

FCT Logic Data Book

Cypress Semiconductor is a trademark of Cypress Semiconductor Corporation. Cypress Semiconductor, 3901 North First St., San Jose, CA 95134 (408) 943-2600 Telex: 821032 CYPRESS SNJ UD, TWX: 910997 0753, FAX: (408) 943-2741

Published March 1994

© Cypress Semiconductor Corporation, 1994. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.
Table of Contents Page Number
General Product Information Section 1
Cypress Semiconductor Background 1-1
Parameter Measurement Information 1-4
(FCT-T and FCT2-T--Ultra High Speed, Low-Noise CMOS Logic) Ordering Information 1-9
Product Selector Guide 1-10
Cross Reference Guide 1-12
FCT-T Section 2

Device Number

 CY29FCT52T CY29FCT520TCY29FCT818TCY54/74FCT138TCY54/74FCT157TCY54/74FCT158TCY54/74FCT163T
CY54/74FCT191T
CY54/74FCT240T
CY54/74FCT244TCY54/74FCT245T
CY54/74FCT257T
CY54/74FCT273T
CY54/74FCT373T
CY54/74FCT573T
CY54/74FCT374T
CY54/74FCT574T
CY54/74FCT377TCY54/74FCT399T
CY54/74FCT480T
CY54/74FCT540TCY54/74FCT541TCY54/74FCT543TCY54/74FCT646T
CY54/74FCT648T
CY54/74FCT652TCY54/74FCT821TCY54/74FCT823TCY54/74FCT825TCY54/74FCT827TCY54/74FCT841T
Bus Switch
CYBUS3384
Description
8-Bit Registered Transceiver 2-1
Multilevel Pipeline Register 2-6
Diagnostic Scan Register 2-11
1-of-8 Decoder 2-17
Quad 2-input Multiplexers 2-21
Quad 2-input Inverting Multiplexers 2-21
4-Bit Binary Counter with Synchronous Reset 2-27
4-Bit Up/Down Binary Counter 2-33
8 -Bit Inverting Buffer/Line Driver with $\overline{\mathrm{OE}}$ 2-39
8 -Bit Buffer/Line Driver with $\overline{\mathrm{OE}}$ 2-39
8-Bit Transceiver with $\overline{\mathrm{OE}}$ 2-43
Quad 2-input Multiplexers with OE 2-47
8-Bit Register with Asynchronous Reset 2-52
8 -Bit Latch with $\overline{\mathrm{OE}}$ 2-56
8 -Bit Latch with $\overline{O E}$ and Flow-through Pinout 2-56
8 -Bit Register with $\overline{\mathrm{OE}}$ 2-60
8 -Bit Register with $\overline{O E}$ and Flow-through Pinout 2-60
8-Bit Register with Clock Enable 2-65
Quad 2-Input Registers 2-69
Dual 8-Bit Even-Parity Generators/Checkers 2-74
8 -Bit Inverting Buffer/Line Driver with OE and Flow-through Pinout 2-79
8 -Bit Buffer/Line Driver with OE and Flow-through Pinout 2-79
8-Bit Latched Transceiver with $\overline{\mathrm{OE}}$ 2-83
8 -Bit Registered Transceiver with $\overline{\mathrm{OE}}$ 2-89
8 -Bit Inverting Registered Transceiver with $\overline{\mathrm{OE}}$ 2-89
8 -Bit Registered Transceiver with $\overline{\mathrm{OE}}$ 2-95
10-Bit Register with $\overline{\mathrm{OE}}$ 2-101
9-Bit Register with $\overline{\mathrm{OE}}$ 2-101
8-Bit Register with $\overline{\mathrm{OE}}$ 2-101
10-Bit Buffer with $\overline{\mathrm{OE}}$ 2-107
10-Bit Latch with $\overline{\mathrm{OE}}$ 2-111
10-Bit Bus Switch 2-116
FCT2-T (25 Ω Outputs) Section 3
Device Number
CY54/74FCT2240T
Description
8 -Bit Inverting Buffer/Line Driver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-1
CY54/74FCT2244T 8-Bit Buffer/Line Driver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-1
CY54/74FCT2245T 8-Bit Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-6
CY54/74FCT2257T Quad 2-Input Multiplexers with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-10
CY54/74FCT2373T 8 -Bit Latch with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-14
CY54/74FCT2573T 8 -Bit Latch with $\overline{\mathrm{OE}}$, Flow-through Pinout and 25Ω Resistor 3-14
CY54/74FCT2374T 8 -Bit Register with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-18
CY54/74FCT2574T 8 -Bit Register with $\overline{O E}$, Flow-through Pinout and 25Ω Resistor 3-18
CY54/74FCT2541T 8-Bit Buffer/Line Driver with OE, Flow-Through Pinout and 25Ω Resistor 3-23
CY54/74FCT2543T 8-Bit Latched Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-27
CY54/74FCT2646T 8-Bit Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-31
CY54/74FCT2648T 8 -Bit Inverting Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-31
CY54/74FCT2652T 8 -Bit Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-37
CY54/74FCT2827T 10-Bit Buffer with $\overline{O E}$ and 25Ω Resistor 3-43
Packages Section 4
Package Diagrams 4-1
Sales Representatives and Distributors
Direct Sales Offices
North American Sales Representatives
International Sales Representatives
Distributors
Device NumberCY29FCT52TCY29FCT520TCY29FCT818TCY54/74FCT138T
CY54/74FCT157T
CY54/74FCT158T
CY54/74FCT163T
CY54/74FCT191T
CY54/74FCT240T
CY54/74FCT244T
CY54/74FCT245T
CY54/74FCT257T
CY54/74FCT273T
CY54/74FCT373T
CY54/74FCT374T
CY54/74FCT377T
CY54/74FCT399T
CY54/74FCT480T
CY54/74FCT540T
CY54/74FCT541T
CY54/74FCT543T
CY54/74FCT573T
CY54/74FCT574T
CY54/74FCT646T
CY54/74FCT648T
CY54/74FCT652T
CY54/74FCT821T
CY54/74FCT823T
CY54/74FCT825T
CY54/74FCT827T
CY54/74FCT841T
CY54/74FCT2240T
CY54/74FCT2244T
CY54/74FCT2245T
CY54/74FCT2257T
CY54/74FCT2373T
CY54/74FCT2374T
CY54/74FCT2541T
CY54/74FCT2543T
CY54/74FCT2573T
CY54/74FCT2574T
CY54/74FCT2646T
CY54/74FCT2648T
CY54/74FCT2652T
CY54/74FCT2827T
Description
8-Bit Registered Transceiver 2-1
Multilevel Pipeline Register 2-6
Diagnostic Scan Register 2-11
1-of-8 Decoder 2-17
Quad 2-input Multiplexers 2-21
Quad 2-input Inverting Multiplexers 2-21
4-Bit Binary Counter with Synchronous Reset 2-27
4-Bit Up/Down Binary Counter 2-33
8 -Bit Inverting Buffer/Line Driver with OE 2-39
8 -Bit Buffer/Line Driver with OE 2-39
8-Bit Transceiver with OE 2-43
Quad 2-input Multiplexers with OE 2-47
8-Bit Register with Asynchronous Reset 2-52
8 -Bit Latch with OE 2-56
8 -Bit Register with OE 2-60
8-Bit Register with Clock Enable 2-65
Quad 2-Input Registers 2-69
Dual 8-Bit Even-Parity Generators/Checkers 2-74
8 -Bit Inverting Buffer/Line Driver with OE and Flow-through Pinout 2-79
8 -Bit Buffer/Line Driver with OE and Flow-through Pinout 2-79
8-Bit Latched Transceiver with OE 2-83
8-Bit Latch with OE and Flow-through Pinout 2-56
8-Bit Register with OE and Flow-through Pinout 2-60
8 -Bit Registered Transceiver with OE 2-89
8 -Bit Inverting Registered Transceiver with OE 2-89
8 -Bit Registered Transceiver with OE 2-95
10-Bit Register with OE 2-101
9 -Bit Register with OE 2-101
8-Bit Register with OE 2-101
10-Bit Buffer with OE 2-107
10-Bit Latch with OE 2-111
8 -Bit Inverting Buffer/Line Driver with OE and 25 W Resistor 3-1
8-Bit Buffer/Line Driver with OE and 25 W Resistor 3-1
8-Bit Transceiver with OE and 25 W Resistor 3-6
Quad 2-Input Multiplexers with OE and 25 W Resistor 3-10
8-Bit Latch with OE and 25 W Resistor 3-14
8-Bit Register with OE and 25 W Resistor 3-18
8 -Bit Buffer/Line Driver with OE, Flow-Through Pinout and 25 W Resistor 3-23
8-Bit Latched Transceiver with OE and 25 W Resistor 3-27
8 -Bit Latch with OE, Flow-through Pinout and 25 W Resistor 3-14
8-Bit Register with OE, Flow-through Pinout and 25 W Resistor 3-18
8-Bit Registered Transceiver with OE and 25 W Resistor 3-31
8-Bit Inverting Registered Transceiver with OE and 25 W Resistor 3-31
8 -Bit Registered Transceiver with OE and 25 W Resistor 3-37
10-Bit Buffer with OE and 25 W Resistor 3-43
10-Bit Bus Switch 2-116

General Information

FCT-T

FCT2-T
3

Package Diagrams

General Product Information

Cypress Semiconductor Background 1-1
Parameter Measurement Information (FCT-T and FCT2-T—Ultra High Speed, Low-Noise CMOS Logic) 1-4
Ordering Information 1-9
Product Selector Guide 1-10
Cross Reference Guide 1-12

CYPRESS SEMICONDUCTOR BACKGROUND

Cypress Semiconductor was founded in April 1983 with the stated goal of serving the high-performance semiconductor market. This market is served by producing the highest-performance integrated circuits using state-of-the-art processes and circuit design. Cypress is a complete semiconductor manufacturer, performing its own process development, circuit design, wafer fabrication, assembly, and test. The company went public in May 1986 and was listed on the New York Stock Exchange in October 1988.
The initial semiconductor process, a CMOS process employing 1.2 -micron geometries, was introduced in March 1984. This process is used in the manufacturing of Static RAMs and Logic circuits. In the third quarter of 1984, a 1.2-micron CMOS EPROM process was introduced for the production of programmable products. At the time of introduction, these processes were the most advanced production processes in the industry. Following the 1.2-micron processes, a 0.8 -micron CMOS SRAM process was implemented in the first quarter of 1986, and a 0.8 -micron EPROM process in the third quarter of 1987.

In keeping with the strategy of serving the high-performance markets with state-of-the-art integrated circuits, Cypress introduced two new processes in 1989. These were a bipolar submicron process, targeted for ECL circuits, and a BiCMOS process to be used for most types of TTL and ECL circuits.

The circuit design technology used by Cypress is also state of the art. This designtechnology, along with advanced process technology, allows Cypress to introduce the fastest, highest-performance circuits in the industry. Cypress's products fall into six families: high-speed Static RAMs, PROMS, Programmable Logic Devices, Logic, ECLSRAMs and PLDs, and module products. Members of the CMOS Static RAM family include devices in densities of 64 bits to 256K, and performance from 7 ns to 35 ns . The various organizations-x1, x4, x8, and x9-provide optimal solutions for applications such as large mainframes, high-speed controllers and servers, communications, and graphics display. Cypress's BiCMOS family of 64 K and 256 K SRAMs in $x 4$ and $\times 8$ configurations offers speeds as fast as 6 ns . Cypress's cache RAMs include a $4 \mathrm{~K} \times 18$ cache tag RAM at 10 -ns match, a $32 \mathrm{~K} \times 9$ cache RAM with a 14 -ns access time, and an $64 \mathrm{~K} \times 18$ cache RAM with a $10-\mathrm{ns}$ access time.
Cypress's programmable products consist of high-speed CMOS PROMs employing an EPROM programming element and Programmable Logic Devices (PLDs) based on CMOS EPROM, CMOS FLASH, and BiCMOS Fuse technology. Like the high-speed Static RAM family, these products are the natural choice to replace older devices
because they provide superior performance at one half of the power consumption. PROM densities range from 4 kilobits to 512 K in byte-wide and x 16 organizations. PLD products range from 20 pins to 84 pins with performance as fast as $5-\mathrm{ns}$ propagation delay and $156-\mathrm{MHz}$ operational frequency. To provide immediate support for new programmable products, Cypress offers our QuickPro II ${ }^{\text {TM }}$ programmer (CY3300). QuickPro II is capable of programming all of Cypress's PLDs and PROMs. It uses an IBM PC's ${ }^{\mathrm{R}}$ CPU to implement the silicon programming algorithms and interfaces to the PC via the parallel port. The use of an IBM PC as a host allows updating of the programming software using either floppy disk or modem, thereby providing instantaneous support of all new devices. Cypress also offers Warp2 ${ }^{\text {TM }}$ (CY3120), a powerful design entry synthesis and simulation tool for PLDs and state machine PROMs. Warp2 uses the IEEE-standard (1076) VHDL design language, which is rapidly emerging as the standard language of choice for behavioral design description. Use of the VHDL language allows users the freedom to also use tools from other vendors for design simulation and synthesis. Cypress is the only programmable logic vendor offering VHDL-based design tools.
Logic products include circuits such as 4-bit and 16-bit slices, 16×16 multipliers and 16 -bit microprogrammable ALUs, a family of $1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} / 8 \mathrm{~K} \times 8$ dual-port SRAMs, as well as a family of FIFOs that range from 64×4 to $32 \mathrm{~K} \times 9$. Cypress also offers application-specific FIFOs such as the $2 \mathrm{~K} \times 9$ bidirectional FIFO and the $512 / 2 \mathrm{~K} \times 9$ clocked FIFO. FIFOs provide the interface between digital information paths of widely varying speeds. This allows the information source to operate at its own intrinsic speed, while the results may be processed or distributed at a speed commensurate with need.
Cypress's Datacom group has developed a family of $300-\mathrm{MHz}$ point-to-point transmitter/receivers. HOTLink ${ }^{\text {TM }}$ is compliant with the IBM ESCON ${ }^{\top M}$ and Fibre Channel computer network standards, and will also have applications in military, graphics, and instrumentation systems. The Datacom group is also responsible for the Programmable Skew Clock Buffer, which allows designers to compensate for trace delays and load capacitance in high performance systems.

In late 1993 Cypress acquired the FCT-T and FCT2-T logic product families. They consist of highperformance, low power, CMOS integrated circuits that either meet or exceed the speed and drive capability of their bipolar functional equivalents. Both logic families are TTL compatible. which means that they conform to the industrystandard TTL voltage levels and threshold point, and
operate from a five Volt Vcc power source. All inputs are designed to have 200 mV of hysteresis. The benefit to the user is increased static and dynamic noise immunity, as well as less sensitivity to noise superimposed on slowly rising or falling inputs.
As a result of the acquisition of VTC's manufacturing facility in Minnesota, Cypress has created a VME Bus Interface Products group. Cypress will continue to manufacture VTC's VIC and VAC VME devices on the 0.8 -micron CMOS process.

Until 1988, all Cypress products were TTL I/O-compatible. In 1989, Cypress introduced ECL products having access times (propagation delays) of less than 3.5 ns in either of the popular I/O configurations, 100 K or $10 \mathrm{~K} / 10 \mathrm{KH}$. ECL RAMs include $256 \times 4,1 \mathrm{~K} \times 4$, and $4 \mathrm{~K} \times 4$ families with balanced read/write cycles. The RAMs are offered in lowpower versions, reducing operating power by 30 percent while achieving 5 -ns access times (RAM).
The module family consists of both standard and custom modules incorporating circuits from the other six product families. This capability provides a fast, low-risk solution for designs requiring the ultimate in system performance and density. SRAM and FIFO module configurations are available depending on height and board real estate constraints. Modules include Single-In-Line, Dual-In-Line, Dual Single-In-line, Vertical Dual-In-Line, Quad-In-Line, and (Staggered) Zig-Zag-In-Line packages.
Situated in California's Silicon Valley (San Jose), Round Rock (Austin), Texas, and Bloomington, Minnesota, Cypress houses R\&D, design, wafer fabrication, and administration. The facilities are designed to the most demanding technical and environmental specifications in the industry. At the Texas and Minnesota facilities, the entire wafer fabrication area is specified to be a Class 1 environment. This means that the ambient air has less than 1 particle of greater than 0.2 microns in diameter per cubic foot of air. Other environmental considerations are carefully insured: temperature is controlled to a -0.1 degree Fahrenheit tolerance; filtered air is completely exchanged more than 10 times each minute throughout the fab; and critical equipment is situated on isolated slabs to minimize vibration.

Attention to assembly is equally critical. Cypress manufactures 100 percent of our wafers in the United States, at our front-end fabrication sites in California (San Jose), Minnesota (Bloomington), and Texas (Round Rock). Cypress Texas, our largest fab, and Cypress Minnesota, our newest fab, are both Class 1 facilities.
To improve our global competitiveness, we chose to move most of our back-end assembly, test, and mark operations to a facility in Thailand. Be assured that Cypress's total quality commitment extends to the new site-Cypress Bangkok.The move to Bangkok consummated an intense search by Cypress for a world-class, environmentally
sophisticated facility that we could bring on line quickly. The Cypress search team scrutinized fifteen manufacturing facilities in five countries and chose a site managed by Alphatec Electronics Co., Ltd., a privately owned, entrepreneurial company promoted by the Thailand Board of Investment. Cypress Bangkok occupies almost 25,000 square feet-a significant portion of the manufacturing floor space available within the facility. The full facility at Bangkok occupies more than 85,000 square feet on a site that encompasses 25 acres-sufficient room for expansion to a number of buildings in a campus-like setting.
Manufacturing at the site since 1990 with a charter to specialize in IC packaging, the Alphatec facility has almost a century of person-years experience working for U.S. semiconductor suppliers. Thoroughly modern, MIL 883certified, and with fully developed administrative, logistic, and manufacturing systems in place, the facility has earned an exceptional reputation for hermetic assembly and out-going quality.
Cypress San Jose maintains complete management control of Cypress Bangkok's assembly, test, mark, and ship operations within the facility, thus assuring complete continuity of San Jose's back-end operations and quality.
Cypress has added Tape Automated Bonding (TAB) to it package offering. TAB, a surface-mount packaging technology, provides the densest lead and package footprint available for fully tested die.
As a result of the acquisition of VTC's manufacturing facility in Minnesota, Cypress has created a VME Bus Interface Products group. Cypress will continue to manufacture VTC's VIC and VAC VME devices on the 0.8 micron CMOS process.

The Cypress motto has always been "only the best-the best facilities, the best equipment, the best employees . . . all striving to make the best CMOS and BiCMOS products.

Cypress Process Technology

In the last decade, there has been a tremendous need for high-performance semiconductor products manufactured with a balance of SPEED, RELIABILITY, and POWER. Cypress Semiconductor overcame the classically held perceptions that CMOS was a moderate-performance technology.
Cypress initially introduced a 1.2-micron " N " well technology with double-layer poly and a single-layer metal. The process employed lightly doped extensions of the heavily doped source and drain regions for both " N " and " P " channel transistors for significant improvement in gate delays. Further improvements in performance, through the use of substrate bias techniques, have added the benefit of eliminating the input and output latch-up characteristics associated with olderCMOS technologies.
Cypress pushed process development to new limits in the
areas of PROMs (Programmable Read Only Memory) and EPLDs (Eraseable Programmable Logic Devices). Both PROMs and EPLDs have existed since the early 1970s in a bipolar process that employed various fuse technologies and was the only viable high-speed nonvolatile process available. Cypress PROMs and EPLDs use EPROM technology, which has been in use in MOS (Metal Oxide Silicon) since the early 1970s. EPROM technology has traditionally emphasized density while forsaking performance. Through improved technology, Cypress produced the first high-performance CMOS PROMs and EPLDs, replacing their bipolar counterparts.

To maintain our leadership position in CMOS technology, Cypress introduced a sub-micron technology in 1987. This 0.8 micron breakthrough made Cypress's CMOS one of the most advanced production processes in the world. The drive to maintain leadership in process technology has not stopped with the 0.8 -micron devices. Cypress introduced a 0.65 -micron process in 1991. A 0.5 -micron process is currently in the works.
Although not a requirement in the high-performance arena, CMOS technology substantially reduces the power consumption for any device. This improves reliability by allowing the device to operate at a lower die temperature. Now higher levels of integration are possible without trading performance for power. For instance, devices may now be delivered in plastic packages without any impact on reliability.
While addressing the performance issues of CMOS technology, Cypress has not ignored the quality and reliability aspects of technology development. Rather, the traditional failure mechanisms of electrostatic discharge (ESD) and latch-up have been addressed and solved through process and design technology innovation.

ESD-induced failure has been a generic problem for many high-performance MOS and bipolar products. Although in its earliest years, MOS technology experienced oxide reliability failures, this problem has largely been eliminated through improved oxide growth techniques and a better understanding of the ESD problem. The effort to adequately protect against ESD failures is perturbed by circuit delays associated with ESD protection circuits. Focusing on these constraints, Cypress has developed ESD protection circuitry specific to $1.2-, 0.8-, 0.65$-, and 0.5 -micron CMOS process technology. Cypress products are designed to withstand voltage and energy levels in excess of 2001 volts and 0.4 milli-joules.

Latch-up, a traditional problem with CMOS technologies, has been eliminated through the use of substrate bias generation techniques, the elimination of the "P" MOS pull-ups in the outputdrivers, the use of guardring structures and care in the physical layout of the products.
Cypress has also developed additional process innovations and enhancements: multilayer metal interconnections, advanced metal deposition techniques, silicides, exclusive use of plasma for etching, and 100-percent stepper technology with the world's most advanced equipment.
Cypress technologies have been carefully designed, creating products that are "only the best" in high-speed, excellent reliability, and low power.
IBM PC and IBM ESCON are registered trademarks of International Business Corporation. QuickPro II, HOTLink, and Warp2 are trademarks of Cypress Semiconductor Corporation.

FEATURES

Function, Pinout, Speed and Drive Compatible with F Logic

- Meets Requirements of FCT Logic JEDEC Standard No. 18A
- Edge-rate control circuitry for significantly improved noise characteristics (FCT-T/FCT2-T)
■ Power-off disable feature (FCT-T/FCT2-T)
- Matched Rise and Fall times
- CMOS for Low Power Consumption - Typically $1 / 3$ of the Fastest Advanced Schottky TTL Logic
- Inputs and Outputs Interface Directly with TTL, NMOS and CMOS Devices
- Typically 64 mA Sink and 15 mA Source Drive Capability (FCT-T)
- 3-State Outputs on Most Devices
- Operational over the full Commercial and Military Temperature Ranges
- Products Available to Latest Revision of MIL-STD883 Class B Compliance

DESCRIPTION

Overview of FCT-T and FCT2-T Logic Families.
FCT-T and FCT2-T are logic families consisting of highperformance, low power, CMOS integrated circuits that either meet or exceed the speed and drive capability of their bipolar functional equivalents. These families represent a "technology crossover point" that occured when the performance achieved using CMOS technology matched that of bipolar technology, and at typically onethird the power.
Both logic families are TTL compatible, which means that they conform to the industry-standard TTL voltage levels and threshold point, and operate from a five Volt V_{cc} power source. The TTL threshold point is 1.5 Volts. All inputs are designed to have 200 mV of hysterisis, which means that the low to high threshold point is 1.6 V and the high to low threshold point is 1.4 V . The benefit to the user is increased static and dynamic noise immunity, as well as less sensitivity to noise superimposed on slowly rising or falling inputs.
The FCT-T logic family features output buffers that use n-channel pullup transistors and controlled rise and fall time edge rates. Typical unloaded output signal rise and fall times are two nanoseconds. The maximum unloaded output high voltage, V_{OH}, is V_{cc} minus the n -channel threshold, V_{T}. The transistor drain is connected to V_{cc}, so V_{T} is approximately one volt worst case and typically 0.5 V . The loaded V_{OH} is typically 3.3 Volts when sourcing 15 mA with a V_{cc} of 4.95 V .
The reduced output voltage swing of FCT-T results in lower crosstalk. The controlled edge rates reduce crosstalk as well as groundbounce.
The FCT2-T logic family is identical to the FCT-T logic family, except that the FCT2-T devices have a 25 Ohm resistor in series with the output. The purpose of the
resistor is to provide series damping when driving a transmission line. These products with series damping resistors should be used only when driving lumped (or single) loads, and should not be used for driving multiple or distributed loads. For a description of series damping, see the application note System Design Considerations When Using Cypress CMOS Circuits in the Cypress Applications Handbook.

CMOS Process Technology

The FCT-T and FCT2-T products are manufactured using the Logic 2.7 process and are fabricated in a Class 1 facility on six inch wafers. The minimum drawn channel length is 0.65 microns and the effective channel length is 0.5 microns. The process uses one layer of polysilicon and two layers of metal. There is no substrate bias generator. In addition to providing high density, the technology assures latch-up protection, single event upset protection, and excellent ESD protection.

Switching Characteristics

The circuit of Figure 1 is used to load each output for speçifying and measuring device propagation delays. It is a de facto industry standard and does not represent device behavior in any application.
The switch is open for all measurements except those having to do with the outputs entering or leaving the high impedance state as a result of a control input changing. These conditions are illustrated in Figures 7 and 8. The parameter $t_{\text {pZI }}$ is the amount of time it takes an output to go from the high-impedance state to a low state. The parameter $\mathrm{t}_{\mathrm{PLZ}}$ is the amount of time it takes an output to go from the low state to the high-impedance state; defined as 300 mV above V_{OL}. The parameter $\mathrm{t}_{\mathrm{PZH}}$ is the amount of time it takes an output to go from the high-impedance state to a high
state. The parameter $\mathrm{t}_{\mathrm{PHz}}$ is the amount of time it takes an output to go from a high state to the high-impedance state; defined as 300 mV below V_{OH}.
Figures 2 through 9 illustrate the various propagation delay, setup times, and hold times that are referred to in the Switching Characteristics section of the various FCT2-T and FCT-T data sheets. Note that except for entering the high-impedance state, all measurements are made between the 1.5 Volt amplitude voltage levels.
The input waveform amplitude levels recommended for AC testing of Cypress logic products are illustrated in Figure 10. Input signals should have maximum rise and fall times of 2.5 ns and signal swings of zero to three volts. Input signals with rise and fall times of one nanosecond should be used for testing minimum pulse width or maximum frequency.
When performing $A C$ tests, care must be taken to insure that the input signals do not return to the transition region due to signal overshoot or undershoot. It is recommended that the load capacitor be a leadless "chipcap." If this is not possible, keep the leads as short as possible in order to avoid signal overshoot and undershoot due to lead inductance. The same reasoning applies to the load resistors and power supply decoupling and filtering capacitors. Solid grounding is required and a ground plane is recommended.

Power Specifications

Cypress logic devices do notuse a substrate bias generator. As a result, the quiescent or standby current is typically a few microamperes when the voltage at the inputs are either less than 0.2 V or greater than $\mathrm{V}_{\text {cc }} 0.2 \mathrm{~V}$. On the data sheet this current is described as "Quiescent Power Supply Current", given the symbol I_{cc}, and specified on a per IC basis. No inputs are switching and all outputs are open, and if possible, disabled.
When the input signal transitions between the logic levels, both the p -channel pullup transistor and the n -channel pulldown transistor in the input TTL to CMOS translator are partially turned on, which creates a low impedance path between $\mathrm{V}_{c c}$ and ground. On the data sheet this current is described as "Quiescent Power Supply Current (TTL inputs)" , given the symbol $\Delta \mathrm{l}_{\mathrm{cc}}$, and specified on a "per input" basis. One input is at $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ and all other inputs at either $V_{c c}$ or 0 volts, and all outputs are open, and if possible, disabled.
The "Dynamic Power Supply Current", given the symbol $\mathrm{I}_{\mathrm{cCD}}$, is not measured directly, but is provided so that the user can calculate total current. It is specified in mA per Megahertz at 50% duty cycle, with one input toggling and one output toggling (enabled) but open (unloaded).
Note that the preceding three currents are specified with the outputs open. The AC, CVf current required to charge and discharge parasitic capacitances (e.g. other inputs being drivin by the outputs), as well as any DC load
currents must be calculated separately.
Total supply current, I_{c}, is specified on the data sheet for several different conditions. The inputs are switched between ground and either TTL (3.4 V) or CMOS ($\mathrm{V}_{\mathrm{cc}}-0.2$ V) levels with rise and fall times of 2.5 ns . Slow rise and fall times can cause the dynamic current to increase, because the input signals are within the transition region for longer times. A characterization curve of normalized $\left(I_{c c} / \Delta I_{c c}\right)$ currents versus $V_{\text {iN }}$ is shown in Figure 14.
Total device current can be estimated by using the following formula to calculate the total current. This equation implies calculating the current associated with each input and adding them up. The same procedure must be followed to calculate the CVf current required to charge and discharge the load capacitances.
Where;
$I_{c c}=$ Quiescent Current
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL HIGH input ($\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$)
$\mathrm{D}_{\mathrm{H}}=$ Duty Cycle for TTL inputs HIGH
$N_{T}=$ Number of TTL inputs at D_{H}
$\mathrm{I}_{\mathrm{CCD}}=$ Dynamic Currentcaused byan inputtransition pair (HLH or LHL)
$f_{c p}=$ Clock frequency for registered devices, otherwise zero
$\mathrm{f}_{\mathrm{n}}=$ Input signal frequency
$N_{n}=$ Number of inputs changing at F_{n}

ESD (Electrostatic Discharge) Precautions

Large electrical fields can damage the thin gate oxides of MOS transistors. Special input protection circuits are used at every input pin of all Cypress products to provide protection against ESD. This circuitry has been designed to withstand repeated applications of high voltages without failure or performance degradation. This is accomplished by preventing the high voltage (ESD) from reaching the thin gate oxides of the internal transistors. For a description of the ESD protection circuit and an explanation of its operation, please see the application note titled Input/ Output Characteristics of Cypress Circuits in the Cypress Applications Handbook.
Precautions should be taken by persons handling CMOS devices. It is recommended that individuals wear a grounded wriststrap or ankle strap when handling Cypress FCT-T or FCT2-T devices.

