transformer, 330 IlH Primary, 1500V 1 V2 
Valor ST6ll5 
Pulse PE-69001 
Bel S553-l204-QO 

CY7C971100BASE-T4/lOBASE-T 'fransceiver 1 VI 
Cypress Sem. CY7C971-N~ 

6-16 



Appendix B. Parts List (continued) 

Description, Vendor, Part Number Qty Reference Designator 

LT1117 3.3V Regulator 1 U5 
Linear Tech. LTl117CST-3.3 

RJ -45 Modular 8-Pin Shielded Jack 1 11 
Amp 555141-1 

DEC21140 Fast Ethernet PCI MAC 1 U3 
Digital Sem. 21140-AA 

93C46 1K Serial EEPROM (8-Pin sOIq 1 U4 
National Sem. NM93C46M8 

Assembly Instructions 

1. Assemble only 1 crystal (Xl or X2). 

6-17 



lOOBASE-T4 Ethernet Repeater 

Background 

This application note describes the design of a 
100BASE-T4 Ethernet Network Repeater using the 
Cypress CY7C971 PRY and CY7C388A for the 
core logic. The repeater has the following features: 

• 100-Mb/s Shared Bandwidth over Cat. 3 UTP 

• 8 Unmanaged Ports 

• Integrated Transmit Filters 

• Compact Layout 

• Low Latency 

The function of the repeater is to create a logically 
shared communication channel between the end 
stations in the network. The end stations (computer, 

printer, etc.) communicate with the repeater over 
dedicated twisted pair liI).ks. The repeater listens to 
the signal being received on one port and "repeats" 
the restored signal to the other ports. Figure 1 illus­
trates the function of the repeater in a 100BASE-T4 
Ethernet Network. The repeater in this application 
note lias eight communication ports. 

The functional requirements ofthe 100BASE-T4 re­
peater are defined in the IEEE 802.3u Standard 
"MAC Parameters, Physical Layer, Medium At­
tachment Units and Repeater for 100 Mb/s Opera­
tion," Clause 27. The repeater functional require­
ments are summarized below: 

• Detect port activity and receive Ethernet packets 

• Restore the shape, amplitude, and timing of the 
received signals prior to retransmission 

Signal restored and 
repeated to active ports 

Station with bad 
network connection 

Figure 1. Ethernet Network Built with Repeaters 

6-18 



• Regenerate preamble sequence and prepend it to 
the received frame 

• Forward the Ethernet frame to each of the ports 

• Detect collisions between ports and generate jam 
sequence to all ports 

• Protect network from long carrier events Gabber) 
and repeated collisions (partition) 

• Allow installation (removal) of station without 
network disruption 

• Provide basic port control (enable/disable) 

Repeater Block Diagram 

A block diagram of the 8-port repeater is shown in 
Figure 2. The CY7C971 functions as the physical lay­
er device that interfaces the digital core logic to the 
twisted-pair medium. Each CY7C971 requires a 
quad 1:2 transformer for electrical isolation from 
the medium. The core logic is implemented with a 
CY7C388A FPGA. This device takes care of the ba-

sic repeater functions such as data retiming, se­
quence generation, and port control. 

CY7C971 
The CY7C971 (see Figure 3) has a special low laten­
cy repeater mode that is enabled when the MODE 
pin is LOW. In this mode, the MIl (Media Indepen­
dent Interface), PCS (Physical Coding Sublayer), 
and lOBASE-T are disabled. Only the 100BASE-T4 
PMA (Physical Medium Attachment) circuits are 
active. These circuits perform the analog functions 
required to interface to the twisted-pair media such 
as transmit filtering, adaptive equalization, and 
clock recovery. A block diagram of the PMA inter­
face is shown in Figure 4. 

Media Dependent Interface (MDI) 

The CY7C971 provides a simple interface to the 
8-pin modular RJ -45 jack. No expensive external 
filters or components are necessary because all 
transmit filtering and equalization are performed 
on-chip. A quad 2:1 transformer for electrical isola­
tion and termination resistors to match the cable im­
pedance are all that is required. 

CY7C971 CY7C971 CY7C971 CY7C971 CY7C971 CY7C971 CY7C971 CY7C971 

TX RX 

Core 
Logic 

(7C388A) 

Figure 2. Repeater Block Diagram 

6-19 



*# ~ lOOBASE-T4 Repeater 
-::;;sr CYPRESS ================ 

PMA 
13 

Ii ~ 
MDC 

MDIO 
TX_ClK 

TX ER 
TX=EN 

- COL 

~ CRS 

RX ClK 
RXD[3:0] 

RX ER 
RX-DV 
RX=EN 

Clock 

Control and Status Address 

~rgli~1 
...J ...J 

lED Drivers External Components 

2 

2 

2 
2 

2 
2 

~Vcc 
11 

--GND 

TX_D1± 

RX_D2± 

TX_D3± 
RX_D3± 

TX_D4± 
RX_D4± 

0 
~ 

Figure 3. CY7C971 Block Diagram 

T4 Receiver 
r------C0C971PMA-----' 

Link 
Integrity 1----------11-+ [fJ\JR 

Carrier I----------!!-+ CRS 
Detect 

Clock 
Recovery 

04 
05 

RX_EN 
'-----.... RX_DV 

L. ______________ .... _-_-_-_-_-J~RX-ER 

T4 Transmitter r-------------l 
1 CV7C971 PMA 
1 
1 
1 
1 
1 

ClKI 
1 
1 

DO 12 
D1 

D2--t> ........ ~ 
D3 

D4--j., ........ ~ 
D5 

TX_EN-+-1--J 

1 L _____________ .J 

Figure 4. CY7C971 PMA Interface 

6-20 



=:az .~ 
~, CYPRESS ============;;;;;10;;;;;O;;;;;B;;;;;A;;;;;S;;;;;E;;;;;-T;;;;;4;;;;;R;;;;;e;;;;;pe;;;;;a;;;;;te=r 

The output buffer design uses a feedback voltage 
driver that minimizes power consumption and con­
trols the common-mode output voltage. The trans­
former provides sufficient common mode rejection 
over the frequencies of interest so that an external 
common mode choke is not needed. Figure 5 shows 
a schematic of the media interface with the 
CY7C971. 

The characteristic impedance of the twisted pair 
medium is a nominal100Q The 1:2 transformer re­
duces (by the square of the turns ratio) medium IQad 
impedance to 25Q on the primary (971) side. The 
termination resistors and the output buffer imped­
ance together form a matching 25-ohm load. The 
matching load insures that maximum signal is trans­
ferred to the medium and minimizes reflections due 
to impedance mismatch. 

CY7C971 

RX_D4-
TX_D4-

TX_D4+ 
RX_D4+ 
RX_D3-
TX_D3-

TX_D3+ 50 

RX_D3+ 49 

RX_D2- 47 

RX_D2+ 46 

10KQ 1% 

The center taps on the media side of the transformer 
are connected to the chassis ground through 220-pF 
(minimum) high-voltage (2 KV) capacitors. These 
capacitors help absorb common mode noise that is 
picked up or generated on the twisted pair medium. 
The capacitors must be capable of withstanding the 
isolation requirements specified in the 
lOOBASE-T4 standard. High voltage ceramic disc 
capacitors are economical and work well in this ap­
plication. 

The high precision currents needed for the transmit 
DAC and equalizer are derived from the external 
lOKQ 1 % resistor on pins R1 and R2. An internally 
generated band-gap voltage reference is used by the 
CY7C971 for all internal reference voltages. 

Quad 
Transformer 

1:2 

*220 PF 

Modular Shielded 
a-Pin Jack 

RJ-45 
a 

Chassis Ground 

Figure 5. MDI Schematic 

6-21 



LED Pins 

Figure 6 shows how the LED pins connect to the 
LEDs. The LINKT4 pin indicates when the 
CY7C971 is in the link pass state for 100BASE-T4. 
The CY7C971 will enter a link pass state when prop­
erly formed technology dependent link integrity 
pulses are received from the medium. The LINKT 
and LINKFD signals remain inactive. 

Configuration Pins 

The configuration pins are wired for the repeater 
application as shown in Figure 7. The MODE pin is 
tied LOW to force the CY7C971 into 100BASE-T4 
PMA mode. PMA mode disables the MIl, PCS 
(Physical Coding Sublayer), and lOBASE-T. The 
100BASE-T4 PMA performs all of the analog func­
tions required to interface to 4 pair Cat. 3 UTP. 

The ENT4 pin is wired HIGH to enable 
lOBASE-T4. The ENT and ENFD pins are wired 
LOW to disable lOBASE-T and Full Duplex opera­
tion. The AUTO NEG pin is wired to a header block 
and pull-up. When a jumper is installed in the head­
er block, Auto-Negotiation is disabled. When the 
jumper is absent, Auto-Negotiation is enabled. 

The ISODEF (Isolate Default) pin is tied LOW in 
order to force the CY7C971 to power up with the 
MIl ready for normal operation (not isolated). This 

1.5KQ 
u u z z u z 

CY7C971 

Figure 6. LED Pins 

u z 

ENT4 
ENT 

ENFD 
AUTONEG 

MODE 
JAM 

CY7C971 AO 
A1 

A2 

A3 

A4 

64 

61 

62 

65 

31 

30 

28 

25 

24 

22 

21 

F 32 ISODE 
RESE 
TEST 

,. 33 

34 

U 

+5V ,.. 
? 
S <;> 

10KQ 

-'-

0 
0 

Jumper 

S YSTEM 
ESET R 

Figure 7. Configuration Pins 

repeater application does not use the management 
port. The address pins can be assigned any address 
configuration. 

The Thst pin is tied LOW to permanently disable the 
971 test mode. Thst mode is used for factory ATE 
testing only. 

The RESET pin should be connected to the system 
reset pin from the core logic. A system reset is is­
sued at power-up or when the reset button is pushed. 
If a port is disabled by the core logic, the reset to the 
port will be active. 

Layout Considerations 

The repeater design is simple enough to fit on a 
small 7.75 in x 6.0 board using top-side-only place­
ment. A four-layer PCB construction with dedicated 
power and ground planes is recommended. The 
CY7C971 requires a SV supply. Figure 8 shows an 
example of component placement. 

The media interface components can be neatly 
placed in-line with the CY7C971. 0.027 I!F decoup­
ling capacitors are used on the CY7C971 power 
pins. These 0805 SMT capacitors are placed in a row 
as close to the pins as possible. The termination re­
sistors fit neatly in a row behind the decoupling ca­
pacitors. The CY7C971 media interface and power 

6-22 



High Voltage 
Capacitors 

Termination Oecoupling 
Resistors Capacitors 

" ~ § CJ--r-------. 

~ [ CJ ~ Cypress 
Q B CJ 7C971 
3 r:::I CJ 
CD t::I CJ 
~ ~~--~ 

~7 §~ CJ CJ 

~ CJ CJ Cypress 
1-____ ---. Q' B CJ 7C971 

3 r:::I CJ 
CD t::I CJ 
~ ~~--~ 

r-::::r § CJ CJ CJ 

B I ~ ~ Cypress E3 :3 ~ CJ 7C971 
CD t::I CJ 
~, ~~--~ 
r-::::r § CJ CJ CJ ' 

BIB ~ CI6~;~s 
8 E3 3 r:::I CJ 

port ~ t::I CJ 
RJ-45 - L,CJ=----CJ~ 

CJ 

CJ 

CJ 

CJ 

~ 
7 § ~ ..=,----=::!., 

iil CJ CJ Cypress 
Q' B CJ 7C971 CJ 
3 r:::I CJ 

~~ 
II-­
II-­
II-­
II-­
Ir--­
Ir---
r---

CD t::I CJ 
~ L::~--~ 
r-::::r § CJ CJ CJ 

BIB ~ CI6~;~S E3 3 r:::I CJ 
CD t::I CJ 
~ L,CJ=----CJ~ 

--=r §CJ 

~ ~ CJ ~ Cypress 
Q' B CJ 7C971 
3 r:::I CJ 
CD t::I CJ 
~ ~~~~ 

~7 §~ CJ CJ 

LEOs ~ CJ CJ Cypress 
2 DC] :3 ~CJ 7C971 
CD t::I CJ 
~ '-;CJ=-----:CJ~ 

CJ 

CJ 

CJ 

Figure 8. Component Placement 

6-23 

7C388A 
Core 



pins are placed in such a way to minimize the use of 
vias and simplify board layout. 

Core Logic 

Figure 9 shows a block diagram of the repeater core 
logic. The blocks perform functions as follows: 

• Port N. Synchronizes signals and provides control 
signals to each port, along with detecting jabber 
and partition conditions. 

• Selection and Clock MUX. Selects the receive 
clock from the incoming port and provides a com­
mon receive clock for use in retiming the incom­
ing data. 

• RX FIFO. Used for temporary storage and to re­
time the incoming data to TX _ CLK. 

• Bad Symbol, Jam, Idle, Preamble Generator. 
Provides the special characters that are trans­
mitted during different conditions. 

• Output Register. Provides temporary storage of 
outgoing data along with retiming to the 
TX_CLK. 

• Repeater State Machines and Logic. Controls 
pori selection during data reception. Also, pro­
videscollision detection and handling. Included 
in this block is the control of two expansion ports 
for use in the design of a stackable repeater. 

The core logic is written in Verilog apd fills 7K gates 
of a Cypress CY7C388A 8K pASIC. 

Con~lusion 

This application note covers the major issues for a 
8-port 100BASE-T4 Repeater design using the 
CY7C971100BASE-T4/lOBASE-T 1tansceiver and 
CY7C388A 8K FPGA. The high degree of integra­
tion in the CY7C971 keeps the number of external 
components to a minimum, helping to reduce sys­
tem cost and design effort. 

The complete repeater schematics and a bill of ma­
terials are available from Cypress Semiconductor. 
More information on the CY7C971 can be found in 
the data sheet. For more information on 
100BASE-T4, MIl, and Auto-Negotiation stan­
dards, consult the IEEE 802.3u document: "MAC 
Parameters, Physical Layer, Me"ium Attachment 
pnits and Repeater for 100Mb/s Operation." 

6-24 



lOOBASE-T4 Repeater 

CRS1 
RX_EN1 Port 1 nCEN1 

• Port • Signals • Repeater 
State 

CRSB 
RX_ENB Port 8 

Machines TX_ClK 

TX_ENB and (system clock) 

Logic 

RX_ClK1_ 

Receive • Selection RX_ClK 

Clocks • • and 
RX_ClKB_ Clock Mux 

Receive 
Data 00-5 RX FIFO 

Bad Symbol 
Generate 

Jam 
Generate 

Idle 
Generate 
Preamble 
Generate 

Transmit 
Data DQ--5 

Figure 9. Core Logic 

6-25 



Interfacing with the SSTTM 

This application note describes how to interface the 
CY7B951 SONET/SDH Serial 1tansceiver (SST"') 
with other physical-layer devices. The SST per­
forms clock and data recovery from a SONET/SDH 
(Synchronous Optical NETwork/Synchronous Digi­
tal Hierarchy) 51.84 Mb/s or 155.52 Mb/s interface 
and can be used in a variety of SONET and ATM ap­
plications. The application note will begin with a 
brief introduction to the SST. Next, interface exam­
ples will be given that illustrate how to connect the 
SST to three different ATM controller devices; the 
first from PMC-Sierra called the PM5345 SUNI, the 
second, also from PMC-Sierra, called the S!UNI­
LITE, and the third from Integrated Telecom 
Technologies (IgT) called the WAC-013. 

Introduction 

The CY7B951 SST is used in SONET/SDH applica­
tions to recover clock and data information from a 
155.52-MHz or 51.84-MHz NRZ (Non Return to 
Zero) or NRZI (Non Return to Zero Invert on 
ones) serial data stream. This device also provides 
a bit-rate Transmit Clock, from a byte-rate source 
through the use of a frequency multiplier Phase­
Locked Loop (PLL), and differential data buffering 
for the Transmit side Of the system (see Figure 1). 
The pinout is shown in Figure 2. 

Operating Frequency 

The SST operates at either of two frequency ranges. 
The MODE input selects which of the two frequen­
cy ranges the Transmit frequency multiplier PLL 
and the Receive clock and data recovery PLL will 
operate. When MOPE is connected to Vee, the 
highest operating range of the device is selected. A 
19.44-MHz ±1% source must drive the REFCLK 

input and the transmit PLL will multiply this rate by 
8 to provide an output clock that operates at 155.52 
MHz ± 1 %. When the MODE input is connected to 
ground (GND), the lowest operating range of the 

l1mJ5(t) MODE 

ROUT 
ROUT-

RIN+ RCLK+ 
RIN- RCLK-

RSER+ 
RSER-

CD [FI(t) 

TOUT +---I-,I'H ........ --I-I------,;'I--!--c TSER+ 
TOUT- TSER-

1--1'.--1-..... TCLK+ 
t---V'--r-..... TCLK-

REFCLK+ REFCLK-

Figure 1. SST Block Diagram 

sOle 
Top View 

ROUT+ RCLK-
ROUT- RCLK+ 

RIN+ RSER-
RIN- RSER+ 

MODE [FI 
VCC VCC 

CD VSS 
[OOp VCC 

REFCLK- TCLK-
REFCLK+ TCLK+ 

TOUT- TSER+ 
TOUT+ TSER-

Figure 2. SST Pinout 

6-26 



~~YPRESS~~~~~~~~~~~~~In~t~erl:~a~C~in~g~m~'~th~t~h~e~s~S=T 

device is selected. A 6.48-MHz ± 1 % source must 
drive the REFCLK inputs and the transmit PLL will 
multiply this rate by 8 to provide an output clock that 
operates at 51.84 MHz ± 1 %. In addition, when the 
MODE input is left unconnected or forced to 
approximately V cd2, the device enters Test Mode. 

Transmit Functions 

The 1tansmit section of the SST contains a PLL that 
takes a REFCLK input and multiplies it by 8 
(REFCLK*8) to produce a PECL (Pseudo ECL or 
Positive ECL) differential output clock (TCLK±). 
The Transmitter has two operating ranges that are 
selectable with the three-level MODE pin, as ex­
plained above. The SST Transmit frequency multi­
plier PLL allows low-cost byte-rate clock sources to 
be used to time the upstream serial data transmitteJ: 

The REFCLK± inputs can be configured in three 
different ways. When both REFCLK + and 
REFCLK - are connected to a differential lOOK 
compatible PECL source, the REFCLK input will 
behave as a differential PECL input. When either 
the REFCLK - or the REFCLK + input is at a TTL 
Law, the other REFCLK input becomes a TTL­
level input allowing it to be connected to a low-cost 
TTL crystal oscillator. The REFCLK input struc­
ture, therefore, can be used as a differential PECL 
input, a single TTL input, or as a dual TTL clock 
multiplexing input. 

The Transmit PECL differential input pair 
(TSER±) is buffered by the SST yielding the differ­
ential data outputs (TOUT±). These outputs can 
be used to directly drive transmission media such as 
Printed Circuit Board (PCB) traces, optical fiber 
drivers, twisted pair, or coaxial cable. 

Receive Functions 

The primary function of the Receiver is to generate 
recovered clock (RCLK±) and data (RSER±) sig­
nals from the incoming differential PECL data 
stream (RIN ±). These built-in line receiver inputs, 
as well as the TSER± inputs mentioned above, have 
a wide common-mode range (2-5V) and the ability 
to receive signals with as little as 50 m V differential 
voltage. They are compatible with all PECL signals 

6-27 

and any copper media (such as coaxial cable or 
twisted pair). 

The clock recovery function is performed using an 
embedded PLL. The recovered clock is not only 
passed to the RCLK± outputs, but also used inter­
nally to sample the input serial stream in order to re­
cover the data pattern. The Receive PLL uses the 
REFCLK input as a byte-rate reference. This input 
is multiplied by 8 (REFCLK*8) and is used as a bit­
rate reference in comparison to the recovered clock 
to improve PLL lock time, and to provide a center 
frequency for operation in the absence of input data 
stream transitions. The Receiver can recover clock 
and data in two different frequency ranges depend­
ing on the state of the three-level MODE pin, as ex­
plained earlier. To ensure accurate data and clock 
recovery, REFCLK*8 must be within 1000 ppm of 
the transmit bit rate. The standards, however, speci­
fy that the REFCLK* 8 frequency accuracy be within 
20-100 ppm. 

The differential input serial data (RIN ± ) is not only 
used by the PLL to recover the clock and data, but 
it is also buffered and presented as the PECL differ­
ential output pair ROUT±. This output pair can be 
used as part of the transmission line interface circuit 
for base-line wander compensation, improving sys­
tem performance by providing reduced input jitter 
and increased data eye opening. 

Carrier Detect (CD) and Link Fault Indicator 
(LFI) Functions 

The Link Fault Indicator (LFI) output is a TTL­
level output that indicates the status of the Receiver. 
This output can be used by an external controller for 
Loss of Signal (LOS), Loss of Frame (LOF), or Out 
of Frame (OaF) indications. LFI is controlled by 
the Carrier Detect (CD) input, the internal1tansi­
tions Detector, and the PLL Out of Lock (OOL) cir­
cuitry. 

The CD input may be driven by external circuitry 
that is monitoring the incoming data stream. Opti­
cal modules have CD outputs that indicate the pres­
ence of light on the optical fiber and some copper­
based systems use external threshold detection 
circuitry to monitor the incoming data stream. The 
CD input is a lOOK PECL-compatible signal that 
should be held HIGH when the incoming data 



stream is valid. When CD is pulled to a PECL Law, 
the LFI output will transition Law, the Receiver 
PLL will align itself with the REFCLK*8 frequency, 
and the recovered data outputs (RSER) will remain 
LOW regardless of the signal level on the Receive 
data stream inputs (RIN). 

In addition, the SST has a built-in transitions detec­
tor that' also checks the quality of the incoming data 
stream. The absence of data· transitions can be 
caused by a break in the transmission media, a prob­
lem at the transmitter end of the media, or a prob­
lem with the transmit or receive media coupling 
hardware. The SST will detect a quiet link by count­
ing the number of bit times that have passed without 
a data transition. A bit time is defined as the period 
of RCLK±. When 512 bit times have passed with­
out a data transition on RIN±, LFI will transition 
Law. The Receiver will assume that the serial data 
stream is invalid and, instead of allowing the 
RCLK± frequency to wander in the absence of data, 
the PLL will lock to the REFCLK*8 frequency. 
This will insure that RCLK± is as close to the cor­
rect link operating frequency as the REFCLK accu­
racy. LFI will be driven HIGH again and the Re­
ceiver will recover clock and data from the incoming 
data stream when the transition detection circuitry 
determines that at least 64 transitions have been de­
tected within 512 bit times. 

The nansition Detector can be turned off by pulling 
the CD input to a TTL LOW (sO.8V). When CD 
is pulled to a TTL Law, the LFI will only be driven 
LOW if the incoming data stream frequency is not 
within 1000 ppm of the REFCLK*8 frequency. LFI 
LOW in this case will only indicate that the Receiver 
PLLis Out of Lock (OOL). When LFI is left uncon­
nected, an internal pull-down resistor will pull this 
input to ground. 

Loop Back Testing 

The TTL level LOOP pin is used to perform loop­
back testing. When LOOP is asserted (held LOW) 
the nansmitter serial inputs (TSER±) are used by 
the Receiver PLL for clock and data recovery. This 
allows in-system testing to be performed on the en­
tire device except for the differentialnansmit driv­
ers (TOUT±) and the differential Receiver inputs 

(RIN ±). For example, an ATM controller can pres­
ent ATM cells to the input of the ATM cell processor 
and check to see that these same cells are received. 
When the LOOP input is deasserted (held HIGH) 
the Receive PLL is once again connected to the Re­
ceiver serial inputs (RIN ±). 

The LOOP feature can also be used in applications 
where clock and data recovery are to be performed 
from either of two data streams. In these systems 
the LOOP pin is used to select whether the TSER± 
or the RIN ± inputs are used by the Receive PLL for 
clock and data recovery. 

Power-Down Modes 

There are several power-down features on the SST. 
Any of the differential output drivers can be pow­
ered down by either tying both outputs to Vee or by 
simply leaving them unconnected where internal 
pull-up resistors will force these outputs to Vee. 
This will save approximately 4 rnA per output pair 
in addition to the associated output current. If the 
TOUT± or ROUT± outputs are tied to Vee or left 
unconnected, the nansmit buffer or Receive buffer 
path respectively will be turned off. If the TCLK± 
outputs are tied to Vee or left unconnected the en­
tire Transmit PLL will be powered down. 

By leaving both the RCLK± and RSER± outputs 
unconnected or tied to Vee the entire Receive PLL 
is turned off. Even though the Receive PLL may be 
turned off, the (LFI will still reflect the state of the 
CD input. This feature can be used for aggressive 
power management. 

Interfacing with the PM5345 (SUNI) 

The PM5345 is used in ATM applications for 
SONET frame processing, ATM cell processing, 
and error monitoring. The PMC-Sierra SUNI de­
vice requires Receive serial data aligned with a bit­
rate clock. These signals need to be supplied 
through the RXD± and RXC± inputs respectively. 
A 155.52-MHz PECL nansmit clock (TXC±) is re­
quired to provide PM5345 transmit side clocking. 
For copper-based systems, the TXD ± outputs must 
be buffered in order to drive transmission lines with 
low impedances. Lastly, a LOS detection is re­
quired from the clock and data recovery engine to 

6-28 



aid in the determination of the LOS, LOF, and OaF 
error conditions reported by the SUNI device. This 
signal is brought in through the SUNI GPIN (Gen­
eral Purpose Input). Before the introduction of the 
SST, clock and data recovery devices were inter­
faced to the PMC-SUNI as shown in Figure 3. 

Figure 4 shows the SST signal connections with the 
PMC-Sierra PM5345 SUNI. The SST, together with 
the PM5345, provides a complete Physical layer in­
terface. The Receive section of the SST provides se­
rial SONET/SDH data at 155.52 Mb/s to the receive 
section of the PM5345 (RXC± and RXD±). The 
Transmit section of the SST provides the transmit 

side 155.52-MHz clock that is used by the PM5345 
TXCI± input by multiplying a 19.44-MHz oscillator 
by eight. This function eliminates the need for an 
expensive 155.52-MHz oscillator to be used in the 
system. The SST buffers the TXD± output signals 
from the SUNI device for driving copper-based sys­
tems or for improved operation in fiber-based sys­
tems. 

The LFI output is used to drive the GPIN input. 
This LFI output will transition LOW when any of 
the following occur: the CD (Carrier Detect) input 
transitions LOW, the frequency of the incoming 
data is outside of the lock range of the Receive PLL, 

Noise input source to PLL 

Additional Component Higher Nine power and grounds 
and Board Space Power ,---------, 

No Lock to GPIN 
10H116 Clock and I---'L:.;o:.:c::..=a:::../..:...~:un:..:.;c:=..:t~io:.!.n'-ll~ RXC+ 

D t I----------~ RXC-
Differential a a 
L· D· / Recovery I-------~ RXD+ 

Ine river I..II-_-=======~-=--=--=--=--=--=--=--=--=--=--=--=-~~ RXD-
Receiver 

TXD+ 
~-----------------; TXD-

No Transmit 
..----------t~ TXCI+ 
,--------~ TXCI-

No built-in line frequency multiplicatio 
receiver or driver ,--......... --, 

No loop-back 
testing capability Expensive Oscillator 

Figure 3. Iypical SUNI interface without the Use of the SST 

III Media ifF j; 
L--

III Media I/F 1:: 

SST 

ROUT+ e-~ 
ROUT- g, 0 
RIN+ g::;; 
RIN-

CD 

TOUT+ ~ 
TOUT- d 

u. 
UJ 
a: 

+ 
I7sMl 
~ 

LFl(t) 

RCLK+ 
RCLK 

RSER 
RSER 

TSER+ 
TSER 

TCLK+ 
TCLK-

.. GPIN 
:: 
;::; RXC+ 

:. RXC- PM5345 
:: RXD+ SUN I ... RXD-... 

:::: TXD+ 
.... TXD-

TXCI+ ::: 
TXCI-... 

Figure 4. SST to PMC-Sierra PM5345 SUNI Connection Diagram 

6-29 

PM5345 
SUNI 



-.~ Interfacing with the SST 
_,CYPRESS =============== 

or there have been no transitions in the incoming 
data stream for the last 512 bit times. Additionally, 
when the CD input is forced LOW by an output from 
a source such as the signal detect of an optical mod­
ule or an external transition detection circuitry for 
copper-based systems, the SST will force the 
RSER± outputs LOW. This will aid the SUNI de­
vice in the determination of the LOS state and mini­
mize the length of time needed to determine an er­
ror condition. 

Figure 5 shows an electrical interface of the SST to 
the PMC-SUNI device. Each SST PECL output is 
AC coupled into the SUNI inputs with a .00-!-IF ca­
pacitor, and is loaded with an 80Q pull-up resistor 
and a 130Q pull-down resistor. This scheme allows 
the SUNI device to self-bias (since the SUNI has a 

SST TAVD 
I 

.'¢7 
I~ r~ 
~ ~ 

TSER+ 

bias circuit built into each PECL input) its inputs 
and also provides the SST outputs with 50Q ter­
minations to approximately Vee - 2Y. The ter­
mination resistors are bypassed with .00-!-IF capaci­
tors to provide high-speed switching current. For 
PCB trace impedances higher than 50Q, the termi­
nating resistors should be scaled accordingly. For 
example, a lOOQ transmission line would require a 
pull-up resistor of 160Q and a pull-down resistor of 
26012. Terminations for the SST outputs (TCLK, 
RCLK, RSER) should be placed as close to the 
SUNI as possible. 

The TXD± outputs require different termination 
resistors values. The ideal biasing voltage for 
TXD± is 4.2Y. This bias is achieved by connecting 
a 62Q pull up to TAVD and a 330Q pull down to 
GND at the end of the termination line connecting 

VDD PMC-SUNI 

C TSER 
628Q RSER 

.q- VT1 

VT2 
TXD+ 

330Q62Q ZO=50Q 
TSER- 330Q 62Q .01 !-IF TXD-

TCLK+ KJ :f- TXCI+ 
ZO=50Q 

TCLK- KJ :f- TXCI-

RCLK+ H :f- RXC+ 
ZO-50Q 

RCLK- H if- RXC-

RSER+ H if- RXD+ 
ZO-50Q 

RSER- H :f- RXD-
130!:4 80Q 

t- t- 4t- ~ r- r 
.01 !-IF ~ rt ~ rt ~ ~ ~ FPOS MLT 

RVDD 
I . 

LFI GPIN 

Figure 5. High Performance SST to PMC SUNI Interface 

6-30 



TXD± and TSER±. These resistor values are cal­
culated based on Zo = 50Q. For PCB trace imped­
ances higher than 50Q, the terminating resistors 
should be scaled accordingly. For example, a 100Q 
transmission line would require a pull-up resistor of 
120Q and a pull-down resistor of 636Q. In addition, 
the VT2 resistor should also be scaled from 628Q to 
1260Q when using 100Q trace impedances. In gen­
eral, RVT2 = 12.564 * Zoo 

Interfacing with the PM5346 
(S/VNI-LITE) 

The PM5346 is another PMC-Sierra product used in 
ATM systems for clock and data recovery, SONET 
frame processing, ATM cell processing, and error 
monitoring. Its small package size makes it more 

TAVD 

r-----1 

1* I::!= .011lF ~ SST '4 ~ 

TSER+ 

desirable than the PM5345 in cases where not all of 
the SONET frame processing functions of the 
PM5345 are needed. For performance reasons, the 
PLL of S/VNI-LITE can be bypassed and the SST 
can be used to perform clock and data recovery 
functions for the SIUNI-LiTE. 

Figure 6 shows how to interface the SST to the 
S/VNI-LITE. When RBYP is tied HIGH, the inter­
nal PLL of the SIUNI-LiTE is disabled and 
RRCLK± is used to sample RXD ±. In this configu­
ration, the SST is used to supply the bit-aligned 
RRCLK. This is achieved by connecting RCLK± to 
RRCLK± and RSER± to RXD± using four equal­
length traces. Each of these traces has an 80Q pull­
up to RVDD and a 130Q pull-down to GND. These 
termination resistors are bypassed with .00-IlF ca­
pacitors to satisfy the high-speed switching current 

VDD PMC 

1 S/UNl-L1TE 
TSVP 

RSVP 

.01 IlF 

TXD+ 
67Q192Q ZO=50Q 

237Q It-
237Q II-

TSER- ~. TXD-67Q192Q 
TCLK+ --{ it- TRCLK+ 

ZO=50Q 
it- TRCLK-TCLK- --{ 

RCLK+ -{ :f- RRCLK+ 
ZO=50Q 

RCLK- --{ :f- RRCLK-

RSER+ -{ :f- RxD+ 
ZO=50Q 130Q80S; 

80Q: f-RSER- --{ RXD-
130q 

~ 0- ~ ,... 
II r 

RVDD 
.01 IlF~ ~ ~ ~ ~ ~ 

I 

~ 
ALOS+ 

LFI ALOS-

Figure 6. High Performance SST to PMC S/UNI-LITE Interface 

6-31 



=:..-- -" ~ Interfacing with the SST 
,CYPRESS ================ 

requirements. A .00-!tF DC-blocking capacitor is 
used in series with the transmission line to allow the 
S/UNI-LITE to self-bias its inputs (since the S/UNI­
LITE, like the SUNI, also has bias circuits built into 
each PECL input). All these passive components 
are placed close to the S/UNI -LITE. 

In the same way, the transmit side PLL of the 
S/UNI-LITE can also be disabled. When TBYP is 
tied HIGH, the clock multiplication function of the 
S/UNI-LITE is disabled and the 155.52-MHz or 
51.84-MHz clock received from either RRCLK± or 
TRCLK± is used for clocking the transmit portion 
of the S/UNI-LITE. If the LOOPTbit ofthe Master 
Control register of the S/UNI-LITE is 1, RRCLK 
will be used and when the LOOPT bit is 0, TRCLK± 
will be used. TRCLK± is supplied by TCLK± of the 
SST. The termination/biasing circuit used for this 
TRCLK connection is the same as that used in the 
RXD± and RRCLK± connections described pre­
viously. These termination/biasing circuits should 
also be placed as close to the S/UNI-LITE as 
possible. 

For the TXD± to TSER± connections, a 2370 
source resistor in series with a .01-!tF capacitor 
placed closed to the S/UNI-LITE side is used with 
a 670 pull-up to TAVD and a 1920 pull-down to 
GND placed close to the SST side to provide the 
necessary termination and biasing. 

Interfacing with the IgT WAC-013. 

The Integrated Telecom Technology (IgT) 
WAC-013 provides SONET frame processing, ATM 
cell processing, and error monitoring. The IgT de­
vice requires differential PECL Receive data 
(RS_SER_DATA) aligned with a differential PECL 
bit-rate clock (RS_SER_CLK). These signals rep­
resent the recovered clock and data from a SONET/ 
SDH STS-3/STM-1 data stream of 155.52 Mb/s or a 
SONET STS-1 data stream of 51.84 Mb/s. The 
WAC-013 also requires a bit-rate transmit-clock 
(TS_SER_CLK) for Transmit Side clocking. The 
transmit data (TS_SER_DATA) should also be 
buffered for driving low-impedance transmission 
lines or copper transmission media. Prior to the 
introduction of the SST, clock and data recovery de­
vices were connected to the WAC-013 as shown in 
Figure 7. 

Figure 8 shows the SST signal connections with the 
IgT WAC-013. The SST, together with the 
WAC-013, provides a complete physical-layer inter­
face. The Receive section of the SST provides serial 
SONET/SDH data at 155.52 Mb/s or 51.84 Mb/s 
(depending on the state of the SST MODE pin) to 
the Receive section of the IgT RS _ SER _DATA and 
RS _ SER _ CLl( inputs. The Transmit section of the 
SST provides the bit-rate clock (TS_SER_CLK) 
and Transmit buffering of the TS _SER _DATA out­
puts. The SST multiples a 19.44-MHz reference 

Noise input source to PLL 

Additional Component Higher Nine power and grounds 
and Board Space Power r----------, 

10H116 
Clock and t-------~ RS SER CLK+ 

Data t-------~ RS=SER=CLK­
Differential 
L· D' / Recovery t-------~ RS SER DATA+ 

Ine river ~II-_J:=~~~~=~======~ RS=SER=DATA-Receiver 
TS SER DATA+ 

~-------------------l TS=SER=DATA-

No loop-back 
testing capability 

.r----------I~ TS SER CLK+ 
.--------~ TS=SER=CLK-

WAC-013 

Expensive Oscillator 

Figure 7. lYPical WAC-013 interface without the pse of the SST 

6-32 



SST 

ROUT+ ~~ 
ROUT- 00 
RIN+ g:; 

J:FI 
RCLK+ 
RCLK-

RS SER CLK+ 
RS=SER=CLK-

RIN- flSER 
RSER 

"'I-------~ RS SER DATA+ 
CD ~:!L----~~------:---1~ RS=SER=DATA-

I 
TOUT+ :s 
TOUT- f( 

TSER+ 
TSER-

14-------l TS SER DATA+ 
14-------l TS=SER=DATA-

TCLK+ w TCLK-I--------I~ TS SER CLK+ 
Q: L_~~_""':'::::':::J----"""""--~ TS=SER=CLK-

WAC-013 

Figulll 8. SST to IgT WAC-Ol~ Connection Diagram 

clock (6.48-MHz for STS-1 applications) by eight to 
produce the 155.52-MHz (51.84-MHz) transmit 
clock. This frequency multiplication fu:pction elimi­
nates tpe need for an expensive 1S5.52-MHz crystal 
oscillator. 

Figure 9 shows the electrical interface of the SST to 
the WAC-013. The outputs are loaded and termi­
nated with 800 pull-up resistors and 1300 pull­
down resistors at the load. This provides a 500 ter­
mination to Vcc-2y. These resistors are also 
bypassed with a .01-J.tF capacitor to provide high­
speed switching current. For PCB trace impedances 
higher thlll1500, the terminating resistors should be 
scaled accordingly. For example, a 1000 transmis­
sion line would require a pull-up resistor of 1600 
and a pull-down resistor of 2600 . . 

6-33 

Conclusion 
The interface examples shown in this note demon­
strate how to connect the SST to the PMC-Sierra 
PM5345 SUNI, the PMC-Sierra PM5346 S/UNI­
LITE, and the IgT WAC-013. Together these de­
vices provide a complete physical-layer solution for 
ATM applications over SONET/SDH at 155.52 
MJ:>/s and 51.84 Mb/s. The SST greatly simplifies the 
physical-layer implementation with its ability to 
generate a Loss of Signal indication, its capability to 
lock to the local reference clock during error condi­
tions, and its capacity to buffer the transmit data 
stream for driving low-impedance transmission 
lines. The SST also reduces the cost of physical-layer 
implementations by eliminating the need for a 
155.52-MHz crystal oscillator with its ability to multi­
ply a byte-rate clock to provide the bit-rate transmit 
source. Cypress's expertise in PLL-based clock and 
data recovery as well as the added features of the 
SST provide designers with the capacity to create 
simple, low cost, and robust ATM physical-layer 
designs. 



==rz-,~ Interfacing with the SST 
-::;;;sr7CYPRESS ==;;;;;============== 

SST WAC-013 

.01 IlF 

vbe~~ee 

TSER+ 130Q 80Q 
)- TS_SER_DATA+ 

ZO=50Q 
TSER- t- J- TS_SER_DATA-

TCLK+ H TS_SER_CLK+ 
ZO=50Q 

TCLK- H TS_SER_CLK-

RCLK+ H RS_SER_CLK+ 
ZO=50Q 

RCLK- H RS_SER_CLK-

RSER+ H RS_SER_DATA+ 
ZO=50Q 

RSER- H RS_SER_DATA-
130Q 80Q 

.... .... .... .... r r 

Vee . 01 IlF ~ ct ~ II ~ ~ -I 

Figure 9. High Perf9rmance SST to WAC-013 Interface 

SST is a trademark of Cypress Semiconductor Corporation. 

6-34 



Frequently Asked Questions about HOTLink ™ 

The following questions are frequently asked by customers who are evaluating HOTLink ~ products. These 
cursory answers will serve as an introduction for each topic. Separate application notes cover these topics in 
more complete detail. 

1. How far can HOTLink communicate over various media? 

HOTLink has no intrinsic distance limit. The two issues that determine the distances over which data can 
be sent using HOTLink are: (1) the choice of interconnect media (fiber-optic cable, coaxial cable, twisted­
pair cable, etc.); and (2) the jitter that accumulates or is injected while the data is in transit over the 
selected media. 

HOTLink can drive all standard fiber-optic interface modules that support standard PECL interface sig­
nals. These electro-optical modules are suitable for communicating over distances from a few meters to sev­
eral kilometers. Fiber-optic interconnect offers the longest distances and the lowest interference poten­
tial of all transmission media. 

For lower-cost applications, HOTLink can directly drive wire transmission lines. The main distance de­
termining factors when using wire links are related to the characteristics of the cable. Wire transmission 
lines have significant frequency-dependent attenuation that causes jitter as a direct function of the data 
rate and the media length. Uncompensated transmission line lengths are limited much more by jitter (and 
the jitter tolerance of the receiver) than by actual signal attenuation. The detrimental effect of jitter can 
be lessened with the addition of a suitable attenuation compensation filter that matches the attenuation 
characteristics of the cable. This filter trades receiver differential voltage amplitude for jitter reduction 
and increases the possible transmission distance. When using wire transmission lines, other issues beyond 
transmission distance often determine transmission line suitability. These issues include both radiated 
emissions and susceptibility to external disturbance that must be examined prior to selection of a link me­
dia type. 

Some typical wire types and uncompensated transmission distances over which HOTLink can communicate 
are shown in Table 1. A simple compensation filter, built from passive components, can increase reliable 
transmission distance to more than twice these distances. 

For more information see the application note "HOTLink Copper Interconnect-Maximum Length vs. 
Frequency." 

Thble 1. Coaxial Cable lYpes 

Coaxial 
Cable 50Q 75Q 75Q 93Q 

160 Mbaud RG-58 A(U - 350 ft RG-6 A(U - 900 ft RG-59 A(U - 525 ft RG-62 A(U - 675 ft 

266 Mbaud RG-58 A(U - 225 ft RG-6 NU - 600 ft RG-59 A(U - 350 ft RG-62 A(U - 400 ft 

330 Mbaud RG-58 A(U - 115 ft RG-6 NU - 500 ft RG-59 A(U - 250 ft RG-62 A(U - 325 ft 

6-35 



:':!EYPRESS ======Fr=e;;;;;qu;;;;;e;;;;;D;;;;;tI;;;;;Y;;;;;A;;;;;s;;;;;ke;;;;;d;;;;;Q=ue;;;;;s;;;;;ti;;;;;o;;;;;D;;;;;S ;;;;;ab;;;;;o;;;;;u;;;;;t;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;Dk= 

Table 2. Twisted Pair Cable 1Ypes 

Shielded Twisted Pair 150Q Unshielded Twisted Pair UTP3 UTP5 

160 Mbaud IBM® -'JYpe 1 - 550 ft 160 Mbaud 140 ft 280 ft 

266 Mbaud IBM - Type 1 - 350 ft 266 Mbaud 80 ft 180 ft 

330 Mbaud IBM - Type 1 - 275 ft 330 Mbaud 60 ft 130ft 

2. Can the PECL inputs and outputs of HOTLink products be connected to ECL (-5.2V) products? 

The + 5.0V PECL inputs and outputs are directly compatible with true ECL (10K, lOKH, lOOK, etc.) run­
ning on +5V power supplies. Connections between the HOTLink PECL I/O and ECL running on - 5.2V 
is easily accomplished by capacitor-coupling the serial data lines. Details on this coupling technique are 
included in the Cypress application note "HOTLink Design Considerations." 

3. What happens when the ECL inputs of the HOTLink Receiver are left open? 

All of the ECL inputs on the HOTLink Receiver have internal pull-down resistors to assure that ECL­
emitter follower outputs will see a positive input current (approximately 250 IlA into the pin) at all normal 
ECL voltages. Thus, all single-ended ECL inputs (i.e., A/B, SI, INB) will float to a logical LOW level. 
(These pull-downs will not sink enough current to act as the normal ECL output termination. They are 
only intended to prevent the emitter-follower oscillations caused by negative input-impedance that are 
possible in some less robust designs.) Open inputs will be interpreted as follows: NB = LOW will cause 
the Receiver to accept data from the INB serial inputs; SI = LOW will cause the SO output to assume 
a LOW output state; INB = LOW will be interpreted as an input with no data (assuming NB is also 
LOW). No data is interpreted as an error (RVS=HIGH & CO.7 in Encoded mode, and Qa-j outputs 
LOW in Bypass mode) and will cause the internal clock-synchronizer phase-locked loop (PLL) to track 
the REFCLK input frequency. 

The internal resistor network used to pull the differential serial data inputs (i.e., INA± and INB±) will 
cause unconnected inputs to rest at approximately 2.0y' This resting voltage is a byproduct of the internal 
resistive attenuator used to enhance input-common mode range. If both inputs of a differential pair are 
left unconnected, the inputs will be in an undefined state and HOTLink receiver behavior will be unpre­
dictable. Stray, non-differential noise that appears on these unconnected inputs will be amplified and in­
terpreted as serial data. This will cause random parallel-data output changes, and may cause the PLL to 
wander or drift away from the REFCLK frequency. One input of an intentionally unused differential-pair 
should be terminated to Vee through a 1-5 KQ resistor to assure that no data transitions are accidentally 
created. 

4. What special power-supply bypassing is required for HOTLink products? 

HOTLink requires no special considerations for power-supply bypassing beyond that normally associated 
with high speed logic. This typically includes the use of a ground plane, a split Vee plane, and multiple 
chip bypassing using RF quality capacitors. Each of the ground pins of a HOTLink IC should connect 
directly to the ground plane using short ( < .25") traces and vias. All of the Vee pins should connect to a 
Vee pad under the HOTLink and then connect to the board Vee through a single via. Connect one 22-nF 
capacitor for each Vee pin directly from the pin to GND. For more information see the "Using Decoupling 
Capacitors" application note. 

6-36 



Frequently Asked Questions about HOTLink 

5. If the HOTLink Receiver is switched from INA to INB, how long will it take for the PLL to re-Iock? 

Assuming that the data on both INA and INB are within the ±0.1 % frequency offset described in the 
HOTLink datasheet, the phase-locked loop (PLL) will acquire and lock to the new data stream within a 
few byte times. The exact time required involves statistical probabilities related to phase, frequency, and 
jitter, and cannot be exactly predicted. Empirical testing using normal data patterns shows that the time 
required to achieve absolute minimum phase error with the new data stream will vary from zero to about 
ten bytes. 

An operational serial link will produce valid parallel data much earlier than the amount of time required 
to achieve minimum phase error, since instantaneous phase error is accommodated as jitter. The wide 
jitter tolerance offered by the HOTLink Receiver will minimize the time that data is incorrectly inter­
preted during phase acquisition. The larger problem facing a system protocol that allows switching of seri­
al data streams, is byte synchronization (byte-framing). Mter the data-stream has been switched, it must 
be reframed. This requires that a K28.5 (or two K28.5s within five bytes if multibyte framing is enabled) 
must be received. The time that elapses before this happens depends on the system protocol and the tim­
ing of the data input switch. Correct data might not come out of the HOTLink Receiver for hundreds of 
byte times due to reframing regardless of speed of phase acquisition. 

For more information, refer to the Receiver Data-Phase Acquisition Time section of the "HOTLink Jitter 
Characteristics" application note. 

6. If the connection between the HOTLink 'fransmitter and Receiver is briefly interrupted, how long will 
it take for the PLL to re-Iock? 

The exact behavior of the HOTLink Receiver depends on the length and cause of the interruption. If the 
interruption is synchronous with the data (i.e., data bits disappear without any significant disturbance to 
the placement of the final few data transitions), and lasts for less than a few dozen bytes, it is probable 
that the PLL will relock on the very first bit. If the interruption is asynchronous (i.e., the timing of the 
final few transitions is disturbed) or if the synchronous interruption lasts longer than a few dozen bytes, 
the PLL will relock within the first one or two bytes after resumption of the data stream. If a long interrup­
tion occurs that is not synchronous to byte boundaries, the receiver may lose byte synchronization when 
the PLL relocks. In this case, the data will need to be reframed. 

If the interruption is asynchronous, and the link interface allows noise to be injected into the serial inputs 
of the HOTLink Receiver, the time to relock the PLL becomes much harder to predict. If the noise that 
is being injected causes the PLL to track within its frequency offset limits (approximately ±0.2S% of the 
REFCLK frequency) the PLL will reacquire in a few bytes (typically less than ten) after a good data 
stream reappears. If the PLL frequency has been moved to its offset limits by the input noise, it may take 
more than 60-70 bytes before the PLL locks to the good data. When the PLL hits the frequency offset 
limit, it will recenter itself at the REFCLK frequency and then attempt to lock to the data. While the PLL 
is out oflock (after experiencing a data stream interruption) the frequency of CKR will not wander beyond 
the offset limits. 

For more information, refer to the Receiver Data-Phase Acquisition Time section of the "HOTLink Jitter 
Characteristics" application note. 

7. If the connection between HOTUnk 'fransmitter and Receiver is broken, what will come out of the receiver? 

The exact behavior of HOTLink Receiver is difficult to predict when the serial data link is broken, since 
there are so many ways that the link itself can behave. The following behaviors are most common; 

6-37 



= rcYPRESS ======Fr=eq;::u;::e;::D;::tl;::Y;::A;::s;::ke;::d;::Q;::u;::e;::s;::ti;::O;::DS;::8;::b;::o;::u;::t;::H;::O;::T;::L;::i;::Dk= 

Bypass Mode-Reframe-OFF (RF = LOW) Clean link break with no extraneous noise input into serial 
inputs: 

• CKR runs at REFCLK frequency. 

• RDY is always HIGH. 

• Qa -j all go LOW or HIGH depending on exact offsets built into transmission line termination. If 
the terminations are exactly matched, then Qa - j may be indeterminate. 

Bypass Mode-Reframe-OFF Noise injection into serial inputs: 

• CKR runs at REFCLK frequency ± < 1.0% (typically < ± 0.25 %) and may wander between its range 
limits and the center frequency, randomly controlled by the injected noise. 

• RDY may rest HIGH or may pulse randomly as false K28.5s are decoded from the noise. 

• Qa -j will be indeterminate and may switch randomly. 

Encoded Mode-Reframe-OFF Clean break with no extraneous noise input into serial inputs: 

• CKR runs at REFCLK frequency. 

• RDY pulses once per byte. 

• QO-7 indicate CO.7, SC!D is always HIGH, RVS is always HIGH if there are any offsets built into 
transmission line termination. If the terminations are exactly matched, then QO-7, SC!D and RVS 
may be indeterminate. 

Encoded Mode-Reframe-OFF Noise injection into serial inputs: 

• CKR runs at REFCLK frequency ± < 1.0% (typically < ±0.25%) and may wander between its range 
limits and the center frequency randomly controlled by the injected noise. 

• RDY may pulse randomly or once per byte. 

• QO-7, SC!D and RVS may be indeterminate and may switch randomly. 

Either Mode-Reframe-ON Noise injection into serial inputs: 

• CKR runs at REFCLK frequency ± < 1.0% (typically < ±0.25%) and may wander between its range 
limits and the center frequency randomly controlled by the injected noise. If RF has been HIGH for 
less than 2048 bytes, CKR will stretch randomly as falseK28.5s are decoded from the noise. If RF 
has been HIGH for more than 2048 byte-times, CKR will only stretch when a multiple K28.5 string 
is decoded from the noise. 

• RDY may pulse randomly or once per byte. 

• QO-7, SC!D and RVS may be indeterminate and may switch randomly. 

8. What is the correct operation of the RF input on the receiver? What is the minimum number of K28.5 
characters required to insure proper framing? How can I tell if the receiver is framed properly? 

Recovery of information from a serial data stream requires recovery of the bit clock (accomplished by the 
receiver PLL) and byte synchronization (accomplished by the receiver framer). The HOTLink framer 
is enabled or disabled by the RF input. In well behaved, standardized point-to-point protocols that are 
seldom switched, the control of the byte framer is managed as a service in the protocol controller. This 
service monitors when some error criteria have been exceeded, and goes to a framing subroutine. This 
framer service sets RF=HIGH while framing and LOW during normal message transactions. 

6-38 



~ 

~YPRESS ~~~~~~Fr~e~qu~e~n~tl~Y~A~s~ke~d~Q~ue~s~ti~o~n~s~ab~o~u~t~H~O~T~L~i~nk~ 

In less well behaved systems, or systems that switch data sources often, it may be necessary to leave 
RF=HIGH for long periods (or permanently). Leaving RF HIGH opens the system to the problem of 
data corruption in the serial link caused by data patterns that happen to match the SYNC character. Since 
this Alias SYNC is unlikely to be aligned to the normal byte boundaries, it will cause the framer to align 
the parallel data to the wrong byte boundary resulting in long running data corruption. When RF is set 
HIGH, the receiver searches the received data stream for the bit pattern matching K28.5 (001111 1010 
or 1100000101). When it is found, the internal bit counter that controls byte translation is reset and the 
byte boundaries are aligned to the SYNC character. 

HOTLink minimizes the alias SYNC problem by incorporating a multi-byte framer into the receiver. If 
RF has been HIGH for less than 2048 bytes, as would be typical in protocol driven framing control, a single 
K28.5 will align the byte boundaries. IfRF has been HIGH for more than 2048 bytes, as would be typical 
in packet switched systems, the multi-byte framer is enabled and a single K28.5 is no longer sufficient to 
align the byte boundaries. To minimize the risk of alias SYNC, reframing is only allowed when two K28.5s 
are detected. These two K28.5s can be adjacent, or separated by exactly one, two, or three transmission 
characters. Any other spacing (i.e., non-integral character separation, or too far between K28.5) is as­
sumed to be caused by transmission errors and will be ignored for framing purposes. 

In addition to the upper level protocol error detection mechanisms common in communication links, the 
HOTLink Receiver offers several indications that a link is misframed. For example, in Bypass mode the 
RDy output pulses once per K28.5 detected. If RF is LOW, the only K28.5 that can be detected is one 
that is properly framed, and all others will just pass through as part of the received data. If the protocol 
in use has a maximum packet size or a miniInum number of K28.5s, a simple retriggerable-one-shot can 
be used to detect when framing has been lost. In this example, if the one-shot is retriggered by the properly 
spaced K28.5s, then the data is properly framed. If the one-shot times-out, indicating that too much time 
had elapsed between SYNC characters, the data would automatically be reframed by raising RF till the 
next K28.5 indication. 

Another example of HOTLink's indication of a misframed link occurs during Encoded mode. In Encoded 
mode, the RVS output serves a similar if not quite as obvious function. Normal data being sent over typical 
data links will have a very low error tate (e.g., bit -error-rates of 1xlO-12 are quite common. BER= 1xlO-12 

= one error per hour at 266 MHz). Therefore, if RVS is asserted often it can be assumed that the cause 
is misframing. Another retriggerable-one-shot could be used to detect this condition, or it could be de­
tected by a simple synchronous state machine constructed in a PLD. 

For more information, refer to the "HOTLink CY7B933 RDY Pin Description" application note. 

9. What happens to the receiver's clock and parallel outputs when it reframes? 

When a byte boundary realignment occurs, the external timing of the HOTLink Receiver changes to 
match the new byte alignment. Logic internal to the receiver guarantees that the clock outputs (CKR and 
RDY) never glitch. They will stretch to the new byte alignment by adding to the HIGH or LOW time of 
the output pulse. The exact width of the high or low times of these clock outputs will depend on the exact 
timing of the realignment, but neither will ever be less than that of a nominal, normally running output 
(Le., five bit times, each, minimum). 

The data outputs (QO-7, SCiD, and RVS) all change at' a time determined by internal bit-rate counters, 
and are timed to assure maximum set-up and hold times to down-stream logic. Since realignment will 
reset the cycle of the internal counter, it is possible that the outputs will change, and then change again 
between clock edges when byte realignment happens. Since the clock-cycle stretches, this glitch on the 
data output remains outside the specified data-access and hold times. 

For more information, refer to the "HOTLink CY7B933 RDY Pin Description" application note. 

6-39 



=---# 
"CYPRESS 

Frequently Asked Questions about HOTLink 

10. What does BIST do? How can I add BIST to my system without redoing all calculations for my critical 
interface timing? What functionality does the lUST test and guarantee? 

The HOTLink built-in self-test allows a clear and unambiguous check of the HOTLink Transmitter and 
Receiver, and the serial link connecting them. As part of an offline diagnostic, this feature allows the user 
to insure that the interconnect link is fully operational and that any other diagnostic failure indications 
are caused by system blocks above the physical layer. BIST allows the HOTLink adapter card manufac­
turer to do a quick link quality test (or node quality test with the use of the loop-back functionality of HOT­
Link) without the necessity of bringing up a fully functional system to do link testing . 

. BlST is controlled by unused HOTLink data-enable inputs. Only a few connections and minimal external 
logic are necessary to add BIST to an otherwise complete system. (See the Cypress application note 
"HOTLink Built-In Self-Test.") BIST status indications appear on the RP, RVS(Qj) and RDY outputs 
which are easily monitored by logic internal or external to the data flow controller. 

In BIST mode, the HOTLink 1tansmitter generates a 29-1 (511 byte) pseudo-random pattern using its 
Input register configured as a Linear Feedback Shift register. The HOTLink Receiver compares the serial 
BIST data stream with identical BIST patterns generated in its Output register. All of the logic in the 
transmitter (except the input pins) and all of the logic in the receiver (including the output pins and their 
attached loads) are checked by BIST. All of the serial link interconnect components ~e exercised with 
normal data patterns, which are checked byte-by-byte in real time. 

11. What fiber-optic components are compatible with HOTLink products? 

All standard fiber-optic interface components are compatible with HOTLink products. The following 
table is a representative but not comprehensive list of optical interface manufacturers. A more complete 
list of vendors and products is included in the "HOTLink Design Considerations" application note. 

AMPlLytel Division 
61 Chubb Way 
P.O. Box 1300 
Somerville, NJ 08876 
(908) 685-2000 

CTSCorp 
1201 Cumberland Ave 
West Lafayette, IN 47906-1388 
(317) 463-2565 

Hewlett-Packard 
Components Division 
370 West Trimble Road 
San Jose, CA 95131 
(800) 535-7449 or (408) 435-6342 

Siemens Fiber Optic Components 
20F Commerce Way 
Totowa, NJ 07512 
(201) 890-1606 

Sumitomo Electric 
Fiber Optics Corporation 
777 Old Sawmill River Road 
Tarrytown, NY 10591-6725 
(914) 347-3770 

12. What is the significance of the HOTLink claim of "no external PLL components"? 

HOTLink 1tansmitter and Receiver have completely integrated the PLL clock multiplier and data separa­
tor functions. These functions are implemented with high-performance phase-locked loops (PLLs) that 
have been tuned for maximum performance and minimum system noise sensitivity. In competitive prod­
ucts that purport to offer similar functions, these PLLs are often implemented with external filter and fre­
quency setting components with the goal of achieving maximum performance. But these very same exter­
nal components are the largest cause of end-user complaints and random system failures because they 
expose the most critical analog signals in the circuit to the external noises that abound in normal systems. 
External components require critical, costly and time consuming printed circuit board layout as well as 
high-speed analog and digital design techniques that are unfamiliar to many system integrators. HOT­
Link products are designed and built using fully differential analog and digital circuits to 'give the lowest 
possible output jitter and highest possible jitter tolerance. There are nQ external components to compro­
mise system performance in unexpected and unpredictable w~ys. For more information, refer to the 
HOTLink Transmitter Jitter section of the "HOTLink Jitter Characteristics" application note. 

6-40 



Et ~YPRESS~~~~~~Fr~·~eq~U~e~n~tl~Y~A~S~ke~d~Q~Ue~s~ti~o~ns~a~b~o~u~t~H~O~T~L~i~n~k 

13. What is the intrinsic bit-error-rate of HOTLink Transmitter and Receiver? 

HOTLink BER=Zero. HOTLink Transmitter and Receiver have no intrinsic failure modes. If their pow­
er is maintained and if the interface to the link connecting them has reasonable design margin, the total 
error rate wlll be exactly that of the interconnect media. Link error rates of < < 1x10-15 are common and 
easily achieved. Even with worst-case design derating and end-of-life derating, BER < < 1xlO-12 presents 
no significant challenge. 

The real question being asked is, "What will be my link BER when using HOTLink?" The answer to this 
question involves the design of the serial transmission link and the margins designed into it. HOTLink 
will not significantly degrade the BER of the link. For more information, refer to the "Understanding Bit­
Error-Rate with HOTLink" application note. 

14. How much jitter is created by the transmitter? How much jitter is created by the receiver? What is the 
significance of the HOTLink Transmitter requirement for a crystal-stable clock source? 

The phase-locked loops (PLLs) in the HOTLink 'Itansmitter and Receiver act like low-pass filters to jitter 
that is embedded in the data or clock signal source. For the transmitter, the signal source is the CKW 
input. Any jitter that appears at CKW will be passed unattenuated if it has frequency components below 
the natural frequency of the PLL filter (approximately 500 kHz). Frequency components above the natu­
ral frequency will be attenuated at about 6 dB/octave. Frequency components that fall very near the natu­
ral frequency of the ftlter will be slightly amplified (approximately 0.5 dB). These are the normal charac­
teristics of a Type-2, second-order PLL filter. When the transmitter is fed by a low jitter clock source, 
typical output jitter will be less than 20 ps RMS and 200 ps peak-to-peak. It is possible to measure signifi­
cantly more jitter than that which is actually present if the complete system is not well understood. A few 
hundred millivolts of V cc noise, while insignificant to ilie logic of a normal system board, will add imaginary 
jitter to the measured output. This imaginary jitter appears because a single ended oscilloscope sees the 
waveform as if it were measured against a fixed threshold, while the differential serial interface sees Vee 
noise as a common mode signal to be ignored (e.g., 100 m V of V cc noise could create 100-200 ps of imagi­
nary jitter). Likewise, the normal method of measuring peak-to-peakjitter, an infinite persistence scope 
trace, will show larger jitter than that contributed by the HOTLink Transmitter. Low frequency jitter 
(wander) in the oscillator, scope trigger, temperature, and voltage related delay variations will all contrib­
ute to the width of the stored scope trace. Delay variations include TTL threshold variations that cause 
apparent delay variation (e.g., 100 m V of TTL threshold change can cause 100 - 200 ps of apparent jitter). 

The signal source for the receiver is the serial data stream and, like the transmitter, it passes the frequency 
components of received jitter that fall below the natural frequency of its filter (approximately 300 kHz to 
1000 kHz dependirtg on actual data transition density being received). Frequency components above the 
natural frequency will be attenuated and there is minor jitter peaking at about the natural frequency of 
the PLL. Since the characteristics of the input jitter will determine the jitter content on the receiver CKR 
output (the only place to directly measUre Rx-PLL jitter) it is somewhat difficult to predict the output jit­
ter. Maximum CKR output jitter is less than 200 ps (peak-to-peak) when the receiver is tracking normal 
data (BIST data is typical) that exhibits m~mum tolerable peak-to-peakjitter. Jitter from normal data 
is wide-bandwidth, has a significantly high-frequency content, and can have peak-to-peak amplitude of up 
to about 90% of a bit time. If the serial data contains a significant low frequency jitter component (typical 
of crystal oscillators and some pulse generators) the output jitter measured on the CKR pin could be much 
higher. Jitter measurements at the receiver output can be more misleading than those associated with the 
transmitter serial outputs, since all measurements are made on TTL outputs. 

The jitter characteristics mentioned above affect system performance in the following ways. Any low­
frequency jitter (below the bandwidth of either transmitter or receiver PLL) will be treated as wander. 

6-41 



Frequently Asked Questions about HOTLink 

For purposes of tliePLLs, wander (usually caused by low frequency power supply variations or tempera­
ture fluctuations within the timing ICs) will not reduce the system timing margins and will not contribute 
to bit-error-rate. Wander can affect system timing at interfaces where the transmitter clock source is used 
to clock inforniation received from a receiver tracking data from another clock source. The variation in 
clock frequencies rimy violate set-up and hold times, the exact problems usually solved by FIFO memories 
in typical communication systems. 

High-frequency jitter (at or above the natural frequency of the PLL filters) may contribute to BER. High­
frequency jitter can be caused by the clock source, media transfer characteristics, or external noise. The 
recovered internal bit-rate dock will not track high-frequency jitter above the PLL.natural frequency. 
High-frequency jitter, ther~fore, may cause a bit edge to move into the receiver sampling window causing 
the bit to be erroneously sampled (a bit error). 

A suitable clock source should be selected with the above effects in mind. The only clock source guaran­
teed to offer the required stability and high-frequency specifications is a crystal oscillator. High-frequency 
jitter is minimal, and low~frequency wander is usually small and very low frequency. Frequency accuracy 
is easily guaranteed by mechanical means, and high accuracy devices are relatively low cost. Free-running 
resistor-capacitor (RC) osciilators, logic gate ring oscillators or inductor-capacitor (LC) oscillators in­
clude too much high-frequency jitter, experience wide frequency variation as a function of process and 
environmental conditions and thus are unsuitable for this application. See the "HOTLink Jitter Charac­
teristics" application note fOr more information. 

15. Can I use HOTLink for anything other than Fibre Channel/ESCON TM interconnect? 

HOTLink.\1as been designed to implement the required performance and specifications of Fibre Channel 
and ESCON, but has additional user features that encourage use beyond these specifications. The specific 
timing of the parallel I/O and clock signals allow efficient interconnect with typical generic controllers and 
FIFO mem<;>ries. The built-in self-test and the included 8B/lOB encoder functions allow users to implement 
custom protocols that are suitable to any data-movement application. HOTLink is compatible with all 
common link interconnect media and interfaces. It is a low-cost, low-power, high-performance tool that 
enables otherwise impractical system innovation. If there is data to move, HOTLink can carry it. 

16. Is HOTLink compatible witH ATM? 

HOTLink IS compatible with the 194.40 Mbaud (155.52 MBit/second), SB/lOB interface defined by the 
ATM Forum. it offers all of the data, special characters and framing behaviors described in the ATM Fo­
rum User-Network Interface (UNI) Specification. In particular HOTLink serves as the physical layer in­
terface for the physicallayet for 155 Mbps Interface (and its copper variant). When operating in this ca­
pacity, HOTLink runs at 194.40 Mbaud and uses the built-in 8B/lOB encoder. All required data and 
special codes and responses are included in HOTLink. 

17. Is HOTLink compatible with SONET? 

HOTLink is not directly compatible with SONET for at least the following reasons: 

• There are no standard SONET frequencies within its operating range of 160-330 Mbaud. 

• HOTLink has a lO-bit unencoded interface, and SONET systems use an 8-bit interface. 

• SONET requires a much slower rate-of-change of frequency during loss of signal than HOTLink can 
achieve. 

The HOTLink Receiver can tolerate the long strings of zeros contained in SONET serial streams, and 
future designs will directly accommodate SONET specifications. 

6-42 



¥ ~YPRESS ======Fr=eq=u=e=D=tl=y=A=s=ke=d=Q=ue=s=ti=o=DS=a=b=o=u=t=H=O=T=L=i=Dk= 

18. What is the latency through a HOTLink Transmitter and Receiver? 

The input data is stored in the Transmitter Input register on the rising edge of CKW, so this becomes time­
zero. Approximately 21 bit-times (i.e., 21 times the period of CKW + 10) minus the tpD of a TIL output 
buffer (approximately 10 ns) later, the first bit of that data will emerge from the OUTA±, B±, and C± 
pins. After the transit time of the serial link, which can be significant, that bit will appear at the receiver. 
Transit times for typical serial links include the propagation delay of the optical modules (typically 
5-10 ns for the pair), if any, and the propagation rate in the link media (i.e., approximately 1 ns/fi in 
copper, and 2 ns/fi in multi-mode optical cable). Approximately 24 bit-times plus the tPD of a TTL output 
buffer (approximately 10 ns) after the first data bit is received at the input of the receiver, it appears at 
the QO-7 outputs. Eight bit-times later CKR rises and the data transfer is complete. The total latency 
of a HOTLink Tx/Rx: pair is approximately link delay plus 45 bit-times. 

19. Is there a VERILOG or VHDL model of HOTLink? 

Logic Modeling offers full function logic models of both the HOTLink Transmitter (CY7B923) and the 
HOTLink Receiver (CY7B933). These models perform all of the normal chip functions including BIST, 
Encoded, and Bypass modes of operation. The models accurately model the "real" parts and have been 
validated by having them run the actual-chip design-simulation vectors and the outgoing-test vectors. 
Logic Modeling offers a wide variety of standard product logic models that run on various simulations 
platforms. They can be reached at: 

Logic Modeling 
19500 N.W. Gibbs Drive 
P.O Box 310 
Beaverton, OR 97006 
Telephone (503) 690-6900 
Fax (503) 690-6906 

20. I need to estimate the reliability of HOTLink in my design. How many components does it contain? 

Table 3. HOTLink Reliability Data 

CY7B923 CY7B933 

Number of components 4285 7988 

Number of transistors 3813 6855 

Number of gates 2072 2960 

Percent digital by gate count 85 90 

Percent analog by die area 30 20 

Die size 96x 116 mils 126 x 131 mils 

Built on Cypress Standard 0.8-micron BiCMOS. Designed for reliable operation at temperatures -55°C 
< Tj < 155°C. All pins characterized to withstand ESD >4400V (HBM). Wafer Fab Capability in San 
Jose, CA; Round Rock, TX. 

HOllink is a trademark of Cypress Semiconductor. 
IBM is a registered trademark of International Business Machines Corporations. 
ESCON is a trademark of International Business Machines Corporations. 

6-43 



HOTLink ™ Design Considerations 

Application Note Overview 

The HOTLink'" family of data communications 
products provides a simple and low-cost solution to 
high-speed data transmission. While these products 
are easy to use, the methods used to connect them 
to high-speed serial interfaces are often not intu­
itive. This document provides a basic level of ex­
planation of the parallel and serial interface charac­
teristics, and provides some cookbook solutions for 
interfacing them to different types of parts and 
media. 

Primary Topics 

The primary topics covered in this application note 
are 

• HOTLink Overview 

• HOTLink Serial Signal Characteristics 

• Terminating HOTLink Serial Signals 

• Interfacing to HOTLink 

• Serial Link Support Components 

HOTLink Overview 

HOTLink Features 

• Fibre Channel compliant 

• IBM® ESCON'" compliant 

• ATM Compatible 

• 8B/lOB-coded or lO-bit unencoded 

• 160- to 330-Mbps data rate 

• TTL synchronous UO 

• No external PLL components 

• 1tiple ECL lOOK serial outputs 

• Dual ECL lOOK serial inputs 

• Low power: 350 mW (Tx), 650 mW (Rx) 

• Compatible with fiber-optic modules, coaxial 
cable, and twisted-pair media 

• Built-In Self-Test 

• Single + 5V supply 

• 28-pin SOIC/PLCC/LCC 

• 0.8IA- BiCMOS 

Functional Description 

The CY7B923 HOTLink Transmitter and CY7B933 
HOTLink Receiver are point-to-point communica­
tions building blocks that transfer data over high­
speed serial links (fiber-optic, coax, and twisted/ 
parallel-pair) at 160- to 330-Mbits/second. Figure 1 
illustrates typical connections to host systems or 
controllers. 

6-44 

Eight bits of user data or protocol information are 
loaded into the HOTLink 1tansmitter and are en­
coded. Serial data is shifted out of the three differ­
ential positive ECL (PECL) serial ports at the bit­
rate (which is ten times the byte-rate). 

The HOTLink Receiver accepts the serial bit 
stream at its differential line receiver inputs, and 
using a completely integrated phase-locked-loop 
(PLL) clock synchronizer recovers the timing infor­
mation necessary for data reconstruction. The bit 
stream is deserialized, decoded, and checked for 
transmission errors. The recovered byte is pre­
sented in parallel to the receiving host along with 
the synchronized byte~rate clock. 



~ -'i~ 
'CYPRESS 

HOTLink Design Considerations 

8.~ 
00> 
-0 
E'..J 
0.. 

Host 

Figure 1. HOTLink System Connections 

The 8B/lOB encoder/decoder (Reference 1, 2) can 
be disabled in systems that already encode or 
scramble the transmitted data. Signals are available 
to create a seamless interface with both asynchro­
nous FIFOs (i.e., Cypress's CY7C42X) and clocked 
FIFOs (i.e., Cypress's CY7C44X). A built-in self­
test pattern generator and checker allows testing of 
the transmitter, receiver, and the connecting link as 
a part of a system diagnostic check. 

HOTLink devices are ideal for a variety of applica­
tions where a parallel interface can be replaced with 
a high-speed point-to-point serial link. Applica­
tions include interconnecting workstations, servers, 
mass storage, and video transmission equipment. 

CY7B923 HOTLink Transmitter Description 

The function of the HOTLink Transmitter is to con­
vert byte-rate parallel data into a high speed serial 
data stream. A logic block diagram of the transmit­
ter is shown in Figure 2. 

Figure 2. CY7B923 Transmitter Logic 
Block Diagram 

6-45 

Input Register 

The Input register holds the data to be processed by 
the HOTLink Transmitter and allows the input tim­
ing to be made consistent with standard FIFOs. The 
Input register is clocked by CKW (clock write) and 
loaded with information on the DO-7, SC;D (special 
character/data select), and SVS (send violation 
symbol) pins. Two enable inputs (ENA and ENN) 
allow the user to choose when data is to be sent. As­
serting ENA (enable, active LOW) causes the in­
puts to be loaded on the rising edge of CKW IfENN 
(enable next, active LOW) is asserted when CKW 
rises, the data present on the inputs on the next ris­
ing edge of CKW will be loaded into the input regis­
ter. These two inputs allow proper timing and func­
tion for compatibility with either asynchronous 
FIFOs or clocked FIFOs without external logic. 

In BIST mode, the Input register becomes the signa­
ture pattern generator by logically converting the 
parallel input register into a linear feedback shift 
register (LFSR). When enabled, this LFSR gener­
ates a 51l-byte sequence that includes all Data and 
Special Character codes, including the explicit 
violation symbols. This pattern provides a predict­
able but pseudo-random sequence that can be 
matched to an identical LFSR in the HOTLink Re­
ceiver. For additional information see the Cypress 
Semiconductor application note "HOTLink Built­
In Self-Test." 

Encoder 

The Encoder transforms the input data held by the 
Input register into a form more suitable for trans­
mission on a serial interface link. The code used is 



lsrc HOTLink Design Considerations 
CYPRESS =============== 

specified by ANSI X3Tll Fibre Channel (Refer­
ence 3) and the IBM ESCON channel (Reference 4) 
(code tables are available in the CY7B923/ 
CY7B933 datasheet). The eight DO-7 data inputs 
are converted to either a Data symbol or a Special 
Character, depending upon the state of the SC;D in­
put. If SC;D is HIGH, the data inputs represent a 
control code and are encoded using the Special 
Character code tables. If SC;D is LOW, the data in­
puts are converted using the Data code table. If a 
byte-time passes with the inputs disabled, the En­
coder will output a Special Character Comma 
(K28.5 or SYNC) to maintain link synchronization. 
The SVS input forces the transmission of a specified 
Violation symbol to allow the user to check error 
handling logic in the system controller. 

The 8B/lOB coding function of the Encoder can be 
bypassed for systems that include an external coder 
or scrambler function as part of the controller. This 
bypass capability is controlled by setting the MODE 
select pin HIGH. When in bypass mode, Da-j (note 
that bit order is specified by the Fibre Channel 
8B/lOB code) become the ten inputs to the Shifter, 
with Da being the first bit to be shifted out. 

Shifter 

The Shifter accepts parallel data from the Encoder 
once each byte-time and shifts it to the serial inter­
face output buffers using a PLL multiplied bit-clock 
that runs at 10 times the byte-clock (CKW) rate. 
Timing for the parallel transfer is controlled by the 
counter included in the Clock Generator, and is not 
affected by signal levels or timing at the input pins. 

OulA, OutB, OutC 

The serial interface ECL output buffers (lOOK sig­
nallevels referenced to +5V) are the drivers for the 
serial media. They are all connected to the Shifter 
and contain the same serial data. Two of the output 
pairs (OUTA± and OUTB±) are controlled by the 
FOTO input and can be disabled by the system con­
troller to force a logical zero (i.e., "light off") at the 
outputs. The third output pair (OUTC±) is not af­
fected by FOTO and will supply a continuous data 
stream suitable for loop-back testing of the sub­
system. 

OUTA± and OUTB± will respond to FOTO input 
changes within a few bit times. However, since 
FOTO is not synchronized with the transmitter data 
stream, the outputs will be forced off or turned on 
at arbitrary points in a transmitted byte. This func­
tion is intended to augment an external laser safety 
controller and as an aid for Receiver PLL testing. 

In wire-based systems, control of the outputs may 
not be required, and FOTO can be strapped LOW 
The three output pairs are intended to add system 
and architectural flexibility by offering identical se­
rial bit streams with separate interfaces for redun­
dant connections or for multiple destinations. Un­
needed outputs can be left open or wired to Vee to 
disable and power down the unused output circuitry. 

Clock Generator 

The clock generator is an embedded phase-locked 
loop (PLL) that takes a byte-rate reference clock 
(CKW) and multiplies it by ten to create a bit-rate 
clock for driving the serial shifter. The byte-rate ref­
erence comes from CKw, the rising edge of which 
clocks data into the Input register. This clock must 
be a crystal-referenced pulse stream that has a fre­
quency between the minimum and maximum speci­
fied for the HOTLink TransmitterlReceiver pair. 
Signals controlled by this block form the bit-clock 
and the timing signals that control internal data 
transfers between the Input register and the Shifter. 

The read pulse (RP) is derived from the feedback 
counter used in the PLL multiplier. It is a byte-rate 
pulse stream with the proper phase and pulse widths 
to allow transfer of data from an asynchronous 
FIFO. Pulse width is independent of CKW duty 
cycle, since proper phase and duty cycle is main­
tained by the PLL. The RP pulse stream will insure 
correct data transfers between asynchronous FIFOs 
and the transmitter input latch with no external 
logic. 

Test Logic 

Thst logic includes the initialization and control for 
the built-in self-test (BIST) generator, the multi­
plexer for Test mode clock distribution, and control 
logic to properly select the data encoding. Test logic 
is discussed in more detail in the CY7B923/ 
CY7B933 HOTLink datasheet. 

6-46 



.=t=--~ 
" CYPRESS 

RF ------------~~----~----~ 
Framer 

AlB ------..., 
INA+ 
INA­
INB+ 

INB-(SI) 

so 

REFCLK ______ ---001 

MODE~ 
BISTER~ 

Shifter 

Decoder Register 

Decoder 

CKR 

SC!O (Oa) 

Figure 3. CY7B933 Receiver Logic 
Block Diagram 

CY7B933 HOTLink Receiver Description 

The function of the HOTLink Receiver is to convert 
a high-speed serial data stream into byte-rate paral­
lel data. A logic block diagram of the receiver is 
shown in Figure 3. 

Serial Data Inputs 

The HOTLink Receiver has two differential line re­
ceivers (INA± and INB±) that can be selected as 
inputs for the serial data stream. INA± or INB± is 
selected with the AlB input. INA± is selected when 
AlB is HIGH and INB± is selected when AlB is 
Law. The threshold of AlB is compatible with ECL 
100K signals. TTL logic elements can be used to se­
lect the INA± or INB± inputs by adding a resistor 
voltage divider to a TTL driver connected to AlB 
(see Figure 35). The differential sensitivity of INA± 
and INB ± will accommodate wire interconnect with 
filtering losses or transmission line attenuation 
greater than 20 dB (VDIF ~ 50 mY). These inputs 
can alternatively be directly connected to fiber-optic 
interface modules (any ECL logic family, not lim­
ited to ECL 100K) with up to 1.2V of differential sig­
nal. The common-mode tolerance accommodates 
a wide range of signal termination voltages. The 
highest HIGH input that can be tolerated is VIN = 
Vee, and the lowest LOW input that can be inter­
preted correctly is VIN = GND+2.0V. 

6-47 

HOTLink Design Considerations 

ECL-TTL Translator 

The function of the INB(INB+) input and the 
SI(INB - ) input is determined by the connection on 
the SO oiltput pin. If the ECLflTL translator func­
tion is not required, the SO output is wired to Vee. 
A sensor circuit detects this connection and causes 
the inputs to become INB± (a differential line­
receiver for serial-data input). If the ECLflTL 
translator function is required, the SO output is con­
nected to a normal TTL load (typically one or more 
TTL inputs, but no pull-up resistor) and the inputs 
become INB (single-ended ECL 100K-Ievel serial­
data input) and SI (single-ended ECL 100K-Ievel 
status input). 

This positive-referenced ECL-to-TTL translator is 
provided to eliminate external logic between an ECL 
carrier-detect or link status signal and a TTL input 
in the control logic. The input threshold is compat­
ible with ECL 100K-Ievels (+5V referenced). 

Clock Sync 

The Clock Synchronizer function is performed by an 
embedded phase-locked loop (PLL) that tracks the 
frequency of the incoming serial bit-stream and 
aligns the phase of its internal bit-rate clock to the 
serial data transitions. This block contains the logic 
to transfer the data from the Shifter to the Decode 
register once every byte. The counter that controls 
this transfer is initialized by the Framer logic. CKR 
is a buffered output derived from the bit counter 
used to control Decode register and Output register 
transfers. 

Clock output logic is designed such that when re­
framing causes the counter sequence to be inter­
rupted, the period and pulsewidth of CKR will never 
be less than normal. Refi~aming may stretch the pe­
riod of CKR by up to 90%, and either CKR pulse­
width HIGH or pulsewidth LOW may be stretched, 
depending on when reframe occurs. 

The REFCLK input provides a byte-rate reference 
frequency to improve PLL acquisition time and lim­
it unlocked frequency excursions of CKR when no 
data is present at the serial inputs. The frequency 
of REFCLK is required to be within ±0.1 % of the 
frequency of the clock that drives the transmitter 
CKWpin. 



t ~ ItOTLink D~sign Considerations 
~~ CYPRESS ================ 

Framer 

Framer logic checks the incoming bit stream for the 
pattern that determines the byte boundaries. This 
combinatorial logic filter looks for the ANSI Fibre 
Channel symbol defined as a Special Character 
Comma (K28.5) (Reference 3). When it is found, 
the free-running bit -counter in the Clock Sync block 
is synchronously reset to its initial state, thus fram­
ing the data on the correct byte boundaries. 

Random errors that occur in the serial data can cor­
rupt some data patterns into a bit pattern identical 
to a K28.5, and thus cause an erroneous data-framing 
error. The RF input prevents this by inhibiting re­
framing during times when normal message data is 
present. When RF is held LOW, the HOTLink Re­
ceiver deserializes the incoming data without trying 
to reframe the data to incoming patterns. When RF 
rises, RDY is inhibited until a K28.5 has been de­
tected, after which RDY resumes its normal func­
tion. While RF is HIGH, it is possible that an error 
could cause misframing, after which all data will be 
corrupted. Likewise, a K28.7 followed by Dl1.x, 
D20.x, or an SVS (CO.7) followed by Dll.x will 
cause erroneous framing. These sequenceS must be 
avoided while RF is HIGH. 

If RF remains HIGH for greater than 2048 bytes, 
the framer switches to double-byte framing, requir­
ing two K28.5 Special Characters within five bytes. 

Shifter 

The Shifter accepts serial data from one of the Se­
rial Data input pairs one bit at a time, as clocked by 
the Clock Sync logic. Data is examined by the 
Framer on each bit, and is transferred to the Decode 
register once per byte. 

Decode Register 

The Decode register accepts data from the Shifter 
once per byte as determined by the logic in the Clock 
Sync block. It is presented to the Decoder and held 
until it is transferred to the output latch. 

Decoder 

Parallel data is transformed from ANSI Fibre Chan­
nel 8B/lOB codes (Reference 3) back to "raw data" 

in the Decoder. This block uses the standard de­
coder patterns found in the Valid Data Characters 
and Valid Special Character Codes and Sequences 
(code tables are available in the CY~923/ 
CY7B933 datasl1eet). Data patterns are signaled by 
a LOW on the SC/D output and Special Character 
patterns are signaled by a H~GH on the SC/D out­
put. Unused patterns or disparity errors are sig­
rialed as errors by a HIGH on the RVS (Received 
Violation Symbol) output and by specific Special 
Chatacter bodes. 

Output Register 

The Output register holds the recovered data 
(QO-7, SC/D, and RVS) and aligns it with the recov­
ered byte clock (CKRj. This synchronization insur­
es proper timing to match a FIFO interface or other 
logic that requires glitch free and specified output 
behaVior. Outputs change synchronolisly with the 
rising edge of CKR. 

In BIST mode, this register becomes the signature 
pattein generator and checket by logically convert­
ing itself into a Linear-Feedback Shift-Register 
(LFSR) pattern generator. When enabled, this 
LFSR generates a 511-byte sequence that includes 
all Data arid Special Character codes, including the 
explicit violation symbols. This pattern provides a 
predictable but pseudo-random sequence that can 
be matched to an identical LFSR in the transmitter. 
When synchronized, it checks each byte in the De­
coder with eltch byte generated by the LFSR and in­
dicates errors using RVS. Patterns generated by the 
LFSR are compared after beihg buffered to the out­
put pins and then fed back to the comparators, al-
lowing test of the entire receive function. . 

In BIST mode, the LFSR is initialized by the first oc­
currence of the transmitter BIST loop start code 
DO.O (DO.O is sent only once per BIST loop). Once 
the BIST loop has been stahed, RVS will be HIGH 
for pattern mismatches between the received se­
quence and the internally generated sequence. 
Code rule violations or running disparity errors that 
occur as part of the BIST loop do not cause an error 
indication. RDY pulses high once per BIST loop 
and can be used to check test pattern progress. The 
receiver BIST checker can be reinitialized by leav­
ing and re-entering BIST mode. 

6-48 



.~ 

~ HOTLink Design Considerations 
~rcYPRESS ============== 
Test Logic 

Test logic includes the initialization and control for 
the built-in self-test (BIST) checker, the multiplexer 
for Test mode clock distribution, and control logic 
for the decoder. Test logic is discussed in more de­
tail in the CY7B923/CY7B933 HOTLink datasheet. 

HOTLink Serial Signal Characteristics 

The serial interfaces on the HOTLink Transmitter 
and Receiver are based on the standard for high­
speed digital logic called emitter-coupled-logic or 
ECL. This form of logic has been used commer­
cially in integrated circuits since the early 1960s, and 
prior to that it was implemented in discrete form. 

ECL is a non-saturating form of digital logic. ECL 
gets its name from how the emitters of a differential 
amplifier in the circuit are connected. The main fea­
tures of this logic family are very high speed, low 
noise, and the ability to drive low-impedance trans­
mission lines. 

In the past, many engineers have avoided ECL as a 
logic family because it was different from the TLL­
compatible families with which they were more fa­
miliar. Proper use of ECL requires the understand­
ing and application of transmission lines, line 
termination, and power supply bypassing. Because 
of the faster speeds present in the newer TTL com­
patible families, these same disciplines are now re­
quired for TTL circuits as well. 

EeL Signal Level Reference 

The primary differences between ECL and other 
logic families are the signal levels used to represent 
the HIGH and LOW logic levels. 

In the TTL and CMOS logic families, a LOW is usu­
ally some level close to Vss, and a HIGH is usually 
some level close to Vee. The ground or reference 
point for these measurements is usually the V ss point, 
with Vee set to + 5V from that ground reference. 

In standard ECL this changes significantly. Instead 
of having the ground reference at V ss, it is placed at 
Vee. This means that both HIGH and LOW logic 

6-49 

levels exist at potentials that are negative with re­
spect to ground. Standard ECL is specified as oper­
ating with a negative supply (-4.5V to -5.2V for 
VEE). Since ground is only a reference point, it is 
also possible to operate ECL with a positive supply. 
When used in this mode ECL is usually referred to 
as PECL which means Positive ECL. 

EeL Basic Switch 

Internally, ECL gates (or switches) operate using a 
current source whose current is directed through 
one of two paths back to Vee. A schematic of this 
basic ECL switch is shown in Figure 4 (Reference 5). 

In this ECL switch, the state of the switch is deter­
mined by the voltage drop across R1 and R2. The 
output signal swing is set by the size of these resis­
tors and the magnitude of the current passed 
through them. 

The base of 02 is biased at a fixed voltage called 
VBB. This voltage determines at what level of VIN 
on 01 that the majority ofthe current flowing in the 
switch changes from Rl to R2. If VIN is set to the 
same voltage as V BB, the current divides equally be­
tween R1 and R2. Increasing VIN by 125 mVabove 
VBB causes essentially all the current to be run 
through 01 (and hence R1). Lowering VIN to 
125 m V below V BB causes essentially all the current 
to flow through 02. This means that an input swing 
of as little as 250 m V can cause the ECL gate to 
switch completely from a 0 to a 1. To provide noise 
immunity and allow operation over a wide variety of 
conditions, the actual signal swing specified for ECL 
signals is around 800 m V. 

Figure 4. Basic EeL Switch 



Emitter-Follower 

The switch shown in Figure 4 can react very quickly 
but, because of its high-value resistor pull-ups (Rl 
and R2), its switching delay vaties directly with load 
capacitance. To allow larger loads to be driven, and 
to make the output voltages compatible with the in­
put of subsequent gates, additional transistors are 
added in an emitter-follower configuration as illus­
trated in Figure 5. 

These emitter-follower transistors have a very low 
on impedance (5-7Q). This allows EeL gates to 
drive transmission lines having impedances as low as 
50Q, and can supply load currents of up to 50 rnA. 

The emitter-follower transistors have an uncom­
mitted emitter as their output. This allows the tran­
sistor to source, but not sink, current. This is effec­
tively the opposite of an open-collector output in a 
TTL part. To allow the output to function correctly, 
it requires a load that operates as a pull-down. 

EeL Signal Levels 

ECLsignals operate over a very narrow and tightly 
controlled range. These signal levels are referenced 
from the Vee pins of the parts. Figure 6 shows the 
relationships of the different output and input levels 
for EeL gates. The names of these levels are de­
tailed in Table 1. 

Figure 5. Buttered EeL Switch 

HOTLink Design Considerations 

VOll 
Output Voltage 

Level Limits 
Input Voltage 
Sense Levels 

Figure 6. EeL Signal Levels 

Table 1. EeL Signal Level Names 

Name Description 

VOHH Highest Output HIGH Voltage 

VOHL Lowest Output HIGH Voltage 

VOLH Highest Output LOW Voltage 

VOLL Lowest Output LOW Voltage 

VIH Lowest Input HIGH Voltage Threshold 

VIL Highest Input LOW Voltage Threshold 

VNH High Input Noise Margin (VOHL -VIH) 

VNL Low Input Noise Margin (VOLH-Vld 

ECL Output Signal Levels 

EeL outputs are all referenced from Vee. A typical 
EeL driver has an output-HIGH level (VOH) of 
Vee - 0.85V and an outl?ut-LOW level (Vod of 
Vee - 1.7V. These typical values.are seldom speci­
fied for parts because a good design must be done 
using the range limits for these signals as listed in 
Table 1. Actual values for these levels vary by indi­
vidual part type and EeL family. 

ECL Input Signal Levels 

EeL Inputs are also referenced from Vee. A typical 
ECL receiver has an input-HIGH (VIH) threshold 
of Vee - l.1V and an input-LOW (VIL) threshold 
of V ee - 1.47V. These differences between the out­
put and input HIGH and LOW values translate di­
rectly into the usable noise margin (VNH and VNd 
of a system. 

6-50 



Viewing EeL Signals 

Proper viewing of ECL signals requires use of an os­
cilloscope and probes with sufficient bandwidth to 
see the important features of the waveforms. De­
pending on the speed of the signals being viewed, dif­
ferent scope and probe characteristics are required. 

Oscilloscope Bandwidth 

Oscilloscope bandwidth is not a simple number; it is 
based on the combined bandwidths of multiple 
pieces of the measurement system. These can in­
clude the oscilloscope, the scope probe amplifier, 
the probe itself, and possibly other components. 

The calculation for bandwidth is based on an inverse 
sum-of-squares as shown in Equation 1. 

Eq.1 

Thus a scope with a 1-GHz bandwidth probe using 
a I-GHz bandwidth amplifier would only have a us­
able bandwidth of 700 MHz. 

The current ANSI Fibre Channel standard specifies 
the minimum system bandwidth for testing as 1.8 
times the baud rate. For testing with the HOTLink 
parts (330 Mbaud), this translates to a minimum sys­
tem bandwidth of 600 MHz. This is translated into 
a viewable rise time using Equation 2 (Reference 6). 

t = 0.35 
, bw Eq.2 

This means that the oscilloscope and probes, having 
a 600 MHz bandwidth, can display signals with rise­
times no faster than 600 ps, without having more 
than 3 dB of attenuation. 

Note: Various scope manufacturers use different 
conventions to specify bandwidth for their equip­
ment; i.e., specified bandwidth is not necessarily 
where the displayed waveforms are 3 dB down in 
amplitude. 

Scope Probes 

Scope probes are available with many different 
characteristics. The three main types are referred 

6-S1 

HOTLink Design Considerations 

to as passive high-impedance, active high-imped­
ance, and passive low-impedance. 

Passive high-impedance probes usually range from 
as low as lO-kQ to lO-MQ load impedance. This 
number identifies the loading effect of the probe 
when attached to a circuit. The best feature of high­
impedance probes is that their impedance is usually 
much larger that those of the circuit under test and 
thus do not present any appreciable DC load to the 
measured signal when present. 

Passive high-impedance probes do suffer one major 
drawback: significant capacitive loading. Most 
high-impedance probes present from S pF to 20 pF 
of capacitance at the probe tip. This capacitance af­
fects measurements in two ways; it slows down the 
circuit being measured, and it degrades the rise­
time of the probe. The upper bandwidth limit for 
passive high-impedance probes is around 400 MHz. 

Active high-impedance probes combine a high 
bandwidth amplifier with the probe to improve the 
overall bandwidth of the system. These probes usu­
ally exhibit load impedances of 10 kQ to 10 MQ but 
have load capacitances of less than 3 pF. This type 
of probe has a typical upper bandwidth limit of 
around 1 GHz. 

Care should be taken when using active probes as 
the manufacturers specified bandwidth may not be 
where the signal measured is 3 dB down. To achieve 
the higher bandwidths some active probes have non­
linear responses to equalize the probe response. 
When presented with edge rates or frequency com­
ponents beyond the specified probe bandwidth, the 
probe and scope may actually display a distorted 
waveform having more high-frequency components 
present than are actually in the measured signal. 

Passive low-impedance (resistive divider) probes 
are used for the highest frequency work. These 
probes are available in load impedances from SOQ 
to S kQ, and present load capacitances of 1 pF or less. 
A typical upper bandwidth limit for these probes is 
around 3 GHz. Unlike the high-impedance probes, 
low-impedance probes are designed to connect to a 
SOQ transmission line system and do not require 
compensation. The probe itself is an extension of 
the SOQ transmission line present in the scope, and 



~YPRESS~~~~~~~~~~H~O~T~L~in~k~D~e~S~ig~n~C~O~n~SI~'d~e~ra~t~io~n=s 
contains a precision resistive-divider at the probe 
tip. 

The main drawback of passive low-impedance 
probes is the load impedance they present to the cir­
cuit. The rule of thumb for probes is that the probe 
impedance needs to be an order of magnitude 
greater than the impedances present around it to 
avoid any appreciable distortion. To get around this 
the probe is often designed as part of the system 
under test, such that its impedance is factored into 
the design. When the probe is not present it may be 
necessary to change component values or configura­
tions to compensate for the absence of the probe 
(Reference 7). 

Table 2 shows a summary of typical oscilloscope 
probe characteristics. For proper viewing of HOT­
Link EeL signals, an oscilloscope should have a 
minimum system bandwidth of 600 MHz. In most 
cases this will require use of low-impedance probes. 

Table 2. 1YPical Probe Characteristics 

BW 
Probe1Ype Z qoad (MHz) 

Passive High-Z lOk- 5-20pF 400 
lOMQ 

Active High-Z 10k- 3pF 1000 
lOMQ 

Passive Low-Z 50-5 kQ IpF 3000 

Probe Grounding 

As with any measurement, a good ground is manda­
tory. What is often misunderstood is just what is a 
good ground. At the frequencies used with HOT­
Link, a long looping ground lead is about as good as 
no ground at all. Three factors come into play: the 
reflections caused by the scope probe, and the 
ground inductance and parasitic capacitance limit­
ing the probe's bandwidth. A simple rule of thumb 
for ground leads is that they exhibit about 1 nH of 
inductance for each millimeter of length. As the 
length of the probe's ground lead increases, the 
probe's resonance point decreases. 

To view a signal with minimal distortion, the probe's 
resonant frequency must remain above the highest 
frequency signal component of interest. The graph 

Ground Length (mm) 

Figure 7. Scope Probe Resonant Frequency 

in Figure 7 shows how a scope probe's resonant fre­
quency varies for different lengths of ground loop 
inductance and tip capacitance. This graph is based 
on Equation 3 with the diagram of a low-impedance 
probe shown in Figure 8. 

(J) = 2nf= _1_ 
.fiC Eq.3 

From this graph it is quite apparent that a ground 
lead of only 10 mm cuts the resonant frequency of 
the probe by 75%. For signal viewing at HOTLink 
serial data rates it is usually necessary to use coaxial 
scope-tip sockets soldered directly to a circuit board, 
or some other probe type that probes for signal and 
ground without a loose ground lead (Reference 8). 

Probing From Vee 

The normal mode for probing EeL is to use Vee as 
the ground reference. In this mode the signal being 
viewed is is below ground and is relatively close to 
the ground reference. If the overall circuit design 
uses TTL parts in a mix with the negative referenced 
EeL, the TTL signals will all exist above ground. If 

: *c:d2= 
C: Parasitic Tip Capacitance 
L: Ground Loop Inductance 

Figure 8. Scope Probe Tip Schematic 

6-52 



-::--x HOTLink Design Considerations 
~rcYPRESS =============== 

the ECL parts are operated in a PECL mode where 
they share a common Vee supply with other TTL or 
CMOS parts, all probing should be done from TTL 
ground, which is the VEE side of the ECL parts. 

Probing From VEE 

When VEE is used as the scope ground, other issues 
may come into play. In this mode the ECL signal is 
now positioned almost 4V above the reference point. 
While many scopes are able to perform a DC offset 
to make the ECL signal viewable, some do this at the 
expense of sensitivity. In other words, a signal that 
is viewable at 100 mV/div when offset less than 2V, 
may only be viewable at 500 m V/div when offset by 
4V Since the total signal swing for ECL signals is 
only 800 m V, it may be difficult to see a detailed rep­
resentation of the waveform at this resolution. 

Another problem with measuring from VEE is that 
all the references in the ECL part are regulated 
from Vee, not VEE. This means that any amplitude 
changes or ripple in the power supply are now added 
into the displayed waveform. 

One way around the offset problem is to AC couple 
the signal into the scope. Some scopes offer this as 
a front panel set-up selection, while others require 
the addition of a wide-bandwidth DC-blocking ca­
pacitor in line with the scope probe. Either of these 
will remove all DC components from the signal un­
der test, and allow the signal to be displayed at the 
maximum resolution of the oscilloscope. 

Wide-bandwidth capacitors designed for this func­
tion are available from most test equipment 
manufacturers for use with existing probes and 
scope amplifiers. Some common capacitor types for 
SMA connector probes are the Tektronix 
015-1-13-00 and Hewlett-Packard 11742A. For 
BNC connectored probes the Hewlett-Packard 
10240B is also available. 

Sample ECL Waveforms 

ECL signals, when properly biased, terminated, and 
bypassed, are very clean and stable. Any noticeable 
overshoot on signals is usually caused by reflections 
from improperly terminated transmission lines or 

6-53 

\ 
\ 

I , J 

Ch. 2 = 200.0 mV/div 
Timebase = 1.00 ns/div 
Rise Time = 830 ps 

/ 
I[ 

, 
\ , 
Offset = -1 .320V 
Fall Time = 880 ps 

Figure 9. Good ECL Waveform, 
Single-Ended vs. Vee Ground 

improper probing. Figure 9 shows what a pristine 
single-ended ECL waveform should resemble when 
viewed on a scope. 

Both the rising and falling edges are quite symmetri­
cal and approximate an RC charge/discharge curve. 
The peak-to-peak range of the transition covers 
approximately 800 mV and is centered around 
Vee - 1.3V This signal was measured using a 
500g , l.5-GHz bandwidth low-impedance probe, 
on a scope having 1-G Hz bandwidth. This signal was 
measured with Vee as the probe ground. The probe 
load impedance (500g) was combined with other 
bias resistors to present a 50g to Vee - 2V load on 
the signal. 

With incorrect termination, a waveform such as that 
illustrated in Figure 10 can result. Here the spike in 
the middle of a low area may cross the receiver VIR 
threshold and cause the receiver to start to switch. 

ECL Logic Families 

Just as the TTL compatible world has its 7400, 74LS, 
74H, 74S, 74AS, 74ALS, etc. logic families that have 
evolved over time, so does ECL. The most common 
families still in use are referred to as 10K (e.g., 
SLlO104), lOKH (e.g., MClOH116), and lOOK (e.g., 
FlO0150). These ECL families differ in terms of 
speed, signal levels, noise margins, and temperature 
and voltage stability. 



~ -., ~ HOTLink Design Considerations 
'CYPRESS ================ 

""" rV''f'w. 
1\ \ 

\ r\ 
v V 

Ch. 1 ; 200.0 mV/div 
Timebase ; 2.00 ns/div 

N 

\ V\ 
~ V 

~ N 

\ 

J\ 
\ 

Offset; -1 .332V 
Delay; O.OOOOOs 

Figure 10. Bad ECL Waveform 

10KECL 

The 10K ECL family has been around since 1971. 
It provides propagation delays of 2 ns with slow 
3.5-ns edge rates (10%-90%). The voltage swings 
and switching thresholds of this logic family are rela­
tively insensitive to variations in the power supply 
voltage but are affected by operating temperature 
(-30DC to +85 DC). The VBB bias network is fixed 
at Vee - 1.29V, and is compensated for voltage and 

-0.6 

-0.8 

-1.0 

Ui -1.2 

~ 
:; -1.4 
g 

-1.6 

-1.8 

-2.0 

VEE = -5.2V °10%, Rt =50Q to -2V 

1\ 
,\ " 
~\ \if 
1\\ :1 

85'G ~A 85'G 

I--
25'G 25'G -

-30'G 1\\ -30'G 
1 I \' \ , I 

~ ~ I 
~ 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 

VIN (Volts) 

Figure 11. 10K ECL Transfer Functions 

temperature. In the basic 10K ECL switch the cur­
rent source is unregulated and consists of a single re­
sistor between VEE and the tied emitters of the dif­
ferential amplifier. The transfer curves of a simple 
10K gate are illustrated in Figure 11 and detail how 
this family is sensitive to temperature variations in 
both inputs and outputs (Reference 19). 

10KHECL 

To improve system speeds, the lOKH ECL family 
was introduced in 1981. It reduced propagation de­
lays to 1 ns while edge rates were set to 1.8 ns. Be­
cause the thresholds and voltage swings remain the 
same in lOKH as in 10K, these two ECL families are 
fully compatible with each other. The temperature 
and voltage compensated VBB reference network 
from 10K parts was replaced with a fully compen­
sated and regulated supply. To improve the VOL lev­
els the resistor current source was replaced with a 
regulated current source. This allowed the collector 
resistors in the ECL switch to be matched and have 
similar switching characteristics. The transfer 
curves of a simple lOKH gate (see Figure 12) illus­
trate how this family improves noise margins over 
10K ECL, yet remains sensitive to temperature vari­
ations. The lOKH family also is specified to operate 
over a narrower temperature range (ODC to 75DC) 
than 10K ECL (Reference 19). 

-0.6 

-0.8 
~ 1 1 

-1.0 

:§" 
-1.2 

7S'C ~ 7S'C 1\ 
o,d 2S'C 2S'C \ 

~ O'C 

~ 
S -1.4 
g 

,\ 
~ 

-1.6 ~ 
1\ 

\ 
-1.8 

I-- VEE; -S.2V ±S%, Rt;SOQ to -2V -

-2.0 I I I I I 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 

VIN (Volts) 

Figure 12. 10KH ECL Transfer Functions 

6-54 



=-- -.,~ 
; CYPRESS 

-0.6 I I I I I I 
I-- VEE=-4.5V ±7%, R,=50Q to -2V -

-0.8 r 
I 

-1.0 \ I 
\I 

if -1.2 

~ 
I \ 

1/ \ 
\ 

:J -1.4 
f; 

-1.6 

"-
-1.8 

Tc=O'C to 85'C 
-2.0 I I 

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 

VIN (Volts) 

Figure 13. lOOK ECL Transfer Functions 

100KECL 

The lOOK ECL family is a faster and easier to use 
ECL logic family. Introduced in 1973, this family 
improved on the internal structures to provide 
750-ps propagation delays and l-ns edge rates. In 
addition to speed improvements, the lOOK ECL 
family was the first to introduce full compensation. 
This means that all the critical structures in the parts 
are now compensated for variations in voltage and 
temperature. This minimizes differences in propa­
gation delays from one stage to the next that limit 
the maximum operating rate of a system. This sta­
bility is illustrated in the transfer curves in Figure 13 
(Reference 5). 

In the lOOK ECL family the operating temperature 
range is expanded to O°C to 85°C but the nominal 
operating voltage changes from -5.2V to -4.5V. 

HOTLink ECL Outputs 

All ECL outputs of the HOTLink Transmitter are 
ECL lOOK-level compatible. This means that these 
outputs meet or exceed all voltage, current, and 
edge rates specifications of lOOK ECL and will in­
teroperate with other lOOK ECL parts. This signal 
level compatibility is required by the ANSI Fibre 
Channel standard (Reference 3). 

6-55 

HOTLink Design Considerations 

Receiver 
I''' .•..•.•..•..••. '' ...••. ''~ 
f 

i.~IN+ I ~ 
i 

I 
\ VB 

1 Threshold Bias 
Generator 

Figure 14. Single-Ended Connection 

The HOTLink ECL outputs actually are substan­
tially better than the lOOK ECL specification, allow­
ing operation with 5V ± 10% supplies over the full 
-55°C to + 125°C temperature range. This allows 
the HOTLink parts to be used in a TTL, PECL, or 
ECL environment. 

The HOTLink Transmitter has six ECL outputs con­
figured as. three differential pairs: OUTA±, 
OUTB±,andOUTC± (see Figure 2). These differ­
ential outputs may be used to communicate with 
ECL compatible receivers in either single-ended 
(strongly discouraged) or differential (preferred) 
modes. 

HOTLink Transmitter Single-Ended Connections 

A single-ended connection is used most often for 
logic functions. In this type of a connection, a single 
output of a driver is attached to a single input of a 
receiver. The receiving element is thus dependent 
on the driver and interconnect for maintaining the 
input signal in the narrow voltage bands specified 
for a valid logic 1 or O. 

Figure 14 illustrates the basic components of a 
single-ended connection. The driver differential 
pair outputs are biased to allow them to switch. The 
receiver, as with all ECL gates, is based on a differ­
ential amplifier. In the case of a single-ended re­
ceiver, the second input into the differential amplifi­
er is not present at an external pin on the chip, but 
is instead connected internally to a VBB reference 
voltage. As the signal present on IN + goes either 
above or below the internal threshold set by VBB, 
the receiver will switch. 



==r-- ~. HOTLink Design Considerations 
~rcYPRESS ================ 

While connections of this type are perfectly fine for 
logic functions, they should be avoided for a com­
munications link. In a single-ended environment, 
any signal level differences (caused ,by temperature, 
logic family, transients, power supply noise, etc.) di­
rectly affect the received signal timing. In a logic 
function this timing variation limits a design both in 
determining how fast the system may operate, and 
in how much noise margin is present. 

In a communications link these variations in timing 
translate directly into jitter in the serial data stream. 
Jitter affects a serial link by limiting not only how 
fast the link can operate (data rate) but also how far 
the data can be sent. Jitter is discussed in detail later 
in this document. 

The only expected single-ended connection on a 
HOTLink Transmitter is for a localloopback func­
tion to a HOTLink Receiver (when the INB- input 
is not available for a differential connection because 
it has been used as an ECL-to-TTL translator); In 
this connection it is expected that the transmitter 
and receiver are in relatively close proximity, such 
that the connection between them is more on the 
order of a logic connection than a communications 
link. The small amount of jitter caused by the single­
ended connection will be far below the jitter suscep­
tibility of the HOTLink Receiver. 

HOTLink Transmitter Differential Connections 

A differential connection is the preferred attach­
ment for HOTLink Transmitter serial outputs. In a 
differential connection both outputs a of a driver are 
connected to the true and complement inputs of an 
ECL-compatible receiver. When connected in this 
fashion the majority of the interconnect dependen­
cies are removed. The main advantages of a differ­
ential connection are insensitivity to the logic fami­
ly, operating temperature, and power supply 
variations. In addition, the connection is now im" 
mune to most common-mode noise. 

Figure 15 illustrates the basic components of a dif­
ferential connection. The driver differential pair 
outputs are biased to allow them to switch. Now 
both true and complement inputs of the the receiver 
differential amplifier are available at external pins 

Receiver 

Threshold Bias 
Generator 

Figure 15. Differential Connection 

and are connected to the complementary outputs of 
the driver. 

Some ECL differential receivers may also provide 
an external VBB reference. This reference is pro­
vided for those cases where a driver is connected 
single-ended to one of the differential receiver in­
puts. The other receiver input must then be con­
nected to the VBB reference to allow the receiver to 
switch. With a true differential connection this VBB 

output should remain open. 

The main concerns in a differential connection are 
signal skew and crosstalk. Skew is the difference in 
arrival time of the OUT + and OUT - signals at the 
receiver. Crosstalk is the coupling of energy be­
tween these same two signals. 

As the amount of signal skew present in a differen­
tial connection is increased, the effective signal rise 
and fall times at the differential receiver also in­
crease. In systems with large amounts of signal 
skew, it is possible for short pulses to never be de­
tected by the receiver. 

The main cause for signal skew is asymmetric rout­
ing of the true and complement signals between the 
driver and the receiver. A I-inch difference in rout­
ing length is equalto about 150 ps of signal skew. 
This problem is corrected by maintaining matched 
signal runs l?etween the HOTLink 1tansmitter and 
the ECL.differential receiver. 

The main cause for crosstalk is long parallel signal 
runs. The adjacent lines act as coupling transform-

6-56 



~ 
I CYPRESS 

ers and transfer energy from one to another. One 
cure for this is to limit the length of the connection 
by placing the ECL differential receiver as close to 
the HOTLink Transmitter as possible. Other possi­
bilities are to route the two signals on opposite sides 
of a circuit board with an interposed power plane to 
act as a shield. If routing is to remain on the same 
plane, the crosstalk affects can be minimized by hor­
izontally separating the two signals as far as possible 
or by routing a ground trace (with many vias to at­
tach the ground trace to the ground plane) between 
the two signals. 

HOTLink EeL Inputs 

The EeL inputs on the HOTLink Receiver are also 
ECL lOOK-level compatible. Similar to the trans­
mitter, these inputs have also been enhanced to op­
erate over a wider range than standard lOOK ECL. 

The differential INA± and INB± inputs offer im­
proved minimum sensitivity of 50 mY, compared to 
150 m V for the few lOOK ECL differential receivers 
available. These inputs may be connected directly 
to either power rail without damage to the part, or 
changing the internal thresholds of other sections of 
the receiver. These same differential inputs also op­
erate with a 3V common-mode rejection range 
(Vee down to Vee - 3V) that is twice the l.5V 
range of standard lOOK EeL differential receivers 
(Vee - 0.5V down to Vee - 2V). 

Note: While differential outputs are quite common 
on ECL parts, true differential inputs are rare. The 
most common usage for differential inputs is on line 
receivers and clock drivers. The common-mode 
range on some parts with differential inputs is quite 
limited and should not be expected to operate over 
even a narrow range unless explicity stated in the 
manufactures datasheet. 

The INA± inputs of the HOTLink Receiver should 
always be connected to a differential signal source. 
Since there is no VBB reference output on the re­
ceiver there is no way to properly bias the second in­
put of the differential receiver. 

The INB± inputs may be configured to operate ei­
ther as a differential receiver (in which case it 
should be connected to a differential signal source) 

HOTLink Design Considerations 

or as two single-ended receivers. When operated as 
two single-ended receivers (as configured using the 
SO pin) the INB+ input operates as a lOOK ECL 
single-ended receiver for serial data, while the 
INB-(SI) input operates as a lOOK ECL single­
ended receiver for an ECL-to-TIL level translator. 
The VBB reference for these signals is available only 
inside the HOTLink Receiver and is not brought to 
an external pin. Signals connected to these single­
ended inputs must now ensure operation within the 
lOOK threshold levels. 

Mixing EeL Logic Families 

It is often desirable to use ECL parts of different 
families together in the same design. This can be 
done if certain rules are followed. The main reasons 
for these rules are the variability in signaling levels 
in ECL 10K family parts. Figure 16 shows a DC-level 
comparison for lOOK ECL outputs driving single­
ended 10K ECL inputs. 

In this configuration there is only 20 m V of margin 
between the lOOK V OHL and the 10K V IH at the up­
per end of the temperature range. With 10K parts 
driving other 10K paits (assuming a common oper­
ating temperature) this is not a problem as the inter­
nal VBB reference in each part follows a similar tem­
perature shift. If the case temperature of the 
receiving 10K part can be kept below 35°C (lOO-m V 
margin), it can safely be used with lOOK ECL parts 
for logic functions. 

While the V OLH specification appears to also have 
a noise margin problem, it does not. What occurs 
here is a condition where the receiver may be oper­
ated outside its linear region; i.e., Is and Os will be 
detected properly but the timing response may not 
match the manufacturer's data sheet. 

Figure 17 shows the opposite configuration with 10K 
ECL logic driving either a single-ended lOOK ECL 
receiver or a HOTLink Receiver. Here there are no 
tight margin areas between input and output thresh­
olds. This means that 10K ECL parts can safely be 
used to drive lOOK ECL inputs over their full tem­
perature range. 

Figure 17 also highlights the enhanced input range 
for the HOTLink Receiver. Unlike the narrow in­
put range present on standard ECL families, the 

6-57 



0 

~ 
E 
,g 
~ 

~ 
Q) 
OJ 

.:ll! 
g 

u 
~ 
E 
0 .::: 
~ 
~ 
Q) 
OJ 

.:ll! 
g 

HOTLink Design Considerations 

-0.6 

-0.8 

-1.0 

-1.2 

-1.4 

-1.6 

-1.8 

-2.0~~~~~~~~~~~~~~~~~~~~~~ 

Logie 1 
Levels 

Logie 0 
Levels 

-55-45-35-25-15 -5 5 15 25 35 45 55 65 75 85 95 105115125 

• 
Vee (0) 

-0.6 

-0.8 

-1.0 

-1.2 

-1.4 

-1.6 

-1.8 

-2.0 

-3.0 

10K Input 
Range 

Case Temperature (OC) 

r7] 100K Output 
rLJ Range • HOTLink Output 

Range 

Figure 16. lOOK EeL Driving 10K EeL 

-55-45-35-25-15 -5 5 15 25 35 45 55 65 75 85 95 105115125 

• 10K Output 
Range 

Case Temperature (OC) 

r7] 100K Input 
rLJ Range • HOTLink Input 

Range 

Figure 17. 10K EeL Driving lOOK EeL 

6-58 

Logie 1 
Levels 

Logie 0 
Levels 



ECL inputs on the HOTLink Receiver maintain 
normal operation over the entire Vee to Vee - 3V 
range. 

Single-Ended Connections 

Both of these comparisons are based on single­
ended connections, where only a single ECL output 
is used to drive the receiving internally referenced 
single-ended gate. In these cases, the other input to 
the receiving differential amplifier is connected in­
ternally to a V BB reference. This type of connection 
should not be used to drive the INA± or INB± dif­
ferential inputs of the HOTLink Receiver. 

Differential Connections 

One of the biggest advantages of ECL is the ability 
to communicate in a differential mode. This mode 
is relatively rare on logic parts (most commonly 
used for clock drivers and line receivers), as it 
requires both the driving and receiving parts to have 
both true and complement outputs and inputs re­
spectively. When connected in this manner, the re­
ceiving part is no longer comparing the input signal 
to its VBB reference, but instead compares the true 
and complement inputs to each other. 

When used in this mode there is no problem using 
lOOK ECL with 10K ECL at any temperature. Be­
cause an ECL receiver only requires around 
250 m V of difference to fully switch, and the differ­
ence between the outputs of a differential driver re­
mains near 800 m V, any differential connection has 
a minimum of twice the noise margin of a single­
ended connection. 

This type of connection is also immune to minor dif­
ferences in the reference voltages between parts. 
Because the connection is differential, any com­
mon-mode voltages present on the received signals 
(due to power supply differences, AC coupling, 
ground shift, etc.) within the common-mode range 
are canceled out in the receiving differential ampli­
fier. Some ECL parts with differential inputs can 
accept up to 1 V of common-mode offset on the re­
ceived signal without degradation of performance. 
The enhanced lOOK ECL compatible inputs of the 
HOTLink Receiver can accept inputs between Vee 

6-59 

HOTLink Design Considerations 

and Vee - 3V, offering a common-mode range of 
3Y. 

HOTLink 'fransmitter Connections 

Unlike conventional negative-referenced ECL, the 
high-speed outputs on the HOTLink Transmitter 
are implemented in lOOK positive-referenced ECL 
(PECL). This allows the TTL and ECL interfaces 
on the transmitter to operate from a common + 5V 
power supply. 

The HOTLink Transmitter has three differential 
output sections: OUTA±, OUTB±, and OUTC±. 
In addition to operating as lOOK ECL-compatible 
signals, these outputs have been enhanced with 
additional features. 

Power Saving Mode 

A standard ECL output structure uses a constant 
current source at the base of a differential amplifier 
(see Figure 5). In these standard parts, this current 
source is enabled and dissipating power even when 
the outputs are not used. 

The HOTLink Transmitter ECL outputs, while still 
operating as true lOOK ECL outputs, incorporate 
some additional structures (see Figure 18) to save 
power when the outputs are not used. The differen­
tial amplifier (Dl) under normal conditions will di­
rect the Is current from the current source through 
its internal transistors. As this current is switched, 
the output driver transistors (Ql and Q2) change 
their operation point and the amount of current 

--.------<.-~~~-.--- vee 

~~-~~--OUT+ 

......... --~-#- OUT-

Figure 18. HOTLink Transmitter EeL Output 



they source (a properly biased ECL output sources 
current in both 1 and a states; i.e., it does not turn 
off). Each output driver (01 and 02) contains a 
high value pull-up resistor (RO+ and RO-) and a 
voltage comparator (C1 and C2). When both volt­
age comparators of a HOTLink differential output 
detect a voltage above a lOOK ECL output-high 
level (VTH), the current source (Is) for that differ­
ential output pair is disabled. This results in a cur­
rent savings of around 5 rnA (25 m W) for each 
unused output pair. 

FOTO Control ofOUTA± and OUTB± 

The HOTLink transmitter OUTA± and OUTB± 
differential outputs have an additional control input 
not present in the OUTC± output pair. While the 
OUTC± outputs are always enabled to follow the 
serial data stream generated in the HOTLink Trans­
mitter shifter, the OUTA± and OUTB± outputs 
are not. These outputs are also controlled by a TTL­
level input called FOTO (fiber-optic transmitter­
off). While OUTA± and OUTB± are disabled, the 
OUTC± pair remains active and can be used for a 
localloopback source. 

This FOTO signal is used to force the differential 
outputs of the OUTA± and OUTB± drivers to a 
state where a logical a is being driven. This state cor­
responds to a condition on optical modules where 
no light is transmitted. While not required for 
LED-based optical modules, this capability is re­
quired for laser-based links (see ANSI Z136.1 and 
Z136.2, ED.A regulation 21 CFR subchapter J, and 
IEC 825) (References 9, 10, 11, 12, 13). 

ECL Output Biasing 

ECL outputs have specific loading requirements to 
insure proper operation. Because of the open-emit­
ter structure of an ECL output, it can source current 
but cannot sink current. To allow the output to 
switch, some form of pull-down is required on the 
output. This pull-down usually takes the form of a 
resistive load; either to VEE or Vee - 2Y. 

Most ECL outputs are specified for driving load im­
pedances as low as 50Q. Because an ECL output 
does not swing rail-to-rail, this load is usually speci-

HOTLink Design Considerathms. 

fied at Vee - 2V, a point slightly below the ECL 
VOL. At this point, when the ECL gate is driving a 
logic-O level signal, a small current is running 
through the load resistor to keep the output transis­
tor in the active region. 1YPical currents sourced 
when driving a logic-1 (lOR) and logic-O {lad are 
calculated using Equations 4 and 5 respectively, 
where RT is the effective load impedance and VTT 
is the effective bias voltage. 

I = VOH - Vrr = (- 0.9) - (- 2.0) = 22mA 
OH R, 50D Eq. 4 

I = VOL - Vrr = (- 1.7) - (- 2.0) = 6mA 
OL R, 50D Eq. 5 

These lOR and IOL values are the basis for the tim­
ing and signal levels in the HOTLink datasheet. For 
other values of lOR and IOL, the transmitter will ex­
hibit slightly different characteristics. These cur­
rent flows can be achieved in many ways. The four 
most common methods are 

• Shunt bias to VTT bias voltage 

• Shunt bias to VEE bias voltage 

• Thevenin bias to VTT bias voltage 

• Y-bias to VTT bias voltage 

Shunt Bias to Vrr 

In shunt bias, as illustrated in Figure 19, a single re­
sistor is used as a pull-down load on an ECL output 
to some bias voltage. When biased to Vrr. a single 
50Q resistor (RT) from the ECL output to V TT is all 
that is necessary. This requires an additional power 
supply to provide the (Vee - 2V) VITlevel. This 
termination type dissipates the least average-power 
(13 mW) of any output load type. It is often used in 
large ECL systems, in systems where overall power 
dissipation is a major concern, or where there is 
enough ECL present to warrant its design and 
implementation. 

RT 

VTT 

Figure 19. Shunt Bias to VTT . 

6-60 



Shunt Bias to VEE 

ECL outputs may also be biased to the VEE supply 
as illustrated in Figure 20. Here a load resistance 
(RT) of near 270Q is connected to the VEE supply to 
provide a similar current load for the ECL output 
driver. This value is determined by taking the aver­
age current flow for both a 1 and a 0 at the midway 
point (VBB) in the output swing. The calculation for 
this is shown in Equation 6. 

R = VEE - VBB = 5 - 1.3 = 264Q 
IH+IL 22+6 
-2- 2 Eq.6 

Unlike the shunt bias to Vn; this bias arrangement 
dissipates a significant amount of power in both the 
1 and 0 states (47 m W average). This bias type (due 
to mismatched RC charge and discharge rates) ex­
hibits a faster falling edge than rising edge. Because 
of this, its use is usually limited to logic functions, 
and is discouraged for serial links and for biasing 
differential output pairs. This is discussed in detail 
later in this document. 

Thevenin Bias to VTT 

In a Thevenin bias network, a pair of resistors (Rl 
and R2) is used to create a load whose Thevenin 
equivalent matches that of a single resistor attached 
to a specific bias voltage (VTT). For ECL this volt­
age is usually Vee - 2V. These resistors are con­
nected as illustrated in Figure 21. The values of Rl 
and R2 are solved using Equations 7 and 8. 

Eq.7 

Eq.8 

Solving for 50Q and Vee - 2V yields values of 82Q 
and 120Q for a 5V system. While this combination 
does provide a similar dynamic load to the shunt 
bias to Vn; it dissipates nearly an order of magni-

Figure 20. Shunt Bias to VEE 

6-61 

HOTLink Design Considerations 

Vee 

=~ 
vn 

Figure 21. Thevenin Bias Equivalent 

tude more power (138 mW) than its shunt to VTT 
equivalent. 

The capacitor shown in Figure 21 is needed to allow 
Rl and R2 to provide the proper load for AC sig­
nals. In a Thevenin equivalent circuit, the power 
supply is assumed to be a short circuit. While this 
may be accurate for DC or very low frequency AC 
signals, the power supply appears as a near infinite 
impedance at RF frequencies. The bypass capacitor 
across Rl and R2 is used to create an AC short. This 
capacitor must be sized to operate as a short near 
the frequencies in use. For HOTLink-based sys­
tems this capacitor should probably be in the range 
of 300 pF to 0.01 1lF. 

Y-Bias to VTT 

Unlike the three previously described terminations, 
the, Y-bias can only be used with differential out­
puts. In this configuration the active ECL output 
(logic 1) is used to source current for a voltage di­
vider, while the inactive ECL output (logic 0) is 
pulled down to the bias voltage created by this di­
vider. A schematic of this bias network is illustrated 
in Figure 22. 

Here RT is the desired load impedance, usually 50Q 
to Vee - 2V for ECL systems. RL is determined by 
summing the currents of a logic 1 and a logic 0 (as 
shown in Equations 4 and 5), and calculating the re­
sistance necessary to dfop the remaining voltage. 
This calculation is shown in Equation 9 and solved 
for a 50Q R'fo 

Eq.9 



This type of bias provides a significant power savings 
over a Thevenin bias because only a single pull­
down resistor is used to dissipate power for two out­
puts. For a 50Q equivalent load the power dissipa­
tion is only 110 mW for two outputs (55 mW for 
one). Just as with theThevenin bias, a capacitor is 
necessary to create an AC short. 

Matched Loading 

Just as the differential amplifier in an ECL switch 
directs current flow, so do the emitter-follower out­
put transistors. As these transistors are turned on 
an off, large amounts of current are switched 
through the driver's Vee package pins. Because of 
the inductance present in these pins, transients can 
be induced in the internal Vee supply. 

Fortunately the effects of this lead-inductance only 
manifest themselves when the current through the 
Vee supply pin changes. If the current is kept stable, 
no transients are induced. Due to the differential 
configuration of many ECL outputs, it is possible to 
keep this current stable by having matched loads on 
the true and complement outputs of the differential 
driver. This means that if a design uses one or both 
outputs of a differential driver, they both should 
drive loads of the same magnitude. 

Figure 23 shows a differential output driver con­
nected to a load including the package inductance 
present on the Vee power pin. As the differential 
driver changes state, the overall current through L1 
remains the same (assuming that both RT loads are 
the same value). 

Vee 

RT 
,t 

Figure 22. V-Bias Network 

HOTLink Design Considerations 

Leadframe 
and L1 

Bondwire 
Inductance 

External Vce Supply 

RT 
VTT 

Figure 23. Loaded Differential Driver 

If one of the two RT load resistors is removed, some 
very undesirable things start to happen. The first is 
that the external power supply must now react to a dy­
namic rather than a static need for current. This in­
creases the amount of power-supply bypassing that is 
needed next to the ECL driver Vee pin. The second 
is a variation in the internal and external V cc supplies 
caused by the dynamic current flow. This effect is il­
lustrated in the following approximation. 

For a single ECL output the current difference from 
a logic 1 to a logic 0 (into a 50Q to Vee - 2V load) is 
16 rnA (see Equations 4 and 5). From the ECL lOOK 
family datasheets we know that signal transition times 
may be under 500 ps. By assuming the rise and fall 
portions of the signal are related to a triangular wave­
form, this transition may be roughly converted to a 
fundamental frequency using Equation 10. 

1 1 
F = 2 x T, = 2 x 500E 12 = 10Hz Eq.10 

The Fourier series for a triangular waveform is 
listed in Equation 11. This illustrates that most of 
the energy content is present at the fundamental fre­
quency with much smaller components present at 
the higher odd harmonics. To simplify the following 
calculations only the fundamental frequency is 
assumed to be present (Reference 24). 

8V 1 1 n 2 (coswot + "9cos 3wot + 25 coswot + ... ) Eq.11 

6-62 



- ;"A 
== "I CYPRESS 

If a package pin inductance of 4 nH is assumed (typ­
ical for many surface mount components), Equation 
12 can be used to determine the impedance of the 
package at this frequency. 

XL = 27tFL = 27t X lE9 X 4E- 9 = 25Q Eq.12 

Using Ohm's Law we can now convert this change 
in current into an internal voltage change, as illus­
trated in Equation 13. 

v = I X XL = l6mA x 25Q = 400mV Eq.13 

This temporary difference between the internal 
Vee and the external Vee supply is the same phe­
nomenon known in a TTL environment as ground 
bounce. 

All of this, of course, is based on the assumption that 
the output will be able to switch at this speed 
(500 ps) and provide the specified current (16 rnA) 
when presented with a high-impedance source. 
What actually occurs is that the output edge slows 
down to match the current transfer permitted by the 
on-resistance of the output driver transistor and the 
package reactance. 

Most ECL parts use a couple of different techniques 
to combat this problem. Both are quite simple to 
implement. The first is to use a separate package 
pin to provide power to the emitter-follower output 
transistors. This prevents any Vee shift caused by 
the output drivers from affecting the sensitive dif­
ferential amplifiers and voltage references present 
in other parts of the device. 

The second method is to maintain a balanced load 
on the differential output drivers. Since the rising 
and falling edge rates of ECL are very symmetrical, 
LlI 1 = LlI2. Because these changes in output current 
are symmetrical, Ah == O. From Equation 13 we 
know that any induced A V is directly proportional 
to AI; thus as AI goes to 0, so does A V. 

AC Characteristics of Output Drivers 

In an ECL driver, the time it takes for the signal to 
rise is largely determined by its internal resistors 
and parasitic capacitors (Cint and Rint in Figure 24), 
since the emitter-follower can supply large currents 
to charge the load capacitance. The DC voltage to 

6-63 

HOTLink Design Considerations 

Figure 24. EeL Output Driver with Loading 

which the output rises is determined by the emitter­
follower transistor characteristics and the internal 
driver resistor (Rint) value. However, the AC volt­
age (overshoot, ringing, etc.) is determined primar­
ily by the load characteristics. A capacitive load 
(along with the inductance found in the package, 
printed circuit traces, and other load components) 
causes the output to rise significantly beyond the 
anticipated DC output level, since the emitter­
follower cannot supply any compensating current at 
the top of its transition. 

Unlike the output rise time, the fall time is primarily 
determined by the time constants of the load capaci­
tance and pull-down circuit. The output LOW volt­
age (V ad, is determined by Rint. Is, and the charac­
teristics of the emitter-follower transistor. In a 
properly designed system the load circuit has time 
constants comparable to (or shorter than) the inter­
nal fall time, such that the emitter-follower can 
source a small amount of current during the entire 
time it is switching from HIGH to Law. If this is not 
true, the emitter-follower transistor will be shut off 
for part of the transition time, and the output will 
follow the time constant of the load. 

Figure 25 illustrates the effects of two different load 
or bias circuits. The assumption in both of these ex­
amples is that the load circuit controls the fall time 
of the signal, and that the pull-down current is being 
supplied by a resistor to a V T of either Vee - 2V or 
VEE (+3V or ground for a PECL environment). In 
the dashed curve, the standard ECL load of 50Q to 
Vee - 2V is used, causing an output current of 



-:S~YPRESS~~~~~~~~~~H~O~T~L~in~k~D~e~S~ig~n~C~O~n~S~id~e~ra~t~io~n~s 

/ 
L= , bias = 

4V , ---- ~ / Vth 
I ~ .. .!' 3V 

R 500 V 3V 

~ VOL Determined by ECl Driver 

2V 2V 

'" ~ RL =3000, Vbias=OV 

~ 1V 1V 
-I----

OV OV 
r-- T RC into • 

3VTerm 
TRC into 
OVTerm 

Figure 25. Falling Edge Rate Comparison for Bias to VTT and VEE 

approximately 20 rnA when the output is HIGH, 
and 5 rnA when the output is LOW. This load (or its 
equivalent) can be created using all of the previously 
described bias networks except shunt bias to VEE 
(shown in the solid curve). 

The same amount of pull-down current can be real­
ized with a single resistor (RL in Figure 24) in a shunt 
bias to VEE configuration. To get a comparable out­
put current (and assure comparable voltages at the 
output) the pull-down resistor would be chosen to 
sink approximately the average ofIOR and IOL when 
connected to a voltage midway between V OR and 
VOL (see Equation 6). The lOR and IOL currents 
listed here would yield a pull-down resistor of 
around 300Q. This type of bias is perfectly correct 
and adequate for ECL logic circuits where the mis-

match between rise and fall times is absorbed into 
the normal logic delays and set-up times. In a data 
transmission system the effects of this type of output 
bias can be unpredictable and will often degrade 
performance. 

Figures 25 and 26 illustrate the difference in output 
fall time assuming a constant load capacitance, with 
the only variation being the bias resistor and volt­
age. The 50Q load resistor (dashed line) follows an 
RC discharge curve which ends at Vee - 2Y. For 
normal loading this soft edge rate more closely 
matches the rise time of the output as controlled by 
the emitter-follower, and is less affected by varia­
tions in load capacitance and reflection currents. 

The 300Q load resistor (solid line) follows an RC 
discharge curve which would normally end at VEE 

~--------- RL =500, Vbias=3V 

__ ~ ____ -+~ .. ~~~ ________ -,~~~ __ 4V 

--H0--------------+-~---------7''-------_+--- Vth 

~~----------~~~~~ __ ~_3V 

"''----- VOL Determined by ECl Driver 

RL =3000, Vbias=OV 

Figure 26. Expanded Detail of Falling Edge Rate Comparison 

6-64 



(ground). While this appears to have a crisper edge 
rate, it will be more severely affected by load capaci­
tance variation and transmission line reflection cur­
rents that must be accommodated. 

Figure 26 shows that with either pull-down the total 
voltage swing is the same and is determined by the 
internal voltage swing of the driver, as buffered by 
the emitter-follower transistor. While the RC curve 
for the 300Q pull-down continues to VEE, the emit­
ter-follower is turned on and sourcing current at the 
VOL point and does not allow the output to continue 
farther down the curve. 

In either configuration the signal delays match, 
since both falling edges cross the mid-swing line at 
the same time, but the rise and fall times are differ­
ent. These rise and fall times determine the higher 
frequency spectral components of the waveform. 
Differences in these spectral components affect the 
termination efficiency and waveform distortion 
caused by cable attenuation (Reference 14). 

Transmission Line Termination 

While often confused with ECL output biasing, ter­
mination of transmission lines is something quite dif­
ferent. Because of the reactive characteristics of 
transmission line termination, the resistors used for 
termination may often be used as part of the output 
bias network, but they perform different functions. 

Due to the high switching speeds of ECL, most of 
the interconnect between parts cannot be treated as 
simple connections. They must instead be treated 
as transmission lines. The distance between parts, 
in conjunction with the signal loading and rise and 
fall times, is used to determine at what point the in­
terconnect must be treated as a transmission line. 
The general assumption is that short lines do not re­
quire termination, while long ones do. The deter­
mination of what is a long line is made using Equa­
tion 14 (Reference 5). 

t'max = 1 
2 

Eq.14 

The values for this equation for micros trip construc­
tion on GlO/FR4 type board would be 

6-65 

HOTLink Design Considerations 

• I max - maximum unterminated line length 

• Tr - source 20% to 80% rise time 

• CL - load capacitance (2 pF assumed for a load) 

• b - delay per unit length (0.148-ns/inch) 

• Co - capacitance per inch 

Running this calculation for various impedance and 
rise-time combinations yields the lengths listed in 
Table 3. Lengths beyond those listed here require 
termination. 

Table 3. lOOK ECL Maximum Unterminated Line 
Length (in inches), Microstrip Construction 

Line Length (in inches) 

Zo 0.5 ns 1 ns 1.5 ns 

50Q 1.38 3.06 4.74 

62Q 1.32 2.99 4.67 

75Q 1.25 2.91 4.59 

90Q 1.18 2.82 4.50 

100Q 1.14 2.76 4.44 

The lengths listed in Table 3 assume digital switching 
characteristics. The HOTLink ECL serial signals 
are, for the most part, analog in nature. This effec­
tively shortens the maximum unterminated length. 
For HOTLink serial signals, any ECL trace greater 
than one inch in length should be terminated. 

The objective of transmission line termination is to 
prevent reflection of power from the destination 
back to the source. This is accomplished by termi­
nating a transmission line in its characteristic im­
pedance (Zo). The two basic types of line termina­
tion are referred to as series and parallel 
termination. 

The actual amount of the source signal reflected is 
based on how well the line impedance matches the 
destination impedance. This determines how much 
voltage is reflected back into the transmission line. 
This ratio of reflected voltage to incident voltage is 
called the reflection coefficient Q (rho) and is shown 
in Equation 15 (Reference 5). 

V, RT - Zo -=p=-­
Vi RT + Zo Eq.15 



~ -....,... 
~f~ 
~'CYPRESS 

Series Termination 

Series termination (sometimes referred to as source 
termination) requires that the load be high-imped­
ance to properly operate. This type of line termina­
tion is not recommended for use with H01Link be­
cause of the reactive nature of all parts at the high 
frequencies present on the HOTLink ECL signals. 

Parallel Te~mination 

In parallel termination the desired characteristic is to 
terminate the end of the line (rather than the source) 
in its characteristic impedance. This results in a re­
flection coefficient of zero; i.e., no signal is reflected. 
This type of termination is implemented the same as 
shunt bias networks. Figures 27 and 28 show the two 
equivalent forms of parallel terminatioii. 

Parallel termination offers the advantages of allow­
ing distributed loads on the transmission line, and of 
having the termination network also operate as the 
bias network. . 

In the single-resistor form of parallel termination il­
lustrated in Figure 27, the RT resistor is sized to 
match the Zo impedance of the transmission line. 
This termination form has the same advantage as 
the single resistor shunt bias because it dissipates 
less overall power than the Thevenin equivalent ter­
mination. It also has the same drawback of requir­
ing a separate power supply. 

In a Thevenin equivalent termination (illustrated in 
Figure 28) two resistors (Rl and R2) are used· to 
form an equivalent circuit to that in Figure 27. 
Table 4lists the Rl and R2 resistor values for a num­
ber of common transmission line impedances. This 
table assumes operation with a 5V source and a ter­
mination voltage of Vee - 2V, and selects the near-

Zo 

1 1 
V1 vr 

Vn 

Figure 27. Parallel Termination to VTT 

HOTLink Design Considerations 

Zo 

1 1 
V1 vr 

VEE 

Figure 28. Thevenin Equivalent Parallel 
Termination 

est standard 1 % resistor value when an exact match 
is not available. These values are calculated using 
the same Equations 7 and 8 as used for calculating 
a Thevenin bias network (Reference 15). 

Table 4. Thcvenin Bias Resistor Values 

Zo Rl R2 

50Q 82.5 124 

70Q 118 174 

75Q 124 187 

80Q 133 200 

90Q 150 226 

100Q 165 249 

120Q 200 301 

150Q 249 374 

Terminating HOTLink Transmitter 
ECL Signals 

The H01Link CY7B923 transmitter has three dif­
ferent ECL differential output pairs named 
OUTA±, OUTB± and OUTC± (see Figure 2). 
How (or if) these outputs are terminated is depen­
dent on what the output is used for. 

OUTC± 

The OUTC± outputs of the HOTLink 1tansmitter 
are not controlled by the transmitter FOTO signal 
and are thus always enabled to drive serial data. 
While fully capable of driving either optical mod-

6-66 



ules or copper cables, it is expected that the most 
common usage of this differential output will be as 
a localloopback to a HOTLink CY7B933 Receiver 
INB± inputs. 

This signal may be connected to the HOTLink 
Receiver either differentially or single-ended. 
When connected differentially, the OUTC+ output 
is connected to the INB+ input, and the OUTC­
output is connected to the INB- input. When con­
nected single-ended, the OUTC+ output is con­
nected to the INB+ input. 

Note: For the INB+ input to be used differentially, 
the SI/SO ECL-to-TTL translator (mapped through 
the INB- input) must be disabled. This is done by 
connecting the SO output directly to Vee. 

Once the connection is made, the type of termina­
tion required is determined by the distance between 
the HOTLink 1tansmitter and the HOTLink Re­
ceiver. If the distance is kept short enough (under 
one inch) (Reference 5) no termination is required 
and the output only needs to be biased. This can be 
done with a single pull-down resistor to VEE. While 
this type of termination does induce some jitter into 
the serial data stream (due to mismatched rise and 
fall times), the amount is well within the receiver 
limits. 

If the distance is greater than one inch, the line 
should be terminated (Reference 5). To do this cor­
rectly requires determination of the characteristic 
impedance of the board traces used to connect the 
source and destination. Please see the Cypress 
Semiconductor application note "Driving Copper 
Cables with HOTLink" for information on how to 
determine the characteristic impedance of various 
types of transmission lines (Reference 16). 

For local connections that do not travel through 
external transmission media (Le., coax, twisted­
pair, optical fiber, etc.) parallel termination may be 
used. The important consideration here is that both 
the OUTC+ and OUTC- outputs must be termi­
natedlbiased into the same size of load to maintain 
a current balance inside the HOTLink Transmitter. 

If neither of the OUTC± outputs are used, both 
outputs should be left open or pulled up to Vee to 

disable the current source for the differential driver 
(see Figure 18). 

OUTA± and OUTB± 

The OUTA± and OUTB± outputs ofthe HOTLink 
Transmitter are both controlled by the FOTO signal 
which is required to meet laser safety regulations for 
communications links (References 9, 10, 11, 12, 13). 
Other than this special enable signal, these outputs 
operate the same as the OUTC± outputs. 

Driving Optical Modules 

When connecting to optical modules, it is best to 
drive the optical module data inputs differentially. 
This provides the highest noise immunity for the sys­
tem, and the lowest signal jitter. When used with de 
facto standard optical modules this becomes man­
datory because the optical modules have a differen­
tial data input, yet do not provide a VBB supply to 
bias the other input of the differential amplifier of 
the optical transmitter. Because this interface is 
intended for driving some external segment of opti­
cal cable, series termination (which uses shunt bias 
to VEE and increases jitter) should not be used. 
Since the HOTLink parts will most probably be the 
only ECL parts in the system, the recommended ter­
mination is a Th€venin or Y-termination. 

Both the Th€venin and Y-terminations provide the 
bias necessary for the ECL signal to switch, and the 
impedance necessary to terminate a transmission 
line. One of these types of terminationlbias should 
be used even when the distance from the HOTLink 
Transmitter to the optical transmitter is short. This 
is necessary to maintain symmetrical rise and fall 
times for the OUTx± differential outputs. 

PEeL Optical Modules 

Interfacing to optical modules in PECL mode is 
quite simple, requiring only a few passive parts. The 
schematic in Figure 29 illustrates the connections 
and parts necessary for this type of connection. 

One of the key items often missed in this type of con­
nection is proper bypassing of the terminationlbias 
networks. The theory behind a Th€venin network is 
that the power supply is considered as a short for 
AC. While this may be true for near DC applica-

6-67 



CY7B923 

Figure 29. HOTLink Transmitter-to-PECL 
Optical Module 

tions, the base frequencies and harmonics present in 
the HOTLink Transmitter output are far beyond 
any frequency the power supply itself could pass. 

To make the power supply a short, a capacitor must be 
placed across the Thevenin pair. The size of the 
capacitor is determined by the frequency of operation 
of the serial link. A good rule-of-thumb is to pick the 
largest value capacitor whose series resonant fre­
quency is 30% above the highest baseband frequency 
of the baud rate of the serial data (Reference 17). 
Since the data is sent using an NRZ modulation (non­
return-to-zero), the highest baseband frequency is one 
half the serial bit-rate (Reference 18). 

Another important characteristic is the dielectric 
type ofthe capacitor. For this type of analog opera­
tion, a good high frequency RF type capacitor must 
be specified. This means specifying either NPO or 
COG type capacitors. 

Standard EeL Optical Modules 

Those optical modules with the case connected to 
Vee are designed for use in a negative DC supply 
system. These types of modules may also be driven 
by a HOTLink Transmitter. 

By far the simplest method is to connect the module 
the same as a PECL module, with the exception of 
the Case pins. Here, instead of attaching the Case 
pins to ground (VEE)' they are attached to Vee. If 
the case is metallic in nature, care must then be exer­
cised such that it does not come into direct contact 
with ground. 

HOTLink Design Considerations 

If the optical module is to be used below ground, it 
must be AC coupled to the HOTLink Transmitter. 
This type of connection is illustrated in Figure 30. 

The HOTLink Transmitter outputs are biased the 
same as for a PECL optical module. AC coupling 
capacitors are used to connect the HOTLink nans­
mitter positive-referenced ECL outputs to the 
negative-referenced ECL inputs of the optical mod­
ule. These coupling capacitors actually operate as 
a bandpass filter, centered around their series reso­
nant frequency. To pass additional low- or high­
frequency components, additional capacitors should 
be placed in parallel with the coupling capacitors. 

Capacitively coupled signals require DC restora­
tion and, if the connection length warrants, trans­
mission line termination. DC restoration is neces­
sary to place the signal swings in the input range of 
the ECL receiver. Unlike ECL outputs, which are 
biased to a level slightly below their VOL(min)-level 
(Vee - 2V), AC coupled ECL inputs need to be 
biased to the center of the receiver input range. This 
is the same as the VBB reference point of 
Vee - 1.3Y. In Figure 30, this reference point is 
created from a resistive divider network, and 
bypassed with a 0.01-I-tF capacitor to provide the 
dynamic current response needed for the differen­
tial inputs. 

While many optical modules or ECL gates generate 
a VBB-Ievel, this output must not be used to bias this 

330pF 

CY7B923 

OUTA+~t==tt=~~======~ OUTA-I"-

500 

1500 

Figure 30. HOTLink Transmitter-to-Negative­
Referenced ECL Optical Module 

6-68 



--- -, ~ HOTLink Design Considerations 
~'CYPRESS ================= 

reference point because it cannot provide sufficient 
dynamic current. The VBB output of an optical 
module, or other ECL gate, is an unbuffered tap of 
the internal VBB reference. While fully capable of 
delivering the few ItA of current necessary to drive 
an input, it cannot tolerate the transient currents 
present at the end of a low-impedance transmission 
line. Because the VBB source is unbuffered, this 
also means that any external transients applied to it 
will move the VBB reference inside the receiver, with 
unpredictable consequences. 

While it is possible to create a VBB power amplifier 
(by using multiple ECL buffers in parallel) to create 
a buffered form of VBB, such amplifiers should not 
be used with HOTLink. They are prone to oscilla­
tion and ringing. Such amplifiers should also not be 
used for DC restoration (as needed here) because 
the VBB amplifier is not quite DC stable; i.e. its out­
put usually contains a low-level (10-50 mY) 
oscillation whose frequency is set by the delay 
through the part. This low-level noise is not a prob­
lem for logic applications, but for analog applica­
tions causes increased jitter on the biased signals. 

In this example, the VEE for the optical module is set 
to - 5.2Y. This is a common supply voltage for ECL 
circuits. If a different supply voltage is used, the val­
ues in the resistive divider must be changed to main­
tain the VBB reference point at Vee - 1.3Y. 

330pF 
CY7B923 Zo = SOQ 82 CY7B933 

OUTA+~~~~~~~~~=t~INA+ OUTA-['- INA-
130 

Figure 31. Direct.Coupled, Copper Interface 

other types of copper media, and allows communi­
cating on them at distances well beyond the lengths 
called out in the ANSI Standard (Reference 3). 

Numerous characteristics determine how far a sig­
nal can be transmitted on copper media. The most 
important of these are: 

• Voltage amplitude ofthe signal fed into the cable 

• Jitter and ringing on the source signal 

• Attenuation characteristics of the cable 

• Length of the cable 

• What (if any) equalization is used in the system 

• Receiver loading and sensitivity 

Coupling to the cable (transmission line if on a back­
plane) may be done in multiple ways, depending on 
the media type and distances involved. 

One drawback of this circuit is the inability to react 
to a DC state in the data stream. If the HOTLink 
Transmitter is set to transmit all 1s or all Os (e.g., 
FOTO is set to disable transmitting), the optical 
module inputs will both return to a VBB-level. At 
this level the optical module's output will probably 
oscillate due to the high gain present in the optical 
module's ECL-to-optical translator. In this AC 
coupled configuration (when operated with laser­
based optical drivers) it is necessary to use some 
method other than FOTO to meet the laser safety 
restrictions (References 9, 10, 11, 12, 13). 

Direct Coupled 

Driving Copper Media 

The ANSI Fibre Channel Standard currently identi­
fies both coaxial cable and shielded twisted-pair as 
supported copper media types. The HOTLink 
Transmitter easily interfaces to these and many 

6-69 

For those instances where the signal never leaves 
the same chassis (or even the same board) it is pos­
sible to directly couple to the media. Here the 
media is effectively the circuit board traces, runs of 
twisted-pair, twinax, or dual coax. The main criteria 
here is that there must be no chance for a significant 
Vee reference difference (transient or DC) 
between the HOTLink Transmitter and HOTLink 
Receiver, including any common-mode induced 
noise. For the HOTLink Receiver, this maximum 
difference is around 1 Y. Under these conditions the 
HOTLink Transmitter and Receiver may be con­
nected as illustrated in Figure 31. 

While Figure 31 shows a 50Q transmission line, the 
actual impedance can be higher than this. For other 
impedance values it is necessary to change the The­
venin termination networks. 



When sent through twin coaxial cables (as shown in 
Figure 31) or two separate transmission lines, care 
must be taken to make sure that both lines are elec­
trically the same length. Any difference in length 
causes one of the two transmitted signals to arrive 
at the receiver input either leading or lagging the 
other. This difference manifests itself as jitter in the 
receiver. If twisted-pair or twinax is used instead, 
both the OUTA+ and OUTA- signals combine to 
form a single signal sent down a balanced transmis­
sion line. 

Capacitor Coupled 

For configurations where it is possible to have signif­
icant ground or reference differences, some form of 
AC coupling becomes necessary. If the signals 
remain in a well protected environment (minimal 
EMI/ESD exposure) this AC coupling can be per­
formed with capacitors. When this is done, bias/ 
termination networks are required at both ends of 
the cable. A schematic detailing this type of connec­
tion is shown in Figure 32. 

Good low-loss RF-grade capacitors should be used 
for this application. These parts are available in 
many different case types and voltage ratings. The 
capacitors used must be able to withstand not just 
the voltage of the signals sent, but of any DC differ­
ence between the transmitter and receiver and the 
maximum ESD expected. A typicallOOO-pF SO-WV 
COG capacitor would be available in an 080S surface 
mount case size (0.08''Lx O.OS"W x 0.02''H). For on­
board applications a SO-WV rating should be suffi­
cient. While capacitors with much higher break­
down voltages are available, both cost and space 
make their use prohibitive. This same 1000-pF COG 

CV78923 82 CY78933 

OUTA+ ~=l=f=F~=t~~~~~~ INA+ OUTA-~ INA-
130 

Figure 32. Capacitive-Coupled, Copper Interface 

HOTLink Design Considerations 

capacitor at S-kV breakdown is almost a half cubic 
inch in size (Reference lS). 

This type of coupling is very similar to that used to 
drive an optical module that is not at the same refer­
ence as the HOTLink 1l:ansmitter. Since the HOT­
Link Receiver and an optical module both operate 
with ECL lOOK-level compatible inputs, this should 
be expected. 

In this configuration, the receiver reference point is 
set slightly different from that for a standard ECL 
receiver. Part of this is due to the HOTLink 
Receiver being designed for operation at + SV 
rather than -S.2V or -4.5Y. The other is that the 
HOTLink Receiver has a wider common-mode 
range than standard lOOK ECL parts. Th allow 
operation over the widest range of signal conditions 
the VBB bias network on the receive end of the 
transmission line is set to the center of the HOT­
Link Receiver 3V common-mode range at 
Vee - l.SY. 

This capacitively coupled interface is not recom­
mended for cabling systems that leave a cabinet or 
extend for more than a few feet. This is primarily 
due to 

• Limited voltage breakdown under ESD situa­
tions of the coupling capacitors 

• ESD susceptibility of the receiver due to tran­
sients induced in the cable 

• Limited common-mode rejection at the receiver 
end 

Addition of a second set of coupling capacitors at 
the receive end may improve some of these charac­
teristics, but it will not remove them. 

Transformer Coupled 

The preferred· copper attachment method is to 
transformer couple to the media. Transformers 
have multiple advantages in copper-based inter­
faces. They provide 

• High primary-to-secondary isolation 
• Common-mode cancelation 
• Balanced-to-unbalanced conversion 

The transformer is similar to a capacitor in that it 
also has passband characteristics, limiting both low 

6-70 



CY7B923 

OUTA+ 
OUTA- f>--f---T--' 

CY7B933 
c.---,<F=="'TI-----.--iINA+ 

!V===#----t--1>--"1INA-

270 

Figure 33. Transformer-Coupled, 
Copper Interface 

and high frequency operation. Proper selection of 
a coupling transformer allows passing of the fre­
quencies necessary for HOTLink serial commu­
nications. A schematic detailing a transformer 
coupled interface is shown in Figure 33. 

This transformer-coupled configuration has many 
similarities to the capacitively coupled interface. It 
still provides De isolation between the HOTLink 
Transmitter and Receiver, and requires the VBB 

bias and termination network at the receiver. 

The connection at the HOTLink Transmitter is 
quite different now. The output bias network is now 
a simple pull-down to VEE. While this causes the 
transmitter outputs to have asymmetric rise and fall 
times, it does not add to the system jitter. Instead, 
the true and complement outputs combine in the 
transformer to provide a single signal with symmet­
rical rise and fall times. This bias arrangement also 
the has the advantage of delivering the entire trans­
mitter output voltage swing into the transfbrmer, 
rather than part into the transformer and part into 
the bias network. 

The configuration shown in Figure 33 uses only a 
single transformer and either l50Q twinax or 
twisted-pair as the transmission line. This can be 
done because the transmission system remains bal­
anced from end to end. Here the primary functions 
of the transformer are to provide isolation and 
common-mode cancelation. 

In a single transformer configuration the transformer 
should be placed at the source end of the cable. Un­
like the HOTLink differential receiver, which has a 
fu1l3V common-mode range, an EeL output (when 
sourcing a zero or LOW-level) will respond to high­
going signals picked up on the transmission line. 

6-71 

HOTLink Design Considerations 

In Figure 34 a second transformer is added to the 
transmission system at the receiver end of the cable. 
This configuration allows use of either baianced or 
unbalanced (coaxial) transmission lines. The con­
figuration shown here is a 75Q coaxial cable system. 
Here the first transformer is used for balanced-to­
unbalanced conversion, while the second transformer 
provides unbalanced-to-balanced conversion. 

HOTLink Receiver ECL Inputs 
The HOTLink Receiver has five lOOK EeL (PEeL) 
compatible inputs: INA+, INA-, INB+, 
INB-(SI), and AlB (see Figure 3). The AlB input 
is used to select which serial data input (INA± or 
INB±) is fed to the receiver PLL and shifter. 

The INA± differential input is normally used for 
the primary received data input. This input is only 
functional as a differential receiver. To use it as a 
single-ended receiver, a VBB reference would have 
to be attached to one ofthe INA± inputs. Since the 
HOTLink Receiver does not provide a VBB output, 
this must come from either an external EeL gate or 
a resistive divider. Because neither of these sources 
can be guaranteed to be at the exact internal VBB 

reference of the HdTLink Receiver (and will thus 
introduce jitter into the system), operation of INA + 
in single-ended mode is not recommended. Also, 
operation in single-ended mode generally takes 
twice the signal swing (100 mV for HOTLink) for a 
receiver to properly detect data. 

The INB± differential input is expected to be used 
as the localloopback receiver. It is capable of being 
operated as a differential receiver, or as two single­
ended receivers. 

To operate the INB± inputs as a differential 
receiver it is necessary to have the SO output either 

OUTA+ "--+--r-' 11nr====h. 11r;::::;;:;;:t:::;::t1 
OUTA-,--- ~. r 

270 :); 
0.01 "F 

3.SV 
(VBB) 

Figure 34. Dual Transformer-Coupled, 
Copper Interface 



~-~ 
e::s "CYPRESS ==========H;;;;O;;;;T;;;;L;;;;I;;;;"n;;;;k;;;;D;;;;e;;;;s;;;;ign=C;;;;o;;;;n;;;;s;;;;id;;;;e;;;;ra;;;;t;;;;io;;;;n=s 

directly connected to Vee or pulled up to Vee 
through a resistor (minimum of Vee - 250mV). 
This pin, while normally used as an output, has a 
voltage comparator on the output to both disable it 
and to operate the INB± inputs as a differential 
pair. When used as a differential receiver the INB ± 
inputs operate the same as the INA± inputs. 

If the SO pin is instead allowed to remain in the stan­
dard TIL output range (below Vee - 850 m V), it is 
enabled as a TIL-level driver, and is the output end 
of an ECL-to-TIL level translator. In this mode the 
HOTLink Receiver INB+ input is a single-ended 
ECL receiver for serial data; while the INB- input 
becomes the input end of the ECL-to-TIL transla­
tor. The expected use of this translator is for con­
verting an ECL carrier-detect signal to TIL levels. 

ECL Input Levels 

Unlike standard lOOK ECL logic, the HOTLink 
ECL inputs are designed to operate, not only over 
the full lOOK ECL voltage and temperature range, 
but substantially beyond as well. 

Normally lOOK ECL inputs should never be raised 
above Vee - 700 m V. If this occurs, the input tran­
sistor saturates and can damage other internal 
structures in the gate. Because the HOTLink 
Receiver is designed for use in a communications 
environment, its input structures are more robust 
and can be taken all the way up to Vee with no deg­
radation in performance. This provides a common­
mode operating range more than twice that of stan­
dard ECL. 

The HOTLink ECL Receivers also provide higher 
gain than that available from standard lOOK ECL. 
The receiver is able to fully detect Is and Os with as 
little as 50 m V of differential signal at the inputs. 
Those few lOOK ECL parts capable of differential 
operation usually specify this at 150-200 m V. 

The HOTLink ECL inputs are also robust on the 
VIL(min) side. When operated in differential mode 
these inputs provide full functionality down to 
Vee - 3V, yielding a full3V common-mode operat­
ing range. For single-ended operations these same 
inputs can be taken all the way to VEE (ground or 
OV). 

Figure 35" TTL-to-HOTLink PECL Interface 

Controlling AlB from TTL 

While the AlB path select on the HOTLink Re­
ceiver is a PECL input, it can be controlled from a 
TIL driver with as few as two resistors. Controlling 
a traditional PECL input from TIL normally re­
quires a third resistor to limit the high state to the 
specified VIH(max). Only a two resistor divider is 
needed with the HOTLink Receiver (as illustrated 
in Figure 35) because it can tolerate a full Vee-level 
on its ECL inputs. 

HOTLink Receiver Biasing 

Unlike ECL outputs, which always require an out­
put bias to create the output-low level, ECL inputs 
instead require levels within their input range to 
allow them to switch. When the HOTLink Receiver 
is directly connected to the biased output of either 
a 10K, lOKH, or 100KECL driver (see Figures 16 
and 17), these conditions are satisfied. 

PECL Optical Modules 

Connecting a PECL optical module to the HOT­
Link Receiver is the same as connecting two ECL 
parts together. This is connection is illustrated in 
Figure 36. 

A bias network is required on the output of the opti­
cal module to allow it to switch. A TMvenin or 
Y -bias network should be used on the high-speed 
serial lines (RO and NRO as illustrated in Figure 36) 
to keep induced jitter to a minimum. The signal- or 
carrier-detect output (SIGO) of the module is con­
sidered a logic level signal and only requires a pull­
down type of biasing to allow the output to switch. 

6-72 



5 ~~ 
~'CYPRESS 

If the distance between the optical module and the 
HOTLink Receiver is short (see Table 3) then the 
bias network may be placed anywhere between the 
optical module and the HOTLink Receiver. If this 
distance is long, then the interconnect traces must 
be treated as a transmission line and the bias net­
work must be moved to the receiver to also act as 
line termination. If the transmission line imped­
ance is other than SOQ, then different values of 
resistors are necessary (see Equations 7 and 8, and 
Table 4). 

Standard ECL Optical Modules 

Optical modules with the Case pins connected to 
Vee are designed for use in a negative DC supply 
system. These types of modules may also drive a 
HOTLink Receiver. 

By far the simplest method is to connect the module 
the same as a PECL module, with the exception of 
the Case pins. Here, instead of attaching the Case 
pins to ground (VEE), they are attached to Vee- If 
the case is metallic in nature, care must then be exer­
cised such that it does not come into direct contact 
with ground. 

If the optical module is used below ground it must 
be AC coupled to the HOTLink Receiver. A sche­
matic detailing this type of connection is shown in 
Figure 37. 

CY7B933 

r=~~----~+-~--~INA+ 
~ INA-

r-~--1--+--~--~INB+ 

~--+-+--+-------j INB-(SI) 

'Figure 36. PECL Optical Module-to-HOTLink 
Receiver 

6-73 

HOTLink Design Considerations 

From a parts count standpoint this type of connec­
tion should be avoided if at all possible. Just as with 
the HOTLink transmitter-to-negative referenced 
ECL optical modules, this interface requires biasing 
on both sides of the AC coupling capacitors. 

Because the signal detect output of the optical mod­
ule is not an AC signal, capacitive coupling cannot 
be used to feed this signal into the HOTLink Re­
ceiver INB- input. The simplest thing to do here is 
to use an external EeL-to-TTL translator (as illus­
trated in Figure 37) to convert the signal-detect out­
put to a positive referenced TTL environment. 

The INA± differential inputs must be biased to 
near the midpoint of the common-mode range of 
the HOTLink Receiver. The two SOQ resistors tied 
to this synthesized reference point are sized to prop­
erly terminate the transmission line impedance of 
the interconnect. 

Receiving from Copper Media 

The direct-coupled, capacitor-coupled, and trans­
former-coupled configurations for copper intercon­
nect are covered in the HOTLink transmitter-to­
copper interface section of this document, with 
schematics of these connections illustrated in Fig­
ures 31 through 34. 

Signal-Detect for Copper Interface 

When interfacing to optical modules, the genera­
tion of a carrier- or signal-detect function is a simple 
connection to an ECL output. With a copper inter­
face, this signal-detect function must be built from 
other components. 

The key to a good signal-detect implementation is to 
create one that accurately detects the presence or 
absence of a valid data stream, yet does not load or 
distort the received signal. A sample carrier-detect 
pircuit is shown in Figure 38. 

This circuit uses a reference divider-network similar 
to that in Figure 37, except that an additional voltage 
reference point is created. This new reference point 
sets a threshold for received amplitude at which the 
signal detect circuit will start to respond. For this 
example, this reference point is set to 100 m V above 
the carrier detect receiver VBB reference point. 
This 100~m V offset is also necessary to prevent the 



=r ., ~ HOTLink Design Considerations 
~'CYPRESS ================ 

Optical 
Receiver 

RO 

VCC-1.5Vt-__ ....... -J 

(VBB) 

+5V 

CY7B933 

r---......-ttNA+ 
\,-....-t-9 tNA-

NRO~--~~--~+-----~ ~------~+-----~ 

LJs~tG~oQJ-I!I----~I------------:-r-- >-______ ~ Carrier 
10H125 Detect 

270 

-5.2V· 

Figure 37. Negative-Referenced Optical Module-to-HOTLink Receiver 

lOH116 amplifiers from oscillating when no signal 
is present. 

have 50-kQ pull-down resistors built into its input 
structures. While these pull-down resistors (pres­
ent on most ECL parts) are very handy for logic 
design, they have a significant impact when used for 
fast analog applications as done here. 

A lOH116 was selected here for numerous reasons. 
It is small (20-pin PLCC), fast (1 ns), and does not 

CY7B933 

r-----------------------------------------~tNA+ 

To copp~r~11 
Medla~ 

r---------------------------------------~tNA-

270 

From Locat 
Transmitter 

Figure 38. Copper Interface Signal Detect Circuit 

6-74 

INB+ 
r--+-~ INB-(SI) 



Two sections of the lOH116 are used as received sig­
nallevel comparators. One looks for logic-l levels 
while the other look for logic-O levels. The output 
of these two comparators are wire-ORed together 
and feed an RC network. The capacitor in this net­
work is charged when either of the comparators is 
turned on, and discharges through a bleeder resistor 
when neither comparator is on. 

The third section of the lOH116 also operates as a 
comparator, evaluating the voltage level on the RC 
network. Because the level on this capacitor 
changes so slowly, and ECL operates as an analog 
amplifier, positive feedback was added to cause the 
comparator to switch faster and to full ECL levels. 
The amount of hysteresis is set by the feedback 
resistor. For slow changing signals of this type, a 
minimum of 150 m V of hysteresis is recommended. 

Copper Signal Characteristics 

Communication on copper-based media is very sim­
ilar to communication on optical fiber. Both suffer 
from increasing signal degradation with increasing 
media length. 

The transmitted signal is composed of multiple fre­
quency components, and requires a fairly wide 
bandwidth media to propagate those signal compo­
nents. A large part of the bandwidth requirement is 
determined by the 8B/I0B code and NRZ modula­
tion used in HOTLink for communication. 

NRZ Modulation 

NRZ is an acronym for non-return-to-zero. This is 
one of the most basic types of data encoding 

Transmission 
Line Output· 
Waveform 

HOTLink Design Considerations 

whereby a signal is HIGH for a 1 and LOW for a O. 
The upper waveform in Figure 39 illustrates an NRZ 
data stream. Other forms of modulation (Manches­
ter, Biphase, etc.) are used in data communications 
that encode clock information as part of the Is and 
Os. With an NRZ data stream, a phase-locked-loop 
is necessary to recover the bit-clock to allow data to 
be captured (Reference 18). 

8H/10H Code Dependencies 

A phase-locked-loop (PLL) requires transitions 
meeting specific criteria to allow it to recover a 
clock. If binary data were sent serially using only an 
NRZ modulation, long periods could exist where no 
transitions are sent. During these periods (if they 
are long enough) the receiving PLL can drift such 
that it is no longer able to properly recover the data 
sent. 8B/lOB encoding is used to ensure that suffi­
cient transitions are present in the NRZ data stream 
such that the receiving PLL remains synchronized 
to the data. 

The 8B/lOB code is a run-length limited code. This 
means that there are limits to the maximum and 
minimum length of a continuous sequence of Is or 
Os in the data stream. The code operates by convert­
ing an 8-bit data byte (with uncontrolled transitions) 
into a lO-bit transmission character (with controlled 
transitions). The 8B/lOB code is referred to as a 1:5 
code because the minimum number of consecutive 
Is or Os is one, while the maximum number is five 
(References 1, 2). 

1tanslating these code limits into frequencies gives 
the baseband limits of the code. For example, with 
a serial bit-rate of 300 MHz, a pattern sent with the 

1 1 

Receiver 
. Threshold 

Figure 39. Short Time Constant Transmission Line Response 

6-75 



~YPRESS ~~~~~~~~~~;H;O;T;L;i;D;k;D;e;s;ig;D;C;O;D;S;id;e;ra;t;iO;D;S; 
maximum number of consecutive Is and Os (five 
high, five low) would be equivalent to a 30-MHz 
square wave. Using the highest rate of alternating 
bits of 0 and 1 gives a frequency of 150 MHz. 

As far as signal propagation goes, these numbers 
only refer to a sinusoidal frequency. Since square 
waves are used at the source, there are many addi­
tional higher-frequency harmonics present. To 
propagate a reasonable signal it is recommended 
that the system bandwidth also include at a mini­
mum the 3rd harmonic of the highest baseband fre­
quency, and preferably through the 5th harmonic. 

For our previously described example operating at 
a bit-rate of 300 MHz, the necessary system band­
width would be 

BW = (3 x 150MHz) - 30MHz = 420MHz 

Transmission Line Effects On Serial Data 

Eq.16 

Eq.17 

In a perfect world a perfect square wave could be 
launched down a perfect transmission line and it 
would come out the end looking the same as it went 
in. Unfortunately, the laws of physics make such a 
transmission line impossible. 

Instead, transmission lines have significant amounts 
of parasitic capacitance, inductance, resistance, and 
the terminations are reactive in nature. This means 
that a lossy system exists. The cable attenuation 
characteristics of copper cables are such that the 
higher frequencies have greater losses than the 
lower frequencies (see Figure 77 for some sample 
cable attenuation curves). 

When data is sent through such a lossy medium, dis­
tortion occurs. The higher frequency spectral com­
ponents are significantly reduced in amplitude, 
while the lower frequency spectral components are 
reduced by a lesser amount. In addition, the higher 
frequency spectral components propagate faster 
than the lower frequency components. The square 
waves fed into the cable come out looking like RC 
charge/discharge curves. 

These frequency-selective losses are equivalent to a 
time constant. For very short transmission lines (or 

very slow data rates) this time constant is short 
enough that transmitted Is and Os can completely 
charge or discharge the transmission line for each 
bit sent. The input and output signal waveforms for 
a transmission line of this type are illustrated in 
Figure 39. 

Because the line can fully charge or discharge on 
even the fastest possible transition, the time to 
reach the receiver threshold is always the same. 
This allows the data out of the receiver to look just 
like the data sent into the transmission line. 

As a transmission line is lengthened, its time 
constant increases. When the time constant is large 
enough that the line can no longer be fully charged 
and discharged in a single bit time, the reGeived data 
edges become time displaced from their desired 
positions. Since coding theory refers to each trans­
mitted 0 and 1 as a symbol, this type of distortion is 
called intersymbol interference or lSI. For commu­
nications systems, distortion of this type is called 
data-dependent jitter (DDJ). 

Input and output waveforms for a long time constant 
transmission line are shown inFigure 40. The receiver 
output is added to illustrate the edge displacement. 
As the transmission line becomes increasingly longer 
it is even possible for some single-bit transitions to not 
be detected at all by the receiver (based on the data 
pattern sent) because they fail to cross the receiver 
threshold. This may be corrected through use of fre­
quency compensation circuits at either the source 
(precompensation) or destination (equalization) ends 
of the transmission line. 

8B/IOB Code Running Disparity 

The 8B/I0B code attempts to limit the maximum 
distance (voltage) from the receiver threshold that 
a transmitted signal can reach, by controlling the 
DC signal content of the characters sent and the 
maximum separations between Is and Os used to 
represent each character. To do this the 8B/I0B 
code provides two lO-bit sequences to represent 
each 8-bit data value. The difference between these 
patterns is the ratio of Is to Os. To determine which 
of the two values to send, the HOTLink 1tansmitter 
counts the number of Is and Os used to send each 
lO-bit transmission character (when operated with 

6-76 



NRZ 
Input 
Data 

1 o 1 o 1 

HOTLink Design Considerations 

1 1 o 1 

Transmission Receiver 
Line Output --I'----'lr------,f----''fr----¥----------+''''''-,--f-+--- Threshold 
Waveform 

Line Receiver 
Output Timing 

Leading-Edge 
Jitter 

Figure 40. Long Time Constant Transmission Line Response 

the encoder enabled). If the net result is more Is 
than Os (referred to as positive running disparity), 
the following data byte is encoded using the form 
with more Os than Is. If the net result is more Os than 
Is (referred to as negative running disparity), the 
following data byte is encoded using the form with 
more Is than Os. The goal of this is to maintain as 
near as possible a net value of DC over time for the 
serial data sent to minimize baseline wander. 

Baseline Wander 

Methods of data encoding that are not DC balanced 
(i.e., 4B/SB as used with FDDI) suffer from a char­
acteristic known as baseline wander. This is a side 
effect of an AC coupled system attempting to propa­
gate a signal that contains a DC component. 

Baseline wander is a (relatively) long-term, low­
frequency effect, generated when the average DC­
level of a transmitted signal varies with the data 
sent. This DC component is lost because the trans­
mission system is AC coupled. At the receiving end 
of the cable this appears as data that does not 
remain centered around the receiver threshold. 
This effect is illustrated in Figure 41. 

If the receiver was actually presented with perfectly 
square pulses (with transitions that always crossed 
the receiver threshold) then baseline wander would 
not be a problem. Unfortunately, what are actually 
sent and received are more in the form of trapezoids 
with measurable rise and fall times. The farther a 

signal drifts from being centered around the 
receiver threshold, the more that the threshold 
crossings are time displaced. This time displace­
ment is also known as jitter. 

Jitter 

Jitter is a high-frequency deviation from the ideal 
timing of an event. Many different aspects of a 
serial link can affect the total jitter present in the 
link. Those based on real and repeatable direct 
measurements are referred to as deterministic jitter. 
Other effects, which are not directly repeatable and 
are more probabilistic in nature, are called random 
jitter. 

Deterministic jitter itself may be broken into two 
major components: those based on the accuracy of 
the duty cycle of the information, and those based 
on the interaction of the Is and Os due to the limited 
bandwidth of the transmission system. The jitter 
that affects adjacent edges and duty cycle is called 
duty cycle distortion (DCD). The jitter based on the 
data patterns sent is called data-dependent jitter 
(DDJ). 

Fixed 
Receiver 

Threshold 

Figure 41. Baseline Wander Example 

6-77 



Bit Rate 
Clock 

Long 0 
Short 1 

Long 1 
Short 0 

\ 
/ 

Superimposed 
Data Patterns 
Generate Eye 

Patterns 

Source X X 

Destination K K 
Figure 42. Eye Pattern Generation Waveforms 

Data-Dependent Jitter Characteristics 

Data-dependent jitter (DDJ) is a measurement of 
intersymbol interference based on the maximum 
timing deviations caused by a worst-case data pat­
tern. DDJ is affected by many environmental char­
acteristics, in addition to the code used. These 
include the length of the cable, the attenuation char­
acteristics of the cable, the integrity of the signal 
launched into the cable, and how well the cable is 
terminated. Because of the frequency selective 
attenuation present in copper cables, DDJ is one of 
the main limiting factors on how far a recoverable 
signal may be sent. 

To measure DDJ for a specific configuration, data 
patterns having specific characteristics need to be 
repeatedly launched into the cable. These patterns 
must present the worst-case transition characteris­
tics based on the code used for sending data. This 
is usually described in terms of sequential combina­
tions of long and short Os and Is. 

A long 0 or 1 is specified as the longest continuous 
LOW or HIGH that can be sent. For the 8B/10B 
code this is five bits in length. The short 0 or 1 is the 
shortest LOW or HIGH that can be sent. For the 
8B/10B code this is one bit in length. The sequences 
used for testing are diagrammed in Figure 42. 

A design feature of the HOTLink Transmitter is that 
when neither data enable is active (ENA and ENN 
both HIGH), the part repeatedly sends out the 
K28.5 SYNC code. The lO-bit pattern of this code 

HOTLink Design Considerations 

is 0011111010. Since the transmitter also tracks dis­
parity, this pattern is inverted on every other byte. 
This alternating pattern contains the necessary 
combinations of long and short Os and Is for per­
forming a proper eye pattern test. 

The opening of the "eye" (see Figure 43) relative to 
the width of a bit cell is a good measure of link integ­
rity. As this window gets smaller, it becomes more 
difficult for the HOTLink Receiver PLL to deter­
mine where to sample each bit cell (Reference 5). 

The maximum variation, from early to late, of when 
the received signal crosses the receiver threshold is 
equal to the amount of jitter present. This jitter is 
usually expressed as a percentage relative to the 
width of a bit cell window. This relationship is 
shown in Equation 18. 

Jitter = BitI1ME. - ThvAR X 100% 
BitT/ME Eq.18 

The oscilloscope illustration in Figure 44 is an actual 
DDJ measurement based on a 100 foot (30.4 m) seg­
ment of RG59 cable. The jitter measured in this 
configuration is approximately 600 ps. 

Duty-Cycle Distortion Jitter Characteristics 

In most cases duty-cycle distortion (DCD) is caused 
by the components used to make a link, rather than 
the data sent across the link. It manifests itself as 
either differences in the rise and fall times or differ­
ences in period for bits sent as a 0 compared to bits 
sent as a 1. This is measured by sending a pattern 

1 Bit Cell Window 

Threshold Crossing Variation 

Figure 43. Eye Diagram 

6-78 



-,~ 
S'CYPRESS 

down a communications link that does not exhibit 
DDJ and using an averaging mode on the oscillo­
scope to filter out any random jitter (RJ) that may 
be present. 

The HOTLink Transmitter has a built-in DCD pat­
tern generator that is activated by placing the trans­
mitter in BIST mode (BISTEN LOW) while both 
ENA and ENN remain HIGH. In this mode the 
transmitter sends out an alternating 1-0 pattern 
(DlO.2 or D21.S). As all pulses in a square wave are 
the same, this pattern does not generate any DDJ. 
An example measurement of DCD for an optical 
link is shown in Figure 45. 

When viewed from the receiver threshold (center 
horizontal line ) in Figure 45, the timing for a logic 1 
is seen to be slightly shorter than that of a logic O. 
This difference in time is the DCD jitter present in 
the link. 

Random Jitter Characteristics 

Random jitter (RJ) is that portion of jitter that is not 
repetitive in nature and is caused by external or 
internal noise in a system (thermal noise, EMI, 
etc.). It is measured by using a data pattern free of 
DDJ (Le., the same pattern used to measure DCD) 
relative to the transmitter clock. Now, averaging is 
turned off but infinite persistence is enabled. This 
captures the maximum variation of a transition rela-

Ch.2 = 100.0 mV/div Timebase = 500 ps/div 

Figure 44. DDJ Measurement 

6-79 

HOTLink Design Considerations 

/ 
"-- --- \ / 

/ \ 1/ 
1\ / 

/ \ / 
I~ 

Timebase = 1.00 ns/div Ch. 1 = 200.0 mV/div 

Figure 45. DCD Measurement 

tive to the clock. An example measurement of RJ 
for an optical link is illustrated in Figure 46. 

In this measurement the amount of random jitter 
present is measured by how wide the trace is as it 
crosses the threshold. This particular optical link 
has approximately 200 ps of random jitter present. 
This measurement was made using a 2S0-Mbit/ 
second data pattern (4-ns/bit). Equation 18 yields an 
RJ of S% for this link example. 

When making measurements of this kind, the toler­
ances of the signal sources and accuracy of the test 
equipment must also be taken into account. If the 
trigger source contains SO ps of jitter, and the scope 

Timebase = 200 ps/div Ch.1 = 100.0 mV/div 

Figure 46. RJ Measurement 



· ==~YPRESS =;;===;=;=;=;=;=;=;=H=O;=T=L=io=k=D=e=s=ig=o=C=O=o=s=id=e=ra=t=io=o==s 

trigger accuracy is ±50 ps, then the actual jitter pres­
ent may be substantially less than that measured. 

Frequency Characteristics of 8B/IOB Data 

Most digital design engineers are used to viewing 
signals in the time domain using an oscilloscope. 
This instrument provides information about how a 
signal looks referenced to the passage of time. The 
waveforms in Figure 47 illustrate the HOTLink 
Transmitter CKW clock on the upper trace and one 
of the ECL data output signals on the lower trace. 
The individual bit cells may be seen as the eye 
between the rising and falling output edges. 

In the 8B/10B code, data is sent as a non-return-to­
zero (NRZ) waveform. In this waveform the clock­
ing information is contained in the edges, while the 
data is contained in the interval between the edges. 
While an oscilloscope-type display allows us to see 
what the output looks like in terms of voltage, rise 
time, period, etc., it does not present any frequency­
specific information. To properly design filters, cou­
plers, or transmission systems, it is necessary to 
know the frequency characteristics of the signals. 
This information can only be examined through use 
of a spectrum analyzer. 

A spectrum analyzer could easily be called a fre­
quency domain oscilloscope. A conventional spec-

/ , ~-, 

} ~ 
Ch. 1 = 2.000 V/div 
Ch. 2 = 200.0 mV/div 
Timebase = 1.00 ns/div 

v~ 

r'\ 

IJ 

r -

"- -
Offset = 2.400V 
Offset = O.OOOV 

Delay = O.OOOOOs 

Figure 47. HOTLink Transmitter Serial Data 

trum analyzer operates as a swept frequency, super­
heterodyne receiver that displays a signal's 
amplitude versus its frequency. It operates by 
sweeping a narrow-band tuned filter across a speci­
fied section of the electromagnetic spectrum, and 
measuring (and displaying) the rms voltage of the 
signal at each frequency. This swept filter technique 
shows the specific frequency components that make 
up a complex signal, but does not provide any phase 
related information (Reference 22). 

The spectrum analyzer output in Figure 48 illus­
trates the spectral characteristics of the HOTLink 
Transmitter serial outputs when sending the 
511-byte BIST pattern. The data patterns sent in the 
BIST loop are similar to those sent during normal 
communications traffic. This figure was made using 
a 30-MHz byte-rate clock (300-MHz bit-rate data). 
The envelope shows a relatively even distribution of 
power below the bit-rate of the data, and significant 
amounts of energy present in the information out to 
1 GHz. This illustrates how necessary it is to have 
a true wideband transmission system to propagate 
the signals. 

Figure 48 also shows a large dip in the energy dis­
tribution below 30 MHz. This confirms that the 
8B/lOB code used has no true DC component. 

Figure 49 illustrates the spectral characteristics for 
the highest frequency data pattern that can be sent, 
a continuous OlOl (D21.5 character) pattern. With 
the 30-MHz byte-clock used here this pattern is 
equivalent to a 150-MHz square wave. Unlike Fig­
ure 48, most of the energy here is located at the fun-

6-80 

c o 

:~ 
~ 
"0 
o 

Reference Level of -10 dBm 

'"'W" ~ , ..... 
"\('" -"1\\...1 

\IV 

300 600 
Frequency (MHz) 

'''''-I ~ 

900 

Figure 48. BIST Pattern Spectral Characteristics 



c: 
o 
'in 
:~ 

~ 
"0 
o 

Reference Level of -10 dBm 

I I 
I) ) I I) I " I II I 

300 600 900 
Frequency (MHz) 

Figure 49. 0101 (D21.5) Pattern Spectral 
Characteristics 

c: o 
'in 
:~ c 
iIi 
"0 
o 

Reference Level of 10 dBm -

I I I I I I I 

I I I I I I I I I I I 
.1 

300 600 900 
Frequency (MHz) 

Figure 50. 0000011111 (K28.7) Pattern 
Spectral Characteristics 

damental base frequency of 150 MHz, and at odd 
harmonics of that frequency. Other frequency com­
ponents present in the signal are at least 30 dB down 
from the data being sent. These components are 
either generated by other parts of the HOlLink cir­
cuitry as it clocks, encodes, shifts, etc., the users 
data, or from external sources such as power-supply 
switching noise. 

Figure 50 shows the spectral characteristics for the 
lowest legal frequency pattern that can be sent, a 
continuous 0000011111 (K28.7) pattern. This pat­
tern ends up being an exact match in period to the 
source clock (30 MHz) with a fixed 50% duty cycle. 
Here, the largest amounts of energy are present at 
30 MHz and all odd harmonics above that. The 
smaller frequency components present at the even 
harmonics are again due to the internal operation of 
the HOlLink 'Il'ansmitter and external system 

6-81 

HOTLink Design Considerations 

noise. If this figure is compared to Figure 49, many 
of these even harmonic components can be seen to 
have almost exactly the same level in both figures. 

To verify that these spectral characteristics have 
some resemblance to theory, these same two source 
waveforms were generated mathematically and 
analyzed using an FFT (fast Fourier transform) 
algorithm. This transform analyzes a source wave­
form and computes its frequency components. 

Because the input waveforms are not true square 
waves, time constant curves based on a naturalloga­
rithm were used to synthesize the the rising and fal­
ling edges. These rising and falling edge equations 
are listed in Equations 19 and 20 respectively. 

Eq.19 

Eq.20 

In these equations, T represents the time constant 
for rise and fall time. For the waveforms generated 
here, a T of 400 ps was used. Figure 51 illustrates the 
signal generated with these equations for a 
ISO-MHz clock rate (300-Mbitlsecond bit-rate). 
This is equivalent to the data pattern generated. by 
a D21.S character. 

Running a 4096 point FFT on this waveform yields 
the spectral components illustrated in Figure 52. 
The vertical axis here is plotted on a log scale to 
match up with the spectrum analyzer outputs. This 
plot illustrates that the energy of a square wave hav­
ing a symmetrical rise and fall is located at the odd 
harmonics. 

An FFf is based on numeric analysis rather than a 
physical measurement and will calculate signal com­
ponents with an amplitude of zero. Because Log(O) 

Figure 51. Synthesized D21.5 Waveform 



22~YPRESS~~~~~~~~~~H~O~T~L~in~k~D~e~S=ig=n~c~o~n~S~id~e~ra~t~io~n=s 

D21.1 Pattern 

300 600 900 
Frequency (MHz) 

Figure 52. FFT Spectrum of Synthesized 
D21.5 Pattern 

is equal to - 00, a calculated FFT does not have a 
noise floor. To plot its results in a usable form 
requires the addition of an artificial noise floor to 
present the points of interest on a reasonable scale. 
To allow a better comparison, Figures 52 and 54 use 
a noise floor similar to that measured in the spec­
trum analyzer charts. 

Unlike a spectrum analyzer, which only displays the 
magnitude of the spectral components, an FFr of a 
waveform yields both magnitude and phase in rectan­
gular form as a complex number. To plot this informa­
tion for comparison with a spectrum analyzer plot 
requires conversion to polar notation of magnitude 
and phase. This calculation of the magnitudt:: por­
tion is done using Equation 21 (Reference 24). 

Magnitude = iRe2 + 1m2 Eq.21 

This same FFr analysis was performed on the syn­
thesized K28.7 pattern illustrated in Figure 53. This 
waveform uses the same 400-ps time constant as Fig­
ure 51. The FFr based spectral plot for this wave-

Figure 53. Synthesized K28.7 Waveform 

form is illustrated in Figure 54. Because it uses the 
same value for a time constant, this waveform has 
the same rise and fall times as the D21.5 pattern in 
Figure 51. As with the plot for the D21.5 pattern, all 
of the energy is contained in the odd harmonics. 

The spectral plots for both the D21.5 and K28.7 syn­
thesized patterns contain slightly more energy in the 
higher frequency harmonics tJ1an the actual mea­
sured signals. This is primarily due to the sharp 
knee 'present when the synthesizeq waveform 
changes between rising and falling. This knee is 
much rounder in the actual signal. 

6-82 

K28.7 Pattern 
300 600 900 

Frequency (MHz) 

Figure 54. FFT Spectrum of Synthesized 
K28.7 Pattern 



Components 

The selection of support components for a HOT­
Link communications environment should not be 
taken lightly. The correct parts allow construction 
of a high-bandwidth, low error-rate system. 

Several parts can be measured as key in a HOTLink 
system. These parts are 

• Clock Oscillator 

• Bypass/Coupling Capacitors 

• Fiber-Optic Emitters 

• Fiber-Optic Detectors 

• Pulse Transformers 

• Fiber-Optic Cable 

• Copper Cables 

• Circuit Board 

Clock Oscillators 

The HOTLink 'nansmitter and Receiver are 
designed to operate from a very stable clock source. 
To achieve the necessary frequency accuracy and 
stability it is necessary for this clock source to be 
based on a quartz crystal. 

The current ANSI Fibre Channel standard calls out 
a frequency accuracy of ± 100 ppm for both source 
and destination (ANSI FC-PH 4.1 Section 6.1.2 Thble 
8, and Section 8 Table 9) to allow reliable commu­
nications. Clock oscillators with this initial accuracy 
are available from multiple sources (Reference 3). 

What must also be considered is lifetime stability. 
Most oscillator manufacturers can easily deliver 
product that meets the ± 100-ppm rating right out of 
the box, but this limit must be met over the life of the 
product, and is affected by the operating environ­
ment. The two most critical parameters are 
referred to as aging and temperature stability. 

Aging refers to how an oscillator's output frequency 
varies over time (assuming other environmental 
factors remain constant). This is usually expressed 
in ppm/year. For most common "AT" cut crystals, 
the typical aging is 5 ppmlyear for the first year and 
3 ppm/year thereafter (5 ppm=.0005%). 

6-83 

HOTLink Design Considerations 

A crystal's resonant frequency also varies with tem­
perature. How much it varies is based both on how 
the crystal is cut, and over how wide a temperature 
range it is used. The stability over temperature is a 
non-linear function and is usually expressed as some 
peak-to-peak frequency change over a temperature 
range. The process for measuring and specifying 
temperature stability is called out in MIL-O-55310. 
Temperature stability may easily exceed the initial 
accuracy specification. Ratings of ± 100 ppm for 
temperature alone are not uncommon. Figure 55 
shows a typical transfer curve of crystal frequency 
vs. temperature. 

This curve can be rotated on the + 25°C axis point by 
cutting the crystal differently. This can be used to 
create an oscillator that is more stable over a narrow 
temperature range (say O°C to +50°C), yet is much 
more unstable outside of this range. 

Temperature stability and initial accuracy are often 
combined in a vendor's specification; i.e., ± 100 ppm 
at O°C to 70°C. These numbers do not take into 
account the aging characteristic of stability. 

Modified oscillators are available that allow for a 
wider operating environment while maintaining a 
high stability. These are referred to as either TCXO 
(temperature compensated crystal oscillator) or 
OCXO (oven controlled crystal oscillator). 

The TCXO is usually built by adding a varactor 
diode in series with the crystal. A special thermistor 
network across the diode causes the oscillator to 
maintain a very stable operating frequency. 
Because of the desired stability of a TCXO 
(±2 ppm), a better grade of crystal is used to pro­
vide better aging characteristics (±1 ppm/year). 
Oscillators of this type are usually larger in size (and 

~ +40 
c.. 

'; +20 
Ol 
<: 
jg 0 
o 
g -20 
Q) 
~ 

-40 

V 
~ -50 
u. 

/ 
V 

-25 

~ 
~ V 

o +25 +50 +75 +100 
Temperature (5°C) 

Figure 55. Oscillator Temperature Stability 



~ 

- -., -::::z. HOTLink Design Considerations 
.;CYPRESS ================ 

higher in cost) than the standard 4/14-pin DIP foot­
print of standard clock oscillators. 

The OCXO provides the highest-accuracy oscilla­
tors. These are built by placing a standard oscillator 
into a temperature-controlled environment. Rather 
than have to both heat and cool the crystal, the oper­
ating temperature is set to the upper end ofthe oscil­
lator's range. Crystals are also cut such that a nearly 
flat area of temperature response is located at the 
operating temperature of the oven. The normal 
operating temperature of crystal ovens is in the 
60°C to 100°C range. 

Oven-controlled oscillators are generally quite large, 
expensive, and dissipate large amounts of power. 
They also have a significant warm-up period, requir­
ing from 15 to 30 minutes after power on to achieve 
their specified stability (Reference 23). 

HOT Link Oscillator Requirements 

Unlike the ANSI requirement for ± 100-ppm stabil­
ity for end-to-end communication, the HOTLink 
family of parts will operate with a substantially 
wider range of reference frequencies between the 
HOTLink 1ransmitter and Receiver. The specifica­
tion of 0.1 % end-to-end frequency tolerance allows 
operation with oscillator sources operating at up to 
±500-ppm tolerance. This allows even the lowest 
cost oscillators to be used with HOTLink. 

Bypass Capacitors 

At the frequencies that the HOTLink Transmitter 
and Receiver operate, the proper usage of power­
supply bypassing becomes quite critical. Strategi­
cally sized and placed capacitors are used both to 
provide an AC path between Vee and ground 
(VEE), and to source current when the power supply 
cannot respond quickly enough due to the parasitics 
of the power distribution system. 

The base of any power distributing system is the cir­
cuit board. Due to the very high frequencies devel­
oped in a HOTLink-based communications link, it 
is strongly advised to use full power and ground 
planes, rather than attempting to distribute power 
and ground on the same layers used for signal dis-

tribution. These power layers should be made with 
a minimum of I-ounce copper. 

To properly bypass the HOTLink 1ransmitter and 
Receiver it is necessary to know which Vee pins are 
assigned to which portions of the logic inside the 
part. 

. HOTLink Transmitter Power Pins 

The pin configuration for the HOTLink 1ransmitter 
is illustrated in Figure 56. The transmitter has three 
pins assigned as Vee and two assigned as ground. 
All three of these V cc power pins are connected 
internally and must be connected externally to the 
same power rail. The current flow from the slight 
voltage variations that would exist if different exter­
nal V cc supplies were used could damage the part. 

Pin 4 of the HOTLink Transmitter is named V CCN 

or Noisy V CC. This pin provides power to the ECL 
emitter-follower output transistors. This pin is not 
usually a noise source if the ECL outputs are loaded 
in a balanced fashion. If these same outputs are 
operated single-ended with unbalanced loads, then 
a varying amount of current will flow through this 
pin as the outputs switch. To keep board noise to a 
minimum it is advised that, if an output is used, both 
outputs of the differential driver be loaded the 
same. 

Pin 9 of the transmitter is named V CCQ or Quiet 
V CC. This pin provides power to the CMOS logic 
core of the part and the TIL compatible input buff­
ers. This includes the 8B/lOB encoder and the 

PLCC 
Top View 

+ I I ++ I 

tiC§C§~ ~~~ 
>°000000 

BfSTEN FOTO 
GNO 6 EIiJliiI 

MOOE 7 ENA 
IW 8 VGGa 

VGGa 9 GKW 
SVS(Oj) GNO 
(Oh) 07 ...:.:.n,~rnT-Tl-!rr;...;:.r SGfi) (Oa) 

Figure 56. CY7B923 HOTLink Transmitter 
Pin Configuration 

6-84 



PLCC 
ThpView 

+~ 

I
z ~.bUJ 
~ + I =Zo 
CIllal":": al=O 
iii<~~~ii5::;: 

-~---
oCicio~oUgg 

REFCLK 
Vcca so 
CKR 
Vcca 
GND 
SC(Ij (oa> 

Figure 57. CY7B933 HOTLink Receiver 
Pin Configuration 

counters and state machines used to control the flow 
of data through the part. Because the dynamic cur­
rent draw through this pin should not be very large, 
the primary bypassing concern should be for higher 
frequency signal components present in the internal 
logic. 

Pin 22 of the transmitter is also named V CCQ or Quiet 
V CC. This pin is probably the most critical of all the 
pins on the transmitter as it provides power to the 
analog core. This includes the charge pumps and 
comparators used with the PLL clock multiplier. 

HOTLink Receiver Power Pins 

The pin configuration for the HOTLink Receiver is 
illustrated in Figure 57. The receiver has three pins 
assigned as V cc and three assigned as ground. All 
three of these power pins are connected internally 
and must be connected externally to the same power 
rail. The current flow from the slight voltage varia­
tions that would exist if different external V cc sup­
plies were used could damage the part. 

Pin 9 of the HOTLink Receiver is named V CCN or 
Noisy V cc. This pin provides power to the TTL­
compatible output buffers. Because there is no way 
to maintain a constant current load on these outputs 
(as can be done with the HOTLink Transmitter ECL 
outputs) there will always be significant dynamic 
current flow through this pin as the part operates. 

Pin 21 of the receiver is named V CCQ or Quiet V CC. 

This pin provides power to the core CMOS logic in 

6-85 

HOTLink Design Considerations 

the receiver. This includes the 10B/8B decoder and 
the counters and state machines used to control the 
flow of data through the part. Because the dynamic 
current draw through this pin should not be very 
large, the primary bypassing concern should be for 
higher frequency signal components present in the 
internal logic. 

Pin 24 of the receiver is also named V CCQ or Quiet 
V CC. This pin is probably the most critical of all the 
pins on the receiver as it provides power to the ana­
log core. This includes the charge pumps and 
comparators used with the PLL and the input differ­
ential amplifiers for the high-speed serial data 
streams. 

Bypass Capacitor TYpes 

For the purposes of power supply bypassing, capaci­
tors are used to store charge, and deliver that charge 
to a nearby device when necessary. While many still 
believe that charge is stored on the plates of a 
capacitor, it is not. Charge is stored in the dielectric 
(Reference 21). 

There are two primary types of chip capacitors used 
for power supply bypassing; they are identified as 
either high-K or low-K capacitors. These capacitor 
types differ primarily in their dielectric material. 

The K referred to here is the dielectric constant for 
the material used as a dielectric in the capacitor. 
High-K dielectrics for bypass-type capacitors are 
usually based on titanates of barium, calcium, stron­
tium or magnesium. This material provides dielec­
tric constants in the range of 1200 to 12,000. These 
high-K dielectrics allow construction of physically 
small capacitors that provide a large amount of 
capacitance per unit area. The generally available 
range of high-K capacitors is from 200 pF to 0.1 1lF. 
These high-K capacitors have temperature charac­
teristics of type X7R, Z5U, or Y5V. 

Both high-K and low-K dielectrics are used for 
power supply bypassing. High-K dielectrics are usu­
ally not used for temperature-critical or high­
frequency operations because of their thermal and 
frequency dependent characteristics. 

One of the biggest problems with using these high -K 
dielectric capacitors is sensitivity to temperature. 
Per the graphs in Figures 58 and 59, these types of 



/ rY' "\. 
/ \ \ 

/ / \ \ 
/ / \ 1\ 

II Z5U "\. 
\ 

Y5V '\. 
i""'-

-80 
-60 -40 -20 0 20 40 60 80 100 

Temperature in °C 

Figure 58. Capacitance vs. Temperature for 
YSV and Z5U Dielectrics 

parts can change their capacitance values by over 
80% over the operating temperature range of most 
commercial or industrial applications. (The tem­
perature characteristics for Y5V are similar to Z5U 
except that the peak capacitance occurs around 
20°C lower in temperature.) 

A second problem is that these titanate-based 
dielectrics exhibit ferroelectric properties; i.e., they 
do not respond linearly to an AC signal. The effect 
is similar to a hysteresis loop in magnetics. This 
makes these dielectrics a poor choice when a distor­
tion-free analog response is required. 

When used for high-frequency (RF) or 
communications-link type applications, high-K 
dielectrics have other drawbacks. Capacitors based 

~ 
Q) 
Ol 
c: 
al .c 

U 
Q) 
0 
c: 

.-!l! 
16 
0. 
al u 

20 

16 

12 

8 

4 

0 

-4 

-8 

I, 
\. 

" f'.. ./"' 
'-'" 

" / 

"' V 
-12 

-16 

-20 
-M-~-~ 0 ~ ~ M 001001~1~ 

Temperature in °C 

Figure 59. Capacitance vs. Thmperature for 
X7R Dielectrics 

+10 

~-1~ 
Q) 

g>-20 
Jg -30 
u -40 
g -50 

t=~~ 
(3 -80 

-90 

HOTLink Design Considerations 

12. - 1 NPO_ 
~ '" --:-:-b. 
\. " X7R -r-, I'\. 1 

\. 
\. "- Z5U 

1"'- .......... 
Y5V I"'--. 

I -
o 5 10 15 20 25 30 35 40 45 50 

Volts DC Applied 

Figure 60. Capacitance vs. DC Voltage 

on these dielectric types are also very sensitive to 
operating voltage and frequency. 

Figure 60 illustrates the voltage sensitivity of high-K 
dielectrics. Here the capacitance loss can exceed 
70% with as little as 25V applied to the part. This 
parameter may become critical if capacitors are 
used as part of a DC block in a communications link. 

Figure 61 illustrates one of the effects of operating 
frequency on capacitance. As the. operating fre­
quency increases, the high-K dielectrics exhibit less 
and less capacitance. If these high-K dielectrics are 
to be used at an RF frequency, a capacitance correc­
tion factor must be applied to determine the actual 
capacitance present in the circuit (Reference 26). 

Low-K dielectrics are generally based on either tita­
nium-dioxide ceramic, alumina, or porcelain. 
These materials provide dielectric constants in the 
range of 9 to 30. Because of the low-K, these materi­
als are only used for making small-valued capacitors 

~ 
Q) 
Ol 
c: 

+5.----.----,----.----.----,----, 

Jg -5 I-----+----+---~"""''''''''.!::_­u 
2l 
5i -1 0 I-----+----+----+----~----"'..-+-"'..,---I 

I 
(3-151-----+----+----+----+---~--~ 

-20L----L----L---~----~--~--~ 

1kHz 10kHz 100kHz 1MHz 10MHz100MHz 
Frequency 

Figure 61. Capacitance vs. Frequency 

6-86 



0.5 
0.4 
0.3 
0.2 ka 1,?,:0; 

0.1 ~~ V7:: ».. k 0~ ~ ~~ 

0 ~~ ~ ~~ 
;;;; ,....., ..r; ~?} ~ ~ ~ ~ ~ ~ 

0.1 ~ ~ ~ ~~ :0 Y"'-J «< ~~ ~ ~ ~ ~ ~ ~ 
~ ~ t:'-? '<:2; ~ ~ ~ ~ ~ 0.2 

0.3 
~ ~ ~ 

0.4 
n"' 
-55 -40 -20 0 20 40 60 80 100 125 

~Tolerance Temperature in °C 

Figure 62. Capacitance vs. Temperature for 
NPO/COG Dielectrics 

in the range of 1 pF to 10,000 pF. These low-K 
capacitors are usually identified as having NPO or 
COG type temperature characteristics, and are often 
referred to as RF-grade capacitors because of their 
high-Q and low dissipation factors. 

Low-K dielectric capacitors are very stable over 
temperature. Per Figure 62, these parts change in 
capacitance less than 0.5% over the full military 
temperature range of - 55°C to 125°C. Because of 
this temperature stability, low-K capacitors are pre­
ferred for many analog applications where fixed time 
constants and resonant frequencies are necessary. 

No capacitor provides a pure capacitance; i.e., there 
are other parasitic resistive and inductive compo­
nents present in the complex impedance of a capaci­
tor over frequency as illustrated in Figure 63 (Refer­
ences 15, 16, 17, 21). These parasitic components of 
a capacitor are due to the materials used in, and 
mechanical construction of, the physical capacitor. 
Because of these parasitics, a capacitor cannot be 
treated as having ever-decreasing impedance with 
increasing frequency. At some frequency the capac-

C 

Rs L 

Figure 63. Capacitor Equivalent Model 

HOTLink Design Considerations 

102 

10-1 

10-2 

10-3 

10-4 

10-5 

\ 
\ 

\ 
\ 

\ /'" 

\ ./ 
V V 

\ I ~ V 
y ~ ~ K" - '100!-lF 10 !-IF 

\ //" 

l>\ 
,.., 

/'" 
,/ 

/' \. / 
/' /1 

L..----~ 100p F 
I I 

t 1 10 102 103 104 105 106 107 108 109 1010 

Z (ohms) Frequency (Hz) 

Figure 64. Capacitor Impedance vs. Frequency 

itor passes through its series resonant point and 
must then be treated as an inductor. 

A general rule of thumb is that as the capacitance 
decreases, the series resonant frequency increases. 
This relationship is illustrated in Figure 64. At this 
series resonant point, the capacitive and inductive 
reactance components cancel each other out, leaving 
only the Effective Series Resistance (ESR). For most 
common bypass capacitors, the ESR is well under 1Q. 
When selecting parts for high-frequency operation, 
the smaller case sizes (0805 or 0603) are preferred 
because they have smaller inductive parasitics. 

Resistors 

Figure 65 shows a first order model of a real world 
resis~or. Because of the parasitic Land C present, 
a resistor does not have a constant impedance over 
frequency. The actual amount of change in imped­
ance from a pure resistance is based primarily on the 
construction of, materials in, and DC resistance 
value of the component. 

L R 

Figure 65. First Order Resistor Model 

6-87 



i£~YPRESS~~~~~~~~~~H=o=T=L=in=k=D=e=s~ig~n=c=o=n=sl=·d=er=a=ti=o=ns= 

H: 
'#. 0.01 
~~ 

0.1 1.0 10 100 400 

Frequency (MHz) 

Figure 66. Carbon Film Resistor 
Frequency Characteristics 

For high frequency or RF designs, most low-value 
( < 1 kQ) composite (non wire-wound) resistors may 
be assumed to operate at or near their DC resis­
tance. As the DC resistance of the part increases, its 
impedance at higher frequencies decreases. Figure 
66 shows this relationship for typical carbon film 
resistors. This change in impedance is referred to as 
the Boella Effect and is caused by the distributed 
shunt capacitance present in the conducting carbon 
particles (Reference 21). 

This shows that low-value carbon film resistors have 
reasonable impedance characteristics for RF 
applications, but for higher values a different type of 
resistor must be used. 

For higher resistance values at RF frequencies, 
metal film resistors should be used. Because these 
types of resistors are not formed from particulate 
material, the distributed capacitance is reduced. 
These types of resistors are manufactured by vac­
uum sputtering of thin films of mixed metals onto a 
ceramic substrate. Because there are no individual 
particles of metal, the capacitance is much lower. 

Care must also be used when selecting metal film 
resistors as some of these have significant inductive 
parasitics. These inductive parasitics are often 
caused by the method of laser trim used to adjust the 
value of the resistor. Those resistors created using 
two straight cuts, one from either side, are generally 
more inductive than those trimmed using a single 
straight or L shaped cut. 

Metal film resistors should be used for resistors in 
the analog data path. This includes the transmission 
line termination and line bias resistors at both the 
source and destination ends of the serial link. 

Fiber-Optic Emitters (Drivers) 

A fiber-optic emitter is an electro-optical converter 
that changes an electrical stimulus into light. A sim­
plified block diagram of a fiber-optic emitter is 
shown in Figure 67. The input buffer is an ECL dif­
ferentialline receiver. While some emitters do pro­
vide a VBB output to allow single-ended operation, 
its use is strongly discouraged. The ECL receiver 
controls a high-current amplifier. The amplifier 
drives its current through an LED or semiconductor 
laser to generate a shaped optical output in 
response to the ECL signal input. A micro-lens 
assembly (usually a small sphere of glass) is used to 
couple and direct the light into a port for an optical 
fiber. Because of the small core size of the optical 
fiber, the lens and fiber receptacle are aligned by the 
fiber-optic emitter manufacturer (Reference 27). 

Fiber-optic emitters are available in may different 
case styles, wavelengths, launch modes, data rates, 
etc. When selecting an emitter, the main concerns are 

• Optical Receiver characteristics 

• Operating data rate 

• Cable plant characteristics 

Most of these areas deal with interoperability of 
data communications links. If a shortwave laser is 
used as an emitter, the optical receiver must be 
designed to operate with the specific data rates and 
spectral properties of that shortwave laser. While it 
would be nice if a more mix-and-match combination 
of LED, shortwave laser, and longwave laser emit­
ters could be used, existing receivers do not allow 
this. If a 1300-nm LED-driver is used, an optical 
receiver designed for 1300-nm LED reception must 

lED or SC or ST Fiber 
Differential Laser Driver Connector 

ECl Input Ir- ~ 

~~O,,"mm" 
Light-Emitting Diode or Light Coupling 
Semiconductor Laser Optics 

Figure 67. Fiber-Optic Emitter Module 
Block Diagram 

6-88 



-'i~ =!!!S' CYPRESS 

be used to properly detect the signals. In addition 
the optical receiver must be designed to support the 
data rate used in the link. 

Optical emitter assemblies are available from multi­
ple sources, including AMP/Lytel, Siemens Optical, 
Hewlett-Packard, Sumitomo Electric, AT&T, and 
others. 

ANSI Fibre Channel Requirements 

The current ANSI Fibre Channel standard calls out 
four optical interface technology options for use at 
the 2S-MByte/second data rate supported by HOT­
Link. The ANSI designators for these technology 
options are (Reference 3) 

• 2S-SM-LL-L 

• 2S-SM-LL-I 

• 2S-MS-SL-I 

• 2S-M6-LE-I 

These designators are interpreted as four fields. 
The first field identifies the data rate used (2S 
MBytes/second). 

The second field identifies the media used. SM 
specifies single-mode fiber, MS specifies SO-Ilm 
core multimode fiber, and M6 specifies 62.5-llm 
core multimode fiber. 

The third field identifies the transmitter type. LL 
specifies a 1300-nm longwave laser, SL specifies a 
780-nm shortwave laser, and LE specifies a 1300-nm 
LED-driver. 

The last field identifies the distance class of the link. 
L specifies long distance (2m -10 km), and I speci­
fies intermediate distance (2m -1.S km). 

HOTLink will correctly operate with all these dif­
ferent link types. However, it is up to the user to 
select the proper combination of emitter and detec­
tor for each class. 

For those users intending to implement laser-based 
optical links, there are a number of federal and 
international safety certifications required before 
any such link can be put into public use. These safety 
requirements (ANSI Z136.1 and Z136.2, ED.A. regu­
lation 21 CFR subchapter J, and lEe 82S) are called 

6-89 

HOTLink Design Considerations 

out in the ANSI Fibre Channel standard (Refer­
ences 9, 10, 11, 12, 13). No such certification 
requirements are necessary for LED based links. 

Power Distribution Requirements for Optical Drivers 

The LED or laser used to drive the optical link is 
probably the largest noise generating item in an 
optical link. When the optical driver is turned on 
(sending 1s), currents of SO rnA to 100 rnA are 
forced through the LED or laser. While current 
steering is often used to minimize dynamic current 
requirements, significant high-frequency noise is 
still generated. Most optical modules attempt to 
remedy part of this situation by providing multiple 
Vee and VEE pins on their package and including 
some power supply bypass capacitance inside the 
optical module. This does take care of some of the 
problem, but does not correct all of it. 

While bypass capacitors are still necessary to pro­
vide dynamic current, additional power isolation 
and filtering is required to separate the high noise 
of the optical transmitter from the highly sensitive 
optical receiver, and from the serializer/deserializer 
operations of the HOTLink Thansmitter and Re­
ceiver. Vendor's recommendations for this include 
a lO-IlF solid Tantalum capacitor located near the 
optical transmitter, and a 0.1-IlF decoupling capaci­
tor directly connected to the optical transmitter Vee 
pins (Reference 27). 

Isolation is provided by separating the Vee or 
power plane for the transmitter from the rest of the 
surrounding power plane, through an inductive 
path. This is done by placing a gap in the Vee plane 
around most of the the transmitter Vee pins with a 
single limited connecting point. If the transmitter 
package only has one or two Vee pins, these may be 
treated individually by bringing in power through a 
small inductor or surface trace. For a low-noise 
environment this inductor may be constructed as 
part of the circuit board using a 1S-mil-wide trace 
approximately 10 mm in length (approximately 
S nH). The specified bypassing should occur after 
this inductive trace, right next to the optical trans­
mitter. The net result is to implement a Jt-filter 
using the circuit board and capacitors for the differ­
ent filter elements. This is illustrated schematically 
in Figure 68. 



~ -::::z HOTLink Design Considerations 
W;CYPRESS ============= 

Slotted Power 
Plane Inductor 

Power In 7 Board >>--I-----rrrY)'---I-----i), Optical 
Module 
Power 

Bulk and / 
High- T 

Frequency 
Bypass 

Capacitors -

" Bulk and T' 'High­
Frequency 
Bypass 

- Capacitors 

Figure 68. Optical Module Power :It-Filter 

An example slotted power plane used to implement 
the inductive element in the :It-filter is shown in Fig­
ure 69. This illustration details an actual power 
plane layout for an optical module. The black areas 
indicate the absence of copper. The slot in the cen­
ter of the figure is used to separate the power for the 
optical transmitter from the optical receiver. The 
shaded line on the right hand side indicates a surface 
layer tra~e (inductor) used to separate power for the' 
optical module from the remainder of the design. 

Fiber-Optic Detectors (Receivers) 

A fiber-optic detector is an opto-electric converter 
that changes a light stimulus into an electrical signal. 
A simplified block diagram of a fiber-optic detector 
is illustrated in Figure 70. Light enters the module 
through an optical fiber and is guided by the connector 
housing. A coupling lens focuses all available optical 
energy onto the active region of a light sensitive diode. 
The presence or absence of light affects the amount 
of current flow through the diode. This small current 

Figure 69. Fiber-Optic Module 
Slotted rower Plane 

flow is then amplified by a transimpedance ampli­
fier which then feeds an ECL differential driver. 
Many fiber-optic detectors also contain additional 
circuitry such as signal-detect (Reference 27). 

Fiber-optic receivers are generally available from 
the same vendors as fiber-optic emitters. As with 
fiber-optic emitters, the optical receiver must match 
the characteristics of the light driven into the optical 
fiber. 

Unlike the optical emitter where there are multiple 
technologies used for light generation, all optical re­
ceivers are based on the response of a PIN (positive­
intrinsic-negative) photodiode. These photodiodes 
are based on either silicon or gallium arsinide 
technology. The output of the PIN photodiode is a 
small « 1 !lA) change in current in response to 
received light. A fiber-optic detector module feeds 
the output of this PIN photodiode into a transimpe­
dance amplifier. The function of this amplifier is to 
convert this small change in current into a large 
change (ECL lOOK-level) in voltage. 

For many optical receivers, it is possible to operate 
them above their stated maximum data rate. What 
is given up is receiver sensitivity; i.e., many 
200-Mbit/second optical modules will operate at the 
ANSI Fibre Channel data 266-Mbit/second data 
rate, but with a 3-dB or greater loss of sensitivity. 
This loss may be converted directly into a shorter 
usable distance on the fiber-optic media. 

Because the optical receiver has ECL outputs, care 
should be taken to maintain a balanced load on any 
differential outputs to minimize current transients. 
While some optical receiver outputs (i.e., signal­
detect on endfire modules) may be single-ended, 

Transimpedance SC or 5T Fiber 
Differential Amplifier conlector 

EClOutput i ~ 

\~~o " ..... "" --o:::~ , 
Light Coupling 

Optics 

Figure 70. Fiber-Optic Detector Module 
Block Diagram 

6-90 



they usually do not change very often and should not 
affect data integrity when they do. 

Power Distribution Requirements for Optical Receivers 

The power filtering of the optical receiver is quite 
critical as the transimpedance amplifier must 
responding to very low current variations. This fil­
tering problem is usually compounded by the place­
ment of the high-noise generating optical transmit­
ter, directly adjacent to the optical receiver. 

Depending on the type of receiver, it may be imple­
mented with one or many Vee pins. For those made 
with a single Vee connection, this pin should be iso­
lated through a n;-network or other network that 
implements an inductive leg to block RF on the 
power lead. 

For those optical receiver modules that use multiple 
Vee pins, these pins are usually kept separate inter­
nal to the module, and feed different sections of the 
logic. For those Vee pins that supply power to the 
ECL output emitter-followers and the ECL differ­
ential amplifiers, all that is necessary is a good 
O.l-J-tF decoupling capacitor next to the Vee power 
pins. An inductive-based filter is recommended for 
the Vee pin that provides power to bias the PIN 
photodiode and the transimpedance amplifier to 
limit the external noise input from the system 
supply. 

Just as with the transmitter this inductive filter can 
be implemented either as a notched or slotted 
power plane, or by using a surface trace to act as an 
inductor. When implemented in this fashion the 
capacitor placed at the optical receiver end of the 
inductor should be 0.1 J-tR 

Optical Modules 

Thanks to the efforts of a group of optical compo­
nent manufacturers (AMP/Lytel, Siemens Optical, 
Hewlett-Packard, and Sumitomo Electric), a de 
facto standard footprint has been developed for 
optical modules. While originally developed for the 
FDDI market, optical modules with speeds suitable 
for Fibre Channel and ATM are also available. This 
footprint specifies the mechanical dimensions and 
signal names of two different package styles, yet 

6-91 

HOTLink Design Considerations 

allows a common board layout to accept both. The 
dimensions and pin numbering of this footprint are 
illustrated in Figure 71. 

The two module types supported by this footprint 
are called DIP and endfire. The DIP modules uti­
lize pins 1-32, while the endfire modules only use 
pins 33-41 (for signals) and pins 1 and 32 for pack­
age mounting. These two mounting pins are also 
larger in diameter than the other pins on the 
package. 

These optical modules (DIP and endfire) share sev­
eral signals. For compatibility with both module 
types, only the smaller set of signals present on the 
endfire module type should be used. A complete 
listing of the signals present in the standard foot­
print is found in Table 5. The signals present on the 
optical module are 

• SD - Signal Detect 
• TD - 'fransmit Data 
• RD - Receive Data 
• Case - Outer Case of Module 
• Vee - Positive Supply Voltage 
• VEE - Negative Supply Voltage 
• VBB - ECL Base Threshold Voltage 

0.075" 

r- 0.500" --j 

016 170 32 
015 180 
014 190 030 
013 200 029 
012 210 028 
oil 220 027 
010 230 026 
09 240 025 

U1 ~0.4;! 
~0.600" 
1.000"-----1 

1.540" 

O.S" 

0.100" 

Figure 71. Standard Optical Module Footprint 



~,,~ HOTLink Design Considerations 
~TCYPRESS =============== 

The VBB and SD- signals are only present on the 
DIP footprint package and thus should not be used 
in designs that wish to support interchangeable 
module types. 

Care must be used when connecting to the pins 
marked as Case. These pins are not specified as 
being isolated, tied to VEE, or tied to Vee. As such, 
each manufacturer is allowed to connect them as 
they wish. 

Isolated Case pins may be connected either to Vee 
or VEE. Usually this connection is made to which­
ever power rail is identified as ground in the system. 
When used with the HOTLink 'ftansmitter, these 
types of modules are usually operated in PECL 
mode with the Case pins connected to VEE. 

When the case is connected to the Vee pins, the part 
is designed for operation in a standard ECL 
(negative-referenced) system. Modules of this type 
may still be used with HOTLink, but some care must 
be taken in how they are interfaced. 

Pulse Transformers 

A pulse transformer is a magnetic device used to 
couple electrical energy from one stage to another 
with minimal distortion. This coupling occurs 
through magnetic induction. How well this coupling 
occurs is based on the construction of the trans­
former and the materials used for the core and 
windings. 

Core Materials 

There are three basic types of core materials used 
for transformers: metal, powdered iron, and fer­
rites. Metal cores consist of pieces of low conductiv­
ity metal having some magnetic properties; usually 
soft iron or steel. This metal core is usually made 
from multiple. strips or laminations of material to 
limit eddy currents in the core. Metal cores have a 
practical upper frequency limit of about 50 kHz. 

Powdered iron cores use metal powder fused 
together by an insulating binder. Because of the 
smaller size of the magnetic particles, the upper fre­
quency for powdered iron cores extends to near 
1 MHz. 

Ferrites are a magnetic form of ceramic. Depending 
on the type of ferrite and construction of the core, 
transformers with ferrite-based cores are available 
with operating frequencies of near 1 GHz. This is 
the core material that must be used for transformers 
used with HOTLink. 

ANSI Fibre Channel Specifications 

The current ANSI Fibre Channel standard, section 
7.1, states that the recommended interface to all 
types of copper media is via transformer coupling. 
The primary benefits of transformer coupling are 
ground isolation, common-mode rejection, and the 
ability to drive both balanced and unbalanced trans­
mission lines with the same interface (Reference 3). 

Just as with optical interfaces, the ANSI standard 
calls out multiple copper technology options for use 

6-92 



at the 25-MByte/second data rate supported by 
HOTLink. The ANSI designators for these technol­
ogy options are 

• 25-TV-EL-S 

• 25-MI-EL-S 

• 25-TP-EL-S 

These designators are interpreted as four fields. 
The first field identifies the data rate used 
(25-MBytes/second). 

The second field identifies the media used. TV 
specifies 75Q video grade coaxial cable, MI speci­
fies a 75Q miniature coaxial cable, and TP specifies 
shielded twisted-pair. 

The third field identifies the transmitter type. The 
EL identifier is used for all electrical classes. 

The last field identifies the distance class of the link. 
S specifies short distances ( <75m). 

While these are the only electrical classes that ANSI 
supports for Fibre Channel, many other imped­
ances and distances will function with the HOTLink 
Transmitter and Receiver. 

The typical transformer electrical characteristics to 
support these interface combinations are called out 
in the ANSI Fibre Channel standard in Section 7.1, 
Table 10 (Reference 3). 

Pulse transformers suitable for coupling HOTLink 
to copper based cables are available from Pulse 
Engineering, Mini-Circuits, Premier Magnetics 
Inc., Valor, and others. 

Fiber-Optic Cables 

Optical media generally falls into two categories: 
multimode and single-mode. The usage of each 
type is dictated by the spectral characteristics and 
launch mode of the light into the fiber. 

Single-Mode Fiber 

Single-mode fiber is most often used with optical 
drivers that are both spectrally pure (i.e., a laser) 
and coherent in their output (well collimated, long­
wave laser). Fibers of this type have a very small 
core section to limit the modes of propagation of the 

6-93 

HOTLink Design Considerations 

~lCladding 
Light Core 

Source 
Cladding 

Single-Mode Fiber 

Figure 72. Single-Mode Fiber Propagation 

transmitted light, and an index of refraction 
designed to only allow light to remain in the core 
that strikes the cladding at a very low critical angle. 
Its main propagation of light is by refraction (bend­
ing) of light that travels down the center of the core. 
In addition, a small number of tight turns of the fiber 
are usually placed near the optical transmitter to act 
as a filter for any of the higher-order modes of prop­
agation that may be launched into the fiber. These 
turns change the incidence angle of the higher-order 
modes between the core and the cladding of the 
fiber, causing light at these modes to leave the core. 
A diagram of a single-mode fiber is shown in Fig­
ure 72 (Reference 18). 

Single-mode fibers are available in different core 
diameters for use with different optical sources. 
The fiber type called out for single-mode propaga­
tion in the ANSI Fibre Channel standard is 125-J.tm 
fiber diameter with a 9-J.tm core. With this core 
diameter, the fiber is limited to use with 1300-nm 
sources (Reference 3). 

Multimode Fiber 

Multimode fiber is usually used with optical drivers 
that that are not spectrally pure (i.e., LED) or not 
coherent in their output (i.e., shortwave lasers). 
The lensing system used to couple the optical driv­
er's light output to the fiber is not designed for col­
limation, but to couple the maximum amount of 
light. This type of fiber allows propagation of light 
both by refraction and by reflection. 

Two distinct classes of multimode fiber are in use 
today: step-index and graded-index. In a step-index 
fiber, the primary mode of light propagation is 
through total internal reflection. Light that enters 
the core on one end is continuously reflected at the 
core/cladding interface until it exits the cable at the 
other end. A diagram of multimode step-index fiber 
is shown in Figure 73. 



~)
Cladding 

Light 
Source41~=-+---~o--~-E-----'~ Core 

_Cladding 

Multimode Step-Index Fiber 

Figure 73. MuItimode Step-Index 
Fiber Propagation 

In a graded-index fiber, light is propagated through 
refraction rather than reflection. The fiber core is 
constructed of multiple concentric layers of glass. 
The index of refraction in each layer is slightly dif­
ferent, getting lower as you move out from the cen­
ter of the core. Because light travels faster in a lower 
index of refraction, the higher-order modes of prop­
agation that travel the farthest arrive in phase with 
the low-order modes that remain near the center of 
the core. A diagram of a multimode graded-index 
fiber is shown in Figure 74 (Reference 18). 

The step-index form of multimode fiber is not nor­
mally used for data communications because its 
propagation characteristics limit the usable dis­
tance of a link. The ANSI Fibre Channel standard 
currently only supports graded-index fibers with 
core diameters of 50 !lm or 62.5 !lm, both with a clad­
ding diameter of 125 !lm (Reference 3). 

Optical Pulse Dispersion 

In a step-index fiber, light that travels straight 
through the core covers a shorter distance and 
arrives at the end of the fiber before light that 
repeatedly bounces off the core/cladding interface. 
This difference in delay through the fiber causes a 
narrow pulse launched into the fiber to widen as it 
travels down the fiber. Because this pulse widening 
or dispersion is caused by the different modes of 

~ ) Cladding 

S~~~, ~~@0< eo" 

Cladding 

Multimode Graded-Index Fiber 

Figure 74. MuItimode Graded-Index 
Fiber Propagation 

HOTLink Design Considerations 

propagation, this phenomena is known as modal 
dispersion. 

When used with an LED driver, an additional 
source of dispersion comes into play. Unlike free 
space where all wavelengths of light propagate at 
the same rate, an optical fiber propagates different 
wavelengths at different rates. This causes any light 
pulse that is not spectrally pure (i.e., all the same 
wavelength) to widen as it travels down the fiber. 
Pulse widening caused by wavelength is called chro­
matic dispersion. 

With multimode fiber one of the main limits to 
usable distance is the pulse spreading caused by 
light dispersion within the fiber. As the transmitted 
Is (pulses of light) get wider through dispersion, 
they interact with adjacent transmitted Os (absence 
of light). The effect of dispersion is illustrated in 
Figure 75 (Reference 18). 

With single-mode fiber, dispersion is usually not a 
limiting factor. Here the amount of attenuation 
over distance is the main limiting factor. 

Input 
Signal 

1\ 
Output 
Signal 

Multimode Step-Index Fiber 

Single-Mode Fiber 

Multimode Graded-Index Fiber 

Figure 75. Pulse Dispersion 

6-94 



~ ~YPRESS====================H=O==T=L=in=k=D=e=S~ig~n=C=O=n=S=id=e=ra=t=io=n=s 
ANSI Fibre Channel Optical Fibre Requirements 

Fiber-optic cables are available with many different 
optical and mechanical characteristics. Interna­
tional organizations have set standards for optical 
cable plants to allow manufactures to standardize 
on some cable types. 

The standards body that created the standards used 
for optical cable plants is called EIA/TIA (Elec­
tronic Industry Association/Telecommunications 
Industry Association). The governing document for 
all optical fiber types is EIA/TIA 492BAAA. This 
includes single-mode and both core diameters of 
multimode fiber. 

The ANSI Fibre Channel standard has also selected 
a common fiber-optic connector type for use with all 
types of optical fiber media. This connector type 
was developed by NTT in Japan and is known as an 
SC-type optical fiber connector. A diagram of a sim­
plex SC connector is shown in Figure 76. 

These simplex connectors may be joined together 
using a plastic clip to form a duplex connector. In 
the duplex configuration the center-line spacing of 
the optical fib(':rs is 0.5 inch. 

Simplex and duplex cable assemblies are available 
from AMp, FOCS Inc., Alcoa Fujikura Ltd., Belden, 
and many others. 

Copper Cables 

There are three primary types of copper media 
available for distance data transmission: shielded 

Figure 76. SC Simplex Fiber-Optic Connector 

6-95 

twisted-pair (STP), twinaxial cable, and coaxial 
cable. Each of these cable types has specific advan­
tages and characteristics. 

Shielded Twisted Pair 

Shielded twisted-pair (STP) cables are used for 
many low-cost LAN installations. One of the most 
common of these is the IBM Type-l and 'JYpe-6 
cables used for IEEE 802.5 token ring networks. 
For use with the ANSI Fibre Channel, the standard 
calls out Type-l and Type-2 150Q STP cables as 
defined in EIA/TIA 568 (References 3, 11, 20). 

STP cables are constructed of two insulated conduc­
tors twisted together at a specific number of twists 
per foot, with an overall shield and jacket. They are 
available with characteristic impedances of from 
78Q to 200Q. With this type of cable the transmis­
sion remains fully differential from source to des­
tination. The shield is only used to prevent radi­
ation and control susceptibility. Cables of this type 
are effective for long distances at low data rates, and 
short distances for high data rates. The main limit­
ing factor for cables of this type is their attenuation 
at high frequencies. In many cases, cables of this 
type are so poor above 50 MHz that attenuation is 
not even specified at these frequencies. In some 
vendors' data, shielded twisted-pair cables are also 
referred to as twinax (Reference 20). 

Twinaxial Cable 

Twinaxial cable is a shielded form of twin-lead. 1Wi­
naxial cables consist of two parallel insulated con­
ductors, maintained at a fixed spacing with an over­
all shield. Cables of this construction are often used 
for television reception lead-in cable. As with STP 
cables, twinaxial cables maintain a fully differential 
transmission system from transmitter to receiver. 
Twinaxial cables can have lower attenuation of high 
frequency signals than STP cables and can be used 
for longer distances. 

Unshielded twin-lead, while having excellent high­
frequency characteristics, is not generally usable for 
data communications due to the radiated emissions 
of the cable, and the impedance changes that occur 
as the unshielded cable is routed near metallic 
objects. 



Twinax cables are available in impedances from 125Q 
to 300Q and velocities of 70% to 80% (Reference 20). 

Coaxial Cable 

Coaxial cable is used for the longest distances. They 
consist of a single center conductor surrounded by 
a dielectric spacer, surrounded by a concentric 
shield. Unlike either STP or twinax, coaxial cables 
are an unbalanced transmission line; i.e., the signal 
is transmitted and received as a signal relative to a 
ground or shield, rather than a signal relative to 
another signal. 

In a coaxial cable the outer conductor acts both as 
part of the transmission line to propagate the signal, 
and as a shield to prevent radiation of the trans­
mitted signal and susceptibility from outside signals. 

10.0 

tr 
oS! 
0 
0 

~ 
:g. 
c: 
0 1.0 ~ 
:J 
c: 
CI> 

~ 

HOTLink Design Consideratiolls 

Coaxial cables are available in impedances from 
SOQ to 12SQ and velocities of 66% to 90%. The 
main element that affects the velocity of propaga­
tion is the dielectric type used between the center 
conductor and the shield. Solid polyethylene is a 
common dielectric at the 66% velocity. The fastest 
speeds usually resort to foamed Teflon or partial air 
core. Table 6 lists some common coaxial cable types 
and characteristics (Reference 20). 

One thing that cannot be seen from this table are the 
cable's attenuation characteristics versus fre­
quency. This is one of the characteristics that deter­
mines just how far a usable signal can be sent. The 
cables listed in Table 6 are plotted for attenuation in 
Figure 77. 

RG62NU 
0.1+-----~--,-_,~_,,,rnr-----,_--.__,_,,_rrTT----_,~_,--,_,_""rl 

1 10 100 1000 

Sinusoidal Frequency (MHz) 

Figure 77. Coaxial Cable Attenuation Characteristics 

6-96 



?cYPRESS 

Table 6. Common Coaxial Cable '!Ypes 

Belden Nominal 
RG/U'!Ype '!Ype Zo O.D. Vp 

RG58NU 8259 50 .193" 66% 

RG179B/U 83264 75 .1" 70% 

RG6/U 1223A 75 .290" 83% 

RG59/U 9259 75 .242" 78% 

RG11/U 87292 75 .348" 82% 

RG62NU 9268 93 .242" 84% 

RG63 9857 125 .405" 84% 

ANSI Fibre Channel Copper Cable Requirements 

The ANSI cable plant requires copper cables with 
specific operating characteristics. These character­
istics are called out in Section 9 and Annex F of the 
Fibre Channel PC-PH standard (Reference 3). 

Realizing these requirements means that the cable 
must be made with specific construction. For coax­
ial cables the Vp of 70% to 82% requires a foam 
dielectric. 

The minimum necessary shield coverage for braid is 
95%. This is necessary because of the high frequen­
cies carried by the cables. With shield coverage 
lower than this, the signal leakage through the braid 
can allow not only significant signal radiation, but an 
impedance mismatch due to signal propagation 
down the outer surface of the braid. For best effec­
tiveness, a 100% foil shield should be used in addi­
tion to the braid shield. 

To meet flammability requirements, the National 
Electrical Code now requires that almost all instal­
lations use either CL2 or CL2P (plenum rated) 
jacket material (Reference 25). 

Cables meeting all of these requirements are avail­
able from multiple vendors. 

The ANSI standard also allows use of shielded 
twisted pair or twinaxial type cables. These cables 
all require a shield to meet EMI/EMC require­
ments. Unshielded twisted pair (used for many net­
works) should not be used. This is primarily due to 
radiated emissions rather than susceptibility. 

6-97 

HOTLink Design Considerations 

Threaded 
Neil-Councilman 
Connector (TNC) 

Bayonet 
Neil-Councilman 
Connector (BNC) 

Figure 78. TNCIBNC Cable Connectors 

Copper Cable Connectors 

There are three primary connector types called out 
for use with copper cables: BNC and TNC for coax­
ial cables (illustrated in Figure 78) and a 9-pin D-sub 
(illustrated in Figure 79) for twisted-pair/twinax 
cables. 

For coaxial cables, the BNC connectors are used on 
the transmitting end of the cable while the TNC con­
nectors are used on the receiver end of the cable. 
This dual connector configuration allows a duplex 
cable to be connected without having to identify one 
cable from the other. With these connectors the 
male end is always on the cable while the female end 
is used at the board bulkhead. 

For twisted-pair or twinaxial type cables a 9-pin 
D-sub connector is used. This connector is required 
to have a metal shell because the shields of both the 
transmit and receive pairs are terminated to the 
shell of the connector. As with the coaxial connec-

Figure 79. STP Cable Connector and 
Connector Pinout 



ff ~YPRESS~==================H=O==TL==in=k=D=e=S=ig=n=C=O=n=S=id=e=r8=t=io=n=s 
+XMIT 1 ~rT---",AAr-...... 

-XMIT 6 ",>--,'-L-_IV>'V'-_ 

+ RCVR 5 "'--TTl--',>AAr­

-RCVR9~~-JVVVL_J 

1 +XMIT 
~JVVV'--:>J--< 6 -XMIT 

-\AAA,r-;-t"r<... 5 + RCVF 
'---1VVVI...-I-Y'-< 9 -RCVF 

SHELL SHELL 

Because of the low current used in these cables, the 
connections are considered to be dry circuits. Th 
prevent contact oxidation from degrading the lip.k 
over time the contacts are required to be gold or pal­
ladium plated (Reference 28). 

Figur~ 80. STP C~ble Connections Conclusion 

tors the cable gets the male connector while the 
board or bulkhead gets the female connector. 

The STP cable is wired in a crossover fashion where 
the transmit pins at one end of the cable (as illus­
trated in Figure 80) are connected to the receive pins 
at the other end of the cable. The cable shields for 
both pairs 'are tied together and connected to the 
D-sub connector shell at each end. 

HOTLink is a trademark of Cypress Semiconductor. 

The HOTLink family of communications products 
provide designers with a simple yet elegant method 
of reliably moving large quantities of data at very 
high speeds from one place to another. These parts 
are capable of communicating over copper or opti­
cal media at distances well in excess of industry stan­
dards. Their BiCMOS implementation, along with 
their integrated power saving features, combine to 
offer one of the lowest-power, high-speed serial 
communications link standards available. 

IBM is a registered trademark of International Business Machines Corporation. 
ESCON is a trademark of International Business Machiness Corporation. 

6-98 



la' -:::z HOTLink Design Considerations 
,-cYPRESS ============= 

References 

1. A. X. Widmer and P. A. Franazek, A DC­
Balanced, Partitioned-Block, 8B/10B Transmis­
sion Code, IBM Journal of Research and Devel­
opment, 27, No.5: 440-451, September 1983 

2. U.S. Patent 4,486,739, Peter A. Franaszek and 
Albert X Widmer, Byte Oriented DC Balanced 
(0,4) 8B/10B Partitioned Block Transmission 
Code, December 4, 1984 

3. Fibre Channel Physical Standard, ANS 
X3.230-1994, American National Standards 
Institiute, 1994 

4. Enterprise System Architecture/390 ESCON I/O, 
SA22-7202, IBM Corporation, 1990 

5. FlOOK ECL Logic Databook and Design Guide, 
National Semiconductor, 1990 

6. Lawrence B. Levit and Marco L. Vincelli, Char­
acterize High-speed Digital Circuits: A Job For 
Wideband Scopes, Lecroy Corp., EDN June 10, 
1993 

7. TheABC'sofProbes, TektronixPub60W-6053-3 

8. Product Overview, Cascade Microtech, Product 
Overview, 1992 

9. Safe Use of Lasers ANS Z136.1-1993, American 
National Standards Institute, 1993 

10. Laser Safety in Optical Communication Systems 
ANS Z136.2, American National Standards 
Institute 

11. Commercial Building Telecommunications Wiring 
Standard EIA/TIA-568, Electronics Industries 
AssociationlThlecommunications Industries 
Association 

12. RDA Regulation 21, Code of Federal 
Regulations 

6-99 

13.IEC825, International Electrotechnical 
Committee 

14. Scott, Paul, Cypress Semiconductor, Draft Paper 
-HOTLink On Wire, May 1992 

15. 1990-91 Resistor/Capacitor Data Book, Philips 
Components, 1990 

16. System Design Considerations When Using 
Cypress CMOS Circuits, Cypress Semiconductor 
Applications Handbook, 1993 

17. White, Donald R.J., Electrical Filters, Synthesis, 
Design and Applications, Second Edition, 1980 

18. Sterling, Donald J.Jr., Technician's Guide To 
Fiber Optics, Second Edition, 1993 

19. Blood Jr., William R., MECL System Design 
HandBook, Fourth Edition, 1988 

20. Belden Wire and Cable, Cooper Industries, 1990 

21. Botos, Bob, Hewlett Packard, Designers Guide 
to RCLMeasurements, June 1979 

22. Hewlett-Packard Test and Measurement Catalog, 
Hewlett-Packard Corp., 1992 

23. Crystal Oscillator Handbook and Catalog, 
Vectron Laboratories, Inc., 1992 

24. Ramierez, Robert w., The FFT, Fundamentals 
and Concepts, Tektronix, Inc. 1985 

25. National Electrical Code, National Fire Protec­
tion Association 

26. 1990-91 Resistor/Capacitor Data Book, Philips 
Components, 1990 

27. Application Note 65074, Fiber-Optic Transmitter 
and Receiver, AMP Incorporated, 1992 

28. J. H. Whitley, AMP Inc., Contacts and Dry 
Circuits, AMP Symposium paper, October 1963 



Serializing High Speed Parallel Buses to Extend 
Their Operational Length 

Introduction 

Parallel buses are used in many designs for the pur­
pose of moving data from one point to another. 
VME, ISA, EISA, VESA, PCI, SBus, and NuBus 
are some of the more familiar bus architectures. 
These buses are usually configured with a single bus 
master and multiple users, all communicating over 
a shared set of address and data lines. Some bus ar­
chitectures, however, involve only two nodes on the 
bus, creating a point-to-point data link. Regardless 
of the architecture, the trend in bus design is for 
higher bandwidth achieved by increasing the width 
and transfer rate of the bus. When wide, high­
speed, parallel buses are operated over distances of 
more than a couple of feet, problems can result. The 
source of these problems relates to the high-fre­
quency signals interfering with each other over the 
long parallel conductors of the bus. This application 
note uses the UTOPIA bus as an example of how to 
serialize a high speed parallel point-to-point bus in 
order to allow the bus to operate over any distance. 

The topics covered in this application note are as 
follows: 

1. The UTOPIA Bus 

2. UTOPIA Applications 

3. Problems with Parallel Buses 

4. The Serial Solution 

5. Serial Links and HOTLink'" 

6. Serializing the UTOPIA Bus 

7. Round Trip Latency 

8. The UTOPIA Extender 

9. Conclusions 

The UTOPIA Bus 

A good example of a high speed point-to-point par­
allel bus is the Universal Test and Operations Physi­
cal Interface for ATM (or UTOPIA). UTOPIA is 
used in ATM (or Asynchronous Transfer Mode) ap­
plications. ATM is a network protocol that has 
grown out of the need for a worldwide standard to 
allow interoperability of information, regardless of 
the "end-system" or type of information. With 
ATM, the goal is one international standard. 

