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Introduction 

1. Introduction 
This report is a comprehensive technical guide to programmable digital signal 

processors. Programmable digital signal processors (often called DSPs, PDSPs, or DSP 
processors) are microprocessors that are specialized to perform well in digital signal pro­
cessing-intensive applications. Since the introduction of the first commercially successful 
DSP processors in the early 1980s, dozens of new processors have been developed, offer­
ing system designers a vast array of choices. According to the market research firm For­
ward Concepts, sales of user-programmable DSPs will total roughly US $4.4 billion in 
2001, with a projected annual growth rate of 40% [Stra98]. With semiconductor manufac­
turers vying for bigger shares of this booming market, designers' choices will broaden 
even further in the next few years. 

Scope and Purpose 

This report is intended for anyone who is evaluating or comparing DSP processors. 
Our emphasis is on completeness, in-depth analysis, objectivity, and consistency. We 
present each of the key elements of DSP processor technology and examine current prod­
uct offerings with a critical eye. We expect that this report will be especially useful for 
electronic systems designers, processor developers, engineering managers, product plan­
ners, and marketing managers. It will aid in choosing or designing the DSP processor or 
processors that are best suited to a given application and in developing an understanding 
of how the capabilities of DSP processors can be used to meet the needs of the application. 

Changes in the 2001 Edition 

This is the 2001 Edition of Buyer's Guide to DSP Processors. The most significant 
changes from the 1999 edition include: 

• New Processors 
We have added analysis and benchmark results for five new DSP processor fami­
lies: the Texas Instruments TMS320C55xx, Texas Instruments TMS320C64xx, 
Analog Devices ADSP-219x, Motorola DSP5685x, and the StarCore SC140. We 
have also added an extensive qualitative analysis of Analog Devices' Tiger­
SHARC architecture (benchmark results were not available at the time this report 
was published). 

• New Benchmarks 
This is the first edition of Buyer s Guide to DSP Processors to use the new version 
of the BDTI Benchmarks™, released in 1999. The new edition of the benchmark 
suite adds three new benchmarks (Viterbi Decoder, Control, and Bit Unpack), 
eliminates two benchmarks (Convolutional Encoder and FSM), and revises the 
specifications for several of the original BDTI Benchmarks, such as the 
Two-Biquad IIR and 256-Point FFf benchmarks. 
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• BDTImark2000™ Scores 

• 

• 

• 

With the introduction of the new version of the BDTI Benchmarks, a new version 
of the BDTImark has also been created: the BDTImark2000. Like the original 
BDTImark, the BDTImark2000 provides a convenient estimate of processor's 
DSP speed and is much more realistic that traditional simplified metrics like MlPS 
andMFLOPS. 

Revised Analyses for Previously Evaluated Processors 
We have expanded and updated our analysis for previously evaluated processor 
families with new insights and new family members, as well as updates on prices, 
package options, speeds, operating voltages, tools, and many other critical details. 
We have implemented the latest version of the ~DTI Benchmarks for older proces­
sors that are included in the benchmark analysis in this report. 

Coverage of Older or Highly Specialized Processors 
For some older processors we have either eliminated coverage entirely or limited 
coverage to a description of the architecture without including detailed benchmark 
results. Additionally, we have discontinued coverage of processors that are highly 
specialized for niche applications. Excluding these processors allowed us to focus 
our evaluation on processors of the most interest to the largest number of users. 

Scope of Coverage of DSP Processor Architectural Concepts 
In this edition of Buyer's Guide, we have eliminated the detailed introduction to 
DSP processor architectures. This introduction can be found in BDTl's textbook, 
DSP Processor Fundamentals [BDTI96]. 

Organization 

This report is organized as follows: 

• Authors 
Chapter 2 provides brief background information on the authors of this report. 

• Digital Signal Processing and DSP Systems 
Chapter 3 provides a high-level overview of digital signal processing, including 
DSP system features and applications. 

• DSP Processor Embodiments and Alternatives 
Chapter 4 provides a brief introduction to DSP processors and then discusses the 
different forms that DSP processors take, including chips, multi-chip modules, and 
SoC cores. In this chapter we also briefly touch on alternatives to DSP processors, 
such as fixed-function DSP integrated circuits and general-purpose processors. 

• Guidance for Choosing a Processor 
In Chapter 6 we present detailed run-time profiling data to illustrate the kinds of 
demands that typical applications make on DSP processors. 

© 2001 Berkeley Design Technology, Inc. 



Introduction 

• Information on Other Processors 
In Chapter 5 we provide information on where to find analyses on processors that 
are not covered in this report. 

• In-Depth Processor Analyses 
In Chapter 7 we provide in-depth analyses of seventeen OSP processors and pro­
cessor families, highlighting the distinctive features, strengths, and weaknesses of 
each, including factors such as the quality of development tools and applications 
engineering support. 

• Benchmark Results 
To provide a basis for fair comparisons of OSP processor performance, we have 
developed the BOTI Benchmarks™. Chapter 8 presents benchmark results for 
fourteen processors and processor families, and examines the number of cycles 
required to execute the benchmarks, execution speed, cost-performance, energy 
efficiency, and memory usage. 

• Conclusions 
In Chapter 9 we present our conclusions on strategies for comparing processors, 
the current state-of-the-art in OSP processors, and likely future developments in 
DSP processor technology. 

• Vendor Contact Information 
This appendix contains contact information for companies that sell OSP proces­
sors and related products and services covered in this report. 

• References, Bibliography, Glossary, and Index 
A glossary of OSP processor-related terms provides definitions of technical termi­
nology used in this report. The bibliography lists useful sources of information for 
those interested in delving more deeply into the topics covered here. The Refer­
ences section lists related publications referenced in this document. References are 
denoted with square brackets, as in [BOTI97]. To help you quickly find the infor­
mation you need, an extensive index is included at the end of this report. 

Related Resources 

BOTI offers a number of products and services related to this report. 

• BOTI publishes technical evaluations which provide in-depth analyses of specific 
processors. These reports provide detailed benchmark results, along with compari­
sons to competing processors from other vendors. Technical eVialuations published 
to date include Inside the StarCore SC140, Inside the Infineon Carmel, Inside the 
Siemens TriCore, and Inside the Lucent DSP 16000. 

• BOTI offers the Benchmark Analysis Tool (BAT), a software complement to 
Buyer's Guide to DSP Processors. The BAT simplifies processor selection and 
competitive analysis by allowing easy customization of BOTI's detailed OSP 
benchmark analyses to study specific scenarios. 
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• BOTI licenses the BOTI Benchmark specification and methodology to processor 
developers and users to facilitate in-house benchmarking. 

• BOTI provides a variety of training and consulting services which are further 
described in Chapter 2. 

• BOTI's website, www.BDTl.com. offers a variety of information about OSP, 
including the comp.dsp newsgroup FAQ, summary descriptions of nearly all cur­
rently available OSP processors and cores, a pocket guide to OSP processors, and· 
articles by BOTI authors. 
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About the Authors 

2. About the Authors 
Berkeley Design Technology, Inc. (BDTI) was founded in 1991 to assist compa­

nies in creating, selecting, and using DSP technology. The technical staff of BDTI has 
extensive experience in the development of DSP-intensive software and hardware for 
commercial applications. In addition, each of the founders of BDTI has been a key con­
tributor to pioneering research in the field of DSP design tools and methodologies at the 
University of California at Berkeley. 

Berkeley Design Technology, Inc. offers a variety of services, including: 

• Published reports on DSP technology. BDTI publishes a variety of unique tech­
nical reports and books. Buyer s Guide to DSP Processors is BDTI's comprehen­
sive technical analysis of programmable digital signal processors. Nearly 900 
pages in length, Buyer s Guide contains in-depth evaluations of the architecture, 
instruction set, peripherals, development tools, and applications support of every 
major commercial DSP processor. The evaluations are quantified with processors' 
scores on the BDTI Benchmarks™, a suite of critical DSP algorithms that have 
become the industry-standard measure of nsp performance. Every benchmark 
implementation is coded in assembly language and painstakingly optimized to 
reveal each processor's true performance potential. 
BDTI also publishes a series of smaller, more focused reports that cover single 
processors. These reports include Inside the StarCore SC140,1nside the Infineon 
Carmel, Inside the Siemens TriCo re, and Inside the Lucent DSP16000. New 
reports are added to the series regularly; contact BDTI for information. 

• Development of DSP software. BDTI applies its unique expertise in processor 
architectures and DSP applications to provide DSP software development services. 
BDTI develops highly optimized DSP software for component libraries, modules, 
and complete applications, especially for audio and telecommunicationsapplica­
tions. BDTI has experience programming a wide variety of target processors. 

• Consulting and processor evaluation services. BDTI provides consulting ser­
vices to leading companies that develop and use DSP technology. BDTI's consult­
ing expertise is in the evaluation and specification of processor architectures, DSP 
design tools, DSP algorithms, and other DSP technology. BDTI's processor evalu­
ation methodology, which features the BDTI Benchmark specification, is available 
for license to processor developers and users. 

• Training. BDTI offers courses to help engineers, marketers, and managers 
develop their knowledge of DSP technology. Courses are available for on-site 
delivery or in electronic format. Course descriptions are posted on BDTI's website 
at www.BDTI.com. BDTI also develops custom courses for customers' specific 
needs. 
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BDTI's customers include major semiconductor, consumer electronics, telecom­
munications, and software companies who are leaders in the development and application 
of DSP technology. 

The authors welcome your comments. Please forward your corrections and sug­
gestions to the authors in care of BDTI. 

BDTI can be reached by telephone at +1 (510) 665-1600, by fax at +1 (510) 
665-1680, by electronic mail at info@BDTI.com, and on the World Wide Web at 
www.BDTl.com. 
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Digital Signal Processing and DSP Systems 

3. Digital Signal Processing and DSP Systems 
For the purposes of this report, we define a DSP system to be any electronic sys­

tem making use of digital signal processing. Our informal definition of digital signal pro­
cessing is the application of mathematical operations to digitally represented signals. 
Signals are represented digitally as sequences of samples. Often, these samples are 
obtained from physical signals (for example, audio signals) through the use of transducers 
(such as microphones) and analog-to-digital converters. After mathematical processing, 
digital signals may be converted back to physical signals via digital-to-analog converters 
and transducers (such as speakers). 

In some systems, the use of DSP is central to the operation of the system. For 
example, modems and digital cellular telephones rely very heavily on DSP technology. In 
other products, the use of DSP is less central, but often offers important competitive 
advantages in terms of features, performance, and cost. For example, manufacturers of 
analog consumer electronics devices such as audio amplifiers widely employ DSP tech­
nology to add features such as simulation of concert hall acoustics. 

This chapter presents a high-level overview of digital signal processing. We first 
discuss the advantages of DSP over analog systems. We then describe some salient fea­
tures and characteristics of DSP systems in general. We conclude with a brief look at some 
important classes of DSP applications. 

This chapter is not intended to be a tutorial on DSP theory. For a general introduc­
tion to DSP theory, we recommend one of the many textbooks available on DSP, such as 
Discrete-Time Signal Processing by Oppenheim and Schafer [Oppe89] or Understanding 
Digital Signal Processing by Richard G. Lyons [Lyon97]. 

Advantages of DSP 

Digital signal processing enjoys several advantages over analog signal processing. 
The most significant of these is that DSP systems are able to accomplish tasks inexpen­
sively that would be difficult or even impossible using analog electronics. Examples of 
such applications include speech synthesis, speech recognition, and high-speed data com­
munication using error-correction coding. All of these tasks involve a combination of sig­
nal processing and control (e.g., making decisions regarding received bits or operating 
conditions) that is extremely difficult to implement using analog techniques. 

DSP systems also enjoy two additional advantages over analog systems: 

• Insensitivity to environment. Digital systems, by their very nature, are consider­
ably less sensitive to environmental conditions than analog systems. For example, 
an analog circuit's behavior depends on its temperature. In contrast, barring cata­
strophic failures, a DSP system's operation does not depend on its environment. 
Whether in the snow or the desert, a DSP system delivers the same response. 

• Insensitivity to component tolerances. Analog components are manufactured to 
particular tolerances-a resistor, for example, might be guaranteed to have a resis-
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tance within one percent of its nominal value. The overall behavior of an analog 
system depends on the actual values of all of the analog components used. As a 
result, two analog systems of exactly the same design will have slightly different 
behaviors due to slight variations in their components. In contrast, barring a mal­
function, two identical digital systems will always produce the same outputs given 
the same inputs. 

These two advantages combine synergistically to give nsp systems an additional advan­
tage over analog systems: 

• Predictable, repeatable behavior. Because a nsp system's output does not vary 
due to environmental factors or component variations, it is possible to design sys­
tems having exact, known responses that do not vary. 

Finally, some nsp systems have two other advantages over analog systems: 

• Reprogrammability. If a nsp system is based on a programmable processor or 
other programmable device, it can be reprogrammed--even in the field-to per­
form other tasks. In contrast, analog systems usually require physically different 
components to perform different tasks. 

• Size. The size of analog components varies with their values; for example, a 
100-microfarad capacitor used in an analog filter is physically larger thana 
1O-picofarad capacitor used in a different analog filter. In contrast, nsp implemen­
tations of both filters might well be the same size-indeed, might even use the 
same hardware, differing only in their filter coefficients-and might be smaller 
than either of the two analog implementations. 

These advantages, coupled with the fact that DSP can take advantage of the rapidly 
increasing densities and speeds enabled by more advanced digital Ie manufacturing pro­
cesses, make nsp the solution of choice for an expanding range of signal processing 
applications. 

Characteristics of DSP Systems 

In this section we describe a number of characteristics common to all nsp sys­
tems, including algorithms, sample rate, clock rate, and arithmetic types. 

Algorithms 

nsp systems are often characterized by the algorithms used. The algorithms spec­
ify the arithmetic operations to be performed but do not specify how those operations are 
to be implemented. They might be implemented in software on an ordinary microproces­
sor or programmable signal processor, or they might be implemented in custom integrated 
circuits. The selection of an implementation technology is determined in part by the 
required processing speed and arithmetic precision. Table 3.0-1 lists some common types 
of nsp algorithms and some applications in which they are typically used. 
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Classes of System Application 
DSP Algorithms 

Speech coding and Digital cellular telephones, voice-over-Internet, digital cordless telephones, multimedia 
decoding computers, secure communications, tapeless answering machines 

Speech encryption and 
Digital cellular telephones, personal communications systems, secure communications 

decryption 

Speech recognition 
Advanced user interfaces, multimedia computers, robotics, automotive applications, 
cellular telephones, personal communications systems, voice response systems 

Speech synthesis Advanced user interfaces, robotics, voice response systems 

Speaker identification Security, multimedia computers, advanced user interfaces 

High-fidelity audio 
Consumer audio, consumer video, digital audio broadcast, professional audio, multime-

encoding and decod-
ing 

dia computers, Internet audio 

Digital cellular telephones, personal communications systems, digital cordless tele-
Modem algorithms phones, digital audio broadcast, digital signaling on cable TV, multimedia computers, 

wireless computing, navigation, data/facsimile modems, secure communications 

Noise cancellation Professional audio, advanced vehicular audio, industrial applications 

Audio equalization Consumer audio, professional audio, advanced vehicular audio, music, hearing aids 

Ambient acoustics 
Consumer audio, professional audio, advanced vehicular audio, music, games 

emulation 

Audio mixing and 
Professional audio, music, multimedia computers 

editing 

Sound synthesis Professional audio, music, multimedia computers, advanced user interfaces, games 

Vision 
Security, manufacturing, advanced user interfaces, instrumentation, robotics, naviga-
tion 

Image compression Digital photography, digital video, multimedia computers, videoconferencing, con-
and decompression sumervideo 

Image compositing Multimedia computers, consumer video, advanced user interfaces, navigation 

Beamforming Navigation, medical imaging, radar, sonar, signals intelligence, cellular base stations 

Echo cancellation Speakerphones, hands-free cellular telephones 

Spectral estimation Signals intelligence, radar, sonar, professional audio, music 

TABLE 3.0-1. Common DSP algorithms and typical applications. 
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Sample Rates 

A key characteristic of a DSP system is its sample rate: the rate at which samples 
are consumed, processed, or produced. Combined with the complexity of the algorithms 
used in the system, the sample rate determines the required speed of the implementation 
technology. A familiar example is the digital audio compact disc (CD) player, which pro­
duces samples at a rate of 44.1 kHz on two channels. 

Of course, a DSP system may use more than one sample rate; such systems are 
said to be multirate DSP systems. An example is a converter from the CD sample rate of 
44.1 kHz to the digital audio tape (DAT) rate of 48 kHz. Because of the awkward ratio 
between these sample rates, the conversion is usually done in stages, typically with at least 
two intermediate sample rates. Another example of a multirate algorithm is a filter bank, 
used in applications such as speech, audio, and video encoding and some signal analysis 
algorithms. Filter banks typically consist of stages that divide a signal into high- and 
low-frequency portions. These new signals are then downsampled (i.e., their sample rate 
is lowered by periodically discarding samples) and divided again. In multirate applica­
tions, the ratio between the highest and the lowest sample rates in the system can become 
quite large, sometimes exceeding 100,000 to 1. 

The range of sample rates encountered in signal processing systems is huge. In 
Figure 3.0-1 we show the rough positioning of a few classes of applications with respe~t to 
·algorithm complexity and sample rate. Sample rates for applications range over 12 orders 
of magnitude! Only at the very top of that range is digital implementation rare. This is 
because the cost and difficulty of implementing a given algorithm digitally increases with 
the sample rate. For this same reason, DSP applications that use at higher sample rates 
tend to use less complex algorithms than those using lower sample rates. 

Clock Rates 

Digital electronic systems are often characterized by their clock rates. The clock 
rate usually refers to the rate at which a system or sub-system performs its most basic unit 
of work. Often, systems use different clock rates for different purposes. Within a single 
chip, clock rates of 500 MHz and higher are becoming common in mass-produced, com­
mercial products. Between chips, clock rates of up to 100 MHz are common, with faster 
rates found in some high-performance products. For DSP systems, the ratio of clock rate 
to sample rate is one of the most important characteristics used to determine how the sys­
tem will be implemented. The relationship between the clock rate and the sample rate in a 
system or component partially determines the amount of hardware needed to implement a 
given algorithm in real-time. As the ratio of sample rate to clock rate increases, so does the 
amount and complexity of hardware required to implement the algorithm. 

Numeric Representations 

Arithmetic operations such as addition and multiplication are at the heart of DSP 
algorithms and systems, and signal fidellty (i.e., range and precision) is usually a key per-

© 2001 Berkeley Design Technology, Inc. 



Digital Signal Processing and DSP Systems 

formance metric. As a result, the numeric representations and type of arithmetic used can 
have a profound influence on the behavior and performance of a nsp system. The most 
important choice for the designer is between fixed-point and floating-point arithmetic. 
Fixed-point arithmetic represents numbers in a fixed range (e.g., -1.0 to +1.0) with a finite 
number of bits of precision (called the word width). For example, an eight-bit fixed-point 
number provides a resolution of 11256 of the range over which the number is allowed to 
vary. Numbers outside of the specified range cannot be represented; arithmetic operations 
that would result in a number outside this range either saturate (that is, are limited to the 
largest positive or negative representable value) or overflow (that is, the extra bits result­
ing from the arithmetic operation are discarded). 

Floating-point arithmetic greatly expands the representable range of values. Float­
ing-point arithmetic represents every number in two parts: a mantissa and an exponent. 
The mantissa is, in effect, forced to lie between -1.0 and 1.0, while the exponent keeps 
track of the amount by which the mantissa must be scaled (in terms of powers of two) in 
order to create the actual value represented. That is: 
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1 Instrumentation 
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FIGURE 3:0;1: A rough illustration "of sample rates and relative algorithm 
complexities for a variety of DSP application classes. 
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value = mantissa x 2exponent 

Floating-point arithmetic provides much greater dynamic range (that is, the ratio between 
the largest and smallest values that can be represented) than fixed-point arithmetic using 
the same number of bits. Because it reduces the probability of overflow and the necessity 
of scaling, floating-point arithmetic can considerably simplify algorithm and software 
design. Unfortunately, processors that use floating-point arithmetic are generally slower 
and more expensive than processors that use fixed-point arithmetic, because floating-point 
arithmetic is more complicated to implement in hardware. 

Arithmetic and numeric formats are discussed in more detail in BDTI's textbook, 
DSP Processor Fundamentals. 

Execution-Time Predictability 

Many DSP systems are subject to hard real-time constraints, meaning that the sys­
tem must process or respond to inputs within a specified amount of time in every instance. 
In such systems, failure to meet real-time deadlines may cause malfunctions ranging from 
a reduction in signal quality to a loss of data to failure of a communications link. This type 
of performance constraint differs from, for example, performance requirements of per­
sonal computers. In a personal computer, the system is expected to respond to inputs 
within a reasonable amount of time on average, but exceeding the maximum desired 
response time is generally not considered a failure. 

To ensure that hard real-time constraints are met, the programmer must be able to 
predict how much time is required to execute time-critical sections of the application soft­
ware. Hence, a processor's execution-time predictability is often a significant consider­
ation in real-time DSP applications. 

In many cases, programmers writing real-time DSP applications can execute their 
software on a development board and measure the execution time. Unfortunately, measur­
ing execution time does not guarantee that the worst-case scenario is known; in some 
architectures, the execution timing of a specific segment of software may change depend­
ing on the instructions that preceded it, or depending on the locations of the instructions 
and associated data in memory. Execution timing may also be data dependent. Hence, 
measuring the execution time on hardware often does not solve the problem. 

Even in the absence of hard real-time constraints execution-time predictability can 
be important, because it plays a role in software optimization. If it is difficult to predict 
how long a given section of software will take to execute, it can be difficult to determine 
the effect of changes to the software-will the modified software require more, less, or the 
same amount of time as the original software? 

Of course, all processors are fundamentally deterministic; that is, given enough 
information about the processor's architecture and state, it is possible to predict the exact 
number of clock cycles required to execute a specific segment of software. However, the 
ease with which execution times can be predicted varies widely. Most DSP processors 
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have relatively straightforward architectures and are supported by tools to help the pro­
grammer predict execution times, such as software simulators that accurately report 
elapsed instruction cycles. In contrast, most high-performance general-purpose processors 
have very complex architectures and lack tool support to aid programmers in predicting 
execution times. These factors may make it extremely difficult to predict how long a sec­
tion of DSP software will take to execute, thus complicating DSP software development 
and optimization on high-performance CPUs. 

The complexity of DSP algorithms coupled with high data rates means that in 
many DSP applications, programmers develop (or optimize) software in assembly lan­
guage in order to squeeze the maximum performance out of the processor. In such cases 
the application programmer must understand the intricacies of the processor's architecture 
(including execution timing) in order to effectively select a processor, predict perfor­
mance, and optimize software. Where performance is not critical, developers sometimes 
make use of high-level language compilers to quickly generate application software. How­
ever, poor execution-time predictability is often a challenge for the compiler as well as the 
assembly-language programmer; if the rules governing the execution time of a small block 
of software are complicated, it may be difficult for the compiler to generate optimized 
software. 

A few of the latest architectures targeting DSP applications have begun to incorpo­
rate dynamic features traditionally found only in high-end general-purpose processors, in 
an effort to boost performance. For this reason, we include a brief discussion of some of 
the dynamic features and their impact on execution-time predictability. 

Caches 

High-performance DSP processors often use on-chip instruction caches, and in a 
few cases have recently also begun to incorporate data caches. When the required instruc­
tions and data are contained in the on-chip caches, the processor executes at full speed. 
Otherwise, the processor may be stalled while instructions and data are loaded into the 
caches from main memory. In real-time applications, caches can be problematic because 
they complicate the task of predicting software execution times. For this reason, many 
DSP processors allow programmers to manually control cache segments, thereby ensuring 
that critical instructions and data are present in the caches when needed. The cost of this 
control is that of degraded performance in other sections of the program. 

DynamiC Memory 

To reduce costs, some systems rely on dynamic RAM (DRAM) for their main 
memory. Depending on the type of DRAM devices chosen and the details of the system 
design, accesses to DRAM-based main memory may degrade execution-time predictabil­
ity because the DRAM may temporarily be unavailable while data is refreshed, and 
because DRAM requires variable access times, for example access times increase when 
crossing memory page boundaries. 
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Branch Prediction 

Program branches can be very costly in terms of execution time, because instruc­
tions following the branch that have. already entered the processor's pipeline must be 
flushed, and the pipeline must be reloaded. (See BDTI's textbook, DSP Processor Funda­
mentals, for a discussion of pipelines.) One approach to decreasing this execution-time 
penalty is to provide hardware in the processor that attempts. to predict the outcome of 
upcoming branches. The processor then fetches instructions based on the outcome of this 
prediction, in an attempt to avoid fetching unneeded instructions and flushing the pipeline. 
Branch prediction schemes on high-performance general-purpose processors are often 
quite complicated. For example, they often feature sophisticated branch prediction mecha­
nisms that keep a record of branch statistics and attempt to detect patterns of taken and 
not-taken branches. This can be a very effective tool for increasing performance; however, 
complicated branch prediction schemes adversely affect execution-time predictability. 
Among processors for DSP, the Analog Devices TigerSHARC and the Infineon TriCore 
are examples of processors that include branch prediction. Their branch prediction 
schemes are simple, however, and do not detract from their execution-time predictability. 

Dynamic Instruction Scheduling 

Processors designed for DSP rely heavily on parallelism to achieve strong perf or­
mance. Many DSP processorS achieve parallelism by encoding several operations in a sin­
gle instruction. Some processors achieve high parallelism by employing a superscalar 
architecture, in which several instructions are issued and executed in parallel. Superscalar 
processors dynamically select sequential instructions for parallel execution, depending on 
the available execution units and on dependencies between instructions. Run-time sched­
uling of instructions in superscalar processors can be quite a complex process, making 
execution timing difficult to predict. 

Some superscalar processors, such as the Motorola PowerPC 604e and the Intel 
. Pentium II and Pentium III processors, use out-oj-order execution. When one of these pro­

cessors fetches instructions from memory, the instructions are stored temporarily in a 
buffer in the processor and are not issued to their respective execution units until their 
operands become available. The processors can buffer dozens of instructions waiting to be 
issued. Since operands for the instructions may become available in a different order than 
the order in which the instructions occur in memory, the instructions may be issued to their 
respective execution units in a different order than they were fetched. Processors that 
employ out-of-order execution contain hardware that is responsible for committing results 
to registers and memory so that the processors appear to execute the instructions in the 
same order in which they occur in the program. 

Some processors, such as the Texas Instruments TMS320C6xxx families, achieve 
high parallelism by employing a VLIW (very long instruction word) architecture. VLIW 
architectures are similar to superscalar architectures; several instructions are issued and 
executed in parallel. These instructions are fetched as part of one long super-instruction. 
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In a VLIW architecture, however, the programmer (or software-generation tool) explicitly 
specifies which instructions will be executed in parallel; this detennination takes place 
before the program is executed, and does not affect the execution-time predictability of the 
processor. 

Tools 

Strong software and hardware development tools are essential for efficient applica­
tion development in general, but are especially important for development of perfor­
mance-critical, real-time applications. In such applications, developers need to be able to 
analyze and predict performance in detail, to perform real-time debugging, and to thor­
oughly optimize critical sections of software. 

DSP processor tools generally include clock-cycle-accurate instruction-set simula­
tors. Such simulators allow programmers to observe, cycle by cycle, software execution 
on the target processor for purposes of performance analysis, optimization, and debug­
ging. For processors with difficult-to-predict execution times, the availability of a 
cycle-accurate simulator is an essential tool for software development and optimization. 
Development tools are discussed further in BDTl's textbook, DSP Processor Fundamen­
tals. 

Classes of DSP Applications 

Digital signal processing is used in an extremely diverse range of applications, 
from radar systems to consumer electronics. Naturally, no one processor can meet the 
needs of all or even most applications. Therefore, the first task for the designer selecting a 
processor is to weigh the relative importance of performance, cost, integration, ease of 
development, power consumption, and other factors for the application at hand. Here we 
briefly touch on the needs of just a few categories of DSP applications. Table 3.0-2 sum­
marizes these categories. 

Category Example Applications 

Low-Cost Embedded Modems, radar detectors, pagers, cellular telephones, cordless 
Systems telephones, disk drives, automotive real-time control 

High-Performance 
Radar, sonar, seismic imaging, speaker identification 

Applications 

Personal Computer-Based Modems, voice mail, music synthesis, speech synthesis; 
Multimedia speech, audio, and video compression and decompression 

TABLE 3.0-2. Example DSP processor application types. 

© 2001 Berkeley Design Technology, Inc. 17 



Buyer's Guide to DSPProcessors 

18 

Low-Cost Embedded Systems 

The largest applications (in terms of dollar volume) for digital signal processing 
are inexpensive, high-volume embedded systems, such as cellular telephones, disk drives 
(where nsps are used for servo control), and modems. In these applications, cost and inte­
gration considerations are paramount. For portable, battery-powered products, power con­
sumption is also critical. In these high-volume, embedded applications, performance and 
ease of development considerations are often given less weight, even though these appli­
cations usually involve development of custom software to run on the processor and cus­
tom hardware that interfaces with the processor. These products often must conform to 
published interface standards, such as the ITU-T Y.90 modem standard. 

Low-cost general-purpose processors and microcontrollers are very common in 
embedded applications. In some of these applications, such as modems and digital cellular 
telephones, it is common to find a microcontroller and a nsp processor working together, 
sometimes integrated in the same chip. Typically, the microcontroller handles overall con­
trol, user interface, and some top-level protocol processing, while the nsp handles the 
computationally intensive signal processing tasks. Many microcontroller vendors, recog­
nizing the benefits of a single-processor solution, offer nSP-enhanced versions of their 
microcontroller architectures. These hybrid nSP/microcontroller architectures typically 
include some (or many) of the architectural features common among nsp processors. 

High-Performance Applications 

Another important class of applications involves processing large volumes of data 
with complex algorithms for specialized needs. This includes uses like sonar and seismic 
exploration, where production volumes are lower, algorithms more demanding, and prod­
uct designs larger and more complex. As a result, designers favor processors with maxi­
mum performance, ease of use, and support for multiprocessor configurations. In some 
cases, rather than designing their own hardware and software from scratch, designers of 
these systems use off-the-shelf boards and ease their software development tasks by using 
existing software libraries. 

High-performance floating-point nsp processors are common in these applica­
tions, as are high-performance general-purpose processors. Often, multiple processors are 
employed. It is common for a personal computer or workstation to be part of such sys­
tems, providing the user interface, access to mass storage, and other functions. Since per­
sonal computers and workstations are based on general-purpose processors, these 
processors have a foothold in such applications. 

Personal Computer-Based Telecommunications and Multimedia 

An important class of nsp applications is personal computer- and worksta­
tion-based telecommunications and multimedia functions. Increasingly, pes are incorpo­
rating such capabilities as telephony, voice mail, data and facsimile modems, music and 
speech synthesis, and image compression. As with other high-volume, embedded applica-
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tions, PC multimedia demands low cost and high integration. Unlike some other embed­
ded applications, PC multimedia also demands high performance, since a multimedia PC 
may be called on to perform multiple functions simultaneously. Furthermore, the multi­
tasking nature of such applications means that in addition to performing each function 
efficiently, the processor must have the ability to efficiently switch between functions. 
Memory capacity may also be an issue in these applications because many multimedia 
applications manipulate large amounts of data. 

The first implementations of these integrated applications used separate DSP pro­
cessors to handle real-time signal processing tasks. For example, in the late 1980s, NeXT 
workstations incorporated a Motorola DSP560xx processor. Later, some Apple Macintosh 
models incorporated the now obsolete Lucent Technologies DSP32xx. These approaches 
were innovative in that they replaced the multiple, fixed-function, ROM-programmed 
DSPs that would normally be found in a modem, a sound card, etc., with a single repro­
grammable DSP. 

In 1994, Intel announced an initiative called "Native Signal Processing," or "NSP," 
through which they planned to facilitate the implementation of real-time DSP functions on 
existing Intel processors in PCs. Intel's original NSP initiative was based entirely on soft­
ware, including a version of Texas Instruments' SPOX real-time operating system and 
software libraries provided by Intel. This original software-only initiative had no signifi­
cant impact on the marketplace, partly due to Microsoft's reluctance to allow SPOX to 
become a central component of the Windows PC software environment, but it did serve to 
raise awareness of the concept of using computer system host processors for signal pro­
cessing. With Intel's addition of DSP hardware support to their processors via the MMX 
and SSE architecture extensions, products are beginning to emerge that employ NSP. In 
the meantime, other vendors of PC and workstation host processors have begun, with 
varying degrees of commitment, their own efforts in this direction. AMD, for example, 
offers its K6 processor, which is compatible with Intel's MMX extensions, and more 
recently added 3DNow! instructions to its processors. Other vendors have announced sim­
ilar instruction set extensions; for example, Motorola offers the AltiVec instruction set 
extensions in its G4 PowerPC processor. 

General-purpose processors are present in all PCs and workstations, and are 
among the highest-value components in these systems. Thus it is natural for manufacturers 
of these chips to take steps to defend their positions by minimizing the need for a second 
processor to implement telecommunications and media functions in computer systems. 
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4. Processor Architectures and Performance 
Chapter 3, Digital Signal Processing and DSP Systems, described digital signal 

processing in general terms, focusing on nsp fundamentals, systems, and application 
areas. In this chapter we begin to examine specific characteristics of processors intended 
for use in nsp applications, starting with a high-level description of the features common 
to virtually all nsp processors. We then describe classes of architectures for nsp, includ­
ing those used in dedicated nsp processors and those used in general-purpose processors. 
BnTI's textbook, DSP Processor Fundamentals, provides a more detailed treatment of 
nsp processor architectures and features. 

Architectural Features for DSP 

Most nsp applications require high performance in repetitive computation- and 
data-intensive tasks. The most important processor architecture features that support these 
kinds of tasks are introduced briefly here and summarized in Table 4.0-1. 

Fast Multiply-Accumulate 

The most often-cited feature of nsp processors is the ability to perform a multi­
ply-accumulate operation (often called a MAC) in a single instruction cycle. The multi­
ply-accumulate operation is useful in algorithms that use vector dot products, such as 
digital filters, correlation, and Fourier transforms. To achieve this functionality, nsp pro­
cessors include one or more multipliers and accumulators integrated into the main arith­
metic processing unit (called the data path) of the processor. In addition, to allow a series 

Feature Use 

Fast Multiply- Most nsp algorithms, including filtering and transforms, are multipli-
Accumulate cation-intensive. 

Multiple-Access Many data-intensive nsp operations can be accelerated by reading a 
Memory program instruction and multiple data items during each instruction 
Architecture cycle. 

Specialized Efficient handling of data arrays and other common data types in nsp 
Addressing Modes applications. 

Specialized Pro-
Efficient control of loops is important for many iterative nsp algo-
rithms. Fast interrupt handling is important for applications with fre-

gram Control 
quent liD operations. 

On-Chip Peripher- On-chip peripherals, like analog-to-digital converters, allow for small, 
als and Input! low-cost system designs. Similarly, liD interfaces tailored for common 
Output Interfaces peripherals allow simple interfaces to off-chip liD devices. 

TABLE 4.0-1. Basic features common to virtually all DSP processors. 
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of multiply-accumulate operations to proceed without the possibility of arithmetic over­
flow, DSP processors generally provide extra bits in their accumulator registers to accom­
modate growth of the accumulated result. These bits are often referred to as "guard bits." 
Multiply-accumulate features are discussed in detail in BDTI's textbook, DSP Processor 
Fundamentals. 

Multiple-Access Memory Architecture 

A second feature shared by most DSP processors is the ability to complete several 
accesses to memory in a single instruction cycle. This allows the processor to fetch an 
instruction while simultaneously fetching operands for a previously fetched instruction or 
storing the result of a previous instruction to memory. High bandwidth between the pro­
cessor and memory is essential for good performance if repetitive data-intensive opera­
tions are required in an algorithm, as is common in many DSP applications. 

In many DSPs, parallel memory accesses are subject to restrictions. Typically, all 
but one of the memory locations accessed must reside on-chip, and multiple memory 
accesses can take place only with certain instructions. To support simultaneous accesses of 
multiple memory locations, DSP processors provide multiple on-chip buses, multi-ported 
on-chip memories, and in some cases multiple independent memory banks. DSP processor 
memory structures are often quite distinct from those of general-purpose processors. 

Specialized Addressing Modes 

To allow arithmetic processing to proceed at maximum speed while accessing 
common DSP data structures, DSP processors incorporate dedicated address generation 
units. Once the appropriate addressing registers have been configured, the address genera­
tion units operate in parallel with the processor's data path, forming the addresses required 
for operand accesses in parallel with the execution of arithmetic instructions. Address gen­
eration units typically support a selection of addressing modes tailored to DSP applica­
tions. The most common of these is register-indirect addressing with post-increment, 
which is useful in algorithms where a repetitive computation is performed on a series of 
data stored sequentially in memory. Special addressing modes called circular or modulo 
addressing are often supported to simplify the use of data buffers. Some processors sup­
port bit-reversed addressing, which eases the task of implementing the fast Fourier trans­
form (FFf) algorithms. 

Specialized Execution Control 

Because many DSP algorithms involve repetitive computations in small loops, 
most DSP processors provide special support for efficient looping. Often, a special loop or 
repeat instruction is provided that allows the programmer to implement a for-next loop 
without expending any instruction cycles for updating and testing the loop counter or for 
jumping back to the top of the loop. \1 
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Some DSP processors provide other execution control features to improve perfor­
mance, such as fast context switching and low-Iatencyllow-overhead interrupts for fast 
input/output data handling. 

Peripherals and Input/Output Interfaces 

To allow low-cost, high-performance input and output (I/O), most DSP processors 
incorporate one or more serial or parallel I/O interfaces, and specialized I/O handling 
mechanisms such as direct memory access (DMA). DSP processor peripheral interfaces 
are often designed to interface directly with common peripheral devices like ana­
log-to-digital and digital-to-analog converters. 

As integrated circuit manufacturing techniques have improved in terms of density 
and flexibility, DSP processor vendors have begun to include not just peripheral inter­
faces, but complete peripheral devices on-chip. Examples of this include chips designed 
for digital answering machine applications, several of which incorporate a digital-to-ana­
log and analog-to-digital converter on-chip. 

Classes of Processors for DSP 

Most DSP processors include the features outlined in the previous sections, 
enabling them to perform well on DSP algorithms. These features can be implemented 
within different architectural styles, and as the demand for DSP-capable processors has 
grown, the variety of styles ofDSP processor architectures has widened. In addition, there 
are a growing number of processors that while not, strictly speaking, "DSP processors" 
are nonetheless capable of strong DSP performance. In the following sections, we provide 
an overview of the classes of processors commonly used to implement DSP. These proces­
sors can be grouped as follows: 

• Conventional DSP processors 

• Enhanced conventional DSP processors 

• VLIW processors 

• Superscalar processors 

• General-purpose processors 

• Hybrid processors 

Note that these processor classes are not all mutually exclusive; for example, gen­
eral-purpose processors are often superscalar. 

Conventional DSP Processors 

The first commercially successful programmable DSP processors were introduced 
in the early 1980's. For over a decade, virtually all subsequent DSP processors were based 
on the same style of architecture as the earliest DSPs, albeit with higher instruction execu­
tion rates, more powerful execution units, and larger address spaces. We refer to proces­
sors with this type of architecture as conventional DSP processors. 
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Conventional DSP processors typically provide most of the features outlined in the 
previous sections. They typically use 16- to 24-bit fixed-point arithmetic or 32-bit float­
ing-point arithmetic, and contain a single ALU, a single multiplier, andat least one shifter. 
These architectures generally allow two data memory accesses in a single instruction 
cycle while executing instructions from within a hardware loop. Instructions are executed 
at a rate of one instruction per instruction cycle. Conventional DSP architectures typically 
use very specialized DSP-oriented instructions, and allow multiple operations (such as a 
multiply-accumulate and data move) to be encoded in each one. Conventional DSP archi­
tectures typically have limited on-chip memory; common peripherals include serial ports, 
host ports, bit 110, timers, and parallel ports. 

Conventional DSP processors are designed with an emphasis on low cost, low 
power consumption, and low memory usage. Most DSP processors in widespread use 
today are based on conventional DSP architectures. Current examples of conventional 
DSP processors include the Analog Devices ADSP-218x, the Motorola DSP563xx, and 
the Texas Instruments TMS320C54xx, to name just a few. 

Enhanced Conventional DSP Processors 

Enhanced conventional DSP processors are fundamentally similar to conventional 
DSP processors, but have additional execution units and, in some cases, wider buses. Such 
features allow increased parallelism, since more operations can potentially be performed 
simultaneously. The wider buses facilitate higher on-chip memory bandwidth to provide 
the additional execution units with data and to allow wider instructions that encode more 
parallel operations. 

Enhancements may also include specialized hardware or co-processors for acceler­
ating performance on specific tasks. For example, Lucent Technologies' enhanced con­
ventional processor, the DSP16xxx, includes hardware acceleration for Viterbi decoding. 
In some cases, enhancements are more subtle than adding an extra execution unit; for 
example, the DSPl6xxx also includes specialized hardware support for specific applica­
tions-such as specialized shifting capabilities to support the extended-precision multipli­
cation used in the enhanced full-rate GSM application. 

Such enhancements enable execution speed improvements over conventional pro­
cessors executing at the same clock rate. For example, Lucent's DSP16xxx at 120 MHz is 
able to execute many DSP tasks faster than its predecessor, the DSP16xx, at the same 
clock speed. This increased efficiency is achieved by virtue of the higher degree of paral­
lelism in the DSP16xxx. Major enhancements in the DSP16xxx include a second multi­
plier, a three-input adder (separate from the ALU), an expanded register file, increased 
memory bandwidth, and instructions that allow more parallel operations to be specified. 

Not surprisingly, in addition to the enhancements mentioned earlier, enhanced con­
ventional DSP processors generally feature peripherals similar to those of conventional 
DSP processors, except that they often have additional features such as support for new 
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communication protocols. In most other respects, these enhanced processors are identical 
to conventional DSP processors. 

By making modest improvements over conventional DSP processors, enhanced 
conventional DSP processors can achieve higher performance while maintaining similar 
cost, power consumption, and memory usage. 

In some cases, enhanced conventional DSP architectures are software compatible 
with their conventional predecessors-or at least very similar. For example, in some cases, 
assembly-language software written for a conventional processor can be reassembled and 
executed on a successor enhanced conventional processor without any changes. Although 
DSP16xx assembly-language software cannot be reassembled for the DSP16xxx, the two 
languages are so similar that a translation is relatively uncomplicated. Regardless of com­
patibility, existing software will require further optimization to make use of the additional 
capabilities of the enhanced conventional processor. 

VLlW and Superscalar Processors 

Traditionally, DSP processors have issued and executed one instruction per 
instruction cycle. A number of newer processors targeting DSP applications, however, are 
based on multi-issue architectures; that is, they are capable of issuing and executing more 
than one instruction per cycle. The advantages of multi-issue architectures include 
increased performance and better compilability. Potential disadvantages include increased 
power consumption and increased program memory requirements. The two styles of 
multi-issue architectures currently used in processors for DSP are VLIW (very long 
instruction word) and superscalar. 

Unlike conventional and enhanced conventional DSP processors, which are spe­
cialized for DSP, DSP-specificity is not an inherent feature of VLIW and superscalar pro­
cessors. In fact, superscalar architectures are used far more often by general-purpose 
processors (discussed shortly) than by processors specialized for DSP. Currently, there is 
only one commercially available DSP processor that is based on superscalar execution: 
LSI Logic's LSI401Z. Among general-purpose processors, the Compaq Alpha AXP 
21264, the Intel Pentium processors, and the Motorola PowerPC family are all examples 
of superscalar processors. 

VLIW architectures generally issue and execute several simple, RISC-like instruc­
tions in each instruction cycle. These instructions are concatenated to form a single 
macro-instruction; thus, the term "very long instruction word." In VLIW processors, the 
programmer (or code-generation tool) specifies, in the source program, which instructions 
will be executed in parallel l . Examples of VLIW processors include the Analog Devices 

1. Note that some vendors use the term static superscalar architecture to refer to what we term a VLIW 
architecture. The nomenclature in this area has not been standardized; we will adhere to the definitions 
presented here throughout this report. 
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ADSP-TSOxx, the StarCore SC140,and the Texas Instruments TMS320C62xx,· 
TMS320C64xx, and TMS320C67xx. 

Like VLIW architectures, superscalar architectures are capable of executing sev­
eral instructions per instruction cycle. However, in superscalar architectures, the determi­
nation of which instructions will be executed in parallel takes place at run-time. 
Superscalar processors include specialized hardware that determines which instructions 
will be executed in parallel (a task referred to as instruction scheduling) based on avail­
ability of execution units and dependencies between instructions. Hence, in a superscalar 
architecture, it is the processor (rather than the programmer or compiler) that groups 
instructions for parallel execution. 

Processors with VLIW and superscalar architectures typically have a relatively 
large number of independent execution units (e.g., ALUs and multipliers), and sufficient 
instruction decoders, buses, and register file or memory access ports to allow simulta­
neous issue and execution of multiple instructions. In addition, they must have sufficient 
memory bandwidth to support the transfer of multiple instructions and data words per 
cycle. 

The most important advantage of VLIW and superscalar architectures is that, by 
executing multiple, simple instructions per instruction cycle, the processor can achieve 
high parallelism while retaining the benefits of using a simple instruction set: high clock 
speeds and ease of programming. RegUlarity of instructions benefits compilers as well as 
programmers, making these processors better compiler targets than conventional and 
enhanced conventional DSP processors. However, processors with simple instructions 
often require more instructions to perform a given task than processors that use complex, 
compound instructions. Thus, comparing the relative number of instructions executed per 
instruction cycle is unlikely to yield an accurate comparison of relative performance. In 
addition, VLIW processors often require more program memory than processors using 
complex instructions, because each task requires more instructions, and the instructions 
are often wider than those used in other architectures. The additional instruction width 
allows greater regularity in the instruction set and may also be used to include information 
about which execution unit will execute each of the parallel instructions. 

Although most VLIW and superscalar processors use simple, RISC-like instruc­
tions, the Intel Pentium, a general-purpose processor, provides a counter-example. When 
the Pentium processor was introduced, binary compatibility with preceding architectural 
family members was essential, and these predecessors used very complicated instructions. 
While clock speeds could not easily be increased significantly in the legacy architecture, 
converting to a superscalar design allowed much of the software written for older proces­
sors to run at a significantly higher speed on the Pentium. 

A somewhat similar approach was taken in the Texas Instruments TMS320C55xx. 
The TMS320C55xx maintains assembly source code compatibility with its popular prede­
cessor, the TMS320C54xx, but increases performance by adding additional execution 
units and executing two instructions per cycle instead of one. The TMS320C55xx instruc-
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tion set is a superset of that of the TMS320C54xx. Since the TMS320C54xx instruction 
set was not RISC-like, neither is that of the TMS320C55xx. Thus, the TMS320C55xx pro­
vides a second counter-example to the general rule that VLIW -based processors use sim­
ple, RISC-like instructions. 

On virtually all architectures, it is necessary for the assembly language program­
mer or compiler writer to understand all of the capabilities and limitations of the architec­
ture in order to generate optimized software and, in some cases, to avoid writing programs 
that produce erroneous results. In VLIW processors, software complexity is increased 
because of the need to manually schedule multiple instructions for parallel execution. The 
risk of writing erroneous programs is increased because of the need to juggle multiple 
instructions and execution units. In addition, assembly-language programmers and 
high-level language compilers must often restructure algorithms so that parallelism inher­
ent in an algorithm is expressed as explicit parallelism that can take advantage of the 
VLIW architecture. 

On superscalar architectures, it is easier for the programmer or compiler to gener­
ate programs that function correctly, because the responsibility for scheduling parallel 
instructions is shouldered by the processor. However, the process of generating optimized 
software and predicting software execution times can still be very complicated. As 
explained in Chapter 3, superscalar architectures introduce challenges for real-time DSP 
applications, which typically require a very high level of optimization and a very high 
level of execution-time predictability. 

VLIW and superscalar architectures are generally designed with an emphasis on 
speed, and with less emphasis on cost, power consumption, and memory usage. 

General-Purpose Processors 

General-purpose processors are designed to efficiently perform control and proto­
col-oriented tasks, and thus have traditionally included very few of the DSP-oriented fea­
tures described previously. Recently, however, general-purpose processors have begun to 
incorporate DSP-oriented features, and have assumed responsibility for performing DSP 
tasks in some applications. For this reason, we include a discussion of general-purpose 
processors here, although this report does not include this class of processor. 

General-purpose processors serve in a vast range of products, from television 
remote controls to supercomputers. Not surprisingly, these processors have evolved in 
many different directions, creating an extremely diverse array of architectures and prod­
ucts. Today, general-purpose processors span four orders of magnitude in price, and a 
wide spectrum in performance as well. 

For DSP tasks, the most important categorization of general-purpose processors 
divides processors intended for use as host processors in computers ("PC processors") and 
those intended for use in embedded applications. High-end PC processors are typified by 
the Intel Pentium III, the MotorolallBM PowerPC 604/604e, and the Compaq Alpha AXP 
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21264. Embedded general-purpose processors are typified by IDT's R4650 and Hitachi's 
SH.:.2. 

The following list describes the key attributes of PC general-purpose processors 
that distinguish them from nsp processors: 

• Instruction sets. Instruction sets are general-purpose in nature. They are often 
simple and orthogonal, especially in RISC architectures. Where specialized, these 
instruction sets tend to be specialized in ways that do not address the needs of nsp 
applications. For example, the Intel Pentium architecture provides support for 
character string operations, which are not particularly useful for nsp. This distinc­
tion is becoming less clear, however, as many general-purpose processors have 
instruction-set extensions designed to address the needs of nsp and multimedia 
tasks. 

• Memory architectures. General-purpose processors either rely on simple, Von 
Neumann memory architectures, or use on-chip caches with Harvard architectures. 
Most DSPs use Harvard architectures and multiple-access on-chip RAM, and 
nsps usually do not use caches. nsps also tend to have smaller address spaces. 

• High-level languages. Software development for general-purpose processors is 
almost exclusively performed in high-level languages. In contrast, most perfor­
mance-critical software for nsp processors is developed in assembly language. 
Software development tools for general-purpose processors reflect this difference; 
development tools are heavily focused on high-level language software develop­
ment. 

• Performance. PC general-purpose processors were originally designed to opti­
mize performance and cost-performance on general computing applications, such 
as spreadsheets, word processors, and databases. nsp processors, in contrast, were 
optimized for signal processing and embedded applications. In recent years, this 
distinction has begun to blur, as general..:purpose processor vendors are now adding 
nsp features to their processors, and nsp processors are adding control-oriented 
functionality. . . 

• Arithmetic. PC general-purpose processors provide hardware support for both 
integer and floating-point arithmetic. Surprisingly, performance on floating-point 
arithmetic is sometimes better than performance on integer arithmetic. In contrast, 
typical nsp processors support either floating-point or fixed-point arithmetic, but 
do not support both well. 

• Compatibility. PC general-purpose processors usually must be designed to run 
object code written for previous-generation processors, and to do so efficiently. 
This is necessary because of users' large investments in operating system and 
application software. In contrast, object-code compatibility has not been consid­
ered critical for nsp processors and for embedded general-purpose processors; 
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programmers often expect to invest significant effort rewriting, porting, or re-opti­
mizing software for a new nsp processor. 

• Peripherals. High-end PC general-purpose processors do not provide on-chip 
peripherals or peripheral interfaces. nsp processors often provide a variety of 
on-chip peripherals or peripheral interfaces to facilitate integration. 

• Dynamic execution. High-end PC processors often rely on superscalar architec­
tures where instructions are dynamically scheduled at run time. Caches, 
data-dependent instruction execution times, and branch prediction add additional 
layers of run-time decision-making to the processors' execution. In contrast, nsp 
processors have traditionally relied on simple, highly static execution models. As 
previously discussed, however, some high-end nsp processors have begun to 
incorporate some of the dynamic features more commonly found in PC processors, 
such as superscalar execution and data caches. 

Embedded general-purpose processors can have similar architectures to PC pro­
cessors (e.g., the R4650 is similar to other MIPS architecture processors), but typically 
aim for different objectives. Some of these differences are summarized below. 

• Cost and performance. Embedded processors aim for a wider range of cost and 
performance targets than PC processors, since the needs of their target applications 
are more varied. 

• Power consumption. Many embedded applications require low power consump­
tion, typically to conserve battery life or to minimize the size of the power supply. 

• Peripherals. In many cases, embedded general-purpose processors provide 
on-chip peripherals and peripheral interfaces, such as timers and serial ports. 

Processors that begin life as PC processors sometimes evolve into embedded pro­
cessors. The lOT R4650 is such an example, and Intel is promoting Pentium II processors 
for embedded applications. 

While both nsps and general-purpose processors have continuously achieved sig­
nificant performance gains, it appears that in recent years the rate of advancement in gen­
eral-purpose processor performance has outpaced that of nsps, at least at the high end of 
performance. If this trend persists, it will raise serious questions about the future of dedi­
cated nsp processors in many applications. 

Hybrid Processors 

Most nsp applications require a mixture of control-oriented processing and nsp. 
In many applications, these requirements are addressed by using a microcontroller for 
control-oriented software and a nsp processor for nsp algorithm software. In cases 
where the microcontroller or nsp processor is an established architecture, the dual-pro­
cessor approach may offer the advantages of an existing software base and familiarity of 
architectures. However, the dual-processor approach also has important disadvantages, 
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such as the complexity of multi-processor software development and the inefficiency of 
duplicated resources. 

To avoid the need for two processors, some processor vendors attempt to combine 
microcontroller features with DSP features in a single chip. Some DSP processor vendors 
have added microcontroller functionality to some of their DSP processors; similarly, ven­
dors of general-purpose processors have added DSP capabilities to some of their gen­
eral-purpose processors. Current DSP processors with microcontroller features include 
Motorola's DSP568xx processor family and Texas Instruments' TMS320C27xx family. 
Both processors have modest DSP performance but include more microcontroller features 
than other DSP processors. Virtually all of the major microcontroller architectures offer 
some support for DSP, in the form of extra hardware or additional instructions. For exam­
ple the IDT R4650 is an enhanced version of IDT's basic microcontroller architecture, and 
includes a multiply-accumulate instruction. 

Other general-purpose processor vendors have performed more extensive renova­
tions on existing architectures. Hitachi, with its SH-DSP and SH3-DSP processors, has 
added a complete DSP data path to the existing SH-2 and SH-3 microcontrollers. Intel, 
MIPS, and Motorola have all enhanced their general-purpose processor architectures with 
DSP and multimedia instruction-set extensions. 

Yet another approach taken by some general-purpose processor vendors is to add a 
co-processor that helps with DSP tasks. For example, ARM offered the Piccolo DSP 
co-processor for use with its ARM7 core, and NEC has added a "media co-processor" to 
the V830 processor. (ARM is no longer actively marketing the Piccolo design.) Massana 
offers a DSP co-processor, the FILU-200, that can be used in conjunction with any gen­
eral-purpose architecture. 

In addition to the hybrid architectures that are retrofits of existing architectures, 
there are a number of entirely new architectures that include both DSP and microcontrol­
ler features. These architectures, which usually combine a RISC-based microcontroller 
with a substantial complement of DSP hardware and instructions, are free of the limita­
tions of legacy architectures, but generally do not offer the benefits of retrofitting (such as 
software compatibility). Processors based on new hybrid architectures include Infineon's 
TriCore and Hyperstone's El-16X and El-32X processors. 

Processor Embodiments 

The most familiar form of processor is the single-chip processor, which is incorpo­
rated into a printed circuit board design by the system designer. However, with the wide­
spread proliferation of processors in many new kinds of applications, the increasing levels 
of integration in all kinds of electronic products, and the development of new packaging 
techniques, processors can now be found in many different forms. In this section we 
briefly discuss some of the forms that processors take. 
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Multi-Chip Modules 

Rather than packaging a single integrated circuit (IC) die in a ceramic or plastic 
package as is done with conventional ICs, multi-chip modules (MCMs) combine multiple, 
bare (i.e., unpackaged) dies into a single package. One advantage of this approach is 
higher packaging density-more circuits per square inch of printed circuit board. This, in 
tum, results in increased operating speed and reduced power dissipation. As MCM pack­
aging technology has advanced in the past few years, vendors have begun to offer MCMs 
containing processors. 

Multiple Processors on a Chip 

As IC manufacturing technology becomes more sophisticated, processor designers 
can squeeze more features and performance into a single-chip processor, and they can con­
sider combining multiple processors on a single Ie. For example, both Motorola and 
Texas Instruments offer devices that combine a DSP and a microcontroller on a single 
chip, a natural combination for many applications. As with MCMs, multi-processor chips 
provide increased performance and reduced power compared with designs using multiple, 
separately packaged processors. However, the selection of multi-processor chip offerings 
is currently limited to only a few devices. 

Chip Sets 

While some manufacturers combine multiple processors on a single chip, and oth­
ers use MCMs to combine multiple chips into one package, another variation on processor 
packaging is to divide the processor into two or more separate packages. This is the 
approach Sharp Microelectronics has taken with its Butterfly DSP chip set, which consists 
of the BDSP9320 address generator and the BDSP9124 processor. Dividing the processor 
into two or more packages may make sense if the processor is very complex and if the 
number of 110 pins is very large. Splitting functionality into multiple ICs may allow the 
use of much less expensive IC packages and may thereby provide cost savings. This 
approach also provides added flexibility, allowing the system designer to combine the 
individual ICs in the configuration best suited for the application. For example, with the 
Sharp Microelectronics chip set, multiple address generator chips can be used in conjunc­
tion with one processor chip. Finally, chip sets have the potential of providing more 110 
pins than individual chips. In the case of the Sharp Microelectronics chip set, the use of 
separate address generator and processor chips allows the processor to have eight 24-bit 
external data buses, many more than provided by more common single-chip processors. 

Processor Cores 

An interesting approach for high-volume designs is the coupling of a processor 
with user-defined or user-selected circuitry on a single chip. This approach combines the 
benefits of an off-the-shelf processor (such as programmability, development tools, and 
software libraries) with the benefits of custom circuits (e.g., low production costs, small 
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size, and low power consumption). In this section, we briefly describe one variant of this 
design style: core-based system-on-chip designs (core-based SoCs). 

A processor core is a processor intended for use as a building block in.creating a 
chip, as opposed to being packaged by itself as an off-the-shelf chip. A core-based SoC is 
a SoC that incorporates a processor core as one element of the overall chip. The 
core-based SoC approach allows the system designer to integrate a processor core, inter­
face logic, peripherals, memory, and other custom elements onto a single integrated cir­
cuit. Figures 4.0-1 and 4.0-2 illustrate the core-based SoC concept. 

Many vendors of DSP and microcontroller processors use the core-based approach 
to create versions of their standard processors targeted at application areas. In our discus­
sion of core-based SoCs, we focus on the case where a chip user wishes to create a 
core-based SoC for a specific application, or where a semiconductor vendor wishes to 
obtain a core in order to create new chip products. 

The most significant providers of DSP cores are DSP Group, Texas Instruments, 
STMicroelectronics, mM Microelectronics, Clarkspur Design, and Infineon. General-pur­
pose and microcontroller cores with DSP functionality are available from ARM, ARC, 
and Lexra, among others. The services that core vendors provide can be broadly divided 
into two categories. In the first category, the vendor of the core is also the provider of 
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FIGURE 4.0-1. Core-based SoCs allow the integration of multiple processor 
types and analog circuitry, in addition to memories, peripheral interfaces, and 
custom digital circuitry. 
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foundry services used to fabricate the SoC containing the core; we refer to this category as 
foundry-captive. Texas Instruments and STMicroelectronics are providers of foundry-cap­
tive DSP cores, for example. 

In the second category, the core vendor licenses the core design to the customer, 
who is then responsible for selecting an appropriate foundry. We call this category licens­
able. Companies such as DSP Group, Clarkspur Design, and Infineon offer licensable 
DSP cores. In exchange for a license fee and (in some cases) royalties, the customer 
receives a complete design description of the processor core. This core can then be fabri­
cated as part of a SoC using the IC foundry of the customer's choice. Additionally, the 
customer may be able to modify the core processor if desired, since the complete design is 
provided. 

Licensable cores are usually provided in the form of synthesizable VHDL or Ver­
ilog HDL design descriptions. 

Note that vendors differ in their definitions of exactly what is included in a proces­
sor core. For example, some vendors' cores include not only the processor but memory 
and peripherals as well. Others include only the processor and no peripherals or memory. 

Multiprocessors 

No matter how fast and powerful processors become, the computational demands 
of a significant class of applications cannot be met by a single processor. Some of these 
applications may be well suited to custom integrated circuits. Or, if programmability is 
important, a multiprocessor based on commercial processors may be an effective solution. 
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FIGURE 4.0-2. A processor core is intended to be used in SoCs customized 
for different applications Qr classes of applications. 
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Although any processor can be used in a multiprocessor design, some manufacturers have 
made special efforts to create processors that are especially well suited to multiprocessor 
systems. For example, the Analog Devices ADSP-2106x and ADSP-2116x provide exten­
sive support for multiprocessor configurations. 

Processor Boards 

Often a processor is one component of a new printed circuit board design created 
for a particular product. The processor may be combined with other components, such as 
custom-designed chips. However, a custom printed circuit board is not required for every 
application. For low-volume products or for prototyping, one of the hundreds of commer­
cial off-the-shelf processor boards may be attractive. Each of the popular processors is 
available in many board configurations. Such boards interface with many different host 
buses, such as VME, ISA, and PCl. In addition, many of these boards provide expansion 
buses to interface with custom boards. 

Each of the embodiments just discussed is really just a different way of packaging 
and using processors. The architectural and performance analysis that comprises the later 
sections of this report focuses on single-chip, off-the-shelf DSP processors. For the most 
part, this analysis can be· applied equally well to processors packaged in different forms. 
However, adjustments in the analysis may have to be made to account for customizations 
made in the architecture, and users will want to weigh certain processor characteristics dif­
ferently depending on the form in which the processor is being used. For example, effec­
tive application engineering support is vital for users contemplating a core-based SoC 
design. 

Custom Hardware 

There are two important reasons why custom-developed hardware is sometimes a 
better choice than a processor-based implementation: performance and production cost. In 
virtually any application, custom hardware can be designed that provides better perfor­
mance than a programmable processor. Custom h~dware is also likely to be cost-effective 
because of its specialized nature. In applications with high sampling rates (for example, 
higher than 1I100th of the system clock rate), custom hardware may be the only reasonable 
approach. 

For high-volume products, custom hardware may also be less expensive than a 
processor. A custom implementation places only those functions needed by the application 
in the hardware, whereas a processor requires every application to pay for the full func­
tionality of the processor, even if a given application uses only a small subset of the pro­
cessor's capabilities. Of course, developing custom hardware has some serious 
drawbacks. Most notable among these are the effort and expense associated with custom 
hardware development, especially for custom chip design. 

Custom hardware can take many forms. It can be a simple, small printed circuit 
board using off-the-shelf components, or it can be a complex, multi-board system, incor-
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porating custom integrated circuits. The aggressiveness (in terms of complexity and level 
of customization) of the design approach depends on the needs of the application. In the 
remainder of this section we very briefly mention some of the more popular approaches. 

One of the most common approaches for custom hardware for DSP applications is 
to design custom printed circuit boards that incorporate a-variety of off-the-shelf compo­
nents. These components may include standard logic devices, fixed-function or config­
urable arithmetic units, field-programmable gate arrays (FPGAs), and function- or 
application-specific integrated circuits (FASICs). As their name implies, FASICs are chips 
that are designed to perform a specific function, perhaps for a single application. Exam­
ples of FASICs are digital filter chips, which can be configured to work in a range of 
applications; and facsimile modem chips, which are designed specifically to provide the 
signal processing functions for a fax modem and are not useful for anything else. 

Many off-the-shelf FASICs sold by semiconductor vendors for DSP applications 
are really DSP processors containing custom, mask-programmed software in on-chip 
ROM. Some are based on proprietary processor architectures; perhaps the most prominent 
examples of the latter approach are Conexant's data and fax modem chips. 

As tools and techniques for creating custom chips improve and more engineers 
become familiar with them, more companies are developing custom chips for their appli­
cations. Designing a custom chip provides the ultimate in specialization, since the chip 
can be tailored to the needs of the application, down to the level of a single logic gate or 
transistor. 

Of course, the benefits of custom chips and other custom-hardware-based imple­
mentation approaches come with important trade-offs. Perhaps most importantly, the com­
plexity and cost of developing custom hardware can be high, and the time required can be 
long. Also, if the hardware includes a custom programmable processor, new software 
development tools are needed to enable software development targeting the new proces­
sor. 

It is important to point out that the implementation options discussed here are not 
mutually exclusive. In fact, it is quite common to combine many of these design 
approaches in a single system, choosing different techniques for different parts of the sys­
tem. One such hybrid approach, core-based SoCs, was mentioned above. Others, such as 
the combination of an off-the-shelf DSP processor with custom ICs, FPGAs, and a gen­
eral-purpose processor, are very common. 

Perlormancelssues 
System designers selecting a processor for use in a product face many choices. 

Although it is just one of many factors in processor selection, execution speed on DSP 
applications is an important concern and is often the first criteria used to narrow the field 
of contenders. 
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Gauging execution speed of a DSP processor is not as straightforward as it may 
sound. Typically, many DSP processor vendors quote their processors' instruction execu­
tion rates in millions of instructions per second (MIPS), or in millions of operations or 

. millions of floating-point operations per second (MOPS or MFLOPS). General-purpose 
processor vendors often simply quote their processors' clock rates in MHz. Within a par­
ticular class of similar architectures, such as conventional DSPs, performance compari­
sons based on MIPS and MHz are moderately accurate. Unfortunately, when comparing 
processors with dissimilar architectures or instruction sets, these simplified metrics can be 
extremely misleading. 

As we have seen in the previous sections, processor architectures have become 
more diverse in recent years. As a result, the amount of signal processing work accom­
plished by one instruction or one operation varies widely between different processor, 
architectures, rendering the simplistic MIPS, MFLOPS, and MHz metrics virtually use­
less. 

Some processor vendors quote the number of multiply-accumulate operations as 
the performance metric of interest. While the millions of multiply-accumulates per second 
(MMACS) metric might be a meaningful predictor of performance in some algorithms, a 
processor's DSP performance generally cannot be exclusively determined by its multi­
ply-accumulate throughput; there is more to DSP algorithms than the multiply-accumulate 
operation. For example,MMACS does not include data moves and other operations. 

To illustrate how misleading simplified performance metrics such as MIPS can be, 
consider the inner loop of a dot product implemented on two different processors: the 
Lucent Technologies DSP16xxx and the Texas Instruments TMS32OC62xx. 

Table 4.0-2lists the differences in implementations of the inner loop of a dot prod­
uct on the DSP164xx and the TMS320C62xx, together with the vendor-quoted speed rat­
ings. If the MIPS ratings were used as indicators of the speed of the two processors, one 
might conclude that the TMS320C62xx would be 14 times faster than the DSP16xxx. In 
reality, however, as indicated in the table, both processors perform the inner loop at a rate 
of two vector elements per processor clock cycle, and only by virtue of its higher clock 
speed does the TMS320C62xx (at 300 MHz) perform the inner loop roughly twice as fast 
as the DSP164xx (at 170 MHz). This is significantly faster, but does not approach a speed 
difference of 14 times as suggested by the MIPS ratings of the two processors. Even this 
comparison is of limited use, however, since it is based on MAC throughput-which, as 
we discussed earlier, neglects important performance differences. In an effort to provide 
more meaningful comparisons of speed, BDTI has developed its own metric, the 
BDTImark2000, shown in the fmal row of Table 4.0-2 and described briefly below. 

The BDTlmark2000™ 

MIPS, FLOPS, and other simplistic measures are poor measures of processors' 
DSP performance, but have traditionally been the only measures readily available. In rec­
ognition of this fact, the authors of this report have proposed an alternative metric in an 
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attempt to provide a more meaningful basis for comparing processors' DSP performance. 
This metric, the BDTImark2000™, combines the execution-time results from a suite of 
DSP algorithm benchmarks (such as FIR filters, FFfs, etc.) into a single number. The 
underlying DSP benchmarks were developed and implemented in assembly language and 
conform to a strict specification that governs their required functionality and allowable 
optimizations. Because the BDTImark2000 is based on actual DSP algorithms, it is a far 
more accurate measure than MIPS or MOPS or other simplified metrics. The 
BDTImark2000 is mainly useful for making quick comparisons of processor speed, how­
ever; serious system designers will want more detailed analysis to make their design 
choice. BDTImark2000 scores for a number of processors are posted on BDTI's website, 
www.BDTI.com. 

Lucent Technologies Texas Instruments Ratio of 
DSP164xr TMS320C62xx Metrics 

MIPS Rating According to Vendor 170 MIPS 2,400 MIPS 1:14.1 

Processor Clock Speed 170 MHz 300 MHz 1:1.8 

Number of Instructions in Inner 
1 instruction 8 instructions 1:8 

Loop of Vector Dot Product 

Number of Vector Elements Per 
2 2 1:1 

Processor Clock Cycle 

Number of Vector Elements Per 
340 million 600 million 1:1.8 

Second 

BDTImark2000 score at clock 
810 1920 1:2.4 

speeds shown above 

TABLE 4.0-2. Relative performance of the Lucent Technologies DSP164xx and the 
Texas Instruments TMS320C62xx. 
a. All information for the DSP164xx is for one of two on-chip cores. The DSP164xx is used for this analysis 

rather than the DSP16xxx, since the DSP164xx supports some instructions not supported by other 
DSP16xxx family members. 
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5. Processors Not Covered in This Report 
The next chapter contains analyses of the most popular DSP processors currently 

available. However, there are many more processors of potential interest for DSP applica­
tions than can be included in this report. These processors include DSP cores, certain older 
or more specialized DSPs, and general-purpose processors (many with DSP enhance­
ments). 

Brief overviews of many of these other processors are available at BDTI's website 
at www.BDTl.com. Below we list the processors that are currently included on the website. 
As information becomes available on new processors, we will also publish brief over­
views of them on the website. 

Detailed analyses of some of the processors listed below are available in published 
reports from BDTI or by separate arrangement with BDTI. Contact BDTI for details. 

General-Purpose Processors and Hybrids 

Over the last few years, there has been expanded interest in performing DSP tasks 
on general-purpose processors. Some high-performance general-purpose processors, such 
as the MotorolaJIBM PowerPC 604e and Intel Pentium, achieve impressive DSP perfor­
mance despite their lack of DSP-oriented features. Other general-purpose processors, such 
as the Hitachi SH-DSP and Intel Pentium III, have been significantly enhanced to boost 
their DSP capabilities. As a result, many general-purpose processors are now capable of 
strong DSP performance. However, implementing DSP applications on general-purpose 
processors presents some unique challenges. 

Brief overviews of some general-purpose processors are available at BDTI's web-
site. 

DSP Cores 

DSP cores are becoming increasingly important as improved IC fabrication tech­
nology and the need for smaller, less expensive, and more energy-efficient products 
expands. Brief overviews of the following licensable and foundry-captive DSP cores are 
available on BDTI's website: 

• Clarkspur Design CD2400 (licensable) 

• Clarkspur Design CD245x (licensable) 

• DSP Group OakDSPCore (licensable) 

• DSP Group PineDSPCore (licensable) 

• Infineon Carmel Core 

• SGS-Thomson D950 CORE 

• Texas Instruments T320C2xLP Core 

• 3Soft M320C25 (licensable) 
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• 3Soft M320C50 (licensable) 

We plan to publish reports focusing on DSP cores in the future. Contact BDTI for 
information about forthcoming reports. 

A few of the DSP processors analyzed in this report are also available as cores. 
Most Texas Instruments cores are available for use in customer designed SoCs fabricated 
by Texas Instruments. 

Other DSP Processors 

Several DSP processors and processor families that were covered in previous edi­
tions . of Buyer s Guide to DSP Processors have been omitted from this edition due to 
space constraints. We have omitted the following older or more specialized DSPs: 

• Analog Devices ADSP-21cspxx 

• Analog Devices ADSP-21020 

• LSI Logic LSI40xZ 

• Lucent Technologies DSP16xx 

• Lucent Technologies DSP32C 

• Lucent Technologies DSP32xx 

• Motorola DSP560xx 

• Motorola DSP561xx 

• Motorola DSP566xx 

• NEC J.LPD7701x 

• Texas Instruments TMS320Clx 

• Texas Instruments TMS320C2x 

• Texas Instruments TMS320C27xx 

• Texas Instruments TMS320C4x 

• Texas Instruments TMS320C8x 

• Zoran ZR38xxx 

Brief overviews of these processors are available at BDTI's website. More detailed 
analyses of these processors may be obtained by contacting BDTI. 
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6. Choosing a Processor 
In this chapter, we present our philosophy and methodology for choosing a proces­

sor for a particular application. After discussing the approach in general, we present pro­
filing data illustrating the importance of different kinds of functions and instructions in a 
variety of applications. 

The "Best" Processor 

There is no single "best" DSP processor for all applications; the best processor 
depends completely on the specifics of the application at hand. Even within a narrowly 
defined application area like data modems, one can't identify a single best choice for all 
designs. One modem design team may be most concerned with time-to-market, in which 
case quality development tools, extensive application engineering support, and the avail­
ability of software libraries become dominant considerations. Another modem design 
team (or even the same one six months later) may place the priority on low production 
cost, low power consumption, high integration, or other criteria. 

Because the selection criteria for a DSP processor depend so much on the specific 
needs of the product being designed, we don't attempt in this report to rank processors or 
provide recommendations on which processor is best for a given application. Instead, we 
present in a consistent fashion as much objective and subjective information as possible 
about each processor, so that once one determines which criteria are important for a 
design, one can quickly and accurately ascertain which processor or processors best meet 
those criteria. 

Selection Methodology 

In broad outline, here is our suggested approach for selecting a DSP processor: 

• Identify those features, capabilities, and performance aspects that may be impor­
tant for your application. This will almost certainly require some initial system 
design work to determine the kinds of algorithms that will be used (and therefore 
the kinds of computation required of the DSP processor); the types of devices the 
processor will be interfacing with; and the cost, power, and printed circuit board 
area that can be allocated to the DSP processor and associated components like 
memory chips. Also consider issues such as development tools, technical support, 
and documentation. 

• Assign weights to each feature, capability, or performance aspect to reflect its rela­
tive importance for your application. Researching previous designs with similar 
priorities may help. 

• Scrutinize the evaluations in Chapters 7 and 8 that relate to the processor aspects 
you have identified as important. Using the weights you have assigned, you can 
then begin to form a picture of which processors may be a good match for your 
design. 
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• Once you have narrowed the field to a few candidates, we recommend investigat­
ing those processors and their manufacturers in greater detail than is provided in 
this report. Each processor vendor provides user's manuals that explain many 
important details not covered here. You w,ill probably want to meet with the ven­
dors' applications engineers so that you can get their ideas about how their proces­
sor can be used to meet the needs of your application, and so that you can evaluate 
the quality and availability of each vendor's support. You may want to try calling 
the vendors' telephone support lines with technical questions. 

• Depending on your application, you may also want to investigate the availability 
of third-party development tools, software libraries, and hardware. You will cer­
tainly want to gather updated speed and pricing information, based on quantities 
that are appropriate for your application. 

Performance Measures 

It is particularly important to recognize that summary performance measures such 
as benchmark results tell only part of the story of a processor's abilities, and can be very 
misleading. Before using such ratings to select a processor, you should understand whatis 
being measured, how the measurements are performed, and how the resulting rating 
relates to the needs of your design. The fact that a given processor can perform a convolu­
tional encoding twice as fast as the nearest competitor is likely to be irrelevant if your 
application consists mostly of filtering algorithms. Likewise, even if your application 
makes heavy use of filtering operations, other aspects of processor performance that are 
seldom benchmarked, such as input/output handling, can be equally important. In 
Chapter 8 we discuss the pitfalls of processor speed and power ratings and provide recom­
mendations on interpreting these results in more detail. 

To assist you in understanding the performance measures that may be meaningful 
for your application, we have included example application profiling data in Sections 6.2 
and 6.3. 
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6.1 Application Profiling 

Profiling refers to a set of techniques used to measure or estimate the amount of 
time an application program spends executing its various subsections, or the frequency 
with which different instructions or operations are executed as an application runs. 

While profiling is primarily used by application programmers to help them opti­
mize their software, profiling data is also useful to understand the demands made by an 
application on a processor and to help relate benchmark performance to application per­
formance. In this section we briefly introduce several profiling approaches, and then 
examine profiling data from a variety of example applications implemented on a range of 
nsps. 

Profiling Approaches 

We divide profiling approaches into four main categories: 

• Function-level profiling analyzes the percentage of execution time that an appli­
cation program spends in each of its major sub-functions during a period of opera­
tion. For example, for a voiceband data modem, profiling data might show the 
percentage of time spent in the decoder, echo cancellation, carrier recovery, clock 
recovery, and other major functions. 
nsp application developers most commonly use function-level profiling. After 
determining which sub-functions account for the largest portions of an applica­
tion's execution time, application developers can focus their execution-speed opti­
mization efforts on these sub-functions. 
Some nsp processor vendors provide instruction-set simulators or emulators that 
can be used to collect profiling data. For example, Texas Instruments provides pro­
filing support in their in-circuit emulators for certain nsps. Typically, the pro­
grammer divides the application into sub-functions by specifying ranges of 
program memory containing each sub-function. As the program executes, the sim­
ulator or emulator collects information about how much time is spent in each 
sub-function. If a processor does not have profiling support via its simulator or 
emulator, the application programmer may still be able to collect profiling data, for 
example, by saving a trace of all program addresses accessed or by setting up a 
series of breakpoints with associated automated scripts. This, however, can be 
awkward and time consuming. 
Later in this chapter we present several examples of function-level profiling of 
common nsp applications. 

• Instruction-level profIling analyzes the relative frequency of execution of each 
instruction or type of instruction during a period of normal operation of the appli­
cation; for example, the relative number of times MAC instructions were executed, 
the number of times bit manipulation instructions were executed, etc. 
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By determining which kinds of instructions or combinations of instructions are 
most commonly executed in applications, instruction-level profiling data can help 
processor designers determine where to focus their efforts to improve the proces­
sor's performance. Developers and users of high-level language compilers and 
other code-generation tools can use instruction-level profiling data to help under­
stand how well these tools are making use of the processor's capabilities. 
For application developers, instruction-level profiling data is most useful as an aid 
in understanding the demands a particular application makes on a particular pro­
cessor; it is less useful for optimizing software. 
Later in this chapter we present several examples of instruction-level profiling of 
common DSP applications. 

• Algorithm analysis is another approach that can help in predicting processor per­
formance in a particular application and in interpreting benchmark results. Algo­
rithm analysis reveals the relative frequency of execution of basic algorithmic 
operations or sub-functions in an application, without regard to implementation on 
a particular processor. For example, such profiling might reveal that a particular 
audio coding algorithm requires execution of a bank of eight 16-tap FIR filters on 
a data stream with a sample rate of 16 kHz. 
Algorithm-level profiling data is usually developed through manual analysis of the 
algorithms involved in a given application. This data can be useful in estimating 
whether an application can achieve the necessary speed executing on a DSP pro­
cessor, how fast a processor may be required, and what kinds of processor opera­
tions are likely to have the greatest impact on the execution speed of an 
application. 