RECOMMENDED OPERATING CONDITIONS ${ }^{3}$

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage $\left(\mathbf{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

Notes:
3. Unless otherwise restricted or extended by detail specifications.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +125	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0 V	V

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

FIGURES

Fig. 1 Test Load

Fig. 2 Waveform for Inverting Functions

Fig. 3 Waveform for Non-Inverting Functions

Fig. 4 Setup and Hold Times, Rising-Edge Clock

Fig. 5 Proportion Delays from Rsing-Edge Clock or Enable

Fig. 6 Asynchronous Reset, Active Rising-Edge Clock or Active LOW Enable

Fig. 7 3-State Output LOW Enable and Disable Times

Fig. 8 3-State Output HIGH Enable and Disable Times

Fig. 9 Setup and Hold Times to Active HIGH Enable or Parallel Load

Fig. 10 Input Signal Levels

TYPICAL AC AND DC CHARACTERISTICS

Fig. 11 output source current vs. output voltage

Fig. 12 Normalized Propagation delay vs \mathbf{V}_{cc}

Fig. 13 Normalized Propagation delay vs output loading

Fig. 14

Temperature

Fig. 16 Output sink current vs. output voltage

Logic Ordering Information

FCT-T

FCT-2

Commercial
Military Temperature
MIL-STD-883, Class B
CERDIP
Leadless Chip Carrier
Plastic DIP
QSOP
Small Outline IC
8 -Bit Inverting Buffer/Line Driver with OE and 25Ω Resistor 8 -Bit Buffer/Line Driver with OE and 25Ω Resistor 8 -Bit Inverting Buffer/Line Driver with $\overline{O E}$ and 25Ω Resistor 8 -Bit Buffer/Line Driver with OE and 25Ω Resistor
8 -Bit Inverting Buffer/Line Driver with $\overline{O E}$ and 25Ω Resistor 8 -Bit Buffer/Line Driver with $\overline{O E}$ and 25Ω Resistor

Commercial
Military
Commercial/Military
3384

FCT-T Logic Products ($\mathrm{V}_{\mathrm{CC}}=5$ Volts)

			Propagation Delays (ns)							
			C		B		A		Standard	
Part Number	Organization	Pins	Com'I	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
CY29FCT52T	8-Bit Registered Transceiver	24	6.3	7.3	7.5	8.0	10.0	11.0		
CY29FCT520T	Multilevel Pipeline Register	24	6.0	7.0	7.5	8.0	14.0	16.0		
CY29FCT818T	Diagnostic Scan Register	24	6.0	7.6	7.5	9.0	9.0	12.0	13.0	18.0
CY54/74FCT138T	1-of-8Decoder	16	5.0	6.0			5.8	7.8	9.0	12.0
CY54/74FCT157T	Quad 2-input Multiplexers	16	4.3	5.0			5.0	5.8	6.0	7.0
CY54/74FCT158T	Quad 2-input Inverting Multiplexers	16	4.3	5.5			5.5	6.3	6.5	7.5
CY54/74FCT163T	4-Bit Binary Counter with Synchronous Reset	16	5.8	6.1			7.2	7.5	11.0	11.5
CY54/74FCT191T	4-Bit Up/Down Binary Counter	16	6.2	8.4			7.8	10.5	12.0	16.0
CY54/74FCT240T	8 -Bit Inverting Buffer/Line Driver with $\overline{O E}$	20	4.3	4.7			4.8	5.1	8.0	9.0
CY54/74FCT244T	8-Bit Buffer/Line Driver with OE	20	4.1	4.6			4.8	5.1	6.5	7.0
CY54/74FCT245T	8-Bit Transceiver with $\overline{O E}$	20	4.1	4.5			4.6	4.9	7.0	7.5
CY54/74FCT257T	Quad 2-input Multiplexers with $\overline{O E}$	16	4.3	5.0			5.0	5.8	6.0	7.0
CY54/74FCT273T	8-Bit Register with Asynchronous Reset	20	5.8	6.5			7.2	8.3	13.0	15.0
CY54/74FCT373T	8-Bit Latch with $\overline{O E}$	20	4.2	5.1			5.2	5.6	8.0	8.5
CY54/74FCT374T	8-Bit Register with $\overline{O E}$	20	5.2	6.2			6.5	7.2	10.0	11.0
CY54/74FCT377T	8-Bit Register with Clock Enable	20	5.2	5.5			7.2	8.3	13.0	15.0
CY54/74FCT399T	Quad 2-input Registers	16	6.1	6.6			7.0	7.5	10.0	11.5
CY54/74FCT480T	Dual 8-Bit Even-Parity Generators/ Checkers	24			5.6	7.0	7.5	9.5	13.0	17.0
CY54/74FCT540T	8-Bit/nverting Buffer/Line Driver with $\overline{\text { EE }}$ and Flow-Through Pinout	20	4.3	4.7			4.8	5.1	8.5	9.5
CY54/74FCT541T	8-BitBuffer/Line Driver with OE and Flow-Through Pinout	20	4.3	4.7			4.8	5.1	8.5	9.5
CY54/74FCT543T	8-Bit Latched Transceiver with $\overline{O E}$	24	5.3	6.1			6.5	7.5	8.5	10.0
CY54/74FCT573T	8-Bit Latch with $\overline{\text { EE }}$ and Flow-Through Pinout	20	4.2	5.1			5.2	5.6	8.0	8.5
CY54/74FCT574T	8-Bit Register with $\overline{O E}$ and Flow-Through Pinout	20	5.2	6.2			6.5	7.2	10.0	11.0
CY54/74FCT646T	8-Bit Registered Transceiver with $\overline{O E}$	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT648T	8-Bit Inverting Registered Transceiver with $\overline{O E}$	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT652T	8-Bit Registered Transceiver with $\overline{O E}$	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT821T	10-Bit Register with $\overline{O E}$	24	6.0	7.0	7.5	8.5	10.0	11.5		
CY54/74FCT823T	9-Bit Register with $\overline{O E}$	24	6.0	7.0	7.5	8.5	10.0	11.5		
CY54/74FCT825T	8-Bit Register with $\overline{O E}$	24	6.0	7.0	7.5	8.5	10.0	11.5		
CY54/74FCT827T	10-Bit Buffer with $\overline{O E}$	24	4.4	5.0	5.0	6.5	8.0	9.0		
CY54/74FCT841T	10-Bit Latch with $\overline{O E}$	24	5.5	6.3	6.5	7.5	9.0	10.0		

Bus Switch

			Propagation Delays(ns)
			Standard
Part Number	Organization	Pins	Com'l
CYBUS3384	10-Bit Bus Switch	24	0.25

FCT2-T Logic Products with Resistor ($\mathrm{V}_{\mathrm{CC}}=5$ Volts)

			Propagation Delays (ns)							
			C		B		A		Standard	
Part Number	Organization	Pins	Com'l	Mil	Com'I	Mil	Com'I	Mil	Com'l	Mil
CY54/74FCT2240T	8-BitInvertingBuffer/Line Driverwith $\overline{\text { OE and }}$ 25Ω Resistor	20	4.3				4.8	5.1	8.0	9.0
CY54/74FCT2244T	8-Bit Buffer/Line Driver with OE and 25Ω Resistor	20	4.1				4.8	5.1	6.5	7.0
CY54/74FCT2245T	8-Bit Transceiver with $\overline{O E}$ and 25Ω Resistor	20	4.1				4.6	4.9	7.0	7.5
CY54/74FCT2257T	Quad 2-input Multiplexers with $\overline{O E}$ and 25Ω Resistor	16	4.3				5.0	5.8	6.0	7.0
CY54/74FCT2373T	8-Bit Latch with OE and 25Ω Resistor	20	4.7	5.1			5.2	5.6	8.0	8.5
CY54/74FCT2374T	8-Bit Register with OE and 25Ω Resistor	20	5.2	6.0			6.5	7.2	10.0	11.0
CY54/74FCT2541T	8-Bit Buffer/Line Driver with OE, Flow-Through Pinout and 25Ω Resistor	20	4.1	4.6			4.8	5.1	8.0	9.0
CY54/74FCT2543T	8-Bit Latched Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor	24	5.5	6.1			6.5	7.5	8.5	10.0
CY54/74FCT2573T	8-Bit Latch with $\overline{O E}$, Flow-Through Pinout and 25Ω Resistor	20	4.7	5.1			5.2	5.6	8.0	8.5
CY54/74FCT2574T	8-Bit Register with $\overline{O E}$, Flow-ThroughPinout and 25Ω Resistor	20	5.2	6.0			6.5	7.2	10.0	11.0
CY54/74FCT2646T	8-Bit Registered Transceiver with $\overline{O E}$ and 25Ω Resistor	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT2648T	8-Bit Inverting Registered Transceiver with OE and 25 Ω Resistor	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT2652T	8-Bit Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor	24	5.4	6.0			6.3	7.7	9.0	11.0
CY54/74FCT2827T	10-Bit Buffer with $\overline{O E}$ and 25Ω Resistor	24	4.4	5.0	5.0	6.5	8.0	9.0		

[^0]| AMD | CYPRESS |
| :---: | :---: |
| AM29C818A | CY29FCT818T/AT/BT/CT |
| AM29C821 | CY74FCT821AT/BT/CT |
| AM29C823 | CY74FCT823AT/BT/CT |
| AM29C825 | CY74FCT825AT/BT/CT |
| AM29C827 | CY74FCT827AT/BT/CT |
| AM29C841 | CY74FCT841AT/BT/CT |
| HARRIS | CYPRESS |
| CD74FCT2952A | CY29FCT52AT |
| CD74FCT29520A | CY29FCT520AT |
| CD74FCT240 | CY74FCT240T |
| CD74FCT244 | CY74FCT244T |
| CD74FCT245 | CY74FCT245T |
| CD74FCT273 | CY74FCT273T |
| CD74FCT373 | CY74FCT373T |
| CD74FCT374 | CY74FCT374T |
| CD74FCT377 | CY74FCT377T |
| CD74FCT540 | CY74FCT540T |
| CD74FCT541 | CY74FCT541T |
| CD74FCT543 | CY74FCT543T |
| CD74FCT573 | CY74FCT573T |
| CD74FCT574 | CY74FCT574T |
| CD74FCT646 | CY74FCT646T |
| CD74FCT648 | CY74FCT648T |
| CD74FCT652 | CY74FCT652T |
| CD74FCT821A | CY74FCT821AT |
| CD74FCT823A | CY74FCT823AT |
| CD74FCT827A | CY74FCT827AT |
| CD74FCT841A | CY74FCT841AT |
| IDT | CYPRESS |
| IDT29FCT52AT/BT/CT | CY29FCT52AT/BT/CT |
| IDT29FCT520AT/BT/CT | CY29FCT520AT/BT/CT |
| IDT74FCT138T/AT/CT | CY74FCT138T/AT/CT |
| IDT74FCT157T/AT/CT | CY74FCT157T/AT/CT |
| IDT74FCT163T/AT/CT | CY74FCT163T/AT/CT |
| IDT74FCT191T/AT | CY74FCT191T/AT |
| IDT74FCT240T/AT/CT | CY74FCT240T/AT/CT |
| IDT74FCT244T/AT/CT | CY74FCT244T/AT/CT |
| IDT74FCT245T/AT/CT | CY74FCT245T/AT/CT |
| IDT74FCT257T/AT/CT | CY74FCT257T/AT/CT |
| IDT74FCT273T/AT/CT | CY74FCT273T/AT/CT |
| IDT74FCT373T/AT/CT | CY74FCT373T/AT/CT |
| IDT74FCT374T/AT/CT | CY74FCT374T/AT/CT |
| IDT74FCT377T/AT/CT | CY74FCT377T/AT/CT |
| IDT74FCT399T/AT/CT | CY74FCT399T/AT/CT |
| IDT74FCT540T/AT/CT | CY74FCT540T/AT/CT |
| IDT74FCT541T/AT/CT | CY74FCT541T/AT/CT |
| IDT74FCT543T/AT/CT | CY74FCT543T/AT/CT |
| IDT74FCT573T/AT/CT | CY74FCT573T/AT/CT |
| IDT74FCT574T/AT/CT | CY74FCT574T/AT/CT |
| IDT74FCT646T/AT/CT | CY74FCT646T/AT/CT |
| IDT74FCT648T/AT/CT | CY74FCT648T/AT/CT |
| IDT74FCT652T/AT/CT | CY74FCT652T/AT/CT |
| IDT74FCT821AT/BT/CT | CY74FCT821AT/BT/CT |
| IDT74FCT823AT/BT/CT | CY74FCT823AT/BT/CT |
| IDT74FCT825AT/BT/CT | CY74FCT825AT/BT/CT |
| IDT74FCT827AT/BT/CT | CY74FCT827AT/BT/CT |
| IDT74FCT841AT/BT/CT | CY74FCT841AT/BT/CT |
| IDT74FBT2240T/AT/CT | CY74FCT2240AT/CT |
| IDT74FBT2244T/AT/CT | CY74FCT2244AT/CT |
| IDT74FBT2373T/AT/CT | CY74FCT2373AT/CT |
| IDT74FBT2827AT/BT/CT | CY74FCT2827AT/BT/CT |

NATIONAL	CYPRESS
74FCT138/A	CY74FCT138T/AT
74FCT240/A	CY74FCT240T/AT
74FCT244/A	CY74FCT244T/AT
74FCT245/A	CY74FCT245T/AT
74FCT273/A	CY74FCT273T/AT
74FCT373/A	CY74FCT373T/AT
74FCT374/A	CY74FCT374T/AT
74FCT377/A	CY74FCT377T/AT
74FCT543/A	CY74FCT543T/AT
74FCT573/A	CY74FCT573T/AT
74FCT574/A	CY74FCT574T/AT
74FCT646/A	CY74FCT646T/AT
74FCT821A/B	CY74FCT821AT/BT
74FCT823A/B	CY74FCT823AT/BT
74FCT825A/B	CY74FCT825AT/BT
74FCT827A/B	CY74FCT827AT/BT
74FCT841A/B	CY74FCT841AT/BT
PERICOM (PIONEER)	CYPRESS
PI74FCT2952AT/BT/CT	CY29FCT52AT/BT/CT
P174FCT244T/AT/CT	CY74FCT244T/AT/CT
P174FCT245T/AT/CT	CY74FCT245T/AT/CT
P174FCT273T/AT/CT	CY74FCT273T/AT/CT
P174FCT373T/AT/CT	CY74FCT373T/AT/CT
P174FCT374T/AT/CT	CY74FCT374T/AT/CT
P174FCT377T/AT/CT	CY74FCT377T/AT/CT
PI74FCT540T/AT/CT	CY74FCT540T/AT/CT
P174FCT541T/AT/CT	CY74FCT541T/AT/CT
PI74FCT543T/AT/CT	CY74FCT543T/AT/CT
P174FCT573T/AT/CT	CY74FCT573T/AT/CT
P174FCT574T/AT/CT	CY74FCT574T/AT/CT
P174FCT646T/AT/CT	CY74FCT646T/AT/CT
PI74FCT648T/AT/CT	CY74FCT648T/AT/CT
P174FCT652T/AT/CT	CY74FCT652T/AT/CT
P174FCT821AT/BT/CT	CY74FCT821AT/BT/CT
PI74FCT823AT/BT/CT	CY74FCT823AT/BT/CT
P174FCT825AT/BT/CT	CY74FCT825AT/BT/CT
PI74FCT827AT/BT/CT	CY74FCT827AT/BT/CT
P174FCT841AT/BT/CT	CY74FCT841AT/BT/CT
PI74FCT2240T/AT/CT	CY74FCT2240AT/CT
P174FCT2244T/AT/CT	CY74FCT2244AT/CT
PI74FCT2245T/AT/CT	CY74FCT2245AT/CT
PI74FCT2373T/AT/CT	CY74FCT2373AT/CT
P174FCT2374T/AT/CT	CY74FCT2374AT/CT
PI74FCT2541T/AT/CT	CY74FCT2541AT/CT
PI74FCT2646T/AT/CT	CY74FCT2646AT/CT
P174FCT2652T/AT/CT	CY74FCT2652AT/CT
PI74FCT2827T/AT/CT	CY74FCT2827AT/BT/CT
PI5C3384A	CYBUS3384
QUALITY	CYPRESS
QS29FCT52AT/BT/CT	CY29FCT52AT/BT/CT
QS29FCT520AT/BT/CT	CY29FCT520AT/BT/CT
QS74FCT138T/AT/CT	CY74FCT138T/AT/CT
QS74FCT157T/AT/CT	CY74FCT157T/AT/CT
QS74FCT158T/AT/CT	CY74FCT158T/AT/CT
QS74FCT163T/AT/CT	CY74FCT163T/AT/CT
QS74FCT191T/AT/CT	CY74FCT191T/AT/CT
QS74FCT240T/AT/CT	CY74FCT240T/AT/CT
QS74FCT244T/AT/CT	CY74FCT244T/AT/CT
QS74FCT245T/AT/CT	CY74FCT245T/AT/CT
QS74FCT257T/AT/CT	CY74FCT257T/AT/CT
QS74FCT273T/AT/CT	CY74FCT273T/AT/CT
QS74FCT373T/AT/CT	CY74FCT373T/AT/CT

PRODUCT LINE CROSS REFERENCE

QUALITY

QS74FCT374T/AT/CT QS74FCT377T/AT/CT QS74FCT540T/AT/CT QS74FCT541T/AT/CT QS74FCT543T/AT/CT QS74FCT573T/AT/CT QS74FCT574T/AT/CT QS74FCT646T/AT/CT QS74FCT648T/AT/CT QS74FCT652T/AT/CT QS74FCT821AT/BT/CT QS74FCT823AT/BT/CT QS74FCT825AT/BT/CT QS74FCT827AT/BT/CT QS74FCT841AT/BT/CT QS74FCT2240T/AT/CT QS74FCT2244T/AT/CT QS74FCT2245T/AT/CT QS74FCT2257T/AT/CT QS74FCT2373T/AT/CT QS74FCT2374T/AT/CT QS74FCT2541T/AT/CT QS74FCT2543T/AT/CT QS74FCT2573T/AT/CT QS74FCT2574T/AT/CT QS74FCT2646T/AT/CT QS74FCT2648T/AT/CT QS74FCT2652T/AT/CT QS74FCT2827AT/BT/CT QS3384

CYPRESS

CY74FCT374T/AT/CT CY74FCT377T/AT/CT CY74FCT540T/AT/CT CY74FCT541T/AT/CT CY74FCT543T/AT/CT CY74FCT573T/AT/CT CY74FCT574T/AT/CT CY74FCT646T/AT/CT CY74FCT648T/AT/CT CY74FCT652T/AT/CT CY74FCT821AT/BT/CT CY74FCT823AT/BT/CT CY74FCT825AT/BT/CT CY74FCT827AT/BT/CT CY74FCT841AT/BT/CT CY74FCT2240AT/CT CY74FCT2244AT/CT CY74FCT2245AT/CT CY74FCT2257AT/CT CY74FCT2373AT/CT CY74FCT2374AT/CT CY74FCT2541AT/CT CY74FCT2543AT/CT CY74FCT2573AT/CT CY74FCT2574AT/CT CY74FCT2646AT/CT CY74FCT2648AT/CT CY74FCT2652AT/CT CY74FCT2827AT/BT/CT CYBUS3384

PERFORMANCE TO CYPRESS CROSS REFERENCE

1. Change the prefix from P to CY
2. Device number/speed code remains the same.
3. Use the following package codes:

Performance	Cypress	Comments
P	P	Same
D	D	Same
L	L	Same
SO	SO	Same
S	Q	Different

4. Use the suffix C for Commercial devices or MB for Military devices.

PACKAGE DESIGNATOR CROSS REFERENCE

AMD	CYPRESS
D	D
L	L
P	P
S	SO
IDT	CYPRESS
D	D
L	L
P	P
SO	SO
NATIONAL D	CYPRESS D
L	L
P	P
S	SO
PERICOM	CYPRESS
(PIONEER)	
P	P
Q	Q
S	SO
PHILIPS	CYPRESS
D	SO
N	P
QUALITY	CYPRESS
D	D
L	L
P	P
Q	Q
SO	SO

General Information

FCT2-T

Package Diagrams

FCT-T

Device NumberCY29FCT52TCY29FCT520T
CY29FCT818T
CY54/74FCT138T
CY54/74FCT157T
CY54/74FCT158T
CY54/74FCT163T
CY54/74FCT191T
CY54/74FCT240T
CY54/74FCT244T
CY54/74FCT245T
CY54/74FCT257T
CY54/74FCT273T
CY54/74FCT373T
CY54/74FCT377T
CY54/74FCT573T
CY54/74FCT374T
CY54/74FCT574T
CY54/74FCT399T
CY54/74FCT480T
CY54/74FCT540T
CY54/74FCT541T
CY54/74FCT543T
CY54/74FCT646T
CY54/74FCT648T
CY54/74FCT652T
CY54/74FCT821T
CY54/74FCT823T
CY54/74FCT825T
CY54/74FCT827T
CY54/74FCT841T
Bus Switch
Device NumberCYBUS3384
Description
8-Bit Registered Transceiver 2-1
Multilevel Pipeline Register 2-6
Diagnostic Scan Register 2-11
1-of-8 Decoder 2-17
Quad 2-input Multiplexers 2-21
Quad 2-input Inverting Multiplexers 2-21
4-Bit Binary Counter with Synchronous Reset 2-27
4-Bit Up/Down Binary Counter 2-33
8-Bit Inverting Buffer/Line Driver with $\overline{\mathrm{OE}}$ 2-39
8-Bit Buffer/Line Driver with $\overline{\mathrm{OE}}$ 2-39
8-Bit Transceiver with $\overline{\mathrm{OE}}$ 2-43
Quad 2-input Multiplexers with $\overline{\mathrm{OE}}$ 2-47
8-Bit Register with Asynchronous Reset 2-52
8-Bit Latch with $\overline{\mathrm{OE}}$ 2-56
8-Bit Register with Clock Enable 2-56
8-Bit Latch with $\overline{\mathrm{OE}}$ and Flow-through Pinout 2-56
8-Bit Register with $\overline{O E}$ 2-60
8-Bit Register with $\overline{O E}$ and Flow-through Pinout 2-60
Quad 2-Input Registers 2-69
Dual 8-Bit Even-Parity Generators/Checkers 2-74
8-Bit Inverting Buffer/Line Driver with OE and Flow-through Pinout 2-79
8-Bit Buffer/Line Driver with OE and Flow-through Pinout 2-79
8-Bit Latched Transceiver with OE 2-83
8-Bit Registered Transceiver with $\overline{O E}$ 2-89
8-Bit Inverting Registered Transceiver with $\overline{O E}$ 2-89
8-Bit Registered Transceiver with $\overline{\mathrm{OE}}$ 2-95
10-Bit Register with $\overline{O E}$ 2-101
9-Bit Register with $\overline{\mathrm{OE}}$ -101
8-Bit Register with $\overline{\mathrm{OE}}$ 2-101
10-Bit Buffer with $\overline{O E}$ 2-107
10-Bit Latch with $\overline{O E}$ 2-111
Description10-Bit Bus Switch2-116

FEATURES

- Function, Pinout and Drive Compatible with the FCT, F and AM2952 Logic
- FCT-C speed at 6.3 ns max. (Com'l) FCT-B speed at 7.5 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 48 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

DESCRIPTION

The 'FCT52T has two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and 3state output enable signals are provided for each register.

Both A outputs and B outputs are guaranteed to sink 64 mA . The 'FCT52T is non-inverting.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

REGISTERED FUNCTION TABLE

Inputs			Internal	Function
\mathbf{D}	CP	CE		
X	X	H	NC	Hold Data
L	Г	L	L	Load Data
H	J	L	H	

1709 ты 01

OUTPUT CONTROL

OE	Internal \mathbf{Q}	Y-Output	Function
H	X	Z	Disable Outputs
L	L	L	Enable Outputs
L	H	H	

PIN DESCRIPTION

Name	I/O	Description
A_{0-7}	I/O	Eight bidirectional lines carrying the A Register inputs or B Register outputs.
B_{0-7}	I/O	Eight bidirectional lines carrying the B Register inputs or A Register outputs.
CPA	I	Clock for the A Register. When $\overline{\mathrm{CEA}}$ is LOW, data is entered into the A Register on the LOW-to- HIGH transition of the CPA signal.
$\overline{\mathrm{CEA}}$	I	Clock Enable for the A Register. When $\overline{\mathrm{CEA}}$ is LOW, data is entered into the A Register on the LOW-to-HIGH transition of the CPA signal. When $\overline{\mathrm{CEA}}$ is HIGH, the A Register holds its contents regardless of CPA signal transitions.
$\overline{\mathrm{OEB}}$	I	Output Enable for the A Register. When $\overline{\mathrm{OEB}}$ is LOW, the A Register outputs are enabled onto the B_{0-7} lines. When $\overline{\mathrm{OEB}}$ is HIGH, the B_{0-7} outputs are in the high impedence state.
CPB	I	Clock for the B Register. When $\overline{\mathrm{CEB}}$ is LOW, data is entered into the B Register on the LOW-to- HIGH transition of the CPB signal.
$\overline{\mathrm{CEB}}$	I	Clock Enable for the B Register. When $\overline{\mathrm{CEB}}$ is LOW, data is entered into the B Register on the LOW-to-HIGH transition of the CPB signal. When $\overline{\mathrm{CEB}}$ is HIGH, the B Register holds its contents regardless of CPB signal transitions.
$\overline{\mathrm{OEA}}$	I	Output Enable for the B Register. When $\overline{\mathrm{OEA}}$ is LOW, the B Register outputs are enabled onto the A_{0-7} lines. When $\overline{\mathrm{OEA}}$ is HIGH, the A_{0-7} Outputs are in the high impedence state.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits

Symbol	Parameter	Value	Unit
I OUtPUT	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{c c}$ or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1709 Tb 07		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{3}$			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {ot }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
ILI	Input LOW Current (Except I/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
I_{IH}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IL	Input LOW Current (I/O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3 . This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
I_{C}	Total Power Supply Current ${ }^{5}$	2.0	4.0	mA	$V_{C C}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.5	6.0	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		4.3	$7.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		6.5	$16.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OEA}}$ or $\overline{\mathrm{OEB}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathbb{1}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESGENT }}+I_{\text {inputs }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$\mathrm{N}_{\mathrm{T}}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT52AT				'FCT52BT				'FCT52CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CPA, CPB to B_{n}, A_{n}	2.0	11.0	2.0	10.0	2.0	8.0	2.0	7.5	2.0	7.3	2.0	6.3	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	1.5	13.0	1.5	10.5	1.5	8.5	1.5	8.0	1.5	8.0	1.5	7.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\text { OEA }}$ or $\overline{\text { OEB }}$ to A_{n} or B_{n}	1.5	10.0	1.5	10.0	1.5	8.0	1.5	7.5	1.5	7.5	1.5	6.5	ns	1,7,8

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. $A C$ Characteristics guaranteed with $C_{\llcorner }=50 \mathrm{pF}$ as shown in Figure 1 .

* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT52AT				'FCT52BT				'FCT52CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min.	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW, $A_{n} B_{n}$ to CPA, CPB	2.5	-	2.5	-	2.5	-	2.5	-	2.5	-	2.5	-	ns	4
$\begin{aligned} & \left.\hline \mathrm{t}_{\mathrm{n}} \mathrm{H}\right) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW, $A_{n} B_{n}$ to CPA, CPB	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up Time, HIGH or LOW, $\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ to CPA, CPB	3.0	-	3.0	-	3.0	-	3.0	-	3.0	-	3.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW, $\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ to CPA, CPB	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH^{3} or LOW, CPA or CPB	3.0	-	3.0	-	3.0	-	3.0	-	3.0	-	3.0	-	ns	5

Note:

3. This parameter is guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY29FCT520T
MULTILEVEL PIPELINE REGISTER

FEATURES

- Function, Pinout and Drive Compatible with the FCT, F Logic and AM29520
- FCT-C speed at $6.0 n s$ max. (Com'l)

FCT-B speed at 7.5 ns max. (Com'I)

- Reduced $\mathrm{V}_{\text {он }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

■ Power-off disable feature

- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
■ 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- Single and Dual Pipeline Operation Modes
- Multiplexed Data Inputs and Outputs

DESCRIPTION

The 'FCT520T is a multi-level 8-bit wide pipeline register. The device consists of 4 registers A1, A2, B1 and B2 which are configured by the instruction inputs I_{0}, I_{1} as a single 4level pipeline or as two 2-level pipelines. The contents of any register may be read at the multiplexed output at any time by using the mux-selection controls S_{0} and S_{1}.

The pipeline register is positive edge triggered and data is shifted by the rising edge of the clock input. Instruction
$I=0$ selects the 4-level pipeline mode. Instruction $I=1$ selects the 2-level B pipeline while I = 2 selects the 2-level A pipeline. $I=3$ is the HOLD instruction; no shifting is performed by the clock in this mode.

In the 2-level operation mode, the 'FCT520T data is shifted from level 1 to level 2 and new data is loaded into level 1.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1711 Tb 03		

Symbol	Parameter	Value	Unit
I $_{\text {output }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V
1711 Tыl 02			

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{c c}$ or ground.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{tH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {oL }}$	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{1+}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
ILI	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {OUT }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State $\mathrm{I}_{\text {out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{iN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{o s}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$V_{\text {cc }}=$ MAX, Outputs Open, $\mathrm{f}_{1}=0, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{C}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{C C}=M A X, f_{0}=10 M H z,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND},$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{OE}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		7.0	$12.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z,$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling, $\begin{aligned} & \mathrm{f}_{1}=5 \mathrm{MHz}, \\ & \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		9.2	$21.8{ }^{4}$	mA	$V_{c C}=M A X, f_{0}=10 M H z$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling, $\mathrm{f}_{1}=5 \mathrm{MHz}, \mathrm{OE}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c C}=$ Quiescent Current with CMOS input levels
$\Delta I_{c c}=$ Power Supply Current for a TTL High Input

$$
\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)
$$

OUTPUT SELECTION MUX TABLE

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Output
1	1	A1
1	0	A2
0	1	B1
0	0	B2

$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{c C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT520AT				Units	Fig. No.*
		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Clock to Data Output	2.0	16.0	2.0	14.0	ns	5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	S0, S1 To Data Output	2.0	15.0	2.0	13.0	ns	5
t_{s}	Setup Time Input Data to Clock	6.0	-	5.0	-	ns	5
t_{H}	Hold Time Input Data to Clock	2.0	-	2.0	-	ns	5
t_{s}	Setup Time Instruction (Reg. Enable) to Clock	6.0	-	5.0	-	ns	5
t_{H}	Hold Time Instruction (Reg. Enable) to Clock	2.0	-	2.0	-	ns	5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	13.0	1.5	12.0	ns	8,7
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzL}} \end{aligned}$	Output Enable Time	1.5	16.0	1.5	15.0	ns	8,7
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width, High or Low	8.0	-	7.0	-	ns	5

Notes:

* See "Parameter Measurement Information" in the General Information Section.

AC CHARACTERISTICS

Symbol	Parameter	'FCT520BT				'FCT520CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.								
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Clock to Data Output	2.0	8.0	2.0	7.5	2.0	7.0	2.0	6.0	ns	5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	S0, S1 To Data Output	2.0	8.0	2.0	7.5	2.0	7.0	2.0	6.0	ns	5
t_{s}	Setup Time Input Data to Clock	2.8	-	2.5	-	2.8	-	2.5	-	ns	5
t_{H}	Hold Time Input Data to Clock	2.0	-	2.0	-	2.0	-	2.0	-	ns	
$\mathrm{t}_{\text {s }}$	Setup Time Instruction (Reg. Enable) to Clock	4.5	-	4.0	-	4.5	-	4.0	-	ns	
t_{H}	Hold Time Instruction (Reg. Enable) to Clock	2.0	-	2.0	-	2.0	-	2.0	-	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pII}} \end{aligned}$	Output Disable Time	1.5	7.5	1.5	7.0	1.5	6.0	1.5	6.0	ns	8,7
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	8.0	1.5	7.5	1.5	7.0	1.5	6.0	ns	8,7
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width, High or Low	6.0	-	5.5	-	6.0	-	5.5	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
$A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.

* See "Parameter Measurement Information" in the General Information Section.

PIPELINE INSTRUCTION TABLE

$1=0$	$\mathrm{I}=1$		$\mathrm{I}=2$		$1=3$	
$\mathrm{I}_{1}=0, \quad \mathrm{l}_{0}=0$	$11=0$	$10=1$	l 1 = 1	$10=0$	$11=1$	$10=1$
$\frac{\downarrow}{\dagger}$ $\frac{\mathrm{A} 1}{\frac{1}{4}}$ $\frac{\mathrm{~A} 2}{\square}$$\frac{\mathrm{B} 1}{\frac{1}{2}}$ B 2	A1 A2			B1 B2	A1 A2	B1 B2
Single 4-level	Dual 2-level				Hold	

ORDERING INFORMATION

Commercial
Military Temperature
MIL-STD-883, Class B
Plastic DIP
CERDIP
Small Outline IC
Leadless Chip Carrier
QSOP
520AT Fast Multi-level PipelineRegister 520BT Ultra Fast Multi-level PipelineRegister 520CT Fastest Multi-level PipelineRegister

FEATURES

- Function, Pinout and Drive Compatible with the
FCT, F Logic and AM29818

■ FCT-C speed at $6.0 n s$ max. (Com'l)
FCT-B speed at 7.5 ns max. (Com'I)

- Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
■ 64 mA Sink Current (Com'I), 20 mA (Mil) 15 mA Source Current (Com'I), 3 mA (Mil)

8-Bit Pipeline and Shadow Register

DESCRIPTION

The 'FCT818T contain a high speed 8-bit general-purpose data pipeline register and a high speed 8 -bit shadow register. The general-purpose register can be used in an 8 -bit wide data path for a normal system application. The shadow register is designed for applications, such as diagnostics in sequential circuits, where it is desirable to load known data at a specific location in the circuit and to read the data at that location.

The shadow registers can load data from the output of the 'FCT818T, and can be used as a right-shift register with bit-serial input SDI and output SDO, using DCLK. The data register input is multiplexed to enable loading from the shadow register or from the data input pins using PCLK. Note that data can be loaded simultaneously from the shadow register to the pipeline register, and from the pipeline register to the shadow register provided set-up
and hold time requirements are satisfied with respect to the two independent clock inputs.

In a typical application, the general-purpose register in the 'FCT818T replaces an 8-bit data register in the normal data path of a system. The shadow register is placed in an auxiliary bit-serial loop which is used for diagnostics. During diagnostic operation, data is shifted serially into the shadow register, then transferred to the general-purpose register to load a known value into the data path. To read the contents at that point in the data path, the data is transferred from the data register into the shadow register, then shifted serially in the auxiliary diagnostic loop to make it accessible to the diagnostics controller. This data is then compared with the expected value to diagnose faulty operation of the sequential circuit.