ATM is a method of communication which can be 
used as the basis for both LAN and WAN technolo­
gies. When information needs to be communicated, 
the sender negotiates a "requested path" with the 
network for a connection to the destination. When 
setting up this connection, the sender specifies the 
type, speed, and other attributes of the call, which 
determine the quality of service. Thus ATM is a 
switch-based technology (see Figure 1). By providing 
connectivity through a switch (instead of a shared 
bus) ATM delivers several benefits including dedi­
cated bandwidth per connection, higher aggregate 
bandwidth, well-defined connection procedures, 
and flexible access speeds. 

Using ATM, information to be sent is segmented 
into a fixed-length cell, transported to and reassem­
bled at the destination. The ATM cell has a fixed 
length of 53 bytes. Being fixed-length allows differ­
ent traffic types on the same network. The cell itself 
is broken into two main sections, the header and the 
payload. The payload (48 bytes) is the portion that 

6-100 



· -'f # Serializing Parallel Buses 
===,CYPRESS ================ 

Figure 1. ATM Connections Through Switch 

carries the actual information-either voice, data, 
or video. The Header (5 bytes) is the addressing 
mechanism (see Figure 2). 

ATM closely follows the International Standards 
Organization's (ISO) Open Systems Interconnec­
tion (OSI) model for communication. This model 
breaks down any communication process into sever­
al sub processes arranged in a stack (see Figure 3). 

48 bytes 5 bytes 

Figure 2. ATM Cell Format 

Application Layer 

Higher Layers 

ATM Adaptation Layer (AAL) 

ATM Layer 

Physical Layer 

Figure 3. ATM Protocol Stack 

Each layer of the "protocol stack" provides services 
to the layer above that allow the top most processes 
to communicate. The idea is that two different de­
vices, using hardware and software from different 
vendors, but still conforming to the model, can com­
municate over an ATM network. The layers of the 
protocol stack can be thought of as modules in soft­
ware code. Each layer performs a specific function 
and must provide data to other layers according to 
a specified interface. However, how that layer ac­
complishes its task is immaterial. Thus, layers in the 
stack can be updated without affecting the commu­
nication model. 

The UTOPIA bus is a standard defined by the ATM 
forum for moving data between the physical (or 
PHY) and Asynchronous Transfer Mode (or ATM) 
layers in the ATM protocol stack. The PHY layer in­
terfaces directly to the network media (i.e., fiber, 
twisted pair, etc.) and also handles "transmission 
convergence" (that is, extracting the ATM cells 
from the transport coding scheme). The ATM layer 
processes the cell headers and directs routing. The 
signals used by the UTOPIA bus are shown in Figure 
2 and described in Table 1. 

Transmit Direction 

TxDATA[O:7l jl 
XENB* 

TxFULL "/IXt;LAV - TxSOC 
Txt.;LK ~ 

RxDATA[O:7] Jl - RxENB* 
RxcMP * Rxt.;LAV 

Rx:;Ut; 
RxCLK 

~ 

<=:J Receive Direction 

ATM Layer PHY Layer 

Figure 4. UTOPIA Signals 

6-101 



Thble 1. UTOPIA Signals 

Signal Name Description 

TxDATA[O:7] Data lines for transmit (from 
ATM to PHY layer) 

TxENB* Indicates data on this cycle is 
valid 

TxFULL* Indicates Tx FIFO on PHY lay-
er can only accept 4 more bytes 
(used only in Octet Level 
Handshaking) 

TxCLAV Indicates Tx FIFO on PHY lay-
er is capable of storing an en-
tire cell 

TxSOC Indicates data on this clock 
cyCle is the start of a cell 

TxCLK Clock for Tx signals and data 

RxDATA[O:7] Data lines for receive (from 
PRY to ATM layer) 

RxENB* Indicates data on this cycle is 
valid 

RxEMPTY* Indicates Rx FIFO on PHY lay-
er is empty (used only in Octet 
Level Handshaking) 

RxCLAV Indicates Rx FIFO on PHY lay-
er is currently storing an entire 
cell 

RxSOC Indicates data on this clock 
cycle is the start of a cell 

RxCLK Clock for Rx signals and data 

UTOPIA Applications 

The UTOPIA bus is present in any ATM system that 
makes use of the ATM and PHY layers. Typical ap­
plications utilizing UTOPIA include Network In­
terface Cards and ATM switches. The ATM switch 
application for UTOPIA is of particular interest. 
Many switches are built using a rack mounted archi­
tecture as shown in Figure 5. 

In this tYPe of switch, individual shelves of the rack 
are dedicated to PRY layer circuits, and others to 
ATM layer circuits. Thus the UTOPIA bus is used 
to move the data between the different shelves of 
the switch. Usually, the interconnect between the 

Serializing Parallel Buses 

PHYLayer . . 

ATM Layer 

Figure 5. UTOPIA in a Rack Mount Switch 

shelves is a simple multi-conductor ribbon cable. 
Since the shelves can be fairly far apart, the ribbon 
cable required to connect the shelves can be any­
where from 1 to 6 feet in length. 

Problems with Parallel Buses 

The difficulty with the use of ribbon cable for the 
UTOPIA switch application is related to the width 
and bandwidth requirements of the bus, combined 
with the uncontrolled impedance of the ribbon 
cable. These three characteristics can lead to skew 
across the signals of the UTOPIA bus as shown in 
Figure 6. 

Note the skew shown in Figure 6 has violated the set­
up and/or hold times ofthe UTOPIA bus at the load 
end. Therefore, data communication over the bus 
will be corrupted. This effect is typical when high­
speed parallel buses are driven over long distances. 
One possible solution is to drive each line of the bus 
differentially, but this also has the disadvantage of 
increasing the already bulky ribbon cable, and it is 
not guaranteed to solve the skew problem (skew can 

6-102 



-===-0.. 

=-- ~ 
, CYPRESS =============S;;;;;e;;;;;ri;;;;;a;;;;;li;;;;;zi;;;;;n;;;;;g;;;;;P;;;;;a;;;;;ra;;;;;I;;;;;le;;;;;I;;;;;B;;;;;u;;;;;se;;;;;s;;;;;; 

Source End Load End 

TxCLK LII\_ 
TxDATA[O:7] .£:l 

I II ~ 
TxENB* hf liY 
TXSOC~ I~ 

TxFULL*{TxCLAV J-tl ~ 
tsetup ~ H tsetup 1 I--L 

.... .. thold ..,l, thold 

I II I II 
Figure 6. Effect of Skew on UTOPIA Bus 

still result from differences in propagation delays 
for each signal through its respective differential 
driver/cable/receiver). 

The Serial Solution 

A good solution to the skew problems described 
above is to transmit the parallei bus data as a serial 
data stream. Transmitting the data serially requires 
a parallel-to-serial conversion of the UTOPIA data 
at the source end and a corresponding serial-to-par­
allel conversion at the load end. With such a 
scheme, the skew problems associated with operat­
ing a high-speed parallel bus over long distances are 
eliminated. In addition, the cable size is reduced 
from a multi-conductor ribbon cable to a two-con­
ductor serial cable (such as coaxial cable). 

The method by which a serial data transfer elimi­
nates the skew problems associated with parallel 
buses is related to how serial links operate. Al­
though some "serial" communication systems uti­
lize more than one conductor (e.g., RS232), more 
serial links provide for transmission of only one sig­
nal. Note that to transmit one signal over copper 
media requires two conductors. This transmission 
can be either single-ended (requiring one conductor 
for the signal and one reference or ground) or dif­
ferential (requiring two conductors for one signal). 
Both clock and data information must be incluqed 

in this single signal. Th accomplish this clock and 
data multiplexing function, serial links make use of 
special encoding schemes and use clock recovery 
circuits. The clock recovery circuits rely on the spe­
cial characteristics of the data encoding scheme in 
order to recover or generate a clock of the same fre­
quency and phase (with respect to the serial data) as 
the clock used to shift the data onto the serial link. 
The serial-to-parallel converter then uses this re­
covered clock to resample or retime the serial data 
before placing this data into a parallel word register. 
When this register is full, the serial-to-parallel con­
verter presents the data in the register (in a parallel 
format) along with a parallel word clock (generated 
by dividing down the recovered serial clock). Thus, 
there is no skew between the clock and parallel data. 

The main advantages of a serial link over a parallel 
bus are: (1) the clock is embedded with data, thus 
there is no skew between clock and data signals, (2) 
the distance over which the serial link is operated 
can be changed and the link will 'remain operational, 
(3) the transfer rate of the serial link can be scaled 
up and the link will remain operational, and (4) the 
cables required are smaller in size. 

Serial Links and HOTLink ™ 

The Cypress HOTLink'" chipset performs all of the 
functions shown in the simplified block diagram in 
Figure 7. The CY7B923 HOTLink Transmitter 
serves as the serializer while the CY7B933 
HOTLink Receiver operates as a deserializer. In 
the HOTLink chipset, clock multiplication and 
clock recovery are accomplished using Phase 
Locked Loops (or PLLs). PLLs are closed loop con­
trol systems which align an output waveform in 
phase and frequency with an input waveform. Block 
diagrams of PLLs performing clock multiplication 
and clock recovery are shown in Figure 8. 

PLLs operate by constantly comparing their output 
waveform with their input (or reference) waveform. 
Deviations in phase or frequency are then corrected 
at a rate governed by the Low Pass Filter (LPF). A 
wide bandwidth LPF allows a PLL to track high-fre­
quency phase deviations between the reference and 
the Qutput waveforms. A narrow bandwidth LPF 
dictates that the PLL rejects high-frequency phase 

6-103 



-., ~ Serializing Parallel Buses 
; CYPRESS ================ 

Input word Word clock 

--------, 
I 
I 
I 
I 
I 

,..-----'L..----, I Serializer 

'-----.----' I 

o o 
o 

.... i-----' " 

I 
I 
I 
I '----,-_-_--' _________ ...J 

Serial 
Link 

-----------, 

Output word 

o o 
.... ----IR-

__ ...J 

Word clock 

Deserializer 

Figure 7. Architecture of a Serial Link 

deviations between the reference and output wave­
form. Ideally, an input waveform would have a tran­
sition at a regular periodic rate, thus allowing the 
PLL to check its alignment constantly. However, 
such a signal would contain no information (essen­
tially the link would be composed of one baseband 
frequency and its harmonics) and is not useful for 
data communication. Actual serial streams do not 
have data transitions at strictly periodic intervals. 
Instead, there are often "runs" of consecutive ones 
or zeros, which result in short periods where the se­
rial stream has no transitions. The lack of transi­
tions in the serial stream can cause the clock recov­
ery PLL to fall out of phase lock, and eventually out 

Ret 
Ret*N 

1-____ • .J..Jata 

Serial 
In Clock 

Figure 8. Multiplication and Clock/Data Recovery 
PLLs 

of frequency lock. In order to reliably perform clock 
recovery with PLLs, the serial data needs to be en­
coded in such a way as to ensure there are frequent 
transitions (either from HIGH to LOW or LOW to 
HIGH) in the serial stream. These transitions can­
not be ensured when sending unencoded data, since 
a user is free to send any data pattern. Some serial 
patterns like 00000000 contain no transitions and 
therefore could be transmited indefinitely resulting 
in a serial link without any transitions. 

The HOTLink chipset utilizes an encoding scheme 
known as 8B/1OB. This code takes in a 8-bit data 
word and converts it into a lO-bit transmission char­
acter. The transmission characters are chosen such 
that their run length is limited to 5 consecutive ones 
or zeros. With this encoding scheme, the HOTLink 
Receiver's clock recovery circuit can maintain lock 
and recover the clock from the serial data stream. 

Serializing the UTOPIA Bus 

Operating the UTOPIA bus over a serial link is ac­
complished using the architecture shown in Figure 9. 

The basic block functions are as follows: On the 
ATM side, the serializer converts the parallel 
UTOPIA transmit data into a serial stream, embed­
ding the UTOPIA transmit clock with the data. The 
deserializer converts the serial receive stream (from 
the PHY layer) back into parallel data and a receive 
clock. The First In First Out (FIFO) memory works 

6-104 



Transmit Direction c=> 

<:=J Receive Direction 

Figure 9. UTOPIA Serializer Block Diagram 

as an elastic buffer, queuing the parallel receive 
data until the ATM layer parallel interface is ready 
to accept the data. The control logic provides con­
trol for all of the blocks. On the PHY side, the 
blocks perform similar functions. The serializer 
converts the parallel receive data into a serial 
stream, embedding the UTOPIA receive clock into 
the data. The deserializer converts the serial trans­
mit stream (from the ATM layer) back into parallel 
data and a transmit clock. The FIFO provides buff­
ering for the transmit interface, and the control log­
ic manages all of the blocks. 

Round Trip Latency 

The purpose of the FIFO in the serialized UTOPIA 
architecture is to account for latency in the system. 
To understand the importance of the FIFO, consid­
er a design which implemented a serialized 
UTOPIA bus. For UTOPIA transmits, there are 
two handshaking signals TX_FULL* (sourced at 
the PHY layer) and TX _ ENB* (sourced at the ATM 
load). A transfer is initiated when TX _FULL * goes 
HIGH, followed byTX_ENB* going LOW and the 
UTOPIA data placed onto the bus. If TX _FULL * 
should go LOW at any time, the transfer must stop 
(according to the UTOPIA specification) within 
four write cycles. However, since TX_FULL* is 
sourced at the PHY layer and sampled at the ATM 
layer, there is a time delay for any change of state of 
TX_FULL* at the PHY layer to be recognized at 
the ATM layer. Figure 10 shows an example of the 
timing relationships of the critical UTOPIA signals. 
This time delay is the latency through the serializer, 
serial media, and deserializer. There is a similar la-

ATM Layer 

time 
(clock cycles) 

Serializing Parallel Buses 

PHY Layer 
octets 

, , , 
5 4 o 

Figure 10. Round Trip Latency Example 

tency with respect to the TX_ ENB* and TX_ DATA 
from the ATM layer to the PHY layer. A problem 
arises if a transfer is in progress and TX _FULL * 
goes LOW. The figure shows that the transfer began 
successfully and several octets were placed onto the 
serial link. However, at clock cycle 1, the 
TX_FULL* signal on the PHY side went LOW, in­
dicating that the PHY layer is full. According to the 
UTOPIA specification, the transfer must stop 
(TX_ENB* must go HIGH) within four byte times 
ofTX_FULL* going LOW. In order for TX_ENB* 
to go HIGH, the ATM layer must recognize the 
change in state of TX_FULL*, but there is a delay 
from the PHY layer to the ATM layer. During this 
delay, the ATM layer may have already sent out too 
many bytes (in Figure 10 five bytes are shown as be­
ing transmitted before TX _FULL * is recognized at 
the ATM layer). Since it is possible to not recognize 
the change in state of TX _FULL * within the four 
byte specification, there is the potential for data loss 
at the PHY layer. 

Note that the latency in the link that is the source of 
the problem in the above example is not entirely due 
to the serializer and deserializer. If the serial link 
itself is long enough, the mere time delay required 
for the electrical pulses to travel down the link may 
be enough to cause the problems described above. 

The latency issue is solved by buffering the data 
coming out of the deserializer. A FIFO is an ade­
quate buffer for this application. With the FIFO 
buffer, the effects of the link latency are corrected. 
When the PHY layer UTOPIA interface indicates 
it has no more room for data, the FIFO can store the 
octets that are sent by the ATM layer before it re­
ceives the TX _FULL * signal. The data can then be 

6-105 



read out of the FIFO wheri the PRY layer UTOPIA 
interface is ready. 

The UTOPIA Extender 

Following the block diagram shown in Figure 9, and 
the hierarchical schematics shown in Appendix A, a 
serialized UTOPIA bus can be implemented. With 
the bus serialized, it can essentially be extended to 
any length, thus the design results in a "UTOPIA ex­
tender." The major components required to imple­
ment such a design are shown in Table 2. 

Table 2. Cypress UTOPIA Extender Components 

Generic Part Cypress Part 

Serializer CY7B923 ROTLink Tx 

Deserializer CY7B933 ROTLink Rx 

FIFO CY7B451512x9 clocked FIFO 

Control Logic CY7C37132-macrocell Flash 
PLD 

The "Top Level" hierarchical schematic shows a ge­
neric breakdown of the entire design. The ''ATM 
Layer UTOPIA Extender" block implements all of 
the functions at the ATM layer interface necessary 
to serialize the UTOPIA bus. Likewise, the "PRY 
Layer UTOPIA Extender" block implements all of 
the functions at the PRY lllyer interface. Between 
these two blocks are two serial links over which the 
serialized UTOPIA bus operates. A system level 
application of the UTOPIA Extender is shown in 
Figure 11. 

Both the ''ATM'' and "PRY Layer UTOPIA Ex­
tender" blocks have additional hierarchical sche­
matics associated with them .. Within these lower­
hivel hierarchical schematics are additional blocks 
that show more detail than ~he previous levels. Each 
block performs a specific function necessary for the 
operation of the entire design. Some functions are 
common to both t.he ''ATM'' and "PRY Layer 
UTOPIA Extender" blocks, such as the "Media In­
terface" block. The "Media Interface" block per­
forms the function of interfacing the transmit and 
receive electriccll signals (comprising the serial links 
carrying the serialized UTOPIA bus) to the specific 
media interface used in the design (in this case to co-

Serializing Parallel Buses 

Figure 11. UTOPIA Extender in a Rack Mount 
Switch 

axial cable). The "Media Interface" schematic con­
tains termination networks and transformers used 
to interface the transmit and receive serial signals to 
the coaxial cable. 

The ''ATM'' and "PRY UTOPIA Logic" blocks con­
tain all of the circuits used to serialize the UTOPIA 
bus. These blocks contain the serializers, deserializ­
ers, FIFOs, and PLDs used to implement the logic 
for the UTOPIA extender. 

The operation of the UTOPIA extender, imple­
mented in the ''ATM'' and "PRY UTOPIA Logic" 
blocks, can be broken down into two modes. The 
first mode, or Steady State mode, moves the 
UTOPIA transmit and receive data between the 
ATM and PRY layers, and handles generation of 
the necessary control signals. The second mode, or 
FIFO State Update mode, handles the control of 
the buffering FIFOs assuring that no data is lost due 
to overfilling of these buffers. This mode also han­
dles the case of the CLA V signals going inactive, in­
dicating the UTOPIA interface cannot accept more 

6-106 



=- .. ~ Serializing Parallel Buses 
~rcYPRESS ==========~=== 

data. Regardless of the mode of operation, the basic 
link operation revolves around the Cell Level 
Handshaking (or CLR) protocol. 

The main characteristic of CLH is that once a cell 
transmission begins, all 53 octets of the cell are sent 
in succession on consecutive clocks. In this mode, 
back to back cell transmissions are also possible. 
For this design, however, back to back cell transmis­
sions will not be allowed (this is accomplished 
through special considerations in the UTOPIA con­
trol logic). A gap will be forced between all cells. 
This gap serves two purposes. The first is to allow 
for the communication of the CLA V control codes 
from the PHY layer to the ATM layer and also to up­
date the status of the buffering FIFOs. The second 
reason for the gap is to allow for easy generation of 
the SOC signal at the load end of the serial link. 

The Steady State mode of operation for the 
UTOPIA extender is defined as the condition when 
neither buffer FIFO is overfilled. When in this 
mode, there is a minimal amount of control logic 
necessary to implement the extender. As an exam­
ple, consider a UTOPIA transmit (defined as data 
movement from the ATM to the PRY layer). When 
a 53-octet cell becomes available on the ATM layer 
side, it is immediately placed into the HOTLink 
transmitter and sent over to the PRY side. Follow­
ing the first octet, the remaining 52 octets of the cell 
are sent consecutively. Following transmission of 
the 53rd byte, the link pauses to implement the 
forced cell gap. During this pause, the HOTLink 
1tansmitter is disabled and sends idle characters 
(called K28.5 or "Commas") across the link. If 
there is another cell available from the ATM layer, 
it is sent across after the cell gap. If no data is avail­
able, the link remains disabled. The flow of data un­
der the steady state mode is shown in Figure 12. 

SOC bits added after deserializer 

Figure 12. Transmission Data Flow 

Upon receiving the octets from the ATM layer, the 
output of the HOTLink Receiver is immediately 
placed into the buffering FIFO. In addition, when 
the first octet out of the receiver is sensed (by taking 
advantage of the forced gap between cells), an addi­
tional bit, serving as the TX_SOC signal, is placed 
into the FIFO coincident with the first octet. The re­
maining 52 octets are also placed into the FIFO, but 
without the TX SOC bit set. The TX _ ENB * signal 
to the UTOPIA interface is then generated from the 
TX CLAY signal and the FIFO status signals. The 
PRY UTOPIA interface directly reads the output of 
the buffering FIFO. Data movement in the 
UTOPIA receive direction is similar. 

The other mode of operation is FIFO State Updat­
ing. This mode basically serves to handle the case 
when the CLA V signals change state. That is, if the 
TX CLAY is deasserted, no data will be read out of 
the - PHY side buffering FIFO. Eventually, this 
FIFO will fill beyond a check point and a code will 
be sent back to the ATM layer side indicating no 
more data should be sent until the FIFO is read be­
yond a certain level. The operatio~ of thi~ mode ~e­
quires some additional control lOgIC. Agam, conSId­
er the case of UTOPIA transmission. A FIFO state 
update begins when the control logic on the PRY 
layer side detects that the buffering FIFO has filled 
beyond a predefined level. The control logic then 
waits for a pause in the data stream going back to the 
ATM layer side (remember a gap is forced between 
successive cells). During this pause, the control log­
ic inserts a "FIFO Full" control code into the HOT­
Link transmitter in place of one of the comma char­
acters (see Figure 13). This FIFO Full code travels 
across the link back to the ATM layer side. The 
ATM layer control logic then interprets the FIFO 
Full code and deasserts the TX _ CLA V signal at the 
ATM layer UTOPIA interface, thus stopping trans­
mission on the next cell boundary. 

Eventually, the PRY layer FIFO will empty past 
another predefined level, thus indicating data trans­
mission can begin again. The control logic on the 
PRY layer side then waits for a pause in the data 
stream back to the ATM layer side, and inserts a 
"FIFO Not Full" code in place of one of the comma 
characters (see Figure 14). This code travels down 
the link back to the ATM layer side where it is inter-

6-107 



==z -"~ Serializing Parallel Buses 
~'JF CYPRESS =============== 

--c:J 9 ~ c::J 
I FIFO FULL I 

Figure 13. FIFO State Updating, FIFO Full 

preted by the ATM layer control logic. The control 
logic then asserts the TX_CLAV signal to the ATM 
layer UTOPIA interface allowing data transmission 
to resume. Operation then reverts back to the 
Steady State mode. 

The remaining blocks in the UTOPIA Extender 
(''ATM UTOPIA and Processor Interface," "PHY 
UTOPIA and Processor Interface," and "Framer 
Processor Interface") are used to interface the 
''ATM'' and "PHY UTOPIA Logic" blocks to the 
UTOPIA bus of the ATM and PHY Layer Circuits 

Figure 14. FIFO State Updating, FIFO Not Full 

HOTLink is a trademark of Cypress Semiconductor. 
DC-202 is a registered trademark of Duke Communications. 

as shown in Figure 11. In general, these remaining 
blocks contain connectors with pinouts specific to 
the particular ATM/PHY layer circuits used in the 
system. In addition, some ATM and/or PHY layer 
circuits require additional circuits to configure and/ 
or monitor their operation. Thus the actual design 
of the ''ATM UTOPIA and Processor Interface," 
"PHY UTOPIA and Processor Interface," and 
"Framer Processor Interface" blocks differs de­
pending on the unique ATM and PHY layer circuits 
used in the system. 

To exemplify a system using the UTOPIA Extender, 
a complete design of the PHY Layer is shown in the 
schematics (that is, only the "PHY Layer UTOPIA 
Extender" is shown fully implemented). The PHY 
Layer Circuit used was a Duke Communications 
DC-202® SONET/ATM UNI Transceiver Module. 
Thus the "PHY UTOPIA and Processor Interface" 
block was tailored to interface to the DC-202. In 
addition, the "Framer and Processor Interface" 
block was required to configure the DC-202 for 
proper operation. VHDL code for the "Framer and 
Processor Interface Block" is included in Appendix 
B. Also included in Appendix B is VHDL code im­
plementing the algorithms for the "PHY UTOPIA 
Logic"PLD. 

Conclusions 

This application note has shown that signal skew 
across a ribbon cable can limit the operational dis­
tance of high-speed parallel buses such as UTOPIA. 
Serial links can operate over longer distances since 
they are not susceptible to the skew effects that limit 
parallel buses. This application note describes the 
design of a serialized parallel bus called the "UTO­
PIA Extender." Implementation of the UTOPIA 
Extender requires only a minimal amount of logic, 
with most of the work being performed by a high­
speed serial-link chipset such as the Cypress 
HOTLink chipset. 

6-108 



Appendix A. Hierarchical Schematics 
Sheet 1 of 7: Top Level 

6-109 



Appendix A. Hierarchical Schematics 
Sheet 2 of 7: ATMLayer UTOPIA Extender 

6-110 



# rc Serializing Parallel Buses 
__ . CYPRESS ============== 

Appendix A. Hierarchical Schematics 
Sheet 3 of 7: PHY Layer UTOPIA Extender 

6-111 



" ." .. 

Appendix A. Hierarchical Schematics 
Sheet 4 of 7: Media Interface 

cv-------<f__----ll, 

(,I---_----l H I' .. . , 
tJ~ 

o 

o----v\/VV-+----h,AAA----lI, 

~ 

00 .. .. 

= ~~ 
~-rHII 

6-112 

I' 



~ 

2£~YPRESS~~~~~~~~~~~~~s~e;n;'a;li;Zi~n~g~p~a~ra~I~le~l~B~u~se~s 

.L..J~I' . 

.L..J81' 

.L..J81' 

.L..J81' 

.L..JHI' 

.L..J~I' 
• 

.L..JHI' 

.L..J~I' 

.L..J~I' 

.L..J~I' 
, 
'I 

L..: 

.J.: If" -, 

H 
,II II 

! 

Appendix A. Hierarchical Schematics 
Sheet 5 of 7: PRY UTOPIA Logic 

l 
r 

:1 

I 
., 1lFFJ!P~~1 

n 

-
" Ii 

mrr' 
I jjjjjjj 

I 'I~! 
.1 .~ 

,II ,:m;ill 
T Ii 'l;i l rf 

"-- '1 

0:;' .1 .\' 

Ii"! .~'. 

! 
i 

6-113 

-,,' 

}.~ ", 

.~'. 

.'.'. 



-

Serializing Parallel Buses 

Appendix A. Hierarchical Schematics 
Sheet 6 of 7: PHY UTOPIA Processor Interface 

00\ III r- <> '" 'I' 01 N rI 0 0\ Ill" '" \11 'I' t') N ri 0 '" 1\l" '" III '1' 
'" to ill 111 III Ul ill LJ1 Ul ill III 'I' 'I' 'I' 'I' '1''' 'I' '1''' 'I' <'l <'l I'l <'l <'l <'l r'l <'l r'l 

(II r- '" III 'I' I'l N"; 0 a. (l) r- \II '" 'I' <'l N rl 0 
N N N N N N N N N rl o-l '"' ....... rI,., .... ,., .... '" III to- II> 1l\ "f <'l N 