• Power consumption profiling focuses on power consumption instead of execu­
tion time. Low power consumption is a critical design goal in many applications. 
Power consumption profiling measures the power consumed by a processor as it 
executes an application and determines how much power is consumed by various 
sub-functions of the application. These sub-functions can then be targeted for 
power-reduction optimizations. 

There are other types of profiling data as well. For example, in some applications it 
is. useful to collect statistics on the frequency of accesses to different areas of program or 
data memory, or on the maximum time taken to respond to a particular type of interrupt. 

Limitations of Profiling Techniques 

Although profiling is an important tool in relating benchmark performance to 
application performance, it has a few serious shortcomings. The most important of these 
are: 

• Processor choice. Since different processors perform differently on the same type 
of function, profiling results can vary significantly depending upon the processor 
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used. (Algorithm analysis is not subject to this limitation, since it analyzes algo­
rithms independent of processor choice.) 

• Optimization. Application programmers tend to optimize their programs with 
specific performance goals in mind. The profile of an application varies depending 
on the optimization approach taken by the programmer and on the success of this 
approach. For example, developers normally focus on optimizing those sub-func­
tions that account for the largest share of execution time. This has the effect of 
reducing the execution time of these sub-functions relative to others. In addition, it 
is often possible to substitute one algorithm for another to take advantage of the 
capabilities of a particular processor. For example, an FIR filter can be imple­
mented using FFfs. 

• Implementation techniques. The profile of an application also varies depending 
upon the implementation techniques used. For example, an implementation of a 
given application written in C typically results in a very different profile from an 
assembly language implementation of the same application, since the C compiler 
generates more efficient code for some kinds of operations than for others. Simi­
larly, application profiles often change significantly between fixed-point and float~ 
ing-point implementations, because some (but not all) functions require more 
cycles on a fixed-point processor than on a floating-point processor. 

While each type of profiling data has its limitations, these types of data can be very 
instructive when viewed with their limitations in mind. Therefore, in the sections that fol­
low we present a variety of function- and instruction-level application profiling examples. 

Benchmarks and Profiling Data 

Application profiling data can be useful in helping to relate DSP processor bench­
mark performance to application performance. For reasons that will be explored in 
Chapter 8, our DSP processor benchmarks, like most, are based on small- or 
medium-sized building-block functions, such as FIR filters and FFfs. Application profil­
ing data can help the DSP processor user to understand which of these benchmark func­
tions are important to the application, and their relative importance. This is our main 
motivation for presenting examples of application profiling data in this chapter. 

Both function-level and algorithm-level profiling data can be used to relate DSP 
processor benchmark performance to application performance. Instruction-level profiling 
data is generally not useful in this context, though it has other important uses. Since func­
tion-level profiling data is most readily available, we focus on this type of profiling data in 
the remainder of this chapter. We also provide instruction-level profiling examples. 

Application Profiling Examples 

With the help of several processor vendors, third-party application software devel­
opers, and researchers, we have gathered and analyzed profiling data on several example 
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applications. In the following sections we present examples of both function-level and 
instruction-level profiling data. The sourcr of the profiling data is noted in each example. 
For information on contacting the organizations mentioned, please see Appendix A, Ven­
dor Contact Information. 

Our intention in presenting this profiling data and analysis is to illustrate the use of 
profiling and the characteristics of particular implementations of the example applications. 
For the reasons outlined above, it is important to recognize that the data and analysis pre­
sented here is not definitive and cannot necessarily be used to draw broad conclusions 
about applications and processors. 
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6.2 Function-Level Profiling 

In this section we present function-level profiling examples for several nsp pro­
cessor applications: two V.32bis data modem implementations, a V.17 fax modem, a 
G.728 speech encoder, two CELP speech encoders, a video coder, an adaptive beamform­
ing algorithm, and three GSM speech encoder and decoder implementations. The func­
tion.;.level profiling data shows how much time the nsp processor spends in various 
activities for a particular implementation of each application. 

nsp. systems often have multiple modes of operation. For example, a modem has 
an idle mode where it waits for commands, a handshake mode where it establishes a con­
nection, a training mode where it adapts to the conditions of the current connection, and a 
communication mode where data is transferred. Obviously, the activities of the nsp pro­
cessor vary significantly depending upon the mode of operation. The profiling data pre­
sented here is for the main steady-state operating mode of each application. 

For each example, we list the eight to ten most important functions in terms of rel­
ative processor execution time, indicating the percentage of processor execution time 
accounted for by each function. We provide a brief description of each function and an 
indication of the types of basic nsp processor operations that are typically found in each 
function. In some cases, these operations are identical or very similar to the functions 
found in the BnTI Benchmarks™, discussed in Chapter 8. In other cases, the types of 
nsp processor operations used are very complex or are unique to the application. In these 
cases, we either omit the listing of nsp processor operations, or we list familiar nsp pro­
cessor operations that are similar to those used in the function. 

More detailed technical information on each of these applications can be found in 
texts and journals on communications and signal processing, a sampling of which are 
listed in the References section at the end of this report. 
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V.32bis Modem 

V.32bis refers to a 14,400 bit/second modem protocol that is widely used for asyn­
chronous data modems. V.32bis data modems are capable of communicating at slower 
speeds· using older protocols ("fallback modes"). The profiling data presented here is for 
full 14,400 bit/second operation. 

Like most modems, the V.32bis modem transmits and receives simultaneously. 
Therefore, the profiling data reflects operation of both the transmitter and receiver, even 
though these are distinct operations within the DSP processor. 

Table 6.2-1 and Figure 6.2-1 give function-level profiling data for one V.32bis 
modem implementation. The modem was implemented on a Texas Instruments 
TMS320C3x floating-point processor. The implementation approach began with coding 
the entire modem in the C language and then replacing critical sections of C code with 
carefully optimized assembly language. This application profiling data was provided by 
DSP Software Engineering, Inc., a provider of DSP software used in telecommunications 
and multimedia applications such as video conferencing, wireless communications, and 
ISDN communications. DSP Software Engineering's software development business was 
recently acquired by Tellabs. 

Table 6.2-2 and Figure 6.2-2 give function-level profiling data for another V.32bis 
modem implementation. This modem was implemented on a fixed-point Texas Instru­
ments TMS320C5x in assembly language. This application profiling data was provided by 
ILLICO, a design and consulting firm specializing in the application of DSP to telecom­
munication product development, especially modems. 

For information on contacting ILLICO, please see Appendix A, Vendor Contact 
Information. 
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Table 6.2-1. Profiling Data for: 

Application: V.32bis Modem 

Language: C and Assembly 

Processor: Texas Instruments TMS320C3x 

Data From: DSP Software Engineering 

Related DSP Abbreviation Function 
Processor Operations 

Decoder Decision and symbolNiterbi decoder 
Vector subtract, 
branch and control 

Echo Echo canceller processing Complex LMS filter 

Carrier recovery 
Equalize, jitter predict, dernod., and IIR filter, voltage-controlled 
carrier recovery oscillator 

Symbol clock Symbol clock recovery 
IIR filter, voltage-controlled 
oscillator 

Shaper Multirate pulse.shaper FIR filter 

Byte pack 
Convert modem symbols to/from Bit manipulation, branch and 
bytes; synchronize control 

Multi filter Front-end multi rate filter FIR filter 

Near blk. update Echo canceller near-end block update LMS Filter 

Far blk. update Echo canceller far-end block update LMS i=ilter 

Encoder (Symbol or trellis) encoder, modulate Convolutional encoder 

Gain control Automatic gain control Vector square 

Other Other 

Percent of 
Time in 

Function 

27.65 

16.26 

15.82 

11.78 

8.63 

8.30 

3.76 

2.77 

2.77 

0.83 

0.66 

0.77 
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Figure 6.2-1. Profiling Data for V.32bis Modem on 
TMS320C3x 

Shaper 

Carrier recovery 

• Multirate pulse shaper 

Near blk. update 

Far blk. update 

Encoder 
Gain control 
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II Convert modem symbols to/from bytes; synchronize 

D Front-end multirate filter 

1m Echo canceller near-end block update 

[u Echo canceller far-end block update 

D(Symbol or trellis) encoder, modulate 

Ea Automatic gain control 

DDOther 

1m Symbol clock recovery 

mEqualize, jitter predict, demod., and carrier recovery 

II Echo canceller processing 

D Decision and symbolNiterbi decoder 
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Table 6.2-2. Profiling Data for: 

Application: V.32bis Modem 

Language: Assembly 

Processor: Texas Instruments TMS320C5x 

Data From: ILLICO 

Related DSP 
Abbreviation Function 

Processor Operations 

Viterbi decoder Viterbi decoder Viterbi decoder 

Echo cancellation Double precision echo cancellation Adaptive real LMS FI R filter 

Hilbert transform,IIR filter, 
Sample proc. Sample rate processing digital PLL, interpolating FIR 

filter 

Equalizer Channel equalizer 
Adaptive cbmplex LMS FIR 
filter 

Modulator 
Spectrum shaping, interpolation, 

FIR filtering 
modulation 

Supervisory Internal state control, diagnostics Decision-making control 

Formatting HDLC and output data formatting Bit manipulation 

Carrier recov. Carrier recovery Digital PLL, FIR, IIR 

Context Save and restore context 
Memory-memory data 
moves 

Transmit encoding 
Scrambler, differential encode, QAM 

Bit manipulation 
mapping 

Transmit State Ctl. Internal state machine Program control 

Percent of 
Time in 

Function 

29.00 

24.00 

10.00 

9.00 

8.00 

6.00 

3.00 

2.00 

2.00 

2.00 

2.00 
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Figure 6.2-2. Profiling Data for V.32bis Modem on 
TMS320C5x 
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V.17 Modem Receiver 

V.17 refers to a 14,400 bit/second modem protocol that is standard for Group III 
facsimile transmission. V.17 fax modems are also capable of communicating at slower 
speeds using older protocols (''fallback modes"). The profiling data presented here is for 
full-speed operation. 

The modem was implemented on a Motorola nSP560xx processor in assembly 
language. The profiling data reflects operation of the modem receiver only. Since it is used 
for facsimile, a V.17 modem operates in half-duplex mode; that is, it is either transmitting 
or receiving at any given time, but not both. As with most modem types, the receiver is 
significantly more complex than the transmitter. Table 6.2-3 and Figure 6.2-3 give func­
tion-level profiling data for this V.17 modem receiver implementation. 

This application profiling data was provided by ILLICO, a design and consulting 
firm specializing in the application of nsp to telecommunication product development, 
especially modems. For more information on ILLICO, please see Appendix A, Vendor 
Contact Information. 
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Table 6.2-3. Profiling Data for: 

Application: V.17 Modem Receiver (for Group III Facsimile) 

Language: Assembly 

Processor: Motorola DSP560xx 

Data From: ILLICO 

Related DSP 
Abbreviation Function 

Processor Operations 

Viterbi decoder Viterbi decoder Viterbi decoder 

Sample rate Band filter, interpolate, Hilbert 
Hilbert transform, IIR filter, 

processing transform, clock recovery 
digital PLL, interpolating FIR 
filter 

Equalizer Equalizer 
Adaptive complex LMS FIR 
filter 

Supervisory control 
Internal state control, diagnostics, 

Decision-making control 
call/return 

Carrier recovery Carrier recovery Digital PLL, FIR, (fR 

Decode/descramble Decode and descramble 
Bit manipulation, differential 
encoding 

Context Context load and save 
Memory-memory data 
moves 

Data formatting HDLC and output data formatting Bit manipulation 

Clock Clock phase control 

AGC and energy AGC and energy Sum of squares 

Percent of 
Time in 

Function 

46.0 

16.0 

14.0 

8.0 

3.0 

3.0 

3.0 

3.0 

2.0 

2.0 
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Figure 6.2-3. Profiling Data for V.17 Modem Receiver on 
DSP560xx 

Carrier recovery 

Supervisory 
control 

Sample rate processing 

.• Viterbi decoder 

AGCand 
energy 

Viterbi decoder 

II1II Band filter, interpolate, Hilbert transform, clock recovery 

E1Equalizer 

• Internal state control, diagnostics, calVreturn 

13 Carrier recovery 

II Decode and descramble 

EI Context load and save 

m HDLC and output data formatting 

lEI Clock phase control 
mAGe and energy 
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G.728 Speech Encoder 

G.728 refers to a standard format for the encoding and compression of digital 
speech signals. This standard defines a low-delay CELP speech encoding scheme. CELP 
stands for code excited linear predictor and refers to a technique for the compression of 
digital speech signals based on creating a parameterized model of the human vocal tract 
and transmitting the parameters of the model in place of the speech signal itself. CELP is 
used in applications where speech signals need to be transmitted digitally using low bit 
rates, such as secure telephones. Low-delay CELP is a variation of CELP speech coding 
that has a shorter intrinsic time delay than other CELP variations. The G.728 encoding 
scheme has been rigorously tested and found to have comparable voice transmission qual­
ity to conventional techniques that use higher bit rates, such as G.726, which uses 
ADPCM (adaptive differential pulse code modulation). One current application of G.728 
is compressing voice signals for video conferencing. Other variations of CELP are used in 
other applications. 

This G.728 speech encoder was implemented on a Texas Instruments TMS320C3x 
processor by DSP Software Engineering. The implementation was done completely in 
assembly language. As with many speech coding techniques, the encoder (sometimes 
called the analyzer) is more computationally demanding than the decoder (sometimes 
called the synthesizer). The encoder accounts for about twice the computational load of 
the decoder. 

Table 6.2-4 and Figure 6.2-4 give function-level profiling data for this G.728 
encoder implementation. 

In the next example, we show profiling results for a G.728 encoder and decoder 
implemented on the Analog Devices ADSP-2171. 
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Table 6.2-4. Profiling Data for: 

Application: G.728 Encoder 

Language: Assembly 

Processor: Texas Instruments TMS320C3x 
Data from: DSP Software Engineering 

Related DSP 
Abbreviation Function 

Processor Operations 

Search Code book search FIR filter 

Synth. update DR 
Synthesis filter update Durbin 

50th order Durbin recursion 
recursion 

Impulse response 
Impulse response & energy of filtered 

Convolution 
code vectors 

Synth. update auto Synthesis filter update autocorrelation 
Autocorrelation, specialized 
windowing 

Target vector Target vector calculation IIR filter, vector subtraction 

Gain predict update 
Log-gain predictor update 

Autocorrelation 
autocorrelation 

Local synth. Local synthesis IIR filter 

Vector squaring, 
Excitation gain Excitation gain calculation autocorrelation, specialized 

windowing 

Weight update DR 
Weighting filter update Durbin 

10th order Durbin recursion 
recursion 

Other Other 

Percent of 
Time in 

Function 

32.48 

18.52 

15.88 

12.86 

9.80 

3.14 

2.66 

2.11 

1.64 

0.91 
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Figure 6.2-4. Profiling Data For G.728 Encoder on 
TMS320C3x 

Synth. update DR 

Gain predict 
update 

~llliiij Local synth. 

Search 

• Synthesis filter update autocorrelation 

III Target vector calculation 

EI Log-gain predictor update autocorrelation 

II Local synthesis 

EJ Excitation gain calculation 

EI Weighting filter update Durbin recursion 

!!!I Other 

on Codebook search 

m Synthesis filter update Durbin recursion 

Excitation gain 

Weight update DR 

Ifill Impulse response & energy of filtered code vectors 
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G.728 Speech Encoder and Decoder 

This profiling example is for a G.728 encoder and decoder implemented on the 
Analog Devices ADSP-2171. Please refer to the previous profiling example for a discus­
sion of the G.728 algorithm. This implementation was written in assembly language by 
Analogical Systems (now Voice Pump, Inc.), a firm specializing in the development of 
DSP software for telecommunications applications, especially speech compression. For 
more information, please see Appendix A, Vendor Contact Information. 

Table 6.2-5 and Figure 6.2-5 give function-level profiling data for this G.728 
encoder and decoder implementation. 
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Table 6.2-5. Profiling Data for: 

Application: G.728 Encoder and Decoder 

Language: Assembly 

Processor: Analog Devices ADSP-2171 

Data From: Analogical Systems 

Abbreviation Function 

Encodercodebook 
Codebook search 

search 

Encoder LPC 
Encoder synthesis filter update 

synthesis filter 
adaptation 

recursion and autocorrelation 

Decoder LPC 
Decoder synthesis filter update 

synthesis filter 
adaptation 

recursion and autocorrelation 

Decoder adaptive 
Decoder adaptive postfilter 

postfilter 

Encoder synthesis & 
Synthesis filter 

weighting filters 

Encodercodebook 
Encoder codebook energy 

energy 

Decoder synthesis 
Decoder synthesis filter 

filter 

Decoder gain 
Decoder excitation gain calculation 

adaptation 

Encoder gain 
Encoder excitation gain calculation 

adaptation 

Encoder weighting 
Weighting filter update 

filter adaptation 

Related DSP 
Percent of 

Processor Operations 
Time in 

Function 

FIR filter, maximum search, 
18.4 

branching 

Durbin recursion, division, 
autocorrelation, windowing, 17.4 
LMS filter 
Durbin recursion, division, ' 
autocorrelation, windowing, 17.4 
LMS filter 

Data moves, FIR filter, 
13.0 

maximum search 

IIR filter, FIR filter 6.6 

MACs, data moves 5.4 

FIR filter. 4.4 

Durbin recursion, division, 
autocorrelation, windowing, 4.1 
LMS filter 
Durbin recursion, division, 
autocorrelation, windowing, 4.1 
LMS filter 
Durbin recursion, division, 
autocorrelation, windowing, 3.2 
LMS filter 
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Figure 6.2-5. Profiling Data for G.728 Encoder and Decoder 
on ADSP-2171 

Decoder synth. filter 

Encodercodebook 
energy 

Encoder synthesis and 
weighting filters 

Decoder adaptive 
postfilter 

• Code book search 

Weighting filter 
adaptation 

Decoder LPC synthesis 
filter adaptation 

Encoder LPC synthesis 
filter adaptation 

III Encoder synthesis filter update recursion and autocorrelation 

EI Decoder synthesis filter update recursion and autocorrelation 

m Decoder adaptive postfilter 

EI Synthesis filter 

1m Encoder codebook energy 

EI Decoder synthesis filter 

m Decoder excitation gain calculation 

m Encoder excitation gain calculation 

1m Weighting filter update 
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USFS 1016 CELP Speech Encoder 

In this section we examine profiling results for a speech coding application similar 
to that of the previous section. 

As discussed earlier in this chapter, CELP stands for code excited linear predictor 
and refers to a technique for the compression of digital speech signals based on creating a 
parameterized model of the human vocal tract and transmitting the parameters of the 
model in place of the speech signal itself. CELP is used in applications where speech sig­
nals need to be transmitted digitally using low bit rates, such as secure telephones. USFS 
1016 CELP is a United States federal government standard defining one variation on 
CELP speech coding. USFS 1016 CELP encodes telephone-quality speech into a 4,800 
bits/second digital bit stream. Other variations of CELP are used in various applications. 

The CELP speech encoder was implemented on a Motorola DSP560xx processor 
by Analogical Systems (now Voice Pump, Inc.). The implementation was done completely 
in assembly language. As with many speech coding techniques, the encoder (sometimes 
called the analyzer) is much more computation~intensive than the decoder (sometimes 
called the synthesizer). 

Table 6.2-6 and Figure 6.2-6 give function-level profiling data for this CELP 
speech encoder implementation. 
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Table 6.2-6. Profiling Data for: 

Application: US Federal Standard 1016 
Code Excited Linear Predictor (CELP) 

Language: Assembly 
Processor: Motorola DSP560xx 
Data From: Analogical Systems 

Related DSP 
Abbreviation Function 

Processor Operations 

Find optimal MSPE excitation code 
Correlation, convolution, 

Code word search scalar division, vector 
word 

scaling 

Find pitch vector quantization 
Correlation, convolution, 

Pitch search scalar division, vector 
parameters 

scaling, normalization 

All-pole filter Direct form all-pole filter fiR filter 

All-zero filter Direct form all-zero filter FIR filter 

Pitch vector quant. Pitch vector quantization Specialized 1/ R filter 

LPC 
LPC autocorrelation analysis with HF Autocorrelation, Durbin 
compression recursion 

Error Error calculations FIR, fiR filters 

Other Other 

Percent of 
Time in 

Function 

39.25 

39.04 

5.20 

2.59 

2.08 

0.94 

0.73 

10.16 
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Figure 6.2-6. Profiling Data For US Federal Standard 1016 
CELP on DSP560xx 

All-zero filter 

All-pole filter 

• Find optimal MSPE excitation code word 
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[J Direct form all-pole filter 
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H.261 Video Encoder and Decoder 

H.261 refers to a standard format for the encoding and compression of digital 
video signals for video conferencing applications. H.261 is a sub-standard of the video 
conferencing standard H.320. H.261 combines adaptive differential pulse code modula­
tion, frequency-domain techniques, run-length coding, and Huffman coding. 

This H.261 video encoder and decoder was implemented on a Texas Instruments 
TMS320C80 single-chip multiprocessor. The implementation was done completely in 
assembly language and uses three of the TMS320C80's four nsp processors. The chip's 
fourth nsp processor and RISC controller can be used to implement the remaining 
sub-standards comprising the complete H.320 standard (audio compression and system 
layer processing). 

Table 6.2-7 and Figure 6.2-7 give function-level profiling data for this H.261 
encoder implementation. Note that unlike our other profiling examples, this application 
was implemented on three processors. Therefore, the percentages of execution time shown 
in the table and figure correspond to percentages of the three processors' combined execu­
tion time. 
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Table 6.2-7. Profiling Data for: 

Application: H .261 Video Encoder and Decoder 

Language: Assembly 

Processor: Texas Instruments TMS320C80 (using 3 processors) 

Data From: Texas Instruments 

Related DSP 
Abbreviation Function 

Processor Operations 

Motion estimation 
Find best motion vector for predicted 

Sum of absolute differences 
data 

Inverse discrete Frequency domain to spatial domain 
OCT, FFT 

cosine transform transform 

Loop filter Smooth predicted data FIR filter 

Discrete cosine Spatial domain to frequency domain 
FFT, OCT 

transform transform 

Reconstruction Add error term to predicted data Add with saturate 

Threshold/quant-
Run-length encoding with zig-zag scan 

Thresholding, quantization, 
ization/zig-zag scan run-length coding 

Huffman encode Variable-length Huffman encoding Huffman encoding 

Huffman decode Variable-length Huffman decoding Huffman decoding 

Coding mode decision Select intra- or inter-frame coding Autocorrelation 

Pixel difference 
Subtract predicted data from current 

Vector subtraction 
data 

Percent of 
Time in 

Function 

29.0 

22.6 

11.6 

7.7 

7.7 

7.1 

4.5 

4.5 

3.9 

1.3 
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Figure 6.2-7. Profiling Data for H.261 Video Encoder and 
Decoder on TMS320C80 

Pixel 
difference 

Coding mode decision 
Huffman decode 

Thresholdlquantiz­
ation/zig-zag scan 

Reconstruction 

Discrete cosine 
transform 

Inverse discrete 
cosine transform 

• Find best motion vector for predicted data 

II Frequency domain to spatial domain transform 

[J Smooth predicted data 

II Spatial domain to frequency domain transform 

Cl Add error term to predicted data 

[J Run-length encoding with zig-zag scan 

EI Variable-length Huffman encoding 

IDI Variable-length Huffman decoding 

m Select intra- or inter-frame coding 

m Subtract predicted data from current data 
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Adaptive Beamformer 

Beamforming refers to a class of techniques that involve processing and combining 
signals from a two- or three-dimensional array of sensors to direct the sensitivity of the 
sensor array in a particular direction (forming a beam). Similarly, signals sent by an array 
of transmitting elements can be processed so that the combined effect of the entire array is 
to direct a signal in a particular pattern or beam. Thus, bearnforming techniques allow a 
physically immobile sensor or antenna array to "look" in different directions. Such tech­
niques are used in radar, sonar, and medical imaging products, among other applications. 

Adaptive beamforming is an extension of standard bearnforming techniques in 
which the bearnforming signal processing automatically adapts to compensate for distor­
tion introduced elsewhere in the system. Our example adaptive beamformer was imple­
mented on the Texas Instruments TMS320C3x processor by DSP Software Engineering. 
This implementation was written completely in assembly code. 

Table 6.2-8 and Figure 6.2-8 give function-level profiling data for this bearnform­
ing application implementation. 
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Table 6.2-8. Profiling Data for: 

Application: Adaptive Beamforming Algorithm 
Language: Assembly 
Processor: Texas Instruments TMS320C3x 
Data from: DSP Software Engineering 

Related DSP 
Abbreviation Function 

Processor Operations 

Complex Householder Cholesky 
Matrix decomposition, 

Transform 
transform 

diagonalizing; find 
eigenvalues 

Complex matrix multiplication and 
Matrix multiplication (vector 

Mat. mult. and add product), matrix addition 
addition 

vector sum) 

Mat. mult. Complex matrix multiplication 
Matrix multiplication (vector 
product) 

Chof. add 
Complex Householder Cholesky 

Matrix addition (vector sum) 
combining 

Mat. add Complex matrix addition Matrix addition (vector sum) 

Inverse Cholesky inverse Simplified matrix inversion 

Low mat. mult. 
Complex low matrix multiplication with Matrix multiplication (vector 
its complex conjugate product) 

Reflection Complex Householder reflection Matrix data move 

Percent of 
Time in 

Function 

51.99 

21.42 

20.91 

2.24 

1.76 

0.72 . 

0.71 

0.25 
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Figure 6.2-8. Profiling Data For Adaptive Beamforming 
Algorithm on TMS320C3x 

Transform 

• Complex matrix multiplication 
III Complex Householder Cholesky combining 
El Complex matrix addition 
Ell Cholesky inverse 

Chol. add 

Mat. add 
Inverse 
Low mat. mult. 
Reflection 

121 Complex low matrix multiplication with its complex conjugate 
I!I Complex Householder reflection 
EI Complex Householder Cholesky transform 
mComplex matrix multiplication and addition 
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GSM Speech Coder 

GSM is currently the prevalent standard for digital mobile telephony in Europe. 
These profiling examples are for the speech coder portions of a GSM digital cellular tele­
phone. 

The profiled implementation shown in Table 6.2-9 and Figure 6.2-9 reflects nor­
mal execution of the GSM enhanced full-rate encoder. The profiled implementation of the 
GSM enhanced full-rate decoder is shown in Table 6.2-10 and Figure 6.2-10. This encoder 
and decoder were both developed in assembly language by Motorola India Electronics, 
Ltd. for the Motorola DSP563xx. 

The profiling data shown in Table 6.2-11 and Figure 6.2-11 reflects normal execu­
tion of both the encoder and decoder for an implementation on the Texas Instruments 
TMS320C62xx. This implementation was developed in assembly language by Texas 
Instruments. 
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Table 6.2-9. Profiling Data for: 

Application: GSM Enhanced Full-Rate Speech Encoder 

Language: Assembly 

Processor: Motorola DSP563xx 

Data From: Motorola India Electronics Ltd. 

Related DSP 
Abbreviation Function 

Processor Operations 

Recursive calculation of 
Search Search best algebraic code vector correlations, maximum 

search 

Correlation Compute filter coefficient correlation 
Vector scaling, generate 
40x40 correlation matrix 

LSP quant. LSP quantization 
Euclidean distance, 
minimum search 

Convolution Convolution during closed-loop search 
Convolution, vector dot 
product 

Polynomial addition and 
Az to LSP Az to LSP multiplication, interpolation, 

l~olynomial evaluation 

Norm corr. 
Normalized correlation during closed 10th order FIR filter, 
loop correlation 

IIR synth. IIR synthesis filter 10th order IIR filter 

Auto-correlation, IIR filter, 
LPC analysis LPC analysis Durbin recursion, vector 

scaling, division 

Max. lag Open-loop maximum lag 
Correlation, maximum 
search 

Other Other 

Percent of 
Time in 

Function 

30.80 

8.10 

7.80 

6.30 

5.10 

5.00 

4.80 

4.80 

4.70 

22.60 
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Figure 6.2-9. Profiling Data for GSM Enhanced Full-Rate 
Speech Encoder on DSP563xx 

Other 

Max. lag 

LPC analysis 

Norm. corr. 

Az to LSP Convolution 

• Search best algebraic code vector 

o LSP quantization 

[!]Az to LSP 

ElIiR synthesis filter 

m Open-loop maximum lag 
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f.3 Normalized correlation during closed loop 

OJ) LPC analysis 

mOther 

81 



Buyer's Guide to DSP Processors 

Table 6.2-10. Profiling Data for: 

Application: GSM Enhanced Full-Rate Speech Decoder 

Language: Assembly 

Processor: Motorola DSP563xx 

Data From: Motorola India Electronics Ltd. 

Related DSP 
Abbreviation Function 

Processor Operations 

Codebook Adaptive codebook excitation Interpolating FIR filter 

Synthesis Synthesis filter 10th order IIR filter 

Post-process Post-processing filter 
Vector scaling, FIR filter, IIR 
filter 

LSP polynomial Get LSP polynomial Polynomial multiplication 

Decode alg. Decode algebraic code 
Generate vector from coded 
indices 

Decode gain Decode gain code Logarithm, FIR filter 

Pre-emphasis Pre-emphasis 1 st order FIR filtering 

LSP to az LSP to az Vector add 

Other Other 

Percent of 
Time in 

Function 

26.00 

17.10 

11.10 

6.20 

3.20 

3.00 

2.10 

1.60 

29.70 
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Figure 6.2-10. Profiling Data for GSM Enhanced Full-Rate 
Speech Decoder on DSP563xx 
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LSP polynomial 
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Table 6.2-11. Profiling Data for: 

Application: Enhanced Full-Rate GSM Vocoder 

Language: Assembly 

Processor: Texas Instruments TMS320C62xx 

Data From: Texas Instruments 

Related DSP 
Abbreviation Function 

Processor Operations 

Algebraic 
Find optimal algebraic codeword, 

Correlation, vector sum, 
codebook search 

quantize the gain, and update filter 
scalar quantization 

memories 

Adaptive Find and quantize optimal pitch and 
IIR & FIR filters, convolution, 
vector sum, interpolation, 

code book search gain 
scalar Quantization 

Find LPC coeffiCients, convert LPC to 
Autocorrelation, find roots of 

LPC 
LSP, quantize LSP 

polynomial, vector 
[Quantization,interpolation 

Pitch search 
Find pitch candidate for adaptive IIR and FIR filters, cross-
codebook search correlation 

Decode and Decode the parameters, convert LSP IIR filter, interpolation, vector 
synthesis to LPC, reconstruct speech sum 

Post-process 
Post-process: adaptive postfiltering, up IIR and FIR filters, dot 
scaling product 

Pre-process 
Pre-process: high-pass filtering and 

IIR and FIR filters 
down-scaling 

Percent of 
Time in 

Function 

39.90 

19.70 

18.10 

11.00 

5.00 

3.50 

1.30 
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Figure 6.2-11. Profiling Data for GSM Enhanced Full-Rate 
Vocoder on TMS320C62xx 

Pre-process 
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search 

Algebraic 
codebook 

search 

• Find optimal algebraic codeword, quantize the gain, and update filter memories 
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13 Pre-process: high-pass filtering and down-scaling 
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6.3 Instruction-Level Profiling 

In this section, we present instruction-level profiling data for several example 
applications: various portions of a GSM cellular telephone and ADPCM speech compres­
sion. Instruction-level profiling data reveals the percentage of the total instruction cycles 
attributable to different categories of processor instructions while running a given applica­
tion. It therefore provides a sense of the relative importance of different instruction types 
in the application. 

As in the function-level profiling results presented earlier in this chapter, the pro­
filing data presented here is for the main, steady-state operating mode of each application. 

For each application, we list the ten most frequently executed instruction types. We 
provide a brief description of each instruction type and the percentage of execution time 
accounted for by each type. 

More detailed technical information on each of these applications can be found in 
texts and journals on communications and signal processing, a sampling of which are 
listed in the References section at the end of this report. 
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GSM Channel Coder 

GSM is currently the prevalent standard for digital mobile telephony in Europe. 
This profiling example is for the channel coder portion of a GSM digital cellular tele­
phone. The channel coder is responsible for a variety of tasks including bit packing, inter­
leaving, encryption, error control coding, and error detection and correction. The 
instruction profiling data here reflects normal execution of both the encoder and decoder 
over several frames of data. 

The profiled implementation was developed in assembly language by Lucent 
Technologies for the Lucent Technologies DSP1618. Table 6.3-1 and Figure 6.3-1 display 
instruction-level profiling data for this GSM channel coder implementation. 
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Table 6.3-1. Profiling Data for: 

Application: GSM Channel Coder 
Language: Assembly 
Processor: Lucent Technologies DSP1618 
Data From: Lucent Technologies 

Abbreviation Instruction Type 

Control Branch, loop 

Conditional ALU Conditionally execute an ALU operation 

ALU/MAC ALU or MAC operation 

Shiftlbit manipulation Shift or bit manipulation operation 

Immmove I mmediate move 

ALU/MAC + 1 move ALU or MAC operation with one parallel move 

Reg-reg move Register-to-register move 

Memory write Memory write (not parallel) 

ALU/MAC + 2 moves ALU or MAC operation with two parallel moves 

Memory read Memory read (not parallel) 

Percent of Totallnst. 
Cycles 

39.2 

23.8 

11.4 

7.6 

6.1 

5.6 

4.5 

1.4 

0.4 

0.1 
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Figure 6.3-1. Profiling Data For GSM Channel Coder on 
DSP1618 

Shiftlbit 
manipulation 
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ALU 

• Shift or bit manipulation operation 

CJ ALU or MAC operation with one parallel move 

Ij] Memory write (not parallel) 
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m Conditionally execute an ALU operation 
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GSM Digital Receiver 

This profiling example is for the digital receiver portion of a GSM digital cellular 
telephone. The digital receiver is responsible for a variety of tasks including received sig­
nal strength estimation, synchronization, frequency error estimation, and demodulation. 

The profiled implementation was developed in assembly language by Lucent 
Technologies for the Lucent Technologies DSP1618. 

Table 6.3-2 and Figure 6.3-2 display instruction-level profiling data for this GSM 
digital receiver implementation. 
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Table 6.3-2. Profiling Data for: 

Control 

Application: GSM Receiver 

Language: Assembly 

Processor: Lucent Technologies DSP1618 

Data From: Lucent Technologies 

Abbreviation Instruction Type 

Branch,loop 

IALU/MAC + 1 move ALU or MAC operation with one parallel move 

\ 

Immmove Immediate move 

ALUlMAC ALU or MAC operation 

Reg-reg move Register-ta-register move 

Shiftlbit manipulation Shift or bit manipulation operation 

ALUIMAC + 2 moves ALU or MAC operation with two parallel moves 

Conditional ALU Conditionally execute an ALU operation 

Memory write Memory write (not parallel) 

Memory read Memory read (not parallel) 

Percent of Totallnst. 
Cycles 

22.9 

16.2 

13.8 

11.5 

9.9 

9.0 

7.0 

4.2 

3.0 

2.5 

/ 
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Figure 6.3-2. Profiling Data For GSM Receiver on DSP1618 

Reg-reg move 

Control 

ALUlMAC 
+2 moves 

Conditional 
ALU 

• Register-to-register move • Shift or bit manipulation operation 

ClALU or MAC operation with two parallel moves EConditionally execute an ALU operation 

[J Memory write (not parallel) iii Memory read (not parallel) 

ra Branch, loop 

mJ Immediate move 

@ 2001 Berkeley Design Technology, Inc. 

IIDALU or MAC operation with one parallel move 

m ALU or MAC operation 

95 



Buyer;s Guide to DSPProcessors 

96 @ 2001 Berkeley Design Technology, Inc. 



Choosing a Processor - Instruction-Level Profiling 

GSM Speech Coder 

Table 6.3-3 and Figure 6.3-3 display instruction-level profiling data for a full-rate 
GSM speech coder implementation. The speech coder performs 'Compression and decom­
pression of digital speech signals. The profiled implementation was developed in assem­
bly language by Lucent Technologies for the Lucent Technologies DSP1618. The 
profiling data presented here represent normal operation of both the encoder and decoder 
for one frame of speech data. 

The instruction-level profiling example shown in Table 6.3-4 and Figure 6.3-4 is 
for the full-rate GSM speech decoder portion of a GSM digital cellular telephone. The 
profiling example shown in Table 6.3-5 and Figure 6.3-5 is for the enhanced full-rate 
speech decoder portion of a GSM digital cellular telephone. Both of these profiled imple­
mentations were developed in assembly language by Motorola India Electronics Ltd. for 
the Motorola DSP563xx. 
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Table 6.3-3. Profiling Data for: 

Application: Full-Rate GSM Speech Coder 
Language: Assembly 
Processor: Lucent Technologies DSP1618 
Data From: Lucent Technologies 

Abbreviation Instruction Type 

ALU/MAC + 1 move ALU or MAC operation with one parallel move 

ALU/MAC + 2 moves ALU or MAC operation with two parallel moves 

Conditional ALU Conditionally execute an ALU operation 

Immmove Immediate move 

Control Branch, loop 

Shiftlbit manipulation Shift or bit manipulation operation 

Reg-reg move Register-to-register move 

ALUlMAC ALU or MAC operation 

Memory write Memory write (not parallel) 

Memory read Memory read (not parallel) 

Percent of Totallnst. 
Cycles 

54.6 

11.7 

8.4 

6.3 

5.6 

4.9 

3.4 

2.9 

1.1 

1.1 
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Figure 6.3-3. Profiling Data For Full-Rate GSM Speech Coder 
on DSP1618 
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Table 6.3-4. Profiling Data for: 

Application: GSM Full-Rate Speech Decoder 

Language: Assembly 

Processor: Motorola DSP563xx 

Data From: Motorola India Electronics Ltd. 

Abbreviation Instruction Type 

Move Memory-to-register or register-to-memory move 

MAC. 2 moves MAC with two parallel moves 

ALU ALU operations 

Bit manipulation Bit manipulation 

Control Control code 

MAC. 1 move MAC with one parallel move 

Reg-reg move RegisteHo-register move 

Percent of Totallnst. 
Cycles 

35.7 

34.7 

16.7 

6.2 

3.5 

2.6 

1.1 
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Figure 6.3-4. Profiling Data For GSM Full-Rate Speech 
Decoder on DSP563xx 
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Table 6.3-5. Profiling Data for: 

Application: GSM Enhanced Full-Rate Speech Decoder 

Language: Assembly 

Processor: Motorola DSP563xx 

Data From: Motorola India Electronics Ltd. 

Abbreviation Instruction Type 
Percent of Total Inst. 

Cycles 

Move Memory-to-register or register-to-memory move 40.2 

MAC, 2 moves MAC with two parallel moves 23.3 

ALU ALU operations 20.5 

MAC, 1 move MAC with one parallel move 6.6 

Bit manipulation Bit manipulation 4.1 

Control Control code 3.5 

Reg-reg move Register-to-register move 1.8 
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Figure 6.3-S. Profiling Data For GSM Enhanced Full-Rate 
Speech Decoder on DSPS63xx 
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ADPCM Speech Coder 

ADPCM stands for adaptive differential pulse code modulation, a speech coding 
technique used to compress eight-bit speech samples to four-bit samples with minimal 
loss of fidelity. ITU-T standard G.721 defines standard ADPCM encoder and decoder 
algorithms that are common in telecommunications applications. 

The following two instruction profiling examples show two implementations of 
the G.721 ADPCM algorithm on the Analog Devices ADSP-21xx processor: the first was 
implemented in assembly code, the second in C. This data was provided by the Institute 
for Integrated Systems in Signal Processing (ISS) of the Aachen University of Technol­
ogy, Germany. The ISS (led by Professor Heinrich Meyr) is concerned with the analysis 
and synthesis of complex information processing systems. The DSP Tools Group, a part of 
ISS, focuses on the DSP system design methodology, as well as on development of appro­
priate design automation tools. 

Table 6.3-6 and Figure 6.3-6 display instruction-level profiling data for the assem­
bly-language ADPCM implementation. 

Table 6.3-7 and Figure 6.3-7 display instruction-level profiling data for the C-Ian­
guage ADPCM implementation. Note in particular that the C implementation makes much 
heavier use of non-parallel data move instructions than the assembly-language implemen­
tation. This is symptomatic of the inefficiency of C compilers for many DSP processors, 
especially for conventional fixed-point processors such as the ADSP-21xx. 
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Table 6.3-6. Profiling Data for: 

Application: ADPCM Speech Encoder and Decoder 

Language: Assembly 

Processor: Analog Devices ADSP-21 xx 

Data From: Aachen University, ISS 

Abbreviation Instruction Type 
Percent of Total Inst. 

Cycles 

ALU with move(s) ALU operation with one or two parallel moves 30.2 

~LU only ALU operation with no parallel moves 18.9 

Single move only Single data move operation 18.5 

Shift with move(s) Shift operation with one or two parallel moves 9.7 

Shift only Shift operation with no parallel moves 8.1 

MAC with move(s) MAC operation with one or two parallel moves 5.6 

Control Control flow operation (e.g., branch, call) 5.5 

Dual move(s) Two data moves in parallel 2.9 

Misc Stack and other miscellaneous operations 0.4 

MAC only MAC operation with no parallel moves 0.2 
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Figure 6.3-6. Profiling Data For ADPCM Speech Encoder and 
Decoder on ADSP-21 xx 
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Table 6.3-7. Profiling Data for: 

Application: ADPCM Speech Encoder and Decoder 
Language: C 
Processor: Analog Devices ADSP-21 xx 

Data From: Aachen University, ISS 

Abbreviation Instruction Type 
Percent of Totallnst. 

Cycles 

Single move only Single data move operation 43.1 

MAC with move(s) MAC operation with one or two parallel moves 13.6 

Control Control flow operation (e.g., branch, call) 12.3 

ALU only ALU operation with no parallel moves 9.0 

ALU with move(s) ALU operation with one or two parallel moves 8.3 

Shift only Shift operation with no parallel moves 5.5 

MAC only MAC operation with no parallel moves 4.3 

Misc Stack and other miscellaneous operations 3.6 

Shift with move(s) Shift operation with one or two parallel moves 0.4 

Dual move(s) Two data moves in parallel 0.0 
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Figure 6.3-7. Profiling Data For ADPCM Speech Encoder and 
Decoder on ADSP-21 xx 
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7. Processor Analyses 
In this chapter we examine 17 processor families from four different vendors. In a 

consistent manner, we describe in detail many important aspects of these processors, 
including architecture, peripherals, power management, technical support, and develop­
ment tools. We also evaluate the strengths and weaknesses of each processor to provide 
insight into which processor best fits the needs of a given application. Unique and out­
standing features that could be advantageous in particular applications are noted, as well 
as omissions of features and limitations that could be detrimental. 

Indented, italicized paragraphs (such as this paragraph) used in 
this chapter represent subjective comments of engineers at BDT!. 
These comments are based on extensive experience with DSP sys­
tems, processors, and algorithms. Remember, however, that these 
comments are opinions, not facts, and should be read in that light. 

We begin each processor analysis with a high-level overview, presenting a brief 
outline of the processor's characteristics, its history, and noteworthy details. Then, over 
the course of many subsections, we delve into the internals of the processor and its func­
tionality. We cover the following topics in detail since we consider them to be among the 
most relevant considerations in evaluating a processor for a given set of application 
requirements: 

• Architecture 
Provides an overview of the processor's architecture, explains which execution 
units are found in the processor, specifies the data and instruction word widths, etc. 

• DataPath 
Discusses the main aspects of the data path; i.e., integer ALUs and/or float­
ing-point units; support for guard bits, saturation, and rounding; and capabili­
ties of shifters, multipliers, and other special function units. We also consider 
registers and their widths. 

• Memory System 
Includes an explanation of the processor's program and data memory organiza­
tion, on-chip memory configurations, address spaces, and cache capabilities. 
Load/store capabilities and on-chip bandwidth restrictions are also discussed. 

• External Memory Interface 
Explains the processor's external memory interface in terms of bus width, bus 
speed, off-chip bandwidth restrictions, and support for wait states. If available, 
we also discuss bus protocols such as split-transaction or pipelined buses and 
support for special types of memory, such as DRAM. 

• Address Generation Units 
Discusses the processor's addressing modes; e.g., register-indirect addressing, 
support for immediate data, etc. Explains how addresses are generated; and 
comments on the number of address registers. 
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• Pipeline 
Outlines and explains pipeline stages where necessary for understanding soft­
ware performance and optimization on the processor. Pipeline properties such 
as interlocking, hazards, and sub-pipelined execution units are also explored 
here. 

• Instruction Set 
Summary of the processor's instruction set and registers and discussion of the 
properties of the instruction set. 

• Assembly Language Format 
Discusses the style of the processor's assembly language syntax, such as 
opcode-operand or algebraic with separate fields for parallel moves. 

• Parallel Move Support 
Discusses whether parallel moves are supported and whether they are oper­
and-related or operand-unrelated, relevant restrictions, and the maximum num­
ber of parallel loads and stores that can be performed per instruction cycle. 

• Orthogonality 
Assesses the orthogonality of the processor's instruction set as judged by BDTI 
engineers and explains what makes the instruction set orthogonal or not. 

• Execution Time 
Describes the number of instruction cycles required for each class of instruc­
tions as well as the number of instructions that can be dispatched and executed 
per instruction cycle. 

• Instruction Set Highlights 
Summarizes noteworthy instructions that may ease programming or increase 
perfonnance in certain applications. 

• Execution Control 
Exploration of clocking, hardware looping, interrupts, stacks, and bootstrap load­
ing. 

• Clocking 
Discusses processor's clock generation options. 

• Hardware Looping 
Explores hardware looping capabilities and how they affect performance. 

• Interrupts 
Lists interrupt sources, interrupt handling mechanisms, and interrupt latency. 

• Stack 
Explains stack implementation. 

• Bootstrap Loading 
Outlines how the processor begins executing when reset. 
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• Peripherals 
Discusses on-chip peripherals such as timers, serial ports, host ports, bit 110, and 
more specialized peripherals. 

• On-Chip Debugging Support 
Outlines on-chip debugging support, which can range from none to sophisticated 
on-chip emulation with support for IEEE-1149.1 (ITAG) scan-based debugging. 

• Power Consumption and Management 
Discusses power consumption, supply voltage, and power management features 
particularly as they affect suitability for low-power applications. Unless otherwise 
noted, nominal (not minimum) voltages are used. Processors can operate at the 
indicated speeds with supply voltages at least 10% higher or lower than their nom­
inal voltages. 

• Cost and Packaging 
Summarizes price and packaging options available as of mid-2000. 

• Benchmark Performance 
Discusses the most notable BDTI Benchmark results for the processor. Detailed 
benchmark analyses can be found in Chapter 8, BDT! Benchmark™ Results. 

• Fabrication Details 
Describes the fabrication technology used to fabricate members of the processor 
family. If the processor is available as a core, this is also discussed. 

• Development Tools 
Discusses availability and features of tools that can significantly ease develop­
ment: For example, assemblers, compilers, linkers, library archivers, instruc­
tion-set simulators, emulators, and debuggers. 

• Applications Support 
Discussion of vendor and third-party support, such as the availability of books or 
on-line tutorials, applications engineers, telephone ho~lines, and websites. 

We also identify processor variants available within the family. Additionally, we 
conclude each analysis with a summary of the processor's noteworthy advantages and dis­
advantages. These serve as convenient overviews of the analyses. 

For readers seeking addition background on the terms and concepts discussed in 
this chapter, BDTI offers an introductory textbook, DSP Processor Fundamentals. Con­
tact BDTI directly or visit BDTI's website (www.BDTI.com) for details. Chapter 8, BDT! 
Benchmark™ Results presents the results of the BDTI Benchmarks, which provide details 
on the performance of most of the processors discussed in this chapter. 

The analyses presented in this chapter are organized alphabetically by manufac­
turer. The processor or family name is indicated within the header of each page for your 
convenience. 
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Chapter 5, Processors Not Covered in This Report gives information on where to 
find analyses of processors not included in this report, including analyses of the nsp capa­
bilities of general-purpose processors. 

© 2001 Berkeley Design Technology, Inc. 



7.1 

Processor Analyses - Analog Devices ADSP-21 xx Family 

Analog Devices ADSP-21 xx Family 

Introduction 

BDTlmark2000 Score: 
230 at 75 MHz 

Analog Devices' ADSP-21xx family consists of a large number of processors 
based on a common 16-bit, fixed-point conventional DSP architecture with a 24-bit 
instruction word. The fastest members of the family operate at 75 MHz at 2.5 volts, 52 
MHz at 3.3 volts, and 40 MHz at 5.0 volts. ADSP-21xx processors are targeted at modem, 
audio, speech processing, and digital cellular applications. 

The ADSP-21xx is the first DSP processor family from Analog Devices. The 
ADSP-2100A, the first member of the family, was introduced in 1986. Subsequently, Ana­
log Devices has introduced many family members with various peripherals and speeds, 
and new members continue to be added to the family. Recent additions to the ASP-21xx 
family include new ADSP-218x members, such as the 2.5-volt ADSP-2186M operating at 
up to 75 MIPS. ADSP-21xx family processors are summarized in Table 7.1-1 and 
Table 7.1-2. In addition, Analog Devices offers specialized versions of ADSP-21xx 
devices with application-specific peripherals for such applications as motor control and 
speech processing. These specialized devices are not covered in this report. 

In October 1999, Analog Devices announced the ADSP-219x, a new architecture 
derived from the ADSP-21xx. Section 7.2 provides an analysis of the ADSP-219x core 
and focuses on the differences between the ADSP-219x and the ADSP-21xx. 

The ADSP-21xx family is notable for its dissimilar instruction and 
data word sizes (24 and 16 bits, respectively) and for its many fam­
ily variants. Only a few of these family members (seven at present) 
execute at 50 MHz or higher, however. 

The top clock speed of the ADSP-21xx family has not increased 
since the last edition of Buyer's Guide to DSP Processors was pub­
lished, in late 1998. It appears likely that Analog Devices will 
encourage its customers to migrate to the newer ADSP-219x archi­
tecture if they require peiformance beyond that of existing 
ADSP-21xx family members, rather than increase the speed of the 
older architecture. 

Architecture 

The core architecture of the ADSP-21xx consists of a 16-bit, fixed-point data path, 
two data address generators, a program control unit, and separate program and data mem­
ories with dedicated buses. Figure 7.1-1 illustrates the architecture of the ADSP,-2181. 

Data Path 

The ADSP-21xx data path consists of three separate arithmetic execution units: an 
arithmeticllogic unit (ALU), a multiplier/accumulator (MAC), and a barrel shifter. Each 
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unit is capable of single-cycle execution, but only one of these units can be active during a 
single instruction cycle. Each unit has dedicated input registers and dedicated result regis­
ters. The ADSP-21xx implements a load-store architecture; each unit requires data to be 
loaded into input registers before computation. 

On-Chip Memory 110 Ports 
Core Max. 

Part Voltage Speed Prog. 
Data 

(V) (MIPS) RAMI 
RAM 

Sere Host 
ROM 

ADSP-2100A 5.0 12.5 010 0 0 No 

ADSP-2101 5.0 25.0 2Kx24/0 lKx16 2 No 

ADSP-2103 3.3 10.2 2Kx24/0 lKx16 2 No 

ADSP-2104 5.0 20.0 512x24/0 256x16 2 No 

ADSP-2104L 3.3 13.B 512x24/0 256x16 2 No 

ADSP-2105 5.0 20.0 1 Kx24/0 512x16 1 No 

ADSP-2109* 5.0 20.0 0/4Kx24 256x16 2 No 

ADSP-2109L* 3.3 13.B 0/4Kx24 256x16 2 No 

ADSP-2111 5.0 20.0 2Kx24/0 lKx16 2 Yes 

ADSP-2115 5.0 25.0 1 Kx24/0 512x16 2 No 

ADSP-2141L 3.3 40.0 16Kx24/0 16Kx16 2 No 

ADSP-2161 * 5.0 16.7 0lBKx24 512x16 2 No 

ADSP-2162* 3.3 10.2 0lBKx24 512x16 2 No 

ADSP-2163* 5.0 25.0 0/4Kx24 512x16 2 No 

ADSP-2164* 3.3 10.2 0/4Kx24 512xJ6 2 No 
) 

ADSP-2165* 5.0 20.0 
1 Kx241 

4Kx16 2 No 
12Kx24 

ADSP-2166* 3.3 16.7 
1 Kx241 

4Kx16 2 No 
12Kx24 

TABLE 7.1-1. ADSP-21xx family variants (continued on next page) . 
• Minimum order quantity is 10,000. 
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The ALU and MAC units each have four input registers. If these registers are not 
needed to store operands for their associated arithmetic unit, they can be used as gen­
eral-purpose registers. The output registers of any arithmetic unit may be used as inputs to 
any arithmetic unit. All ALU, MAC, and barrel shifter registers are shadowed by a set of 
secondary registers. The secondary registers can be switched in or out under program con­
trol in a single instruction cycle. 

Shadowing of the data path registers is a very useful feature for 
context switching during subroutines and interrupt service routines. 

The ALU operates on 16-bit data. It includes four input registers (two for each 
memory space, PM and DM), a feedback register (to return results to the input of the ALU 

On-Chip Memory 110 Ports 
Core Max. Bit 

Part Voltage Speed Prog. 
Data Oper-

(V) (MIPS) RAMI 
RAM 

Ser. Host Other ations 
ROM 

ADSP-2171 5.0 33.3 2Kx24/0 2Kx16 2 Yes - Yes 

ADSP-2173 3.3 20.0 2Kx24/0 2Kx16 2 Yes - Yes 

ADSP-2181 5.0 40.0 16Kx24/0 16Kx16 2 IDMA BDMA Yes 

ADSP-2183 3.3 52.0 16Kx24/0 16Kx16 2 IDMA BDMA Yes 

ADSP-2184 5.0 40.0 4Kx24/0 4Kx16 2 IDMA BDMA Yes 

ADSP-2184L 3.3 40.0 4Kx24/0 4Kx16 2 IDMA BDMA Yes 

ADSP-2185 5.0 33.3 16Kx24/0 16Kx16 2 IDMA BDMA Yes 

ADSP-2185M 2.5 75.0 16Kx24 16Kx16 2 IDMA BDMA Yes 

ADSP-2185L 3.3 52.0 16Kx24/0 16Kx16 2 IDMA BDMA Yes 

ADSP-2186 5.0 40.0 8Kx24/0 8Kx16 2 IDMA BDMA Yes 

ADSP-2186L 3.3 52.0 8Kx24/0 8Kx16 2 IDMA BDMA Yes 

ADSP-2186M 2.5 75.0 8Kx24/0 8Kx16 2 IDMA BDMA Yes 

ADSP-2187L 3.3 52.0 32Kx24/0 32Kx16 2 IDMA BDMA Yes 

ADSP-2188M 2.5 75.0 48Kx24/0 32Kx16 2 IDMA BDMA Yes 

ADSP-2189M 2.5 75.0 32Kx24/0 48Kx16 2 IDMA BDMA Yes 

TABLE 7.1-2. AOSP-21xx family variants (continued from previous). Note: IOMA = 
Internal OMA, BOMA = Byte OMA. 
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for further processing), and a result register. In addition to the usual ALU operations, the 
ALU provides increment/decrement, absolute value, and add.,.with-carry functions. ALU 
results are saturated upon overflow if the appropriate configuration bit is set by the pro­
grammer. 

The fact that the ALU operates on 16-bit data is a disadvantage. 
Many 16-bit processors provide ALUs that operate on 32-bit data. 

. The MAC unit includes a 16 x 16 ~ 32-bit multiplier, four input registers (two for 
each memory space, PM and DM), a feedback register, a 40-bit adder, and a single 40-bit 
result register/accumulator providing eight guard bits. Unlike the ALU, the MAC unit 
does not have status bits to indicate if results are zero, positive, or negative (only an over­
flow flag is provided). MAC unit results must be passed through the ALU to obtain such 
status information. The MAC unit provides an optional automatic one-bit left shift of 
results to allow either fractional or integer multiplication. Besides signed operands, the 
multiplier can operate on unsigned/unsigned or on signed/unsigned operands, thus sup­
porting multi-precision arithmetic. 

Memory Fixed-Point Data Path 

I Program RAM II Data RAM 

I II \I I 

I 16Kx24 16Kx16 ALU MAC Shifter 

~~ ~ ~ . ~~ ~ A 

External 
" Address Bu s 

Program Address Bus (14) 
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FIGURE 7.1-1. ADSP-2181 architecture. 
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The single accumulator is a limitation of the ADSP-2lxx data path. 
It makes the processor poorly suited for arithmetic using complex 
numbers, for example. While the shadow register set provides a sec­
ond accumulator, accessing it requires exchanging all arithmetic 
registers with their shadow registers. Thus, the shadow registers 
are more useful for context switching than as additional arithmetic 
registers for use within a single algorithm. 

The fact that values must be transferred from the shifter or MAC 
unit to the ALU in order to set the status bits (for example, to test 
whether a result is negative) introduces extra overhead for some 
decision-making operations. 

The 40-bit accumulator register can be addressed as two 16-bit and one 8-bit regis­
ter, each of which can be individually copied to memory or to another register if extended 
precision is needed. The accumulator supports convergent rounding on bits 39-16 via ded­
icated instructions. In addition, round-to-nearest (biased) rounding is supported on the 
ADSP-217x and ADSP-218x. 

A special instruction checks whether the value in the accumulator has overflowed 
and saturates the accumulator if overflow has occurred. Because the MAC unit does not 
contain a shifter, overflow is defined to occur whenever results fall outside the range of 
values that can be represented without the use of the accumulator guard bits (i.e., in the 
lower 32 bits of the accumulator). There is no overflow detection or saturation operation 
for the upper eight bits of the accumulator. 

The fact that saturation requires an explicit instruction means that 
extra cycles are used in applications that must saturate results 
before moving them from the accumulator. 

If the output of the accumulator is to be scaled before being stored to memory, the 
accumulator value must be passed to the barrel shifter unit 16 bits at a time. Typically, this 
means two shift operations must be performed, requiring a total of two instruction cycles. 

The barrel shifter shifts 16-bit inputs from an input register or from the 
ALUIMAClbarrel shifter result registers into a 32-bit result register. Logical and arith­
metic left and right shifts of up to 32 bits are supported. The shift count (number of bit 
positions by which the operand will be shifted) can be specified as immediate data in a 
shift instruction or by loading a value into the shifter control register. 

Shift results can be merged (bitwise or'd) with previous shift results. This feature 
is necessary when using the shifter to scale accumulator results, since the accumulator 
must be scaled in two sections (or three sections in certain situations). This feature is also 
useful for packing and unpacking small bit fields into and out of a 16-bit word. The barrel 
shifter also supports block floating-point arithmetic via a block exponent detect instruc­
tion (which can be used iteratively to determine the maximum exponent of a block of 
data), plus single-word exponent detect, normalize, and exponent adjust instructions. 
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Compared to other fixed~point DSPs with barrel shifters, the 
ADSP~21xx barrel shifter is limited in that it can only accept16-bit 
input operands, and thus, shifting 32- or 40~bit operands takes mul­
tiple instruction cycles. 

The ADSP-21xx's support for multi~precision arithmetic somewhat 
makes up for the fact that the ALU and shifter can only process 
16-bit inputs. The multiplier can multiply any combination of 
signed and unsigned integers or signed and unsigned fractional 
numbers, and the ALU supports add~with~carry and sub­
tract-with~borrow operations. 

Memory System 

ADSP~2lxx processors use a modified Harvard architecture with separate memory 
spaces and bus sets for program and data. All processors in the ADSP-21xx family, except 
the ADSP-2100A, include on-chip program RAM or ROM and on-chip data RAM. The 
ADSP-2100A has no on-chip memory; instead it has a 16.:.word instruction cache and two 
external bus sets. Please refer back to Table 7.1-1 and Table7.1~2 for a summary of the 
various memory configurations and peripherals available in the ADSP~21xx family. 

On-chip program memory can be used for both inspuctions and data. It is accessed 
via a 14-bit address, bus and a 24-bit data bus. The program memory bus runs at twice the 
speed of the data memory bus to allow· the fetching of a data operand and the next instruc~ 
tionin a single instruction cycle. The on-chip data memory is accessed via a 14-bit address 
bus and a 16-bit data bus. One access to the on-chip data memory can be performed in a 
single instruction cycle. Some ADSP-:218x devices have more than 16 Kwords of on-chip 
program and data memory. Only 16 K words are directly user-accessible, however, with 
the remainder used to support the overlay capability described in the next section. 

Three memory accesses (one instruction and one data operand from program 
memory, plus one data operand from data memory) can be performed in one instruction 
cycle (except on the ADSP-2100A, which has no on-chip memory). On a 75 MIPS 
ADSP-2189M, this results in a maximum sustainable on-chip data memory bandwidth of 
150 million 16-bit words/second. 

When a data word is read from the 24-bit program/data memory, the 16 MSBs are 
used to load the destination register, and the eight LSBs are automatically loaded to a ded­
icated PX register. Similarly, upon data writes to program memory, the 16 MSBs are writ­
ten from the destination register and the eight LSBs come from the PX register. The 
eight-bit PX register can be read or written by the data path of the ADSP-21xx. This fea­
ture can be used to extend precision in some applications. It can also be used to improve 
memory efficiency when storing 16-bit data in 24-bit memory. 
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External Memory Interface 

All ADSP-21xx processors except the ADSP-2100A have one external memory 
interface, providing a 14-bit address bus and a 24-bit data bus. This external interface is 
multiplexed between program and data memory accesses. 

Programmed wait states (from zero to seven) can be separately specified for each 
of three regions of external data memory and for one region of external program memory. 
Externally requested wait states are supported only on the ADSP-2100A via the DMACK 
pin. External devices can request control of the processor's external memory interface 
through a bus request pin. Depending upon the value of a configuration bit, the processor 
may continue executing after relinquishing control of its external memory interface as 
long as no external memory accesses are required. 

Assuming zero wait states, one external memory access can be performed in a sin­
gle instruction cycle. The accessed data can be either a 24-bit instruction word or a 16-bit 
data word. For a 75 MHz ADSP-2189M, this results in a maximum sustainable external 
memory bandwidth of 75 million words/second for program or data. 

The ADSP-2100A has two external memory bus sets, one for program memory 
with a 14-bit address bus and a 24-bit data bus, and one for data memory with a 14-bit 
address bus and a 16-bit data bus. The ADSP-2100A supports one access to each of the 
off-chip memory spaces per instruction cycle. Normally, one of these accesses is an 
instruction fetch, and the other is a data access. On the ADSP-2100A, when instructions 
are executed from the cache, two data accesses can be completed in a single instruction 
cycle using the two external bus sets. 

The ADSP-218x adds several enhancements to the ADSP-21xx family's external 
memory interface, including program memory overlays, I/O address space, a "bus grant 
hung" pin, and two DMA ports. These enhancements are described below. 

The ADSP-218x extends the ADSP-21xx family's 16 Kword program address 
space and 16 Kword data address space by supporting 8 Kword overlays. Using overlays, 
the programmer can map an 8 K word segment of off-chip program memory into the upper 
half of the processor's program address space, replacing the upper 8 Kwords of on-chip 
program memory in the address map. Similarly, the programmer can map an 8 Kword seg­
ment of off-chip data memory into the lower half of the processor's data address space, 
replacing the lower 8 Kwords of on-chip data memory. Overlays are enabled via a config­
uration register. Up to two overlays can be provided for each memory space, although 
only one per memory space can be active simultaneously. During an external memory 
access, the MSB of the external address bus indicates which overlay is in use, if any. 
When a program memory overlay is in use, the upper 8 Kwords of on-chip program mem­
ory are not accessible. Similarly, when a data memory overlay is in use, the lower 
8 Kwords of on-chip data memory are not accessible. 

The ADSP-21xx family's 14-bit (16 Kword) address space is com­
paratively small and may be a serious constraint for some applica-
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tions. The ADSP-218x overlays partially overcome this 
shortcoming, but at the expense of programming complexity. 

The ADSP-218x also adds an I/O address space of 2,048 16-bit words that can be 
used to access off-chip peripherals or other resources. The I/O space is accessed via dedi­
cated read and write instructions. Programmed wait states (from zero to seven) can be sep­
arately specified for each of four regions of I/O space. Externally requested wait states are 
not supported. The IOMS pin is used to indicate that an I/O space access is underway. 

The ADSP-218x also includes two DMA controllers. The IDMA ("internal 
DMA") allows an external device to access the processor's on-chip memory directly. The 
BDMA ("byte memory DMA") supports transfers to and from an external "byte memory 
space." These are discussed below in the section on peripherals. 

Like other ADSP-21xx processors, the ADSP-218x provides a separate memory 
select output pin for each of its memory spaces (program memory, data memory, byte 
memory, and I/O memory). These pins indicate which memory space is being accessed 
during an external memory read or write. The ADSP-218x also provides a "composite 
memory select" (eMS) pin that can be used to simplify designs where a single off-chip 
physical memory is mapped into multiple processor memory spaces. The eMS pin can be 
configured to be the logical or of any subset of the processor's four other memory space 
select pins. The eMS pin can then be used as a chip select signal for an external memory 
that is mapped into multiple memory spaces. 

The ADSP-217x and ADSP-218x "bus grant hung" (BGH) pin is asserted by the 
processor when it is ready to execute an instruction but cannot do so because the·external 
bus has been granted to another device. 

Address Generation Units 

The ADSP-21xx supports immediate data and register-direct, memory-direct, and 
register-indirect addressing modes. 

Register-indirect addressing makes use of two data address generators (DAGs). 
One DAG generates addresses only for data memory and supports bit-reversed addressing. 
The second DAG can generate addresses for program memory (which can also contain 
data) or data memory, but does not support bit-reversed addressing. Each data address 
generator contains four address registers. In addition, each data address generator has four 
buffer-length registers used for modulo addressing and four modifier registers that can be 
used to post-increment or decrement the address registers. Within a DAG, any ofthe four 
modifier registers can be used to post-increment any of the address registers. All DAG 
registers are 14 bits wide. 

The fact that any of the four modifier registers can be used to 
post-increment any of the four address registers in each DAG pro­
vides flexibility for the programmer. However, the factthat the DAG 
does not provide built-in post-increment by -1, 0, and +1 means 
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that if these common post-increment values are needed, they must 
be loaded into modifier registers. Most other processors provide 
these post-increment values in hardware. 

The ADSP-21xx supports circular addressing via dedicated buffer-length registers 
associated with each address register. Thus, a maximum of eight circular buffers (four for 
the program and four for the data address space) can be active at a time. Circular address­
ing for any of the address registers can be enabled by loading its associated buffer length 
register with the size of the circular buffer. The starting address of a circular buffer must 
be aligned on a power-of-two boundary larger than the buffer size. The maximum size of a 
circular buffer is 16 Kwords. Circular addressing for an address register can be disabled 
by loading its buffer length register with zero. 

Support for eight simultaneous circular buffers is superior to most 
other DSP processors. However, alignment requirements compli­
cate the use of circular buffers. 

The data address generator used for program memory data access can also be used 
for indirect jumps and subroutine calls. This is useful for reconfigurable interrupt handlers 
and jump tables. 

Pipeline 

The ADSP-21xx uses a two-stage instruction pipeline comprised of fetch/decode 
and execute stages. The pipeline is transparent and since instructions are executed on the 
cycle after they are fetched, delayed branches are not needed. 

The shallow ADSP-21xx pipeline does not create challenges for the 
programmer. This is unusual among DSP processors. 

Instruction Set 

The ADSP-21xx instruction set and registers are summarized in Tables 7.1-3 and 
7.1-4. ADSP-21xx instructions are 24 bits wide~ 

Assembly Language Format 

The ADSP-21xx assembly language uses an algebraic syntax. Instructions are typ­
ically divided into one to three parts: a computation field and one or two data move fields. 
The computation field specifies an operation to be carried out by the ALU, MAC unit, or 
barrel shifter, and the data move fields specify a register-register data move or up to two 
register-memory data moves. For example, the instruction 

MR=MR+MXO*MYO(SS), MXO=DM(IO,Ml), MYO=PM(I4,M5)i 

multiplies the values in the MXO and MYO registers (the "SS" specifies that both multiply 
operands should be treated as signed numbers), adds the product to the value in the accu­
mulator MR, and places the sum back into the accumulator MR. In parallel with this mul­
tiply-accumulate computation, two memory moves are performed. The value in the data 
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memory ("DM") location pointed to by address register IO is moved into MAC register 
MXO, and the value in the program memory ("PM") location pointed to by address regis­
ter 14 is moved into MAC register MYO. Mter these moves are completed, address regis­
ter IO is post-incremented by adding the value in modifier register Ml, and address 
register 14 is post-incremented by adding the value in modifier register M5. Note that the 
values of MXO and MYO used in the multiply-accumulate operation are not the values 
moved from memory in this instruction; rather, the values that were in the registers prior 
to the execution of these instruction fields are used. 

Parallel Move Support 

The ADSP-21xx supports operand-unrelated parallel moves, as illustrated by the 
preceding example instruction. MAC unit computation instructions support either two par­
allel data reads (one from program and one from data memory) or one parallel write (to 
data or program memory). Parallel moves are also allowed with virtually all unconditional 

Class Instructions 

Arithmetic 
Absolute value, add, add with carry, clear, increment, decrement, subtract, 
subtract with carry, negate, pass value, set ALU status (ADSP-218x only) 

Multiply, multiply-accumulate, multiply-subtract (all support any combi-
Multiplier- nation of signed and unsigned operands), clear accumulator, saturate result, 
Accumulator convergent round, square, square-accumulate, round-to-nearest 

(ADSP-217x andADSP-218x only) 

Logic And, or, exclusive-or, not 

Shifting Arithmeticllogical shift left/right 1-32 bits, shift with or 

Rotation None 

Conditional 
All arithmetic, logical, and shift instructions can be conditionally executed 

Execution 

Comparison Comgare (ADSP-218x only) 

Looping Single- or multi-instruction hardware loop 

Branching Conditional and unconditional branch, branch on pin set/clear 

Subroutine Call Conditional and unconditional call, calion pin set/clear 

Bit Manipulation Bit set, clear, test, toggle (ADSP-217x and ADSP-218x only) 

Special Function Scalar exponent detect, block exponent detect, normalize, division iteration 

TABLE 7.1-3. ADSP-21xx instruction set summary. Underlined instructions are 
present only on some of the more recently introduced variants, as noted. 
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shifter and ALU operations. Alternatively, the ADSP-21xx allows a single register-regis­
ter move in parallel with most computations. 

Unit 

ALU 

The ADSP-21xx's support for register-to-register parallel moves is 
useful, especially because the MAC unit, ALU, and shifter usesepa­
rate operand registers. 

Registers Width Shadowed Purpose 

AXO, AX1, 
16 bits Yes Input registers 

AYO,AYI 

AR 16 bits Yes Result ~egister 

AF 16 bits Yes Feedback register 

MXO,MX1, 
16 bits Yes Input registers 

MYO,MYI 

MAC 
Accumulator; can be treated as two 16-bit reg-

MR2:MRO 40 bits Yes isters (MR1, MRO) and one 8-bit register 
(MR2) 

MF 16 bits Yes Feedback register 

SI 16 bits Yes Input register 

SE 8 bits Yes Exponent register 
Shifter 

SB 5 bits Yes Block exponent register 

SRI:SRO 32 bits Yes Result register 

1O-I3 14 bits No Address registers 
/ 

DAGI LO-L3 14 bits No Circular buffer length registers 

MO-M3 14 bits No Modifier registers 

14-17 14 bits No Address registers 

DAG2 L4-L7 14 bits No Circular buffer length registers 

M4-M7 14 bits No Modifier registers 

TABLE 7.1-4. ADSP-21xx register summary. The processor can switch between 
primary and shadowed registers under program control. 
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Orthogonality 

The ADSP-21xx 24-bit instructions provide reasonable orthogonality. The fact that 
the MAC unit, ALU, and shifter unit use separate register sets is the main factor detr:acting 
from the processor's orthogonality. 

Execution Times 

All ADSP-21xx instructions, including branches and subroutine calls, execute in a 
single instruction cycle, assuming no external memory wait states or multiple external 
memory accesses in a single instruction. 

Uniform single-cycle instruction execution simplifies programming. 

Instruction Set Highlights 

The ADSP-21xx provides special support for the following operations: 

• Division iteration 

• Single-cycle scalar or block exponent detect to support normalization operations 

• Conditional execution (depending on the ALU status flags) of most multi-' 
plier-accumulator, shifter, and ALU instructions (not available when using parallel 
moves) 

• On the ADSP-217x and ADSP-218x only, bit set, clear, test, and toggle operations, 
plus square and square-accumulate instructions 

• On the ADSP-218x only, compare and ALU status set operations 

Execution Control 

Clocking 

The ADSP-210x, ADSP-211x, and ADSP-216x processors operate from a master 
clock running at the instruction execution rate. For example, a 20 MIPS ADSP-2101 uses 
a 20 MHz master clock. The ADSP-214x, ADSP-217x, and ADSP-218x operate from a 
1I2-X master clock. For example, a 52 MIPS ADSP-2183 uses a 26 MHz master clock. On 
all but the ADSP-2100A, the master clock can be generated from an on-chip clock oscilla­
tor with the use of an external crystal, or an externally generated clock signal can be used. 
The master clock signal is available on an output pin of the processor. 

Hardware Looping 

The ADSP-21xx provides zero-overhead program looping through its DO instruc­
tion.Sequences of instructions of any length can be contained in a hardware loop, and up 
to 16,384 repetitions are supported. The loop exit condition can be a zero value in the spe­
cial-purpose loop counter or arithmetic conditions generated by the ALU. The 
ADSP-21xx supports nesting of hardware loops up to four levels deep. A dedicated hard-
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ware stack is provided to store hardware loop variables for nested loops. Hardware loops 
are interruptible. 

The ability of the ADSP-21xx to exit a hardware loop based on the 
value of an arithmetic condition is an advantage; some other pro­
cessors provide conditional break instructions, but these require 
extra cycles to execute. 

Interrupts 

Most ADSP-21xx processors provide up to three external interrupt lines. The pins 
for two of the external interrupt lines are shared with serial port pins, so if the serial port is 
used, only one external interrupt is available. On these processors, external interrupts can 
be configured as edge-sensitive or level-sensitive. The ADSP-218x provides six external 
interrupt lines: one edge-sensitive, two level-sensitive, and three that can be configured as 
edge-sensitive or level-sensitive. Of these six, two share pins with one of the serial ports. 

Internal interrupt sources include the on-chip timer (all variants except the 
ADSP-2100A), serial ports (separate transmit and receive interrupts for each serial port on 
variants containing one or more serial ports), the host port (transmit and receive for vari­
ants with a host port), byte DMA controller (ADSP-218x only), and an interrupt that 
occurs prior to entering power-down mode (ADSP-217x and ADSP-218x). 

Interrupts are individually maskable, prioritized and automatically nestable. Inter­
rupts are prioritized by source. Interrupt and arithmetic status are automatically saved to a 
hardware status stack upon interrupt. The four-deep hardware loop stacks and six­
teen-deep program counter stack allow nested interrupts to use zero-overhead loops with­
out context save if the interrupted program does not use the hardware loop stacks in their 
entirety. Each interrupt source has its own vector that resides in low memory. 

The ADSP-21xx responds to an interrupt by pushing the program counter onto the 
PC stack and the processor status (which includes the interrupt mask register) onto the sta­
tus stack, then executing the first instruction at the corresponding interrupt vector location. 
If interrupt nesting is enabled, the processor sets the interrupt mask register so that 
lower-priority interrupts are masked, and higher-priority interrupts are not masked. If 
interrupt nesting is disabled, the processor sets the mask register so that all interrupts are 
masked. In all ADSP-21xx variants except the ADSP-2100A, each interrupt vector loca­
tion contains four words of program memory, so that short interrupt service routines can 
reside entirely within the interrupt vector table with no need for a branch to reach the 
interrupt service routine. 

Interrupt latency is five instruction cycles from the time when the external inter­
rupt line is asserted to the execution of the first instruction at the. interrupt vector location, 
assuming the processor is in an interruptible state. If a short interrupt service routine is 
used, then the first instruction at the interrupt vector location is the first instruction of the 
service routine. In other cases, this instruction is a branch to the interrupt service routine. 

© 2001 Berkeley Design Technology, Inc. 127 



Buyer's Guide to DSP Processors 

128 

In such cases, the total latency to the execution. of the first word of the interrupt service 
routine is six instruction cycles, assuming the processor is in an interruptible state. 

Hardware loops are interruptible. Conditions that can delay interrupt processing 
include external memory wait states, external bus grant, and serial port autobuffer or 
DMA port cycle stealing (discussed below). 

The ADSP-21xx interrupt latency is more predictable than those of 
most fixed-point DSPs, since hardware loops are interruptible and 
all instructions nominally execute in a single cycle. 

As mentioned above, the ADSP-21xx provides shadow registers for ALU, multi­
plier-accumulator, and shifter registers. Under program control, the processor can switch 
between the primary and shadow registers in a single instruction cycle. 

The ADSP-2lxx family supports the ability to. clear or force an interrupt under 
software control, but not to test for the presence of an interrupt. 

The ADSP-21xx has flexible and powerful interrupt handling mech­
anisms. In particular, the ability to execute four-instruction inter­
rupt service routines without the need for a branch instruction, 
support for automatically nestable interrupts, and the availability 
of shadow registers are noteworthy. 

Stack 

The ADSP-21xx provides four hardware stacks to allow loop, subroutine, and 
interrupt nesting. The PC stack is a 16-deep hardware stack for the program counter, used 
for subroutine calls and interrupts. In addition,.separatehardware stacks are provided for 
the loop counter and for the end-of-loop address and loop termination condition, to sup­
port nestable hardware loops (discussed above). Finally, a fourth stack is provided for sav­
ing interrupt masks and status registers. 

Bootstrap Loading 

Upon reset, most ADSP-21xx processors can load an initial program into internal 
memory one byte at a time via the host port or via the external memory interface, which 
provides a separate boot memory space. An input pin selects the boot behavior. 
ADSP-21xx family members with program ROM begin execution at a fixed memory loca­
tion. The ADSP-218x can boot from internal memory location 0, or can load a boot pro­
gram via the BDMA or IDMA ports (discussed below). 

The external boot memory space consists of ei~t pages, each comprised of up to 
8K of eight-bit words. Upon reset, the processor loads a boot program from page 0 into 
on-chip program memory one byte at a time and executes it. Since addressing eight 8 
Kbyte pages requires 16 address bits and the ADSP-21xx address bus is only 14 bits wide, 
during booting the two MSBs of the external data bus are used to provide the two 
most-significant bits of the address. 
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Accesses to boot memory are made using three or seven wait states by default, 
depending on the processor variant. After booting for the first time (upon reset), boot 
memory accesses can be configured under software control to use zero to seven wait 
states. After booting for the first time, the processor can be configured to reboot using one 
of the other seven boot memory pages. 

