
CL-CD240012401

CIRRUSWGIC
Four-Channel, Multi-Protocol

Communications Controller

A Performance Comparison

of the

Scope

85C30
and the

CL-CD2400/2401

Data Communications Products Group
Cirrus Logic, Inc.

This report presents a performance evaluation of the Cirrus Logic, Inc.
CL-CD2400/CD2401 four-channel, multi-protocol communications con
troller as compared to the 85C30. It is the product of an ongoing test
program at Cirrus Logic.

Related Documents.
- CL-CD2400/2401 Data Sheet

e Copyright- Cinus Logic, Inc. 1991
All rights reserved. Permission is hereby granted for use, reproduction, republication, or abtraction of this material with attribution, by

companies not involved in the sale or manufacture of integrated circuits.

August1991

CIRRUS LOGIC

1. OVERVIEW OF THE CL-CD2400 AND CL-CD2401

CL-CD2400/2401
Communications Controller

The CL-CD2400 and CL-CD2401 are four-channel sync/async communications controllers designed
specifically to reduce host-system processing overhead and increase efficiency in all types of communica
tions applications. They have four fully independent serial channels that support all popular asynchronous,
character-synchronous, and bit-synchronous protocols at rates up to 64 kbps. Both devices are based on
a proprietary on-chip A ISC processor that performs all time-critical, low-level tasks, which would otherwise
be performed by the host system.

The CL-CD2400 and CL-CD2401 boost system efficiency with on-chip OMA, on-chip FIFOs, intelligent
vectored interrupts, including Good Data™ Interrupts, and intelligent protocol processing. The on-chip DMA
controller provides 'Fire and Forget' transmit support - the host only needs to inform the CL-CD2400 or
CL-CD2401 of the location of the packet to be sent. Similarly, on receive, the CL-CD2400 or CL-CD2401
will automatically receive a complete packet with no host intervention or assistance required. The OMA
controller also has an 'Append Mode' for use in asynchronous applications.

The DMA controller uses a dual-buffer scheme that makes it easy to implement simple or complex buffer
schemes, such as linked lists and circular queues. Each channel and direction has two active buffers; the
device transfers into or out of one while the host updates the other. The CL-CD2400/2401 then interrupts
the host at the completion of a frame or a buffer. In applications where buffers are of a small fixed size, the
dual buffering scheme allows large frames to be chained across multiple buffers.

For applications where OMA interface is not desired, the part may be operated as an interrupt-driven or
polled device. This choice is available individually for each channel and each direction -for example, you
can have DMA transmit and interrupt-driven receive.

In either case, 16-byte FIFOs on each channel and in each direction reduce latency time requirements and
make both software and hardware design less time-critical. Threshold levels on the FIFOs are user
programmable.

Efficient vectored interrupts are another way the CL-CD2400/2401 helps system efficiency. Separate
interrupts are generated for transmit, receive, and modem-signal-change, with unique user-defined vectors
for each type and channel. This allows very flexible interfacing and fast, efficient interrupt code. For
example, the Good Data Interrupt allows the host to vector directly to a routine that transfers the data -
no status or error-checking is required.

The CL-CD2400 and CL-CD2401 are functionally equivalent and differ only in their pinout. The CL-CD2400
is packaged in an 84-pin PLCC, and offers five clock/modem pins per channel; the CL-CD2401 is packaged
in a 100-pin QFP, and offers eight clock/modem pins per channel.

2. CL-CD2400/2401AND85C30 FEATURES COMPARED

The CL-CD2400/2401 combines the functions of two 85C30s and one DMA controller. Since different types
of DMA controllers can be used with the 85C30, it is not possible to compare the relative merits of the CL
CD2400/2401 OMA with the 85C30; however, some assumptions can be made. For instance, no OMA
controller can transfer data faster than the 85C30 allows.

2 August 1991

CL-CD2400/2401
Communications Controller CIRRUS LOGIC

The following table compares the features and capabilities of CL-CD2400/2401 and the 85C30.