, , 

Iii ~ i j t i ~l ~ 
i<: >< i<: >: >: >: >: >< >< >< 
8 f:i" 8"'"", 8 ... 8. 

~~~~re~re~~~ 

'" '1:1:1:1:1:1;:·"" ,
§ 1~~~~~~~~C1Iror-\PLIl'l'I'lN'"

6-114

)

)

Serializing Parallel Buses

Appendix A. Hierarchical Schematics
Sheet 7 of 7: Framer Programmer Interface

0" , I'l" III II> r-

III 11111 o " ~

~ i ~
I'l" III II> t'o

~ ~ ~ ~ ~
Hi HHi Hi HiH " . Po III 110 III Do " , 110 II. 110 110 110

5 ~
n
, !

GI ~ ~ . ~ ~ ~ ~ ~ ~ : ~
~ g
h o t"I f\l ~" III '" t-

o ~~~I'l" e"0/I r-

~ o 0 0 0 0 0 0 0 ~ o 0 0 0 0 0 0 0

0 0 ,
!

;
!

~ 0 I'l .. 1/1 '" r- ~ • ! , ~ ~ 0 I'l of III IC t- Q) .! , ~

10 .. ~ ~ ." . : ~ ~ ~ ~ . " ." " ~ ~ ~ . "
(\I (\I N (II , " " ,

" '"" 1"1 -
-. , , "

-NY'

~ ~ ~ ~ ~
~qp
8 8 8 5 8 o U tJ U tJ

... . " " :lil
I G ~ III

If

1'1~~~'i:Q)~~~';' ~ ~ ~ ssss~~~~~~ , "' j~
0" "

Id II'
.. C'I 01 .. III \II r- Q) 17\ "

~ """ .. . " "" "

~

~ Id III " , I

-N~
0

L]
II' I

! ,
I

6-115

J
I

Appendix B: VHDL Code
UTOPIA Extender, PHY Layer

UTOPIA extender, PHY layer

USE WORK.phy_utopia_transmitter-package.ALL;
USE WORK.phy_utopia_receiver-package.ALLi

ENTITY phy_utopia IS
PORT (hl_rx_ckr, hl_rx_sc_d,

master_reset,
phy_tx_full_tx_clav,
phy_fifo_hf, phy_fifo-pafe,
phy_fifo_empty IN BIT;

Serializing Parallel Buses

hl_rx_data IN BIT_VECTOR(O to 3);
rX_fifo_soc,
phy_tx-enb, phy_fifo_enr

phy_rx_clk,
phy_rx_empty_rx-clav
phy_rx_data
hl_tx_sc_d, hl_tx_ena,
phy_rx_enb
hl_tx_data

INOUT BIT;

IN BIT;
IN BIT_VECTOR(O to 7);

INOUT BIT;
INOUT BIT_VECTOR(O to 7»;

ATTRIBUTE pin_numbers OF phy_utopia:ENTITY IS
"hl_tx_data(3):2 " &

END phy_utopia;

"hl_tx_data(4):3 " &
"hl_tx_data(5):4 " &
"hl_tx_data(6):5 " &
"hl_tx_data(7):6 " &
"rx_fifo_soc:9 " &
"phy_fifo-pafe:l0 " &
"phy_fifo_hf:ll " &
"phy_rx_clk:13 " &
"hl_rx_sc_d:14 " &
"phy_fifo_enr:15 " &
"phy_tx-enb:16 • &
"hl_tx_sc_d:17 " &
"phy_rx-data(O):18 " &
"phy_rx_data(1):19 " &
"phy_rx-data(2):20 " &
"phy_rx_data(3):21 " &
"phy_rx_data(4):24 " &
"phy_rx_data(5):25 " &
'phy_rx_data(6):26 " &
"phy_rx_data(7):27 " &
"hl_tx_ena:28 " &
"hl_rx_data(O):30 " &
"hl_rx_data(1):31 " &
"hl_rx_data(2):32 &
"hl_rx_data(3):33 &
"hl_rx_ckr:35 " &
"master_reset:36 N &
"phy_tx_full_tx_clav:37 " &
"phy_fifo_empty:38 " &
"phy_rx_empty_rx_clav:39 " &
"phy_rx_enb:40 " &
"hl_tx_data(O):41 " &
"hl_tx_data(1):42 " &
"hl_tx_data(2):43 ".

ARCHITECTURE netlist OF phy_utopia IS

SIGNAL atm_fifo_hf_code
SIGNAL atm_fifo_not_hf_code

SIGNAL phy_fifo_hf_state

: BIT;
: BIT;

BIT;

6-116

BEGIN

Appendix B: VHDL Code
UTOPIA Extender, PHY Layer (continued)

Ul: phy_utopia_transmitter
PORT MAP (hl_rx_ckr, hl_rx_sc_d, master_reset,

phy_tx_full_tx_clav, phy_fifo_hf,
phy_fifo-pafe, phy_fifo_empty, hl_rx_data,

phy_fifo_hf_state, rX_fifo_soc,
atm_fifo~f_code, atmLfifo_not_hf_code,
phy_tx_enb, phy_fifo_enr);

U2: phy_utopia_receiver
PORT MAP (phy_rx_clk. phy_rx_empty_rx_clav, master_reset,

atm_fifo_hf_code, atm_fifo_not_hf_code,
phy_fifo_hf_state, phy_rx_data, hl_tx_sc_d,

hl_tx_ena, phy_rx_enb, hl_tx_data);
END netlist;

6-117

,tr.rcYPRESS Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, PHY Layer Transmitter Interface (PHY to ATM)

-- UTOPIA extender, PHY layer transmitter interface (PHY to ATM).

PACKAGE phy_utopia_transmitter-package IS

COMPONENT phy_utopia_transmitter

-- Note, hl_r~ckr = phy_tx_clk.

PORT (hl_r~ckr, hl_rx_sc_d,
master_reset,
phy_tx_full_tx_clav,

phy_fifo_hf ,phy_fifo-pafe,
phy_fifo_empty
hl_rx_data
phy_fifo~f_state,

rX_fifo_soc, at~fifo_hf_code,

at~fifo_not_hf_code,

phy_t~enb, phy_fifo_enr

IN BIT;
IN BIT_VECTOR(O to 3);

INOUT BIT) ;

END COMPONENT;
END phy_utopia_transmitter-packagei

ENTITY phy_utopia_transmitter IS
PORT (hl_rx_ckr, hl_rx_sc_d,

master_reset,
phy_tx_full_tx_clav,

phy_fifo_hf, phy_fifo-pafe,
phy_fifo_empty
hl_rx_data
phy_fifo_hf_state,

r~fifo_soc, aDm-fifo_hf_cade,
at~fifo_not_hf_code,

phy_tx_enb, phy_fifo_enr

IN BIT;
IN BIT_VECTOR(O to 3);

INOUT BIT);

END phy_utopia_transmitter;

ARCHITECTURE behavior OF phy_utopia_transmitter IS

BEGIN

Codes received from ATM side pertaining to the state
of the ATM side FIFO. Note, the 'fifo_hf_code'
is a HOTLink K28.0 code, while the 'fifo-pot_hf_code'
is a HOTLink K28.2 code.

CONSTANT fifo_hf_code : BIT_VECTOR := X"2";
CONSTANT fifo_not~f_code : BIT_VECTOR X"O";

: BIT;

-- Generate the FIFO read enable signal using the invert of
-- phy_tx_full_tx_clav. Also, want to disable when resetting.

phy_fifo_enr <= NOT(phy_tx_full_tx_clav) OR NOT(master_reset);

Note that data out of the FIFO is valid on the rising edge
AFTER the data is read out. So, want to delay the phy_tx_enb
one clock from the FIFO read enable.

PROCESS
BEGIN

WAIT UNTIL hl_rx_ckr = '1';
phy_tx_enb_wait <= phy_fifo_ernpty AND phy_tx_full_tx_clav;

END PROCESS;

phy_tx_enb <= NOT(phy_tx_enb_wait) OR NOT(master_reset);

Essentially, rx_fifo_soc i~ a one clock delay (w.r.t.
hl_rx_ckr) of the hl_rx_sc_d pin. This is then used to
generate the input bit to the FIFO for the phy_tx_soc signal.

6-118

=- ?EYPRESS
Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, PRY Layer 'fiansmitter Interface (PRY to ATM) (continued)

PROCESS
BEGIN

WAIT UNTIL hl_rx_ckr = '1';
rX_fifo_soc <= hl_rx_sc_di

END PROCESS;

PROCESS
BEGIN

WAIT UNTIL hl_rx_ckr = '1';

IF «hl_rx_data = fifo_hf_code) AND (hl_rx_sc_d = '1')) THEN
atm_fifo_hf_code <= '1' i

ELSIF «hl_rx_data = fifo_not_hf_code) AND (hl_rx_sc_d = '1'))
THEN

ELSE
atm_fifo_not_hf_code <= 'l'i

atm_fifo_hf_code <= '0';
atm_fifo_not_hf_code <= 'O'i

END IF;
END PROCESS;

PROCESS (master_reset, phY_fifo-pafe, phy_fifo_hf)

Hysterisis is added to the PEY FIFO half-full flag via the
input 'phy_fifo_hf_state'. Thus, the half-full state
is set to TRUE (1) when 'phy_fifo_hf' = O. The half-full state
is set to FALSE (0) when 'phy_fifo-pafe' = O.

BEGIN

phy_fifo_hf_state <= (NOT (phy_fifo_hf) OR (phy_fifo-pafe AND
phy_fifo_hf_state)) AND (master_reset);

END PROCESS;
END behavior;

6-119

Serializing Parallel Buses

AppendiX B: VHDL Code
UTOPIA Extender, PHY Layer Receiver Interface (PHY to ATM)

UTOPIA extender, PRY layer receiver interface (PRY to ATM).

PACKAGE phy_utopia_receiver-package IS

COMPONENT phy_utopia_receiver
PORT (phy_rx_clk, phy_r><-empty_rx_clav,

master_reset, atm_fifo_hf_code,
atm_fifo_not_hf_code,

phy_fifo_hf_state
phy_rx_data
hl_tx_sc_d, hl_tx_ena,
phy_rx_enb

IN BIT;
IN BIT_VECTOR(O to 7);

INOUT BIT;
hl_tx_data INOUT BIT_VECTOR(O to 7));

END COMPONENT;
END phy_utopia_receiver-packagei

ENTITY phy_utopia_receiver IS

PORT (phy_rx_clk, phy_rx_empty_rx_clav,
master_reset, at~fifo_hf_code,
atm_fifo~ot_hf_code,

phy_fifo_hf_state IN BIT;
phy_rx_data IN BIT_VECTOR(O to 7);
hl_tx_sc_d, hl_t~ena,
phy_rx_enb
hl_tx_data

END phy_utopia_receiveri

INOUT BIT;
INOUT BIT_VECTOR(O to 7));

ARCHITECTURE behavior OF phy_utopia_receiver IS

Codes received from ATM side pertaining to the state
of the PHY side FIFO. Note, the 'fifo_hf_code'
is a HOTLink K28.0 code, while the 'fifo_not_hf_code'
is a HOTLink K28.2 code.

'packet_size' is the number of bytes in a packet (i.e. 53 bytes)
'packet_gap' is the minimum number clocks allowed between

packets.
'packet_start_delay' is the number of clocks from when , phy_rx_enb ,

is valid to when data appears at the PHY UTOPIA receiver
interface. Currently, this is defined by the UTOPIA spec.
as 1 clock.

CONSTANT fifo_hf_code
CONSTANT fifo_not_hf_code
CONSTANT packet_size
CONSTANT packet_gap
CONSTANT packet_start_delay

BIT_VECTOR := X"02";
BIT_VECTOR := X"OO";
INTEGER := 53;
INTEGER : = 1;
INTEGER : = 0;

State of ATM side FIFO maintained on PHY side as 'atro_fifo_hf'.
State of PHY side FIFO as known on ATM side is

'phy_fifo_hf_on_atm'.

SIGNAL atm_fifo_hf
SIGNAL phy_fifo_hf_on_atm

: BIT:='O';
: BIT:=' 0';

The 'counter'. signal is used to establish the length of
the packet from the PHY UTOPIA receiver interface. It
is also used to assure that there are a sufficient number
of clocks in between packets as defined by 'packet_gap'.

The 'hotlink_idle' signal is used to indicate no data
is being transmitted by the HOTLink Tx and thus the
Tx could be used to send FIFO update codes.

SIGNAL counter
SIGNAL hotlink_idle

: INTEGER(O to packet_size) :=0;
BIT:='O' ;

6'""120

BEGIN

Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, PHY Layer Receiver Interface (PHY to ATM) (continued)

TYPE state_type IS (wait_here, start_delay, count, cell_gap),
SIGNAL present_state, next_state : state_type := wait_here;

PROCESS (master_reset, atm_fifo_hf_code, atm_fifo_not_hf_code)
BEGIN

IF (master_reset = '0' OR atm_fifo_not_hf_code = '1') THEN
atm_fifo_hf <= 'O'i

ELSIF (atm_fifo_hf_code = '1') THEN
atm_fifo_hf <= '1';

Set 'atm_fifo_hf' to 1 when receive
'atm_fifo_hf_code' and clear when receive
'atm_fifo_not_hf_code'.

END IF,
END PROCESS,

PROCESS
BEGIN

IF (present_state /= next_state)
THEN

counter <= Ii
ELSE

counter <= counter +1;
END IF;

END PROCESS;

PROCESS (present_state, counter, phy_rx_empty_rx_clav, atm_fifo_hf,
master_reset)

BEGIN

'phy_rx_empty_rx_clav' is 1 when the PHY side has
a full cell (53 bytes). So, if the ATM side
FIFO is not half-full, then set 'phy_rx_enb'
to 0 and start transmitting cells back to the
ATM side. Stop (i.e. set 'phy_rx_enb' to 1)
after 53 bytes to prevent back to back cell
transfers from the PHY UTOPIA receiver interface.
Wait an additional 'packet_gap' number of clocks
before reenabling the receiver via 'phy_rx_enb'.
We must assure that there are at least packet_gap
bytes between packets in order to recreate the

rx_soc signal on the ATM side. This gap will
also be used to send PHY FIFO state codes to
the ATM side.

CASE present_state IS

WHEN wait_here =>

phy_rx_enb <= 'l'i

hotlink_idle <= 'l'i

IF (phy_rx_empty_rx_c1av
AND master_reset =

THEN

'1' AND atm_fifo_hf
'1')

IF (counter < packet_start_de1ay)
THEN

next_state <= start_delaYi
ELSE

END IF;
ELSE

END IF;

6-121

'0 '

Serializing Parallel Buses

. Appendix B: VHDL Code
UTOPIA Extender, PHY Layer Receiver Interface (PHY to ATM) (continued)

WHEN start_delay =>

phy_rx_enb <= '0';
hotlink_idle <= 'l'i
IF ((counter < packet_start_delay)

AND master_reset = '1')
THEN

next_state <= start_delay;
ELSIF (master_reset = '0')
THEN

ELSE
next_state <= count;

END IF;

WHEN count =>

phy_rx_enb <= '0';
hotlink_idle <= '0';
IF ((counter < packet_size)

AND master_reset = '1')
THEN

next_state <= count;
ELSIF (master_reset = '0')
THEN

ELSE

END IF;

WHEN cell_gap =>

phy_rx_enb <= ' l' ;
hotlink_idle <= '1';
IF (counter < packet_gap)
THEN

next_state <= cell_gap;
ELSIF (phy_r~empty_r~clav = '1'

THEN

ELSE

AND a~fifo_hf = '0' AND master_reset '1')

IF (packet_start_delay < packet_gap)
THEN

next_state <= count;
ELSE

next_state <= start_delay;
END IF;

next_state <= wait_here;
END IF;

END CASE;
END PROCESS;

PROCESS
BEGIN

present_state <= next_state;
END PROCESS;

PROCESS (phy_fifo_hf_state, phy_fifo_hf_on_atm, hot1ink_idle,
phy_rx_c1k)

BEGIN
-- If hot link_idle = '0' send data.

IF (hotlink_idle = '0')
THEN

hl_tx_ena <= 'O'i
hl_tx_sc_d <= 'O'i
hl_tx_data <= phy_r~data;

6-122

l±!ircYPRESS
Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, PHY Layer Receiver Interface (PHY to ATM) (continued)

-- If the HOTLink is idle (no data being sent) and
the FIFO state needs updating, send the code.

ELSE
h1_tx_sc_d <= '1';
IF (phy_fifo_hf_state /= phy_fifo_hf_on_atm)
THEN

ELSE

END IF;

hl_tx_ena <= '0';
IF (phy_fifo_hf_state = '1') THEN

h1_tx_data <= fifo_hf_code;
ELSE

hl_tx_data <= fifo_not_hf_code;
END IF;

END IF;
END PROCESS;

PROCESS
BEGIN

WAIT UNTIL phy_rx_clk '1';

IF hot1ink_idle = '1'
THEN

phy_fifo_hf_on_atm <= phy_fifo_hf_state;
END IF;

END PROCESS;
END behavior;

6-123

Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, Duke PHY Board Programmer

-- UTOPIA extender, Duke PHY board programmer

PACKAGE duke-programmer-package IS

COMPONENT duke-programmer
PORT (ref_clk, reset

proc_modcs, master_reset
counter

END COMPONENT;
END duke-programmer-packagei

ENTITY duke-programmer IS
PORT (ref_clk, reset

proc_modcs, master_reset
counter

: IN BIT;
INOUT BIT;
INOUT INTEGER(O to 24»;

: IN BIT;
INOUT BIT;
INOUT INTEGER(O to 24»;

ATTRIBUTE pin_numbers OF duke-programmer:ENTITY IS
"reset:2 " &
"ref_elk:1 " &
"counter(O):21 " &
"counter(1):20 " &
"counter(2):19 " &
"counter(3):lS &
"counter(4):17 " &
"proc_modcs:22 n &
"master_reset:23 n.

END duke-programmeri

ARCHITECTURE behavior OF duke-programmer IS

CONSTANT num_values : INTEGER :=24;

TYPE state_type IS (wait_here, do_reset, countl, count2, count3);

TYPE addrdata IS ARRAY(O to num_values - 1) OF BIT_VECTOR(O to 7);

CONSTANT addresses : addrdata :=
(X"Sl",

X"S1" ,
X"8D" ,
X"SD" ,
X"20" ,
X"SO" ,
X"S2" ,
X" 83" ,
X"84" ,
X" 85" ,
X" S6" ,
X"S7" ,
X"SS" ,
X"S9" ,
X"SA" ,
X" 8B" ,
X" SC" ,
X"8E" ,
X"SF" ,
X"90" ,
X"91" ,
X"92",
X"9E" ,
X"9F") ;

6-124

BEGIN

Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, Duke PHY Board Programmer (continued)

CONSTANT data: addrdata :=
(X"Ol",

X'OO' ,
X'Ol',
X"OO" ,
X'OA' ,
X'OO' ,
X"OO" ,
X'OO' ,
X'OO' ,
X'OO" ,
X'OO' ,
X'OO' ,
X"OO" ,
X'OO' ,
X'OO',
X"OO" ,
X'OO' ,
X"OO" ,
X"OO" ,
X'OO' ,
X"OO' ,
X"OO" ,
X'OO") ;

SIGNAL present_state, next_state

PROCESS (present_state, reset, ref_elk)
BEGIN

CASE present_state IS

WHEN wait_here =>

master_reset <= '1';
proc_modcs <= '1';
IF (reset = '0')
THEN

ELSE

END IF;

master_reset <= '0';
proc_modcs <= '1';
next_state <= countl;

WHEN count1 =>

master_reset <= '1';
proc_modcs <= '1';
next_state <= count2;

WHEN count2 =>

master_reset <= '1';
proc_modcs <= '0';
next_state <= count3;

6-125

Serializing Parallel Buses

Appendix B: VHDL Code
UTOPIA Extender, Duke PHY Board Programmer (continued)

WHEN count3 =>

master reset <= 'l'i
proc_modcs <= '1';
next_state <= count2;
IF (counter < num_values - 1)
THEN

ELSE

END IF;

END CASE;
END PROCESS;

PROCESS
BEGIN

WAIT UNTIL ref_elk = '1';

present_state <= next_state;
END PROCESS;

PROCESS
BEGIN

WAIT UNTIL ref_clk = '1';

IF (present_state = count3)
THEN

counter <= counter + 1;
END IF;

END PROCESS;

END behavior;

6-126

Using High-Speed Serial Links to Supplement
Parallel Data Buses

Today's designers face a multitude of problems
when trying to move data within their systems.
These problems range from overtaxed parallel-bus
bandwidth to a lack of pins at the card edge connec­
tor. Even routing parallel buses around today's
dense circuit boards is very difficult. This applica­
tion note discusses using high-performance serial
links as a solution to some of these bottlenecks. A
serial approach provides three immediate benefits:
first, bandwidth may be offloaded from the back­
plane bus; second, connector pins are saved; and,
third, circuit board routing is made much easier
since only two traces have to be routed for the data
path (versus one for each data bus bit).

The ideal serial interface building block would be a
chip set consisting of high-speed parallel-to-serial
and serial-to-parallel converters (also referred to as
transmitter and receiver). Additionally, this chip set
would make the serial interface transparent to the

user, i.e., parallel data would flow in one side and
out the other. It would be able to use a variety of se~
rial media directly such as coaxial cable, twisted­
pair cable or even fiberoptic cable (when connected
to the proper optical driver). It would also be easily
adaptable to user-defined protocols for applications
involving Direct Memory Access (DMA).

HOTLink™

Cypress's serial interface building blocks are the
CY7B923 HOTLink Transmitter and CY7B933
HOTLink Receiver. These devices provide data
rates of 160 to 330 Megabits/sec (16 to 33 Mega­
bytes/sec) and conform to several communications
standards.

This application note focuses on utilizing HOTLink
to move data using a simple protocol. A block dia­
gram of a typical HOTLink interface is shown in
Figure 1.

",II:

"'~ Iiljjj
>:u
U W

II:

...J

Su
f2Ci 09
II:
D..

SERIAL LINK
HOST

HOST

Figure 1. HOTLink System Connections

6-127

~ Using High-Speed Serial Links
~, CYPRESS ================

Preliminaries

For this application we will assume that the serial
links in question will not exceed three or four feet.
This length is adequate for most intra-board and
board-to-board communications situations; and
limiting ourselves to these distances removes sever­
al communications system issues from those that
must be considered. Let's now discuss the general
features of the HOTLinks.

In Encoded Mode, the HOTLink has an 8-bit paral­
lel interface. Data bytes are encoded into lO-bit
transmission words using 8B/lOB encoding. In By­
pass mode, HOTLink uses a la-bit interface. lO-bit
words bypass the encoder and go directly to the ser­
ializer. The 8B/lOB code provides enough signal
transitions on the serial interface to ensure proper
PLL operation. It is also DC balanced, which pre­
vents development of DC offset in the link over
time. DC offset can result from more 1s being trans­
mitted than as, so the encoder maps the 8-bit input
word to multiple lO-bit output values to keep the
number of l's and a's constant over time. Ideally,
the time-averaged DC component should be zero,
since DC offset over a long cable can cause in­
creased noise susceptibility and power dissipation.
In fiber systems excessive DC offset can burn out the
LEDs used to drive the fiber.

The applications in this note use 8-bit Encoded
Mode. In this mode HOTLink provides two control
pins. A pin called SC/D indicates whether the byte
on the parallel I/O pins is a special character or data.
Another pin available in 8-bit mode, SVS (Send
Violation Symbol), allows the data provider to force
a violation symbol to be encoded and sent. The
SC/D pins will be used to signify command words in
the DMA protocol, which will be specified later.
The SVS (RVS in the receiver) pin could be used for
system testing and error checking, but will not be
part of the design.

Parallel Interface

For details of the HOTLink parallel interface,
please refer to the FIFO-HOTLink application
notes located in this book.

Transmitter

The signals needed for the transmitter parallel in­
terface are the 8-bit parallel inputs D(0 .. 7), the
SC/D bit, the ENA pin, the RP pin, and the CKW
pin. Refer to the CY7B923/CY7B933 HOTLink da­
tasheet for additional details.

When no data is enabled into the transmitter, it
should be noted that the HOTLink Transmitter in­
serts a special character called SYNC. This SYNC
character provides sufficient transitions to keep the
PLLs locked to the bit stream.

Receiver

The signals needed for the receiver parallel inter­
face are the eight parallel data outputs D(0 .. 7) and
the SC/D, RDY, and CKR pins. Again, refer to the
device datasheet for additional details.

When the transmitter is sending SYNC characters,
the receiver detects these and does not output this
character until the last SYNC character is received.
Then the receiver outputs a single SYNC character.

Serial Interfaces

Figure 2 shows the multiple serial outputs of the
transmitter and the dual serial inputs of the receiv­
er. OUTC is always on and in full duplex imple­
mentations, can be "looped back" to a receiver input
for system diagnostics or used as another output.
The other pair of outputs, OUTA and OUTB are en­
abled with the FOTO pin. This output pair makes
it easy to transmit from one source to multiple des­
tinations, making point-to-multi-point DMA archi­
tectures possible. The receiver, with its pair of in­
puts, can use one input channel for data and the
second to implement local loopback. The input
selection is accomplished with the AlB pin. Note
that the INB channel does not have to be used for
diagnostics, but can be used as another data stream in­
put. However, switching input channels requires the
PLL to reacquire lock with the incoming data stream.

Implementing a Data Link

The discussion that follows deals with issues con­
fronting a designer trying to move data from point

6-128

dJ# _~ U sing High-Speed Serial Links W22' CYPRESS ================

Figure 2a. CY7B923 Transmitter Logic Block
Diagram

A to point Busing HOTLink. Table 1 shows the
three implementations discussed.

I/O Space Model

The first example is simple. It assumes that the re­
ceive FIFO resides in the destination's I/O space.
The receive controller (a microprocessor, perhaps)
merely reads and interprets the data stream out of
the Rx FIFO. Data does not get placed in local
memory before being used. There are two issues to
consider with this example: What if the receive logic
cannot keep up with the received data? This is
known as receiver overflow or transmitter overrun.
A FIFO with a programmable almost full/empty
flag can be used together with a PLD to generate a
receive or transmit inhibit to the transmit control-

RF -------r---==~-I
FRAMER

AlB ----.,

INA+ ,...t-~~=====~ INA-)- SHIFTER
INB(INB+)

SI(INB-)

so

REFCLK ___ --I

MOOE ---ofTEsTl
I!ISIDI~

CKR

SCIli(O,)

Figure 2b. CY7B933 Receiver Logic Block
Diagram

ler. This is known as "flow control". Figure 3 shows
a receiver block diagram with a flow control signal
labeled TXINH. If the FIFO becomes too full, this
signal tells the transmitter to stop transmitting until
the receiver catches up. Since we are limiting our
links to three or four feet, this may be a viable ap­
proach. However, using this form of flow control
wastes a lot of bandwidth. Correct sizing of the
FIFO, after careful analysis of the communications
requirements, can give a deterministic system that
never overflows or underflows. Communications
links of hundreds of feet, or even miles cannot af­
ford this type of flow control, since the channel itself
may be several hundreds or even thousands of bytes
long and a large enough FIFO may not be available.
The channel is like a pipeline, and once something
enters the pipeline, it must come out the other end.

Table 1. Data Link Implementations

I/O Model Transmitter Receiver Features

I/O Space FIFO + HOTLink HOTLink+ FIFO + Rx FIFO in I/O Space
Microprocessor Microprocessor Accesses Data

Direct FIFO + HOTLink HOTLink+ FIFO+ Rx Controller Decodes DMA Info in
Memory DMALogic RxFIFO
Access DMA Moves Data

Microprocessor Free
Local Bus Used

Shared FIFO + HOTLink HOTLink+ DUALPORT + Rx Controller Uses Semaphores to
Memory DMALogic Move Data Directly to Shared

Space Memory
Microprocessor FreelLocal Bus Free

6-129

1b:~ Using High-Speed Serial Links
~ CYPRESS ==============

Link
Rx B B

HOTLink 1---r-'3>I Rx FIFO 1---+-+-+--+-'3>I Micro­
processor SCiO SCiO

Almost Full Almost Empty

TXINH

Figure 3. Receiver Flow Control

The second issue is that the microprocessor must be
interrupted when data needs to be read from FIFO.
This wastes microprocessor cycles and required lots
of latency.

Direct Memory Access Model

So far we have discussed moving data from Point A
to Point B using a microprocessor. Direct Memory
Access (DMA) uses additional hardware, called a
DMA controller or DMA Logic, to move the data
from the FIFO to the memory. This frees the micro­
processor of this task. Before proceeding, let's look
at the bandwidth supported by HOTLink. This will
determine the speed at which our DMA logic must
operate. Refer to Table 2.

Table 2. Bandwidth Requirements

Bandwidth Clock Period
Part Number (MByte/s) (ns)

CY7B923/933 16 - 33 63 - 30

Table 2 shows that DMA is probably a better solu­
tion than the I/O spaye model. The DMA Logic
contains several basic functions. These are:

• control state machine

• address counter

• address (and sometimes data) latches and drivers

The control state machine detects when the receive
FIFO contains data and issues a DMA request to
the microprocessor. The DMA request asks the mi­
croprocessor to relinquish the memory address and
data buses. The state machine also detects when the
microprocessor has freed the buses. It then starts
the actual transfer by loading the address counter
with the initial address and placing the initial ad­
dress and data word on the memory address and
data buses. The control state machine then strobes
the data into the memory, increments the address
counter, reads the next data from the receive FIFO
onto the memory data bus and strobes this data into
the memory. The process then repeats until all the
data has been placed in memory. When all the data
has been placed in memory, the memory address
and data buses are returned to the microprocessor's
control. A block diagram is shown in Figure 4. Ques­
tions at this point might include, "Where did the
starting address come from?", or "Where did the
ending address come from?" To answer these ques­
tions, a protocol needs to be defined.

DMA Protocol Definition

Let's now discuss some concepts being introduced
with our DMA protocol definition. First, we are
now embedding command and control information
in the data stream. Previously the information con­
sisted of pure data (as far as our control logic was

6-130

Unk
8

H~nk I-+-~ RIc F1FO hr--+~T-+-+~ Micro­
processor SC/O

SC/O

ow. logic

Figure 4. DMA Configuration

concerned). Second, we are now using dedicated
hardware (a PLD) to move the data from the rx buff­
er to the location where it will be used, thus off­
loading the main processor. Since the same proto­
col definition will be used for the shared memory
implementation, let's define a protocol. First, the
design will assume a fixed length DMA of 256
words. (The user is free to implement any length re­
quired, or to provide for variable length transfers.)

Table 3 defines a DMA Write message. The proto­
col will consist of a special character or message de­
limiter signifying a DMA write request, followed by
characters defined as a broadcast address, and a
starting address. A broadcast address can be
thought of as a card or processor ID. The starting
address indicates the first address to be written. This
is followed by N - bytes of data, where N is equal to
256 in the example.

DMA reads will be identified by a unique message
delimiter as shown in Table 4. Again, it is assumed
that 256 bytes of data will be sent. The message de­
fined in Table 4 tells the recipient to send the 256
bytes of data beginning at the address indicated, and
it also provides a destination address that can be
used to create the DMA write message.

Finally, to assure proper initialization of the DMA
hardware, Table 5 defines a DMA Reset message.

The column labeled "Bits" in Tables 3, 4, and 5 de­
serves further explanation. The labels HGF EDC­
BA are the 8B/lOB designations for bits on the
HOTLink parallel interface. Conventional nota­
tion for these bits is Q7 .. QO on the receiver outputs
and D7 .. DO on the transmitter inputs, with bit 7 be­
ing the most significant bit. In fact these signals cor­
respond to the pins labeled identically on the HOT­
Link devices. The message delimiter characters are
named according to Fibre Channel convention. Re­
fer to the CY7B92X/CY7B93X datasheet for addi­
tional information.

The receiver DMA Logic in Figure 4 needs to con­
tain a state machine to detect the appropriate mes­
sage delimiters and decode the broadcast address.
If the broadcast address is for the module and the
message is a DMA write, another state machine
needs to issue a DMA request to the microproces­
sor and obtain the bus. After obtaining the bus, the
starting address is read from the FIFO and loaded
into an address counter. Since the address is de­
fined as 32 bits, and the message length is defined as
256 bytes, the address must be loaded into 3 latches
and an 8-bit counter. Then the state machine to
reads the next 256 bytes out of the receive FIFO and
writes it to memory. Then the bus is relinquished to
the microprocessor and the counters and state ma­
chine are reset.

When a the message is a DMA read, the state ma­
chine is similar to that for a DMA write, but the ad-

6-131

dress counter is loaded with the address to read
from, and the destination address is read out to be
placed into a DMA write message. Creation of
DMA write messages can be accomplished with

Using High-Speed Serial Links

additional resources in the DMA Logic. Suggested
devices are the Cypress CY7C375 CPLD or the Cy­
press CY7C385 FPGA.

Table 3. DMA Write Message

SC/D Pin Byte Name Bits (HGF EDCBA) Definition

1 K28.1 00000001 Msg. Delimiter

0 8-bit address - Broadcast Address

0 Address byte 0 - Most significant

0 Address byte 1 - Next most signif.

0 Address byte 2 - Next least signif.

0 Address byte 3 - Least significant

0 Data byte 0 - 1st data byte

0 Data byte 1 - 2nd data byte

0 : : :

0 Data byte N - Last data byte

1 K28.1 00000001 Msg. Delimiter

Table 4. DMA Read Message

SC/D Pin Byte Name Bits (HGF EDCBA) Definition

1 K28.0 00000000 Msg. Delimiter

0 8-bit address - Broadcast Address

0 Source Address byte 0 - Most significant

0 Source Address byte 1 - Next most signif.

0 Source Address byte 2 - Next least signif.

0 Source Address byte 3 - Least significant

0 Dest. Address byte 0 - Most significant

0 Dest. Address byte 1 - Next most signif.

0 Dest. Address byte 2 - Next least significant

0 Dest. Address byte 3 - Least significant

1 K28.0 00000000 Msg.· Delimiter

Table 5. DMA Reset Message

SC/D Pin Code Name Bits (HGF EDCBA) Definition

1 K28.3 00000011 Msg. Delimiter

0 8-bit address - Broadcast Address

1 K28.3 00000011 Msg. Delimiter

6-132

=:s ,~ Using High-Speed Serial Links
,CYPRESS ==============

The DMA model offloads the data moving task
from the microprocessor. However, DMA has one
major disadvantage; it requires the bus, which
means the microprocessor must be idle during the
DMA. There is another approach and it is the next
topic.

Shared Memory I/O Model

If a shared memory area (dual-ported) is imple­
mented, then data can be made available to the local
logic without grabbing the microprocessor bus to
perform a DMA. Simultaneous accesses must be
prevented, but dual-ported memory opens up sever­
al options. These options include dividing the dual­
ported memory into segments and alternating the
segments between DMA write and local side read.
This is known as "ping-ponging" and prevents si­
multaneous access of a dual-port SRAM location.
So, dual-ported memory is attractive for those cases

Link
Rx 8

HOTLink 1-+--71 Rx FIFO
SC/D

SC/D

DMA Logic

Adr

where the local bus cannot be tied up with a true
DMA. Figure 5 shows a diagram of a HOTLink com­
munications link implemented with dual-ported
SRAM. The DMA Logic is virtually identical to that
of the prior section.

Summary

This application note has presented the basic con­
cepts for employing HOTLink high-speed serial
communications devices to replace parallel data
paths. It has also defined a simple protocol and de­
scribed the logic necessary to implement the proto­
col. Finally, the advantages and disadvantages of
three different approaches have been presented to
allow the designer to choose the one that best fits
their needs. The simplest is Memory Mapped 110,
the highest performing is the Shared Memory I/O
model employing dual-ported memory.

Data

Memory

Dual-port
Memory

Adr

Micro­
processor

Note: No DMA request to proccessor

Figure 5. Dual-Ported Configuration

HOTUnk is a trademark of Cypress Semiconductor Corporation.

6-133

Drive ESCON™ With HOTLink™

Introduction

The IBM@ ESCON lM (Enterprise System CONnec­
tion) interface is presently experiencing rapid
growth. Originally designed as a replacement for
the older block-mux channel, it is also finding use as
a high-performance system interface. This once
IBM-proprietary interface is presently being pro­
cessed to become an ANSI standard interface
(known as SBCON) for computer to peripheral in­
terconnect.

This application note contains an overview of
ESCON operation and a design example of an
ESCON physical interface, including a number of
the low-level ESCON state machines (including the
VHDL source code), implemented using
HOTLink'" and a pASIC'" field programmable
gate array.

Channels

The term channel, when referring to mainframes,
carries a specific meaning .. Rather than represent­
ing the connection between pieces of equipment,
here it also represents a significant piece of equip­
ment as well. The channel is, in effect, a sophisti­
cated and intelligent DMA engine whose purpose is
to move information between I/O devices and main
storage. This channel function removes the burden
of handling I/O activities from the main CPU.

Block-Multiplexer Channel

The original block-multiplexer channel dates back
to the System 360/370 family of IBM mainframe
CPUs. It uses a pair of parallel-bus copper cables
(referred to as Bus and Thg cables) to move data be­
tween the host CPU and the I/O and storage periph-

erals as shown in Figure 1. These bus and tag cables
were daisy-chained from the host channel adapter
through multiple storage and I/O directors.

While quite powerful in its day, the block-mux chan­
nel shows both its heritage and its age. The bus and
tag cables are quite bulky (around 1.5" in diameter),
heavy, and costly. The maximum length of the link
between the host CPU channel adapter and the
cable terminator is 400 feet, and operates at a maxi­
mum transfer rate of 4.5 MBytes/second. While
originally designed to simultaneously support a
larger number of peripherals, its is now possible to
saturate the full I/O bandwidth capability of a block­
mux channel with a single disk drive.

ESCON Channel

The ESCON channel was introduced in 1990 along
with the ESA390 series of mainframe computers. It
uses high-speed serial, point-to-point fiber-optic
links to replace the daisy-chained parallel-bus cop­
per cables of a block-mux channel. By maintaining
the same host CPU software structures used with
the block-mux channel, it was possible to dramati­
cally change the architecture (and performance) of
the I/O subsystem without effecting the major I/O
routines present in the host CPU and channel mi­
crocode.

This new interconnect media was also merged with
a dynamic switched connection scheme to improve
both availability and access to the I/O peripherals.
The use of switches (known as directors) allows
many more paths to each peripheral, with multiple
paths being active through each director at the same
time. This new interconnect structure is shown in
Figure 2. This switched I/O structure is now finding
popular use in many other data communications in-

6-134

-, -s-- Drive ESCON With HOTLink
./CYPRESS ================

Figure 1. Block-Multiplexer Channel Subsystem

Host CPU-A HostCPU-8

Channel
Subsystem

ESCON 1/0 Ports

Channel
Subsystem

ESCON 1/0 Ports

Channel
Subsystem

ESCON 1/0 Ports

Figure 2. ESCON Channel Subsystem

6-135

Channel
Subsystem

ESCON 1/0 Ports

-= -~ Drive ESCON With HOTLink
-=E!!B" CYPRESS ================

terfaces like switched Ethernet, ATM, and Fibre
Channel.

The ESCON interface provides numerous improve­
ments over the older block-mux channel. A few of
these are

• Improved transfer rate to 20 MBytes/second

• Longer distances-up to 3 km for each link and
up to three links (two switches) between Channel
and Control Unit

• Immunity from EMIIEMC concerns

• Improved access, redundancy, and availability
through use of dynamic switches

ESCON Physical

The physical-level interconnections of ESCON are
all made with 1300-nm LED-based optical links.
These links operate through either 62.5 !lm or 50 !lm
core multi-mode optical fibers at a fixed bit rate of
200 Mbits/second. This bit rate represents the en­
coded bit rate for the data being sent.

The data sent across ESCON links is encoded using
the 8B/lOB code built into HOTLink. (See the
CY7B923/933 datasheet for a detailed description
of the 8B/10B code.) This code converts normal
8-bit bytes into lO-bit transmission characters.
While this encoding does have a 25% overhead, the
benefits of using it far outweigh the data-rate pen­
alty.

Part of the reason for the two extra bits in each char­
acter is to guarantee a minimum transition density
for the receive PLL. Since no clock is present in the
serial data, the HOTLink receiver PLL is used to ex­
tract a bit-rate clock from the data steam

Another benefit from this code is its DC-balance
characteristic. This means that, over time, the net
difference of all 1-bits versus O-bits sent is at or
near zero. This DC-balance characteristic allows
the optical receiver circuits to be much simpler and
lower in cost by reducing the complexity of the AGC
(automatic gain control) in the receiver pream­
plifier.

With a transmission character being ten bits in
length, there are actually 1024 possible transmission
characters. Of these possible codes, only a fraction
of them meet all the run length and DC-balance
coding rules. The remainder are illegal codes and
are detected as errors at the receive end of the link.
Most of the valid codes are used to represent the 256
possible data bytes, with a few remaining legal trans­
mission characters used for synchronization and in­
band signaling.

The term in-band means that all delimiters, proto­
col, clocking, etc., are handled through the same se­
rial interface as the data; i.e., there are no other con­
trol lines or interfaces used for this information.
The 8B/lOB code provides twelve transmission
characters for these in-band functions. Of these
twelve characters (referred to as special charac­
ters), only six are defined for use by ESCON.

Synchronization

With any serial interface some form of synchroniza­
tion is necessary at the receiver-end of a link. The
function of synchronization is to line up the receiver
bit and byte clocks with the serial data stream.

Bit Synchronization

Bit synchronization is performed (for the most part)
automatically by the receiver PLL. As transitions
are detected, the phase detector in the receiver uses
the position of the transition (relative to its internal
bit-clock) to adjust the phase and frequency of the
local bit-clock. This local bit-clock is optimally ad­
justed to allow the serial data stream to be sampled
at the center of each bit. However, bit synchroniza­
tion alone is not sufficient to recover and decode the
transmitted information. This requires knowledge
of which bit in the serial stream is the start of a char­
acter.

Framing

Proper detection of character boundaries is re­
ferred to as framing. Unlike bit synchronization,
which occurs primarily in the analog domain, fram­
ing is a full-digital operation.

Framing is performed by examining the serial bit
stream for a specific pattern (called a comma). This

6-136

lz~ Drive ESCON With HOTLink
~' CYPRESS ===============

test occurs on every bit-clock until an exact match is
found. At this point the receiver byte-clock is reset
to line up with the character boundary. Following
this, all characters output from the receiver should
remain properly synchronized, until some external
event causes a significant disruption in the data
stream.

The comma in the 8B/lOB code is the seven bit pat­
tern 0011111 (or its alternate 1100000). This bit pat­
tern is part of the K28.5 special character. It cannot
appear in any other location in any 8B/lOB encoded
character, and cannot be generated across the
boundaries of any pair of characters.

While the detection of individual bits is controlled
automatically by the PLL, the detection of framing
for ESCON must be under the control of a separate
state machine. This machine determines under
what conditions the receiver is allowed to perform
its framing function.

ESCON Synchronization

An ESCON interface is normally considered to be
in one of two states regarding synchronization; ei­
ther Synchronization_Acquired or Loss _ OC Syn­
chronization (LOS). The transitions between these
two primary states actually involve a number of sub­
states that track error conditions and special charac­
ters on the interface. This state machine is shown in
Figure 2.

In addition to its five states (four Sync Acquired and
one Loss Of Sync), it operates with a 4-bit counter
to track both valid characters and K28.5 characters.
Since in any specific state of the machine only one
thing is being counted (valid characters or K28.5
characters), only a single counter is needed.

Loss Of Synchronization

The ESCON interface automatically enters the
LOS state following power-on. In this state (if a val­
id signal is present) the serial data receiver is en­
abled not only to received data, but also to frame on
any received K28.5 character (RF= 1).

While the receiver will frame on the first K28.5 re­
ceived, this is not sufficient to leave the LOS state.

No-Signal or
Power-On-Reset

Figure 3. Synchronization State Machine

This requires reception of a minimum of fifteen
K28.5 characters with no intervening code viola­
tions between any of the received characters. These
K28.5 characters may be directly adjacent or more
likely will have other characters interspersed. Once
this string ofK28.5 characters has been received, the
receiver enters the Synchronization_Acquired
state.

Synchronization Acquired

Exit from the LOS state also removes the reframe
signal from the receiver (RF=O). In this condition
the receiver will ignore (for framing purposes) all
K28.5 characters embedded in the data stream.
These characters are still properly received and de­
coded for use as part of the link protocol.

In the Sync Acquired state the state machine now
tracks any code violations (RVS). If a code violation
occurs the state machine changes from the basic
Sync Acquired state (SAO) to SAL In this state the
machine has now detected a single error. It then en­
ables the separate 4-bit counter to check for consec­
utive valid characters. If the following fifteen char­
acters are received without error, the machine
reverts back to the basic Sync_Acquired state.

6-137

~~YPRESS~~~~~~~~~~D~ri~Ve~E~S~C~O~N~W~ith~H~O~T~L~in~k

If, however, additional character errors are de­
tected, the state machine will advance through the
SAl, SA2, and SA3 states-one change for each
character received in error. At each of these states
the machine will again check for valid characters
and will revert to the previous state if fifteen are re­
ceived without any errors. This would allow an in­
terface receiving exactly one error every sixteen
characters to remain in the SAO and SAl states,
while a similar interface receiving one error every
fifteen characters would quickly move to the LOS
state and remain there.

Link-Level Operations

The actual functionality of an ESCON link is de­
fined in terms of various ordered sets of special
characters and data bytes. These ordered sets are
used to define frame boundaries, control dynamic
connections, and control synchronization between
the transmitter and receiver circuits. All valid
ESCON ordered sets are listed in Table 1.

Table 1. ESCON Ordered Sets

Ordered Set Characters

Idle function K28.5

Connect -start-of-frame K28.1 K28.7
delimiter

Passive-start-of-frame delimiter K28.5 K28.7

Abort delimiter K28.6K28.4
K28.4

Disconnect-end-of-frame K28.6K28.1
delimiter K28.1

Passive-end-of-frame delimiter K28.6, K28.2
K28.5

Not-operational K28.5 DO.2

Unconditional-disconnect K28.5 D15.2
sequence

Unconditional-disconnect- K28.5 D16.2
response sequence

Off-line Sequence K28.5 D24.2

1dle Function

The K28.5 character in ESCON is used for multiple
purposes. It is

• the first character of many ordered sets

• used to provide byte framing of the serial data
stream

• used as a fill or Idle character between frames
and sequences

Because the K28.5 character is contained in many of
the other ordered sets, a single K28.5 cannot be con­
ferred to be an Idle function until the following char­
acter is detected. If the following character is also
an K28.5, then the previous K28.5 is part of an Idle
Function. If the following character is anything else,
then the K28.5 character is part of a delimiter or se­
quence (or an error).

Delimiters

Delimiters are used to mark the start and end of
frames. Frames are the real workhorse of the inter­
face because they carry data. All frames have a
start-of-frame . delimiter (SOF) and an end-of­
frame delimiter (EOF). (An Abort delimiter is con­
sidered to be a type of EaR) These delimiters are
only sent once per frame. Each frame must be sepa­
rated by a minimum of four Idle characters.

Sequences

Sequences are used to indicate specific equipment
conditions or states that cannot be identified
through the use of frames. Unlike a delimiter, the
ordered set defined for a specific sequence is sent
repeatedly until the machine state changes or a spe­
cific response is received. At the receiver, a se­
quence is only detected as being valid if the defined
ordered set is received a specific minimum number
of times in succession.

Frames

Frames are used to carry information between the
channel, switches, and the peripherals. Tho generic
types of frames exist; Link-Control and Device
Level.

All frames follow the same three-field format:

• a 7-byte fixed-length link header

• a variable-length information field (may have a
length of zero for some Link-Control frames)

6-138

?t rc Drive ESCON With HOTLink
~_' CYPRESS ===============

FRAME STRUCTURE

Link Header Field Information Field Link Trailer Field

Figure 4. ESCON Frame Format

• and a 5-byte fixed-length link-trailer field

The structure of an ESCON frame is shown in Fig­
ure 4. The low-order bit of the Link Control field in
the Link Header identifies the type of frame. When
set to a one, the frame is a Link Control frame.
When set to a zero, the frame is Device Level frame.

Link-Control frames are use to manage, configure,
and maintain the link itself, and range in length from
12 to 116 bytes. Device Level frames carry data be­
tween the channel and the peripheral and range in
size from 17 to 1040 bytes.

Frame Validation

Before a frame can be processed, it must be vali­
dated as a properly received frame. This involves
making sure that there are no special characters or
idles in the middle of the frame, no decoding errors
are detected in the serial stream, and that the CRC
Field (Cyclic Redundancy Check) shows no errors.

Cyclic Redundancy Check Field

The CRC field contains a 16-bit redundancy check
code, used to insure that the received frame con­
tents are the same as those sent. This field is gener­
ated at the transmitting end of a link and sent as the
first two bytes of the Link nailer field. It is calcu­
lated on all bytes between the start-of-frame delim­
iter and the Link Trailer field.

At the receiving end of the link the CRC is again
generated using the received data stream. Now the
CRC is generated on all bytes between the start-of­
frame delimiter and the end-of-frame delimiter.

The CRC code used with ESCON is that defined by
the lTV VAl standard (previously known as
CCITT). The polynomial for this CRC is listed in
Equation 1.

X l6 + Xl2 + X5 + 1 Eq.1

Normally with a code of this type the CRC remain­
der register is preset to an all Is condition prior to
the first bit of information being clocked through
the polynomial. This is done to ensure that the poly­
nomial will change state no matter what the data
stream contains. At the end of the generation, the
two bytes comprising the CRC remainder are sent as
part of the data stream. At the receiving end the
same process occurs, but the two CRC bytes are also
clocked into the CRC register. If no errors exist in
the serial stream then the contents of the CRC check
register should be zero.

To increase the level of protection, the CRC is han­
dled slightly differently in an ESCON interface.
Here the CRC remainder generated at the transmit­
ter is inverted prior to sending it across the link.
When it is received (correctly) the CRC check regis­
ter is no longer cleared, but must be set to exactly
1DOF (hexadecimal). Any other value indicates a
transmission or reception error.

ESCON Design Example

The following design was originally done to replace
an existing ESCON protocol component that was no
longer available. All VHDL source code listed here
has been both simulated and tested in a functioning
ESCON system.

6-139

~~ Drive ESCON With HOTLink
~, CYPRESS ===============

This design example covers

• an ESCON-compatible optical media interface

• ESCON-certified HOTLink serializer/deserial­
izer components

• a pASIC383 protocol chip containing
transmit and receive CRC circuits

parity check and generate circuits

synchronization state machine

command code translation capability

input/output pipeline registers

miscellaneous flip-flops, muxes, and gates

The design is partitioned into transmit and receive
data paths, and is implemented in four active de­
vices:

• a pASIC383 containing both transmit and re­
ceive protocol functions

• a CY7B923 HOTLink transmitter for serializa­
tion and 8B/lOB encode

• a CY7B933 HOTLink receiver for deserializa­
tion and lOB/8B decode

• a Siemens V23806-A1-M16 ESCON fiber-
optic transceiver

The structure of how these components connect and
major data paths are shown in Figure 5, with a com­
plete schematic shown in Figure 6.

Fiber-optic Transceiver

The fiber-optic transceiver is an optoelectric device
that both converts electrical signals to light (trans­
mitter) and light into electrical signals (receiver).

pASIC383

Protocol

Siemens
V23806-

CY7B923/933 A1/M16

RX

TX

SERDES ESCON
Fiber-optic
Transceiver

Figure 5. Design Example Structure

To operate with the ESCON interface the transceiv­
er must meet a number of specific characteristics:

• operate at 200 Mbaud

• operate at 1300 nm wavelength

• use 62.5-l1m or 50-11m core optical fiber

• meet the 0.7" ferrule spacing and other dimen-
sions of an ESCON optical connector

In addition to these criteria, compliant transceivers
must meet numerous power level, receive sensitiv­
ity, and electrical interface criteria to properly oper­
ate in an ESCON environment. Manufacturers of
ESCON compatible fiber-optic transceivers include
Siemens, AMp, IBM, and others.

SERDES

The next section in an ESCON link is the serializer/
deserializer block, also known as the SERDES.
This section converts parallel bytes of information
into an 8B/lOB encoded serial data stream for trans­
mission, and also converts a received 8B/lOB en­
coded serial data stream back into parallel data
bytes.

The Cypress CY7B923/933 HOTLink components
are designed to perform this SERDES function.
These components are specifically optimized to
support the ESCON interface, as well as Fibre
Channel, ATM (Asynchronous ltansfer Mode),
and proprietary communications links.

These HOTLink parts are especially well suited to
the ESCON market because of their built-in 8B/lOB
encoders and decoders. This encode/decode func­
tion is required for ESCON operation. By building
the encode/decode into the SERDES block, the
complexity of this part of the interface design is re­
moved from the design process. Its presence in the
SERDES block also means that hardware resources
are not required elsewhere to implement the en­
code/decode function.

The 8B/lOB code used in the HOTLink components
is licensed by Cypress Semiconductor from IBM.
Any user of these parts is fully licensed to use the
8B/lOB encoders and decoders contained in them at
no cost and no royalties. For those applications that
already have 8B/lOB encoder/decoder circuits pres-

6-140

:=l
~
;:a
F'
l"'l
00
C":l
0
Z

0'1 "=
I ~ >-'
~ '" >-' n°

!.
~
0 = s-
a.
I":>
~

00
I":>
CI"
~ e
1=
=:
I":>

+5V

,~
47 LOOPEN

55 CAXD7

====~~~~=~i5~6CAXDB 57 CDXD5
58 CAXD4
59 CAXD3 =----====----lrffj, g:g~

_~62~ CAXDO

49
1 CRXP

==;;;;~~======== == =) =~:~ ~:: 66. ERROA

50'1 AESETN ----

~AXCLK
~AXCLK

+5V

+5V

4 9

1t SVS
07
DB
05
D4
03
02

I 01 OUTC-

I gg/D /RP 8

~FOTO MODE
2~ IBISTEN
23 IENN

lENA

+ 121 P'CKW
CY7B923 69

+5V

+5V ~

270

+5V

~821

191 DATA IN
IDAT~.lN

~ 51~ VBB

CL
0.1uF CASE

110 5 CASE

+5V

2 CASE
CASE

4 CASE

SIEMENS-TX
V23806-A1-M16

L1
15uH

~
A AVS 45 10 AVS I~ 2 2 DATA OUT
Rx07 44 11 07 INA 1 1 IDATA OUT
AX06 43 12 06 19 SIG DET
AXQ5 42 13 05 INB+ 28 I 20 ISIG" DET
AX04 41 14 Q4 INB-(SI) 27 1nF 1nF OPTICAL,--
AX03 40 15 03 INPUT'
AX02 3 16 02 ~ VCC
AX01 38 17 01 0.1uF H VCC

AXOO 37 18 00 r' I--~ VCC CASE~ ASC 0 19 SC/D /ROY ~ 130 . , CASE~
- ";> ~ CASE CASE~ l ~ AF CKR~ ~ CASE CASE#

~~ 23 =4
--" /BISTEN so 270 270 I 1< CASE~

+5V J\ 3 AlB ~ g~~~ g~~rtt
46 ~o T L.M AEFCLK l ., SIEMENS-AX

AB_SEL ~ CY7B933 'V23806-A1-M16

r::;r 6L11

" ~ ~
tTl
(f)
(f)

~ .,
~"

~
'7.l n o
z
~
~

==
~
5"
~

~ Drive ESCON With HOTLink
~)'CYPRESS===============================
ent in their system, the encoder/decoder present in
HOTLink can be bypassed through use of the
MODE pin on each part.

An in-depth explanation of the operation and usage
of the HOTLink components may be found in the
CY7B923/933 datasheet and the HOT Link User's
Guide.

Serial I/O Electrical Interface

The interface between the fiber-optic transceiver
and the HOTLink SERDES operates at 200 Mbits/
second. This interface is implemented with ECL
(Emitter-Coupled-Logic) signaling to provide a
low-noise, high-speed connection. Unlike standard
ECL, which is normally operated below ground,
both the fiber-optic transceiver and the HOTLink
SERDES components are operated above ground.
This allows the ECL portion of the design to use the
same + SV supply as the surrounding logic. When
ECL is operated from a positive supply it is referred
to as Positive-ECL or PECL.

The source for the serial data stream is the
CY7B923 HOTLink transmitter shown in Figure 6.
A simplified schematic showing just the intercon­
nect for the serial transmit path is shown in Figure 7.

CY7B923

OUTA+ 1-----+--_._-4
OUTA- I-"--+~-~

OUTB+
OUTB-

OUTC+ 1-----,
OUTC-

TO RECEIVER
INB+ f-----~

Figure 7. HOTLink Transmitter-to-Optical
Serial Interface

The serial data is connected to the fiber-optic trans­
mitter using a differential connection from the
OVTA± differential output of the HOTLink trans­
mitter. Because these are ECUPECL signals, they
require a pull-down bias to allow the outputs to
switch.

With a transmission rate of 200 Mbits/second, the
interconnect used for these signals should (in most
cases) be constructed as a controlled-impedance
transmission line. The bias network used on the
OUTA± signals is referred to as a Y -bias network.
It is designed to provide an equivalent transmission
line termination impedance of SOQ while providing
a bias level ofVcc-2Y.

The received serial data stream is output from the
fiber-optic receiver as a differential signal, as shown
in Figure 6, and is sent to the CY7B933 HOTLink re­
ceiver INA± inputs. A simplified schematic show­
ing just the interconnect of the serial receive path is
shown in Figure 8. Because this is also a PECL sig­
nal, it should be treated in a manner similar to the
transmit serial path. This means controlled imped­
ance transmission lines and a proper bias/termina­
tion network.

While the receive-path bias/termination network
may be implemented using the same Y -bias network
used with the transmit serial path, a Thevenin net­
work is shown here. These two bias networks, when
used with differential signals, are effectively inter­
changeable. For single-ended signals requiring the

1000pF

OPTICAL CY7B933
RECEIVER
rnDA~J~A~oftunT1----+-4-~~INA+
/DATAOUT P----+--+--+-'-'i INA­

SIGDET
ISIG=DET

FROM
TRANSMITTER >-+-1----+--+-+--1 INB+
OUTC+ INB-(SI)

Figure 8. Optical-to-HOTLink Receiver
Serial Interface

6-142

i£ ifE Drive ESCON With HOTLink
_ CYPRESS ==============

same electrical characteristics, the Th6venin net­
work must be used. For additional information on
terminating and biasing PECL signals, please see
the application note "HOTLink Design Consider­
ations" in the HOTlink User's Guide.

Serial I/O Support Interface

In addition to the transmit and receive serial data
streams, two other PECL signals are normally pres­
ent in an ESCON interface: signal-detect and local­
loopback. The signal-detect function is performed
by the fiber-optic receiver. It outputs a PECL logic
signal to inform the upstream hardware if a valid sig­
nal is present or not. This signal is monitored to de­
termine the synchronization state of the interface.

Because this is a PECL-Ievel signal, it is necessary
to convert it to a TTL-level signal for use by up­
stream logic. While there are components available
that explicitly perform this level translation, they
are not necessary for this application. Instead it is
possible to use one of the design features of the
HOTLink receiver INB± inputs to perform this
signal-level conversion.

The INB± input can be configured as either a differ­
ential PECL receiver (like INA±), or as a single-en­
ded serial PECL receiver and a PECL-to-TTL con­
verter. To use INB± as a differential receiver it is
necessary to pull the SO (Status Out) pin to Vee.
This disables the PECL-to-TTL converter and
maintains both inputs as a differential pair.

To use INB± as two separate inputs requires that
the SO pin be loaded as a normal TTL-level output.
When configured this way the INB- pin is the input
for the PECL-to-TTL converter, with SO being the
TTL output. This is the configuration used in Fig­
ures 6 andB.

Most ESCON interfaces are also equipped with nu­
merous self-diagnostic capabilities. At the physical
interface the most common is a selectable loopback
of the serial data stream. This allows all compo­
nents (with the exception of the fiber-optic trans­
ceiver) of the interface to be tested by transmitting
data and verifying that it can be properly received.
This loopback function is normally implemented us­
ing the OUTC+ output of the HOTLink transmitter

and the INB+ input on the HOTLink receiver in a
single-ended PECL connection, as shown in Figures
6,7, and B. .

While the best PECL connection is always a differ­
ential connection (like that used on INA±), the
usage of INB + in a single-ended mode is fine under
these conditions. Because the HOTLink transmit­
ter and receiver are close together in the system and
operate from a common power supply, the normal
noise-margin concerns of single-ended connections
do not apply.

This localloopback functionality is selected through
the LOOPBACK signal on the pASIC FPGA.
When active (HIGH), this signal drives the
HOTLink receiver AlB select input LOW to se­
lected the INB+ input for the deserializer, and
drives the FOTO input to the HOTLink transmitter
HIGH. This FOTO pin is used to disable the
OUTA± and OUTB± outputs of the transmitter.
This is normally done during loopback diagnostics
to prevent the diagnostic data from being inter­
preted at the other end of the fiber-optic link.

ESCON Protocol Controller

The control of the serial data stream is performed
using a pASIC383 FPGA. This part has been pro­
grammed to manage both the transmit and receive
serial data streams.- The programming and verifica­
tion were done using VHDL (VHSIC Hardware
Description Language) using Cypress's Wwp3'"
logic synthesis and simulation tools. Complete
source code of the design VHDL modules is listed
in Appendixes A through H of this application note,
and is available for download from the Cypress Bul­
letin Board system.

The design shown in this application note is effec­
tively a logic replacement for a 'D:iquint GA9104
ESCON protocol chip. Due to the flexibility of the
pASIC family of parts, it is possible to add, replace,
or remove logic that is not optimal for a specific ap­
plication. In this design, the 8B/lOB encoders pres­
ent in the normal GA9104 were not implemented in
the pASIC383 because they are already present in
the HOTLink CY7B923/933. This allowed the en­
tire functionality to be duplicated in a 2K-equivalent
gate FPGA. The functions present in this design are

6-143

.' -:z Drive ESCON With HOTLink
TCYPRESS =============

• Transmit Path
input and output pipeline registers

parity checker and status bit

CRC generator and control state machine

Command/data mux

Command translator

• Receive Path
input and output pipeline registers

CRC checker, control state machine, and
status bit

parity generator

Command/data mux

Command translator

• Byte-Sync State Machine

Transmit Path

A block diagram of the transmit path is shown in Fig­
ure 9. Data is captured into a lO-bit register on each
rising edge of the transmit clock (CKW). The data
consists of an 8-bit data byte, a single control line
(CTXCO), and a parity bit. The CTXCO line is used
to identify whether the data on the inputs is a com­
mand code (HIGH) or a data byte (LOW). If the
latched character is a data byte, the data is simulta-

CTXCO

a: w
CTXD 8 ~ 8

C!i w a:
I-
::J c..

CTXP ~

CKW
PERR

neously presented to the CRC register, the parity
checker, and the output multiplexers. At the next
rising edge of the transmit clock, this data byte is
clocked into the CRC register, checked for proper
parity, and loaded into the output register along
with TSC_D set LOW

The detection of a parity error is only a reported
event, and occurs one cycle after the data (or com­
mand) is latched into the input register. Recovery
from detected parity errors would normally require
abnormal termination of the current frame using
the Abort delimiter.

The CRC/MUX Control block is the heart of the
transmit path logic. It monitors the CTXCO line to
determine when to

• preset the CRC register

• accumulate a CRC

• output the CRC bytes

• translate/send command codes

This block is implemented as a simple shift register
that tracks the current and previous three states of
CTXCO. These sixteen possible combinations (with
don't care states removed) and their resulting out­
puts are listed in Table 2. The VHDL source code
for this block is listed in Appendix C.

8 TXD
8

TSC D

Figure 9. pASIC Transmit Path Block Diagram

6-144

Table 2. Transmit Path Control

CTXCO Mux Select/
t+3 t+2 t+l t+0 CRC Control

X X X 0 Data

X 0 0 1 CRC High Byte

0 0 1 1 CRC Low Byte

X X 1 1 Preset CRC

X 1 0 1 Command

1 0 1 1 Command

The CRC block implements the CRC-16 function in
a byte-parallel fashion. This allows a full byte to be
accumulated in a single clock cycle. While this does
require a much larger number of XOR gates to im­
plement than a serial CRC function, it allows the de­
sign to be constructed from much slower logic. Here
the main CRC register is clocked at 20 MHz, rather
than having to operate at a 200-MHz bit-clock rate.
The VHDL source code for this function is listed in
AppendixB.

The command-translate block is not normally need­
ed for new designs. For this specific design it was
necessary to translate an existing set of command
codes to the native HOTLink command set. This
translation is quite simple with the logic reduction
performed manually for the transmit path. I;Iere an
8-bit input command is decoded into a 4-bit com­
mand field (with the upper four bits of the byte set
to zero).

The translation block actually implements circuitry
to translate all twelve command codes in the 8B/lOB

RSC_D
a:

RXQ 8 I:!
rn
(!j
w a: a:
I- w
::l ul-
a. a:~
~ U<.!l

w a:

CKR

character set. For ESCON implementations this
logic could be simplified because only half of these
(six) are actually allowed for use in ESCON ordered
sets. The VHDL source code for this function is
listed in Appendix D.

The last section in the transmit path is the output
pipeline register. This block receives the multi­
plexed output of either the input pipeline register,
the high-CRC byte, the low-CRC byte, or the trans­
lated command. It serves to keep the data pres­
ented to the HOTLink transmitter synchronous
with the transmit clock.

Receive Path

A block diagram of the receive path is shown in Fig­
ure 10. Data is captured from the HOTLink receiver
into the input register on each falling edge of the
HOTLink recovered receive clock (CKR). Note
that this could also be implemented using a rising
edge clock, but that a falling edge clock was used for
compatibility with the implementation being re­
placed.

All received data characters are clocked into the
CRC register. Like the transmit path, this function
is implemented in a byte-parallel form. The CRC
register is synchronously preset if any command
code is present in the input register. For all data
codes it accumulates the CRC remainder.

The CRC register is constantly compared for the
x'lDOF' pattern. The output of this compare is
clocked into the output register. It is forced to a
LOW for all clocks except the first command char­
acter received following a data character. This CRC
status remains valid for only one clock cycle. The

a: CRXS1
w
I-

CRXSO rn

8
(!j

8 CRXD w a:
I-
::l
a.
I-

CRXP ::l
~=O 0

Figure 10. pASIC Receive Path Block Diagram

6-145

-=-:~ .~ CYPRESS ==========D;;;;";;;;"v;;;;e;;;;E;;;;S;;;;C;;;;O;;;;N;;;;W=ith=H;;;;O;;;;T;;;;L;;;;in=k

VHDL source code for this function is listed in Ap­
pendixE.

Just as in the transmit path, a command translation
block is present in the design. This command trans­
late block is not normally needed for new designs.
For this specific design it was necessary to translate
an existing set of command codes from the native
HOTLink command set to a different set of com­
mand codes embedded in upstream logic. This
block allows the HOTLink command codes to be
translated to any host command set.

The translation block actually implements circuitry
to translate all twelve command codes in the 8B/lOB
character set. For ESCON implementations this
logic could be simplified because only half of these
(six) are actually allowed for use in ESCON ordered
sets. The VHDL source code for this function is
listed in Appendix D.

Odd parity is generated on the output data byte and
the CRXSO status bit. This allows upstream logic to
validate that the byte received is the same as that
generated by the pASIC FPGA.

The last block in the receive section is the output
pipeline register. This block receives the multi­
plexed output of either the input pipeline register or
the translated command. It serves to keep the data
presented to the upstream logic synchronous with
the receive clock.

Byte-Sync State Machine

A block diagram of the byte-sync state machine is
shown in Figure 11. The two primary structures in
the machine are a 4-bit counter and a controlling
state machine. The controlling state machine is pro­
grammed to follow the state diagram shown in Fig­
ure 2. It tracks the state of the RVS signal from the
receiver and a decode from the input register of all
C5.0 command codes (Idle characters). The four­
bit counter is used to alternately count either valid
characters (the absence of RVS) or valid Idle char­
acters, based on the state of the machine.

The present form of this state machine was designed
to duplicate the functionality of a previous imple­
mentation. Because of this it does not take into ac­
count the the additional condition of Signal De-

tected that is generated by the fiber-optic receiver.
Sufficient I/O and logic resources are still available
in the FPGA to add this into the state machine
equations.

Design Summary

The small size of the FPGA design is made possible
by the enhanced functionality present in the HOT­
Link transmitter and receiver. This removes the
need to design and implement the 8B/lOB encoders
and decoders, and provides full received character
validation. The embedded PECL-to-TTL converter
also allows a small 'footprint by removing the need
for an external conversion circuit.

The VHDL design both auto-routes and auto­
places into a pASIC383 FPGA. Because of the high­
speed operation of the pASIC cells and intercon­
nect, this design meets or exceeds all design
performance parameters, over worst case tempera­
ture and voltage, using the slow - 0 speed bin of the
pASIC383.

The 100% routability ofthe pASIC family allows the
circuit board signal routing to be improved by select­
ing pins that best match the system interconnect.
The pinouts listed in the top-level VHDL file were
selected to allow straight-through routing (no cross­
overs) of the signals between the FPGA and the
HOTLink transmitter and receiver. In addition, the

L "-
Af-----"
B f------/

RESET BYTE- I-- Cf-----"
SYNC Df------/

IDLE STATE ~ L
,----- MACHINE EN

,-b~ --1> > 4-BIT
CNTR

-
BSYNC

1
1-0:
::JW

R RVS
.--- Cl.~ ERROR DQ 1--

" ::JC!}

~[>
OW

0:
'-----

'-----

CKR

Figure 11. Byte-Sync State Machine
Block Diagram

6-146

placement of the HOTLink transmitter and receiv­
er were selected to line up with the transmit and re­
ceive halves of the fiber-optic transceiver. This pin­
out selection and interconnect are shown in
Figure 12.

CY7C383A-O

Cl
Z
(!)

Conclusions

The ESCON interface is both an elegant and power­
ful replacement for the older block-mux channels.
The use of the HOTLink serializer/deserializer
components to implement an ESCON interface
guarantees both compliance with the 8B/lOB coding
rules and all jitter and timing specifications of the
ESCON interface.

Due to the high-speed operation of the ESCON in­
terface, the byte-level control is best implemented
in hardware. The flexibility of the VHDL language
and the unlimited routing of the Cypress pASIC
family of FPGAs make them a perfect choice for
building the control state machines. While only the
lower level of the ESCON protocol is controlled in
the design documented here, much ofthe higher lev­
el control may also be implemented through the use
of either larger or additional FPGA components.

References

1. ESCON I/O Inteiface, IBM, 1990, 1991

2. HOTLink User's Guide, Cypress Semiconduc­
tor, 1995

m 3. GA9I04 Datasheet, Triquint Semiconductor,

Figure 12. HOTLink/pASIC Pinout
and Interconnect

~I Inc, 1992

Wap3 and H01Link are trademarks of Cypress Semiconductor
pASIC is a trademark of QuickLogic
ESCON is a trademark of International Business Machines, Inc.
IBM is a registered trademark of International Business Machines, Inc.

6-147

1ziIE Drive ESCON With HOTLink
CYPRESS ==============

Appendix A. Top-Level pASIC Code

ESCON Interface Control PLD
Equivalent to the Triquint GA9104 but designed
with the Cypress Semiconductor HOTLink chipset

for operation

ENTITY esc_top IS PORT (
txclk: IN BIT;
rxclkA: IN BIT;
rxclkB: IN BIT;
resetn: IN BIT;
rxq: INOUT X01Z_VECTOR(0
rsc_d: INOUT X01Z;
r_rvs: INOUT X01Z;
txd: INOUT X01Z_VECTOR(0
tsc_d: INOUT X01Z;
crxd: INOUT X01Z_VECTOR(0
ctxd: INOUT X01Z_VECTOR(0
crxsO: INOUT X01Z;
crxs1: INOUT X01Z;
ctxcO: INOUT X01Z;
bsync: INOUT X01Z;
error: INOUT X01Z;
perr: INOUT X01Z;
crxp: INOUT X01Z;
ctxp: INOUT X01Z;
loopen: INOUT X01Z;
ab_sel: INOUT X01Z);

TO 7);

TO 7);

TO 7);

TO 7);

transmit path byte clock
receiver path byte clock
receiver path byte clock
active low reset
HOTLink receiver data in
HOTLink receiver SC/D
HOTLink receiver RVS
HOTLink transmitter data out
HOTLink transmitter SC/D
receive path data output
transmit path data input
receive status 0 (command/data)
receive status 1 (CRC)
transmit control 0 (command/data)
byte sync acquired
receive bad character error
transmit-in parity error
odd parity output
odd parity input
local loopback enable
receiver A/B select

ATTRIBUTE part_name OF esc_top:ENTITY IS "C383A";
ATTRIBUTE pin_numbers OF esc_top:ENTITY IS

"txclk:17 rxclkA:53 rxclkB:54 resetn:50 rxq(7) :44 rxq(6) :43 "
& "rxq (5) : 4 2 rxq (4) : 41 rxq (3) : 40 rxq (2) : 39 rxq (1) : 38 rxq (0) : 37 "
& "rsc_d:36 r_rvs:45 txd(7) :34 txd(6) :33 txd(5) :32 txd(4) :31 "
& "txd(3) :30 txd(2) :29 txd(l) :28 txd(O) :27 tsc_d:26 crxd(O) :62 "
& "crxd(l) :61 crxd(2) :60 crxd(3) :59 crxd(4) :58 crxd(5) :57 "
& "crxd(6) :56 crxd(7) :55 ctxd(O) :15 ctxd(l) :14 ctxd(2):13 "
& "ctxd(3) :12 ctxd(4):11 ctxd(5) :10 ctxd(6):9 ctxd(7):8 "
& "crxsO:63 crxs1:64 ctxcO:21 bsync:65 error:66 perr:7 "
& "crxp:49 ctxp:6 loopen:47 ab_sel:46";

USE work.cypress.all;
USE work.rtlpkg.all;
USE work.memorypkg.all;
USE work.ttlpkg.all;
USE work.registerpkg.all;

6-148

1z~ Drive ESCON With HOTLink
CYPRESS ==============

AppendixA. Top-Level pASIC Code (continued)

USE work.iopkg.all;
USE work.mcpartspkg.all;
USE work.gatespkg.all;
USE work.resolutionpkg.all;
USE work.bv_math.all;
USE work.crc_t.all;
USE work.crc_r.all;
USE work.crc_ctl.all;
USE work.sync_det.all;
USE work.tri~code.all;
USE work.iopluspkg.all;

used to double-buffer
allow use of INV function
add in CRC transmit function
add in CRC receive function
add in transmit CRC control machine
add in SYNC detect state machine
add in command decoder section
add in enhanced I/O buffers

ARCHITECTURE escon_top
-- add internal signal
SIGNAL tclk : BIT;
SIGNAL rclk : BIT;

OF esc_top IS
equivalents of signals after I/O pads

transmit clock

SIGNAL reset : BIT;
SIGNAL HL_rx : BIT_VECTOR(O to 7);

SIGNAL HL_r_rvs : BIT;
SIGNAL HL_tx : BIT_VECTOR(O to 7);
SIGNAL HL_tsc_d : BIT;
SIGNAL HL_tsc_q : BIT;
SIGNAL sync_r : BIT;
SIGNAL c_rxd : BIT_VECTOR(O to 7);
SIGNAL c_txd : BIT_VECTOR(O to 7);
SIGNAL c_rxsO BIT;
SIGNAL
SIGNAL
SIGNAL
SIGNAL

c rxsl -
c_txcO
b_sync
r error -

BIT;
BIT;
BIT;

: BIT;
SIGNAL p_err BIT;
SIGNAL c_rxp : BIT;
SIGNAL c_txp : BIT;
SIGNAL b_Ioopen : BIT;

-- transmit internal signals
SIGNAL t_data : BIT_VECTOR(O TO 7);
SIGNAL t_mux : BIT_VECTOR(O TO 7);
SIGNAL t_comm : BIT_VECTOR(O TO 7);
SIGNAL tp_odd : BIT;
SIGNAL t-parity : BIT;

negative edge receiver clock
reset controller
HOTLink receiver data bus
HOTLink receiver SC/D
HOTlink receiver RVS
HOTLink transmitter data bus
HOTLink transmitter SC/D
clocked HOTLink transmitter SC/D
receiver byte sync
controller receive path data out
controller transmit path dataout
receive status 0 (command/data)
receive status 1 (CRC)
transmit control 0 (command/data)
byte sync acquired
receive bad character error
parity error
odd parity output
odd parity input
buffered loop enable

transmit data bus
muxed transmit data path
re-encoded transmit commands
transmit data parity input
transmit parity checker output

6-149

lzr~ Drive ESCON With HOTLink
_ CYPRESS ==============

Appendix A. Top-Level pASIC Code (continued)

SIGNAL t_CRC : BIT_VECTOR(O TO 7);
SIGNAL c_txc_O : BIT;
SIGNAL mux_hi : BIT;
SIGNAL mux_low : BIT;
sIGNAL ctxc3 : BIT;
SIGNAL t_CRC_reset : BIT;
-- receive internal signals
SIGNAL r_data : BIT_VECTOR(O TO 7);
SIGNAL r_mux : BIT_VECTOR(O TO 7);
SIGNAL rp_odd : BIT;
SIGNAL rcom_data : BIT;
SIGNAL r_com_data: multi_buffer BIT;
SIGNAL r_crc_err : BIT;
SIGNAL r_CRC_d : BIT;
SIGNAL rvs : BIT;
SIGNAL sync : BIT;
SIGNAL t_code : BIT_VECTOR(O to 7);

BEGIN

transmit CRC vector
transmit command/data
enable HI/LOW transmit CRC byte
enable LOW transmit CRC byte
3x registered c_txc_O
preset transmit CRC register

registered receiver data bus
muxed data and translated commands
receive data parity output
registered SC/D pin
double buffered registerd SC/D pin
un-registered CRC status
CRC check D-input
registered RVS signal
decoded K28.5 signal
Triquint pattern for K-codes

-- instantiate pASIC buffers/drivers on I/O signals
-- clocks
pl: CKPAD PORT MAP (txclk, tclk); -- transmit path clock
p2: HDI2PAD PORT MAP (rxclkA, rxclkB, rclk); receive path clock on

-- high drive pads
p3: HDIPAD PORT MAP (resetn ,reset);
-- data buses
-- HOTLink receiver data bus (input)
p4: INPAD PORT MAP (rxq(O), HL_rx(O));
p5: INPAD PORT MAP (rxq(l), HL_rx(l));
p6: INPAD PORT MAP (rxq(2), HL_rx(2));
p7: INPAD PORT MAP (rxq(3), HL_rx(3));
p8: INPAD PORT MAP (rxq(4), HL_rx(4));
p9: INPAD PORT MAP (rxq(5), HL_rx(5));
plO: INPAD PORT MAP (rxq(6), HL_rx(6));
pll: INPAD PORT MAP (rxq(7), HL_rx(7));
pl2: INPAD PORT MAP (rsc_d, HL_rsc_d);
pl3: INPAD PORT MAP (r_rvs, HL_r_rvs);
-- HOTLink transmitter data bus (output)
pl4: OUTPAD PORT MAP (HL_tx(O) , txd(O));
pl5: OUTPAD PORT MAP (HL_tx(l), txd(l));
pl6: OUT PAD PORT MAP (HL_tx(2.l, txd(2));
pl7: OUTPAD PORT MAP (HL_tx(3) , txd(3));
pl8: OUTPAD PORT MAP (HL_tx(4) , txd(4));
pl9: OUTPAD PORT MAP (HL_tx(5) , txd(5));

6-150

-- on negative edge

active HIGH system reset

receive SC/D
RVS

.... :Z Drive ESCON With HOTLink
'CYPRESS =============

AppendixA. Top-Level pASIC Code (continued)

p20: OUT PAD PORT MAP (HL_tx(6) , txd(6»;
p2i: OUT PAD PORT MAP (HL_tx(7) , txd(7»;
p22: OUTPAD PORT MAP (HL_tsc_q, tsc_d);
-- controller transmit data bus (input)
p24: INPAD PORT MAP (ctxd(O), c_txd(O»;
p25: INPAD PORT MAP (ctxd(i), c_txd(i»;
p26: INPAD PORT MAP (ctxd(2), c_txd(2»;
p27: INPAD PORT MAP (ctxd(3), c_txd(3»;
p28: INPAD PORT MAP (ctxd(4), c_txd(4»;
p29: INPAD PORT MAP (ctxd(5), c_txd(5»;
p30: INPAD PORT MAP (ctxd(6), c_txd(6»;
p3i: INPAD PORT MAP (ctxd(7), c_txd(7»;
-- controller receiver data bus (output)
p34: OUT PAD PORT MAP (c_rxd(O), crxd(O»;
p35: OUT PAD PORT MAP (c_rxd(i), crxd(i»;
p36: OUT PAD PORT MAP (c_rxd(2), crxd(2»;
p37: OUT PAD PORT MAP (c_rxd(3), crxd(3»;
p38: OUT PAD PORT MAP (c_rxd(4), crxd(4»;
p39: OUT PAD PORT MAP (c_rxd(5), crxd(5»;
p40: OUT PAD PORT MAP (c_rxd(6), crxd(6»;
p4i: OUT PAD PORT MAP (c_rxd(7), crxd(7»;
-- misc input pads
p44: INPAD PORT MAP (loopen, b_loopen);
p45: INPAD PORT MAP (ctxcO, c_txcO);
p49: INPAD PORT MAP (ctxp, c_txp);
-- misc output pads

loopback enable
transmit control 0
odd parity input

p50: OUT PAD PORT MAP (c_rxsO, crxsO); receiver status 0 output
p5i: OUT PAD PORT MAP (c_rxsi, crxsi); receiver status 1 output
p53: OUTPAD PORT MAP (b_sync, bsync); byte sync acquired
p54: OUT PAD PORT MAP (r_error, error); received bad character
p55: OUT PAD PORT MAP (p_err, perr); parity error
p56: OUT PAD PORT MAP (c_rxp, crxp); odd parity output
p57: OUTPAD PORT MAP (INV(b_loopen) ,ab_sel); -- HOTLink receiver AlB select

-------------- TRANSMIT PATH --

-- add in transmit path input data pipeline register
tia: DFF PORT MAP (c_txd(O) , tclk, t_data(O»;
tib: DFF PORT MAP (c_txd(i) , tclk, t_data(i»;
tic: DFF PORT MAP (c_txd(2) , tclk, t_data(2»;
tid: DFF PORT MAP (c_txd(3) , tclk, t_data(3» ;
tie: DFF PORT MAP (c_txd(4) , tclk, t_data(4»;
tif: DFF PORT MAP (c_txd(5) , tclk, t_data(5»;
tig: DFF PORT MAP (c_txd(6) , tclk, t_data(6» ;
tih: DFF PORT MAP (c_txd(7) , tclk, t_data(7» ;

6-151

2L~YPRESS~~~~~~~~~~D=ri=ve=E=S=C=O=N=W~ith~H=O=T=L=in~k
Appendix A. Top-Level pASIC Code (continued)

-- add parity and control bits
tlj: DFF PORT MAP (c_txp, tclk, tp_odd);
tlk: DFF PORT MAP (c_txcO, tclk, c_txc_O);

-- add transmit data parity checker (10 bit parity tree)
t-parity <= NOT(t_data(O) XOR t_data(l) XOR t_data(2) XOR t_data(3)

XOR t_data(4) XOR t_data(5) XOR t_data(6) XOR t_data(7)
XOR tp_odd XOR c_txc_O) ;

-- add parity check F-F
t2: DFF PORT MAP (

t-parity,
tclk,
p_err) ;

-- add transmitter CRC generator
t3: crc_tx PORT MAP (

tclk,
t_CRC_reset,

parity of inputs
transmit clock
output parity status

transmit clock
from tx CRC control state machine

c_txc_o, from tx input register
mux_hi, enable low byte onto bus
t_data, transmit data bus
t_CRC); a-bit transmit CRC output vector

t_CRC_reset <= '0' WHEN (c_txc_O = '0' OR mux_hi = '0') ELSE '1';

-- add transmit output register
t5a: DFF PORT MAP (t_mux(O), tclk, HL_tx(O»;
t5b: DFF PORT MAP (t_mux(l) , tclk, HL_tx(l»;
t5c: DFF PORT MAP (t_mux(2) , tclk, HL_tx(2»;
t5d: DFF PORT MAP (t_mux(3) , tclk, HL_tx(3»;
t5e: DFF PORT MAP (t_mux(4) , tclk, HL_tx(4»;
t5f: DFF PORT MAP (t_mux(5) , tclk, HL_tx(5»;
t5g: DFF PORT MAP (t_mux(6) , tclk, HL_tx(6»;
t5h: DFF PORT MAP (t_mux(7), tclk, HL_tx(7»;
HL_tsc_d <= (mux_low AND c_txc_O) OR

(c_txc_O AND mux_hi AND ctxc3);
-- add in SC/D output bit
t5j: DFF PORT MAP (HL_tsc_d, tclk, HL_tsc_q);

-- add in transmit CRC supervisor machine
-- contains the double pipelined C/D bit
t6: tx_ctl_crc PORT MAP (

tclk, transmit clock
c_txc_O, registerd command/data control bit
mux_hi, registered c_txc_O
mux_low); 2x registered c_txc_O

6-152

· -', ~ Drive ESCON With HOTLink
'CYPRESS ================

AppendixA. Top-Level pASIC Code (continued)

-- transmit path data/command/CRC mux
t8: PROCESS (c_txc_O, mux_low, mux_hi)
BEGIN

IF (c_txc_O = '0') THEN
t_mux <= t_data;

ELSIF (c_txc_O = '1' AND ((mux_low = '0' AND mux_hi='O') OR
(ctxc3 = '0' AND mux_low = '0' AND mux_hi = '1'))) THEN

-- output CRC bytes
t_mux <= t_CRC;

ELSE
-- output re-encoded command codes
t_mux <= t_comm;

END IF;
END PROCESS t8;

-- Add in transmit command decoder
t9: t_decode PORT MAP (t_data, t_comm); -- translate to HOTLink commands

-------------- RECEIVE PATH ---

-- add in receive path input data pipeline register
rIa: DFF PORT MAP (HL_rx(O) , rclk, r_data(O)) ;
rIb: DFF PORT MAP (HL_rx(l) , rclk, r_data(I)) ;
rIc: DFF PORT MAP (HL_rx(2) , rclk, r_data (2)) ;
rId: DFF PORT MAP (HL_rx(3) , rclk, r_data(3)) ;
rle: DFF PORT MAP (HL_rx(4) , rclk, r_data(4)) ;
rlf: DFF PORT MAP (HL_rx(5) , rclk, r_data(5)) ;
rIg: DFF PORT MAP (HL_rx(6) , rclk, r_data(6)) ;
rlh: DFF PORT MAP (HL_rx(7) , rclk, r_data(7)) ;
rlj: DFF PORT MAP (HL_rsc_d, rclk, rcom_data) ;
rlk: DFF PORT MAP (HL_r_rvs, rclk, rvs) ;
-- create double buffered signals
dbl: BUF PORT MAP (rcom_data, r_com_data) ;
db2: BUF PORT MAP (rcom_data, r_com_data) ;

-- receive path output register
r2a: DFF PORT MAP (r_mux(O), rclk, c_rxd(O));
r2b: DFF PORT MAP (r_mux(l), rclk, c_rxd(I));
r2c: DFF PORT MAP (r_mux(2) , rclk, c_rxd(2));
r2d: DFF PORT MAP (r_mux(3), rclk, c_rxd(3));
r2e: DFF PORT MAP (r_mux(4), rclk, c_rxd(4));
r2f: DFF PORT MAP (r_mux(5), rclk, c_rxd(5));
r2g: DFF PORT MAP (r_mux(6), rclk, c_rxd(6));

-- add SC/D bit and RVS
-- registerd SC/D
-- registered RVS signal

r2h: DFF PORT MAP (r_mux(7), rclk, c_rxd(7)) ;-- command/data bit and rvs
r2j: DFF PORT MAP (r_com_data, rclk, c_rxsO);
r2k: DFF PORT MAP (rvs, rclk, r_error);

6-153

-"~ Drive ESCON With HOTLink
..",.....,j CYPRESS ================

AppendixA. Top-Level pASIC Code (continued)

-- add receive parity generate
r3: TTL180 PORT MAP (

r_mux(O) , r_mux(l) , r_mux(2) , r_mux(3) , r_mux(4) , r_mux(5) ,
r_mux(6) , r_mux(7) , INV(r_com_data), r_com_data, rp_odd, open);

r3a: DFF PORT MAP (rp_odd, rc1k, c_rxp);

-- add in receive eRC block
r4: crc rx PORT MAP (

rclk,
r_com_data,
r_data,
r_crc_err) ;

-- add CRC check register

receive path clock
enable only for data bytes
receiver data bus
receive path crc status

r5: DFF PORT MAP (r_CRC_d, rclk, c_rxs1);
r_CRC_d <= r_crc_err AND r_com_data AND (NOT(c_rxsO));

-- add in byte-sync state machine
r6: byte_syn PORT MAP (

rclk,
reset,
rvs ,
sync,
b_sync) ;

receiver clock
system reset
receiver RVS signal
decoded k28.5
byte sync acquired

sync <= '1' WHEN (r_com_data=' l' AND r_data(O TO 3)="1010") ELSE '0';

-- add command transposition logic and mux
r7: PROCESS (r_com_data, r_data(O) , r_data(l) , r_data(2) , r_data(3))
BEGIN

IF (r_com_data='O') THEN
r_mux <= r_data;

ELSE
r_mux <= t_code;

END IF;
END PROCESS r7;

-- add in command decoder

-- add receiver path command encoder
-- t_code is output vector
r8: t_encode PORT MAP (

r_data,
t_cod!2) ;

END escon_top;

HOTLink data bus
decoded Triquint commands

6-154

~ Drive ESCON With HOTLink
~)rCYPRESS===============================

Appendix B. Transmit Path CRC Generator

transmit l6-bit CCITT CRC for use in data mover

When sequencing bytes out, the qt(15)-qt(B) byte must be sent out first.
Per the ESCON spec, the CRC is the l's compliment (inversion) of the
qt [15 : 01 bus.

PACKAGE crc_T IS
COMPONENT crc_tx PORT
clk,
preset: IN
enable: IN
mux_hi: IN
dt: IN
~out: OUT
) ;

END COMPONENT;
END crc_T;

BIT;
BIT;
BIT;
BIT_VECTOR
BIT_VECTOR

use work.rtlpkg.all;
use work.cypress.all;

ENTITY crc tx IS PORT -
clk,
preset: IN BIT;
enable: IN BIT;
mux_hi: IN BIT;
dt: IN BIT_VECTOR
~out: OUT BIT_VECTOR
) ;

END crc_tx;

system clock
synchronous preset, set to all is
enable when not a command byte
enable high-byte onto bus
(0 TO 7); Input data byte
(0 TO 7) -- CRC register

system clock
synchronous reset, set to all is
enable when not a command byte
enable high CRC byte out
(0 TO 7); Input data byte
(0 TO 7) -- CRC register

ARCHITECTURE ccitt_tx OF crc_tx IS
SIGNAL qt: BIT_VECTOR (0 TO 15); -- CRC register
BEGIN
procl: PROCESS BEGIN

WAIT UNTIL (clk='l');
IF (preset='l') THEN

qt <= x"FFFF"; Preset to l's for reset
ELSIF (enable='l') THEN

qt <= qt; keep same value
ELSE

qt(O) <= qt(B) XOR qt(12) XOR dt(3) XOR dt(7);
qt(l) <= qt(9) XOR qt(13) XOR dt(2) XOR dt(6);
qt(2) <= qt(IO) XOR qt(14) XOR dt(l) XOR dt(5);
qt(3) <= qt(ll) XOR qt(15) XOR dt(O) XOR dt(4);

6-155

-=..

=;; -.~ Drive ESCON With HOTLink
~jCYPRESS ================

Appendix B. Transmit Path CRC Generator (continued)

qt(4} <= qt(12} XOR dt(3};
qt(5} <= qt(13} XOR qt(12} XOR qt(8} XOR dt(7} XOR dt(3} XOR dt(2};
qt(6} <= qt(14} XOR qt(13} XOR qt(9} XOR dt(l}XOR dt(2} XOR dt(6};
qt(7} <= qt(15} XOR qt(14} XOR qt(lO} XOR dt(O} XOR dt(l} XOR dt(5};
qt(8} <= qt(15} XOR qt(ll} XOR qt(O} XOR dt(O} XOR dt(4};
qt(9} <= qt(12} XOR qt(l} XOR dt(3};
qt(lO} <= qt(13} XOR qt(2} XOR dt(2};
qt(ll} <= qt(14) XOR qt(3) XOR dt(l);
qt(12) <= qt(15) XOR qt(12) XOR qt(8) XOR qt(4)

XOR dt(O) XOR dt(3) XOR dt(7);
qt(13} <= qt(13} XOR qt(9) XOR qt(5) XOR dt(2} XOR dt(6};
qt(14} <= qt(14} XOR qt(lO} XOR qt(6} XOR dt(l) XOR dt(5);
qt(15} <= qt(15} XOR qt(ll} XOR qt(7} XOR dt(O) XOR dt(4);

END IF;
END PROCESS;

-- mux and Invert CRC and swap bits
mI: PROCESS (mux_hi)
BEGIN
-- Mux out high and low bytes and transpose bit order
IF mux_hi = '0' THEN

~out(7} <= not qt(8);
~out(6} <= not qt(9};
~out(5} <= not qt(lO};
~out(4} <= not qt(ll};
~out(3} <= not qt(12};
~out(2} <= not qt(13};
~out(l} <= not qt(14};
~out(O} <= not qt(15};

ELSE
~out(7} <= not qt (O);
~out(6} <= not qt(l) ;
~out(5} <= not qt(2} ;
~out(4} <= not qt(3} ;
~out(3} <= not qt(4} ;
~out(2} <= not qt(5} ;
~out(l} <= not qt (6);
~out(O} <= not qt (7);

END IF;
END PROCESS mI;

6-156

~ Drive ESCON With HOTLink
~)rCYPRESS===============================

Appendix C. Transmit Path CRC Controler

Control transmit CRC function

All actions are based on the CTXCO input. This input is active
at the end of every data sequence and is a 1 (HIGH) for all
non-data bytes.

PACKAGE crc_ctl IS
COMPONENT tx_ctl_crc PORT (
clk,
ctxcO: IN BIT;
ctxcl,
ctxc2,
ctxc3: OUT BIT);
END COMPONENT;

END crc_ctl;

ENTITY tx_ctl_crc IS PORT
clk,
ctxcO: IN BIT;
ctxcl,
ctxc2,
ctxc3: OUT BIT);

END tx_ctl_crc;

USE work.cypress.all;
USE work.rtlpkg.all;

SIGNAL cql: BIT;
SIGNAL cq2: BIT;

BEGIN

transmit clock
command/data control bit
registered ctxcO
2x registered ctxcO
3x registered ctxcO

transmit clock
command/data control bit
registered ctxcO
2x registered ctxcO
3x registered ctxcO

single registered c/d
double registered c/d

-- Instantiate DFF to track status of ctxcO bit
dl: DFF PORT MAP (ctxcO, clk, cql);
d2: DFF PORT MAP (cql, clk, cq2);
d3: DFF PORT MAP (cq2, clk, ctxc3);

-- assign outputs
ctxcl <= cql;
ctxc2 <= cq2;

6-157

Appendix D. Command Mapper

Command decode/translate between the Triquint GA9104 and HOTLink
K-code command sets

Triquint/Cypress Command mapping
GA9104 HOTLink HEX
HEX BIN TX RX BIN

k2B.0* 1C 00011100 00 00000000
k2B.1 3C 00111100 01 00000001
k2B.2 5C 01011100 02 00000010
k2B.3* 7C 01111100 03 00000011
k2B.4 9C 10011100 04 00000100
k2B.5 BC 10111100 05,E1,E2 00000101
k2B.6 DC 11011100 06 00000110
k2B.7 FC 11111100 07,27,47 00000111
k23.7* F7 11110111 OB 00001000
k27.7* FB 11111011 09 00001001
k29.7* FD 11111101 OA 00001010
k30.7* FE 11111110 OB 00001011
* - Illegal for use in ESCON operations

PACKAGE tri~code IS
COMPONENT t_encode PORT (
c code IN BIT_VECTOR(O TO 7);
t_code : OUT BIT_VECTOR(O TO 7)
) ;

END COMPONENT;

COMPONENT t_decode PORT (
t_data IN BIT_VECTOR(O TO 7);
t_comm : OUT BIT_VECTOR(O TO 7)
) ;

END COMPONENT;
END tri~code;

Cypress HOTLink C-codes
Triquint K-codes

Triquint K-codes
Cypress HOTLink C-codes

USE work.cypress.all;
USE work.table_bv.all; -- use for command encoder

ENTITY t_encode IS PORT
c_code IN BIT_VECTOR(O TO 7);
t_code : OUT BIT_VECTOR(O TO 7)
) ;

END t_encode;

Cypress HOTLink C-codes
Triquint K-codes

6-158

Drive ESCON With HOTLink

Appendix D. Command Mapper (continued)

ARCHITECTURE t_encoder OF t_encode IS
use TTF function to translate from one command set to the other

-- Command constants
-- T-codes (output vectors)
CONSTANT K28 0: x01_VECTOR(0 TO 7) := "00111000" ;
CONSTANT K28 1· - . x01_VECTOR(0 TO 7) .- "00111100" ;
CONSTANT K28 - 2 : x01_VECTOR(0 TO 7) := "00111010";
CONSTANT K28 - 3 : x01_VECTOR(0 TO 7) := "00111110" ;
CONSTANT K28 - 4 : x01_VECTOR(0 TO 7) := "00111001" ;
CONSTANT K28 5 : x01_VECTOR(0 TO 7) := "00111101" ;
CONSTANT K28_6 : x01_VECTOR(0 TO 7) .- "00111011" ;
CONSTANT K28 - 7 : x01_VECTOR (0 TO 7) .- "00111111" ;
CONSTANT K23 - 7 : x01_VECTOR(0 TO 7) := "11101111" ;
CONSTANT K27 - 7 : x01_VECTOR(0 TO 7) := "11011111" ;
CONSTANT K29 - 7 : x01_VECTOR(0 TO 7) := "10111111" ;
CONSTANT K30 - 7 : x01_VECTOR(0 TO 7) .- "01111111" ;
-- C-codes (input vectors)
CONSTANT COO 0: x01_VECTOR(0 TO 7) := "OOOOxxxx";
CONSTANT COl - 0: xO 1_ VECTOR (0 TO 7) := "1000xxxO";
CONSTANT CO2 0: x01_VECTOR(0 TO 7) := "0100xxxO";
CONSTANT C03 - 0: xO 1_ VECTOR (0 TO 7) := "1100xxxx";
CONSTANT C04 - 0: xO 1_ VECTOR (0 TO 7) .- "0010xxxx";
CONSTANT C05 0: x01_VECTOR(0 TO 7) := "1010xxxx";
CONSTANT C06 0: x01_VECTOR(0 TO 7) := "0110xxxx";
CONSTANT C07 0: x01_VECTOR(0 TO 7) := "1110xxxx";
CONSTANT C08 - 0: x01_VECTOR(0 TO 7) .- "OOOlxxxx";
CONSTANT C09 - 0: x01_VECTOR(0 TO 7) := "1001xxxx" ;
CONSTANT C10 - 0: xO 1_ VECTOR (0 TO 7) := "0101xxxx";
CONSTANT C11 - 0: x01_VECTOR(0 TO 7) .- "1101xxxx";
CONSTANT C12 O· - . x01_VECTOR(0 TO 7) .- "OOllxxxx";
-- errors and special mappings
CONSTANT C01_7: x01_VECTOR(0 TO 7) := "1000xxx1";
CONSTANT C02_7: x01_VECTOR(0 TO 7) := "0100xxx1";

CONSTANT table: x01_TABLE(0 TO 13, 0 TO 15) := (
Command

Input Output

COO 0 & K28 _0,
COl 0 & K28_1,
CO2 0 & K28_2,
C03 - 0 & K28_3,
C04_0 & K28_4,
C05_0 & K28 _5,
C06 0 & K28 _6,
C07 0 & K28_7,

6-159

-- command mappings

=:; ~ Drive ESCON With HOTLink
.,CYPRESS ================

Appendix D. Command Mapper (continued)

C08_0 & K23 _7,
C09_0 & K27 _7,
C10 - 0 & K29 _7,
Cll - 0 & K30 _7,
COl 7 & K28 _5,
CO2 7 - & K28_5};

BEGIN
p1: PROCESS (c_code)

BEGIN
t_code <= ttf(table, (c_code});

END PROCESS p1;
END t_encoder;

USE work.cypress.all;

ENTITY t_decode IS PORT
t_data IN BIT_VECTOR(O TO 7};
t_cornm : OUT BIT_VECTOR(O TO 7}
} ;

END t_decode;

Triquint K-codes
Cypress HOTLink C-codes

ARCHITECTURE t_decoder OF t_decode IS

BEGIN

t_comm(7}
t_comm(6}
t_comm(5}
t_comm(4}

<=
<=
<=
<=

, 0' i
'0 ' ;
'0 ' i

IO'i
t_comm(3) <=
t_comm(2) <=

'0' WHEN (t_data(O TO 1) = "OO"} ELSE '1';
'1' WHEN «t_data(7) = '1'}
AND (t_data(O TO 1) = "~O"}} ELSE '0';

t1: PROCESS (t_data(O), t_data(l}, t_data(6},
t_data(5}, t_data(3}, t_data(2}}

BEGIN
IF (t_data(O TO 1) = "OO"} THEN

t_comm(l} <= t_data(6};
t_cornm(O) <= t_data(5};

ELSE
t_comm(l) <= t_data(3} AND t_data(2};
t_cornm(O) <= t_data(2} AND t_data(O};

END IF;
END PROCESS t1;

END t_decoder;

6-160

i-~ Drive ESCON With HOTLink
,CYPRESS ==============

Appendix E. Receive Path CRC Checker

receiver 16-bit CCITT CRC for use in data mover
PACKAGE crc_r IS

COMPONENT crc_rx PORT
-- system clock clk,

preset: IN BIT; -- synchronous reset, set to all Is
dr: IN BIT_VECTOR (0 TO 7); -- Input data byte
crc_err: OUT
) ;

BIT -- error detected

END COMPONENT;
END crc_r;

use work.rtlpkg.all;
use work.cypress.all;

ENTITY crc_rx IS PORT
clk, -- system clock
preset: IN BIT; -- synchronous preset, set to all Is
dr: IN BIT_VECTOR (0 TO 7); -- Input data byte
crc_err: OUT BIT -- error detected
) ;

END crc_rx;

ARCHITECTURE ccitt_rx OF crc_rx IS
-- declare CRC register
SIGNAL qr: BIT_VECTOR (0 TO 15); -- CRC register
ATTRIBUTE POLARITY OF qr:SIGNAL IS PL_KEEP; -- maintain polarity f
BEGIN
procl: PROCESS BEGIN

WAIT UNTIL (clk='l');
IF (preset='l') THEN

qr <= x"FFFF"; -- Preset to l's for reset
ELSE

qr(O) <= qr(8) XOR qr(12) XOR dr(3) XOR dr(7);
qr(l) <= qr(9) XOR qr(13) XOR dr(2) XOR dr(6);
qr(2) <= qr(10) XOR qr(14) XOR dr(l) XOR dr(5);
qr(3) <= qr(ll) XOR qr(15) XOR dr(O) XOR dr(4);
qr(4) <= qr(12) XOR dr(3);
qr(5) <= qr(13) XOR qr(12) XOR qr(8) XOR dr(7) XOR dr(3) XOR dr(2);
qr(6) <= qr(14) XOR qr(13) XOR qr(9) XOR dr(l) XOR dr(2) XOR dr(6);
qr(7) <= qr(15) XOR qr(14) XOR qr(10) XOR dr(O) XOR dr(l) XOR dr(5);
qr(8) <= qr(15) XOR qr(ll) XOR qr(O) XOR dr(O) XOR dr(4);
qr(9) <= qr(12) XOR qr(l) XOR dr(3);
qr(10) <= qr(13) XOR qr(2) XOR dr(2);
qr(ll) <= qr(14) XOR qr(3) XOR dr(l);

6-161

~

~rl. Drive ESCON With HOTLink
~# CYPRESS ===============

qr(12)

qr(13)
qr(14)
qr<+5)

END IF;
END PROCESS;

Appendix E. Receive Path CRC Checker (continued)

<= qr(15) XOR qr(12) XOR qr(8) XOR qr(4)
XOR dr(O) XOR dr(3) XOR dr(7);

<= qr(13) XOR qr(9) XOR qr(5) XOR dr(2) XOR dr(6);
<= qr(+4) XOR qr(lO) XOR qr(6) XOR dr(l) XOR dr(5);
<= qr(15) XOR qr(ll) XOR qr(7) XOR dr(O) XOR dr(4);

-- Need to look for a lDOF at the receiver
-- output is LOW when lDOF present
crc_err <= NOT(qr~P» OR NOT(qr(l» OR NOT(qr(2» OR NOT(qr(3»

OR qr(4) OR qr(5) OR qr(6) OR qr(7)
OR NOT(qr(8» OR qr(9) OR NOT(qr(lO» OR NOT(qr(ll»
OR NOT(qr(12» OR qr(13) OR qr(14) OR qr(15);

6-162

.~ Drive ESCON With HOTLink
CYPRESS ==============

Appendix E Byte Sync Controller

B_SYNC.VHD - byte synchronization state machine

This machine has a five state supervisor machine that tracks
the number of errors detected within a specific period of time.
It also tracks valid characters and SYNC codes.

PACKAGE sync_det IS
COMPONENT byte_syn PORT
clk,
reset,
error,
sync: IN BIT;
bsync: OUT BIT);
END COMPONENT;

END sync_det;

USE work.cypress.all;
USE work.rtlpkg.all;
USE work.counterpkg.all;

ENTITY byte_syn IS PORT (
clk,
reset,
error,
sync: IN BIT;
bsync: OUT BIT);

END byte_syn;

Receiver clock
system reset
bad character
valid k28. 5
byte-sync acquired

Receiver clock
system reset
bad character
valid k28. 5
byte-sync acquired

ARCHITECTURE archl OF byte_syn IS
-- declare internal signals
SIGNAL ctr_en: BIT; counter enable

counter reset
interface in sync
4-bit counter vector

SIGNAL ctr_reset: BIT;
SIGNAL bbsync: BIT;
SIGNAL cnt: BIT_VECTOR(D TO 3);
-- declare state machine
TYPE sync_state IS (

stateD,
statel,
state2,
state3,
state4);

reset or errors, waiting for SYNC codes
no errors, in sync
1 error, in sync
2 errors, in sync
3 errors, in sync

declare state machine encoding, state variable, and initial state
SIGNAL s_state sync_state:= stateD;

6-163

"1ai/E Drive ESCON With HOTLink
CYPRESS ==============

Appendix F. Byte Sync Controller (continued)

BEGIN
proel: PROCESS BEGIN

WAIT UNTIL (elk='l');
IF (reset='l') THEN

s_state <= stateD;
ELSE

CASE s_state IS
WHEN stateD =>

-- don't even look yet

IF ((ent="llll") AND (error='D')) THEN
s_state <= statel;

ELSE
s_state <= stateD;

END IF;
WHEN statel =>

IF (error='l') THEN
s_state <= state2;

ELSE
s_state <= statel;

END IF;
WHEN state2 =>

IF (error='l') THEN
s_state <= state3;

ELsrF (ent="llll") THEN
s_state <= statel;

ELSE
s_state <= state2;

END IF;
WHEN state3 =>

IF (error='l') THEN
s_state <= state4;

ELSIF (ent="llll") THEN
s_state <= state2;

ELSE
s_state <= state3;

END IF;
WHEN state4 =>

IF (error='l') THEN
s_state <= stateD;

ELSIF (ent="llll") THEN
s_state <= state3;

ELSE
s_state <= state4;

END IF;
WHEN others =>

s_state <= stateD;
END CASE;

END IF;
END PROCESS procl;

6-164

~ Drive ESCON With HOTLink
_;CYPRESS ================

Appendix E Byte Sync Controller (continued)

-- build 4-bit counter with enable and reset
ctr_en <= '1' WHEN ((s_state=stateO AND reset='O' AND sync='l')

OR (s_state=state2)
OR (s_state=state3)
OR (s_state=state4»
ELSE' 0' ;

ctr_reset <= '1' WHEN ((reset='l') OR (error='l'» ELSE '0';

-- add standard counter module
ctr1: cntr4 PORT MAP (

one,
open,
ctr_en,
zero,
zero, zero, zero, zero,
clk,
ctr_reset,
cnt(3), cnt(2),
cnt(l), cnt(O)
) ;

-- assign output

-- contains the 4 bits of ctr1
set carry in always active
carry out unused
counter enable
never load this counter
load inputs are not used
counter clock
will need to expand this signal

counter holding register inputs

bbsync <= '0' WHEN (s_state=stateO) ELSE '1';
d1: DFF PORT MAP (bbsync, clk, bsync);

END arch1;

6-165

~ Drive ESCON With HOTLink
_;CYPRESS ================

Appendix G. I/O Support

IOPLUS.VHD

Create enhanced I/O buffer that is not part of the io.vhd
package for the pASIC 380 family

PACKAGE iopluspkg IS
COMPONENT HDI2PAD PORT

pO IN BIT;
pl : IN BIT;
qn : OUT BIT) ;

END COMPONENT;
END iopluspkg;

USE work.cypress.all;
USE work.rtlpkg.all;
USE work.iopkg.all;
USE work.resolutionpkg.all;

ENTITY HDI2PAD IS PORT (
pO IN BIT;
pl : IN BIT;
qn : OUT BIT);

END HDI2PAD;

ARCHITECTURE archHDI2PAD OF HDI2PAD IS

SIGNAL 0 : multi_buffer BIT;

BEGIN

uO: PAINCELL PORT MAP
ul: PAINCELL PORT MAP
qn <= 0;

END archHDI2PAD;

ip => pO, ini => 0, iz => OPEN);
ip => pl, ini => 0, iz => OPEN);

6-166

Using the CY7B923 as an ECL Clock Source

Abstract

This application note details the use of an inexpen­
sive data communications transmitter device as a
high-precision, flexible, and programmable Emit­
ter-Coupled-Logic (ECL) or Positive-Emitter­
Coupled Logic (PECL) clock source. Issues con­
cerning clock characteristics, stability, distribution
and design techniques are discussed in detail. In­
formation is provided to allow the user to configure
the device for a variety of applications.

The Ideal Clock Circuit

The ideal clock source would provide the designer
with several attributes that would benefit the
eventual design. It would be flexible in that it would
provide for a broad range of frequency coverage. Its
frequency would be stable from one cycle to the
next, its pulsewidth would be stable over time and
both of these parameters would be consistent over
temperature and voltage variations. The clock out­
put transition time from one level to another (the
rise and fall time) would be short in order to mini­
mize the skew caused by sampling threshold effects
at the receive end of the clock. It would be capable
of sourcing significant amounts of current into mul­
tiple single-ended or differential PECL/ECL loads
with a minimum amount of output skew. It would
provide for relatively low power consumption when
compared to PECL/ECL clock sources currently
available. And lastly, it would be a low-cost device,
available in a variety of packages for compatibility
with commercial, industrial, military, and surface­
mount applications. The device makes use of an in­
expensive TTL clock oscillator instead of the expen­
sive PECL/ECL devices typically used. The Cypress
CY7B923 HOTLink'M Transmitter, although not

specifically designed as an ECL clock source, pro­
vides the features to address these needs in a highly
effective manner.

HOTLink Transmitter Features and
Specifications

The HOTLink chip set is comprised of a pair of
high-speed point-to-point communications building
blocks that operate over high-speed serial data links
(fiber-optic, coaxial cable, and twisted/parallel pair)
at 160 to 330 Mbits/second. The HOTLink pair con­
sists of the CY7B923 Transmitter and the CY7B933
Receiver. The transmitter features a set of three
positive lOOK (referenced to +5) ECL differential
output buffers, a data input register, an encoder to
encode 8-bit data into a lO-bit word, a built-in self­
test (BIST) pattern generator, a serializer to con­
vert parallel data to serial data, and a clock genera­
tor to produce a bit-rate clock from the incoming
word-rate clock input. These features of the
CY7B923, with the exception of the encoder and
built-in delf-yest circuits, make it ideal for use as a
clock generator device.

CY7B923 Block Diagram Description

The HOTLink Transmitter is designed to transform
information from a word-rate or byte-rate parallel
format into a high-speed serial format. A block dia­
gram of the CY7B923 HOTLink Transmitter is
shown in Figure 1 and a description of each module
follows.

Clock Generator

The clock generator contains a phase-locked loop
(PLL) that multiplies a word-rate reference clock
(CKW) by a factor of ten to produce the serial bit-

6-167

kf ~ Using the CY7B923 as an ECL Clock Source
~~ CYPRESS ================

Figure 1. CY7B923 HOTLink Transmitter Logic
Block Diagram

rate. Data is clocked into the input register on the
rising edge of CKW The duty cycle of CKW does
not affect the outgoing serial-bit stream since the
PLL is capable of maintaining proper phase and
duty cycle on its own. The clock generator also pro­
duces a signal called RP (Read Pulse) and is used to
read new data from a FIFO in a data communica­
tions application. RP is not used when the HOT­
Link 1tansmitter is used as a clock source.

Input Register

The input register captures the data present at the
Da through Dj inputs at the rising edge of the CKW
clock. This parallel data is then loaded directly into
the shifter for serialization if the encoder is dis­
abled.

Encoder

The encoder is used to encoded the incoming data
from the input register into an 8B/lOB format for
ANSI X3T9.3 (Fibre Channel) or IBM® ESCON 1M

applications only. In unencoded mode, the data
passes directly from the input register into the shift­
er. This application of the HOTLink 1tansmitter as
an ECL clock source uses the CY7B923 in unen­
coded mode.

Shifter

The shifter accepts the the lO-bit word which was
loaded into the input register. With the encoder dis­
abled, the data is converted from parallel to serial

with the data present on input pin Da (pin 19)
shifted out first.

Output

The device supports three PECL (lOOK referenced
to + 5V) outputs. These outputs provide differen­
tial (true and complement) capability, offer an en­
able pin (the FOTO pin for output pairs A and B)
and the ability to drive 50Q transmission lines di­
rectly.

Test Logic

The test logic is not used in the ECL clock source ap­
plication. It contains the logic to generate the built­
in self-test pattern that is used to test the integrity of
a data communications interface and link.

Fulfilling the Requirements

Frequency Range

Since the HOTLink transmitter was designed to
communicate or send data at a rate of 160 Mbps to
330 Mbps, it is ideally suited for the application of
generating precise transitions or clock edges over a
broad range of frequencies. As the transmitter op­
erates, data in the form of lO-bit words are loaded
into the serializer of the CY7B923 at the word-rate
clock intervals. The on-board PLL takes the incom­
ing word-rate clock and multiplies it by a factor of
ten to generate the rate at which the individual bit
transitions will be shifted out by the serializer. The
encoder function is disabled when the transmitter is
used as a clock source to provide maximum control
of the data patterns being shifted out. The two pri­
mary factors that affect clock output frequency are
word-rate clock frequency and the number of bit
transitions within the lO-bit word. See Equation 1
below:

clock out == (word-rate clock) (# of transitions) / 2 Eq. 1

Where:

clock out = clock frequency present at the outputs
of the transmitter

word-rate clock = rate at which the lO-bit words are
loaded into the serializer

6-168

~~ Using the CY7B923 as an ECL Clock Source
.'CYPRESS ================

Table 1.

Data Pattern Word Rate Duty Cycle Bit 1ransitions Clock Frequency

0000011111 16 MHz 50% 2 16 MHz (Min. Rate)

0000001111 25 MHz 40% 2 25 MHz

0011100111 16 MHz 60% 4 32 MHz

0000011111 33 MHz 50% 2 33 MHz

0000100001 25 MHz 20% 4 50 MHz

0001100011 33 MHz 40% 4 66 MHz

0101010101 16 MHz 50% 10 80 MHz

0101010101 25 MHz 50% 10 125 MHz

0101010101 33 MHz 50% 10 165 MHz (Max. Rate)

NOTE: The minimum duty cycle is 10% and the maximum duty cycle is 90%. The minimum clock out
is 16 MHz and the maximum clock out is 165 MHz.

of transitions = the number of transitions be­
tween one logic level and another

Assume a 20-MHz word-rate clock and a data pat­
tern of 0000011111:

Now, assume a data pattern of 0101010101:

clock out = (20 MHz) (10 transitions) / 2 = > 100 MHz

The duty cycle, or relationship of clock HIGH time
to clock LOW time, can also be affected by the data
pattern loaded into the serializer. The duty cycle is
controlled by the ratio of consecutive ones to con­
secutive zeros. If there are six consecutive ones and
four consecutive zeros in the data pattern, the duty
cycle would be 60%. If the pattern was 0001100011
the duty cycle would be three LOW and two HIGH
or 40% but the number of bit transitions would
double and so would the clock out frequency.

Table 1 shows examples of clock out frequencies and
duty cycles that can be obtained using the data pat­
terns and source frequencies given.

Test Circuit

A typical test circuit is shown in Figure 2, detailing
the HOTLink 1tansmitter in a PECL clock genera­
tor application. The circuit uses the CY7B923 with
a lO-position DIP switch to select the desired data
pattern (e.g., Table 1 patterns). The BISTEN, and

MODE pins are pulled to a logic HIGH while ENA
or ENN are tied to a logic LOW. This configures the
device to operate with built-in self-test disabled,
8B/lOB Encoding disabled, and data present at the
Da to Dj to be loaded into the input register on each
rising edge of the CKW input. The FOTO input is
used as a clock output enable for output pairs
OUTA and OUTB. When FOTO is LOW, transmit
data will continuously be driven on output pairs A
and B. When FOTO is HIGH, the output pairs A
and B will remain at a logic zero state. Output pair
OUTC is always enabled and will reflect the current
state of the transmitter shifter output. The RP or
Read Pulse output is typically used to indicate new
data can be read from a FIFO or other storage de­
vice into the transmitter. It is not used in the clock
generator application. In the test circuit shown, the
word-rate clock could be any stable TTL clock
source operating between 16 MHz and 33 MHz. As
described above, the resultant output clock frequen­
cy is dependent on word clock frequency (CKW)
and the number of 0-to-1 or 1-to-0 bit transitions
present in the lO-bit word loaded into the input reg­
ister of the transmitter.

Clock Issues

Since the CY7B923 was originally intended for very
high-speed communications, the inherent stability
of the communications device must be extremely

6-169

~.~ Using Hie CY7B923 as an ECL Clock Source
.,CYPRESS ==============

VCC

CY7B923

EN ClK

WORD
RATE
CLOCK

A&B

19
18
17
16
15
14
13
12
11
10

5
7

24
23
25

21

Da
Db
Dc
Dd
De
Of
Dg
Dh
Di
OJ

BISTEN
MODE
ENN
ENA
FOTO

CKW

OUTA+ 27

} OUTA- 26 ENABLED
CLOCK

OUTB+ 28 OUTPUTS

OUTB-

3 OUTC+

>
CLOCK

OUTC- 2 OUTPUTS

RP 8 NU

Figure 2. CY7B923 Clock Generator Test Circuit

good to prevent data communication errors and
meet the rigid requirements of the standards im­
posed by industry. These same principles relating to
clock stability also apply when the device is used as
a PECL/ECL clock source. In general, the most
critical factors relating to clock performance are jit­
ter, duty cycle stability, rise and fall times, and out­
put skew. .

Jitter

Jitter is typically defined as the variation of one
clock edge with respect to another. One source of
jitter can be caused by noise-induced variations in
the PLL, ofteri known as random jitter. An addi­
tional form of jitter can result from the data patterns
fed to the transmitter. This data dependent jitter is
not relevant in the case of the clock generator be­
cause the pattern is constant and repeating. Jitter
can also have an effect on the duty cycle of a clock

waveform, generally referred to as duty cycle distor­
tion. Refer to the CY7B923 datasheet for more
specifications on jitter.

Duty Cycle Stability

For the clock generator application, the duty cycle,
or relationship of a logic HIGH time period to a log­
ic LOW time period, is dependent on three factors:
random jitter, transmit data pattern, and rise and
fall times. Random jitter has an affect on duty cycle
based on the fact that it will vary the placement of
one clock edge with respect to another. Another
factor relating to duty cycle stems from the variation
of the data pattern presented to the inputs of the
transmitter. This is considered a very coarse adjust­
ment as it can only be varied by a minimum of a
single-serial bit-time. The last factor is rise and fall
time, and is largely dependent on the circuit the out­
puts are driving.

6-170

g-;-=Z Using the CY7B923 as an ECL Clock Source
r<:YPRESS ==============

Rise and Fall Time

Rise and fall times are defined as the period of time
required for a signal to transition from a logic LOW
to a logic HIGH or a logic HIGH to a logic Law.
The rise time of an ECL output is mainly deter­
mined by internal parameters such as the internal
driver resistor and the parasitic capacitance of the
output and is generally fixed. The fall time however,
is generally based on the biasing of the output, the
load capacitance, and the termination of the clock
circuit. If each of the outputs are properly biased
and treated as a transmission line, the driver is capa­
ble of matching rise and fall times. A proper biasing
technique is to tie the PECL output to Vee - 2.0V
through a 500 resistor. Since ECL outputs switch
at such high speeds, typically in the I-ns range, most
ECL circuit board traces greater than 1 inch in
length should be treated as transmission lines and
require termination (Reference 3). When a circuit
board trace acts as a transmission line and is unter­
minated, it will exhibit a reflection of the energy
pulse from the destination back to the source. If this
reflection is significant, it can cause erroneous trig­
gering of digital logic circuits. The CY7B923 data­
sheet indicates a maximum rise time and fall time of
1.2 fis measured at the 80% and 20% voltage points
driving an ECL load of 5 pF and 500 terminated to
Vee - 2.0 Volts. This is specified as a guaranteed
maximum. 'JYpical rise and fall times are less than
the maximum.

Termination

The two types of termination techniques generally
used to control transmission line effects are series
and parallel termination. A series termination is
designed to match the source driver to the charac­
teristic impedance of the line being driven. This ter­
mination approach is not recommended for the
HOTLink Transmitter. A parallel termination, on
the other hand, will match the characteristic imped­
ance of the line being driven to the load. This ter­
mination procedure, also called a Thevenin Ter­
mination, consists of a pull-up resistor to the
positive supply and a pull-down resistor to the nega­
tive supply. This termination can also double as a
biasing network and serve both purposes: transmis­
sion line termination and ECL output biasing. An

example of an improperly terminated ECL wave­
form is shown in Figure 3. Notice the excessive ring­
ing on the logic LOW level. Figure 4 shows what a
properly terminated ECL signal should look like.
Notice the symmetrical rise and fall times and the
absence of any ringing on the waveform.

Refer to the Cypress Semiconductor Applications
Handbook or the Cypress Semiconductor "HOT­
Link Design Considerations" Application Note for
more information on transmission line termination
techniques.

"""
,...,. ,

'\ t/\ ,..
V • V

Ch. 1 = 200.0 mvalts/div
Timebase = 2.00 nsec/div

'" "- N

J\
\

Offset = -1 .332 vaHs
Delay = 0.00000 sec

Figure 3. Improperly Terminated Waveform

["\ :"
\ 'I

1
~

"- j

Ch. 2 = 200.0 mvalts/div
Timebase = 1.00 nsec/div
Rise Time = 830 psec

,
\ ,

~

Offset = -1 .320 volts
Fall Time = 880 psec

Figure 4. Properly Terminated EeL Waveform

ttz~YPRESS.;;~~~~~;U;Si;n;g;th;e;CY~7;B;9;23~as;a;n;E;C;L~C;IO;C;k;S;o;ur;c=e
Clock Skew

Clock skew is introduced into a digital system in two
ways. The first is called output skew and is defined
as the difference in time between clock edges being
driven from the OUTA, OUTB, and OUTC trans­
mitter output pairs. Output skew is caused internal­
ly by the clock driver circuit itself. It can result from
the differences in output driver characteristics be­
tween output pairs or even in layout and placement
differences of the physical driver structures on the
die. The second source of clock skew is related to
the printed circuit board layout and placement.
Trace length, capacitive loading, termination com­
ponents, printed circuit board characteristics, sup­
ply voltages, and many other factors affect these ex­
ternal delays. It is important that the designer
understand the issues affecting clock skew because
one must be able to accurately predict when clock
edges will arrive at a load or destination for proper
synchronization of a digital system.

Drive Capability

The HOTLink 1tansmitter features three sets of
differential PECUECL outputs. Each of these out­
puts is capable of driving a 500 load with a maxi­
mum output current of 50 mAo

Power Supply Current

The HOTLink 1tansmitter has a maximum leer
specification of 85 rnA for commercial and 95 mA
for military temperature devices. Additionally,
each enabled output pair contributes 35 mA to leer
when loaded to 500. Unused outputs may be left
open, or better yet, tied to Vee to minimize the pow­
er dissipated by the output circuit and reduce a
source of unwanted noise. A 5-mA power savings
can be obtained by disabling the output current
source in this manner.

HOTLink Transmitter Printed Circuit Layout

Care must be taken when laying out a printed circuit
board for the HOTLink Transmitter and when de­
signing any clock circuit in general. Proper power-

HOTLink is a trademark of Cypress Semiconductor Corporation.

supply filtering and bypass techniques must be
employed to ensure reliable operation and the cor­
rect components must be selected. Everything from
the oscillator used to feed the CKW input to the type
and placement of the bypass capacitors used is criti­
cal. Refer to the Cypress Semiconductor "HOT­
Link Design Considerations" Application Note for
specific details 0';1 circuit layout and bypassing.

Device Packaging

Like virtually all Cypress devices, the CY7B923
HOTLink 'fransmitter is available in commercial (0
to 70 degrees C), industrial (-40 to +85 degrees C)
and military (-55 to + 125 degrees C) temperature
ranges at Vee ± 10%. The device comes packaged
in a 28-pin PLCC, 28-pin LCC, or a 28-pin 300-mil­
wide SOIC to suit a broad range of packaging re­
quirements. The device is not available in Dual-In­
Line (DIP) or through-hole packages due to the
excessive lead-frame inductance and its effect on
device performance.

Conclusion

The HOTLink 1tansmitter offers the designers of
pseudo ECL systems an alternative to the expen­
sive, high-power clock sources currently available
on the market. The combination of BiCMOS pro­
cess technology and robust feature set makes
CY7B923 suitable for many PECL logic circuit
clock generation applications where cost, power,
flexibility, and performance are of prime concern.

References

1. Blood Jr., William R., MECL System Design
Handbook, Fourth Edition, 1988.

2. Cypress Semiconductor Corporation, High Per­
formance Databook, 1993 Edition.

3. Cypress Semiconductor Corporation, HOT­
Link Design Considerations, Application Note.

4. Cypress Semiconductor Corporation, Applica­
tions Handbook, 1993 Edition.

IBM is a registered trademark of International Business Machine Corporation.
ESeON is a trademark of IBM.

6-172

Replace Your Am7968 TAXI ™ lransmitter With
a CY7B923 HOTLink™

Introduction

The TAXI family of data communications parts was
one of the first to provide the benefits of high-speed
serial transport of parallel information. Because of
its flexibility and wide data-rate range, it has found
usage in numerous commercial and milItary ap­
plications.

Time, however, has moved on and the original TAXI
has in many cases been left behind. The Am7968 is
a full bipolar design and consumes over 1 W while
newer components, like the Cypress HOTLink, are
capable of operating at twice the data rate and less
than half the power. In addition, the military ver­
sion of the Am7968 has been discontinued, leaving
numerous designs in jeopardy.

Fortunately, a relatively simple replacement is
available for the Am7968 that (in most cases) re­
quires little or no change in surrounding system log­
ic, including the Am7969 TAXI receiver. This sim­
ple replacement uses the Cypress CY7B923
HOTLink 'fransmitter, along with a small PLD, to
form a logic and timing equivalent replacement.
The use of such a replacement allows the continued
use and manufacture of these legacy systems with
minimal impact to the equipment and system inter­
connect

Overview

The Am7968 TAXI transmitter, when operating in
8-bit mode, uses a 4B/5B encoding scheme to con­
vert input data and commands into a form suitable
for serial transmission and clock recovery. Commu­
nication with an existing Am7969 TAXI receiver re-

quires the use of this same encoding scheme, pres­
ented in the same form and data-rate as that
generated by the Am7968. By operating the
CY7B923 HOTLink Transmitter in Bypass mode
(unencoded lO-bit data path) mated to a small PLD,
it is possible to exactly emulate the 4B/5B encoding
used by the Am7968.

Am7968 Functionality

The Am7968 is both very similar to the HOTLink
transmitter, and very different. Both parts commu­
nicate serially over a differential PECL (Positive
ECL) link. Both parts employ a PLL clock multipli­
er to change a slow byte-rate clock into a fast bit -rate
clock. However, most of the similarity ends here.

Data Encoding

Unlike HOTLink, which normally operates with an
8B/lOB DC-balanced code, the Am7968 encodes its
data stream using a 4B/5B algorithm standardized
for use with the FDDI (Fiber Distributed Data In­
terface). This encoding converts four bits of parallel
data into five bits of serial data. With such a small
a code set to work with, it is not possible to maintain
a DC-balance in the data stream. To improve this
somewhat, the Am7968 also performs an NRZI
(non-return-to-zero, invert on ones) encoding of the
serial data.

4B/5B Encoding

The data is encoded to ensure a minimum density of
transitions in the serial interface. These transitions
are necessary to allow the receive end of the serial
link to locate the boundaries of bits on the serial in­
terface. Without this (or a similar) encoding, trans-

6-173

i~7cYPRESS ===R;;;;;e;;;;;p;;;;;18;;;;;ce;;;;;1'i;;;;;o;;;;;u;;;;;r;;;;;Am=7;;;;;96;;;;;8;;;;;T;;;;;i\XI=;;;;;W;;;;;i;;;;;th;;;;;CY=7;;;;;B;;;;;9;;;;;23=H;;;;;O;;;;;TL;;;;;.;;;;;in=k .

mission of a long string of zeros or ones would turn
into a DC level on the serial interface. Without any
transitions to identify some of the bit boundaries,
the receiver clock would eventually drift slightly in
frequency and capture incorrect information from
the serial interface.

The 4B/5B encoding used withthe Am7968 allows
all sixteen possible 4-bit data groupings to be repre­
sented by 5-bit patterns that all contain transitions.
Since the complete 5-bit data space actually con­
tains a total 32 possible combinations, only half of
the available patterns are used to represent data.
These data combinations are listed in Table 1.

Table 1. 4B/5B/NRZI Data Encoding

HEX Binary 4B/5B O-Carry I-Carry
Data Data Encoded NRZI NRZI

0 0000 11110 10100 01011

1 0001 01001 01110 10001

2 0010 10100 11000 . 00111

3 0011 10101 11001 00110

4 0100 01010 01100 10011

5 0101 01011 01101 10010

6 0110 01110 01011 10100

7 0111 01111 01010 01010

8 1000 10010 11100 00011

9 1001 10011 11101 00010

A 1010 10110 11011 00100

B 1011 10111 11010 00101

C 1100 11010 10011 01100

D 1101 11011 10010 01101

E 1110 11100 10111 01000

F 1111 11101 10110 01001

NRZ1 Encoding

In addition to converting the parallel4-bit data into
serial5-bit data, a second level of encoding is added
to improve its signaling characteristics. This encod­
ing (called NRZI) removes the need to know if a
transmitted bit was sent as a one or a zero. This is
done by converting I-bits into inversions in the seri­
al stream, while O-bits maintain the same HIGH or

LOW signal level. Because alII and 0 information
is now determined only by transitions (not by active
level), the serial receiver can now correctly decode
the serial data stream even if the differential inputs
are swapped.

An example of an NRZI-encoded serial stream and
encoder is shown in Figure 1. Two different output
streams are shown in the figure. Which ofthe two
streams is actually generated is determined by the
state of the encoder flip-flop when the NRZI encod­
ing of the current character is started. The two pos­
sible NRZI encodings of each 4B/5B data character
are also listed in Table 1. Notice that these two col­
umns are the exact inverse of each other.

Am7968 Commands

The 4B/5B code makes use of specific patterns from
a 32-symbol space. Of these 32 possible symbols,
sixteen are allocated to represent the hex data val­
ues x'O' through x'F'. This leaves sixteen additional
5-bit patterns that can be assigned meanings other
than data.

For the Am7968, eight of the remaining sixteen pat­
terns are used to define synchronization and in­
band command codes that can be used for various
interface control functions. These eight patterns
are identified as other alphabetic letters, similar to
the hexadecimal characters greater than 9. These
control code names and their associated encodings
are listed in Table 2.

Source
Data

'0' Carry
NAZI Data

'1' Carry
NRZI Data

\
4858 Encoded \4858 Encoded \

Hex 0 Hex 1
(11110) (01001)

Figure 1. NRZI Encoder

6-174

'if~ Replace Your Am7968 TAXI With CY7B923 HOTLink
~ CYPRESS ============

Table 2. 4B/5B/NRZI Control Code Encoding

Control 4B/5B O-Carry I-Carry
Code Encoded NRZI NRZI

H 00100 00111 11000
I 11111 10101 01010
J 11000 10000 01111
K 10001 11110 00001
Q 00000 00000 11111
R 00111 00101 11010
S 11001 10001 01110
T 01101 01001 10110

Unlike the data characters, which can be combined
in any fashion to transmit bytes of information, the
Control Codes are only defined for use in specific
pair combinations. These control code pairings are
generated when specific combinations of bits are
present on the four command input lines to the
Am7968. These command input groupings are
listed in Table 3.

Table 3. Am7968 Command Codes

HEX Binary Control Code
Command Command Pair

0 0000 Data

NoSTRB NoSTRB JK (8-bit Sync)

1 0001 II

2 0010 TT

3 0011 TS

4 0100 IH

5 0101 TR

6 0110 SR

7 0111 SS

8 1000 HH

9 1001 HI

A 1010 HQ

B 1011 RR

C 1100 RS

D 1101 QH

E 1110 QI

F 1111 QQ

Data Command

TLS

Figure 2. Am7968 Logic Diagram

Am7968 Control Signals

A block diagram ofthe Am7968 is shown in Figure 2.
This figure shows the control signals and data/com­
mand buses used to control the part. Unlike the
CY7B923 H01Link transmitter (see Figure 3), the
Am7968 has separate input buses for data and com­
mands. The data input bus is eight bits in width
while the command bus is only four bits wide.

Loading of data into the Am7968 is also handled dif­
ferently. This is performed using the STRB input to
clock the information present in the data and com­
mand buses into the the Am7968. This STRB signal
may be semi-asynchronous to the normal transmit­
ter reference clock on the Xl input.

To operate the Am7968 at or near its reference clock
byte rate it is necessary to strobe data into the part
with much more care than when operating at slower

Figure 3. CY7B923 'fransmitter Logic Diagram

6-175

Replace Your Am7968 TAXI With CY7B923 HOTLink

rates. There is, in effect, a "stayout" area around
the falling edge of the reference clock where data
and commands should not be strobed into the part.

HOTLink Emulation of Am7968

To create a drop-in replacement for a part, it is nec­
essary to present an interface to the host system that
contains the same signals, clocks, and timing as the
logic element being replaced. In the case of the
Am7968, the critical signals used for operation are

• DI[7:0]-eight-bit data bus

• CI[3:0]-four-bit command bus

• STRB-data strobe

• ACK-data strobe acknowledge

• ±SEROUT-differential PECL serial data

• X1-external byte reference clock

While there are other signals present on the
Am7968, they are primarily static signals used for
configuration.

Emulator Block Diagram

The emulator is built from two components, as
shown in Figure 4: a CY7C343 EPLD that performs
the 4B/5B and NRZI encoding, and a CY7B923
HOTLink transmitter to sequence the bits and drive
the serial PECL interface. This two-chip design as­
sumes that double frequency byte clock is present in
the system to clock both the EPLD and the HOT­
Link tdmsmitter. For those systems that only have
the byte-rate clock present, it is possible to generate

CY7C343 CY7B923
EPLD S HOTLink

DI[7:01~. S S 10 SEROUT

CI[3:01~ . r-U
2xCLK--'----------.J

Figure 4. Am7968 Emulator Block Diagram

the 2x clock using a single Cypress CY7B991 Robo­
Clock Programmable Skew Clock Buffer.

The 2x clock is necessary in the system because the
HOTLink transmitter is normally only capable of
sequencing bits with the data rate range of 160 to 330
Mbits/second. This is significantly faster than the
maximum 125-Mbitlsecond data rate of the Am7968
transmitter. To allow the HOTLink transmitter to
generate a serial stream that is data-rate compatible
with an attached Am7969 receiver requires se­
quencing out bits in pairs. This effectively cuts the
data rate of the transmitter in half. This timing rela­
tionship is shown in Figure 5.

This bit timing is accomplished by having the encod­
er EPLD generate only five NRZI bits on each 2x
clock cycle. Each of these five bits is attached to two
adjacent bit-inputs on the HOTLink transmitter.
For example; encoder output bit-O would be wired
to HOTLink transmitter bits 0 and 1,

Emulator PLD Block Diagram

The majority of the emulator signals are on the par­
allel TTL-compatible side of the design. These par­
allel signals (all except the PECL ±SEROUT sig­
nals) all tie into the CY7C343 control EPLD. This
EPLD performs all the data capture, 4B/5B encod­
ing, NRZI encoding, and byte timing for the emula­
tor. A block diagram ofthe internal functions of the
EPLD is shown in Figure 6.

The logic is effectively split into five major sections.
These sections control the data capture, holding
register, 4B/5B/NRZI encoding, NRZI carry encod­
ing, and clocking.

~ Byte Clkl

~ BitClk
~

Bit Period I 0 I I 2 I 3 I 4 I sis I 7 I S I 9 I
.:t: BitPeriodl0111213141sls17lS191 I I I I I I I I I
c 5 BitClk

J: Byte Clk'i --~ __ --'

Figure 5. Am7968 vs CY7B923 Bit Timing

6-176

'?cYPRESS ===&;;;;;;e;;;;;;p;;;;;;18;;;;;;ce;;;;;;Yi;;;;;;o;;;;;;u;;;;;;r;;;;;;Am=7;;;;;;96;;;;;;8;;;;;;T;;;;;;1\X=I;;;;;;W;;;;;;i;;;;;;th;;;;;;CY=7;;;;;;B;;;;;;9;;;;;;23=H;;;;;;O;;;;;;T;;;;;;L;;;;;;iD;;;;;;k;;;;;

Data Capture
Register

DI [7:0] ---,Sr----i>l

CI[3:0]_4r----i>l

STRB -,---,/11/

4

Merged Data!
Command Register High/Low

Data Mux

4
N~ a: CD z"O
co8
LOC
IllW
v

NRZI Carry
Encoder

Parallel NRZI
Data To HOTLink

2xCLK--~-------r_1--L----------------------~

ACK -------'
X1(clk)------~

Figure 6. 4B/5B/NRZI Encoder PLD Block Diagram

Control EPLD Operation

Data Capture Register

Data is loaded into the 12-bit Data Capture register
on the rising edge of any STRB pulse. Once latched,
the contents of the CI[3:0] bits determine what data
is fed to the Merged Data/Command register. If any
of the CI[3:0] bits are HIGH the CI bus is fed to both
the upper and lower halves of the register. If all CI
bits are LOW, the DI[7:0] data bus is fed to the regis­
ter instead.

Merged Data/Command Register

The Merged Data/Command register is a 9-bit reg­
ister that is loaded every other cycle of the 2xCLK.
The upper eight bits of this register are loaded with
the output of the multiplexer from the data Capture
register. The lowest bit identifies if the data in the
register is a command or data.

If a STRB has occurred to load data into the Data
Capture register during the previous cycle, that in­
formation is clocked into the Merged Data/Com­
mand register. If a STRB has not occurred, then a
x'OO' command is forced into the Merged Data/
Command register.

4B/5B/NRZI Encoder

The data in the Merged Data/Command register is
sequenced through the 4B/5B/NRZI encoder in two
four-bit groups. The first group encodes the upper
four bits of the command or data byte, while the se­
cond group encodes the lower four bits. In addition
to the data bits, the encoder also needs to know if the
bits represent a command or data, and (for com­
mands) if the information is the upper or lower half­
byte.

The NRZI output of the encoder assumes a zero for
the starting or carry-in state of the NRZI encode op­
eration. By pre-encoding the NRZI information, a
large number of XOR gates can be removed from
the design.

NRZI Carry Encoder

To generate the correct NRZI sequence it is neces­
sary to track the state of the previous bit in the out­
put sequence. This is done by feeding the most sig­
nificant bit of the output register back to the input
of the register, and XORing it with the next five bits
of information. This effectively performs a selective
inversion of the pre-encoded NRZI data. This in­
version allows the data output to follow the NRZI
encoding listed in Tables 1 and 2.

Clocking

In the implementation documented here, this de­
sign uses two independent clocks: one for the STRB

6-177

lz ~YPRESS ===&;;;;;;e;;;;;;p;;;;;;la;;;;;;c;;;;;;e Yi;;;;;;o;;;;;;u;;;;;;r;;;;;;Am=7;;;;;;96;;;;;;8;;;;;;T;;;;;;1\X=I;;;;;;Wi;;;;;;I;;;;;;th;;;;;;CY;;;;;. ;;;;;;7;;;;;;B;;;;;;9;;;;;;2;;;;;;3 ;;;;;;H;;;;;;O;;;;;;T;;;;;;L;;;;;;in;;;;;;k;;;;;;

signal and the 2xcLK for the remainder of the logic.
In addition to these two clocks, the EPLD monitors
the Xl clock. to determine which phase of the
2xCLK to capture and il1l.lx the internal data.

ConclusiOIi

This design implements a two-chip drop-in replace­
ment for the Am7968 TAXI transmitter. The design
makes use of programmabie logic to implement an
external encoder that mimics the interface and tim­
ing of the Am7968.

The control EPLD was implemented using a
CY7C343 EPLD. thisPLD was designed and
coded with VHDL (VHSIC Hardware Description
Language), and compiled and simulated using the
Cypress Wa1p3 Th1 tool. The full source code for the
design is present in AppeIidix A of this application
note, and is available from the Cypress electronic
Bulletin Board System (BBS).

For those Am7968-hased systems that are truly syn­
chronous in nature, this design may be modified to
operate with a single clock, and allow usage of the

FLASH370'" family of CPLDs in addition to the
CY7C34x series.

Because of the modularity and reusability of VHDL
code, it is possible to incorporate the code in Appen­
dix A with additional functionality in larger or more
complex CPLDs or FPGAs, thereby reducing the
hardware impact of this emulation to a repro­
grammed logic part and a simple replacement of the
Am7968 with the more capable CY7B923. Such a
system would then be able to support a much faster
data rate in the future with the simple reprogram­
ming of the controlling PLD.

References

1. Cypress Semiconductor, CY7B923/CY7B933
HOTLink TransmitterlReceiver Datasheet, Cy­
press Semiconductor Data Book, May, 1995.

2. Cypress Semiconductor, HOTLink User's
Guide, 2nd Edition, June 1995.

3. Advanced Micro Devices, TAXIchip Integrated
Circuits Transparent Asynchronous Transmit­
terlReceiver Interface Am7968/Am7969-125
Am7968/Am7969-175 Data Sheet and Techni­
cal Manual, 1992

6-178

lzrcYPRESS ===R;;;;;e;;;;;p;;;;;la;;;;;ce;;;;;Y4;;;;;o;;;;;u;;;;;r;;;;;Am=7;;;;;96;;;;;8;;;;;T;;;;;1\X=I;;;;;W;;;;;i;;;;;th;;;;;C;;;;;Y;;;;;7;;;;;B;;;;;9;;;;;23=H;;;;;O;;;;;T;;;;;L;;;;;iD;;;;;k;;;;

Appendix A. 4B/5B Encoder PLD

TAXIBSM.VHD

This design describes the operation of a PLD used to convert a
standard HOTLink transmitter (CY7B923) into a part set equivalent
to the older AMD TAXI-125. This PLD only emulates the TAXI
in B-bit mode (dual 4B/5B encoders) .

This design only operates in the standard synchronous
of the TAXI, as it does not contain any FIFO stages.
correctly generate all 16 TAXI command codes present.
not support cascade mode.

mode
It does
It does

ENTITY taxiBtop IS PORT (
-- TAXI Parallel-side pins
clk: IN BIT;

sys_clk: IN BIT;

strobe: IN BIT;

D_In: IN BIT_VECTOR(o TO 7);
CL: IN BIT_VECTOR(o TO 3);
-- HOTLink parallel-side pins
D_Out: OUT BIT_VECTOR(o TO 4)
) ;

PLD Clock, 2X mUltiple of
standard TAXI clock

standard TAXI clock, sampled
by the PLD for phase alignment

TAXI data load clock, used
to control loading of the
input register. Needs to
be interruptible to force
generation of SYNC codes
data input bus
command input bus

HOTLink data inputs, two/pin

ATTRIBUTE part_name OF taxiBtop:ENTITY IS "C343";
END taxiBtop;

USE work.cypress.all;
USE work.table_bv.all;
USE work.rtlpkg.all;
USE work.memorypkg.al1;

ARCHITECTURE struct OF taxiBtop
-- add internal signals
SIGNAL outreg BIT_VECTOR (0 TO
SIGNAL encode BIT_VECTOR (0 TO
SIGNAL xreg BIT_VECTOR (0 TO
SIGNAL in_reg BIT_VECTOR (0 TO
SIGNAL hid_reg: BIT_VECTOR (0 TO
SIGNAL in_data: BIT_VECTOR (0 TO
SIGNAL strb_in: BIT;
SIGNAL strb_n: BIT;
SIGNAL phasel: BIT;

IS

4) ;
4) ;
4) ;
11) ;

B) ;
5) ;

output data register
4B/5B/NRZI encoder output
output XOR register
12-bit input register
data input hold register
encoder input
strobe received flag
inverted strobe
hold enable for STROBE in

6-179

1z~YPRESS Replace Your Am7968 TAXI With CY7B923 HOTLink

Appendix A. 4B/5B Encoder PLD (continued)

-- 4B/5B encoder data constants
-- data half-bytes
CONSTANT DI - 0: x01_VECTOR(0 TO 4) := "00000";
CONSTANT DI - 1: x01_VECTOR(0 TO 4) := "00001";
CONSTANT DI_2: x01_VECTOR(0 TO 4) := "00010";
CONSTANT DI_3: xOl_VECTOR(O TO 4) := "00011";
CONSTANT DI - 4 : x01_VECTOR(0 TO 4) := "00100";
CONSTANT DI - 5 : x01_VECTOR(0 TO 4) := "00101";
CONSTANT DI - 6: x01_VECTOR(0 TO 4) := "00110";
CONSTANT DI - 7 : xO 1_ VECTOR (0 TO 4) .- "00111";
CONSTANT DI_8: x01_VECTOR(0 TO 4) := "01000";
CONSTANT DI - 9 : xOl_VECTOR(O TO 4) .- "01001";
CONSTANT DI_A: x01_VECTOR(0 TO 4) := "01010";
CONSTANT DI_B: x01_VECTOR(0 TO 4) := "01011";
CONSTANT DI_C: x01_VECTOR(0 TO 4) .- "01100";
CONSTANT DI_D: x01_VECTOR(0 TO 4) := "01101" ;
CONSTANT DI _E: x01_VECTOR(0 TO 4) .- "01110";
CONSTANT DI_F: x01_VECTOR(0 TO 4) := "01111";

-- command constants
CONSTANT CI_O: x01_VECTOR(0 TO 4) .- "10000";
CONSTANT CI_ 1 : x01_VECTOR(0 TO 4) := "10001";
CONSTANT CI - 2 : xOl_VECTOR(O TO 4) := "10010";
CONSTANT CI - 3 : xOl_VECTOR(O TO 4) := "10011";
CONSTANT CI - 4: x01_VECTOR(0 TO 4) := "10100";
CONSTANT CI - 5 : x01_VECTOR(0 TO 4) := "10101";
CONSTANT CI_6: x01_VECTOR(0 TO 4) := "10110" ;
CONSTANT CI_ 7 : x01_VECTOR(0 TO 4) := "10111";
CONSTANT CI - 8 : x01_VECTOR(0 TO 4) := "11000";
CONSTANT CI - 9: x01_VECTOR(0 TO 4) .- "11001" ;
CONSTANT CI_A: x01_VECTOR(0 TO 4) .- "11010" ;
CONSTANT CI_B: x01_VECTOR(0 TO 4) .- "11011";
CONSTANT CI_C: x01_VECTOR(0 TO 4) := "11100" ;
CONSTANT CI_D: x01_VECTOR(0 TO 4) := "11101";
CONSTANT CI_E: x01_VECTOR(0 TO 4) := "11110";
CONSTANT CI_F: x01_VECTOR(0 TO 4) := "11111";

-- data output constants
-- zero carry-in, NRZI encoded
CONSTANT DO - 0: x01_VECTOR(0 TO 4) := "10100"; 11110 4B/5B
CONSTANT DO_1: x01_VECTOR(0 TO 4) .- "01110" ; -- 01001 4B/5B
CONSTANT DO_2: x01_VECTOR(0 TO 4) := "11000"; 10100 4B/5B
CONSTANT DO_3: x01_VECTOR(0 TO 4) := "11001"; 10101 4B/5B
CONSTANT 00_4: x01_VECTOR(0 TO 4) := "01100"; 01010 4B/5B
CONSTANT DO_5: xOl_VECTOR(O TO 4) := "01101"; 01011 4B/5B
CONSTANT DO_6: x01_VECTOR(0 TO 4) := "01011"; 01110 4B/5B
CONSTANT DO_7: x01_VECTOR(0 TO 4) .- "01010"; 01111 4B/5B

6-180

~CYPRESS ===R;;;;e;;;;p;;;;18;;;;ce;;;;Yi;;;;o;;;;u;;;;r;;;;A;;;;m;;;;7;;;;96;;;;8;;;;T;;;;1\X=I;;;;W;;;;i;;;;th;;;;C;;;;Y;;;;7;;;;B;;;;9;;;;23=H;;;;O;;;;T;;;;L;;;;iD;;;;k;;;;

Appendix A. 4B/SB Encoder PLD (continued)

CONSTANT DO_a: x01_VECTOR(0 TO 4) .- "11100"; 10010 4B/5B
CONSTANT DO_9: x01_VECTOR(0 TO 4) := "11101"; 10011 4B/5B
CONSTANT DO_A: x01_VECTOR(0 TO 4) := "11011"; 10110 4B/5B
CONSTANT DO_B: xO 1_ VECTOR (0 TO 4) := "11010"; 10111 4B/5B
CONSTANT DO_C: x01_VECTOR(0 TO 4) := "10011"; 11010 4B/5B
CONSTANT DO_D: xO 1_ VECTOR (0 TO 4) := "10010"; 11011 4B/5B
CONSTANT DO_E: xO 1_ VECTOR (0 TO 4) := "10111" ; 11100 4B/5B
CONSTANT DO_F: xO 1_ VECTOR (0 TO 4) := "10110"; 11101 4B/5B
CONSTANT DO_H: xO 1_ VECTOR (0 TO 4) := "00111"; 00100 4B/5B
CONSTANT DO_I: x01_VECTOR(0 TO 4) := "10101"; 11111 4B/5B
CONSTANT DO_J: xO 1_ VECTOR (0 TO 4) := "10000"; 11000 4B/5B
CONSTANT DO_K: x01_VECTOR(0 TO 4) := "11110"; 10001 4B/5B
CONSTANT DO_Q: xO 1_ VECTOR (0 TO 4) := "00000"; 00000 4B/5B
CONSTANT DO_R: x01_VECTOR(0 TO 4) := "00101"; 00111 4B/5B
CONSTANT DO_S: x01_VECTOR(0 TO 4) := "10001"; 11001 4B/5B
CONSTANT DO_T: x01_VECTOR(0 TO 4) .- "01001"; 01101 4B/5B

-- generate decoder table
CONSTANT table: x01_TABLE(0 TO 41, o TO 10) :=
-- data mappings

--Input HI_LO Output
------- ------

DI - 0 & 'x' & DO_O,
DI - 1 & 'x' & DO_1,
DI - 2 & 'x' & DO_2,
DI 3 & - 'x' & DO_3,
DI - 4 & 'x' & DO_4,
DI - 5 & 'x' & DO_5,
DI - 6 & 'x' & DO_6,
DI - 7 & 'x' & DO_7,
DI - a & 'x' & Do_a,
DI 9 & - 'x' & DO_9,
DI_A & 'x' & DO_A,
DI_B & 'x' & DO_B,
DI_C & 'x' & DO_C,
DI_D & 'x' & DO_D,
DI - E & 'x' & DO_E,
DI_F & 'x' & DO_F,

CI - 0 & ' l' & DO_J,
CI - 0 & ' 0' & DO_K,
CI - 1 & 'x' & DO_I,
CI - 2 & 'x' & DO_T,
CI 3 & - '1 ' & DO_T,
CI_ 3 & ' 0' & DO_S,
CI - 4 & ' l' & DO_I,

6-181

QYPRESS ===&;;;;;;e;;;;;;p;;;;;;la;;;;;;ce;;;;;;Yi;;;;;;o;;;;;;u;;;;;;r;;;;;;Am;;;;;;' ;;;;;;7;;;;;;96;;;;;;8;;;;;;T;;;;;;l\XI=;;;;;;Wi;;;;;;1;;;;;;th;;;;;;CY=7;;;;;;B;;;;;;9;;;;;;23=H;;;;;;O;;;;;;T;;;;;;L;;;;;;in=k

Appendix A. 4B/5B Encoder PLD (continued)

CI_4 & ' 0' & DO_H,
CI_5 & '1 ' & DO_T,
CI_5 & '0 ' & DO_R,
CI 6 & '1 ' & DO_S,
CI - 6 & '0 ' & DO_R,
CI - 7 & 'x' & DO_S,
CI_8 & 'x' & DO_H,
CI_9 & '1 ' & DO_H,
CI - 9 & '0 ' & DO_I,
CI_A & ' l' & DO_H,
CI_A & '0 ' & DO_Q,
CI_B & 'x' & DO_R,
CI_C & '1 ' & DO_R,
CI_C & '0 ' & DO_S,
CI_D & '1 ' & DO_Q,
CI_D & '0 ' & DO_H,
CI_E & '1 ' & DO_Q,
CI_E & '0 ' & DO_I,
CI_F & 'x' & DO_Q) ;

BEGIN
declare input register. Data is clocked by the external STROBE
signal. This same strobe signal is used to synchronize the internal
two-state machine.

p1: PROCESS BEGIN
WAIT UNTIL (strobe='l');

in_reg(O TO 7) <= D_In(O TO 7);
in_reg(8 TO 11) <= CL(O TO 3);

END PROCESS p1;-- capture strobe event

-- async set when strobe is present
-- use synchronous clear from clk when part is set and sys_clk present
phase1 <= strb_in AND sys_clk;
st1: DSRFF PORT MAP (phase1, strobe, zero, clk, strb_in);

-- setup input data hold register
p2: PROCESS BEGIN

WAIT UNTIL (clk='l');
IF sys_clk = '0' THEN -- hold data

hld_reg <= hld_reg;
ELSIF strb_in='O' THEN -- no data, load a SYNC command

hld_reg <= "000000001";
ELSIF (in_reg(8 TO 11) /= "0000") THEN -- check for a command

hld_reg(O TO 3) <= in_reg(8 TO 11);
hld_reg(4 TO 7) <= in_reg(8 TO 11);
hld_reg(8) <= '1'; -- set as a command

ELSE

6-182

YzrcYPRESS ===R;;;;;e;;;;;p;;;;;18;;;;;c;;;;;e;;;;;v.;;;;;ou;;;;;r;;;;;Am=7;;;;;9;;;;;6;;;;;8;;;;;T;;;;;1\XI=;;;;;W;;;;;i;;;;;th;;;;;CY7=;;;;;B;;;;;9;;;;;23=H;;;;;O;;;;;T;;;;;L;;;;;iD;;;;;k=

Appendix A. 4B/5B Encoder PLD (continued)

hld_reg(O TO 7) <= in_reg(O TO 7);
hid_reg (8) <= '0'; -- set as data

END IF;
END PROCESS p2;

-- declare data mux select for input to the 4B/SB encoder
p3: PROCESS (hid_reg, sys_clk)

BEGIN
in_data(S) <= NOT sys_clk; hi/low nibble select
in_data (0) <= hid_reg (8) ;
IF sys_clk = '0' THEN enable high nibble first

in_data(l TO 4) <= hld_reg(4 TO 7);
ELSE

in_data(l TO 4) <= hld_reg(O TO 3);
END IF;

END PROCESS p3;

-- declare 4B/SB encoder
p4: PROCESS (in_data)
BEGIN

encode <= ttf(table, (in_data»;
END PROCESS p4;

-- declare output register

drO: DFF PORT MAP (encode(O) , elk, outreg(O»;
drl: DFF PORT MAP (encode (1) , clk, outreg(l»;
dr2: DFF PORT MAP (encode(2) , clk, outreg(2»;
dr3: DFF PORT MAP (encode(3) , clk, outreg(3»;
dr4: DFF PORT MAP (encode(4) , clk, outreg(4»;

dxO: XDFF PORT MAP (outreg(O) , xreg(4) , clk, xreg(O» ;
dx1: XDFF PORT MAP (outreg(l) , xreg(4) , clk, xreg(l» ;
dx2: XDFF PORT MAP (outreg(2) , xreg(4) , clk, xreg(2» ;
dx3: XDFF PORT MAP (outreg(3) , xreg(4) , clk, xreg(3» ;
dx4: XDFF PORT MAP (outreg(4) , xreg(4) , clk, xreg(4» ;

-- assign output register to outputs
D_Out <= xreg;
END struct; -- end of top level design

AMD, TAXI, and TAXIchip are trademarks of Advanced Micro Devices.
FLAsH370, HOTLink, and Wa/p3 are trademarks of Cypress Semiconductor.

6-183

Upgrade Your TAXI -275® with HOTLink®

This application note will explain how to upgrade
TAXI-275'" (Am79168/Am79169) devices with
the HOTLink '" (CY7B923/CY7B933) devices from
Cypress Semiconductor. It will aid in the migration
of TAXI -275 designs to the HOTLink architecture.
This note begins with an introduction to HOTLink
and then gives advantages of HOTLink and replace­
ment suggestions for the TAXI - 275 devices.

HOTLink Introduction

The HOTLink family of devices transfers data from
point to point over high-speed serial links at 160 to
330 Mbits/second (Figure 1). The CY7B923 'frans­
mitter (Figure 2) takes an 8-bit parallel data stream
and encodes it using the Fibre Channel and ESCON
compliant 8B/lOB code. This code maps all 8-bit
data characters into a lO-bit transmission code that
ensures that the transmission signal contains suit­
able transitions for recovery by the receiving device.
The transmitter then takes this 10-bit data word and
converts it to a serial bit stream and sends it at 10
times the byte rate over a serial transmission link.

The CY7B933 HOTLink Receiver (Figure 3) con­
nects to the other end of a transmission link that may
consist of anything from a few inches of printed cir­
cuit board trace to several kilometers of fiber-optic

16Q-33o',Mbnls
~ _________ _ c..0pper o~ ~i~!r ________ :

Figure 1. HOTLink System Diagram

cable. The receiver decodes the incoming bit stream
and reconstructs the original parallel data charac­
ter, which is presented at the outputs and aligned
with the recovered clock. The receiver, in addition
to these tasks, checks the incoming data stream for
errors that may have occurred in the serial
transmission.

UTB

UTC

Figure 2. CY7B923 'Iransmitter Logic Diagram

RF ------------~r---~~~--_, FRAMER
AlB ------..,

INA+ r-[=;'===~===~ INA- \-, SHIFTER

so

REFCLK --____ ~

MODE~
BISmJ~

CKR

Figure 3. CY7B933 Receiver Logic Diagram

6-184

.,~
'CYPRESS

The SC/D (Special Character/Data) pin permits the
transmission of command codes in addition to data
characters. The codes are mapped to lO-bit trans­
mission characters defined in the 8B/lOB codes of
the Fibre Channel standard. Commands can be sent
as part of the transmission stream, to signal events
such as Idle, Start-of-frame, End-of-frame, etc.

Other features provide a complete solution for high­
speed point-to-point communication in applica­
tions including interconnecting workstations, serv­
ers, mass storage, and video transmission
equipment. These features include built-in self-test
(BIST) for in-system diagnostic testing, unencoded
mode for sending lO-bit data in systems that use a
different encoding method, and a seamless parallel
interface for connection to both asynchronous and
clocked FIFOs. A brief description of the various
features of HOTLink are given below with a more
detailed discussion found in the
CY7B923/CY7B933 HOTLink 1l:ansmitter/Receiv­
er datasheet. The PLCC pinouts for these devices
are shown in Figure 4.

Upgrade from TAXI-275

The following sections explain the architectural ad­
vantages of the Cypress CY7B923/CY7B933 HOT­
Link Transmitter and Receiver over the devices
from AMD. This section begins with a brief ex­
planation of the Am79168/Am79169 TAXI -275 de­
vices. It then follows with a list of HOTLink fea­
tures that make designing these high-speed
point-to-point systems easier.

A Brief Explanation ofTAXI-275

The Am79168/Am79169 TAXI-275 devices are
similar to HOTLink. The Am79168 TAXI-275
Transmitter, shown in Figure 5, converts 8-bit or
lO-bit parallel data into 10- or 12-bit transmission
codes using either the 8B/lOB code or the lOB/12B
code. This data is encoded and shifted out serially
over a transmission link operating at speeds of 175
to 275 Mbaud. The Am79169 TAXI -275 Receiver,
shown in Figure 6, converts the incoming serial data
into parallel words, and decodes and presents the
original words in 8-bit or lO-bit format to the out-

Upgrade Your TAXI-275 with HOTLink

AC

BTSTEN
GND 6

MODE 7

PLCC
Top View

+ I I ++ I

8~~~~M
> 000 000

RP 8 7B923
Vcca 9

SVS (Dj) 10

(Dh) D7 111213141516171819

<OLn'<tMC\I_O
0000000

FOTO
ENN
ENA
Vcca
CKW
GND
SC/D (D.)

RF REFCLK
GND 6 Vcca
ruN SO
GND CKR
VCCN Vcca

RVS (OJ) GND
(oh) 07 '-'-nimrnmrr-" SC/D (a.)

(01,1') o:t (') (\1_ 0

0000000

Figure 4. CY7B923 and CY7B933 Pin
Configurations

Command

r-----.~TX

1Y

Figure 5. TAXI-275 Transmitter Block Diagram

puts along with the recovered clock. The pinouts of
the Am791681tansmitter and the Am79169 Receiv­
er are shown in Figure 7.

6-185

=: iEYPRESS =======;;;;;V;;;;;p;;;;;g;;;;;r;;;;;ad;;;;;e;;;;;Yi;;;;;o;;;;;u;;;;;r ;;;;;TAX=;;;;;I -;;;;;2;;;;;7;;;;;5;;;;;Wl;;;;;"t;;;;;h;;;;;H;;;;;O=TL;;;;;i;;;;;D;;;;;;;k

AX

RY
RLO

CLKO 91 92 Data Command STRBO

Figure 6" TAXI - 275 Receiver Block Diagram

PLCC
'ThpView

CI1 012
CIO 011

COSEl 7 010
CVCC 8 CGNO
STRBI 9 PGNO

ACK ClKI

OET~iJi:lmi-8i:n:r;.rESa:

003 DOg/C02
002 6 C01
001 COO
000 S1

CGNO CVCC
ClKO S2

REFCK -"';'T'ri'Tfirnm".....r STRBO

Figure 7. Am79168 and AJh79169 Pin
Configurations

Simplifying Your System with HOTLink

HOTLink offers additional features that will simpli­
fy system design. Below is a list of these features
along with their benefits when designing high-speed
point-to-point serial communications systems with
Cypress HOTLink devices.

Multiplexed Command and Data

The TAXI - 275 has separate inputs for command
and data, while the HOTLink devices have an inte­
grated command and data path. The status of SCID
pin (Special CharacterJData) determines if HOT­
Link sends a Special Character (Command) or data.

The integrated command and data paths of HOT­
Link allow simplification of the controller architec­
ture. Instead of creating a separate command path,
command codes can be integrated within the data
stream with the addition of a ninth bit (the SCID) bit
that indicates the status of the associated 8 bits of in­
formation.

More Outputs

The HOTLink transmitter has three identical dif­
ferential Positive ECL (PECL) serial output ports.
Two ofthese outputs can be turned off under control
of FOTO (Fiberoptic Transmitter Off) pin. The
TAXI - 275 devices have only one differential PECL
output pair and an additional single-ended TLOOP
output intended for use in loop-back testing.

More Inputs

The HOTLink Receiver has two differential inter­
faces to the serial transmission medium (INA± and
INB ±) whereas the TAXI - 275 devices have only a
single input pair (RX,RY) and a single ended PECL
input, RLOOP, used for loop-back testing. The me­
dia inputs of the HOTLink Receiver can be used to
provide loop-back testing, redundant transmission
paths, or more complex networks configurations.

Loop-back testing ensures that a node is sending
and receiving data properly. In a typical network­
style configuration, both the transmitter and receiv­
er will exist for each node. In loop-back testing a re­
dundant output from the transmitter is fed back to
the additional input on the receiver. The
TAXI - 275 devices have an extra single-ended lOOK

6-186

PECL output, TLOOp, and an extra single-ended
lOOK PECL input, RLOOp, that are used for loop­
back testing. The HOTLink devices offer a more ro­
bust loop-back capability by offering redundant dif­
ferential output pairs that can be connected to an
additional differential input structure on the receiv­
er, as shown in Figure 8. The additional single-en­
ded input/output pair of the TAXI - 275 does not
provide a robust loop-back testing configuration.

In addition, the redundant outputs of the transmit­
ter can be used in conjunction with the additional in­
puts of the receiver to build more complex network
structures by allowing a single transmitter to com­
municate with multiple receivers, or a single receiv­
er to be connected with multiple transmitters. The

Ct<;N

BISTEN
MOOE
FOTO

ENN
ENA

R

SC/O(Oa) OUTA
OO(Ob) OUTA
01 (Oe)

02(Od) 0UT81=====t~=~:W 03(06) OUTB
04(0j)

05(01) OUTC.t::=~;a
06(Og) OUTC-/,
D7(Oh)
SVS(Oj)

HOTLlNKRX

RVS(Oj)
07(Oh)
06(Og)
05(0f)
04(01)
03(Oe) SI(INB-)
02(Od) INB(INB+)
01 (Oe)
OO(Ob) INA-
SC/O(Oa) INA+

RF
ROY BI$TEN
SO MOOE

CKR REFCL

System 1

Upgrade Your TAXI - 275 with HOTLink

multiple outputs can also be used to to build redun­
dant paths between two nodes.

More Flexible Command Codes

A coding system is necessary in serial communica­
tion systems to ensure that the receiving device can
determine the boundary between adjacent bits. The
code makes sure that enough signal transitions exist
on the transmission channel to track bit boundaries.
In other words, the code must ensure that the clock
used by the transmitter to transmit the data is em­
bedded within the data stream. The code maps each
character into a code word that ensures that a mini­
mum transition density and run length is main­
tained.

REFCLK CKR

MOOE so
BISTEN ROY
RF

..... --INB

"l~=~}===1INA+ SC/O(Oa) Lf INA- OO(Ob)

r----tINB(INB+) g~~~~
SI(INB-) 03(Qe)

04(01)
05(0f)

06(Og)
07(Oh)

RVS(Oj)

SVS(Oj)
07(Oh)

OUTC- 06(Og)
'----I OUTC+ 05(0~

04(0j)

4l:~~:JF===1 OUTB- 03(00) OUTB+ 02(Od)
01 (Oe)

OUTA- OO(Ob)
OUTA+ SC/O(Oa)

ENA
ENN

FOTO
MOOE

BISTEN

RP Ct<;N

System 2
Figure 8. Example HOTLink Loop-Back System Connection

6-187

Both HOTLink and TAXI-275 use the transmis­
sion code specified by ANSI X3T9.3 Fibre Channel
and IBM ESCON standards. This code converts 8
bits into 10 transmission bits (8B/I0B). This code
generates NRZ (Non Return to Zero) transmission
data where a logical 1 is represented by a HIGH lev­
el and a logic 0 is represented by a LOW level. The
complete code tables are listed at the end of the
CY7B923/CY7B933 HOTLink Transmitter/Receiv­
er datasheet. This code ensures not only minimum
transition density and run length, but also that the
average number of Is and Os are equal. This feature
of the code prevents the average DC level on the
transmission link from "wandering" based on the
data that is being sent.

In addition to specifying a mapping of every charac­
ter into a transmission symbol, the code also speci­
fies several command codes. These codes are useful
for low level signaling without involving higher level
protocols. They can be used to indicate information
such as HALT, End Of Frame, or Start of Frame.

Table 1 shows the valid special characters and se­
quences that HOTLink can both encode on the
transmitting end and decode on the receiving end.
The first column in the table indicates the byte name
of the special character. In the Fibre Channel and
ESCON notation Special Characters are denoted
with a 'K' prefix and Data Characters are denoted
with a 'D' prefix. The first twelve Special Characters
are defined in the Fibre Channel and ESCON speci­
fications. The second column of the table gives the
code name, both in decimal and hexadecimal nota­
tion, of the binary pattern on the I/O pins. The third
column, bits, shows the pattern presented to the
transmitter's data lines. This pattern, in combina­
tion with scm HIGH, will cause either the pattern
in column four or column five to be sent. The pat­
tern that the transmitter sends depends on the cur­
rent Running Disparity.

In order to ensure that the average number of Is and
Os that are sent across the communications channel
is equal, both the transmitter and receiver keep
track of the Running Disparity of the data that was
previously sent. Running Disparity (RD) can either
be positive (+) or negative (-). In general, Run­
ning Disparity will be positive if, in the last transmis-

Upgrade Your TAXI-275 with HOTLink

sian word, there were more Is sent than Os and it will
be negative if there were more Os sent than Is. If RD
is negative, the transmitter will send the code in col­
umn four and if RD is positive then the transmitter
will send the code in column five.

Both HOTLink and TAXI-275 can send all codes
labeled CO.O through Cl1.0 in Table 1. Because of
the different architectures of these two devices, the
data presented to the inputs of the transmitter will
be different, but the code sent across the transmis­
sion medium will be identical.

The next three codes represent sequences that the
transmitter can send. For example, if the transmit­
ter controller presents CO.l (binary pattern 001
00000) to the data lines, then the transmitter will
send -K28.5+, D21.4, D21.5, D21.5. In other
words, the transmitter will send a negative K28.5
Special Character, a D21.4 (binary 100 10101) Data
Character, and two 021.5 (binary 10110101) Data
Characters. It will continue to send this pattern as
long as CO.1 is present at its inputs. The receiver will
decode this pattern as a C1.7 or CS.O depending on
its current Running Disparity followed by D21.4 and
two D21.5s. This pattern is defined in the Fibre
Channel standard as the IDLE pattern. The ability
of the transmitter to send this pattern as well as the
R_RDY (Receiver Ready) pattern greatly simpli­
fies controller design. The TAXI - 275 devices have
no ability to send complex data patterns with a single
code as shown by the word NONE in Table 1 under
the TAXI - 275 Code column.

In addition, if C2.1 is presented to the transmitter,
it will send either a negative K28.5 or a positive
K28.5, depending on the Running Disparity. It will
then modify the Least Significant Bit (LSB) of the
subsequent data word to be either a 0 if RD was (-)
or a 1 if RD was (+). This simplifies controllers
when building End of Frame (EOF) delimiters
where the second byte is determined by the current
RD. These packet structures are necessary to con­
form with the Fibre Channel specification. The
TAXI - 275 device only has the capability of modify­
ing the LSB of two different Data Characters, limit­
ing the possible EOF delimiters that can be
constructed.

6-188

~

~ ~YPRESS~~~~~~~~U~p~g~ra~d~e~Yt~O~Ur~T~~~I~-~2~7~5~m~·~th~H~O~T~L~in=k

Thble 1. HOTLink Valid Special Character Codes and Sequences (Sc/D = HIGH)

HOTLink Bits CurrentRD- CurrentRD+ Receiver
Output

Code Name
Special Code Special Code
Byte Name Code Name HGF EDCBA abcdei fgbj abcdei fgbj

TAXI
Code

K28.0

K28.1

K28.2

K28.3

K28.4

K28.S

K28.6

K28.7

K23.7

K27.7

K29.7

K30.7

CO.O (COO) 000

CL 0 (COl) 000

C2.0 (C02) 000

C3.0 (C03) 000

C4.0 (C04) 000

CS.O (COS) 000

C6.0 (C06) 000

C7.0 (C07) 000

CB.O (C08) 000

C9.0 (C09) 000

C10.0 (COA) 000

C11.0 (COB) 000
Sequences

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

001111

001111

001111

001111

001111

001111

001111

001111

111010

110110

101110

011110

0100

1001

0101

0011

0010

1010

0110

1000

1000

1000

1000

1000

110000

110000

110000

110000

110000

110000

110000

110000

000101

001001

010001

100001

1011

0110

1010

1100

1101

0101

1001

0111

0111

0111

0111

0111

CO.O

CloD

C2.0

C3.0

C4.0

CS.O

C6.0

C7.0

CB.O

C9.0

C10.0

C11.0

K2B.0

K2B.1

K28.2

K28.3

K28.4

K2B.5

K2B.6

K28.7

K23.7

K27.7

K29.7

K30.7

Idle CO.1 (C20) 001 00000 -K28.5+,D21.4,D21.5,D21.5, C5.0, D21.4,
D2L 5, D21. 5

NONE
repeat

CL1 (C21) 001 00001 -K28.5+,D21.4,D10.2,D10.2, C5.0, D21.4, NONE
repeat 010.2, D10.2

EOFxx C2.1 (C22) 001 00010 -K28. 5, Dn.xxxO I +K28. 5, Dn.xxx1 C5.0,Dn.xxxO NONE
or
C5.0,Dn.xxx1

Follows R2B.l for ESCON Connect-SOF (Rx indication only)

C-SOF I C7.1 (C27) I 001 00111 I 001111 1000 I 110000 0111 I C7.1 I NONE

Follows R2B.S for ESCON Passive-SOF (Rx indication only)

P-SOF I C7.2 (C47) I 010 00111 I 001111 1000 I 110000 0111 I C7.2 I NONE
Code Rule Violation and SVS Tx Pattern

Exception CO. 7 (CEO) 111

-K2B.5 CL 7 (CE1) 111

+K28.5 C2.7 (CE2) 111

00000

00001

00010

100111 1000

001111 1010

110000 0101

011000 0111 CO.7 NONE

001111 1010 C5.0 or CL7 K28.5+

110000 0101 C5. 0 or C2. 7 NONE
Running Disparity Violation Pattern

Exception I C4. 7 (CE4) I 111 00100 I 110111 0101 I 001000 1010 I C4.7 NONE

C7.1 sends the ESCON Connect-Start of Frame
(SOF) delimiter and C7.2 sends the Passive-SOF
delimiter. CO.7 sends a deliberate code rule viola­
tion and has the same effect as having the SVS (Send
Violation Symbol) pin HIGH during a character
transmission. C1.7 sends a negative K28.5 regard­
less of the current running disparity. The receiver
will decode this as either a C5.0 if its current RD was
negative or as a Cl. 7 if its current RD was positive.
C2.7 sends + K28.5 with the receiver decoding this
as either a C5.0 or a C2.7 if its current RD was nega­
tive. Lastly, C4.7 sends a deliberate Running Dis­
parity violation pattern. All of these codes simplify
controller design as well as assist with in-system

testing. TAXI - 275 does not have the ability to send
any of these codes.

Reframing

In a serial transmission system, the receiving device
must have a method of determining byte bound­
aries. In many systems a unique special character is
used for this purpose. When the byte framer is ac­
tive, the receiver looks for (frames on) K28.5 SYNC
characters present in the data stream. This charac­
ter must be unique, such that any valid combination
of other bits within the transmission stream will not
erroneously create this synchronization (SYNC)
symbol. Transmission line errors may cause some of

6-189

rcYPRESS =======;;;;;;U;;;;;;p;;;;;;gr;;;;;;a;;;;;;d;;;;;;e;;;;;;Yo;;;;;;u;;;;;;r;;;;;;T;;;;;;1\X=I-;;;;;;2;;;;;;7;;;;;;5;;;;;;W1;;;;;;·t;;;;;;h;;;;;;H;;;;;;O;;;;;;T;;;;;;L;;;;;;i=nk

the bits within the information stream to become
changed in such a way that the bits produce an erro­
neous (alias) SYNC. If the receiver has single-byte
framing, this will cause the receiver to become misa­
ligned, with all subsequent data being decoded in­
correctly.

Both the HOTLink and TAXI - 275 devices have the
capability for double byte framing. Both devices Re­
frame on two occurrences of the Special Character
K28.5 separated by 0, 1, 2, or 3 words (0, 10, 20, or
30 bits) as shown in Figure 9.

The HOTLink RF pin is used to activate and deacti­
vate the reframing option. This is useful in systems
that wish to prevent byte misalignment from alias
SYNCs during data packets. Byte misalignment will
cause all subsequent data in a packet to be cor­
rupted instead of just the word or words that were
corrupted due to transmission errors. Single-byte
reframing is active for the first 2K bytes after the RF
pin is asserted HIGH. This feature allows the re­
ceiver to SYNC to the first K28.5. After 2K bytes
during RF HIGH, double-byte reframing will be ac­
tivated. When activated, the single-byte frame saves
lOmA.

HOTLink pads the spaces between data packets
with SYNC characters. When the "No Enable"
(ENN and ENA = HIGH) condition exists, the
transmitter fills the unused bandwidth with K28.5s.
This pad string should be identified at the receiver
so that the receiving system is not forced to process
this information.

Receiver Reframed

Receiver NOT Reframed

Figure 9. Double-Byte Reframing

TAXI-275 has no method of ignoring multiple
SYNC characters and preventing them from being
passed to the receiving system. The TAXI-275
STRBO pin pulses LOW in the presence of new
Command or Data at the output register. It pulses
LOW, therefore, every time a K28.5 character is re­
ceived. If multiple SYNCs are passed to the outputs
of the receiver, the receive FIFO will overflow with
SYNC characters, which will require external de­
coder logic to discard this extraneous information.

HOTLink eliminates this problem by only pulsing
the RDY pin LOW during the last SYNC character
in a string of SYNC characters (the first SYNC char­
acter of a new packet of information). This is impor­
tant in systems that have bursty data transmission or
transmit data slower than the maximum data oper­
ating frequency. This prevents redundant informa­
tion from being passed to the receive system, yet
maintains packet boundaries for easy packet identi­
fication.

Higher Operating Frequency

HOTLink has a much broader frequency range than
the TAXI-275 devices. TAXI-275 operates from
175 to 275 MBaud. This means that in 8B/lOB
mode, TAXI - 275 can transmit and receive parallel
data at rates from 17.5 to 27.5 MBytes/s. HOTLink,
on the other hand, can transmit and receive parallel
data at rates from 16 to 33 MBytes/s, allowing a
much wider possible range of operating frequencies.

BIST

BIST (Built-In Self-Test) can be used to test the
transmitter, receiver, and the link connecting them.
During BIST (See Figure 10), the transmitter re­
peats a pattern representing all possible data and
command characters, decodes them into transmis­
sion symbols and passes them to its outputs. The re­
ceiver, while in BIST, waits for the symbol that rep­
resents the beginning of the BIST pattern. It then
decodes this and every following symbol and
compares them with an internally generated pattern
created by a pattern generator that matches the
transmitter pattern generator. Detected errors at
the receiver are indicated with pulses on the RVS
(Received Violation Symbol) while completed
BIST loops are indicated with pulses on the receiver
RDY line. The BIST function checks the entire

6-190

function of the transmitter (except the transmitter
input pins and the bypass function in the Encoder),
the serial link, and the receiver.

These Built-In Self-Test functions are not imple­
mented in the TAXI - 275 devices. A substantial

DON'T CARE

DON'T CARE

BIST
I LOOP

I WITHIN SPEC.

--+-I--->(""';" u)<,
I
I
I
I
I
I

I
I
I
I
I
I
I

DON'T CARE

DON'T CARE

8

LOW

r----l t't' ((
I~------~)~)~~)~)~-------i

Tx Tx
HIGH

STOP
r S~~~ __ ~SS~~S~S~ ___ ~

ERROR

0)<,

I I
--tl-RxR;l�----~~r__--~~1 TESTI

I~~~~ ENDI

WITHIN SPEC.

DON'T CARE

LOW

8

Upgrade Your TAXI-275 with HOT-Link

amount of additional circuitry is required in a sys­
tem in order to integrate this function. This type of
testing is necessary for many types of in-system diag­
nostic testing, including device functionality and
link integrity.

CY7B923

FOTO

MODE

CKW

Rp

SCiD OUTA

DO-7
OUTB

SVS OUTe

EN!\:

ENN

BfSiEN

CY7B933

REFCLK

MODE

RF
SO

CKR

SCiD INA

ao -7

INB
RVS

AlB
LOW

!mY

BffiiEIiI

Figure 10. Built-In Self-Test

6-191

'"'~ ~ Upgrade Your TAXI -275 with HOTLink
. 'CYPRESS ======~=======;;;;;;;;;;;;;;==

Parallel Interface

The TAXI - 275 devices have two methods of strob­
ing data into the device, synchronous and asynchro­
nous. In the asynchronous mode of operation, a
strobe line is used in conjunction with an acknowl­
edge line to present data to the device. In this mode
of operation the maximum operating frequency for
the TAXI - 275 devices under the most ideal of
conditions is no faster than 20 MHz.

In the synchronous mode of operation, which is the
most common method of device operation, the
TAXI-275 device requires that the STRBI (Input
Strobe) and the CLK! (Input Clock) be tied togeth­
er. To enable or disable data in this mode requires
external logic with slower than optimal «275
Mbaud) operation. HOTLink has a very simple in­
terface that allows seamless connection to both
asynchronous and clocked FIFOs. On the transmit­
ter, two enable inputs control when data is to be
transmitted. When the ENA input is asserted, data
on the data lines is serialized and transmitted.
When the ENN line is asserted, data that is pres­
ented on the data lines during the next rising edge
of the CLK input is transmitted. This allows effi­
cient, synchronous state machines to control the
flow of data over the serial link. In addition, the RP
(read pulse) output can be connected to the R
(read) input of asynchronous FIFOs, as shown in
Figure 11, to provide a seamless asynchronous inter­
face. The RP signal has timing that matches the tim­
ing required by asynchronous FIFOs. For clocked
FIFO designs like that shown in Figure 12, the ENN
input is used to not only read data from a Clocked
FIFO like the Cypress CY7C443, but also to latch
data into the Transmitter on the next rising edge of
CKW

The receiver has a RDY output that pulses LOW
each time new data has been received. The RDY
output has timing that allows the receiver to be
seamlessly interfaced with both asynchronous and
clocked FIFOs as shown in Figures 11 and 12. The
TAXI-275 devices require a significant amount of
additional circuitry to allow interfacing with FIFOs.

DC Specifications

The maximum current specification of the
TAXI-275 Transmitter operating at 27.5 MB/s is
255 mAo The maximum current specification of the
HOTLink 1l:ansmitter at 33 MB/s is only SOmA.

The TAXI - 275 Receiver requires a maximum of
390 mA to operate at 27.5 MB/s whereas the HOT­
Link Receiver requires only 150 mA when operating
at 33 MB/s.

Additionally, the TAXI - 275 devices require 100
m V of differential input voltage at the receiver to
accurately recover the clock and data from the input
serial data stream. The HOTLink Receiver re­
quires only 50 m V of differential input voltage. This
translates into lower error rates, increased noise
margins, higher jitter tolerance, and longer trans­
mission distances when compared with the
TAXI - 275 devices.

Sending Violations

In many systems it is important to explicitly send
violations. In normal system operation, a violation
can be caused by either a received symbol having no
corresponding decode value in the receiver, or a val­
id code received with the wrong Running Disparity.
It is useful to send violation codes for testing, signal­
ing, and interrupting the receiving system. The
TAXI - 275 devices have no method of code rule or
Running Disparity violations. The HOTLink Trans­
mitter, on the other hand, can send a pattern that
will translate into a Code Rule Violation (CO.7) or
Running Disparity Violation (C4.7) at the receiver.
These Violations are indicated with a HIGH state
on the RVS output with a Code Rule Violation indi­
cated with command code CO.7 and a Running Dis­
parity Violation indicated with command code C4.7.
In addition, the SVS pin can be used to send a Code
Rule Violation with the same indication at the Re­
ceiver.

ECL-to-TTL Translator

The TAXI - 275 device does not include an ECL-to­
TTL translator. The HOTLink Receiver has a built­
in ECL-to-TTL translator where the SI input takes
the single-ended ECL lOOK (+5V referenced) sig­
nal in and the translated TTL signal is presented at

6-192

:. ~YPRESS ========U;;;;;p;;;;;g;;;;;ra;;;;;d;;;;;e;;;;;Yi;;;;;o;;;;;ur;;;;;T;;;;;1\.XI=;;;;;-;;;;;2;;;;;7;;;;;5;;;;;Wl;;;;;·;;;;;th;;;;;H=O;;;;;T;;;;;L;;;;;iD=k

SEJiJ[)

FOIT HOTLlNKTX
EMPTY

CKW RI' -
CY7C429

FIFO 2Kx9 - BTSTEII

L: MR - MODE

R EF ~ - FOTO

S'!'ORE W I'F ""'----

::: XI XOHF ~ - EIiIIiI

TXCONTROl FLIRT =
- DO 00 SC/D(Da) OUTA+ -- D1 01 DO(Db) OUTA- ~ - D2 02 D1(DC)

- D3 03 D2(Dd) OUTB+ '--

- D4 04 D3(Do) OUTB- -- D5 05 D4(0j)

- D6 06 05(01) OUTC+ "--
- D7 07 06(D9) OUTC- -- D8 08 07(Dh) - SVS(Dj)

ClK

~ READ HOTLlNKRX

- CKR REFCLK

CY7C429

FIFO 2Kx9 - SO MOOE r--
MR ~II mw BTSTEII f--

EIiifPT'i' EF R RF I--
FOIT I'F w AlB I--..... XOHF XI :: FLIRT

RXCONTROl - 00 DO SC/D(Oa) INA+ f--
- 01 01 OO(Ob) INA- I--
- 02 02 01 (Oc)

- 03 D3 02(Od) INB(INB+) I--

- 04 D4 03(08) SI(INB-) f--
- 05 05 Q4(Oi)

- 06 OS 05(0~

- 07 D7 06(09)

- 08 D8 07(Oh)

- RVS(Oj)

Figure 11. Asynchronous FIFO Interface

the SO output. The system can utilize this translator
to convert an ECL carrier-detect signal from an op­
tical module into its TTL equivalent for use by a con­
troller.

Output Enable Considerations

The TAXI-275 devices use the OE1 and OE2 in­
puts to force the TX and TY outputs to their logic 0
state. A HIGH on OEl and a LOW on OE2 will
force TX LOW and TY HIGH. The analogous func­
tion on HOTLink is implemented with the FOTO
(Fiberoptic Transmitter Off) pin. When the FOTO
pin is held HIGH the OUTA+ and OUTB+ are

forced LOW and the OUTA - and OUTB- outputs
are forced HIGH. This causes a fiberoptic transmit
module to extinguish its light output. The OUTC
outputs are unaffected by the FOTO pin so that
loop-back testing can be performed while the other
outputs are turned off.

When the TAXI -275 OE1 and OE2 are both pulled
HIGH, the TX and TY output drivers are turned
off. This same result can be accomplished on HOT­
Link by either pulling both of the outputs of an out­
put pair HIGH or simply leaving them unconnected.
This will turn both outputs of an output pair off and
save approximately 5 rnA per output pair.

6-193

SEND

FULl/EMPTY HOTLINKTX

CI<!N RP I--b:: C~=
FIF02Kx9 - BISTEN

I> CKR - MOOE
CI<!N - FOTO

STORE

l
.... MR F1 I--

ENR F2 ~ '--- ENN

TXCONTROL
ENW - ENA

- DO 00 SC/O(Oa) OUTA+ I--- 01 01 OO(Ob) OurA- I--- 02 02 01 (Oc) - D3 03 02(Od) OUTB+ I--- 04 04 03(De) OUTB- I--- 05 05 04(0j) - 06 06 05(Df) OUTC+ I--
- 07 07 06(Dg) OUTC- t--- 08 08 07(Oh)

- SVS(Oj)
CL K

I READ HOTLlNKRX

G
CKR REFCLK

==
FIF02Kx9 so MOOE I--

CK ROY BISTEN I--
C I RF I--

FULl/EMPTY F1 MR L NB I--
F2 ENR

ENW

RXCONTROL - 00 DO SC/O(Qa) INA+ I--- 01 01 OO(Ob) INA- I--- 02 02 01(Qc) - 03 03 02(Od) INB(INB+) I--- 04 D4 03(00) SI(INB-) I--- 05 D5 04(Oi) - Q6 06 05(Qf) - 07 07 06(Og) - 08 DB 07(Oh)

- RVS(Oj)

Figure 12. Clocked FIFO Interface

Status Indication
The TAXI -275 S1 and S2 status pins are used to in­
dicate the status of the parallel output data as shown
in Table 2.

Thble 2. TAXI-27S Status Indication

Pin Status

SI S2 Indication

0 0 Data

1 0 Command

0 1 Violation

1 1 Re-Align

The SC/D (Special Character/DATA), RDY
(Ready), and RVS (Receive Violation Symbol) out­
puts of HOTLink provide more status information
than that provided by the TAXI - 275 status pins as
shown in Table 3. This table shows that Data and
Command signalling on the HOTLink and the
TAXI - 275 devices are very similar. Violations,
however, are indicated very differently between the
two devices.

6-194

Upgrade Your TAXI-275 with HOTLink

Table 3. HOTLink Status Indication

Function sc/l)
Data 0

Command 1

Code Rule Violation 1

Running Disparity Violation 1

Sync indication after reframe 1

A Code Rule Violation is indicated with the SC/D
pin HIGH, a LOW pulse on the RDY line, a HIGH
on the RVS pin, and CO.7 on the data lines. A Code
Rule Violation is a lO-bit transmission character
that can not be decoded into an 8-bit symbol. Cod­
ing Violations are caused by errors during transmis­
sion across the link. A Running Disparity Violation
is indicated in the same manner on the SC/D, RDY,
and RVS pins as a Code Rule Violation, but the data
output lines indicate the C4.7 command. A Running
Disparity Violation is present when a transmission
character is able to be decoded into an 8-bit symbol,
but the transmission character had the wrong Run­
ning Disparity.

It is important that these two different types of
violations are indicated separately to a controller.
A Code Rule Violation indicates that the current
symbol is corrupted. In this situation the controller
would most probably throwaway the erroneous
word. A Running Disparity Violation, on the other
hand, indicates that the current word probably is
correct, but that at some point in the past the data
became corrupted. In this situation, the controller
would probably discard the entire packet.

Additionally, HOTLink provides a SYNC indica­
tion after entering reframing. When RF is brought
high, the RDY line pulses low after the first SYNC
character (K28.5) has been received. This feature
assists the Reframe state machine in determining
when the receiver has been reframed. The Reframe
state machine could pull RF LOW after the SYNC
indication. This would prevent alias SYNC charac­
ters from realigning the receiver. TAXI-275 de­
vices do not have the ability to indicate when data
has been framed to a K28.5.

TAXI
RDY RVS QO-7 Indication

0 0 Data Data

0 0 Command Command

0 1 CO.7 Sl/S2=Ol

0 1 C4.7 Sl/S2=Ol

0 1 C5.0 NONE

The TAXI - 275 devices only have an indication that
the receiver was realigned (Sl,S2=11). The status
lines do not always indicate if the TAXI - 275 Re­
ceiver has reframed when SYNCD is LOW Only if
the byte boundary has changed will the status pins
change. A reframe controller, therefore, must mon­
itor all of the command lines to determine if the re­
ceiver has correctly framed on the data stream. This
complicates reframe state machine design.

Conclusion

HOTLink has many advantages when compared
with the AMD Am79168 Transmitter and Am79169
Receiver (TAXI). These advantages include those
listed below.

• Multiplexed command and data

• Three differential serial outputs

• Two differential serial inputs

• More flexible Command codes

• More flexible reframing

• Higher operating frequency

• Built-In Self-Test

• Simplified synchronous interface

• Reduced power consumption

• Ability to send violations

• Simplified output enable interface

• More complete receiver status indications

• ECL-to-TTL translator

These advantages of HOTLink provide greater sys­
tem flexibility, simplified controller design, more
reliable data communication, and lower power con­
sumption.

6-195

Li~
=== TcYPRESS =======;;;;;U;;;;;;;p;;;;;;;gra=d;;;;;e ;;;;;Yo;;;;;u;;;;;r;;;;;T;;;;;l\X=I -;;;;;2;;;;;7;;;;;5;;;;;Wl;;;;;"t;;;;;h;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i=nk

References 3. Advanced Micro Devices, Am79168/
Am79169-275 TAXI-275 Integrated Circuits
Thchnical Manual, Rev. 1.0, i993. 1. Cypress Semiconductor, CY7B923/CY7B933

HOT Link Transmitter/Receiver Preliminary Da­
tasheet, Cypress Semiconductor High Perfor­
mance Data Book, August 1, 1993.

4. Advanced Micro Devices, Am79168/

2. Cypress Semiconductor, HOTLink Design Con­
siderations Application Note, October 1993.

AMD, TAXI, and TAXlchip are trademarks of Advanced Micro Devices

HOTLink is a trademark of Cypress Semiconductor

6-196

Am79169-275 TAXI-275 Transmitter/Receiv­
er 'Itansparent Asynchronous 'ItansmitterIRe­
ceiver Interface Preliminary Data Sheet, March
1993 RevR

HOTLink™ Built-In Self-Test (BIST)

The Cypress CY7B923 and CY7B933 HOTLink '"
Transmitter and Receiver offer the system integra­
tor a tool to send data from place to place over a
high-speed serial transmission link. They have been
designed for easy integration into any data commu­
nication subsystem and have a data-interface equiv­
alent to that of a data register or FIFO memory. Fig­
ure 1 shows schematically where HOTLink might fit
into a typical system. In this example, data is being
sent from one data bus to another over a serial link.
The controllers used at each end of this representa­
tive data link show the generic functions of all data­
link controllers. The protocol controller might be
simply a PLD state machine, or a VLSI protocol­
specific subsystem. The Bus Interface might be an
octal register, or a standard CPU bus controller.
The data buffer might be a register in the bus inter­
face or a packet-sized FIFO memory. HOTLink
connects these typical logical building-blocks with a
high-performance serial data link.

Serial data links are notoriously difficult to design
and test. HOTLink simplifies the design problem,
and offers the system integrator and end user a sim­
ple method to test the finished link. The Built-In
Self-Test feature described in this application note

Do-7 se/D SVS

MODE ------'

Figure 2. HOTLink Transmitter Block Diagram

gives an unambiguous, real-time, offline test of the
entire link. Several ways to test serial links, and seri­
allink components are described using BIST as the
grading tool.

The Cypress CY7B923 and CY7B933 HOTLink
Transmitter and Receiver block diagrams in Figures
2 and 3 show the built-in functionality included in
these parts. The transmitter uses a fully integrated
PLL to multiply the user's byte-rate clock for use as
a serial data rate clock. The receiver has a fully inte­
grated PLL that tracks the serial data stream and re­
covers the bit-rate clock. The bit rate clock is used
for internal data decoding and generating the paral­
lel byte-rate clock aligned to the recovered data.

Figure 1. lYpical Data-Communication Link using HOTLink

6-197

==- ~
., CYPRESS ===========;;;;;H;;;;;O;;;;;T;;;;;L;;;;;in;;;;;k;;;;;B;;;;;ll;;;;;il;;;;;t-;;;;;In=Se;;;;;l;;;;;f-l1;;;;;e=st

REFCLK ----+I
'-----_--rr-v

BIS~N-----1--~ __ -=
MODE------r-~

CKR RDY Qa·7 SC/D RVS

Figure 3. HOTLink Receiver Block Diagram

Both parts have built-in 8B/lOB code converters
that conform to ANSI X3Tll Fibre Channel and
ESCON Th1 specifications. The encoder and decoder
transform 8-bit user data to lO-bit characters more
suitable for transmission systems built with fiber­
optic cables or any common wire transmission line.
Both parts have parallel 110 registers designed to in­
terface with standard FIFO memories without any
extra logic. These parts also offer a full-function
Built-In Self-Test feature that tests all the circuitry
in both ICs and all of the interconnect components
that make up the link.

In most traditional serial interface links, the testing
of the serial link components and interconnections
was done off-line using high-speed analog test
equipment and specialized parameter analyzers. If
any in-line testing was done, it was done as part of
some particular communication protocol or higher­
level software functionality. In-line testing usually

~~E t
~

consisted of only a simple loop-back handshake test
that often failed to isolate the problem (if any) to
any specific component or connection. And, these
simple tests were so superficial that they typically
failed to indicate ANY problem at all.

HOTLink products offer the capability to do in-line
testing of the entire serial link without adding or re­
moving components from an operational system.
The overhead associated with this capability is mini­
mal, and doesn't affect any of the critical analog or
high speed interfaces.

Figure 4 shows a link interconnect that is typical for
HOTLink systems and illustrates the interface sig­
nals used for the BIST operation. This configura­
tion is identical to that of a normally operating data
transmission link, except for the simple control fea­
tures that have been added to facilitate the test func­
tion. While the form of the transmission link shown
in Figure 4 illustrates a test being run across an op­
erational communication link, similar testing can be
done in either Local-Loop-Back or Long-Loop­
Back configurations as shown in Figures 5 and 6.

Since there is no required feedback connection be­
tween the receiver and transmitter, the BIST func­
tion can be used in any configuration that the system
designer might find desirable. The previous exam­
ple (Figure 4) illustrates a cooperative test between
the two ends of a point-to-point transmission sys­
tem. The same function can be accomplished as part
of the loop-back test of a single communicating
node. Figure 5 shows a typical Local Loop-Back
connection wherein the test is run without any in­
volvement of the remote station.

(/len

§ ~ OllTA ~:::::-"""rIIJ!III.~=JI
Do·, f-<~ OllTB

® :So ollTe

ENN g
BISTEN :r:

Figure 4. HOTLink BIST Connections

6-198

=-# J;CYPRESS;;~~~~~~~~~~=H=O=T=L=in=k~B~u;il;t-~In;;S;el;~;Te;s;t

Protocol
Controller

Bus
Interface ,---_--,

Figure 5. Local Loop Back Testing

Bus
Interface ,--_-,

Protocol
ControIer

Figure 6. Long Loop Back Testing

A more complete test can be inade if it is possible to
gain the cooperation of the station at the remote end
of the communication link. In the example shown
in Figure 6, the remote station becomes a simple
flow-through repeater. This connection is typical of
many network systems, and can be implemented in
many simple and obvious ways. This test takes ad­
vantage of the orthogonality built into HOTLink
products. The data patterns that emerge from the
parallel data outputs of the. receiver will send equiv­
alent codes when put into the parallel data inputs of
the transmitter. This is true in either Bypass Mode
or Encoded Mode. The only restriction is that the
receiver and transmitter, which are connected via
the parallel data path, must both be in the same
mode. In the illustration shown in Figure 6, the pair

of HOTLink chips on the left should be in the same
mode, and the pair on the right should be in the
same mode. Each pair could be in either Bypass or
Encoded mode.

These BIST specific features do not affect the nor­
mal message transaction function of the HOTLink's
host system. Figure 7 shows the logical functions
that would be added to the protocol controller to
support BIST. The timer shown in both the trans­
mitter and receiver BIST control functions might be
an analog timer (one-shot) or digital logic that
counts BIST-Loops. It could also be simply a user­
controlled time-out that performs BIST while a
TEST button is pressed.

6-199

-:a ~ HOTLink Built-In Self-Test
CYPRESS ===============

Tx BIST Control BISTEN

I Timer I.
I RP

Rx BIST Control BISTEN

Timer
I

Error
Accumulator RVS

& Display

Figure 7. Control Functions for Built-In
Self-Test

RVS--~

BISTEN

RESET---I

Figure 8. A Simple BIST Error Indicator

The error accumulator and display shown in the ex­
ample could be as simple or as complex as desired.
For a software supported BIST function, the error­
count accumulator would be machine readable. For
example, the CY9266 HOTLink Evaluation Board
provides a two-digit counter that displays the accu­
mulated error count, but in general any indicator
will work. Figure 8 shows a simple RS latch con­
nected to trap errors and display any rare and ran­
dom RVS indication.

The simple circuit shown above provides an unam­
biguous indication of errors detected by the BIST
comparator and indicated by the RVS output of the
HOTLink Receiver. If the BISTEN control is Law,
the LED output indicates the state of the R-S latch
that records any pulses on RVS. Mter BISTEN is

set Law, and the circuit is RESET, the GREEN­
LED is illuminated indicating no detected errors. If
RVS ever pulses HIGH, then the RED-LED will
light and stay illuminated until RESET is pulsed
HIGH (probably by a momentary push-button
switch or a control signal from the controller).
When BISTEN is set HIGH, the LEDs will be extin­
guished.

The four areas that must be addressed to build BlST
functionality into a system involve control of BIS­
TEN pins, selection of transmitter enable pins
(ENA or ENN), test-progress supervision and error
reporting.

The BISTEN control pins enable only the BIST
function logic and can be externally controlled with­
out affecting any system resources or timing. The
BIST function performs its test sequence automati­
cally, regardless of the encoding mode selected for
the operational data link. No consideration needs
to be made for this aspect of a HOTLink system.

The HOTLink Transmitter includes two separate
enable inputs. The ENA input is used for systems
that simultaneously present data and its validation
signal (Le., traditional controllers, and asynchro­
nous FIFOs). The ENN input is used for systems
that have a request function and expect the data to
be presented on the next clock cycle (i.e., typical of
read-request controllers and clocked FIFOs). The
system integrator selects the appropriate enable pin
to accommodate system functionality and timing.
The other enable can be used to control BIST func­
tionality, thus reducing the burden of additional
control logic. When BlSTEN is enabled (LOW) and
one of the enables (either ENA or ENN) is asserted
(LOW) the HOTLink 1tansmitter creates a contin­
uous 511 byte (2L 1 bytes) pseudo-random stream
of 8B/lOB-encoded data-patterns, which the HOT­
Link Receiver checks byte-by-byte. The 256 data
patterns are sent once each and the 12 special char­
acters and the 4 error codes are sent sixteen times
each (except CO.O which is sent only 15 times) for a
total of another 255 data patterns. For a complete
list of codes used in the 8B/lOB encoder and the spe­
cial character and error codes, see the
CY7B923/933 HOTLink Transmitter/Receiver da­
tasheet.

6-200

~ - ::~
~;CYPRESS

The system control logic can monitor the test dura­
tion at the transmitter by observing the RP pin out­
put. This pin is normally used as the byte-rate read­
pulse for asynchronous FIFOs, but during the BIST
function RP will pulse once per loop. By using a
counter or timer that observes RP while BISTEN is
LOW, the number of transmitter test-loops can be
monitored. (See timing illustration in Figure 4, times
1,2,3,8, and 9.)

The RDY output of the receiver serves a similar
function as RP in the transmitter. In normal modes
this output is a status indicator used to control the
data flow to an external controller or FIFO. RDY
pulses once per byte in Encoded Mode, and once
per SYNC in Bypass Mode. In BIST Mode, it will
rest HIGH while the receiver awaits the start of the
BIST sequence, and then rest LOW for all but one
byte-time ofthe BIST loop. A counter or timer simi­
lar to that described for the transmitter can be used
to count when RDY pulses HIGH, recording the
number of times that the receiver has executed the
BIST loop. (See timing illustration in Figure 4, times
4,5,6 and 7.)

If errors are discovered in the received sequence,
received running disparity or received transmission
codes, they are flagged by the RVS output. (See tim­
ing illustration in Figure 4, time 6.) In Encoded
Mode this output is not used as part of the commu­
nication data path. In Bypass Mode this output
serves as the Qj output, but in either case the exter­
nal BIST control engine will use RVS as an input
with a minimal impact on the rest of the operating
system.

1I:-ansmitter BIST Generator

The BIST generator in the transmitter is the Input
register reconfigured into a nine-bit Linear Feed­
back Shift register (LFSR). In this configuration it
makes every possible combination of nine bits (mi­
nus 1). The 256 data codes are sent once each, and
the 12 special characters and 4 error codes shown in
the datasheet are sent multiple times to complete
the 511-byte pattern. This is the pattern that is sent
regardless of the HOTLink Transmitter and Receiv­
er encoding mode being used by the system. If the
system is using the Bypass Mode (MODE input = ,

HOTLink Built-In Self-Test

Vce) the Tx-Encoder and the Rx-Decoder is en­
abled upon the beginning of BIST Mode (BISTEN
= LOW and ENA or ENN = LOW). When BIST
Mode ends, the encoder and decoder are bypassed
(if MODE = Vce) and user data is directly serial­
ized and deserialized.

Table 1 is a complete list of the codes sent by the
transmitter when it has been enabled (either ENA
or ENN held LOW) in BIST Mode (BISTEN input
LOW). This sequence is a continuously repeating
data loop that may start at any point and then con­
tinue through all of the codes. There are several
places in the sequence where running disparity is ex­
plicitly forced, and as a result, each pass through the
sequence will repeat exactly. (It is possible to pre­
condition the BIST generator so that, on the first
time through, the initial few codes will be sent using
the wrong running disparity.) Running disparity will
be corrected when one of the force codes (i.e., C1.7
or C2.7) is encountered and will certainly be correct
before the next "Start of BIST".

Once per loop (synchronous with the DO.O at the be­
ginning of the table), RP will pulse (see Figure 4,
time 3). This BIST specific behavior allows an exter­
nal system monitor state machine to count the num­
ber of times that the transmitter has sent its BIST
data. In normal non-BIST operation, RP pulses
once per byte when ENA is asserted, and doesn't
pulse at all otherwise.

Table 1 shows the transmitter BIST sequence ex­
pressed in codes that would be commonly sent by a
controller connected to the transmitter input pins.
This table would be used if a controller was pro­
grammed to send the BIST pattern as an external
system function or as a test of the BIST pattern
checker in the receiver.

In normal operation it is unnecessary for the user to
initialize the transmitter BIST sequence since the
receiver automatically aligns its code generator to
the pattern being sent by the transmitter. If there is
some ambiguity in the exact start of the transmitter
BIST loop, the receiver will patiently wait for a good
start and begin checking from there. If an erroneous
code causes the receiver to make a false start, it will
soon detect the error and resume waiting for the
proper starting code.

6-201

HOTLink Built-In Self-Test

Table 1. HOTLink Transmitter BIST Sequence
Start here ---->

DO.O CO.O C4.0 C1.7 C4.7 CO.7 D27.7 D23.3--> D29.1 D30.0 CO.7 D15.4 DI1.2 D3.1 D17.0 D4.0

CS.O C6.0 Cl.7 Dl4.7 el1.O Dl9.S D21.2 Dl2.1 CIO.O C3.0 05.6 D8.3 Cl.O C1.0 00.6 CO.O

C4.0 CS.O C2.0 CS.O D24.7 C6.0 C9.0 DlB.6 CS.O D28.S C4.7 CI1.0 D23.6 Dl3.3 D26.1 C7.0

D9.4 D2.2 C1.0 D20.4 C1.7 C4.7 CO.7 Dl1.7 D19.3 D21.1 D2B.O C4.7 CO.7 Dl5.6 011.3 Dl9.1

D21.0 D12.0 ClO.O C7.0 D13.6 DlO.3 C3.0 D17.4

DB.S Cl.O C1.0 D20.6 C1.7 C4.7 CI1.0 D3.7

D2SA D6.2 C9.0 D22.4 C2.7 D14.5 Cll.O D3.5

Dl7.6 D4.3 C8.0 C2.0 C1.0 D4.7 CS.O Cl.O

C1J!. C1JJ. Dl6.7 C4.0 CS.O C2.0 C1.0 D20.7

CS.O D28.7 C4.7 Cll.O D19.6 DS.3 D24.1 C6.0

Dl6.2 C4.0 C1.7 ClO.O C7.0 D29.7 030.3 CO.7

D29.6 Dl4.3 CIl.O Dl9.4 OS.2 DB.1 C2.D CI.O

CB.O C6.0 C9.0 D22.7 Cl.7 D26.S C7.0 D9.S

D23.0 D13.0 DIO.O C3.0 D5.4 D8.2 Cl.O CS.O

D29.5 D30.2 CO.7 D31.4 DlS.2 DIU Dl9.0 05.0

C9.0 Dl8.4 Gi.O Dl2.5 ClO.O C3.0 D21.6 Dl2.3

C1.7 ClO.O C3.0 Dl7.7 D20.3 C1.7 ClO.O C3.0

ClO.O C7.0 D9.7 Dl8.3 CS.O D24A C6.0 C2.7

D2.0 C1.0 D4.4 C8.0 C6.0 Cl.7 D1O.7 C3.0

C2.7 DlOA C3.0 O5.S D24.2 C6.0 C2.7 DlO.6

D20.0 C1.7 C4.7 CO.7 DIS.7 D27.3 D23.1 D29.0

C4.D C1.7 CIO.O C7.0 D25.7 D22.3 Cl.7 D26.4

D13.2 DlO.I C3.0 D1.4 DO.2 CO.O C4.0 C8.0

CO.7 Dl5.S D27.2 D7.1 D25.0 D6.0 C9.0 D6.4

C4.0 C8.0 C6.0 C9.0 D18.7 CS.O D24.5 C6.0

D24.0 C6.0 C2.7 Dl4.6 CI1.0 D23.5 D29.2 Dl4.1

C4.7 ClI.O Dl9.7 D21.3 D2B.I C4.7 ClI.O D7.6

co.7 D27.6 D7.3 025.1 D22.0 C2.7 DI4A Cll.O

C2.0 CS.O D8.7 C2.0 C1.0 DI6.6 C4.0 C1.7

Dl6.1 C4.0 CB.O C6.0 C2.7 D30.7 CO.7 D27.S

D12.2 ClO.O C7.0 D9.6 D2.3 C1.0 DI6.4 C4.0

D3.2 Dl.l Dl6.0 C4.0 C1.7 C4.7 CO.7 D31.7

If the user wants to initialize the BIST pattern, there
are two methods available. In the Encoded Mode
(MODE input=GND) the SVS input overrides the
BIST sequence and forces the transmitter to send
the code indicating a Code Rule Violation (see the
CY7B923/933 HOlLink datasheet for a complete
list of 8B/IOB data codes and special characters). It
also resets the BIST LFSR to its initial state (DO.O).
(Running disparity is not explicitly set by SVS, and
the first few bytes after its release may be sent with

D4.2 C8.0 C6.0 C9.0 D6.7 C9.0 OIB.5 CS.O

D17.3 D20.1 C1.7 CIO.O C7.0 D13.7 D26.3 C7.0

D17.2 D4.1 CS.O Cl.O CS.O D12.7 ClO.O C3.0

C1.0 DO.7 CO.O CO.O CO.O CO.O C4.0 CS.O

C1.7 CIO.D C3.0 D1.7 Dl6.3 C4.0 C8.0 C2.0

C9.0 D6.6 C9.0 D22.5 C2.7 D1O.5 C3.0 D1.S

D27.4 D7.2 D9.1 DIS.O CS.O D12.4 ClO.O C7.0

D4.6 C8.0 C6.0 C9.0 D2.7 C1.0 Dl6.5 C4.0

DlS.2 CS.O D2B.4 C4.7 CO.7 D31.6 DlS.3 D27.1

DS.6 C2.0 CS.O D24.6 C6.0 C2.7 D26.6 C7.0

DS.O C2.0 CS.O Dl2.6 ClO.O C7.0 D25.6 D6.3

CIO.O C3.0 01.6 DO.3 CO.o CO.O CO.O C4.0

DS.7 D24.3 C6.0 C9.0 D2.6 C1.0 D20.5 C1.7

030.6 CO.7 D31.S D31.2 DlS.1 D27.0 D7.0 D9.0

Dl7.5 D20.2 C1.7 C4.7 ClI.O D7.7 D25.3 D22.1

C3.0 D21.S D2B.2 C4.7 CO.7 Dl1.6 D3.3 Dl7.1

Dl4.0 Cll.O D7.4 D9.2 D2.1 C1.0 DOA CO.O

C7.0 D13.5 D26.2 C7.0 D29.4 Dl4.2 ClI.O D23.4

C6.0 Cl.7 D26.7 C7.0 D25.5 D22.2 Cl.7 D30.4

C9.0 D6.S C9.0 D2.5 C1.0 DO.5 CO.O CO.O

C9.0 022.6 C2.7 D30.S CO.7 Dl1.5 Dl9.2 DS.I

ClI.O D3.4 D1.2 DO.I CO.O CO.O C4.0 C1.7

D9.3 DlS.1 CS.O DSA C2.0 CS.O D2B.6 C4.7

D7.5 D25.2 D6.1 C9.0 D2A C1.0 D4.5 CS.O

CIO.O C3.0 D21.7 D2S.3 C4.7 ClI.O D3.6 D1.3

D23.2 D13.1 D26.0 C7.0 D13.4 DlO.2 C3.0 D21.4

C1.7 C4.7 ClI.O D23.7 D29.3 D30.1 CO.7 Dll.4

D31.3 D31.1 D31.0 Dl5.0 D11.0 D3.0 D1.0 GOTO
Start

the wrong disparity. The fourth byte of the se­
quence, Cl. 7, will explicitly set running disparity for
the rest of the patterns.)

Alternatively, the transmitter BIST LFSR can be
forced to start its pattern from any other point in the
sequence by noting that the BIST sequence pro­
ceeds from the code that was in the Input register
when BIST was asserted. (Note that the BIST se­
quence generator state sequence is expressed in En-

6-202

...0:=...

= -.~
'CYPRESS

coded-Mode terms. If the transmitter is in Bypass
Mode, the Next State can be deciphered by convert­
ing the actual bit pattern on the inputs to the code
that the transmitter would send if it were in the En­
coded Mode and that were its input pattern, and
then looking for that code in the table.) In most
cases this will be sufficient to initialize the sequence,
except for the state of the internal running disparity
flip-flop. If running disparity must also be assured,
the codes for + K28.5 (C2.7) or - K28.5 (C1.7)
should be used to initialize the LFSR. The C2.7 and
C1.7 starting locations are shown in Table 1 (row 9,
items 1 and 2 respectively). The user would put, for
example, C2.7 on the transmitter inputs for one or
more byte times, then start the BIST test. The pat­
tern would start from row 9, item 1 in this example.
This technique can be useful if the user wants only
a portion of the transmitter BIST pattern for some
oscilloscope test.

Receiver BIST Comparator

The BIST generator in the receiver is the Output
Register reconfigured into a nine-bit Linear-Feed­
back-Shift-Register (LFSR) that exactly matches
the one in the transmitter. In this configuration it
puts all possible combinations of nine bits on the re­
ceiver outputs (00-7 and SCID). Table 2 is a com­
plete list of the codes that must appear on the receiv­
er serial inputs during a BIST test-loop if the
receiver is to indicate "no-errors". These codes are
slightly different than those shown in Table 1 (e.g.,
thefourth element in Table 1 = C1.7 = K28.5 with
forced negative running disparity, the fourth ele­
ment in Table 2, = C5.0 = correct K28.5) because
of the way that the running disparity affects the in­
terpretation made by the receiver when it decodes
certain characters. This table shows the codes that
would be sent by a controller sending the BIST se­
quence without depending upon the LFSR in the
transmitter, or by a transmitter connected to an En­
coded Mode receiver that was receiving a BIST se­
quence while not itself in BIST mode.

It should be noted that the first K28.5 (C5.0) (the
fourth byte in the BIST loop at * 1 in Table 2) may

HOTLink Built-In Self-Test

cause a false RVS indication on the first pass
through the BIST loop, because the transmitter
sends it as a Cl. 7 (- K28.5) to force the state of run­
ning disparity (RD). Depending upon the actual
RD state in the receiver as BIST starts, this forced
RD might appear to the receiver as a running dis­
parity error on the first time through the BIST loop.
All subsequent loops are interpreted correctly.

The SVS character (CO.7) combined with the adja­
centDl1.5 (*2 in Table 2, row 25 bytes 13 and 14) en­
coded as (011000 0111 110100 1010) creates an
alias K28.5 (001111 1010) which will cause an erro­
neous reframe if RF is HIGH for short periods of
time (less than 2048 bytes). This alias sync can be
used to check the system response to clock stretch­
ing, a topic that will be covered later. This error
(normal single-byte reframe behavior) will not oc­
cur when Multi-Byte-Sync is enabled (i.e., RF =
HIGH for more than 2048 byte times).

Note that there are several intentional code rule
violations and incorrect running disparity transi­
tions included in the receiver sequence. RVS (dur­
ing BIST) will indicate when an error in the ex­
pected code has been detected; it does not indicate
that an illegal code is present. Figure 9 illustrates
this behavior and shows the timing of RVS when the
receiver detects an error in the sequence. RVS will
pulse HIGH for the byte time following detection of
a mismatch between the received-decoded pattern
and the internally generated code.

Figure 9. RVS Indicates Errors in Received
Sequence

6-203

-~
,CYPRESS

HOTLink Built-In Self-Test

Table 2. HOTLink Receiver Input BIST Sequence
Starthere---->

00.0 CO.O C4.0

CS.O C6.0 CZ.7

C4.0 CS.O CZ.O

09.4 02.2 CI.O

021.0 012.0

OS.5 C2.0

025.4 06.2

017.6 04.3

CZ.O CI.O

CS.O 02S.7

016.2 C4.0

029.6 014.3

CS.O C6.0

023.0 013.0

029.5 030.2

C9.0 01S.4

CI.7 CIO.0

CIO.0 C7.0

02.0 CI.O

CS.O 010.4

020.0 CI.7

C4.0 C5.0

013.2 010.1

CO.7 015.5

C4.0 CS.O

024.0 C6.0

C4.7 ClI.O

CO.7 OZ7.6

C2.0 CS.O

016.1 C4.0

012.2 CIO.0

03.2 01.1

CIO.0

CI.O

C9.0

CS.O

016.7

C4.7

CI.7

ClI.O

C9.0

010.0

co.7

CS.O

C3.0

09.7

04.4

C3.0

C4.7

CIO.0

C3.0

027.2

C6.0

CZ.7

019.7

07.3

OS.7

CS.O

C7.0

016.0

C5.0·' C4.7

014.7 Cll.O

CS.O 024.7

020.4 CS.O

C7.0

020.6

OZZ.4

C2.0

C4.0

Cll.O

CIO.0

019.4

OZ2.7

C3.0

031.4

012.5

017.7

O1S.3

CS.O

05.5

CO.7

C7.0

01.4

07.1

C9.0

014.6

OZI.3

025.1

C2.0

C6.0

09.6

C4.0

013.6

CI.7

C2.7

CI.O

CS.O

019.6

C7.0

05.2

C2.7

05.4

015.2

CIO.0

020.3

CS.O

C6.0

024.2

O1S.7

02S.7

00.2

025.0

01S.7

ClI.O

O2S.1

022.0

CI.O

CS.O

OZ.3

CS.O

CO.7

019.5

C6.0

C4.7

027.7

021.2

C9.0

CO.7

023.3 -->
012.1

01S.6

011.7

010.3 C3.0 017.4

C4.7 ClI.O 03.7

014.5 ClI.O 03.5

04.7 CS.O CZ.O

CZ.O CI.O 020.7

OS.3 024.1 C6.0

029.7 030.3 CO.7

OS.I CZ.O CI.O

026.5 C7.0 09.5

OS.2 C2.0 CS.O

011.1 019.0 05.0

C3.0 021.6 012.3

CI.7 CIO.O C3.0

024.4 C6.0 CZ.7

C2.7 010.7 C3.0

C6.0 CZ.7 010.6

027.3 023.1 029.0

022.3 CZ.7 OZ6.4

CO.O C4.0 CS.O

06.0 C9.0 06.4

C5.0 OZ4.5 C6.0

023.5 OZ9.Z 014.1

C4.7 ClI.O 07.6

CZ.7 014.4 ClI.O

016.6 C4.0 CS.O

030.7 CO.7 027.5

CI.O 016.4 C4.0

C4.7 CO.7 031.7

When the receiver BISTEN input is set LOW, it ini­
tializes its BIST pattern generator and begins
searching for the start of the transmitter BIST pat­
tern (see Figure 4, time 5). While it is awaiting this
start code, RDY and RVS will be HIGH. When it
finds the beginning of the pattern (a Dl.O followed
by a DO.O, with the proper running disparity), first
RVS falls then RDY falls. RDY will remain LOW
for the next 510 bytes of the BIST loop and then
pulse HIGH for one byte time (see Figure 4,

029.1

CIO.0

CS.O

019.3

030.0

C3.0

028.5

D21.1

CO.7 DIS.4

05.6 DB.3

C4.7 ClI.O

D2B.0 C4.7

D4.2 CS.O C6.0 C9.0

D17.3 D20.1 CI.7 CIO.0

D17.2 D4.1 CB.O C2.0

CI.O DO.7 CO.O CO.O

CI.7 CIO.0 C3.0 DI.7

C9.0 D6.6 C9.0 DZ2.5

D27.4 D7.2 D9.1 DIS.O

D4.6 CS.O C6.0 C9.0

DIS.2 CS.O D2B.4 C4.7

DB.6 CZ.O CS.O D24.6

DB.O CZ.O CS.O D12.6

C1O.0 C3.0 DI.6 DO.3

D5.7 D24.3 C6.0 C9.0

D30.6 CO.7 D31.5 D31.2

017.S 020.2 CS.O C4.7

C3.0 D21.5 D28.2 C4.7

014.0 ClI.O 07.4 D9.2

C7.0 D13.5 D26.2 C7.0

C6.0 CZ.7 D26.7 C7.0

C9.0 D6.5 C9.0 D2.5

C9.0 D22.6 CS.O 030.5

ClI.O D3.4 DI.2 DO.1

D9.3 O1B.l CS.O DB.4

D7.5 D25.Z D6.1 C9.0

CIO.O C3.0 D21.7 D28.3

023.2 D13.1 D26.0 C7.0

CS.O C4.7 Cll.O D23.7

D31.3 D31.1 D31.0 015.0

011.2

C2.0

D23.6

CO.7

D3.1

CI.O

D13.3

015.6

D6.7 C9.0

C7.0 D13.7

CS.O D12.7

CO.O CO.O

016.3 C4.0

CS.O 010.5

CS.O D12.4

02.7 CI.O

CO.7 D31.6

C6.0 C2.7

CIO.O C7.0

CO.O CO.O

D2.6 CI.O

O1S.1 D27.0

ClI.O D7.7

CO.7 011.6

02.1 C1.0

029.4 014.2

D25.5 D2Z.2

CI.O DO.5

CO.7'2 DI1.5

CO.O co.O

C2.0 CS.O

DZ.4 CI.O

C4.7 ClI.O

D13.4 010.2

D29.3 D30.1

011.0 03.0

D17.0

00.6

D26.1

011.3

O1B.5

DZ6.3

CIO.0

C4.0

CS.O

C3.0

CIO.0

016.5

DIS.3

D26.6

D25.6

CO.O

D20.5

D7.0

D25.3

03.3

DO.4

Cll.O

CS.O

CO.O

019.2

C4.0

D28.6

D4.5

D3.6

C3.0

CO.7

DI.O

D4.0

CO.O

C7.0

D19.1

CS.O

C7.0

C3.0

CS.O

CZ.O

D1.S

C7.0

C4.0

DZ7.1

C7.0

D6.3

C4.0

CI.7

D9.0

D22.1

017.1

CO.O

D23.4

D30.4

CO.O

05.1

CI.7

C4.7

CS.O

D1.3

D21.4

DII.4

GOTO
Start

time 6). This BIST specific behavior of the RDY
output allows an external system monitor state ma­
chine to count the number of times that the receiver
has checked the BIST data. In non-BIST modes,
RDY pulses once per byte in Encoded mode, or
once per K28.5 in Bypass mode.

The actual bit pattern appearing at the receiver out­
puts (QO-7, and SClD) will match the decoder out­
put for all data patterns, but may not match the data-

6-204

sheet pattern for all of the Special Character codes
being received. Table 3 shows the patterns which will
appear at the outputs of the receiver while BIST is
running. Many of the codes shown do not appear in
the datasheet and no correlation should be inferred
between these output patterns and the reserved

HOTLink Built-In Self-Test

codes mentioned therein. Likewise, if these codes
are presented to a transmitter, it will not send the
codes necessary to create a good BIST pattern.
These codes will typically be monitored by a logic
analyzer, and might assist in debugging a particular
serial link error phenomenon.

Table 3. HOTLink Receiver Output Patterns during a BIST Sequence

00.0

C24.0

C4.5

09.4

021.0

OS.5

025.4

017.6

CZ.7

C21.7

Dl6.2

029.6

CZ4.5

023.0

029.5

C9.1

C12.7

C26.5

02.0

C13.0

020.0

C20.5

013.2

C31.2

C4.6

024.0

C14.7

C15.5

CIS.5

016.1

Dl2.2

03.2

C16.0

CZ2.4

CS.6

02.2

Dl2.0

CZ.2

06.2

04.3

CI.7

02S.7

C20.1

014.3

C6.6

013.0

030.2

DlS.4

CIO.7

C7.6

C17.0

DlO.4

C28.0

C12.6

010.1

Dl5.5

C24.7

C22.0

Cll.7

027.6

C5.6

C4.0

C26.1

0l.1

CZO.4

CZ9.6

CIS.7

C17.1

C26.0

C17.5

C25.1

CS.I

Dl6.7

C14.3

C12.4

Cll.1

C25.7

DlO.O

C3l.1

C21.2

C3.7

09.7

04.4

C19.2

C30.4

CZ6.7

C3.0

027.2

C6.7

CZ9.4

Dl9.7

07.3

OS.7

C24.4

C7A

Dl6.0

C28.6

014.7

CS.7

020.4

C23.4

020.6

022.4

C2A

C4.3

CII.5

C26.6

Dl9.4

022.7

C19.0

031.4

Dl2.5

Dl7.7

01S.3

C24.2

05.5

C31.6

C7.7

01.4

07.1

C9.7

Dl4.6

021.3

025.1

CZ.3

C22.6

09.6

C20.0

C30.7

CI1.3

024.7

C2S.2

Dl3.6

C2S.3

CZ9.2

C17.6

CS.5

019.6

C23.7

05.2

C13.3

05.4

015.Z

CIO.2

020.3

CS.I

CZ2.5

024.2

015.7

025.7

00.2

OZ5.0

01S.7

CZ7.3

02S.1

OZ2.0

CI.5

C29.7

02.3

C28A

Cl5.7

Dl9.5

C6.3

C30.5

010.3

C14.5

014.5

D4.7

CZ.6

05.3

029.7

OS.I

026.5

DB.Z

01l.1

C19.5

C12.1

024.4

C13.6

C2Z.1

027.3

OZ2.3

C16.1

06.0

CS.3

023.5

C14.0

C29.0

016.6

030.7

Cl.1

C30.6

027.7

021.2

C9.5

C15.6

C3.1

CII.6

CII.2

CS.3

C17.7

024.1

030.3

CZ.O

C7.2

CIS.I

019.0

021.6

CIO.4

CZ2.2

010.7

C13.4

023.1

C13.1

C4.4

C25.0

OZ4.5

029.2

CZ7.4

Dl4A

C20.3

C15.3

Dl6.4

C31.7

OZ3.3

Dl2.1

DlS.6

Dl1.7

Dl7.4

03.7

03.5

CZ.5

020.7

C6.0

C15.1

C17.4

09.5

C5.4

05.0

Dl2.3

C19.6

CZ9.5

C3.3

DlO.6

029.0

02604

C24.6

06.4

C6.2

D14.1

07.6

C27.2

CIZ.5

027.5

C20.2

D31.7

DZ9.I

CIO.O

C21.3

Dl9.3

D4.2

Dl7.3

Dl7.2

CI.6

C12.3

C25A

027.4

04.6

OIS.2

08.6

OS.O

CIO.1

05.7

030.6

017.5

C19.3

014.0

CZ3.2

CZ2.7

CZ5.2

C25.5

Cll.O

D9.3

07.5

CIO.6

023.2

CZS.5

031.3

6-205

030.0

C19.4

028.5

OZl.1

C24.1

020.1

04.1

00.7

ClO.5

06.6

07.2

CZ4.3

CZl.1

C1S.3

CIS.O

C3.4

024.3

C31.3

020.2

021.5

C27.0

013.5

C13.7

06.5

022.6

0304

01S.1

025.2

C19.7

013.1

C14.6

031.1

C31.0

05.6

C14.2

D2S.0

C6.4

C12.0

CS.O

CO.3

C3.6

CZ5.3

09.1

C6.5

02SA

CS.5

C21.4

01.6

C6.1

031.5

C28.1

02S.2

0704

026.2

026.7

C9.2

C29.3

01.2

CS.O

06.1

021.7

026.0

C27.7

031.0

Dl5.4

OS.3

C27.5

C30.0

CZ5.6

CZ6.4

CISA

CO.5

01.7

022.5

OIS.O

C9.6

C30.2

024.6

Dl2.6

00.3

C9.4

031.2

CI4A

C30.1

09.2

CZ3.1

C7.3

02.5

030.5

00.1

OS.4

C9.0

D2S.3

C23.0

023.7

015.0

Dl1.2

C2.1

023.6

C31.4

06.7

C23.6

CZl.6

CO.6

016.3

C13.2

C21.0

02.7

C31.5

CZ2.3

C26.3

CO.1

02.6

Dl5.1

CZ7.6

CI5A

02.1

029.4

025.5

CI.2

C15.2

CO.O

CIS.2

02.4

C14.1

013.4

029.3

DlI.O

03.1

CI.4

Dl3.3

Dl5.6

C9.3

013.7

Dl2.7

C16.7

C4.1

DlO.5

012.4

C1.3

031.6

C13.S

C7.5

CO.4

C17.3

027.0

07.7

Dl1.6

CI.O

Dl4.2

022.2

00.5

DlI.5

C16.4

CZl.5

C17.2

CII.4

010.2

030.1

03.0

Dl7.0

00.6

026.1

Dll.3

OIS.5

026.3

ClO.3

C4.7

CSA

C3.2

C26.2

Dl6.5

015.3

026.6

025.6

C16.6

020.5

07.0

025.3

03.3

0004

C27.1

C29.1

CO.2

Dl9.2

C20.6

02S.6

04.5

03.6

C19.1

C15.0

01.0

04.0

C16.3

C7.0

Dl9.1

CS.2

C7.1

C3.5

CS.7

CIS.6

01.5

C23.5

C4.2

027.1

CZ3.3

06.3

C20.7

C12.2

09.0

022.1

Dl7.1

C16.2

02304

030.4

C16.5

05.1

C2S.7

C30.3

CB.2

DI.3

021.4

01104

GOTO
Start

BIST Auto-Abort and Restart

When the receiver detects an error in the received
expected sequence of transmission codes it will as­
sert RVS during the byte-time following the error.
A normally operating system will rarely experience
one error per hour (a bit error rate of lxlO-12 =
1 error/hour @ 266 Mbaud), and systems doing
some kind of design tolerance or performance limit
testing will usually run with less than a few errors per
second (BER of lxlO-8 = 3 error/second
@ 266 Mbaud) even during link length testing. At
these rates, it can be assumed that each error
flagged by RVS was caused by an error that corrupts
a single bit. It is impossible to distinguish between
single-bit errors and multiple-bit errors within a
single byte, since errors are only reported on a byte­
by-byte basis. Further, since many kinds of errors
change a legal data-byte into another legal byte
many errors will be reported at times unrelated to
when the error occurred. Single-bit errors can cause
changes in the data stream running disparity, and
will be detected as errors in the forced running dis­
parity codes.

In extreme cases, where the errors cause PLL cycle
slipping, or loss of framing, it is possible to create
ambiguous error indications and seemingly endless
running error sequences. Once the bit sequence has
been corrupted, or after the PLL has bit-slipped, the
BIST comparator will indicate a 100% error rate
(except for the 32 expected violations that occur as
part of the BIST pattern).

Since the BIST generator is a free-running counter
that is only initialized while it awaits the start of the
transmitter BIST sequence, errors of any kind don't
affect the LFSR sequence. This feature can be used
to advantage for several types of testing that gener­
ate long sequences of errors, since when the errors
are removed, the receiver BIST generator predicted
data will eventually match the received serial digital
data without having to be realigned. Unfortunately,
if the error causes the PLL to slip a bit, the received
stream will never match.

To account for any loss of BIST sequence condition,
the BIST logic included in the receiver will abort an
extremely damaged sequence. It will abandon the

HOTLink Built-In Self-Test

current sequence and search for the start-of-BIST
character and then resume comparisons from the
beginning. When this auto-abort happens, RDY
will go HIGH and remain there until the beginning
of a new sequence is detected. While the receiver is
waiting, RVS will also remain HIGH. The criteria
for Auto-abort requires that there be L16 RVS in­
dicationswithin 32 contiguous bytes, and is checked
every 64 bytes.

For system tests where the user wants to use the
BIST comparator to check for longer running errors
(and receiver PLL recovery without slipping) it is
possible to disable the auto-abort function. The
counter that is used to sample the error counter runs
on REFCLK. By disconnecting the REFCLK input
from the receiver after the PLL has reached the cor­
rect operating frequency, the internal counters that
manage the error monitor are disabled. (There is a
50/50 probability that when REFCLK is disabled,
the auto-abort counter will still be enabled, but by
reconnecting, and then disconnecting the REFCLK
the auto-abort function can be disabled. The func­
tion is controlled by an internal REFCLK divided­
by-64 counter. For the first 32-byte times, auto­
abort is enabled, for the other 32-byte times it is
disabl~d.)

Tests Using BIST

Built-In Self-Test is a valuable and versatile tool for
performing offline-test in any system. It also offers
an unambiguous method to examine the perfor­
mance of HOTLink products and other serial link
components. The following short test descriptions
are intended to introduce the reader to the capabili­
ties of HOTLink and BIST as an evaluation tool.
The tests described are typical of those required to
evaluate most physical layer components.

Transmission Line Length

To check for the maximum transmission line length
over which HOTLink can communicate, it is only
necessary to connect the selected transmission line
between a HOTLink 1fansmitter and Receiver.
Most transmission line testing uses arbitrary data
patterns that represent typical communication pat­
terns. The HOTLink transmitter and receiver BIST
function serves this purpose so the user can check

6-206

for an acceptable error rate without extra test equip­
ment and without reconfiguration of an operational
link just to perform this test. 1tansmission lines can
be extended or modified until RVS indicates an un­
acceptable error rate. Tests that might use BIST to
indicate system margin include;

• fiber-optic optical attenuation budget and opti­
calor electrical margin testing;

• wire transmission-line attenuation, crosstalk,
emissions and noise susceptibility testing;

• electrical interface connections and signal-mar­
gin testing;

• data sources for serial interconnect hardware
testing.

Rx Jitter Tolerance

The ultimate performance of any serial link is deter­
mined by the performance of the receiver. The
function of the receiver is to recover data from a
(seemingly arbitrary) serial data stream. This data
stream is translated several times, coupled to and
though several non-linear devices and subjected to
all manners of distortion. The receiver must accept
this serial pulse train and recover a high-speed bit
synchronous clock, de-jitter it, and then separate the
DATA from the CLOCK. Jitter tolerance is the typ­
ical term used for this function. HOTLink receiver
jitter tolerance can be measured by connecting a

a

~ .. --------------------~

HOTLink Built-In Self-Test

suitable transmission media between the transmit­
ter and receiver, and inserting a jitter generation
source similar to that shown in Figure 10. By insert­
ing measured jitter amplitudes and watching the
RVS output of the receiver, jitter tolerance can be
measured.

There are two basic types of jitter that must be ac­
commodated, deterministic jitter and random jitter.
Deterministic jitter is comprised of data dependent
jitter (DDJ) and duty cycle distortion (DCD). DDJ
is caused by imperfections in the serial link that
cause signal corruption that is proportional (or at
least a strong function of) the particular data
stream. DCD is caused by imperfection or imbal­
ances in the serial link that cause signal corruption
that is related to the timing of the rising or the falling
edges. Random jitter is unrelated to the data
stream, the edge rates, or the link quality. It is typi­
cally caused by external noise events or by thermal
noise in the optical components. Random jitter is
uncorrelated to the data stream and is difficult to re­
produce experimentally.

DCD creates high-frequency jitter at about the bit
rate of the serial data stream since bit placement er­
rors are complemented within the pulse that is dis­
torted. DDJ creates high-frequency jitter at about
the bit rate of the serial data stream since bit-place­
ment errors are usually complemented within a bit
or two. These high-frequency jitter components
should be filtered by the PLL filter, and should

"-y-)
C

Figure 10. Jitter Generator Schematic

6-207

= :2 HOTLink Built-In Self-Test
~7CYPRESS ===============

cause no significant jitter at the CKR output of the
receiver. DDJ can cause baseline-wander at about
the byte rate ofthe serial data stream, but since the
8B/lOB code is balanced over multiple bytes, there
should be little or no low-frequency components in
the jitter. Random jitter has both high- and low-fre­
quency components, and will cause output jitter as
it causes the PLL to attempt to track a corrupted
data stream. All three types of jitter must be accom­
modated by the receiver as it captures the data and
aligns its serial clock.

Data dependent jitter can be generated by a suitable
length of coaxial cable. If DDJ and input amplitude
must be separately measured, an external line re­
ceiver and level restoration circuit might be needed.
Duty cycle distortion can be generated by the circuit
shown in Figure 10. This circuit uses the stages in a
lOH116 (ECL triple-differential amplifier)·to per­
form; (1) Differential-to-single-ended transforma­
tion; (2) Ramp generation; (3) Threshold shifting;
(4) Level restoration; (5) Differential buffering.
In this circuit the transmitter data stream is fed
through the jitter generator while the receiver moni­
tors and checks for correct operation. As the con­
trol voltage (Vj) input is varied between the lOKH
Vii and Vih levels, the duty cycle of the data stream
is corrupted in a repeatable and measurable
manner.

Serial-data input to the jitter generator can use any
appropriate connector, and coupling circuit. The
connector and transformer shown at (a & h) will
work with coaxial cable or STP cables. For fiber-op­
tic interfaces, these could be eliminated by direct
coupling to fiber-optic receiver/transmitter mod­
ules. Transmission-line termination and DC thresh­
old adjustments are performed by the simple net­
work shown at (b). The first differential stage of the
'116 (d) is used as a differential-to-single-ended
converter with a controlled output impedance and
symmetrical rise and fall times. The ECL output
termination resistors shown at the outputs of each
differential stage (c) may be replaced with parallel
termination resistors if better impedance control or
closer edge-rate matching is required. The R-C
ramp generator at (e) must be tuned to each data
rate, to insure that 100% voltage swing is main­
tained for the narrowest pulses expected. If the

Ramp is too long, it will be possible to raise Vj above
the level of some data bits, thus losing data. The se­
cond differential stage of the '116 (f) serves as a volt­
age comparator between the control voltage (Vj)
level and the level of the signal at the output of the
ramp-generator. Additional DC-filtering may be
required between the Vj input and its input to (f) to
insure that high-frequency, single-ended noise does
not corrupt the data flow. The third differential
stage of the '116 (g) is used to restore crisp-edged,
full-swing levels to the serial data, and to drive the
subsequent transmission line. Further details on the
fabrication of the jitter generator and the measure­
ment techniques required for accurate measure­
ment of this injected jitter is beyond the scope of this
note.

Receiver Error-Free-Window Test

A normally operating receiver PLL will adjust its in­
ternal clock such that incoming data transitions are
placed at the maximum distance from the data-sep­
arator flip-flop sampling window. This placement
allows misplaced transitions (jittered edges) the
maximum margin before data-misinterpretation oc­
curs. The width of this error free zone is commonly
called error-free-window. It is less than the actual
bit width (expressed in nanoseconds) by the sum of
maximum peak-to-peak receiver PLL jitter, data­
separator flip-flop sampling window width, and ab­
solute misalignment of the internal PLL sampling
clock. (Actual test results will be additionally af­
fected by clock source jitter and test equipment trig­
ger and measurement inaccuracies.)

To measure the error-free-window (EFW) in the
HOTLink Receiver, it is only necessary to connect
a HOTLink Transmitter and receiver in BIST mode,
while controlling the serial data stream with the
transmitter FOTO pin. The FOTO input to the
transmitter causes the OUTA+ and OUTB+ out­
puts to beLOW, and theOUTA- andOUTB- out­
puts to be HIGH for the time that FOTO is HIGH.
(For purposes of this example it will be assumed that
Tx-OUTA+ is connected directly to Rx-INA+
and that Tx-OUTA- is connected directly to Rx­
INA-.) Since FOTO is an asynchronous TTL in­
put, it is possible to use it as a Controlled Data Cor­
rullter that can move an edge away from its nominal

6-208

-·f~ HOTLink Built-In Self-Test
'CYPRESS ================

position. The limits of the EFW will be signaled by
an indication on RVS.

To set up the test, the user would connect a pulse
generator to the transmitter FOTO pin. This gener­
ator would be triggered by the RP output and would
be controllable in both delay and pulse width. Since
RP pulses once each BIST loop, the generator
would make pulses that were phase aligned with the
serial data stream. By careful adjustment of pulse
width (VERY narrow, adjustable-width pulses) and
delay (alignment such that the forced LOW is
placed in a position that is naturally LOW) it is pos­
sible to measure the EFW

To perform the test, the user should first adjust the
generator so that it causes no corruption in the actu­
al data stream. Then, by carefully adjusting the
delay and/or width of the generator a specific edge
in the data stream can be realigned until the RVS
output indicates a BIST error. By noting the posi­
tion of the realigned edge relative to its nominal
position, the early and late limits of the EFW can be
measured.

The relationship between the FOTO pulse and its
effect on the OUTA transition must be measured
empirically. The OUTA+ expanded waveform
shown in Figure 11 illustrates the control that can be
effected by FOTO. The vertical lines (Internal Rx
Sampling Locations) indicate the location of ideal
receiver sampling points, and the shaded regions
around them indicate the built-in errors that limit
EFW

FOTO ___ ---" ~,.--________ _

Figure 11. Example of Error Free Window
Testing

Since FOTO only forces the OUTA+ & B+ output
to a LOW (and OUTA- & OUTB- to a HIGH), it
is not possible to check for rising and falling edge
symmetry with this test. A falling edge can only be
forced to an earlier LOW, and a rising edge can only
be forced to a later HIGH. By careful adjustment
of the FOTO generator, it is possible to adjust the
position of all of the various 1, 2, 3, 4, and 5 bit­
length pulses found in the 8B/lOB code.

Rx Run-Length Tolerance Test

An extension of the EFW test will allow the user to
measure the receiver's tolerance to missing pulses.
If the pulse width of the FOTO generator described
above is increased beyond a few bits, the resulting
data stream will have missing pulses beyond the
5-bit run-length of the 8B/lOB code. These missing
transitions allow the PLL control voltage to drift,
causing an arbitrary phase change. When the transi­
tions resume, the PLL realigns to the incoming bit
stream. However, if the phase drift has gone beyond
the jitter limit, the PLL may align to a different bit
position than the one to which it was previously
aligned (see Figure 12). This realignment is com­
monly called cycle slip and equates to the loss or
addition of a bit to a serial data stream.

Obviously the RVS output will indicate an error, as
shown in Figure 13, while the data is masked, but
since the indicated error is bounded (i.e., recovers
within a few bytes), the BIST detector shows that the
receiver is able to continue finding good data within
a few bits or bytes of resumption of the sequence.

As the FOTO pulse width increases from a few bits
to a few bytes, the RVS indication widens propor­
tionately. There may be positions where a minor
change in width causes multiple byte errors and oth­
ers where multi-bit width changes cause the RVS to
show apparently good data. The former is an indica­
tion of a running disparity error which might run for
several bytes before being terminated by a code in
the BIST sequence. The latter is an indication that
at that particular position in the sequence, BISTwas
already expecting a violation, so would not flag an
error for this type of data corruption.

When the FOTO pulse width (or the RVS pulse
width) approaches 16 bytes, the BIST-Auto-abort

6-209

& ~ HOTLink Built-In Self-Test
, CYPRESS ================

.I~~~~~~~~~~~~~~~~~

~~
Ii

~
*i
<1~~+-+-+-+-4-4-~~~~-+-+-+-4-4~~~~~--~

~
realgnto

dlffell8llt bit poaHfon
I I I

Figure 12. Long Spaces without Transitions May Cause Cycle Slip

FOTO _______ ~I VIIIIIIIIIIIA

OUTA+

RDY~ __ ~n~ ________________________ ___
RVS

Figure 13. Missing-Transition Test Timing Diagram

mechanism described in an earlier section will begin
to obscure the real receiver tolerance. When the er­
ror run length approaches 16 bytes, the RVS width
will become almost continuous. RDY will cease its
normal pulse-once-per-Ioop operation and will rise

during the RVS pulse, and stay HIGH for the re­
mainder of the BlST loop as the receiver BlST
checking circuit waits for a start-of-BIST pattern. If
RP, RVS and RDY are all simultaneously displayed
on the oscilloscope screen, it will be noted that the

6-210

BIST loop appears to start correctly, but that after
the FOTO pulse, all the data is corrupted. This is
the automatic-restart behavior and is characteristic
of the BIST-auto-abort logic, not an indication of a
real corrupted data stream.

HOTLink Receiver can tolerate nearly 100 trans­
itionless bytes without cycle-slipping so meaningful
testing requires suppression of the auto-abort func­
tion. As described earlier, this BIST-auto-abort log­
ic can be suppressed by removing the REFCLK in­
put from the receiver.

Even with the BIST-auto-abort logic disabled the
pulse width of the FOTO generator (and thus the
number of missing data transitions) will ultimately
become long enough that the receiver PLL will cycle
slip before data resumes. Since the BIST compara­
tor requires an absolutely perfect data stream and
cannot realign without external assistance, the BIST
checker will show that the all of the received data is
incorrect. Once the RVS indication becomes con­
tinuous it will be necessary to either reconnect
REFCLK (and allow the Auto-abort logic to rein­
itialize the receiver BIST generator) or to toggle the
BISTEN input on the receiver (which forces the
BIST generator to begin from the beginning). The
FOTO-generator pulse width (expressed in bit
times) that causes an unrecoverable error is the mis­
sing-transition limit of the HOTLink receiver (Le.,
run length tolerance).

Figure 13 illustrates signals involved in the run
length tolerance test. The actual time measurement
will be affected by the timing of the FOTO pulse,

HOTLink Built-In Self-Test

and the jitter added by the interconnect link. Care
should be taken to assure that the first missing pulse
comes after a normally placed pulse (i.e., make sure
that FOTO takes effect while the data stream is nat­
urally LOW and that it does not disturb the position
of the last transition before it kills the data stream).
If the receiver PLL is recovering from a large phase
correction at the time it is left to float, reduced run­
length tolerances will result.

Reframe-CKR Stretch

In normal systems it is difficult to cause the HOT­
Link Receiver to reframe off established byte
boundaries using normal transmission data. The
HOTLink BIST sequence includes one occurrence
of a bit pattern that mimics a K28.5 aligned to incor­
rect byte boundaries. To view this clock stretch be­
havior, it will be necessary to synchronize the oscil­
loscope with the RP of the transmitter, and delay the
display to the area of the alias sync. Figure 14 shows
the effect of an alias sync (five bits misaligned). In
this example, taken from the BIST sequence, the
CO.7-Dl1.5 cause an alias-sync realignment. The
next several bytes are corrupted because of this mis­
framing. When the C2.7 (+K28.5) arrives, it re­
aligns the data to the proper boundaries. In the six
byte times between the CO.7 and the C2.7 there have
been two clock-stretching events and only five bytes
have come out of the receiver (all bad without any
RVS indication). Please note that this illustration
shows the function of the receiver and is not in­
tended to show actual timing with respect to the seri­
al data stream.

D22.6 C5.0 D30.5 co.? D11.5 D19.2 D5.1 D24.0 C6.0 C2.? D14.6 C11.0

01101001111000001010111101010011000011111010010101100100101101001100100110010111100001001110000010101110001100111101000

CKR -I I-I I-I 1-==1-1-1-I-I I-I I-I 1-==1
-

I-I I-I
-

RDY* I-I I-I I-I I-I I-I 1--1 I-I I-I 1-

~

D22.6 C5.0 D30.5 (~)Gh+ ~ ~ ~ 00-.+ XXX C2.7 D14.6 C11.0

Lost Lost

Figure 14. Illustration of Receiver Behavior during Reframe Clock Stretch

6-211

If the receiver RF input has been HIGH for less
than 2048 bytes, this single alias-K28.5 (double-un­
derlined in Figure 8) will cause a byte realignment
(reframe) to the incorrect byte boundary (five bits
off of the real byte alignment) and thus a stretch of
CKR, RDY and the position of 00-7, SC/D and
RVS until the next properly aligned K28.5 (approxi­
mately five bytes later). In the illustration, the CO.7
indication is lost because of the reframe caused by
the alias sync and the adjacent clock edges are sepa­
rated by fifteen bits. Similarly, when the real K28.5
arrives (C2.7 in the example), the 00-7, SC/D out­
puts will change twice between adjacent clocks (i.e.,
internal bit 0) between the DO.7 and the C2.7 (i.e.,
once on the old bit 2 and again on the new bit 2).
These adjacent clock edges are separated by fifteen
bits and the specified set-up and hold times for sub­
sequent logic will be assured.

After the receiver RF has been HIGH for more than
2048 bytes, the internal byte framer changes from
requiring a single K28.5 to re-align the byte, to re­
quiring two K28.5s to reframe. To keep the receiver
in single byte-framing mode, and to perform this
test it will be necessary to pulse the RF input at a
rate less than once per 2048 bytes (maybe triggered
byRP/4).

An alternative method to show byte realignment
and CKR stretching involves sending a string of data
that includes a positive running disparity K28.7
(C7.0) followed by D11.x or D20.x or by sending a
positive running disparity SVS (CO.7) followed by
Dll.x. (e.g., CO.7 = 0110000111 or 1001111000 and
D11.x = 110100xxxx or 001011xxxx so if the correct
running disparity SVS is followed by the correct run­
ning disparity D11.x, a five bit misaligned-alias-sync
is created as follows; 0110000111110100xxxx)

Receiver Offset Frequency

Differences in frequency between the transmitter
crystal oscillator and receiver REFCLK crystal os­
cillator might limit performance of the data commu­
nication link. The HOTLink datasheet specifies
that the receiver and transmitter frequencies can be
different by ±0.1 % (1000 ppm) without compro­
mise to the reliability of the data link. This parame­
ter is conveniently checked by operating a transmit-

HOTLink Built-In Self-Test

ter CKW on one generator or crystal oscillator, and
the receiver REFCLK on another. If both HOT­
Link parts are operating in BIST mode the RVS out­
put will indicate the quality of the link.

As the generator frequency is adjusted (slowly and
smoothly) the RVS should stay LOW indicating cor­
rect operation. RVS may show errors when the gen­
erator frequency is adjusted, though it is unlikely.
If this happens, it is probable that the frequency
change is being made too abruptly. The test is still
possible, if RVS is checked only after the generators
stabilize at each new frequency.

Tolerance to Phase Changes in
Received Data

Tho transmitters operated from the same clock
source will run at exactly the same data rate. If they
are both in BIST mode and synchronized by simulta­
neous assertion of the SVS input, they will also be
sending exactly the same serial data. If their respec­
tive clocks are phase adjusted over a narrow delay
range, they can be used as a source of synchronized
serial data with a known phase relationship.

The receiver has two equivalent serial inputs
(INA± and INB±) which can be independently se­
lected. If the two transmitters are each connected
to one of the serial data inputs, and if a synchronized
source alternately selects one, then the other (using
AlB Select), the receiver's phase adjustment behav­
ior can be examined. (See Figure 15.) Synchronized
switching is easily accomplished by using the RP
output of one of the transmitters to trigger a long­
pulse-width ECL generator (200-300 bytes pulse
width, carefully aligned so that the change happens
during a quiescent portion of the serial stream).

As the two transmitters are alternately selected and
as the delay between them is increased, the receiver
sees a continuous BIST data stream containing
instantaneous phase changes equal to the difference
in transmitter-to-transmitter, clock-to-clock skew.
It must adjust to the new data phase and realign its
internal clock to correctly recover the data. The
theoretical maximum phase adjustment range is
slightly less than ±0.5 bit time (i.e., ±0.5 bit less Rx
PLL jitter, static alignment, and flip-flop set-up/
hold times). When the phase difference reaches the

6-212

=¥ ~ HOTLinkBuilt-In Self-Test
CYPRESS ===============

Figure 15. Receiver Phase Tolerance Test Setup

limit, errors will be indicated by pulses on RVS that
are one or more bytes wide. (Even though the actual
error might involve only one bit, in one byte, the
RVS indication may run for several byte times be­
cause of running disparity corruption.) As the data
phase hop increases, the RVS pulses will increase in
width proportional to the time taken to adjust the
phase of the internal PLL.

Eventually RVS will stay high continually from the
time of the NB switch to the next RDY pulse (Le.,
the start of the next BIST loop). As the magnitude
of transmitter clock-to-clock phase difference ap­
proaches the point where the PLL phase alignment
slips from one bit to the next (Le., at approximately

180 0 phase difference) the BIST loop will become
irreversibly corrupted and will auto-abort-restart
after each phase hop.

Conclusion

HOTLink BIST capability should help system inte­
grators add features to high-performance commu­
nication links. These features can be made to en­
hance usability and improve reliability of the link.

Test methods that use BIST will aid in evaluation of
HOTLink products and other link support hard­
ware. The HOTLink built-in test features allow an
unambiguous indication of data quality, many of
which require only inexpensive test equipment.

H01Link is a trademark of Cypress Semiconductor Corporation.
ESCON is a trademark of International Business Machines Corporation.

6-213

HOTLink TM Jitter Characteristics

Abstract

This application note describes the basics of jitter in
transmission systems and, using HOlLink 1M as the
example, shows how it can be analyzed and mea­
sured. Specific characterization data is presented
that will allow system integrators to understand the
parameters needed to improve the reliability of their
systems.

Introduction

This note examines jitter from three different per­
spectives. First, as a background overview, it de­
scribes a few basic "jitter" concepts that affect digital
systems. Second, it describes the jitter performance
and characterization of the HOTLink 1tansmitter

Source~
~ Clock JI1te~

(CY7B923). Third, it describes the jitter tolerance
and feed through characteristics of the HOTLink
Receiver (CY7B933).

Numerical characterization data is supported by de­
scriptions of the various testing techniques and
equipment that are required to obtain this informa­
tion. Commercial, custom, and "home-brew" test
equipment are described along with the connections
used to gather data that illustrates the levels of per­
formance attainable by HOTLink products.

The data contained in this application note will help
users to understand the various characteristics of
link components and HOTLink characteristics and
capabilities. This data is offered to assist in the de­
sign of robust serial interconnect links.

Figure 1. Link Jitter Budget Depends on Link Components

6-214

Jitter

Jitter is a high-frequency semi-random displace­
ment of a signal from its ideal location. These dis­
placements can occur in amplitude, phase, and pulse
width, and are generally categorized as either deter­
ministic or random. For data communications links
based on (or similar to) HOTLink, measurement
and specification of jitter is usually restricted to tim­
ing displacements.

Deterministic jitter are those timing variations that
are repeatable within a system and whose cause can
generally be directly attributable to specific physical
components or events. An example of this would be
the jitter caused by the frequency selective attenua­
tion and phase delay of a signal in a transmission line.

Random j itter deals with those timing variations that
are much more probabilistic in nature. While still
observable and measurable in a system, this jitter is
not directly predictable. Common sources for ran­
dom jitter are thermal and electrical noise, both in­
ternal to and injected into a system or component.

Jitter in logic circuits is often characterized by its
transfer function. This function, known as jitter
feedthrough, is a measure of jitter output relative to
jitter input of a system or component. Most circuits,
when presented with jitter, tend to amplify that jitter
in a few or many areas. Fortunately for data commu­
nications system (which are plagued by high jitter
creation elements), application of properly designed
PLLs (phase-locked loops) can actually reduce or re­
move large amounts of jitter from a clock or data
stream.

Background-Jitter in Logic Systems

The timing of logic signals flowing through a logic
system are often assumed to be a series of simple
voltage transitions that occur after some fixed delay.
While this is a convenient and usually sufficient as­
sumption for the logical function of a device, it is in­
sufficient to analyze the limits of tl;Ie timing or the
reliability of the design.

The delay through logic devices (i.e., gates, flip-flops
and other common building blocks) is defined to a
first order by the time it takes for the inputs, the in-

HOTLink Jitter Characteristics

ternal circuit nodes, and the outputs to change from
one voltage to another. Since there is always some
uncertainty about the exact voltage present at any
node in the circuit, various logic families have been
devised with specific ways to assure reliable logic
functions. Thresholds are well defined and inter­
gate links have sufficient voltage margins to assure
reliability. Typical components have output levels
(e.g., Voh, Vol, etc.) that assure a significant voltage
margin above and below the input thresholds (e.g.,
Vih, Vil, Vth, etc.).

Most logic model libraries document a fairly wide
range of possible delays through a logic element.
This range includes the effects of many internal
characteristics such as differences in output resting
voltage, threshold voltage, signal ramp rates, and (to
some extent) the speed the signals travel along the
interconnecting wire, metalization, and leadframes.
These delays, while supposedly covering the mini­
mum to maximum range for the part, assume specific
external operating and signal conditions. By pre­
senting the logic element with input, output, or pow­
er conditions beyond those assumptions, it is pos­
siple for these logic elements to exhibit apparent
delays both faster and slower than the specified
minimum and maximum.

The noise carried on the Vee or Ground rails (both
internal and external) affect the actual timing of the
I/O transition by causing changes in the starting lev­
els of the active transition. The illustration in Figure
2 shows only the timing variation caused by ground
bounce, but the influence of Vee noise has a similar
effect. If the signal begins its transition at some arbi­
trary but fixed time, and has a transition rate (i.e.,
rise time or fall time) th~t is mostly controlled by
slew rate limiting effects not related to the power
supply glitch, the effective timing will be determined
by the placement of the glitch. If the transition be­
gins on a glitch-peak, it will arrive at the threshold
voltage a little early, and if the transition starts in a
glitch-valley, it will arrive a little late. This change in
timing is usually invisible to the external examiner
(except as power supply induced timing variation)
because much, if not all of the glitch is contained
within the IC package, and is not externally observ­
able.

6-215

~ .~ HOTLink Jitter Characteristics
,CYPRESS ==============

VEE

Figure 2. Power Supply Glitches Affect I/O
Actual Timing

The effect of this variation in starting voltage can
cause significant variations in timing. A signal that
has a 1 nsN ramp rate (TfL edges are usually be­
tween 1-2 nsN, and can be much slower), will have
an effective change in delay of about 1 picosecond
per millivolt of disturbance. This equates to

± 100 picoseconds of delay variation for ± 100 milli­
volts of ground or Vee noise, an amplitude which is
normally deemed "quiet". When noise spikes ap­
proach 1 volt, delay variations could be expected to
exceed 1 nanosecond. With a volt of power supply
variation, other delay effects would surely begin to
appear.

Additional timing variation can be caused by noise
coupled into the external or internal logic through
cross coupled logic paths (including package-pin
crosstalk), or by power supply noise injection. These
"minor" variations in delay are typically ignored in
the analysis of the logical function, since there is suf­
ficient overdrive (voltage noise margin) to assure
that the logical function is achieved. However this
assurance is not transferred to the timing margins of
a logic design.

Most of the delay of today's high performance logic
is caused by an output "ramping" from its resting
voltage to the actual threshold voltage (the voltage
at which the gate begins to make its logical decision
and subsequently change its own outputs). Any dis­
turbance in either the internal threshold or the
ramping input or output will cause a change in the
apparent delay through the gate (see Figure 3). All
single-ended logic gates suffer from this variable­
delay characteristic. Single ended circuits include all

I><:1 Internal Threshold

IN~UT

INPUT A

Logic 0

vee

VEE

OUTPUT
INPUT A

INPUT A:....-__ ,
with noise

FuncHonal Tpd

Intemal Threshold
with noise

OUTPUT

Figure 3. Delay Through a Logic Gate Changes with Injected Noise

6-216

HOTLink Jitter Characteristics

Logic delay < Clock period . FF setup time

Dofo"--_-t

FF
1

Cloc::..:k.!.--L--___________ ------I

Figure 4. 'iYpical Logic Path Delay Limited by Minimum Clock Period

TIL, CMOS, and any ECL logic that uses an inter­
nal or external threshold reference.

Differential circuitry can be used to partially miti­
gate the effects of injected noise, since the threshold
of the gate is determined by a complementary out­
put, hopefully carrying the same injected noise, but
ramping in the opposite direction. The common
mode range of such a differential gate helps to re­
duce many noise induced delay characteristics. All
of the critical timing paths in HOTLink products are
implemented with differential CML (Current-Mode
Logic) signals to mmlmlze crosstalk and
Vee-coupled noise-jitter effects.

Various design techniques have been developed that
maximize timing margins in logic, but in most of
these techniques the timing of any particular logic
element is considered a constant (or a range of
constants). Except for the well known metastability
characteristic of storage elements, the design tools
assume that each element has a fixed delay, and the
only accommodation to metastability is to attempt to
avoid the conditions that provoke the unpredictable
behavior.

Traditional design practices work on the simple as­
sumption that if the logic path (delay) between stor­
age elements is less than the time between clocking
edges by some comfortable margin, then the logic
will behave exactly as the designer intended. As
clock speeds increase and as product complexity in­
creases this comfortable simplifying-fantasy be­
comes more difficult to maintain. As is well docu­
mented in other literature, if the transition on the
DATA input changes later than the required set-up
time prior to the active transition on the CLOCK in-

put, the delay of FF -1 (Figure 4) may increase or it
may refuse to store the expected data. If the path
length to FF-2 is running near its maximum limit,
this increased delay could propagate through the
logic causing unexpected and undesirable results.

Designs that meet all manufacturers specified set-up
and hold times can also experience variable delays
through the flip-flop. As the input transition ap­
proaches the "actual" set-up time of the internal
latches, delay will begin to change. (Figure 5) Typi­
cally, Tsetup is specified at the point where delay has
changed by less than some arbitrary amount (usually
about 10%) of the cell's "nominal" delay. Inside of
that point, delay will increase radically until the flip-

lOOr---r---,---,---.---.---.---.---,

Ci 801----t---t---t-t-+-+-TIXXII
g:
~
; 6ut-----f---+--++----t--\+

g>
o
B 40~--~+_~~~--+_--~--+_~+_~
~

~20~_+-r~--~_+--+-~_+_r~

Input transiTIon time (nsl

Figure 5. Propagation Delay Changes as Actual
Tsetup is Approached

6-217

-,~ HOTLink Jitter Characteristics
a1CYPRESS =================

flop goes metastable. Similar effects occur as hold
time approaches zero.

Even if the nominal delays of the intervening logic
are within design margins, voltage-noise effects can
change the delays of the combjnationallogic devices.
If that happens, metastable effects might be ob­
served in the system. Normally in digital-logic sys­
tems, great care is taken to assure adequate timing
margin and then the error rate is "assumed to be
zero," and ignored.

Jitter in PLL Systems

Phase Locked Loops are typically used as high speed
clock multipliers or as precision clock recovery cir­
cuits. In their role as clock source generators, PLLs
are characterized for their timing precision. This is
usually because any jitter that appears on the clock
line must be compensated by an equivalent reduc­
tion in the timing margin allowed between flip-flops.

Jitter can enter a multiplier PLL (see Figure 6) in sev­
eral ways. The Clock input (1) can contain voltage­
coupled noise or phase-noise that will affect the mul­
tiplied Bit Clock. The UP and DOWN outputs (2)
of the PHASp FREQ DET are the digital to analog

VCO/lO

interface with the analog control circuits of the PLL
and can suffer from the same voltage-coupled noise
effects described earlier for logic. These digital sig­
nals carry the picosecond analog-timing information
that controls the VCO. Any cross-talk or noise injec­
tion at this point will corrupt the "error" information
that the PLL uses to maintain phase-lock with the in­
put clock.

The output of the analog filter (3) contains both the
gross center-frequency control, and the precision
phase-control. 1YPically the input sensitivity of the
VCO will be hundreds of megahertz per volt, and mi­
cro volts of crosstalk or power supply noise injection
can add nanoseconds of jitter to the PLL output.
Similarly, the capacitors (4) used in the FILTER (ei­
ther internal or external) can be susceptible to noise
injection which cannot be eliminated by any tradi­
tional circuit techniques.

HOTLink products use carefully designed, fully in­
ternal MetaVOxide/Silicon (MaS) capacitors.
These huge, matched devices minimize external
noise coupling. For noise sources that cannot be
avoided, the capacitors and all of the other analog
circuitry are designed to make coupled noise more
rejectable by using fully differential, common-mode
noise reduction methods. Older PLLs often used ex-

Figure 6. Clock Multiplier PLL Noise Injection Points

6-218

veo

veO/lO

e~

UP
DOWN

HOTLink Jitter Characteristics

VeON~-1 __ ------------------~~-r

veo
Speed

Figure 7. Phase/Frequency Corrections in Multiplier PLL

ternal capacitors which were notorious for noise in­
jection through the external pins and circuit board
traces required to connect these capacitors.

Noise injected at (2), (3) or (4), and to a lesser extent
at the other points, can be only partially compen­
sated by the normal filtering actions of the PLL.
Noise at (2) or (6) will exhibit different effects than
noise injected at (1) and will affect the Bit Clock (5)
in different ways. These differences are illustrated
in Figure 11, and will be discussed later.

Since the multiplier PLL only receives its correction
information once every N VCO cycles (where N is
the multiplication factor of the PLL, the VCO fre­
quency divided by ten in this case), many specific er­
rors will not cause a correction. Only the "average"
of noise-induced errors will result in compensatable
disturbances. "Instantaneous" errors will not be
compensated by the PLL at all, especially if there are
other errors of similar magnitude and opposite sign
between reference updates.

Logic noise as described earlier can be injected into
the Recovered Bit Clock (5) or at the feedback refer­
ence (6). These can be avoided by careful differen­
tial circuit and logic design. The parallel data input
to the SHIFTER (7) can cause transmitted output

jitter which is a function of the data pattern being
sent (Le., DDJ) as the set-up and hold times of the
output flip-flop vary.

The operation of the PLL can cause jitter just by its
normal operation (Figure 7). Whenever the phase
detector adjusts the frequency of the VCO, it causes
an instantaneous change in phase as part of the ad­
justment operation. This instantaneous phase
change, followed by a drift until the time of the next
correction, is the normal operation of the loop.
Ideally, the correction would be small, and entirely
contained within one clock cycle, but if it is larger or
lasts longer than one cycle of the VCO, it can cause
bit-to-bit phase differences (i.e., jitter).

Clock Recovery, Data Separator PLL

The PLL used for clock synchronization and data re­
covery shown inFigure 8 is different from the one de­
scribed in Figure 6, which is used as a clock multipli­
er. The phase correction information comes from
comparisons between an arbitrary input pulse
stream and an internal bit-rate VCO. In contrast to
the Phase-Frequency Detector (PFD) used in the
clock multiplier, this PLL uses a detector that is sen­
sitive only to phase errors. Missing data transitions
are ignored, and corrections follow each and every
data transition. In contrast to the predictable correc-

6-219

-= .~ HOTLink Jitter Characteristics
/CYPRESS ================

Selial_""T""_-I~
IN

L
serial--.3J I IN ry Lat~ ________ _

Retimed
Data ______ ---I

Figure 8. Receive-PLL Block Diagram

tion rate of the PFD, the Phase Detector will make
corrections at the rate of the incoming data. It can
vary from one correction per VCO cycle (when data
contains alternating 10101...) to once per byte (or
less) for some serial protocols. This variation in
correction density can cause some forms of jitter
and, by affecting the loop stability and bandwidth
characteristics, will affect jitter feed through.

Jitter can enter a synchronizing PLL in several ways.
The input data (1) will contain significant jitter
which accumulates on the serial transmission link.
This is the jitter that the receive PLL is intended to
remove.

The noise injection points at (2), (3), (4), and (5) are
the same as those in the multiplier PLL, and affect
the receiver PLL in similar ways. The main differ­
ence is that this PLL gets a phase-error update on
each input data transition. This allows noise events
to be corrected more often than those in the multipli­
er PLL, but the noise induced corrections can be af-

fected by the corrections already required by the jit­
tered data. Conversely, these noise-induced jitter
components reduce the data-recovery circuit's toler­
ance to input data jitter.

The Phase Detector (or PFD) in clock multiplier
PLLs and in clock synchronizer PLLs is intended to
give a "unit" of phase correction information for a
"unit" of error. This correction should be directly
proportional to the error, regardless of error magni­
tude. A poorly designed (or poorly implemented)
phase detector in any PLL, either a multiplier or
clock synchronizer loop, can exhibit what is typically
called a "dead-zone" ifthe error/correction relation­
ship does not hold for miniscule errors. This effect
is illustrated in Figure 9 as the less-than-ideal trans­
fer function which effectively removes the phase
correction control in the neighborhood of "zero er­
ror." This "hole" in the transfer function will cause
an otherwise perfectly locked loop to exhibit jitter
because the loop will be unable to maintain control
and will wander between the two inflection points.

6-220

==:::- -.~ HOTLink Jitter Characteristics
; CYPRESS ================

CORRECT
UP

CORRECT
DOWN

LATE

Figure 9. Phase Corrections Should Be Linear
with Error Magnitude

HOTLink Transmitter and Receiver PLLs have been
designed to eliminate this undesirable behavior.

The closed-loop PLL acts like a Low-Pass Filter to
incoming noise (Figure 10). All frequency compo­
nents that fall below the roll-off frequency of this fil­
ter are passed unattenuated. Frequencies above the
roll-off frequency of the filter are attenuated, and

frequencies around this point might be amplified to
some extent. Some forms of jitter have low frequen­
cy characteristics that will pass through the PLL and
appear on the resulting high frequency clock output
(e.g., low-frequency wander passes unattenuated
through the Receive PLL).

The PLL low-pass filter model is valid for jitter that
enters the system at the PLL input. However, jitter
that is injected (or is present) inside the loop "sees"
the loop as a high-pass filter. The dynamics of the
closed loop system allow it to compensate for low­
frequency injected jitter with an automatic (and op­
posite) low-frequency phase adjustment. As the fre­
quency of the injected jitter rises toward the roll-off
frequency, the loop becomes incapable of fully com­
pensating the injected jitter. Above the roll-off fre­
quency, the loop will pass injected jitter without at­
tenuation (see Figure 11).

Since Vee noise is injected (and can result in unde­
sirable delay variations) at multiple points inside the
loop, the resulting component of jitter attributable
to Vee noise will probably show a peak at approxi­
mately the roll-off frequency, and less output jitter at
both higher and lower frequencies. The ratio of jitter
magnitude for Vee noise frequencies above and be-

5---- -,-- ;- - -t-.-. --I-+-t--'-t-H-----+-+--1-+-H-t~ t--c- r--t-+-t--Hf+H
I Pe n~1 tL!,k:al af I i I

co 0 Pafs rpse u~tt n ~ ~n ~'Iocp I!

:Q. I! f.~f\ I
~ -5 --c-- -+-+--t--H-++i-t--..~-+--+I--+ i' ++++f--t-tl----t--+-ii--HeH-i

~ i .~~ I I

~-10 i i veo ~~~d.1
(])-l5- ~_ecrPh~e .,. _KO~ -11\i.'j g <Poe l:E~ KD ~ !~
+- s S I <2t')
.§' -20 - - ~k I I'-.C.
o ------..... I i I'~ I
~ -25 --- ---++ -~- f- ------j- ti---~~t--

I _ I -
! I ,! I

_30L-~~-L~~~~L-~-LLUD--L~~~~llL~-L-A~LU~

I
-~

.01 .02 _os _1 .2 .5 10 20 50 100

FREQUENCY (MHz)

Figure 10. PLL Closed Loop Response is a Low Pass Filter

6-221

=s ~ HOTLink Jitter Characteristics
~-'CYPRESS ================

iii'o

i-~o ~.-t--+--t--+-t+t+t+---+-
(]) -15 ,!--+-!---f-I-+++
~ !

'§, -20 f-~-I-+-I-H
o
2: -25 t--t-t--t-+-:

-30~·~~~~~~~~~~·~~~~~~~~~~~~~~
.01 .02 .05 .2 .S 10 20 so 100

FREQUENCY (MHz)

Figure 11. Vee Noise Injection Transfer Function

low the PLL roll-off frequency might give a clue to
the probable noise injection point(s). Larger jitter
magnitude for Vee noise frequencies below roll-off
is probably attributable to logic delays in the input
path the PLL (e.g., logic delay changes in gates prior
to the loop, passing through the PLL low-pass filter).
Larger jitter magnitude for Vee noise frequencies
above roll-off is probably attributable to noise injec­
tion into some circuit inside the loop (e.g., jitter in­
side the loop being affected by the PLL as a high­
pass filter). Jitter magnitudes that are
approximately the same above and below roll-off
are probably attributable to delay changes being
introduced into circuits that follow the loop.

Jitter on a Multiplier-PLL clock can affect the op­
eration of a system in several ways. The most ob­
vious effect is cycle-to-cycle jitter (high-frequency or
random effects) that causes a reduction in clock-to­
clock spacing and affects logic timing as was dis­
cussed previously. Another undesirable effect is the
longer term clock wander that can cause problems in
a system when two parts of the system are clocked by
different clocks of the same frequency but with a
variable phase relationship.

Jitter can affect a Clock-Synchronizer PLL in at least
two ways. First, the jitter in the PLL clock directly re-

duces the jitter tolerance of the Clock/Data separa­
tor. Jitter tolerance is a measure of design margin in
a serial communication link. Second, the jitter of the
PLL clocl,<: is transferred directly to the receiving host
system clock. This jitter-reduced timing margin af­
fects the system in exactly the same way that Multi-
plier PLL jitter affects logic timing. '

Bit Error Rate

Jitter is often directly equated with Bit Error Rate
(BER). While it is true that jitter accumulation on
a serial link is the primary determinant of the link's
reliability, its statistical character makes it difficult
to understand and impossible to accurately predict.
Since PLLs also exhibit a statistical nature which
must be added to the jitter of the link, some design­
ers incorrectly assume that the PLL jitter is what
causes the errors. In fact, the PLLs used to create the
high frequency clocks in the transmitter and receiver
serve to increase reliability rather than decrease it.

BER is a term which is common to both serial com­
munication devices and communication systems,
and could also be applied to any system where data
moves from one storage location to another. BER
is the ratio of "corrupted data" received to "good
data" sent. Sometimes BER can mean "Byte Error

6-222

- -, ---:s-- HOTLink Jitter Ch. aracteristics
/CYPRESS ================

Rate" in systems that transmit multi-bit wide infor­
mation. Errors that affect the fill-bits (the "non-in­
formation" bits that occupy the time between actual
data transfers) are not usually counted toward BER,
but might be used to predict overall system margins.

Bits in error
BER = -=-:------:----::

Bits transmitted

Usually BER is expressed as a large, negative expo­
nent (e.g., 2.5 x 10-12 or 1 x 10-9) because accept­
able systems perform almost flawlessly. For exam­
ple, a 250 Mbaud system operating with a BER of
lxlO-12 would only experience about one error per
hour while sending continuous information (see Fig­
ure 12).

While one error per hour may seem excessive, it
comes naturally from the technology of the serial in­
terconnect used. Even when adequate margins are
designed into the link, there are physical and electri­
cal effects which will cause occasional errors. Com­
munication systems have been engineered to accept
this error rate by including some level of error check­
ing in the physical layer hardware, and extensive er­
ror recovery built into most of the communication
protocols.

The PLL(s) used in the communication link don't
cause the failures. Their ability to recover timing in­
formation from a severely distorted serial interface
is one reason that these types of links are possible at
all. The PLL supplies the logical clock necessary to

correctly process the data. Without it the difficulty
and cost of aligning data and clock across any dis­
tance would be immense. But because of the design­
er's inability to predict to the exact statistical nature
of the interconnect link, and because PLL jitter con­
tributes to this uncertainty, PLLs are often wrongly
equated with BER.

HOTLink CY9266-C Evaluation boards operating
at 250 Mbaud with a short coax link have been tested
continuously for over 4000 hours without m1Y- errors.
During this time, over 3.6x1015 bits were sent, re­
ceived, and checked by the HOTLinks using the
BIST function. This error-free time yields an esti­
mate of BER less than 8xlO- 16 with greater than
95% confidence. Link error rate is not impaired by
the addition of a deterministic interconnect link,
such as a long coaxial cable. HOTLink CY9266-C
Evaluation boards running the BIST test at 250
Mbaud, and interconnected with 300 feet of RG-59
coaxial cable (90% of the maximum uncompensated
distance) have operated with no errors during a 1500
hour test. This shorter test still yields an estimate of
BER less than 2xlO-15 with greater than 95% confi­
dence. No error has ever been recorded in all the
time spent testing HOTLinks with deterministic
links (sensitivity to environmental-noise injection
was not included in this test). Actual BER rates have
never been determined because after an uneventful
six month test, the tests were terminated to free the
equipment for other uses.

Example: Bits transmitted = 250 X 106 bits X 3600 sec
sec hour

9 X lOll bits
hour

BER = 9 XNlO ll = N x 1.11 X 10- 12

MTBF of a link running at 250 Mbaud @ BER of 1 x 10- 12 = 1 hour between errors

MTBF of a link running at 250 Mbaud @ BER of 1 x 10- 15 = 46 days between errors

MTBFofalinkrunningat250Mbaud@ BERof 1 x 10- 18 = 127yearsbetweenerrors

Figure 12. BER Example Calculations

6-223

-= ~
::ss #CYPRESS ==========H=O;;;;;;T;;;;;;L;;;;;;in;;;;;;k;;;;;;J;;;;;;it;;;;;;te;;;;;;r;;;;;;C;;;;;;h;;;;;;a;;;;;;ra;;;;;;c;;;;;;te;;;;;;n;;;;;;·s;;;;;;ti;;;;;;cs=

VCO/lO

Figure 13. HOTLink Transmitter PLL Block Diagram

HOTLink Transmitter Jitter

The PLL used in a 1tansmitter application (clock
multiplier) is intended to provide a high-speed,
stable clock that tracks a low-speed reference
(CKW in Figure 13). This clock (Bit Clock) is used
to run the parallel to serial converter and all of the
internal logic in the HOTLink Transmitter.

Jitter is an undesirable and often unpredictable mis­
placement of any particular transition from its ideal
position. Transmitter output jitter can be character­
ized as Random or Deterministic Jitter, RJ and DJ
respectively. It can further be subdivided into In­
trinsic Jitter, 1tansferred Jitter, or Injected Jitter.

To separate the various types of jitter, carefully de­
signed tests were performed on HOlLink parts se­
lected from the full spectrum of manufacturing tol­
erances. Tests were designed to separate the effects
of Power Supply, Clock Sources, and various PLL
characteristics. Manufacturing tolerances include
variations in all types of resistors used in the design,
characteristics of Bipolar and CMOS transistors,
and other normal process variations. Environmen­
tal effects include Vee variation over at least the full
specified range, and ambient temperature variation
over the full military and commercial ranges.

Unless otherwise noted in the following text, static
variations in power supply levels (4.5V to 5.5V), am-

bient temperature (-55°C to 125°C), and process
variations (within manufacturing tolerance limits)
cause virtually no change (within the accuracy of the
measurement system) to any jitter tolerance or PLL
characteristic. This should be true for any well­
designed PLL, though it is often not true for all prod­
ucts in the marketplace.

Transmitter Random Jitter

Random Jitter is an undesirable and unpredictable
misplacement of any particular transition from its
ideal position that cannot be correlated to either
data-stream content, or parameters of the hard­
ware. To separate Random Jitter from the other ef­
fects, the HOlLink is configured to send various
square-wave patterns. This minimizes any possible
deterministic (DJ) effects caused by loading or vari­
ations in internal circuit delays. The set-up used to
measure HOlLink Random Jitter is shown in Fig­
ure 14. The clock source was a combination of an HP
8656B and HP 8131 generator chosen to give the
lowest possible input jitter. Other generators, de­
scribed later in this application note are also satis­
factory for this clock source. The output was mea­
sured on both an HP 54720D and a Thktronix 11801
Digital Sampling Scope, each of which have suffi­
cient sampling bandwidth to accurately show the
performance characteristics of the device under
test.

6-224

~

~. ~ HOTLink Jitter Characteristics
-';CYPRESS ================

HOTLInk Tx
. CY7B923

Figure 14. HOTLink Transmitter Random Jitter Set-Up

Random jitter measured in this way is shown in Fig­
ure 15. In virtual time, the "random" characteristic
can be seen in these histograms taken on a Tektronix
11801 Digital Sampling Oscilloscope.

The left histogram in Figure 15 shows the quality of
the signal used to gather the data that follows. The
input clock coming from an HP8656B frequency
synthesizer, buffered through an HP8131 Pulse gen­
erator, has minimal jitter. This TTL input clock
source adds a negligible amount of jitter to the out­
put jitter measurements that follow. Other genera-

1. 7V

I
40mV
/d i v

1. 3V L--'---'----'---'-_:A:-~--'--~--'--~
84.9Sns 50ps/div 8S.45ns

torlbuffer combinations are possible, but if there is
any appreciable jitter at this point, it will be impossi­
ble to separate the input jitter from the jitter accu­
mulated in the part under test. Other tests (de­
scribed later) will show the effect of noise at the
CKWinput.

Cycle-to-cycle jitter out of the HOTLink while send­
ing a "perfect" bit-rate square wave, measured one
bit away from the output edge used to trigger the
scope, is very small. This is a measure of the jitter
that can accumulate between adjacent VCO clocks

RMS = 2.39 ps Pk-Pk = 22 ps RMS = 5.89 ps Pk-Pk = 44 ps

Figure 15. Histograms of CKW Source and OUTA± One Cycle Away

6-225

=- -.~
., CYPRESS ==========;;;;;H;;;;;O=T;;;;;L;;;;;iD;;;;;k;;;;;J;;;;;it;;;;;te;;;;;r;;;;;C;;;;;h;;;;;3;;;;;r;;;;;3c;;;;;t;;;;;en;;;;;·s;;;;;t;;;;;ic=s

in the multiplier PLL. Since this measurement
(right histogram in Figure 15) was triggered and
measured on the same output, and the scope was not
constrained to sample at any particular rate, this
photo shows the superposition of all possible bit
positions. It also shows the (small) magnitude of
Deterministic jitter built into the output circuitry.

The serial outputs of HOTLink are PECL differen­
tial signals that must be combined differentially in
the front end of the sampling scope to provide an ac­
curate measurement of both the signal transition
and any jitter present on those transitions. Figure 16
displays the differential measurement" of the accu­
mulated jitter on the OUTA± outputs of the
HOTLink Transmitter. This is a measure of the to­
tal jitter accumulation through the entire PLL and
output circuit while sending a "perfect" byte-rate
square wave.

The wide vertical bar shows the accumulated jitter
measured in 100,000 samples of the O-to-1 transition
while being triggered by the CKW reference. The
different shades of gray in the vertical bar represent
different concentrations of signal samples that oc­
curred at that specific time/amplitude coordinate.
The darker the sample point, the more samples that
occurred at that point. The very center of Figure 16
contains a narrow rectangle ~entered around the

I
4mV
/d tv

RMS = 19.13p~Pk-Pk = 164ps

Figure 16. HOTLink Transmitter OUTA±
Rjvs.CKW

4 0

0

10

o

Dfferentral

3.0

e\(11801 mearure rent
(500 HI)

~ ---f..--

4.0 5.0
Data Rate (nS/bit)

~

Figure 17. HOTLink Transmitter

6.0

Random Jitter as a Function of Frequency

HOTLink Receiver threshold region. All samples
that occur within this rectangle are plotted in the
black histogram at the bottom of the figure. The
Gaussian shape of this curve confirms that the jitter
is truly random in nature.

While there is a slight increase in output jitter as the
operating frequency decreases (see Figure 17), there
is no appreciable change in HOTLink jitter due to
Vee, temperature or process variation.

In contrast to the virtual-time measurements illus­
trated in the previous figures, real-time measure­
ments allow an insight to the behavior of the HOT­
Link 1tansmitter in terms of sequential events.
Figure 18 shows the edge displacement from the
ideal location of all sequential rising edges of a con­
tinuous data stream. In this sequential, real-time
measurement, it can be seen that there is no obvious
or repetitive pattern to the jitter, confirming the va­
lidity of the virtual-time measurement. A minor
pattern is visible in the running-average histogram,
that shows a small amplitude, continuous oscillation
in the sign of the edge misplacements. Peak-to-peak
deviation in the real-time illustration is smaller than
that indicated in the virtual-time measurement.
This is consistent with the large difference in the
number of samples in each, and the fact that many
of the extreme excursions that occupy the tails of the
distribution may not be PLL variations, but are
probably caused by pulse-noise injected into some
logical or measurement function.

The pattern of jitter does not change appreciably
when the output pattern changes from one cycle­
per-byte to one cycle-per-bit (see Figure 19). The
peak excursion remains about the same, and the dis­
tribution is similar.

6-226

HOTLink Jitter Characteristics

Data pattern = 1111100000 (K28.7 ENN=low)

60~----~~~~~~~~~~~~~~~~~~~~--~~

50 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40 ~--~-4~~~---4~~~~~--~~--~~~~~~~--~-+~~--~

30 +.-,.--4~~~--~~T-~-+~~~TT~r;~--~--Mr~~~-+----~~
20

.s

...J 10

Lli g 0

~ -10
r:::
o ~o ~1H~~~~~~~~~~~~~~Hf~~~~~~~~~~4H~~4+~
~

~ -30 ~--~-+~~~~~----~~--~~~------~~~------~~--~~
40 +-----~--------~--------~~----~ .. An

-50 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.00 "'---------- • Average of fIVe transition times

Figure 18. Real-Time HOTLink 'fransmitter-Output Byte-Rate Jitter

'fransmitter Deterministic Jitter

Deterministic jitter is an undesirable and often diffi­
cult-to-predict misplacement of any particular tran­
sition from its ideal position that can be correlated
to the content of the data stream or some character­
istic of the circuit or hardware. To measure deter­
ministic jitter attributable to the internal circuitry of

the HOTLink Transmitter, the parts were measured
in several ways to separate the different possible DJ
sources. (For all of the following DJ measurements,
repetitive output patterns are averaged to remove
RJ effects.)

The basic Deterministic Jitter tests fall into two
categories:

Data pattern = 1010101010 (010.2 ENN=low)

60

50

40

30

Iii' 20
.e,
'ijj 10
CIl
:2 0
E

-10-.g
r::: -20 0
iij
.:;
CIl

-30
Cl

-40

-50

-60 III Individual data transition • Average of ten transitions

Figure 19. Real-Time HOTLink 'fransmitter Bit-Rate Jitter Output

6-227

· -.. ;4: HOTLink Jitter Characteristics
?CYPRESS ================

1. There could be DJ that causes edges to be mis­
placed because of variations of internal rising
and falling delay or variations of internal delays
caused by the spacing between adjacent transi­
tions (e.g., internal logic swing limitations or
flip-flop metastable-delay effects).

2. There could be DJ that is caused by some deter­
ministic PLL-multiplier effect which misplaces
the internal clock edges from their ideal transi­
tion time (e.g., PLL phase corrections might
cause bit-O to be always early, bit-2 always late,
and the others on time).

Deterministic Jitter as a Function of Data Pattern

To check for internal delay effects and sensitivity to
data content, the HOTLink transmitter was config­
ured to send various data patterns. Figure 20 shows
how the bit position is affected by pulsewidth and
pattern-content of the serial bit-stream. This test is
performed by measuring the exact timing of a single
data transition as other transitions occur at various
other bit positions and pulse spacings. By plotting
the exact transition time against the expected transi­
tion-time, variations in internal delay become ap­
parent. This is a test of the output buffer and circuits
in the serial output logic, because it checks the posi­
tion of a single transition as the pulse width preced­
ing it changes from nine bits to one bit LOW.

HOTLink manages to place any particular edge
within ± 10 ps of the ideal location regardless of
data pattern. In this test it is impossible to separate
pulse distortion from slight propagation delay
changes. The 50% duty cycle pattern was used as the
reference location for the "ideal" pulse position.
The absolute position of the rising edge was mea-

-20~_J~----'_----'-_----'-_----'-_-L_----'--__
10 20 30 40 50 60 70 80 90

000000 0001

t
111111 11 01

t Serial-Data Duty Cycle (%)

Figure 20. Data Dependent Edge Displacement

sured as the ten-bit data pattern was stepped
through all nine of the possible pulse widths. Edge
placement is not significantly affected by tempera­
ture or process variation. The change in edge dis­
placement in the figure above is mostly caused by
Vee variation and may be related to output load
currents variation.

Deterministic Jitter Caused By PLL Corrections

By causing the Transmitter to send an alternating
1-0-1-0 ... bit pattern and synchronizing the mea­
surement system to the byte rate clock, it is possible
to detect misplacement of internal clock transitions.
In this test, performed by measuring the exact time
of each voltage transition (averaged to remove ran­
dom jitter effects), and plotting it against its ex­
pected transition-time, PLL phase corrections and
clock-synchronous noise will appear as fixed, repeti­
tive displacements from the ideal position. The
square-wave bit pattern minimizes delay effects
which might otherwise be present.

The results of this evaluation showed that there
were no deviations observable within the measure­
ment accuracy of the test equipment. Extensive
testing showed less than 2 ps deviation from the
ideal position of all ten of the output transitions, re­
gardless of frequency.

Total Transmitter Jitter While Sending BIST

As a measure of total transmitter jitter, the tests
were repeated while sending the built-in self-test
(BIST) sequence. In contrast to the special patterns
which were used to measure the various compo­
nents of overall jitter, this test is a more comprehen­
sive measure of real HOTLink performance, since
it would highlight any effect that might have been
obscured by the individual jitter-component tests.

The scope photo in Figure 21 shows the jitter charac­
teristics of the HOTLink output while sending the
BIST pattern. This 511-byte pseudo-random pat­
tern includes all of the legal data patterns in the
8B/lOB code, and is a good representation of a typi­
cal data transmission. The resulting jitter includes
all of the random and deterministic jitter accumu­
lated by the clock source, the multiplying PLL, and
the internal logic and output circuits.

6-228

RMS = 25.1 ps Pk-Pk = 228 ps

Figure 21. HOTLink 'fransmitter OUTA±
Total Jitter in BIST vs. Bit Rate Reference

'fransmitter Jitter 'fransfer Function

PLL output jitter can be affected by the noise char­
acteristics and stability of the clock source used as
its reference. The closed-loop transfer function of
this type of PLL is a low-pass filter. Noise compo­
nents below the rollofffrequency (L3dB) ofthe PLL
will be passed unattenuated and those above L3dB
will be attenuated. By injecting a measurable and
controlled amount of noise (jitter) into the clock ref­
erence as shown in Figure 22, the PLL transfer char­
acteristic can be measured.

1.5

1.0
0.9

c- 0.8

~ 0.7
0.6

.Q.
0.5

~ 0.4
C
Q 0.3
I-

~ 0.2

--,
0.15

HOTLink Jitter Characteristics

u
Figure 22. Clock-Jitter Generated

by Mixing Noise into CKW

In this configuration (Figure 22), the noise source is
added to the clock source with a resistive mixer. Be­
cause the clock source has a significant ramp rate,
the addition of the noise will cause a controlled vari­
ation in the effective threshold crossing, thus caus­
ing jitter. The noise source can be any controlled
source, but for this test, it was a good quality sine­
wave generated by a stable generator. The ampli­
tude was adjusted to create the desired CKW jitter
amplitude (ns Pk-Pk), and the frequency was var­
ied over a wide range while the output jitter was
monitored on OUTA±. The graph in Figure 23
shows the relationship between input and output jit­
ter at various input jitter frequencies as the jitter fre­
quency is increased from about 10 kHz to over
70 MHz.

While the vertical axis of this type of chart usually is
expressed as a "gain" term, and uses units of dB (i.e.,
20 log out/in), this data is being presented as a pure
ratio of input to output jitter. This allows a clearer
visualization of jitter magnitude, and shows that for

Input Noise Frequency (MHz)

Figure 23. HOTLink 'fransmitter Jitter 'fransfer Function

6-229

-.~ HOTLink Jitter Characteristics
,CYPRESS================================

Input Jitter noise = 1.4 ns Pk-Pk
Output Jitter with 10 kHz noise = 1.64 ns

-1V
67.7ns

Input Jitter noise = 1.4 ns Pk-Pk
Output Jitter with 10 MHz noise = 0.22 ns

Figure 24. Serial Output Jitter Varies as a Function of Input Noise Frequency

all frequencies of operation and noise, the output
jitter falls to approximately the same "noise-floor."
By maintaining the vertical log scale, it is obvious
that the effect being illustrated, is the same as the
closed-loop PLL transfer function described earlier.

As expected, low-frequency jitter passes through the
PLL unattenuated. Higher frequencies are atte­
nuated until the jitter frequency approaches the
Reference-Clock frequency. This jitter-feed­
through peak at about the reference frequency is the
result of the sum-and-difference frequencies that
naturally result from mixing. A significant frequen­
cy component is generated at the "difference" be­
tween CLOCK (fREP) and NOISE (fN) sources.
When this "difference" frequency falls within the
PLL filter bandwidth, it passes unattenuated to the
output of the PLL and appears as jitter exactly as if
it was caused by an equivalent low-frequency input­
noise source. This effect was enhanced by using a
single frequency noise source. The energy at any
particular frequency of a wide-band noise source is
relatively small, but would feed through in exactly
the same way. Narrow-band noise sources that op­
erate synchronously with the HOTLink CKW input
rate might cause more of these "mixed-down" fre­
quency components that would also feed through
and emerge as output jitter.

The bandwidth of the HOTLink Transmitter PLL
varies slightly as a function of the operating fre­
quency as is shown in Figure 23. (tB == 1/baud; tB ==
6 ns == 160 Mbaud, etc.) This variation is attribut­
able to variations in VCO gain that are a function of
operating rate.

The scope traces in Figure 24 graphically show the
jitter feed through from the TTL-CKW input to the
PECL outputs of the HOTLink Transmitter. Low
jitter frequencies pass through unattenuated, and
high frequencies are significantly attenuated. For
high-frequency input jitter, the only jitter remaining
on the output is roughly equivalent to the intrinsic
jitter of an undisturbed PLL.

Vee Jitter Transfer Function

To characterize HOTLink output jitter characteris­
tics in the presence of noise carried on the power
supply, the Random Jitter set-up was modified as
shown in Figure 25.

In this test the power supply was intentionally dis­
turbed. By injecting a measured amount of noise
into the Vee pins of the HOTLink Transmitter (us­
ing an external driver), the jitter effects of power
supply noise could be observed.

As expected, when the power supply is disturbed,
the output will contain some additional jitter. In-

6-230

~ HOTLink Jitter Characteristics
~rcYPRESS ================

vee
HOTLink Tx
CY7B923

Figure 25. HOTLink Transmitter Vee Coupled Jitter Set-Up

creasing amplitude disturbances cause increasedjit­
ter amplitudes. It would normally be difficult to
create this much noise on normal system boards be­
cause of the normal power supply bypassing that is
usually applied to this type of component. Large
amplitude Vee spikes are removed by the bypass ca­
pacitors.

As the Vee noise frequency is varied across the vari­
ous frequencies, the jitter out also varies. At low fre-

10
9
8
7
6

CD 5
.~ 4 o Z 3

I o 2
Z
:;::- 1.5
:::J
..Q. 1.0

0.9

.m ~.~
~ 0.6
C 0.5

.= 0.4

CD 0.3

±:
~ 0.2

0.15

.002 .005 .01 .02 .05

quencies of noise, the jitter is small, and at high
noise frequencies the jitter is also small. At about
the PLL roll-off frequency (as measured in the pre­
vious analysis), the jitter output increases (see Fig­
ure 26).

Transmitter PLL Lock Time

Multiplying PLL lock characteristics are mostly a
function of the internal loop dynamic characteris­
tics. While the loop is changing the clock period

.1 .2 .5 10

Input Noise Frequency (MHz)

Figure 26. HOTLink Transmitter Vee Coupled Jitter Transfer Characteristic

6-231

from one frequency to another, the transition is not
monotonic as might be expected, but appears to os­
cillate about the acquisition-trend line until the fre­
quency falls within the PLL "Lock Range." This ef­
fect is a result of the normal characteristics of the
Phase Frequency Detector (PFD) and the Loop fil­
ter. The PFD output is a continuously varying series
of pulses that cause the VCO to change frequency
in the desired direction, but the resulting pulse
widths are not constant. The graph in Figure 27
shows each of the Bit -Clock periods during the PLL
"re-Iock" progression while the loop locks to a, high­
er and a lower frequency.

The Bit-Clock period listed in Figures 27 and 28 is
the period of the internal VCO inside the HOTLink
Transmitter. While this signal is not directly observ­
able at a HOTLink Transmitter pin, its period may
be directly calculated from measurements made at
the serial output (OUTA±) pins. In this test the se­
rial data pattern was set to the equivalent of a K28.7
special code (0000011111), fixing the bit-clock peri­
od at one tenth the interval between output rising
transitions.

The two locked frequencies were selected to be the
minimum and maximum actual operational limits of
the part under test. Cycle-by-cycle times were re­
corded in a continuous stream using an HP54720D.
The frequencies used for these illustrations are well
outside the datasheet operational limits of HOT­
Link, but were the actual functional limits of this

,.....
I/)
c
'-"
'"C
0 .;:
CD
0..
~
0
0
(3 -iii

8.0

7.0

6.0

5.0

4.0

3.0

ClllNcha gesto46 3 MHz
• .IV 131 MHz PLLIocI<£

"'-. ~ Data~'1!! Mln~ 1 OMbaud

"-/'
.. ", '-..

"""w to-.... Data She! tMax ~ 3 OMbaud

!"'"
2.0 IfiNcha _TO 10 MHZ MHz

1.0

0.0
o 5 10 15 20 25 30 35

Time (ps)

Figure 27. 'fransmitter PLL Acquisition
Characteristic (from Locked to Locked)

particular (typical) part. While all parts behave in
a similar manner, some have slightly higher or lower
operational frequency limits. The acquisition rates
vary slightly with temperature, being slowest at
higher temperatures.

The PLL behavior is slightly different when the ref­
erence clock has been absent for some time (see Fig­
ure 28). Instead of immediately beginning to ac­
quire the new frequency, there is a time after CKW
begins but before there is any change in the VCO
frequency. This time is required for the internal
control nodes to move from their "ranged-out" lev­
els (resulting from the PLL trying to track to zero or
infinity Hz) to within the compliance-limits of the
amplifier and VCO. After the change begins, it
moves at the same rate as for the previously de­
scribed cases.

When CKW is removed, the loop immediately be­
gins to slew toward the lowest possible speed. The
transition does not have the "jaggies" typical of a
loop tracking to another clock rate, because there
are no reference clock edges to modulate the PFD
output. The frequencies shown in this illustration
are well outside the data sheet operational limits of
HOTLink, but were the actual functional behavior
of this particular (typical) part. While all parts be­
have in a similar manner, some have slightly higher
or lower frequency limits. The acquisition and slew­
rates were similar but vary slightly with tempera­
ture, being slower at higher temperatures.

8.0

7.0

!:e.o
~ 5.0
...

D.. 4.0

~ 3.0

i 2.0

1.0

0.0

PWslarts 46.;fMIt VCOru ... minimum I>oible IOfe

I '-..
1/ '\.

I
/ "-

I~. ~
~ -......., "' PLL IOCI<£ ;tt463MHz

o 10 20 30 40 50
lime ijJs)

Figure 28. 'fransmitter PLL Time
to Lock (Quiet to Locked)

60

6-232

==~YPRESS~~~~~~~~~~=H=O~T=L=in=k=J=it=te=r=C=h=a=r=ac=t=er=i=st=ic~s

Serial---.....-_ ...
IN

Recovered
Bit Clock

Figure 29. HOTLink Receiver PLL Block Diagram

HOTLink Receiver Jitter

The PLL used to synchronize an internal clock to a
received bit stream (i.e., in the HOTLink: Receiver)
has different requirements than those for a multi­
plying PLL. This loop is effectively a one-to-one
loop where the bit clock (Received Bit Clock, an in­
ternal signal) runs at the same rate as the incoming
data stream (Serial IN, an external signal). The Re­
ceived Bit Clock is used to sample the Serial input
at regular intervals, thus extracting the serial data
(Retimed Data, in Figure 29). This same signal runs
all of the internal logic for deserializing, framing,
and decoding the serial data. Any disturbance that
can affect the PLL and the Recovered Bit Clock will
affect both the quality of the data recovery and the
quality of the byte-rate, data-synchronous clock that
is provided to the receiving system.

Receiver jitter affects systems in at least two ways.
Jitter tolerance is a major determinant of system
margin, and Jitter feed-through can reduce timing
margins in the receiving host system.

Jitter feed-through is a function of the PLL filter
characteristics, and can be directly measured at the
CKR output of the HOTLink Receiver in much the
same way used to test 1tansmitter jitter feed­
through.

Jitter tolerance is more complicated, since it is a
measure of the Receiver's ability to correctly cap­
ture and interpret incoming data, and must be mea-

sured indirectly. Jitter tolerance is both a function
of the intrinsic jitter in the receive-clock synchro­
nization PLL and the effects of received data upon
it. Tolerance is also a function of the precision-tim­
ing and alignment of internal clock edges (i.e., the
clock edge used in the PLL to synchronize the data,
and the clock edge used to sample the incoming data
stream). The data-sampling flip-flop set-up/hold
timing characteristics and their variation contribute
to further jitter tolerance degradation.

Th isolate the effects and tolerance limits to various
types of jitter, carefully designed tests were per­
formed on HOTLink parts selected from the full
spectrum of manufacturing variation. These tests
were designed to separate the effects of power sup­
ply, data characteristics, external clock sources, and
various PLL characteristics. Unless otherwise
noted, static variations in power supply levels (4.5V
to 5.5V), ambient temperature (-55°C to 125°C),
and process variations (within manufacturing toler­
ance limits) cause virtually no change (within the ac­
curacy of the measurement system) to any of the fol­
lowing jitter tolerance or PLL characteristics.

Static Alignment and Error-Free Window

To maximize jitter tolerance, the receive circuit is
designed to sample the incoming data at a point ex­
actly half way between the ideal transition times of
uncorrupted data. This requires that the PLL track
the incoming data and align itself with the "average
timing" of the received edges. The precision of this

6-233

FOTO

FOlO (Infe.rD9JL .•.•

Rx.
Sampling
Location

HOTLink Jitter Characteristics

Figure 30. Technique to Measure Static Alignment

alignment is often called "Static Alignment" and
should have a magnitude of zero, indicating perfect
alignment of veo and the data and perfect 50%
sampling alignment. Using this recovered clock, the
incoming data is sam~led at the point iliat gives
maximum tolerance to misplaced edges and maxi­
mizes the error-free wPJdmy. Any misplacement of
this sampling point will reduce jitter tolerance.

Static aligm~ent of th~ HOTLink Receiver was eval­
uated using the technique shown in Figure 30. The
HOTLink Transmitter and the Receiver under test
were configured to send and receive the BIST pat­
tern. Then, by inserting a BIST-synchronous pulse
on the FOTO pin (using a generator triggered on
the RP output of the HOTLink 1tansmitter), one
transition in the transmitted data pattern was varied
to find the maximum "misalignment" possible be­
fore the onset of an RVS error indication. This con­
figuration allows the receive PLL to have about
3000 "ideal" transitions (i.e., the total number of
transitions in the 511 byte BIST loop) and only one
misplaced edge. Shorter patterns modified in this
way (e.g., a single data byte with byte-synchronized
FOTO pulses having a single misplaced transition)
give an erroneous result. the very large phase error
which occurs in orie of the ten bit positions will be av­
eraged out by small-cornpensating phase-adjust­
ments during the other nine bit-times. The BIST
pattern test allows the PLL phase-correction re­
sponse from the single-edge error to settle out be­
fore the next error appears so that the averaging ef­
fect does riot color the data-capture results.

Data transitions can be misplaced from their ideal
position by almost half of a bit-time without erro­
neous sampling by the data recovery flip-flop. The
data characterization summary in Figure 31 indi­
cates that the HOTLink Receiver will accept mis­
placed edges to within about 250 ps of the half-bit
point. The center of the small error region where
data is not sampled correctly (at approximately
180 ps after the ideal mid-bit point) is the actual
PLL static alignment position. The width of the er­
ror region (about 150 ps) is attributable to both the
sampling flip-flop metastable region, and the inter­
nal PLL clock jitter.

This data alone implies that any data edge could fall
anywhere within a bit time (minus about 500 ps) and
still be decoded correctly. This is almost correct, ex­
cept for the effect of receiver clock jitter caused by
the various types of incoming jitter.

.1. "--""'---'---.'n--'---.'-;;,-----'---7-i';----'
3.0 4.0 5.0 6.0

Data Rate (nS/bif)

Figure 31. HOTLink Receiver Static Alignment
as a Function of Frequency

6-234

- ~ HOTLink Jitter Characteristics
-.-,CYPRESS ================
Duty Cycle Distortion Jitter Tolerance

The characteristics of some types of interconnect
circuits cause Duty Cycle Distortion which the re­
ceive system must tolerate. DCD jitter alters the
placement of all transitions in the data stream by
about the same amount (in alternating directions)
regardless of the bit pattern being sent. For small
amounts of jitter, this alternating error tends to can­
cel out, and the loop behaves normally while recov­
ering data without error.

As the magnitude of jitter increases, phase correc­
tion pulses from adjacent misplaced edges will begin
to interact. Each correction pulse has some finite
duration, usually a significant percentage of the ex­
pected bit time, and is proportional to the magni­
tude of the edge misplacement. Since jitter is also
expressed as a percentage of a bit (usually a large
percentage) the interaction between jitter magni­
tude and phase correction pulse width will deter­
mine DCD jitter tolerance. When adjacent phase
corrections interact, they sum in unexpected ways
which affect the resulting correction response.
When these interactions are rare or small, there is
no apparent effect. If the interactions affect most of
the phase correction events, the PLL stability, pre­
dictability, and output jitter will be affected and data
will not be captured correctly.

Figure 32 shows HOTLink Receiver DCD jitter tol­
erance. This test was performed by carefully cor­
rupting the link between a HOTLink Transmitter
and Receiver with increasing magnitudes of DCD
(See Jitter Generator circuit and description Figure
49). Using the BIST test capability included in the
chips, DCD tolerance limits were declared to have
been exceeded when the RVS output of the Receiver
indicated approximately one error every ten sec­
onds (i.e., BE~4xlO-1O at 250 Mbaud). Slight
differences in jitter tolerance were found between
parts from different process corners, but no appre­
ciable variation was found for Vee or temperature
variation. The DCD tolerance characterization
data shown above varies by less than 5 percentage
points across the full process spread (e.g., from
1.42 ns to 1.39 ns out of a 3.0 ns bit time). The
threshold of failure is very abrupt. At the jitter lev­
els shown in Figure 32, changes in jitter amplitude of
less than ± 100 ps make the difference between al­
most-perfect data reception, and almost-total
corruption.

100

1- .. _. - 1--···············/··_·········1·············
m

80 E
i=

iii I·············· + -
~ 60

~ 40- !~:! 48.5%"

43.5%

J!1
Q

~ 20r---r---+---+---~--~---r---r--~
... _ ··················1···

OL--,~ __ L-~n, __ ~ __ ~ __ -L __ ~~-J
.0 4. 5.0 6.0

Data Rale (nslbil)

Figure 32. Duty-Cycle-Distortion Jitter
Tolerance as a Function of Data Rate

In contrast to the predicted jitter tolerance that
comes from the Static Alignment test, and the DDJ
tolerance (see following text), DCD tolerance at
first appears to be much smaller. This apparent re­
duction in jitter tolerance is entirely due to PLL and
Phase-Detector effects, and do not result from any
anomaly in the data recovery path. The data can be
recovered correctly at the levels of edge misplace­
ment that are found at the limits of DCD tolerance
but not above. By carefully approaching the limit,
it can be seen that the PLL loses lock at the jitter
magnitudes shown in Figure 32, and then regains it
at slightly higher jitter levels, but with a massive
clock jitter, often slipping bits as the jitter goes
through the "magic point," destroying any data re­
covery possibility. The recovered clock shows al­
most no jitter feed-through when DCD is present
and remains below the "data-corruption" threshold,
as will be shown later (Figure 46).

Fortunately, most transmission links don't include
large amounts of DCD. The most common contrib­
utors are mismatched output loads on differential
or single-ended PECL outputs, and improperly de­
signed or operated optical interface modules.
Single-ended PECL outputs can change the effec­
tive delay of the driver by about ±0.5 ns. Differen-

6-235

tial outputs are typically more symmetrical. Opti­
cal-to-e1ectrical (receiver) interface modules
running with extremely high or low light levels can
have non-linear and asymmetrical delay character­
istics that affect the pulse symmetry of the received
output used by the PLL data recovery circuits. The
optical emitter in an e1ectrical-to-optical interface
module also has non-symmetrical tum-on and turn­
off characteristics which are normally compensated
by careful design of the drive electronics. At the lim­
its of performance, optical modules can add more
than ±1 ns of DeD.

Data Dependent Jitter Tolerance

The characteristics of some types of interconnect
circuits cause Data Dependent Jitter which the re­
ceive system must tolerate. The same "correction­
pulse" interaction that limits DeD tolerance also
affects DDJ tolerance. Since the collisions between
adjacent correction pulses occur at a much less fre­
quent and regular rate, the effect is smaller. The
"clock-jitter" that results from these corrupted
corrections reduces the jitter tolerance to less than
the ideal maximum that the Static Alignment test
might predict.

Figure 33 shows HOTLink Receiver DDJ jitter tol­
erance where the DDJ was generated by an artificial

100

0

~ 6 0

~
11 40
~
S.

~ 20

o

~ 68%

6.%

3.0

!7
.... ~ ~

4.0 5.0
Dala Rale (nslbil)

,""""

6.0

Figure 33. Data-Dependent.Jitter Tolerance as
a Function of Data Rate

HOTLink Jitter Characteristics

generator. This test was performed by carefully cor­
rupting the link between a HOTLink Transmitter
and Receiver with increasing magnitudes of DDJ
(see Jitter Generator circuit and description in Fig­
ure 50) while sending a continuous BIST pattern.
Errors were most typically associated with the long
running bit pattern included in a K28.5 bit pattern,
and the same tolerance was observed while receiv­
ing only corrupted K28.5s. The worst DDJ peak al­
ways follows the 1111101 and the 0000010 contained
in the special characters. Using the BIST test capa­
bility included in the HOTLinks, DDJ tolerance
limits were declared to have been exceeded when
the RVS output of the receiver indicated approxi­
mately one error every ten seconds (i.e.,
BER 4x10-10 at 250 Mbaud). Slight differences in
jitter tolerance were found between parts from dif­
ferent process comers, but no appreciable variation
was found for Vee or temperature variation. The
DOJ tolerance characterization data as shown in
Figure 33 varies by less than 5 percentage points
across the full process spread (e.g., from 2.04 ns to
1.86 ns out of a 3.0 ns bit time). The threshold offail­