Peripherals 

The ADSP-2100A has no on-chip peripherals. All other family variants incorpo­
rate one or more serial ports, a timer, a bit I/O port, and in some cases a host port, and/or 
two DMA controllers. Refer back to Tables 7.1-1 and 7.1-2 for specific configurations. 

• Serial ports 
With the exception of the ADSP-2105 (which has one serial port) and 
ADSP-2100A (which has none), ADSP-21xx family DSPs have two synchronous, 
bidirectional serial ports. These serial ports support word lengths from 3 to 16 bits. 
Each serial port has its own clock signal, but the transmit and receive sections of 
each serial port operate from the same clock. Separate transmit and receive frame 
sync signals are used for each direction of each port. Serial clock and framing pins 
can be configured as outputs if derived from the DSP's master clock via a pro­
grammable divider, or as inputs if these signals are generated by another device. 
Each port's built-in serial clock generator can be programmed to generate a serial 
clock by dividing the master chip clock by two, and then dividing again by a pro­
grammable 16-bit value. The maximum serial clock frequency is half of the pro­
cessor's master clock rate. Thus the maximum serial port data rate for a 52 MIPS 
ADSP-2183 is 26 Mbits/second. However, if an external serial clock is used, the 
maximum clock rate is half of the processor's instruction cycle rate up to a maxi-
mum of 20 MHz. ' 

The serial ports offer an autobuffering mode, a kind of cycle-stealing DMA. In 
autobuffering mode, data is transferred between a serial port and memory without 
interrupts or explicit instruction execution. Instead, one set of data address genera­
tor registers (one address register, one circular buffer length register, and one mod­
ifier register) are used to manage a circular buffer in data memory. When the serial 
port is ready for a transfer (transmit or receive), the processor automatically moves 
the data word between the serial port and the circular buffer in data memory, sus­
pending normal program execution for one instruction cycle (or more if wait states 
are required). Assuming zero wait states, one overhead cycle is incurred for each 
data word transfer. Interrupts are generated only when the end of the buffer is 
reached. 
The serial ports provide optional hardware ~-law or A-law companding. In addi­
tion, one of the two serial ports supports 24- or 32-channel time division multi­
plexed operation (except on the ADSP-2105). 
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Autobuffering is an elegant and efficient mechanism for serial port 
data transfer. The ADSP-21xx built-in companding support isalso 
noteworthy. 

In ADSP-21xx processors with serial ports, one of the serial ports can be disabled 
and its pins used instead to provide two external interrupt lines and two bit I/O 
lines (discussed below). 

• Bit 110 
Most ADSP-21xx processors provide one input and one output bit I/O pin, called 
"flags" by Analog Devices. The flag pins share the serial port 1 pins; i.e., these 
pins can be used for bit I/O when the serial port is not used. The bit I/O input can 
be used to control conditional jump and call instructions. The output can be set, 
reset, or toggled. 
The ADSP-2111, ADSP-214x, ADSP-217x, and ADSP-218x provide three addi­
tional bit liD pins. These pins are separate from the serial port 1 pins and can only 
be used as outputs. In addition to the three output pins, the ADSP-218x provides 
eight bit I/O pins, which can be programmed either as inputs or outputs. 

• Timer 
Except for the ADSP-2100A, all ADSP-21xx family processors incorporate a 
16-bit interval timer. The timer clock is generated by dividing the master chip 
clock by the value stored in an eight-bit programmable linear prescaler register. 
The timer generates an interrupt when its 16-bit programmable counter reaches 
zero. 

• Host port 
The ADSP-2111 and ADSP-217x processors include a host port interface. The 
host port can be configured to use 8- or 16-bit data, separate or multiplexed 
address and data buses, and a common read/write signal or separate read and write 
signals. The host port has six data registers and two control registers, each of 
which can be read or written by the DSP or the host processor. Host write inter­
rupts are generated when the host CPU writes to a host port data register, and read 
interrupts are generated when the host CPU reads a host port data register. Status 
register bits indicate which data registers have been read from or written to by the 
host. In addition, the processor can be configured to boot from the host port. 

• IDMA port 
The ADSP-218x provides an "IDMA" (internal DMA) port similar to the host port 
found on other ADSP-21xx variants, but which allows an external processor to 
read and write the ADSP-218x on-chip memory directly. The IDMA port consists 
of 16-bit multiplexed address/data bus and five control pins. 
Transfers are initiated by the external processor. The ADSP-218x then moves data 
between the IDMA port and on-chip memory via cycle-stealing DMA. Block 
transfers are supported, wherein the external processor specifies a starting address 
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and then reads or writes a block of ADSP-218x on-chip memory via the IDMA 
port. Transfers to and from 24-bit internal program memory are performed in two 
successive steps. The processor can be configured to load its boot program via the 
IDMAport. 

• BDMAport 
The ADSP-218x provides a "BDMA" (byte memory DMA) port. This port uses 
the processor's main external memory interface to transfer 8-, 16-, or 24-bit 
instructions or data into or out of the processor eight bits at a time. External 
accesses are made to a separate "byte memory space" consisting of 256 16-Kbyte 
pages. 
Since addressing 256 16-Kbyte pages requires 22 address bits and the ADSP-21xx 
address bus is only 14 bits wide, during BDMA port accesses the eight MSBs of 
the external data bus are used to provide the most significant bits of the address. 
Software on the ADSP-218x can initiate a BDMA transfer by loading a configura­
tion register to specify the word width, direction, internal and external starting 
addresses, and number of words to transfer. The BDMA controller then moves 
data between the external memory interface and on-chip memory via cycle-steal­
ing DMA. The processor can be configured to load its boot program via the 
BDMAport. ; 

The ADSP-218xs two DMA ports are unusual for a low-cost 
fixed-point processor, and are likely to be helpful in simplifying sys­
tem designs and reducing costs in some applications. 

On-Chip Debugging Support 

Most ADSP-21xx family DSPs do not have scan-based debugging/emulation 
ports. The ADSP-218x does provide scan-based emulation support via a proprietary 
13-pin emulation port. Through this interface the user may examine or modify DSP regis­
ters or memory and set hardware breakpoints. Boundary scan is not supported. 

The lack of scan-based serial debugging/emulation ports on most 
ADSP-21xx processors complicates debugging in many situations 
and puts the ADSP-21xx at a disadvantage compared to most cur­
rent fixed-point DSPs. 

While the functionality provided by the ADSP-218x debugging 
inteiface is useful, the use of a JTAG-compatible inteiface would 
have increased functionality and interoperability. 

Power Consumption and Management 

ADSP-21xx family DSPs except for the ADSP-2100A provide a basic low-power 
mode, entered by executing the IDLE instruction. An unmasked interrupt awakens the 
processor. 
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Analog Devices quotes "typical" power consumption based on the processor 
spending 20% of its time executing IDLE instructions. The power consumption figures 
listed below are estimates that should reflect the power consumption of the processor 
when executing 100% DSP instructions. These estimates are derived from the typical 
power consumption and the power consumption of the processor executing IDLE instruc­
tions quoted by Analog Devices. 

The estimated power consumption for the ADSP-2103, ADSP-2162, and 
ADSP-2164 is 33 mWat 10 MIPS and 3.3 volts. 

The estimated power consumption for the ADSP-2 10 1 , ADSP-2105 and 
ADSP-2115 is 151 mW at 20 MIPS and 5.0 volts. The estimated power consumption of 
the ADSP-2161 and ADSP-2163 is 116 mW at 10 MIPS and 5.0 volts. 

Power consumption for the 2.5-volt ADSP-2185M, ADSP-2186M and 
ADSP-2188M has not yet been characterized by Analog Devices. However, based on 
Analog Devices initial estimates, the power consumption for these devices will be approx­
imately 113 mW at 75 MIPS and 2.5 volts. 

The ADSP-217x and ADSP,..218x support two additional low-power options. The 
first option, called "slow idle," places the processor in IDLE mode and also slows the 
on-chip master clock by a user-selectable factor of 16, 32, 64, or 128. According to Ana­
log Devices, the power consumption for a 5.0-volt ADSP-2171 at 33.3 MIPS is 31 mW in 
slow idle mode when the user-selectable factor is 16. 

The second option, called "power-down," shuts off all internal clocks and the 
internal clock oscillator. There is a 100-cycle wake-up latency upon exiting this 
power-down mode if the on-chip clock oscillator is not used. If the on-chip oscillator is 
used, wake-up latency is 4,196 cycles. Power-down mode is entered using a dedicated pin 
or by setting a configuration register. The processor can be awakened only via the dedi­
cated pin or thereset pin. According to Analog Devices, theADSP-21xx power consump­
tion in power-down mode drops below 1 mW. 

Benchmark Performance 

The ADSP-218x has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTI 
Benchmark™ Results. We summarize and analyze ADSP-218x benchmark performance 
in the paragraphs below. We first discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
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three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Note that instead of the entire ADSP-21xxfamily, the ADSP-218x is 
used in this analysis. The reason for this is that some of the BDT] 
Benchmarks use instructions only available on the ADSP-217x and 
ADSP-218x. Therefore the results presented here do not necessarily 
apply to other ADSP-21xxfamily members. 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13, the ADSP-218x total 
normalized instruction cycle count is roughly 30% higher than the average for 
benchmarked processors. 
On the Vector Maximum benchmark, the ADSP-218x has the second-highest 
instruction cycle count; the processor with the highest instruction cycle count is 
the ADSP-219x. The primary reason for these processors' high cycle counts is that 
neither the ADSP-218x nor the ADSP-219x support maximum (or minimum) 
instructions. 
The ADSP-218x has the lowest instruction cycle count among all benchmarked 
processors on the Control benchmark. Note, however, that the Control benchmark 
is optimized for minimum memory usage rather than for minimum cycle count. On 
this benchmark, the ADSP-218x instruction cycle count is about 25% lower than 
the average for benchmarked processors. The ADSP-218x achieves its low instruc­
tion cycle count on this control-oriented benchmark through the use of regis­
ter-to-register parallel moves and single-cycle branches and subroutine calls. 
On the Viterbi benchmark, the ADSP-218x has the second-highest instruction 
cycle count. The ADSP-218x instruction cycle count is approximately twice as 
high as the average for the benchmarked DSP processors. The main reason for its 
high cycle count result on this benchmark is that the ADSP-218x lacks a 
shift-through-carry operation. This disadvantage costs many instruction cycles in 
the bit-interleaving section of this benchmark. In addition, due to the 16-bit width 
of the processor's barrel shifter, shifting 32-bit words requires two cycles. 

• Execution times: The ADSP-2186M's somewhat slow instruction cycle rate of 75 
MHz coupled with its higher-than-average instruction cycle counts, gives it a total 
normalized execution time that is almost twice as slow as the average for all 
benchmarked fixed-point DSP processors, as shown in Figure Figure 8.2-13. The 
75 MHz ADSP-2186M has a BDTImark2000 score of 230. 

• Cost-execution time: The low cost ($8.50) of the ADSP-2186M gives it the 
third-lowest total normalized cost-execution time product among all of the bench­
marked processors (presented in Figure 8.3-13). 

• Energy consumption: As presented in Figure 8.4-13A and B, the total normalized 
energy consumption for the ADSP-2186M is roughl~ 50% higher than the average 
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for benchmarked fixed-point DSP processors. The ADSP-2186M's relatively high 
power consumption (the lowest core voltage available in the ADSP-21xx family is 
2.5 volts compared to less than 2.0 volts for many other fixed-point processors) 
combined with its slow execution time gives it poor energy consumption compared 
to many other fixed-point processors. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks TM, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: Despite its 24-bit instruction word width, 
the ADSP-218x achieves fair code density in control-oriented applications as indi­
cated by the total Control benchmark memory usage in Figure 8.5-9. The total 
memory usage of the ADSP-218x on this benchmark is roughly 5% below the 
average for all benchmarked fixed-point processors. 

• Program memory usage: As Figure 8.5-13 illustrates, the total normalized pro­
gram memory usage of the ADSP-218x is roughly 40% lower than the average for 
all benchmarked fixed-point DSP processors. This result is partially explained by 
the fact that newer processors require loop unrolling in order to achieve optimal 
performance, which the ADSP-218x does not, in part because of its shallow pipe­
line. Also, VLIW processors often use multiple instances of the same instruction to 
make use of parallel execution units, resulting in larger programs-again, the 
ADSP-218x does not require this technique. 

• Data memory usage: The ADSP-218x constant and non-constant benchmark data 
memory usage is as expected for 16-bit fixed-point DSP processors. 

The ADSP-21xx is aging in comparison to state-of-the-art proces­
sors. The most recent major changes to the ADSP-21xxfamily con­
sisted of reducing the core voltage and the pricing of some of the 
members; the highest clock speed available (75 MHz) hasn't 
increased in the past two years. As a result, the ADSP-218x doesn't 
achieve high scores for the execution time. ADSP-21xxfamily mem­
bers are, however, good candidates for low cost applications where 
low processor cost and simplicity of assembly language program­
ming are key elements . 

. As indicated by the Control benchmark and the program memory 
usage analysis, the ADSP-218x achieves good code density despite 
its relatively wide instruction words. 
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Cost 

Price and packaging options for some ADSP-21xx family members are summa­
rized in Table 7.1-5 through Table 7.1-9. Refer to Table 7.1-1 and Table 7.1-2, which 
appeared earlier in this section, for information on each family member's memory and 
peripheral configuration. Most ADSP-21xx processors are available in commercial, indus­
trial, and military temperature grades. The prices presented here are for commercial tem­
perature grade, except where indicated. 

Fabrication Details 

According to Analog Devices, the ADSP-21Ox, ADSP-211x, and ADSP-217x 
devices are fabricated in two-metal-Iayer 0.6 f.lIO CMOS technology. The ADSP-2100A is 
fabricated in two-metal-Iayer 1.0 ~m CMOS technology. The ADSP-2141L is fabricated 
in two-metal-layer 0.35 ~m CMOS technology. ADSP-216x devices are fabricated in 
two-metal-Iayer 0.5 ~m CMOS technology. ADSP-218x processors are fabricated in 0.5, 
0.45, 0.35, or 0.25 ~m CMOS technology depending on device. 

Development Tools 

Analog Devices provides "VisualDSP," an integrated development environment 
for the ADSP-21xx that includes art assembler, C compiler (C++ is also supported on 
recent versions of VisualDSP), linker, ROM splitter, and cycle-accurate instruction-set 
simulator. VisualDSP runs under Windows 9x or Windows NT on mM PC-compatible 
computers. 

VisualDSP is a quite sophisticated and programmer-friendly inte­
grated development environment. 

Analog Devices offers versions of its EZ-LAB development hardware for some 
ADSP-21xx family processors: the ADSP-2101 , ADSP-2111, and ADSP-2171. The 
EZ-LAB system is a stand-alone evaluation system enabling real-time application testing 
and debugging. The EZ-LAB board interfaces to the host computer via an RS-232 serial 
interface (the EZ-LAB board for the ADSP-2171 allows the board to be connected to the 
I/O bus of PC-compatible computers). The EZ-LAB board includes an external EPROM 
memory for booting, an analog interface, a serial interface, and an expansion connector for 
interfacing external devices. 

The "EZ-KJT" starter package from Analog Devices includes the EZ-LAB evalua­
tion board and application development software for PC-compatible computers. 

Analog Devices offers EZ-ICE in-circuit emulators for ADSP-21xx processors. 
For all variants except for the ADSP-217x and ADSP-218x, the emulators are pod based; 
that is, they provide a connector that attaches to the target system in place of the 
ADSP-21xx processor. For the ADSP-217x, the emulator connects to the processor in the 
target board through a set of dedicated connectors that must be designed into the target 
system. These connectors provide access to many of the processor's pins. For the 
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Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,000) 

12.5 5.0 100PGA $67.00 

12.5 5.0 100MQFP $60.00 

ADSP-2100A 10.2 5.0 100MQFP $67.00 

10.2 5.0 100MQFP " $56.00 

8.0 5.0 100PGA $244.00 

25.0 5.0 68PLCC $22.68 

25.0 5.0 68PGA $34.02 

25.0 5.0 80LQFP $29.99 

20.0 5.0 68PLCC $19.72 

ADSP-2101 20.0 5.0 68PGA $29.58 

20.0 5.0 80MQFP $26.08 

16.7 5.0 68PLCC $16.42 

16.7 5.0 68PGA $24.62 

16.7 5.0 80MQFP $18.18 

10.2 3.3 68PLCC $19.72 
ADSP-2103 

10.2 3.3 80MQFP $22.68 

ADSP-2104 20.0 5.0 68PLCC $4.99 

ADSP-2104L 13.8 3.3 68PLCC $5.25 

20.0 5.0 68PLCC $10.82 
ADSP-2105 

13.8 5.0 68PLCC $10.38 

ADSP-2109 20.0 5.0 68PLCC $8.55 

ADSP-2109L 13.8 3.3 68PLCC $8.55 

TABLE 7.1-5. ADSP-21xx price and package summary. Prices as of June, 2000. 
Italic numbers refer to parts only available in military or industrial temperature 
grades. (continued) 
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ADSP-218x, the emulator is scan based; it connects to the processor in the target system 
through the use of the chip's dedicated, proprietary 13-pin debugging interface. The target 
system must make these 13 signals accessible to the emulator. 

The emulators use the same VisualDSP user interface as the instruction-set simula­
tor. They allow the user to inspect and modify memory or registers. C language 
source-level debugging, single stepping, software breakpoints, and symbolic code disas­
sembly are supported. 

Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,000) 

20.0 5.0 100PGA $68.25 

20.0 5.0 100MQFP $31.68 
ADSP-2111 

16.7 5.0 100PGA $60.38 

16.7 5.0 100MQFP $27.51 

25.0 5.0 68PLCC $14.32 

25.0 5.0 80MQFP $16.47 

25.0 5.0 80LQFP $18.94 

20.0 5.0 68PLCC $12.45 
ADSP-2115 

20.0 5.0 80MQFP $14.32 

20.0 5.0 80LQFP $16.47 

16.7 5.0 68PLCC $12.02 

16.7 5.0 80MQFP $14.66 

ADSP-2141L 40.0 3.3 208MQFP $65.00 

16.7 5.0 68PLCC $16.70 

16.7 5.0 80MQFP $19.20 
ADSP-2161 

10.2 5.0 68PLCC $15.18 

10.2 5.0 80MQFP $17.45 

10.2 3.3 68PLCC $15.18 
ADSP-2162 

10.2 3.3 80MQFP $17.45 

TABLE 7.1-6. ADSP-21xx price and package summary. Prices as of June, 2000. 
(continued) 
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Analog Devices offers an inexpensive EZ.,.KIT Lite evaluation board based on the 
ADSP-218x and bundled with an assembler, linker, and simulator. It connects to the host 
PC via an RS-232 serial interface. A Microsoft Windows-based monitor program is also 
provided for downloading programs and communicating with the ADSP-218x. 

Applications Support 

Analog Devices supports the ADSP-21xx with The ADSP-2100 Family User's 
Manual, data sheets, application handbooks, and a quarterly newsletter, DSPatch. A 

Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,000) 

25.0 5.0 68PLCC $12.57 

25.0 5.0 80MQFP $14.45 

16.7 5.0 68 PLCC $10.93 
ADSP-2163 

16.7 5.0 80MQFP $12.57 

10.2 5.0 68PLCC $8.73 

10.2 5.0 80MQFP $10.04 

10.2 3.3 68 PLCC $8.73 
ADSP-2164 

10.2 3.3 80MQFP $10.04 

20.0 5.0 80MQFP $26.00 
ADSP-2165 

16.7 5.0 80MQFP $26.00 

ADSP-2166 16.7 3.3 80MQFP $27.00 

33.3 5.0 128MQFP $27.31 

33.3 5.0 128 LQFP $31.41 
ADSP-2171 

26.0 5.0 128MQFP $24.58 

26.0 5.0 128 LQFP $32.51 

20.0 3.3 128MQFP $24.94 
ADSP-2173 

20.0 3.3 128LQFP $28.50 

TABLE 7.1-7. ADSP-21xx price and package summary. Prices as of June, 2000. 
Italic numbers refer to parts only available in military or industrial temperature 
grades. (continued) 
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Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,(00) 

40.0 5.0 128MQFP $15.50 

40.0 5.0 128LQFP $17.00 

33.3 5.0 128MQFP $13.50 
ADSP-2181 

33.3 5.0 128LQFP $15.50 

28.8 5.0 128MQFP $13.50 

28.8 5.0 128LQFP $13.50 

52 3.3 128LQFP $16.69 

52 3.3 144miniBGA $21.00 

ADSP-2183 40.0 3.3 128LQFP $17.00 

33.3 3.3 128 LQFP $15.50 

28.8 3.3 128LQFP $13.50 

ADSP-2184 40.0 5.0 100LQFP $7.50 

ADSP-2184L 40.0 3.3 100LQFP $7.50 

33.3 5.0 100LQFP $17.00 
ADSP-2185 

28.8 5.0 100LQFP $13.50 

52.0 3.3 100LQFP $18.70 

52.0 3.3 144miniBGA $22.57 

ADSP-2185L 40.0 3.3 100LQFP $18.70 

33.3 3.3 100LQFP $15.50 

28.8 3.3 100LQFP $13.50 

75.0 2.5 100LQFP $8.25 
ADSP-2185M 

75.0 2.5 144miniBGA $10.75 

TABLE 7.1-8. ADSP-21xx price and package summary. Prices as of June, 2000. 
Italic numbers refer to parts only available in military or industrial temperature 
grades. (continued) 
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World Wide Web page is available which allows users to access product information, data 
sheets, and applications notes (http://www.analog.comlindustryldsp). 

Part 

ADSP-2186 

ADSP-2186L 

ADSP-2186M 

j 

ADSP-2187L 

ADSP-2188M 

ADSP-2189M 

Analog's user's manuals and application handbooks are thorough, 
clear, and well organized. The application handbooks present 
applications in a consistent, understandable way and include 
source code on diskette. 

Speed Voltage 
Package 

Price 
(MIPS) (V) (Qty. 10,000) 

40.0 5.0 100LQFP $13.00 

40.0 5.0 144 miniBGA $15.75 

33.3 5.0 100LQFP $12.00 

28.8 5.0 100LQFP $11.00 

40.0 3.3 100LQFP $15.75 

40.0 3.3 144 miniBGA $13.00 

33.3 3.3 100LQFP $12.00 

28.8 3.3 100LQFP $11.00 

75.0 2.5 100LQFP $6.00 

75.0 2.5 144miniBGA $8.50 

52.5 3.3 100LQFP $27.00 

40.0 3.3 100LQFP $23.50 

75.0 2.5 100LQFP $24.00 

75.0 2.5 144 miniBGA $26.00 

66.7 2.5 100LQFP $24.00 

75.0 2.5 100LQFP $20.00 

75.0 2.5 144miniBGA $22.00 

66.7 2.5 100LQFP $20.00 

TABLE 7.1-9. ADSP-21xx price and package summary. Prices as of June, 2000. 
Italic numbers refer to parts only available in military or industrial temperature 
grades. 

© 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Analog Devices ADSP·21 xx Family 

Because of the proliferation offamily variants, it is difficult to keep 
track of which variants include which features. An up-to-date sum­
mary document would be helpful in this regard. 

A telephone and fax hot-line is available between 8 AM and 5 PM Eastern time. 
Analog Devices DSP technical support group can also be reached via the Web or email. 
Applications engineers specializing in DSP support are available worldwide. 

There is a moderate level of third-party support/or the ADSP-21xx 
processors in the form of development boards, software function 
libraries, and application libraries. 

Advantages 

• Rich instruction set 
• Conditional instruction execution of most multiplier-accumulator and ALU 

instructions (when no parallel moves are used) 

• Invisible pipeline 
• Large number of family variants provide many performance, memory, and periph-

eraloptions 

• Good multi-precision arithmetic support 

• C-like assembly language 

• Exponent detect and block exponent detect instructions 

• Nestable, interruptible hardware loops (including single-instruction) 

• Shadowing of arithmetic registers with single-level, single-cycle register set con­
text switch 

• Support for operand-unrelated parallel moves, including register-to-register 
moves; up to two parallel data reads per instruction cycle 

• Large number of address registers (eight) 

• Flexible use of modifier registers with address registers 

• Conditional execution of most instructions 

• Short interrupt latency 

• Automatically nestable interrupts 

• Two serial ports on most variants except ADSP-2100A, which has none, and 
ADSP-2105, which has one. All serial ports support autobuffering, TDM mode 
(except ADSP-2105), and ~-law/A-Iaw companding 

• Good documentation 

• Flexible bootstrap modes on some family members 

• Bit manipulation operations (ADSP-217x and ADSP-218x) 
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• Ability to use IX externally generated clock (112-X on the ADSP-217x and 
ADSP-218x) 

• On-chip DMA controller (ADSP-218x only) 

• Low-cost family variants available (e.g., $7.50 for a 40 MIPS ADSP-2184, quan­
tity 10,000) 

Disadvantages 

• Only one accumulator; complicates programming for many applications, particu­
larly those that use complex numbers 

• No shifter/limiter on MAC results to scale the 40-bit accumulator; shifting typi­
cally takes two instruction cycles 

• ALU status bits not set by MAC or shifter; values must be passed through the ALU 
to set status bits 

• No immediate post-increment capabilities 

• Small address space (16 Kwords for program, 16 Kwords for data) 

• Dissimilar program and data word sizes makes sharing off-chip memory between 
data and program spaces less efficient 

• Larger instruction word than other 16-bit processors may increase system cost if 
external program memory is required 

• No support for externally requested wait states (except for ADSP-2100A) 

• Lack of a scan-based emulation port complicates debugging (except on 
ADSP-218x) 

• Slow execution time results on the BDTI Benchmarks 

• Poor energy consumption results on the BDTI Benchmarks 
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7.2 Analog Devices ADSP-219x Family 
BDTlmark2000 Score: 

Introduction Not Available 

Analog Devices' ADSP-219x family is a 16-bit fixed-point conventional DSP pro­
cessor family with 24-bit instructions. It is based on the ADSP-21xx family (described in 
Section 7.1, Analog Devices ADSP-21xx Family), but has a number of architectural 
enhancements. The ADSP-219x is mostly, but not completely, assembly source-code 
upward compatible with the ADSP-21xx. Compared with the ADSP-21xx, architectural 
changes on the ADSP-219x include the addition of new addressing modes, an expanded 
address space, an instruction cache, and a deeper pipeline. 

Immediately prior to publication of this report (October 2000), ADI announced the 
first product based on the ADSP-219x architecture, the ADSP-2192. The ADSP-2192 
contains two ADSP-219x cores, each of which will operate at 160 MHz, according to 
Analog Devices. Analog Devices states that the ADSP-2192 is currently sampling. 
Because BDTI has not yet verified the ADSP-2192 clock speed, however, there is no 
BDTImark2000 score currently available for this processor. Check BDTI's website 
(wWw.BDTl.com)forupdatedBDTImark2000scores.This chapter focuses primarily on 
the ADSP-219x core and does not cover the ADSP-2192. 

The ADSP-219x targets low-cost, low-power applications, such as motor control, 
and applications that demand high performance, such as cellular base stations and 
voice-over-IP gateways. For the latter application class, Analog Devices expects to offer 
chips containing multiple ADSP-219x cores. 

With the ADSP-219x, AD! has enhanced the ADSP-21xx architec­
ture to allow greater speeds while maintaining some software com­
patibility with the earlier ADSP-21xx architecture. With this 
combination, AD! hopes to leverage the success of the ADSP-21xx 
and expand the range of applications it can target with its 
fixed-point architectures. 

Because theADSP-219x family is very similar to the ADSP-21xx family, this 
analysis covers only the differences between the ADSP-219x and the ADSP-21xx family. 
Readers should refer to Section 7.1, Analog Devices ADSP-21xx Family, for a full discus­
sion of the ADSP-21xx architecture and for details of features that are identical between 
the two families. 

Architecture 

The ADSP-219x is based on the same 16-bit, fixed-point data path that is used in 
the ADSP-21xx. The ADSP-219x architecture includes two data address generators, a 
program control unit, an instruction cache, and a unified program/data memory with two 
buses. The architecture of the ADSP-219x is shown in Figure 7.2-1. 
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Data Path 

The ADSP-219x data path consists of the same three separate arithmetic execution 
units used in the ADSP-21xx data path: an arithmetic/logic unit (ALU). a multiplier/accu­
mulator (MAC). and a barrel shifter. Each unit is capable of single-cycle execution. but 
only one of these units can be active during a single instruction cycle, 

The ADSP-219x includes sixteen 16-bit data registers. In contrast to the 
ADSP-21xx family. all of these registers can be used by all three execution units (with a 
few limitations for conditional ALUIMAC instructions). Although the registers are no 
longer dedicated to the individual execution units for which they are named. the register 
names are the same as those used in the ADSP-21xx to aid assembly code compatibility. 

Allowing the execution units to share a common set of registers 
rather than dedicating specific registers to each execution unit 
eases assembly programming and compiler development, and is a 
significant improvement over the ADSP-21x:xfamily. 

Outputs from the MAC unit can be deposited either in the 4O-bit multiplier result 
register/accumulator, MR, or the 40-bit shifter output register, SR. The SR and MR regis­
ters are formed via a concatenation of three 16-bit registers, MRO-MR2 and SRO-SR2. 

Unified Memory PM/OM Fixed-Point Data Path 

Block #1 

I 
Block #2 I ALU II MAC II Shifter I 24-bit 16-bit 

~.. ~ ~ .~ . ~ ... 
External 

~AddreSSBu s 
Program Address Bus (24) 

2~ I\. 

i i / 
I V 

Data Address Bus (24) 
V 

~i i ~ 
Program Data Bus (24) 

A 2~ I\. 
Bu 

Excha nge ~ ~ Z 
I' 

Data Bus (16) 
External 

~ ~ Data Bus 

~ ~ 
,. ~,. 

Program 
~ 

Instruction Data Address 
Control Unit Cache Generators (2) 

FIGURE 7.2-1. ADSP-219x architecture. 
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The lower 32 bits of a 40-bit multiply-accumulate result are stored in registers MRI and 
MRO or SRI and SRO, and the higher 8 bits are stored in the lower 8 bits of registers MR2 
or SR2. The ADSP-21xx includes a feedback register, MF, for the MAC unit; this register 
has been eliminated in the ADSP-219x. The functionality of the MF register has been 
replaced with the SR register. 

A significant disadvantage of the ADSP-21xx was its single accu­
mulator, which complicated programming and made the processor 
ill suited for arithmetic using complex numbers. By extending the 
SR register and allowing the ADSP-219x MAC unit to use this reg­
ister as an additional accumulator, AD] has addressed this defi­
ciency. 

The elimination of the MF register is one reason for the lack of 
complete assembly source code compatibility between the 
ADSP-21xx and ADSP-219x; software that uses the MF register 
will need to be rewritten to execute on the ADSP-219x by using the 
SR register instead. 

The barrel shifter functionality remains unchanged from that on the ADSP-21xx, 
but the size of the result register has been increased from 32 bits to 40 bits. This extended 
width is accommodated in the lower 8 bits of a new I6-bit data register, SR2. SR2 can also 
be used as a general-purpose I6-bit register. 

The ADSP-219x barrel shifter remains limited in that it can only 
accept 16-bit input operands; thus, shifting 32- or 40-bit operands 
requires multiple instructions and instruction cycles. 

Memory System 

Unlike the ADSP-2Ixx, the ADSP-2I9x does not segregate program and data 
memory. The ADSP-219x memory system provides a unified, word-addressable address 
space which contains instructions and data. The internal and external memory is physi­
cally organized as 256 pages of 64 Kwords each. Each memory page contains a block of 
24-bit memory that can contain instructions or data, and a block of 16-bit memory that can 
contain only data. The distribution of memory between 16-bit and 24-bit memory will 
vary depending on the family member. 

The address space has been extended from 14 bits to 24 bits, pro­
viding for considerable additional memory in comparison to the 
earlier ADSP-21xx family. The unified address space simplifies 
programming. 

The ADSP-2I9x provides a 64-word instruction cache. The ADSP-2I9x cache is 
similar to the ADSP-2106x cache, in that it only caches instructions that access data mem­
ory using the PM buses. When an instruction is cached on the ADSP-219x, the number of 
cycles required to execute the instruction is the same as on the ADSP-2Ixx. If the instruc-
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tion is not cached, the ADSP-219x will require an additional cycle to execute the instruc­
tion. Since the instruction cache is similar to the one used in the Analog Devices' 
floating-point ADSP-2106x family, readers should refer to Memory System in Section 7.3 
for details. 

The ADSP-219x instruction cycle allows the processor to achieve 
two data memory accesses per cycle in many cases, without requir­
ing double-clocked memory as used in the ADSP-21xx. This helps 
the ADSP-219x achieve a significantly higher clock rate than that 
of the ADSP-21xx. 

External Memory Interface 

The ADSP-219x supports one external memory interface. The characteristics of 
the external memory interface are the same as those of the ADSP-21xx external memory 
interface, except that the address bus has been extended from 14 bits to 24 bits. 

Address Generation Units 

Like the ADSP-21xx, the ADSP-219x has two data address generators, DAGI and 
DAG2. Each address generator handles four address pointers (also called index registers) 
and four modifier registers (IO-I3 and MO-M3 for DAG1, and 14-17 and M4-M7 for 
DAG2). Any index register can be used with any modifier register from the same DAG. In 
contrast to the ADSP-21xx, DAGI is no longer limited to generating addresses for data 
memory only; both DAGs on the ADSP-219x can generate data and program memory 
addresses. Note that the ADSP-219x instruction set still uses the terminology "PM" and 
"DM" but these names are strictly semantic and no longer indicate a true distinction 
among memory areas. 

To support the new 24-bit address size, the existing DAG registers have been 
extended from 14 bits to 16 bits, and two new 8-bit registers (called DMPGs, or "page reg­
isters") have been added to hold the upper 8 bits of the 24-bit address. The existing index 
registers hold the lower 16 bits of the address. 

The fact that the memory addressing is not linear but paged makes 
moving among pages awkward. However, the large size of each 
page (65,53616- or 24-bit words) mitigates this drawback. 

The ADSP-219xsupports several new addressing modes relative to the 
ADSP-21xx. The new addressing modes are listed below. 

• Indexed addressing. 
In indexed addressing operations, the sum of the address register and the modify 
register provides the address of the memory access. The value of the index register 
is not permanently changed. For example, 

AXO=PM(IO+MO) ; II AXO=@(IO+MO); IO not modified 
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• Address post-increment with immediate data. 
The address of a data word transferred between memory and registers over the DM 
bus or the PM bus can be post-modified with an 8-bit immediate two's comple­
ment offset value. However, instructions that perform a data transfer in parallel 
with an ALU or MAC operation (a common combination in DSP algorithm ker­
nels) do not support an immediate 8-bit address offset. 

The addition of support for immediate modify operations is an 
improvement over the ADSP-21xx. The programmer is no longer 
required to use the modify registers (MO-M7) for modification val­
ues such as -2, -1,0, +1, or +2, which are commonly used in DSP 
algorithms. Unfortunately, immediate modify operations are not 
supportedfor data transfers that are executed in parallel with ALU 
or MAC operations, a significant limitation in the usefulness of this 
feature. 

The added support for immediate modify operations did not signifi­
cantly improve the efficiency of BDTIBenchmarks when they were 
portedfrom the ADSP-21xx to the ADSP-219x. 

• Write immediate data to memory. 
The ADSP-219x adds support for a 24-bit immediate data write to memory. 

The support for modulo addressing on the ADSP-219x is similar to that on the 
ADSP-21xx. Each of the eight address registers can be independently used for linear or 
modulo addressing, and the maximum size of a circular buffer is still 16 Kwords. A set of 
eight memory-mapped base registers, BO-B7, has been added to the ADSP-219x. Before 
using a circular buffer with a given address pointer, the programmer must initialize the 
corresponding base register to the circular buffer starting address in addition to initializing 
the modulo buffer length register (LO-L7), as on the ADSP-21xx. There is no restriction 
on the starting address; i.e., no alignment is required on the ADSP-219x for circular buff­
ers. 

Support for eight simultaneous circular buffers is more than is 
available on most other DSP processors. The addition of base reg­
isters significantly simplifies the use of circular buffers on the 
ADSP-219x in comparison to the ADSP-21xx. 

Pipeline 

In order to achieve higher clock speeds, the three-stage instruction pipeline of the 
ADSP-21xx family has been extended to six stages: look-ahead, pre-fetch, fetch, address 
decode, decode and execute stages. The pipeline is fully interlocked. 

Increasing the pipeline depth allows higher clock speeds, but intro­
duces instruction latencies that may affect software efficiency. Soft-
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ware developed/or the ADSP-21xx may require re-optimization to 
eliminate pipeline stalls on theADSP-219x. 

Instruction Set 

The ADSP-219x instruction set is almost identical to that of the ADSP-21xx, with 
a few modifications. The most important modifications to the instruction set are: 

• NEG and POS arithmetic conditions removed 
The status conditions NEG (X Input Sign Negative) and POS (X Input Sign Posi­
tive) have been removed. The user must set CCODE to the appropriate value and 
check the SWCOND flag instead, as shown in Table 7.2-1. 

• MAC feedback register eliminated 
The MF feedback register of the MAC has been eliminated~ Instructions that use 
this register must be rewritten to use the SR registers instead. 

For a complete listing of all instruction set modifications, readers should refer to 
the documentation provided by Analog Devices. A run-time option of the ADSP-219x 
assembler provides instruction diagnostics to help guide the user in converting 
ADSP-21xx software to run on the ADSP-219x. 

Despite ADI's effort towards assembly code compatibility between 
the ADSP-219x and the ADSP-21xx/amily, some software modifi­
cations may be required in order to port ADSP-21xx assembly code 
to the ADSP-219x. In reviewing the BDTI Benchmark implementa­
tions/or the ADSP-21xx, however, we noted that none o/the bench­
marks used NEG, POS, or the MF register. Hence, it is likely that 
the removal 0/ these features from the ADSP-219x instruction set 
will have.a limited impact when porting ADSP-21xx code to the 
ADSP-219x. 

• New instmctions 
The ADSP-219x includes several new instructions that were not available on the 
ADSP-21xx. Data transfer instructions have been enhanced to support new 
addressing modes, as described in the Address Generation Units section. 

ADSP-21xx Syntax ADSP-219x Syntax Description 

AXO=DM(IO,MO); 
CCODE = Ox08; 
AXO=DM(IO,MO); Set AR to AXO+AYO if AXO>O 

IF POS AR=AXO+AYO; 
IF SWCOND AR=AXO+AYO; 

TABLE 7.2-1. Example of ADSP-219x new syntax for testing the sign of AXO. 
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The ADSP-219x also adds support for long branches and calls. These instructions 
support a 24-bit immediate value, which enables programs to access any location 
in the memory address space. 

The ADSP-219x instruction set and registers are summarized in Table 7.2-2 and 
Table 7.2-3. Most instructions are 24 bits wide, but some of the new ADSP-219x instruc­
tions that support an indirect memory write of immediate data or conditional long 
branches or calls require an additional instruction word. 

Class Instructions 

Arithmetic 
Absolute value, add, add with carry, clear, increment, decrement, subtract, 
subtract with carry, negate, pass value, set ALU status 

Multiplier-
Multiply, multiply-accumulate, multiply-subtract (all support any combi-

Accumulator 
nation of signed and unsigned operands), clear accumulator, saturate result, 
convergent round, square, square-accumulate, round-to-nearest 

Indirect 16/24-bit memory read/write with address nointer nre/nost-
Data Transfer modify, memory read/write with address-nointer immediate nre/nost-mod-

if~ 16124-bit immediate data write to memory 

Logic And, or, exclusive-or, not 

Shifting 
Arithmeticflogical shift of a 16-bit quantity left/right by 1-32 bits into a 
4O-bit result register, shift with or 

Rotation None 

Conditional Most arithmetic. logical and shift instructions can be conditionall~ exe-
Execution cuted 

Comparison Compare 

Looping Single- or multi-instruction hardware loop 

Branching 
Conditional and unconditional non-delayed and dela~ed branch, branch on 
pin set/clear, conditional non-dela~ed absolute long branch 

Subroutine Call 
Conditional and unconditional non-delayed and dela~ed call, calIon pin 
set/clear, 24-bit unconditional non-dela~ed absolute long call 

Bit Manipulation Bit set, clear, test, toggle 

Special Function Scalar exponent detect, block exponent detect, normalize, division iteration 

TABLE 7.2-2. ADSP-219x instruction set summary. Underlined instructions are new 
or changed relative to the ADSP-21xx. 
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Assembly Language Format 

The ADSP-2I9x assembly language format is mostly identical to the ADSP-2Ixx, 
which is described in Section 7.1. The assembler is now case-sensitive for label names and 
some assembler directives and operators have been modified. Table 7.2-4 illustrates these 
modifications. These syntax differences are handled by the ADSP-2I9x assembler when 
the code is assembled with the option "-legacy" (which forces the assembler to support old 
ADSP-2Ixx directives, rather than the ADSP-2I9x directives) and the option "-c" (which 
makes the assembler case-sensitive). 

Parallel Move Support 

Support for parallel moves is largely unchanged from that of the ADSP-2Ixx. 
There is, however, one new multifunction instruction that performs a register store in par­
allel with a register transfer. 

Registers Width Shadowed Purpose 

DREG 16 bits Yes General-purpose input registers 

AR 16 bits Yes ALU result register; general-purpose input register 

AF 16 bits Yes Feedback register 

MR2*,MRI, 
16 bits Yes 

Result registers. Can be combined to form a 40-bit 
MRO accumulator using MRI, MRO, and 8 bits of MR2 

SR2*, SRI, SRO 16 bits Yes 
Result registers. Can be combined to form a 40-bit 
accumulator using SRI, SRO, and 8 bits of SR2 

SE* 8 bits Yes Exponent register 

SB* 5 bits Yes Block exponent register 

IO-I3,14-17 16 bits Yes Address registers 

LO-L3, L4-L 7 16 bits Yes Circular buffer length registers 

MO-M3, M4-M7 16 bits Yes Modifier registers 

BO-B3, B4-B7 16 bits No Circular buffer base registers 

DMPG1-DMPG2 8 bits No Page registers (one for each address generator) 

150 

TABLE 7.2-3. ADSP-219x main register summary. The processor can switch 
between primary and shadow registers under program control. DREG represents 
any of these data registers: AXD-AX1, AYD-AY1, AR, MXD-MX1, MYO-MY1, 
MRD-MR2, SRD-SR2, SI. Underlined registers have been extended to 16 bits. 
Italicized registers have been added to the ADSP-219x. Registers marked with an 
asterisk can also be used as 16-bit general-purpose registers. 
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For example: 

DM(I4+=M5)=I5, 15=I4; 

Orthogonality 

II data transfer with post-increment 

II and register transfer 

The ADSP-219x instructions provide reasonable orthogonality. The MAC, ALD, 
and shifter units use the same input registers, providing more flexibility and orthogonality 
compared to the ADSP-2Ixx family. There are still some limitations on which registers 
can be used as destination registers, however; for example, the AR register can be used as 
a destination only for ALD results. 

Execution Times 

With its six-stage instruction pipeline, the ADSP-219x does not retain the uniform 
single-cycle instruction execution of the ADSP-2Ixx. Branches and calls have a 
four-cycle latency if the branch/call is taken and a one cycle latency if not taken. DO 
UNTIL loops generally incur a three-cycle latency when entering the loop. There may be 

ADSP-21xx syntax ADSP-219x syntax Description 

.INIT cos: <x.dat>; .!NIT cos = "x.dat"; Load a file in memory 

Allocate space to variables 
.VARIDMIRAM .section/dm data; The ADSP-219x linker lets the user define 
group .VARgroup; code sections and place variables in the 

different sections 

Il=J\cos; I1=cos; Set 11 to point to array cos 

Ll=%cos; Ll=length(cos); Set L 1 equal to length of array cos 

IO=h#02; IO=Ox02; Set 10 to an immediate hexadecimal 

0001 OxOl 
Content of an initialization file <file.dat> 

0002 Ox02 
(prefix 00 has been replaced by prefix Ox) 

0003 Ox03 

.CONST #define N 256 
Constant definitions 

N=256,M=1O; #defineM 10 

.MACRO simple(%I); #DEFINE simple(x)\ 
IO=Ox80; MO=5; IO=Ox80; MO=5;\ 

Macro definitions 
% I=DM(IO,MO); x=DM(IO,MO); 
.ENDMACRO; 

TABLE 7.2-4. ADSP-219x assembler directive and operator syntax examples. 
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some additional latency (up to seven cycles) when the loop contains a multifunction 
ALUIMAC instruction in parallel with a dual read. 

Software written for the ADSP-21xx that contains branch/call or 
DO UNTIL instructions will generally need to be reoptimized when 
converting to the ADSP-219x, due to differences in latencies. In 
addition, even after converting ADSP-21xx code to the ADSP-219x . 
and hand-optimizing it again, code (with cache pre-loaded) gener­
ally requires more cycles to execute on the ADSP-219x than on the 
ADSP-21xx. For example, the hand-optimized BDTI Benchmarks 
take an average of 13% more cycles to execute on the 
ADSP-219x-C in comparison to the cycle counts of the ADSP-21xx 
versions. 

Instruction Set Highlights 

ADSP-2l9x instruction set highlights are the same as those of the ADSP-2lxx. 
Examples of new instructions available on the ADSP-2l9x are summarized in Table 7.2-5. 

Execution Control 

Clocking 

The ADSP-2l9x operates from a IX master clock. The master clock can be gener­
ated with the use of a crystal oscillator, a sine wave input, or an external system clock 
oscillator. 

Example Instruction description 

DM(14+=M5)=15, 15=14; Data transfer in parallel with register transfer 

AXO=DM(IO+Ml); 
Read/write with pre-modify addressing 

PM(14+M6)=AX2 

DM(IO,MO)=Ox123456 Immediate l6/24-bit write 

24-bit read/write 
DMPGl=Ox12; Set 8 bits of page register DMPGl (DAGl) 
IO=Ox3456;M 1=2; Set 16 bits of IO and Ml 
AXD=DM(IO+=Ml); Read at address Ox123456 
PM(IO+=Ml)=AX2; Write at address Ox123458 

IF GT JUMP Ox123456; 
Long branch/call 

CALL LABELl; 

TABLE 7.2-5. Example of ADSP-219x specific instructions. 
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The ADSP-219x has a phase locked loop clock generator (PLL), which allows the 
input clock frequency to be multiplied by one of 63 different factors ranging from 1 to 31. 

Unlike the ADSP-21xx, the ADSP-219x is fully static, meaning that the core 
retains its state when the clock is stopped. 

Hardware Looping 

Support for hardware looping on the ADSP-219x is similar to that on the 
ADSP-21 xx. The deeper pipeline of the ADSP-219x complicates the use of the DO 
instruction, however. In general, the DO instruction incurs a three-cycle latency when 
entering the loop. !fthe loop contains a multifunction ALUIMAC instruction with a paral­
lel dual read, however, the DO instruction will incur additional latency. Because of the rel­
atively complex pipeline, the exact latency of the DO instruction is difficult to predict. 

The difficulty in determining the exact latency of some instances of 
the DO instruction complicates programming, and forces the pro­
grammer to rely on simulation measurements to optimize software. 

Unlike on the ADSP-21xx, on the ADSP-219x there are a few restrictions on the 
instructions contained within a DO loop. The last or next-to-Iast instruction cannot be a 
delayed branch, and the last instruction in the loop cannot be a function call. 

The ADSP-219x supports more levels of nested hardware loops than the 
ADSP-21xx; maximum nesting depth has been increased from four to eight levels. A ded­
icated hardware stack is provided to store hardware loop variables for nested loops. Hard­
ware loops are interruptible. Up to 65,536 repetitions are supported. 

As with the ADSP-21xx, the loop exit condition can be a zero value in the spe­
cial-purpose loop counter or it can be based on arithmetic conditions generated by the 
ALU or multiplier-accumulator. 

The ADSP-219x retains the ability to exit a hardware loop based on 
the value of an arithmetic condition. This is an advantage com­
pared to some other processors, which provide conditional break 
instructions but require extra cycles to execute them. 

Interrupts 

The ADSP-219x does not include an interrupt controller as part of the core. Inter­
rupt controller functionality will be chip-specific, though some features will be common 
to all family members. The core itself supports up to twelve user interrupts. Each of the 
twelve user interrupts has a fixed priority (unlike the ADSP-21xx, whose interrupts were 
not prioritized). A chip-specific interrupt controller will allow the programmer to assign 
interrupts generated by peripherals to the twelve user interrupts, thus allowing indirect pri­
oritization of each peripheral interrupt. 

The interrupt controller assigns each priority level to a dedicated interrupt vector 
specifying the location in memory of its service routine. This assignment cannot be 
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changed by the programmer; however, the programmer can change the priority of an inter­
rupt (and thus change the internipt's associated service routine) as mentioned above. 

The fact that the priority determines the service routine is unusual 
among DSP processors. It complicates programming if interrupt 
peripheral priorities need to be changed during program execution. 

The ADSP-219x also supports four high-priority interrupts that are not 
user-assignable. These are the EMU interrupt (which causes a hardware reset), the PWDN 
interrupt (which t4fI1S off the core clock), the SSTEP interrupt (which causes the processor 
to execute a single instruction during emulation) and the STACK interrupt (generated 
when a stack overflow or underflow occurs). In total, the ADSP-219x supports up to six­
teen automatically nested interrupts. 

The ADSP-219x has a 19-cycle latency from the time an interrupt is received until 
the interrupt service routine begins execution. 

The length of each interrupt vector location (in words) is chip-specific. ADI states 
that this length (as yet undisclosed) will be sufficient to enable short interrupt services rou­
tines to reside entirely within the interrupt vector table, with no need for a branch to reach 
the interrupt service routine. In addition, the ADSP-219x provides one set of shadow reg­
isters for both arithmetic and address registers-the ADSP-21xx only provides shadow 
registers for arithmetic registers-to support faster context switching. Table 7.2-3 shows 
which registers are shadowed. 

The ADSP-219x has flexible and powerful interrupt handling mech­
anisms. In particular, the availability of shadow registers and the 
potential ability to execute short interrupt service routines without 
the need for a branch instruction are noteworthy. 

Stack 

The ADSP-219x provides five hardware stacks to support loop, subroutine, and 
interrupt nesting. The PC hardware stack can store 33 24-bit words (compared to 16 24-bit 
words for the ADSP-21xx family) for the program counter, and is used for subroutine calls 
and interrupts. The loop counter store can stack eight 16-bit words, and holds the current 
values of the loop counters. Two separate hardware stacks, each containing eight 24-bit 
words, are provided for storing the start-of-Ioop and end-of-Ioop addresses to support 
nestable hardware loops (discussed earlier). Finally, a stack is provided for saving the 
interrupt masks and status registers upon interrupt. 

Bootstrap Loading 

Bootstrap loading features will vary depending on the family member. 
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Benchmark Performance 

The ADSP-219x has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark tesults for all benchmarked processors are presented in Chapter 8, BDTI 
BenchmarkTM Results. We summarize and analyze ADSP-219x benchmark performance 
in the paragraphs below. We first discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times, indicating processor speed. Finally, we discuss the processor's memory 
usage. We divide the memory usage discussion into three parts: Control· benchmark mem­
ory usage, overall benchmark program memory usage, and benchmark data memory 
usage. 

Because the ADSP-219x uses an instruction cache, the benchmark analysis pre­
sented in Chapter 8, BDTI Benchmark™ Results, treats the ADSP-219x as two distinct 
processor families. One family (referred to as the ADSP-219x) assumes that the cache is 
empty before each benchmark is executed. The other family (referred to as the 
ADSP-219x-C) assumes that the processor's instruction cache has been preloaded by exe­
cuting the benchmark code once prior to measuring the instruction cycle counts for that 
benchmark. 

For the execution time metric, we use the projected speed of 160 MHz provided by 
Analog Devices. We have not verified this clock speed on ADSP-219x hardware. 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13, the ADSP-219x-C total 
normalized instruction cycle count is roughly 45% higher than the average for all 
benchmarked processors and is the highest (except for the ADSP-219x) among all 
of the processors benchmarked in this report. 
Since the pipeline has been extended, the ADSP-219x often has longer latencies 
than the ADSP-218x when using DO loops and branch instructions. Thus, the 
instruction cycle counts of the ADSP-219x and ADSP-219x-C are generally 
higher than those of the ADSP-218x. As a result, the ADSP-219x-C total normal­
ized instruction cycle count is about 15% higher than that of its predecessor, the 
ADSP-218x. The ADSP-219x has cycle counts roughly 5% higher overall than the 
ADSP-219x-C. Most of this difference is a result of non-cached instructions that 
perform dual memory accesses and incur a one-cycle penalty the first time they are 
executed. Refer to Memory System for details of the cache operation. 
On the LMS benchmark, the ADSP-219x-C cycle count is significantly higher 
than that of its predecessor, the ADSP-218x. This is largely due to the multiple 
cycles required to launch a hardware loop on the ADSP-219x, and to the fact that 
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some instructions that execute in one cycle on the ADSP-218xrequire multiple 
cycles on the ADSP-219x. 
On the Vector Maximum benchmark, the ADSP-219x-C has the highest cycle 
count, twice as high as the average. This high cycle count is mostly due to the lack 
of a maximum instruction, which is offered on most current DSP processors. Also, 
the ADSP-219x benchmark implementation, unlike that of the ADSP-218x, does 
not use a conditional branch instruction in the inner loop, since branches on the 
ADSP-219x incur a high cycle count penalty. Instead, the ADSP-219x implemen­
tation replaces the conditional branch with conditional execution of several 
instructions that immediately follow the (removed) branch. This results in an inner 
loop that requires more cycles than that of the ADSP-218x (because the condi­
tional instructions each consume a cycle regardless of the outcome of the condi­
tion), but fewer than would be required by using a conditional branch instruction. 
On the Control benchmark, on which the older ADSP-218x has the.lowest cycle 
count (tied with the SC140), the instruction cycle count for the ADSP-219x-C is 
roughly 40% higher, and is roughly equal to the average. This is mainly a result of 
the deeper pipeline on the ADSP-219x, which causes branch instructions to incur 
multiple cycle penalties. 
On the Viterbi benchmark, the ADSP-219x-C has the second-highest instruction 
cycle count (the same as that of the ADSP-218x). The ADSP-219x instruction 
cycle count is approximately twice as high as the average for the benchmarked 
processors. The main reason for this high cycle count is that the ADSP-21xx and 
ADSP-219x processors lack a shift-through-carry operation. This disadvantage 
costs many instruction cycles in the bit-interleaving section of this benchmark. In 
addition, due to width of the processors' barrel shifter (16 bits), shifting a 32-bit 
word requires two cycles. 

• Execution times: The ADSP-219x's relatively fast instruction cycle rate of 160 
MHz compensates for its high instruction cycle counts and results in a projected 
total normalized execution time that is roughly equal to the average of all bench­
marked fixed-point DSP processors. The ADSP-219x total normalized execution 
time is also almost twice as fast as that of the ADSP-2186M. This is presented in 
Figure 8.2-13. 

• Cost-execution time: At the time of BDTI's benchmark analysis, no pncing infor­
mation has been disclosed for ADSP-219x products. Thus, the ADSP-219x is 
excluded from this metric. 

• Energy consumption: At the time of BDTI's benchmark analysis, no power con­
sumption data had been disclosed for ADSP-219x products. Thus, the ADSP-219x 
is excluded from this metric. 
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Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: Despite its relatively wide 24-bit instruction 
word width, the ADSP-219x achieves reasonable code density in control-oriented 
tasks as indicated by the processor's total memory usage on the Control bench­
mark shown in Figure 8.5-9A. The total memory usage of the ADSP-219x on this 
benchmark is roughly 15% above the average for all benchmarked fixed-point pro­
cessors. 

• Program memory usage: As Figure 8.5-13 illustrates, the total normalized pro­
gram memory usage of the ADSP-219x is roughly 40% lower than the average for 
all benchmarked fixed-point DSP processors. The average is somewhat skewed by 
the fact that some newer processors such as the TMS320C64xx require loop 
unrolling in order to achieve optimal performance and have very high total nor­
malized program use results. Compared to processors with 24-bit instructions, the 
ADSP-219x's total normalized program memory usage is roughly average. Note 
that since ADSP-218x code sometimes needs to be unrolled and further modified 
tooptimize it for the ADSP-219x, the ADSP-219x code is roughly 10% larger than 
that of the ADSP-218x even though the two instruction sets are very similar. 

• Data memory usage: The ADSP-218x constant and non-constant benchmark data 
memory usage is roughly average for a 24-bit fixed-point ~SP processor .. 

The relatively simple architecture of the ADSP-219x results in good 
code density; for example, extensive loop unrolling is not required 
compared to other more complex DSP processors. However, the 
extension of the pipeline makes it necessary to rewrite some 
ADSP-21:xx code in order to obtain optimized ADSP-219x code. 
The delays caused by the pipeline give the ADSP-219x higher cycle 
count results than those of the ADSP-218x. However, the much 
faster projected instruction cycle rate of the ADSP-219x (160 MHz 
compared to 75 MHz for the ADSP-218x) provides the ADSP-219x 
with a projected execution time roughly twice as fast as the 
ADSP-218x, and average in comparison to other fixed-point DSP 
processors. 
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Development Tools 

Analog Devices has released the Version 7.0 of its VisualDSP development tool 
suite. Version 7.0 supports the ADSP-21xx and the ADSP-219x, and includes an assem­
bler and a linker, a C and C++ compiler, a ROM splitter, and a cycle-accurate instruc­
tion-set simulator. VisualDSP 7.0 runs under Windows 95 OSR B, Windows 98, Windows 
NT 4.0, Windows 2000, and Solaris. 

The ADSP-219x simulator (beta release) marks each instruction that is in the pipe­
line with a symbol indicating the pipeline stage. 

Making the different pipeline stages visible allows the programmer 
to more easily determine the causes of pipeline stalls. 

According to Analog Devices, the C compiler libraries provided with the 
ADSP-219x will include libraries already available with the ADSP-218x compiler. The 
main libraries are the math library (trigonometric functions, FFfs, filters, etc.) and the sig­
nallibrary (interrupt, SPORT, system interfaces). 

Applications Support 

The key documentation for the ADSP-219x includes the Instruction Set Reference 
Manual and the ADSP-219x Core Manual. 

The main documentation for the ADSP-219x family consists of the ADSP-219x 
Instruction Set Reference Manual and datasheets for individual processors. In addition, 
Analog Devices offers documents on porting software from the ADSP-21xx to the 
ADSP-219x and on optimizing software for the ADSP-219x. 

A telephone and fax hotline is available between 8 AM and 5 PM Eastern time. 
Analog Devices' DSP technical support group can also be reached via the website or 
email. Applications engineers specializing in DSP support are available worldwide. 

Advantages 

• Rich instruction set 

• Conditional instruction execution of most multiplier-accumulator and ALU 
instructions (when no parallel moves are used) 

• Good multi-precision arithmetic support 

• C-like assembly language 

• Exponent detect and block exponent detect instructions 

• Nestable, interruptible hardware loops (including single-instruction) 

• Shadowing of arithmetic registers and address registers with single-level, sin­
gle-cycle register set context switch 

• Support for operand-unrelated parallel moves, including register-to-register 
moves; up to two parallel data reads per instruction cycle 
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• Flexible use of modifier registers 

• Automatically nestable interrupts 

• Good documentation 

• Flexible bootstrap modes 

• Compatibility with previous generation 

• Ability to use externally generated clock with a wide variety of multiplier ratios 

Disadvantages 

• High latency for starting DO UNTIL loops 

• No shifterllimiter on MAC results to scale the 40-bit accumulator; shifting typi­
cally takes two instruction cycles 

• ALU status bits not set by MAC or shifter; values must be passed through the ALU 
to set status bits 

• Dissimilar program and data word sizes makes sharing off-chip memory between 
data and instructions less efficient 

• Larger instruction word than other 16-bit processors may increase system cost if 
external program memory is required 

• The ALU supports only 16-bit operands. Many 16-bit processors provide ALUs 
that operate on 32-bit data 
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7.3 Analog Devices ADSP-2106x Family 

Introduction 

BDTlmark2000 Score: 
250 at 66 MHz 

The ADSP-2106x "SHARC" is a family of 40-bit floating-point conventional DSP 
processors with 48-bit instruction words from Analog Devices. The ADSP-2106x is tar­
geted at military, audio, voice recognition, imaging, and telephony applications, especially 
those requiring multiprocessor systems. The fastest members of the ADSP-2106x family 
run at 66 MIPS at 3.3 volts and 50 MIPS at 5.0 volts. 

The first ADSP-2106x family members were introduced in September 1994. The 
ADSP-2106x is based on Analog Devices' earlier ADSP-21020 architecture and is 
object-code compatible with the ADSP-21020. Compared to the ADSP-21020, the 
ADSP-2106x adds up to 512 Kbytes of on-chip SRAM, an external memory interface 
designed for multiprocessor systems, a DMA controller, two serial ports, and up to six 
communications ("link") ports useful for multiprocessor configurations. 

In 1998, Analog Devices introduced the next generation of the SHARC architec­
ture, the ADSP-2116x. This processor is covered in Section 7.4, Analog Devices 
ADSP-2116x Family. Any code written for the ADSP-2106x can be re-assembled and exe­
cuted without modification on the ADSP-2116x. 

The ADSP-2106x is noteworthy for its powerful and orthogonal instruction set and 
shadowing of all arithmetic and address registers. The ADSP-21060, ADSP-21060L, 
ADSP-21062, and ADSP-21062L are also noteworthy for their large on-chip memory and 
multiprocessor system support. ADSP-2106x family members are summarized in 
Table 7.3-1. In the remainder of this analysis, "ADSP-21060" will be used to refer to both 

Max. 
On-Chip 

Part Speed Comments 
(MHz) 

Memory 

ADSP-21060 
40 512 Kbytes 

6 communication ports, host interface, timer, 
ADSP-21060L 10 DMA channels, 2 serial ports 

ADSP-21061 
50 128 Kbytes 

No communication ports, host interface, timer, 
ADSP-21061L 6 DMA channels, 2 serial ports 

ADSP-21062 
40 256 Kbytes 

6 communication ports, timer, host interface, 
ADSP-21062L 10 DMA channels, 2 serial ports 

ADSP-21065L 66 68 Kbytes 
No communication ports, host interface, 
2 timers, 10 DMA channels, 2 serial ports 

TABLE 7.3-1. ADSP-2106x family summary. On-Chip memory sizes are listed in 
bytes since on-Chip memory can be divided into 48-bit-wide program and 
32-bit-wide data memory in many different configurations. 
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the ADSP-21060 and the low-power ADSP-21060L, except when the discussion relates to 
voltage or power consumption. Similarly,"ADSP-21061" will be used to refer to both the 
ADSP-21061 and the ADSP-21061L, and "ADSP-21062" will be used to refer to both the 
ADSP-21062 and the ADSP-21062L. 

Analog Devices provides a multi-chip module, the AD14160, which includes four 
ADSP-21060 processors. The processors are connected to a 32-bit program bus and a 
48-bit data bus that is extended off-chip. Peripherals include 16 link: ports and 8 serial 
ports, which are connected to the module pins. 

Architecture 

ADSP-2106x processors are based on a common 4O-bit floating-point data path, 
program control unit, bus structure, and 110 interfaces, but feature different amounts of 
on-chip memory and different peripheral configurations, as shown in Table 7.3-1. The 
on-chip serial ports, interprocessor communication ports, and DMA controller are 
grouped together in what Analog Devices calls an "110 Processor." The ADSP-2106x uses 
a 32-bit address space and 48-:-bit instruction word. 

The 48-bit instruction word is unusually large for a conventional 
DSP processor. 

Figure 7.3-1 illustrates the ADSP-2106x architecture, exemplified by the 
ADSP-21060. 

Data Path 

As in Analog Devices' ADSP-21xx fixed-point DSP processors (discussed in 
detail in Section 7.1), the ADSP-2106x provides three distinct arithmetic units: a multi­
plier-accumulator, a shifter, and an ALD, all of which perform arithmetic and logical oper­
ations in a single instruction cycle. 

The ADSP-2106x supports four data types: 40-bit IEEE floating-point, 32-bit 
IEEE':'754 and IEEE-854 floating-point, 16-bit floating-point, and 32-bit fixed-point. A 
mode bit determines whether 32-bit or 40-bit floating-point is· used. The ADSP-2106x 
provides nearly complete hardware support for IEEE-754 and IEEE-854 single-precision 
floating-point format and arithmetic; the ADSP-2106x additionally supports the IEEE-754 
and IEEE-854 single-extended precision floating-point format (a 40-bit format that 
extends the single-precision mantissa by eight bits for added precision). A few special 
cases of the IEEE-754 and IEEE·854 standards are not supported by these processors. The 
16-bit floating-point format, called "short float," can be used for storage but not computa­
tion. This format has a smaller range and lower precision than 32-bit or 4O-bit float­
ing-point formats. The ADSP-2106x includes instructions that can convert between 32- or 
4O-bit floating-point and short-float formats or between 32- or 40-bit floating-point and 
fixed-point formats in a single instruction cycle. 
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Unlike the ADSP-21xx, on the ADSP-2106x the multiplier-accumulator, the 
shifter, and the ALU all access a common register file containing sixteen 40-bit registers. 
Inputs to all arithmetic operations come from the register file, and results of all arithmetic 
operations are delivered to the register file. If only one arithmetic operation is performed 
in a given instruction, then any of the registers in the register file can be accessed. If mul­
tiple arithmetic operations are performed in a single instruction, each operation can access 
only a restricted group of registers for its input operands, but results can be deposited into 
any register. 

In addition to the usual fixed- and floating-point arithmetic operations, the ALU 
supports average ([A+B]/2), minimum, maximum, compare, clipping (saturation where 
the limit is specified as an operand of the instruction), and simultaneous add/subtract 
([A+B],[A-BD. The latter operation is useful for FFT implementations. A special shift reg-
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FIGURE 7.3-1. ADSP-21060 architecture. 
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ister stores the results of the previous eight compare operations, so that they can be 
inspected by a single instruction. Scaled conversions between 32-bit fixed-point and IEEE 
floating-point formats are also provided. 

The ALU provides the following status flags dependent on the result of the last 
operation: zero, negative, overflow, underflow, invalid, carry, and floating-point (indicates 
whether the last operation was a floating-point or fixed-point operation). A sign flag is 
also provided and is set if the input operand is negative. The sign flag is set only by the 
ABS and MANT instructions. 

The shifter unit performs single-bit manipulation, bit-field manipulation, rotation, 
and logical or arithmetic shifting operations. The shifter does not make use of the carry 
bit. Bit field instructions allow a group of bits to be extracted from one register and depos­
ited into another position in another register using two instructions. Arithmetic, logical, 
and rotational shifting of registers of up to 32 bits left or right is supported. The shifter 
also supports single-cycle exponent detection. 

The multiplier unit performs floating-point multiplication and fixed-point integer 
or fractional multiplication. Fixed-point integer and fractional operands may be 
signed/signed, unsigned/unsigned or signed/unsigned. These features provide support for 
multi-precision arithmetic. When operating on floating-point data, the multiplier unit per­
forms 32 x 32 ~ 4O-bit or 40 x 40 ~ 40-bit floating-point multiplications. When operat­
ing on fixed-point data, the multiplier unit performs 32 x 32 ~ 64-bit multiplications and 
provides an gO-bit accumulator sub-unit (which yields 16 guard bits). The accumulator is 
used only for fixed-point operations; the ALU is used to perform accumulation on float­
ing-point results. The accumulator sub-unit supports rounding and 64-bit saturation. 80-bit 
accumulator values can be moved to and from registers in 32-bit blocks. 

The ADSP-2106x allows parallel operation of the multiplier and ALU for a subset 
of the ALU operations. In those cases, both operations must be fixed-point or float­
ing-point. When performing floating-point multiply-accumulate operations, the multiplier 
unit performs multiplication and the ALU performs accumulation; In this case, the con­
tents of two registers are multiplied and the product is written back to the register fIle. In 
the same instruction cycle, the ALU accumulates the product from the previous multiply 
(which is held in the register fIle) with the value in another register and writes the accumu­
lated result back into the register file. 

When both the ALU and multiplier are used, only registers from groups FO-F3 and 
F4-F7 can be used for the multiplier inputs, and only registers from groups F8-Fll and 
F12-F15 can be used for the ALU inputs. 

The register file and the accumulator in the multiplier unit are shadowed by a sec­
ondary set of registers. The processor can switch between the primary and secondary set 
of registers under program control in one instruction cycle. In addition, the shadow accu­
mulator can be accessed directly by fixed;.,point arithmetic operations without switching 
the entire register context. 
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The ADSP-2106x's shadowing of its arithmetic registers (and its 
address registers, discussed below) is unusual and provides good 
support for interrupt servicing and multitasking environments. 

All ADSP-2106x data path operations execute in a single instruction cycle. 

Memory System 

The ADSP-2106x memory system consists of either 512 Kbytes, 256 Kbytes, 128 
Kbytes, or 68 Kbytes (depending on the family member) of on-chip memory, up to 2.5 
Mbytes of off-chip multiprocessor memory (memory that physically resides in other 
ADSP-2106x processors), and up to 24 Gbytes of general-purpose off-chip memory. The 
ADSP-21065L is limited to 68 Kbytes of off-chip multiprocessor memory (since it can 
connect to only one other ADSP-21065L in a multiprocessor system) . and 256 Mbytes of 
external memory. Memory is arranged in a unified, word-addressable address space that 
contains both instructions and data. Additionally, the ADSP-2106x has a 32-word on-chip 
instruction cache. 

On-chip memory is divided into two independent blocks. On the ADSP-21060, 
ADSP-21061, and ADSP-21062, each memory block is 256-, 64-, or 128-Kbytes in size, 
respectively. On the ADSP-21065L, there is one 32-Kbyte block and one 36-Kbyte block. 
On-chip memory as a whole can be configured into a 48-bit-wide area and 32-bit-wide 
area. 48-bit instruction words and 4O-bit data words can be stored in the 48-bit-wide area, 
and 32-bit and 16-bit data words can be stored in the 32-bit-wide area. This feature allows 
on-chip memory to be used more efficiently than if all on-chip memory was configured as 
full-width, 48-bit-wide memory. To simplify addressing and memory implementation, the 
48-bit-wide area always resides at lower addresses than the 32-bit-wide area. 

The ADSP-21060 and ADSP-21062 contain significantly more 
on-chip memory than most commercial DSP processors. The 
ADSP-2106x's ability to arrange on-chip memory into different 
word widths allows the processor to use on-chip memory efficiently 
despite the processor's disparate instruction and data word widths. 

Separate address generators, address buses, and data buses allow both memory 
blocks to be accessed by the core processor in a single instruction cycle. Each set of 
buses--called the "PM" and "DM" buses--can access either block of on-chip memory 
once per instruction cycle. However, both buses cannot access the same memory block in 
a single cycle. Unlike the ADSP-21020, the PM and DM address and data buses in the 
core of the ADSP-2106x are not restricted to accessing separate memory blocks .. That is, 
the PM and DM buses can access the same physical memory locations. However, memory 
is accessed at the highest rate when the PM and DM buses address different blocks of 
on-chip memory, or when one accesses on-chip memory and the other accesses off-chip 
. memory. 

Each block of the ADSP-2106x on-chip memory is dual-ported. The PM and DM 
buses are both connected to the fIrst port of each memory block. The second port of each 
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block is connected to a single I/O bus. This means that a total of three memory accesses 
are possible per instruction cycle between the two blocks: one PM taccess, one DM access, 
and one I/O access. As a result, the core processor can perform computations on data in 
the on-chip memory while the I/O Processor transfers data into or out of one block without 
contention. 

The PM bus set is also used by the program sequencer to fetch instructions. There­
fore, the PM bus is nominally occupied with an instruction fetch in each instruction cycle 
and is unavailable for accessing data. However, if the instruction to be fetched is contained 
in the instruction cache, then the PM bus is free to perform a data fetch, and the processor 
can complete two data accesses in a single instruction cycle. 

The ADSP-2106x instruction cache operates differently than a traditional cache in 
which an instruction is loaded whenever a cache miss occurs. The ADSP-2106x cache 
only caches instructions that conflict with data memory accesses using the PM buses; all 
other instructions are accessed directly from on-chip or off-chip memory. The cache con­
tains two sets of 16 words each. Each instruction address can be mapped into two loca­
tions, one in each of the two sets. The least-significant four bits of the instruction address 
determine which word within each set can be used for a particular instruction. When an 
instruction is loaded into the cache, it is loaded into the word that was least recently 
accessed. The cache can be disabled or locked (in which case its contents are frozen) 
under software control. 

The ADSP-2106x caching scheme makes good use of the small 
cache by only storing instructions where necessary to allow two 
data accesses in one instruction cycle. 

The I/O Processor on the ADSP-2106x provides an on-chip DMA controller that 
allows transfer between internal memory and anyone of external memory, multiprocessor 
memory, a host processor, a serial port, or a link port. The DMA controller also allows 
transfers between external memory and external peripherals. More information on the 
DMA controller is in the Peripherals section below. 

The ADSP-21065L at 66 MIPS achieves a peak and maximum sustainable data 
bandwidth of 132 million 32-bit words/second to or from on-chip memory when execut­
ing instructions from the instruction cache. When executing instructions from on-chip 
memory, the maximum data bandwidth is 66 million 32-bit words/second. The on-chip 
DMA controller allows one additional access to on-chip memory per cycle, corresponding 
to an additional 66 million 32-bit words/second on a 66 MIPS ADSP-21065L. 

An ADSP-2106x can access the on-chip memories of other ADSP-2106xproces­
sors on a shared bus via its external memory interface. Each processor includes arbitration 
logic to coordinate external accesses. Up to six ADSP-2106x processors (or two if the 
ADSP-21065L is used), a host processor, and external memory can be connected using the 
shared bus scheme. A processor can access the memory of any other single processor or 
can perform a broadcast write to all other processors simultaneously. Such multiprocessor 
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accesses use the I/O Processor of the accessed ADSP-2106x and require it to release its 
I/O bus and external memory interface. Thus, multiprocessor accesses compete for access 
to the I/O bus with I/O operations on the accessed processor. However, ADSP-2106x arbi­
tration logic allows the accessed ADSP-2106x to reclaim control of I/O resources if 
needed. Also, multiprocessor accesses do not disrupt operations that use only the core pro­
cessor and on-chip memory. On the ADSP-21060, ADSP-21061, and ADSP-21062, any 
memory location or I/O Processor register can be directly accessed through the external 
memory interface. On the ADSP-21065L, only I/O Processor registers can be accessed 
directly without interrupting the processor. Any memory location can still be indirectly 
accessed on the ADSP-21065L by programming the on-chip DMA controller through the 
I/O Processor 

External Memory Interface 

External memory consists of off-chip RAM, ROM, or multiprocessor memory 
(memory that physically resides in other ADSP-2106x processors) that is accessed via the 
ADSP-2106x external memory interface. The ADSP-21065L has special support for 
SDRAM, including refresh generation. The on-chip PM, DM, and I/O buses share access 
to the external memory interface. On the ADSP-21060, ADSP-21061, and ADSP-21062, 
the external address bus is 32 bits wide, which allows the processor to access 4 Gwords of 
external memory. The external data bus is 48 bits wide to accommodate the 48-bit instruc­
tion width. On the ADSP-21065L, the external address bus is 26 bits wide with the highest 
two bits decoded and provided only as four bank select lines, and the external data bus is 
32 bits wide. The ADSP-21065L can access 40- and 48-bit data and instructions stored in 
external memory over the 32-bit data bus, but requires two memory accesses to do so. 

The external memory interface on the ADSP-21060, ADSP-21061, and 
ADSP-21062 can perform accesses at a maximum rate of one per instruction cycle. Thus, 
the peak and maximum sustainable off-chip memory bandwidth is 50 Mwords/second of 
either 48-bit instructions or 40- or 32-bit data on a 50 MIPS ADSP-21061. On the 
ADSP-21065L, the external memory interface is only capable of one access every two 
instruction cycles. Thus, the maximum sustainable off-chip memory bandwidth is 33 mil­
lion 32-bit words/second on a 66 MIPS ADSP-21065L. 

Unlike the other members in the ADSP-2106xfamily, the external 
data bus of the ADSP-21065L is 32 bits wide. Since the external 
memory bandwidth is effectively halved when 40- or 48-bit data or 
instructions are accessed, the ADSP-21065L must execute instruc­
tions from on-chip memory for good performance. 

Unlike the ADSP-21020, the ADSP-2106x stores instructions and data together in 
off-chip memory. In a multiprocessor system, external memory can be shared by up to six 
ADSP-2106x processors and a host processor utilizing the arbitration scheme mentioned 
previously for multiprocessor memory. 
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External memory is divided into five sections: four "banked" memories of equal 
size and one "non-banked" memory. On the ADSP-21060, ADSP-21061, and 
ADSP-21062, the size of the banked memories is set by a parameter in a control register 
and can range in size from 8 Kwords to 256 Mwords in powers oftwo. Non-banked mem­
ory consists of any remaining memory in the memory space. The processor has four mem­
ory select pins and asserts one of the pins during banked memory accesses to indicate 
which bank is being accessed. These pins can be used to drive the chip select inputs of 
external RAM devices, eliminating the need for external address decoding circuitry in 
many applications. These memory select pins are unused during non '-banked memory 
access. On the ADSP-21065L, external memory is divided into banks, but the size of the 
banked memories is fixed at 16 Mwords and there can be no non-banked memory. 

Wait state configuration is independently specified for each bank of memory. The 
processor supports both externally requested wait states and zero to seven programmed 
wait states. If externally requested and programmed wait states are both used, the proces­
sor can be configured to wait until both wait state sources (internal count or external pin) 
expire before completing the memory access, or to wait only until one of the wait state 
sources expIres. 

In addition, the ADSP-21060, ADSP-21061, and ADSP-21062 can be configured 
to use page-mode DRAM with an external DRAM controller in memory bank zero. When 
a memory access in bank zero crosses a page boundary, an output pin is asserted and an 
additional wait state can be automatically inserted. Page lengths can be independently 
specified for program and data memory and can be any power of two from 256 to 32,768 
words, inclusive. The ADSP-21065L provides an internal SDRAM controller that can be 
enabled for memory accesses in bank zero. This internal controller allows up to 16 32-bit 
Mwords of external SDRAM memory to be used with no external logic. 

The ADSP-2106x provides unusually flexible support for external 
memory. 

An arbitration mechanism is provided that allows a host processor or another 
ADSP-2106x in a multiprocessor system to gain control of the external memory bus. Mul­
tiple ADSP-2106x processors can share an external bus without additional arbitration cir­
cuitry. Either fixed- or rotating-priority arbitration can be selected for the ADSP-2106x 
processors. Under the fixed-priority scheme, the programmer assigns each ADSP-2106x a 
different priority. Under the rotating-priority scheme, the priorities are automatically 
re-assigned after every transfer of bus mastership so that all ADSP-2106x processors in 
turn have different priorities assigned. When a processor requests control of the bus from 
another processor that has a lower priority, the lower-priority processor completes the cur­
rent instruction, places its external memory interface in a high-impedance state, and 
asserts its bus grant output pin. The higher-priority processor then uses the external bus . 

. When that processor finishes, a lower-priority processor can gain control of the bus. The 
ADSP-2106x has conditional instructions that depend upon whether an ADSP-2106x is 
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the current bus master in a multiprocessor system. These instructions can be used to per­
form an atomic read-modify-write operation. 