GENERAL CL-CD2400/2401 85C30

Number of serial channels per chip 4 2
Number of DMA channels per chip 8 0
Number of timers per channel 2 0
Transmit FIFO size, per channel 16 1
Receive FIFO size, per channel 16 3

PROTOCOLS CL-CD2400/2401 85C30

Asynchronous YES YES
HDLC YES YES
SDLC YES YES
Bisync YES YES
X.21 YES NO

SYSTEM BUS CL-CD2400/2401 85C30

Data bus width 8 or 16 bits 8 bits only
Big-endian/little-endian addressing pin-selectable not available
Maximum clock frequency 20 MHz 16 MHz
Number of Interrupt Types 3 1
Ready/Wait signal YES NO (note 1)
Interrupt daisy chain YES YES
Read/Write access time 140 ns 6 clock cycles (note 2)
OMA transfer bandwidth 10 Mbytes/sec. (200 ns) 2.66 Mbytes/sec.

(375 ns) (note 3)
Package options 84-pin PLCC and 40-pin DIP and

100-pin QFP 44-pin PLCC

SERIAL CHANNELS CL-CD2400/2401 85C30

Number of modem lines/channel 5 3 (note 4)
Number of clock lines/channel 3 (note 5) 2
Number of DPLLs per channel 1 1
Types of clock encoding supported NRZ, NRZI, Manchester NRZ, NRZI, FM0/1
Number of BRGs per channel 2 1

NOTES:
1) As it is muxed with its OMA request signal, the 85C30 wait signal is not available in OMA systems.
2) Two clock cycles are required for access, and four more are required for 'recovery'. Recovery time is required after any type

of access to the 85C30.
3) The OMA bandwidth depends on the slower of the two, either the 85C30 or the external OMA controller. The limits of 85C30

have been shown; it is generally lowerthan the external OMA device. Bus arbitration time has not been included for two reasons:
first, it is system-dependent, not peripheral-dependent; and second, it is likely to be the same regardless of the communications
chip chosen.

4) Reflects pin count when full duplex OMA request is implemented. Some applications have four modem signals available,
depending on how OMA and wait signals are implemented.

5) The CL-C02400 multiplexes five modem and three clock signals onto five pins. The CL-C02401 provides eight independent
pins to support these functions. This is the only difference between the CL-C02400 and CL-C02401.

August1991 3

3. COMPARISON OF PERFORMANCE

3.1 The 85C30

CL-CD2400/2401
Communications Controller

The 85C30 imposes significant limitations on system design and throughput. It requires immediate, high
priority response by the CPU, both for interrupt service and for OMA access to the system bus. Its 3-byte
deep receive FIFO (without programmable threshold), and 1-byte-deep transmit FIFO are too small to
provide adequate latency between the host and the serial lines. As a result, a dedicated high-performance
CPU is needed to service the 85C30 in order to prevent overrun and underrun due to overflowing and
underflowing of the FIFOs.

Adding a OMA controller to the system (or integrating a OMA cell to the 85C30), will not provide significant
gains of performance to the system because of the shallow FIFOs. Multiple short bursts create repetitive
overhead in bus arbitration, and slow CPU performance by tying up the bus with data transfers.

Finally, the intrinsic 'recovery time' required for every access cycle to the 85C30 increases time for data
movement, with or without OMA. (Recovery time is the time needed by the 85C30 after any access, for
internal circuits to stabilize. The 85C30 requires four idle clocks between each access for internal
synchronization of system interface and instruction execution). In typical real-world applications, the host
CPU frequently has to access the 85C30 for control and status exchange in addition to data transfers.

In asynchronous applications, the CPU has to poll the receive character available bit after each character
read, even though all three bytes of FIFO are full. Parity and status checking are also needed because the
character may not be Good Data.

In HDLC transmit applications using OMA, the CPU still has to write the first and the last character
separately, in order to properly initiate and terminate the OMA transfers. (In some cases, the CPU may have
to transfer the first two bytes - refer to Figure 1 for details.) In addition, the CPU must set the AborVFlag
Bit to 'abort' during every frame, then as the last byte is being transferred, set the bit to 'flag'. Because there
is only a 1-byte-deep transmit FIFO, OMA latency must be kept very short, and the CPU has to monitor HDLC
transmit very closely to prevent underrun.