ure is very abrupt. At the jitter levels shown above,
changes in jitter magnitude of less than ±100 ps
make the difference between almost-perfect data
reception, and almost-total corruption.

Interconnect Link Jitter Tolerance

The tolerance to synthetic-DDJ shown in Figure 33
is slightly worse than that found when the jitter is
natural-DDJ. The variation is caused by uninten­
tional DeD introduced by the test system used to
create a stable and repeatable test pattern at all fre­
quencies over which HOTLink might operate. Wire
transmission line jitter is dominated by DDJ caused
by the variation in attenuation as a function of fre­
quency. Higher frequencies are attenuated more
than lower ones. This rising attenuation-with-fre­
quency characteristic of wire links causes the wider
pulses (i.e., multi-bit one or zero strings) to have a
higher amplitude than the shorter pulses since the
higher frequencies (those attenuated the most) are
required to make the fast edges and narrow pulses,
while the wider pulses contain more low-frequency
components. This variation in amplitude results in
variations in pulse placement, since the edge rate is
almost constant and the variation in amplitude
causes variations in the time at which a transition
will cross the receiver threshold.

6-236

== ~ HOTLink Jitter Characteristics
,CYPRESS =================

Figure 34. DDJ Characteristic of K28.5
at 250 Mbaud after 250 ft. RG-59

This effect is most visible when a single, worst-case
data byte is measured. Figure 34 shows the edge mis­
placement caused by the different-length pulses in
a continuous K28.5 pattern (Le., 11000001010
00111110101...). When the data is more normally
distributed, it becomes more difficult to see the dis­
tinct pulse positions, and the jitter just merges into
a continuous "uncertainty-zone" (see Figure 35).

Using actual data and real transmission lines, the
HOlLink tolerance to DDJ appears to be a more
constant function of bit rate than Figure 33 shows.
If about 500 ps of clear eye-opening can be main­
tained, the data will be recovered correctly, regard­
less of the data rate. However, recovered clock jit­
ter increases with increased DDJ (see Figure 47).

In wire transmission links, the accumulation of D DJ
determines the maximum distance over which data
can be reliably communicated. The characteristics
of the chosen media determines the useable dis­
tance. The total attenuation of the line is rarely suf­
ficient to limit the maximum useable distance, even
though the data bits that are incorrectly interpreted
will have minimal amplitude at the time of the error.
This loss of amplitude is a result of the variation in
peak voltage attained during any particular pulse.

HOTLinks have been designed to offer more than
20 dB of attenuation margin between the transmit­
ter output and the receiver input. Typical maxi-

mum-distance links have less than 10 dB of high fre­
quency attenuation due to the transmission line and
interconnect components. The remainder of the in­
terconnect budget can be used to compensate for
the difference between high and low frequency at­
tenuation of the wire transmission line. Compen­
sated wire links have been built that operate reliably
over more than double the distances shown in Fig­
ure 36.

Fiber optic links, in contrast to the wire links de­
scribed above, are limited by optical attenuation,
chromatic dispersion, and the resulting Random Jit­
ter in the optical-electrical converter. At the limit
of operational optical margins, the low light levels
into the receiver and the dispersion from the fiber
combine to create misplaced data transitions.
These displacements are usually random, but in the
case of some optical modules, can also include sig­
nificant Duty Cycle Distortion.

Peak random jitter tolerance should be approxi­
mately the same as the Static-Alignment limits de­
scribed above (Figures 30 and 31). The simplest way
to generate random jitter involves a long piece of fi­
ber optic cable, and appropriate fiber optic interface
modules. As fiber length increases, adding chro­
matic dispersion (Le., pulse distortion caused by the
variations in propagation delay through the fiber, as

Figure 35. BIST data at 370 Mbaud after
250 ft. ofRG-59 coax

(BER<4.5xlO-ll with <700 ps eye opening)

6-237

'11 ~ HOTLink Jitter Characteristics
:, CYPRESS =============

600r---.--.---.--r-'-'-rT"---'--'---'--'--'-"-'~

-1--LJ 1 500 i . .

'0
::J E 300~--~~---+--~~~~~~~--~--~-4--~~~H
~

~ 200~--~~--~~~~~~~~~-4~-+--~+-~~H

~ o 150

I I
100~--~-+---+--~+-~~~--~--~--~-4--~~~H

10 15 20 30 40 50 70 100 150 200 300 400 500 700 1000

Link Length (Meters)
Figure 36. Maximum Data Rate vs. Uncompensated Wire Length (BER < 3 x 10-12)

a function of optical wave-length) and attenuation,
the jitter out of the optical-to-electrical converter
will increase. There is a limit to attenuation, beyond
which the fiber optic receiver cannot recover the
data correctly. Attenuation alone, without the ef-

Bit time = 4.0 ns
Eye opening = 2.185 ns (apparently)

BER = 1 x 10-9

Figure 37. Random Jitter out of Fiber-Optic
Link Triggered by Bit Clock

fects of long fiber optic cable, often causes signifi­
cant DCD in the link. This DCD will obscure the
real random jitter behavior of the receiving PLL.

The random jitter output of a S-km piece of 62.5
multi-mode fiber is shown in Figures 37 and 38 and

I~

Bit time = 4.0 ns
Eye opening = < 100 ps

BER = 1 x 10-9

Figure 38. Random Jitter out of Fiber-Optic
Link Triggered by RVS & BifClock

6-238

-~ HOTLink Jitter Characteristics
.1CYPRESS ===============

illustrates a typical problem that occurs when trying
to measure random jitter and jitter tolerance. These
photos were taken at the limit of frequency/length
as indicated by BIST errors appearing on RVS. The
first "eye-diagram" (Figure 37) was taken using the
traditional infinite-persistence scope measure­
ment, where the scope is triggered by a pristine bit­
clock. The trigger-clock, shown below the eye-dia­
gram for reference, is arbitrarily placed with respect
to the jittered data trace. This is the resulting dis­
play of an HP54720D at 8 Gs/s after about four
hours of jitter accumulation (approximately 30,000
traces). It would appear that the jitter tolerance of
the receiver is only about 45% (i.e., 4.0 ns - 2.19 ns)
at the measured BER. This conclusion is incorrect.

Figure 38 offers another view ofthe same link and er­
ror rate, when triggered by the error event and
shows the actual eye opening. This view, triggered
by the pristine bit-clock qualified by RVS (ANDed),
shows that when the HOTLink indicates an error
event, the "eye" is actually fully closed. This photo
displays only those traces that contained an error
event, about one every four seconds at 250 Mbaud.
It is impossible to determine from these photos ex­
actly where the PLL and the data sampling flip-flop
have placed the bit boundaries, but it is obvious that
if the transition doesn't cross the threshold, the data
is lost. (The "ghost" traces that appear in the photo
are parts of other error-traces where the eye-closure
occurred at some other bit position beyond the lim­
its of the screen.) The discrepancy between these
two figures is caused by the triggering and display
characteristics of the scope. Even though there are
over 30,000 patterns displayed on the first one (Fig­
ure 37), it just happened that none of the error bits
were captured. This could have been because of the
relative rarity of the events, and the trigger hold off
caused by the scope processing that occurs between
measurements.

Receiver Data-Phase Acquisition Time

To measure the HOTLink Receiver response to
phase-hops in the incoming data stream, it is neces­
sary to produce a data stream that has a controlled
phase change. It is possible to use the two selectable
inputs of the HOTLink Receiver to switch between
two identical, but skewed, data streams. The data
stream used for these tests comes from a HOTLink
Transmitter using a good quality clock source. The
HOTLink BIST function provides a convenient

source of repeatable data and is accompanied by a
convenient trigger pulse in the RP output that oc­
curs once per BIST loop. The Receiver BIST
comparator can be used to determine whether the
receiving PLL has maintained phase lock without
slipping by monitoring its RVS output. This output
will pulse only if there is an error in the received
data pattern.

In the test set-up shown in Figure 39, the input to the
INB+ pin of the Receiver is skewed with respect to
the INA± input using the precision skew capability
of the Colby delay generator, which can add delay
up to 10 ns in 1 ps increments. A carefully placed
control pulse (i.e., inputs are changed only when
both inputs will be staying at the same logic level for
a few bit times to insure that the change does not af­
fect the serial data stream), which is a BIST-syn­
chronous control signal (Le., the pulse is triggered
by RP which occurs once in each BIST loop),
switches the receiver input between the two data
streams. As expected, when the AlB input switches
between these two streams, no errors are indicated
if the skew is small. When the skew is increased, and
approaches almost half of a bit time (Le., 135 to 150
degrees as seen by the PLL Phase Detector) errors
are indicated by pulses on RVS. These errors are
caused by "bit-slip" in the PLL as it reacquires the
new data stream.

By triggering the HP54120D on the signal that
changes data streams, it is possible to observe the
real-time behavior of the receiving PLL. The scope
can be programmed to measure either clock period,
or propagation delay between two channels. The
former will show each clock period as the loop ac­
quires the new data stream. The latter set-up will
show the more traditional phase-alignment mea­
surement that defines Phase-Lock-Loop acquisi­
tion characteristics.

Measurements were taken with various amounts of
phase difference between the two input channels.
The figures that follow show the characteristics of
the HOTLink Receiver with phase errors less than
180 degrees and with phase errors at as close to 180
degrees as possible. The first kind illustrates typical
link performance. The second kind shows the worst
case phase acquisition characteristic.

In the test set-up shown in Figure 39, the HOTLink
Receiver input is switched to one of the inputs, al­
lowed to stabilize there for a few byte times, and

6-239

22~YPRESS~~~~~~~~~~H~o~T~L~in~k~J~it~te~r~c~h~a~ra~c~te~n~·s~ti~cs=

Figure 39. Set-Up to Measure HOTLink Phase Acquisition Characteristics

then switched back. The second switch is an equal
phase offset, but opposite sign. During the time
when the PLL is trying to regain phase alignment
with the incoming data stream, it adjusts the period
of the VCO, and thus the output clock of the HOT­
Link Receiver. As illustrated by the data shown in
Figure 40, the phase correction begins immediately
after the change in data stream. Since the phase er­
ror is less than 180 degrees, the correction is always
in the expected direction. When the new data
stream "lags" the current PLL position, the clock is
stretched for a few cycles until it realigns with the in­
coming data. Likewise, when the new data stream
"leads" the current PLL phase, the clock is short­
ened for a few cycles until it realigns with the incom­
ing data.

The change between any pair of clock (CKR) peri­
ods is small, and the maximum deviation usually
varies by less than ± 1 ns midway through the seven
to ten byte-times required to realign the clock. The
magnitude of change that can be accommodated

without error varies slightly with frequency, and the
time needed to resume normal clock periods varies
by one or two byte times. There is little or no cor­
relation between settling time and the sign of the
phase-change, data-speed, process-comer,
Vee-level, or ambient-temperature. For all fre­
quencies, it seems that any phase change that is less
than a half-bit time (less about 500 ps) will be ac­
commodated without data corruption. The Byte­
Clock adjustment shown in Figure 40 is the accumu­
lated sum of the ten Bit -Clock periods that combine
to makeup the Byte-Clock adjustment, each of
which was probably much smaller.

When the phase change is carefully adjusted to the
180 degree position, the correction behavior
changes. The correction can be in either direction,
since both have an equal capability to realign the
PLL clock phase. One direction will cause a bit slip
since the decoding logic will find the data appearing
one bit earlier or later than expected. The other di­
rection might not slip, but will probably still indicate

6-240

~

,~ HOTLink Jitter Characteristics
~'CYPRESS;=;=;=;=;=;=;=;=;=;=;=;=;=;=;=;=;=~

1000
900
800
700
600

Ci) 500
g 400

c 300
0 200
=0 100
.~ 0
0 ·100

"0 -200
0 -300

~ -400

.:.< ·500
0 -600
0 -700 0

-800
-900

-1000

Error-free
phase change

(typical)

1.1 ns = 1320

1.7 ns = 1530

2.1 ns = 1540

2.6 ns = 1560

+180

I
[l

+90 :Q.

_ __ - _--1----0
E
o
!)1
o
.Q

-90 g

~
CD

-180 cr.

Figure 40. Phase Hop of less than 180 degrees without Data Corruption

a corrupted byte because of a metastable response
from the data sampling flip-flop.

Additionally, the phase correction does not start im­
mediately after the change in incoming data phase
(see Figure 41). The time it might take cannot be cal­
culated, because the loop is operating outside its lin­
ear response region, and will assume some metast­
able behavior that could theoretically take forever
to clear. It takes several byte times before the PLL
accumulates enough error information to cause it to
realign itself. When the data has exactly 180 de­
grees phase offset to the PLL yeO, the Phase De­
tector may have either no phase-correction effect or
a small reverse phase-correction effect, in contrast
to its normal, increasing-correction with increasing-

CKR Period changes
to align to data

error, linear-phase-correction response to smaller
phase errors. Once it begins to change, the PLL
completes the phase hop in about the same way as
the earlier example showed, although over a slightly
longer duration. Perhaps counter to intuition, the
quieter the received data stream, and the cleaner
the veo clock, the longer this "hang time" will be­
come. (Products with "jitter problems" will never
exhibit this "hang phenomenon.") Any jitter or fre­
quency deviation between the incoming data and
the veo provides a tie-breaker and gives enough
error information to allow the Phase Detector to be­
gin its change. Once the relative-phase has moved
only a little bit, it becomes obvious to the Phase De­
tector that the error is large and requires a large
correction. Complete phase alignment is not

1000
900 u;-

800
g,

700 +-c
600 <D

E
500 c
400 .Ql

"0
300 <D
200 '" 0
100 ..c a...
0 <D
-100 ~ -200
-300 <D

C!:::

Figure 41. Phase Hop TIming with Exactly l80-Degree Phase Difference

6-241

~

• ,,~ HOTLink Jitter Characteristics
';CYPRESS =============

achieved until several byte times after the CKR out­
put has resumed its normal period.

This final alignment time is immaterial for most
data-communications systems, since the receiving
system will have iong since resumed correct data re­
covery because of the wide jitter tolerance of the re­
ceiver. As was ~hpwn in the limited phase-step ex­
periment, the HOTLink Receiver will recover the
bit-stream correctly when the input transitions are
more than about 500 ps away from the mid-bit point.
However, the data must be "framed" to be inter­
preted correctly, and the time necessary to accom­
plish framing (HOTLink requires one or two K28.5
characters to frame, depending on current framer
mode) will depend on the protocol being used, and
how often SYNC characters occur.

Receiver Data-Frequency Acquisition Time

Two serial data strearris rarely bperate at exactly the
same frequency, so the PLL must first acquire the
new frequency before it can align the clock to the
phase of the new data. The frequency offset that
must be accommodated is different for each stan­
dard system, but is usually a few hundred parts per
million (PPM) variation from a specific frequency.
Fibre Channel, for instance specifies a maximum
frequency offset of ± 100 PPM (±0.01 %). HOT­
Link is specified to accommodate frequencies of
±0.1 %, but will typically accommodate more. The
chart in Figure 42 is an illustration of the behavior of

700

a HOTLink receiver as it switches between two data
streams that are offset from the local REFCLK fre­
quency by ±0.2%. The acquisition time and the ef­
fective clock-period transient time is equivalent to
that seen when the receiver is only adjusting for
phase differences.

This is typical of the HOTLink acquisition behavior
at all operating frequencies, and doesn't vary signifi­
cantly across process, Vee, or temperature varia­
tions. The exact transient size and duration will vary
from event to event because of the statistical nature
of the "first -change." The excursion could be either
to a shorter or. a longer clock period depending upon
the perceived phase of the new data when the
change occurs. Likewise, the time to achieve phase
alignment will vary slightly depending on the proba­
bility of having a perfect 180 degree phase align­
ment after the change. None of the clock period ex­
cursions measured during this test exceeded
±1.0 ns.

When the data stream is not within the frequency
tolerance limits of the receive PLL, the HOTLink
automatic frequency-range-control mechanism will
affect the transient behavior of CKR. This function
continuously monitors the frequency of the VCO
and compares it to the frequency. of REFCLK.
When they are different by a sufficient amount, and
for a sufficient time, internal logic will force the
VCO to align to the REFCLKfrequency. This auto­
matic mechanism insures that the absolute frequen­
cy of CKR is never far from its ideal period, and that

600~r---

~ 500~r---
.e. I 400

~ 300 ~r-------------------------~----------------------------

~
~ 2oo+Hr-------------------------1+----------------------------

j 100~r-~=_~~~~~~~~~=_~--~~._._~.__.--_._.~_;~
1l
~ o~~~~~~~~fHHh+i~~~~~~~~~~~~~~~F+~~

~ r:~~~~~~~~~nn~~~~~~~~~Jt~~~~~~~~ '8 .100 +
!2
o ~oo+---~~~~~~~~~~~~------------------------------

-300 "'--------''---

Figure 42. Frequency Hop Within ±O.2%

6-242

HOTLink Jitter Characteristics

Figure 43. Frequency Acquisition from/to +3.0% Changes CKR Period

when "good" data returns, the PLL will be able to
rapidly align to it, and begin correct data recovery.

This test is similar to the previous one, except that
the data is not switched externally, and the recorded
transient is only the result of the internal re-Iock to
REFCLK behavior. In this case (shown in Figure
43), the applied data stream was offset from
REFCLK by about 3.0% (well beyond the data
sheet limit of 0.1 %). The HP54720 was "glitch trig­
gered" when RVS was HIGH for >60 byte times.
(RVS-HIGH for 64 byte times is the PLL out-of­
lock indication, since normal data will not yield con­
tinuous error indications.)

For the first few bytes (out to about Byte-time 45 in
Figure 43), the average period of CKR is about 3%
faster than the expected 30 ns which indicates that
HOTLink has been successful in acquiring the data
frequency. When the built-in automatic range con­
trol is asserted, there may be a momentary transient
in the CKR period caused by the phase and frequen­
cy of the PLL relative to the instantaneous bit­
stream phase. Next, the VCO will be pulled to the
frequency by the internal range-control logic (from
about Byte 45 to about Byte 110 in Figure 43). Final­
ly the PLL is released to track the incoming data,
whereupon it might immediately return to the pre­
vious frequency (the frequency of the incoming bit­
stream, if any), or as in this illustration, hunt around
for an indeterminate time (maybe an indefinite
time) until it again finds a signal within its acquisi-

tion and tracking range. The exact PLL behavior
will depend on the frequency, transition density,
timing characteristics and stability of the applied
data stream.

CKR period excursions are slightly larger when this
range control mechanism is applied, but still under
about ± 1.2 ns. The period of CKR is the sum of all
Bit-Clock periods that occur between CKR transi­
tions.

Receive PLL Jitter 1ransfer Function

PLL jitter, and consequently recovered clock jitter,
can be affected by the noise characteristics and sta­
bility of the incoming data stream. The closed-loop
transfer function of the PLL is a low-pass filter.
Noise components below the natural frequency (fn)
of the PLL will be passed unattenuated and those
above fn will be attenuated. By injecting a measur­
able and controlled amount of noise Gitter) into an
otherwise stable data stream as shown in Figure 44,
the PLL transfer characteristic can be measured.

In this configuration, the noise source is added to
the data-clock source by a resistive mixer, similar to
that used for transmitter jitter-transfer testing. The
mixer output drives the external bit-rate clock input
of a high speed data generator. The Microwave
Logic GigaBERT 1400 can run with clock rates
above 1 GHz, and can send serial data from an in­
ternal memory using this clock. By jittering the ex­
ternal clock, it is possible to create a controlled seri-

6-243

HOTLink Jitter Characteristics

Figure 44. Data-Jitter is Generated by Mixing Noise into Serial-Data-In

al data stream with single frequency jitter noise.
The amplitude of input jitter was adjusted to create
the desired data jitter amplitude (ns Pk-Pk), and
the frequency was varied over a wide range while the
jitter was monitored on the eKR output.

Direct jitter generation is difficult to manage be­
cause of the need for a single frequency noise source
superimposed on an otherwise perfect data stream.
Most jitter generators seem to generate either mul­
tiple frequency noise sources or have significant
DeD and DDJ. The method described for creating
jitter suitable for Transmitter jitter-testing creates
significant DeD which is ignored by the transmitter
PLL, since it only responds to the rising edges of its
reference input. Because the receiver responds to
both edges of the pulse, this DeD affects the results
in undesirable ways. The graph in Figure 45 shows

1.5

1.0
0,9
0,8

C 0,7

~ 0,6

Q 0,5

.m 0,4

'" C 0,3 g
Al

0,2

'=; 0,15

,02 .05 ,1 ,2 ,5

the relationship between input and output jitter at
various input jitter-noise frequencies.

As expected, low frequency noise passes through the
PLL filter unattenuated and higher frequencies are
attenuated as theory would predict. Also as ex­
pected, the apparent bandwidth of the PLL filter
varies as the transition density of the data stream
varies. For the highest possible transition density
(e.g., a 1010101... data stream) the natural frequen­
cy is highest, and for lower transition densities it is
proportionally lower. The information shown here
is characteristic of the HOTLink while receiving
normal data. In this case the data was the BIST
pattern.

Effective loop-bandwidth varies as a function of
data rate, as shown in Figure 45. This variation is
caused by various gain changes within and between

10 20 50 100

Input Noise Frequency (MHz)

Figure 45. HOTLink Receiver Jitter Thansfer Function (BIST Data)

6-244

= ,~ HOTLink Jitter Characteristics
_,CYPRESS ==============

the PLL component blocks. Some blocks have ana­
log gain variations as a function of frequency, and
others have a constant output response regardless
of operating frequency. The behavior shown in Fig­
ure 45 is unaffected by temperature, Vee variation,
and variations in manufacturing tolerance.

The Receive PLL transfer function is not sufficient
to determine what the actual jitter out of the HOT­
Link Receiver might be. Different types of jitter
have different transfer characteristics.

DCD-type jitter causes essentially no output jitter
for input jitter magnitudes up to the point where the
data is corrupted. The waveforms in Figure 46 illus­
trate the jitter feed-through characteristics of the
HOTLink Receiver. The input waveform is a con­
tinuous stream of 1-0-1-0-... bits that have been arti­
ficially distorted with the DCD Jitter generator de­
scribed later (Figure 49). The 4.0 ns bits have been
narrowed by about 1.96 ns (see the twin-peak histo­
gram in Figure 46), and the CKR output shows less
than 100 ps of jitter as illustrated by the darker trace
superimposed on the input jitter waveform (note
that the two traces have different vertical scales, but
the same time scale).

-499mV---'-----''-f----'--____ --'-----"-~---'---~~
112.9ns lns/div

250 Mbaud, Data = 818T,
DCD = 1.94 ns Pk-Pk

Figure 46. CKR Output Jitter as DCD
Corrupted Data is Being Received

122.9ns

370 Mbaud DDJ in = 2.18 ns Pk-Pk,
CKR Jitter = 1.31 ns Pk-Pk

Figure 47. CKR Jitter Output as a Function of
DDJlnput

When DDJ is applied to the data input, CKR jitter
will increase. The illustration in Figure 47 shows
that when DDJ approaches maximum tolerable lev­
els, the CKR output jitter increases appreciably.
The test shown in Figure 47 was performed using the
same maximum tolerance jittered data shown in Fig­
ure 35. This 370-Mbaud signal (well beyond the
datasheet limit) was generated using the BIST se­
quence transmitted through 250 feet of RG59 coaxi­
al cable at 370 Mbaud, while operating with a re­
ceived BER of <4.5xlO-11. (The measurement in
Figure 47 is triggered by the pristine-bit -clock, which
results in copies of the byte-rate TIL clock dis­
played at bit-clock intervals.)

This jitter feedthrough is partly caused by the low­
frequency characteristic of the jitter, which is deter­
mined by its data content, and partly bacuase the ac­
tual PLL failure mode (as opposed to Data failure
mode) is the same for DDJ as for DCD. In either
case, when any data-pulse falls below the DCD pul­
sewidth limit, the PLL drops some of its tracking
and locking information. In a normal data stream
this loss is not regular, and causes minimal distur­
bance. The main effect is to increase jitter on the
CKRoutput.

6-245

Summary
The following summary data is representative of the
sample tested and described in this report. This
evaluation included parts from across the full
manufacturing spread, which were tested over the

full range of temperature, voltage and frequency of
operation. This data is representative of HOTLink
in-system performance, but because of the small
sample size tested, it cannot necessarily be assumed
to be worst case.

Table 4. Summary of HOTLink Jitter Characteristics

Parameter Characteristic Condition

Tx Cycle-Cycle Random Jitter < 6psRMS < SOpsPk-Pk

Tx Input-Output Random Jitter < 20psRMS < 17SpsPk-Pk ~330MbaUd~ < 22psRMS < 190 ps Pk-Pk 2S0Mbaud
< 30psRMS < 250 ps Pk-Pk 160 Mbaud

Tx Data Dependent Edge Displacement < ±1O ps Pk-Pk

Tx PLL Deterministic Edge Displacement < ±2psPk-Pk

Tx Thta11fansmitted-Data Jitter < 26psRMS < 230 ps Pk-Pk ~330MbaUd~ < 2BpsRMS < 250 ps Pk-Pk 250 Mbaud
< 36psRMS < 300 ps Pk-Pk 160 Mbaud

Tx Closed-Loop Bandwidth (3 dB) loS MHz tOMbaUd~ 0.6 MHz 250 Mbaud
0.3 MHz 160 Mbaud

Tx Re-Lock Rate (Locked to Locked) > llMHz/J.IS 1YPical
> 9MHz/J.IS Hot

Tx Crash Rate (From CKW Stop) > (4SMHz 1YPical
+19 MHz/IlS)

> (21 MHz Hot
+16MHz/IlS)

Tx Lock Time (Quiet to Locked) <4Sms 1YPical ~160 MbaUd~
< 60ms 1YPical 330 Mbaud
< BOms Hot (30 Mbaud

Rx Error-Free-Window (Static Alignment) > tB - 2S0ps Note: tB = l/baud rate (ns)

Rx Random Jitter Tolerance (BER < lxlO-12) > tB - SOOps

Rx DCD Thlerance (BER < 1xlO-12) > 0.42 x tB

Rx DDJ Tolerance (BER < 1xlO-12) > 0.62xtB ~330MbaUd~ > 0.B2xtB 250 Mbaud
> 0.9S xtB 160 Mbaud

Rx Total Jitter Thlerance (BER < lxlO-12) > tB - SOOps

Rx Input-Output Random Jitter < 39psRMS < 224 ps Pk-Pk ~330 Mbaud, no iitter BIST~
< 25 ps RMS < 1BOpsPk-Pk 2S0 Mbaud, no Jitter BIST
< 24psRMS < 14BpsPk-Pk 160 Mbaud, no jitter BIST

Rx CKR Cycle-Cycle Peak Jitter < lOOps No input jitter, single data)
(does not include reframing CKR-stretch) < 300ps No input jitter, random data)

< 0.7xtB Worst case input DDJ)
< 1.0 ns Data Phase Hop only)
< loS ns Loss of Lock)

Rx CKR Maximum Instantaneous Offset < REFCLK (Unstable, range control
Freq. +S% active)

6-246

~ HOTLink Jitter Characteristics
~; CYPRESS ================

Table 4. Summary of HOTLink Jitter Characteristics (continued)

Parameter

Rx CKR maximum continuous offset freq.

Rx Run-Length Limit
(without cycle slip)

Rx Phase Acquisition Time
(BER < lxl0-12)

Rx Frequency Acquisition Time
(BER < lxlO-12)

Rx Closed-Loop Bandwidth (3 dB)

Rx REFCLK Re-Lock Rate
(Locked to Locked)

Rx Lock Time
(REFCLK Quiet to Locked)

Rx Crash Rate
(from REFCLK & DATA stop)

Hints to Improve Measurement
Accuracy

• Use differential scope inputs instead of single­
ended measurement systems to remove com­
mon-mode amplitude variations from timing jit­
ter. Minor variations in power supply levels that
are passed through to the complementary PECL
outputs are ignored by the differential receiver,
and so should be removed from the measure­
ment. Systems with only single-ended scope in­
puts should carefully monitor Vee-coupled sig­
nals, since a few millivolts of vertical shift can
result in several picoseconds of apparent delay
variation. Faster edges and minimal loading can
minimize the problem, but not eliminate it.

• Random jitter measurements should be taken at
the approximate center of the differential swing
to minimize "scope arithmetic" and round-off
errors that obscure actual performance.

• Bypass PECL load circuits to remove "load-ring­
ing" effects. Power supply and PC board imped­
ance adds directly to the impedance of the ter-

Characteristic Condition

< REFCLK (Stable, range control
±0.25% inactive)

> 200 ts ~330MbaUd~ > 200ts 250 Mbaud
> 200 ts 160 Mbaud

< 60ts ~typical, <180 degree h00) < 250ts includes 180 degree hop

< SOts ~delta-freqS ±0.2%~
< 700ts deJta-freq> ±0.2%

9.0 MHz ~330Mbaud~
4.5 MHz 250 Mbaud
2.5 MHz 160 Mbaud

> 2MHz/!-Is

< 200 !-IS
+2MHz/f-IS

> 80ps/!-Is

mination circuit. Careful attention to power
supply bypassing minimizes load related errors.

• AC coupling of input, output, and measurement
signals cause unexpected problems if the wave
form is non-repetitive, not DC balanced, or if the
signaling rate changes. The components used for
blocking the DC voltage in the signal will exhibit
impedance variations because of their reactive
nature. They almost always have non-monotonic
transfer functions, and often have self resonant
characteristics that are not well documented.
High quality DC-blocking modules from HP and
other sources are typically specified to be effec­
tive over a very wide frequency range (e.g., HP
11742 Blocking Capacitor is useful at 0.01
through 26.5 GHz), but the more common "ca­
pacitor soldered on a board" is usually unsuit­
able for critical measurements.

• Simplified, high quality PECL measurements
are possible using the connection shown in Figure
48. This a derivative of the standard 80n/130n
Thevenin termination for PECL in which the
lower son of the BOn is provided by the scope
input impedance. By using low impedance, pas-

6-247

.-.. jg ~ HOTLink Jitter Characteristics F CYPRESS ===============

Figure 48. PECL Scope Probe

sive probes to maintain the full input bandwidth
of the scope, and by separating the scope probes
from the loads, a more representative measure­
ment is possible. This connection yields a probe
with an approximate attenuation of2.6:1, instead
of the more usual 10:1 probes. For critical volt­
age measurements, each such connection must
be calibrated, because the actual attenuation fac­
tor will depend on the actual values of resistor
used for the PECL termination. Since most AC
measurements are differential and use only rela­
tive voltage levels, this connection is preferred to
more expensive probe configurations. Of course,
good low-capacitance layout and good quality
50Q cables and connectors are required to main­
tain the bandwidth of the measurement system.
When the scope is not connected to the test
points, a substitute 50Q resistor should be con­
nected to allow the PECL outputs to operate cor­
rectly.

Test Equipment

Relevant Characteristics of Measurement
Equipment

Good quality, high-bandwidth, measurement
equipment is mandatory to determine the actual
performance of the HOTLink and the systems used
to test it. To gain an accurate insight into 300-MHz
transmission lines, and the picosecond variations
which characterize the components that define the
limits of operation, it is necessary to use test systems
capable of making accurate measurements up to
multiple Gigahertz. The list that follows (and the
short listing of their relevant attributes) are not the
only applicable measurement systems, just the ones
used by this design team.

HP54720D High-speed, Real-time, digital sampling
scope

Sample Rate = 8 Gigasamples/second

1tigger Jitter < 10 ps

Bandwidth = 2 GHz

1 GHz on each channel with 54721A Input
module

2 GHz on single channel with 54722A Input
module

This high-performance scope offers the op­
portunity to observe the actual wave shape
with its "real-time" capability. In contrast
with the more traditional sampling scope,
this instrument will record the signal on its
inputs at 125 picosecond intervals until its
input buffers are full. The 54720D has the
ability to place the triggering event at the be­
ginning, middle, or end of the stored wave­
form, which allows it to capture random and
non-repetitive events.

Tek 11801A Digital Storage Oscilloscope

with SD-22, 12.5-GHz Sampling heads for
precision low-impedance
measurements

with SD-14, 3.0-GHz Sampling heads for
low-load, high-impedance
measurements

and DL-ll, 5-GHz Delay Line for mea­
surements at the time of the trigger
event

Trigger Jitter < 3 ps

Bandwidth > 20 GHz, bandwidth on each
channel limited by the sampling
head. (SD-22 or SD-14)

This high-performance scope has sufficient
bandwidth to observe the actual perfor­
mance of the PECL outputs of HOTLink.
Lower bandwidth scopes and probes often
give an erroneous impression of the voltage
waveform being measured. The 11801A is
best used for measuring repetitive
waveforms, since it only accumulates a
"dot" for each trigger. Accumulated over

6-248

= ., A HOTLink Jitter Characteristics
~;;CYPRESS================================~

time, this is sufficient for observing repeti­
tive wave forms, and its color-graded histo­
gram ability is very useful for capturing jitter
performance.

HP 8560A Spectrum Analyzer

50 Hz to 2.9 GHz

Used for monitoring jitter transfer tests and
various clock source attributes to assure the
accuracy of the bench setup. The displays
that appear on a spectrum analyzer are
often ambiguous, since frequency, phase
and amplitude variations all cause similar
indications. This is a fun instrument to use,
but must be interpreted with care. It usually
gives more information than can be fully un­
derstood, but does offer another view of the
system under test from the frequency
domain.

HP 54610 500-MHz, 2 channel oscilloscope

This is a small, relatively portable bench
scope (Le., about one cubic foot and can be
carried with one hand, in contrast to the oth­
er scopes which require a dedicated cart)
used for monitoring the function of various
bench set-ups and the functionality of the
part under test. It has sufficient bandwidth
to give an accurate picture of the circuit un­
der test, but is too slow to give accurate re­
sults in the previously described precision
tests. These scopes are typically used for
setting up the various generators, clock
sources, and data generators, and for cross­
checking the validity of many of the mea­
surements. They were not used to gather ac­
tual data, but offer sufficient performance
to see that the set-up is working as expected.

Clock Sources

Crystal oscillators are typically used in operational
systems because of their stable, predictable, low
noise characteristics (as well as their low cost). They
were found to be unsuitable for the previously de­
scribed tests, because of their low-frequency delay
and wander characteristics. These unrepeatable ef­
fects obscure the jitter characteristic being mea-

sured. In operational systems, these effects will
cause no reduction in link performance, and will
merge into the unmeasurable, insignificant back­
ground characteristics of the system. To gather the
precision information described in this application
note, several clock and data sources were used. The
list that follows (and the short listing of some rele­
vant attributes) are not the only applicable clock
sources, just the ones used by this design team.

RF Generators

HP 8656B Generator 0.1-990 MHz

HP 8647 Signal Generator 250 kHz-lOOO MHz

Used as frequency reference generators be­
cause of their spectrally clean output, and
their high frequency function. They gener­
ate small, ground referenced sine waves
with great accuracy and are easily program­
mable from the panel or using a GPIB con­
troller. These generators are typically used
to trigger high-performance Pulse Genera­
tors, which produce the required levels and
edge rates. The generators themselves have
acceptable stability and jitter performance
for most AC and functional evaluations, but
are not sufficient for jitter related tests.

When triggered by a stable source, the jitter
performance of the generator improves to
almost that of the triggering reference.

Clock Generators

HP 8131A 500-MHz pulse generator

Pulse generators are used to generate the
PECL and TTL clock and data sources for
testing HOTLink products. The HP8131
can be used by itself or triggered by an RF
source. It offers two independent channels
with complementary outputs for each.

Wavetek 178 Function Generator
0-50 MHz Function generator

The Wavetek 178 is convenient for generat­
ing low frequency signals such as Receiver
REFCLK and swept frequency-range tests.
It has the capability to generate various
wave shapes and can sweep its output fre-

6-249

i ~ HOTLink Jitter Characteristics
,CYPRESS ==============

quency across a wide range. It has good sta­
bility and is relatively "clean," but exhibits
about 200 ps of low-frequency jitter.

Colby Instruments Pulse Generator PG-lOOOA

The Colby pulse generator is a very stable
oscillator that is mechanically tuned, and of­
fers very good spectral purity 'aDd good con­
trol. It suffers from slight frequency drift
until it is fully warmed-up. The design of the
instrument is very modular, and offers many
specialized controls and options to meet
various voltage translation and buffering
needs.

Pattern Generators

Microwave Logic GigaBERT - 1400 TX

1.4 GHz max. clock rate

< 2 ps RMS clock jitter, < 20 ps Pk-Pk

No jitter added to output when divided by N
to create Bit or Byte Clock

This instrument is actually a very high quali­
ty clock generator, packaged with a bit-rate
data generator. It can be used for generat­
ing bit-clock inputs without the need of an
external oscillator trigger source. It was
used for many of the bit-rate referenced
tests described in this application note by
programming it to the required pattern.

Translators and Delay Generators

Colby Instruments
Custom clOCk buffer and translator box

This general-purpose translator box was
used to convert between differential PECL
and both true ECL (-S.2Vreferenced) and
"zero-crossing" signals used in various tests.
It can accept single-ended signals and return
differential outputs with extremely fast
edges and no appreciable increase in jitter
noise. The inputs all include high quality
transmission line terminators that simplify
most bench configurations.

Colby Instruments Programmable Delay Line
PDL-30A

This general-purpose, mechanical delay
generator is capable of generating a repeat­
able and stable delay up to about 10 ns in in­
crements as small as 1 ps. It is most useful
for adjusting mismatched delay lines, and
for creating desired skews between various
signals. It is essentially a SOQ transmission
line that can be mechanically adjusted in
small increments to change the delay. It is
programmable by an external keyboard with
a digital readout of programmed delay.

Home-Brew and Non-Commercial Test
Equipment

Synthetic-DeD Jitter Generator

Duty Cycle Distortion (DCD) can be generated by
the circuit shown in Figure 49. This circuit uses the
stages in a lOH116 (ECL triple-differential amplifi­
er) to perform

• Differential-PECL-input buffering

• Ramp generation

• Threshold shifting

• Level restoration

• Differential PECL output buffering

In this circuit the 1tansmitter data stream is fed
through the Jitter Generator while the Receiver
monitors and checks for correct operation. As the
control voltage (Vj) input is varied between the
lOKH V IL and V IH levels, the duty cycle of the data
stream is corrupted in a repeatable and measurable
manner. Either of the Vj inputs can be indepen­
dently adjusted, or they can be differentially driven
to get different jitter effects.

The first differential stage of the lOH116 is used as
a differential-ramp generator with controlled out­
put impedance and symmetrical rise and fall times.
The series Resistor and Capacitor to ground are ad­
justed to provide a relatively long voltage transition
ramp that can be used to manipulate the edge transi­
tion timing. The ECL output termination resistors

6-250

~ HOTLink Jitter Characteristics
~r;CYPRESS ================

Vbb Vj

'tt}1
DeD

m
b d
~~ ~ Vee

IN OUT

a

C

Figure 49. Duty Cycle Distortion Jitter Generator Schematic

shown at the outputs of each differential stage are
part of the normal PECL output loads, and can be
either the parallel terminations shown at (a) or the
single pull-down shown at (d).

The R - C ramp generator at must be tuned to each
data rate, to insure that 100% voltage swing is main­
tained for the narrowest pulses expected. If the
Ramp is too long, it will be possible to raise Vj above
the level of some data bits, thus "losing" data.

The second differential stage of the 10H1l6 serves
as a voltage comparator that translates the differen­
tial, artificially extended voltage-ramps back to
PECL swings. The differential (or single-ended)
control voltage (Vj) level modifies the restored DC
levels of the AC coupled ramps. By adjusting the
DC levels at the input of stage two, the average (DC
voltage component) of each ramp can be indepen­
dentlyadjusted. This adjustment moves the "cross­
ing voltage" which the differential inputs of stage
two converts to changes in the timing of the data bit.
Additional DC filtering may be required between
the Vj input and its input to (d) to insure that high­
frequency, single-ended noise does not corrupt the
data flow.

The third differential stage of the lOH116 is used to
restore crisp-edged, full-swing levels to the serial
data, and to drive the subsequent transmission line.
In some cases, the PECL output terminations of this

stage are provided by the transmission line termina­
tions.

Synthetic-DDJ Jitter Generator

Data Dependent Jitter (DDJ) that approximates
the natural effect of long wire-transmission lines,
can be generated by the circuit shown in Figure 50.
This circuit uses the stages in a lOH116 (ECL triple­
differential amplifier) to perform

• Differential-PECL-input buffering

• Ramp generation

• Threshold shifting

• Level restoration

• Differential PECL output buffering

In this circuit the Transmitter data stream is fed
through the Jitter Generator while the Receiver
monitors and checks for correct operation. As the
control voltage (Vj) input is varied to cause varia­
tions in the "data-corruption" ramps, the data
stream is corrupted in a repeatable and measurable
manner.

The first differential stage of the lOH116 is used as
a differential-ramp generator with controlled out­
put impedance and symmetrical rise and fall times.
The series Resistor and Voltage-variable Capacitor
(c) are adjusted to provide a relatively long voltage

6-251

~ ~ HOTLink Jitter Characteristics
~ICYPRESS =================

Vbb",,~ ~

f+-J *E T1TII,: * I I .~
Vee .~ ~

IN OUT

c

Figure 50. Data Dependent Jitter Generator Schematic

transition ramp that can be used to manipulate the
edge transition timing. The ECL output termina­
tion resistors shown at the outputs of each differen­
tial stage are part of the normal PECL output loads,
and can be either the parallel terminations shown at
(a) or the single pull-down shown at (d).

The R-C ramp generator at (c) must be tuned to
each data rate, to insure that the ramp covers the
same number of bits for each speed. If the Ramp is
too short, the full spread of pulsewidth dependent
jitter will not be generated.

The second differential stage of the lOH1l6 serves
as a voltage comparator that translates the differen­
tial, artificially extended voltage-ramps back to
PECL swings. The differential restoration resistors
put the degenerated waveforms at the optimal volt­
age so that the inputs of the receiver gate can make
a proper logical translation.

The third differential stage of the lOH1l6 is used to
restore crisp-edged, full-swing levels to the serial
data, and to drive the subsequent transmission line.
In some cases, the PECL output terminations of this
stage are provided by the transmission line termina­
tions.

Fiber-Optic Test Bed

The set-up that was used for testing; fiber-optic in­
terface capabilities of HOTLink is shown in Figure
51. It consists of a HOTLink Evaluation card, sever­
allengths of fiber-optic cable, and appropriate mea­
surement equipment.

A 3-km piece of fiber-optic cable, with only a single
splice in it, was used to generate chromatic disper­
sion. The shorter pieces of fiber, with two connec­
tors between every 500 meters, and the optical at­
tenuator were used to add connector attenuation.
The optical splitter and power meter were used to
insure repeatability of the measurements. The lim­
its of distance and speed were mostly set by the opti­
cal interfaces used, and by the number of connectors
in the link.

Coax Test Bed

The set-up used to test wire links is shown in Figure
52. It consists of a HOTLink Evaluation Board with
suitable connectors and a length of the cable to be
used for testing. Various cable types have been
tested for speed and distance characteristics. The
HOTLink BIST function and the Evaluation Board
error indicator combine to offer a clear and unam­
biguous system to determine the quality of an inter-

6-252

connect link, and its suitability to perform at a speci­
fied rate.

HOTLink Evaluation Board CY9266-C,
CY9266-T, and CY9266-F

The HOTLink Evaluation Card was designed to fa­
cilitate early HOTLink system evaluation without
expensive or hard to find test equipment. These
cards (shown in Figure 53) have convenient inter­
faces for user data and control signals, using either
the 48-pin connector used on the IBM OLC-266
card, or a 60-pin card edge connector.

The CY7B923 and CY7B933 include an exhaustive
Built-In Self-Test function that can be used to effec­
tively test link performance. It can also be used as
a controlled and predictable data source, and as a
grader for received data. The receive comparator
assures correct functionality of the HOTLink Trans­
mitter, the internal logic in the HOTLink Receiver,
and the interconnect link that joins them. These are
the essential components of a Bit-Error-Rate tester,
except for the reporting mechanism. To fill this

~ Single-ended
~~Iectrical

connection

~ifferential
lectrical

connection

Fiber Optic
connecffon

HOTLink Jitter Characteristics

need, the Evaluation Cards include a PLD pro­
grammed to be a two-digit accumulator and display
driver. The Error Display will show the number of
Error Bytes received during the BIST sequence, by
counting the HOTLink RVS outputs.

BIST

HOTLink ltansmitter and Receiver include a com­
prehensive link test function, as part of the function­
ality of the basic chips. When the HOTLink Trans­
mitter BISTEN is enabled, the part creates a
continuous 511 byte (29 -1 bytes) pseudo-random
stream of 8B/lOB-encoded data patterns which the
HOTLink Receiver checks byte-by-byte. The 256
possible data patterns are sent once each, and the 12
Special Characters and the 4 specified error codes
are sent sixteen times each (except CO.O which is
sent only 15 times) for a total of another 255 data
patterns. For a complete list of codes used in the
8B/lOB encoder and the Special Character and Er­
ror Codes, see the CY7B923/933 HOTLink Tx/Rx
Data Sheet

Figure 51. Fiber-Optic Test Bed Facilitates Random-Jitter Testing

6-253

~.:-Z HOTLink Jitter Characteristics
_;CYPRESS ===============

~ Single-ended
~ ~Electrical

connection

~ifferential
lectrical

connection

Figure 52. Coax Test Bed to Test for Deterministic Jitter

Figure 53. HOTLink Evaluation Boards Form the Core of a Comprehensive Evaluation System

6-254

-.. ~ HOTLink Jitter Characteristics
,CYPRESS ================

If errors are discovered in the received sequence,
received running disparity, or received transmission
codes, they are flagged by the RVS output of the
HOTLink Receiver. A full discussion of the BIST
function of HOTLink is contained in the "HOTLink
Built-In Self-Test (BIST)" application note.

For Further Information

HOTLink User's Guide

Hewlett-Packard Catalog
Hewlett-Packard Test & Measurement Division

Mail Station 51LSJ P.O. Box 58199
Santa Clara, CA 95052-9943
(800) 452-4844 or (408) 553-7271

Tektronix Catalog
Tektronix

26600 Southwest Parkway P.O. Box 1000
Wilsonville, OR 97070-1000
(800) 426-2200 or (503) 627-1916

Microwave Logic
285 Mill Rd
Chelmsford, MA 01824
(508) 256-6800

Colby Instruments, Inc.
1810 14th St,
Santa Monica, CA 90404
(310) 450-0261

H01Link is a trademark of Cypress Semiconductor Corporation.

6-255

Understanding Bit-Error-Rate with HOTLink ™

Understanding Bit-Error-Rate

The concept of an error rate for digital systems may
seem somewhat foreign to many digital designers.
The message has always been that digital circuits al­
ways switch to either a one or a zero, and that if the
circuit doesn't do it correctly then it must be broken.

The real world is quite different. Typical computer
networks lose or corrupt packets, disk and tape stor­
age require re-reads of data (or even error correc­
tion), and large DRAM memory arrays may have
bits corrupted by a-particles and require ECC
correction. These random events occur regularly in
these computer systems, and the necessary error
detection and recovery mechanisms are planned for in
their design. Under conditions that can cause these
types of errors, the system's performance is deter­
mined both by the circuit design, and by probability.

Serial data communications systems, such as those
based on HOTLink ThO, must also deal with probabil­
istic forms of errors. The amount of error detection
and recovery built into the system is often deter­
mined by the tolerance of the system to bit errors,
and how often these errors occur. In these types of
systems the errors are (for the most part) caused by
either intrinsic or extrinsic noise sources that can af­
fect any or all parts of a data link. The measurement
and specification of a bit-error-rate (BER) exists as
a way to quantify the susceptibility of a digital link
to these noise factors.

Bit-Error-Rate Definition

Bit-error-rate is the relationship of the number of
bits received incorrectly, compared to the total
number of bits transmitted. This relationship is
shown in Equation 1.

BER = # of bits in error
of bits transmitted Eq.1

This simple relationship is the basis for all BER
measurements and specifications. It assumes that
all transmitted bits were sent error free.

BER is usually specified as a number times 10 raised
to a large negative exponent. Common require­
ments for serial links are generally in the range of
1x10-6 to 1x10-15.

BER numbers by themselves do not represent any
period of time. They are only a ratio of numbers of
bits sent and received. A specific BER, when re­
lated to time, can yield an MTBF (mean time be­
tween failure) for a serial link. This relationship is
shown in Equation 2.

MTBF = .1
(ho.,,) BER x bits per hour Eq.2

HOTLink operates at bit rates of 160 Mbits/sec to
330 Mbits/sec. An operating BER of 10-12 for a
330 Mbit/sec data stream would have an MTBF of
0.84 hours. This is equivalent to detecting an aver­
age of one bit in error for every 0.84 hours of opera­
tion. This same link at the same BER, but operating
at 160 Mbits/sec, would detect an average of one bit
in error for every 1.74 hours of operation.

Link-Based Errors

The BER for a specific link is not based on the HOT­
Link components used at either end of the link. A
HOTLink Transmitter connected directly to a
HOTLink Receiver (when operated within their
datasheet parameters) has a BER of zero. As other
components are added to the link (transformers,
transmission lines, opto-electric transceivers, con­
nectors, optical fiber, etc.) the link BER begins to

6-256

=- ,,~ Understanding Bit-Error-Rate with HOTLink
~, CYPRESS ================

grow. These components add distortion to the
transmitted signal. This distortion can come in
many forms, including attenuation, dispersion, in­
creased jitter, and DC offset. The unpredictable
element that is also added is susceptibility to noise.

Sources of Errors

In a communication link, errors are generally sepa­
rated into two categories: intrinsic and extrinsic. In­
trinsic errors are those caused by the components
used to create the link. Extrinsic errors are those
caused by external influences that affect the opera­
tion of the link.

Intrinsic Errors

Intrinsic errors are those errors due to the design,
components, and implementation of a link. These
errors can be caused by internal noise sources (i.e.,
thermal nois\!), poor electrical connections, and
(with some systems) receiver sampling errors.

Optical Links

Optical links are often used in areas where strong
electrostatic and electromagnetic fields are present,
to limit the number of errors caused by these extrin­
sic noise sources. In the absence of these noise
sources, many users are surprised to find that opti­
cal links are often more error prone than an electri­
calor copper based link. These errors are due to the
physical components used to make the link (optical
driver, optical receiver, connectors, optical fiber,
etc.) and not to the serializer and deserializer com­
ponents used at the ends of the link.

Optical fibers, even the best ones, contain numerous
impurities and flaws. As light strikes these minute
flaws it gets vectored off at different angles or ab­
sorbed in the cladding. This is not generally a prob­
lem for short links, but long ones contain many such
flaws. These flaws work to both reduce the amount of
light that reaches the receiver (attenuation), and to
spread out the transmitted pulsewidth (dispersion).

Each optical connector also causes signal loss and
pulse degradation similar to the flaws inside the
fiber. Here the main loss mechanism is back reflec­
tion and attenuation due to contamination, cleaving

faults, or poor polish of the fiber end. These types
of signal degradation are translated into increased
jitter by the opto-electric receiver. This jitter (with­
in certain limits) does not increase the BER of a
link. As long as the opto-electric receiver's output
jitter remains within the receiver's (deserializer) jit­
ter tolerance, the link should remain error free.

One of the largest causes of random or noise­
induced errors is the optical receiver. Here light re­
ceived from the fiber is converted to an electrical
signal through a transimpedance amplifier. This
amplifier must respond to current changes in the
PIN photodetector of less than 1 !lA to detect the
presence or absence of light. This low signal-level
makes the receiver preamplifier susceptible to ther­
mal and shot noise, and converts these into random
jitter. This random jitter has a Gaussian distribu­
tion and is directly influenced by the signal-to-noise
ratio (SNR) of the optical link.

The optical receiver is also quite sensitive to exter­
nal EMI sources. External static discharges or
power supply transients often make their way to the
optical receiver where they manifest themselves as
erroneous bits.

Electrical Links

Electrical or copper based links are also subject to
errors, however errors in these types of links are (in
almost all cases) due to extrinsic sources. While the
components used to make an electrical link are still
sources of noise in a system, the amplitudes of these
noise sources are tens of dB below any of the electri­
cal thresholds used in the receiver.

The one possible exception to this deals with an im­
properly installed or maintained system. If low
quality components are used in a non-benign envi­
ronment (corrosive atmosphere, salt spray, etc.) it
is possible for the interconnections and even the
cable itself to degrade. The galvanic action of dis­
similar metals in such an environment can generate
significant noise in the system.

Transmitter (Serializer)

In a communication link the transmitter is generally
never considered to be a source of errors in the link.
This is due primarily to the pseudo-synchronous

6-257

& ,~ Understanding Bit-Error-Rate with HOTLink
,CYPRESS ==============

nature of its design. In the case of HOTLink, the
transmitter operates fully synchronous to its inter­
nal synthesized bit-clock. So long as the clock, in­
coming data, and power, meet their specified
parameters the part should not generate any errors.

The one exception to this is the possibility of distur­
bances at the subatomic level. While it is theoreti­
cally possible for SEU (single event upset) to occur
due to a, ~, or some other subatomic particle emis­
sion, this event is not expected. High-reliability de­
sign practices, coupled with the robust nature of
BiCMOS circuitry used to make HOTLink, make
this highly improbable.

Receiver (Deserializer)

The HOTLink Receiver is based on a high-reliability
fully differential analog PLL (phase-locked loop).
It is designed to remove all intrinsic error sources
from the receiver, and to block many of the extrinsic
error sources.

As long as the HOTLink Receiver, is presented with
valid power and data (meeting its datasheet require­
ments), it is effectively error-free in operation just
like the HOTLink'Ii"ansmitter. As with any electronic
component, it may be susceptible to SEU phenom­
ena, however none have ever been observed.

For electrical connections where no external re­
ceiver preamplifier is present, the receiver sensitiv­
ity may also have an effect on the link BER. The
HOTLink Receiver typically will only require 10 mV
of differential signal (50 mV worst case) at the re­
ceiver input for proper operation. These enhanced
low-amplitude inputs of the HOTlink Receiver per­
mit operation with much longer external cables, or
cables having much more equalization present, at
very low bit-error-rates.

Extrinsic Errors

Extrinsic errors are those caused by external or out­
side influences. These errors are caused by things
like spikes, sags, and surges in the power mains,
electrostatic discharges, RF emissions, and cable/
connector vibrations.

Power Supplies

In some cases normal power-supply noise and ripple
is grouped in with extrinsic sources of errors, how­
ever a good design will place this as part of the in­
trinsic errors. Power-supply noise becomes extrin­
sic when externally generated noise is allowed to
pass through the power supply and reach the serializ­
er, deserializer, and media driver/receiver. These
external noise sources can be as small as an ESD dis­
charge from someone touching a cabinet, or as large
as a lightning strike. Depending on the characteris­
tics of the noise source (and how much is allowed to
reach the serial-link components), it may be able to
induce link errors.

Many standard appliances operate with motors that
generate very strong noise fields. Some examples of
these are electric drills, vacuum cleaners, mixers,
etc. Basically anything using a motor that contains
brushes. As these appliances operate they radiate
strong RF fields, and reflect large amounts of RF
energy back into the power mains. Limiting the ef­
fects of such power-coupled sources usually involves
various types of power filters or conditioners on the
front-end of the system power supply.

Optical Links

Optical links are fortunate in that the fiber-optic
cables themselves are immune from externally gen­
erated noise. The weak link in an optical connection
is the susceptibility of the receiver to external noise.
In many cases the largest cause of noise for an opti­
cal receiver is the optical transmitter mounted di­
rectly adjacent to it. This requires careful layout
and isolation techniques to keep the noise gener­
ated in the optical driver from affecting the sensitive
optical receiver.

Electrical Links

Electrical links are in some ways at a disadvantage
when compared to optical links in that they are af­
fected by external electromagnetic fields. Just how
much they are affected is based on many different
characteristics. These are primarily the cable-type
used, the data rate, and the strength of the external
field.

Cypress has tested multiple types of copper media
(different impedances and diameters of coaxial and

6-258

-=====-.

~rcYPRESS ======V;;;;;;D;;;;;;d;;;;;;er;;;;;;s;;;;;;ta;;;;;;D;;;;;;d;;;;;;iD;;;;;;g;;;;;;B;;;;;;i;;;;;;t";;;;;;E;;;;;;rr;;;;;;o;;;;;;r;;;;;;"R;;;;;;a;;;;;;t;;;;;;e ;;;;;;w;;;;;;it;;;;;;h;;;;;;H;;;;;;O;;;;;;T;;;;;;L;;;;;;i;;;;;;D=k

Ch. 1 = 200.0 mV/div Timebase = 500 ps/div

Figure 1. Eye Pattern without Forced Noise

twisted-pair cable) to determine how far a reliable
link can be operated. What was learned was that the
higher-impedance and lower-attenuation cables al­
lowed error-free communication for the greatest
distances.

Some of these links were also tested in the presence
of an uncalibrated noise source (i.e., an electric
drill). This testing, while not directly quantifiable,
does allow numerous observations to be made as to
how a copper-based link responds to external noise.

The first observation was that short copper-based
links (.::;.100m), when implemented with shielded
cables (coax or STP), are relatively immune to the
noise generated by the noise source. Figure 1 shows
the "eye" at the end of a 91.2m (300-foot) piece of
RG59 coaxial cable running the HOTLink BIST
(built-in self-test) at 25 MHz with normal office
electrical noise present. At this distance there is sig­
nificant (.::;.30%) jitter present in the link, and the
eye (as viewed on a digital sampling scope) is rea­
sonably open (see the Cypress Semiconductor ap­
plication note "HOTLink Design Considerations"
for an explanation of jitter and eye patterns).

For noise testing, a small number of turns (six) of the
cable were tightly wrapped around the body of an
electric drill to maximize the noise coupling. The
eye pattern with the noise generator enabled is
shown in Figure 2. Under these conditions the eye

Ch. 1 = 200.0 mV/div Timebase = 500 ps/div
Figure 2. Eye Pattern with Forced Noise

becomes a bit fuzzy around the edges, but the center
remains mostly open.

This "fuzz" is in fact multiple sample points created
when the external noise caused the received signal
to move from its normal position. Rather than being
just a single dot on the screen, each of these points
is actually part of a continuous waveform. Because
of the random nature of the noise source (relative to
the scope trigger and serial data) and the repetitive
sampling used to display a signal, it is not possible
to view the actual altered waveform.

Even with this strong of a noise source, the HOTLink
Receiver detected no errors during the 15-minute
period of this test. This does not mean that such a link
would remain error free indefinitely, just that the
SNR in this configuration is sufficiently large that
most received pulses still fall within the normal range
of the receiver for a correct 1 or 0 to be detected.

As the cable gets longer the signal continues to de­
grade and the eye closes. This closure is not a linear
function; it is more logarithmic in nature. At 121.4m
(400 feet) the eye (for this cable-type and data-rate),
as shown in Figure 3, is effectively closed (.::;.5% eye
opening). Under these conditions the HOTLink
Receiver (in the absence of strong external noise
sources) will still correctly detect the data as an error­
free stream. Now however, when the noise source
is enabled, the receiver detects multiple and near
continuous errors.

6-259

-= ~ Understanding Bit-Error-Rate with HOTLink
_;CYPRESS =============

Timebase = 500 ps/div Ch.1 = 100.0 mV/div

Figure 3. Error Free Eye Pattern at Maximum
Cable Length without External Noise

Jitter

A popular misconception is that the reason for the
detected errors in a communications link is the jitter
accumulation in the link. While jitter definitely
does playa part in determining the BER for a sys­
tem, it alone does not cause errors.

The link measurement in Figure 3 shows a very large
amount of jitter present, yet the link operates error
free. A link of this type can meet a BER of 10-12 (or
better) as long as the external noise remains con­
trolled. In a similar fashion, a link measuring mini­
mal jitter « 10%) could become unusable if pres­
ented with a strong enough noise source.

Specifying BER

The BER for optical links is usually specified as a
transfer function relative to signal-to-noise ratio.
This is due to the wayan optical signal is modified
as it moves down a fiber. This specification does not
take into account any of the extrinsic noise sources
that can effect the opto-electric converters that are
part of the link, and assumes that all errors are due
to the pulse degradation and how the signal is inter­
preted by the opto-electric receiver.

For copper cables it is a bit more complex. The spec­
ification is still based on SNR, but now is a set of N

curves in N-dimensional space. These curves must
take into account such things as the launched power,
the spectral content of the source signal, the type of
shield on the cable, the receiver sensitivity, and how
much (if any) equalization is present. .Unlike opti­
cal cables, the BER specifications for copper links
must take into account extrinsic noise sources be­
cause these are the primary cause of bit-errors in an
electrical link.

BERFloor

A bit-error-rate floor is that point in a link where the
BER is limited by something other than the SNR.
This occurs in links when no increase in launched
power into the cable or optical fiber will yield an im­
provement in the BER.

For electrical cables the BER floor sits at the point
where the eye effectively closes and signal transi­
tions can no longer be properly detected. In these
cables, the shape of the eye is determined only by
the frequency characteristics of the signal launched
into the cable and the cable's attenuation character­
istics (and any signal conditioning if present).

Figure 4 shows the BER floor for Type-l shielded
twisted-pair (STP) cable when used with HOTLink.
This testing was performed on four different
CY9266-T HOTLink Evaluation Boards, under
room temperature conditions, with no cable equal­
ization or special conditioning of the environment
(see also the "CY9266 HOTLink Evaluation Board
User's Guide" for additional information on the
CY9266). All areas under the curve allow normally
error-free link operation, with all detected errors
due to extrinsic noise sources. All areas above the
curve identify where the link will operate with near
continuous errors, regardless of the presence or ab­
sence of external noise sources.

This same curve is plotted with the frequency axis on
a logarithmic scale in Figure 5. Now the portion of
the curve determined by the cable characteristics is
effectively a straight line. This shows that the trans­
fer function for the BER floor relative to frequency
is actually an exponential function. Thro other limits
actually exist in the BER floor for HOTLink. These
are the upper and lower frequency limits of the
HOTLink Transmitter and Receiver circuits.

6-260

Understanding Bit-Error-Rate with HOTLink

55,---,----,----,---,----,---,

50~--~--~~--~---4----4_--~

N 45 "
~ 40)
. ~ ~

f 35 ---- -----,
~ 30~--~--~--~~--~----~--~

upper spec limit -
330 Mbaud --

I . 266 Mbaud . - - - - ,- - -
25~~--_+--~~~~--_+--~

20~--~--~~--~--~~ __ 4_--~
I I I' _. ower spec Imlt _ _ _ _ _ __ :!~ __

15 I- 160 Mbaud

10 L--_-'-----I-----'--I_---'----~L--____'____
50 150 250 350 450 550 650

Cable Length in Feet
+=card 1 .A = card 2 x=card 3 +=card 4

Figure 4. BER Floor for 1Ype-l STP Cable,
Linear Frequency Scale

30

20

·266 Mbaud

I
lower spec limit

160 Mbaud

upper spec limit
- 330 Mbaud

10L-i--L-L~ __ L_~_L~ __ L-~-L~

50 150 250 350 450 550 650

Cable Length in Feet
+=card 1 .A = card 2 x=card 3 +=card 4

Figure 5. BER Floor for lYPe-l STP Cable,
Log Frequency Scale

H01Link is a trademark of Cypress Semiconductor.

The upper frequency limit can actually be identified
in Figures 4 and 5 as the flat horizontal section be­
tween 50 and 150 feet. In this area the operating
limit is not due to the cable, but is instead due to
characteristics of the phase-locked loops in the
transmitter and receiver .

The lower frequency limit (not directly identifiable
on the graphs) is that frequency below which the
HOTLink Transmitter and Receiver cannot remain
in a proper phase-lock to communicate valid data.
For those parts used in this evaluation this is some­
where around a 13-MHz byte-dock rate (130 Mbitsl
second).

Conclusion

The key observations for bit-error-rate measure­
ments with HOTLink are:

• The HOTLink Transmitter and Receiver have an
intrinsic error rate of zero.

• Optical links suffer primarily from intrinsic noise
sources in the optical transmitter and optical
receiver, and extrinsic sources in the optical
receiver.

• Electrical links suffer primarily from extrinsic
noise sources.

• The exceptional BER floor of HOTLink is due
primarily to the very high jitter-tolerance of
the receiver and low jitter generated in the
transmitter.

6-261

Driving Copper Cables with HOTLink ™

Overview

The HOTLink"" family of data communications
products are designed to support communication
over both optical and copper cables. Each media
type has specific cost, bandwidth, emissions, and
distance criteria. This application note covers the
methodology and evaluation of various forms of at­
tachment to copper media. It is expected to be used
in conjunction with a companion application note
titled "HOTLink Design Considerations."

Primary Topics

The primary topics covered in this application note
are:

• 1tansmission lines

• Copper cable types

• Direct coupling

• Capacitive coupling

• Transformer coupling

• Quantitative Interface Comparison

Introduction

The electromagnetic spectrum covers all wave­
lengths from near zero through infinity. This in­
cludes all radio, microwave, light, x-ray, and cosmic­
ray wavelengths. Table 1 lists the classifications of
those frequencies and wavelengths usually associ-

ated with data communications over copper media.
Communication links based on HOTLink products
utilize frequencies in the HF, VHF, and UHF bands.

Copper cables (or circuit board traces) are used to
move electromagnetic energy from one place to
another. With slow signal-switching speeds (and
short interconnect distances), a signal placed on one
end of the cable will eventually show up at the other
end. Systems of this type are seen and used in homes
and offices every time a light switch is opened or
closed. Here the primary concern is delivering
energy to a load.

In high-speed communications systems, many other
concerns exist. Not only must energy be delivered
to the communications link receiver, but the signal
delivered must arrive with minimal distortion. De­
livery of electromagnetic energy with minimal (or
controlled) distortion requires the proper use of
transmission lines.

Transmission Lines

In the most general sense, a transmission line is any
closed system for directing electromagnetic energy.
(While antennas may also direct electromagnetic
energy, they are not part of a closed system and are
thus not considered transmission lines.) Any trans­
mission line meets the following three criteria:

• Has a system of material boundaries

• Has a start and end point

• Capable of directing electromagnetic energy

6-262

Driving Copper Cables with HOTLink

Table 1. Electromagnetic Band Classifications

Band Band Name Frequency Wavelength
Range Range

ELF Extremely Low 30 Hz- lOMm-
Frequency 300Hz 1Mm

VF Voice 300 Hz- 1Mm-
Frequency 3kHz 100km

VLF Very Low 3 kHz- 100km-
Frequency 30kHz lOkm

LF Low Frequency 30 kHz- lOkm-1km
300kHz

MF Medium 300 kHz- 1km-100m
Frequency 3 MHz

HF High Frequency 3 MHz- 100m-10m
30 MHz

VHF Very High 30 MHz- 10 m-1 m
Frequency 300 MHz

UHF Ultra High 300 MHz- 1m-lOcm
Frequency 3GHz

SHF Super High 3GHz- lOcm-1 cm
Frequency 30GHz

EHF Extremely High 30GHz- 1 cm-1 mm
Frequency 300GHz

Electromagnetic energy moves along a transmission
line as an electromagnetic wave, composed of elec­
tric and magnetic fields. These waves and fields
travel (or propagate) down a transmission line at a
finite rate, determined primarily by the dielectric in
the transmission line.

Transmission lines generally fall into two different
types, based on the orientation of the electromag­
netic fields as they propagate down the transmission
line. All dual-conductor transmission lines (coaxial,
twisted-pair, twinaxial, microstrip, stripline, etc.)
propagate their electromagnetic energy with both
the electric and the magnetic fields oriented per­
pendicular to the direction of propagation. This is
known as Transverse Electric Magnetic (TEM)
mode. Figure 1 shows a graphic representation of
these fields within a coaxial cable.

Single-conductor transmission lines (also known as
waveguides) propagate their energy in multiple
modes known as either TE (nansverse Electric

Common Uses

Commercial AC Power Distribution

Analog Telecommunications

Voice and Music Reproduction, Submarine
Communications, Sonar

Commercial AM Radio, Shallow-to-Medium
Depth Sounders
Commercial SW Radio, Amateur Radio, Marine
Radiotelephone

Commercial SW Radio, Amateur Radio, Citizen
Band Radio

VHF Television Broadcast (Channels 2-13), FM
Radio, Amateur Radio, Cordless Telephones

UHF Television (Channels 14-83), Microwave
Ovens, Aeronautical Radionavigation

Microwave Communications, Marine Radar,
Aircraft Tracking and Radar
Space Communications, Radio Astronomy

field) or TM (Transverse Magnetic field). In these
modes, one or the other of the fields is oriented par­
al�e� to the direction of propagation.

Both TEM and TE/TM transmission lines have cut­
off frequencies-points in the electromagnetic
spectrum where the transmission modes change.
For TEM transmission lines the cutoff frequency
determines the upper frequency limit for TEM

+-------- E-field (Electric)
- H-field (Magnetic)

Figure 1. Electric and Magnetic Fields for TEM
Mode in a Coaxial Transmission Line

6-263

1& ,,~ Driving Copper Cables with HOTLink
~CYPRESS =============

propagation. Signal components higher than the
cutoff frequency will propagate in TE/TM modes.

For TE/TM (waveguide-type) transmission lines,
the cutoff frequency determines the frequency below
which energy cannot propagate. This cutoff fre­
quency is determined by the physical dimensions of
the waveguide, and is calculated using Equation 1.

300,OOOkm
i(c) = 2 x Wall_Width Eq.l

Applying this equation to the data rates used with
HOTLink shows that such a structure would be very
impractical. It would require a cross-sectional width
of near 5 meters to propagate the low-frequency sig­
nal components (33 MHz) of even the highest oper­
ating data-rate (330 Mhps) of HOTLink. Because
of this restriction (and others) all remaining discus­
sion will only deal with TEM-type transmission
lines.

TEM Transmission Line Characteristics

The conductors used to form a transmission line
have numerous distributed parameters that deter­
mine its operation and characteristics. These dis­
tributed parameters include the series inductance
(L) of the conductors in the transmission line, the
shunt capacitance (C) between the conductors, the
series resistance (R) of the conductors, and the
shunt conductance (G) between the conductors.
Because these properties remain constant per unit
length of the transmission line, they are referred to
as distributed properties. These parameters are
functions of the diameter and spacing of the conduc­
tors and the dielectric constant of the spacer used
between them. A schematic equivalent of these ele-

ments in a balanced (two-wire) transmission line is
shown in Figure 2.

ltansmission lines are usually characterized by two
parameters: characteristic impedance (Zo) and ve­
locity of propagation (Vp). Proper determination of
these values is imperative to allow the transmission
line to be used correctly.

Characteristic Impedance

The characteristic impedance identifies the imped­
ance seen by a source when driving a transmission
line terminated at the load-end in a pure-resistance
equal to the characteristic impedance. While this
appears to be a circular definition, it is valid. If the
load end of the transmission line is terminated in an
impedance other than the characteristic impedance
of the line, the source end of the line will see an im­
pedance different than either that ofthe load or the
characteristic impedance of the line. Because this
characteristic impedance is generally unaffected by
frequency, a transmission line terminated in its
characteristic impedance has the same load charac­
teristic of a fixed resistor.

In most transmission lines the series-R and shunt-G
values are usually very small and have minimal
effect on the impedance of the line. This means that
the characteristic impedance is determined almost
entirely by the series-L and shunt-C shown in
Figure 2. This relationship is shown in Equation 2.

Zo = fc Eq.2

Velocity of Propagation

In space an electromagnetic wave travels at nearly
300,000,000 meters per second (speed of light).
Moving this same signal through a transmission line

==ft ~::::f t ::;f t ;
~ Unit of Length of Line -..j Series R

Figure 2. Equivalent Circuit of a Transmission Line

6-264

with a vacuum for the dielectric separator between
the conductors allows the wave to propagate at or
near this same rate.

Real transmission lines are seldom found with a vac­
uum dielectric. Instead, various non-conductive
materials are used to maintain the spacing between
the two conductors of the transmission line. These
separators all have different dielectric constants,
and all of them slow down the propagation of the sig­
nal. The rate the signal propagates, relative to the
speed of light, is known as the Velocity of Propaga­
tion (Vp) and is usually expressed as a percentage
(sometimes expressed as a propagation delay in
time per unit distance). This velocity difference
may be calculated using Equation 3, where Er is the
relative dielectric constant of the transmission line.

Eq.3

For this calculation to work, the entire electromag­
netic field must propagate in the dielectric. Many
transmission lines are structured such that some of
the field propagates in the dielectric, while other
parts propagate in the surrounding air. For trans­
mission lines of this type the equation must be modi­
fied to account for the mixed dielectrics.

TEM Transmission Lines

TEM Transmission lines may be grouped in any
number of different ways: by length, by construc­
tion, by dielectric, by usage, etc. For operation with
HOTLink they are generally split into two catego­
ries: unbalanced (single-ended) and balanced (dif­
ferential) transmission lines.

Unbalanced Transmission Line

Figure 3 shows a driver/receiver combination used in
an unbalanced transmission line. In this configura­
tion, a single driver sources and sinks current into
the transmission line with the return path provided
by a common ground.

In this configuration, other communications paths
can share the common ground. This allows for few­
er wires in a cable, and fewer contacts in a connec­
tor. The main problems suffered by this type of
transmission line are susceptibility to external

noise, crosstalk, ground potential differences, and
limited noise margin.

In an unbalanced transmission line, the electromag­
netic field necessary for signal propagation exists
~etween the driven line and the ground path. The
receiver operates by comparing the amplitude of
the received signal relative to ground or some other
reference.

Balanced Transmission Line

Figure 4 shows a driver and receiver configured for
use in a balanced transmission line. In this configu­
ration, two drivers source and sink complimentary
signals into the two wires of the transmission line.
These signals need to be matched in amplitude, and
must be 1800 out of phase with each other for the
transmission line to work properly.

In this configuration, a common ground is not al­
ways necessary. Since there is no ground require­
ment, the sensitivity to ground potential differences
is greatly reduced. All that is required is that the sig­
nals remain within the input (common-mode) range
of the receiver.

Susceptibility to crosstalk is also greatly reduced.
The construction of a balanced transmission line re­
quires that the two conductors be in close proximity
to each other (without an intervening ground or
power plane). This means that any transients in­
duced in one conductor of a balanced transmission
line will have the same (or nearly the same) tran­
sient (with the same magnitude and phase) induced

Figure 3. Unbalanced Transmission Line

Figure 4. Balanced Transmission Line

6-265

+-------. H-field (Magnetic)

- E-field (Electric)

Figure 5. Electric and Magnetic Fields in a
Balanced 'fransmissio)J Line

in the other conductor. This crosstalk is, in effect,
a form of common mode noise that (within limits)
is rejected by the differential receiver.

In a balanced transmission line, the electric and
magnetic fields exist between the two driven
lines-there is no dynamic current flow in any pres­
ent ground path. These fields are shown in Figure 5.
The receiver is implemented as a differential ampli­
fier that operates by comparing the amplitude differ­
ence between the two received signals.

HOTLink Usage of'fransmission Lines

When driving transmission lines with HOTLink, the
first selection criteria is usually how far the signals
must travel. For very short interconnects, the trans­
mission line is often created using circuit board
constructs that allow the high-speed signals to be
routed across a card or backplane. For distances
greater than a meter, cables of various configura­
tions are generally used instead.

Circuit Board 'fransmission Lines

Figure 6 shows the cross-sectional construction of
the two primary types of circuit-board-based trans­
mission lines. While other configurations are pos­
sible, the stripline and microstrip constructions fol-

Stripline

- Microstrip

Figure 6. Circuit Board 'fransmission Lines

low standard circuit board manufacturing flows, and
thus see the largest industry usage.

These types of transmission lines are used to route
high-speed signals from a few centimeters to around
a meter of circuit board. They are often routed
through connectors as well as backplanes. Because
of the relatively short distances used with these
types of transmission lines, they are usually consid­
ered to be lossless.

Microstrip Transmission Line

Microstrip transmission lines are characterized by
having a single strip-conductor spaced above a
ground plane by a dielectric. This dielectric is usual­
ly the same material used for the remainder of the
circuit board.

The key to using such a construct as a transmission
line is stability of dimensions. Three dimensions de­
termine the characteristic impedance (Zo) of the
transmission line as shown in Figure 7: the width of
the trace, the thickness of the trace, and the height
of the dielectric.

With standard circuit boards the thickness of the
trace is determined by the weight of copper speci­
fied for that specific (strip) layer. Standard thick­
nesses are usually specified in ounces; i.e., 1-ounce

t -jwr-T_+
M.. T

Icrostnp

Figure 7. Microstrip Dimensions

6-266

copper yields a trace 0.0356 mm (0.0014") thick.
The width of the trace is specified in the artwork
used to generate the circuit card, while the height of
the trace from the ground plane is determined by
the thickness of the laminate specified for the board
construction.

A close approximation of the characteristic imped­
ance of a microstrip transmission line may be calcu­
lated using Equation 4, where Er is the relative di­
electric constant of the board and w, h, and t are the
dimensions shown in Figure 7.

Zo = 87 In(~)
je, + 1.41 0.8w + t Eq.4

This equation is an approximation and is not accu­
rate for all ratios of width-to-height-to-thickness.
Per experimental observation it does remain accu­
rate (±5%) for width-to-height ratios between 0.1
and 3.0 if the dielectric constant remains in the
1-15 range (Reference 2).

The transfer function for Zo versus trace width for
a microstrip transmission line is shown in Figure B.
All curves are based on standard FR4/G lO-type
laminate with l-ounce copper. Varying the copper
thickness has the least effect on the trace imped­
ance. Going to 2-ounce copper will lower the trace
impedance from 1-5%, while changing to
O.5-ounce copper will raise the impedance a similar
amount.

Zo

140

120

100

80

60

40

20

,
I\.

r-...

I'
r'\

i'-.
......

......

......
....

......
....

0.015"

I I I I I
I I I I I
Dielectric
Thickness

1""- __ 0.1"

... I IT""
--1-1..1 0.06"

t-
0.03" ++

I I I I I
010 20 30 40 50 60 70 80 90 100 110

Line Width (mils)
t = 1-0unce Copper

E, = 4.7

Figure 8. Calculated Impedance vs. Thace
Width for Microstrip Thansmission Lines

Driving Copper Cables with HOTLink

Because of the variation in trace widths caused by
etching, it is not advisable to use line widths under
lO-mils for controlled impedance transmission lines.
As the trace widths get smaller, the variation in line
width has a much larger impact on trace impedance.

In a transmission line of this type some of the elec­
tromagnetic field propagates in the air above the
strip conductor, while the remainder propagates
through the circuit board dielectric. Because of this
mixed medium, the Vp calculation for a microstrip
transmission line (shown here in Equation 5) is dif­
ferent from that in Equation 3 (Reference 2).

Vp = 1
j0.475e, + 0.67 Eq.5

Stripline Transmission Line

Stripline transmission lines are characterized by
having a single strip-conductor spaced between two
ground planes by a dielectric. This dielectric is usu­
ally the same material used for the remainder of the
circuit board.

Just as with a microstrip line, the key to using a strip­
line construct as a transmission line is stability of di­
mensions. Three dimensions determine the charac­
teristic impedance (Zo) of a stripline transmission
line as shown in Figure 9: the width of the trace, the
thickness of the trace, and the height of the dielectric.

A close approximation of the characteristic imped­
ance of a stripline transmission line may be calcu­
lated using Equation 6, where Er is the relative di­
electric constant of the board and w, h, and t are the
dimensions shown in Figure 9.

Zo = 60 In[4h]
.[i; 0.67Jt'w(0.8 + ~) Eq.6

Stripline

Figure 9. Stripline Dimensions

6-267

~YPRESS~~~~~~~~D~r~i~~'~ng~C~op~p~e~r~c~a~bl~e~sm~'th~H~O~T~L~in~k=

This equation is also an approximation and is not ac­
curate for all ratios of width-to-height-to-thickness.
Per experimental observation it does remain ac­
curate (±5%) when w/(h-t)<D.35 and t/h<D.25 if
the dielectric constant remains in the 1-15 range
(Reference 2).

The transfer function for Zo versus trace width for
a stripline transmission line is shown in Figure 10.
All curves are based on standard FR4/GlO-type
laminate with I-ounce copper. Varying the thick­
ness of the buried copper trace has the least effect
on the trace impedance. Going to 2-ounce copper
will lower the trace impedance from 3-8%, while
changing to D.5-ounce copper will raise the imped­
ance from 1-5%.

Unlike a microstrip transmission line, where part of
the electromagnetic field propagates in air, in a
stripline transmission line the field is bounded by
the ground planes and must remain within the cir­
cuit board dielectric. This means that the Vp for a
stripline transmission line is determined only by the
dielectric constant and thus follows the calculation
in Equation 3.

100

~ ~ Space Belween
--Ground Planes --- 1--

" " 008"

"- "-

"
~. - -------

\ ""
......

..........
....................... _ 0.1"

80

60

Zo 40

"'-
.......... ----......c; r-I--

" --r- -'-. r-r-r-........ 20

ro:02" 0.04" 0.0E?
1 1-

- I I-e-
I I o

5 15 25 35 45 55 65 75
Line Widlh (mils)

I = 1-0unce Copper
Er = 4.7

Figure 10. Calculated Impedance vs. Trace
Width for Stripline Transmission Lines

Other Circuit Board Concerns

When building microstrip transmission lines, inter­
action with the circuit board manufacturer is a must.
To insure a constant dielectric thickness, the user
should verify with their board manufacturer that a
double-sided laminate is used (versus the B-stage or
pre-preg layers) for this part of the circuit board.
These "fill" layers in multilayer circuit boards can­
not maintain the same dimensional stability be­
tween the strip-trace and the ground (or power)
plane.

Verification of the relative dielectric constant
should also be done. While often approximated at
4.7 for GlO/FR4 substrates, this value can range
from 4 to 6.

Unlike a microstrip transmission line, which may be
forced onto a two-layer laminate for its construc­
tion, a stripline transmission line must, by its very
nature, be composed of two separate circuit boards
that are then laminated together in a multilayer as­
sembly. This makes it much more difficult to control
the dielectric height specification. The multilayer
construction also raises the assembled board cost.
This often limits the use of stripline transmission
lines to those areas of a design that require the addi­
tional shielding provided by the embedded strip
construction.

Care must also be exercised in the placement posi­
tion of the strip conductors relative to any signifi­
cant discontinuities in the ground planes. As a gen­
eral rule the strip should remain at least 5(w+h)
away from the discontinuity for microstrip, and
5(w+ h/2) for stripline; e.g., don't route these types
of transmission lines along the edges of cards.

Table 2 lists the relative dielectric constants for a
number of common circuit board substrates. This
dielectric constant alone determines the Vp (and
the propagation delay) for the transmission line.

While it is theoretically possible to create a bal­
anced transmission line on a circuit board, such
construction is both difficult and costly due to the
geometries involved. Almost all circuit-board-

6-268

based transmission lines are unbalanced; i.e., trans­
mitted as a signal relative to ground.

Table 2. Properties of Circuit Board Substrates

Material Dielectric Prop Delay (ps/cm)
Constant Microstrip Stripline

GlO/FR4 4.7 56.8 72.3

Mylar 5 58.2 74.5

Alumina 9.9 77.2 105

Teflon 2.1 43.0 48.3

For those cases when the added noise immunity or
other signal characteristics of a balanced transmis­
sion line are desired, the circuit may employ two un­
balanced transmission lines that are then examined
by the receiver differentially.

If matched delays are necessary in a system (for
clock traces, pseudo-differential signals, etc.), do
not attempt to route some of the signals as stripline
and others as microstrip. The Vp calculations for
each of these transmission lines are approximations
based on specific dimensions that can vary signifi­
cantly over manufacturing runs. By selecting either
stripline or micros trip for both transmission lines,
the manufacturing variations present should affect
both transmission lines in similar amounts and thus
have minimal effect.

Copper Cable Transmission Lines

Copper cables are generally used either for difficult
signal routing (may even be used on a circuit board)
or when long distances are involved. They have the
advantage of being available in many configura­
tions, with tightly controlled impedances, and allow
communications at high bit-rates over hundreds of
meters.

All copper cables fall into two categories: coaxial
and parallel pair. The principal selection criteria
between these two cable types is if the signal is to be
transmitted unbalanced (coaxial) or balanced (par­
allel pair). The cross sectional construction of these
two cable types is shown in Figure 11.

Coaxial Cables

Coaxial cables are composed of two concentric con­
ductors, maintained at a fixed spacing by a dielectric
separator. This type of cable may only be driven in
an unbalanced or single-ended form. They are
available in flexible, semi-rigid, and rigid configura­
tions, in diameters from 0.25 mm up to around
10 cm. Commercial cables are available in many
impedances ranging from 32Q to 125Q, with the pri­
mary standards being 50Q, 75Q, and 93Q.

The 50Q standard was developed for the military
services in the early 1900s for use in radio broadcast.
They needed a cable to feed vertical ground plane
omnidirectional antennas which, by construction,
had a 50Q impedance. The 75Q standard was
adopted by the video and telecom industries be­
cause this impedance is the most efficient (consider­
ing only the voltages, currents, and powers to be
driven) for transmission. The 93Q standard was de­
veloped for the instrumentation industry to address
their need for a low capacitance cable. Many other
construction variants exist (triax, quadrax, etc.) that
differ primarily in the number and usage of the
outer cable shield (Reference 3).

The characteristic impedance of a coaxial cable is
determined by the ratio of its inner conductor to
outer conductor diameters as shown in Figure 12, and

Coaxial Cable

Parallel-Pair Cable

Figure 11. Copper Cable Cross-Sectional
Constructions

6-269

~ Driving Copper Cables with HOTLink
~, CYPRESS ================

Coaxial Cable

Figure 12. Coaxial Cable Critical Dimensions

the dielectric constant of the spacer material. This
relationship is shown in Equation 7 (Reference 4).

138 B
Zo = r:.-10glO}f

>IE, Eq.7

The entire electromagnetic field in a coaxial cable
propagates through the dielectric (see Figure 1). This
means that the Vp for a coaxial transmission line is
determined only by the dielectric constant and thus
follows the calculation in Equation 3. A comparison
of the propagation velocities of common coaxial
cable dielectrics is given in Table 3 (Reference 5).

Table 3. Propagation Velocity of Dielectrics

Insulation 1Ype Er Vp Prop
Coaxial Delay

(%) (ns/m)

PVC (Standard) 4-6 50-41 6.7-8.2

PVC (Premium) 3-5 58-45 5.8-7.5
Polyethylene 2.27 66 5.02
Polypropylene 2.24 67 4.99
Cellular Polyethylene 1.5 82 4.08
FR Polyethylene 2.5 63 5.27
FEP/TFE Teflon 2.1 69 4.83
Cellular FEP 1.4 85 3.94

Parallel-Pair Cables

Parallel-pair cables are formed from two conduc­
tors, each having the same diameter, maintained a
fixed distance apart from each other. This distance
separation is usually maintained by the insulation
around the individual conductors, but other types of
spacers are also used.

Parallel-Pair Cable

Figure 13. ParaUel-Pair Cable Critical Dimensions

While individual coaxial cables may only be driven
in a single-ended (unbalanced) connection, parallel­
pair cables may be driven either single-ended or dif­
ferentially. What surprises many people is that the
characteristic impedance for the cable is different
depending on how the line is driven.

Equation 8 (along with the dimensions shown in Fig­
ure 13) is the standard equation used to calculate the
Zo for a parallel-pair transmission line. What is not
usually identified is that this equation is only valid
for differentially driven cables. When the exact
same cable is driven single-ended (Le., one line of
the pair is a signal ground), the cable impedance is
about 25%-35% lower (Reference 6).

276 B
Zo = r:.-10glO}f

>IE, Eq.8

Equation 8 also makes the assumption that the en­
tire electromagnetic field propagates through the
dielectric. Except for those transmission lines that
are either air dielectric (open wire) or a specialized
construction, the propagation will actually be split
across multiple dielectric types and Equation 8 will
not be as accurate.

The Vp of a parallel-pair cable is also usually calcu­
lated using Equation 3, however the accuracy of this
equation (because of the mixed dielectric) will vary
depending on cable construction. It will usually be
slightly faster than the calculation, which assumes
only the physical (non-air) dielectric.

In theory, in a balanced transmission line the elec­
tromagnetic fields created around the two parallel
conductors are equal in magnitude, but opposite in
phase. The total field around such a transmission
line has a net field-strength of zero; Le., the fields

6-270

cancel each other out and no energy is radiated. In ac­
tuality the two fields do not quite cancel. To do so
would require both conductors to occupy the same
physical space. To keep radiation to a minimum, the
distance between conductors should be kept to no
more than 1 % of the signal wavelength (Refer­
ence 4).

Current balance is also important to minimize radi­
ation. Because the fields generated are based on the
currents present in the two conductors, any differ­
ence in the magnitude or phase of the driven signals
will generate a different electromagnetic field. This
difference, because it is not canceled out by the op­
posing field on the other conductor, radiates energy.
This mismatch can be a significant contributor to
EMI in a system.

Care must also be exercised in routing the conduc­
tors of balanced transmission lines to make sure that
adjacent objects do not induce an unbalance into the
system. If one of the two conductors is routed close
to a ground or other conductor, the shunt capaci­
tance can unbalance the line currents and increase
radiation.

Two primary techniques are available to help reduce
the interference affects of parallel-pair transmis­
sion lines, both from a radiation and from a suscep­
tibility standpoint. The first of these is to twist the
two conductors together at a controlled number of
twists per unit length. In such a construction, the
conductors must radially remain at the same center­
line spacing throughout the twists to maintain the
transmission line characteristic impedance. Aver­
age twist densities are from 1 to 0.1 twists per centi­
meter.

'IWisting the lines together allows magnetic field
cancellation and minimizes the affects of other
nearby conductors. While the shunt capacitance
will still exist, it is now applied in nearly equal
amounts to both conductors, maintaining the field
balance.

This same twisting also improves immunity to cross­
talk in a system. With a true parallel-wire system,
the currents induced by the fields present around an
adjacent conductor are not always of the exact same
magnitude on both conductors of a parallel-pair

(due to the physical spacing between the conduc­
tors). The twists present in a twisted-pair cable tend
to bring both conductors into the same proximity of
the noise generating conductor. This not only main­
tains the field balance in the cable, but also keeps the
noise pickup truly common-mode, which can then
be canceled by the receiver differential amplifier.

Twisted-pair cables also offer significant immunity
to external e-fields (electric) and h-fields (mag­
netic). Because the signal wavelength is signifi­
cantly longer than the twist-length on the cable, an
external electromagnetic field's influence is spread
across each propagating wave in multiple twists of
the cable, each of which presents an opposite field
intensity. These oppqsing fields tend to cancel out
the affect of the external field.

The other method used to limit interference on
parallel-pair conductors is shielding. A shield is an
additional conductor surrounding both signal con­
ductors in the parallel-pair. The purpose of this
shield is two-fold: to constrain the electromagnetic
fields generated by the transmission line, and to iso­
late external fields from this same transmission line.

Shields

Shields are used to keep what's outside out and
what's inside in. How effective they are depends on
their construction and how they are used in the sys­
tem. Figure 14 shows the construction of a number
of different types of cable shields. Shields of these
types operate as an electrostatic or Faraday shield.
This means that they can blocke-fields (electric) but
offer only minimal protection from external h-fields
(magnetic).

In Figure 14 the part identified as the cable core
could be any of the previously described cable types.
In the case of coaxial cables the core, in its simplest
form, would consist of a single conductor sur­
rounded by its dielectric spacer, with the shield
being the ground return conductor of the transmis­
sion line. Other constructions of transmission line
cables can actually have multiple shields. In these
configurations the cables are usually identified by
the names triax (a center conductor, its ground, and
an overall isolated shield) and quadrax (a shielded
parallel- or twisted-pair cable with an overall iso­
lated shield).

6-271

-= ~YPRESS~~~~~~~~D~ri~VI~·n~g~C~O~pp~e~r~C~a~bl~eS~~~·~th~H~O~T~L~in~k~

() Cable cor_ JaCket)

Drain
Wire

Braided Shield

Served Shield

Linear Tape Shield

Figure 14. Cable Shield Constructions

A perfect shield would be a seamless metallic tube
running the length of the transmission line.
Construction of this type is actually used for some
forms of coaxial cable known as hardline.

For flexible cables, a compromise must be made.
This compromise trades off shielding effectiveness
for cable flexibility. Now instead of the shield being
completely seamless, it has multiple seams that
allow the cable to bend. These shields are made of
either braided or spirally wrapped (served) layers of
fine-gauge copper (sometimes aluminum if used as
a secondary shield) wire, or spiral or linear-wrapped
metallic tape.

Braided shields consist of multiple groups of 34- to
40-AWG copper wire, braided together in a circular
fashion around the core section of the cable. These
strands may be bare copper but are often tin or silver
plated. Shields of this type are rated in terms of
braid coverage; i.e., how close to a seamless tube

they get. Because of the high-frequencies present in
a HOTLink-based serial connection, shield cover­
age should be a minimum of 85%. As a rule of
thumb, if any dielectric is visible through the braid,
there is insufficient coverage.

Served shields consist of the same fine-gauge cop­
per wire wrapped in a continuous spiral around the
cable core for the length of the cable. These strands
may be tin plated, but are generally not silver plated.
Cables of this construction should never be used for
frequencies above 10 MHz because the spiral-wrap
construction contains many long spiral gaps (espe­
cially near cable bends) that will leak EMI.

Metallic-tape shields are often used for high­
frequency signaling because of the high degree of
shielding coverage they provide. The metallic tape
is made from either thin aluminum foil, or a plastic
strip that is coated with aluminum on one or both
sides. Th allow termination of the shield at either
end ofthe cable, and to make sure that each wrap of
the shield tape is shorted together, these cables usu­
ally include an uninsulated drain wire that is in di­
rect contact with the tape shield for its entire length.

Shields are often combined for even better shield­
ing. Often a tape-shield will be covered by a braided
shield. In this configuration the drain wire is elimi­
nated because the braided shield performs the same
function.

Shield Transfer Impedance

One of the best ways to judge a shield's effectiveness
is by its transfer impedance. This is a specification
that relates how currents on one surface of a shield
generate a voltage drop on the other surface of the
shield. It is usually specified in mQ/meter of cable.
The effectiveness of any shield is directly proportional
to its transfer impedance. As the term impedance
implies, this is a frequency sensitive parameter.

Because of their high DC resistance, aluminum­
based tape shields do not fare very well in this mea­
surement. Braided and served shields do much bet­
ter due to their low-resistance copper construction.
The best results are achieved by the combination of
tape and a braided or served shield. Figure 15 shows
how shield construction effects transfer impedance.

6-272

-'i~ Driving Copper Cables with HOTLink
=--'CYPRESS================================

1000

Q;
100 Q)

:2 en
E
.r:

~ 10.0
~

Foil Shield ~ ~

~
V

Braid Shield

Foil and Braid ..-/
1.0

0.1 1.0 10.0 50

Frequency (MHz)

Figure 15. Shield Transfer Impedance

Electromagnetic Compatibility

Shields are also necessary in many systems to allow
equipment to meet various national and interna­
tional electromagnetic compatibility (EMC) re­
quirements. EMC deals with how much electro­
magnetic energy a piece of equipment is allowed to
radiate, as well as how much external energy it must
tolerate. Specific limits for both of these are set by
a number of different international governing
bodies. In the United States the limits for compati­
bility are set by the Federal Communications Com­
mission (FCC) in Part-I5 of their regulations. In
Europe, the Common Market countries are now
governed by a single EMC Directive in standards
EN55022, EN550I4, and EN60555-2, developed by
CENELEC (Committee for European Electrotech­
nical Standardization). These standards deal with
any digital equipment operating with any clocks or
switching present at greater than a 9-kHz rate, and
cover all frequencies up to 40 GHz.

For digital equipment, different limits are set for
both radiated emissions as well as susceptibility de­
pending on the target customer for the equipment.
Equipment intended only for use in an industrial or
business environment is classified as Class-A, while
equipment that may be used in the home is classified
as Class-B. The radiated emission limits for Class-B
are shown in Figure 16 (Reference 9).

Under both of these classifications, it is necessary to
test up to the 5th harmonic of the highest frequency

clock present in the system. For HOTLink-based
systems this could require testing up to 1.7 GHz.

Coupling to Copper

There are three primary ways of coupling HOTLink
to copper media: direct coupled, capacitor coupled,
and transformer coupled. Each of these methods
has different bias and termination requirements for
the high-speed ECL signals.

Direct Coupling

Direct coupling is where a DC path exists between
the HOTLink Transmitter and Receiver on the high­
speed serial interface. This coupling is used for
those cases where both the transmitter and receiver
operate from the same power supply and are in (rel­
atively) close proximity to each other.

There are many subsets within this direct coupled
area. These are differentiated by how far the signal
must travel and the quantity of loads present.

Direct Coupled: <3 cm Length

For link distances under 3 cm, the serial signals do
not have to be treated like transmission lines. In
these cases all that is necessary is to bias the ECL
signals so that they may properly switch. Because
the transmission distance is so short, the signal may
be assumed to be digital in nature. This allows the
analog transmission concerns of longer distances to

60

dBI-IV/m

50

100 300 1000
Frequency (MHz)

FCC EN55022 - - - - - - - - -

Figure 16. FCC and EN 55022 Class-B
Emission Limits at 3 Meters

6-273

=-- .. -=z Driving Copper Cables with HOTLink
-=-TCYPRESS ===============

HOTLink
Transmi

HOTLink
Receiver

Internal
Threshold Bias

Generator

Figure 17. Single-Ended Connection

be minimized. A single-ended connection sche­
matic is shown in Figure 17, while a differential con­
nection is shown in Figure 18. Typical values for the
pull-down loads are from 250Q to 51OQ.

Because the HOTLink Receiver does not provide
an external VBB reference, a single-ended connec­
tion may only be implemented using the INB + input
of the receiver. A differential connection may be
implemented using either ofthe INA± or INB± dif­
ferential inputs.

The ECL bias in both of these configurations is im­
plemented with a single pull-down to VEE on each
driver output. While this bias configuration does
generate more jitter than either a Th6venin or Y­
bias, the amount is well under the jitter tolerance
limits of the HOTLink Receiver for all supported
frequencies.

HOTLink
Transmitter

HOTLink
Receiver

IN+
~~--~--.---------~~-;+~~---

IN-

Figure 18. Differential Connection

Direct Coupled: From 3 cm to 1 m Length

Once the length of the connection becomes longer
than 3 cm, the connection must be treated as a trans­
mission line. This requires a termination network
at the end of the transmission line. Because the con­
nection is DC coupled, the termination network
may also be used to bias the ECL output.

Unlike, the previously described bias-only pull­
down load, the network here must actually match
the impedance of the transmission line. If it does
not, a portion of the signal delivered into the trans­
mission line is reflected off the termination and re­
turned to the source. The amount of the reflection
is determined by the voltage-reflection coefficient
of the load, PL, which is calculated using Equation 9.

reflected voltage RL - Zo
PL = incident voltage = RL + Zo Eq.9

Since this type of connection is only terminated at
the destination, any signal reflected from the load
will be returned to the source. However, because
the source is not impedance matched to the trans­
mission line (PL == 1), a large portion of the re­
flected signal it sees will again be reflected back
down the transmission line.

A reflection of this type will continue to travel back
and forth between the twQ ends of the transmission
line, being attenuated in amplitude both by the
transmission line losses (very low for these short
lines) and by the amount of signal absorbed in the
terminations.

Figure 19 shows a single-ended connection using a
Th6veniq bias network. This network is sized for
termination to Vee - 2V of a 50Q transmission line,
and should be changed if other impedance transmis-

330pF
CY7B933

OUTA+ c~-fiF====:&t-+--1INB+ OUTA-

Figure 19. Direct-Coupled,
Single-Ended Interface

6-274

=u '?cYPRESS ========;;;;;D;;;;;rl;;;;;'Vl;;;;;'n;;;;;g;;;;;C;;;;;o;;;;;p;;;;;p;;;;;er;;;;;C=8b;;;;;l;;;;;es;;;;;w;;;;;i;;;;;th=H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;nk=

330pF
CY7B923 82 CY7B933

OUTA+~~~~~~~~~~~INA+ OUTA- r- INA-
130

Figure 20. Direct-Coupled,
Differential Receiver Interface

sion lines are used. A similar network is added to
the OUTA - driver to keep a matched load on the
differential driver. While shown in the schematic as
a coaxial line, this would in most cases be imple­
mented either as microstrip or stripline. Just as in
Figure 17, the INB+ receiver is used for the single­
ended connection.

When implemented with two transmission lines (as
shown in Figure 20), the signals may be examined
differentially by the receiver. While not a true bal­
anced transmission system, this configuration
doubles the noise immunity of the single-ended con­
figuration.

This type of connection is often called a balanced
transmission line, but it is not. What actually exists
are two single-ended (unbalanced) transmission
lines that are examined differentially. Because the
electromagnetic waves propagate independently
down the two transmission lines, it is very important
to make sure that both lines are the same electrical
length from the driver to the receiver to allow the
two signals to arrive in the same phase relationship
they were sent.

Direct-Coupled Bus

A common usage for HOTLink is as a data-mover
on a backplane. In this configuration, the HOTLink
1tansmitters and Receivers are used to replace
some of the wide buses on the backplane, along with
their associated drivers, receivers, and connector
pins. This usually provides a lower cost, lower
power, and more reliable solution than the parallel
interface it replaces.

Single-Ended Bus

A bus of this type utilizes the wired-OR capability of
EeL outputs to allow multiple sources on a com­
mon bus. 1tansmission line terminations are still
necessary, and in fact must now be placed at both
ends of the transmission line. Figure 21 shows a sam­
ple configuration of a single-ended multiple source
and destination bus.

In this configuration, a HOTLink Transmitter and
Receiver are located on a card plugged into a back­
plane. All the receivers are enabled at all times, and
the transmitters are controlled using the FOTO sig­
nal such that only one of them is allowed to transmit
at a time. Because of the single-ended operation of
the bus, the INB+ input of the receiver should be
used for serial data input.

The transmission line must be terminated at both
ends to allow signals to be driven at any point along
the transmission line. When the signal is launched
into the line it effectively splits, with part of the sig­
nal traveling in each direction on the line. When the
signal reaches the end of the transmission line it is
absorbed into the termination networks. This
double termination places a higher current burden
on the driver. It sees two lOOQ transmission lines in
parallel, which present a load of SOQ.

The complementary output of each differential
driver must also see the same load as the true output
to provide a balanced load for the driver. This re­
quires adding a SOQ Thevenin bias network for each
driver present.

While implemented here with a lOOQ transmissiop
line, other impedances may also be used. The low­
est recommended transmission line impedance is
SOQ. This presents a 25Q effective load on each at­
tached driver.

The physical implementation of a single-ended bus
does have a few limitations. One of these is how
many drivers/receivers can actually be on the bus.
This is not a driver current limitation (HOTLink in­
put currents are « 1 mA), but is instead due to ca­
pacitive and stub effects. Each card on the back­
plane adds from 3-pF to lO-pF of capacitance to the
bus. This added capacitance slows down the rising

6-275

~~
., CYPRESS ========D;;;;;n;;;;;"Vl;;;;;";;;;;ng;;;;;C=op;;;;;p;;;;;e;;;;;r;;;;;C;;;;;ab;;;;;l;;;;;es;;;;;Wl="th=H;;;;;O;;;;;T;;;;;L;;;;;in;;;;;k=

Vcc

165

Vcc

________ .J

I ________ J

Figure 21" Single-Ended, Multi-Source Bus

and falling edges of the signals. When operating in
a single-ended environment, the maximum number
of driver/receiver pairs should be limited to 20.

The physical placement of each driver/receiver pair
is also critical to proper operation. Due to the
construction of a backpanel and its associated cards,
each driver/receiver pair also adds a stub to the
transmission line. The longer each stub, the more
reflection/distortion it will cause on the backplane.
These reflections are limited by placing the driver/
receiver directly adjacent to the board/backplane
connector. The signal route from the connector to
the driverlreceiver pair should be kept to no more
than two centimeters in length.

Differential Bus

A single-ended bus of this type may be reliably used
when the system noise is understood and within the
margins of a single-ended EeL connection. For sys­
tems with more loads, more noise present, or those
that may be exposed to large external noise sources,
the bus may be implemented in a differential form.
This is not a true balanced transmission line because
two separate transmission lines are used; i.e., they
do not share a common electromagnetic field.

In the single-ended bus implementation, bus access
is controlled using the HOTLink Transmitter FOTO
pin. The FOTO pin was designed to disable the light
output of optical modules by driving a differential
logic-O (OUT+=LOW, OUT-=HIGH) when the
FOTO input is HIGH. Because the OUT- pin is
still sourcing current when FOTO is HIGH, access
for a differential bus must be controlled externally.
This requires the addition of an external EeL multi­
plexer or differential driver with output disable ca­
pability, as shown in Figure 22. This driver operates
by effectively disabling both sides of the differential
driver from a single control input.

The biggest problem in implementing such a struc­
ture is that true differential EeL multiplexers are
rare, and those capable of disabling both outputs are
fewer still. This function may be created from sepa­
rate gates (requires two EeL gates for each differ­
ential driver present). Being separate gates, these
drivers also do not maintain the close current bal­
ance normally present in a true differential driver.

6-276

• ~ Driving Copper Cables with HOTLink
~ CYPRESS ==============

Vee 270

100Q Transmission Lines

GND GND
Figure 22. Differential, Multi-Source Bus

To keep delays and currents as matched as possible
both gates should be in the same physical package.

These ECL parts are operated in PECL mode; i.e.,
they use the same Vee and ground as the HOTLink
Transmitter and Receiver. Unlike the HOTLink
Receiver AlB select pin (an ECL input), which may
be controlled from a TTL environment using only
two external resistors, these external ECL parts
must use a three resistor divider. The third resistor
is necessary to limit the VIR of the ECL input to no
more than Vee - 0.6Y.

Some care must be exercised when selecting these
external ECL parts. Because of the switching
speeds present on the serial interface (>150 MHz)
these parts must be lOOK ECL or faster. In addition,
because the connections between the HOTLink
transmitter and these parts are effectively single­
ended connections, the external ECL gates must
also be temperature compensated to maintain noise
margins.

One final concern deals with drive current. Unlike
the HOTLink 1tansmitter, which can drive 25g
loads, most ECL drivers can only handle 50g loads.
If the backplane transmission line impedance is less
than 100Q special bus drivers (e.g., FlO0123) or

drivers with multiple outputs (e.g., FI00313 with
outputs tied in parallel) must be used to provide the
necessary current. If these parts have differential
outputs, the unused (complement) outputs should
be attached to bias networks to provide a similar
load as that seen by the used (true) output of the
driver.

Capacitive Coupling

Capacitive coupling may be used for those connec­
tions where some reference difference may exist be­
tween the source (transmitter) and destination (re­
ceiver). This difference may be planned (e.g., true
ECL communicating with PECL), or merely antici­
pated (e.g., possible ground or Vee differences). In
both of these cases the capacitor is used to block the
DC signal component while allowing the AC com­
ponents to propagate to the receiver.

This capacitively coupled interface is not recom­
mended for cabling systems that leave a cabinet or
extend for more than a few meters. This is primarily
due to

• Limited voltage breakdown of the coupling
capacitors under ESD situations

• ESD susceptibility of the receiver due to transients
induced in the cable

6-277

- ~:::4:
, CYPRESS ========;;;;;D;;;;;r;;;;;iv;;;;;iD;;;;;g;;;;;C;;;;;o;;;;;p;;;;;p;;;;;er=C;;;;;ab;;;;;l;;;;;es;;;;;Wl='t;;;;;h;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;Dk=

• Limited common-mode rejection at the receiver
end

In a capacitive-coupled system, such as that shown
in Figure 23, a bias network is still necessary at the
driver to allow the output to switch. The preferred
location for the DC-block capacitors is adjacent to
the transmitter, immediately after the output bias
network. This location is necessary due to the reac­
tive nature of capacitors.

At the receiver end of the transmission line, the line
must be terminated in its characteristic impedance.
This is implemented using the two 50Q resistors in
Figure 23.

In addition to terminating the transmission line, the
receive end must perform a DC restoration to place
the received signals within the normal operating
range of the HOTLink PECL receiver. This is done
using a voltage-divider network.

In this configuration, the receiver reference point is
set slightly different from that of a standard ECL
receiver. Part of this is due to the HOTLink
Receiver being designed for· operation at + 5V
rather than -5.2V or -4.5V. The other is that the
HOTLink Receiver has a wider common-mode
range than standard lOOK ECL parts. To allow
operation over the widest range of signal conditions
the external bias network on the receive end of the
transmission line is set to the center of the HOT­
Link Receiver 3V common-mode range at
Vee - 1.5V.

While it is possible to bias and terminate the differ­
ential inputs with two Thevenin networks, this
should not be done. The tolerance differences, even
using 1 % resistors, are enough to introduce offsets

CY7B923 82

aUTA+~~~~~~~~~~~~ aUTA-1'"'"
130

Figure 23. Capacitive-Coupled, Copper Interface

of > 50 m V between the inputs. This offset will low­
er the system noise margin and increase the duty
cycle distortion (DCD) jitter in the link. The bypass
cap is used to keep the bias point stable by supplying
current during any minor transients.

The transmission line in Figure 23 is shown as two
50Q unbalanced transmission lines. If the intercon­
nect is implemented using microstrip, stripline, or
coaxial cables, this is the type of connection that ac­
tually exists. In this dual-unbalanced connection,
the same equal-length restrictions of direct-coupled
interfaces still exist.

By replacing the two unbalanced transmission lines
with a single balanced transmission line (unshielded
twisted-pair, shielded twisted-pair, or twinax), it is
possible to remove most of the equal-length concern
of the conductors in the transmission line. In this
configuration, the transmitter and receiver circuits
remain the same, but the mode of propagation is
now balanced (i.e., conductor-to-conductor, ground
path not required).

A capacitively-coupled link may also be operated
using a single piece of coaxial cable, but only with
single-ended drive and reception. This requires giv­
ing up half of the received signal amplitude (only
one driver is used), and connecting the INA - re­
ceiver input directly to the reference voltage.

DC-Block Capacitor

While the desired affect of a DC-block capacitor is
to block all DC and pass all AC signal components
(without loss), real life components don't operate in
this fashion. Instead, a real capacitor blocks most of
the DC, and passes frequency selective amounts of
the AC signal components.

An equivalent model of a real capacitor is shown in
Figure 24. In addition to the pure capacitance C, a
number of parasitic resistive and inductive elements

c
Rs L

Rp

Figure 24. Capacitor Equivalent Model

6-278

~

~~YPRESS~~~~~~~~~D~r~iV~in~g~C~O~p~p=e~r~C~a~bl~e~SW~it~h~H~O~T~L~i=n~k

are also present. These parasitic elements deter­
mine the amount of leakage current, the ESR
(equivalent series resistance), and where (in terms
of frequency) the capacitor stops acting like a capac­
itor, and starts acting like an inductor. This fre­
quency point is called the series-resonant frequency
of the capacitor.

The very small amount of DC current passed
through a capacitor is called leakage current. For
most designs this leakage is so small that it will be
undetectable relative to the AC signal components.
The amount of AC signal passed varies with fre­
quency, and is limited on the low end of the fre­
quency spectrum by capacitance, and on the high
end by parasitic inductance. This gives a capacitor
a passband characteristic.

The amount of AC signal that is passed is controlled
by the reactive characteristics of the capacitor, rela­
tive to that of the attached transmission line. For
those frequencies below the series-resonant fre­
quency of the capacitor, the reactance can be calcu­
lated using Equation 10. To allow efficient signal
transfer, the Xc should be kept below lQ for the fre­
quencies of interest.

_ 1
Xc - 'brfC Eq.lO

Because the reactance of a capacitor varies greatly
with frequency, placement of such a component be­
tween the receive end of the transmission line and
its termination network is not recommended. This
is due to the reflections that would be caused by not
terminating the transmission line in its characteris­
tic impedance at all frequencies.

Placing such a capacitor directly adjacent to the
driver removes much of this reflection problem.
The reflections will still occur, however, they are ab­
sorbed as part of the rise and fall times of the source
signal.

Good low-loss, RF-grade capacitors should be used
for this application. These parts are available in
many different case types and voltage ratings. The
capacitors used must be able to withstand not just
the voltage ofthe signals sent, but any DC difference
between the transmitter and receiver and the maxi­
mum ESD expected. A typical 1000-pF SO-WY

COG/NPO capacitor would be available in an 0805
surface mount case size (0.08"L x O.OS"W x 0.02''H).
For on-board applications a SO-WY rating should be
sufficient. While capacitors with much higher break­
down voltages are available, both cost and space
make their use prohibitive. This same 1000-pF COG
capacitor at S-kV breakdown is almost a half cubic
inch in size (Reference 7).

Thansformer Coupling

Transformer coupling is the preferred method for
attachment to copper cables that extend for more
than a few meters, or are operated between enclo­
sures. Transformers have multiple advantages in
copper-based interfaces. They provide:

• High primary-to-secondary isolation

• Common-mode cancelation

• Balanced-to-unbalanced conversion

The transformer is similar to a capacitor in that it also
has passband characteristics, limiting both low and
high frequency operation. Proper selection of a cou­
pling transformer allows passing of the frequencies
necessary for HOTLink serial communications.

The configuration shown in Figure 25 uses only a
single transformer, and either lS0Q twinax or
twisted pair as the transmission line. This can be done
because the transmission system remains balanced
end-to-end. Here the primary functions of the
transformer are to provide isolation and common­
mode cancelation.

In a single transformer configuration the transform­
er should be placed at the source end of the cable.
Unlike the HOTLink differential receiver, which
has a full 3V common mode range, an ECL output

CY78923 Zo=150 CY78933

r-;l~~D=====1~ INA+ OUTA+ "'--h-' E INA-
OUTA- .-

270

Figure 25. 1hmsformer-Coupled, Copper Interface

6-279

.-~ Driving Copper Cables with HOTLink
, CYPRESS ==============

(when sourcing a zero or LOW-level) will respond
to high-going signals picked up on the transmission
line. If a shield is present, it should be grounded at
one or both ends to an earth or chassis (not signal)
ground.

The transmitter shunt-bias network shown in Fig­
ure 25 was selected to provide the maximum signal
amplitude into the transmission line, rather than the
most symmetrical edges. This configuration gives
the highest signal-to-noise ratio at the receiver, but
has different slopes of the rise and fall times at the
transmitter.

These asymmetric rise and fall times do not add to
the system jitter. Instead, the true and complement
outputs combine in the transformer to provide a
single signal with symmetrical rise and fall times.
This insures matched transmission line currents for
balanced transmission lines. This bias arrangement
also the has the advantage of delivering the entire
transmitter output signal swing into the trans­
former, rather than part into the transformer and
part into the bias network. In a standard Th6venin
bias or bias to Vn; the source signal amplitude di­
vides across the load (transformer) and the bias net­
work, causing a significant amplitude loss.

This transformer-coupled configuration has many
similarities to the capacitively coupled interface. It
still provides DC isolation between the HOTLink
Transmitter and Receiver, and requires the VBB

bias (DC-restoration) and termination network at
the receiver.

In Figure 26 a second transformer is added to the
transmission system at the destination end of the
cable. This configuration allows use of either bal-

CY7B923 20=75 CY7B933

OUTA+ ~r-;:::;;;::;:t:::;:;;IINA+
OUTA-I'---+"T"'1t.....i, P INA-

200 ~
0.011tF

Figure 26. Dual 'fransformer-Coupled,
Copper Interface

anced or unbalanced (coaxial) transmission lines.
The configuration shown here is a 750 coaxial cable
system. Here, the first transformer is used for
balanced-to-unbalanced conversion, while the second
transformer provides unbalanced-to-balanced con­
version. With transformers at both ends of the
cable, much larger amounts of common-mode noise
may also be handled.

The size of the transmitter bias resistors are reduced
here to handle the larger current requirements of
the load. When driving a common load from a dif­
ferential source, each driver sees a load impedance
of half the actual load present. With a 7S0 cable
present each driver sees a 3750 load.

Quantitative Interface Comparison

The transformer-coupled interface is the only one
recommended for all cable lengths and types. This
configuration operates equally as well with very
short «1 meter) lengths as it does with tens or
hundreds of meters. Numerous configurations of
transformer coupling and biasing were evaluated to
determine both how to best configure a HOTLink­
to-transformer interface, and to find out how cable
impedance affects these configurations.

Test Equipment

The following equipment was used for the different
evaluations:

• HPS4100D 1-GHz Bandwidth Digital Sampling
Scope

• HP8091A Rate Generator

• HP10240B DC Blocking Capacitor

• HPS4002A SOO Pods

• Philips PM8919/09 SOOO 10:1 Probes (15-GHz
Bandwidth)

• Pulse Engineering 1tansformers

• Cypress CY9266-C HOTLink Evaluation
Boards

The primary goals of this testing were to determine
how ECL operates when driving transformers, and
what cable/coupling methods provide the best signal
characteristics.

6-280

~

~~YPRESS================~D~r~iV~in~g~C~O~p~p~er==C~ab~l~eS~m=='th==H~O~T~L~i~n~k

Vec

CY7B923

FOTO
OUTA+~------+-~~
OUTA-~------+-~

OUTB+ I--------~
OUTB-~----+

OUTC+~------,
OUTC-

To Receiver INB+ ~----~

Figure 27. Baseline Test Configuration

82

130

To get a good baseline for the following measure­
ments, a HOTLink CY7B923 Transmitter was con­
nected as shown in Figure 27. Measurements were
made at the OUTB+ pin of the transmitter with the
CY7B923 receiving a 25-MHz TTL clock. This
clock is up-multiplied by ten inside the HOTLink
Transmitter to generate a serial bit-time of 4 ns.

The baseline waveforms for this configuration are
shown in Figure 28. The top trace shows the TTL­
level clock into pin 21 of the transmitter, while the
lower trace shows the PECL-Ievel signal on pin 28.
Both enable signals on the transmitter (ENN and
ENA) are disabled, causing the part to generate a
continuous stream of alternating disparity K28.5s.
This pattern is good for evaluating serial links be­
cause it contains the four combinations of Is and Os
necessary to test the characteristics of an 8B/lOB
code.

At this resolution it is difficult to see any real detail
other than amplitude and period. To see the critical
edge jitter it is necessary to zoom in on the rising and
falling edges of the data. This is shown in Figure 29.

1- '-

r-

fY" ~

filii Vt. ~
Ch. 1 = 2.000 V/div
Ch.2 = 200.0 mV/div
Timebase = 10.0 ns/div

'"

--

,~

""

.-...

r-. ",-

~

Offset = 2.400V
Offset = O.OOOV

Figure 28. Baseline Clock and Data

Here the scope sweep rate has been increased by a
factor of 100, going from 10 ns/division to 100 psi
division. The data crossover at the center of the fig­
ure is approximately 100 ps wide.

Ch.2 = 100.0 mV/div Timebase = 100 ps/div

Figure 29. Baseline Jitter

6-281

~

~~ -=;:;stIr; CYPRESS ========D;;;;;n;;;;;·v;;;;;i;;;;;ng=C;;;;;op;;;;;p;;;;;e;;;;;r;;;;;C;;;;;a;;;;;bl;;;;;es;;;;;Wl=·th=H;;;;;O;;;;;T;;;;;L;;;;;in;;;;;k=

This 100 ps should not be assumed to be the output
jitter of the HOTLink Transmitter (it is substaIltially
less than this). It does not take into account the trig­
ger accuracy of the scope, any jitter present in the
trigger waveform, or any power. supply ripple that
the scope may view as additional jitter. However,
since all the following measurements are taken with
the same set-up and under similar trigger accuracy
conditions, this value can be used to provide relative
comparisons of different types of media and coupling.

Test Set-Up

The test set-up is shown in Figure 30. Low-impedance
(500Q) probes were used for all the high-frequency
measurements. These probes, when combined with
the scope amplifier, provide a measurement band­
width of approximately 900 MHz. The probe im­
pedance was factored into the bias and termination
networks (where possible) to maintain the desired
impedances.

All probe connections were made using shielded
probe-tip adapters to eliminate any measurement
errors caused by probe ground-lead length.

I
All cable tests were performed using a single
30A-meter segment (100 feet) of the specified
cable. For those tests performed with a cable length
of zero, the same test set-up as that shown in Fig­
ure 30 was used, except that the termination resis­
tor was placed directly on the output (secondary) of
the coupling transformer.

HP54100D

DDDDDDD

DOOD DD
DOOD 0 DODD
DOOD

o D

Figure 30. Test Set-Up

Test Configurations

The following test configurations were selected to
determine how best to couple to coaxial media using
transformers. Additional tests were added to either
prove or disprove specific assumptions made in
early ANSI Fibre Channel documents about how to
couple using transformers. The selected configura­
tions were:

• Thevenin bias, direct-coupled to transformer

• Thevenin bias, AC-coupled to transformer

• Transformer core saturation test

• Shunt bias, direct-coupled to transformer

• Shunt bias, high-frequency AC-coupled to
transformer

• Single output, Thevenin bias, direct-coupled

• Single output, Thevenin bias, high-frequency AC
bypass

• Single output, Thevenin bias, low-frequency AC
bypass

• Dual transformers

These different configurations (where applicable)
were tested with three different impedance coaxial
cables:

• 50Q-RG58 (Belden 8219)

• 75Q-RG59 (Belden 9259)

• 93Q-RG62 (Belden 9269)

These specific cables were chosen because they pro­
vide the three primary cable impedances in a similar
category of cable; i.e., they are all made with similar
diameters and dielectric materials. This allows a
better comparison to be made of the affect of cable
impedance on jitter and attenuation.

Thevenin Bias, Direct Coupled

The equivalent circuit for a Thevenin Bias differen­
tial driver, directly coupled to a transformer, is
shown in Figure 31. At first glance this may appear
to be the best way to couple a cable through a trans­
former. The bias voltage here is set by the pull-up/
pull-down resistor ratio.

6-282

Scope
Probe

~llqIR'f
VEE (GNO)

Figure 31. Thevenin Bias, Direct-Coupled

Figure 32 shows the output of one driver on the top
trace, and the output of the transformer secondary
(when connected to a SOQ resistive load) on the bot­
tom trace. The primary observation to be made
here is that the transformer secondary amplitude is
almost equal to that of a single ECL driver. Since
two drivers are actually present (differential drive),
half of the signal is being lost somewhere.

Figure 33 shows the results when the load on the
transformer was changed from SOQ to 7SQ. Here
the driver amplitude remains the same, while the
secondary amplitude increases by approxi­
mately SO%.

Figure 34 shows the results with a 93Q resistive load.
Now only a small improvement in output amplitude

1""\ 'r
1'-~

~ 1\\ /
\
~ j

Ch. 1 = 400.0 mV/div
Ch.2 = 400.0 mV/div

-

r

Ir

'-/ 1'-

\ I
Ii"" \

\ / \,
I'...

Timebase = 2.00 ns/div

Figure 32. Thevenin Bias, Direct-Coupled,
No Cable, SOQ Load

Driving Copper Cables with HOTLink

r"'\ ,-
1\, .",..J

",-

\ I
\ /
"-

Ch. 1 = 400.0 mV/dlv
Ch.2 = 400.0 mV/div

.,,-

Ir
\...-J I'\.-

l/-~

\ I),
\

'\ / \
......... 1'

Tlmebase = 2.00 ns/dlv

Figure 33. Thevenin Bias, Direct-Coupled,
No Cable, 7SQ Load

is seen, while the driver output becomes much
closer to a square wave.

The reason for these changes in output voltage with
the different loads can be seen in Figure 35. Here the
Tbevenin bias network is converted into a resistor to
specific bias voltage. Under DC conditions, the im­
pedance of the transformer primary approaches
zero, while under AC conditions the impedance of
the primary reflects that present on the secondary.

1 ,r
I~, -

..--~

\ /
\ /
I'-~

Ch.1 = 400.0 mV/dlv
Ch.2 = 400.0 mV/div

If ~-,
\. -I 1'--

,...-\ V-r\
.\ 1 \,

\
\ i \

...........

Tlmebase = 2.00 ns/dlv

Figure 34. Thevenin Bias, Direct-Coupled,
No Cable, 93Q Load

6-283

ll~
50Q

-2V

Vrr

Figure 35. Thevenin Bias Equivalent Circuit

Placing a 50Q load on the transformer secondary is
equivalent to replacing the transformer primary
with a 50Q load. Because the Thevenin bias net­
work is effectively in series with the primary, a volt­
age divider is created. Since both drivers are switch­
ing, half the amplitude of both of them is delivered
to the load. With other load impedances, other di­
vider ratios exist. The net effect of this type of bias­
ing is that higher load impedances receive larger
amounts of the total source signal amplitude.

Thevenin Bias with Cables

Other affects can be seen when a terminated cable
is attached to the transformer secondary instead of
just a resistive load. Figure 36 again shows the driver

n f\, I

) ~ V

,.
fI. f\ ~J
~\ V V

Ch. 1 = 400.0 mV/div
Ch. 2 = 400.0 mV/div

,

-
\

1r (1 f
V V /

I fI f\ Ir
~ .J V ~ \

Timebase = 10.0 ns/div

Figure 36. Thevenin Bias, Direct-Coupled,
with 50Q Cable

Driving Copper Cables with HOTLink

signal on the top trace, and the signal present at the
end of 30.4 meters of RG58 cable (50Q) on the bot­
tom trace. To see the effect of the run length limit
of the 8B/lOB code, a different pattern was selected
that contains both long (5 zeros,S ones) and short
(single-bit) pulses.

At the end of the cable (shown on the lower trace)
the signal is quite different. Now the individual bit­
transitions no longer remain centered vertically
around the receiver threshold (center line of the
lower waveform). This is due to a small DC offset
built-up in the cable during the long-O and long-l
pulses. During these long pulses, the transmission
line has time to charge/discharge to near its maxi­
mum potential. During the shorter intervals, there
is not sufficient time to fully charge or discharge the
line. Under these conditions the transmission line
is considered a long time-constant line.

Because the dv/dt rate for all transitions is effec­
tively the same (regardless of the starting voltage),
while the voltage change necessary to reach the re­
ceiver threshold is not, these long and short pulses
are received shifted in time from nominal. This time
shift is viewed at the receiver as a form of jitter
called data-dependent jitter (DDJ).

As the length of the cable is increased, this differ­
ence in ending voltage between long and short tran­
sitions continues to increase. At some length of
cable this difference becomes so great that the short
transitions no longer cross the receiver threshold
and the link becomes unusable. DDJ is one of the
primary length-limiting factors of a copper-cable­
based link.

Figure 37 shows the same signal as the bottom trace
of Figure 36. The triggering and timebase have been
changed to allow viewing of the individual bits in an
overlay format called an "eye" pattern. The normal
viewing of eye patterns has the eye opening (marked
with the vertical arrow) in the center of the screen.
This is used to see how large this opening is relative
to a single bit time. The eye patterns shown in this
(and following) figure is slightly time shifted, to
allow central viewing of the signal crossing area.

Figure 37 shows that the maximum usable amplitude
of the eye is around 350 m V (marked with the vertical

6-284

~~ Driving Copper Cables with HOTLink
~'CYPRESS ===============

Ch. 2= 100.0 mV/div Timebase = 500 ps/div

Figure 37. Eye Diagram, Thevenin Bias,
Direct-Coupled, with 50Q Cable

arrows). The jitter per bit (marked by the horizontal
arrows) is around 1000 ps (25% of a single bit).

In Figure 38, this same configuration is tested using
a 75Q cable and termination. The signal amplitude
at the end of the cable (bottom trace) has increased
significantly from that of the 50Q system. Thken as
a percentage of the signal delivered to the destina­
tion, there is much less variation of peak signal am­
plitude from the short to long transitions.

Figure 39 shows the eye diagram for this 75Q system.
The usable amplitude here has increased to almost
600 m V; a 70% improvement over the 50Q system.
The amount of jitter present has also been substan­
tially reduced, going to 700 ps. This is about 17% of
a bit time.

Figures 40 and 41 show the source and destination
signals for a 93Q system. The signal at the end of the
cable has increased again up to 700 m V, while the jit­
ter has been reduced to 500 ps (12%).

By comparing these three systems in Table 4, certain
relationships become apparent. First, that as the

r "", J l r (
~ ~ l) .J l) I) ~

~

I A .fill lL1 ~1 1
I\J V \ I\, ~ V ~

t-J J--o

Ch.1 = 400.0 mV/div
Ch.2 = 400.0 mV/div

Timebase = 10.0 ns/div

Figure 38. Thevenin Bias, Direct-Coupled,
with 75Q Cable

cable impedance is increased, the signal amplitude
delivered to the load is also increased. This ampli­
tude increase also provides a better signal-to-noise
ratio (SNR) at the receiver.

Ch.2 = 100.0 mV/div Timebase = 500 ps/div

Figure 39. Eye Diagram, Thevenin Bias,
Direct-Coupled, with 75Q Cable

6-285

(l t1 11 " (,.
..J ~ ~ 1;11 u ""

'"
~ - -.

~ f ~ " I f

\ \. \ \ V \.
"""'" - ¥

Ch. 1 = 400.0 mV/div
Ch. 2 = 400.0 mV/div

Timebase = 10.0 ns/div

Figure 40. Thevenin Bias, Direct-Coupled,
with 93Q Cable

Ch.2 = 100.0 mV/div Timebase = 500 ps/div

Figure 41. Eye Diagram, Thevenin Bias,
Direct-Coupled, with 93Q Cable

Table 4. Cable Impedance Comparison

SOQ

Configuration Amplitude 1
Thevenin Bias, Direct-Coupled 350mV I

The second relationship is that as the impedance in­
creases, the amount of jitter in the system is re­
duced. The ANSI Fibre Channel standard allows
for links with up to 80% jitter at the receiver (Refer­
ence 8). While this standard only currently supports
75Q coaxial cables (and 150Q STP cables), these
measurements show that 30.4-meter segments of
50Q and 93Q cable would also satisfy the maximum
jitter specification.

Thevenin Bias, AC (Capacitive) Coupled

The equivalent circuit for a Thevenin bias differen­
tial driver, capacitively coupled to a transformer, is
shown in Figure 42. Just as with the direct coupled
system, the output bias voltage is set by the pull-upl
pull-down resistor ratio. The capacitors now insure
that there is no DC path through the transformer
that might cause a core saturation that could limit
both the bandwidth and energy transfer through the
transformer.

7SQ 93Q

Jitter Amplitude I Jitter Amplitude I Jitter

25% 600mV I 17% 700mV I 12%

The 1000-pF capacitors used here are RF-grade
NPO-type parts. The passband of these parts (in this
system) is such that they act like a high-pass filter.
This limited low-end bandwidth can be seen on the
long-O and long-1 pulses in Figure 43. This figure
shows the signal characteristics of all three imped­
ances with a resistive load shown on the left, and
30.4-m cable and load on the right.

VEE (GNO)

Figure 42. Thevenin Bias, AC-Coupled

6-286

==- .~ 7 CYPRESS ========;;;;;D;;;;;r;;;;;iVl;;;;;"D;;;;;g;;;;;C;;;;;o;;;;;p;;;;;p;;;;;er=C;;;;;ab;;;;;l;;;;;es;;;;;Wl="th=H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;D=k

With Resistive Load

A A I .. ./

I 'I 1'-

~ \1
~ I'"

" II I"

~~ \I "

" 1\ "

I---~ \I \J

Cil. 1 = 400.0 mV/div
Ch.2 = 400.0 mV/div
Ch.3 = 400.0 mV/div

....

r--.

.........

......... ..
""""'I 1\ I 1\

.-I

\: 1\1
."."",. ~

..... " "

~ ~)J I"

...... II fI

~ ~
\J IIJ

Timebase = 10.0 ns/div

93Q

With 30.4 Meter Cable

irl- -f ~ ""'\-

. - . ~--I-+-t -.~
~11 _'V._ _ ... _-- ---\

Ch. 1 = 400.0 mV/div
Ch.2 = 400.0 mV/div
Ch.3 = 400.0 mV/div

--

-i-'--I--I

-~ -

----f f\ f' If
1-+- -I ~ -. '+-+-1 I-~

--- -~- V ~

Timebase = 10.0 ns/div

Figure 43. Tbevenin Bias, AC-Coupled, with Resistive Load and Cable

On a direct-coupled connection (at the transformer
secondary), these long-l and long-O pulses switch to
their HIGH or LOW state and remain there. In this
AC-coupled configuration, these same pulses switch
to the same HIGH and LOW levels, but slowly lose
amplitude over the duration of the pulse. This am­
plitude loss is called droop.

This droop in many cases can improve the signal
characteristics at the load (receiver) end of the
cable. Comparing the top right column trace in Fig­
ure 43 with the bottom trace in Figure 36 shows that
the AC-coupled signal has a smaller peak amplitude
for the long-duration pulses. This translates directly
into a larger usable amplitude and smaller jitter
percentage.

The capacitors in this link perform a rudimentary
frequency-spectrum equalization. Because this equal-

ization is performed prior to the signal being placed
on the transmission line, it is called pre-compensation.
A similar spectrum correction, when applied at the
receiver end of the transmission line, is referred to
as post-compensation or equalization.

These same signals are shown as eye patterns in Fig­
ure 44. Table 5 compares the amplitude and jitter in
these AC-coupled waveforms with the previous di­
rect coupled configuration. The key observation
made here is that the AC-coupling in all cases im­
proves the amplitude anp jitter. This improvement
in all cases (with the specific coupling transformer
and biasing evaluated here) is due to the limited
bandwidth of the capacitor, not because there is no
DC-path through the transformer. This was con­
firmed by actually forcing controlled amounts of DC
through the transformer to determine where core
saturation occurs.

6-287

~~YPRESS~~~~~~~~D~r~i~~·~ng~c~op~p~e~r~c~a~bl~e~SID~·th~H~O~T~L~in~k=
Table 5. Driver Coupling Comparison

500

Configuration Amplitude

Thevenin Bias, Direct-Coupled 350mV

Thevenin Bias, AC-Coupled 400mV

Transformer Core Saturation Testing

Th validate that a small DC current flow (caused by
a possible small mismatch in the ECL driverlload
circuits) does not effect the signal coupled through
the transformer, a small modification was made to
the previous AC-coupled test set-up (see Figure 45).
This change involved the addition of two resistors
(labeled R in Figure 45), attached to the primary of
the transformer, to force a DC current through the
primary. All tests were performed with a 50Q resis­
tive load on the transformer secondary.

To better see the effect, the data pattern was
changed to use maximum run-lengths of six bits.
While this is beyond the limits of the 8BlOB code, it
serves to put the interface under greater stress.

The results ofthese tests are shown in Figure 46. The
top trace shows the transformer secondary output
with 13 rnA of DC in the primary. The middle trace
shows the same circuit with 30 mA of DC in the pri­
mary. The bottom trace shows 50 rnA of DC in the
primary. Notice that the secondary waveform starts
to change around 30 rnA, and is quite distorted at
50 rnA. This means that the transformer core starts
to saturate with around 30 rnA of DC in the primary.

A normally biased and loaded ECL output can nev­
er have this much of a DC imbalance. This means
that unless some type of pre-compensation is de­
sired, there should be no need to AC-couple to the
transformer primary.

Shunt Bias, Direct-Coupled

A shunt bias, where a single resistor is attached from
each PECL output to VEE (ground), is normally
used only for digital logic applications. This is due

750 930

Jitter Amplitude Jitter Amplitude Jitter

25% 600mV 17% 700mV 12%

20% 650mV 15% 750mV 11%

to the slightly different rise and fall times generated
as the outputs switch. When used to drive a wide­
band transformer, as shown in Figure 47, this bias
method has some distinct advantages.

First, it only requires a single resistor per driver, un­
like the Thevenin bias which requires two resistors
and a bypass capacitor. Second, and probably more
important, this configuration allows much more of
the ECL driver's signal swing to be seen on the
transformer secondary.

The signal transmission characteristics of this type
of coupling are shown in Figure 48. This details the
eye patterns for all three cable impedances. Unlike
the previous eye diagrams, which could be displayed
at a 100 mV/div scale, these signals are now shown
at 200 mV/div.

Because these signals are all direct coupled, the jit­
ter measurements are back around where they were
with the direct-coupled Thevenin bias setup. The
received signal amplitude however has increased
around 100 m V over that of a Thevenin bias. Tbis
shows that the system jitter is independent of the sig­
nal drive level.

Shunt Bias, AC-Coupled

By combining the improved amplitude of a shunt­
bias coupling with the limited frequency response of
a capacitively coupled system, it is possible to
squeeze out a slightly better signal.

The circuit for this configuration is shown in Fig­
ure 49. Here the capacitors again serve to block
some of the lower frequency spectral components,
which are not as severely attenuated by the trans­
mission line.

6-288

~ ~YPRESS~~~~~~~~D;ri;~;'n~g;C;O~pp~e;r;C;a;bl;e~Sm~';th;;H~O~T;L;in;k~

Timebase = 500 ps/div

Figure 44. Eye Diagrams, Thevenin Bias,
AC-Coupled, with Cable

6-289

Vee

VEE (GND)

Figure 45. Transformer Core Saturation
Test Fixture

II II ~ 1\

f\ If \ ~ 1\ 1 \
-~\ \J \ ~.-1 V

- -
13mA Primary Current

r\ 1\ f
.... ~ '\ f\

..-J V \J ,) ~ -- ~

30mA Primary Current

ift ft '"
\I r '-.. ~ I f

./ ~ V \] ~
I.J \

1-

SOmA Primary Current

Figure 46. Transformer Core Saturation Test

VEE (GND)

Figure 47. Shunt Bias, Direct-Coupled

The signal transmission characteristics of this type
of coupling are shown in Figure 50. This figure de­
tails the eye patterns for all three cable impedances.
These eye diagrams are again displayed at
200 mV/div.

The received signal amplitude in this shunt bias,
AC-coupled configuration continues to operate as a
function of cable impedance. As the cable imped­
ance is increased, the received signal amplitude
grows larger, and with less jitter.

The effect of the coupling capacitor on the circuit is
more prominent on the lower impedance cables.
On the 93Q cable, the jitter improving effect (with
this short length of cable) is basically non-existent.
With longer cables it is expected that this will have
a much larger effect.

A quantitative comparison of all four configurations
is shown in Table 6.

Single Transformer Configurations

All of the previous coupling circuits were based on
a differential driver working into a common load.
These configurations allow the amplitude swing of
both drivers to be presented to the load. While this
is expected to be the primary coupling mode for cop­
per interconnect, it is also possible to drive these
same connections through a single driver.

6-290

200.0 mV/div Timebase = 500 ps/div

200.0 mV/div Timebase = 500 ps/div

200.0 mV/div Timebase = 500 ps/div

Figure 48. Eye Diagrams, Shunt-Bias,
Direct-Coupled, with Cable

Table 6. Shunt vs. Thevenin Bias Comparison

500

Configuration Amplitude

Thevenin Bias, Direct-Coupled 350mV

Thevenin Bias, AC-Coupled 400mV

Shunt Bias, Direct-Coupled 400mV

Shunt Bias, AC-Coupled 500mV

VEE (GND)

Figure 49. Shunt Bias, AC-Coupled

Single Driver, Direct-Coupled

A Thevenin-biased direct-coupled configuration is
shown in Figure 51. When coupled in this mode it is
possible to double the number of connections driven
from a single source, at the expense of approxi­
mately 6 dB of amplitude on the cable.

This loss of amplitude will have minimal affect on
how far a signal can be driven on a copper cable.
Copper-based links for the most part are limited by
jitter accumulation rather than attenuation. The
amplitude loss may effect the bit-error-rate for the
link due to the reduced noise margins.

Figure 52 shows the signal characteristics for this
configuration when driving a 50Q resistive load.
Here the top trace shows the output of the driver
while the bottom trace is at the transformer second­
ary. While the traces may look similar, the bottom
trace is shown at a different vertical resolution. In
effect only half of the driven signal is appearing at
the load. This is again due to the voltage divider that
exists between the transformer and the Thevenin
bias network

750 930

Jitter Amplitude Jitter Amplitude Jitter

25% 600mV 17% 700mV 12%

20% 650mV 15% 750mV 11%

25% 700mV 16% 800mV 11%

17% 800mV 15% 850mV 12%

Comparing the top trace in this figure with the same
trace in Figure 36 shows that the low side distortion
is now gone. The pulses also are much more
squared-off in this single driver configuration.

Single Driver, Direct-Coupled, AC Bypass

With the Thevenin bias network, both AC and DC
signal components are dissipated in the network. By
capacitively shunting the Thevenin network, it is
possible to drop the DC signal component across
the bias network, and drop the AC component
across the transformer's primary. This configura­
tion is shown in Figure 53.

The added capacitor will effectively double the sig­
nal delivered to the load. Because of the size of ca­
pacitor selected here, there will be some limiting of
the low-frequency signal components. These affects
are shown in Figure 54.

The capacitor again provides a small amount of pre­
compensation to the circuit. This configuration
tends to increase the source end jitter, while de­
creasing the jitter at the end of the cable.

Replacing the 1000-pF capacitor with a 0.027-ftF part
significantly changes the AC passband characteristics
ofthe coupling network, as shown in Figure 55. Now
the low-frequency signal components that were
blocked by the smalllOOO-pF capacitor are allowed
to couple through the transformer. This configura­
tion will provide minimal jitter at the transformer
secondary, but will have more at the end of the cable
than the high-frequency bypass configuration.

Dual 'fransformers

In the previous differential coupling configurations
where a single transformer was driven at both ends,

6-291

-.-:-X Driving Copper Cables with HOTLink
~rcYPRESS ================

50Q 1--1--+--+-:.

200.0 mV/div Timebase = 500 ps/div

75Q I--t<--t--t-..-t-

200.0 mV/div Timebase = 500 ps/div

200.0 mV/div Timebase = 500 ps/div

Figure 50. Eye Diagrams, Shunt Bias,
AC-Coupled, with Cable

Vee

82

Ilq
VEE (GND)

Figure 51. Single Driver, Thevenin Bias

the possibility existed of one driver having an effect on
the other. To see if any such affect was present, tests
were performed that used separate transformer pri­
maries to drive a common load.

Based on the excellent waveform results achieved
from a single driver/transformer configuration, the
configuration in Figure 53 (with the larger 0.27-IlF
capacitor) was duplicated on the complement output
of the differential driver. With each of these circuits
operated into separate 500 resistive loads, the wave­
forms remain the same as those shown in Figure 55.

When connecting the secondaries of these two
transformers in series (as shown in Figure 56), re-

6-292

IN IA.I I ...

f\

'- \i

Ch. 1 = 400.0 mV/div
Ch.2 = 200.0 mV/div

1""'1

Ifo,

r f\ f'1

\J ~ "
Timebase = 10.0 ns/div

Figure 52. Single Driver, Direct-Coupled,
500 Resistive Load

-~ Driving Copper Cables with HOTLink
~ CYPRESS ================

Figure 53. Single Driver, Direct-Coupled,
High-Frequency Bypass

member that the polarity of the signals of the trans­
former attached to the complimentary driver are
1800 out of phase with those of the true driver. This
allows their signal amplitudes to add. Figure 57
shows the net result of this circuit. Note the LOW­
level distortion present.

The major changes that have occurred in the circuit
are the amount of inductance present in the trans­
former(s) and the current run through them. With
a single driver switching 800 m V into a 500 load,
16 rnA of current are present. Doubling the output

, fI" f"I ",..

~ ,... ~

~ t-w. r ~ ~ J 11

~ \ 1\1 ~ ~ \
Ch.1 = 400.0 mV/div Timebase = 10.0 ns/div
Ch.2 = 200.0 mV/div

Figure 54. Single Driver, Direct-Coupled,
High-Frequency Bypass, 500 Resistive Load

6-293

".

~ ~

;

\ " \..
Ch. 1 = 400.0 mV/div
Ch. 2 = 200.0 mV/div

,.,. 1"'1 ~

v.. r-

"... ~ ,
\ 1'0

Timebase = 10.0 ns/div

Figure 55. Single Driver, Direct-Coupled,
Low-Frequency Bypass, 500 Resistive Load

VEE
(GND)

VEE (GND)

Figure 56. Dual Transformer,
Series Secondaries

i: ~ Driving Copper Cables with HOTLink
,CYPRESS ==============

~ ,... ~ ~ I'P fi'"

~

~ LJ(~ j.II ~

r-- V

r-

1/1 I f' II

\1 \ \ \/ II \ , I"

Ch.1 = 400.0 mV/div
Ch.2 = 400.0 mV/div

Timebase = 10.0 ns/div

Figure 57. Dual Transformer, Series
Secondaries, 50Q Resistive Load

swing into the same SOQ load by using both drivers,
also doubles the current.

In these dual-driver configurations each driver must
source twice as much current as a single driver con­
figuration. The reason for this can be seen in Fig­
ure 58. With a SOQ load on the secondary of a trans­
former, this same load is reflected on the primary.
With dual transformers, half of the load is present
on each transformer.

To confirm this, the single driver circuit in Figure 53
(with the larger O.27-fAF capacitor) was tested with a
2SQ resistive load. The results of that test are shown
in Figure 59. This shows that the single driver config­
uration also generates the zero-level offset when

Figure 58. Dual-Transformer
Equivalent Loading

50Q

I"" r"" """ I'"

'" ~ ." ~ ~

-- -"" r /

A ! ~

~l 1

Ch.1 = 400.0 mV/div Timebase = 10.0 ns/div
Ch.2 = 200.0 mV/div

Figure 59. Single Driver, Direct Coupled,
25Q Resistive Load

presented with a low-impedance load, but at half the
amplitude of a dual-transformer configuration.

This low side distortion is caused by the biasing net­
work being sized for too large of a load impedance.
An EeL driver sources current to set the HIGH or
i-level, while the bias network must sink sufficient
current to set the LOW or O-level.

The need to drive low-impedance loads places spe­
cific requirements on the current capability of the
drivers. To differentially drive a SOQ load (or trans­
mission line) each driver must be capable of driving
2SQ single-ended loads. The line-bias networks
must also be capable of sinking these large currents.
This drive capability is beyond that of most EeL
components, which are usually designed for only
SOQ loads. Only a few parts specifically identified
as line drivers are made for operation with 25Q
loads.

The HOTlink transmitter PEeL drivers are high­
current line drivers and are designed specifically for
driving 2SQ transmission lines. The use of standard
EeL outputs designed for only SOQ loads requires
the addition of series current-limiting resistors in
each primary leg of the transformer.

6-294

Long Cable Observations

When interfacing HOTLink to long cables

• Higher cable impedances exhibit lower losses
and less DDJ induced jitter.

• DC-block capacitors are not necessary but may
be used to provide some pre-compensation to
lower the destination jitter.

• Lower transformer inductance values provide
less distortion and better high-frequency band­
widths.

Conclusions

The HOTLink family of data communications parts
are designed to work optimally with either fiber-optic
or copper-based interconnect. When interfaced to
copper media, they may be interfaced to short, me­
dium, and long-distance connections using only low
cost passive components.

HOTLink is a trademark of Cypress Semiconductor.

Driving Copper Cables with HOTLink

References

1. Orr, William I., Radio Handbook, 23rd Edition,
SAMS,1992

2. Blood Jr., William R., MECL System Design
Handbook, Fourth Edition, 1988

3. Trompeter, Ed, Electronic Systems Wiring &
Cable, technical paper, Trompeter Electronics,
Inc.

4. The Radio Amateur's Handbook, 50th Edition,
ARRL,1973

5. Hess, David & Goldie, John, AN-916 A
Practical Guide to Cable Selection, National
Semiconductor/Berk-Tek, 1994

6. Fowler, Bill, Transmission Line Characteristics,
AN -108, National Semiconductor

7. 1990-91 Resistor/Capacitor Data Book, Philips
Components, 1990

8. Fibre Channel Draft Standard, DpANS
X3.230-1994, American National Standards
Institute, 1994

9. Compliance Engineering Reference Guide,
Compliance Engineering, 1994

6-295

HOTLink ™ Copper Interconnect­
Maximum Length vs. Frequency

Introduction

The most common question asked about any serial
interface is, "How long of a link can I have?" The
answer comes down to a mixture of transmission
line characteristics, and the jitter generation and
tolerance of the serial data transmitter and receiver.

While the jitter characteristics of both the CY7B923
and CY7B933 HOTLink TM 1tansmitter and Receiver
are very stable across frequency, temperature, and
voltage, such is not the case for copper cables. The
signal distortion introduced by these cables is very
non-linear with respect to distance and frequency.
In addition, there are large variations in these non­
linear characteristics based on the specific type of
cable selected.

Cable Testing

To determine just how these cable characteristics af­
fect data transmission, a number of tests were per­
formed to determine the maximum data-rate versus
distance characteristics of a number of common
cable types. These tests were performed using mul­
tiple CY9266-T and CY9266-C HOTLink Evalu­
ation Boards, and nine different types of copper
cable.

Equipment

The following equipment was used for the cable
evaluations:

• HP8116A pulse/function generator

• Three CY9266-C HOTLink Evaluation Boards
for testing coaxial cable

• Four CY9266-T HOTLink Evaluation Boards
for testing twisted-pair cable

• Multiple segments of each cable type, capable of
being combined to length multiples of 50 feet

The specific cable types evaluated are not meant to
be inclusive of all possible cable types that may be
used with HOTLink. Instead they were selected to
represent a relatively wide range of commonly avail­
able cable types that are often used for communica­
tions or networking. The cables evaluated are listed
in Table 1.

The electrical configuration used for the testing, be­
tween the HOTLink 1tansmitter and Receiver, is
shown in Figure 1. This figure is somewhat simpli­
fied from the actual circuit on the CY9266 boards,
but serves to illustrate the transmitter 8lld receiver
bias, coupling, and termination networks.

The only changes made to the CY9266 boards (to
accommodate the different cable types), was to
change the termination resistors to match the cable
impedance of the specific cable under test.

6-296

--:-x HOTLink-Maximum Length vs. Frequency
~rcYPRESS ================

HOTLink
Transmitter

Transmission Line
Under Test

Vee

VEE

DC Restoration
Network

HOTLink
Receiver

Figure 1. Cable Test Configuration

Table 1. Tested Cable 'fYpes

1Wisted pair

1Wisted pair

Test Procedure

The testing consisted of using the built-in self-test
(BIST) capability of the HOTLink 1fansmitter and
Receiver to determine where the link was usable
(error free) and where errors started to occur. An
external frequency source was applied to both the
transmitter and receiver and adjusted (both up and
down) in frequency while monitoring the BIST error
display for any link errors.

The criteria selected for an error-free link was that
no errors be detected for a period of 20 minutes at
a specific operating frequency and distance. This al­
lows a large number of bits to be sent and received,
and allows the HOTLink Transmitter and Receiver
to stabilize at an operating temperature.

It is understood that this period of time does not
guarantee an error-free link forever. Any link, no
matter how good, will still have some error rate
characteristic associated with it. However, observa­
tions of these copper based links (made in the pro­
cess of these tests) has shown that if a link runs error
free for this 20-minute period of time, it will remain
so for a much longer period (i.e., multiple days).

Test Results

RG58-50Q Coaxial Cable

The first system tested used the 50Q RG58 coaxial
cable. This cable is commonly used in the Ethernet
physical variant known as lOBASE2 or ThinNet.
The test results for this cable are plotted in Figure 2.

Of the three cards used in the testing, one used cou­
pling transformers that had approximately twice the
inductance of the other two. For this specific cable
type (and for all other coaxial cables tested with this
card) the maximum error free lengths at a specific
operating frequency were always shorter than the

6-297

oti?cYPRESS ======<;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;D;;;;;k=M;;;;;3;;;;;X;;;;;iID=U;;;;;ID;;;;;Le=D;;;;;g;;;;;th;;;;;v;;;;;s;;;;;. ;;;;;Fr;;;;;e;;;;;q;;;;;ue;;;;;D;;;;;CY=

55

50

45

N
J: 40
:::i:
.E

~
~
~ ~ 35 >-

0
upper datasheet : " limtt-330 Mbaud c:

Q) 30 :l \~"
0-

&: "', [\ ~ I
266 Mbaud -

25

20

~«<

lower datasheet ~ ~<
15 limit-160 Mbaud

10 I I
50 150 250 350 450 550

Cable Length in Feet
+ = low-inductance card 1
A = low-inductance card 2
x = high-inductance card <

Figure 2. RG58 Test Results,
Linear Frequency Scale

650

equivalent lengths on the cards with low inductance
transformers.

Two reasons exist for this difference in operational
length. First is based on the high-frequency band­
width of the transformers. The high-inductance
transformer (per the manufacturer's data) has a
high end - 3 dB bandwidth of around 250 MHz.
Around this frequency point in the transformer, sig­
nificant attenuation and phase shifts occur in the
transmitted signal. Since it is these upper frequen­
cies that provide a reasonable shape to the signal,
their attenuation and distortion in the transformer
causes less of these signal components to be avail­
able at the receiver.

The second effect is caused by the low-frequency
bandwidth of the transformer. The higher the trans­
former inductance, the better its low-frequency re­
sponse. Unfortunately it is the low-frequency con­
tent of the transmitted signal that induces most of
the data-dependent jitter (DDJ) in the serial link.

In Figure 2, the frequency scale shows the clock rate
delivered to the HOTLink Transmitter and Re­
ceiver. This clock rate.is the byte rate for the trans­
mitter and receiver. Because of the 8BlOB encoding

used to send serial information, the actual bit-rate
on the serial interfaces is ten times this rate (I.e.,
25 MHz=250 Mbits/second).

This figure shows that with an RG58-type cable
(having the same attenuation characteristics of the
cable tested here), that it is possible to reliably
transmit information at all distances ~200 feet
when operating at the maximum HOTLink data­
sheet limit of 330 Mbits/second (when using low­
inductance transformers). As the data-rate is re­
duced, the maximum operable length increases,
such that at the minimum datasheet limit of 160
Mbits/second, the link may be operated at all
lengths ~400 feet.

Note: These distances are all based on uncompen­
sated (non-equalized) links. By adding frequency­
selective filter components to either the source or
destination ends of the cable it is possible to greatly
extend the error-free link lengths. All test data pre­
sented in this application note is only for uncompen­
sated links.

RG59-75Q Coaxial Cable

RG59 is a 75Q coaxial cable manufactured in a similar
size and construction to RG58. The main difference
between them is the ratio of inner to outer diame­
ters that determine the characteristic impedance of
the cable. When tested to the same criteria as the
RG58 cable (as shown in Figure 3), numerous differ­
ences in operation become apparent.

The most obvious difference is that the operable
lengths have increased significantly: as much as 50%
at 330 Mbits/second and 37% at 160 Mbits/secdnd.
In addition there is now a flat portion at the top end
of the operating frequency range where changing
the cable length has no effect on the maximum data­
rate.

At this top-end frequency the interconnect system
still modifies or distorts the transmitted signal.
However, the amount of distortion is small enough
that a different factor is limiting the maximum oper­
able distance of the link. At this frequency, the
phase-locked loops (PLLs) in the transmitter and
receiver are up against their maximum operable
limit. Because the received signal characteristics re­
main withih the minimum acceptable limits of the

6-298

~rcYPRESS ======;;;;;H;;;;;O;;;;;T;;;;;L;;;;;iD;;;;;k=;;;;;M;;;;;3;;;;;X;;;;;im=um=L;;;;;e;;;;;D;;;;;gt;;;;;h;;;;;v;;;;;s;;;;;. Fr=e;;;;;qu;;;;;e;;;;;D;;;;;C=Y

N
J:
:E
.5
(;'
c:
Q)
::J
C"
~ u..

55

50
....w.. 1\

45

40

r-""""'I ~\

\.,
35 ~ ~

upper datasheet

"'"
limit-330 Mbaud

30

25

20

15

~ 266 Mbaud
'\. , ~

I--

I ~ ~
lower datasheet ,~ ~

~ limit-160 Mbaud

I I 10
50 150 250 350 450 550 650

Cable Length in Feet

+ = low-inductance card 1
A = low-inductance card 2
x = high-inductance card

Figure 3. RG59 Test Results,
Linear Frequency Scale

receiver through the 150-foot distance, the line
remains flat.

Beyond the 150-foot length the received signal is
distorted enough such that the operating frequency
must be reduced in order to bring the signal back to
where the receiver can accurately capture it.

By taking the same data in Figure 3 and plotting it on
a logarithmic frequency scale in Figure 4, another
characteristic becomes visible. Now the curves for
data-rate versus distance appear as a straight line.
This means that this is actually an exponential
function.

Other Cable 1YPes

Data-rate versus distance information was taken for
all the cable types listed in Table 1. By plotting a
composite chart of all these cable types, it is possible
to see how the different cable characteristics affect
the maximum operable length. This information is
shown in Figure 5.

RG62-93Q Coaxial Cable

RG62 is a 93Q version of RG59 cable. It is made by
removing some of the dielectric in the RG59 cable

40

30

20

upper datasheet
limit-330 Mbaud

266 Mbaud +-~FI'oIi~+--~--I

lower datasheet
limit-160 Mbaud

10L-~-L-L~ __ L-~-L~ __ L-~-L~

50 150 250 350 450 550 650

Cable Length in Feet

+ = low-inductance card 1
A = low-inductance card 2
x = high-inductance card

Figure 4. RG59 Test Results,
Log Frequency Scale

and replacing it with air, lowering the dielectric
constant. Since the cable impedance is based on the
dielectric constant of the spacer (in addition to the
dimensions of the conductors), lowering the dielec­
tric constant raises the impedance to 93Q

Comparing the operable length characteristics of this
cable with that of the RG58 and RG59 cables shows
that the higher impedance RG62 again improves the
maximum usable distance at all frequencies.

RG6-75Q Coaxial Cable

RG6 is a 75Q coaxial cable commonly used for
CATV applications. While this cable does have the
same impedance as the RG59 cable, its construction
is quite different, as are its data transmission char­
acteristics. This cable has larger inner and outer di­
ameters for the conductors used in the cable. While
the ratios of these diameters do maintain a 7SQ sys­
tem, the increased dimensions create larger surface
areas for the conductors and therefore lower losses.

When compared to the RG59 cable, RG6 allows op­
erable distances of nearly twice as far. At the low
end (160 Mbits/second) of the HOTLink operating
range, this approaches 1000 feet.

6-299

~ ~ HOTLink-Maximum Length vs. Frequency
~_"CYPRESS ================

50

40

r--jl~+~:foood~...;a,,~~h:-~~+-~IiIIIoor!I~-+-+-- upper datasheet limit-330 Mbaud
30 I I
r--+~R---~~~~--~~~~~~~--+--~~~-+--+---r--+266Mbaud

I I

10LJ~-L~~~~-L-L~~~-L-L~~~~-L~~~LJ-L-L~L-LJ~-L~~~~

o 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Cable Length in Feet

Figure 5. Maximum Data-Rate versus Distance Comparison

RG179 and Belden B2IB-75Q Coaxial Cable

The RG179 and Belden 8218 cables are also 75Q
types. These cables, however, are designed for dif­
ferent environments where signal loss is not the pri­
mary concern. The 8218 cable type is a miniature
form of RG59. With the smaller diameters (and
smaller surface area) its losses at all frequencies are
greater than those of RG59:

RG 179 is a cable designed both for tight spaces and
harsh environments. Its Teflon® jacket allows it to
be used where most cables cannot. If it was
manufactured using the same materials as RG59 or
8218 cable, its losses would be much higher than
they currently are. To limit the losses, the inner cop­
per conductor is plated with silver to improve the
skin-depth for high-frequency signals.

'l\visted-Pair Cables

The other family of cables supported by HOTLink
are known as twisted-pair cables. These cables were
tested with the CY9266-T HOTLink boards.

IBM 1Ype-I-I50Q Shielded Twisted-Pair Cable

The IBM Type-1 cable (STP1) consists of two indi­
vidually shielded twisted pairs in a single cable. The
cable itself was designed for token-ring network ap­
plications operating at 4 or 16 Mbits/second. These
network speeds are much less than those supported
by HOTLink. Due to the excellent signal generation
and handling characteristics of the HOTLink com­
ponents, this same cable is usable over even greater
distances at more than ten times its designed data
rate.

This cable has similar distance characteristics over
frequency to the RG59 coaxial cable. Because two
signal pairs are present in the same cable, a bidirec­
tionallink can be built using a single cable.

Note: Other coupling mechanisms exist that permit
bidirectional signal transmission on a single set of
conductors. The theory and implementation of
these specialized structures is beyond the scope of
this document.

Mechanically different forms of this cable exist with
slightly modified signal characteristics. These vari­
ants (Type-2, Type-6, etc.) add extra non-data con­
ductors or uses stranded-conductor construction to

6-300

HOTLink-Maximum Length vs. Frequency

improve flexibility. If the variant selected has simi­
lar attenuation characteristics to Type-1, it should
operate with a similar data-rate versus distance
curve.

UTP3 and UTP5-100Q Unshielded Twisted Pair

UTP3 and UTP5 are unshielded twisted-pair cables,
most commonly used for lOBASE-T Ethernet or
telephone installations. UTP3 (also known as cate­
gory 3) is rated for Ethernet use at 10 Mbits/second
at distances up to 100 meters (329 feet), while UTP5
is rated at 100 Mbits/second at the same distance.
In these unshielded cables (unlike STP1 or the coax­
ial cables), crosstalk becomes a significant link­
limiting factor.

Crosstalk occurs because of the close proximity of
the two signal pairs. With no shield to keep. their re­
spective signals separated, the cable itself becomes
both a long coupling transformer and coupling ca­
pacitor. This crosstalk combines with the attenua­
tion characteristic of the cable to distort the signals
on the cable.

These unshielded cables will work fine for short- to
medium-length interconnections when used with
HOTLink. However, the lack of a cable shield may

Timebase = 1.00 ns/div Ch.1 = 200,0 mV/div

Normal Signal

limit their use to environments where radiated
emissions are not a concern; i.e., inside a shielded
cabinet or other enclosure.

General Observations

• Lower inductance transformers allow greater
operating distance due to wider bandwidth.

• Higher impedance cables have lower losses and
allow greater operating distance.

• Larger diameter cables have less attenuation
and allow greater operating distance.

Eye Pattern Testing

While measurement of errors in a link does yield a
significant amount of information about link opera­
tion, it does not explain the actual failure mecha­
nism; i.e., why a signal is received in error. To do this
requires looking at the actual signal. The following
eye patterns and oscilloscope diagrams are used to
explain the signal failure mode. All measurements
are made with error free links based on RG59 cable.

Figure 6 shows the wide-open eye at the source end
of a link for both a normally driven and a source ter­
minated (series resistance added to the driver,

" ".
., .,. .. , , ~ ,

j ~ J~l; .I- .-
Timebase = 1.00 ns/div Ch. 1 = 200.0 mV/div

Source Terminated Signal

Figure 6. Error·Free, 173·Mbit/second Signal at the Driver End of a 550·Foot RG59 Cable

6-301

~

=-- ::z HOTLink-Maximum Length vs. Frequency
~VCYPRESS ===============

equal to the cable impedance) system. The eye has
minimal distortion in both systems, but the added
source resistance reduces the source signal ampli­
tude by 6 dB for the source terminated link. These
links both operate error free at 173 Mbits/second
with 550 feet of cable attached.

The same two systems are shown in Figure 7 at the
receiver end of 550 feet of cable. Things look a bit
different here. Now the eye is almost completely
closed. The width of the opening in both configura­
tions is approximately 500 ps. The only significant
difference between the two links is that the source
terminated signal has a smaller noise margin.

To view the effect on high data-rate signals, two new
links were configured at 363 Mbits/second with 300
feet of cable. At this data rate the bit-cell time is
approximately half that of the pervious configura­
tion. The source-signal eye diagrams for these sys­
tems are shown in Figure 8. Again, at the source end
of the cable the signals are clean. While the edges
appear to have somewhat slower ramp rates, this is
due to the change in sweep frequency for the oscillo­
scope from 1 ns/division to 500 ps/division.

Figure 9 shows the signals at the receiving end of the
300-foot cable. These signals look similar to the

Timebase = 1.00 ns/div Ch. 1 = 100.0 mV/div
Normal Signal

SSO-foot link. The overall amplitude is somewhat
larger, due to the lower attenuation of the shorter
cable, but the eye is still almost completely closed.
At this faster data rate, the minimum eye opening is
again approximately 500 ps.

The fact that the minimum eye opening of approxi­
mately 500 ps remains the same at both data-rates
is not just a coincidence. This number is based on
the jitter tolerance and static alignment characteris­
tics of the HOTLink receiver PLL and data-capture
circuits.

Linear Time View

The minimum-eye handling capability is a fixed
characteristic of the HOTLink receiver. Changing
the source-signal amplitude or data rate has no sig­
nificant effect on this characteristic. But this still
does not explain why the eye closes in the first place.
To see this, it is necessary to look at how individual
bits interact with each other.

To see bit interaction on an oscilloscope it is neces­
sary to change from a random data pattern (like the
BIST pattern that was used for the previous tests),
to a fixed pattern. To show the worst-case bit inter­
action it is also necessary to use a data pattern that
contains the maximum and minimum run-lengths of

Timebase = 1.00 ns/div Ch. 1 = 100.0 mV/div
Source Terminated Signal

Figure 7. Error-Free, 173-Mbitlsecond Signal at the Receiver End of a 550-Foot RG59 Cable

6-302

=- -, ~ HOTLink-Maximum Length vs. Frequency
~"CYPRESS ================

Timebase = 500 ps/div Ch. 1 = 200.0 mV/div Timebase = 500 ps/div Ch. 1 = 200.0 mV/div
Normal Signal Source Terminated Signal

Figure 8. Error-Free, 363-Mbitlsecond Signal at the Driver End of a 300-Foot RG59 Cable

1s and Os. Fortunately, a pattern meeting these
characteristics is automatically generated by the
HOTLink Transmitter when both ENA and ENN
are disabled. The character sent under these condi­
tions is known as a K28.5 code, which (following the

Timebase = 500 ps/div Ch.1 = 100.0 mV/div
Normal Signal

8BlOB disparity rules) generates a repeating 20-bit
pattern of 00111110101100000101.

This pattern, when viewed at the end of the cable
under the same data-rate and cable lengths of the

Timebase = 500 ps/div Ch.1 = 100.0 mV/div
Source Terminated Signal

Figure 9. Error-Free, 363-Mbitlsecond Signal at the Receiver End of a 300-Foot RG59 Cable

6-303

HOTLink-Maximum Length vs. Frequency

o 1 1 1 1 1 o 0 0 0 0 0 1 1 1 1 1 0 10110000010

1, ~ Jf-~
I ...-\, ~J

J\ / \..'

" I l\ I ~ I
.1 (~ ~\ 1 Ie)

~ /\1 \ t"A
1/t1~ (~
Ie v~ \ f\' ,

J l \ \
V \ J. \ ~ ~~ 111

~ ~ '-~)
Timebase = 10.0 ns/div Ch. 1 = 100.0 mV/div Timebase = 5.00 ns/div Ch.1 = 100.0 mV/div

173-Mbits/second @ 550 Feet 363-Mbits/second @ 300 Feet

Figure 10. Error-Free, K28.5 Character at Maximum Data Rate

previous two tests, is shown in Figure 10. The high­
lighted areas in each configuration show the bits
that interact to cause the eye to close. In both con­
figurations, two of these bits (at this worst-case data­
rate) barely cross the receiver threshold. The long
Is and Os immediately preceding them cause the sig­
nal to move the farthest from the receiver threshold.

The K28.5 character will always generate a signal
that looks approximately the same at the maximum
length limit of an uncompensated link. This is due
both to the physics of the transmission line, and to
the exceptional jitter tolerance of the HOTLink Re­
ceiver. The addition of an equalizer would level out
the transitions and keep them centered around the
receiver threshold.

General Observations

• Signal amplitude is not the length-limiting factor
for most links.

H01Link is a trademark of Cypress Semiconductor Corporation.

• The HOTLink Receiver's jitter sensitivity window
is approximately 500 ps in size.

• Equalization will allow much longer links.

HOTLink Receiver only requires 50 mV of
signal.

Equalization may allow link lengths of four
times that of a non-equalized link.

Conclusion

The CY7B922 and CY7B933 HOTLink data commu­
nications components can be used in communica­
tions links with almost any configuration of copper
media. In these links the frequency attenuation
characteristics of the copper media are the primary
length limiting factors for a link. The enhanced sen­
sitivity of the HOTLink receiver allows usage of
forms of signal equalization that allow operation
over much greater distances than non-equalized
links.

IBM is a registered trademark for International Business Machines, Inc.
Thflon is a registered trademark of DuPont.

6-304

Using HOTLink ™ with Long Copper Cables

Overview

The use of HOTLink'" data communications pro­
ducts to drive copper media is documented in a
Cypress application note titled "Driving Copper
Cables with HOTLink." Long transmission lines
(those that cannot be treated as lossless) present
additional design concerns. The special characteris­
tics and concerns of operation with long copper
cables are covered here in this application note.
This application note is also expected to be used in
conjunction with a companion document titled
"HOTLink Design Considerations."

Primary Topics

The primary topics covered in this application note
are

• Signal propagation

• Attenuation/Dispersion

• Equalization

Signal Propagation

Communication on short lengths of copper media
allow the transmission line to be treated as lossless;
i.e., a 1 V square wave driven at one end of the cable
comes out the other end with the same amplitude
and waveshape. This is based on the simple rela­
tionship for transmission line impedance listed in
Equation 1.

Eq.l

Real life transmission lines are not lossless. They
contain numerous parasitic elements that cause a
signal to distort as it propagates down the transmis­
sion line. When dealing with long cables, this equa­
tion must be modified to take into account the actual
parasitics present in the transmission line. This
places series-R and shunt-G components back in the
calculation as shown in Equation 2 (Reference 1).

R + jwL
G+jwC Zo =

Eq.2

Loss Factors

This equation gets us bit bit closer to reality, but it
assumes that the L, R, C, and G elements for a trans­
mission line remain constant over frequency. In
reality these "constants" often vary with frequency
and are modified by four secondary loss factors:

• Skin effect

• Proximity effect

• Radiation loss effect

• Dielectric loss effect

Skin Effect

Skin effect is a current flow phenomenon where the
cross-sectional current distribution in a conductor is
affected by frequency. The higher the signal fre­
quency, the higher the concentration of current on
the surface of the conductor.

Skin effect is usually modeled as a dividing line that
specifies the depth from the conductor surface
where all current at a specific frequency is concen­
trated. In reality there is always some current flow
in all parts of the conductor. At the higher frequen­
cies most of it is concentrated at the surface.

6-305

------ ---10

~ ---~

!!!
CD 8 Q)
:2

~ ~ ----S/~ ~ --r--.
-...::::::::
~ ~ ~Ml

~ ~
~/" ----...::

~
-...::
~

~ ~ f:::::::... -

CD
I
0 6
~

c
0
~
Q)
c

4 CD
II..

'0
.!:
C.

~ ~
--...:: r:::::::

~ :::::::: ~

CD
0

2
100 200 300 400 500 600 700 800 900 1000

Frequency (MHz)

Figure 1. Effective Skin Depth

The effective skin depth is calculated using Equa- (like the RG179 cable) with various plating types
tion 3 (Reference 5). (silver over copper over steel) the slope is modified

d=_l_
j1l!/.w

where:

Eq.3

f.t = magnetic permeability of the conductor and

(J = conductivity of the conductor

Plotting effective skin depth over frequency (log/log
scale) for a few common conductors (as shown in
Figure 1) shows an interesting effect: all the lines are
parallel. This is because the effective skin depth is
directly proportional to the square root of fre­
quency (Reference 2).

This change in the skin depth increases the conduc­
tors resistance as frequency is increased. This resis­
tance change over frequency generates most of the
attenuation losses in a cable (the Land C reactances
are assumed to be lossless).

Figure 2 shows a frequency response plot of a few
common cable types. The attenuation slope is
approximately 0.5 for most of the cable types. This
holds true for most standard sized cable construc­
tions. For cables with composite plated conductors

by the changing current distribution in the different
conductor types.

Proximity Effect

The proximity effect is caused by the current gener­
ated forces in adjacent conductors. Here the cur­
rent distribution within a conductor is altered by the
current present in a nearby conductor. This current
redistribution works in conjunction with skin effect
losses to further attenuate a signal. This loss factor
does not effect coaxial cables but does effect
twisted/parallel-pair cables, especially at higher fre­
quencies. Generally the closer the conductors are
and the higher the frequency, the greater the loss.

Radiation Loss Effect

Radiation loss is that signal lost due to electromag­
netic radiation. This primarily effects unshielded­
pair cables, or cables with poor shielding effective­
ness. This loss type· is often affected by those
materials in close proximity to the transmission line.

For balanced transmission lines, it is also affected by
the current balance within the two conductors in the
transmission line. Any mismatch in amplitude or
phase between the signals in the two conductors will

6-306

- ~ Using HOTLink with Long Copper Cables
?CYPRESS ================

10.0

~
.l!!
0
0

iii
~
c 1.0 0

~
:J
C
Q)

~

0.1+-_R_G_6_ZN-,U __ .--.-.-."-nr-____ .-__ ,-,-,-,-rrTT ____ -. __ -. __ ,-"",,,

1 10 100 1000

Sinusoidal Frequency (MHz)

Figure 2. Coaxial Cable Attenuation Characteristics

radiate energy instead of propagating that energy
down the transmission line.

Dielectric Loss Effect

Dielectric losses are those caused by the shunt con­
ductance in the cable. This is represented by the G
parameter in the impedance calculation in Equa­
tion 2. The loss mechanism here is current leakage
through the dielectric. This loss is frequency sensi­
tive and increases with frequency.

Reactance Factors

Just as the cable resistance and conductance vary
with frequency, so do the inductance and capaci­
tance. Both tend to decrease slightly with increasing
frequency.

The change in inductance is due to the changes in
skin effect, proximity effect, self inductance, and
radiation loss. The change in capacitance is due to
the dielectric constant of the dielectric spacer
changing with frequency. The amount of capaci­
tance change varies with the type of dielectric and
the range of frequencies (Reference 1).

Signal Effects

These attenuation characteristics do more than just
degrade the amplitude of a signal as it travels down
a transmission line. They also affect the waveshape
by distorting the rising and falling edges. The
amount of the distortion is actually predictable, but
it requires transformation of the source signal from
the time domain to the frequency domain. This
transformation is done using Fourier analysis.

Some of these effects may be illustrated using two
simple square wave patterns. The first pattern is
based on the highest frequency data pattern that can
be sent, a continuous 0101 (D21.S character) pat­
tern. Using a 30-MHz byte-clock this pattern is
equivalent to a IS0-MHz square wave. The second
pattern is based on the lowest frequency data pat­
tern that can be sent, a continuous 0000011111
(K28.7) pattern (Reference 6). This pattern ends up
being an exact match in period to the source clock
(30 MHz) with a fixed SO% duty cycle.

Because the input waveforms are not true square
waves, time constant curves based on a naturalloga­
rithm were used to synthesize the the rising and fal-

6-307

2 ,,~ Using HOTLink with Long Copper Cables
'CYPRESS =============

Figure 3. Synthesized D21.S and K2S.7
Waveforms

ling edges. These rising and falling edge equations
are listed in Equations 4 and 5 respectively.

Eq.4

Eq.5

In these equations, T represents the time constant
for rise and fall time. For the waveforms generated
for this example, a T of 400 ps was used. Figure 3
illustrates the signals generated with these equa­
tions for both D21.5 and K28.7 characters
(300-Mbit/second bit-rate).

Running a 4096 point FFT on these waveforms
yields the spectral components in Figure 4. The ver­
tical axis here is plotted on a log scale and shows the
magnitude of the phasor at each spectral point.

Unlike a spectrum analyzer which only displays the
magnitude of the spectral components, an FFT of a
waveform yields both magnitude and phase in rect­
angular form as a complex number. To plot this
information requires conversion to polar notation
of magnitude and phase angle. This calculation of
the magnitude portion is done using Equation 6
(Reference 7).

§

~
"C
o

021.1 Pattern

300 600 900
Frequency (MHz)

K28.7 Pattern
300 600 900

Frequency (MHz)

Figure 4. FFT Spectrum of Synthesized
D21.S and K2S.7 Patterns

Magnitude = ./Re2 + 1m2 Eq.6

An FFT is based on numeric analysis rather than a
physical measurement and will calculate signal com­
ponents with an amplitude of zero. Because Log(O)
is equal to - 00, a calculated FFT does not have a
noise floor. To plot the results in a usable form
requires the addition of an artificial noise floor to
present the points of interest on a reasonable scale.
To allow a better comparison with a real life envi­
ronment, the noise floor in Figure 4 is set at - 80 dB.

Attenuation Effects

Now that the relative signal amplitude of each of the
spectral components is known, a correction factor,
based on the attenuation generated by a length of
cable, can be applied to the spectral components.
This attenuation is applied to the magnitude of the
vector. A separate correction factor must be ap­
plied to the phase component.

Examination of a cable vendor's catalog will find a
table for each cable listing attenuation at a few spe-

6-308

'IL~YPRESS~~~~~~~U~Si~n~g~H~O~T~L~i~nk~M~·t~h~L~On~g~c~o~p~p~e~r~C~ab~l~es=

cific frequencies. The vendor's list of one such cable
is found in Table 1 (Reference 3). This information
would be very helpful if the frequencies listed just
happened to match up with the frequency compo­
nents present in the signal being evaluated. Unfor­
tunately this is rarely the case. Instead what must be
done is to translate the table back into its transfer
function, and use this function to calculate the atten­
uation at the specific frequencies of concern.

From Figure 2 it is understood that that transfer
function for a cable (in most cases) is approximated
by a straight line, when plotted in log/log format.
Geometry allows this line to be described in multiple
ways, either by two points or as a slope and offset.

The manufacturer's attenuation data listed in
Table 1 is the same data that is plotted in Figure 2.
Because this curve has few inflections, any of the
points listed in the table may be used to approximate
the transfer function. Since the data is plotted on a
log/log scale, the calculations must be based on the
log of both the frequency and the attenuation as
shown in Equation 7. Equation 8 calculates the
slope for this cable type using data points at 10 MHz
and 400 MHz (both at 100 meters).

Thble I. Attenuation for Belden
9659 Cable (RG59-type)

Frequency Nominal Attenuation
(MHz) dB/IOO Feet dB/IOO meters

1 0.3 1.0

10 0.9 3.0

50 2.1 6.9

100 3.0 9.8

200 4.5 14.8

400 6.6 21.7

700 8.9 29.2

900 10.1 33.1

1000 10.9 35.8

Eq.7

1.3365 - 0.4771 = 0.8593 = 05364
8.6021 - 7 1.6021 . Eq.8

The slope for most copper cables is around 0.5. (If
only one attenuation data point is available, assum­
ing 0.5 for a slope will get you close to the actual at­
tenuation at other frequencies.)

With the slope available it is now possible to calcu­
late the offset using Equation 9. The result as calcu­
lated at 400 MHz is shown in Equation 10.

offset = (log(F) . slope) - log(A)

(8.6021 X 0.5364) - 1.3365 = 3.278

Eq.9

Eq.lO

With the slope and offset now available, it is possible
to calculate the attenuation per unit-distance at any
frequency using Equation 11.

Attenuation(dB) = 1 O(lOg(F"qu,"'Y) X ·""p'~'ff"t) Eq.ll

Note: Because all the previous calculations were
based on 100 meter distances, the numbers
generated here give the attenuation for 100 meters
of RG59 cable at any frequency. These numbers
may be scaled linearly to get the attenuation at any
other length of cable.

The waveforms in Figures 3 and 4 have symmetrical
rise and fall times and therefore only contain odd
harmonics. For the 30-MHz signal this yields har­
monics at 30 MHz, 90 MHz, 150 MHz, 180 MHz,
etc. The calculated attenuation for these harmonics
(through 1 GHz) are listed in Table 2.

By applying these attenuation amounts to the spe­
cific signal components it is possible to determine
the signal's spectrum at other points on the cable.
These calculations were performed assuming a 100
meter length of cable to generate the spectrums
shown in Figure 5.

By using an 1FT (inverse Fourier transform) on these
new spectrums it is possible to reconstitute the time
domain form of the signal. If the same phase com­
ponents are used with the attenuated amplitudes, the
waveforms in Figure 6 are generated (Reference 7).

6-309

~ ~ Using HOTLink with Long Copper Cables
~-,CYPRESS ===============

Table 2. Calculated Attenuation for Belden
9659 Cable (RG59·type)

Frequency . Nominal Attenuation
(MHz) dB/IOO Feet dB/IOO meters

30 1.64 5.40

90 2.96 9.75

150 3.90 12.8

210 4.67 15.4

270 5.34 17.6

330 5.95 19.6

390 6.51 21.4

450 7.03 23.1

510 7.51 24.7

570 7.98 26.2

630 8.42 27.7

690 8.84 29.1

750 9.24 30.4

810 9.63 31.7

870, 10.0 32.9

930 10.4 34.1

990 10.7 35.3

1050 11.1 36.4

With these data rate and cable combinations, only
25% of the peak-to-peak amplitude of the D21.5
(1010101010) pattern remains after 100 meters of
cable, while the K28.7 (1111100000) pattern has
nearly 60% of its signal available.

Figure 7 shows the actual measured signals at the
source and after 100 meters of cable. While· the
measured amplitudes are a close match to the calcu­
lated amplitudes, the waveshape of the K28.7 signal
at the end of the cable is significantly different. The
cause of this distortion is a variation in propagation
velocity verses frequency known as dispersion.

Dispersion

Dispersion is a propagation characteristic more
commonly linked to optical fibers. This causes light

c o
·iii
:~

~
"0
o

. .

a

I
I

D21.1 Pattern

300 600 900

a a a D

II a D a a a a

I I I
I I I I I I I

K28.7 Pattern

300 600 900
Frequency (MHz)

Signal without cable
Signal with cable

Figure 5. Spectrum of Synthesized D21.5 and
K28.7 Patterns After 100m of RG59 Cable

at different wavelengths to propagate at different
rates through the fiber.

This same phenomenon exists in copper cables
where higher frequency signals propagate faster
than slower frequency signals. This variation in
propagation is caused by two different phenomena:
a change in dielectric constant of the cable dielectric
with frequency, and a change in the reactance of the
cable with frequency.

Dielectric Dispersion

Recall from the "Driving Copper Cables with HOT­
Link" application note that for coaxial cables and
stripline transmission lines

V =..l... PIE.. Eq.12

If the dielectric constant (Er) for a transmission line
remains constant across all frequencies, the signal

6-310

Using HOTLink with Long Copper Cables

D21.5

1\

Source Signal and Amplitude Signal After 100 Meters of Cable

K28.7

1\

Figure 6. Synthesized D21.5 and K2S.7 Waveforms with Simulated Cable Attenuation

spectral components will propagate down the trans­
mission line at the same rate. Unfortunately, many
dielectrics are not stable with frequency. Dielectrics
such as bakelite, glass, rubber, and PVC (polyvinyl

Source Signal and Amplitude

chloride) exhibit from several percent to lOs of per­
cent change in dielectric constant over the I-MHz to
l-GHz frequency range. Common circuit board ma­
terials also are not stable with frequency. Figure 8

D21.5

/\

K28.7 Signal After 100 Meters of Cable

'\

Figure 7. Measured D21.5 and K2S.7Waveforms with 100m ofRG59 Cable

6-311

4.8
1:
<II
1i5 4.6
t:
0
U 4.4 <..l

~
Q) 4.2
Qi
is

4
1 10 100 1000

Frequency (MHz)

Figure 8. Dielectric Constant of GIO/FR4
Circuit Board Laminate

shows how the dielectric constant (Er) changes in
G 1OIFR4 circuit board laminate (Reference 8).

Applying these Er values to the spectral components
in the K28.7 and D21.5 signals shown in Figures 5
and 6 yields signal components traveling at the rates
listed in Table 3. When sending an actual data
stream, these and other signal components are pres­
ent in the transmission line at the same time. The
D21.5 fundamental (150 MHz, equal to the bit-rate)
has a wavelength in the transmission line of only
0.974 meters. Because the K28.7 fundamental (15
MHz, equal to the byte-rate) is traveling 1.3%
slower than the D21.5 fundamental, this signal com­
ponent will lag the D21.5 fundamental by 90° of
phase (equal to 50% of one bit time) after only 16.2
meters of transmission line.

Table 3. D21.S Signal Propagation Rates

Frequency £r Vp (%) Vp (m/second)

15 MHz 4.45 47.4% 1.422 x 108

45 MHz 4.35 47.9% 1.438 x 108

150 MHz 4.22 48.7% 1.460 x 108

450 MHz 4.12 49.3% 1.478 x 108

The 90° phase point was selected because it is equiv­
alent to 100% jitter in the received bits. In reality
other signals components will cross this 90° phase
point in much less than the 16 meter length. This is
because a normal data stream contains other signal
components both higher and lower in frequency
than the two selected here. Since these other signals
components are traveling both slower and faster
than the 15 MHz and 150 MHz signals used in this

example, the 90° point will be reached with a much
shorter transmission line. Due to the limited energy
present in each of these signal components, they in­
dividually cannot close up the received signal eye.

Other Dispersion Factors

Good RF-grade cables are usually made with stable
dielectrics; i.e., those that exhibit only minor changes
in dielectric constant over frequency. These cables
are usually constructed using dielectrics based on
polyethylene, polypropylene, polyolefin, polysty­
rene, and various Teflon® derivatives. These dielec­
trics vary in dielectric costant by less than 0.5 % from
100 Hz through 10 GHz. Calculations for dielectric
based dispersion show little interaction even after
hundreds of meters of cable, yet these cables still ex­
hibit dispersion. The dispersion effect in these
cables is caused by the variation in reactance that
occurs in the cable with changing frequency. The
dispersion caused by reactance (per unit length of
cable) is much smaller than that caused by non­
frequency stable dielectrics. This allows cables
based on stable dielectrics to be used for much
longer signal transmission.

In reality the calculation of velocity of propagation
in Equation 12 is a simplified form that only assumes
first order effects. A proper calculation must take
into account all four distributed properties (R, G, C,
and L) in a transmission line. This is normally de­
scribed as the complex propagation constant y, and
is calculated using Equation 13 (Reference 4).

yew) = a + jf3 = j(R + jwL)(G + jwC) Eq.13

The complex propagation constant y consists of a
real portion a, representing the attenuation of the
signal, and an imaginary portion j~, representing the
angular velocity of the signal. Both of these are per
unit length of the transmission line. This shows that
the propagation rate is based on all four parameters,
not just the dielectric constant of the line.

With RF-grade dielectrics the dielectric constant re­
mains stable over frequency and thus does not effect
the propagation rate. The conductance parameter
does increase at a rate directly proportional to fre­
quency. At frequencies over a few megahertz its ef­
fect, relative to that of jroC, is so small that it is usu­
ally discarded. With the long transmission lines

6-312

~

55". --=z Using HOTLink with Long Copper Cables
~rcYPRESS ===============
considered here this very small effect is still impor­
tant. The resistance parameter also increases with
frequency. This change in resistance is caused by
the previously described skin effect, where the
transmission line resistance is affected by the un­
even current distribution.

The distributed inductance is also affected by fre­
quency. The total inductance is a sum of the exter­
nal inductance (that present between the two con­
ductors of the transmission line) and the internal or
self inductance of the conductors (assuming a di­
electric free of magnetic properties).

Each of these pieces has a small effect on the total
propagation rate of signals. Most of these effects
are only observable with cables extending for tens or
hundreds of meters.

Equalization

Equalization is the application of frequency selec­
tive gain or attenuation to compensate for distor­
tion. Equalization is used in analog audio, analog
video, and digital signal transmission systems to
compensate for characteristics of the system and the
distortion created by the operating environment.

For HOTLink-based communications, the primary
cause of signal distortion is the non-linear charac­
teristics of the interconnecting cable. This cable at­
tenuates the high-frequency signal components
much more than the low-frequency signal compo­
nents, and introduces a frequency selective phase
delay into the signal.

As the length of the interconnecting cable increases,
so does the signal distortion. At some point the dis­
tortion becomes so great that the HOTLink receiver
is no longer able to correctly recover the serial data­
stream. While there is still sufficient amplitude
available in the signal, the data-dependent jitter
(DDJ) exceeds the jitter tolerance of the HOTLink
receiver (typically >90%). To allow reliable com­
munications with these long cables it is necessary to
"equalize" the the cable.

Equalization Circuits

Equalization can take many forms. For many low­
frequency circuits, equalization often uses a combina­
tion of active and passive components to create fre­
quency selective filters that provide specific amounts
of gain or attenuation for a signal. These same fil­
ters may be made to automatically adapt to different
cable, frequency, and distance combinations.

At higher operating frequencies (such as those used
with HOTLink), the design and implementation of
active filters becomes more difficult, and equaliza­
tion is usually performed using only fixed passive
components, followed by a non-frequency-selective
amplifier. This provides the lowest cost form of
equalization, but is not as flexible as an adaptive/
active equalization circuit.

With a passive equalizer, the only functions that the
circuit can provide are attenuation and phase
change-they cannot provide gain (peak amplitude
of some signals may increase, but this is due to align­
ment of the signal component phasors). To equalize
a copper cable, the circuit must operate in a manner
opposite that of the interconnecting cable. This ef­
fectively means a high-pass filter that delays the
phase of high-frequency signal components.

Many such circuits are available, all with different
topologies and characteristics. A simple equalizer
circuit recommended for HOTLink use is explained
in detail in the following example.

Equalizer Example

A pair of equalizers suitable for use with HOTLink
are shown in Figure 9. The Bridged-H circuit is a
balanced circuit that operates with balanced trans­
mission lines. This balanced equalizer may also be
used with unbalanced cables if placed on the bal­
anced side of a balun coupling transformer.

The Bridged-T circuit is an unbalanced form of the
Bridged-H equalizer. This circuit is designed for
use with unbalanced transmission lines. When used
with a HOTLink receiver that is transformer
coupled, this circuit must be used in the unbalanced
portion of the transmission line. It may be used with
coaxial (or other unbalanced) cables by placing the

6-313

~ Using HOTLink with Long Copper Cables
;;. CYPRESS ================

C1
C1

R2

R2

R1 R1
R1 R1

R2 Bridged-T Unbalanced Equalizer

C1

Bridged-H Balanced Equalizer

Figure 9. Constant Impedance Equalizer Circuits

circuit between either end of the transmission line
and the coupling transformer.

Both of these circuits are AC-forms of a fixed­
attenuator or "pad". A pad is often used for imped­
ance matching or attenuating between a source and
destination, with minimal parts count and minimum
loss. The equalizers in Figure 9 are converted to
their pad equivalent by removing the capacitors and
shorting out the inductor. Unlike some pads which
can perform impedance transformation, these
Bridged-H and Bridged-T circuits require the input
and output impedances to be the same.

These equalizers, when properly implemented, ap­
pear across a wide frequency range as a DC resis­
tance at the end of a cable. For frequencies at or
near DC, the gain (insertion loss) is determined
only by the resistors. As the frequencies approach
the active region of the filter, the reactive nature of
the capacitor starts to have an effect. The higher fre­
quencies see less reactance and are passed through
the capacitor with minimal attenuation. The induc­
tor is selected to exactly match (but with increasing

reactance) the frequency response characteristics of
the capacitor(s).

The component values for these circuits are deter­
mined by the specific cable type selected, the fre­
quency of operation, and the desired distance of op­
eration. The design equations for both structures
are detailed in Table 4. Because the balanced
Bridged-H circuit is based on the unbalanced
Bridged-T (and all values for it may be derived from
the Bridged-T equations), only the Bridged-T circuit
will be explained in detail.

Thble 4. Equalizer Equations

Component Bridged-T

R1 Zo
R2 Zo*X

R3 ZoIX
C1 Ll/(Z02)

Ll C1*Z02
... Zo = characteristic Impedance of cable,

X = see Equation 15.

Bridged-H

Zo/2

(Zo*X)/2

Zo/(2*X)

(2*Ll)/(Z02)

(C1*Z02)/2

6-314

~

~~YPRESS~~~~~~~U~Si~n~g~H~O~T~L~i~nk~m~'t~h~Lo~n~g~C~O~p~p~e~r~C~ab~l~es=

Equalizer Example

The Rl value is the easiest to determine. For the
Bridged-T circuit it is equal to Zoo For the RG59
cable documented previously (Zo=75Q), the Rl
value would be 75Q.

The relationship for R2 and R3 determines both the
DC-gain (loss) of the equalizer and the correction
attenuation slope. To keep a constant impedance,
it is necessary for

Eq.14

The gain is determined by the ratio of each resistor
to the filter impedance, and a gain constant X. The
gain constant (X) determines how much insertion
loss the filter should have at low (near DC) frequen­
cies, and is determined using Equation 15.

(dBAttenuation)
X = 10 --10- - I Eq.15

Attenuation Slope

This same gain constant also determines the slope
of the attenuation curve in the active region of the
filter. For equalization purposes the gain constant
must be determined by the slope of the transmission
line attenuation over the main frequency range of
interest.

The transmission line presents an attenuation
verses frequency slope that increases with cable
length. Figure 2 shows that the source (cable) atten­
uation function is linear when plotted in log/log
space (attenuation verses frequency). To flatten the
system frequency response the equalizer must then
present an attenuation verses frequency slope that
is equal in magnitude but opposite in slope to that
of the cable.

Unfortunately a single pole filter (like that used
here) can only generate a correction slope of at most
-20 dB/decade. The source signal attenuation also
increases at a logarithmic rate per decade rather
than a linear rate per decade. This means that the
correction applied to the signal can only be a coarse
approximation rather than a perfect correction.

Using the RG59 cable documented earlier, and as­
suming a cable length of 100 meters and a data rate

of 300 Mbaud, it is possible to calculate the approxi­
mate attenuation slope (in dB/decade) that the
equalizer must attempt to correct. The goal is to
have the low-frequency content of the received sig­
nal match the high-frequency content at a specific
length of cable.

The data from Table 2 identifies that the attenuation
at 150 MHz (the bit-rate equivalent sinusoidal fre­
quency of 300 Mbaud) is 12.8 dB for a 100 meter
cable. At the 30 MHz frequency (the byte-rate
equivalent sinusoidal frequency) the attenuation is
5.4 dB. These two points are then used to determine
the necessary correction attenuation slope (in dB/
decade) using Equation 16. Entering these values
into Equation 16 yields an attenuation slope of 10.61
dB/decade.

_ Al - A2
slope - log(FI) - log(F2) Eq.16

Equalization Slope

To equalize the cable it is necessary to present a
correction having a matched slope but starting from
the bit-rate fundamental frequency. This slope is
controlled only by the R2/R3 resistors, with the fre­
quency being determined by CllLl. As the R2!R3
resistor ratio varies (as set by the gain constant X)
the attenuation slope varies from between zero and
20 dB/decade. The necessary gain constant may be
determined directly using Equation 17. Using the
previously calculated source slope yields a gain
constant of 2.224.

X= []

2.49

3.9 x tan(slope x :0)
Eq.17

Note: This equation was derived from empirical data.
Its function matches simulated response curves to
within 0.15 dB for the entire 0 to 20 dB/decade
range.

With the gain constant now available, the values of
R2 and R3 may be determined. Using the equations
from Table 4 for R2 and R3, these calculate to
R2=166.8Q and R3=33.7Q. Inserting this same
gain constant into Equation 18 sets a DC gain of
-10.17 dB.

dBattenuation = 10 x log[(X + 1)2] Eq.18

6-315

-=:~ ~CYPRESS~~~~~~~U;SI;'n~g;H;O;T;L;i;nk~m;'t;h;L;o~ng~C~op~p;e;r;C;ab;l;es=

Center Frequency

The Ll and Cl components are used both to select
where the signal attenuation occurs, and to keep the
equalizer impedance constant. To maintain the a
constant impedance in the equalizer, the product of
the shunt and bridge impedances must always equal
the square of the characteristic impedance. In
terms of Ll and Cl this can be reduced to the rela­
tionship in Equation 19.

m
Zo = vcr Eq.19

Setting the roll-off point for the high-pass filter is
not quite as intuitive. At first glance the equalizer
appears as a single-pole filter yielding a fixed 6 dB/
octave or 20 dB/decade attenuation below a cutoff
frequency. This is the actual filter response when
set for a DC gain of 0 (DC loss = 00) by removing R2
and shorting R3. In this configuration the - 3 dB
cutoff frequency is determined using Equation 20.

Ie = 1
2lrJLl . Cl Eq.20

Adding R2 and R3 back into the circuit however
changes the slope of the attenuation curve, moves
the upper cutoff frequency, and adds a lower cutoff
frequency point. Figure 10 shows the gain and phase
response for this equalizer implemented with an ar­
bitrarily selected (but properly balanced) Cl/Ll
pair of 200 pF and 1125 nH. The attenuation slope
is correct, but the location within the frequency
spectrum is not. An examination of the phase re­
sponse curve shows that it peaks at the midpoint of
the active region of the filter.

The capacitor Cl is responsible for the location of
the attenuation curve within the frequency spec­
trum. As the capacitance is decreased, the curve is
shifted higher in frequency, but with an identical
slope. The correct capacitor (and corresponding in­
ductor) are selected when the line determined by
the equalizer attenuation slope intersects the bit
rate frequency (150 MHz for this example) at 0 dB.

Unfortunately, any simulation or measurement will
show that the attenuation slope is not linear at the
upper and lower ends of the active region of the fil­
ter. The only point on the gain curve whose slope ac­
tually matches the desired correction slope is at the
midpoint of the curve, located at the same frequency

Gain (dB) Phase (0)
1..000

30.000
-1..000

-2.000

-3.000

-4.000 20.000

-5.000

-6.000

-7.000 1.0 .000

-8.000

-9.000

Frequency

Figure 10. Gain/Phase Plot for Initial Cl/L1 Values

6-316

as the peak in the phase response (8.5 MHz). The
attenuation at this point is exactly half the DC atten­
uation (-5.08 dB).

The filter response of the present circuit is obviously
too low for proper compensation of a 300 Mbaud
data stream. What is necessary is to shift this mid­
point to a different frequency. This new midpoint
intercept frequency is calculated using Equation 21.
Using this equation with the current bit-rate fre­
quency (150 MHz), DC gain (-10.17 dB), and
equalization slope (-10.61 dB/decade) yields a new
center frequency of 49.8 MHz.

(. DeGain/2)
F 10 '0g(F_b'U"te)--,-_new = sope Eq.21

To determine the correct C1 and Ll values that will
center the filter response through this point re­
quires determining the magnitude of the reactance
phasor at this point. The reactance at this center
point in the filter response remains the same with
any properly matched Cl/Ll pair. In the gain/phase
plot in Figure 10, the center frequency is at 8.5 MHz.
The impedance phasor magnitude for the bridge
(R2/C1) and shunt (R3JL1) paths are calculated
using Equations 22 and 23 respectively.

Using HOTLink with Long Copper Cables

XB = 1 = 81.6,Q
j R~2 + (2Jr:j' CI)2 Eq.22

Xs = jR32 + (2Jr:!' LI)2 = 68.9,Q Eq.23

These XB and Xs values are the magnitudes of the
complex impedances present in the R2/C1 and
R3JL2 component pairs respectively. Solving for
the specific Cl and Ll components at the desired
49.8 MHz midpoint frequency involves converting
the impedance vectors into their real and imaginary
components, and determining what size component
will yield the proper reactance at the specified cen­
ter frequency. The calculations for Cl and Ll are
shown here in Equations 24 and 25.

jx,z - R3 2

Ll = 2:n;j = 192.2 mH

~ "X;;-/ii2
Cl = 2Jr:! = 34.2 pF

Eq.24

Eq.25

Placing these new C1 and Ll components into the
Bridged-T equalizer yields the filter response shown
in Figure 11. The slope of the curve (in dB/decade)

Gain (dB) Phase (D)
:1..000

-:1..000

-2.000

-3.000

-4.000

-5.000

-6.000

-7.000

30

20

:1.0

-:1.:1..000 0
:I.H :I.OM :I.OOM

Frequency

Figure 11. Gain Phase Plot for Final CIILI Values

6-317

20

iD
~
c:
0 15 ~
::l
c:
CD

~

10
1 10 100

Frequency (MHz)

Figure 12. Combined Cable and
Equalizer Attenuation

remains the same, but now the phase response peak
occurs near 50 MHz.

Composite Response

Figure 12 shows how close this equalization matches
the cable's frequency response. This curve is a sum
of the cable and equalizer attenuations at each fre­
quency point. Note that the link response (100 me­
ters of cable and the equalizer) does not vary by
more than 2 dB for over two decades of frequency
spectrum. Once the signal spectral components are
above the bit-rate frequency of the filter, the cable
attenuation becomes dominant and the attenuation
slope increases dramatically. Slight alterations of
the equalizer slope and frequency intercept can
modify this curve to meet specific frequency re­
sponse and flatness requirements.

Implementation Constraints

While the numeric calculations allow a design to be
implemented on paper, bring such a design into the
real world is much different. Finding components
with even 1 % accuracy can be difficult if not impos­
sible. Parasitic reactances present in any compo­
nent also effect the response of the equalizer circuit.
This means that even the best equalizer will wind up
being a number of compromises.

Resistors

The selection of resistor values is probably the easi­
est to make. These components are available in
wide ranges of values and tolerances. For most

equalizer implementations, these parts should be
1 % tolerance components.

Because of the wide frequency range that the equal­
izer must cover, care should also be exercised in the
selection of the type of resistive element used. Car­
bon composition and carbon film resistors have sig­
nificant capacitive parasitics and should not be used
in sizes over 100Q in equalizers of this type. A better
choice here would be metal film resistors.

The physical size of the component also makes a dif­
ference. Generally the smaller the components
physical size, the lower the inductive and capacitive
parasitics present.

Inductors

The inductor is the most difficult component to se­
lect, primarily because they are manufactured in so
few standard sizes. In the range from 10 nH through
2000 nH (the range most likely to be used with
HOTLink) all manufacturers provide the same se­
ries of part values in each decade of size. These val­
ues are 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and
82. All other standard sizes are found by multiplying
these values by 10, 100, 1000, etc. Custom sizes are
available from some manufactures, but generally at
a significant cost difference.

Another problem that plagues most inductors is a
low series resonant frequency. For the equalizer to
operate correctly (within its designed range of op­
eration), the inductor must continue to provide in­
creasing amounts of reactance with increasing fre­
quency. This means making sure that the series
resonant frequency of the inductor is greater than
the bit-rate frequency of the data stream. The best
inductors for this are generally made from a multi­
layer ceramic construction.

The last concern is manufacturing tolerance. Un­
like resistors where 1 % tolerance parts are low in
cost and widely available, the common tolerance for
inductors is 10%. A few manufacturers also offer
5% and 2% tolerance parts.

Capacitors

The choice of capacitors is almost dictated by the
available sizes of inductors, and the small quantity
of capacitance required for most equalizers. This

6-318

2S~YPRESS~~~~~~~U~S~in~g~H~O~T~L~i~nk~~~'t~h~L~O~ng~c~op~p~e~r~C~a~bI~e=s
will generally fall in the 10 to 200 pF range. The ma­
jority of all chip capacitors in this range are made
with a temperature stable low-K dielectric known as
either NPO or COG. Other high-K dielectrics should
not be used, both for their instability over tempera­
ture and for the ferroelectric effect these high-K di­
electrics exhibit.

While capacitors also have a series resonant fre­
quency, it is not generally a concern when using the
types and sizes of capacitors required for these
equalizers. In almost all cases the series resonant
frequency is well above the bit-rate frequency and
therefore of only minor concern.

Board Layout

Just as incorrect component selection can greatly ef­
fect the frequency response of an equalizer, so can
a poorly implemented layout. The circuit traces,
pads, and vias all have an effect on the circuit opera­
tion. The following guidelines should be applied to
minimize these effects.

• Use as short of traces as possible to minimize the
trace inductance and capacitance.

• Keep all components in close proximity to each
other.

• Minimize the number of vias. These structures
can be routed on a single layer without vias.

• For the Bridged-H balanced equalizer, keep rout­
ing symmetrical to keep the parasitics balanced.

HOTLink is a trademark of Cypress Semiconductor.
Teflon is a registered trademark of DuPont.

Conclusion

Communications on electrically long transmission
lines are possible with many types of media. How
far a signal may be reliably transmitted is a function
of many driver, cable, filter, and receiver character­
istics. Application of equalization filters can allow
communication over distances well beyond that of
non-equalized systems. These equalizers may be
implemented with a minimal number of low cost
passive components.

References

1. True, Kenneth M., Long Transmission Lines and
Data Signal Quality, AN808, National Semicon­
ductor

2. Orr, William I., Radio Handbook, 23rd Edition,
SAMS, 1992

3. Belden Master Catalog, Cooper Industries,
Inc., 1992

4. True, Keneth M., Data Transmission Lines and
Their Characteristics, AN -806, National Semi­
conductor

5. True, Keneth M., Long Transmission Lines and
Data Signal Quality, AN -806, National Semi­
conductor

6. Fibre Channel Standard, ANS X3.230-1994,
American National Standards Institute, 1994

7. Ramierez, Robert W, The FFT, Fundamentals
and Concepts, Tektronix, Inc. 1985

8. AdCore Product Anouncement, GIL Copper
Clad Laminates, Alpha Corporation, 1995

6-319

HOTLink ™ CY7B933 RDY Pin Description

This application note describes the behavior of the
RDY (Ready) pin in several modes of operation:
Encoded, Bypass, and BIST (Built-In Self-Test).
The RDY pin indicates the status of the HOTLink 1M

Receiver control logic and output pins. Its function
and timing are dependent on the state of the
MODE, BISTEN (Built-In Self-Test Enable), and
RF (Reframe) pins. The following sections describe
RDY behavior in detail.

Normal RDY Timing

The HOTLink CY7B933 datasheet specifies signal
transitions for the receiver in bit-times relative to
the rising edge of CKR. A bit-time refers to the peri­
od of the internal receiver bit-rate clock. The period
of the recovered byte-rate clock, CKR, is ten times
the bit period (bit period tB = tCKR +- 10). In the
following discussions on timing, the rising edge of
CKR is referenced as bit-time zero. The next rising
edge of CKR occurs ten bit-times later (unless CKR
stretches due to reframing). Thansitions on other
signal pins are defined in bit-times relative to bit­
time zero. These timing conventions are adhered to
throughout this application note.

The normal timing of the RDY pin refers to its be­
havior in Encoded or Bypass mode with BISTEN
HIGH (Built-In Self-Test disabled). In either of
these modes, RDY rests HIGH in its inactive state.
During its active state, RDY transitions LOW on
bit-time five and then transitions HIGH on bit-time
one of the next clock cycle. Figure 1 illustrates RDY
timing in relation to CKR and DATA. Fdr the exact
timing margins[l] of these signals, refer to the
HOTLink datasheet. In BIST mode, RDY assumes

CKJ ~ , ~ r
DAT¢=x : : X : :
IID'i') III If

10/0 10/0

Bit Time

Figure 1. Normal RDY Timing

much different behavior and timing. These differ­
ences are explained later in the sections on BIST.

RDY in Encoded Mode

This section describes the operation of RDY in En­
coded mode (MODE = LOW). In Encoded mode,
the raw ten-bit serial data is decoded in the 8B/lOB
decoder and then presented at the parallel output
pins.

Normal Operation

The normal operation of the RDY pin in Encoded
mode (MODE = Law, RF = tow, BISTEN =
HIGH) is to signal when new data is available at the
parallel output pins (00-7, SC/D, RVS). RDY
pulses LOW with a 60% LOW/40% HIGH duty
cycle only when new data is present at the output.
The timing of RDY is optimized for a seamless in­
terface to irtdustry standard FIFOs (First-In First­
Out memories). RDY does not pulse LOW in a field
of SYNC (K28.5) characters; however, RDY does
pulse LOW for the last K28.5 in the field or for any
single K28.5. This behavior helps prevent a FIFO
from filling with meaningless strings of SYNC char­
acters. Figure 2 illustrates normal RDY behavior in
Encoded mode.

6-320

~YPRESS~~~~~~~H~O=T=L=in=k=C=Y=7=B=9=33~RD~y=p=i=n=D=e=sc=r=ip=ti=o=n

Figure 2. Normal RDY Operation in Encoded
Mode

Entering Framing

When the RF pin is asserted HIGH, the receiver
byte framer is enabled and the RDY pin leaves nor­
mal Encoded mode operation. The receiver latches
the RF signal on the falling edge of CKR. When RF
is latched HIGH, RDY is forced HIGH one bit time
after the next rising edge of CKR (approximately
6tB later). The exception to this is when there is a
K28.5 in the framer when RF is asserted HIGH. In
this case, an additional RDY pulse will occur after
RF is latched HIGH. RDY will then pulse LOW
when the data byte boundary is framed to an incom­
ing SYNC character (K28.5). The latency of the re­
ceiver data pipeline and control logic insure that
RDY will not pulse LOW any earlier than the fourth
clock cycle after RF is latched HIGH. External
framing logic should be designed to examine the
RDY pin only after the 4 clock cycle delay.

After the data has been framed, RDY will assume its
normal Encoded mode behavior (pulsing LOW for
every character except strings of K28.5s). If RF re­
mains HIGH, the framer still continues to frame the
data to any K28.5 pattern found in the data stream.
If RF is asserted HIGH for more than 2048
REFCLK cycles, the framer converts to a double­
byte framer requiring two K28.5s within five bytes
for framing. The function and timing of RDY, how­
ever, remain unchanged. The timing of RDY while
entering framing is outlined in Figure 3.

Leaving Framing

When RF is de asserted, the framer is disabled and
the RDY pin assumes its normal Encoded mode op­
eration. If the data was framed during the assertion

RF is Latched Data is Reframed

Figure 3. RDY During Framing in Encoded Mode

of RF, RDY will have already assumed its normal
operation. If the framer is disabled without having
framed the data, one clock cycle will pass before
RDY assumes normal operation. Figure 4 shows the
framer being disabled before the data is framed.
RDY resumes normal operation one cycle after RF
is latched Law.

RDY in Bypass Mode
This sections describes the operation of RDY in By­
pass mode (MODE = HIGH). In Bypass mode, the
raw ten bit serial data bypasses the 8B/lOB decoder
and is presented at the parallel output pins.

Normal Operation

The normal operation of the RDY pin in Bypass
mode (MODE=HIGH, RF=LOW, BIS­
TEN=HIGH) is to signal when a data pattern
matching K28.5 character is present on the receiv­
er's parallel output pins (Qa-j)' RDY will remain
HIGH during all other data patterns. Figure 5 shows
an example of RDY in Bypass mode.

Normal Operation

RF is Latched

Figure 4. RDY While Leaving Framing

6-321

=ru~YPRESS~~~~~~~H~O~T~L~in~k~C~Y~7~B~9~33~RD~y~p~in~D~e~sc~n~·p~ti~on=

DATA __ -I1 __ -J~ __ /~ __ J~ __ -I1 __ -J'~ __ /~ __ J1

Figure 5. Normal RDYOperation in Bypass
Mode

Entering Framing

The behavior of RDY while entering framing from
Bypass mode is very similar to entering from En­
coded mode. When RF is latched HIGH, RDY
leaves normal Bypass mode operation and is forced
HIGH one bit time after the next rising edge of
CKR. When the framer is enabled, a LOW pulse on
RDY indicates that the serial data has been framed
to an incoming SYNC character (K28.5). The laten­
cy of the data pipeline and control logic insure that
RDY does not pulse LOW any earlier than the
fourth clock cyde after RF is latched HIGH. Exter­
nal framing logic should be designed to examine the
RDY pin only after the 4 clock cycle delay. After the
data has been framed, RDY assumes its normal By­
pass mode behavior (pulsing LOW only on K28.5
characters). While RF is HIGH, the framer contin­
ues to frame the data to any K28.5 pattern in the
data stream. The timing of RDY while entering
framing from Bypass mode is outlined in Figure 6.

Leaving Framing

When RF is de asserted (LOW), the framer is dis­
ableq and the RDY pin assumes normal Bypass
mode behavior. If the data was framed during the

RF is Latched Data is Reframed

Figure 6. RDY During Framing in Bypass Mode

Normal Operation

RF is latched

Figure 7. RDY While Leaving Framing

assertion of RF, RDY will have already assumed its
normal operation. If Reframe is exited without hav­
ing framed the data, one clock cycle passes before
RDY assumes normal operation. Figure 7 shows RF
deasserted before the serial data has been framed.

RDY and CKR Stretching
During framing (RF = HIGH), RDY and CKR may
stretch as the byte boundary is synchronized to an
incoming K28.5 character. If a K28.5 pattern is
found in the serial data stream that is not aligned
with the current byte boundary, the framer will re­
align the phase of CKR so that the receiver shift reg­
ister properly deserializes the K28.5 character (and
the following data). The HIGH or LOW phase of
CKR and RDY will be stretched so that these signals
maintain proper byte synchronization with the data.
Figure 8 shows RDY and CKR being stretched dur­
ing framing due to a K28.5 character in the data
stream. In this example, RF is held HIGH so that
the framer remains enabled after has RDY assumed
its normal operation according to the MODE pin
(Encoded mode). The period of RDY and CKR

ROY Stretches as
Data is Reframed

Figure 8. RDY and eKR Stretching
(Encoded Mode)

6-322

==-rcYPRESS

may stretch up to a length of 19 bit-times depending
on the position of the K28.5 character relative to the
old byte boundary. Note that the K28.5 character
comes out of the receiver one cycle after the CKR
and RDY stretch due to the receiver pipeline.

RDY in BIST Mode

The Built-In Self-Test (BIST) feature provides a
simple but exhaustive method for testing the integri­
ty of the physical link. BIST Mode is entered by as­
serting the BISTEN pin LOW in either Encoded or
Bypass mode. RDY has two normal modes of op­
eration while in BIST. RDY initially rests HIGH
when BIST is entered, signaling that the BIST logic
has not started checking the received data. When a
valid start of BIST sequence is received, the RDY
pin will rest Law, indicating that BIST checking is
in progress. The timing of these transitions is dis­
cussed below. For more information on BIST, con­
sult the "HOTLink Built-In Self-Test" application
note.

Entering BIST Mode

BIST mode is entered by asserting BISTEN Law.
BISTEN is latched into the receiver on the falling
edge of CKR. When BISTEN is latched Law, RDY
leaves its current mode of operation (Encoded or
Bypass) and is asserted LOW for one full CKR
cycle. On bit-time one of the next clock cycle, RDY
is forced HIGH. The BIST logic will check the in­
coming data stream for the start of BIST sequence
(D1.0 followed by DO.O). RDY rests HIGH while
the BIST logic waits for this sequence. Figure 9

l'lISTEIiI
Latched In

00.0

R!l'I R_ HIGH While
Waiting for Start of BIST

Figure 9. RDY while Entering BIST

HOTLink CY7B933 RDY Pin Description

BIS'i"EliI LOW

DATA 00.0

p~:~~e I'--_RDY_Re_sts_LO_W_i_n B_IS_T_LO..;.OP_

Figure 10. RDYat Start ofBIST

shows the behavior of RDY when BISTEN is as­
sertedLOW.

Start of BIST

When the start of BIST pattern is found, RDY will
transition LOW one bit time after CKR rises. Due
to the pipeline nature of the receiver, there is a one
cycle delay from when start of BIST is detected and
when RDY is asserted Law. RDY will remain
LOW for the duration of BIST except to pulse
HIGH for one clock cycle each time a BIST Loop
starts (once every 511 bytes). Figure 10 shows the
RDY pin during the start of BIST sequence.

BISTLoop

Figure 11 shows RDY behavior once BIST checking
has begun. RDY rests LOW and pulses HIGH at
the start of each new BIST loop. During this pulse,
RDY rises on bit time one and then falls one cycle
later on bit time one. This pulse is useful for count­
ing the number of BIST loops completed.

Leaving BIST

BIST is disabled by setting BISTEN HIGH. RDY
will assume the behavior dictated by the MODE pin

BISTEIiI. LOW

DATA __ J~_.J~~-J~-J'~_'~_J~_-" __

NJBIST

ROY Loop Start 1\ ROY Rests LOW in BI5T Loop

-----RDY
J PUI~S HIGH to

Indicate New 818T Loop

Figure 11. RDY in BIST Loop

6-323

~ -~ HOTLink CY7B933 RDY Pin Description
,CYPRESS ===============

BiS'fEII HIGH
latched In

Figure 12. RDY While Leaving BIST

(Encoded or Bypass) one clock cycle after BISTEN
is latched HIGH. Figure 12 shows the RDY pin
while leaving BIST Mode.

Framing While in BIST

Framing may be performed while in BIST Mode.
The BIST pattern includes one alias K28.5 and sev­
eral instances of byte aligned SYNC characters. If
the framer is enabled (RF = HIGH), the data byte
boundaries are aligned to any incoming K28.5 char­
acters found in the serial data. RDY ceases its nor­
mal BIST behavior and rests HIGH while the fram­
er waits for a K28.5 character. The timing for the
RDY pin to be forced HIGH is the same as the tim­
ing discussed in the preceding sections on entering
framing (i.e., 6tB after RF is latched HIGH). When
a K28.5 character is found, RDY will pulse LOW for
one clock cycle. During this cycle, RDY falls on bit
time five and then rises on bit time one of the next
clock cycle. RDY then resumes its normal BIST be­
havior after one more clock cycle (see Figure 13 and
Figure 14).

Figure 13 shows RF asserted HIGH (framer en­
abled) while BIST is in the middle of checking the
data. RDY initially rests LOW and then transitions
HIGH when the framer is enabled. When a K28.5
character is found, RDY pulses LOW and then rests
HIGH again. One cycle later, RDY transitions
LOW as it resumes its normal BIST behavior (rest­
ing LOW during BIST).

Figure 14 shows RDY behavior while BIST is waiting
for the start of BIST sequence. Initially, RDY rests
HIGH while waiting for the start of BIST sequence.
When RF is asserted HIGH, the framer checks the

BISTEiiI LOW

RF

Figure 13. RDY While Framing in BIST

serial data for a K28.5 character. RDY pulses LOW
when a K28.5 is encountered and then returns
HIGH. RDY then returns to its normal mode of op­
eration (resting HIGH until start of BIST is re­
ceived).

If RF is deasserted before a K28.5 is found by the
framer, RDY will resume its normal BIST behavior
on the next clock cycle.

Enabling the framer while in BIST Mode may cause
the BIST data to become temporarily misaligned.
If the enabled framer encounters the alias K28.5
character in the BIST data stream, the BIST data
will be aligned to the incorrect byte boundary. This
will result in a large number of errors reported on
the RVS (Receive Violation Symbol) pin until the
data is framed again to one of the properly aligned
K28.5s. If RF is asserted HIGH for less than 2048
clock cycles, the BIST data will be misaligned each
time the alias K28.5 is found (once per BIST loop).

BISTEiiI LOW

RF HIGH

DAT~A~~ __ ~ __ ~ __ ~ __ -n __ ~'~ __ /~ __

Watt for Start of BIST U
Framing Pulse

FIDY Resumes Waltng

Figure 14. RDY While Framing in BIST

6-324

~

-= .~ HOTLink CY7B933 RDY Pin Description
~~CYPRESS ================

If RF is asserted for more than 2048 clock cycles (>4
BIST Loops), the double-byte framer will be en­
abled, and the framer will no longer frame the data
to the alias K28.5 character.

Conclusion

The Receiver RDY pin indicates the status of the
control logic and data pins in various modes of op­
eration. The behavior and timing of the RDY pin
have been optimized for easy integration with inter­
face control logic and FIFO memories. The de-

HOlLink is a trademark of Cypress Semiconductor Corporation.

tailed information contained in this application
note should serve as an aid when integrating the
RDY pin into the interface logic.

Notes

1. Datasheet timing parameters that are defined in
terms of bit times (tB) include additional timing
margin to account for internal buffer and
routing delays and output load (e.g., tA = 2tB
+4/-2 ns).

6-325

CY7C42X/46X FIFO Interface to the
CY7B923 (HOTLink ™)

Transmitter Interface Description

This application note considers the interface be­
tween a Cypress CY7B923 (HOTLink'M) Transmit­
ter and generic FIFOs. Minimal interface logic is
required to achieve a high-performance interface.
A block diagram of the HOTLink Transmitter and
generic FIFO interface is shown in Figure 1.

The FIFO operates as an asynchronous data rate
buffer between the HOTLink Transmitter and the
data source. The data is continually read from the
FIFO into the transmitter when the Transmit signal
is asserted. Reading continues until the FIFO is
empty.

ATAIN ~ 00-8 00-8 ~ , o

CY7C42X146X

FIFO
W R

Critical Timing Analysis

The following equations describe the critical timing
relationships. They have been solved for the mini­
mum bit time tB. The clock period time is lOtB. A
timing diagram is provided in Figure 2. The critical
timing equations are shown at the bottom of the
diagram.

Read Pulse Width

tPR(rnin) ~ 6tB - 3 ns - 2ns
tB ~ (tPR(rnin) + 5 ns) / 6

The read pulse width for the FIFO is tPR'

00-7,SCID OUT ~OUI
/

HOTLink

TRANSMITTER

CY7B923
RP SVS SVS

BISTEN
BISTEN

r-

Eq.l

FF EF

D-0n
ENN

ENA ENN

CKW

I 1 CKW -
Transmi

Figure 1. Transmitter Interface Diagram

6-326

::'rcYPRESS =====;;;;;CY=7;;;;;C;;;;;42;;;;;XI;;;;;;;;;;;46;;;;;X=FI;;;;;F;;;;;O;;;;;I;;;;;D;;;;;te;;;;;rf;;;;;3;;;;;ce;;;;;t;;;;;o;;;;;th;;;;;e;;;;;C;;;;;Y;;;;;7;;;;;B;;;;;9;;;;;23;;;;;

ONE WORD EMPTY NOT EMPTY

CKW

tCKW

EF

tREF tS+tpD tco

RP

DATA

tLZR

Transmit

Critical liming Analysis

Read Recovery Time

1. Read pulse width:
tPR(min.) :::;: tPDF(min.) - tPDR(max.)

2. Read recovery time:
tRR(min.) :::;: tPPWH(max.)

3. Data set-up time:
tA(max.) + tSD(min.) :::;: tPDF(min.)

4. Empty flag to register set-up time:
tREF(max.) + tPD(max.) + tS(min.) :::;: tPDF(min.)

5. Transmit enable to HOTLink set-up time:
tCO(max.) :::;: 10 ts - tSENP(min.)

6. Data hold time:
tPDR(mroq+ tHD(max.) :::;: tDVR(min.)

Figure 2. Interface Timing Diagram

Data Set-Up Time

tRR(min.) ~ 4tB - 3 ns Eq. 2
tA(max.) + 5 ns ~ 6tB - 3 ns

tB ~ (tA(max.) + 8 ns) / 6
tB ~ (tRR(min.) + 3 ns) /4

Eq.3

The read recovery time for the FIFO is tRR.
The data access time for the FIFO is tA and it is the
basis of FIFO speed ratings.

6-327

=a ?cYPRESS =====;;;;;CY=7C;;;;;4;;;;;2;;;;;XI;4;;;;;6;;;;;X;:;;;F;;;;;;IF;;;;;O=In;;;;;te;;;;;rf;;;;;a;;;;;c;;;;;;et;;;;;o;;;;;t;;;;;he;;;;;CY;;;;;';;;;;7;;;;;B;;;;;9=23

Empty Flag to Register Set-Up Time

tREF(max.)+tPD(max.) +tS(min.) ~ 6t8-3 n Eq.4
t8 ~ (tREF(max.)+tPO(max.) +tS(min.)+3 ns) / 6

The Empty flag delay from the FIFO is tREF The
register set-up time for the external register is ts.

Transmit Enable to HOTLink Set-Up Time

tCO(max.) + ~ 4t8 - 8 ns
t8 ~ (tCO(max.)+8 ns) /4

Eq.5

The register clock to output delay is tco. The propa­
gation delay of the external control logic is tpD'

Data Hold Time

tDVR(min.) .2:. 2 ns Eq. 6

The valid data hold time from a FIFO read is tDVR.
HOTLink has a zero data hold time.

Table 1. Critical FIFO Timing Parameters

FIFO Speed Rating

Parameter -10 -15 -20

tPR(min) lOns 15 ns 20ns

tRR(min) lOns lOns lOns

tA(max) lOns 15 ns 20ns

tREF(max) lOns 15 ns 20ns

tDVR(min) 3 ns 3 ns 3 ns

Table 1 shows the critical timing parameters for vari­
ous speed grades of generic FIFOs. The FIFO tim­
ing parameters are taken from a hypothetical
CY7C42X -10, a CY7C46X -15, and a CY7C46X - 20.

HOTLink is a trademark of Cypress Semiconductor Corporation.

Table 2 shows the maximum frequency of CKW
associated with each of the timing equations for the
different speed grades of generic FIFOs. The maxi­
mum interface operating frequency is shown in ital­
ics. APAL20-5 (tPD = 5 ns, tco = 5 ns, ts = 2.5 ns)
is used for the flag register and enable control logic.

Equation 6 is independent of the clock frequency
and is satisfied by all of the considered FIFOs.

Equation 4 is the critical timing relationship for all
of the FIFO speed grades. Timing margins can be
increased by using faster control logic (PAL20-4).

Table 2. Maximum Transmitter Interface
Frequency with Asynchronous FIFOs

Eqn.# -10', -15 -20 Units

1 40.0 30.0 24.0 MHz

2 30.7 30.7 30.7 MHz

3 33.3 26.1 21.4 MHz

4 29.2 23.5 19.7 MHz

5 30.8 30.8 30.8 MHz

bit rate 292 235 197 Mbits/s

Summary

With available CY7C46X-15 FIFOs, the HOT­
Link-FIFO interface can operate at a frequency of
23.5 MHz with minimal interface logic. This corre­
sponds to a serial bit rate of 235 Mbits/s.

When -10 FIFOs become available, the maximum
interface frequency will increase to 29.2 MHz (292
Mbits/s).

6-328

Interfacing the CY7B923 and CY7B933
(HOTLink TM) to Clocked FIFOs

Introduction

This application note describes the interfacing is­
sues between the Cypress CY7B923/CY7B933
(HOTLink '") transmitter/receiver and Cypress
clocked FIFOs. The HOTLink-FIFO interface is
capable of performing parallel bus transactions at
rates of up to 33 Mbytes/s and serial transfers at
rates of up to 330 Mbits/s. The FIFO serves as an
asynchronous storage buffer between the data bus
and the serial link.

Transmitter Interface

This section describes the design considerations of
a high-speed serial transmitter with FIFO (First-In
First-Out) data buffers. The interface design sup­
ports basic data transmission control and serial link
testing. The transmitter design is intended to inter­
face to a higher-level system controller responsible
for handling bus transactions and the serial link pro­
tocol. The interface is a primitive building block that
is easily modified to meet system requirements.

Data Path and Controller

The transmitter interface consists of a single
CY7C441/3 -14 clocked FIFO interfacing directly
to the HOTLink 1tansmitter. A transmitter control­
ler supplies the control signals to both the FIFO and
the HOTLink Transmitter. The architecture of the
controller is left unspecified, but it can be imple­
mented in a PLD or FPGA. State diagrams and ge­
neric timing diagrams are provided. A block dia­
gram of the transmitter interface is shown in
Figure 1.

Built-In-Self-Test

The transmitter is capable of checking the function­
ality of the transmitter serial connection by exercis­
ing the Built-In-Self-Test (BIST) mode of HOT­
Link. To initiate BIST, the BISTEN pin is held LOW,
resulting in the transmission of the repeating char­
acter 1010101010. The HOTLink ENA (Enable
Parallel Data) pin is then pulled LOW to enable
transmission of the BIST test pattern. The
HOTLink Transmitter will assert the Rp (Read
Pulse) pin HIGH at the beginning of BIST and will
pulse it LOW once per BIST loop. During BIST,
HOTLink ignores data at its parallel port and the
FIFO must not perform any reads.

Resetting the FIFO

The higher-level controller should reset or clear the
FIFO at power-up, before a new block of data is
transmitted, or if an error occurs. Resetting the
FIFO is accomplished by asserting the MR (Master
Reset) pin on the FIFO LOW. Neither a read nor a
write can occur on the cycles immediately preced­
ing, during, or following the assertion of MR. To in­
sure that this condition is met, the interface control­
ler must be in the IDLE state (Figure 2) during the
entire Master Reset cycle. Proper FIFO reset also
requires that MR be glitch free. The higher-level
controller is responsible for coordinating the read
and write ports and insuring that the reset condi­
tions are met.

Controller State Description

For applications requiring high-speed asynchro­
nous data buffering, the FIFO read and write ports

6-329

=:'~YPRESS~~~~~~~~In~t~erl:~a~C~in~g~H~O~T~L~in~k~t~o~a~c~lo~c~~~ed~F~I~F~O=

DATA BUS

+ + ~g
EIiIW CKW D0-8

Transmit
F1 - RES CLOCKED FIFO 1'iifR ...
F2 CY7C44113 -

ET

Test .. ENR CKR 00-8 - .~ n
~iting TRANSMITTER Vg

CONTROLLER + r " r
CLOCK

--- EI\IA ENN CKW DO-7,SC/[) ..
---.. arsTEN HOTLink

5' SVS CY7B923
.... Rp

SERIAL DATA OUT

• Figure 1. Transmitter Interface Block Diagram

should be controlled by separate control circuitry
synchronized to the FIFO ports. The FIFO write
port interfaces directly to a 9-bit data bus. Data is
written into the FIFO by asserting ENW to enable
the write clock (CKW). Data may be written at any
time as long as the FIFO is not full (as indicated by
the FIFO full flag) and a FIFO reset cycle is not in
progress.

The FIFO read port interfaces to the HOTLink
transmitter parallel port. Control of this interface

IDLE GO

Waiting
.... STOP -

Test

r
BISTO

BlSTEN"

is the focus of this section. The transmitter interface
state machine controls FIFO-HOTLink data trans­
actions and initiates the HOTLink Built-In-Self­
Test. The interface state machine is under the con­
trol of a higher-level controller responsible for both
the serial protocol and the data bus/FIFO transac­
tions.

The interface controller is a simple state machine as
shown in Figure 2. While the state machine waits in
the IDLE state, HOTLink will transmit Sync fill

..

rest

..

TX

ENN=STOP

BIST1
BlSTEN
8ilA

Empty = FfeF2

GO = Transmiterest

STOP = Transmit + Empty

Figure 2. Transmitter Controller State Diagram

6-330

~

=--- -.A -=-; CYPRESS =======;;;;;;I;;;;;;n;;;;;;te;;;;;;rf:;;;;;;a;;;;;;c;;;;;;in;;;;;;g;;;;;;H;;;;;;O;;;;;;T;;;;;;L;;;;;;i;;;;;;n;;;;;;k;;;;;;to=a;;;;;;C;;;;;;lo;;;;;;c;;;;;;k;;;;;;ed=F;;;;;;IF;;;;;;O=

characters (K28.5). When the Transmit signal is as­
serted by the higher-level controller, the transmitter
state machine transitions to the TX state. The TX
state reads 9-bit words out of the FIFO into the
HOTLink Transmitter until a Stop condition is de­
tected (the FIFO is empty or the Transmit signal is
deasserted). Reading data from the FIFO is accom­
plished by asserting ENR LOW. The same signal is
connected to ENN (Enable Next Parallel Data) pin
of HOTLink. Assertion of ENN causes data on the
next rising edge of the clock to be latched into the
HOTLink Transmitter. The functionality of the
ENN pin is specifically designed to operate with the
pipelined architecture of clocked FIFOs. After a
Stop condition is detected, the state machine re­
turns to the IDLE state and asserts the Waiting
signal.

The state diagram includes test states for exercising
the Built-In Self-Thst (BIST) capabilities of HOT­
Link. The Built-In Self-Test loop is entered when the
higher-level controller asserts the Test signal while
the transmitter state machine is in the IDLE state.
The BISTO state asserts BISTEN to initiate to the
transmission of the repeating character
1010101010. The BISTl state then asserts ENA to
start the BIST pattern generation. The higher-level
controller could monitor Rp to count the number of
BIST patters sent. Built-In Self-Test will conclude
when the higher-level controller deasserts Test after
the desired number of BIST patterns have been
sent. Control then returns back to the IDLE state.

Critical Timing Analysis

Timing diagrams are provided for the transmitter
interface. The analysis assumes that the state ma­
chine state state bits are accessible sooner than any
data or input control signal.

FIFO-HOTLink Transmitter Data timing is gov­
erned by the FIFO access time (tA = 10 ns) and the
data set-up time for HOTLink (tSD = 5 ns).

~ + tSD::::; tCKW Eq.1

With clock periods greater than 30 ns, the data has
no trouble meeting these timing constraints.

The critical timing path of the FIFO-HOTLink
Transmitter interface is due to the delay associated
with decoding the flags and generating the enable
for the clocked FIFO (ENR) and HOTLink (ENN).
Note that these are the same signals, but ENR re­
quires a longer set-up time than ENN. The delay
due to the state machine decoding the flags and gen­
erating the enable is represented as tpD' The FIFO
flag delay, tpD, is 10 ns. The read enable set-up time
for the FIFO, tSEN, is 7 ns.

tpD ::::; tCKW - tSEN - tFD Eq.2

A 30-ns clock period leaves the controller 13 ns to
generate the ENN signal. A timing diagram is pro­
vided in Figure 3.

Receiver Interface

The receiver interface uses a single CY7C451/3-14
clocked FIFO to buffer the parallel data presented
by the HOTLink Receiver. The CY7C45X FIFO
features programmable flags and three-state output
drivers for bus applications. The HOTLink receiver
interface is capable of receiving serial data at rates
of up to 330 Mbits/second and then writing 9-bit
words in the FIFO. Words in the FIFO can be read
to the data bus at rates of up to 70 MBytes/s. A high­
er-level controller is responsible for coordinating
the receiver interface and bus transactions accord­
ing to the serial link protocol. Figure 4 shows a block
diagram of the receiver HOTLink-FIFO interface.

Reframe

The HOTLink serial receiver must synchronize it­
self with the proper word alignment of the incoming
data. Assertion of the HOTLink RF (Reframe) in­
put forces HOTLink to synchronize its internal bit
counter with the boundary of a received K28.5 char­
acter. HOTLink will respond by asserting RDY
LOW when the first K28.5 is received. The receiver
state machine controller should be designed to syn­
chronize HOTLink at the beginning of data recep­
tion or after excessive errors have been received.

Data Path and Controller

The receiver state machine responds to control sig­
nals from a higher-level controller. The higher-level
controller initiates data reception by asserting the

6-331

TX

DATA

F1

F2 LOW

TX

tFD tpD tSEN

Critical ath

IDLE TX

tFD tpD tSEN

Critical Path

TX TX

--~----~----+-~----~------+------+------

Transmit

Critical Timing Analysis:
tpD tSEN

1. Data set-up time:
tA + tso ::; tcKW

2. Enable set-up time from Empty flag:
tFD + tpo + tsEN ::; IcKW

Figure 3. Transmitter Timing Diagram

Receive signal to the receiver state machine. Nine­
bit words from the HOTLink parallel port are
stored into the 7C45X FIFO each time RDY is as­
serted LOW RDY will pulse LOW when new data
is available at the HOTLink parallel port and will be
HIGH when a pad sequence is received (multiple
K28.5 SYNC codes). RDY is used to prevent the
FIFO from filling with SYNC. characters. Data stor­
age will stop immediately when Receive is deas­
serted.

If the FIFO becomes full, it will ignore attempted
writes. Full and Empty flags are decoded so that the
higher-level controller can detect when the FIFO
contains data or is completely full.

The 7C45X features programmable Almost Full
and Almost Empty flags. The distance that these
flags become active from the Empty and Full FIFO
boundary is programmed during the FIFO Master
Reset cycle. The distance can be set such that a flag
is asserted when a fixed length packet of data has
been received. The higher-level controller responds
to the flag by reading the data packet out of the
FIFO. The Almost Full flag is useful for preventing
data from being lost. This flag can be programmed
to compensate for the response latency of the high­
er-level controller so that data can be read from the
FIFO before it becomes full. The decoding of the
programmable flag signals is left out of the control­
ler design for clarity.

6-332

~,~
, CYPRESS =======;;;;;IB;;;;;t;;;;;erf:;;;;;8;;;;;c;;;;;iB;;;;;g;;;;;H=O;;;;;T;;;;;L;;;;;iB;;;;;k;;;;;t;;;;;o;;;;;8;;;;;C;;;;;lo;;;;;c;;;;;k;;;;;ed;;;;;F;;;;;I;;;;;F;;;;;O=

Receive .. + ... SERIAL DATA IN ..
Reframe ffiSiEN

HOTLink ...
Test RF CY7B933 ...

CKR RlJ'i' RVS aQ-7,SC/O
~ting
BVi" RECEIVER : CONTROLLER :::
RVS

....
FyLL .. El\JW - ElF
~PTY -: PAFE - FfF

.st=~ ~~§~= ~-~J

9. ~---,
" CKW DO-8

OPTIONA L
MMING PROGRA

SIGNALS

CLOCKED FIFO
~ CY7C45X

fi.m

CKR 00-8

f To Data Bus

Figure 4. Receiver Interface Block Diagram

9~

Optional Pipeline Register

The optional pipeline register increases interface
speed by capturing the RDY pulse and easing the
control signal timing margins. RDY is a delayed
60% LOW duty cycle signal shaped for asynchro­
nous FIFOs. Without the pipeline register, the
LOW phase of RDY leaves less than Y2tCKR -10 ns
to generate the FIFO write enable and meet the set­
up time. A clock period of 40 ns (250 Mbit/second)
leaves a manageable 10 ns for the receiver state ma­
chine to generate the FIFO write enable, but as the
clock period decreases to 30 ns (330 Mbit/second),
the enable generation time shrinks to only 5 ns. This
timing difficulty is overcome by pipelining the inter­
face. The data and status signals must be pipelined
to insure the proper word is written into the FIFO.
The timing implications are considered in the sec­
tion on critical timing analysis.

A data pipeline register with three-state output driv­
ers can also be used to isolate the HOTLink Receiv­
er parallel port from the FIFO write port while pro­
gramming the CY7C45X FIFO flags. A 9-bit
program word from an external source can be writ­
ten into the FIFO during a Master Reset cycle. The

program word sets the Almost Empty and Almost
Full flags and sets the FIFO parity option.

Resetting and Programming the FIFO

The higher-level controller should perform a FIFO
Master Reset cycle after power-up, before new data
is received, if an error occurs, or in order to program
the FIFO flags. A Master Reset cycle is accom­
plished by asserting the MR pin on the FIFO LOW.
Proper resetting or programming requires that MR
be glitch free. In addition, neither a read nor a write
can occur on the cycles immediately preceding, dur­
ing, or following the assertion of MR unless the
FIFO is being programmed. If the FIFO is not being
programmed, the receiver state machine should re­
main in the WAlT state during the Master Reset
cycle.

In order to program the FIFO, the higher-level con­
troller should put the data pipeline register in the
high impedance state. The program word is then
supplied to the FIFO by an external source (data
bus, controller, etc.). This word is written into the
FIFO internal program register during the Master
Reset cycle on the rising edge of the clock that is en­
abled by ENW asserted LOW.

6-333

~ -::4: J CYPRESS =======;;;;;I;;;;;n;;;;;te;;;;;r;;;;;fa;;;;;c;;;;;in~g;;;;;H;;;;;O;;;;;T;;;;;L;;;;;I;;;;;'n;;;;;k;;;;;t;;;;;o;;;;;a;;;;;C;;;;;I;;;;;oc;;k;ed;;;F;IF~O~

REFRAME

RF
Reframe

WAIT
Waiting

GO WRITE

ENW = STOP+RlJ'i'

PROGRAM

EIWV

Empty = E/f'oW

Full = E/roW

STOP = Receive

GO = ReceiveoReframeoi9st

Figure S. Receiver Controller State Diagram

Built-In Self-Test

The Built-In Self-Test mode is exercised by asserting
the BISTEN pin on the HOTLink Receiver. Upon
entering BIST, the HOTLink Receiver will wait for
the BIST initialization code and then assert RDY
LOW when the code has been received. RDY will
pulse HIGH once per received BIST loop. RVS will
pulse HIGH if a byte pattern mismatch occurs.
RDY and RVS can be monitored by the higher-level
controller to characterize the integrity of the link.

Controller State Description

A state diagram for a receiver state machine is
shown in Figure 5. Five simple signals control the in­
terface. The Receive signal instructs the state ma­
chine to store words into the FIFO when RDY
pulses LOW. Deassertion of Receive ends data re­
ception abruptly. The Reframe signal tells the state
machine to synchronize the HOTLink Receiver to
the serial data. The Test signal forces the HOTLink
Receiver to enter BIST mode and the Program sig­
nal causes the state machine to write a word into the
FIFO internal program register. The Waiting out-

put signal is asserted when the state machine is in
the WAIT state.

Full and Empty signals are decoded for the conve­
nience of the higher-level controller to assist in
reading data out of the FIFO. The programmable
flags may also be decoded if they have been pro­
grammed. It is important that the flags be moni­
tored because a full FIFO will ignore attempted
writes. The higher-level controller is responsible for
insuring that the FIFO does not become full.

The REFRAME state is entered by the assertion of
Reframe from the WAIT state. The REFRAME
state is used to synchronize the receiver to the in­
coming serial data stream. When the state machine
asserts RF, the HOTLink Receiver synchronizes its
internal bit counter with received K28.5 characters.
RDY will pulse LOW when the first synchronized
K28.5 character is available. The state machine will
return to the WAIT state when the serial data has
been resynchronized and Reframe is deasserted.

Data reception is initiated by asserting the Receive
signal while the state machine is in the WAIT state.
The controller will immediately transition to the
WRITE state and store data when RDY is asserted

6-334

=:w rcYPRESS =======;;;;;In;;;;;t;;;;;erf=ac;;;;;in;;;;;g;;;;;H=O;;;;;T;;;;;L;;;;;in;;;;;k;;;;;t;;;;;o;;;;;a;;;;;C;;;;;lo;;;;;c;;;;;k;;;;;ed=FI;;;;;F;;;;;O=

LOW. The WRITE state continually writes valid
characters into the FIFO until Receive is deas­
serted. Control then returns to the WAIT state and
Waiting is asserted.

The BIST state is included for handling the Built-In
Self-Test. During BIST, writing to the FIFO is dis­
abled. Assertion of RVS will signal a character re­
ception error. RDY will pulse once per BIST loop
and should be used to count the number of BIST
loops received. The higher-level controller could
monitor these signals in order to characterize the
link.

The PROGRAM state writes the program word into
the FIFO internal program register. This state is en­
tered from the WAIT state at the command of the
higher-level controller. Programming should only
be performed during a Master Reset cycle (MR
LOW). In order to meet the FIFO programming
timing requirements, it is recommended that at
least one clock cycle occur on each side of the pro­
gram cycle while MR is LOW. The higher-level con­
troller is responsible for meeting the specific pro­
gramming timing requirements discussed in the
Resetting and Programming the FIFO section of the
CY7C45X datasheet.

Critical Timing Analysis

Timing analysis for both the pipe lined and unpipe­
lined interface are presented in this section. A Tim­
ing diagram is provided for the receiver interface
that does not include the optional register. Critical
timing relationships are provided at the bottom of
Figure 6. This diagram highlights the critical timing
of the RDY pulse. The interface timing with pipe­
line registers is straight forward and the results are
presented below.

The timing analysis assumes that the state machine
state bits are stable and valid before any critical sig­
nal is available to the state machine and that state bit
set-up time is not an issue. This assumption allows
the state machine timing to be modeled by its combi­
natorial tpD.

Unregistered Timing

The delayed RDY pulse tightens the timing margins
on the receiver controller. The state machine com­
binatorial delay for generating output control sig­
nals from valid inputs is modeled as tpD. The FIFO
enable set-up time is tSEN=7 ns. Assuming tCKR is
30 ns, the constraint on tpD is

Write enable generation time from RDY LOW:

tpD ~ 112 tCKR - tSEN -3 ns = 5 ns Eq. 3

A 40-ns clock period eases the timing constraint to
a more reasonable 10 ns.

The parallel data have no problem meeting the tim­
ing constraints imposed by a 30-ns clock period. The
HOTLink Receiver access time, tA, is 9 ns and the
FIFO data set-up time, tSD, is 7 ns:

Critical data timing:

tA + tSD ~ tCKR Eq.4

This assumes no trace delays or clock skew.

Registered Timing

With the optional pipeline register inserted, the tim­
ing constraint on the controller is eased. A register
access time, tAR, of 10 ns and set-up time, tsu, of 5
ns are assumed. Using a 30-ns clock, the HOTLink
Receiver access time is tA = tCKR/5 +3 ns = 9 ns.

The constraint on the combinatorial delay through
the controller is

Write enable generation time from RDY LOW:

tpD ~ tCKR -fAR -tSEN = 13 ns Eq.5

The HOTLink data and RDY pulse timing
constraints to the pipeline register are

Data set-up time:

fA + tsu~ tCKR

RDY set-up time:

tsu ~ 1I2tcKR - 3 ns

These constraints are easily met.

Eq.6

Eq.7

6-335

WRITE WRITE

CKR

DATA

WRITE WAIT

tpD
14-'-~.-! tsEN

WRITE WRITE WRITE

---+-------+-------+~I ,---~------~------~--------
Receive

Waiting

Reframe LOW

--~----~~----~----~------+------+------+------
Critical liming Analysis

1. Data set-up time:
tA + tso :s; tCKR

2. Write enable set-up time from ROY going LOW:
tpo + tsEN :s; tpRF

Figure 6. Receiver Timing Diagram

Conclusion

The HOTLink transmitter/receiver ~terfaces to
clocked FIFOs can operate at speeds up to 330

HOTLink is a trademark of Cypress Semiconductor Corporation.

Mbits/s with no extemallogic. Simple state machine
controllers can be used to enable the transmission
and reception of serial data and enable the HOT­
Link Built-In-Self-Test capability.

6-336

Interfacing the CY7B923 and CY7B933
(HOTLink TM) to a Wide Data Clocked FIFO

This application note considers general interfacing
issues between the Cypress CY7B923/CY7B933
(HOTLink'M) Transmitter/Receiver and Cypress
clocked FIFOs. The focus is on applications with a
36-bit data bus requiring high data transfer rates. A
parallel FIFO solution is recommended for applica­
tions requiring large data bandwidth. Four FIFOs
can achieve parallel data transfers on and off a
36-bit bus at rates of up to 280 Mbytes/s. The HOT­
Link serial link can transfer data at a serial rate of
330 Mbits/s. The FIFOs act as asynchronous stor­
age buffers between the data bus and the serial link.

Transmitter Interface

This section describes the design considerations of
a high-speed transmitter interface with FIFO (First
In First Out) data buffers. The design implements
basic data transmission and serial link testing capa­
bilities. The transmitter is intended to interface to
a higher-level controller responsible for coordinat­
ing bus transactions and handling the various proto­
col layers. The design considerations are easily ex­
tended to handle specific design requirements.

The transmitter interface consists of four Cypress
CY7C441/3-14 clocked FIFOs buffering data be­
tween a 36-bit data bus and a Cypress HOTLink
Transmitter. A 4: 1 multiplexer (9 bits wide) funnels
the wide FIFO data into the HOTLink parallel port.
A local state machine controller coordinates the
flow of data between the FIFOs and HOTLink. The
FIFO - data bus interface and local controller archi­
tecture are left unspecified for generality. A block

diagram of the FIFO-HOTLink interface is shown
in Figure 1.

Data Multiplexers

The 4:1 multiplexers are part of the critical data
path timing. These multiplexers can be implement­
ed in several ways. Standard high-speed 153 dual
4:1 multiplexers can be used. Five of these devices
are needed to accommodate 9-bit data. 74ACT153s
with a maximum tsz of 11.5 ns and tDZ of 9.5 ns are
sufficient.

The 4:1 multiplexers can also be implemented with
three Cypress 16L8-lOs. Each 16L8 can accommo­
date three 4:1 multiplexers. This solution provides
a smaller footprint and improves the critical timing
margins. Critical timing margins are discussed in
the Critical Timing Analysis section of this applica­
tion note.

Built-In Self-Test

The transmitter interface is capable of checking the
functionality of the serial link by exercising the
Built -In Self-Test (BIST) mode of HOTLink. To ini­
tiate BIST, the BISTEN pin is held LOW, resulting
in the transmission of the sequence ... 1 0 1 0 The
ENN (Enable Next Parallel Data) pin is then pulled
LOW to enable transmission of the BIST test pat­
tern. HOTLink will assert the RP (Read Pulse) pin
LOW at the beginning of BIST and will pulse it
HIGH once per BIST loop. RP can be used to count
the number of BIST loops sent. During BIST, HOT­
Link ignores data at its parallel port and the FIFOs
do not perform any reads.

6-337

rcYPRESS ====I;;;;;nt;;;;;e;;;;;rf:;;;;;ac;;;;;i=ng~H;;;;;O;;;;;T;;;;;L;;;;;in;~;;;;;t=o;;;;;a;;;;;Wi;;;;;I;;;;;d;;;;;e;;;;;D;;;;;a;;;;;ta;;;;;C;;;;;I;;;;;o;;;;;c~=;e;;;;;d;;;;;FI;;;;;F;;;;;O=

CLOCKED FIFOexl

- I~ CY7Q44X 6,1--------.
CKR ENR F1 F2 a
f f

CLOCKED FIFOexl

_I~ CY7C44X 611 -+---++-.,
CKR ENR F1 F2 a I

9/ 316LS's • .,.....
f f

9/ ,
9/

I
,
~ , cPLOCKED FIFOexl

_I~ CY7C44X 6,~--~+H~
CKR rnA F1 F2 a
f f

CLOCKED FIFo'l'
_I~ CY7C44X ~I-+-H+H+----I

CKR ENR F1 F2 v

f f ,"

To Higher-Level
Controller

Rp .-__________________________ ~

Transmit ____________________________ ~ Thm ____________________________ ~

Waiting .-__________________________ ~

4:1 9/
MUX

SELECT
~

TRANSMITTER

CONTROLLER

CKR

f

18 CKR
en HOTLink §~ ,..;-

CY7B923 I

8ENA ENN SVS BISTEN Rp

Figure 1. Transmitter Interface B!ock Diagram

Resetting the FIFOs

The higher-level controller should reset the FIFOs
at power-up, before a new block of data is trans­
mitted, or if an error is detected. Resetting or clear­
ing the FIFOs is accomplished by pulsing the MR
(Master Reset) pin on the FIFOs LOW. Neither a
read nor a write can occur on the cycles immediately
preceding, during, or following the assertion of MR
MR must be glitch free. During the FIFO Master
Reset cycle, the local transmitter controller should
be in the WAIT state (see Figure 2). The higher-lev­
el controller is responsible for insuring that these

conditions are met while performing the Master Re­
set cycle.

Transmitter Controller State
Description
The local transmitter controller is responsible for
reading data from the parallel FIFOs via the mux se­
lect lines and initiating the HOTLink BIST feature.
The controller can be synthesized into a PLD or
FPGA. Timing requirements of the controller are
considered in the next section.

The local controller waits in the WAIT state while
data is loaded into the FIFO. Meanwhile, HOT-

6-338

_?cYPRESS ====I;;;;;n;;;;;te;;;;;rf;;;;;a;;;;;c;;;;;in=g=H;;;;;O;;;;;T;;;;;L=in;;;;;k;;;;;t;;;;;o;;;;;a;;;;;W;;;;;i;;;;;d;;;;;e;;;;;D;;;;;a;;;;;ta;;;;;C;;;;;I;;;;;o;;;;;ck;;;;;e;;;;;d;;;;;F;;;;;I;;;;;F=O

WAIT TXO TX1
ENR=GO

GO ... Select = 00 ... Select = 01
~ ENA ~ ENA

Waiting

...
Test

"
STOP STOP

" Test

TEST BIST TX3 TX2
BISTEN

Select = 11 Select = 10
BISTEN .. ENA

ENN ENA
ENR=OO

Empty = F1ooF2ooF11oF21oF12oF22oF13oF23

GO=Transmit 0 Test 0 Empty

STOP=Transmit + Empty

Figure 2. Transmitter Controller State Diagram

Link will transmit Idle special characters (K28.5).
When the higher-level controller asserts the TIans­
mit signal, the local transmitter controller issues a
read (ENR LOW) to all the FIFOs and transitions
to the TXO state.

The transmit states (TXO-3) select data from the
FIFOs in an ordered sequence. The TXO state se­
lects the byte out of FIFOO for transmission and
then transitions to the TXl state. The TXl state se­
lects a byte out of FIFO 1 and then transitions to the
TX2 state. The TX3 state is responsible for check­
ing the flags to determine if all of the FIFOs are
empty, and then asserts ENR if they are not. (The
controller can be designed to report an error if not
all FIFOs are empty at the same time.) The transmit
loop continues until all the FIFOs are empty or until
Transmit is deasserted. Control then returns to the
WAIT state. The Waiting signal should be moni­
tored to determine when data transmission has
ceased.

The state diagram of the local transmitter controller
includes states for exercising the Built-In Self-Test
capabilities of HOTLink. The local state machine
enters the BIST state from the WAIT state when the
higher-level controller asserts the Test signal. BIST

is exited when Test is deasserted. The higher-level
controller monitors RP for BIST loop counting. RP
will pulse LOW one time per BIST loop. Figure 2
illustrates the controller state diagram.

Critical Timing Analysis

The timing analysis in Figure 3 highlights three criti­
cal data timing paths. The first critical path arises
in the WAIT or TX3 states from the delay associated
with decoding the flags and generating the read en­
able for the clocked FIFOs. The FIFO delay for
generating the flags, tpD, is 10 ns. The delay due to
the controller decoding the flags and generating the
enable is represented as tpD' The read enable set-up
time for FIFOs, tSEN, is 7 ns (tSEN > tSD)' The
constraint imposed upon the controller is

tpD S tCKW - tpD - tSEN

With a-30 ns clock period, the signal propagation
delay through the controller must be tpD ~ 13 ns
excluding trace delays and clock skew. This timing
analysis assumes that the state register outputs are
fed back to the controller before the flags signals are
valid (teo < tpD)'

The second critical timing case assumes that data is
available at the mux before the data selector signals

6-339

~rcYPRESS ====I;;;;Dt;;;;e;;;;rf:;;;;a;;;;d;;;;D;;;;;g;;;;H;;;;O;;;;T;;;;L;;;;iD;;;;k;;;;t;;;;o;;;;a;;;;Wi=ld;;;;e;;;;D;;;;a;;;;ta;;;;C;;;;I;;;;o;;;;ck;;;;e;;;;d;;;;FI=FO=

TX2 TX3 WAIT WAIT TXO TX1

CKW

F1

F2 low ---+-------+-------+-------+-------+-------+--------

WIDE
FIFO
DATA

SELECTO

SELECT..,.!.1--1--J

HOTLin
DATA

tsz tso

FIFO Data 2 FIFO Data 3

Transmit

Critical Timing Analysis

1. Read enable set-up time:
tFO + tpo + tSEN :::;; tcKW

2. HOTLink data set-up time from MUX data select:
tSEL + tsz + tso :::;; tcKW

3. HOTLink data set-up time from FIFO data access:
tA + toz + tso :::;; 1cKW

toz tso

FIFO Data 0 FIFO Data 1

Figure 3. Transmitter Timing Diagram

6-340

.?cYPRESS ====I;;;;;nt;;;;;e;;;;;rf:;;;;;a;;;;;ci;;;;;n:;g ;;;;;H;;;;;O;;;;;T;;;;;L;;;;;in;;;;;k;;;;;t;;;;;o;;;;;a;;;;;W=id;;;;;e;;;;;D;;;;;a;;;;;ta;;;;;C;;;;;l;;;;;o;;;;;ck;;;;;e;;;;;d;;;;;F;;;;;I;;;;;FO=

(tSEL> tA, where the delay from a clock edge to the
arrival of the data selectors at the muxes is tSEd.
The delay from the selector pins to valid output data
is tsz. The data set-up time to HOTLink, tso, is 5
ns. The critical timing associated with this path is

tSEL + tsz Hso .$ tCKW

The time to generate the data selectors from the
controller is minimized by using the low-order bits
of the state machine as the selectors and assigning
TXO - 3 to these states. This decreases the hardware
required for the controller and reduces the selector
signal-generation time to the clock-to-output time
(tco) of the state registers. Assuming a 30-ns clock
and tco= 10 ns, the mux delay must be tsz.$ 15 ns.

The delay through the mux from valid input data to
valid output is toz. Assuming that the data selectors
arrive before the data (tA > tSEd, the critical timing
of this path is given by

tA + toz + tso.$ tCKW

The data access time of the FIFOs, tA, is 10 ns. With
a 30-ns clock period, the constraint imposed upon
the mux is toz .$ 15 ns, assuming no trace delays or
clock skew.

Receiver Interface

In this section a solution is presented for interfacing
a HOTLink receiver to a 36-bit data bus. Control of
the interface is simple and is easily adapted to system
requirements. The four parallel CY7C451/3-14 FI­
FOs provide a high-speed interface to the data bus,
allowing parallel transfer at rates up to 280 Mbytes/
s. The serial link can receive data at serial rates up
to 330 Mbits/s. The receiver interface is designed to
provide proper word alignment in the FIFOs after
synchronization to the data stream has been
achieved. Figure 4 shows a block diagram of the
HOTLink-FIFO receiver interface.

Reframe

The receiver interface must synchronize itself to the
incoming data and then store the data in the FIFOs
with proper word alignment. The HOTLink RF
(Reframe) input is used to synchronize the receiver
to the transmitted data. Assertion of RF forces

HOTLink to synchronize its internal bit counter
with the boundary of a K28.5 character. HOTLink
will respond by asserting RDY LOW when the first
K28.5 is received. Reframing may be performed be­
fore data storage in order to synchronize HOTLink
to the incoming serial data stream.

Idle Decoder

The Idle Decoder decodes the three types of idle
characters: K28.5 (C5.0), -K28.5 (Cl.7), +K28.5
(C2.7). These idle characters are used to signal the
boundary of data words to be read into the FIFOs.
A logic equation for the Idle Decoder is contained
in Figure 5. A-H refer to HOTLink output pins
00-07. When the Receivel signal is asserted by
the higher-level controller to the local controller,
reception of any of these idle characters will trigger
received data to be continually stored in the FIFOs
starting with FIFOO (Figure 5). The combinatorial
delay through the decoder is modeled as tID.

Data Path and Controller

The HOTLink receiver parallel port interfaces di­
rectly to the FIFOs' write ports. A pipeline register
may be inserted to improve timing margins or allow
the FIFOs to be programmed. A local receiver con­
troller coordinates the data flow and enables the
HOTLink receiver BIST feature. The local receiver
controller interfaces to a higher-level controller
that coordinates all of the protocol layers of the link
and the data bus transactions.

The higher-level controller instructs the local con­
troller when to start data reception. A K28.5 char­
acter delimits the start of a data transmission.
When this character is detected by either HOTLink
or the Idle Decoder, the local controller writes the
incoming data into the 45X FIFOs. The writing pro­
cess continues until the higher-level controller sig­
nals the local receiver controller to stop.

The FIFO flags are decoded to signal when the FI­
FOs are empty or are full. A full FIFO will ignore
attempted writes. The 45X FIFO features program­
mable Almost Full and Almost Empty flags that can
assist in signaling when the FIFO is becoming too
full. Programmable flag signals are left out of the
design for clarity.

6-341

Interfacing HOTLink to a Wide Data Clocked FIFO

f
1
1 OPTIONAL
1 PROGRAMMING

j SIGNALS
I 1 __ .1, 1

I rn: I 1
CKR 10 I I 1

.fLOCKED FIF. 0
r------+~6 CY7C45X

~ m: E1WCKW

T T

.fLOCKED FIFO
Hf--+--I-.t6 CY7C45X

0Ell" RF ENWCKW cnu _ IREGISTERI.I
HOTLink :I----'!-I~.-__,r-+---_+_---lL.-__1
CY78933 ~' I I Iff

BfSTEI\J" RF RV IS RO'i' ° I I
I I L ____ J .fLOCKED FIFO

1-+1++--1+--1 6 CY7C45X
°EJF m: E1WCKW I DE~65ERI CY7C335

IDLE I _fj
r- f----:..r--,
I REGISTER <1-. CKR

L-tt---r-Y CLOCKED FIFO
~+++I-+H-+-.I% CY7C45X

0E'/F m: ENWCKW

ReceiveO ________ ~
Receival ________ ~
Reframe ________ ~

T~t ________ ~

FULL _-------_1
EMP~_-------_I

RVS _-------_1
RlJ'7 _-------_1

Waiting _-------_1

RECEIVER
CONTROLLER

f T

Figure 4. Receiver Interface Block Diagram

The Cypress 45X family of clocked FIFOs feature
three-state data output drivers for direct interfacing
to a data bus. The higher-level controller is respon­
sible fer reading words from the FIFOs' read port to
the data bus.

The architecture of the local receiver controller is
unspecified, but can be implemented with a PLD or
FPGA. State machine descriptions and a timing
analysis of the data path and local receiver control­
ler are provided in the next sections.

Optional Pipeline Registers

The optional pipeline registers increase the inter­
face speed by capturing the RDY pulse and easing
timing constraints on the controller. RDY is a 60%
LOW duty cycle signal shaped for interfacing to ge­
neric asynchronous FIFOs. The LOW phase of
RDY leaves less than YztCKR -10 ns to generate the
FIFO write enable and meet the FIFOs' set up time.
A 40-ns clock period (250 Mbit/s) allows 10 ns for
the local controller to generate a FIFO enable. This
time shrinks to 5 ns when a clock period of 30 ns (330

6-342

~?cYPRESS ====I;;;;D;;;;t;;;;erf;;;;a;;;;c;;;;iD;;;;;g;;;;;;;H;;;;O;;;;T;;;;L;;;;i;;;;D;;;;k;;;;to=a;;;;W;;;;i;;;;d;;;;e;;;;D;;;;a;;;;ta=C;;;;lo;;;;c;;;;k;;;;ed=FI;;;;F;;;;O;;;;

Mbit/s) is used. The optional pipeline register cap­
tures the delayed RDY pulse and allows it to be pro­
cessed earlier during the next clock cycle. The data
and control signals must also be delayed by one
clock cycle to ensure proper data alignment. A
single CY7C335 PLD can be used to accommodate
the data pipeline registers, the Idle Decoder, and
the control signal delay registers. The timing im­
plications of the registers are considered in the sec­
tion on critical timing analysis.

The pipeline registers also isolate the HOTLink
parallel port from the FIFO write ports while pro­
gramming the FIFOs. A data pipeline register with
three-state output drivers should be used so that
data from an external source can be used to program
the FIFOs. Additional states and control signals
must be added to the controller. Programming is
performed during the FIFO master reset cycle.

Built-In Self-Test

The Built-In Self-Test mode is exercised by asserting
BISTEN. Upon entering BIST, HOTLinkwill await
the BIST initialization code and then assert RDY
LOW when the code has been received. RDY will
pulse HIGH once per received BIST loop. RVS will
pulse HIGH if a byte pattern mismatch occurs.
RDY and RVS can be monitored by the high-level
controller to characterize the error rate.

Resetting and Programming the FIFOs

The higher-level controller should reset the FIFOs
after power-up, before a new block of data is re­
ceived, if an error occurs or in order to program the
FIFOs. Resetting or programming the FIFOs is ac­
complished by pulsing the MR pin on the FIFOs
LOW. Neither a read nor a write can occur on the
cycles immediately preceding, during, or following
the assertion of MR unless the FIFOs are being pro­
grammed. FIFO programming information is con­
tained in the CY7C45l/3 data sheet. MR must be
glitch free. The receiver controller should only be
in the WAIT or PROGRAM states during a master
reset. The higher-level controller is responsible for
insuring that these conditions are met.

CODtroller State DescriptioD

A state diagram for the receiver interface controller
is shown in Figure 5. Five simple signals control the
interface. The ReceiveO and Receivel signals are
used to initiate and stop the reception of data. Re­
frame is used to synchronize the receiver to the seri­
al data stream. Test causes HOTLink to perform
BIST. Waiting is an output signal that indicates that
the receiver is in the WAIT state.

Full and Empty signals are decoded for use by the
higher-level controller to assist in managing data
out of the FIFOs. The programmable flags may also
be decoded but are not shown. A full FIFO ignores
attempted writes resulting in lost data. Monitoring
the state of the FIFOs is the responsibility of the
higher-level controller. Resetting the FIFOs by
pulsing MR LOW is also the responsibility of the
higher-level controller.

The REFRAME state is used to synchronize the re­
ceiver to the incoming serial data stream. The RE­
FRAME state asserts RF to the HOTLink receiver,
signaling it to synchronize its internal bit counter
with the first-received K28.5 character. RDY will
pulse LOW when a synchronized K28.5 character is
available. The controller will transition back to the
WAIT state when synchronization is achieved and
the Reframe signal is deasserted.

ReceiveO and Receivel initiate the storing of data in
the FIFOs from the WAIT state. The assertion of
ReceiveO causes the controller to look for the asser­
tion of RDY in order to begin data storage. The
assertion of Receivel causes the controller to look
for the assertion of IDLE in order to begin data stor­
age. The received K28.5 is written into FIFOO and
then the write loop is entered. The choice of which
receive mode to use depends on the serial link pro­
tocol.

The write loop continually writes valid characters
into the FIFOs. ENWO - 3 are cycled in order as the
data is received. The fullness of the FIFOs is ig­
nored by the controller. The higher-level controller
monitors the Full flag signal and takes corrective ac­
tion if the FIFOs become too full. The deassertion
of both receive signals will end the writing process
and return control back to the WAIT state on the

6-343

tir?cYPRESS ====I;;;;;nt;;;;;e;;;;;rf:;;;;;a;;;;;ci;;;;;n;g;;;;;H;;;;;O;;;;;T;;;;;L;;;;;in;;;;;k;;;;;t;;;;;o;;;;;a;;;;;W;;;;;l;;;;;'d;;;;;e;;;;;D;;;;;a;;;;;ta;;;;;C;;;;;I;;;;;o;;;;;ck;;;;;e;;;;;d;;;;;F;;;;;IF;;;;;O=

PROGRAM
EfilWn-O
EJilW1;;;O
~=O

3=0

• : Program

REFRAME

RF
Reframe

... Iest -
I

WAIT

Waiting

EfilWo=GO

WRITE1 WRITE2
GO • ...

ROY L-, ~~~~ ~ ROY

, r Test, r lest ROY STOP 1 r

,...---1.---r Relrame ,...-....L._-1---,
SYNC BIST WRITEO

ROY.STOP
WRITE3

BJSTFI'l EfilWo = m:iY El\IW 3 = m:iY

lOLl: = H.G;."F.E.D.C.B.A.SCf[) + H.G.F.E.D.C.B.A.SCf[) + H.G.F.E .D.C.S.A.SCm

GO = (ReceiveO.ROY + ReceivehIOLE).Reframe.rest

STOP = RecelveO + Recelve1

Figure 5, Receiver CQntroller State Diagram

next word boundary. The higher-level controller
should monitor the Waiting signal to determine
when receiver controller has returned to the WAIT
state.

The BIST state is included for handling the Built-In
Self-Test. During BIST, writing to the FIFOs is dis­
abled. HOTLink signals are passed on to the high­
er-level controller for error analysis. RVS will sig­
nal character reception errors. RDY will pulse
HIGH once per BIST loop and should be used to
count the number of completed BIST loops.

A single PROGRAM state that writes an external
program word to all of the FIFOs in par!lllel can be
added to the state machine. This state is entered

and exited during a FIFO master reset cycle. The
higher-level controller should assert MR LOW, put
the data pipeline register in the high-impedance
state, and then drive the external program word to
the FIFO write ports. The higher-level controller
then puts the local controller in the PROGRAM
state. The program word is written into the FIFOs'
internal program registers when the local controller
exits the PROGRAM state.

Critical Timing Analysis

A critical timing analysis of both the pipelined and
unpipelined receiver interfaces is presented in this
section. A timing diagram with critical timing equa-

6-344

~ ~YPRESS ====I;;;;;o;;;;;te;;;;;rf:;;;;;3;;;;;c;;;;;in;;;:;g;;;;;H;;;;;O=T;;;;;L;;;;;in;;;;;k;;;;;t;;;;;o;;;;;3;;;;;W;;;;;i;;;;;d;;;;;e;;;;;D;;;;;3;;;;;t3;;;;;C=lo;;;;;ck;;;;;e;;;;;d;;;;;F;;;;;I;;;;;F=O

tions is provided in Figure 6 for the receiver inter­
face that does not include the optional pipeline reg­
isters. Timing for the pipelined case is very similar.
The analysis assumes that the state register bits are
valid before any critical signals are available to the
controller.

The critical timing path constrains the propagation
delays associated with the local receiver controller
and Idle Decoder. The combinatorial timing delay
through the controller is modeled as tpD. The com­
binatorial delay through the Idle Decoder is mod­
eled as tID.

Unpipelined Timing

The timing for the unpipelined configuration is as
follows. Assuming tCKR =30 ns and tSEN=7 ns, the
propagation delays are

Write enable generation time from RDY LOW:

tpD < 1/2 tCKR - tSEN- 3ns = 5 ns

IDLE generation time from data:

tID < 4/5 tCKR - tSEN -tpD - 3 ns = 9 ns

These constraints require (approximately) tpD.s 5
ns and tID.s 9 ns. With a 40 ns clock cycle, these tim­
ing constraints are relaxed to tpD .::;. 10 ns and tID'::;'
12ns.

Pipelined Timing

With the optional pipeline registers inserted the
timing margins of the control logic are eased. As­
suming the register access time is tAR = 10 ns and the
register set up time is tsu=5 ns

Write enable generation time from clock:

tpD .::;. tCKR - tSEN - tAR = 13 ns

IDLE generation time from data:

tID'::;' 4/5 tCKR - tsu - 3 ns = 14ns

RDY capture timing:

tsu .::;. 1/2tcKR - 3ns = 12 ns

The pipeline registers ease the receiver control logic
timing margins to (approximately) 13 ns. The entire
pipeline circuitry, including the Idle Decoder, can
be synthesized into a single CY7C335-83 PLD
while meeting these timing constraints.

Conclusion

The HOTLink 1tansmitter/Receiver interfaces to
wide data FIFOs can operate at speeds of up to 330
Mbits/s with minimal interface logic. State machine
controllers ensure proper word alignment during
data transfers over the HOTLink serial link and
provide Built-In Self-Test capability. Critical timing
equations are provided. The interface designs are
easily modified to meet specific demands.

6-345

:'rcYPRESS ====I;;;n;;;te;;;rf:;;;a;;;c;;;in;;;:;g;;;;H;;;;;O=T;;;;;Ll;;;;;On;;;;;k;;;;;t;;;;;o;;;;;a;;;W;;;;;i;;;;;d;;;;;e;;;;;D;;;;;a;;;ta;;;;;C=lo;;;c~;;;;;e;;;d;;;;;FI=F=O

WRITE2 WRITE3 WAIT WAIT

CKR

Data

IDLE

ENWo

ENW1

Ef\IW2

tpD

ENW3

Receive1

Waiting __ -+ ______ -+ ______ -+J

Critical Timing Analysis:

1. Data set-up time
tA + tSD :5: tCKR

2. Write enable set-up time from ROY LOW
tpD + tSEN :5: tpRF

3. Write enable set-up time from idle HIGH:
tA + tiD + tpD + tSEN :5: tCKR

WAIT

Figure 6. Receiver Timing Diagram

HOTLink is a trademark of Cypress Semiconductor Corporation.

6-346

WAIT WRITE1

Frequently Asked Questions about
HOTLink ™ Evaluation Boards

The following questions are frequently asked by customers who are using HOTLink 1M Evaluation Boards.
These cursory answers will serve as an introduction for each topic. Separate application notes cover these
topics in more complete detail.

1. How can I convert a CY9266-C (750) Evaluation Board to use 500 cables? How can I convert a
CY9266-C (75m board to use 930 coax? How can I convert a CY9266-T (1500) STP (shielded twisted­
pair) board to use 1000 STP cables?

Conversions of the CY9266 - C and CY9266 - T boards to use transmission lines other than those shipped
in the standard configurations is as simple as changing the transmission line termination resistors (R40
and R4l) on the back side of the board. Carefully remove the ones currently on the board (presently 37.4Q
on a - C) and replace them with resistors with a value equal to half the transmission line characteristic
impedance (i.e., 2SQ for a SOQ cable). See Table 1 for the values used for some common cable imped­
ances. Extreme care must be used to avoid delamination of the board and damage to the traces by exces­
sive heat during desoldering and resoldering.

The change from higher to lower impedance transmission lines (e.g., 7SQ to SOQ coax or lSOQ to lOOQ
STP) may also require that the user change the transformer at Tl. Changes from lower to higher imped­
ance transmission lines usually do not require transformer changes. Alternatively, it may be desirable to
add resistors at RS4 and R5S. (If these resistors are added, cut the built-in wire-traces that currently short
the previously unused solder pads.) The higher currents involved in driving lower impedance transmission
lines require either a higher inductance transformer or series current limiting resistors.

As the impedance of the external cable changes, the drive level must vary to compensate. Part of the drive
circuit, R6l & R62, needs to change to in order to vary the drive current available. See Table 1 for the
values required for various cable impedances. Changes in drive current will change the spectral character­
istics of the souce signal and therefore the usable distance with a specific media type.

Table 1. Cable Impedance vs. R Values

Cable Impedance R40& R41 R61 &R62

lSOQ 7SQ 392Q

lOOQ SOQ 261Q

93Q 46.4Q 243Q

7SQ 37.4Q 196Q

SOQ 24.90 130Q

6-347

Frequently Asked Questions
'1ir~ about HOTLink Evaluation Boards

~ CYPRESS ==============
2. How can I convert a CY9266-C (750) Evaluation Board to use 1500 STP cables (like CY9266-T)? How

can I convert a CY9266-T (1500) STP board to use 750 cables (like CY9266-C)?

Conversion of the CY9266-C and CY9266-T boards to use transmission lines other than those shipped
in the standard configurations is as simple as changing the transmission line connectors and the transmis­
sion line termination resistors (see the answer to question 1).

For the CY9266-C: Carefully desolder and remove the BNC and TNC connectors installed at at 11 and J2.
Replace them with the connector of choice using the mounting and solder terminal holes provided.
WARNING: the CY9266-C board grounds the shield of the coax, and therefore one side of the trans­
former secondaries. Cut the traces leading to 11 and J2 on the solder side of the board (Under P1) to
convert to balanced operation.

For the CY9266 - T: Carefully desolder and remove the Sub-D installed at at PI. Replace it with the con­
nector of choice using the mounting and solder terminal holes provided. The three traces running on the
solder side from P1 to 11 and J2 were cut to unground the cable and allow balanced operation. Reconnect
these wires for unbalanced cable connections.

Changing connectors often also involves changing the impedance of the cable used. See question 1 above
about changing the resistor values for different values of cable impedance.

3. What types of Optical Modules are compatible with the CY9266-FX Evaluation Board?

We have tested and are shipping the CY9266-F Evaluation Board with Siemens, HP, and AT&T Optical
Modules.

Thble 2. Vendors for Optical Modules

Vendor Part Number Markings

CTS 1408N 1408N ODLXCVR
(formerly AT&T)

HP HFBR-5302 HFBR-5302

Siemens V23806-A 7-C2 Optical Data Link FC266 Transceiver

HP DLT1040-ST-2 Separate TX & RX modules
(formerly BT&D) DLR1040-ST-2 uses ST Fiber cabling

AMP/Lytel 269063-1 AMP SC Duplex 'fiansceiver 270 Mb/s 269063-1

These modules may be purchased from the following vendors. Although this is not a complete list of Opti­
cal Module vendors, it will serve as a starting point for finding a module that may suit your needs:

AMP/Lytel Division
61 Chubb Way
P.O. Box 1300
Somerville, NJ 08876
(908) 685-2000

CTSCorp
1201 Cumberland Ave
West Lafayette, IN 47906-1388
(317) 463-2565

Hewlett-Packard
Components Division
370 West nimble Road
San Jose, CA 95131
(800) 535-7449 or (408) 435-6342

Siemens Fiber Optic Components
20F Commerce Way
Totowa, NJ 07512
(201) 890-1606

Sumitomo Electric
Fiber Optics Corporation
777 Old Sawmill River Road
Thrrytown, NY 10591-6725
(914) 347-3770

4. Is this board compatible with (i.e., how do I use it with ...) the IBM/HP OLC card?

The HOTLink Evaluation Board is intended to allow easy evaluation of Cypress HOTLink parts and is
not intended to replace the IBM® OLC card as a system interface (although it is capable of performing

6-348

Frequently Asked Questions
.Ei'ir....-._ .. -::z about HOTLink Evaluation Boards
_;CYPRESS ==============

this function). The OLC compatibility offered with these boards allows a familiar interface for those sys­
tems already compatible with the IBM cards.

OLC system interface signals in JP4 have the same timing and logical levels as the OLC card. Drive and
loading are similar, but not identical. The function of the CY9266 Byte-Sync output differs from that of
the OLC card when Sync-Enable is LOW. The OLC card will hold Byte-Sync LOW if Sync-Enable is
LOW, while the CY9266 will set Byte-Sync HIGH for each byte containing a K28.5. When Sync-Enable
is HIGH both boards will behave as the CY9266 does. The CY9266 behavior is convenient for implementing
a simple "out of lock" indicator using timers that detect the interval between K28.5s (when Sync-Enable
is LOW, a misframed K28.5 does not cause a Byte-Sync indication).

The CY9266 serial interface is incompatible with the IBM OLC card serial interface. The IBM OLC inter­