FUNCTIONAL BLOCK DIAGRAM PIN CONFIGURATIONS

The contents of the shadow register can also be output by enabling the 8-bit wide D input/output port. In an application such as micro-program testing, the microinstruction register is formed using the general-purpose registers of 'FCT818T devices with cascaded shadow registers. To modify the microinstruction register, the corrected instruction word is
shifted serially into the shadow registers and then transferred into the data registers. This word is also loaded easily into the Writeable Control Store (WCS) by enabling the D output from the shadow registers.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V O	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{L}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {OUt }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State I $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUt }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
Notes:			

Notes:
1710 Tbl 02

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {output }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	Voltage Applied to Output	-0.5 to +7.0	V

1710 ты 03
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{c c}$ or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min.	Max.
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1710 Tbl 04		

Supply Voltage (V ${ }_{\text {cc }}$)	Min.	Max.
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1710 Tbl 05		

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ. ${ }^{1}$	Max.	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, Outputs Open, $f_{1}=0, V_{I N}=3.4 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCD}}$	Dynamic Power Supply Current ${ }^{3}$		0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OEY}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{\text {c }}$		5.3	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz}$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{OEY}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
			7.3	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{OEY}}=\mathrm{GND},$ $\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$
			$17.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits and Four Controls Toggling, $\overline{\mathrm{OEY}}=\mathrm{GND}$, $\begin{aligned} & f_{1}=5 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
			$30.8{ }^{4}$	mA	$V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, Eight Bits and Four Controls Toggling, $\overline{\mathrm{OEY}}=\mathrm{GND}, \mathrm{f}_{1}=5 \mathrm{MHz}$, $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {OUIESCENT }}+I_{\text {iNPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{c C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{C C}=$ Quiescent Current with CMOS input levels

1710 Tbl 06
$\Delta l_{c \mathrm{C}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{N}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$f_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz

AC CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter	'FCT818T				'FCT818AT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L			
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
$t_{\text {PD }}$	PCLK TO YX MODE to SDO SDI to SDO DCLK to SDO	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 30 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \\ & 16 \\ & 25 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \\ & 18 \\ & 30 \end{aligned}$	- - -	$\begin{gathered} 9 \\ 16 \\ 15 \\ 25 \end{gathered}$	ns ns ns ns	$\begin{aligned} & 5 \\ & 6 \\ & 3 \\ & 5 \end{aligned}$
t_{s}	Dx to PCLK MODE to PCLK Yx to DCLK MODE to DCLK SDI to DCLK DCLK to PCLK PCLK to DCLK	$\begin{gathered} 10 \\ 15 \\ 5 \\ 12 \\ 10 \\ 15 \\ 45 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	8 15 5 12 10 15 40	- - - - -	$\begin{array}{\|c\|} \hline 6 \\ 15 \\ 5 \\ 12 \\ 10 \\ 15 \\ 45 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} \hline 4 \\ 15 \\ 5 \\ 12 \\ 10 \\ 15 \\ 40 \end{gathered}$	- - - -	ns ns ns ns ns ns ns	4
t_{H}	Dx to PCLK MODE to PCLK Yx to DCLK MODE to DCLK SDI to DCLK	$\begin{aligned} & 2 \\ & 0 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	- - -	$\begin{aligned} & 2 \\ & 0 \\ & 5 \\ & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 5 \\ & 2 \\ & 0 \end{aligned}$	-	ns ns ns ns ns	4
$\mathrm{t}_{\text {PLZ }}$	$\begin{aligned} & \overline{\mathrm{OEY}} \text { to } \mathrm{Yx} \\ & \text { DCLK to } \mathrm{Dx} \end{aligned}$	—	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 45 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 30 \\ & 90 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 85 \end{aligned}$	-	$\begin{aligned} & 30 \\ & 90 \end{aligned}$	-	$\begin{aligned} & 25 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$
$\mathrm{t}_{\text {PZL }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	ns ns	$\begin{aligned} & 7 \\ & 5 \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$
$t_{\text {w }}$	PCLK (High and Low) DCLK (High and Low)	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$

Notes:

$A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
*See "Parameter Measurement Information" in the General Information Section.

AC CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter	'FCT818BT				'FCT818CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L			
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
$t_{\text {PD }}$	PCLK TO Yx MODE to SDO SDI to SDO DCLK to SDO	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \\ 10.5 \\ 10.5 \end{gathered}$	-	$\begin{aligned} & 7.5 \\ & 9.0 \\ & 9.0 \\ & 9.0 \end{aligned}$	----	$\begin{aligned} & 7.6 \\ & 8.9 \\ & 8.9 \\ & 8.9 \end{aligned}$	-----	$\begin{aligned} & 6.0 \\ & 7.2 \\ & 7.1 \\ & 7.2 \end{aligned}$	ns ns ns ns	$\begin{aligned} & 5 \\ & 6 \\ & 3 \\ & 5 \end{aligned}$
t_{s}	Dx to PCLK MODE to PCLK Yx to DCLK MODE to DCLK SDI to DCLK DCLK to PCLK PCLK to DCLK	4.5 6.5 4.5 6.5 6.5 6.5 12.5	- - - - -	$\begin{array}{\|c\|} \hline 3.0 \\ 5.0 \\ 3.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 11.0 \end{array}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{array}{\|c} 3.0 \\ 5.0 \\ 3.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 11.0 \end{array}$	$\begin{gathered} ---- \\ \text {---- } \\ ---- \\ --- \end{gathered}$	$\begin{array}{\|l\|} \hline 2.0 \\ 3.5 \\ 2.0 \\ 3.5 \\ 3.5 \\ 3.5 \\ 8.5 \end{array}$	$\begin{aligned} & -=- \\ & -=- \\ & -=- \\ & -=- \\ & -=- \\ & -=- \end{aligned}$	ns ns ns ns ns ns ns	4
t_{H}	Dx to PCLK MODE to PCLK Yx to DCLK MODE to DCLK SDI to DCLK	$\begin{aligned} & 2 \\ & 0 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	-	$\begin{aligned} & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	-	$\begin{array}{\|c\|} \hline 2.0 \\ 0 \\ 3.0 \\ 3.0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & ---- \\ & ---- \end{aligned}$	$\begin{array}{\|c\|} \hline 1.5 \\ 0 \\ 1.5 \\ 1.5 \\ 0 \end{array}$	$\begin{aligned} & --\infty \\ & --=- \\ & -=- \\ & -=- \end{aligned}$	ns ns ns ns ns	4
$\mathrm{t}_{\text {PLZ }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	-	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	---	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	---	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	-	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	---	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	---	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$
$t_{\text {PZL }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	-	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	---	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	---	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$
$\mathrm{t}_{\text {PZH }}$	$\overline{\mathrm{OEY}}$ to Yx DCLK to Dx	-	$\begin{array}{\|l\|} \hline 11.5 \\ 12.5 \end{array}$	-	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	---	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	---	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns ns	$\begin{aligned} & 8 \\ & 5 \end{aligned}$
$t_{\text {w }}$	PCLK (High and Low) DCLK (High and Low)	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	----	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	---	ns ns	$\begin{aligned} & 5 \\ & 5 \end{aligned}$

[^1]FUNCTION TABLE

Inputs				Outputs			Operation
MODE	SDI	DCLK	PCLK	SDO	Shadow Register	Pipeline Register	
L	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \Gamma \\ & x \end{aligned}$	x	$\begin{aligned} & \mathrm{S}_{7} \\ & \mathrm{~S}_{7} \end{aligned}$	$\begin{gathered} \mathrm{S}_{0} \leftarrow \mathrm{SDI} \\ \mathrm{~S}_{\mathrm{i}} \leftarrow \mathrm{~S}_{\mathrm{i}-1} \\ \mathrm{NA} \end{gathered}$	$\begin{gathered} N A \\ \mathrm{P}_{\mathrm{i}} \leftarrow \mathrm{D}_{\mathrm{i}} \end{gathered}$	Serial Shift; $D_{7}-D_{0}$ Output Disabled Load Pipeline Register from Data Input
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \Gamma \\ & \underset{x}{5} \end{aligned}$	$\begin{gathered} x \\ x \\ \nearrow \end{gathered}$	$\begin{gathered} L \\ H \\ \text { SDI } \end{gathered}$	$\begin{gathered} \mathrm{S}_{i} \leftarrow \mathrm{Y}_{i} \\ \text { Hold } \\ \text { NA } \end{gathered}$	$\begin{gathered} N A \\ N A \\ \mathrm{P}_{\mathrm{i}} \leftarrow \mathrm{~S}_{\mathrm{i}} \end{gathered}$	Load Shadow Register from Y Output Hold Shadow Register; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Output Enabled Load Pipeline Register from Shadow Register

Note: NA = Not Applicable

ORDERING INFORMATION

CY54/74FCT138T 1-OF-8 DECODER

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.0 ns max. (Com'l) FCT-A speed at 5.8 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

- Power-off disable feature

- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

Dual 1-Of-8 Decoder with Enables

DESCRIPTION

The 'FCT138T are 1-of-8 decoders. The 'FCT138T accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and, when enabled, provides eight mutually exclusive active LOW outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right)$. The 'FCT138T features three enable inputs, two active LOW $\left(\bar{E}_{1}, \bar{E}_{2}\right)$ and one active $\operatorname{HIGH}\left(\mathrm{E}_{3}\right)$.

All outputs will be HIGH unless \bar{E}_{1} and \bar{E}_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four 'FCT138T devices and one inverter.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

1571 Tbl 01
Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {Output }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	Voltage Applied to Output	-0.5 to +7.0	V

1571 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

Supply Voltage (\mathbf{V}_{cc})	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

1571 Tbl 04

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{oL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {c }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{I} \leq} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\text {cC }}=M A X, V_{\text {IN }}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.3	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50\% Duty Cycle, Outputs Open, $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.5	mA	$V_{c c}=M A X, f_{1}=10 M H z,$ 50% Duty Cycle, Outputs Open, Toggle \bar{E}_{1}, \bar{E}_{2} or E_{3}, One Output Toggling, $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.5	mA	$V_{c C}=M A X, f_{1}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, Toggle \bar{E}_{1}, \bar{E}_{2} or E_{3}, One Output Toggling, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+I_{c C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
N_{H}
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Output Frequency
$I_{c c}=$ Quiescent Current with CMOS input levels $\Delta l_{c c}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$

TRUTH TABLE

Inputs						Outputs							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	A_{0}	A_{1}	A_{2}	$\overline{\mathbf{O}}{ }_{0}$	$\overline{\mathrm{O}}{ }_{1}$	$\overline{\mathbf{O}_{2}}$	$\overline{\mathbf{O}}_{3}$	$\overline{\mathbf{O}}_{4}$	\bar{O}_{5}	$\overline{\mathbf{O}}_{6}$	\bar{O}_{7}
H	X	X	X	X	X	H	H	H	H	H	H	H	H
x	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

[^2]
AC CHARACTERISTICS

Sym	Parameter	'FCT138T				'FCT138AT				'FCT138CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min!	Max.	Min. ${ }^{\text {I }}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay A_{0} to \bar{O}_{n}	1.5	12.0	1.5	9.0	1.5	7.8	1.5	5.8	1.5	6.0	1.5	5.0	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay \bar{E}_{1} or \bar{E}_{2} to $\overline{\mathrm{O}}_{n}$	1.5	12.5	1.5	9.0	1.5	8.0	1.5	5.9	1.5	6.1	1.5	5.0	ns	1,5
$\mathrm{t}_{\text {PLH }}$	Prop Delay E_{3} to $\overline{\mathrm{O}}$	1.5	12.5	1.5	9.0	1.5	8.0	1.5	5.9	1.5	6.1	1.5	5.0	ns	1,5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* See "Parameter Measurement Information" in the General Information Section.

DEFINITION OF FUNCTIONAL TERMS

PIN Names	Description
$A_{0}-A_{2}$	Address Inputs
$\bar{E}_{1}-\bar{E}_{2}$	Enable Inputs (Active LOW)
E_{3}	Enable Input (Active HIGH)
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Outputs (Active LOW)

ORDERING INFORMATION

Commercial
Military Temperature MIL-STD-883, Class B

Plastic DIP
CERDIP
Small Outline IC Leadless Chip Carrier QSOP
1 of 8 Decoder Fast 1 of 8 Decoder Very Fast 1 of 8 Decoder

Commercial Military

FEATURES

- Function, Pinout and Drive Compatible with the

 FCT and F Logic- FCT-C speed at 4.3ns max. (Com'I)

FCT-A speed at 5.0 ns max. (Com'l)

- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels

64 mA Sink Current (Com'l), 32 mA (Mil)
15 mA Source Current (Com'I), 12 mA (Mil)

DESCRIPTION

The 'FCT157T and 'FCT158T are quad 2-input multiplexers which select 4 bits of data from two sources under the control of a common data Select input (S). The Enable input \bar{E} is active-low. When \bar{E} is HIGH , all of the outputs (Y) are forced LOW regardless of all other input conditions.

Moving data from two groups of registers to four common output busses is a common use of the 'FCT157T and 'FCT158T. The state of the Select input determines the particular register from which the data comes. It can also
be used as a function generator. The device is useful for implementing highly irregular logic by generating any four of the sixteen different functions of two variables with one variable common.

These devices are logic implementation of a 4-pole, 2position switch where the position of the switch is determined by the logic levels supplied to the Select input. The outputs of the 'FCT157T are Non-Inverting whereas the 'FCT158T has inverting outputs.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

	'FCT157T

PIN CONFIGURATIONS

LOGIC SYMBOL

LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

1739 Tbl 01

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1739 Tbl 03		

Symbol	Parameter	Value	Unit
I OUtPut	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1739 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $\mathrm{V}_{c c}$ or ground.

Supply Voltage (\mathbf{V}_{cc})	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1739 ты 04		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MIN } \\ \text { MIN } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$
I_{1+}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {Out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$

1739 Tbl 05

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hoid techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ. ${ }^{1}$	Max.	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\text {CC }}=M A X, V_{\text {IN }}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{C}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{C C}=M A X$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
		2.0	5.0	mA	$V_{C C}=M A X,$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=10 \mathrm{MHz}$, $\mathrm{OE}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		1.7	$4.0{ }^{4}$	mA	$V_{c C}=M A X,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{O E}=\mathrm{GND},$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.7	8.0^{4}	mA	$V_{C C}=M A X,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $\mathrm{f}_{1}=2.5 \mathrm{MHz}$, $\overline{O E}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{c \mathrm{C}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels

FUNCTION TABLE - 'FCT157T

Enable	Select Inputs	Data Inputs		Output
\bar{E}	S	I_{0}	I_{1}	Y
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

[^3]$\Delta l_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$)
$\mathrm{D}_{\mathrm{H}}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$\mathrm{I}_{\mathrm{CCD}}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

FUNCTION TABLE - 'FCT158T

Enable	Select Inputs	Data Inputs		Output
$\overline{\mathrm{E}}$	S	I_{0}	I_{1}	$\overline{\mathbf{Y}}$
H	X	X	X	H
L	L	X	L	H
L	L	X	H	L
L	H	L	X	H
L	H	H	X	L

PIN DESCRIPTIONS

Pin Names	Description
S	Common Select Input
\bar{E}	Enable Input (Active LOW)
$I_{O A}-I_{O D}$	Data Inputs from Source 0
$I_{1 A}-I_{D D}$	Data Inputs from Source 1
$Y_{A}-Y_{D}$	Non-Inverted Output
$\bar{Y}_{A}-\bar{Y}_{D}$	Inverted Output

AC CHARACTERISTICS ('FCT157T)

Symbol	Parameter	'FCT157T				'FCT157AT				'FCT157CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min.	Max.	Min.	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to Y	1.5	7.0	1.5	6.0	1.5	5.8	1.5	5.0	1.5	5.0	1.5	4.3	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay \bar{E} to Y	1.5	12.0	1.5	10.5	1.5	7.4	1.5	6.0	1.5	5.9	1.5	4.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay S to Y	1.5	12.0	1.5	10.5	1.5	8.1	1.5	7.0	1.5	6.0	1.5	5.2	ns	1,3

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* See "Parameter Measurement Information" in the General Information Section.

AC CHARACTERISTICS ('FCT158T)

Symbol	Parameter	'FCT158T				'FCT158AT				'FCT158CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min.	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay I_{n} to Y	1.5	7.5	1.5	6.5	1.5	6.3	1.5	5.5	1.5	5.5	1.5	4.8	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay \bar{E} to Y	1.5	12.5	1.5	11.0	1.5	7.9	1.5	6.5	1.5	6.4	1.5	5.3	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay S to Y	1.5	12.5	1.5	11.0	1.5	8.6	1.5	7.5	1.5	6.5	1.5	5.7	ns	1,2

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.8 ns max. (Com'l) FCT-A speed at 7.2ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

DESCRIPTION

The 'FCT163T is a high-speed synchronous modulo-16 binary counter. It is synchronously presettable for application in programmable dividers and has two types of count enable inputs plus a terminal count output for
versatility in forming synchronous multi-staged counters. The 'FCT163T has a Synchronous Reset input that override counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

DEFINITION OF FUNCTIONAL TERMS

Pin Names	Description
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Pulse Input (Active Rising Edge)
$\overline{\mathrm{SR}}$	Synchronous Reset Input (Active LOW)
P_{0-3}	Parallel Data Inputs
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)
Q_{0-3}	Flip-Flop Outputs
TC	Terminal Count Output

TRUTH TABLE

$\overline{\mathbf{S R}}$	$\overline{\mathbf{P E}}$	CET	CEP	Action on the Rising Clock Edge(s)
L	X	X	X	Reset (Clear)
H	L	X	X	Load ($\mathrm{P}_{\mathrm{n}} \rightarrow$ Q $_{\mathrm{n}}$)
H	H	H	H	Count (Incremental)
H	H	L	X	No Change (Hold)
H	H	X	L	No Change (Hold)

Note:

1. H = HIGH Voltage Level. L = LOW Voltage Level. $\mathrm{X}=$ Don't Care

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1573 Tbl 03

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1573 Tbl 05		

Symbol	Parameter	Value	Unit
I OUtPUT	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1573 Tbl 04
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.

Supply Voltage $\left(\mathbf{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {L }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{l}_{\mathrm{iN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{oL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
$\mathrm{I}_{1 /}$	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {off }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs HIGH) ${ }^{2}$	0.2	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=$ MAX, One Bit Toggling, Load Mode, 50\% Duty Cycle, Outputs Open, $\begin{aligned} & \mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{PE}}=\mathrm{GND}, \\ & \mathrm{SR}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA/	$V_{c c}=M A X, f_{0}=10 \mathrm{MHz} \text {, Load }$ Mode, 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=$ $\begin{aligned} & 5 \mathrm{MHz}, \mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{PE}}=\mathrm{GND}, \\ & \mathrm{SR}=\mathrm{V}_{\mathrm{cc}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$V_{c c}=M A X, f_{0}=10 \mathrm{MHz}$, Load Mode, 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=$ $5 \mathrm{MHz}, \mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{PE}}=\mathrm{GND}$, $\begin{aligned} & \mathrm{SR}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		4.0	$7.8{ }^{4}$	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz}$, Load Mode, 50\% Duty Cycle, Outputs Open, Four Bit Toggling at $f_{1}=$ $5 \mathrm{MHz}, \mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{PE}}=\mathrm{GND}$, $\begin{aligned} & \mathrm{SR}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		5.2	$12.8{ }^{4}$	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz}$, Load Mode, 50\% Duty Cycle, Outputs Open, Four Bit Toggling at $\mathrm{f}_{1}=$ $5 \mathrm{MHz}, \mathrm{CEP}=\mathrm{CET}=\overline{\mathrm{PE}}=\mathrm{GND}$, $\begin{aligned} & \mathrm{SR}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QUiescent }}+I_{\text {inputs }}+I_{\text {ornamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{CC}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{\text {CCD }}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT163T				'FCT163AT				'FCT163CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{\text {² }}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP TO Q ($\overline{\text { PE }}$ Input High)	2.0	11.5	2.0	11.0	2.0	7.5	2.0	7.2	1.5	6.1	1.5	5.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP TO Q ($\overline{\mathrm{PE}}$ Input Low)	2.0	10.0	2.0	9.5	2.0	6.5	2.0	6.2	1.5	5.5	1.5	5.2	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHH}} \end{aligned}$	Propagation Delay CP TO TC	2.0	16.5	2.0	15.0	2.0	10.8	2.0	9.8	1.5	8.7	1.5	7.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CET TO TC	1.5	9.0	1.5	8.5	1.5	5.9	1.5	5.5	1.5	4.8	1.5	4.4	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW P_{n} to CP	5.5	-	5.0	-	4.5	-	4.0	-	3.9	-	3.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW P_{n} to $C P$	2.0	-	1.5	-	2.0	-	1.5	-	2.0	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	13.5	-	11.5	-	11.5	-	9.5	-	9.0	-	7.6	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW $\overline{\text { PE }}$ or $\overline{\text { SR }}$ to CP	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW CEP or CET to CP	13.0	-	11.5	-	11.0	-	9.5	-	8.8	-	7.6	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW CEP or CET to CP	0	-	0	-	0	-	0	-	0	-	0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	5.0	-	5.0	-	4.0^{2}	-	4.0^{2}	-	4.0^{2}	-	4.0^{2}	-	ns	5
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	8.0	-	7.0	-	7.0	-	6.0	-	6.0	-	5.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. This parameter is guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY54/74FCT191T 4-BIT UP/DOWN BINARY COUNTER

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 6.2 ns max. (Com'l) FCT-A speed at 7.8ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

3-State Outputs

DESCRIPTION

The 'FCT191T is a reversible modulo-16 binary counter, featuring synchronous counting and asynchronous presetting. The preset allows the 'FCT191T to be used in programmable dividers. The count enable input, terminal
count output and ripple clock output make possible a variety of methods of implementing multiusage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

DEFINITION OF FUNCTIONAL TERMS

Pin Names	Description
$\overline{\mathrm{CE}}$	Count Enable Input (Active LOW)
CP	Clock Pulse Input (Active Rising Edge)
P_{0-3}	Parallel Data Inputs
$\overline{\mathrm{PL}}$	Asynchronous Parallel Load Input (Active LOW)
$\overline{\mathrm{U}} / \mathrm{D}$	Up/Down Count Control Input
Q_{0-3}	Flip-Flop Outputs
$\overline{\mathrm{RC}}$	Ripple Clock Output (Active LOW)
TC	Terminal Count Output (Active HIGH)

$\overline{\mathrm{RC}}$ FUNCTION TABLE ${ }^{(2)}$

Inputs		Outputs	
$\overline{\mathbf{C E}}$	$\mathbf{C P}$	TC $^{(1)}$	$\overline{\mathbf{R C}}$
L	\square	H	\square
H	X	X	H
X	X	L	H

MODE SELECT FUNCTION TABLE ${ }^{(2)}$

Inputs				Mode
$\overline{\mathbf{P L}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{U}} / \mathbf{D}$	$\mathbf{C P}$	
H	L	L	-	Count Up
H	L	H	Γ	Count Down
L	X	X	X	Preset (Asynchronous)
H	H	X	X	No Change (Hold)

Notes:

1. TC is generated internally.
2. $\mathrm{H}=$ HIGH Voltage Level. $\mathrm{L}=$ LOW Voltage Level. $\mathrm{X}=$ Don't Care, $\int=$ LOW-to-HIGH clock transition.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:
1716 Tbl 04

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
IOUTPUT	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1716 Tbl 05
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

1716 Tbl 06

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		.
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
ILL	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs HIGH) ${ }^{2}$	0.5	2.0	mA	$V_{c C}=M A X, V_{I N}=3.4 V^{2}$ $\mathrm{f}_{1}=0 \text {, Outputs Open }$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{c c}=$ MAX, One Bit Toggling, Preset Mode, 50\% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{MR}}=\mathrm{V}_{\mathrm{CC}}=\mathrm{SR}, \\ & \overline{\mathrm{PL}}=\mathrm{CE}=\overline{\mathrm{U}} / \mathrm{D}=\mathrm{CP}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.0	2.8	mA	$V_{c C}=M A X$, Preset Mode, 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{PL}}=\overline{\mathrm{CE}}=\overline{\mathrm{U}} / \mathrm{D}=\mathrm{CP}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IN }}=$ GND
		1.2	3.8	mA	$V_{c C}=M A X$, Preset Mode, 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{PL}}=\overline{\mathrm{CE}}=\overline{\mathrm{U}} / \mathrm{D}=\mathrm{CP}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$
		3.2	6.54	mA	$V_{c c}=$ MAX, Preset Mode, 50\% Duty Cycle, Outputs Open, Four Bits Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{PL}}=\overline{\mathrm{CE}}=\overline{\mathrm{U}} / \mathrm{D}=\mathrm{CP}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$,
		4.2	$10.5{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, Preset Mode, 50\% Duty Cycle, Outputs Open, Four Bits Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{PL}}=\overline{\mathrm{CE}}=\overline{\mathrm{U}} / \mathrm{D}=\mathrm{CP}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

1716 Tbl 09

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {OYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0} \quad=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1} \quad$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Sym.	Parameter	Test Condition ${ }^{1}$	'FCT191T				'FCT191AT				'FCT191CT				Units
			MIL		COM'L		MIL		COM'L		MIL		COM'L		
			Min. ${ }^{2}$	Max.	Min. ${ }^{\text {2 }}$	Max.	Min. ${ }^{\text {a }}$	Max							
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	1.5	16.0	2.5	12.0	1.5	10.5	2.5	7.8	1.5	8.4	1.5	6.2	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP to TC		2.0	16.0	3.0	14.0	2.0	12.2	3.0	11.8	1.5	9.8	1.5	9.4	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHH}} \end{aligned}$	Propagation Delay CP to $\overline{R C}$		1.5	12.5	2.5	8.5	1.5	10.0	2.5	8.5	1.5	7.9	1.5	6.8	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pH}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{C E}$ to $\overline{R C}$		2.0	8.5	2.0	8.0	2.0	8.0	2.0	7.2	1.5	6.4	1.5	6.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$		4.0	22.5	4.0	20.0	4.0	14.7	4.0	13.0	2.5	11.7	2.5	11.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay U/D to TC		3.0	13.0	3.0	11.0	3.0	8.5	3.0	7.2	1.5	6.8	1.5	6.1	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay P_{n} to Q_{n}		1.5	16.0	2.0	14.0	1.5	10.4	2.0	9.1	1.5	8.3	1.5	7.7	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}		3.0	14.0	3.0	13.0	3.0	9.1	3.0	8.5	2.0	7.3	2.0	7.2	ns
$\mathrm{t}_{\text {su }}$	Set-up Time, HIGH or LOW P_{n} to PL		6.0		5.0		5.0		4.0		4.0		3.5		
t_{H}	Hold Time, HIGH or LOW P_{n} to $\overline{P L}$		1.5		1.5		1.5		1.5		1.5		1.0		ns
$t_{\text {su }}$	Set-up Time LOW $\overline{C E}$ to CP		10.5		10.0		9.5		9.0		7.6		7.2		ns
t_{H}	Hold Time LOW CE to CP		0		0		0		0		0		0		ns
$\mathrm{t}_{\text {su }}$	Set-up Time, HIGH or LOW \bar{U} / D to $C P$		12.0		12.0		10.0		10.0		8.5		8.0		ns
t_{H}	Hold Time, HIGH or LOW U/D to CP		0		0		0		0		0		0		ns
$t_{\text {w }}$	$\overline{\text { PL Pulse Width LOW }}$		8.5		6.0		8.0		5.5		6.0		5.0		ns
t_{w}	Clock Pulse Width HIGH or LOW		7.0		5.0		6.0		4.0^{3}		5.0		4.0^{3}		ns
$\mathrm{t}_{\text {REM }}$	Recovery Time PL to CP		7.5		6.0		6.5		5.0		5.0		4.5		ns

Notes:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. These parameters are guaranteed but not tested.

ORDERING INFORMATION

FEATURES

- Function, pinout and drive compatible with the
FCT and F logic
- FCT-C speed at 4.1ns max. (Com'I) 'FCT244T FCT-A speed at 4.8 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of equivalent FCT functions
- Edge-rate control circuitry for significantly improved noise characteristics

■ Power-off disable feature
■ Matched rise and fall times

- Fully compatible with TTL input and output logic levels

■ 64mA Sink Current (Com'l), 48mA (Mil)
15 mA Source Current (Com'l), 12mA (Mil)

DESCRIPTION

The 'FCT240T and 'FCT244T are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/ receivers. The devices provide speed and drive capabilities
equivalent to their fastest bipolar logic counterparts while reducing power dissipation. The input and output voltage levels allow direct interface with TTL, NMOS and CMOS devices without external components.

FUNCTIONAL BLOCK DIAGRAM and PIN CONFIGURATIONS
(

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {Out }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V cc)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{IL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MIN } \\ \text { MIN } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
IL	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OzH }}$	Off State I ${ }_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State $\mathrm{I}_{\text {Out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{in}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{os} tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}^{6}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{7}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50\% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{C}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=G N D, O E_{2}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.0	5.0	mA	$V_{c C}=M A X,$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND}, \mathrm{OE}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		3.2	6.5^{8}	mA	$V_{c C}=M A X,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		5.2	$14.5{ }^{8}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{O E}_{1}=\overline{O E}_{2}=G N D, O E_{2}=V_{C C}, \\ & V_{I N}=3.4 V \text { or } V_{I N}=G N D \end{aligned}$

Notes:

6. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{C C}$ formula. These limits are guaranteed but not tested.
9. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{t} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta l_{c C}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLES

'FCT240T				'FCT244T			
Inputs			Output	Inputs			Output
OE_{1}	$\overline{\mathrm{OE}}_{2}$	D		$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	D	
L	L	L	H	L	L	L	L
L	L	H	L	L	L	H	H
H	H	X	Z	H	H	X	Z

H = HIGH Voltage Level, L = LOW Voltage Level, X = Don't Care, Z = High Impedance

AC CHARACTERISTICS

Symbol	Parameter	'FCT240T				'FCT240AT				'FCT240CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{10}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	1.5	9.0	1.5	8.0	1.5	5.1	1.5	4.8	1.5	4.7	1.5	4.3	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	1.5	10.5	1.5	10.0	1.5	6.5	1.5	6.2	1.5	5.7	1.5	5.0	ns	1
$\left\lvert\, \begin{aligned} & t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}\right.$	Output Disable Time	1.5	10.0	1.5	9.5	1.5	5.9	1.5	5.6	1.5	4.6	1.5	4.5	ns	8

Notes:

* See "Parameter Measurement Information" in the General Information Section.

AC CHARACTERISTICS

Symbol	Parameter	'FCT244T				'FCT244AT				'FCT244CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{10}$	Max.												
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}\right.$	Propagation Delay Data to Output	1.5	7.0	1.5	6.5	1.5	5.1	1.5	4.8	1.5	4.6	1.5	4.1	ns	1,3
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}\right.$	Output Enable Time	1.5	8.5	1.5	8.0	1.5	6.5	1.5	6.2	1.5	6.5	1.5	5.8	ns	1
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}\right.$	Output Disable Time	1.5	7.5	1.5	7.0	1.5	5.9	1.5	5.6	1.5	5.7	1.5	5.2	ns	8

Notes:

10. Minimum limits are not guaranteed but are tested on propagation delays.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

[^4]
CY54/74FCT245T 8-BIT TRANSCEIVER

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 4.1 ns max. (Com'l) FCT-A speed at 4.6 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 48 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- 3-State Outputs

DESCRIPTION

The 'FCT245T contains eight non-inverting bidirectional buffers with 3-state outputs and is intended for bus oriented applications. For the 'FC245T, current sinking capability is 64 mA at the $\mathrm{A} \& \mathrm{~B}$ ports.

The Transmit/Receive (T//R) input determines the direction
of data flow through the bidirectional transceiver. Transmit (Active HIGH) enables data from A ports to B ports; receive (Active LOW) enables data from B ports to A ports. The output enable ($\overline{\mathrm{OE}})$, when HIGH, disables both the A and B ports by putting them in a high Z condition.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

1514 Tbl 01

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

Supply Voltage (\mathbf{V}_{cc})	Min.	Max.
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1514 Tbl 04		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{1+}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{3}$			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {in }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
I_{12}	Input LOW Current (Except I/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{Y}$
I_{H}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
ILI	Input LOW Current (I/O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {off }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{array}{\|l} \hline \mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ \hline \end{array}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{~V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$,
I_{c}	Total Power Supply Current ${ }^{5}$	2.0	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=10 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{1 N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.3	5.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{d}=10 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$
		3.5	6.5^{4}	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		5.5	$14.5{ }^{4}$	mA	$V_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLES

'FCT245T		
Enable $\overline{\mathrm{OE}}$	Direction Control $\mathrm{T} / \overline{\mathrm{R}}$	Operation
L	L	$\overline{\mathrm{B}}$ Data to Bus A
L	H	$\overline{\mathrm{A}}$ Data to Bus B
H	X	High Z State

H = HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care

AC CHARACTERISTICS

Symbol	Parameter	'FCT245T				'FCT245AT				'FCT245CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	1.5	7.5	1.5	7.0	1.5	4.9	1.5	4.6	1.5	4.5	1.5	4.1	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & t_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time $\overline{O E}$ or T / \bar{R} to A or B	1.5	10.0	1.5	9.5	1.5	6.5	1.5	6.2	1.5	6.2	1.5	5.8	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ or $\mathrm{T} / \overline{\mathrm{R}}$ to A or B	1.5	10.0	1.5	7.5	1.5	6.0	1.5	5.0	1.5	5.2	1.5	4.8	ns	1,7,8

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* AC Characteristics guaranteed with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ as shown in Figure 1.
* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY54/74FCT257T QUAD 2-INPUT MULTIPLEXERS

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 4.3 ns max. (Com'I) FCT-A speed at 5.0 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'), 12 mA (Mil)
3-State Outputs

DESCRIPTION

The 'FCT257T has four identical 2-input multiplexers with 3 -state outputs which select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is LOW and the I_{1} inputs are selected when the select input is HIGH. Data appears at the output in true noninverted form for the 'FCT257T.