In Bisync applications, the CPU has to monitor character availability closely in order to enable/disable CRC
checking/generation in real time. Sending and receiving 'small' frames in HDLC, and Bisync can consume
a high percentage of CPU and system bus time, due to the amount of time-critical software overhead per
packet.

3.2 The CL-CD2400 and CL-CD2401

The CL-CD2400 and CL-CD2401 offer less burden on the host CPU. There are no time-critical interrupt
or OMA latency requirements, and as the OMA is integrated with the serial interface, no CPU activity is
required during the course of transmission of a packet.

In asynchronous applications, the 16-byte FIFOs eliminate time-critical interrupts - the threshold for
interrupts can be set to any level - so the time allowed for the host to respond to the interrupt can be as
long as needed. OMA can also be used to transfer asynchronous data. Again, the 16-byte FIFOs virtually
eliminate the need for time-critical access to the bus by the OMA controller. Likewise, the large Fl FO means
fewer OMA bursts, and less bus arbitration overhead. The Figures 1 and 2 show the steps required to
receive a string of 12 async characters.

4 August1991

CL-CD2400/2401
Communications Controller ~CIRRUS LOGIC

Repeat up to
12 times

85C30

Interrupt Occurs

Read Interrupt Type

Read Status

Read Char

Exit

Repeat Oto 2
times

CL-CD2400

Interrupt Occurs

Read # good bytes

Tranter 12 bytes

Exit

Figure 1. 85C30 and CL-CD2400 Flow Charts -
required to receive a string of 12 async characters

Note that 85C30 has only a three-byte FIFO on receive (with no threshold feature), so the host system will
have to handle at least four or as many as 12 interrupts.

In synchronous applications, the CL-CD2400 offers 'Fire-and-Forget' operation. The host can pass an
address pointer and length to the CL-CD2400, and an entire frame will be sent with no further effort.
Similarly, the CL-CD2400 will receive complete frames without any host intervention. The 85C30, on the
other hand, requires substantially more host CPU support. There are two time-critical portions of code
involved in starting and ending the frame transmission, as well as several additional steps overall. The two
flowcharts on the following page show the steps required to transmit a 50-byte frame in HDLC.

Refer to the CL-CD2400/2401 Data Sheet for further information.

August 1991 5

Time-Critical Code

Time-Critical Code

6

85C30

Begin

calc:ulale Address
of last byte of frame
(you'I need • later).

Preset 85C30 CRC
generator

Transfer 1st char to
85C30 under

program control

Load OMA Address
Pointer to ADR+1

Load OMA Length
Pointer to LEN-2

Enable OMA Controlfer

Set 85C30 Abort/Rag
bit to •Abort'

Alow OMA transfers to
complete

Get Int~ from OMA
controHer

Set Abort/Rag bit to
'Flag'

Transfer last char
to 85C30 under
program control

End

Transfer 2nd char
to 85C30 under
program control

Load OMA Address
Pointer to ADR+2

Load OMA Length
Poilter to LEN-3

CL-CD240012401
Communications Contra lier

CL-CD2400

Begin

Load OMA Address
Pointer to ADA

Load OMA Length
Pointer to LEN

Enable OMA Controller

Allow OMA transfer to
complete

End

Figure 2. 85C30 and CL-CD2400 Flow Charts -
required to transmit a 50-byte frame In HDLC

August 1991

CL-CD2400/2401
Communications Controller

3.3 Interrupt and OMA Latency Comparison

~CIRRUS LOGIC

There are two kinds of latencies to consider when evaluating system performance, OMA Bus-access
latency and host CPU interrupt repsonse latency. The C02400/2401 is substantially faster in both of these
categories than the 85C30.

OMA Latency CL-C02400/2401 85C30

Transmit 2000 µsec 125 µsec
Receive 2000 µsec 125 µsec

Interrupt Latency - Sync. Protocols CL-C02400/2401 85C30

Transmit infinite 125 µsec
Receive 2000 µsec 375 µsec

Interrupt Latecny - Async. Protocol CL-C02400/2401 85C30

Transmit 2000 µsec (Note 1} 125 µsec (Note 1)
Receive 2000 µsec 375 µsec

Note 1: Maximum response time to avoid underrun. An underrun is not a fatal error, so violating this specification
will not cause a problem; however, it will reduce system efficiency.