Address Generation Units 

The ADSP-2106x supports register-direct, memory-direct, and register-indirect 
addressing modes. Most arithmetic operations use register-direct addressing exclusively. 
Immediate operands and memory-direct addressing can be used for loading values into 
memory or registers. Register-indirect addressing is used for moving data between regis­
ters and memory, including operand-unrelated parallel moves. 

Like the ADSP-21xx, the ADSP-2106x has two data address generators, one 
(DAG1) associated with the DM address bus and the other (DAG2) associated with the 
PM address bus. The PM bus can only access internal memory and the lowest 12 Mwords 
of external memory in the ADSP-2106x memory space. 

Each data address generator contains eight address registers and eight modifier 
registers. Values stored in the modifier registers are used to pre- or post-increment address 
register contents. Within each address generator, any modifier register can be used to mod­
ify the address held in any address register. Post-increment values of -1,0, and + 1 are not 
built into hardware; if these values are needed, they must be loaded into modifier registers 
or specified as immediate values. Immediate pre- and post-increment values can be speci­
fied as part of the instruction word, but when this feature is used only one data access is 
allowed in the instruction. This feature is useful in C compilers for stack maintenance. 

The fact that any of eight modifier registers can be used to 
post-increment any of the eight address registers in an address gen­
erator provides flexibility for the programmer. However, the fact 
that the address generators do not provide built-in post-increment 
by -1, 0, and +1 means that these post-increment values must be 
loaded into modifier registers if they are needed in an instruction 
that does not allow immediate increment values. Most other DSP 
processors provide these post-increment values in hardware. 

Indexed addressing is also supported (confusingly, Analog Devices calls it 
"pre-modification"). With indexed addressing, the effective address for the access is 
formed by adding the value in a modifier register to the value in an address register; the 
value in the address register is not changed. 

The ADSP-2106x supports circular addressing with no alignment constraints by 
giving each address register a companion base address register and buffer length register. 
One pair of base and length registers in each of the program and data memory address 
generators can be configured to generate an interrupt when the address reaches the end of 
a programmer-defined circular buffer. 

Bit-reversed addressing is supported by one address register in each of the data 
address generators. (In addition, the ADSP-2106x offers a bit-reversal instruction which 
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can be used to modify and then bit-reverse the contents of any address register. Note that 
this bit-reversal instruction does not access the memory referenced by the bit-reversed 

. address.) 

. The data address generator used for PM data access can also be used for indirect· 
jumps and subroutine calls; this is useful for reconfigurable interrupt service routines and 
jump tables. 

All address, base address, buffer length, and modifier registers are shadowed by a 
secondary set of registers. The processor can switch between the primary and secondary 
set of registers under program control in one instruction cycle. 

Pipeline 

The ADSP-2l06x uses a three-stage pipeline comprised of fetch, decode, and exe­
cute stages. The pipeline is partially interlocked and invisible to the user except for a few 
cases, the most important of which are: 

• When an instruction that loads an address generator register is immediately fol­
lowed by an instruction that uses the same address generator for addressing, the 
processor inserts a one-instruction-cycle delay between the two instructions. 

• An instruction that writes to a. modulo addressing buffer length register or base 
address register must not be immediately followed by an instruction that reads 
directly from the corresponding address register, or incorrect results will be pro­
duced. 

• Non-delayed branch, call, and return instructions take three instruction cycles to 
execute. Delayed branches are available, however, so that the programmer has the 
option of executing two useful instructions during the two-instruction-cycle delay 
slot. 

Although programmers must be aware of the ADSP-2106x pipeline 
to create optimal code, the impact of the pipeline on the program­
mer is minor compared to other /loating-point DSPprocessors. 

Instruction Set 

The instruction set and registers of the ADSP-2106x are summarized in Tables 
7.3-2 and 7.3-3. The ADSP-2106x uses a 48-bit instruction word, and its instruction set is 
a superset of the ADSP-21020 instruction set; the ADSP-2106x is object-code compatible 
with the ADSP-21020 (although the object code must be re-linked because the 
ADSP-21020 and ADSP-2106x use different memory maps). The assembly language of 
the ADSP-2106x is very similar to that of the ADSP-21xx. Also, ADSP-2106x assem­
bly-language code can be re-assembled for the ADSP-2116x without modification. 

With its unusually large 48-bit instruction word, the ADSP-2106x 
provides an exceptionally rich and regular instruction set. 
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Class Instructions 

Absolute value, add, add with carry, clear, increment, decrement, 

Floating-Point 
round, subtract, subtract with borrow, negate, set status, simulta-

Arithmetic 
neous add and subtract, average two values, minimum, maximum, 
clip, absolute value of sum, absolute value of difference, round, trun-
cate, scale, extract mantissa, extract exponent, copy sign 

Fixed-Point 
Absolute value, add, add with carry, clear, increment, decrement, 

Arithmetic subtract, subtract with borrow, negate, pass value, simultaneous add 
and subtract, average two values, minimum, maximum, clip 

Floating-Point Multiply; can be executed in parallel with floating-point arithmetic 
Multiply instructions including add, subtract, absolute value 

Multiply, multiply-accumulate, multiply-negate-and-accumulate, 
Fixed-Point multiply-add, multiply-subtract, clear accumulator, saturate, round. 
Multiply All multiply operations can operate on fractional or integer, signed or 

unsigned values, and can optionally round their result. 

Logic And, or, exclusive-or, not 

Shifting 
Arithmeticllogical shift left/right 0-32 bits with optional logical or 
operation 

Rotation Rotate left/right 0-32 bits 

Conditional Execution Most instructions can be conditionally executed 

Comparison Floating-point and fixed-point compare 

Looping Single- or multiple-instruction hardware loop 

Branching 
Conditional and unconditional relative or absolute branch, delayed 
or non-delayed, with optional arithmetic operation 

Subroutine Call 
Conditional and unconditional call, delayed or non-delayed, with 
optional arithmetic operation 

Bit Manipulation Bit set, clear, test, toggle; bit field deposit, bit field extract 

Division iteration, reciprocal of square root seed, fixed-point to 
floating-point and floating-point to fixed-point conversion with 

Special Function optional scaling, conversion between "short float" and 32-or 40-bit 
floating-point, compiler stack support, bit-reversal of address in a 
register 

TABLE 7.3-2. ADSP-2106x instruction set summary. Underlined instructions are 
additions to the ADSP-21 020 core instruction set. 
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Assembly Language Format 

The ADSP-2106x uses an algebraic assembly language format, where instructions 
are typically divided into three parts: a computation field and one or two data move fields. 
The computation field specifies the operation(s) to be carried out by the ALU, multi­
plier-accumulator, or shifter, and the data move fields specify a register-register data move 
or up to two register-memory data moves. In the case of floating-point multiply-accumu­
late instructions, there are two computation fields: one for the multiplication and one for 
the accumulation. For example, consider the instruction: 

F12=F8+F12, F8=FO*F4, FO=DM(IO,Ml), F4=PM(I8,M9) i 

The previous value in register F8 (possibly the result of the previous multiply instruction) 
is summed with the value in register F12, and the result written to register F12. The previ­
ous contents of registers FO and F4 are multiplied, and the product is written to register F8. 
Registers FO and F4 are loaded with new input data from data memory and program mem­
ory, respectively. Finally, the address registers IO and 18 are post-incremented by adding to 
them the values in the modifier registers Ml and M9, respectively. 

To distinguish between fixed-point and floating-point operations, the arithmetic 
registers are referred to as RO-RI5 for fixed-point and FO-FI5 for floating-point opera­
tions. 

Registers Width Purpose 

RO-RI5 40 bits Arithmetic registers; referred to as FO-FI5 for floating-point operations 

MR2-MRO 80 bits 
Fixed-point accumulator; can be treated as two 32-bit registers 
(MRl, MRO) and one 16-bit register (MR2) 

IO-I7 32 bits Address generator 1 address registers 

BO-B7 32 bits Address generator 1 modulo base registers 

LO-L7 32 bits Address generator 1 modulo length registers 

MO-M7 32 bits Address generator 1 modifier registers 

I8-I15 24 bits Address generator 2 address registers 

B8-B15 24 bits Address generator 2 modulo base registers 

L8-L15 24 bits Address generator 2 modulo length registers 

M8-M15 24 bits Address generator 2 modifier registers 

TABLE 7.3-3. ADSP-2106x register summary. The processor can switch between 
. these primary registers and a secondary set of shadow registers (not listed here) 

under program control. 
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Parallel Move Support 

The ADSP-2106x supports operand-unrelated parallel moves with all arithmetic 
operations. For example, multiply-accumulate instructions support one data access (read 
or write) via the DM bus and one data access (read or write) via the PM bus. 

If two parallel moves are used, conditional instruction execution is not allowed. 
However, with one parallel move, conditional execution is available. In addition, the 
ADSP-2106x allows a single register-to-register move in parallel with most computations. 

The ADSP-2106x can perform up to two reads, two writes, or one read and/or 
write in parallel with an arithmetic operation. 

The ADSP-2106x provides good flexibility in the use of parallel 
data moves. 

Orthogonality 

The ADSP-2106x instruction set is very orthogonal by DSP processor standards. 
This is made possible by its 48-bit instruction word size. For example, nearly all instruc­
tions can be conditionally executed, and most arithmetic instructions operate on the same 
set of registers. Also, most arithmetic instructions support both fixed-point and float­
ing-point formats. 

Execution limes 

Nearly all ADSP-2106x instructions execute in one instruction cycle in the 
absence of wait states or external memory access conflicts (which may occur, for example, 
when both instructions and data are located off-chip). Instructions with PM bus data 
accesses execute in two instruction cycles unless the instruction fetched (not the instruc­
tion being executed) in parallel with the program memory data access is held in the cache, 
in which case they execute in one instruction cycle. 

Non-delayed branches, calls, and returns execute in three cycles. Delayed branches 
have a latency of three cycles; when a delayed branch, call, or return is executed, the two 
instructions following the branch instruction are also executed before the branch takes 
effect. 

Instruction Set Highlights 

Noteworthy features of the ADSP-2106x instruction set include: 

• Multiply with parallel dual add/subtract, useful for computing FFT and DCT ker­
nels 

• Bit-field insertion and extraction 

• Any combination of two parallel register-memory moves (two loads, one load and 
one store, or two stores) or one register-register move with a computation 

• Conditional execution of nearly all instructions 
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• Hardware looping with a wide range of loop termination conditions (discussed 
below) 

• Branch with loop abort option (discussed below) 

• Delayed branch, cail, and return 

Execution Control 

Clocking 

The ADSP-21060, ADSP-21061, and ADSP-21062 processors operate from an 
externally generated clock at the instruction execution rate; that is, a 40 MIPS 
ADSP-21060 operates from a 40 MHz master clock. No on-chip oscillator is provided for 
clock signal generation. The internally buffered instruction clock is made available on an 
output pin. 

The ADSP-21065L uses an input clock with a frequency equal to half the instruc­
tion rate; that is, a 66 MIPS ADSP-21065L operates from a 33 MHz master clock. The 
ADSP-21065L also provides internal clock generation oscillator if an external clock is not 
available. The internally buffered instruction clock is available through the SDRAM inter­
face. 

Hardware Looping 

The ADSP-2106x provides zero-overhead hardware looping through its DO 
instruction. A sequence of instructions of any length can be contained in a hardware loop. 
The loop exit condition can be a zero value in the special-purpose loop counter, an arith­
metic condition generated by the ALU or multiplier-accumulator, the value of a bit 110 
pin, or loss of mastership of the external memory interface. Hardware loops can be nested 
up to six levels and are interruptible. The maximum number of repetitions is 232 when 
using the special-purpose loop counter. 

In the common case where the loop termination condition is based on a counter 
that is automatically. decremented each time through the loop, the initial counter value is 
specified in the DO instruction, so that initializing the loop requires a total of one instruc­
tion cycle. However, loops containing fewer than three instructions incur extra setup over­
head. 

In addition, the ADSP-2106x provides a branch instruction with optional "loop 
abort." This instruction is used to exit a hardware loop before the loop termination condi­
tion is reached. The instruction adjusts the loop stack so that the loop is cleanly termi­
nated, even though the termination condition was not reached. 

The ADSP-2106x provides unusually powerful hardware looping 
features. 
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Interrupts 

The ADSP-2106x has 29 interrupt sources. Interrupts are individually prioritized 
(each has a separate but fixed priority) and optionally nestable. External interrupts include 
the reset pin and three interrupt pins. Internal hardware interrupt sources include stack 
overflow, timer expiration, circular buffer overflow (two buffers with separate interrupts), 
arithmetic exceptions (fixed-point overflow; floating-point overflow, underflow, and 
invalid operand), link port service request, and DMA activity. In a multiprocessor config­
uration, one ADSP-2106x processor can force another ADSP-2106x processor to execute 
a "multiprocessor vector interrupt." In addition, four user software interrupts are provided. 
All interrupts except the reset pin are individually maskable. The timer has two interrupt 
locations, both corresponding to timer expiration, but having different priorities. By mask­
ing the high-priority timer interrupt, the programmer can lower the priority of the timer 
interrupt. 

The ADSP-2106x responds to an interrupt by pushing the program counter onto 
the PC stack. If the interrupt is an external interrupt or a timer interrupt, the processor sta­
tus is pushed onto the status stack. Next, the processor branches to the first instruction at 

. the corresponding interrupt vector location. Each interrupt vector location contains four 
words of program memory, so that short interrupt service routines can reside entirely 
within the interrupt vector table, with no need for a branch to reach the interrupt service 
routine. 

Latency from the time when an interrupt is asserted as pending to completion of 
execution of the first interrupt vector instruction is five instruction cycles, assuming the 
processor is in an interruptible state. 

The ADSP-2106x has the ability to clear, force, or test for the presence of inter­
rupts. In addition, as mentioned above, the ADSP-2106x provides shadow registers for 
arithmetic and address registers. Under program control, the processor can be switched 
between the primary and shadow registers in a single instruction cycle. 

The ADSP-2106x has flexible and powerful interrupt handling 
mechanisms. In particular, the availability of shadow registers and' 
ability to execute four-instruction interrupt service routines without 
the need for a branch instruction are noteworthy. The multiproces­
sor vector interrupt is useful for inter processor commands in a sys­
tem with multiple ADSP-2106x processors. 

Stack 

The ADSP-2106x provides a 30-word hardware stack for the program counter, 
used for subroutine calls and hardware loops. In addition, a separate six-word hardware 
stack is provided for the loop counter, end-of-Ioop address, and loop termination condi­
tion, to support six levels of nestable hardware loops. The ADSP-2106x generates a 
stack-overflow exception if any of the stacks are exhausted. 
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The ADSP-2106x provides ·specialized stack frame instructions to implement a 
software stack for programs written in C. 

The use of a small hardware stack for storing the PC in a processor 
with a large address space is surprising. However, since large pro­
grams are likely to be written in C, the specialized stack frame 
instructions mitigate this problem. 

The ADSP-2106x also provides a five-word hardware status stack where the pro­
cessor status is stored during external interrupts or timer interrupts. 

Bootstrap Loading 

On reset, the ADSP-2106x can begin execution at a fixed location in memory, or it 
can bootstrap load over the host port, the link ports, or a byte-wide ROM attached to the 
external memory interface. 

Peripherals 

The ADSP-2106x on-chip peripherals include a timer (two timers on the 
ADSP-21065L), two synchronous serial ports, six "link ports" (not available on the 
ADSP-21061 or the ADSP-21065L), a ten-channel DMA controller (six-channel on the 
ADSP-21061), four bit-I/O pins (12 pins on the ADSP-21065L), and a host port. The 
serial ports, link ports, and DMA controller are grouped together and designated the I/O 
Processor. Peripherals on the ADSP-2106x are generally independent and do not share 
processor pins. However, on some family members peripherals share DMA channels so 
that not all peripherals may be configured for DMA at the same time. 

• Serial Ports 
The serial I/O ports of the ADSP-21060, ADSP~21061, and ADSP-21062 support 
bit rates equal to the clock speed of the processor. That is, each serial port on a 40 
MHz ADSP-21060 can transfer data at a maximum rate of 40 Mbitslsecond. Each 
serial port supports both transmit and receive channels with independent serial 
clock and framing signals. Clock and framing signals can be generated on-chip or 
can come from an off-chip source. The serial ports can transfer words from 3 to 32 
bits long; words can be converted to serial data (or vice versa) using either 
most-significant-bit-first or least-significant-bit-first serial bit order. A multi-chan­
nel mode allows each serial port to interpret the serial data stream as time-divi­
sion-multiplexed (TDM) words using up to 32 separate channels. Each serial port 
can select or ignore any of these TDM channels. A-law and J.1-law companding are 
available. Single-word transfers can be interrupt-serviced by the processor core, 
and multiword block transfers can be serviced by the DMA controller without 
intervention by the processor core. 
The ADSP-21065L serial ports are generally similar to the other family members, 
although there are some differences. The 21065L serial ports only support a maxi-
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mum bit rate equal to half the instruction clock speed of the processor. However, 
each serial port also has two transmit and two receive channels. The two transmit 
channels share a transmit clock and framing signals and the two receive channels 
share similar receive clock and framing signals. The four channels of each serial 
port are otherwise independently enabled and configured. Each serial port on a 66 
MHz ADSP-21065L can transfer data at a maximum rate of 66 Mbits/second, 33 
Mbits/second through each channel. The ADSP-21065L serial ports also support 
the PS protocol. 

The serial ports on the ADSP-2106x have many usefulfeatures. 

• Timer 
The ADSP-21060, ADSP-21061, and ADSP-21062 devices feature a 32-bit inter­
val timer. The timer generates an interrupt and pulses the TIMEXP output pin 
when its counter reaches zero. The timer is clocked with the instruction clock with 
no prescaler. The timer interrupt can be assigned as a low- or high-priority inter­
rupt. 
The ADSP-21065L has two 32-bit timers with the same features as the timer found 
on the other ADSP-2106x devices; however, the ADSP-21065L timers use two 
sets of timer registers and have two associated output pins. Also, the 
ADSP-21065L timers can use an externally-supplied clock. 

Because the ADSP-2106x timers use 32-bit counters, the lack of a 
prescaler is not a drawback. 

• LinkPorts 
The link ports are 4-bit bidirectional parallel communications ports that can be 
connected to peripheral devices or to the link ports on other ADSP-2106x proces­
sors. Each link port consists of four bidirectional data lines, a bidirectional clock 
line, and a bidirectional acknowledge line. The ports can be clocked twice per pro­
cessor instruction cycle, allowing each port to transfer up to 8 bits of data per 
cycle. The direction of data transfer for each link port is specified by the link port 
control register in the 110 Processor. Data is automatically packed or unpacked into 
32-bit or 48-bit words. Single-word transfers can be interrupt-serviced by the pro­
cessor core, and multiword block transfers can be serviced by the DMA controller 
without intervention by the processor core. There are six independent buffer regis­
ters called "link buffers" that are shared between the six link ports. Each link 
buffer can be assigned to any single link port and is used to double-buffer that link 
port. 

• DMA 
The DMA controller on the ADSP-2106x supports ten channels of DMA (six on 
the ADSP-21061). These channels can be used to perform block transfers of data 
between on-chip memory and the link ports, serial ports, or external memory inter­
face. Additionally, these channels can be used to perform block transfers between 
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external memory· and external peripherals. The DMA controller allows the core 
processor or external peripherals to specify block-data transfer operations and then 
return to normal operation while the DMA controller carries out those transfers 
independently. All DMA transfers are executed using the internal 110 bus of the 
ADSP",2106x. DMA transfers never conflict with the processor core for on-chip 
RAM access. 
Each ADSP-2106x DMA channel utilizes a dedicated on-chip data buffer for data 
transfers. Each data buffer is allocated to one or more physical 110 resources, such 
as serial ports, as listed in Table 7.3-4. Most buffers are allocated to only one 110 
resource. However, on the ADSP-21060, ADSP-21061, and ADSP-21062, buffers 
for channels 1,3, 6, and 7 can be allocated to a fixed resource or one of the link 
buffers (not link ports). For example, the data buffer for DMA channell can be 
allocated to "serial port 1 receive" or "link buffer 0." DMA on these four shared 
channels is only enabled for the allocated resource, and the unallocated resource 
cannot use DMA transfers. For example, if DMA channel 1 were allocated to 
"serial port 1 receive," then link buffer 0 would be unavailable. However, each link 
buffer can be assigned to any link port, so five other link buffers would be avail­
able to assign to the six link ports. Conversely, if DMA channel one were allocated 
to "link buffer 0," then serial port 1 receive would be unavailable. Unfortunately, 
the serial ports have no alternate buffers. 

The ADSP-2106x has an extremely flexible and elaborate DMA 
controller. However, the relationship between DMA channels, data 
buffers, and link ports is complicated. Conflicts between I/O 
resources may not be obvious to the programmer. 

The DMA channels have a priority schedule which the DMA controller uses to 
determine ,which channel can drive the 110 bus on each cycle. The priority sched­
ule, shown in Table 7.3-4, is fixed except for the four external memory interface 
channels. Those four channels can be enabled with a rotating priority schedule. 
There is no throughput loss incurred when the controller switches channels. For 
example, reading four words into memory from link buffer 0 and then reading four 
words into memory from link buffer 1 can execute as quickly as reading eight 
words into memory from link buffer 0 alone. 
The ADSP-2106x DMA controller allows DMA chaining. In this scenario, the 
ADSP-2106x automatically configures a new DMA transfer when the entire con­
tents of the current buffer have been transmitted or received. The parameters for 
successive DMA transfers are called a "transfer control block" (TCB) and are read 
from internal memory. 

• BitIlO 
The ADSP-2106x has 4 bit-liD pins (except the ADSP-21065L, which has 12 
pins), which can be individually configured as inputs or outputs. 
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• HostPort 
The ADSP-2106x external memory interface doubles as a host port. The host port 
can be configured for 16- or 32-bit synchronous or asynchronous transfers. Via the 
host port, a host processor can directly access the on-chip memory of the 
ADSP-2106x. The host processor can also initiate DMA transfers and issue com­
mands to the ADSP-2106x by triggering interrupts via the host port. 

On-Chip Debugging Support 

ADSP-2106x DSPs have a JTAG serial debugging interface with boundary scan 
and on-chip debugging support. Analog Devices offers "EZ-ICE" in-circuit emulators for 
the ADSP-2106x family that make use of this serial interface. The EZ-ICE emulator is an 
IBM PC plug-in card with a cable that connects to the DSP's JTAG port through a connec­
tor in the target system. Through the JTAG interface, memory and registers can be 
inspected, and breakpoints can be set based on individual addresses or address ranges in 
program or data memory. Instruction and bus-tracing capabilities are not provided. 

DMAChannei Associated Resources 
Number and 

Priority ADSP-21060, ADSP-21061, and 
ADSP-21065L 

(0 = Highest) ADSP-21062 

0 Serial port 0 receive Serial port 0 receive, A data 

1 Serial port 1 receive or link: buffer 0 Serial port 1 receive, A data 

2 Serial port 0 transmit Serial port 0 receive, B data 

3 Serial port 1 transmit or link: buffer 1 Serial port 1 receive, B data 

4 Link: buffer 2 Serial port 0 transmit, A data 

5 Link: buffer 3 Serial port 1 transmit, A data 

6 
External memory interface buffer 0 or link: 

Serial port 0 transmit, B data 
buffer 4 

7 
External memory interface buffer 1 or link: 

Serial port 1 transmit, B data 
buffer 5 

8 External memory interface buffer 2 Host port buffer 0 

9 External memory interface buffer 3 Host port buffer 1 

TABLE 7.3-4. The ten DMA channels on the ADSP-21 060, ADSP-21 062, and 
ADSP-21065L. The ADSP-21061 eliminates channels 4, 5, 8, and 9. "A" and "B" 
data refer to the two channels supported by each serial port on the ADSP-21065L. 

© 2001 Berkeley Design Technology, Inc. 179 



Buyer's Guide to DSP Processors 

180 

JTAG-based in-circuit emulators that provide similar functionality to the EZ-ICE 
and connect to the host debugger through either USB, ethernet, or PCI-card interfaces are 
available from third-party vendors. 

Power Consumption and Management 

According to Analog Devices, the ADSP-2106x devices (excluding the 
ADSP-21065q typically consume 3.4 watts at 5.25 volts when executing at 40 MIPS (this 
corresponds to a power consumption of 3.1 watts at 5.0 volts at the salne speed). For the 
low-voltage variants the power consumption is 1.5 watts at 3.3 volts and 40 MIPS. The 
typical power consumption was measured for an FFT butterfly with two memory accesses 
and an instruction fetch from the cache. Analog Devices quotes the ADSP-21065L power 
consumption as 0.87 watts at 3.3 vol~s and 60 MIPS. 

The ADSP-21065L power consumption of 0.87 watts at 3.3 volts 
and 60 MIPS is relatively low for ajloating-point DSP processor. 

The ADSP-2106x provides an IDLE instruction for power management. Execution 
of the IDLE instruction places the processor in a low-power mode. An external, timer, or 
DMA interrupt wakes the processor and causes it to execute the appropriate interrupt ser­
vice routine. The wake-up latency from low-power mode is two instruction cycles used to 
fetch and decode the instructions in the interrupt service routine. The ADSP-21061 and 
21065Lprovide an additional IDLE16 instruction that reduces the master clock to 1116 of 
the input clock rate. To resume full-speed operation, an external interrupt must occur. 
Full-speed operation is resumed two instruction cycles after the interrupt has been recog­
nized. In the IDLE16 low-power mode,the DMA, link ports, serial ports, and external port 
cannot be used. 

According to Analog Devices, ADSP-2106x IDLE-mode power consumption is 
1.1 watts typically at 5.25 volts and 40 MIPS, corresponding to a power consumption of 
1.0 watts at 5.0 volts at the same speed. IDLE~mode power consumption at 3.3 volts and 
40 MIPS is 0.39 W. 

Benchmark Performance 

The ADSP-2106x has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTI 
BenchmarkTM Results. We summarize and analyze ADSP-2106x benchmark performance 
in the paragraphs below. We fIrst discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
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we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Because the ADSP-2106x uses an instruction cache, the benchmark analysis pre­
sented in Chapter 8, BDTI Benchmark™ Results, treats the ADSP-2106x as two distinct 
processor families. One family (referred to as the ADSP-2106x) assumes that the cache is 
empty before each benchmark is executed. The other family (referred to as the 
ADSP-2106x-C) assumes that the processor's instruction cache has been preloaded by 
executing the benchmark code once prior to measuring the instruction cycle counts for 
that benchmark. The total normalized cycle count is only about 5% lower for the 
ADSP-2106x-C than for the ADSP-2106x. For this reason, we have focused on the 
ADSP-2106x-C in the analysis below. However, the effect of cache preloading is more 
significant on single-sample benchmarks, where the cycle counts are about 20% lower for 
the ADSP-2106x-C than for the ADSP-2106x. When using these benchmark results to 
gauge the performance of the ADSP-2106x family in a potential application, we urge 
readers to carefully consider how the processor's cache will perform in that application. 

Execution Performance 

• Instruction cycle counts: Total normalized instruction cycle counts are found in 
Figure 8.1-13. The ADSP-2106x-C's total normalized instruction cycle count is 
roughly average for all benchmarked processors but about 15% above average for 
floating-point DSPs. 
The ADSP-2106x-C tends to have lower cycle counts than other conventional 
DSPs due to the processor's quite powerful instruction set that allows most instruc­
tions to be conditionally executed and provides flexibility for specifying multiple 
unrelated operations to take place within a single instruction. These features are 
made possible in part by the processor's unusually wide 48-bit instruction word. 
However, ADSP-2106x-C cycle counts tend to be higher than those of processors 
with modem VLIW or SIMD architectures, such as the TMS320C67xx and 
ADSP-2116x. 
For most block-oriented benchmarks, the wide instruction word of the 
ADSP-2106x does not reduce the number of instructions in the inner loop (as com­
pared to other benchmarked processors), but does allow for slightly more efficient 
housekeeping outside the inner loop. On many of the benchmarks, this reduces the 
ADSP-2106x-C cycle counts slightly relative to other conventional DSPs. This is 
visible in particular on the Single-Sample FIR, where code outside the inner loop 
accounts for a significant portion of the total cycle count. Since the 
ADSP-2106x-C incurs little overhead on initialization code, it has a low cycle 
count for a conventional DSP on the Single-Sample FIR filter benchmark. A simi­
lar tendency can be seen on the LMS Adaptive FIR. However, the main reason 
that the ADSP-2106x-C has a relatively low cycle count (for a conventional DSP) 
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on the LMS benchmark is that the coefficient update and convolution can be com­
bined efficiently in a single loop. 
On the Two-Biquad IIR filter benchmark, the ADSP-2106x-C has a lower cycle 
count than most conventional DSPs. The processor takes advantage of its flexible 
parallel move support and its ability to perform an arithmetic operation in parallel 
with a multiplication. This enables the processor to perform an IIR filter biquad in 
four instruction cycles in the inner loop. The same features help the 
ADSP-2106x-C on the FFT benchmark, where it achieves very low cycle counts 
for a conventional DSP. A specialized instruction that allows simultaneous multi­
ply and dual add/subtract operations (taking somewhat restricted operands) with 
up to two operand-unrelated data moves, together with a large register set, enable 
the processor to implement the FFT using a compact radix-4 butterfly loop. 
The Control benchmark does not provide much opportunity for executing several 
operations in parallel; instead, the ADSP-2106x-C takes advantage of conditional 
instruction execution and optionally delayed branches to keep cycle counts down. 
The ADSP-2106x-C's cycle count on the Viterbi benchmark is roughly average, 
although it is well below average for a conventional DSP. The processor's ability 
to perform the add-compare-select phase of Viterbi decoding efficiently is aided by 
its flexible parallel move support and its dual add/subtract operation, which is use­
ful for calculating path metrics. However, the ADSP-2106x-C has a higher cycle 
count than the benchmarked DSPs with SIMD or VLIW architectures, and than the 
TMS320C54xx, which has specialized Viterbi decoding support. 
On the Bit Unpack benchmark, the ADSP-2106x-C has lower cycle counts than 
most benchmarked DSPs, due in particular to its powerful bit-field manipulation 
capabilities and support for delayed branches. However, the benchmarked DSPs 
with VLIW architectures-the SC140, the TMS320C55xx, and the 
TMS320C6xxx families-make use of their greater parallelism to perform this 
benchmark in fewer cycles than the ADSP-2106x-C. 

• Execution times: In terms of total normalized execution time, the 
ADSP-21065L-C is significantly slower than the other floating-point processors 
benchmarked-the Analog Devices ADSP-21160 and the Texas Instruments 
TMS320C6701-as shown in Figure 8.2-13. The ADSP-21065L-C is roughly 
65% slower than the ADSP-21160-C, and roughly three times as slow as the 
TMS320C6701. In both cases, much of the difference is attributable to differences 
in clock speed, with the remainder a result of having a less-powerful architecture 
than the SIMD and VLIW architectures of the ADSP-21160 and the 
TMS320C6701. The 66 MHz ADSP-21065L has a BDTImark2000 score of 250. 

• Cost-execution time: With a price tag of $25.00 (quantity 10,000), the 
ADSP-21065L is aggressively priced for a floating-point processor. As a result, 
the ADSP-21065L-C takes first place among floating-point processors, with a 
cost-execution time product that is significantly better than that of its closest float-
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ing-point rival, the Texas Instruments TMS320C6701. It should be noted, however 
the TMS320C67xx family has reduced-cost, reduced-performance family mem­
bers that would have significantly better cost-execution times than the 
TMS320C6701. Also, the ADSP-21065L-C has a cost-execution time that is 
slightly better than two fixed-point DSP processors: the Motorola DSP56311 and 
the TMS320C6203. The total normalized cost-execution time products are illus­
trated in Figure 8.3-13. 

• Energy consumption: The ADSP-21065L-C has a typical power consumption of 
0.93 watts at 3.3 volts and 66 MIPS, which is quite low compared to the other 
floating-point processors benchmarked. However, in terms of energy consumption, 
the ADSP-21065L-C places second among the floating-point processors bench­
marked, with an energy consumption that is slightly more than double that of the 
Texas Instruments TMS320C6701. The ADSP-21065L-C's low power consump­
tion is not enough to compensate for its much slower execution time relative to the 
TMS320C6701, resulting in its higher energy consumption. These results are illus­
trated in Figure 8.4-13A. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

Since memory usage is independent of the state of the cache, we do not distinguish 
between the ADSP-2106x and the ADSP-2106x-C when discussing memory usage. 

Memory Usage 

• Control benchmark memory usage: Like the ADSP-2116x, the ADSP-2106x's 
48-bit instruction word is the widest of all benchmarked processors, resulting in 
quite high program memory usage. Although the ADSP-2106x's wide instructions 
allow flexibility for performing several operations within each instruction, on the 
Control benchmark this feature is not used often enough to make up for the width 
of the instruction words. The processor shares last place with the ADSP-2116x on 
the Control benchmark in terms of total memory usage, as shown in 
Figure 8.5-9A. 

• Program memory usage: As can be seen in Figure 8.5-13, the ADSP-2106x's 
total normalized program memory usage is higher than most of the· conventional 
DSP processors benchmarked, but lower than the processors with SIMD and 
VLIW architectures (such as the SC140, TMS320C6xxx families, and 
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ADSP-2116x). The main reason for the ADSP-2106x's high program memory 
usage relative to other conventional DSP processors is its wide, 48-bit instruction 
word. 

• Data memory usage: As shown in Figure 8.5-14 and Figure8.5-15, the 
ADSP-2106x constant and non-constant benchmark data memory usage is gener­
ally what is expected for a 32-bit DSP processor. In some benchmarks,· typically 
one or two non-constant data words are used to facilitate speed optimizations. 

On average across the benchmarks, the ADSP-2106x has higher 
cycle counts and slower execution times than the other bench­
marked floating-point DSP processors. Of the three floating-point 
processors analyzed in this report, the ADSP-2106x is the only con­
ventional architecture, and it lacks the parallelism and higher clock 
speeds of the ADSP-2116x and TMS320C67xx. 

The ADSP-21065L-C cost-execution time result is better than that 
of the ADSP-21160 and TMS320C6701; however, as mentioned 
earlier, lower:-cost TMS320C67xx family members may have better 
cost-execution time performance. 

On average across the benchmarks, the ADSP-21065L has lower 
energy consumption than the ADSP-21160, but higher energy con­
sumption than the TMS320C6701, and it has higher energy con­
sumption than all of the fixed-point DSPs for which energy 
consumption has been calculated. 

The processor's quite high program memory usage on the Control 
benchmark suggests that poor code density is a disadvantage of this 
processor. Its code density on the DSP algorithm benchmarks, how­
ever, is somewluit better than that on the Control benchmark. 

Cost 

Price and packaging options for ADSP-2106x processors are shown in Table 7.3-5. 

Fabrication Details 

According to Analog Devices, the ADSP-21060, ADSP-21061, and ADSP-21062 
are fabricated in a 0.45 /.tm two-metal-Iayer CMOS process. The ADSP-21065L is fabri­
cated in a 0.35 /.tm three-metal-layer CMOS process. 

Development Tools 

Analog Devices provides "VisualDSP," an integrated development environment 
for the ADSP-2106x that includes an assembler, C compiler, linker, ROM splitter, and 
cycle-accurate instruction-set simulator. VisualDSP runs under Windows 95, Windows 98, 
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Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,000) 

ADSP-21060 33.3 5.0 240MQFP $199.58 

ADSP-21060 44.0 5.0 240MQFP $254.37 

ADSP-21060 33.3 5.0 240CQFP $332.64 

ADSP-21060 40.0 5.0 240CQFP $423.95 

ADSP-21060L 33.3 3.3 240MQFP $213.46 

ADSP-21060L 40.0 3.3 240MQFP $266.82 

ADSP-21060L 33.3 3.3 240CQFP $355.95 

ADSP-21060L 40.0 3.3 240CQFP $445.20 

ADSP-21061 50.0 5.0 240MQFP $46.31 

ADSP-21061 40.0 5.0 240MQFP $43.05 

ADSP-21061 33.3 5.0 240MQFP $42.00 

ADSP-21061L 44.0 3.3 210MQFP $31.19 

ADSP-21061L ·40.0 3.3 225PBGA $31.19 

ADSP-21061L 40.0 3.3 240MQFP $27.41 

ADSP-21062 40.0 5.0 225PBGA $101.64 

ADSP-21062 40.0 5.0 240MQFP $92.40 

ADSP-21062 33.3 5.0 240MQFP $82.22 

ADSP-21062L 40.0 3.3 225PBGA $114.35 

ADSP-21062L 40.0 3.3 240MQFP $103.95 

ADSP-21062L 33.3 3.3 240MQFP $92.40 

ADSP-21065L 66.7 3.3 240MQFP $25.00 

ADSP-210651 66.7 3.3 225PBGA $27.00 

ADSP-21065L 60.0 3.3 240MQFP $20.00 

ADSP-21065L 60.0 3.3 225PBGA $26.00 

TABLE 7.3-5. ADSP-2106x price and package summary as of June 1, 2000. 
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and Windows NT on mM PC-compatible computers. According to Analog Devices, sup­
port·for the Windows 2000 operating system will be added during 2000. 

Analog Devices also offers an "EZ-ICE" emulator (available only for mM 
PC-compatibles) and an "EZ-KIT" development starter kit. The development starter kit 
consists of a development board and software development tools. 

Analog Devices' basic software development tools for the 
ADSP-2106x are fairly good. The ADSP-2106x tools provide a rea­
sonably consistent inteiface with those for the ADSP-21xx 
fixed-point processors. 

Third-party support for the ADSP-2106x is available in the form of development 
boards, function and application software libraries, and real-time Gperating systems. 
White Mountain DSP, a DSP development tools company which was acquired by Analog 
Devices in 1999, offers emulators for use with IBM PC-compatibles and Sun worksta­
tions. 

Applications Support 

Analog Devices supports the ADSP-2106x with user's manuals, an applications 
handbook, and a quarterly newsletter, DSPatch. The main documentation for 
ADSP-2106x processors is the ADSP-2106x SHARe User's Manual. Analog Devices' 
DSP technical support group can be reached over the Internet. A large amount of informa­
tion is available from Analog Devices' website. Data sheets are available for the individ­
ual ADSP-2106x processors. 

Analog Devices' user s manuals and application handbooks main­
tain their position as the best in the industry. They are thorough, 
dear, and well organized. 

Advantages 

• Rich, orthogonal instruction set 

• Algebraic assembly language 

• Special instructions for FFT, DCT kernel computations 

• Good operand-unrelated parallel move support 

• Conditional execution of most instructions 

• 32-bit or 4O-bit floating-point arithmetic with partial support for IEEE-754; 32-bit 
fixed-point arithmetic 

• Barrel shifter 

• Multiprecision arithmetic support ( 

• Exponent detect instruction 

• Bit manipulation and bit-field manipulation instructions 
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• Pipeline is typically invisible to the programmer 

• Many address registers (16 including shadow registers) with individual modifier 
and modulo registers 

• Shadow registers provided for arithmetic and address registers; single-cycle 
switching of register set under program control 

• Instruction cache for accelerating data accesses to program memory 

• Flexible external memory interface with support for page-mode DRAM; 
ADSP-21065L supports SDRAM 

• Powerful DMA controller 

• Large, unified address space 

• Powerful hardware looping; nestable multi-instruction looping 

• Short interrupt latency 

• Flexible interrupt handling; fast interrupt capability; shadow registers 

• Integrated multiprocessor communications ports (except on the ADSP-2106I and 
ADSP-21065L) 

• Two TDM serial ports with companding support 

• IX external clock (all except ADSP-21065L) 

• JTAG debug port with boundary scan 

• Good documentation 

• Good cost-execution time results on the BDTI Benchmarks (for a floating-point 
processor) 

Disadvantages 

• Dissimilar program and data word sizes complicates system design involving 
external memory 

• Large instruction word can increase system cost 
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7.4 Analog Devices ADSP-2116x Family 
BDTlmark2000 Score: 

410 at 80 MHz Introduction 

The ADSP-2116x is the second generation of the "SHARe" family of 32-bit float­
ing-point DSP processors from Analog Devices. The ADSP-2116x (also called "Hammer­
head") is assembly source-code compatible with the ADSP-2106x and retains the 4S-bit 
wide ADSP-2106x instruction set, with a few additions. The ADSP-2116x processor tar­
gets many of the same applications as the ADSP-2I06x, including military, audio, voice 
recognition, imaging, and telephony applications, especially those requiring multiproces­
sor systems. The first ADSP-2116x family member, the ADSP-21160, was announced in 
June 1995. It is currently sampling at SO MHz (SO MIPS) using a core voltage of 2.5 volts 
with 3.3-volt I/O. Analog Devices expects the ADSP-21160 to become available in pro­
duction quantities by October 2000. In September of 2000, Analog Devices introduced the 
next member of the ADSP-2116x family, the ADSP-21161. This family member is not 
currently available, but is expected to begin sampling in the fourth quarter of 2000, 
according to Analog Devices. The ADSP-21161 is projected to operate at 100 MHz and 
1.S volts. 

The ADSP-2116x is very similar to the ADSP-2106x; however, the ADSP-21160 
is not pin-compatible with any ADSP-2I06x family member. It differs from the 
ADSP-2106x primarily in its wider data buses, duplicated computational units supporting 
SIMD-style (Single-Instruction, Multiple-Data) operation, and higher clock speeds. 
Because the two families are so similar, this analysis highlights only the differences 
between the ADSP-2116x and the ADSP-2106x. Readers should refer to the ADSP-2106x 
analysis, Section 7.3, for a full discussion of ADSP-2106x architecture, and for details of 
features common to both families. A summary of current and forthcoming ADSP-2116x 
family members is provided in Table 7.4-1. 

Part 
Max. Speed On-Chip 

Comments 
(MHz) Memory 

Six communication ports, host interface, 
ADSP-21160 SO 512 Kbytes timer, 14 DMA channels, two serial 

ports, six link ports, external parallel bus. 

Two communication ports, host interface, 

ADSP-21161 a 100 125 Kbytes 
14 DMA channels, four serial ports, two 
link ports, external parallel bus, 
SPI-compatible port, SDRAM controller. 

TABLE 7.4-1. ADSP-2116x family summary. On-Chip memory size is listed in bytes 
since on-chip memory can be divided into 48-bit-wide program, 32-bit-wide data, 
and 16-bit-wide data memory in many different configurations. 
a. Not yet available 
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Architecture 

The ADSP-2116x is based on two identical 32-bit floating-point data paths. These 
data paths are identical to the data path on the ADSP-2106x. The architecture of the 
ADSP-21160 is shown in Figure 7.4-1. 

Data Path 

The ADSP-2116x data paths, denoted "X" and "Y" by Analog Devices, each con­
tain one multiplier, one shifter, one ALD, and one 16 x 40-bitregister file with shadow 
registers. 

The programmer can switch between SISD (Single-Instruction, Single-Data) mode 
and SIMD mode by toggling a mode control bit. When in SISD mode the processor exe-

Timer 

Fixed/Floating-Point Data Path "X" 

I ALU II 1/ I 

Cache 

32x48 

Data Address 

Generators (2) 

JTAG 

7 

Two Independent, 
Dual-Ported RAM Blocks 

(Total of 512 Kbytes) 

Control, 
Status, and 
Data Buffers 

FIGURE 7.4-1. ADSP-21160 architecture. Shaded items indicate differences from the 
ADSP-2106x. 
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cutes instructions in a fashion similar to an ADSP-2106x processor. The SIMD mode 
enables data path "Y," which then executes the same instruction as data path "X," but on 
the register file associated with data path "Y". 

The SIMD-style architecture is very powerful for certain algorithms 
and applications that lend themselves to data-parallel execution. It 
is an architectural enhancement which is found in many high-per­
formance general-purpose processors, but few DSPs have serious 
SIMD capabilities. The implementation as two separate, duplicated 
computational entities is different from, e.g., the Lucent DSP 16xxx, 
where a single computational unit performs parallel operations on 
a single register file. The two separate register files in the 
ADSP-2116x do not provide the same flexibility for interchanging 
results between execution units in the two data paths as found on 
the Lucent DSP 16xxx, but do facilitate an orthogonal instruction 
set and clean programming paradigm. 

Data can be moved between the two register files and between the register files 
and memory. The behavior of data-move instructions is dependent upon the state of the 
SIMD mode bit, as explained in detail under the sections Memory System and Address 
Generation Units, below. For more detailed information on the computational units of the 
ADSP-2116x, please refer to the Data Path section of the description of the ADSP-2106x 
in Section 7.3. 

Memory System 

J'he memory system of the ADSP-2116x is similar to the memory system of the 
ADSP-2106x, with dual-ported on:'chip SRAM organized in two blocks and running at 
full processor speed. Like the 2106x, the 2116x includes a 32-word on-chip instruction 
cache. A key difference between the ADSP-2116x and the ADSP-2106x is the on-chip 
data bus width. The ADSP-2116x data buses have been widened to 64 bits to accommo­
date the extra bandwidth needed by the additional data path. When executing instructions 
from cache, the processor can load or store two pairs of 32-bit words per instruction cycle, 
resulting in a bandwidth of 320 million 32-bit words/second for an 80 MIPS 
ADSP-21160. When the processor is executing instructions from internal memory, instead 
of from cache, the bandwidth is reduced to 160 million 32-bit words/second. In addition to 
transfers between registers and on-chip memory performed by software, the DMA con­
troller can transfer 160 million 32-bit words/second between internal memory and periph­
erals or external memory. 

The size of the on-chip memory is large compared to other DSPs; 
e.g., the TMS320C6701 has only a quarter as much memory. The 
large on-chip memory helps compensate for the 48-bit wide instruc­
tions. 
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External Memory Interface 

The external memory interface of the ADSP-2116x is the same as that of the 
ADSP-2106x, except that the data bus width is increased to 64 bits. The off-chip data bus 
runs at half the core speed; hence, an 80 MIPS ADSP-21160 has an external me:plory 
b31'ldwidth of eighty million 32-bit words per second. 

Address Generation Units 

The two ADSP-2116x address generators, DAGI and DAG2, operate in the same 
fashion as on the ADSP-2106x, with a few exceptions: DAG2 can now access the full 
32-bit address space; a 64-bit long word is supported for data moves; and a number of new 
SIMD-oriented data moves to and from the two register files have been defined. This sec­
tion describes only those cases where the data address generators of the ADSP-2116x 
extend the functionality of the ADSP-2106x. For more general information, refer to the 
Address Generation Units section of the ADSP-2106x analysis in Section 7.3. 

The address generators can specify four word sizes: 64-bit long word, 4O-bit 
extended precision word, 32-bit normal word, and 16-bit short word. This allows the 
transfer of one word of any size with each instruction using a single . address generator. 
Data transfers can be specified with different sizes of operands; e.g., DAG2 can address 
one 4O-bit extended precision word while DAG 1 simultaneously addresses two adjacent 
32-bit words. 

The ADSP-2116x provides several modes for specifying the source or target regis­
teres) for a data move. Three major modes of operation are: 

• SISD mode, where only data path "X" is enabled and therefore no data is moved to 
or from the register file in data path "Y''' 

• SIMD mode, where both data paths are enabled, and different data is moved to or 
from both register files 

• Broadcast mode, where both data paths are enabled, and the same data 'is sent to 
both data paths when a load is performed 

In SISD mode, addressing a 32-bit word results in a transfer that is essentially the 
same as in the ADSP-2106x. The word is transferred to or from the register specified. 
When addressing a 64-bit long word, the long word is transferred to or from two adjacent 
registers. The mapping between the 32-bit halves of the long word and a register pair is 
determined by the register addressed by the DAG. If an even register is specified as the 
source or destination (e.g., RO, R2, etc.). the lower 32 bits of the 64-bit long word will be 

, mapped to the even register and the upper 32 bits will be mapped to the next (odd) register. 
If an odd register is specified in the instruction, the lower 32 bits of the 64-bit long word 
will be mapped to the odd register and the upper 32 bits of the 64-bit long word will be 
mapped to the prior (even) register. Hence, the order of words in memory can be reversed 
when moving pairs of words into registers or when moving from registers to memory. In 
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SISD mode, both DAGs can be used to transfer a 64-bit long word to the same register file 
in the same instruction. 

In SIMD mode, addressing a 32-bit word results in 64 bits of data being trans­
ferred: the 32-bit word that was addressed is moved to or from the register specified, and 
the 32-bit word following the addressed word in memory is moved to or from the corre­
sponding register in the other register file. For example, explicitly loading the 32-bit word 
at address Ox40000 into register "RO" in register file "X" will also cause the 32-bit word at 
address Ox40001 to be loaded into register "RO" in register file "Y." The 32-bit word 
addressed during the move does not have to lie on a 64-bit aligned address. Explicitly 
loading or storing a 32-bit word at a non-64-bit-aligned address (e.g., Ox40001) will also 
load or store the 32-bit word at the next address (e.g., Ox40002). 

Addressing a 64-bit long word in SIMD mode results in data being transferred to 
or from only one register file. The other DAG may be used to simultaneously transfer 
another 64-bit long word to or from the other register file. However, it is not possible to 
make two simultaneous 64-bit data moves to or from the same register file in this mode. 

Broadcast mode is only available for loads that use the second address register in 
each DAG, i.e., 11 and 19. Two software-controlled flags, one for 11 and one for 19, enable 
broadcast mode. When a broadcast flag is set, loads using the corresponding address regis­
ter will load a single value into both register files. The broadcast flags do not change the 
operation of stores from registers to memory. 

Figure 7.4-2 illustrates some of the types of loads and stores that can be performed 
with four 32-bit words on the ADSP-2116x. 

The use of mode bits to alter the operation of loads and stores 
ensures very flexible addressing, and helps maintain the orthogo­
nality of the instruction set without increasing the instruction word 
width and without increasing the number of data address genera­
tors. The flexibility in addressing comes at the cost of reduced code 
readability, however, since an instruction that explicitly loads a reg­
ister from memory may implicitly load other registers in either data 
path, depending on the status of the mode bits. These implicit oper­
ations put higher demands on the programmer to keep track of data 
movement, but also make programming easier by adding flexibility 
to data moves. 

Pipeline 

The pipeline of the ADSP-2116x is very similar to the pipeline of the 
ADSP-2106x, with one improvement: the ADSP-2116x uses a finer-grained test to detect 
the possibility of a read-after-write sequence which would cause an interlock. In the 
ADSP-2106x the use of any address register in the data address generator would result in a 
one-cycle pipeline stall. In the ADSP-2116x, read-after-write dependencies are instead 
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RAM Block 0 RAM Block 1 
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R1 

R2 R2 

... 

R13 R13 
R14 R14 
R15 R15 

Register file "X" Register file ''Y'' 

a. SISD mode, addressing a 64-bit long 
word in each of the two RAM blocks and 
specifying RO and R14 as sources or 
destinations. 

RAM Block 0 RAM Block 1 

R13 R13 
R14 R14 
R15 R15 

Register file "X" Register file "Y" 

b. SIMD mode, addressing a 32-bit word in 
each of the two RAM blocks and 
specifying RO and R2 as sources or 

I destinations. 

---------+-----------

RAM Block 0 RAM Block 1 

word (32) word (32) 
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R1 
R2 

... 

R13 
R14 
R15 

Register file "X" Register file ''Y'' 

c. SIMD mode, addressing a 64-bit long 
word in each of the two RAM blocks and 
specifying RO in register file "X" and R14 
in register file "Y" as sources or 
destinations. 

I 
I RAM Block 0 RAM Block 1 

RO 
R1 
R2 

R14 R14 
R15 R15 

Register file "X" Register file "Y" 

d. Broadcast mode, performing 64-bit 
long word loads to RO and R14. 

FIGURE 7.4-2. Examples of ADSP-2116x data transfers. 
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resolved over pairs of registers in the data address generators; e.g., if an address is written 
to 12, then the use of 12 or I3 in the next instruction would incur a one cycle pipeline stall. 

The improved testing for data dependencies in the data address reg­
isters is an advantage which may modestly improve the perfor­
mance of the ADSP-2116x in some applications. 

Instruction Set 

The ADSP-2116x instruction set is the same as that of the ADSP-2106x, with the 
addition of an instruction which swaps data between the two register files and a 32-bit 
unsigned fixed-point compare. The ADSP-2116x is able to maintain the same instruction 
set as the ADSP-2106x without major modifications, even though an extra data path has 
been added, by the use of a few new mode bits that modify the operation of the existing 
instructions. 

The 32-bit unsigned compare complements the 32-bit signed com­
pare in the ADSP-2106x instruction set, and adds to the orthogo­
nality of the ADSP-2116x instruction set. 

When in SISD mode, the ADSP-2116x is assembly source-code compatible with 
the ADSP-2106x family of processors. 

The assembly source-code compatibility between the ADSP-2106x 
and the ADSP-2116x is an unusual level of compatibility between 
two generations of DSP processor families, and will make it easier 
for programmers to migrate /rom the ADSP-2106x to the 
ADSP-2116x family of processors. ADSP-2106x code should be 
re-optimized, however, to take advantage of the new capabilities. 

Assembly Language Format 

For a description of the assembly language format, please refer to Assembly Lan­
guage Format for the ADSP-2106x, in Section 7.3. 

Parallel Move Support 

In addition to the parallel moves described for the ADSP-2106x in Section 7.3, the 
ADSP-2116x supports double 32-bit-word moves, described above in the Address Gener­
ation Units section. These instructions allow the ADSP-2116x to load four 32-bit words, 
store four 32-bits words, or load two 32-bit words and store two 32-bit words in parallel 
with an arithmetic operation. However, this requires that 32-bit data be arranged as pairs 
in memory. 

The ADSP-2116x provides unusual flexibility in the use ofparallel 
data moves. 
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Orthogonality 

The ADSP-2116x instruction set is very orthogonal by DSP processor standards. 
This is possible due to the processor's 48-bit wide instruction words and its use of mode 
bits. 

Execution Times 

The ADSP-2116x instruction execution times (in terms of cycles) are the same as 
those of the ADSP-2106x, 

Instruction Set Highlights 

Noteworthy features, where the ADSP-2116x instruction set differs from the 
ADSP-2106x instruction set, include: 

• Parallel, independent, conditional execution of nearly all instructions in the two 
data paths. In SIMD mode, conditionally executed instructions whose execution is 
predicated on register comparisons will execute differently in the two data paths, 
since the two data paths have separate status flags. 

• Any combination oftwo parallel double-word moves (two loads, one load and one 
store, or two stores) with a computation. 

For furtherinstruction set highlights, refer to the Instruction Set Highlights section 
of the ADSP-2106x analysis in Section 7.3. 

Execution Control 

Clocking 

The ADSP-2116x receives its clock from an external oscillator, and is equipped 
with a PLL that enables the processor to run at different multiples of the input clock, 
where the input:core clock rate .ratio can be: 1 :2, 1 :3, or 1 :4. The processor must be reset to 
change the clock ratio. 

Hardware Looping 

The ADSP-2116x provides the same hardware looping support as the 
ADSP-2106x. 

Interrupts 

ADSP-2116x interrupt sources are the same and interrupt handling behavior is the 
same as on the ADSP-2106x, with an additional six interrupt sources: a non-maskable 
emulator interrupt, four additional DMA interrupts, and an interrupt for conditions that 
arise due to programming errors (e.g., inadvertent lOP register access). 

For more information on interrupts, please refer to the Interrupts section of the 
ADSP-2106x analysis Section 7.3. 
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Stack 

The ADSP-2116x provides the same stack support as the ADSP-2106x. 

Bootstrap Loading 

ADSP-2116x bootstrap loading is the same as on the ADSP-2106x. 

Peripherals 

The peripherals of the ADSP-2116x are similar to those of the ADSP-2106x; for 
more information, please refer to the Peripherals section of the ADSP-2106x analysis in 
Section 7.3. 

Notable additions present on the ADSP-21160 and ADSP-21161 are four extra 
DMA channels (for a total of 14), increased bus width of the DMA channels from 32 bits 
to 64 bits, and the capability of the DMA controller to interleave 32-bit words from two 
channels in memory, by packing a 32-bit word from each channel into a 64-bit double 
word and storing it in memory. The ADSP-21160 provides a dedicated DMA channel for 
each peripheral, instead of sharing some DMA channels as in the ADSP-2106x. 

The DMA controller s ability to interleave data from two channels 
in memory is a good match with the two parallel data paths, and 
will be very useful in many DSP applications where the same type 
of data processing is applied to two data streams. Irhis is often the 
case in sound-processing applications such as AC-3 and ProLogic. 

The ADSP-21160 has two serial ports, which ron at a maximum of half the core 
clock rate. This gives the serial ports on a 80 MIPS ADSP-21160 a maximum transfer rate 
of 40 Mbps. The four serial ports on the ADSP-21161 support 128-channel TDM and 12S. 

The six link ports on the ADSP-21160 (and the two on the ADSP-21161) are 
slightly different from the link ports on the ADSP-2106x. They are 8 bits wide instead of 4 
bits and can only be clocked once each processor instruction cycle, instead of twice each 
instruction cycle. A link port on the ADSP-21160 can be configured to be compatible with 
the 4-bit link ports on the ADSP-2106x. 

The ADSP-21160 external memory interface supports a burst mode, for more effi­
cient transfer of blocks of data to or from another processor or off-chip device. As with the 
ADSP-2106x, the ADSP-21160 external memory interface also serves as a host port and 
as a means to access the on-chip memory of other ADSP-21160 processors in a mUltipro­
cessor system. 

On-Chip Debugging Support 

ADSP-2116x debugging support is the same as that of the ADSP-2106x. 
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Power Consumption and Management 

The power management facilities of the ADSP-2116x are the same as those of the 
ADSP-2106x. Typical power consumption of the ADSP-21160 running at 80 MHz and 2.5 
volts is 2.35 watts, according to data sheets from Analog Devices. 

Benchmark Performance 

The ADSP-2116x has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDT! 
Benchmark™ Results. We summarize and analyze ADSP-2116x benchmark performance 
in the paragraphs below. We first discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Because the ADSP-2116x uses an instruction cache, the benchmark analysis pre­
sented in Chapter 8, BDT! Benchmark™ Results, treats the ADSP-2116x as two distinct 
processor families. One family (referred to as the ADSP-2116x) assumes that the cache is 
empty before each benchmark is executed. The other family (referred to as the 
ADSP-2116x-C) assumes that the processor's instruction cache has been preloaded by 
executing the benchmark code once prior to measuring the instruction cycle counts for 
that benchmark. The total normalized cycle count is less tban 10% lower for the 
ADSP-2116x-C than for the ADSP-2116x. For this reason, we have focused on the 
ADSP-2106x-C in the analysis below. However, the effect of cache preloading is more 
significant on single-sample benchmarks, where the average difference between total nor­
malized results for the ADSP-2106x and ADSP-2106x-C is more than 20%. When using 
these benchmark results to gauge the performance of the ADSP-2116x family in a poten­
tial application, we urge readers to carefully consider how the processor's cache will per­
form in that application. 

Execution Performance 

• Instruction cycle counts: Total normalized instruction cycle counts are found in 
Figure 8.1-13. The ADSP-2116x-C's total normalized instruction cycle count is 
the fourth-lowest among the benchmarked processors. The ADSP-2116x-C's low 
total normalized cycle count is due to the powerful instruction set that it shares 
with the ADSP-2106x-C and to its two-way SIMD capability. In theory, the SIMD 
capability of the ADSP-2116x-C gives it double the computational throughput of 
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the ADSP-2106x-C for many operations. However, for some benchmarks, it is 
impossible or impractical to process the input data in a SIMD fashion. For others, 
making use of SIMD requires additional overhead, such as combining partial 
results from each data path to form the final result of the computation. Also, since 
each data path operates on its own register file, it is sometimes necessary to copy 
data from one register file to another. These factors prevent the ADSP-2116x-C 
from achieving a total normalized cycle count that is half that of the 
ADSP-2106x-C; the total normalized cycle count result for the ADSP-2116x-C is 
only about 25% lower than that of the ADSP-2106x-C. 
On the Single-Sample FIR filter, the ADSP-2116x-C performs the convolution at 
a rate of two taps per instruction cycle, but the additional overhead outside the 
inner loop that is required to enable the use of both data paths prevents the cycle 
count from being significantly lower than that of the ADSP-2106x-C. Neverthe­
less, the ADSP-2116x-C has a low cycle count on this benchmark-only the 
DSP164xx and SC140 have lower results on the Single-Sample FIR filter. 
The Vector Dot Product, Vector Add, and Vector Maximum benchmarks lend 
themselves well to SIMD implementation, and the ADSP-2116x-C has low cycle 
counts on all three. 
On the Control and Bit Unpack benchmarks, which do not lend themselves to 
SIMD implementation, the ADSP-2116x uses the same implementation as the 
ADSP-2106x. Nevertheless, like the ADSP-2106x-C, the ADSP-2116x-C has rela­
tively low cycle counts on these benchmarks. On the Control benchmark, the 
ADSP-2116x-C takes advantage of conditional instruction execution and option­
ally delayed branches to keep cycle counts down. On the Bit Unpack benchmark, 
the ADSP-2116x-C has lower cycle counts than many benchmarked DSPs, due in 
particular to its powerful bit-field manipulation capabilities and support for 
delayed branches. However, the benchmarked DSPs with VLIW features-the 
SC140, the TMS320C55xx, and the TMS320C6xxx families-are able to make 
use of their parallelism on this benchmark, while the ADSP-2116x is not able to 
take advantage of its SIMD capability. Since the Bit Unpack benchmark involves 
unpacking words in sequence from an array, there is a dependency between the 
computations in one iteration and the next that makes SIMD-style parallelism dif­
ficultto apply. 
On the FFf benchmark, the ADSP-2116x-C cycle count is considerably lower 
than those of most other processors. The implementation is a radix -4 FFf that 
makes good use of the processor's SIMD capability, its large register set, and a 
specialized instruction that allows simultaneous mUltiply and dual add/subtract 
operations (taking somewhat restricted operands) with up to two operand-unre­
lated parallel data moves. Only the SC140, the TMS320C62xx, and the 
TMS320C64xx have lower cycle counts on this benchmark. 
The ADSP-2116x-C cycle count on the Viterbi benchmark is relatively low. Its 
ability to perform the add-compare-select phase of Viterbi decoding efficiently is 
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aided by its flexible parallel move support and its dual add/subtract operation, 
which is useful for calculating path metrics. Its SIMD capabilityallow~ it to paral­
lelize the add-compare-select operations. However, the ADSP-2116x-C has a sig­
nificantly higher cycle count on this benchmark than that of the Lucent DSPl64xx, 
which has special support for Viterbi decoding, and also higher than those of the 
benchmarked DSPs with VLIW architectures. 

• Execution times: In terms of speed, the ADSP-21160-C places between the two 
other floating-point processors benchmarked-its total normalized execution time 
is 40% faster than that of the ADSP-21065L-C but 85% slower than that of the 
TMS320C6701. (The ADSP-21160-C has lower cycle counts than the 
TMS320C6701 for many benchmarks, but this is outweighed by the 
TMS320C6701's much higher clock speed.) The 80 MHz ADSP-21160-C has a 
BDTImark2000 score of 410. 

• Cost-execution time: The combination of the ADSP-21160's roughly average 
execution times and its relatively high price tag of $99.00 (quantity 10,000) gives 
it a poor total normalized cost-execution time result, the worst among the proces­
sors for which cost-execution time results were calculated. 

• Energy consumption: The ADSP-21160's power consumption of 2.35 watts is 
high, even for a floating-point DSP processor. As a result, the ADSP-21160's total 
normalized energy consumption is the highest among the benchmarked processors 
for which energy consumption has been calculated. The total normalized energy 
consumption results are shown in Figure 8.4-13A. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark· is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

Since memory usage is independent of the state of the cache; we do not distinguish 
between the ADSP-2116x and the ADSP-2116x-C when discussing memory usage. 

• Control benchmark memory usage: The ADSP-2116x uses the same implemen­
tation as the ADSP-2106x for this benchmark. Like the ADSP-2106x, the 
ADSP-2116x has an extremely wide (48-bit) instruction word. Although the 
ADSP-2116x's wide instructions allow flexibility for performing several opera­
tions within each instruction, on the Control benchmark this feature is not used 
often enough to make up for the width of the instruction words. The processor 
shares last place with the ADSP-2106x on the Control benchmark in terms of 
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memory usage. The ADSP-2116x's total memory use on this benchmark is about 
55% above average, as shown in Figure 8.5-9A. 

• Program memory usage: The ADSP-2116x's total normalized program memory 
usage is illustrated in Figure 8.5-13. Only the VLIW TMS320C62xx, 
TMS320C64xx, and TMS320C67xx DSPs have higher program memory usage. 
Like the ADSP-2106x, the ADSP-2116x uses wide, 48-bit instructions, increasing 
program memory usage. In addition, the ADSP-2116x has somewhat higher mem­
ory usage than the ADSP-2106x on most benchmarks, since the ADSP-2116x 
requires additional instructions to re-arrange data for SIMD processing or to com­
bine results from its two data paths. 

• Data memory usage: The ADSP-2116x constant and non-constant benchmark 
data memory usage is generally what is expected for a 32-bit DSP processor. In 
some benchmarks, a few additional non-constant data words are used to facilitate 
speed optimizations. 

The ADSP-2116x provides a significant speed-up and easy migra­
tion path for customers currently using the ADSP-2i06x, but is not 
nearly as fast as the TMS320C670 i. 

On average across the benchmarks, the ADSP-2116x has moder­
ately fast execution times for a floating-point processor, but its 
cost-execution time perfonnance is poor, and its energy consump­
tion is high. 

The processor's high memory usage on the Control benchmark and 
high overall program memory usage suggest that poor code density 
is a disadvantage of this processor. 

Cost 

The projected production prices for the ADSP-21160 and ADSP-21161 are shown 
in Table 7.4-2. 

Part 
Speed 

Package 
Voltage 

(MHz) (V) 

ADSP-21160 80 400PBGA 2.5/3.3 

ADSP-21161Na 100 225PBGA 1.8/3.3 

TABLE 7.4-2. ADSP-2116x projected price and package summary. 

a. Not yet available. 
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Fabrication Details 

According to Analog Devices, the ADSP-21160 is fabricated in a 0.25 Jlm 
five-metal-Iayer CMOS process. 

Development Tools 

The ADSP-2116x is supported by the same "VisualDSP" tool set as the 
ADSP-2106x. For more information, refer to the Development Tools section of the 
ADSP-2106x analysis in Section 7.3. According to Analog Devices, the C compiler for 
the ADSP-2116x offers access to SIMD mode through a language extension, and is sup­
ported by a library of hand-optimized DSP functions developed by !xthos, Inc. 

According to Analog Devices, the "EZ-ICE" emulator described in Section 7.3 
may be used with the ADSP-21160. Analog Devices also offers an "EZ-KIT Lite" 
ADSP-2116x development starter kit, which consists of a development board for IDM 
PC-compatibles and software development tools. ITAG-based in-circuit emulators that 
provide similar functionality to the EZ-ICE and connect to the host debugger through 
either USB, ethernet, or PCI-card interfaces are available from third-party vendors. 

Third party support appears limited, but development boards are available. White 
Mountain DSP, a DSP development tools company which was acquired by Analog 
Devices in 1999, offers emulators. 

Applications Support 

The documentation for the ADSP-2116x currently available on Analog Devices' 
Website takes the form of two reference manuals and a guide to efficient ADSP-2116x 
programming. A datasheet is available for the ADSP-21160. Since the ADSP-2116x in 
SISD mode is assembly source-code compatible with the ADSP-2106x, ADSP-2106x 
documentation such as the applications handbook should also be useful for ADSP-2116x 
programmers. Analog Devices' DSP technical support group can be reached via the Inter­
net. 

Advantages 

• Rich, orthogonal instruction set 

• Good operand-unrelated parallel move support 

• Conditional execution of most instructions 

• 32-bit or 4O-bit floating-point arithmetic with partial support for IEEE-754; 32-:-bit 
fixed-point arithmetic 

• Algebraic assembly language 

• Special instructions for FFT, DCT kernel computations 

• Barrel shifter 
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• Bit manipulation and bit-field manipulation instructions 

• Multiprecision arithmetic support 

• Exponent detect instruction 

• SIMD data path, with two multipliers, two ALU units, two barrel shifters, and two 
register files 

• Pipeline is typically invisible to the programmer 

• Many address registers (16 including shadow registers) with individual modifier 
and modulo registers 

• Shadow registers provided for arithmetic and address registers; single-cycle 
switching of register set under program control 

• Flexible external memory interface with support for page-mode DRAM 

• Powerful DMA controller 

• Large, unified address space (4 Gwords) 

• Powerful hardware looping; nestable multi-instruction looping 

• Short interrupt latency 

• Flexible interrupt handling; fast interrupt capability; shadow registers 

• Integrated multiprocessor communications ports 

• Two TDM serial ports with companding support 

• Flexible PLL 

• JTAG debug port with boundary scan 

• Compatibility with predecessor (ADSP-2106x) 

Disadvantages 

• Large instruction word can increase system cost 

• Dissimilar program and data word sizes complicates system design involving 
external memory 

• Poor BDTI Benchmark cost-execution time performance 

• High BDTI Benchmark energy consumption 

• Poor BDTI Benchmark program memory usage 
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7.5 Analog Devices ADSP-TSOxx Family 
BDTlmark2000 Score: 

Introduction Not Available 

The ADSP-TSOxx is a family of processors from Analog Devices based on the 
VLIW "TigerSHARC" core, introduced in October of 1998. The ADSP-TSOxx operates 
on a variety of data widths, and supports fixed- and floating-point formats. The 
ADSP:-TSOxx family is targeted at high-performance applications, such as those found in 
the telecommunications industry (wireless base stations, VoNNoIP concentrators, cable 
modems, xDSL, encryption, and third-generation ("3G") wireless), and in high-perfor­
mance signal processing markets (graphics, CAT scan, MRI, ultrasound, radar, sonar), 
especially those applications requiring multiprocessing. However, Analog Devices states 
that through the second quarter of 2001, it is only promoting the ADSP-TSOxx for cellular 
base station applications. 

At its introduction in 1998, the TigerSHARC core was projected to operate at 250 
MHz and to be available in sample quantities in the first half of 1999; this clock rate has 
since been derated to the current projection of 120 MHz, and as of this writing (October 
2000) the chip is not yet sampling at this speed. The first ADSP-TSOxx family member, 
the ADSP-TS001, is expected to begin sampling at 120 MHz with a core voltage of 1.8 
volts in late 2000. Analog Devices states that an early pin-compatible version of the chip 
operating at 2.5 volts and a reduced speed (unspecified) were distributed to a few lead cus­
tomers in early 2000. Because the ADSP-TSOxx simulator was not cycle-accurate at the 
time of this writing and development boards were not available for hardware timing, 
BDTI Benchmark™ results are not available for this processor, and there is no 
BDTImark2000 score currently available. BDTI expects to complete benchmark imple­
mentations for the ADSP-TSOxx in the coming months; check BDTI's website 
(www.BDTI.com) for updated BDTImark2000 scores. 

Although the ADSP-TSOxx fixed/floating-point data path has many elements in 
common with that of the ADSP-2116x, the ADSP-TSOxx is neither source- nor 
object-code compatible with previous Analog Devices processors, and its overall architec­
ture is significantly different from those of earlier Analog Devices processors. 

The ADSP-TSOxx can execute up to four 32-bit instructions in a single clock 
cycle. These instructions are scheduled for execution by the compiler or assembly lan­
guage programmer. Its VLIW architecture (called "static superscalar" by Analog Devices) 
allows the ADSP-TSOxx to achieve a high level of parallelism. Instructions operate on 8-, 
16-, 32-, or 64-bit integer data, and 32-bit or 40-bit floating-point data. The first (and, at 
present, only) member of the ADSP-TSOxx family is the ADSP-TSOOI (see Table 7.5-1). 
This device has a relatively large on-chip memory and a complement of peripherals simi­
lar to those found on Analog Devices' floating-point DSPs. 

The ADSP-TSOxx is noteworthy for its powerful combination of 
VLIW and extensive SIMD parallelism, its generous on-chip mem­
ory, its built-in multiprocessor capabilities, its powerful instruction 
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set, and its support for a wide range of data types, including 8-bit 
fixed-point and 32-bitfloating-point data. 

Because the ADSP-TSOxx can issue up to four instructions per clock cycle, the 
term "instruction cycle" is potentially ambiguous when discussing this processor. As used 
here, "instruction cycle" or "cycle" means the time required to execute a single group of 
one to four parallel instructions, called an "instruction packet" by Analog Devices. On the 
ADSP-TSOxx, one instruction cycle is equal in length to one master clock ("CCLK") 
cycle. Details regarding ADSP-TSOxx clocks are discussed below in the Clocking section. 

Architecture 

As discussed above, the ADSP-TSOxx is a VLIW architecture, and can execute up 
to four instructions per instruction cycle. ADSP-TSOxx processors are based on two iden­
tical fixed/floating-point data paths, two identical address generation units, three 128-bit 
internal buses, three internal memory banks, and extensive 110 capabilities including sup­
port for multiprocessing. The ADSP-TSOxx uses a 32-bit address space and 32-bit instruc­
tion words. Figure 7.5-1 illustrates the ADSP-TSOxx architecture .. 

Data Path 

Like Analog Devices' ADSP-2116x floating.;.point DSP processor (discussed in 
detail in Section 7.4), the ADSP-TSOxx provides two identical fixed/floating-point data 
paths (called X and Y), each with three distinct arithmetic units: a multiplier-accumulator, 
a shifter, and an ALD. Each data path may execute one or two instructions per instruction 
packet. If one data path executes two instructions in an instruction packet, these instruc­
tions may employ any two of the ALD, multiplier, or shifter. Furthermore, an instruction 
(or two instructions) can be simultaneously executed in both X and Y data paths. Instruc­
tions can also be executed in the address generation units, as described later in the Address 
Generation Units (AGUs) section. 

Part 

The ADSP-TSOxx's use of two separate, identical computational 
entities is different from enhanced conventional DSPs, such as the 
Lucent DSP 16xxx, where a single computational unit performs par-

Max. 
On-Chip 

Speed Comments 
(MHz) Memory 

32-bit external address bus, 64-bit external data 
ADSP-TSOOI a 120 192Kx32 bus, 4 link ports, DMA controller, multiproces-
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sor-oriented external memory interface 

TABLE 7.5-1. ADSP-TSOxx family summary. 

a. Not yet available. 
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allel operations ona single register file. It is also different from the 
Analog Devices ADSP-2116x, where use of both data paths requires 
that they operate in lock-step and execute the same operation. 

The ADSP-TSOxx supports six data types: 8-bit fixed-point, 16-bit fixed-point, 
32-bit fixed-point, 64-bit fixed-point, 32-bit IEEE-754 floating-point, and 40-bit 
extended-precision floating-point. The ADSP-TSOxx includes instructions that convert 
between the various floating-point and fixed-point formats. 

The ADSP-TSOxx supports an unusually wide range of data types. 
For example, it is the only processor in this report that supports 
8-bit fixed-point and 32-bit floating-point data types. This makes 
the ADSP-TSOxx particularly interesting for applications that pro­
cess many different kinds of signals; for example, video, speech, 
and audio. 

On the ADSP-TSOxx, the multiplier-accumulator, the shifter, and the ALU of each 
data path access a register file (one file per data path) containing thirty-two 32-bit gen­
eral-purpose registers. Inputs to most arithmetic operations come from the register file, 
and results of most arithmetic operations are delivered to the register file. The ALU, mul­
tiplier-accumulator, and shifter each have additional dedicated registers, discussed below. 
Unlike earlier Analog Devices processors, the ADSP-TSOxx does not include shadow reg­
isters. 40-bit floating-point data is stored in pairs of adjacent general-purpose registers. 

The ADSP-TSOxx supports two types of SIMD operation. As on the ADSP-2116x, 
a single instruction can control both data paths, so that the same operation is executed in 
both data paths using different operands. In addition, a single instruction can cause an exe­
cution unit in a single data path to perform SIMD operations on multiple sets of input 
operands. Using SIMD operations, up to eight 8-bit, four 16-bit, or two 32-bit fixed-point 
operands may be processed by each data path, producing individual results as wide as 32 
bits. A 64-bit double-precision integer result can also result from two 64-bit operands, 
again in each data path. Two or four sequentially numbered registers in the register file 
may be addressed as a group in one instruction by each data path (discussed further in the 
Assembly Language Format section). By doing so, one data path may produce SIMD 
result groups of up to 128 bits via one instruction; for example, multiplying four 16-bit 
operands by four 16-bit operands to produce four 32-bit products. 

The two types of SIMD can be combined so that a single instruction causes the two 
data paths to perform identical SIMD operations. We call this "hierarchical SIMD." 

SIMD is an architectural enhancement seen in many high-perfor­
mance general-purpose processors, but few DSPs have serious 
SIMD capabilities. The ADSP-TSOxx's "hierarchical SIMD" is par­
ticularly unusual and very powerful for certain algorithms and 
applications. 
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In addition to the usual fixed- and floating-point arithmetic operations, the data 
path ALUs support average ([A+B]/2, [A-B]/2), increment, decrement, minimum, maxi­
mum, compare (signed and unsigned), clipping (saturation where the limit is specified as 
an operand of the instruction), and simultaneous add/subtract ([A+B], [A-BD. As detailed 
in the Instruction Set section below, ALU operations can produce up to eight 8-bit, four 
16-bit, two 32-bit, or one 64-bit fixed-point results per data path; many of these operations 
also work with 32- and 40-bit floating-point operands. 

Simultaneous add/subtract is useful for FFT and Viterbi implemen­
tations. 

There are special instructions to combine a group of 8- or 16-bit SIMD operands. 
For example, the SIMD SUM instruction adds four 8- or 16-bit quantities, accumulating 
one 32-bit sum. The ADSP-TSOxx supports scaled conversions between fixed-point and 
IEEE floating-point formats. 

The ALU provides the following status flags dependent on the result of the last 
operation: fixed-point zerolfloating-point underflow, negative, overflow, floating-point 
invalid, and carry. There are additional "sticky" bits for fixed-point overflow, float­
ing-point underflow, floating-point overflow, and floating-point invalid. (A sticky bit, 
once set by the processor, remains set until cleared under program control.) For SIMD 
instructions in general, a status bit is determined by the logical or of the corresponding sta­
tus bits of the individual results. 

As is sometimes seen on SIMD architectures, the ADSP-TSOxx only 
includes one set of ALU status bits for multiple SIMD operands. In 
a SIMD operation, the programmer cannot readily detect which of 
the SIMD operands set which status bit. 

The data path shifter units perform single-bit manipulation, bit-field manipulation, 
and rotation, logical, or arithmetic shifting operations of up to 64 bits left or right. Single 
data words of up to 64 bits may be shifted in each data path. As in the ALU, up to eight 
8-bit, four 16-bit, or two 32-bit fixed-point operands may also be handled as SIMD oper­
ands in each data path, producing results as wide as 32 bits each. The shifter does not 
make use of the carry bit. The shifter in each data path has its own status flags for indicat­
ing zero and negative results. Using dedicated registers, the shifter supports a bit FIFO, 
which is useful for depositing or extracting a field of varying length into or from a contig­
uous bit stream. To use this facility, the programmer assigns contiguous registers to hold 
part of a bit stream. Two other contiguous registers hold control information, pointing to 
the next bit in the bit stream to be processed and specifying the number of bits. 