The 'FCT257T is a logic implementation of a 4-pole, 2 position switch where the position of the switch is deter-
mined by the logic levels supplied to the select input. Outputs are forced to a high-impedance "OFF" state when the Output Enable input ($\overline{\mathrm{OE}}$) is HIGH.

All but one device must be in the High-impedance state to avoid currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3 -state devices are tied together.

FUNCTIONAL BLOCK DIAGRAM

'FCT257T

LOGIC DIAGRAM AND PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

1739 Tbl 01
Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I $_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1739 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1739 Tbl 03		

Supply Voltage (V $\mathbf{V C l}^{\prime}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	\mathbf{V}_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {c }}$
$\mathrm{I}^{\text {H }}$	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{11}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{iN}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUt }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

1739 Tbl 05

Notes:

1. Typical values are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$V_{\mathrm{CC}}=\mathrm{MAX}$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		1.7	$4.0{ }^{4}$	mA	$V_{c C}=M A X,$ 50\% Duty Cycle, Outputs Open, Four Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{OE}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		2.7	8.0^{4}	mA	$V_{C C}=M A X$ 50\% Duty Cycle, Outputs Open, Four Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QUIESGENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels

FUNCTION TABLE

Inputs				Output
$\overline{\text { OE }}$	S	I_{0}	I_{1}	Y
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

1739 Tbl 07
$H=$ High voltage level
L = Low voltage level
X = Don't care
$Z=$ High impedance (OFF) state
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{\text {CCD }}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.
DEFINITION OF FUNCTIONAL TERMS

Pins	Description
$\mathrm{I}_{\mathrm{on}}-\mathrm{I}_{\text {1n }}$	Data inputs
S	Common select input
$\overline{\mathrm{OE}}$	Enable input (Active-Low)
$\mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}$	Data outputs \quad FCT257T
1739 Tbl 08	

AC CHARACTERISTICS

Sym.	Parameter	'FCT257T				'FCT257AT				'FCT257CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{\text {² }}$	Max.	Min. ${ }^{1}$	Max.										
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay $I_{n a} I_{n b} \text { to } Y_{n}$	1.5	7.0	1.5	6.0	1.5	5.8	1.5	5.0	1.5	5.0	1.5	4.3	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay $\mathrm{S} \text { to } \mathrm{O}_{\mathrm{n}}$	1.5	12.0	1.5	10.5	1.5	8.1	1.5	7.0	1.5	6.0	1.5	5.2	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time to High or Low	1.5	10.0	1.5	8.5	1.5	8.0	1.5	7.0	1.5	6.8	1.5	6.0	ns	1,7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time from High or Low	1.5	8.0	1.5	6.0	1.5	5.8	1.5	5.5	1.5	5.3	1.5	5.0	ns	1,7 8

Notes:

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.8 ns max. (Com'l)

FCT-A speed at 7.2 ns max. (Com'l)

- Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature

Matched Rise and Fall times

- Fully Compatible with TTL Input and Output

DESCRIPTION

The 'FCT273T consists of eight edge triggered D-type flipflops with individual D inputs and Q outputs. The common buffered clock (CP) and master reset (MR) load and reset (clear) all flip-flops simultaneously. The 'FCT273T is an edge triggered register. The state of each D input (one
setup time before the low-to-high clock transition) is transferred to the corresponding flip-flop's Q output. All outputs will be forced low by a low voltage level on the $\overline{M R}$ input.

LOGIC SYMBOL

PIN CONFIGURATIONS

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

1740 Tbl 01

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
l output	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	Voltage Applied to Output	-0.5 to +7.0	V

1740 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

1740 Tbl 04

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{oL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{1 /}$	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUt }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{C C}=M A X, V_{I N}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\mathrm{CCD}}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Bit Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{M R}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{M R}=V_{\mathrm{cC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{MR}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND} \end{aligned}$
		4.0	$7.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{M R}=V_{c C}, \\ & V_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } V_{\text {IN }} \geq V_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
		6.2	$16.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{M R}=V_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

1740 Tbl 06

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{cC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {aUIESCENT }}+I_{\text {inputs }}+I_{\text {dYnamic }}$
$I_{c}=I_{c C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input

$$
\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)
$$

$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$\mathrm{I}_{\mathrm{CCD}}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

MODE SELECT-FUNCTION TABLE

Operating Mode	Inputs			Output
	$\overline{\mathbf{M R}}$	$\mathbf{C P}$	\mathbf{D}_{n}	\mathbf{Q}_{n}
Reset (clear)	L	X	X	L
Load '1'	H	\nearrow	h	H
Load '0'	H	\ulcorner	I	L

AC CHARACTERISTICS

Symbol	Parameter	'FCT273T				'FCT273AT				'FCT273CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay Clock to Output	2.0	15.0	2.0	13.0	2.0	8.3	2.0	7.2	2.0	6.5	2.0	5.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{M R}$ to Output	2.0	15.0	2.0	13.0	2.0	8.3	2.0	7.2	2.0	6.8	2.0	6.1	ns	1,6
t_{s}	Set-up Time HIGH or LOW D_{n} to Clock	3.5	-	3.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
t_{h}	Hold Time HIGH or LOW D_{n} to Clock	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
${ }^{\text {w }}$	Clock Pulse Width HIGH or LOW	7.0	-	7.0	-	6.0	-	6.0	-	6.0	-	6.0	-	ns	5
$\mathrm{t}_{\text {w }}$	$\overline{\overline{M R}}$ Pulse Width LOW	7.0	-	7.0	-	6.0	-	6.0	-	6.0	-	6.0	-	ns	6
$\mathrm{t}_{\text {rec }}$	Recovery Time MR to Clock	5.0	-	4.0	-	2.5	-	2.0	-	2.5	-	2.0	-	ns	6

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. $A C$ Characteristics guaranteed with $C_{\mathrm{L}}=50 \mathrm{pF}$ as shown in Figure 1.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

Commercial
Military Temperature
MIL-STD-883, Class B
Plastic DIP
CERDIP
Small Outline IC
Leadless Chip Carrier QSOP
OCTAL D FLIP-FLOP
Fast OCTAL D FLIP-FLOP Ultra Fast OCTAL D FLIP-FLOP

Commercial
Military

FEATURES

- Function, Pinout and Drive Compatible with the Fastest Bipolar Logic

- FCT-C speed at 4.2 ns max. (Com'l)

FCT-A speed at 5.2 ns max. (Com'l)
Reduced V_{OH} (typically $=3.0 \mathrm{~V}$) versions of Equivalent and FCT functions

- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature

- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels

64 mA Sink Current (Com'l), 32 mA (Mil)
15 mA Source Current (Com'l), 12 mA (Mil)

DESCRIPTION

The 'FCT373T and 'FCT573T consist of eight latches with 3-state outputs for bus organized system applications. When latch enable (LE) is high, the flip flops appear transparent to the data. Data that meets the required setup times are latched when LE transitions from HIGH to LOW. Data appears on the bus when the output enable
$(\overline{\mathrm{OE}})$ is LOW. When output enable is HIGH, the bus output is in the high impedance state. In this mode, data may be entered into the latches. The 'FCT573T is identical to 'FCT373T except that all the inputs are on one side of the package and the outputs on the other side.

LOGIC SYMBOL

PIN CONFIGURATIONS

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I OUTPUT	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{IH}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
C_{1}	Input Capacitance ${ }^{3}$			6	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

FUNCTION TABLES (Each Latch)

Inputs			Outputs 'FCT373/'FCT573
$\overline{\text { OE }}$	LE	D	O $_{n}$
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$Z=$ HIGH impedance
$\mathrm{Q}_{0}=$ previous state of flip flops $\left(\overline{\mathrm{Q}}_{\mathrm{n}-1}\right)$
$\bar{Q}_{0}=$ previous state of flip flops $\left(\bar{Q}_{n-1}^{n-1}\right)$

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\text {cC }}=M A X, V_{I N}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$V_{c C}=M A X,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \overline{O E}=G N D, L E=V_{C C} \\ & V_{I N}=3.4 V \text { or } V_{\mathbb{I N}}=G N D \end{aligned}$
		3.2	6.5^{4}	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		5.2	$14.5{ }^{4}$	mA	$V_{c C}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$,

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{c C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{c c D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS ('FCT373T - 'FCT573T)

Sym.	Parameter	$\begin{aligned} & \text { 'FCT373T } \\ & \text { 'FCT573T } \end{aligned}$				$\begin{aligned} & \text { 'FCT373AT } \\ & \text { 'FCT573AT } \end{aligned}$				$\begin{aligned} & \hline \text { 'FCT373CT } \\ & \text { 'FCT573CT } \end{aligned}$				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Prop Delay $D_{n} \text { to } O_{n}$	1.5	8.5	1.5	8.0	1.5	5.6	1.5	5.2	1.5	5.1	1.5	4.2	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Prop Delay LE to O_{n}	2.0	15.0	2.0	13.0	2.0	9.8	2.0	8.5	2.0	8.0	2.0	5.5	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	13.5	1.5	12.0	1.5	7.5	1.5	6.5	1.5	6.3	1.5	5.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	10.0	1.5	7.5	1.5	6.5	1.5	5.5	1.5	5.9	1.5	5.0	ns	8
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, High to Low D_{n} to LE	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	9
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time, High to Low D_{n} to LE	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	
$t_{w}(\mathrm{H})$	LE Pulse Width High	6.0	-	6.0	-	6.0	-	5.0	-	6.0	-	5.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* $A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

Commercial
Military Temperature MIL-STD-883, Class B

Plastic DIP
CERDIP
Small Outline IC
Leadless Chip Carrier QSOP

OCTAL Transparent Latch
Fast OCTAL Transparent Latch Ultra Fast OCTAL Transparent Latch

Commercial Military

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.2 ns max. (Com'l) FCT-A speed at 6.5 ns max. (Com'l)

Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions

- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature

Matched Rise and Fall times

- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 32 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- Edge Triggered D Type Inputs
- 250 MHz Typical Toggle Rate

Buffered Positive Edge Triggered Clock

DESCRIPTION

The 'FCT374T and 'FCT574T are high-speed low power octal D-type flip-flops featuring separate D-type inputs for each flip-flop. Both devices have 3 -state outputs for bus oriented applications. A buffered clock (CP) and output enable (OE) are common to all flip-flops. The 'FCT574T is identical to 'FCT374T except that all the outputs are on one side of the package and inputs on the other side. The eight flip-flops contained in the 'FCT374T and 'FCT574T
will store the state of their individual D inputs that meet the setup and hold time requirements on the low-to-high clock (CP) transition. When $\overline{O E}$ is LOW, the contents of the eight flip-flops are available at the outputs. When OE is HIGH, the outputs will be in the high impedance state. The state of output enable does not affect the state of the flipflops.

LOGIC DIAGRAMS

LOGIC SYMBOL

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I OUtPut	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1730 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1730 Tb 03		

Supply Voltage (V $\mathbf{c c}^{\prime}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1730 ты 04		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LI }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LL}}=64 \mathrm{~mA} \end{aligned}$
1.	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {OUT }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{I} \leq} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

1730 Tbl 05

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the
chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{∞} tests should be performed last
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {C }}=\text { MAX, One Bit Toggling, } \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \hline \mathrm{OE}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$V_{c C}=M A X, f_{0}=10 M H z$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		4.0	7.8^{4}	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $\mathrm{f}_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		6.2	$16.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Per TTL driven input $\left(V_{\mathbb{I N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta \mathrm{I}_{\mathrm{CC}} \mathrm{D}_{\mathrm{H}} \mathrm{N}_{\mathrm{T}}+\mathrm{I}_{\mathrm{CCD}}\left(\mathrm{f}_{\mathrm{O}} / 2+\mathrm{f}_{1} \mathrm{~N}_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Sym.	Parameter	'FCT374T/ 'FCT574T				'FCT374AT/ 'FCT574AT				'FCT374CT/ 'FCT574CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop. Delay Clock to Output	2.0	11.0	2.0	10.0	2.0	7.2	2.0	6.5	2.0	6.2	2.0	5.2	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	14.0	1.5	12.5	1.5	7.5	1.5	6.5	1.5	6.2	1.5	5.5	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	8.0	1.5	8.0	1.5	6.5	1.5	5.5	1.5	5.7	1.5	5.0	ns	1,7,8

Note:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* AC Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
* See "Parameter Measurement Information" in the General Information Section.

AC CHARACTERISTICS

Sym.	Parameter	'FCT374T/ 'FCT574T				'FCT374AT/ 'FCT574AT				'FCT374CT/ 'FCT574CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, High or Low D_{n} to $C P$	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
$\begin{aligned} & \left.\mathrm{t}_{\mathrm{n}} \mathrm{H}\right) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time, High or Low D_{n} to CP	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clk Pulse Width ${ }^{2}$ High or Low	7.0	-	7.0	-	6.0	-	5.0	-	6.0	-	5.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. With one data channel toggling, $t_{w}(L)=t_{w}(H)=4.0$ ns and $t_{r}=t_{f}=1.0 \mathrm{~ns}$.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

Commercial
Military Temperature
MIL-STD-883, Class B
Plastic DIP
CERDIP
Small Outline IC
Leadless Chip Carrier
QSOP
OCTAL Transparent Latch
Fast OCTAL Transparent Latch Ultra Fast OCTAL Transparent Latch

Commercial
Military

CY54/74FCT377T 8-BIT REGISTER

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.2 ns max. (Com'l) FCT-A speed at 7.2 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature

Matched Rise and Fall times
Fully Compatible with TTL Input and Output Logic Levels

64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

Clock Enable for Address and Data Synchronization Application

Eight Edge-Triggered D Flip-Flops

DESCRIPTION

The 'FCT377T have eight edge-triggered, D-type flip-flops with individual D inputs and O outputs. The common buffered clock (CP) input loads all flip-flops simultaneously when the Clock Enable ($\overline{\mathrm{CE}}$) is LOW. The register is fully edge-triggered. The state of each D input one set-up time
before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's O output. The $\overline{\mathrm{CE}}$ input must be stable only one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

FUNCTIONAL BLOCK DIAGRAM

LOGIC SYMBOL

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I $_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V
1735 Tbl 02			

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

1735 Tbl 03

Supply Voltage (V $\mathbf{c c}^{\prime}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & \hline 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iv }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{C}_{\text {in }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\mathrm{V}_{1 \mathrm{IN}} \leq 0.2 \mathrm{~V}$,

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\text {CC }}=M A X, V_{\text {IN }}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{\mathrm{cc}}=\mathrm{MAX}$, One Bit Toggling, 50\% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{C}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{CE}}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{CE}=\mathrm{GND} \text {, }$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		4.0	$7.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{CE}}=\mathrm{GND},$ $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
		6.2	$16.8{ }^{4}$	mA	$V_{c C}=M A X, f_{0}=10 M H z,$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{CE}}=\mathrm{GND},$ $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input ($\mathrm{V}_{\mathbb{N}}=3.4 \mathrm{~V}$); all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{\text {CCD }}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLE

Operating Mode	Inputs			Outputs
	CP	$\overline{\text { CE }}$	D	0
Load "1"	厂	I	h	H
Load "0"	」	1	I	L
Hold (Do Nothing)	$\underset{\mathrm{x}}{5}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	No Change No Change

H $=$ HIGH Voltage Level
$h=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
L = LOW Voltage Level
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
X = Immaterial
$J=$ LOW-to-HIGH Clock Transition

AC CHARACTERISTICS

Symbol	Parameter	'FCT377T				'FCT377AT				'FCT377CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max	Min. ${ }^{1}$	Max.								
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Clock to Output	2.0	15.0	2.0	13.0	2.0	8.3	2.0	7.2	2.0	5.5	2.0	5.2	ns	1,5

Note:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
$A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.

* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT377T				'FCT377AT				'FCT377CT				Units	Fig. No.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max	Min. ${ }^{1}$	Max.								
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW Data to CP	3.0	-	2.5	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Data to CP	2.5	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CE}}$ to CP	4.0	-	4.0	-	3.5	-	3.5	-	3.5	-	3.5	-	ns	5
$\begin{aligned} & \mathrm{t}_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CE}}$ to CP	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	6
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Clock Pulse Width LOW ${ }^{2}$	7.0	-	7.0	-	7.0	-	6.0	-	7.0	-	6.0	-	ns	6

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. With one data channel toggling, $\mathrm{t}_{\mathrm{w}}(\mathrm{L})=\mathrm{t}_{\mathrm{w}}(\mathrm{H})=4.0 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=1.0 \mathrm{~ns}$.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY54/74FCT399T QUAD 2-INPUT REGISTERS

FEATURES

```
\square Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 6.1 ns max. (Com'l) FCT-A speed at 7.0ns max. (Com'l)
- Reduced \(\mathrm{V}_{\mathrm{OH}}\) (typically \(=3.3 \mathrm{~V}\) ) versions of Equivalent FCT functions
```

- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 32 mA (Mil)

15 mA Source Current (Com'I), 12 mA (Mil)

DESCRIPTION

The 'FCT399T is a high-speed quad dual-port registers that select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to- HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully
edge-triggered. The Data inputs $\left(I_{0 x}, I_{1 x}\right)$ and Select input (S) must be stable only one set-up time prior to, and hold time after, the LOW-to HIGH transition of the Clock input for predictable operation. The 'FCT399T offers true outputs.

LOGIC SYMBOL AND PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

Notes:
1732 Tbl 01

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathbf{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
IIL	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged
shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ. ${ }^{1}$	Max.	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{C C}=M A X, V_{I N}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Input Toggling, 50\% Duty Cycle, Outputs Open, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{C}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{S}=$ Steady State, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{S}=$ Steady State, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		4.0	$7.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, 4 Inputs Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, $\mathrm{S}=$ Steady State, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		5.2	$12.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z,$ 50% Duty Cycle, Outputs Open, 4 Inputs Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, S = Steady State, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$

1732 Tbl 04

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{c c}+\Delta I_{c c} D_{H} N_{T}+I_{c C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

FUNCTION TABLE - 'FCT399T

Inputs			Outputs
\mathbf{S}	I_{0}	I_{1}	Q
I	I	X	L
I	h	X	H
h	X	I	L
h	X	h	H

H = HIGH Voltage Level
L = LOW Voltage Level
h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
$\mathrm{X}=$ Don't Care

PIN DESCRIPTION

Pin Names	Description
S	Common Select Input
$C P$	Clock Pulse Input (Active Rising Edge)
$I_{O A}-I_{O D}$	Data Inputs from Source 0
$I_{1 A}-I_{1 D}$	Data Inputs from Source 1
$Q_{A}-Q_{D}$	Register True Outputs

AC CHARACTERISTICS

Symbol	Parameter	'FCT399T				'FCT399AT				'FCT399CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay CP to Q	3.0	11.5	3.0	10.0	2.5	7.5	2.5	7.0	2.5	6.6	2.5	6.1	ns	1,5

Note:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* AC Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
* See 'Parameter Measurement Information' in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT399T				'FCT399AT				'FCT399CT				Units	Fig. No.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW I_{n} to CP	4.5	-	4.0	-	4.0	-	3.5	-	4.0	-	3.5	-	ns	4
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW I_{n} to $C P$	1.5	-	1.0	-	1.0	-	1.0	-	1.0	-	1.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up Time, HIGH or LOW SP to CP	9.5	-	9.0	-	9.0	-	8.5	-	9.0	-	8.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW SP to CP	0	-	0	-	0	-	0	-	0	-	0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width ${ }^{2}$, HIGH or LOW	7.0	-	5.0	-	6.0	-	5.0	-	6.0	-	5.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. This parameter is guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-A speed at 7.5 ns max. (Com'l)

FCT-B speed at 5.6 ns max. (Com'l)
Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions

- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature

Matched Rise and Fall times

- Fully Compatible with TTL Input and Output Logic Levels

■ 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

Two 8-Bit Parity Generator/Checkers Per Device
Open Drain Active Low Parity Error Output
Expandable For Larger Word Widths

DESCRIPTION

The 'FCT480T is a high speed dual 8-bit parity generator/ checkers. Each parity generator/checker accepts eight data bits and one parity bit as inputs, and generates a sum and parity error output. The 'FCT480T can be used in even parity systems.

The parity error output is open-drain, designed for easy expansion of the word width by a wired-OR connection of several 'FCT480T type devices. Since additional logic is not needed, the parity generation or checking times remain the same as for an individual 'FCT480T device.

PIN CONFIGURATIONS

Top View
$A_{1} \overparen{1} \quad 24 \mathrm{v}_{\mathrm{CC}}$
$\mathrm{B}_{1}-2$ 23 $2 \mathrm{~A}_{2}$
$\mathrm{D}_{1} \mathrm{C} 4 \quad 21 \mathrm{C}_{2}$
$\mathrm{H}_{1} \mathrm{C} 8$ 保 $17 \mathrm{G}_{2}$
CHK/GEN 10 - 15 - PAR_{2}
(ODD1) EVEN1 $411414 \overline{\text { ERROR }}$
GND 12 13 EVEN2 (ODD2)
$\begin{gathered} \text { DIP (D14, P13/13A), SOIC (S13) } \\ \text { QSOP (Q13) } \end{gathered}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I $_{\text {OUtPut }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1551 ты 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS ${ }^{3}$

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

Notes:
1551 ты $0 з$
3. Unless otherwise restricted or extended by detail specifications.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	$\mathbf{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{\Perp}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{oL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}_{-}}=64 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathbb{N}}=2.7 \mathrm{~V}$
ILL	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State I ${ }_{\text {OuT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			6	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{3}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{1 \mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.2	0.35	mA/MHz	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}$, One Bit Toggling, 50% Duty Cycle, Outputs Open, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	2.0	5.0	mA	$V_{c c}=M A X$, Outputs Open, One Bit Toggling at $f_{1}=2.5 \mathrm{MHz}$, 50\% Duty Cycle, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		2.5	7.0	mA	$V_{c c}=M A X$, Outputs Open, One Bit Toggling at $f_{1}=2.5 \mathrm{MHz}$, 50\% Duty Cycle, $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$
		7.25	13.75	mA	$V_{c c}=M A X$, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, 50\% Duty Cycle, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		10.25	22.75	mA	$V_{c c}=M A X$, Outputs Open, Eight Bits Toggling at $\mathrm{f}_{1}=2.5 \mathrm{MHz}$, 50\% Duty Cycle, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {QuIESCENT }}+I_{\text {INPUTS }}+I_{\text {DVNAMIC }}$
$I_{c}=I_{c c a c}+\Delta I_{c c} \cdot D_{H} N_{T}+I_{c c D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{l}_{\mathrm{cC}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0} \quad=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS (Minimum values for propagation delays are 1.5 ns , guaranteed by design)

Symbol	Parameter	'FCT480T		'FCT480AT		'FCT480BT		Unit
		Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to EVEN/ODD	17.0	13.0	9.5	7.5	7.0	5.6	ns
		16.0	13.0	9.0	7.0	6.6	5.6	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} \mathrm{LH}}{ }^{*} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to ERROR	17.0	13.0	9.0	7.0	7.0	5.6	ns
		20.0	16.0	10.5	8.5	8.1	6.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Chk/Gen to EVEN/ODD	15.0	12.0	8.5	6.5	6.3	5.9	ns
		18.0	15.0	10.0	7.5	7.4	5.9	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}{ }^{*} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Chk/Gen to ERROR	17.0	14.0	9.5	7.5	7.1	5.7	ns
		16.0	13.0	9.0	7.0	6.9	5.5	ns

${ }^{*} \mathrm{t}_{\text {PLH }}$ is measured up to $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$
'FCT480T TRUTH TABLE

Inputs					Outputs		
A1 to H1	A2 to H2	CHK/GEN	PAR1	PAR2	EVEN1	EVEN2	ERROR
Number of A1 to H1 Inputs HIGH is EVEN	Number of A 2 to H2 Inputs HIGH is EVEN	H	H	H	L	L	H
			L	H	H	L	L
			H	L	L	H	L
			L	L	H	H	L
		L	X	X	H	H	L
	Number of Inputs HIGH A2 to H 2 is ODD	H	H	H	L	H	L
			L	H	H	H	L
			H	L	L	L	H
			L	L	H	L	L
		L	X	X	H	L	L
Number of A1 to H1 Inputs HIGH is ODD	Number of A2 to H2 Inputs HIGH is EVEN	H	H	H	H	L	L
			L	H	L	L	H
			H	L	H	H	L
			L	L	L	H	L
		L	X	X	L	H	L
	Number of A2 to H2 Inputs HIGH is ODD	H	H	H	H	H	L
			L	H	L	H	L
			H	L	H	L	L
			L	L	L	L	H
		L	X	X	L	L	H

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

CY54/74FCT540T CY54/74FCT541T 8-BIT BUFFERS/LINE DRIVERS

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 4.3ns max. (Com'l)

FCT-A speed at 4.8 ns max. (Com'l)

- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature
Matched Rise and Fall times

- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

3-State Outputs

DESCRIPTION

The 'FCT540T and the 'FCT541T are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers. The devices provide speed and drive capabilities
equivalent to their fastest bipolar logic counterparts while reducing power dissipation. The input and output voltage levels allow direct interface with TTL, NMOS and CMOS devices without external components.

FUNCTIONAL BLOCK DIAGRAM

'FCT540T/541T
${ }^{*} \bar{O}_{n}$ for 'FCT540T

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
loutput	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	Voltage Applied to Output	-0.5 to +7.0	V

1742 Tbl 02
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

1742 ты 05

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} V_{\text {cc }} & =M A X, V_{\text {IN }}=3.4 \mathrm{~V}^{2}, \\ f_{1} & =0 \text {, Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{c c}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \mathrm{OE}_{\mathrm{A}}=\overline{\mathrm{OE}}_{\mathrm{B}}=\mathrm{GND} \text {, or } \overline{\mathrm{OE}}_{\mathrm{A}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{cC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
$I_{\text {c }}$	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { One Bit Toggling at } \mathrm{f}_{1}=10 \mathrm{MHz}, \\ & \mathrm{OE}_{\mathrm{A}}=\mathrm{OE}_{\mathrm{B}}=\mathrm{GND}, \text { or } \mathrm{OE}_{\mathrm{A}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{cC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.0	5.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \overline{O E}_{A}=\overline{O E}_{B}=G N D, \text { or } \overline{O E}_{A}=G N D, O E_{B}=V_{C C} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		3.2	6.5^{4}	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { Eight }^{2} \text { Bits Toggling at } \mathrm{f}_{1}=2.5 \mathrm{MHz}, \\ & \mathrm{OE}_{\mathrm{A}}=0 \mathrm{OE}_{\mathrm{B}}=\mathrm{GND}, \text { or } \mathrm{OE}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \hline \end{aligned}$
		5.2	$14.5{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{O E}_{\mathrm{A}}=\overline{\mathrm{OE}}_{\mathrm{B}}=\mathrm{GND}, \text { or } \overline{\mathrm{OE}} \mathrm{~A}_{\mathrm{A}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{cc} or GND .
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESCENT }}+I_{\text {INPuTs }}+I_{\text {DYNaMic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cC}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & \text { 'FCT540T } \\ & \text { 'FCT541T } \end{aligned}$				$\begin{aligned} & \text { 'FCT540AT } \\ & \text { 'FCT541AT } \end{aligned}$				$\begin{aligned} & \text { 'FCT540CT } \\ & \text { 'FCT541CT } \end{aligned}$				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min.	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max.		
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}\right.$	Propagation Delay Data to Output(540)	1.5	9.5	1.5	8.5	1.5	5.1	1.5	4.8	1.5	4.7	1.5	4.3	ns	1,2
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}\right.$	Propagation Delay Data to Output(541)	1.5	9.0	1.5	8.0	1.5	5.1	1.5	4.8	1.5	4.6	1.5	4.1	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	10.5	1.5	10.0	1.5	6.5	1.5	6.2	1.5	6.5	1.5	5.8	ns	1
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	10.0	1.5	9.5	1.5	5.9	1.5	5.6	1.5	5.7	1.5	5.2	ns	8

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* See "Paraineter ivieasuirement infomation" in the Generai infumation Section.

ORDERING INFORMATION

CY54/74FCT543T 8-BIT LATCHED TRANSCEIVER

FEATURES

- Function, Pinout, and Drive Compatible with the FCT and F Logic
- FCT-A speed at 5.3 ns max. (Com'l) FCT speed at 6.5ns max. (Com'l)
- CMOS V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 48 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)
- Separate Controls for Data Flow in Each Direction
- Back to Back Latches for Storage
- Power-off disable feature

DESCRIPTION

The 'FCT543T T Octal Latched Transceiver contains two sets of eight D-type latches with separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$) and Output Enable ($\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$) controls for each set to permit independent control of inputting and outputting in either direction of data flow. For data flow from A to B, for example, the A-to-B Enable ($\overline{C E A B}$) input must be LOW in order to enter data from A0-A7 or to take data from $\mathrm{B} 0-\mathrm{B} 7$, as indicated in the truth table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable
($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the $\overline{\text { LEAB }}$ signal puts the A latchs in the storage mode and their output no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the 3 -state B output buffers are active and reflect the data present at the output of the A latches. Control of data from B to A is similar, but uses $\overline{C E A B}, \overline{L E A B}$ and $\overline{O E A B}$ inputs.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin Name	Description
$\overline{\mathrm{OEAB}}$	A-to-B Output Enable Input (Active LOW)
$\overline{\mathrm{OEBA}}$	B-to-A Output Enable Input (Active LOW)
$\overline{\mathrm{CEAB}}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}$	B-to-A Latch Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or B-to-A 3-State Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or A-to-B 3-State Outputs

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:
1820 Tbl 02

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}^{\prime}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8		V		
V_{H}	Hysteresis ${ }^{1}$			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathbb{I N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{iN}}=\mathrm{V}_{\mathrm{CC}}$
I_{IH}	Input HIGH Current ${ }^{3}$	Except I/O Pln			5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
		I/O Pln			15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{1 N}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current ${ }^{3}$	Except l/O Pln			-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
		I/O Pins only			-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OZH}}$	Off State $\mathrm{I}_{\text {OUT }}$ HIGH-Level Output Current				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF		All inputs
$\mathrm{C}_{1 / \mathrm{O}}$	Output Capacitance ${ }^{3}$			9	12	pF		All outputs
I_{CC}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereъж ты 06 cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{o s}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ. ${ }^{1}$	Max.	Units	Conditions
$\Delta \mathrm{l}_{\text {c }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\text {CC }}=M A X, V_{I N}=3.4 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=$ MAX, One Input Toggling, 50% Duty Cycle, $\overline{\text { CEAB }}+\overline{\text { OEAB }}=$ Low, Outputs Open, $\overline{C E A B}=$ High, $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
		1.7	4.0	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz}, \overline{C E A B}+\overline{\mathrm{OEAB}}=\text { Low }$ 50% Duty Cycle, Outputs Open, CEBA $=$ High One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{f}_{0}=\mathrm{LEAB}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	2.2	6.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=\text { Low }$ 50% Duty Cycle, Outputs Open, CEBA $=$ High One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & f_{0}=\overline{L E A B}=10 \mathrm{MHz}, \\ & V_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \bigvee_{\mathbb{N}}=G \mathrm{GND} \end{aligned}$
		7.0	$12.8{ }^{4}$	mA	$V_{C C}=M A X, f_{0}=10 M H z, \overline{C E A B}+\overline{O E A B}=\text { Low }$ 50% Duty Cycle, Outputs Open, $\overline{\text { CEBA }}=$ High Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{f}_{0}=\mathrm{LEAB}=10 \mathrm{MHz},$ $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{C C}-0.2 \mathrm{~V}$
		9.2	$21.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=$ Low 50% Duty Cycle, Outputs Open, $\overline{\text { CEBA }}=$ High Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{f}_{0}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLE FOR A-TO-B (Symmetric with B-to-A)

Inputs			Latch Status	Outputs 'FCT543T
$\overline{\text { CEAB }}$	LEAB	OEAB	A-TO-B	B0-B7
H	-	-	Storing	High Z
-	H	-	Storing	-
-	-	H	-	High Z
L	L	L	Transparent	Current A Inputs
L	H	L	Storing	Previous A Inputs

* = Before $\overline{\text { LEAB }}$ LOW-to-HIGH Transition
H = HIGH Voltage Level
L = LOW Voltage Level
- = Don't Care or Irrelevent

A-to-B data flow shown: B-to-A flow control is the same, except using
$\overline{C E B A}, \overline{L E B A}$, and $\overline{\text { OEBA }}$

AC CHARACTERISTICS

Sym.	Parameter	'FCT543T				'FCT543AT				'FCT543CT				Units	$\begin{aligned} & \text { Fig. } \\ & \text { No.* } \end{aligned}$
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	2.0	10.0	2.5	8.5	2.5	7.5	2.5	6.5	2.5	6.1	2.5	5.3	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\begin{aligned} & \overline{\text { LEBA }} \text { to } A_{n} \\ & \text { LEAB to } B_{n} \end{aligned}$	2.5	14.0	2.5	12.5	2.5	9.0	2.5	8.0	2.5	8.0	2.5	7.0	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{\text { CEBA }}$ or CEAB to A_{n} or B_{n}	2.0	14.0	2.0	12.0	2.0	10.0	2.0	9.0	2.0	9.0	2.0	8.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{\text { CEBA }}$ or CEAB to A_{n} or B_{n}	2.0	13.0	2.0	9.0	2.0	8.5	2.0	7.5	2.0	7.5	2.0	6.5	ns	1,7,8

Notes:

1. Minimum limits are guaranteed on Propagation Delays.

* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Sym.	Parameter	'FCT543T				'FCT543AT				'FCT543CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up Time HIGH or LOW A_{n} or B_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	3.0	-	3.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	9
$\begin{gathered} t_{n}(H) \\ t_{n}(L) \end{gathered}$	Hold Time HIGH or LOW A_{n} or B_{n} to $\overline{\text { LEBA }}{ }^{n}$ r $\overline{\text { LEAB }}$	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	9
$\mathrm{t}_{\text {w }}$	$\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$ Pulse Width LOW	5.0	-	5.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	6

Note:

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY54/74FCT646T CY54/74FCT648T
 8-BIT REGISTERED TRANSCEIVERS

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.4 ns max. (Com'l)

FCT-A speed at 6.3 ns max. (Com'l)

- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'I), 48 mA (Mil)

15 mA Source Current (Com'l), 12 mA (Mil)

- Independent Register for A and B Buses
- 3-State Output

DESCRIPTION

The 'FCT646T and 'FCT648T consist of a bus tranceiver circuit with 3-state, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Enable Control $\overline{\mathrm{G}}$ and direction pins are provided to control the transceiver function.