3.4 Performance Comparison

The HOLC family of protocols are the most widely used of the synchronous protocols, so we've begun with
several examples showing the advantages of the C02400/2401 over the 85C30 in HOLC applications.
Comparison of performance in an interrupt or polled system is presented in the first two examples, since
the 85C30 has no OMA controller on-chip.

Without knowing the OMA controller being used with the 85C30, we cannot quantify precisiely the
performance improvement the C02400 offers over the 85C30 solution, but we can make some reasonable
estimates. These are shown in the third example.

Example 4 shows the loading effect on a host CPU of interrupts, and quantifies the benefits of using a
datacom controller which reduces the number of interrupts the host must handle.

Example 5 shows the performance improvement in typical asynchronous applications.

In this example, and the ones that follow, we have not included the initialization code execution time. Only
times based on per-packet processing are used because power-on initialization execution time is not
usually a critical parameter.

August 1991 7

CIRRUS LOGIC
CL-CD2400!2401

Communications Controller

Example 1: Receiving HDLC Frame In Interrupt Mode

The times shown here are the actual amount of time spent accessing the peripheral chip. This analysis does
not include the time required by the host to set pointers, or do other work associated with handling the data
once it has been transferred. Instruction execution time has not been included, because there are so many
different CPUs of such a wide range of performance that it is not possible to make any general assumptions.
In gneral, the 85C30 requires more instructions to receive a frame than required by the CD2400/2401. This
means in the 'real world' the performance gain will be even greater.

85C30 Rx Data Mechanism

Interrupt Acknowledge Cycle
Recovery Time
Read RAS (for 1 char.)
Recovery Time
Reset Highest IUS
Recovery Time
Total

160 ns*
250 ns
125 ns
250 ns
125 ns
250 ns
1160 ns

CL-CD2400 Rx Data Mechanism
Interrupt Acknowledge Cycle
Read RFOC (#of bytes in FIFO)
Read RDA (Ready chars.)
Write to REOIR

200 ns*
200 ns
200 ns times N
200 ns

Total (600 + 200N) ns
where N = 1 to 16

* CPU context switch time is not included in the calculation. Note that relative advantage of the CL-CD2400
performance will increase i1 context switch time is considered, because of the significantly fewer number of
interrupts it generates. Refer to Example 3 on interrupt overhead for comparisons of this effect.

Calculatlon of Performance
Number of Bytes 85C30 Access Time CL-CD2400 Access Time Improvement Factor

8 1160 x 8 = 9.28 µs 600 + 200 x 8 = 2.2 µs 4.2

100 1160 x 100 = 116 µs 6 (600 + 200 x 16)
+ (600 + 200 x 4) = 24.2 µs 4.8

1000 1160 x 1000 = 1160 µs 62 (600 + 200 x 16)
+ (600 + 200 x 8) = 238 µs 4.9

8 August 1991

CL-CD2400/2401
Communications Controller ~CIRRUS LOGIC

Example 2: Transmitting HDLC Frame In Interrupt Mode

The times shown here are the actual amount of time spent accessing the peripheral chip. This analysis does
not include the time required by the host to set pointers or do other work associated with handling the data
once it has been transferred. Instruction execution time has not been included, because there are so many
different CPUs of such a wide range of performance that it is not possible to make any general assumptions.
In general, the CD2400/2401 requires fewer instructions that the 85C30, so the performance gain will be
even greater than indicated here.

85C30 Tx Data Mechanism

Interrupt Acknowledge Cycle
Recovery Time
Write WAS (for 1 char.)
Recovery Time
Reset Highest IUS
Recovery Time
Total

160 ns*
250 ns
125 ns
250 ns
125 ns
250 ns
1160 ns

CL-CD2400 Tx Data Mechanism

Interrupt Acknowledge Cycle
Write TDR (Write N chars.)
Write to TEIOR

200 ns*
200 ns times N
200 ns

Total (400 + 200N) ns
where N = 1 to 16

* CPU context switch time is not included in the specification. The time required by the processor to enter its interrupt
context, and to save necessary registers is not included. The times shown are only the time required to fetch
necessary status from the device. Note that the CL-C02400 performance advantage will increase if context switch
time is considered.