face uses an 850-nm short wave laser and detector. The HOTLink Evaluation board uses off-the-shelf
1300-nm LED transmitters and detectors or copper transmission line interfaces. These various types are
not compatible. For an operational link, use two compatible serial interfaces (Le., two CY9266 boards
of the same type, either - C, - T, or -F) for the two ends of the transmission link.

Note: The active signal level of the LOOPBACK signal, as implemented on the CY9266, is opposite that
of an actual OLC-266 card. If this signal is under software control, it should be programmed to allow signal
loopback when the signal is active Law. For hardware controlled systems an external signal inversion
is necessary, or the signal may be jumpered at JPl for operation from the Sl-7 DIP switch.

The physical size of the HOTLink Evaluation Board was chosen to be compatible with the two-channel
version of the IBM OLC card. The X - Y dimensions are identical to those of the IBM product, but the
thickness and the protrusion of the serial interface hardware is different from the IBM product.

The IBM OLC card includes plastic card guides and attachment clips that facilitate its use in production
systems. The HOTLink Evaluation Board has none of these components since it is not intended for the
same function.

5. Where can I get additional fiber-optic cables and accessories? Where can I get additional coaxial cables
or STP cables?

We have located the following vendors of fiber-optic cables and accessories. You may contact them to receive
further information about their offerings. The lists below represent only some of the available sources.

Fiber Instrument
Sales Inc.
315-736-2206
315-736-2285 FAX

Nu-Power Optics
619-471-7131

FIBERTRON
Tel: 714-871-3344
Fax: 714-871-5616

Belden Wire and Cable
800-BELDEN-1order
317-983-5200

Additional coaxial and STP cables and other accessories may be found through:

Pasternack
Enterprises
714-261-1920

First Source
408-371-1470

Newark
312-784-5100

6. How do I use this board to do bit-error-rate (BER) tests?

Digi-Key
Tel: 800-DIGI-KEY

• Connect the board(s) with a suitable length of transmission line or fiber from the TX port of one board
to the RX Port on another (or itself).

• Place the receiving board's Receiver in BIST mode by setting the RCV _ BISTEN signal Law. Ground
the external pin marked RCV _BISTEN or set switch Sl-5 to ON.

6-349

"iEYPRESS

Frequently Asked Questions
about HOTLink Evaluation Boards

• Place the transmitting board's Transmitter in BIST Transmit mode by setting the XMIT _ BISTEN sig­
nal Law. Ground the external pin marked XMIT_BISTEN or set switch S1-1 to ON.

• Press the white reset button on the receiving board. The display should initially show a .0.. As the
receiver finds an error in the data stream, it will show this with an increasing count. As the count ex­
ceeds 100, the overflow indicator will light up.

• The BER may be approximated by: 1 error/hour "" a BER of 1.1 x 10-12 using the 25.0-MHz oscillator
shipped with the board.

7. How do I use this board to do transmitter jitter tests?

To achieve the best possible and most accurate transmit jitter measurements, the external environment
of the HOTLink chips needs to have the lowest possible jitter to start. Common oscilloscopes and sources
have so much jitter as to obscure the contribution of the transmitter. Additional sources of jitter on this
board include:

• For the -C and - T versions: the transformer's frequency characteristics. For the - F version: the
optical module.

• Layout of these boards has not been optimized for this testing, and does not have specific test connec-
tions built in.

With these items understood, a set-up to do an adequate test requires a quiet clock source and a digital
oscilloscope such as the Tek 11801 or the HP 54720. The - F version without an optical module has the
most convenient connections. Making connections to the - F board at location U4, all differential PECL
signals, will allow the best measurements possible. (See the "HOTLink Jitter Characteristics" application
note for information on how to measure jitter.)

Note: 1tansmit Jitter measured out of a -C or - T board includes significant crosstalk from the receive
channel, coupled through the transformer. Ideally, measure Transmit Jitter with a quiet receive channel.

8. How do I use this board to do receiver jitter tolerance tests?

The ultimate performance of any serial link is determined by the performance of the receiver. The func­
tion of the receiver is to recover data from a (seemingly arbitrary) serial data stream. This data stream
is translated several times, coupled to and though several non-linear devices and subjected to all manner
of distortion. The receiver must accept this serial pulse train and recover a high-speed bit-synchronous
clock, de-jitter it, and then separate the DATA from the CLOCK Jitter tolerance is the typical term for
the ability of the receiver to correctly recover the DATA and CLOCK in the presence of these many distor­
tions. HOTLink Receiver jitter tolerance can be measured by connecting a suitable transmission media
between the transmitter and receiver, and inserting a jitter generation source similar to that shown in the
"HOTLink Jitter Characteristics" application note. By inserting measured jitter amplitudes and watching
the RVS output of the receiver, jitter tolerance can be measured. Further details on the fabrication of the
jitter generator and the measurement techniques required for accurate measurement of this injected jitter
is beyond the scope of this note, but are covered in detail in the "HOTLink Jitter Characteristics" and
"HOTLink Built-In Self-Thst (BIST)" application notes.

9. How do I use this board to do HOTLink power supply noise immunity tests?

The layout and design of this board makes it difficult to test the power supply immunity of these parts.
Power supply noise immunity testing requires injecting a signal into the power supply pins and observing
the effect of this injected signal on the link. This requires a different layout to allow access to the power
supply pins of the HOTLink chips without affecting the operation of the other parts on the board.

6-350

=.. ~

) CYPRESS

10. How do I use this board to do transmission-line tests?

Frequently Asked Questions
about HOTLink Evaluation Boards

To check for the maximum transmission-line length over which the HOTLink Evaluation Board can com­
municate, it is only necessary to connect the selected transmission line between the TX and RX ports of the
H01Link Evaluation Board. Using one board with the cable returning to its own RX port or two boards and
cables for simultaneous testing in both/either directions of the transmission line will work quite well. The
H01Link Transmitter and Receiver BIST function serves the purpose of generating and testing the data so
the user can check for an acceptable error rate without extra test equipment. Transmission lines can be
extended or modified until the BIST error count indicates an unacceptable error rate. An error rate of
approximately 1 error/hour = a BER of 1.1x10-12 using the 25.0-MHz oscillator shipped with the board.

11. How do I use this board to do receiver-PLL acquisition-time tests?

1Wo kinds of receiver acquisition are measurable using this board. One kind shows how fast the receiver
can recover from a phase hop, and the other shows how fast the receiver can acquire a datastream once
the device is powered up with a stable REFCLK.

To measure the receiver recovery from a phase hop, connect a loopback cable with a delay just large
enough to delay the data by almost one half a bit time (=2 ns for the shipped oscillator) with respect to
the OUTC+ line that goes between the CY7B923 and the CY7B933. Then arrange a delayed synchronous
switch signal into the NB Select input of the receiver. Trigger this delay from RP and delay this pulse to
a point in the data stream where the data stays HIGH for several bit times. By switching between the
delayed and fast signal path, a phase hop can be created at the input to th~ receiver. Increase the delay
until the receiver shows an RVS pulse during BIST testing. The receiver will properly recover data with
a phase hop as large as ± 170 0 • Invert the AlB select signal to get the other polarity of phase hop.

To observe the receiver recovery from a "lost" data stream, arrange the evaluation board to have an exter­
nal REFCLOCK 0.1 % faster or slower than the on-board oscillator. Configure the transmitter to only
send K28.5s by either deasserting both the ENN and ENA signills, or constantly transmitting a C5.0 char­
acter in Encoded mode. With a clean pulse, switch the AlB select line to the B input. This will cause the
receiver to see a lost and then found data stream. Using a delayed trigger, watch the CKR output with
respect to the transmit clock. The two clocks will match frequency and stabilize in phase difference in less
than 60 I-ts.

12. How do I use this board to do minimax frequency tests?

• Arrange the jumpers on the board so that the CKW and REFCLK use the same external clock input.
Do this by removing the jumpers across pins IX - IY and GY - HY, then jumpering pins GX -GY and
HX - IX. Apply an external reference clock to the XMITCLOCK pin on any of the interface connec­
tors. Loopback the board either externally or by closing Sl-7, which loops the board back on itself.

• Now enable the both the XMIT and RCVR BIST functions and the transmitter. The LED display
should now show a stable number. Clear the count by pressing the RESET button 82.

• With the board set up as above, vary the frequency of the external reference clock from a nominal 20
MHz downward. As you approach the limits of operation, the board will start to indicate errors on
the display. Clear the errors after setting a new frequency by pressing S2 again. The point in frequency
where you do not see any BIST errors marks the edge of the frequency range. Change your frequency
source upward toward 33 MHz and again clear the error indications until you achieve stable operation
just below the high frequency limit.

'JYpical boards will operate as high as 40 MHz and as low as 12.5 MHz.
HOTLink is a trademark of Cypress Semiconductor.
IBM is a registered trademark of International Business Machines Corporation.

6-351

CY9266 HOTLink ™

Evaluation Board User's Guide

Overview

This document describes the construction, inter­
faces, and operation of the CY9266-F (optical fiber),
CY9Z66-T (shielded twisted pair/twinax), and
CY9Z66-C (coaxial cable) HOTLink '" Evaluation
Boards. These boards implement a complete bi­
directional parallel-to-serial and serial-to-parallel
communications link, capable of operation at serial
rates of 160 to 330 Mbits/second (16 to 33 Mbytes/
second). The supported rate of communication may
be limited by the specific type and speed-grade of
optical module or copper cable type used.

The CY9266 Evaluation Boards are optically, elec­
trically, and mechanically compatible with the ANSI
X3Tll Fibre Channel Interface, as documented in
the ANSI standard ANS X3.230-1994. It provides
three different methods of access for the TTL paral­
lel interface and supervisor functions, for testing or
exercising the serial data link.

Board
Header

JP2

Board
Edge
JP3

OLC
Header

JP4

Block Diagram

The block diagram in Figure 1 illustrates the major
functional blocks contained in the CY9266. These
include:

• lO-bit TTL parallel transmit data input

• lO-bit TTL parallel receive data output

• Selectable Encoded or Bypass operation modes

• On-board oscillator

• Selectable internal/external clocking

• Selectable carrier-detect polarity

• Selectable localloopback

• Power supply voltage monitor

• Built-in self-test (BIST) pattern generation and
checking hardware with error/status display

Board Connectors

This board offers three primary methods of TTL­
level access:

Optical or Copper
XMTR

Optical Qr Copper
RCVR

Figure 1. HOTLink Evaluation Board Block Diagram

6-352

= -,~
- ., CYPRESS ====;;;;;C;;;;;Y;;;;;9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O=T;;;;;L;;;;;in;;;;;k;;;;;E;;;;;v;;;;;a;;;;;lu;;;;;a;;;;;t;;;;;io;;;;;n;;;;;B;;;;;o;;;;;a;;;;;r;;;;;d;;;;;V;;;;;s;;;;;e;;;;;r';;;;;s ;;;;;G;;;;;u;;;;;id;;;;;e;;;;

• JP2-A 58-position (2 x 29) set of holes, capable
of accepting a 0.025" sq. pin-header on the top or
bottom of the board

• JP3-A 60-position (2 x 30) 0.1" spaced board­
edge finger stock

• JP4-A 48-position (4 x 12 matrix) 0.025" sq.
pin-header mounted on the bottom of the board

Connectors JP2 and JP3 provided access to all data
input and output buses as well as all BIST, control,
and clocking signals for the HOTLink 1tansmitter
and Receiver. These connectors may be used indi­
vidually or together since all signals present on JP2
are also present on JP3. Power for the board is also
brought in through these same connectors.

Connector JP4 is positioned and pinned to match up
with the connector and signals present on other in­
dustry standard Fibre Channel modules. Unlike
these other modules (which may contain two full­
duplex channels), this evaluation board only pro­
vides a single full-duplex channel. While sufficient
room exists to build a board with two channels, other
functionality was added (on-board oscillator, BIST
PLD and display, etc.) in this space to allow better
testing and demonstration of the enl1anced capabili­
ties present in the Cypress HOTLink parts.

An additional jumper block (JP1) is used to config­
ure three of the operating characteristics of the
board: clock sourcing, serial output enable
(FOTO), and localloopback control.

Optical Modules

The CY9266-F Evaluation Board is designed to
operate with industry-standard footprint optical
modules. The evaluation board contains low-pro­
file socket pins so the user may select and test opti­
cal modules from different vendors. This board ac­
cepts both tl1e four-row DIP and the single-row
endfire types of modules.

These modules are available from multiple vendors
with either ST- or SC-type optical fiber connectors.
Because these modules are all LED-based, they are
not required to meet many of the safety standards
(ANSI Z136.1 and Z136.2, RD.A. regulation 21 CFR
subchapter J, and IEC 825) necessary for laser-

based modules. These modules should be used with
62.5/125-!!m multimode graded-index fiber.

Coaxial Cables

The CY9266-C Evaluation Board is configured to
support 75Q coaxial cables that attach through
BNC/TNC connectors. Other cable impedances
may be used with the board by changing the value of
the termip.ation and driver bias resistors on the
board.

Shielded-Pair Cables

The CY9266-T Evaluation Board is configured to
support 150Q shielded twisted-pair or twinaxial
cable that attaches through a 9-pin D-sub connec­
tor. Other cable impedances may be used with the
board by changing the value of the termination and
driver bias resistors on the board.

BIST Support

The CY9266 contains an on-board control PI J) and
a two-digit error-count display that are used in con­
junction with the BIST (built-in self-test) capability
of the Cypress Semiconductor HOTLink Transmit­
ter and Receiver. This capability allows the parts,
and any serial link, to be exercised and monitored at
their full data rate without the use of expensive ex­
ternal test equipment.

The BIST PLD (CY7C344) contains a simple state
machine that monitors the HOTLink Receiver
BIST state, and an error-counter that drives an ex­
ternal display. The complete contents of this PLD
are documented in Appendix C.

This BIST PLD also drives the four decimal point
LEDs on the displays. These indicators are used to
present additional status information about the
state of the board, the BIST state machine, and the
serial link.

Design Criteria

The CY9266 Evaluation Board was designed as a
low-cost demonstration vehicle for the Cypress
Semiconductor HOTLink family of data commu­
nications parts. The goals of this board are to:

• Present a Fibre Channel interface board that is
fully compliant with the mechanical, electrical,

6-353

-., ~ CY9266 HOTLink Evaluation Board User's Guide
~,CYPRESS =============;::;;;;;;;;;;;;===

optical, coding, and protocol specifications in lev­
els 0 and 1 of the ANSI Fibre Channel standard

• Allow full data rate testing of the serial link with­
out expensive test equipmept

• Allow the user to exercise all modes of operation
of the receiver and transmitter

• Offer various parallel attachment methods for
simplified system interfacing

• Offer various media types for evaluation

• Allow simple interfacing to existing OLC­
compatible test platforms

Because of the flexibility inherent in the HOTLink
parts, these goals were easily achieved.

Three electrical connection methods are provided:
a 60-pin board-edge connector, a 58-pin (2 x 29)
0.025" square pin-header, and a 48-pin (4 x 12)
0.025" square pin-header. These different connec­
tors allow the user to select the connector form that
best suits their desired moqe of attachment.

The HOTLink 1tansmitt~r aI).d Receiver contain a
BIST capability. Thi& capability was designed into
the HOTLink parts to allow high-speed serial test­
ing without expensive test equipment. All hardware
necessary to exercise and monitor the BIST fUllction
is present on the CY9266 board. This hardwiue al­
lows a bit-error-rate (BER) test to be performed
without additional equipment.

The BIST capability of the HOTLink 1tansmitter
and Receiver allows offline testing of the transmitter,
receiver, and serial link, by performing a byte-by­
byte comparison ofthe data while a 511-byte pseudo­
random byte stream is repeatedly sent, received,
and checked.

Through use of either JP2 or JP3, users may exercise
all modes of operation of the parts. JP4 is config­
ured as a functional system interface, and thus does
not include all the mode, clock, and special control
signals present on JP2 and JP3, all of which may be
selected or controlled in JP1 or S1.

Connector Pin Numbering

JP2-58-Position Pin-Header

The 58-position pin-header (JP2) holes are located
next to the board-edge connector. Pin 1 of this con­
nector area is identified on the board by a square
solder pad. The remaining pin locations use a round
solder pad.

The connector hole pattern is made to accept 58
0.025" square pins soldered into the board. The
numbering for this connector is shown in Figure 2.

Note: The numbering of this connector is specified
to match up with standard 0.050" centerline flat
cable connectors. Because of the location of pin 1
of this hole pattern, the mating pins for this connec­
tor should normally be on the bottom of the board.
If a connector is instead attached to the top side of
the board, the even- and odd-numbered pins of the
connector are effectively swapped. This means that
conductor 1 of a cable attached to the top side of the

LINK CONTROL-57 @ @ 58-LOOP BACK
-GND-55 @ @ 56-XMITCLOCK

XMIT 1-53 @ @ 54-RP
XMIT-2-51 @ @ 52-GND
XMIT-5-49 @ @ 50-GND
XMIT=Q-47 @ @ 48-VCC
XMIT 4-45 @ @ 46-RDY
XMIT-3-43 @ @ 44-GND
XIvl/T=6-41 @ @ 42-VCG
xMIT 7-39 @ @ 40-GND

ENBYTESYNC-37 @ @ 38-RESET
XMIT 8-35 @ @ 36-GND

RCV CLKO-33 @ @ 34-VCG
RCV-GLK1-31 @ @ 32-GND

XMIT 9-29 @ @ 30-GND
REC-1-27 @ @ 28-VCC
REC=O-25 @ @ 26-GND
REG 3-23 @ @ 24-EXTREFCLK
REC-4-21 @ @ 22-VCC

LINK STATUS-19 @ @ 20-BYTE SYNC
- REG 7-17 @ @ 18-GND­

REG-2-15 @ @ 16-GND
REC-5-13 @ @ 14-XMIT BISTEN
REC-8-11 @ @ 12-XMIT-ENN

REC 6-9 @ @ 10-XMIT-MODE
REC-9-7 @ @ 8-XMIT ENA

RGV MODE-5 @@ 6-SWHCVBISTEN
DIP- FOTO-3 @ @ 4-DIP RGVA/B

SYNC_POL-1 191 @ 2-CD'=-POL

Figure 2. JP2 Pin Numbering,
Top Side of Board View

6-354

-.. ~ CY9266 HOTLinkEvaluation Board User's Guide
~YPRESS================================~

board is in reality connected to the signal listed for
pin 2 in Table 1.

JP3-60-Position Board-Edge

The 60-position board-edge connector (lP3) is a
section of gold plated 0.062" board finger-stock that
connects to the same signals as JP2. Contact center­
line for this connector is 0.1", with even- and
odd-numbered signals on opposing sides of the
board.

To prevent the evaluation board from being plugged
into a mating connector backwards (and possibly
damaging it), a 0.040" x 0.450" keying slot is present
between contacts 3/4 and 5/6. The pin numbering
for this connector is shown in Figure 3.

Note: The numbering of this connector is specified
to match up with standard 0.050" centerline flat­
cable connectors. Because of the location of pin 1
of this board -edge connector, the mating connector

GND-60
LOOP BACK-58
XMITC:;LOCK-56

RP-54
GND-52
GND-50
VCC-48
RDY-46
GND-44
VCC-42
GND-40

RESET-38
GND-36
VCC-34
GND-32
GND-30
VCC-28
GND-26

EXTREFCLK-24
VCC-22

BYTE SYNC-20
- GND-18

GND-16
XMIT_BISTEN-14

XMIT ENN-12
XMIT MODE-10

XMIT ENA-8
SWRCVBISTEN-6

DIP RCVA/B-4
CD_POL-2 o

59-GND
57-liNK_CONTROL
55-GND
53-XMIT 1
51-XMIT-2
49-XMIT-5
47 XMITO
45:'XMlf 4
43-XMIT-3
41-XMIT-6
39-XMIT-7
37 - ENBYrESYNC
35-XMIT_8
33-RCV CLKO
31-RCV-CLK1
29-XMlf9
27-RECl
25-REC-O
23-REC-3
21-REC-4
19-LiNK-STATUS
17-REC7
15-REC-2
13-REC-5
11-REC-8
9-REC 6
7-REC-9
5-RCV-MODE
3-DIP FOTO
1-SYNC_POL

Figure 3. JP3 Pin Numbering, Edge of Board

would normally be a mass-terminate board-edge to
flat-cable type connector. If a standard board-edge
connector is used instead, the even and odd num­
bered pins of the connector are effectively swapped.
This means that pin 1 of a standard board-edge con­
nector is in reality connected to the signal listed for
pin 2 in Table 1.

JP4-0LC-Compatibility Connector

The JP4 (OLC-compatibility) connector is located
on the bottom (passive-component) side of the
board. Pin 1 of this connector is identified on the
board by a square solder pad. The remaining pins
use a round solder pad.

For the CY9266 Evaluation Board, pins of sufficient
length are present so that analysis equipment may
be attached to these signal pins on the top (active­
component) side ofthe board while it is plugged into
a mating connector. The numbering sequence I'llI'

the JP4 connector pins is shown in Fi!{urc 4.

LOOP _BACK-36 ~
VCC-48 @ @
GND-35 ~

LlNK_CONTROL-47 @ @
XMIT_O-34 ~
XMIT_5-46 @ @
XMIT_3-33 ~

N/C-45 @ @
XMIT_6-32 ~
XMITJ-44@ @

VCC-31 ~
XMIT_8-42 @ @
RESET-30 ~
XMIT_9-42 @ @

GND-29 ~
GND-41 @ @
N/C-28 ~

GND-40 @ @
REC_2-27 ~

GND-39 @ @
GND-26 ~

LiNK_STATUS-38 @ @
RECJ-25 ~

BYTE_SYNC-37 @ @

~24-VCC

@ @ 12-XMITCLOCK
~23-N/C

@ @ 11-GND
~22-XMIT_2

@ @ 10-XMIT_1
~21-GND

@ @9-XMIT_4
~ 20-ENBYTESYNC

@ @8-VCC
~ 19-RCV_CLKO

@ @ 7-RCV_CLK1
~ 18-GND

@ @6-REC_O
~ 17-REC_1

@ @5-VCC
~ 16-REC_3

@ @4-REC_4
~ 1S-VCC

@ @3-REC_6
~ 14-REC_5

@ @2-GND
r= 13-REC-8

@ [Q] 1-REC_9

Figure 4. JP4 Pin Numbering, Top Side of
Board View (Pins Are On the Bottom)

6-355

• ,-:--:z. CY9266 HOTLink Evaluation Board User's Guide
,-cYPRESS ===========~=

The connector is made from 48 0.025" square pins
soldered into the board. Th allow full mating with an
OLC-compatible connector, these pins must extend
at least 0.250" beyond the bottom surface of the
board.

Connector Pinouts

The CY9266 provides three interface connectors to
the user: JP2, JP3, and JP4. Table 1 shows which sig­
nal is present on each connector pin.

Table 1. I/O Connector Pinouts

6-356

CY9266 HOTLink Evaluation Board User's Guide

Table 2. Transmit Bus Signal Name Map or Receiver. Table 2 lists the transmit data bus sig­
nals and the names mapped to them in each trans­
mitter mode. Transmit Bus HOTLink Transmitter Pin Name

Input Pin Name Encoded Mode Bypass Mode

XMIT 0 SC/D Da

XMIT 1 DO Db

XMIT 2 Dl Dc

XMIT_3 D2 Dd

XMIT 4 D3 De

XMIT_5 D4 Di

XMIT 6 D5 Df

XMIT_7 D6 Dg

XMIT_8 D7 Dh

XMIT 9 SVS Dj

Signal Naming Conventions

The output data bus from the HOTLink Receiver is
pipelined with a single register stage between the re­
ceiver outputs and the board output pins. Table 3
lists the receive data bus signals and the names
mapped to them in each receiver mode.

Table 3. Receive Bus Signal Name Map

Receive Bus HOTLink Receiver Pin Name

Output Pin Name Decode Mode Bypass Mode

REC 0 SC/D Qa

REC_l QO Qb

REC_2 Ql Qc

REC_3 Q2 Qd

REC_4 Q3 Qe

There are three types of signal names used through­
out this document: UO connector pin names, on­
board signal names, and HOTLink 1fansmitter and
Receiver pin names. Except for the transmit and re­
ceive data buses, these names are unique.

REC 5

REC_6

REC 7

REC_8

REC 9

Q4

Q5

Q6

Q7

RVS

Qi

Qf

Qg

Qh

Qj

The names used for the transmit and receive data
bus pins on connectors JP2, JP3, and JP4 are differ­
ent from the signal names present on the HOTLink
1fansmitter and Receiver. The functional names
for these signals also change depending on the cur­
rent operating mode of the HOTLink Transmitter

Signal Descriptions

The I/O signals listed in Table 1 fall into six groups:
power, switched control, control, status, clock, and
data. These signals are described in Table 4.

Table 4. UO Signal Descriptions

Signal Name Group Description

Vee Power + 5 VDC @ l.OA typical

GND Power Ground

XMIT_BISTEN Input, Switched Transmitter BIST Enable (Sl-l). When this signal is LOW, the
Control HOTLink Transmitter is placed into its BIST mode. Exact ope~

tion of the transmitter is also determined by the settings of the ENA
(S1-4) and ENN (S1-3) signals. With both ENA and ENN HIGH,
the transmitter outputs an alternating 0-1 pattern (DIO.2 or
D2l.5). If either ENA or ENN is LOW, the transmitter sends a re-
peating 51l-character test sequence. The receiver contains a match-
ing mode that allows this transmitter BIST mode to be used to test
the entire serial link without external hardware. The transmitter
BIST enable is kept separate from the receiver BIST enable on this
board to allow each component to be tested with external patterns
that are not part of the BIST sequence.

6-357

=:::t :~
. ./CYPRESS ====:;:;C:;:;Y:;:;9:;:;2:;:;66=H:;:;O:;:;TL=iD:;:;k:;:;E:;:;v:;:;a:;:;lu:;:;a:;:;t:;:;io:;:;D:;:;B:;:;o:;:;a:;:;r:;:;d:;:;U:;:;s:;:;er:;:;'s:;:;G=Ul:;:;'d=e

Thble 4. I/O Signal Descriptions (continued)

Signal Name Group Description

XMIT_MODE Input, Switched Encoder Mode Select (81·2). This signal is used to select whether
Control pre-encoded (lO-bit) or non-encoded (8-bit) data is clocked into the

HOTLink Transmitter. When LOW (Encoded mode), this input
enables the internal 8B/IOB encoder and accepts 8-bit parallel data
from the transmitter data bus (DO-D7 as listed in Table 2). When
HIGH (Bypass mode), the encoder is bypassed and a lO-bit pattern
is accepted (Da - Dj as listed in Table 2).

XMIT_ENN Input, Switched Enable Next Parallel Transmitter Data (SI·3). This signal is used
Control to control when data is loaded into the HOTLink 1tansmitter.

When this signal is LOW at the rising edge of CKW, the data pres-
ent on the transmitter inputs at the next rising edge of CKW is
loaded, processed, and sent. When this signal is HIGH, the trans-
mitter ignores the data present on its inputs at the next rising edge
of CKW and instead inserts a SYNC character (K28.5) to fill in the
data stream. When ENA is used for data control, the ENN signal
should be tied HIGH, but may be used to enable BIST mode.

XMIT_ENA Input, Switched Enable Parallel Transmitter Data (SI·4). This signal is used to con-
Control trol when data is loaded into the HOTLink Transmitter. When

LOW at the rising edge of CKW, the data present on the transmitter
inputs is loaded, processed, and sent. When this signal is HIGH,
the transmitter ignores the data present on its inputs and instead
inserts a SYNC character (K28.5) to fill in the data stream. When
ENN is used for data control, the ENA signal should be tied HIGH,
but may be used to enable BIST mode.

SWRCVBISTEN Input, Switched Receiver BIST Enable (SI·5). When this signal is Law, the HOT-
Control Link Receiver monitors the data stream for the BIST loop initializa-

tion character (DO.O). This signal also enables the BIST PLD
(CY7C344-U8), which is used to monitor the progress and status of
the BIST loop through the receiver RDY and RVS outputs. When
the receiver detects the initialization character, it begins comparing
received data with a built-in data sequence that can be used to verify
the proper functionality of the transmitter, receiver, and the serial
link connecting them. The receiver BIST enable is kept separate
from the transmitter BIST enable on this board to allow each com-
ponent to be tested with external patterns that are not part of the
BIST sequence.

RCV_MODE Input, Switched Receiver Mode Select (SI·6). This signal is used to select whether
Control encoded (lO-bit) or non-encoded (8-bit) data is output from the re-

ceiver. When LOW (Decode mode), this input enables the internal
lOB/8B decoder and outputs 8-bit parallel data (QO-Q7 as listed in
Table 3). When HIGH (Bypass mode), the decoder is bypassed and
a IO-bit pattern is output (Qa-Qj as listed in Table 3).

6-358

=t -.~ CY9266 HOTLink Evaluation Board User's Guide
'CYPRESS =================

Table 4. I/O Signal Descriptions (continued)

Signal Name Group Description

DIP_RCVNB Input, Switched DIP-Switch Controlled Receiver AlB Port Select (Sl-7). This signal
Control is used to determine which port (INA± or INB ±) the receiver uses

for the input serial data stream. When LOW, this signal selects the
receiver B port that is directly connected to the C port on the trans-
mitter. When HIGH, this signal selects the receiver A port that is
connected to the optical receiver output. This signal is also routed
through jumper block JPl. In order for this signal to control the port
selection of the receiver, it is necessary to have a shorting jumper
across the X and Y pins of JPI-C. To allow the LOOP _BACK signal
on the I/O connectors (JP2, JP3, and JP4) to control the AlB port
selection, this jumper should be moved to JPI-B.

DIP FOTO Input, Switched DIP-Switch Controlled FOTO (Sl-8). This signal is used to enable
Control the A and B differential output drivers of the HOTLink ltansmitter.

When this signal is LOW, the differential outputs are allowed to fol-
low the pattern of the data serialized by the transmitter. When this
signal is HIGH, the A and B differential outputs of the transmitter
are driven to a logic zero state (+ output is logic HIGH, - output is
logic LOW). This places an attached optical transmitter in a state
where no light is output. This signal is also routed through jumper
block JPl. In order for this signal to control the FOTO (fiber-optic
transmitter-off) enable on the transmitter, it is necessary to have a
shorting jumper across the X and Y pins of JPI-E. To allow the
LINK_CONTROL signal on the I/O connectors (JP2, JP3, and JP4)
to control the FOTO enable, this jumper should be moved to JPl-F.

CD]OL Input, Switched Carrier-Detect Polarity Select (Sl-9). This input selects the
Control output polarity of the LIN~ STATUS signal. When LOW, the

LINK_STATUS signal is HIGH when a valid carrier is present.
When HIGH, the LINK_STATUS signal is LOW when a valid
carrier is present.

SYNC POL Input, Switched Byte Sync Polarity Select (Sl-10). This input, in conjunction with
Control the HOTLink Receiver MODE input, selects the active level of the

BYTE_SYNC signal.

When LOW with the receiver in Bypass mode, the BYTE_SYNC
signal is LOW when a K28.5 SYNC character is present on the re-
ceive data bus. When HIGH with the receiver in Bypass mode, the
BYTE_SYNC signal is HIGH when a K28.5 SYNC character is
present on the receive data bus.

Whefj LOW with the receiver in Decode mode, the BYTE_SYNC
output remains HIGH for strings of K28.5 SYNC characters, or while
awaiting the first K28.5 SYNC character after being placed into Re-
frame mode (RF is set HIGH). When HIGH with the receiver in
Decode mode, the BYTE_SYNC output remains LOW for strings of
K28.5 SYNC characters, or while awaiting the first K28.5 SYNC
character after being placed into Reframe mode (RF is set HIGH).

6-359

~ ~ CY9266 HOTLink Evaluation Board User's Guide
~'CYPRESS ================

Table 4. I/O Signal Descriptions (continued)

Signal Name Group Description

LOOP_BACK Input, Control Loopback Control. This signal is used to determine which port (A
or B) the HOTLink Receiver uses for the input serial data stream.
When LOW, this signal selects the receiverB port that is connected
directly.to the transmitter C port. When HIGH, this signal selects
the receiver A port that is connected to the optical receiver output.
This signal is also routed through jumper block JPl. In order for
this signal to control the port selection of the receiver, it is necessary
to have a shorting jumper across the X and Ypins of JP1-B. Th al-
low the DIP _RCVNB signal (Sl-7, also present on JP2 and JP3) to
control the AlB port selection, this jumper should be moved to
JP1-C.

ENBY1ESYNC Input, Control Enable Byte Sync Detect. This signal controls when the HOTLink
Receiver is allowed to reframe to the incoming serial data (e.g., ac-
quire byte sync). When this signal is lIIGH, each K28.5 SYNC
character received in the shifter will frame the data that follows.
When this signal is LOW, the framing logic in the receiver is dis-
abled. Because the CKR output of the receiver must line up with
the reframed data, it is possible to generate significant phase jumps
in the CKR clock. Th prevent the generation of very short high or
low pulses on the CKR output (which could cause timing violations
in downstream logic) the Cypress HOTLink Receiver uses look-
ahead hardware to prevent these short pulses. Instead, a portion of
the clock period for the character preceding the reframed data is
lengthened.

LINK Input, Control Link Control. This signal is used to enable the A and B differential
CONTROL output drivers of the HOTLink 'fransmitter. When this signal is

LOW, the differential outputs are allowed to follow the pattern of
the data serialized by the transmitter. When this signal is HIGH,
the A and B differential outputs of the transmitter are driven to a
logic zero state (+ output is logic HIGH, - output is logic LOW).
This places an attached optical transmitter in a state where no light
is output. This signal is also routed through jumper block JPl. In
order for this signal to control the FOTO enable on the transmitter,
it is necessary to have a shorting jumper across the X and Y pins of
JP1-F. To allow the DIP _FOTO signal on the I/O connectors (JP2
and JP3) to control the FOTO enable, this jumper should be moved
to JP1-E.

RESET Output, Status ResetIPower OK. This output is used to emulate the voltage moni-
tor function present on the OLC card. It remains active (LOW)
until the Vee input tothe board is above 4.65 VDC. This output
also becomes active when the BIST RESET switch (S2) is pressed.

LINK_STATUS Output, Status Link Status.· This signal operates as a carrier-detect status for the
serial interface. The polarity of this signal is determined by the
CD]OLinput (Sl-9). When CD]OL is LOW, LINK_STATUS
drives HIGH when a carrier is present. When CD _POL is HIGH,
LINK_STATUS drives LOW when a carrier is present.

6-360

• .~ CY9266 HOTLink Evaluation Board User's Guide
'CYPRESS ===============

Table 4. I/O Signal Descriptions (continued)

Signal Name Group Description

RP Output, Clock Read Pulse. This is a 60% LOW duty-cycle pulse train suitable for
clocking data out of Cypress's CY7C42X family of asynchronous
FIFOs. This pulse is generated by the HOTLink Transmitter in re-
sponse to the XMIT _ ENA input being active at the rising edge of
CKW. For repeated pulses the RP period is the same as CKW, yet is
totally independent of the duty cycle of CKW When the transmitter
is in BIST mode, the RP signal remains HIGH for all but the last
byte of the BIST loop, where it pulses LOW.

XMITCLOCK Input, Output, Transmitter External Clock. This is the external byte-rate clock in-
Clock put. This clock is used to drive the transmitter CKW input. To al-

low for operation using the on-board oscillator, the XMITCLOCK
signal is run through jumper block JPl. To operate using an external
HOTLink 1tansmitter clock source, a shorting jumper should be
placed across pins X and Y of JP1-G. To use the on-board oscillator
instead, this shorting jumper should be moved to connect pin
JP1-GY to JP1-HY. When operated from XMITCLOCK, the re-
ceiver REFCLK may also be set to use this same clock. This is done
by placing a shorting jumper across pins JP1-GX and JP1-HX. To
allow the receiver REFCLK to operate from the on-board oscillator,
this jumper should be moved to connect the X and Y pins of JP1-I.
The on-board oscillator may also be driven out on the XMIT-
CLOCK line by placing a shorting jumper across pins X and Y of
JP1-H.

EXTREFCLK Input, Output, External Reference Clock. This byte-rate clock is used to drive the
Clock HOTLink Receiver REFCLK from an external source other than

XMlTCLOCK. This input may be used to test the tracking and cap-
ture range of the receiver PLL. It may also be used to operate the
receiver at a different data rate from the transmitter. To allow the
receiver PLL to properly lock to the received serial stream, this
clock must be within 0.1 % of the clock used to generate the received
serial data. To drive the receiver REFCLK from this clock source, a
shorting jumper should be placed across pins JP1-IX and JP1-JX.

The on-board oscillator may also be selected to drive the
EXTREFCLK line by placing a shorting jumper across pins X and Y
of JP1-J. With this jumper in place it is still possible to drive the re-
ceiver REFCLK input from the on-board oscillator by placing a
shorting jumper across the X and Y pins of JP1-I.

RCV_CLKO Output, Clock Receive Clock O. This is the byte-rate recovered clock used for re-
ceived data. The period of this clock is determined by the serial
data rate entering the HOTLink Receiver. The duty-cycle of this
signal is determined by the receiver and is fixed at 50%. This clock
may experience a large phase jump when reframing to a serial data
stream. The phasing on this clock is such that the rising edge of the
clock occurs coincident with the start of each interval where a char-
acter is present on the output received data bus. This signal is a
buffered form of the HOTLink Receiver CKR clock.

6-361

z.~ CY9266 HOTLinkEvilhiation Board User's Guide
_7CYPRESS ==============

Table 4. I/O Signal Descriptions (continued)

Signal Name Group Description

RCV_CLKI Output, Clock Receive Clock 1. This is the byte-rate recovered clock used for re-
ceived datil. The period of this clock is determined by the serial
data rate entering the HOTLink Receiver. The duty-cycle of this
signal is determined by the receiver and is fixed at 50%. This clock
may experience a large phase jump when reframing to a serial data
stream. The phasing on this clock is such that the rising edge of the
clock occurs near the center of each interval where a character is
present on the output received data bus. This signal is a buffered
and inverted form of the HOTLink Receiver CKR clock.

RDY Output, Clock RDY (Ready). This signal is used both as a HOTLink Receiver data
output clock and a status indicator for the receiver when in BIST
mode. This is an unbuffered output from the receiver. It is normal-
ly used to clock valid data from the receiver data bus into asynchro-
nous FIFOs. Because of the additi(jnal pipeline register in the data
bus (added for OLC compatibility) this signal will operate one byte
prior to the data being available at the I/O connectors.

BYTE_SYNC Output, Data Byte Sync Detected. This signal is a pipelined form of the receiver
RDY output. This additional pipeline stage for the RDY signal
(and the rest of the receiver data bus) was added to match the spe-
cific timing of the OLC Byte Sync signal. The active level of this
output is determined both by the operating mode of the HOTLink
Receiver and by the state of the SYNC_POL input.

With the HOTLink Receiver in Bypass mode, the BYTE_SYNC
signal is used as a K28.5 SYNC character indicator. With
SYNC POL LOW, BYTE SYNC is LOW when a K28.5 SYNC
character is present on the-receive data bus. With SYNC]OL
HIGH, BYTE SYNC is HIGH when a K28.5 SYNC character is
present on the receive data bus.

With the receiver in Decode mode, the BYTE_SYNC signal is used
as a valid data indicator. With SYNC POL LOW, BYTE SYNC is
LOW whenever a usable data byte is present on the receive data
bus. With SYNC POL HIGH, BYTE SYNC is HIGH whenever a
usable data byte is present on the receive data bus.

REC_9 Output, Data RVS(Qj). This signal is a series-terminated, pipelined form of the
HOTLink Receiver RVS(Qj) signal. This termination and addition-
al pipeline stage for the RVS(Qj) signal (and the rest of the receive
data bus) was added to match the specific timing and signal charac-
teristics of the OLC card.

REC_8 Output, Data Q7(Qh). This signal is a series-terminated, pipelined form of the
HOTLink Receiver Q7(Qh) signal.

REC_7 Output, Data Q6(Qg). This signal is a series-terminated, pipelined form of the
HOTLink Receiver. Q6(Qg) signal.

REC_6 Output, Data Q5(Qt). This sighal is a series-terminated, pipelined form of the
HOTLink Receiver Q5(Qf) signal.

6-362

CY9266 HOTLink Evaluation Board User's Guide

Table 4. I/O Signal Descriptions (continued)

Signal Name Group Description

REC 5 Output, Data Q4(Qi). This signal is a series-terminated, pipelined form of the
HOTLink Receiver Q4(Qi) signal.

REC 4 Output, Data Q3(Qe). This signal is a series-terminated, pipelined form of the
HOTLink Receiver Q3(Qe) signal.

REC_3 Output, Data Q2(Qd). This signal is a series-terminated, pipelined form of the
HOTLink Receiver Q2(Qd) signal.

REC_2 Output, Data Ql(Qc). This signal is a series-terminated, pipelined form of the
HOTLink Receiver QI(Qc) signal.

REC 1 Output, Data QO(Qb). This signal is a series-terminated, pipelined form of the
HOTLink Receiver QO(Qb) signal.

REC_O Output, Data SC/D(Qa). This signal is a series-terminated, pipelined form of the
HOTLink Receiver SC/D(Qa) signal.

XMIT 9 Input, Data SVS(Dj). This signal is the SVS(Dj) input to the HOTLink Trans-
mitter. It is latched into the transmitter in the rising edge of CKw,
when enabled by ENA or ENN.

XMIT 8 Input, Data D7(Dh). This signal is the D7(Dh) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKW,
when enabled by ENA or ENN.

XMIT 7 Input, Data D6(Dg). This signal is the D6(Dg) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKw,
when enabled by ENA or ENN.

XMIT 6 Input, Data DS(Df). This signal is the D5(Df) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKw,
when enabled by ENA or ENN.

XMIT 5 Input, Data D4(Di). This signal is the D4(Di) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKW,
when enabled by ENA or ENN.

XMIT 4 Input, Data D3(De). This signal is the D3(De) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKW,
when enabled by ENA or ENN.

XMIT 3 Input, Data D2(Dd). This signal is the D2(Dd) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKw,
when enabled by ENA or ENN.

XMIT_2 Input, Data Dl(Dc). This signal is the DI(Dc) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKW,
when enabled by ENA or ENN.

XMIT 1 Input, Data DO(Db). This signal is the DO (Db) input to the HOTLink Transmit-
ter. It is latched into the transmitter in the rising edge of CKw,
when enabled by ENA or ENN.

XMIT 0 Input, Data SC/D(Da). This signal is the SC/D(Da) input to the HOTLink
Transmitter. It is latched into the transmitter in the rising edge of
CKW, when enabled by ENA or ENN.

6-363

=::-~ CY9266 HOTLinkEvaluation Board User's Guide
jfCYPRESS =========~=====

Power Signals

The CY9266 Evaluation Board is designed to oper­
ate from a single + 5V ± 10% DC supply capable of
delivering l.OA (typical). All Vee and GND pins on
JP2, JP3, and JP4 are (respectively) common to
each other. There are no distinctions made for sep­
arate supplies pins for the different logic sections.

Switched Control Signals

The CY9266 Evaluation Board contains a lO-position
DIP switch (SI). This switch is connected in parallel
with a number of control signals on JP2 and JP3.
Each of these control signals is pulled-up by a 5-kQ
resistor through R-pack R20. None of these
Switched Control signals are available at the JP4
connector.

The signals present in this group are:

• XMIT_BlSTEN (SI-I)

• XMIT_MODE (SI-2)

• XMIT_ENN (SI-3)

• XMIT_ENA (SI-4)

• SWRCVBlSTEN (SI-5)

• RCV _MODE (SI-6)

• DIP_RCVA/B (SI-7)

• DIP _FOTO (SI-8)

• CD_POL (SI-9)

• SYNC]OL (SI-lO)

To allow these signals to be controlled through the
external connectors (JP2 and JP3), the correspond­
ing SI switch must be in the off (open) position.
Care should be taken when driving these signals, as
any switch inadvertently left in the closed position
will present a direct short to ground for an attached
driver.

Control Signals

In addition to the Switched Control signals that are
only present on JP2 and JP3, three additional control
inputs are present that connect to JP2, JP3, and JP4.

These control signals are:

• LOOP_BACK

• ENBYTSYNC

• LINK_CONTROL

These control inputs are connected directly to the
HOTLink 1tansmitter or Receiver. Because the
HOTLink parts contain internal pull-up resistors on
their TTL compatible inputs, these signals may be
driven with either open-collector buffers, CMOS, or
TTL drive levels.

Status Signals

Tho status output signals (RESET and
LINK_STATUS) are provided at all three I/O con­
nectors. The RESET signal is a slow-speed signal
and does not require the series termination used
with LINK_STATUS.

Clock Signals

Six signals are available at the I/O connectors that
are used as clocks in some form. Tho of these
(XMITCLOCKandEXTREFCLK) are input/output
clocks that are routed through the JPl jumper block,
and three are output clocks.

These clock signals are:

• XMITCLOCK

• EXTREFCLK

• RP

• RDY

• RCV_CLKO

• RCV_CLKI

Of the output clocks, the RP and RDY signals are
only available at JP2 and JP3. The RP signal is gen­
erated in the HOTLink Transmitter and is used for
reading data from asynchronous FIFOs, while the
ROY signal is generated in the HOTLink Receiver
and is used for writing data into asynchronous
FIFOs. When interfacing to clocked FIFOs
(CY7C44X, CY7C45X), the RP signal is not nor­
mally used. Because these signals are not present in
JP4, they are not series terminated.

6-364

CY9266 HOTLink Evaluation Board User's Guide

The other two output clocks (RCV _ CLKO and
RCV _ CLK1) are a buffered form of the recovered
CKR clock from the receiver. The RCV _ CLK1 sig­
nal is an inverted form of RCV _ CLKO.

Data Signals

The CY9266 Evaluation Board has two data buses:
one input (to the HOTLink Transmitter) and one
output (from the HOTLink Receiver).

The input data bus consists of ten parallel transmit
data signals that are sampled at the rising edge of
the HOTLink Transmitter CKW clock. In addition
to these ten signals, ENN and ENA (while part of
the Switched Control signals) may also be consid­
ered part of the data bus as they are also sampled at
this same time. While the XMIT _ BISTEN input is
also sampled at this ~ame time, it is not normally
used to transfer data and is therefore not considered
part of the input data bus.

The output data bus is comprised of ten parallel re­
ceived data signals that are synchronous to the
HOTLink Receiver CKR clock. To meet specific
timing requirements for OLC compatibility, there is
also an external pipeline register between the HOT­
Link Receiver data bus output, and the received
data bus connected to JP2, JP3, and JP4.

One other signal, BYTE_SYNC, is also clocked
through this pipeline register and is thus considered
part of the data bus.

All signals on this output bus are series-terminated
with a 22Q inline resistor to minimize transmission
line ringing.

Configuration Settings

The CY9266 board may be user-configured to allow
many modes of operation. This configuration is per­
formed through the jumper block JP1 and the op­
tion select switch S1.

JPl Jumper Block

The JP1 jumper block is used for configuring those
options of the CY9266 that are (primarily) either to
protect the board from signal contention, or for

those signals having multiple sources and destina­
tions. These functions are:

• Receiver Mode Select

• Receiver Loopback Source Select

• Transmitter Mode Select

• Transmitter FOTO Source Select

• Transmitter Clock (CKW) Source Select

• Receiver Reference Clock (REFCLK) Source
Select

JP1 exists as a 2 x 10 matrix of 0.025" square pins on
the top of the board. The rows in this matrix are
identified on the top silk screen as A through J. The
columns are identified as X and Y. A drawing of the
JP1 jumper block is shown in Figure 5.

Receiver Mode Select

This jumper ties pins X and Y of JP1-A together. It
is used to connect the receiver's MODE select pin
to the option select switch (S1-6), and to allow the
HOTLink Receiver mode to be set to the clock Test
mode (see Figure 13). The three modes of receiver
operation are:

• Decode Mode-Sl-6 ON (closed)

• Bypass Mode-S1-6 OFF (open)

• Test Mode-JPI-A, X and Y open

Because this clock Test mode is not normally used
for communications testing, the jumper (JPI-A) is

RCVMODE- A
RCV_NB- B
RCV_NB- C

XMITMODE- D
ENLFOTO- E
ENLFOTO- F

XMITCLOCK- G
XMITCLOCK- H

REFCLK- I
EXTREFCLK- J

0

0

0

0

0

0

0

0

0

0

,....
a.. ..

0

0

0

0

0

0

0

0

0

0

Xy

-RCV_MODE

-LOOPBACK

-DIP_RCVNB

-XMIT_MODE

-DIPfOTO

-LINK_CONTROL

-CKW
-LCLCLK

-LCLCLK

-LCLCLK

Figure 5. JPl, Top Side View

6-365

9E -,.~ CY9266 HOTLink Evaluation Board User's Guide
-=!J!f!!!IiiiiE,CYPRESS ================

permanently wired in place with a foil trace on the
bottom of the board. For those users who wish to ac­
tually place the receiver in Test mode, it may be nec­
essary to cut this foil on the back of the board.

Once this foil has been cut, it will be necessary to use
a shorting jumper across pins X and Y of IP1-A to
allow the two data modes of the receiver to be set by
the option select switch (Sl-6) and the
RCV _MODE signal on IP2 and IP3.

Receiver Source Loopback Select

This function uses two positions (lP1-B and IP1-C)
of the jumper block to select the source of the HOT­
Link Receiver loopback signal. Because this jumper
is used to select between one of two sources, only
one of these two positions (lP1-B or IP1-C) may
contain a shorting jumper at anyone time (see Fig­
ures 10 and 11).

By placing a shorting jumper across pins X and Y of
IP1-B, the receiver loopback (AlB) input is then
controlled by the LOOP_BACK signal on IP2, IP3,
and JP4. If this shorting jumper is moved to IP1-C,
then the receiver loopback input is controlled by the
option select switch (Sl-7) and the RCV _MODE
signal on IP2 and IP3. If a jumper is not present in
either position, the INA± path is selected (external
serial data).

Transmitter Mode Select

This jumper ties pins X and Y of IP1-D together. It
is used to connect the transmitter MODE select pin
to the option select switch, and to allow the HOT­
Link ltansmitter mode to be set to the clock Thst
mode (see Figure 7). The three modes of transmit­
ter operation are

• Encode Mode-S1-2 ON (closed)

• Bypass Mode-Sl-2 OFF (open)

• Test Mode-lP1-D, X and Y open

Because this clock Test mode is not expected to be
used for normal data communications testing, the
jumper (lP1-D) is permanently wired in place with
a foil trace on the bottom of the board. For those
users who wish to actually place the transmitter in

Test mode, it may be necessary to cut this foil on the
back of the board.

Once this foil has been cut, it will be necessary to use
a jumper across IP1-D to allow the two data modes
of the transmitter to be set by the option select
switch (Sl-2) and the XMIT_MODE signal on IP2
andlP3.

Tfansmitter FOTO Source Select

This function uses two positions (lP1-E and IP1-F)
of the jumper block to select the source of the HOT­
Link 1tansmitter FOTO signal. Because this jump­
er is used to select from one of two sources, only one
of these two positions (E or F) may contain a jumper
at anyone time (see Figures 8 and 9).

By placing a shorting jumper across pins X and Y of
IP1-F, the HOTLink Transmitter FOTO signal is
then controlled by the LINK_CONTROL signal on
IP2, IP3, and IP4. If this shorting jumper is moved
to IP1-E, then the transmitter FOTO signal is con­
trolled by the option select switch (Sl-8) and the
DIP _ FOTO signal on IP2 and IP3. If a jumper is not
present in either position, the transmitter OUTA±
and OUTB± differential drivers are placed in a
mode where a differential logic 0 is driven.

Transmitter Clock Source Select

The HOTLink 1tansmitter CKW clock can be
sourced from two different signals: LCLCLK from
the on-board oscillator and XMITCLOCK from
IP2, IP3, and IP4 (see Figure 7).

To select the on-board oscillator,. a shorting jumper
should be placed across pins IP1-GY and IP1-HY.
To select the XMITCLOCK signal, this shorting
jumper should be moved to connect pins X and Y of
IPI-G. To allow the transmitter to operate, it is nec­
essary for a jumper to be in one (and only one) of
these two positions.

Receiver Reference Clock Source Select

The HOTLink Receiver REFCLK signal can be
sourced from three different signals: LCLCLK from
the on-board oscillator, XMITCLOCK (from IP2,
IP3, and IP4), and EXTREFCLK (from IP2 and
IP3) (see Figure 13).

6-366

-~ CY9266 HOTLink Evaluation Board User's Guide
==,CYPRESS ================

To select the on-board oscillator, a shorting jumper
should be placed across the X and Y pins of JP1-1.
To select the XMITCLOCK signal, this shorting
jumper should be moved to connect pin X of JP1-1
to pin X of JP1-H. To select the EXTREFCLK sig­
nal (used for PLL range testing), the shorting jump­
er should be placed across pin X of JP1-1 and pin X
of JP1-J. To allow the receiver to operate it is neces­
sary for a jumper to be in one (and only one) of these
three positions.

SI Option Select Switch

The S1 Option Select Switch is used for configuring
those options of the CY9266 that may be changed on
a regular basis or are used to operate the board in
a standalone mode. These functions are

• Transmitter BIST Enable

• Encoder Mode Select

• Enable Next Parallel 'Itansmitter Data

• Enable Parallel 'Itansmitter Data

• Receiver BIST Enable

• Receiver Mode Select

• Receiver AlB Port Select

• Transmitter FOTO Enable

• Carrier-Detect Polarity

• Byte Sync Polarity

S1 exists as a lO-position DIP switch. The switch
positions (numbered 1 through 10) are identified on
the top of the switch. When a switch is on (closed),
the signal connected to that switch is tied directly to
ground. When a switch is off (open), the signal on
that switch is pulled up through a 5-kQ resistor in R­
pack R20.

These signals are also connected to pins on JP2 and
JP3 to allow external logic to control these func­
tions. A drawing of the S1 option select switch is
shown in Figure 6.

Transmitter BIST Enable

Switch S1-1 (XMIT_BISTEN) is used to enable the
HOTLink 'Itansmitter BIST function. When this
switch is on (closed), the BISTEN input to the trans­
mitter is pulled LOW, placing the transmitter into its
BIST loop. The exact patterns transmitted are de­
termined by the levels on the XMIT _ ENN and
XMIT_ENA signals, located on S1-3 and S1-4 re­
spectively (see Figure 7).

Encoder Mode Select

Switch S1-2 (XMIT_MODE) is used to select the
data encoding mode of the HOTLink Transmitter.
When this switch is on (closed), the internal8B/lOB
encoder is enabled and the 8-bit data characters are
encoded into lO-bit transmission characters. When
this switch is off (open), the encoder is bypassed and
the transmitter accepts lO-bit patterns for direct se­
rialization (see Figure 7).

Enable Next Parallel Transmitter Data

Switch Sl-3 (XMIT_ENN) is used, along with S1-1
(transmitter BIST enable) and S1-4 (XMIT_ENA),
to select which data patterns are sent during HOT­
Link Transmitter BIST operations (see Figure 7).

IfBIST is enabled (S1-1 on and S1-4 off), setting this
switch off (open) causes the transmitter to send an
alternating 1-0 pattern (DlO.2 or D21.5). When
turned on (closed), it enables an internal pattern
generator in the transmitter that generates a repeat­
ing sequence of 5111O-bit patterns.

For normal data transfer operations this switch
should remain off, with the XMIT _ ENN signal con­
trolled externally through JP2 and JP3.

Q/QIQ]
"TI

- XMIT_BISTEN

"TIIQI:Q]N -XMIT_MODE

IQI:Q]w - XMIT_ENN

lQI:Q]oI> - XMIT_ENA

IQI:Q]UI - SWRCVRBISTEN

lQI:Q]al - RCV_MODE

IQI:Q] - DIP _RCVA/B

IQI:Q]CID - DIPfOTO

IQI:Q]CQ - CD_POL

IQI:Q]C; - SYNC_POL

Fignre 6. SI Option Select Switch

6-367

.& -x
)CYPRESS ====;;;;;;CY=9;;;;;;2;;;;;;66;;;;;;H=O;;;;;;T;;;;;;L;;;;;;in;;;;;;k;;;;;;E;;;;;;v;;;;;;3;;;;;;IU;;;;;;3;;;;;;t;;;;;;io;;;;;;n;;;;;;B;;;;;;o;;;;;;3;;;;;;rd=U;;;;;;s;;;;;;er';;;;;;s;;;;;;G=ui;;;;;;d=e

Enable Parallel Transmitter Data

Switch Sl-4 (XMIT_ENA) is used, along with Sl-l
(transmitter BIST enable) and Sl-3 (XMIT _ ENN), to
select which data patterns are sent by the HOTLink
1tansmitter during BIST operations (see Figure 7).

If BIST is enabled (Sl-l on and Sl-3 off), setting
Sl-4 off (open) causes the transmitter to send an al­
ternating 1-0 pattern (DlO.2 or D21.5). When
turned on (closed), it enables an internal pattern
generator in the transmitter that produces a repeat­
ing sequence of 5111O-bit patterns.

For normal data transfer operations this switch
should remain off, with the XMIT _ ENA signal con­
trolled externally through JP2 and JP3.

When operated from the JP4 system connector, this
switch should be turned on (closed), because the
system hardware is required to provide a valid lO-bit
transmission character or data byte for each CKW
clock.

Receiver BIST Enable

Switch Sl-5 (SWRCVBISTEN) is used to enable the
HOTLink Receiver BIST function (see Figure 13).
When this switch is on (closed), the receiver awaits
a DO.O transmission character (sent once per BIST
loop). When this character is detected the BIST
state machine in the receiver begins matching the
following received transmission characters with its
internal pattern generator. This pattern generator
follows the same sequence of patterns as those sent
by the HOTLink Transmitter when sending its BIST
sequence.

When this switch is off (open), the HOTLink Receiver
operates in one of its two data modes (Decode or
Bypass).

Receiver Mode Select

Switch Sl-6 (RCV _MODE) is used to select the
data decoding mode of the HOTLink Receiver (see
Figure 13). When this switch is on (closed), the in­
ternal lOB/8B decoder is enabled and the received
lO-bit transmission characters are decoded into
8-bit data characters. When this switch is off (open),

the decoder is bypassed and the receiver outputs
lO-bit transmission characters directly to the output
data and status pins.

Receiver AlB Port Select

SwitchSl-7 (DIP _RCVNB) is used to select which
input port (A or B) the HOTLink Receiver should
use for receiving serial data (see Figures 10 and 11).
While the AlB input of the receiver is a lOOK ECL
(emitter-coupled logic) compatible input, it is con­
nected here to allow control from a switch or TTL
driver. This requires use of an external resistor net­
work, connected between that input and the select
switch, to allow full rail-to-rail swings to be used.

When this switch is on (closed), the INB+ input to
the HOTLink Receiver is selected. This input is di­
rectly connected to the OUTC+ output from the
HOTLink 1tansmitter. This is the Local Loopback
mode for the CY9266 evaluation board that allows
the transmitter and receiver to be tested without an
external serial data cable or optical module.

When this switch is off (open), the INA± differen­
tial input of the receiver is enabled to accept data
from the optical module (U4) or copper cable.

Transmitter FOTO Enable

Switch Sl-8 (DIP]OTO) is used to enable the
OUTA± and OUTB± differential output drivers of
the HOTLink Transmitter. When this switch is on
(closed), the differential outputs are allowed to fol­
low the pattern of the data serialized by the trans­
mitter (see Figures 8 and 9). When this switch is off
(open), the OUTA± and OUTB± differentialout­
puts of the transmitter are driven to a logic zero
state (+ output is logic LOW, - output is logic
HIGH). This places an attached optical transmitter
in a state where no light is output, or presents no
transitions on a copper cable.

Carrier-Detect Polarity

Switch SI-9 is used to control the active level of the
carrier-detect output signal, LINK_STATUS.
When this switch is on (closed) LINK_STATUS is
driven HIGH when a carrier is present and LOW
when one is not. When this switch is off (open) these
levels are reversed (see Figure 13).

6-368

=' -~ CY9266 HOTLink Evaluation Board User's Guide
-==-;CYPRESS ==============

The carrier-detect status is also displayed on one of
the decimal point indicators of the two-digit BIST
display. When the indicator is on, a carrier is pres­
ent. The state of S 1-9 has no affect on the operation
of this indicator.

Byte Sync Polarity

Switch S 1-10 is used to control the active level of the
BYTE_SYNC output signal. This level is also af­
fected by the operating mode of the HOTLink Re­
ceiver (S1-6) (see Figure 13).

With the HOTLink Receiver in Bypass mode, the
BYTE_SYNC signal is used as a K28.5 SYNC char­
acter indicator. With SYNC]OL LOW,
BYTE_SYNC is LOW when a K28.5 SYNC charac­
ter is present on the receive data bus. With
SYNC]OL HIGH, BYTE_SYNC is HIGH when
a K28.5 SYNC character is present on the receive
data bus.

With the receiver in Decode mode, the
BYTE_SYNC signal is used as a valid data indica­
tor. With SYNC]OL LOW, BYTE_SYNC is
LOW whenever a usable data byte is present on the
receive data bus. With SYNC_POL HIGH,
BYTE_SYNC is HIGH whenever a usable data
byte is present on the receive data bus.

CY9266 Schematic

The complete schematic for the CY9266-F Evalua­
tion Board is shown in Appendix A, and the sche­
matic for the CY9266-C and CY9266-T Evalua­
tion Boards is shown in Appendix B.

Sheet 1 of the top-level schematic contains four
functional blocks, which are detailed on the remain­
ing pages of the schematic.

Sheet 2 contains the power-supply filtering and by­
pass capacitors. It also contains a sacrificial Zener
diode that is used to protect the components on the
board in case of over voltage or incorrect connection
of the power supply.

Sheet 3 contains the BIST PLD and the error/status
displays.

Sheet 4 of Appendix A contains the HOTLink
1tansmitter and Receiver, as well as the optical in­
terface module. It also contains the on-board oscil­
lator and option-select DIP switch.

Sheet 4 of Appendix B contains the HOTLink Trans­
mitter and Receiver, as well as the copper interface
and carrier-detect circuit. It also contains the on­
board oscillator and option-select DIP switch.

Sheet 5 contains the parallel interface connectors,
the voltage monitor/reset generator, and the OLC­
compatibility registers.

Theory of Operation

The CY9266 Evaluation Board operation is broken
down into five functional sections:

• Transmitter Parallel Interface

• Transmitter to Optical Module or Copper Serial
Interface

• Optical Module or Copper to Receiver Serial
Interface

• Receiver Parallel Interface

• BIST and Support Hardware

Thansmitter Parallel Interface

The purpose of the transmitter parallel interface is
to load parallel data from an external source and
move that data to the shifter inside the transmitter.
This portion of the design consists of three parts: the
transmit data bus, transmitter control signals, and
transmitter clocks. A simplified schematic of this in­
terface is shown in Figure 7.

Transmit Data Bus

The transmit data bus is composed of the ten signals
named XMIT _ a through XMIT _9. This bus may be
driven from any of three possible sources: JP2, JP3,
or JP4. The data present on this bus is sampled by
the HOTLink 1tansmitter (Ul-CY7B923) at the
rising edge of CKW

The information present on the transmit data bus is
interpreted by the HOTLink 1tansmitter in one of
two ways, based on the setting of the MODE input

6-369

. ~ CY9266 HOTLink Evaluation Board User's Guide
~'CYPRESS ================

XIIIT_O
XIl1'1'_1
:1111'1'_2
XIII'l'_l
:I](I'1'_'
XIIIT_S
Xll1'1'_6
XIII~_7

XIII~_8

:1111'1'_9

XNIT_MODB
XNIT _BISTS.

XKI'l'_BNH
KNIT_BNA

XIIITCLOCK

RP

Sl
1 2 3

Ul CY7B923 -
SCfD(oa)
OO(Ob)
0l(Oa)
D2(D4)
D3(D8)
04(Oi)
OS(Df)
D6(l!g)
D7(Dh)
SVS(Dj)

JPl
Y 'x

D
HODB
BISTS.
BNN

JPl
BNA

X Y

~r>CKW RPil ;5 H

I LCLCLK. nJ
asc

Figure 7. 'Ihmsmitter Parallel Interface

to the transmitter. When MODE is HiGH (Bypass
mode), all ten signals are accepted as the actual data
to be transmitted and are fed directly to the shifter.
The letter form (Da - Dj, as illustrated in Figure 7)
of the bit identifiers is followed for this setting.
These designators specify which encoded data bit is
connected to a specific XMIT _ 0 to XM~T _9 signal.
In this mode the user must encode the data into the
lO-bit patterns used to send data across the serial in­
terface. While it is not necessary to use the 8B/lOB
code described in the HOTLink datasheet, it is ad­
vised that this code be used for simplicity. If another
code is used, its is the user's responsibility to insure
that sufficient transitions are present in the serial data
stream to allow the receiver to properly phase-lock to
the serial data stream. For the HOTLink Receiver to
provide byte framing and synchronization, the K28.5
pattern must be used for framing initialization.

When the MODE input is LOW (Encode mode),
the internal 8B/lOB encoder is eriabled. In this
mode the ten input bits are partitioned into eight
data bits (DO-D7) and two data-modifier bits
(SCfI) and SVS). For transmitting normal data pat­
terns, both the SVS and SC/D pins must be Law.

, In this setting the 8-bit data character present on
DO-D7 is latched at the rising edge of CKW and
presented to the encoder. The encoder then con­
verts the data character into the appropriate lO-bit

transmission character. Following conversion, the
transmission character is loaded into the shifter.

The two data-modifier bits, sc/D (Special Charac­
ter/Data Select) and SVS (Send Violation Symbol),
are used to send transmission characters other than
those used to represent data. When the SC/D input
is HIGH, the normal 8B/IOB encoding of the data
characters present on DO-D7 is changed. Now spe­
cial control codes are generated (see listing in the
CY7B923/CY7B933 datasheet). These control
codes are used to send framing, control, status, and
other supervisory functions across the interface.

The SVS pin is used for diagnostic purposes. When
this input is HIGH, the HOTLirik 1tansmitter shift­
er is loaded with a lO-bit pattern that is not a valid
8B/lOB transmission character. When the HOT­
Link Receiver detects this encoding violation it re­
sponds with its RVS (Received Violation Symbol)
output.

Note: The SVS input is intended for diagnostic pur­
poses only. If used within normal message traffic, it
may cause unexpected receive errors.

Transmitter Control Signals

In addition to the transmit data bus, four other sig­
nals are used, to control the serial data stream gener­
ated by the HOTLirik Transmitter. Two of these sig­
nals (BISTEN and MODE) control operating
modes of the transmitter. The other two signals
(ENN and ENA) are used to specify when valid data
is present on the transmit data bus.

Unlike the transmit data bus, these control signals
are not connected to JP4, but are instead connected
to JP2, JP3, and separate switches of Sl. These
switches allow the control inputs to be set LOW or
HIGH when an external controller is not present.
These switches are used both to control BIST mode
for standalone applications and to set the proper op­
erating characteristics for systems which only con­
nect to JP4.

The BISTEN and MODE inputs are used to control
which transmission characters are generated by the
HOTLink Transmitter. Setting BISTEN LOW
places the HOTLink Transmitter into one of two
auto pattern-generation modes.

6-370

-~ CY9266 HOTLink Evaluation Board User's Guide
~7CYPRESS ===============

When BISTEN is LOW and both ENN and ENA are
HIGH, the HOTLink Transmitter sends an alter­
nating 1-0 pattern (DlO.2 or D21.5). This pattern
provides the highest baseband output frequency
that the transmitter can generate, and is equal to 5x
the frequency of CKW This pattern may be useful
to test or characterize various serial link compo­
nents (i.e., fiber-optic modules, jitter tests, etc.).

When BISTEN is LOW and either ENN or ENA is
also Law, the HOTLink Transmitter begins a re­
peating test sequence that allows the transmitter
and receiver to work together to test the functional­
ity of the entire serial link. The repeating sequence
is 511 characters in length and includes all standard
codes as well as patterns that are normally consid­
ered code violations. This sequence may also be
useful for performing serial link margin tests.

The MODE input pin is used to select both how the
data on the transmit data bus is interpreted (en­
coded or non-encoded) and to place the HOTLink
1tansmitter into a clock Test mode. This input is ca­
pable of selecting one of these three possible modes
from a single pin by use of an internal three-level
comparator. These modes are

• Encode Mode--S1-2 ON (closed)

• Bypass Mode-S1-2 OFF (open)

• Test Mode-JP1-D, X and Yopen

When the MODE input is LOW (Encode mode),
the internal8B/lOB encoder is enabled. This allows
the transmit data bus to be interpreted as an 8-bit
data bus (DO-D7) with two control bits (SC/D and
SVS). When the MODE input is HIGH (Bypass
mode), the internal encoder is bypassed. This al­
lows the data bus to be interpreted as a lO-bit bus
(Da-Dj). Either of these modes may be set from
JP2, JP3, or S1-2.

The clock Test mode is accessed by allowing the
MODE input pin to float. Through use of an inter­
nal bias network in the transmitter, the MODE
input pin is placed at V cd2. This clock Test mode
can be accessed two ways on the board. The easiest
is to cut the foil on the bottom of the board that
shorts the X and Ypins of JP1-D together. Once cut
it will be necessary to place a shorting jumper across

these pins to allow JP2, JP3, or S1 to place the trans­
mitter into one of its normal data modes.

The other method of accessing this mode is to ac­
tively bias the XMIT _MODE pin on JP2 or JP3 to
V cd2. When doing so, keep in mind that this input
also has a 5-kQ pull-up resistor attached to this
signal.

The ENN (enable next parallel data) and ENA (en­
able parallel data) inputs are normally used to spec­
ify when valid data is present on the transmit data
bus. Both of these inputs are sampled on the rising
edge of CKW at the same time as the lO-bit transmit
data bus.

IfENA is LOW and ENN is HIGH at the rising edge
of CKW, the data present on the transmit data bus
is loaded, processed, and sent to the shifter. Ifboth
ENA and ENN are HIGH at the. rising edge of
CKW, the latched data is ignored and a K28.5 SYNC
code is sent in its place.

IfENN is LOW and ENA is HIGH at the rising edgc
of CKW, the data present on the transmit data bus
at the next rising edge of CKW is loaded, processed,
and sent to the shifter. If both ENN and ENA are
HIGH at the rising edge of CKW, the data latched
on the next rising edge of CKW is ignored and a
K28.5 SYNC code is sent in its place.

These two enable control signals are used to allow
different hardware interfaces to be implemented
with the least amount (usually none) of additional
data pipelining hardware. When one of these en­
able inputs is used for enable control, the other is
usually tied HIGH, but may be used in conjunction
with BISTEN for link testing without affecting the
data path controller.

Transmitter Clocks

The transmitter interface operates with both an
input clock (CKW) and an output clock (RP). The
input clock is used to generate both the internal
shifter clock and the output clock.

The CKW input clock can be sourced from either
the on-board oscillator or from the XMITCLOCK
signal. This selection is made through jumper block
JPl.

All internal operations of the HOTLink Transmitter
are based on the rising edge of the CKW clock. The

6-371

£~ CY9266 HOTLink Evaluation Board User's Guide
, CYPRESS ===============

CKW clock must be generated from a crystal-based
source. While the duty cycle of the CKW clock
source is relatively unimportant, it must still meet
certain minimum pulsewidth times as listed in the
CY7B923/CY7B933 datasheet.

The RP output clock pulse is a modified duty cycle
pulse whose HIGH and LOW components are set
for operation with asynchronous FIFOs (CY7C42X
family). The phase relationship of this clock pulse
to CKw, and its duty cycle (both set by the internal
PLL), are positioned to have valid data on the trans­
mit data bus at the rising edge of CKW.

This RP clock pulse may be directly connected to the
read control pin (R:) of an attached FIFO. Because
the presence of this pulse signifies a FIFO read op­
eration, it is only generated in response to the ENA
input being pulled LOW.

Transmitter to Optical Module Serial Interface

The transmitter has three differential output pairs
that each output the same serial data stream from
the shifter. Because of the switching speeds used for
these serial outputs (and for compatibility with opti­
cal interface modules) they are all implemented
using positive-referenced lOOK ECL-compatible
drivers. A simplified schematic of the interface
present on the CY9266-F is shown in Figure 8.

The normal mode of ECL operation is for all signal­
ing to be done at voltages below ground. Because
the ground point for ECL'is only a reference, the
same signaling can also be implemented above
ground. When this is done the reference point
changes from ground to Vee. When operated in this
mode ECL is often referred to as PECL (positive­
ECL). This is the mode of operation for the serial
outputs on the transmitter.

Tho of the differential outputs (OUTA± and
OUTB±) are also controlled by a TTL-level enable
pin called FOTO (fiber-optic transmitter-off). This
control input is used to disable all light output from
the optical module. While not specifically necessary
for LED-based optical modules, the ability to dis­
able all light output is a safety requirement for all
laser-based links (ANSI Z136.1 and Z136.2, RD.A.
regulation 21 CFR subchapter J, and IEC 825).

When FOTO is HIGH, the OUTA± and OUTB±
differential pairs are forced to a logic 0 state
(OUT+ is LOW and OUT- is HIGH). When
FOTO is LOW, the OUTA± and OUTB± differen­
tial outputs are allowed to follow the serial data pat­
tern from the shifter.

The FOTO pin on the HOTLink 'ftansmitter may be
configured to be controlled from either the JP2, JP3,
or JP4 connectors (LINK_CONTROL) or from
Sl-8 (DIP _FOTO). To avoid possible signal conten­
tion from these sources, this signal is first run
through jumper block JPl.

Placing a shorting jumper across the X and Y pins
of JP1-F allows the transmitter FOTO pin to be con­
trolled from the LINK_CONTROL signal. Moving
this jumper to JP1-E allows this selection to be made
through S 1-8 or through the DIP _ FOTO signal on
JP2 and JP3. If the jumper is omitted from the
board, the OUTA± and OUTB± outputs are
placed in the disabled state.

The OUTC± differential output is not controlled by
FOTO. This output continues to follow the serial
shifter data at all times. Because it is never disabled,
this signal is used for the localloopback. While this
signal is available differentially, it is connected to

Ul-CY7B923

FOTO
OUTA+ 1----+---+-+-1
OUTA- P'---l---t--f--C'I

DIP _FOTO >------'
TO RECEIVER INB+ ~-l----'

Figure 8. HOTLink Transmitter-to-Optical
Serial Interface

6-372

CY9266 HOTLink Evaluation Board User's Guide

the receiver single-ended. This allows the INB­
input on the receiver to be used as an ECL-to-1TL
translator for the receive optical module's carrier­
detect signal.

Because ECL signals are only active in one direc­
tion, it is necessary to provide a biaslload network of
some type for the signals to properly switch. The
typically specified load for ECL signals is 50Q con­
nected to Vee - 2V (Le., +3V for PECL).

This type of load can be created in many ways. For
large ECL systems a separate power supply is usu­
ally present to generate this bias voltage. This pro­
vides the lowest power dissipation. For small sys­
tems (like this one), a simpler method is to use two
resistors to create a network whose Thevenin equiv­
alent is this same 50Q connected to Vee - 2Y. This
is used for the OUTA± differential pair. The capac­
itor present across the Thevenin pair is necessary to
produce an AC short between the power and ground
planes.

The OUTB± output pair is not used on this evalua­
tion board. While normal ECL drivers left in this
mode would still dissipate a significant amount of
power, the HOTLink ECL outputs contain addi­
tional internal structures to sense if an output is
used or left open, and disables the internal current
sources of unused output drivers. This results in a
current savings of approximately 5 rnA (25 m W) for
each unused output pair.

The OUTC± output pair is biased to Vee - 5V
(ground) through 270Q resistors. This bias arrange­
ment is used here to reduce the overall component
count. This type of load may be used for short con­
nections because it provides a similar current load
to a Thevenin termination but, due to asymmetric
rise and fall times, it induces more jitter into the
data. This type of biasing should not be considered
as a type of line termination. If the switching speeds
and length of circuit traces dictate that the line
should be terminated, a Thevenin bias network
should be used to match the line impedance.

Even in those cases where the connection to the op­
tical modules is short and a 270Q resistor to
Vee - 5V may seem to be usable, it should not be
used. While this type of connection may work for

very short optical cable lengths, the jitter introduced
by the bias network reduces the overall system jitter
margin.

Transmitter to Copper Cable Serial Interface

On the CY9266-C and CY9266-T boards, the
transmitter output is configured to drive either a
coaxial or shielded-pair cable. A simplified sche­
matic of this interface is shown in Figure 9.

The copper-based CY9266-C and CY9266-T
boards use a transformer-coupled interface. Trans­
former coupling is called out in the ANSI Fibre
Channel standard for copper-based interfaces. Its
primary advantages are excellent common mode re­
jection, balanced-to-unbalanced conversion (for
coaxial cables), and DC isolation (2 kV hi-pot
tested).

The CY9266-C and CY9266-T boards are de­
signed to allow other modes ofline biasing and cou­
pling to be used for presenting a signal into the
cable. Pads are present on the board to allow a
Thevenin bias to be used on OUTA±. These resis­
tors are identified as R 72 and R 73 on Sheet 4 of the
CY9266-Crr schematic (see Appendix B).

The CY9266-C and CY9266-T are designed to
operate with cable systems providing a reflection co­
efficient of zero. This means that the receiving end

Ul-CY7B923

FOTO ·II~ OUTA+ I-----~ U
OUTA- p-----~_t~

JPl
X Y

OUTB+
OUTB-

OUTC+ 1------­
OUTC-

DIP _FOTO>------J

TO RECEIVER INB+ f-+------'

Figure 9. HOTLink Transmitter to Copper
Serial Interface

6-373

-. ~ CY9266 HOTLink Evaluation Board User's Guide
~,CYPRESS =================

of the cable should be terminated in the characteris­
tic impedance of the cable.

Pads are also present to allow both source termina­
tion and AC coupling to the transformer. These
components are identified as R54, R55, C25, and
C26 on Sheet 4 of the CY9266-Crr schematic (see
Appendix B). To use parts in these locations it is
necessary to remove the foil shorts across these
component pads on the circuit board.

The control signal inputs for copper-based inter­
faces operate identically to those of the optical in­
terface. The difference in operation is that when the
OUTA± outputs are disabled through the use of the
FOTO signal, instead of disabling all light, allout­
put transitions are disabled.

Optical Module to Receiver Serial Interface

The HOTLink Receiver has two differential input
pairs (INA± and INB ±) that can both be used to re­
ceive the high-speed serial data streams generated
directly by the transmitter or as output from an opti­
cal ri;:ceiver. These serial inputs are also PECL and
are directly compatible with the HOTLink Trans­
mitter. ECL was chosen for these signals for the
same reasons (speed, low noise, compatibility with
optical modules) it was used for the transmitter.

A separate PECL input signal (AlB) is used to select
which input pair (INA± or INB±) is actually fed to
the receiver shifter and PLL. A simplified schemat­
ic of the optical module-to-receiver serial interface
on the CY9266-F is shown in Figure 10.

Optical Module Signals

The optical receiver generates two signals; a lOOK
PECL differential received data signal, and a single­
ended carrier-detect signal. While the DIP package
form of the optical module does provide both + and
- forms of the carrier-detect signal, only the + form
is available on the endfire package. To allow the
same circuitry to be used with either module type,
only the + carrier-detect signal is used.

Receiver Data Inputs

The HOTLink Receiver differential INA and INB
inputs are similar, but not identical. While the

INA± inputs must always operate as a differential
pair, the INB± signals do not. This allows the INB±
inputs to be split into two separate ECL inputs:
INB +, which feeds the shifter and PLL, and INB - ,
which feeds an ECL-to-TTL translator.

The configuration of the INB± inputs is controlled
by the SO output of the translator. While techni­
cally an output, the SO pin on the HOTLink Re­
ceiver also contains sense circuits that monitor the
voltage level on the pin during power-up. If the SO
output is connected to Vee, the INB- input be­
comes part of the INB ± differential serial input. If
the SO output is normally loaded (no resistive
pull-up to Vec), the INB+ input becomes a single­
ended serial data receiver and the INB- input be­
comes part of a PECL-to-TTL translator.

This split mode is used on the CY9266 Evaluation
Board. It allows the INB- input to be used to con­
vert the PECL carrier-detect output of the optical
module (SIOO) to the TTL-level signal needed on
the receiver parallel interface.

U2-CY7B933

r-r---+-~-+--~INB+

~--+--+--+--~INB-(SI)

LOOPBACK)>-------.,

DIP_RCVA/Br---~O

AlB

Figure 10. Optical-to-HOTLink Receiver
Serial Interface

6-374

-., ~ CY9266 HOTLink Evaluation Board User's Guide
==~CYPRESS==================================

Receiver Port Select

The HOTLink Receiver uses a single-ended PECL
input (AlB) to control which serial input is fed to the
shifter and PLL. When the NB input is HIGH, the
differential INA± pair is connected to the shifter
and PLL. When the AlB input is LOW, the INB+
input is fed to the shifter and PLL. Because the
INB+ input is directly connected to the OUTC+
output from the HOTLink Transmitter, this LOW
setting is used for a local loopback and allows the
transmitter and receiver to communicate without
using an optical module.

The AlB input is a PECL input and normal TTL or
CMOS logic swings will not work to control it. This
input uses PECL (or larger) signal swings. These
can still be achieved in a TIL environment through
use of a resistive divider network.

Using this network, a TTL LOW level on the input
to the divider creates a PECL LOW at the NB input
to the receiver. With a TIL (or CMOS) HIGH into
the divider, the AlB input is placed at (or above) a
PECL HIGH. While standard lOOK ECL inputs
should never be taken above Vee - 700 m V, the
ECL inputs on the HOTLink Receiver may be con­
nected directly to Vee without degradation or
damage.

The divider network on this evaluation board may
be configured to be controlled from either the JP4
connector (LOOP_BACK) or from Sl-7
(DIP _RCVNB). To avoid possible signal conten­
tion from these sources the signal is first run through
jumper block JPl.

Placing a shorting jumper across the X and Y pins
of JP1-B allows the receiver port selection to be con­
trolled from the LOOP_BACK signal. Moving this
jumper to JP1-C allows this selection to be made
through S 1-7 or through the DIP _ RCV NB signal on
JP2 and JP3. If the jumper is left off the board, the
A± pair is selected.

Copper to Receiver Serial Interface

The CY9266-C and CY9266-T Evaluation
Boards replace the optical module with a transform­
er coupled electrical interface. The transformer

,----------7TO CARRIBR DBTECT

,--------~TO CARRIER DETBCT

U2-CY7B933

PROM TRANSMITTBR OUTC+

FROK CARRIER DETBCT >---------"

81 ~

Figure 11. Copper-to-HOTLink Receiver
Serial Interface

used here provides the same functionality as the one
used at the transmit end of the cable. A simplified
schematic of the copper cable-to-receiver serial in­
terface on the CY9266 - crr is shown in Figure 11.

The output side of the transformer ·connects to two
resistors. These resistors provide the line termina­
tion for the transmission line connected to the trans­
former. Two resistors are used for the termination
network to allow a reference voltage to be set for the
center of the received signal. This reference point
is set by an external 3-resistor divider, and is set in
this circuit to Vee - 1.3V. This is near the center of
the common mode range ofthe MClOH116 ECL re­
ceiver that is used to build a carrier detection circuit.
If this carrier-detect circuit is not used, it would be
better to bias this point at Vee - l.5V, the center of
the HOTLink Receiver's common mode range.

Both of these reference points must be bypassed to
allow them to remain stable under dynamic signal
conditions.

Unlike the optical receiver, which outputs a logic
zero in the absence of light (INA + = 0, INA - = 1),
the AC-coupled interface used for copper connec­
tions does not. When the signal is removed, the
INA + and INA - inputs to the HOTLink Receiver
are set to the same voltage. Because of the high gain
present in the HOTLink Receiver to allow use with

6-375

==r ~ CY9266 HOTLink Evaluation Board User's Guide
;,. CYPRESS ================

long cables (low amplitude received data), the
HOTLink Receiver will probably oscillate. This os­
cillation under a no-signal condition can be cor­
rected by forcing an offset between the INA + and
INA- inpU:ts, but this offset will induce more jitter
into the data stream and limit the usable length of
a copper-based serial link. Rather than compro­
mise operational length, a carrier detection circuit
can be added to validate the received data (in addi­
tion to the validation mechanisms present in the
data itself).

The CY9266-C and CY9266-T boards also con­
tain the pads and routing necessary for implement­
ing an equalizer to allow longer cables to be used.
The function of an equalizer is to present a frequen­
cy selective attenuation to the received signal that
brings the amplitude and phase of the frequency
components in that signal into the same amplitude
and phase. Because signals transmitted over copper
cables are effectively run through a high-frequency
attenuator, the equalizer used for copper cables is
a form of low-frequency attenuator (high-pass
filter).

The equalizer used is implemented in a bridged-H
configuration that is designed for balanced line op­
eration. It is shown on Sheet 4 of the CY9266-C
schematic in Appendix B and is constructed using
R64, R65, R66, R67, R68, R69, R70, R71, C29, C30,
and L1. To implement this equalizer it is necessary
to remove the foil shorts across R64 and R 71.

Copper Carrier-Detect

The carrier-detect circuit used on the CY9266-C
and CY9266 - T boards is shown in Figure 12. This
circuit uses two ECL differential receivers as level
comparators to detect the presence of 1- and O-level
pulses on the incoming signal. The gate connected
to the top side of the transformer (shown in Figure
11) detects the presence of received 1 pulses while
the gate connected to the bottom of this transformer
detects the presence of received 0 pulses. The input
capacitance of these comparators is isolated from
the actual received signal through 100Q resistors to
prevent this additional load from distorting the re­
ceived signal.

The input signal amplitude necessary to detect ei­
ther a 1 or a 0 is set by the resistor divider shown in
Figure 11: To prevent the 10H116 gate from oscillat­
ing it is recommended that this threshold be set to
a minimum of 50 mV above the termination refer­
ence voltage.

The outputs of these two gates are then wire-ORed
together to charge a capacitor. Because of the low
on resistance of the emitter follower output transis­
tors of the 10H116 gates, the capacitor can be
charged quite quickly. In the absence of 1 or 0 tran­
sitions above the set threshold level, this capacitor
is discharged both by a bleeder resistor to VEE, and
through the input of the third gate.

The third gate is configured as a comparator with
feedback to form a Schmitt trigger. This feedback
is necessary because of the slow transition rate of
the input signal to this gate. If feedback was not
used, this gate would oscillate as the input signal
slowly passes through the the threshold region of the
gate. The output of this Schmitt trigger is then con­
nected to the HOTLink Receiver INB- input,
which is configured as a PECL-to-TTL translator.

Receiver Parallel Interface

The receiver parallel interface is used to move the
character framed in the HOTLink Receiver to the
external world where it can be used. This portion of
the design consists of five sections: receiver parallel
data output, OLC-compatibility registers, receiver
clocks, receiver control inputs, and receiver status
outputs. A simplified schematic of this interface is
shown in Figure 13.

Figure 12. Copper Interface Carrier-Detect

6-376

= ~ CY9266 HOTLink Evaluation Board User's Guide
__ " CYPRESS ===============

22

RCV_IrOD:I """I-H+--t----=-->.".
•• BY"l'UYRC>1+-----l CKB. RCV_CLU

Figure 13. HOTLink Receiver Parallel Interface

Receiver Parallel Data Output

The receiver data bus is composed of ten signals
named REC_O through REC_9. This bus drives all
three I/O connectors (JP2, JP3, and JP4). Due to
the external register in the data path, these outputs
change coincidental with the rising edge of
RCV_CLKO (CKR).

The information placed on the receiver data bus is
determined by the HOTLink Receiver MODE se­
lect pin. When MODE is HIGH (Bypass mode), all
ten outputs are the ten bits that were received and
framed. The letter form (Qa-Qj, as illustrated in
Figure 13) of the bit identifiers is followed for this
setting. These designators specify which encoded
data bit is connected to a specific REC_O to REC_9
signal. In this mode the user must decode the data
from the lO-bit patterns used to send the data across
the serial interface.

While it is not necessary to use the 8B/lOB code de­
scribed in the HOTLink datasheet, it is advised that
this code be used for simplicity. If another code is
used, it is the user's responsibility to insure that suf­
ficient transitions are present in the data stream to
allow the HOTLink Receiver to properly phase­
lock to the serial data stream.

For the HOTLink Receiver to maintain byte fram­
ing and synchronization, the K28.5 pattern must
also be used for framing initialization. For those
systems that perform their own framing (SONET,

etc.), the HOTLink Receiver will phase-lock to a se­
rial data stream without a K28.5 code present and
clock out a character every 10 bit-clocks. These sys­
tems must operate in Bypass mode as the HOTLink
Receiver decoder requires operation with the
8B/IOB code and must acquire byte sync to recover
valid data. These systems must provide external
byte framing .

When the HOTLink Receiver MODE input is
LOW, the internal lOB/8B decoder is enabled. In
this mode, the ten output bits from the shifter are
sent to the decode register once every ten bit-clocks,
as determined by the framer. The 8-bit output from
this decoder is then placed on the receiver output
data bus bits QO-Q7, along with the two data status
bits SCID and RVS.

When receiving normal data patterns both the RVS
and SC/f) pins are LOW In this setting, the 8-bit
data character present on QO-Q7 is latched at the
rising edge of CKR into the external register and
presented to the output of the board.

The two status bits, SC/D (special character/data se­
lect) and RVS (received violation symbol), are used
to indicate reception of characters other than those
used to represent data. When the SCID output is
HIGH, special control codes (see listing in the
CY7B923/CY7B933 datasheet) have been decoded.
These control codes are used to indicate framing,
control, status, and other supervisory functions
across the interface.

The RVS pin is used for diagnostic purposes. When
this output is HIGH, the HOTLink Receiver de­
coder has detected a lO-bit pattern that is not a valid
8B/lOB transmission character or sequence. When
the receiver detects this encoding violation, it as­
serts RVS and places information on the QO-Q7
outputs to represent the type of error detected. Be­
cause all of these errors are represented with special
codes (CO.7, C1.7, C2.7, and C4.7) the sc/D output
is always HIGH whenever RVS is HIGH. These
possible error-type codes are listed in the HOTLink
datasheet.

OLC-Compatibility Registers

In order for this evaluation board to operate in an
OLC-266 compatible system, the timing of the RDY

6-377

-= -.~ CY9266 HOTLink Evaluation Board User's Guide
_,CYPRESS ===============

signal had to be modified. This signal from the re­
ceiver is used for four functions: to indicate when a
K28.5 SYNC character has been received, to indi­
cate that valid data has been received, to clock valid
data into an external asynchronous FIFO, and to in­
dicate the end of a BIST loop.

To support these different functions from a single
pin requires the addition of a single register to con­
vert the waveform generated by the RDY signal into
the BYTE_SYNC status signal the OLC card gener­
ates. Additional registers were then added to the
data bits to keep them in the same byte-phase rela­
tionship as the BYTE_SYNC signal (which is now
delayed one clock).

The 22Q series termination present on these signals
should not be necessary for most systems, but are
added here to allow a flat-cable-type attachment to
this card.

Figure 14 shows the relative timing relationships be­
tween the HOTLink Receiver data, the RDY signal,
the BYTE_SYNC signal, and the output clocks. For
RDY to operate in this fashion, the RF (Reframe
enable) control input must be HIGH and the re­
ceiver must be in Bypass mode (receiver MODE is
HIGH).

When RF is Law, the RDY and BYTE_SYNC out­
puts operate the same as that shown in Figure 14.
The difference is that the clocks are not allowed to
change phase or width upon detection of a K28.5
SYNC character.

The functionality of the RDY (and thus
BYTE_SYNC) signal changes when the receiver is

RBCEJ:VBR ,,----:=:---.r:==-=hr==-b~:_c_=-o-:"c_o=___=_
DATA

PJ:PBLJ:NB ----==--,,---:::=-+=:-::-.J=::-=--=-I=-=-==-~r
DATA _~~~\~~~~~~~~\~~~

BYTE_SYNC ______ --'1

RP

Figure 14. Receiver Data Timing, Bypass Mode,
RFHIGH

in Decode mode (receiver MODE is LOW). Here
the the RDY signal pulses LOW for every character
received including the K28.5 SYNC character.
When multiple consecutive SYNC characters are
received, RDY is inhibited except for the last K28.5
character received. This is done to prevent overfil­
ling a receiver FIFO with non-data information.
Figure 15 shows the relative timing relationships for
this type of operation.

Because RF is LOW in Figure 15, the CKR clock
(and thus RCV_CLKO and RCV_CLKl) is not al­
lowed to reframe on new K28.5 SYNC characters
detected. When RF is HIGH in Decode mode, the
HOTLink Receiver RDY output ceases pulsing until
the first K28.5 SYNC code is detected, after which the
behavior illustrated in Figure 15 is resumed.

Receiver Clocks

The HOTLink Receiver parallel interface (see Fig­
ure 13) operates with a single input clock
(REFCLK) and two output clocks (CKR and RDY).

The REFCLK input clock does not directly clock
anything in the receiver, but is used as a reference
for the receiver PLL. This clock is required to be
both stable and reasonably accurate. It must match
the byte-rate frequency of the received data within
±O.1 %. Unlike an OLC card, which requires a spe­
cial sequencing of the LOCK_TO _REF signal to al­
low the receiver to track to a reference clock, the
HOTLink Receiver PLL continuously operates in a
mode that compares its frequency to that of the ref­
erence clock, even when valid data is being received.

If the frequency of the received data varies outside
of specific fixed limits, the HOTLink Receiver stops

RECBJ:VBR ~r--,~_J-.r_--+-,~-~r-_.~­
DATA ~~~~==~~~~~~~~~~

PIPBLINB ,,-,-=-~,,~,,--,,~~,...J,-~_'~-~r-~'
DATA ~:.:.::..=c=::""'::+-===-+-===-JC:::':'::'.:=JI:=::...=JI

ROY

RP ______________ ___

Figure 15. Receiver Data Timing, Decode Mode,
RFLOW

6-378

CY9266 HOTLink Evaluation Board User's Guide

locking to the serial data and reverts to the
REFCLK. Once the received serial data stream re­
turns to an acceptable frequency, the PLL again
locks to the received data. Since it is likely that byte
sync has been lost, a reframe cycle should be per­
formed to allow the framer to lock up again. Detec­
tion of this and the recovery process is normally han­
dled automatically by higher-level functions in the
communications system.

The REFCLK input to the receiver can be sourced
from three different signals on the evaluation
board: the on-board oscillator, the XMITCLOCK
input, or the EXTREFCLK input. Selection of the
clock source can only be done through jumper block
JPl.

The on-board oscillator is used primarily for standa­
lone operation and testing using the BIST capabili­
ties of the HOTLink parts. This clock is selected by
placing a shorting jumper across pins X and Y of
JPI-I.

The XMITCLOCK input is used for normal data
transmit/receive functions and for OLC-compatibility
mode. This clock is selected by placing a shorting
jumper across pins JPI-HX and JPI-IX.

The EXTREFCLK input is used for those instances
when the transmitter and receiver are to be clocked
with different frequency clocks. This is expected to
be used only to test for PLL capture!1ock range test­
ing of the receiver, or when the HOTLink Receiver
is connected to a transmitter operating at a different
frequency from the local HOTLink Transmitter.
This clock is selected by placing a shorting jumper
across pins JPI-JX and JPI-IX.

The CKR output clock is generated in the HOTLink
Receiver and is based directly on the internal PLL
frequency. This output is synchronous with the re­
ceiver output data bus and may be used to clock the
data into an associated register (as is done on this
board) or into synchronous FIFOs.

The period and duty cycle of the CKR output clock
are fixed by the logic in the receiver. To achieve
compatibility with OLC-type systems, the CKR sig­
nal is used to generate two new clock signals
(RCV_CLKO and RCV_CLKl) that are true and

complement copies of the CKR clock. To keep
matched delays and to minimize the number of
additional logic packages on the board, these two
clocks are generated using XOR gates.

When framing occurs, the CKR clock can experi­
ence large phase changes. These changes are exhib­
ited by a lengthening of either the HIGH or LOW
portion of the CKR waveform. This can be seen in
the waveforms shown in Figure 14. While this func­
tionality is not required by the ANSI Fibre Channel
Standard, it is included in the HOTLink Receiver to
protect downstream clocked logic from the narrow
pulses or glitches that can occur otherwise.

The RDY output signal is used both as a status out­
put and as a clock. Its use as a clock is primarily for
clocking data present on the receiver data bus out­
puts into asynchronous FIFOs. The duty cycle of the
RDY pulse and its position relative to the output
data is such that it may be directly connected to the
W (write) input on CY7C42X FIFOs.

Receiver Control Inputs

The receiver parallel interface is controlled by three
input signals: RF (Reframe), MODE (Receiver
Mode select), and BISTEN (BIST Enable).

The RF input is used to select when the HOTLink
Receiver is allowed to reframe (acquire byte-sync)
to the incoming serial data stream. This input is
present to prevent the receiver from mis-framing on
aliased K28.5 SYNC codes, which would cause long
running decode errors.

When RF is LOW the framer is disabled; it does not
change the starting bit location of each received
character. Any received K28.5 SYNC code is
treated as normal data and is clocked out with the
CKR and RDY clocks. If this SYNC code is re­
ceived across two character boundaries, the framer
does not reframe. If the HOTLink Receiver is oper­
ating in Decode mode, the existence of such a non­
aligned pattern may generate one or more charac­
ters in error.

When RF rises, the RDY output is inhibited. With
RF held HIGH, the framer continuously monitors
the serial data stream for either disparity form of
the K28.5 SYNC character. When this character is
detected, the bit counter used to count off serial

6-379

CY9266 HOTLink Evaluation Board User's Guide

data bits and specify received character boundaries
is asynchronously reset to properly frame the subse­
quently received bits on character boundaries.

If the receiver is set to Decode mode, the RDY out­
put assumes its normal furiction of pulsing LOW for
each byte after the first K28.5 SYNC code is de­
tected. If the receiver is instead set to Bypass mode,
the RDY signal pulses LOW only for the SYNC
(K28.5) characters while RF is HIGH or Law.

Because of characteristics of the 8B/lOB code, it is
possible to transmit legal character sequences that
can cause incorrect framing (this requires sending
control codes other than K28.5). These codes
should be avoided while RF is HIGH. Once the
framer is disabled (RF LOW) these sequences may
be used to pass control information across the inter­
face without causing the receiver to incorrectly
frame the data that follows.

The MODE input pin on the HOTLink Receiver is
used to select both how the received serial data is to
be presented on the data bus (encoded lO-bit char­
acter or decoded 8-bit character), and to place the
receiver into a clock Test mode. This input is capa­
ble of selecting one of these three possible modes
from a single pin through use of an internal three­
level comparator.

When the MODE input is Law, the internal
lOB/8B decoder is enabled (Decode mode). This al­
lows the receiver output data bus to be interpreted
as an 8-bit data bus (QO-Q7) with two status bits
(SCID and RVS). When the MODE input is HIGH,
the internal decoder is bypassed (Bypass mode).
This allows the data bus to be interpreted as a lO-bit
bus (Qa-Qj). Either of these modes may be set
from JP2, JP3, or SI-6.

The clock Test mode is accessed by allowing the
MODE input pin to float. ThJ;'ough use of an inter­
nal bias network in the receiver, the MODE input
pin is placed at V cd2. This clock Test mode can be
accessed two ways on the board. The easiest is to cut
the foil on the bottom of the board that shorts the X
and Y pins of JPI-A together. Following this, it will
be necessary to place a shorting jumper across these
pins to allow JP2, JP3, or SI-6 to place the receiver
into one of its normal data modes.

The other method of accessing this mode is to ac­
tively bias the RCV.:.,MODE pin on JP2 or JP3 to
V cd2. When doing so, keep in mind that this input
also has a 5-kQ pull-up resistor attached to the
signal.

The BISTEN input pin is used to place the HOT­
Link Receiver in a special pattern verification
mode. This mode is designed to work in conjunction
with a matching pattern generation mode in the
transmitter. While not shown on the schematic in
Figure 13, the BISTEN input is actually run through
the BIST PLD (U8-CY7C344). This is not neces­
sary but is done here to allow other conditioning of
the BISTEN signal if desired.

When the HOTLink Receiver BISTEN input is set
Law, the receiver's BIST state machine is enabled
and enters its self-test mode. At this point it sets
RDY HIGH and begins looking for the BIST start­
of-loop character (DO.O) in the serial data stream.
Once this character is detected, the RDY output is
driven Law, where it remains until the end of the
511-character BIST loop. At this point RDY pulses
HIGH for one character and starts the next 511-byte
loop.

While BIST mode is enabled, the RVS output is
used to indicate that a pattern mismatch has oc­
curred. This means that the lO-bit pattern received
did not exactly match the lO-bit pattern that was ex­
pected (expected code violations are not errors).

Receiver Status Outputs

The HOTLink Receiver parallel interface gener­
ates two status output signals: RDY and SO.

The RDY output is used both for status information
and as a clock. As a status output, its information is
valid at the rising edge of CKR. This means that the
RDY signal must be registered to present its status
information. For normal data transfer modes, the
registered form of RDY is used to identify the pres­
ence of multiple K28.5 SYNC characters (HIGH at
rising edge of CKR) and of data or control charac­
ters (LOW at the rising edge of CKR). This regis­
tered form of RDY generates the BYTE_SYNC
signal.

The RDY signal is also used to identify what phase
the HOTLink Receiver BIST mode is in. When

6-380

& ~ CY9266 HOTLink Evaluation Board User's Guide
,CYPRESS ==============

HIGH for two or more CKR clocks, the receiver is
looking for the start character of the BIST loop.
When Law, the receiver is in the BIST loop. When
HIGH for a single clock, the receiver has completed
another BIST loop.

The SO output is used as part of an ECL-to-TTL
translator to specify the current state of the carrier
on the serial interface, and is used to drive the
LINK_STATUS signal. When a valid carrier is
present and Sl-9 (CD_POL) is off (open),
LINK_STATUS is LOW This polarity is reversed by
turning Sl-9 on (closed) or pulling SYNC _POL LOW

BIST and Support Hardware

The CY9266 Evaluation Board contains not only
those components necessary to form a serial link,
but also a few support components to enhance OLC
compatibility and to support the BIST capability in
the HOTLink 1tansmitter and Receiver. A simpli­
fied schematic of these additional components is
shown in Figure 16.

The MAX707 is used to monitor the power-supply
voltage and remove the RESET signal when Vee is
above 4.6Sv' This is a close approximation to the
4.7SV RESET threshold specified for the OLC
card. This part also supports an external mechani­
cal switch input that also controls the RESET out­
put. This input is controlled by the BIST reset push­
button switch (S2). When this switch is depressed,
the RESET output is driven LOW until 200 ms after
the switch is released. This RESET signal is used to
clear the BIST error-counter located in the BIST
PLD (U8). The PWR ON indicator is extinguished
as long as RESET is active.

OB-CY7C344

CltR>------i)
RDY BIST PLD

so>------/
RCVR_9 (RVS)>------/
SWRCVBIS~BH>---.....,.-I

I---+-------~RBSB~

Figure 16. BIST Support Hardware

The BIST PLD is a Cypress CY7C344 MAX EPLD
programmed with the counters and state machines
necessary to monitor the status of the receiver out­
puts and count when BIST-compare errors are de­
tected. This PLD also drives the decimal points on
the attached displays to indicate four status signals.
These status signals are:

• PWR ON-Lit when power is present and above
the 4.6SV sense threshold

• CAR DET-Lit when a valid carrier is present

• BISTWAIT -Lit when BIST is enabled but the re­
ceiver has not detected the start of the BIST loop

• BIST OVFL-Lit when the BIST error count
exceeds 99

BIST State Machine

The BIST state machine has six states that control
when a counter is enabled to count pattern-match
errors. A bubble diagram of this state machine is
shown in Figure 17 while the MAX + PLUS source
file for this state machine is listed in Appendix C.

This state machine controls when the error counter
is enabled to count. It operates off of two input sig­
nals: BISTEN and RDY. Whenever BISTEN is not
present, the machine is returned to the WAITO state
(while all state transition arrows are shown for these
transitions, not all of them are labeled).

Figure 17. BIST State Machine Bubble Diagram

6-381

o::::;:;z ie~ CY9266 HOTLinkEvaluation Board User's Guide
~"CYPRESS =================

Once BISTEN becomes active, the machine goes
through two secondary wait states (WAIT1 and
WAIT2) before starting to look for RDY being ac­
tive. These wait states are necessary to allow the re­
ceiver time to recognize the BISTEN signal and
bring RDY high.

When the ENABLED state is reached, the machine
remains in this state until RDY goes LOW, causing
the machine to move to the first of the two
LOCKED states. This signifies that the receiver has
received the start-of-Ioop character (DO.O) and is
now performing matching of the received data bits
to its internal pattern generator.

In the LOCKED states, the external counter is en­
abled to count errors. The reason two LOCKED
states are present is to allow for the single pulse on
RDY that indicates the end of a BIST loop. If RDY
is ever HIGH for more than one clock, the HOT­
Link Receiver has determined that it is no longer in
sync with the transmitter and it starts looking for the
start-of-loop character again.

Other BIST PLD Functions

The complete schematic for the BIST PLD is shown
in Appendix C Other than the BIST state machine,
the other main logic functions present in the part are
for driving the four status indicators and the actual
error counter.

Error Display

The error display is made from two hexadecimal
LED displays (TIL3ll). These displays are each ca­
pable of showing the entire hexadecimal character
set (0-9, A-F) as well as having two independent
decimal points; These decimal points are used as in­
dividual status indicators for the board.

External Serial Interface Connections

The primary difference between the CY9266 card
types is in the external high-speed serial interface.
Each of the card types operates with not only a dif­
ferent media type (optical, coaxial, shielded twisted
pair), but also different connectors and cable types.

CY9266-F Serial Interface Connections

The CY9266-F HOTLink Evaluation Board im­
plements a fiber-optic-based serial interface. This in­
terface uses industry-standard LED-based
fiber-optic modules that accept SC-type fiber-optic
connectors.

Optical Modules

The CY9266 - F HOTLink Evaluation Board is de­
signed to operate using a de facto standard-footprint
optical module. Any optical module meeting the
pinout and dimensions of this de facto standard (es­
tablished originally for FDDI) should operate with
the CY9266-F.

Note: These standard-footprint optical modules are
available in a wide range of operating data rates.
Because the operating data rate for some of these
modules may be outside the 160- to 330-Mbit/second
operating range of the HOTLink Transmitter and
Receiver, care should be exercised when selecting
an optical module.

This footprint supports two types of optical mod­
ules: those with four rows of vertical pins, and those
with a single row of pins along the bottom edge. In
vendor literature these are referred to as DIP- and
endfire-type packages.

While specified originally for FDDI, modules meet­
ing this footprint are also available for Fibre Chan­
nel and ATM data rates, and meet all optical and
mechanical specifications of the Fibre Channel
Standard. Figure 18 shows the mechanical footprint
dimensions of this de facto standard package.

Both package types operate from a + 5V supply and
interface directly with lOOK ECLJPECL. The big­
gest mechanical difference between them is that the
endfire-type packages have two oversized pins (1
and 32) that are used only to hold the package in
place. The main electrical difference between the
packages types is that the DIP package drives the
Signal Detect output differentially while the endfire
package only provides the active HIGH output.
Table 5 lists the pinouts for this standard-footprint
optical module.

The active signals listed in Table 5 are

• SD-Signal Detect

6-382

=' ?cYPRESS ====;;;;;C;;;;;Y;;;;;9;;;;;2;;;;;66;;;;;H=O;;;;;T;;;;;L;;;;;in;;;;;k;;;;;E;;;;;v;;;;;a;;;;;lu;;;;;a;;;;;t;;;;;io;;;;;n;;;;;B;;;;;o;;;;;a;;;;;rd=U;;;;;s;;;;;er;;;;;'s;;;;;G=ui;;;;;d=e

0.075"

0.032"

04
05

06

07
...1-+--t>8

0.100"

r- 0.500" --j
--.lW --.lW

~5 ~5
I- 0:: I- 0::
0.. W 0.. W
01- 01-

12~ DUPLEX ~ ~
SC

RECEPTACLE
016 170 32
015 180

014 190

013 200

012 210

011 220

010 230

09 240
o 0 0 0 0 0 0

030

029

028

027

026

025

33 34 35 36 37 38 39 40 41

0.625"

1.540"

0.8"

UlJI3o.100"
1-0.400"

0.600"

1.000"

Figure 18. Optical Module,
Top View Dimensions

• TD-Transmit Data

• RD-Receive Data

• Case-Outer Case of Module

• V ec-Positive Supp~y Voltage

• VEE-Negative Supply Voltage

Pins marked "Case" are not necessarily isolated
pins. Because the optical module is used in the
CY9266-F in a PECL mode, these Case pins are
connected to the VEE (ground) supply. When se­
lecting an optical module, care should be taken to
insure that the pins marked "Case" are either float­
ing or are attached to the appropriate power supply
rail.

To allow evaluation of different types of optical
modules, the CY9266-F Evaluation Board is built
using low-profile socket pins for the optical module.
This allows the modules to be easily replaced. In
addition, two slotted holes are provided for a cable­
tie to hold the module in place.

Table 5. Optical Module Pinout

DIP Pin Assignments

Pin Signal Pin Sigual

1 Case 2 No Pin

3 Case 4 VEE

5 VEE 6 +SD

7 -SD 8 Case

9 Case 10 -RD

11 +RD 12 Vee

13 Vee 14 Vee

15 Case 16 Case

17 Case 18 Case

19 Vee 20 Vee

21 Case 22 +TD

23 -TD 24 Case

25 Case 26 VBB

27 Case 28 Case

29 VEE 30 VEE

31 No Pin 32 Case

Endfire Pin Assignments

Pin Signal Pin Signal

33 VEE 34 +RD

35 -RD 36 +SD

37 Vee 38 Vee

39 -TD 40 +TD

41 VEE ;:~ ... ''''''''

Fiber-Optic Connector

The optical modules specified for use on the
CY9266-F HOTLink Evaluation Board (listed in
Appendix A, item U4) are designed to accept SC­
type fiber-optic connectors. These connectors are
available in both simplex (single-fiber) and duplex
(dual-fiber) versions. Figure 19 shows a simplex SC
fiber-optic connector. A duplex connector is
formed either by joining two simplex connectors to­
gether with a clip (sometimes referred to as a "z"
clip) or by using a connector that supports two fibers
in the same form factor. The standard optical fiber
type used with these connectors and LED-based op-

6-383

=:; . ~ CY9266 HOTLink Evaluation Board User's Guide
_,CYPRESS ======~========

Figure 19. SC Simplex Fiber-Optic Connector

tical modules is 62.5/125-t.tm multimode graded­
index fiber.

When using duplex connector cables, the cable
construction controls which fiber is connected to the
transmit LED and which is connected to the receive
photodetector. When using simplex cables, this po­
larization control is left to the user. The transmit
and receive connectors on the fiber-optic module
are shown in Figure 20.

CY9266-C Serial Interface Connections

The CY9266-C HOTLink Evaluation Board im­
plements a copper-based serial interface. This in­
terface uses 75Q coaxial cables having BNC- and
TNC-type connectors.

Coaxial Board Connectors

The CY9266-C HOTLink Evaluation Board has
two right-angle female coaxial cable connectors: a
BNC (Bayonet Neil-Councilman) for the 11 trans-

,/"
Transmit ."

Connector /'
Receive

Connector

Figure 20. U4 Fiber-Optic Module Connectors

Receive
Connector
J2 (TNC)

Figure 21. Jl and J2 Coaxial Board Connectors

mit connector, and a TNC (Threaded Neil-Council­
man) as the J2 receive connector. These connectors
and their location on the board are shown in Figure
21.

Coaxial Cable Connectors

Many different coaxial cables may be used with the
CY9266-C HOTLink Evaluation Board. The only
requirements for the cable are 75Q characteristic
impedance and BNC/TNC connectors at each end
to attach to the board. Other cable impedances may
also be used, however, the termination (R40 and
R41) and bias (R61 and R62) resistors on the board
must then be changed for correct operation.

Coaxial cables for the CY9266-C should have a
BNC connector on one end and a mc connector on
the other. This dual connector mechanism is speci­
fied by ANSI to prevent the inadvertent cabling of
a transmitter to another transmitter, or a receiver to
another receiver. When connecting cables to a
CY9266-C board, the cable BNC connector always
attaches to a transmit port (11) and the cable TNC
connector always attaches to a receiver port (J2).
TNC/BNC dual-female barrel connectors (e.g.,
Amphenol #76400) are available tel allow splicing
of cables to evaluate multiple lengths of cable. Fig­
ure 22 illustrates typical TNC and BNC connectors.

CY9266-T Serial Interface Connections

The CY9266-T HOTLink Evaluation Board im­
plements a copper-based serial interface. This in­
terface uses 150Q shielded twisted-pair (STP)

6-384

CY9266 HOTLinkEvaluation Board User's Guide

Threaded
Neil-Councilman
Connector (TNC)

Bayonet
Neil-Councilman
Connector (BNC)

Figure 22. TNC/BNC Cable Connectors

cables with 9-pin male D-subminiature-type con­
nectors.

STP Board Connectors

The CY9266-T HOTLink Evaluation Board has a
right-angle female 9-pin D-subminiature connec­
tor. Unlike the coaxial cable version of the CY9266,
which uses separate connectors for transmit and re­
ceive, the CY9266-T uses only a single connector
(PI) for both. This connector and its location on the
board is shown in Figure 23.

STP Cable Connector

There are presently two STP cable types identified
by ANSI for use with Fibre Channel; both specify
1500 differential characteristic impedance. These
cable types are known as either EIAlT1A5681YPe-1
and Type-2, or more generically as IBM® Type-l or
Type-2. Both of these cable types contain two indi­
vidually shielded pairs of solid conductors. The
1Jpe-2 cable also contains four non-shielded con-

Pins 5 and 9
Receive Data

Pins 1 and 6
Transmit Data

Figure 23. STP PI Board Connector

Figure 24. STP Cable Connector and
Connector Pinout

ductors that are often used for either low-speed
signaling or voice-grade communications.

For installations where the cables may see more
flexing, a stranded conductor cable is available that
meets the 1500 impedance. This cable type is com­
monly known as IBM 1YPe-6. Other cable types may
also be used with the CY9266 - T HOTLink Evalua­
tion Board. The only requirements for the cable are
1500 differential characteristic impedance and a
properly wired (see Figure 25) 9-pin male D-sub­
miniature connector at each end of the cable. Other
cable impedances may also be used, however, the
termination (R40 and R41) and bias (R61 and R62)
resistors on the board must then be changed for cor­
rect operation.

Figure 24 shows an example of a compatible STP
cable connector and how the pins in the connector
are numbered. This is a 9-pin male D-subminiature
connector. While connectors of this type are avail­
able with a plastic housing, proper operation with
STP cables requires using connectors having a metal
or conductive shell. When properly connected, as
shown in Figure 25, the shield of each pair in the
cable is attached to the conductive front shell of the
connector. To maintain shielding effectiveness it is

+XMIT 1 ~f"t---'''Ar------.
-XMIT 6 '-W---1V'M...._

~---, .. .,---,A-< 1 +XMIT
6 -XMIT

+ RCVR 5 __ .,......~A .. ~- 5 +RCVR
-RCVR 9 -.......:LLL-'V'IVL..~ 9 -RCVR

SHELL >------"'="-""=""---+.--< SHELL

Figure 25. STP Cable Connections

6-385

i ~ CY9266 HOTLink Evaluation Board User's Guide
,CYPRESS ================

recommended that the connector backshell/strain
relief also be metallic or conductive.

The STP cable is wired in a crossover fashion where
the transmit connections at one end of the cable are
connected to the receive connections at the other
end of the cable, as illustrated in Figure 25. The
cable shields for both pairs are tied together and
connected to the D-sub shell at each end.

OLe Mode Configuration

The CY9266 Evaluation Board may be configured
to operate in an OLC-266 compatible system. This
emulation is strictly at the TTL parallel interface
level; the optical and electrical serial interfaces are
not compatible. In addition, the CY9266 is only a
single-channel board while the OLC-266 is available
in either single- or dual-channel versions.

The TTL parallel interface attachment is provided
through the JP4 connector. This connector is
pinned and positioned to mate with host systems de­
signed for the OLC-266 board.

The following configuration sets the CY9266 for
lO-bit data and Bypass mode on both the transmitter
and receiver. The transmitter and receiver are both
clocked by the XMITCLOCK signal on JP4, and the
receiver AlB selection is controlled by the
LOOP _BACK signal on JP4.

JPl Settings

The CY9266 jumper block JP1 controls many of the
options on the board. For the CY9266 to operate in
an OLC socket, jumper block JP1 must be config­
ured with shorting jumpers as shown in Figure 26.

The shorting jumper across pins X and Y of JP1-B
allows the LOOP _BACK signal in the JP4 connec­
tor to control the AlB input selection on the HOT­
Link Receiver. The jumper across pins X and Y of
JP1-F allows the LINK_CONTROL signal to con­
trol the FOTO enable of the HOTLink Transmitter.
The jumper connecting pins X and Y of JP1-G con­
nects the XMITCLOCK input to the HOTLink
Transmitter CKW clock. The jumper connecting
pins JP1-HX to JP1-IX connects the XMITCLOCK
input to the HOTLink Receiver REFCLK input.

ENLFOTO -

XMITCLOCK­

XMITCLOCK­

REFCLK-

JP1
ADD

B~
Coo

DOD

E 0 0

~~o ~
HOD

I 0 0

J 0 0

Xy

- LOOPBACK

- LINK_CONTROL

-CKW

Figure 26. JPl OLC-Compatibility Settings

Note: The active signal level of the LOOPBACK sig­
nal, as implemented on the CY9266, is opposite that
of an actual OLC-266 card. If this signal is under
software control, it should be programmed to allow
signalloopback when the signal is active LOW. For
hardware controlled systems an external signal in­
version is necessary, or the signal may be jumpered
at JP1 for operation from the S1-7 DIP switch.

SI Settings

The S1 DIP switch is also used to configure many of
the HOTLink 1tansmitter and Receiver options.
The settings for these switches are listed in Table 6.

Table 6. SI OLC·Compatibility Settings

DIP Switch Settings

Sw# State Controlled Signal

1 Off Transmitter BIST Enable

2 Off Transmitter Mode Select

3 Off Enable Next Parallel Xmit Data

4 On Enable Parallel Xmit Data

5 Off Receiver BIST Enable

6 Off Receiver Mode Select

7 N/A Switch Controlled Loopback

8 N/A Switch Controlled FOTO

9 Off Carrier-Detect Polarity Select

10 Off BYTE_SYNC Polarity Select

6-386

~

~~
., CYPRESS ====;;;;;;C;;;;;;Y;;;;;;9;;;;;;2;;;;;;66=H;;;;;;O;;;;;;T;;;;;;L;;;;;;in;;;;;;k=Ev;;;;;;a;;;;;;lu;;;;;;a;;;;;;t;;;;;;io;;;;;;n;;;;;;B;;;;;;o;;;;;;a;;;;;;rd=U;;;;;;s;;;;;;er;;;;;;'s;;;;;;G=Ul;;;;;;od=e

The setting of switches Sl-7 and Sl-S are not appli­
cable when jumpers JP1-B and JP1-F are in place.

Assembly and Options

The design of the CY9266-F and CY9266-Crr
Evaluation Boards offer many different assembly
options for those users interested in making modifi­
cations for their own evaluation.

Optical Module

Optical module U4 on the CY9266-F is socketed
for user evaluation of different optical modules.
The hole pattern on the board supports direct sol­
dering of the optical module to the board. This
should not be attempted on a board that is already
equipped with a socket for the module because re­
moval of the socket pins may damage the board.

Transmitter

The HOTLink Transmitter B± differential output
signals on the board are left open to conserve power.
Pads are present on the bottom of the board (la­
beled R1, R2, R3, and R4) for bias/termination re­
sistors for these outputs. While these resistors are
present on the board schematic, they are not part of
the delivered assembly. If the B± outputs are used
for probing or test purposes, resistors must be added
in these locations to enable the output drivers.

Oscillator

The on-board oscillator (US) is used primarily for
exercising the BIST capability ofthe board in a stand­
alone mode. If the board is only used with an exter­
nal clock, the oscillator does not need to be present.
This part is socketed to allow the user to select the
operating frequency.

When selecting an oscillator, care must be taken to
insure the frequency stability and jitter characteris­
tics of the oscillator are within the specifications of
the HOTLink Receiver and Transmitter and the in­
tended system application.

The hole pattern on the board supports direct sol­
dering of the oscillator to the board. This should not

be attempted on a board that is already equipped
with a socket for the oscillator, as removal of the
socket pins may damage the board.

BIST Support Hardware

The BIST support hardware does not interact with
the functionality of the HOTLink 1tansmitter or
Receiver and is not part of the communications link.
If there is no requirement for BIST and display
hardware, the following components may be re­
moved from the board:

• U6 and U7-TIL3ll Hex Displays

• US-CY7C344 EPLD

• S2-Reset Switch

• R21, R22, R23, and R24-1 kQ

• C13-0.022!!F'

• C1S-100pF

Voltage Monitor

The voltage monitor (Ull) is used as part of the
BIST function and also drives the RESET signal on
JP2, JP3, and JP4. If monitoring of the specific volt­
age is not necessary (and BIST capability is not
used) this part may be removed.

If Ull is removed, it may be necessary to bias the
RESET line to allow an external system controller
to properly sense a high on the RESET output. This
may be done by soldering a jumper wire from pin 7
of U11 to pin 2 of R20.

JP2

The area of the board labeled as JP2 provides a hole
pattern designed to accept multiple types of headers
and connectors. These connectors allow access to
all the same signals present on JP4 and JP3.

The current pin 1 designation for JP2 assumes a pin­
header connector designed for flat cable is attached
to bottom of the board. If this type of connector is
instead attached to the top of the board, the even
and odd pins are effectively swapped in the connec­
tor and cable, from those listed in Table 1.

OLC-Compatibility Registers

The 74F174 hex D-registers (U9 and UlO) are used
to provide compatibility with OLC-266 sockets. For

6-3S7

oW ~ CY9266 HOTLink Evaluation Board User's Guide
_:'CYPRESS ===============

those users not requiring this capability, or for those
who wish to use the receiver RDY signal to clock re­
ceived data into asynchronous FIFOs, these regis­
ters can be removed.

Once U9 and U10 are removed, it is necessary to
short eleven adjacent pad pairs on U9 and UlD to al­
low the receiver data bus to connect to the output
connectors. The pairs that must be shorted are
listed in Table 7.

Table 7. OLC-Compatibility Register Bypass
Connections

Register Pin Connections

Part Pins Signal Name

010 14, 15 RCVR 0

010 12,13 RCVR 1

010 lD,l1 RCVR 2

UlD 6, 7 RCVR_3

010 4,5 RCVR 4

UlD 2,3 RCVR 5

U9 lD,l1 RCVR_6

U9 12,13 RCVR_7

U9 14, 15 RCVR 8

U9 6, 7 RCVR 9

U9 4,5 RDY

Copper Cable Connectors

The CY9266-C and CY9266-T are assembled on
the same substrate and may be configured for use
with either coaxial or shielded-pair cables. Chang­
ing from coax to shielded-pair requires the removal
of the 11 BNC and J2 TNC connectors and replacing
them with a female 9-pin D-sub connector at loca­
tion P1 (see Appendix B for manufacturer part num-

H01Link is a trademark of Cypress Semiconductor.
IBM is a registered trademark of International Business Machines

bers). Also, the foil traces that connect pins 6 and
9 of P1 to the shield of 11 and J2 (located on the bot­
tom of the board) must be cut. Because the cable
impedance used for shielded-pair cable is different
from that of coax cable, the line termination resis­
tors R40 and R41 must be replaced with 750 resis­
tors, and coupling transformer T1 must also change
to the higher inductance type.

Changing from shielded-pair to coax requires re­
moval of the P1 D-sub connector and the addition
of connectors 11 and J2. It is necessary to connect
pin 6 of the PI pad set to the shield pin of 11, and pin
9 ofP1 to the shield pin of J2. Because the cable im­
pedance used for coax cable is different from that of
shielded-pair cable, the line termination resistors
R40 and R41 must be replaced with 37.40 resistors,
and coupling transformer T1 must also change to
the lower inductance type.

Redesign Capability

The CY9266-F, CY9266-C, and CY9266-T
boards were designed strictly as a demonstration ve­
hicle for the Cypress Semiconductor HOTLink fam­
ily of communications parts. The designs shown
here may not be optimal for most applications, as
these are expected to be more specialized and may
not require all the configuration and BIST demon­
stration hardware contained on these boards.

Examination of the evaluation boards will show that
the components necessary for creating a serial link
are all on one half of the board, while the compo­
nents used for configuration and BIST support are
located on the other half of the board. This place­
ment of parts was intentional, and shows that two
complete channels may be placed on a board of the
same size as the CY9266 without placing active com­
ponents on both sides of the board.

6-388

lirj~YPRESS ====;;;;CY=9;;;;2;;;;6;;;;6;;;;H;;;;O;;;;T;;;;L;;;;i;;;;n;;;;k;;;;E;;;;v;;;;31;;;;u;;;;3;;;;ti;;;;on=B;;;;o3;;;;r;;;;d;;;;U;;;;s;;;;e;;;;rs;;;;G=ui;;;;d=e

Appendix A. CY9266-F Schematic (Sheet 1 of 5)

6-389

-= rcYPRESS ====;;;;;CY=9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O~T;;L~i~n;k~E~v~al~u~at~io:;n:;;;B:;oa~r~d;;;;;U~s;;er;;s~G~u;;;i~d~e
Appendix A. CY9266-F Schematic (Sheet 2 of 5)

w"'.

6-390

CY9266 HOTLink Evaluation Board Users Guide

Appendix A. CY9266-F Schematic (Sheet 3 of 5)

I

! I ; .

6-391

~ ~~~
.! .•• F_.=-------4---!
&il<L.......-

CY9266 HOTLink Evaluation Board Users Guide

Appendix A. CY9266-F Schematic (Sheet 4 of 5)

"
, i ,--------I+-+---"-1"L~-__1

6-392

I­
iii

?h ~YPRESS~~~~~CY~9~2~6~6~H~O~T=L~i~n~k~E~V~al~U;a~ti~on~B~oa~r~d~U~s~e~rs~G~ul~'d~e
Appendix A. CY9266-F Schematic (Sheet 5 of 5)

~,
! ;

- Itit

i . ;
4++---

I J :::::~~::::::::::::::::::::::~! ~ :::::~~:::::::::::::::::::::: _I
,

I· . . ~ ." I

I--

IIJIII III 11111

6-393

-= ~
-== }CYPRESS ====;;;;;C;;;;;Y;;;;;9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;D;;;;;k;;;;;E;;;;;v;;;;;al;;;;;u;;;;;a;;;;;ti;;;;;oD=B;;;;;oa;;;;;r;;;;;d;;;;;U;;;;;s;;;;;e;;;;;rs;;;;;G=ui;;;;;d=e

Appendix A. CY9266-F Parts List

Instance Part Number Description

U1 Cypress CY7B923-JC HOTLink 1tansmitter

U2 Cypress CY7B933-JC HOTLink Receiver

U3 74F86 Quad XOR Gate SOIC Package

U4 AMP/LyteI269063-1, 266-MB/s 1300-om LED 1tansceiver
Hewlett Packard HFBR-5302, Module
Siemens TC-266C2Ep,
CTS 1408N, or Equivalent

U5* CTS CTX126 or Equivalent 25-MHz 'TTL Clock Oscillator

U6*,U7* TITIL3ll Hex Display With Logic

UB* Cypress CY7C344-15HC 32-Macrocell MAX EPLD

U9,UlO 74F174 Hex D-Register, SOIC Package

Ull* Maxim MAX707CSA or Equivalent Voltage Monitor

D1* 1N4735A 1 W, 6.2V Zener Diode

SI* AMP 3-435668-0 or Equivalent 10-position DIP Switch

S2* ECG 520-01-3 or Equivalent Momentary Pushbutton Switch

JP1* Sullins PZClODAAN or Equivalent 2 x 10 Position 0.25" Sq. Pin-Header

JP4 Sullins PZC12DFBN or Equivalent 2 - 2 x 12 Position 0.25" Sq. Pin-Header

C1, C3, C7, C9, 0.022 IlF MLC X7R 0805 Chip Cap
Cll, C13, C17

C2, C4, CB, ClO, 100 pF MLC NPO 0805 Chip Cap
C12, C18

C14, C15 10 IlF 16V Tantalum Electrolytic Cap

C16, C21 O.IIlF MLC X7R 1206 Chip Cap

C19, C20 330 pF MLC NPO 0805 Chip Cap

R5, R6, R16, R17 82Q 1/8W 1206 Chip Resistor

R7, R8, R18, R19 130Q l/8W 1206 Chip Resistor

R9, R12, R13, R14, 270Q 1/8W 1206 C4ip Resistor
R15

R21*, R22*, R23*, 1-kQ l/8W, 5% 120~ Chip Resistor
R24*

R74 510Q l/8W, 5% 1206 Chip Resistor

R20 CTS 766-161-R512 or Equivalent 5.1-kQ R-Pack-15 S016

R38, R39 CTS 766-143-R220 or Equivalent 22Q R-Pack-7 S014

AMP 645955-2 or Equivalent 41 - Low Profile Socket-Pin

3M 929955-06 or Equivalent 4 - 0.1" Centerline Shorting Jumper

* - Used only for supervisory functions. Not needed for communications.

6-394

""'~~ , CYPRESS ====;;;;;C;;;;;Y=92;;;;;6;;;;;6;;;;;H;;;;;O;;T;;;L;;;;;I;;;·n;;;k~E~v~a~lu~a~ti~on~B~o~ar~d~U~s~e;r;s ~G~u;;id;;;e

Appendix B. CY9266-C/T Schematic (Sheet 1 of 5)

~~gj ~~

"

;r~~ ;
"

6-395

-=* ?cYPRESS ====;;;;;;CY=9;;;;;;2;;;;;;66=H;;;;;;O;;;;;;T;;;;;;L;;;;;;iD;;;;;;k;;;;;;E;;;;;;v;;;;;;3;;;;;;lu;;;;;;3;;;;;;ti;;;;;;oD=B;;;;;;o;;;;;;3r;;;;;;d;;;;;;U;;;;;;s;;;;;;e;;;;;;rs;;;;;;G;;;;;;u;;;;;;i;;;;;;de:::;:;;

Appendix B. CY9266-Crr Schematic (Sheet 2 of 5)

6-396

Appendix B. CY9266-C/T Schematic (Sheet 3 of 5)

6-397

f ?cYPRESS ====;;;;;CY=9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;n;;;;k;;;;;E;;;;;v;;;;al;;;;u~at~io~n~B;;oa~r~d~U~s~e:;;;rs~G~u;;i~d~e
Appendix B. CY9266-Crr Schematic (Sheet 4 of 5)

,~G;.,
-v

'" "
'" .' I

!

Ii I! Ii "

l

6-398

=> ?cYPRESS =====CY=9;;:;2;;:;66=H;;:;O;;:;T;;:;L;;:;i;;:;nk=E;;:;v=al=u;;;;a=ti~on~B~o~ar~d~U~se~r~s~G~u~id~e~

Appendix B. CY9266-Crr Schematic (Sheet 5 of 5)

~
i!

f---

[~ .
; /~

511ii:

111111111

L

(
! ~

1
i['-~"~r'"~

~, -"

11111 I

6-399

--v r

" !

J:::::~;:::::::::::::~::~ j
~

.1
!

1s~CYPRESS ====;;;;CY=9;;;;2;;;;6;;;;6;;;;H;;;;O;;;;T;;;;L;;;;i;;;;D;;;;k;;;;E;;;;v;;;;al;;;;u;;;;a;;;;ti;;;;oD=B;;;;oa;;;;r;;;;d;;;;U;;;;s;;;;e;;;;rs;;;;G=ui;;;;d=e

A.ppendix B. CY9266-Crr Parts List

Instance Part NUlllber Description

V1 Cypress CY7B923-JC HOTLink Transmitter

V2 Cypress CY7B933-JC HOTLink Receiver

V3 74F86 Quad XOR Gate SOIC Package

V5* crs CTX126 or Equivalent 25-MHz TTL Clock Oscillator

V6*,V7* TITIL311 Hex Display With Logic

V8* Cypress CY7C344-15HC 32-Macrocell MAX EPLD

V9,UlO 74F174 Hex D-register, SOIC Package

Vll* Maxim MAX707CSA or Equivalent Voltage Monitor

V12* Motorola MClOH116FN ECL nipple Line Receiver

D1* 1N4735A 1 W, 6.2V Zener Diode

S1* AMP 3-435668-0 or Equivalent lO-position DIP Switch

S2* ECG 520-01-3 or Equivalent Momentary Pushbutton Switch

J1 227161-3 or Equivalent RA Female BNC Connector

J2 227818-1 or Equivalent RA Female TNC Connector

JP1* Sullins PZC10DAAN or Equivalent 2 x 10 Position 0.25" Sq. Pin-Header

JP4 Sullins PZC12DFBN or Equivalent 2 - 2 x 12 Position 0.25" Sq. Pin-Header

P1 747844-6 or Equivalent RA Female 9-Pin D-Sub Connector

C14 10 ItF 16V 'I}mtalum Electrolytic Cap

C1, C3, C7, C9, 0.0;22 ItF MLC X7R 0805 Chip Cap
Cll, C13, C27*

C2, C4, C8, ClO, 100 pF MLC NPO 0805 Chip Cap
C12, C18, <:;21,
C24*

C20, C23* 0.01 ""F MLC X7R 0805 Chip Cap

C28 1000 pF 1 kV, Y5P Disc Cap

Tl pulse Engineering PE-65507 for STP Dual-Wideband Pulse Transformer
Pulse Engineering PE-65508 for coax

R12, R13, R14, 270Q l/8W, 5% 1206 Chip Resistor
R15

R74 510Q l/8W, S% 1206 Chip Resistor

R21*, R22*, R23*, 1-kQ l/8W, 5% 1206 Chip Resistor
R24*

R40, R41 37.4Q l/l0w, 1 % for Coax 0805 Chip Resistor
75.0Q l/l0w, 1 % for STP

R43 40.2Q 1/l0w, 1 % 0805 Chip Resistor

R49*, RSO* 100Q l/l0w, 5% 0805 Chip Resistor

6-400

CY9266 HOTLink Evaluation Board Users Guide

Appendix B. CY9266-Crr Parts List (continued)

Instance Part Number Description

R51*, R57* 150Q l/l0w, l % 0805 Chip Resistor

R47*, R48*, R58*, 270Q l/l0w, 5% for 150Q cable 0805 Chip Resistor
R59*

R61, R62 200Q 1/10W, 5% of 75Q cable 0805 Chip Resistor

R52* 348Q l/l0w, 1% 0805 Chip Resistor

R44 464Q l/l0w, 1 % 0805 Chip Resistor

R42 1.5-kQ l/l0w, 1 % 0805 Chip Resistor

R56* 2.2-kQ 1/l0w, 5% 0805 Chip Resistor

R63 510Q 1/2W Axial Lead Resistor

R20 CTS 766-161-R512 or Equivalent 5.1-kQ R-Pack-15 S016

R38, R39 CTS 766-143-R220 or Equivalent 22Q R-Pack-7 S014

AMP 645955-2 or Equivalent 4 - Low Profile Socket-Pin

3M 929955-06 or Equivalent 4 - 0.1" Centerline Shorting Jumper

* - Used only for supervisory functions. Not needed for communications.

6-401

CY9266 HOTLink Evaluation Board Users Guide

Appendix C. BIST PLD State Machine Source Code

SUBDESIGN bist_sm (ready, bisten, clock
enable

INPUT;
OUTPUT)

VARIABLE

BEGIN

END;

ss MACHINE OF BITS (enable_q)
%state output%

WITH STATES (waitO 0,
wait1 0,
wait2 0,
enabled 0,
locked1 1,
locked2 1) ;

ss.clk
enable

clock;
enable_q;

%assign machine clock%
%assign output of machine%

TABLE
%present present next %
% state inputs state%

ss, bisten, ready => SSj

% define reset vectors %
waitO, 0, x => waitO;
wait1, 0, x => waitO;
wait2, 0, x => waitO;
enabled, 0, x => waitO;
locked1, 0, x => waitO;
locked2, 0, x => waitO;

% define operational vectors %
waitO, 1, x => wait1;
wait1, 1, x => wait2;
wait2, 1, x => enabled;
enabled, 1, 1 => enabled;
enabled, 1, ° => locked1;
locked1, 1, 1 => enabled;
locked1, 1, ° => locked2;
locked2, 1, 1 => locked1;
locked2, 1, ° => locked2;

END TABLE;

6-402

CY9266 HOTLink Evaluation Board Users Guide

Appendix C. BIST PLD Logic Schematic

:1 :1·,
- -

6-403

<

0 ••

,"
0"

W?cYPRESS ====;;;;CY=9;;;;2;;;;6;;;;6;;;;H;;;;O;;;;T;;;;L;;;;i;;;;D;;;;k;;;;E;;;;v;i;al;;;;ll;;;;a;;;ti;;;;oD;;;;;;B;oa;r;;;;d=U;;;s~e~rs;;;;G~Ul~·d;e

t:

XMTR

o

Appendix D. CY9266-F Artwork - Top Silkscreen

CI"'\IC

•

o 0

C15 (/)~I 1 ~J~ D => -- CAR Ci5'
DET S}

~ 1-1-1 WAIT ~ ~
BIST 0

__ BIST j::
+ OVFL I-

N"­
=>0-....,

A
B
C
D
E
F

-

UB CY7CS44

• RESET
N
fJ) Q

US U9 U10 G

C14 Lo.I _---'I + 7
JP4 1 J

121 PO. X Y

4B L.--------S...J7 JP2

~
U5

D R20 0 U11
0-
0
I-
Z
UJ
UJ
II:
0

P
JPS

6-404

:.i?cYPRESS =====C;;;;;Y;;;;;9;;;;;26;;;6;;;;H;;;;;;;;;;O;;;;;T;;;;L;;;;in;;;;k~E;;;;;va;;:l~u~at~i~on~B;;o~ar~d~U~se~r~s ~G~u~id~e~
Appendix D. CY9266-F Artwork - Top Layer Copper

6-405

CY9266 HOTLink Evaluation Board Users Guide

Appendix D. CY9266-F Artwork - Power Layer

• • • :: .. •••
• • •

:: •
:: .. • • • •

• :: •
:: :: .. ~... :: I··· ::.(.•• . ::.. . ~ ·1. ~. .. · ::\ . . , ::. .-; . .• ': I··::. .:

•• ••• •• ••• • ,.
• •••• •• • ••••• •• ••• •• • • •••• • .:: .. ::.... ::.. --....... ::...... ;; .- .

:: :: . • .:: .. :: ... :: .. :: .. :: ••••••••••••••••••••••••••

6-406

• • • • • • • • • •

____ ?cYPRESS =====C=Y=9=2=6=6=H=O=T=L=i=D=k=E=v=31=u=3=tio=D=B=o3;;:;f=d=U=s=e=rs=G=ui=d=e

Appendix D. CY9266-F Artwork - Ground Layer

" .. , .. , " ::.
,~)()('41'

I~~ .- HI • I. ~
':: :: ,

••
•• ••• • •• • ••• •• • •

.. ::
••• • • ::::.

..

, , . ~ . ,.. . .. ~
• I" .: •• , .. .:: ••• ... ~ ... :. :: ..) :: :: ..

:: C • ,."1t •• .::. •, -; ., :. :: ".:: ::: • :. J :: •• ••• •• • •••
• u ee u • . , ... :: ::...... . :: ::. ... :: .. ::

:: :: .. ::. ::::::
• •

..
::. ..

..

•
ee::::ee::e::e::e::::e::eee::::eeee
::

6-407

•

.. · . ..
· . .. · . ..
· . ..
•

E

~CYPRESS ====;;;;;CY=9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;n;;;;;k;;;;;E;;;;;v;;;;;al;;;;;u;;;;;a;;;;;ti;;;;;on=B;;;;;oa;;;;;~;;;;;d;;;;;U;;;;;s;;;;;e;;;;;rs;;;;;G=UI;;;;;od=e
Appendix Do CY9266..,. F Artwork - Bottom Layer Copper

6-408

arcYPRESS ====;;;;;CY=9;;;;;2;;;;;6;;;;;6;;;;;H;;;;;O;;;;;T;;;;;L;;;;;i;;;;;D;;;;;k;;;;;E;;;;;v;;;;;al;;;;;u;;;;;a;;;;;tio;;;;;D=B;;;;;oa;;;;;r;;;;;d;;;;;U;;;;;s;;;;;e;;;;;rs;;;;;G=ui;;;;;d=e

Appendix D. CY9266-F Artwork - Bottom Silkscreen

~ c::J!6 c::J etO
~ 0:

C/I

sra II ~ ~atA:o
OtO ~

5 g ~ 80

tOD 9i D~o 4. B
soD Deo \0

6-409

c:J SSA
c:::J tSA

D eto

8toD

b
III

Z
UJ
UJ
0:

~

==--~YPRESS =====CY;;;;;;;;;;. 9=2;;;;66=H=O;;;;T;L;;;;;in;;;;;k;;;E:;;;v~a;;;;;lu~a;Eti;o~n~B~o~ar~d~U=s~e~rs~G~u~i~d;;;e
Appendix D. CY9266-F Artwork - Drill Chart

Iofl:------- 2.980
4.00 ,

yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy

++
yyyy
yyyy
yyyy
yyyy
yyyy
yyyy
yyyy+
yyyy +
yyyy
yyyy
yyyy
yyyy

+ ++ + + + + [!) + 1-
+-1:+++ ++ ++ M

++ +:t '1-+ + + + + TTTTTTT X
+++ +++ :j: t + + 'T

++.t++ + 'T + + 'T'T'T'T'T'T'T'T'T
+++++ ++ tT

++ +:j: 'T 'T 'T 'T 'T 'T 'T 'T 'T
+ 'T

'T

+ "T"'T'TT"'T"T X

y y
++ + + +

+ ++ +iL+ ++ + +

++

+ -. ++
yyyyyyyyyy.J..,+ + + +

+yyyyyyyyyy'T ~+

+
yy
yy
yy
yy
yy
yy
yy

+ 'T +'T ++~+
++ ++++ +.p- ++ ++

+ + 'T + 'T + +
+

~ yy +
C> yy +
,.: 1E-.450 "'!I!y y
&":===::lY y + + J yy

.180 DRILLMAP

+ + + + ++
+ XXXXXXXXXX Y y

+ XXXXXXXXXX
y y

TOOL ~IZE SYM QTY PLT

T01 .020 + 162 Y

T02 .032 X 44 Y

T03 ·049 Y 132 Y

T04 .OS2 'T 41 Y

TOS .08S X 4 Y

'1'06 .1S6 [!) 2 Y

T06

'"
M 2 Y

.200 X .100 OVAL HOLE

6-410

[!)

x
+X+

X

+
+

x + X
X X
X X
X

X X

X X
+

X
+

X

TT1145 05/26/93

II:.

l'
.125

"rcYPRESS ====;;;;;CY=9;;;;;2;;;6;;;;6;;;;H~O;;;T~L~i=n=k~E~v;;;a~lu=a~ti~on~B;o~ar~d~U~s;e~rs~G;;;u~id~e
Appendix E. CY9266-C/T Artwork - Top Silkscreen

~ ~~DA"@RNA ...,

~ r- 1=1=1 CA:
N

6 9 ~ ~ DET
1 5 U12 .. it. ~BST

P1 ~
I...- -- WAIT

T1 ? ~ -~ 1_1_1 BIST

~ + OVFL

== 1m . US CY7C344 ~
;0 • RESET XMTR (')~a:

(') • • ~a: o~ N

III
In

>: >: (.)
(.)

N ~ S1
~ ::J c..
::J A;2.-

0 0
B

0
C

D
E
F

U3 U9 U10 G

C141 1+ H
Ir"\.

JP4 1 J U5

121 P01 X Y

R20

0 'D
U11

48 37 JP2

II I

-
JP3

6-411

~
f-

Z
UJ
UJ
a:
(.)

~
..J

Cii

IE~YPRESS~~~~~C~Y~92~6~6~H~o~T~L~I~·n~k~E~v~a~lu~a~ti~on~B~o~ar~d~U~s~e~rs~G~u~id~e
Appendix E. CY9266-Crr Artwork - Top Layer Copper

6-412

CY9266 HOTLink Evaluation Board Users Guide

Appendix E. CY9266-Crr Artwork - Power Layer

• • :: .. •••
••• •• • • t')

• OJ
CO'

tt •••• tt. ~: • (\J :: • :: .. • • g-
o. (\J

o. t') • • .,.... .,....

•• • ••• ~: 1= • • • •
•• :: .. • • • o' :: .. • .. ::. :: • • • • ... • • • • • • • o • •• • ..(• • .. • • :: .. •• • • •• •

• .0 . ,. :: .
• • • •• :: •• • • • ••••• • ••• • • , :: ... •• ' .. • • • :: .. o.,

:: . •• •• • • •• • • • •• • • 'I :, •• •• • • •• •• • • • • • •• . , • •• • •• • • •• • •• • • • • •• • • • • • • • • •• • • • • • • • • •••• =: •• =: •••• • • ..
': :: • • ••• =: •••••• .. • =: ••••••••••• =: •

a:
~
t')

a: w

~

6-413

~ rcYPRESS ====:;;;CY=9:;;;2:;;;6:;;;6:;;;H:;;;O:;;;T:;;;L:;;;i:;;;D:;;;k:;;;E:;;;v:;;;al:;;;u:;;;at:;;;io:;;;D=B:;;;oa:;;;r:;;;d:;;;U:;;;s:;;;e:;;;rs:;;;G:;;;u:;;;i:;;;d=e

Appendix E. CY9266-C/T Artwork - Ground Layer

::.. - -. •
•• • , . • ••• •

•
"

• ..

• • •• .:: .
"

• ••• =:
••• • • ., ... "

• ••• =:
• .:: .

..

, ,
~:: ...

•••••
. ..:: • •::. ~ :: ::::
I :: •• •• iii: •• ::..

• ••• • •• ::
. , C. • • •

1 i~ "

• • •

. ,. .. -. "' ..
•• ·Ii:. . ::., :: .

'I• •• • ... :: . . . ,::
• •• •• .. . , • •• • . .." ::.:: .

• •• • ••• .. " .
" .. :: ". . . :: •• ••• .. " . :: :: . .. :: .. ::

:: :: .. ::. :::::: ... • ••• . "
" . •

.. ..

.­..

.­..
•

.:::: .. ::.::.::.::::.:: ... :;:; •••••••••••••••••••••••

6-414

o z
(!)

N
II:
w

~

CY9266 HOTLink Evaluation Board Users Guide

Appendix E. CY9266-C/T Artwork - Bottom Layer Copper

6-415

b
In

v
II:
w

5

E5 ~YPRESS~~~~~CY~9~2~6~6~H~O~T~L~I~·n~k~E~V~a~IU~a~ti;on~B~o~ar~d~U~s~e~n~G~u~id~e
Appendix E. CY9266-Crr Artwork - Bottom Silkscreen

L..-_.....;:!IC ~ .. I __ ...;!c ~

6-416

c::J ~SA
c::::J ESA

c::J SSA
c::::J tSA

::a:
t5§
III 0
zlIl
w>­
W...J
C:::III
U:E
~w
...JCIl
Cij~

&~YPRESS ====;;;;C;;;;Y;;;;9;;;;2;;;;6;;;;6;;;;H;;;;O;;;;T;;;;L;;;;i;;;;D;;;;k;;;;E;;;;v;;;;31;;;;U;;;;3;;;;ti;;;;OD=B;;;;03;;;;r;;;;d;;;;U;;;;s;;;;e;;;;rs;;;;G=u;;;;id=e

AppeQdix E. CY9266-C/T Artwork - Drill Chart

~
4.00 ,

2.980 ~
i~

yy +++ + + + + + I!I + I....,
yy yyyy + + ++ ++ M + x
yy yyyy +++\+ + + + + + x
yy yyyy ++++ +

+ + + x +
yy yyyy + +++ +++ ~ + + :: yy
yy yyyy + ++ ++ + ++ yy x
yy yyyy

++++++
+ yy

yy yyyy+ + ++ ++
++ ++ ++ yy

yy yyyy + + + y x
yy yyyy ++ + + + + x
yy yyyy ++ + ++ + ++ x +
yy yyyy + :+ + + M
yy yyyy ++ + ++ x

+ + ++ yy y y
yy + ++ +t+

++ + + ~8 + ~~ yy ++ + x x yy yyyyyyyyyy + + + +
yy + y y y y y y y y Y y++ +++ + Y Y
yy

++ +
yy

+ T + T + ++ x + x x + x
yy

++ + + + + + + x x x x
yy + + ++ + + + x x x x
yy + T + + x X T +
yy + + ++ x x x x + +

0
yy + + xxxxxxxxxx + +

~ Eo .450
Y Y + Y Y x x x x

ll. ~yy + +

J ~~
+ xxxxxxxxxx

y y
+ I!I I-

.180 DRI LLMAP TI1132 04/28/93
.125

TOOl.. SIZE SYM QTY PLT

T01 .020 + 179 Y

T02 .032 x 48 Y

T03 .040 y 143 Y

T04 .052 T 4 Y

T05 .080 x 4 Y

T06 .125 M 2 Y

T06 .156 I!I 2 Y

6-417

ffiFU ~ CY9266 HOTLink Evaluation Board Users Guide
~,CYPRESS~==============================~

Appendix E CY9266 Configuration Guide

Switch SWl Settings (0=08,1 = off)
Function JPl Jumper Settings 1 2 3 4 5 6 7 8 9 10

Xmtr BIST Enable * 0

Xmtr BIST External * 1

Xmtr Encode Mode * 0

Xmtr Bypass Mode * 1

Xmtr ENA Active * 0

Xmtr ENA External * 1

Xmtr ENN Active * 0

Xmtr ENN External * 1

Rcvr BIST Enable • 0

Revr BIST External • 1

Revr Decode Mode * 0

Revr Bypass Mode • 1

Revr Port A Selected • 1

Revr Port B Selected * CX-CY 0

Xmtr Enabled (FOTO Off) • 0

Xmtr External • EX-EY 1

Active High Carrier Detect * 0

Active Low Carrier Detect * 1

Active High Byte Sync • 1 1

0 0

Active Low Byte Sync * 1 0

0 1

Revr Port Select DIP CX-CY

Revr Port Select External BX-BY

FOTO Select DIP EX-EY

FOTO Select External FX-FY

Xmtr Clock Local Oscillator GY-HY

Xmtr Clock XMITCLOCK GX-GY

Revr Clock Local Oscillator IX-IY

Revr Clock XMITcLOCK HX-IX

Revr Clock EXTREFCLK IX-JX

OLC-266 Mode BX-BY, FX-FY, GX-GY, HX-IX 1 1 1 0 1 1 1 1

BIST Mode w/Cable (Standalone) CX-CY, EX-EY, GY-HY, IX-IY 0 0 1 0 1 0

BIST Mode wo/Cable (Standalone) CX-CY, EX-EY, GY-HY, IX-IY 0 0 1 0 0 0

* - These SWI co~trolled signals have a S.l-kQ pull-up resistor on the CY9266 card, and may be controlled
externally when the SWI switch is in the off position. With no attached external driver these signals gP
to a logic-l state when the SWI switch position is off.

6-418

Timing Products - 7

Timing Products Section Contents and Abstracts

Clock Terminology ... 7-1

There are many different (and often confusing) terms associated with clock-based devices. This application
note attempts to clarify these terms,· and hence serves as a comprehensive reference on clock terminology.
This application note can be divided into two sections. The first section describes and distinguishes between
various clock sources available today. The second section defines and distinguishes between various parame­
ters used to describe clocks. This section also provides methods of measuring some of these parameters.

Crystal Oscillator Topics .. 7-8

A PLL-based frequency synthesizer uses a reference input to generate output clocks. The reference can be
provided by a quartz crystal or an external clock source. The accuracy and stability of the output clocks in a
PLL-based frequency synthesizer are directly proportional to those of the reference. Thus, it is important to
provide a stable, accurate, and appropriate reference input. This application note describes the recommended
reference inputs for Cypress's PLL-based frequency synthesizers, and concludes with an error budget
analysis.

Jitter in PLL-Based Systems: Causes, Effects, and Solutions 7-13

Jitter is extremely important in systems using PLL-based clock drivers. The effects of jitter range from not
having any effect on system operation to rendering the system completely non-functional. This application
note provides the reader with a clear understanding of jitter in high-speed systems. It introduces the reader
to various kinds of jitter in high-speed systems, their causes and their effects, and methods of reducing jitter.
This application note will concentrate on jitter in PLL-based frequency synthesizers.

ECLOutputs ... 7-20

The Cypress Timing Technology products family features ECL-compatible outputs in products such as the
ICD2062. These outputs allow clocking at frequencies above 160 MHz, with all the inherent advantages of
differential ECL signal transmission. This application note covers the principal advantages of using ECL out­
puts and makes recommendations concerning layout and wiring methods for parts such as the ICD2062.

Understanding the CY2291 and CY2292 .. 7-22

The CY2291 and CY2292 are three-PLL frequency synthesizers that utilize EPROM technology. Many dif­
ferent programmable output frequencies and power saving features are contained in one small package.
These features result in flexibility and cost savings, as well as short sample and production lead times.

This document begins with an explanation of the CY2291 features. The internal architecture and common
applications are then presented. At that point, some recommendations about layout and filtering techniques
are made. Finally, the Configuration Request Form is discussed in detail. Although this application note spe­
cifically references the CY2291, the information presented also applies to the CY2292.

=: -?cYPRESS =====T=i=ID=i=n=g=P=r=od=u=c=t=s =S=ec=t=io=n=C=on=t=e=n=ts=a=n=d=A=b=st=r=ac=t=s

Understanding the CY2254 ... 7-30

The CY2254 is a two-PLL clock generator for the Intel Triton TM chipset-based motherboard and other
Pentium '" motherboards. It features four high-drive outputs at the CPU clock frequency (50, 60, or 66.66
MHz, selected by two pins), six high-drive synchronous PCI clock outputs at half the frequency of the CPU
clocks, two high-drive Reference outputs at 14.318 MHz, a 12-MHz Keyboard clock output, and a 24-MHz
Floppy clock output. This application note discusses the internal architecture of the CY2254, and provides
recommendations for using it in a system.

Everything You Need to Know About CY7B991/CY7B992 (RoboClock) But Were Afraid to Ask 7 -34

The following application note provides a detailed description of the CY7B991 and CY7B992 Programmable
Skew Clock Buffers (PSCB). The application note begins with a brief description of clock distribution defini­
tions and solutions. The note follows with RoboClock system design considerations including board decoup­
ling and PCB transmission line analysis, effects, and terminations including actual waveforms and V-I charac­
teristics. A detailed description comes next that explains the device architecture, device configuration, device
operation, functional implementations, and a detailed analysis of the AC specifications. The application note
ends with a brief AC characterization of the output rise time, fall time, and duty cycle variation.

Innovative Designs with the CY7B991/2/10/20 (RoboClock) Programmable Skew Clock ButTer 7-74

This application note uses several real world examples of clocking solutions using the RoboClock family of
clock buffers. Examples include using RoboClock as a zero propagation delay buffer, using RoboClock as a
clock multiplier, gating the output of RoboClock, and using RoboClock as a dynamic phase controlled clock
source.

Generation of Synchronized Processor Clocks Using the CY7B991 or CY7B992 7 -81

This application note illustrates how the clocks to two Intel 80960CA processors can be synchronized to each
other, as well as to an external oscillator, using the "RoboClock" CY7B991. The technique is then extended
to n processors using n -1 RoboClocks. One RoboClock is shown driving many processors, which is expedient
if either the processors do not have internal Phase-Locked Loops, or if the designer chooses not to use them.

Innovative RoboClockApplication ... 7-86

This application note presents a unique application of RoboClock, whose complex and precise waveform gen­
eration capability is utilized to implement PWM to enhance color images and increase the resolution of laser
printers. The first section of this application note provides a brief description of Roboclock and presents three
methods that users could employ to configure it. Then, a brief background on image and resolution enhance­
ment is presented. Finally, the required waveform to implement the image enhancement, and the configura­
tion of Roboclock is presented.

CY7B991 and CY7B992 (RoboClock) Test Mode ... 7-98

This application note discusses the 'lest mode capabilities of the CY7B991 and CY7B992 (RoboClock) de­
vices. It begins with an introduction to these devices and then discusses how to use the Test mode features.
These features stop the PLL of the device to allow operation in single-step mode while maintaining selected
clock output configuration.

Clock Terminology

There are many different (and often confusing)
terms associated with clock-based devices. This ap­
plication note attempts to clarify these terms, and
hence serves as a comprehensive reference on clock
terminology. This application note can be divided
into two sections. The first section describes and
distinguishes between various clock sources avail­
able today. The second section defines and distin­
guishes between various parameters used to de­
scribe clocks. This section also provides methods of
measuring some of these parameters.

Clock Devices

There are a variety of clock devices available today.
Some of them are described below.

Crystals

A Crystal is a basic piezoelectric quartz crystal. On
its own, it cannot generate electrical clocks. It has
to be connected to a clock oscillator to get a clock
waveform. There are two kinds of crystals; Series
Resonant, which can be modeled as a high Q series
L-C circuit, and Parallel Resonant, which can be
modeled as a high Q parallel L-C circuit. The series
resonant crystal has minimum impedance at the res­
onating frequency, while the parallel resonant crys­
tal has maximum impedance at the resonating fre­
quency. Cypress-ICD devices expect parallel
resonant crystals for the reference device.

Crystal Oscillators

A Crystal Oscillator is an oscillator with the crystal as
the feedback element. There are other kinds of os­
cillators with active or passive feedback compo-

nents, but the crystal oscillator provides the most ac­
curate output frequency.

Crystal oscillators come in a variety of packages,
though the 4-pin package (Metal Can Oscillator) in
the 300-mil 14-pin DIP footprint is very popular.
Surface mount and Half DIP packages are also
available. Finally, crystal oscillators are the pre­
ferred clock source in most high-speed digital sys­
tems requiring clocks.

Compensated Oscillators

The output frequency of a crystal oscillator varies
with temperature and voltage. Applications that re­
quire a highly stable clock usually use compensated
oscillators. Compensated Oscillators try to adjust the
variation in frequency due to temperature and volt­
age. Temperature Compensating Oscillators (TXCO)
contain circuitry that compensates for temperature
changes, and hence combat frequency variations.
Oven Controlled Oscillators encase their crystals in a
temperature-controlled oven, and so maintain a
precise operating temperature at the crystal.
Double Oven Oscillators contain two ovens, with the
crystal encased in the inner oven, and the tempera­
ture control circuitry and the inner oven encased in
the outer oven. Such oscillators provide even better
temperature stability than Oven Controlled Oscilla­
tors. Obviously, as the frequency stability improves,
the cost of the oscillator increases.

7-1

Voltage Controlled Oscillator

The output of Voltage Controlled Oscillators (VXCO)
is controlled by a voltage control input pin. Varia­
tion between control voltage and frequency is usual­
ly nonlinear.

Frequency Synthesizers

Frequency Synthesizers use one or more Phase­
Locked Loops (PLL) to generate one to many differ­
ent frequencies on their outputs, from one or more
reference sources. The reference frequency is usu­
ally generated by a crystal attached to the synthesiz­
er. The design goal of frequency synthesizers is to
replace multiple oscillators in a system, and hence
reduce board space and cost. Figure 1 shows a block
diagram of a Phase Locked Loop (PLL).

A PLL has two inputs, a reference input and a feed­
back input. A PLL corrects frequency in two ways.
The first, frequency correction, corrects large dif­
ferences in frequency between the reference input
and the feedback input. Frequency correction is
akin to "rough" tuning and occurs when Fyco is less
than O.5Fref or greater than 2Fref. Phase correction
is the "fine" tuning and occurs when O.5Fyco < Fref
< 2Fyco·

The Phase/Frequency Detector detects differences
in phase and frequency between the reference and
feedback inputs and generates compensating "Up"
and "Down" signals depending on whether the feed­
back frequency is lagging or leading the reference
frequency respectively. These control signals are

Clock Tt~rminology

then passed through a cbarge pump and a loop filter
to generate a control voltage, which controls a Volt­
age-Controlled Oscillator (VCO). The frequency
of this oscillator is dependent on the V ctrl input. At
steady state, the VCO frequency is:

Fyco = Fref * P/Q

The output frequency of the PLL can be expressed
as

Fout = (Fref * P)/(Q * N)

The Sample Rate of a Frequency Synthesizer deter­
mines how often the inputs are sampled in order to
perform phase and frequency correction. It is ex­
pressed as Fref/Q.

The Acquisition/Lock Time of a PLL-based Fre­
quency Synthesizer is the amount of time taken by
the Frequency Synthesizer to attain the target fre­
quency after power-up, or after a Programmed out­
put frequency change.

The Resolution of a PLL-based Frequency Synthe­
sizer is based on the number of bits in the P and Q
counter. The Resolution will determine in what size
increments the frequency can change.

The Deadband of a PLL-based Frequency Synthe­
sizer is the largest phase difference between the ref-

,- .. ,
I PLL Control Section :
I I
I I

Fret I Fref/Q I

--. "Q" I I

~
I

Counter I I
I I
I

Up Ictrl Vctrl Fvco : FvcolN
I

I

~
I "N" Phase/ I

Charge Loop VCO
I

Frequency f--+ r+ -tI!' Post --.
Detector :-- Pump Filter I Divider

I

Fvco I

~ ----f ----~~ -----------------------------------
I

I Fout
I

"P"
_.

-.
Counter FvcolP

Figure 1. Block Diagram of a Phase Locked LQop

7-2

erence and the feedback inputs, which will not be
corrected by the PLL.

Multiple PLLs are needed within a single frequency
synthesizer to generate multiple unrelated frequen­
cies.

Frequency synthesizers are gaining in popularity as
system complexity increases and systems utilize
multiple clocks. The term "Clock Generator" is in­
terchangeably used with "Frequency Synthesizer."

Clock ButTers

A Clock Buffer is a device in which the output wave­
form directly follows the input wavefonn. The input
wavefonn propagates through the device and is re­
driven by the output buffers. Hence, such devices
have a propagation delay associated with them. In
addition, due to the differences between the propa­
gation delay through the device on each input-out­
put path, skew will exist on the outputs. An example
of a clock buffer is the 74F244, which is available
from several manufacturers.

Clock Parameters

This section contains definitions and explanations
of various parameters used to describe clocks.

Clock Jitter

Jitter can be defined as the deviations in a clock's
output transitions from their ideal positions. The
deviation can either be leading or lagging the ideal
position. Hence, jitter is expressed in ±ns. Jitter

Clock

Jitter J1 = t2 - t1

Jitter J2 = ta - t2

Clock Terminology

can be classified into three categories: cycle-cycle
jitter, period jitter, and long-term jitter.

Cycle-cycle jitter is the difference in a clock's period
from one cycle to the next. This kind of jitter is the
most difficult to measure and usually requires a
Timing Interval Analyzer. Figure 2 shows a graphi­
cal representation of cycle-cycle jitter. J1 and J2 are
the jitter values measured. The maximum of such
values measured over multiple cycles is the maxi­
mum cycle-cycle jitter.

Period jitter, also called short-tenn jitter, is a change
in a clock's output transition from its ideal position
over consecutive clock edges. Figure 3 shows short­
tennjitter. Note that in the case of short-term jitter,
the variation of the rising edge of clock from the
ideal position is measured and expressed in units of
time or frequency.

Long-term jitter is a change in a clock's output transi­
tion from its ideal position, over "many" cycles. The
tenn "many" depends on the application and the
frequency. For PC motherboard and graphics ap­
plications, this tenn "many" usually refers to 10 - 20
microseconds. For other applications, it may be dif­
ferent. Figure 4 shows a graphical representation of
long-tenn jitter.

Causes of Jitter

There are four primary causes of jitter as indicated
below:

• Power supply noise

• The internal PLL of the synthesizer

Figure 2. Cycle-Cycle Jitter

7-3

~~
~'CYPRESS

Clock Terminology

Ideal Cycle

Clock

Figure 3. Period Jitter

• Random thermal noise from crystal, or any other
resonating device.

• Random mechanical noise from vibrations of the
crystal

For a more detailed discussion on jitter, please refer
to the application note entitled "Jitter in PLL-Based
Systems."

What Systems Does Clock Jitter Affect?

Clock jitter affects almost all high-speed synchro­
nous systems. Common applications affected by jit­
ter are PC motherboards, graphics cards, and com­
munications equipment.

Cycle 0
(Ideal)

Cycle N
(Lagging)

Cycle M
(Leading) __ ...J

Figure 4. Long-Term JItter

7-4

Skew

Skew is the variation in arrival time of two signals
specified to arrive at the same time. Skew is com­
posed of two parts, the output skew of the driving de­
vice, and board design skew, caused by layout varia­
tion of board traces. Figure 5 explains skew.

Clock Driver Skew (Intrinsic Skew) is the amount of
skew caused by the clock driver itself. There are two
kinds of clock driver devices; buffer devices and
PLL-based devices. Skew occurs on the output of
the buffer devices because of the differences in
propagation delay of the input signal through the
device. A majority of this difference is attributed to
differences in output loading. Skew in PLL-based
devices can be very small, since a PLL-based device

Output A

(Reference) __ ..J

Output B

Output C

Figure 5. Graphical Representation of Skew

J _.,~
~7CYPRESS

can be adjusted to compensate for differences in
output loading.

Board Design Skew (Extrinsic skew) is the amount of
skew caused by board layout issues such as:

• Trace Length: The amount of time for a signal to
propagate down a trace is dependent on the ma­
terial of the PCB, length of the trace, width of the
trace and capacitive loading. Different trace
lengths cause different signal propagation times,
and hence cause skew.

• Threshold Voltage Variation: The threshold
voltage of the receiving device can cause skew.
For example, if a receiving device has a threshold
voltage of 1.2V and another device has a thresh­
old voltage of 1. 7Y, and the rise time ofthe input
signal is IV Ins, then the two devices will switch
500 ps apart, which is skew.

• Capacitive Loading: The differences in capaci­
tive loading on traces will cause differences in the
clock rise times at the load. This affects the time
at which the clock edge crosses the input thresh­
old and results in skew.

• 1l:ansmission Line Termination: With the ex­
tremely fast edge rates in today's clock drivers,
traces longer than 4 inches are considered trans­
mission lines. Without proper termination,
these lines will exhibit transmission line effects
like voltage reflections, which will cause skew.

Why Is Skew Important?

In high-speed systems, clock skew forms an impor­
tant component of timing margin. A skew of 1 ns is
a significant portion of a 15-ns cycle time. If the tim­
ing budget does not allow for skew, it is highly likely
that the system will perform marginally.

Measuring Skew

The simplest method of measuring skew between
two outputs of a device is to display both waveforms
in a dual-channel oscilloscope and measure the dif­
ference between the rising edges. This is the skew.

Clock buffer datasheets usually specify two parame­
ters, "output-to-output skew" and "part-to-part skew. "
The latter parameter includes the former. If neither

7-5

Clock Terminology

parameter is specified, then the maximum output
skew is the difference between the maximum and
minimum propagation delay times through the
device.

Stability

Stability is a parameter usually associated with os­
cillators. Stability is defined as the variation in oper­
ating frequency from the nominal frequency and is
expressed in ppm (parts per million). The nominal
frequency is the frequency shown on the device
package.

All variations in frequency are lumped together in
the stability specification. Variations in manufac­
turing processes, aging, temperature, and voltage
cause variations in stability. The worst effects are
due to temperature variation.

Why Is Stability Important?

Using the stability parameter, a system designer can
find the maximum variation in frequency, and hence
can design systems based on worst-case specifica­
tions. Designing systems without considering stabil­
ity can cause failure over time.

Aging

Aging is defined as the variation in frequency over
time. It is usually expressed in ppm/year, and may
be incorporated in the Stability spec, if it is not
drawn out separately. It is a parameter usually asso­
ciated with crystal oscillators. New crystals age fast­
er than old crystals. 1YJ>ical aging rates are of the or­
der of 5 ppmlyr.

Why Is Aging Important?

Aging may cause marginal operation of a design
over an extended period of time, if it is not ac­
counted for in the design.

Voltage Sensitivity

Voltage Sensitivity is the variations in frequency due
to variations in operating voltage. It is expressed in
ppm/volts. On crystal oscillators, it is usually incor­
porated in the stability spec. On PLL-based de­
vices, it is usually incorporated in the jitter spec.

Accoracy/Precision

Accuracy/Precision is a measure of how close the
part operates to the specified (nominal) frequency.

For example, if a part is specified with a 25.000-MHz
output, and the long-term (user-defined) average of
its output frequency is 25.001 MHz, the part has 40
ppm accuracy. Accuracy can be expressed as:

Accuracy=(L.T. Avg. Freq. - Nominal Freq.}INominal Freq.

Error

On a PLL-based device, it may not always be pos­
sible to get the specified frequency on the outputs.
The limitation is due to the size of the internal "P"
and "Q" counters in the PLL (see later sections for
detailed information). If, for example, the specified
frequency is 25.000 MHz, and the PLL can output
24.998 MHz, the error is -80 ppm. Error can be ex­
pressed as:

Error = (Nominal Freq. - Target Freq.}lTarget Freq.

Note the difference between error and accuracy.
Error specifies the difference between the frequen­
cy you want, and the frequency you get. Accuracy
specifies the difference between the frequency you
get, and the long term average of this frequency.

Slew

The rate of change of voltage or frequency is called
Slew. Slew is usually measured on the rising and fal­
ling edges of digital signals. However, rise times and
fall times are more commonly specified, instead of
slew, in vendor's catalogs.

Recently, with the advent of low-power devices, slew
is being used to define a rate of change of frequency.

Wander/Drift

Wander and Drift are the same, and are usually used
to express frequency variations due to temperature
and voltage. Usually, wander and drift are incorpo­
rated in the stability specification.

7-6

Clock Terminology

TTL Levels

OV ---'

Tcycle

CMOS Levels

OV

Tcycle

Figure 6. CMOSrrTL Duty Cycle Measurement

Duty Cycle

Duty Cycle is the ratio of the output high time to the
total cycle time. It is expressed as a percentage.
50% is the ideal duty cycle, though most clock
manufacturers specify duty cycles from 40% - 60%.
Duty cycle is important in systems that use both the
rising and falling clock edges.

Duty cycles can be expressed for both TTL and
CMOS devices. For TTL devices, since the voltage
swing is from OV - 3Y, the high time is measured at
the 1.5V level. For CMOS devices, since the voltage
swing is from 0-V dd Volts, the high time is mea­
sured at V dd/2. Hence, if a device claims to meet
both CMOS and TTL duty cycle measurements, it
refers to the voltage at which the high time is mea­
sured, not the output voltage swing. Figure 6 shows
the difference between CMOS and TTL duty cycle
measurement levels.

"'=a5IF)~YPRESS
Conclusion

This application note presented clear and detailed
descriptions of various clock devices available
today, along with parameters used to describe
clocks. It also provided methods of measuring some
of these parameters.

7-7

Clock Terminology

References

1. Johnson, Howard, and Graham, Martin, High­
Speed Digital Design: A Handbook of Black Mag­
ic. PTR Prentice-Hall. New Jersey, 1993.

Crystal Oscillator Topics

Introduction

A PLL-based frequency synthesizer uses a refer­
ence input to generate output clocks. The reference
can be provided by a quartz crystal or an external
clock source. The accuracy and stability of the out­
put clocks in a PLL-based frequency synthesizer are
directly proportional to those of the reference.
Thus, it is important to provide a stable, accurate,
and appropriate reference input. This application
note describes the recommended reference inputs
for Cypress's PLL-based frequency synthesizers,
and concludes with an error budget analysis.

Please note that this application note does not apply
to the ICD6233 (one-time programmable clock os­
cillator) or the CY7B991/2 and CY7B991O/20 (Ro­
boClock and RoboClock Jr.). For applications assis­
tance on CY7B991/2 and CY7B991O/20, see the
application note "Everything You Need to Know
About CY7B991/2 (RoboClock) But Were Afraid to
Ask."

Cypress's PLL-Based Frequency
Synthesizers

Figure 1 shows the block diagram of a typical PLL­
based frequency synthesizer. Note that the refer­
ence input to all PLLs comes from an on-chip crystal
oscillator, which is the architecture of all Cypress
clock generators.

XTALIN r - - - - - - - - - - - - - - - - - -. XTALOUT
: R :

,
, INTERNAL TO DEVICE : .. _______ ________ J

Figure 2. On-Chip Crystal Oscillator Circuitry

Figure 2 shows the circuitry of the on-chip crystal os­
cillator (a.k.a. Pierce oscillator), which is formed by
components R, G, q and Co, where G is a linear in­
verter. For this circuit to produce an electrical
clock, a quartz crystal needs to be connected be­
tween the XTALIN and XTALOUT pins.

Crystals Recommended for Cypress
Clock Generators
Figure 3 shows the required connection of a crystal
to an on-chip oscillator of a PLL-based frequency
synthesizer. For best results, a parallel resonant
crystal should be used. The load capacitance of this
crystal must match the load capacitance of the oscil­
lator circuitry (qoad), as seen by the crystal. As
shown in Figure 3, under normal AC conditions, Co
will be in series with Ci2. Thus,

.. ------------ .. -------------------------------- ..
TALIN X

XTA LOUT ..

,
REFERENCE

,
OU , , TPUTS ,

CRYSTAL PLLs DIVIDERS
, , , OSCILLATOR ,

I ,
, ,
________________ I!'J_T_E_RJ\!~~ 1"9 _ ~~ylp_E ______________ •

Figure 1. 'JYpical PLL-based Frequency Synthesizer

7-8

Cload

~------~I~------~
CRYSTAL

Recommended if
, S;~o~g ?_ ~ ~ 'p'F

r---------------------- ... ---- ...

XTALIN ,

Parasitic ~I
Capacitance :

= 2pF '-

,
Die
Clock,

, XTALOUT

I~ Parasitic
: Capacitance

-=-: = 2 pF
, INTERNAL TO DEVICE ... ___________________________ J

Figure 3. Using a Crystal as Reference

Eq.l

Ctoad = 17 pF. However, if parasitics are accounted
for,

Coeq • Ci2eq

C'oad = C + C
oeq i2eq

where Co,,! = Co + 2 pF, Ci2,q = Ci2 + 2 pF

which results in Cload = 18 pF.

Eq.2

Hence, parallel-resonant crystals with Cload = 17 to
18 pF should be used for best results with Cypress
clock generators. If the Cload of the crystal does not
equal 17 or 18 pF, the output frequency will be some­
what different from the target. Also, since capaci­
tors Ci2 and Co are on-chip, no additional external
components are required for operation, provided a
crystal with matched Cload is used.

A Patch for Crystals with an Unmatched C)oad

As shown in Figure 3, Cypress recommends the addi­
tion of an external capacitor, Cext, on or close to the
XTALOUT pin to compensate for a Cload > 18 pF.
Co and Cext are in parallel, which, under AC condi-

7-9

tions, are in series with Ci2. Solving the following
equation for Cext , which accounts for parasitics,

C'2,q . (Co,,! + Car)
C'aad = C'2,,! + (Ca,q + Cox,)

Eq.3

gives the value of the external capacitor required.
For a crystal with Cload = 20 pF, Cext = 9 pF would be
required.

Note that for Cload < 17 pF, solving Equation 4 (does
not account for parasitics) for Cext results in a nega­
tive capacitance value.

Eq.4

Thus, there is no patch available, and the user needs
to instead use a crystal with Cload = 17 to 18 pF. Us­
ing a capacitor in series with the XTALIN or XTAL­
OUT pin will redue the Cload seen by the crystal, but
will cause start-up problems. This is because the
crystal needs to have a DC voltage across it to start
oscillations. And if a capacitor is used in series with
the XTALIN and XTALOUT pins, this capacitor
will block any DC voltage normally applied to the
crystal on start-up.

~ Crystal Oscillator Topics
-,CYPRESS ============;;;;;;;;;;;;;;;===

U sing a Series Resonant Crystal

In general, using a series resonant crystal with a par­
allel resonant circuit will introduce an error on the
output frequencies of the device. For Cypress's on­
chip oscillator, using a series resonant crystal will
typically add a 500 ppm (.05%) error on the output
frequencies. For some applications, such as time
keeping, choosing the right crystal type is crucial.
For example, a 50 ppm error in the reference fre­
quency produces a real time clocking error of 2 min­
utes per month. Thus, the user must ensure that
proper crystals are used with Cypress clock gener­
ators.

Special Case: 32.768 kHz Crystal

Several of Cypress's clock devices offer internal par­
allel resonant oscillation circuitry that can produce
a 32.768-kHz signal, which is commonly used as a
real time clock. Since the internal circuitry does not
have a biasing resistor on-chip, a 10-MQ resistor
must be placed in parallel to the 32.768-kHz crystal,
as shown in Figure 4. Performing the calculations
based on Equation 1 and Equation 2 results in a crys-

tal requirement of C\oad = 12 to 13 pR If the crystal
has C\oad > 13 pF, then a C ex1, as calculated from
Equation 3, is needed. If the qoad of the crystal is
less than 12 or 13 pF, a capacitor cannot be placed
in series with the 32XIN or 32XOUT pin, as ex­
plained before.

U sing an External Signal Source
Frequently, a frequency synthesizer is driven by an
external signal source rather than a crystal. In this
case, the external clock should be driven in on the
XTALIN pin, and the XTALOUT pin must be left
floating. Cypress also recommends using a small
coupling capacitor in series with the signal, as shown
in Figure 5. Such a capacitor provides the benefits of
reduced loading of the signal source and restoration
of duty cycle, as explained below.

Reduced Loading

As shown in Figure 5, the two internal capacitors are
each 34 pR Without the coupling capacitor Cil, the
frequency source is effectively driving Ceff= 34 pF
(not accounting for parasitics), where Ceff is the ef­
fective load capacitance seen by the driver. Ceff is re­
duced by the addition of Cil in series with Q2. Now,

32.768 kHz CRYSTAL

.-------111------,
C10ad = 12 or 13 pF

Recommended if

• ~tOM ?'_ ~ ~ ?,F

10 MQ
r ... - - - ... -.

T032K:
OUTPUt:

, 32XOUT

Parasitic /.I
Capacitance :

= 2 pF :-=-
: INTERNAL TO DEVICE :
,_ ... J

I~ Parasitic
: Capacitance

= 2 pF

Figure 4. Using a 32.768 kHz Crystal

7-10

= ,,~ ~ Crystal Oscillator Topics
=='CYPRESS================================~

r---------------------------~

~
~ Cil XTALlN:

Vil :
Frequency 22 pF :
Source Jlf . . I

(5 Volt) Pa~aSltlc /:1
Capacitance :

= 2pF :-

To
PLL

I

I~ Parasitic
: Capacitance

-=-: = 2 pF
I INTERNAL TO DEVICE
........ ________ ... ___________ oo ____ J

Figure 5. Using an External Driver as Reference

C - Cil . C i2
eIf - cn + Ci2

Eq.5

For example, Cil =22 pF and Ci2=34 pF results in
Ceff=13.4 pF. In this case, Ceff is reduced by 62%,
which results in reduced loading of the frequency
source, reduced power supply noise, and thus im­
proved signal transition times.

While the load is reduced, so is the amplitude of the
signal at XTALIN according to the following
equation:

_ Cil
Vi2 -VilC +C

it i2
Eq.6

Using the same numbers, as in the example above,
and setting the input voltage Vil =5V pp results in Vi2
= 2V pp. However, the reduction in amplitude is not
a problem since the linear inverter, G1, helps bias
and re-amplify the signal. Specifically, the DC level
of Yin equals the DC level of Vout, and thus the DC
level is biased to VDoI2 (CMOS threshold level).
Furthermore, the amplifier circuit, consisting of G 1
and feedback resistor Rb, results in an AC gain of
the signal.

Restoration of Duty Cycle

lYPically a waveform at XTALOUT, with a duty
cycle of 35-65%, can have the duty cycle restored

7-11

close to 50%. This restoration can be seen on the
output of G2, in Figure 5, which is typically the
XBUF pin on most devices.

Both the matched characteristics of G 1 and G2, and
the R-C components work to restore the duty cycle,
the mechanism being an AC gain and their effect on
DC biasing, as previously mentioned. However,
duty cycle regulation is reduced by G1 saturating
near VDD or ground. To keep G1 in the linear re­
gion, Cil should not be too large. A smaller Cil re­
duces signal amplitude, thus improving linearity.

Coupling Capacitor Value

For Vil = 5V pp applied to a Cypress device, a capaci­
tor value of Cn = 22 to 24 pF, placed as close to the
XTALIN pin as possible, is recommended. Using
Cil =22 to 24 pF provides 2Vpp around an average
DC level of VDD/2 at XTALIN, as well as reduced
loading and restored duty cycle.

Cypress clock generators require Vi2= 2Vpp. Thus
for 5V input signal (Vil=5Vpp), Vi2=2Vpp, and
C;2=34 pF, solving Equation 5 results in Cn ~ 22 pF.
Accounting for parasitics by substituting Ci2eq=36
pF for Ci2=34 pF, the result is Cil =24 pF.

For a 3.3V input signal (Vil =3.3Vpp), Vi2=2Vpp,
and C;2=34 pF, solving Equation 5 results in Cn ~52
pF. Accounting for parasitics results in Cil ~55 pF.

General Error Budget Analysis

As in any good design, an error budget should be cal­
culated. Several sources of error must be taken into
account.

• Reference source frequency tolerance (ppm);
specified by manufacturer of reference

• Reference source temperature tolerance (ppm);
specified by manufacturer of reference

• Crystal Oscillator process variation (ppm); spe­
cified by clock chip manufacturer

• Crystal Oscillator supply tolerance (ppm); speci­
fied by clock chip manufacturer

• Crystal Oscillator temperature tolerance (ppm);
specified by clock chip manufacturer

Two methods of budgeting can be done.

• Addition of the relevant sources of error

• The well respected Monte Carlo Analysis, which
states that if a number of uncorrelated variables
are changing randomly, it is not reasonable to
add up the individual worst-case figures to calcu­
late an aggregate worst-case value.

The following example uses typical error values for
crystals and Cypress clock devices. The first method
of budgeting results in a total error of ±94 ppm.

Example: Addition of Relevant Sources of Error

Error in
Source of Error ppm

Reference Source, Crystal

Frequency tolerance ±50ppm

Temperature tolerance ±30ppm

Crystal Oscillator in Cypress Clock Generator

Process Variation ±05ppm

Supply Tolerance ±03ppm

Temperature Tolerance ±06ppm

Total ±94ppm

Using the same values, the Monte Carlo Analysis
results in a much lower total error, as shown below.
If there are n variables Xl, X2, ... ,Xn, all varying ran­
domly and independently, then the overall variation
is:

X,oral = jx~ + X1 + ... + x~ Eq.7

This results in a total error of ±59 ppm.

In general, if we compare the first method with the
second, the first will always yield a higher result, as
long as Xl, X2"",Xn are either all positive or nega­
tive numbers. Stated mathematically,

Xl + X 2 + ... + Xn > jx~ + ~ + ... + ~ Eq. 8

for all Xl, X2, ... ,Xn >0 or all Xl, X2, ... ,Xn <0.

Summary

In summary, Cypress recommends the following for
our clock generators. For designs that use a crystal
for the input reference, the crystal should be paral­
lel resonant, and have qoad = 17 to 18 pR If qoad
> 18 pF, then use an external capacitor, as shown in
Figure 3, with Cext calculated from Equation 3. If
Cload < 17 pF, then instead use a crystal with qoad
= 17 to 18pR

For designs using the 32.768-kHz circuitry, a paral~
leI resonant crystal with Cload = 12 to 13 pF must be
used. A lO-MQ biasing resistor must be placed in
parallel with the crystal.

5V designs using an external clock source must AC
couple the clock input with a 22- to 24-pF capacitor
in series with the clock source. 3.3V designs should
use a 52- to 55-pF coupling capacitor instead.

For layout recommendations on Cypress clock de­
vices, please read the application note: "Jitter in
PLL-Based Systems: Causes, Effects, and Solu­
tions," and, if available, the application note corre­
sponding to the specific device.

7-12

Jitter in PLL-Based Systems:
Causes, Effects, and Solutions

Jitter is extremely important in systems using PLL­
based clock drivers. The effects of jitter range from
not having any effect on system operation to render­
ing the system completely non-functional. This ap­
plication note provides the reader with a clear un­
derstanding of jitter in high-speed systems. It
introduces the reader to various kinds of jitter in
high-speed systems, their causes and their effects,
and methods of reducing jitter. This application
note will concentrate on jitter in PLL-based fre­
quency synthesizers.

What is a PLL-Based Frequency
Synthesizer?

Frequency Synthesizers use one or more Phase­
Locked Loops (PLL) to generate one to many differ­
ent frequencies on their outputs, from one or more
reference sources. The reference frequency is usu­
ally generated by a crystal attached to the synthesiz­
er. It is rarely generated from an external oscillator.
The design goal of frequency synthesizers is to re­
place multiple oscillators in a system, and hence re­
duce board space and cost. Figure 1 shows a block
diagram of a Phase-Locked Loop (PLL) .

. -... ,
: PLL Control Section I

I I
I I

Fret I
Fret/Q I

"Q" I I

~
I

+
I

Counter I
I I
I

Up Ictrl Vctrl Fvc~ Fout =FvcolN I

I

Phase/ I "N"
Charge Loop

I

Frequency ~ VCO ~ Post --.
Detector Pump Filter I Divider

I

I : .f. Dn
I

I

Fvco ~---- ----------_ ... _-------_ ... _------------------ I

"P"
_.

~ Counter Fvco/P

Figure 1. Block Diagram of a Phase-Locked Loop

7-13

~~
.'CYPRESS

A PLL has two inputs: a reference input, and a feed­
back input. A PLL corrects frequency In two ways.
The first, frequency correction, corrects large dif­
ferences in frequency between the reference input
and the feedback input. Frequency correction is ac­
tivated when the input frequency is changing signifi­
cantly, or when the device is powered up. Frequency
correction is the "rough" tuning of the PLL. "Fine"
tuning occurs when phase correction is activated.

The Phase/Frequency Detector detects differences
in phase and frequency between the reference and
feedback inputs and generates compensating "Up"
and "Down" signals. The pulsewidth of the "Up"
signal is greater than the "Down" signal, if the feed­
back input frequency is less than the reference fre­
quency, and vice versa. These control signals are
then passed through a charge pump and a loop filter,
to generate a control voltage, which feeds into a
Voltage-Controlled Oscillator (VCO). The fre­
quency of this oscillator is dependent on the V ctrl in­
put. At steady state, the VCO frequency is:

Fyco = Fref * P/Q

The output frequency of the PLL can be expressed
as

Fout = (Fref * P)/(Q * N)

where

Fyco = VCO Frequency

Fref = Reference Frequency

P = Multiplier, lies in feedback path

Clock

Jitter J1 = t2 - t1

Jitter J2 = t3 - t2

Jitter in PLL-Based Systems:
Causes, Effects, and Solutions

Q = Divider, lies in reference path

N = Post Divider

Clock Jitter

Jitter can be defined as the deviations in a clock's
output transitions from their ideal positions. The
deviation can either be leading or lagging the ideal
position. Hence, jitter is sometimes specified in
±ps. Jitter is also specified in other units, like a per­
centage of frequency, or absolute value, in ns. Jitter
measurements can be classified into three catego­
ries: cycle-cycle jitter, period jitter, and long-term
jitter. Additionally, all jitter measurements are
made at a specified voltage.

Cycle-Cycle Jitter

Cycle-cycle jitter is the change in a clock's output
transition from its corresponding position in the
previous cycle. This kind of jitter is the most difficult
to measure and usually requires a Timing Interval
Analyzer. Figure 2 shows a graphical representation
of cycle-cycle jitter. J1 and J2 are the jitter values
measured. The maximum of such values measured
over multiple cycles is the maximum cycle-cycle
jitter.

Until recently, cycle-cycle jitter was not particularly
meaningful in most cases. However, like the incor­
poration ofPLLs in CPUs (e.g., the 486 and the Pen­
tium TM processors), cycle-to-cycle jitter has taken on
new significance. Consider the case shown in Figure
3 where the output of one PLL1 is the reference of

Figure 2. Cycle-Cycle Jitter

7-14

..:::5iII!Iro.

tircYPRESS

Jitter in PLL-Based Systems:
Causes, Effects, and Solutions

Fref1 Fref2
PLL2 PLL1

Figure 3. Application for Cycle-Cycle Jitter Measurement

PL~. In this case, if PLL2 cannot lock to the refer­
ence frequency, the cycle-cycle jitter of the output of
PLLI will have exceeded the maximum jitter allow­
able for PLL2 to lock. If PLLI is the clock generator
for PLL2 embedded in the CPU, the output jitter of
PLLI must be sufficiently low to successfully time
the inputs to PL~.

Period Jitter

Period jitter measures the maximum change in a
clock's output transition from its ideal position. Fig­
ure 4 shows period jitter.

Period jitter measurements are used to calculate
timing margins in systems. Consider, for example, a
microprocessor-based system in which the proces­
sor requires 2 ns of data set-up time. Assume that
the clock driving the microprocessor has a maxi­
mum of 2.5 ns period jitter. In this case, the rising
edge of clock can occur before data is valid on the
data bus. Hence, the processor will be presented
with incorrect data, and the system will not operate.
This example is illustrated in Figure 5. The system

designer needs to take period jitter into account
while designing the system.

Long-Term Jitter

Long-term jitter measures the maximum change in
a clock's output transition from its ideal position,
over many cycles. The term "many" depends on the
application and the frequency. For PC motherboard
and graphics applications, this term "many" usually
refers to 10-20 microseconds. For other applica­
tions, it may be different. Figure 6 shows a graphical
representation of long-term jitter.

A classic example of a system affected by long-term
jitter is a graphics card driving a CRT. Assume that
a pixel of data is meant for the pixel at co-ordinates
(10,24) on the CRT. Because of a jittery clock, this
data may drive a pixel at location (11,28) on the
CRT. Over an extended period of time, the data
meant for pixel (10,24) may be driving a pixel far
away from its ideal (10,24) location. Since this effect
of a jittery clock is usually consistent over all pixels,
the overall effect of a jittery clock is to cause an
image to shift from its ideal display position on
screen. This effect is sometimes called "running" of
the screen.

Ideal Cycle

Clock

Figure 4. Period Jitter

7-15

,~
~_'I CYPRESS

Jitter in PLL-Based Systems:
Causes, Effects, and Solutions

Ideal Clock

Clock with Jitter

Data

Figure 5. Application for Period Jitter Measurement

-:

Cycle 0
__ 11

Cycle N

I J.
~ Itter
I

Figure 6. Long-Term Jitter

Causes of Jitter

There are four primary causes of jitter as indicated
below in decreasing order of importance.

• Power supply noise on a PLI':s supply inputs,
which appears on the output as jitter. This is the
largest, though not always constant, contributor
to jitter. Power supply noise manifests itself
through various ways, some of which are:

Ground Bounce: When there is a surge of cur­
rent through the output drivers, the induc­
tance of the leads to the supply planes (Vee
and GND) have a voltage drop across it
(value = L.dildt). This raises or lowers the
effective ground potential of the device.
Hence, if the output frequency is dependent
on the effective supply voltage, this frequen-

7-16

cy will change because of ground bounce.
Second, the threshold voltage of transistors
within the oscillator changes, which causes a
change in frequency. This has a twofold ef­
fect. First, the output frequency changes.
Second, if the oscillator feeds a PLL, this
PLL tries to correct the change in frequency.
Both of these effects appear on the outputs
as jitter.

Vdd Noise: Figure 7 shows an inverter in the
internal counter of the PLL. The threshold
voltage of the input is half the V dd potential.
Assume for example, that the V dd signal has
a 100-mV pop noise ripple associated with it.
This noise will cause a shift in the threshold
voltage at the input of the inverter. The
change in the triggering level of this inverter
will cause jitter. If this noise signal has a rise
time of1 V/ns, then lOOps of peak-peak jitter
will appear on the outputs of the inverter,
due to the lOO-mV pop ripple voltage.

f\.J"'V- Noise

Figure 7. EtTect OfVdd Noise on Jitter

• The PLL in a frequency synthesizer has a dead­
band associated with it, during which the phase
and frequency detector does not detect small
changes in the input phase. Since these changes
are not detected, they do not get corrected and
appear on the outputs in the form of jitter.

• Random thermal noise from the crystal refer­
ence, or any other resonating device.

• Random mechanical noise from vibrations of the
crystal reference.

Measuring Jitter

Since we have defined three kinds of jitter, we will
propose three methods of measuring them.

Cycle-Cycle Jitter

Measuring cycle-cycle jitter is extremely difficult. A
Timing Interval Analyzer (TIA) is required to per­
form this measurement. In this case, the output of
the jittery clock is connected to a TIA, and the mea­
surement to be specified is the difference of time pe­
riods of consecutive clock cycles. The maximum of
this difference over multiple cycles is the cycle-cycle
jitter.

Period Jitter

A simple method of measuring period jitter requires
a storage oscilloscope. Set the trigger for the rising
edge of clock. Then scroll the display to the next ris­
ing edge of the clock and tum on the persistence. If
the scope is set up correctly, the width of the blurring
on the displayed transition will indicate the amount
of period jitter in the clock. An example of period jit­
ter measurement is shown in Figure 2. The peak in
the horizontal histogram indicates the fundamental
frequency, while the spreading around this frequen­
cy shows the jitter.

Long-Term Jitter

Long-term jitter is probably the easiest to measure.
It uses a measuring technique called differential
phase measurement. The jittery clock is connected to
an oscilloscope with a delayed time-base feature.

jitter in PLL-Based Systems:
Causes, Effects, and Solutions

The scope is set to trigger on the rising edge of clock.
Then, using the delayed time-base feature, the same
clock waveform is displayed on the screen.

To make sure that the scope calibration and charac­
teristics can perform the jitter measurement, mea­
sure the output of a stable clock source, like a crystal
oscillator. If the waveform has no blurs or bands, the
scope can correctly measure long-term jitter.

Methods of Reducing Jitter

As discussed before, two major causes of jitter are
power supply noise and ground bounce. Reducing
the power supply noise and eliminating ground
bounce will reduce most of the jitter in a system.

Reducing Power Supply Noise

Power supply noise can be reduced by bypassing and
filtering the power supply appropriately.

Bypassing, by using a large tantalum capacitor
(10 -1000 IlF) attached to the board power supply,
will prevent a fall in voltage caused by current
surges, as well as reduce power supply ripple. Attach
this capacitor as close as possible to where the V dd

and GND signals enter the PCB.

This large capacitor will, however, be ineffective at
very high frequencies. Hence, a small capacitor, 0.1
IlF, will be required to filter high-frequency noise.
Cypress recommends attaching a O.l-IlF ceramic ca­
pacitor on every Vdd pin of the frequency synthesizer.
These capacitors must be attached as close to the
pins as is physically possible. Surface mount capaci­
tors are preferred because of their low lead induc­
tance.

If the part has separate analog and digital power
supply pins, use a 22Q resistor in series with a 22-IlF
capacitor to ground to filter low-frequency noise.
Using a smaller capacitor in parallel with the 22-IlF
will ensure better attenuation.

Finally, using a regulated power supply (such as
from a 3-pin regulator, or a Zener diode), with the
above bypassing and filtering techniques, will en­
sure better power supply rejection.

7-17

_?cYPRESS
Jitter in PLL·Based Systems:

Causes, Effects, and Solutions

1. 7V

I
40mV
/div

• nott
trig'd

I

c=>c - -
Jitte·r··:·

....................................... . · . . · . . · . . · . . · . . · . . · . . · . . · . . · ,

· · . . · . · . . · . · . . · . · . . · . · . . · . · . . · . · . . · .

.................................... · . . · . . · . . · . . · . . · . . · . . · . . · \ .. .

. ... :Horizontal Histogram

Figure 8. An Example of Period Jitter Measurement

7-18

v
Supply Filter dd -r-

.~ ~
, ,
, ,
, ,

Vdd
, ,
,

-.L
,

, ,
, ,
, I. 0.1 Il~ , , -, - ,

Vdd
, ,
, -.L ,
, , -'--

Supply

J~

I I -=--,, ____ ___ J

Figure 9. Power Supply Noise Filter Circuit

Figure 9 shows a circuit which can be used to reduce
power supply noise for clock generators with multi­
ple digital power supplies, such as the CY2254. In
case the clock generator has separate analog and
digital power supplies, such as the ICD2028, use the
circuit shown in Figure 10.

Supply Filter Vdd .: -----------

Analog V dd I---..---r----i

~ :-'_I

Vddl------~----~

10llF
Supply Bypass ;I I.

Figure 10. Power Supply Noise Filter Circuit

Pentium is a trademark of Intel Corporation.

Jitter in PLL-Based Systems:
Causes, Effects, and Solutions

In addition to using power supply bypass and filter­
ing techniques, avoid routing any high-frequency
signals below the clock generator. This will mini­
mize noise-coupling effects, and will result in re­
duced jitter on the outputs of the clock generator.

Eliminating Ground Bounce

Ground bounce can be eliminated in three ways.
The first is to reduce the number of loads on the out­
put of the device. A second method of reducing
ground bounce is to provide large ground planes on
your PCB. Finally, if you have two or more ground
pins, connect them individually to the ground plane,
instead of shorting them together. The third way is
to install a series resistance on the output pins. This
will limit the output current and reduce ground
bounce.

Conclusion

This application note has discussed the various jitter
measurements which can be made on a system. It
also discussed the causes and effects of jitter, and
presented techniques for reducing jitter in PLL­
based systems. Using this information the reader
should be able to design more reliable high-speed
systems.

References

1. High Speed Digital Design, A Handbook of
Black Magic, Howard lohnson & Martin Gra­
ham, 1993 Prentice-Hall, Inc.

7-19

ECLOutputs

Introduction

The Cypress Timing Technology products family
features ECL-compatible outputs in products such
as the ICD2062. These outputs allow clocking at
frequencies above 160 MHz, with all the inherent
advantages of differential ECL signal transmission.

This application note covers the principal advan­
tages of using ECL outputs and makes recommen­
dations concerning layout and wiring methods for
parts such as the ICD2062.

Power Supplies (PEeL vs. EeL)

The ECL V DD and VEE pins have traditionally been
powered from a - S.2V supply, VDD being grounded
and VEE set at -S.2V-the intent is to achieve the
lowest VDD noise by grounding the VDD pins. In
more recent designs, however, ECL is often used
with +S.OV instead of -S.2y. (VDD set to + S.OV
and VEE tied to ground.) Since VDD noise is not a
major concern, this permits the use of a standard
logic supply. This application note will focus on
+S.OV ECL designs (sometimes called PECL).

EeL Advantages

As clock speeds rise beyond 100 MHz, the advan­
tages of using ECL become more obvious. Most of
these advantages involve the use of differential sig­
nal transmission.

Differential signals are less susceptible to ground
noise problems, as all noise becomes common­
mode. Single-ended CMOS is much more suscepti­
ble, since ground bounce and other noise affect logic
thresholds, degrading noise immunity. ECL signals

remain unaffected, since noise rides on both signals
as an average level. Logic levels are also less criti­
cal, since the threshold is the differential cross
point, which can tolerate significant signal attenua­
tion. Differential circuits also tend to generate less
noise in the power supply.

ECL is designed with termination resistors that al­
low high-frequency signals to propagate with mini­
mal overshoot and reflection.

These advantages are most pronounced in a bipolar
implementation, but many of the same benefits can
be realized in CMOS designs.

Pad Structure

Referring to Figure 1, transistors 01 and 02 form
differential ECL output drivers. Unlike single-en­
ded outputs (see Figure 2), N-type transistors are
not required, since termination resistors are always
present and serve as pull-downs.

The ECL output drive logic guarantees that when
01 switches ON, 02 switches OFF (and vice versa).
A complementary logic state is always maintained,
assuring a constant current supply draw in either
output state.

Logic Levels

The VOWVOL logic levels are approximately 4.1V
to 3.2Y. This gives a differential signal of 0.9 Y. This
is more than adequate, since bipolar ECL VOHN OL
are typically 4.1V to 3.3V for a differential swing of
0.8Y. If the termination resistors are reduced from
the 220Q/330Q suggested value, the V OH level can
be reduced somewhat.

7-20

Voo

r------------------ ---------------- ..

,

ECl
Output
Drive
logic

,

Differential
Transmission

Line

Terminating
Resistors
~

Voo

ECLOutputs

Voo

Clocked
Part

(RAMDAC)

~ ~<?l: ~i~~a~ ~~u~c_e ______ _ Q1, Q2: ROS(on) .s 35Q : 330Q
- - - - - - - - - - - - - - - - J NOTE: See text

GND
for appropriate
resistor values

Figure 1. Differential EeL Output Driver

Voo

_--VOU!

Figure 2. Single-Ended Output Driver

Output Routing and Board Layout Issues

ECL signals maintain their integrity over long rout­
ing distances. A 100-MHz single-ended trace
should be limited to a few inches, but ECL can travel
several feet at that frequency. This is due to EC~s
termination resistors at the receiving devices.

For good signal integrity, ECL traces are laid out in
pairs. By controlling the board layout and specifying
appropriate electrical properties, a constant charac­
teristic impedance of 100Q to 150Q can be achieved.
By employing transmission live techniques, high­
quality signals are ensured.

7-21

To reduce Voo noise the clock generator must be
properly bypassed at the supply pins, as should the
parts to be clocked. Terminating resistors should
also be bypassed separately if they are not located
near a bypass capacitor.

Terminating Resistor Values

The 220Q/330Q values represent a trade-off be­
tween low-power draw and best high-frequency per­
formance. For frequencies above 80 MHz, they may
pull down too weakly, resulting in inadequate signal
swing. These values can go as low as 68Q/100Q at
160 MHz (always maintaining an approximate 2:3
ratio). Low values work satisfactorily at both low
and high frequencies, the only drawback being a
higher current drain.

Summary

A general overview of ECL logic has been pres­
ented, with emphasis on the interface of ECL logic
to +5V powered CMOS clock generators. Should
additional support be required, contact Cypress Ap­
plications for assistance.

Understanding the CY2291 and CY2292

Abstract

The CY2291 and CY2292 are three-PLL frequency
synthesizers that utilize EPROM technology. Many
different programmable output frequencies and
power saving features are contained in one small
package. These features result in flexibility and cost
savings, as well as short sample and production lead
times.

This document begins with an explanation of the
CY2291 features. The internal architecture and
common applications are then presented. At that
point, some recommendations about layout and fil­
tering techniques are made. Finally, the Configura­
tion Request Form is discussed in detail.

Although this application note specifically refer­
ences the CY2291, the information presented also
applies to the CY2292. The only differences are that
the CY2292 comes in a 16-pin SOIC package
(32XIN, 32XOUT, 32K, and VBATI are absent) and
the FLOPPYCLK output has been replaced with a
GNDpin.

CY2291 Features

The CY2291 has eight output clocks (four are confi­
gurable), smooth slewing on outputs originating
from the CPU PLL, power-saving features, low
skew between related outputs, and user-selectable
reference support. Each of these functions is dis­
cussed in more detail below. Figure 1 shows the logic
block diagram of the CY2291.

Multiple Outputs

The CY2291 has eight output pins, enabling it to
support almost all PC motherboard clock require­
ments. These outputs consist of four user configur-

7-22

able clocks, a CPUCLK, a FLOPPYCLK, a XBUF
and 32-kHz clock output. Each of these outputs is
explained in more detail in the CY2291 Internal Ar­
chitecture section of this application note. When
any output is in a three-state condition, the signal is
pulled LOW because the CY2291 has weak pull­
downs on all outputs (except 32K). This is to ensure
compatibility with Pentium TM -based systems.

Variable Reference Frequency

The default reference frequency for the CY2291 is
14.318 MHz. However, the part can accept any ref­
erence frequency between 10 MHz and 25 MHz,
preferably from an accurate, stable, parallel-reso­
nant crystal. In addition, this reference crystal does
not require any external resistors or capacitors.

Alternatively, the CY2291 can use an external refer­
ence clock of frequency between 1 MHz and 30
MHz. In this case, the external reference clock is
driven in over the XTALIN pin and the XTALOUT
pin is left floating. The duty cycle of this input clock
should be between 40% and 60% measured at
VDD/2. For more information on AC-coupling the
external reference clock, please refer to the applica­
tion note "Crystal Oscillator Topics."

Smooth Siewingf.!!,j. ..

The CY2291 provides smooth slewing on outputs
originating from the CPU PLL. The term "smooth
slewing" refers to frequency slewing (the rate of
change of frequency with respect to time). Specifi­
cally, the frequency of such an output changes
smoothly and monotonically from 4 MHz to 80 MHz
for 3.3V operation and up to 100 MHz at 5V.

Smooth slewing is required for processors such as
the 486, which accept only a limited amount of fre­
quency change per clock cycle.

Understanding the CY2291 and CY2292

r--·
32XIN

32XOUT
,

32 kHz
CRYSTAL
OSCILLATOR

,

32K

CY2291 only , __ J

XTALIN

XTALOUT

S2!S(JSI5EI\ID

S1

SO

SHUTDOWN/OE

REFERENCE
CRYSTAL
OSCILLATOR

CPU EPROM
TABLE

OUTPUT
MULTIPLEXER
AND
DIVIDERS

XBUF

FLOPPYCLK
(CY2291 only)

CPUCLK

CLKA

CLKB

CLKC

CLKD

t t
GND VOO VBATT

Figure 1. Block Diagram of CY2291/2

Power-Saving Modes

The CY2291 features a variety of power-saving
modes, which are especially useful in Green PC and
laptop applications.

Suspend Mode

The suspend option allows the user to activate and
deactivate selected resources at will. The suspend
feature must be requested and the resources-to-be­
suspended selected when ordering the part.

Each of the three PLLs and each of the outputs, ex­
cept for the 32.768-kHz output, can be suspended
independently. Suspending a PLL shuts down all as­
sociated logic including counters and downstream
post- dividers, and places related outputs in a three­
state condition. Suspending an output simply forces
a three-state condition on the output. Moreover,
transitioning from the suspend to active state re-

7-23

quires the PLLs to re-Iock (50 ms maximum, 5 ms
typical).

Suspend mode is controlled by the S2/SUSPEND
pin (active LOW). In this power-saving mode, the
CPU PLL, unless also suspended, will output a fre­
quency corresponding to a selection with S2 = O. If
the suspend option is disabled (i.e., not implement­
ed during configuration) the S2/SUSPEND pin is
used solely as select input for the CPUCLK output.

Shutdown Mode

The shutdown option allows the user to activate and
deactivate the entire CY2291 chip at will, using the
SHUTDOWN/OE pin (active LOW). During shut­
down, the current draw of the CY2291 is reduced to
less than 65 !JA (50 !JA if 32-kHz oscillator is not
used). The shutdown option must be specified when
requesting the part.

In shutdown mode, all outputs (32K output not af­
fected) are three-stated. All PLLs, associated logic,

-= ~YPRESS~~~~~~~~u~n~de~r~st~a~nd~i~ng~th~e~CY~2~29~1~a~n~d~CY~2~29~2~
ROMs, counters, Reference Oscillator, and any
other active components are shut down.

Transitioning from the shutdown to active state re­
quires the PLLs to re-lock (50 ms maximum, 25 ms
typical). In addition, because the SHUTDOWN/
OE pin has no pull-up resistors, the user must drive
this pin to a voltage level for proper operation.

The "Off" Option

The "off" option allows permanent shutdown of se­
lected resources, independent of the suspend and
shutdown options. Selecting "off" for a PLL perma­
nently shuts down the PLL and all associated logic,
and three-states associated outputs. Selecting "off"
for an output simply three-states the output.

Unlike the suspend and shutdown modes:

• The "off" mode does not power-down the entire
part.

• The "off" mode is pin-controllable only for the
CPUPLL.

Low Skew

The CY2291 has low skew (500 ps maximum) be­
tween related signals on CLKA-CLKD, and
CPUCLK outputs. Referring to Thble 1, related sig­
nals are defined as those which are on the same row
(except the "Ref" row). Therefore, SPLL/3 and
SPLL/6 are related, but SPLL/3 and SPLL/24 are
not.

In addition, the outputs must have identical capaci­
tive loads to meet the skew specifications.

CY2291 Internal Architecture

In addition to a dedicated 32-kHz output, the
CY2291 uses three internal PLLs, EPROM
technology, and a reference crystal oscillator to syn­
thesize up to four unrelated frequencies. These fre­
quencies are then divided, using post-dividers, al­
lowing the device to provide up to a total of eight
different outputs.

The internal architecture of the CY2291 is ex­
plained in more detail below.

Phase Locked Loop

In general, frequency synthesizers use one or more
PLLs to generate one to many different frequencies.
The CY2291 can generate up to four unrelated fre­
quencies: CPLL, SPLL, UPLL, and one buffered
reference frequency, where CPLL is the frequency
generated by the CPU PLL, SPLL by the SYSCLK
PLL, and the UPLL by the UTILITY PLL. For
more information on PLLs, see the application note
"Jitter in PLL-Based Systems."

EPROM Technology

Using factory-programmable EPROM technology
provides two advantages to the customer:

• Instead of relying on the manufacturer's avail­
able ROM options, the customer can order a cus­
tom set of frequencies on'the CPUCLK output.

• Factory-programmable EPROM technology en­
ables fast turnaround times on the product. The
customer no longer needs to wait six weeks for a
custom mask set to be created, or for the part to
be fabricated. Typical turnaround times are less
than one week.

The CY2291 is controlled by two factory program­
mable EPROMs. The CPU EPROM, which is a
ROM table, controls the operation of the CPU PLL.
Input pins S[2:0] allow the user to select the desired
output frequency of CPUCLK. The Configuration
EPROM contains information to configure the
SYSCLK and UTILITY PLLs, as well as output fre­
quencies and suspend selected resources.

Outputs

The three internal PLLs allow the CY2291 to offer
numerous frequencies on its eight outputs.

32. 768 kHz

The on-chip 32-kHz circuitry is electrically isolated
from the rest of the device. Activating any of the
power-saving modes will not affect the buffered out­
put (32K). To generate the 32 kHz output, connect:

• A 32-kHz reference crystal between pins 1 and 20

• A 10 MQ resistor in parallel to the 32 kHz crystal
as shown in Figure 2

• The VBATI pin to the battery operated supply

7-24

=. ~
) CYPRESS =======;;;;;V;;;;;n;;;;;d;;;;;e;;;;;rs;;;;;t;;;;;an;;;;;d;;;;;in;;;;;g;;;;;t;;;;;h;;;;;e;;;;;C;;;;;Y;;;;;22;;;;;9;;;;;1;;;;;a;;;;;n;;;;;d;;;;;C;;;;;Y;;;;;2;;;;;2;;;;;92=

If the 32-kHz output is not required, either leave
pins 1, 2, 19, and 20 floating, or consider using the
CY2292.

XBUF

This output is a buffered copy of the reference oscil­
lator.

FLOPPYCLK

The SYSCLK PLL is usually configured to an out­
put of SPLL=96 MHz. The user has a choice of di­
viding SPLL by two, three, or four. In this particular
example, the FLOPPYCLK output can be either 24,
32, or 48 MHz.

CPUCLK

This output, generated by the CPU PLL, is user-se­
lectable. The user selects one frequency from the
CPU EPROM, which is factory programmed with
the configuration desired by the user. The usage of
pins S[2:0] to select a CPUCLK frequency differs in
the following three situations.

• If the CY2291 is factory-programmed without the
Suspend feature, then the S2/SUSPEND pin is
dedicated solely to selecting one of the eight
CPUCLK frequencies.

• If the CY2291 is factory-programmed with the Sus­
pend feature, but not on the CPU PLL, then the
S2/SUSPEND pin is used to control the suspend
feature and the CPU PLL frequency selection.
However, in suspend-mode, the CPUCLK out­
put will be a frequency that corresponds S2 =
LOW. Specifically while in suspend-mode, the
CPUCLK can only output one of four frequen­
CIes.

• If the CY2291 is factory-programmed with the Sus­
pend feature on the CPU PLL, then the S2/SUS­
PEND pin is reserved solely for suspend-mode
(active LOW). Thus, when S[2:0] = OXX, the
CPU PLL will be suspended. When the CY2291
is not in suspend-mode, the user sets S[I:0] (with
S2 = HIGH) to select one of four CPUCLK fre­
quencies.

7-25

Configurable Outputs

The outputs CLKA-CLKD can each be set to one
of 32 selections. This palette of choices is generated
by the output multiplexers and dividers. Internal
signals that originate from the PLLs and the refer­
ence crystal oscillator, are further divided, resulting
in 32 output possibilities as shown in Table 1.

Table 1. CLKA - CLKD Palette of Choices.

Ref Ref/2 Ref/4 Ref/8

CPLL CPLL/2 CPLL/4 CPLL/8

UPLL UPLL/2 UPLL/4 UPLL/8

SPLL SPLL/2 SPLL/4 SPLL/8

SPLL/3 SPLL/6 SPLL/12 OFF

SPLL/5 SPLL/lO SPLL/20 SPLL/40

SPLL/12 SPLL/24 SPLL/48 SPLL/96

SPLL/13 SPLL/26 SPLL/52 SPLL/104

Within the 32 output choices, the SPLL/12 option
occurs twice, thus allowing up to 31 unique output
selections. In addition, for CLKD, the Ref/8 fre­
quency is replaced with a Ref/3 option.

Note that if anyone of the configurable clocks
(CLKA-CLKD) is obtained from the CPU PLL,
that clock will exhibit the same characteristics as the
CPUCLK.

Layout and Filtering Techniques

In order to ensure optimal operation ofthe CY2291,
use the following layout and filtering techniques.
Figure 2 shows the recommended external connec­
tions.

Series Terminations

If the output of the CY2291 drives multiple loads or
long traces, use a terminating resistor in series with
the output, attached as close to the output pin as is
possible. Figure 2 shows a 22Q resistor in series with
the output. The value of this resistor, summed with
the output impedance of the CY2291, should equal
the characteristic impedance of the trace (transmis­
sion line). Typical values of the series resistor range
from 10Q to 75Q.

A resistor in series with the output dampens the
voltage reflections that occur with output imped-

Understanding the CY2291 and CY2292

---------1~- ----(;Y2291 only ~
32 kHzXTAL

10MO

32XOUT 32XIN .
--------"

Voo I-""'"-r---..J
'-------r---1 Voo .1:::. 0.1 IJF

220
GND OUTPUTSI-~~----~~

Figure 2. External Connections ofthe CY229l/2

ance mismatches. It has the ultimate effect of reduc­
ing jitter on the output of the CY2291.

Layout Guidelines

The following guidelines apply for laying out the
CY2291 on a board:

• Provide a iarge ground plane under the device.
This will have the effect of reducing ground
bounce in the system, thus reducing jitter.

• Connect each GND pin to the ground plane indi­
vidually. Connecting them together, and then to
the plane will defeat the purpose of providing
multiple ground pins.

• Avoid routing any high-frequency or clock sig­
nals below the device. Placing the device in a rel­
atively quiet area of the board will reduce noise
coupling into the PLL, and will ensure lower jit­
ter on the outputs.

All the above recommendations, along with a stable
power supply source, will result in significantly re­
duced jitter on the clock outputs.

lYpical Applications

The CY2291 is an extremely versatile device. It can
be used in PC, printer, and other embedded applica­
tions.

Personal Computers

The CY2291 can provide the multiple frequencies,
smooth slewing, and power-saving features to help
computer manufacturers meet the Green PC re­
quirement.

Desktop and Notebook PCs Using 486 Processors
from Intel, AMD, or Cyrix

The CY2291 is an excellent choice for 486 mother­
boards. The CPUCLK output is designed to slew
smoothly, meeting the 486 requirements.

Desktop PCs based on the Pentium Processor

The CY2291 can provide the multiple clock fre­
quencies required by a highly integrated Pentium
motherboard. For example, a Pentium PC mother­
board may require:

• 40 MHz for SCSI

• 24 MHz for Floppy

• 12 MHz for Keyboard

7-26

• 14.318 MHz for Interrupt Controller

• Pin-strappable CPU clock frequencies of 50, 60,
66.66, and 75 MHz.

• CPU/2 for PCI clock frequencies with low skew
to CPU.

The CY2291 can provide all the above frequencies.

Notebook PCs based on the Pentium Processor

The programmable power-saving features of the
CY2291 (suspend and shutdown optioris), are ex­
tremely useful in notebooks, which need to conserve
power. When configured correctly, this device can
utilize up to three power reducing options: "off",
suspend, and shutdown.

Printers (Networked and Desktop)

Desktop and Network printers each require multi­
ple frequencies to drive the serial port, parallel port,
Ethernet port, CPU and ASICs. Such printers may
require:

• 1.8432 MHz for serial port

• 20 MHz for Ethernet port (network printers
only)

• 25 MHz for Centronics Parallel port

• 33 MHz for CPU

All frequencies are provided by a CY2291. Itt addi­
tion, the smooth slewing on the outputs, as well as
the power-saving features of the CY2291, allow
manufacturers to design printers that can power­
down when idle.

Upgrade for the ICD2028

The CY2291 is pin-compatible with the ICD2028
and offers higher performance with respect to jitter
and skew. Users upgrading to the CY2291 should
note that the device has no internal pull-up or pull­
down resistors on any inputs. Depending on how
these inputs are driven, the CY2291 requires exter­
nal pull-down resistors on the select lines (S[2:0])
and a pull-up resistor on the OE pin.

Other Uses

Any application that requires clocks to be generated
from a single device can use the CY2291. Applica-

Understanding the CY2291 and CY2292

tions include game systems, scanners, copiers, and
mass storage devices.

Guidelines for the Configuration
Request Form

Before placing orders for the CY2291, a configura­
tion request form (shown at the end of the applica­
tion note) needs to be completed. From this, Cy­
press can correctly program the EPROMs. When
filling out the request form, please follow the direc­
tions and note the guidelines below.

Guidelines

Operating Voltage

Select either 3.3V or 5V operation.

Input Reference Frequency

Specify a frequency between 10 MHz and 25 MHz
if using an external crystal. When using an external
reference clock, specify a value between I M liz and
30 MHz.

PLL Frequencies

Fill in the desired frequencies in the Requested col­
umn. The requested CPLL, UPLL, and SPLL fre­
quencies should be greater than 8 MHz, and not
more than 100 MHz for 5V operation (80 MHz for
3.3Voperation).

tf the suspend option is desired on the CPU PLL,
then only request CPLL frequencies corresponding
to S2 = 1.

Output Configuration

Select one frequency for each output, using the Out­
put Options Thble on the form. In addition, fill in the
corresponding frequency value, as a double-check.
Please follow the constraints specified in parenthe­
sis by each output. Note that for the CLKD output,
Ref/8 is replaced with a Ref/3 frequency.

Shutdown Option

If the shutdown option is chosen, this will enable the
user to power down the entire CY2291 with pin 18.
If this option is not desired, then pin 18 will be used
as an output enable (OE).

7-27

Suspend Option

Two ways to specify suspending an output are:

• Suspend the associated PLL.

• Suspend the output directly.

Recall that suspending a PLL powers down all asso­
ciated logic and outputs, as well as the PLL, when in
this mode. Turning a PLL "off" permanently shuts
down the associated logic and outputs, as well as the
PLL.

Other Guidelines

If no outputs are associated with a PLL, then select
"off" for the PLL. If an output is not needed, select
"off" for the output. Implementing these sugges­
tions will reduce power consumption.

A word of caution: PLLs running at the same or inte­
ger-multiple frequencies of each other will cause
harmonics to appear at associated outputs. To avoid
this, do not select PLL frequencies to be equal or in­
teger-multiples of each other.

Pentium is a trademark of Intel Corporation.

Understanding the CY2291 and CY2292

Summary

In summary, this application note explains the fea­
tures, internal architecture, potential applications,
and the configuration request form of the CY2291.

This space-saving part offers flexibility and power­
down features, cost savings, and fast turnaround
times. The three PLLs support variable frequencies
at the outputs. The low jitter and smooth slewing of
the CY2291 provides the accuracy needed by
today's high speed applications. The power saving
modes allow designs to meet benchmarks, such as
the Green PC requirement. Most importantly, the
CY2291 utilizes EPROM technology, which allows
for customized frequencies and short sample and
production lead times, helping customers to meet
their design schedules.

7-28

.r CYPRESS Understanding the CY2291 and CY2292

II CY2291/2 CUSTOM CONFIGURATION REQUEST FORM

Company
Phone #

Engineer
Fax #

FAE/Sales
Date

CIRCLE ONE CY2291 CY2292

The CY2291 and CY2292 are the industry's most flexible frequency synthesizers, offering a high degree of configurability due to their
unique internal factory-programmable EPROM array. Of the CY2291/2's outputs, six (five on the CY2292) may be defined within the
scope of the PLL frequencies and divider criteria described in the following. The process may require several iterations to achieve the
desired frequencies. Shaded areas are for Cypress use only. Contact your local Cypress representative for assistance.
1. OPERATING VOLTAGE (Circle one) 3.3V S.OV

2. INPUT REFERENCE FREQUENCY (Circle one) Crystal External Clock 14.31818 MHz (Default)
If a different reference is required, specify the frequency in the box to the right
(must be between 10 MHz and 25 MHz for crystal, 1 MHz and 30 MHz for external clock):

3. CPU-PLL FREQUENCIES ("Off" is a valid selection for any address and will automatically be entered for blanks.)

4.

S.

Select Requested Actual

000

001

010

011

100

101

110

111
Range: 8-100 MHz at 5V; 8-80 MHz at 3.3V

If the Suspend Option is specified in #7 below, the Select MSB
(S2) serves a dual function as both the MSB CPU address and as
the Suspend select pin. The CPU frequencies specified for ad­
dresses 000-011 will be active unless the CPU-PLLis shut down
during the suspend mode (CPU-PLLis circled in #7). Also, any
outputsderivedfromanon-suspended CPU-PLL(assigned in #5
as options 5 - 8) that are not circled in #7 will remain active dur­
ing the suspend mode.

UTILITY-PLL AND SYSTEM-PLL FREQUENCIES ("Off" is a valid frequency selection for either PLL.)
To minimize harmonic effects, avoid setting any PLL to an equal or multiple frequency of another PLL.

Requested Actual r----'R;;;;e;;.;qo.;u;;;;e;:..st:.;:;e.::,d_--. ___ A_c_tu_al __ ---,

U-PLL IL::-_-::-='-::-:---L..:=-:-::-~-:-=-::-:::-:-I S-PLL I I
Range: 8-100 MHz at 5V; 8-80 MHz at 3.3V Range: 8-100 MHz at 5V; 8-80 MHz at 3.3V

Default = 96 MHz at 5V; 48 MHz at 3.3V
OUTPUT CONFIGURATION ("Off" is a valid selection for any output and will automatically be entered for blanks.)
Assign by number from the Output Options Table below and fill in the Frequency column as a double-check.

Output Options Thble
1. Ref 6.CPW2
2. Ref/2 7. CPLL/4
3. Ref/4 8. CPLL/8
4. Ref/8 9. UPLL
5. CPLL 10. UPLL/2

11. UPLL/4
12.UPW8
13. SPLL
14. SPLL/2
15. SPLL/3

Option Frequency

16. SPLL/4
17.SPW5
18. SPLL/6
19.5PW8
20. SPLL/10

21.SPW12
22. SPLL/13
23. SPLL/20
24. SPLL/24
25. SPLL/26

26.SPW40
27. SPLL/48
28. SPLL/52
29. SPLL/96
30. SPLL/l04

Option Frequency

FLOPPYCLK (Options 14-16, Off) .
32K (Fixed 32 kHz) 1 132.768 kHz

XBUF (Option 1 only) ~. ==:==~========~

CLKA (Options 1-30, Off) 1
CLKB (Options 1-30, Off) .

CLKC (Options 1-30, Off) ~=====~========~
CPUCLK (Options 5-7, Off) '--__ ...L-___ --' CLIm (Options 1-30, Off) '--__ ...L-___ --'

32K and FLOPPYCLK are not avaiblb/e on the CY2292.

6. SHUTDOWN OPTION (Circle Yes or No)

7. SUSPEND OPTION (Circle Yes or No)

IF SUSPEND = "Yes": Circle each resource to be shut
down when the Suspend mode is active (S2=0). Note that
suspending a PLL automatically suspends its outputs.

FOR CYPRESS USE ONLY (Shaded areas above and below)
Customer Configuration

Date

Yes

Yes

Marking

Quantity

7-29

For CLKD only: option #4 (lI£fl8) is replaced with lI£fl3.

No

No

CPU-PLL
UTIL-PLL
SYS-PLL

XBUF
CPUCLK
FLOPPYCLK

CLKA
CLKB
CLKC
CLKD

Understanding the CY2254
Introduction

The CY2254 is a two-PLL clock generator for the
Intel 1titon TM chipset-based motherboard and other
Pentium 1M motherboards. It features four high­
drive outputs at the CPU clock frequency (50, 60, or
66.66 MHz, selected by two pins), six high-drive syn­
chronous PCI clock outputs at half the frequency of
the CPU clocks, two high-drive Reference outputs
at 14.318 MHz, a 12-MHz Keyboard clock output,
and a 24-MHz Floppy clock output. This application
note discusses the internal architecture of the

XTALIN

XTALOUT

SO~---------1--~--~

S1 ~------------~~--~

CY2254, and provides recommendations for using
it in a system.

CY2254 Features

The logic block diagram of the CY2254 is shown in
Figure 1. The device accepts input from a
14.318-MHz parallel-resonant crystal. This signal is
then fed to the two internal PLLs, which generate
the required frequencies on the outputs. All clock
outputs are controlled by an active-HIGH Output
Enable pin, which three-states the outputs when

RefO (14.318 MHz)

Ref1 (14.318 MHz)

24 MHz (floppy disk)

12 MHz (keyboard)

PClKO (CPU elk 0)

PClK1 (CPU elk 1)

PClK2 (CPU elk 2)

PClK3 (CPU elk 3)

BClKO (PCI elk 0)

BClK1 (PCI elk 1)

BClK2 (PCI elk 2)

BClK3 (PCI elk 3)

BClK4 (PCI elk 4)

BClK5 (PCI elk 5)

OE ~------------------------------~
Note:

Figure 1. CY2254 Logic Block Diagram

7-30

PCLK = CPU Clock
BCLK = PCI Bus Clock

deasserted. Table 1 shows the CY2254 function
table.

CPU Clock Outputs

The CY2254 CPU PLL generates four outputs at
the CPU clock frequencies of 50, 60 or 66.66 MHz,
by applying appropriate levels on the select inputs,
SO and Sl. All CPU clock outputs meet the Pen­
tium's maximum cycle-cycle jitter specification of
200 ps. Finally, all CPU clock outputs are skew-con­
trolled, with a maximum skew of 250 ps between
them.

PCI Clock Outputs

The CPU PLL output, after being internally divided
by two, drives six outputs at one-half the CPU clock
frequency. In addition, these PCI clock outputs lag
the CPU clock outputs by 1 to 5 ns. Finally, all PCI
clocks outputs are skew-controlled, with a maxi­
mum skew of 500 ps between them.

Both CPU and PCI clock outputs feature:

• Matched impedances on the rising and falling
edges of output drivers resulting in equal rise and
fall times

• Low output impedance: 25Q (typical) and 40Q
(maximum), measured at 1.5V

• Max. Load on CPU clock = 20 pF

• Max. Load on PCI clock = 30 pF

Reference Clock Outputs

The CY2254 buffers two clock outputs at the refer­
ence frequency of 14.318 MHz. The REFO output
has a larger drive capability of 30 pF, as compared
to the REFI drive capability of 15 pF.

Understanding the CY2254

Keyboard and Floppy Clocks

The SYS PLL generates the Keyboard and Floppy
clocks at 12 and 24 MHz respectively. Both these
outputs are capable of driving 20-pF loads, with low
jitter.

Test Mode Support

The CY2254 supports the Triton Test mode when
both SI and SO are set to a logic HIGH. In this mode,
reference frequency (TCLK), applied to the
XTALIN input, is buffered onto the REFO and
REFI outputs. The CY2254 also generates
TCLK/2, TCLK/4, TCLK/4, TCLK/8 frequencies
on the CPU, PCI, Floppy, and Keyboard clock out­
puts respectively.

Power Supply

The CY2254 requires a clean and accurate 3.3-Volt
(± 5 %) power supply for proper operation.

Reference Frequency

Cypress recommends the use of a parallel-resonant
14.318-MHz crystal to generate the most accurate
clock outputs. A series-resonant crystal will result
in clock outputs of a slightly higher frequency (appx.
5%).

System Applications

The CY2254 was primarily designed to meet the
clock requirements of the Intel Triton chipset. How­
ever, since it is a Pentium-compatible device, it can
be used in any motherboard requiring high-drive
CPU and PCI clock outputs.

Table 1. CY2254 Function Table
Ref. Clock

OE SO SI XTALIN Input PCLK BCLK Output 24 MHz 12 MHz

0 X X 14.318 MHz High-Z High-Z High-Z High-Z High-Z

1 0 0 14.318 MHz 50 MHz PCLK/2 14.318 MHz 24 MHz 12 MHz

1 0 1 14.318 MHz 60 MHz PCLK/2 14.318 MHz 24 MHz 12 MHz

1 1 0 14.318 MHz 66 MHz PCLK/2 14.318 MHz 24 MHz 12 MHz

1 1 1 TCLK TCLK/2 TCLK/4 TCLK TCLK/4 TCLK/8

7-31

,~
~;CYPRESS

The CY2254 will provide accurate, low-jitter clocks
on its output. To ensure the quality of the clock out­
puts, a noise-free power supply is necessary. Addi­
tionally, the user should follow the high-speed de­
sign techniques summarized in the following
sections to ensure reliable operation of the CY2254
and the board. For more details on these tech­
niques, please refer to the Application Notes, "Sys­
tem Design Considerations" and "Protection, De­
coupling, and Filtering of Cypress CMOS Circuits,"
both of which are available in the latest edition of
the Cypress Applications Handbook. Please con­
tact your local Cypress representative for a copy.

Supply Bypass and Filtering

To ensure low jitter on the outputs of the CY2254,
the designer must provide a clean source of power.
A large tantalum capacitor (10-1000 IJ.F) attached
to the board power supply, will prevent a fall in volt­
age caused by current surges, as well as reduce pow­
er supply ripple. Attach this capacitor as close as
possible to where the V dd and GND signals enter
the PCB.

This large capacitor will, however, be ineffective at
very high frequencies. Hence, a small capacitor,

4

11

'-----.---1 14

Understanding the CY2254

0.1 tiP, will be required to fIlter high-frequency
noise. Cypress recommends attaching a O.l-IJ.F ce­
ramic capacitor on every V dd pin of the CY2254.
These capacitors must be attached as close to the
pins as is physically possible. Surface mount capaci­
tors are preferred because they have lower lead in­
ductance.

Figure 2 shows the external capacitor connections.

Series Terminations

If the output of the CY2254 drives multiple loads or
long traces, use a terminating resistor in series with
the output, attached as close to the output pin as is
possible. Figure 2 shows a 22g resistor in series with
the output. The value of this resistor, summed with
the output impedance of the CY2254, should equal
the characteristic impedance of the trace (transmis­
sion line). 'JYpical values of the series resistor range
from 109 to 75g.

A resistor in series with the output dampens the
voltage reflections which occur with output imped­
ance mismatches. It has the ultimate effect of reduc­
ing jitter on the output of the CY2254. Once again,
surface mount resistors are preferred because of
their lower lead inductance.

261---r----1
0.1 !-IF

23

201---.---....

17

.:::r::: 0.1 !-IF

Required only when outputs drive

• _-: __ ./ muttiple loads or long traces.

22Q:
OUTPUTSI-.-JVV\r-----,.-O

Figure 2. External Connections of the CY2254

7-32

$ -.,:z
........ 'CyPRESS

Layout Guidelines

The following guidelines apply for laying out the
CY2254 on a board:

• Provide a large ground plane under the CY2254.
This will have the effect of reducing ground
bounce in the system, thus reducing jitter.

• Connect each Vss pin of the CY2254 to the
ground plane individually. Connecting them to­
gether, and then to the plane will defeat the pur­
pose of providing multiple ground pins.

• Avoid routing any high-frequency or clock sig­
nals below the CY2254, and place it in a relative­
ly quiet area of the board. This will eliminate the

Triton and Pentium are trademarks of Intel Corporation.

Understanding the CY2254

coupling of any noise into the PLL, and will en­
sure lower jitter on the outputs.

All the above recommendations, along with a stable
power supply source, will result in significantly re­
duced jitter on the clock outputs of the CY2254.

Conclusion

7-33

This application note introduced the reader to the
CY2254 and presented some guidelines on using the
device in systems. A summary of power supply fil­
tering, termination, and layout guidelines was pre­
sented. With this information, the reader should be
better able to design with the CY2254.

Everything You Need to Know About
CY7B991/CY7B992 (RoboClock)

But Were Mraid to Ask

Introduction

The following application note provides a detailed
description of the CY7B991 and CY7B992 Pro­
grammable Skew Clock Buffers (PSCB). It also
provides an overview of clock distribution and trans­
mission line analysis. This application note is di­
vided into the following sections:

• General Description

• Clock Distribution

• System Design Considerations

• Detailed Device Description

• AC Specifications

• AC Characterization

• DC Specifications

General Description

Figure 1 is a general block diagram of Cypress's Pro­
grammable Skew Clock Buffer (internally called
RoboClock). RoboClock employs a phase-Iocked­
loop architecture to provide output clocks that are
aligned both in phase and in frequency with a refer­
ence input clock. Each of the four output pairs is
controlled by two dedicated three-level function se­
lect inputs that allow the outputs to be phase ad­
justed by as much as ± 18 ns, divided, multiplied, or
inverted. In all, over 26,000 different output com­
binations are possible.

A three-level frequency select (FS) input selects one
of three PLL operating ranges that allow the out-

puts of the PSCB to operate from 3.75 to 80 MHz.
All of these device configurations are possible while
still maintaining an output-to-output skew and a
propagation delay no greater than 500 ps.

The following section discusses the effects of skew
on system performance, showing why RoboClock is
ideally suited for solving clock distribution prob­
lems.

TEST

400

401

300

301

200

201

100

101

Figure 1. Logic Block Diagram

7-34

ZrcYPRESS =====;;:;;E;;:;;ve;;:;;ry;;:;;t;;:;;h;;:;;in;;;;;g;;;;Yi;;:;;o;;:;;u;;:;;N;;:;;e;;:;;e;;:;;d;;:;;t;;:;;o ;;:;;Kn=o;;:;;w;;:;;A;;:;;b;;:;;o;;:;;ut;;:;;R;;:;;o;;:;;b;;:;;o;;:;;C;;:;;lo;;:;;c=k

Clock Distribution

Skew is the variation in arrival time of two signals
specified to occur at the same time. Skew is com­
posed of the output skew of the driving device and
variation in the board delays caused by the layout
variation of the output traces.

Skew affects synchronous systems primarily in the
form of clock skew. Since the clock signal drives
many components of the system, and since all of
these components should receive their clock signal
at precisely the same time in order to be synchro­
nized, any variation in the arrival of the clock signal
at its destination will directly impact system perfor­
mance. Skew directly affects system margins by
eroding the predictability of the arrival of a clock
edge. Because elements in a synchronized system
require clock signals arrive at the same time, clock
skew reduces the cycle time within which informa­
tion can be passed from one device to the next.

As system speeds increase, clock skew becomes an
increasingly large portion of the total cycle time.
When cycle times were 50 ns, clock skew was rarely
a design priority. It could be as much as 20% of the
cycle time. As cycle times approach 15 ns and less,
however, clock skew requires an ever-increasing
amount of design resource. 'JYpically, these high­
speed systems can have only 10% of their timing
budget dedicated to clock skew, so obviously, it must
be reduced. The following sections will look at the
two types of clock skew and how each affects system
performance. The first type of skew is caqsed by the
clock driver itself. It is referred to as intrinsic skew.
The second type of clock skew is caused by the PCB
layout and design and is referred to as extrinsic
skew.

Clock Driver Skew (Intrinsic Skew)

Intrinisic clock skew is the amount of skew caused
by the clock driver or buffer by itself. Intrinsic skew
is not caused by board layout or any other design is­
sues except for the specification stated on the clock
driver data sheet. There are two main types of clock
driver architectures: a buffer-type device and a
feedback-type device.

Buffer Devices

In a buffer-style clock driver the input waveform
propagates through the device and is "redriven" by
the output buffers. This output signal directly fol­
lows the input signal. The output skew of these de­
vices is caused by the differences in propagation
delay between the input signal through the device
and the precision of the matching and tuning of the
internal circuit elements.

A member of this type of clock driver is the 74F244,
which is available from several manufacturers. This
device contains eight inputs that individually drive
their respective outputs, and it is made into a clock
distribution device by tying its inputs together to
minimize the contribution of input skew to the de­
vice skew. The output skew of this 4evice, if it is not
listed on the datasheet, can be calculated by sub­
tracting the minimum propagation delay from the
maximum propagation delay. This calculated skew
can be qp to 3 ns.

This 3 ns clock driver skew does not even take into
account the affects the board layout and design. In
a 20- or 25-MHz system this is an acceptable amount
of skew, but for systems running at 33 MHz and be­
yond, another method is needed.

To eliminate the device propagation delay variation
that contributes to skew, manufacturers have de­
signe4 devices that are specifically tuned to drive
clock traces with low skew outputs. These manufac­
turers have specified the maximum variation in
propagation delay through the device. In these de­
vices, three types of skew parameters are usually
listed. Output skew specifies the maximum amount
of propagation delay variance between output pins.
Duty cycle variation indicates a measure of the
propagation delay difference between a LOW-to­
HIGH output edge transition and a HIGH-to-LOW
output edge transition. And part-to-part skew indi­
cates the difference in output skew from device to
device. Output skew of these devices has, in many
cases, been reduced from the 3 ns mentioned above
to 500 ps.

7-35

Everything You Need to Know About RoboClock

These devices still face the problems of device prop­
agation delay. The propagation delay through these
devices is about 5 ns. This delay will cause skew in
systems where both the reference clock to the buffer
and the outputs of the buffer need to be aligned.

These devices also have the drawback that the out­
put waveform is directly based on the input wave­
form. If the input waveform is a non-50% duty-cycle
clock, the output waveform will also have a less­
than-ideal duty cycle. Expensive crystal oscillators
are needed when using this type of buffer in systems
requiring near 50/50 outputs.

These devices also lack the ability to phase or fre­
quency adjust their outputs. Phase adjustment al­
lows the clock driver to compensate for trace propa­
gation delay mismatches and set-up and hold time
differences, and frequency adjustment allows the
distribution of high- and low-frequency clocks from
the same common reference. Expensive additional
components and time-consuming board routing
techniques must be used to compensate for the func­
tional shortcomings of these buffer-style clock driv­
er devices.

PLL Clock Driver Devices

The second type of clock distribution device uses a
feedback input that is a function of one of the out­
puts. This type of device is usually based upon one
or more phase-locked loops (PLL) that are used to
align the phase and frequency of the feedback input
and the reference input. In this way the propagation
delay through the device can be virtually eliminated.
Cypress's Programmable Skew Clock Buffer family
is based on this architecture, and will be explained
in greater detail in the following sections.

In addition to very low device propagation delay,
this type of architecture enables output signals to be
phase shifted to compensate for board-level trace­
length mismatches, and outputs can be selectively
divided, multiplied, or inverted while still maintain­
ing very low output skew.

Board Design Skew (Extrinsic Skew)

Just as the clock driver had to be evaluated to con­
tribute minimal clock skew, the board layout and de-

sign must also be evaluated. Issues that affect
board-level clock skew include trace length, capaci­
tive loading, transmission line termination, and
threshold voltages at the loads.

The time that it takes for a signal to propagate down
the trace is dependent on factors such as the materi­
al that the PCB is constructed from, the length of the
Signal trace, the width of the trace, and capacitive
loading. Variations in these factors from trace to
trace will cause signals to arrive at their destination
at different times.

In addition to this, threshold voltage variation on
the receiving devices can play a significant role in
the time of the recieved clock signals at various
loads. If one load device has a threshold of 1.2V and
another load device has a threshold of 1. 7V and the
rising edge rate is 1 V Ins, there will be 500 ps of skew
caused by the point at which the load device switches
based on the input signal.

The most obvious way to reduce board design clock
skew is to make the physical length of all clock traces
the same. The propagation delay of an electrical sig­
nal down a trace is about 2 ns per foot. If one clock
trace is just 3" longer than the next, this will cause
500 ps of clock skew; which is as much skew as the
clock driver itself contributes. But this is not
e~ough. Impedance variation causes signal velocity
variation, so physically matched lines may not be
eiectrically identical.

Capacitive loading also contributes to clock skew.
The differences in capacitive loading will cause dif­
ferences in clock edge rate at the load. The variation
between the edge rate of a lightly loaded trace and
a heavily loaded trace will directly affect the time at
which the clock edge crosses the input threshold and
thenifore the affect clock skew of these two devices.

Transmission line termination also plays a signifi­
cant role in board-induced clock skew. Remember
that a transmission line is any trace that has a propa­
gation delay longer than one-half the driving device
edge rate. With the extremely fast edge rates of
today's clock drivers approaching 500 ps, traces with
lengths of only 2" must be considered transmission
lines. Without proper termination, the clock signals

7-36

-'f ~ Everything You Need to Know About RoboClock
'CYPRESS ================

present on these traces will exhibit transmission­
line effects such as voltage reflections that will, in
the best case, cause a variability in clock-edge posi­
tion and, at worst, might cause multiple clocking of
the load.

Many of the issues mentioned in this section will be
discussed in more detail in the System Design Con­
siderations section

System Design Considerations

Board Decoupling

Figure 2 shows the pinout for the PSCB family of de­
vices. These parts are offered in both 32-pin PLCC
and LCC packages. Each device contains 6 power
pins (V cc) and 5 ground pins. Each output pair (e.g.,
lQO and lQl) have a dedicated power and ground
pin immediately adjacent to them. For example, the
lQO and lQl output pair have pins 25 and 22 as their
dedicated power and ground supplies, respectively.
These dedicated power pins are only used for the
output driver pair. This provides the RoboClock
outputs with very high drive while maintaining very
high crosstalk immunity from adjacent outputs.

The other two pairs of power and ground pins are
used to supply the internal PLL and associated cir-

Cl to z w u::
Cl f- C\I

2FO

GND

1F1

1FO
CY7B991
CY7B992 VCCN

100

101

GN GND

GN GND

Figure 2. RoboClock PLCC/LCC Pinout

cuitry. These power pins are completely separated
from the power pins supplying the output buffers.
This minimizes the output switching noise effects on
the PLL and, therefore, minimizing output jitter.

The CY7B99x family requires common high-speed
power-supply decoupling and bypassing. Power­
supply bypassing requires adding capacitance be­
tween the power and ground supply of a device in or­
der to supply instantaneous current for its rapidly
changing signals. This capacitor prevents the device
from becoming current starved by providing the
"instantaneous" transient current and thus prevent­
ing the local power-supply-voltage dip during cur­
rent demands.

If all capacitors were ideal, this would be a trivial
task. Capacitors, however, are not ideal. They are
made up, in a first -order approximation, of an effec­
tive series inductor (ESL), effective series resistor
(ESR), and a capacitor, as shown in Figure 3. Thdr
response, therefore, is not constant over the fre­
quency spectrum. At some frequencies this circuit
(the bypass capacitor) will look most like a capaci­
tor, at some frequencies an inductor, and at a partic­
ular frequency it will behave as nothing more than
a resistor. This point is called series resonance and
occurs when

OJ = _1_
fi7; Eq.l

In general, for a given capacitor construction, the
series resonant frequency increases as the capaci­
tance decreases. It would seem simple to choose a
capacitor that has a series resonance at a higher fre­
quency than the frequency of the current it needed
to supply: To select a capacitor with a resonant point
beyond 80 MHz, for example, if that were the oper­
ating frequency of the clock outputs. The selection
process is not that simple.

Figure 4 shows the spectrum analysis of an 80 MHz
clock signal with 1 ns edge rates. Notice that the fre-

ESR ESL c
Figure 3. Equivalent Capacitor Diagram

7-37

Everything You Need to Know About RoboClock

quency components necessary to build this near
ideal square wave have significant energy all the way
out to 2 GHz. This means that in order to supply the
current demands of these frequency components, a
capacitor would have to have a series resonant fre­
quency beyond 2 GHz. Generally available capaci­
tors, however, have series resonant frequencies of
about 400 MHz or less. These devices will be suffi­
cient for supplying the majority of the instantaneous
current.

At least two or three capacitors representing differ­
ent capacitance ranges should be used for circuit by­
passing. The first type of capacitor should be a 100-
to 500-pF capacitor made of an NPO dielectric.
This capacitor should be rated for operation at fre­
quencies equal to or greater than 350 MHz. The se­
cond type of capacitor should be a 0.1-!JF capacitor
made from an X7R or a similar dielectric. This ca­
pacitor will supply the majority of the low frequency
current requirements. If space permits, a third ca­
pacitor can be chosen that has a capacitance be­
tween that ofthe .1-IlF and the 100- to 500-pF capac­
itors. This will provide a broad range of noise
filtering and current supply.

The series resonant frequency can be decreased in
two ways; lowering the capacitance or lowering the
inductance. The major contributor to the induc­
tance of a capacitor is the leads themselves. Sur­
face-mount capacitors have a much smaller induc­
tance than leaded capacitors and therefore have a
higher resonant point. The benefits of a surface-

1::; I A'.e. I =>U~lH"" ~ TC"" i::!:. U~';II)::'~H,I(

Revl 1.0MH"" 1 nk~b" <:; 4Qn"..o=\

Figure 4. Frequency Components of an SO-MHz
Clock Signal

Vee

GND
Side

Top

Figure 5. 'iYpical Capacitor Layout

mount capacitor can be completely nullified, how­
ever, if it is not properly integrated into the PCB en­
vironment.

Figure 5 shows a typical method of integrating a sur­
face-mount capacitor into a PCB environment. A
surface-mount capacitor is used because of its low
lead inductance, but no attention to reducing power
connection trace inductance is made. In this case a
leaded capacitor would provide less total induc­
tance. The surface-mount capacitor, in this case,
may not provide any high-frequency bypassing.

A better method oflaying out surface-mount capaci­
tors is shown in Figure 6. Here the multiple short
leads are made to the power planes. The trace

Capacitor

Vee
GND ___ _

Side

Top

Figure 6. Better Capacitor Layout

7-38

Everything You Need to Know About RoboClock

widths and via hold sizes are also increased. These
methods reduce the inductance of the power con­
nections of the capacitor. Only when proper atten­
tion is paid to the selection and layout of the capaci­
tor will the true benefits of circuit bypassing be
realized.

Figure 7 shows a sample layout of RoboClock on a
multilayer printed circuit board. This figure as­
sumes that an internal Vee and GND plane exist.
The internal board Vee and GND planes are con­
nected to the device Vee and GND planes through
multiple via holes shown as black dots in the figure.
Multiple via holes and connection of the chip power
pins to local power planes reduces the amount of in­
ductance that these pins have to their respective
power connections.

Two sets of capacitors are used. They are placed on
the same side of the board as the device. Each set
consists of a 0.1-IlF and a 100-pF high-frequency ca­
pacitors. Mutliple via holes are also included for the
bypass capacitor connections to reduce the induc­
tance that the Vee pins see in series with their ca­
pacitor. The FB pin is connected to the 2Q1 pin in
this diagram as an example of how easy the FB pin

121 GND Capacitor

rn Vee • VIA

Figure 7. Sample RoboClock Layout

can be connected to either the 3QO and 2Q1 pins in
order to reduce trace length and minimize potential
problems associated with voltage reflections on
transmission lines.

This layout is not the only way that these devices can
be laid out, but this figure shows examples of good
high-performance layout techniques. It is assumed
that the board in which RoboClock will be placed
will contain at least one dedicated Vee plane and
one dedicated ground plane and that the device will
be surface mounted directly to the PCB without the
use of a socket. The reason for the last constraint is
that the additional lead inductance of the socket di­
rectly impacts the output skew of the device.

A more detailed discussion of series resonant fre­
quency and other capacitor characteristics can be
found in the materials supplied by capacitor
manufacturers such as American Technical Ceram­
ics [(516) 547-5700] and AVX [(803) 448-9411].

Transmission Lines

Transmission line theory states that a signal sent
down a transmission line that has a constant charac­
teristic impedance will propagate undistorted along
the line. At the end, a voltage reflection will occur
if the load impedance is not equal to the characteris­
tic impedance of the transmission line. These volt­
age reflections are always present in electrical inter­
connections between devices and have traditionally
been ignored. With the lengthening of Printed Cir­
cuit Board (PCB) traces and the decreasing of the
edge rates of the driving element of these electrical
signals, however, these effects become more pro­
nounced. 'ftansmission line effects cause many un­
desirable results in high-speed systems, such as de­
lays and ringing. These effects will be discussed in
greater detail.

In general, the effects of voltage reflections should
be considered when laying out clock lines and any
other PCB trace, if the propagation delay of the
trace is greater than twice the faster of the rise time
or fall time of the driving signal (Equation 2).

MIN[t" ttl < 2 tpd Eq.2

7-39

rcYPRESS =====;;;;;;E;;;;;;ve;;;;;;ry;;;;;;t;;;;;;h;;;;;;in;;;;;;g;;;;;;Y4;;;;;;o;;;;;;u;;;;;;N;;;;;;e;;;;;;e;;;;;;d;;;;;;to=Kn=ow=A;;;;;;h;;;;;;ou;;;;;;t;;;;;;R;;;;;;o;;;;;;h;;;;;;o;;;;;;C;;;;;;lo;;;;;;c=k

In other words, if the rise time (or fall time) of the
source is less than the two-way propagation delay,
then the rising signal will not hide the effects of the
signal propagating down a transmission line. In this
case, the switching wave will have enough time to
propagate down the transmission line, reflect off of
the load, and be seen at the source. These voltage
reflections can cause decreased signal integrity, that
will manifest itself, in the case of clock traces, as in­
creased rise and fall times, non-ideal duty cycle per­
formance, and possibly even unwanted clock pulses
due to voltage reflections that cross the threshold of
the load device.

The first ~tep, then, in determining if a trace should
be considered a transmission line, is to evaluate the
propagation delay and characteristic impedance.
The propagation delay is needed in order to deter­
mine when a trace must be considered a transmis­
sion line and the characteristic impedance is needed
in order to determine how to reduce voltage reflec­
tions on these traces as will be shown in the section
entitled Transmission Line Termination. The fol­
lowing discussion will focus on calculating the prop­
agation delay and characteristic impedance on vari­
ous PCB traces. This analysis, however, can be
easily extended to include other types of transmis­
sion media such as coax, twisted pair, and wire­
wrapped environments.

The analysis of transmission line effects on PCB
traces begins with a simplified circuit analysis of the
trace itself (Figure 8). This figure models the trace

Ro Lo Ro Lo

as a distributed intrinsic resistance (Ra), induc­
tance (La), and capacitance (Co). For the purposes
of this discussion, a lossless transmission line will be
assumed, that implies that the intrinsic series resis­
tance will be equal to O. The effect of this resistance
on the characteristic impedance is extremely small,
and only on very long traces will the effects of this
component result in a noticeable drop in the voltage
realized at the load.

The characteristic impedance, therefore, can be ex­
pressed as:

20 = (L;, Q yCa Eq.3

And the propagation delay can be expressed as:

Eq.4

In many cases it may be hard to measure the intrin­
sic inductance and capacitance of the trace in order
to determine the magnitude or even the existence of
transmission line effects. In this case, equations are
needed in order to determine these values.

The following two sections will give equations for
the characteristic impedance and propagation delay
of two typical types of PCB trace construction; mi­
crostrip and strip line. Many sources exist that give
an analysis of the equations listed below. Some
sources give an even a more detailed analysis, but
the minor differences are overshadowed by errors
caused by factors not related to the analysis such as

Ro Lo

• • •

Co Co Zioad

'--________ --L ________ ----'. • •

Figure 8. Simplified PCB Trace Model

7-40

rcYPRESS =====;;;;;E;;;;;ve;;;;;ry;;;;;t;;;;;h;;;;;in;;;;;g;;;;;Yt;;;;;o;;;;;";;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=Kn=ow=A;;;;;h;;;;;o";;;;;t;;;;;R;;;;;o;;;;;h;;;;;o;;;;;C;;;;;lo;;;;;c=k

w

H

Figure 9. Microstrip

component variation and manufacturing uncertain­
ties.

Microstrip

A microstrip trace is a signal separated from the
ground plane by a dielectric, as shown in Figure 9.
This type of trace is most commonly found as the top
or bottom traces on a multilayer printed circuit
board. The formula for calculating the characteris­
tic impedance is given as:

Zo = 87 In (5.98H)
jE, + 1.41 0.8W + T Eq.5

and the propagation delay can be expressed as

tpd = 1.017 j0.475E, + 0.67 Eq.6

where
Er is the dielectric constant of the material used

for the PCB construction
H is the distance the trace lies away from the

140.00

120.00 h::---
100.00 r:-::: ~ t---

ground plane (board thickness)
W is the tracc width (wire width)
T is the trace thickness (wire thickness)

This formula will not yield the exact impedance of
the trace, but is meant as a guideline for estimating
the trace impedance. Differences between the cal­
culated and real trace impedance will be caused by
slight errors in the equation itself and in process and
layout variability in parameters such as dielectric
constant, ground plane continuity, capacitive load­
ing, trace width and thickness, and board thickness.

All of these variables, except for possibly the dielec­
tric constant and trace thickness, are under the con­
trol of the designer during board layout. Dielectric
constants of material used in the construction of fi­
berglass PCBs have a value between 4.0 and 5.5.
Board manufacturers should be able to provide this
parameter upon request. Figure 10 is a graph show­
ing how trace impedance varies with trace width and
dielectric thickness. The graph assumes a dielectric
constant of 4.5 and a trace thickness of 1.4 mils.

For example, if the designer wishes to create a mi­
crostrip trace with a son impedance, the designer
would first have to know the thickness of the dielec­
tric. If the board is a four-layer board (two signal
layers and two routing layers) and if the trace will be
on the component side with the power plane directly
beneath it, then the dielectric thickness is roughly

"' E
80.00 J::

..Q.

-r---=: r----.. r--=:: c--=::
l- t-- F===== r::-- 60

50

40
30

Ql
() 60.00 c: --- r-- -r--r- 1--- t--- t-------
'" 1:J
Ql

40.00 Q.

~

20.00

...... r---...... -r---
r-- --r---r---==-==

20

10
0.00

10 15 20 25 30 35 40 45 50 55 60

Trace Width (mils)

Figure 10. Impedance vs. Thace Width over Dielectric Thickness (Microstrip)

7-41

Everything You Need to Know About RoboClock

the board thickness divided by three. For a 62.5 mil
board this would translate to a dielectric thickness
of about 20 mils.

The designer would also have to know the thickness
ofthe trace (approximately 1.4mils for standard 1 oz
copper traces), and the dielectric constant (assume
4.4). All that is left IJ.ow is the thickness ofthe trace,
which can be directly controlled IlS part of the layout
process. In this example, if the trace width is 36 mils,
the characteristic impedance of the trace would be

Zo = '/4.48: .411n(0.8 ~:~~x!O 1.4) = 49.68,Q
Eq.7

The propagation of a signal along this trace is inde­
pendent of everything but the dielectric constant
and is calculated iIi this case as:

tpd = 1.017 ./0.475 * 4.4 + 0.67 = 1.69 nsf/oot Eq.8

Both the equation for characteristic impedance and
propagation delay will be useful for estimating the
magnitude of voltage reflections and for determin­
ing the correct method of eliminating these reflec­
tions, which will be discussed in the 1tansmission
Line Termination section.

Strip Line

Strip Line is analogous to a buried trace in a multi­
layered PCB between two power planes as shown in
Figure 11 .

The characteristic impedance for this type of trace
can be expressed as

120.00

100.00 t:---

w

T

Figure 11. Strip Line

Z = 60 1n[4B]
o .fE, 0.67nw(0.8 + ~)

For cases when

W T
B - T < 0.35 and B < 0.25

With a propagation delay of

tpd = 1.017.fE,

8

Eq.9

Eq.10

Figure 12 shows how the impedance of a strip line
trace varies with the trace width and dielectric thick­
ness. The graph shows that to create a strip line
trace with a 50Q impedance in a multilayer board
with 10 mils of epoxy between layers requires
approximately a 7-mil trace. This assumes a trace
thickness of 1.4 mils and a dielectric constant of 4.5.

Oi' 80.00
E .c 60.00 .2-
CD
0

40.00 c:
C<I
'0
CD a 20.00 §

~
r----=::-----~~~60 50

40
30
20

10

0.00

5 10 15 20
Trace Width (mils)

Figure 12. Impedance vs. 'Irace Width over Dielectric Thickness (Strip Line)

7-42

~

fii.?cYPRESS =====E;;;;;v;;;;;e;;;;;ryt;;;;;h;;;;;i;;;;;n=g;;;;;Yi;;;;;ou=N;;;;;ee;;;;;d;;;;;t;;;;;o;;;;;Kn=o;;;;;w;;;;;A;;;;;b;;ou;t~R;;o;;;b;;o;C;;IO;;c;k

Transmission Line Effects

The previous section discussed how to calculate the
characteristic impedance of a trace and the propa­
gation rates of that signal along a trace. This section
will briefly disc~ss the effects of transmission lines
on signal integrity.

T~e cause of transmission line effects is impedance
mIsmatches. These mismatches occur because of
the impedance differences between the transmis­
sion line and the source and load. They are also
caus~d by impedance discontinuities and unequal
loadmg of the transmission line along its length.
TI:ansmission line stubs and vias are examples of im­
pedance discontinuities otherwise known as imped­
ance bumps.

Any time the impedance along a transmission line
changes, a voltage reflection will occur. Figure 13
shows a simplified diagram of the transmission line
environment that will be used to illustrate the con­
cept of voltage reflections.

At time 0, the voltage source provides a current
source to the load equal to

_ Vs
Is - Zs + Zo' Eq.ll

Since no voltage is dropped across the transmission
line (assume a lossless transmission line as before),
the total supplied current must be utilized by the
load. If the load resistance is not equal to the char­
acteristic impedance of the trace, a voltage reflec­
tion will occur. The reflection coefficient at the load
is expressed as

L

Figure 13. Simplified Transmission Line

7-43

_ reflected voltage VS1 ZL - Zo'
P L - incident voltage = V; = ZL + Zo' Eq.12

and the reflection coefficient at the source is speci­
fied as

_ reflected voltage VS2 Zs - Zo'
Ps - incident voltage = VS1 = Zs + Zo' Eq.13

If the load has a lower impedance than the charac­
teristic impedance of the transmission line, then a
negative voltage reflection will be sent back to the
load, indicating that the load over used the available
current. If the load has a higher impedance than the
characteristic impedance of the transmission line
then a positive voltage will be sent back to th~
source, indicating that the load under used the
amount of available current.

The following example shows the magnitude of
these voltage reflections in a typical unterminated
transmission line being driven by a CY7B991. For
this example, assume the parameters have values
listed in in Table 1.

Table 1. Sample Parameters

Param Description Value

Er Dielectric Constant 4.4

H Distance from ground 20 mils

T Trace Thickness 1.4 mils

W TI:ace Width 12 mils

Zpus Source Pull-Up 25Q

ZPDS Source Pull-Down lOQ

L Trace Length 6"

RL Load Impedance 12KQ

tR OutPllt Rise Time 1.5 ns

tF Output Fall Time 1.5 ns

Solving the appropriate equations for Zo, tpD, and
Zoyields

Zo = 87 In (5.98 * 20) = 86 26,Q
/4.4 + 1.41 0.8 * 12 + 1.4 . Eq. 14

tpd = 1.017 /0.475 * 4.4 + 0.67 = 1.66 nsf/oot Eq.15

~

rcYPRESS =====E;;;;;;v;;;;;;e;;;;;;ryt;;;;;;h;;;;;;i;;;;;;D;;;;;;g;;;;;;Yo;;;;;;u;;;;;;N=ee;;;;;;d;;;;;;t;;;;;;o;;;;;;Kn=ow=A;;;;;;b;;;;;;ou;;;;;;t;;;;;;R;;;;;;o;;;;;;b;;;;;;o;;;;;;C;;;;;;lo=ck

From this, the load and source reflection coeffi­
cients can be calculated:

25 - 86.26
PSLH = 25 + 86.26 = - 0.55 Eq.16

10 - 86.26
PSHL = 10 + 86.26 = - 0.79 Eq.17

120,000 - 86.26
PL = 120,000 + 86.26 = 1.00 Eq.18

Tho source reflection coefficients need to be calcu­
lated for the LOW-to-HIGH output transition and
the HIGH-to-LOW output transition. The reason
for this is that Tn-style output drivers have differ­
ent resistances depending if they are driving HIGH
or LOW. In the calculation of the source coeffi­
cients, the actual output impedances for the output
drivers and the input impedance of the REF input
of the PSCB were used. They are listed in Table 1.

This analysis assumes a transmission line exists. Th
confirm this, the propagation delay is used in Equa­
tion 2:

MIN[tR, tF] < 2 * tpd'

1.5 < 2 * 1.69 Eq.19

A complete DC analysis of voltage reflections on
this type of transmission line is not conducted here.
Refer to Reference 4. at the end of this note for a
sample analysis. It is important to note from this
that the voltage reflection at the load is positive ap.d
the reflection at the source is negative. The oppo­
site signs of these two reflection-coefficients and the
magnitude of these two constants indicate that ring­
ing along the transmission line could potentially
cause unwanted clocks pulses to be seen at the load.

Figure 14 shows the effects of an unterminated
transmission line. This plot is taken from a Tektro­
nix DSA 602A Digitizing Signal Analyzer. This plot
indicates that the the voltage scale is 1 V/div and the
time scale is 5 ns/div. The ground signal is indicated
by the ground symbol found on the left-hand side of
the figure, three voltage divisions from the bottom.
The scope trigger, indicated by an arrow, is the 1.5V
level of the source waveform.

This analyzer is capable of taking measurements on
the waveforms. The bottom quarter of the plot dis-

plays the various measurements taken on the source
waveform. The rise and fall measurements are tak­
en between the 0.8V and 2.0V level, which is consis­
tent with the measurement points of the CY7B991.
The pulse width measurement is taken at the 1.5V
level and is used to indicate the duration of time that
the waveform spends above 1.5Y. This is used to cal­
culate the output duty cycle variation. The last mea­
surement shown on this plot is the frequency. In this
case, a 25-MHz source waveform is used as the
trigger.

The source waveform shown in Figure 14 is the 4QO
output of a typical CY7B991-5. The load waveform
is the end of 18" of coaxial cable having a character­
istic impedance of 500. In this particular example
the load is completely unloaded except for the scope
probe and associated connector (approximately 5
pF). As can be seen, both the source and the load
are riddled with transmission line effects. This is
caused by the positive voltage reflection from the
load due to the infinite load impedance and the neg­
ative voltage reflection from the source due to the
source impedance being less than the characteristic
impedance ofthe coaxial cable. Notice that an addi­
tional clock pulse occurs (below the word "load" in
the figure) due to voltage reflections.

A complete analysis of the voltage reflections caus­
ing this waveform would be extremely boring and

7V

1V
Idiv

5ns/di 46.1 ns

Figure 14. Untermi~ated Transmission Line

7-44

Everything You Need to Know About RoboClock

yield little additional information aside from the
fact that this is an unacceptable clock waveform.
The next section will give some methods for elimi­
nating voltage reflections by terminating the trans­
mission line.

Transmission Line Termination

The goal of transmission line termination is to make
the source and/or load impedance match the charac­
teristic impedance of the transmission line, insuring
an optimal delivery of signal to the load. Tho types
of termination will be discussed: parallel termina­
tion and series termination.

Parallel Termination

Parallel termination, also known as Thevenin ter­
m.ination, attempts to match the load impedance
WIth that of the transmission line. It is accomplished
by placing a pull-up and pull-down resistor pair at
the end of the transmission line nearest the destina­
tion as shown in Figure 15. The Thevenin equivalent
resistance must be .equal to Zo and the Thevenin
voltage must be somewhere near the middle of the
normal TIL voltage swing. Since typical CMOS in­
puts have steady-state impedances in the 100kg to
IMg the Thevenin resistance can be simplified to
Rpu and RpD in parallel. Table 2 gives the recom­
mended parallel termination resistor values for
both the CY7B991 (TTL) and the CY7B992
(CMOS) devices for given transmission line imped­
ances (Zo).

Vee

Figure 15. Parallel Termination

7-4S

SOg

6Sg

7Sg

100g

Table 2. PSCB Parallel Termination
Recommendations

TTL CMOS
Zo (RpU/RPD) (RpU/RpD)

130/91 100/100

lS8/111 130/130
182/128 lS0/1S0

243/170 200/200

Figure 16 shows a 100g parallel termination of a
~ransmission line with a SOg impedance. This figure
IS a plot taken from the same analyzer mentioned
above. As before, the source waveform is taken at
the RoboClock output pin and the load waveform is
taken at the end of 18" of coaxial cable with a SOg
impedance. This figure shows the positive voltage
reflection from the load because the load imped­
ance is greater than the trace impedance. This re­
flection manifests itself as the source waveform
stepping up to the 3.7V level as shown in Figure 16.
The magnitude of the intitial source waveform in
transmi.ss!on line environment can be calculated by
determmmg the the current in the transmission line
before switching. The reflected voltage can be cal­
culated by multiplying the incident voltage by the
calculated reflection coefficient.

7V

1V
Idiv

trig'd

-3V

TTL OUTPUT: Rpu=260,Rpd=182,Rs=O,CI=O,L=18 , , , , ,
I I • : I : I : I

--~--T--~--~---I---I---~--r--4--
I I t I I t

I I I I I I I I I __ ~ __ ~ __ J ___ I ___ I ___ ~ __ L __ T __ ~ __

I • I I I I I I

I I I I I I I I

...... J _I 1_ I ~ ! ...
I I I I I I I ,

,
, "

--~--'--~---I- __ I-
I I I I I I I

I I I I I I I I I

...... L + J ~ 1 _1_ I J.
I f I I I I

-3.9ns 5ns/div ET 46.1ns

Figure 16. Unloaded 100g Parallel Termination

~rcYPRESS =====;;;;;E;;;;;ve;;;;;ryt=h;;;;;iD;;;;;g;;;;;Yi;;;;;o;;;;;u;;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=Kn=ow=A;;;;;h;;;;;ou;;;;;t;;;;;R;;;;;o;;;;;h;;;;;o;;;;;C;;;;;lo;;;;;c=k

This wavefonn looks much better than in the pre­
vious unterminated case, but there is still a IV un­
dershoot at the falling edge of the wavefonn that
may cause problems in some devices due to sub­
strate current generation.

Figure 17 shows a ISQ parallel termination. This
transmission line is under tenninated due to the fact
that the load impedance is much less than the char­
acteristic impedance of the trace. This manifests it­
self as a negative voltage reflection from the load.
While the rising edge of this trace looks fairly good,
the falling edge will cause problems. Notice that the
negative voltage reflection ringing during the falling
edge causes a positive-going transition in the thresh­
old region of the load. This could cause spurious
clocking.

Figure 18 shows a unloaded terminated transmission
line. This transmission line, unlike in the other
three cases, is tenninated in its characteristic im­
pedance. Both the source and the load wavefonns
are unaffected by voltage reflections. The only evi­
dence of transmission line effects is the ringing dur­
ing the HIGH and LOW time of the wavefonn,
caused by slight impedance mismatches between
the source, load, and transmission line, and the im­
pedance "bumps" caused by the impedance differ­
ences at the various probe and coax connectors
along this transmission line.

7V
TTL OUTPUT: Rpu=15,Rpd=,Rs=O,CI=O,L=1 B
,
I I t I I I I • I

---~--~--~--r--r--r--T--T--1--
SOURCE '
I I I I I I t I I

-i--1--1--1--1--~--~--- ...
I I I • • •

__ ' ___ L __ L __ L ! l __ ' __
It' •

trig'd
• I I • " t I I---,"'-"',---r--i-- ... i--T--T--'--

L1 I. I • I I I I I
I I I I I I I I ,

--i--i--i--1--'--1--1--~--~---
I I I I I I ___ ~ __ ~ __ L __ L __ L __ L __ l __ J. __ J __

I • I I I I I I I

-3V
-3.9ns 5ns/div 46.1 ns

Figure 17. Unloaded 15Q Parallel Termination

This ringing is also caused by the imperfect nature
of tenninating a transmission line with a complex
load and source impedance. Each of the capaci­
tances hanging on this transmission line have differ­
ent impedances based on the input frequency. And,
since the input wavefonn is a wideband signal con­
taining many frequency components, a simple ter­
mination as given here will not eliminate all voltage
reflections. The important thing to note is that this
tennination gives good results on the given trans­
mission line.

Figure 19 shows a SOQ parallel termination with a
22-pf load. Notice the voltage spikes on the source
wavefonn. This is caused by the impedance of the
load capacitor at a particular frequency being incor­
rectly tenninated and causing a voltage reflection.

Figure 20 shows a SOQ parallel termination with a
SO-pF load. Again, the source waveform exhibits
voltage glitches caused by brief negative voltage re­
flections, but in this case the voltage reflections
come dangerously close to the input threshold re­
gion of a device that was placed on the transmission
line somewhere between the source and the load
shown in the figure. For this reason, it is recom­
mended that all transmission lines drive either
single loads or loads that are lumped at the end of
the transmission line. If not, voltage spikes, even in

7V

trig'd

TTL OUTPU : R u=130 R d=91 Rs=O CI=O L=1B
,

I I • I I I , I I

---~--r--r--r--r--r--T--T--'--,
I I • I I I I I I

--i--i--i--7--1--'--1--~--~--­,
___ ~ __ ~ __ L __ L __ L __ L __ ! __ ! __ J __

I I I I t I I

L1 ,
I I I I , I I I I

--r--i--i--~--'--~--~--~--~---
I I t I I I I ___ ~ __ ~ __ ~ __ L __ L __ L __ l __ J __ J __

• I • I I I • I I

-3V
-3.9ns 5ns/div ET 46.1ns

Figure 18. 50Q Parallel Termination, Unloaded

7-46

:za ?cYPRESS =====;;;;;;E;;;;;;ve;;;;;;ry;;;;;;t;;;;;;h;;;;;;iD;;;;;;g;;;;;;Yi;;;;;;o;;;;;;u;;;;;;N;;;;;;e;;;;;;e;;;;;;d;;;;;;to=Kn=ow=A;;;;;;h;;;;;;ou;;;;;;t;;;;;;R;;;;;;o;;;;;;h;;;;;;o;;;;;;C;;;;;;lo;;;;;;c=k

7V
TTL OUTPUT: Rpu= 130,Rpd =91 ,Rs=O,CI =22,L= 18

I
I
I

SO~C~ ..tK ~

I i\ LO P.D I
)I I \ II

r----1 tI - r-- \Y..\ j i-:>L Ie...
trig'd

L1 AI -v
I
I

-3V I
-3 . ns 5ns/div ET 46.1ns

Figure 19. 50Q Parallel Termination, 22-pF Load

reasonably well terminated transmission lines, can
cause unwanted clocking.

Series Termination

The purpose of series termination is to match the
source impedance with the transmission line imped­
ance as shown in Figure 21. This will prevent voltage
reflections occurring from the load will not reflect
back from the source. The value of Rs is chosen such
that the series combination of the output impedance

7V , "
T,rL O~TPUt: Rpu~ 130;Rpd=:91 ,R~=O,Ct=50,,= 18

...... -,-"'" i"'''' T"''' i -.-'" -'-"'''' i"'''' T"''''
I I I I I I I I I

...... ! J _I _I I L ! J _I
I I I I • I I I , ,

trig'd

L1 ,
I I I I I I I I I

.. -1-'" -,-'" -.-'" -.-'" -,. i"'''' T"'''' i"'''' -,-"''''
t I I I I I I I •

... I L ! J _I 1_ I L !
I I I I I I I I I

-3V
-3.9ns 5ns/div ET 46.1ns

Figure 20. 50Q Parallel Termination, 50-pF
Load

Figure 21. Series Termination

of the source devices and Rs is equal to Zo. This se­
ries termination will absorb any voltage reflections
from the load. This, however, is not a simple task.

TTL outputs have different LOW-to-HIGH and
HIGH-to-LOW output impedances. The output
drive has an asymmetrical output impedance. Fig­
ure 22 shows the HIGH-to-LOW linearize Voltage
vs. Current (V-I) curve for a typical CY7B991 out­
put. The output impedance that should be used is
the resistance when the output is LOW (less than
0,45V). Figure 23 shows the LOW-to-HIGH linea­
rized curve. The output impedance that should be
used in this case is the resistance when the output is
HIGH (greater than 2,4V). For these curves the
output high resistance (27Q) and the output LOW
resistance (7Q) can be determined.

Figure 24 shows an unloaded, 100Q series termi­
nated transmission line. This figure shows the clas­
sic "stair stepping" that occurs when a transmission
line is terminated with series resistance that is too
large. Several back-and-forth voltage reflections

1.6V R=275W

Figure 22. Output LOW Linearized V-I Curve

7-47

==r: ,~ Everything You Need to Know About RoboClock
,CYPRESS ================

__ ~ ____________ ~~ __ -+_v

Figure 23. Output IDGH Linearized V-I Curve

are required before the load rests at its final voltage.
This improper termination can cause duty-cycle dis­
tortion, increased rise and fall times, and unex­
pected clocking.

Figure 25 and Figure 26 show unloaded and loaded
500 series terminated transmission lines, respec­
tively. The resultant waveforms look much better in
this case because the terminating resistor more
closely matches the characteristic impedance.

Figure 27 shows a 270 terminated transmission line
with a 22 pF load. The rising edge of this waveform
looks much better than either of the previous two

7V

trig'd

L1 tI

-3V
-3.9ns

TTL OUTPUT: Rpu=.Rpd=,Rs=100,CI=O,L=18
,

I I t I I I I I I
.. -r" -i""""" i''''' r"" i"" T"'" i""'"''

I I I I I I I I I

I I I I I I I I I --r--i'--r--j'--i--"j--'--j--j--
• • I , t I I I I

.... t_ !. __ L __ !. __ .L __ l1 __ .! __
• I I I I I

,
I I I I I I I I I

--r--i'--T--j--'--j--'--j--j--
I I I I I I I I I __ ~ __ L __ ~ __ L~QU~g~l __ ! __ l __ ! __
I I I t I

5ns/div ET 46.1ns

Figure 24. 1000 Series Terminated, Unloaded

7V
TTL OUTPUT: Rpu=,Rpd=,Rs=50,CI=O,L=18

,
I I 1 I I I I I I

.... -,- - r i -." .. -,- .. -,- ,- T , , ,
I I t I I I I I I

.... j i -." .. -,- - i j -, -."

I I I I I I I I I

.... _I '- !. J J ' I L !.
I I I t I I ,

trig'd

L1
, I I I 1ft I I

--i--i--~---t---r--i--j--i--~---

I I I I I I I I ___ ~ __ L __ !. __ J __ J ___ I ___ ~ __ L __ ! __
I I I I , I I I

-3V
-3.9ns 5ns/div ET 46.1ns

Figure 25. 500 Series Terminated, Unloaded

cases, but the falling edge has more undershoot than
in the 500 termination example. The reason for this
is that on the LOW-to-HIGH output transition the
270 terminating resistor plus the 270 output im­
pedance closely match Zo, but on the HIGH-to­
LOW output transition the 27Q resistor plus the 70
output impedance do not exactly match Zoo With se­
ries termination a trade off has to be made between
the LOW-to-HIGH transition and the HIGH-to­
LOW transition.

TTL OUTPUT: R u=,R d=,Rs=50,CI=22,L=18
7V

- r .. - ,. - - T - - ., - - -. - - -,- - - ... - - ,. T - -

I , I I , I , , ,

- - T - - , - - -. - - -,- - -.- - .. r - - T - - , - - -." - -, , ,
I , I I I I I I I

- - -,- - - r - - T - - , - - -, - - -,- - - ,- - - r T - -, ,

L1 I 'I .," .. _ .I. .. _ J .. __ , ___ , __ .. , __ .. L __ .1 __ J __ -' __ _

I ,. " ,
_ __ '- __ L __ J. __ .J __ -' ___ , ___ '- __ L __ J. __

I , , I , , I

-~~9nLs--~--~--~--~-5-n~~~d-iv~~E~T~--~--~46--.1-n~s

Figure 26. 500 Series Terminated, 22-pF Load

7-48

?cYPRESS =====;;;;;E;;;;;ve;;;;;ryt~h;;;;;in;;;;;g;;;;Yi;;;;;o;;;;;u;;;;;N;;;;;e;;;;;e;;;;;d;;;;;t;;;;;o;;;;;Kn=ow=A;;;;;b;;;;;o;;;;;ut;;;;;R;;;;;o;;;;;b~o~C~lo;c;;k

7V
TTL OUTPUT: R u=,R d=,Rs=27,Cl=22,L=1B

I I I I

I I I I

---~--~--~--~--~---:---~--~--~--
I • I I I I I I I

--~--~--~---:---~--~--~--~--~---
I

L1

Figure 27. Series Terminated, 22-pF Load

When using series termination, no loads may exist
along the transmission line. All loads have to be lo­
cated at the end of the trace. The reason for this is
that the series-terminating resistor acts like a volt­
age divider. Any loads not located at the end of the
trace will see a voltage at some indeterminate level
until the voltage reflection from the load builds the
voltage level to its final resting value.

An advantage of seri~s termination over parallel
termination is that there is no DC power consump­
tion. In a parallel termination, whether the output
device is driving HIGH or LOW, there will always be
current flow that does not drive the load but simply
establishes the terminations.

Another note on transmission lines is that the rise
time of the output waveform does not depend on
any transmission-line loading considerations. By
looking at the rise times of the source waveform in
the previous example, it is clear that the method of
transmission line termination and the output load­
ing playa negligible role in the output rise time. In
a properly terminated transmission line, the output
rise and fall time will be a function of the character­
istic impedance of the trace and the capacitive load­
ing of the load.

The recommendation for terminating transmission
lines is either a parallel termination with an Rrn =

Zo and a Vrn = 2.06V or a series termination where
Rs = Zo -20Q If more than one load has to be driv­
en by a single device output, make sure that all loads
are located very near the end of the line, or create
a "star" layout by having each load have its own
trace starting at the RoboClock output. Terminate
each trace as if it were the only load being driven.
In the case of multiple loads being driven by a single
output, the series resistor should be calculated with

Rs = Zo - 20
of Traces Eq.20

All lines must be matched or the loads will "talk" to
each other through the voltage reflections.

Trace impedances below 50Q can be driven by tying
more than one output together. For example, a 25Q
trace can be driven by tying two outputs of the same
output pair together.

Never "daisy-chain" loads together. This will not
only immediately add load-to-Ioad skew, but it will
also cause unpredictable transmission line effects.

Detailed Description

RoboClock is an eight -output clock driver device. It
differs from traditional clock drivers and buffers in
that its outputs, while having very low output skew,
can also be phase adjusted, inverted, divided, and
multiplied. These capabilities would be impossible
to implement in a device such as a simple redrive
buffer like a 74F244. A 74F244, while potentially
providing very low output skew, does not have the
capability to dynamically phase adjust its outputs.

Phase adjustment allows outputs to shift in time rel­
ative to a reference point. The input clock to the de­
vice is usually taken as this reference point. Phase
adjustment is useful for compensating for differ­
ences in trace delay from one load to the next, and
also for equalizing differences in set-up and hold
time between load devices. A 74F244 would have
great difficulties shifting the arrival time of its out­
puts both in the positive sense (output edge arrives
later that the reference edge) and in the negative
sense (output edge arrives before the reference
edge). In order for a 74F244 to accomplish this task,
it would have to predict the time at which the next

7-49

QYPRESS =====E;;;;;v;;;;;e;;;;;;ry~t;;;;;hl;;;;;·n~g;;;;;Y4;;;;;ou=N;;;ee~d~t;;o;;;Kn;;;o~w~A;b;;o;ut;;&;;o;b;;;o;C;;;lo~ck

Pump UP
REF

PFD
FB

+
FILTER ~ Control veo

Pump DOWN

Figure 28. Simplified PLL Archi~ecture

input edge would occur. Obviously, a new approach
is needed.

PLL Operation

Ro~oClock includes a phase-locked loop (PLL) to
achIeve zero propagation delay. A completely inte­
grated PLLallows you to align both the phase and
the frequency of the reference (REF) inputs with an
output. With this approach, the next occurrence of
an input edge can be predicted with great accuracy
while maintaining very low propagation delay
through the device. .

The PLL has three distinct parts; the phase/fre­
quency detector, the filter, and the distributed­
phase clock oscillator (more simply known.as a volt­
age-controlled oscillator). In order for the PLL to
align the REF input with any output, an output must
be selected to be fed back to the input of the PLL.
This input (FB) is then used as the alignJIlent on
which all other Qutputs are based. (See Figure 1).

Phase Detector and Filter

Figure 28 shows a simplified view of the RoboClock
PLL architecture. The Phase Frequency Detector
(labeleq PFD) evaluates the rising edge of the REF
input with respect to the FB input. If the REF input
occurs before the fB input, indicating that the Volt-

age Controlled Oscillator (VCO) is running too
slow, the PFD produces a Pump Up signal that lasts
until the rising edge of the FB input. If the FB input
occurs before the REF input, on the other hand, the
PFD produces a Pump Down signal that is triggered
on the rising edge of the FB input and lasts until the
rising edge of REF. This Pump Down pulse forces
the VCO to run slower. In this way, the PFD forces
the VCO to run faster or slower based on the rela­
tiop.ship of the REF and FB inputs. In the absence
of a REF input, the device will function at approxi­
mately its slowest operating speed.

The Filter converts these Pump Up and Pump
Down signals into a single control voltage. The mag­
nitude of this voltage is dependent on the number of
previous Pump Up and Pump Down pulses that
have occurred. The range of the voltage produced
by the filter is guaranteed to be able to force the
VCO into any frequency within the selected fre­
quency range.

Distributed-Phase Clock Oscillator

Figure 29 shows the Distributed-Phase Clock Oscil­
lator ring and the Output Adjust Matrix. The Robo­
Clock Distributed Phase Clock Oscillator (also
known as a ring oscillator) has three frequency
ranges of operation. These frequency ranges are se-

7-50

=:s ?cYPRESS =====;;;;;E;;;;;ve;;;;;ryt=h;;;;;iD;;;;;g;;;;;Yi;;;;;o;;;;;u;;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=Kn=ow=A;;;;;h;;;;;o;;;;;ut;;;;;R;;;;;o;;;;;h;;;;;o;;;;;C;;;;;lo;;;;;C=k

lected with the FS pin with range values shown in
Table 3. At first glance, it may seem odd that a single
pin (FS) has three possible selections. These three­
state inputs are another feature of RoboClock. All
function select inputs (FS, TEST, and xFn) have the
ability to be connected to one of three states; HIGH,
LOW, and MID. HIGH indicates a connection to
VCC, LOW indicates a connection to Ground, and
MID indicates an open connection. When a three­
level input is left unconnected, internal re~istors
pull this input to approximately V cd2.

Table 3. Frequency Range Select and tu
Calculation

fNOM tu = __ 1_ Approximate
(MHz) Fre~ency (MHz) fNOM x N At ich tu = 1.0

FS[2] Mi~. Max. whereN = ns

LOW 15 30 44 22.7

MID 25 50 26 38.5

HIGH 40 80 16 62.5

The three different frequency ranges correspond to
the number of stages in the oscillator. When FS is
connected to ground, the oscillator contains its max­
imum number of stages: 22. When FS is left uncon­
nected, the oscillator contains 13 stages. And when
FS is connected to ground, the oscillator contains its
minimum number of stages: 8. The operating fre­
quency of the oscillator can be calculated with the
following formula:

_ 1
f - N* tu Eq.21

where N is the number of stages and tv is the delay
through each stage. The reason that N at the bottom
of Equation 21 is twice the number of stages in the
oscillator is because, in order for the ring to oscil­
late, first the true and then the inverted signal must
pass through each stage ofthe oscillator. This is ac­
complished through an inversion from the last stage
to the first stage.

-6 -4 -3 -2 -1 0 +1 +2 +3 +4

1FO
1 F1

2FO
2F1

3FO
3F1

4FO
4F1

Distributed-Phase Taps Divided & Inverted Taps

Figure 29. Distributed-Phase Clock Oscillator and Output Adjust Matrix

7-51

100
101

200
201

300
301

400
401

==-?cYPRESS =====E;;;;;;v;;;;;;e;;;;;;ryt;;;;;;h;;;;;;i;;;;;;B;;;;;;g;;;;;;Yo;;;;;;u;;;;;;N=ee;;;;;;d;;;;;;t;;;;;;o;;;;;;Kn=ow=A;;;;;;b;;;;;;ou;;;;;;t;;;;;;&;;;;;;o;;;;;;b;;;;;;o;;;;;;C;;;;;;lo=ck

For example, if the delay through each stage is ex­
actly 1 ns and the FS pin was tied to ground, then the
operating frequency would be

1
1= 2 * 22 * Ins = 22.7 MHz Eq.22

The delay through. each stage is controlled by the
voltage on the V CON line, which is simply the voltage
generated by the PLL filter. From Table 3 it is ob­
vious that some overlap exists between the various
frequency ranges. This allows a choice of stage de­
lays within some frequency ranges, which in tum al­
lows system designers a choice of two different in­
crements of phase adjustment.

Within the first thirteen stages of the oscillator, 11
taps are sent to the Output Adjust Matrix. These
taps represent various phase relationships to the
center, or 0 time unit (tv) position. The taps range
from -6 tlJ to +6 tv, as s~own in Figure 29. This al­
lows the outputs to shifted, either early or late, with
respect to the FB input to adjust for various system
requirements.

The value of tv shown in Figure 30 is determined by
the operating frequency and the number of stages in
the distributed phase oscillator. The formula for
calculating tv is shown in Table 3 and given here:

tu= __ 1_
loom X N Eq.23

For example, Equation 24 calculates the stage delay
(tv) when the ring oscillator is running at 25 MHz
and the FS pin is tied to ground

1 _
tu = 25MHz x 44 - 0.91 ns Eq.24

The value of tv, on the other hand, if the FS pin were
left unconnected, is

1 _
tu = 25MHz x 26 - 1.54 ns Eq.25

This shows that at the same operating frequency
(fNOM), two different stage delays are possible, de­
pending on the connection of the FS pin.

2.0~------------------------------~

1.5

1.0

0.5+-,-~-,-,-,,-.-,-~-,-,-,-.-,-,--,-,-,-.-,-.-~-,-.-,-~

15 20 25 30 35 40 45

fNOM

50 55 60

Figure 30. Time Unit (tv) vs. Frequency

7-52

65 70 75 80

• ~ Everything You Need to Know About RoboClock
~; CYPRESS ================

Output Adjust Matrix

The output adjust matrix allows the outputs to be
configured in up to 26,000 ways (more on this later).
The output options are generated by the Distributed
Phase Clock Oscillator, and selected by the output
function select (xFn) inputs.

In addition to the 11 taps from the distributed phase
oscillator, the Output Adjust Matrix contains a di­
vide-by-two option, a divide-by-four option, and an
invert option.

The eight RoboClock outputs are configured as four
output pairs. Each member of a pair of outputs op­
erates identically to the other. The output adjust­
ment for each output pair is controlled by its
associated pair of function select inputs. For exam­
ple, the lQn outputs are controlled by the IFn in­
puts.

The function select inputs are three-state inputs that
operate in the same manner as the FS input. These
inputs can be tied HIGH, tied LOW, or left uncon­
nected (MID). The three-level input capabilities of
the function select inputs allow each output to have
nine different output selections with the use of only
two pins.

Each pair of outputs has nine different possible out­
put timing positions based on the appropriate con­
nection of the function select input. The possible
output combinations are shown in Table 4. These
output adjustment configurations assume that an
output with a 0 tv configuration is used as the FB in­
put. Output adjustment configurations with a non-O
tv tap output selected as the FB input will be dis­
cussed in the section titled Change in Operation
with FB selection.

The following example refers to Figure 31. Assume
that 2QO is used as the FB input and that 2Fl and
2FO are both left unconnected. This will select both
of the 2Qx outputs to have a O-phase-adjusted out­
put (0 tv), and by connecting 2QO to the FB input it
will also force these outputs to be phase and fre­
quency aligned with the REF input.

Table 4. Output Adjustment Configurations

Function Selects Output Functions

IFl,2Fl, IFO,2FO, lQO,IQl,
3Fl,4Fl 3FO,4FO 2QO,2Ql 3QO,3Ql 4QO,4Ql

LOW LOW - 4tu Divide by2 Divideby2

LOW MID - 3tu - 6tu - 6tu

LOW HIGH - 2tu - 4tu - 41u

MID LOW -ltu - 21u - 2tu

MID MID Diu Diu Otu

MID HIGH +ltu + 2tu +2tu

HIGH LOW + 2tu + 41u +4tu

HIGH MID +3tu + 6tu + 6tu

HIGH HIGH +4tu Divide by4 Inverted

If, in this scenario, IFI were tied to ground and IFO
were left unconnected, then the lQO and lQl out­
put edges would precede the output used as the FB
input (2QO in this case) by three time units. Alter­
nately, if IFI were tied HIGH and IFO were again
left unconnected, then the lQO and lQl output edge
would follow the 2QO output by three time units.

If 3Fl and 3FO were both tied HIGH, then the 3Qn
outputs would both operate at one-quarter the fre­
quency of the 2Qn outputs. And if the 4Fn function
select inputs were both tied LOW, the 4Qn outputs
would both operate at one-half the frequency of the
2Qn outputs.

An important point to note is the frequency and
phase relationship between the 1/2 and 1/4 outputs

20 MHz
FB
REF
FS

4FO
4F1

3FO
3F1

2FO
2F1

1FO
1F1

TEST

400
401

300
301

200
201

100
101

REF ..n.J1..JLn.JL.
• I I I

f I I I

I I I I

I
I I

I I

I I I

I I '10MHz
~
: : : : ~_§JtJtlt=
~

I : : : :20)v1Hz

-f1..fL.f1..fLf
I f I I I I

~
I I I I I I

I I I I I

Figure 31. Frequency Divider Connections

7-53

=:.a rcYPRESS =====E;;;;;v;;;;;e;;;;;ryt;;;;;h;;;;;i;;;;;B;;;;;g;;;;;Yo;;;;;u;;;;;N=ee;;;;;d;;;;;t;;;;;o;;;;;Kn=ow=A;;;;;h;;;;;ou;;;;;t;;;;;lt;;;;;o;;;;;h;;;;;o;;;;;C;;;;;lo=ck

(3Qn and 4Qn). The divide-by-two and divide-by­
four outputs fall at the same time, but never rise at
the same time. This feature of RoboClock makes it
possible to use the rising edges of the 1/2 frequency
and 1/4 frequency outputs without concern for skew
mismatch. It also provides the ability to clock differ­
ent parts of the system on different phases of the
master clock.

The previous example showed the phase shifting
and frequency division capabilities of RoboClock.
Another output feature available on the 4Qx out­
puts is phase inversion. This output adjustment is
configured by tying both 4F1 and 4FO inputs HIGH.
In this mode the 4Qx outputs will have and inverted
sense with respect to the FB input.

Change in Operation with FB Selection

The previous discussion assumed that an output
with a 0 tu phase adjustment was used as the FB in­
put. With this assumption, RoboClock has nearly
3000 different configurations. This is calculated by
taking the number of possible configurations of each
output pair (9) to the number of outputs pairs not
being used as the FB input (3) times the number of
choices of output pairs to be used as the FB input.

Combos = 93 * 4 Eq.26

If the output used as the FB input is also phase or
frequency adjusted, then RoboClock offers over
26,000 different configurations.

Phase Adjusted Output Used as FB Input

By feeding back an output that was selected for 0 tu,
all of the other outputs were referenced from the 0
tap position shown in Figure 29. This is due to the
fact that the PLL aligns the REF input and the FB
input in both phase and frequency.

It is not necessary to use an output with a 0 tu config­
uration as the FB input. An output with any configu­
ration can be used as the FB input. For example, if
an output with a - 3 tu tap was used as the FB input,
the PLL would align this output with the REF input.
It would no longer exhibit a shift of - 3 time units
when compared with REF. The output used as the
FB input is always aligned with REF.

By using an output with this configuration as the FB
input, all other outputs are now referenced to this
tap position within the ring oscillator. The possible