In the transceiver mode, data present at the high impedance port may be stored in either the A or B register, or in both. The select controls can multiplex stored and realtime (transparent mode) data. The direction control determines which bus will receive data when the enable control $\overline{\mathrm{G}}$ is Active LOW. In the isolation mode (enable Control $\overline{\mathrm{G}}$ HIGH), A data may be stored in the B register and/or B data may be stored in the A register.

LOGIC SYMBOL

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

Pin Names	Description
$\mathrm{A}_{1}-\mathrm{A}_{8}$	Data Register A Inputs Data Register B Outputs
$\mathrm{B}_{1}-\mathrm{B}_{8}$	Data Register B Inputs Data Register A Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Output Data Source Select Inputs
DIR, $\overline{\mathrm{G}}$	Output Enable Inputs

Note:

1. Cannot transfer data to A bus and B bus simultaneously.

FUNCTION TABLE

Inputs						Data I/ ${ }^{1}$		Operation or Function	
$\overline{\mathbf{G}}$	DIR	CPAB	CPBA	SAB	SBA	A_{1} thru A_{8}	B_{1} thru B_{8}	'FCT646T	'FCT648T
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline X \\ & x \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{H} \text { or } \mathrm{L} \\ \varsigma^{2} \end{gathered}$	$\begin{gathered} \mathrm{H} \text { or } \mathrm{L} \\ \Gamma \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	Input	Input	Isolation Store A and B Data	Isolation Store A and B Data
L	L	x	$\begin{gathered} \mathrm{X} \\ \text { H or L } \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	H	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus	Real Time \bar{B} Data to A Bus Stored B Data to A Bus
L	H H	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	x	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus	Real Time \bar{A} Data to B Bus Stored $\overline{\mathrm{A}}$ Data to B Bus

Notes:

1. The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{G}}$ or DIR inputs. Data input functions are alwaysenabled, i.e., data at the bus pins will be stored on every LOW-toHIGH transition of the clock inputs.
2. $\mathrm{H}=\mathrm{HIGH}, \mathrm{L}=\mathrm{LOW}, \mathrm{X}=$ Don't Care, $\Gamma=$ LOW-to-HIGH Transition

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I Output	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {in }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
1727 Tbl 05		

Supply Voltage (V $\mathbf{c c}^{\prime}$)	Min	Max
Military	+4.5 V	+5.5 V
Commerciai	+4.75 V	+5.25 V
1727 Tb 06		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {L }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis 3			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
IL	Input LOW Current (Except I/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$
I_{1+}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IL	Input LOW Current (//O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			6	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{3}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {in }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {in }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{\text {cC }}=M A X, V_{1 N}=3.4 \mathrm{~V}^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}$, or $\mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{V}_{\mathbb{1 N}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$V_{C C}=M A X, f_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}$, or $\mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{NN}}=\mathrm{GND}$
		7.0	$12.8{ }^{4}$	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \\ & 50 \% \text { Duty } \text { Cycle, Outputs Open, } \\ & \text { Eight Bits Toggling at } \mathrm{f}_{1}=5 \mathrm{MHz}, \\ & \mathrm{G}=\text { DIR }=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$
		9.2	$21.8{ }^{4}$	mA	$\begin{aligned} & \mathrm{V}_{\text {cC }}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { Eight Bits Toggling at } \mathrm{f}_{1}=5 \mathrm{MHz}, \\ & \mathrm{G}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{cC} or GND .
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {GUIESCENT }}+I_{\text {INPUTs }}+I_{\text {ornamic }}$
$I_{c}=I_{c C}+\Delta I_{C C} D_{H} N_{T}+I_{c C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels $\Delta l_{\mathrm{cC}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$\mathrm{I}_{\mathrm{CCD}}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT646T/648T				'FCT646AT/648AT				'FCT646CT/648CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	6.0	1.5	5.4	ns	1,3
$\begin{aligned} & t_{\mathrm{PZH}} \\ & t_{\mathrm{PZL}} \end{aligned}$	Output Enable Time Enable to Bus and DIR to A or B	2.0	15.0	2.0	14.0	2.0	10.5	2.0	9.8	1.5	8.9	1.5	7.8	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{G}}$ to Bus and DIR to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	7.7	1.5	6.3	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	2.0	10.0	2.0	9.0	2.0	7.0	2.0	6.3	1.5	6.3	1.5	5.7	ns	1,5
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A or B	2.0	12.0	2.0	11.0	2.0	8.4	2.0	7.7	1.5	7.0	1.5	6.2	ns	1,5

Notes:

* $A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1 .
* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT646T/648T				'FCT646AT/648AT				'FCT646CT/648CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min.	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Bus to Clock	4.5	-	4.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW Bus to Clock	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	6.0	-	6.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

CY54/74FCT652T 8-BIT REGISTERED TRANSCEIVER

FEATURES

- Function, Pinout and Drive Compatible with the FCT and F Logic
- FCT-C speed at 5.4 ns max. (Com'l) FCT-A speed at 6.3 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 48 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)
- Independent Register for A and B Buses
- Multiplexed Real-Time and Stored Data Transfer
- Bidirectional Bus Transceiver and Registers

DESCRIPTION

THE 'FCT651T consists of bus tranciever circuits, D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. GAB and $\overline{\mathrm{GBA}}$ control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and realtime data. A low input level selects real-time data and a high selects stored data.

Data on the A or B data bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling $G A B$ and $\overline{G B} \bar{A}$. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage ($\mathbf{V}_{\text {cc }}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1728 Tbl 04		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {Li }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{3}$			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (Except I/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
I_{H}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (I/O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

Note:

1. Cannot transfer data to A bus and B bus simultaneously.

FUNCTION TABLES

Inputs						Data I/O		Operation or Function
GAB	$\overline{\text { GBA }}$	CPAB	CPBA	SAB	SBA	A_{1} thru A_{8}	B_{1} thru B_{8}	'FCT652T
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\mathrm{H} \text { or } \mathrm{L}$	$\mathrm{H} \text { or } \mathrm{L}$	$\begin{aligned} & \hline X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & \hline \end{aligned}$	Input	Input	Isolation Store A and B Data
$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	」	$\mathrm{H} \text { or } \mathrm{L}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input Input	Unspecified ${ }^{1}$ Output	Store A, Hold B Store A in both registers
$\stackrel{L}{L}$	$\underset{L}{X}$	$\stackrel{H}{ } \text { or } \mathrm{L}$	J	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X}^{2} \end{aligned}$	Unspecified Output	Input Input	Hold A, Store B Store B in both registers
\bar{L}	\bar{L}	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus
$\begin{gathered} \mathrm{H} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	X	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

Notes:
1728 Tbl 06

1. The data output functions may be enabled or disabled by various signals at the GAB or $\overline{\mathrm{GBA}}$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.
2. Select control = L: clocks can occur simultaneously.

Select control $=\mathrm{H}$: clocks must be staggered in order to load both registers.
H $=$ HIGH, L $=$ LOW, $X=$ Don't Care, \ulcorner LOW-to-HIGH Transition

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {cCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=$ MAX, One Input Toggling, 50\% Duty Cycle, Outputs Open $\mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND}$, $\mathrm{SBA}=\mathrm{V}_{\mathrm{cc}},$ $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND}, \\ & S B A=V_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND} \\ & \hline \end{aligned}$
		7.0	$12.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND},$ $\mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND},$ $\mathrm{SBA}=\mathrm{V}_{\mathrm{cc}} \text {, }$ $\mathrm{V}_{\mathrm{IN}}=0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		9.2	$21.8{ }^{4}$	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND},$ $S A B=C P A B=G N D$, $\mathrm{SBA}=\mathrm{V}_{\mathrm{cC}},$ $V_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(V_{\mathbb{I N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} \cdot D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathbb{I}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT652T				'FCT652AT				'FCT652CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{1}$	Max.	Min.	Max.	Min. ${ }^{1}$	Max.								
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	6.0	1.5	5.4	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time Enable to Bus	2.0	15.0	2.0	14.0	2.0	10.5	2.0	9.8	1.5	8.9	1.5	7.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time Enable to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	7.7	1.5	6.3	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	2.0	10.0	2.0	9.0	2.0	7.0	2.0	6.3	1.5	6.3	1.5	5.7	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A or B	2.0	12.0	2.0	11.0	2.0	8.4	2.0	7.7	1.5	7.0	1.5	6.2	ns	1,7, 8

Notes:
1728 ты 08

* $A C$ Characieristics guaranteed with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ as shown in Figure i.
* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT652T				'FCT652AT				'FCT652CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min.	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Bus to Clock	4.5	-	4.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	1,4
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW Bus to Clock	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	1,4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width, HIGH or LOW ${ }^{2}$	6.0	-	6.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	1,5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. With one data channel toggling, $\mathrm{t}_{\mathrm{w}}(\mathrm{L})=\mathrm{t}_{\mathrm{w}}(\mathrm{H})=4.0 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=1.0 \mathrm{~ns}$.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

FEATURES

■ Function, Pinout and Drive Compatible with the FCT, F and Am29821/23/25 Logic
\square FCT-C speed at $6.0 n s$ max. (Com'l) FCT-B speed at 7.5 ns max. (Com'I)

- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature

■ Matched Rise and Fall times

- Fully Compatible with TTL Input and Output Logic Levels
■ 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)
- High-Speed Parallel Registers with positive edge-triggered D-type Flip-Flops
- Buffered Common Clock Enable ($\overline{\mathrm{EN}}$) and Asynchronous Clear Input (CLR)

DESCRIPTION

The 'FCT820T series bus interface registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider address/ data paths or buses carrying parity. The 'FCT821T is a buffered, 10 bit wide version of the popular 'FCT374 function. The 'FCT823T is a 9-bit wide buffered register with Clock Enable ($\overline{\mathrm{EN}}$) and Clear ($\overline{\mathrm{CLR}}$) - ideal for parity bus interfacing in high-performance microprogrammed systems. The 'FCT825T is a 8-bit buffered register with all the 'FCT823T controls plus multiple enables $\left(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}\right.$,
$\overline{\mathrm{OE}}_{3}$) to allow multiuser control of the interface, e.g., $\overline{\mathrm{CS}}$, DMA and RD/ $\overline{W R}$. They are ideal for use as an output port requiring high $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$.

The 'FCT800T family of devices are designed for highcapacitance load drive capability, while providing lowcapacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in the high impedance state.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT SELECTOR GUIDE

Non-inverting	Device		
	10-Bit	9-Bit	8-Bit
	'FCT821T	'FCT823T	'FCT825T

LOGIC SYMBOLS
 PIN CONFIGURATONS

'FCT821T (10-Bit Register)

'FCT823T (9-Bit Register)		
'FCT825T (8-Bit Register)	Top View DIP (D14,P13/13A), SOIC (S13) QSOP (Q13)	

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1725 Tbl 02

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

1725 Tbl 03
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V. $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1725 Tbl 05		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { MIN } \\ & \text { MIN } \\ & \text { MIN } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
ILI	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {OUT }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State I ${ }_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			6	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$

1725 Tbl 05

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{3}$	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Bit Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OE}}=\overline{\mathrm{EN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\overline{\mathrm{EN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\overline{\mathrm{EN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GiND} \end{aligned}$
		4.0	$7.8{ }^{4}$	mA	$V_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\overline{\mathrm{EN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
		6.2	$16.8{ }^{4}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\overline{\mathrm{EN}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

1725 Tbl 07

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{C C}$ formula. These limits are guaranteed but not tested.
5. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input

$$
\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)
$$

$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1} \quad=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Sym.	Parameter	Test Conditions	'FCT821AT-825AT				'FCT821BT-825BT				'FCT821CT-825CT				Units	Fig. No.*
			MIL		COM'L		MIL		COM'L		MIL		COM'L			
			Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max										
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}\right.$	Propagation Delay CP to Y $(\overline{\mathrm{OE}}=\mathrm{LOW})$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	11.5	-	10.0	-	8.5	-	7.5	-	7.0	-	6.0	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Y $(\overline{\mathrm{OE}}=\mathrm{LOW})$	$\begin{aligned} & C_{\mathrm{L}}=300 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	20.0	-	20.0	-	16.0	-	15.0	-	13.5	-	12.5	ns	1,5
$\mathrm{t}_{\text {PLH }}$	Propagation Delay CLR to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	15.0	-	14.0	-	9.5	-	9.0	-	8.5	-	8.0	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	13.0	-	12.0	-	9.0	-	8.0	-	8.0	-	7.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	25.0	-	23.0	-	16.0	-	15.0	-	13.5	-	12.5	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Output Disable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	8.0	-	7.0	-	7.0	-	6.5	-	6.2	-	6.2	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Output Disable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	9.0	-	8.0	-	8.0	-	7.5	-	6.5	-	6.5	ns	1,7,8

AC OPERATING REQUIREMENTS

Sym.	Parameter	Test Conditions	'FCT821AT-825AT				'FCT821BT-825BT				'FCT821CT-825CT				Units	Fig. No.*
			MIL		COM'L		MIL		COM'L		MIL		COM'L			
			Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max										
$\mathrm{t}_{\text {su }}$	Data to CP Set-up Time	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	4.0	-	4.0	-	3.0	-	3.0	-	3.0	-	3.0	-	ns	4
t_{n}	Data CP Hold Time		2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
$\mathrm{t}_{\text {su }}$	Enable $\overline{\mathrm{EN}}$ to CP Set-up Time		4.0	-	4.0	-	3.0	-	3.0	-	3.0	-	3.0	-	ns	9
t_{n}	Enable EN to CP Hold Time		2.0	-	2.0	-	0.0	-	0.0	-	0.0	-	0.0	-	ns	9
$\mathrm{t}_{\text {REM }}$	Clear Recovery Time $\overline{\mathrm{CLR}}$ to CP		7.0	-	6.0	-	6.0	-	6.0	-	6.0	-	6.0	-	ns	6
t_{w}	Clock Puise Width		7.0	-	7.0	-	6.0	-	6.0	-	6.0		6.0	-	ns	5
t_{w}	$\begin{aligned} & \hline \overline{\text { CLR }} \\ & \text { Pulse Width LOW } \end{aligned}$		7.0	-	6.0	-	6.0	-	6.0	-	6.0		6.0	-	ns	5

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. These parameters are guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

PIN DESCRIPTION

Name	I/O	Description
D_{1}	I	The D flip-flop data inputs.
$\overline{\mathrm{CLR}}$	I	For both inverting and non-inverting registers, when the clear input is LOW and $\overline{\mathrm{OE}}$ is LOW, the Q outputs are LOW. When the clear input is HIGH, data can be entered into the register.
CP	O	Clock Pulse for the register; enters data into the register on the LOW-to-HIGH transition.
$\mathrm{Y}_{1}, \bar{Y}_{1}$	O	The register three-state outputs.
$\overline{\mathrm{EN}}$	I	Clock Enable. When the clock enable is LOW, data on the D, input is transferred to the Q, output on the LOW-to HIGH clock transition. When the clock enable is HIGH, the Q ${ }_{i}$ outputs do not change state, regardless of the data or clock input transitions.
$\overline{\mathrm{OE}}$	I	Output Control. When the $\overline{\text { OE input is }}$ HIGH, the Y, outputs are in the high impedence state. When the $\overline{\text { OE input is }}$ LOW, the TRUE register data is present at the Y, outputs.

FUNCTION TABLES

Inputs					Internal Outputs		Function
$\overline{\text { OE }}$	$\overline{\text { CLR }}$	EN	D_{1}	CP	Q_{1}	Y_{1}	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L	L	ζ	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	High Z
$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	X	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{~L} \end{aligned}$	Clear
$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\underset{\mathrm{NC}}{\mathrm{Z}}$	Hold
H H L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L L	L H L H	Ј Ј J Ј	L H L H	Z Z L H	Load

H = HIGH, L = LOW, X = Don't Care, NC = No Change,
$\zeta=$ LOW-to-HIGH Transition, $\mathrm{Z}=$ HIGH Impedance

ORDERING INFORMATION

FEATURES

- Function, Pinout and Drive Compatible with the FCT, F and AM29827 Logic
- FCT-C speed at 4.4 ns max. (Com'l) FCT-A speed at 5.0 ns max. (Com'l)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

DESCRIPTION

The 'FCT827T 10-bit bus drivers provide high-performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR-ed output enables for maximum control flexibility. The 'FCT827T family of devices is designed for high-capacitance
load drive capability, while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in the high impedance state. The 'FCT827T is non-inverting.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {OUtPut }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V
1724 Tbl 04		

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}^{2}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{c C}=M A X,$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.0	5.0	mA	$V_{C C}=M A X,$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		3.2	6.5^{4}	mA	$V_{C C}=M A X,$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $\mathrm{f}_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		5.2	$14.5{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{c}=I_{\text {OUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels $\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H} \quad=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{c c D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$f_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1} \quad=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

FUNCTION TABLES
'FCT827T (Non-Inverting)

Inputs			Outputs	Function
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}$	
L	L	L	L	Transparent
L	L	H	H	
H	X	X	Z	Three-State
X	H	X	Z	

Note:

$H=$ High, $L=$ Low, $X=$ Don't Care, $Z=$ High Impedance

AC CHARACTERISTICS

Sym.	Parameter	Test Conditions	'FCT827AT				'FCT827BT				'FCT827CT				Units	Fig. No.*
			MIL		COM'L		MIL		COM'L		MIL		COM'L			
			Min. ${ }^{1}$	Max.	Min. ${ }^{1}$	Max										
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay from D_{1} to Y_{1} 'FCT827T	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	9.0	-	8.0	-	6.5	-	5.0	-	5.0	-	4.4	ns	1,3
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay from D_{1} to Y_{1} 'FCT827T	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	17.0	-	15.0	-	14.0	-	13.0	-	11.0	-	10.0	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay from D_{1} to Y_{1} 'FCT828T	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$	-	10.0	-	9.0	-	6.5	-	5.5	-	5.0	-	4.4	ns	1,2
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay from D_{1} to Y_{1} 'FCT828T	$\begin{aligned} & C_{L}=300 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	16.0	-	14.0	-	14.0	-	13.0	-	11.0	-	10.0	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{p} 7 \mathrm{l}} \end{aligned}$	Output Enable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	13.0	-	12.0	-	9.0	-	8.0	-	8.0	-	7.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	25.0	-	23.0	-	16.0	-	15.0	-	15.0	-	14.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Output Disable Time OE to Y_{1}	$\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF}^{2} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	9.0	-	9.0	-	7.0	-	6.0	-	6.7	-	5.7	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to Y_{1}	$\begin{aligned} & C_{L}=50 p \\ & R_{L}=500 \Omega \end{aligned}$	-	10.0	-	10.0	-	8.0	-	7.0	-	7.0	-	6.0	ns	1,7,8

1724 Tbl 09

Notes:

1. Minimum limits are guaranteed but not tested on Propagation Delays.
2. These parameters are guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

FEATURES

- Function, Pinout and Drive Compatible with the FCT, F and AM29841 Logic

■ FCT-C speed at 5.5 ns max. (Com'l)
FCT-B speed at 6.5 ns max. (Com'l)
■ Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions

- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature

Matched Rise and Fall times
Fully Compatible with TTL Input and Output Logic Levels

■ 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)

Buffered Common Clear and Preset Input
■ High Speed Parallel Latches
Buffered Common Latch Enable Input

DESCRIPTION

The 'FCT841T series bus interface latches are designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/ data paths or buses carrying parity. The 'FCT841T is a buffered 10-bit wide version of the 'FCT373 function.

The 'FCT841T high performance interface family is designed for high-capacitance load drive capability while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are designed for low-capacitance bus loading in the high impedance state.

LOGIC SYMBOLS

PIN CONFIGURATONS

PIN DESCRIPTION

Name	I/O	Description
D_{1}	I	The latch data inputs.
LE	I	The latch enable input. The latches are transparent when LE is HIGH. Input data is latched on the HIGH-to-LOW transition.
Y_{1}	O	The three-state latch outputs.
$\overline{\mathrm{OE}}$	I	The output enable control. When $\overline{\mathrm{OE}}$ is LOW, the outputs are enabled. When OE is HIGH, the outputs Y_{1} are in the high-impedance (off) state.

FUNCTION TABLES ${ }^{\text {§ }}$

'FCT841T

Inputs			Internal	Outputs	Function
$\overline{\mathbf{O E}}$	LE	\mathbf{D}_{1}	\mathbf{O}_{1}	\mathbf{Y}_{1}	
H	X	X	X	Z	High Z
H	H	L	L	Z	High Z
H	H	H	H	Z	HighZ
H	L	X	NC	Z	Latched (High Z)
L	H	L	L	L	Transparent
L	H	H	H	H	Transparent
L	L	X	NC	NC	Latched

§ $\mathrm{H}=\mathrm{HIGH}, \mathrm{L}=$ LOW, $\mathrm{X}=$ Don't care, $\mathrm{NC}=$ No Change, $\mathrm{Z}=$ High Impedance.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I $_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V
1719 Tbl 04			

2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

1719 Tbl 05

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{1}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{MIN} \\ & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
$\mathrm{I}_{\text {IH }}$	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {LI }}$	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {Out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{2}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{3}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{3}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {in }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {in }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

1719 Tbl 07

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in
order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
3. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta \mathrm{cc}_{\text {c }}$	Quiescent Power Supply Current (TTL inputs) ${ }^{2}$	0.5	2.0	mA	$\begin{aligned} & V_{c C}=M A X, V_{1 N}=2.7 V^{2}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{3}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{c c}=M A X$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{5}$	1.7	4.0	mA	$V_{c c}=M A X,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CO}},$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$V_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{mHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}},$ $\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		3.2	6.5^{4}	mA	$V_{c c}=M A X,$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{cc}}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
		5.2	$14.5{ }^{4}$	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:

1. Typical values are at $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. Per TTL driven input $\left(\mathrm{V}_{\mathrm{N}}=2.7 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
5. $I_{\mathrm{C}}=I_{\text {QUIESGENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta l_{c c}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$\mathrm{N}_{\mathrm{T}}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$f_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Sym.	Parameter	Test Conditions	'FCT841AT				'FCT841BT				'FCT841CT				Units
			MIL		COM'L		MIL		COM'L		MIL		COM'L		
			Min. ${ }^{\text {2 }}$	Max.	Min. ${ }^{2}$	Max.	Min. ${ }^{2}$	Max.	Min. ${ }^{\text {² }}$	Max.	Min. ${ }^{\text {2 }}$	Max.	Min. ${ }^{\text {2 }}$	Max.	
$\left.\right\|_{\mathrm{t}_{\mathrm{PLH}}} ^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay D_{1} to Y_{1} (LE = HIGH)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$		10.0		9.0		7.5		6.5		6.3		5.5	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{3} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		15.0		13.0		15.0		13.0		15.0		13.0	ns
$\mathrm{t}_{\text {su }}$	Data to LE Set-up Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	2.5		2.5		2.5		2.5		2.5		2.5		ns
t_{H}	Data to LE Hold Time		3.0		2.5		2.5		2.5		2.5		2.5		ns
$\left.\right\|_{\mathrm{t}_{\mathrm{PLH}}} \mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to Y_{1}	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$		13.0		12.0		10.5		8.0		6.8		6.4	ns
		$\begin{aligned} & C_{L}=300 \mathrm{pF}^{3} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		20.0		16.0		18.0		15.5		16.0		15.0	ns
$\left\lvert\, \begin{aligned} & t_{\text {PZH }} \\ & t_{\text {PZL }} \end{aligned}\right.$	Output Enable Time $\overline{\mathrm{OE}}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$		13.0		11.5		8.5		8.0		7.3		6.5	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{3} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		25.0		23.0		15.0		14.0		13.0		12.0	ns
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}\right.$	Output Disable Time OE to Y ,	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}^{3} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$		9.0		7.0		6.5		6.0		6.0		5.7	ns
		$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$		10.0		8.0		7.5		7.0		6.3		6.0	ns

Notes:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. This parameters are guaranteed but not tested.

* See "Parameter Measurement Information" in the General Information Section.

ORDERING INFORMATION

$\frac{\text { CYxxFCT }}{\text { Temp. Range }}$	$\frac{x x x x}{\text { Device Type }}$	$\frac{x}{\text { Package }}$	$\frac{x}{\text { Process }}$		
				$\left\lvert\, \begin{aligned} & \mathrm{C} \\ & \mathrm{M} \\ & \mathrm{MB} \end{aligned}\right.$	Commercial Military MIL-STD-883, Class B
				$\left\lvert\, \begin{aligned} & \mathrm{P} \\ & \mathrm{D} \\ & \mathrm{SO} \\ & \mathrm{~L} \\ & \mathrm{Q} \end{aligned}\right.$	Plastic DIP CERDIP Small Outline IC Leadless Chip Carrier QSOP
				$\begin{aligned} & \text { 841AT } \\ & \text { 841BT } \\ & \text { 841CT } \end{aligned}$	10-Bit Non-inverting Latch Fast 10-Bit Non-inverting Latch Ultra Fast 10-Bit Non-inverting Latch
				$\dagger \begin{aligned} & 74 \\ & 54 \end{aligned}$	Commercial Military

FEATURES

- Zero propagation delay

- 5Ω switches connect inputs to outputs
- Direct bus connection when switches are on
- Performs bidirectional translator function between 3.3V and 5.0V power supplies
- CMOS for low power dissipation

- Edge-rate control circuitry for significantly improved noise characteristics
 - Corner power and ground pins
 - Inputs interface with 5.0V CMOS, TTL or 3.3V CMOS
 - Outputs interface to 5.0V TTL or 3.3V CMOS
 - Power Down - No back Power Current

DESCRIPTION

The CYBUS3384 isa 10-bit, 2-port bidirectional bus switch that allows one bus to be connected directly to, or isolated from, another without introducing additional propagation delay or ground bounce noise. The input and output voltage levels allow direct interface with TTL and CMOS devices. Two bus enable signals, BE_{1} and BE_{2}, turn on the upper and lower five bits, respectively.

Designed to have low on resistance of 5Ω, CYBUS3384 also features POWER-OFF DISABLE making it ideal for
use in systems requiring selective power down of peripherals to reduce power consumption. Additionally, CYDUS3384 facilitates bidirectional interfacing between 3.3 V and 5 V systems by placing a single diode in series with the 5 Volt Vcc line.

CYBUS3384 is also suitable for small signal analog applications where crosstalk and off isolation performance of -66 dB at 50 MHz is required.

LOGIC DIAGRAM

PIN CONFIGURATIONS

DIP (D14, P13/13A), SOIC (S13), QSOP (Q13)
190102

Absolute Maximum Ratings ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +165	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input Current	-20	mA

Symbol	Parameter	Value	Unit
I OUtPut	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to 7.0	V

Recommended Operating Conditions

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage $\left(\mathbf{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC Electrical Characteristics (Over recommended operating conditions) ${ }^{3}$

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{iH}	Input HIGH Voltage	2.0			V		Control Inputs Only
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Control Inputs Only
V_{H}	Hysteresis		0.2		V		Control Inputs Only
V_{IK}	Input Clamp Diode Voltage		-0.7	-1.2	V	Min	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
Ron	Switch On Resistance ${ }^{5}$		5	7	Ω	Min	$\begin{gathered} \mathrm{V}_{\text {IN }}=0.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ON}}=30 \mathrm{~mA} \end{gathered}$
			10	15	Ω	Min	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.4 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ON}}=15 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {IN }}$	Input Leakage Current			1	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cC }}$
l_{oz}	Off State Current (HiZ)		0.001	1	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {off }}$	Power-off Disable			100	$\mu \mathrm{A}$	OV	$\begin{gathered} \mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{cc}} \end{gathered}$
Ios	Output Short Circuit Current ${ }^{4}$		100		mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$		6	10	pF		All Inputs
$\mathrm{C}_{\text {OUt }}$	Output Capacitance ${ }^{5}$		6	12	pF		All Inputs

Function Table

$\overline{\mathbf{B E}}_{1}$	$\overline{\mathbf{B E}}_{2}$	$\mathbf{B 0 - 4}$	B5-9	Function
H	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
L	H	$\mathrm{A} 0-4$	$\mathrm{Hi}-\mathrm{Z}$	Connect
H	L	$\mathrm{Hi}-\mathrm{Z}$	A5-9	Connect
L	L	A0-4	A5-9	Connect

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.
3. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in

Pin Description

Name	I/O	Function
$\mathrm{A} 0-9$	I / O	Bus A
$\mathrm{B} 0-9$	I / O	Bus B
$\overline{\mathrm{BE}}_{1}, \overline{\mathrm{BE}}_{2}$	I	Bus Switch Enable

order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
5. This parameter is guaranteed but not tested.
6. Measured by voltage drop between A and B pin at indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A, B) pins.

Power Supply Characteristics

Symbol	Parameter	Min	Typ 3	Max	Units	TEST Conditions ${ }^{7}$
I_{cc}	Quiescent Power Supply Current	-	-	1.5	mA	$\mathrm{~V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{Vcc}, \mathrm{f}=0$
$\Delta \mathrm{l}_{\mathrm{cc}}$	Power Supply Current/Input High					
$\mathrm{Q}_{\mathrm{ccd}}$	-	-	2.5	mA	$\mathrm{~V}_{\mathrm{cc}}=$MAX, Input $=3.4 \mathrm{~V}, \mathrm{f}=0$ Per control input	
I_{c}	Dynamic Power Supply Current per MHz					
Total Power Supply Current						

Notes:
7. For conditions shown as MIN or MAX use the appropriate values specified under DC specifications.
8. Per TTL-driven input ($\mathrm{V}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to Icc .
9. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant $A C$ or $D C$ currents as they transition. This parameter is not tested but is guaranteed by design.
10. Ic = I Quiescent + I Inputs + I Dynamic
$\mathrm{Ic}=\mathrm{Icc}+\Delta \mathrm{lccDhNt}+\mathrm{Occd}(\mathrm{fiNi})$
lcc = Quiescent Current
$\Delta \mathrm{lcc}=$ Power Supply Current for each TTL HIGH input ($\mathrm{Vi}=3.4 \mathrm{~V}$, control inputs only)
Dh = Duty Cycle for each TTL input that is HIGH (control inputs only).
$\mathrm{Nt}=$ Number of TTL inputs that are at DH (control inputs only).
$\mathrm{fi}=$ frequency that the inputs are toggled (control inputs only).
11. Note that activity on A and/or B inputs do not contribute to Ic if A and B inputs are between gnd and 7.0 V .

The switches merely connect and pass through activity on these pins. For example: if the control inputs are at $O V$ and the switches are on, Ic will be equal to Icc only regardless of activity on the A and B pins.

Figure 3. On Resistance vs Vin @ 4.75 Vcc

SWITCHING CHARACTERISTICS

Commercial $\mathrm{TA}=0^{\circ}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$. Military $\mathrm{TA}=-55^{\circ}$ to $125^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$.
Cload $=50 \mathrm{pF}$, Rload $=500 \Omega$, unless otherwise noted.