The bit-stream processing capability of the ADSP-TSOxx shifter is 
extremely useful in implementing compression and decompression 
of multimedia data. 

The shifter supports exponent detection and can extract, in one instruction cycle, the expo­
nent for eight 16-bit block-floating-point operands. 
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The capability of the ADSP-TSOxx shifter to perform SIMD-style 
exponent detection is very useful in implementing 16-bit 
block-floating-point operations, such as may be used in FFTs. 

The multiplier-accumulator units support floating ... point and fixed-point integer or 
fractional multiplication and accumulation. Each multiplier-accumulator provides four 
32-bit dedicated accumulation registers (MRO-MR3) and a 32-bit guard bit register (MR4) 
for fixed-point multiply-accumulates. MR4 provides four guard bits each for eight 16-bit 
SIMD results, 8 guard bits each for four 32-bit results, or 16 guard bits each for two 64-bit 
results. Combined accumulator results of up to 80 bits (including guard bits) can be moved 
to and from 32-bit registers in each data path register file. The multiplier-accumulator 
units support 20-, 40-, and SO-bit saturation for fixed-point arithmetic. Fixed-point oper­
ands are integer or fractional, and may be signed/signed, unsigned/unsigned or 
signed/unsigned. When operating on fixed-point data, each multiplier-accumulator unit 
can perform the operations shown in Table 7.5-2. When operating on floating-point data, 
each multiplier unit performs 32 x 32 ~ 40-bit or 40 x 40 ~ 40-bit floating-point multi­
plications. There is no floating-point multiply-accumulate instruction; floating-point mul­
tiplication products can be accumulated using separate ALU instructions. Fixed- and 
floating-point results may be truncated or rounded to the nearest even number. Float­
ing-point results may also be rounded toward zero. 

There is a special instruction to multiply-accumulate two pairs of 16-bit complex 
numbers (eachwith 16 bits real, 16 bits imaginary) to produce dual complex results (again 
each with 16 bits real, 16 bits imaginary). The complex conjugate of one of the operands 
may optionally be used as an input. 

This complex multiplication, especially useful in FFTs, is a wel­
come addition to the instruction set. But for many multimedia appli-

Number of MACs Per Operand Size 
Result Size Data Path (Fixed-Point) 

1 32x32 32 

1 32X32 64 

1 32x32 80 

4 16x 16 32 

4 16x 16 16 

1 16x 16 40 

4 16 x 16 40 

TABLE 7.5-2. ADSP-TSOxx fixed-point multiply-accumulate operations. Number 
of MACs means (possibly SIMD) MACs in one instruction in one data path. 
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cations, a complex multiplication with precision greater than 16 
bits is required. There is no support for mixed-precision operations 
using this complex multiplication instruction. 

The multiplier-accumulator provides the following status flags: fixed-point 
zero/floating-point underflow, negative, overflow, and floating-point invalid. There are 
additional "sticky" bits for fixed-point overflow, floating-point underflow, floating-point 
overflow, and floating-point invalid. As in the ALU, for SIMD instructions, in general a 
status bit is computed as the logical or of the status bits for individual results. For exam­
ple, if one of four 16-bit SIMD multiplication products is zero, then the "multiplier zero" 
flag will be set. Similarly, if one of the four products is negative, then the "multiplier neg­
ative" status flag is set. 

Memory System 

The ADSP-TSOxx memory system consists of on-chip 32-bit memory, up to 
approximately 4 Gwords of general-purpose off-chip 32-bit memory, and up to 3.5 
Mwords of off-chip multiprocessor memory (i.e., the 32-bit internal memory of up to 
seven other ADSP-TSOxx chips). Memory is arranged in a unified, 32-bit word-address­
able space that contains both instructions and data. 

The ADSP-TSOxx architecture supports three blocks of on-chip memory of up to 
512K 32-bit words each; the ADSP-TS001 contains 3 blocks of 64K 32-bit words each. 
On-chip memory always resides at the lowest addresses in the address space. 

The ADSP-TS001 contains significantly more on-chip memory than 
most commercial DSP processors. 

The 32-bit data path register files for both data paths, as well as the address gener­
ator register files, discussed below, are mapped into the internal memory space. 

Each of the three 128-bit internal data and instruction buses is connected to one of 
the on-chip memories. Up to 128 bits may be fetched in each instruction cycle from each 
of the three on-chip memories. Thus, up to four 32-bit instructions may be fetched from 
one memory while two 128-bit operands are being fetched from the other two on-chip 
memories. The program control unit drives one bus while two separate address generator 
units drive the other two buses. When executing instructions from on-chip memory, the 
maximum data bandwidth for the ADSP-TSOxx operating at 120 MHz is 1.92 billion 
16-bit words/second (sixteen 16-bit words/cycle). 

The PASS instruction can be used to transfer data between registers within the 
same execution unit. Unless the PASS instruction is used, register-to-register moves (even 
between registers in the same register file) must use one of the three internal data bus 
accesses available for each instruction packet. 

In tasks with extensive memory accesses and extensive operations 
on address registers, register-to-register transfers will compete 
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with loads and stores for memory bus accesses; this may reduce 
throughput. 

The ADSP-TSOxx has an unusually high per-cycle data memory 
bandwidth. In one cycle, up to 256 bits of data can be fetched; for 
example, sixteen 16-bit data words or eight 32-bit data words to 
access this full bandwidth. However, data words must be arranged 
in memory so that each memory access reads or writes a contigu­
ous block of 128 bits. 

As described earlier, each instruction packet can include up to four 32-bit instruc­
tions. The instruction packets do not have to be aligned on 128-bit memory boundaries. 
Instead, there is a 5-entry, 128-bit-wide FIFO (called an "instruction alignment buffer" by 
Analog Devices) which contains up to twenty 32-bit instructions; up to four entries can be 
dispatched from the FIFO in each cycle. Unlike earlier SHARe chips, the ADSP-TSOxx 
does not contain an on-chip instruction cache; however it does contain a "Branch Target 
Buffer" for mitigating branch penalties. Branches (e.g., jumps and calls) generally incur 
penalties of three or six stall cycles (see the Pipeline section for details). To avoid branch 
stalls, the programmer can specify whether or not a branch should be predicted, using the 
assembly-language "NP" construct. The branch target buffer (BTB), a 128-entry 4-way 
set-associative cache, stores the most recently used predicted destination addresses. When 
a jump address is currently stored in the BTB and correctly predicted, the ADSP-TSOxx 
inserts the corresponding destination address as the fetch address for the following 
instruction packet, reducing the branch to a single-cycle operation. The branch target 
buffer only supports addresses in internal memory. Only one branch may be predicted per 
aligned quad word of program memory. 

If complicated if ... then ... else code is repeatedly executed, the 
branch target buffer can significantly improve execution times. The 
limitation that the branch target buffer only works with on-chip 
memory addresses is a disadvantage, however, and is one of several 
good reasons to execute from on-chip memory whenever possible. 

External Memory Interface 

The extemal32-bit memory space is divided into six regions: 

• Multiprocessor memory 

• Three external memory banks of up to 67 million 32-bit words each. One of these 
memory banks supports a glueless interface to SDRAM 

• "Host memory" (approximately 4 Gwords) 

• BootEPROM 

The host memory space is nominally intended for memory that is shared with a 
host processor, but can be used for other kinds of memory. 
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The processor has six memory select pins and asserts one of the pins during exter­
nal memory accesses to indicate which part of external memory is being accessed. These 
pins can be used to drive the chip select inputs of external devices, eliminating the need 
for external address decoding circuitry in many applications. In addition, wait state con­
figuration is independently specified for three memory banks (external host memory and 
two external memory banks). The processor supports externally requested wait states, and 
zero to three programmed wait states. 

The external address bus is 32 bits wide, which allows the processor to access 
approximately 4 Gwords of multiprocessor or external memory. The external data bus 
width is configured to 32 bit or 64 bits separately for host memory, multiprocessor trans­
actions, and other external memory. The ADSP-TSOxx can access 128-bit data and/or 
instruction packets stored in external memory, but requires at least two memory accesses 
to do so. 

The external memory interface uses the system clock, SCLK, as discussed below 
in the Clocking section. The maximum system clock rate is one half of the master clock 
(CCLK) rate. The external memory interface can perform accesses at a maximum rate of 
one 64-bit word per system clock cycle, compared with one 128-bit word per master cleck 
cycle for on-chip memory. Thus, when executing instructions from external memory, the 
peak instruction fetch rate is at most one-fourth of the peak instruction fetch rate from 
on-chip memory, and may be slower depending on bus contention or wait states. 

Like many high-performance DSP processors, the ADSP-TSOxx 
must execute instructions from on-chip memory to achieve peak 
performance. 

Up to eight ADSP-TSOxx processors, a host processor, and external memory can 
be connected (in a glueless fashion) using the shared bus scheme shown in Figure 7.5-2. In 

FIGURE 7.5-2. ADSP-TSOxx multiprocessing .configuration. The link ports may 
connect TigerSHARCs 0 through 7 in any configuration, not just the simple 
configuration shown here. 
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such a configuration, one ADSP-TSOxx can access the on-chip memory of any other 
ADSP-TSOxx. Such multiprocessor accesses use one of the three internal memory buses 
of the accessed ADSP-TSOxx. If no internal bus becomes available for four cycles, one of 
the three internal buses is forced to service the multiprocessor access. In such a case the 
instruction expecting to use the commandeered internal bus is delayed. Multiprocessor 
accesses do not disrupt operations that use only the data path register files and/or address 
generation unit register files. A processor may also perform a broadcast write to all other 
processors in one instruction by writing to a reserved write-only section of the internal 
memory space. 

Multiple ADSP-TSOxx processors can share an external bus without additional 
arbitration circuitry, because an arbitration mechanism is provided in the. ADSP-TSOxx 
that allows a host processor or another ADSP-TSOxx in a multiprocessor system to gain 
control of the external memory bus. A fixed-priority arbitration scheme is provided, 
whereby the hardware designer assigns each ADSP-TSOxx a different priority. When a 
processor requests control of the bus, it waits its tum until all other ADSP-TSOxx proces­
sors with a higher priority have finished their bus accesses. A state machine running in 
lock step in each processor keeps track of the round-robin priority level. The programmer 
may specify the maximum number of cycles for which one processor may keep the bus. 
There is a mechanism for a processor with a lower priority to temporarily gain access to 
the bus; for example, for DMA transfers. The ADSP-TSOxx has conditional instructions 
that depend upon whether an ADSP-TSOxx is the current bus master in a multiprocessor 
system. These instructions can be used to perform an atomic read-modify-write operation, 
for example. 

The ADSP-TSOxx has special support for SDRAM, including refresh generation. 
The ADSP-TSOO1 offers glueless connection to 16 Mbyte, 64 Mbyte, 128 Mbyte, and 256 
Mbyte SDRAMs. SDRAM is divided into two banks. The maximum data rate is one 
32-bit word per SCLK cycle. On a 120 MHz ADSP-TS001, assuming that SCLK is set to 
112 the rate of CCLK, the maximum data rate is thus 60 million 32-bit words per second. 

An optional external EPROM, primarily intended for booting, is not part of the 
main external memory space even though the ROM is attached to the external memory 
bus. The ROM is limited to a maximum of 24 address bits (16 Mbytes) and 8 data bits. 
The boot EPROM space cannot be directly accessed by programs, but rather is used for 
booting and can be accessed via DMA. In addition to EPROM· devices, the EPROM 
address space may also be used for flash memory. The ROM select pins of several proces­
sors may be tied together, and more than one ADSP-TSOxx may access or boot from the 
same ROM. 

The ADSP-TSOxx has an on-chip DMA controller that allows transfers between 
internal memory and external memory, other ADSP-TSOxx processors' internal memory, 
one of the link ports, and/or between external memory and external peripherals (see the 
Peripherals section). The on-chip DMA controller conducts DMA transfers involving the 
internal buses by using idle internal bus cycles when available. As happens with multipro-
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cessor transactions discussed previously, if no internal bus becomes available for four 
cycles, one of the three internal buses is forced to service DMA. 

The ADSP-TSOxx provides unusually flexible support for external 
memory. 

Address Generation Units (AGUs) 

There are two address generation units (J and K). Each address generation unit 
contains a memory access unit along with a fixed-point data path. 

The concepts of DAG, PM, and DM found in earlier Analog 
Devices processors are not present in the ADSP-TSOxx. This differ­
ence represents a significant departure from earlier Analog Devices 
architectures. 

Each AGU data path contains an ALU, a shifter, and a memory-mapped register 
file of thirty-two 32-bit registers. Each data path in the address generation unit supports 
32-bit fixed-point integer operations, and may execute one instruction per instruction 
cycle. Recalling that the ADSP-TSOxx executes as many as four instructions per instruc­
tion packet, as many as two of those instructions may use the address generation units. 

The shifter and ALU of a given address generation unit data path both access the 
AGU's register file of thirty-two 32-bit registers. Using a generalized register move 
instruction, the contents of a register from one AGU may be copied into a register from the 
other AGU. One of the registers in each file is dedicated as a status register for its address 
generation unit data path. Inputs to all arithmetic operations come from the register file, 

I 

and results of all arithmetic operations are delivered to the register file. There are no 
shadow registers in the address generation units. 

The lack of shadow registers in the ADSP-TSOxx is a disadvantage 
compared to other processors from Analog Devices. This is offset 
somewhat by the processor s support for saving or restoring the 
address generator status register (register 31) and three other reg­
isters (28-30) tolfrom internal memory as a quad word memory 
operation in one instruction. 

The AGU ALUs support typical address-generation computations, including add, 
subtract, increment, and decrement. Many operations involve a second input register or an 
immediate value. The AGU data paths also support a variety of general-purpose arithmetic 
operations, including add and subtract with carry, absolute value, average ([A+B]/2, 
[A-B]/2), minimum, maximum, and compare (signed and unsigned). Furthermore, the 
ALUs support logical and, or, xor, not, and and not. The AGU shifters perform rotation by 
one bit left or right and arithmetic or logical right shifts by one bit. One-bit arithmetic left 
shifts are supported indirectly via adding a register'S content to itself. The shifters do not 
make use of ~e carry bit. 
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Each AGU data path provides the following status flags, set by either the ALU or 
/ shifter: zero, negative, overflow, and carry. 

More information on the address generation unit data path is given in the Parallel 
Move Support section. 

The ADSP-TSOxx address generation units have impressive capa-' 
bilities (arithmetic, shifting, logic) far beyond the address genera­
tion units of most older DSP processors. In many situations, each 
address generation unit data path can be used as an additional 
fzxed-point data path in its own right. 

The ADSP-TSOxx supports register-direct and several register-indirect addressing 
modes, discussed below. Most arithmetic operations use register-direct addressing exclu­
sively. Register-indirect addressing is used for moving data between registers and mem­
ory. Memory-direct addressing is not supported. A 5~bit signed immediate value may be 
loaded into any of the registers in the address generator units, into the fixed/floating-point 
data paths, and into many other registers as well (such as the DMA or link control regis­
ters). The ADSP-TSOxx supports long immediate data via a 32-bit "instruction extension 
word"; only one 32-bit instruction extension may be included in one instruction packet. 

Each address generator contains thirty-one registers that may be used as base 
address registers or modifier registers. Values stored in the modifier registers are used to 
post-increment or index from base address register contents. Within each address genera­
tor, any modifier register can be used to modify the address held in any other address reg­
ister. Immediate post-increment values from -128 to 127 are available; with an instruction 
extension word, an immediate post-increment value of up to 32 bits may be specified. 

Indexed addressing is also supported (confusingly, Analog Devices calls it 
"pre-modify no update"). With indexed addressing, the effective address is formed by 
adding the value in a modifier register to the value in a base address register; the value in 
the base address register is not changed. 

The fact that any of the AGU registers can be used to pre- or 
post-increment any of the other registers in an address generator 
provides flexibility for the programmer and compiler. 

The ADSP-TSOxx supports circular addressing with no alignment constraints. 
Address Registers 0-3 in each address generator are each associated with a companion 
base address register and buffer length register. Thus, up to eight simultaneous circular 
buffers can be maintained. 

Many other Analog Devices processors support an interrupt when 
an address register reaches tlie end of a programmer-defined circu­
lar buffer. Such an interrupt is not available on the ADSP-TSOxx. 

Bit-reversed addressing is supported in address registers 0-3 in each of the address 
generators. 
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The program may load a jump address into a special CJMP register. An address in 
CJMP may be used for indirect jumps and indirect subroutine calls. This is useful for 
reconfigurable interrupt service routines and jump tables. 

SIMD-style data transfers allow a single instruction to perform two data transfers: 
one between memory and the X fixed/floating-point data path, and one between memory 
and the Y data path. As illustrated in Figure 7.5-3, data is transferred between the X data 
path and one of the three on-chip memory banks, and between the Y data path and a differ­
ent on-chip memory bank. Each transfer can be 32, 64, or 128 bits wide. The programmer 
specifies a SIMD-style data transfer by accessing special regions in the on-chip memory 
space. The special memory regions are listed in Table 7.5-3. For example, if the type of 
SIMD transfer illustrated by the left-most diagram in Figure 7.5-3 is desired, an address in 
the region Ox00200000-0x0020FFF is used. Only one of the four instruction slots in an 
instruction packet is needed for such a SIMD transfer, and either the J or K address gener­
ator may provide the address. 

A 32-,64-, or 128-bit data word may be transferred from memory simultaneously 
into both of the fixed/floating-point data path register files in one instruction (Analog 

FIGURE 7.5-3. SIMD transfers between fixed/floating-point data path registers and 
on-Chip memory. MO, M1, and M2 are the three internal memory banks shown in 
Figure 7.5-1. 

Address Range in Internal Memory Space Function 

Ox00300000 - OxOO30FFFF SIMD Internal Memory 0 & 2 

Ox00280000 - OxOO28FFFF SIMD Internal Memory 1 & 2 

Ox00020000 - OxOO20FFFF SIMD Internal Memory 0 & 1 

OxOOlOOOOO - OxOOlOFFFF Internal Memory 2 

Ox00080000 - OxOOO8FFFF Internal Memory 1 

OxOOOOOOOO - OxOOOOFFFF Internal Memory 0 

TABLE 7.5-3. Part of ADSP-TSOxx memory map. Combinations of internal memory 
banks 0, 1, and 2 are memory-mapped in internal memory space for SIMD access 
(see Figure 7.5-3). 
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Devices calls this a "broadcast"), filling one, two, or four registers respectively. In addi­
tion, a single 64- or 128-bit data word may be split during a transfer between memory and 
the fixed/floating-point data path registers in the manner shown in Figure 7.5-4 (Analog 
Devices calls this "merged"). 

64-and 128-bit data is transferred to and from memory in an aligned fashion. The 
ADSP-TSOxx, however, indirectly supports unaligned memory reads (not writes) via a 
special buffer, called the "Data Alignment Buffer," or DAB. The DAB is used for 
unaligned 64- and 128-bit reads from memory into the register files of the fixed/float­
ing-point data paths. The DAB has two entries of 128 bits, enabling it to hold as many as 
eight 32-bit words. Data loaded from memory as aligned 64- and 128-bit chunks is tempo­
rarily stored in this buffer. The desired subset of unaligned 32-bit words can then be read 
from the DAB, up to four at a time. (There is also an option for reading unaligned 16-bit 
words, up to eight at a time). Two read operations are required to fill the DAB. Thus, there 
is one cycle of delay before unaligned data are available. Thereafter, successive reads can 
be completed at the rate of one every instruction cycle if the successive reads maintain the 
same alignment as the initial read and access contiguous 64- or 128-bit chunks of memory. 

The ADSP-TSOxx's support for unaligned reads is superior to that 
of some processors, but the limitations of the DAB (no support for 
writes, cycle penalties) complicate programming and will impact 
performance in some cases. 

Pipeline 

The ADSP-TSOxx uses two sequential instruction pipelines: a three-stage "fetch" 
pipeline and a five'-stage "instruction" pipeline. There is a buffer between the two pipe­
lines. 

The fetch unit can transfer four 32-bit instruction words in one cycle from internal 
memory. As mentioned above, for external memory, the peak instruction fetch rate is 1/4 
of the peak internal memory fetch rate and may be slower depending on bus contention or 
wait states. 

The inter-pipeline buffer, called the "Instruction Alignment Buffer" (lAB), is a 
five-deep, 128-bit-wide FIFO. Whenever a complete instruction packet (consisting of one 
to four 32-bit words) is available, it may be read from this buffer for execution. Since the 
decode/execute pipeline may process fewer than four 32-bit instructions per cycle, and 
since the fetch unit fills the buffer as quickly as possible, the buffer may remain nearly full 
much of the time. 

In some processors, a full four-word instruction packet would need 
to be aligned on a quad word boundary. In the ADSP-TSOxx, the 
lAB allows one to four instructions to be aligned on any 32-bit 
boundary. This helps reduce program memory requirements. 
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The stages of the instruction pipeline are shown in Table 7.5-4. The pipeline is 
interlocked and is invisible to the user except for a few cases, the most important of which 
are: 

• A bus conflict. For example, two instructions in the same packet may attempt to 
access the same data bus. In this case the hardware inserts a stall in the Integer 
stage until the bus is available. 

• A fixed/floating-point data path instruction uses an operand written by an instruc­
tion in the previous packet, in which case the hardware inserts a single-cycle stall. 
For multiply-accumulate instructions, this stall is avoided through the use of spe­
cial bypassing hardware. 

• The address generation unit uses an operand fetched from memory by an instruc­
tion in the previous packet, in which case the hardware stalls for four instruction 
cycles. 

• Branch, call, and return instructions take up to six instruction cycles to execute. If 
a branch is correctly predicted and already resident in the branch target buffer, the 
branch requires only one cycle. 

During a stall in instruction execution, the fetch pipeline proceeds uninterrupted. 

Although programmers and compiler users must be aware of the 
ADSP-TSOxx pipeline to create optimal code, the impact of the 
pipeline is minor. 

All pipeline conflicts are handled automatically in the ADSP-TSOxx 
hardware. Compared with some other processors with non-inter­
locked pipelines, this hardware simplifies compiler design. 

64-bit data word 

128-bit data word 

FIGURE 7.5-4. Single data transfers split between X and Y data 
paths. 
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Instruction Set 

The ADSP-TSOxx uses a 32-bit instruction word. The registers and instruction.set 
for the ADSP-TSOxx fixed/floating-point data paths are summarized in Table 7.5-5, 
Table 7.5-6, and Table 7.5-7. 

Note that most of the instructions that operate on 8-bit ("Byte") and 16-bit 
("Short") data are SIMD operations. In a typical case, two inputs each containing eight 
8-bit or four 16-bit operations are handled in a single data path, producing either eight 
8-bit or four 16-bit results. Many 32-bit operations are also available in SIMD versions, 
where two pairs of 32-operands are handled simultaneously in one data path to produce 
two 32-bit results. In the sideways sum operation, four 8-bit quantities in one 32-bit regis­
ter (or four 16-bit quantities in two adjacent 32-bit registers) are added (or accumulated) 
by one data path to produce a 32-bit result. 

All fixed-point multiply operations can operate on fractional or integer, signed or 
unsigned values, and can optionally saturate, truncate, and/or round the result. There is a 
floating-point multiply, but there is no floating-point multiply-accumulate instruction. 

Stage 
Also 

Address Generation Unit FixedIFloating-Point Data Path 
Known 

Name 
As 

(J, K) Activity (X, Y) Activity 

Decode D Distribute one or more instructions to address generation units and/or 
fixed/floating-point data paths. Identify branch instruction if present. 

Address generation unit fetches Send instruction to ALU, MAC, or 
operands (addresses) from regis- shifter. 
ter file. Execute any operations 
on operands (calculate address). 
Write flags. 

Integer I If memory access, decide which ALU, shifter, and/or MAC opera-
bus to use, and request bus. tion decode. 

Access A If memory access and bus avail- Fetch operands from register file. 
able, bus is granted to address 
generator unit. 

Execute 1 EX1 Memory access in progress. Execute. 

Execute 2 EX2 Updated address written to reg- Write results to registers. Write 
ister file. Data from memory flags. 
access available in register. 

TABLE 7.5-4. Instruction pipeline stages of the ADSP-TSOxx. Instruction fetch 
stages are not shown. 
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There is no divide iteration instruction; however, the ADSP-TSOxx provides a reciprocal 
seed instruction. Shift and rotate instructions shift the input operand from 0 to 64 bits, 
without involving the carry bit. 

The ADSP-TSOxx provides a rich instruction set. 

For the Viterbi algorithm, the ADSP-TSOxx is capable of two 
add-compare-select operations on average per instruction cycle. 
This is a significant improvement over previous processors from 
Analog Devices. 

For the address generation units, the registers and instruction set are summarized 
in Table 7.5-8 and Table 7.5-9. 

Assembly Language Format 

The assembly language of the ADSP-TSOxx bears little resemblance to the assem­
bly languages of other Analog Devices processors. The ADSP-TSOxx uses an algebraic 
assembly language format in which instructions typically contain one field: a memory 
move with optional address generation register update, a computation, or a branch. The 
computation instructions specify the operation(s) to be carried out by the ALU, multi­
plier-accumulator, or shifter in one or both of the fixed/floating-point data paths or one or 
both of the address generators. The data move instructions specify a register-to-register 
data move or a register-memory data move. For example, consider the instruction: 

YR15 = R15 + R6;; 

(where ";;" indicates the end of an instruction packet). The 32-bit integer quantity in YR6 
is added to the previous value ofYR15, and the result is written back to YR15. This calcu­
lation occurs in the Y fixed/floating-point data path, specified by the "Y" in "YR15". 

As mentioned earlier, an execution packet on the ADSP-TSOxx consists of up to 
four separate instructions. All instructions inside the execution packet are executed in the 
same instruction cycle. For example, the execution packet: 

R29:28=CB 1[Jl+=Jl0]; XFR4=R3*R30j YFR4=Rl*R30; FR6=R6+R4;; 

loads the 64-bit quantity addressed by address generation unit register J1 into registers 28 
and 29 in both the X and Y fixed/floating-point dat~ paths. (Both data paths are used since 

Register Width Purpose 

XRO-XR31 32 bits ALU/ShifterlMultiply-accumulate input and output 

XSTAT 32 bits Status 

XPRO,XPRI 32 bits Sideways sum accumulation 

XMRO-XMR4 32 bits Accumulators for multiply-accumulate, including guard bits 

TABLE 7.5-5. ADSP-TSOxx fixedlfloating-point data path register summary. The 
registers shown here for the X data path are duplicated in the V data path. 
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Description Byte Short Normal Long Float 

ALU 

Add, subtract; add and subtract 4,8 2,4 1,2 1 

Add with carry or subtract with borrow 1 1 

Absolute value of sum or difference 4,8 2,4 1,2 1 

Accumulate absolute value of sum or difference 8 4 

Average 4,8 2,4 1,2 1 

Sideways sum, sideways accumulate 4,8 2,4 

Increment or decrement 4,8 2,4 1,2 1 

Absolute value 4,8 2,4 1,2 1 

Negate 4,8 2,4 1,2 1 

Compare 4,8 2,4 1,2 1 

Minimum or maximum 4,8 2,4 1,2 1 

Clip (saturate) 4,8 2,4 1,2 1 

Logical (and, or, xor, not, not-and) 1 1 

Expand (convert to higher precision) 4,8 2,4 

Expand sum or difference 4,8 2,4 

Compact (convert to lower precision) 4 2 

Compact sum or difference 4 ·2 

Merge 4,8 2,4 

Count ones 1 1 

Viterbi maximum, minimum (VMAX) 8 4 

Set status (PASS) 1 1 

Copy sign 

Scale 

TABLE 7.5-6. Summary of ADSP-TSOxx instructions for the fixed-Ifloating-point 
data paths. Byte = 8-bit, Short = 16-bit, Normal = 32-bit, Long = 64-bit, Float = 32-bit 
or .4G-bit. The numbers indicate the number of results produced by the instruction 
when executed on a single data path using the indicated data type. Parallelism can 
be further increased by executing the same instruction on both data paths in a 
SIMD fashion or by executing different instructions in parallel on the two data paths 
in a VLlW fashion. All instructions can be conditionally executed. (Continued) 
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there is neither "X" nor "Y" before "R29.") The value in address generation unit register 
no is added to n and the result stored in n after any circular buffer ("CB") corrections. 
In the fixed/floating-point data path X, the 32-bit floating-point quantities in registers XR3 
and XR30 are multiplied, with the result written into XR4. In the Y fixed/floating-point 
data path, register YR4 is loaded with the floating-point product of YRI x YR30. Filially, 
in both X and Y fixed/floating-point data paths, the floating-point quantity in register R6 
is incremented by the register R4, and the results are written to register R6. 

The size of data to be moved or manipulated is indicated by the number of regis­
ters named and the data type designator. A single register (such as XR3) means a 32-bit 

Description Byte Short Normal Long Float 

Conversion 

Fixed-point to floating-point with optional scaling 1 1 

Floating-point to fixed-point with optional scaling 

E,xtract mantissa or exponent 

Shifting and Bit Manipulation 

Logical or arithmetic shift left/right by 1-64 bits 4,8 2,4 1,2 1 

Rotate left/right by 1-64 bits 1,2 1 

Field deposit or extract 1 1 

Apply mask 1 1 

Bit set, clear, toggle, or test 1 1 

Exponent detection (count leading zeros or ones) 1 1 

Multiply-Accumulate 

Multiply 4 1 

Multiply-accumulate 4 1 

Complex multiply-accumulate 1 

Reciprocal seed, reciprocal square-root seed 

TABLE 7.5-7. Summary of ADSP-TSOxx instructions for the fixed-nloating-point 
data paths. Byte = a-bit, Short = 16-bit, Normal = 32-bit, Long = 64-bit, Float = 32-bit 
or 4o-bit. The numbers indicate the number of results produced by the instruction 
when executed on a single data path using the indicated data type. Parallelism can 
be further increased by executing the same instruction on both data paths in a 
SIMD fashion, or by executing different instructions in parallel on the two data 
paths in a VLIW fashion. All instructions can be conditionally executed. (Continued 
from previous table) 
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quantity; a register pair like XR29:28 means a 64-bit quantity; and four registers (such as 
XR3:0) means 128 bits. The data type is indicated by a prefix: L for 64-bit fixed-point; S 
for 16-bit fixed-point; B for8-bit fixed-point; F for 32-bit floating-point. The combination 
of F and a register pair, such as FR29:28, indicates 40-bit floating-point. The lack of any 
of these designators indicates a 32-bit fixed-point data type. The data type and operand 
size may occur in combination, so that the instruction 

XSR1:0 = R31:30 + R25:24;; 

specifies that the four 16-bit quantities ("S") in registers ~1:XR30 in the X data path 
are added to the four 16-bit quantities in registers 25-24 in SIMD fashion, with the results 
going to registers 1-0. 

Parallel Move Support 

Parallel moves in the ADSP-TSOxx are independent of computation operations 
and are allowed with all computation operations. The ADSP-TSOxx can perform up to two 
reads, two writes, or one read and one write in parallel within an instruction packet. Each 
move requires one of the two address generation units, and may transfer up to 128 bits. 

There is one special case for register-to-register parallel moves. Recall that in the 
multiplier-accumulator in each fixed/floating-point data path, there are special registers 
MRO-MR3 for accumulation. In a: single instruction such as 

R7:6 = MR1:0, MRl:0 += R3 * R9 (el;; 

the current contents of the accumulator registers MR1-MRO are written to the registers 
R7-R6 in both fixed/floating-point data paths as a parallel move with the MAC operation. 
Registers MR1-MRO are cleared in both data paths, as specified by "(C)". Then the 64-bit 
product of the contents of R3 and R9 is summed into MR1:0, again in both fixed/float­
ing-point data paths. 

Register 

JO-130 

JSTAT 

JBO-JB3 

JLO-JL3 

The ADSP-TSOxx provides good flexibility in the use of parallel 
data moves. 

Width Purpose 

32 bits General address/modifier registers 

32 bits Status register (also referred to as J31) 

32 bits Modulo base registers 

32 bits Modulo length registers 

TABLE 7.S-S. ADSP-TSOxx address generation unit register summary. The 
registers shown here for the J address generator are duplicated in the K 
address generator. 
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Orthogonality 

The ADSP-TSOxx instruction set is moderately orthogonal by DSP processor stan­
dards. This is made possible by its 32-bit instruction word size. For example, all instruc­
tions can be conditionally executed, moves are usually handled as separate instructions in 
an execution packet, and most arithmetic instructions operate on the same set of registers. 
Also, most arithmetic instructions in the fixed/floating-point data paths support both 
fixed-point and floating-point formats. As illustrated in Tables 7.5-6 and 7.5-7, however, 
many instructions only support a subset of the data types supported by the processor, 
detracting from orthogonality. 

In spite of its orthogonality, the ADSP-TSOxx is difficult to program 
because of the complexity of the architecture, the large number of 
computational units, and the multiple levels of SIMD operation dis­
cussed above. 

Execution Times 

Nearly all ADSP-TSOxx instructions have single-cycle throughput in the absence 
of wait states and external memory access conflicts (which may occur, for example, when 
both instructions and data are located off-chip). Most fixed/floating-point data path 
instructions have a latency of two instruction cycles, most address generation unit instruc­
tions have a latency of one instruction cycle. 

Branches, calls, and returns to destinations in internal program memory that are 
correctly predicted and already in the branch target buffer execute with single-cycle 

Class Instructions 

Fixed-Point Absolute value, add, add with carry, increment, decrement, subtract, 
Arithmetic subtract with borrow, average two values, minimum, maximum 

Logic and, or, exclusive-or, not, and-not 

Shifting Arithmeticllogical shift right by 1 bit 

Rotation Rotate left/right by 1 bit 

Comparison Fixed-point compare 

Looping 
No direct hardware support except for two loop counter registers; see 
Hardware Looping 

Branching Conditional and unconditional relative or absolute branch 

Subroutine Call Conditional and unconditional call 

TABLE 7.5-9. ADSP-TSOxx address generation unit instruction summary. All 
instructions can be executed conditionally. 
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latency. Other branches, calls, and returns have latencies from two to six cycles. There are 
no delayed branches. 

Instruction Set Highlights 

Noteworthy features of the ADSP-TSOxx instruction set include: 

• 16-bit complex multiply 

• Multiply with parallel dual add/subtract, useful for computing FFf and DCT ker­
nels 

• Bit-field insertion and extraction, with facilities for variable field lengths in a bit 
stream 

• Any combination of two parallel register-memory moves (two loads, one load 
and/or store, or two stores), up to 128 bits each, in one execution packet 

• Conditional execution of all instructions 

• SIMD instructions for 8-, 16-, and 32-bit data 

• Extensive arithmetic, logic, and shifting features in the address generation units 

Execution Control 

Clocking 

No on-chip oscillator is provided for clock signal generation. The ADSP-TSOxx 
requires an externally generated clock (LCLK); the master clock (CCLK) is generated 
from LCLK by an on-chip multiplier that multiplies the frequency of LCLK by a select­
able factor between 2 and 5. Thus, a 120 MHz ADSP-TS001 can operate from an LCLK 
input ranging from 24 to 60 MHz. A separate, externally generated "system" clock 
(SCLK), which is typically the same as LCLK, drives the external memory interface. 
SCLK is limited to a maximum of one-half the frequency of the master clock; e.g., 60 
MHz for a 120 MHz ADSP-TSOOl. Hence, the maximum cycle rate of the external bus is 
one-half the maximum instruction cycle rate. 

Condition Codes 

Conditional execution of an instruction is based on an arithmetic condition gener­
ated by one of the fixed/floating-point data paths or one of the address generation units, 
the value of a bit 110 pin, the value of either of the special-purpose loop counters discussed 
under Hardware Looping, or loss of mastership of the external memory interface. In addi­
tion there are two special-purpose status registers in which the programmer may store one 
or more condition codes. New values may be loaded into either of these registers, or com­
bined with the contents of the registers via a logical and, or, or exclusive-or operation. 
Conditional execution may be based on the bits in either of these special-purpose registers. 
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Hardware Looping 

There is almost no hardware support for looping on the ADSP-TSOxx. There is no 
DO instruction, and no stack on which to store loop variables. 

There are two special-purpose loop counters that allow for nesting two loops. 
These counters can be decremented and tested in one instruction, allowing for low-over­
head looping. Consider the instruction sequence: 

LCO = 16;; 
_loop; 

if nLCOE, jump _loop; 

in which loop counter 0 is initialized to 16. The "if' statement decrements LCO, tests the 
result, and jumps to "_loop" as long as LCO > o. The jump is predicted to be true unless 
the programmer indicates otherwise, so the loop overhead is limited to executing one jump 
instruction on each pass through the loop except the last, plus the overhead to initialize 
LCO. (In some cases, other instructions can be executed in parallel with the jump, reducing 
the loop overhead). The loop exit condition can be any condition mentioned under Condi­
tion Codes. 

The maximum number of repetitions is 232 when using the special-purpose loop 
counters. A sequence of instructions of any length can be contained in a loop. Loops can 
be interrupted. 

The ADSP-TSOxx provides unusually meager hardware looping 
features. The programmer must carefully trap for the possibility 
that an initial loop count may be 0, since setting a special-purpose 
loop counter to zero in a code sequence like the one above results in 
232 iterations. Many programmers will implement a stack to save 
and restore the loop counter values. 

Interrupts 

The ADSP-TS001 has 29 interrupt sources. Interrupts are individually prioritized 
(each has a separate but fixed priority), individually maskable, and optionally nestable. 

External interrupts include four interrupt pins and an interrupt vector pin. When 
the vector interrupt is asserted, the processor executes a routine whose address is given in 
a dedicated memory-mapped register that may be written by a host processor and/or 
another DSP. Among other uses, this mechanism can be used by a host processor to force 
reset. 

Internal hardware interrupt sources include timer expiration, link port service 
request, DMA activity, arithmetic exceptions (fixed-point overflow; floating-point over­
flow, underflow, andinvalid operand), illegal operations (such as attempting to read the 
broadcast memory space) and emulation. There is also a special bus lock interrupt which 
can be triggered when the processor acquires the bus for an atomic read-modify-write 
operation. 
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A user software interrupt loads a special-purpose register with a 5-bit trap code. 

Each timer has two interrupt locations, both corresponding to timer expiration, but 
having different priorities. By masking the high-priority timer interrupt, the programmer 
can lower the priority of the timer interrupt. 

The ADSP-TSOxx responds to an interrupt by branching to the first instruction at 
the corresponding interrupt vector location, which may be in: internal or external memory. 
The return program counter is stored into a special-purpose register, which must be saved 
by the programmer if interrupts are nested (there is no hardware stack for interrupt return 
addresses). Latency from the time when an interrupt is asserted as pending to completion 
of execution of the first interrupt vector instruction is eight or nine instruction cycles, 
depending on whether the first instruction in the interrupt service routine is quad-aligned 
and assuming the processor is in an interruptible state. To return from an interrupt, the pro­
grammer places the return address into a special-purpose register and uses the RTI instruc­
tion. 

rupts. 
The ADSP-TSOxx has the ability to clear, force, and test for the presence of inter-

The ADSP-TSOxx hasflexible interrupt handling mechanisms. The 
multiprocessor vector interrupt is useful for inter processor com­
mands in a system with multiple ADSP-TSOxx processors. 

Stack 

The ADSP-TSOxx does not provide a hardware stack. A software stack can be 
implemented using any address generator register as a stack pointer. Push and pop opera­
tions can be implemented with load and store instructions with post-increment/decrement. 
Since there is no pre-increment-store instruction for the address generators, the stack 
pointer must be decremented before starting to pop items from the stack. Recall that four 
registers may be stored to internal memory in one instruction by either fixed/floating-point 
data path or either AGU. In particular, this applies to the address generator status register 
(register 31) and three other registers (28-30), which may be saved to or restored from 
internal memory as a quad memory operation in one instruction by either AGU. Storing 
the AGU status register with three other registers simplifies context store for interrupt 
handling, for example. 

Bootstrap Loading 

On reset, the ADSP-TSOxx can begin execution at a fixed location in memory. 
Alternatively, it can bootstrap load over a link port, or through a byte-wide ROM attached 
to the external memory interface (see External Memory Interface). 
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Peripherals 

The ADSP-TSOxx on-chip peripherals include two timers (with a 64-bit count for 
each), four "link ports" (each 8 bits wide instead of 4 bits as on the ADSP-2106x), a 
14-channel DMA controller, and four bit-liD pins. The external memory interface also 
functions as a host port. 

• Timers 
The ADSP-TSOxx features two 64-bit interval timers. The timers generate inter­
rupts when their counters reach zero. Timer 0 also pulses the TIMEXP output pin 
when its counter reaches zero. Each timer is clocked with the master chip clock 
with no prescaler. A timer interrupt can be assigned as a low- or high-priority inter­
rupt. 

Because the ADSP-TSOxx timers use 64-bit counters, the lack of a 
prescaler is not a drawback. 

• Link Ports 
The link ports are 8-bit bidirectional parallel communications ports that can be 
connected to peripheral devices or to the link ports on other ADSP-TSOxx proces­
sors. Each link port consists of eight bidirectional data lines, a bidirectional clock 
line that doubles as a bidirectional acknowledge line, a frame synchronization line, 
and a pin to indicate whether the link is transmitting or receiving. The direction of 
data transfer for each link port is specified by the link port control register. Data is 
automatically packed or unpacked into 128-bit quad words. Single transfers can be 
interrupt-serviced by the processor core, and block transfers can be serviced by the 
DMA controller without intervention by the processor core. Each link port is inter­
nally double-buffered in both the transmit and receive directions. Each link port 
can sustain a data rate of up to 120 Mbytes/second. 

• DMA 
The DMA controller on the ADSP-TSOxx supports 14 channels ofDMA. Subsets 
of these channels can be used to perform data transfers (individual or block) 
between on-chip memory and the link ports or the external memory space. Addi­
tionally, subsets of these channels can be used to transfer data between external 
memory and external peripherals (referred to as "extern" on the ADSP-21xxx and 
"fly-by" on the ADSP-TSOxx), from one link port to another, or between internal 
memory on two ADSP-TSOxx processors. During boot, the DMA controller may 
load a program from external ROM or through a link port. 
The DMA controller allows the processor or external peripherals to specify 
block-data transfer operations and then return to normal operation while the DMA 
controller carries out those transfers independently. DMA transfers involving 
internal memory are executed using one of the three internal data buses of the 
ADSP-TSOxx. DMA transfers between external peripheral devices do not use 
on-chip resources except for the DMA controller. 
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For DMA transfers involving external devices other than memory, there are four 
DMA request pins and a special-purpose buffer for accumulating up to 15 DMA 
requests. An interrupt may be generated when a transfer is finished. 
A single transfer may use data widths of 32, 64, or 128 bits. Each ADSP-TSOxx 
DMA channel utilizes a data transfer buffer in on-chip memory, the size and loca­
tion of which are specified by the programmer. The parameters for DMA transfers 
are called a "transfer control block" (TeB) and are read from 32-bit mem­
ory-mapped registers, a set of four for each DMA channel. Since the registers are 
memory-mapped, they may be programmed by external processors. 
Four DMA channels are dedicated to external devices, eight to link ports, and two 
to "Auto-DMA," as shown in Table 7.5-to. With Arito-DMA, an external device 
may program the DMA channel to transfer data to internal memory. The DMA 
channels have a priority schedule which the DMA controller uses to determine 
which channel can drive the bus on each cycle. 

DMAChannel 
Number and Priority Associated Resources 

(13 = Highest) 

0 External port ("fly-by"), DMA request pin 0 

1 External port, DMA request pin 1 

2 External port, DMA request pin 2 

3 External port, DMA request pin 3 

4 Link port 0 transmit 

5 Link port 1 transmit 

6 Link port· 2 transmit 

7 Link port 3 transmit 

8 Link port 0 receive 

9 Link port 1 receive 

10 Link port 2 receive 

11 Link port 3 receive 

12 AutoDMA 

13 AutoDMA 

TABLE 7.5-10. The 14 DMA channels on the ADSP-TSOxx. 
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DMA is able to address and transfer two-dimensional memory arrays, in which the 
X and Y directions on both transmit and receive sides have separate counts and 
address increments. In addition, the ADSP-TSOxx DMA controller allows DMA 
chaining. In this scenario, the ADSP-TSOxx automatically configures a new DMA 
transfer (in the same or a different DMA channel) when an entire transfer is fin­
ished. 

The ADSP-TSOxx has an extremely flexible and elaborate DMA 
controller. However DMA transfers may conflict with the processor 
core for on-chip RAM access. 

• BitIlO 
The ADSP-TSOxx has four bit-IIO pins which can be individually configured as 
inputs or outputs. 

• HostPort 
The ADSP-TSOxx external memory interface doubles as a host port, although the 
processor manual does not use that term. Via the host port, a host processor can 
directly access the on-chip memory of the ADSP-TSOxx. The host processor can 
initiate DMA transfers and issue commands to the ADSP-TSOxx by triggering a 
vector interrupt. The host can also initiate burst transfers. 

The lack of serial ports on the ADSP-TSOOl is surprising. 

On-Chip Debugging Support 

ADSP-TSOxx DSPs have an IEEE-1149.1 JTAG serial debugging interface with 
boundary scan and on-chip debugging support. Any of the models of the Analog Devices 
SHARe in-circuit emulators also work with the ADSP-TSOxx and make use of this serial 
interface. Through the JTAG interface, memory and registers can be inspected. Also, 
watchpoints and breakpoints can be set based on individual addresses or address ranges in 

. program or data memory. Instruction and bus-tracing capabilities are not provided. 

Power Consumption and Management 

As of this writing, Analog Devices has not disclosed information regarding power 
consumption for the ADSP-TSOOI. 

Benchmark Performance 

As of this writing, the ADSP-TSOxx has not been benchmarked with the BDTI 
Benchmarks. BDTI expects to benchmark the ADSP-TSOxx within the next year, assum­
ing that Analog Devices provides a cycle-accurate simulator. 

Based on BDTI's knowledge of the ADSP-TSOxx architecture. We 
expect that its cycle counts will be similar to those of the 
TMS320C64xx in many cases if 16-bit fixed-point data is used. 
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Based on processor s projected clock speed of 120 MHz, we expect 
that ADSP-TSOO1 execution times will be significantly slower than 
those of the TMS320C64xx, however, because the projected instruc­
tion cycle rate of the TMS320C64xx is five times faster than that of 
the ADSP-TS001. We also expect that ADSP-TS001energy con­
sumption and program memory usage will be high. 

Cost 

Projected price and packaging options for ADSP-TSOxx processors are shown in 
Table 7.5-11. 

Fabrication Details 

The ADSP-TSOOI is fabricated in a 0.18 J.Lm process with a 1.8 volt core supply 
and 3.3 volt I10,according to Analog Devices. 

Development Tools 

Analog Devices provides "VisualDSP," an integrated development environment 
for the ADSP-TSOxx that includes an assembler, C compiler, C run-time library, linker, 
loader, and instruction-set simulator. VisualDSP runs under Windows 9x, Windows 2000, 
and Windows NT on mM PC-compatible computers, and on Solaris 2.5.1. Analog 
Devices also offers PCI-, USB-, and Ethernet-based emulators. 

Part 

Analog Devices' basic software development tools for the 
ADSP-TSOxx are generally full-featured and quite sophisticated; 
however, the instruction-set simulator is not currently cycle accu­
rate, complicating software development and debugging. The 
ADSP-TSOxx tools provide a fairly consistent interface with those 
of other Analog Devicesprocessors. 

Little third-party support exists today for the ADSP-TSOxx. 

Speed Voltage 
Package 

Price 
(MHz) (V) (Qty. 10,000) 

ADSP-TSOOI a 120 "1.8/3.3 
360-

$150 
SBGA,PBGA 

TABLE 7.5-11. ADSP-TSOxx projected price and package summary as of June 2000. 

a. Not yet available. 
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Applications Support 

Analog Devices supports the ADSP-TSOxx with user's manuals, applications 
handbooks, and a quarterly newsletter, DSPatch. The main documentation for 
ADSP-TSOxx processors is the TigerSHARC Hardware Specification and TigerSHARC 
Instruction Set Specification. Analog Devices' DSP technical support group can be 
reached via telephone and electronic mail. A large amount of information is available 
from Analog Devices' website. Data sheets are available for the individual ADSP-TSOxx 
processors. 

In general, Analog Devices' user's manuals and application hand­
books are some of the best in the industry. They are thorough, clear, 
and well organized. As might be expected, the ADSP-TSOxx manu­
als are not as polished as those for Analog Devices' more mature 
products (such as the ADSP-21xx), but are still quite usable. 

Advantages 

• High levels of parallelism 

• Rich, orthogonal instruction set 

• Algebraic assembly language 

• Special instructions for FFf, DCT kernel computations 

• Very wide internal and external buses 

• Large on-chip memory 

• Two independent fixed/floating-point data paths 

• Good operand-unrelated parallel move support 

• Conditional execution of all instructions 

• 8-, 16-, 32-, and 64-bit fixed-point data types, plus 32-bit and 40-bit floating-point 
types 

• Barrel shifter 

• Multiprecision arithmetic support 

• Exponent detect instruction 

• Bit manipulation and bit-field manipulation instructions 

• Shifter efficiently handles varying-length fields in a bit stream 

• Mostly invisible pipeline 

• SIMD operations on 8-, 16-, and 32-bit data 

• Large number of registers for operands and addressing (64 32-bit general-purpose 
registers, 62 32-bit address/modify registers); eight individual modulo register sets 

• Address generators have extensive arithmetic/logic capabilities 

• Branch Target Buffer for minimizing branch penalties 
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• Flexible external memory interface with support for SDRAM 

• Powerful DMA controller 

• Large, unified address space (approximately 4 Gwords) 

• Good support for interprocessor communications 

• Short interrupt latency 

• Flexible interrupt handling 

• Integrated multiprocessor communications ports 

• 2X - 5X external clock multiplier 

• Two timers 

• JTAG debug port with boundary scan 

Disadvantages 

• Complicated programming model 

• Limited hardware loop support 

• No serial ports 

• Two-cycle arithmetic operation latency 

• Requires execution from on-chip memory for best performance 

• DMA and register-to-register transfers occupy an internal bus 

• No stack 

• Large instruction word increases system cost 

• No cycle-accurate simulator as of this writing 
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7.6 Lucent Technologies DSP16xxx Family 

Introduction 

BDTlmark2000 Score: 
810 at 170 MHz 

The DSP16xxx is a family of enhanced conventional 16-bit fixed-point DSP pro­
cessors from Lucent Technologies. DSP16xxx processors target digital cellular telephony, 
modem, and wireless communication applications. 

At the heart of the DSP16xxx processor family is Lucent's enhanced conventional 
DSP16000 core, which is the successor to the DSP1600. (Lucent considers the DSP1600 a 
legacy architecture and is no longer promoting it for new designs.) Two different members 
of the DSP16xxx family are currently available: the DSP16210, and the DSP1641O. The 
DSP16210 contains one DSP16000 core; the DSP16410 contains two DSP16000 cores. 

The most recent member of the DSP16xxx family, the DSP16410B, was intro­
duced in May 2000. This device is currently sampling with each core operating at up to 
170 MHz with a core voltage of 1.8 volts. The DSP16210 is available in several packages 
(see Table 7.6-5), one of which (144 TQFP) is pin-compatible with the DSP1620. Because 
of differences in the 110 and the presence of an additional DSP core on the DSPl6410, the 
DSP16210 and DSPl64lO are not pin compatible. 

Lucent Technologies' DSP 16xxx processor family is true to its DSP 
heritage, achieving strong performance with a specialized architec­
ture that sacrifices generality and ease of programming. While the 
DSP16000 core bears a strong resemblance to Lucent's DSP1600 
core (introduced in 1990), it adds significant capabilities in the 
data path and instruction set and boosts on-chip memory band­
width. 

Architecture 

The DSP16xxx includes a 16-bit fixed-point data path, two address generation 
units, a program control unit, a 31-double-word instruction cache, two separate on-chip 
bus sets, and a variety of peripherals. The DSP16xxx is designed to operate primarily on 
16-bit data but uses 32-bit buses internally and a mixture of 16- and 32-bit instructions, 
as shown in Figure 7.6-1. 

Data Path 

The DSP16000 data path, called the data arithmetic unit (DAU), is comprised of 
two 16 x 16 ~ 32-bit multipliers, a 40-bit arithmetic logic unit (ALU) , a 40-bit 
three-input adder, a 40-bit bit manipulation unit (BMU), and eight 40-bit accumulators. Of 
the 40 bits in each accumulator, 8 are used as guard bits. The DAU also includes a 
trace-back encoder to accelerate Viterbi decoding. The Viterbi trace-back encoder is con­
siderably improved on the DSP1641O. The two multipliers, ALU, adder, and BMU are all 
capable of single-cycle execution, and many combinations of operations can be executed 
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in paralleL For example, the DAU is capable of executing two multiply:..accumulate opera­
tions per instruction cycle, assuming that instructions are executed from cache. The DAU 
is illustrated in Figure 7.6-2. 

The ALU, adder, and BMU set several status flags based on their computed results. 
These flags are used to indicate arithmetic overflow, logical overflow,azero result, or a 
negative result. (Logical overflow occurs when the ALU or adder result does not fit in the 
40-bit destination, or a BMU control word is out of range.) When multiple operations 
affecting the same DAU flags are executed in parallel as part of a single instruction, the 
operation that appears leftmost in the instruction line controls the status of the flags. 
Restrictions on the ordering of parallel operations within instructions dictate that ALU 
operations (when present) appear in the leftmost position, followed by either adder or 
BMU operations. Hence, in an instruction containing both ALU and adder operations, the 
DAU flags are set by the ALU. 

The DSP16000 can process data and instructions as single or double words. Single 
words are 16 bits long; double words are comprised of two. consecutive single words and 
are 32 bits long. Single and double words can be freely intermixed. To accommodate the 
mixed-width word format, accumulators, multiplier input registers, and product registers 
can all be accessed in either full-length or half-length form. For example, the high half 
(bits 31: 16) of multiplier input register X can be accessed as XH, while XL denotes the 
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FIGURE 7.6-1. DSP16210 architecture. The internal data bus becomes the Y 
data bus before connection to memory. 
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low half (bits 15:0). The full-length register can be accessed simply as X. Similarly, A1H 
denotes the high half (bits 31:16) of accumulator AI, AlL denotes the low half (bits 15:0) 
of AI, and the guard bits of Al (bits 39:32) are designated as A1G. In addition, when 
transferring accumulator contents to and from memory, the high halves of two accumula­
tors can be concatenated to form a 32-bit accumulator "vector." This is designated by, for 
example, AO_1H (for the concatenated high halves of accumulators zero and one). 
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FIGURE 7.6-2. DSP16210 data path. Dashed lines indicate mode-controlled 
paths. AShift denotes an arithmetic shift; LShift denotes a logical shift. 
Negative shift values correspond to right shifts. 
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The DSP 16000 provides a large number of accumulators, and 
allows unusual flexibility in how they are accessed. 

The DSP16000 includes two multipliers, each of which can take input data from 
the 16-bit high or low halves of registers X and Y, or can square the contents of XH or XL. 
In addition, a mode-controlled option allows the contents of X and Y to be simultaneously 
loaded with the same data, There are restrictions on the combinations of multiplier inputs 
that can be used; for example, it is not possible to use YH and YL as inputs to the same 
multiplier. The 32-bit multiplier results are stored in product registers PO and Pl. 

The multipliers can perform integer and fractional multiplications on signed oper­
ands. Unsigned multiplication operands are not supported, but the DSP16000 includes 
several limited-capability shifters in the data path to facilitate extended-precision arith­
metic, as shown in Figure 7.6-2. A mode-controlled option allows the contents of the 
product registers to be shifted left by one or two bits or right by two bits (on an individual 
basis) before accumulation. In addition, the contents of register PI can be arithmetically 
shifted right by 0, 15, or 16 bits before accumulation, as specified by the instruction. 

The DSP 16000 has good support for multi-precision arithmetic. 
This is useful for implementing bit-exact telecommunications algo­
rithms such as GSM speech coding. For example, the ability to shift 
P 1 by 16 bits to the right, then one bit to the left [i.e., 
((P1»16)«1)] before accumulation is useful for implementing 
the ETSI enhanced full-rate GSM speech compression standard. 

The DAU includes a mode-controlled option that allows results deposited in accu­
mulators A6 and A 7 to be simultaneously routed to multiplier input registers X and Y, 
respectively. This feature can only be used with the results of arithmetic or logic functions; 
data transfers to the accumulators do not affect the contents of X or Y. 

The feedback path from the accumulators to the multiplier input 
registers is unusual. This feature allows programmers to avoid an 
explicit move instruction in cases where the result of an ALU or 
adder operation is to be used as input to a subsequent multiply. 
Hence, use of the feedback path may eliminate a cycle or two in 
some critical inner loops. 

The ALU supports 16-bit, 32-bit, and 40-bit operands. Inputs to the ALU may 
come from the 32-bit product registers, the 32-bit Y register, any of the eight accumulators 
(AO-A7), or as immediate data from an instruction. The ALU automatically sign-extends 
32-bit operands to 40 bits, and generates a 4O-bit output that can be stored in any of the 
eight accumulators. In addition, the ALU can perform two parallel 16-bit additions or sub­
tractions by using a single-instruction-multiple-data (SIMD)-style operation. 

The three-input adder can draw its 32-bit inputs from the product registers, the Y 
register, or any accumulator. Operands are sign-extended to 40 bits prior to addition; the 
40-bit result can be stored in any accumulator. 
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The presence of a three-input adder in addition to the ALU is an 
advantage, as it allows both product registers to be added to an 
accumulator using a single instruction. Among other things, it can 
be used (in conjunction with the two multipliers) to efficiently 
implement FIR filters that use complex data. 

The ALU supports the add-compare-select function that is used in Viterbi decod­
ing. To implement the add-compare-select function, the ALU first performs two 32-bit 
additions on the DSP1621O. The DSP16410 core has been enhanced so that one 
DSP16410 core can perform four 16-bit additions. The add-compare-select function then 
stores the results in two 32-bit accumulators. These accumulators then serve as inputs to 
one compare function (or two parallel compare functions with one DSP16410 core), 
which selects the maximum or minimum value(s) and stores it in one (or two with one 
DSP16410 core) of the source accumulators. The ALU passes a flag (CFLAG), based on 
the results of the comparison, to the trace-back encoder. The trace-back encoder can use 
CFLAG to record the history of a series of comparisons, or to record the location of the 
maximum or minimum value within a vector. This implementation of the add-com­
pare-select function requires two instructions, and hence consumes two instruction cycles. 
The DSP16210 can achieve one add-compare-select operation on two 32-bit input data 
and one DSP16410 core can achieve two add-compare-select operations on four 16-bit 
input data. 

Unlike its predecessor, the DSP1600, the DSP16000 includes a BMU on-core. The 
BMU can perform bit-field insertion and extraction, and arithmetic or logical barrel shifts 
of up to 31 bits to the right or left. If a left shift results in the loss of significant bits, a flag 
is set to indicate logical overflow. The data input to the shifter comes from one of the 
accumulators, and the operand specifying the shift amount can be taken from the high half 
of an accumulator, from one of four auxiliary registers (ARO-AR3), or as immediate data 
from an instruction. The BMU sign-extends 32-bit operands to 40 bits, and produces a 
40-bit result which can be stored in any accumulator. The BMU can also perform sin­
gle-cycle exponent detection (with or without simultaneous normalization), which can be 
used for block floating-point implementation. The DSP16xxx does not support rotate 
operations. 

The DSP 16000 bit manipulation capabilities are quite sophisti­
cated. 

Saturation hardware is provided at several points in the data path. If an arithmetic 
overflow occurs and the saturation mode bit (FSAT) is selected, the result is saturated to 
the largest-magnitude 32-bit number that has the same sign as the result. Saturation on 
32-bit overflow can be individually disabled for any accumulator. 

The DSP16000 data path supports round-to-nearest rounding via a special instruc-
tion. 

Two 16-bit signed counter registers, CO and Cl, are provided by the DSP16000 
data path. These registers can be used to count events, such as the number of times a 
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sequence of instructions has been executed. The sign bits of CO and Cl set two corre­
sponding status flags that can be tested by conditional instructions. The conditional test 
and branch instructions can test the flags and automatically post-increment the counters to 
support low-overhead software loops. In addition, several instructions that are executed 
conditionally (on some condition other than the status of the counter flags) can automati­
cally increment Cl each time the condition is satisfied. These instructions include condi-
tional round, shift, and data transfer. ' 

A third counter register, C2, serves as a holding register for C 1. The contents of C 1 
are copied into C2 whenever a conditional instruction increments the contents of C 1 and 
the condition was true; Examples of this type of conditional instruction include a compar­
ison operation for Viterbi decoding support, and register left- and right-shifts by a limited 
set of powers of two. 

Overall, the DSP16000 data path is relatively powerful. With two 
independent multipliers and support for parallel additions, the 
DSP 16000 can produce two independent MAC results per instruc­
tion cycle-a strong advantage in comparison to conventional DSP 
processors. In comparison to recent multi-issue architectures, such 
as the Texas Instruments TMS320C6xxx and StarCore SC140, the 
DSP 16000 does not offer as much parallelism. 

Memory System 

The DSP16xxx on-chip memory system uses a modified Harvard architecture with 
two separate bus sets, X and y. Each bus set is comprised of a 32-bit data bus and a 20-bit 
address bus. The X buses are used primarily for reading instructions and constant data, 
and the Y buses are used primarily for accessing non-constant data. Memory is physically 
organized in 16-bit words, but it can be accessed as either 16-bit single words or as 32-bit 
double words composed of two consecutive single words. Read or write accesses of single 
words and aligned double words complete in one instruction cycle. (A double word is con­
sidered to be aligned if ithas an even address.) Memory reads of misaligned double words 
generate a one-cycle penalty wait-state. For the second and subsequent data memory reads 
from sequential misaligned memory locations (e.g., using post-incrementing pointer 
accesses), special hardware enables accesses to be performed with no penalty wait-states. 

The ability to perform 32-bit accesses without requiring 32-bit 
alignment is an advantage. 

Except for one blockof512 words on the DSP1621O, the internal memory space of 
the DSP16xxx is unified, meaning that both X and Y buses can access the same addresses. 
The DSPI6000 core can support on-chip memory of up to 128 Kwords of dual-ported 
RAM and 384 Kwords of dual-ported ROM (words are 16 bits wide). 

The DSP16210 chip features a 60 Kword dual-port RAM divided into lKx16 
blocks, and an 8 Kword boot ROM. Each core in the DSPI64lO has a private block of 96 
Kword triple-ported RAM: one port accesses the X-memory space, one port the Y-mem-
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ory space, and one port the DMA space (called "Z memory space" by Lucent). In addition, 
the DSPl64lO has two lKx16 banks of shared local memory (SLM) that can be accessed 
by both cores. However, an access to the SLM takes multiple cycles to execute. Each core 
in the DSPl64lO also has its own boot ROM containing a simple boot routine (identical 
on both cores). For more details on the boot routine, refer to Bootstrap Loading section. 

The memory system on the DSP 16410 has been considerably 
improved over that of the DSP 16210 so that any host can access the 
entire memory space of both cores through the DMA space. 

Simultaneous X and Y memory accesses to ROM memory or to the same lKx32 
module of RAM incur a penalty of one instruction cycle. (Lucent defines a memory mod­
ule as an even and odd pair of lKx16 banks.) The DSP16xxx incurs a conflict wait cycle 
when a write is immediately followed by a read to the same memory module. 

Conflict wait states often occur during the most computationally 
intensive loops of DSP algorithms, where successive reads and 
writes in the same memory module are required; e.g., in DSP algo­
rithms requiring in-place computations. 

The two on-core bus sets enable the DSPI6000 to perform two single- or dou­
ble-word memory accesses per instruction cycle per core. The DSPI6000 can simulta­
neously execute two reads or one read and one write per core, provided that they do not 
access the same memory module, but it cannot perform simultaneous writes because the X 
data bus can only be used for memory reads. By reading 32-bit memory locations, each 
memory access can retrieve two 16-bit words. Therefore, a total of four 16-bit words can 
be fetched in a single cycle if no wait-state occurs. 

An on-chip data access rate of two memory accesses per instruction 
cycle is comparable to most conventional DSP processors. How­
ever, if two 16-bit operands are packed into a 32-bit word, four 
16-bit operands can be fetched by the DSP 16000 in one instruction 
cycle. 

The memory accesses required to fetch the four 16-bit data inputs and instructions 
needed for dual MAC operations would normally consume two instruction cycles. To 
improve memory bandwidth and achieve single-cycle dual MAC operations, the 
DSP16000 includes a 32-bit wide cache memory that can be loaded with up to 31 single­
or double-word instructions. The contents of the cache are loaded under program control 
using the DO instruction, and are executed as part of a zero-overhead loop. During the 
fIrst iteration of the loop, instructions are executed from program memory and simulta­
neously loaded· into cache. In subsequent repetitions, instructions are fetched from the 
cache, freeing the X bus to be used for data transfers. Hence, use of the cache decreases 
the number of cycles required to execute instructions that load two non-adjacent data 
words. For example, four 16-bit data fetches, two multiplications, and two accumulations 
can be completed in a single cycle if the instructions are executed from cache and the data 
is accessed as pairs of 16-bit words. Hence, use of the cache allows the DSPI6000 to pro-
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duce two MAC results per cycle, if the instructions are executed as part of a loop and oper­
ands are accessed as pairs. The cache does not support nested loops, and most 
control-flow instructions cannot be cached. 

This cache design allows Lucent to achieve three-bus memory 
bandwidth in small inner loops (which account for a sizable frac­
tion of the computation load in typical DSP applications) without 
the expense of a third bus or a more complex cache. However, limi­
tations inherent in the cache design (lack of support for nested 
loops and control-flow instructions) detract from the cache s utility 
and complicate programming. 

Assuming that instructions are executed from cache and that only aligned double 
words are accessed, the maximum sustainable on-chip data memory bandwidth for a 150 
MIPS DSP16000 core is six hundred 16-bit Mwords/second for reads and three hundred 
16-bit Mwords/second per core for writes. 

The DSP 16xxx has an effective on-chip data access rate that is 
quite high in comparison to most conventional DSP processors. 

External Memory Interface 

The DSP16210 processor has one external memory interface (EMI), which pro­
vides a 16-bit data bus and a 16-bit address bus. The DSPI64lO includes one external 
memory interface referred as SEMI (System and External Memory Interface), which pro­
vides a 32-bitdata bus. 

The external buses are multiplexed between on-chip X and Y memory buses, with 
the four most significant bits of the incoming X or Y address bus (bits 19: 16) used for gen­
erating chip-select signals. One 16-bit external memory read or write can be made per 
instruction cycle on the DSP16210 (assuming zero wait states). Note however that if con­
secutive accesses are made to the external memory on the DSP1621O, one wait-state is 
required between two consecutive loads or writes. Although the external memory inter­
face of the DSP16210 only provides a 16-bit data bus, it is capable of processing both 
16-bit and 32-bit words. The DSP16210 interface builds a double word by performing two 
single-word fetches, and then transfers the entire 32-bit word over the appropriate internal 
data bus. The DSP16410 can achieve one 32-bit external memory read or write per 
instruction cycle, assuming no wait states. However, in asynchronous mode, one 
wait-state is required between consecutive reads from the external memory and two 
wait-states are required between consecutive writes from the SEMI external memory. 

The DSP16xxx handles simultaneous X and Y fetch requests to unified external 
memory by reading the X data ftrst and the Y data second, and then transferring X and Y 
data from the external memory mterface to the core simultaneously. Simultaneous X read 
and Y write requests are handled similarly; the X data is read and transferred and then the 
Y write is performed. In both cases, a penalty of one cycle is incurred. Assuming zero wait 
states and one stall between two consecutive external memory accesses, the maximum 
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sustainable off-chip memory bandwidth for a 150 MHz DSP16210 is 75 16-bit 
Mwordslsecond for reads or writes. Assuming one stall between two consecutive reads 
from the external memory and two stalls between consecutive writes to the external mem­
ory, the maximum sustainable off-chip memory bandwidth for a 150 MHz DSP16410 is 
150 16-bit Mwords/second for reads and 100 16-bit Mwordslsecond for writes. 

The external memory bandwidth of the DSP 16.xxx is comparable to 
that of most other DSPs. However, accessing one 32-bit instruction 
in external memory requires two instruction cycles for the 
DSP16210, which may hinder the processor's peiformance when 
32-bit instructions are stored off-chip. This drawback also affects 

, the DSP 16410 when 32-bit instructions need to be loadedfor one of 
the two cores. 

As is common among newer DSPs, the ratio of on-chip memory 
bandwidth to off-chip memory bandwidth on the DSP16.xxx (4:1 for 
reads on the DSP16210) is higher than in older DSPs. This makes it 
increasingly important that programmers make good use of on-chip 
memory to tap the processor's peiformance potential. 

External memory is divided into four regions-high and low RAM segments, 
ROM, and I/O. One chip-select line is provided per region, with an additional select line 
available for enabling the entire external RAM. The processor supports programmable 
wait states, allowing 0 to 15 single-cycle wait states to be assigned to the various regions 
of memory. The ROM and I/O regions have individually programmable wait states, while 
the high and low RAM segments share the same wait-state programming. The external 
memory interface of the DSP16xxx supports externally requested wait states by providing 
a READY signal, which can be asserted by an external memory device to extend the 
access cycle. Any memory segment that uses the READY signal must be prograinmed 
with a minimum of four wait states because of the signal's timing requirements. The 
READY signal can be selectively disregarded for specified memory regions by setting a 
flag in a configuration register. 

The external memory interface of the DSP16210 does not allow another device to 
obtain bus mastership of its on- or off-chip buses. The external memory interface of the 
DSPI64lO supports shared memory accesses assuming an external bus arbiter. 

Address Generation Units 

The DSPI6000 core provides two address generation units: the X address arith­
metic unit (XAAU) and the Y address arithmetic unit (YAAU). The XAAU and YAAU 
serve different purposes; the XAAU generates addresses for instructions and constant 
data, and the YAAU generates addresses for non-constant data. 

The XAAU contains the program counter (and shadow registers for interrupts and 
subroutine calls) and two 20-bit pointers (PrO and PTl) that can be used to address data in 
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X memory space. Also included in the XAAU are two modifier registers (H and I), used 
for post-modification of PrO and Pr 1. 

The YAAU includes eight 20-bit pointer registers (RO-R7), two modifier registers 
(J and K) used for post-modification of RO-R7, and a pair of modulo arithmetic units with 
"base" and "end" registers (RBO and REO; RBI and REI) for modulo addressing. A 20-bit 
stack pointer (SP) in the YAAU is used for generating indexed addresses, and replaces the 
YBASE register found on the DSPI6xx. 

The DSPI6000 supports immediate data, register-direct, register-iridirect, and 
indexed addressing modes. Bit-reversed addressing is not supported. 

The fact that bit-reversed addressing is not supported is not com­
mon among DSPs. This forces the programmer to use bit-reversion 
tables for algorithms such as the FFT. 

In X memory space, modifications to the Pr registers for single-word accesses 
include post-increment by one, post-decrement by one, post-increment by the contents of 
modifier register I or H, and no update. Register modifications for double-word accesses 
in X memory space are limited to post-increment by two and post-increment by the con­
tents of modifier register I or H. If a double-word access loads an accumulator vector how­
ever, the list of register modifications expands to include post-decrement by two and no 
update. 

Similar register modifications are available in Y memory space, with the addition 
of post-decrement by two and no update for double-word accesses. Y memory space uses 
modifier registers J and K instead of H and I. 

Modulo addressing is supported via the RB and RE registers, which specify the 
beginning and ending addresses of a circular buffer. Writing a pon-zero value to REO 
enables modulo addressing for YAAU registers RO-R3 (all four are enabled simulta­
neously); similarly, writing a non-zero value to REI enables YAAU registers R4-R7. 
Modulo addressing is not available in the XAAU. Registers RO-R3 (or R4-R7) must be 
updated with a simple post-increment (e.g., Y=*RO++) for the modulo addressing to func­
tion properly. Other register modifications (e.g., Y=*RO++J) do not update the registers 
using modulo addressing. When a pointer register becomes equal to the ending address 
and a post-increment is specified, the register is reloaded with the value of the beginning 
address. Single words, double words, or a combination of the two can be used in a circular 
buffer. 

The support for circular buffering is somewhat inflexible. The fact 
that address registers must be updated using a simple post-incre­
ment may limit the use of circular buffers in some applications. 

Compound addressing (an addressing mode used on the DSP16xx to compensate 
for its inability to perform single-cycle writes by allowing a simultaneous read and write 
in two instruction cycles) is not available on the DSP16xxx. 
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The DSP 16xxx 's lack of compound addressing is not a drawback in 
itself, but does reduce the level of compatibility with existing 
DSP 16xx assembly language source code. 

Pipeline 

The DSP16xxx processor uses a three-stage pipeline that is generally not visible to 
the user. The DSP16xxx assembler can detect instruction sequences that would cause a 
pipeline hazard, issue a warning, and automatically insert NOPs to prevent the hazard 
from occurring. This feature can be disabled using assembler directives embedded in the 
assembly source code. The assembler cannot fix pipeline hazards detected in cache loops, 
but a warning is still issued. One of the few instances of pipeline visibility occurs when a 
value is written to an address register modifier, then used immediately afterwards. In this 
case, the assembler issues a warning and inserts a NOP to delay access to the modifier by 
an instruction cycle. 

Instruction Set 

The DSP16xxx uses both 16-bit and 32-bit instructions, and the two can be freely 
mixed. Many of the 16-bit instructions are similar to DSP16xx instructions. Table 7.6-1 
lists the main DSP16xxx registers and their purposes. The instruction set is summarized in 
Table 7.6-2. The DSP16xxx relies on mode bits to configure many aspects of the proces­
sor's data path, including shifting and saturation; for example, mode bits select one of four 
scaling options at the output of each multiplier. 

Assembly Language Format 

The DSP16xxx assembly language uses an algebraic syntax with separate fields 
for control of different execution units. Multiple operations can be combined in a single 
instruction, and are executed from left to right. For example, the instruction 

aO=a4+pO al=a5+pl pO=xh*yl pl=xl*yh x=*ptO++ y=*rl++ 

directs the DSP16xxx to perform two additions, two multiplications, and two data trans­
fers (with register post-increment) in parallel, allowing single-cycle dual-MAC opera­
tions. Combinations of operations that can be performed in parallel as part of a single 
instruction are shown in Table 7.6-3. 

Instructions can be categorized as either "regular" or "extended." Regular instruc­
tions are generally comparable to DSP16xx instructions. They are 16 bits wide and sup­
port a limited subset of operations on a limited subset of the available registers. For 
example, a multiply operation may be performed in parallel with an ALU operation and up 
to two 16-bit data transfers. Extended instructions are 32 bits wide, and are able to use the 
full complement of registers, though not without some restrictions. Extended instructions 
can use either 16- or 32-bit operands. In general, extended instructions allow a greater 
number of operations to be executed in parallel than regular instructions, and provide bet-
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ter support for parallel moves. For example, up to two multiply operations may be per­
formed in parallel with an ALU and adder operation and up to two 32-bit data transfers. 

Registers 

AO-A7 

X 

y 

PO,Pl 

ARO-AR3 

PTO,PTI 

H,I 

RO-R7 

J, K 

RBO,REO 
RBI, REI 

PI 

PR 

CO-C2 

Lucent Technologies' goal in using mixed-width instruction words 
combined with a large number of mode bits is to facilitate compact 
code while improving per-cycle efficiency. The benchmark results 
indicate that this strategy is effective; however, the multitude of 
mode bits has the potential to significantly complicate program­
ming. 

Although the DSP 16000 assembly language is not compatible with 
that of the DSP 1600, DSP 1600 programmers should be comfort­
able programming the DSP 16000. Many DSP 16000 instructions 
are very similar (or even identical) to those of the DSP1600. 

Width Purpose 

40 bits Accumulators 

32 bits Multiplier input (16 MSBs or LSBs) 

32 bits Multiplier input (16 MSBs or LSBs), ALU input, adder input 

32 bits Product registers 

16 bits Auxiliary registers 

20 bits X memory address registers 

20 bits Modifier registers for PTO, PTI 

20 bits Y memory address registers 

20 bits Modifier registers for RO-R7 

20 bits Base and end registers for circular addressing 

20 bits PC interrupt shadow register 

20 bits Return address register (subroutine calls) 

16 bits Counters 

TABLE 7.6-1. DSP16000 register summary. 
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Parallel Move Support 

The DSP16xxx supports operand-unrelated parallel moves with MAC operations 
and some ALU operations. Like most DSPs, the DSP16xxx places restrictions on the use 
of parallel moves, the most significant of which are: 

• Only certain instructions allow parallel data moves. 

• Y data addresses are generated by the Y address generation unit, which can use 
registers RO-R7. X data addresses are generated by the X address generation unit, 
and can only use registers PrO or Pr1. 

Instructions with parallel reads from Y memory usually execute in one instruction 
cycle. Instructions with parallel X memory reads or parallel X and Y memory reads exe­
cute in two instruction cycles unless the instructions are fetched from cache, which allows 
single-cycle execution. Many extended instructions allow two 32-bit parallel data moves; 
regular instructions can only transfer two 16-bit words at a time. Thus, the DSP16xxx can 

Class Instructions 

Arithmetic 
Add, subtract, increment, decrement, round, negate, absolute value, 
dual add/subtract, guad add/subtract, three-input add 

Multiplication Multiply, multiply-accumulate, multiply-subtract, square 

Logic And, or, not, exclusive-or 

Shifting Arithmetic or logical shift left or right by 0-31 bits 

Rotation <None> 

Conditional Negate, round, absolute value, fixed arithmetic shift, branch, subroutine 
Execution call, return, and most extended instructions can be executed conditionally 

Comparison 
Compare, select maximum or minimum; dual compare, select maxima or 
.. 

rmmma 

Looping 
Single- and multi-instruction hardware loop, conditional counter incre-
ment and branch based on value 

Branching Unconditional branch, conditional branch 

Subroutine Call 
Unconditional subroutine call and return, conditional subroutine call and 
return 

Bit Manipulation Bit field insert or extract, test for pattern 

Special Function Swap accumulators, exponent computation, normalize, divide-step 

TABLE 7.6-2. DSP16000 instruction set summary. Instructions that are supported 
only on the DSP164xx are underlined. 

© 2001 Berkeley Design Technology, Inc. 247 



Buyer's Guide to DSP Processors 

248 

perform up to four parallel 16-bit memory reads, two 16-bit memory writes, or two 16-bit 
reads and two 16-bit writes, if words are arranged as pairs in memory. The DSP16xxx pro­
vides support for reading two 16-bit values stored as a single 32-bit value, with each 16-bit 
word stored to a separate accumulator. The DSP16xxx can also write two 16-bit quantities 
from two accumulators as a 32-bit vector to memory. 