Cslculatlon of Performance (not Including Interrupt context switch time):

Number of Bytes 85C30 Access Time CL-CD2400 Access Time

8 1160 x 8 = 9.28 µs 400 + (200 x 8) = 2.0 µs

100 1160 x 100 = 116 µs 6 (400 + (200 x 16))

Improvement Factor

4.64

+ (400 + 200 x 4) = 22.8 µs 5.08

1000 1160 x 1000 = 1160 µs 62 (400 + (200 x 16))
+ (400 + 200 x 8) = 225 µs 5.15

August 1991 9

CIRRUS LOGIC

Example 3: Transmitting HDLC In OMA Mode

CL-CD240012401
Communications Controller

It is not possible to provide an exact comparison between the CL-C02400 and the 85C30 when using an
external OMA controller because of the wide variety of OMA controllers currently available. However, some
general comparisons and observations can be made.

Both the CL-C02400 and the 85C30/0MA require the following:

1. Write a start-of-frame pointer to the OMA registers.

2. Write a length-of-frame pointer to the OMA registers.

3. Enable the OMA to transfer data.

In addition, the 85C30/0MA combination requires a start of the transfer manually by moving one byte1:

1. Modify the start-of-frame pointer by adding 1 to it before writing to the OMA.

2. Modify the length-of frame by subtracting 2 from it.

3. Calculate the pointer to the last byte in the frame and have it ready.

4. Manually reset the CRC generator.

5. Transfer the first byte under program control from RAM to the 85C30. This 'primes the pump', causing
the 85C30 to then request more data from the OMA controller.

6. Enable the OMA controller.

7. Immediately set the 85C30 Flag/ Abort Bit to 'abort', so that if the OMA controller underruns the frame,
it will be aborted (as it should be in that case).

8. Wait for an interrupt from the OMA controller, indicating it is done with the transfer.

9. Immediately set the 85C30 Flag/Abort Bit back to 'flag'.

10. Immediately move the last character from RAM to the 85C30.

There are six time-critical steps involved in starting the transmission of a frame. Three of these are accesses
to the 85C30, and three are accesses to the DMA controller. In addition to these six accesses, a number
of host CPU cycles will be required to fetch pointers, etc. There are three time-critical steps involved in
ending the transmission of a frame, including receiving an interrupt and entering an interrupt context.

Together, there are nine 1/0 accesses, one interrupt context-switch time, and several instructions that must
be executed. At both the beginning and the end of the frame one byte time is available to perform these
time-critical operations (to avoid short frames at the beginning and aborted frames at the end). A typical
56 kbps synchronous line allows 143 µs per byte; at 64 kbps this drops to 125 µs. The problem is then
whether or not the code can execute in the available time.

The answer is 'yes' for a single channel system. However, as the number of channels increases, it becomes
increasingly difficult for one host CPU (even a fast one) to keep pace. A design based on a 16 MHz 68000
processor, for instance, needs about 1 O µs for the interrupt context switch alone. A four-channel system

, Two bytes may need to be moved, depending on the relative speed of the OMA controller being used and the 85C30. When
the first byte is moved to the 85C30 transmit holding register, the device moves it into the shift register, begins transmission, and
requests another byte. In systems with sufficiently fast OMA controllers, the controller will supply the byte in time. Some systems
may underrun, however, which causes an illegal short frame or aborted frame. The flowchart provided in Figure 2 shows the case
where it is necessary to test the 85C30 transmitter to see if a second byte is needed; this case is more complex than the one outlined
above in Example 5. Most real-world applications pre-calculate all of the pointers, because once the frame is started there is not
much time for address calculation.

10 August1991

CL-CD2400/2401
Communications Controller ~CIRRUS LOGIC

therefore has only 85 µs to handle pointer manipulation and all other work for four channels - very difficult,
and this still does not include the receive-side code! Systems with more channels require much faster and
more expensive host processors.