Symbol	Description	Note	COM'L		Military		Units
			Min. ${ }^{13}$	Max.	Min. ${ }^{1}$	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Data Propagation Delay Ai to Bi, Bi to Ai	14,15		0.25		0.25	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Switch Turn On Delay BEA, BEB to Ai, Bi	13	1.5	6.5	1.5	7.5	ns
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Switch Turn Off Delay $\mathrm{BEa}, \mathrm{BEB}$ to Ai, Bi	13,14	1.5	5.5	1.5	6.5	ns
$\left\|Q_{\text {ci }}\right\|$	Charge Injection, Typical	16,17		1.5		1.5	pC

Notes:

13. See Test Circuit and Waveforms. Minimums guaranteed but not tested.
14. This parameter is guaranteed by design but not tested.
15. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
16. Measured at switch turn off, A to C, load $=50 \mathrm{pF}$ in parallel with 10 meg scope probe, Vin at $\mathrm{A}=0.0$ volts.
17. Characterized parameter. Not 100% tested.

ORDERING INFORMATION

CYBUS	xxxx	x	x	x	
Temp. Class	Device type	Package	Temperature	Processing	
					MIL-STD-883, Class B
				l_{C}^{C}	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
					Plastic DIP CERDIP Small Outline IC QSOP
				\|3384	High Speed CMOS 10-bit Bus Switch 3.3/5.0 Volt Level Translator
				Hus S	

$$
0.6-3.3 V R_{\text {on }} \text { Test }
$$

* Includes Jig and Probe Capacitance

Figure 4. Test Load

Figure 5. Waveforms for Non-Inverting Functions

Figure 6. Propagation Delays from Rising-Edge Clock or Enable

APPLICATION INFORMATION

CYBUS3384 is a 10 channel bidirectional solid state bus switch with a "near zero" propagation delay.

The CYBUS3384 is organized into two groups of five N channel MOSFET's, each group has an independent control input for output enable (see Figure 7). Because the Nchannel MOSFET is physically symmetric, the device is naturally bidirectional and therefore each N -channel device pin can act as input or output.

The two enable inputs ($\overline{\mathrm{BE}}_{\overline{\mathrm{T}}}$ and $\overline{\mathrm{BE}}_{\overline{2}}$) sense TTL level signals and drive the gates of the N -channel MOSFET's to Vcc. With the gate at Vcc, the output voltage will follow the input voltage up to Vcc minus the threshold voltage. At this point the N-channel MOSFET begins to turn off rapidly increasing the effective resistance (Ron) such that further increases to input voltage no longer increase the output voltage (see Figure 8).

When either the input or output of the 3384 is near zero volts and the gate is at Vcc, the device isfully on, (low resistance) and available to pass large currents in either direction. In this condition, the 3384 inputs are directly connected to the outputs.

The 3384 provides no signal drive itself. As a result the rise and fall times of the 3384 outputs are determined by the device driving the 3384 inputs rather than the 3384 itself.

The propagation delay contributed by the 3384 is essentially zero when the N -channel gate is at Vcc.

When the device is unpowered, the 3384 draws no current from the I/O or control inputs, and there is no current path fromthe I/O or control pins to the power pins. There is no back power or current drain problems when the device is unpowered.

Figure 7. P74FCT3384

Figure 8. Vout vs Vin

Figure 9. System with CYBUS3384 as 5V TTL to 3V Converter

APPLICATION INFORMATION

The 3384 provides an ideal interface between 5 volt and 3.3 volt components. Because the 3384 provides no signal drive, the ICC demands are small, limited to AC switching of the N - channel gates, control circuitry and a minute amount of I/O leakage. Since the small current demands of the 3384, it is possible to lower the 3384 VCC from a standard 5.0 volt supply with a small inexpensive diode and provide a low current full bidirectional signal compatability between the older 5 volt logic family signals and the newer 3.3 volt logic family signals.

By adding a diode the 3384 VCC supply voltage can be shifted to 4.3 volts as shown in Figure 9 . 5 volt signals will now be limited to 3.3 volts as they pass through the 3384 . 3.3 volt signals will pass back through the 3384 unaltered and provide compatability with 5 volt TTL input requirements. Note that the conversion is bidirectional and is limited to 3.3 volts independent of which side is driven to 5 volts. The 3384 could convert 5 volt signais for use on a 3.3 volt bus or convert a 5 volt bus to signals compatable with 3.3 volt components.

Figure 10. Gate Input (Power ON)

Figure 11. Gate Input (Power OFF)

3.3V/5V Supply Operation

In certain system applicaitons, the CYBUS3384 must operate from either a 5 volt or 3.3 volt power supply, depending on the state of the system. If this occurs, the circuit shown in Figure 12 can be added to step the 3.3 V supply up to a nominal 5 volt level. The low-cost, high-efficiency Step Up regulator shown in the figure is available from Linear Technology, Maxim, and other suppliers. The diode arrangement will automatically select the active supply. Standard silicon diodes can be used because the CYBUS3384 Vcc minimum is specified at 4.0 V .

Low Power Bus Isolation

Modern battery-operated systems rely on internal power management schemes to disconnect power from subsystems not in use. Usually the subsystem bus input ESD protection circuits consist of a pair of clamp diodes to limit input voltage excursions to a maximum of $\mathrm{Vcc}+\mathrm{Vt}$ and -Vt (see Figure 10). Removing power from these circuits causes the Vcc ESD clamp diode to connect the dead circuit inputs to gnd, often significantly increasing bus loading and power dissipation (see Figure 11). The CYBUS3384 placed on the input of the load to be disconnected effectively prevents bus loading and its associated problems.

Figure 12. 3.3V/5V Supply Switch

High Speed Dual Port RAM

As shown in Figure 13, a high-speed, dual-port memory is implemented using a combination of commodity SRAM, a simple arbitration circuit, and the CYBUS3384. Processor 1 is the system host processor while Processor 2 is a dedicated peripheral processor (such as a DSP for acquisitioning and manipulating data). Either processor can own the SRAM by first reading the BUSY bit to determine if the SRAM is available. If so, the requesting processor takes control by writing the OWN bit (which redirects the bus through the CYBUS3384s and sets the BUSY bit notifying the other bus the SRAM is not available). Processor 1 owns the bus and may now access the SRAM as needed. When finished, Processor 1 resets the OWN bit releasing the SRAM. The SRAM access sequence is identical forProcessor2. Inthis application, the CYBUS3384 saves 10 ns compared to using an F244 address buffer and an F245 data bus transceiver. This, in turn, allows the use of a slower, more available SRAM, resulting in system cost and power savings.

Figure 13. High Speed Dual Port RAM

Selectable Termination Loads

In some applications, it is desirable to vary the characteristic termination impedance as the system configuration changes. This is a common problem in automatic test equipment applications. Because of their low ON resistance, miniature relays are often used to switch termination loads. A single CYBUS3384 can replace as many as 10 such relays resulting in faster switching operation, lower power, and significant cost savings

Fast Latch

Figures 14 and 15 show variations of a latch having a sub 1ns progagational delay time using the CYBUS3384 in combination with other components This circuit has the advantage of being four to ten times faster than an equivalent implementation using a 373 latch - and with no added noise. Figure 14 relies on the stray capacitance of the bus to maintain data when the CYBUS3384 opens. Assuming 50 pF stray capacitance at room temperature and a 1 microampere input leakage current, a 1 volt "droop" from the initial voltage level would take 50 microseconds. Figure 15 shows the addition of a physical capacitor if there is insufficient stray capacitance. Figure 16 shows an active bus termination capable of sustaining the programmed logic an indefinite period of time in the presence of Vcc.

Conclusion

The CYBUS3384 is a versatile, high-speed connect device that can solve a multitude of circuit connect problems. It is a compact, low-cost solution that offers improved timing margins and low-noise operation.

Figure 14. Latch Variation With Stray Capacitance

Figure 15. Latch Variation With Physical Capacitor

Figure 16. Active Bus Termination

Figure 1. Test Load
The 'FCT3384 allows direct connection of 3 V system busses and 5 V system busses with zero delay between them. The circuit used is shown in Figure 4 and requires only the 'FCT3384 and a single diode placed between the 5 V power supply and the Vcc pin on the 'FCT3384.

Switch Off

When the control input BEn is HIGH, the two sides of the switch are completely isolated. Irrespective of the Voc on the 'FCT3384, either side of the switch may be driven up to 7 V with minimal leakage occurring (typically $\ll 1 \mu \mathrm{~A}$) because there are no parastic diodes on the I/Os.

Switch On

When the control input $\overline{\mathrm{BE}}$ is low, the two sides of the switch are directly connected through the N channel transistor which will produce a very small (typically 0.25 ns) propagation delay through the 'FCT3384. This delay is capacitive load on the other side of the switch. (Note: the 'FCT3384 differs from conventional chips in that it has no output drivers so that whatever the Vcc on the 'FCT3384, the undriven side of the switch can never be higher than the driven side.)

In the circuit suggested, either side of the switch may be riven up to 7 V , but the voltage on the undriven side of the switch will not go above about 3.3 V . This behaviour can be represented by the diagram shown in Figure 5.

In the data sheet the actual behaviour of the device is given and the voltage on the undriven side of the switch is defined in terms of the voltage that must be applied across the N channel transistors "gate" and "source" terminals (Vgs) for the transistor to remain on. Typically this is about 1V. Since the transistor is totally symmetrical, either side A or side can be regarded as the "source." If the voltage on the undriven side attempts to go above the value necessary to maintain the Vgs, then the transistor begins to turn off and this is shown in the Ron vs Vin curve in the data sheet.

The gate voltage is about the same as the Vcc applied to the 'FCT3384. In this application, with the diode in the power supply line, the Vcc is about 4.3 V , so the voltage in the undriven side of the switch can never go above Vcc-Vgs -1V $=3.3 \mathrm{~V}$ regardless of the voltage on the driven side of the switch, as shown in Figure 6.

Figure 2. Waveform for A to B path

Figure 3. Propagation delays from bus enable

Figure 4. Example of 'FCT3384 circuit

Figure 5. Switch voltage control

General Information

FCT-T

FCT2-T (25 O Outputs)

Device Number

CY54/74FCT2240T
CY54/74FCT2244T
CY54/74FCT2245T
CY54/74FCT2257T
CY54/74FCT2373T
CY54/74FCT2573T
CY54/74FCT2374T
CY54/74FCT2574T
CY54/74FCT2541T
CY54/74FCT2543T
CY54/74FCT2646T
CY54/74FCT2648T
CY54/74FCT2652T
CY54/74FCT2827T

Description

8-Bit Inverting Buffer/Line Driver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-1
8-Bit Buffer/Line Driver with $\overline{\mathrm{OE}}$ and 25Ω Resistor . 3-1
8-Bit Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-6
Quad 2-Input Multiplexers with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-10
8-Bit Latch with $\overline{\mathrm{OE}}$ and 25Ω Resistor . 3-14
8-Bit Latch with $\overline{\mathrm{OE}}$, Flow-through Pinout and 25Ω Resistor 3-14
8-Bit Register with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-18
8-Bit Register with $\overline{\mathrm{OE}}$, Flow-through Pinout and 25Ω Resistor 3-18
8-Bit Buffer/Line Driver with $\overline{\mathrm{OE}}$, Flow-Through Pinout and 25Ω Resistor . . 3-23
8-Bit Latched Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-27
8-Bit Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-31
8-Bit Inverting Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-31
8-Bit Registered Transceiver with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-37
10-Bit Buffer with $\overline{\mathrm{OE}}$ and 25Ω Resistor 3-43

FEATURES

- Function and pinout compatible with the FCT and F Logic
- 25Ω Output series resistors to reduce transmission line reflection noise

■ FCT-C speed at 4.1 ns max. (Com'I), FCT2244T FCT-A speed at 4.8 ns max. (Com'I)

- TTL output level versions of equivalent FCT functions
- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- Fully compatible with TTL input and output logic levels
- 12mA Sink Current (Commercial), 12 mA (Mil) 15 mA Source Current (Commercial), 12mA (Mil)
- 3-State Outputs

DESCRIPTION

'FCT2240T and 'FCT2244T are octal buffers and line drivers that include on-chip 25Ω terminating resistors at each of the outputs, to minimize noise resulting from reflections or standing waves in high-performance applications. The on-chip resistors reduce overall board space and component count.

Designed to be employed as memory address drivers,
clock drivers, and bus-oriented transmitters/receivers, the devices provide speed and drive capabilities commensurate with their fastest bipolar logic counterparts while reducing overall power dissipation. The input and output voltage levels allow direct interface with TTL, NMOS and CMOS devices without the need for external components.

FUNCTIONAL BLOCK DIAGRAM and PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM and PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {output }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{IL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{5}$			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{oL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \hline \end{aligned}$
$\mathrm{R}_{\text {OUt }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{iN}}=\mathrm{V}_{\mathrm{cc}}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {OuT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Capacitance ${ }^{5}$ Output Capacitance ${ }^{5}$			$\begin{aligned} & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { MAX } \end{aligned}$	All inputs All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Short should not exceed one second. To minimize internal chip heating and more
accurately reflect operational values, use of high-speed test apparatus and/or sample and hold techniques are preferable. Otherwise prolonged shorting of a high output may raise chip temperature well above normal causeing invalid readings in other parameter tests. In any sequence of parameter tests, $l_{o s}$ tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\text {cC }}=\text { MAX, } V_{I N}=3.4 V^{6}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{7}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{cC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$V_{c C}=M A X,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{cC}}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}^{2} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}^{2}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{cC}} \text {, }$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$
		3.2	6.5^{8}	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}^{2} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		5.2	$14.5{ }^{8}$	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND}, \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{cC}},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\text { GND }$

TRUTH TABLES

'FCT2240T			
Inputs			'FCT2244T $\overline{\mathrm{OE}}_{1}$ $\overline{\mathrm{OE}}_{2}$ D L L L H L L H L H H X Z Inputs $\overline{\mathrm{OE}}_{1}$ OE_{2} D L L L L L L H H H H X Z l

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level, $\mathrm{L}=$ LOW Voltage Level, $\mathrm{X}=$ Don't Care, $\mathrm{Z}=$ High Impedance

Notes:

6. Per TTL driven input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$); all other inputs at V_{Cc} or GND.
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{c C}$ formula. These limits are guaranteed but not tested.
9. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$ $I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{c C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT2240T				'FCT2240AT				'FCT2240CT				Units	Fig No.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{10}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	1.5	9.0	1.5	8.0	1.5	5.1	1.5	4.8	-	-	1.5	4.1	ns	1,2
$\begin{aligned} & t_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	10.5	1.5	10.0	1.5	6.5	1.5	6.2	-	-	1.5	5.8	ns	1,
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	10.0	1.5	9.5	1.5	5.9	1.5	5.6	-	-	1.5	5.2	ns	8

AC CHARACTERISTICS

Symbol	Parameter	'FCT2244T				'FCT2244AT				'FCT2244CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{10}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	1.5	7.0	1.5	6.5	1.5	5.1	1.5	4.8	-	-	1.5	4.3	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	8.5	1.5	8.0	1.5	6.5	1.5	6.2	-	-	1.5	5.8	ns	1, 7,
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}\right.$	Output Disable Time	1.5	7.5	1.5	7.0	1.5	5.9	1.5	5.6	-	-	1.5	5.2	ns	8

10. Minimum limits are guaranteed but not tested on Propagation Delays.
*Refer to the 'Parameter Measurement Information' section in this book.
$A C$ Characteristics guraranteed with $C_{L}=50 p F$.

ORDERING INFORMATION

[^5]
CY54/74FCT2245T 8-BIT TRANSCEIVER

FEATURES

```
    Function and pinout compatible with
    FCT and F Logic
- 25\Omega Output Series resistors to reduce
    transmission line reflection noise
FCT-C speed at 4.1ns max. (Commercial)
    FCT-A speed at 4.6ns max. (Commercial)
- Edge-rate Control Circuitry for Significantly
    Improved Noise Characteristics
```

- Power-off disable feature
- Fully Compatible with TTL Input and Output Logic Levels
- 12mA Sink Current (Com'l), 12mA (Mil) 15mA Source Current (Com'l), 12mA (Mil)

3-State Outputs

DESCRIPTION

The 'FCT2245T contains eight noninverting, bidirectional buffers with 3 -state outputs intended for bus oriented applications. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. For this purpose, the 'FCT2245T can be used in an existing design to replace the 'FCT245T. For the 'FCT2245T current sinking capability is 12mA attheA\&Bports.

The Transmit/Receive (T / \bar{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (Active HIGH) enables data from A ports to B ports; receive (Active LOW) enables data from B ports to A ports. The output enable ($\overline{\mathrm{OE}}$), input, when HIGH , disables both the A and B ports by putting them in a high Z condition.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Symbol	Parameter	Value	Unit
I OUTPUT	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}_{\text {c }}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{5}$			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {in }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {out }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {is }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (Except I/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$
I_{H}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (1/O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the values set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX, } \mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{6}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{7}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$, Outputs Open, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{9}$	2.0	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.3	5.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $V_{I N}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		3.5	6.5^{8}	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{T} / \overline{\mathrm{R}}=\overline{\mathrm{OE}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$
		5.5	14.5^{8}	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $T / \bar{R}=\overline{O E}=G N D$ and $V_{\text {IN }}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=G N D$

Notes:

6. Per TTL driven input $\left(\mathrm{V}_{1 N}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cC} or GND.
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{c c}$ formula. These values are guaranteed but not tested.
9. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{l}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLE

Inputs		Output
$\overline{\mathbf{O E}}$	$\mathrm{T} / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High Z State

[^6]
AC CHARACTERISTICS

Symbol	Parameter	'FCT2245T				'FCT2245AT				'FCT2245CT		UNITS	Fig. No.*
		MIL		COM'L		MIL		COM'L		COM'L			
		Min. ${ }^{10}$	Max.										
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	1.5	7.5	1.5	7.0	1.5	4.9	1.5	4.6	1.5	4.1	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	10.0	1.5	9.5	1.5	6.5	1.5	6.2	1.5	5.8	ns	1, 7
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	1.5	10.0	1.5	7.5	1.5	6.0	1.5	5.0	1.5	4.5	ns	8

Note:

10. Minimum limits are guaranteed but not tested on Propagation Delays.
$A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$.

* Refer to the 'Parameter Measurement Information' section of this book.

ORDERING INFORMATION

FEATURES

- Function and pinout compatible with the FCT and F logic
- 25Ω Output series resistors to reduce transmission line reflection noise.
- FCT-C speed at 4.3 ns max. (Commercial) FCT-A speed at 5.0 ns max. (Commercial)

■ TTL output level versions of equivalent FCT functions

- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- Fully compatible with TTL input and output logic levels
- 12mA Sink Current (Commercial), 12mA (Mil) 15 mA Source Current (Commercial), 12mA (Mil)
- 3-State Outputs

DESCRIPTION

The 'FCT2257T has four identical 2-input multiplexers with 3-state outputs that select 4 bits of data from two sources under control of a common Data Select input (S). The I_{0} inputs are selected when the Select input is LOW and the I_{1} inputs are selected when the select input is HIGH. Data appears at the outputintruenoninvertedformforthe'FCT2257T. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The 'FCT2257T can be used to replace the 'FCT257T to reduce noise in an existing design.

The 'FCT2257T is a logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the select input. Outputs are forced to a high-impedance "OFF" state when the Output Enable input $(\overline{\mathrm{OE}})$ is HIGH .

All but one device must be in the high-impedance state to avoid currents exceeding the maximum ratings if outputs are tied together. Design of the output enable signals must ensure that there is no overlap when outputs of 3-state devices are tied together.

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage $\left(\mathbf{V}_{\mathrm{cc}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{1+}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { MIN } \\ \text { MIN } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {OUT }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { MIN } \\ \text { MIN } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUt }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {out }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{I} \mathrm{~S}} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond thevalues set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V}^{6}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{\text {² }}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cC}}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Input Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$\begin{aligned} & \mathrm{V}_{\text {cC }}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { One Input Toggling at } f_{1}=10 \mathrm{MHz}, \\ & \mathrm{OE}=\mathrm{GND} \text {, } \\ & \mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \\ & \hline \end{aligned}$
		1.7	4.0^{8}	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Four Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND},$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.7	8.0^{8}	mA	$V_{C C}=M A X,$ 50% Duty Cycle, Outputs Open, Four Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

FUNCTION TABLE

Inputs				Output
$\overline{\mathrm{OE}}$	\mathbf{S}	\mathbf{I}_{0}	$\mathbf{I}_{\mathbf{1}}$	\mathbf{Y}
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = High voltage level
L = Low voltage level
X = Don't care
$Z=$ High impedance (OFF) state

Notes:

6. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
9. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels

DEFINITION OF FUNCTIONAL TERMS

Pins	Description
$\mathrm{I}_{\mathrm{on}}-\mathrm{I}_{\mathrm{in}}$	Data inputs
S	Common select input
$\overline{\mathrm{OE}}$	Enable input (Active-Low)
$\mathrm{Y}_{\mathrm{a}}-\mathrm{Y}_{\mathrm{d}}$	Data outputs 'FCT2257T

AC CHARACTERISTICS

Sym.	Parameter	'FCT2257T				'FCT2257AT				'FCT2257CT		Units	Fig No.*
		MIL		COM'L		MIL		COM'L		COM'L			
		Min. ${ }^{10}$	Max.										
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay $I_{n a}, I_{n b} \text { to } Y_{n}$	1.5	7.0	1.5	6.0	1.5	5.8	1.5	5.0	1.5	4.3	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop Delay S to O_{n}	1.5	12.0	1.5	10.5	1.5	8.1	1.5	7.0	1.5	5.2	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time to High or Low	1.5	10.0	1.5	8.5	1.5	8.0	1.5	7.0	1.5	6.0	ns	1,7, 8 1,7
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time from High or Low	1.5	8.0	1.5	6.0	1.5	5.8	1.5	5.5	1.5	5.0	ns	1,7, 8

Note

10. Minimum limits are guaranteed but not tested on propagation delays.

* AC characteristics guaranteed with $C_{L}=50 \mathrm{pF}$.
*Refer to the 'Parameter Measurement Information' section of this book.

ORDERING INFORMATION

FEATURES

- Function and pinout compatible with the fastest bipolar logic
- 25Ω output series resistors to reduce transmission line reflection noise
- FCT-C speed at 4.7 ns max. (Commercial) FCT-A speed at 5.2 ns max. (Commercial)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of equivalent FH 우 functions
- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- Matched rise and fall times
- Fully compatible with TTL input and output logic levels
- 12mA sink current (Commercial), 12mA (Mil) 15mA source current (Commercial), 12mA (Mil)

DESCRIPTION

The 'FCT2373T and 'FCT2573T are 8-bit, high-speed CMOS TTL-compatible buffered latches with 3-state outputs that are ideal for driving high-capacitance loads, such as memory and address buffers. On-chip 25Ω termination resistors have been added to the outputs to reduce system noise caused by reflections. 'FCT2373T can be used to replace 'FCT373, and 'FCT2573T to replace 'FCT573 to reduce noise in an existing design. 'FCT2573T is identical to 'FCT2373T except that all inputs
are on one side of the package and the outputs on the other side.

When latch enable (LE) is high, the flip flops appear transparent to the data. Data that meets the required setup times are latched when LE transitions from HIGH to LOW. Data appears on the bus when the output enable $(\overline{\mathrm{OE}})$ is LOW. When output enable is HIGH, the bus output is in the high impedance state. In this mode, data can still be entered into the latches.

LOGIC SYMBOL

PIN CONFIGURATIONS

LOGIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {OUT }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 28 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{ol}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{oL}}=12 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IV }}=2.7 \mathrm{~V}$
ILI	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {Out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State I ${ }_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUt }}=0.5 \mathrm{~V}$
$\mathrm{l}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			6	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{5}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IS }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $\mathrm{I}_{\text {os }}$ tests should be performed last.
5. This parameter is guaranteed but not tested.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathbf{V}_{\mathbf{c c}}\right)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

FUNCTION TABLES (Each Latch)

Inputs			Outputs 'FCT2373T/FCT2573T
$\overline{\mathrm{OE}}$	LE	D	\mathbf{O}_{n}
L	H	H	H
L	H	L	L
L	L	X	Q_{0}
H	X	X	Z

$$
\begin{array}{ll}
H=H I G H \text { Voltage Level } & Z=\text { HIGH Impedance } \\
L=\text { LOW Voltage Level } & Q_{0}=\text { previous state of flip flops }\left(Q_{n-1}\right) \\
X=\text { Don't Care } &
\end{array}
$$

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\text {cC }}=M A X, V_{\text {IN }}=3.4 V^{6}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{7}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$\begin{aligned} & V_{\text {cC }}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { One Bit Toggling at } f_{1}=10 \mathrm{MHz}, \\ & \hline \mathrm{OE}=G N D, L E=V_{\mathrm{cC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=G N D \end{aligned}$
		3.2	6.5^{8}	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$,
		5.2	$14.5{ }^{8}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}=\mathrm{GND}, \mathrm{LE}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

6. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at $\mathrm{V}_{C C}$ or GND.
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{C C}$ formula. These limits are guaranteed but not tested.
9. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cC}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{c C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS ('FCT2373T - 'FCT2573T)

Sym.	Parameter	$\begin{aligned} & \text { 'FCT2373T } \\ & \text { 'FCT2573T } \end{aligned}$				$\begin{aligned} & \text { 'FCT2373AT } \\ & \text { 'FCT2573AT } \end{aligned}$				$\begin{aligned} & \text { 'FCT2373CT } \\ & \text { 'FCT2573CT } \end{aligned}$				Units	Fig. No^{*}.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{10}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Prop Delay $D_{n} \text { to } O_{n}$	1.5	8.5	1.5	8.0	1.5	5.6	1.5	5.2	1.5	5.1	1.5	4.7	ns	1, 3
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}\right.$	Prop Delay LE to O_{n}	2.0	14.0	2.0	13.0	2.0	9.8	2.0	8.5	2.0	8.0	2.0	6.9	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	12.5	1.5	11.0	1.5	7.5	1.5	6.5	1.5	6.3	1.5	6.2	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	8.5	1.5	7.0	1.5	6.5	1.5	5.5	1.5	5.9	1.5	5.0	ns	8
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, High to Low D_{n} to LE	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time, High to Low D_{n} to LE	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	9
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width High	6.0	-	6.0	-	6.0	-	5.0	-	6.0	-	5.0	-	ns	5

Notes:

10. Minimum limits are guaranteed but not tested on Propagation Delays.
*Refer to the 'Parameter Measurement Information' section in this book. AC Characteristics guaranteed with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

ORDERING INFORMATION

FEATURES

- Function and pin compatible with FCT \& F logic
- 25Ω output series resistors to reduce transmission line reflection noise
- FCT-C speed at 5.2 ns max. (Commercial) FCT-A speed at 6.5 ns max. (Commercial)
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA sink current (Commercial), 12 mA (Mil) 15 mA source current (Commercial), 12 mA (Mil)
- Edge Triggered D Type Inputs
■ 250 MHz Typical Toggle Rate
E Buffered Positive Edge Triggered Clock

DESCRIPTION

The 'FCT2374T and 'FCT2574T are high-speed low power octal D-type flip-flops featuring separate D-type inputs for each flip-flop. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The 'FCT2374T and 'FCT2574T can be used to replace the 'FCT374T and 'FCT574T to reduce noise in an existing design. Both devices have 3 -state outputs for bus oriented applications. A buffered clock (CP) and output enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The 'FCT2574T is
identical to 'FCT2374T except that all the outputs are on one side of the package and inputs on the other side. The flip-flops contained in the 'FCT2374T and 'FCT2534T will store the state of their individual D inputs that meet the setup and hold time requirements on the low-to-high clock (CP) transition. When $\overline{\mathrm{OE}}$ is LOW, the contents of the flipflops are available at the outputs. When $\overline{\mathrm{OE}}$ is HIGH, the outputs will be in the high-impedance state. The state of output enable does not affect the state of the flip-flops.

LOGIC DIAGRAM

LOGIC SYMBOL

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W

Symbol	Parameter	Value	Unit
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V.cc $)$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	\mathbf{V}_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{5}$			0.2		V		All Inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {out }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OZH}}$	Off State I ${ }_{\text {out }}$ HIGH-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozL }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {our }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUt }}$	Output Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, thése limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $\mathrm{V}_{c c}$ or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{8}$	Max	Units	Conditions
$\Delta \mathrm{l}_{\mathrm{cc}}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\text {CC }}=\text { MAX, } V_{\text {IN }}=3.4 V^{9}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{10}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Bit Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{12}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{iN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}}=\mathrm{GND} \end{aligned}$
		4.0	7.8^{11}	mA	$V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $$
		6.2	$16.8{ }^{11}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \widetilde{\mathrm{OE}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathbb{N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}}=\mathrm{GND} \end{aligned}$

TRUTH TABLE

Inputs		Outputs 'FCT2374T-'FCT2574T	
D_{n}	CP	$\overline{\mathrm{OE}}$	O_{n}
H	\ulcorner	L	H
L	ऽ	L	L
X	X	H	Z

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{J}=$ LOW-to-HIGH clock transition
$\mathrm{Z}=$ HIGH Impedance

Notes:

8. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
9. Per TTL driven input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{CC} or GND.
10. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
11. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
12. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{c C}+\Delta I_{C C} D_{H} N_{T}+I_{c C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta l_{c \mathrm{C}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Sym.	Parameter	'FCT2374T-'FCT2574T				'FCT2374AT-'FCT2574AT				'FCT2374CT-'FCT2574CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{13}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Prop. Delay Clock to Output	2.0	11.0	2.0	10.0	2.0	7.2	2.0	6.5	2.0	6.0	2.0	5.2	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	1.5	14.0	1.5	12.5	1.5	7.5	1.5	6.5	1.5	6.9	1.5	6.2	ns	1,7,8
$\mathrm{t}_{\mathrm{pHZ}} \mathrm{t}_{\mathrm{PLZ}}$	Output Disable Time	1.5	8.0	1.5	8.0	1.5	6.5	1.5	5.5	1.5	6.5	1.5	5.0	ns	1,7,8

AC CHARACTERISTICS

Sym.	Parameter	'FCT2374T-'FCT2574T				'FCT2374AT-'FCT2574AT				'FCT2374CT-'FCT2574CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{13}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, High or Low D_{n} to CP	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time, High or Low D_{n} to CP	1.5	-	1.5	-	1.5	-	1.5	-	1.0	-	1.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clk Pulse Width ${ }^{14}$ High or Low	7.0	-	7.0	-	6.0	-	5.0	-	5.0	-	4.0	-	ns	5

Notes:

13. Minimum limits are guaranteed but not tested on Propagation Delays.
14. With one data channel toggling, $t_{w}(L)=t_{w}(H)=4.0 \mathrm{~ns}$ and $t_{r}=t_{f}=1.0 \mathrm{~ns}$.
*Refer to the 'Parameter Measurement Information' section of this book. AC Characteristics guaranteed with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ as shown in Figure 1 .

ORDERING INFORMATION

FEATURES

- Function and pinout compatible with the FCT and F Logic
- FCT-C speed at 4.1 ns max. (Com'l) FCT-A speed at 4.8 ns max. (Com'l)

■ 25Ω output series to reduce transmission line reflection noise

- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA Sink Current (Com'), 12 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- 3-State Outputs

DESCRIPTION

The 'FCT2541T is an octal buffer and line driver designed to be employed as a memory address driver, clock driver, and bus-oriented transmitter/receiver. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The 'FCT2541T can be used to replace the 'FCT541T to reduce noise in an
existing design. The speed of the 'FCT2541T is comparable to bipolar logic counterparts while reducing power dissipation. The input and output voltage levels allow direct interface with TTL, NMOS, and CMOS devices without external components.