tap selections for the other outputs are still the same
as in the 0 tap used as FB case, but now they have a
-3 tap time reference. The +6 tap can still be se­
lected as an output configuration, but it will occur 9
time units after the FB output. The -6 tap can also
be selected as an output configuration, but instead
of occurring 6 time units before the corresponding
edge of FB, it will occur 3 time units before the out­
put used as the FB input.

Tables 5 through 7 illustrate the various possible out­
put configurations with different FB selections.
Table 5 gives the 2Qn, 3Qn, and 4Qn output configu­
rations when a 1Qn output is used as the FB input.
It also gives the 1Qn, 3Qn, and 4Qn output configu­
rations when a 2Qn output is used as the FB input.
The reason for this is that the 1Qn and 2Qn outputs
have the same possible configurations. If either is
used as the FB input, the other outputs will have the
same output configuration options.

Table 5 is broken into three parts corresponding to
the configurations for each of the three pairs of out­
puts not used as the FB input. The leftmost two col­
umns of each table indicate the various configura­
tions of the FB input, and the right portion of the
table gives the output possibilities for the given out­
put.

For example, the first part of Table 5 gives the pos­
sible output configurations for the 2Qn outputs as­
suming that a 1Qn output is used as the FB input.
Alternately, this table gives the output configura­
tions for the 1 Qn outputs assuming a 2Qn output is
used as the FB input. This is true because the 1 Qn
and 2Qn outputs have the same possible output con­
figurations as shown in Table 4. For the remainder
of this example, a 1Qn output is assumed to be the
FBinput.

The left side of the table gives the function select in­
put settings for the FB output. L represents a con­
nection to ground, M represents an input left open,
and H represents an input connected to Vee. Once
a selection is made for the function select inputs of

7-54

~?cYPRESS =====;;;;;E;;;;;ve;;;;;ry;;;;;t;;;;;h;;;;;iD;;;;;g;;;;;Yi;;;;;o;;;;;u;;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=Kn=ow=A;;;;;b;;;;;ou;;;;;t;;;;;R;;;;;o;;;;;b;;;;;o;;;;;C;;;;;lo;;;;;c=k

the FB output, all of the other outputs will be refer­
enced to that tap.

For example, if the 1F1 input is tied to ground and
the 1FO input is left unconnected, then all ofthe oth­
er outputs will be referenced to the - 3 tu tap used
as the FB input. The available configurations on the
remaining outputs will remain the same as given in
Table 4, but the values in this table will all be shifted
by + 3 because this is the number of stage delays be­
tween the new reference point and 0 tu, the refer­
ence point of Table 4.

All of the possible output configurations can be
found in the same row in the following tables as the
selection made for the FB output. If 1Fn = LM
(lF1 tied to ground, and 1FO left unconnected),
then the possible selections for the 2Qn output are
from -1 tu to + 7 tu. This is shown in the first part
of Table 5 as a shaded row. By connecting 2Fn =
HM, the 2Qn outputs will have outputs that lag the
FB outputs by 6 time units or by connectng 2Fn =
LL the 2Qn outputs will precede the reference by 1
time unit (-It). Once the output configurations for

the FB input are made, all other outputs will be ref­
erenced to this new reference point.

The second part of Table 5 gives the possible output
configurations for the 3Qn outputs. Assuming a
1Qn (2Qn) output is used for the FB input, the 3Qn
outputs can be phase shifted with a granularity of 2
time units from - 3 to + 9 with respect to the FB in­
put. Additionally, the 3Qn outputs can be divided
by two and divided by four, but since the reference
point for the dividing circuit for these configurations
is the 0 tap (as shown in Figure 29), these outputs are
shifted by three time units with respect to the FB in­
put.

The third part of Table 5 gives the possible output
configurations for the 4Qn outputs, again assuming
that a 1 Qn output is used as the FB input. This table
looks much the same as the second part with the only
exception being the last column. The only differ­
ence between the 3Qn and 4Qn outputs is the ability
to divide by four or invert respectively. The last col­
umn shows how RoboClock can be configured to
phase shift and invert an input signal.

Table 5. lQx or 2Qx Output Connected to FB Input (Part 1)

1Qn(2Qn)tFB 2Qn(lQn) Outputs with respect to FB

2F1 L L L M M M H H H
.... t) (lF1) ;::I d)

1F1 1FO
§<"i)

2FO L M H L M H L M H '"
(2F1) (2FO) (lFO)

L L Ot +It +2t +3t +4t +5t +6t +7t +8t

L M -It Ot +It +2t +3t +4t +5t +6t +7t
I:::

L H .Sl -2t -It Ot +It +2t +3t +4t +5t +6t
..s

M L
... -3t -2t -It Ot +It +2t +3t +4t +5t ;::I
0.0

M M
;.;:::

-4t -3t -2t -It Ot +It +2t +3t +4t I:::
0

M H U -5t -4t -3t -2t -It Ot +It +2t +3t
;::I

H L 0.. -6t -5t -4t -3t -2t -It Ot +It +2t
;::I

H M 0 -7t -6t -5t -4t -3t -2t -It Ot +It

H H -8t -7t -6t -5t -4t -3t -2t -It Ot

7-55

~ -., # Everything You Need to Know About RoboClock
; CYPRESS ================

Table 5. lQx or 2Qx Output Connected to FB Input (Part 2)

IQx(2Qx).FB 3Qn Outputs with respect to FB

.... t 3FI L L L M M M H H H

IFI IFO
;:ll!)

3FO L M H L M H L M H ~
(2FI) (2FO) .Er/J

L L +4t -2t Ot +2t +4t +6t +St + lOt +4t
f/2 f/4

L M +3t ':;'3t. .".It ' .. .+If ... f3t· +st f'J:t. .+9t +3t
f!2 .. , . .' .f/4., .••.

L H +2t -4t -2t Ot +2t +4t +6t +St +2t
~ f/2 f/4

M L
.:2

+It -St -3t -It +It +3t +St +7t +It ~ ... f/2 f/4 ;:l
bl)

M M <;:i Ot -6t -4t -2t Ot +2t +4t +6t Ot ~
0 f/2 f/4 U

M H -It -7t -St -3t -It +It +3t +St -It ;:l
0.. f/2 f/4
;:l

H L 0 -2t -St -6t -4t -2t Ot +2t +4t -2t
f/2 f/4

H M -3t -9t -7t -St -3t -It +It +3t -3t
f/2 f/4

H H -4t -lOt -St -6t -4t -2t Ot +2t -4t
f/2 f/4

7-S6

....;;=-..

rcYPRESS =====;;;;E;;;;v;;;;ery=th;;;;i;;;;D;;;;g;;;;Yi;;;;ou=N;;;;e;;;;ed=to;;;;Kn=;;;;ow=A;;;;h;;;;o;;;;ut;;;;R=oh;;;;o;;;;C;;;;I;;;;oc=k

Table 5. lQx or 2Qx Output Connected to FB Input (Part 3)

lQn(2Qn).FB 4Qn Output with respect to FB

..... '0 4Fl L L L

lFl lFO ~ 4FO L M H
(2FI) (2FO) Vj

L L +4t -2t at
f/2

L M +3t -3t -It
f!2

L H +2t -4t -2t

~
f/2

M L .9 +It -5t -3t
o:l

f/2 ...
::I
00

M M ;,;:::: at -6t -4t
~
0 f/2 u

M H -It -7t -5t ::I
0.. f/2
::I

H L 0 -2t -8t -6t
f/2

H M -3t -9t -7t
f/2

H H -4t -lOt -8t
f/2

Tables 6 and 7 have slightly different output configu­
rations. These tables represent the possible output
configurations when a 3Qn or 4Qn output is used as
the FB input.

The first part of Table 6 gives the possible output
configurations for the IQn (2Qn) outputs when a
3Qn output is used as the FB input. When the 3Qn
outputs are configured from -6 tv (3Fn = LM) to
+6 tv (3Fn = HM) the IQn outputs have a range of
+10 tv (lFn = HH) to -10 tv (IFn = LL). This,
again, is because if the 3Qn outputs have a -6 tap
reference and the +4 tap is selected for the IQn out­
puts, then the total time delay between the FB input
and the lQn output is + 10 time units. This feature
gives RoboClock a tremendous phase adjustment
range.

What if a divided output is used as the FB input?
The last row of Table 6 (Part 1) shows that if 3Fn =

M M M H H H

L M H L M H

+2t +4t +6t +8t + lOt +4t
INY

+1t +3t .+5t +7t +9t··· +3t·;
INY

at +2t +4t +6t +8t +2t
INY

-It +It +3t +5t +7t +1t
INY

-2t at +2t +4t +6t at
INY

-3t -It +It +3t +5t -It
INY

-4t -2t at +2t +4t -2t
INY

-5t -3t -It +It +3t -3t
INY

-6t -4t -2t at +2t -4t
INY

HH (3Qx in divide-by-four mode), then all of the
outputs are multiplied py four. RoboClock has be­
come a frequency multiplier. To understand why
this happens, remember that the PLL aligns the FB
with the REF input in both phase and frequency.
Even though the 3Qn outputs were selected to di­
vide by four, the PLL forces them to run at the same
rate as the REF input. This means that, in order for
these outputs to operat~ at this speed, the YCO it­
self must operate at four times the REF frequency.

The ability to multiply an input frequency is useful
in board-level designs where the distribution of a
low-frequency signal is needed to reduce EMI emis­
sions or where a faster clock is needed to increase
the operating frequency of state machine logic. Fig­
ure 32 shows how RoboClock can be configured as
a frequency multiplier and a phase adjuster. By se­
lecting 3Fn = HH, RoboClock will multiply the

7-57

~ Everything You Need to Know About RoboClock
WRYPRESS ================

REF~ ,

20 MHz
FB
REF ,
FS , '40 MHz
4FO 400 1...rt..I"'"Lr
4F1 401 , '20 MHz
3FO 300 .r---L-..r-3F1 301 , '80 MHz
2FO 200 .tul.JUt.t.1.IL 2F1 201 , ,
1FO 100 :.nn..n..nhrL 1F1 101 ,
TEST

Figure 32. Frequency Multiplier with Phase
Adjustment

REF frequency by four, by forcing its PLL to oper­
ate at four times the REF clock rate. 4Fn = LL se­
lects the divide-by-two option at the 4Qn outputs.
Since the PLL is operating at SO MHz, the 4Qn out­
puts will operate at 40 MHz. Selecting 2Fn = ML

configures the 2Qn outputs to precede the rising
edge of the FB input by I time unit. And selecting
IFn = HM makes the IQn outputs arrive 3 time
units later than the FB input. Both the I Qn and 2Qn
outputs will run at SO MHz. The xFn configurations
for this example can be found in the sh<\ded area of
Table 6.

Table 7 appears very similar to Table 6. The first part
gives the IQn and 2Qn output configurations when
a 4Qn output is used as the FB input. The second
part of the table gives the 3Qn output configurations
when a 4Qn output is used as the FB input. The ma­
jor variation is that ~f a 4Qp output is used as the FB
input with 4Fn = HH, then all outputs will pe in­
verted. Since the PLL phase aligns the REF and FB
input, the 4Qn outputs will operate identically with
the REF input. The other outputs will have a
ISO·phase shift from the REF input. This is useful
for appljcations requirip.g more inverted clock sig­
nals than non-inverted clock signals.

Table 6. 3Qx Output Connected to FB Input (Part 1)

M M M H H H
'!:i0
~

3FI 3FO =(1) IFO, L M H L M H L M H t/.l

(2FO)

L L -4t -3t -2t -It Ot +It +2t +3t +4t
f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

= .g
o:s ...

i
0 u

~
0

H H

7-5S

£ rcYPRESS =====;;;;;E;;;;;ve;;;;;ryt=h;;;;;iD;;;;;g;;;;;Yi;;;;;o;;;;;u;;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=Kn=ow=A;;;;;h;;;;;ou;;;;;t;;;;;R;;;;;o;;;;;b;;;;;o;;;;;C;;;;;lo;;;;;c=k

Table 6. 3Qx Output Connected to FB Input (Part 2)

3Qn.FB 4Qn Output with respect to FB

-t) 4F1 L L L M M M H H H

3F1 3FO ~ 4FO L M H L M H L M H 1Zl

L L Ot -6t -4t -2t Ot +2t +4t +6t INV
f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

L M +6t Ot +2t +4t +6t +8t +lOt +l2t +6t
fJ2 INV

L H +4t -2t Ot +2t +4t +6t +8t + lOt +4t

= fJ2 INV

M L .9
+2t -4t -2t Ot +2t +4t +6t +8t +2t 1<i f/2 INV =' eo

M M ~ Ot -6t -4t -2t Ot +2t +4t +6t Ot = 0 f/2 INV U
M H E. -2t -8t -6t -4t -2t Ot +2t +4t -2t

=' f/2 INV

H L 0 -4t -lOt -8t -6t -4t -2t Ot +2t -4t
f/2 INV

H M -6t -12t -lOt -8t -6t -4t -2t Ot -6t
f/2 INV

H H Ot -6t -4t -2t Ot +2t +4t +6t INV
f*2 f*4 f*4 f*4 f*4 f*4 f*4 f*4 f*4

Table 7. 4Qx Output Connected to FB Input (Part 1)

4Qn.FB 1Qn (2Qn) Output with respect to FB

1F1, L L L M M M H H H
'St:>
~

(2F1)

4F1 4FO =11)
.... 1Zl 1FO, L M H L M H L M H

(2FO)

L L -4t -3t -2t -It Ot +It +2t +3t +4t
f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

L M
=

+2t +3t +4t +5t +6t +7t +8t +9t +10t

L H .g
'"

Ot +It +2t +3t +4t +5t +6t +7t +8t

M L t -2t -It Ot +It +2t +3t +4t +5t +6t

M M -4t -3t -2t -It Ot +1t +2t +3t +4t

M H 8 -6t -5t -4t -3t -2t -It Ot +It +2t -
H L ~ -8t -7t -6t -5t -4t -3t -2t -It Ot

H M 0 -lOt -9t -8t -7t -6t -5t -4t -3t -2t

H H -4t -3t -2t -It Ot +It +2t +3t +4t
INV INV INV INV INV INV INV INV INV

7-59

~ -., ~ Everything You Need to Know About RoboClock
,CYPRESS===================================

Table 7. 4Qx Output Connected to FB Input (Part 2)

4Qn.FB 3Qn Output with respect to FB
.... 0 3Fl L L L

4Fl 4FO ~ 3FO L M H
- CIl

L L Ot -6t -4t
f*2 f*2

L M +6t Ot +2t
f/2

L H +4t -2t Ot
~ f/2

M L
.g

+2t -4t -2t C<j f/2 ~
OJ)

M M ~ Ot -6t -4t ~
0 f/2 U

M H -2t -St -6t ~ .s- f/2 ~

H L 0 -4t -lOt -St
f/2

H M -6t -12t -lOt
f/2

H H INV -6t -4t
f/2 INV INV

Functional Implementations

Obviously, RoboClock has abilities to solve even the
most complex problems. The challenge is to deter­
mine how to configure RoboClock to solve these
problems. The following examples will give a brief
overview of how to configure RoboClock to accom­
plish various tasks.

Low-Skew Clock Buffer

The easiest way to configure RoboClock is as a low­
skew clock buffer, as shown in Figure 33. In this type
of configuration, all xFn inputs are left open (uncon­
nected) and the FB input can be taken from anyout­
put. The REF input waveform is shown with a very
unequal duty cycle to illustrate the point that be­
cause RoboClock is a PLL-based clock buffer, the
duty cycle of the outputs is 50/50 regardless of the
duty cycle of the REF input. This feat would be im­
possible in a non-PLL based device.

M M M H H H

L M H L M H

-2t Ot +2t +4t +6t Ot
f*2 f*2 f*2 f*2 f*2 f/2

+4t +6t +St + lOt +12t +6t
f/4

+2t +4t +6t +St + lOt +4t
f/4

Ot +2t +4t +6t +St +2t
f/4

-2t Ot +2t +4t +6t Ot
f/4

-4t -2t Ot +2t +4t -2t
f/4

-6t -4t -2t Ot +2t -4t
f/4

-St -6t -4t -2t Ot -6t
f/4

-2t Ot +2t +4t +6t INV
INV INV INV INV INV f/4

If this implementation is used, either the 2Ql or
3QO output is the most convenient choice to be used
as the FB input because of their proximity. The
shortest wire possible should be used to connect the
xQn output to the FB input to avoid stub reflection
effects on the actual clock line connected to the

FB
REF

FS
4FO 400
4F1 401

3FO 300
3F1 301

2FO 200
2F1 201

REF

,

~

I I I I

JUL.JLJL
I I I I

JUL.JLJL
I I I I ,

Figure 33. Low-Skew Clock Buffer

7-60

= ?cYPRESS =====;;;;;E;;;;;v;;;;;ery=th;;;;;i;;;;;D;;;;g;;;;;Yi;;;;;oll=N;;;;;e;;;;;ed=to;;;;;Kn=;;;;;ow=A;;;;;h;;;;;o;;;;;llt;;;;;R=oh;;;;;o;;;;;C;;;;;I;;;;;oc=k

Figure 34. RoboClock in Low Skew ButTer
Application

same xOn output (Figure 2). This short route will re­
duce noise and transmission line effects from affect­
ing the FB input.

This configuration assumes that the clock routes to
the various loads they are driving are all the same
length, so that each of the clocks arrives at its load
at virtually the same time. Figure 34 shows how Ro­
boClock might be used in an application requiring
only a device with low output skew.

Programmable Phase Adjustment

This type of application requires the use of Robo­
Clock's additional features. RoboClock provides
phase shifting in ranges from -12 time units to + 12
time units. Figure 35 shows RoboClock configured
to phase shift its 20n outputs so that they lag the FB

RE~

~
I I I t

~
I I I I

~r1Ir1Ir1Ir1
...!...J W L..!..J L.!..J L

I I I t

~
I I I I

I I I f
I

Figure 35. Programmable Phase Adjustment

7-61

Figure 36. RoboClock in Programmable Phase
Adjustment Application

input, and to phase shift its IOn outputs so that they
lead the FB input. Any output can be used as the FB
input to implement phase shifting, but the greatest
unidirectional shift (12 time units) will be achieved
by selecting either the 30n or 40n outputs to be
used as the FB input.

Figure 36 shows RoboClock in a programmable
phase adjustment application. This application dif­
fers from Figure 34 in that the sophisticated phase
adjustment abilities of RoboClock are used to com­
pensate for trace delays and set-up and hold time
mismatches.

Inverted Output Clock Driver

Figure 37 shows RoboClock configured as a inverted
output clock driver. 4Fn = HH configures the 40n

FB
REF
FS
4FO
4F1

3FO
3F1

2FO
2F1

1FO
1F1

200
201

100
101

REF

~
I I I I

--u-uu-u-
I I I I

--u-uu-u-
I I I I

l-Il--fl-J1J
Figure 37. Inverted Output Clock Driver

Everything You Need to Know About RoboClock

outputs to operate in inverted mode. If one of these
outputs is used as the FB input, then the PLL will
align the rising edge of 4QO with REF and all of the
other outputs operate 180· phase shifted from the
FB input. This type of configuration is useful for sys­
tem designs that require a greater number of clocks
with 1800 phase shift (inverted). These inverted
clocks are useful for clocking logic at twice the fre­
quency without distributing a higher frequency
clock. In this configuration, RoboClock offers 6 in­
verted outputs and 2 non-inverted outputs. This
configuration also has the advantage that all of the
inverted outputs can be phase shifted and the 3Qn
outputs can even,be configured to divide the REF
frequency by two or four while still maintaining
phase inversion.

If only two inverted clocks are needed, then anyout­
put except the 4Qn outputs can be connected to the
FB input. This will allow the 4Qn outputs to be se­
lected for output inversion without affecting the
other outputs. If the REF clock is not being used in
other parts of the system, both of these two configu­
ration options yield the same net effect.

Frequency Divider

RoboClock provides frequency division while still
maintaining very low skew between the various out­
put edges (more on this in the AC Specifications sec­
tion). Figure 38 shows RoboClock configured as a
frequency divider. Since the PLL is operating at 20
MHz, the FS pin in this configuration is tied to
ground indicating the selection of the 15 - to
30-MHz operating range. By selecting 4Fn = LL,
the 4Qn outputs will divide the FB frequency by two,

, , , , , , , , , ,
FB REF~
REF

, , , , , , , , , ,
FS

,
4FO 400 10MH~ 4Fl 401 , , , , , , , , , ,
3FO 300
3Fl 301 5MHz~
2FO 200

, , , , , , , , , ,
2Fl 201 20MH~
lFO 100

20MHJl.h.tltlh.hhJl lFl 101 ... , , , , , , , , , ,

Figure 38. Frequency Divider

and by selecting 3Fn = HH, the 3Qn outputs will di­
vide the FB frequency by four.

Any of the 1 Qn or 2Qn outputs could have been se­
lected as the FB input with equivalent results. Note
again that the divide-by-two and divide-by-four out­
puts have no coincidental rising edges. This features
allows the system designer to use both outputs for
multiphase clocking without concern for skew re­
quirements between the rising edges of these two
outputs.

Frequency Multiplier

RoboClock provides frequency multiplication by se­
lecting an output configured to divide by two or di­
vide by four as the FB input. Figure 39 shows Robo­
Clock multiplying up the REF input frequency. The
3Fn function select inputs are both tied to V cc, con­
figuring the 3Qn outputs to divide by four. But be­
cause 3QO is used as the FB input, the 3Qn outputs
operate at the same frequency as the REF input.
The RoboClock PLL, therefore, now operates at
four times the REF frequency. This is the reason
that the FS pin is tied to V cc indicating the selection
of the fastest operating frequency range. The selec­
tion of FS is based not on the operating frequency
of the REF input, but rather on the operating fre­
quency of the VCO. The operating frequency of the
VCO is the same frequency as the lQn and 2Qn out­
puts at all times and also the 3Qn and 4Qn outputs
when frequency division is not selected.

The 4Fn function select inputs are both tied to
ground, which configures the 4Qn output for divide
by two mode. Note that this figure looks much the
same as Figure 38 except for the selection of the FS

I I I I I I I • I I

REF~
I I I I I • I I I I

I I I I I I I I I I

I I I I I I I I I I

40MHz~
I I I • I I I I I I

20MH~

80MHz

80MHz

Figure 39. Frequency Multiplier

7-62

0:::;: ?cYPRESS =====;;;;;E;;;;;v;;;;;ery=th;;;;;i;;;;;D;;;;;g;;;;;Y4;;;;;o;;;;;u;;;;;N;;;;;e;;;;;ed=to=Kn=ow=A;;;;;b;;;;;o;;;;;u;;;;;t ;;;;;R;;;;;ob;;;;;o;;;;;C;;;;;I;;;;;o=ck

, , , , , , , , , ,
FB REF ~
REF

,
FS , , , , , , , , , ,
4FO 400 10MH~ 4F1 401 , , , , , , , , , ,
3FO 300 5MHz~ 3F1 301

2FO 200
20MH 2F1 201

1FO 100
20MH 1F1 101 ...

Figure 40. Frequency Divider and Multiplier

input and the selection of the output used as the FB
input.

Frequency Divider and Multiplier

Figure 40 illustrates how RoboClock can be used to
both multiply and divide the REF frequency. Here
the VCO is running at 20Mlli. The 4Qn output is
used to divide the PLL frequency by two and the
3Qn outputs are used to divide the PLL frequency
by four. 4Q1 is used as the FB input doubling the
PLLrate.

Multi-Function Clock Driver

RoboClock is truly a multi-function clock driver. It
has the ability to multiply up the REF frequency by

80 MHz
Inverted

~ '""::~"

Figure 42. Multi-Function Clock Buffer
Application

two or four, divide down the REF frequency by two
or four, perform phase inversion, create phase ad­
justments up to ± 12 time units, while always provid­
ing very low output skew.

Figure 41 shows RoboClock configured as a multi­
function clock driver. This figure shows how Robo­
clock can simultaneously multiply the REF frequen­
cy by four to a speed of 80 MHz and allow these
high-speed outputs to be phase shifted and inverted.
Figure 42 shows how this configuration can be inte­
grated to perform various system clocking func­
tions.

• I I I

20MHz FB REF Jli..-o'_---.lnL-_' __ ~
Vee REF

FS
4FO
4F1

3FO
3F1

2FO
2F1

1FO
1 F1

400
401

300
301

200
201

100
101

Figure 41. Multi-Function Clock Buffer

7-63

80MHz
Inverted

20MHz

80MHz

80MHz
'Adjusted -4tu

Everything You Need to Know About RoboClock

Many other examples exist of the tremendous capa­
bilities of RoboClock. External circuitry, for exam­
ple, can be placed between the RoboClock output
and the FB input. This may be the case when Robo­
Clock is used to drive external buffers, frequency di­
viders, or multipliers. Virtually any delay element
can be placed between a RoboClock output and the
FB input. A few things, however, must be remem­
bered when doing this:

• The FB input must always be function of one of
the RoboClock outputs.

• The other outputs will be referenced to the input
of the external device and the delay may not be
well defined due to the timing characteristics of
the external devices.

• The output edge placement will be dependent on
the function and skew characteristics of the exter­
nal device.

• An external divider of no greater than 16 may be
used in the FB path Gitter specifications may be
compromised).

AC Specifications

Many AC Specifications exist for RoboClock. The
following discussion will explain what these specifi­
cations mean to the designer. There are four differ­
ent parts in the RoboClock family. The CY7B991 is
a TTL-output (0 to 3V swing) device and the
CY7B992 is a CMOS output (0 to Vee swing) de­
vice. The CY7B99x-5 is the lowest skew device that
Cypress offers. Its output skew has a typical value
of just 250 ps with a maximum skew of 500 ps while
the CY7B99x-7 has a maximum output skew of
only 750 ps. The following sections will begin with
the relevant datasheet specification. Only the
CY7B99x-5 specifications will be explained, but all
specifications apply directly to the CY7B99x-7 de­
vices except for parameter value. Also, only the
CY7B991-5 device will be explained unless the
CY7B992-5 device has a different specification.

fNOM: Operating Clock Frequency in MHz

CY7B99x

Parameter Description Min. '!Yp. Max. Unit

fNOM FS = LOW 15 30 ns

FS = MID 25 50 ns

FS = HIGH 40 80' ns

• The maximum operating frequency of the 7B992-7 devices is
50 MHz.

This parameter indicates the frequency range rela­
tive to given selections of the FS pin. The three-lev­
el FS input can either be tied to ground (LOW), left
unconnected (MID), or tied to Vee (HIGH).

The operating frequency these ranges refer to is
based on the operating frequency of the VCO. If a
divide-by-two output is used as the FB input, then
the operating frequency of the VCO is twice that of
the REF input. If a divide-by-four output is used as
the FB input, then the operating frequency of the
VCO is four times that of the REF input. If a non­
divided output is used as the FB input then the selec­
tion of the FS pin can be made based upon the oper­
ating frequency of the REF input.

For example if a divide-by-four output is used as the
FB input then the total possible REF input frequen­
cy range is 3.75 to 20 MHz (1;'4*15 to 1;'4*80 MHz).
And the frequency range of the REF input when the
FS pin is tied to ground, in particular, is 3.75 to 7.50
MHz.

tRPWH, tRPWL REF Pulse Width High and Low

Parameter Min. '!Yp. Max. Unit

tRPWH 5.0 ns

tRPWL 5.0 ns

The frequency and phase detector uses only the ris­
ing edge of the REF and FB inputs for alignment
purposes. RoboClock, therefore, does not require
a 50/50 duty cycle clock. The tRPWx parameter is
measured at the 1.5V level.

-=====-.

==~YPRESS~~~~~E~V~e~ry~t~h~in~g~Yt~O~U~N~e~e~d~to~Kn~~OW~A~b~ou~t~R~O~b~O~C~lo~c=k
tpD : Propagation Delay, REF Rise to FB Rise

CY7B99x-S

Parameter Min. 1 'JYp. I Max. Unit

tpD - 0.5 I 0.0 I +0.5 ns

CY7B99x-7

Parameter Min. I Typ. I Max. Unit

tpD - 0.7 I 0.0 I +0.7 ns

Because of the PLL architecture of RoboClock
there is no true propagation delay through the de­
vice as there is in a device such as a 74F244 buffer.
The outputs of RoboClock are independent of the
wave shape or duty cycle of the REF input. The PLL
uses the REF and FB pins to generate the outputs
by aligning these two inputs in both phase and fre­
quency.

This static misalignment (tpD in the datasheet) may
be either positive or negative and is a function of the
REF frequency. The ±500 ps specification is to ac­
commodate the normal variation in process, volt­
age, temperature, and frequency. Tho parts operat­
ing at the same frequency and similar voltage and
temperature (approximately ± 100 m V and ± 10 0 C)
will never have a tpD variation more than 200 ps
while the total magnitude of either might be 500 ps).
This part-to-part variation appears as tSKEW5 in the
datasheet and is discussed below. While the PLL
aligns the REF and FB pins, some time difference
may exist between the REF and FB pin (See Figure
43).

Figure 43. Propagation Delay

7-65

xQO

xQ1 __ ...L...J.+,

Figure 44. Zero-Output Matched Pair Skew

tsKEW : Output Skew

There are six different parameters specifying output
skew. Each of these parameters relates to different
output configurations and to different output edges.
Each of the following sections will describe the par­
ticular skew parameter with a diagram and include
an example showing when this parameter would be
used to calculate output skew.

tSKEWPR : Zero Output Matched-Pair Skew

This parameter specifies the maximum amount of
skew between two outputs of the same pair (e.g.,
lQl and lQO) when all output are configured for 0
tu. This specification has a maximum value of 250
ps. Bench characterization, however, indicates that
tSKEWPR is rarely greater than 100 ps. The addition­
al margin is included for tester guard band. The rea­
son that both outputs of the same pair can be so
tightly coupled is that each pair has a dedicated pow­
er and ground pin, that they lie adjacent to each oth­
er allowing them to reinforce each other with cross­
talk effects, and that they are separated from
adjacent outputs by at least two non-switching pins.

Figure 44 shows that skew is measured from the first
output to the last output and that tSKEWPR as well as
all other skew parameters pertains to both edges of
the output waveform. Figure 45 shows the 4Qn out­
put pair loaded with the datasheet load. Although
it may look like one output waveform, both outputs
of the 4Qn pair are displayed. Figure 46 shows the
measurement of tSKEWPR with an expanded voltage
and time scale as being only 27 ps.

~ Everything You Need to Know About RoboClock
';CYPRESS ===============

LOAD

5ns/div ET
D=C23-

22.6n

Figure 45. Lumped Load with Datasheet Load

500ps/div ET
D=C23-~

2.26nJ

Figure 46. tSKEWPR Measurement

tSKEWO : Zero Output Skew

CY7B99x-S

Parameter Min. I 'IYP· I Max. Unit

tSKEWO I 0.25 I 0.5 ns

CY7B99x-7

Parameter Min. I 'JYp. I Max. Unit

tSKEWO I 0.3 I 0.7 ns

tSKEWO is the maximum skew between the first out­
put edge and the last output edge of all outputs when
all outputs are configured for 0 tv. This specifica­
tion also applies to outputs that are not adjusted
when another output is divided-by-two or divided­
by-four. Bench data indicates that these skew values
are usually no greater than 350 ps.

For example the skew between any of the outputs in
Figure 33 is no greater than 500 ps. The maximum
skew between the 1 Qn and 2Qn outputs in Figure 38
is also 500 ps, even though both the 3Qn and 4Qn
outputs are divided. This assumes that a
CY7B99x-5 is used to generate these signals.

tSKEW1 : Output Skew (Rise-Rise, Fall-Fal~ Same
Class Outputs)

CY7B99x-S

Parameter Min. I 'JYp. I Max. Unit

tSKEWl I 0.25 I 0.5 ns

CY7B99x-7

Parameter Min. I 'JYp. I Max. Unit

tSKEWl I 0.3 I 0.7 ns

tSKEWl is specified as the maximum amount of skew
between outputs of the same output class selected
for the same output adjustment without restrictions
on the placement or function of other outputs. For
the purposes of skew specification, there are three
types of output classes:

• Nominal: Outputs that are selected for phase ad­
justment, but not inversion, division, or multi­
plication are of the Nominal output class. This
also includes outputs that are not phase adjusted
when other outputs have a non Otv configuration.

• Divided: This class of outputs includes the 3Qn
and 4Qn outputs that are configured for divide­
by-two or -four mode (3Fn=HH, or LL, and 4Fn
= LL). Even when these outputs are configured

, this way and selected as the FB input, the are still
considered to be part of the Divided output class.

• Inverted: This class of outputs includes the 4Qn
outputs configured in the inverted mode of opera­
tion (4Fn = HH). The Inverted output class also
applies to a 4Qn output configured for phase in­
version and used as the FB input.

This parameter, as in the case of tSKEWPR, 0, and 3 ap­
plies not only to rising edge to rising edge output
skew, but also to falling edge to falling edge skew.

Figure 47 illustrates a an example of when to use
tSKEWl to calculate output skew. The maximum
skew between the lQn and 2Qn outputs, when they
are selected in this case for -4 time unit adjustment,
is no greater than 700 ps. The maximum skew be-

7-66

- ?cYPRESS =====;;;;E;;;;ve;;;;ry;;;;t;;;;h;;;;iD;;;;g;;;;Yi;;;;o;;;;u;;;;N;;;;e;;;;e;;;;d;;;;to=Kn=ow=A;;;;b;;;;ou;;;;t;;;;R;;;;o;;;;b;;;;o;;;;C;;;;lo;;;;c=k

FB
REF
FS
4FO 4QO
4F1 4Q1

3FO 3QO
3F1 3Q1

2FO 2QO
2F1 2Q1

1FO 1QO
1F1 1Q1

I I I I I I I I I I

REF~
I I I I I I I I I I

I I I I I I I I I I

I I I I I I I I I I

~
I I I I I I I I I I

~
I I I I I I I I I I

Figure 47. Multi-Function Clock Buffer

tween the 4Qn and 3Qn when both are selected for
divide-by-two is also 700 ps.

Figure 48 shows a diagram of an output (Adjusted Q)
that has been programmed to occur N time units
(tu) later than another output (Q). The maximum
amount of time between these two outputs will be

tDIFF = N x tu + tSKEWI Eq.27

and the minimum amount of difference between
these two outputs is

tDIFF = N x tu - tSKEWI Eq.28

Where N is difference in the calculated tap delays
between these two outputs. There is no need to add
twice the tSKEWl time in order to calculate the mini­
mum and maximum time difference.

For example, the minimum and maximum time be­
tween the IQn and 2Qn outputs in a system confi-

Adjusted::....;;:Q:"'-...L..LVI

tUE

Figure 48. Programmable Adjustment Error

gured as in Figure 35 using a CY7B991-5 operating
at 50 MHz would be

Eq.29

tDlFFlmax) = 2 * (50 * 1~6 x 26) + .5 = 2.04 ns Eq.30

The time difference between the 3Qn and 4Qn out­
puts (which were not phase adjusted) and the IQn
and 2Qn (which were phase adjusted in opposite
directions) would be

tDIFF(min) = (50 * 1~6 x 26) - .5 = .269 ns Eq.31

tDlFF(max) = (50 * 1~6 x 26) + .5 = 1.269 ns Eq.32

These equations give the worst-case time value be­
tween outputs skewed by 1 time unit when operating
at 50 MHz. No additional output skew parameters
need to be added. The ordering, including skew, be­
tween two outputs that are phase adjusted, can al­
ways be determined from the functional input selec­
tions. This is shown in the above example where the
minimum time between two output adjusted by one
time unit was determined to be 269 ps.

tSKEW2: Output Skew (Rise-Fan Nominal-Inverted,
Divided-Divided)

CY7B99x-5

Parameter Min. I 'tYP· I Max. Unit

ISKEW2 I 0.6 I 1.2 ns

CY7B99x-7

Parameter Min. I 'tYP· I Max. Unit

ISKEW2 I 1.0 I 1.5 ns

This skew parameter specifies the amount of output
skew between the rising or falling edge of a Nominal
output and the opposite edge of an Inverted output
as generalized in Figure 49. This parameter also ap­
plies to opposite edge transitions between Divided
outputs.

For example, in Figure 39, the output skew between
the opposite edge transitions of the the 3Qn and
4Qn outputs selected for divided mode is no greater
than 1.2 ns. The magnitude of this number compen­
sates for the different in the rising and falling edge
rates.

7-67

- -~ , CYPRESS =====E;;;;;;v;;;;;;e;;;;;;ry;;;;;;t;;;;;;h;;;;;;ill;;;;;;g;;;;;;Yi;;;;;;o;;;;;;ll;;;;;;N;;;;;;e;;;;;;e;;;;;;d;;;;;;to;;;;;;K=ll;;;;;;Ow=A;;;;;;h;;;;;;oll;;;;;;t;;;;;;R;;;;;;o;;;;;;h;;;;;;o;;;;;;C;;;;;;lo;;;;;;c=k

tSKEW3 : Output Skew (Rise-Rise, Fall-Fall, Different
Class Outputs)

CY7B99x-5

Parameter Min. I Typ. I Max. Unit

tSKEW3 I 0.6 I 1.0 ns

CY7B99x-7

Parameter Min. I Typ. I Max. Unit

tSKEW3 I 0.7 I 1.2 ns

This output skew parameter specifies the maximum
same edge transition difference between different
class outputs. In Figure 39, the difference between
the rising edge of the 4Qn or 3Qn outputs that are
configured for divided mode and the rising edge of
the lQn and 2Qn outputs will be no greater than
1 ns.

tSKEW4 : Output Skew (Rise-Fall, Nominal-Divided,
Divided-Inverted)

CY7B99x-5

Parameter Min. I Typ. I Max. Unit

tSKEW4 I 0.6 I 1.3 ns

CY7B99x-7

Parameter Min. I Typ. I Max. Unit

tSKEW4 I 1.2 I 1.7 ns

This output skew parameter specifies the maximum
opposite edge transition difference between differ­
ent class outputs as generalized in Figure 49. In Fig­
ure 39, the maximum difference between the oppo­
site edge transition of the 4Qn or 3Qn outputs and
the lQn and 2Qn outputs would be no greater than
1.3 ns

Q

Figure 49. tSKEW2 and tSKEW4 Measurement

tSKEW5: Device-to-Device Output Skew

CY7B99x

Parameter Min. I Typ. I Max. Unit

tSKEWS I I 0.2 ns

Taken by itself, this parameter has very little mean­
ing in a system design. It must be used in conjunc­
tion with the other output skew parameters dis­
cussed above. This parameter states that the
maximum variation in tpD between two devices op­
erating at the same frequency, temperature, and
voltage will be no greater than 200 ps. This means
that the device to device skew between two outputs
used as the FB input will be no greater than 200 ps
under these circumstances.

Figure 50 (an adapted version of Figure 39) shows
two RoboClock devices configured as in Figure 39
connected in parallel. To calculate the device to de­
vice skew for outputs configured for a tu use the
tSKEWO parameter of each device plus tSKEW5 as in
the following equation:

tSKEW = tSKEWO(I) + tSKEWO(2) + [SKEWS

tSKEW = 0.5 + 0.5 + 0.2 = 1.2 ns

FB
REF

Vee FS
4FO
4F1
3FO
3F1
2FO

20M Hz 2F1
1FO
1F1

FB
REF

Vee FS
4FO
4F1
3FO
3F1
2FO
2F1
1FO
1F1

Eq.33

1

400
401

300
301

200
201
100
101

2

400
401

300
301
200
201
100
101

Figure 50. Part-to-Part Skew Example

7-68

-)~YPRESS =====;;;;;E;;;;;ve;;;;;ry;;;;;t;;;;;h;;;;;ill;;;;;g;;;;;Yi;;;;;o;;;;;";;;;;N;;;;;e;;;;;e;;;;;d;;;;;to=K;;;;;ll;;;;;Ow=A;;;;;b;;;;;O";;;;;t;;;;;R;;;;;o;;;;;b;;;;;o;;;;;C;;;;;lo;;;;;c=k

This will give the output skew between the 2Qn and
lQn output skew between devices 1 and 2. To calcu­
late the output skew between the rising edges of the
divided outputs and the O-phase-adjusted outputs,
use the following equation:

tSKEW = t SKEW3(I) + t SKEW3(2) + tSKEWS

tSKEW = 1.0 + 1.0 + 0.2 = 2.2ns Eq.34

In general, to calculate the skews between two de­
vices, add the relevant skew component from each
device and add 200 ps.

Figure 51 gives a slightly more complicated example
to illustrate how to calculate device-to-device skew.
Device 3 has been added to the previous example.
The outputs of this device are driving the REF in­
puts of devices 1 and 2. The only additional compo­
nent to add to the output to output skew for devices
1 and 2is the output-to-output skew of device 3. The
part-to-part skew between devices 1 and 2 for out­
puts that are left unconfigured (1Qn and 2Qn) is
now

tSKEW = t SKEWO(3) + tSKEW1(1) + tSKEW1(2) + tSKEWS

tSKEW = 0.5 + 0.5 + 0.5 + 0.2 = 1.7ns

FB
REF
FS
4FO

FB 3 4F1
REF 3FO
FS 3F1
4FO 400 2FO
4F1 401 2F1
3FO 300 1FO
3F1 301 1F1
2FO 200
2F1 201
1FO 100
1F1 101

FB
REF
FS
4FO
4F1
3FO
3F1
2FO
2F1
1FO
1F1 ...

Eq.35

1

400
401
300
301
200
201
100
101

2

400
401
300
301
200
201
100
101

Figure 51. Devices in Parallel and Serial

7-69

tODCV : Output Duty Cycle Variation

CY7B99x-5

Parameter Min. I 'IYP· 1 Max. Unit

tODCV - 1.0 I 0.0 I +1.0 ns

CY7B99x-5

Parameter Min. I 'IYP· I Max. Unit

tODCV - 1.2 I 0.0 I +1.2 ns

This parameter specifies the difference in the out­
put duty cycle from 50%. It is measured at 1.5Y.
This parameter indicates, for example, that the out­
puts ofthe CY7B99x-5 have a worst-case duty cycle
of 42/58, and at 15 MHz the duty cycle is 48.5/51.5
worst case. The AC Characterization section con­
tains data on how the value of this parameter varies
with loading, voltage, and temperature. .

tORISE, tOFALL : Output Rise and Fall Time

CY7B991-5

Parameter Min. 'IYp. Max. Unit

tORISE 0.15 1.0 1.5 ns

tOFALL 0.15 1.0 15 ns

CY7B992-5

Parameter Min. 'IYP· Max. Unit

tORISE 05 2.0 2.5 ns

tOFALL 0.5 2.0 2.5 ns

CY7B991-7

Parameter Min. 'IYP· Max. Unit

to RISE 0.15 1.5 2.5 ns

tOFALL 0.15 1.5 2.5 ns

CY7B992-7

Parameter Min. 'IYp. Max. Unit

to RISE 05 3.0 5.0 ns

tOFALL 05 3.0 5.0 ns

The output rise and fall time are measured with dif­
ferent loads for each of the four devices. The
CY7B991 devices (TTL) are tested with the load
shown in Figure 52. The 130n over 91Q load is the
recommended parallel termination for 50Q trans­
mission lines. For the -7 devices a 50-pF load is
used to test all AC parameters for the -5 devices a
30-pF load is used. Figure 53 shows the CMOS de­
vice test load (CY7B992).

The TTL and CMOS devices are also measured be­
tween different voltage levels. Figure 54 shows that

~ ~ Everything You Need to Know About RoboClock
'CYPRESS ================

5V

~130
CL = 50pF

(30pFfor '-5) 1 91

~ ""::""

Figure 52. TTL AC Test Load

Vee

C, = ""P'l ~ 100 (30PFfor~ 100

Figure 53. CMOS AC Test Load

the TIL rise and fall time parameters are measured
between O.S and 2.0V, and Figure 55 shows that the
CMOS rise and fall times are measured between
20% and SO% of V cc.

The outputs edge rates of these devices are con­
trolled to about 1 V Ins to minimize the generation
of system noise and transmission line effects. The
AC Characterization section will give examples of
how this parameter varies with loading, voltage, and
temperature.

3.0V

Figure 54. TTL Output Voltage Levels

Figure 55. CMOS Output Voltage Levels

tpWH, tpWL : Output High and Low Time Devi­
ation from 50%

CY7B991-5

Parameter Min. '!Yp. Max. Unit

tpWH 2.5 ns

tPWL 3 ns

CY7B992-5

Parameter Min. 'lYP. Max. Unit

tpWH 3.5 ns

tpWL 3.5 ns

CY7B991-7

Parameter Min. 'lYP. Max. Unit

tpWH 3 ns

tpWL 3.5 ns

CY7B992-7

Parameter Min. 'lYP. Max. Unit

tpWH 5.5 ns

tpWL 5.5 ns

The output pulse width high and low times are speci­
fied as deviations from an ideal 50/50 duty cycle.
tpWH is measured above the 2.0V (SO% V cd for the
TTL (CMOS) devices and tPWL is measured below
O.SV (20% V cd for the TIL (CMOS) devices. The
value of these parameters can be calculated from
the combination of the tODCY parameter and the
tORISE and tOFALL parameters. The specifications
can be calculated as follows

2 * *(VMAX-VTH) + tpWH = tOR/OF VMAX - VMIN t ODCV
Eq.36

-2* *(VTH-VMIN) + t pWL - tOR/OF V _ V t ODCV
MAX MIN Eq.37

Where tOROF represents either the rise time or fall
time of the output since they are equal, VTH repre­
sents the measurement threshold (TTL = 1.5V and
CMOS = Vcd2), VMAX represents the maximum
voltage point of rise and fall time measurements and
VMIN represents the minimum voltage point for rise
and fall time measurements.

AC Characterization

Included with this application note are output rise
time, output fall time, and output duty cycle varia-

7-70

Everything You Need to Know About RoboClock

tion versus temperature, voltage, capacitive load­
ing, and termination voltage.

Output Rise Time

As explained previously, output rise time (tORISE)
is the maximum amount of time it takes the output
to rise from the O.SV to the 2.0V level.

Figure 56 shows the variation in output rise time
based on capacitive loading. This graph can be used
to calculate the skew caused by the unequal loading
of outputs.

Figure 57 shows the output rise time versus voltage
over temperature. Within the normal operating
limits of RoboClock (4.S to S.5V), the output rise
time varies very little with respect to temperature.
This means that, within a normal board environ­
ment, output rise time will not significantly vary due
to minor variations in temperature or voltage.

Figure 58 shows the output rise time vs. termination
voltage. In the section entitled Transmission Line
Termination the parallel termination Thevenin volt­
age was specified as 2.06V for the CY7B991-x de­
vices. This figure shows that because output rise

1. 5

1
~

.,/
5,..........

o 20 40 60 80 100
Capacitance (pF)

Figure 56. Rise Time vs. Capacitance

1.

'""-
T=125

T 25
T=-5

o
4.0 5.0 6.0

Voltage (V)

Figure 57. Rise Time vs. Voltage over Thmperature

7-71

time does not vary with termination voltage, conve­
nient resistor value can be chosen that maintain
Rrn = Zo within the limits of l.SV < Vrn < 2.SV.

Output Fall Time

Output fall time is the amount of time it takes for the
output to swing from 2.0V to O.SY.

Figure 59 shows the variation in output fall time with
load capacitance. Figure 60 shows the output fall
time vs. chip voltage at various temperatures. No­
tice that there is almost no variation in output fall
time due to changes in device temperature. Figure
61 shows the output fall time vs. termination
voltage.

1.5 ..---_._--.--~---.r---,..--_._-_,
(j)

~ 1~-~===*====~==~~:t::~~~
E
i=
5l 0.5 t---+----+--t--+---+----il-----I
ii:

0~-+--4_-~-~--+--+-~

1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600
Voltage (V)

Figure 58. Rise Time vs. Termination Voltage

1.5
(j)
,s
..c: 1
i5
§
0.5

o
o

~ ------~
20 40 60 80 100

Capacitance (pF)

Figure 59. Fall Time vs. Capacitance
1.5..----------.--------,

(j) F=~~~:::::::::j ,s1
(I) T 55
E
i=0.5 t--------+-----r-~--_t

~
0~-------4_-------~
4.0 5.0 6.0

Voltage (V)

Figure 60. Fall Time vs. Voltage
over Thmperature

Everything You Need to Know About RoboClock

Output Duty Cycle Variation

Output duty cycle variation is the difference in the
output pulse width from the ideal 50%. This param­
eter is measured at the l.SV level. Characterization
of this parameter was performed by measuring the
output pulse width high. Measurements were taken
at two different REF input cycle times (Tret): 50 ns
and 12ns.

Figure 62 and Figure 63 show the variation in output
duty cycle due to variations in output capacitance.
These graphs indicate that if the outputs are loaded
according to the datasheet specification, the output
duty cycle will be very near 50%.

Figure 64 and Figure 65 show the output pulse width
high vs. device voltage over temperature. These
graphs indicate that the propagation delay differ­
ence between the rising and falling edge of the out­
puts varies according to frequency. For operation
within the ± 10% Vee and the commercial tempera­
ture range, the output duty cycle specification is
±SOO ps.

~1.5

~ 1r-~j-~=r===t==~:;::t:::4=~1
=a U.0.5t--+---+--+--t--t--+---;

0+---4---~--~--~---+---4--~
1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600

Voltage M

Figure 61. Fall Time vs. Termination Voltage

26
DSMAX

25.5
Ii)
..s
:§ 25
3:--

24.5

24
DSM·I~

0.000 20.000 40.000 60.000 80.000 100.000
Capacitance (pF)

Figure 62. Pulse Width High vs. Capacitance
tREF = SOns

Figure 66 and Figure 67 show the output pulse width
high vs. termination voltage. Both of these graphs
indicate that with normal variance in termination

7

u;6.5
.s
.<=
-0 6
:i:

5.5

5

DSMAX

~
~

DSMIN

0.000 20.000 40.000 60.000 80.000 100.000
Capacitance (pF)

Figure 63. Pulse Width High vs. Capacitance
tREF = 12ns

21.-__ ~.-__ ~~ __ -. ___ __

DSMAX

20.'lI--------i--------I

19.'b =----::::;::::::F--------I

4.0 5.0

Voltage (V)

Figure 64. Pulse Width High vs. Voltage
over Temperature

7

u; 6 .
.s
-6 6
~

5. 5

5
4.0

Tref = 12n8

T 55

T=25

DSMAX

DSMIN

5.0
Voltage M

Figure 65. Pulse Width High vs. Voltage
. over Temperature

6.0

6.0

7-72

Everything You Need to Know About RoboClock

voltage the output duty cycle specification remains
within the ±500 ps range.

Conclusion

RoboClock provides system designers with a multi­
functional resource that solves most clock distribu-

7

u;{).5
.s
~ 6
~

5.5

5

DSMAX

-.-
DSMIN

1.200 1.400 1.600 1 .800 2.000 2.200 2.400 2.600

Tref = 12 ns

26

~25.5

~ 25

~24.5

24

Voltage (V)

Figure 66. Pulse Width High vs.
Termination Voltage

DSMAX

... - ~

DSMIN

1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600

Tref = 50 ns
Voltage (V)

Figure 67. Pulse Width High vs.
Termination Voltage

7-73

tion problems. The third-generation PLL architec­
ture based on a distributed phase clock oscillator
allows phase shifting, division, multiplication and
inversion of outputs with over 26,000 possible out­
put configurations. These features combine to offer
compensation for trace-length differences, elimina­
tion of set-up and hold time mismatches, multiplica­
tion of lower-frequency system clocks, division of
system clocks for lower-performance system com­
ponents, and phase inversion for multiphase clock­
ing. All of these benefits are combined with ex­
tremely low skew outputs, low device propagation
delay, and high-frequency operation to provide the
most full-featured device available.

References

1. American Technical Ceramics, The RF Capaci­
tor Handbook, Revision B, December 1991.

2. Blood Jr., William R., MECL System Design
Handbook, Fourth Edition, 1988.

3. BTL Working Group, '~ Guide to Backplane
Electrical Performance Measurements,"
P1194.0/D2, July 1989.

4. Motorola, Inc., Application Note ANI051
"Transmission Line Effects in PCB Applica­
tions," 1990.

5. Wescon Technical Conference, "Solving Clock­
Distribution Problems in High-Speed Systems,"
Session 5, Nov. 1991.

Innovative Designs with the CY7B991/2/10/20

(RoboClock) Programmable Skew Clock ButTer

Overview

This article discusses various applications of the Cy­
press Phase Locked Loop-based, skew-defeating
clock buffers known as RoboClock. It is assumed
that the reader has a working understanding of Ro­
boClock. If not, "Related Articles" shown below
are recommended. Unlike traditional clock buffers,
RoboClock enjoys the advantages of an internal,
multi-tapped PLL, which offers designers two prin­
cipal advantages: zero propagation delay and
configurable phase control, relative to the reference
clock.

Zero propagation delay is achieved through the
presence of the internal PLL. Because of the prop­
erties of PLLs, RoboClock is able to synchronize it­
self to an incoming reference clock, allowing the
buffered outputs to be coincident with the reference
input, effectively acting as a zero propagation delay
clock buffer. Conventional clock buffer solutions,
even those that offer low skew, still have a finite
amount of propagation delay. An application exam­
ple later in this article demonstrates the constraints
these delays force designers to operate under, and
how RoboClock allows the designer to overcome
these constraints.

Configurable phase control of distributed clocks al­
lows the designer to overcome the debilitatin~ ef­
fects of clock skew. With today's increasing clock
rates, the amount of time required for a clock signal
to travel across a circuit board becomes a significant
portion of the clock period. This clock skew can re­
sult in timing specification violations. RoboClock

7-74

offers designers the ability to manipulate the phase
of the distributed clocks, and thereby compensate
for clock skew.

Related Documents

For a more complete description of RoboClock as
well as its internal PLL, the reader is encouraged to
consult the following documents for additional in­
formation:

"CY7B991O/CY7B9920 Low Skew Clock Buffer"
data sheet.

"Innovative RobciClock Application" published in
the Cypress Semiconductor Applications Handbook.

"CY7B991/CYB992 (RoboClock) Test Mode" pub­
lished in the Cypress Semiconductor Applications
Handbook.

"Everything You Need to Know About CY7B991
and CY7B992 (RoboClock) But Were Afraid to
Ask" published in the Cypress Semiconductor Ap­
plications Handbook.

"CY7B991/CY7B992 Programmable Skew Clock
Buffer" data sheet, published in the Cypress Semi­
conductor Data Book.

Using RoboClock to Overcome a
Timing Violation

This design example typifies how RoboClock can be
used to solve timing margin problems. in this case,
the problem is a register set-up time violation. Rep­
resented is an actual design implemented by a major
telecommunications manufacturer.

i :
-.~ Innovative Designs with RoboClock

~'CYPRESS================================

ADDRESS tsu 6 ns
33 MHz •

22V10
486 14 ns 10 ns

DECODER

~~
33 MHz CLOCK

14 ns + 6 ns + 10 ns = 30 ns
(ZERO MARGIN - UNACCEPTABLE)

r- 30ns ~
Jr-----. I

Figure 1. Timing Violation

TARGET

• PLD

10 ns

I~ tsu

In this application a 33-MHz 486 microprocessor's
address has a critical path to the registered target
PLD through a 6-ns 22V10. As shown in Figure 1,
the address is guaranteed valid out of the 486 proc­
essor 14 ns after the initial rising clock edge, after
which the address is decoded by a 22VlO (requiring
an additional 6 ns) before needing to meet a re-

quired lO-ns register set-up time of the CPLD. Ex­
amination of the timing constraints shows that no
margin is present-a situation deemed unaccept­
able by the designer.

- FB

33 MHz REF

- FS

- 1FO

- 1 F1

~
2FO

- 2F1

100

200 ... -

The designer chose the RoboClock implementation
shown in Figure 2 in order to solve this timing margin

REF

To 486
Processor

JlL------Jn'-----J1L

----'

To Target
PLD

~ 1tu

,--------,I

Figure 2. Timing Violation Solution

7-75

problem. Essentially, the designer used RoboClock
to "move the clock", adjusting the phase of the
33-MHz clock input to the target PLD. As is shown,
the IFO and IFl control inputs are allowed to
"float" (the MID logic state), the resultant lQO out­
put is a buffered 33-MHz clock phase-aligned with
the 33-MHz reference input. The 2FO input is tied
HIGH and the 2Fl input is allowed to float, config­
uring the 2QO output to be delayed by one timing
unit (tv), thus yielding 1.2 ns of tnargin to the circuit.
The delayed 2QO output is then routed to tlie clock
input of the target PLD, the 1 QO clock is distributed
to the clock input of the 486 processor.

In summary, the buffered clock signal, coincident
with the reference clock, is distributed to the 486
processor, and a delayed clock is distributed to the
target PLD, allowing the PLD's set-up time to be
satisfied. An alternate solution would have been to
distribute an advanced clock to the 486 processor,
and distributing a nominal clock to the target PLD.
Either solution may be implemented with Robo­
Clock.

Note that the reference input as shown in Figure 2,
need not be a "50-50" duty cycle signal in order for
RoboClock to output a guaranteed 50 - 50 duty cycle
clock. Duty cycle requirements are increasingly im­
portant for contemporary processors.

RoboClock as a Zero Propagation
Delay Buffer

Clock speeds of 33 MHz and higher have become
the norm in the modem design environment. In­
creasing clock rates mean decreasing clock periods,
resulting in less "processing time" between rising
clock edges. Conventional clock buffering method­
ology is no longer adequate for these applications
because the propagation delay through a traditional
"244" buffer is a significant portion of the clock
period.

Even "high-performance; low skew" buffers suffer
from some finite amount of propagation delay. This
inherent delay translates into processing time lost to
the designer. Fortunately, designers can benefit
from PLL-based clock buffers, which are able to of­
fer zero propagation delay. The following example

is based on an actual implementation at a major
manufacturer of ATM Network Adaptor cards.

Figure 3 shows RoboClock configured to operate in
its most elegant mode, that of a zero propagation
delay clock buffer. It is contrasted against a conven­
tional clock buffering solution, such as a "244" buff­
er, which has inherent, performance degrading fi­
nite propagation delay. The specific version of
RoboClock shown is the CY7B991O, which is a func­
tional subset of the original, more fully featured,
CY7B991. The 7B991O or "Robo Jr." features an
identical PLL core as its parent, and thus the identi­
cal excellent low-skew characteristics between buff­
ered outputs. Robo Jr. was designed to be exclusive­
ly a low-skew, zero propagation delay clock buffer.
It therefore lacks the previously described clock
phase configurability that enables RoboClock to ne­
gate clock skew.

RoboClock as a Universal Clock
Multiplier

Figure 4 shows RoboClock's ability to synthesize,
with the addition of an external counter, any integer
multiple of the reference frequency, up to a limit of
80 MHz. RoboClock has the built-in ability to multi­
ply the reference clock by two and by four. Use of
an external counter greatly expands this ability.
This example is based on an actual design imple­
mented by a major telecommunications manufac­
turer.

This frequency syntnesis/multiplication is accom­
plished, as shown in this example, by feeding the ter­
minal count output of a divide-by-three counter into
the Feedback (FB) input of RoboClock. The rela­
tive phase difference present at the REF and FB in­
puts causes the internal PLL to adjust its output un­
til these two inputs are phase aligned. This results
in the outputs tripling in speed, from 20 MHz to 60
MHz. Additionally, the 60-MHz 4QO output is
shown to be inverted. This was accomplished by set­
ting the 4FO and 4Fl control inputs as "High, High",
the inverting configuration. Alternatively, the
60-MHz 4QO output could have been configured in
a phase-adjusted mode-pushed forward several
timing units or likewise pulled back. Thus the use of
the external counter to accomplish clock multiplica-

7-76

- -'f # Innovative Designs with RoboClock
,CYPRESS================================

F
2
4
4

~ 30ns
Reference -1

REF-
33 MHz

L FB

REF
33 MHz

-
c
Y
7
B
9
9
1
0

B
u
f
f
e

R
0
B
0

J
R

... -

... -

~ I
I Output
I

I ~ I
I ~ ~

Delay through buffer
I

Reference

~ I
Output

~ I
Zero delay means
zero processing time lost

Figure 3. Zero Propagation Delay Buffer

tion in no way inhibits the normal features of Robo­
Clock.

As shown in Figure 4, the multiplied outputs are
slightly skewed from the Reference input. This
phase difference results from the inherent "clock to
output" delay of the external counter. Any counter
will have some finite delay, which will manifest itself
in this manner.

Should this skew be considered detrimental to the
application, it can easily be eliminated on the 2Q,
3Q and 4Q outputs by adjusting the respective
phases of the outputs. By the nature of the applica­
tion, this skew will always be present between the
1Q output and the REF/FB input.

Gated RoboClock

From time to time, design requirements necessitate
the "gating" of clock signals. Special care must be
taken whenever this is done in order to prevent in-

7-77

termittent glitching of the distributed clock, the re­
sult of enabling and disabling. Clock glitches may
result in minimum pulse width violations upon reg­
isters present on the circuit board. The application
shown is based upon similar implementations in
both an ESCON (Enterprise System CONnection)
product as well as a high resolution graphics subsys­
tem employed in a virtual reality product.

Should the output of RoboClock need to be gated,
or three-stated, a viable method is shown in Figure
5. The CYBUS3384 is essentially a zero propaga­
tion delay (125 ps worst case) three-state buffer.
The upper half of the CYBUS3384 is continually
enabled, allowing a continuous wave form into the
FB input of RoboClock. The output of the lower
half of the CYBUS3384 is the gated clock, present
when the CYBUS3384's EN signal is asserted (ac­
tive LOW) and three-stated otherwise. The output
enabling scheme shown, which has a register sam­
pling the EN input upon the falling edge of the 1Q

FB

REF

REF

.¢.

C
Y
7
B
9
9

4F01
2F1

FB -

4F1

4FO

100

400

C
o
U
N
T
E
R

Multiplied

(by N=3)

Output

Terminal
Count
(Divide

by N=3)

Inverted, multiplied output

I
I
I

~

Reference 20 MHz Input

I I
Counter Output
to FB input on Robo

L---------II
I Skew resulting from

-.: ~ Counter delay

I
I 10: 60 MHz Output

Figure 4. Universal Clock Multiplier

R 10 0
B
0
C
L
0
C
K 40

CYBUS EN

CYBUS
3384

GND 1
EN

IN OUT

f-----

IN OUT

EN

D 0

- >
Figure 5. Gated RoboClock

7-78

.... -.-.

Continual
Output

Gated
Output

'":~ Innovative Designs with RoboClock
~JF CYPRESS ==========~=====

clock (the 4Q output has been inverted, and thus a
rising edge on 4Q corresponds to a falling edge on
lQ) guarantees that the gated clock output will nev­
er "glitch."

Continually Phase Adjusted Clock
Source

As a result of the flexible configuration options
within RoboClock, it is possible to achieve virtually
360 degrees of phase adjustment, allowing "place­
ment" of clock edges throughout the period of a
reference wave form. This functionality has been
implemented in a telecommunications network
analysis system used by Regional Bell Operating
Companies (RBOCs) and is depicted in Figures 2
and 7.

In this application, a 33-MHz reference signal is dy­
namically phase adjusted by writing different values
into a CMOS output level register, which in turn
feeds the 3F and 4F RoboClock inputs. Note that
the register used must have CMOS outputs, i.e.,
they must go "rail-to-rail" in order to satisfy the in-

Reference
Input

D

D

D

D

state 4-Bit, Three­
CMOS Register

a
a
a
a

L FB

- REF

3FO 30
3F1

4FO

4F1 40

put level requirements of RoboClock. The register
must also be capable of being three-stated, so that
it can put the 3F and 4F RoboClock inputs into the
"MID" state.

The application shown offers the designer the abili­
ty to subdivide the 30 ns period into thirteen slices,
2.4 ns apart. Each configuration of the 3F and 4F in­
puts corresponds to a different phase adjustment of
the buffered clock, relative to the reference clock.

Conclusion

Today's high-performance design environments re­
quire the design engineer to work with and distrib­
ute high-speed clocks. By their nature these high­
frequency clocks make the designer's task difficult.
When these clocks have to be distributed over even
relatively short distances, the effects of clock skew
can make the designer's job impossible. The Robo­
Clock family offers the design engineer opportuni­
ties to overcome a myriad of design challenges. Its
ability to manipulate clock waveforms, and to coun­
teract the effects of clock skew make it an integral
part of the contemporary designer's repertoire.

Reference Output

J 1L-------l1
Phase Adjusted Output

J L--l -----II
Figure 6. Continual Phase Adjustment

7-79

:..rcYPRESS
Innovative Designs with RoboClock

Control Inputs Reference Input and Phase-adjusted 400,1 Output

3FO 3F1 4FO 4F1 I_ 15 ns :.1_ 15 ns :.L...:0O,1

I
MID MID HIGH MID ~ 1+ +2tu (2.4 ns)

MID MID LOW HIGH ~ 1+ + 4tu (4.8 ns)
I

MID MID MID HIGH -.j 1+ +6tu (7.2 ns)

I
MID LOW HIGH MID ~

+ 8tu (9.6 ns) 1+

MID LOW LOW HIGH ~ + 1Otu (12 ns) 1+
I

MID LOW MID HIGH -.j + 12tu (14.4 ns) 1+
1+ 400,1

MID MID LOW MID -2tu (-2.4 ns) +j
I

MID MID HIGH LOW -4tu (-4.8 ns) +j l+-
I

MID MID MID LOW -6tu (-7.2 ns) +j ~
~

MID HIGH LOW MID - 8tu (-9.6 ns) -+I
I

MID HIGH HIGH LOW +j -1Otu (-12 ns) ~
MID HIGH MID LOW I

+j -12tu (-14.4 ns) ~

Figure 7. Continual Phase Adjustment

7-80

Generation of Synchronized Processor Clocks
Using the CY7B991 or CY7B992

Introduction

Many modem systems use multiple processors op­
erating simultaneously in order to increase perfor­
mance and improve throughput. Timing analyses
and interprocessor communications are significant­
ly simplified if the clocks to the processors occur at
exactly the same time. This application note ex­
plains the problem and presents a technique for
generating synchronous clocks to two Intel
80960CA processors using the Cypress CY7B991
Programmable Skew Clock Buffer (PSCB), also
known as RoboClock. The technique is then ex­
tended to "n" processors.

Design Requirements

The processors require 33-MHz clocks and are op­
erated in the xl mode (Le., CLKMODE = HIGH).
In this mode the output clock, PCLK1, PCLK2, are
also 33-MHz and can be phase shifted plus or minus
two nanoseconds from the input clock, CLKIN.
This is due to the internal (2X) Phase-Locked Loop
(PLL) in the processor. The minimum CLKIN
LOW duration is 10 ns and the minimum CLKIN
HIGH duration is also 10 ns. In addition, the maxi­
mum cycle-to-cycle eLKIN period variation is plus
or minus 0.1%. Another requirement is that the
RESET input to the processor be held LOW for at
least 10,000 CLKIN cycles after Vee and CLKIN
have stabilized (are within their specifications) be­
fore it is allowed to go from LOW to HIGH.

7-81

Clock Interconnections

Figure 1 illustrates the interconnections required for
clock synchronization. The connections are the
same if the CLKIN frequency is 66 MHz. However,
the CLKMODE input must be tied to ground. The
PCLK1 output is then 33 MHz.

Theory of Operation

During power tum-on, the RESET input of each
processor must be held LOW by external logic (not
shown). 1YPical power supply tum-on times are in
the 50 ms to 500 ms range .. After the power supply
and 33-MHz oscillator have stabilized, it takes
10,000 cycles of the 33-MHz CLKIN input to proc­
essor 1 before its PCLK1 output is within its specifi­
cation. This is 300 microseconds.

During this time, the TEST input to the CY7B991
must be held HIGH. When this is done, the internal
Phase-Locked Loop of the CY7B991 is disabled and
the signal at the REF (reference) input is passed
through to the 1QO output, and then to the CLKIN
input of processor 2. Again, 300 microseconds must
pass before the output PCLK1 of processor 2 is
stable. Both processors are now running at 33 MHz,
under control of the oscillator. The PCLK1 clocks
of the processors, however, are not synchronized.

Synchronization of the Processor
Clocks

The next step is to cause the TEST input of the
CY7B991 to go from HIGH to Law. This causes
the Phase-Locked Loop within the CY7B991 to ad-

-=..

- -.. ~ Clock Synchronization Using RoboClock
"CYPRESS ================

CY7B991 i80960CA

~ FB PClK1 -

~ REF -+C RESET Processor 2

ClKIN

.. TEST 100 i
~

I i80960CA

PClK1 r--

33 MHZ n.c: RESET Processor 1
OSCilLATOR

ClKIN

I f
Figure 1. Clock Connections for Synchronization

just the phase and frequency of the 1QO output,
which is driving the CLKIN input of processor 2,
such that the rising edges of the signals on its FB and
REF inputs are aligned. Because the PCLK1 output
of processor 2 is a function of its CLKIN input, when
the CY7B991 adjusts its 1QO output, the PCLK1
output follows. The result is that the PCLK1 out­
puts and, therefore, the CLKIN inputs of the two
processors are synchronized. What this means is,
that for all practical purposes, there is "zero delay"
between the rising edge of the signal on the REF in­
put and the signal on the FB input. However, what
is more important is that this alignment is adaptive
and dynamic because it occurs on a cycle-by-cycle
basis, and, therefore, is not influenced by variations
in power supply voltage or temperature. After the
processor clocks are synchronized, the RESET lines
to the processors can transition from LOW to
HIGH.

CLKIN Cycle-to-Cycle Variation

The next step is to calculate the maximum cycle-to­
cycle variation of the CLKIN input to processor 2

and make sure that it is within the 0.1 % specification
on the S0960CA data sheet. At 33 MHz the clock pe­
riod is 30 ns, so 0.001 x 30 x 10 -9 = 30 picoseconds
per cycle.

The Phase-Locked Loop of the CY7B991 requires
approximately 50 microseconds to lock. This corre­
sponds to 50 microseconds divided by 30 ns per
cycle, or 1,667 clock cycles. The worst-case condi­
tion is that the two processor clocks are ISO degrees
out of phase when the signal at the TEST input of
the CY7B991 transitions from HIGH to LOW.
One-half a cycle of a 30 ns period clock is 15 ns. Fif­
teen nanoseconds divided by 1,667 cycles is 9 pico­
seconds per cycle. This is much less than the plus or
minus 30 picoseconds (60 picoseconds total) speci­
fied on the S0960CA data sheet

Synchronization of Many Processors to
a Single Clock

Figure 2 illustrates how three processors can be syn­
chronized. The first runs off of the oscillator and the
other two are synchronized to the first by using two
CY7B991s. The PCLK1 output of processor 1 is the

7-S2

= ~ Clock Synchronization Using RoboClock
~~ CYPRESS ================

CY7B991 i80960CA
~ FB PClK1 ~

~ REF ~ RESET Processor 3

ClKIN

.. TEST 100 i .

CY7B991 i80960CA .. FB PClK1 t--

...... REF 4~ RESET Processor 2

ClKIN

.;. TEST 100 i .

I i80960CA

PClK1 -
33 MHZ

.~ RESET Processor 1
OSCilLATOR

ClKIN

I f
Figure 2. Clock Connections for Synchronization of Three Processors

reference for the two CY7B991s. Each controls the
clock to a processor. Thus n -1 CY7B991s are re­
quired to synchronize n processors.

The advantage of using separate RoboClocks for
processor 2 and processor 3 is that, because of the
analog nature of the internal RoboClock PLL, the
PCLK1 output of each is independently and dynam­
ically adjusted, on a cycle-by-cycle basis, with the
PCLK1 output of processor 1. This is accomplished

7-83

by applying the PCLK1 output of processor 1 to the
REF input of the two RoboClocks and tying the
PCLK1 outputs of processors 2 and 3 to the FB in­
puts of two separate RoboClocks.

One CY7B991 can be used to control many proces­
sors if they do not have on-chip Phase-Locked
Loops. Or, the system designer may choose to not
use the processor clock output.

Clock Synchronization. Using RoboClock

CY7B991

---- FB 401 - .. PROCESSOR 4 400 H~ G

--. REF I I
E I I F ---. TEST 300 ...

PROCESSOR 3 I I

I I
I I I

C I D I ..
PRociEsSOR 2 200 I ..

I

I I

I I I
A I I B ...

I I
~ PROCESSOR 1

100

I I
o - 2tu - 4 tu settings of RoboClock

Figure 3. One RoboClock Driving Multiple Processors

Driving Multiple Processors
From One RoboClock

Figure 3 illustrates one CY7B991 driving multiple
processors that are located at different distances.

Advantages

The advantages of the configuration illustrated in
Figure 3 are (1), that one CY7B991 can drive up to
seven processors using seven of the eight Robo­
Clock outputs and (2), that the select inputs can be
used to adjust the timing of the Q outputs to com­
pensate for variations in trace length, so that the
clocks to the processors arrive at exactly the same
time.

For example, the propagation delay of trace G H is
two timing units, that of trace C D is four timing
units, and those of traces E F and A B are six timing
units. It is required that the clocks to all of the proc­
essors arrive to each at the same time.

The first step is to select a "zero" point as a timing
reference. This is the clock at processor 4, which is
point H. However, in real life, the propagation
delay of trace G H is two timing units. What Robo­
Clock does is precisely align the rising edge of the
signal at its FB input with the rising edge of the sig­
nal at its REF input. The length of the fed back out­
put trace (4Q1 to FB) should be as short as possible.
It not only simplifies the timing analysis, but also re­
duces the noise introduced into the PLL.

7-84

~

Sjf .. -=z Clock Synchronization Using RoboClock
_,-cYPRESS ==============

Limitations

There is no feedback from the clock outputs of the
processors, so they cannot be individually, dynami­
cally aligned with the REF clock, as is done in Figure
2. A second limitation is that the eight outputs of the
CY7B991 are grouped in four pairs and are adjust­
able only as pairs. This means that a maximum of
three (pairs of) processors can be aligned indepen­
dently if each is a different distance away from Ro­
boClock. By matching the trace length within pairs
(i.e., 100, 101) up to seven processors can be driv­
en, each with its own, dedicated output.

Determination of Delay Settings

For purposes of explanation, the "zero" is chosen at
point H, which is the closest physical point to Robo­
Clock. Point F is four timing units farther away than
point H, so its signal must precede (timewise) that
at point H, so that the signals at points F and H occur
at the same time. Therefore, the select input con­
trolling the 30 outputs is set at -4 timing units. In
a similar manner, the select input controlling the 20
outputs is set at - 2 timing units and that controlling
the 10 outputs is set at -4 timing units. When this
is done, the signals at points H, F, D, and B occur at
the same time, which is the zero point shown. The
timing is shown in in Figure 4 below.

REF r-l~ ________________________________ _
F8 r-lL-______________________________ __
401

400 I I

~"t 400 (H) +I
300 (F) 4tu +I
200 (0) .j 2tu ~

100 (8) ~ 4tu ~

0

Figure 4. Timing Diagram for Figure 3 (before select control settings)

7-85

Innovative RoboClock Application

Introduction

This application note presents a unique application
of RoboClock, using its complex and precise wave­
form generation· capability to implement PWM
(Pulse Width Modulation) to enhance color images
and increase the resolution of laser printers. The
first section of this application note provides a brief
description of RoboClock and presents three meth­
ods that the user can employ to configure it. Second,
a brief background on image and resolution en­
hancement is presented. Finally, the required wave­
form to implement the image enhancement and the
configuration of RoboClock is presented.

Overview of RoboClock

The CY7B991 and CY7B992, commonly known as
RoboClock, are programmable skew clock buffers
capable of generating thousands of various clocking
combinations. As shown in Figure 1, the eight high
drive outputs are arranged in four pairs, which can
be configured by three-level inputs (HIGH, LOW,
and MID logic level). The internal PLL is fully self­
contained and does not require any external compo­
nents to operate. The PLL buffer stages are differ­
ential, greatly enhancing the robustness of the PLL
operation in terms of jitter over voltage, and tem­
perature variations.

Basically, the PLL aligns the output clock in both
phase and frequency with the reference clock. The
simplest mode of operation is the low-skew output
mode. In this mode the outputs are virtually skew­
less. The maximum skew is only a few hundred pico­
seconds. Please refer to the CY7B991/992 data­
sheet for various skew specifications. The second
mode is the programmable skew mode. The outputs

of RoboClock can be skewed (advanced and
delayed) by increments of one time unit (tv), which
is 0.7 to 1.5 ns, determined by the operating frequen­
cy and range of the PLL.

fu = l!(Fnom * N) Eq. 1

As shown in Table 1, the frequency range of the PLL
is determined by the three-level FS input. For each
frequency range, there is a corresponding integer
"N" that can be used in Equation 1 to calculate tv.
Up to ± 12tv skew can be achieved between the out­
puts of RoboClock (positive tv represents delaying

TEST

VCOAND
TIME UNIT

GENERATOR

7-86

=tz~YPRESS~~~~~~~~~~In~n~o~va~t~iv~e~R~o~b~O~C~IO~C~k~A~p~p~lic~a~tI~'o=;n

the output with respect to REF and negative tu rep­
resents advancing the output with respect to REF).

The third mode of operation is the Multi-function
mode. In this mode the outputs may be multiplied
by 2 or 4, divided by 2 or 4, or inverted. Most impor­
tantly, the skew features can be combined with mul­
tiply, divide, and invert functions. This results in, lit~
erally, over 26,000 timing configurations. For more
detailed information on the operation of the Robo­
Clock, please refer to the following application
notes "Using the CY7B991 with the 50-MHz 486
Cache Module and the 40-MHz R3000" and "Every­
thing You Need to Know About CY7B991/CY7B992
(RoboQock) But Were Afraid to Ask." This applica­
tion note is meant to complement the topics dis­
cussed in above mentioned application notes.

Table 1. Frequency Range Select and tu
Calculation

fNOM
tu = 1 Approximate

(MHz)
(NOM x N Frequency (MHz)

At Which tu = 1.0
FS Min. Max. whereN = ns

LOW 15 30 44 22.7

MID 25 50 26 38.5

HIGH 40 80 16 62.5

Usually, one of the outputs of RoboClock is used as
the Feedback input. If the desired waveform is not
directly generated by RoboClock, an imaginative
user may run an output of RoboClock through a log­
ic block, then send it back to the FB input of the Ro­
boClock. Through this scheme, unlimited addition­
al functions may be implemented by RoboClock.
Note that in this case, all the other outputs of the Ro­
boClock will be shifted by a period equal to the delay
through the external logic block, because the PLL
will align the FB input with the REF input, both in
phase and frequency.

Cascading two RoboClocks in series will also dra­
matically increase the output possibilities. In this
case, one of the outputs of the first stage will serve
as the REF input for the second stage. Multiple
feedback configurations are possible, which can re­
sult in an innovative set of outputs.

RoboClock Configuration
Methodologies
Using One Small Table

The entire set of programmable skew configura­
tions is summarized in a single small table shown in
Table 2. Every possible combination can be driven
from this small table. For example, if + 2tu is re­
quired from 3Qx (3QO or 3Ql) outputs, based on
Table 2, the corresponding 3Fx inputs should be set
as 3Fl= MID and 3FO=HIGH. Anyone of lQx,
2Qx, or 4Qx outputs may be used as FB input, by
leaving its corresponding IFx, 2Fx, or 4Fx inputs
floating (i.e., IF1= MID, IFO= MID). Note that
Table 2 represents only the cases where the feedback
is an output with no skew, divide, or invert function.
Basically, a Otu output is used for FB input.

Table 2. Output Adjustment Configurations
Function Selects Output Functions

IFl,2Fl, IFO,2FO, lQO,IQl,
3Fl,4Fl 3FO,4FO 2QO,2Ql 3QO,3Ql 4QO,4Ql

LOW LOW - 4tu Divideby2 Divide by 2

LOW MID - 3tu - 6tu - 6tu

LOW HIGH - 2tu - 4tu - 4tu

MID LOW - ltu - 2tu - 2tu

MID MID Otu Otu Otu

MID HIGH +ltu + 2tu + 2tu

HIGH LOW + 2tu + 4tu + 4tu

HIGH MID + 3tu + 6tu + 6tu

HIGH HIGH + 4tu Divide by4 Inverted

Now, to generate additional output functions, if the
feedback output is programmed to skew, divide or
invert, then output functions of other outputs may
not be directly read from Table 2. In this case, to fig­
ure out the final output function observed on the
output, simply subtract whatever the feedback term
is programmed to, from the output function pro­
grammed on the corresponding output. Therefore,
by using only Table 2 and the following simple algo­
rithm, every single combination of RoboClock can
be figured out.

Final Output Function = Output Function - FE
Function

If there is any ambiguity, the following example
should clarify the use of this method. Let's say + 7tu

7-87

of delay is required. Obviously, + 7tu is not a choice,
available in Table 2. However, any two functions
from two different outputs of Table 2 may be com­
bined to achieve a desired function. For this exam­
ple, there are several solutions, and only one of
them will be presented. One way to achieve + 7tu
is to subtract -3tu from +4tu.

+7tu = +4tu - (-3tu)

Therefore, if lQx output is programmed to have
-3tu of skew (lFl=LOW, IFO=MID), and used as
the FB input, and if the 3Qx is programmed to have
+4tu of skew (3Fl=HIGH, 3FO=LOW), the final
output function observed on 3Qx will be + 7tu.

One exception to this simple rule is that if a divided
output is used as the FB input, then the other out­
puts will be multiplied by the same factor (2 or 4).
The reason for this is that the PLL will force the FB
to align with the REF both in phase and frequency.
Therefore, if the FB term is programmed to divide
by 2, the PLL will speed up twice to force the FB
term to align with the REF frequency. As an exam­
ple, if advance by 6tu and multiply by 4 function is
required (-6tu and f*4), then

FinalFunction = -6tu - (divide by 4) => (-6tuand
/*4)

The solution for this example is to program 3Qx to
divide by 4 (3Fl=HIGH, 3FO=HIGH) and use it as
FB, and program 4Qx to have -6tu of skew
(4Fl=LOW, 4FO=MID). The final function ob­
served on 4Qx will be REF frequency multiplied by
4 and advanced by 6tu (-6tu and f*4).

By this method, one can easily determine if a de­
sired function can be implemented by RoboClock or
not. RoboClock can generate a waveform com­
posed of any two functions from two different out­
puts of Table 2.

Using Three Tables for Multiple Outputs

If multiple outputs with various functions are re­
quired, using the previous method could be a little
cumbersome. All the possible combinations of Ro­
boClock outputs are in three tables, illustrated in
Tables 3 through 5. Each table represents all the
possible output combinations with a given output

Innovative RoboClock Application

connected to FB input. For example, once 3Qx out­
put is used as FB input, then all the possible output
combinations could be found in Table 4. These three
tables are extremely valuable tools in determining
what FB term to use and how to configure the Robo­
Clock, when multiple outputs with various functions
are required.

Once the required multiple functions are deter­
mined in terms of tu, an effort should be made to lo­
cate one row in one of the three tables that contains
the required functions. For example, if one of the
desired functions is divide by 2 and delay 4tu (+4tu
and f/2), then by observation, that choice can be lo­
cated in row 1 of Table 3, row 3 of Table 4, and row
3 of Table 5. Now, the one to be selected as a solution
would depend on what the other required functions
are, because once an output, which is programmed
to perform a certain function, is selected as FB in­
put, all the outputs of a RoboClock are limited to a
single row found in Tables 3 through 5. If in the pre­
vious example, the second required function hap­
pens to be invert and skew by 4tu (+4tu and INV),
then the only solution is row 1 of Table 3. In this case
lQx could be used as the FB input with its inputs
hardwired to GND (lFl=LOW, IFO=LOW), and
3Fl=HIGH, 3FO=HIGH to generate (+4tu and
f/2) function on 3Qx outputs, and set 4Fl=HIGH,
4FO=HIGH to generate (+4tu and INV) function
on 4Qx outputs. In this configuration, the 2Qx out­
puts could be programmed to have anyone of Otu
through + 8tu skew. For example, if + 7tu is another
required output, then 2Fl=High, 2FO=Mid will
generate + 7tu skew on 2Qx. Note that even though
the lQx outputs are programmed to have -4tu
skew, they are forced by PLL to align with the REF
frequency, therefore lQx output could be used as a
Otu output.

The Table method is recommended for multiple
outputs with various function requirements. If the
exact required outputs cannot all be found in one
row, then the designer can use the three tables to un­
derstand the design choices that are available within
the three tables. Based on the design requirements,
the user can make a judgement on what outputs
must exactly meet the required specs, and what out­
puts may be slightly compromised. If the required
outputs are not found in one row of the three tables,

7-88

=a ~YPRESS~~~~~~~~~~I;n;n;ov;a;t;w;e;R;o;b;O;C;IO;C;k;A;p;p;li;ca;t;io;n~

0
0

0 0
0

a. Standard unmodulated

0
0

10, 0

tJ Q
lob

b. Modulated laser beam with shorter "on"
periods and variable-size dots.

Figure 2. Laser Images

and no compromise can be made on the require­
ments, then two or more RoboClocks may be used
to meet the specific required outputs.

Using RoboClock in Resolution
Enhancement of a Laser Printer

Background

Laser printers are no different from any other elec­
trical systems, in that the higher the resolution or
the accuracy of the system, the higher the complex­
ity and cost of the system. It has been and will always
be the goal of system and design engineers to
achieve the highest performance and resolution at
the lowest cost.

In the case of a laser printer, to achieve higher reso­
lution than the nominal low-end 300 DPI (dot per
inch), the throughput of the processor, size of the
memory, and the glue logic should increase accord­
ingly. In many cases, the additional hardware cost
does not justify the enhancement in the resolution.
A few years ago, a new technique called Resolution
Enhancement Technology (RET) was developed by
Hewlett Packard. The main advantage of this tech­
nique versus conventional resolution enhancement
techniques is that the resolution enhancement is
gained with hardly any increase in the throughput of
the processor or memory size. Therefore, this ap-

7-89

proach is a very economical way of gaining en­
hanced resolution.

For obvious reasons, the entire laser printer industry
is using some form of this technique. Various flavors
of the same technique are being applied to different
image-enhancement machines. The halftones or gray
scales are common in most laser printers. The under­
lying technique is fairly simple. This is accom­
plished by modulating the laser beam, as opposed to
the conventional "on" or "off" state of the laser
beam, for the entire cycle time. The laser beam
could be turned "on" or "off" 25%, 50%, 75% or
100% of the period. By this, large and small dots can
be produced on a given image, therefore gaining
much higher "perceived" resolution compared with
images constructed by only one size dot. The vary­
ing size dots produce much smoother text files and
generate much sharper images through shades of
gray. Refer to Figure 2a and 2b. The same idea is
used in color image enhancement where much
smoother and more pleasant images may be pro­
duced in a given color image by dilating black dots
and shrinking the red. This filtering or color en­
hancement feature can be used to produce various
special effects, or simply be employed to create
more appealing color images. Please refer to Figure
3a and 3b. To further clarify this technique, the true
resolution, technically, still remains the same, but
the images are "perceived" to be higher resolution.
It does not matter how the "better image" was

1ii~CYPRESS============================== ~ Innovative RoboClock Application

0 0 0
0 • 0
0 0 0

a. Black dot dilated b. Red dot shrunk

Figure 3. Color Enhancements

created, as long as it looks good and the cost of the
hardware is affordable.

Design Implementation

RoboClock is used to generate precise complex wa­
veforms needed for laser beam modulation. The
particular laser system discussed in this application
note requires eight levels of modulation, which con­
sists of 100% on, 75% on, 50% on, 25% on, 100%
off, 75% off, 50% off, and 25% off. The eight wave­
forms are shown in Figure 4.

Note that all waveforms are synchronized to the ris­
ing edge of the system clock.

Analyzing the entire circuitry of the laser printer is
beyond the scope of this application note, and only
the waveform modulation section is discussed. The
system clock runs at 66.67 MHz, which translates
into 15 ns cycle time. The simplified diagram of the
modulation section is shown in Figure 5. The modu­
lation section consists of a RoboClock, a 256K*4
SRAM that contains the pixel information, four
NOR gates with complemented outputs, and an 8:1
MUX. In this application, since the laser head in­
terface uses ECL levels, 500 ps ECL NOR gate with
complemented outputs (MClOE101) and ECL 8:1
MUX (MClOE163) is used. Unused inputs of the
quad four input NOR gates are tied LOW. The TtL
outputs of CY7B991 are translated into ECL levels
by Cypress Semiconductor high-speed, low-skew
TTL to ECL translator (CYlOE384L). To keep the
modulation logic diagram simple, the translate

block is not shown in Figure 5. Note that, generally,
74AS logic parts are used to implement external log­
ic functions, which requires no translate logic to in­
terface with RoboClock.

The 66.67-MHz system clock is fed to the REF input
of the RoboClock. RoboClock generates very pre­
cise waveforms and, with one level of gating, all the
six modulated waveforms are produced and fed to
the 8: 1 MUX. For this design, RoboClock generates
precise 90-degree phase-shifted, true and complem­
ented versions of the 66.67-MHz REF input fre­
quency. Note that only six waveforms are gener­
ated. The "100% on" and "100% off" modes are
hardwired HIGH and LOW to the 8:1 MUX. Three
bits of the SRAM are used to select one out of eight
possible modulated signals. The output of very fast
MUX is directly sent to the laser head. Therefore,
all eight levels of modulated waveforms are present
at the input of the MUX at all times. Only one is
routed to the laser head, depending on the required
modulation level stored in the SRAM.

Generally, one should be very cautious about using
the output of a MUX, since during the period when
MUX select bits are changing, the MUX output will
usually be glitching, until the MUX select bits are
stabilized. This behavior is due to the fact that all
the select bits do not arrive at exactly the same time.
Even if they did arrive at the same time, delay path
variations and logic switching internal to MUX may
create a glitch oh the output. As a word of caution,
the above mentioned scheme should not be used for
a clocking scheme. When a new MUX input is se-

7-90

- -'f ~ Innovative RoboClock Application
'CYPRESS ================

lected, there will probably be a glitch on the output.
If the first cycle glitch can be tolerated or masked,
then this scheme can be used for clock distribution.
A delayed clocked version of the MUX output could
be safely used for clock distribution. Obviously, the
delay should be larger than the maximum propaga­
tion delay of MUX. For this particular application,
the glitch is not as important, because the total dura­
tion of ON and OFF times of the laser beam is the
concern, not the rising or falling edges of the wave­
form. Also, the laser head is turned off during the
MUX address selection, totally masking any pos­
sible glitches.

Configuring RoboClock and Design Analysis

A close observation of waveforms shown in Figure 5
reveals the fundamental idea behind generating all
six modulated waveforms. Simply by gating the
90-degree phase-shifted REF with the true and
complemented version of the REF clock, all six wa-

veforms are generated. For simplicity's sake, lets
call the 90-degree phase-shifted waveform +4tu,
66.67-MHz clock F, and the inverted clock F. Let's
look at how each one is generated.

75% HIGH: (+4tu) OR (F)

50% HIGH: F

25% HIGH: (+4tU) NOR (P)

75% LOW: (+4tu) NOR (F)

50% LOW: F

25% LOW: (+4tu) OR (F)

Note that very fast NOR gates with true and com­
plemented outputs were selected to achieve uni­
form delay for all outputs. Also, the 50% HIGH and
50% LOW signals are routed OR gates configured
as buffers to ensure matched delay signals. Please
note that all three RoboClock outputs, +4tu, F, and
F, have the same number of loads. It is very impor-

'-tp=15ns~

____ ~I I ~I --~~ __ ~ REF (66.67 MHz)

F

+4tu ''-_.......---1 L
100% HIGH ------~~--------------~------------------------------

75% HIGH

50% HIGH

25% HIGH
--------/ ~------~~'------

100% LOW --------,----------------r--------------------------------
75% LOW

50% LOW

25% LOW LJ LJ ,
Figure 4. Generated Waveforms

7-91

tant during layout to match all the trace lengths
from RoboClock to NOR gates and from the NOR
gates to the MUX to prevent undesirable skew,
which will translate into phase shift and pulsewidth
variation on the laser beam.

Over voltage and temperature variation, all the out­
puts ofthe RoboClock are very stable. The PLL in­
side the RoboClock is constructed from differential
stages, which makes it self-compensating against
voltage and temperature variations. Consequently,
RoboClock generates robust output waveforms in
terms of phase and frequency. The external OR
gates may distort the waveform due to the effects of
voltage and temperature variation.

Earlier, the 90-degree phase-shifted waveform was
equated with +4tu. Let's see how that was derived.
Based on Table 1, each time unit is calculated by the
following equation:

tu = 1/(Fnom * N) Eq.1

CY7B991
FB

66.67 MHz
REF

Vee FS

400
4FO

401
4F1

300
3FO

301

3F1 200

2FO
201

GND 2F1 101

1FO 100
1F1

TEST

GND

Where, as indicated in the Table 1, N can be anyone
of 44,26, or 16 integer numbers, depending on the
maximum output frequency of the RoboClock.
Since the output frequency is 66.67 MHz, then FS is
selected to be HIGH (frequency range of 40 to 80
MHz), N = 16, and Fnom = 66.67 MHz. By simply
plugging the numbers in the Equation 1, the time
unit or the tu can be calculated as:

tu = 1/(66.67 MHZ * 16)

tu = 0.9375 ns

In terms of phase shift, if 66.67 MHz or 15-ns cycle
time is 360 degrees, then the 90-degree phase-shift
is essentially 15 ns divided by 4.

90 Degree Phase Shift = 15 ns / 4 = 3.75 ns

Therefore, the number of time units to shift to ob­
tain 90-degree phase-shift, is simply derived by di­
viding 3.75 ns by tu.

Number of Time Units = 3.75 ns / 0.9375 = 4

100% HIGH HIGH 8:1
AO MUX

75% HIGH
A1

50% HIGH
A2

25% HIGH OA
A3 QA

100% LOW LOW A4

75% LOW
A5

50% LOW
A6

25% LOW A7

MUXSELECT
BITS FROM SRAM

TO LASER
HEAD

Figure 5. Simplified Laser Modulation Diagram

7-92

Therefore, in FS = HIGH mode, 4 tv translates into
90-degree phase-shift. An observant reader might
have already noticed the fact that in FS = HIGH
mode, N is equal to 16, based on Table 1. This means
that, in FS = HIGH mode, an entire cycle or 360 de­
grees, is equivalent to the delay through 16 stages of
ring oscillator, and each stage represents one tv (In
FS = LOW the number of delay stages or N is 44
and in FS = MID it is 26. As shown in Figure 6, note
that the actual number of ring oscillator buffer
stages is half the N, because each cycle contains a
LOW and HIGH period, which means to complete
a full cycle the signal propagates through the ring os­
cillator twice.) In order to derive a 90-degree phase­
shift, all one needs to do is to multiply N by 1/4
(where 90/360 = 1/4 cycle). Therefore, 16/4 = 4
time units, in FS = HIGH mode, represents a 90 de­
gree phase shift.

The same simple methodology can be used to figure
out the number of time units of delay or advance to
implement a n arbitrary degree of phase shift. The
number of units of skew (Tv needed for an arbitrary
phase shift is calculated as follows:

Innovative RoboClock Application

T = N - phaseshift
u 360 Eq.2

Rounding this number to the nearest integer will
introduce a small phase error from the desired
phase shift. For example, if 60 degree phase shift is
required when FS = LOW, then:

Required Phase Shift = 60/360 = 1/6 cycle

Number of Time Units = N * 1/6 = 44/6 = 7.33 tu

Since the number of PLL stages for each FS mode
is an integer number, then the nearest time unit
shift, in this case, will be seven. Obviously, this will
create a phase error of 0.33 tu.

Let's go back and discuss how the +4tv, F and Fwa­
veforms are generated by RoboClock. Since multi­
ple outputs from a single RoboClock is expected, as
an exercise, let's use the three-table method. There
are several solutions for the current requirement;
only one of the simplest is presented. By observing
Table 3, titled as "1Qx/2Qx Output Connected to FB
Input," one may select the 1QO to be used as FB, and
leave the corresponding inputs floating
(lFO=lF1=MID). Thus, essentially, we have ac-

-6 -4 -3-2 -1 0 +1 +2 +3+4

1FO 100
1 F1 101

2FO 200
2F1 201

3FO 300
3F1 301

4FO 400
4F1 401

Distributed-Phase Taps Divided & Inverted Taps

Figure 6. Distributed-Phase Clock Oscillator and Output Adjust Matrix

7-93

cess to all the terms available in row two of the given
table. Now, by selecting the inputs, the RoboClock
may be configured to generate various waveforms.
By setting 2FO=2Fl=MID or floating the 2Fx in­
puts, the 2QO and 2Ql will generate the required F
signal (also, lOx could have been used for F signal).
Setting 3FO=LOW and 3Fl=HIGH will generate
+4tu signal at 3QO and 3Ql. Finally, setting
4FO=4Fl=HIGH will generate the F signal. As
mentioned earlier, by fixing the feedback term, in
this case, all the elements of the 2nd row of Table 3
are available for the user. RoboClock is a flexible
clock distribution buffer that may be reconfigured
easily during the prototyping phase of a design. For
example, if instead of generating a 0 Tu output on
2Qx, it is required to have the 2Qx signals advanced
by 2tu, then this can be accomplished simply by set­
ting 2FO=HIGH and 2Fl=LOW. This is one of the
commonly used features of RoboClock that offers
thousands of variations for proto typing purposes.
Often, during prototyping phase, some modifica­
tion in the clock or the waveform is required.

RoboClock, with its thousands of configurations, re­
solves some of the unexpected timing problems. In
fact, during prototyping, if multiple timing varia-

Innovative RoboClock Application

tions are expected, it is advised to use a three-state
register to drive the RoboClock inputs. Then, each
output of the register must have a 10K pull-up and
10K pull-down resistor, to ensure that MID level is
held at half the supply voltage when the register is
three-stated. In this case, the user may write a word
in the input register, and by doing so, reconfigure
the entire operation of the RoboClock, without us­
ing any jumpers. Note that not all the inputs need
to be reconfigurable for a given design. Often, a
couple of reconfigurable signals are all that is need­
ed. In that case, most inputs may be hardwired and
the inputs needed to reconfigure various outputs
may be registered with the 10K pull-up and pull­
down resistors.

Summary

RoboClock was used to generate very precise com­
plex waveforms to enhance color images and in­
crease the resolution of laser printers. Even though
RoboClock is widely used for clock distribution, this
application note presented an alternative use of Ro­
boClock for complex precise waveform generation.

Table 3. lQx or 2Qx Output Connected to FB Input (Part 1)

Feedback Section ZQx Output Section

1Qx(ZQx),FB
<=I

ZQx(lQx) Outputs with respect to REF

I~
ZF1 L L L M M M H H H
(lF1)

1F1 1FO ZFO L M H L M H L M H
(ZF1) (ZFO) 8~ (lFO)

L L Ot +It +Zt +3t +4t +5t +6t +7t +8t

L M -It Ot +It +Zt +3t +4t +5t +6t +7t

L H -Zt -It Ot +It +Zt +3t +4t +5t +6t
<=I

M L
0

'n -3t -Zt -It Ot +It +Zt +3t +4t +5t

M M ~~ -4t -3t -Zt -It Ot +It +Zt +3t +4t
~~ M H 8- -5t -4t -3t -Zt -It Ot +It +Zt +3t

H L
::s
0 -6t -5t -4t -3t -Zt -It Ot +It +Zt

H M -7t -6t -5t -4t -3t -Zt -It Ot +It

H H -8t -7t -6t -5t -4t -3t -Zt -It Ot

7-94

Innovative RoboClock Application

Table 3. lQx or 2Qx Output Connected to FB Input (Part 2)
Feedback Section 3Qx Output Section

lQx(2Qx).FB <= 3Qx Output with respect to REF
.~

i~
3F1 L L L M M M H H H

1F1 1FO 3FO L M H L M H L M H
(2F1) (2FO) 8~
L L +4t, -2t Ot +2t +4t +6t +8t + lOt +4t, f/4

f/2

L M +3t, -3t -It +It +3t +5t +7t +9t +3t, f/4
f/2

L H <= +2t, -4t -2t Ot +2t +4t +6t +8t +2t, f/4
0 . .0 f/2
" M L .£.,. +It, -5t -3t -It +It +3t +5t +7t + It, f/4 "" "-'0 f/2
"ill

M M B- Ot, -6t -4t -2t Ot +2t +4t +6t Ot, f/4
;::J

0 f/2

M H -It, -7t -5t -3t -It +It +3t +5t -It, f/4
f/2

H L -2t, -8t -6t -4t -2t Ot +2t +4t -2t, f/4
f/2

H M -3t, -9t -7t -5t -3t -It +It +3t -3t, f/4
f/2

H H -4t, -lOt -8t -6t -4t -2t Ot +2t -4t, f/4
f/2

Table 3. lQx or 2Qx Output Connected to FB Input (Part 3)

Feedback Section 4Qx Output Section

1Qx(2Qx).FB .§ 4Qx Output with respect to REF
'cd 4F1 L L L M M M H H H ...

1F1 lFO i~ 4FO L M H L M H L M H
(2F1) (2FO) 0.9

U~

L L +4t, -2t Ot +2t +4t +6t +8t +10t +4t,
f/2 INV

L M +3t, -3t -It +It +3t +5t +7t +9t +3t,
f/2 INV

L H +2t, -4t -2t Ot +2t +4t +6t +8t +2t,
f/2 INV

M L <= +It, -5t -3t -It +It +3t +5t +7t +1t,
0 f/2 INV . .0

" M M .£.,.
""

Ot, -6t -4t -2t Ot +2t +4t +6t Ot,
"-'.9 f/2 INV
,,~

M H ~ -It, -7t -5t -3t -It +It +3t +5t -It,
0 f/2 INV

H L -2t, -8t -6t -4t -2t Ot +2t +4t -2t,
f/2 INV

H M -3t, -9t -7t -5t -3t -It +1t +3t -3t,
f/2 INV

H H -4t, -lOt -8t -6t -4t -2t Ot +2t -4t,
f/2 INV

7-95

=:: -~ Innovative RoboClock Application
~JF CYPRESS ============;;;;;;;;;;;;;;;===

Table 4. 3Qx Output Connected to FB Input (Part 1)

Feedback Section lOx, 20x Output Section

3Qx.PB <= 1Qx (2Qx) Output Delay to REF

'I 1F1, L L L M M M H H H

i~
(2F1)

3F1 3FO 0.9 1FO, L M H L M H L M H
U~ (2FO)

L L -4t, -3t, -2t, -It, Ot, +It, +2t, +3t, +4t,
f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

L M +2t +3t +4t +5t +6t +7t +8t +9t + lOt

L H <= Ot +It +2t +3t +4t +5t +6t +7t +8t 0
'.;::I

Ot +3t +4t +5t +6t M L u -2t -11 +11 +2t
~~

M M ~~ -4t -3t -2t -It Ot +11 +2t +3t +4t

M H ~ -6t -5t -4t -3t -2t -It Ot +It +2t

H L 0 -8t -7t -6t -5t -4t -3t -2t -It Ot

H M -lOt -9t -8t -7t -6t -5t -4t -3t -2t

H H -4t, -3t, -2t, -It, Ot, +It, +2t, +3t, +4t,
f*4 f*4 f*4 f*4 f*4 f*4 f*4 f*4 f*4

Table 4. 3Qx Output Connected to FB Input (Part 2)

Feedback Section 3Qx Output Section

3Qx.FB <= 4Qx Output with Delay to REF 0
'.;::I

'" J~ 4F1 L L L M M M H H H

3F1 3FO <= u 4FO L M H L M H L M H 8~
L L Ot -6t, -4t, -2t, Ot, +2t, +4t, +6t, INY,

f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

L M +6t, Ot +2t +4t +6t +8t +10t +12t +6t,
f/2 INY

L H +4t, -2t Ot +2t +4t +6t +8t + lOt +4t,
f/2 INV

M L <= +2t, -4t -2t Ot +2t +4t +6t +8t +2t,
0
'il f/2 INY

M M ~~ Ot, -6t -4t -2t Ot +2t +4t +6t Ot,

~5 f/2 INV

M H & -2t, -8t -6t -4t -2t Ot +2t +4t -2t, ;:s
0 f/2 INY

H L -4t, -lOt -8t -6t -4t -2t Ot +2t -4t,
f/2 INY

H M -6t, -12t -lOt -8t -6t -4t -2t Ot -6t,
f/2 INY

H H Ot, -6t, -4t, -2t, Ot, +2t, +4t, +6t, INY,
f*2 f*4 f*4 f*4 f*4 f*4 f*4 f*4 f*4

7-96

~~PRESS~~~~~~~~~~I;n;n;o;va;t;iv;e;R;O;b;O;C;IO;C;k;A;p;p;li;c;at;io;n~
Table S. 4Qx Output Connected to FB Input (Part 1)

Feedback Section lQx, 2Qx Output Section

4Qx. FB <= lOx, 2Qx Output with respect to REF
.~ lFl, L L L M M M H H H ...
::> 2Fl
~~

4Fl 4FO <= 0 lFO, L M H L M H L M H
81ll 2FO

L L -4t, -3t, -2t, -It, Ot, +It, +2t, +3t, +4t,
f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2 f*2

L M +2t +3t +4t +5t +6t +7t +St +9t + lOt

L H <= Ot +It +2t +3t +4t +5t +6t +7t +St

M L
.9

-2t -It Ot +It +2t +3t +4t +5t +6t tl

M M ~t$
"'.9 -4t -3t -2t -It Ot +It +2t +3t +4t

M H "I=Q -6t -5t -4t -3t -2t -It Ot +It +2t B-
H L

::> -St -7t -6t -5t -4t -3t -2t -It Ot 0

H M -lOt -9t -St -7t -6t -5t -4t -3t -2t

H H -4t, -3t, -2t, -It, Ot, +It, +2t, +3t, +4t,
INV INV INV INV INV INV INV INV INV

Table S. 4Qx Output Connected to FB Input (Part 2)

Feedback Section lOx, 2Qx Output Section

4Qx.FB <= 4Qx Output with respect to REF
.~
!3 3Fl L L L M M M H H H

4Fl 4FO

bIl

~fj
8~ 3FO L M H L M H L M H

L L Ot -6t, -4t, -2t, Ot, +2t, +4t, +6t, Ot,
f*2 f*2 f*2 f*2 f*2 f*2 f*2 fJ2

L M +6t, Ot +2t +4t +6t +St +lOt +12t +6t,
fJ2 fJ4

L H +4t, -2t Ot +2t +4t +6t +St + lOt +4t,
f/2 fJ4

M L <= +2t, -4t -2t Ot +2t +4t +6t +St +2t,
0 fJ2 f/4 tl

M M ~ 'lj Ot, -6t -4t -2t Ot +2t +4t +6t Ot,

~ f/2 f/4
::>

M H B- -2t, -St -6t -4t -2t Ot +2t +4t -2t,

P f/2 fJ4
H L -4t, -lOt -St -6t -4t -2t Ot +2t -4t,

fJ2 fJ4
H M -6t, -12t -lOt -St -6t -4t -2t Ot -6t,

f/2 fJ4
H H INV, -6t, -4t, -2t, Ot, +2t, +4t, +6t, INY,

fJ2 INV INV INV INV INV INV INV fJ4

7-97

CY7B991 and CY7B992 (RoboClock) Test Mode

This application note discusses the Test mode capa­
bilities of the CY7B991 and CY7B992 (RoboClock)
devices. It begins with an introduction to these de­
vices and then discusses how to use the Test mode
features.

Introduction

The RoboClock family consists of two parts: the
CY7B991 and CY7B992. The CY7B991 has TTL (0
to 3V) outputs and the CY7B992 has CMOS (0 to
Vcc) outputs. Each device will drive 50Q termi­
nated transmission lines. Figure 1 shows the PLCC
and LCC pin configurations for these devices.

RoboClock (Figure 2) employs a phase-locked-loop
architecture. Connecting an output to the FB (feed­
back) input ofthe device causes the PLL to synchro­
nize and align this output both in phase and in fre­
quencywith the REF (reference) input. This results
in very low input to output delay and allows a system

3F1 2FO

4FO GND

4F1 1F1

VCCQ
CY7B991

1FO CY7B992
VCCN VCCN

401 100

400 101
GND GND
GND GND

Figure 1. PLCC and LCC Pin Configuration

to connect RoboClocks in parallel for clock distribu­
tion while maintaining very low skew between vari­
ous clocks from different devices.

RoboClock contains eight outputs grouped in four
sets of two. Two function select lines (xFO, xFl) con­
trol the functionality of each pair of outputs (xQO,
xQl). The outputs of an output pair operate identi­
cally.

7-98

TEST

FB

REF

PHASE
FREO
DET

FS ___ -I

4FO ---,

4F1

SELECT INPUTS
(THREE LEVEL)

3FO ----I

3F1 ---..,

2FO ----I

2F1 ----I

1FO ----I

1F1 ----I

VCOAND
TIME UNIT

GENERATOR

Figure 2. RoboClock Block Diagram

400

401

300

301

200

201

100

101

-= ~ ~ CY7B991/CY7B992 Test Mode
~'CYPRESS ================

Table I. Programmable Skew Configurations

Function Selects Output Functions

IFI, 2FI, 3FI, IFO, 2FO, 3FO, IQO, IQI, 2QO,
4FI 4FO 2QI

LOW LOW - 4tu

LOW MID - 3tu

LOW HIGH - 2tu

MID LOW -ltu

MID MID Otu

MID HIGH +ltu

HIGH LOW + 2tu

HIGH MID + 3tu

HIGH HIGH +4tu

Each pair of three-level function select inputs allows
you to hardwire the operation of each output pair to
one of nine delay or functional configurations. Each
function select input pin can be connected to Vee
(HIGH), left unconnected (MID), or connected to
ground (LOW). Table 1 shows the programmable
skew configurations available on each output pair.
The function select configurations in Table 1 assume
that the output connected to FB is set for "zero"
skew.

Table 1 shows the range of tu over which an output
may be skewed with respect to the REF input. tu is
a function of the frequency at which the 1 QO output
is operating. RoboClock offers frequency coverage
with three ranges from 15 MHz to 80 MHz with the
use of the three-level FS (frequency select) input.
Table 2 shows the operating frequency range for
each of the three levels of FS. The appropriate FS
level selection must be made such that the antiCi­
pated operating frequency of the 1 QO output is with­
in the specified limits. There may be two acceptable

3QO,3QI 4QO,4QI

Divide by2 Divide by2

- 6tu - 6tu

- 4tu - 4tu

- 2tu - 2tu

Otu Otu

+ 2tu + 2tu

+ 4tu +4tu

+ 6tu + 6tu

Divide by4 Inverted

levels for the FS pin when operating at certain fre­
quencies. The appropriate connection of the FS pin,
in this case, would be based on the value of the time
unit, tu, required for the application. 2 also shows
an equation that can be used to calculate tu as well
as the approximate operating frequency where tu is
equal to 1 ns.

For example, according to 2, a system using Robo­
Clock with a clock speed of 33 MHz would leave the
FS pin unconnected. The programmable time unit,
tu, based on this operating frequency, would be

1 1
tu = f lQO X N = 33 MHz x 26 = 1.17 ns Eq.1

In other words, you can adjust the position with
which the rising and falling edges of the outputs
move with respect to the corresponding REF input
edge with a resolution of 1.17 ns when operating the
device at 33 MHz. At 25 MHz the tu could be either
.91 ns or 1.54 ns depending on whether the FS pin is
tied LOW or left unconnected, respectively.

Thble 2. Frequency Range Select and tv Calculation

flQO (MHz) t - I u - f 1QO x N Approximate
FS Min. Max. where N = Frequency At Which tu = 1.0 ns

LOW 15 30 44 22.7 MHz

MID 25 50 26 38.5 MHz

HIGH 40 80 16 62.5 MHz

7-99

=z ~YPRESS~==================CY==7~B~99~1~/CY==7~B9~9~2~TI~es~t~M~O~de
Test Mode Features

In some situations you may need to stop the PLL of
the device. For instance, in many board-level testing
applications you may need to supply a clock input to
the system that may not meet the REF input re­
quirements of RoboClock. This scenario can occur
in bed-of-nails testing or single-step microprocessor
execution. Use of the lEST input of RoboClockwill
allow operation in single-step mode.

The lEST input is a three-level input. In normal
system operation, this pin is connected to ground,
allowing RoboClock to operate as previously ex­
plained. (For testing purposes, any of the three-lev­
el inputs can have a removable jumper to ground, or
be tied LOW through a 100Q resistor. This will al­
Iowan external tester to change the state of these
pins.)

If the lEST input is forced to its mid or HIGH state,
the device will operate with its internal phase­
locked-loop disconnected. The lEST input must be
forced to less than IV to insure its LOW level, to
Ved±500 mV to insure its MID level, and to
Vee - IV to insure its HIGH level.

When RoboClock is put in Thst mode, after a few
REF cycles, input levels supplied to REF will ap­
pear at all outputs after a 15- to 80-ns delay. The cir-

FS

cuit effectively becomes a long chain of delay ele­
ments. The level on the TEST input affects the
length of time it takes for the REF signal to propa­
gate through each delay element. When the lEST
input is forced HIGH, each delay element will be se­
lected to have its shortest delay « 700 ps). This is
known as "contracted" mode. When the TEST in­
put is forced to its mid state, the delay through each
element will be as long as possible (> 1.5 ns). This
is referred to as "extended" mode.

The level placed on the FS pin also determines the
operation of RoboClock when it is in Test mode.
The FS input is used to control the number of delay
elements that the REF input will propagate
through, as shown in Figure 3. When FS is held
HIGH, REF will pass through only the last 13 delay
stages. When FS is placed in the MID or LOW posi­
tion, REF will propagate through all 22 delay ele­
ments.

In contrast with normal operation (TEST tied
LOW), FB will not have any affect on the operation
of the outputs. All outputs will function based only
on the connection of their own function select inputs
(xFO and xFl) and the waveform characteristics of
the REF input.

Outputs that have the divide-by-two output configu­
ration selected will change state at every second
REF input, and outputs that have the divide-by-four

1Qx

2Qx

3Qx

4Qx

Figure 3. RoboClock Test Mode

7-100

~YPRESS~~~~~~~~~~CY~7=B=99=1=/CY~7=B9=9=2=TI=es=t=M=o~de

option selected will change state at every fourth
REF input. An output selected for inverted opera­
tion will drive the opposite sense of the REF input.

A counter reset is available for the divided outputs.
To reset the counters, the 3FO and 4FO function se­
lects must be placed in their MID position and a
clock applied to the REF input. If the 3Qx or 4Qx
outputs are then selected for a divided function (3Fx
= LOW, LOW, HIGH, HIGH or 4Fx = LOW,
LOW) then the 4Qx or 3Qx outputs will be in their
HIGH state. The first REF clock will cause these
outputs selected for divided operation to transition
LOW and, subsequent REF clocks will cause these

outputs to continue their normal output divided out­
put pattern.

Conclusion

RoboClock's Test mode feature stops the phase­
locked-loop allowing board-level testing and evalu­
ation. This mode allows operation at frequencies
below the minimum operating frequency. It also
provides the ability to apply input pulses with vary­
ing width and period to the device without requiring
the cycle-to-cycle frequency accuracy necessary to
keep the feedback loop in lock.

7-101

Bus Products - 8

Bus Products Section Contents and Abstracts

Frequently Asked Questions aboutthe VMEbus Products 8-1

This document provides answers to the questions most frequently asked by customers who are evaluating and
using Cypress VMEbus Interface products. These answers will serve as an introduction for each topic. Sepa­
rate application notes cover these topics in more complete detail.

Using the Slave VIC (CY7C960/961) .. 8-7

This application note describes the use of the CY7C960/961 Slave VME Interface Controller in a simple slave
VME board design. This slave VME board is fully compliant with the VME64 Specification and contains both
SRAM and DRAM. Emphasis is placed on the design of the region decoder, SWAP buffer, interrupt logic,
DRAM interface and the connections to the CY7C964 Bus Interface Logic Circuits. Included at the end of
this application note is a printout of the VHDL code used to implement some of the logic used on the board.

Using the CY7C964 with VIC .. 8-29

This application note introduces the CY7C964. CY7C964 operating modes and features are described. Also
discussed is the ease of use with either the VIC64 or VIC068A. A sample circuit schematic is included showing
the CY7C964 to VIC interface.

Information is provided on the different signals present on the CY7C964 and the potential problems that
could be encountered when using the device. This application note compliments the information provided
within the VIC64/CY7C964 Design Notes.

Features of the VIC068A VMEbus Interface Controller 8-41

This application note gives a broad overview of the VIC068A. It outlines some of the major features of the
device including: master write posting, slave write posting, read-modify-write cycles, block transfer cycles, in­
terprocessor communication facilities, and interrupt handling.

Interfacing the VIC068A to the MC68020 ... 8-46

This application note explains some of the implementation details of interfacing the VIC068A to a Motorola
MC68020 microprocessor. Emphasis is given for A24!D16 type designs. Resetting the VIC068A is given
much attention in this application note. A ROM remapping circuit is described showing how the MC68020
obtains its stack pointer and program counter at reset. A sample schematic shows how to interface the
VIC068A to the MC68020. PLD equations are given which provide the address decoding. Finally, master
and slave cycles are described showing how all these pieces are used together to provide a full function inter­
face.

Connecting the Cypress VIC068NAC068 to the TI TMS320C40: A Prototype Design 8-53

This application note provides high-level as well as low-level details of interfacing VICNAC to TMS320C40.
This allows for techniques to be implemented to minimize design time for subsequent efforts since this design
has not been optimized for either size or speed. The Design Requisites section provides the design goals estab­
lished prior to design as well as relevant background regarding devices involved. Hardware details, including
schematics and programmable logic source code, represent the central focus of the paper. In addition, soft­
ware initialization of the chip, set by the TMS320C40, is covered. Throughout this note, it is assumed that
the reader is familiar with the TMS320C40 architecture, the basics of the VIC068ANAC068A, and the
VMEbus and its protocol(s).

==- -. ~ Bus Products Section Contents and Abstracts
~rcYPRESS =================

Software Considerations for the VIC64 ... 8-91

This application note provides a VI C64 (or VIC068A) designer with proven tips and examples for both config­
uring and operating the VIC64 or VIC068A. The software described was based on an actual VIC64 design.
This application note also describes configuring the CY7C964 address comparator functions. Sample C
source files are also described (the actual source files are available on the Cypress BBS) showing a Block
Transfer utility.

VIC64 to Motorola 68040 Interface ... 8-106

This application note shows how the VIC64 can be interfaced to a Motorola 68040 microprocessor operating
at 40 MHz. The issues and assumptions that go into designing such an interface are considerable and complex;
thus, this application note will not attempt to design a complete VME board that can do everything. It will
cover some of the issues that are pertinent when designing a 68040-based VMEbus board and will focus on
the circuitry required for VIC64 to 68040 interfacing.

Interfacing the CY7C611A with the VIC64 ... 8-147

This application note describes an interface between the CY7C611A SPARC microprocessor and the VIC64.
The interface described within this application note couples the synchronous bus of the CY7C611A to the
asynchronous bus of the VIC64. The interface is high performance and preserves many of the features neces­
sary for VMEbus applications, such as the memory exception facility.

The application note discusses the high and low level implementation of a the interface. A CY7C361 and
22VlO PLDs implement the design. State diagrams and timing waveforms are included. The PLD source files
for the design are available on the Cypress Semiconductor BBS.

An SVIC to 68020 Arbiter Design ... 8-160

This application note provides an example of how to design a "dumb" slave-only VME board that does NOT
have a local microprocessor. The article focuses on the design of a VME arbiter between a Slave VIC (SVIC)
and the host microprocessor (Motorola 68020).

RACEway Products from Cypress Semiconductor ... 8 -177

This application note gives a quick overview of the RACEway products and support materials available from
Cypress Semiconductor.

Interfacing to RACEway: PitCREW ... 8-179

This document describes PitCREW, a RACEway interface. PitCREW is an UO data port for RACEway. It
defines a simple FIFO interfaced local data port which is a slave to its RACEway port. The PitCREW has
an internal DMA engine which moves blocks of data between RACEway nodes and its FIFO port.

Interfacing to RACEway: PitCREWjr ... 8-204

This document describes PitCREWjr, a RACEway interface. PitCREWjr is a simple full-duplex on-ramp to
the RACEway fabric. The device has a standard RACEway port and a FIFO port. The controller functions
as a RACEway slave or master, moving data between RACEway and local FIFOs.

Frequently Asked Questions about the VMEbus
Products

The following questions are frequently asked by customers who are evaluating and using Cypress VMEbus
Interface products. These answers will serve as an introduction for each topic. Separate application notes
cover these topics in more complete detail.

Section I. Questions Regar~ing Reset

1. What are the requirements to reset the VIC at power.up?

To properly reset the VIC at power-up, it is required that the VIC see a falling edge on the IRESET signal
after the following criteria have been met:

1. The input voltage has reached 5Y.

2. The CLK64M clock input is operating within the required specifications.

3. All VMEbus signals are within VMEbus specifications.

4. Local input and three-state I/O signals are driven to a deasserted value (LD[7:0] and LA[7:0] may be
left floating).

IPLO must be asserted no earlier than 16 ns (20 ns for military devices) after IRESET has been asserted.
This will initiate a global reset. The minimum pulse width for IPLO is 50 ns. See section 12 of the VIC068A
User's Guide for more details.

2. What is the best way to impleQlent a power-up reset?

Best results have been obtained when the power-up reset is initiated through software during system boot.
That is, dedicate two external register bits to be tied to the IRESET and IPLO signals. During system boot­
up, have the processor write to these bits in a way that first asserts the IRESET signal, then asserts the
IPLO signal, then negates the IPLO signal, and finally negates the IRESET signal. Since the processor
must be operational before the VIC, this implies that the RESET output signal may not be used to reset
the processor. Sample SPARCTM assembler code for this type of reset may be found in the application note
"Software Considerations for the VIC64."

As the VIC must see a falling edge on IRESET when the system is stable (see question 1, above), an RC
network should not be used to reset the VIC on power-up.

3. Can the VIC or the local module be remotely reset over the VMEbus?

The assertion of SYSRESET on the VMEbus will reset the internal circuitry and selected internal register
bit fields on the VIC. This is referred to as a system reset because SYSRESET is typically used to reset
all modules on the VMEbus. .

If an individual module reset is desired (without resetting the entire system), ICR7 (Interprocessor Com­
munication Register 7) bit 6 can be set. This will assert HALT and RESET from the VIC, which can be

8-1

-== /cYPRESS =======Fr;;;;;e;;;;;q;;;;;u;;;;;en;;;;;t;;;;;IY;;;;;A;;;;;s;;;;;k;;;;;ed=Q;;;;;u;;;;;e;;;;;st;;;;;io;;;;;n;;;;;s;;;;;a;;;;;b;;;;;ou;;;;;t;;;;;t;;;;;be;;;;;VI=C=

used to reset local bus devices on a specific module. However, when this bit is set, no external VMEbus
masters can access the VIC, so provisions must be made to issue an IRESET from the local side. Asserting
IRESET (for a minimum of 20 ns) will cause the VIC to initiate an internal reset. Upon being granted
the local bus (or if no grant is asserted to the VIC within 1 !ls, a timer will expire and the VIC will proceed
as if it had been granted), the VJC will drive HALT and RESET for 200 ms intervals until IRESET is deas­
serted. When the VIC detects IRESET de asserted at the end of the 200 ms timeout period, it will deassert
HALT and RESET, bringing the local module out of reset. Upon the assertion of IRESET, the VIC will
change the state of its internai registers. The internal registers must be reloaded.

For power-up reset, a global reset must be used (to ensure that all internal VIC registers are set to their
default values). See questions 1 and 2.

4. Does the VIC drive the local bus when IRESET is asserted?

No. After IRESET is asserted, the VIC attempts to arbitrate for the local bus. If the VIC is granted the
bus or a 1 !ls timer expires, the VIC will assert HALT and RESET, deassert its local bus request, place
all three-state outputs in high-Z, and begin a 200-ms timeout period. If IRESET is still asserted after 200
ms, additional 200-ms timeout periods follow until IRESET is deasserted.

Section II. Questions Regarding Interrupts

5. Can the VIC queue up multiple interrupts with the same IPL value?

No. The VIC will queue all pending interrupts that are on different levels. If back-to-back interrupts are
required on the same level, the first interrupt will have to be handled before the second interrupt is recog­
nized. It is legal for the VIC to continue to drive the IPL lines to the same level ifback-to-back local inter­
rupts are requested on the same level, but the interrupts must be requested sequentially.

6. Is there a way to check the level ofVMEbus interrupts in the VIC?

If the imerrupt was generated by writing to the VIRSR (VMEbus Interrupt Request/Status Register), the
level can be checked by reading the VIRSR. Otherwise, the only way to check the level is to allow the local
processor to perform the interrupt acknowledge cycle. The proper vector will be generated, which should
allow software to determine the interrupt level by jumping to the specific interrupt handler. The vector
can also be seen with a logic analyzer during the interrupt acknowledge cycle.

7. What is the minimum pulse width for the LIRQ signals?

One CLK64M clock period. The LIRQ lines are internally registered by the VIC. Therefore, if the local
interrupt request lines are asserted for at least one 64-MHz clock period, the VIC is guaranteed to sample
and recognize the asserted request lines on a CLK64M clock edge.

S. When does the VIC latch the IPL lines?

IPL2, IPLl, and IPLO are the local priority encoded interrupt request signals. They are used to interrupt
the local processor. These signals emulate the Motorola 68K interrupt mechanism. The IPL lines are
latched on the assertion of the fCIACK signal. FCIACK should be asserted by the processor to tell the
VIC that an interrupt is being acknowledged. Once the VIC detects the assertion of FCIACK, it samples
LA[3:1] to determine whether the interrupt acknowledge is for the VIC's pending interrupt. If the ac­
knowledge was intended for the VIC, it will either pass the acknowledge to the VMEbus (for VMEbus
initiated interrupts) or provide the appropriate acknowledge signals to the local bus (for local bus initiated
interrupts). The IPL lines can change after the FCIACK signal is deasserted. The assertion of DSACKO
or DSACKI by the VIC indicates that the acknowledge matches the interrupt level that the VIC is cur­
rently requesting.

8-2

- -.,~
'CYPRESS

Frequently Asked Questions about the VIC

Section III. Questions Regarding Register Operations

9. Can the VIC registers be programmed over the VMEbus?

VI C registers (other than the I CF registers) cannot be directly programmed over the VMEbus. They can
be accessed, however, by having the address decoder drive CS to the VIC.

Section IV. Questions Regarding Arbitration

10. How must the local bus arbiter operate?

The VIC (or any other local bus master) will assert its own LBR whenever it needs to access the local bus.
The arbiter must assert a specific LBG for one master allowing the access to occur. The VIC will maintain
its LBR until it no longer wants the local bus. It is up to the system designer to pick an arbitration scheme
(assigning priorities to each master, insuring that no master will be "starved" off of the bus, etc.). Arbiters
must also monitor the DEDLK signal to prioritize the local bus grant to the VIC during deadlock
situations.

Once the VIC has been granted the local bus, it is important that the LBG signal to the VIC not be re­
moved until its LBR is deasserted. The VIC will keep its LBR asserted through its entire cycle.

11. Can LBG on the VIC be tied HIGH?

Only if the designer can insure that the VIC will never be the local bus master. The VIC requires local
bus mastership when there are VME slave accesses, VME block transfers, or VME DRAM refreshes per­
formed on the board.

12. Does the VIC support early release ofBBSY?

Yes. If the Release When Done release mode has been selected, the VIC will deassert BBSY upon the
last assertion of AS.

Section V. Questions Regarding Deadlock

13. When is DEDLK asserted?

When the MWB signal or FCIACK and a valid slave select occur at the same time, the VIC will assert
DEDLK to force the processor to remove MWB or FCIACK and retry the transaction later. The VIC
will not detect a deadlock situation when CS or IFCSEL is asserted (a VIC register access) at the same
time as a valid slave transaction to the VIC.

14. How does the system recover from a deadlock?

If a deadlock occurs, the VIC will assert the DEDLK signal (or a combination of DEDLK and LBERR
and/or HALT, which can be programmed to occur on deadlocks). DEDLK must go to the arbiter to priori­
tize the local bus grant to the VIC (so it can perform the slave access). During a deadlock the processor
will not have access to the VME bus as a master until the slave transaction has been completed. All other
local transactions will not be affected by the deadlock.

15. Can deadlocks be disallowed?

If the system designer can guarantee that no master will try to access local memory on a VMEbus board,
the board does not have to support deadlocks. Otherwise, they cannot be disallowed.

8-3

~ Frequently Asked Questions about the VIC
; CYPRESS ================

Section VI. Questions Regarding Block Transfers

16. Can block transfers be interrupted or aborted?

The only way to abort a block transfer is by asserting LBERR. However, when LBERR is asserted, the
status will be saved (bits in the DMASR, etc.). Also the assertion of LBERR will cause the VIC to assert
VMEbus BERR, which can have severe system ramifications. If block transfers are taking too much local
bus/VMEbus bandwidth, the block size should be shortened or the block should be broken up using inter­
leaving. Breaking up the block is a cleaner solution.

17. What is the maximum block transfer?

The VMEbus specification prohibits the crossing of 256-byte boundaries during block transfers (2K-byte
boundaries for VME64). The VIC allows for larger block transfers by deasserting AS, incrementing the
address, and reasserting AS without relinquishing the VMEbus whenever a boundary is crossed. The
boundary crossing feature is enabled by setting bit 2 in the BTDR, Block Transfer Definition Register (bit
7 for the VIC64 with 2K-byte boundaries).

Without using CY7C964s or the VAC with the VIC, the maximum block transfer is 256 bytes (28). This
is because the VIC only has direct control over the lower order VME address lines (A[7:1 D.
If a VAC or CY7C964s are used in conjunction with the VIC068, 64K bytes (216) can be transferred in a
block. For the VIC64, the maximum block size is 16M bytes (224). The increase in block size is due to
the fact that the VAC or CY7C964s give complete access to the 32 VME address signals so the block ad­
dress can be incremented past A7. The 64K-byte VIC and 16M byte VIC64 constraints are due to the
fact that there are two eight -bit registers in the VIC068 (BTLRO and BTLR1) and three eight-bit registers
in the VIC64 (BTLRO, BTLR1, and BTLR2) to define and control the block transfer length.

18. Can the VIC perform D8 block transfers?

No. The least significant bit of BTLRO should be cleared. If the least significant bit is set, the block trans­
fer length is ignored and only one burst is performed.

Section VII. Questions Regarding Slave Operations

19. Can the VIC be used to implement a slave-only interface without using a microprocessor?

This can be done, but external logic must be provided to load the VIC's internal registers. Please see the
Application Note entitled "Using VIC068A on a Board Without a Microprocessor," Cypress Applications
Handbook, 1993. Cypress also offers slave-only interface chips, CY7C960 and CY7C961.

20. Can SLSELO and SLSEL1 be programmed to respond to more than one address space each?

No. Each slave select signals can only respond to one address space at a time.

Section VIII. Questions Regarding Modeling/Schematic Capture

21. Are schematic capture libraries available for the VIC?

A VIC schematic in OrCAD is available on the Cypress BBS (408-934-2954).

22. Are simulation libraries available for the VIC?

Verilog models are available for the VIC068A, VIC64, VAC068A, and CY7C964. Verilog behavioral
models of standard VMEbus transactions are available as well. They work with Cadence's Verilog pack­
age. Contact your local Cypress Field Applications Engineer to obtain them.

8-4

~YPRESS =======Fr=eq=u=e=n=tl=y=A=s=k=ed=Q=u=es=t=io=n=s=a=b=ou=t=t=h=e=VI=C=

Section IX. Questions Regarding Electrical Characteristics
23. What are the thermal characteristics for Cypresses VMEbus products?

ThetaJC ThetaJA
Package (Degrees C/Watt) (Degrees C/Watt)

B144 11.0 38.0

G145 4.0 24.0

N160 13.0 34.3

A144 7.2 45.1

U162 6.5 26.0

N65 17.7 81.3

A64 18.2 108.0

U65 3.0 80.7

G68 4.0 28.4

24. What is the maximum power consumption for the VIC?

Description

144-Pin Plastic PGA

144-Pin Ceramic PGA

160-Pin PQFP

144-Pin TQFP

160-Pin CQFP

64-Pin TQFP 14mm

64-Pin TQFP lOmm

64-Pin CQFP

68-Pin Ceramic PGA

The VIC and the VAC consume 0.75W max each. The Icc is rated at 150 mA max. The parts typically
consume 50 mAo

Section X. Miscellaneous Questions
25. Is there a test mode/pin to three-state all of the VIC's outputs for testing purposes?

No.

26. Can all of the VIC's inputs and outputs be treated as synchronous signals clocked off of CLK64M?

No. All inputs and outputs should be treated as asynchronous. There are internal synchronizers to sync
the external signals to the CLK64M clk for the purpose of running the VIC's internal state machines syn­
chronously, but there are no guaranteed timing relationships between any of the signals and CLK64M.

27. Does the VIC have internal clamping diodes?

The signals are clamped to 5V (to help prevent overshoot problems). There are no clamping diodes to
GND.

28. What values of capacitors are recommended for decoupling?

0.10 IlF for AC bypass and 100 pF (or 470 pF) for high frequency decoupling. Four of each is recom­
mended. They should be laid out as close to the Vee pins as possible with wide traces (if possible) to elimi­
nate some of the inductive effects.

29. What kind of throughput can be expected from the VIC?

The design group was able to achieve 61.6 Mbytes per second using the VIC64, 30 Mbytes per second using
the VIC068. Over 70 Mbytes per second is possible using the VIC64. This maximum is usually dependent
on system constraints rather than interface components.

30. What is the die size for the VIC068?

315x300 mils for the VIC068A and VIC64, 313x300 mils for the VAC068A, and 144x133 mils for the
CY7C964.

8-5

Frequently Asked Questions about the VIC

31. Using the VIC with CY7C964s (or the VAC), is there any way to avoid violating the 2-inch VMEbus rule?

Users should consider this rule as a guideline. The rule is nearly impossible to meet using any standard
VMEbus interface chipset. 1taces from the VIC/CY7C964sNAC to the VMEbus connectors should be
kept as short as possible.

32. How many CY7C964s should be used with the VIC?

Each CY7C964 controls 8 bits of both address and data. The VIC068A and VIC64 also control 8 bits of
address and data. Users can determine how many CY7C964s are needed to complete their interface by
determining which address and data transactions will be supported. An A32!D32 interface would require
three CY7C964s. See the VIC64/CY7C964 Design Notes from Cypress Semiconductor for more informa­
tion on the CY7C964 and how to connect it to the VIC.

33. How many gates are in the VIC068A!VAC068A?

19,435 in the VIC068A; 21,250 in the VIC64; 18,106 in the VAC06A; 3000 in the CY6C964. The transistor
counts are as follows: 80,000 for the VIC068A, 85,000 for the VIC64, 75,000 for the VAC068A, and 12,000
for the CY7C964.

34. What is the capacitive loading on the VIC signal lines?

5 pF on inputs. 7 pF on outputs. 13 pF on bidirectional signals.

35. How many words can be write posted to the VIC from the local and the VMEbus side?

One longword can be write posted from either side.

36. Which VIC signals have metastability protection?

Metastability is a problem with all asynchronous, clocked designs. If a valid level is not reached on the
input to a clocked element (flip-flop, etc.) within the specified set-up and hold window, the condition
called "metastability" can occur. The output of the clocked element is unpredictable. It may be driven
to a valid output level or even oscilla,te. Eventually the output will settle to a valid level, but the settling
time may also be unpredictable. There are several ways to combat metastability problems. One of the
most common techniques involves "double clocking" the input. Tho clocked elements are placed, in se­
ries, in the signal path. Even if the first clocked element goes metastable, the odds are good that the output
will have settled to a valid state before the set-up and hold window of the second element is reached.

All of the VMEbus strobe inputs to the VIC are metastability-hardened and carry with them 2-3
CLK64M cycles of synchronization delay. DSi, DTACK, and BERR are also metastability-hardened. AS
has both an asynchronous path and a metastability-protected path. When performing slave transfers, the
asynchronous path is used.

The VME data bus, address bus, AM5-0, LWORD, WRITE, and all ofthe local bus signals are not metast­
ability-hardened.

37. Is there any example "C" code available for programming the VIC?

Yes. A file named SAMPCODE.EXE is available on the Cypress BBS (408) 943 - 2954. This is a self-ex­
tracting file.

8-6

Using the Slave VIC (CY7C960/961)

Many VME boards, especially I/O boards, need
only be aware of VME Slave transactions. Most
commercially available VME interface chips are ca­
pable of both Master and Slave VME transactions
and require some local intelligence, such as a micro­
processor, to reset and program the interface chip.
I/O-only boards do not need a microprocessor since
information is simply passed to and from the I/O
without being processed in between (at least in the
simplest case) so the addition of a microprocessor,
or any other kind of intelligence such as a state ma­
chine, only adds to the cost of the interface in design
time, board space, and money. The most common
solution to the problem of a slave-only interface is
an FPGA, which still adds extra cost in the form of
design time, board space, and the cost of the FPGA.

A better solution to this problem is Cypress's Slave
VME Interface Controller (SVIC) Family: the
CY7C960 and the CY7C961. An SVIC, along with
four Bus Interface Logic chips (CY7C964), imple­
ments a complete VME64-compliant slave-only
VME interface that requires no microprocessor and
occupies minimum board space.

Index

• CY7C960/961 Features

• Slave VIC Operation Overview

• General Overview

• Design Issues

DRAM Interface

Swap Buffer

Region Decoder

8-7

Local Interrupts

A64/A40 Support

CY7C964 Interface

MD32 Support

• Design Examples

DRAM Interface

Swap Buffer

Region Decoder

Local Interrupts

A64/A40 Support

CY7C964 Interface

MD32 Support

Required Transistors

Serial PROM

• AppendixA

VHDLCode

CY7C960/961 Features

• Full VME64 Slave transaction support

• DRAMIRefresh Controller

• CY7C964 Control Interface

• I/O (Chip Select Output) Controller

• VMEbus Interrupter

• Address Modifier (AM) Code Discriminator

• Slave Address Region Decoder

• Limited Master Support (CY7C961 only)

-:a~YPRESS~~~~~~~~;U;Si;ng~th;e;S;la;ve;VI~C;(;C;Y;7C;9;6;W;9;61;;)
Slave VIC Operation Overview

Figure 1 shows the internal blocks that comprise the
CY7C960. The CY7C960 Slave VMEbUi~ Interface
Controller (SVIC) provides the board desi~nerwith
an integrated, full-featured VME64 interface. This
64-pin device can be programmep to handle every
transaction pefined in the VME64 specification.
The CY7C960 90Qtains all the circuitry needed to
control large DRAM arrays and local I/O circuitry
without the intervention of a local CPU. There are
no registers to read or write, and no complex com­
mand blocks to be constructed in memory. The
CY7C960 simply fetches its own configuration pa­
rameters during the power-on reset period.

After reset, the CY7C960 responds appropriately to
VMEbus activity and controls local circuitry trans­
parently. The CY7C960 controls a bridge between
the VMEbus and the local DRAM and I/O. Once
programmed, the CY7C960 provides activities such
as DRAM refresh and local I/O handshaking in a
manner that requires no additiopallocal circuitry.

The VMEbus control signals are connected directly
to the CY7C960. The VMEbus address and data sig­
nals are connected to companion address/data
transceivers which are controlled by CY7C960. The
CY7C964 VMEbus Interface Logic Circuit is an
ideal companion device. The CY7C964 provides 8
bits of data and address logic that has been opti­
mized for VME64 transactions. In addition to pro­
viding the specified drive strength and timing for
VME64 transactions, the CY7C964 contains all of
the circuitry needed to multiplex the address/data
bus for multiplexed VM:Ebus transactions. It con­
tains counters and latches needed during BLT
(Block 1tansfer) operations. It also contains ad­
dress comparators which can be used in the board's
Slave Address Decoder. For a 6U or 9U applica­
tion, four CY7C964 devices are controlled by a
single CY7C960. For 3U applications, the CY7C960
controls two CY7C964 devices and an address latch.

The design of the CY7C960 makes it unnecessary to
know the details of the VMEbus transaction timing
and protocol. The complex VMEbus activities are

W -Ie-:'"
lIl ozz • °zzz-z_oz

REGION[3:0)

AM[5:0)

SYSRESET*

C2if=www5!!t;!filfiH:l~
ornooo..J..J..J..J'!C..J

CY7C964 CONTROLLER
LOCAL ADDRESS

CONTROLLER

CLK----======~----~~~:~

CHIP SELECT
OUTPUT 'PATTERN

TABLE

AS*
DSO*
DS1*

DTACK*
WRITE"

IRQ*
IACK~

IACKIN*
IACKOUT*

DRAM
CONTROLLER LOCAL

CONTROL
CIRCUIT

Figure 1. Internal Block Diagram of the CY7C960

8-8

LA[7:1)

LWORD

CS[5:0)

DBE[3:0)

LACK*

LDEN*
PREN*
SWDEN*
R/W

translated by the CY7C960 to be simple local cycles
involving a few familiar control signals. Similarly, it
is not necessary to understand the operation of the
companion device, the CY7C964; all control se­
quences for the part are generated automatically by
the CY7C960 in response to VMEbus or local activ­
ity. If more information is desired, consult the
CY7C964 chapter in the VIC64 Design Notes
(available separately).

VMEbus transactions supported by CY7C960 in­
clude D8, D16, D32 (including UAT), MD32, D64,
A16, A24, A32, A40, A64 single cycle and block
transfer reads and writes, Read-Modify-Write
cycles (including multiplexed), and Address-only
(with or without Handshake). The CY7C960 func­
tions as a VMEbus Interrupter, and supports the
new Auto Slot ID standard and CR/CSR space. The
CY7C960 also handles LOCK cycles, although full
LOCK support is not possible within the constraints
of the CY7C960 pinout. (full LOCK support is in­
cluded in the CY7C961).

On the local side, no CPU is p.eeded to program the
CY7C960 nor to manage transactions. All program­
mable parameters are initialized through the use of
either the VMEbus or a serial PROM. As the
CY7C960 incorporates a reliable power-on reset
circuit, parameters are self-loaded by the device at
power-up or after a system reset. If the VMEbus is
used to provide parameters, a VMEbus Master pro­
vides the programming information using a protocol
that is compliant with the Auto Slot ID protocol
from the new VME64 specification.

The architecture of the SVIC includes several func­
tions that remove most of the VMEbus problems
from the board designer's shoulders. All VMEbus
control and response is automatic; the user loads
the Region/AM table during configuration, and the
CY7C960 then handles all appropriate VMEbus
transactions. The CY7C964 controller works in lock
step with the VMEbus Control Interface, providing
the correct timing and control for the transaction in
process. Local circuitry such as DRAM or I/O is
simplified by the Refresh Controller, the DRAM
Controller, and the Output Pattern Table. Block
transfers are supported by the Local Address Con­
troller together with the CY7C964 circuitry. Local
timing is determined during configuration, and
handshaking is available from the Data Byte Enable

8-9

Using the Slave VIC (CY7C960/961)

Controller. Local Interrupts are supported through
the VME Interrupt Interface. The CY7C960 con­
tains an internal Power-on Reset circuit, and also re­
sponds to a VMEbus SYSRESET*.

General Overview

Figure 2 illustrates a block diagram of a slave-only
VME interface using one CY7C960/961 and four
CY7C964s. No external glue logic is required when
using the SVIC. The SVIC directly drives up to 6
Chip Selects (CSs) and four Data Byte Enables
(DBEs) for interfacing to local resources. Depend­
ing on the requirements of your design, there may
be a need for some external logic to implement a
SWAP buffer, DRAM address interface, interrupt
generation, and/or REGION decoding. The extent
of this external logic would consist mainly of buffers
(244s and 245s) and a PLD. The amount and com­
plexity of external logic required is scalable depend­
ing on the requirements of your design. This ap­
plication note concentrates on the design of these
external logic components and on the interconnec­
tion of these components to the SVIC. The refer­
ence design for this application note is the SVIC
Evaluation Board. All of the design examples will
be in reference to the SVIC Evaluation Board in­
cluding both discrete component usage and VHDL
code.

Design Issues

DRAM Interface

The SVIC can be programmed (through the use of
the WINSVIC software, as explained in the SVIC
Users Guide) to operate in one of two modes:
DRAMJIO or I/O Only. While in DRAMJIO mode
the SVIC is capable of controlling a bank of DRAM
through the use of RAS * (Row Address Strobe) and
CAS* (Column Address Strobe) signals along with
performing DRAM refresh (programmable tim­
ings). In order to speed up the access to DRAM, ev­
ery time the AS* (Address Strobe) goes LOW on the
VMEbus, the RAS* signal goes LOW on the SVIC
c<\using the row address to be pre-latched into the
DRAM. If the cycle was not meant for the DRAM
then no harm was done, since a RAS-only cycle does
not cause any reading or writing from/to the

~~YPRESS~~~~~~~~U~S~in=g~th~e~S~la~v~e~W~C~(~CY~7C~9~6~W~9~61~)

DRAM MEMORY I/O

Figur~ 2. Block Diagram of Slave VME Board using SVIC

DRAM. But if the cycle is meant for the DRAM
then half of the DRAM access has already occurred
with only the CAS part of the cycle remaining.

Due to the fact that the address passes through the
CY7C964s and not the SVIC itself, external buffers
(244s) are required to separate the row and column
address from the full address. Enabling these 244s
at the proper time is accomplished by the ROWand
COL outputs from the SVIC. An example of how
our SVIC Evaluation Board implements this is illus­
trated in the next section entitled Design Examples.

Another important issue to deal with is distinguish­
ing DRAM accesses from I/O accesses (when
DBE[3:0] are used as CAS*). If the DBEs (Data
Byte Enables) are programmed to act as CAS*, an
assertion of D BE due to an I/O access will look like
an assertion of CAS* to the DRAM, and will thus
complete a RAS-CAS DRAM access. A solution to
this issue is to gate a Chip Select from the SVICwith
the DBEs to determine when the CAS* input on the
DRAM should be driven LOW An example of how
our SVIC Evaluation Board accomplishes this can

8-10

be found in the Design Examples section that fol­
lows.

Swap Buffer

Most modern designs utilize memories that are 32
bits wide. The VME64 Specification allows for
transactions that are 8, 16, 32, and 64 bits wide,
which require reads and writes to resources in 8-, 16-
and 32-bit-wide slices that mayor may not be
aligned to word boundaries. If 8- or 16-bit-wide
transactions to 32-bit-wide local resources are to be
allowed on your board, a Swap Buffer, comprised of
245s and controlled by the SVIC, needs to be in­
cluded in the design of the slave board. If transac­
tions are to be limited to the size of the local data
size (i.e. only D32 to 32-bit-wide local data or only
D16 to 16-bit-wide local data) the Swap Buffer can
be omitted and the local data bus can be tied directly
to the CY7C964s. Our SVIC Evaluation Board uti­
lizes a Swap Buffer for performing 8-, 16-, 32-, and
64-bit transactions to 32-bit-wide memory. An ex­
ample of how to implement the Swap Buffer can be
found in the Design Examples section that follows.

Region Decoder

One of the most flexible features of the SVIC is the
ability to react differently depending on where in
the slave board's local address map a VME transac­
tion is destined. Think of the local address map as
being logically broken up into blocks of space re­
ferred to as regions. The local address map can be
broken up into as many regions (up to 16) as re­
quired by your design. The size of each region is
completely arbitrary and each region need not be of
the same size. For example, 4 MBs of DRAM may
sit in one region while 32K of SRAM may sit in
another. The SVIC is told which region of the local
memory map is being addressed based on what val­
ue is being asserted onto the REGION inputs.

The SVIC has four REGION inputs when in I/O
Mode and three REGION inputs when in DRAM
Mode. The value that is asserted on the REGION
inputs is the job of the Region Decoder. The most
common method used to determine which
REGION value should be asserted to the SVIC is
VME address decoding.

8-11

Using the Slave VIC (CY7C960/961)

A comparison between the VME address that is
placed on the VMEbus by the Master, and the VME
address space in which the Slave board sits (Slave
Base Address) will determine if the current VME
transaction is destined for this particular Slave
board. If the SVI C is to handle one and only one set
of VME transactions (i.e., always A16 and A24
transactions), a comparison of the VME address
and the Slave Base Address will be all that is re­
quired when deciding which REGION value to as­
sert. In this example, a 'true' from the comparison
logic will indicate that it is this board that is being ad­
dressed and that the region that has been pro­
grammed to allow A16 and A24 transactions should
be asserted to the SVIC's REGION inputs.

If the SVIC is required to react differently when ac­
cessing different local resources, i.e. A16 (but not
A24 or A32) transactions when addressing SRAM
space and A16 and A32 (but not A24) transactions
to DRAM space, the fact that it is this board being
addressed is not enough to determine which RE­
GION value to assert to the SVIC since the SVIC is
required to react differently depending on which
part of SVIC local address map is being addressed.
In this case, further VME address decoding must be
done by the Region Decoder to determine which re­
gion of the SVIC board is being addressed.

During initialization the SVIC is loaded with its con­
figuration parameters. The configuration parame­
ters are chosen using a free, Cypress-supplied soft­
ware called WINSVIC. The WINSVIC software
allows you to choose the configuration that is appli­
cable to your design and outputs a file consisting of
your chosen parameters encoded into 380 bits.
These 380 bits are fed into the SVIC during initiali­
zation to fully configure the device. These configu­
ration parameters consist of global parameters
(those parameters that define the general operation
of the chip) and Region parameters (those that de­
fine what type of VME transactions that the SVIC
is allowed to handle and which Chip Selects will be
driven if the current VME transaction is handled by
the SVIC).

The SVIC is loaded with 16 sets of Region parame­
ters when in I/O Mode and 8 sets of Region parame­
ters when in DRAM Mode. Out of these many sets
of Region parameters only one set is valid and being

~ ~YPRESS~~~~~~~~U;S;in;g;th;e;S;la;V;e;~;C;(;CY~7C;9;6;W;96;1~)
used to define the operation of the SVIC at anyone
time. Which set of Region parameters that the
SVIC should consider valid is determined by the
user through the use of the REGION inputs (Le.,
placing 3H on the REGION inputs will tell the
SVIC to use the Region number 3 parameters when
deciding if the current VME transaction should be
handled).

The role that the Region parameters play in deter­
mining the operation of the SVIC is as follows:

1. Master places VME address, VME data (if a
write), Address Modifier Codes (AM Codes),
and strobes onto the VMEbus.

2. SVIC sees the strobes, waits a programmed pe­
riod of time (known as the Decode Delay) and
samples the REGION inputs.

At this time the SVIC knows what type of VME
transactions it will respond to.

3. SVIC looks at the AM Codes on the VMEbus
(which define what type of transaction the Mas­
ter is requesting) and compares the type of
transaction requested with the types of transac­
tions that it is allowed to handle (based on Re­
gion parameters).

4. If there was a match between requested and al­
lowed transactions, the SVIC will drive the pro­
grammed Chip Selects (CS) and will handle the
requested transaction. If there was not a match
the SVIC would ignore this VME transaction.

Because the REGION inputs are driven by local
logic, the detennination of which region is being ad­
dressed at any given time is determined by the de­
signer of the Region Decoder. The purpose of the
Region Decoder is to detennine if the address on
the VMEbus falls into the address map of the SVIC.
The address map ofthe SVIC can consist of up to 16
different regions, each of which can be of different
sizes.

Figure 3 is an example of how a VME address can be
mapped into regions. The first thing to note is that
at least one region must not exist in the local address
map. In this example, Regions 0 and 3 and Regions
7 thru 15 do not exist in the local address map. The
SVIC should be programmed to ignore all AM

codes when the REGION inputs are being driven
with 0 or 3 or 7 thru 15. When the VME address
does not fall within the Slave board's address space,
it is one of these unused or 'turned-off' regions that
should be asserted to the SVIC.

Another thing to notice is how the address map is
decoded into regions. This example assumes that
the SVIC is being addressed when the most signifi­
cant byte (A[31:24]) ofthe address is FF (Slave Base
Address = FFxxxxxx). The next nibble (A[23:20])
determines what region is being addressed and the
rest of the address (A[19:0]) is decoded as the offset
within the region. This address decoding scheme as­
sumes 32-bit addresses. Because VME addresses
can be of varying sizes, a design that would allow ac­
cesses in different address modes (AI6, A32, etc.)
will need to be aware of what address mode is being
used for each transaction. Because this information
is encoded in the AM Codes, the easiest thing to do

FFOOOO 00

FF FF1FFF
FF2000 00

FF FF3FFF
FF4000 00

FF7FFF
FF8000

F
00

F FFBFFF
FFCOOO 00

FFFFFF FF

Region 1

Region 2

Region 5

Region 6

Region 4

Figure 3. Example of an SVIC Address Map

8-12

-:a~YPRESS~~~~~~~~~U~Si~n~g~th~e~S~la~v~eVI~C~(~CY~7C~9~6~O~/9~61~)
is to include the VMEbus AM Code along with the
address when decoding the region.

As this address map illustrates, regions need not be
of the same size. The regions do not need to be in
numerical order nor do all the regions need to ap­
pear in the address map.

Local Interrupts

The SVIC has one interrupt request pin (LIRQ*)
available to local resources. Assertion of the
LIRQ* pin by local resources causes a VME inter­
rupt to occur. Upon acknowledgement of the VME
interrupt by a master, through the use of the lACK
daisy chain, the SVIC informs the local logic to
place a Status/ID word onto the local data bus. This
Status/lD word is read by the responding master and
the interrupt acknowledge sequence is complete.

If more than one interrupter exists on the local side
of the SVIC each interrupter must share the LIRQ*
pin but can drive a different Status/ID word. It is the
Status/lD word that truly distinguishes one inter­
rupter from another. If more than one interrupt is
pending at the same time it is up to local logic to per­
form interrupt priority. The complexity and size of
the local interrupt logic is a function of the number
of interrupters on the local side and the priority al­
gorithm being implemented.

A64/A40 Support

The SVIC is capable of performing transactions in
A64 and A40 address space. A64 addresses are
transmitted over the VMEbus by multiplexing the
32-bit address and the 32-bit data buses that are
available to 6U and larger VME cards. A40 ad­
dresses are transmitted over the VMEbus by multi­
plexing the 24-bit address and the 16-bit data buses
that are available to 3U and larger VME cards. To
support A64/ A40 BLTs, the upper bits of the address
(which are carried on the data bus) must be latched
into external buffers for use in later cycles. The ad­
dress is latched into and driven out of these latches
(373s) at the proper time by signals that are sourced
by the SVIC. If the SVIC is not programmed to han­
dle A64 or A40 transactions then these external
latches can be omitted from the design.

8-13

CY7C964 Interface

CY7C964s are directly controlled by the SVIC for
use as the address and data glue logic between the
VME and Local buses. The actual interconnections
between the SVIC and the four CY7C964s is docu­
mented in the next section (Design Examples).

MD32 Support

Additionally, the VME64 Specification supports
32-bit-wide data transfers on 3U VME cards known
as MD32 transactions. 3U VME cards only have a
16-bit data bus and a 24-bit address bus available to
them. In order to transfer 32 bits of data at a time,
the two buses are multiplexed with two bytes of data
carried on the data bus and the other two bytes of
data being carried on the address bus. Additions to
a design for support of MD32 transactions include
the control of the upper two CY7C964's DENIN*
and DENINI * (Data Enable In) inputs. The
DENIN* and DENINI * pins on 964-2 and 964-3
should be connected to the modified DENIN signals
(MOD_DENIN* and MOD_DENINl*, respec­
tively, see Figure 4) and are only required if D64
transactions are to be supported on the same board.

Design Examples

DRAM Interface

Figure 5 illustrates how an SVIC can be interfaced
to a bank of DRAM. The SVIC Evaluation Board
uses a 4-MB 70-ns SIMM as the DRAM bank. This
4-MB SIMM requires ten bits of address and uses a
32-bit (4-byte) data word. The SIMM also has a sep­
arate CAS* (which is generated by the FLASH375)
and RAS* for each data byte. The FLASH375 filters
out DBE[3:0] assertions due to I/O access and al­
lows DBE[3:0] assertions meant for the DRAM to
be passed out to the CAS[3:0] lines.

Three buffers (244s) are used for separating the row
and column address from the local address. Enab­
ling of the row and column address buffers is accom­
plished by the SVIC by the assertion of ROWand
COL. The latching of the address into the DRAM
is controlled by the SVIC with the RAS* and CAS*
signals.

~ Using the Slave VIC (CY7C960/961)
~, CYPRESS ================

CY7C964

(3)

CY7C964
(2)

Additional logic only if MD32 and D64 supported on same

CY7C964

(1)

CY7C964

(0)

SVIC

DENIN1·1-----~

Figure 4. Additional Logic for MD32 Support

Swap Buffer

Figure 6 shows the implementation of the Swap
Buffer on the SVIC Evaluation Board. The Swap
Buffer is simply two '245 transcievers with the DIR
and EN* control lines connected directly to the
SVIC. The purpose of the Swap Buffer is to place
LD[31:16] onto the LD[15:0] lines, and vice versa,
for performing D16 transactions to 32-bit local re­
sources.

Region Decoder

The Region Decoder for this SVIC Evaluation
Board is designed to take full advantage of the
CY7C960/961. Each of the 16 possible regions can

be individually addressed regardless of the VME
address space (A64, A40, A32, A24, and A16) being
used. Because of the amount of logic and I/O pins
used in the SVIC Evaluation Board Region Decod­
er, it was decided to write the decoder in VHDL (see
Appendix A) and program it into a FLASH375 PLD.
A simple diagram showing the inputs and outputs to
our R~gion Decoder can be seen in Figure 7. The
Region Decoder itself would fit into a smaller PLD
but since several other parts of the Evaluation
Board design were placed into a PLD (such as the
Interrupt Logic) the FLASH375 was used due to the
need for many I/O pins (especially for 32 bits of ad­
dress and 32 bits of data). Most Region Decoders
should require no more than 15-20 I/O pins and
50-100 gates.

8-14

=----~
'CYPRESS

LOCAL_ADDR2

LOCAL_ADDA3

LOCAL ADDR4

LOCAL_ADDRS

LOCAL_ADDR6

LOCAL ADDR7

LOCAL ADDR8

LOCAL ADDR9

LOCAL_ADDR10

LOCAL ADDRl1

LOCAL_ADDR12

LOCAL_ADDR13

LOCAL_ADDR1 [21 :21

LOCAL ADDR14

LOCAL_ADDR1S

LOCAL ADDR16

LOCAL_ADDR17

LOCAL_ADDR18

LOCAL ADDR19

LOCAL ADDR20

LOCAL ADDR21

COL
ROW
RAS*

SVIC
CSO
CS1

DBEO
DBE1
DBE2
DBE3

Using the Slave VIC (CY7C960/961)

;-- DEA
I- =

INAO OUTAO
DRAM_ADDRO

INA1 OUTA1
DRAM_ADDR1

DRAM ADDA2
INA2 OUTA2

1NA3 OUTA3
DRAM_ADDR3

DRAM ADDR4
INBO OUTBO

INB1 OUTB1
DRAM ADDR5

INB2 OUTB2
DRAM ADDR6

INB3 OUTB3
DRAM ADDR7

74FCT244

l- DEA

I- QElj

INAO OUTAO
DRAM ADDR8

INA1 OUTA1
DRAM_ADDA9

INA2 OUTA2

INA3 OUTA3

INBO OUTBO
DRAM_ADDRO

INB1 OUTB1
DRAM_ADDR1

INB2 OUTB2

INB3 OUTB3

74FCT244
DRAM_ADDR1 [9:01

DRAM_ADDR[9:0] -
l- DEA

Local
DRAM_DATA[31 :0

I- OES Data

DRAM ADDR2
INAO OUTAO

INA1 OUTA1
DRAM_ADDR3

DRAM ADDR4
INA2 OUTA2

INA3 OUTA3
DRAM_ADDRS

INBO OUTBO
DRAM_ADDR6

DRAM ADDR7

4MB INB1 OUTB1
DRAM ADDR8

INB2 OUTB2

INB3 OUTB3
DRAM ADDR9

DRAM
74FCT244

: RASO*
RAS1* .. :- RAS2* -.. .. RAS3* ... FLASH375 CASO*

~
...
... CAS1* CAS2* - CAS3*

Figure 5. DRAM Interface Logic Example

8-15

Using the Slave VIC (CY7C960/961)

74FCl245T

LOCAl DATA16 ,
AI . , , . LOCAL DATAD

LOCAL DATA17 3 A2 B2 17 LOCAL DATA1

LOCAL DATA18 • AS B3
,. LOCAL DATA2

LOCAL DATA19 • A4 B4 "
LOCAL CATAS

LOCAL DATA20 • AS B5 I. LOCAL DATM

LOCAL DATA21 7 AS .. 13 LOCAL CATAS

LOCAL DATA22 • A7 67 12 LOCAL CATAS

LOCAL DATA23 9
AS"

BB 1 LOCAL DATA7

OIR

LOCAL DATA[31:16] ~9 J; LOCAL DATA[15:0]
SWDEN* ~. l' R/W

LOCAL DATA24 11 OIR LOCAL CATAS
A9 ..

LOCAL DATA25 9
A7

11 LOCAL CArAS
B7

lOCAL DATA26 • AS BB
12 LOCAL DATA10

LOCAL DATA27 7
AS B5

13 LOCAL DATA11

LOCAL DATA28 • A4 B4
I. LOCAL DATA12

LOCAL DATA29 • AS B3
I. LOCAL DATA13

LOCAL DATA30 4
A2 B2

,. LOCAL DATA14

LOCAL DATA31 3
AI ., 17 LOCAL DATA15

2 ,.
74FCT245T

Figure 6. SWAP Buffer Implementation Example

FLASH375
REGIONO
REGION1

REGION2

REGION3

Figure 7. Inputs and Outputs of the
Region Decoder Logic

We mapped the SVIC Evaluation Board into the
VME address space as follows: the four most signif­
icant bits of the VME address are decoded to deter­
mine if it is this board that is being addressed. If it
is this board that is being addressed then the next
four significant bits are decoded as the region.

The challenge is to determine which are the most
significant address bits. For example, in A32 space
the most significant address bits start at A[31] but in
A40 space the most significant bits start at D[15].
The only way to know which address space is being
used by the VME Master that is initiating the trans-

action is to decode the AM Codes from the VME­
bus. The AM Codes tell where the most significant
VME address bits lie and the address bits tell which
region is being addressed (if any).

The Region Decoder VHDL code begins with a
CASE statement that uses AM Codes to determine
which addressing mode is being used by the VME
Master. The use of all 6 bits of the AM Code in the
CASE statement was for ease of reading and not by
necessity. All that would be required to determine
the addressing mode is the tp.ree most significant
bits of the AM Code.

Once the addressing mode is determined (i.e., the
lociltion of the most significant address bits is
found) it can be determined if it is this board that is
being addressed. Performing an address compari­
son on the four most significant address bits deter­
mines this. For A64 and A40transfers the address
bits themselves must be looked at, but for A32, A24,
and A16 transfers the CY7C964s can be used to per­
form the comparison.

Each CY7C964 performs a comparison between the
8 bits of VME adqress that it is attached to and a
Compare Address and Mask value that are written
jntQ e~ch CY7C964 during configuratiop.. A com­
parjson between the 8 bits of VME address anq the
Compare Address (w/Mask) will result in the

8-16

VCOMP output from the CY7C964 being driven
LOW (see the VIC64/CY7C964 Design Notes).

If the comparison produces a match it must be de­
termined which region is being addressed. For
many designers this may be a fixed region that will
require no further decoding of the address. The
SVIC Evaluation Board allows all 16 regions to be
addressed by a VME Master by driving the second
most significant nibble of the address onto the RE­
GION inputs. The driving of the REGION3 input
of the SVIC is controlled by an input to the Region
Decoder on the SVIC Evaluation Board called
DRAM_IQ. This functionality was included to al­
low the Evaluation Board to function in both
DRAM/IO Mode (3 REGION inputs) and I/O
Mode (4 REGION inputs) depending on how the
SVIC is programmed. Most slave boards will oper­
ate in only one mode, depending on what resources
have been designed onto the board, so it will be
known how many REGION inputs must be driven
by the decoder thus eliminating the need for the
DRAM_IO input function.

vee

Using the Slave VIC (CY7C960/961)

Local Interrupts

The VHDL Code located in Appendix A contains
the code used on the SVIC Evaluation Board for the
Interrupt Logic. Figure 8 shows the inputs and out­
puts to the Local Interrupt Logic. The Evaluation
Board is capable of generating VME interrupts
from four different local sources, each with its own
StatusllD word. The Interrupt Logic VHDL Code
also handles AUTO ID and the Compare and Mask
loading of the CY7C964s.

LIRQ* (Local Interrupt Request) will be driven
LOW when one or more ofthe LIRQi * inputs on the
FLAsH375 are driven LOW. When LDEN* (Local
Data Enable) is driven LOW and MWB* (Module
Wants Bus) is HIGH, a value must be driven onto
the Local Data (LD) bus. The value that must be
driven onto the LD bus will either be a Status/ID as­
sociated with a local interrupt, the STATUSIID as­
sociated with VMEbus Initialization (AUTO ID) or
the Compare and Mask for the CY7C964s.

The Locallnterrupts have been assigned priority in
the VHDL Code with LIRQl * having the highest

:~ : ~ 4

> ~
~~ FLASH375

4> 4

EN* LD

PR
MW

EN*
8*

LDS

»

.. ...

..
p

...

..

..
p
..
!"""

...
STATUS/ID LD[31 :0]

~

lIRQ1*

lIRQ2* r+ lIRQ

lIRQ3*

lIRQ4*

Figure 8. Inputs and Outputs to Local Interrupt Logic

8-17

*

~

~~YPRESS~~~~~~~~~U~Si~ng~th~e~S~la~Ve~VI~C~(~CY~7C~9~6~W~9~61~)
priority and LIRQ4 * having the lowest. Table 1 is a
summary of what is driven onto the Local Data bus
when LDEN*=O.

Table 1. Summary of What Is Driven onto the
Local Data Bus when LDEN*=O.

What is driven onto When it is driven onto
the Local Data bus the Local Data bus

Interrupt Statqs/lD ' LPEN*=O, MWB*=1,
PREN*=1, LIRQi*=O

AUTO ID Status/lD LDEN*=O, MWB*=1,
PREN*=1, LIRQi*=1

CY7C964 Compare LDEN*=O, MWB*=1,
PREN*=O, LDS=1

CY7C964 Mask LDEN*=O, MWB*=1,
PREN*=O, LDS=O
, "

A64/A40 Support

The A64/A40 Support built into the SVIC Evalua­
tion Board consists oflatches ('573/'373s) on the Lo­
cal Data (LD) bus for use in latching the address bits
that are carried on the LD bus during multiplexed
address cycles (see Figure 9). A40 support requires
the latching ofLD[15:0] while A64 support requires
the latching of LD[31:0]. The control equations for
latching and enabling (LA_UP_ADDR and

EN_UP _ADDR) are located in the VHDL Code in
Appendix A.

CY7C964 Interface

The SVIC Evaluation Board utilizes four
CY7C964s to act as the bridge between the VMEbus
and the local buses. The interconnections between
the CY7C961 and the CY7C964s are summarized in
Table 3. The table is organized with one row for each
CY7C964 pin (or bus for A, D, LA, LD) and one col­
umn per each CY7C964 (964-0, 1, 2, 3). The last
column of Table 3 is for users of the CY7C960. An
entry in this column should replace the entries in the
other columns in that row when the CY7C960 is be­
ingused.

All signals are sourced from the SVIC unless the
name of a source appears in parentheses under the
signal name. For example, in the row below (Table
2): the LCIN* pin on the least significant CY7C964
(964-0) should be connected to VCC, the LCIN*
on the next CY7C964 should be connected to GND,
LCIN* on 964-2 should be connected to the
LCOUT* pin on 964-1 and LCIN* on 964-3
should be connected to the LCOUT* pin on 964-2.
Since the last column is empty there is no difference
in the connections to the LCIN* pin when using the
CY7C960 as apposed to using the CY7C961.

TaJlle 2. Example Row from Table 3

CY7C964 964-0 964-1 964-2 964-3 If Using the
Pin LSB MSB CY7C960

LCIN* VCC GND LCOUT* LCOUT*

(964-1) (964-2)

8-18

-. -'i~
'CYPRESS

Using the Slave VIC (CY7C960/961)

74FCT573T

LOCAL DATAO 2 A1 81 18 LOCAL DATAO

LOCAL DATAl 3 A2 82 17 LOCAL~DATA1

LOCAL_DATA2 4
A3 83 16 LOCAL_DATA2

LOCAL_OAT A3 5 A4 84 15 LOCAL_DATA3

LOCAL_DATA4 6 A5 85 14 LOCAL DATA4

LOCAL_DATAS 7 A6 86 13 LOCAL DATA5

LOCAL_DATA6 8 A7 87 12 LOCAL_DATA6

LOCAL_DATAl 9 A8 88 11 LOCAL DATAl

1lE LE

EN UP ADD
f9 r

- ~9 r LA UP ADDR

LOCAL DATA8 "" LE
LOCAL_DATAB

A8 88
LOCAL DATA9 9

A7 87
11 LOCAL_DATA9

LOCAL DATA10 8
A6 86

12 LOCAL_DATA10

LOCAL DATA11 7
A5 85

13 LOCAL_DATA11

LOCAL_DATA12 6
A4 84

14 LOCAL DATA12

LOCAL_DATA13 5
A3 83

15 LOCAL_DATA13

LOCAL DATA14 4
A2 82

16 LOCAL_DATA14

LOCAL_DATA1S 3
A1 81

17 LOCAL DATA15

2 18

LOCAL DATA[31:0] 74FCT573T LOCAL DATA[31:0]
(l

74FCT573T

LOCAL DATA16 2 A1 81 18 LOCAL DATA16

LOCAL_DATA17 3 A2 82 17 LOCAL DATAl?

LOCAL_DATA18 4 A3 83 16 LOCAl_DATA18

LOCAL DATA19 5 A4 84 15 LOCAl_DATA19

LOCAL DATA20 6 A5 85 14 LOCAL_DATA20

LOCAL DATA21 7 A6 86 13 lOCAL_DATA21

LOCAL DATA22 8 A7 87 12 lOCAl_DATA22

LOCAL DATA23 9 A8 88 11 lOCAL_DATA23

"" LE

EN UP ADD'""
:f9 1: LA UP ADDR - ~9 r

LOCAL_DATA24 "" LE LOCAL_DATA24
A8 88

LOCAL_DATA25 9
A7 87

11 LOCAL_DATA25

LOCAL_DATA26 8
A6 86

12 LOCAL_DATA26

LOCAL DATA27 7
A5 85

13 LOCAL_DATA27

LOCAL DATA28 6
A4 84

14 LOCAl_DATA28

LOCAL_DATA29 5
A3 83

15 LOCAL_DATA29

LOCAL DATA30 4
A2 82

16 LOCAL DATA30

LOCAL DATA31 3
A1 81

17 LOCAL DATA31

2 18

74FCT573T

Figure 9. Additional Logic for A64/A40 Support

8-19

~

~~YPRESS~~~~~~~~~U~Si~n~g~th~e~S~la~~~VI~C~(~CY~7C~9~6~W~9~61~)

Table 3. Connections Between the SVIC and Four CY7C964s

CY7C964 964 0 964 1 964-2 964 3 If Using the
Pin LSB MSB CY7C960

A[7:0] A[7:1],LWORD A[15:8] A[23:16] A[31:24]

(VME) (VME) (VME) (VME)

D[7:0] D[7:0] D[15:8] D[23:16] D[31:24]
(VME) (VME) (VME) (VME)

LA[7:0] LA[7:0] LA[15:8] LA[23:16] LA[31:24]

(LOCAL) (LOCAL) (LOCAL) (LOCAL)

LD[7:0] LD[7:0] LD[15:8] LD[23:16] LD[31:24]
(LOCAL) (LOCAL) (LOCAL) (LOCAL)

ABEN* ABEN* ABEN* ABEN* ABEN*

BLT* BLT* BLT* BLT* BLT* VCC

D64 D64 D64 D64 D64

DENIN* DENIN* DENIN* DENIN1* DENIN1*

DENlNl* DENIN1* DENIN1* DENIN* DENIN*

DENO* DENO* DENO* DENO* DENO*

FCl FC1 FC1 FC1 FC1 GND

LCOUT* N/C LCIN* LCIN* N/C
(964-2) (964-3)

LDS LDS LDS LDS LDS

LADI LADI LADI LADI LADI

LAEN LAEN LAEN321 LAEN321 LAEN321 VCCon
964-1,2,3

LAENon
964-0

LED! LED! LED! LED! LED!

LEDO LEDO LEDO LEDO LEDO

LADO VMECNT LADO LADO LADO GND

LCIN* VCC GND LCOUT* LCOUT*

(964-1) (964-2)

MWB* MWB* MWB* MWB* MWB* VCC

STROBE* STROBE* STROBE* STROBE* STROBE*

VCOMP* AS NEEDED AS NEEDED AS NEEDED AS NEEDED

VCIN* GND GND VCOUT* VCOUT*

(964-1) (964-2)

VCOUT* N/C VCIN* VCIN* N/C
(964-2) (964-3)

8-20

~

~~YPRESS~~~~~~~~~U~Si~ng~th~e~S~la~Ve~VI~C~(~C~Y~7C~9~6~O/~9~61~)
MD32 Support

MD32 Support on the SVIC Evaluation Board con­
sists of creating modified DENIN* /DENIN1 *
(MOD_DENIN*/MOD_DENIN1 *) signals for use
in control of the two most significant CY7C964s. If
MD32 and D64 transactions are to be supported on
the same board, the entries in the CY7C964 Inter­
face table for DENIN* and DENINl * should be re­
placed with the entries in Table 4.

Table 4. Modified DENIN connections for MD32
Support

CY7C964 964-2 964-3
Pin

DENIN* MOD_DENIN* MOD DENIN*

DENINl* MOD DENIN1* MOD DENIN1*

Required Resistors

The following signals need pull-up or pull-down re­
sistors:

PULL-UP: BLT*, MWB*, ABEN*,
DENO*, PREN*

PULL-DOWN: LAEN

In addition, if the CY7C960 is being used, FC1 and
LADO on the CY7C964s must be tied LOW.

Serial PROM

The SVIC needs to be configured at power-up. The
configuration consists of approximately 380 bits of

SVIC

serial data into the part from either the VMEbus or
through the use of a serial PROM from the local
bus. There are several serial PROMs that are com­
patible with the SVIC: the AT&T ATT1718 and
ATT1736, Xilinx XC1718, XC1736 and XC1765 and
Atmel 'Configurator' AT17C65, AT17C128. The
numbers following the 17 in each of the part num­
bers indicate the number of Kbits that the part
holds. All of these PROMs have a programmable
RESET/Output Enable (RlOE) pin, and the SVIC
expects the RESET to be active HIGH. The
RESET/OE on these PROMs are programmed to
be active HIGH by writing ones into a special
memory location. The memory location that must
be written (with ones) varies by PROM size. The
memory addresses are shown in Table 5.

Table 5. PROM Addresses

PROM Size Address

18K 8DC-8DF

36K 11B8-11BB

65K 2000-2003

128K 4000-4003

ActIve HIGH Reset: fIll address WIth ones

Figure 10 illustrates the connections between the
SVIC and the serial PROM. The RlOE pin should
be connected to the PREN* output of the SVIC.
RlOE should also have a pull-up resistor to ensure
that the internal pointer is reset to the first position.
The Chip Enable (CE) pin can be either tied LOW
or tied to the R/OE pin, the Clock (CLK) pin should

vee

PROM

PREN* I----~ .. ~:_ R/OE

-.. CE*

Data 1-------,

LA[1j/PCLKI----~ :_CLK

LA[2j/PDATAIoI,:I-------------'

Figure 10. Connection of SVIC to Serial PROM

8-21

be connected to the LA[l]/PCLK pin of the SVIC
and, finally, the Data (D) pin should be connected
to the LA[2]/PDATA pin on the SVIC.

Summary

This application note has shown how easy it is to de­
sign a fully VME64-compliant Slave VME board us­
ing the Cypress Slave VME Interface Controller
(SVIC) Family (CY7C960/961). Along with four
CY7C964s (Bus Interface Chips), a PLD, and a
small amount of TTL logic, a Slave VME board ca­
pable ofD8 thru D64/A16 thru A64 transactions can
easily be designed in a short amount of time.

Discrete components and VHDL code were used to
design the little off-chip logic that was used on the

SVIC Evaluation Board. Along with examples on
how to interface the SVIC to the VMEbus, signifi­
cant examples on how to interface the SVIC to
DRAM and I/O were also discussed. The design of
optional logic, such as the SWAP Buffer and Local
Interrupt logic was explained for those boards re­
quiring it.

A discussion of regions was included to help in the
understanding of this topic. Also included for com­
pleteness was a discussion on which serial PROMS
could be used and where resistors should be added.

The CY7C960 or CY7C961 along with four
CY7C964s comprises the most complete and easy to
design fully VME64-compliant Slave VME Inter­
face on the market today.

8-22

~YPRESS~~~~~~~~~U~Si~ng~th~e~S~la~ve~VI~C~(~C~Y~7C~9~6~W~9~61~)

Appendix A. VHDL Code

-- vhdl code for the SVIC EVAL Board

use work.GATESPKG.all;
use work.cypress.all;
use work.rtlpkg.all;

ENTITY logic IS
PORT (D64, LDS, DENIN, PREN, DENIN1, LEDI, LDEN, MWB, LIRQ1, LIRQ2,

LIRQ3, LIRQ4, DRAM_I 0 , CSO, CS1, DBEO, DBE1, DBE2, DBE3, RW, RESET,
SYSRESET: IN BIT;
MOD_DENIN, MOD_DENIN1, LA_UP_ADDR, EN_UP_ADDR, LIRQ, CEO, CE1, CE2,
CE3, CASO, CAS1, CAS2, CAS3, OE, SVIC_RESET: OUT BIT;
SELECTLM: INOUT BIT;
LA: IN x01z_VECTOR(31 downto 8);
AM: IN BIT_VECTOR(5 downto 0);
VCOMP: IN BIT_VECTOR(3 downto 1);
REGION: OUT xOlz_VECTOR(3 downto 0);
LD: INOUT xOlz_VECTOR(31 downto 0»;

ATTRIBUTE PIN_NUMBERS OF logic : ENTITY IS
" LD (0) : 2 LD (1) : 3 LD (2) : 4 LD (3) : 5 LD (4) : 6 LD (5) : 7 LD (6) : 8 LD (7) : 9 "
& "LD(8):11 LD(9) :12 LD(10) :13 LD(l1) :14 LD(12) :15 LD(13) :16 LD(14) :17

LD (15) : 18 "
& "LD (16) : 2 3 LD (17) : 24 LD (18) : 2 5 LD (19) : 2 6 LD (2 0) : 27 LD (21) : 2 8

LD (2 2) : 2 9 LD (2 3) : 3 0 "
& "LD (2 4) : 3 2 LD (2 5) : 33 LD (2 6) : 34 LD (2 7) : 3 5 LD (2 8) : 3 6 LD (29) : 3 7

LD (3 0) : 3 8 LD (31) : 39 "
& "LA(8) :159 LA(9) :158 LA(10) :157 LA(l1) :156 LA(12) :155 LA(13) :154

LA(14) :153 LA(15) :152 "
& "LA(16) :150 LA(17) :149 LA(18) :148 LA(19) :147 LA(20) :146 LA(21) :145

LA(22) :144 LA(23) :143 "
& "LA(24) :138 LA(25) :137 LA(26) :136 LA(27) :135 LA(28) :134 LA(29) :133

LA(30) :132 LA(31) :131 "
& "AM(O) :42 AM(l) :43 AM(2) :44 AM(3) :45 AM(4) :46 AM(5) :47 "
& "VCOMP(3) :122 VCOMP(2) :123 VCOMP(l) :124 "
&"REGION(0):113 "
& "REGION(l) :51 REGION(2) :58 REGION(3) :53 "
& "LIRQ1:85 LIRQ2:84 LIRQ3:83 LIRQ4:82 "
& "DENIN:119 DENIN1:118 MOD_DENIN:117 MOD_DENIN1:116 LA_UP_ADDR:115

& "D64:139 LDS:129 PREN:72 LEDI:128 LDEN:127 MWB:126 SELECTLM:125 "
& "LIRQ:75 DRAM_IO:98 CEO:89 CE1:88 CE2:87 CE3:86 DBEO:94 DBE1:93

DBE2:92 DBE3:91, CSO:19 "
&"RW:770E:78 SYSRESET:66 RESET:67 SVIC_RESET:68 CASO:97 CAS1:96

CAS2:95 CAS3:112";

END logic;

8-23

'II;~YPRESS~~~~~~~~~U~Si~ng~th~e~S~la~~~VI~C~(~CY~7C~9~6~W~9~61~)

Appendix A. VHDL Code (continued)

ARCHITECTURE arch_logic OF logic IS

signal VL1N18: bit;
signal VL1N26: bit;
signal VL1N28: bit;
signal VL1N31: bit;
signal VL1N36: bit;
signal VL1N40: bit;

signal STATUS_ID : BIT_VECTOR (31 down to 0) : = X" FFFFFFFF" ;
signal STATUS_EN: BIT := '0';
signal REGION_TEMP: BIT;

for all: AND2 use entity work.AND2(archAND2);

for all: INV use entity work.INV(archINV);

for all: AND3 use entity work.AND3(archAND3);

for all: OR2 use entity work.OR2(archOR2);

begin

-- This is the logic for SELECTLM (when writing the REMOTE MASTER
-- registers)

SELECTLM <= '0' WHEN ((FXB(LA(31)) = '1') AND (FXB(LA(30)) = '1') AND
(FXB(LA(29)) = '0') AND (FXB(LA(28)) = '0')) ELSE '1';

-- This is the logic for RESET

SVIC_RESET <= RESET AND SYSRESET;

8-24

- ~YPRESS~~~~~~~~~U~Si~ng~th~e~S~la~Ve~VI~C~(~C~Y~7C~9~6~W~9~61~)

Appendix A. VHDL Code (continued)

This is the logic for driving the CASi inputs to DRAM
-- CASi is driven both during DRAM refresh and data access but not during
-- I/O access

CASO
CASI
CAS2
CAS3

<=
<=
<=
<=

DBE3
DBE2
DBEI
DBEO

OR
OR
OR
OR

(CSI AND (NOT CSO));
(CSI AND (NOT CSO));
(CSI AND (NOT CSO));
(CSI AND (NOT CSO));

-- This is the logic for the latch and enable signals for A40/A64 UPPER
-- ADDRESS

LA_UP_ADDR <= (NOT SELECTLM) AND LEDI;

-- This is the logic for controlling the CE*, OE* signals to each bank of
-- SRAM in I/O space

CEO <= DBE3 OR CSO;
CEI <= DBE2 OR CSO;
CE2 <= DBEI OR CSO;
CE3 <= DBEO OR CSO;

OE <= NOT RW;

-- This is the cross-connected SWAP BUFFER logic required for MD32 and D64
-- on same board

VLlI1: AND2
port map(A => D64,

VLlI1l: INV

B => VLlN3l,
Q => VLlN28);

port map(A => DENIN,
QN => VLlN18);

8-25

Using the Slave VIC (CY7C960/961)

Appendix A. VHDL Code (continued)

VL1I2: AND3
port map (A => DENIN1,

B => VL1N18,
C => D64,
Q => VL1N26) ,

VL113: OR2
port map(A => VL1N26 ,

B => VL1N28 ,
Q => VL1N31);

VL1I33: AND2
port map(A => VL1N36,

B => VL1N31,
Q => VL1N40),

VL1138: OR2
port map(A => DENIN1,

B => VL1N40,
Q => MOD_DENIN) ;

vL1139: OR2
port map(A => VL1N40,

B => DENIN,
Q => MOD_DENIN1),

VL1I4: INV
port map(A => LDS,

QN => VL1N36) ;

-- This is the REGION DECODER

reqion: PROCESS
BEGIN
CASE AM is

WHEN "000100" I "000011" I "000001" I "000000" => --A64 AM Codes
IF LD(31 downto 28) = "1110" THEN

REGION(2 downto 0) <= LD(26 downto 24);
REGION_TEMP <= FXB(LD(27));

ELSE REGION (2 downto 0) <= "000",
REGION_TEMP <= '0';

END IF;

8-26

Using the Slave VIC (CY7C960/961)

Appendix A. VHDL Code (continued)

WHEN "110100" I "110101" I "110111" => --A40 AM Codes
IF LD(15 downto 12) = "1110" THEN

REGION(2 downto 0) <= LD(10 downto 8);
REGION_TEMP <= FXB(LD(ll»;

ELSE REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END IF;

WHEN "001000" I "001001" I "001010" I "001011" I "001100" I "001101"
I "001110" I "001111" => --A32 AM Codes
IF VCOMP(3) = '0' THEN

REGION(2 downto 0) <= LA(26 downto 24);
REGION_TEMP <= FXB(LA(27»;

ELSE REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END IF;

WHEN "101111" I "110010" I "111000" I "111001" I "111010" I "111011"
I "111100" I "111101" I "111110" I "111111" => --A24 AM Codes
IF VCOMP(2) = '0' THEN

REGION(2 downto 0) <= LA(18 downto 16);
REGION_TEMP <= FXB(LA(19»;

ELSE REGION(2 downto 0) <= "ODD";
REGION_TEMP <= '0';

END IF;

WHEN "101001" I "101100" I "101101" => --A16 AM Codes
IF VCOMP(l) = '0' THEN

REGION(2 downto 0) <= LA(10 downto 8);
REGION_TEMP <= FXB(LA(11»;

ELSE REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END IF;

WHEN "011000" I "011001" I "011010" I "011011" "011100" I "011101"
I "011110" I "011111" => --USER1 AM Codes
IF VCOMP(3) = '0' THEN --A32 Modes

REGION(2 downto 0) <= "101"; --FORCED TO REGION 5
REGION_TEMP <= '0';

ELSE REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END IF;

8-27

~~ ~jfCYPRESS~~~~~~~~~U~Si~n~g~th~e~S~la~Ve~~~C~(~CY~7C~9~6~W~9~61~)

Appendix A. VHDL Code (continued)

WHEN "010000" I "010001" I
I "010110" I "010111" =>
IF VCOMP(2) = '0' THEN

REGION(2 downto 0) <=
REGION_TEMP <= '1';

"010010" I "010011" I "010100" I "010101"
--USER2 AM Codes

"010"; --FORCED TO REGION 10

ELSE REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END IF;

WHEN OTHERS => --DEFAULT REGION
REGION(2 downto 0) <= "000";
REGION_TEMP <= '0';

END CASE;
END PROCESS;

region_buffer: triout PORT MAP(REGION_TEMP, DRAM_I 0 , REGION(3));
--DON'T DRIVE REGION(3) WHEN IN DRAM MODE (DRAM_IO = 0)

-- This is the INTERRUPT LOGIC

LIRQ <= (LIRQ1 AND LIRQ2) AND (LIRQ3 AND LIRQ4);
STATUS_EN <= (NOT LDEN) AND MWB;

b1: FOR i IN 0 TO 31 GENERATE
bx: triout PORT MAP (STATUS_ID(i) , STATUS_EN, LD(i));

END GENERATE;

interrupt: PROCESS
BEGIN
IF LDEN = '0' THEN
IF (LIRQ1 = '0' AND PREN ='1') THEN STATUS_ID(7 downto 0) <= X"Ol";
ELSIF (LIRQ2 '0' AND PREN '1') THEN STATUS_ID(7 downto 0) <=

X"02" ;
ELSIF (LIRQ3

X"03" ;
ELSIF (LIRQ4

X"04" ;
ELSIF (PREN
ELSIF (PREN
ELSIF (PREN
END IF;

END IF;
END PROCESS;

end arch_logic;

'0' AND PREN '1') THEN STATUS_ID(7 downto 0) <=

'0' AND PREN '1') THEN STATUS_ID(7 downto 0) <=

'1') THEN STATUS_ID(7 downto 0) <="01010101";
'0' AND LDS '1') THEN STATUS_ID <= X"EEEEEEOO"; --compare

'0' AND LDS = '0') THEN STATUS_ID <= X"OFOFOFFF"; --mask

8-28

Using the CY7C964 with VIC

The CY7C964 is a flexible collection of byte-wide
(8-bit) transceivers, latches, counters, multiplexers,
and comparators that provide VMEbus interface
designs with a low-cost alternative to PLDS, ASICs,
or discrete logic devices. It is based on a standard
cell design that incorporates patented line drivers
for reduced ground bounce and high-noise immu­
nity.

The CY7C964 is a companion part to the Cypress
VIC068A and VIC64 VMEbus Interface Controller
devices. It is compatible with all operating modes of
either device, including dual address path, block
transfers, block transfer initialization cycles, local
D MA control, and D64 64-bit VMEbus block trans­
fers (when used in conjunction with the VIC64).
Signal naming conventions correspond directly to
the VIC068ANIC64 buffer control signals and the
CY7C964 can be directly connected to these signals.
The device can also be used as a generic interface
building block. CY7C964s are cascadable allowing
easy interfacing to any width bus. By combining
multiple logic functions into one discrete part, the
CY7C964 saves board space and reduces power
consumption.

The CY7C964 has two main operating modes, byte
width and word width. The byte-width configura­
tion of the device has 8 local address, 8 local data,
8 VMEbus address, and 8 VMEbus data signals. In
the byte-width modes, two methods are available for
loading the VMEbus master block transfer address
counters. This counter is loaded using the nominal
VIC block transfer initiation cycle, or alternatively
from the local data bus. Loading the VMEbus mas­
ter block transfer counter from the local data bus

8-29

decouples the board's local address map from that
of the VMEbus. This allows boards that consume a
great deal of local address space to still be able to
view the entire VMEbus address region. More in­
formation on both of the VMEbus master block
transfer address counter initialization techniques is
provided in the following sections.

In word-width mode the local and VMEbus data sig­
nals change to 16-bit address or data paths. This
mode expands all of the features of the device to 16
bits in width, with the exception of the D64 multi­
plexer. This multiplexer is disabled in word-width
mode. Since protocols such as block transfer initia­
tion cycles remain compatible in word-width mode,
the device becomes useful as a 16-bit bus interface
block for non-VMEbus applications.

CY7C964 Features

• Directly connects to VIC068A or VIC64

• Internal counters for block transfers

• Internal multiplexers for D64 block transfers

• Internal comparators for address decoding

• Supports VIC068ANIC64 dual address path op-
tion

• Supports cascadable operation

• Directly drives VMEbus address and data

• Directly drives local address and data bus signals

• Reduces components for compact board design

• Low power requirements

• Available in 64-pin QFP

CY7C964 Block Diagrams

The CY7C964 is an array of optimally controlled
counters, comparators, general registers, and multi­
plexers. A small amount of state logic is also present
within the device. This state logic monitors bus
cycles that are issued to the device and places the
component in the appropriate mode. The state logic
is implemented as an asynchronous rather than a
synchronous sequential state machine. These hid­
den internal-state or configuration bits are set and
cleared automatically by monitoring the arrival
times of various input signals.

The configuration bits, and other input signals to the
device, select the operating mode (byte width or
word width), as well as the initialization method for
the internal VMEbus master and local block trans-

LA (7:0)

D(7:0)

fer counters. The block diagrams in Figures 1,2, and
3, show an equivalent internal representation of the
device for each operational mode.

Byte-Width Mode I

In this mode, the CY7C964 operates as a conven­
tional byte-width slice of VIC compatible interface
logic. The device conforms to the standard VIC
block transfer initiation cycle and includes multi­
plexers for D64 block transfer operations and com­
parison logic for VMEbus address decoding.

Counters Cl, C2, and C3, latch LS, and multiplexers
S3 and S5 form the core of the block transfer address
generation logic. Cl is the local master block trans­
fer address counter, C2 is the VMEbus slave block
transfer address counter, and C3 is the VMEbus

LD(7:0)

A (7:0) VCOMP

Figure 1. CY7C964 Byte-Width Mode I Block Diagram

8-30

ea;~YPRESS~~~~~~~~~~=U=S=in;g~t=he~CY=7=C=9=64=ID~·th=VI~C
LA (7:0) LD(7:0)

D(7:0) A (7:0) VCOMP

Figure 2. CY7C964 Byte.Width Mode II Block Diagram

master block transfer address counter. As shown in
the block diagram, counter C1 loads from the local
data bus LD[7:D), C3 loads from the local address
bus LA[7:D), and counter C2 loads from the VME­
bus address bus A[7:D). Multiplexer S5 selects the
source for the local address either through C2
(which is also used for single cycle operations) or
Cl. Latch L8 and multiplexer S3 provide the sup­
port for the Dual Address Path feature. Single cycle
VMEbus master transfers can occur using L8 during
the interleave periods of master block transfers
without corrupting the contents of C3.

Latches LlD, Lll, and comparator COMP form the
VMEbus address comparison logic. Lll is the Ad­
dress Mask register that enables and disables bits of
the address comparator. LlD is the Address Com­
parison register which contains an 8-bit value that is
matched against A[7:D). When the enabled bits of

8-31

LlD match the corresponding signals of A[7:D], the
VCOMP* output is asserted (LOW). Writing 1's to
all bits of Ll1 disables the comparison logic. In this
case all values of A[7:0] match, causing the VCOMP
output to be asserted continuously. Loading com­
parison register LlD clears and enables all bits of the
mask register Lll. Therefore, during system initial­
ization, comparison register LlO must be loaded
first, then bits can be disabled within mask register
Lll.

Latches L1, L2, L3, and IA, and multiplexer S2 com­
bine to form a high performance D64 block transfer
data pipeline and multiplexer. During D64 block
transfer operations data is fetched from local
memory and transferred to latch Ll. A second
memory fetch is required to assemble the 64-bit
word. This data is stored in L3. When L3 is updated,
the data in Ll is moved to L2. This allows the VIC

LA (7:0), LD(7:0)

A (7:0), D(7:0) VCOMP

Figure 3. CY7C964 Word Width Mode Block Diagram

to prefetch the next word of information from local
memory while the VMEbus D64 data transfer op­
eration is in progress.

Latches LS, L6, L7 and multiplexer Sl form the
VMEbus D64 block transfer data demultiplexer.
Data is latched from the VMEbus into latches L6
and L7, simultaneously. The data is then moved to
the local data bus through multiplexer Sl.

This is the nominal operating mode of the
CY7C964. Control signals connect to the corre­
sponding buffer control signal on the VIC, with the
exception of the DENIN* and DENINl * inputs.
Refer to the following section, Interfacing to the
VIC64 and VIC068A, and to the VIC64/CY7C964
Design Notes for additional information on DE­
NIN*, DENINl *, and other control signals.

Byte Width Mode II

This mode is nearly identical to the previous byte­
width mode with one exception. The VMEbus mas­
ter block transfer counter, C3, loads from the local
data bus LD[7:0] rather than the local address bus
LA[7:0]. The main benefit of this operating mode
is that the entire VMEbus address space is available
for data transfers. Loading C3 from the local ad­
dress bus may preclude some addresses from the
VMEblis, because they are being decoded locally.
For example if EPROM is located at address
OXOOOOOOOO, this address may not be accessible
across the VMEbus. Using the CY7C964 in this
mode requires performing one additional bus cycle
during the blbck transfer initiation.

The CY7C964 operates in byte-width mode if the
BLT* and MWB* input signais on the CY7C964 are
swapped. In other words, the MWB* signal on the

8-32

~

= -~ Using the CY7C964 with VIC
~.1CYPRESS ========;;;;:;;;;;;;;;:~=====

VIC connects to the BLT* input on the associated
CY7C964s. The same rule applies for the BLT* out­
put on the VIC. It connects to the MWB* input on
the CY7C964s. The CY7C964 monitors the arrival
time of these two signals and expects to load the
master block transfer counter from the local data
bus LD(7:0) if BLT* is asserted prior to MWB*.
Swapping these two signals does not change the op­
eration of any other feature on the device, however,
there are two things to consider when using this
mode.

The address decode signal that drives MWB* on the
CY7C964 connects to the BLT* output on the VIC.
This signal should be driven with an open collector
or three-state device to allow the VIC to control the
signal during block transfer operations.

Block transfer initiation cycles also change. The
VMEbus master block transfer address counter
loads from the local data bus one cycle before the ac­
tual block transfer initiation cycle. The subsequent
cycle is a typical block transfer initiation cycle with
the local data bus containing the local DMA ad­
dress. The local address bus is ignored by the
CY7C964s during this cycle, but not by the VIC.
The low-order byte of the local address bus LA[7:0]
must contain the correct VMEbus master block
transfer address. This is necessary because the VIC
cannot be programmed to load the VMEbus master
block transfer address from the local data bus. For
more information on Byte Width Mode II refer to
the VIC64/CY7C964 Design Notes.

Word-Width Mode

The second main operating mode of the CY7C964
is the word-width mode. This mode of the device
works well for VMEbus address control functions.
All of the address related functions (local master
block transfer counter, C1, VMEbus slave block
transfer counter, C2, VMEbus master block trans­
fer counter C3, and the address comparison logic)
expand to 16 bits. The address and data buses on the
part combine to form two 16-bit buses. A high­
drive-strength, 16-bit bus and a medium-drive­
strength bus are formed from A[7:0], D[7:0] and
LA[7:0], LD[7:0] respectively. D[7:0] and LD[7:0]

are the least significant sections of each of these
buses.

In this mode one additional latch (L12), is located
between the local address bus and local master
block transfer counter, Cl. This latch allows the lo­
cal master block transfer counter to be loaded from
the local address bus prior to loading the VMEbus
master block transfer counter, C3. This is necessary
since both the VMEbus master block transfer count­
er, C3, and the local master block transfer counter,
C1, are loaded from the same local address bus.
When counter C3 loads during the block transfer
initiation cycle, the contents of latch L12 are moved
to counter, Cl.

All other functions available in this mode operate in
a similar manner as in the byte width mode. For fur­
ther information on this mode and detailed timing
information refer to the VIC64/CY7C964 Design
Notes.

Interfacing to the VIC64 and VIC068A

Previously, interfacing the VIC068A to the VME­
bus required a significant amount of LSI and MSI
devices. With the advent of 64-bit VMEbus block
transfers and the VIC64, the external discrete de­
vice count for a full functional interface imple­
mentation expanded. The CY7C964 has been de­
veloped to combat this problem by incorporating
the functions of much of this external logic into a
single package. Use of the CY7C964 shortens sys­
tem design, debug, and manufacturing cycle times.
This removes the burden of performing worst-case
and critical timing analysis on the VMEbus and VIC
buffer control sections of a system design. Local
control signals other than those directly connected
to the VIC64 or VIC068A have been kept to a mini­
mum. Figure 4 shows a full function D64 VMEbus
interface implemented using the CY7C964, VIC64
and all VMEbus interface local support logic. This
example interface features:

• Dual Path Address Operation
• Slave BLT Cycles During Master BLT Interleave
• Software Programmable Slave VMEbus Address

• Write Posting
• VIC Mail Box Interrupt Messaging Support

8-33

..--

~
85

;:::::
c:
OJ

~
t=

:3] E::

bJ
::J t== ::J
[jJ ~ IJ F ('t-- ~ Cl ~ ') E

'--

;-------- LA[31:0]

VIC~~81i I: I~I
VIC54

Figure 4. CY7C964/V1C VMEbus Interface

8-34

12ns 18G8

x15245 1

II ITITII[

III 111111111

'11111m TrmH

I x15245 1

III mnm1i

The interface can be dissected into 5 functional sec­
tions for the purpose of discussion. These sections
are:

• VMEbus Signal Group

• VIC Buffer Control Signal Group

• CY7C964 Local Signal Group

• CY7C964 Address Comparison Group

• Local Data Swap Buffer Logic

The focus of this application note is the CY7C964.
Each of the interface functional sections are ex­
amined from this perspective. The CY7C964s are
referred to as the LSB (Least Significant Byte),
NMSB (Next Most Significant Byte), and MSB
(Most Significant Byte) device depending on the
segment of the VMEbus that they control. The LSB
controls VMEbus address and data signals [15:8],
NMSB [23:16], and MSB [31:24]. This interface
uses the CY7C964s in the byte width mode I as ad­
dress and data controllers. All of the information
contained within this section pertains to this mode
of operation. For additional information on the sig­
nals described within this section consult The VME­
bus Specification (IEEE 1014) and/or the Cypress
Semiconductor VIC068A/VAC068A User's Guide

VMEbus Signal Group

This group includes the VMEbus address and data
signals.

D[7:0]. VMEbus compatible data signals that
directly connect to VMEbus P1 and P2 connectors.

A[7:0]. VMEbus compatible address signals that
directly connect to VMEbus P1 and P2 connectors.

Each CY7C964 provides support for 8 bits of VME­
bus address and data. Three CY7C964s are neces­
sary for 32-bit (D32/D64) interface applications.
The A[7:0] and D[7:0] transceivers on the CY7C964
furnish a high drive strength allowing direct connec­
tion to the respective address and data signals on the
VMEbus backplane. With the VIC068A or VIC64
controlling the CY7C964s, all VMEbus worst case
timing and drive strength requirements are met for
all types of data transfer operations.

8-35

VIC Buffer Control Signal Group

This group includes all of the VIC buffer control sig­
nals.

LADO. Latch Address Out, directly connects to
VIC LADO on all CY7C964s.

LADI. Latch Address In, directly connects to VIC
LADI on all CY7C964s.

LEDO. Latch Enable Data Out, directly connects to
VIC LEDO on all CY7C964s.

LEDI. Latch Enable Data In, directly connects to
VIC LEDI on all CY7C964s.

ABEN*. VMEbus Address Bus Enable, directly
connects to VIC ABEN on all CY7C964s.

DENO. Data Enable Output, directly connects to
VIC DENO on all CY7C964s.

D64. D64 Block Transfer Mode Enable, directly
connects to VIC64 SCONID64 pin on all
CY7C964s. This input should be tied Low on all
CY7C964s when using VIC068A.

BLT*. Block Transfer Enable, directly connects to
VIC BLT on all CY7C964s.

LAEN. Local Address Enable, directly connects to
VIC LAEN on all CY7C964s.

DENIN*. Primary Data Enable In, directly
connects to VIC UWDENIN* on NMSB and MSB
CY7C964s, and directly connects to VIC
LWDENIN* on LSB CY7C964.

DENINl*. Companion Data Enable In, directly
connects to VIC LWDENIN* on NMSB and MSB
CY7C964s, and directly connects to VIC
UWDENIN* on LSB CY7C964.

A major design-time savings is realized when using
the CY7C964s because all of these signals directly
connect to the VIC or are hardwired to a steady
state value. The buffer control interface is simple
and straight forward, with the minor exception that
the connection of UWDENIN* and LWDENIN*
control signals from the VIC are swapped to the
DENIN* and DENINI * on the LSB CY7C964.

CY7C964 Local Signal Group

The CY7C964 local signal group consists of the
VMEbus and local block transfer counter count-en­
able daisy-chains.

LCIN*. Local address counter Count enable IN.
On the LSB CY7C964 tie this input Low. On the
NMSB device directly connect this signal to the
LCOUT* of LSB device. For the MSB CY7C964
connect this input to the LCOUT* of the NMSB
device.

LCOUT*. Local address counter Count enable
OUT. On the LSB CY7C964, connect this output to
the NMSB LCIN* input. On the NMSB CY7C964,
connect this output to the MSB LCIN* input. For
the MSB device do not connect this output.

VCIN*. VMEbus address counter Count enable IN.
On the LSB CY7C964 tie this input Low. On the
NMSB device directly connect this input to the
VCOUT* of LSB device. For the MSB CY7C964
connect this input to the VCOUT* of the NMSB
device.

VCOUT*. VMEbus address counter Count enable
OUT. On the LSB CY7C964, connect this output to
the NMSB VCIN* input. On the NMSB CY7C964,
connect this output to the MSB VCIN* input. For
the MSB device, do not connect this output.

These signals enable the local and VMEbus higher
order address counters, two local address counters,
a master block transfer, a slave block transfer, and
a single VMEbus address counter. The local ad­
dress counters share the LCIN* /LCOUT* count en­
able daisy-chain. These signals are multiplexed
within the CY7C964 and enable the proper counter
depending on the current state of the interface. The
VCIN*NCOUT* daisy-chain is dedicated to the
VMEbus address counter on the device. When the
VCIN* or LCIN* inputs are held Low, counting is
enabled for the appropriate counters within the de­
vice. The VCIN* and LCIN* signals do not advance
the counters; these signals just enable counting. The
counters increment when these signals are active
and the proper increment count control logic se­
quence occurs. The VIC advances the address

counters at the proper time during VMEbus and lo­
cal DMA block transfer operations.

CY7C964 Address Comparison Signal Group

The CY7C964 address comparison signal groups
consists of the local signals that are associated with
the internal VMEbus address comparators. FCl,
MWB*, and LDS also are used to control other
functions on the CY7C964. Refer to the
VIC64/CY7C964 Design Notes for more information
on these signals.

FC!. Function Code 1 signal, directly connects on
all CY7C964s to the local signal that drives the VIC
FCl.

MWB*. Module Wants VMEbus, directly connects
on all CY7C964s to the local signal that drives the
VICMWB*.

LDS. Load Register Select, directly connects to
LA2 for systems with 32-bit local bus. Refer to the
following text for additional information.

STROBE*. Latch Register Control. A chip select
like signal that selects the CY7C964 internal
comparator mask and comparison registers.

VCOMP*. VMEbus Address Comparator Output.
The comparator output signal from the CY7C964
address comparator. This signal asserts Low if the
a pattern on address signals A[7:0] matches the
programmed values of the comparison logic.

The implementation of this group of CY7C964 sig­
nals is application specific. The MWB* and FCl sig­
nals are included in this section because they are lo­
cally generated signals required by the VIC. These
two signals differ slightly from their companions on
the VIC. On the CY7C964 the MWB* and FCl sig­
nals are inputs. On the VIC, MWB* is also an input,
but FCl is a bidirectional signal that can be driven
by the VIC. These signals on the CY7C964 can be
directly connected to their respective local signals
on VIC.

The CY7C964s contain a high-performance pro­
grammable VMEbus address equality comparator.
This comparator is controlled by two internal write­
only registers: a mask and a compare register. The
mask register enables and disables bits of the

8-36

comparator and the compare register stores the
data pattern which inputs are compared against.
VCOMP* is the active Low comparator match out­
put signal. VCOMP* is driven Low by the CY7C964
if the bit pattern on A[7:0] matches the associated
enabled bits of the compare register. Loading the
mask register bits with O's enables the correspond­
ing bits of the compare register. Loading bits of the
mask register with Is places bits of the compare reg­
ister in a don't care or match-on-anything state. If
all bits of the mask register are loaded with Is, the
compare register matches everything, causing
VCOMP* to always be driven Low. These registers
are loaded by supplying the proper data on LD(7:0)
and address on MWB* and LDS signals. The
STROBE* input is used to qualify the address and
latch the data into the proper internal register. Fig­
ures 5and 6 and Table 1 show the waveforms and tim­
ing conditions needed to load the compare and
mask registers. The mask register is cleared (all bits
enabled), when the compare register is loaded.

MWS' ~/

LDS ~

STROSE'~

Figure 5. Mask Register Load Cycle

14---147------+

... t4s----t44.... -t45-""'"t4~

MWS' ~/

LDS ~

STROSE'~

LD(7:0) ~(>(~~

Figure 6. Compare Register Load Cycle

8-37

Table 1. Compare Register Load Cycle Times

Para Description Min. Max. Unit

t43 MWB*, LDS set-up 0 ns
time to STROBE*
falling edge

t44 MWB *, LDS hold 5 ns
time after
STROBE*
falling edge

t45 LD(7:0) set-up time 5 ns
to STROBE* rising
edge

t46 LD(7:0) hold time 5 ns
after STROBE*
rising edge

t47 STROBE* minimum 10 ns
pulse width

Therefore it is important to load the compare regis­
ter first, then load the mask register as desired.

This load cycle operates as follows. The state of
LDS and MWB* are latched on the falling edge of
STROBE *. The data is loaded into the selected reg­
ister on the rising edge of STROBE*. MWB* must
be held inactive (High) during comparator register
loading. The state of LDS selects the register to
load. If LDS is High during the cycle the compare
register is loaded; if LDS is Low the data is written
to the mask register. This load cycle can be gener­
ated by decoding a separate address region or chip
select signal for the CY7C964 comparator registers.

For applications with a 32-bit local data bus it is desir­
able to load all three CY7C964s in parallel by having
the host processor perform a 32-bit write cycle to the
address region that activates STROBE*. The select
signal for the address region is connected to the
STROBE* input on all three CY7C964s. The 8 bits
of data on the lowest order section of the local data
bus LD[7:0] do not matter to the VIC, as long as the
VIC CS* signal remains inactive during this write
cycle. Boards that use this style of interface should
connect LDS to LA2, thereby decoding the mask reg­
ister at the Base Address of the address region and the
compare register at the Base Address + 4. LDS also
controls the operation of the D64 block transfer data
multiplexer/demultiplexer. Systems with 32-bit local

data buses should connect local address signal LA2 to
illS for proper operation of the D64 data multiplex­
er/demultiplexer logic.

The mask and compare registers can be set to select
any contiguous address region on the VMEbus.
These registers do not preload and can power up in
any state. It is advisable to initialize these registers
as soon as possible in the system boot sequence. The
CY7C964 comparator output signal VCOMP*, sup­
plies the result from the equality compare logic.
VCOMP* drives Low when the input matches the
loaded comparator conditions.

The CY7C964 VCOMP* signal is not directly com­
patible with the VIC SLSELO* and SLSELl * slave
select signals. The short (10 ns) address setup time
to AS* active for VMEbus slave boards does not
meet the worst case compare out delay of the
CY7C964 VCOMP* signal. Combining this with
the potential output glitching that can occur with an
asynchronous comparator can cause problems for
the VIC. It is recommended that the VCOMP* sig­
nal be externally filtered prior to being used with the
VIC SLSELO* or SLSELl * signals. Most applica­
tions will require some external comparison logic to
combine the VCOMP* signals from the NMSB and
MSB devices, furnishing finer grained VMEbus de­
coding.

The interface example in Figure 4 uses a 12-ns 18G8
to perform these functions and to disable the VME­
bus slave select signals to the VIC until the
CY7C964 comparator control registers have been
initialized. Using this PLD allows the interface to
decode three different VMEbus addresses regions:

• VMEbus A32 for local access - VIC SLSELO*

• VMEbus A24 for local access - VIC SLSELl *

• VMEbus A16 for mailbox interrupt - VIC ICF-
SEL*

Figure 7 shows the Pill ToolKit design file for this
device. The two VIC slave select signals (SLSELO*
and SLSELl *) can be used to conveniently decode
two VMEbus address regions. SLSELO* selects if
the NMSB CY7C964 becomes TRUE. SLSELl *
requires both NMSB and MSB comparators to eval­
uate TRUE.

A 50-MHz clock and the D registers within the 18G8
are used to build a simple digital filter that removes
any glitches that may occur on the three CY7C964
VCOMP* signals.

As mentioned previously, the comparators within
the CY7C964s are always active and they power up
in an unknown state. The PLD includes an EN­
ABLE signal which disables the SLSELO*,
SLSELl *, and ICFSEL * signals to the VIC until the
first access is made to one of the comparator control
registers. Adding the ENABLE function to this
PLD guarantees that the VIC slave select signals
cannot become active until the one of the compara­
tor control registers has been initialized.

There is a potential problem that can occur when
loading the CY7C964 comparator control registers.
The local data bus isolation buffer, which is neces­
sary to allow data swapping, is normally disabled by
the VIC. This causes a problem during CY7C964
register initialization cycles because the VIC only
enables the local data bus isolation buffers during
VIC or VMEbus accesses. The PLD solves this
problem by providing conditioning logic for the
ISOBE* signal. In the PLD design file in Figure 7,
a signal named CISOBE* is generated. CISOBE*
asserts (Low) enabling the isolation buffer if the
VIC ISOBE* is asserted or the CY7C964
STROBE* input is asserted. SWDEN* was added
to the equation for completeness, however, it may
not be necessary in many designs. There are ob­
viously many other implementations for control of
the VIC isolation buffers. One implementation is
shown here, but the best method for control of this
signal is application specific and left to the designer.

Local Data Swap ButTer Logic

Local Data Swap Buffer logic is a requirement for
all 32-bit local bus designs that want to be able to
perform 8- or 16-bit transfers. The swap buffer
moves data to and from the lower section of the
VMEbus D[15:0] to the upper segments of the local
bus D[31:16]. VMEbus requires that all 8- and
16-bit data transfers be performed on the D[15:0]
section of the bus. The CY7C964s work properly
with the VIC controlled swap buffer.

8-38

~~YPRESS~~~~~~~~~~~U~Si~ng=t~h~e~C~Y7~C~9~6~4~m~·th~W~C

C18G8;

CONFIGURE;

CLK_50Mhz(node=1),
LSBCOMP(node=2},
NSBCOMP(node=3) ,
MSBCOMP(node=4) ,
STROBE (node=5) ,
BD_RESET(node=6} ,
ISOBE(node=7},
SWDEN (node=8) ,

ENABLE (node=12 , noreg, iop) ,
SEL (node=13) ,
DSEL (node=14) ,
CISOBE(node=15,
SLSEL1(node=17,
SLSELO(node=18,
ICFSEL(node=19,

EQUATIONS;

/CISOBE

/ENABLE

/SEL

/DSEL

noreg, iop) ,
noreg, iop) ,
noreg, iop) ,
noreg, iop) ,

<OE>
<SUM> /ISOBE
+ /STROBE *

<OE>
<SUM> BD_RESET *
+ BD_RESET *

<OE>
<SUM> /LSBCOMP *
+ /NSBCOMP *
+ /MSBCOMP *

<OE>

SWDEN;

/STROBE
/ENABLE;

/ENABLE * BD_RESET
/ENABLE * BD_RESET
/ENABLE * BD_RESET;

<SUM> /SEL * /LSBCOMP * /ENABLE * BD_RESET
+ /SEL * /NSBCOMP * /ENABLE * BD_RESET
+ /SEL * /MSBCOMP * /ENABLE * BD_RESET;

/ICFSEL <OE>
<SUM> /DSEL * /LSBCOMP * /ENABLE * BD_RESET;

/SLSELO <OE>
<SUM> /DSEL * /NSBCOMP * /ENABLE * BD_RESET;

/SLSELl <OE>
<SUM> /DSEL * /MSBCOMP * /NSBCOMP * /ENABLE * BD RESET;

Figure 7. PLD ToolKit@) Design File For 18G8 PLD

8-39

Summary

The CY7C964 is a high-performance byte or word
width slice of VIC compatible VMEbus logic. Using
the CY7C964 in conjunction with the VIC068A or
VIC64 shortens design cycle time, reduces compo-

PLD 100lKit is a trademark of Cypress Semiconductor, Inc.

Using the CY7C964 with VIC

nent count, reduces interface real estate require­
ments, and overall design risk. For further informa­
tion on the local VIC interlace and more detailed
timing information in the CY7C964 refer to the
VIC068A/VAC068A User's Guide and the
VIC64/CY7C964 Design Notes.

8-40

Features of the VlC068A
VMEbus Interface Controller

This application note describes some features of the
Cypress VIC068A and provides information on how
to use the device.

The VIC068A was designed by a consortium of
VMEbus manufacturers in partnership with Cy­
press. The major goals of this consortium were to
achieve a standardized, reasonably priced VMEbus
interface that was not dominated by any board
manufacturer. Manufacturing this specialized chip
requires a high-speed process (125 MHz) and high­
power I/O pins (64 and 48 rnA).

The VIC068A adheres to the ANSI/IEEE Standard
1014, which minimizes the problems of interfacing
among the VMEbus boards of various manufactur­
ers. A block diagram detailing the device's function­
al blocks appears in Figure 1.

VIC068A Highlights

With very precise timing, based on a 64-MHz clock
that is used internally to make decisions on 8-ns in­
tervals, you can reach the theoretical limits of the
VMEbus transfer rates-a block transfer rate of 40
Mbytes/s.

Because all logic resides in a single chip, the
VIC068A greatly reduces the board space necessary
to interface to the VMEbus. Even a highly sophisti­
cated interface with an A32!D32 system controller
and block transfer support requires no more than 60
square cm or 20 percent of a double eurocard (6U
card).

Special care has been taken to speed up the
VIC068A's VMEbus access. Although many of
today's CPU boards use megabytes of high-speed

8-41

local RAM to limit the number of VMEbus ac­
cesses, the accesses that do occur for I/O or data
reads and writes must be done efficiently to avoid
slowing the rest of the system.

For both types of data transfers, the VIC068A offers
special support. For single-write cycles, you can
program the VIC068A to operate in the so-called
master or slave write-posting mode (Figure 2), the
local VMEbus write cycle is terminated locally as
soon as data is latched in the VMEbus latches. This
allows the local CPU to continue with instruction
fetches or other operations while the VIC068A
transfers data over the VMEbus.

In slave write-posting mode (Figure 3), the same
function happens with write cycles form the VME­
bus to the local bus. As soon as the data is latched,
the VMEbus cycle is terminated and the local cycle
can finish independently of further VMEbus traffic.
Both modes reduce CPU overhead and VMEbus
utilization, providing higher bandwidth in single­
cycle writes.

The VMEbus prohibits a similar function in single­
cycle reads because every read cycle on the VMEbus
could tum out to be a read-modify-write (RMW)
cycle. This cannot be foreseen because the only dif­
ference is that address strobe is held low between
the two cycles. Therefore, if the VMEbus address
strobe were released during the two portions of the
same RMW cycle, another VMEbus master could
break into that cycle and modify the same data.

To move blocks of data over the VMEbus, the
VIC068A uses the block transfer mode. In its stan­
dard form, this mode allows a processor to transfer
up to 256 bytes with just one starting address sup-

LAO - LA7

CS*------~

ASIZO*. ASIZI*
FC2. FCI

AMO - AM5

SLSELO*
SLSEl1*
ICFSEL*

LBR*
LBG*

DEDLK*

ABEN*
LADO

LADI
LEDI

LEDO
DDIR*

DENO*
UIIDENIN*
LIIDENIN*

SIIDEN*
ISOBE*

LAEN

VME
Buffer
Control
Logic

VIC068A Features

AOI - A07

Interprocessor
K)('~~;:"" COrlrlunlcatlons

Registers &:
Switches

1----14-----ACFAIL*

Interrupt
Handler

~===:; L1RQI* - L1RQ7*
f- IPLO* - IPL2*
[4-------. SYSF AU
r-----. L1ACKO*

[4------- CLK64M'

f---------.SYSCLOCK

L-__ ,-L--______ SCON*

[4----,----MIIB*

IRESET*
RESEH
SYSRESEH

Figure 1. VIC068A Functional Block Diagram

8-42

Local AS I IL.-l
VMEbus ACCESS ---, ,------

VMEbus AS I ,_~

Local DTACK ~
VMEbus DT ACK '---u--

Figure 2. Master Write Posting

VMEbus AS/DS ~
Slave Select -----, ,_~

Local AS/DS ---, _~
VMEbus DTACK ~

Local DTACK '~

Figure 3. Slave Write Posting

plied to the VMEbus. Additionally, the VIC068A
uses a type of pipelining to accelerate VMEbus
throughput. On a block transfer read cycle, the
slave VIC068A automatically prefetches the n + 1
data byte during the same read, The nth data byte
is transferred across the VMEBus, and the n - 1
byte is latched in local RAM. As shown in Figure 4,
this operation uses all three buses in overlapped and
parallel operation to speed up the transfer. Write
transfers use the same mechanism.

The limiting factor on the VMEbus transfer rate is
either the VMEbus's many timing restrictions or the
source or destination memories. If the memory
consists of dynamic RAM, the restriction is prob-

ably the cycle time of the chips used, often as slow
as 200 ns. Th overcome this limitation, the VIC068A
offers a programmable access mode so that attached
DRAM can be used in page mode.

Mter a starting row address cycle (RAS), all subse­
quent cycles need only a column address (CAS) to
reduce the access time, often by as much as half. For
a slave interface, the VIC068A contains all the nec­
essary counters and timing elements for local AS,
DS, and address generation.

A master block transfer needs two or three addition­
allatches for the higher address lines during the lo­
cal DMA part ofthe block transfer. Thus, even with
low-cost DRAMs, the VIC068's block transfer rate
can reach 40 Mbytes/s, limited only by the VMEbus
specification and the physical characteristics of the
VMEbus.

This transfer rate decreases the time needed to load
programs or move data to graphics boards, as well
as increasing the VMEbus's bandwidth, thereby al­
lowing more CPUs to work together in a multipro­
cessor system.

Mailbox Signaling

To add greater capability to multiprocessor systems,
the VIC068A has four interprocessor communica­
tion global switches (ICGS) and four interprocessor
communication module switches (ICMS), These
are all byte-wide mailbox registers that generate a

Longword n on VMEbus

VMEbus

Master CPU

Longword n-l
written to RAM

CPU 1

Slave CPU

Figure 4. Block Transfer Read Cycle

8-43

Longword n+l
wrItten to RAM

CPU 2

if ~ VIC068A Features
" CYPRESS ===============

local interrupt when accessed from the VMEbus.
The ICGSs of one group reside at the same address
and are acCessed with a write cycle, which behaves
as a broadcast to all members of the group. Because
the ICMSs are at different addresses, one dedicated
processor can be activated with a local interrupt re­
quest (LIRQ).

A processor can inform a logical group of processors
about a new task via a broadcast using the ICGSs
and can then communicate with single processors
about the task using the ICMSs.

Eight-byte-wide interprocessor communication
registers (ICR) are also available. Five ofthese reg­
isters serve as general-purpose read!write registers,
and three are dedicated to control local activities
(Halt, Reset, Mask ID, etc.). The ICRs can be read
and written from the local side or the VMEbus with­
out interfering with each other.

Interrupt Generator

The VIC068A handles up to seven simultaneous
pending IRQs with separate vectors. The VIC068A
also provides independent local IRQ vectors, if ex­
ternal IRQs are served.

Miscellaneous Features

The VIC068A furnishes several features for VME­
bus support:

• SYSFAIL generation

• Software reset

• ACFAIL
• BERR register for detailed information

For local support, the VIC068A provides these fea­
tures:

• Seven local IRQ sources, all level, polarity, edge
and vector programmable

• Local bus timeout (2-512 ms)

• With !without VMEbus request time included

• 21 different local IRQ vectors

• VIC ID register

In addition to the VIC068, the following parts or
equivalents are required for a minimum hardware
interface:

• Three address latches and drivers (74xx543)

• Three data latches and drivers (74xx543)

• Four isolation buffers (74xx245)

You might also need the following:

• One to two PLDs for slave address decoding

• 1Wo to three latches for master block transfer

• Yz PLD for block transfer glue logic

Interfacing

To connect a processor other than the 68OXO to the
VIC068A, it is often easiest to map the processor
control signals into the control signals available on
a 680xO-type of processor. This type of transition in­
terface offers the advantage of compatibility with a
large family of 68OxO-compatible peripheral parts,
which you can then use elsewhere in the design.

Figure 5 shows a sample interface, whose four ad­
dress latches store the multiplexed Mbus of the
MC88000 processor. Four data latches store the
data bytes after the acknowledge of the 68OXO bus
and then start calculating parity the processor's
MBus. The reason for this approach lies in some
older peripheral I/O chips, which change their data
lines when they should remain stable (Le., transmit
data buffer empty, etc.).

1Wo other data latches emulate the MC68020's dy­
namic bus sizing. The last buffer, between DO - D7
of the 68OXO bus and AD16 - AD23 of the MBus,
emulates the 680x0 bus's IRQ cycles with normal
read cycles of the MC88000.

Acknowledgment

8-44

Cypress Semiconductor wishes to thank Jiirgen Bul­
lacher of Eltec GMbH and Eltec International
S.A.R.L. for submitting this article.

ADO .. 31

r---------------,

i ADDRESS BUFFER i
I I
I I

I I
L _______________ J
r---------------l
: BUFFER I
I I

~~
~

: F. IRQ VECTOR :
'- _______________ J

Figure 5. Sample Interface

680XO
ADDRESS
BUS

680XO
DATA
BUS

8-45

Interfacing the VIC068A to the MC68020

This application note explains some of the features
of the Cypress VIC068A and provides the first-time
VIC068A user with simple implementations of
these features. The VIC068A offers the most highly
integrated VMEbus interface available today. It re­
duces the number of parts needed and saves board
space. The emphasis in this application note is on
interfacing the VIC068A as VMEbus A24/A16
D16/D08(EO) master/slave to the Motorola 68020.

Reset Operation

The VIC068A performs three distinct reset opera­
tions:

• Internal reset, activated by the IRESET pin,
which initializes most of the internal registers

• System reset, essentially the same as IRESET, but
is activated by writing ($FO) to the system reset
register, or by asserting IRESET when the
VIC068A is the VMEbus controller (SCON pin
asserted)

• Global reset initializes all the VIC068A registers

After a reset, the 680XO processor reads its initial
stack pointer (SSP) and program counter (PC) from
addresses $0 through $7. One way to handle this is
to remap the boot-up ROMs to the low addresses
for the first few cycles of the processor.

Figure 1 shows a circuit you can use to do this. The
circuit uses a serial-in/parallel-out shift register (the
74HC164) to generate the MAP signal. This active­
Low signal can be used with address-decode logic to
force boot ROM access to the lower addresses dur­
ing initial power up. Asserting the 74HC164
CLEAR pin drives all the parallel outputs Low,
which asserts the selected MAP signal. With the two

serial inputs tied High, each Low-to-High transition
of the 68020 AS clocks the High through the shift
register and out each of the parallel outputs. By
picking the proper output for the MAP signal, you
can decode from 1 to 8 of the initial processor cycles.
You can use the MAP signals on memory configura­
tions that are 8, 16, or 32 bits wide by using the QH,
QD, or QB outputs, respectively.

Using the Processor RESET Instruction

The OR gate in Figure 1 ensures that the 74HC164
is cleared only when HALT and RESET are both as­
serted. This allows the use of the 68020 RESET
instruction without inadvertently reasserting MAP.
An alternative to this approach is to use two small­
signal diodes (1N4148) and a pull-down resistor in
place of the OR gate. This change reduces the de­
sign's parts count by eliminating the 74HC32.

A ROM remapping circuit must be used whether
the RESET instruction is issued or not because of
the way the VIC068A arbitrates local bus conten­
tion between the 68020 and the VMEbus. Conten­
tion occurs when both master and slave operations
are requested concurrently (MWB asserted and
SLSELO, SLSELl, or IFCSEL asserted). The
VIC068A indicates this contention by asserting
DEDLK. You can deal with the condition by setting
bit 4 of the VIC068's interface configuration regis­
ter ($AF) to assert HALT along with LBERR when
DEDLK occurs (68020 bus retry sequence). The
VIC06 then waits for the 68020 to deassert the
MWB input. Once this happens, the VIC068A re­
leases LBERR but continues to assert HALT to
keep the 68020 off the local bus. The VIC068A then
allows the slave operation to complete and deas­
serts HALT. The 68020 can now retry the contested
bus cycle.

8-46

-, -x Interfacing the VIC068A to the MC68020
~rcYPRESS ================

VCC

OA A

MAP FOR 32-BIT MEMORY OB B

oc
MAP FOR 16-BIT MEMORY

10
OD TO VIC/68020 AS

11
OE

OF ClK
12

13
OG

MAP FOR 8-BIT MEMORY OH ClR

TO VIClBB020 RESET

74HC184
TO VIC/68020 HALT

74HC32

Figure 1. ROM Remapping Circuit

Internal Reset

At first glance, the IRESET might seem the logical
choice for implementing the power-on reset Be­
cause the IRESET input bas some built-in hystere­
sis, a simple RC circuit would be appropriate for ap­
plying the power-on signal.

IRESET does not initialize the local bus timing reg­
ister nor any of the slave select registers, however.
Additionally, the VIC068A powers-up with the
DRAM refresh option enabled (bit 4 of the arbiter/
requester configuration register $B3 High). This
condition is acceptable if you are using DRAM but
adversely affects the external reset circuit in Figure
1. Specifically, for the first DRAM refresh cycle, the
VIC068A deasserts RESET but maintains HALT in
the active (Low) state and toggles AS. This action
causes shift operations in the 74HC164. You can ac­
tivate DRAM refresh after reset by writing a 1 to bit
4 of the arbiter/requester configuration register
($B3).

System Reset

The assertion of SYSRESET on the VMEbus typi­
cally activates system reset, but only when a global
reset is not taking place. When the VIC068A is con­
figured as the system controller (SCaN pin as­
serted), it drives the SYSRESET pin for the re­
quired 200 ms during an internal or global reset.

8-47

Global Reset

The global reset is the most useful for power-up pur­
poses because it places all the VIC068A registers in
a known state. You initiate a global reset by assert­
ing IPL(O) concurrent with or just after asserting
IRESET. These reset signals should not be asserted
until the Vee power source has stabilized at 5 volts.
Because IPL(O) is also one of the encoded interrupt
lines for the 68020, you must assert this signal with
an open-collector or three-state device.

In using global reset, bear in mind that when the
VIC068A powers-up it ignores the VMEbus SYS­
RESET. The VIC068A releases HALT and RESET
after the 200-ms time out even if the current VME­
bus master asserts SYSRESET past this required
minimum time. This automatic release is a useful
feature because it eliminates reliance on the system
controller to release SYSRESET to start the power­
up sequence. Refer to the VIC068A/v;4C068A
User's Guide for more information on global reset

The VI C068A generates a LBERR if you try to ac­
cess the VMEbus or any of the VIC068A registers
before SYSRESET is deasserted. One solution to
this problem is to structure the software so that the
VIC068A registers are set up as late as possible in
the power-up sequence. You can also temporarily
point the 68020 BERR exception vector to an ad­
dress containing an RTE instruction and let the
68020 cycle in a BERR/RTE loop until SYSRESET
is deasserted. The latter approach provides an op-

Li _~ Interfacing the VIC068A to the MC68020
_,CYPRESS ==============

portunity to be the first board in a system to request
VMEbus mastership.

Connecting the Bus Lines
Figure 2 shows the standard buffer configuration for
an A241D1(j VMEbus connection. This design also
supports A16 and D08(EO) operation.

Figure 2. Address and Data Bus Connections

8-48

...-=..

-,~ ~ Interfacing the VIC068A to the MC68020
,CYPRESS ================

The D16/D08(EO) Data Bus

Connect the VIC068A to the 68020 as you would
any 16-bit peripheral device. The 74FCT543 data
buffer connects between the 68020 data bus's upper
byte (D31 - 24) and the VMEbus D15 - 8 data
lines. The lower byte (LD7 - LDO) is buffered
through the VIC068A to the VMEbus low byte (D7
- DO). Several control signals connect directly
from the VIC068A to the 74FCT543: DENO (data
enable out) to OEAB (Output enable A-to-B),
LWDENIN (lower word data enable) to OEBA
(Output enable B-to-A), LEDO (latch enable data
out) to LEAB (Latch enable A-to-B), and LED!
(latch enable data in) to LEBA (latch enable B­
to-A).

The Address Bus

The A24/A16 configuration requires the use of two
more 74FCT543 devices to buffer and control the
VMEbus A23 through A8 signals. The 74FCT543
LEAB, LEBA, and OEBA inputs connect directly to
the VIC068A LADO (latch address out control),
LADI (latch address in control), and ABEN (enable
address out control) outputs, respectively. The out­
put of the VIC068A LAEN (local-address enable
control) must be connected to the 74FCT543 OEBA
input through an inverter because LAEN is an ac­
tive-High output and OEBA is an active-Low input.

Connecting the DSACK Lines

During the normal local bus operation, the 68020's
slave devices (i.e., memory, UART, parallel port)
must tell the processor the size of their data bus.
This is done by asserting the DSACKl inputs, which
tells the 68020 that the port is a 16-bit device. As­
serting DSACKO instead indicates that the port is an
8-bit device. Asserting both DSACKl and DSACKO
indicates that the port is 32 bits wide. To configure
the VIC068A as a 16-bit port, simply connect the
68020 DSACKl to the VIC068A DSACKl.

So long as there you have no requirement for VME­
bus access to 8-bit devices on the local bus, you do
not need to do anything with the VIC068A DSACKO
pin except terminate it (pull it High).

When you do need to access 8-bit devices, a small
problem arises with the way the V1C068A acknowl­
edges register accesses and interrupt-acknowledge
cycles. During these cycles, the VIC068A always as­
serts both DSACKl and DSACKO, whether the
WORD input is asserted or not. And in VMEbus
master cycles, when talking to an 8-bit device on the
VMEbus, the VIC068A responds with DASCKO to
acknowledge the 8-bit transfer completion.

The solution to the DSACKO problem is simple but
can be complicated to implement: You must break
the DASCKO connection between the VIC068A and
the 68020 during interrupt acknowledge or
VIC068A register access (CS) cycles. The circuit
needed to do this is a bidirectional, open-collector
buffer between the VIC068A and 68020. The buffer
should be inactive in both directions only when the
VIC068A FCIACK or CS inputs are asserted. In
Figure 3's PAL equations, the DSACKO_020 and
VIC068A DSACKO equation illustrates how to han­
dle the DSACKO connection.

Master Operation

VMEbus master operation with. the VIC068A is
easily accomplished with the use ofthe MWB (mod­
ule-wants-bus) input. The VMEbus can be re­
quested at any level (0 - 3). The VMEbus can also
be dynamically changed via the arbiter/requester
configuration register ($B3), which eliminates the
need for hardware jumpers. All VMEbus release
modes are supported through the release control
register ($D3). Support for write posting means
that the local processor can write to the VMEbus
without having to wait for the current bus master to
release the bus or for the arbitration logic to assert
the correct BGIN 9 (bus grant in) line. The
VIC068A takes cares of this overhead for the local
processor, improving system throughput.

To request VMEbus mastership, the 68020 asserts
the MWB input. You can think of MWB as a VME­
bus chip select. When interfacing to the VMEbus as
an A24 or A16 device, you can have access to the
whole VMEbus address space by decoding a
32-Mbyte area of the 68020 address space for VME­
bus operations. The ASIZ1-0 pins tell the VI C068A
whether the current cycles represent an A32, A24,

8-49

....;;:;;;:==,.

=-- ~
~;fCYPRESS~~~~~~~~I~nt~e~rl:~aC~i~ng~th~e~VI~C~06~8~A~t~o~th~e~M~C~6~80~2=O

or A16 operation. You can use the upper 16-Mbyte
address space (A24 High) for VMEbus A23 opera­
tion and the lower half (A24 Low) for VMEbus A16
operation by following three steps: decode A31
through A25 to generate MWB, tie the ASIZl input
High, and connect the 68020 A24 address line to the
VIC068's ASIZO input. Figure 3 demonstrates this
way of decoding MWB. .

When the VIC068A recognizes a valid slave access,
the device asserts LBR (68020 BR input) and waits
for LBG assertion (68020 BG output). Once the
VIC068A receives LBG, the device becomes the lo­
cal bus master at the conclusion of the current cycle
and completes the requested VMEbus slave opera­
tion. Ifthe VIC068A is the only DMA device on the
local bus, there is no need to generate BGACK (bus
grant acknowledge) for the 68020. But if any other
devices are capable of local bus mastership, you
have to provide the arbitration logic and the
BGACK signal for the 68020. Keep in mind, too,
that other DMA devices must be able to recognize
and deal appropriately with the 68020 bus-cycle
entry operation (BERR and HALT asserted).

Slave Operation

The VIC068A can provide full VMEbus slave op­
eration by dual-porting local memory with little or
no 68020 overhead. The normal slave access opera­
tion starts by providing SLSELO or SLSELl through
VMEbus address decoding. The circuits in Figures
2 and 3 use a 22VIO PAL for this purpose. Always
qualify VMEbus address decoding with the AS and!
or DSI-O.

Decoding SLSELO, SLSELl, and IFCSEL

Figure 3 illustrates a typical PAL specification that
you can use to provide address decoding for
SLSELO, SLSELl, and IFCSEL. The VIC068A
uses all the address modifier lines (AM5 - 0) to
qualify the access mode. Address decoding can ig­
nore these inputs. The VIC068A then decides if the
access mode is legal and completes the cycle or gen­
erates the VMEbus BERR signal, depending on the
value programmed in the slave select registers. You
can also qualify the select outputs with the address

modifiers and let the initiating device time-out if the
access is not legal.

The IFCSEL input gives the VMEbus access to
some of the VIC068A control registers and the in­
terprocessor communication registers. These regis­
ters are available only through an A16 privileged­
mode access.

The PAL specification in Figure 3 configures
SLSELO to dual-port a 4-Kbyte (minus 256 bytes)
space of local RAM !is ari A16 non-privileged access
input and decodes IFCSEL in the SLSELO area's
upper 256 bytes. You can use this 256-byte space for
mailbox communication between boards in a multi­
master system.

SLSELl is decoded as an A24 supervisory-only ac­
cess and provides full dual-porting of the 68020
board's E2PROM program memory. This allows
the VMEbus system controller to put the system in
a reset and hold state by asserting bit 6 of the
VIC068's interprocessor communications register
7. The VMEbus master can then reprogram the en­
tire program memory space. Once that operation is
complete, the controller can use the interprocessor
communications register 7 to release the reset and
hold state. The board comes up running the newly
installed program.

Take care when decoding SLSELO, SLSELl, and
IFCSEL. The VIC068's operation is undefined
when more that one of these inputs is active simulta­
neously.

Decoding for Supervisor/User Mode

You can use the VMEbus AM2 signal to select user
(AM2 Low) or supervisor (AM2 High) modes. The
AM2 input is used as part of the slave-select decod­
ing shown in Figure 3.

Dealing with A24 and A16 Slave
Accesses

Regardless of the access address size, the 74FCT543
address buffer outputs are enabled. Typically, the
backplane pulls unused VMEbus address lines High
passively, but most masters drive these lines regard­
less of the bus-cycle-address size. If this is not desir-

8-50

=a -,:Z
~'CYPRESS

module_CYCLE_DECODE;
Cycle_decode device 'PV22V10';
VCC,GND

"inputs (15)
A31,A30,A29,A28,A27,A26,A25,A19
SLSEL1, SLSELO
FC2,FC1,FCO,AS,LBG

"outputs (6)
VIC_DSACKO,DSACKO_020
VIC_CYCLE
FCIACK
PRE_MWB, MWB

pin 18,19;
pin 20;
pin 21;
pin 22,23;

Interfacing the VIC068A to the MC68020

pin 24,12;

pin 1,2,3,4,5,6,7,8;
pin 9,10;
pin 13,14,15,16,17 "for FCIACK and VIC_Cycle output

"To VIC DSACKO and local system DASCKO
"current bus cycle is VMEbus
"Interrupt Acknowledge Cycle
"VIC module-wants-bus (with and without AS)

"output type declarations
VIC_CYCLE,PRE_MWB,MWB
FCIACK,VIC_DSACKO,DSACKO_020
VIC_CYCLE.OE,FCIACK.OE
PRE_MWB.OE,MWB.OE
VIC_DSACKO.OE,DSACKO_020.0E

istype 'com';
istype I com' ;
istype 'com';
istype 'com'i
istype I com I ;

equations in CYCLE_DECODE
"Enable ALL outputs except DSACK's

VIC_CYCLE.OE =1;
PRE_MWB.OE =1;
MWB.OE =1;
FCIACK.OE =1;

"This signal tells everybody that the VIC068A is controlling the current bus cycle
lVIC_CYCLE<T>=ILBG & AS<T><T><T><T>"signal is asserted while AS is still high

#IVIC_CYCLE & lLBG &IAS "maintain signal through entire cycle

"Interrupt acknowledge cycle (68020 to VIC). Use VIC_CYCLE to insure this is not a VMEbus
master cycle

lFCIACK = A31 & A30 & A29 & A28 & A27 & A26 & A25 & A19 & FC2 & FC1 & FCO & lAS &
VIC_CYCLE;

"VME A24 access is at addresses $04000000 - $04FFFFFF. A16 access is at addresses $0500000
$05FFFFFF (ASIZO is tied to LA24)

lMWB = lA31 & lA30 & lA29 & lA28 & lA27 & A26 & lA25 & VIC_CYCLE &1 (FC2 & FC1 & FCO);

"This is the same signal as MWB but the AS input is removed to provide an early VMEbus master
cycle indication input to other PLDS

lPRE_MWB = lA31 & lA30 & lA29 & lA28 & lA27 & A26 & lA25 & VIC_CYCLE &1 (FC2 & FC1 & FCO);

"This signal is connected directly to the VIC DSACKO. It generates the VIC DSACKO for VMEbus
slave accesses to 8 bit device

lVIC_DSACKO = lVIC_CYCLE & I DSACKO_020;

"This enables VIC_DSACKO only when VIC is the local bus master (slave accesses)
VIC_DSACKO.OE = lVIC_CYCLE & (ISLSELO # ISLSEL1);

"This signal is connected to the 68020 DSACK). It generates the 68020 DSACKO for VMEbus mas­
ter accesses to 8 bit devices

lDSACKO 020 = lMWB & VIC_CYCLE & lVIC_DSACKO;

"This enables the 68020 DSACKO only when the VIC is the VMEbus master
DSACKO_020.020 = lMWB & VIC_CYCLE;
end_CYCLE_DECODE

Figure 3. ABEL Equations for PALC22VIO Cycle Decoding

8-51

~ '1z: ~ Interfacing the VIC068A to the MC68020
, CYPRESS ==============

able, control the output-enable signals with the up­
per address line buffers using the VMEbus address
modifiers. Table 1 illustrates how to use AM5 and
AM4 to determine the bus-cycle-address size.

You can derive individual enables for each of the
VMEbus address latches by ANDing one or both of
these address modifiers with the VIC068A LAEN
(local-address enable) signal; modify both if operat­
ing in an A32 system.

Remember to provide a stable level for the local-ad­
dress lines because nothing drives them during
VMEbus accesses. You can ensure a stable level us­
ing 4:7(2 pull-up or pull-down resistors on the local­
bus A31-A16 lines. The local-bus address buffers
can be set to the desired address state and enabled
with the same latch-enable signals.

Dual-Porting Local Memory

The PAL specification in Figure 3 generates a signal
called VIC_CYCLE than can serve as part of the lo­
cal-address decoding to re-map local memory for
dual-porting on the VMEbus. This approach allows
memory placement at a VMEbus address indepen­
dent of the local address.

Interrupts

The VIC068A interrupt structure is very versatile.
One of the most useful features is the ability to rede­
fine interrupt levels, and thus priorities, under nor­
mal program control. The VIC068A supports all
seven levels of VMEbus interrupt as well as the
seven local-interrupt levels. Interrupts are also
available to notify the 68020 of VMEbus status and
error conditions.

Figure 3 shows how to decode the 68020 interrupt ac­
knowledge bus cycle to generate the VIC068A
FCIACK input. You can omit A19-A16 from the
equation if you do not use breakpoints, a memory
management unit (MMU), or a coprocessor
(68881/68882).

Using LIACKO

The LIACKO output is typically connected to the
68020 AVEC input to initiate autovectoring of inter-

rupts to which the VIC068A has not been pro­
grammed to respond. You can also use LIACKO
with the IPL(2-0) outputs to generate interrupt-ac­
knowledge signals to other 68OxO-compatible inter­
rupting devices.

LIRQ7 -1 Inputs

The LIRQ7 -1 inputs are the interrupt request in­
puts to the VIC068. The control register for each in­
put allows you to determine the input's polarity
(high/low) and sensitivity (level or edge). The con­
trol register also allows you to define whether the
VIC068A supplies the vector during interrupt ac­
knowledge cycles or asserts LIACKO (local-inter­
rupt acknowledge out), sets the level of interrupt the
68020 sees on IPL2-0, and enables or disables the
interrupt. You do not need to terminate these in­
puts if you leave them unconnected, but you must
pull them up externally if they are used.

The local interrupts (IPL2-0) are grouped and
have a common vector base register ($57). This vec­
tor base is added to the encoded interrupt level pro­
grammed in each of the interrupt control registers
to supply a unique vector to the 68020 for each inter­
rupt input.

LIRQ2 is a special case because it can be used as an
interrupt clock tick timer. You enable the timer
through bits 2 and 3 of slave-select control register
0($C3). When enabled, LIRQ2 becomes the timer
output, and the local-interrupt control register 2
($2B) becomes the timer's interrupt-control regis­
ter. The timer's periodic interrupt can be set to 50,
100, or 1000 Hz. If you plan on using the tick timer,
do not connect the external interrupts to LIRQ2 be­
cause this pin becomes an output.

Table 1. Determining Bus-Cycle-Address Size

AM5 AM4 Cycle

H H A24Access

H L A16Access

L L A32Access

8-52

Connecting the Cypress VIC068NAC068 to the
TI TMS320C40: A Prototype Design

Introduction

The Cypress Semiconductor VIC068 VMEbus In­
terface Controller and its companion VAC068
VMEbus Address Controller provide a complete
VMEbus interface including master and slave capa­
bility (Reference 2). As these components can be
used in a wide variety of applications, it is natural to
utilize the VIC068NAC068 in a single- or multiple­
TMS320C40 VMEbus card design.

This application note provides high-level as well as
low-level details of interfacing VICNAC to
TMS320C40. This allows for techniques to be im­
plemented to minimize design time for subsequent
efforts since this design has not been optimized for
either size or speed. The Design Requisites section
provides the design goals established prior to design
as well as relevant background regarding devices in­
volved. Hardware details, including schematics and
programmable logic source code, represent the cen­
tral focus of the paper. In addition, software initial­
ization of the chip, set by the TMS320C40, is cov­
ered. Throughout this note, it is assumed that the
reader is familiar with the TMS320C40 architecture
(Reference 1), the basics of the VIC068NVAC068A
(Reference 2), and the VMEbus and its protocol(s)
(References 5, 6).

Design Requisites

Design Goals

This project began with the development of a set of
design goals for the VME interface based on our
particular needs. The main focus was on a

8-53

TMS320C40 card providing both (VMEbus) master
and slave capability for reads, writes, read-modify­
writes, write posting, and slave block transfers. In
terms of the address/data capability, a design was
made to the most prevalent configuration (for other
cards available commercially): 24-bit address and
32-bit data (i.e., A24/D32). However, the design
presented here does not preclude 32-bit addressing
with minor modifications. Via the VIC068, this de­
sign also provides system controller capability.
VMEbus interrupt support is not provided. The
VAC068 is utilized to provide address control/map­
ping, two Universal Asynchronous ReceiverlTrans­
mitters (UARTs) (required for our application), and
a general purpose parallel I/O. In addition to the
VMEbus functionality, interface compatibility is re­
quired with both the existing TMS320C40-40,
which has 50-nanosecond cycle time, and the faster
TMS320C40, 40-nanosecond part.

Design Considerations

The 68020 User's Manual (Reference 7) was refer­
enced extensively for this design, which covers a
complete examination of the VIC068 and VAC068
and extends to review the 680x0 family bus signals
and cycles. An examination of the VIC068 and
VAC068 reveals a direct interface to the Motorola
680xO family data, address, and control signals. The
VIC068 and VAC068 are both driven with the famil­
iar 68OXO address and data strobes (PAS*, DS*),
which have an asynchronous transfer protocol im­
plemented with the data transfer and size acknowl­
edgment signals DSACKO* and DSACK1 *. In addi­
tion to these signals, the transfer size signals, SIZO
and SIZ1, are an integral part of the 68OxO's dynam­
ic bus sizing capability and, with the the lower ad-

'§t.. ?cYPRESS ====;;;;;;C;;;;;;o;;;;;;D;;;;;;D;;;;;;eC;;;;;;tI;;;;;;"D;;;;;;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;06;;;;;;8;;;;;;N.;;;;;;1\;;;;;;C;;;;;;O;;;;;;68=to;;;;;;t;;;;;;he;;;;;;TI=3;;;;;;2;;;;;;O;;;;;;C=40

dress lines, encode the size of the transfer in prog­
ress. During transfer, the function code signals
(FCO-FC2) provide additional information of im­
portance in multi-user environments. Bus arbitra­
tion is an integral part of the 68OXO via the bus re­
quest (BR *), bus grant (BG*), and bus grant
acknowledge (BGACK*) signals and are used di­
rectly by the VIC068. Finally, like many other gen­
eral purpose microprocessors, bus cycles for the
68OXO are several clock cycles long.

Although the VIC068 and VAC068 are driven by,
and can drive, the familiar 68OXO bus signals, a quick
examination of the TMS320C40 bus signals shows
little similarity to the 68OXO family. The
TMS320C40 provides a bus protocol common to the
TMS320 floating-point DSP product line. An exter­
nal ready sigDal allows for wait-state generation and
controls the rate of transfer in a synchronous fash­
ion (i.e., cycles can be extended an integer number
of clock cycles). As described in Reference 1, the
TMS320C40 provides a 32-bit address range divided
into two identical 31-bit address, 32-bit data buses
termed local and global. The TMS320C40 executes
single cycle instructions and relies on a multistage
pipeline for execution speed. Detailed bus status is
provided for each cycle via the STAT lines, which
provide information regarding the type of instruc­
tion and access. Individual control lines are pro­
vided for three-stating the address, data, and con­
trol bus(es). A read-modify-write signal is not
provided (as it is on the 68OXO). However, an
instruction-driven LOCK* signal is available. Each
cycle is controlled by a strobe (STRBx*) signal in
conjunction with the corresponding readlwrite
(R/Wx*) strobe .. One of the TMS320C40's many
features is the range of configuration options for
this external interface. The TMS320C40 has
evolved from its earlier floating-point counterparts
and provides a truly flexible interface via the local
and global bus configuration control registers.

High-Level Architecture

The high-level architecture for the card places
20-nanosecond (ns), high-density, 4-megabit
(128Kx32) Cypress CMOS SRAM modules on both
local and global buses of the TMS320C40. (The size

of the memory array should not impact the
TMS320C40-to-VIC068N AC068 interface design.)
The global side is designated as program memory
and the local side as data memory for the applica­
tion. It is anticipated that the local memory will be
fully occupied by DMA coprocessor activity coupled
with data fetches during communications-oriented
DSP operations. Given this, the A24 VME spec­
trum is placed on the global (program) side, seg­
menting the local side I/O activity, the critical path
for the application, from all VMEbus activity.
(Note that the interface documented herein can be
used on either side due to the symmetry of the global
and local buses.) In addition to programming
SRAM on the global side, two 128Kx16 EPROMs
for embedded program store are also placed, with
the boot load feature of the TMS320C40 applied.

Because the design is limited to VMEbus A24 ad­
dressing, its spectrum fits nicely anywhere in the
TMS320C40 global side address spectrum, from
08000 OOOOh to OFFFF FFFFh. Therefore,
VMEbus master access is memory mapped into the
TMS320C40 global side address range. When an ac­
cess occurs in this predefined A24 range, the
TMS320C40 bus signals are transformed into 68OXO
bus signals. These drive the VIC068NAC068 pair
and initiate a VMEbus transfer. Global side ac­
cesses outside of this range do not generate such sig­
nals and occur at full speed (i.e., the speed appropri­
ate for that memory or peripheral). Regarding the
"endianess" (References 8, 9) of the interface, it is
known that the 680x0 family maintains big-endian
byte ordering (byte addressable memory organiza­
tion) with little-endian bit ordering in each address­
able unit. In contrast, the TMS320C40 is flat in its
byte endianess (32-bit word addressable only) and
little-endian bit ordered. Therefore, no swapping is
done on the interface as 32-bit word transfers (be­
tween processors) maintain DO as the least signifi­
cant bit. This forces the designer to tradeoff transfer
speed with a wider range of transfers (byte, word,
and three byte) than inherent to the TMS320C40
(longword). Transfers are limited to D32. In order
to provide transfers of all sizes, additional set-up
and/or decoding would have to be done prior to/dur­
ing the transfer in progress.

8-54

&-x
7cYPRESS ====;;;;;;C;;;;;;o;;;;;;n;;;;;n;;;;ec~t~in~g~th~e;;;;;VI~C~06~8~fV,;;1\~C~O~6~8 ~to;;;t;;he~T;I;;3~2;O;C;;40;

Hardware Description

After examining the VIC068NAC068 interface and
capabilities and comparing them with the
TMS320C40, a prototype design was initiated.
Based on the above discussion, the strategy is to map
from the given set ofTMS320C40 bus signals to a set
of 680xO-like signals driving their counterparts on
the VIC068 and VAC068 for master cycles. (Note:
the TMS320C40 is reading from or writing to the
VMEbus.) Not only can the TMS320C40 initiate
VMEbus cycles as a bus master, the card can also re­
spond to slave cycles. Most often, slave access is
used in terms of access to shared memory on the
(slave) card. To accomplish this on the
TMS320C40-based VME card, a set of signais is re-

. quired to respond to bus requests from the
VIC068NAC068 and an additional set is required
to "hold off" the TMS320C40 global side during
such transfers.

To accomplish this transformation of signals, pro­
grammable logic is applied. It is desirable to keep
the design time to a minimum while maintaining the
most flexible or programmable design. Based on
this, Cypress's CY7C335 universal synchronous
EPLDs (Reference 3) are used. These devices are
field programmable and optimized for state ma­
chines. The 335 has 12 input macrocells, 12 output
macrocells, 256 product terms, 4 buried registers,
and operates to a maximum frequency of 100 mega­
hertz (MHz). Development tools for these EPLDs
include Wa1p2"', a VHDL compiler from Cypress,
and Data I/O's ABEL'" version 4.0 or better, using
fitters available on the Cypress Bulletin Board
(408-943-2954).

Reset Circuitry

The VIC068 must receive a global reset in order to
function correctly. The global reset should occur af­
ter the power supply and the 64-MHz (U4) oscilla­
tor have stabilized and before any interaction with
the chip is attempted. The VIC requires both the
leading and trailing edges of IRESET* /lPLO, as
shown on page 14-32 of the Users Guide and as dis­
cussed in Chapter 12.

8-55

To implement this function, an RIC network along
with a pair of Schmitt Trigger inverters are used to
create a power-up signal. The RIC values are not
given since they will be a function of the system pow­
er supply and oscillator power-up delay time. The
power-up signal is supplied to U12, a 22VlO that is
programmed as a state machine to create the re­
quired waveforms. (Part of U12 is also used for ad­
dress decoding.) After the power up delay is com­
plete, the power-up signal goes High, which causes
U12 to drive IRESET Low. The state machine waits
for the VIC to respond by driving RESET Low. It
then drives IPLO Low for two clock cycles indicating
a global reset is to take place. IPLO is returned to
a High state followed by the IRESET signal. If the
VIC is configured as a VMEbus system controller,
a global reset will cause the VIC to drive the
SYSRESET line for 200 ms, as required by the
VMEbus specification. The RESET output on the
VIC068 is used to reset both the TMS320C40 as well
as the VAC068 and all programmable logic on­
board.

Address Bus Decoding

The VIC068NAC068 interface, and consequently
the VMEbus itself, is mapped into the TMS320C40
global side at ODOOO OOOOh. In this application, the
global side is divided into two halves via the STRB
ACTIVE field in the TMS320C40 (global) memory
control register. Zero-wait state devices (fast
SRAM) are placed in the lower half and slower
memory (EPROM) and peripherals (the
VIC068NAC068 pair) are placed in the upper half.
Therefore, the TMS320C40 addresses program
memory via STRBO and addresses the VMEbus via
STRBl. As shown in the accompanying schematics,
U12 is a 22VlO PAL used for STRBI address bus de­
coding. In particular, a Cypress PAL22VlOD-7
was used. This PAL is used to decode each (global)
TMS320C40 STRBI bus cycle using the
TMS320C40 HI clock. Cycle type decoding is ac­
complished fully via the STAT lines (versus simply
using the R!W strobe) and allows for future expan­
sionlreconfiguration if required. As shown, the
STRBI range is divided into 8 distinct segments via
use of GA28 - GA30. (GA31 is implicitly a logic 1.)
Outputs of the decoding operation are (VMEbus)
master write (MWR *), master read (MRD*),

L ~
., CYPRESS ====;;;;;C;;;;;o;;;;;D;;;;;De;;;;;c;;;;;tili;;;;;g;;;;;;t;;;;;h;;;;;e ;;;;;VI;;;;;C;;;;;;O;;;;;68;;;;;/V.;;;;;l\;;;;;C;;:;;O;;;;;6;;;;:8:;;;;to;;;;;t;;;;;h;;;;;e T;;;;;I;;;;;3;;;;;2;;;;;OC;;;;;4=O

VIC068NAC068 register write (RWR*), register
read (RRD*) and EPROM read (GPROM*). As
found in the VIC068NAC068 documentation, the
VAC068 is hard-wired, starting at address OFFFD
OOOOh. It also provides for VIC068 selection, start­
ing at address OFFFC OOOOh. A memory map for the
global side, as decoded by the 22VlO PAL, is shown
in Table 1. The ABEL source code is provided in the
appendix.

Table 1. Global Side Meinory Map

Address Unit Addressed

080000000h SRAM

OCOOOOOOOh EPROM

ODOOOOOOOh VMEbusA24

Address 00 OOOOh

OFFFCOOOOh VIC068 Register Set

OFFFDOOOOh VAC068 Register Set

Bus Control

Once a cycle in the VMEbus address range is de­
tected by the address decoding PAL, the sequencers
shown provide the signals required for both master
and slave cycles. V13 is the first of three sequencers
and accomplishes overall bus control providing en­
able signals for global bus access by the TMS320C40
(GBE*), master cycle sequencer output (MOE*),
slave cycle sequencer output (SOE*), VMEbus
slave local bus grant (LBG*) and a ready signal for
the TMS320C40 (GRDYI *). Notice that a full com­
plement of inputs are presented to the bus control
sequencer. This is done to accommodate all pos­
sible cycles and to allow reconfiguration without
hardware changes. While the TMS320C40 H3 clock
(20 MHz) is used here, this is not an absolute re­
quirement as the array of sequencers operate
asynchronously once a master or slave cycle begins.
The use of H3 here, however, does simplify the se­
quencer code because the H3 clock serves as a con­
venient reference to the tMS320C40 cycle in prog­
ress.

A master cycle begins with V12 generating a master
read or write signal or either register read or write.
This enables the output of the master bus cycle sig-

nal generation sequencer V14. In fact, this signal is
asserted during all bus activity other than slave
cycles. Thrmination of a master cycle ends with the
asserti9n of the acknowledge signals DSACKO* and
DSACKI * and/or the local bus error signal
(LBERR *). All are generated, by the VIC068 in re­
Sponse to acknowledge signals provided over the
VMEbus. The sequencer responds to these signals
by providing the ready signal for this TMS320C40
STRBI access (RDYI *) by asserting GRDYI *. In
this design, external ready signals are used exclu­
sively, versus ANDing or ORing with internal ready,
and the generation of the ready signal conforms to
the second of two methods called out in Reference
1: ready is High between accesses.

Slave cycles are initiated by the assertion oflocal bus
request (LBR *) by the VIC068. With this asserted,
V13 provides bus control by first disabling the
TMS320C40 global bus (deasserting GBE*), then
disabling the master bus cycle generation sequencer
outputs (V14 MOE*), followed by enabling the out­
puts on the slave bus cycle signal generation se­
quencer (SOE*), VIS. Given that the bus has been
successfully "seized", the local bus grant signal
(LBG*) is asserted. Slave cycles are terminated by
deassertion of the local bus request input.

Master Bus Cycle Generation

The master bus cycle generation sequencer V14
runs in tandem with the bus control seqencer V13.
The sequencer code found in V13 and V14 results
from one common state diagram. It is necessary to
split these functions up due to limitations of the
number of outputs per sequencer. Therefore, the
inputs to V14 are identical to those found on V13.
Master bus cycles proceed according to the ap­
propriate cycle (read or write) definition found in
Reference 7. The function code lines are driven to
a supervisory state, giving the widest possible audi­
ence, supervisory data. Termination of a master
cycle ends with the assertion of the acknowledge sig­
nals DSACKO* and DSACKI * and/or the local bus
error signal (LBERR *) as described above. Note
that VIC068NAC068 register accesses are also
master accesses in the address range(s) specified
above. While the sequencer code does not initiate
read-modify-write cycles, it is easy to see how the

8-S6

~

:'rcYPRESS ====;;;;;;C;;;;;;o;;;;;;D;;;;;;D;;;;;;ec;;;;;;t;;;;;;iD;;;;;;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;O;;;;;;68;;;;;;fV.;;;;;;1\.;;;;;;C;;;;;;O;;;;;;6;;;;;;8;;;;;;to;;;;;;t;;;;;;h;;;;;;e ;;;;;;T;;;;;;I 3;;;;;;2;;;;;;O;;;;;;C;;;;;;40;;;;;;

use of the TMS320C40 GLOCK* input could be
used to accomplish this.

Slave Bus Cycle Generation

Slave cycles are initiated by the VAC068 in response
to a request over the VMEbus in the selected range
as determined in the appropriate VAC068 register
(covered in the next section). As shown, inputs to
the sequencer are the common 680xO bus signals
driven by the VIC068 for slave cycles and alternate­
ly driven by the master sequencers for master cycles.
Assertion of the local bus grant signal (LBG*) by
U13 indicates the absence of the TMS320C40 on the
global bus, thereby allowing access of (shared) glob­
al SRAM by the VIC068NAC068 pair. Assuming
the correct transfer size, the memory strobe signals
GSTRBO* and GR/WO are driven to provide access
to the shared global SRAM. Following this, ac­
knowledgement is provided via DSACKO* and
DSACKI *, ending the slave cycle. Note that while
VAC068 documentation states that its DSACK sig­
nals can be three-stated on the assertion of LAEN,
this was not the case with this configuration. There­
fore, U8A was required to artificially three-state
those signals so that the slave sequencer could con­
trol the data acknowledgement.

VIC068NAC068 Software IDitializatioD

The VIC068NAC068 pair register set can be over­
whelming at first glance, but very few registers re­
quire attention prior to using the pair for either mas­
ter or slave operations. The VAC068 should be
initialized first as this controls both master and slave
address mapping. With that complete, the VIC068
is programmed. Fine tuning of the interface can be
performed using the programmable delay registers
for the interface after initial capability is verified.
As the VIC068NAC068 was programmed using C,
vic.h and vac.h header files were developeq which

8-57

provide base and offset definitions for the complete
register set of each device.

Before programming the VIC068NAC068 pair, the
VAC068 must be brought out of its initial "Force
EPROM" mode which asserts EPROMCS* for all
accesses. This is accomplished by reading from the
EPROM space beginning at OFFOO OOOOh. The ad­
dress decoding PAL U12 does not provide for access
to this range. However, a dummy access to this re­
gion can be initiated by manipulating the
TMS320C40 (global) memory interface control reg­
ister. The register is set to provide zero-wait state,
internal ready dependent (only) accesses to the ap­
propriate strobe (STRBI for this case). With this
set in the SWW and WTCNT fields, a read from ad­
dress OFFOO OOOOh is performed. Immediately fol­
lowing this read, the SWW field to external ready ac­
cesses is reset and a second read to the VAC068 is
performed, this time at the VAC068 register base,
OFFFD OOOOh. This read provides the required ac­
cess to "snap" the sequencers back to their default
states.

After the "Force EPROMCS" mode is exited, it is
verified that the VAC068 can be addressed by read­
ing the device ID via the VAC068 ID register. With
that established, the (slave) SLSELO Base Address
register and the SLSELO Address Mask register fol­
lowed by the (master) A24 Base Address register
are programmed. To enable the VAC068 decode
and compare functions, the last step is to write to the
VAC068 ID register. The VIC068 ID register is sim­
ilarly polled and. following the successful read of
that register, the Address Modifier Source register
and the Slave Select 0 Control 0 register are set.
This completes the initial programming of the pair.
At this time, the SYSFAIL LED, if applicable, may
be extinguished by writing to the Interprocessor
Communication 7 register. The initial register set­
tings 'for this application are provided in Table 2.

:a ?cYPRESS ====;;;;;C;;;;;o;;;;;n;;;;;n;;;;;ec;;;;;t;;;;;in;;;;g;;;;;th;;;;;e;;;;;VI=C;;;;;06;;;;;8;;;;;/V.;;;;;l\.;;;;;C;;;;;O;;;;;6;;;;;8 ;;;;;to;;;;;t;;;;;h;;;;;e ;;;;;TI;;;;;3;;;;;2;;;;;O;;;;;C;;;;;40;;;;;

Table 2. VIC068NAC068 Initial Register Settings

Address Register

OFFFD0200h VAC SLSELO Base

OFFFD0300h VAC SLSELO Mask

OFFFD0800h VACA24Base

OFFFD2900h VACID

OFFFCOOB4h VIC Address Modifier

OFFFCOOCOh VIC Slave Select 0 Control 0

Conclusion

The development of a prototype interface between
the TMS320C40 DSP and the Cypress
VIC068NAC068 was accomplished with a mini­
mum amount of programmable logic in the form of
simple PALs and sequencers. The result is a reconfi­
gurable, programmable interface for A24/D32
VMEbus master/slave capability. While thl! initial
transfer speed is low, speed gains can be made by in­
creasing the sequencer's clock speed and eliminat­
ing unnecessary states in the prototype seguencer
code. Read-modify-write cycles can be accom­
plished with the existing hardware via the use of the
TMS320C40 LOCK instruction group .. Ultimately,
the design documented herein could be encapsu­
lated in an FPGA for both speed and size gains.

Size (Bits) Setting

16 OOlOh

16 OOFOh

13 OD10h

16 Write to EnabieVAC

8 03Dh

8 014h

References

1. TMS320C4x Users Guide. Texas Instruments,
1991.

2. VIC068A/VAC068A Users Guide. Cypress Semi­
conductor, 1992.

3. Cypress Semiconductor CMOS/BiCMOS Data
Book. Cypress Semiconductor, 1992.

4. Siy, P. E, and W. T. Ralston, ''Application of the
TI TMS320C40 in Satellite Modem Technolo­
gy," to be published, to be presented at the
Third Annual International Conference on Sig­
nal Processing Applications and Thchnology,
November, 1992, Boston, MA.

5. IEEE Standard for a Versatile Backplane Bus:
VMEbus. IEEE, 1987, New York, NY: Wiley­
Interscience.

6. Peterson, W. D., The VMEbus Handbook,
Scottsdale, AZ: VFEA International Trade
Association.

7. MC68020 32-Bit Microprocessor User's Manual.
Motorola, Inc., 1984

8. Henessey, J. L., and D. A. Patterson, 1990,
Computer Architecture A Quantitative Approach,
San Mateo, CA: Morgan Kaufmann Publishers,
Inc.

9. Dewar, R. B. K, and M. Smosna, 1990,Micropro­
cessors A Programmers View, New York, NY:
McGraw-Hill, Inc.

8-58

?cYPRESS =====C=o=D=D=ec=t=iD;;;;:;;g=th=e=VI=C=06=8=!V.=1\=C=O=6=8 =to=t=h=e =TI=3=2=O=C=40=

Appendix A. Address Bus Decoder - ABEL Source

module
title
Revision
Part
Abel Version
Project

U12
'Global Bus Decode
1.0
Cypress PAL22VI0D-7
4.3
C40 I/O Board'

U12 device 'P22VI0';

"Inputs"
clk, reset
gstatO,gstatl
gstat2, gstat3
ga28,ga29,ga30
gstrbl
oute
pureset

pin
pin
pin
pin
pin
pin
pin

1,2;
3,4 ;

5,6;
7,8,9;
10;
11;
13;

"clock, reset"
"C40 status"
"C40 status"
"C40 address"
"C40 strobe 1"
"output enable
"output enable"

"Outputs"
iplO,ireset,tmpl
mrd,mwr
rrd,rwr

pin 17,18,16 istype 'reg,invert';
pin 19,20; "master read & write"
pin 21,22; "register read & write"

gprom pin 23; "PROM select"

"Mise"
ga31 = 1; "dummy var"

"Sets"
stat = [gstat3,gstat2,gstatl,gstatO];
addr = [ga31,ga30,ga29,ga28];
output [gprom,rwr,rrd,mwr,mrd];
power_up = [ireset,iplO,tmpl];

"status"
"ms nibble"
"output"
"reset

" state definations for power up reset sequence.
[ireset,iplO,tmpl]

sO [1,1,1] "initial state
sl [0,1,1] "ireset asserted
s2 [0,0,1] "ireset/iplO asserted
s3 [0,0,0] "hold for extra clock
s4 [0,1,0] "de-assert iplO
s5 [1,1,0] "de-assert ireset
s6 [1,0,0] "should never get here
s7 [1,0,1] "should never get here

H,L,X,C,Z = 1,0,.X.,.C.,.Z.;

8-59

~

SL..:. .. -:::z
~~YPRESS~~~~~C~o~n~n~ec~t~in=g~th~e~W~C~06~8~N.~~~C~O~6~8~to~t~h~e~TI~3~2~O~C~40

Appendix A. Address Bus Decoder - ABEL Source (continued)

equations
output.c = clk;
power_up.c = clk;
output.oe = !oute;
power_up.oe = !oute;

"Master Read"
!mrd := reset & (addr
"Master Write"

Ahd) & (stat == [l,O,X,X]) & !gstrb1;

!mwr := reset & (addr Ahd) & ((stat == [1,1,0,1]) #
(stat == [1,1,1,0])) & !gstrb1;

"Register Read"
!rrd := reset & (addr Ahf) & (stat == [l,O,X,X]) & !gstrb1;
"Register Write"
!rwr := reset & (addr Ahf) & ((stat == [1,1,0,1]) #
(stat == [1,1,1,0])) & !gstrb1;

"PROM Read"
!gprom := reset & (addr == Ahc) & (stat

" power up reset state equations
state_diagram power_up

" Initial power up state
state sO:
if (pureset) then sl
else sO;

" assert ireset
state sl:
if (!pureset) then sO
else if (!reset) then s2
else sl;

"assert iplO
state s2:
if (!pureset) then sO
else s3;

"keep both asserted for extra clock
state s3:
if (!pureset) then sO
else s4;

8-60

[l,O,X,X]) & !gstrb1;

~ -?cYPRESS ====;;;;;;C;;;;;;o;;;;;;D;;;;;;D;;;;;;ec;;;;;;h;;;;;;"D;:;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;06;;;;;;8;;;;;;fV.;;;;;;1\;;;;;;C;;;;;;O;;;;;;68=to;;;;;;t;;;;;;he;;;;;;T;;;;;;I;;;;;;3;;;;;;2;;;;;;O;;;;;;C;;;;;;40:;;:;;

Appendix A" Address Bus Decoder - ABEL Source (continued)

"de-assert iplO
state s4:
if (!pureset) then sO
else s5;

"de-assert ireset and stop
state s5:
if (!pureset) then sO
else s5;

"check on indeterminate states
state s6:
if (!pureset) then sO
else s6;

"check on indeterminate states
state s7:
if (!pureset) then sO
else s7;

test_vectors
([clk,reset,gstat3,gstat2,gstatl,gstatO,ga30,ga29,ga2B,
gstrbl,oute] -> output)

[C,X,X,X,X,X,X,X,X,X,l] -> Z; "1 test for high-z"
[C,O,X,X,X,X,X,X,X,X,O] -> Ablllll;"2 test for reset"
[C, 1,1, 0, X, X, 1, 0,1, 0, 0] -> Abllll0;"3 test for master read"
[C,l,l,l,O,l,l,O,l,O,O] -> Ablll0l;"4 test for master write"
[C,l,l,l,l,O,l,O,l,O,O] -> Ablll0l;"5 test for master write"
[C,l,l,O,X,X,l,l,l,O,O] -> Abll0ll;"6 test for register read"
[C, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0] -> Abl0lll;"7 test for register write"
[C,l,l,l,l,O,l,l,l,O,O] -> Abl0lll;"B test for register write"
[C,l,l,O,X,X,l,O,O,O,O] -> Ab01111;"9 test for PROM read"
[C,l,l,O,X,X,O,O,O,O,O] -> Ab11111; "1O test bad address"
[C,l,O,O,O,O,l,l,l,O,O] -> Ab11111; "11 test bad status"
end U12

8-61

Connecting the VIC068NAC068 to the TI 320C40

Appendix B. Bus Control Sequencer - ABEL Source

module
title
Revision
Part
Abel Version
project

U13C
'C40 Bus Control
1.0
CY7C335
4.3 using Cypress fitter
TMS320C40 1/0 Card '

U13C device 'p335';

" Inputs"
pin 1,13; "clock, reset" clk, reset

!mrd,mwr,rrd,rwr,gprom
mwb, lbr

pin 24,11,10,9,12; "decoded cycle"
pin 7,6; "master I slave requests"

dedlk pin 5; "m/s deadlock"
dsackO, !dsack1, !lberr
!glock

pin 4,28,15; "cycle responses"
pin 26; "C40 lock"

oe pin 14; "output enable"

"Outputs"
lbg pin 27 istype 'reg_R8,invert' ;"slave grant"
gbe pin 16 istype 'reg_R8,invert' ;"C40
soe,moe pin 17,18 istype 'reg_R8,invert' ;"pls
grdy1 pin 19 istype 'reg_R8,invert' ;"C40

"8ets"
cycle
ack
output

[gprom,rwr,rrd,mwr,mrd]; "cycle request"
[dsack1,dsackO]; " acknowledge"
[grdy1,soe,moe,gbe,lbg]; " output"

"8tate Description"
P4,P3,P2,P1 node 34,33,32,31;
PO pin 25 istype 'reg, invert' ;
P4,P3,P2,P1 istype 'reg';

sreg = [P4,P3,P2,P1, !PO];
80 [0,0,0,0,0];
81 [0,0,0,0,1];
82 [0,0,0,1,0];
83 [0,0,0,1,1];
84 [0,0,1,0,0];
85 [0,0,1,0,1];
86 [0,0,1,1,0];
87 [0,0,1,1,1];
88 [0,1,0,0,0];
89 [0,1,0,0,1];
810 [0,1,0,1,0];
811 = [0,1,0,1,1];

8-62

g bus enable"
oe(s)"
ready 1"

:'rcYPRESS ====;;;;;C;;;;;O;;;;;D;;;;;D;;;;;ec;;;;;t;;;;;iD;;:;g;;;;;th;;;;;e;;;;;VI=C;;;;;06;;;;;8;;;;;fV.;;;;;i\.;;;;;C;;;;;O;;;;;6;;;;;8 ;;;;;to;;;;;t;;;;;he;;;;;T;;;;;I;;;;;3;;;;;2;;;;;O;;;;;C;;;;;40;;;;

Appendix B. Bus Control Sequencer - ABEL Source (continued)

812 [0,1,1,0,0];
813 [0,1,1, 0, 1];
814 [0,1,1,1, 0] ;
815 [0,1,1,1,1];
816 [1,0,0,0,0];
817 [1,0,0,0,1];
818 [1,0,0,1,0];
819 [1,0,0,1,1];
82 a [1, 0,1, 0, 0] ;
821 [1,0,1,0,1];
822 [1,0,1,1,0];
823 [1,0,1,1,1];
824 [1, 1, 0, 0, 0] ;
825 [1, 1, 0, 0, 1] ;
826 [1 , 1, a , 1 , 0] ;
827 [1, 1, 0, 1, 1] ;
828 [1, 1, 1, a , 0] ;
829 [1, 1, 1, 0, 1] ;
830 [1,1,1,1,0];
831 [1,1,1,1,1];

"Mise"
H,L,X,C,Z 1,0,.X.,.C.,.Z.;

equations
output.OE = !oe;
output.CLK = clk;
sreg.CLK = clk;

"set output enable"
"clock the output regs"
"and state regs"

@page
state_diagram sreg
state 80:

if !reset then 80 WITH
Ibg.8 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.8 1; "slave disable"
moe.R 1; "enable master pIs"
grdy1.8 1; "not ready"
ENDWITH;

else if (!mrd # !mwr & lbr) then 81;
else if (!rrd # !rwr & lbr) then 84;
else if (!gprom & lbr) then 88;
else if (!lbr # !dedlk) then 816 WITH
gbe.8 = 1;
moe.8 = 1;

ENDWITH;

8-63

"master read/write"
"reg read/write"
"EPROM read"
"slave request"
"disable global side"
"and master pIs"

else SO WITH
1bg.S 1;
gbe.R 1;
soe.S
moe.R
grdyl.S
ENDWITH;

@page

1;
1;

1;

Connecting the VIC068NAC068 to the TI320C40

Appendix B. Bus Control Sequencer - ABEL Source (continued)

"slave disable"
"enable C40 global side"
"slave disable"
"enable master p1s"
"not ready"

"Master Read/Write"

state Sl:
if !reset

1bg.S
gbe.R
soe.S
moe.R
grdyl.S
ENDWITH;

then
1;
1;
1;
1;

1;

so WITH
"slave disable"
"enable C40 global side"
"disable slave p1s"
"enable master p1s"
"not ready"

else if !ded1k & «!mwb) * (mwb)) then S16 WITH
moe.S = 1;
gbe.S = 1;
ENDWITH;

else if !mwb then S2;"wait for !mwb"

else Sl;

state S2:
if !reset

1bg.S
gbe.R
soe.S
moe.R
grdyl.S
ENDWITH;

then
1;
1;
1;
1;

1;

so WITH
"slave disable"
"enable C40 global side"
"disable slave p1s"
"enable master p1s"
"not ready"

else if !dedlk & «!mwb) * (mwb)) then S16 WITH;
moe.S = 1;
gbe.S = 1;
ENDWITH;

else if «!dsackl & !dsackO) * !lberr) then S3 WITH
grdy1.R = 1;
ENDWITH;

else S2;

8-64

state S3:
goto SO WITH
grdy1.S = 1;
ENDWITH;

@page

Connecting the VIC068NAC068 to the TI 320C40

Appendix B. Bus Control Sequencer - ABEL Source (continued)

"Register Read/Write"

state S4:
if !reset

Ibg.S
gbe.R
soe.S
moe.R
grdy1.S
ENDWITH;

then
1;
1;
1;
l' ,

1;

SO WITH
"slave disable"
"enable C40 global side"
"disable slave pIs"
"enable master pIs"
"not ready"

else if !dsack1 then S5 WITH
grdy1.R = 1;
ENDWITH;

else S4;

state S5:
goto SO WITH
grdy1.S = 1;
ENDWITH;

@page
"EPROM Read, 150ns EPROMs"

state S8:
if !reset then SO WITH

Ibg.S 1; "slave disable"
gbe.R l' , "enable C40 global
soe.S 1; "disable slave pIs"
moe.R 1; "enable master pIs"
grdy1.S 1; "not ready"
ENDWITH;

else goto S9;

side"

8-65

Connecting the VIC068NAC068 to the TI320C40

Appendix B. Bus Control Sequencer - ABEL Source (continued)

state S9:
if !reset then SO WITH

Ibg.S 1; "slave disable"
gbe.R
soe.S
moe.R

1;
1;
1;

"enable C40 global side"
"disable slave pIs"
"enable master pIs"

grdy1.S l' , "not ready"
ENDWITH;

else goto S10;

state S10:
if !reset then SO WITH
Ibg.S 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.S 1; "disable slave pIs"
moe.R
grdy1.S
ENDWITH;

1;
1;

else goto Sll;

state Sll:

"enable master pIs"
"not ready"

if !reset then SO WITH
Ibg.S 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.S 1; "disable slave pIs"
moe.R 1; "enable master pIs"
grdy1.S 1; "not ready"
ENDWITH;

else go to S12 WITH
grdy1.R = 1;
ENDWITH;

state S12:
if !reset then SO WITH
Ibg.S 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.S
moe.R
grdy1.S
ENDWITH;

1;
1;

1;

"disable slave pIs"
"enable master pIs"
"not ready"

else goto SO WITH
grdyl.S = 1;
ENDWITH;

8-66

&)~YPRESS =====C;;;;;;oD;;;;;;D;;;;;;e;;;;;;ct;;;;;;iD;;;;;g;;;;t;;;;;;h;;;;;;e;;;;;;VI;;;;;;C;;;;;;O;;;;;;6;;;;;;8;;;;;;fV.;;;;;;1\;;;;;;C;;;;;;O;;;;;;68=to;;;;;;t;;;;;;h;;;;;;e ;;;;;;T;;;;;;I 3;;;;;;2;;;;;;O;;;;;;C;;;;;;4=O

Appendix B. Bus Control Sequencer - ABEL Source (continued)

@page
"Local Bus Request"

state 816:
if !reset then 80 WITH
Ibg.8 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.8 1; "disable slave pIs"
moe.R
grdy1.8
ENDWITH;

1· ,
1;

"enable master pIs"
"not ready"

else goto 817 WITH
soe.R = 1; "enable slave PL8"
ENDWITH;

state 817:
if !reset then 80 WITH
Ibg.8 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.8 1; "disable slave pIs"
moe.R
grdy1.8
ENDWITH;

1· ,
1;

"enable master pIs"
"not ready"

else goto 818 WITH
Ibg.R = 1; "finally allow slave access"
ENDWITH;

state 818:
if !reset then 80 WITH
Ibg.8 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.8 1; "disable slave pIs"
moe.R 1; "enable master pIs"
grdy1.8 1; "not ready"
ENDWITH;

else if lbr then goto 819 WITH
Ibg.8 = 1; "slave disable"
ENDWITH;

else 818;

state 819:
if !reset then 80 WITH
Ibg.8 1; "slave disable"
gbe.R = 1; "enable C40 global side"

8-67

= rcYPRESS =====C;;;;;;oD;;;;;;D;;;;;;e;;;;;;ct;;;;;;iD;;;;;g;;;;;t;;;;;;h;;;;;;e;;;;;;VI;;;;;;C;;;;;;O;;;;;;6;;;;;;8;;;;;;fV.;;;;;;:A;;;;;;C;;;;;;O;;;;;;68=to;;;;;;t;;;;;;he=TI;;;;;;3;;;;;;2;;;;;;O;;;;;;C;;;;;;4=O

Appendix B. Bus Control Sequencer - ABEL Source (continued)

soe.S = 1; "disable slave pIs"
moe.R = 1; "enable master pIs"
grdy1.S 1; "not ready"
ENDWITH;

else goto S20 WITH
soe.S =1;
ENDWITH;

"disable slave pIs"

state S20:
if !reset then SO WITH

Ibg.S 1; "slave disable"
gbe.R 1; "enable C40 global side"
soe.S 1; "disable slave pIs"
moe.R
grdy1.S
ENDWITH;

1;
1· ,

"enable master pIs"
"not ready"

else goto SO WITH
moe.R = 1;
gbe.R = 1;
ENDWITH;

@page
"make sure there are no undefined states"
state 821 : goto
state 822: goto
state S23: goto
state S24: goto
state S25: goto
state 826 : goto
state 827: goto
state S28: goto
state S29: goto
state S30: goto

"Power-Up"

state 831:
goto SO WITH

Ibg.S 1;
Ibg.R 0;
gbe.R 1;
gbe.S 0;
soe.S 1;
soe.R 0;
moe.R 1;
moe.S 0;
grdy1.S = 1;

SO;
SO;
SO;
SO;
SO;
SO;
SO;
SO;
80;
SO;

"slave disable"
"dummy err 6099"
"enable C40 global side"
"dummy err 6099"
"disable slave PLS"
"dummy err 6099"
"enable master pIs"
"dummy err 6099"
"not ready"

8-68

grdy1.R = 0;
ENDWITH;

@page

Connecting the VIC068NAC068 to the TI 320C40

Appendix B. Bus Control Sequencer - ABEL Source (continued)

"dwnmy err 6099"

" Test vectors will not work with beta version of
" Abel 4.3
test_vectors

([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsack1,dsackO,dedlk,lberr,glock,oe] ->
[!sreg,grdy1,soe,moe,gbe,lbg])

[1,X,X,X,X,X,X,X,X,X,X,X,X,X,0]->[S31,X,X,X,X,X];"1 power up"
[0,X,X,X,X,X,X,X,X,X,X,X,X,X,0]->[S31,X,X,X,X,X];"2 power up"
[C,O,X,X,X,X,X,X,X,X,X,X,X,X,O]->[SO,l,l,O,O,l]; "3 resets tate"
[C,l,l,l,l,l,O,l,l,l,l,l,l,l,O]->[Sl,l,l,O,O,l] ;"4 master read"
[C,1,1,1,1,1,0,1,0,1,1,1,1,1,0]->[S2,1,1,0,0,1] ;"5 mwb asserted"
[C,1,1,1,1,1,0,1,0,0,0,1,1,1,0]->[S3,0,1,0,0,1];"6 data acked"
[C,l,l,l,l,l,l,l,l,l,l,l,l,l,O]->[SO,l,l,O,O,l] ;"7 ready for nxt"
[C,l,l,l,l,O,l,l,l,l,l,l,l,l,O]->[Sl,l,l,O,O,l] ;"8 master write"
[C,1,1,1,1,1,0,1,0,1,1,1,1,1,0]->[S2,1,1,0,0,1] ;"9 mwb asserted"
[C,1,1,1,1,1,0,1,0,0,0,1,1,1,0]->[S3,0,1,0,0,1] ;"10 data acked"
[C,l,l,l,l,l,l,l,l,l,l,l,l,l,O]->[SO,l,l,O,O,l];"ll rdy for nxt"
[C,1,1,1,0,1,1,1,1,1,1,1,1,1,0]->[S4,1,1,0,0,1] ;"12 reg read"
[C,1,1,1,0,1,1,1,1,0,1,1,1,1,0]->[S5,0,1,0,0,1];"13 data ackd"
[C,1,1,1,1,1,1,1,1,1,1,1,1,1,0]->[SO,1,1,0,0,1];"14 rdy for nxt"
[C,1,0,1,1,1,1,1,1,1,1,1,1,1,0]->[S8,1,1,0,0,1];"15 prom read"
[C,1,0,1,1,1,1,1,1,1,1,1,1,1,0]->[S9,1,1,0,0,1] ;"16 prom read"
[C,1,0,1,1,1,1,1,1,1,1,1,1,1,0]->[SlO,1,1,0,0,1];"17 wait"
[C,1,0,1,1,1,1,1,1,1,1,1,1,1,0]->[Sll,1,1,0,0,1];"18 wait"
[C,1,0,1,1,1,1,1,1,1,1,1,1,1,0]->[S12,0,1,0,0,1] ;"19 wait"
(C,l,l,l,l,l,l,l,l,l,l,l,l,l,O]->[SO, 1,1,0,0,1];"20 rdy for nxt"
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S16,1,1,1,1,1];"21slaverequest'
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S17,1,0,1,1,1];"22 en slve pIs"
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S18,1,0,1,1,0];"23 slave grant"
[C, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0]->[S18, 1, 0, 1, 1, 0]; "24 slave aces"
[C,1,1,1,1,1,1,1,1,1,1,1,1,1,0]->[S19,1,0,1,1,1];"25rescnd grant"
[C,1,1,1,1,1,1,1,1,1,1,1,1,1,0]->[S20,1,1,1,1,1];"26disbl sl pIs"
[C,l,l,l,l,l,l,l,l,l,l,l,l,l,O]->[SO, 1,1,0,0,1];"27end sl acces"
[C,1,1,1,1,1,1,1,1,1,1,0,1,1,0]->[S16,1,1,1,1,1];"29 deadlock"
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S17,1,0,1,1,1];"30 en slve pIs"
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S18,1,0,1,1,0];"31 slave grant"
[C,1,1,1,1,1,1,0,1,1,1,1,1,1,0]->[S18,1,0,1,1,0];"32 slave aces"
[C,1,1,1,1,1,1,1,1,1,1,1,1,1,0]->[S19,1,0,1,1,1];"33rescnd grant"
[C,1,1,1,1,1,1,1,1,1,1,1,1,1,0]->[S20,1,1,1,1,1];"34disbl sl pIs"
[C,l,l,l,l,l,l,l,l,l,l,l,l,l,O]->[SO, 1,1,0,0,1];"35end sl acces"

end U13C

8-69

Connecting the VIC068NAC068 to the TI 320C40

Appendix C. Master Cycle Generation Sequencer - ABEL Source

u14a module
title
Revision
Part

'C40 Bus Control
1.0
CY7C335

Abel Version
Project

4.3 using Cypress fitter
TMS320C40 I/O Card '

U14a device 'p335';

"Inputs"
clk, reset
mrd,mwr,rrd,rwr
mwb,lbr,gprom
dedlk
!dsackO, !dsackl,lberr
glock
oe

"Outputs"
pas pin 18 istype
ds pin 16 istype
rw pin 17 istype
rmc pin 15 istype
sizO pin 19 istype
sizl pin 20 istype
fcl pin 23 istype
fc2 pin 24 istype

pin 1,13; "clock, reset"
pin 12,11,10,9; "decoded cycle"
pin 7,6,5 ;
pin 4;

"master/slave requests"
"m/s deadlock"

pin 28,27,2;
pin 3;
pin 14;

"cycle responses"
"C40 lock"
"output enable"

'invert,reg_RS';"68K address strobe"
'invert,reg_RS' ;"68K data strobe"
'invert,reg_RS' ;"68K read/write bar"
'invert,reg_RS';"68K read-mod-write"
'invert,reg_RS' ;"68K size 0"
'invert,reg_RS';"68K size 1"
'invert,reg_RS' ;"68K function 1"
'invert,reg_RS';"68K function 0"

"Sets"
cycle
ack
output

[gprom,rwr,rrd,mwr,mrd]; "cycle request"
[dsackl,dsackO]; "acknowledge"
[pas,ds,rw,rmc,sizO,sizl,fcl,fc2]; "68K ouputs"

"State Description"
P4,P3,P2,Pl node 34,33,32,31
PO pin 25
sreg = [P4,P3,P2,Pl, !PO];

SO [0,0,0,0,0];
Sl [0,0,0,0,1];
S2 [0, 0, 0,1, 0] ;
S3 [0,0,0,1,1];
S4 [0,0,1,0,0];
S5 [0,0,1,0,1];
S6 [0, 0,1,1, 0] ;
S7 [° , 0, 1, 1, 1] ;
S8 [0,1, 0, 0, 0] ;
S9 [0,1, 0, 0,1] ;
S10 = [0,1,0,1,0];

istype
istype

'reg'i
, reg, invert' ;

8-70

~~YPRESS==========c~on~n~e~ct~in~g=t~h~e~W~C~O~6~8~N~~~C~O~68~t~o~t~he==TI~3~2~O~C~4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

811 [0,1,0,1,1];
812 [0,1,1,0,0];
813 [0,1,1,0,1];
814 [0,1,1,1,0];
815 [0,1,1,1,1];
816 [1,0,0,0,0];
817 [1,0,0,0,1];
818 [1,0,0,1,0];
819 [1,0,0,1,1];
820 [1,0,1,0,0];
821 [1,0,1,0,1];
822 [1,0,1,1,0];
823 [1,0,1,1,1];
824 [1,1,0,0,0];
825 [1,1,0,0,1];
826 [1,1,0,1,0];
827 [1,1,0,1,1];
828 [1,1,1,0,0];
829 [1,1,1,0,1];
830 [1,1,1,1,0];
831 [1,1,1,1,1];

"Mise"
rwmem pin 26 istype 'reg_R8,invert'; "r/w flag"

H,L,X,C,Z = 1,0,.X.,.C.,.Z.;

equations
output.OE = Joe;
output.CLK = clk;
sreg.CLK = clk;
rwmem.CLK = clk;

"set output enable"
"clock the output regs"
"and state regs"
"and r/w store"

@page

state_diagram sreg
state 80:
if (!reset # !dedlk) then 80 WITH
pas.8 = 1; "no strobe"
ds.8= 1;
rw.8 = 1;

"no strobe"
"read"

rwmem.8 = 1; "flag for mem"
rmc.S = 1; "no rmc
sizO.R = 1 "set for"
siz1.R = 1;
fc1.R = 1;
fc2.8 = 1;
ENDWITH;

"32-bit xfers"
"set for supervisory"
"data access"

8-71

-.~ , CYPRESS =====C;;;;oD;;;;D;;;;e;;;;ct;;;;iD;;;;g:;;;;t;;;;h;;;;e;;;;VI;;;;C;;;;O;;;;6;;;;8;;;;/V.;;;;A;;;;C;;;;O;;;;68=to;;;;t;;;;h;;;;e ;;;;T;;;;I 3;;;;2;;;;O;;;;C;;;;4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

else if (lmrd & lrwmem & lbr) then S1 WITH
rw.S = 1;
rwmem.S =1;
ENDWITH;

"assert read/write"

else if (lmrd & rwmem & lbr) then S2 WITH
pas.R = 1; "assert pas"
ds . R = 1; "and ds"
ENDWITH;

else if (lmwr & rwmem & lbr) then S8 WITH
rw.R = 1;

rwmem.R = 1;
ENDWITH;

"assert r/w"

"master read"

"master read"

"master write"

else if (lmwr & lrwmem & lbr) then S9 WITH "master write"
pas.R = 1; "assert pas only"

ENDWITH;

else if (lrrd & lrwmem & lbr) then S16 WITH "reg read"
rw.S = 1;
rwmem.S = 1;
ENDWITH;

"assert r/w"

else if (lrrd & rwmem & lbr) then S17 WITH
pas.R = 1; "assert pas"
ds . R = 1; "and ds"
ENDWITH;

else if (lrwr & rwmem & lbr) then S24 WITH
rw.R = 1;

rwmem.R = 1;
ENDWITH;

else if (lrwr & lrwmem & lbr) then S25 WITH
pas.R = 1; "assert pas only"
ENDWITH;

else SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwmem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"no strobe"
"no strobe"
"read ll

"flag for mem"
"no rme"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

8-72

"reg read"

"reg write"

?cYPRESS ====;;;;;;C;;;;;;o;;;;;;n;;;;;;ne;;;;;;c;;;;;;ti;;;;;;ng;;;;;t;;;;;;h;;;;;;e ;;;;;;VI;;;;;;C;;;;;;O;;;;;;68;;;;;;fV.;;;;;;l\;;;;;;C;;;;;;O;;;;;;6;;;;;;8;;;;;;to;;;;;;t;;;;;;h;;;;;;e T;;;;;;I;;;;;;3;;;;;;2;;;;;;OC;;;;;;4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

@page
"Master Read"

state Sl:
if (!reset # !dedlk) then SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwmem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

else S2 WITH
pas.R = 1;
ds.R = 1;
ENDWITH;

state S2:

"no strobe"
"no strobe"
"read"
"flag for mem"
IIno rmc"
"set for"
"32-bit xfers"
"set for super"
"data access"

if (!reset # !dedlk) then SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwmem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"no strobe"
"no strobe"
"read"
"flag for mem"
"no rme"
"set for"
"32-bit xfers"
"set for super"
"data access"

else if !mwb then S3; "wait for !mwb"

else S2;

state S3:
if (!reset # !dedlk) then SO WITH
pas.S = 1; "no strobe"
ds.S= 1;
rw.S = 1;
rwmem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"no strobe"
"read"
"flag for mem"
"no rmc"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

8-73

-= ?cYPRESS ====;;;;;C;;;;;o;;;;;D;;;;;D;;;;;ec;;;;;t;;;;;iD;:;;;g;;;;;th;;;;;e;;;;;VI=C;;;;;06;;;;;8;;;;;fV.;;;;;i\.;;;;;C;;;;;O;;;;;6;;;;;8 ;;;;;to;;;;;t;;;;;h;;;;;e T;;;;;I;;;;;3;;;;;2;;;;;O;;;;;C=40

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

else if ((!dsackl & !dsackO) # !lberr) then S4
" WITH
" grdyl.R = 1"
ENDWITH;

else S3;

state S4:
goto SO WITH
pas.S = 1;
ds.S = 1;
ENDWITH;

@page
"Master Write"

state S8:
if (!reset # !dedlk) then SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwmem.S = 1;
rmc.S = 1; "
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

else S9 WITH
pas.R = 1;
ENDWITH;

state S9:

"no strobe"
"no strobe"
"read"

no rmc"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

if (!reset # !dedlk) then SO WITH
pas.S = 1; "no strobe"
ds.S= 1; "no strobe"
rw.S = 1;
rwmem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fcl.R = 1;
fc2.S = 1;
ENDWITH;

else SlO WITH
ds.r = 1;
ENDWITH;

"read"

"no rrnc"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

~rcYPRESS =====C;;;;OD;;;;D;;;;e;;;;ct;;;;iD;;;;;g;;;;t;;;;h;;;;e;;;;VI;;;;C;;;;O;;;;6;;;;8;;;;N.;;;;1\;;;;C;;;;O;;;;68=to;;;;t;;;;h;;;;e ;;;;T;;;;I 3;;;;2;;;;O;;;;C;;;;4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

state SID:
if (!reset # !dedlkl then SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwrnem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"no strobe"
"no strobe"
"read"

"no rmc"
"set for"
"32-bit xfers"
"set for super"
"data access"

else if !mwb then Sll;
else SID;

state Sll:
if (!reset # !dedlkl then SO WITH
pas.S = 1;
ds.S= 1;
rw.S = 1;
rwrnem.S = 1;
rmc.S = 1;
sizO.R = 1;
sizl.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"no strobe"
"no strobe"
"read"

"no rmc"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

else if ((!dsackl & !dsackOl # !lberrl then S12;

else Sll;

state S12:
goto SO WITH
pas.S = 1;
ds.S = 1;
ENDWITH;

@page
"Register Read"

state S16:
if !reset then SO WITH
pas.S = 1; "no strobe"
ds.S= 1; "no strobe"
rw.S = 1; "read"
rwrnem.S 1;
rmc.S = 1; "no rmc"

8-75

*I;~YPRESS ====;;;;;C;;;;;O;;;;;D;;;;;D;;;;;ec;;;;;t;;;;;iD;;;;;g;;;;;th;;;;;e;;;;;VI=C;;;;;06;;;;;8;;;;;fV.;;;;;:A;;;;;C;;;;;O;;;;;6;;;;;8 ;;;;;to;;;;;t;;;;;h;;;;;e ;;;;;TI;;;;;3;;;;;2;;;;;O;;;;;C;;;;;40;;;;;

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.5 = 1;
ENDWITH;

else 517 WITH
pas.R = 1;
ds.R =1;
ENDWITH;

state 517:

"set for"
"32-bit xfers"
"set for super"
"data access"

if !reset then 50 WITH
pas.5 = 1;
ds.5= 1;
rw.5 = 1;
rwmem.5 = 1;
rmc.5 = 1;
sizO.R = 1;
siz1.R = 1;
fcl.R = 1;
fc2.5 = 1;
ENDWITH;

"no strobe"
"no strobe"
"read"

"no rme"
"set for"
"32-bit xfers"
"set for super"
"data access"

else if !dsackl then 518
"WITH
" grdyl.R = 1
" ENDWITH;

else 517;

state 518:
goto 50 WITH
pas.5 = 1;
ds.5 = 1;
ENDWITH;

@page
"Register Write"

state 524:
if !reset then 50 WITH
pas.5 = 1;
ds.5= 1;
rw.5 = 1;
rwmem.5 = 1;
rmc.5 = 1;
sizO.R 1;
sizl.R = 1;

"no strobe"
"no strobe"
"read"

fIno rme"
"set for"
"32-bit xfers"

8-76

Connecting the VIC068NAC068 to the TI320C40

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

siz1.R = 1;
fc1.R = 1;
fc2.S = 1;

ENDWITH;

else S25 WITH
pas.R = 1;
ENDWITH;

state S25:

"32-bit xfers"
"set for supervisory"
"data access"

if !reset then SO WITH
pas.S = 1; "no strobe"
ds.S= 1; "no strobe"
rw.S = 1; "read"
rwrnem.S = 1;
rmc.S = 1; "no rmc"
sizO.R = 1; "set for"
siz1.R = 1; "32-bit xfers"
fc1.R = 1; "set for supervisory"
fc2.S = 1; "data access·
ENDWITH;

else S26 WITH
ds.r = 1;
ENDWITH;

state S26:
if !reset then SO WITH
pas.S = 1; "no strobe"
ds.S= 1; "no strobe"
rw.S = 1;
rwrnem.S = 1;
rmc.S = 1;
sizO.R = 1;
siz1.R = 1;
fc1.R = 1;
fc2.S = 1;
ENDWITH;

"read"

"no rme"
"set for"
"32-bit xfers"
"set for supervisory"
"data access"

else if !dsack1 then S27;

else S26;

state S27:
goto SO WITH
pas.S = 1;
ds.S = 1;
ENDWITH;

8-77

~YPRESS ====;;;;;C;;;;;o;;;;;n;;;;;ne;;;;;c;;;;;ti;;;;;;ng;;;;;t;;;;;h;;;;;e ;;;;;VI;;;;;C;;;;;O;;;;;68;;;;;/V.;;;;;1\.;;;;;C;;;;;O;;;;;6;;;;;8;;;;;to;;;;;t;;;;;h;;;;;e ;;;;;TI;;;;;3;;;;;2;;;;;OC;;;;;4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

@page
"Power-Up"

state 531:
goto 50 WITH
pas.5 = 1;
pas.R = 0;
ds.5= 1;

"no strobe"
"error 6099 fix"
"no strobe"
"error 6099 fix"
"read"

"error 6099 fix"
"no rme"
"error 6099 fix"
"set for"
"error 6099 fix"
"32-bit xfers"
"error 6099 fix"

ds .R= 0;
rw.5 = 1;
rwmem.5 = 1;
rw.R = 0;
rrnc.5 = 1;
rrnc.R = 0;
sizO.R 1;
sizO.5 0;
sizl.R 1;
siz1.5 0;
fc1.R 1;
fc1.5 0;
fc2.5
fc2.R

ENDWITH;

l' ,

"set for supervisory"
"error 6099 fix"
"data access"

0;

@page
test_vectors

"error 6099 fix"

([clk,reset,gprom,rwr,rrd,mwr,mrd,lbr,mwb,
dsackl,dsackO,dedlk,lberr,glock,oe] ->

[!sreg,rwrnem,fc2,fcl,sizl,sizO,rmc,rw,ds,pas])

"1 power up"
[l,X,X,X,X,X,x,X,X,X,x,x,X,X,O] -> [531,X,X,X,X,X,X,X,X,X] ;
"2 power up"
[O,X,X,x,x,X,x,x,x,x,x,x,X,X,O] -> [531,X,X,X,x,x,x,X,X,X] ;
"3 reset state"
[C,O,X,X,X,X,X,X,X,X,x,X,X,X,O] -> [50, 1,1,0,0,0,1,1,1,1] ;
"4 master read"
[C, 1,1,1,1,1, 0,1,1,1,1,1,1,1, 0] -> [52, 1,1,0,0,0,1,1,0,0] ;
"5 mwb asserted"
[C, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0] -> [53, 1,1,0,0,0,1,1,0,0] ;
"6 data acked"
[C, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0] -> [54, 1,1,0,0,0,1,1,0,0] ;
"7 ready for nxt"
[C, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0] -> [50, 1,1,0,0,0,1,1,1,1] ;
"8 master write"
[C, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0] -> [58, 0,1,0,0,0,1,0,1,1];
"9 assert pas"
[C, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0] -> [59, 0,1,0,0,0,1,0,1,0];

8-78

jEYPRESS ====;;;;;C;;;;;O;;;;;D;;;;;De;;;;;c;;;;;tiD;;;;;;g;;;;t;;;;;h;;;;;e ;;;;;VI;;;;;C;;;;;O;;;;;68;;;;;/V,;;;;;i\;;;;;C;;;;;O;;;;;6;;;;;8;;;;;to;;;;;t;;;;;h;;;;;e T;;;;;I;;;;;3;;;;;2;;;;;OC;;;;;4=O

Appendix C. Master Cycle Generation Sequencer - ABEL Source (continued)

"10 aSSert ds"
[C, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"11 mwb"
[C, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0]
"12 data ackd"
[C, 1,1,1,1, 0,1,1, 0, 0, 0,1,1,1, 0]
"13 rea'jy for next"
[C, 1, 1, t, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"14 reg read"
[C, 1, 1, t, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"15 aSS~rt strobes"
[C, 1, 1, :1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"16 dat':t ackd"
[C, 1, 1, :l, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0]
"17 reaciy for nxt"
[C, 1, 1, {, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"18 reg write"
[C, 1, 1, (), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"19 aSS~rt pas"
[C, 1, 1, C), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"20 aSS~rt ds"
[C, 1, 1, C), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
"21 datq ackd"
[C, 1, 1, C), 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0]
"22 reaqy for next"
[C, 1, 1, 1., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

end u14q

->

->

->

->

->

->

->

->

->

->

->

->

->

[810, 0,1, 0, 0, 0,1, 0, 0, 0] ;

[811, 0,1, 0, 0,'0,1, 0, 0, 0] ;

[812,0,1,0,0,0,1,0,0,0] ;

[80, 0,1,0,0,0,1,0,1,1] ;

[816,1,1,0,0,0,1,1,1,1] ;

[817,1,1, 0, 0, 0,1,1, 0, 0] ;

[818,1,1,0,0,0,1,1,0,0] ;

[80, 1,1,0,0,0,1,1,1,1] ;

[824, 0, 1, ° , ° , 0, 1, 0, 1, 1] ;

[825, 0, 1, ° , ° , 0, 1, 0, 1, 0] ;

[826, 0, 1, ° , ° , 0, 1 , ° , ° , 0] ;

[827, 0, 1, ° , ° , 0, 1, ° , ° , 0] ;

[80, 0,1,0,0,0,1,0,1,1] ;

8-79

*:a ~YPRESS ====;;;;;;C;;;;;;O;;;;;;D;;;;;;D;;;;;;ec;;;;;;t;;;;;;iD;;;;:;;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;06;;;;;;8;;;;;;/V.;;;;;;1\.;;;;;;C;;;;;;O;;;;;;6;;;;;;8 ;;;;;;to;;;;;;t;;;;;;he;;;;;;TI=3;;;;;;2;;;;;;O;;;;;;C;;;;;;40;;;;;;

Appendix D. Slave Cycle Generation Sequencer - ABEL Source

module u15a
title 'C40 Bus Control
Revision 1.0
Part CY7C335
Abel Version 4.30
Project TMS320C40 I/O Card ,

U15a device 'p335' ;

"Inputs"
elk, reset pin
pas,ds pin
rw,rme pin
sizO,siz1 pin
feO,fe1,fe2 pin
lbg pin
oe pin

"Outputs"
dsaekO pin 15
dsaek1 pin 17
lberr pin 19
gstrbO pin 23
grwO pin 25

1,13;
12,11;
10,9;
7,6;

"clock, reset"
"address,data strobe"

"read/write strobes"
"bus sizing"

5,4,3;"funetion codes"
2; "local bus grant"
14; "output enable"

istype 'invert,reg_RS'; "data aek 0"
istype 'invert,reg_RS'; "data aek 1"
istype 'invert,reg_RS'; "bus error"
istype 'invert,reg_RS'; "C40 mem strobe"
istype 'invert,reg_RS'; "C40 read/write"

"Se'ts"
size
fune
output

[siz1,sizO]; "size"
[fe2,fe1,feO]; "function"
[grwO,gstrbO,lberr,dsaek1,dsaekO];

"State Description"
P3,P2,P1,PO node 34,33,32,31
sreg = [P3,P2,P1,PO];

SO [0,0,0,0];
S1 [0,0,0,1];
S2 [a , a , 1 , 0] ;
S3 [0, 0, 1, 1];
S4 [0,1, 0, 0] ;
S5 [0,1, 0, 1] ;
S6 [0,1,1, 0] ;
S7 [0,1,1,1] ;
S8 [1, 0, 0, 0];
S9 [1, 0, 0, 1];
S10 [1, 0, 1, 0] ;
Sl1 [1, 0, 1, 1] ;
S12 [1,1, 0, 0] ;
S13 [1,1, 0, 1] ;
S14 [1,1,1, 0] ;
S15 [1,1,1,1] ;

istype 'reg';

8-80

~ -.,~
, CYPRESS =====C:;;:;O":;;:;":;;:;e:;;:;ct:;;:;i":;;:;g:;;;;;t:;;:;h:;;:;e:;;:;VI:;;:;C:;;:;O:;;:;6:;;:;8:;;:;N:;;:;A:;;:;C:;;:;O:;;:;68=to:;;:;t:;;:;h:;;:;e :;;:;T:;;:;I 3:;;:;2:;;:;O:;;:;C:;;:;4=O

Appendix D. Slave Cycle Generation Sequencer - ABEL Source (continued)

"Mise"
!rwmem pin 27 istype 'reg_RS,invert'; "r/w flag"
H,L,X,C,Z 1,0, .X., .C., .Z.;

equations
output.OE = toe; "set output enable"
output.CLK = clk; "clock the output regs"
sreg.CLK = clk; "and state regs"
rwmem.CLK = clk; "and r/w store"

@page
state_diagram sreg
state so:

if (!reset) then SO WITH
dsackO.S = 1; "deassert"
dsack1.S = 1;
Iberr.S = 1;
gstrbO.S = 1;
grwO.R = 1;
rwmem.S = 1;
ENDWITH;

"all lf

"strobes"
"deassert C40"
"strobe, read"
"set to read"

else if (!lbg) then S1;

else SO WITH
dsackO.S = 1;
dsack1.S = 1;
Iberr.S = 1;
gstrbO.S = 1;
grwO.R = 1;
rwmem.S = 1;
ENDWITH;

@page

"deassert"
"all"
"strobes"
"deassert C40"
"strobe, read"
"set to read"

"Sort Slave Request"
state S1:

"Resetll
if (!reset) then SO WITH
dsackO.S = 1; "deassert"
dsack1.S = 1;
Iberr.S = 1;
gstrbO.S = 1;
grwO.R = 1;
rwmem.S = 1;
ENDWITH;

"all"
"strobes"
"deassert C40"
"strobe, read"
"set to read"

8-81

~

:'rcYPRESS ====;;;;;C;;;;;O;;;;;ll;;;;;ll;;;;;ec;;;;;t;;;;;ill;;;;g;;;;;th;;;;;e;;;;;VI=C;;;;;06;;;;;8;;;;;N.;;;;;'A;;;;;C;;;;;O;;;;;6;;;;;8 ;;;;;to;;;;;t;;;;;h;;;;;e ;;;;;TI;;;;;3;;;;;2;;;;;O;;;;;C;;;;;40;;;;

Appendix D. Slave Cycle Gelleration Sequencer - ABEL Source (continued)

"32-Bit Read"
else if (!pas & !ds & rw & !rwmem & !sizO & !siz1) then 82 WITH
grwO.8 = 1;

rwmem.8 = 1;
ENDWITH;

else if (!pas & !ds & rw & rwmem & !sizO & !siz1) then 83 WITH
gstrbO.R = 1;

ENDWITH;

"32-Bit Write"
else if (!pas & !ds & !rw & rwmem & !sizO & !siz1) then 82 WITH
grwO.R = 1;

rwmem.R = 1;
ENDWITH;

else if (!pas & !ds & !rw & !rwmem & !sizO & !siz1) then 83 WITH
gstrbO.R = 1;

ENDWITH;

"Illegal Access (nen-32 bit access)"
else if (!pas & !ds & (rw # !rw) & (sizO # siz1» then 89 WITH

1berr.R = 1;
ENDWITH;

else 81;

@page
"32-Bit Read/Write"

state 82:
gete 83 WITH

gstrbO.R = 1;
ENDWITH;

state 83:
gete 84 WITH

dsackO.R 1;
dsack1.R = 1;
ENDWITH;

state 84:
if pas then 80 WITH
dsackO.8 1;
dsack1.8 1;
gstrbO.8 1;
ENDWITH;

8-82

"?cYPRESS ====;;;;;;C;;;;;;o;;;;;;D;;;;;;D;;;;;;ec;;;;;;t;;;;;;iD;;:;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;06;;;;;;8;;;;;;fV.;;;;;;1\.;;;;;;C;;;;;;O;;;;;;6;;;;;;8 ;;;;;;to;;;;;;t;;;;;;h;;;;;;e ;;;;;;TI;;;;;;3;;;;;;2;;;;;;O;;;;;;C;;;;;;40;;;;;;

Appendix D. Slave Cycle Generation Sequencer - ABEL Source (continued)

else S4;

@page
"Illegal Access"

state S9:
if pas then SO WITH
lberr.S = 1;
ENDWITH

@page
"Power-Up"

state S15:
goto SO WITH

dsackO. S 1; "no ack"
dsackO.R 0;
dsack1.S 1;
dsack1.R 0;
rwmem.S 1;
rwmem.R 0;
lberr.S 1;
lberr.R 0;
gstrbO.S = 1;
grwO.S = 1;
ENDWITH;

@page
test_vectors

"error 6099 fix"
fIno ack"
"error 6099 fix"
"r/w mem"
"error 6099 fix"
"no bus error"
"error 6099 fix"
"no strobe"
"read"

([clk,reset,pas,ds,rw,rmc,sizO,siz1,fcO,fc1,fc2,lbg,oe] ->
[!sreg,rwmem,dsackO,dsack1,lberr,gstrbO,grwO])

[1, XI X, X, X, X, X, X, X, X, X, X, 0] -> [S15, X, X, X,X,X, X] ;"1 power up I'
[O,X,X,X,X,X,X,X,X,X,X,X,O]->[S15,X,X,X,X,X,X] :"2 power up"
[C,O,X,X,X,X,X,X,X,X,X,X,O]->[SO, 1,1,1,1,1,1] ;"3 reset state"
[C,l,l,l,l,l,l,l,X,X,X,O,O]->[Sl, 1,1,1,1,1,1] ;"4 slave read,lbg"
[C,l,O,l,l,l,O,O,X,X,X,O,O]->[Sl, 1,1,1,1,1,1] ;"5 pas asserted"
[C, 1, 0, 0, 1, 1, 0, O,X,X,X, 0, 0]-> [S3, 1,1,1,1,0,1]; "6 and ds, strobe"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S4, 1,0,0,1,0,1] ;"7 ack"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S4, 1,0,0,1,0,1] ;"8 wtfor pas rel"
[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 1,1,1,1,1,1];"9 dne, rel gstrb"
[C,l,l,l,O,l,l,l,X,X,X,O,O]->[Sl, 1,1,1,1,1,1] ;"10 slav wrte,lbg"
[C,l,O,l,O,l,O,O,X,X,X,O,O]->[Sl, 1,1,1,1,1,1];"11 pas assert"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S2, 0,1,1,1,1,0] ;"12 and ds"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S3, 0,1,1,1,0,0] ;"13 asert strob"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S4, 0,0,0,1,0,0] ;"14 ack"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S4, 0,0,0,1,0,0];"15 wtfor pas rel"

8-83

:'rcYPRESS ====;;;;;;C;;;;;;o;;;;;;n;;;;;;n;;;;;;ec;;;;;;t;;;;;;in;;;;;g;;;;;;th;;;;;;e;;;;;;VI=C;;;;;;06;;;;;;8;;;;;;/V.;;;;;;1\.;;;;;;C;;;;;;O;;;;;;68=to;;;;;;t;;;;;;h;;;;;;e ;;;;;;TI;;;;;;3;;;;;;2;;;;;;O;;;;;;C=40

Appendix D. Slave Cycle Generation Sequencer - ABEL Source (continued)

[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 0,1,1,1,1,0] ; "16done,rel gstrb"
[C,l,l,l,l,l,l,l,X,X,X,O,O]->[Sl, 0,1,1,1,1,0] ;"17 slav read,lbg"
[C,l,O,l,l,l,O,O,X,X,X,O,O]->[Sl, 0,1,1,1,1,0] ;"18 pas asserted"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S2, 1,1,1,1,1,1] ;"19 & ds,r/w asrt"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S3, 1,1,1,1,0,1];"20 and strobe"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S4, 1,0,0,1,0,1] ;"21 ack"
[C,1,0,0,1,1,0,0,X,X,X,0,0]->[S4, 1,0,0,1,0,1] ;"22 wtfor pas rel"
[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 1,1,1,1,1,1];"23done,rel gstrb"
[C,l,l,l,l,l,l,l,X,X,X,O,O]->[Sl, 1,1,1,1,1,1);"24 bad acess,lbg"
[C,l,O,l,l,l,O,l,X,X,X,O,O]->[Sl, 1,1,1,1,1,1];"25 pas asserted"
[C,1,0,0,1,1,0,1,X,X.X,0,0]->[S9. 1,1,1,0,1,1] ;"26 & ds, error"
[C,1,0,0,1,1,0,1,X,X,X,0,0]->[S9, 1,1,1,0,1,1] ;"27 wtfor pas rel"
[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 1,1,1,1,1,1];"28done,rel lberr"
[C,l,l,l,O,l,l,l,X,X,X,O,O]->[Sl, 1,1,1,1,1,1);"29 slv write,lbg"
[C,l,O,l,O,l,O,O,X,X,X,O,O]->[Sl, 1,1,1,1,1,1);"30 pas asserted"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S2, 0,1,1,1,1,0];"31 and ds"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S3, 0,1,1,1,0,0];"32 assert strobe"
[C,1,0,0,0,1,0,0,X,x,X,0,0]->[S4, 0,0,0,1,0,0] ;"33 ack"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S4, 0,0,0,1,0,0] ;"34 wtfor pas rel"
[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 0,1,1,1,1,0] ; "35done,rel gstrb"
[C,l,l,l,O,l,l,l,X,X,X,O,O]->[Sl, 0,1,1,1,1,0) ;"36 slav wrte,lbg"
[C,l,O,l,O,l,O,O,X,X,X,O,O]->[Sl, 0,1,1,1,1,0);"37 pas asserted"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S3, 0,1,1,1,0,0] ;"38 & ds,asrt str"
[C,1,0,0,0,1,0,0,X,X,X,0,0]->[S4, 0,0,0,1,0,0] ;"39 ack"
[C,1,0,0,0,1,0,0,X,X,X,0,0)->[S4, 0,0,0,1,0,0] ;"40 wtfor pas rel"
[C,l,l,l,l,l,l,l,X,X,X,l,O]->[SO, 0,1,1,1,1,0] ; "41done,rel gstrb"

end u15a

8-84

=: ?cYPRESS ====C=o=nn=e=cti=ng;;;;;;;;t=he=VI=C=O=68=N=1\C=O=68=t=o t=he=T=I=32=OC=4=O

Appendix E. Schematics

.
* ~ .
~ * -----<; * * . *

-;-:~ ,----< *
f~~ '*'

t:Bii01iiiE>-
-"- RN1A ~~ .

<::::AS6:= ~ -.----
7RES8PIN *"""'> ~

:=2 I L
,----------s:

<- 0
9 ~ ~ 1 4