The DSP 16xxx's supportfor parallel moves is comparable to that of 
most older DSP processors in terms of the number of moves that 
can be performed per instruction cycle; like many newer DSP pro­
cessors, however, the DSP 16xxx can transfer two adjacent 16-bit 
words per parallel move. Thus, the effective number of parallel 
moves that can be performed per instruction cycle (four 16-bit 
words) is high, ifwords are arranged as pairs in memory. 

Orthogonality 

The instruction set of the DSP16xxx is not particularly orthogonal, but restrictions 
on instruction format and register usage are not as severe as those seen on the DSP16xx. 
The new, 32-bit instruction words used on the DSP16xxx could have been used to imple­
ment a highly orthogonal instruction set. Instead, the instruction set was designed to allow 
a higher degree of parallelism than is available on many other DSP processors. The result 
of this trade-off is that the DSP16xxx can specify up to six parallel operations in a single 
instruction, but the operations can generally use only a subset of the processor's registers, 

Operation (execution unit) Combinations Supported in a Single Instruction 

Add/Subtract (ALU) X 

Round (ALU) X 

Absolute Value (ALU) X 

Minimum (ALU) X 

Compare (ALU) X 

Add/Subtract (adder) X X 

Two Multiplications (MPY) X 

Shift (BMU) X X 

Exponent (BMU) X 

Two Data Transfers X X X X X 

TABLE 7.6-3. Combinations of operations supported in a single instruction. Each 
column represents a combination of operations that can be executed in parallel 
as part of a single instruction. 
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and only certain combinations of operations can be executed in parallel. If just one opera­
tion is specified in an instruction, however, the restrictions on register usage are greatly 
eased. 

For single~operation instructions, a high degree of orthogonality is 
attained, resulting in relatively easy programming. For the 
multi-operation instructions required for high-performance code, 
however, the instruction set is less orthogonal and harder to use. 
Programming is also complicated somewhat by the large number of 
mode bits. Overall, the DSP 16xxx is challenging to program. 

Lucent Technologies asserts that the level of programming difficulty 
present on the DSP 16xxx is a result of design decisions that allow 
the processor to achieve high execution speed at a reasonable 
price. They view the reSUlting programming difficulty as an accept­
able trade-off in their target applications. 

Execution Times 

MAC, ALU, and BMU operations complete in a single cycle, and can often be 
executed in parallel. Instructions affecting program control-flow, (e.g., branches and sub­
routine calls) generally consume three instruction cycles, but conditional branch instruc­
tions that do not take the branch execute in two cycles. Branches may require four cycles 
if the instruction at the target address is a misaligned double word. Delayed branches are 
not supported. 

Instruction Set Highlights 

The DSP16xxx provides a number of noteworthy instructions: 

• Conditional execution of arithmetic functions and many accumulator modification 
instructions (including shifts, increment, maximUm/minimum, and round) 

• Notable conditions that can be tested during conditional instruction execution 
include the output of a single-bit pseudo-random number generator (the "heads or 
tails" condition), the sign of one of two post-incrementing counters, the parity of 
the last BMU operation, and the status of bits in the bit 110 port 

• The normalization, exponent, extract, and insert instructions use the on-core bit 
manipulation unit for single-cycle exponent detection, exponent detection with 
simultaneous normalization, bit-field extraction, and bit-field insertion 

• Special instructions support Viterbi decoding and multi-precision arithmetic. 
Table 7.6-4 summarizes the differences between the Viterbi instructions available 
on the DSP16210 and on the DSP16410. 
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Execution Control 

Clocking 

The DSP16xxx processor uses a IX master clock, whose source is specified under 
software control. 

Clock source options include an external oscillator, an internal oscillator, or the 
ITAG test clock. The DSP16210 has a user-programmable phase-locked loop (PLL) fre­
quency synthesizer. The PLL can generate a master clock at a frequency that is MIN times 
the frequency of the input clock source, where M can range from 2 to 20, and N can range 
from 1 to 8. The PLL can be disabled (for power reduction purposes) under software con­
trol. Both cores of the DSP16410 execute from a common clock source (either the external 
clock, the PLL, or the ITAG clock). The clock source is controlled by one of the cores, 
which selects the source for both cores and sets M and N of the PLL. 

The DSP16xxx uses a.two-phase clock system; it produces versions of the clock 
signal that are in-phase and out-of-phase with the master clock. The processor supports 
integration of DSPl6xx-style peripherals and modules by generating both inverted and 
non-inverted versions of the two clock phases. 

Hardware Looping 

The DSP16xxx family supports hardware looping with the DO instruction. The 
DO instruction loads the cache with up to 31 instruction words, executing them from pro­
gram memory as they are loaded. Once loaded, the instructions execute from cache for the 
specified number of repetitions, freeing the X bus to be used for data fetches. The cache 

Special instructions available on the Special instructions available on the 
DSP16210/16410 for Viterbi decoding DSP16410 for Viterbi decoding 

Dual add/subtract: Quad add/subtract: 
Example: Example: 
aO=a4-yal=a5+y aOh=a4h+yh aOl=a41+yl alh=a4h-yh all=a41-yl 

Compare, select max or min: Dual compare, select max or min: ' 
Example: Example: 
aO=cmpl(al,aO) aO=cmpl(aOh,aOl) al=cmpl(alh,all) 
The binary result of the comparison may The binary result of the two comparisons may 
simultaneously be stored in register arO simultaneously be stored in registers arO and 
as follows: ar2 as follows: 
arO=(arO«I)I(?al>aO) arO=(arO«1)1 (?aOh>aOl) 

ar2=(ar2«I)I(?alh>aU) 

TABLE 7.6-4. Examples of Viterbi instructions available on the DSP16210 and on 
the DSP16410. 
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can accommodate both 16-bit and 32-bit instructions. Control-flow instructions cannot be 
included in a DO loop. 

The instructions in cache can be executed from 1 to 65,535 times if the repetition 
count'is taken from the 16-bit CLOOP register, or from 1 to 127 times if the count comes 
from immediate data. A REDO instruction can later be used to re-execute the instructions 
that were most recently loaded in the cache. Cache loops are interruptible, and several reg­
isters are provided which contain information about the state of the cache. These registers 
can be saved and restored, along with the contents of the cache, to allow re-entry after an 
interrupt. 

The inability to specify a repetition count of 0 in the DO instruction 
(i.e., to specify that instructions are not to be executed) is inconve­
nient in some applications. For example, the programmer may want 
to load the instruction cache without executing the instructions as a 
means of setting up the cache for a subsequent REDO instruction; 
this is not supported. In addition, if the repetition count is specified 
as a variable whose value may be 0, the programmer must explic­
itly checkfor this case. 

The DSP16xxx does not allow multi-instruction hardware loops to be automati­
cally nested. However, the two 16-bit counter registers, CO and C1, can be automatically 
post-incremented when tested as part of a conditional branch instruction. The three cycles 
consumed by this instruction are one less than would be required to implement an incre­
ment and conditional branch using separate instructions. 

The inability to nest hardware loops is a drawback. The support for 
software loops alleviates the problem to some extent, but does not 
fully compensate for this shortcoming. 

Interrupts 

The DSP16000 core supports 20 hardware interrupts. The DSP16210 includes 15 
internal hardware interrupts and 64 software interrupts via the ICALL instruction. Each 
core in the DSP16410 allows 26 hardware interrupts; however, since the DSP16000 core 
supports a maximum of only 20 hardware interrupts, each core has a programmable inter­
rupt multiplexer. 

Internal hardware interrupt sources include the serial ports, parallel port, JTAG 
interface, and timers. Also included are an external reset pin, a non-maskable TRAP pin, 
and four external interrupt request pins. The DSP16410 also supports a core-to-core 
TRAP, which allows one core to interrupt the other core. 

The core-to-core TRAP is useful for enabling core-to-core commu­
nication or synchronization. 

Interrupts are individually prioritized to one of four levels, allowing the processor 
to resolve simultaneous interrupt requests. Prioritization also provides a mechanism for 
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interrupt nesting by allowing an interrupt service routine to be interrupted by a higher-pri­
ority interrupt request. Three user-assigned interrupt priority levels and an "interrupt dis­
abled" setting are available. Each interrupt source can be independently enabled or 
disabled, and each has its own four-word interrupt vector which can contain either a short 
service routine or a branch to a longer routine. The return-from-interrupt address is stored 
in the PI register. Interrupts are not automatically nestable; the service routine must explic­
itly save and restore the state of the interrupt handler, return register, and cache to allow 
interrupt nesting. The DSP16xxx provides four vectored interrupt ID pins, which encode 
the interrupt vector the core is currently servicing. These pins can be used as general-pur­
pose I/O pins by modifying a control register. At reset, the pins are configured as interrupt 
pins. Processor status is not automatically saved during an interrupt. 

Assuming the processor is in an interruptible state, and that the interrupted instruc­
tion is a single-cycle instruction, the minimum interrupt latency before execution of the 
instructions in the appropriate interrupt vector is seven instruction cycles. Also, the core 
will allow a two- or three-cycle instruction to complete before executing the interrupt vec­
tor service handler, which will extend the interrupt latency to eight or nine cycles. 

Stack 

The DSP16xxx uses a software stack to support interrupt nesting based on the 
interrupt priority level. Subroutine calls do not use the stack, and instead automatically 
store the subroutine return address in the PR register. Thus, subroutines cannot be nested 
without taking explicit steps to save and restore the PR register. 

Bootstrap Loading 

TheDSP16210 can boot from either external memory or from an internal8-Kword 
bootstrap ROM. When booting from internal memory, the DSP16210 places the parallel 
host interface port in 8-bit Intel-compatible mode and awaits a command. The host places 
a value on the port that selects a routine from one of the 77 available in the bootstrap 
ROM. Of the 77 bootstrap routines available, 4 enable and set the PLL and core clock, 4 
set external memory wait-states, 2 branch to a location in external ROM or internal RAM 
and begin program execution, 13 perform memory tests, and 54 provide download func­
tionality using either Intel- or Motorola-style transfers. Upon completion of the selected 
routine, the DSP16210 places the host port into Intel-compatible mode, ready for the next 
bootstrap routine to be selected. This sequence ends with selection of one of the two 
branch-and-execute functions. 

The DSP16410 can also boot from either external memory or from an internal 
bootstrap ROM. However, the bootstrap loading process is significantly simplified on the 
DSP16410 by its enhanced DMA controllers. If the two cores boot from their internal boot 
ROMs, they execute a boot routine that simply waits for an external host to download 
code and data via the parallel port (PIU), which has a direct memory access to all DSP 
memory. (For more information on the parallel port and the direct memory controller, 
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refer to next section.) The host generates a PIU interrupt when the download process has 
completed. 

The DSP16410 DMA controllers have been considerably modified 
so that they can access the entire DSP memory space. This simpli­
fies the bootstrap loading process on the DSP 16410 (no need for 
the host to select a succession of different bootstrap routines) with­
out compromising its flexibility. 

Peripherals 

The on-chip peripherals of the DSP16210 include two serial ports with different 
features, two timers, a parallel host port, and a bit 110 port. The on-chip peripherals of the 
DSP16410 include two identical serial ports, four timers, a parallel host port and two bit 
110 ports. 

• Serial ports 
The DSP16210 provides a simple serial port and an enhanced serial port. The sim­
ple serial port supports 8- or 16-bit data in either MSB-first or LSB-first format. 
The receive and transmit sections of the serial ports are independent, and each can 
be controlled by either an external or internal clock. Input and output frame syn­
chronization signals are provided. The DSP16210 has a single internal serial clock 
generator that divides the master clock by 2, 6, 8, or 10. A programmable DMA 
controller, called a modular 110 unit (MIOU), is assigned to the simple serial port. 
The MIOU transfers data between a lKx16 block in the on-chip dual-port RAM 
and the serial port without requiring core intervention. In general, the core and the 
MIOU operate independently, but if they attempt simultaneous accesses to the 
dual-port RAM the core access is delayed by one instruction cycle. 
The enhanced serial port processes only LSB-first format, and can operate in sim­
ple mode or frame mode. In either mode, the input and output signals are generated 
externally. In simple mode, 8- or 16-bit serial data can be transferred at up to 25 
Mbits/second. In frame mode, up to 16 logical channels of 64, 32, 16, or 8 
Kbitslsecond can be multiplexed or demultiplexed on a 96, 128, 192, or 256 
bitslframe TOM data channel. Each logical channel can be set to a bit rate indepen­
dently of the others. An output or input frame interrupt can be generated every 
two, four, eight, or sixteen frames. The TDM frame size and interrupt frequency 
can be selected independently for the physical input and output channels. External 
input and output frame synchronization signals determine the start of input and 
output frames. 

The DSP16410 has a pair of identical serial ports that are enhanced versions of the 
DSP16210 enhanced serial port. Both of the DSP16410 serial ports can process 
LSB- or MSB-first format and support connection to TDM buses. Using both 
serial ports, the DSPI6410 can process up to 32 TOM logical channels. The serial 
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ports of the DSP16410 also provide optional hardware Jl-:law or A-law compand­
ing. 
The DSP16410 serial ports also include a eLK pin, which can be used as a master 
clock to derive the serial port clock and frame synchronization signals. 
The·serial interface units are directly connected to the DMA channels. This allows 
data to be transferred between any memory space of the DSP16410 and the serial 
port without requiring core intervention. 

• Timers 
The timers on the DSP16210 and DSP16410 use a 4-bit exponential pre-scaler to 
divide the master clock by one of 16 factors (2,4, 8, ... , 65,536). The pre-scaled 
clock is then fed into the 16-bit down-counters, each of which can generate an 
interrupt upon reaching zero. The timers can then be reloaded with new values and 
begin counting again. 

• Parallel Host Port 
The parallel host port on the DSP16210 is called the PHIF16 ("parallel host inter­
face") and is used to transfer data between the host and the DSP1621O. The 
PHIF16 is 16 bits wide, and can only respond to data strobes generated by external 
devices. It can use either separate read and write strobes, or a single read/write line 
in conjunction with a chip enable line, making it compatible with both Intel and 
Motorola signaling conventions. Like the simple serial port, the parallel host port 
has a dedicated MIOU for exchanging data with the processor via a 1Kx16 block 
in the dual-port RAM. A data value can be written to the PHIF16 by the host at 
device reset to select a bootstrap routine from those provided in the internal ROM. 
Like the DSP1621O, the DSP16410 provides a 16-bit parallel host port. However, 
the parallel interface unit (Pill) of the DSP16410 has been enhanced to support 
interaction with the modified DSPl6410 DMA controller. The DMA controller 
provides· the host with access to the entire internal and external memory space of 
the DSP1641O. 

The DMA controllers on the DSPl6210 are limited in that they can 
only access IKword of [ORAM each (IKword of [ORAM for the 
serial ports and IKword of [ORAM for the parallel ports). The 
DMA controllers of the DSPl6410 have been significantly 
enhanced so that the host can access the entire DSP memory space 
through either the serial ports or the parallel ports. 

• BitVO 
The DSP16210 provides eight bits of bit I/O. Each bit can be independently con­
figured as input or output, and can be individually set, cleared, or toggled. Addi­
tionally, the bit I/O port has circuitry to mask input bits with a pattern and compare 
the result to a test pattern. The result of the comparison is made available as flags 
that can be used in conditional instructions. The flags indicate if the pattern 
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matched entirely, if some bits matched, if some bits did not match, or if none of the 
bits matched. The state of these flags can be recorded in the ALF register for later 
use. Four of the 110 bits (bits 7:4) share pins with vectored interrupt indication sig­
nals. When the device is reset, the vectored interrupt indication signals are con­
nected to the pins. The four 110 bits can be connected to the pins by setting a bit in 
the IOC register. The DSP16410 provides two groups of seven bits of bit 110, each 
controlled by one of the cores. The functionality of the bit 110 pins is the same as 
that of the DSP16210 but the pins are no longer shared with vectored interrupt ID 
indicator signals. 

The DSP 16xu bit I/O port pattern-matching capability is an 
unusual feature. 

On-Chip Debugging Support 

The DSP16210 processor includes a JTAG-based debug and emulation port. The 
DSPI6410 processor includes two complete ITAG-based debug and emulation ports, one 
connected to each of the DSPI6000 cores. This allows the programmer to read and write 
internal registers and memory, set and clear hardware breakpoints, and start and stop exe­
cution on a per-core basis. The JTAG interface to the DSP16210 core and to one of the 
DSPI64lO cores is IEEE 1149.1 compliant and supports boundary scan. 

The DSP16xxx also includes an on-chip debugging module. This module contains 
eight address watchpoint units, two data watchpoint units, four complex condition units, a 
cycle counter, and a trace unit. 

The watchpoint units allow the programmer to specify either address-based or 
data-based breakpoints. Address-based watchpoints are based on whether the X or Y 
address is equal to, or greater-than-or-equal-to a pre-selected value. Data-based watch­
points are based on whether the data being transferred to or from memory, or between reg­
isters (except between two accumulators) matches a pre-selected pattern. An optional 
32-bit mask register allows bits to be masked out of the comparison. When the comparison 
is valid, a debug event is generated. The watchpoint units can be configured to generate a 
debug trap, or to pass the event on to the complex condition units. 

The complex condition units can logically combine any of the ten events received 
from the data and address watchpoint units. Each complex condition output can be config­
ured to generate a debug trap, or can be used as the input to another complex condition 
unit, allowing the programmer to set relatively complex logic-based breakpoints. By 

L chaining the outputs of the condition units, program flow sequences can be trapped. 

The processor can be configured to respond to a debug trap in one of two ways: it 
can execute a service routine that uploads the state of the core to the host debugging com­
puter, or it can execute one of four user-defined service routines that are assigned to spe­
cific breakpoint conditions. The latter breakpoint response method is useful for real-time 
debugging. 
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The debugging module also records program branch information in the trace unit, 
allowing the programmer to trace the execution sequence of programs that are compli­
cated by, for example, nested subroutines. Up to eight branches can be recorded in the 
trace buffer. Single-level loops are recorded as a single entry in the trace· buffer; cache 
loops are not recorded at all. However, discontinuities to and returns from interrupt service 
routines during executionofa cache loop are recorded. The trace unit can be set to ignore 
all program flow discontinuities except subroutine and interrupt service routine calls. 

The cycle counter unit contains a 32-bit counter which can be set to count freely, or 
to trap the core after a set number of cycles have elapsed. 

The debugging unit on the DSP 16xxx is unusually flexible and pow­
erful, and reflects the fact that target applications for the DSP 16xxx 
often require extensive real-time testing and debugging. 

Power Consumption and Management 

The DSPl6210 features a low-power sleep mode, triggered by setting the AWAIT 
bit in the processot's ALF control register. In this mode only the PLL (if enabled) and the 
minimum circuitry required to process an interrupt remain active. Any unmasked interrupt 
awakens the processor from sleep mode. 

The DSP16210 features the following power-down capabilities via a power con­
trol register (POWERC) and stop pin: 

• The power control register (POWERC) features a bit to switch the processor's 
clock from an external clock to a slower internal clock generated by the on-chip 
oscillator. Selecting the slower clock before setting the AWAIT bit further reduces 
power consumption, but increases wake-up latency because latency is a function of 
clock speed. , 

• If the user is willing to restrict the wake-up signal to the INTO, INTI, or RESET 
lines, then the NOCK bit in the POWERC register can be used to shut off the clock 
to the entire processor. An external device may achieve the same effect as setting 
the NOCK bit by driving the STOP pin low. The processor's clock is stopped until 
the STOP pin is released. 

• The POWERC register allows unused peripherals and DMA controllers to be dis­
abled (i.e., to have their clocks gated off) on an individual basis. 

According to Lucent, the DSPl6210 consumes 577 mW during typical operation 
at 100 MHz and 3.3 volts with the on-chip PLL enabled. In low-power standby mode with 
the PLL not selected and an input clock rate of 10 MHz, power consumption is 16 m W at 
3.3 volts. The DSPI64lO contains two cores; power consumption for one of the two 
on-chip coreS and half of the on-chip memory is roughly 280 mW at 1.8 volts and 170 
MHz, according to Lucent. 
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Benchmark Performance 

The DSP164xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDT! 
Benchmark™ Results. We summarize and analyze the DSP164xx benchmark performance 
in the paragraphs below. We first discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Note that instead of the entire DSP 16xxx family, the DSP 164xx is 
used in this analysis. As discussed earlier, the cores used in the 
DSP 164xx family members support several instructions that are not 
supported by the core used in the DSP 162xx family members. Two 
of the twelve benchmarks (the Viterbi and Vector Maximum) use 
these instructions, and hence results for these benchmarks do not 
apply to DSP 162xx family members. 

The DSP164xxfamily members contain two DSP16000 cores. All 
benchmark results presented below are for one of the two on-chip 
cores. 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13 in Chapter 8, BDT! 
BenchmarkTM Results, the DSP164xx has a total normalized cycle count that is 
approximately 15% lower than the average for all processors benchmarked in this 
report. The DSP164xx has low cycle counts primarily because of its powerful data 
path with two multipliers; in some cases the DSP164xx's data path essentially 
allows it to perform twice as many operations simultaneously as can be performed 
on the conventional DSP processors. On most benchmarks the DSP164xx has 
lower than average cycle counts. 
On the Single-Sample FIR and Vector Dot Product benchmarks, the DSP164xx 
performs two MACs per instruction cycle and requires fewer cycles for initializa­
tion compared to most processors. As a result, on the Single-Sample FIR bench­
mark, the DSP164xx instruction cycle count is roughly 30% below average, and is 
the second-lowest of the processors benchmarked. Only the SC140 has a lower 
cycle count on this benchmark. Similarly, on the Vector Dot Product benchmark, 
the DSP164xx performs two multiply-accumulate operations per instruction cycle, 
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and has the third-lowest cycle count among benchmarked processors, about 40% 
below the average; only the StarCore SC140 and the TMS320C64xx-C have lower 
cycle counts. 
On the Vector Add benchmark, the DSP164xx cycle count is roughly 25% below 
the average of the processors benchmarked. The DSP164xx, with its support for 
SIMD-style additions, performs four operand loads, two additions, and two stores 
in two instruction cycles, which enables the calculation of one output element per 

. cycle. Also, the DSP164xx requires relatively few instructions to perform pointer 
initialization outside of the inner loop on this benchmark. 
On the Vector Maximum benchmark, the DSP164xx uses its trace-back encoder 
to update one counter, make dual comparisons between two operands (using spe­
cialized dual compare instructions), and record which operands were largest-all 
in a single instruction cycle. In addition, two new operands can be loaded in paral­
lel. Since these steps are exactly what are required in the Vector Maximum bench­
mark, the DSP164xx can process elements at the rate of two elements! per 
instruction cycle. This results in the second lowest cycle count for the Vector Max­
imum benchmark with a cycle count approximately 60% lower than the average 
for all benchmarked processors. 
On the FlIT benchmark, the DSP164xx can implement the FFT butterfly using 
only four instructions. This is an efficient implementation of the butterfly in com­
parison to most other DSP processors. However, the DSP164xx cycle count result 
is about 10% above the average, due to the many cycles consumed by control code 
(data moves, counter, and pointer updates), the lack of support for nestable hard­
ware loops, and because one stall occurs in the butterfly. 

• Execution times: The DSP16410 core instruction cycle rate of 170 MHz is rela­
tively high. This cycle rate, combined with the processor's low cycle counts, 
results in a total normalized execution time result that is approximately twice as 
fast as the average of the fixed-point processors, but nearly six times slower than 
that of the processor with the fastest (projected) execution time, the Texas Instru­
ments TMS320C64xx-C. At 170 MHz, one DSPl64lO core has a BDTImark2000 
score of 810. 

• Cost-execution time product: Since the DSPl64lO is' a dual-core device, the 
cost-execution time product information for this processor is not comparable with 
those of the other processors benchmarked in this report. Hence, this metric is 
excluded from our analysis. 

• Energy consumption: Energy consumption reported here is for one of the two 
cores in the DSP16410 and half of the on-chip memory. Although the power con­
sumption of each DSP16410 core is relatively high compared to other fixed-point 
devices, its fast execution times result in a total normalized energy consumption 
figure that is only slightly higher than the average of all fixed-point processors 
benchmarked, as shown in Figure 8.4-13. However, compared to the Motorola, 
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MSC8101, which has the best result for this metric, the DSP16410 has a normal­
ized energy consumption that is roughly five times higher. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks TM, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: On the Control benchmark, the DSP164xx 
has a total memory usage that is roughly average for the fixed-point processors and 
15% lower than the average for all processors that have been benchmarked. The 
DSP164xx uses a mixture of 16-bit and 32-bit instructions. The processor's total 
memory usage result on the Control benchmark suggests that the DSP164xx can 
achieve reasonable code density by using mostly 16-bit instructions in control-ori­
ented tasks while reserving its more powerful 32-bit instructions for speed-critical 
tasks. In the Control benchmark, the DSP164xx uses 16-bit instructions for 
roughly 70% of the program. 

• Program memory usage: The DSPI64xx has a total normalized program memory 
usage that is roughly 45% below the average of all processors benchmarked, as 
illustrated in Figure 8.5-13. However, compared to all fixed-point processors 
benchmarked except the Texas Instruments TMS320C62xx and TMS320C64xx 
(which have exceptionally high program memory usage), the DSP164xx has a total 
normalized program memory usage figure that is slightly above the average. This 
is due to the DSP164xx using mostly 32-bit instructions for DSP algorithm code 
(as opposed to control-oriented code, discussed above). Although the 32-bit 
instructions tend to increase program memory usage, the high per-cycle efficiency 
of the DSP164xx allows it to use relatively few instructions to perform a given 
task. 

• Data memory usage: With the exception of memory usage on the FFI', the 
DSP164xx's constant and non-constant data memory usage is generally as 
expected for a 16-bit processor, as illustrated in Figure 8.5-14 and Figure 8.5-15. 
For the FFT benchmark, the DSP164xx uses an in-place implementation, which 
requires less non-constant data memory than is required by many of the other pro­
cessors, but more constant data memory (for look-up tables). 

The DSP 16410 has a relatively high instruction cycle rate, and this, 
combined with its high per-cycle efficiency (a result of its powerful 
data path) gives it good execution-time performance. 
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The energy consumption of one DSP 16410 core is reasonably good, 
but not comparable to that of the most energy-efficient processors. 

Although the DSP 164xx instruction set includes both 16- and 32-bit 
instructions, in control-oriented software, the DSP 164xx will 
mainly use 16-bit instructions and thus achieve code density that is 
comparable to that of other DSPs that use exclusively 16-bit 
instruction words. 

Cost 

DSP16xxx price and packaging options are shown in Table 7.6-5. 

Fabrication Details 

According to Lucent Technologies, the DSP16210 and the DSP16410A are fabri­
cated in a 0.25 J.lm CMOS process and use a 2.5-volt core supply voltage. The 
DSPI6410B is fabricated in a 0.18 J.Lm CMOS process and uses a 1.8-volt supply voltage. 

Development Tools 

Lucent Technologies' DSP16xxx tools include an ANSI-C optimizing compiler 
based on the GNU GeC compiler, an assembler, a linker, and an instruction-set simulator 
and debugger. These tools are currently available on Sun SPARC workstations under 
SunOS and Solaris, on Hewlett-Packard workstations under HP-UX, and on IBM 
PC-compatible computers under Microsoft Windows 9x·and Windows NT. 

The software generation tools are easy to use and support a useful 
range of options for optimization and debugging support. 

Core 
Speed per Core Price 

Part Voltage Package 
(V) 

(MHz) (Qty. 10,000) 

DSP16210 2.5 100 144TQFP $40.00 

DSP16210 . 2.5 120 144TQFP $45.00 

DSP16210 2.5 150 144TQFP $55.00 

DSP16210 2.5 100 169BGA $42.00 

DSP16210 2.5 120 169BGA $47.00 

DSP16210 2.5 150 169BGA $57.00 

DSPI6410B 1.8 170 208PBGA $90.00 

TABLE 7.6-5. DSP16xxx price and package summary. Prices as of August, 2000. 
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The instruction-set simulator and debugger supports both graphical and com­
mand-line interfaces. The DSP16210 simulator is not cycle-accurate but the DSPl64lO 
simulator is. The debugger has two modes: software simulation mode and hardware mode. 
In hardware mode, the debugger is connected to a physical DSP16xxx using the JTAG 
Communications System (JCS). The JCS consists of an ISA plug-in card for IBM 
PC-compatible computers and a target interface box. The JCS allows JTAG-based debug­
ging of the target system, as well as programming support for flash-based devices. Special 
software allows multiple UNIX or Windows NT workstations to access one or more 
remotely located DSP16xxx devices connected to a JCS over a TCP/IP network. 

The simulator and debugger is powerful and in addition to typical debugging fea­
tures supports: 

• Automation of debugging tasks using predefined debugger command scripts 

• A wide range of data display formats, including signed/unsigned decimal, frac­
tional integer, floating-point, octal, signed/unsigned binary, and hexadecimal 

• Source debugging with mixed disassembly, which displays disassembled instruc­
tions beneath each original C or assembly language source file line 

• User-defined variables and functions, which can be used for constructing macros 
or functions for performing repetitive tasks using simple debugger command-line 
constructs 

• Standard C language compatible input/output operations 

• File input and output, allowing data streams to be connected to simulated peripher­
als 

In addition to a powerful command language, the debugger provides support for 
commands using the Tclffk interpreted language. Commands entered at the debugger 
command line can be passed directly to the Tclffk interpreter, allowing the user to define 
complex and powerful customized debugging tools. 

The debugger is very powerful and executes simulated DSP16xxx 
instructions rapidly. The debugger is unusual in providing compre­
hensive support for TcVTk, which is a complete interpreted lan­
guage. However, the debugger may present a significant learning 
curve for users migrating from other vendors' debugging tools, in 
part because of its support for TcVTk. 

While the DSP 16xxx debugger is very powerful, it lacks some useful 
debugging features compared to other vendors' tools. For example, 
both Analog Devices and Texas Instruments include useful time­
and frequency-domain data graphing capabilities in their debug­
ging products. 

© 2001 Berkeley Design Technology, Inc. 261 



Buyer's Guide to DSP Processors 

The graphical debugger interface supports a feature called "Architectural View," a 
pictorial representation of the device, which highlights dataflow through the device regis­
ters updated on a cycle-by-cycle basis. The view can be zoomed, panned, and printed. 

The instruction-set simulator is also available in a C-callable format that Lucent 
calls the "Linkable Functional Simulator" (LFS). According to Lucent Technologies, the 
LFS is integrated as a function block in two high-level simulation environments: Synop­
sys' COSSAP and Cadence Design Systems' SPW. This integration allows DSP16xxx 
simulations to be incorporated into larger, system-level simulations. 

Applications Support 

The primary documents for the DSP16210 are the DSP16000 Digital Signal Pro­
cessor Core, the DSP16000 Digital Signal Processor Core Instruction Set and the 
DSP16210 Digital Signal Processor Data Sheet. The documents available for the 
DSP16410 are the data addendum Enhancement to the DSP16000 Core and the 
DSP 16410 Digital Signal Processor Data Sheet. These cover most aspects of the· devices, 
including timing, electrical, and mechanical characteristics. 

Due to the complexity of the instruction set, the instruction set manual uses more 
than 40 different symbols to represent register subsets. These symbols are used to allow 
more compact representations of instruction syntax. 

The multitude of symbols used in the instruction set manual makes 
it difficult to decipher for a new user. However, it allows the many 
instructions supported on the DSP 16xxx to be described in a very 
compact way, which can be useful when programming the 
DSP16xxx. 

Lucent provides applications support for the DSP16xxx through telephone and 
electronic mail contact with their application engineers. In addition, Lucent provides doc­
umentation, application notes, and product information on their Digital Signal Processors 
World Wide Web pages at http://www.lucent.com/micro/dsp. 

Advantages 

• Two independent multipliers, allows two MACs per cycle 

• SIMD ALU can add or subtract two sets of operands 

• Separate three-input adder 

• Good support for operand-unrelated parallel moves 

• Conditional execution of many instructions 

• Algebraic assembly language 

• Many accumulators 

• Barrel shifter 
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• Powerful bit manipulation unit; includes bit-field extract and replace 

• Good support for multi-precision arithmetic 

• Single-cycle exponent detection, and normalization instruction 

• Many address registers 

• Large, unified address space 

• Good internal memory bandwidth (if data arranged as pairs in memory) when 
instructions are executed from cache. 

• Short interrupt latency 

• Two serial ports, one of which supports TDM on the DSPI621O, and both of which 
support TDM on the 16410 

• Flexible power management 

• Flexible bootstrap modes 

• Software stack with frame pointer and indexed addressing supports HLL compil-
ers 

• Can use IX clock, has flexible PLL 

• JTAG emulation port with boundary scan, and good internal debugging hardware 

• Powerful DMA controller on the DSPI6410 

Disadvantages 

• High cost (range between $40.00 and $90.00 for the different chips available, 
quantity 10,000) 

• Non-orthogonal instruction set 

• Multiply operands restricted 

• No bit-reversed addressing 

• Many restrictions on circular buffering 

• Hardware loops limited to 31 instruction words, not nestable 

• Requires execution from cache for maximum performance 

• Relatively high typical power consumption 
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7.7 Motorola DSP563xx Family 

Introduction 

Processor Analyses - Motorola DSP563xx Family 

BDTlmark2000 Score: 
450 at 150 MHz 

The DSP563xx family is Motorola's second generation of 24-bit fixed-point DSP 
processors. The DSP563xx architecture is similar to (and object-code compatible with) its 
predecessor, the DSP560xx family, but includes significant modifications designed to 
increase performance. For example, the introduction of a deeper, seven-stage pipeline 
allows the DSP563xx to complete an instruction cycle with each master clock cycle, com­
pared with the two master clock cycles required by the DSP560xx family. In addition, an 
enhanced instruction set and new features, such as a barrel shifter, instruction cache, and 
DMA controller, boost DSP563xx family efficiency. The DSP563xx also allows 24-bit 
program and data memory addressing for large applications, a significant improvement. 
over the 16-bit addressing found in the DSP560xx. The fastest DSP563xx family members 
run at 150 MHz at 1.8 volts for the core and 3.3 volts for liD. Motorola is targeting the 
DSP563xx at applications with demanding computational requirements, such as cellular 
base stations. advanced audio products, and videoconferencing. 

The DSP56301, the first member of the family, was introduced in 1995 with 66 
MHz, 80 MHz, and 100 MHz versions running at 3.3 volts. The DSP56301 features a PCI 
bus interface and is intended for PC applications that require PCI support. For applications 
that don't need a PCI bus interface, Motorola offers the lower-priced DSP56303. For pro­
totyping and applications requiring large amounts of on-chip RAM, Motorola offers the 
DSP56309, which features large RAM memory banks. In 1998. Motorola introduced the 
100 MHz DSP56307, running at a core voltage of 2.5 volts, to support wireless infrastruc­
ture applications. The DSP56307 includes a filter co-processor to off-load general filtering 
operations from the DSP core. Simultaneously, Motorola also extended the family with 
processors aimed at consumer audio applications. In 1998, Motorola introduced the 3.3 
volt, 100 MHz DSP56362 followed by the lower-cost DSP56364 in 1999, and a 120 MHz 
version of the DSP56366 in 2000. The DSP56362 and DSP56366 are available either as 
general-purpose audio processors or factory programmed with digital audio decoders for 
DTS, Dolby AC-3, and MPEG2. Contact Motorola for more information. The fastest cur­
rent family member is the DSP56311, which combines a 150 MHz core running at 1.8 
volts with a filter co-processor and large RAM banks. The DSP56311 is intended for use 
in multi-channel voice and data applications, and was introduced in 1999. Motorola 
DSP563xx processors are summarized in Table 7.7-1. 

In 1996, Motorola announced the DSP566xx family. DSP566xx processors feature 
nearly the same instruction set as DSP563xx processors, but with a 16-bit data path. 
Motorola is no longer actively marketing off-the-shelf DSP566xx chips; contact BDTI 
directly for analysis of the DSP566xx. 
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Architecture 

The DSP563xx architecture consists of a 24-bit fixed-point data path, two address 
generators, and a program control unit. The architecture of the DSP56301 is shown in 
Figure 7.7-1. 

Data Path 

The DSP563xx features an integrated MAC/ALU with a 24 x 24 ~ 48-bit multi­
plier, a 56-bit ALU, and two 56-bit accumulators, providing eight guard bits. Multiplier 
inputs come from two of four input registers (XO, Xl,YO,Yl) or one input register and an 
immediate operand. MACI ALU outputs are placed in one of two 56-bit accumulators. The 
multiplier can perform both signed and unsigned multiplies, and supports multi-cycle dou-

Maximum 
Voltage 

Part Speed Peripherals 
(MHz) 

(V) 

DSP56301 100 3.3 
DMA, GPIO, two synchronous serial ports, asynchro-
nous serial port, three timers, 32-bit PCI host port 

DSP56303 100 3.3 
DMA, GPIO, two synchronous serial ports, asynchro-
nous serial port, three timers, 8-bit host port 

DMA, GPIO, two synchronous serial ports, asynchro-
DSP56307 100 2.5/3.3 nous serial port, three timers, 8-bit host port, filter 

co-processor 

DSP56309 100 3.3 
DMA, GPIO, two synchronous serial ports, asynchro-
nous serial port, three timers, 8-bit host port 

DMA, GPIO, two synchronous serial ports, asynchro-
DSP56311 150 1.8/3.3 nous serial port, three timers, 8-bit host port, filter 

co-processor 

DMA, GPIO, enhanced serial audio interface, serial host 
DSP56362 120 3.3 interface, digital audio transmitter, three timers, 8-bit 

host port 

DSP56364 100 3.3 
DMA, GPIO, enhanced serial audio interface, serial host 
interface, general-purpose 110 interface 

DMA, GPIO, two enhanced serial audio interfaces, serial 
DSP56366 120 3.3 host interface, digital audio transmitter, three timers, 

8-bit host port 

TABLE 7.7-1. DSP563xx processor feature summary. 

266 © 2001 Berkeley Design Technology, Inc. 



I 

I 

I 

I 

L 

I 

I 

I 

Processor Analyses - Motorola DSP563xx Family 

ble-precision mUltiplies. All arithmetic operations, including multiply-accumulate, exe­
cute in two instruction cycles and are pipelined so that a new instruction can be started 
during every instruction cycle. Depending on the instruction, ALU inputs can come from 
either the four input registers, the two accumulators, or immediate operands. Status bits, 
such as a zero bit, overflow bit, and negative bit, provide information about the results of 
all arithmetic operations. 

The DSP563xx data path uses fractional arithmetic in all operations. Because the 
DSP563xx does not have an integer multiply instruction, programmers must convert the 
result of a fractional multiply to integer format by shifting a sign bit into the accumulator 

DMA Controller 
Memory 

- --
Optional 1 Kx24 X Data Y Data Fixed-Point Data Address Program 

Instruction Cache RAM RAM 
Data Path Generators Control Unit - - --

Program RAM 2048x24 2048x24 .. ~ ~ ~A ~ ~ A " ~ 4096x24 

A " .. A A~ A~ 

~ 

Y Address Bus (24) ... 
X Address Bus (24) 2~ • • 1 / 

Program Address Bus (24) External • I Address Bus 

DMA Address Bus (24) • I • 
"" 

Y Data Bus (24) .. I • 
x Data Bus (24) • • 1 /1 24 '" 

Program Data Bus (24) ~/;> ... ... I Exf'ernal 
Global Data Bus (24) Data Bus 

t t t 1 t 
DMA Data Bus (24) V 

~ ~ 
JTAGI Host Synch. Asynch. 
OnCE Interface Serial Port Serial Port Timers 

~ A" A" ~ A ~ A .. ~ 
6 It 52 6 It 6 3 It 

~ ~ ~ r ~ ~ ~, 

FIGURE 7.7-1. Motorola DSP56301 architecture. 
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MSB (by executing an arithmetic shift right instruction after the multiply) to perform an 
integer multiply. 

Logic operations, as well as some other operations, are performed only on bits 24 
through 47 of a 56-bit accumulator word. In contrast, some processors perform logic oper­
ations on the entire accumulator. 

The fact that some operations are limited to 24-bit operands can 
limit performance in some applications that require performing 
logic operations on the entire accumulator for maximum efficiency. 

Conventional or convergent rounding can be optionally applied to output values of 
the MACI ALU unit before they are stored in an accumulator. Convergent rounding, 
selected by a bit in a mode register, reduces bias caused by conventional rounding tech­
niques. 

Values stored in the 56-bit accumulators can be transferred to a 24-bit location 
(e.g., registers or memory) through the shifterllimiter. The shifter allows the value in the 
accumulator to be optionally shifted one bit left or right for scaling purposes as specified 
by bits in a mode register. The limiter optionally checks to see if the resulting value fits in 
24 bits without overflow and, if not, substitutes a limited data value of the same sign and 
maximum allowable magnitude. Thus, values less than -1.0 are limited to -1.0 and values 
greater than or equal to 1.0 are limited to 1.0-2-23 , or approximately 1.0. 

The data path provides support for multi-precision arithmetic with specialized 
double-precision multiply instructions. Other multi-precision arithmetic operations can be 
performed using the add-with-carry and subtract-with-borrow instructions. 

A barrel shifter and bit manipulation unit allow multi-bit shifting and bit-field 
replace (Motorola calls this insert) and extract operations. Multi-bit shifting may be either 
logical or arithmetic. The DSP563xx also features an exponent detect operation, which 
can be used with the barrel shifter to perform normalization using two instructions. The 
bit-field-replace operation allows a contiguous field of up to 24 bits from a source accu­
mulator or input register to replace the selected bits of the destination accumulator. Simi­
larly, bit-field-extract copies a bit field up to 24-bits long from a given position in the 
source accumulator to the destination accumulator. The extracted bit-field may be option­
ally sign extended. Additionally, the bit manipulation unit supports a merge instruction, a 
special case of the insert instruction that concatenates 12-bit half-words. DSP563xx shift­
ing and ALU operations make use of the carry bit where appropriate. 

The DSP563xx barrel shifter and bit manipulation unit is especially 
flexible and is useful for the protocol processing found in telecom­
munications standards and other algorithms. 

The DSP563xx features a 16-bit arithmetic mode invoked by a bit in the status reg­
ister. In this mode, 16-bit data is stored in 24-bit words and moved across 24-bit data 
buses, but the ALU disregards the most-significant byte. Each accumulator is treated as if 
it were 40 bits wide and composed of a 16-bit least-significant portion (AO), a 16-bit 
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most-significant portion (AI), and an 8-bit extension register. Instructions that depend on 
the width of the data path, such as the half-word merge instruction, are adjusted appropri­
ately for 16-bit arithmetic mode (i.e., the merge instruction uses 8-bit half-words instead 
of 12-bit half-words). 

The 16-bit arithmetic mode is useful in applications that require 
bit-exact implementations of 16-bit standard algorithms, such as 
ITU-T G.72B. The DSP563xx is an especially good choice for 
applications that require 16-bit support for some functionality, but 
need the extra resolution of 24 bits for other functions. 

DSP563xx code written in 16-bit arithmetic mode runs without 
modification on Motorola s DSP566xx processor. The DSP566xx 
includes the same 24-bit instruction set as the DSP563xx, but has a 
true 16-bit data path. 

The 16-bit arithmetic mode should not be confused with the 
DSP563xx 16-bit compatibility mode. The former limits the 
DSP563xx data path resolution to 16 bits. The latter limits the 
width of the DSP563xx address generation registers and address 
buses to 16 bits to preserve backward compatibility with DSP560xx 
code, which assumes a 16-bit address space. The two modes may be 
selected independently. The 16-bit compatibility mode is discussed 
in the Instruction Set section. 

Memory System 

The DSP563xx architecture divides memory into three spaces: program space (P), 
X data space, and Y data space. Each memory space has a separate 24-bit on-chip address 
bus and 24-bit on-chip data bus, as shown in Figure 7.7-1. Ad~itionally, each memory 
space is associated with one or more dedicated banks of on-chip ROM or RAM. 

The three memory spaces with their dedicated data and address buses allow 
DSP563xx processors to make three memory accesses per instruction cycle without the 
use of a cache. The on-chip program memory permits one instruction fetch per instruction 
cycle, while the on-chip data memories permit up to two reads, two writes, or one write 
and one read per instruction cycle. Thus, when the processor is executing at 100 MHz, the 
maximum sustainable on-chip data memory bandwidth is 200 24-bit Mwords/second. This 
memory bandwidth, coupled with the processor's instruction set, also allows single-cycle 
double-precision (i.e., 48-bit) transfers between memory and accumulators, facilitating 
extended-precision arithmetic. 

As mentioned previously, the on-chip data memory is accessible from two inde­
pendent buses. One of these buses is owned by the processor and the other by the DMA 
controller. The memory is divided into partitions of 1024 words on the DSP56311 and 256 
words on the other DSP563xx processors. Although in general the data memory can sup­
port two operations simultaneously, each partition can only support one operation. Hence, 
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the data memory can be accessed by DMA in parallel with accesses by the processor core 
as long as the locations addressed do not lie in the same partition. 

All DSP563xx processors feature the ability to configure a portion of on-chip pro­
gram RAM as a 1Kx24 eight-sector least-recently-used instruction cache (a 2Kx24 cache 
is also available as a factory mask-programmable option). When the cache is enabled by 
setting a bit in the DSP563xx operating mode register, the processor allocates a 1 K word 
contiguous block of program memory for the exclusive use of the cache. Each of the eight 
128-word cache sectors corresponds to a contiguous region of external memory 128 words 
long. Software instructions can load and lock each sector to obtain deterministic execution 
for real-time applications. When the cache's burst mode is selected, the cache automati­
cally reads up to four neighboring memory locations each time an in-cache memory loca­
tion is selected. The additional memory reads add wait states. 

The DSP563:xx cache burst mode is useful for applications that use 
DRAM. When using an external DRAM for both program and data 
memory, an instruction may generate a cache miss (i.e., program 
fetch) from one page in external DRAM, followed by a data move 
from a different DRAM page. Since programmers often store pro­
gram instructions and data values in different DRAM pages, this 
scenario is common. Because the access time to DRAM for an 
in-page access is typically much shorter than out-ofpage access, 
the above sequence of out-of-page accesses reduces memory band­
width. Programmers can overcome this problem by using the 
DSP563:xx cache burst mode. In bur~t mode, the cachefetches up to 
four consecutive program instructions while postponing the data 
transfers. Therefore, one out-of-page access is followed by up to 
three in-page accesses. This scheme minimizes out-of-page DRAM 
accesses in many situations. 

Motorola claims cache hit rates over 90% when running a full-rate 
GSM vocoder from external memory, even when up to four of the 
cache sectors are disabled. However, as explained in the external 
memory section, a minimum one-cycle delay is incurred when code 
stored in external memory is loaded into the cache on the first exe­
cution. Programmers should be cautious when relying on cache 
performance for. critical real-time routines. In some applications, 
programmers may choose to disable the instruction cache and use 
DMA (discussed in the peripheral section) to pre-load the program 
memory used by the cache. Because DMA operates without the 
core s intervention, pre-loading program memory requires little 
overheard, but programmers must know which sections of program 
code to load. 
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The instruction cache may be useful in reducing system cost. Pro­
grammers can select a DSP563xx family member with just enough 
on-chip RAM to hold critical real-time code. The cache can then be 
used to speed execution of non-real-time code, such as controlfunc­
tions, which can be placed in relatively inexpensive external 
DRAM. However, relying on the cache for execution speed can 
make it difficult to use some of the less expensive family members, 
since they have little on-chip program RAM from which to subtract 
a cache. In this case it is a significant disadvantage that the instruc­
tion cache is created by sacrificing a significant portion of the 
available on-chip program RAM. 

Effectively using the instruction cache requires careful application 
profiling to determine when and how frequently code is executed. 
Motorola provides application profiling capabilities in its develop­
ment tools. The cache is also modeled 'in the DSP563xx simulator. 

DSP563xx memory configurations are shown in Table 7.7-2. 

External Memory Interface 

The DSP563xx external memory interface, called an "expansion port" by Motor­
ola, provides one 24-bit data bus and one 24-bit address bus. The internal buses are multi­
plexed onto these external buses. Read, write, and four independent program/data strobes 
are provided, enabling glueless interface with up to four types of external memory and 
peripherals at a time. Synchronous static memory (SSRAM), static memory (SRAM), and 
dynamic memory (DRAM) are supported. The external memory interface supports 
page-mode DRAM and includes an internal refresh generator. 

The DSP563xx external memory interface is especially flexible. The 
glue less interface to many memory types and DRAM refresh gener­
ator may reduce system cost and lower component count in some 
applications. 

A memory space (X, Y, or program) may be split across two or more of the pro­
gram/data strobes to allow mapping the space to multiple memory types. Using 
zero-wait-state synchronous static memory, the processor can perform one external mem­
ory data move per instruction cycle yielding a maximum off-chip data memory bandwidth 
of 100 24-bit Mwords/sec for a 100 MHz DSP563xx. Pipeline effects delay instruction 
fetches from external memory by one cycle, unless the instruction is already loaded into 
the on-chip instruction cache. Thus, the processor can fetch one instruction from 
zero-wait-state external synchronous static memory every two instruction cycles. 

The pipeline stall incurred when accessing external program mem­
ory is a disadvantage. In some applications, this problem can be 
mitigated by effective use of the instruction cache or of overlays 
using DMA. 
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The DSP563xx supports programmed and externally requested wait states. In the 
programmed case, each memory space strobe can be independently configured for 0 to 31 
wait states; each wait state is one master clock cycle long. In the externally requested case, 
the processor delays external memory accesses if an external bus wait pin is asserted. 

The external memory interface provides handshake lines useful in creating 
shared-memory multiprocessor systems. Bus request, bus grant, bus busy, bus lock, and 
memory select pins allow external devices to share the processor's external memory. 

X Memory YMemory Program Memory 
Processor 

ROM RAM ROM RAM ROM RAM 

2.0K 2.0K 4.0K 
DSP56301 [1] - - -

3.0K 3.0K 2.0K 

2.0K 2.0K 4.0K 
DSP56303[1] - - -

3.0K 3.0K 2.0K 

8.0K 8.0K 48.0K 
DSP56307[1] - - -

24.0K 24.0K 16.0K 

5.0K 5.0K 24.0K 
DSP56309[1] - - -

7.0K 7.0K 20.0K 

16.0K 16.0K 96.0K 
DSP56311 [1] - - -

48.0K 48.0K 32.0K 

5.5K 5.5 K 3.0K 
DSP56362[1] 6.0K 6.0K 30.0K 

5.5K 3.5K 5.0K 

1.0K 1.5K 0.5K 
DSP56364 - - 8.0K 

1.0K 0.5 K 1.5 K 

13.0K 7.0K 3.0K 
DSP56366 32.0K 8.0K 40.0K 

8.0K 5.0K lO.OK 

TABLE 7.7-2. DSP563xx processor memory summary. All sizes are in 24-bit 
words and are rounded to the nearest 0.5 K. All family members support multiple 
memory configurations, selectable by writing to mode registers in software. 
Instruction caches are assumed to be disabled; enabled caches consume 1 
Kword of program RAM. 
[1] Other intermediate configurations also possible 
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The DSP563xx provides atomic bit test-and-set, test-and-clear, test, and 
test-and-toggle operations. In addition to bit manipulation functions, these instructions can 
be used to provide resource locking in multiprocessor systems. 

Address Generation Units 

The DSP563xx supports immediate data and register-direct, memory-direct, and 
register-indirect addressing modes. The processor also supports short-address versions of 
some modes for certain instructions. 

For register-indirect addressing, DSP563xx processors provide two address gener­
ation units. Addresses generated by these units can be used to access X, Y, and P memory. 
Base addresses come from any of eight 24-bit address registers, RO-R7, although instruc­
tions requiring simultaneous access to both X and Y memory must use one address regis­
ter from RO-R3 and the other from R4-R7. 

Each address register has an associated 24-bit modifier register (NO-N7) that holds 
an offset for indexed addressing or an increment value for post-modification of an address 
register. Some move instructions support indexed register-indirect addressing with imme­
diate short and immediate long indexing. Additionally, each address register has an associ­
ated 24-bit modulo buffer length register (MO-M7) that can be used for modulo and 
bit-reversed addressing (Motorola calls these registers modifier registers). Modulo buffers 
may be between 2 and 32768 words long, but the base address must be a multiple of 2k, 
where k is a positive integer, and the length of the buffer, M, is less than or equal to 2k. 

Supported address register update modes for indirect addressing are post-incre­
ment and post-decrement by one, post-increment or post-decrement by the associated 
modifier register, and pre-decrement by one. The pre-decrement-by-one mode and the 
indexed addressing mode require an additional instruction cycle. 

Pipeline 

DSP563xx processors use a seven-stage pipeline divided into fetch 1, fetch 2, 
decode, address generation 1, address generation 2, execute 1, and execute 2 stages. The 
processor uses interlocking to resolve pipeline conflicts. Because interlocks can slow code 
execution, programmers should avoid them whenever possible. Several conditions can 
cause interlocks. The most significant are: 

• If an accumulator is the destination operand of an ALU· operation, then a conflict 
occurs if the accumulator is the source operand of a move operation in the follow­
ing instruction cycle. The processor will delay the following instruction by one 
instruction cycle to resolve this conflict. For example, the second instruction in the 
example below will be delayed for one instruction cycle. 

MAC XO,XO,A 

MOVE A,X: (RO) + 

When writing compact code, programmers will have difficulty 
avoiding all instances of the above interlock condition. Program-
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mers should budget for some pipeline stalls when estimating cycle 
count requirements. The assembler flags pipeline stalls as an aid to 
programmers. The profiler also provides statistics on which rou­
tines have the most stalls so that programmers can select code sec­
tions to optimize. 

• Updates to address generation register sets (the address register, modifier register, 
and modulo buffer length register) take effect on the fourth instruction cycle fol­
lowing the update. If the updated register set is accessed before the fourth cycle, 
the processor delays the offending instruction one to three· instruction cycles to 
resolve the conflict. For example, the third instruction in the example below will 
be delayed for two instruction cycles. 

MOVE #$ADDR,RO 
CLR A 
MOVE X: (RO) +, Yl 

Most DSP563xx ALUIMAC instructions are pipelined to allow a new instruction 
to begin on each instruction cycle. Instructions that use a second 24-bit instruction word to 
hold an address or immediate data and instructions that change program flow require mul­
tiple instruction cycles. In particular: 

• Single and multi-instruction repeat loops (REP and DO) require five instruction 
cycles. 

• Branches and other change-of-flow instructions require three to five instruction 
cycles. 

• All two-word instructions require an additional instruction cycle for the program 
controller to fetch the second instruction word. 

Instruction Set 

DSP563xx registers and instruction set are summarized in Tables 7.7-3 and 7.7-4, 
respectively. The DSP563xx instruction set is a superset of the DSP560xx instruction set. 
With the exception of processor-specific 110 or peripheral control code, the DSP563xx is 
object-code compatible with DSP560xx code when the 16-bit compatibility mode is 
enabled by setting a bit in a mode register. In 16-bit compatibility mode, move operations 
to and from the address generation registers or the program control registers clear the eight 
most-significant bits of the destination. Since the DSP560xx family only supports 16-bit 
address generation and program control registers, clearing the eight most-significant bits 
ensures that DSP560xx object code will run correctly. 

Sixteen-bit compatibility mode should not be confused with 16-bit 
arithmetic mode. See the Data Path section for an explanation of 
16-bit arithmetic mode. 

Although DSP560xx code must be re-optimized to take full advan­
tage of the DSP563xx's performance, the ability to run unaltered 
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DSP560xx object code on the DSP563xx provides an easy software 
migration path. 

With the exception of a few differences in instruction sets and instruction execu­
tion restrictions, DSP563xx object code also runs on the DSP566xx, the 16-bit version of 
the DSP563xx. 

Typically, unmodified DSP560xx code requires more instruction cycles when run­
ning on the DSP563xx than when running on the DSP560xx because of pipeline stalls and 
the higher instruction cycle counts of change-of-flow instructions on the DSP563xx. Opti­
mizing DSP560xx code by adding new DSP563xx instructions and minimizing pipeline 
interlocks can usually lower the instruction cycle count. Of course, the instruction execu­
tion rate of the DSP563xx is twice that of the DSP560xx operating at the same master 
clock rate. 

Motorola asserts that the DSP563xx offers more than twice the per­
formance of the DSP560xx at the same clock speed. This claim is 
based on the doubled instruction execution rate, the addition of new 
instructions, and the addition of DMA. While the DSP563xx well 
outperforms the DSP560xx, the claim of more than 100% improve­
ment in execution time (when comparing processors rated for the 
same clock speed) ignores the inevitable complications of a deep 
pipeline, such as increased cycle counts on change-of-flow instruc­
tions, and is overstated. Only code that makes extensive use of new 
DSP563xx instructions, such as multi-bit shifting instructions or 
DMA, gains more than 2X improvement. Typical code gains less 
than a 2X improvement in execution time. 

Registers Width Purpose 

A,B 56 bits[1] Accumulators 

XO, Xl, YO, YI 24 bits[2] General~purpose/lnput registers 

RO-R7 24 bits[3] Address registers 

NO-N7 24 bits[3] Modifier registers 

MO-M7 24 bits[3][4] Modulo buffer length registers 

TABLE 7.7-3. DSP563xx register summary. 
[1) In 16-bit arithmetic mode, these registers are 40 bits wide. 
[2) In 16-bit arithmetic mode, these registers are 16 bits wide. 
[3] In 16-bit compatibility mode, these registers are 16 bits wide. 
[4) Although the registers are 24 bits, only the first 16 bits are used for modulo addressing. 
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Assembly Language Format 

DSP563xx anthmetic instructions are divided·into three parts: a MAC/ALU field, 
an X data bus move field, and a Y data bus move field. The MAC/ALU field describes the 
arithmetic operation to be performed (e.g., multiply-accumulate, shift, logic operation, 

Class Instructions 

Add and subtract with ALU register or immediate operands, add with 

Arithmetic 
carry, shift left/right one bit and add, subtract with borrow, shift left/right 
one bit and subtract, negate, clear, increment, decrement, round, absolute 
value 

Multiply, multiply-accumulate, and multiply-subtract, with or without 
Multiplication rounding and with ALU register or immediate operands; support for dou-

ble-precisionand signed or unsigned operands 

Logic And, or, and exclusive-or with ALU register or immediate operands, not 

Shifting Arithmeticllogical shift left/right 0-56 bits 

Rotation Rotate left/right one bit 

Conditional Conditionally transfer data between selected registers, conditionally exe-
Execution cute ALU o~eration 

Compare, compare magnitude, test accumulator for zero value, signed 
Comparison com~are, unsigned com~are. transfer maximum, transfer maximum mag-

nitude. com~are with immediate value 

Looping 
Single- and multiple-instruction hardware loop, do forever loo~, condi-
tionally exit do loo~ 

Conditional and unconditional branch with absolute or PC-relative 
Branching addressing, branch on bit set/clear with absolute or PC-relative address-

ing 

Subroutine Call 
Conditional and unconditional call with absolute or PC-relative address-
ing, calion bit set/clear with absolute or PC-relative addressing 

, 
Bit Manipulation Bit set, clear, test, toggle; bit field insert, re~lace, and merge 

Special Function 
Iterative normalization, fast normalization, division iteration, ex~onent 
detect. Viterbi shift left 

TABLE 7.7-4. DSP563xx instruction set summary. New instructions (relative to the 
DSP560xx) are underlined. 
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etc.) using an opcode-operand fonnat, while the data bus move fields describe up to two 
memory accesses that occur in parallel with the instruction. For example, the instruction: 

MAC XO, YO,A X: (RO) +, xo Y: (R4) +N4, YO 

multiplies XO and YO together and accumulates the result in the A accumulator, loads reg­
ister XO from the X memory location pointed to by register RO, loads register YO from the 
Y memory location pointed to by R4, post-increments RO by one, and post-increments R4 
by the contents of N4. 

Parallel Move Support 

Most DSP563xx ALU instructions support operand-unrelated parallel data moves. 
That is, parallel data moves may be unrelated to the arithmeticlMAC instruction being 
executed. The allowed parallel moves are immediate short data move, register-to-register 
data move, address register update, X memory data move, X memory and register data 
move, Y memory data move, register and Y data move, long memory data move, and X 
and Y data move. The X and Y data move, which may be two reads, two writes, or a read 
and a write, allows a new data sample and coefficient to be loaded while a filter MAC 
instruction is executing. 

DSP563xx parallel move support is very flexible. 

Orthogonality 

The DSP563xx family uses a 24-bit instruction word, which provides good orthog­
onality. For example, in the arguments to the MAC instruction above, the programmer can 
choose any two registers from XO, Xl, YO, and Yl as the source operands for the multiply, 
and either A or B as the destination accumulator. Similarly, in each of the parallel moves, 
RO through R7 (RO through R3 for one move, R4 through R7 for the other move) could 
have been used with any addressing mode to load the source operand, and either XO, Xl, 
YO, or Yl could have been the destination of either move. While the processor's instruc­
tion set is not totally orthogonal, the above example illustrates the relatively high level of 
orthogonality. 

Execution Times 

Most DSP563xx ALUIMAC instructions execute in a single instruction cycle if 
pipeline interlocks are avoided. Most two-word instructions execute in two instruction 
cycles. Branch and other change-of-flow instructions execute in three to five instruction 
cycles. 

Instruction Set Highlights 

The DSP563xx provides special instructions for the following operations: 

• The Viterbi shift left instruction saves the most-significant 16 bits of an accumula­
tor to a specified address in X memory, shifts the least-significant 16 bits one bit to 
the left, inserts a zero or one into the least-significant bit according to an operand, 
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and saves the shifted lower 16 bits to the same specified address in Y memory. 
This instruction greatly increases the speed of Viterbi decoding. 

• Atomic bit test-and-set, test-and-clear, test, and test-and-toggle. In addition to 
bit-manipulation functions, these instructions can be used to provide resource 
locking in multiprocessor systems. 

• Variable width (up to 24 bits) bit-field extract and replace; merge two 12-bit 
half-words. 

• Conditional arithmeticnogic instruction execution. 

• Magnitude compare. 

• Maximum and maximum magnitude transfer. These instructions compare the val­
ues in the accumulators and transfer the value in one accumulator to the other 
accumulator if it is greater (or has a greater magnitude in the case of the maximum 
magnitude transfer). 

• Division iteration. 

• Two-instruction normalization, achieved by following an exponent detect instruc­
tion with a multi-bit normalization function. 

Execution Control 

Clocking 

The internal master clock on all DSP563xx processors runs at the same speed as 
the processor's instruction execution rate. All DSP563xx processors feature an on-chip 
phase-locked loop (PLL) frequency synthesizer for clock generation. The PLL allows the 
processor's master clock to be generated from an external source. The PLL includes a pro­
grammable pre-divider, clock multiplier, and divider. The divider may be modified with­
out losing PLL lock. Thus, to reduce power consumption, programmers may lower the 
clock speed via software when theprocessor is not being used intensively. 

Hardware Looping 

The DSP563xx provides two instructions for hardware loops: REP and DO. The 
former repeats a single one-word instruction, while the latter repeats a block of instruc­
tions. In both cases, loops can be repeated from 0 to 65,535 times. Additionally, the DO 
FOREVER instruction repeats code fragments indefinitely. The DO loop can repeat a code 
fragment as large as program memory. 

DO loops are nestable. Each DO loop uses two words of stack space, so if the stack 
is otherwise empty, seven DO loops can be active simultaneously. More than seven DO 
loops may be nested by enabling the optional stack extension discussed below. REP loops 
may be nested within a DO loop, but REP loops cannot be nested within another REP 
loop. 

REP loops are not interruptible, but DO loops are. 
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REP and DO instructions require five instruction cycles for setup. 
In applications with many nested blocks of code, this setup time 
becomes part of the inner loops and can slow down the application. 

Interrupts 

All DSP563xx processors have external reset and non-maskable interrupt lines. 
The DSP563xx provides five general-purpose external interrupt lines. The programmer 
can configure each general-purpose interrupt pin as either edge- or level-sensitive. 

Interrupts generated by DSP563xx on-chip peripherals include interrupts associ­
ated with the host interface, enhanced asynchronous serial interface, serial communica­
tions interface, DMA controller, and timers. 

The four internally generated interrupts are stack error, debug event (discussed in 
the On-Chip Debugging Support section), software interrupt, and illegal instruction trap. 

Each interrupt source has its own interrupt vector. A vector base address register 
can be used by the programmer to place the interrupt vectors anywhere in program mem­
ory. Interrupts are prioritized and automatically nestable. The processor supports four 
interrupt priority levels, 0 through 3. The processor's interrupt priority level can be set to 
mask out interrupts at or below levels 0, 1, or 2. Level 3 interrupts, which include all of the 
internal interrupt sources as well as RESET and NMI, are non-maskable. The programmer 
can assign priorities to each class of interrupts (e.g., all host interface interrupts) on a 
class-by-class basis via an interrupt priority register. 

DSP563xx processors respond to interrupts by fetching two instructions at the 
appropriate interrupt vector (a vector base address register maps the interrupt vector table 
to a specified location in program memory). If neither of these instructions is a 
jump-to-subroutine (JSR) instruction, the interrupt is classified as "fast." When a fast 
interrupt is processed, the instructions at the interrupt vector location are inserted into the 
processor's execution pipeline without any saving of context. Fast interrupt routines typi­
cally are used to move one or two data words between a peripheral and memory. 

Fast interrupts can significantly speed execution time by eliminat­
ing the overhead neededfor normal interrupt processing. However, 
use of fast interrupts to move data between peripherals and mem­
ory requires dedicating one of the processor's eight address regis­
ters to hold the source or destination memory address. This can 
complicate programming by reducing the number of registers avail­
able to the rest of the application. Thus, programmers typically 
choose fast interrupts for processing frequent interrupts, such as 
serial liD, in which the overhead saved justifies dedicating a regis­
ter. DMA may also be used to process frequent interrupts. 
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If one of the two instructions in the interrllpt vector contains a ISR instruction, a 
"long" interrupt service routine ensues. The processor saves the PC and status register on 
the stack, resets some status bits, and begins execution at the address specified by the ISR. 

Assuming the processor is in an interruptible state, fast-interrupt latency is 11 
instruction cycles from when the interrupt line is asserted to execution of the fIrst word of 
the two-word interrupt service routine. Because long interrupts must perform a subroutine 
call, they require 14 cycles before the first word of the service routine is executed. 

In both the fast- and long-interrupt cases, all other interrupts, regardless of their 
priority, are disabled for 11 instruction cycles after an interrupt is recognized as pending. 

Motorola DSP563xx interrupt support (with multiple interrupt pri­
orities and automatically nestable interrupts) is extremely flexible. 

Stack 

DSP563xx family processors feature a 15-level hardware stack for subroutine 
calls, long interrupts, and hardware DO loops. Programmers may expand the hardware 
stack to any depth by allocating a block of data memory for use as a stack extension. After 
a stack push that fills the last word of.the hardware stack, the least-recently used stack 
word is moved to the stack extension area of memory. Assuming on-chip memory is used 
for the stack extension, the move adds two instruction cycles to the push instruction. Like­
wise, after a stack pop retrieves a word from the top of the hardware stack, the 
next-most-recently used stack word is automatically copied from the stack extension to 
the hardware stack. 

Each stack level is composed of two 24-bit words and can store both the program 
counter and the status register. DO loops use two stack levels per invocation, while sub­
routine calls and long interrupts use only one. A stack exception trap occurs on stack over­
flow or underflow. 

Bootstrap Loading 

DSP563xx processors support a wide variety of bootstrap modes. The state of 
mode select pins following reset determines the bootstrap mode. The DSP563xx can boot 
through the external memory interface, the serial control interface, or the host interface. 

Peripherals 

All current DSP563xx processors provide a six-channel DMA controller, a syn­
chronous serial port, and on-chip debugging support. Most also provide a host interface, 
an asynchronous serial port, and three timers. Unused host interface pins, timer pins, or 
serial interface pins can be configured as general-purpose I/O pins. In addition, newer 
DSP563xx family members provide specialized peripherals to enhance their use for cer­
tain applications. Examples are the DSP56307, which includes a filter co-processor to 
allow general filtering operations to be off-loaded from the DSP core for wireless infra-
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structure applications, and the DSP56362, which has specialized audio interfaces to sup­
port its use in consumer audio applications. 

• DMA controller 
The six-channel DMA controller allows transfers of data between any combination 
of on-chip or external memory locations without the processor core's intervention. 
Since the DMA controller has dedicated address and data buses, and internal mem­
ory supports two accesses per cycle, internal DMA transfers do not interfere with 
the core as long as the accessed memory addresses do not lie in the same partition 
of memory. Bus allocation conflicts between two or more DMA channels, or 
between a DMA channel and the core during an external transfer, are resolved 
using programmable priority levels. This priority level can be independently set at 
one of four levels for each DMA channel. Internal transfers require two instruction 
cycles per word, and external transfers require two instruction cycles per word plus 
any needed wait states. A DMA channel on the DSP563xx can target only one 
memory space (X, Y, or P) at a time. It is not possible to configure a double-word 
transfer to two different memory spaces using only one DMA channel. 

Since a single DMA channel on the DSP563xx can target only one 
memory space at a time, and an efficient FFT implementation 
makes use of address-aligned data in both the X and Y memory, it is 
usually necessary to use two DMA channels to efficiently transfer 
FFTdata. 

Each DMA channel has its own control register set. The control registers may be 
configured to interrupt the processor when a transfer is complete. The control reg­
isters can also be configured to allow a variety of addressing options. Any periph­
eral event (data buffer full or empty) can trigger a DMA transfer. DMA channels 
support several trigger conditions, including trigger per b~ock transfer and trigger 
per word transfer. 

The DSP563xx DMA controller has especially flexible addressing 
options. For example, the DMA control registers can be configured 
so that a DMA channel will access consecutive memory locations a 
given number of times, and then jump forward by a given offset 
value. This is useful for processing two- and three-dimensional 
arrays. 

Because the DSP563xx has memory-mapped peripherals, DMA can 
be used to transfer data to and from peripherals. When peripherals 
are selected as DMA request sources, DMA may be used to service 
routine YO transfers. 

• Host port 
The DSP56301 host port (called the ID32) is a 32-bit parallel host port. The host 
port can be configured for compatibility with and glueless interface to the Periph-

\ 
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eral Component Interconnect (PCI, revision 2.1) bus. Alternatively, it can be con­
figured as a "universal" bus interface, or as general-purpose bit I/O pins. In the 
universal bus mode, the host port supports 8-, 16-, or 24-bit data transfers. Unused 
host port pins may be programmed as bidirectional bit I/O pins. 
When configured in PCI mode, the host interface can act either as a PCl bus master 
or as a target (slave) device. Separate control registers and data buffers for the 
master and slave modes allow the programmer to switch modes with minimal 
reconfiguration. The DSP56301 supports data bursts of unlimited length. Longer 
data bursts minimize the proportion of data transfer time dedicated to address gen­
eration and bus arbitration, allowing the bus data transfer rate to approach the the­
oretical maximum of 132 Mbytes per second. Because the DSP56301 native word 
length is 24 bits, the host interface can extend 24-bit data with sign extension or 
zero fill to complete a 32-bit word. Alternatively, two 16-bit words may be trans­
ferred as one 32-bit word on the PCI bus. The DSP56301 PCI mode supports both 
3.3-volt and 5.0-voltsignaling environments. 

Because of the fast data transfer rate and the "plug and play" 
capability of the PCI bus, the PCI standard has become common on 
PC motherboards. Thus, the DSP563xx s glue less inteiface with the 
PCI bus is an advantage in many PC motherboard and expansion 
card applications. 

All other DSP563xx family devices have an 8-bit host interface (called the HI08). 
This interface is a less flexible derivative of the HI32, and does not support PCI 
mode. The HI08 is designed to provide glueless interface to a variety of multi­
plexed and non-multiplexed buses. The DSP56362/366 processors come with 
DMA support for the HI08 (called the HOI08) that allows an external DMA con­
troller device.to be connected to the HDI08 on the host side which allows 8-, 16, 
and 24-bit DMA mode bidirectional data transfers. In addition, the 
DSP56362/364/366 each have a serial host interface with support for 8-, 16, and 
24-bit data transfers. 

• Synchronous serial port 
The synchronous serial port (called the ESSI, or enhanced synchronous serial 
interface port) supports 8-, 12-, 16-, or 24-bit words at a maximum bit rate of 
one-third the processor core's master clock frequency. One receiver and three 
transmitters may operate simultaneously with either an internally generated or 
externally supplied clock, the maximum frequency of the internally generated 
clock being one-fourth the core frequency. This clock can be divided by eight and 
further divided by a programmable 8-bit linear Clock divider. The ESSI transmis­
sion can be divided into up to 32 time slots for use in time-division-multiplexed 
(TOM) networks. The ESSI also supports an asynchronous on-demand burst 
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mode. All DSP563xx family members include two independently controlled ESSI 
ports, each with its own clock generator. 
The ESSI port differs from the SSI port found on the DSP560xx and DSP566xx in 
several ways. The ESSI port supports DMA, allows faster external clocking for 
higher throughput, contains slot mask registers to simplify use in time-divi­
sion-multiplexed networks, supports external memory frame buffers, and contains 
three transmitters. 

The three ESSI transmitters are useful in multi-channel audio and 
other applications that require multiple output channels. 

The ESAI (Enhanced Serial Audio Interface) port found on the DSP5636x proces­
sors is a superset of the ESSI port. The ESAI port has six I/O pins, all of which can 
be configured for transmit. This allows the DSP56362 and DSP56364 to support 
six-channel audio standards such as AC-3 (Dolby Digital), MPEG-2, and Digital 
Surround (DTS) while having only a single ESAI port. The DSP56366 has two 
independent ESAI ports. 
The DSP5636x processors also have a separate synchronous serial port called the 
serial-host interface (or SRI). This port is compatible with both the SPI 
(serial-peripheral interface) and I2C bus protocols. It can be programmed either as 
a master or a slave on the bus. 

• Asynchronous serial port 
The SCI asynchronous serial port on some family members is intended primarily 
for asynchronous serial communications, but can also be used as an 8-bit synchro­
nous serial port using a gated clock for frame sync. The maximum clock speed for 
both the internally generated and externally supplied clock is one-fourth the core 
frequency. In asynchronous mode, the SCI port supports 10- or ll-bit words (one 
start bit, eight data bits, optionally one parity or data/address bit, and one stop bit). 
If an external 16X clock is available for connection to the SCI port's clock pin, 
then the SCI port can generate a transmit clock that is of a different speed from the 
receive clock. Otherwise, the transmit and receive clocks must be the same and can 
be internally generated or externally supplied. 

• Timers 
All DSP563xx family members other than the DSP56364, feature three 
timer/counters, each with its own input/output pin. In the standard timer mode, the 
timers share a common clock, but are otherwise independent. The timer clock can 
be configured as the processor's master clock divided by two, or as the master 
clock prescaled by a programmed 21-bit linear value. This clock then increments 
each timer's 24-bit count register. When a timer's register reaches the programmed 
comparison value, the timer interrupts the DSP and reloads with the value in the 
corresponding load register. Other modes use the timer in conjunction with its I/O 
pin as an event counter, a watchdog timer, a period- or width-measuring device, or 
a pulse or square wave generator. 
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Multiple DSP 563xx peripherals frequently share the same set of 
processor 110 pins. For example, serial port pins can be used for 
either serial 110 or general-purpose 110. This is both an advantage 
and a disadvantage: it increases the device's flexibility, but if all 
peripherals are in use in configurations that use all its pins, the 
device essentially has no bit 110. 

• Filter co-processor 
The DSP56307 and DSP56311 contain a filter co-processor designed to accelerate 
performance in wireless infrastructure applications. The filter co-processor imple­
ments a variety of general filtering and convolution algorithms to off-load that pro­
cessing from the DSP core. 
The filter co-processor is interfaced as a memory-mapped peripheral. Mode regis­
ters define the function and parameters of the co-processor. To initiate co-proces­
sor operation, the programmer writes operands to a memory-mapped input 
register. The input is buffered by a 24-bit x 4-word buffering unit to allow multiple 
operands to be input before the previous operand has been processed. The co-pro­
cessor outputs the result in another memory-mapped register, buffered by a single 
24-bit register that must be retrieved by the processor core. The DMA controller 
can be used to move data to and from the co-processor, allowing the co-processor 
to operate with no intervention from the processor core. Alternatively, interrupts or 
co-processor mode register polling may be used to monitor the co-processor status, 
submit operands to the co-processor, and retrieve results. 

On-Chip Debugging Support 

A six-pin IEEE-1149.1 JTAG port allows access to the OnCE (On-Chip Emula­
tion) scan-based emulation/debugging interface. Through the OnCE interface, the user 
may examine or modify DSP registers or memory, set hardware breakpoints in both pro­
gram and data memories (on read, write, or instruction fetch), examine the instruction 
pipeline, and examine the last twelve change-of-flow instructions executed. Two break­
points can be placed on individual memory locations, memory intervals, or memory 
addresses equal, not equal, less than or greater than a given address. These breakpoints 
may be modified in software, allowing the programmer to set different breakpoints for dif­
ferent sections of code. 

In normal operation, the processor enters debug mode when a breakpoint is 
encountered. Debug mode halts the processor and allows the user to examine and modify 
the processor's internal register and memory values and to execute instructions by sending 
commands· to the OnCE port from a debugger. Alternatively, setting an interrupt mode 
enable bit in the OnCE control register causes the processor to execute the vectored inter­
rupt instead of entering debug mode. Thus, the breakpoint can be recognized and appro­
priately processed in software without halting the processor's operation. 
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The JTAG port can also be used for boundary scan. 

In addition, the DSP563xx features address tracing. By setting a bit in the OnCE 
Status and Control Register (OSCR), address of internal program fetch, decode and exe­
cute can be traced by accessing the external memory address bus (when this bus is not 
being used for external memory access). Thus, users can trace DSP563xx program execu­
tion in real time by monitoring the external memory address pins. 

Power Consumption and Management 

Motorola states that typical power consumption for the 3.3 V DSP56362 is 466 
mWat 100 MHz. For the 2.5 V DSP56307 running at 100 MHz, Motorola states that typi­
cal core power consumption is 333 mW. The DSP56311 at 150 MHz and 1.8 volts con­
sumes 189 mW. 

The DSP563xx includes two instructions, WAIT and STOP, that reduce processor 
power consumption. In WAIT mode, the clocks to the internal processor core are gated 
off, and activity in the processor is suspended until an unmasked interrupt, an external 
reset interrupt, or a DMA request occurs. Peripherals remain active in WAIT mode. The 
STOP mode gates off clocks to the processor core and disables peripherals and the on-chip 
oscillator until the processor is reset, interrupt request A pin ~s asserted, or a JTAG debug 
request occurs. Wake-up from STOP mode may take either 24 or 131,070 clock cycles, 
selectable by the programmer before executing STOP. If the on-chip oscillator is used to 
drive an external crystal, the longer wake-up period must be used to allow the oscillator to 
stabilize. STOP mode wake-up time can be further reduced to 8.5 clock cycles if the PLL 
and on-chip oscillator are not disabled, but power consumption rises. 

Motorola states that typical DSP56362 WAIT and STOP mode power consumption 
when running at 100 MHz and 3.3 volts is 25 mW and less than 1 mW respectively. 
Motorola states that WAIT and STOP mode power consumption for the DSP56307 is 13 
mW and less than ImWrespectively. 