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage ($\mathbf{V c c}_{\mathbf{c c}}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {L }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{iN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {OUT }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{1 L}$	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {out }}$ HIGH-Level Output Current				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State I ${ }_{\text {Out }}$ LOW-Level Output Current				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{\text {OUT }}$	Output Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
l_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{iN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{os} tests should be performed last.
5 . This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{6}, \\ & \mathrm{f}_{1}=0, \text { Outputs Oppen } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{8}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{c C}=$ MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}_{\mathrm{A}}=\overline{\mathrm{OE}}_{\mathrm{B}}=\mathrm{GND} \text {, or } \overline{\mathrm{OE}}_{\mathrm{A}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}$ $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & {\text { One Bit Toggling at } f_{1}=10 \mathrm{MHz},}_{\mathrm{OE}_{\mathrm{A}}=\mathrm{OE}_{\mathrm{B}}=\mathrm{GND}, \text { or } \mathrm{OE}_{\mathrm{A}}=\mathrm{GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.0	5.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { One Bit Toggling at } f_{1}=10 \mathrm{MHz}, \\ & \mathrm{OE}_{\mathrm{A}}=\mathrm{OE}_{\mathrm{B}}=\mathrm{GND}, \text { or } O E_{A}=\mathrm{GND}, O E_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$
		3.2	6.5^{8}	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & {\text { Eight Bits } \text { Toggling at }^{2}=2.5 \mathrm{MHz},}_{\mathrm{OE}_{\mathrm{A}}=\mathrm{OE}_{\mathrm{B}}=\mathrm{GND}, \text { or } \mathrm{OE}}^{\mathrm{A}} \mathrm{=GND}, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		5.2	$14.5{ }^{8}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{OE}_{\mathrm{A}}=\overline{\mathrm{OE}}_{\mathrm{B}}=\mathrm{GND}, \text { or } \mathrm{OE}_{\mathrm{A}}=G N D, \mathrm{OE}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

TRUTH TABLES

'FCT2541T			
Inputs			Output
$\overline{\mathrm{OE}}_{\mathrm{A}}$	OE_{B}	D	
L	L	L	L
L	L	H	H
H	H	X	Z

[^7]
Notes:

6. Per TTL driven input $\left(\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.
9. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPuts }}+I_{\text {dYNamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta l_{c C}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{\text {ccD }}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS (CY54/74FCT2541T)

Symbol	Parameter	'FCT2541T				'FCT2541AT				'FCT2541CT				Units	$\begin{aligned} & \text { Fig } \\ & \text { No. } \end{aligned}$
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min.1	Max.	Min.11	Max.	Min.1	Max.	Min. ${ }^{11}$	Max.	Min. ${ }^{11}$	Max	Min. ${ }^{11}$	Max.		
$\left\lvert\, \begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}\right.$	Propagation Delay Data to Output	1.5	9.0	1.5	8.0	1.5	5.1	1.5	4.8	1.5	4.6	1.5	4.1	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pzLL}} \end{aligned}$	Output Enable Time	1.5	10.5	1.5	10.0	1.5	6.5	1.5	6.2	1.5	6.5	1.5	5.8	ns	1, 7,
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	1.5	10.0	1.5	9.5	1.5	5.9	1.5	5.6	1.5	5.7	1.5	5.2	ns	8

11. Minimum limits are guaranteed but not tested on propagation delays.
*Refer to the 'Parameter Measurement Information' section of this book. AC characteristics guaranteed with $C_{L}=50 \mathrm{pF}$.

ORDERING INFORMATION

CY54/74FCT2543T 8-BIT LATCHED TRANSCEIVER

FEATURES

- Function and Pinout Compatible with the FCT and F Logic
- FCT-C speed at 5.3 ns max. (Com'l) FCT-A speed at 6.5ns max. (Com'l) •
- R25 Ω output series resistors to reduce transmission line reflection noise
- Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA Sink Current (Com'l), 12 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- Separate Controls for Data Flow in Each Direction
- Back to Back Latches for Storage

DESCRIPTION

The 'FCT2543T Octal Registered Transceiver contains two sets of eight D-type latches. Separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}$) and Output Enable ($\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$) controls permit each latch set to have independent control of inputting and outputting in either direction of data flow. For data flow from A to B, for example, the A-to-B Enable ($\overline{\mathrm{CEAB}}$) input must be LOW to enter data from A0-A7 or to take data from $B 0-B 7$, as indicated in the truth table. With $\overline{C E A B}$ LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transpar-
ent; a subsequent LOW-to-HIGH transition of the $\overline{\text { LEAB }}$ signal puts the A latches in storage mode and their output no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the 3 -state B output buffers are active and reflect data present at the output of the A latches. Control of data from B to A is similar, but uses $\overline{C E A B}, \overline{L E A B}$ and $\overline{O E A B}$ inputs. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The 'FCT2543T can be used to replace the 'FCT543T to reduce noise in an existing design.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN DESCRIPTIONS

Pin Name	Description
$\overline{\mathrm{OEAB}}$	A-to-B Output Enable Input (Active LOW)
$\overline{\mathrm{OEBA}}$	B-to-A Output Enable Input (Active LOW)
$\overline{\mathrm{CEAB}}$	A-to-B Enable Input (Active LOW)
$\overline{\mathrm{CEBA}}$	B-to-A Enable Input (Active LOW)
$\overline{\mathrm{LEAB}}$	A-to-B Latch Enable Input (Active LOW)
$\overline{\mathrm{LEBA}}$	B-to-A Latch Enable Input (Active LOW)
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or B-to-A 3-State Outputs
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or A-to-B 3-State Outputs

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Sym	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {Out }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage ($\mathbf{V}_{\mathbf{c c}} \mathbf{)}$	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{iH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis ${ }^{5}$			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {OUT }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$
I_{H}	Input HIGH Current	Except I/O Pins			5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
		I/O Pins			15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {in }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current	Except I/O Pins			-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
		I/O Pins			-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {OUT }}$ HIGH-Level Output Current				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {OuT }}$ LOW-Level Output Current				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
C_{110}	I/O Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either $V_{C C}$ or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short
should not exceed one second. The use of high speed test apparatus and/ or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ. ${ }^{6}$	Max.	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\text {cC }}=\text { MAX, } \mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{7}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{8}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, $\overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=$ Low, Outputs Open, $\overline{\mathrm{CEAB}}=$ High, $V_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {iN }} \geq \mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{10}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=\text { Low }$ 50% Duty Cycle, Outputs Open, $\overline{\text { CEBA }}=$ High One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & f_{0}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=$ Low 50% Duty Cycle, Outputs Open, CEBA $=$ High One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & f_{0}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}}=\mathrm{GND} \end{aligned}$
		7.0	$12.8{ }^{9}$	mA	$V_{c C}=M A X, f_{0}=10 \mathrm{MHz}, \overline{C E A B}+\overline{\mathrm{OEAB}}=$ Low 50% Duty Cycle, Outputs Open, $\overline{\text { CEBA }}=$ High Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{f}_{0}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz},$ $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		9.2	$21.8{ }^{9}$	mA	$V_{c C}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \overline{\mathrm{CEAB}}+\overline{\mathrm{OEAB}}=\text { Low }$ 50% Duty Cycle, Outputs Open, $\overline{\text { CEBA }}=$ High Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & f_{0}=\overline{\mathrm{LEAB}}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathbb{N}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}}=\mathrm{GND} \end{aligned}$

Notes:

6. Typical values are at $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
7. Per TTL driven input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$; all other inputs at $V_{c c}$ or GND.
8. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
9. Values for these conditions are examples of the $I_{c c}$ formula. These limits are guaranteed but not tested.
10. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c C}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$\mathrm{N}_{\mathrm{T}}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

TRUTH TABLE FOR A-TO-B

(Symmetric with B-to-A)

Inputs			Latch Status	Outputs 'FCT2543T
$\overline{\text { CEAB }}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A-TO-B	B0-B7
H	-	-	Storing	High Z
-	H	-	Storing	-
-	-	H	-	High Z
L	L	L	Transparent	Current A Inputs
L	H	L	Storing	Previous A Inputs

[^8]AC CHARACTERISTICS

Sym.	Parameter	'FCT2543T				'FCT2543AT				'FCT2543CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{11}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	2.0	10.0	2.5	8.5	2.5	7.5	2.5	6.5	2.5	6.1	2.5	5.5	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation Delay $\begin{aligned} & \text { LEBA to } A_{n} \\ & \text { LEAB to } B_{n} \end{aligned}$	2.5	14.0	2.5	12.5	2.5	9.0	2.5	8.0	2.5	8.0	2.5	7.0	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}	2.0	14.0	2.0	12.0	2.0	10.0	2.0	9.0	2.0	9.0	2.0	8.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\text { OEBA }}$ or $\overline{O E A B}$ to A_{n} or B_{n} \qquad $\overline{\text { CEBA }}$ or $\overline{\text { CEAB }}$ to A_{n} or B_{n}	2.0	13.0	2.0	9.0	2.0	8.5	2.0	7.5	2.0	7.5	2.0	6.5	ns	1,7,8

AC OPERATING REQUIREMENTS

Sym.	Parameter	'FCT2543T				'FCT2543AT				'FCT2543CT				Units	Fig. No.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{11}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up Time HIGH or LOW A_{o} or B_{n} to $\overline{\text { LEBA }}{ }^{n} \overline{\text { LEAB }}$	3.0	-	3.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	9
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW A_{n} or B_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	9
$t_{\text {w }}$	$\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$ Pulse Width LOW	5.0	-	5.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	6

Note:

11. Minimum limits are guaranteed on Propagation Delays.
*Refer to the 'Parameter Measurement Information' section of this book.
ORDERING INFORMATION

FEATURES

- Function and Pinout Compatible with the FCT and F Logic

- FCT-C speed at 5.4 ns max. (Commercial) FCT-A speed at 6.3 ns max. (Commercial)
- R25 Ω output series resistors to reduce transmission line reflection noise
- Reduced $\mathrm{V}_{\text {OH }}$ (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA Sink Current (Com'l and Mil) 15 mA Source Current (Com'I and Mil)
- Independent Register for A and B Buses
- 3-State Output

DESCRIPTION

The 'FCT2646T and 'FCT2648T consist of a bus tranceiver circuit with 3-state, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Enable Control \bar{G} and direction pins are provided to control the transceiver function. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections so that the 'FCT2646T and the 'FCT2648 can be used to
replace the 'FCT646T and the 'FCT648, respectively, in an existing design.
In transceiver mode, data present at the high impedance port may be stored in either A or B register, or in both. Select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus receives data when enable control $\overline{\mathrm{G}}$ is Active LOW. In isolation mode (enable Control $\overline{\mathrm{G}} \mathrm{HIGH}$), Adatamaybestored in the B register and/or B data may be stored in the A register.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN DESCRIPTION

Pin Names	Description
$A_{1}-A_{8}$	Data Register A Inputs Data Register B Outputs
$B_{1}-B_{8}$	Data Register B Inputs Data Register A Outputs
CPAB, CPBA	Clock Puise Inputs
SAB, SBA	Output Data Source Select Inputs
DIR, \bar{G}	Output Enable Inputs

LOGIC SYMBOL

REAL-TIME TRANSFER BUS ATO BUSB

TRANSFER STORED
DATA TO A AND/OR B

Note: Cannot transfer data to A bus and B bus simultaneously.

FUNCTION TABLE

Inputs						Data I/O ${ }^{1}$		Operation or Function	
$\overline{\mathbf{G}}$	DIR	CPAB	CPBA	SAB	SBA	A_{1} thru A_{8}	B_{1} thru B_{8}	'FCT2646T	'FCT2648T
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	H or L ᄃ	H or L「	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & X \\ & \hline \end{aligned}$	Input	Input	Isolation Store A and B Data	Isolation Store A and B Data
L	L	$\begin{aligned} & x \\ & x \end{aligned}$	X H or L	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus	Real Time \bar{B} Data to A Bus Stored \bar{B} Data to A Bus
L L	H H	x H or L	X X	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus	Real Time $\overline{\mathrm{A}}$ Data to B Bus Stored \bar{A} Data to B Bus

Notes:

Notes:

1. The data output functions may be enabled or disabled by various signals at the $\overline{\mathrm{G}}$ or DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

ABSOLUTE MAXIMUM RATINGS ${ }^{3,4}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{5}$	Max	Units	\mathbf{V}_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LL }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis 3			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {OH }}$	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {OUt }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (Except l/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
I_{H}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
I_{1}	Input LOW Current (I/O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{6}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{7}$			6	10	pF	MAX	All inputs
C_{10}	I/O Capacitance ${ }^{7}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

3. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
4. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{Cc} or ground.
5. Typicalvalues are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
6. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
7. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & V_{\text {CC }}=M A X, V_{I N}=3.4 V^{8}, \\ & f_{1}=0, \text { Outputs Open } \end{aligned}$
$I_{C C D}$	Dynamic Power Supply Current ${ }^{9}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50\% Duty Cycle, Outputs Open, $\begin{aligned} & \overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{~V}_{\text {IN }} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{1 N} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
I_{c}	Total Power Supply Current ${ }^{11}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{f}_{\mathrm{o}}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\mathrm{GBA}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		2.2	6.0	mA	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { One Bit Toggling at } f_{1}=5 \mathrm{MHz}, \\ & \overline{\mathrm{G}}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\mathrm{GBA}=\mathrm{GND}, \\ & \mathrm{~V}_{\text {IN }}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND} \end{aligned}$
		7.0	$12.8{ }^{10}$	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { Eight Bits Toggling at } f_{1}=5 \mathrm{MHz}, \\ & \hline \mathrm{G}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		9.2	$21.8{ }^{10}$	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz}, \\ & 50 \% \text { Duty Cycle, Outputs Open, } \\ & \text { Eight Bits Toggling at } \mathrm{f}_{1}=5 \mathrm{MHz}, \\ & \mathrm{G}=\mathrm{DIR}=\mathrm{GND}, \text { or } \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$

Notes:

8. Per TTL driven input $\left(\mathrm{V}_{\mathbb{N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND.
9. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
10. Values for these conditions are examples of the $I_{C C}$ formula. These limits are guaranteed but not tested.
11. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {Inputs }}+I_{\text {dYNamic }}$
$I_{C}=I_{C C}+\Delta I_{C C} D_{H} N_{T}+I_{C C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c C}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input $\left(\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$f_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$f_{1}=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT2646T/2648T				'FCT2646AT/2648AT				'FCT2646CT/2648CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{12}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ${ }^{13}$ Bus to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	6.0	1.5	5.4	ns	1,3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time Enable to Bus and DIR to A or B	2.0	15.0	2.0	14.0	2.0	10.5	2.0	9.8	1.5	8.9	1.5	7.8	ns	1, 7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time \bar{G} to Bus and DIR to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	7.7	1.5	6.3	ns	1, 7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	2.0	10.0	2.0	9.0	2.0	7.0	2.0	6.3	1.5	6.3	1.5	5.7	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHiL }} \end{aligned}$	Propagation Delay SBA or SAB to A or B	2.0	12.0	2.0	11.0	2.0	8.4	2.0	7.7	1.5	7.0	1.5	6.2	ns	1,5

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT2646T/2648T				'FCT2646AT/2648AT				'FCT2646CT/2648CT				Units	Fig. No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{12}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Bus to Clock	4.5	-	4.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{t}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW Bus to Clock	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	6.0	-	6.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	5

Note:

12. Minimum limits are guaranteed but not tested on Propagation Delays.
13. $A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
*Refer to the 'Parameter Measurement Information' section of this book.

ORDERING INFORMATION

Commercia
Military Temperature MIL-STD-883, Class B

Plastic DIP
CERDIP
Small Outline IC
Leadless Chip Carrier
QSOP
Non-inverting Octal Transceiver/Register
Fast Non-inverting Octal Transceiver/Register Ultra Fast Non-inverting Octal Transceiver/Register

Inverting Octal Transceiver/Register
Fast Inverting Octal Transceiver/Register Ultra Fast Inverting Octal Transceiver/Register Commercial Military

FEATURES

- Function and Drive Compatible with the FCT and F Logic

- FCT-C speed at 5.4 ns max. (Com'I) FCT-A speed at 6.3ns max. (Com'l)
- R25 Ω output series resistors to reduce transmission line reflection noise
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA Sink Current (Com'I), 12 mA (Mil) 15 mA Source Current (Com'I), 12 mA (Mil)
- Independent Register for A and B Buses
- Multiplexed Real-Time and Stored Data Transfer
- Bidirectional Bus Transceiver and Registers

DESCRIPTION

The 'FCT2652T consists of bus tranciever circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal storage registers. GAB and $\overline{\mathrm{GBA}}$ control pins are provided to control the transceiver functions. SAB and SBA control pins are provided to select either real-time or stored data transfer.

On-chip termination resistors are added to the outputs to reduce system noise caused by reflections. The 'FCT2652T can replace the 'FCT652T to reduce noise in an existing design.

The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during transition
between stored and real-time data. A low input level selects real-time data and a high selects stored data.

Data on the A or B data bus, or both, can be stored in internal D flip-flops by low-to-high transitions at the appropriate clock pins (CPAB or CPBA), regardless of the select or enable control pins. By simultaneously enabling GAB and $\overline{\text { GBA }}$ when SAB and SBA are in real-time transfer mode, it is possible to store data without using internal D-type flip-flops. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Potential to Ground	-0.5 to +7.0	V
P_{T}			
$\mathrm{I}_{\text {OUTPUT }}$	Power Dissipation Current Applied to Output	0.5	W
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (\mathbf{V}_{cc})	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
V_{LL}	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis 3			0.2		V		All inputs
V_{IK}	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & \hline 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {out }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	MIN MIN	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
I_{1}	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{cc}}$
I_{H}	Input HIGH Current (Except I/O Pins)				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {iN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {L }}$	Input LOW Current (Except l/O Pins)				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
I_{H}	Input HIGH Current (I/O Pins only)				15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current (//O Pins only)				-15	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			5	10	pF	MAX	All inputs
$\mathrm{C}_{1 / 0}$	I/O Capacitance ${ }^{5}$			9	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $I_{\text {os }}$ tests should be performed last.
5. This parameter is guaranteed but not tested.

REAL－TIME TRANSFER BUS A TO BUS B

TRANSFER STORED
DRANSFER AND／OR B

Note：Cannot transfer data to A bus and B bus simultaneously．

FUNCTION TABLES

Inputs						Data I／O		Operation or Function
GAB	$\overline{\text { GBA }}$	CPAB	CPBA	SAB	SBA	A_{1} thru A_{8}	B_{1} thru B_{8}	＇FCT2652T
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	HorL」	HorL」	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	Input	Input	Isolation Store A and B Data
$\begin{aligned} & X \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	J J	$\begin{gathered} \mathrm{H} \text { or } \mathrm{L} \\ \Gamma \end{gathered}$	$\begin{gathered} X \\ X^{7} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	Input Input	Unspecified ${ }^{6}$ Output	Store A，Hold B Store A in both registers
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & X \\ & L \end{aligned}$	HorL」	J	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} x \\ X^{7} \end{gathered}$	Unspecified ${ }^{1}$ Output	Input Input	Hold A，Store B Store B in both registers
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \text { X } \\ \text { H or L } \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real－Time B Data to A Bus Stored B Data to A Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \text { X } \\ \text { H or L } \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Input	Output	Real－Time A Data to B Bus Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

Notes：

6．The data output functions may be enabled or disabled by various signals at the GAB or $\overline{\mathrm{GBA}}$ inputs．Data input functions are always enabled，i．e．，data at the bus pins will be stored on every low－to－high transition on the clock inputs．
7．Select control＝L：clocks can occur simultaneously．
Select control $=\mathrm{H}$ ：clocks must be staggered in order to load both registers．
H $=$ HIGH，L＝LOW，X＝Don＇t Care，」 LOW－to－HIGH Transition

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{1}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX, } \mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{8}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {CCD }}$	Dynamic Power Supply Current ${ }^{9}$	0.15	0.25	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	$V_{c C}=$ MAX, One Input Toggling, 50\% Duty Cycle, Outputs Open $\mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{11}$	1.7	4.0	mA	$V_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND},$ $\mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND},$ $\mathrm{SBA}=\mathrm{V}_{\mathrm{cC}},$ $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.2	6.0	mA	$V_{c C}=M A X, f_{0}=10 M H z,$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\mathrm{GND}, \overline{\mathrm{GBA}}=\mathrm{GND}$, $\mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND}$, SBA $=V_{\text {CC }}$, $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\mathrm{GND}$
		7.0	$12.8{ }^{10}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{f}_{0}=10 \mathrm{MHz},$ 50\% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\begin{aligned} & \mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND}, \\ & \mathrm{SAB}=\mathrm{CPAB}=\mathrm{GND}, \\ & \mathrm{SBA}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\text {IN }}=0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
		9.2	$21.8{ }^{10}$	mA	$V_{C C}=M A X, f_{0}=10 M H z$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=5 \mathrm{MHz}$, $\mathrm{GAB}=\overline{\mathrm{GBA}}=\mathrm{GND},$ $S A B=C P A B=G N D$ $\mathrm{SBA}=\mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }}=\text { GND }$

Notes:

8. Per TTL driven input $\left(\mathrm{V}_{\mathbb{N}}=3.4 \mathrm{~V}\right)$; all other inputs at V_{cc} or GND .
9. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
10. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.
11. $I_{C}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{c}=I_{c C}+\Delta I_{c C} \cdot D_{H} N_{T}+I_{c C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta \mathrm{I}_{\mathrm{cc}}=$ Power Supply Current for a TTL High Input ($\mathrm{V}_{\mathrm{iN}}=3.4 \mathrm{~V}$)
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$f_{0}=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1}=$ Input Frequency
$N_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

AC CHARACTERISTICS

Symbol	Parameter	'FCT2652T				'FCT2652AT				'FCT2652CT				Units	Fig No.*
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{12}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	6.0	1.5	5.4	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time Enable to Bus	2.0	15.0	2.0	14.0	2.0	10.5	2.0	9.8	1.5	8.9	1.5	7.8	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PIZ}} \end{aligned}$	Output Disable Time Enable to Bus	2.0	11.0	2.0	9.0	2.0	7.7	2.0	6.3	1.5	7.7	1.5	6.3	ns	1,5
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay Clock to Bus	2.0	10.0	2.0	9.0	2.0	7.0	2.0	6.3	1.5	6.3	1.5	5.7	ns	1, 7, 8
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay SBA or SAB to A or B	2.0	12.0	2.0	11.0	2.0	8.4	2.0	7.7	1.5	7.0	1.5	6.2	ns	1,7,8

Notes:

* AC Characteristics guaranteed with $C_{L}=50 p F$ as shown in Figure 1.
* See "Parameter Measurement Information" in the General Information Section.

AC OPERATING REQUIREMENTS

Symbol	Parameter	'FCT2652T				'FCT2652AT				'FCT2652CT				Units	Fig. No.
		MIL		COM'L		MIL		COM'L		MIL		COM'L			
		Min. ${ }^{12}$	Max.												
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time HIGH or LOW Bus to Clock	4.5	-	4.0	-	2.0	-	2.0	-	2.0	-	2.0	-	ns	1,4
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold Time HIGH or LOW Bus to Clock	2.0	-	2.0	-	1.5	-	1.5	-	1.5	-	1.5	-	ns	1,4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width, HIGH or LOW	6.0	-	6.0	-	5.0	-	5.0	-	5.0	-	5.0	-	ns	1,5

Notes:

12. Minimum limits are guaranteed but not tested on Propagation Delays.
13. With one data channel toggling, $t_{w}(L)=t_{w}(H)=4.0 n s$ and $t_{r}=t_{f}=1.0 \mathrm{~ns}$.
*Refer to the 'Parameter Measurement Information' section of this book.

ORDERING INFORMATION

[^9]
FEATURES

- Function and Drive Compatible with the FCT, F and AM29827 Logic
- FCT-B speed at 5.0ns max. (Commercial) FCT-A speed at 8.0ns max. (Commercial)
- R25 Ω output series resistors to reduce transmission line reflection noise
- Reduced V_{OH} (typically $=3.3 \mathrm{~V}$) versions of Equivalent ${ }^{\text {FCT }}$ functions

■ Edge-rate Control Circuitry for Significantly Improved Noise Characteristics

- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 12 mA Sink Current (Com'l), 12 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)

DESCRIPTION

The'FCT2827T 10-bit bus driver provideshigh-performance bus interface buffering for wide data/address paths or buses carrying parity. This 10-bitbuffer has NOR-ed output enables formaximum control flexibility. The non-inverting'FCT2827T is designed for high-capacitance load drive capability, while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are
designed for low-capacitance bus loading in the highimpedance state. On-chip termination resistors have been added to the outputs to reduce system noise caused by reflections. The 'FCT2827T can be used to replace the 'FCT827T to reduce noise in an existing design.

LOGIC BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

Symbol	Parameter	Value	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Ambient Temperature Under Bias	-65 to +135	${ }^{\circ} \mathrm{C}$
V_{CC}	V_{CC} Potential to Ground	-0.5 to +7.0	V
P_{T}	Power Dissipation	0.5	W
$\mathrm{I}_{\text {OUTPUT }}$	Current Applied to Output	120	mA
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {OUT }}$	Voltage Applied to Output	-0.5 to +7.0	V

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

Supply Voltage (V $\mathbf{c c}$)	Min	Max
Military	+4.5 V	+5.5 V
Commercial	+4.75 V	+5.25 V

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ ${ }^{3}$	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage		2.0			V		
$\mathrm{V}_{\text {LI }}$	Input LOW Voltage				0.8	V		
V_{H}	Hysteresis			0.2		V		All inputs
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.7	-1.2	V	MIN	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	Military Commercial	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	Military Commercial		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { MIN } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
$\mathrm{R}_{\text {out }}$	Output Resistance	Military Commercial	20	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	40	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{MIN} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \end{aligned}$
1	Input HIGH Current				20	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$
I_{H}	Input HIGH Current				5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{L}	Input LOW Current				-5	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	Off State $\mathrm{I}_{\text {Out }} \mathrm{HIGH}$-Level Output Current				10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {ozl }}$	Off State $\mathrm{I}_{\text {OUT }}$ LOW-Level Output Current				-10	$\mu \mathrm{A}$	MAX	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {os }}$	Output Short Circuit Current ${ }^{4}$		-60	-120	-225	mA	MAX	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	Power-off Disable				100	$\mu \mathrm{A}$	OV	$\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{5}$			6	10	pF	MAX	All inputs
$\mathrm{C}_{\text {out }}$	Output Capacitance ${ }^{5}$			8	12	pF	MAX	All outputs
I_{cc}	Quiescent Power Supply Current			0.2	1.5	mA	MAX	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$

Notes:

1. Operation beyond the values set forth in the above table may impair the useful life of the device. Unless otherwise noted, these values are over the operating free-air temperature range.
2. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.
3. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ambient.
4. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test
apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, $l_{\text {os }}$ tests should be performed last.
5. This parameter is guaranteed but not tested.

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ ${ }^{3}$	Max	Units	Conditions
$\Delta l_{\text {cc }}$	Quiescent Power Supply Current (TTL inputs)	0.5	2.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { MAX, } \mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}^{6}, \\ & \mathrm{f}_{1}=0, \text { Outputs Open } \end{aligned}$
$\mathrm{I}_{\text {cco }}$	Dynamic Power Supply Current ${ }^{7}$	0.15	0.25	$\begin{gathered} \mathrm{mA} \\ \mathrm{MHz} \end{gathered}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$, One Input Toggling, 50% Duty Cycle, Outputs Open, $\overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}$, $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {CC }}-0.2 \mathrm{~V}$
I_{c}	Total Power Supply Current ${ }^{9}$	1.7	4.0	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50\% Duty Cycle, Outputs Open, One Bit Toggling at $f_{1}=10 \mathrm{MHz}$, $\overline{\mathrm{OE}}_{1}=\overline{\mathrm{OE}}_{2}=\mathrm{GND}$, $\mathrm{V}_{\mathbb{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathbb{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		2.0	5.0	mA	$V_{\mathrm{cC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, One Bit Toggling at $\mathrm{f}_{1}=10 \mathrm{MHz}$, $\mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$
		3.2	6.5^{8}	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}^{2} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
		5.2	$14.5{ }^{\text {8 }}$	mA	$\mathrm{V}_{\mathrm{cC}}=\mathrm{MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_{1}=2.5 \mathrm{MHz}$, $\mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND},$ $\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}^{2} \text { or } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$

Notes:
6. Per TTL driven input ($\mathrm{V}_{\mathbb{1}}=3.4 \mathrm{~V}$); all other inputs at V_{cc} or GND.
7. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
8. Values for these conditions are examples of the $I_{c C}$ formula. These values are guaranteed but not tested.
9. $I_{c}=I_{\text {QUIESCENT }}+I_{\text {INPUTS }}+I_{\text {DYNAMIC }}$
$I_{C}=I_{c C}+\Delta I_{c C} D_{H} N_{T}+I_{c C D}\left(f_{0} / 2+f_{1} N_{1}\right)$
$I_{c c}=$ Quiescent Current with CMOS input levels
$\Delta I_{c c}=$ Power Supply Current for a TTL High Input $\left(V_{\text {IN }}=3.4 \mathrm{~V}\right)$
$D_{H}=$ Duty Cycle for TTL Inputs High
$N_{T}=$ Number of TTL Inputs at D_{H}
$I_{C C D}=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathbf{f}_{0} \quad=$ Clock Frequency for Register Devices (Zero for Non-Register Devices)
$\mathrm{f}_{1} \quad=$ Input Frequency
$\mathrm{N}_{1}=$ Number of Inputs at f_{1}
All currents are in milliamps and all frequencies are in megahertz.

FUNCTION TABLES

'FCT2827T (Non-Inverting)

Inputs			Outputs	Function
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}$	
L	L	L	L	Transparent
L	L	H	H	
H	X	X	Z	Three-State
X	H	X	Z	

Note:

$H=$ High, $L=$ Low, $X=$ Don't Care, $Z=$ High Impedance

AC CHARACTERISTICS

Sym.	Parameter	Test Conditions	'FCT2827AT				'FCT2827BT				Units	Fig. No.*
			MIL		COM'L		MIL		COM'L			
			Min. ${ }^{10}$	Max.								
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHHL}} \end{aligned}$	Propagation Delay from D_{1} to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$	-	9.0	-	8.0	-	6.5	-	5.0	ns	1,3
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHHL}} \end{aligned}$	Propagation Delay from D_{1} to Y_{1}	$\begin{aligned} & C_{\mathrm{L}}=300 \mathrm{pF}^{11} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	17.0	-	15.0	-	14.0	-	13.0	ns	1,3
$\begin{aligned} & t_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$	-	13.0	-	12.0	-	9.0	-	8.0	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}^{111} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$	-	25.0	-	23.0	-	16.0	-	15.0	ns	1,2
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Output Disable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF}^{11} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	10.0	-	9.0	-	7.0	-	6.0	ns	1,7,8
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PHH}} \end{aligned}$	Output Disable Time $\overline{O E}$ to Y_{1}	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}^{11} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	-	10.0	-	9.0	-	8.0	-	7.0	ns	1,7,8

Notes:

10. Minimum values are guaranteed but not tested on Propagation Delays.
11. These parameters are guaranteed but not tested.
*Refer to the 'Parameter Measurement Information' section of this book.

ORDERING INFORMATION

General Information

FCT-T

PACKAGE DIAGRAMS

16-Lead (300-Mil) CerDIP D2
MIL-STD-1835 D-2 Config. A

20-Lead (300-Mil) CerDIP D6
MIL-STD-1835 D-8 Config. A

24-Lead (300-Mil) CerDIP D14
 MIL-STD-1835 D-9 Config. A

20-Pin Square Leadless Chip Carrier L61
MIL-STD-1835 C-2A

PACKAGE DIAGRAMS

28-Square Leadless Chip Carrier L64
MIL-STD-1835 C-4

16-Lead (300-Mil) Molded DIP P1

DIMENSIIDS IN INCHES $\frac{\text { MIN. }}{\text { MAX. }}$

20-Lead (300-Mil) Molded DIP P5

24-Lead (300-Mil) Molded DIP P13/P13A

DIMENSIUNS IN INCHES $\frac{\text { MIN. }}{\text { MAX }}$

16-Lead Molded SOIC S1

20-Lead (300-Mil) Molded SOIC S5

dIMENSIUNS IN INCHES MIN.

LEAD CLPLANARITY 0.004 MAX.

24-Lead (300-Mil) Molded SOIC S13

16-Lead Quarter Size Outline Q1

DIMENSIUNS IN INCHES $\frac{\text { MIN. }}{\text { MAX }}$
LEAD CGPLANARITY 0.004 MAX.

PACKAGE DIAGRAMS
20-Lead Quarter Size Outline Q5

DIMENSIIDNS IN INCHES $\frac{\text { MIN. }}{\text { MAX. }}$
LEAD CDPLANARITY 0.004 MAX.