The CL-C02400, on the other hand, has more relaxed time-critical code segments, as well as a significantly
reduced host CPU effort required per packet. Only three steps are required to send a packet, so only a few
simple host instructions are necessary. None of these are time-critical, so the host response can be as slow
as necessary. On the receive side, the host need only respond within 2000 µs - easy even in multi-channel
designs. Typical low-cost CISC processors can support many channels. Furthermore, in high-channel
count systems, there is a fail-safe, self-limiting characteristic: an overly-busy system will simply have more
flags between packets, instead of aborting frames and wasting bandwidth.

Given the number of bus cycles used in accessing the peripheral chip(s) in each of the two cases, it is
possible to discern the amount of bus time used in each case. Assumed bus speed is 1 O MHz, and both
OMA controllers can do a cycle in two clocks, and an assumed packet is 50 bytes.

For the 85C30, the 10 steps shown in this example will require 28.3 µs of bus cycles to access the 85C30
and allow the OMA controller to do its transfers. This does NOT include the actual CPU instruction execution
time or interrupt overhead.

For the CL-C02400, the three steps in this example and OMA bus time will total 5.4 µs. Again, this does
not include the actual CPU instructions or interrupt context overhead, but as noted above, it is substantially
less with the CL-C02400 than with the 85C30. According to this data, the CL-CD2400 is at least six times
more efficient than the 85C30, and depending on the host system CPU, may be more efficient than that.

August 1991 11

CL-CD2400/2401
Communications Controller

Example 4: Effect of Interrupt Context Switch nme on Relative Performance

Interrupt response time-the time required by the host CPU to switch contexts-depends on the processor
and the number of registers that must be saved. Processors differ, so it is not possible to determine an
absolute figure for the amount of overhead. Some estimates, however, can be made. The 68000, for
instance, requires 38 clock cycles to save internal state, and 48 more clock cycles to save three address
and two data registers. Restoring the registers and context at 16.67 MHz requires 52 and 24 clocks,
respectively, and this requires 9. 72 µs. This value is typical for the kinds of processors most often used in
intelligent 1/0 systems. (Although it should be noted that RISC processors will generally be shorter;
alternately, more complex software environments will result in the time being much longer.) The following
two tables show the number of interrupts, and their effect on the host processor.

Number of Interrupts:
Number of Bytes #of 85C30 Interrupts

8 8
100
1000

100

1000

Net Performance, 68000 @ 16.67 MHz.

Number of Bytes

8
85C30 Execution Time

9.28 + 8 x 9.72 = 87 µs

of CL-CD2400 Interrupts Improvement Factor

1 8
7
63

14.3

15.8

CL-CD2400 Execution Time Improvement Factor
2 + 1 x 9.72 = 11.7 µs 7.43

100 116 + 100 x 9.72 = 1204 µs 22.8 + 7 x 9.72 = 90.8 µs 13.3

13.0 1000

12

1160 + 1000 x 9.72
= 10880 µs

225 + 63 x 9.72 = 837 µs

August 1991

CL-CD240012401
Communications Controller

Example 5: Receiving Asynchronous Data In Interrupt Mode

The times shown here are the actual amount of time spent accessing the peripheral chip. This analysis does
not include the time required by the host to set pointers, or do other work associated with handling the data
once it has been transferred. Instruction execution time has not been included because there are so many
different CPUs of such a wide range of performance that it is not possible to make any general assumptions.

85C30 Rx Data Mechanism

Interrupt Acknowledge Cycle 160 ns*
Recovery Time 250 ns
Read Status Byte 125 ns
Recovery Time 250 ns
Test Status Byte 125 ns
Read Rev Data Reg (for 1 char.) 125 ns
Recovery Time 250 ns
Reset Highest IUS 125 ns
Recovery Time 250 ns
Total 1660 ns

Calculation of Performance

Number of Bytes 85C30 Access Time

8 1660 x 8 = 13.28 µs

100 1660 x 100 = 166 µs

1000 1660 x 1000 = 1660 µs

SUMMARY

CL-CD2400 Rx Data Mechanism

Interrupt Acknowledge Cycle
Read RFOC (# of bytes in FIFO)
Read RDA (Ready chars.)
Write to REOIR