All DSP563xx processors have a 3-bit clock divider register that allows the pro­
cessor to decrease its clock rate by a factor from 2° to 27 under software control, lowering 
power consumption proportionally. 

Benchmark Performance 

The DSP563xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8,BDTI 
BenchmarkTM Results. We summarize and analyze DSP563xx's benchmark performance 
in the paragraphs below. We ftrst discuss instruction cycle counts, which indicate the rela­
tive power of the processor's architecture. Note that instruction cycle counts do not reflect 
the processor's instruction cycle rate; therefore, lower instruction cycle counts imply a 
more powerful architecture, but do not imply faster speed. Next we discuss benchmark 
execution times and cost.;.execution time products, indicating processor speed and 
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cost-perfonnance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perfonn a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Execution Performance 

• Instruction cycle counts: Total nonnalized instruction cycle counts are shown in 
Figure 8.1-13. The DSP563xx total nonnalized instruction cycle count is some­
what above the average for fixed-point processors benchmarked. 
On the Real Block FIR benchmark, the DSP563xx cycle count is roughly 1.5 
times the average. The DSP563xx is a single-MAC machine, able to load two 
operands and perfonn one multiply-accumulate in one instruction cycle. Hence its 
cycle count is necessarily higher on this MAC-intensive benchmark, compared 
with dual-MAC processors such as the TMS320C62xx. Also for this reason, the 
cycle counts of the DSP563xx on the Complex Block FIR, LMS adaptive FIR, 
Vector Dot Product, Vector Add, and 256-point FIT benchmarks are above 
average. 
The DSP563xx achieves an average cycle count on the Two-Biquad IIR because 
the code to implement this benchmark is so short that cycle counts for almost all 
processors benchmarked lie within a fairly narrow range. 
The DSP563xx's maximum instruction and conditional move instruction give the 
processor an average instruction cycle count on the Vector Maximum benchmark, 
despite the fact that many of the other processors benchmarked can perfonn two 
comparisons in parallel. 
The DSP563xx has a fairly high instruction count on the Control benchmark 
because the processor requires thtee instruction cycles for each of the many branch 
instructions required by the benchmark. However, the Control benchmark is opti­
mized for memory usage, not instruction cycle count. 
DSP563xx instruction cycle counts for other benchmarks are unremarkable. 

• Execution times: Despite the DSP56311's relatively high 150 MIPS instruction 
execution rate, its high instruction cycle counts contribute to relatively slow exe­
cuting times, ranking the DSP56311 ninth among the twelve fixed-point proces­
sors benchmarked in tenns of total nonnalized execution time. This is illustrated in 
Figure 8.2-13. Still, given the wide range of total nonnalized execution times, the 
DSP56311 is close to average for fixed-point DSPs and is comparable to the other 
conventional DSP architectures benchmarked, such as the TMS320C5416. The 
150 MIPS DSP56311 has a BDTImark2000 score of 450. 

• Cost-execution time: The DSP56311 ranks worst among the fixed-point proces­
sors in tenns of total nonnalized cost-execution time. The DSP56311's total nor­
malized cost-execution time product is approximately 75% above the average for 
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fixed-point DSPs benchmarked, due to the DSP56311 's relatively high price of 
$48. 

• Energy consumption: The total normalized energy consumption of the DSP56311 
is about equal to the average for the 13 fixed-point processors benchmarked on this 
metric. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: The DSP563xx's total memory usage on the 
Control benchmark falls slightly below the average of all processors, as presented 
in Figure 8.5-9A. 

• Program memory usage: The total normalized program memory usage for the 
DSP563xx is about 30% below the average for all benchmarked fixed-point DSP 
processors. Program memory usage results are presented in Figure 8.5-13. 
The Vector Maximum benchmark on the DSP563xx has the lowest program mem­
ory usage for all processors benchmarked, thanks to special instructions for finding 
the maximum of two numbers and for conditionally executing a transfer between 
registers. 
The FFT benchmark on the DSP563xx has fairly low program memory even 
though the DSP563xx implementation unrolls the first two FFT passes into sepa­
rate code. 
The DSP563xx has fairly high program memory usage for the Viterbi benchmark. 
This is due to the small number of data registers. For the add-compare-select oper­
ation on the DSP563xx, operands must be re-fetched to perform successive adds 
and subtracts. Each re-fetch uses three bytes of program memory. On other proces­
sors with more data registers, the data can be fetched once and used several times. 
The relatively small number of data registers further means that a series of add and 
subtract operations in the Viterbi benchmark must be implemented as a set of 
macro calls instead of implementing these operations inside a loop. Other proces­
sors allow one loop to do such operations, resulting in lower program memory 
usage. 

• Data memory usage: The DSP563xx is the only processor analyzed here with 
24-bit data memory. The DSP563xx's constant and non-constant benchmark data 
memory usage is generally what is expected for a 24-bit DSP. Because it uses a 
24-bit data word instead of the 16-bit word used by other fixed-point processors, 
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the DSP563xx has the highest non-constant data memory usage among fixed-point 
processors. Similarly, in terms of constant data memory usage, the DSP563xx gen­
erally uses more memory than benchmarked 16-bit, fixed-point DSP processors 
because of its 24-bit data word. Constant and non-constant benchmark data mem­
ory usage is shown in Figure 8.5-14 and Figure 8.5-15. 

Cost 

Price and packaging options for the DSP563xx family of processors are summa­
rized in Table 7.7-5. 

Fabrication Details 

DSP563xx family members are all fabricated in 0.32 J.lm CMOS with three metal 
layers, except for the DSP56311, which is fabricated in 0.18 J.lm CMOS with four metal 
layers. 

Part 
Speed Voltage Package 

Price 
(MHz) (Qty. 10,000) 

100 3.3 208 TQFPor $43.50 
DSP56301 

80 3.3 252PBGA $34.80 

DSP56303 100 3.3 
144 TQFPI $18.801 
196PBGA $18.40 

DSP56307 100 2.5/3.3 196PBGA $51.90 

DSP56309 100 3.3 
144 TQFPI $27.801 
196 PBGA $32.20 

DSP56311 150 1.8/3.3 196PBGA $47.70 

DSP56362 100 3.3 144TQFP $11.88 

DSP56364 100 3.3 
100TQFPI 

$7.70 
100PBGA 

DSP56366 
120 3.3 144TQFP $16.35 

(general purpose) 

DSP56366 
120 3.3 144TQFP $17.15 

(with ROM decoders) 

TABLE 7.7-5. DSP563xx price and package summary for June 1, 2000. Data 
provided by Motorola. 
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Development Tools 

Motorola's development tools for the DSP563xx include an assembler, linker, 
instruction-set simulator, a GNU-based C compiler, and a GNU-based debugger. The 
UNIX versions of the tools are available for SunOS 4, Solaris, and HP-UX. PC-based ver­
sions of the tools are available for use with DOS, Windows 95, and Windows NT. 

Text-based and graphical interfaces are available for the simulator and the 
GNU-based debugger. The text-based interface is the same interface used on the 
DSP560xx tools since 1987. The graphical interface, released in late 1995, provides an 
ACSn command window for full backward compatibility with the text-based tools. 

Motorola's DSP563xx instruction-set simulator is a cycle-accurate, full-functional 
model that models all of the 110 pins of the devices. To facilitate code optimization, the 
simulator has application profiling capabilities. The simulator has a C-language proce­
dural interface that allows users to integrate the processor model into simulations of larger 
systems by writing C code to simulate the rest of the system or by linking the simulator to 
a general-purpose simulation environment. Third-party interfaces for the DSP563xx simu­
lator may be obtained for the Cadence SPW and Synopsys COSSAP high-level design 
environments. 

This simulator provides the user with unusual accuracy and flexi­
bility for creating system simulations. 

Motorola provides two forms of development hardware for the DSP563xx family. 
The ftrst are low-cost "evaluation modules" (EVM) containing either a DSP56303, 
DSP56307, DSP56309, DSP56362, DSP56364, or DSP56366 processor, memory, and 
digital audio codec. The second is a DSP56301 "application development system" (ADS), 
which can be used as an emulator through the addition of an emulator board (called a com­
mand converter) and computer add-in card. The EVM includes a debugger developed by 
Domain Technologies, while the ADS provides the same user interface as that of the 
instruction-set simulator. 

Motorola now provides a DSP563xx family function library through its website. 
This library contains a variety of math and signal processing routines, and like other 
Motorola tools, may be freely downloaded. 

Motorola provides documentation, application notes, and development software 
via its Internet site. 

Motorola distributes the latest version of its CIAS package on the 
Internet free of charge. The package contains an instruction-set 
simulator, assembler, linker, and librarian, and a C compiler. The 
ADS software may also be obtained free of charge through Motor­
ola s website. Development tool availability on the Internet simpli­
fies software upgrades and is an advantage. 
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Applications Support 

Motorola provides DSP563xx documentation through the DSP56300 Digital Sig­
nal Processor Family Manual. This volume discusses the DSP563xx core architecture, but 
doeS not discuss memory configurations or peripherals. These details are covered in 
smaller, variant-specific manuals such as the DSP56301 User's Manual. 

The DSP56300 Family Manual is well written, but suffers from the 
absence of an index and some needed detail. 

Although the DSP56311 is generally compatible with the other DSP563xx proces­
sors, it uses a completely different manufacturing process. This has resulted in small dif­
ferences between this processor and the other family members. These differences are 
outlined in the Motorola technical bulletin Changes in Process Technologies: Hardware 
and Software Design Implications for the DSP563xx Family Derivatives. 

Motorola provides applications support through the processor user's manuals, 
training classes, a website, and a newsletter. A telephone and Internet electronic mail hel­
pline for Motorola DSPs is also available. 

Few application notes are available for the DSP563xx. Motorola 
does, however, offer a good selection of application notes for the 
DSP563xx's predecessor, the DSP560xx. The DSP560xx notes are a 
good starting point for DSP563xx applications. 

A number of companies provide DSP563xx third-party support through boards 
and software. For example, Domain Technologies provides a OnCE port-based debugging 
system for the DSP563xx family. Other third-party vendors provide application and func­
tion software libraries, emulators, real-time operating systems, and development boards 
for the DSP563xx. Tasking offers a C compiler for the DSP563xx. 

Advantages 

• 24-bit data provides greater precision than 16-bit data 

• Orthogonal 24·bit instruction set 

• Instruction cache 
• Eight address registers with individual modifier and modulo buffer length registers 

• Virtually unlimited nested zero-overhead loops when stack extender used 

• Automatically nestable interrupts 

• Conditional execution of ALU operations 

• Exponent detect instruction 

• Barrel shifter 

• Bit manipulation instructions 

• Three internal clock/timers 
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• Good operand-unrelated parallel move support 

• On-chip PLL for clock generation 

• Clock divider 

• Three serial ports on most DSP563xx family members (except DSP56362) 

• Synchronous serial port supports TDM (except DSP56362) 

• Host port supports PCl (DSP56301) 

• Simulator models all I/O pins and can be interfaced to C programs 

• "Fast" interrupts 

• On-chip scan-based debugging/emulation and boundary scan via JTAG/OnCE port 

• Flexible external memory interface with page-mode DRAM support and internal 
refresh generation 

• Some· program memory may be designated as an instruction cache to accelerate 
external memory accesses 

• Six-channel DMA controller with separate on-chip address and data buses 

• Good power management features 

• Flexible bootstrap modes 

Disadvantages 

• Pipeline effects complicate code optimization and increase cycle count 

• Active instruction cache reduces available on-chip program memory 

• External memory program fetches cause a one-cycle pipeline interlock 
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7.S Motorola DSP56Sxx Family 

Introduction 

BDTlmark2000 Score: 
110 at SO MHz 

The Motorola DSP568xx family is based on Motorola's DSP56800 16-bit 
fixed-point conventional DSP core. Members of the DSP568xx family operate at a maxi­
mum of 40 MIPS at 80 MHz using a supply voltage of 3.0-3.6 volts (± 10%). The Motor­
ola DSP568xx processors are targeted at low-cost, low-power applications in wireless and 
wireline communications, and motion control, where both signal processing and control 
features are useful. Examples of these applications include digital messaging systems, RF 
modems, digital answering machines, and servo and motor control. 

The DSP568xx family was introduced in 1996. Its architecture and programming 
model are quite similar to those of the other conventional DSP processor families from 
Motorola, such as the DSP563xx. However, the instruction set of the DSP568xx has been 
enhanced and the core architecture has been simplified to increase its general-purpose 
microcontroller capabilities while maintaining many basic DSP features. In addition, the 
110 capabilities of the processor have been tailored to meet the requirements of both DSP 
and microcontroller applications. 

Currently, there are five processors in the DSP5(l8xx family: the DSP56824 and 
four new closely related members, the DSP56F801, DSP56F803, DSP56F805, and 
DSP56F807. The "F' in the chip names indicates the presence of on-chip Flash memory. 
DSP568xx family members are summarized in Table 7.8-1 

In October 2000, Motorola introduced the next generation of the DSP56800 archi­
tecture, the DSP56800E, which will be used as the basis for the DSP5685x family. This 
processor family is discussed in Section 7.9 of this report. 

At the time of its introduction, the DSP568xx was the first DSP pro­
cessor family that provides architectural as well as 110 features to 
address the needs of microcontroller applications. It is an interest-

Max. 
Data 

Data 
Program 

Program Program 
Part Speed 

RAM 
ROM RAM 

ROM Boot 
(MIPS) (*Flash) (*Flash) (*Flash) 

DSP56824 35 3.5Kx16 2Kx16 128x16 32Kx16 N/A 

DSP56F80l 40 lKx16 2Kx16* lKx16 8Kx16* 2Kx16* 

DSP56F803 40 2Kx16 4Kx16* 512x16 32Kx16* 2Kx16* 

DSP56F805 40 2Kx16 4Kx16* 512x16 32Kx16* 2Kx16* 

DSP56F807 40 4Kx16 8Kx16* 2Kx16 60Kx16* 2Kx16* 

TABLE 7.8-1. DSP568xx family members. 
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ing counterpoint to microcontrollers with DSP·enhancements, such 
as Hitachi's SH-DSP' 

Architecture 

Figure 7.8-1 illustrates the DSP568xx family architecture as typified by the 
DSP56824. 

Data Path 

The DSP568xx family's data path is based on a single-cycle 16 x 16 ~ 32-bit 
multiplier integrated with a 36-bit ALU. Two 36-bit accumulators, A and B, are provided, 
each with four guard bits for overflow protection. Both accumulators can be accessed as 
36-bit registers or as segments, where the segments include a 4-bit extension register (A2 

Memory 

Fixed-Point Program Data Address 
Program Data 

32Kx16 ROM 2Kx16 ROM 
Data Path Control Unit Generator 12Bx16 RAM 3.5Kx16 RAM 

A A 

Data (X) Address Bus 1 (16) 

I • 1~ '" 
Data (X) Address Bus 2 (16) I j • I • Externar 

I-'rogram (1"', I Aooress !:Sus (H') V Address Bus 

I r 
\jore ulODaI uata !:Sus - uata (X) uata !:Sus 1 (10) 

I f. A 16 '" 
uata (X) Data !:Sus (16) I ~/;> I • External 

I-'rogram (1"') uata !:Sus (16) Data Bus 

i 
t"enpneral uala !:Sus PO) I 

JTAG/ Serial Synch. Bus Switch/ 
OnCE Bit I/O Peripheral 

Serial Port Timers (4) Bit Manip. Ports (2) 
~ A~ All. A ~ 

Sit 16 4 4 6 2 v 
I 1, 1" V ~ 1" 

FIGURE 7.8-1. Motorola DSP56824 architecture. 
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or B2), a 16-bit most-significant register (AI or B 1), and a 16-bit least-significant register \ 
(AO or BO). Additionally, the data path provides three 16-bit data registers: XO, YO, and 
Yl. The data registers can be accessed individually, or the YO and Yl registers can be 
accessed as a single 32-bit register, Y. The inputs for the multiplier can come from regis­
ters XO, YO, or Yl, or from the 16-bit accumulator segments. The inputs for the ALU can 
come from the XO, YO, or Yl registers, from the 36-bit accumulators, from immediate 
operands, or from memory. ALU operations execute in a single cycle, assuming all oper­
ands are registers. Outputs from the MACI ALU unit may be written to either of the two 
accumulators or to registers XO, YO, or Yl. In addition, ALU outputs may be written 
directly to memory. 

The MAC/ALU unit together with the logic unit performs all multiplication, addi­
tion, subtraction, logical, and other arithmetic operations except shifting. Besides integer 
multiplication, the multiply-accumulate unit supports signed/signed and signed/unsigned 
fractional multiplication; unsigned/unsigned multiplication is not supported. The 
MAC! ALU unit features a carry bit supporting extended-precision arithmetic and 
rotate-through-carry operations. 

The support for signed/unsigned multiplication is an advantage. 
However, the lack of unsigned/unsigned multiplication complicates 
implemefltation of multi-precision arithmetic. 

The data path also includes an accumulator shifter and a 16-bit barrel shifter. The 
accumulator shifter is capable of performing arithmetic and logical single-bit leftlright 
shift and rotate operations either on a 36-bit accumulator or on 16-bit register operands. 
The barrel shifter is capable of performing 1- to. 16-bit .arithmetic and logicalleftlright 
shifts in a single instruction cycle. The barrel shifter operates on 16-bit data, and its result 
may be written to the XO, YO, or Yl registers, or to the A or B accumulators. 

The data path supports both convergent and round-to-nearest rounding via dedi­
cated rounding instructions. The type of rounding is selected by a bit in a mode register. 

The DSP568xx features saturation circuitry that is used to detect 36-bit accumula­
tor values whose magnitude will not fit in a 16-bit destination and to saturate the higher 
16-bit portion of the accumulator to a 2's compleme~t representation of ±1.0 when the 
value is transferred out of the accumulator. The saturation logic cannot be explicitly dis­
abled; however, it only takes effect when the whole 36-bit accumulator is used as a source 
operand in a MOVE instruction. In addition, the DSP568xx provides a 32-bit saturation 
mode that can be enabled via a mode bit. When the 32-bit saturation mode is enabled, 
ALU results will be saturated to the largest or smallest value representable using 32-bit 2's 
complement arithmetic. Note that this saturation mode is automatically disabled during 
shift and rotate operations, signed/unsigned multiplications, and logical operations. 

Bit manipulations on data memory words, peripheral registers, and all registers 
within the core are performed by a dedicated bit-manipulation unit that is capable of test­
ing, setting, clearing, or inverting any bits specified in a 16-bit mask. 
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Compared to most other low-cost DSP processors, the bit-manipu­
lation unit of the DSP568xx is powerful, improving the suitability of· 
the processor for control applications. 

Memory System 

The DSP568xx family employs a Harvard architecture which allows up to three 
simultaneous memory accesses: one instruction fetch per instruction cycle, and two data 
reads or one write per instruction cycle. Program (P) and data (X) memory have separately 
addressable memory spaces and separate on-chip program and data memories, each of 
which includes RAM and ROM. Although the program counter (PC) register is only 
16-bits, the program (P) memory address space is 19-bits; the upper three "extension bits" 
of the PC are stored in the Status Register. The data (X) memory address space is 16-bits. 
The first 128 locations of on-chip program memory are reserved for interrupt vectors, 
while the last 256 locations of on-chip data memory are reserved for memory-mapped 
peripheral registers. The DSP56F80x processors implement their program and data ROM 
in Flash memory, and include an additional2Kx16 program boot Flash. On-chip memory 
configurations for the DSP568xx family are shown in Table 7.8-1. 

Data memory is accessed via two separate 16-bit buses: the Core Global Data Bus 
(CGDB) and the Data (X) Data Bus 2 (XDB2) (refer to Figure 7.8-1). Only the Core Glo­
bal Data Bus can be used to access external data memory. When the processor is executing 
at 40 MIPS, the maximum sustainable on-chip data memory bandwidth is 80 million 
16-bit words/second for read operations and 40 million 16-bit words/second for write 
operations. 

The DSP56824 can execute most instructions from on-chip data memory as well 
as on-chip program memory, with the exception of instructions that read two operands 
from data memory. An extra instruction cycle is required for instructions that write to data 
memory and are executed from data memory. 

The ability to execute instructions from on-chip data memory can 
be convenient for patching a program "on-the-fly, " but executing 
from data memory will seriously impair the peiformance of the 
DSP568xx in most DSP applications due to the lack of dual parallel 
reads. 

External Memory Interface 

All of the DSP568xx processors except the DSP56F801 have an external memory 
interface (EMI) which consists of a 16-bit address bus and a 16-bit data bus. The 
DSP56F80 1 does not include an EM!. These buses are multiplexed between program and 
data memory accesses. Program/data and read/write strobes are used to specify the bus 
contents. One off-chip access can be made without penalty in a single instruction cycle, 
assuming zero wait states. Because only one of the two data (X) address buses is con­
nected to the external memory interface (see Figure 7.8-1), only one data memory access 
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to the external memory can be made by a single instruction. Thus, the second read in a 
dual parallel read must be made from on-chip memory. Assuming zero wait states, the 
maximum peak and sustainable external memory bandwidth is 40 million 16-bit 
words/second when the processor is executing at 40 MIPS. 

Although the program counter (PC), with its extension bits, can address 19-bits of 
program memory space, the external address bus of the EM! is only 16-bits. According to 
Motorola, a memory expansion interface would make it possible to take full advantage of 
the larger 19-bit internal program memory space and increase the size of the external 
memory from 64Kx16 to 512Kx16. This feature, however, does not appear on any of the 
current DSP568xx family members. 

To adapt the speed of the external memory interface to slower external memory 
elements, the processor supports programmable wait states. Program and data memory 
wait states can be independently configured, and specified as a value between 0 and 15 
clock cycles. Externally requested wait states are not available. 

The lack of externally requested wait states is a disadvantage and 
may complicate system design in some applications. The low-cost 
DSP56F801 may be unsuitable for some applications due to its lack 
of an external memory interface. 

Address Generation Unit 

The DSP568xx family supports immediate data, memory-direct, register-direct, 
and register-indirect addressing modes. The processor also supports 6-bit short immediate 
data and short memory-direct addresses for some instructions. 

For register-indirect addressing, the DSP568xx provides a single address genera­
tion unit containing a modulo arithmetic unit and an increment/decrement unit. In addi­
tion, the address generation unit contains four address registers, RO-R3, a modifier 
register, N, a modulo register, MOl, and a stack pointer register, SP. Addresses generated 
in the address generation unit are used to access both X and P memory. 

The modulo arithmetic unit is used for both linear and circular addressing. Sup­
ported register-indirect addressing modes include post-increment or post-decrement by 
one, by the contents of the modifier register, or no update; and indexed by the contents of 
the modifier register, by a 6-bit short immediate value, or by a 16-bit long immediate 
value. The software stack can be accessed using stack-pointer-relative indexing with 
immediate short (6-bit) or long (16-bit) index values. Pre-modifications ofthe address reg­
isters are not supported. 

Register RO or registers RO and R1 together can be assigned to operate under cir­
cular addressing. Hence, two circular buffers (both having the same size) can be simulta­
neously active. Circular addressing is enabled by loading the modulo register, MOl, with 
the size of the circular buffer minus one for modulo addressing on only RO, or the size of 
the circular buffer minus one plus Ox8000 for modulo addressing on RO and R1. In either 
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case the circular buffer size cannot exceed 16Kx16. The buffer must be aligned on an 
address that is evenly divisible by k, where k is the smallest power of two that is greater 
than or equal to the size of the circular buffer. When circular addressing is disabled (i.e., 
when linear addressing is used), register MOl must be loaded with OxFFFF. 

The increment/decrement unit performs only linear arithmetic and operates only 
on the R3 register when it is the second data address register in a dual parallel move 
instruction. The register-indirect addressing modes for this unit include post-increment 
and post-decrement by one. 

The address generation unit does not support bit-reversed addressing. 

The lack of bit-reversed addressing in the DSP568xx is a disadvan­
tage for some applications that use radix-2 FFTs. 

The DSP568xx supports a relatively rich set of addressing modes 
for a processor with a 16-bit instruction word. However, there are 
many restrictions regarding the use of these modes. 

Even though two circular buffers can be active at a time, only one 
circular pointer (RO or Rl) can be updated within a single instruc­
tion. This may complicate implementing some algorithm kernels 
with single-instruction hardware loops. 

The orthogonality of the instruction set is reduced by the fact that 
the second data address generated for a dual parallel read instruc­
tion must always come from register R3. This complicates program­
ming. 

Register-indirect addressing indexed by an immediate value can be 
effectively utilized by high-level language compilers for accessing 
local variables in the software stack. For example, add, subtract, 
increment, decrement, and move instructions accept stack oper­
ands. 

Pipeline 

The DSP568xx family of processors uses a three-stage pipeline, broken into fetch, 
decode, and execute stages. The pipeline is visible to the user in the following cases: 

• 

• 

• 

If an address register loaded by the immediately preceding instruction is used in 
the current instruction, the old value of the register is used. 

Modifications to certain mode registers usually take two instruction cycles to take 
effect. 

In the case of nested hardware DO loops, after the execution of the inner loop, and 
after retrieving the loop-counter (LC) and loop address (LA) registers from the 
software stack, there must be at least two instructions preceding the last instruction 
of the outer loop, otherwise the old values of the registers are used. 
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The pipeline effects of the DSP568:xx are minor compared to most 
other DSP processors. 

Instruction Set 

Tables 7.8-2 and 7.8-3 summarize DSP568xx registers and instructions, respec-

Assembly Language Format 

The DSP568xx assembler supports an opcode-operand style instruction format. 
For arithmetic instructions, the DSP568xx instruction set specifies an ALUIMAC opera­
tion and up to two parallel move instructions. For example: 

MACR Yl,XO,A x: (RO)+N,Yl x: (R3)+,XO 

multiplies Y1 with XO, adds their product to the A accumulator, and rounds the result 
using the rounding mode specified by a bit in the operating mode register (OMR). In par­
allel, it moves the data memory value pointed to by RO to register Y1, post-increments RO 
by the contents of the N register, moves the contents of the data memory location pointed 
to by R3 to XO, and post-increments R3 by one. Note that the "R" suffix with the MAC 
instruction indicates rounding. If rounding is not desired, the MAC instruction should be 
used instead. 

Parallel Move Support 

As shown in the above instruction, DSP568xx instructions use operand-unrelated 
parallel moves. However, because of the limitations of the 16-bit instruction word size, the 
processor places a large number of restrictions on combinations of instructions, operands, 
and parallel moves. Most of these restrictions relate to dual parallel moves. These are dis­
cussed below in the section on orthogonality. 

Registers Width Purpose 

A,B 36 bits Accumulators 

XO, YO, Y1 16 bits ALUIMAC inputs/outputs, general-purpose 

RO-R3 16 bits Address registers 

SP 16 bits Stack pointer register 

N 16 bits Address modifier register 

MOl 16 bits Modulo register 

TABLE 7.B-2. DSP568xx register summary. 
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Orthogonality 

The programming model of the DSP568xx is in some ways more flexible than that 
of other conventional DSP processors from Motorola. For example, the XO, YO, and Yl 
registers can be used much like the accumulator registers A andB; e.g., as source and des­
tination operands for arithmetic operations. This improves the orthogonality of the 
DSP568x~ instruction set. Unfortunately, many restrictions are imposed upon the pro-

Class Instructions 

Arithmetic 
Absolute value, add, add long word (32 bits) with carry, clear, decrement, 
increment, negate, subtract, subtract long word with carry, round 

Signed multiply (with or without rounding and/or negation), signed multi.., 
Multiplication ply-accumulate (with or without rounding and/or negation), signed/ unsigned 

multiply, signed/unsigned multiply-accumulate, integer multiply 

Logic And, or, exclusive-or, not with register or with immediate data 

Shifting 
Arithmetic and logical one-bit shift left/right, arithmetic and logical multi-
bit shift left/right, arithmetic and logical multi-bit shift right and accumulate 

Rotation Rotate left/right one bit 

Conditional Conditionally transfer from a selected register to an accumulator, with an 
Execution optional transfer of the RO register to Rl 

Comparison 
Compare accumulators, registers, immediate data, or memory; test accumu-
lator, 16-bit register, or memory location 

Looping Single- and multi-instruction loop, break out of loop unconditionally 

Branching 
Relative and absolute branch (both conditional and unconditional), branch if 
selected bits are set/clear 

Subroutine 
Jump to subroutine, return from subroutine, return from interrupt 

Call 

Bit - Bit field test and set, test and clear, or test and change, test high (all of the 
Manipulation selected bits are set), test low (all of the selected bits are low) 

Special Division iteration, normalization iteration, WAIT and STOP modes, software 
Function interrupt, DEBUG mode 

TABLE 7.8-3. DSP568xx instruction set summary. 
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grammer, mainly because of the small (16-bit) instruction width. Most of these restrictions 
apply to parallel moves. The most significant restrictions are: 

• Two reads using register-indirect addressing can be performed in parallel, but only 
one parallel write is supported. 

• When performing two parallel reads, only one address register (R3) can be used 
for the second parallel read, while two address registers (RO and Rl) are available 
for the first parallel read. 

• In dual parallel read instructions, only registers YO and Yl can be used as destina­
tions for the first parallel read. Similarly, only register XO can be a destination for 
the second parallel read. 

• In dual parallel read instructions, the first address register (RO) can only be modi­
fied by post-incrementing it by one or by the contents of the N register, and the 
second address register (R3) can only be post-incremented/decremented by one. 

• While virtually all ALUIMAC instructions allow one parallel move (read or write), 
I 

only the following instructions allow two parallel moves (reads only): ADD, 
MAC(R), MPY(R), and SUB. 

Although very efficient parallel code can be written for the proces­
sor, we expect that even experienced DSP568xx programmers will 
be forced to return to the user's manual on a regular basis to 
remind themselves of the register usage restrictions. 

Execution Times 

Most DSP568xx MAC/ ALU instructions execute in one instruction cycle. 
Branches, subroutine calls, and return instructions take two to four instruction cycles to 
execute. Delayed branches are not available. Single- and multi-instruction hardware loops 
take three instruction cycles to start. 

Instruction Set Highlights 

The DSP568xx aI10ws most ALU instructions to operate directly on memory with­
out affecting the core registers. For example, the instruction 

INCW X:$100 

increments the word stored in X memory location Ox 1 00 by one. The operands for these 
instructions can be a 6-bit short immediate address, a 16-bit long immediate address, or 
the stack pointer indexed with a 6-bit immediate index. These instructions usually require 
three or four instruction cycles to execute if the memory access is performed to internal 
memory or to external memory with zero wait states. 

This feature is very useful for manipulating temporary variables 
stored in data memory and memory-mapped registers without dis­
turbing the contents of internal registers. This approach supports 
both microcontroller functionality and high-level language compil-
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ers, and is particularly useful given the processor's small register 
set. 

Other noteworthy DSP568xx instructions include: 

• Bit-field test, set, clear, and change instructions (which allow groups of up to 
16 bits to be manipulated at once) 

• Branch if selected bits are set or clear 

• Normalization iteration instruction 

• Division iteration instruction 

• Conditional transfer instruction for conditional movement of data between regis­
ters 

The DSP568:xx has a rich set of bit manipulation instructions that 
simplify programming and increase performance in decision-inten­
siye applications, such as state machines. 

Execution Control 

Clocking 

As in the DSP560xx family, DSP568xx processors use a 2X master clock. Thus, an 
80 MHz master clock corresponds to an instruction execution rate of 40 MIPS. 

The DSP568xx processors include an on-chip clock synthesis module for generat­
ing three clock signals for the core and the peripherals. The module is composed of an 
oscillatorj a phase-locked loop (PLL), and a prescaler. The oscillator is usually attached to 
an external crystal, but can also be driven by an external clock source. The PLL is used to 
multiply the oscillator output frequency by any 10-bit value (from 1 to 1,024). This multi­
plied clock signal is delivered to the core and to the peripherals. Some peripherals, such as 
serial ports, use dividers (separate from the prescaler) to scale the multiplied clock fre­
quency down to an appropriate frequency. 

The prescaler is used to scale down the oscillator clock frequency by a factor of 1, 
16, 64, or 256. The input for the prescaler comes directly from the oscillator clock 
(bypassing the PLL). The prescaler output can be used as the clock for the general-purpose 
timers and the watchdog/real-time interrupt timer (COPIRTI). The serial ports and timers 
are described in detail in the peripherals section below. 

The on-chip clock synthesis module of the DSP568xx is quite flexi­
ble and should simplify designs in many applications. 

Hardware Looping 

Hardware looping is supported in DSP568xx family processors via the REP and 
DO instructions. The REP instruction repeats a single instruction and is not interruptible. 
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The DO instruction repeats multiple instructions and is interruptible. In both cases, the 
repetition count is stored in a 13-bitloop-count (LC) register. 

There are two ways to enter a single-instruction hardware loop, depending on the 
repetition count of the loop. If the repetition count is smaller than 64, it can be encoded as 
short immediate data in the instruction word. As a result, the loop can be entered by using 
the following instruction: 

REP #N ; N < 64 

However, if the repetition count is larger than 63, the following method must be used: 

MOVE 
REP 

#N,LC 
LC 

; N < 8192 

The first instruction loads a 13-bit immediate value into the loop-count register and the 
second instruction starts the repeat loop. Similarly, a multi-instruction loop requires an 
extra instruction to load the loop counter if short immediate data cannot be used (i.e., if the 
number of repetitions is greater than 63). 

The maximum repetition count which can be stored to the LC register is 8,192. If 
the LC register is loaded with zero, the loop is repeated 0 times with REP and 8,192 times 
with DO. The DO and REP instructions each require three instruction cycles to execute. 

Any data path register or address register can be used to load the LC register for 
REP and DO instructions. In this case, the 13 LSBs of the operand register are used to load 
the loop-count register. 

A single-instruction (REP) loop can be nested inside a multi-instruction hardware 
loop. Nesting of multi-instruction (DO) loops requires saving the loop count and the end 
address of the outer loop onto the software stack. The start address of the outer loop is 
automatically saved onto the hardware stack by the DO instruction. The hardware stack is 
two levels deep and must therefore be saved onto the software stack for each additional 
nesting level beyond two. 

Nesting of hardware loops is not well supported on the DSP568xx; 
for example, two nesting levels incur four overhead instruction 
cycles per iteration of the outer loop. More than two levels typically 
incur eight instruction cycles of overhead per loop iteration of each 
outer loop. 

Interrupts 

DSP568xx interrupt requests can be generated from the reset pin, from two exter­
nal interrupt pins, from on-chip peripherals, or from within the core. Two external, gen­
eral-purpose interrupt lines are provided on the DSP568xx. The external interrupts are 
individually maskable and can be programmed as level-sensitive or negative-edge-trig­
gered for DSP56F80x processors or as edge-sensitive or rising- or falling-edge-triggered 
on the DSP56824. DSP568xx processors also contain eight general-purpose 110 (GPIO) 
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lines that can be programmed to function as external interrupt lines;· interrupts generated 
through these pins have higher interrupt latency than the standard external interrupt pins. 

A maximum of ten external interrupt lines are provided by the 
DSP568xx. This is more than in most other DSP processors. 

Interrupts that are generated by on-chip peripherals include: SSI receive aIid trans­
mit data, SCI receiver full and transmitter empty, ADC conversion complete and 
zero-crossing, timer/counter overflow, Quadrature Decoder index pulse, PWM reload flag, 
GPIO interrupt, and the "computer operating properly and real-time interrupt" (COPIRTI). 
The peripheral modules are described in detail below in the peripherals section. The 
DSP56824's peripherals use the interrupt channels found on the processor's core. Each 
peripheral has its own interrupt vector and can be selectively enabled or disabled via the 
interrupt priority level found on the processor core. The peripherals on the DSP56F80x 
processors communicate their interrupt requests (lRQs) through the IP Bus Interrupt Con­
troller (ITCN). The ITCN accepts an IRQ from an IP bus-based peripheral, assigns it a 
user-defined priority level, and then presents the processor core with the highest-level 
pending IRQ. The ITCN augments the DSP56800 core's interrupt controller, expanding 
the total number of available peripheral interrupts to 54. The interrupts generated within 
the core include hardware and software interrupts. The software interrupts include stack 
error, illegal instruction, and software interrupt traps. 

With the exception of the hardware reset and COP timer reset interrupt, all external 
interrupts and interrupts from the on-chip peripherals are maskable. The interrupts gener­
ated within the core cannot be masked. Non-maskable interrupts, such as reset and soft­
ware trap, have the highest priority level. If more than one interrupt with the same priority 
level is pending simultaneously, they are arbitrated depending on the interrupt vector loca­
tion in the interrupt vector table. 

Each interrupt has a two-word interrupt vector that resides in low memory. During 
interrupt handling, only the second word of the vector is fetched in order to determine the 
starting address of the interrupt service routine. The first word of the vector is never read, 
but in order to maintain compatibility with future family members, the first word of the 
vector should always be an unconditional jump to subroutine (JSR). At the start of inter­
rupt processing, the program counter and the status register, which together contain the 
19-bit return address, are saved, and the program flow is changed to the start of the inter­
rupt service routine. Interrupts on the DSP568xx are nestable, but the appropriate context 
save and restore and re-enabling of interrupts must be performed in software. 

Assuming that the processor is in an interruptible state, interrupt latency is nine 
instruction cycles from the assertion of the interrupt signal to the execution of the first 
instruction of the interrupt service routine. 

Stack 

DSP568xx processors feature a two-level hardware stack. A software stack is also 
supported via a dedicated stack pointer register. The hardware stack is used only for hard-
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ware looping. The software stack is used for passing parameters, storing return addresses, 
holding local variables for subroutines, etc. In addition, interrupts use the software stack 
for storing the return address and the status register when entering an interrupt service rou­
tine. 

Although a software stack can be implemented on any DSP proces­
sor, only a few DSPs feature a dedicated stack pointer which is 
automatically updated after stack operations as found on the 
DSP568xx. In addition, many DSP568xx instructions support 
stack-pointer-relative addressing, facilitating development of effi­
cient compilers. 

A stack exception interrupt detects hardware stack overflow. Underflow is not 
detected. 

Bootstrap Loading 

Upon reset, the ROM-memory based DSP56824 begins execution at program 
memory address OxOOOO. A boot Flash is provided on the DSP56F80x processors to han­
dle initialization in the event that program memory is corrupt or not yet loaded. The boot­
strap routine stored in the 2Kx16 boot Flash should check that the contents of program 
memory are correct, load or reload program memory if necessary, and setup the memory 
map by writing to the System Control Register. 

Peripherals 

The DSP568xx family comprises two distinct groups, the newer DSPF80x and the 
older DSP568xx family members now represented exclusively by the DSP56824. Several 
new peripherals are available on the DSP56F80x in addition to most of the peripherals on 
the Dsp56824. In total, the peripherals that are now available include two general-purpose 
bit I/O ports, one "synchronous serial interface" (SSI), up to two "serial peripheral inter­
faces" (SPI), up to four general-purpose "Quad Timer Modules", up to two Pulse Width 
Modulation (PWM) modules, up to four multi-channel AID converters (ADCs), up to two 
quadrature decoder modules, up to two "serial communication interfaces" (SCI), an 
MSCAN module that implements CAN 2.0 AlB, and a "computer operating prop­
erly/real-time interrupt" module (COPIRTI). 

Motorola DSP56F80x family members target embedded control 
applications with peripherals like multi-channel PWMs, ADCs, 
quadrature decoders, and a CAN 2.0 AlB bus. 

• 110 portH 
The general-purpose I/O port (port B) provides 16 programmable I/O pins. The 
pins can be individually configured as inputs or outputs as determined by a control 
bit in a register. The lower eight pins of this port can be used as edge-sensitive 
external interrupt pins and can be programmed to detect either a rising or falling 
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edge. Once the desired transition occurs, the interrupt is generated, and all of the 
enabled pins are latched into a register. The interrupt service routine can then 
inspect the contents of this register to determine the source of the interrupt. 

• I/O port C 
The "peripheral communications port" (port C) provides 16 multiplexed program­
mable I/O pins. These pins can be allocated to the on-chip peripherals (the timer 
modules, the SSI, SPI, etc.), or can be programmed to function as general-purpose 
I/O pins in a similar manner to the pins of port B. 

Ports Band C together provide 32 I/O pins, useful for controller 
applications. 

• Synchronous Serial Interface (SSI) 
The SSI appears only on the DSP56824. The SSI is a full-duplex serial port, and 
consists of independent transmitter and receiver sections with independent, inter­
nal or external clock generation and frame synchronization. This interface can be 
accessed using six pins of I/O port C and programmed for word lengths of 8, 10, 
12, or 16 bits. It can also operate in a network mode allowing TDM capability with 
up to 32 time slots per frame. The maximum bit rate of the SSI is the master clock 
frequency divided by 4, e.g., 17.5 MHz in the case of a 70 MHz master clock fre­
quency. 

• Serial Peripheral Interface (SPI) 
The DSP568xx provides one or two serial interfaces, called "serial peripheral 
interfaces" (SPls), which are used for simple synchronous communication 
between devices. The SPI data transfer requires a master and a slave device. Dur­
ing data transfer, which is always initiated by the master, one byte of data is 
exchanged between these devices. Each SPI has four pins including input and out­
put data pins, a slave select pin, and a serial clock pin. The serial clock is generated 
by the master device. Selection of clock polarity and a choice of two different 
clocking protocols are allowed by the clock control logic. The maximum fre­
quency of the serial clock is 10 MHz. Thus, for a 70 MHz DSP56824 the fre­
quency of the serial bit clock must be programmed to be no more than 10 MHz. 
The SPI module also includes error detection logic. Like the SSI, this interface can 
be accessed via the pins of I/O port C. 

• Timers 
The general-purpose timer module includes three identical 16-bit timer/counters 
for the DSP56824, referred to as a tri-timer module, or as four identical 16-bit 
timer/counters for the DSP56F80x, which Motorola calls a "Quad Timer" module. 
Up to four Quad Timer modules are available on the DSP56F80x, while the 
DSP56824 comes with one tri-timer module. Both timer modules provide several 
common features. Each timer module provides independently programmable 
timer/counters and can be clocked by internal or external signals; the maximum 
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count rate for the quad-timer is one-half the master clock rate when using internal 
clocks and one-fourth the master clock rate when counting external events, while 
the maximum count rate for the tri-timer is one-fourth the master clock rate for 
both internal and external events. The timer/counters can be preloaded, cascaded, 
and used to generate interrupts or to signal external devices at periodic intervals. 
The number of 110 pins available to a timer module varies from two to four and in 
the case of timer/quadrature decoder pairs, these pins are multiplexed. 

• Pulse Width Modulation (PWM) 
Pulse Width Modulation is only available on DSP56FSOx processors. The 
DSP56FSOllS03 have one PWM module, while the DSP56FS05/S07 have two 
PWM modules. Features vary slightly between PWM modules but all have six out­
put pins which can be configured as three complementary pairs, or six independent 
outputs, or any other combination such as two complementary pairs and two inde­
pendent outputs, etc. Complementary pair operation allows for deadtime insertion, 
separate top and bottom polarity control, and separate top and bottom pulse width 
correction via current status inputs or software. All of the PWMs also feature 
I5-bit resolution, programmable edge-aligned or center-aligned pulse signals, and 
an unsigned I5-bit PWM modulus which determines the period of the PWM out­
put. A full featured PWM module has three current-sense inputs and four fault 
inputs as well. The PWM clock is produced by a prescaler with selectable rates 
equal to the master clock rate divided by two, four, eight, or sixteen. The period 
and pulse width are alignment dependent; that is, with edge-aligned output, the 
modulus is the period of the PWM output in PWM clock cycles, but with cen­
ter-aligned output, the modulus is one-half of the period of the PWM output in 
PWM clock cycles. In a similar fashion, the pulse width with center-aligned output 
is twice the value written to the PWM value register. 

• AID Converters (ADCs) 
ADC modules are only available on DSP56FSOx processors. The 
DSP56FSOllS03/S05 have one ADC module, while the DSP56FS07 has two ADC 
modules. Each ADC module features two, four-input ADCs with I2-bit resolution. 
The eight inputs can be configured as up to S single-ended channels, up to four dif­
ferential channel pairs, or a combination of these. The ADC module performs a 
ratiometric conversion and can be configured for single scan, scan when triggered, 
or repeat programmed scan sequence. The number of conversions per scan is pro­
grammable from 1 to S for a single-ended input configuration,. or from 1 to 4 for a 
differential input configuration. The ADC can be configured for simultaneous or 
sequential conversions. Configured for sequential conversions with multiple con­
versions per scan, a new conversion is immediately initiated upon completion of 
the previous conversion. When configured for simultaneous conversion, two dif­
ferent channels are converted in parallel. Running the ADC module at its maxi­
mum clock rate of 5 MHz while configured for simultaneous conversions, the 
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ADC module can produce a maximum of two samples in 1.2 J.ls, or 1.66 million 
samples per second. The ADC can also be synchronized to thePWM. 

• Quadrature Decoders 
The quadrature decoder module is designed to decode signals from an external 
quadrature encoder, typically installed on a motor shaft or drive shaft. Quadrature 
decoder modules are only available on DSP56FS03/S05/S07 processors. The 
DSP56FS03 comes with one quadrature decoder module, while the 
DSP56FS05/S07 come with two quadrature decoder modules. The quadrature 
decoder ,modules are paired with Quad Timer modules and share their I/O pins. 
Thus, the use of a quadrature decoder precludes the use of its paired timer module; 
however, at least one dedicated Quad Timer module will still be available. The 
quadrature decoder module features a configurable digital filter for inputs, a 32-bit 
position counter, a 16-bit position difference register, and a preloadable 16-bit rev­
olution counter. The maximum count rate is one-half the master clock rate, assum­
ing a master clock rate of SO MHz, resolutions from 25 ns to 1.6 J.ls, and count 
periods from 1.62 msec to 102 msec can be obtained using the prescaler. 

• Serial Communication Interface (SCI) 
SCI modules are,only available on DSP56FSOx processors. The DSP56FSOllS03 
have a single SCI module, while the DSP56FS05/S07 have two SCI modules. The 
SCI allows full duplex, asynchronous, non-retum-to-zero (NRZ) format serial 
communication between the DSP56FSOx processor and remote devices, including 
other processors. The SCI features 1J-bit baud rate selection, programmable S-bit 
or 9-bit data formats, separately enabled transmitter and receiver, separate trans­
mitter and receiver interrupt requests, and hardware parity checking. Although the 
transmitter and receiver sections of the SCI operate independently, they share the 
same baud rate generator. The maximum baud rate is the SCI module clock rate 
divided by 16, or equivalently, the master clock rate divided by 32. 

• Motorola Scalable Area Network (MSCAN module) 
The MSCAN module is only available on the DSP56FS03/S0S/S07 processors. 
The module is a communication controller implementing the CAN 2.0 AlB proto­
col developed by Robert Bosch GmbH. The CAN protocol, optimized for opera­
tion in interrupt-driven, real-time environments, is finding widespread use in 
industrial control, in addition to its primary use as a vehicle serial data bus. The 
MSCAN features standard and extended data frames, O-S byte data length, pro­
grammable bit rates up to 1 Mbps, double buffered receive storage, triple buffered 
transmit storage, and two full-size extended identifier filters. 

• COPIRTI module 
The COPIRTI module, which is available on all members of the DSP56Sxx family, 
provides two separate functions: a watchdog-like timer and a periodic interrupt 
generator. The COP timer protects against system failures by providing a means to 
escape from unexpected situations, such as an endless loop due to a programming 
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error. Once started, the COP timer must be reset frequently so that it never reaches 
its time-out value. If a time-out value is reached, an internal reset is generated, and 
the COP reset interrupt handler is executed. The periodic interrupt timer provides a 
real-time interrupt capability on the DSP568xx. 

On-Chip Debugging Support 

A six-pin IEEE-1149.1 JTAG/OnCE port allows access to the OnCE (On-Chip 
Emulation) scan-based emulation/debugging interface. Through this interface the user 
may examine or modify DSP registers or memory, set hardware breakpoints in both pro­
gram and data memories (on read, write, or instruction fetch), examine the instruction 
pipeline, and examine the last five instructions executed. Additionally, any instruction 
may be executed through this interface. 

The.JTAG/OnCE port can also be used for boundary scan. 

Power Consumption and Management 

The DSP568xx family operates from a nominal supply voltage of 3.3 volts ± 10%; 
i.e., the devices can operate from 3.0 to 3.6 volts. Additionally, most 110 pins are 5 volt 
tolerant. Motorola states that typical power consumption for DSP568xx family members 
supplied at 3.3 volts is as follows: 53.5 mW for the DSP56824 when executing at 35 
MIPS, and 91.1 mW for the DSP56F80x when executing at 80 MHz. 

DSP568xx processors provide WAIT and STOP modes to reduce power consump­
tion when no processing is required. In WAIT mode, the internal clocks to the processor 
core and memories are gated off, and all activity in the processor is suspended until an 
interrupt occurs. The clock oscillator, the PLL, and the internal 110 peripheral clocks 
remain active during WAIT mode. STOP mode achieves the lowest power consumption 
by gating off the clocks to many of the on-chip peripherals in addition to gating off the 
clocks to the core and memories. The PLL may remain active in STOP mode or can be 
disabled before entering this mode to minimize power consumption. However, disabling 
the PLL increases the processor's wake-up latency. Similarly, the COPIRTI module and 
the timers may continue operating or be individually disabled when entering STOP mode. 
The DSP56F80x processors have an optional disable for the STOP and WAIT modes. The 
STOP and WAIT instructions may be disabled permanently, (that is, until the next reset), 
or temporarily by writing to the System Control Register (SYS_CNTL). Motorola states 
that the power consumption when in STOP mode, with all peripherals (including the PLL) 
disabled at 3.3 volts is 16.5 J..lW for the DSP568xx family. 

Benchmark Performance 

The DSP568xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDT] 
Benchmark™ Results. We summarize and analyze the DSP568xx's benchmark perfor-
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mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
reflect the processor's instruction cycle rate; therefore, lower instruction cycle counts 
imply a more powerful architecture, but do not imply faster speed. Next we discuss bench­
mark execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program· memory 
usage, and benchmark data memory usage. 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13 in Chapter 8, BDTI 
Benchmark™ Results, the DSP568xx total normalized instruction cycle count is 
the third-highest result for all of the benchmarked processors, at about 40% higher 
than the average. 
The DSP568xx can fetch two operands and perform a multiply-accumulate (or 
add) operation in one instruction cycle, which is the maximum throughput for a 
single-MAC processor. Several other processors among those surveyed have archi­
tectures with similar MAC throughput; for example, the DSP563xx, Analog 
Devices ADSP-218x,and Texas Instruments TMS320C54xx. The total normalized 
instruction cycle count for the DSP568xx is higher than that of these three proces­
sors largely because of its very high cycle counts for the FFf and Viterbi bench­
marks, discussed below. 
For the Real Block FIR, Complex Block FIR, and Vector Add benchmarks, the 
DSP568xx instruction cycle counts are relatively high compared with those of 
other processors benchmarked. The Vector Dot Product benchmark is also above 
average. For at least these four benchmarks, multi-MAC processors such as the 
Texas Instruments TMS320C62xx achieve lower cycle counts by performing cal­
culations on more than one sample in one instruction cycle. The advantage of 
multi-MAC processors is less noticeable on the single-sample benchmarks, such as 
the Single-Sample FIR and the Two-Biquad IIR benchmarks. 
The DSP568xx has by far the highest instruction cycle count on the FFf bench­
mark, at more than twice the average. This is mainly a result of several limitations 
regarding dual parallel memory moves on this processor: A dual parallel move is 
limited to a dual read. A dual write, or a parallel read and write, is not possible. 
Further, only address register R3 can be used as an address register for the second 
parallel read in an instruction, and in such a read, address register R3 can be incre­
mented or decremented only by one. The processor's cycle counts are further 
increased because it has no hardware support for bit-reversed addressing. Approx-
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imately 10% of the total cycles for the FFf benchmark on the DSP568xx are attrib­
utable to the processor implementing bit-reversal in software. 

The DSP568xx also has the highest instruction cycle count on the Viterbi bench­
mark, at more than twice the average. This is due primarily to restrictions on dou­
ble-word read operations, and to its limited number of data registers. For the 
add-compare-select operation, the DSP568xx must reload operands to perform 
successive adds and subtracts since it does not have enough data registers to avoid 
reloading data words. On other processors with more flexible double-word read 
capabilities, it takes fewer instructions to do the reload. On other processors with 
more data registers, the data can be loaded once and used several times. 

• Execution times: The DSP56F801 has the slowest instruction execution rate of 
the benchmarked DSP processors (40 MIPS at 80 MHz). This, combined with its 
relatively high cycle counts, makes it the slowest fixed-point processor bench­
marked. The total normalized execution time for the DSP56F80 1 is about four 
times slower than the average of all benchmarked fixed-point processors, as pre­
sented in Figure 8.2-13. The 80 MHz DSP56F801 has a BDTImark2000 score of 
110. 

• Cost-execution time: In terms of total normalized cost-execution time product 
(presented in Figure 8.3-13), the DSP56F801's fairly low $8.15 price tag (quantity 
to,OOO) cannot wholly offset its slow execution time results. The total normalized 
cost-execution time of the DSP56F801 is about 30% worse than the average for all 
benchmarked fixed-point processors. 

• Energy consumption: The DSP56824 has the lowest power consumption of the 
processors benchmarked here, but its low power consumption cannot compensate 
for its very slow execution times. As shown in Figure 8.4-13A and B, the 
DSP568xx has the second-worst total normalized energy consumption among the 
fixed-point processors-only the Texas Instruments VLIW -based TMS320C6204 
is worse. The DSP56824 total normalized energy consumption is roughly 75% 
higher than the average for all benchmarked fixed-point DSP processors. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: As illustrated in Figure 8.5-9A, the 
DSP568xx achieves the second-lowest total memory usage of all benchmarked 
DSP processors on the Control benchmark, bettered only by its successor, the 
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DSP5685x. The key features which enable the DSP568xx to achieve good code 
density on control-oriented code include its short, 16-bit instruction word width, 
PC-relative branches, and support for short immediate data. 

• Program memory usage: As Figure 8.5-13 illustrates, except for the StarCore 
SC140, the normalized program memory use for the processors with 16-bit or 
24-bit instructions falls within a fairly consistent range. This includes the 
DSP568xx. Despite its 16-bit instruction word width, the instruction set of the 
DSP568xx is extensive (but non-orthogonal) and allows more operations to be per­
formed per instruction than most other 16-bit fixed-point DSP processors. Such 
efficiency enables the DSP568xx to achieve the lowest program memory usage on 
the LMS Adaptive Filter, Vector Dot Product, and (tied with four other processors) 
the Vector Add benchmarks. The processor also achieves the second-lowest pro­
gram memory usage result (tying in some cases with other processors) on the Sin­
gle-Sample FIR, Two-Biquad 1IR, Vector Maximum, and Bit Unpack benchmarks. 
The DSP568xx has by far the largest program memory usage for the Viterbi bench­
mark, particularly when compared to the processors with 16- or 24-bit instructions. 
As with the instruction cycle counts for the Viterbi benchmark, this is due prima­
rily to the restricted double-word read capabilities. For the add-compare-select 
operation on the DSP568xx, operands must be reloaded to perform successive 
adds and subtracts. Each reload of a double word uses four bytes of program mem­
ory. On other processors with a more flexible double-word data load capability, the 
amount of program memory required is smaller. The DSP568xx also has high pro­
gram memory usage because of its limited number of data registers. On other pro­
cessors with more data registers, the operands can be fetched once and used 
several times, which is not possible on the DSP568xx. The relatively small number 
of data registers on the DSP568xx further means that a series of add and subtract 
operations on the data must be implemented as a series of macro calls, since there 
are not enough registers to implement the code within a single loop. Other proces­
sors with 24-bit instructions, such as the ADSP-21xx family, allow one loop to do 
such operations. 

• Data memory usage: The DSP568xx's constant and non-constant data memory 
usage is generally as expected for a 16-bit fixed-point DSP processor. Total nor­
malized constant data memory usage is shown in Figure 8.5-14 and Figure 8.5-15. 
The DSP568xx has a fairly high non-constant data memory usage on the Control 
benchmark compared with other benchmarked fixed-point processors. In a subrou­
tine call, the DSP568xx stores the return address and the processor's status word 
onto the software stack. Most fixed-point processors either do not store the status 
word or provide hardware stacks or shadow registers for saving registers and 
return addresses. 

The DSP568xx's instruction execution rate of 40 MIPS is the slow­
est of all benchmarked fixed-point DSP processors. Combined with 

© 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Motorola DSP568xx Family 

the processor s relatively high cycle counts, it results in benchmark 
execution times that are the slowest of all benchmarked DSP pro­
cessors. The processor's cost-execution time and energy consump­
tion results are also adversely affected. 

The DSP568xx achieves the second-lowest total normalized pro­
gram memory usage, and the second-lowest total memory usage on 
the Control benchmark. As indicated by these metrics, the 
DSP568xx achieves good code density. 

Cost 

DSP568xx price and package options are shown in Table 7.8-4. 

Fabrication Details 

The new DSP568xx family members, the DSP568F801/803/805/807, are all fabri­
cated in 0.25 J.1m three-metal-layer CMOS technology, while the DSP56824 is fabricated 
in 0.35 J.1m three-metal-layer CMOS technology. 

Development Tools 

Motorola's development tools for the DSP568xx include a text-based assembler, 
linker, and simulator (CLAS software development package) and a simulator/debugger 
with a window-based graphical user interface. The tools use either standard COFF object 
format or Motorola's own ASCII-based object format. This package is available for 
MS-DOSlWindows, Windows 95/98, Windows NT4.0, SunOS, Solaris, and HP-UX. 

The tool set is not a part of an IDE, and other tools, such as 
"make," are necessary to conveniently handle software projects. 

\ 

However, the debugging facilities of the simulator are good, and the 
ability to set data breakpoints is noteworthy. 

Part 
Speed 

Voltage Package 
Price 

(MIPS) (Qty. 10,000) 

DSP56824 35 2.7-3.6 100TQFP $6.30 

DSP56F801 40 3.0-3.6 48LQFP $8.15 

DSP56F803 40 3.0-3.6 100LQFP $11.00 

DSP56F805 40 3.0-3.6 144LQFP $13.60 

DSP56F807 40 3.0-3.6 
160LQFP 

$16.44 
160MBGA 

TABLE 7.8-4. Pricing for DSP568xx versions. Prices as of July 2000. 
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Motorola's DSP568xx instruction-set simulator accurately models all of the I/O 
pins of the device, provides cycle-accurate simulation of the processor and enables model­
ing of external data streams and interrupts. As is typical for Motorola'S simulators, this 
simulator also has a C-language procedural interface that allows the integration of the pro­
cessor model with other simulation environments. 

Besides the CLAS package, Motorola offers a C compiler for the DSP568xx. 

Motorola distributes the latest version of its eLAS package, which 
contains an instruction-set simulator, assembler, linker, and librar­
ian on the Internet free of charge. Development tool availability on 
the Internet simplifies software upgrades and is an advantage. 

Motorola offers evaluation modules (EVMs) based on each member of the 
DSP568xx family: DSP56F801/803/805/807EVM and. DSP56824EVM. These EVMs run 
on PC compatible systems running Windows 951981NT4.0, and communicate with the 
host through a UART RS-232 interface or an on-board parallel port "command converter 
interface." In addition to the processor, the EVMs feature 64Kx16 of external program 
SRAM and 64Kx16 of external data SRAM, a notable exception being the DSP56F801 
BVM, which has no external memory. Additional features that are available on some eval­
uation modules include: a 13-bit linear voice audio codec, a CAN interface for high speed 
communications, a 4-channel lO-bit serial D/A converter, and expansion connectors for 
application-specific components. An alternative to the EVM is an "Application Develop­
ment System" (ADS). The DSP56824 ADS is a full-featured platform for real-time soft­
ware development and debugging. The ADS extends the features and functionality of the 
EVMs to include, among other things, Metrowerks CodeWarrior IDE and an external 
Command Converter Interface to assist in system-level debugging. The Application 
Development Systems run on mM PC-compatible and Sun hosts with a host interface 
card for ISA or Sun S-bus interfaces. 

Besides Motorola's own tools, a number of third-party vendors have development 
tools and real-time operating systems for the DSP568xx family of processors. Domain 
Technology's SB-56K emulator supports not only the DSP568xx family, but all other 
fixed-point Motorola DSP56xxx family processors as well. The SB-56K emulator super­
sedes the LINK-56K emulator and works at the source level with a Microsoft Win­
dows-based debugger and supports the development of both C and assembly 
programming. Metrowerks Code Warrior for Motorola DSP Embedded Systems is an IDE 
featuring a simulator, debugger, C compiler, and assembler. The IDE is targeted at PC 
compatible systems running Windows 95198INT4.0. 

Applications Support 

The base document for the DSP568xx family is the DSP56800 Family Manual. 
This volume describes the processor core and the instruction set, but not the peripherals or 
memory configuration. These variant-specific details are covered in the DSP56824 User's 
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Manual and the DSP56F801180318051807 User's Manual. Additionally, Motorola pro­
duces a data sheet for each processor which contains electrical specifications, timing, 
pinout, and packaging descriptions. 

Overall, the DSP568xx documentation is very good. 

Motorola provides applications support via the processor user's manual, applica­
tion notes, training classes, a telephone hot-line, and a newsletter. User's manuals, techni­
cal documentation, product information, and press releases can be found at Motorola's 
website. 

Advantages 

• 16-bit barrel shifter 

• Bit manipulation unit; good bit-field manipulation instructions 

• Software stack with frame pointer supports HLL compilers 

• Serial port TDM mode 

• Up to sixteen timer/counters 

• Good power management features 

• Ability to use IX or slower external clock 

• Flexible PLL 

• Good documentation 

• Low cost (e.g., $8.15 for the 40 MIPS DSP56F801, quantity 10,000) 

• JTAG emulation port with boundary scan 

• Flexible I/O interfaces 

• PWMs 
• Dual Multi-Channel ADCs 

• Hardware Quadrature Decoder 

• Advanced serial communications 

• Flash Memory 

• Good code density on BDTI's Control benchmark 

Disadvantages 

• Limited parallel move support: two reads or one write per instruction cycle, second 
data operand must come from on-chip memory and can only be accessed with 
address register R3 

• No bit-reversed addressing 

• Limited circular addressing (two circular buffers supported; however, the size of 
the buffers must be the same and the circular pointers cannot be simultaneously 
modified) 
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• No externally requested wait states 

• Slow execution times on the BDTI Benchmarks 

• Poor energy consumption results on the BDTI Benchmarks 
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7.9 Motorola DSP5685x Family 
BDTlmark2000 Score: 

Introduction Not Available 

The Motorola DSP5685x family is based on Motorola's new 16-bit fixed-point 
conventional DSP core, the DSP56800E. The DSP56800E, announced in October 2000, is 
an enhanced version of Motorola's DSP56800 core, which is used in its DSP568xx family. 
Because the two families are so similar, this analysis highlights only the differences 
between the DSP5685x and the DSP568xx. Readers should refer to the DSP568xx analy­
sis, Section 7.8, for a full discussion of the DSP568xx architecture, and for details of fea­
tures identical between the two families. 

Initial members of the DSP5685x family are expected to operate at a maximum of 
120 MHz using a dual voltage supply of 1.8 volts for the core and 3.3 volts for 110. Motor­
ola has announced two members of the DSP5685x family: the DSP56854 and DSP56853, 
summarized in Table 7.9-1. These chips are expected to sample in the first quarter of 200 1, 
according to Motorola. Motorola states that it has fabricated a DSP568ooE-based in-house 
test chip, which executes at 120 MHz. Because BDTI has not yet verified the clock speed 
of DSP5685x silicon, there is no BDTImark2oo0 score currently available for this proces­
sor. Check BDTI's website (www.BDTl.com) for updated BDTImark2000 scores. 

Unlike the 2X master clock on the DSP568xx, the DSP5685x uses a IX master 
clock (see Clocking in the Execution Control section of this analysis for further details). 
Thus, unlike the DSP568xx, clock cycle and instruction cycle length are equivalent on the 
DSP5685x. (Each instruction cycle on the DSP568xx consumes two clock cycles.) 

The DSP56800E 

is a superset of the DSP56800 instruction set; the DSP5685x can execute assembly 
source code written for the DSP568xx. The hybrid DSPIMCU functionality of the 
DSP568xx is retained in the DSP5685x, while several of the shortcomings of the 
DSP568xx, such as a lack of hardware support for nested DO loops, have been eliminated. 
Like the DSP568xx, the DSP5685x targets automotive and motor control applications. In 
addition, the DSP5685x targets what Motorola calls "teledatacom" applications, which 
include low-end cellular phones, PDAs, Internet audio, Web/screen phones, and other 
Internet appliances. 

Max. 
Data Data Program 

Program External 
Part Speed 

RAM ROM RAM 
Boot Memory 

(MHz) ROM Interface 

DSP56853 120 4Kx16 4Kx16 12Kx16 1Kx16 No 

DSP56854 120 4Kx16 4Kx16 12Kx16 1Kx16 Yes 

TABLE 7.9-1. DSP5685x family members. 
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Unlike the DSP56800, the DSP56800E is available as a licensable core for sys­
tem-on-chip designers. The core is available in Verilog HDL format. 

The availability of the DSP56800E as a licensable core is an 
advantage. 

Architecture 

Figure 7.9-1 illustrates the DSP5685x architecture as typified by the DSP56854. 

Data Path 

The data path of the DSP5685x is similar to the data path of the DSP568xx, but 
with a few enhancements. The most significant differences are the addition of two 36-bit 
accumulator registers (for a total of four), the two-stage pipelining of the data path, the 
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extension of logical/arithmetic shifting and the logic unit to 32 bits, the addition of an 
exponent detector which allows single-cycle detection of leading Os or 1 s, support for 
unsigned/unsigned integer multiplication, and explicit support for three data types: long 
data (32 bits), word data (16 bits), and byte data (8 bits). (The DSP568xx supports only 
word data.) Because the data path of the DSP5685x is divided across two pipeline stages, 
some data ALU operations have a latency of two clock cycles. This is different from the 
DSP568xx's single-stage, single-cycle data path. Although latency is in some cases 
increased, instruction throughput (the rate at which instructions complete execution) is in 
most cases still one instruction per clock cycle. 

The DSP5685x has increased the number of 36-bit accumulator registers from two 
to four (A, B, C, and D), each with four guard bits for overflow protection. All four accu­
mulators can be accessed as 36-bit registers or in segments, where the segments include: a 
4-bit extension register (A2, B2, C2, or D2), a 16-bit most-significant segment (AI, Bl, 
Cl, or Dl), and a 16-bit least-significant segment (AO, BO, CO, or DO). Seven 16-bit data 
registers are available on the DSP5685x: the same 16-bit XO, YO, and Yl registers that the 
DSP568xx provides plus the AI, B 1, Cl, and Dl segments of the four accumulators. Data 
registers can be used as ALU source and destination registers for most ALU operations. 
Note that the 16-bit least-significant segments of the accumulators (AO, BO, CO, DO) are 
not considered data registers. The instruction set offers limited access to these segments; 
integer multiply (IMPY) and integer multiply-and-accumulate (IMAC) instructions access 
AO, BO, CO, and DO as source registers, and move (MOVE.x) instructions can access all of 
the individual segments. Five 32-bit registers are available; the concatenation of the Yl 
and YO registers forms the 32-bit Y register, while the concatenation of the most-signifi­
cant and least-significant segments of each of the accumulators forms the AlO, B lO, ClO, 
and DlO 32-bit registers. 

The data path of the DSP5685x is based on a 16 x 16 ~ 32-bit multiplier inte­
grated with a 36-bit ALU and logic unit; this is the same configuration as found on the 
DSP568xx. The multiplier-ALU combination (MAC unit), together with the logic unit 
accepts up to three input operands, performs multiplications, additions, subtractions, logi­
cal operations, and other arithmetic operations, and produces one 36-bit result. The MAC 
unit supports integer and fractional multiplications; operands may be signed/signed or 
signed/unsigned for fractional and integer multiplication; unsigned/unsigned multiplica­
tion, however, is only supported in integer format. (The DSP568xx did not support 
unsigned/unsigned multiplication.) 

As with the DSP568xx, the DSP5685x's support of signed/unsigned 
multiplication is an advantage. However, the lack of 
unsigned/unsigned fractional multiplication complicates implemen­
tation of multi-precision arithmetic when full-precision results are 
required. 

Unlike DSP568xx processors, DSP5685x multiply and multiply-accumulate oper­
ations are divided across two pipeline stages. Thus, multiply and multiply-accumulate 
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operations have a latency of two instruction cycles. Arithmetic and logical operations, 
however, can complete in one instruction cycle. Throughput is one instruction per clock 
cycle for most instructions; shifting of 32-bit values is an exception, and is discussed 
below. Multiplier inputs are taken from the seven data registers. Outputs are written back 
to the same registers for 16-bit results, to the Y, AlO, B lO, CI0, or DlO registers for 32-bit 
results, or to the A, B, C, or D accumulators for 36-bit results. The ALU accepts inputs 
from the seven data registers, from X memory, or as immediate data; outputs may be writ­
ten to any of the seven data registers or directly to X memory. 

Like the DSP568xx, the DSP5685x data path includes two shifters: a 36-bit accu­
mulator shifter and a 32-bit barrel shifter. The accumulator shifter performs arithmetic and 
logical single-bit left/right shifts and rotate operations either on a 36-bit accumulator or on 
a 16-bit data register. The barrel shifter performs 1- to 32-bit arithmetic and logical 
left/right shifting on a 16- or 32-bit register. Shifts of 16-bit values execute with sin­
gle-cycle throughput; shifts on 32-bit values execute with two-cycle throughput. Bidirec­
tional 32-bit shift instructions are supported; the sign of the shift amount operand 
determines the shift direction. Results from the barrel shifter may be written to data regis­
ters or accumulators if operating on 16-bit values, or to accumulators jf operating on 
32-bit values. Shift amounts can be specified as 4- or 5-bit immediate data or via a value 
stored in a data register. 

The data path supports both round-to-nearest and convergent rounding via the 
RND instruction, which rounds any accumulator or 32-bit register. The type of rounding is 
selected by a bit in the Operating Mode Register (OMR). Additionally, the 'R' suffix on 
ALU instructions, such as MACR, indicates rounding. 

The DSP5685x features saturation circuitry similar to that found on the 
DSP568xx. The saturation circuitry consists of a "data limiter" and a "MAC output lim­
iter." The data limiter protects against overflow when reading data from an accumulator 
by detecting signed 36-bit accumulator values whose magnitude will not fit in the selected 
destination. The data limiter substitutes a value of the same sign as the source accumulator 
with the maximum magnitude that the destination can represertt. Data limiting is con­
trolled by the syntax of the MOVE instruction reading the accumulator. For example: 

MOVE.W A,X: (RO)+ ;reading entire 36-bit accumulator, 

;limiting enabled 

MOVE.W Ai,X: (RO)+ ;reading i6-bit Ai portion of accumulator, 

;limiting disabled 

The instruction MOVE.W specifies a 16-bit "word" data move. The implied por­
tion of the 36-bit A accumulator used when "word" data is accessed is the ~6-bit Al seg­
ment. By specifying the entire A accumulator, as shown in the first instruction, the 
programmer is enabling limiting. By specifying the 16-bit Al portion of the A accumula­
tor, as shown in the second instruction, the programmer is disabling limiting. 
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The MAC output limiter is enabled by setting a bit in the Operating Mode Register 
(OMR). When enabled, MAC/ALU results that overflow 32 bits are saturated to the larg­
est positive or negative value representable using 32-bit two's complement arithmetic. 
Note that this saturation mode is automatically disabled during shift and rotate operations, 
signed/unsigned multiplications, and logical operations. Additionally, the DSP5685x 
offers the SAT instruction, which can saturate any accumulator value and transfer the satu­
rated value to the A, B, C, or D accumulators, or to the Y1, YO, XO registers. 

Like that on the DSP568xx, the DSP5685x data path supports iterative division via 
the DIV instruction and iterative normalization via the NORM instruction. The DIY 
instruction calculates one quotient bit each time the instruction is executed. To produce an 
N-bit quotient, therefore, the DIV instruction must be executed N times. Motorola pro­
vides examples of integer and fractional division algorithms using the DIV instruction in 
the DSP56854153 User's Manual. The NORM instruction performs one normalization 
iteration (a one bit left/right shift) on a value in a 36-bit accumulator each time the instruc­
tion is executed. The maximum number of iterations required to normalize a 32-bit value 
is 31; the actual number of shifts performed to normalize the value is written to an operand 
register. The DSP5685x's exponent detector can be used to compute the number of redun­
dant sign bits in any of the seven data registers via the CLB (count leading bits) instruc­
tion; the exponent value is stored to any of the seven data registers. The CLB instruction 
executes in a single instruction cycle. Used in combination with the shift instructions 
ASLL.W (for word data) or ASLL.L (for long data), the DSP5685x can normalize 16-bit 
values in two instruction cycles and 32-bit values in three instruction cycles. 

The DSP5685x shares the DSP568xx's dedicated bit-manipulation unit. The bit­
manipulation unit is capable of testing, setting, clearing, or inverting any bits specified in a 
16-bit mask. The bit-manipulation unit performs these read-modify-write operations on 
any core register, on a peripheral location, or directly on data memory with single-cycle 
throughput. 

, The bit-manipulation unit's ability to operate directly on data mem­
ory is a useful feature; however, the unit lacks explicit support for 
bit-field insertion or extraction. 

Memory System 

Like the DSP568xx, the DSP5685x employs a Harvard memory architecture 
which allows up to three simultaneous memory accesses: one instruction fetch plus two 
data reads or one data write per instruction. Both program (P) and data (X) memory 
address spaces have been expanded compared to the DSP5685x: the total addressable pro­
gram memory space is now 4 Mbytes, while the total addressable data memory address 
space is now 32 Mbytes. Separate on-chip program and data memories, each of which 
include RAM and ROM, occupy part of the total addressable memory space on the 
DSP5685x (see Table 7.9-1. for details about on-chip memory). The remaining address-
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able memory must be accessed off-chip via the external memory interface, described 
below. 

Data memory is addressed via the X Address Bus 1 (XAB1) and the X Address 
Bus 2 (XAB2); the XAB1 bus is capable of addressing byte, word,and long data types, 
while the XAB2 can only address word data types. Data movement occurs along the Core 
Data Bus for Reads (CDBR), the Core Data Bus for Writes (CDBW), and the X Data Bus 
2 (XDB2). XDB2 is a 16-bit bus, while CDBW and CDBR are 32-bit buses. In the case of 
a single data memory read or write, data is transferred on the CDBR or CDBW bus, 
respectively; the single data memory access can be a byte, word, or long data type. In the 
case of two simultaneous data memory reads, one data word is transferred on the CDBR 
bus and the other data word is transferred on the XDB2 bus; only word data types are 
allowed in parallel read operations. Two simultaneous data memory writes are not 
all<?wed. When the processor is executing at 120 MHz, the maximum sustainable on-chip 
data memory bandwidth is 240 million 16-bit words/second or 120 million 32-bit 
words/second for read operations and 120 million 32-bit words/second for write opera­
tions. 

The maximum data memory bandwidth of two 16-bit words/cycle is 
less than might be expected given the width of the data buses avail­
able for the dual parallel read (32 bits for the CDBR and 16 bits for 
the XDB2). 

Program memory is addressed via the Program Address Bus (PAB) and instruction 
movement occurs along the Program Data Bus (PDB). The PAB is a 21-bit bus while the 
PDB is a 16-bit bus; the only data type for program memory is 16-bit words. 

External Memory Interface 

DSP5685x processors access external memory through thc? external memory inter­
face (EMI), which multiplexes the internal address and data buses onto an external 24-bit 
address and 16-bit data bus. Unlike the DSP568xx, all of the DSP5685x internal address 
and data buses can access external memory. The external buses are multiplexed between 
program and data memory accesses. The Bus Control Unit in the EMI orchestrates exter­
nal program/data, read/write accesses. Because there is only one external data bus per 
EMI, only one access to external memory can be made without penalty in a single instruc­
tion on current DSP5685x devices. If a dual parallel read instruction accesses both on-chip 
(internal) and external memory, the DSP5685x allows either the first or second read to 
access internal memory, while the other read accesses external memory; in contrast, the 
DSP568xx requires that the first read accesses external memory and second read accesses 
internal memory. System-on-a-chip (SoC) designers can specify an additional EMI inter­
face; Motorola states that adding another EMI would allow two simultaneous external 
memory accesses per instruction. With a single EMI, such as is present on the DSP56854, 
the maximum peak: and sustainable external memory bandwidth, assuming zero wait 
states, is 120 million 16-bit words/second when the processor is executing at 120 MHz. 
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To adapt the speed of the EMI to slower external memory elements, programmed 
wait states are supported. Program and data memory wait states can be independently con­
figured between 0 and 15 clock cycles. Externally requested wait states are not available. 

As with the DSP568xx, the DSP5685x lacks support for externally 
requested wait states; this may complicate system design in some 
applications. 

Address Generation Unit 

The address generation unit (AGU) of the DSP5685x is a considerably expanded 
version of the AGU found in the DSP568xx. The DSP5685x AGU adds two 24-bit address 
registers, R4 and R5, and increases the width of the RO-R3 address registers from 16 to 24 
bits. The stack pointer register (SP) and offset register (N) have also been expanded from 
16 to 24 bits, and a 16-bit secondary offset register (N3) has been added. The 24-bit N reg­
ister can also be used as an extra pointer register, and is supported by additional instruc­
tions for fast address calculation. Additionally, modulo register MOl and registers RO, Rl, 
and N are shadowed on the DSP5685x. 

Address arithmetic is performed by a 24-bit primary arithmetic unit and a 24-bit 
secondary arithmetic unit. The primary arithmetic unit is similar to the DSP568xx's mod­
ulo arithmetic unit; the secondary arithmetic unit is similar to but more powerful than the 
DSP568xx increment/decrement unit. The primary arithmetic unit performs calculations 
for indexed addresses, post-updating of addresses, and AGU arithmetic instructions. The 
primary arithmetic unit also performs linear or modulo arithmetic, while the secondary 
arithmetic unit performs only linear arithmetic incrementing, decrementing, or post-updat­
ing the R3 register with the contents of the N3 register. The AGU provides addresses for 
all three of the DSP5685x address buses and provides up to two 24-bit addresses per 
instruction cycle. 

The DSP5685x supports memory-direct, register-direct, and register-indirect 
addressing modes. Immediate data is also supported. Immediate data formats include: 
long immediate data (32 bits), immediate data (16 bits), and short immediate data (5-7 
bits). Instructions using long immediate data require two additional program words and 
two additional instruction cycles to complete, while those using immediate data require 
one additional program word and one additional instruction cycle to complete. 

Memory-direct addressing modes include: absolute long (24-bit), absolute (l6-bit), 
absolute short (6-bit), and a special peripheral-short (6-bit) addressing mode designed for. 
fast access to memory-mapped peripheral registers. The memory-mapped peripheral reg­
isters (the number of which depends on the number and type of peripherals installed) can 
be located anywhere in the data memory space, and the peripheral short addressing mode 
provides efficient access to 64 of these data memory locations. Use of the peripheral short 
addressing mode eliminates one program word and one clock cycle for move and 
bit-manipulation instructions. 
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Register-direct addressing is supported in both the AGU and in the data ALU; each 
unit has specific arithmetic and logical instructions that make use of this addressing mode. 