24-Lead Quarter Size Outline Q13

DIMENSIDNS IN INCHES $\frac{\text { MIN. }}{\text { MAX. }}$

 LEAD CIPLANARITY 0.004 MAX.SALES REPRESENTATIVES AND DISTRIBUTORS

Domestic Direct Sales Offices

Corporate Headquarters

Cypress Semiconductor
3901 N. First Street
San Jose, CA 95134
(408) 943-2600

Telex: 821032 CYPRESS SNJ UD
TWX: 9109970753
FAX: (408) 943-2741
IC Designs Division
12020-113th Ave. N.E
Kirkland, WA 98034
(206) 821-9202

FAX: (206) 820-8959

Alabama

Cypress Semiconductor
555 Sparkman Drive, Ste. 1212
Huntsville, AL 35816
(205) 721-9500

FAX: (205) 721-0230

California

Northwest Sales Office
Cypress Semiconductor
3901 N. First Street
San Jose, CA 95134
(408) 943-4867

FAX: (408) 943-6860
Cypress Semiconductor
23586 Calabasas Rd., Ste. 201
Calabasas, CA 91302
(818) 222-3800

FAX: (818) 222-3810
Cypress Semiconductor
2 Venture Plaza, Suite 460
Irvine, CA 92718
(714) 753-5800

FAX: (714) 753-5808
Cypress Semiconductor
12526 High Bluff Dr., Ste. 300
San Diego, CA 92130
(619) 755-1976

FAX: (619) 755-1969

Canada

Cypress Semiconductor
701 Evans Avenue
Suite 312
Toronto, Ontario M9C 1A3
(416) 620-7276

FAX: (416) 620-7279

Colorado

Cypress Semiconductor
4704 Harlan St., Suite 360
Denver, CO 80212
(303) 433-4889

FAX: (303) 433-0398

Florida
Cypress Semiconductor
10014 N. Dale Mabry Hwy. 101
Tampa, FL 33618
(813) 968-1504

FAX: (813) 968-8474
Cypress Semiconductor
255 South Orange Avenue
Suite 1255
Orlando, FL 32801
(407) 422-0734

FAX: (407) 422-1976

Georgia

Cypress Semiconductor
1080 Holcomb Bridge Rd.
Building 100, Ste. 300
Roswell, GA 30076
(404) 998-0491

FAX (404) 998-2172

Illinois

Cypress Semiconductor
1530 E. Dundee Rd., Ste. 190
Palatine, IL 60067
(708) 934-3144

FAX: (708) 934-7364

Maryland

Cypress Semiconductor
8850 Stanford Blvd., Suite 1600
Columbia, MD 21045
(410) 312-2911

FAX: (410) 290-1808

Minnesota

Cypress Semiconductor
14525 Hwy. 7, Ste. 360
Minnetonka, MN 55345
(612) 935-7747

FAX: (612) 935-6982

New Hampshire

Cypress Semiconductor
61 Spit Brook Road, Ste. 110
Nashua, NH 03060
(603) 891-2655

FAX: (603) 891-2676

New Jersey

Cypress Semiconductor
100 Metro Park South
3rd Floor
Laurence Harbor, NJ 08878
(908) 583-9008

FAX (908) 583-8810

New York

Cypress Semiconductor
244 Hooker Ave., Ste. B
Poughkeepsie, NY 12603
(914) 485-6375

FAX: (914) 485-7103

North Carolina

Cypress Semiconductor 7500 Six Forks Rd., Suite G
Raleigh, NC 27615
(919) 870-0880

FAX: (919) 870-0881

Oregon

Cypress Semiconductor
8196 S.W. Hall Blvd. Suite 100
Beaverton, OR 97005
(503) 626-6622

FAX: (503) 626-6688

Pennsylvania

Cypress Semiconductor
Two Neshaminy Interplex, Ste. 206
Trevose, PA 19053
(215) 639-6663

FAX: (215) 639-9024

Texas

Cypress Semiconductor
333 West Campbell Rd., Ste. 240
Richardson, TX 75080
(214) 437-0496

FAX: (214) 644-4839
Cypress Semiconductor
Great Hills Plaza
9600 Great Hills Trail, Ste. 150W
Austin, TX 78759
(512) 502-3023

FAX: (512) 338-0865
Cypress Semiconductor
20405 SH 249, Ste. 216
Houston, TX 77070
(713) 370-0221

FAX: (713) 370-0222

Virginia

Cypress Semiconductor
3151C Anchorway Court
Falls Church, VA 22042
(703) 849-1733

FAX: (703) 849-1734

SALES REPRESENTATIVES AND DISTRIBUTORS

Domestic Sales Representatives

Alabama

Giesting \& Associates 4835 University Square Suite 15
Huntsville, AL 35816
(205) 830-4554

FAX: (205) 830-4699

Arizona

Thom Luke Sales, Inc.
9700 North 91 st St., Suite A-200
Scottsdale, AZ 85258
(602) 451-5400

FAX: (602) 451-0172

California

TAARCOM
$45 i$ ì. Shoreiine Bivd
Mountain View, CA 94043
(415) 960-1550

FAX: (415) 960-1999
TAARCOM
735 Sunrise Ave., Suite 200
Roseville, CA 95661
(916) 782-1776

FAX: (916) 782-1786

Canada

bbd Electronics, Inc.
6685-1 Millcreek Dr
Mississauga, Ontario L5N 5M5
(416) 821-7800

FAX: (416) 821-4541
bbd Electronics, Inc.
298 Lakeshore Rd., Ste. 203
Pointe Claire, Quebec H9S 4L3
(514) 697-0801

FAX: (514) 697-0277
bbd Electronics, Inc. - Ottawa
(613) 564-0014

FAX: (416) 821-4092
bbd Electronics, Inc. - Winnipeg
(204) 942-2977

FAX: (416) 821-4092

Western Canada

Microwe Electronics Corporation
5330 Wallace Avenue
Delta, British Columbia V4M 1A1
(604) 943-5020

FAX: (604) 943-8184

Connecticut

HLM
3 Pembroke Rd.
Danbury, CT 06810
(203) 791-1878

FAX: (203) 791-1876

Florida

CM Marketing
252 Springs Colony Circle, Unit 382
Altamonte Springs, FL 32714
(407) 682-7709

FAX: (407) 682-7995

CM Marketing
202 West Bearss Avenue
Suite 220
Tampa, FL 33613
(813) 264-9707

FAX: (813) 962-1445
CM Marketing
664 Hollows Circle
Deerfield Beach, FL 33442
(305) 429-8626

FAX: (305) 429-3440

Georgia

Giesting \& Associates
2434 Highway 120
Suite 108
Duluth, GA 30136
(404) 476-0025

FAX: (404) 476-2405

Illinois

Micro Sales Inc.
901 W. Hawthorn Drive
Itasca, IL 60143
708) 285-1000

FAX: (708) 285-1008

Indiana

Technology Mktg. Corp.
1526 East Greyhound Pass
Carmel, IN 46032
(317) 844-8462

FAX: (317) 573-5472
Technology Mktg. Corp.
4630-10 W. Jefferson Blvd
Ft. Wayne, IN 46804
(219) 432-5553

FAX: (219) 432-5555
Technology Marketing Corp.
1214 Appletree Lane
Kokomo, IN 46902
(317) 459-5152

FAX: (317) 457-3822

lowa

Midwest Technical Sales
463 Northland Ave., N.E.
Suite 101
Cedar Rapids, IA 52402
(319) 377-1688

FAX: (319) 377-2029

Kansas

Midwest Technical Sales
13 Woodward Dr.
Augusta, KS 67010
(316) 775-2565

FAX: (316) 775-3577
Midwest Technical Sales
15301 W. 87 Parkway, Ste. 200
Lenexa, KS 66219
913) 888-5100

FAX: (913) 888-1103

Kentucky

Technology Marketing Corp.
718 Amhurst Place
Louisville, KY 40223
(502) 245-7411

FAX: (502) 245-4818

Michigan

Techrep
2200 North Canton Center Rd.
Suite 110
Canton, MI 48187
(313) 981-1950

FAX: (313) 981-2006

Missouri

Midwest Technical Sales
514 Earth City Expwy., \#239
Earth City, MO 63045
(314) 298-8787

FAX: (314) 298-9843

Nevada

TAARCOM
735 Sunrise Ave.
Suite 200-4
Roseville, CA 95661
(916) 782-1776

FAX: (916) 782-1786

New Jersey

HLM
333 Littleton Rd
Parsippany, NJ 07054
(201) 263-1535

FAX: (201) 263-0914
New York
HLM
64 Mariners Lane
P.O. Box 328

Northport, NY 11768
(516) 757-1606

FAX: (516) 757-1636
Reagan/Compar
96 W. Forest Dr.
Rochester, NY 14624
(716) 271-2230

FAX: (716) 381-2840
Reagan/Compar 214 Dorchester Ave., \#3C
Syracuse, NY 13203
(315) 432-8232

FAX: (315) 432-8238
Reagan/Compar
3301 Country Club Road
Ste. 2211
P.O. Box 8635

Endwell, NY 13760
(607) 754-2171

FAX: (607) 754-4270

SALES REPRESENTATIVES AND DISTRIBUTORS

Domestic Sales Representatives (continued)

Ohio

KW Electronic Sales, Inc 8514 North Main Street
Dayton, OH 45415
(513) 890-2150

FAX: (513) 890-5408
KW Electronic Sales, Inc.
3645 Warrensville Center Rd. \#244
Shaker Heights, OH 44122
(216) 491-9177

FAX: (216) 491-9102

Oregon

Northwest Marketing Associates
6975 S. W. Sandburg Rd, Ste. 330
Beaverton, OR 97223
(503) 620-0441

FAX: (503) 684-2541

Pennsylvania
L. D. Lowery 2801 West Chester Pike Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710
KW Electronic Sales, Inc 4068 Mt. Royal Blvd., Ste. 110
Allison Park, PA 15101
(412) 492-0777

FAX: (412) 492-0780

Puerto Rico

Electronic Technical Sales
P.O. Box 10758

Caparra Heights Station
San Juan, P.R. 00922
(809) 798-1300

FAX: (809) 798-3661

Utah

Sierra Technical Sales
1192 E. Draper Parkway
Suite 103
Draper, UT 84020
(801) 571-8195

FAX: (801) 571-8194

Washington

Northwest Marketing Associates
12835 Bellevue-Redmond, Ste. 330N
Bellevue, WA 98005
(206) 455-5846

FAX: (206) 451-1130

Wisconsin

Micro Sales Inc.
210 Regency Court
Suite L101
Waukesha, WI 53186
(414) 786-1403

FAX: (414) 786-1813

International Direct Sales Offices

Cypress Semiconductor
International-Europe
Avenue Ernest Solvay, 7
B-1310 La Hulpe, Belgium
Tel: (32) 2-652-0270
Telex: 64677 CYPINT B
FAX: (32) 2-652-1504

France

Cypress Semiconductor France
Miniparc Bât. no 8
Avenue des Andes, 6
Z.A. de Courtaboeuf

91952 Les Ulis Cedex, France
Tel: (33) 1-69-07-55-46
FAX: (33) 1-69-07-55-71

Germany

Cypress Semiconductor GmbH
Munchner Str. 15A
W-8011, Zorneding, Germany
Tel: (49) 81-06-2855
FAX: (49) 81-06-20087
Cypress Semiconductor GmbH
Büro Nord
Matthias-Claudius-Str. 17
W-2359 Henstedt-Ulzburg, Germany
Tel: (49) 4193-77217
FAX: (49) 4193-78259

Italy

Cypress Semiconductor Via del Poggio Laurentino 118
00144 Rome, Italy
Tel: (39) 65-920-723
FAX: (39) 69-496-888
Cypress Semiconductor Interporto di Torino
Proma Strada n. 5/B
10043 Orbassano, Italy
Tel: (39) 11-397-57-98
or (39) 11-397-57-57
FAX: (39) 11-397-58-10

Japan

Cypress Semiconductor Japan K.K.
Fuchu-Minami Bldg., 2F
10-3, 1-Chome, Fuchu-machi,
Fuchu-shi, Tokyo, Japan 183
Tel: (81) 423-69-82-11
FAX: (81) 423-69-82-10

Sweden

Cypress Semiconductor
Scandinavia AB
Taby Centrum, Ingang S
S-18311 Taby, Sweden
Tel: (46) 86380100
FAX: (46) 87921560

United Kingdom

Cypress Semiconductor U.K., Ltd
3, Blackhorse Lane, Hitchin,
Hertfordshire, U.K., SG4 9EE
Tel: (44) 462-42-05-66
FAX: (44) 462-42-19-69
Cypress Semiconductor Manchester
27 Saville Rd. Cheadle
Gatley, Cheshire, U.K.
Tel: (44) 614-28-22-08
FAX: (44) 614-28-0746

International Sales Representatives

Australia

Braemac Pty. Ltd.
Unit 6, 111 Moore St.
Leichhardt, N.S.W. 2040, Australia
Tel: (61) 2-564-1211
FAX: (61) 2-564-2789
Braemac Pty. Ltd.
10-12 Prospect Street, Box Hill
Melbourne, Victoria, 3128, Australia
Tel: (61) 3-899-1272
FAX: (61) 3-899-1276

Austria

Hitronik Vertriebsge GmbH
St. Veitgasse 51
A-1130 Wien, Austria
Tel: (43) 1-877-4199
Telex: 133404 HIT A
FAX: (43) 1-876-55-72

Belgium

Sonetech
Limburg Stirum 243
1810 Wemmel, Limburg
Tel: (32) 2-460-0707
FAX: (32) 2-460-1200

Denmark

ScandComp Denmark A/S
Rentemestervej 69A
DK-2400 Copenhagen NV
Denmark
Tel: (45) 31194433
FAX: (45) 31101287

Finland

ScandComp Finland OY
Asemakuja 2
SF-02 770 ESPOO
Finland
Tel: 358-0-859-3099
FAX: 358-0-859-2120

France

Arrow Electronics
$73 / 79$, Rue des Solets Silic 585
94653 Rungis Cedex Tel: (33) 149784900 FAX: (33) 149780599

Arrow Electronics
Les Jardins d'Entreprises
Betiment B3
213, Rue Gerland
69007 Lyon
Tel: (33) 78727942
FAX: (33) 78728024
Arrow Electronics
Centreda
Avenue Didier Daurat
31700 Blagnac
Tel: (33) 61157518
FAX: (33) 61300193
Arrow Electronics
Immeuble St. Christophe
Rue de la Frebardiere
Zi Sud Est
35135 Chantepie
Tel: (33) 99417044
FAX: (33) 99501128

Newtek
Rue de L'Esterel, 8, Silic 583
F-94663 Rungis Cedex, France
Tel: (33) 1-46-87-22-00
Telex: 263046 F
FAX: (33) 1-46-87-80-49

Newtek

Rue de l'Europe, 4
Zac Font-Ratel
38640 Claix, France
Tel: (33) 16-76-98-56-01
FAX: (33) 16-76-98-16-04
Scaib, SA
80 Rue d'Arcueil Silic 137
94523 Rungis, Cedex, France
Tel: (33) 1-46-87-23-13
FAX: (33) 1-45-60-55-49

Germany

API Electronik GmbH
Lorenz-Brarenstr 32
W-8062 Markt, Indersdorf
Germany
Tel: (49) 81367092
Telex: 5270505
FAX: (49) 81367398

SALES REPRESENTATIVES AND DISTRIBUTORS

International Sales Representatives (continued)

Metronik GmbH
Leonhardsweg 2, Postfach 1328
W-8025 Unterhaching,
Germany
Tel: (49) 89611080
Telex: 17897434 METRO D
FAX: (49) 896116468
Metronik GmbH
Laufamholzstrasse 118
W-8500 Nürnberg,
Germany
Tel: (49) 911544966
Telex: 626205
FAX: (49) 911542936
Metronik GmbH
Löewenstrasse 37
W-7000 Stuttgart 70
Germany
Tel: (49) 711764033
Telex: 7-255-228
FAX: (49) 7117655181
Metronik GmbH
Siemensstrasse 4-6
W-6805 Heddesheim, Germany
Tel: (49) 62034701
Telex: 465035
FAX: (49) 620345543

Metronik GmbH

Zum Lonnenhohl 38
W-4600 Dortmund 13, Germany
Tel: (49) 231217041
FAX: (49) 231210799
Metronik Halle
Thalmannplatz 16/0904
O-4020 Halle, Germany
SASCO GmbH
Hermann-Oberth-Str. 16
8011 Putzbrunn, Germany
Tel: (089) 4611-211
Telex: 529504 sasco d
FAX: (089) 4611-271
SASCO GmbH
Gibitzenhofstr. 62
8500 Nurnberg 70, Germany
Tel: (0911) 421065
Telex: 623097
FAX: (0911) 425794
SASCO GmbH
Stafflenbergstr. 24
7000 Stuttgart 1, Germany
Tel: (0711) 244521
Telex: 723936
FAX: (0711) 233963
SASCO GmbH
Am Gansacker 26
7801 Umkirch bei Freiburg
Tel: (07665) 7018
Telex: 7722945
FAX: (07665) 8778
SASCO GmbH
Hainer Weg 48
6000 Frankfurt 70, Germany
Tel: (069) 610391
Telex: 414435
FAX: (069) 618824

SASCO GmbH
Beratgerstr. 36
4600 Dortmund 1, Germany
Tel: (0231) 179791
Telex: 8227826
FAX: (0231) 172991
SASCO GmbH
Am Uhrturm 7
3000 Hannover 81, Germany
Tel: (0511) 839020
Telex: 921123
FAX: (0511) 8437618
SASCO GmbH
Europaallee 3
2000 Norderstedt, Germany
Tel: (040) 5232013
Telex: 2165623
FAX: (040) 5232378

Hong Kong

Tekcomp Electronics, Ltd. 913-4 Bank Centre 636, Nathan Road, Mongkok Kowloon, Hong Kong Tel: (852) 3-880-629
Telex: 38513 TEKHL
FAX: (852) 7-805-871

India

Spectra Innovations Inc.
Manipal Centre, Unit No. S-822
47, Dickenson Rd.
Bangalore-560,042
Karnataka, India
Tel: 80-588-323
Telex: 8452696 or 8055
(Attn: ICTP-705)
FAX: 80-586-872

Israel

Talviton Electronics
P.O. Box 21104, 9 Biltmore Street

Tel Aviv 61 210, Israel
Tel: (972) 3-544-2430
Telex: 33400 VITKO
FAX: (972) 3-544-2085

Italy

Dott. Ing. Guiseppe De Mico s.p.a
V. Le Vittorio Veneto, 8

1-20060 Cassina d'Pechi
Milano, Italy
Tel: (39) 29-53-43-600
Telex: 330869 DEMICO I
FAX: (39) 29-52-19-12
Silverstar Ltd. SPA
Viale Fulvio Testi, 280
20126 Milano, Italy
Tel: (39) 2661251
Teles: 332189 SIL 7I
FAX: (39) 266101359

Japan

Tomen Electronics Corp.
2-1-1 Uchisaiwai-Cho, Chiyoda-Ku
Tokyo, 100 Japan
Tel: (81) 3-3506-3673
Telex: 23548 TMELCA
FAX: (81) 3-3506-3497
CTC Components Systems Co. Ltd.
KM Dai-ichi, Bldg. 2-13-13, Shinyokohama
Kouhoku-ku, Yokohama-shi
Kanagawa, Japan 222
Tel: (81) 45-476-7502
FAX: (81) 45-476-7516
Fuji Electronics Co., Ltd.
Ochanomizu Center Bldg.
3-2-12 Hongo, Bunkyo-Ku
Tokyo, 113 Japan
Tel: (81) 3-3814-1411
Telex: J28603 FUJITRON
FAX: (81) 3-3814-1414
N.D.A. Co. Ltd.

The Second Preciza Bldg.
4-8-3 lidabashi Chiyoda-Ku
Tokyo, 102 Japan
Tel: (81) 3-3264-1321
Telex: J29503 ISI JAPAN
FAX: (81) 3-3264-3419
Fujitsu Devices, Inc.
Osaki West Bldg.
8-8, Osaki 2-Chome,
Shinagawa-ku
Tokyo 141, Japan
Tel: (81) 3-3490-3321
FAX: (81) 3-3490-7274
Japan Electronics
Materials Co., Ltd (JEMCO)
2-20-10 Minamikaneda, Suita-shi,
Osaka 564 Japan
Tel: (81) 6-385-6707
FAX: (81) 6-330-6814
Ryoyo Electro Corporation
Knowa Bidg., 1-12-22 Tsukiji,
Chuo-ku, Tokyo 104 Japan
Tel: (81) 3-5565-1531
FAX: (81) 3-5565-1546

Korea

Logicom Inc.
1634-9 Bongchun-Dong
Kwanak-ku
Seoul, Korea 151-061
Tel: (822) 888-2858
FAX: (822) 888-7040
superCHIP Inc.
6th Floor, KyungJin Bldg. 161-17
Sansung-dong, Kangnam-ku
Seoul, Korea
Tel: (822) 558-5559
FAX: (822) 558-1875

SALES REPRESENTATIVES AND DISTRIBUTORS

International Sales Representatives (continued)

Netherlands
Sonetech B.V.
Gulberg 33, NL-5674
Te Nuenen
The Netherlands
Tel: (31) 40-83-70-75
Telex: 59418 INTRA NL
FAX: (31) 40-83-23-00

Norway

ScandComp Norway A/S
Aslakveien 20 F
N-0753 OSLO 7
Norway
Tel: (47) 22500650
FAX: (47) 22502777

Singapore

Electec PTE Ltd.
Block 50, Kallang Bahru
\#04-21, Singapore 1233
Tel: (65) 294-8389
FAX: (65) 294-7623

Spain

ATD Electronica
Avda. de la Industria No. 32
Nave 17, 2B, 28100 Alcobendas
Madrid, Spain
Tel: (34) 1-66-16-551
FAX: (34) 1-66-16-300

Sweden
ScandComp Sweden AB
Box 8303 Domnarvsgatan 33
S-163 08 SPANGA
Sweden
Tel: (46) 8-761-73-00
FAX: (46) 8-760-46-69

Switzerland

Basix für Elektronik A. G.
Hardturmstrasse 181
CH-8010 Zurich, Switzerland
Tel: (41) 1-276-11-11
Telex: 822762 BAEZ CH
FAX: (41) 1-276-14-48

Taiwan R.O.C.

Prospect Tecinnoiogy Corp.
5F, No. 348, Section 7
Cheng-Teh Rd.
Taipei, Taiwan
Tel: (886) 2-820-5353
Telex: 14391 PROSTECH
FAX: (886) 2-820-5731

United Kingdom

Ambar Components Ltd. 17 Thame Park Road Thame, Oxfordshire England, OX9 3XD
Tel: (44) 844-26-11-44
Telex: 837427
FAX: (44) 844-26-17-89
Arrow Electronics (UK) Ltd.
St. martins Business Centre
Cambridge Road
Bedford MK42 OLF, U.K.
Tel: (44) 234270272
FAX: (44) 234214674
Pronto Electronic System Ltd.
City Gate House
Eastern Avenue, 399-425
Gants Hill, liford,
Essex, U. K. IG2 6LR
Tel: (44) 81-554-62-22
Telex: 8954213 PRONTO G
FAX: (44) 81-518-32-22

SALES REPRESENTATIVES AND DISTRIBUTORS

Distributors

Alliance Electronics:
Scottsdale, AZ 85254
1-800-608-9494
FAX: (602) 443-3898
Santa Clarita, CA 91350
(805) 297-6204

FAX: (805) 297-6205
Shelton, CT 06484
(203) 926-0087

FAX: (203) 926-1850
Tampa, FL 33611
(813) 831-7972

FAX: (813) 831-8297
Vernon Hills, IL 60061
(708) 949-9890

FAX: (708) 949-1162
Boston, MA 02110
1-800-854-2393
FAX: (617) 261-7987
Winchester, MA 01890
1-800-888-6627
FAX: (617) 756-1226
Albuquerque, NM 87123
1-800-955-3360
FAX: (505) 275-6392
Binghamton, NY 13901
(607) 648-8833

Huntington, NY 11743
(516) 673-1930

FAX: (516) 673-1934
Dayton, OH 45459
(513) 433-7700

FAX: (513) 433-3147
Carrolton, TX 75007
(214) 492-6700

FAX: (214) 492-5474

Anthem Electronics, Inc.:

Tempe, AZ 85281
(602) 966-6600

Chatsworth, CA 91311
(818) 775-1333

East Irvine, CA 92718
(714) 768-4444

Rocklin, CA 95677
(916) 624-9744

San Jose, CA 95131
(408) 453-1200

San Diego, CA 92121
(619) 453-9005

Englewood, CO 80112
(303) 790-4500

Waterbury, CT 06705
(203) 575-1575

Altamonte Springs, FL 32701
(407) 831-0007

Schaumburg, IL 60173
(708) 884-0200

Wilmington, MA 01887
(508) 657-5170

Columbia, MD 21046
(301) 995-6640

Eden Prairie, MN 55344
(612) 944-5454

Pine Brook, NJ 07058
(201) 227-7960

Commack, NY 11725
(516) 864-6600

Beaverton, OR 97005
(503) 643-1114

Horsham, PA 19044
(215) 443-5150

Richardson, TX 75081
(214) 238-7100

Salt Lake City, UT 84119
(801) 973-8555

Bothel, WA 98011
(206) 483-1700

Arrow Electronics:

Alabama

Huntsville, AL 35816
(205) 837-6955

Arizona

Tempe, AZ 85282
(602) 431-0030

California

Calabasas, CA 91302
(818) 880-9686

San Diego, CA 92123
(619) 565-4800

San Jose, CA 95131
(408) 441-9700

San Jose, CA 95134
Tustin, CA 92680
(714) 587-0404

Canada

Mississauga, Ontario L5T 1MA
(416) 670-7769

Dorval, Quebec H9P 2T5
(514) 421-7411

Neapean, Ontario K2E 7W5
(613) 226-6903

Quebec City, Quebec G2E 5RN
(418) 871-7500

Burnaby, British Columbia V5A 4T8
(604) 421-2333

Colorado

Englewood, CO 80112
(303) 799-0258

Connecticut

Wallingford, CT 06492
(203) 265-7741

Florida

Deerfield Beach, FL 33441
(305) 429-8200

Florida (continued)
Lake Mary, FL 32746
(407) 333-9300

Georgia

Deluth, GA 30071
(404) 497-1300

Illinois

Itasca, IL 60143
(708) 250-0500

Indiana

Indianapolis, IN 46268
(317) 299-2071

Kansas

Lenexa, KS 66214
(913) 541-9542

Distributors (continued)

Arrow Electronics: (cont.)
Maryland
Columbia, MD 21046
(410) 596-7800

Gathersburg, MD
(301) 596-7800

Massachusetts
Wilmington, MA 01887
(617) 658-0900

Michigan
Livonia, MI 48152
(313) 462-2290

Minnesota

Eden Prairic, MS 55344
(612) 941-5280

Missouri

St. Louis, MO 63146
(314) 567-6888

New Jersey

Marlton, NJ 08053
(609) 596-8000

Pinebrook, NJ 07058
(201) 227-7880

New York

Rochester, NY 14623
(716) 427-0300

Hauppauge, NY 11788
(516) 231-1000

North Carolina

Raleigh, NC 27604
(919) 876-3132

Ohio
Centerville, OH 45458
(513) 435-5563

Solon, OH 44139
(216) 248-3990

Oklahoma

Tulsa, OK 74146
(918) 252-7537

Oregon

Beaverton, OR 97006-7312
(503) 629-8090

Pennsylvania

Pittsburgh, PA 15238
(412) 963-6807

Texas

Austin, TX 78758
(512) 835-4180

Carrollton, TX 75006
(214) 380-6464

Houston, TX 77099
(713) 530-4700

Washington
Bellevue, WA 98007
(206) 643-9992

Spokane, WA 99206-6606
(509) 924-9500

Wisconsin

Brookfield, WI 53045
(414) 792-0150

SALES REPRESENTATIVES AND DISTRIBUTORS

Distributors (continued)
Marshall Industries:

Alabama

Huntsville, AL 35801
(205) 881-9235

Arizona

Phoenix, AZ 85044
(602) 496-0290

California

Marshall Industries, Corp. Headquarters
El Monte, CA 91731-3004
(818) 307-6000

Irvine, CA 92718
(714) 458-5301

Calabasas, CA 91302
(818) 878-7000

Rancho Cordova, CA 95670
(916) 635-9700

San Diego, CA 92123
(619) 627-4140

Milpitas, CA 95035
(408) 942-4600

Canada

Brampton, Ontario L6T 5G3
(416) 458-8046

Ottawa, Ontario
(613) 564-0166

Pointe Claire, Quebec H9R 5P9
(514) 694-8142

Colorado

Thornton, CO 80241
(303) 451-8383

Connecticut

Wallingford, CT 06492-0200
(203) 265-3822

Florida

Ft. Lauderdale, FL 33309
(305) 977-4880

Florida (continued)
Altamonte Springs, FL 32701
(407) 767-8585

St. Petersburg, FL 33716
(813) 573-1399

Georgia

Norcross, GA 30093
(404) 923-5750

Illinois
Schaumbrug, IL 60173
(708) 490-0155

Indiana

Indianapolis, IN 46278
(317) 297-0483

Kansas

Lenexa, KS 66214
(913) 492-3121

Maryland

Silver Springs, MD 20904
(301) 622-1118

Massachusetts

Wilmington, MA 01887
(508) 658-0810

Michigan

Livonia, MI 48150
(313) 525-5850

Minnesota

Plymouth, MN 55447
(612) 559-2211

Missouri

Bridgeton, MO 63044
(314) 291-4650

New Jersey

Fairfield, NJ 07006
(201) 882-0320

Mt. Laurel, NJ 08054
(609) 234-9100

New York

Endicott, NY 13760
(607) 785-2345

Hauppage, NY 11788
(516) 273-2695

Rochester, NY 14624
(716) 235-7620

North Carolina

Raleigh, NC 27604
(919) 878-9882

Ohio

Solon, OH 44139
(216) 248-1788

Dayton, OH 45414
(513) 898-4480

Oregon

Beaverton, OR 97005
(503) 644-5050

Pennsylvania

Mt. Laurel, NJ 08054
(609) 234-9100

Texas

Austin, TX 78754
(512) 837-1991

Richardson, TX 75081
(214) 705-0600

Houston, TX 77043
(713) 467-1666

Utah

Salt Lake City, UT 84119
(801) 973-2288

Washington

Bothell, WA 98011
(206) 486-5747

Wisconsin

Waukesha, WI 53186
(414) 797-8400

Distributors (continued)

Semad:

Calgary
Calgary, Alberta T2H 2 S 8
(403) 252-5664

FAX: (800) 565-9779

Montreal

Pointe Claire, Quebec H9R 427
(514) 694-0860

1-800-361-6558
FAX: (514) 694-0965

Ottawa

Ottawa, Ontario K1B 1A7
(613) 526-4866

FAX: (613) 523-4372

Toronto

Markham, Ontario L3R 4Z4
(416) 475-3922

FAX: (416) 475-4158

Vancouver

Burnaby, British Columbia V5G 4M1
(604) 451-3444

1-800-663-8956
FAX: (604) 451-3445

Zeus Electronics:

Yorba Linda, CA 92686 (714) 921-9000

San Jose, CA 95131
(408) 629-4789

Lake Mary, FL 32746
(407) 333-3055

Wilmington, MA 01887
(508) 658-4776

Port Chester, NY 10573
(914) 937-7400

Carrollton, TX 75006
(214) 380-4330

[^0]: Notes:
 The above specifications are for the Commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and Military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Contact your local sales office for more information.
 Commercial grade product is available in plastic. Military grade product is available in CERDIP and LCC.
 All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%\left(\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%\right.$ for Military $)$.

[^1]: Notes:
 $A C$ Characteristics guaranteed with $C_{L}=50 \mathrm{pF}$ as shown in Figure 1.
 *See "Parameter Measurement Information" in the General Information Section.

[^2]: H = HIGH Voltage Level, L=LOW Voltage Level, $\mathrm{X}=$ Don't Care

[^3]: $H=$ High voltage level
 L = Low voltage level
 $X=$ Don't care
 $Z=$ High impedance (OFF) state

[^4]: Military Temperature Commercial MIL-STD-883, Class B
 Plastic DIP
 CERDIP
 Small Outline IC
 Leadless Chip Carrier
 QSOP
 Inverting Octal Buffer/Line Driver
 Octal Buffer/Line Driver
 Fast Inverting Octal Buffer/Line Driver
 Fast Octal Buffer/Line Driver
 Ultra Fast Inverting Octal Buffer/Line Driver Ultra Fast Octal Buffer/Line Driver

 ## Commercial
 Military

[^5]: Commercial
 Military Temperature
 MIL-STD-883, Class B
 Plastic DIP
 CERDIP
 Small Outline IC
 Leadless Chip Carrier
 QSOP
 Inverting Octal Buffer/Line Driver
 Octal Buffer/Line Driver
 Fast Inverting Octal Buffer/Line Driver
 Fast Octal Buffer/Line Driver
 Ultra Fast Inverting Octal Buffer/Line Driver Ultra Fast Octal Buffer/Line Driver

 Commercial Military

[^6]: $H=H I G H$ Voltage Level
 L = LOW Voltage Level
 X = Don't Care

[^7]: H = HIGH Voltage Level,
 L = LOW Voltage Level,
 X = Don't Care,
 $Z=$ High Impedance

[^8]: * $=$ Before $\overline{\text { LEAB }}$ LOW-to-HIGH Transition

 H $=$ HIGH Voltage Level
 L = LOW Voltage Level

 - = Don't Care or Irrelevant

 A-to-B data flow shown: B-to-A flow control is the same, except using $\overline{\mathrm{CEBA}}, \overline{\mathrm{LEBA}}$, and $\overline{\mathrm{OEBA}}$

[^9]: Commercial
 Military Temperature
 MIL-STD-883, Class B
 Plastic DIP
 CERDIP
 Small Outline IC
 Leadless Chip Carrier
 QSOP
 Non-inverting Octal Transceiver/Register
 Fast Non-inverting Octal Transceiver/Register
 Ultra Fast Non-inverting Octal Transceiver/Register
 Commercial
 Military