200 ns*
200 ns
200 ns times N
200 ns

Total (600 + 200N) ns
where N = 1 to 16

CL-CD2400 Access Time

600 + 200 x 8 = 2.2 µs

6 (600 + 200 x 16)

Improvement Factor

6.0

+ (600 + 200 x 4) = 24.2 µs 6.8

62 (600 + 200 x 16)
+ (600 + 200 x 8) = 238 µs 7.0

In all applications, the CL-CD2400 offers a number of advantages over the 85C30. It is easier to program,
requires less host CPU time, and less host bus bandwidth to support a given level of traffic. It has no time
critical interrupt requirements, and has very low bus latency and interrupt latency requirements. The CL
CD2400/2401 offer the most functionality and high level of integration available today-four full channels,
FIFOs, and OMA in one 84- or (smaller) 100-pin package.

August 1991 13

CIRRUS LOGIC

Direct Sales Offices
Domestic
N. CALIFORNIA
San Jose
TEL: 408/436-7110
FAX: 408/437-8960

S. CALIFORNIA
Tustin
TEL: 714/258-8303
FAX: 714/258-8307

Thousand Oaks
TEL: 805/371-5381
FAX: 8051371-5382

ROCKY MOUNTAIN
AREA
Boulder, CO
TEL: 3031939-9739
FAX: 303/440-5712

The Company

SOUTH CENTRAL
AREA
Austin, TX
TEL: 5121794-8490
FAX: 5121794-8069

NORTHEASTERN
AREA
Andover, MA
TEL: 508/474-9300
FAX: 508/474-9149

Philadelphia, PA
TEL: 215/251-6881
FAX: 215/651-0147

SOUTH EASTERN
AREA
Boca Raton, FL
TEL: 4071994-9883
FAX: 407/994-9887

Atlanta, GA
TEL: 404/263-7601
FAX: 4041729-6942

International
GERMANY
Herrsching
TEL: 49/08152-2030
FAX: 49/08152-6211

CL-CD2400/2401
Performance Comparison

JAPAN
Tokyo
TEL: 81/3-5389-5300
FAX: 81/3-5389-5540

SINGAPORE
TEL: 65/3532122
FAX: 65/3532166

TAIWAN
Taipei
TEL: 886/2-718-4533
FAX: 886/2-718-4526

UNITED KINGDOM
Berkshire, England
TEL: 441344-780-782
FAX: 44/344-761-429

Cirrus Logic, Inc., produces high-integration peripheral controller circuits for mass storage, graphics,
and data communications. Our products are used in leading-edge personal computers, engineering
workstations, and office automation equipment.

The Cirrus Logic formula combines proprietary S/LA ™ t IC design automation with system design
expe:r:tise. The S /LA design system is a proven tool for developing high-performance logic circuits in
half the time of most semiconductor companies. The results are better VLSI products, on-time, that
help you win in the marketplace.

Cirrus Logic's fabless manufacturing strategy, unique in the semiconductor industry, employs a
full manufacturing infrastructure to ensure maximum product quality, availability and value for our
customers.

Talk to our systems and applications specialists; see how you can benefit from a new kind of
semiconductor company.

t U.S. Patent No. 4,293,783 ©Copyright, Cirrus Logic, Inc., 1.991

Cirrus logic, Inc. believes the information contained in this document is accurate and reliable. However, it is subject to change
without notice. No responsibility is assumed by Cirrus Logic, Inc. for its use, nor for infringements of patents or other rights of third
parties. This document implies no license under patents or copyrights. Trademarks in this document belong to their respective
companies. Cirrus logic, Inc. products are covered under one or more of the following U.S. patents: 4,293,783; Re. 31,287;
4,763,332; 4,7n,635; 4,839,896; 4,931,946; 4,979, 173.

CIRRUS LOGIC, Inc., 3100 West Warren Ave. Fremont, CA 94538
TEL: 415/623-8300 FAX: 4151226-2160 572400-001