~~~ U~ iduH Hh ~~ ~ n ~ ~ ~~ ~~~ r r ~ ~ ~ r ~ ~1~ n ~ ~H~~~ IA 

8-85 



Connecting the VIC068NAC068 to the TI 320C40 

Appendix E. Schematics (continued) 

AS 
A9 
A1D 

lAS LD16 A11 
LAB LD17 A12 
LA1D LD1B A13 VCC 
LA11 LD19 A14 
LA12 V LD20 
LA13 LD21 

A15 

LA14 

~ 
LD22 

A16 

LA15 LD23 
A17 

LA16 LD24 
A1B 

LA17 0 LD25 
A19 

LA1B LD26 
A2D 

LA19 6 LD27 
A21 

LA20 8 LD2B 
A22 

LA21 LD29 
A23 PlOD 
A24 PI01 

LA22 LD30 A25 PI02 
LA23 LD31 A26 PI03 
LA24 A27 PI04 
LA25 FC2 A2B PI05 
LA26 FC1 A29 PI06 
LA27 FCD A30 PI07 
LA2B A31 PIOB 
LA29 
LA30 AS 

PI09 
PI01D 

lA31 PI011 
PI012 

PAS PI013 

R/W VACOB8A 
-.DSACK1 

DSACKO 

RESET 

CPUCLK 

~ 
-.llIG..LBR 
~ 
...cACIlINH 

LDMAC 

VAC068B 
1Y1 
1Y2 
1Y3 
1Y4 
2Y1 
2Y2 
2Y3 
2Y4 

8-86 



Connecting the VIC068NAC068 to the TI 320C40 

Appendix E. Schematics (continued) 

~ 
U9 ~ ~ 

. 2 
~ .-JlAB " J;EBA ..l:EAB 

-& .Q 
LEBA LEAB . 
Al Bl 

U2 i'2 B2 
A2 B3 
M B4 

I GAla 16J I><> B5 

l' 
N3 B6 

AO 1/00 A7 B7 
Al 1/01 AS B8 
i'2 1/02 
A2 1/03 74F543 A4 1/04 
I><> 1/05 
A6 1/06 
A7 1/07 Il1n 
AS 1/08 
A9 1/09 2 

~ .-JlAB 13 Ala 1/010 
All 1/011 

-& 
-.CEBA ..l:EAB 

-& A12 1/012 LEBA LEAB 
A13 1/013 
A14 1/014 ,. 3 
A15 1/015 Al Bl 

V C AlB 1/016 i'2 B2 
1/017 A2 B3 
1/018 A4 B4 

1 1/019 I><> B5 
RN1F 1/020 N3 B6 

1/021 A7 B7 

7~ -= 
1/022 AS B6 
1/023 . -= 1/024 74F543 

t=: 
.-GS3 1/025 

CS4 1/026 
1/027 

DE 
1/028 U11 1/029 . o •. 

WE 
1/030 0 

~ .-JlAB " 1/031 

-& 
-.CEBA ..l:EAB 
LEBA LEAB 

100< 3 Al Bl 
no, 

i'2 B2 
CVM1836 A2 B3 

A4 B4 
I><> B5 

128KX32 SRAM Module N3 86 
A7 87 
AS 88 

74F543 

8-87 



Connecting the VIC068NAC068 to the TI 320C40 

Appendix E. Schematics (continued) 

A30 031 
P29 D30 C 
A28 029 RN2B 
A'Z7 028 7RES8PIN 

A26 027 
1'25 026 
A24 025 
AZl 024 
A22 023 
A21 022 
A20 021 
A19 020 ..BIBBO RESETLOC1 
A18 019 R/WO RESEn.ocO 
A17 018 ...!'AllEO 
A16 017 ..BDYO 
A15 016 CEO RESET 
A14 015 
A13 01. 
A12 013 ...sma1 
A11 012 R/W1 
A10 011 ...!'AllE1 
A9 010 ..BDY1 ROMEN 
AS 09 CE1 
A7 DB 
A6 07 
AS DB JlE 
M 05 AE X1 
A3 D4 STATO X2/CLKIN 
A2 03 STAT1 H1 
A1 02 STAT2 H3 
AO 01 --= 00 LOCK 

TMS32OC40 _ GLB_CTRL 

TMS320C40_GLB_AD 

8-88 



~-# 

'CYPRESS 

P1A 
D 0 .. 7 

A1 
1>2. 
1>:3 
A4 
M> D N; 
A7 
AS 
MJ 

A10 
A11 
A12 
A13 
A14 
A15 
A16 
A17 
A18 
A19 
1>2.0 
A21 
A22 
1>2.3 
1>2.4 
1>2.5 
1>2.6 
1>2.7 
1>2.8 
1>2.9 
A:io AL 
1>:31 
1>:32 V 

VME P1A 

Connecting the VIC068NAC068 to the TI 320C40 

Appendix E. Schematics (continued) 

P1B 

B1 C1 
B2 C2 
B3 C3 
B4 C4 
B5 C5 
B6 C6 
B7 C7 
B8 C8 
B9 C9 

810 C10 
B11 C11 
812 C12 
813 C13 
814 C14 
815 C15 
816 C16 
817 C17 
818 C18 
819 C19 
B20 C20 
821 C21 
B22 C22 
823 C23 
824 C24 
825 C25 
828 C26 
827 C27 
828 C28 
B29 C29 
830 C30 
831 C31 
832 VCC C32 

VMEP1B 

VME P1 CONNECTOR 

8-89 



ClK1 1/00 
10/CK2 1101 
11/CK3 1/02 

1/03 
12 1/04 
13 1/05 
I. 1/06 
15 1/07 
16 1/08 
17 1/09 
18 1/010 
19 1/011 
110_ 
111/0E 

CY7C335 

Bus Control 

12 
13 
I. 
15 
16 
17 
18 
19 
110_ 
111/0E 

Master Bus Cycle 
Generation 

Connecting the VIC068NAC068 to the TI320C40 

Appendix E. Schematics (continued) 

CLK1 1/00 
10/CK2 1101 
11/CK3 1102 

1/03 
12 1/0. 
13 1/05 
I. 1/06 
15 1/07 
16 1/08 
11 1/09 
18 1/010 
19 1/011 
110_ 
111/0E 

CY7C335 

Slave Bus Cycle 
Generation 

CPII 1100 
I 1/01 
I 1/02 
I 1/03 
I 1/04 
I 1/05 
I 1/06 
I 1/07 
I 1/08 
I 1/09 
I I f---''''----

R. 
RESISTOR Bus Decode 

U18B 

74AC1. 

8-90 

~ 

GSTRBO* I 

LBERR* I 

DSAQ~l* I 
, 

PSACKO* I 

Power-Up Reset 



Software Considerations for the VIC64 

Introduction 

This application note provides the VIC64 software 
developer with proven tips and examples for both 
configuring and operating the VIC64. The software 
described here is based on a SPARC-based VMEbus 
card utilizing a VIC64. This board was developed 
within Cypress Semiconductor as a test/evaluation 
vehicle for the VIC64 and the CY7C964. 

This application note also discusses the configura­
tion of the CY7C964 VMEbus address compare 
functions. 

Although this application note specifically address­
es the VIC64, virtually everything in this application 
note could also be applied to the VIC068A. 
VIC64-only features are flagged to notify the reader 
of items that are not applicable to the VIC068A. 

The source files vic.h, eval bd.h, and bIt cmd.c 
which are described in this -application n~te, ar~ 
available through the Cypress Semiconductor BBS 
(Bulletin Board System). These files are contained 
within a file named "SAMPCODE.EXE." 

Related Documents 

The reader may also wish to consult the following 
documents for additional information: 

• VIC068A/VAC068A User's Guide 

• VIC64/CY7C964 Design Notes 

These documents are available through your local 
Cypress Semiconductor field sales office. 

8-91 

Hardware Overview 

The examples in this application note are based on 
an actual design of a SPARC-based VIC64 evalua­
tion VMEbus board developed by Cypress Semi­
conductor. The following paragraphs provide back­
ground for this hardware platform. Contact your 
local field applications engineer regarding specific 
hardware information on this board. 

The Evaluation Board 

This evaluation board includes the following fea­
tures: 

• Cypress's CY7C611 embedded SPARC micro-
processor 

• Floating-point support 

• 64 Kbytes to 4 Mbytes of private SRAM 

• 64 Kbytes to 2 Mbytes of shared SRAM 

• 512 Kbytes of EPROM for the embedded moni­
tor program 

• Performs D64 VMEbus transfers utilizing VIC64 
and CY7C964 devices 

• MC68681 DUART 

• 2 Kbytes of non-volatile storage 

• Real-time clock 

Evaluation Board Local Control Register (LCR) 

The evaluation board contains a single 32-bit, dual­
purpose control register. When read, this register 
provides the memory size of the SIMM sockets as 
shown in Table 1. 



Table 1. LCR Read Fields 

Bits Socket 

bits 0,1 SIMM socket 1 size (private) 

bits 2,3 SIMM socket 2 size (private) 

bits 4,5 SIMM socket 3 size (private) 

bits 6,7 SIMM socket 4 size (private) 

bits 8,9 SIMM socket 5 size (shared) 

bits 10,11 SIMM socket 6 size (shared) 

The two bits for each SIMM contain one of the 
codes shown in Table 2. 

Table 2. SIMM Size Codes 

Code Size 

00 1M-byte SIMM 

01 256K-byte SIMM 

10 64K-bytes SIMM 

11 Socket empty 

When written, this register provides control over the 
the resources shown in Table 3. 

Table 3. LCR Write Fields 

Bits Function 

bits 0-15: LEDs (lit when bit is clear) 

bits 16,17: VIC64reset 

bits 18-28: VMEbus address (A31:21) 

bits 29,30: VMEbus address size 
(ASIZO-1) 

bit 31: VMEbus data port size 
(WORD*) 

Bits 0-15 provide control of 16 LEDs located on the 
edge of the board. When a bit is cleared, the corre­
sponding LED is lit. 

Bits 16 and 17 provide control over the reset opera­
tions of the VIC64. When bit 16 is cleared, the 
board's state logic asserts the IRESET* signal of the 
VIC64. When bit 17 is cleared, state logic asserts 
the IPLO* signal of the VIC64, issuing a global reset 
to the VIC64. 

Bits 18-28 provide control over the most-signifi­
cant eleven VMEbus address lines. Prior to a VME­
bus access, this bit field is loaded with the most-sig­
nificant eleven address bits. An access is then made 
to a predefined address (VME_BASE_ADRS) with 
the least-significant 21 VMEbus address lines ob­
tained from the physical address of the transaction. 

Bits 29 and 30 control the VIC64 ASIZO/1 signals re­
spectively. These signals tell the VIC64 what ad­
dress size to use. 

Bit 31 controls the WORD* signal line. When clear, 
the VIC64 performs D16 VMEbus accesses; when 
set, D32. 

Software Considerations 

SPARCmon@J 

The embedded monitor program used on the evalu­
ation board is SPARCmon. SPARCmon is a com­
mercial product available from Sun Microsystems. 
SPARCmon consists of source code modules for ini­
tialization, trap handling, floating-point support, 
process control, remote debugging, I/O, and a main 
command interpreter. Board-specific code such as 
board initialization, test, and additional commands 
are incorporated into SPARCmon separately. This 
application note does not address the specifics of 
SPARCmon, only board-specific details as it relates 
to the VIC64. 

Boot-Up 

The flow of initialization for booting the evaluation 
board is described in the following sections. 

Disable Traps 

Traps are disabled until resources exist to service 
them. 

Initialize 7C611 Window Invalid Mask (WIM) and 
Trap Base Register (TBR) 

Reset the VIC64 

This is discussed in detail later in this application 
note. 

Test First 64Kbytes of Private Memory 

This provides us with tested memory for temporary 
storage to perform subsequent boot tasks. 

8-92 



-.. ~ Software Considerations for the VIC64 
,CYPRESS================================ 

Set Up Initial Stack Frame Pointer and Enable Traps 

With the first 64 Kbytes of memory tested, we may 
now service traps. The trap vector table is located 
initially in EPROM at address $0. 

Initialize I/O 

This consists of setting up I/O tables, structures and 
the DUART itself. 

Perform Board Diagnostics 

The remainder of the board is checked, including 

EPROM checksum 

NVRAM checksum 

Determining amount of SRAM installed 

Testing remaining private SRAM 

Testing the shared SRAM 

Testing the NVRAM 

Testing the VIC64 (discussed later) 

Testing the DUART 

Configuring board local memory map 

Local memory map is created with regions for 

Monitor variables (DATA) 

Uninitialized monitor variables (BSS) 

The relocated trap table 

User memory area 

User stack (STACK) area 

Clear User Memory Areas 

The user areas are "cleared" to a predefined value. 

Relocate the Trap Table in EPROM to SRAM 

This speeds up trap table accesses and makes the 
table modifiable. The TBR is adjusted after the 
table is moved. 

Configure VIC64 

This is discussed in detail later in this application 
note. 

8-93 

VIC64 Initialization and Test 

VIC64 Register Accesses 

All of the VIC64's internal registers are 8 bits wide 
but occupy 32 bits of address space. Specific address 
and size information must be presented to the 
VIC64 in order for the VIC64 to accept the register 
access. 

When the VIC64 has been selected for a register ac­
cess (CS*, PAS*, and DS* are asserted to the 
VIC64), the VIC64 checks the SIZl/O and LA[I:0] 
signals to insure proper byte orientation. This is be­
cause the VIC64 is only connected to the lower 8 
data lines of the local data bus and the data must be 
aligned as such. 

Table 4 shows the valid combinations of SIZl/O and 
LA[I:0] that must be present for the VIC64 to ac­
cept the register access. The VIC64 mimics the Mo­
torola CISC processors in that the SIZ and LA com­
binations for it are the same as for the VIC64. The 
SIZ codes for the CY7C611 are not the same and 
translation circuitry is required. 

Table 4. VIC64/068 D(7:0) Data Alignment 

SIZl SIZO LAl LAO Size 

0 1 1 1 Byte 

1 0 1 0 Word 

0 0 0 0 Longword 

1 1 1 1 3-Byte 

If Table 4 is not satisfied, the VIC64 ignores the at­
tempted cycle by not reading or writing the informa­
tion and not acknowledging the cycle (does not as­
sert DSACKi*). 

VIC64 Reset 

The evaluation board issues a power-on reset to the 
VIC64 via the LCR. The LCR contains two bits for 
VIC64 reset. Bit 16 controls the assertion of IRE­
SET* for the purposes of performing a internal re­
set. Bit 17 controls the assertion of IPLO*, which is 
used in conjunction with IRESET*, to perform a 
global reset. The VIC64 requires that a global reset 
be issued at power-up. The SPARC assembler code 
in Figure 1 performs a VIC64 global reset. 



-" ~ Software Considerations for the VIC64 
,CYPRESS=============================== 

This routine is written in assembler language be­
cause it must be a "leaf" routine. That is, it must not 
use the stack in any way since no stack exists yet. 
Calls from a high-level language or calling an addi­
tional routine would almost certainly use the stack. 

Notice that the VIC64 is reset in stages. First the 
IRESET* signal is asserted to the VIC64 by clearing 
bit 16 of the LCR. The next instruction clears bit 17 
to assert IPLO*. The reason that these are per­
formed in separate instructions is that sufficient 
time must be allowed for the assertion of IRESET* 
to switch the IPLO* from an output to an input. 
Next, the IPLO* signal is removed, then the IRE­
SET* signal is removed, in separate instructions. 
This is done to insure that the VIC64 200-ms reset 
timeout is observed. If they were removed simulta­
neously, this timeout may not be observed and the 
reset would complete immediately. Refer to section 
12.1 of the VIC068/VAC068 User's Guide for more 
details on VIC reset. 

VIC64 Test 

To determine if the VIC64 is present and has been 
reset properly, the VIC64 test routine performs 
write-read-verify cycles to the VIC64 ICRO-5 reg­
isters. At this time, the VIC64 version register is 
read to determine the mask revision. The mask reg­
ister reads $00, and any VIC64 values above $FO in­
dicate a VIC068 is installed. This mayor may not 
be acceptable for specific applications. 

VIC64 Configuration 

The configuration of the VIC64 is accomplished by 
writing the VIC64 registers to desired values. The 
board stores these predetermined values as a struc­
ture located in the NVRAM at boot-up. The VIC64 
configuration routine reads these values and stores 
them into the appropriate VIC64 registers. This 
way, the configuration of the VIC64 is not hard­
coded and may be modified by simply changing the 
values in NVRAM and calling a VIC64 configura­
tion routine. 

VIC64 Address Spaces 

In VMEbus systems, each VMEbus board typically 
has its own unique address spaces within the total 
4-Gbyte VMEbus addressing range. These regions 
may consist of various sub-regions including: 

• A32, A24, and/or A16 regions 

• D32 and/or D16 regions 

• Interprocessor communication regions 

In addition to the VMEbus address spaces, the local 
processor within each board works with a local ad­
dress space that may include: 

• Private memory 

• Shared memory (shared with the VMEbus) 

• UARTs 
• Interrupt acknowledge 

• Board control registers 

#inc1ude <eva1_bd.h> Needed for LCR pointer 

set LOCAL_CONTROL_BASE_ADRS, %16 
set Oxffffffff, %12 
st %12, [%16] 
set Oxfff7ffff, %12 
st %12, [%16] 
set Oxfffcffff, %12 
st %12, [%16] 
set Oxfff7ffff, %12 
st %12, [%16] 
set Oxffffffff, %12 
st %12, [%16] 

This symbol points to the LCR 

"clear" LCR 

Assert IRESET* 

Assert IPLO* 

Remove IPLO* 

Remove IRESET* 

Figure 1. VIC64 Reset 

8-94 



. -., ~ Software Considerations for the VIC64 
'CYPRESS ================ 

• The VMEbus 

• Control registers (including VIC64) 

These local areas mayor may not be visible to other 
VMEbus modules. It is not uncommon for shared 
memory to be the only local resource available to 
other VMEbus modules. This is the case for this 
board. The local addresses and the VMEbus ad­
dresses to this shared memory would almost cer­
tainly be different. Some type of secondary decode 
or address translation is necessary in these 
instances. In the examples given in this application 
note, the header file eval_bd.h defines the local ad­
dress map used for the board. 

The VIC64 does not directly support VMEbus ac­
cesses to their internal registers with the exception 
of the Interprocessor Communication registers. It 
is possible via external hardware to make all VIC64 
registers visible to the VMEbus (see Cypress's ap­
plication note titled "Using the VIC068A Without 
a Processor"). If a VAC068A is used, the local 
VIC64 (the VAC068A is not compatible with the 
D64 operations of the VIC64, but can be used if D64 
operation are not performed) register region is 
fixed at addresses FFFCxxxx to FFFDxxxx. As a 
minimum, sufficient space must always be allotted 
for the 58 longwords of VIC64 registers. 

VMEbus addressing through the LCR 

As noted earlier, bits 18-28 of the LCR provide 
control over the most significant eleven VMEbus 
address lines. Therefore, a VMEbus access may 
consist of two parts: loading the LCR with the prop­
er value, and performing the actual transfer to the 
VMEbus address location. This location consists of 
a fixed address in combination with the lower 21 bits 
of the VMEbus address. 

As an example, assume a VMEbus A32, D32 read 
access is desired from the VMEbus address 
Ox38004000 and that the LEDs should remain clear 
(see Figure 2). A value of OxA703FFFF should be 
written into the LCR. If the VMEbus address space 
on the local address map is OxEOOOOO 
(VME_BASE_ADRS), the local address should be 
OxE04000 (OxEOOOOO + least significant 21 bits of 
VMEbus address). 

An addressing scheme of this sort makes the entire 
4-Gbyte range of the VMEbus addressable by the 
board. A disadvantage is that the LCR must be writ­
ten for any VMEbus transaction is in a different 
2-Mbyte address spaces from the previous VMEbus 
transaction. An example of a function that would re­
turn the proper address is shown in Figure 3. 

An example function that returns the proper LCR 
value could be as shown in Figure 4. 

CY7C964 Address Comparator Configuration 

The evaluation board uses the CY7C964 as the 
VMEbus slave address comparator. The address 
comparator consists of two registers: the mask regis­
ter and the compare register. The compare register 
is loaded with the base address of the slave address. 
The mask register is loaded with a value that deter­
mines which bits of the address should be compared 
with the value in the compare register. This defines 
the size of the address region. A zero in a bit enables 
the comparison of the corresponding bit in the 
compare register to the VMEbus address bit. 

For example, if there are 4 Mbytes of shared 
memory and the VMEbus slave range is to start at 
address OxCOOOOO, the following values should be 
loaded into the CY7C964 registers: 

Compare Register: 
Mask Register: 

OxOOCOOOOO 
Ox003FFFFF 

lQ1Q/Qlll/QQQQ/QQll/llll/llll/llll/llll 

I """" ....... ~ - ""'" -
ASIZO/1 VMEbus ADDRESS I 

A[31:21] 
LEOs (CLEAR) 

WORD* VIC64 RESET 

Figure 2. VMEbus A32, D32 Read Access 

8-95 



-"# 
'CYPRESS 

/* eval_bd.h includes the following: 
typedef unsigned int WORD 
#define VME_BASE_ADRS OxEOOOOO */ 

#include <eval_bd.h> 

#define VMEADRSMASK Ox001FFFFF 

WORD *CalcVMEadrs (adrs) 
WORD *adrs 
{ 

WORD VMEadrs; 

Software Considerations for the VIC64 

VMEadrs = (WORD) adrs; 
VMEadrs &= VMEADRSMASK; 
VMEadrs 1= VME_BASE_ADRS; 

/* mask off upper 11 bits of address */ 
/* overlay VMEbus address for evaluation board */ 

return ((WORD *) VMEadrs); 

Figure 3. VMEbus Address Calculation 

/* eval_bd.h includes the following: 
typedef unsigned int WORD */ 

#include <eval_bd.h> 

#define LCRADRSMASK OxFFEOOOOO 
#define LCRMASK OxE003FFFF 
#define LCRSHIFT 3 

WORD *CalcLCR (adrs, LCReg) 
WORD *adrs, LCReg; 
{ 

WORD TempAdrs; 

TempAdrs = (WORD) adrs; 
TempAdrs &= LCRADRSMASK; 
TempAdrs »= LCRSHIFT; 
LCReg &= LCRAMSK; 
LCReg 1= TempAdrs; 

return (LCReg); 

/* convert WORD pointer to WORD */ 
/* mask off lower 21 address bits */ 
/* shift over by 3 */ 
/* clear out existing address in LCReg */ 
/* overlay new address onto LCReg */ 

Figure 4. LCR VMEbus Address Calculation 

8-96 



/* NO!!! */ 
WORD *VMEadrs 

/ * Yes!!! * / 
WORD *VMEadrs; 

(WORD *) Ox400000; 

VMEadrs = (WORD *) Ox400000; 

Figure 5. Proper Variable Initialization 

Compiling Considerations 

Because the monitor used for the evaluation board 
is EPROM-based, certain considerations are noted, 
namely: 

1. All monitor sections that can be read-only are 
linked such that they occupy a contiguous sec­
tion of EPROM. This may be done with the - R 
option of a UNIX cc compiler. The - R option 
merges the code segment TEXT with the initial­
ized data segment DATA. 

2. Because the DATA segment is now located in 
EPROM, any initialized data is now read-only 
and is not modifiable. This suggests that vari­
able declarations do not initialize the variable, 
as shown in Figure 5. 

3. The uninitialized data segment BSS and the 
stack segment STACK must be located in RAM. 

Software Considerations for the VIC64 

Example VIC64 Software Building 
Blocks 

The following are examples of code that were used 
for the VIC64-specific routines on the board. 

vic.h 

vic.h is a header file that defines useful macros and 
VIC64-register-related constants. First, the macro 
VIC is defined, which returns an address to a VIC64 
register. The argument to this macro is the number 
of the register. These numbers start from 0 
(VIICR) and end with 57 (BTLR2) for the VIC64 
(56 for the VIC068). These numbers are not the ad­
dress of the register. Next, constants are defined 
that assign these numbers to the register names 
themselves. And lastly, a unique VIC64 register 
identifier is given to each register so that its address 
and contents can be obtained directly. A similar 
macro is defined for setting and clearing the Inter­
processor Communication (IPC) switches. This 
IPC macro needs, as an argument, the starting ad­
dress of the VMEbus IPC areas of interest. 

As examples, consider the code fragment shown in 
Figure 6, which illustrates the VIC_xxx macros. 

In addition, numerous other constants are defined 
that aid in manipulating the various bit fields within 
the registers themselves. These constants are sepa­
rated by register. Also, the last character of the 
constant name may consist of a underscore ( _ ) or 
lower case letters that indicate something about the 
constant or the bits. Table 5 summarizes these char­
acters. 

#include <vic.h> 
#include <eval_bd.h> 

/* VIC macros located here */ 

BYTE TempStorage; 
BYTE *TempStoragePtr; 

TempStorage = *VIC_BTCR; 
*VIC_SSOCRO = TempStorage; 
TempStoragePtr = VIC_TTR; 
ICF_ICGSO_SET (ICF_BASE); 

/* typedef for BYTE (unsigned char) */ 

/* read contents of BTCR */ 
/* store contents of SSOCRO */ 
/* read pointer to TTR */ 
/* set ICGSO */ 

Figure 6. Using the "VIC" Macros 

8-97 



· -', ~ Software Considerations for the VIC64 
;CYPRESS================================ 

Table 5. vic.h Constant Preceders 

Suffix Meaning 

- IJ?plies a bit field which is cleared 

r Implies read-only bit( s) 

m Implies a masking value for bit(s) 

eval_bd.h 

eval_ bd.h is a header file that contains board-specif­
ic constants. These constants also include the local 
address map of the board, including those resources 
described in Table 6. 

In addition, other types and constants are defined, 
including individual DUART registers, power-of-2 

constants, byte-extraction macros, and some 
NVRAM macros. 

A Generic Block 'fransfer Utility 

blt_cmd is a generic, command-line driven program 
that enables the user to perform almost every con­
ceivable block transfer operation using the VIC64 
or the VIC068. One notable exception is allowing 
the VIC64 to interrupt when the block transfer is 
complete. blt_cmd is meant mainly to be used as a 
vehicle for board and code testing. 

Configuration is provided by the command-line ar­
guments outlined in Table 7. 

Table 6. Local Address Symbols 

Memory Area Privilege Symbol 

EPROM Read/Write ROM BASE ADDRESS - -
Status Register (LCR) ReadcOnly STATUSl_BASE_ADRS 

Control Register (LCR) Write-Only LOCAL_CONTROL_BASE_ADRS 

DUART Read/Write M68681 BASE ADRS - -
NVRAM Read/Write NVRAM_BASE_ADRS 

7C964 Mask Register Write-Only BILC_M_BASE_ADRS 

7C964 Compare Register Write-Only BILC C BASE ADRS - - -
Interrupt Acknowledge Read-Only INT ACK BASE ADRS - - -
VIC64 Read/Write VIC BASE ADRS - -
VMEbus Read/Write VME_BASE_ADRS 

Private SRAM Read/Write BANKI BASE ADRS - -
SharedSRAM Read/Write BANK2 BASE ADRS - -

8-98 



is' -1 ~ Software Considerations for the VIC64 
'CYPRESS================================~ 

Table 7. Command-Line Arguments 

Argument Default[lJ Function 

-6 Performs D64 transfers (requires VIC64 device). 

-3 -.J Performs D32 transfers. 

-a[address] OxCOOOOO Sets local starting address for which data will be read, for VMEbus 
write block transfers or written for VMEbus read block transfers to 
address. 

-A[value] Disabled Sets user-defined AM code that is to used for block transfers to value. 

-b[value] Ox200 Sets minimum value for byte count to value. If the -ib value is 0 (in-
crement byte count) the fixed byte will be set to value. 

-B[value] OxFFFC Sets maximum value for byte count to value. Not used if -ib value is 
set to O. 

-cl Enables local boundary crossing. 

-cL V Disables local boundary crossing. 

-ct Enables 2-kbyte VMEbus boundary crossing (implies -cv). 

-cT -.J Disables 2-kbyte VMEbus boundary crossing. 

-cv V Enables VMEbus boundary crossing. 

-cV Disables VMEbus boundary crossing. 

-d Enables the dual-path option but does not perform interleave master 
cycles (see -p). 

-D -.J Disables the dual-path option. 

-e Sets the release mode to RWD. 

-E -.J Sets the release mode to ROR. 

-f Enables DRAM refresh. 

-F V Disables DRAM refresh. 

-ib[value] 0 Set the byte count increment value to: value * size of the operand. 

-ii[value] 0 Sets the interleave increment value to value. 

-iu[value] 0 Sets the burst count increment value to value. 

-i[value] 0 Sets minimum value for interleave to value. If the -ii value is 0 (incre-
ment increment count) the fixed interleave value will be set to value. 

-I OxF Sets maximum value for interleave to value. Not used if -ii value is set 
to o. 

-k V Enables data set-up before every block transfer and data checking after 
every block transfer. 

-K Disables data set-up before every block transfer and data checking af-
ter every block transfer. 

Note: 
1. The check mark indicates the default of two 

preceding arguments. 

8-99 



Software Considerations for the VIC64 

Table 7. Command-Line Arguments (continued) 

Argument DefauItll] Function 

-l[value] 1 Sets the number of block transfers to perform to value. If value is set 
to 0, program will loop forever. 

-m Enables the clearing of the BLT enable bit (BTCR[ 4]) during the first 
interleave (VIC64 only) . 

-M ..j Enables the clearing of the BLT enable bit (BTCR[ 4]) after the block 
transfer is completely finished. 

-p Enables the dual-path feature and performs VMEbus master cycles 
during the interleave period . 

-P ..j Disables the performing of interleave master VMEbus cycles. Leaves 
the dual-path feature enabled . 

-r ..j Enables BLT reads. 

-R Disables BLT reads. 

-s[value] 3 Sets the VMEbus request level to value. 

-t ..j Enables the "enhanced" BLT turbo mode (VIC64 only). 

-T Disables the "enhanced" BLT turbo mode. 

-u[value] 0 Sets minimum value for the burst count to value. If the -iu value is 0 
(increment burst count) the fixed burst count will be set to value. 

-U[value] Ox3F Sets maximum value for burst count to value. Not used if -iu value is 
set to O. 

-v[value] OxDEADCODE Sets the value to which destination memory will be set to value. 

-w ..j Enables BLT writes. 

-w Disables BLT writes. 

-x Restores all options to their default states. 

[ address( es)] Ox200000 VMEbus starting address( es) for block transfer. Up to five may be 
specified. 

All mutually exclusive options are shown without a 
divider between the options. If two mutually exclu­
sive options are defined, the last one in the com­
mand line will take precedence. The state of these 
options are saved in static variables such that once 
a configuration is entered, the whole command 
string will not have to be retyped. Only those op­
tions that need to be changed will have a new option. 
Using the -x option will restore all options to their 
default state. 

the SPARCmon source. Any ASCII-to-hex convert­
er could be used with small modifications to 
bIt _ cmd.c. lib _atohexO is outlined in Figure 7. 

Program Flow 

Figures 8, 9, and 10 illustrate the flow ofblt_cmd.c. 

Example Operations 

The following examples show how blt_cmd can be 
used to initiate a variety of block transfers. 

Unsupplied Functions 

blt_cmd.c contains one function, lib_atohexO, that 
is not supplied. It is a library routine supplied with 

b1t_cmd -10 -6 -ii1 -aC800000 D800000 

This command line would perform D64 read and 
write block transfers indefinitely using local address 

8-100 



-., ~ Software Considerations for the VIC64 
=='CYPRESS================================~ 

#include <atohex.h> 
/* needed for lib atohex return 

values */ 

lib_atohex (string, hexvalue) 
char *string; 
unsigned long *hexvalue; 

/* 
inputs: 
string character to be converted 
Outputs: 
hexvalue pointer to the hex result 

Return value: 
SUCCEEDED valid number 
(otherwise) illegal hex number 
*/ 

Figure 7. atohexO prototype 

OXC800000 and VMEbus address OxD800000. After 
each read/write block transfer, the interleave period 
is incremented by 1. All other options would remain 
at their default values. 

blt_cmd -3 -w -iul D800000 E800000 

This command line would perform D32 read block 
transfers indefinitely (-10 still in effect) using local 
address OXC800000 (defined last time) and VME­
bus addresses 0xD800000 and OxE800000. After 
each read block transfer, the burst count and the in­
terleave period (still defined from last time) is in­
cremented by 1. All other options would remain at 
their default values. 

blt_cmd -6 -w -ibl -K -p D800000 

This command line would perform D64 read and 
write (writes are re-enabled with -w) block trans­
fers indefinitely using local address OxC800000 and 
VMEbus address 0xD800000. After each read/write 
block transfer, the byte count would be incremented 
by 8 (1 * 8 bytes/transfer). Data checking is sup­
pressed. Master cycles are performed in the inter­
leave period. All other options would remain at 
their default values. 

Performs block transfers using the same parameters 
as the last time invoked. 

8-101 



~ 

:':?cYPRESS ========S;;;;;;o;;;;;;ftw~a;re~C;o;;n;s;id;;;e;;ra;;t;;;io;;;n;s ;fo;r~th~e~VI~C~6~4 

Perse command fine 

No 
.;>---'-'--41 Print error message(s) 

Check ranges 

No 

Configure VIC64 

Figure 8. blt_cmd Flow 

8-102 



Software Considerations for the VIC64 

No 

Perform BL T write 
(see figll"e 6) 

Increment burst count 

No 

No 

No No 

No 

Figure 8. blt_cmd Flow (continued) 

8-103 



Setup VMEbus memory 

()ear loea memory 

Begin bloek read 

Clear BL T enable bit 
(if not aready done) 

Yes 

Yes 

Yes 

No 

Software Considerations for the VIC64 

()ear BL T enable bit 

No 

Perform interleave eyde 

Cheek data 

Print error 

Figure 9. blt_cmd Read Flow 

8-104 



=-- -., ~ Software Considerations for the VIC64 
,CYPRESS================================== 

Setup local memory 

Clear Vl"Ebus memory 

Be9in block write 

Clear BL T enable bit 
(if not already donel 

Yes 

Yes 

Yes 

No 

Clear BL T enable bit 

No 

Perform interleave cyde 

Check data 

Print error 

Figure 10. bIt_cmd Write Flow 

8-105 



VIC64 to Motorola 68040 Interface 

Purpose 

This application note shows how the VIC64 can be 
interfaced to a Motorola 68040 microprocessor op­
erating at 40 MHz. The issues and assumptions that 
go into designing such an interface are considerable 
and complex; thus, this application note will not at­
tempt to design a complete VME board that can do 
everything. It will cover some of the issues that are 
pertinent when designing a 68040-based VMEbus 
board and will focus on the circuitry required for 
VIC64 to 68040 interfacing. 

Design Issues 

Asynchronous Bus (VIC64) to Synchronous Bus 
(68040) Interfacing 

With the 68040 microprocessor, Motorola radically 
changed its bus architecture. With the 68030 and 
prior processors, Motorola used an asynchronous 
bus protocol. The 68040, on the other hand, uses a 
synchronous bus protocol. The VIC64, being an ex­
tension of the VIC068A architecture, retains the 
asynchronous bus protocol that is compatible with 
the 68030 and prior microprocessors. This makes 
the VIC64 and 68040 bus protocols incompatible. 

For the most part, the VIC64 is a peripheral to the 
68040. The 68040 generates read and write cycles to 
the VIC64 and the VIC64 responds. There is only 
one case where the 68040 would act as a peripheral 
to the VIC64 and that is if the 68040's snooping ca­
pability were turned on and the 68040 was required 
to supply data from its internal cache for a VIC64 
cycle. To simplify the snooping interface, there are 
memory design strategies described later in this ap­
plication note that can isolate memory accessed by 

the VIC64 from the 68040 internal cache. Thus, 
whenever the VIC64 were to act as master on the 
bus, the 68040 would never need to respond to a 
VIC64 cycle. No memory area that the VIC64 can 
access would be cached by the 68040. 

To allow the 68040 and VIC64 to communicate, the 
VIC64 must be synchronized to the 68040. The pri­
mary signals that undergo this synchronization are 
the handshaking signals, DSACKO* and DSACKI *, 
that the VIC64 sends to the 68040 to indicate the 
completion of a register transfer or a VMEbus 
transfer. 

Putting a "Slow" VIC64 on the 68040's Bus 

The 68040 synchronous bus can transfer data at a 
rate of 1 transfer per 2 cycles of the 40-MHz bus 
clock when running in single-cycle mode. The trans­
fer can either be It byte, word, or longword in length. 
This translates to 1 transfer every 50 ns. The VIC64 
responds to a request for a data transfer to its inter­
nal registers no quicker than 67.5 ns. When the 
68040 accesses the VMEbus via the VIC64, the 
transfer can be considerably slower since the VME­
bus slave controls the progress of the transfer. To 
pace the transfer without losing data, the 68040 al­
lows a slow peripheral to hold off on asserting TA 
until it has its data available on a read, or can accept 
data on a write. The interface designed in this ap­
plication note synchronizes the DSACKI * and 
DSACKO* signals from the VIC64 and uses them to 
generate TA to the 68040. 

Bus Contention - Peripheral Write after Read 

When designing with a high-speed processor and a 
slow peripheral, bus contention is always a concern. 
Bus contention comes into play when a slow periph­
eral is being read by the processor in the current bus 

8-106 



-:S~YPRESS~~~~~~~~~VI~C~64~tO~M~o~t~or~O~la~6~8~O~40~I~n~te~rl:~a~ce 
cycle and in the next cycle, the processor executes a 
write. Typically, the slow peripheral cannot be dis­
abled off of the bus before the processor begins driv­
ing the bus. The VIC64 to 68040 interface is no ex­
ception. 

Figure 1 shows the timing of the contention. The 
VMEbus interface used in this application note is 
the full functional D64 VMEbus interface using the 
VIC64 and 3 CY7C964s as shown in Figure 4 of the 
Cypress application note titled, "Using the 
CY7C964 with VIC." At the end of the 68040 cycle 
where data is read, it takes up to 5 ns for PAS *, DS *, 
and CS* to deassert (using a PALC22VlOD-7), up 
to 23 ns from DS* de asserted to ISOBE* deas­
serted, up to 12 ns from ISOBE* deasserted to CI­
SOBE deasserted, and then 7.5 ns for the '245 to dis­
able assuming a 74FCT16245T is used. The next 
cycle can begin and write data can be presented to 

BCLK 

~---ur----~----~----~--~---

TS-----n I 

'040 DATA -------+~=+===t===:t== 
ISOBE* ~23no---6';-i: ----f---~--------'-

CISOBE' 
i ---.J7SM~ 

FCT16245T==t===t=~8) ::..----+------+-y 
Contention 

Interval 

Figure 1. Contention for a Read 
Followed by a Write 

BCLK 

the bus as early as 5.25 ns after the BCLK following 
the cycle when PAS*, DS*, and CS* were deas­
serted. This creates over 15 ns of contention! 

Solving Bus Contention with Arbitration 

The solution to the contention is easy considering 
the bus arbitration scheme of the 68040. In prior 
members of the 68k family, the processor also con­
tained a bus arbiter on the same chip. Any peripher­
al that wanted to get access to the bus was required 
to request the bus from the processor. The 68040 re­
lies on the designer to implement an external bus ar­
biter. All devices that can be masters on the bus 
must request the bus from the arbiter and the 68040 
is no exception. 

A way to eliminate the contention is to not allow the 
processor to begin a write cycle immediately after it 
has read the VMEbus or the VIC64 registers. The 
arbitration states of the 68040 make this possible. 
The timing of the arbitration is shown in Figure 2. 
At the beginning of the read cycle, the 68040 asserts 
TS along with an address that indicates either a 
VMEbus cycle or a VIC64 register access. The pro­
gression then is as follows: 

1. The address is decoded and CS*, STROBE*, or 
MWB* is asserted along with PAS*. 

2. The arbiter deasserts BG in response to CS*, 
STROBE*, or MWB* assertion. The 68040 will 
complete its current cycle. It is assumed that the 
68040 does not want to relinquish the bus and 
will continue to driveBR asserted. 

3. Mter receiving TA, the 68040 is forced off the 
bus since the BG signal had been previously 
de asserted. However, when the arbiter sees that 

~--~----~----~----r-----r-----~i\-----V----------r---

~~--~--------'~\~~~1~J-____ ~ ____ ~ ____ ~ ______ ~! r'----r-----lIL-
BR_~ ____ ~ ____ ~ ______ ~----~----~----~----~------~-

BG 'I'i' : \ 
\QI ® 

BB---nL ____ ~ ____ ~----_+--------'------~----~i ,----n~ __ ~ __ 

Figure 2. Arbitration Used to Eliminate Contention 

8-107 



~~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~o~la~6~8~O~40~In~te~rl:~a~c=e 

TA has been asserted it grants the bus back to 
the 68040. 

4. The 68040 on the next clock rising edge can as­
sert a TS to begin the new cycle since BG is seen 
asserted. 

With this method, there is no possibility of conten­
tion since 25 ns has been added to the contention 
resolution time. 

For this method to be effective, good board layout 
and decoupling must be used. Thking the bus away 
from the 68040 causes its bus buffers to go high-im­
pedance and then low-impedance in a single bus 
cycle. This can cause significant ground bounce and 
noise if the proper design practices are not used. 
Also, the signals that go high-impedance must be 
pulled up to Vee to prevent them from floating. 

Slave Access Implementation 

Regardless of the memory map of the board, there 
are common issues pertaining to slave access of the 
board from the VMEbus. The slave interface is 
highly dependent on the function of the board. If the 
board is a memory array, chances are the board will 
primarily be accessed as a slave. However, if the 
board is a general purpose microprocessor, it will 
probably spend most of its time as a master on the 
VMEbus. 

Since the slave interface is variable from board to 
board, the details of a slave interface to onboard cir­
cuitry will not be covered. The information in the 
VIC068A/V-4C068A User's Guide and the 
VIC64/CY7C964 Design Notes contain ample in­
formation on using the VIC64 and CY7C964s for 
slave accesses. The next three sections address is­
sues necessary for designing the slave circuitry on 
the board. 

Bus Snooping 

The 68040 can be configured to snoop cycles on its 
bus when it is not a master. Snooping is only a con­
cern if the 68040 and the VIC64 share a common 
memory subsystem. If the VIC64 has its own dedi­
cated memory which is gated off from the 68040's 
memory, snooping is not an issue (unless, of course, 

multiple bus masters reside on the bus with the 
68040). 

When the 68040 finds a cycle that requires data to 
be supplied from its internal cache, it will inhibit the 
memory subsystem and provide the requested data. 
The timing of this operation is synchronous to the 
BCLK and thus, if snooping were configured, the 
VIC64, when acting as a bus master, must have its 
signals synchronized to properly meet the 68040 
timing. 

Inhibiting Cache Transfers From Shared Memory 

To avoid the timing difficulties that arise when 
snooping is enabled with a common memory subsys­
tem, snooping can be disabled! This would also re­
quire that data areas on the board accessed by the 
VIC64 cannot be cached internally by the 68040. To 
disable caching of VIC64 register data or read 
VMEbus data, and disable snooping, accesses to the 
VIC64 and CY7C964 circuitry that generate 
STROBE*, CS*, andlor MWB* would cause TCI, 
SCO, and SCI signals to go to the 68040 in their in­
hibiting states. This would disallow the current 
cycle from being cached internal to the 68040. 

To prevent the caching of data written to the board 
when the VIC64 is acting as a slave or a block trans­
fer controller, the 68040's memory map decoder 
must assert TCI when any location the VIC64 can 
access when in that mode is requested by the 68040. 

Memory Map Decoding and Remapping 

Another design issue when implementing slave ac­
cess logic is that of memory map decoding and re­
mapping. When an address is provided from the 
VMEbus, it may not correspond to the same physi­
cal address on the board. Through the use of PLDs 
for decoding and shifting addresses, the VMEbus 
address can map to an on-board address. 

Design Assumptions 

Other than the design issues covered above, there 
are two assumptions that have been made in the de­
sign of the circuits herein. The first pertains to the 
memory system design and the second pertains to 
the buffer-type selection of the 68040. 

8-108 



~ -~ VIC64 to Motorola 68040 Interface 
_;CYPRESS ======~~====== 
Memory System Design 

The goal in any memory system design is to match 
the performance of the memory to the masters that 
access it. This presents a problem in the design since 
the 68040 and VIC64 have vastly different bus struc­
tures. The 68040 is based on a synchronous bus and 
supports high-speed burst transfers as well as single­
cycle transfers with all data and control signals syn­
chronized to a common bus clock (BCLK). Howev­
er, the VIC64 relies on asynchronous bus transfers 
that are paced by asynchronous data accesses and 
acknowledgements. There must be an assumption 
made by the board designer of one of the following 
memory strategies. Based on the typical application 
of the board, the designer can select a memory strat­
egy to maximize data throughput. Two designs are 
presented here but many more are possible. In each 
case, the block labeled "VME Interface" contains 
the circuit shown in Figure 4 of the Cypress applica­
tion note titled, "Using the CY7C964 with VIC." 

Two Memory Banks Architecture with No Caching 
of Shared Bank 

Figure 3 shows a memory system design that is split 
into two separate banks. The first bank of memory 

is dedicated to the 68040 and runs synchronously. 
The second bank of memory is dedicated to the 
VIC64 and runs asynchronously. By having two sep­
arate memory banks, each can be designed to run 
optimally with its corresponding bus master. This 
would offer the best performance for the 68040 for 
its burst mode, and for the VIC64 for its burst mode. 
The gate between the two memory buses allows the 
68040 access to the VIC's memory and to the VME­
bus for single-cycle transfers. Access to the VIC64's 
memory bus is controlled by the arbiter and is 
granted to the 68040 when the VIC64 is not active 
on its bus. 

Under normal operation, the gate opens when re­
quested by the 68040, allowing the 68040 free access 
onto the VIC64's memory bus and onto the VME­
bus. Only when the VIC64 is accessed as a slave or 
it is controlling burst transfers would the gate be 
closed. The VIC64 would request access to its bus 
via its LBR * signal. A memory configuration like 
this would allow both the VIC64 and the 68040 the 
most bandwidth on their respective busses. Both 
could be operating as bus masters at the same time. 
The application note titled "Interfacing the 
CY7C611A with the VIC64" uses this type of 

<:0./", 
'" ~ .. " ' 

Figure 3. Two Memory Banks Architecture 

8-109 



memory scheme. The only caveat with this type of 
memory scheme is that when the 68040 is accessing 
the VIC64's memory, the data and acknowledge­
ments from the VIC64 or its memory must be syn­
chronized to the 68040's bus requirements. 

Shared Memory with No Caching ofVME Area 

The other type of memory subsystem would be one 
that can act synchronously or asynchronously de­
pending on whether the 68040 or the VIC64 was on 
the bus. This is illustrated in Figure 4. Both the 
68040 and the VIC64 would share the same address 
and data buses and the arbiter would be used to 
grant access to one or the other. The arbiter could 
also indicate to the memory subsystem who has ac­
cess to the bus. Although this simplifies the bus 
structure, it could complicate the memory design. 
It could also limit the bandwidth of the 68040 and 
the VIC64 to unacceptable levels. 

However, this memory design might be perfectly ac­
ceptable for certain applications. The VIC068A 
and earlier 68K-family processors were able to 
share the same bus due to their compatible bus 
structures. Many designs allowed both the VIC64 
and, for example, a 68020 to share bus bandwidth 
without detrimental effects. It is assumed that since 
this design revolves around a 68040 at 40 MHz, bus 
bandwidth for the processor is important! For this 
application note, it will be assumed that the sepa­
rate memories strategy is used. 

,',' ,", ,,' 

ASYNCISYNCl 
MEMO~y:::,1-- ...... 

Figure 4. Single Memory Bank Architecture 

VIC64 to Motorola 68040 Interface 

68040 Configured for Large Buffer Timing Mode 

To simplify the timing analysis and insure the peak 
performance from the design, the 68040 will be used 
in its Large Buffer Timing mode. This will require 
the careful layout of the board and the use of signal 
terminations to prevent adverse results from trans­
mission line effects. Large Buffer mode is entered 
into during processor reset by pulling the IPL2, 
IPLl, and IPLO signals to a logic-one state. 

Reset Circuitry 

The reset circuitry and its routing is shown in Figure 
5. There are three possible sources for a reset in this 
design. The first is a power-up or front panel push­
button reset. The second is a reset initiated by the 
VIC64. The third is a 68040-initiated reset. The Re­
set PLD, a CY7C335-83, controls the sequencing 
for each of these reset types. The VHDL code de­
scribing this PLD is given in Appendix A. 

Power-Up or Pushbutton Reset 

The timing for the power-up or pushbutton reset is 
shown in Figure 6. While PWRUP _RST_N is LOW 
from either the pushbutton being depressed or the 
capacitor in Figure 5 charging at power-up, 
BRD _ RST _ N _OUT is LOW. The capacitor and re­
sistor values are chosen to guarantee that the clock 
and the board Vee are stable when the rising edge 
of PWR_RST_N occurs. This insures that the 
VIC64 will be reset properly with a global reset. 
When the rising edge of PWRUP _RST_N occurs, 
the IRESET* signal is pulled LOW to the VIC64. 
The VIC64 responds with RESET* LOW, which in 
turn causes IPLO* to be pulled LOW, thus beginning 
a global reset. The IPLO* signal is then returned 
HIGH and, after a delay, IRESET* and 
BRD _ RST _ N _OUT are brought HIGH, ending the 
reset. 

68040 Mode Selection 

The 68040 is reset via the RSTI signal. For a valid 
reset to occur, the RSTI signal must be held LOW 
for a minimum of 10 BCLK cycles. The operation 
of the Reset PLD guarantees that RSTI will be held 
LOW for greater than this minimum amount of 
time. On the rising edge of RSTI, the 68040 reads 

8-110 



Vee 
Vee 

VI064 

r---1---------l IRESET• 

613040 

CDIS 
MDIS 

RSTI ~--------;:=======i--I--+-------=====~ IPLO· RSTO f-I __ ---, RESET· 

IPL2 
IPL1 
IPLO 

ResetPLD 

SYSRESET· 

Interrupt PLD 

RESET· IPLO· I---+--+_~ IPLIJ" 
RSTO RST RST 

IPL 

IRESET· 1------' 

BCLK ---+--1) 
(40MHz) '-__ _ Vee 

ArbiterPLDI 
leTermination PLD 

Figure 5. Reset Circuitry 

Figure 6. Power-Up or Pushbutton Reset 

the current state of the IPLO, IPLl, IPL2, MDIS, 
and CDIS and sets the mode of operation of the 
68040. 

The CDIS and MDIS signals are both pulled HIGH 
through a resistor that, at reset, disables Multi­
plexed Bus mode and Data Latch Enable mode. 

During normal operation, pulling CDIS and MDIS 
HIGH enables the internal cache of the 68040 and 
enables its internal MMU. The IPLx signals are all 
pulled HIGH at reset also via the Interrupt PLD. 
This enables the Large Buffer Timing mode for the 
data, address, and control signals. 

8-111 



~~YPRESS~~~~~~~~~VI~C~6~4~to~M~ot~o~ro~la~68~O~40~m~te~rl:~a~ce 
VIC-Initiated Reset (SYSRESET* Active or 
SRCR Written) 

The timing for a VIC-initiated reset is shown mFig­
ure 7. A reset from the VIC is caused by one of two 
events. tf the SYSRESET* signill on the VMEbus 
is driven active, the vlC64 will respond with the RE­
SET* driven active. The VIC64 wiil also issue a RE­
SET* if the SRR ($E3) is written with a value of $FO. 
This will cause the Reset PLD to force a full board 
reset via the BRD _RST _ N _ OUT signal and a global 
reset to the VIC64 with the IPLO* and IRESET* 
signals. 

Support for 68040 RESET Instruction 

The 68040 has an instruction, RESET, that forces its 
RSTO signal LOW for 512 BCLK cycles. The inter­
nal state of the 68040 is unaffected during this inter­
val, which makes this instruction good for resetting 

board periphetals during normal processor opera­
tion. The implementation in this design, however, 
forces the board to be reset when the RSTO signal 
is activated. When the 68040 sees the RSTI signal 
active during an RSTO LOW interval, it immediate­
ly negates RSTO and forces a processor reset. The 
timing of this reset is shown in Figure 8. 

Bus Arbitration 

Bus Arbitration State Machine 

The state machine for the bus arbitration is shown 
in Figure 9. There are essentially three arbitration 
states in the machine with a fourth being the reset 
state. The task of the arbiter is to grant access to the 
VIC64's private bus (Figure 3). Thus, it will normal­
ly allow the 68040's BG signal to remain active at all 
times. In fact, the arbiter does not even consider the 
state of the BR signai from the 68040 in the arbitra-

Figure 7. VIC64-Initiated Reset 

Figure 8. 68040-Initiated Reset 

8-112 



==~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40~In~t~erl:~a~c=e 

BG n=1 
LBG*=1 

LBR*& 
(!CS" + !STROBE'" + 

IMWB* + IMEMSEl* + 
!FCIACK*) 

lXFERJ)ONE_n & 
(LBR*+ ILOCK-") 

NOTE:Whel1 
RST _N = 0, Reset 
will be the ned state 

Figure 9. Bus Arbitration State Machine 

tion. Rather, the state of the FCIACK*, MEM­
SEL*, CS*, STROBE*, or MWB* signals deter­
mine if the 68040 requires access to the VIC64's bus 
for either memory access, VI C64 or CY7C964 regis­
ter access, or VMEbus access. 

After a board reset has completed, the state ma­
chine transitions from the Reset state to the 
Only_040 state. In this state, the 68040's BG signal 
is active, granting the 68040 access to its private bus. 
The LBG* to the VIC64 is inactive and the 
GATE_OE_N signal is also inactive. The 
GATE_OE_N signal is used to open the gate be­
tween the 68040's bus and the VIC64's bus. This 
"gate" consists of '24S-type bidirectional drivers be­
tween the data busses and '244-type drivers for the 
68040's address and control signals. It is suggested 
that FCT-C speed gates be used to insure that the 
data and address signals from the 68040 are driven 
to the VIC64 and/or the VMEbus with adequate set­
up time to DS* and PAS*. 

The bus arbitration state machine is implemented in 
a CY7C33S-83 and is named the Bus Arbitration 
PLD. The VHDL code describing this PLD is in Ap­
pendix D. The PLD and its connections within the 
circuit are shown in the schematic in Figure 18. 

68040 Request for VIC64 Bus Access 

There are two states from which the 68040 can gain 
access to the VIC64's bus, the Only_040 state and 
the Both state. From the Only _040 state, the 68040 
would attempt access to the VIC64 bus with either 
the FCIACK*, CS*, STROBE*, MWB*, or the 
MEMSEL * going active. Only one of the signals 
would go active in a given access cycle. If the LBR * 
from the VIC64 is not active, the 68040 is granted 
access to the VIC64's bus by transitioning to the 
Slow_Down _ 040 state. Another possible transition 
into the Slow_Down_040 state from the Only_040 
state is if the 68040 is currently in the middle of a 
read-modify-write cycle, indicated by the LOCK sig­
nal being active. Regardless of the state of LBR * , 
if LOCK is active, the read-modify-write cycle is al­
lowed to continue before the VIC64 can gain control 
of its bus. 

Once in the Slow_Down_040 state, the BG to the 
68040 is driven inactive (to cause the 1-cycle delay 
in the 68040 bus cycle as described above) and the 
GATE_OE_N is driven active. When the current 
cycle completes as indicated by the 
XFER_DONE_N signal going active, the state ma­
chine transitions to either the Both state or the 
Only _ 040 state depending on the state of the LBR * 
and LOCK signals. 

8-113 



If the VIC64 currently has ownership of its bus and 
the 68040 requests the VIC64's bus, the 68040 will 
not be granted access until the LBR * from the 
YIC64 has gone inactive. This could pose a problem 
If the VIC64 were in the midst of a block transfer. 
The 68040 might not receive ownership of the 
VIC64 i~ a ~imely. fas!ll0n. Although not imple­
mented ill thIS applIcation note, a bus timeout could 
be implemented to cancel the 68040's attempt to ac­
cess the VI C64's data bus, or a method of testing the 
BLT* signal before initiating a cycle could be used. 

VIC64 Bus Requests 

The VIC64 requests ownership of its bus via the 
LBR * going active. If the active state is Only 040 
and the 68040 is currently not in the middle -of a 
read-modify-write cycle (LOCK inactive), the state 
machine will transition to the Both state. In this 
state, the 68040 will have access to its bus the VIC64 
will be granted access to its bus, and the gate be­
tween the two buses will be closed. If the active state 
is Slow _Down_040, indicating that the 68040 cur­
rently owns the VIC64's bus, the VIC64 will not be 
granted its bus until the 68040 finishes its current 
cycle (assuming that the cycle is not the first half of 
a read-modify-write cycle). When the cycle com-

VIC64 to Motorola 68040 Interface 

pletes, the state machine will transitio~ from the 
Slow_Down _040 state to the Both state. 

Once in the Both state, the state machine will not 
transition until the VIC64 finishes its current cycle 
and releases its bus by driving the LBR * signal inac­
tive. If the 68040 is attempting access to the VIC64's 
bus via the CS*, STROBE*, MWB*, or MEMSEL * 
signals, the state machine will transition to the 
Slow _Down_040 state; otherwise, it will transition 
to the Only_040 state. 

Sample Arbitration Timing Diagrams 

Figure lOis a sample arbitration timing diagram. As 
the state machine exits the Reset state, BG is active, 
and GATE_OE_N and LBG* are inactive. When 
the 68040 attempts access to the VIC64's bus with 
the MEMSEL * signal, it is granted access and the 
BG: signal goes inactive and the GATE _ OE _ N goes 
actIve. During the access, the LBR * signal goes ac­
tive signifying that the VIC64 wants access to its bus. 
It is granted access (LBG* goes LOW) after the 
68040's cycle completes with the XFER DONE N 
signal pulsing active. --

During the VIC64's active time on its bus, the 68040 
attempts access to the VIC64's bus via the MWB* 
signal. The 68040's cycle does not begin until the 

Figure 10. Arbitration Timing Diagram 1 

8-114 



S2 ~YPRESS~~~~~~~~~VI~C~64~tO~M~ot~or~O~la~6~8~O~40~I~n~te~rl:~a~ce~ 

LBR * signal is driven inactive, at which time the 
LBG* signal is driven inactive along with BG. The 
gate _ oe _ n signal is driven active, allowing the 68040 
onto the VIC64's bus. 

Figure 11 is a continuation of Figure 10. The 68040 
is completing its access with the MWB* signal and 
begins a read-modify-write cycle via the MEMSEL * 
signal. At the same time, the VIC64 requests access 
to its bus with the LBR * signal. In this case, the 
68040 wins the arbitration and is allowed to com­
plete the two cycles of the read-modify-write se­
quence. Once the sequence completes, the VIC64 
is granted access to its bus until it deasserts the 
LBR * signal. 

VlC64 and CY7C964 Register Access 
Cycles 

VIC64 and CY7C964 register access cycles, as well 
as all other access cycles, are controlled by three 
PLDs. Two of the PLDs, the Address and Cycle De­
code PLDs, control the initiation of a transfer. They 
are PALC22VlOD-7s. The remaining PLD, the 
Cycle Termination PLD, controls the normal or ab­
normal completion of a cycle. This PLD is a 
CY7C335-83. The VHDL code for these PLDs can 

be found in Appendix B and Appendix C respective­
ly. The PLDs and their connections within the cir­
cuit are shown in the schematic in Figure 18. 

Selection of the PALC22VIOD and CY7C335 Devices 

The PALC22VlOD and CY7C335 were chosen for 
a single, key reason. Both have a guarantee on their 
output data stability. The CY7C335 has a parame­
ter, tOH, that guarantees 2 ns of output data stability 
from the clock supplied to the part. The 
PALC22VlOD-7 also guarantees a minimum on the 
teo specification of 2 ns. This is vital to the design 
because the 68040 running at 40 MHz requires that 
signals such as TA, TEA, TBI, TCI, etc., have a hold 
time of 2 ns from the rising edge of BCLK. 

Selecting the VIC Registers vs. the CY7C964 
Registers 

Both the VIC64 registers and the CY7C964 regis­
ters are mapped into the same base address of 
A31-A28 = "0001." To make the determination 
between register sets, the lowest-order address bits, 
AOO and AOl, are used in conjunction with the size 
signals, SIZO and SIZl. When a byte transfer is re­
quested and the lowest address bits are both HIGH, 
this is decoded as a VIC64 register access. When a 
longword transfer is requested and the lowest ad-

Fignre 11. Arbitration Timing Diagram 2 

8-115 



dress bits are both Law, this is decoded as a 
CY7C964 register access. 

Register Access Cycle Initiation 

If an address of lxxxxxxx 16 is detected when TS from 
the 68040 is active, a register access cycle is initiated. 
The address is qualified by the lowest address bits, 
the SIZ signals, and the transfer type from the 
68040. For the CY7C964 register access, the PAS* 
and DS* signals are both kept inactive and only the 
STROBE* signal is allowed to be driven active. 
Data on the D31-D08 signals will be written into 
the CY7C964's while the data on D07 - DOO is ig­
nored. For the VIC64 register access, the PAS*, 
DS * , and CS * are all driven active. Data to be writ­
ten to the VIC64 would be presented on D07 - DOO. 
Data read from the VIC64 would also appear on 
D07-DOO. 

To assure the proper timing on the D07 - DOO sig­
nals with respect to the DS * signal, DS * is driven ac­
tive on the cycle following PAS* driven active. This 
guarantees that, during a write cycle, data is present 
at the VIC64 prior to DS* becoming active. 

Register Access Cycle Termination 

The end of a register access cycle is indicated differ­
ently depending on whether the VIC64 registers 
were accessed or the CY7C964 registers were ac­
cessed. Also, the read or write status of the transfer 
has a bearing on how the cycle is terminated. For the 
VIC64 register transfers, the Cycle Termination 
PLD waits for either DSACKO* or DSACKI * to oc­
cur to indicate the end of the transfer. The 
DSACKI * and DSACKO* signals are registered as 
they enter the Cycle Termination PLD in order to 
synchronize them to the BCLK before they are used 
in output equations. 

For the CY7C964 register transfers, the PLD counts 
three BCLK cycles before ending the cycle. This is 
because there are no external signals that indicate 
that the CY7C964s have received data. 

In order to allow proper data hold times to the 
CY7C964 or VIC64, the termination of a write cycle 
is handled differently from the termination of the 
read cycle. In a read cycle, all active signals (PAS*, 

VIC64 to Motorola 68040 Interface 

DS*, and CS*) are driven inactive at the same time 
in response to the XFER_DONE_N signal from the 
Cycle Termination PLD. However, for writes, an 
additional signal, XFER _DONE _ W _ N, is activated a 
full cycle before XFER_DONE_N. The STROBE* 
signal for CY7C964 register writes and the DS* for 
VIC64 register writes are driven inactive in re­
sponse to this signal. On the subsequent BCLK 
cycle, the 68040 is given a TA signal and the PAS* 
and CS* signals are driven inactive. This insures 
that the rising edge of STROBE* or DS* is a cycle 
before the 68040 can remove data from the bus, thus 
guaranteeing the necessary data hold time into the 
CY7C964's and VIC64. 

Performance of Register Access Cycles 

An example ofVIC64 register access is shown in Fig­
ure 12. An example of CY7C964 register access is 
shown in Figure 13. From these diagrams, the fol­
lowing performance figures are guaranteed for the 
different types of register access cycles. 

VlC64 register write: 11 BCLK cycles assuming the 
slowest DSACKl/O* response time from the VIC64. 

VIC64 register read: 10 BCLK cycles assuming the 
slowest DSACKl/O* response time from the VIC64. 

CY7C964 register write: 10 BCLK cycles. 

Master Read Cycles 

Master Read cycles are also controlled by three 
PLDs, two Address and Cycle Decode PLDs and a 
Cycle Termination PLD. These cycles are very simi­
lar to a VIC64 Register read; however, instead of 
the VIC64 providing data and terminating the cycle, 
an addressed slave board would provide data and in­
dicate that the data is available with the VMEbus 
signal, DTACK*. The VIC64 would issue 
DSACKI * and/or DSACKO* in response to the 
DTACK* signal. 

Master Read Cycle Initiation 

If an address of2xxxxxxx16, 3XXXXXXX16, or FXXXXXXX16 
is detected, along with RIW being in the HIGH 
state, when TS from the 68040 is active, a VMEbus 
master read access cycle is initiated. The address is 
qualified by the transfer type from the 68040. 

8-116 



=:a~YPRESS~~~~~~~~~VI~C~64;;tO~M~ot:o~ro~la~6~8~O~40~I~n~te~rl:~a~c;e 

Figure 12. VIC64 Register Access 

8-117 



UU1 G st..-obe n 

UU14 lTI",......b n 

nn?~)o I "'--~_II 

nn II'} .... :IlISI"I_" 

no? 1: 'Lid. k II 

Figure 13. CY7C964 Register Access 

MWB*, PAS* and DS* are driven active when the 
cycle is decoded and the ASIZl and ASIZO are driv­
en based on the address from the 68040. Table 1 
shows how the address from the 68040 is decoded. 

Table 1. 68040 Address Decode 

68040 Address Address Size ASIZl/ASIZO 

2xxxxxxx16 A16 1/0 

3XXXXXXX16 A24 1/1 

FXXXXXXX16 A32 0/1 

The 68040 also indicates the memory space that is 
to be accessed with its TM2 - TMO lines. These sig­
nals are driven the the VIC64's FC2 and FCl signals 
for generating AM codes on the VMEbus. The 
VIC64 will control the buffer control signals to the 
CY7C964's based on the size of the data that is to be 

transferred (indicated by the SIZl and SIZO signals 
from the 68040) and will initiate a VMEbus read 
with the appropriate VMEbus signals. 

Master Read Cycle Termination 

Once there has been a VMEbus read cycle initiated 
by the VIC64, there are three typical ways the cycle 
can be terminated. The cycle can be ended normal­
ly, be deadlocked and retried, or be terminated ab­
normally via a bus error. 

Master Read Cycle Normal Termination 

A normal master read will be terminated when the 
Cycle Termination PLD receives one or both of the 
DSACKO" or DSACKl * signals from the VIC64. 
These signals are driven by the VIC64 in response 
to a DTACK* signal from the addressed slave on the 
VMEbus backplane. The performance of a normal-

8-118 



~~YPRESS~~~~~~~~~VI~C=6=4=tO=M~ot=o=rO=13=6=8=O=40=I=n=te=rl:=3=C=e 
ly terminated cycle can vary due to the response 
time of the slave board being addressed and whether 
or not the VI C64 was granted access to the VMEbus 
quickly. Figure 14 illustrates two back to back read 
cycles on the VMEbus that are terminated nor­
mally. 

Master Read Cycle Deadlock/Retry Termination 

A master read that ends in deadlock occurs when a 
slave cycle and a master cycle are asserted to the 
VIC64 at the same time. The VIC64 indicates that 
a deadlock has occurred by asserting the DEDLK* 
signal when the local side attempts access during a 
slave transaction. In response to the DEDLK* sig­
nal from the VIC64, the Cycle Termination PLD 
drives both the TEA and TA signals active to the 
68040. This will cause the 68040 to end its cycle, wait 

one BCLK cycle (due to the Bus Arbitration PLD), 
and then attempt the cycle again. 

The 68040 will continue to retry the cycle until the 
cycle is ended either with TEA or TA only. On each 
attempt the 68040 makes to the VIC64, the Address 
and Cycle Decode PLDs look at the state of the 
DEDLK _ S signal from the Cycle Termination PLD. 
DEDLK_S is a double-registered version of the 
DEDLK* signal from the VIC64. If the DEDLK_S 
is active on an otherwise valid attempt to access the 
VIC64's private bus, the DEAD _N signal will acti­
vate instead of the normal signal (MWB *, CS * , 
etc.). The assertion of DEAD _ N will not affect the 
Bus Arbitration state machine but will allow the 
Cycle Termination PLD to again cause a retry to the 
68040 with TEA and TA together. 

This method is used because there is a possibility 
that DEDLK* could go inactive during a 68040 

Figure 14. Master Reads 

8-119 



-= ~YPRESS~~~~~~~~~VI~C~64~tO~M~Ot~o~ro~la~6~8~O~40~I~n~te~rl:~.a~ce~ 
cycle. If this occurs, the Cycle Termination PLD 
could see DEDLK* active and terminate the cycle 
.with TEA and TA active, thus indicating a retry to 
the 68040. However, the Bus Arbitration Pill may 
see that the Address and Cycle Decode PLD is 
signaling a valid cycle with LBR * inactive and an ac­
tive select signal. This would cause the Cycle Thr­
mination PLD and the Bus Arbitration PLD to lose 
synchronization with each other. By preventing the 
Bus Arbitration PLO from even seeing a cycle that 

potentially could have a deadlock (with the dead_n 
signal), it will not arbitrate that cycle and the Cycle 
Thrminatibn PLD will cause a retry. 

When the DEDLK* has been released by the 
VIC64, the 68040 will be able to finally complete the 
cycle that it has been retrying. The cycle will be a 
normal master read. FigUre 15 shows 4 cycles at­
tempted by the 68040. The first cycle ends in retry 
when a DEDLK* is recognized in the middle of the 

Figure 15. Master Reads with Deadlock 

8-120 



::'~YPRESS~~~~~~~~~VI~C~64~to~M~ot~or~o~la~6~8~O~40~I~n~te~rl:~a~ce~ 
cycle. The next two cycles begin as deadlocked 
cycles and thus are immediately forced to be retried 
by the Cycle Termination PLD. The last cycle occurs 
after the deadlock and thus begins and ends as a nor­
mal master read. 

Master Read Cycle Bus Error Termination 

A master read will be terminated as a bus error to 
the 68040 when the Cycle Termination PLD receives 
the LBERR * signal from the VIC64. This signal is 
driven by the VIC64 in response to a BERR * signal 
from the addressed slave on the VMEbus backplane 
or a VMEbus timeout (based on the configuration 
oftheTTR, register $A3 in the VIC64). A cycle ter­
minated with a Bus Error will look similar to the 
timing shown in Figure 14. The differences will be 
twofold. First, the LBERR * signal will be driven by 
the VIC64 instead of DSACK1 * and DSACKO*. Se­
cond, the TEA signal will be driven to the 68040 
instead of the TA signal. Other than these differ­
ences, the cycles are equivalent. 

Master Write, Writepost, and BLT 
Initiation Cycles 

Like the Register Access cycles and Master Read 
cycles, Master Write cycles are also controlled by 
three PLDs, two Address and Cycle Decode PLDs 
and a Cycle Thrmination PLD. These cycles are very 
similar to a VIC64 Register write; however, instead 
of the VIC64 PToviding data and terminating the 
cycle, an addressed slave board would provide data 
and indicate that the data is available with the 
VMEbus signal, DTACK*. The VIC64 would issue 
DSACK1 * and/or DSACKO* in response to tlIe 
DTACK* signal. 

Commonality Between the Various Write Cycles 

Each of the cycles, Master Write, Writepost, and 
BLT initiation are subtly different. However, each 
shares the common trait that they are all write cycles 
from the 68040'8 perspective and all produce an 
MWB* signal to the VIC64. In each case however, 
the data is dissimilar. The Master Write and Write­
post actually provide data that is transferred to an 
addressed slave, while the data from the BLT initia-

tion cycle is the local address where the block trans­
ferpegins. 

Write Cycle Initiation 

If an address of2xxxxxxx16, 3XXXXXXX16, or FXXXXXXX16 
is detected, along with R/W being in the LOW state, 
when TS from the 68040 is active, a VMEbus master 
write-access cycle is initiated (or a block transfer ini­
tiation cycle if bit 6 of the BTCR is set). The address 
is qualified by the transfer type from the 68040. 
MWB*, PAS* and DS* are driven active when the 
cycle is decoded and the ASIZ1 and ASIZO are driv­
en based on the address from the 68040. Table 2 
shows how the address from the 68040 is decoded. 

Table 2. 68040 Address Decode 

68040 Address Address Size ASIZI/ASIZO 

2xxxxxxx16 A16 1/0 

3XXXXXXX16 A24 1/1 

FXXXXXXX16 A32 0/1 

The 68040 also indicates the memory space that is 
to be accessed with its TM2-TMO lines. These sig­
nals are driven as the VIC64's FC2 and FC1 signals 
for generating AM codes on the VMEbus. The 
VIC64 will control the buffer control signals to the 
CY7C964's based on the size of the data that is to be 
transferred (indicated by the SIZ1 and SIZO signals 
from the 68040) and will initiate a VMEbus write 
with the appropriate VMEbus signals. 

Th assure the proper timing on the D07 - DOO sig­
nals with respect to the DS * signal, DS * is driven ac­
tive on the cycle following PAS* driven active. This 
guarantees that during a write cycle data is present 
at the VIC64 prior to DS* active. 

Write Cycle Termination 

As with a VMEbus read cycle, once there has been 
a VMEbus write cycle initiated by the VIC64, there 
are three typical ways the cycle can be terminated. 
The cycle can be ended normally, be deadlocked 
and retried, or be terminated abnormally via a bus 
error. 

Write Cycle Normal Termination 

A normal master write will be terminated when the 
Cycle Thrmination PLD receives one or both of the 

8-121 



"iii ., ~ VIC64 to Motorola 68040 Interface 
'CYPRESS ===========;;;;;;;=== 

DSACKO* or DSACK1 * signals from the VIC64. 
These signals are driven by the VIC64 in response 
to a DTACK* signal from the addressed slave on the 
VMEbus backplane. The performance of a normal­
ly terminated cycle can vary due to the response 
time of the slave board being addressed and whether 
or not the VIC64 was granted access to the VMEbus 
quickly. 

In order to allow proper data hold times to the 
VIC64 for BLT initiation cycles and Master Write­
posts, the termination of a write cycle is handled dif­
ferently from the termination of the read cycle. In 
a read cycle, all active signals (PAS*, DS*, and 
MWB*) are brought inactive at the same time in re­
sponse to the XFER_DONE_N signal from the 
Cycle Termination PLD. However, for writes, an 
additional signal, XFER_DONE_ W _N, is activated 
a full cycle before XFER_DONE_N. The DS* sig­
nal is brought inactive in response to this signal. On 
the subsequent BCLK cycle, the 68040 is given a TA 
signal and the PAS* and MWB* signals are driven 
inactive. This insures that the rising edge of DS * is 
a cycle before the 68040 removes data from the bus, 
thus guaranteeing the necessary data hold time into 
the VIC64. 

This timing is not an issue for Master writes since 
the VMEbus specification states that a slave will 
only issue a DTACK* after it has accepted the data 
written to it. Thus, hold time on the data is inherent 
in the delay from DTACK* on the VMEbus to 
DSACKx* on the local bus to TA from the cycle ter­
mination PLD. Figure 16 illustrates two back-to­
back write cycles on the VMEbus that are termi­
nated normally. 

Write Cycle Deadlock/Retry Termination 

A write that ends in deadlock occurs when a slave 
cycle and a master cycle are asserted to the VIC64 
at the same time. The VIC64 indicates that a dead­
lock has occurred by asserting the DEDLK* signal 
when the local side attempts access during a slave 
transaction. In response to the DEDLK* signal 
from the VIC64, the Cycle Termination PLD drives 
both the TEA and TA signals active to the 68040. 
This will cause the 68040 to end its cycle, wait one 

BCLK cycle (due to the Bus Arbitration PLD), and 
then attempt the cycle again. 

As with deadlock on a read cycle, there is a timing 
relationship between the bus arbitration PLD and 
the cycle termination PLD that must be maintained. 
This timing is discussed in the Master Read Cycle 
Deadlock!Retry Termination section above. Timing 
for write cycles that deadlock is identical to the tim­
ing shown in Figure 16. The only difference is the 
relationship ofDS* to both MWB* and PAS * as de­
scribed above. 

Write Cycle Bus Error Termination 

A master write will be terminated as a bus error to 
the 68040 when the Cycle Thrmination PLD receives 
the LBERR * signal from the VIC64. This signal is 
driven by the VIC64 in response to a BERR * signal 
from the addressed slave on the VMEbus backplane 
or a VMEbus timeout (based on the configuration 
ofthe TTR, register $A3 in the VIC64). A cycle ter­
minated with a Bus Error will look similar to the 
timing shown in Figure 16. The differences will be 
twofold. First, the LBERR * signal will be driven by 
the VIC64 instead of DSACKx*. Second, the TEA 
signal will be driven to the 68040 instead of the TA 
signal. Other than these differences, the cycles are 
equivalent. 

Interrupt Acknowledge Cycles 

Interrupt Acknowledge cycles are controlled by the 
Interrupt PLD, Cycle Termination PLD, and Ad­
dress and Cycle Decode PLDs. Typical functionality 
of the Interrupt PLD is shown in Figure 17. Opera­
tion of the Address Decode PLDs and the Cycle Thr­
mination PLD is comparable to a Master Read 
Cycle except that FCIACK* is active rather than 
MWB*. 

Operation At Reset 

Although not an interrupt-related function, the In­
terrupt PLD controls the configuration of the 
68040's buffer mode via the IPL2, IPLl, and IPLO 
signals. During a board reset, the signals are all 
driven to a HIGH state to configure the 68040's sig­
nals to Large Buffer mode. 

8-122 



=:a~YPRESS=;=;=;=;=;=;=;=;=;~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40=;In~t~er~fu~c=e 

Figure 16. Master Writes 

VMEbus vs. Local Interrupts 

There are two possible sources for interrupts, the 
VMEbus and local interrupts. For VMEbus inter­
rupts, the 68040 will only be involved if the VIC64 
is configured as an interrupt handler. When the 
VMEbus interrupter generates an interrupt, the 
VIC64 will assert an interrupt to the 68040 via the 
IPL2* - IPLO* lines. The 68040 will respond with an 
interrupt acknowledge cycle. When the VIC64 sees 
the interrupt acknowledge cycle from the 68040, it 
obtains the VMEbus to request the Status/lD vector 
from the Interrupter. As the Status/lD vector is 

placed on data bus, it is passed through to the 68040 
and the VIC64 terminates the cycle. 

For local interrupts, a device on the board requiring 
service will assert an interrupt to the VIC64 via the 
LIRQ7* - LIRQO* lines. The VIC64 will then as­
sert an interrupt to the 68040 via the IPL2* - IPLO* 
lines. The 68040 will respond with an interrupt ac­
knowledge cycle. There are two possible responses 
to the interrupt acknowledge cycle from the 68040. 
If the VIC64 is enabled to supply a vector for the 
current interrupt, it will do so and terminate the 
cycle with the DSACKx* signals. If the VIC64 is not 

8-123 



Figure 17. Interrupt Initiation and Acknowledge 

enabled to provide a vector, it will assert the 
LIACKO* signal instead. The Cycle Termination 
PLD asserts AVEC to the 68040 in response to 
LIACKO* active and then terminates the cycle. 

Another possible configuration for local interrupts 
is to have the LIACKO* from the VIC64 tell the in­
terrupting device to supply a Status/lD vector to the 
68040 and then terminate the cycle with a TA to the 
68040. 

Interrupt Initiation from the VIC64 

As described above, the VIC64 issues an interrupt 
via its IPL2* - IPLQ* signals. The IPL2* - IPLQ* 
signals are normally in a HIGH state and are pulled 
LOW to request interrupt service from the .68040. 
When the IPL2*-IPLQ* signals are pulled Law, 
the Interrupt PLD synchronizes the signals before 

providing them to the 68040. The VIC64 may have 
up to 10 ns of skew in the IPL2 * - IPLO* signals and 
that skew could be expanded to a full BCLK cycle 
through synchronization. However, the 68040 must 
see the interrupt level for two full BCLK cycles be­
fore it is considered valid so the skew is inconse­
quential. 

Interrupt Cycle Initiation by the 68040 

When the 68040 begins a bus cycle with TS active 
and the TTl and TTO signals are both HIGH, an in­
terrupt acknowledge cycle is indicated. The SIZI 
and SIZO signals are also qualified to make sure 
they are indicating a byte-width operation. The Ad­
dress Decode PLDs respond to the cycle by issuing 
FCIACK*, PAS*, and DS*. The VIC64 recognizes 
the beginning of an interrupt acknowledge cycle on 
the overlap of FCIACK*, PAS*, and DS* active. 

8-124 



Interrupt Cycle Decode 

When FCIACK* goes active, the Interrupt PLD 
captures the current state of the IPL2-IPLO signals 
and holds them throughout the cycle. The use of a 
Cypress PALC22VlOD for this PLD guarantees the 
required hold times on the IPL2-IPLO signals to 
the 68040 are met. When the cycle terminates, the 
IPL2-IPLO signals are driven inactive for at least 
one BCLK cycle before a new interrupt level can be 
driven. 

Another function that the Interrupt PLD performs 
is steering the TM2-TMO signals from the 68040 
onto the A3-A1 address lines on the VIC64. The 
TM2-TMO signals from the 68040 contain the level 
of the interrupt being acknowledged and the VIC64 
requires that information be passed on address lines 
A3-Al. 

Interrupt Cycle Termination 

The interrupt cycle is terminated in one of two ways 
from the VIC64. If the VIC64 is configured to sup­
ply a Status/lD vector, it will place that vector on 
D7 - DO and supply DSACKx* to the Cycle Ter­
mination PLD. If the VIC64 is not configured to 
supply a vector, it will issue a LIACKO* signal 

VIC64 to Motorola 68040 Interface 

which will cause the Cycle Thrmination PLD to is­
sue AVEC to the 68040 and then terminate the cycle 
with a TA. 

Summary 

This application note has designed a possible VIC64 
to Motorola 68040 interface. The issues and as­
sumptions that must be addressed in the interface 
have been covered. The circuitry required for bus 
arbitration, resets, reads, writes, and interrupts has 
been designed. VHDL code for the PLDs used in 
the application note as well as timing diagrams and 
schematics have been provided in the following Ap­
pendices. 

References 

1. Cypress Semiconductor, VIC068A/~C068A 
User's Guide, June, 1992. 

2. Cypress Semiconductor, VIC64/CY7C964 De­
sign Notes, October, 1993. 

3. Motorola, Inc., MC68040Microprocessors User's 
Manual (M68040UM/AD), 1992. 

4. Mazor, S., and P. Langstraat,A Guide to VHDL, 
Boston: Kluwer Academic, 1992. 

8-125 



==tz ~ VIC64 to Motorola 68040 Interface 
~, CYPRESS =======~~~====== 

(ToVlC64&PiIYahIUan'ICIfy) 

'---> os' (To VIC64 & Private Memory) 

AS"" (ToVIC64) 

AS~ (To VlC64) 

(fromRoboclcclO 

:~~ 
~ 

ADDRESS 

t I 

~ 
TIl 

S (ToCY7C964's) 

MW.' (ToVlC64) 

(ToVIC64) 

MEMSEL* (To PriVaIe Memory) 

Fe",,'" (ToVlC64) 

OJ! 

(TDVIC64) 
' .... 

"" """ 
II 1M! 

f!lJ1 I 

~ 

OJ! 

(TDVIC64) 
',," 

(ToVlC64) 

'-----7 llA'TE::<lE (To '244 and '246 "gate" 
betwasn VIC64 and 68040 -, 

(FromVlC64 , LSA' 

(FmmVlC64) U""'" 
(FromVlC64) DSACK1* 
(FI'omlJlC64) """''''' (FromVlC84) D"'"" 

{From PrNateUef1'lO!y) -
(FrornVIC64) '''''' ~ 

(FromVIC64) IPL1" 
(FromVIC64) IPLI>' 

(FromRESETPlD) "'" 

Figure 18. Schematic of Control Logic Circuitry 

8-126 



VlC64 to Motorola 68040 Interface 

Appendix A. Reset Control PLD (CY7C335) 

RESET PLD design 

The following table is a cross reference between the PLD port names and 
those on the schematic in the application note text. 

clock 
vic_rstJl 
rst_040_n 
pwrup_rst_n 
irst_n 
brd_rst_n_out 
iplO_n 

ENTITY rst_ctrl IS 

BCLK 
RESET* 
RSTO "bar" 
PURST "bar" 
IRESET* 
RST "bar" 
IPLO* 

PORT (clock, vic_rst_n, rst_040_n, pwrup_rst_n in bit; 
irst_n, brd_rst_n_out : out bit; 
ipIO_n: inout x01z); 

attribute part_name of rst_ctrl:entity is "c335"; 
attribute pin_numbers of rst_ctrl:entity is "clock:1 vic_rst n:4 " 

& "rst_040_n: 5 pwrup_rst_n: 6"; 

USE work.rtlpkg.all; 

ARCHITECTURE operation OF rst_ctrl IS 
signal pwrup_rst_n_rising:bit; 
signal pwrup_rst_n_reg:bit; 
signal pwrup_rst_n_reg1:bit; 
signal brd_rst_n:bit; 
signal start:bit; 
signal expired: bit; 
signal timer_count:integer(O to 4); 
signal ipIO_oe: bit; 
signal ipIO_sig: bit; 
type states is (idle, rst1, rst2, rst3, wait_for_no_rst); 
signal rst_state: states; 

BEGIN 

This process captures the power-up or pushbutton reset in two registers 
in order to synchronize the signal and create a pulse on the rising edge 
of the reset 

sync_rst: PROCESS BEGIN 
WAIT UNTIL clock = '1'; 
pwrup_rst_n_reg <= pwrup_rst_n; 
pwrup_rst_n_reg1 <= pwrup_rst_n_reg; 

END PROCESS; 

This concurrent assignment creates a pulse when the rising edge of the 
power-up or pushbutton reset occurs. This is used to begin a global reset 
to the VIC which must be reset AFTER the Vcc and Oscillator are stable. 

8-127 



'IIr~YPRESS~~~~~~~~~VI~C~64~.~tO~M~ot~o~ro~la~6~8~O~40~I~n~te~rl:~a~ce~ 

Appendix A. Reset Control PLD (CY7C335) (continued) 

pwrup_rst_n_rising <= '1' WHEN «pwrup_rst_n_reg = '1') AND 
(pwrup_rst_n_reg1 = '0'» 

ELSE '0'; 

This concurrent assignment guarantees that the reset out of this part will 
be low when either the power-up/pushbutton reset is low or the brd_rst_n 
signal generated in the process below is low. This assures that as this 
PLD powers up, the reset out of it will be low even if the process below 
has not begun stable operation. 

brd_rst_n_out <= '0' WHEN «brd_rst_n '0') OR 
(pwrup_rst_n = '0'» 

ELSE '1'; 

rst: PROCESS BEGIN 
WAIT UNTIL clock = '1'; 

Do the following while the board is powering up or the pushbutton 
is depressed 

IF (pwrup_rst_n_reg = '0') THEN 
rst_state <= idle; 
brd_rst_n <= '0'; 
iplO_sig <= '1'; 
irst_n <= '1'; 

start <= '0'; 
END IF; 
CASE (rst_state) IS 

When the state machine is in the idle state, we look for the VIC to 
initiate a reset or the 68040 to initiate a reset. We also look for the 
end of the powerup reset. Remember that even though this state machine 
is waiting for the end of power-up/pushbutton reset, the board is still 
held in reset by the brd_rst_n_out signal above. 

WHEN idle => 
IF «pwrup_rst_n_rising = '1') OR 

(vic_rst_n = '0') OR 
(rst_040_n = '0'» THEN 

rst_state <= rst1; 
start <= '1'; 
irst_n <= '0'; 
brd_rst_n <= '0'; 

END IF; 

In the rst1 state, we wait for one of two events. If the VIC responds to 
the reset from this PLD before the timer expires, we pull iplO_n low and 
continue to the rst2 state. This would be the normal procedure. If for 
some unknown reason the VIC doesn't respond, we would wait for the timer 
to expire and then assert ipIO_n. 

8-128 



VIC64 to Motorola 68040 Interface 

Appendix A. Reset Control PLD (CY7C335) (continued) 

WHEN rst1 => 
start <= '0'; 
IF (vic_rst_n = '0') THEN 

rst_state <= rst2; 
iplO_sig <= '0'; 
start <= '1'; 

ELSIF (expired = '1') THEN 
rst_state <= rst2; 
iplO_sig <= '0'; 
start <= '1'; 

END IF; 

Just wait around in this state until the timer expires. Remove the iplO_n 
signal at the end of this state. 

WHEN rst2 => 
start <= '0'; 
IF ((expired = '1') AND (start 

rst_state <= rst3; 
iplO_sig <= '1'; 
start <= '1'; 

END IF; 

'0')) THEN 

Just wait around in this state until the timer expires. Remove resets at 
the end of this state. 

WHEN rst3 => 
start <= '0'; 
IF (expired = '1') THEN 

END IF; 

rst_state <= wait_for_no_rst; 
irst_n <= '1' i 
brd_rst_n <= '1'; 

-- We remain in this state until the VIC comes out of reset. 

WHEN wait_for_no_rst => 
IF (vic_rst_n = '1') THEN 

rst_state <= idle; 
END IF; 

-- Make the state machine complete. 

WHEN others => rst_state <= idle; 
END CASE; 

END PROCESS; 

The following makes the iplO_sig signal a three-state signal on the 
pin of the device. This is required since iplO is normally driven by 
the VIC64 but needs to be driven by this PLD during global reset. 

iplO_oe <= NOT iplO_sig; 
iplO: bufoe port map (iplO_sig, iplO_oe, ip10_n, open); 

8-129 



==~YPRESS~~~~~~~~~;VI;C;6;4;t;O;M;o;t;or;O;13;6;8;O;40~In;t;erl;3;c=e 

Appendix A. Reset Control PLD (CY7C335) (continued) 

The timer process runs a counter that times how long the state machine 
above should remain in a state. 

timer: PROCESS BEGIN 
WAIT UNTIL clock = '1'; 
IF (pwrup_rst_n_reg = '0') THEN 

timer_count <= 0; 
expired <= '0'; 

ELSE 
IF (timer_count /= 0) THEN 

timer_count <= timer_count + 1; 
ELSE 

timer_count <= 0; 
END IF; 

IF start = '1' THEN 
timer_count <= 1; 

END IF; 

ELSE 

END IF; 
END PROCESS; 

END operation; 

IF timer_count = 4 THEN 
expired <= '1'; 

expired <= '0'; 
END IF; 

8-130 



~-~ 

'} CYPRESS =========;;;;;VI=C;;;;;6;;;;;4;;;;;t;;;;;o;;;;;M;;;;;o;;;;;t;;;;;or;;;;;o;;;;;la;;;;;6;;;;;8;;;;;O;;;;;4;;;;;O;;;;;In;;;;;t;;;;;er;;;;;f;;;;;ac=e 

Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) 

ADDRESS DECODER design 1 

The following table is a cross reference between the PLD port names and 
the signals found on the physical IC's. 

bclk 
a(31) to a(28) 
ts_n 
ttl 
ttO 
sizl 
sizO 
xfer_done_n 
xfer_done_w_n 
gate_oe_n 
dedlk_s 
asizl 
asizO 
pas_n 
ds_n 

BCLK on 68040 
Address bus on 68040 
TS "bar" on 68040 
TTl on 68040 
TTO on 68040 
SIZl on 68040 
SIZO on 68040 

~ xfer_done_n from TERMINATION PLD 
xfer_done_w_n from TERMINATION PLD 
gate_oe_n from BUS ARBITRATION PLD 
dedlk_s from TERMINATION PLD 
ASIZl to VIC64 
ASIZO to VIC64 
PAS* to VIC64 
DS* to VIC64 

ENTITY address_decoder IS 
PORT (aOl, aDO, bclk, ts_n, ttl, ttO, sizl, sizO : in bit; 

xfer_done_n, xfer_done_w_n, gate_oe_n, dedlk_s : in bit; 
a : in bit_vector(31 downto 28); 
asizl, asizO : out bit; 
pas_n, ds_n : inout xOlz); 

attribute part_name of address_decoder:entity is "c22vl0"; 
END address_decoder; 

USE work.rtlpkg.all; 

ARCHITECTURE operation OF address_decoder IS 
SIGNAL tt, siz : bit_vector(l downto 0); 
SIGNAL pas_sig, ds_sig : bit; 

BEGIN 

SIGNAL open_gate : bit; 
CONSTANT byte: bit_vector(l downto 0) := "01"; 
CONSTANT word: bit_vector(l downto 0) := "10"; 
CONSTANT lword : bit_vector(l downto 0) := "00"; 
CONSTANT acknow bit_vector(l downto 0) .- "11"; 
CONSTANT normal: bit_vector(l downto 0) := "00"; 

tt <= ttl & ttO; 
siz <= sizl & sizO; 

PROCESS BEGIN 
WAIT UNTIL bclk = '1'; 

At the start of a 68040 cycle, determine which signals should be activated 
However, if the dedlk_s signal from the CYCLE TERMINATION PLD is active, 
a transfer should not be begun to the VIC64. 

8-131 



VIC64 to Motorola 68040 Interface 

Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) (continued) 

IF (ts_n = '0') AND (dedlk_s = '1') THEN 
-- 964 Registers 
IF (a = "0001") AND (aOl & aOO = "00") AND (tt 

(siz = lword) THEN 
asizl <= '0 ' i 

asizO <= '0'; 
pas_sig <= '1'; 

VIC64 Registers 
ELSIF (a = "0001") AND (aOl & aOO 

(siz = byte) THEN 
"11") AND (tt 

asizl <= '0'; 
asizO <= '0'; 
pas_sig <= '0'; 

A16 Addressing 
ELSIF (a = "0010") AND (tt 

asizl <= '1'; 
asizO <= '0'; 
pas_sig <= '0'; 

A24 Addressing 
ELSIF (a = "0011") AND (tt 

asizl <= 'l'i 

asizO <= '1'; 
pas_sig <= '0'; 

A32 Addressing 
ELSIF (a = "1111") AND (tt 

asizl <= '0'; 
asizO <= '1'; 
pas_sig <= '0'; 

VIC64's Private Memory 
ELSIF (a = "0100") AND (tt 

asizl <= '0'; 
asizO <= '0'; 
pas_sig <= '1'; 

Interrupt Acknowledge 
ELSIF (tt = acknow) AND (siz 

asizl <= ' 0 I i 

asizO <= 'O'i 

pas_sig <= '0'; 
Not a cycle for us 

ELSE 
asizl <= '0'; 
asizO <= '0'; 
pas_sig <= '1'; 

END IF; 
END IF; 

normal) THEN 

normal) THEN 

normal) THEN 

normal) THEN 

byte) THEN 

-- DS will follow whatever PAS does on the subsequent cycle 

IF (pas_sig = '0') THEN 
ds_sig <= '0'; 

END IF; 

8-132 

normal) AND 

normal) AND 



~~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40~In~te~rl:~a~c=e 

Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) (continued) 

If the cycle was a write cycle, the ds_sig must be pulled high to latch 
data into the VIC64. This is to assure that the local data hold time of 
Ons to the VIC64 is not violated. If this were a cycle sending data 
across the VMEbus, pulling ds_sig high before pas_n will not cause 
problems because the slave board that is being written to would have 
captured data when it asserted DTACK* to the VIC64. 

IF (xfer_done_w_n = 'O') THEN 
ds_sig <= '1'; 

END IF; 

When the cycle has been completed, the signals are all returned to their 
inactive states. 

IF (xfer_done_n = 'O') THEN 
asiz1 <= '0'; 
asizO <= '0'; 
pas_sig <= '1'; 
ds_sig <=' l' ; 

END IF; 
END PROCESS; 

The pas_n and ds_n are driven by the VIC64 when it has access to its 
private bus. By looking at the state of the gate_oe_n signal, the owner 
of the bus can be determined. If the gate_oe_n signal is asserted (low), 
the '040 has control of the bus and the pas_n and ds_n signals must be 
active. 

pas: bufoe PORT MAP (pas_sig, 
ds: bufoe PORT MAP (ds_sig, 

END operation; 

open_gate, pas_n, 
open_gate, ds_n, 

8-133 

open) ; 
open} ; 



~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40~In~te~r~fu~c=e 
Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) (continued) 

ADDRESS DECODER design 2 

The following table is a cross reference between the PLD port names and 
the signals found on the physical IC's. 

bclk 
a(31) to a(28) 
ts_n 
ttl 
ttO 
sizl 
sizO 
xfer_done n 
xfer_done_w_n 
dedlk_s 

dead_n 
memsel n 
strobe_n 
mwb_n 
cs_n 
fciack_n 

ENTITY address decoder IS 

BCLK on 68040 
Address bus on 68040 
TS "bar" on 68040 
TTl on 68040 
TTO on 68040 
SIZl on 68040 
SIZO on 68040 
xfer_done_n from TERMINATION PLD 
xfer_done_w_n from TERMINATION PLD 
dedlk_s from TERMINATION PLD 

dead_n to TERMINATION PLD 
chip select for VIC64's private memory 
STROBE* on CY7C964's 
MWB* to VIC64 
CS* to VIC64 
FCIACK* to VIC64 

PORT (aOl, aOO, bclk, ts_n, ttl, ttO, sizl, sizO, xfer_done_n 
xfer_done_w_n, dedlk_s : in bit; 
a : in bit_vector(31 downto 28); 

in bit; 

memsel_n, strobe_n, mwb_n, cs_n, fciack_n, dead_n 
attribute part_name of address_decoder:entity is "c22vlO"; 

out bit); 

END address_decoder; 

USE work.rtlpkg.all; 

ARCHITECTURE operation OF address_decoder IS 

BEGIN 

SIGNAL tt, siz : bit_vector(l downto 0); 
CONSTANT byte: bit_vector(l downto 0) := "01"; 
CONSTANT word: bit_vector(l downto 0) := "10"; 
CONSTANT lword : bit_vector(l downto 0) := "00"; 
CONSTANT acknow bi t_ vec tor (1 down to 0)' . - "11"; 
CONSTANT normal: bit_vector(l downto 0) := "00"; 

tt <= ttl & ttO; 
siz <= sizl & sizO; 

PROCESS BEGIN 
WAIT UNTIL bclk = '1'; 

At the start of a 68040 cycle, determine which signals should be activated 
This will be run only if we are not seeing a deadlock situation via the 
dedlk_s signal. 

8-134 



~ -'i~ 
, CYPRESS =========;;;:VI;;;:C;;;:6;;;:4;;;:t;;;:o;;;:M;;;:o;;;:t;;;:or;;;:o;;;:la;;;:6;;;:8;;;:O;;;:40=In;;;:t;;;:erf;;;:a;;;:c=e 

Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) (continued) 

IF (ts_n = '0') AND (dedlk_s = '1') THEN 
-- 964 Registers 
IF (a = "0001") AND (a01 & aDO = "00") AND (tt 

(siz = lword) THEN 
strobe_n <= '0'; 
mwb_n <=' l' ; 
cs_n <= 'l'i 

memsel_n <= '1'; 
fciack_n <= '1'; 

VIC64 Registers 
ELSIF (a = "0001") AND (a01 & aDO "11") AND (tt 

(siz = byte) THEN 
strobe_n <= ' l' ; 
mwb_n <= '1 ' ; 

cs_n <= '0 ' ; 

memsel n 
fciack_n <= '1'; 

<= '1 ' ; 

A16 Addressing 
ELSIF (a = "0010") AND (tt 

strobe_n <= '1'; 
mwb_n <=' 0' ; 
cs_n <= '1'; 
memsel_n <= '1'; 
fciack_n <= '1'; 

A24 Addressing 
ELSIF (a = "0011") AND (tt 

strobe_n <= '1'; 
mwb_n <=' 0 ' ; 
CS_D <= 'l'i 

memsel n <= '1'; 
fciack_n <= '1'; 

A32 Addressing 
ELSIF (a = "1111") AND (tt 

strobe - n <= '1' ; 
mwb - n <= '0' ; 
cs - n <= '1' ; 
memsel n <= '1' ; 
fciack - n <= '1' ; 

VIC64's Private Memory 

normal) THEN 

normal) THEN 

normal) THEN 

ELSIF (a = "0100") AND (tt normal) THEN 
strobe_n <= '1'; 
mwb_n <=' l' ; 
cs_n <= '1'; 

memsel n <= 'O'i 

fciack_n <= '1'; 
Interrupt Acknowledge 

ELSIF (tt = acknow) AND (siz byte) THEN 
strobe_n <= '1'; 
mwb_n <= 

cs_n <= 

memsel_n <= 

fciack_n <= 

'1' ; 
'1' ; 
'1' ; 
'0' ; 

8-135 

normal) AND 

normal) AND 



~ -,,~ -=-" CYPRESS =========;;;;;;VI;;;;;;C;;;;;;6;;;;;;4;;;;;;t;;;;;;o;;;;;;M;;;;;;o;;;;;;t;;;;;;or;;;;;;o;;;;;;13;;;;;;6;;;;;;8;;;;;;O;;;;;;40=Ill;;;;;;te;;;;;;r;;;;;;f3;;;;;;c=e 

Appendix B. Address and Cycle Decode PLDs (PALC22VIOD) (continued) 

END 

-- Not a cycle for us 
ELSE 

strobe _n <= '1' i 

mwb_n <= ' l' ; 
cs _n <= '1' ; 
memsel - n <= '1' ; 
fciack_ n <= '1' ; 

END IF; 
IF; 

This is the section of code that will be run if there is a deadlock. 
If the decoded address/tt/siz information would have normally decoded 
to a valid cycle, we send out the dead_n signal instead. This lets the 
TERMINATION PLD know that the 68040 is issuing a valid request to the 
VIC64 but that the VIC64 can't be bothered cause it is currently finishing 
a slave operation. 

IF (ts_n = '0' ) AND (dedlk_s '0') THEN 
strobe _n <= ' l' ; 
mwb_ n <= '11 ; 
cs - n <= '1' ; 
memsel n <= ' l' ; 
fciack_ n <= '1' ; 

-- 964 Registers 
IF (a = "0001") AND (aOl & aDO 

(siz = lword) THEN 
dead_n <= '0'; 

-- VIC64 Registers 
ELSIF (a = "0001") AND (aOl & aDO 

(siz = byte) THEN 
dead_n <= '0'; 

A16 Addressing 

"00") AND (tt 

"11") AND (tt 

ELSIF (a = "0010") AND (tt normal) THEN 
dead_n <= '0'; 

-- A24 Addressing 
ELSIF (a = "0011") AND (tt normal) THEN 

dead_n <= '0'; 
-- A32 Addressing 
ELSIF (a = "1111") AND (tt normal) THEN 

dead_n <= '0'; 
-- VIC64's Private Memory 
ELSIF (a = "0100") AND (tt normal) THEN 

dead_n <= '0'; 
-- Interrupt Acknowledge 
ELSIF (tt = acknow) AND (siz byte) THEN 

dead_n <= '0'; 
-- Not a cycle for us 
ELSE 

dead_n <= '1'; 
END IF; 

END IF; 

8-136 

normal) AND 

normal) AND 



£# ~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40~In~t~erl:~a~c=e 
Appendix B. Address and Cycle Decode PJ.Ds (PALC22VIOD) (continued) 

If the cycle was a write cycle, the strobe_n must be pulled high to latch 
data into the '964's. This is to assure that the local data hold time of 
5ns to the 964's is not violated. 

IF (xfer_done_w_n = '0') THEN 
strobe_n <= '1'; 

END IF; 

When the cycle has been completed, the signals are all returned to their 
inactive states. 

IF (xfer_done_n = '0' ) THEN 
strobe _n <= '1' i 

mwb_n <= '1' ; 
cs _n <= '1' i 

memsel _n <= ' 1'; 
fciack_n <= '1' i 

dead_n <= '1' ; 
END IF; 

END PROCESS; 

END operation; 

8-137 



~YPRESS~~~~~~~~~VI~C~64~tO~M~ot~or~O~la~6~8~O~40~I~n~te~rl:~a~ce~ 

Appendix C. Cycle Termination PLD (CY7C335) 

CYCLE TERMINATION PLD 

The following table is a cross reference between the PLD port names and 
the signals found on the physical IC's. 

bclk 
rw_n 
rst_n 
liacko_n 
dsackl_n 
dsackO_n 
lberr_n 
dedlk_n 
memack_n 
memsel_n 
strobe_n 
mwb_n 
cs_n 
fciack_n 
dead_n 

avec_n 
xfer_done_n 
xfer_done_w_n 
tea_n 
ta_n 
tci_n 
tbi_n 
dedlk_s 

BCLK on 68040 
R/W "bar" on 68040 
brd_rst_n_out from RESET PLD 
LIACKO* from VIC64 
DSACK1* from VIC64 
DSACKO* from VIC64 
LBERR* from VIC64 
DEDLK* from VIC64 
MEMACK* from private memory 
MEMSEL* from ADDRESS DECODE PLD 
STROBE* from ADDRESS DECODE PLD 
MWB* from ADDRESS DECODE PLD 
CS* from ADDRESS DECODE PLD 
FCIACK* from ADDRESS DECODE PLD 
dead_n from ADDRESS DECODE PLD 

AVEC "bar" to 68040 
XFER DONE "bar" to BUS ARBITRATION/ADDRESS DECODE PLD's 
XFER_DONE_W "bar" to BUS ARBITRATION/ADDRESS DECODE PLD's 
TEA "bar" to 68040 
TA "bar" to 68040 
TCI "bar" to 68040 
TBI "bar" to 68040 
Double registered (sync'ed) dedlk n signal to 

ADDRESS DECODE PLDS 

ENTITY cycle_termination IS 
PORT (bclk, liacko_n, dsackl_n, dsackO_n in boolean; 

lberr_n, dedlk_n, memack_n, rst_n, rw_n 
dead_n : in boolean; 

in boolean; 

memsel_n, strobe_n, mwb_n, cs_n, fciack_n : in boolean; 
avec_n, tea_n, ta_n, tci_n, tbi_n : out bit; 
dedlk_s : out bit; 
xfer_done_w_n, xfer_done_n : buffer bit); 

attribute part_name of cycle_termination:entity is "c335"; 
END cycle_termination; 

USE work.rtlpkg.all; 
USE work.table_bv.all; 

ARCHITECTURE operation OF cycle_termination IS 
SIGNAL any_access boolean; 

boolean; 
boolean; 
bit; 

SIGNAL any_access_reg 
SIGNAL cycle_end 
SIGNAL start, expired 
SIGNAL timer_count integer(O to 7); 

8-138 



BEGIN 

VIC64 to Motorola 68040 Interface 

Appendix C. Cycle Tennination PLD (CY7C335) (continued) 

SIGNAL liacko_n_reg 
SIGNAL dsackO_n_reg 
SIGNAL dsack1_n_reg 
SIGNAL dedlk_n_reg 
SIGNAL lberr_n_reg 

boolean; 
boolean; 
boolean; 
boolean; 
boolean; 

any_access <= NOT memsel_n OR NOT strobe_n OR NOT mwb_n OR NOT cs_n OR 
NOT fciack_n; 

cycle_end <= (NOT memsel_n AND NOT memack_n) OR 
(NOT strobe_n AND (timer_count = 3» OR 
(NOT mwb_n AND (NOT dsackO_n_reg OR NOT 
(NOT fciack_n AND (NOT dsackO_n_reg OR NOT 
(NOT fciack_n AND (NOT liacko_n_reg) ) OR 
(NOT cs_n AND (NOT dsackO_n_reg OR NOT 

controller: PROCESS BEGIN 
WAIT UNTIL bclk; 

liacko_n_reg 
dsackO_n_reg 
dsack1_n_reg 
dedlk_n_reg 
IF dedlk_n_reg 

dedlk_s <= 
ELSE 

<= liacko_n; 
<= dsackO_n; 
<= dsack1_n; 
<= dedlk_n; 
THEN 

'1' i 

dedlk_s <= '0'; 
END IF; 
lberr_n_reg 
start 
xfer_done_n 

<= lberr_n; 
<= '0 'i 
<= '1' i 

IF xfer_done_n = '0' THEN 
any_access_reg <= FALSE; 

ELSE 
any_access_reg <= any_access; 

END IF; 

dsack1_n_reg» OR 
dsack1_n_reg» OR 

Normal beginning of a cycle starts the cycle timer and asserts the tbi_n 
and tci_n to inhibit bursts and caching. 

IF any_access_reg THEN 
tbi _n <= '0' ; 
tci _n <= ' 0' ; 
start <= ' l' ; 

END IF; 

Normal end to a write cycle will assert the xfer_done_w_n followed by an 
assertion of xfer_done_n and ta_n. Normal end to a read cycle is 
xfer_done_n and ta_n asserted. 

IF cycle_end AND NOT rw_n AND (xfer_done_n 
xfer_done_w_n <= '0'; 
start <= '0'; 

8-139 

'1') THEN 



~~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~4~O~In~t~en~ac~e 

Appendix C. Cycle Termination PLD (CY7C335) (continued) 

END IF; 

IF (cycle_end AND rw_n) OR (xfer_done_w_n 
xfer_done_w_n <= '1'; 
xfer_done_n <= '0'; 
ta_n <= '0'; 
start <= '0'; 

END IF; 

'0') THEN 

Error endings. If dedlk_n_reg is active and an access is being attempted, 
retry the cycle with ta_n and tea_n asserted together. This will occur 
only during a cycle. If dead_n is active, we have already had an 
initial deadlocked cycle and we are now in a sequence of retries to the 
68040. 
If there is a lberr_n assertion, just end the cycle with tea_n to 
indicate an erred cycle. 
xfer_done_n is also asserted in either case to shut off the selects in 
the ADDRESS DECODE PLD's. 

IF (any_access_reg AND (NOT dedlk_n_reg» OR (NOT dead_n) THEN 
ta_n <= 'a'; 
tea_n <= 'O'i 
xfer_done_n <= '0'; 
start <= '0'; 

END IF; 

IF any_access_reg AND (NOT lberr_n) THEN 
tea_n <= 'a'; 
xfer_done_n <= '0'; 
start <= '0'; 

END IF; 

liacko n being asserted means that the processor should autovector the 
current interrupt. 

IF (NOT liacko_n) THEN 
avec_n <= ' 0' ; 

END IF; 

Conclusion of the cycle. xfer done n and all other outputs from this 
PLD are placed in their inactive state. 

IF (xfer_done_n = '0') THEN 
xfer_done_n <= '1'; 
tbi_n <= '1'; 
tci_n <= '1'; 
ta_n <= '1' i 
tea_n <= '1'; 
avec_n <= '1' i 
start <= '0'; 

END IF; 

-- Reset condition takes priority over any of the above assignments. 

8-140 



VIC64 to Motorola 68040 Interface 

Appendix C. Cycle Termination PLD (CY7C335) (continued) 

IF (NOT rst_n) THEN 
xfer_done_n <= '1'; 
xfer_done_w_n <= '1'; 
tbi_n <= '1'; 
tci_n <= 'l'i 

ta_TI <= '1' i 
tea_n <= ' l' i 
avec_n <= I l' i 
start <= '0'; 

END IF; 

END PROCESS; 

timer: PROCESS BEGIN 
WAIT UNTIL bclk; 

IF (timer_count /= 0) THEN 
timer_count <= timer_count + 1; 

ELSE 
timer_count <= 0; 

END IF; 

IF start = '1' AND (timer_count = 0) THEN 
timer_count <= 1; 

END IF; 

IF xfer_done_n = '0' OR start = '0' OR (NOT rst_n) THEN 
timer_count <= 0; 

END IF; 
END PROCESS; 

END operation; 

8-141 



-,~ -=-, CYPRESS =========;;:;;;VI;;:;;;C;;:;;;6;;:;;;4;;:;;;t;;:;;;o;;:;;;M;;:;;;o;;:;;;t;;:;;;or;;:;;;o;;:;;;la;;:;;;6;;:;;;8;;:;;;O;;:;;;40=ID;;:;;;te;;:;;;rf:;;:;;;a;;:;;;c=e 

Appendix D. Bus Arbitration PLD (CY7C335) 

BUS ARBITER PLD design 

The following table is a cross reference between the PLD port names and 
the signals found on the physical IC's. 

pclk 
bclk 
bg_n 
lock_n 
cs_n 
strobe_n 
mwb_n 
memsel_n 
fciack_n 
xfer_done_n 
rst_n 
lbr_n 
Ibg_n_out 
gate_oe_n 

PCLK on 68040 
BCLK on 68040 
BG "bar" on 68040 
LOCK "bar" on 68040 (requires external pull up) 
cs_n from ADDRESS DECODE PLD 
strobe_n from ADDRESS DECODE PLD 
mwb_n from ADDRESS DECODE PLD 
memsel_n from ADDRESS DECODE PLD 
fciack_n from ADDRESS DECODE PLD 
xfer_done_n from TERMINATION PLD 
brd_rst_n_out from RESET PLD 
LBR* on VIC64 
LBG* on VIC64 
OE on GATE between 040 bus and VIC64 bus 

ENTITY arbiter IS 
PORT (pclk, bclk, lock_n, cs_n, strobe_n, mwb_n : in bit; 

memsel_n, xfer_done_n, rst_n, lbr_n, fciack_n : in bit; 
bg_n, lbg_n_out, gate_oe_n : out bit); 

attribute part_name of arbiter:entity is "c335"; 
attribute pin_numbers of arbiter:entity is "pclk:l bclk:3"; 
END arbiter; 

USE work.rtlpkg.all; 

ARCHITECTURE operation OF arbiter IS 
signal lbr_n_regl, Ibr_n_reg2:bit; 
signal lbg_n : bit; 

BEGIN 

signal selects:bit_vector(4 downto 0); 
type states is (reset, only040, slow_down040, both); 
signal arb_state: states; 
constant no_selects:bit_vector(4 downto 0) := "11111"; 

The local bus grant to the VIC64 must be removed within 1 VIC64 clock 
cycle or the VIC64 would respond with an unsolicited bus request. 

This process captures the lbr_n signal from the VIC64 and double 
registers it using the pclk signal. 

caputure_Ibr: PROCESS BEGIN 
WAIT UNTIL pclk = '1'; 
Ibr_n_reg1 <= lbr_n; 
Ibr_n_reg2 <= Ibr_n_reg1; 

END PROCESS; 

8-142 



--=-. 

- ~YPRESS~~~~~~~~~~VI~C~6~4~t~O~M~o~t~or~O~la~6~8~O~40~In~t~erl:~a~c=e 

Appendix D. Bus Arbitration PLD (CY7C335) (continued) 

gate_oe_n is triggered in a "Mealy" fashion to begin VIC64 cycles as 
soon as possible. 

gate_oe_n <= '0' WHEN ((arb_state = slow_down040) 
OR 

((arb_state = only040) AND 
((lock_n = '0' OR lbr_n_reg2 
(selects /= no_selects») 

OR 
((arb_state = both) AND 

((lbr_n_reg2 = '1') AND 
(selects /= no_selects»» 

ELSE '1'; 

arb_machine: PROCESS BEGIN 
WAIT UNTIL bclk = '1'; 

CASE arb_state IS 
WHEN reset => 

IF rst_n = '0' THEN 
arb_state <= reset; 
lbg_n <= '1'; 

ELSE 
bg_n <= '0'; 

arb_state <= only040; 
lbg_n <= '1'; 
bg_n <= '0'; 

END IF; 
WHEN only040 => 

'1') AND 

IF (lbr_n_reg2 = '0' AND lock_n 
arb_state <= both; 

'1') THEN 

lbg_n <= '0'; 
bg_n <= '0'; 

ELSIF (lock_n = '0' OR lbr_n_reg2 = '1') AND 
(selects /= no_selects) THEN 

arb_state <= slow_down040; 
lbg_n <= '1'; 
bg_n <= '1'; 

ELSE 
arb_state <= only040; 
lbg_n <= '1'; 
bg_n <= '0'; 

END IF; 
WHEN slow_down040 => 

IF (xfer_done_n = '0') THEN 
IF (lbr_n_reg2 = '0' AND lock_n 

arb_state <= both; 

ELSE 

lbg_n <= '0'; 
bg_n <= '0'; 

arb_state <= only040; 
lbg_n <= '1'; 

8-143 

'1') THEN 



VIC64 to Motorola 68040 Interface 

Appendix D. Bus Arbitrlltion PLD (CY7C335) (continued) 

ELSE 

bg_n <= '0'; 
END IF; 

arb_state <= slow_down040; 
lbg_n <= '1'; 
bg_n <= '1'; 

END IF; 
WHEN both => 

IF (lbr_n_reg2 = '1') THEN 

ELSE 

IF (selects /= no_selects) THEN 
arb_state <= s1ow_down040; 
lbg_n <= '1'; 

ELSE 
bg_n <= '1'; 

arb_state <= only040; 
lbg_n <= '1'; 
bg_n <= '0'; 

END IF; 

arb_state <= both; 
1bg_n <= '0'; 
bg_n <= '0'; 

END IF; 
WHEN OTHERS => arb_state <= reset; 

lbg_n <= '1'; 
bg_n <= '0'; 

END CASE; 
IF (rst_n = '0') THEN 

arb_state <= reset; 
END IF; 

END PROCESS; 
END operation; 

8-144 



-'i~ 
PCYPRESS 

VIC64 to Motorola 68040 Interface 

Appendix E. Interrupt Synchronizing PLD (22VIOD) 

INTERRUPT PLD 

The following table is a cross reference between the PLD port names and 
the signals found on the physical IC's. 

bclk BCLK on 68040 
iplx_n IPLx* from VIC64 

TM2-TMO on 68040 
brd_rst_n from RESET PLD 

tmx 
board_reset_n 
fciack_n 
gate_oe_n 
xfer_done_n 

fciack_n from ADDRESS DECODE PLD 
gate_oe_n from BUS ARBITRATION PLD 
xfer_done_n from TERMINATION PLD 

normal_cycle_n 
a3, a2, al 
iplx_out_n 

OE to '244's driving A3-A1 from 68040 
a3-a1 to VIC64 
IPLx "bar" on 68040 

ENTITY interrupt_ctrl IS 
PORT (bc1k, iplO_n, ipl1_n, ip12_n in bit; 

tm2, tm1, tmO : in bit; 
board_reset_n, fciack_n in bit; 
gate_oe_n, xfer_done_n : in bit; 
normal_cycle_n : out bit; 
a3, a2, a1 : inout x01z; 
iplO_out_n, ip11_out_n, ip12_out_n buffer bit); 

END interrupt_ctrl; 

use work.cypress.all; 
use work.rtlpkg.all; 

ARCHITECTURE operation OF interrupt_ctrl IS 
signal addr_oe, iplO_n_reg, ipl1_n_reg, ip12_n_reg 

BEGIN 
bit; 

Synchronize the incoming ipl signals from the VIC64 to eliminate skew 
PROCESS BEGIN 

WAIT UNTIL bclk '1'; 
iplO_n_reg <= iplO_n; 
ipl1_n_reg <= ipl1_n; 
ip12_n_reg <= ip12_n; 

END PROCESS; 

If the board is in reset, the ipl signals must be driven high to configure 
the driver capability in the 68040. Otherwise, the following equations 
will keep the ipl signals from changing to the 68040 during an acknowledge 
cycle and will synchronize them. When the acknowledge cycle is finished, 
the ipl signals will return to inactive state before reading the current 
input values from the VIC64. 

PROCESS BEGIN 
WAIT UNTIL bclk = '1'; 

IF board_reset_n = '0' THEN 
iplO_out_n <= '1'; 
ipl1_out_n <= '1'; 

8-145 



-'f~ 
'CYPRESS 

VIC64 to Motorola 68040 Interface 

Appendix E. Interrnpt Synchronizing PLD (22VIOD) (continued) 

ip12_out_n <= '1'; 

END 

ELSIF xfer_done_n = '0' THEN 
iplO_out_n <= '1'; 
ipll_out_n <= '1'; 
ip12_out_n <= '1'; 

ELSIF fciack_n = '0' THEN 
iplO_out_n <= iplO_out_n; 
ipll_out_n <= ipll_out_n; 
ip12_out_n <= ip12_out_n; 

ELSE 
iplO_out_n <= iplO_n_reg; 
ipll_out_n <= ipll_n_reg; 
ip12_out_n <= ip12_n_reg; 

END IF; 
PROCESS; 

The normal_cycle_n signal is low most of the time to enable the a3-al 
signals from the 68040 to the VIC64. However, if we are in an interrupt 
acknowledge cycle, we would steer the tm2-tmO signals from the 68040 
onto the a3-al signals on the VIC64 since the tmx signals indicate which 
interrupt level is being acknowledged 

addr - oe <= NOT fciack_n; 
a3 _map: bufoe port map(tm2, addr _oe, a3, open) ; 
a2 _map: bufoe port map(tml, addr _oe, a2, open) ; 
al _map: bufoe port map(tmO, addr _oe, ai, open) ; 

END operation; 

8-146 



Interfacing the CY7C611A with the VIC64 

The popularity of the VMEbus and the Motorola 
680xO family of microprocessors has produced a 
large number of peripheral controllers with 
680xO-compatible asynchronous local bus inter­
faces. Many of these parts are mature, proven, and 
inexpensive, making them attractive candidates for 
low-bandwidth I/O applications. 

This application note describes an interface be­
tween the synchronous CY7C611A SPARC proces­
sor and asynchronous bus peripherals such as the 
Cypress Semiconductor VIC64 64-bit VMEbus in­
terface chip. It is based on the design of a SPARC­
based VIC64 VMEbus evaluation board developed 
by Cypress Semiconductor. Only the synchronous­
to-asynchronous bus conversion logic is discussed 
within this application note; however, the full sche­
matics of the board and all PLD design files are 
available from Cypress Semiconductor. 

Related Documents 

The reader may also wish to consult the following 
documents for additional information: 

• VIC068A/VAC068A User's Guide 

• VIC64 and CY7C964 Design Notes 

• "Memory Protection and Address Exception 
Logic for the CY7C611A SPARC Controller" ap­
plication note 

• "Understanding the 361" application note 

• Motorola's MC6800 Family Reference 

With the exception of the Motorola document, 
these documents are available through your local 
Cypress Semiconductor field sales office. 

'JYpical Asynchronous Bus Operation 

Asynchronous buses operate using some type of 
handshake system. The processor presents or re­
quests data from a peripheral and an acknowledge 
is generated by the selected device. The length of 
the processor cycle is determined by the perfor­
mance level of the peripheral. The processor main­
tains a bus cycle until it receives an acknowledge. 

With this type of bus, operation problems can occur 
if the processor attempts a cycle to an address re­
gion that does not select valid memory or peripher­
als. In this situation an acknowledge signal is not is­
sued to the processor and the system operation 
halts. 

To avoid this potential lock-up condition, most 
asynchronous bus protocols have a separate signal 
for acknowledging erroneous cycles. Assertion of 
this signal releases the processor from the pending 
bus cycle and can also be used to inform the system 
software that the bus cycle did not terminate proper­
ly. These cycles are typically known as bus error and 
memory exception cycles. 

Memory Exception Cycles are 
Important 

Asynchronous microprocessor buses are not unique 
in the inclusion of memory exception cycles. The 
CY7C601A and CY7C611A include a similar mech­
anism. In normal system operation, memory excep­
tions should not occur regularly. They can be used 
to furnish beneficial debug and system configura­
tion information in some applications. 

VMEbus applications where logic boards can be 
added and removed from systems often use the bus 
error mechanism to determine system configura-

8-147 



. -~ J CYPRESS Interfacing the CY7C611A with the VIC64 

tion. CPU board initialization software can hunt the Table 1. CY7C611A Memory Interface Signals 
VMEbus address regions, searching for other cards. 
Address regions that respond with normal acknowl­
edge signals can then be further interrogated and 
initialized. 

Overview of the CY7C611A Memory 
Interface 

The CY7C611A is a 32-bit, four-stage, pipelined 
SPARC RISC integer processor. The processor is 
synchronous and, after initializing the pipeline, it 
can execute one instruction per clock cycle. 

The CY7C611A memory interface consists of a 
group of signals that control memory loads/stores, 
pipeline control, and memory exception generation. 
These signals are listed in Table 1. 

MHOLD(AlB) 

These two signals are logically ORed together with­
in the CY7C611A. Asserting either of these signals 
(Low) freezes the processor's pipeline, causing the 
processor to remain on the same execution cycle. 
The MHOLDA and MHOLDB signals allow the 
processor to communicate with slow peripherals. 

MDS is used to strobe data or instructions into the 
processor after the pipeline has been frozen by the 
assertion of MHOLD(AIB). Asserting MDS with 
the pipeline frozen enables the processor to clock 
the information present on the external data bus 
into the processor. MDS is also used to strobe in the 
MEXCsignai. 

Asserting this signal (Low) informs the processor 
that the memory system could not supply the data or 
instruction requested. When the signal is asserted, 
either a data or instruction access trap occurs. The 
type of trap directly corresponds to the type of 
memory cycle in progress. MEXC is strobed into the 
processor by asserting the MDS signal. 

Name Description 'iype 

MHOLD(NB) Memory Hold AlB Input 

MDS Memory Data Strobe Input 

MEXC Memory Exception Input 

INULL Integer Unit Nullify Output 

WE Write Enable Output 

WRT Advanced Write Output 

RD Read Access Output 

INULL 

The assertion of INULL (High) indicates that the 
memory cycle in progress is being nullified. 
Memory cycles are nullified when the processor de­
termines the the current address is invalid or that 
the information being read is not required. This im­
proves performance because no time is wasted com­
municating with slow peripherals or reloading cache 
line data that is not needed. INULL is asserted by 
thc processor in the following situations: 

• During the second cycle of any store operation. 
The same address is presented on the first and se­
cond cycle of all store operations, the second oc­
currence is nullified because it is not truly the next 
address being requested by the processor. 

• On all traps. This nullifies the third instruction 
fetch after the trap is encountered, because the 
processor vectors to the appropriate trap handler. 

• On a load with the hardware interlock active. 

• On JMPL and RETT instructions. 

Write Enable (active Low) indicates that the proces­
sor is performing a store operation. This signal is as­
serted in the second clock cycle of the store opera­
tion, the same cycle that the store data is presented. 

WRT 

Advanced Write (active High) notifies the external 
control logic that a store operation is in progress. 
The processor asserts this signal on the first cycle of 
the operation, before the data is available. 

8-148 



~rcYPRESS =======In;;;:t;;;:erf:=ac;;;:in;;;;;;g;;;;;t;;;:h;;;:e ;;;:CY=7C;;;:6;;;:1;;;:lA=Wl;;;:'t;;;:h;;;:th;;;:e;;;:VI=C;;;:6;:;;4 

RD 

Read Access (active High) indicates that a load 
cycle is in progress. 

CY7C611A Load and Store Cycles 

Two general bus cycles, load and store, are de­
scribed at a high level of abstraction within this sec­
tion. Many variations of these cycles exist. 

When loading data, the processor supplies the ad­
dress information on the rising edge of a the proces­
sor clock and expects the data on the next rising 
edge. The Read signal (RD) remains active (High) 
during the cycle with WE and WRT inactive (High 
and Low respectively). 

The process for storing data is similar, but one addi­
tional clock cycle occurs before the processor pres­
ents the data. On the first cycle of the store the ad­
dress is presented, RD is driven inactive (Low), and 
WRT is driven active (High). On the second clock 
cycle, the store address is again placed on the bus, 
WE is asserted (Low), WRT is deasserted (Low), 
and the data is placed on the bus. lNULL becomes 
active after the falling edge of the second clock 
cycle, nullifying the second occurrence of the store 
address. 

Figures 1 and 2 show Store Single and Load Single 
CY7C611A bus cycles. In general, the address 

elK 

Address 

RD 

WE 

WRT 

Data 

INUll 

_ _ ~~--,I 
~r----

____ ~r__\~ ________ __ 
n8t 
AD 

____________ ~r_l~ __ _ 

Figure 1. CY7C611A Store Single Operation 

execution unit operates one clock cycle ahead of the 
data unit. The cycles shown assume that the periph­
erals or memory are capable of operating at the per­
formance level of the processor. The pipeline is 
never frozen using MHOLDA or MHOLDB, and 
both cycles terminate normally without generating 
memory exceptions. 

Overview ofthe VIC64 Asynchronous 
Interface 

The Cypress Semiconductor VIC64 is compatible 
with the 680xO asynchronous microprocessor bus. It 
is a 64-bit VME interface chip capable of per­
forming D16, D32, and D64 block transfers on 
the VMEbus at transfer rates up to 70 Mbytes/sec. 
The VIC64 and its associated control logic are also 
capable of performing Direct Memory Access 
(DMA) operations during VMEbus block transfers. 
VIC64 DMA operations generate 68OxO-compat­
ible bus cycles to transfer data to and from local me­
mory. 

The basic control signals required to communicate 
with a VIC64 or other generic 680xO-style peripher­
als are listed in Table 2. 

elk 

Address 

RD 

WE 

WRT 

Data 

Figure 2. CY7C611A Load Single Operation 

8-149 



Table 2. 680xO Basic Control Signals 

Name Description 'fYpe 

AS Address Strobe (Normally) 
Input 

DS Data Strobe (Normally) 
Input 

R/W Read Write (Normally) 
Input 

DSACKO/1 Data (Normally) 
Acknowledge Output 

BERR Bus Error (Normally) 
Output 

The signal types, input or output, have been refer­
enced in a normal operating mode for dumb periph­
erals. Since the VIC64 is also capable of becoming 
a bus master during local DMA transfers, it can 
source AS, DS, and R/W as well as receive these sig­
nals. This also holds for the output signals 
DSACKl/O and BERR. If the VIC64 is generating 
the bus cycle, these control signals become inputs. 

AS 

Address Strobe is asserted (Low) at the beginning of 
a bus cycle to indicate that a valid address is current­
lyon the address bus. The address must remain 
constant while Address Strobe is active. Address 
Strobe remains active for the length of the bus cycle. 
On the VIC64 this signal is named Processor Ad­
dress Strobe (PAS). 

DS 

The assertion of Data Strobe informs the receiving 
peripheral device or memory that it may place data 
on or extract data from the bus. 

RIW 

The Read/Write signal indicates the type of cycle in 
progress. This signal is High for read cycles and Low 
for write cycles. 

DSACKO/l 

The DSACKO/1 signals are driven by the peripheral 
device to tell the device performing the bus cycle 

that the data has been accepted or is available on the 
bus. Bus cycles persist until an acknowledge or 
BERR signal is detected. There is no limit to the 
length of this type of bus cycle. Many 680x0 periph­
eral devices have only a single acknowledge, often 
namedDTACK. 

VIC64 has two DSACK signals, 0 and 1, which ad­
here to the Motorola dynamic bus sizing convention 
and report the bus width, (8, 16, or 32 bits), of the 
peripheral acknowledging the bus cycle. 

BERR 

Asserting BERR terminates a pending bus cycle and 
forces the processor to trap to an exception handler. 
This signal terminates erroneous bus cycles. Many 
systems have bus timeout timers that monitor the 
length of all bus cycles and assert BERR if a cycle 
persists for the timeout period. 

680xO Asynchronous Read and Write 
Cycles 

As with the corresponding section on the 
CY7C611A load and store cycles, the read and write 
cycles within this section are only described at the 
High level. Many variations of these cycles exists. 
Refer to the VIC068A/VAC068A User's Guide or the 
Motorola microprocessor documentation for more 
information. 

Write cycles begin with an address being placed on 
. the bus by the controlling processor or peripheral. 
The R/W signal is driven Low to indicate a write 
cycle. Address Strobe is asserted (Low), denoting 
the beginning of the cycle. One clock later, after the 
data has been placed on the bus, DS is asserted 
(Low). All signals remain stable in this state until 
a normal acknowledge, DSACKO/l, or error ac­
knowledge is received (Low). 

Reads cycles operate in a similar manner. An ad­
dress is placed on the bus by the controlling periph­
eral and R/W is driven High to indicate a read cycle. 
AS and DS are driven Low simultaneously, inform­
ing the peripheral that data can be placed on the bus. 
These signals remain in this state until an acknowl­
edge of some sort is received. 

8-150 



Address rm:mmJ Address Valid wmJ 
~~----------------~~ 

R/W 

AS \ I 
OS \ I 
Data - Dala Valid 'IfI 
DSACK I 

Figure 3. 68OxO-Compatible Read Cycle 

Address • Address Valid If1 

R/W \ I 
AS \ I 
OS I 
Data - Data Valid If1 

DSACK I 
Figure 4. 680xO-Compatible Write Cycle 

Figures 3 and 4 show typical bus cycles for asynchro­
nous 68OXO peripheral devices like the VIC64. 

Clear Differences in Cycle 1YPes 

As can be seen with even a cursory view of the two 
styles of bus cycles, interfacing between the 
CY7C611A and peripherals like the VIC64 can be 
challenging. In general, the problem is slowing the 
CY7C611A down to operate with the peripheral. 
This can be accomplished in a number of ways, each 
having its own set of considerations. 

Pipeline Freezing Using MHOLDA/B 

Per design, the CY7C611A contains control logic 
that allows the execution unit to be held for commu­
nication with slow memory devices or peripherals. 
The logic sequences required to suspend execution 
have some tight timing requirements. If an 

MHOLD signal is not asserted quickly enough, the 
processor advances to the next cycle. The 
CY7C611A, unlike the CY7C601, does not have an 
MAO pin. Therefore, if the processor does advance 
to the next cycle, there is no way to have it place the 
last address back on the bus. This can become a sig­
nificant problem. Obviously other undesirable situ­
ations can occur when control logic does not or can­
not meet necessary timing constraints. 

These potential problems can be overcome by using 
high-performance logic like the CY7B336, 
CY7B337, CY7B338, and CY7B339 family. 

Clock Stretching 

Another method of interfacing the CY7C611A to 
slow memory and peripherals is a procedure known 
as clock stretching. The CY7C611A is a fully static 
microprocessor. This furnishes a simple method for 
slowing the processor down, simply by delaying or 
changing the duty cycle of the clock. The processor 
can be held within an execution state without assert­
ing MHOLDA/B. This technique allows execution 
to resume without strobing data into the processor 
withMDS. 

This procedure works well for peripherals with fixed 
access times. When the bus cycle begins, the clock 
is stretched. When the peripheral has completed 
the data transaction the clock is allowed to advance. 

There are two subtle problems with this method of 
interfacing: 

• Additional logic is required to operate with pe­
ripherals that are truly asynchronous in nature 

• Memory exceptions cannot be generated because 
they require MDS, MEXC, and MHOLD 

Each of these problems becomes a significant issue 
when interfacing to the VIC64. Using the VIC64 to 
perform single-cycle processor transfers across the 
VMEbus has no guaranteed cycle time. The length 
of the cycle i& directly dependant on the perfor­
mance level of the slave plus the acquisition time re­
quired to obtain the VMEbus. Therefore, using a 
fixed clock-stretch cycle time would either be too 
short for slow slave boards, or a significant perfor­
mance barrier when communicating with faster 
boards. 

8-151 



Interfacing the CY7C611A with the VIC64 

TXD 
RXD 

TXD 
RXD 

VMEbus Block Transfer And Bus Interface Logic 

Figure 5. CY7C611A I VIC64 VMEbus Board Block Diagram 

Bus errors are also an integral part of the VMEbus 
and the VIC64's operation. The inability to use this 
feature would significantly limit the functionality of 
many systems. Mapping this function into an inter­
rupt is not desirable because if interrupts are dis­
abled, or if interrupt latency is encountered because 
higher-priority interrupts are pending, the soft­
ware's ability to determine the cycle that caused the 
error is hampered. 

CY7C611A/VIC64 VMEbus Board 

The CY7C611NVIC64 evaluation board is a typical 
single-board computer with the following features: 

• 25-MHz CY7C611A embedded-control SPARC 
RISC processor 

• 25-MHz CY7C602 floating-point unit 

• 64 Kbytes to 4 Mbytes of local SRAM 

• 64 Kbytes to 2 Mbytes of dual-port SRAM 

• 128 Kbytes to 512 Kbytes of EPROM 

• MC68681 DUART 

• 2l(bytes of non-volatile storage 

• Time-of-day clock calendar 

• Split address and data bus for high-performance 
VMEbus block transfer operation 

Tije block diagram ofthe board is shown in Figure 5. 
The loc,!l SRAM on the board operates at zero wait 
states, removing the need for an instruction or data 
cache. With the exception of the local SRAM and a 

8-152 



....... ?cYPRESS =======I;;;;;n;;;;;te;;;;;r;;;;;fa;;;;;c;;;;;in;;;:;g;;;;;t;;;;;he;;;;;CY=7;;;;;C;;;;;6;;;;;1;;;;;lA=W1;;;;;'t;;;;;h;;;;;t;;;;;he;;;;;VI=C;;;;;6=4 

system control/status register, all other peripherals 
operate using asynchronous 68OxO-style bus cycles. 

Having all peripherals operate using one of the two 
cycle types simplifies the interface and control logic. 
The 680x0-style cycle is essential since the VIC64 
and MC68681 DUART communicate on this type of 
interface. The shared SRAM also needs to operate 
using this type of cycle to be compatible with the 
VIC64 during VMEbus block transfer DMA opera­
tions. It is then simple to adapt other slow peripher­
als (ROM, non-volatile SRAM, and Time-of-Day 
clock) to the slow, 68OxO-style bus cycle. 

The CY7C611A-to-680xO Bus 
Converter 

As discussed in the previous sections, there was a 
strong desire to build an interface that was logically 
simple but preserved memory exception capability. 
The scheme was iniplemented as a hybrid technique 
using the CY7C611A pipeline freezing and memory 
exception logic along with a clock -stretching techni­
que. 

The control logic is implemented within two PLDs, 
a CY7C361 and a 22VlOB, operating as pseudo 
master slave devices. The logic is split between two 
devices because of other functionality needed on the 
board, which is well suited for the CY7C361. If 
these other functions were removed from the 
CY7C361, the entire synchronous to asynchronous 
conversion logic could fit within the CY7C361. 
However, the CY7C361 on the CY7C611ANIC64 
board provides: 

• Generation and control of clocks for the proces­
sor and peripherals 

• Local bus arbitration for the VIC64 and 
CY7C611A 

• Synchronization of asynchronous signals, which is 
needed for the slave 22V10B 

This bus conversion scheme operates as follows. 
The processor begins execution and an address is 
presented, latched, and decoded. If the address re­
gion decodes to a slow 68OxO-compatible cycle, the 
clock to the processor and control logic is stretched. 

If the cycle terminates normally, the clock is re-en­
abled to the processor and to control logic, which 
advances to the next execution cycle. If the cycle ter­
minates in a memory exception or bus error, 
MHOLDA is asserted to the processor, freezing the 
pipeline, and the clock is re-enabled. With the pipe­
line frozen and the processor and control logic clock 
running, MEXC and MDS are asserted to the pro­
cessor, generating the exception. 

Clock Control Using The CY7C361 

To simplify interface design and maximize perfor­
mance, microprocessor control logic typically needs 
to operate at twice the clock frequency of the pro­
cessor. Even with the relatively slow 2S-MHz clock 
frequency of the CY7C611A. routing, managing 
skew, and operating TTL control logic at SO MHz 
can significantly increase the complexity of a design. 

To eliminate this problem, the CY7C361 was se­
lected as a clock-generation device. The CY7C361 
is an ultra high speed PLD that features an internal 
clock doubler, double input registers for metastable 
hardening of asynchronous inputs, and 32 general­
purpose state macrocells. While this is not a typical 
application for a PLD, the CY7C361 has a pin-to­
pin skew of 2 ns maximum. 

Operating the CY7C361 at SO MHz externally and 
100 MHz internally allows the generation of three 
different 2S-MHz clocks. While the system still re­
quires a SO-MHz clock, the CY7C361 is the only de­
vice operating from it, simplifying routing and ter­
mination problems. Since no other device on the 
board operates from the SO-MHz clock, no relation­
ship needs to be maintained between the CY7C361 
clock input and output pins, removing the clock-to­
output propagation delay from the timing analysis. 
The 2S-MHz clocks operate all sequential logic on 
the board with the exception of the 3.68-MHz clock 
needed by the MC68681 DUART for baud-rate gen­
eration. 

The Clock-Generation Machine 

The clock-generation state machine within the 
CY7C361 has the following input and output sig­
nals: 

8-1S3 



:'?cYPRESS =======I;;:;n;;:;te;;:;rf:;;:;3;;:;c;;:;in;;;;;g;;:;th;;:;.e;;:;C;;:;Y;;:;7;;:;C;;:;6;;:;1;;:;IA=Wl;;:;'t;;:;h;;:;th;;:;e;;:;VI=C;;:;6=4 

NNULL (Input) 

This synchronous input is a conditioned active-Low 
signal formed by combining the CY7C611A INULL 
and the CY7C602A FNULL signals. FNULL is the 
corresponding nullify signal from the floating-point 
unit. It operates in the same manner as INULL. 
The NNULL signal is used to filter out the nullifies 
that occur during every store cycle. The store nulli­
fies were a don't care fQr the board's control logic 
since the signal is generated to nullify the second oc­
currence of the store address. 

NNULL = (INULL OR FNULL) AND LWE 

INULL and FNULL are active High and LWE is 
simply the latched WE signal from the CY7C611A. 
LWE is latched on the rising edge of CPUHCLK. 

LWRT (Input) 

This synchronous input is the latched WRT signal 
from the CY7C611A. This signal is latched on the 
rising edge of CPUHCLK. 

MHOLDA (Input) 

This is the synchronous CY7C611A MHOLDA sig­
nal. This signal is generated by the 22VlOB that gen­
erates Motorola-style bus cycles. 

DONE (Input) 

A synchronous signal generated elsewhere within 
the CY7C361 that indicates that a Motorola bus 
cycle has been acknowledged. All acknowledges re­
turned from the board are asynchronous signals. 
Double input registers on the CY7C361 are used to 
synchronize it for state logic use. DONE is active 
Low and is asserted if the cycle terminates normally 
or in a bus error. 

HOLD (Input) 

HOLD is a synchronous signal from the address de­
coding logic indicating that the selected peripheral 
requires a slow, 68OxO-style .bus cycle and that the 
CY7C611A and control logic clock must be 
stretched. 

CPUCLK (OuttJut) 

This is a free running 25-MHz clock that is used for 
much of the sequential control logic. Although the 
name may imply it, this clock is not used by the 
CY7C611A CPU. 

CPUHCLK (Output) 

This is a 25-MHz stretched version of CPUCLK. It 
is the clock used to control the CY7C611A, 
CY7C602A, and address decode/latch logic. This 
clock is stretched by the CY7C361 if the address de­
coding logic reports that a slow, asynchronous cycle 
should be performed. When this clock is operating, 
it is always in phase with CPUCLK. 

CPU90 (Output) 

This is a 25-MHz free-running clock that lags the 
CPUCLK by 90 degrees (1/2 cycle). This clock, in 
conjunction with CPUCLK, provides the board con­
trollogic with a time base with 10 ns of resolution. 

START (Output) 

The assertion of START (Low) informs the slave 
22VlOB state machine that a 68OxO cycle should be­
gin. This signal is not actually an output of the state 
machine, but of external state logic that is controlled 
by this state machine. 

The 68OXO cycle cannot start at the beginning of the 
stretched clock cycle because of the latency 
associated with the assertion of INULL and 
FNULL from the CY7C611A and CY7C602A. If 
the NNULL signal is not asserted 40 ns after the 
clock stretching has started, the bus cycle is deemed 
valid and the START is asserted. 

The state diagram of this machine is shown in Fig­
ure 6. 

The transition equations for this machine are: 

1. (State3) OR (HOLD AND /MHOLDA AND 
LWRT) 

2. State3 AND /HOLD AND /MHOLDA AND 
/LWRT 

3. State7 AND !DONE AND NNULL 

4. (State7) OR (DONE AND INNULL) 

8-154 



-. -~ 
., CYPRESS ========In=t=e=rf=a=ci=n;;:;;g=th=e=C=Y=7=C=6=1=lA=w=it=h=t=h=e =VI=C=6=4 

Figure 6. Clock-Generation State Machine 

Clock-Stretch Machine Operation 

This machine has two main paths of operation. The 
first is a sequence in which all three clock outputs 
are operating, sequencing through states.O, 1, 2, 3, 
and back to O. The second is a clock-stretched path 
sequencing through states 4, 5, 6, 7, and back to 4. 
This machine enters state 0 at the deassertion of re-

set and therefore always begins execution generat­
ing all clocks. 

While within state 3, the machine samples the 
HOLD, MHOLDA, and LWRT (Latch Advanced 
Write signal). HOLD High indicates that memory 
address on the bus is not selecting a slow device and 
that the clock should not be stretched. MHOLDA 
Low in this circuit indicates that a memory excep­
tion has occurred, and that the processor clock 
should continue to operate. The clock must be re­
enabled so that MDS and MEXC can strobe the 
memory exception condition into the device. 

The third signal sampled is Latched Advanced 
Write (LWRT). When this signal is High it indicates 
that the processor is starting a store cycle. The 
CY7C611A does not provide data to be stored until 
the second clock cycle of the operation. Therefore 
the processor must be advanced by at least one clock 
to place the data on the external bus. LWRT High 
and MHOLDA Low cause the processor clock to 
continue operating even if the address decoding log­
ic asserts HOLD Low, indicating that the cycle 
should be stretched. 

If HOLD is asserted (Low) and neither LWRT or 
MHOLDA are in their active states, then the state 
machine moves to state 4 and the clock is disabled 
to the processor and control logic. The other output 
clocks (CPUCLK and CPU90) continue to operate 
as the machine sequences through states 4, 5, 6, and 
7. State 7 is also a decision-making state within this 
machine. At this point the machine either continues 
stretching or re-enables the processor and control 
logic clock. The clock is only re-enabled if either of 
two conditions (NNULL or DONE are detected ac­
tive (Low)) is true. 

NNULL is asserted if the current cycle is not a store 
cycle and the CY7C611A or CY7C602A nullifies 
the cycle. The processor does not generate the IN­
ULL or FNULL until late in the cycle. Therefore 
nullified asynchronous bus cycles end up being 
stretched for 40 ns before this is determined. If the 
stretched bus cycle is nullified by the CY7C611A or 
CY7C602A, the NNULL is asserted before the ma­
chines samples the signal in state 7. If NNULL has 
not been asserted upon entering state 7 for the first 
time after clock stretching has begun, START is as-

8-155 



--.,~ 
, CYPRESS =======I;;;;;n;;;;;te;;;;;r;;;;;fa;;;;;cl;;;;;·n;;:;;g;;;;;th;;;;;e;;;;;C;;;;;Y;;;;;7;;;;;C;;;;;6;;;;;1;;;;;lA=w;;;;;it;;;;;h;;;;;th;;;;;e;;;;;VI=C;;;;;6;;;;;;4 

serted (Low). This signals the slave 22VlOB that a 
680xO style cycle should begin. 

680xO Bus Cycle Machine 

A Mealy state machine implemented in a 22VlOB 
performs the 680xO-compatible asynchronous bus 
cycle and asserts MHOLDA, MDS, and MEXC to 
the CY7C611A if a bus error is detected. This ma­
chine uses the CY7C361 to synchronize all asynch­
ronous signals and therefore operates in a totally 
synchronous environment. This simplifies the im­
plementation of the machine and enhances perfor­
mance. 

The input and output signals for the machine are: 

START (Input) 

This signal is asserted (Low) by the CY7C361 clock 
control state machine to indicate that a Motorola 
bus cycle should start. This signal remains asserted 
until the bus cycle completes. 

LRD (Input) 

This is the latched Read Access (RD) signal from 
the CY7C611A. 

SPARC_WB (Input) 

This is an output from the local bus arbiter for the 
board. If the asynchronous bus cycle is accessing 
something on the shared half bus, this signal is as­
serted by the address decode logic. If this signal is 
active (Low) the bus cycle must not begin until the 
grant signal, SPARC _ GB, is asserted, granting ac­
cess to the shared bus. 

SPARC_GB (Input) 

This active-Low signal is the bus grant signal from 
the local bus arbiter. 

DONE (Input) 

This is the synchronous active-Low signal from the 
CY7C361, indicating that some form of asynchro­
nous cycle acknowledge has been received. 

BERR (Input) 

An asynchronous active-Low input that is combined 
with DONE for synchronization. 

AS (Output) 

This is the active-Low 680xO compatible address 
strobe. 

DS (Output) 

This is the active-Low 68OXO compatible data strobe 

MHOLDA (Output) 

This is the MHOLDA signal to freeze the pipeline 
of the CY7C611A and CY7C602A. 

MDS (Output) 

This output is the MDS and MEXC signals to the 
CY7C611A. Since this bus control cycle only re­
quires MDS for memory exception cycles, it was 
possible to reduce these two into a single output on 
the machine. 

The state diagram of the machine is shown in Figure 
7. 

The transition equations for this machine are: 

1. (1ST ART AND /LRD AND /SPARC _ WB AND 
/SPARC_GB) OR 
(1ST ART AND /LRD AND SPARC_ WB) 

2. (1ST ART AND LRD AND /SPARC __ WB AND 
/SPARC_GB) OR 
(1ST ART AND LRD AND SPARC_ WB) 

3. /DONE AND /BERR 

4. /DONE AND BERR 

Machine Operation 

This machine resets to state 0 and waits for the asser­
tion of the START signal from the CY7C361. When 
this signal is active, the machine samples the states of 
the CY7C611A Latched Read Access signal (LRD), 
the Local Bus Request signal (SPARC_ WB), and the 
Local Bus Grant signal (SPARC_GB). The state of 
LRD instructs the 22V10B to perform either a read or 
write cycle. If SPARC _ WB is asserted (Low), then the 

8-156 



...0=... 

- ~YPRESS~~~~~~~In~t~erl:~aC~in~g~t~h~e~CY~7C~6~1~lA~~~·t~h~th~e~VI~C~64 

Figure 7. 68OXO Bus Cycle State Machine 

peripheral device being accessed is on the shared sec­
tion of the board. The bus cycle cannot start until a 
grant has been issued by the local bus arbiter. When 
SPARC_GB is asserted (Low), the shared bus has 
been granted to the CY7C611A. Read or write cycles 
that access peripherals on the local section of the card 
(CY7C611A access only) do not need pennission 
from the local bus arbiter. CY7C611A local accesses 
can occur simultaneously with VIC64 local DMA ac­
cesses. 

When the conditions have been met to start a cycle, 
AS strobe is asserted (Low). If the cycle is a read, 
DS is also asserted (Low). On write cycles, the 
assertion of DS is delayed one clock cycle to mimic 
the 68OXO cycle. This may not be necessary for many 
peripherals since, unlike Motorola processors, the 
CY7C61lA has already placed the data on the data 
bus before the assertion of AS. 

The machine moves to state 2 were it waits for the 
assertion of DONE (Low) from the CY7C361. 
DONE is generated by combining the board's 
asynchronous peripheral acknowledge and bus er­
ror signals. This combined signal is then run 
through the double input register structure of the 
CY7C361 to synchronize it. Double registering these 
asynchronous signals with the CY7C361 is the most 
efficient manner of synchronization as these registers 
are being clocked internally at 100 MHz. The entire 
double-register synchronization process takes only 20 
ns. DONE is further qualified with the appropriate 
25-MHz clock from the CY7C361 so that it can be 
considered completely synchronous to the 22VlOB. 

When the 22VI0B detects DONE asserted, it sam­
ples the BERR input. If BERR is inactive (High), 
then the cycle terminates normally. The machine 
drives AS and DS inactive and advances back to 
through state 3 to state 0 to prepare for the next 
cycle. State 3, a delay state, is necessary to allow the 
control logic recovery time before the next cycle be­
gins. This is a Mealy machine and removing state 3 
would allow situations to occur were AS and DS 
would not meet the minimum High times required 
by slow peripherals. Refer to the waveforms on the 
following pages, which show the control signal se­
quencer for normally terminated and memory ex­
ception cycles. 

If BERR is active (Low) when DONE is asserted, 
the asynchronous cycle is terminated in a bus error 
or memory exception. The 22VlOB asserts MHOL­
DA (Low) to the CY7C611A freezing the pipeline. 
The assertion of this signal informs the CY7C361 to 
re-enable clocking to the CY7C61lA and control 
logic so that the exception can be strobed in using 
MDS and MEXC. MDS and MEXC are then as­
serted simultaneously to the CY7C61lA, indicating 
that a memory exception has occurred. Since 
memory exceptions are the only cycles that freeze 
the CY7C61lA pipeline, MDS and MEXC are al­
ways asserted simultaneously. This allows the gen­
eration of a single signal, rather than two, freeing up 
an output on the PLD. 

8-157 



~ -.,~ 
, CYPRESS =======I;;;;n;;;;te;;;;r;;;;fa;;;;c;;;;in;;;;;g;;;;th;;;;e;;;;C;;;;Y;;;;7;;;;C;;;;6;;;;1;;;;lA=WI;;;;·t;;;;h;;;;th;;;;e;;;;VI=C;;;;6;;;;;;4 

Conclusion 

This hybrid bus conversion has worked well on the 
CY7C611NVIC64 VMEbus board. Using the 
CY7C361 as a clock-generation device, allowing all 
of the logic on the board to operate from the rela­
tively slow 25-MHz clocks, greatly simplified the 

Output Waveforms 
CY7C611A to 68OxO Normally Terminated Cycle 

CPUCLK 

CPU90 

CPUHCLK 

HOLD 

ACK 

LRD 

NNULL 

LWRT 

START 

DONE 

AS 

DS 

MHOLDA 

MDS/MEXC 

timing analysis without sacrificing performance. 
The CY7C361 also provides logic functions that are 
not discussed within this application note. In many 
applications it may be possible to move the slave 
680xO bus-cycle generation state logic into the 
CY7C361. This would reduce the bus conversion 
logic to a single device. 

8-158 



~YPRESS~~~~~~~I~n~te~rl~a~ci~ng~th~e~CY~7~C;61~1~A~m~'t~h~t~he~VI~C~6~4 

Output Waveforms (continued) 
CY7C611A to 680xO Memory Exception Cycle 

CPUCLK 

CPU90 

CPUHCLK 

HOLD 

ACK 

LRD 

NNULL 

LWRT 

START 

DONE 

BERR 

AS 

DS 

MHOLDA 

MDS/MEXC ------------------------

8-159 



An SVIC to 68020 Arbiter Design 

Introduction 

VME board functionality and their interfaces vary 
quite widely from application to application. The 
most complex type of VME interface is a VMEbus 
System Controller, which has complete VME mas­
ter and slave capability and is the VME Interrupt 
handler. There are many devices on the market that 
can satisfy this need and Cypress has devices that 
can perform this function, namely the VIC068A and 
VAC068A 32-bit VMEbus Interface Controllers. In 
addition to this, the VIC64 provides all the function­
ality of the VIC068A but with the addition of D64 
VME block transfer capability. 

However there are many applications that do not re­
quire the complexity of the VICNAC products. 
These VME boards might often be slave-oniy type 
applications. Cypress has introduced the Slave VIC 
devices (SVIC for short), the CY7C960 and 
CY7C961. These devices are simple VME interface 
controllers, without having any of the complexity of 
being a VME System Controller or VME Interrupt 
Handler. The CY7C960 is a slave and the CY7C961 
is a slave with DMA master. 

Typical applications for slave-only products are 
memory boards and I/O boards. Memory boards 
can be as diverse as SRAM, DRAM, UVEPROM or 
FLASH EPROM (in, say, solid state mass storage). 
The I/O type applications could be for Ethernet, 
SCSI, FDDI, MIL STD 1553, RACE, ParallellSeri­
all/O or even a VSB bridge. Memory boards do not 
require the use of a microprocessor, as they invari­
ably rely on the VME master to initiate either a read 
or a write. Local timing and bank switching, etc., can 
be controlled with programmable logic devices (ei-

8-160 

ther CPLDs or FPGAs) and a microcontroller may 
also be needed. 

Again, most I/O applications operate in a similar 
way to the memory card, in that reads and writes are 
initiated by the VME master. However, if there are 
several interfaces on the I/O card, then a local mi­
croprocessor may be useful for reducing the over­
head of the main system processor. If the local proc­
essor could take over much of this overhead, such as 
pre-processing, then the VME master may only be 
required to exttact data on a block transfer basis. 
Such a set-up could allow data to be transferred at 
up to 80 Mbytes/second. 

This application note provides an example of how to 
design the arbiter between one of the SVIC devices 
and a microprocessor. It has been assumed that the 
local microprocessor is a Motorola 68020. The ar­
bitration associated with this device is fairly stan­
dard with most of the Motorola processors. Also, 
the Motorola processors are well suited to the 
VMEbus, requiring some byte swapping for 8- or 
16-bit transfers, but little else. 

The SVIC Devices (CY7C960 and 
CY7C961) 

Features List 

• 80 Mbyte per second Block Transfer Rates 

• VME64 compliance (A64, A40, A32, A24, A16) 

• AutoSlotlD 

• All standard VMEbus transactions implemented 

• VMEbus Interrupter 

• No Local CPU necessary 

• Programmable from VMEbus or Serial PROM 



• DRAM Controller including refresh 

• Local I/O Controller 

• Flexible VMEbus address scheme 

• User-configured VMEbus personality 

• Limited VME Master support (CY7C961 Only) 

• TQFP, PQFP, CQFP packaging 

Slave VIC Operational Overview 

The Slave VMEBus Interface Controller (SVIC) 
provides the board designer with an integrated, full­
featured VME64 Interface. This device can be pro­
grammed to handle every transaction defined in the 
VME64 specification (as a slave device). The SVIC 
contains all the circuitry needed to control large 
DRAM arrays and local I/O circuitry without the 
necessity of complex programmable logic to drive 
the timing. There are no registers to read or write 
and no complex command blocks to be constructed 
in memory. The SVIC simply fetches its own config­
uration parameters during the power-on reset peri­
od. After reset, the SVIC responds to VMEBus ac­
tivity and local circuitry transparently. 

The SVIC acts as a bridge between the VMEbus and 
the local DRAM, as well as the local I/O. The VME­
bus control signals are. connected directly to the 
SVIC. The VMEbus address and data signals are 
connected to address and data transceivers that are 
controlled by the SVIC. Typically, these are devices 
such as the FCT543T. The SVIC may also be seam­
lessly connected to the ideal companion device, the 
CY7C964 VMEbus Interface Logic Circuit from 
Cypress. For an A32!D32 application, there is one 
CY7C964 required per byte width of address and 
data. Thus a total of four devices are requi­
red-maximum. The CY7C964 provides a slice of 
data and address logic that has been optimized for 
VME64 transactions. As well as providing the re­
quired drive strength and timing for VME64 trans­
actions, the CY7C964s contain all the circuitry 
needed to multiplex the address/data bus functions 
for multiplexed VMEbus transactions. The 
CY7C964 contains counters and latches needed 
during block transfer operations. It also contains the 
address comparators that are used in the board's 
Slave Address Decoder. For an A32 or larger ap-

An SVIC to 68020 Arbiter Design 

plication four CY7C964 devices are required. For 
A24!D32 applications, then, three CY7C964s and 
the SVIC are required. For A24/D16 applications, 
only two CY7C964s, the SVIC and an FCT543T (or 
equivalent) are required. For A16!D16 applica­
tions, only two CY7C964s and the SVIC are re­
quired. 

VMEbus transactions supported by the SVIC in­
clude D8, D16, D32 (include unaligned transfers 
(UAT)), MD32, D64, A16, A24, A32, A40, A64 
single cycle and block transfer reads and writes. 

Figure 1 shows the internal blocks that comprise the 
SVIC. The architecture includes several functions 
that remove most of the VMEbus problems from 
the board designer's shoulders. All VMEbus signals 
are handled automatically. The user has to program 
the Region AM table during configuration and then 
the SVIC handles the transactions as defined by the 
table set-up. Local circuitry is simplified by the Re­
fresh Controller, the DRAM Controller, and the 
output pattern table. Block transfers are supported 
by the local address controller together with the 
CY7C964 circuitry (if used). Local timing is deter­
mined during initial configuration and the hand­
shaking is determined from the Data Byte Enable 
Controller. Local interrupts are supported through 
the VME Interrupt Interface. The SVIC contains an 
internal Power-On Reset circuit and also responds 
to the VME SYSRESET* signal. 

Design Example 

Introduction 

The design example has been chosen as a typical ex­
ample of a VME board design. Figure 2 shows that 
the design is based on a Motorola 68020 micropro­
cessor. The processor has boot software located in 
the Boot EEPROM. After setting up the stack and 
implementing the reset exception routine, the proc­
essor would normally jump to running code from the 
EPROM. This will allow the processor to set up the 
DUART, RTC and any other programmable func­
tions within the peripherals. This may well include 
setting up the SVIC, even though this is normally 
performed by either a serial EPROM or, alterna­
tively, via the VMEbus. 

8-161 



REGI,ON[3:0] 

AM[5:0] CY7C964 CONTROLLER 

SYSRESET* 

:~:---=======~--_J.~,~~~'~j 
DSO­
DS1-

DTACK­
WRITE-

IRQ­
lACK­

IACKIN­
IAC!<OUT* 

VMECONTROL 
INTERFACE 

VME INTERRUPT 
INTERFACE 

SVIC 

DRAM 
CONTROLLER 

•• 3:..J 
~~!E8 

Figure 1. SVIC Block Diagram 

RS232 

RS423 

964 

Figure 2. 'JYpical VMEbus Design 

8-162 

LOCAL ADDRESS 
CONTROLLER 

LOCAL 
CONTROL 
CIRCUIT 

LA[7:1] 

LWORD 

CS[5:0] 

DBE[3:0] 

LACK-

LDEN­
PREN­
SWDEN­
R!W 

VMEbus 



-= .,~ An SVIC to 68020 Arbiter Design 
.'CYPRESS ============= 
There are two potential local bus masters in this de­
sign-either the 68020 or the SVIC. The task of ar­
bitration (i.e., determining which master has con­
trol) is done by the Arbiter. The design is based on 
a single bus structure. The presence of the FCT245T 
devices reduces capacitive bus loading to maintain 
better performance. 

Overview of the Motorola 68020 

The Motorola 68020 was the first 32-bit imple­
mentation of the M68000 family of microprocessors 
from Motorola. The 68020 is object-code compat­
ible with other members of the 68000 family. The 
non-multiplexed bus structure of the 68020 uses 32 
bits of data and 32 bits of address. This lends itself 
very well to the VMEbus architecture, which is 
based on a 32-bit data and 32-bit address structure. 
For the purposes of data transfers, a D64 block 
transfer on the VMEbus is automatically split up 
into two 32-bit data transfers on the local bus, which 
keeps the 68020 compliant even in a D64 environ­
ment as provided by the SVIC. 

The 68020 provides support for a dynamic bus sizing 
arrangement where the processor can transfer oper­
ands to or from devices while dynamically allowing 
the local bus logic to determine the port width for 
the 68020 on a cycle by cycle basis. This allows for 
access to devices of differing port width without the 
software engineer having to take special care over 
data alignment restrictions. 

68020 Arbitration Methodology 

Bus arbitration is the process in which a device on a 
bus may become bus master. The 68020 has a bus 
controller that controls the bus arbitration for the 
local bus that the processor sits on. This means that 
the 68020 has the lowest priority on the local bus. 
The design of the 68020 allows for a single bus mas­
ter to be on the local bus at anyone time. This in­
cludes an external device or the processor itself. 

68020 Bus Arbitration Sequence 

The bus arbitration sequence for the 68020 is: 

1. An external device asserts the BR * signal. 

2. The processor asserts the BG* signal to indicate 
that the local bus will become available at the 
end of the current bus cycle. 

3. Once the local bus is released, the external de­
vice asserts the BGACK' signal back to the 
processor to indicate that it has assumed bus 
mastership. 

The 68020 Bus Request Mechanism 

Any devices on the local bus that are capable of be­
coming a local bus master must assert the BR * sig­
nal to the processor. The BR * signals from many po­
tential bus masters can be arranged in a wire-ORd 
fashion even though they need not be open collector 
signals. (Rescinding three-statable signals are pref­
erable to wire-ORd as the circuit does not rely on 
RC effects for the signal to drift up to an inactive lev­
el.) Once BR * has been asserted to the processor, 
this indicates that some external device wants con­
trol ofthe local bus. The design of the 68020 is such 
that it is always at a lower level bus priority than the 
external device that wants control of the bus and so 
the processor is compelled to relinquish the bus af­
ter it has completed its current cycle. If the 
BGACK* signal is inactive while the BR * signal is 
asserted, then the processor remains the bus master 
once BR * is negated. This feature reduces unneces­
sary interruptions in ordinary processing if the ar­
bitration circuitry inadvertently responds to noise 
or if the alternate bus master decides that it doesn't 
need to be bus master before it has been granted bus 
mastership. 

The 68020 Bus Grant Mechanism 

The processor issues a bus grant in response to the 
bus request issued by the external device. BG* 
assertion immediately follows after internal syn­
chronization. However, if the processor is perform­
ing a read-modify-write cycle or has already made 
an internal decision to perform a single bus cycle, 
then it must complete that operation first. During a 
read-modify-write cycle, the processor cannot as­
sert the BG* signal unless the entire cycle has com­
pleted. The RMC* signal is asserted to indicate that 
the bus has been locked. When an internal decision 
has been made to execute another bus cycle, then 

8-163 



--q~,-------\ Q~,-------~ 
--~I ~I __ ~I --------~~ 

VMEAS* 

LADI 

Figure 3. LADI with BUS HOLD OFF Disabled 

the BG* cannot be asserted to the external device 
until the bus cycle has begun. The 68020 design al­
lows the BG* signal to be routed through a daisy­
chained network or, alternatively, through a priority 
encoded network such as an external arbiter. (The 
68020 allows any kind of external arbiter as long as 
the arbitration sequencing is followed precisely.) 

The 68020 Bus Grant Acknowledge Mechanism 

Once the external device has received the BG* from 
the 68020, then it must wait until the local AS*, 
DSACKO*, DSACK1 *, and BGACK* are negated 
before asserting its own BGACK* to the processor. 
The removal of the AS * signal indicates that the pre­
vious master has released the bus. The negation of 
the DSACKO* and DSACK1 * signals indicates that 
the previous slave has terminated the cycle with the 
previous master. 

The SVIC Local Bus Philosophy 

The bus arbitration of the SVIC is much simpler 
than the 68020. This is known as the BUS HOLD­
OFF feature of the SVIC. 

The SVIC is intended to be the highest priority on 
the local bus. This implies that when a VME slave 
transaction occurs, then nothing will prevent the 
SVIC from reading or writing to local resources. 
Normally the SVIC starts a local cycle assuming that 
no other master may be in control of the local bus. 
This optimizes the response time of the SVIC by 

VMEAS* ~ , , n: ;11: LADI , 

, 
LACK , 

, , 

I 

preventing the VME cycle being extended by local 
bus contention. This philosophy is not beneficial in 
all cases, such as where there is a local processor to 
consider. Some rudimentary control of the local bus 
shall be required from time to time by other devices. 

SVIC Local Bus Arbitration Methodology 

The SVIC can be prevented from starting a local 
cycle or a refresh of any local DRAM by using a BUS 
HOLD OFF function. To explain how this works, 
first consider the VMEbus activity. Without the bus 
hold function being enabled, whenever the AS* is 
asserted by the VME master, the SVIC will drive 
LADI HIGH and RAS * LOW (Row Address Strobe 
to DRAM) (see Figure 3). Then the VMEbus ad­
dress is driven onto the local address bus under con­
trol of the SVIC. This happens for all VMEBus 
cycles whether the cycle is intended for the slave or 
not (the reason for this is to reduce bus latency). 

When the BUS HOLD OFF feature is enabled, 
LADI is a 'local bus busy' signal. It indicates to the 
local arbitration logic that the SVIC has control of 
the local bus for either VME slave accesses or when 
the SVIC is performing DRAM refresh cycles. 

As can be seen from Figure 4, the LADI signal goes 
HIGH when there is a VME AS* signal. If the cycle 
is not intended for the SVIC then the LADI signal 
is deasserted. It can be seen that LADI is also used 
to indicate to the local bus arbiter that a DRAM re­
fresh cycle is taking place. 

, , 
:1 : , , , , L 
I 

, , , 
, , 
I' 

'SVIC 
not 

addressed 

'RefresH Slave access ' SVICis 
addressed 

Refresh' 
cycle cycle suspended 

Figure 4. LADI with BUS HOLD OFF Enabled 

8-164 



~YPRESS~~~~~~~~~~An~~S~VI~C~tO~6~8~O~20~Ar~b~it~er~D~es~ig~n= 

The local bus arbiter monitors the LADI signal to 
determine when the SVIC does not have control of 
the local bus. Once the LADI signal is LOW, there 
is no current VME slave cycle or DRAM refresh 
taking place. 

There are two scenarios that need to be considered 
for holding off the SVIC from further accesses: 

1. Once the LADI signal goes LOW, the local arbi­
ter is able to prevent the SVIC from regaining 
control of the local bus. As can be seen in Figure 
4, the local bus arbiter sets the LACK signal to 
a '1' to 'hold off' the SVIC from regaining con­
trol of the local bus. If the LACK signal is set to 
a '1' by the SECOND RISING EDGE of the 
SVIC clock, then the local arbiter is guaranteed 
to have prevented the SVIC from getting con­
trol of the local bus. 

2. The other condition for an alternate master 
gaining control of the local bus is when the 
LADI signal has been set LOW for greater than 
two clock cycles (i.e., when there is little VME­
bus traffic). When the alternate master desires 
control of the local bus, the local arbiter drives 
the LACK signal to be a '1'. However, after 
TWO RISING EDGES of the SVIC clock signal, 
the arbiter must sample the LADI signal to 
make sure that it is still LOW. This takes account 
of potential metastable conditions as a result of 
a VME AS* being asserted to the SVIC at the 
same time as LACK is asserted. 

When the local bus is not available to the SVIC, all 
VME slave transactions and will hold until the local 
bus is made available again. Once control of the lo­
cal bus has been returned to the SVIC the refresh 
engine shall have priority and burst all the missed 
refresh cycles up to modulo 64. Mter this, the SVIC 
will respond to a pending VME slave request. 

The 'bus hold off' function is enabled by a bit in the 
configuration bit stream. If the bit is not enabled 
then the SVIC cannot be prevented from perform­
ing DRAM refresh or from starting a local cycle. 
The function of LACK* is then simply to extend the 
completion of local cycles, allowing for slow local 
peripherals. 

Design Considerations 

There are certain special cases that the design engi­
neer must consider when designing the SVIC into a 
VME board that can have more than one local bus 
master. 

In the most basic applications where the SVIC is the 
only bus master, slave select logic is straightforward. 
Figure 5 shows how this might be accomplished. 

As can be seen from Figure 5, the three most signifi­
cant address bytes are permanently enabled by con­
necting the LAEN inputs of the three most signifi­
cant 964s to Vee. This allows the VME addresses to 
flow directly from the VMEbus and onto the local 
bus. The region decoder then decodes the local ad­
dresses and the four REGION bits are fed directly 
into the SVIC. When a VME address appears which 
targets the VME board, one of the REGION bits 
becomes active which is then validated by the falling 
edge of VME AS*. 

If the VME board design is such that there may be 
more than one bus master, then a more suitable ar­
rangement can be seen in Figure 6. 

Figure 6 shows that when the SVIC does not have 
control of the local bus, then the local addresses be­
come isolated from the VME interface. The VME 
addresses are still monitored, however, by the re­
gion decoder. The output of the region decoder can 
then be used as the SVIC local bus request signals. 
These signals can be fed into the arbiter along with 
VME AS * to qualify the local bus request. 

SVIC to 68020 Arbiter Design 

The arbiter design represents a challenge to the de­
signer. The reason for this is that the assumption of 
the SVIC is that it requires the highest priority and 
normally has control of the local bus all of the time. 
On the other hand, the 68020, which contains its own 
arbitration circuit, has the lowest priority. 

The arbiter design must allow control of the local 
bus to default to the 68020. In addition the SVIC 
must not be allowed to take control of the local bus 
if there is any activity on the VME AS * signal unless 
the VME cycle is targeted towards the SVIC itself. 

8-165 



-. ~ An SVIC to 68020 Arbiter Design 
_'CYPRESS ================ 

VCOMP3 
REGION3 VCOMP2 
REGION2 REGION VCOMP1 
REGION1 DECODER AM [5:0] 
REGIONO 

LOGIC 
LA[31:0] 

L 
0 
C 
A 
L 

B 
U 
S 

LA[7:0] 

I 
LA[7:1] 

LA[15:8] 

LA[23:15] 

LA[31:24] 

SVIC 

J 
LAEN 

964 

t Vee 

LAEN 

964 

t vee 

LAEN 

964 

t Vee 

LAEN 

964 

A[7:1] 

A[15:8] 

A[23:16] 

A[31:24] 

V 
M 
E 
B 
U 
S 

Figure 5. BasIc SVIC 

Coping with Metastable Events 

The arbiter design is based on a state machine. The 
state machine is driven at the processor bus clock 
frequency of 20 MHz. The SVI C is driven at a higher 
frequency of 80 MHz. The design will require the 
use of RoboClock to keep the rising edges of the two 
clock frequencies aligned. This will greatly reduce 
the instances of metastability. The crystal oscillator 
required to drive the RoboClock will be 20 MHz 
(see Figure 7). This crystal oscillator frequency is a 
common frequency and is easily obtained from 
many crystal oscillator vendors. In addition, this fre­
quency oscillator is easily available to military speci­
fications. 

Using RoboClock is one method of reducing poten­
tial metastable events by using clock edges that line 
up. There are signals, however, that are totally un­
predictable as to when they arrive. One of these is 
the VME AS* signal. The VMEbus is totally asyn­
chronous to both the SVIC 80-MHz clock and also 

the processor 20-MHz clock. To make sure that 
these types of signals don't make the arbiter metast­
able, one of two methods should be employed. One 
is to utilize a register that is resilient to being metast­
able, (i.e., it catches an event or doesn't); the other 
more straightforward method is to use double regis­
tering. This saves on board space and can easily be 
implemented in programmable logic devices. The 
FLASH370 1M series of CPLDs supports double regis­
tering at the dedicated inputs. 

Handling the DRAM Refresh 

Once the SVIC has been put into holdoff mode, it 
has no way of indicating to the local logic that there 
are any pending DRAM refreshes. The SVIC can 
store up to 64 refresh events while it is held off, (if 
the number of pending refreshes exceeds 64 then 
the count will roll around to 0 again and 64 pending 
refreshes will be lost). Once the SVIC gets control 
of the local bus, it will initiate a burst of refresh 
pulses. The most straightforward way for the SVIC 

8-166 



L 
o 
C 
A 
L 

B 
U 
S 

• ~ An SVIC to 68020 Arbiter Design 
,CYPRESS ================= 

VCOMP3 
REGION3 VCOMP2 
REGION2 REGION VCOMP1 
REGION1 DECODER AM[5:0] 
REGIONO 

LOGIC 
LA[31 :0] LA[7:0] SVIC 

LAEN 
I 

+ 
LAEN 

LA[7:1] 
964 

t Vee 

EN LAEN 
LA[15:8] 

FCT 
BLA[15:8] 

964 
244T 

t Vee 

EN LAEN 
LA[23:15] FCT BLA[23:15] 

244T 964 

t Vee 

LA[31 :24] 
EN 

BLA[31:24] 
LAEN 

FCT 964 
244T 

Figure 6. SVIC Implementation with More than One Bus Master 

FB 
REF -.J 20 MHz 

REF 
FS 

4FO 400 BOMHz 
4F1 401 

3FO 300 20 MHz -.J 3F1 301 

2FO 200 BOMHz 
2F1 201 

1FO 100 BOMHz 
1F1 101 

Figure 7. RoboClock Frequency 

8-167 

A[7:1] 

A[15:8] 

A[23:16] 

A[31 :24] 

, 

V 
M 
E 
B 
U 
S 

, , 

rT 

r-r-



to get hold of the local bus is when a slave access 
takes place from the VMEbus. Once the SVIC has 
been granted control of the local bus, the SVIC will 
perform the pending DRAM refresh cycles as a 
higher priority. Once all of the pending refreshes 
have been done, then the VME master is allowed to 
proceed with the data transfer. 

There is a case, however, when there are minimal 
VMEbus access requests to the SVIC. Such a situa­
tion would mean that the pending DRAM refresh 
cycles would build up without any chance of the 
SVIC of being granted control of the local bus. 
Hence part of the arbiter design requires the use of 
a counter timer that counts 125 I-ts. If there have 
been no VME cycles targeted towards the SVIC in 
this time (which is quite possible), then the arbiter 
needs to hand over control of the local bus to the 
SVIC and then monitor the LADI signal being inac­
tive. Once LADI is inactive, this will indicate to the 
arbiter that the DRAM refresh cycles are complete 
and control can be taken from the SVIC. Figure 8 
shows the state diagram that is the basis of the state 
machine. 

An SVIC to 68020 Arbiter Design 

The source code for the design has been written in 
VHDL. The target device is a FLAsH371-110 de­
vice. However If more registers and/or combinato­
rial logic is required for future upgrades or addi­
tions then the designer can migrate to a FLASH372 
without having to change the real estate in the PCB 
that is already being used. 

The flow of the state machine is shown in the timing 
diagram shown in Figure 9. 

Appendix A shows the VHDL source code for the 
double buffering section. This was designed as hier­
archical VHDL (the designer only has to instantiate 
the function as a single line of VHDL in the main 
code). This will be especially useful if a 25-MHz or 
33-MHz 68020 is used. These frequencies are not a 
multiple of 2 so the clock domain of the 68020 and 
the clock domain of the SVIC (80 MHz) will be en­
tirely asynchronous. The method of instantiating 
the double buffer saves time and effort. 

Appendix B shows the main source code which con­
tains the state machine design and also the DRAM 
refresh holdoff timeout counter. 

FLASH370 is a trademark of Cypress Semiconductor Corporation. 

8-168 



· ~ An SVIC to 68020 Arbiter Design 
.;CYPRESS ============== 

Signal definition (*=active LOW) 
BR* = bus request to the 68020 
BG* = bus grant from the 68020 
BGACK* = bus grant acknowledge to the 68020 
SVICREQ* = SVIC requests local bus (VME cycle targets SVIC or refresh hold off times out) 
SVICPROC* = SVIC granted local bus (VME cycle targets the SVIC or DRAM refresh hold off times out) 
LACK* = SVIC bus grant (input to SVIC) 
LADI* = SVIC bus busy (output from SVIC 
dsacks = dsackO AND dsack1 
as* = 68020 address strobe 

Figure 8. State Diagram of SVIC to 68020 Arbiter 

8-169 



.. ~ An SVIC to 68020 Arbiter Design 
., CYPRESS ============== 

PSG SVICR1 SVICR2 SVICG1 SVICG2 SVICG2 SVICWAIT SVIC SVICREL PSG 
: DECIDE 

CLK20 

BR* 

BG* \ 
BGACK* 

, " I :\ 

SVICREQ* ~ :/ 
SVICPROC* \ I 

LACK \ / 
LADI / \ 

DSACKS* mmmm 
AS* !I/IIIIIIII 

Figure 9. Timing Diagram with States 

8-170 



An SVIC to 68020 Arbiter Design 

Appendix A. Source Code for Double ButTering 

--This package description describes the double buffering technique 
--for metastability hardening 

PACKAGE sync_tools IS 
COMPONENT synchronise PORT ( 
datain,clk: IN BIT; 
dataout: OUT BIT) ; 
END COMPONENT; 

END sync_tools; 

ENTITY synchronise IS PORT ( 

datain,clk: IN BIT; 
dataout: OUT BIT); 

END synchronise; 

ARCHITECTURE archsynchronise OF synchronise IS 

SIGNAL datainl: BIT; 

BEGIN 

firstreg: PROCESS (clk) 

BEGIN 

IF clk'EVENT AND clk = '1' THEN 
datain1 <= datain; 

END IF; 

end PROCESS firstreg; 

secondreg: PROCESS (clk) 

BEGIN 
IF clk'EVENT AND clk = '1' THEN 

dataout <= datain1; 
END IF; 

END PROCESS secondreg; 

END archsynchronise; 

8-171 



-'f ~ An SVIC to 68020 Arbiter Design 
,CYPRESS================================ 

Appendix B. Source Code for State Machine and Refresh Hold OtT Timer 

--********************************************************************** 
--********************************************************************** 
--** 
--** 
--** 
--** 

This design is an arbiter for the SVIC (960 or 961) and 
and the Motorola MC68020 (20MHz) 

** 
** 
** 
** 

--********************************************************************** 
--********************************************************************** 

ENTITY arbiter IS PORT ( 

-- Port list for the 68020 

clk20: 
dsackO,dsack1: 
as: 

IN BIT; 
IN BIT; 
IN BIT; 

20MHz Bus clock for the 68020 
data strobe acknowledge to 68020 
68020 address strobe 

-- Arbiter signals for the MC68020 

svicbg: 
svicack: 
svicbr: 
outpen: 

IN BIT; -- 68020 bus grant to SVIC 
INOUT X01Z; -- SVIC bus grant to 68020 
OUT BIT; -- SVIC bus request 
INOUT BIT; -- Output enable for bus grant 

-- Arbiter signals for the SVIC 

ladi: 
lack: 

IN BIT; 
BUFFER BIT; 

--Port list for the 960 

IN BIT; 
IN BIT; 

latch address in (SVIC) 
-- local data acknowledge (SVIC) 

reset from reset handler 
SVIC 80 MHz clock 

reset: 
clk80: 
vmeas: 
region: 

IN BIT; VME address strobe 
IN BIT_VECTOR(2 DOWNTO 0)); -- local VME slave selects 

END arbiter; 

USE WORK.rtlpkg.ALL; 
USE WORK.int_math.ALL; 

The library sync_tools is a metastability hardening technique utilising 
double buffering. 

USE WORK.sync_tools.ALL; 

ARCHITECTURE archarbiter OF arbiter IS 

Definition of the states for the state machine controlling the 
arbitration logic 

8-172 



,,-:Z An SVIC to 68020 Arbiter Design 
,-cYPRESS ============= 

Appendix B. Source Code for State Machine and Refresh Hold OfT Timer (continued) 

TYPE state_labels IS (pbg,svicrl,svicr2,svicg1,svicg2,svicg3,svicwait, 
svicdecide,svicrel); 

SIGNAL state_bits: state_labels; 

SIGNAL svicreq: 
SIGNAL svicproc: 

BIT; -- SVIC request to arb logic 
BIT; -- SVIC proceed from arb logic 

SIGNAL bgack,bgackin: 
SIGNAL count256: 
SIGNAL co: 

BIT; -- Bus grant from/to controller direct 
BIT_VECTOR(ll downto 0); -- Refresh interval timer 
BIT; -- carry our from refresh timer 

SIGNAL vmeasdel: BIT; -- synchronised VME AS 

--bgack is driven by the CPLD internally. SVICACK is tristate out and 
--bgackin is monitored at pin and driven in to device. 

BEGIN 

--Instantiation pf bufoe to tristate bgack to 68020 

bf: bufoe PORT MAP (bgack,outpen,svicack,bgackin); 

outpen <= '1' WHEN (state_bits=svicg1) OR (state_bits=svicg2) 
OR (state_bits=svicrel) ELSE '0'; 

--The following process drives the 68020 arbitration 

arbcntrl: PROCESS (reset,clk20) 

BEGIN 

IF reset = '0' THEN 
state_bits <= pbg; 
svicbr 
bgack 

<= '1' i 
<= '1' i 

svicproc <= '1'; 

ELSIF (clk20'EVENT AND clk20='1') THEN 

CASE state_bits IS 

PBG is the idle state where the processor has been granted the bus. 

WHEN pbg =>IF svicreq = '0' 
THEN state_bits <= svicr1; 

svicbr <= '0'; 
bgack <= '1'; 
svicproc<= '1'; 

ELSE state_bits <= pbg; 
svicbr <= '1'; 
bgack <= '1'; 
svicproc<= '1'; 

END IF; 

8-173 



An SVIC to 68020 Arbiter Design 

Appendix B. Source Code for State Machine and Refresh Hold OtT Timer (continued) 

SVICREQ1 is where the SVIC requires the bus but is waiting for bus grant 
from the 68020 

WHEN svicr1 =>IF svicbg = '0' 
THEN state_bits <= svicr2; 

svicbr <= '0'; 
bgack <= '1'; 
svicproc<= '1'; 

ELSE state_bits <= svicr1; 
svicbr <= '0'; 
bgack <= '1'; 
svicproc<= '1'; 

END IF; 

SVICR2 is where the SVIC has been granted the bus but the 68020 is 
still performing a bus cycle 

WHEN svicr2 =>IF as = '1' 
THEN state_bits <= svicg1; 

svicbr <= '0'; 
bgack <= '0'; 
svicproc<= '0'; 

ELSE state_bits <= svicr2; 
svicbr <= '0'; 
bgack <= '1'; 
svicproc<= '1'; 

END IF; 

SVICG1 is where the the 68020 has completed its last cycle, the SVIC 
has been granted the bus and the arbiter asserts bus grant to the 68020 
and the SVIC is allowed to proceed 

WHEN svicg1 => state _bits <= svicg2; 
svicbr <= '1' i 

bgack <= ' 0' i 

svicproc<= '0 ' ; 

SVICG2 waits for the SVIC to terminate a 

WHEN svicg2 =>IF lack = '1' 
THEN state_bits <= svicwait; 

svicbr <= '1'; 
svicproc<= '1'; 
bgack <= '0'; 

ELSE state_bits <= svicg2; 
svicbr <= '1'; 
bgack <= '0'; 
svicproc<= '1'; 

END IF; 

8-174 

session 



-. ~ An SVIC to 68020 Arbiter Design 
~rcYPRESS =============== 

Appendix B. Source Code for State Machine and Refresh Hold Off Timer (continued) 

SVICG3 allows the SVIC to proceed again in the event of a metastable 
condition where the SVIC misses the LACK* signal going inactive 

WHEN svicg3 => state_bits <= svicg2; 
svicbr <= '1'; 
bgack <= '0'; 
svicproc<= '1'; 

SVICWAIT is a timing period before sampling LADI 

WHEN svicwait => state_bits <= svicdecide; 
svicbr <= '1'; 
bgack <= '0'; 
svicproc<= '1'; 

SVICDECIDE samples LADI. If LADI is inactive then the SVIC is in 
hold off mode. If LADI is active then the arbiter failed to hold off 
the SVIC 

WHEN svicdecide => IF ladi = '0' THEN 
state_bits <= svicrel; 

svicbr <= '1'; 
bgack <= '1'; 
svicproc<= '1'; 

ELSIF ladi = '1' THEN 
state_bits <= svicg3; 

svicbr <= '1'; 
bgack <= '0'; 
svicproc<= '0'; 

END IF; 

SVICREL hands control of the local bus back to the 68020 

WHEN svicrel =>state_bits 
svicbr <= '1'; 
bgack <= '1'; 
svicproc<= '1'; 

<= pbg; 

The when others clause prevents implicit memory generation and copes 
with any illegal states 

WHEN OTHERS =>state_bits 
svicbr <= '1'; 
bgack <= '1'; 
svicproc<= '1'; 

END CASE; 

END IF; 
END PROCESS arbcntrl; 

<= pbg; 

8-175 



,,~ An SVIC to 68020 Arbiter Design 
-=-,CYPRESS ============== 

Appendix B. Source Code for State Machine and Refresh Hold OtT Timer (continued) 

The following process defines the counter that defines 128 uS 
before control is given to the SVIC for the purposes of DRAM 
refresh. Making the counter wider increases the time period by a factor 
of 2 every time, but may make logic synthesis more difficult 

cnt: PROCESS (reset,clk2D) 
BEGIN 

IF (reset = '1') THEN 
count256 <= x"DDD"; 

-- asynch reset 

ELSIF (clk2D'EVENT AND clk2D = '1') THEN 
IF (state_bits = svicrel) THEN 

count256 <= x"DDD"; 
ELSIF ((state_bits = pbg) AND (co 

count256 <= inc_bv(count256); 
END IF; 

END IF; 
END PROCESS cnt; 

'D')) THEN 

The co signal is used to inhibit the counter when it gets to the 
terminal count 

co<= '1' WHEN (count256 = x"9FF") ELSE 'D'; 

--The following section defines the SVIC arbiter 

--The VME AS* is asynchronous to the 8DMHz clk so needs to be synchronised 

sync1: synchronise PORT MAP (vmeas,clk8D,vmeasdel); 

svicreq<= 'D' WHEN (((region /= "DDD") AND (vmeasdel 
OR count256 = x"9FF") ELSE '1'; 

lack <= 'D' WHEN (svicproc = 'D') 
OR ((lack = 'D') AND (ladi = '1')) else '1'; 

END archarbiter; 

8-176 

'D') ) 



RACEway Products from 
Cypress Semiconductor 

Cypress Semiconductor now offers RACEway in­
terconnect system developers an independent 
source for Interlink modules, crossbar chips, and 
RACEway on-ramp components compliant with the 
RACEway Interlink standard. 

The RACEway Interlink standard is published and 
maintained by VITA (VMEbus and Futurebus In­
ternational Trade Association). The VITA stan­
dards organization (VSO) has ratified the RACE­
way Interlink Specification which defines the data 
link protocol and the physical interface definition 
for the high-performance extension to the VMEbus 
standard. 

RACEway Crossbar CY7C965 

• 160 Mbyte per second per path Block Transfer 
Rates 

• Six bidirectional ports 

• Non-blocking architecture 

• 361-pin CBGA package 

• Implements Open Bus Standard (VITA 5 -1994) 

• Building Block for Scale able Networks 

• Preemptable prioritized transactions 

• Adaptive Routing support 

The CY7C965 RACEway Crossbar implements in 
one device the RACEway open standard for cross 
point interconnect (VITA 5 -1994). The RACEway 
standard allows multiple processor systems to com­
municate using a crossbar technology that supports 

8-177 

very high aggregate data transfer rates. Applica­
tions for the RACEway Crossbar include high-per­
formance multiprocessing systems, and distributed 
processing systems. The RACEway Crossbar can be 
used in backplane-based applications or as switch 
elements on single boards. 

The RACEway Crossbar can be connected in many 
different system configurations. In its simplest con­
figuration, the Crossbar is used to interconnect six 
RACEway nodes using a single crossbar. Higher 
complexity systems may require the implementa­
tion of a large fabric of interconnected Crossbars. 

RACEway Interlink Modules 

• CYM9652 provides a 4 slot RACEway fabric 

• CYM9653 provides an 8 slot RACEway fabric 

• CYM9654 provides a 12 slot RACEway fabric 

• CYM9655 provides a 16 slot RACEway fabric 

• CYM9651 provides a single slot connection for 
expansion purposes 

Cypress's RACEway Interlink Modules bring em­
bedded supercomputing performance to real-time 
VME-based systems. As a backward-compatible 
upgrade, RACEway Interlink transforms the topol­
ogy of an existing VMEbus chassis from a single 
transaction bus to a scaleable real-time fabric capa­
ble of over 1 Gbyte/sec of aggregate bandwidth. In­
terlink modules add interboard bandwidth to VME­
based systems by providing multiple, concurrent, 
high-speed communication paths between VME 
boards interfaced to the RACEway Interlink stan-



dard. In addition to increased bandwidth, RACE­
way Interlink offers low latency and priority control, 
essential to real-time applications. 

Mechanically, the RACEway Interlink Modules 
mount on the backplane of a VME chassis similar 
to industry-standard VSB backplane modules. Elec­
trically, these modules are connected to the VME 
slots through the P2 chassis backplane connector. 
RACEway Interlink Modules implement the 
RACEway interconnect fabric, using the Cypress 
CY7C965 RACEway Crossbar device and appropri­
ate clock and interface circuitry. 

RACEway On-ramp: PitCREW 

• Used to interface between FIFOs and the 
RACEway protocol. 

• Drives/receives a RACEway port directly. 

• Is programmed from the RACEway. 

• Has a DMA engine capable of moving data be­
tween a local FIFO and the RACEway. 

• Moves data at 160 MByte/sec peak and 140 
MByte/sec sustained throughput. 

• Able to write DMA status to RACEway for poll­
ing or mailbox interrupt. 

• 144-pin, 8K gate Cypress CY7C387 A FPGA. 

PitCREW is an I/O data port for RACEway. It de­
fines a simple FIFO interface local data port which 
is slave to its RACEway port. The PitCREW has an 
internal DMA engine which moves blocks of data 
between RACEway nodes and its FIFO port. This 
DMA engine is set in motion by commands received 
over the RACEway port. Data move instructions 
can be issued directly to the PitCREW RACEway 
port, or caused to be fetched by the PitCREW in a 
linked list fashion from memory associated with a 
RACEway node. All the logic required to control 
data movement between FIFOs and the RACEway 
resides in this device. 

pASIC is a trademark of Quicklogic. 

RACEway On-ramp: PitCREWjr 

• Used to interface between FIFOs and the 
RACEway protocol. 

• Drives/receives a RACEway port directly. 

• Simple master control, automatic slave 
response. 

• Moves data at 160 MByte/sec peak and 140 
MByte/sec sustained throughput. 

• Implemented in a Cypress CY7C384A, a 2Kgate 
100-pin FPGA. 

PitCREWjr is a simple full-duplex on-ramp to the 
RACEway fabric. The device has a standard RACE­
way port and FIFO port. The controller functions 
either as a RACEway slave, moving data between 
RACEway and local FIFOs or as a RACEway mas­
ter, again moving data between RACEway and local 
FIFOs. It connects to and drives a RACEway inter­
link port directly providing all required handshak­
ing and control signaling. PitCREWjr's local FIFO 
port consists of a 32-bit bidirectional data bus and 
control signals for moving data between PitCREWjr 
and industry-standard FIFO components. The Pit­
CREWjr has no programmable internal registers. 
Internal PitCREWjr state machines assemble and 
disassemble the route, address, and data long words 
embedded in the RACEway protocol. RACEway 
mastering is accomplished by controlling a single in­
put signal. 

Mercury Computer RIC-RINO 
Component Files 

Data files are available for the RIC- RINO RACE­
way on-ramp chipset developed by Mercury Com­
puter. This chipset is superseded by the PitCREW 
RACEway On-ramp for new designs. The two nec­
essary items are a PROM file for the data path 
EPLD definition and a .CHP file for a CY7C384A 
pASIC which replaces the FPGA specified by Mer­
cury. These files are provided on request. 

8-178 



Interfacing to RACEway: PitCREW 

PitCREW is intended for engineers who are design­
ing an I/O circuit for use as an "on-ramp" to the 
RACEway switching fabric. This document illus­
trates a simple but complete FIFO interface to 
RACEway. This design can be used as described or 
as the starting point for custom RACEway interface 
development. This application note describes: 

• The design specification for the PitCREW I/O 
Controller. 

• Electrical information for designing a FIFO­
based I/O circuit with the PitCREW Controller. 

Reference Documents 

Use this application note in conjunction with the lat­
est Cypress data books and data sheets and related 
published standards documents. These resources 
are as follows: 

• Cypress CY7C387P and pASIC380 Th1 Family 
data sheets 

• Cypress Programmable Logic Data Book 
1994/1995. For more information on using 
pASIC380 Family devices, see the Cypress 
Applications Handbook 

• RACEway Interlink - Data Link and Physical 
Layers, VITA 5-1994, available from the VITA 
Standards Organization (VSO) 

• Cypress CY7C4245 4K x 18 Synchronous FIFO 
data sheet 

• The VMEbus Specification, VITA 1-1994 

• Cypress CY74FCT162H50lT data sheet 

• Cypress CY7B991O Low Skew Clock Buffer data 
sheet 

• Front Panel Data Port Electrical and Physical 
Layers VITA 17 - 199x 

RACEway On-Ramp System Overview 

In general, this on-ramp is an I/O data port for a 
RACEway fabric. It defines a simple FIFO interface 
which is a slave to its RACEway port. Transactions 
cannot be initiated via the FIFO interface. Instead, 
the on-ramp has a DMA engine that moves blocks 
of data between RACEway nodes and its I/O port. 
This DMA engine is set in motion by commands re­
ceived over the RACEway fabric. Data move in­
structions can be issued directly to the RACEway 
port, or placed in the memory of another RACEway 
node in the form of a linked list. This on-ramp 
should be considered a slave board whose function 
is controlled from a program executing on one or 
more RACEway nodes. 

The on-ramp is comprised ofthe PitCREW I/O con­
troller, an input FIFO, an output FIFO, and a bi­
directional transceiver with synchronizing latches. 
Figure 1 outlines the major components of the on­
ramp. 

The PitCREW Controller is implemented in a Cy­
press CY7C387P FPGA. All the logic required to 
control data movement between the FIFOs and the 
RACEway fabric resides in this device. PitCREW 
drives the RACEway fabric directly and implements 
the features described in the remaining sections. 
The architecture of a sample interface using Pit­
CREW is shown in Figure 2. 

Each FIFO is implemented with a pair of 
CY7C4245 4K x 18 Synchronous FIFOs. The trans-

8-179 



"1:: if ~ Interfacing to RACEway: PitCREW 
~CYPRESS ================ 

Raceway Connector (to VME P2) 

Four 4Kx18 FIFOs 

Figure 1. Components of a Sample I/O Interface 

ceiver function is handled by a pair of 
CY74FCT162H501 registered transceivers. The 
FPGA and the FIFOs are available in 0.5-mm lead 
pitch TQFP packages (144-lead and 64-lead, re­
spectively). The transceivers are available in a 
56-lead SOIC pack. 

Features 

The on-ramp allows for autonomous DMA transfer 
through asynchronous data FIFOs. 1tansfers can be 
from RACEway to FIFO, FIFO to RACEway, or 
both (full duplex on the user side of the FIFOs, half 
duplex over RACEway). Features of the on-ramp 
circuit include: 

• A DMA engine capable of routing a data stream 
between an external device and any node in the 
RACEway fabric. 

• 160 MB/sec peak and 140 MB/sec sustained 
throughput. 

• A 40-MHz, 32-bit cable interface, compatible 
with the Front Panel Data Port (FPDP) Stan­
dard. 

• Flow control, synchronization siguals, and user 
programmable bits available over the cable in­
terface. 

• Ability to write status to a RACEway memory 
location (for local polling) or to a mailbox loca­
tion (to cause an interrupt). 

• Optimal use of the crossbar network bandwidth 
by automatically buffering blocks of data for 
burst crossbar transfers at 160 MB/sec. 

• Ability to act as a RACEway slave so a RACEway 
node anywhere on the network fabric can set up, 
control, or test the operation of the board. 

Operation 

The PitCREW Controller provides DMA opera­
tions on the RACEway Interlink, interfacing either 
an input FIFO, an output FIFO, or both to the 

8-180 



~~YPRESS~~~~~~~~~I~n~te~rl:~a~Ci~n~g~to~RA~C~E~W~a~y~:~p~it~C~RE~W= 
Raceway 

RDCONIO 
RPLYIO 
REal 
REao 
STROBIO 
XCLKI 
XRESETIO 
XSYNCI 

PitCREW Controller 

Figure 2. Architecture of a Sample Input Interface Using PitCREW 

RACEway. Control signals are provided for the user 
side of the FIFOs, which can run asynchronously to 
the RACEway. 

PitCREW always functions as a transaction master 
on the RACEway when it is moving data, and bursts 
at the full 160 megabyte per second rate. It can be 
operated in linked-list fashion, fetching a new com­
mand packet from the RACEway at the completion 
of the current one. Each command packet consists 

of a word count, the new contents of the Control 
Register, the data route and address, and the next 
command packet route and address. 

The linked list of command packets is built in 
memory accessible over the RACEway fabric. The 
DMA engine is started by a RACEway master writ­
ing a load and go operation specifying the route and 
address of the first packet directly into the Pit­
CREW Controller. The Controller then fetches and 

8-181 



-= W 2 Interfacing to RACEway: PitCREW 
~rcYPRESS =============== 

executes from the linked list until a command pack­
et is fetched with the GO bit reset. The linked-list 
structure is shown in Figure 3. 

A simpler control alternative is to write the "Data 
Address," "Data Route," and "Word Count" regis-

Command Packet 
Word Count 

ControlNector 

Data Address 

Data Route 

ters each time a DMA transfer is desired. Writing 
the "Word Count" register will cause a DMA trans­
fer to start. 

For reads from the cable interface, as shown in Fig­
ure 4, the controller counts valid words as they are 
placed into the input FIFO. When the counter 

Next Command Packet Address ::::t-Next Command Packet Route 

Reserved 

Reserved 

p 

Command Packet 

Word Count 

ControlNector 

Data Address 

Data Route 

Next Command Packet Address Q-Next Command Packet Route 

Reserved 

Reserved 

• 
Command Packet 

Word Count 

ControlNector 

Data Address 

Data Route 

Next Command Packet Address 

Next Command Packet Route 

Reserved 

Reserved 

Figure 3. Linked List Operation 

8-182 



;;; ~ Interfacing to RACEway: PitCREW 
_,CYPRESS ============== 

Output FIFO 
DO:l] DO:l] 

Input FIFO 
0[0:1] D[O:l] 
0[2:3] D4:5 D4:5 D[2:3] 
0[4:5] D8:9 D 8:9 D[4:5] 
0[6:7] D 12:13 D 12:13 D[6:7] 

D 16:17 D 16:17 0[8:9] 
D 20:21 D 20:21 

D[8:9] 
0[10:11] 

D124:251 D 24:25 
D[10:11] 

0[12:13] 
D[28:291 D 28:29 

D[12:13] 
0[14:15] D[14:15] 

Output FIFO 
D2:31 nr::>'::11 

Input FIFO 
0[0:1] D[O:l] 
0[2:3] D 6:7 D[6:71 D[2:3] 
0[4:5] D 10:11 D 1 :11 D[4:5] 
0[6:7] D 14:1 D 14:15 D[6:7] 
0[8:9] D 18:19 D 18:19 D[8:9] 

0[10:11] D 22:23 D 22:23 D[10:11] 
D 26:27 D 26:27 0[12:13] 
D 30:31 D 30:31 

D[12:13] 
0[14:15] D[14:15] 

I 74FCT16501 I 

§ 
I 74FCT16501 I 

~ 
Cable Interface 

Figure 4. Example-Connecting the FIFOs to a Cable Interface 

reaches 2K bytes, data is read from the input FIFO 
by PitCREW and written to the RACEway as a burst 
operation. The controller accepts a "data valid" in­
put (RXV ALID) for qualifying input FIFO loading, 
as well as a sync input pin (RXSYNC) allowing for 
an external event to start the acquisition. 

For writes to the cable interface, a "suspend" signal 
(TXSUSPEND) is provided for throttling the read 
operation of the cable side of the output FIFOs. 
When the Programmable Almost Full pin (TFPAF) 
on the output FIFO indicates to PitCREW that 
there is room in the FIFO, a burst operation trans­
fers data from the RACEway to the output FIFO to 
fill it up. PitCREW provides the output FIFO inter­
face signals, as well as the ability of placing a sync 

marker (SET_SYNC) in the output FIFO for fram­
ing the data. 

Two user-programmable I/O bits (PIO[2:1]), are 
available for data tagging or other application­
specific purposes. These bits may be individually 
programmed via the PitCREW Control Register to 
be either inputs or outputs. These bits may be used 
to tag command packets as they are executed. For 
example, headers and data may be assigned differ­
ent tags. 

It is possible to perform a Status Write operation in 
which the DMA status is written to a memory loca­
tion specified by the PitCREW data route and ad­
dress registers. It is accomplished by controlling bit 
25 of the word count field of a linked-list command 

8-183 



.,.-. ~ .. Interfacing to RACEway: PitCREW 
rcYPRESS ============== 

packet. If bit 25 is zero, the linked list entry is a 
"write status" command instead of a DMA move 
command. This feature is provided for semaphore 
operations, and is a mechanism for signaling DMA 
complete to a RACEway process. 

Also provided is the ability to read and write the in­
ternal registers of the PitCREW, to write to the out­
put FIFO, and to read from the input FIFO as a 

32 
PAF Input FIFO r-- ---::: AS EF f---

AE 
I- -WE 

OE 0[15:0] 

F[ 

Ef1-WXI 

ill 
RXI 

jCC 
I 1KQ 

I 
ID 

Input FIFO 

L: RS 
roo 

'---~ WE 
OE 0[15:0] 

F[ n WXI 
RXI 

V 

slave interface. These functions are all provided 
mainly for diagnostic purposes. 

Connecting the FIFO Interface 

Figure 5 describes the connections between the 
CY7C4245 FIFOs and the PitCREW Controller. 
For information on the CY7C4245 FIFO and its sig­
nals, see the Cypress CY7C4245 4K x 18 Synchro­
nous FIFO data sheet. 

PitCREW 

RFOE 
RFRE 
~ 

FIFIO[31:0] 

Rl'WE 
RFPAF 

fFEFR 
m=ID I---
TFRE I--

r--- TFPAF iFWE r----
r-- RFEF TFOE 

'--- PAF Output FIFO 
L---- EF OE r-

WE r-
m: r-

D[15:0] 

-r-E 
f[ 

WlU 
FOO 

ID 
1KQ 

.J, I 
ID -

EF Output FIFO 
OE 1-
WE t--
RE I-

D[15:0] 

-r-E 
f[ 

WlU 
FOO 

Figure 5. Connecting the FIFOs to the PitCREW Controller 

8-184 



'lz~YPRESS~~~~~~~~~I~n~te~rl:~a~C~in~g~to~RA~C~E~W~a~y~:p~1~'tC~RE~W~ 
Registers 

Register Address Map 

The following two tables display the addresses for 
the PitCREW registers for writing and reading sep­
arately. Most of the registers are 32 bits wide but 
mapped into 64-bit address space, since this is the 
granularity of a single cycle on the RACEway (there 
is no address bit 2). A few of the registers are true 
64-bit registers as discussed below. 

In the Register Write Address Map, entries desig­
nated NA (not available) are not writable locations. 
To perform a write operation to any of the register 
locations, with the exception of address OxlO, either 
a 64-bit or a 32-bit write should be specified with the 
data located in bits 63 through 32. 

Address OxlO is a special address to allow a 64-bit 
load and go operation. If a 64-bit write is specified 
to address OxlO, the Command Address register is 
loaded from bits 63 through 32 and the Command 
Route register is loaded from bits 31 through O. M­
ter the load-and-go write, the Controller will fetch 
the command packet pointed to by the route and ad­
dress in the load and go, and execute that packet 
(this assumes that the GO bit is set in the Command 
Address register data). 

A second method of initiating a transfer is to per­
form a 32-bit write of the Command Route register 
data at address OxlO (with route data located on bits 
31 through 0) followed by a write to address Ox18 of 
the Command Address register (with the GO bit 
set). 

DMA transfers can also be initiated by directly writ­
ing the Word Count register after loading appropri­
ate values in Data Route and Data Address regis­
ters. This method circumvents use of the linked-list 
convention of the PitCREW. 

It is possible to write directly from a RACEway mas­
ter to the output FIFO via address Ox28. Users are 
warned that the last long word of any RACEway 

write to this address will NOT be written to the out­
put FIFO. 

It is also possible to read from address Ox28 to move 
data from the input FIFO to the RACEway. 

Register Write Address Map 

Address [5:3] Bits 63 ....... 32 Bits 31 ....... 0 

000 NA NA 

001 Control NA 

010 Command Command 
Address Route 

011 Command NA 
Address 

100 Word Count NA 

101 TXFIFO NA 

110 Data Route NA 

111 Data Address NA 

Register Read Address Map 

Address [5:3] Bits 63 ....... 32 Bits 31 ....... 0 

000 Status Status 

001 Control Control 

010 Command Command 
Route Route 

011 Command Command 
Address Address 

100 Word Count Word Count 

101 RXFIFO RXFIFO 
entryn entry n+1 

110 Data Route Data Route 

111 Data Address Data Address 

Reading from all addresses except 0x28 will return 
the same data replicated on the upper and lower 
32-bit words. Reading from address Ox28 will return 
the next two consecutive input FIFO entries (64 
bits). This is primarily for diagnostic purposes. 

8-185 



Command Route Register 

31 28 25 22 19 16 13 

Route Route Route Route Route Route Route 

0 1 2 3 4 5 6 

The Command Route register is used by the Pit­
CREW to retrieve the next command packet in the 
linked list. The format of this register is the standard 

Command Address Register 

31 28 27 

Interfacing to RACEway: PitCREW 

10 7 4 3 2 1 0 

Route Route Broadcast Routing 0 

7 8 Accept. Code Priority 

format from the RACEway interlink standard VITA 
5 -1994. Bit 0 must always be reset to zero in this 
register. 

3 2 1 0 

Width/Alignment Address Go Read Locked 

The Command Address register is used to specify 
the address of the next command packet in the 
linked list. The Width/Alignment, Address, and 
Locked fields are the same format as specified in the 
RACEway interlink standard. When a command 
packet is fetched (or written into the registers) with 
the Go bit set, the next command packet will be 
fetched at the completion of the current command 

Data Route Register 

31 28 25 22 19 16 13 

Route Route Route Route Route Route Route 

0 1 2 3 4 5 6 

The Data Route register contains the route for the 
data packet to be transferred. The format is the 

Data Address Register 

31 28 27 

Width/Alignment Address 

The Data Address register contains the address for 
the data packet to be transferred. The format is the 
same format as specified in the RACEway interlink 
standard. The Transmit bit specifies the direction of 

3 

packet. The last command packet fetched in a linked 
list should have the Go bit reset. 

The Read bit must always be set to a one to specify 
reading a command packet. Also, the Locked bit 
should always be set to a one, specifying that the 
fetch is not locked. 

10 7 4 3 2 1 0 

Route Route Broadcast Routing Broadcast/ 

7 8 Accept. Code Priority Single 

same as specified in the RACEway interlink stan­
dard. 

2 1 0 

Reserved Transmit Locked 

the transfer: when it is set, data is read from the 
RACEway and written to the output FIFO. When it 
is reset, data is read from the input FIFO and writ­
ten to RACEway. 

8-186 



~~YPRESS~~~~~~~~~In;te;rl;a;C;in;g;to~RA;C;'E;W;a;y;:;p1;·tC;RE~W~ 

Status Register 

Active Query 
Bit Function HIGH Control Description 

31:29 Reserved 

28 Read Error Yes 

27:26 PIO[2:1] 

25:24 Reserved 

23 Output FIFO Great- Yes 
erThan Zero 

22 Ready In Yes 

21 Valid Packet Yes 

20 Overflow Yes 

19 Input Suspended Yes 

18 Input FIFO Greater Yes 
Than Zero 

17 Reserved 

16 Reserved 

15:4 Board Type 

3:0 Board Rev 

The Query Control column displays whether the bit 
can be queried under either slave (S) control, 
linked-list control (LL), or both (SILL), The follow­
ing paragraphs discuss the different fields in the sta­
tus register. 

The Read Error bit is set when an error is detected 
during a RACEway transfer. It is cleared either by 
hardware reset or by writing the control register. 

The PIO [2:1] field is used to read the state of the 
PIO pins when these pins are operated in input 
mode. 

The Output FIFO Greater Than Zero bit is con­
nected directly to the TFEFL pin of PitCREW. 

SILL Error reading command or data 

SILL User controlled input bits 

SILL Data present in output FIFO (TFEFL pin) 

SILL Cable interface ready (RXRDY pin) 

S Command Packet has valid format "Not 
Valid" cleared by a correct packet 

SILL Input FIFO overflow 

SILL Input FIFO almost full (RFPAF) 

SILL Data present in input FIFO (dynamic) 

Reserved - read as zero 

Reserved - read as zero 

SILL OxOlO=PitCREW 

SILL Board Revision 

The Ready In bit is connected directly to the 
RXRDY input pin of PitCREW. 

The Valid Packet bit gets set when a valid packet is 
fetched. A valid packet is defined as containing a 
valid packet field in the Word Count register. 

The Overflow bit is set when a input FIFO overflow 
occurs. This bit can be cleared by a hardware reset 
or a software reset of the Input FIFO in the Control 
register. 

The Input Suspended bit is essentially the Pit­
CREW RFPAF pin synchronized to the EXT _ CLK. 

The Input FIFO Greater Than Zero bit is an inter­
nally generated input FIFO not empty signal. 

8-187· 



• ~ Interfacing to RACEway: PitCREW 
~ CYPRESS =============== 

Control Register 

Active Load 
Bit Function IDGH Control 

31:30 PIO Enable[I:0] Yes SILL 

29:28 PIO[2:1] Data SILL 

27 Reserved 

26 Output Reset Yes SILL 

25 PIO Cntl Enable Yes SILL 

24 Input Reset Yes SILL 

23 Sync Wait Yes SILL 

22 Ready Out Yes S 

21 StopDMA Yes S 

20 Reserved 

19 Sync Out Yes SILL 

18 Reserved 

17 RSVD20ut No SILL 

16 Reserved 

15:0 RuptVector SILL 

The Load Control column displays whether the bit 
can be loaded under either slave (S) control, 
linked-list control (LL), or both (SILL). The fol­
lowing paragraphs discuss the different fields in the 
Control Register. 

The PIO Enable[1:0] field provides individual di­
rection control over the two PitCREW program­
mable I/O pins. When a PIO Enable[I:0] bit is de­
fined as output, the value driven out of that PIO pin 
is specified in the PIO[2:1] Data field. In order to 
change either the PIO[2:1] Enable or PIO[2:1] Data 
fields the PIO Cntl Enable bit must be set. Writes 
and link-list loads to the control register with the 
PIO Cntl Enable bit reset will not affect the 
PIO[2:1] Enable and PIO[2:1] Data fields. 

The Output Reset bit performs a reset of the output 
FIFOs and the associated logic internal to the 
PitCREW Controller. Th perform a reset, a one is 

Description 

User bits direction: 0 = In, 1 = Out 

User controlled data output 

Self-pulsed output FIFO reset 

Mask for controlling user outputs 

Self-pulsed input FIFO reset 

Self-pulsed Wait For Sync trigger for the in-
put FIFO logic 

Enable transfers 

Stop operation in progress--current packet 
data may be corrupted 

Reserved for future use 

Self-pulsed signal setting Send Sync with 
next output FIFO data 

Reserved for future use 

For use as a general purpose output pin. 

Reserved for future use 

Interrupt control 

written to the Output Reset bit. It is not necessary 
to follow this with a write of zero-the Output Reset 
bit is self-pulsed. This reset will be followed by an 
output FIFO load cycle to load the watermark value 
of the programmable flags. 

The Input Reset bit performs a reset of the input 
FIFOs and the associated logic internal to the 
PitCREW Controller. Like the Output Reset bit, 
the Input Reset bit is self-pulsed. Also, a program­
mable flag load cycle is not performed for the input 
FIFO since the PitCREW Controller does not have 
access to the data input of the input FIFO devices. 

The Sync Wait bit is a self-pulsed bit that puts the in­
put FIFO interface logic in the armed state. Input 
FIFO write enable (RFWE) will not go active until 
a sync pulse is input on the RXSYNC pin (synchro­
nous to EXT_CLK). 

8-188 



-=Ok .~ Interfacing to RACEway: PitCREW 
,-cYPRESS ============= 

The Ready Out bit is used to set and reset the NRDY 
output pin. The pin will be inverted from the register 
bit. It is intended that the cable be driven through an 
inverting open-collector buffer, and then brought 
back into the RXRDY pin. Note that this bit can 
only be modified by performing a slave write-not 
via linked-list load. 

The Stop DMA bit will stop a transfer in process. 
The transfer can then be continued or aborted. The 
integrity of the data packets may be corrupted if 

Word Count Register 

Bit Word Count Reg 

31:27 Reserved Reserved 

used in conjunction with the Output Reset or Input 
Reset bits in this register (an abort of the command 
packet). 

The Sync Out bit allows for a sync marker to be writ­
ten into the output FIFO to tag the beginning of a 
data frame. This sync marker moves through the 
FIFO with the data. 

The RSVD2 Out bit is inverted and connected to the 
RSVD2 pin of the PitCREW It is for use as a pro­
grammable output pin. 

Function 

26 Bit Bucket Discard output data 

25 Write 1:ype 1 = Data Write, 0 = Status Write 

24:21 Valid Packet Field Must be equal to binary '0010' 

20 Reserved Reserved 

19:0 Word Count [19:0] Number of 8-byte words to write (Up to 8 Mbytes) 

The Word Count register can be loaded linked-list 
style, or it may be written or read directly via the 
RACEway. The following paragraphs describe the 
Word Count Register fields in greater detail. 

The Bit Bucket bit, when set, will cause the 
PitCREW output logic to discard the output data. 
Data will be read from the RACEway but not writ­
ten into the output FIFOs. This is useful for diag­
nostic purposes. 

The Write 1Ype bit is normally set to a one to per­
form data writes, however by resetting this bit, a sta­
tus write will be performed. During this write, bits 
31 through 16 of the Status register are concate­
nated with bits 15 through 0 of the Control register 
(the Rupt field) and written to the route and address 
specified in the Data Route and Data Address regis­
ters. This is useful for end of transfer notification, 
and is also a method of performing RACEway in­
terrupts. 

The Valid Packet Field is used to detect runaway 
linked lists. The Word Count register is the first reg­
ister loaded in a linked list. If the Valid Packet Field 

fetched in the command packet is not equal to 
binary '0010', then the data transfer is never started 
and the Valid Packet bit in the Status register is 
cleared indicating an error. 

The Word Count field is loaded with the number of 
8-byte (64-bit) words to be transferred. In the output 
direction, the PitCREW Controller checks the 
TFPAF signal to see if there are 576 empty slots 
(2304 bytes) available in the output FIFOs. An out­
put transfer cycle will be initiated when the number 
of available slots is at least 576 (which is 512 data 
slots plus 64 sync marker slots corresponding to 
2304 bytes). The size of the transfer will be equal to 
the lessor of 2K bytes or the value programmed into 
the Word Count register. For input cycles, the Con­
troller actually counts the number of entries in the 
input FIFOs by counting the number of EXT _ CLK 
rising edges with RXV ALID active. The pins 
RXRDY and RXSYNC are also used to define valid 
input data entries. An input transfer cycle is initi­
ated if the number of entries in the input FIFO is 
equal to the value in the Word Count Register or 2-
Kbytes, whichever is lower. 

8-189 



Signals 

The 108 signal pins of the PitCREW controller can 
be divided into six main groups: 

tus flag in the output direction. Setting this value is 
not possible in the input direction since there is no 
data bus connection to the inputs of the input FI­
FOs. Instead, PitCREW counts valid entries as data 
is clocked into the input FIFOs. • RACEway interface signals 

• Output FIFO interface signals 

• Output FIFO control signals 

• Input FIFO interface signals 

• Input FIFO control signals 

• Cable interface signals 

The RACEway interface signals provide a port to 
the RACEway fabric with full 160 megabytes per 
second capability. These signals are synchronous to 
the RACEway clock. The RACEway clock frequen­
cy is 40 MHz. Table 1 lists these signals. 

The output FIFO control group provides signals to 
control data being read from the output FIFOs 
(TXRDY and TXSUSPEND), to provide indication 
that valid data has been read from the FIFOs 
(TXVALID), and to generate a start of frame 
marker to be placed into the output FIFOs 
(TXSYNC). 

The input FIFO control group provides signals to 
control data being placed into the input FIFOs 
(RXVALID, RXRDY), two indicators (opposite 
polarities) that show the input FIFOs are almost full 

The output and input FIFO interface groups pro- (RXSUSPEND, RXSUSPEND), and a start of 
vide strobes to reset, read, and write both sets of frame indicator which allows for the acquisition of 
FIFOs. The input and output FIFOs share the 32-bit data frames based upon an external event 
FIFO data bus (FIFIO[31:0]) and the asynchronous (RXSYNC). Also provided are two programmable 
external clock (EXT _ CLK). Pins are provided to in- data bits used for data tagging under software con-
terface to the input and output FIFO status flags trol (PIO[2:1]). An overflow pin is provided for in-
and to set the initial value of the programmable sta- put FIFO error indication (OVFLOW). 

Thble 1. PitCREW RACEway Signals 

Signal I/O Source Function 

RDCONIO I/O PitCREWor Indicates to the crossbar to three-state the data bus so read 
RACEway data can be driven. It also indicates when a read error has 

occurred. 

RPLYIO I/O PitCREWor Reply gives the RACEway crossbar permission to send the 
RACEway address or data over the data bus. 

REQI I RACEway Request In indicates that the RACEway crossbar is request-
ing control of the data bus. 

REQO 0 PitCREW Request Out is asserted by the master to request access to the 
crossbar data bus. 

STROBIO I/O PitCREWor Strobe indicates that address or data is being sent on the data 
RACEway bus. Strobe is sent by the master node after asserting REQO. 

XBIO[31:0] I/O PitCREWor Crossbar AddresslData. These lines must each have 22'-1 
RACEway series termination. 

XCLKI I RACEway Crossbar Clock provides the RACEway timing. 

XRESETIO I RACEway Reset input from the RACEway connecting port. 

XSYNCI I RACEway Crossbar Sync provides control phase information to the 
crossbar. 

8-190 



=a ~YPRESS~~~~~~~~~I;n;te;rl:;a;Ci;n;g;to;RA~C;E;W;a;y;:;p;it;C;RE~W= 

Output FIFO Interface 

The PitCREW Controller provides interfaces to the 
cable side of both the input FIFO and the output 
FIFO, also referred to as the user side ofthe FIFOs. 
The following section discusses the output FIFO in­
terface, both the user and RACEway sides. 

The output FIFOs can be reset by either the asser­
tion of the XRESETI 0 pin, or by writing to bit 26 in 
the PitCREW Control register. Either of these 
events will cause the TFRST signal to go LOW An 
output FIFO reset is always followed by a program­
mable flag load cycle where the flag data is present­
ed on the FIFIO data bus and the TFLD and TFWE 
signals asserted. The flag data consists of Ox240, 
which corresponds to 2304 bytes. This byte size is de­
termined by allocating 2 Kbytes (512 32-bit entries) 
for data and 256 bytes (64 entries) for sync markers. 
Note that this places an upper limit of 64 sync mark­
ers for every 256 data words which must be adhered 
to. 

The programmable flag load cycle requires that bits 
11 through 0 of the FIFO data bus (FIFIO[11:0]) 
must be connected to bits 11 through 0 of the FIFO 
that is used to send TFPAF to the Controller (only 
one of the TFPAF output FIFO flags needs to be 
connected to the Controller). Also, TFLD must be 
connected to both output FIFOs in order to prevent 
an extra write from being registered in the FIFO 
which does not supply TFPAF (the TFWE pin goes 
active during a programmable flag load cycle). 

The generation of the output FIFO read signal, 
TFRE, is based upon the TXSUSPEND, TXRDY, 
TFEFL, and TFEFH input signals. If all of these sig­
nals are high then TFRE goes active. The 
TXVALID output will go LOW in response to the 
read, if the sync input signal INV _SYNC is not ac­
tive (TXV ALID only goes active for valid data 

items-not sync markers). TXSUSPEND must be 
returned to the Controller synchronous to 
EXT _ CLK. In the case of the cable interface, an ex­
ternal synchronizing flip-flop is recommended be­
tween the cable signal SUSPEND and the TXSUS­
PEND pin on the Controller. TFRE is guaranteed 
to go inactive within four EXT _ CLKs from the ris­
ing edge of TXSUSPEND. 

The output FIFO programmable almost full flag 
TFPAF is used by the PitCREW Controller to burst 
data over the RACEway. A RACEway burst read 
cycle is initiated when there are at least 576 (2304 .;-
4) empty locations in the output FIFO. The size of 
the burst is equal to the lesser of 2 Kbytes or the val­
ue programmed into the PitCREW Word Count 
register. 

It is not required to use the PitCREW output FIFO 
interface. The data output side of the output FIFO 
may be clocked asynchronously to the EXT _ CLK as 
long as the TFPAF, and both of the FIFO empty 
flags TFEFL and TFEFH, are connected to the 
Controller. 

A sync marker may be placed in the output FIFO us­
ing the SET_SYNC, INV_SYNC, and TXSYNC 
pins. By setting the Sync Out bit in the Control regis­
ter, a sync marker will be driven out on the 
SET_SYNC pin. It is intended that this be con­
nected to one of the unused data inputs on the out­
put FIFOs (assuming that the FIFOs are organized 
18 bits wide). The output from the data bit should be 
connected to the INV_SYNC input pin. The 
TXSYNC output pin is simply an inversion of the 
INV _SYNC pin going active when the sync marker 
is read out ofthe FIFO. Also, the TXVALID output 
is gated by the INV _SYNC pin and will not go active 
for the sync marker FIFO read. Table 2 summarizes 
the output FIFO interface signals, and Table 3 sum­
marizes the output FIFO control signals. 

8-191 



Interfacing to RACEway: PitCREW 

Thble 2. PitCREW Output FIFO Interface Signals 

Signal I/O Source Function 

EXT CLK I External External clock synchronous to FIFO interface. Is common 
to both TX and RX FIFO logic. 

FIFIO[31:0] I/O PitCREW Data lines to the output FIFOs and from the input FIFOs 

TFLD 0 PitCREW Output FIFO load for programmable flags. 

TFOE 0 PitCREW Output FIFO output enable 

TFRE 0 PitCREW Output FIFO read enable 

TFRST 0 PitCREW Output FIFO reset 

TFWE 0 PitCREW Output FIFO write enable 

TFEFL,TFEFH .I FIFO Output FIFO empty flags from both FIFOs for PitCREW 

TFEF I FIFO Output FIFO empty flag for PitCREW status register 
reads-connect to either FIFO flag 

TFPAF I FIFO Output FIFO programmable almost full flag 

Thble 3. PitCREW Output FIFO Control Signals 

Signal I/O Source Function 

PIO[2:1] I/O PitCREW Programmable data bits used for software handshaking. 

NRDY 0 PitCREW Generates Ready out to cable interface. This HIGH-active 
signal should go through an inverting open-collector buffer to 
drive the cable NRDY signal. 

TXRDY I External Should be connected to the output of the NRDY open-collec-
tor buffer (to NRDYN). When active indicates that data can 
be read out of the output FIFO on the next EXT CLK. 

TXSUSPEND I External May be asserted to suspend reading out of the output FIFO 
(to throttle output data). 

SET_SYNC 0 PitCREW Sync (top of frame) marker output to connect to output FIFO 
data input to tag start of data frame in FIFO. 

INV_SYNC I FIFO Sync marker input from output FIFO (output of FIFO input 
signal SET_SYNC). 

TXSYNC 0 PitCREW Indicates the start of a data frame when asserted. Is inverted 
INV _SYNC for use in driving the cable interface SYNCN 
signal. 

TXVALID 0 PitCREW Indicates valid data has been read out of the FIFOs. May be 
used to drive the cable interface VALIDN signal. 

Input FIFO Interface 

The input FIFO interface may be reset either by the 
assertion of the XRESETIO pin, or by writing to bit 
24 in the Control Register. Either of these will cause 
the RFRST signal to go LOW Loading of the pro-

grammable flags is not performed in the input FIFO 
interface because the Controller does not have ac­
cess to the input FIFO input data path. 

The generation of the input FIFO write enable 
RFWE is based upon the RXRDY and RXVALID 

8-192 



.. ,~ Interfacing to RACEway: PitCREW 
, CYPRESS =============== 

pins, as well as the sync logic utilizing the RXSYNC 
pin. Ignoring the sync logic for the moment, if the 
RXVALID pin is LOW and the RXRDY pin is 
HIGH, the RFWE signal will go active (LOW). 
Note thatthe path from either ofthese two input sig­
nals to the RFWE output is purely combinatorial. 
RXV ALID is intended to be used to gate off individ­
ual writes into the input FIFO and RXRDY is in­
tended to be tied to the output of the open-collector 
buffer driven by the NRDY output (stating that the 
cable is ready). 

The above example assumes that the sync logic is 
disabled, that is the Sync Wait bit in the PitCREW 
Control register has not been set. If the Sync Wait bit 
is set, the logic generating RFWE will wait until a 
single EXT_CLK pulse on the RXSYNC is de­
tected. The first write will occur on the clock follow­
ing the assertion of the RXSYNC pin, if RXRDY 
and RXVALID are also active as described above. 

The PitCREW Controller does not use the input 
FIFO flags to determine when to initiate a RACE-

way write transfer. Instead, it counts valid input 
FIFO entries as defined in the above criteria and 
initiates a RACEway transfer upon detecting the 
lessor of 2 Kbytes or the value programmed into the 
PitCREW Word Count register. Data will be read 
from the FIFO and written to the RACEway until 
the word count reaches zero, the FIFO empties, a 
2-Kbyte boundary is reached, or the RACEway Re­
quest In signal is raised (indicating a "Kill" condi­
tion). Any of these conditions will cause the Request 
Out signal to be de asserted. 

When the word count reaches zero, the next com­
mand packet is fetched and operation continues if 
the GO bit of the PitCREW Command Address reg­
ister is set. Using two 4K X 16 FIFOs yields 16 
Kbytes of buffering which, at 120 MB/sec, corre­
sponds to 136 microseconds. Table 4 summarizes the 
input FIFO interface signals and Table 5 summa­
rizes the input FIFO control signals. Two other sig­
nals, RSVD2 and TXDIR, are described in Table 6. 

Thble 4. PitCREW Input FIFO Interface Signals 

In From/ 
Signal I/O Out To Function 

EXT_CLK I External External clock synchronous to FIFO interface. Is common to 
both TX and RX FIFO logic. 

FIFIO[31:0] I/O FIFO Data lines to the FIFO. 

RFLD 0 PitCREW Input FIFO load for programmable flags. This pin is a static 
high-level (no programmable load function performed). 

RFOE 0 PitCREW Input FIFO output enable. 

RFRE 0 PitCREW Input FIFO read enable. 

RSTRF 0 PitCREW Input FIFO reset. 

RFWE 0 PitCREW Input FIFO write enable. 

RFPAF I FIFO Programmable Almost Full Flag from FIFO. 

RFEF I FIFO Input FIFO empty flag. 

8-193 



Table 5. PitCREW Input FIFO Control Signals 

In From! 
Signal I/O Out To Function 

OVFLOW 0 PitCREW Indicates a input FIFO overflow has occurred. 

PIO[2:1] I/O PitCREW Programmable data bits used for software handshaking. 

PIOEN[2:1] 0 PitCREW Indicate (when LOW) that the PIO[2:1] pins are enabled. 

RXRDY I External Should be connected to the output of the NRDY open-collec-
tor buffer (to NRDY on the cable interface). When active 
(HIGH) allows data to be written into the input FIFO. 

RXSUSPEND 0 FIFO Asserted HIGH when the FIFO is almost full (127 words 
from full). 

RXSUSPEND 0 FIFO Asserted LOW when the FIFO is almost full (127 words from 
full). 

RXSYNC I External Indicates the start of a data ftame when asserted. 

RXVALID I External Indicates valid data is available to write to the FIFOs when 
low. Is used to dynamically qualify each data word written 
into the input FIFOs. 

Table 6. Miscellaneous Control Signals 

In From! 
Signal I/O Out To Function 

RSVD2 0 PitCREW Set/reset from bit 17 of the Control Register. This bit is in-
verted from the value programmed into the Control Register. 

TXDIR 0 PitCREW Used to indicate the direction of data transfer on the cable 
interface. 

Cable Interface Signal Description also included on the PitCREW Controller. Sources 
of data are required to read NRDY in hardware to 
ascertain that the interface is in the ready state. This 
is performed via the RXRDY pin on the PitCREW 
Controller. The free-running clock, STROB, is 
sourced by the source of the data bus and drives the 
EXT _ CLK pin of PitCREW. 

The PitCREW Controller can be connected to a bi­
directional cable interface compatible with FPDP 
(see Reference Documents section for related stan­
dard). This interface consists of a 32-bit data bus, 
two user-defined data bits for data tagging, a free­
running clock, and five control signals. The cable in­
terface supports multiple destinations, but the re­
quired arbitration is not described in this note. The 
following paragraphs describe how cable interface 
signals are related to PitCREW control signals. 

The source of the data (transmitter) drives the sig­
nal DIR LOW to indicate the direction is from the 
cable interface to the input FIFOs. This signal is in­
cluded on the PitCREW Controller. All sources and 
destinations drive the open-collector signal NRDY, 
which indicates that the cable is ready. This signal is 

A data synchronization signal, SYNC, is provided to 
frame data at the input FIFO. The input FIFO will 
wait until a single pulse of SYNC is detected, and 
then start to acquire data on the next assertion of 
VALID. The VALID signal is used to indicate that 
valid data is available to be input on a particular ris­
ing edge of STROB. SYNC and VALID are syn­
chronized to STROB (EXT_CLK) and connected 
to PitCREW pins RXSYNC and RXV ALID respec­
tively. 

8-194 



¥t: -~ Interfacing to RACEway: PitCREW 
-,CYPRESS =============== 

A suspend signal is provided to inform the data 
transmitter to stop sending data. The receiver as­
serts the SUSPEND signal when its buffer is almost 
full. The RXSUSPEND output of PitCREW pro­
vides this signaling. 

Pins 

Table 7 identifies the CY7C387P pinout for the Pit­
CREW Controller. 

Thble 7. Cypress CY7C387P Pinout 

Pin Signal Pin Signal Pin Signal Pin Signal 

1 FIFI0l7 37 XBI026 73 RXSUSPEND 109 NU/GND 
2 XBI0l7 38 NU/GND 74 TXSUSPEND 110 NU/GND 
3 FIFI0l4 39 XBI027 75 TXRDY 111 NU/GND 
4 XBI012 40 XBI025 76 RFRST 112 NU/GND 
5 XBI0l4 41 XBI030 77 NU/GND 113 RXSYNC 
6 FIFI0l2 42 VCC 78 TFEFH 114 VCC 
7 VCC 43 FIFI030 79 VCC 115 RFWE 
8 XBI0l6 44 XBI031 80 XRPLYIO 116 NRDY 
9 FIFl0l6 45 FIFI031 81 NU/GND 117 XBI05 
10 FIFIOll 46 XBI028 82 TFRST 118 XBI03 
11 XBI011 47 XBI029 83 XSTROBIO 119 XBI06 
12 FIFI0l8 48 FIFI028 84 XREQO 120 XBI09 
13 XBI0l8 49 FIFI029 85 NU/GND 121 FIFI06 
14 FIFI0l9 50 GND 86 TFPAF 122 GND 
15 GND 51 PI02 87 GND 123 FIFI07 
16 XBI019 52 PIOEN2 88 TXDIR 124 XBI07 
17 XRESETIO 53 FIFIOO 89 XREQ I 125 XBI08 
18 EXT CLK 54 GND 90 XCLKI 126 GND 
19 VCC 55 FIFI05 91 VCC 127 FIFI09 
20 RXRDY 56 FIFI02 92 RFPAF 128 PIOEN1 
21 RXVALID 57 FIFI04 93 TFEFL 129 PI01 
22 VCC 58 VCC 94 VCC 130 VCC 
23 XBI020 59 XBI02 95 XRDCONIO 131 FIFI08 
24 FIFI021 60 FIFI01 96 XSYNCI 132 FIFI03 
25 FIFI022 61 XBI04 97 OVFLOW 133 RSVD2 
26 FIFI023 62 XBIOO 98 RFRE 134 XBlOlO 
27 FIFI020 63 TFLD 99 RFOE 135 NU/GND 
28 XBI022 64 XBIOl 100 NU/GND 136 FIFI010 
29 FIFI024 65 SET SYNC 101 NU/GND 137 FIFI013 
30 GND 66 GND 102 GND 138 GND 
31 XBI021 67 TFWE 103 NU/GND 139 XBI0l5 
32 XBI023 68 INY SYNC 104 NU/GND 140 XBI0l3 
33 FIFI027 69 TXVALID 105 NU/GND 141 XTDI 
34 FIFI026 70 TXSYNC 106 NU/GND 142 XTDO 
35 FIFI025 71 TFRE 107 TFOE 143 RFLD 
36 XBI024 72 RXSUSPEND 108 NU/GND 144 FIFI015 

8-195 



~ 

9[ ,~ Interfacing to RACEway: PitCREW 
,CYPRESS================================ 

PitCREW Programming 
Considerations 

Direct access to the PitCREW DMA channel is 
gained by writing the Word Count register. Writing 
this register initiates a DMA transfer. Values pre­
viously written to the Data Route and Data Address 
registers are used for RACEway direction and head­
er information. The Word Count register specifies 
the transfer length. 

The PitCREW Controller can also operate in 
linked-list fashion, fetching a new command packet 
at the completion of the current one, as shown in 
Figure 3. Each command packet consists of a word 
count, the new contents of the Control register, the 
data route and address, and the next command 
packet route and address. 

The linked list of command packets is built in 
memory and a load-and-go operation specifying the 
route and address of the first packet is written to the 
64-bit location at address OxlO (the combined Com­
mand Route and Address register) to prime the op­
eration. The PitCREW then executes each element 
in the linked list until a command packet is fetched 
with the GO bit reset. The GO bit in the Command 
Address register instructs the Controller to fetch the 
next command packet at the destination specified 
the Command Address and Command Route regis­
ters. The last command packet in the linked list 
should have the GO bit reset. 

The Read bit in the Command Address register 
should always be set to a one, to specify reading the 
command packet from RACEway memory. All 
Lock bits should always be one specifying that op­
erations are not locked. 

The Data Route and Address registers specify the 
location in RACEway memory where the data pack­
et will be stored (input operation) or fetched (out­
put operation). The output bit in the Data Address 
register specifies the direction of operation to be ei­
ther input (reset to zero) or output (set to a one). 

Two user programmable I/O bits, PIO[2:1] are pro­
vided for data tagging or other application specific 
purposes. These bits may be individually pro-

grammed via the Control register to be either inputs 
or outputs, and the programming may be accom­
plished through direct writes to the Control register 
or under linked-list control. Assigning the data val­
ues under linked-list control allows for the tagging 
of the command packets as they are executed. For 
example, the first packet may be assigned a value 
that tags it as a header and subsequent packets may 
be tagged as data. 

In order to program the PIO bits, the PIO Control 
Enable bit must be set. Writes to the Control regis­
terwith the PIO Control Enable bit reset will not af­
fect either the direction (PIO Enable[1:0]) or the 
value (PIOdata[1:0]) fields. It is intended that the 
PIO bits be connected to the 33rd and 34th bits of 
the FIFOs. In this way they may be used by custom 
hardware to distinguish data packets. They cannot, 
however, be transferred to memory, which has a 
32-bit data organization. 

The Stop DMA bit may be set to pause or abort a 
DMA operation in progress. When set by a slave 
write operation to the Control register, the current 
DMA operation will be in a paused state. Resetting 
the Stop DMA bit at a later time will resume the op­
eration. Setting Output Reset and Input Reset bits 
while in the paused state will cause an abort to take 
place. Note that the integrity of the data packets 
may be violated after aborting an operation. 

The PitCREW Controller has the ability to write the 
status of the Controller to the RACEway memory 
location specified in the Data Route and Address 
registers. This is accomplished under linked-list 
control as a separate command packet and is the ba­
sic mechanism used for notification of end of 
packet. 

When a command packet is fetched that has bit 25 
in the Word Count register reset, a Status Write op­
eration will be performed. In this operation, bits 31 
to 16 of the Status register will be concatenated with 
bits 15 to 0 of the Control register (the Rupt vector) 
and written to RACEway memory. Note that the 
1tansmit bit in the Data Address register must be re­
set to zero specifying a write to RACEway memory 
as the direction. 

8-196 



~ Interfacing to RACEway: PitCREW 
~, CYPRESS ================ 

Status Write operations may be interspersed with 
actual data transfers in the linked list as a method of 
sending end of packet status to a controlling pro­
cess. The location specified in the Status Write op­
eration may be polled by the controlling process, or 
the location may be specified to be a mailbox inter­
rupt location for a given process on the RACEway. 
In this way, an end of packet interrupt may be gener­
ated to the requesting process via the linked list. If 

only the Rupt field is desired, the Data Width and 
Alignment bits in the Data Address register may be 
used. 

Timings 

Input Timing 

The following timing diagram describes the worst­
case timing parameters for the input interface. 

Symbol 

1 

2 

3 

6 

7 

8 

9 

, 
-... 2 ;--

-: 3 --, 

.... 6;.. 
RXSYNC -------~\ ~ 

.... 7:~ I 

RXVALID --------,, \~ 

... : 8 :..: 
----------~\: ' /~:---

, I i 
RXRDY 

RFWE 
":9:':~9 ... 

------~\' r 
----; __ ..J 

Parameter Min. 

EXT _ CLK clock period 25 

EXT _ CLK high width 10 

EXT_CLKlowwidth 10 

RXSYNC set-up time to EXT_CLK 8 

RXVALID set-up time to EXT_CLK 19 

RXRDY set-up time to EXT_CLK 21 

RXV ALID to RFWE delay 

Output Timing 

The following tjming diagram describes the worst­
case timing parameters for the output interface. 

8-197 

Max. Note 

A 

B 

13 A 



INV_SYNC '\ 
, 

11 , - :-, 
TXVALID -- ' 12 \-, , 

, 
TXSYNC -.; : 13W 

TFEFL,TFEFH ..;t 14:-, , 
-.; : 15 

, 
r4-

, 
16~ TFRE --' , 

TXRDY ~17;" 

TXSUSPEND --,: 18 ;4-

-1 -1 -2 -2 
Symbol Parameter Min. Max. Min. Max. Notes 

1 EXT _ CLK clock period 30 25 

2 EXT _ CLK high width 13 10 

3 EXT _ CLK low width 13 10 

11 EXT_ CLK to TXVALID delay 10 8 

12 INV _SYNC to TXVALID delay 13 11 

13 INY _SYNC to TXSYNC 10 8 

14 TFEFH, TFEFL set-up time to EXT _ CLK 10 8 

15 TFEFH, TFEFL to TFRE delay 12 10 

16 EXT _ CLK to TFRE delay 10 8 

17 TXRDY set-up time to EXT_CLK 10 8 

18 TXSUSPEND set-up time to EXT_CLK 10 8 A,C 

8-198 



= -. ~ Interfacing to RACEway: PitCREW 
,CYPRESS================================ 

Notes 

A. RXVALID to RFWE is a combinatorial path 
used to dynamically mask writes to the input 
FIFO. The delay for the path is specified above 
in symbol 9. Symbol number 7, RXVALID 
set-up time to EXT_CLK, includes a FIFO 
set-up time of 6 ns. 

B. RXRDY is intended to be a static signal 
displaying the ready status of the cable 
interface. 

C. TXSUSPEND must meet the set-up time 
specified in symbol 18. An external 
synchronizing flip-flop is recommended for the 
cable interface. The TFRE signal is guaranteed 
to transition to the inactive state within four 
EXT CLK periods from the rising edge of 
TXSUSPEND. 

Design Considerations 

This section describes the minimum requirements 
for the design of input and output interfaces. 

Basic Input Interface 

The simplest input interface requires only 
EXT CLK and data signals. However, the basic in­
terfa;;e must meet the following conditions: 

• EXT _ CLK is a free-running clock. 

DATA ----
FIFOs 

• The data stream must be continuous; the relative 
starting point within the data stream is arbitrary. 

• The aggregate data rate must not exceed the 
overall sustainable bandwidth. 

• Unused control lines must be set to the appropri­
ate state. In a basic synchronous interface, tie 
both RXVALID and RXSYNC LOW. With 
RXVALID tied LOW, data is valid on all cycles. 
With RXSYNC tied LOW, data transfers are not 
synchronized. 

Figure 6 illustrates a basic interface. 

Input Data Qualification with RXVALID 

The RXVALID signal should be asserted LOW 
when valid data is to be input. Figure 7 illustrates the 
use of RXVALID. Note that the user should moni­
tor the RXSUSPEND signal, which is a doubly-syn­
chronized version of the RFPAF pin, and stop writ­
ing into the input FIFO when RXSUSPEND goes 
active. 

Input Data Qualification with RXSYNC and 
RXVALID 

Figure 8 illustrates buffered interface using 
RXSYNC and RXVALID. If using the sync wait 
mode, data will not be written to the FIFO until the 
cycle after the first SYNC pulse is received. 

I------~ FIFIO[31 :0] 

FIFO Control lines PitCREW 
Controller 

RXSYNC 

RXVALID 

Figure 6. Basic Input Interface 

8-199 



~YPRESS~~~~~~~~~I;n;te;rl;a;Ci;n;g;to;RA;;C;E;W;a;y;:;p;it;C;RE;. ;W= 

DATA -----1 f--------1 FIFIO[31 :0] 

FIFOsf--____ --1 RFWE 

FIFO Control lines PitCREW 
Controller 

RXVALID RXVALID 

RXSYNC 

FIFIO 
~\~~\~~\~~\~~\~~\~~\~~C~~C~~C~~\_~\_ 

RXVALID \'-_________ ~'__ _____ _ 

Figure 7. Input Data Qualification with RXVALID 

DATA ----I 1-------1 FIFIO[31 :0] 
FIFO 

1-------1 RFWE 

FIFO control lines 
PitCREW 

Controller 

RXVALID ----;----,-----r.::;::;r-------I RXVALID 

RXSYNC --,-------Iln d-------l RXSYNC 

EXT_ClK --It----4------------1 

FIFIO 

RXVALID _________ ~r__\'__ ______ __ 

RFWE \L-________ ~r__\~ __________ __ 

Figure 8. Input Data Qualification With RXSYNC and RXVALID 

8-200 



~, ~ Interfacing to RACEway: PitCREW 
~;CYPRESS~================================~ 

Basic Output Interface 

The simplest output interface requires only 
EXT_CLK and data signals. However, the basic in­
terface must meet the following conditions: 

• EXT_CLK is a free-running clock. 

• The data stream must be continuous; the relative 
starting point within the data stream is arbitrary. 

• The aggregate data rate must not exceed the 
overall sustainable bandwidth. 

• Unused control lines must be set to the appropri­
ate state. 

In a basic synchronous interface, tie both 
TXSUSPEND and INV_SYNC LOW. With 

INV_SYNC 

TXSUSPEND tied LOW, data will be continuously 
read out of the output FIFO. With INV _SYNC tied 
LOW, a start of frame sync is not generated. Fig­
ure 9 illustrates a basic interface. 

Controlling Data 'fransmission with 
TXSUSPEND and TXSYNC 

Figure 10 illustrates an output interface with full 
controls. Reading out of the output FIFO can be 
controlled dynamically with the TXSUSPEND pin. 
The TXV ALID pin will be active when valid data is 
output from the FIFO. With the Sync Out bit set in 
the Control register, a sync marker will be written 
into the output FIFO. When the sync marker is later 
read out, the TXSYNC pin will go active and the 
TXV ALID pin will be invalid. 

DATA FIFOs FIFIO[31 :0] -DATA 
FIFO Control lines OFF --

EXT_ClK 

--

TXSUSPEN 

EXT_ClK EXT_ClK 

TXSUSPEND 

TXVALID TXVALID 
PitCREW 

Controller 

Figure 9. Basic Output Interface 

SET SYNC 
SET_SYNC DATA 

I NV_SYNC FIFIO FIFO Control lines FIFOs 

EXT_ClK 

TXSUSPEND 

TXSYNC TXSYNC f---t----t OFF 

TXVALID -- TXVALID 
PitCREW 

Controller 

OFF 

Figure 10. Output Interface with TXSUSPEND and TXSYNC 

8-201 

DATA 



-, ~ Interfacing to RACEway: PitCREW 
~,CYPRESS ================ 

Miscellaneous Design Information 

Clocking 

The crossbar clock, XCLKI, runs directly from the 
connector to the Cypress CY7B9910 Low Skew 
Clock Buffer chip. The clock outputs of this device 
are used by all on-board components that operate 

on the 40 MHz RACEway clock frequency. These 
outputs should be series terminated through 
22-ohm resistors. All loads on XCLKI should be 
connected in series with the daughtercard or P2 con­
nector as the source, and all loads should be within 
two inches of each other. The ideal configuration is 
illustrated in Figure 11. 

I Raceway connector (VME P2 connector) I 

XCLKI 

I FPGA r 
22Q 

I RxFIFO I 
22Q 

Cypress CY7B9910 

I RxFIFO r 
22Q 

I TxFIFO ~ 
22Q 

I TxFIFO r 22Q 

Figure 11. Distributing the XCLKI Clock 

8-202 



~ 

- -.,::4:. Interfacing to RACEway: PitCREW 
~'CYPRESS~================================~ 

RACEway VME J2/P2 Connector 

Table 8 describes the use of the VME J2/P2 connec­
tor pins for implementing RACEway. 

Table 8. RACEway VME J2/P2 Pin Assignments 

Pin Signal Pin Signal Pin 
Al XCLKI Bl +5 VOLTS Cl 
A2 GND B2 GND C2 
A3 XBI09 B3 C3 
A4 XBI08 B4 C4 
AS GND B5 C5 
A6 XBI06 B6 C6 
A7 GND B7 C7 
A8 XBIOlO B8 C8 
A9 XBI04 B9 C9 
AlO GND BlO ClO 
All XBIOS Bll Cll 
A12 XBI03 B12 GND C12 
A13 GND B13 +5 VOLTS C13 
A14 RDCONIO B14 C14 
A15 Reserved B15 CIS 
A16 GND B16 C16 
A17 XBIOO B17 C17 
A18 XBI0l5 B18 C18 
A19 GND B19 C19 
A20 XBI024 B20 C20 
A21 XBI031 B21 C21 
A22 GND B22 C22 
A23 XBI028 B23 C23 
A24 XBI027 B24 C24 
A25 GND B25 C25 
A26 XBI022 B26 C26 
A27 XBI020 B27 C27 
A28 GND B28 C28 
A29 XBI0l8 B29 C29 
A30 XBI0l7 B30 C30 
A31 GND B31 GND C31 
A32 XBI0l3 B32 +5 VOLTS C32 

pASIC is a trademark of Quicklogic. 

8-203 

Signal 
XRESETIO 
Reserved 
XSYNCI 
GND 
XBI07 
GND 
XBIOll 
GND 
STROBIO 
RPLYIO 
GND 
REQI 
REQO 
GND 
XBI02 
XBI01 
GND 
XBI012 
XBI025 
GND 
XBI029 
XBI030 
GND 
XBI026 
XBI023 
GND 
XBI019 
XBI021 
GND 
XBI0l6 
XBI0l4 
GND 



Interfacing to RACEway: PitCREWjr 

• Used to interface between FIFOs and the 
RACEway protocol. 

• Drives/receives a RACEway port directly. \ 

• Simple master control, automatic slave re­
sponse. 

• Moves data at 160 MByte/sec peak and 140 
MByte/sec sustained throughput. 

• Implemented in a Cypress CY7C384A, a 2K gate 
lOO-pin FPGA. 

Reference Documents 

When using this application note refer to the follow­
ing documents for more information: 

• Cypress CY7C384A and pASIC380 lM family 
data sheets. 

• RACEway Interlink - Data Link and Physical 
Layers, VITA 5-1994, available from the VITA 
Standards organization (VSO) 

• Cypress CY7C4245 4K x 18 Synchronous FIFO 
data sheet 

General 

PitCREWjr is a simple full-duplex on-ramp to the 
RACEway fabric. The device has a standard RACE­
way port and FIFO port. The controller functions 
either as a RACEway slave, moving data between 
RACEway and local FIFOs or as a RACEway mas­
ter, again moving data between RACEway and local 
FIFOs. It connects to and drives a RACEway inter­
link port, directly providing all required handshak­
ing and control signaling. PitCREWjr's local FIFO 
port consists of a 32-bit bidirectional data bus and 
control signals for moving data between PitCREWjr 
and industry-standard FIFO components. The data 
flow between the RACEway and FIFOs is shown in 
Figure 1. The PitCREWjr has no programmable in­
ternal registers. Internal PitCREWjr state ma­
chines assemble and disassemble the route, address, 
and data long words embedded in the RACEway 
protocol. RACEway mastering is accomplished by 
controlling a single input signal. Figure 2 shows the 
block diagram for PitCREWjr and Table 1 shows the 
driver and signal name description for each pin on 
the PitCREWjr controller. 

-;-f===::==:===1""""",,,,,,,,,,,,~,,,, Master Writes and Slave Re\ads 
Input FIFO 

PitCREWjr 
Output FIFO 

/ 
Master Reads and Slave Writes 

Figure 1. PitCREWjr Data Flow 

8-204 



~ Interfacing to RACEway: PitCREWjr 
_,CYPRESS =============== 

Signal 
FIFIO[31:0] 
XBIO[31:0] 
CLK 
RESET 
SYNC 
REPLY 
REQI 
STROBE 
RDCO 

REQO 
OFAF 
OFWE 
PFIFO 
IFAE 
IFOE 
IFRE 
COUNT 
MR ERR 
MGO 
SLAVE 
SRE 
ROUTE 
ADDR 
MASTER 

ROUTE 

ADDR ClK 
RESET 
SYNCH 

RACEway ~R~E~PrrL Y-,---. 
PFIFO FIFO 

REal 
Control STROBE 

FIFIO 

Source 
PitCREWjr/Input FIFO 
PitCREWjr/RACEway 
RACEway 
RACEway 
RACEway 
PitCREWjr/RACEway 
RACEway 
PitCREWjr/RACEway 
PitCREWjr/RACEway 

PitCREWjr 
Output FIFO 
PitCREWjr 
User Hardware 
Input FIFO 
PitCREWjr 
PitCREWjr 
PitCREWjr 
PitCREWjr 
User Hardware 
PitCREWjr 
User Hardware 
PitCREWjr 
PitCREWjr 
PitCREWjr 

Figure 2. PitCREWjr Block Diagram 

Table 1. PitCREWjr Interface Signals 

+­
Data 
Reg. 
x 32 

Function 
FIFO Data Bus 
RACEway Data Bus 
Crossbar clock 
Reset from RACEway 

RO"OO 
REOO 

XBIO 

ClK 

Crossbar Sync - Provides control and phase information 
Gives permission to send the address or data over the data bus 
Request In indicates the RACEway crossbar is requesting control of the data bus 
Strobe indicates address or data is being sent on the data bus. 
Indicates to the crossbar to three-state the data bus so read data can be driven. It also 
indicates when a read error has occurred. 
Request Out indicates the PitCREWjr is requesting control of the data bus 
Output FIFO almost full 
Output FIFO write enable 
Program output FIFO almost full flag 
Input FIFO almost empty 
Input FIFO output enable 
Input FIFO read enable 
Byte counter for master transfers 
Error occurred on a master read 
Master GO - starts master state machine 
Slave transaction in progress 
Slave read enable 
PitCREWjr expecting route to be placed in FIFO data bus 
PitCREWjr expecting address to be placed on FIFO data bus 
Master transaction in progress 

8-205 



=' -~ Interfacing to RACEway: PitCREWjr 
~rcYPRESS ==============~=' -, 
FIFOs 

The timing generated by PitCREWjr is designed to 
match with CY7C4245 4Kx 18 synchronous FIFOs. 
PitCREWjr signals can be connected directly to 
data and control signals of these FIFO components 
as shown in Figure 3. The input FIFO PAE flag 
should be set to 2. The output FIFO PAF flag should 
be set at least 16 entries from full. 

Slave Function 

The slave function of PitCREWjr is accessed when­
ever an incoming RACEway transaction is received 
on the RACEway port (REOI is asserted to Pit­
CREWjr) During a slave transaction, the Pit­
CREWjr asserts a status output pin called 
"SLAVE," which indicates that the PitCREWjr 
slave state machine is active. When a route word is 
received from the RACEway, it is driven onto the 
FIFO data bus. A PitCREWjr output called 
"ROUTE" is asserted for one XCLKI clock to indi­
cate that a valid route word is present. When an ad­
dress word is received from the RACEway, Pit­
CREWjr drives this address word onto the FIFO 
data bus. An output called ''ADDR'' is asserted by 
PitCREWjr for one XCLKI clock to indicate that a 
valid address word is present on the FIFO data bus. 
PitCREWjr then acknowledges the RACEway with 
"REPLYIO." 

The RACEway protocol communicates data direc­
tion in bit 1 of the address word. PitCREWjr's slave 

MGO 
MASTER 
SLAVE 
COUNT 

If. ~ 
FIFOs 

FIFO Data Bus 

Ii FIFO Cntl 11 

ROUTE 
ADDR 

MR_ERR 
SRE 

state machine branches on this bit value. If the di­
rection of the data is from the RACEway to the local 
FIFO, the transaction is a slave write (bit 1 of ad­
dress word is false). As data arrives from the RACE­
way, it is registered and driven onto the FIFO data 
bus. (See Figure 2.) The PitCREWjr writes the data 
received from the RACEway to the output FIFO by 
asserting "OFWE" each time a valid word is ready 
on the FIFO data bus. A PitCREWjr input called 
"OFAF" is used to indicate to PitCREWjr that the 
output FIFO is full. Assertion of "OFAF" causes 
PitCREWjr to send a kill request to the RACEway 
master, effectively ending the RACEway transac­
tion. "OFAF" would typically be connected to the 
output FIFO programmable almost full flag. On 
completion of the RACEway data transfer, Pit­
CREWjr three-states the FIFO data bus and 
deasserts the "SLAVE" status output. 

If the direction of the data is from the input FIFO 
to the RACEway (a slave read, bit 1 of address word 
is true), then the FIFO data bus is three-stated by 
PitCREWjr and PitCREWjr asserts the signal 
"IFRE" and then "IFOE" to enable data from the 
input FIFO onto the FIFO data bus. PitCREWjr as­
serts this signal pair each time a new word is re­
quired from the FIFO. If the input FIFO becomes 
empty, as signaled by the "IFAE" PitCREWjr input, 
PitCREWjr stops reading the input FIFO for the 
balance of that transaction and issues an error signal 
to the RACEway master on completion of the trans­
action. The kill request is also sent in this case, so 
that the master ends the transaction soon after the 

;1-
PitCREWjr \r 

RACEway 

Figure 3. PitCREWjr Signals 

8-206 



-., ~ Interfacing to RACEway: PitCREWjr 
,CYPRESS =============== 

underflow. On completion of the RACEway data 
transfer, PitCREWjr deasserts the "SLAVE" status 
output. 

The intent of the "SLA VB" pin is to indicate a slave 
transaction in progress. It can be used to tag incom­
ing data, select a data destination, or as a board logic 
control input. 

Note that PitCREWjr will NOT cause route and ad­
dress header words received from the RACEway to 
be written to the output FIFO. External logic would 
be required to place address and/or route words in 
the output FIFO. 

Master Function 

The master function of PitCREWjr is accessed 
whenever the "MGO" PitCREWjr input is asserted. 
The assertion of "MGO" launches the PitCREWjr 
master state machine. This state machine is clocked 
by the RACEway data clock "XCLKI". Two clocks 
after "MGO" is sampled asserted, PitCREWjr as­
serts its "ROUTE" output. Local board hardware 
should use "ROUTE" to enable a route word onto 
the FIFO data bus. PitCREWjr asserts its "MAS­
TER" output when it drives this route word onto the 
RACEway and then drives the "shifted route" pre­
scribed by the RACEway protocol. "MGO" should 
be deasserted once PitCREWjr's "MASTER" out­
put is true. This is because "MGO" will cause a slave 
in progress to issue a kill over the RACEway. When 
"change to address" reply is received from the 
RACEway, "ROUTE" is deasserted, and one clock 
later "ADDR" is asserted. Local board hardware 
should use ''ADDR'' to enable an address word onto 
the FIFO data bus. PitCREWjr relays the address 
word to the RACEway and waits for a "DSE" reply 
from the RACEway. When the reply is received, Pit­
CREWjr deasserts the ''ADDR'' signal. 

The RACEway protocol communicates data direc­
tion in bit 1 of the address word. PitCREWjr's mas­
ter state machine branches on this bit value. If the 
direction of the data is from the local FIFO to the 
RACEway (a master write, bit 1 of address word is 
false), then data is read from the local input FIFO, 
registered inside the PitCREWjr, and driven onto 

the RACEway XBIO bus. The PitCREWjr FIFO 
data bus pins remain three-stated and PitCREWjr 
asserts the signals "IFRE" and "IFOE" to enable 
the input FIFO data onto the FIFO data bus. Pit­
CREWjr asserts this signal pair each time a new 
word is required from the FIFO. If the input FIFO 
becomes empty, as signaled by the "IFAE" Pit­
CREWjr input, PitCREWjr stops reading the input 
FIFO and ends the RACEway transaction. 

If the direction of data is from the RACEway to the 
local FIFO (a master read, bit 1 of address word is 
true), then as data arrives from the RACEway, it is 
registered inside the PitCREWjr and driven onto 
the FIFO data bus. The PitCREWjr writes the data 
received from the RACEway to the output FIFO by 
asserting "OFWEN" each time a valid word is ready 
on the FIFO data bus. A PitCREWjr input called 
"OFAF" is used to indicate to PitCREWjr that the 
output FIFO is full. Assertion of "OFAF" causes 
PitCREWjr to suspend transfer requests to the 
RACEway slave, effectively stalling the RACEway 
transaction until the signal is deasserted. "OFAF" 
would typically be connected to the output FIFO 
programmable almost full flag. On completion of 
the RACEway data transfer as indicated by the 
deassertion of "MASTER," PitCREWjr three­
states the FIFO data bus. 

Additional Features 

A slave read enable input "SRE" is provided to lock 
out slave access from the RACEway side of the in­
terface. This signal may be used to "protect" data in 
the input FIFO when that FIFO is being used for 
both master and slave data. Slave read can be disal­
lowed when data is being queued up in the input 
FIFO for a master write. 

The "MR _ERR" output of the PitCREWjr is an in­
dicator that a master read operation received an er­
ror response from its target slave. The signal is a 
"one-shot", pulsing HIGH for one XCLKI clock pe­
riod at the end of a master read access for which the 
RACEway slave signaled a read error. 

The "COUNT" output signal strobes each time an 
8-byte data beat occurs on the raceway when Pit­
CREWjr is master. For writes, "COUNT" is as-

8-207 



# ~ Interfacing to RACEway: PitCREWjr 
-=E!!!!!PF CYPRESS ================ 

serted for each 8 bytes sent. For reads, "COUNT" 
is asserted for each 8 bytes requested. 

The "PFIFO" input is used to assist in loading the 
output FIFO almost full flag. When "PFIFO" is as­
serted, PitCREWjr three-states its FIFIO data bus 
drivers, and asserts ';OFWE." The signal that con­
nects to "PFIFO" can also be used to enable the "al­
most empty" value onto the FIFIO data bus. 

PitCREWjr Operation 

Figure 4 illustrates master write behavior. The 
"MGO" PitCREWjr input is asserted to start 
RACEway master (read or write) function. It should 
be deasserted when PitCREWjr asserts 
"MASTER". Master write is stopped by asserting 
"IFAE" to the PitCREWjr. Notice that two data 
words are read after "IFAE" is asserted. "ROUTE" 
and '~DR" are shown enabling route and address 
information respectively onto the FIFIO data bus 
from external hardware. The "COUNT" Pit­
CREWjr output pulses once for each 8 bytes sent 
over the RACEway. 

MGO -----1 

MASTER 

ROUTE 

ADDR 

Figure 5 illustrates master read behavior. Data arriv­
ing from the RACEway is to be taken from the FI­
FlO data bus on the rising edge of the RACEway 
data clock "CLK". Again "COUNT" pulses once for 
each 8 bytes requested from the RACEway. Master 
read is stopped by asserting the PitCREWjr input 
"OFAR" Note that eight data values are delivered 
after "OFAF" is signalled. This figure shows the 
timing when data traverses one RACEway crossbar. 
Latency will increase by two for each additional 
crossbar in the data path. 

Figures 6 and 7 illustrate slave timing. "ROUTE" 
and '~DR" PitCREWjr outputs mark the timing 
of valid route and address information on the FIFIO 
data bus. Bit 1 of the RACEway address field is cap­
tured by PitCREWjr, causing the appropriate FIFO 
control signalling for the data direction. For writes, 
"OFWE" is asserted as data is driven by PitCREWjr 
onto the FIFIO data bus. For reads, "IFOEN" and 
"IFRE" ate asserted as shown and data is sampled 
from the FIFIO data bus on the rising edge of the 
RACEway data clock, "CLK". 

'---

COUNT ----------------------------------~~~---------
FIFIO ( ROUTE ----~~======:JH ADDRESS 

JrnE 

IFRE 

II"AE 

ClK 

PHASE 

REQO 

STROBE 

REPLY 

XBIO ••••••• ~ SHIFTEDRTE .r-;A:n;DDo;;;R"'ES;QS------,~ •••• 

Figure 4. Master Write 

8-208 



-= -~ Interfacing to RACEway: PitCREWJor 
~;CYPRESS==============================~ 

MGO ---.-l 

MASTER 

ROUTE 

ADDR 

COUNT ------------------------------~~---------------
MR_ERR 

FIFIO ( ROUTE --------~JE~=========:J~GA~D~DR~E~SSc=======:J------------~ 

om ~----------~,----
OFWE L-__________ ~,____ 

CLK 

PHASE 

REOO L--
STROBE 

REPLY ~ ________ ~1Lf\J 

1'!DCU '-...I\J\J\J\~ __ ~IV 

XBIO ~ SHIFTEDRTE .~A~D~DR~E~SSc==:J ••••• _~ ••• 

Figure 50 Master Read 

SLAVE ______ -' '------
ROUTE ________ ~r_\~ __________________________________________________________ _ 

ADDR ______________________ ~r_\~ ____________________________________________ __ 

COUNT ______________________________________________________________________ ___ 

FIFIO ----------{ RTE }---------{ ADD r-----------------~:::!DO~E:Dl!XJD~2X]D3OCD~4X]D~5 (]!DSOC]DZ}7 ------

om----------------------------------------------------------------------
OFWE 

CLK 

PHASE 

REal -----1 

STROBE 

REPLY 

L-______________ --Jr-----

XBIO ~-'AD=DR""ES""S'__ ____________ _'~ ••••• 

Figure 60 Slave Write 

8-209 



Interfacing to RACEway: PitCREWjr 

SLAVE __ ---' '----
ROUTE _____ ---'r_\~ ______________________________ __ 

ADDR _________________ ~r_\~ ______________________________________________ _ 

COUNT ___________________________________________________________________ __ 

~---------------------------------------------------------------------

FIFIO -------{§RT[E}-------{EAD!§:D}------------{£iDOOCE:D1iX.\jD~2 G03~D~4XQjD5~D6OCQDZJ71---------------

wot---------------------------------,L-______________ ~/ 

IFRE-------------------------------,L-______________ ~ 

ClK 

PHASE 

REOI -----.l 

STROBE 
'-----

REP~----.Lr_\ ____________ ~r------------------,~ ____________ ~r_ 

~-----------------~-----------~ 

XBIO ~~A~DD~R~ES~S===:J ••••• I~ ••••••• 
Figure 7. Slave Read 

Figure 8 shows a PitCREWjr master writing to a Pit­
CREWjr slave across one RACEway crossbar. The 
slave signals have an (S) suffix. In this example, the 
slave PitCREWjr input "OFAF" signals that the 
slave is "almost full". The slave PitCREWjr signals 
"REQO" (a RACEway protocol kill). This kill prop­
agates through the intervening RACEway crossbar 
to the PitCREWjr master, terminating the master 
transaction. The amount of data the slave must ab­
sorb after "OFAF" is signalled is shown for a single 
intervening crossbar. Two additional FIFO write 
cycles will be required for each additional "crossbar 
hop". 

Figure 9 shows the utility of the "SRE" PitCREWjr 
input. It can be used to block PitCREWjr's response 
to a slave read from the RACEway. This feature al­
lows the input FIFO facility to be multiplexed be­
tween master write and slave read without coordi­
nating with the remote master across the 
RACEway. Master data being queued up in the in­
put FIFO can be "protected" from a slave read op­
eration as shown. The timing of "MGO" assertion 

with respect to slave arrival from the RACEway is 
arbitrary. "SRE" may be de asserted any time after 
the assertion of "MASTER" by the PitCREWjr. 

Figure 10 shows a PitCREWjr master reading from 
a PitCREWjr slave across one RACEway crossbar. 
The slave signals have an (S) suffix. In this example, 
the slave PitCREWjr input "IFAE" signals that the 
slave is "almost empty." The slave PitCREWjr sig­
nals "REQO" (a RACEway protocol kill). This kill 
propagates through the intervening RACEway 
crossbar to the PitCREWjr master, terminating the 
master transaction. The slave PitCREWjr stops 
reading from its input FIFO two clocks after 
"IFAE" is asserted; however, the RACEway proto­
col compels the slave to send until the RACEway 
master stops. By the time the PitCREWjr master re­
sponds to the kill, several long words of bad data 
have been written to the PitCREWjr master's out­
put FIFO. The PitCREWjr output "MR_ERR" 
pulses HIGH for one data clock to signal that this 
error has occurred. 

8-210 



.....;;::;;=0;. 

-.. ~ ~CYPRESS~~~~~~~~~In~te~rl:;a;c;in~g~to~RA~C;E;W~a~Y~:~Pl~·tC~RE~W~jr~ 

MGO~ 

MASTER __________ ~/r------------------------------------------------------------'------

AODR ___________ Ir-------
~-----------------------

COUNT ____________________________________ ~ 

FIFIO -------{I ~RO~UBjTEC====:JHrA;-;:D;;:;D"'RE=::S::-S--------. . ~I----------

~---------------------------

lFRE ---------------------, 

CLK 

PHASE 

REQO ____ ~,-------------------------~ '------
REQI ________________________ ~r------I L-

STROBE ----------~ 

REPLY 

XBIO •••••• (]![X S. ROUTE • ADDRESS 

SLAVE(S) _________ ---11'--------------------------'--
ROUTE(S) _______________ n 

~-----------------------
ADDR(S) _______________ n 

~-----------------------------------

I L REQO(S) ________________________ ~r---------~ 

OFAF(S) --------------------L-_______________ ,___ 

OFWE(S) -------------------
~------------------~,---

FIFIO(S) ----------------------(RRlT'}-------< AD}-------------{IX}~XIXE~0~~~!X!!~iXEX!§@ 1 2 3 

Figure 8. Master Write Overflow 

8-211 



Interfacing to RACEway: PitCREWjr 

~\~--~============--------------------------------S~VE ______ ~---------------------
~----------------------------------

MGO ____________________ ~/r----------~ 

MASTER _______________ -----'~~~~~~~~~~~~~~~~~~~~~~~~~~~~--
ROUTE '---______ ~{\~ __________________ ~r--------~ 

ADDR ______________ /\ '---------------------------
L-______ ~ ___________ , 

COUNT ____ ~-------------------FIFIO !\.J\...JV\ ______ __ 
------~~>--------------~~[:====:Jr.===-----(ROUTE HAODRESS ~}------

~------------------------~~======~::~~=== 
~-------------------------------------------

~----~--------------------------

CLK 

PHASE 

REQO ______________________ ---.J,-----, '---
REQI ______ ,r---------------------

STROBE '---------------------------------------

REPLY 

mmu------------~--------------------------------

XBIO •• _~CA~D!QiDRL::JI •••••• _ §X S. ROUTE .'7.AO==D=RE:=:SS-----~ 

Figure 9. SRE Function 

8-212 



MGO ---.l 
MASTER _____ -' \ 

ROUTE __ ----'I 

ADDR _________ --' 

COUNT ______________ ----'~~ _______ _ 

MR_ERR ____________________________ --11\1-__ _ 

FIFIO -----{I R~O~UT~E===:::JH[2A~DD~RE~S~S ===:Jf-------~:t ••••••• ---

~-----------------------------------

~---------------------L-_______ ~ 

ClK 

PHASE 

REao _____ -1 

REal ______________________ ~ 

STROBE 

REPLY 

FIDOO 

XBIO 

SLAVE(S) _______ --11 

ROUTE(S) ________ -'1\'--_____________________ _ 

ADDR(S) ___________ ----11\'--__________________ _ 

REaO(S) ____________________ ---1 

IFAE(S) 

IFOE(S) 

IFRE(S) 

FIFIO(S) -----------1(@-----@)------.,G:XillE)f---------------

Figure 10. Master Read Error 

8-213 



....... ~ Interfacing to RACEway: PitCREWjr 
~ CYPRESS ================ 

CY7C384A Pin Table 
Signal 'JYpe Pin No. Signal lYpe Pin No. 

FIFIO_16 INOUT 1 FIFIO 2 INOUT 51 
XBIO_19 INOUT 2 FIFIO 4 INOUT 52 
FIFIO_19 INOUT 3 XBIO 4 INOUT 53 
FIFIO_22 INOUT 4 XBIO 5 INOUT 54 
XBIO_22 INOUT 5 FIFIO 5 INOUT 55 
FIFIO_25 INOUT 6 XBIO 3 INOUT 56 
XBIO_25 INOUT 7 FIFIO 3 INOUT 57 
FIFIO 24 INOUT 8 FIFIO 1 INOUT 58 
VSS ----- 9 VSS ----- 59 
XBIO 24 INOUT 10 XBIO_l INOUT 60 
MGO INPUT 11 IFAE INPUT 61 
eLK INPUT 12 RESET INPUT 62 
vee 13 vee 63 
UNUSED INPUT 14 REQI INPUT 64 
OFAF INPUT 15 UNUSED INPUT 65 
vee 16 vee 66 
XBIO_23 INOUT 17 XBIO 7 INOUT 67 
FIFIO_23 INOUT 18 FIFIO_7 INOUT 68 
FIFIO_26 INOUT 19 XBIO_O INOUT 69 
XBIO_26 INOUT 20 FIFIO 0 INOUT 70 
XBIO_31 INOUT 21 XBIO 8 INOUT 71 
FIFIO_31 INOUT 22 FIFIO 8 INOUT 72 
FIFIO_30 INOUT 23 FIFIO 9 INOUT 73 
XBIO_30 INOUT 24 XBIO 9 INOUT 74 
FIFIO 27 INOUT 25 FIFIO 6 INOUT 75 
XBIO 27 INOUT 26 XBIO 6 INOUT 76 
FIFIO 28 INOUT 27 XBIO_12 INOUT 77 
XBIO_28 INOUT 28 ADDR OUTPUT 78 
FIFIO_21 INOUT 29 XBIO_11 INOUT 79 
FIFIO 29 INOUT 30 FIFIO_11 INOUT 80 
XBIO 29 INOUT 31 FIFIO_12 INOUT 81 
XBIO_21 INOUT 32 XBIO 10 INOUT 82 
PFIFO INOUT 33 XBIO_13 INOUT 83 
OFWE OUTPUT 34 FIFIO 10 INOUT 84 
VSS 35 VSS 85 
SYNe INOUT 36 XBIO_15 INOUT 86 
REQO OUTPUT 37 FIFIO 13 INOUT 87 
VSS ----- 38 VSS ----- 88 
MR_ERR OUTPUT 39 XBIO 14 INOUT 89 
STROBE INOUT 40 FIFIO 15 INOUT 90 
RDeO INOUT 41 SLAVE OUTPUT 91 
vee ----- 42 vee ----- 92 
ROUTE OUTPUT 43 XBIO 18 INOUT 93 
eOUNT OUTPUT 44 FIFIO 14 INOUT 94 
REPLY INOUT 45 FIFIO 18 INOUT 95 
MASTER OUTPUT 46 XBIO_17 INOUT 96 
SRE INOUT 47 FIFIO 17 INOUT 97 
IFRE OUTPUT 48 XBIO 20 INOUT 98 
IFOE OUTPUT 49 XBIO_16 INOUT 99 
XBIO 2 INOUT 50 FIFIO_20 INOUT 100 

pASIe IS a trademark of Qwckioglc. 

8-214 



Glossary 

10BASE-T: An IEEE 802.3 Standard for iO-Mb/s 
communication over 2 pair of twisted pair cable. 

100BASE-T4: An IEEE 802.3 Standard for 
100-Mb/s communication over four pair unshielded 
twisted pair cable running at 25 MHz. 

4B/5B: An encoding method that takes four-bit data 
characters and maps each to a specific five-bit sym­
bol. 4B/5B encoding also allows for transmission of 
command symbols outside the data space of 16 char­
acters. 

8B/10B code (8 bits to 10 bits): A patented coding 
method that converts "raw-data" to a form more 
suitable for transmission over a high speed serial in­
terconnect link. This particular code insures a high 
transition density with a perfect DC balance. 

Abel-HDL: Proprietary Hardware Description Lan­
guage (HDL) from Data I/O Corp. Created as text 
input design language for their PLD/FPGA devel­
opment software. 

address phase: In PCI, the first part of a transaction 
in which the initiator sends out an address and com­
mand and waits for the addressed target to claim 
ownership of the transaction. 

AHDL (Advanced Hardware Description Lan­
guage): A high-level, modular language used to 
create logic designs for MAX EPLDs. 

Alias SYNC: An unintentional SYNC character that 
occurs when transmission errors corrupt the serial 
data stream. It is possible to create a bit pattern that 
matches the SYNC character, but which is not cor­
rectly aligned with the serial byte boundaries. This 
Alias SYNC can make it impossible to correctly re­
cover the data. 

G-1 

AND: The "and" logic gate. 

ANSI (American National Standards Institute): A 
committee of numerous commercial, governmen­
tal, and educational constituents which conceive, 
formalize, and document standards for various ap­
plications, including information transport technol­
ogies such as Fibre Channel. 

ANSI X3T9.3: The name of a data communication 
standard, sponsored by the American National 
Standards Institute, describing Fibre Channel. 

arbitration: The process of deciding which one of 
two or more competing entities will be allocated a 
resource. 

arbitrator: In PCI, the device that grants bus con­
trol requests to requesting initiator agents. 

architecture: As pertains to VHDL logic synthesis, 
the declaration that specifies the behavior or struc­
ture of an entity. Entities and Architectures are al­
ways paired in VHDL descriptions. 

artwork: The graphic materials generated for use in 
production of printed circuit boards, containing a 
representation of the copper circuit patterns in com­
puter, mylar, or glass form. 

associativity: The number of lines per set in a cache. 

asynchronous: Referring to an operation that does 
not occur simultaneously with a specific time inter­
val; i.e., the rising or falling edge of a clock pulse is 
not used as a timing reference signal. 

Asynchronous Bus Protocol: A method of transfer­
ring data between a processor and peripheral that 
does not derive or rely on any timing parameters 
linked to a synchronous clock. 



ATM: Asynchronous Transfer Mode. A circuit 
switched network protocol utilizing 53 byte cells, 
which promises to interface Local Area Networks 
(LANs) and Wide Area Networks (WANs) seam­
lessly. ATM was designed as a network that can pro­
vide services to multiple traffic types including iso­
chronous (or time sensitive data like voice and 
video), as well as bursty traffic stich as traditional 
data transfer. 

ATM Forum: A committee of numerous commer­
cial, government, and educational constituents 
which conceive, formalize, and document standards 
in support of ATM technology. 

auto-negotiation: An IEEE 802.3 Standard for au­
tomatic configura:tion of a twisted-pair link without 
user intervention. 

bad symbol: A special character that is transmitted 
when a receive error is detected in the physical 
layer. 

bandwidth: (1) the absolute difference between the 
upper and lower frequency limits of operation. (2) 
The points in a spectrum where the circuit response 
is 3 dB down from nominal. 

base address register: The register iri the configura­
tion space of PCI that holds the assigned address 
space values. 

baseline wander: A low frequency variation in the 
relative threshold position at the receive end of a 
transmission line. 

baud: The encoded bit rate per second. For binary 
communication channels, using Non-Return to 
Zero (NRZ) coding, 1 baud = 1 bit per second. In 
general, 1 baud = 1 symbol per second. 

Behavioral VHDL: A description of how a design 
should operate or its behavior, as opposed to its 
structure. This is the highest level of abstraction for 
a VHDL description. 

BER: Bit Error Rate, the ratio of corrupted data to 
correctly received data. This ratio is typically small 
and expressed as an exponent (i.e., 1XlO-12; one er­
ror in 1012 hits). BER may be expressed in either 
bits in error or Bytes in error. 

G-2 

Glossary 

bias: The DC component of an AC signal or the DC 
level of a signal dictated by a resistor divider. 

BiCMOS: Bipolar Complementary Metal Oxide 
Semiconductor. Ail. advanced silicon process 
technology that combines the best features of bipo­
lar technology (high speed) and CMOS technology 
(low power, high density), but at a cost penalty rela­
tive to pure CMOS. 

bidirectional: Allowing data to flow in either direc­
tion (but not both simultaneously). 

BIFO (Bidir~ctional FIFO): A FIFO, e.g., 
CY7C439, whose two sets of data pins can both be 
configured as either inputs or outputs, allowing 
transmission of data in both directions (though not 
simultaneously). 

bipolar: A widely commercialized, silicon inte­
grated circuit (IC) technology. Bipolar technologies 
create the highest performance silicon integrated 
circuits, but at the expense of high power consump­
tion and the inability to make very large chips eco­
nomically. 

B1ST: Built-In Self-Test, logic included in the chip 
that allows it to generate patterns and test them 
without external hardware or software intervention. 

bit-cell: The nominal time period of a single bit in a 
serial data stream. 

bridge: A device that connects two independent pe­
ripheral buses together, allowing them to communi­
cate. It will perform the necessary bus protocol 
translations. 

burst sequence: The sequence of addresses fol­
lowed when multiple locations in a memory are be­
ing consecutively accessed in a single operation. 

bus contep.tion: A period in time when a common 
data or address bus may have more than one active 
driver on the bus at a given time. 

bus switch: A device that can be used to isolate a de­
vice from a bus. 

cache: A small, fast memory located between the 
CPU and main memory. A cache's purpose is to 
store copies of the instructions and/or data the CPU 
is most likely to need in the near future so that the 



CPU can access them more quickly than if they were 
stored only in main memory. 

cache hit: An access to main memory that is found 
in, and serviced by, the cache memory. 

cache lock: A method, e.g. using a status bit, for en­
suring that specific lines in the cache do not get re­
placed. Users can lock critical programs in the cache 
to ensure that performance on these programs is 
high and deterministic. 

cache miss: An access to the main memory that is 
not found in the cache memory and therefore must 
be serviced by the main memory. 

cache tag: A table of the current contents of a cache. 
The tag itself is made up of a varying number of ad­
dress bits that uniquely identify each line in the 
cache as coming from a specific main memory line. 

carrier: A signal whose presence is necessary to al­
low communications. 

CAS (Column Address Strobe): In dynamic RAMs, 
the signal asserted to strobe the column address of 
the current access into the device after the row has 
been input. 

cascading: Connecting several smaller parts, usual­
ly SRAMs, Dual-Ports, or FIFOs, together in such 
a way as to create an effective memory that is deeper 
or wider. 

CELP: An industry standard reference for L2 cache 
module sockets. 

chipset: One or more highly integrated chips that 
add features to a processor board. 

clean: The status of a cache line when it contains the 
same data as the copy in main memory. Compare 
dirty. 

clock generator: A circuit that is used to generate a 
clock signal used to trigger digital logic circuits. 

clock stability: The stability of a clock signal with re­
spect to frequency, pulse width, and amplitude. 

CMOS levels: There are two sets of CMOS specifi­
cations: HC and HCT. The older HC devices are 
generally not TTL compatible, and the newer HCT 
(also FACT, FCT, etc.) are TTL compatible. Be-

G-3 

Glossary 

cause the minimum VOH level for TTL is 2.4V, TTL 
is not guaranteed to drive an HC input high. A 4Q 
IO,OOOQ pull-up resistor to Vee at the TTL device's 
output enables the device to achieve the HC VIH 
level of 3.5Y. 

coax (coaxial cable): A cable consisting of a single 
central conductor surrounded by a dielectric that 
spaces an overall cable shield from the central con­
ductor. 

collision: The condition caused by two or more 
Ethernet nodes transmitting at the same time. 

combinatorial: A logic function that does not in­
volve any synchronous elements. 

component: A component is a VHDL design unit 
that may be instantiated in other VHDL design 
units. Before it can be instantiated, it must be de­
clared using the COMPONENT declaration, which 
specifies the name of the component and lists its lo­
cal signal names. 

Concurrent Statement: As pertains to VHDL logic 
synthesis, a statement in an Architecture that 
executes or is modeled concurrently (simultaneous­
ly) with all other statements in the architecture. 

converting ABEL: A technique whereby ABEL 
hardware descriptions are converted to VHDL. 

CPLD: Complex programmable logic device. 

CRC: Acronym for Cyclic Redundancy Check or 
Cyclic Redundancy Code. Used for error detection 
on serial data communication channels. 

crosstalk: Coupling of electrical signals between 
conductors in a circuit. Often undesirable, crosstalk 
can corrupt data transfer by changing voltage levels 
to a level other than the intended value. 

crystal oscillator: An oscillator with a crystal as the 
frequency setting element. 

coherency (consistency): Agreement between 
shared contents of members of the memory system. 

crosstalk: The temporal change in either the mag­
netic field or the electric field of a signal on one con­
ductor that results in an unwanted signal being 
coupled to other conductors. 

CSMA/CD (Carrier Sense Multiple Access with 
Collision Detection): The access method used by 



the Ethernet MAC. This scheme detects when there 
is activity on the medium in order to avoid transmis­
sion on a shared medium. If the medium is clear, the 
MAC can transmit data. If the medium is busy, the 
MAC will wait to transmit data. If two or more 
MACs on the medium attempt to access the me­
dium at the same time, a collision is detected and all 
MACs will stop transmitting and retry at a random 
time. 

CY7C971: Cypress's lOBASE-T/lOOBASE-T4 
Ethernet Transceiver. 

cycle-cycle jitter: The change in a clock's output 
transition from its corresponding position in the 
previous cycle. 

Cyclic Redundancy Check (CRC): An error control 
mechanism based on use of an error-detecting code. 
The code can be described as follows. Given a k-bit 
message, the transmitter generates an n-bit se­
quence (known as a check sequence) so that the re­
sulting message, consisting of k + n bits, is exactly 
divisible by some predetermined number. The re­
ceiver then divides the incoming message by the 
same number and, if the remainder is zero, assumes 
there is no error. The CRC codes are often ex­
pressed as polynomials. 

daisy chain: A method of making connections s~ri­
ally, from some point to each next point in one con­
tinuous sequence (as in PCB layout). 

data bus latency: The amount of time the data bus 
is driven after a given bus cycle terminates. 

DCD (Duty Cycle Distortion): A deterministic jitter 
that is typically caused by mismatches within the se­
rial transmission line interface. It causes rising 
edges to be misplaced in one direction and falling 
edges to be misplaced in the opposite direction (typ­
ically an identical offset). 

DDJ (Data Dependent Jitter): A deterministic jitter 
that is a function of the characteristics of a particular 
serial interconnect media and the content of the se­
rial data stream. It causes edges (either rising or fal­
ling) to be misplaced by a distance that varies as a 
function of their distance from preceding transi-

G-4 

Glossary 

tions. Variations in pulse width inherent in the data 
stream cause variations in the magnitude of the mis­
placement of the data transitions. 

deadlock: The condition in which two or more pro­
cesses that share resources halt because no process 
can obtain all the resources it needs to continue. 

Dhrystone: A measurement of PC or microproces­
sor performance taken while running a benchmark 
program that consists of a loop of simple integer op­
erations. 

differential: Mode of communication in which two 
complementary signals are compared to each other 
to determine the logicai state of the signal. Also 
known as a balanced connection. 

DIMM: A dual-readout SIMM socket. Every pin on 
a DIMM socket can be a separate signal for a high 
pin count interconnection. See SIMM. 

dirty: The status of a cache line that has been modi­
fied and now contains data different than the copy 
in main memory. 

dispersion: Widening of a pulse as it travels down a 
transmission line due to characteristics of both the 
pulse and the media. 

DMA (Direct Memory Access): A design technique 
that offloads some of the I/O processing from the 
CPU. A DMA controller allows the CPU to contin­
ue operation while the controller controls block 
transfers between I/O and memory or between sep­
arate memories in a multiprocessor system. 

double oven oscillator: An oscillator that contains 
two ovens, with the crystal encased in the inner 
oven, and the temperature control circuitry and the 
inner oven encased in the outer oven. 

DRAM (Dynamic Random Access Memory): The 
main (read/write) memory in almost all computers. 
Compare SRAM. 

dual-port RAM: An SRAM that can process two dif­
ferent accesses simultaneously. 

DUART (Dual Universal Asynchronous Receiver 
Transmitter): A pair of serial interfaces integrated 
into one chip. 



duplex (also, full duplex): Capable of simultaneous 
bidirectional operation and having multiple sources 
and destinations. 

duty cycle: The relationship of a clock pulse HIGH 
time to its LOW time-expressed as a percent. 

ECC: Error Correction Code, used to ensure that 
data is correctly stored or transmitted. 

ECL (Emitter-Coupled Logic): A convention for 
"one" and "zero" voltage reference levels in one in­
tegrated circuit family. ECL "one" and "zero" volt­
age levels are very small and, therefore, are able to 
be sent into and out of integrated circuit packages 
very quickly. ECL logic is used in the fastest avail­
able computers, such as those from Cray and Con­
vex. ECL circuits are fabricated in Bipolar or BiC­
MaS technology. Compare TTL. 

EDC: Error detection/correction. Hardware or 
software used to generate/check ECC bits. Upon 
single-bit error detection, the EDC will also correct 
the faulty bit. 

EEPROM (Electrically Erasable Programmable 
Read Only Memory): A PROM that can be erased 
and reprogrammed electrically. See PROM. 

effective access time: A cache performance metric 
giving the average time required to service a 
memory reference. 

emulation: In circuit verification, using a separate 
piece of hardware which takes the place of an IC or 
subsystem in the circuit under test. 

Entity: As pertains to VHDL logic synthesis, the 
declaration that lists or describes the ports (the in­
terfaces to the outside) of the design. An Entity de­
scribes the names, directions, and data types of each 
port. 

EPROM (Erasable Programmable Read Only 
Memory): A PROM that can be erased and repro­
grammed. See PROM. 

equalization: The application of frequency selective 
gain or attenuation to compensate for distortion. 
Equalization is often used to increase the distance 
over which a communication channel can operate. 
Usually, a system is equalized for a given distance, 

G-5 

Glossary 

and must be re-equalized if that distance is in­
creased or decreased or if the data rate is changed. 

error-free window: The widest possible area within 
which a transition can occur and be correctly inter­
preted by the receiving circuit; a measure of jitter 
tolerance. 

ESCON: A protocol used to interconnect IBM com­
patible computers at data rates of 20 MByte/sec. 

Ethernet: The physical layer and control standards 
that are encompassed in the IEEE 802.3 Standard. 
Ethernet uses a shared network topology with an ac­
cess method known as CSMAlCD (Carrier Sense 
Multiple Access with Collision Detection). 

expanders: Extra product terms in MAX EPLDs 
that are available to be used and shared by all ma­
crocells in a Logic Array Block (see LAB). 

eye pattern: Method of examining a data stream 
that compares the stable versus unstable portions of 
a bit-cell. 

fall time: The amount of time it takes a digital logic 
signal to transition from a logic HIGH to a logic 
Law. 

FDDI: Acronym for Fiber Data Distribution Inter­
face. A high-speed, local-area network, using a pair 
of fiber-optic links in a dual token-ring topology. 
Data rates of 10 Mbytes per second are supported. 

FFT (Fast Fourier Transform): A mathematical 
method for determining the frequency spectrum of 
a waveform. 

fiber-optic: A reference to components whose pri­
mary mode of operation is through the use of optical 
rather than electrical energy. 

Fibre Channel: An ANSI-standard data commu­
nications interface for computers and peripherals. 
A high-performance computer interconnect stan­
dard that describes a method of interconnecting 
computers and peripherals at specified data rates 
between 13 and 100 MByte/sec. 

FIFO - First-In First-Out Memory: A memory de­
vice in which data is accessed from memory in the 
order that it was written into memory. 

finite state machine: A synchronous sequential cir­
cuit, the outputs and next state of which are func­
tionallogic functions of the inputs and current state. 



Fourier transform: A mathematical operation used 
to convert time-domain expressions into equivalent 
frequency domain expressions. 

FPGA: A field programmable gate array. 

framer: The internal logic included in the HOTLink 
Receiver that examines the serial bit stream and 
looks for the SYNC character. When it is found, the 
framer logic aligns the deserializer with the trans­
mitted byte boundaries. 

framing: (As it applies to the CY7B933 HOTLink 
Receiver) The process of determining what the 
proper byte boundaries are in a serial bit data 
stream. 

frequency synthesizer: A device that uses PLLs to 
generate one or more output frequencies from a ref­
erence frequency. Also called clock generator or 
clock synthesizer. 

full duplex: See duplex. Compare simplex, half du­
plex. 

glue logic: Either 74 series or programmable logic 
(PLD or CPLD) that implement a function that was 
not integrated into the chipset. These are usually 
high-current buffers that improve the drive capabili­
ty of the chipset. 

Green PC: Refers to a PC that, when idle, does not 
consume more than a specified maximum power, as 
defined by the U.S. Environmental Protection 
Agency (EPA). 

ground bounce: When many outputs of a device 
change from HIGH to LOW there is a rush of cur­
rent into the output drivers. If the inductance to 
ground is sufficient, the virtual ground level is raised 
due to this inductance. The voltage spike caused by 
this phenomenon is called ground bounce. 

HBM (Human Body Model): A model of Electro 
Static Discharge (or ESD) hazards based on static 
discharges observed between humans and electron­
ic devices. Semiconductor manufacturers use the 
HBM to design ESD protection circuits into their 
products. 

half duplex: A device or system that can transmit in­
formation in two directions, but not simultaneously. 

Glossary 

The Cypress CY7C439 BIFO is a half-duplex de­
vice. Compare simplex, duplex. 

HIPPI: Acronym for HIgh Performance Peripheral 
Interface. A standard way of interconnecting high 
performance peripheral devices to medium- and 
large-scale computers. The interface is character­
ized by a parallel bus using ECL logic levels and is 
capable of data transfer rates of several hundred 
Mbytes per second over relatively limited distances. 

HOTLink: The name for Cypress's High-Speed Op­
tical Transceiver Link chip set. 

Hysteresis: In general, the failure of a property that 
has been changed by an external agent to return to 
its original state when the cause of the change is re­
moved. 

idle: The state in which the lO/lOOBASE-T Ethernet 
transceiver is not transmitting frames. 

initiator: The agent in PCI that has the current con­
trol and operation of the bus. 

instantiate: The use of a previously designed mod­
ule in a schematic or computer program (such as a 
VHDL model). 

IPI: Acronym for Intelligent Peripheral Interface. 
Originally defined in IPIl as a controller interface 
for high-performance disk drives, the standard has 
evolved in IPI3 to a relatively complete channel in­
terface intended for general-purpose high-speed 
I/O in medium- to large-scale computer systems. 

jam: A special pattern that is transmitted when a 
collision is detected. 

jabber: The condition caused by a node that is con­
tinually transmitting. 

jitter: A typical form of corruption that occurs on se­
rial data streams. It is a displacement of the timing 
of a transition from its ideal position. The two basic 
types of jitter are Random and Deterministic. De­
terministic jitter is further divided into DCD and 
DDJ. 

jitter tolerance: The ability of the deserializer to re­
cover data from a corrupted serial data stream. This 
specification indicates tolerance to displaced transi­
tions within the expected bit window. This tolerance 

G-6 



may be expressed in time (i.e., nanoseconds) or as 
a percentage of a bit time (i.e., ±45% of a bit time). 
See error-free window. 

K28.5: A special character that is defined in the 
8B/10B code. This character is typically used as an 
idle or fill character when no data is to be trans­
mitted on the serial media. Sometimes referred to 
as a Sync Character. See SYNC. 

LAB (Logic Array Block): In Cypress MAX PLD de­
vices, the LAB represents a separate functional 
block in the device. Each type of MAX PLD has a 
different number of LABs. 

latch-up: A regenerative phenomenon that occurs 
when the voltage at an input pin or an output pin is 
either raised above the power-supply voltage poten­
tial or lowered below the substrate voltage poten­
tial, which is usually ground. 

level one cache (Ll): The cache that is integrated 
into the processor. The L1 cache improves perfor­
mance by reducing the volume of data transferred 
between the processor and external memory. 

level two cache (L2): The cache between the L1 
cache and main memory. The L2 cache improves 
performance by reducing the volume of data trans­
ferred between the L1 cache and main memory. 

LFSR: Linear Feedback Shift Register, used to gen­
erate a pseudorandom sequence of characters. The 
LFSR in the HOTLink is used to generate and check 
the BIST sequence. 

library: A logical storage facility for design units. 
Before a component can be instantiated in a higher­
level design unit, its package must be compiled into 
a library that is visible to that design unit, usually the 
current work library. 

line (block): The basic unit of information exchange 
between a cache and main memory or between a 
parent cache and its child(ren) cache(s). 

line size: The number of bytes or words in one cachel 
main memory line. In a cache system, a line is the 
quantum of data identified by the cache tag and is 
the smallest quantum of data that can be transferred 
between the cache and main memory. Whenever a 

G-7 

Glossary 

new entry is placed into the cache, one line is trans­
ferred. Common line sizes are 16 and 32 bytes. 

Linear Feedback Shift Register (LFSR): A shift reg­
ister using XOR gates and feedback to implement 
cyclic redundancy check polynomials. 

link pass state: The condition entered when a an 
operational link is established between two nodes. 

local bus: The peripheral bus connected directly or 
"local" to the CPU itself. This bus will usually have 
better performance than a nonlocal bus. 

logic cell: A replicated element within an FPGA typ­
ically containing a register and additional combina­
toriallogic. It is the basic building block used for im­
plementing circuits in the FPGA. 

long-term jitter: Measures the maximum change in 
a clock's output transition from its ideal position 
over many cycles. 

MAC (Media Access Control): The MAC is the con­
trol structure that governs access to a communica­
tion medium. It also governs how data is encapsu­
lated or framed on medium and usually includes a 
basic form of error detection. 

MACH: The trademark for Advanced Micro De­
vices' family of complex programmable logic de­
vices. 

macrocell: A low-level block of logic in program­
mable logic devices. This block can include one or 
more registers along with configurable feedback 
andlor output paths. 

master device: A device that controls the timing for 
data exchanges between two devices. When devices 
are cascaded in width, the master device is the one 
that controls the timing for data exchanges between 
the cascaded devices and an external interface. The 
controlled device is called the slave device. 

MAX7000: the trademark for Altera's family of 
complex programmable logic devices 

Mealy machine: A state machine in which outputs 
depend on the present state and the previous value 
of the inputs. . 

Media Independent Interface (MIl): An IEEE 
802.3 standard interface between MAC devices and 



physical layer devices. The MIl supports operation 
at 10 Mb/s and 100 Mb/s. 

metastable: A condition in which neither a logic 
zero nor a logic one can be guaranteed, due to a tim­
ing violation to a synchronous logic element. 

Moore machine: A state machine in which the out­
puts depend only on the current state. 

MTBF (Mean Time Before Failure): The average 
length of time a system or component will continu­
ously operate between failures, given a defined set 
of operating conditions. 

multimode: Fiber-optic communication where light 
propagates in one or more modes through the opti­
cal media. 

multiprocessing: A computer architecture in which 
two or more processing units are coupled together 
to run different programs simultaneously while 
sharing the same computer frame and memory. 

Non-Return-to-Zero-Invert (NRZI): A method of 
encoding a serial bit stream. A transition indicates 
a 1 and no transition indicates a 0, hence the term 
non-return-to-zero. The waveform doesn't return 
to zero to indicate a bit value. 

NTSC (National Television Systems Committee): 
The standard video format used in the USA. 

Number Representations: Required VHDL syntax 
for binary, octal, decimal, and hexadecimal num­
bers. 

OLC (Optical Link Card): The OLC is a LED/la­
ser-based data-communications adapter card based 
on the Fibre Channel standard. 

optical module: A device capable of bidirectional 
conversion of electrical signals to optical signals for 
use in communicating over fiber-optic cables. 

OR: The "or" logic gate. 

oscillator: A circuit that is generally crystal con­
trolled and is used to generate a clock frequency. 

oven controlled oscillator: An oscillator that en­
cases its crystals in a temperature-controlled oven, 
in order to maintain a precise operating tempera­
ture at the crystal. 

G-8 

Glossary 

overshoot: The amount by which the amplitude of a 
signal exceeds its final value on a LOW-to-HIGH 
transition. 

package: A package is a collection of VHDL decla­
rations that can be used by other VHDL descrip­
tions. For the purpose of creating hierarchical de­
signs, a package consists of one or more 
components. However, a package may also include 
other types of declarations. 

PAL (Phase Alienation by Line): A standard video 
format used in Europe and the Far East. 

parallel-resonant crystal: A piezoelectric device 
that exhibits a maximum-impedance resonance. 
Because the operation of such a crystal depends on 
the load it "sees," the capacitive loading of a paral­
lel-resonant crystal must be specified when the crys­
tal is ordered. 

parity: An error detection scheme in which a status 
flag is saved, indicating that the number of "on" bits 
is even or odd. 

partition: The disabling of an Ethernet port. 

PCB (Printed Circuit Board): A system building 
block that allows connecting integrated circuits to­
gether. 

PCI bus (Peripheral Component Interconnect 
bus): A high-bandwidth, processor-independent pe­
ripheral bus (32 bits, expandable to 64; 33 MHz, ex­
pandable to 66 MHz) that has a potential data trans­
fer rate of up to 132 MBytes/sec. 

PECL: A variation of ECL often referred to as Posi­
tive-ECL or Pseudo-ECL in which the devices are 
operating from a positive power supply instead of 0 
volts to -5.0 volts. 

period jitter: Measures the maximum change in a 
clock's output transition from its ideal position. 

photodiode: Optoelectric device capable of convert­
ing changes in received light amplitude into changes 
in current. 

Physical Coding Sublayer (PCS): The PCS is a sub­
layer contained within the Ethernet Physical layer 
standard. This sublayer is responsible for digital 
functions such as data encoding and serial to paral­
lel conversion. 



Physical Layer: The devices and components that 
attach directly to the physical communication me­
dia. These include drivers, shifters, filters, etc. that 
are needed to implement the physical requirements 
of the communication protocol. The Physical Layer 
is usually the lowest layer of a communication pro­
tocol stack. 

PIA (Programmable Interconnect Array): In Cy­
press MAX devices, the PIA is the routing path be­
tween separate logic array blocks (LABs). The PIA 
routes automatically and provides uniform timing 
throughout the devices. 

PIM (Programmable Interconnect Matrix): In Cy­
press F'LAsH370 devices, the PIM is the routing path 
between separate logic array blocks (LABs). The 
PIM routes automatically and provides uniform 
timing throughout the devices. 

PLD (Programmable Logic Device): An integrated 
circuit that is shipped blank to customers and can be 
field programmed into a custom logic circuit, such 
as a counter, an adder, or a state machine. 

PLL (Phase-Locked Loop): A circuit used to mini­
mize clock skews by keeping them in phase with re­
spect to a reference clock. Also used to generate a 
clock that is a multiple frequency of the reference 
clock. 

plug and play: The concept of the ability of a prod­
uct to be easily installed into a system with minimal 
or no user configuration. 

PMA (Physical Medium Attachment): The portion 
of the transceiver that interfaces with the shared 
medium. 

Polarity Conventions: Rule of thumb for assigning 
and interpreting polarity in VHDL. 

PQFP (Plastic Quad Flat Pack): A plastic package 
with flat-pack style pins on all four sides of the part. 

preamble: The first 8 bytes of an Ethernet frame. 

process: As pertains to VHDL logic synthesis, a 
collection of Sequential Statements appearing in a 
design Architecture. The Process itself is evaluated 
concurrently within the Architecture. 

G-9 

Glossary 

product term: A Boolean AND of all the inputs to 
a PLD array. 

PROM (Programmable Read-Only Memory): 
Memory in which the data is fixed even when the 
power is turned off. Programmable ROMs are 
shipped blank to customers and customized in their 
facilities. 

protocol: A set of rules that govern network commu­
nications. Low-level protocols define transmission 
rates, data encoding schemes, physical interfaces, 
network addressing schemes, and the method by 
which nodes contend for the chance to transmit data 
over the network. High-level protocols define func­
tions such as printing and file sharing. 

QuietBus: A technique in which a bus is not driven 
unless the address is decoded to be within the re­
quested address space. 

RACEway Interlink: The official name of the ANSI 
standard, which describes how to make a crossbar­
based communication system including electrical 
specifications and logical protocols for the data 
transmission. The word "Interlink" conveys that the 
standard is communication oriented and covers 
more than one participating device. Although the 
RACEway Interlink standard does not specifically 
mention it, it is a perfect description of the way the 
Cypress CY7C965 works. 

random jitter: Random jitter is a measure of edge 
displacement that is uncorrelated with either the in­
terconnect media or the serial data stream. It is usu­
ally caused by random effects in the interconnect 
system or by thermal effects in the high gain amplifi­
ers used to translate between optical and electrical 
information. 

RAS (Row Address Strobe): In dynamic RAMs, this 
signal is asserted to strobe the row address into the 
device; the address inputs are time-multiplexed. 

recursion: see recursion. 

reference: A request by the processor to read or 
write a memory location. 

reframe: To determine and align the deserialization 
logic with correct byte boundaries, so that the data 
can be decoded correctly. 

refresh: The periodic replenishment of the charge 
on storage capacitors used in DRAM cells. 



rise time: The amount of time it takes a digital logic 
signal to transition from a logic LOW to a logic 
HIGH. 

RTC (Real Time Clock): A peripheral clock chip 
that operates from an integrated battery when the 
system power is off. 

RTL (Register Transfer Level): A level of descrip­
tion in hardware design languages that consists of 
operations being described in terms of register- and 
gate-level structures. 

run length: Run length can be either the distance be­
tween transitions (i.e., the maximum number of ad­
jacent ones or the maximum number of adjacent 
zeros) in a serial data stream; or the length of time 
that an error will propagate after an error event. In 
the first case, the 8B/lOB code rules allow a run­
length of five (5) bits. In the second case, a single 
error event can occur within a single byte, and be ter­
minated at the next one, or in the case of a running 
disparity error (or a framing error) the effect of the 
error can continue for an indeterminate time. 

running disparity: Running disparity is a concept 
included in the 8B/lOB code that allows it to ensure 
a perfect DC balance. It is a weasure of difference 
between the number of Is (high-bits) and number of 
Os (low-bits) and is automatically managed by logic 
that selects alternative codes from the possible code 
tables to assure a perfect match. 

running disparity error: A type of error in a serial 
data bit stream in which there are too many consecu­
tive bits at a single logic level for the data received 
to be valid. 

SBCCS (Single Byte Command Code Set): A com­
mand set defined as a Fibre Channel level 4 proto­
col. The set is characterized by having, in all cases 
to command defined in the first byte, and all subse­
quent bytes providing only parametric information 
relating to the command. 

SCSI (Small Computer Systems Interface): A stan­
dard way of interconnecting peripheral devices, 
such as disk and tape to small to medium sized com­
puters. It is specified in a document from the ANSI 
committee X3.31. Up to seven storage devices can 

Glossary 

be attached to a single computer using a single SCSI 
network. 

SECAM (Systeme Sequentiel a Memoire): A standard 
video format used in France and Europe. 

semaphore: A software technique for providing ex­
plicit mutual synchronization of parallel sequential 
(software) processes. Semaphores are initialized 
with the value zero or one before the processes are 
started. After initialization, the processes access the 
semaphores only via two specific operations-the 
so-called synchronizing primitives. The operations 
carried out on semaphores are referred to as P and 
V, which are the first letters of the Dutch words cor­
responding to WAIT and SIGNAL, respectively. 

Sequential Statement: As pertains to VHDL logic 
synthesis, it is a statement appearing within a Pro­
cess. All statements within a Process are executed 
or moqeled in order, similar to programming lan­
guages such as C or Pascal. 

set: A collection of cache locations in which a line 
may reside. 

set associativity: A property that allows a cache to 
be divided into sets, each of which contains one or 
more lines. This property enables a line of main 
memory to map to more than one line in the cache; 
the line of main memory can map to one line in each 
of the sets. When searching the cache, the tags of 
one line from each of the sets are compared to the 
reference tag concurrently, to determine to which 
set, if any, the main memory line was mapped. 

shielded twisted pair: Copper cable consisting of 
two insulated conductors twisted together in a con­
trolled fashion, having an overall cable shield that is 
isolated from both conductors. 

skew: The variation in time of two signals specified 
to occur at the same time. 

SlMM (Single InUne Memory Module): A memory 
packaging option commonly used for DRAMs. 

simplex: A device or system that can transmit data 
in only one direction. Compare half duplex, duplex. 

simulation: In circuit design, the modeling of an 
electronic circuit's function using a computer 
software. 

G-lO 



single-ended: Mode of communication in which a 
received signal is compared to an internal or exter­
nal fixed reference to determine the logical state of 
the signal. Also known as an unbalanced con­
nection. 

single mode: Fiber-optic communication in which 
light propagates in only one mode through the opti­
cal media. 

slave device: A device that allows another device to 
control the timing for data exchanges between them. 
Also, when devices are cascaded in width, the slave 
device is the one that allows another device to con­
trol the timing for data exchanges between the cas­
caded devices and an external interface. The con­
trolling device is called the master device. 

slew: The rate of change of voltage or frequency 
with time. 

snooping: A method used in muItimaster applica­
tions in which one or more of the masters contain 
data or instruction cache. Cache coherency and 
maintenance operations occur when the active mas­
ter requests an operation on data that happens to be 
contained in a non-active master's cache. The non­
active master can intervene and, depending on the 
type of transfer, maintain its cache accordingly and 
possibly supply its cached data to the active master. 
The act of monitoring the bus address and data by 
the non-active master is considered "bus snooping." 

SONET (Synchronous Optical NE1\vork): A stan­
dardized frame format used by telecommunication 
carriers to encapsulate data and transmit that data 
over a WAN. 

spectrum analyzer: A frequency domain oscillo­
scope. 

SRAM (Static Random Access Memory): A Ran­
dom Access Memory allows the user to store and re­
trieve data at a high rate of speed. The term "static" 
means that so long as the power is on, the memory 
will retain its data. This feature contrasts with Dy­
namic Random Access Memories (DRAMs) that 
store data in a temporary medium, which allows the 
data to fade away every few milliseconds. DRAMs 
must have their data refreshed continuously, even 
when the power is on, but they provide greater den-

Glossary 

sity at lower costs than SRAMs, although they may 
be slower. 

starvation: The condition in which one process that 
shares resources with other processes halts due to 
the fact that it can not obtain the resource( s) it needs 
to continue. 

STP (shielded twisted pair): Similar to UTP but 
surrounded by a metal shield. 

Structural VHDL: A description of how the various 
components that make up a design are connected; 
the lowest level of abstraction for a VHDL de­
scription. 

sum-or-products: A Boolean algebra construct in 
which inputs are logic ANDed and the outputs of the 
AND gates are ORed together. This is how most 
PLDs are constructed. 

SVIC: Slave VME interface card. 

SYNC: The special character included in the 8B/10B 
code that allows the serial data stream to be proper­
ly decoded. This character (K28.5) contains a 
unique sequence of bits that can never occur with 
any combination of legal data bytes in an undam­
aged data stream. 

synchronous: Said of a system or signal when the 
rising edge of a clock pulse is used as a reference 
signal. 

target: The agent in PCI with which the initiating 
agent is involved in a transaction. 

temperature compensating oscillator (TXCO): An 
oscillator that contains circuitry that compensates 
for temperature changes and hence' combats fre­
quency variations. 

terminate: To match the impedance of a driver to a 
line or a line to a load. 

Test pin: A pin on the CY7C971 that is only used for 
factory testing. This pin should be tied LOW to per­
manently disable the test mode. 

Thevenin: A type of circuit used to terminate a 
transmission line. 

three-state: A signal that can be at a HIGH or LOW 
logic level, or in a high-impedance state. 

G-ll 



- -,q~ 

~;fCYPRESS===============================G=IO=S=S~==ry 
token passing: (as applied to state machines) A de­
sign methodology in which an n-bit state machine 
is built with n I-bit registers, instead of with 
flog2(n)1 registers. In a token-passing state ma­
chine, the state is indicated by the specific I-bit reg­
ister that contains the only "1," and state transitions 
are accomplished by passing the "1" (i.e., the token) 
from one register to another. 

transaction: In PCI, the process of establishing a 
communication link between two device agents (Le., 
CPU and peripheral) and transferring data. 

transformed transaction: A transaction that is 
changed from its original intent, e.g., a read be­
comes a write and a write becomes a read. 

transformer: Electrically isolates the Ethernet 
transceiver from the media. 

transimpedance amplifier: Amplifier designed to 
convert a small change in current into a large change 
in voltage. 

translation: Conversion from one standard to 
another. 

translator: A device that converts from one stan­
dard to another. 

transparent write: A write in which the data appears 
at the outputs as the data is written into the array. 
Possible only on separate I/O RAMs. 

transmitter: A circuit used to send information. 

TTL (Transistor-Transistor Logic): The dominant 
convention for "one" and "zero" voltage reference 
levels in integrated circuits. TTL circuits are perva­
sive in most electronics applications, including per­
sonal computers, workstations, and consumer elec­
tronics. See ECL. 

twinax (twinaxialcable): Copper cable consisting of 
two insulated conductors assembled parallel to each 
other and having an overall cable shield that is iso­
lated from both conductors. 

UART (Universal Asynchronous Receiver Trans­
mitter): A device that provides serial communica­
tion capabilities for a system. 

uniprocessing: A computer architecture in which 
one processing unit runs all programs. 

UTP (unshielde~ twisted pair): Telephone type 
cable in which two wires are twisted together to form 
a pair. As the name implies, there is no metal shield­
ing around the cables. 

UVEPROM (Ultraviolet Electrically Program­
mab,e Read Only Memory): An EPROM that can 
be erased using an ultraviolet light. See PROM, 
EPROM. 

VAC: VMEbus Address Controller. 

VCO: Voltage controlled oscillator; e.g., a clock gen­
erator that uses input voltage levels to vary the clock 
frequency. 

VESA bus: A local bus standard that extended the 
existing ISA bus to increase throughput. 

VHDL (VHSIC-Very High Speed Integrated Cir­
cuit Hardware Description Language): A standard 
(IEEE 1076) software language for describing and 
simulating hardware designs, from transistor level 
up to full-system level. It is the language used in Cy­
press's Wa1]J PLD design tools. 

ViaLink: The programmable antifuse element used 
to connect wires in a pASIC FPGA. 

VIC: VME Interface Controller. 

VITA: VME International Trade Association. 

VME: VERSAModule Eurocard. 

VSO: VITA Standards Organization. 

watchdog timer: A watchdog timer limits the 
amount of time a system will wait for a bus cycle ter­
mination signal (e.g., RDY). If the watchdog timer 
completes, the system assumes that an error has oc­
curred and responds appropriately. 

XOR: The "exclusive-or" logic gate. 

G-12 



Index 

An italicized page number means the reference is to 
a figure or table. 

Symbols 

.ABL, converting to VHDL, 4-56 

.ABLtoVHDL 
conversion, pitfalls, 4-67 
conversion approach, 4-56 
conversion preparation, 4-56 

.DOC file, 4-57 

Numbers 

100BASE-T4, 6-1 t06-17 
Ethernet repeater, 6-18 to 6-25 

lOOK ECL, 6-47, 6-55, 6-57, 6-58, 6-59, 6-62, 
6-65,6-70,6-71,6-72,6-90,6-99 

lOBASE-T, 6-1 to 6-17 

10K ECL, 6-54, 6-57, 6-58, 6-59 

lOKH ECL, 6-54 

32.768 kHz output, 7-24 

4B/5B, 6-77, 6-173 to 6-174, 6-176,6-177,6-177, 
6-179,6-180,6-181,6-183 

5V Cypress PROM, 3-25 to 3-26 
Interfacing to 3.3V system, 3-25 to 3-26 

68020,8-160 to 8-176 
and the VIC068A, 8-46 to 8-52 
arbitration methodology, 8-163 
bus arbitration sequence, 8-163 
bus grant acknowledge mechanism, 8-164 
bus grant mechanism, 8-163 to 8-164 
bus request mechanism, 8-163 
overview, 8-163 

68OXO 
asynchronous read and write cycles, 8-150 to 8-151 
bus cycle machine, 8-156 

74FCT244T, 4-135 to 4-143 

1-1 

74FCT543CT, 4-138 

8B/lOB, 6-42, 6-44, 6-46, 6-48, 6-75, 6-78, 6-80, 
6-99,6-136,6-137,6-140,6-143,6-145, 
6-146,6-147,6-173,6-198,6-200,6-202, 
6-208,6-209,6-228,6-253,6-281,6-284, 
6-303 

code dependencies, 6-75 to 6-76 
encoder, 6-45, 6-84 
running disparity, 6-76 to 6-77 

8B/lOB data, frequency characteristics, 6-80 to 6-82 

A 
A64/A40 support, 8-13, 8-18 

additional logic, 8-19 

ABEL, 3-7 to 3-11, 4-56 
comparator PROM, source code, 3 -10 
PALC22VlO cycle decoding, source code, 8-51 

Abel-HDL, 4-83 
vs. VHDL, 4-85 

AC characteristics, HOTLink output drivers, 6-63 to 
6-65 

AC impedance, 1-4 

AC termination, 1-20 

accuracy/precision, 7-5 

ACFAlL, 8-44 

adapter card, 6-1 to 6-17 
layout considerations, 6-6 to 6-7 
software considerations, 6-6 to 6-11 

adder, 4-67, 4-145 to 4-158 
12-bit, resource utilization comparison, 4-162 to 

4-163 
carry-lookahead, 4-153 to 4-158, 4-163 
large-sized, 4-164 to 4-166 
ripple carry, 4-145 to 4-147, 4-148 to 4-151, 

4-162 to 4-163 

address 
left port camped on in dual-port RAMs, 5-9 
right and left equal simultaneously in dual-port 

RAMs,5-9 



=ZE~YPREss================================In=d==a 
transition detection, 5 -12 to 5-13 

sequence, 5-13 
unequal in dual-port RAMs, 5-9 

address buffers 
128-kbyte cache, 2-2 
256-kbyte cache, 2-2 

ADSP2100A, 3-16 to 3-17 
DSP to memory interface, 3-16 
initialization, 3-16 
timing, 3 -17 

external program memory, 3 -17 

aging, 7-5 

alias SYNC, 6-190 

ALU, combinatorial, 5-1 

AM Codes, 8-12, 8-16, 8-26, 8-27, 8-28 

Am7968 
Commands, 6-174 to 6-175 
control signals, 6 -175 
functionality, 6-173 to 6-176 
HOTLink emulation, 6-176 to 6-178 

Am7968 TAXI transmitter, 6-173 to 6-183 

AND-OR logic, 4-189 

ANSI, 6-46, 6-48, 6-51, 6-55, 6-60, 6-69, 6-83, 
6-84,6-89,6-90,6-92 to 6-93, 6-94, 6-95, 
6-97,6-134,6-198,6-282,6-286 

ANSI/IEEE Standard 1014, 8-41 

arbiter, SVICto 68020, 8-160 to 8-176 
state diagram, 8 -169 

arbitration logic, in dual-port RAM, 5-8 to 5-9 

architecture, 4-35 
comparator, 4-33 
CPLD,4-97 
CY7C335,4-27 
multiplexer, 4-33 
pipeline, 4-31 
serial decoder, 4-36 

Architecture section, 4-86 

arithmetic designs, 4-144 to 4-173 

array based interconnect, 4-98, 4-99 

ASCII binary PROM programming fIle format, 3-2 

ASCII - HEX PROM programming fIle format, 3-2 

asynchronous 
preset and reset product term, 4-101 
preset/reset, 4-107 

1-2 

ATM, 6-26, 6-28, 6-31, 6-32, 6-33, 6-42, 6-44, 
6-91,6-100,6-136,6-140 

cell format, 6-101 
connections through switch, 6-101 
protocol stack, 6-101 

ATM Forum, 6-42, 6-101 

attenuation effects, 6-308 to 6-310 

Auto Slot ID, 8-9 

auto-negotiation, 6-1, 6-5, 6-7, 6-8, 6-9, 6-11 
registers, 6 -9 to 6-10 

automatic test vector, 4-204 

B 

Base Address register, 4-224, 4-227, 4-228 

baseline wander, 6-77 

baud,6-230 

behavioral descriptions, 4-27 

behavioral logic description, 4-201 

BER, 6-42, 6-206, 6-222 to 6-223, 6-235, 6-236, 
6-237,6-238,6-239,6-245,6-246,6-247, 
6-349 to 6-350,6-351 

See also bit-error-rate 
example calculations, 6-223 

biasing 
ECL output, 6-60 to 6-65 
HOTLink receiver, 6-72 to 6-75 

BiCMOS, 6-43, 6-98, 6-258 

bidirectional, 3 - 25 

bipolar ICs, replacing with CMOS, 1-1 

BIST, 6-40, 6-41, 6-46, 6-48, 6-49, 6-79, 6-80, 
6-212,6-213,6-223,6-228,6-245,6-246, 
6-252,6-253--6-255,6-259,6-297,6-302, 
6-323,6-349,6-350,6-351 

See also built-in self-test; HOTLink, built-in self-test 
total jitter in vs. bit rate reference, 6 - 229 
transmitter jitter while sending, 6-228 

bit-error-rate, 6-256 to 6-261 
See also BER 
definition, 6-256 
floor, 6-260 to 6-261 
specifying, 6-260 

bit-slice CPU control 
execution in state machines, 4-261 
inactive states, 4 - 265 
INTERRUPT mode, 4-262 
NONPIPELINED RUN mode, 4-261 
PIELINED RUN mode, 4-261 
REPEAT INSTRUCTION mode, 4-262 



SINGLE S1EP mode, 4-261 
STOP mode, 4-261 
WAIT mode, 4-261 

bit synchronization, 6-136 to 6-166 

block transfer, 8-8, 8-9, 8-13 

block-multiplexer channel, 6-134, 6-135 

BLT. See block transfer. 

board design skew, 7-5 

board layout, 6-319 

Boolean equations, 4-27 

bottom-up approach, 4-201 

buffers, for communication between systems, 5 - 2 to 
5-3 

bufoe component, 4-35, 4-59, 4-106 

Built-In-Self-Thst mode, 6-329, 6-334,6-337, 
6-343 

buried registers, 4-29,4-106 

bus 
differential, 6-276 to 6-277,6-277 
direct-coupled, 6-275 to 6-277 
single-ended, 6-275 to 6-276, 6-276 

BUS HOLD OFF function, 8-164 

bus lines, connecting, 8-48 

buses, bidirectional, 1-18 

BUSY signal, in dual-port RAMs, 5-10 

bypass capacitors 
types, 6-85 to 6-87 
with HOTLink, 6-84 to 6-87 

c 
cable 

coaxial, 1-16,6-96 to 6-97 
attenuation characteristics, 6-96 

copper, 6-95 to 6-98 
shielded twisted-pair, 6-95 
twinaxial, 6-95 to 6-96 

cable testing, 6-296 to 6-301 
equipment, 6-296 to 6-297 
eye pattern, 6-301 
procedure, 6-297 
results, 6-297 to 6-299 

capacitance, for ideal case, 1-21 to 1-22 

capacitive coupling, 6-277 to 6-279,6-278 

capacitive reactance, 1-34 

1-3 

capacitors, 6-318 to 6-319 
bypass 

types, 6-85 to 6-87 
with HOTLink, 6-84 to 6-87 

coupling, 7 -10, 7 -11 to 7 -12 
DC-block, 6-278 to 6-279 
decoupling, 1-31, 1-34 to 1-38 
equivalent model, 6-278 
filter 

high-frequency, 1-31 to 1-32 
low-frequency, 1-33 
paralleling, 1 - 33 

impedance vs. frequency, 1-32 

Carry-lookahead principle, 4-151 

Carry-lookahead, 4-151 to 4-152 

CD (carrier detect), 6-27 to 6-28 

channel, 6-134 
block multiplexer, 6-134, 6-135 
ESCON, 6-134, 6-135 

channel resistance, 1-18 

characteristic impedance, 1-4, 6-264 

chipset, 2-5, 3-24 
PCI,2-1 

Index 

circuit board substrates, properties, 6-269 

circuit board transmission lines, 6-266,6-266 to 
6-269 

dielectric constant, 6-268 

CKRjitter, 6-245, 6-245 

clamping diodes, input, 1-2 

CELp, 2-3 

clock 
buffer, 7-3 
control using CY7C361, 8-153 
devices, 7-1 to 7-3 
distribution, 7-35 to 7-37 
generation, 8-153 to 8-154 
generator 

implementation, 4-269 to 4-272 
inputs and outputs, 4-262 to 4-263 

jitter, 7-3 to 7-4 
parameters, 7-3 to 7-6 

aging, 7-5 
duty cycle, 7-6 
error, 7-6 
jitter, 7-3 to 7-4 
skew, 7-4 to 7-5 
slew, 7-6 
stability, 7 - 5 
voltage sensitivity, 7-5 
wander/drift,7-6 



stretching, 8-151 to 8-152 
terminology, 7-1 to 7-7 

clock driver skew, 7-4to7-5 

clock generator, 6-46, 6-249 to 6-250, 7-30 to 7-33 
recommended crystals, 7-8 to 7-10 

clock jitter, 7 -14 to 7 -15 

clock multiplier, 6-40, 6-85, 6-173, 6-218,6-224 

clock oscillators, with HOTLink, 6-83 to 6-84 

clock recovery, data separator PLL, 6-219 to 6-223 

clock sources, 6-249 to 6-250 

clock sync, 6-47, 6-48 

clock synchronization, 7 -81 to 7-85 
clock interconnections, 7-81, 7-82 
many processors to single clock, 7-82 to 7-83 
processor clocks, 7-81 to 7-82 
theory of operation, 7-81 

coarse-grain logic cell, 4-189 

coax. See coaxial cable. 

coaxial cable, 1-16,6-35,6-35,6-69,6-70,6-71, 
6-93 6-95 6-96 to 6-97 6-208 6-245 
6-258,6-259,6-263,6-269 to 6":'270, 6":'271, 
6-272,6-275,6-278,6-280,6-282,6-286, 
6-296,6-297,6-301,6-306,6-310,6-313, 
6-347,6-348,6-349 

50-ohm, 6-297 to 6-298 
75-ohm 

RG179 and Belden 8218, 6-300 
RG59, 6-298 to 6-299, 6-300 
RG6,6-299 

attenuation characteristics, 6-96, 6-307 
critical dimensions, 6-270 

coaxial test bed, 6-252 to 6-253, 6-254 

coaxial transmission line, 6 - 263 

cockpit, 4-243 to 4-244 

Code Rule Violation, 6-195 

coefficients, reflection, 1-6 

collision, 6-19, 6-24 

combinatorial logic equations, 4-88 

comma, 6-46, 6-48, 6-136, 6-137 

command packet, 8-181 

comments, 4-57 

common mode noise, 6-21 

comparator, 4-66 
designing with VHDL, 4-32 to 4-33 

1-4 

Wmp2 report file excerpt, 4-44 
Wmp2 source code, 4-43 

comparators 
equality, 4-167 
magnitude, 4-167 to 4-170 
three-output, 4-171 to 4-173 

Compare Address, 8-16 

compensated oscillator, 7-1 

compiler, VHDL, 4-27, 4-31 

concurrent statements, 4-90 

Configuration statement, 4-86 

connectors, copper cable, 6-97 to 6-98 

constants, 4-57 

continual phase adjustment, 7-79, 7-80 

continually phase adjusted clock source, 7 -79 

converter, CY7C611A to 680xO bus, 8-153 

copper cable, 6-95 to 6-98 
ANSI Fibre Channel requirements, 6-97 
connectors, 6-97 to 6-98 
driving with HOTLink, 6-262 to 6-295 

Index 

HOTLink, maximum length vs. frequency, 6-296 to 
6-304 

long, 6-305 to 6-319 
testing, 6-296 to 6-301 

equipment, 6-296 to 6-297 
procedure, 6-297 
results, 6-297 to 6-299 

transmission line, 6 - 269 to 6 - 271 

copper media, 6-92, 6-95 
capacitor coupled, 6-70 
interface, signal detect, 6-73 to 6-75 
direct coupled, 6 - 69 to 6 -70 
driving, 6-69 to 6-71 
receiving from, 6-73 to 6-75 
signal characteristics, 6-75 to 6-82 
transformer coupled, 6-70 to 6-71 

counter, 4-66 

coupling 
capacitive, 6-277 to 6-279, 6-278 
HOTLink to copper, 6-273 to 6-280 

direct coupling, 6-273 to 6-275 
transformer, 6-279,6-279 to 6-280, 6-280 

CPLD, 4-132, 4-133 to 4-143,4-174,4-188 
Mentor's QuickSim II simulation, 4-177 to 4-187 
overview, 4-97 to 4-98 

CPU, 4-138 

CPU clock outputs, 7 - 31 



CPUCLKoutput,7-25 

CR/CSR,8-9 

creating files, using high-level languages, 3-7 

crosstalk, 1-2,6-56,6-57,6-207,6-216,6-217, 
6-218,6-265,6-266,6-271,6-301,6-350 

crystal, 7-1, 7-2, 7-4, 7-5, 7-8 to 7-10 
32.768 kHz, 7-10 
oscillator, 7-1, 7-5 
parallel resonant, 7-1, 7-30 
series resonant, 7-1, 7 -10 

crystal oscillator, 6-249, 7-8 to 7-12 

CY2254, 7-30 to 7-33 
external connections, 7-32 
features, 7-30 to 7-31 

CPU clock outputs, 7-31 
keyboard and floppy clocks, 7-31 
PCI clock outputs, 7-31 
power supply, 7-31 
reference clock outputs, 7 - 31 
reference frequency, 7-31 

function table, 7-31 
logic block diagram, 7-30 
system applications, 7-31 to 7-33 

CY2291, 7-22 to 7-29 
applications, 7 - 26 to 7 - 27 
block diagram, 7-23 
external connections, 7-26 
features, 7-22 to 7-24 

outputs, 7 - 22 
power-saving modes, 7-23 to 7-24 
reference frequency, 7-22 
skew, 7-24 
slewing, 7 - 22 

internal architecture, 7-24 to 7-25 
layout and filtering techniques, 7 - 25 to 7 - 26 
outputs, 7-24 to 7-25 

32.768 kHz, 7-24 to 7-25 
configurable, 7 - 25 
CPUCLK, 7-25 
FLOPPYCLK, 7-25 
XBUF, 7-25 

CY2292, 7-22 to 7-29 
block diagram, 7-23 

CY27H010, 3-22 to 3-24 

CY74FCTI62H501,8-180 

CY7B46X, interface to CY7B923, 6-326 to 6-328 

CY7B923, 6-167, 6-173 to 6-183 
as ECL clock source, 6-167 

1-5 

block diagram, 6-167 
clock generator, 6-167 
encoder, 6-168 
input register, 6-168 
output, 6-168 
shifter, 6-168 
test logic, 6-168 

clock issues, 6-169 
clock skew, 6-172 
device packaging, 6-172 
drive capability, 6-172 
duty cycle stability, 6-170 

Index 

HOTLink transmitter printed circuit layout, 6-172 
jitter, 6-170 
power supply current, 6 -172 
rise and fall time, 6 -171 
termination, 6-171 

frequency range, 6-168 
fulfilling the requirements, 6-168 
HOTLink transmitter 

clock generator, 6-46 
description, 6-45 to 6-46 
encoder, 6-45 to 6-46 
input register, 6-45 
logic block diagram, 6-45 
shifter, 6-46 
test logic, 6-46 

HOTLink transmitter features and specifications, 
6-167 

ideal clock circuit, 6-167 
interface to CY7C42X/46X, 6-326 to 6-328 
interface to wide data clocked FIFO, 6-337 to 

6-346 
interfacing to clocked FIFOs, 6-329 to 6-336 
test circuit, 6-169 

CY7B923/933, 6-127 

CY7B933 
HOTLink receiver 

clock sync, 6-47 
Decode register, 6-48 
decoder, 6-48 
description, 6-47 to 6-49 
ECL-TTL translator, 6-47 
framer, 6-48 
logic block diagram, 6-47 
Output register, 6-48 
serial data inputs, 6-47 
shifter, 6-48 
test logic, 6-49 

interface to wide data clocked FIFO, 6-337 to 
6-346 

interfacing to clocked FIFOs, 6-329 to 6-336 

CY7B951, 6-26 to 6-34 

CY7B991 or CY7B992, see RoboClock, 7-81 



CY7B991/2, 7-34 to 7-74 
AC characterization, 7 -70 to 7 -73 
implementations, 7-60 to 7-64 
logic block diagram, 7-34, 7-86 
skew configurations, 7 -99 
1I:st mode, 7-98 to 7-101 

CY7C132 
used in master standalone operations, 5 -13 
used in slave word-width expansion, 5-13 

CY7C142, used in slave word-width expansion, 5-13 

CY7C245A,3-1 

CY7C276 
interfacing to DSPs, 3 -14 to 3 - 21 
introduction, 3 -14 

CY7C335, 4-85, 4-89 
block diagram, 4 - 28 
designing with, 4-27 to 4-55 
hidden macrocell, 4-30 
input clocking scheme, 4-30 
input macrocell, 4 - 28 
input/output macrocell, 4 - 29 
overview, 4-27 to 4-30 

CY7C361 
for clock control, 8 -153 
input and output signals, 8-153 

CY7C370, using Warp to design with, 4-105 to 4-115 

CY7C371, 4-116, 4-133, 4-138 
signals, 4-134 to 4-135 
speed considerations, 4-125 
using for FIFO dipstick, 5 - 39 to 5 -45 
utilization, 4-125 

CY7C374, on-board programming, 4-174 to 4-176 

CY7C375, on-board programming, 4-174 to 4-176 

CY7C380 Family, 4-195 
architectures, explained, 4-195 
I/O cells, 4-198 
logic cells, 4-198 
performance and timing model, 4-199 
power consumption, 4-238 
routing, 4-196 

CY7C382,4-242 

CY7C384A, 8-204 
pin table, 8-214 

CY7C387p, 8-179, 8-195 

CY7C388p, 6-18, 6-24 

CY7C4245, 8-179, 8-184, 8-204, 8-206 

1-6 

CY7C429 
decoupling capacitor example, 1-31 
in unterminated line example, 1-23 

CY7C42X, 5-19 
interface to CY7B923, 6-326 to 6-328 

CY7C43X, 5 -19 

CY7C45X, programming, 5-34 

CY7C46x, 5-19 

CY7C47x, 5-19 

CY7C611A 
interfacing with the VIC64, 8-147 to 8-159 
load and store cycles, 8-149 
memory interface signals, 8-148 
overview, 8-148 to 8-149 

Index 

CY7C901, dual-port memory operation, 5 -1 to 5 - 2 

CY7C960, 8-7 to 8-28, 8-160 to 8-161 
features, 8-7, 8-160 to 8-161 
internal block diagram, 8-8 

CY7C961, 8-7 to 8-28, 8-160 to 8-161 
features, 8-7, 8-160 to 8-161 

CY7C964, 8-7, 8-8, 8-9, 8-10, 8-11, 8-16, 8-17, 
8-18,8-21,8-115,8-161 

address comparator configuration, 8-95 
address comparison signals, 8-36 
byte-width mode, 8-30 
connections to SVIC, 8-20 
features, 8-29 
interface, 8-13, 8-18 
local data swap buffer, 8-38 
local signals, 8 - 36 
logic example, 8-15 
used with VIC64 and VIC068A, 8-29 to 8-40 
word-width mode, 8-33 

CY7C965,8-177 

CY7C971, 6-2 to 6-6, 6-19 to 6-24 
block diagram, 6-20 
clock pins, 6-4,6-4 
configuration pins, 6-5, 6-5 to 6-6, 6-22, 6-22 
LED pins, 6-4 to 6-5, 6-5, 6-22, 6-22 
PMA interface, 6-20 

CY9266, 6-200, 6-253, 6-280, 6-296, 6-300, 6-347 
to 6-351, 6-352 to 6-388 

serial interface, 6 - 349 

CYB675, boot-up, 8-92 

CYBUS3384 bus switch, 3-25 to 3-26 

cycle-cycle jitter, 7-3, 7-3,7-14,7-14 to 7-15 
application for measurement, 7-15 
measuring, 7 -17 

CYM9651, 8-177 



CYM9652,8-177 

CYM9653,8-177 

CYM9654,8-177 

CYM9655,8-177 

D 

data, ownership, 5 - 3 

data dependent jitter (DDJ), 6-76, 6-77, 6-78, 
6-79,6-79,6-236,6-244,6-245,6-245, 
6-284,6-295,6-298,6-313 

generator, 6-251 to 6-252 
schematic, 6-252 

tolerance, 6-236, 6-246 
as a function of data rate, 6 - 236 

data rate, 6-90 

data separator, 6-40, 6-219, 6-222 

DC-block capacitor, 6-278-6-279 

DCD,6-207 
See also duty cycle distortion jitter 

DDJ, 6-207, 6-208, 6-219 
See also data dependent jitter 

deadly embrace, 5 -4 to 5 - 5 

DEC 21140 MAC, 6-1, 6-7 
register set-up, 6-8 

DEC binary PROM programming file format, 3-3 

decode logic, 4-124 

Decode register, 6-48 

decoder, 4-34, 4-66, 6-48 
VHDL source code, 4-47 
Wap2 report file excerpt, 4-48 

decoupling capacitor, calculations, 1-31 

decoupling capacitors, 1-34 to 1-38 

delay, propagation, 1-5 

delay generator, 6-250 

design 
state machine for FIFO dipstick, 5-40 
tools, 3-7 to 3-12 

design and I/O declarations, 4-85 

Design Compiler, 4-312 to 4-315 
design entry formats, 4-312 
design flow and integration with Wap, 4-312 to 

4-313 
design synthesis and optimization capabilities, 4-313 

to 4-315 
software requirements, 4-312 

1-7 

design entry formats 
Exemplar, 4-307 
Synopsys,4-312 

Index 

designs, discrete vs. modular, 2-3 to 2-5 

detailed architecture, FPGAs, 4-188 

deterministic jitter, 6-77, 6-215, 6-246, 6-254 
as a function of data pattern, 6-228 
caused by PLL corrections, 6-228 
transmitter, 6-227 

dielectric constant, 1-6,6-268,6-270,6-310, 
6-311,6-312,6-312 

dielectric dispersion, 6-310 to 6-312 

dielectric loss effect, 6 - 307 

differential bus, 6-276 to 6-277, 6-277 

differential connections, 6-56 to 6-57, 6-59 

Dijkstra, E. w., 5 -18 

diode, 3-26 
PN junction, 1-2 
Schottky, 1-23 
zener diode protection, 1-30 

direct coupling, HOTLink to copper, 6-273 to 6-275 

direct memory access. See DMA 

direct-coupled bus, 6-275 to 6-277 

discontinuities, voltage reflections due to, 1-9 

disparity, 6-48, 6-78, 6-201, 6-202, 6-203, 6-204, 
6-209,6-212,6-213,6-255,6-281,6-303 

dispersion, 6-310 to 6-313 
dielectric, 6-310 to 6-312 
other factors, 6-312 to 6-313 

DMA (direct memory access), 6-127, 8-178, 8-179, 
8-180,8-182,8-184,8-185,8-196 

HOTLink,6-127 

DMA controller, 4-243 
design example, 4-248 to 4-259 

dot extension, 4-58 

double buffering, source code, 8 -171 

double oven oscillator, 7-1 

DRAM, 4-201 

DRAM interface, 8-7, 8-9, 8-13 

DRAM refresh, 8-166 to 8-176 

drift, 7-6 

driving multiple processors, 7-84 to 7-85 

droop, 6-287 

DSACKlines, connecting, 8-49 



-=:iIIIIIIIio.. 

=; ~YPRESS================================In=d==~ 
DSP1616, 3-14 to 3-16 

DSP to memory interface, 3-15 
initialization, 3 -15 
memory maps, 3 -15 
timing, 3-16 

external program memory, 3 -16 

DSP56000, 3-17 to 3-19 
DSP to memory interface, 3 -18 
initialization, 3 -17 
memory maps, 3 -18 
timing, 3-18 

external program memory, 3 -19 

DSPs, interfacing high-speed PROMs, 3-14 to 3-21 

dual transformers, 6-291 to 6-294 

dual-portRAMs,5-1 t05-19 
arbitration logic, 5-8 
block diagram, 4-132 to 4-133 
BUSY signal, 5-10 
cell history, 5-4 
Cypress family, 5 - 5 
design example, 5-15 to 5-18 
in VIC068A, 8-52 
interrupt logic, 5-7 
left port camped on an address, 5-9 
mailbox signaling, 8-43 to 8-44 
memory expansion, 4-138 
operation, 5-1 to 5-2, 5-6 to 5-7 
performance evaluation, 4-135 to 4-138 
right and left addreses equal simultaneously, 5-9 
standalone operation of, 5-13 
state machine design, 4-133 to 4-134 
state machine implementation, 4-134 
unequal addresses, 5-9 
use of SRAM, 4-133 
using FIASH370, 4-132 to 4-143 
using single-port RAMs, 5-2 
VHDL for controller, 4-140 

duty cycle, 7-6 
restoration, 7-11 

duty cycle distortion (DCD) jitter, 6-77, 6-78 to 
6-79,6-79,6-235,6-236,6-238,6-244, 
6-245,6-245,6-278 

synthetic, generator, 6-250 to 6-251 
schematic,6-251 

tolerance, 6-235 to 6-236, 6-246 
as a function of data rate, 6-235 

E 

ECL, 6-36, 6-44, 6-47, 6-49, 6-50, 6-53, 6-56, 
6-57,6-59,6-62,6-63,6-65,6-66,6-67, 

1-8 

6-69,6-71,6-75,6-80,6-84,6-85,6-88, 
6-90,6-91,6-92,6-142,6-173,6-208,6-212, 
6-217,6-250,6-251,6-273,6-274,6-275, 
6-276,6-277,6-278,6-279,6-280,6-283, 
6-288,6-294,7-20 

lOOK, 6-36, 6-46, 6-47, 6-55, 6-57,6-58,6-59, 
6-62,6-65,6-70,6-71,6-72,6-90,6-99, 
6-277,6-278 

10K, 6-36, 6-54, 6-57, 6-58, 6-59 
lOKH, 6-36, 6-54 
advantages, 7 - 20 
clock source, 6-167 to 6-172 
input levels, 6-72 
inputs, 6-57, 6-7 to 6-72 
logic, 6-64 

mixing families, 6-57 to 6-59 
logic families, 6-53 to 6-59 
logic levels, 7 - 20 
optical modules, 6-68, 6-73 
output biasing, 6-60 to 6-65 
output routing and board layout issues, 7 - 21 
output termination, 6-250, 6-252 
outputs, 6-55 to 6-57, 7-20 
pad structure, 7 - 20 
power supplies, 7 - 20 
probing, 6-52 
sample waveforms, 6-53 
signal levels, 6-49, 6-50 

input, 6-50 
output, 6-50 

signals, 6-52 
terminating, 6-66 to 6-71 
viewing, 6-51 to 6-53 

switch, basic, 6-49, 6-49 
switch, buffered, 6-50 
terminating resistor values, 7 - 21 

ECL-TIL translator, 6-47, 6-56, 6-57, 6-72, 6-73 

effective series resistance, 1-35 to 1-37 

effective time constant, 1-15 

EISA bus, 6-100 

electromagnetic band classifications, 6 - 263 

electromagnetic compatibility (EMC), 6-273 

emitter-follower, 6-36, 6-50, 6-62, 6-63, 6-64, 
6-65,6-84,6-91 

encoder, 6-45 to 6-46 

energy considerations, for driving transmission lines, 
1-7 

ENIAC,4-2 

Entity section, 4-85, 4-86 

EPROM technology, 7-24 



equalization, 6-69, 6-76, 6-258, 6-260, 6-287, 
6-304,6-313 to 6-319 

circuits, 6-313 
implementation constraints, 6-318 to 6-319 
noise-induced,6-257 

equalizer 
circuits, 6-314 
equations, 6-314 
example, 6-313 to 6-314, 6-315 to 6-318 

error, 7-6 
deserializer, 6-258 
electrical link 

extrinsic, 6-258 to 6-261 
intrinsic, 6-257 

extrinsic, 6-258 to 6-259 
intrinsic, 6-257 to 6-258 
link-based, 6-256 to 6-257 
optical link 

extrinsic,6-258 
intrinsic, 6-257 

random, 6-257 
receiver, 6-258 
running disparity, 4-118 
serializer, 6-257 
soft,1-2 
sources, 6-257 to 6-260 
transmitter, 6-257 to 6-258 
undefined character, 4-118 

error-free window, 6-233 to 6-234 
test, 6-208 

ESCON, 6-42, 6-44, 6-46, 6-99, 6-188, 6-198 

ESCON channel, 6-134, 6-135 

ESD, 6-43, 6-70, 6-258, 6-277, 6-279 
protection circuitry, 1-2 

Ethernet, 6-1 to 6-17, 6-18 to 6-25 

evaluation board 
for VIC64, 8-91 
local address symbols, 8-98 
local control register, 8-91 

Exemplar Logic 
command file options, 4 - 311 
control file options, 4-312 
design entry formats, 4-307 
design flow and integration with Warp, 4-308 to 

4-309 
design synthesis and optimization capabilities, 4-309 

to 4-312 
Galileo, 4-307 to 4-312 
Logic Explorer, 4-307, 4-308, 4-309 
software requirements, 4-307 to 4-308 

1-9 

Index 

Exorcisor PROM programming file format, 3-3 to 
3-4 

Exormax PROM programming file format, 3-4 

external signal source, 7 -10 to 7-11 

extrinsic skew, 7-5 

eye pattern, 6-78,6-78,6-259,6-284,6-287, 
6-288,6-290 

error free, 6-260 
testing, 6-301 to 6-304 
with forced noise, 6-259 
without forced noise, 6-259 

F 
fax, 3-22 

FDDI, 6-77, 6-91, 6-173 

FFT, 6-81, 6-82, 6-99, 6-308, 6-308, 6-319 

fiber-optic cable, 6-35, 6-93 to 6-95, 6-237, 6-238, 
6-252,6-258,6-349 

ANSI Fibre Channel requirements, 6-95 
multimode, 6-93 to 6-94 
pulse dispersion, 6-94 
single-mode, 6-93 

fiber-optic detectors, 6-90 to 6-91 

fiber-optic emitters, 6-88 to 6-90 
ANSI Fibre Channel requirements, 6-89 

fiber-optic interface module, 6-35, 6-40, 6-47 

fiber-optic link, 6-238 

fiber-optic test bed, 6-252, 6-253 

fiber-optic transceiver, 6-140 

Fibre Channel, 6-42, 6-44, 6-46, 6-48, 6-51, 6-55, 
6-69,6-83,6-89,6-90,6-91,6-92 to 6-93, 
6-94,6-95,6-97,6-99,6-136,6-140,6-188, 
6-198,6-242,6-282,6-286,6-295,6-319 

fields, electric and magnetic, 6-263, 6-266 

FIFO, 8-178, 8-204 
applications, 5 - 20 
asynchronous ports, 5 -40 
clocked, 5 - 29 to 5 - 38 

depth expansion, 5 - 35 to 5 - 36 
interfacing to CY7B923 and CY7B933, 6-329 to 

6-336 
resetting and programming, 5 - 33 
using as standard FIFO, 5-36 to 5-38 
width expansion, 5-36 

configurations, 5-21 to 5-23 
corrupted or repetitive data, 5 - 24 to 5 - 25 
dipstick, 5-39 to 5-45 

architecture, 5-41 



-=Z~YPRESS===============================In=d==ex 
differences from programmable FIFOs, 5 -42 
state machine design, 5-40 
Wap2 implementation, 5-40 

generic interface to CY7B923, 6-326 
interface to PitCREW, 8-184 to 8-185 
interface to RACEway, 8-179 
large, 5-19 to 5-28 
locking up, 5-25 
missing data, 5 - 25 
out-of-sequence data, 5-26 
problems with, 5 - 24 
reading to and writing from, 5-19 to 5-20 
reads, 5-30 to 5-31 
resetting, 6-338 
resetting and programming, 6-333,6-343 
synchronous ports, 5-39 
wide data clocked, 6-337 to 6-346 
writes, 5 - 30 

filter analysis, low-pass, 1-20 

filtering, high-frequency, 1-31 

fine-grain logic cell, 4-189 

firmware, 3 - 22 to 3 - 24 

flags 
boundary, 5-32 
in clocked FIFOs, 5-31 

FLAsH370, 4-132 to 4-143 
designing with Wap2, 4-97 to 4-115 
family members, 4-99 
features, 4-98 to 4-104 
implementing a 12Kx32 Dual-Port RAM, 4-132 to 

4-143 

FLAsH370 CPLDs, 4-144 to 4-173 

FLAsH371,4-56 

flip-flops, triggering modes, 4 - 2 

FLOPPYCLK output, 7-25 

FOTO,6-208 

Fourier series expansion, 1-3 

Fourier transform, 1-32 

FPGA 
architecture and technologies, 4-188 to 4-199 
architecture issues, 4-188 
comparison to CPLDs, 4-195 
design entry, using Wap3, 4-243 to 4-259 
design example, 4-204 
designing with, 4-200 
detailed architecture, 4-188 
global architecture, 4-189 
I/O cells, 4-198, 4-247 

1-10 

logic cells, 4-189 
PCI bus applications, 4-220 to 4-237 
programmability, 4-189 

ESCON 
drive with HOTLink, 6-134 to 6-166 
frame format, 6-139 
protocol controller, 6-143 to 6-146 

framer, 6-48 

frames, 6-138 to 6-139 
validation, 6-139 

framing, 6-321 

frequency hop, 6 - 242 

frequency synthesizer, 7-2 to 7 - 3 
PLL-based, 7-13 to 7-14 

frequency synthesizers, 7 - 22 to 7 - 29 
PLL-based,7-8 

full-duplex, 8-204 

function attributes, 4-63 

fuse technology 
characteristics, 4 -193 
CY7C380 Family, 4-195 
pASIC380 Family, 4-244 to 4-245 

G 
Galileo, 4-307 to 4-312 

command file options, 4-311 
control file options, 4-312 
design entry formats, 4 - 307 
design flow and integration with Wap, 4-308 to 

4-309 ' 
design synthesis and optimization capabilities, 4-309 

to 4-312 
Logic Explorer, 4-307, 4-308, 4-309 
software requirments, 4-307 to 4-308 

Gate Array ASIC, 4-188 

generator 
clock, 4-262 to 4-263, 4-269 to 4-272 

using CY7C361, 8-153 to 8-154 
interrupt, 8-44 
substrate bias, 1-2 

global synchronous set, 4-86, 4-89 

glue logic, 8-9, 8-13 

graphical user interface, 4-27 

ground bounce, 7-16 
eliminating, 7-19 

groups, 4-65 

gss, 4-86, 4-89 



H 

hardware, semaphores, 5-11 to 5-12 

HBM (human body model), 6-43 

Hewlett-Packard, HSMS-2822 Schottky diode, 1-23 

hierarchical designs, 4-31 

high-level architecture, VIC068NAC068, 8-54 

higher-level controller, 4-117 

Horstmann, Jens U., 4-5 

HOTLink, 6-44 to 6-99, 6-104, 6-106, 6-127, 
6-134 to 6-166, 6-173 to 6-183, 6-224, 6-248, 
6-249,6-252,6-253, 6-320,6-326 to 6-328, 
6-329 to 6-336, 6-337 to 6-346 

and serial links, 6-103 to 6-104 
BIST, 6-40, 6-41 

auto-abort and restart, 6-206 
tests using, 6 - 206 

receiver jitter tolerance, 6-207 
transmission line length, 6 - 206 

BIST Connections, 6 -198 
bit-error-rate, 6-41, 6-256 to 6-261 
built-in self-test, 6-197 to 6-213 
Bypass mode, 6-199, 6-201 
copper interconnect, 6-296 to 6-304 
coupling to copper, 6-273 to 6-280 

direct coupling, 6-273 to 6-275 
design consideration, 6-44 to 6-99 
direct memory access model, 6-130 
DMA protocol definition, 6-130 
driving copper cables, 6-262 to 6-295 
ECL input levels, 6-72 
ECL inputs, 6-57 
ECL outputs, 6-55 to 6-57 
Encoded mode, 6-199, 6-201 
Evaluation Board, 6-252, 6-253, 6-254, 6-280, 

6-296,6-300,6-347 to 6-351, 6-352 to 
6-388 

features, 6-44 
FOTO control of OUTA and OUTB, 6-60 
framing, 6-38 to 6-39 
frequently asked questions, 6-35 to 6-43 
functional description, 6-44 
high-speed serial links, 6-127 
I/O space model, 6-129 
implementing a data link, 6-128 
interfacing to long cables, 6-295 
jitter, 6-41 to 6-42 
jitter characteristics, 6-214 to 6-223 

summary, 6-246,6-246 to 6-247 
latency, 6-43 
normal RDY timing, 6-320 

1-11 

Index 

output drivers, AC characteristics, 6-63 to 6-65 
parallel interface 

receiver, 6-128 
transmitter, 6-128 

power supply bypassing, 6-36 
power-saving mode, 6-59 to 6-60 
RDY and CKR stretching, 6-322 
RDY in BIST mode, 6-323 

BIST loop, 6-323 
entering BIST mode, 6 - 323 
framing while in BIST, 6 - 324 
leaving BIST, 6-323 
start of BIST, 6-323 

RDYin bypass mode, 6-321 
entering framing, 6-322 
leaving framing, 6-322 
normal operation, 6-321 

RDY in encoded mode, 6-320 
entering framing, 6-321 
leaving framing, 6-321 
normal operation, 6-320 

RDY pin description, 6-320 
receiver 

biasing, 6-72 to 6-75 
BIST comparator, 6-203 
block diagram, 6 -198 
clock sync, 6-47 
Decode register, 6-48 
decoder, 6-48 
description, 6-47 to 6-49 
ECLinputs, 6-71 to 6-72 
ECL-TTL translator, 6-47 
error-free-window test, 6-208 
framer, 6-48 
interface to FIFOs, 6-341 
jitter, 6-233 to 6-245 
logic block diagram, 6-47 
offset frequency, 6-212 
Output register, 6-48 
pin configuration, 6-85 
PLL block diagram, 6 - 233 
power pins, 6-85 
run-length tolerance test, 6-209 
serial data inputs, 6-47 
shifter, 6-48 
test logic, 6-49 

serial interfaces, 6 -128 
serial signal characteristics, 6-49 to 6-53 
shared memory I/O model, 6-133 
simplifying your system with, 6-186 

built-in self-test, 6-190 
DC specification, 6-192 
ECL-to-TTL translator, 6-192 
higher operating frequency, 6-190 
more flexible command codes, 6-187 



more inputs, 6-186 
more outputs, 6-186 
multiplexed command and data, 6-186 
output enable considerations, 6-193 
parallel interface, 6-192 
reframing, 6-189 
sending violations, 6-192 
status indication, 6-194 

support components, 6-83 to 6-98 
system connections, 6-45 
transmitter, 6-226 

BIST generator, 6-201 
bit-rate jitter output, 6-227 
block diagram, 6-197 
clock generator, 6-46 
connections, 6-59 to 6-60 
description, 6-45 to 6-46 
differential connections, 6-56, 6-56 to 6-57 
encoder, 6-45 to 6-46 
input register, 6-45 
interface to FIFO, 6-329,6-337 
jitter, 6-224 to 6-232 
jitter transfer function, 6 - 229 
logic block diagram, 6-45 
output byte-rate jitter, 6-227 
pin configuration, 6-84 
PLL block diagram, 6 - 224 
power pins, 6-84 to 6-85 
random jitter set-up, 6-225 
serial data, 6-80 
shifter, 6-46 
single-ended connections, 6-55, 6-55 to 6-56 
terminating ECL signals, 6-66 to 6-71 
test logic, 6-46 
Vcc coupled jitter set-up, 6-231 

upgrade your TAXI -275,6-184 to 6-196 
usage oftransmission lines, 6-266 to 6-273 
Verilog model, 6-43 
VHDL model, 6-43 
with long copper cables, 6-305 to 6-319 

I 

I/O, 8-7, 8-8, 8-9, 8-25 
access, 8-10, 8-13, 8-25 
boards, 8-7 
cells, 4-247 
controller, 8-7 
data port, 8 -179 
mode, 8-11, 8-17 
pins, 8-14 

ICD2028, CY2291 as upgrade, 7-27 

ICGS, 8-43 

ICMS,8-43 

identifiers, 4-64 

idle decoder, 6-341 

impedance 
AC,I-4 
input or characteristic, 1-4 
mismatch, 1-2 
surge, 1-4 

inductive reactance, 1-34 

inductor, 6-318 

initiator, 4-220 

input 
clamping diodes, 1-2 
impedance, 1-4 
sensitivity, 1-1 

input clocking scheme, 4-30 

input macrocell, 4 - 28 

input register, 6-45 
logic definition, 4-89 

input/output macrocell, 4-29 

Index 

Integrated Device Technology, slave companion part to 
dual-port family, 5-4 

Intel Triton chipset, 7 - 30 

Intellec 8/MDS PROM programming file format, 3-4 
t03-5 

Intellec 86 PROM programming file format, 3-5 to 
3-6 

interconnect, advantages and weaknesses, 4-194 

interconnect link jitter, tolerance, 6-236 to 6-239 

interface, for VIC068A, 8-44 

internal signal declarations, 4-87 

interrupt generator, 8-44 

interrupts, 4-262 
in VIC068A, 8-52 
logic in dual-port RAM, 5-7 

intrinsic skew, 7-4 to 7-5 

IS_TYPE attribute, 4-59 

ISA bus, 6-100 

lSI (intersymbol interference), 6-76 

J 
jabber, 6-19, 6-24 

jam, 6-19, 6-24, 6-25 

JEDEC, 4-135 to 4-143 

1-12 



JEDEC file, 4-30 

jitter, 6-35, 6-37, 6-40, 6-41 to 6-42 6-56 6-67 
6-69,6-70,6-71,6-72,6-77 to 6-80, 6-147,' 
6-207,6-208,6-209,6-211,6-212,6-214 to 
6-223,6-224 to 6-232, 6-257, 6-259, 6-260, 
6-261,6-274,6-280,6-281,6-281,6-282, 
6-285,6-286,6-287,6-288,6-290,6-291, 
6-296,6-312,6-350,7-13 

causes, 7-3 to 7-4, 7-16 to 7-17 
characteristics, summary, 6-246 to 6-247 
CKR, 6-245, 6-245 
clock, 7-3 to 7-4, 7-14t07-15 
cycle-cycle, 7-3, 7-3,7-14,7-14 to 7-15 

application for measurement, 7-15 
measuring, 7-17 

data dependent, 6-76, 6-77, 6-78, 6-79, 6-79, 
6-284,6-295,6-298,6-313 

generator, 6-251 to 6-252 
schematic, 6-252 

tolerance, 6-236, 6-246 
as a function of data rate, 6-236 

deterministic, 6-77, 6-207, 6-224, 6-246, 6-254 
data dependent, 6-207 
duty cycle distortion, 6-207 

duty cycle distortion, 6-77, 6-78 to 6-79 6-79 
6-278 ' , 

generator, 6-250 to 6-251 
schematic, 6-251 

tolerance, 6-235 to 6-236,6-246 
as a function of data rate, 6-235 

HOTLink receiver, 6-233 to 6-245 
in logic systems, 6-215 to 6-218 
in PLL systems, 6-218 to 6-222 
interconnect link, tolerance, 6-236 to 6-239 
long-term, 7-3,7-4, 7-15 to 7-17, 7-16 

measuring, 7 -17 
measurement accuracy, 6-247 to 6-248 
measuring, 7 -17 
period, 7-3,7-4,7-15,7-15 

application for measurement, 7-16 
measuring, 7-17, 7-18 

PLL, 6-243 to 6-245 
random, 6-77, 6-79, 6-79, 6-207, 6-208, 6-215, 

6-228,6-230,6-237,6-238,6-238,6-239, 
6-246,6-247,6-253,6-257 

as function of frequency, 6-226 
set-up with HOTLink transmitter, 6-225 
transmitter, 6-224 to 6-226 

reducing, 7-17 to 7 -19 
test equipment, 6-248 to 6-249 

characteristics, 6-248 to 6-249 
non-commercial, 6-250 to 6-255 

1-13 

Index 

tolerance, 6-37, 6-40, 6-207, 6-302, 6-304 
6-313,6-350 ' 

data dependent, 6-236 
as a function of data rate, 6-236 

duty cycle distortion, 6-235-6-236 
interconnect link, 6 - 236-6 - 239 
receiver, 6-207 

transfer function, Vcc, 6-230 to 6-231 

K 
K' MOS circuit design parameter, 1-1 

K28.5, 6-37, 6-38, 6-39, 6-46, 6-48, 6-78, 6-203, 
6-204,6-211,6-212,6-236,6-237,6-237, 
6-242,6-281,6-303,6-304,6-304, 6-321 
6-349,6-351 ' 

keyboard and floppy clocks, 7-31 

keyword, 4-57, 4-61 

L 
L2 cache, requirements, 2-1 to 2-3 

address buffers for 128-kbyte cache, 2-2 
address buffers for 256-kbyte cache, 2-2 
cache size, 2-1 
cache speed, 2-1 
cache type, 2-2 
generating chip selects CS, 2-2 to 2-3 

L2 cache module, 
selecting, 2-5 
with the Contaq 82C599, 2-1 

LAB, 4-97 
architectural components, 4-97 

latch option, 4-106 

latch-up, 1-2 

latency, round trip, 6-105, 6-105 to 6-106 

lead inductance, 1-31 

LFI (link fault indicator), 6-27 to 6-28 

LFSR, 6-201, 6-202, 6-203, 6-206 

library, 4-86 

line voltage, for a step function, 1-7 to 1-9 

linear feedback shift register (LFSR), 6-45, 6-48 

link-based errors, 6-256 to 6-257 

linked list, 8-181 
operation, 8-182 

load 
capacitance, estimating, 1-6 
multiple, 1-18 



local interrupts, 8-13, 8-17 to 8-18 

lockvariable, 5-3 

lockword, 5 - 3 

LOG/iC, 3-12 
clock state machine, source code, 4-273 
comparator PROM, source code, 3-12 

logic cell, 4-245 to 4-259 
advantages and weaknesses, 4-194 
in FPGAs, 4-188 

Logic Modeling, 6-43 

logic synthesis, 4-68 

long cables, interfacing to HOTLink, 6-295 

long-term jitter, 7-3,7-4,7-15 to 7-17, 7-16 
measuring, 7-17 

loss factors, 6 - 305 to 6 - 307 
dielectric loss effect, 6 - 307 
proximity effect, 6-306 
radiation loss effect, 6-306 to 6-307 
skin effect, 6-305 to 6-306 

low-pass filter analysis, 1-20 to 1-21 

Lubkin, S., 4-2 

M 

MACH,4-56 

macrocell,4-98 
buried,4-98 
dedicated,4-98 
hidden, 4-29, 4-30 
input, 4-28 
input/output, 4-29 

mailbox signaling, in dual-port RAMs, 8-43 to 8-44 

Mask, 8-17, 8-18 

Mask value, 8-16 

master, standalone operation of dual-port RAMs 
5-13 ' 

master device, 8-53, 8-54, 8-55, 8-56 

master read, 8-55 

master sequencer, 8-57 

master write, 8-55 

matched loading, 6-62-6-63 

MC68020, 8-44 
See also see 68020 

MCS86 PROM programming file format, 3-5 to 3-6 

1-14 

MD32 support, 8-13, 8-21 
additional logic, 8-14 

Mealy machine, 4-36, 4-88, 4-262 

Index 

media, 6-35 to 6-36, 6-41, 6-42, 6-43, 6-89, 
6-93,6-134 to 6-136,6-140,6-175,6-207, 
6-237,6-262,6-282,6-319,6-347,6-350 

copper, 6-69 to 6-71, 6-73, 6-75, 6-92, 6-95, 
6-258,6-262 to 6-295, 6-304, 6-305 

fiber-optic, 6-90 
optical, 6-93, 6-95 
serial,6-46 
transfer characteristics, 6-42 
transmission, 6-67 

media access controller (MAC), 6-1, 6-7 

media dependent interface (MDI), 6-2 to 6-3, 6-19 
to 6-21, 6-21 

schematic, 6-2 

media driver/receiver, 6-258 

media independent interface (MIl), 6-3 to 6-4 
schematic, 6-3 

memory 
dual-port. See dual-port RAMs 
exception cycles, 8-147 to 8-148 
multi-port, history of, 5-1 

Mentor Quicksim II, 4-177 to 4-187 

message passing, 5 - 3 

metastability, 4-1 to 4-24 
attacking, 4-4 to 4-5 
causes of, 4-3 
characteristics, of Cypress PLDs, 4 -17 
characterization, 4-9 
circuit analysis, 4-5 to 4-7 
data on, 4-8 
definition of, 4-1 
explanation of, 4-2 to 4-3 
graphs of Cypress devices, 4-19, 4-20 
information from manufacturers, 4-9 to 4-10 
statistical analysis, 4-7 to 4-8 
testing 

of Cypress parts, 4-10 to 4-16 
PLD equations for, 4-14, 4-15 

metastable events, 8-166 

microprocessor, typicaI8-bit, 5 -14 

microstrip line PCB construction, 1-16 to 1-17, 7 -41 

microstrip transmission line, 6-266 to 6-267, 6-268 
calculated impedance vs. trace width, 6-267 
dimensions, 6 - 266 

mixed mode, 4-202 

Moore machine, 4-88, 4-262 



Motorola 
68020, and the VIC068A, 8-46 to 8-52 
68040, 8 -106 
Exorcisor PROM programming file format, 3-3 to 

3-4 
Exormax PROM programming file format, 3-4 
MBD101, MBD102 Schottky diodes, 1-23 

MTBF, 5-40, 6-256 

multi-port, memories, 5-1 

multimode fiber, 6-93 to 6-94 

multiple clocks, 1 - 37 

multiplexer, 4-67 
designing with VHDL, 4-33 to 4-34 
Wa/p2 report file excerpt, 4-46 
Wa1p2 source code, 4-45 

multiprocessing, 2-1 

mux based interconnect, 4-98, 4-100 

N 
negative undershoot safety margin, 1-2 

network interface card, 6-1 to 6-17 
parts list, 6 - 16 
schematics, 6-12 to 6-13 

networks, RC, 1-20 

NMOS ICs, replacing with CMOS, 1-1 

nodes, bidirectional, 1-18 

noise-induced error, 6-257 

NONPIPELINED RUN mode, 4-261 

Nova, 4-135 

NRZ (non-return-to-zero), 6-68, 6-75, 6-80, 6-188 
modulation, 6-75 

NRZI,6-174 

NuBus,6-100 

number representations, 4-64 

o 
on-board programming, 4-174 to 4-176 

one-hot, 4-88 

operator, 4-60 

operators, 4-57 

optical drivers, power distribution requirements, 6-89 
to 6-90 

optical fiber, 6-257, 6-260, 6-310 

1-15 

optical media, 6-93, 6-95 

optical modules, 6-91 to 6-92 
driving, 6-67 to 6-69 
ECL, 6-68 to 6-69, 6-73 
PECL, 6-67 to 6-68, 6-72-6-73 
standard pinout, 6-92 
standard footprint, 6-91 

Index 

optical receivers, power distribution requirements, 
6-91 

oscillator 
compensated, 7-1 
crystal, 7-1, 7-5, 7-8 to 7-12 
double oven, 7-1 
oveIl controlled, 7-1 
temperature compensating, 7-1 
voltage controlled, 7-1 

output macrocell, 4-101 

Output register, 6-48 

oven controlled oscillator, 7-1 

ownership, of data, 5-3 

p 

package, 4-86 

PAL22VlO 
cycle decoding, 8-51 
fitting a clock state machine into, 4-271 
in CY7C611A interface, 8-153 
MTBF calculation, 4-8 

PALCI6L8, in unterminated line example, 1-23 

PALs, difference from PLAs, 3-1 

parallel AC termination, 1-20 

parallel buses 
problems with, 6-102 to 6-103 
serializing, 6-100 to 6-126 

parallel termination, 6-66, 6-67 

parallel-pair cable, 6-269, 6-270 to 6-271, 6-306 
critical dimensions, 6-270 

parallel-resonant crystal, 7 - 30 

parity, 4-225 

partition, 6-18, 6-19, 6-24 

pASIC,4-244 

pASIC380 Family 
architecture, 4-244 
clock distribution, 4 - 246 
fuse technology, 4-244 to 4-245 
I/O cells, 4-247 



~~ 
~~CYPRESS=================================In~d~a 

logic cells, 4-247 to 4-249 
routing, 4-245 to 4-247 
simplified model, 4-245 

pattern generator, 6-250 

PCBs 
component placement, 1-1 
construction 

microstriplines, 1-16,7-41 
strip lines, 1-17, 7-42 
wire over ground, 1-16 

modern, 1-17 
trace inductance and current-starving, 1-31 
traces, 1-2 
transmission lines, 1-3 
using ground or power planes, 1-2 

PCI, network adapter, 6-1 to 6-17 

PCI bus, 6-100, 4-220 to 4-237 
architecture, 4-220, 4-221 
commands, 4-223 
configuration space, 4-223 to 4-224 

address space, 4-224 to 4-225 
header, 4-223 to 4-224 

critical design issues, 4-233 to 4-236 
initiator, 4-220 
interface signals, 4-220 to 4-222 
parity, 4-225 
recommended pinout, 4-227 
target, 4-220 
target application, 4-227 to 4-233 
transactions 

aborting, 4-226 
claiming, 4-225 
read, 4-224, 4-225 
waveforms, 4-224 to 4-225 
write, 4-225, 4-226 

PCI chipset for the Intel 486 CPU, 2-1 

PCI clock outputs, 7-31 

PECL, 6-35, 6-36, 6-44, 6-49, 6-53, 6-55, 6-59, 
6-63 6-67 6-68 6-71 6-72 6-73 6-92 
6-142,6-143, 6-i46, 6':176, 6-226:6-230, 
6-249,6-250,6-251,6-252,6-277,6-278, 
6-281,6-288,6-294,6-350,7-20 

load circuits, 6-247 
measurements, 6-247 
output loads, 6-251, 6-252 
outputs, 6-235, 6-247, 6-248 
scoop probe, 6-248 
termination, 6-248, 6-251, 6-252 

Pentium, 7 - 30 

period jitter, 7-3, 7-4, 7-15,7-15 
application for measurement, 7-16 

measuring, 7-17, 7-18 

Peripheral Component Interconnect. See PCI bus 

personal computers, using the CY2291, 7-26 to 7-27 

phase aquisition characteristics, measuring, 6-240 

phase changes in received data, tolerance to, 6-212 

phase hop, 6-241 

phase-locked loop, 7-36 
See also PLL 
operation, 7-50 

Physical Media Attachment (PMA), 6-19, 6-22 

PIM, 4-97, 4-98, 4-133 

pin-to-pin propagation delay, 4-193 

pipe lined buffer 
designing with VHDL, 4-31 to 4-32 
VHDL source code, 4-41 
Wmp2 report file excerpt, 4-42 

PIPELINED RUN mode, 4-261 

pipelines 
freezing, 8-151 
NONPIPELINED RUN mode, 4-261 
nonpipelined states, 4-265 
pipeline register to interface CY7B923, 6-333 
PIPELINED RUN mode, 4-261 
pipelined states, 4-265 
registers, 6-342 

1-16 

PitCREW, 8-178, 8-179 to 8-203 
basic input interface, 8-199, 8-199 
basic output interface, 8-201,8-201 
clocking, 8 - 202 
controlling data transmission, with TXSUSPEND 

and TXSYNC, 8-201 
design considerations, 8-199 to 8-201 
features, 8-180 
FIFO interface, 8-184 to 8-185 
input data qualification 

RXSYNC and RXVALID, 8-199,8-200 
RXVALID, 8-199,8-200 

operation, 8-180 to 8-184 
pins, 8-195 
programming considerations, 8-196 to 8-197 
register address map, 8-185 

read, 8-185 
write, 8-185 

registers, 8-185 to 8-189 
command address, 8-186, 8-196 
command route, 8-186, 8-196 
control, 8-188 to 8-189, 8-196 
data address, 8 -186, 8 -196 
data route, 8-186, 8-196 
status, 8-187 



word count, 8-189, 8-196 
signals, 8-190 to 8-195 

cable interface, 8-194 to 8-197 
input FIFO control, 8-194 
input FIFO interface, 8-192 to 8-194, 8-193 
miscellaneous, 8-194 
output FIFO control, 8 -192 
output FIFO interface, 8-191 to 8-192, 8-192 
RACEway interface, 8-190 

timing, 8-197 to 8-199 
input, 8-197 
output, 8-197 to 8-199 

PitCREWjr, 8-178, 8-204 to 8-214 
block diagram, 8-205 
data flow, 8-204 
interface signals, 8-205 
interfacing with FIFOs, 8-206 
master function, 8-207 
master read, 8-208, 8-209 
master read error, 8-213 
master write, 8-208, 8-208 
master write overflow, 8-211 
operation, 8-208 to 8-213 
signals, 8 - 206 
slave function, 8-206 to 8-207 
slave read, 8-208, 8-210 
slave write, 8-208,8-209 
SRE function, 8 - 212 

PLAs, difference from PALs, 3-1 

PLDToolKit 
18G8 design file, source code, 8-39 
metastability testing, source code, 4-14,4-15 

PLDs 
design tools, 3 -7 to 3 -12 
metastability, 4-1 to 4-24 

characteristics, 4 -17 

PLL, 4-116, 6-27, 6-28, 6-31, 6-32, 6-36, 6-37, 
6-40,6-41,6-42,6-46,6-47,6-75,6-85, 
6-136 to 6-138, 6-173, 6-197 to 6-213, 6-218, 
6-218 to 6-223, 6-233, 6-233, 6-235, 6-236, 
6-238,6-239,6-240,6-241,6-242,6-243, 
6-246,6-258,6-298,6-302,7-2 to 7-3, 7-4, 
7-5,7-6,7-8,7-13,7-23,7-24 

See also phase-locked loop 
as a function of frequency, 6-234 
block diagram, HOTLink transmitter, 6-224 
CPU, 7-22, 7-23, 7-24, 7-25 
data separator, 6-219 to 6-223 
internal, 7 - 30 
out of lock condition, 4 -117 
receive, 6-27, 6-28, 6-29, 6-234, 6-242 
receive block diagram, 6-220 

1-17 

receiver, 6-38, 6-71, 6-78, 6-351 
SYSCLK, 7-24, 7-25 
Transmit, 6-28 
UTILITY, 7 - 24 

PLL-based systems, jitter, 7-13 

PM5345 (SUNI), 6-28 to 6-31 

PM5346 (SIUNI-LITE), 6-31 to 6-32 

PMA interface, 6-20 

PMA mode, 6-22 

PN junction diodes, 1-2 

polarity conventions, 4-64 

ports 
asynchronous, 5-40 
synchronous, 5 - 39 

power consumption, calculation of, 4-238 

power distribution 
optical drivers, 6-89 to 6-90 
optical receivers, 6-91 

power pins 
HOTLink receiver, 6-85 
HOTLink transmitter, 6-84 to 6-85 

power supply noise, 7-16 
filter circuit, 7-19 
reducing, 7-17 to 7-19 

Powerview,4-243 

preamble, 6-19, 6-24, 6-25 

predefined attributes, 4-63 

printers, using the CY2291, 7 - 27 

processors, 68020, 8-46 to 8-52 

product term 
sharing, 4-102 
steering, 4-102 

product term allocator, 4-97, 4-102 
CY7C370,4-102 
MACH, 4-102 
MAX7000, 4-103 

product term array, 4-97 

programmable, logic elements, 3-1 

programmable connections, 4-191 

programmablility, FPGAs, 4-189 

PROMs, 3-25 to 3-26 
CY27HOlO, 3-22 to 3-24 
generating programming files, 3 -1 to 3-13 
programmers, compatibility, 3-2 

Index 



programming file formats 
ASCII Binary, 3-2 
DEC, 3-3 
Exorcisor, 3-3 to 3-4 
Exormax,3-4 
Intellec 8/MDS, 3-4 to 3-5 
Intellec 86, 3-5 to 3-6 
simple Binary, 3-2 
TEKHEX,3-6 
XTEK, 3-6 to 3-7 

used as state machines, 4-271 

propagation velocity, 6-264 to 6-265 

propagation velocity and delay, 1-5 

proximity effect, 6-306 

pull-up, terminations, 1-19 

pull-down, terminations, 1-19 

pulse dispersion, optical, 6-94 

pulse response, 1-9 

pulse transformers, 6-92 to 6-93 
ANSI Fibre Channel specifications, 6-92 to 6-93 
core materials, 6-92 

Q 
qsim_states,4-179 

quantitive interface comparison, 6-280 to 6-295 
dual transformers, 6-291 to 6-294 
single transformer configurations, 6-290 to 6-291 
test configurations, 6 - 282 to 6 - 290 
test equipment, 6-280 to 6-282 
test set-up, 6-282 

QuickSim II, 4-177 to 4-187 

R 

RACEway, 8-177 to 8-178 
Crossbar, 8-177 
interfacing, 8-179 to 8-203, 8-204 to 8-214 
Interlink Modules, 8-177 to 8-178 
on-ramp, 8-178, 8-179 to 8-203, 8-204 to 8-214 

features, 8-180 
operation, 8-180 to 8-184 
system overview, 8-179 to 8-184 

VME J2/P2 connector, 8-203 

radiation loss effect, 6-306 to 6-307 

RAM 
Cypress dual-port family, 5 - 5 
dual-port, 5-1 to 5.,..19 

applications, 5-2 to 5-4 

1-18 

operation, 5-6 to 5-7 
dual-port RAM cell history, 5-4 
single-port, 5-2 
virtual dual-port, 5-2 to 5-3 

random error, 6-257 

Index 

random jitter, 6-77, 6-79, 6-79, 6-207, 6-208, 
6-237,6-238,6-238,6-239,6-246,6-247, 
6-253,6-257 

transmitter, 6-224 to 6-226 

range attributes, 4-63 

RC networks, 1-20 

RDYpin, 6-320 

reactance factors, 6-307 

Read-Modify-Write cycle, 8-9 

real-world converted designs, 4-68 

Receive PLL, 6-27, 6-28, 6-29 

receive PLL jitter, transfer function, 6-243 to 6 - 245 

receiver, 6-27, 6-28 

receiver data-frequency acquisition time, 6-242 to 
6-243 

receiver data-phase acquistion time, 6-239 to 6-242 

receiver, HOTLink. See CY7B933 and HOTLink, re-
ceiver 

reference clock outputs, 7 - 31 

reference frequency, variable, 7-22 

reflection 
coefficients, 1-6 
conditions for, 1-5 
due to discontinuities, 1-1 to 1-2, 1-9,1-11, 

1-11, 1-14to 1-15 
multiple, 1-14 to 1-15 

reframe,6-38 
CKR stretch, 6-211 

reframe controller, 4-116 
additional functionality, 4-117 to 4-118 
counters, 4-120 
decoding function, 4-118 
design and implementation, 4-118 
inputs, 4-118 
interface, 4-118 
outputs, 4-119 
receiver system, 4-118 

Reframe input, 6-331,6-341 

reframing, 6-37, 6-39, 6-47, 6-48, 6-246· 
why necessary, 4-116 to 4-117 

region decoder, 8-11 to 8-13, 8-14 to 8-17 
inputs and outputs, 8 -16 



registers 
bringing registers on-chip, 5-1 
evaluation board local control, 8-91 
exclusive state, 4-269 
pipeline, 6-342 
semaphore, 5-4 

repeat instruction, 4-262 

repeater, 6-18 to 6-25 
block diagram, 6-19 
core logic, 6-24, 6-25 
layout considerations, 6-22 to 6-25 

repetitive logic, 4-67 

RESET, 8-21, 8-24 

reset, 6-22,6-22 

resets and presets, 4-64 

resistor, 6-87 to 6-88, 6-318, 8-21 
terminating, 7 - 21 
termination, 6-282, 6-296, 6-347, 6-348 

retransmit feature, 5 - 23 

RF generator, 6-249 

RIC- RINO, 8-178 

rise time 
effect on waveforms, 1 -13 
finite, effects, 1-11 

RoboClock, 7-74 to 7-80, 7-81 to 7-85, 7-86, 
8-166 

See also CY7B991/2 
configuration methodologies, 7-87 

using one small table, 7-87 
using three tables for multiple outputs, 7-88 

driving multiple processors, 7 - 84 to 7 - 85 
gated, 7-77 to 7-79,7-78 
overview, 7-86 
using in resolution enhancement of a laser printer, 

7-89 
background, 7-89 
configuring, 7-91 
design analysis, 7-91 
design implementation, 7-90 

Rockwell v.fast chipset, 3-22 to 3-24 

routing, 4-196, 4-245 to 4-247 
signal wires, 4-245 
signal wires supported, 4-196 

RTL, 4-27, 4-83 

running disparity, 6-77, 6-188, 6-206 
8B/lOB code, 6-76-6-77 
error, 4-118 

1-19 

RVS, 4-117, 4-120, 6-206 

rvs,6-190 

s 

Index 

S records. See Exorcisor PROM programming file for­
mat 

S/UNI-LITE, 6-31 to 6-32 
interface to SST, 6-31 

SBus,6-100 

schematic entry, 4-202 

Schottky diode termination, 1-22 

sea-of-gates,4-190 
ASIC, 4-190 

sea-of-gates concept, 4-188 

SELECTLM,8-24 

semaphores 
hardware, 5-11 to 5-12 
latch cell, 5 -12 
registers, 5-4 

sequential statements, 4-90 

SERDES, 6-140 to 6-143 

serial, 6-42, 6-98, 6-103, 6-104, 6-105, 6-106, 
6-107,6-108,6-134 to 6-166, 6-142, 6-173 to 
6-183,6-197 to 6-213, 6-223, 6-272, 6-279, 
6-298 

bit-stream, 6-228 
communication link, 6-222 
converter, 6-46, 6-47, 6-224 
output jitter, varies as function of input noise fre-

quency,6-230 
output logic, 6-228 
output pins, 6-232 
outputs of HOTLink, 6-226 
protocols, 6-220 
solution, 6-103 
transmission link, 6-220 

serial bit-rate, 6-75 

serial bit-time, 6-281 

serial communications, 6-71 

serial data, 6-36, 6-37, 6-38, 6-41, 6-44, 6-45, 
6-46,6-47,6-48,6-56,6-57,6-60,6-66, 
6-67,6-68,6-72,6-85,6-233,6-239,6-242, 
6-243,6-251,6-252,6-259,6-275,6-296, 
6-313,6-350 

HOTLink transmitter, 6-80 
transmission line effects, 6-76 

serial data communication systems, 6-256 

serial data inputs, 6-47, 6-71 



serial data rates, 6-52 

serial decoder 
designing with VHDL, 4-36 
VHDL source code, 4-52 

Serial I/O Electrical Interface, 6-142 to 6-143 

Serial 1(0 Interface, 6-143 

serial inputs, 6-36, 6-37, 6-38, 6-44, 6-47, 6-233 

serial interface, 6-41, 6-44, 6-46, 6-49, 6-273, 
6-277,6-296,6-298,6-349 

serial lines, 6-72 

serial link, 6-37, 6-39, 6-40, 6-41, 6-43, 6-44, 
6-45,6-56,6-61,6-68,6-77,6-88,6-256, 
6-258,6-281,6-298,6-350 

architecture of, 6 -1 04 

serial links, and HOTLink, 6-103 to 6-104 

serial media, 6-46 

serial outputs, 6-41, 6-44, 6-56, 6-80 

serial port, 6-44 

serial PROM, 8-21 

serial pulse train, 6 - 350 

serial shifter, 6-46 

serial signals, 6-65, 6-273 
characteristics, HOTLink, 6-49 to 6-53 

series damping, 1-18 to 1-19 

series termination, 6-66, 6-67, 7-25, 7-32 

shared input multiplexer, 4-34 

shielded twisted-pair cable, 6-69, 6-93, 6-95, 6-97, 
6-347,6-348,6-349 

shields, 6-271 to 6-272 
transfer impedance, 6-272, 6-273 

shift register, 4-67 

shifter, 6-46,6-48 

shutdown mode, 7-23 

signal effects, 6-307 to 6-310 
attenuation effects, 6-308 to 6-310 

signal levels, ECL, 6-49, 6-50 
input, 6-50 
output, 6-50 

signal propagation, 6-305 to 6-313 

signals 
680xO basic control, 8-150 
BUSY, in dual-port RAMs, 5-10 
CY7C361, input and output, 8-153 

1-20 

CY7C611A, memory interface, 8-148 
CY7C964 

address comparison, 8-36 
local,8-36 

transition times, 1-6 
VIC64 control, 8-35, 8-149 
VMEbus control, 8-35 

Index 

simple binary PROM programming file format, 3-2 

simulation, 4-177 to 4-187 

single transformer configurations, 6-290 to 6-291 

single-port, RAM for dual-port memory, 5-2 

single-ended bus, 6-275 to 6-276, 6-276 

single-ended connections, 6-55 to 6-56, 6-59 

single-mode fiber, 6-93 

skew, 6-56, 6-102, 6-103, 6-108, 6-176, 6-212, 
6-239,6-250,7-4 to 7-5 

board design, 7 - 5 
clock driver, 7-4 to 7-5 
effect on UTOPIA bus, 6-103 
extrinsic, 7-5, 7-36 
intrinsic, 7-4t07-5, 7-35 
measuring, 7 - 5 

skin effect, 6-305 to 6-306 

slave 
standalone operation of dual-port RAMs,S -15 
word-width expansion, 5-13 

slave device, 8-53, 8-55, 8-57 

slave devices, 8-56 

slave VIC, 8-7 to 8-28, 8-160 to 8-176 
address map, 8 -12 
basic, 8 -166 
block diagram, 8-162 
design issues, 8-9 to 8-13 
devices, 8-160 to 8-161 

features, 8-160 to 8-161 
implementation with more than one bus master, 

8-167 
local bus arbitration methodology, 8-164 to 8-165 
local bus philosophy, 8-164 

slew, 7-6 

soft errors, 1-2 

SONET, 6-28, 6-31, 6-32, 6-42, 6-108 

SONET serial transceiver, 6-26 to 6-34 
block diagram, 6-26 
carrier detect and link fault indicator, 6-27 to 6-28 
interface to SIUNI-LITE, 6-31 
interface to SUNI, 6-30 
interfacing IgT WAC-013, 6-32 to 6-33 



interfacing with PM5345, 6-28 to 6-31 
loop back testing, 6-28 
operating frequency, 6-26 to 6-27 
pinout, 6-26 
power-down modes, 6-28 
receive functions, 6-27 
receiver, 6-27, 6-28 
SUNI connection diagram, 6-29 
transmit functions, 6-27 
transmitter, 6-27, 6-28 
WAC-013 connection diagram, 6-33 
WAC-013 interface, 6-34 

SONET/SDH, 6-26, 6-29, 6-32, 6-33 

source code 
ABEL 

comparator PROM,3-10 
PALC22VlO cycle decoding, 8-51 

LOG/iC 
clock state machine, 4 - 273 
comparator PROM, 3-12 

PLDToolKit 
18G8 design file, 8-39 
metastability testing, 4-14, 4-15 

source level design verification, 4-203 

SPARCmon, 8-92 

SpDE path analyzer, 4-211 
with applied constraint, 4-213 

SRAM, 4-132 to 4-143,8-25 

SST. See SONET serial transceiver 

stability,7-5 

standalone operation of dual-port RAMs 
master, 5-13 
slave, 5-15 

state machine, 4-66, 4-83, 4-90, 4-120, 4-205 
state definitions, 4-88 

state machine design, 4-133 to 4-134 

state machine implementation, 4-134 

state machines, 4-260 
as interface controller for CY7B923, 6-330 
as receivers, 6-334 to 6-335 
clock generation, 8-153 
CPU inactive states, 4-265 
D flip-flop implementation, 4-270 
design considerations and methodologies, 4-260 to 

4-296 
entry methods, 4-260 to 4-261 
exclusive registers, 4 - 269 
LOG/iC PLD source code, 4-273 
naming states, 4-264 

1-21 

partitioning, 4-264 
pipelined and nonpipelined states, 4-265 
PLD implementation, 4-271 
PROM implementation, 4-271 
synchronous vs. asynchronous, 4-262 
T flip-flop implementation, 4-270 to 4-271 
terms used, 4-260 
unique states, 4-265 

state macrocell, 4-101 

state tables, 4-27, 4-260 

static alignment, 6-233 to 6-234 
measurement technique, 6-234 

Status/ID word, 8-13, 8-17 

step function 
determining line voltage for, 1-7 to 1-9 
negative step function response, 1-21 
positive step function response, 1-21 
response for various terminations, 1-10 
response of ideal line, 1-9 

STP. See shielded twisted-pair cable 

strip lines, 1-17 to 1-18, 7 -42 

Index 

stripline transmission line, 6-267 to 6-268, 6-310 
calculated impedance vs. trace width, 6-268 
dimensions, 6-267 

strobe, shortening considerations, 1-27 to 1-29 

structural logic description, 4-201 

substrate bias generator, 1-2 

subtracters, large-sized, 4-164 to 4-166 

subtracter, 4-158 to 4-162 
borrow-lookahead, 4-160 to 4-162 

SUNI, 6-28 to 6-31 
interface to SST, 6-30 
SST connection diagram, 6-29 
typical interface without SST, 6-29 

supervisor mode, decoding on the VMEbus, 8 - 50 

supply bypass and filtering, 7 - 32 

support components, HOTLink, 6-83 to 6-98 

surge impedance, 1-4 

suspend mode, 7 - 23 

SVIC. See slave VIC 

SVIC Evaluation Board, 8-9, 8-10, 8-11, 8-13, 
8-14,8-16,8-17,8-18,8-21 

VHDLcode, 8-23 to 8-28 

swap buffer, 8-11, 8-14 
implementation example, 8-16 

switch, ECL, 6-49, 6-49, 6-50 



22~YPRESS=============================I=n=de=x 
switches 

ICGS,8-43 
ICMS,8-43 

SY2130, 5-4 

SYNC, 6-39, 6-46, 6-78, 6-146, 6-149, 6-163, 
6-179,6-182,6-195,6-242 

sync, 6-201, 6-203, 6-211, 6-212, 6-321 

sync acquired, 6-137 

SYNC character, 6-189 

synchronization, 6-136 to 6-137 
two-stage, 4-16 

synchronized processor clocks 
design requirements, 7-81 
generating with RoboClock, 7-81 to 7 -85 

Synertek,5-4 

Synopsys 
Design Compiler, 4-312 to 4-315 
design entry formats, 4-312 
design flow and integration with Wa1p, 4-312 to 

4-313 
design synthesis and optimization capabilities, 4-313 

to 4-315 
software requirements, 4-312 

Synthesis_off, 4-147, 4-151 

SYSFAIL generation, 8-44 

T 

target, 4-220 

TAXI-275 
receiver, block diagram, 6-186 
transmitter, block diagram, 6-185 
upgrade with HOTLink, 6-184 to 6-196 

brief explanation, 6 -185 

TE mode, 6-263 

TEK HEX PROM programming file format, 3-6 

TEM mode, 6-263,6-263,6-264 
transmission line characteristics, 6-264 to 6-265 
transmission lines, 6 - 265 to 6-266 

temperature compensating oscillator, 7-1 

termination, 6-36, 6-38, 6-49, 6-53, 6-60, 6-61, 
6-67,6-69,6-70,6-71,6-73,6-76,6-106, 
6-142,6-144,6-208,6-272,6-273,6-274, 
6-275,6-279,6-280,6-282,6-285,6-296 

ECL output, 6-250, 6-252 
HOTLink transmitter, ECL signals, 6-66 to 6-71 
parallel, 6-66, 6-67, 6-251, 6-252 

1-22 

PECL,6-248 
PECL output, 6-251, 6-252 
pull-up/pull-down, 1-19 to 1-20 
schottky diode, 1-22 . 
series, 6-66, 6-67, 7-25, 7-32 
Thevenin, 6-247 
transmission line, 6-65 to 6-66, 6-68, 6-88, 

6-251,6-252 
types of, 1-18 to 1-20 
voltage, 6-47 

termination circuit, 6-247 

termination resistor, 6-282, 6-296, 6-347, 6-348 

Test and Set instruction, 5-3 to 5-4 

test equipment, 6-280 to 6-282 

test logic, 6-46, 6-49 

Thst mode, 7 - 31 

Test pin, 6-22 

test set-up, 6-282 

Thxas Instruments 
SN74S1050/52/56 Schottky diodes, 1-23 
SN74S1051/53 Schottky diodes, 1-23 

timing model, 4-193 

timing violation, 7-75 
overcoming with RoboClock, 7 -74 to 7 -76 
solution, 7-75 

TM mode, 6-263 

TMS320C40, 8-53 
architecture, 8-53 

TMS320C50, memory maps, 3 - 20 

TMS320C5X, 3-19 to 3-21 
DSP to memory interface, 3-20 
initialization, 3-19 
timing, 3-20 

external program memory, 3 - 20 

top-down approach, 4-201 

traces, most critical, 1-1 

transaction, 8-8, 8-11, 8-12, 8-13, 8-14, 8-16, 
8-21,8-22 . 

slave, 8-7 
VME64, 8-8 
VMEbus, 8-8, 8-9 

transformer, 6-19, 6-21 

transformer coupling, 6-279,6-279 to 6-280, 6-280 

translation, 3-25, 3-26 

translator, 6-250 



transmission line, 6-35, 6-38, 6-49, 6-50, 6-51, 
6-53,6-67,6-69,6-70,6-71,6-73,6-75, 
6-77,6-92,6-96,6-142,6-198,6-206,6-207, 
6-208,6-215,6-236,6-237,6-248,6-250, 
6-251,6-252,6-256,6-262 to 6-266, 6-273, 
6-274; 6-275, 6-276, 6-277, 6-278, 6-279, 
6-280,6-284,6-287,6-288,6-294,6-295, 
6-296,6-304,6-305,6-306,6-307,6-311, 
6-312,6-313,6-314,6-315,6-319,6-347, 
6-348,6-349,6-351 

attenuation, 6-47, 6-315 
balanced, 6-265,6-265,6-266 
characteristics, 6-264 to 6-265 
circuit board, 6-266, 6-266 to 6-269 

dIelectric constant, 6-268 
coaxial cable, i -16 
copper cable, 6-269 to 6-271 
effects, 7-43 
effects on serial data, 6-76 
energy considerations for driving, 1-7 
equivalent circuit, 6-264 
HOTLink usage, 6-266 to 6-273 
ideal, 1-3 to 1-4, 1-7 
microstrip, 6-266 to 6-267, 6-268 

calculated impedance vs. trace width, 6-267 
dimensions, 6-266 

microstrip lines, 1-16, 7 -41 
model,1-3 
pulse response, 1-9 
reflection currents, 6 - 65 
strip lines, 1-17, 7-42 
stripline, 6-267 to 6-268, 6-310 

calculated impedance vs. trace width, 6 - 268 
dimensions, 6-267 

TEM, 6-265 to 6-266 
termination, 6-65 to 6-66, 6-68, 6-88, 7-45 
termination strategies, 1-18 
theory of, 1-3 
twisted pair, 1-16 
types of, 1-16 to 1-17 
types of terminations, 1-18 
unbalanced, 6-265,6-265 
unterminated, 1-23 to 1-24 
when to terminate, 1-17 
wire over ground, 1-16 

transmission link, 6-235, 6-237 

Transmit PLL, 6 - 28 

transmitter, 6-27, 6-28 

transmitter jitter, transfer function, 6-229 

transmitter PLL 
acquisition characteristic (from locked to locked), 

6-232 
time to lock (quiet to locked), 6-232 

1-23 

Index 

transmitter PLL lock time, 6-231 to 6-232 

transmitter, HOTLink. See CY7B923 and HOTLink, 
transmitter 

Transverse Electric field. See TE mode 

'fransverse Electric Magnetic mode. See TEM mode. 

'fransverse Magnetic field. See TM mode. 

triout component, 4-32, 4-106 

truth table, 4-88 

twinaxial cable, 6-95 to 6-96, 6-97, 6-263, 6-278, 
6-279 

twisted pair PCB construction, 1-16 

twisted-pair cable, 6-35, 6-36, 6-69,6-70,6-71, 
6-95,6-97,6-259,6-260,6-263,6-271, 
6-278,6-279,6-296,6-297,6-300-6-301, 
6-306 

type attributes, 4-63 

u 
UitraLogic, 4-307 to 4-315 

designing with Exemplar, 4-307 to 4-312 
designing with Synopsys, 4-312 to 4-315 

UNI,6-42 
transceiver module, 6-108 

universal clock multiplier, 7-76 to 7-77,7-78 

up/down counter 
designing with VHDL, 4-34 to 4-36 
WaI]J2 report file excerpt, 4-51 
WaI]J2 source code, 4-49 

user mode, decoding on the VMEbus, 8 - 50 

UTOPIA bus, 6-100 to 6-102 
applications, 6-102 
extender, 6-106 to 6-108 
extender components, 6-106 
extender in rack mount switch, 6 -1 06 
in a rack mount switch, 6-102 
serializer block diagram, 6-105 
serializing, 6-104 to 6-105 
signals, 6-101, 6-102 
skew effect on, 6-103 

v 
value attributes, 4-63 

variable clock frequencies, 1-37 to 1-39 

Verilog, 6-24 
model of HOTLink, 6-43 

VESA bus, 6-100 



VHDL, 4-27,4-31,4-56,4-83,4-116,4-125, 
4-134 to 4-143, 4-177 to 4-187, 4-201, 4-243 
to 4-259, 5-39 to 5-45, 6-108, 6-134 to 6-166, 
6-178 

code, 6-116, 6-117, 6-118, 6-119, 6-120, 6-121 
component, 4-297 
configurable components, 4-298 
hierarchical design, 4-297 to 4-306 
library, 4-297 
model of HOTLink, 6-43 
multiplexed dual counter design, 4-298 
multiplexed quad counter design, 4-299 
package, 4-297 
source level debugger, 4-209 
special type conversion, 4-65 
vs. Abel-HDL, 4-85 

VHDLcode, 8-23 to 8-28 
for controller in 371, 4-135 

VHDL-ABEL 
dot extension, 4-58 
special constants, 4-57 

ViaLink, 4-195,4-244 

VIC, slave, 8-7 to 8-28 

VIC068NAC068,8-53 
interfacing to TMS320C40, 8-53 

design requisites, 8-53 
design goals, 8-53 
high-level architecture, 8-54 

hardware description, 8-55 
address bus decoding, 8-55 
bus control, 8-56 
master bus cycle generation, 8-56 
reset circuitry, 8 - 55 
slave bus cycle generation, 8-57 

VIC068NAC068 software initialization, 8-57 

VIC068A 
and the MC68020, 8-46 to 8-52 
features, 8-41 to 8-45 
interfacing, 8-44 
interrupts, 8-52 
reset operations, 8 - 46 
used with CY7C964, 8-29 to 8-40 

VIC64, 8 -106 
address spaces, 8-94 to 8-95 
architecture, 8-106, 8-109 
asynchronous bus protocol, 8-106 
configuration, 8-94 
control signals, 8-149 
deadlock, 8-118, 8-119, 8-120, 8-121, 8-122 
evaluation board local control register, 8-91 
initialization, 8-93 to 8-97 

1-24 

Index 

interfacing with the CY7C611A, 8-147 to 8-159 
Motorola interface to, 8-106 

bus arbitration 
68040 request for VIC64 bus access, 8-113 
bus arbitration state machine, 8-112 
sample arbitration timing diagrams, 8-114 
VIC64 bus requests, 8-114 

design assumptions, 8-108 
68040 configured for large buffer timing mode, 

8-110 
memory system design, 8-109 
shared memory, 8-110 
two memory banks architecture, 8-109 

design issues, 8-106 
asynchronous bus to synchronous bus 

interfacing, 8 -106 
bus contention, 8-106 
putting VIC64 on 68040's bus, 8-106 
slave access implementation, 8-108 
solving bus contention with arbitration, 8-107 

Interrupt acknowledge cycles, 8-122 
interrupt cycle decode, 8-125 
interrupt cycle initiation by the 68040, 8-124 
interrupt cycle termination, 8-125 
interrupt initiation from the VIC64, 8-124 
operation at reset, 8-122 
VMEbus vs. local interrupts, 8-123 

master read cycles, 8-116 
master read cycle bus error termination, 8-121 
master read cycle deadlock/retry termination, 

8-119 
master read cycle initiation, 8-116 
master read cycle normal termination, 8-118 
master read cycle termination, 8-118 

master write, writepost and BLT initiation cycles, 
8-121 

commonality between the various write cycles, 
8-121 

write cycle bus error termination, 8-122 
write cycle deadlock/retry termination, 8-122 
write cycle initiation, 8-121 
write cycle normal termination, 8-121 
write cycle termination, 8-121 

reset circuitry, 8-110 
68040 mode selection, 8-110 
power-up or pushbutton reset, 8-110 
support for 68040 RESET instruction, 8-112 
VIC-initiated reset, 8-112 

VIC64 and CY7C964 register access cycles, 8-115 
performance of register access cycles, 8 -116 
register access cycle initiation, 8-116 
register acCess cycle termination, 8-116 
selection of the CY7C335, 8-115 
selection of the PALC22V10, 8-115 
VIC registers vs CY7C964 registers, 8-115 



overview, 8-149 to 8-150 
reset, 8-93 
slave access implementation 

bus snooping, 8-108 
inhibiting cache transfers from shared memory, 

8-108 
memory map decoding and remapping, 8-108 

software considerations, 8-91 to 8-105 
test, 8-93 
used with CY7C964, 8-29 to 8-40 

Viewdraw, 4-243 

ViewLogic, 4-177, 4-243 

VITA,8-177 

VME, 8-7 to 8-28 
VAT, 8-9 

VME bus, 6-100 

VME64, 8-7, 8-8, 8-11, 8-161 

VMEbus 
addressing, 8-95 
board with CY7C611ANIC64, 8-152 
master operation, 8-49 to 8-50 
slave operation, 8-50 
support, 8-44 
typical design, 8 -162 

VMEbus Initialization, 8 -17 

VMEbus products 
arbitration, 8 - 3 
block transfers, 8-4 
deadlock,8-3 
electrical characteristics, 8-5 
frequently asked questions, 8-1 to 8-6 
interrupts, 8-2 
modeling/schematic capture, 8-4 
register operations, 8-3 
reset, 8-1 to 8-2 
slave operation, 8-4 

VMEbus transaction 
A16, 8-9, 8-11 
A24, 8-9, 8-11 
A32, 8-9, 8-11 
A40, 8-9 
A64,8-9 
D16, 8-9, 8-11 
032,8-9,8-11 
064,8-9,8-21 
08,8-9 
MD32, 8-9, 8-13, 8-21 

voltage 
definition of, 1-8 

1-25 

line voltage for step function, 1-7 to 1-9 
reflection, 1-1 to 1-2 

coefficients, 1-6 to 1-7 
conditions for, 1-5 to 1-6 

Index 

due to discontinuities, 1-9,1-11, 1-14 to 1-15 

voltage controlled oscillator, 7-1 

voltage sensitivity, 7 - 5 

w 
WAC-013, 6-32 to 6-33 

SST connection diagram, 6-33 
SST interface, 6-34 
typical interface without SST, 6-32 

wait state requirements, 3 - 21 

wander, 6-41, 6-42, 7-6 
baseline, 6-77 

WafP, 4-56, 4-177, 4-179, 4-243 to 4-259, 4-307, 
4-308 to 4-309, 4-312 to 4-313 

designing with the CY7C370, 4-105 to 4-115 

Wap2, 4-105, 4-133, 4-135 
design flow, 4-31 
designing with, 4-27 to 4-55, 4-97 to 4-115 
implementation for FIFO dipstick, 5-40 
overview, 4-30 to 4-31 
using for FIFO dipstick, 5 - 39 to 5 - 45 

Wap3, 4-105, 4-200 
design development, 4-200 

waveforms, effect of rise time, 1-13 

WINSVIC, 8-9, 8-11 

wire over ground PCB construction, 1-16 

word-width, expansion, 5-13 

write, strobe, delaying, 5-13 

x 
X3T11, 6-46, 6-198 

XBVF output, 7 - 25 

XTEK PROM programming file format, 3-6 to 3-7 

z 
zener, 3-26 

zener diode, 1-30 
characteristic, 1-30 
connection, 1-30 
protection, 1-30 

zero propagation delay buffer, 7 -76, 7-77 





Domestic Direct Sales Offices 
Corporate Headquarters 

Cypress Semiconductor 
3901 N. First Street 
San Jose, CA 95134 
(408) 943-2600 
Thlex: 821032 CYPRESS SNJ UD 
TWX: 910 997 0753 
FAX: (408) 943-2741 

IC Designs Division 
12020-113th Ave. N.E. 
Kirkland, WA 98034 
(206) 821 - 9202 
FAX: (206) 820-8959 

Alabama 
Cypress Semiconductor 
4940B Corporate Drive 
Huntsville, AL 35805 
(205) 721-9500 
FAX: (205) 721-0230 

California 
Northwest Sales Office 
Cypress Semiconductor 
100 Century Center Court 
Suite 340 
San Jose, CA 95112 
(408) 437-2600 
FAX: (408) 437-2699 

Cypress Semiconductor 
23586 Calabasas Rd., Ste. 201 
Calabasas, CA 91302 
(818) 222-3800 
FAX: (818) 222-3810 

Cypress Semiconductor 
2 Venture Plaza, Suite 460 
Irvine, CA 92718 
(714) 753-5800 
FAX: (714) 753-5808 

Cypress Semiconductor 
12526 High Bluff Dr., Ste. 300 
San Diego, CA 92130 
(619) 755-1976 
FAX: (619) 755-1969 

Canada 
Cypress Semiconductor 
701 Evans Avenue 
Suite 312 
Toronto, Ontario M9C 1A3 
(416) 620-7276 
FAX: (416) 620-7279 

Colorado 
Cypress Semiconductor 
4704 Harlan St., Suite 360 
Denver, CO 80212 
(303) 433-4889 
FAX: (303) 433-0398 

Sales Representatives and Distributors 

Florida 
Cypress Semiconductor 
13535 Feather Sound Drive 
Suite 130 
Clearwater, FL 34622 
(813) 968-1504 

Cypress Semiconductor 
255 South Orange Avenue 
Suite 1255 
Orlando, FL 32801 
(407) 422-0734 
FAX: (407) 422-1976 

Cypress Semiconductor 
1000 W McNab Road 
Pompano Beach, FL 33069 
(954) 943-9295 
FAX: (954) 943-4057 

Georgia 
Cypress Semiconductor 
1080 Holcomb Bridge Rd. 
Building 200, Ste. 265 
Roswell, GA 30076 
(770) 998-0491 
FAX (770) 998-2172 

Illinois 
Cypress Semiconductor 
1530 E. Dundee Rd., Ste. 190 
Palatine, IL 60067 
(708) 934-3144 
FAX: (708) 934-7364 

Maryland 
Cypress Semiconductor 
8850 Stanford Blvd., Suite 1600 
Columbia, MD 21045 
(410) 312-2911 
FAX: (410) 290-1808 

Minnesota 
Cypress Semiconductor 
14525 Hwy. 7, Ste. 360 
Minnetonka, MN 55345 
(612) 935-7747 
FAX: (612) 935-6982 

New Hampshire 
Cypress Semiconductor 
61 Spit Brook Road, Ste. 550 
Nashua, NH 03060 
(603) 891-2655 
FAX: (603) 891-2676 

A-I 

New Jersey 
Cypress Semiconductor 
100 Metro Park South 
3rd Floor 
Laurence Harbor, NJ 08878 
(908) 583 - 9008 
FAX (908) 583-8810 

New York 
Cypress Semiconductor 
22 IBM Road 
Suite 103B 
POUghkeepsie, NY 1260 
(914) 463-3218 
FAX: (914) 463-3220 

North Carolina 
Cypress Semiconductor 
7500 Six Forks Rd., Suite G 
Raleigh, NC 27615 
(919) 870-0880 
FAX: (919) 870-0881 

Oregon 
Cypress Semiconductor 
8196 S.W Hall Blvd. Suite 100 
Beaverton, OR 97005 
(503) 626-6622 
FAX: (503) 626-6688 

Pennsylvania 
Cypress Semiconductor 
Two Neshaminy Interplex, Ste. 206 
Trevose, PA 19053 
(215) 639 - 6663 
FAX: (215) 639-9024 

Texas 
Cypress Semiconductor 
101 W Renner Rd, Suite 155 
Richardson, TX 75082-2002 
(214) 437-0496 
FAX: (214) 644-4839 

Cypress Semiconductor 
8834 Capital of Thxas Highway North 
Suite 220 
Austin, TX 78759 
(512) 418-4205 
FAX: (512) 418-4201 

Cypress Semiconductor 
20405 SH 249, Ste. 215 
Houston, TX 77070 
(713) 370-0221 
FAX: (713) 370-0222 



'?cYPRESS ====S=a=le=s=R=e=p=r=e=se=D=t=a=ti=v=es=a=D=d=D=i=s=tr=ib=u=t=o=r=s 

Domestic Sales Representatives 
Alabama 

Giesting & Associates 
4835 University Square 
Suite 15 
Huntsville, AL 35816 
(205) 830-4554 
FAX: (205) 830-4699 

Arizona 
Thorn Luke Sales, Inc, 
9700 North 91st St., Suite A-200 
Scottsdale, AZ 85258 
(602) 451-5400 
FAX: (602) 451-0172 

California 
TAARCOM 
451 N, Shoreline Blvd. 
Mountain View, CA 94043 
(415) 960-1550 
FAX: (415) 960 - 1999 

TAARCOM 
735 Sunrise Ave., Suite 200-4 
Roseville, CA 95661 
(916) 782-1776 
FAX: (916) 782-1786 

Technology Solutions Company 
5525 Oakdale Ave., Suite 275 
Woodland Hills, CA 91364 
(818) 704-1693 
FAX: (818) 704-6165 

Technology Solutions Company 
10 Hughes, Suite A201 
Irvine, CA 92718 
(714) 707-4565 
FAX: (714) 707-4510 

Canada 
bbd Electronics, Inc. 
6685 - 1 Millcreek Dr. 
Mississauga, Ontario L5N 5M5 
(905) 821-7800 
FAX: (905) 821-4541 

bbd Electronics, Inc. 
298 Lakeshore Rd., Ste. 203 
Pointe Claire, Quebec H9S 4L3 
(514) 697-0801 
FAX: (514) 697-0277 

bbd Electronics, Inc. - Ottawa 
(613) 564-0014 
FAX: (416) 821-4092 

bbd Electronics, Inc. - Winnipeg 
(204) 942-2977 
FAX: (416) 821-4092 

Western Canada 
Microwe Electronics Corporation 
Site #7, Box 40 R.R.1 
Dewinton, Alberta, Canada TOL OXO 
(403) 254-4180 
FAX: (403) 256-0942 

Colorado 
Lange Sales 
1500 W Canal Court, Bldg. A 
Suite 100 
Littleton, CO 80120 
(303) 795 - 3600 
FAX: (303) 795-0373 

Georgia 
Giesting & Associates 
2434 Highway 120 
Suite 108 
Duluth, GA 30155 
(770) 476-0025 
FAX: (770) 476-2405 

Idaho 
Sierra Technical Sales 
10378 Fairview 
Suite 246 
Boise, ID 83704 
(208) 378-8981 
FAX: (208) 378-0228 

Illinois 
Micro Sales Inc. 
901 W. Hawthorn Drive 
Itasca, IL 60143 
(708) 285 -1000 
FAX: (708) 285 -1008 

Indiana 
Technology Mktg. Corp. 
1526 East Greyhound Pass 
Carmel, IN 46032 
(317) 844-8462 
FAX: (317) 573-5472 

Technology Mktg. Corp. 
4630-10 W. Jefferson Blvd. 
Ft. Wayne, IN 46804 
(219) 432-5553 
FAX: (219) 432-5555 

Technology Marketing Corp. 
1214 Appletree Lane 
Kokomo, IN 46902 
(317) 459-5152 
FAX: (317) 457-3822 

Iowa 
Midwest Technical Sales 
463 Northland Ave., N.B. 
Suite 101 
Cedar Rapids, IA 52402 
(319) 377-1688 
FAX: (319) 377-2029 

Kansas 
Midwest Technical Sales 
13 Woodland Dr. 
Augusta, KS 67010 
(316) 775-2565 
FAX: (316) 775-3577 

Midwest Technical Sales 
10,000 College Blvd. 
Suite 240 
Overland Park, KS 66210 
(913) 338-2400 
FAX: (913) 338-0404 

Kentncky 
Technology Marketing Corp. 
100 Trade Street, Suite 1A 
Lexington, KY 40510 -1 007 
(606) 253 -1808 
FAX: (606) 253-1662 

A-2 

Maryland 
Tri-Mark, Inc. 
1410 Crain Highway, N.W. 
Suite 4B 
Glen Burnie, MD 21061 
(410) 761-6000 
FAX: (410) 761-6006 

Massachnsetts 
The Nashoba Group 
321 Billerica Rd. 
Chelmsford, MA 01824 
(508) 256-9900 
FAX: (508) 256-1142 

Mexico 
Ciber Electronica, S.A. de c.v. 
Prolongacion Arbol No. 33 
Col. Chapalita Sur 
45000 Guadalajara, Jal. 
Mexico 
Tel: (52) 3-647 -5217 
Tel: (52) 3-647 -1998 
FAX: (52) 3-121-3331 

Ciber Electronica, S.A. de c.v. 
Monrovia No. 410 
Col. Portales 
03300 Mexico, D.F. 
Tel & FAX: (52) 5-539-7832 

Ciber Electronica, S.A. de c.v. 
Missouri No. 202 OTE. 
Col. del Valle 
66220 Garza Garcia, N.L. 
Mexico 
Tel & FAX: (52) 8-356-842 

Michigan 
Techrep 
2200 North Canton Center Rd. 
Suite 110 
Canton, MI 48187 
(313) 981-1950 
FAX: (313) 981-2006 

Minnesota 
Matrix Marketing, Inc. 
5001 West 80th Street, Suite 375 
Bloomington, MN 55437 
(612) 835-6977 
FAX: (612) 835-6822 

Missouri 
Midwest Technical Sales 
4203 Earth City Expwy., #149 
Earth City, MO 63045 
(314) 298-8787 
FAX: (314) 298-9843 

Nevada 
TAARCOM 
735 Sunrise Ave. 
Suite 200-4 
Roseville, CA 95661 
(916)782-1776 
FAX: (916) 782-1786 



Sales Representatives and Distributors 

Domestic Sales Representatives (continued) 

New Jersey 
GroupTec 
111 Howard Blvd. 
Suite 212 
Mt. Arlington, NJ 07856 
(201) 398-1200 
FAX: (201) 398-3344 

New Mexico 
Thom Luke Sales 
(719) 661-8795 
FAX: (602) 451-0172 

New York 
Reagan/Compar 
815 Montrose Thrnpike 
Owego, NY 13827 
(716) 271-2230 
FAX: (716) 381-2840 

Reagan/Compar 
44 Riverferry Way 
Rochester, NY 14608 
(716) 454-3350 
FAX: (716) 454-4230 

Reagan/Compar 
532 Benton Street 
Rochester, NY 14620 
(716) 473-6070 
FAX: (716) 473-6075 

Reagan/Compar 
3301 Country Club Road 
Ste.2211 
P.o. Box 135 
Endwell, NY 13760 
(607) 754-2171 
FAX: (607) 754-4270 

North Carolina 
Quantum Marketing 
6604 Six Forks Rd., Ste. 102 
Raleigh, NC 27615 
(919) 846-5728 
FAX: (919) 847 -8271 

Quantum Marketing 
4801 E. Independent Blvd. 
Ste.1000 
Charlotte, NC 28212 
(704) 536-8558 
FAX: (704) 536-8768 

Ohio 
K!VV Electronic Sales, Inc. 
8514 North Main Street 
Dayton, OH 45415 
(513) 890-2150 
FAX: (513) 890-5408 

KW Electronic Sales, Inc. 
3645 Warrensville Center Rd. #244 
Shaker Heights, OH 44122 
(216) 491-9177 
FAX: (216) 491-9102 

Oregon 
Northwest Marketing Associates 
4905 SW Griffith Drive 
Suite 106 
Beaverton, OR 97005 
(503) 644-4840 
FAX: (503) 644-9519 

Pennsylvania 
KW Electronic Sales, Inc. 
4068 Mt. Royal Blvd., Ste. 110 
Allison Park, PA 15101 
(412) 492-0777 
FAX: (412) 492-0780 

Omega Electronic Sales, Inc. 
Four Neshaminy Interplex, Ste. 101 
nevose, PA 19053 
(215) 244-4000 
FAX: 244-4104 

A-3 

Puerto Rico 
Electronic Thchnical Sales 
P.O. Box 10758 
Caparra Heights Station 
San Juan, P.R. 00922 
(809) 781-1313 
FAX: (809) 781-2020 

Tenessee 
Giesting & Associates 
475 Arrowhead Springs Lane 
Versailles, KY 40383 
(606) 873 - 2330 

Utah 
Sierra Technical Sales 
1192 E. Draper Parkway 
Suite 103 
Draper, UT 84020 
(801) 571-8195 
FAX: (801) 571-8194 

Washington 
Northwest Marketing Associates 
12835 Bellevue-Redmond, Ste. 330N 
Bellevue, WA 98005 
(206) 455 - 5846 
FAX: (206) 451-1130 

Wisconsin 
Micro Sales Inc. 
210 Regency Court 
Suite 100 
Brookfield, WI 53045 
(414) 786-1403 
FAX: (414) 786-1813 



·~YPRESS ====S;;;;;;3;;;;;;le;;;;;;s;;;;;;R=ep;;;;;;r;;;;;;e;;;;;;s;;;;;;eD;;;;;;t;;;;;;3;;;;;;tI;;;;;;"v;;;;;;e;;;;;;s ;;;;;;a;;;;;;D;;;;;;d;;;;;;D;;;;;;I;;;;;;" s;;;;;;tr;;;;;;i;;;;;;h;;;;;;u;;;;;;to;;;;;;r=s 

International Direct Sales Offices 
Cypress Semiconductor 
International-Europe 
Avenue Ernest Solvay, 7 
B-1310 La Hulpe, Belgium 
Tel: (32) 2-652-0270 
Telex: 64677 CYPINT B 
FAX: (32) 2-652-1504 

France 
Cypress Semiconductor France 
Miniparc Bat. no 8 
Avenue des Andes, 6 
ZA. de Courtaboeuf 
91952 Les VIis Cedex, France 
Thl: (33) 1-69-29-88-90 
FAX: (33) 1-69-07-55-71 

Gennany 
Cypress Semiconductor GmbH 
Munchner Str. 15A 
W-8011, Zorneding, Germany 
Thl: (49) 81-06-2855 
FAX: (49) 81-06-20087 

Cypress Semiconductor GmbH 
BiiroNord 
Matthias-Claudius-Str. 17 
W-2359 Henstedt-Ulzburg, Germany 
Thl: (49) 4193-77217 
FAX: (49) 4193-78259 

Italy 
Cypress Semiconductor 
Interporto di Thrino 
Prima Strada n. 51B 
10043 Orbassano, Italy 
Thl: (39) 11-397-57-98 
or (39) 11-397-57-57 
FAX: (39) 11-397-58-10 

Cypress Semiconductor 
Via Gallarana 4 
20052 Monza, Milano 
Thl: (39) 39-202-7099 
FAX: (39) 202-7101 

Japan 
Cypress Semiconductor Japan K.K. 
Shinjuku-Marune Bldg. 
1-23 -1 Shinjuku 
Shinjuku-ku, Thkyo, Japan 160 
Thl: (81) 3-5269-0781 
FAX: (81) 3-5269-0788 

Singapore 
Cypress Semiconductor Singapore 
583 Orchard Road, #11-03 Forum 
Singapore 0923 
Thl: (65) 735-0338 
FAX: (65) 735-0228 

International Sales Representatives 
Australia 

Braemac Pty. Ltd. 
1/59-61 Burrows Road 
Alexandria, Sydney 2015, Australia 
Thl: (61) 2-550-6600 
FAX: (61) 2-550-6377 

Braemac Pty. Ltd. 
6/417 Ferntree Gully Rd. 
Mt. Waverly, Victoria 3149, Australia 
Tel: (61) 3-540-0100 
FAX: (61) 3-540-0122 

Braemac Pty. Ltd. 
300 Gilles Street 
Adelaide, SA 5000, Australia 
Tel: (61) 8-232-5550 
FAX: (61) 8-232-5551 

Braemac Pty Ltd. 
345 Harhorne Street 
Herdsman w,A. 6017, Australia 
Thl: (61) 9-443-5122 
FAX: (61) 9-443-5262 

Austria 
Eurodis Electronics GmbH 
Lamenzanstrasse 10 
A-I232Wien 
Austria 
Thl: (43) 1-610-62-128 
FAX: (43) 1-610-62-151 

Belgium 
N.V, Memec Benelux 
Sint-Lambertusstraat 135 
1200 Brussels, Belgium 
Thl: (32) 2-772-8008 
FAX: (32) 2-460-1200 

Belgium (continued) 
Sonetech 
Umburgstirumlaan 243, B-2 
B-1810 Wemmel, Belgium 
Thl: (32) 2-460-0707 
FAX: (32) 2-460-1200 

Denmark 
Thch-Partner AlS 
Thmsagervej 18 
DK-8250 Aabyhoj (Aarhus) 
Denmark 
Thl: (45) 86-25-00-55 
FAX: (45) 86-25-28-55 

Tham Thch 
Bygstubben 3 
DK-2950 Vedbaek 
Denmark 
Thl: (45) 45-66-25-00 
FAX: (45) 45-66-02-44 

Finland 
ScandComp Finland OY 
Asemakuja 2 A 
SF-02 770 Espoo 
Finland 
Thl: (358) 0 61352695 
FAX: (358) 0 61352620 

France 
Arrow Electronics 
73n9, Rue des Solets 
Silic585 
94653 Rungis Cedex 
Tel: (33) 1 49 78 49 00 
FAX: (33) 1 49 78 05 99 

A-4 

Sweden 
Cypress Semiconductor Scandinavia AB 
Ta:by Centrum, Ingang S 
S-18311 Taby, Sweden 
Thl: (46) 8 638 0100 
FAX: (46) 8 792 1560 

Taiwan, R.O.C. 
Cypress Semiconductor Thiwan 
llF, RM 1102, No. 333 
Section 1, Keelung Rd., 
ThiIlei, Thiwan, R.O.C. 
Thl: (886) 2-757 -6898 
FAX: (886) 2-757~6892 

United Kingdom 
Cypress Semiconductor u.K., Ltd. 
Gate House 
Fretlierne Road 
Welwyn Garden City 
Herts., U.K. ALB 6NS 
Thl: (44) 707-33-88-88 
FAX: (44) 707-33-88-11 

Cypress Semiconductor Manchester 
27 Saville Rd. Cheadle 
Gatley, Cheshire, U.K. 
Thl: (44) 614-28-22-08 
FAX: (44) 614-28-0746 

France (continued) 
Arrow Electronics 
Les J ardins d'Entreprises 
Betiment B3 
213, Rue Gerland 
69007 Lyon 
Thl: (33) 78 72 79 42 
FAX: (33) 78 72 80 24 

Arrow Electronics 
Centreda 
Avenue Didier Daurat 
31700 Blagmic 
Tel: (33) 6115 75 18 
FAX: (33) 61 3001 93 

Arrow Electronics 
Immeuble St. Christophe 
Rue de la Frebardiere 
Zi Sud Est 
35135 Chantepie 

. Thl: (33) 99 41 70 44 
FAX: (33) 99 50 11 28 

Newtek 
Rue de CEsterel, 8, Silic 583 
F -94663 Rungis Cedex, France 
Thl: (33) 1-46-87-22-00 
FAX: (33) 1-46-87-80-49 

Newtek 
Rue de I'Europe, 4 
Zac Font-Ratel 
F - 38640 Claix, France 
Thl: (33) 76-98-56-01 
FAX: (33) 76-98-16-04 

Scaib, SA 
6 Rue Ambroise Croizat 
91127 Palaiseau Cedex, France 
Tel: (33) 1-69-19-89-00 
FAX: (33) 1-69-19-89-20 



Sales Representatives and Distributors 

International Sales Representatives (continued) 

Germany 
AktiveRep Electronic GmbH 
Kennedy Strasse 5 
D-75438 Knittlingen, Germany 
Thl: (49) 70-43-94 00 12 
FAX: (40) 70-43-334 92 

CED Dilronic GmbH 
Feldkirchner Str. 12A 
D-85551 Kirchheim, Germany 
Tel: (49) 89-903 8551 
FAX: (49) 89-903 0944 

CED Dilronic GmbH 
lulius-Hoelder Str. 42 
D-70597 Stuttgart, Germany 
Thl: (49) 711-72001-0 
FAX: (49) 711-7289780 

CED Ditronic GmbH 
Laatzener-Str. 19 
D-30539 Hannover, Germany 
Thl: (49) 511-8764-0 
FAX: (49) 511-8764-160 

Metronik GmbH 
Leonhardsweg 2, Postfach 1328 
D-82008 Unterhaching, Germany 
Tel: (49) 89-61108-0 
FAX: (49) 89-6116468 

Metronik GmbH 
Liessauer Pfad 17 
D -13503 Berlin, Germany 
Tel: (49) 30-4361219 
FAX: (49) 30-4315956 

Metronik GmbH 
Zum Lnnnenhohl38 
D-44319 Dortmund, Germany 
Thl: (49) 231-217041 
FAX: (49) 231-210799 

Metronik GmbH 
Osmiastrasse 9 
D-69221 Dossenhem, Germany 
Tel: (49) 6203-4701 
FAX: (49) 6203-45543 

Metronik GmbH 
Schoenauer Sir. 113 
D-04207 Leipzig, Germany 
Tel: (49) 341-4891413 
FAX: (49) 341-4891424 

Metronik GmbH 
Pilotystrasse 27/29 
D-90408 Niimberg, Germany 
Thl: (49) 911-363536 
FAX: (49) 911-353986 

Germany (continued) 
Metronik GmbH 
Carl Zeiss-Strasse 37 
D-25451 Quickborn, Germany 
Tel: (49)41-06-773050 
FAX: (49) 41-06-77 30 52 

Metronik GmbH 
Liiewenstrasse 37 
D-70597 Stuttgart, Germany 
Tel: (49) 711-764033 
FAX: (49) 711-7655181 

Metronik GmbH 
Bahnstrasse 9 
D-65205 Wiesbaden, Germany 
Thl: (49) 611-70 20 83 
FAX: (49) 611-702886 

SASCO-HED GmbH 
Hermann-Oberth-Strasse 16 
D-85640 Putzbrunn, Germany 
Tel: (49) 89-4611-211 
FAX: (49) 89-4611-271 

SASCO-HED GmbH 
Huttenslrasse 31 
D-I0552 Berlin, Germany 
Tel: (49) 30-349-9240 
FAX: (49) 30-349-52 36 

SASCO-HED GmbH 
Beratgerstr. 36 
D-44149 Dortmund, Germany 
Tel: (49)231-179791 
FAX: (49) 231-17 29 91 

SASCO-HED GmbH 
Hainer Weg 48 
D - 60599 Frankfurt, Germany 
Thl: (49) 69-61 03 91 
FAX: (49) 69-6188 24 

SASCO-HED GmbH 
Europaallee 3 
D-22850 Norderstedt, Germany 
Thl: (49) 4052-3 20 13 
FAX: (49) 4052-3 23 78 

SASCO-HED GmbH 
Stafflenbergstrasse 21 
D-70184 Stuttgart, Germany 
Tel: (49) 711-21 0710 
FAX: (49) 711-23 39 63 

SASCO-HED GmbH 
Am Gansacker 26 
D-79224 Umkirch bei Freiburg 
Germany 
Tel: (49) 7665-70 18 
FAX: (49) 7665-87 78 

A-5 

Greece 
Peter Caritato & Associates S.A. 
31 Ilia Iliou 
Athens 11743, Greece 
Thl: (30) 1-9020-115 
FAX: (30) 1-9017-024 

Hong Kong 
Tekcomp Electronics, Ltd. 
Rm. 913-914 Bank Centre 
636, Nathan Road, Mongkok 
Kowloon, Hong Kong 
Tel: (852) 2-710-8121 
Thlex: 38513 TEKHL 
FAX: (852) 2-710-9220 

India 
Spectra Innovations Inc. 
Manipal Centre, Unit No. S-822 
47, Dickenson Rd. 
Bangalore - 560,042 
Karnataka, Indi. 
Tel: (91) 80-558-8323/3977 
FAX: (91) 80-558-6872 

Israel 
ThIviton Electronics 
P.O. Box 21104, 9 Biltmore Street 
Thl Aviv 61 210, Israel 
Tel: (972) 3-544-2430 
Thlex: 33400 VITKO 
FAX: (972) 3-544-2085 

Italy 
Silverstar Ltd. SPA 
Viale Fulvio Testi, 280 
20126 Milano, Italy 
Tel: (39) 2 661251 
Thlex: 33 2189 SIL 71 
FAX: (39) 266101359 

CEDItaly 
Via Volta 54 
20090 Cusago (MI) 
Italy 
Tel: (39) 2 9039 0684 

ECC Electronic. S.P.A. 
Via C. Goldoni 29 
20090 1fezzano Sui Navigio (Milano) 
Italy 
Tel: (39) 2 48401547 
FAX: (39) 248401599 



?cYPRESS ====S;;;;;;3;;;;;;le;;;;;;s;;;;;;R;;;;;;e;;;;;p;;;;;;;r;;;;;;e;;;;;;se;;;;;;D;;;;;;t;;;;;;3;;;;;;ti;;;;;;v;;;;;;e;;;;;;s ;;;;;;3;;;;;;D;;;;;;d;;;;;;D;;;;;;i;;;;;;s;;;;;;tr;;;;;;ih;;;;;;u;;;;;;t;;;;;;o;;;;;;r=s 

International Sales Representatives (continued) 

Japan 
Thmen Electronics Corp. 
2-1-1 Uchisaiwai-cho, Chiyoda-ku 
Tokyo, 100 Japan 
Thl: (81) 3-3506-3673 
Telex: 23548 TMELCA 
FAX: (81) 3-3506-3497 

Fuji Electronics Co., Ltd. 
Ochanomizu Center Bldg. 
3-2-12 Hongo, Buni<yo-ku 
Tokyo, 113 Japan 
Thl: (81) 3-3814-1416 
Telex: J28603 FUJITRON 
FAX: (81) 3-3814-1414 

Ryoyo Electro Corporation 
Konwa Bldg., 1-12-22 Thukiji, 
Chuo-ku, Tokyo 104 Japan 
Thl: (81) 3-3546-5088 
FAX: (81) 3-3546-5044 

Korea 
Logicom Inc. 
5th Floor, Haesung Bldg. 
2-46 Yangjae-Dong 
Seocho-ku 
Seoul, Korea 137 -131 
Tel: (82) 2-575-3211 
FAX: (82) 2-576-7040 

Netherlands 
Memec Benelux B.Y. 
Insulindelaan 134 
5613 BT Eindhoven 
The Netherlands 
Thl: (31) 40-65-9399 
FAX: (31) 40 65-9393 

Sonetec Nederland B.Y. 
Gulberg33 
NL-5674 TE Nuenen 
The Netherlands 
Tel: (31) 40-2-635-635 
Telex: 59418 INTRANL 
FAX: (31) 40-2-832-300 

Norway 
ScandComp Norway NS 
PO Box 274 
N - 2020 Skedsmokorset 
Norway 
Thl: (47) 22-50-06-50 
FAX: (47) 22-50-27-77 

Portugal 
AID Electronica S.A. 
Quinta Grande Lote 20 
A1fragide 
2700 Amadora (Lisboa) 
Portugal 
Thl: (351) 1-4714182 
FAX: (351) 1-4715886 

Singapore 
Electec PTE Ltd. 
Block 50, Kallang Bahru 
#04-21, Singapore 1233 
Thl: (65) 294 - 8389 
FAX: (65) 294-7623 

South Africa 
Electronic Bldg. Elements 
P.O. Box 912-1222 
Silverton 0127 
178 Erasmus St., Meyers Park 
Pretoria 0184, South Africa 
Thl: (27) 12803-8294 
FAX: (27) 12803-7680 

Spain 
AID Electronica S.A. 
A1basanz, 75 
28037 Madrid, Spain 
Thl: (34) 1-304-1534 
FAX: (34) 1-327-2778 

AID Electronica S.A. 
Conchita Suprevia 9 
08028 Barcelona, Spain 
Tel: (34) 3-4907344 
FAX: (34) 3-4901723 

SELCO 
Ctra. de La Coruna, Km 18.200 
28230 Las Rozas (Madrid), Spain 
Tel: (34) 1-637-1333 
FAX: (34) 1-637-5114 

Sweden 
ScandComp Sweden AB 
Box 8303 Domnarvsgatan 33 
S-163 08 Spanga 
Sweden 
Tel: (46) 8-761-73-00 
FAX: (46) 8-760-46-69 

Switzerland 
Basix fiir Elektronik A G. 
Hardturmstrasse 181 
CH-8010 Zurich, Switzerland 
Thl: (41) 1-276-11-11 
Thlex: 822762 BAEZ CH 
FAX: (41) 1-276-14-48 

Taiwan R.O.C. 
Prospect Thchnology Corp. 
5F, No. 348, Section 7 
Cheng-Thh Rd. 
Thipei, Thiwan 
Tel: (886) 2-820-5353 
Thlex: 14391 PROSTECH 
FAX: (886) 2-820-5731 

A-6 

Thrkey 
Inter Electronik Sanayi ve Ticaret AS. 
Kadlkoy Hasircibasi Caddesi no. 55 
81310 Istanbul 
Thrkey 
Tel: (0216) 349-94-00 
Thlex: 29245 Inmd tr 
FAX: (0216) 349-94-30 
FAX: (0216) 349-94-34 

United Kingdom 
2001 Electronic Components Ltd. 
Stevenage Business Park 
Pin Green 
Stevenage, Herts 
SG14SUU.K. 

Ambar Components Ltd. 
17 Thame Park Road 
Thame, Oxfordshire 
England, OX9 3XD 
Thl: (44) 844-26-11-44 
Telex: 837427 
FAX: (44) 844-26-17-89 

Arrow Electronics (UK) Ltd. 
St. Martins Business Centre 
Cambridge Road 
Bedford MK42 OLF, U.K. 
Thl: (44) 234 270272 
FAX: (44) 234 214674 

Pronto Electronic System Ltd. 
City Gate House 
EastemAvenue,399-425 
Gants Hill, Ufurd, 
Essex, u. K. IG2 6LR 
Tel: (44) 81-554-62-22 
Thlex: 8954213 PRONTO G 
FAX: (44) 81-518-32-22 

Spectrum 
2 Grange Mews 
Station Road 
Launton 
Bicester 
Oxon, U.K. OX60DX 
Thl: (44) 1-869-325-174 
FAX: (44) 1-869-325-175 



?cYPRESS ====S=al=e=s=R=e=p=re=s=e=D=ta=t=iv=e=s=a=D=d=D=I=" s=tr=i=bu=t=o=r=s 

Distributors 
Anthem Electronics, Inc.: 
Huntsville, AL 35805 
(205) 890-0302 

Tempe, AZ 85281 
(602) 966-6600 

Chatsworth, CA 91311 
(818) 775 -1333 

Irvine, CA 92718 
(714) 768-4444 

Rocklin, CA 95677 
(916) 624-9744 

San Jose, CA 95131 
(408) 453 -1200 

San Diego, CA 92121 
(619) 453-9005 

Englewood, CO 80112 
(303) 790-4500 

Waterbury, CT 06705 
(203) 575 -1575 

Altamonte Springs, FL 32701 
(407) 831 - 0007 

Fort Lauderdale, FL 33309 
(305) 484-0990 

Duluth, GA 30136 
(404) 931-3900 

Schaumburg, IL 60173 
(708) 884-0200 

Wilmington, MA 01887 
(508) 657-5170 

Columbia, MD 21046 
(301) 995-6640 

Eden Prairie, MN 55344 
(612) 944-5454 

Pine Brook, NJ 07058 
(201) 227-7960 

Commack, NY 11725 
(516) 864-6600 

Raleigh, NC 27604 
(919) 871-6200 

Beaverton, OR 97005 
(503) 643-1114 

Horsham, PA 19044 
(215) 443-5150 

Austin, TX 78728 
(512) 388-0049 

Richardson, TX 75081 
(214) 238-7100 

Salt Lake City, UT 84119 
(801) 973-8555 

Bothel, WA 98011 
(206) 483-1700 

Arrow Electronics: 
Alabama 
Huntsville, AL 35816 
(205) 837 - 6955 

Arizona 
Tempe, AZ 85282 
(602) 431-0030 

California 
Calabasas, CA 91302 
(818) 880-9686 

Irvine, CA 92718 
(714) 587-0404 

San Diego, CA 92123 
(619) 565-4800 

San Jose, CA 95131 
(408) 441-9700 

San Jose, CA 95134 

Canada 
Mississauga, Ontario LST 1MA 
(416) 670-7769 

Dorval, Quebec H9P 2T5 
(514) 421-7411 

Neapean, Ontario K2E 7W5 
(613) 226-6903 

Quebec City, Quebec G2E 5RN 
(418) 871-7500 

Burnaby, British Columbia V5A 4T8 
(604) 421-2333 

Colorado 
Englewood, CO 80112 
(303) 799-0258 

Connecticut 
Wallingford, CT 06492 
(203) 265 -7741 

Florida 
Deerfield Beach, FL 33441 
(305) 429-8200 

Lake Mary, FL 32746 
(407) 333-9300 

Georgia 
Deluth, GA 30071 
(404) 497 -1300 

Illinois 
Itasca, IL 60143 
(708) 250-0500 

Indiana 
Indianapolis, IN 46268 
(317) 299-2071 

Kansas 
Lenexa, KS 66214 
(913) 541-9542 

Maryland 
Columbia, MD 21046 
(410) 596-7800 

Gathersburg, MD 
(301) 596-7800 

A-7 

Arrow Electronics: (cont.) 
Massachusetts 
Wilmington, MA 01887 
(617) 658-0900 

Michigan 
Livonia, MI 48152 
(313) 462-2290 

Minnesota 
Eden Prairie, MS 55344 
(612) 941-5280 

Missouri 
St. Louis, MO 63146 
(314) 567-6888 

New Jersey 
Marlton, NJ 08053 
(609) 596-8000 

Pinebrook, NJ 07058 
(201) 227-7880 

New York 
Rochester, NY 14623 
(716) 427 -0300 

Hauppauge, NY 11788 
(516) 231-1000 

North Carolina 
Raleigh, NC 27604 
(919) 876-3132 

Ohio 
Centerville, OH 45458 
(513) 435-5563 

Solon, OH 44139 
(216) 248-3990 

Oklahoma 
Tulsa, OK 74146 
(918) 252-7537 

Oregon 
Beaverton, OR 97006-7312 
(503) 629-8090 

Pennsylvania 
Pittsburgh, PA 15238 
(412) 963-6807 

Texas 
Austin, TX 78758 
(512) 835 -4180 

Carrollton, TX 75006 
(214) 380-6464 

Houston, TX 77099 
(713) 530-4700 

Washington 
Bellevue, WA 98007 
(206) 643-9992 

Wisconsin 
Brookfield, WI 53045 
(414) 792-0150 



Distributors (continued) 
Axis Components 
Corporate Headquarters 
SanDiego, CA 92121 
(619) 677 -7950 
(800) 556-0225 

Irvine, CA 92714 
(714) 442-8325 

Westlake Village, CA 91362 
(818) 706-0166 

Sunnyvale, CA 94086 
(408) 522-9599 

Westminster, CO 80234 
(303) 469-8186 

Sales Representatives and Distributors 

Bell Microproducts: 
Irvine, CA 92718 
(714) 470-2900 

San Jose, CA 94131 
(408) 451-9400 

Altamonte Springs, FL 32714 
(407) 682-1199 

Deerfield Beach, FL 33441 
(305) 429-1001 

Billerica, MA 01882 
(508) 667-2400 

Columbia, MD 21045 
(410) 720-5100 

Edina, MN 55435 
(612) 933 - 3236 

Clifton, NJ 07013 
(201) 777-4100 

Smithtown, NY 11787 
(516) 543-2000 

Ambler, PA 19002 
(215) 540-4148 

Austin, TX 78759 
(512) 258-0725 

Richardson, TX 75081 
(214) 783-4191 

Chantilly, VA 22021 
(703) 803 -1020 

Redmond, WA 98052 
(206) 861-7510 

A-H 

Marshall Industries: 
Alabama 
Huntsville, AL 35801 
(205) 881-9235 

Arizona 
Phoenix, AZ 85044 
(602) 496-0290 

California 
Marshall Industries, Corp. Headquarters 
El Monte, CA 91731-3004 
(818) 307 - 6000 

Irvine, CA 92718 
(714) 458-5301 

Calabasas, CA 91302 
(818) 878-7000 

Rancho Cordova, CA 95670 
(916) 635-9700 
San Diego, CA 92123 
(619) 627-4140 
Milpitas, CA 95035 
(408) 942-4600 

Canada 
Mississauga, Ontario lAV lX5 
(416) 458-8046 
Pointe Claire, Quebec H9R 5P9 
(514) 694-8142 

Colorado 
Colorado Springs, CO 80915 
(719) 573-0904 

Thornton, CO 80241 
(303) 451-8383 

Connecticut 
Wa1linlUord, CT 06492-0200 
(203) 265-3822 

Florida 
Ft. Lauderdale, FL 33309 
(305) 977 -4880 

Florida (continued) 
Altamonte Springs, FL 32701 
(407) 767-8585 

St. Petersburg, FL 33716 
(813) 573-1399 

Georgia 
Norcross, GA 30093 
(404) 923-5750 

Illinois 
Schaumbrug, IL 60173 
(708) 490-0155 

Indiana 
Carmel, IN 46032 
(317) 431-6554 

Kansas 
Lenexa, KS 66214 
(913) 492-3121 

Maryland 
Columhia. MD 21046 
(410) XXU-JUJU 



CrcYPRESS ====S=a=le=s=R=e~p~r=e=s;;;;;en;;;t;;a;;tI;;·v~e;s ;a;;;;;n~d~D~I·~ s~tr~i~b~u:to~r~s 
Distributors (continued) 

Marshall Industries: 
Massachusetts 
Wilmington, MA 01887 
(508) 658-0810 

Michigan 
Livonia, MI 48150 
(313) 525-5850 

Minnesota 
Plymouth, MN 55447 
(612) 559-2211 

Missouri 
Bridgeton, MO 63044 
(314) 291-4650 

New Jersey 
Fairfield, NJ 07006 
(201) 882-0320 

Mt. Laurel, NJ 08054 
(609) 234-9100 

New York 
Endicott, NY 13760 
(607) 785-2345 

Rochester, NY 14624 
(716) 235 -7620 

Ronkonkoma, NY 11779 
(516) 737 -9300 

North Carolina 
Raleigh, NC 27604 
(919) 878-9882 

Ohio 
Solon, OH 44139 
(216) 248-1788 

Dayton, OH 45414 
(513) 898-4480 

Oregon 
Beaverton, OR 97005 
(503) 644 - 5050 

Pennsylvania 
Mt. Laurel, NJ 08054 
(609) 234-9100 

Thxas 
Austin, TX 78754 
(512) 837-1991 

Richardson, TX 75081 
(214) 705-0600 

Houston, TX 77043 
(713) 467-1666 

Utah 
Salt Lake City, UT 84119 
(801) 973-2288 

Washington 
Bothell, WA 98011 
(206) 486-5747 

Wisconsin 
Waukesha, WI 53186 
(414) 797-8400 

Sernad: 
Calgary 
Calgary, Alberta T2E 7H7 
(403) 252-5664 
FAX: (800) 565-9779 

Montreal 
Pointe Claire, Quebec H9R 427 
(514) 694-0860 
1-800-361-6558 
FAX: (514) 694-0965 

Ottawa 
Ottawa, Ontario KIB lA7 
(613) 526-4866 
FAX: (613) 523-4372 

Toronto 
Markham, Ontario L3R 4Z4 
(905) 475-3922 
FAX: (905) 475-4158 

Vancouver 
Burnaby, British Columbia V5G IH1 
(604) 451-3444 
1-800-663-8956 
FAX: (604) 451-3445 

A-9 

Zeus Electronics: 
Yorba Linda, CA 92686 
(714) 921-9000 

San Jose, CA 95131 
(408) 629-4789 

Lake Mary, FL 32746 
(407) 333-3055 

Itasca, IL 60143 
(708) 595-9730 

Wilmington, MA 01887 
(508) 658-4776 

Port Chester, NY 10573 
(914) 937-7400 

Carrollton, TX 75006 
(214) 380-4330 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 

I 
I 
I 
I 



Cypress Semiconductor 
3901 North First Street 
San Jose, CA 95134 
Tel : 1 (800)293-2311 
Fax: (408)943-2741 
Fax on demand: 1 (800)213-5120 
http://www.cypress.com 