Register-indirect addressing modes include: no update; post-increment, post-dec­
rement,or update by the contents of the offset registers, N and N3; indexed by 3-, 6-, 16-, 
or 24-bit immediate offsets; or indexed by the contents of the offset register, N. The soft­
ware stack can be conveniently accessed using stack pointer (SP)-relative indexing with 
3-, 6-, 16-, or 24-bit immediate offsets. Pre-modifications of the address registers are not 
supported. 

Register RO or registers RO and Rl together can be assigned to operate under mod­
ulo addressing where the size of the circular buffer is specified via the modulo register 
MOL Hence, two circular buffers (both having the same size) can be simultaneously 
active, or RO and Rl can act on the same buffer (e.g., for implementing a FIFO queue). 
Modulo addressing is enabled by loading MOl with the size of the circular buffer minus 
one for modulo addressing on only RO, or the size of the circular buffer minus one plus 
Ox8000 for modulo addressing on RO and Rl. In either case the size of the circular buffer 
cannot exceed l6Kx16. The buffer must be aligned on an address that is evenly divisible 
by k, where k is the smallest power of two that is greater than or equal to the size of the cir­
cular buffer. Modulo addressing is disabled (linear addressing is enabled) when OxFFFF is 
loaded in the modulo (MOl) register. 

The AGU shadows registers RO, Rl, N, and MOl to facilitate fast interrupt service. 
These four registers are automatically swapped with their corresponding shadow registers 
upon entering fast interrupt processing. Details on the fast interrupt service routine can be 
found under Interrupts in the Execution Control section of this analysis. The shadow reg­
isters are also available during general interrupt processing; the SWAP instruction swaps 
the values in the RO, Rl, N, and MOl registers with their shadow counterparts. 

Like the DSP568xx, the address generation unit of the DSP5685x is not capable of 
bit-reversed addressing. 

The lack of bit-reversed addressing in the DSP5685x complicates 
FFT implementations that require natural order results. 

The DSP5685x supports a relatively rich set of addressing modes 
for a processor with a 16-bit instruction word. However, there are 
restrictions regarding the use of these modes for instructions with 
parallel moves (see the Parallel Move Support section of this anal­
ysis for further details). 

Even though two circular buffers can be active at a time only one 
size circular buffer is supported; this is a significant limitation. 
Additionally, only one circular pointer (RO or Rl) can be updated 
within a single instruction. This may complicate implementing 
some algorithm kernels with single-instruction hardware loops. 
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Register-indirect addressing indexed by an immediate value can be 
effectively utilized by high-level language compilers for accessing 
local variables in the software stack. For example, add, subtract, 
increment, decrement, and move instructions accept stack oper­
ands. 

Many new address calculation instructions, such as simple shifting, 
add with shift, and test and compare, have been added to the AGU 
unit for more efficient pointer calculations and manipulations. 

Pipeline 

The DSP5685x's eight-stage pipeline is significantly deeper than the three-stage 
pipeline of the DSP568xx. The DSP5685x's pipeline is divided into the following stages: 
prefetch 1, prefetch 2, instruction fetch, instruction decode, address generation, operand 
prefetch 2, execute and operand fetch, and execute 2. Write-back occurs in the last two 
stages. Memory read operations are spread across three clock cycles, allowing slower 
memory to be used while maintaining high instruction throughput. 

To ease the additional programming complexity introduced by the deeper pipeline, 
the DSP5685x pipeline is interlocked. The interlocking hardware resolves only a subset of 
the possible pipeline dependencies that may arise, however. Dependencies that are not 
resolved by the interlocking hardware are handled by the assembler, which issues warn­
ings and inserts NOP instructions, or, in a limited number of cases, issues an error mes­
sage. Thus, pipeline hazards on the DSP5685x can be classified into three categories: 
those that the interlocking hardware resolves by stalling the pipeline, those that the assem­
bler resolves by inserting NOPs, and those that will not be resolved/assembled, which 
Motorola calls "restricted instruction sequences." 

The addition of NOPs as a means to resolve pipeline dependencies has a poten­
tially negative affect on both code size and execution time. To minimize the negative 
effect of NOPs on code size, the interlocking hardware resolves pipeline dependencies in 
instruction sequences that are potentially code-size critical. For example, data dependen­
cies in a hardware DO loop are resolved by the interlocking hardware. In the case of an 
instruction that modifies a control register, the assembler inserts NOPs after the register 
operation to ensure mode changes are completed before subsequent instructions are exe­
cuted. The assumption is that mode changes are relatively infrequent and the NOPs associ­
ated with them will have little effect on code size. Since the interlocking hardware 
resolves pipeline dependencies by stalling the pipeline one or more instruction cycles, 
there is no difference in execution time between inserting a single NOP instruction and 
stalling the pipeline one cycle. 

Pipeline dependencies arise in the following cases: 

• A data register that is used as the destination in a multiplication, multiply-accumu­
late, 16-bit shift, 32-bit shift, or shift-with-accumulate instruction is used as a 
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source for a move or parallel move in the next instruction. This dependency is 
resolved by the interlocking hardware stalling the pipeline. 

• A data register that is used as the destination in a multiplication, multiply-accumu­
late, 16-bit shift, 32-bit shift, or shift-with-accumulate instruction is used as a 
source for a multiplication, multiply-accumulate, 16-bit shift, 32-bit shift, or shift 
with accumulate instruction in the next instruction. This dependency is resolved by 
the interlocking hardware stalling the pipeline. 

• An address register in the AGU is used as a pointer, an offset, an AGU operand, or 
in a transfer-address instruction (the TFRA instruction transfers one AGU register 
to another), and one of the two preceding instructions modified the address register 
using a move or bit-manipulation instruction. An exception to this rule is the case 
where the preceding instructions write immediate data to the register, in this case 
there is no dependency. This dependency is resolved by the interlocking hardware 
stalling the pipeline. 

• Modifications to certain mode registers usually take two instruction cycles to take 
effect. This dependency is resolved by the assembler inserting NOPs. 

• The LC register must be loaded a minimum of two instruction cycles before exe­
cuting a DOSLC instruction. This dependency is resolved by the assembler insert­
ing NOPs. 

While the interlocking hardware and assembler together ensure 
correct program execution, they may do so at the expense of pipe­
line stalls and NOPs. To produce optimal assembly code, program­
mers must become familiar with all pipeline dependencies. The 
complete list of dependencies and restricted instructions are not 
supplied with the DSP56800E Family Manual, but are available in 
a separate document. Additionally, code that was optimized for the 
DSP568xx's non-interlocked pipeline may need significant revi­
sions to achieve optimal performance on the DSP5685x. 

Instruction Set 

Table 7.9-2 and Table 7.9-3 summarize DSP5685x registers and instructions, 
respectively. 

Assembly Language Format 

The DSP5685x implements a superset of the DSP568xx instruction set and is 
backward assembly source code compatible with the DSP568xx. The opcode-operand 
style instruction format is retained, with several new instruction variants to support the 
DSP5685x's three data types and added capabilities. For example, the DSP5685x instruc­
tion set supports an instruction that specifies an ALUIMAC operation with up to two par-
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allel moves; this instruction is very similar to the corresponding DSPS68xx instruction, 
but has added flexibility, as illustrated by the following: 

MACR Yl,XO,A x: (RO)+N,Yl x: (R3)+,XO ;DSP568xx/5685x 

MACR Yl,XO,A x: (RO)+N,Yl x: (R3)+N3,XO ;DSP5685x only 

The .oR" suffix with the MAC instruction indicates MAC with rounding. The rounding 
mode (convergent or round-to-nearest) is specified by a bit in the Operating Mode Regis­
ter (OMR). If rounding were not desired (i.e., truncation is desired), the MAC instruction 
without the .oR" suffix would be used instead. The first instruction multiplies Y1 with XO, 
adds their product to the A accumulator, and rounds the result. In parallel, it moves the 
data memory value pointed to by RO to register Y1, post-updates RO by the contents of the 
N register, moves the contents of the data memory location pointed to by R3 to XO, and 
post-increments R3 by one. This instruction format is valid on both the DSPS68xx and the 
DSP5685x. A variation on this instruction is shown in the second instruction. The second 
instruction performs all of the same operations on the same registers as the first instruc­
tion, except that in this case, the R3 register is post-updated by the contents of the N3 reg­
ister. The ability to post-update the R3 register by the contents of the N3 register is only 
supported on the DSP5685x and adds considerable flexibility to the limited dual parallel 
move instructions of the DSPS68xx. 

Registers Width Purpose 

A,B,C,D 36 bits Accumulators 

XO, YO, Y1 16 bits ALUIMAC inputs/outputs, general-purpose 

RO-RS 24 bits Address registers 

SP 24 bits Stack pointer register 

N 24 bits Primary address offset register and address register 

N3 16 bits Secondary address offset register 

MOl 16 bits Modulo register 

LA, LA2 24 bits Loop address registers 

LC,LC2 16 bits Loop counter registers 

FIRA 24 bits Fast interrupt return address 

FISR 13 bits Fast interrupt status register 

OMR, SR 16 bits Operating Mode and Status registers 

TABLE 7.9-2. DSP5685x register summary. 
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Class Instructions 

Absolute value~ clear; increment~ decrement~ negate; round~ saturate~ 
Arithmetic transfer; add byte, word, long with carry; subtract byte, word, long with 

~; test byte, word, long, accumulator. 

Signed multiply/multiplY-C;lccumulate (with or without rounding and/or 

Multiplication 
negation)~ signed/unsigned multiply/multiply-accumulate (with or with-
out rounding and/or negation); signed, signed/unsigned, 
unsigned/unsigned integer multi12ly 

Logic 
And, or, exclusive-or, not with register or with immediate data~ count 
leading Os or 1 s 

Shifting 
Arithmetic and logical shift left/right: one-bit, multi-bit, multi-bit bidirec-
tional; arithmetic and logical multi-bit shift right and accumulate 

Rotation Rotate left/right one bit: word, long 

Conditional Conditionally transfer from a selected register to an accumulator, with an 
Execution optional transfer of the RO register to Rl 

Comparison 
Compare accumulators, registers, immediate data, or memory~ test accu-
mulator, 16-bit register, or memory location 

Looping 
Single- and multi-instruction nested or single loops, break out of loop 
unconditionally 

Branching 
Relative and absolute branch (both conditional and unconditional), 
branch if selected bits are set/clear, delayed branch, delayed jum12 

Move Move signed or unsigned byte, word, long~ swa12 shadow registers 

Jump to subroutine, return from subroutine, return from interrupt, 
Subroutine Call delayed return from interru12t, delayed return from fast interru12t, delayed 

return from subroutine 

Bit Manipulation 
Bit field test and set, test and clear, or test and change, test high (all 
selected bits are set), test low (all selected bits are low) 

Division iteration, normalization iteration, WAIT and STOP modes, soft-
Special Function ware interrupt, enter DEBUG mode, generate DEBUG event, align SP for 

long memory access 

TABLE 7.9-3. DSP568.5x instruction set summary. New instructions (relative to the 
DSP568xx) are underlin~. 
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Parallel Move Support 

As shown in the above examples, DSP5685x arithmetic instructions support oper­
and-unrelated parallel moves. Single parallel move instructions allow an arithmetic opera­
tion and one memory access to be completed within one instruction. Dual parallel move 
instructions allow an arithmetic operation and two memory accesses to be completed 
within one instruction. In both cases the parallel data moves are unrelated to the arithmetic 
operation being executed; however, because of the limitations of the 16-bit instruction 
word size, the processor places restrictions on which arithmetic instructions support single 
and dual parallel moves, where the operands for the arithmetic operation can come from, 
which address registers can be used to reference memory, as well as the destinations for 
the parallel move(s) and the arithmetic result. Most of these restrictions relate to dual par­
allel moves. The most significant of these restrictions are: 

• When performing two parallel reads, only address register R3 can be used for the 
second parallel read; RO, Rl, or R4 may be used for the first parallel read. 

• In dual parallel read instructions, only registers YO and Yl can be used as destina­
tions for the first parallel read, and only register XO and C can be a destination for 
the second parallel read. 

• In dual parallel read instructions, the first address register (RO, Rl or R4) can only 
be modified by post-incrementing it by one or by the contents of the N register, 
while the second address register (R3) can only be post-incremented/decremented 
by one or updated by the contents of the N3 register. 

• While virtually all ALUIMAC instructions allow one parallel move (read or write), 
only the following instructions allow two parallel moves (reads only): add, sub­
tract, multiply-accumulate with or without rounding, multiply with or without 
rounding, transfer register to register, clear accumulator, arithmetic shift left/right 
one bit, and move word. 

Orthogonality 

The orthogonality of the DSP5685x instruction set is slightly improved compared 
to the DSP568xx. For example, dual parallel move instructions, while still restrictive, are 
more flexible on the DSP5685x as demonstrated by the example shown in Assembly Lan­
guage Format and as discussed in External Memory Interface above. In general, for 
non"'parallel move instructions, any register that can contain the data type being operated 
on can be used as a source or destination. This is similar to the DSP568xx, except that the 
DSP5685x has more registers to choose from. As with the DSP568xx, two reads using 
register-indirect addressing can be performed in parallel on the DSP5685x, but only one 
parallel write is supported. The least orthogonal aspects of the DSP5685x relate to dual 
parallel move instructions, discussed in more detail above, in Parallel Move Support. 

Although very efficient parallel code can be written for the proces­
sor, we expect that even experienced DSP5685x programmers will 
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be forced to return to the user s manual on a regular basis to 
remind themselves of the register usage restrictions. 

Execution Times 

Most DSP5685x MAC/ ALU instructions execute with single-cycle throughput. 
Branches, subroutine calls, and return instructions take two to four cycles to execute. Shift 
instructions take two cycles to execute if the shift amount is greater than 16 bits. Delayed 
branches have a two-instruction delay slot. Single- and multi-instruction hardware loops 
take three instruction cycles to start. 

Instruction Set Highlights 

The DSP5685x provides data ALU and bit-manipulation instructions that operate 
directly on memory without affecting the core registers. For example, the instruction 

INC.W X:$100 

increments the word stored in X memory location Ox100 by one. Byte and long data types 
can also be operated on in a similar fashion. The operands for these instructions can be 
addressed via a 16- or 24-bit absolute address, the stack pointer or primary address off­
set/pointer register indexed with a 6- or 16-bit displacement, an AGU address register with 
or without a 16-bit displacement, or can be contained in one of the seven data ALU regis­
ters. Data ALU instructions require three instruction cycles to execute if the operand is 
addressed via a 16-bit absolute address or an AGU address register, or four instruction 
cycles to execute if the operand is addressed via a 24-bit absolute address, the stack 
pointer indexed by a 6-bit displacement, or an address register indexed by a 16-bit dis­
placement. Bit-manipulation instructions require three instruction cycles to execute if the 
operand is addressed via a 6- or 16-bit absolute address, an AGU address register, the 
stack pointer indexed by 6- or 16-bit displacement, or an address register indexed by a 
16-bit displacement. The bit-manipulation instructions require four instruction cycles to 
execute if the operand is addressed via a 24-bit absolute address. These execution times 
assume the memory access is performed to internal memory or to external memory with 
zero wait states. 

The ability to operate on operands directly in memory is very useful 
\ for manipulating temporary variables stored· in data memory and 

memory-mapped registers without disturbing the contents of inter­
nal registers. This approach supports both microcontroller func­
tionality and high-level language compilers. 

Other noteworthy DSP5685x instructions include: 

• Bit-field test, set, dear, and change instructions (which allow groups of up to 
16 bits to be manipulated at once) 

• Branch if selected bits are set or clear 

• Normalization iteration instruction 
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• Division iteration instruction 

• Conditional transfer instruction for conditional movement of data between regis-
ters 

• Delayed and non-delayed branches, jumps, and return instructions 

• Software interrupts at any of five interrupt levels 

• Single-cycle exponent detect 

Like the DSP568xx, the DSP5685x's bit manipulation instructions 
can simplify programming and increase performance in deci­
sion-intensive applications, such as state machines. 

Execution Control 

Clocking 

Unlike DSP568xx processors which use a 2X master clock, DSP5685x processors 
use a IX master clock. Thus, a 120 MHz master clock for the DSP5685x corresponds to 
an instruction execution rate of 120 MIPS. 

The relationship oj the clock rate to the instruction execution rate 
has changed between the DSP568xx and the DSP5685x. Instruction 
throughput on the DSP568xx is one instruction per two clock cycles 
(2X master clock rate) compared to the DSP5685x's throughput oj 
one instruction per clock cycle (IX master clock rate). Thus, the 
DSP5685x is significantly Jaster (relative to the DSP568xx) than a 
comparison oj the two processor's clock rates would indicate. 

DSP5685x processors include an on-chip clock synthesis module similar to that 
found on DSP568xx processors. For details on the clock synthesi~ module, please refer to 
the Execution Control section of the DSP568xx analysis in Section 7.8. 

Hardware Looping 

Compared to the DSP568xx, hardware looping support has been enhanced in the 
DSP5685x via changes affecting the loop address and loop counter registers. The 
DSP5685x includes two 24-bit loop address registers (LA and LA2) compared to the sin­
gle 16-bit loop address register (LA) on the DSP568xx. Additionally, the DSP5685x 
includes two 16-bit loop counter registers (LC and LC2) compared to a single 13-bit loop 
counter register (LC) on the DSP568xx. As with the DSP568xx, the REP instruction 
repeats a single instruction and is not interruptible, while the DO instruction repeats multi­
ple instructions and is interruptible. Unlike the DSP568xx, however, the DSP5685x pro­
vides hardware support for nested DO loops, and supports 16-bit repetition count values 
compared with 13-bit repetition values on the DSP568xx. Additionally, the DSP5685x 
adds the DOSLC instruction; the DOSLC instruction assumes the LC register is preloaded 
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and begins executing the hardware loop immediately, whereas the DO instruction loads 
the LC register with the loop count then begins executing the hardware loop. 

There are two ways to enter a single-instruction hardware loop, depending on the 
repetition count of the loop. If the repetition count is smaller than 64, then it can be 
encoded as short immediate data in the instruction word. As a result, the loop can be 
entered by using the following instruction: 

REP #N j N < 64 

However, if the repetition count is larger than 63, the following method must be used: 

MOVE 
REP 

#N,LC 
LC 

i N < 65,536 

The first instruction loads a 16-bit immediate value into the loop-count (LC) register and 
the second instruction starts the repeat loop. Similarly, a multi-instruction loop requires an 
extra instruction to load the loop counter if short immediate data cannot be used (i.e., if the 
number of repetitions is greater than 63). 

The maximum repetition count which can be stored in the LC and LC2 registers is 
65,536. If the LC register is loaded with zero, the loop is skipped with the REP and DO 
instructions. If the LC register is loaded with zero or a negative value, the loop is skipped 
with the DOSLC instruction. The REP and DO instructions have a latency of two and 
three instruction cycles, respectively, when the LC register is loaded with an immediate 
value and the last address in the DO loop can be specified with 16 bits (i.e., the loop is 
entirely contained in the first 64 Kbytes of program memory). Alternatively, any data path 
register or address register can be used to load the LC register for REP and DO instruc­
tions; doing so however, increases latency to five and seven instruction cycles respec­
tively. Additionally, if the last address in a DO loop is specified with more than 16 bits 
(i.e., the loop extends beyond the first 64 Kbytes of program memory), latency is 
increased by an additional instruction cycle. 

A single-instruction REP loop can be nested inside a multi-instruction DO loop; 
however, a REP loop cannot be used to repeat an instruction that accesses program mem­
ory, an interrupt instruction, or a multi-word instruction. 

With the addition of hardware support for two-level nesting of DO loops, nesting 
additional levels has become more complicated. DO loops nested beyond two levels 
require not only saving the loop count and the end address of the outer loop onto the soft­
ware stack (as is the case when nesting two DO loops on the DSP568xx), but also the start 
address of the outer loop as .well (the start address of the outer loop is normally automati­
cally saved onto the hardware stack by the DO instruction, but the hardware stack is only 
two deep). Additionally, each DO instruction beyond two levels causes a non-maskable 
hardware stack overflow interrupt. 

The additional loop nesting depth is an improvement over the 
DSP568xx; it would have been a further advantage, however, if 
Motorola had also increased the depth of the hardware stack. 
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Interrupts 

As with the DSP568xx, interrupt requests on the DSP5685x can be generated from 
the reset pin, from two external interrupt pins, from on-chip peripherals, or from within 
the core. Compared with the DSP568xx, the DSP5685x provides two additional program­
mable interrupt priority levels, for a total of five, and allows the interrupt vector table to be 
located anywhere within the program memory space. Software interrupts can be generated 
at any of the five interrupt levels. Additionally, the DSP5685x provides hardware support 
for fast interrupt processing via the FIRA (fast interrupt return address) register, the FISR 
(fast interrupt status register) register, and the shadow registers in the AGU (see Address 
Generation Unit in the Architecture section of this analysis for more details on the shadow 
registers). Fast interrupt processing automatically swaps the shadow registers and pushes 
the Y register onto the software stack, leaving the service routine free to immediately use 
the RO, RI, N, MOl, YO, and YI registers. The return from fast interrupt (FRTID) instruc­
tion reverses the swap and has a two-instruction-word delay slot, allowing service routines 
to initiate return while continuing to execute instructions in the delay slot. Fast interrupt 
processing reduces the latency from the time the interrupt is acknowledged until the first 
instruction of the service routine begins execution; general interrupts have a latency of 
nine instruction cycles while fast interrupts have a latency of five instruction cycles. 

Several interrupts can be generated by the JTAGIEOnCE on-chip debug logic 
including Step Counter Interrupt, Transmit Interrupt, Receive Interrupt, Trace Buffer Full 
Interrupt, and Breakpoint Unit 0 Interrupt. 

Other aspects of interrupts and interrupt handling, such as peripheral interrupts, are 
similar to those of the DSP56F80x processors with the exception that memory addresses 
on the DSP5685x are 24 bits. See Interrupts in ,the Execution Control section of the 
DSP568xx analysis in Section 7.8 for further details. 

Stack 

Like DSP568xx processors, DSP5685x processors feature a two-level hardware 
stack; however, the DSP5685x stack is expanded to 24 bits per level from the DSP568xx's 
16 bits. The hardware stack is used for hardware DO loops; it stores the address of the first 
instruction of a DO or DOSLC loop. The REP instruction does not affect the hardware 
stack. Although a stack exception interrupt detects hardware stack overflow, underflow is 
not detected. 

The DSP5685x's software stack is supported via a dedicated 24-bit stack pointer 
register, compared to 16 bits on the DSP568xx. The software stack is used for passing 
parameters, storing return addresses, holding local variables for subroutines, etc. In addi­
tion, interrupts use the software stack for storing the return address and the status register 
when entering an interrupt service routine. Transfers to the stack have been made more 
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efficient, both in terms of latency and code density, with the DSP5685x's 32-bit move 
instructions. For example, the following DSP568xx sequence, 

LEA (SP) + iincrement SP: one word, one cycle 

MOVE YO,X: (SP)+ isave lower 16 bits: one word, one cycle 

MOVE Y1,X: (SP) isave upper 16 bits: one word, one cycle 

which saves the 32-bit value in the Y register onto the stack,can be reduced to the follow­
ing sequence on the DSP5685x: 

ADDA #2,SP iincrement SP: one word, one cycle 

MOVE.L Y,X: (SP) isave 32 bits: one word, one cycle 

The above DSP5685x sequence assumes that the stack pointer is long-mem­
ory-access aligned; Motorola recommends that new applications developed for the 
DSP5685x initialize the stack pointer for long memory accesses (using the ALIGNSP 
instruction), and that only 32-bit values be pushed or popped when adding or removing 
data from the stack, using the MOVE.L instruction. Note that 8-bit, 16-bit, and 32-bit val­
ues can still be accessed from the stack, but only 32-bit values should be pushed or popped 
from the stack as these instructions modify the stack pointer, which should remain 
long-memory-access aligned. 

Although a software stack can be implemented on any DSP proces­
sor, only a few DSPs feature a dedicated stack pointer which is 
automatically updated upon stack operations, as found on the 
DSP5685x. In addition, many DSP5685x instructions support 
stack-pointer-relative addressing, easing compiler development. 

Bootstrap Loading 

Upon reset, the MA and MB bits of the Operating Mode Register (OMR) are 
loaded from the external mode select lines MODA and MODB. The DSP5685x then 
begins execution at the program memory address selected by the state of the MA and MB 
bits in the OMR and the address of the reset vector. Different vector addresses can be pro­
vided for different reset sources; e.g., a Computer Operating Properly (COP) reset and a 
reset from the RESET pin can have different reset vectors. After the first instruction is 
fetched and propagates through the pipeline, the processor enters, or returns to, the normal 
processing state. 

Peripherals 

DSP5685x processors inherit their peripherals directly from the DSP568xx family. 
DSP56854/53 peripherals include a Quad Timer module, a Serial Communication Inter­
face (SCI), two Synchronous Serial Interfaces (SSI), a Serial Peripheral Interface (SPI), 
and a Computer Operating Properly/Real-Time Interrupt (COP/RTI) module. Only the 
DSP56854 has an External Memory Interface (EMI). For details on the peripheral devices, 
please refer to the Peripherals section of the DSP568xxanalysis in Section 7.8. 
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On-Chip Debugging Support 

Compared with the DSP568xx, the DSP5685x family features expanded debug­
ging support. The DSP568xx IEEE-1149.1 JTAG/OnCE port has been replaced by the 
JTAGIEOnCE port on the DSP5685x. Like the OnCE module on the DSP568xx, the 
Enhanced On-Chip Emulation (EOnCE) module of the DSP5685x allows interaction 
between the debugging environment and the processor core: examination of core registers, 
on-chip peripheral registers, and memory; setting breakpoints on program or data mem­
ory; and stepging or tracing instructions. Stepping is supported on the DSP5685x on up to 
1,048,576 (2 0) instructions, up from 256 on the DSP568xx. Breakpoint logic is more 
powerful on the DSP5685x, which features two breakpoint compare units, Breakpoint 
Unit 0 (BPO) and Breakpoint Unit 1 (BPI), compared to the DSP568xx's one breakpoint 
unit. The two breakpoint units allow the user to program breakpoint actions based on com­
plex combinations or sequences of events. Some of the possibilities include break on BPO 
and/or BPI condition(s) met, break on the nth (up to 216) occurrence of BPO condition 
after BPI condition met, and break after counting n (up to 216) instruction cycles after 
BPO and/or BPI condition(s) met. Breakpoint actions can range from generating inter­
rupts, to halting the core and entering the debug mode, to starting or halting the trace 
buffer. Another addition to the EOnCE features is the Core Events terminal, which com­
municates EOnCE state information to the user in real time. Some examples of viewable 
events are: the step counter is started, the step counter reaches zero, the trace buffer cap­
ture is started, the trace buffer is full, the core enters a debug session, and any breakpoint 
unit action. 

The debugging features of the DSP5685x's EOnCE are more pow­
erful than those found on the DSP568xx; the breakpoint capability 
is noteworthy when compared to the DSP568xx as well as to other 
DSPs like the Texas Instruments TMS320C2xxx. 

Power Consumption and Management 

The DSP5685x family operates from a dual voltage supply of 1.8 volts for the core 
and 3.3 volts for 110. Motorola states that typical power consumption for a DSP56854 
core plus on-chip memory is projected to be 65.7 roW at 1.8 volts when executing at 120 
MHz. 

The DSP56854's projected power consumption of 65.7 mW at 120 
MIPS is significantly lower than that of the DSP56824 (60 mW 
when executing 35 MIPS). This improvement is largely due to the 
migration to a more aggressive fabrication process. 

DSP5685x processors provide WAIT and STOP modes to reduce power consump­
tion when no processing is required. The operation of the STOP and WAIT modes are 
identical to those of the DSP568xx; please refer to the Power Consumption and Manage­
ment section of the DSP568xx analysis in Section 7.8 for further details. Motorola states 
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that the power consumption for the DSP56854 when in STOP mode, with all of the 
peripherals (including the PLL) disabled, is projected to be 9.0 J,1W at 1.8 volts. 

Benchmark Performance 

The DSP5685x has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTI 
BenchmarkTM Results. We summarize and analyze the DSP568Sx's benchmark perfor­
mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
reflect the processor's instruction cycle rate; therefore, lower instruction cycle counts 
imply a more powerful architecture, but do not imply faster speed~ Next we discuss bench­
mark execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13 in Chapter 8, BDTI 
Benchmark™ Results, the DSP5685x total normalized instruction cycle count is 
the fourth-highest, at about 35% above the average for all of the processors. Only 
the DSP568xx, ADSP-219x, and ADSP-219x-C (the ADSP-219x with cache pre­
loaded) have higher total normalized cycle count results. 
The DSP5685x has a total normalized cycle count result that is roughly 5% below 
that of its predecessor, the DSP568xx. A major reduction in the cycle counts is not 
be expected for benchmarks such as the Single-Sample FIR or the Vector Dot 
Product; however; the code for implementing these benchmarks is very similar on 
the two processors. The improvements in the architecture of the DSP5685x com­
pared with the DSP568xx become apparent in more complicated benchmarks such 
as the Viterbi and FFr benchmarks. The DSP5685x has cycle counts on both of 
these benchmarks that are roughly 25% lower than those of the DSP568xx. 
For the Real Block FIR, Complex Block FIR, and Vector Add benchmarks, the 
DSP5685x instruction cycle counts are relatively high compared with those' of the 
other processors. In particular, dual-MAC processors such as the TMS320C62xx 
achieve lower cycle counts by performing calculations on more than one sample in 
one instruction cycle. In contrast, the DSP5685x can fetch two operands and per­
form a single multiply-accumulate operation in one instruction cycle, which is the 
maximum throughput for a single-MAC processor. 
Compared with the DSP568xx, the cycle count of the DSP5685x is somewhat 
lower for the Real Block FIR benchmark, due to the extra index register on the 
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DSP5685x. On the DSP568xx, it is necessary to reload the filter coefficient base 
address from memory after computing each output sample. In the DSP5685x, on 
the other hand, the extra index register can be used to reset the address register and 
avoid explicitly reloading the addfess. 
For the Complex Block FIR benchmark, the DSP5685x has a lower cycle count in 
comparison with that of the DSP568xx because of the added index register, and 
because of the DSP5685x's ability to store long (32-bit) data. In the benchmark 
code, real and imaginary data are packed into adjacent 16-bit words. Although the 
DSP568xx can read two 16-bit quantities packed into a 32-bit word, it does not 
have a similar ability to store two 16-bit quantities. The DSP5685x, in contrast, 
can store a 32-bit quantity with one write operation, thus lowering its cycle count 
on this benchmark. 
The DSP5685x has noticeably higher cycle counts than the DSP568xx for the Vec­
tor Maximum benchmark; the DSP5685x cycle count result is roughly 30% 
higher than that of the DSP568xx. The pipeline on the DSP5685x is deeper than 
that of the DSP568xx, so copying address registers (to record the location of the 
maximum) on the DSP5685x requires more cycles than on the DSP568xx. 
The DSP5685x has the second-highest instruction cycle count on the FFf bench­
mark, at about 85% above the average. Like the DSP568xx, the DSP5685x has no 
hardware support for bit-reversed addressing. Approximately 10% of the total 
cycles for the FFT benchmark on the DSP5685x come from implementing 
bit-reversal in software. The cycle count for the DSP5685x for the FFT benchmark 
is significantly lower, however, than that of the processor with the highest cycle 
count, the DSP568xx. Compared to the DSP568xx, the DSP5685x has two addi­
tional data accumulators, two additional address registers, and one additional 
index register that contribute to its lower cycle counts. The core of the FFT algo­
rithm is the butterfly; in each butterfly, four values are computed using a multiply 
and an accumulate. The four computed values require four data operands and two 
coefficients. The availability of four accumulators (one for each value) and the 
additional address registers available for accessing operands reduces the 
DSP5685x's cycle count result by eliminating the overhead required by the 
DSP568xx for swapping values in and out of accumulators and address registers. 
For the Viterbi benchmark, the DSP5685x has the fifth-highest instruction cycle 
count, at roughly 90% above the average. The processors with higher cycle counts 
on this benchmark are the DSP568xx, ADSP-218x, ADSP-219x, and 
ADSP-219x-C. As mentioned above, long moves have been introduced on the 
DSP5685x, which improves the Viterbi cycle count relative to that of the 
DSP568xx by allowing loads or stores of two 16-bit data operands in one instruc­
tion cycle. In addition, the DSP5685x has more data registers compare·d with the 
DSP568xx; unlike the DSP568xx, the DSP5685x has enough data registers to 
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compute the add-compare-select operation without reloading operands from mem­
ory. 

On the Control benchmark, like the Vector Maximum benchmark, the 
DSP5685x's cycle count result is generally unremarkable but is somewhat higher 
(roughly 10% higher) than that of the DSP568xx. Note, however, that the Control 
benchmark is optimized for minimum memory usage, not minimum cycle counts. 
In this benchmark, there are many branches, subroutine calls, and returns from 
subroutines. The deeper pipeline of the DSP5685x causes the cycle count for the 
Control benchmark to increase compared with that of the DSP568xx. 

• Execution times: The DSP56853 has a moderately high instruction cycle rate 
(120 MHz) in comparison to the other conventional DSP processors benchmarked 
here. Compared to some of the VLIW -based processors, such as the Texas Instru­
ments TMS320C6203, TMS320C64xx, and MSC8101, its instruction cycle rate is 
significantly slower. The DSP56853 moderate instruction cycle rate combines with 
its relatively high cycle counts to result ina total normalized execution time that is 
about 25% slower than· the average of all benchmarked fixed-point processors, as 
presented in Figure 8.2-13. 

• Cost-execution time: In terms of total normalized cost-execution time product 
(presented in Figure 8.3-13), the DSP56853's $3.75 price tag (quantity 10,000), 
the lowest of all processors benchmarked, offsets its relatively slow execution time 
results. The total normalized cost-execution time product for the DSP56853 is 
exceptionally low, and is by far the best result among all of the processors bench­
marked in this report. The total normalized cost-execution time of the DSP56853 
is only about one-fifth the average for all benchmarked fixed-point processors. 

• Energy consumption: The DSP56854 has the second-lowest power consumption 
of any of the processors benchmarked in this report; only the DSP56824 has lower 
power consumption. As presented in Figure 8.4-13B, the DSP56854's low power 
consumption combines with the processor's moderate execution times to give the 
DSP5685x better than average total normalized energy consumption, at roughly 
45% below the average for all benchmarked fixed-point DSP processors. 

Memory Usage 

The focus in the memory usage analysis is on the Control benchmark that, unlike 
other benchmarks, is optimized for minimum memory usage. This benchmark is designed 
to indicate the processor's memory efficiency in control-oriented tasks, where memory 
usage is often more important than speed. We also discuss overall program memory usage 
in the BDTI Benchmarks™, reflecting the processor's program memory usage in general 
DSP code. Finally we discuss constant and non-constant data memory usage. 

• Control benchmark memory usage: As illustrated in Figure 8.5-9A. the 
DSP5685x achieves the lowest total memory usage of all of the benchmarked DSP 
processors on the Control benchmark. In comparison to the fixed-point processors 
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in this report, the DSP5685x has a total normalized result that is roughly 35% 
below the average. The key features which enable the DSP5685x to achieve good 
code density on control-oriented code include its 16-bit instruction word width, 
PC-relative branches, and support for short immediate data. The second-lowest 
total memory usage for the Control benchmark is achieved by the DSP568xx, 
which requires slightly more program memory. The DSP5685x has the advantage 
due to its ability to load and store long (32-bit) data in one instruction. 

• Program memory usage: As Figure 8.5-13 illustrates, the total normalized pro­
gram memory usage of the DSP5685x is the third lowest of all benchmarked DSP 
processors, bettered only by the Analog Devices ADSP-218x and the Texas Instru­
ments TMS320C54xx. Despite its short, 16-bit instruction word width, the instruc­
tion set of the DSP5685x is relatively powerful (though non-orthogonal) and 
allows more operations to be performed per instruction than most other conven­
tional DSP processors. There are, for example, many arithmetic operations which 
allow parallel fetch or store of two 16-bit data words. Such features enable the pro­
cessor to have the second-lowest cycle counts on the Real Block FIR and Complex 
Block FIR benchmarks, and the lowest on the Control, Single-Sample FIR, Vector 
Add, Vector Dot Product, and Bit Unpack benchmarks. In contrast, the DSP5685x 
has the third-largest program memory usage (after the DSP568xx and Texas 
Instruments TMS320C67xx) for the Viterbi benchmark. Compared with the 
DSP568xx, the DSP5685x uses less program memory on the Viterbi benchmark 
because the DSP5685x can do long (32-bit) loads and stores. On the DSP568xx, 
many of these loads require an additional instruction, which increases program 
memory usage. Also, on the DSP5685x there are enough data registers so that data 
can be remained for successive additions and subtractions without refetching as 
required on the DSP568xx. 

• Data memory usage: Like the DSP568xx, the DSP5685x's constant data memory 
usage is as expected for a 16-bit fixed-point DSP processor. Total normalized con­
stant data memory usage is shown in Figure 8.5-14. 
As with the DSP568xx, the DSP5685x's non-constant data memory usage is gen­
erally as expected for a 16-bit fixed-point DSP processor. The DSP5685x has a 
higher non-constant data memory usage on the Control benchmark than other 
benchmarked fixed-point processors. The reason is that, in the case of a subroutine 
call, the processor stores the return address and the processor's status word onto 
the software stack. Most fixed-point processors either do not store the status word 
or provide hardware stacks or shadow registers for saving registers and return 
addresses. Total normalized non-constant data memory usage is shown in 
Figure 8.5-15. 

The execution times for the DSP5685x are slower than average for 
a fixed-point processor, but provide a significant speed-up over 
those of its predecessor, the DSP 568xx. This speed-up is mostly a 
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result of its faster instruction cycle rate (rather than because of 
lower cycle counts). 

The DSP56853 has the best cost-execution time result for all of the 
processors benchmarked here. In addition, the prpcessor s energy 
consumption is extremely good. These results indicate that it is well 
suited for the power-sensitive applications it targets, and will pro­
vide a cost-effective solution in applications that do not require top 
performance. 

As indicated by the processor s low program memory use on the 
Control benchmark, the DSP5685x should achieve very good code 
density. In addition, the DSP5685x achieves fairly low total nor­
malized total program memory usage. 

Cost 

DSP5685x projected price and package options are shown in Table 7.9-4. The 
DSP56800E core is available for license; contact Motorola for infonnation regarding 
licensing fees. 

Fabrication Details 

DSP5685x family members will be fabricated in a 0.18 J.lm five-metal-layer 
CMOS technology, according to Motorola. 

Development Tools 

The DSP5685x is supported by Motorola's Suite56 Software Development Tools, 
which include a text-based assembler, linker, and simulator (CLAS software development 
package) and a simulator/debugger with a window-based graphical user interface. The 
tools use either standard COFF object fonnat or Motorola's own ASCII-based object for­
mat. This package is available for MS-DOS, Wmdows 95/98, Windows NT 4.0, Sun OS , 
Solaris, and HP-UX. 

Part 
Speed 110 Core 

Package 
Price 

(MHz) Voltage Voltage (Qty. 10,000) 

DSP56854 120 3.3 1.8 
144LQFP/ 

$4.50 
MBGA 

DSP56853 120 3.3 1.8 81 MBGA $3.75 

TABLE 7.9-4. PriCing for DSP5685x versiOns. Prices as of October 2000. 
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The tool set is not a part of an IDE, and other tools, such as 
"make," are necessary to conveniently handle software projects. 
However, the debugging facilities of the simulator are good, and. 

Motorola's DSP5685x instruction-set simulator accurately models all of the I/O 
pins of the devices, provides cycle-accurate simulation of the processor and enables mod­
eling of external data streams and interrupts. As is typical for Motorola's simulators, this 
simulator also has a C-Ianguage procedural interface that allows the integration of the pro­
cessor model with other simulation environments. 

Besides the CLAS package, Motorola offers a C compiler for the DSP5685x. 

Motorola distributes the latest version of its CLAS package, which 
contains an instruction-set simulator, assembler, linker, and librar­
ian on the Internet free of charge. Development tool availability on 
the Internet simplifies software upgrades and is an advantage. 

Motorola's comprehensive "Development Environment" consists of the Software 
Development Kit (SDK), Metrowerks CodeWarrior for Motorola DSP Embedded Systems 
(an IDE), and a hardware evaluation module (EVM). The SDK provides peripheral driv­
ers, libraries, and interfaces (for interfacing simulated peripherals), while the IDE features 
a simulator, debugger, C compiler, assembler, and linker (these are separate from those 
found in Suite56). 

The DSP56854-based EVM features a DSP56854 processor, power supply, 
64Kx16 external program SRAM and 64Kx16 external data SRAM, a JTAGIEOnCE port, 
an on-board command converter interface (emulation interface), an RS-232 serial port, an 
audio codec, a copy of the SDK, and a 3~-day trial license for the CodeWarrior IDE. The 
EVM runs on PC-compatible systems running Windows 951981NT 4.0. 

Applications Support 

The base document for the DSP5685x family is the DSP56800E Family Manual. 
This volume describes the processor core and the instruction set, but not the peripherals or 
memory configuration. These chip-specific details are covered in the DSP56854153 User's 
Manual. Additionally, Motorola provides a data sheet for each processor which contains 
electrical and timing specifications, pinout, and packaging descriptions. 

Motorola provides applications support via application notes, training classes, a 
telephone hot-line, and a newsletter. User's manuals, technical documentation, product 
information, and press releases can be foundcat Motorola's website. 

\ 

Advantages 

• 32-bit barrel shifter 

• Large address spaces 

• Rich instruction set 
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• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

Fast interrupt capability 

Long, word, and byte data types supported 

Bit manipulation unit; good bit-field manipulation instructions 

Software stack with stack pointer supports HLL compilers 

Four 16-bit timer/counters 

Good power management features 

Ability to use IX or slower external clock 

Flexible PLL 

Low cost (e.g., $3.75 for the 120 MHz DSP56853, quantity 10,000) 

JTAGIEOnCE enhanced debugging 

Available as a licensable core 

Compatible with predecessor (DSP568xx) 

Very good cost-execution time results on the BDTI Benchmarks 

Good energy consumption results on the BDTI Benchmarks 

Disadvantages 

• Limited parallel move support: two reads or one write per instruction cycle, second 
data operand can only be accessed with address register R3 

• No bit-reversed addressing 

• Limited circular addressing (two circular buffers supported; however, the size of 
the buffers must be the same and the two circular pointers cannot be simulta­
neously modified) 

• No externally requested wait states 
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7.10 StarCore SC140 Core, Motorola 
MSC8101 BDTlmark2000 Score: 

3430 at 300 MHz 

Introduction 

The SC140 core is a 16-bit fixed-point VLIW-based DSP processor core, 
announced in April of 1999. It is the first core to emerge from the joint MotorolalLucent 
Technologies design center, StarCore. The SC140 core is targeted at a wide range of tele­
communication applications, including wireless telecom, IP telephony, and modems. 
Notably, it is the first VLIW-based DSP architecture to target applications that require low 
power consumption, such as cellular telephones. 

The SC140 will be used by Lucent and Motorola in off-the-shelf chip products; the 
first chip product based on the SC140, Motorola's MSC8101, is currently sampling at 300 
MHz, according to Motorola. The MSC8101 is optimized for networking infrastructure 
applications such as third-generation wideband wireless infrastructure systems, IP tele­
phony systems, multi-channel modem banks, and multi-channel xDSL. 

Lucent's first product based on the SC140, the StarPro 2000, was unveiled in June 
2000, and is expected to begin sampling at 300 MHz in April 2001. The StarPro 2000 inte­
grates three StarCore SC 140 cores and is optimized for infrastructure applications such as 
wireline VoIP gateways, remote access servers, wireless mobile switching centers, and 
radio network controllers. The StarPro 2000 is not covered in this analysis, but will be 
covered in future reports from BDTI. 

Much of the analysis in this chapter pertains to the SC140 core and will generally 
be relevant to any SCl40-based chip. In a few sections, however, we discuss features that 
are specific to Motorola's MSC8101 chip. Discussions of chip-specific features may not 
be applicable to other SCl40-based chips offered by Motorola or Lucent. 

SCl40-based development chips have been fabricated bY'StarCore and execute at 
300 MHz at 1.5 volts. In 2000, StarCore announced a scaled-down version of the SC140, 
the SCllO. This core is a reduced-cost, reduced-performance core relative to the SC140; 
for example, the SCllO provides one MAC unit instead of the SC140's four. The SCllO is 
not included in this analysis, but will be covered in future reports from BDTI. StarCore 
states that the SC 11 0 is binary compatible with the SC 140 (i.e., binary code for the SC 11 0 
can be run on the SCI40), providing an easy upward migration path for customers. 

The SC140 is notable for its extremely high level of parallelism, 
even in comparison to other VLIW-based processors. The core pro­
vides this parallelism while achieving very low power consumption, 
and is the first VUW-based DSP processor to attempt to combine 
low power consumption with very high performance. With its high 
levels of parallelism and at its 300 MHz clock rate, the SC140 is 
currently the fastest DSP processor to be demonstrated in silicon. 
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Architecture 

The SC 140 architecture, shown in Figure 7.10-1, consists of four 16-bit 
fixed-point data paths, an address generation unit that includes two address arithmetic 
units and one bit mask unit, and a program control unit. 

The SC 140 is a VLIW architecture and can execute up to six instructions at a time. 
Instructions that are grouped for parallel execution are referred to as an "execution set" by 
StarCore. Instructions are scheduled for parallel execution at compile time by code-gener­
ation tools or by the assembly-language programmer. 

I Program/Data Memory I 
r ~-

,j 

~- ~~ ~ ~------------ - -

I Program Address Bus (32 bits) I 
+ .. 

I Proaram Data Bus (128 bits) I 
I 

I Data Address Bus 1 (32 bits) I 
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FIGURE 7.10-1. SC140 DSP core architecture. 
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Data Path 

The SC140 contains four 16-bit data paths, each of which contains a combined 
ALUIMAClbit-field unit (BFU). The BFU contains a 40-bit barrel shifter. All of the data 
paths are identical, and share a common set of 16 source and destination registers. The 
four data paths and the register set together are designated as the "Data ALU" section. The 
SC140 also includes an address generation unit (AGU) that contains two address arith­
metic units (AAUs) and one "bit mask unit" (BMU). The address generation unit has its 
own set of registers; the BMU can take its operands both from the addressing registers and 
from the general-purpose registers, and its operation is therefore described in this section. 

The MAC units, ALUs, and BFUs that comprise each of the four data paths in the 
DALU section are not independent (in contrast to other VLIW processors, which typically 
have independent MAC, ALU, and shifter units). Hence, it is not possible, for example, to 
issue a set of instructions that uses all four MAC units and also one of the BFUs. For this 
reason, in each group of six instructions executed in parallel, only four can use the DALU. 
The remaining two instructions in an execution set can use the address generation unit to 
perform data moves, pointer arithmetic, or bit mask operations; or they can specify pro­
gram flow-control instructions. Only one of these two instructions can specify a bit mask 
operation, since there is only one bit mask unit. StarCore refers to each combined 
ALUIMACIBFU as an ALU. 

The SC140 provides a total of sixteen 40-bit general-purpose registers (each pro­
viding eight guard bits) for the DALU section. Each register has three portions: the high 
and low halves of the lower 32 bits of the register (referred to as simply the registers' high 
and low halves) and eight guard bits (MSBs). The high and low halves of each register can 
serve as inputs or outputs for the arithmetic operations. 

The SC140 provides a similar number of execution units as the 
TMS320C62xx. However, each of the four combined 
ALUIMACIBFUs on the SC140 can perform a wider range of arith­
metic operations than can the execution units on the 
TMS320C62xx, providing more flexible parallelism. For example, 
the SC140 can perform four parallel multiply-accumulates in one 
cycle; the TMS320C62xx can perform only two. Texas Instruments' 
newer TMS320C6xxx architecture, the TMS320C64xx, can compute 
four 16-bit multiplications per cycle, and provides stronger archi­
tectural competitionfor the SC140. 

In comparison to conventional DSP processors, such as the 
TMS320C54xx, the SC140 provides a much higher level of parallel­
ism. 

Having a common register set for all data paths eases program­
ming. Since instruction latencies are low and a register can be used 
as both source and destination in the same instruction cycle, sixteen 
registers should be sufficient to support the processor s execution 
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units. The register width, 40 bits, is sufficient to provide the neces­
sary dynamic range for applications that use 16-bit data. 

All data path operations are performed in one clock cycle; that is, the result of 
every arithmetic operation can be used as an input by operations in the next cycle. The 
SC140 is a load/store architecture, meaning that operands for DALU instructions are taken 
from and stored to data registers rather than directly from or to memory. 

The data paths support 40-bit data for some arithmetic operations; operands 
smaller than 40 bits are extended to 40 bits using sign extension or zero padding, depend­
ing on the instruction being executed. The data registers can be read from or written to 
memory as signed or unsigned 8-bit (byte), 16-bit (word), or 32-bit (long word) operands. 
When a 16-bit value is read into a register as a fractional value, it is sign extended and 
moved into the high half of the 40-bit destination register, with the lower half of the regis­
ter filled with zeros. The SC140 supports three types of two's complement data formats: 
signed fractional, signed integer, and unsigned integer. 

The data paths include bus shifterllimiters that provide saturation and sign or zero 
extension. These operations are specified by the move instructions (i.e., move instructions 
include data format and saturation options), and affect the data before it is placed on the 
bus en route to memory, but do not affect the data in registers. The SC140 supports satura­
tion of data in registers via explicit saturation instructions. 

The SC140 data register read/write instructions are poweiful. They 
support 8-bit, 16-bit, and 32-bit data widths, signed and unsigned 
modes, and integer and fractional formats. 

The SC140's data paths perform single-cycle 16 x 16-bit multiplications. The mul­
tipliers support all combinations of signed and unsigned operands, and support fractional 
and integer formats (both operands must be integer or fractional). Inputs can be taken from 
the high or low halves of any of the DALU registers, or one input can be specified as 
16-bit long immediate data. In addition to multiplications, the data paths support a range 
of arithmetic operations, including add, subtract, negate, absolute value, and clear. Addi­
tion and subtraction operations use 40-bit operands. The data paths also support division 
iteration, comparison, maximum/minimum operations, transfers between registers, arith­
metic shift operations, and rounding, each of which is described below. 

Fractional and integer division of both unsigned and signed values is supported by 
the SC140 via the DIV instruction. The dividend is a 32-bit fractional or 31-bit integer 
value and the divisor is a 16-bit fractional or 16-bit integer value (the dividend and divisor 
must both be fractions or integers). The DIV instruction calculates one quotient bit based 
on the divisor and the previous partial remainder. To produce an N-bit quotient, the DIV 
instruction is executed N times, where O<N<17. Thus, for a full-precision (16 bit) quo­
tient, 16 DIV iterations (and 16 instruction cycles) are required. In general, executing the 
DIV instruction N times produces an N-bit quotient and a 32-bit remainder that has 32 - N 
bits of precision and whose N most significant bits are zeros. 
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The SC140 provides a variety of instructions for implementing minimum and 
maximum operations. These instructions select the 32-bit maximum or minimum value 
from two data registers and store it in the second of the two registers. A SIMD version of 
the maximum/minimum instruction performs the same operation on the lower and upper 
16-bit halves of the two registers. The instruction selects the maximum or minimum value 
in the high halves of the data register pair and stores it in the high half of the second regis­
ter. The same operation is executed on the registers' low halves. In this case, a total of 
eight 16-bit maximum/minimum operations can be performed in parallel using all four 
ALUs. The SC140 data paths also execute a special version of the maximum/minimum 
operation that is intended to support efficient implementation of Viterbi decoding algo­
rithms. The instruction MAX2VIT compares the 16-bit contents of the high and low 
halves of a data register pair to find the larger value. The high halves of the two registers 
are compared to each other, as are the low halves, and the Viterbi flags are set or cleared 
separately. It copies the larger value to the corresponding portion in the second data regis­
ter and sets or clears the processor's Viterbi flags (VFO-VF3 in status register) to indicate 
which portions are larger. The MAX2VIT instruction is used with conjunction with the 
VSL (Viterbi shift left) instruction, which stores registers with or without shifting based 
on the VFO-3 bits in the status register. 

The SC140's MAX2VIT and VSL instructions should prove quite 
effective in Viterbi decoding, an observation supported by the pro­
cessor's results on BDTI's Viterbi benchmark. 

Each data path supports SIMD-style addition and subtraction (using the ADD2 and 
SUB2 instructions) by treating values in registers as packed pairs of 16-bit data operands. 
For example, using SIMD operations, the SC140 can perform eight 16-bit additions per 
instruction cycle. 

Logical operations are performed by the bit-field units. Each data path contains a 
4O-bit barrel shifter with a 40-bit input and a 40-bit output, a mask generation unit, and a 
logical unit. The barrel shifter supports arithmetic and logical shifts of up to 31 bits to the 
left or right. Logical operations include and, or, exclusive-or, and not. The data paths also 
execute bit extraction and insertion and sign and zero extension. The data paths support 
block floating-point operations via normalization and exponent-detect instructions. 

The SC140 supports both round-to-nearest and convergent rounding. Rounding is 
accomplished using the ROUND instruction; the type of rounding is specified via a mode 
bit. The SC140 also supports subtract-and-round, add-and-round, multiply-and-round, and 
multiply-accumulate-and-round operations. The SC140 provides mode bits to specify that 
a result should be left or right shifted by one bit before storing into memory. (These mode 
bits control the bus shifterllimiters.) Results are automatically limited as needed following 
shifting. 

The SC140's status bits are shared by all four of its data paths. Status bits include 
carry, overflow, and result-of-test (which is set based on the result of a comparison instruc­
tion, test instruction, or conditional-branch instruction). If the overflow exception bit in 
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the status register is set, the overflow exception service routine is executed whenever there 
is an overflow. The overflow bit is referred to as a "sticky bit" by StarCore; once set, it 
remains set until explicitly cleared by the programmer. If more than one instruction in an 
execution set attempts to update the carry bit, the bit is updated by the last instruction in 
the set (as it appears in the program). Only one instruction that affects the result-otc-test bit 
can be a part of an execution set. 

The lack of separate status bits for each data path and for SIMD 
operations may cost cycles in some applications. In some cases 
(particularly in control-oriented software), it may result in the pro­
grammer or compiler only being able to use one of the data paths. 
StarCore states that this lack was a design decision meant to help 
maintain architectural scalability. 

The bit mask unit (BMU) performs bit test, set, invert, and clear operations on 
16-bit data. Source operands can come from the DALU registers, address registers, control 
registers, or directly from memory. 

Memory System 

The SC140 has two 32-bit address buses and two 64-bitdata buses for transferring 
data. Instructions are fetched via a 32-bit address bus and 128-bit data bus. Program and 
data memory are unified; any address can contain either instructions or data. Memory is 
byte-addressable and can be accessed either as little-endian or big-endian data, controlled 
by a mode bit. 

The 128-bit program data bus allows retrieval of up to eight 16-bit instruction 
words per cycle. (Although the processor can only execute six instructions per cycle, the 
processor fetches eight words because some instructions require two or three words, and 
one or two of the 16-bit words may be used as prefixes, described in the Instruction Set 
section.) 

The SC140 can perform two data reads, two datawrites, or one read and one write 
per instruction cycle. Each read or write can access contiguous groups of data up to 64 bits 
wide. This allows retrieval of up to sixteen 8-bit, eight 16-bit, or four 32-bit words per 
cycle (assuming that groups of words retrieved by each data bus are contiguous in mem­
ory). Word accesses of 16 bits require addresses to be aligned on multiples of two; 32-bit 
word accesses must be aligned on multiples of four; and 64-bit accesses (four 16-bit or 
two 32-bit words) must be aligned on multiples of eight. On a 300 MHz SC140, the maxi­
mum on-core data memory bandwidth is 2,400 million 16-bit words/second. 

The SC140 has much higher on-chip data memory bandwidth than 
most other DSP processors. Its memory bandwidth should be suffi­
cient to keep the execution units supplied with data and avoid data 
memory bottlenecks when the processor uses data in on-chip mem­
ory. The SC140 can only achieve the maximum data bandwidth 
when accessing groups of contiguous words in memory, however. 
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The 32-bit address space should be sufficientfor virtually all appli­
cations. 

The unified memory architecture provides greater flexibility for 
users, compared to architectures that segregate program and data 
memory. 

MSC8101 On-Chip Memory 

The MSC8101 contains 512 Kbytes of on-chip SRAM (256 K 16-bit words). As 
described above, the memory is unified; it is used to store both instructions and data. 

External Memory Interface 

The SC140 is a core; the external memory interface will be chip-specific. 

MSC8101 External Memory Interface 

The MSC8101 external memory interface provides a glueless interface to the Pow­
erPC bus. It includes a 32-bit address bus and 32-bit or 64-bit data bus (the width is select­
able via software). The interface supports multiple masters, and also supports 
programmable wait states. The bus operates at 100 MHz, and the maximum external 
memory bandwidth is 400 million 16-bit words/second. 

The MSC8101's off-chip memory bandwidth is significantly lower 
than its on-chip bandwidth. Realizing the chip's performance 
potential will require careful use of on-chip memory, as is the case 
with the TMS320C62xx. 

Address Generation 

The SC140 provides one address generation unit (AGU) that contains two address 
arithmetic units (AAU), a bit mask unit (BMU), and a set of addressing registers. The 
AGU is capable of generating two addresses per instruction cycle. The AGU provides 16 
primary registers (RO-R15). The last eight of the primary registers (R8-R15) are al~o used 
as base registers for modulo addressing (where they are referred to as BO-B7). The AGU 
also provides two stack pointers (NSP, ESP), only one of which is active at a time. The 
active stack pointer is accessed as SP. The SC140 provides four 32-bit post-modifier/offset 
registers (NO-N3) each of which can be used with any of the primary address registers. 
These four registers can also be used as general-purpose registers. 

The two AAUs are identical; each contains a 32-bit adder which can perform arith­
metic operations on the 16 AGU registers (RO-R15), the program counter (PC), the stack 
pointer (SP), and the four offset registers (NO-N3). The AAUs can add or subtract the con­
tents of two AGU registers, add an immediate value to the contents of a register, increment 
or decrement registers, and add with reverse carry to the contents of an AGU register. The 
AAUs also contain a second adder which is used in modulo addressing in conjunction 
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with the modulo comparator. The operations supported by the BMU are described in the 
Data Path section, above. 

Like many DSP processors, the SC140's maximum memory band­
width can only be achieved when data is arranged in groups of con­
tiguous words in memory. This is in contrast to, e.g., Infineon's 
VUW DSP processor core, Carmel, which generates four addresses 
per clock cycle, and can achieve its maximum bandwidth even when 
accessing non-cofltiguous data words. 

The SC140 supports register-direct, register-indirect, indexed, PC-relative, 
bit-reversed, and modulo addressing modes. Immediate data is also supported. 
Bit-reversed addressing is supported via reverse-carry address modification. When an 
address is post-modified in this mode, the carry bit is propagated in the opposite direction 
to generate bit-reversed addresses. 

Address modifiers include post-increment by one, post-decrement by one, and 
post-increment by a signed offset register value. The absolute value of the 32-bit offset 
register must be less than or equal to the modulo value. Indexed addressing can be accom­
plished using short-immediate displacement (0 to 7 bytes, 16- or 32..:bit words), or word 
displacement. In word displacement,. the displacement is specified as a signed 15-bit word, 
requiring a second instruction word. It is sign-extended to 32 bits and then added to Rn to 
obtain the operand address. Thus, the displacement in this mode can range from -16,384 to 
+16,383 for 8-bit moves, -8,192 to +8,191 for 16-bit moves, -4,096 to +4,095 for 32-bit 
moves, or -2,048 to +2,047 for 64.,.bit moves. The stack pointers also support indexed 
addressing with short displacement and word displacement. 

Indexed addressing is usefulfor compiler-generated code. 

The SC140 can implement four modulo buffers at a time. The MCTL register con­
tains four bits which, when set by the programmer, activate modulo addressing. The base 
registers (BO-B7) are used to hold the lower boundary value of the modulo buffer; the' 
upper boundary is calculated as Bn+My-l, where My is one of the modulo registers 
(MO-M3). Which My register is associated with which Bn register is defined in the MCTL 
register, which can be modified by the programmer during program execution. Modulo 
buffer sizes can range from 1 to 232_1. 

The SC140 also supports a special modulo addressing mode, "multi­
ple-wrap-around" modulo addressing. In this mode, the base registers are not used as 
lower boundary values, and hence can be used for other purposes. The Mn register, which 
can have a value between 2 and 231 and must be a power of 2 in this mode, is used to 
derive both the lower and upper boundaries of a modulo buffer. The lower boundary value 
has zeros in the k LSBs, where Mn = 2k, and therefore must be a multiple of 2k. The upper 
boundary is the lower boundary plus the modulo size minus one. Multiple-wrap-around 
modulo addressing _ is functionally identical to regular modulo addressing when simple 
post-increment and post-decrement operations are used to update addresses, since at each 
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increment, the address will only wrap a maximum of one time. The main difference arises 
when an offset is used to update the address, and the processor is making long word 
accesses with very small modulo values. In this case, there is potential for multiple wrap­
ping if the offset value is not less than the buffer size. In multiple-wrap-around mode, mul­
tiple wrapping is supported, and the offset value need not be less than the buffer size. 

The SC140 addressing modes are typical for modem DSP proces­
sors. 

Pipeline 

The SC140 processor uses a five-stage pipeline consisting of pre-fetch, fetch, dis­
patch, address generation, and execute stages. The first three stages are implemented in 
the program sequencer unit and the last two stages are implemented in the address genera­
tion unit (AGU) and DALU. 

In the pre-fetch stage, the processor generates the address for the program memory 
fetch and increments the fetch counter (FC). In the fetch stage, the processor fetches eight 
16-bitinstruction words from program memory. The SC140 has an internal buffer that is 
used to hold at least one execution set. Each execution set can contain fewer than eight 
instruction words. If the internal buffer contains more than eight instruction words, the 
processor does not fetch additional instructions during that instruction cycle. 

In the dispatch stage, the program sequencer uses information in the prefix words 
or the serial grouping encoding (described in the Instruction Set section, below) to deter­
mine whether each instruction will execute in the DALU or AGU, and which instructions 
will be executed in parallel. At this point, the instructions are issued to the execution units. 
The number of cycles required by the entire execution set is determined by the instruction 
within the set that consumes the most cycles. The dispatch stage also includes decoding 
for AGU instructions; DALU instruction decoding is performed in the address generation 
stage, as is address generation for load/store operations. 

During the execute stage the processor reads data operands, performs arithmetic 
operations, and writes the results to destination registers. During the execute stage the pro­
cessor also performs load/store accesses to memory. 

The SC140 pipeline is not fully hidden from the user, as illustrated by the follow­
ing examples: 

• A pipeline hazard occurs if an address register is loaded from memory and used as 
a pointer in the next cycle. This restriction arises because data is loaded from 
memory in the execute stage, but registers are used as pointers in the address gen­
eration stage (which leads the execute stage). 

• Two cycles must elapse between modification of MCTL and use of an address reg­
ister as a pointer or arithmetic operand. 

• Instructions executed in the AGU that use the T register (result-of-test register) 
cannot immediately follow instructions that update the T register. 
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• A stall will occur when a change of flow instruction branches to an execution set 
that is spread over two fetch sets; i.e., an execution set that is not aligned on a 
16-byte boundary (a fetch set is a group of instruction words fetched from memory 
in a single cycle). 

The S 140 pipeline is not interlocked; however, the assembler detects pipeline haz­
ards and issues warnings. 

The first two stages of the five-stage pipeline are dedicated to program memory 
accesses. This results in a penalty of two cycles for unconditional change-of flow instruc­
tions which use immediate destination values. Unconditional PC-relative change-of-flow 
instructions carry a penalty of three cycles. Conditional change-of-flow instructions 
(including PC-relative) always have a penalty of three cycles if the change-of-flow occurs; 
there is no penalty if the change-of-flow is not executed. 

The SC140 instruction set also includes delayed versions of the change-of-flow 
instructions. The number of cycles saved by using the delay slots varies depending on the 
instructions used in the delay slot. 

In comparison to other VUW-based DSP processors, such as Car­
mel and the TMS320C62xx, the SC140's pipeline is quite short. The 
SC140's five-stage pipeline is benign, and does not seriously com­
plicate programming. Pipeline hazards can be avoided with very 
little programming effort. 

Instruction Set 

The SC 140 registers and instruction set are summarized in Table 7.10-1 and 
Table 7.10-2, respectively. The SC140 is a VLIW-based architecture; the processor 
fetches eight instruction words and can execute up to six instructions in parallel (the 
remaining two words can be used for prefixes or immediate values). Each instruction in 
the execution set uses one execution unit. The available execution units on the SC140 are: 

• Four data paths. These four are referred to collectively as the Data ALU section 
(DALU). 

• Two address arithmetic units 

• OneBMU 
• One program controller 

The processor uses two different methods for specifying which instructions will be 
included in an execution set: serial grouping and prefix grouping (see Figure 7.10-2). 

• Serial grouping uses the two most significant bits in the instruction to determine 
the end of an execution set. If these two bits are not 00, the instruction is consid­
ered to be the last instruction in the execution set. 

• Prefix grouping uses a one-word or two-word prefix for an execution set. The pre­
fix defines how many instructions are included in the execution set, and also con-
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tains information used for conditional execution and looping. Prefix grouping must 
be used if instructions are to be executed conditionally. 

The choice of prefix or serial grouping is not specified by the assembly program­
mer; the assembler determines the grouping method. Serial grouping is used whenever 
possible to minimize instruction word usage. 

There are a number of restrictions governing which instructions can be executed in 
parallel. As explained earlier, only four instructions can use the DALU section at a time; 
hence, although it may appear in some descriptions of the SC140 that there are 12 execu­
tion units in the DALU section (an ALU, MAC unit, and bit field unit in each of the four 

Inst. #1 Inst. #2 Inst. #3 

Serial Grouping 1~8 
Prefix word(sj Inst. #1 Inst. #2 Inst. #3 

Prefix Grouping 
I 1

011
1 1 1 I 1 I 1 

I 1 1 f 
FIGURE 7.10-2. SC140 DSP core instruction grouping methods. 

Registers Width Purpose 

DO-DIS 40 General-purpose registers 

RO-R7 32 Primary address registers 

R8(BO)-RlS(B7) 32 Address registers (circular buffer base registers) 

NO-N3 32 Address offset registers 

MO-M3 
32 Address modifier registers (for modulo, multiple 

wrap-around modulo, and reverse-carry modes) 

MCTL 
32 Address modifier control register (selects linear, 

reverse-carry, modulo, multiple wrap-around modulo modes) 

NSP,ESP 32 Normal and exception stack pointers 

SAO-SA3 32 Loop start address registers 

LCO-LC3 32 Loop counter registers 

T 1 Result-of-test bit (1 iftrue, 0 if false) 

TABLE 7.10-1. SC140 register summary. 
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data paths), only fQur of these can be used in parallel, becalise the DALU section only has 
four instruction decoders. Similarly, only one bit mask unit instruction can be executed at 

Class Instructions 

Absolute value, add or subtract, add or subtract with carry, SIMD add or 
subtract two 16-bit values, add or subtract without changing carry bit, add 

Arithmetic or subtract and round, clear, divide iterate, decrement and set based on 
result of test, increment integer or fractional data register, negate, round, 
saturate fractional or long, shift left and subtract, transfer 

Integer or fractional multiplication or multiply-accumulate (all possible 
Multiplication combinations of signed and unsigned operands); fractional multiply or 

multiply-accumulate with rounding 

Logic And, or, not, exclusive-or 

Shifting 
Arithmetic left or right shift by one bit, arithmetic left or right shift by 0-31 
bits, logical left or right shift by 0-31 bits 

Rotation 
Rotate one bit left or right through carry bit; sign extend byte, 16-bit word, 
32-bit word; zero extend byte, 16-bit word, 32-bit word 

Conditional Transfer data register based on result-of-test bit in status register; almost 
Execution all instructions can be executed conditionally using prefixes 

Compare for equality, greater than, or higher (unsigned) and update T reg-
Comparison ister; choose maximum or maximum of two 16-bit values, absolute maxi-

mum or minimum; test for equal to zero, greater than or equal to zero 

Looping Set up loop, set up counter, skip, continue, break 

Branching 
Unconditional or conditional branch, jump with delay slot, jump without 
delay slot 

Subroutine Unconditional or conditional subroutine call, return with delay slot, return 
Call without delay slot 

Bit Count leading bits, extract signed or unsigned bit field, insert, bit mask 
Manipulation change, clear, set, test if set, test if clear, test and set 

Move signed or unsigned byte, word, or long (32-bit) word; move signed 
Move two words, two long words, four words; move (with optional saturation) 

fractional, two-word fractional, four-word fractional 

Special Function Viterbi decoding-related moves and comparisons 

TABLE 7.1~2. SC140 instruction set summary. 

354 © 2001 Berkeley Design Technology. Inc. 



Processor Analyses - StarCore SC140 Core, Motorola MSC8101 

a time, since there is only one BMU. In addition, a register cannot be the destination of 
more than one instruction per execution set. Two instructions that update the program 
counter cannot be executed in parallel. 

The SCl40 has a program bus width of 128 bits, which constrains the number of 
words that can be grouped in an execution set. The total instruction word count in an exe­
cution set cannot exceed eight words. Some SC140 instructions require a second and even 
a third instruction word (for example, for holding an immediate value). The second and 
third words of an instruction are referred to as "extension words" by StarCore. An execu­
tion set cannot have more than two extension words. 

In contrast to extension words, which affect only a single instruction, prefixes are 
used to convey information about an entire execution set, including: 

• The number of instructions in the execution set. 

• Conditional execution information for the whole set or a subset based on the 
result-of-test bit, T, in the status register. (Conditional execution can only be per­
formed using prefix grouping.) 

• Information used for hardware looping. 

If the execution set contains instructions which use registers in the higher-num­
bered halves of the register banks (D8-DI5, R8-RI5), another prefix word is added to the 
execution set. A single execution set can contain both an extension word and a prefix. 

When the prefix words are not needed, instructions are grouped in execution sets 
using the serial grouping method. The use of serial grouping imposes further restrictions 
on which instructions can be executed in parallel. For serial grouping, StarCore groups 
instructions in four broad categories: 

• Type 1. Basic DALU and move instructions. These are single-word instructions 
that are used very frequently. 

• Type 2. Additional DALU, move, and AGU arithmetic instructions. These are also 
single-word instructions, but they are not used as frequently as Type 1 instructions. 

• Type 3. Two-word or three-word DALU, move, and AGU arithmetic instructions. 

• Type 4. All other instructions. These instructions may be one or two words long. 

The serial grouping .options for an execution set are: 

• One to six Type 1 instructions 

• A single Type 2 instruction grouped with up to five Type I instructions 

• A single Type 3 instruction grouped with up to five Type 1 ins~ctions 

• A single Type 4 instruction 

These groupings are subject to the m.ore general restrictions described earlier; e.g., 
no more than four DALU instructions can be grouped in an execution set. 
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Assembly Language Format 

The SCl40 assembly language uses the traditional opcode-operand format. For 
example, the following instructions are excerpted from an FIR filter implementation: 

loopstartl 

mac dO,d8,d12 mac dl,d9,d13 mac d2,dlO,d14 mac d3,dll,d15 

move.4f (rO)+,d4:d5:d6:d7 move.f (r3)+nO,d8 

] 

[ 

tfr d8,dO tfr d4,dl tfr d5,d2 tfr d6,d3 

moves.4f dO:dl:d2:d3, (rl)+ move.4f (r2)+,d8:d9:dlO:dll 

loopendl 

The instructions grouped inside the brackets form an execution set. The 
"loopstartl" label defines. the starting address for hardware looping; "loopend 1" defines 
the ending address. The starting and ending addressesarp embedded into the prefix word 
of the second execution set. 

The first execution set performs four multiply-accumulates. DO is multiplied by 
D8 and the result is added to D12. D1 is multiplied by D9 and the result is added to D13, 
and so on. In parallel with those operations, the contents of the data memory location 
pointed to by the RO register (four 16-bit words, each represented in 32-bit fractional for­
mat; i.e., left shifted 16 bits and sign extended t040 bits) are moved into the D4, D5, D6, 
and D7 registers. After issuing the memory move, the RO register is incremented by eight. 
The last instruction in the first execution set moves the contents of the data memory loca­
tion pointed to by R3 to register D8. After issuing the memory move, the NO register is 
added to the contents of the R3 register, and the result is stored back into the R3 register. 

In the second execution set the contents of the registers D8, D4, D5, and D6 are 
copied to DO, D1, D2, and D3 respectively. Before the copy operation takes place, the con­
tents of the registers DO, D 1, D2, and D3 are moved to the data memory location pointed 
to by the R1 register. The contents of the registers are assumed to be in fractional format, 
and if necessary, they are saturated before the move operation. The address register R1 is 
incremented after the move operation to point to the next four 16-bit words in data mem­
ory. The last instruction in the second execution set moves the contents of the data mem­
ory location pointed to by R2 to registers D8, D9, DlO, and D11. After the move operation 
the address register R2 is incremented to point the next four 16-bit words in the data mem­
ory. 

The SC140 allows conditional execution of all or part of an execution set. Condi~ 
tional execution options are specified in the prefix. If there is no prefix, the whole set is 
executed. An execution set can have two instruction subsets that can each be executed 
conditionally. Each subset can include up to two DALU instructions and one AGU 
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instruction. To distinguish between the two subsets, the first subset is placed by the assem­
bler at an even address; the second subset is placed at an odd address. Thus, we refer to 
these sets as "even subset" and "odd subset." Table 7.10-3 lists the options for conditional 
execution of subsets. 

Parallel Move Support 

The SC140 supports operand-unrelated parallel moves by allowing up to two data 
move instructions to be executed in parallel with other instructions. These data moves can 
be either one load and one store, two loads, or two stores. The access width of each paral­
lel move can be a byte, a word (16 bits), a long (32-bit) word, two words, or two long 
words, or four words. If the access width is two or four words, the words must be located 
in consecutive memory locations. 

Orthogonality 

The SC140 instruction set is quite orthogonal, because most of the instructions are 
simple and specify a single operation .. Unlike some VLIW processors, the SC140's 
instruction set is composed of relatively short (16-bit) instructions whose functionality can 
be extended using prefixes or extensions. Short instructions often require processor archi­
tects to place restrictions on, e.g., register usage; the SC140 avoids the need for register 
restrictions by using prefix words where needed. With the exception of special instructions 
for Viterbi decoding, all SC140 instructions can use all registers without restriction. There 
are a number of restrictions on grouping instructions in execution sets, however, which 
complicate assembly language programming. 

The high level of orthogonality and relatively simple pipeline make 
the SC140 simpler to program in assembly language than many 
DSP processors, and the processor lends itself well to compilers. 
Programming is somewhat complicated, however, by the myriad 
rules governing instruction grouping. 

Options for Conditional Execution 

Unconditional execution of the entire execution set 

Execution of even subset if T= 1; execution of odd subset if T=O 

Execution of the whole set if T=l 

Execution of the whole set if T=O 

Execution of even subset if T= 1; always execute odd subset 

Execution of even subset if T=O; always execute odd subset 

TABLE 7.10-3. Conditional execution of subsets of execution sets ("T" is the 
result-of-test bit in the status register). 
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Execution Times 

One to six instructions can be grouped into an execution set and execute in paral­
lel. Instructions within the same execution set always start execution at the same time. A 
new execution set begins execution only after all of the instructions belonging to previous 
execution sets are completed. Therefore, the time required to complete an execution set is 
determined by the instruction in the set that requires the most time. 

All DALU instructions execute in a single cycle. All move instructions to internal 
memory take one clock cycle to execute, unless· the addressing mode performs a pre-cal­
culation (such as a stack pointer indirect addressing with an offset). In this case, the move 
requires two cycles. All bit mask unit instructions execute in two cycles, unless pre-calcu­
lation of a target memory address is needed (such as adding an offset to the SPregister); in 
this case, a third cycle is added. 

The cycle count penalty required by change-of-flow instructions varies from one 
(for a delayed jump with instructions in all delay slots) to six (for a return from subroutine 
instruction, when the return address register and shadow stack pointer are not "valid," as 
described in "Stack" within the Execution Control section.) 

Although the pipeline of the SC140 is fairly simple, there are a 
number of multi-cycle instructions-including all bit mask unit 
instructions. These instructions slow the execution of the entire exe­
cution set in which they are grouped. It should be noted, however, 
that these instructions were rarely used in the BDTI Benchmarks 
and had a minimal effect on the processor:S benchmark results. 
Hence, it is likely that they will not significantly detract from the 
processor:S performance in most applications. 

Execution Control 

Motorola MSC8101 Clocking 

The MSC8101 's SC140 core derives its master clock from an external clock 
through the use of a PLL and clock generation circuitry. (Separate clocks are used to con­
trol the CPM and PowerPC bus described in the Peripherals section.) 

The PLL can divide the input frequency by any integer between 1 and 16 and can 
multiply the input frequency by factors between 10.0 and 31.988. 

The PLL multiplier and divider can be used simultaneously, for a multiplication 
range of 0.625 to 31.988. Division and multiplication ratios are determined at reset and 
may be modified during operation. 

The clock generator has a divider connected to the output of the PLL unit. The out­
put frequency of the PLL can be further divided by a factor of 2n (where -1<n<8, and n is 
an integer). The division factor can be modified during operation. Hence, using the PLL 
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and clock generator multiplier and dividers, the input frequency can by multiplied by fac­
tors ranging from 0.00488 to 31.988 to derive the core frequency. 

It is possible to disable the PLL and use only the clock generation circuitry. This is 
particularly useful in low power consumption modes. When the chip is required to exit a 
low power mode, it can immediately do so with no time needed for clock recovery or PLL 
lock if the PLL is disabled. 

The SC140 core is static; the processor state is maintained when the clock is 
stopped. 

Hardware Looping 

The SC140 core supports up to four levels of nested hardware loops. Loops are 
implemented using a prefix word which contains information about the beginning and 
ending addresses of the loop (specified in an assembly program using the assembly direc­
tives "loopstart" and "loopend"). SC140 hardware loop support includes four pairs of reg­
isters, each of which holds the start address of a loop and the number of times the loop is 
to be repeated. A loop can only be nested inside a loop that has a lower number (the zeroth 
loop uses registers SAO and LCO; the fourth loop uses registers SA3 and LC3, etc.). 

Loop counter registers are 32 bits wide and hold signed values. Loops can be 
repeated up to 231_1 times. The SKIPLS instruction causes the loop to be skipped when 
the loop counter is zero or negative. The SKIPLS instruction is executed before the first 
execution set of the loop. The SKIPLS instruction eliminates the need to explicitly check 
the loop counter for zero or a negative number in cases where the loop count value is com­
puted. 

The SC140 supports "short loops" and "long loops." Short loops consists of one or 
two execution sets. In short loops, the execution sets are stored in internal buffers and are 
executed the number of times specified by the loop counter. Short loops do not use the 
loop starting address register; instead, the loop starting and ending addresses are embed­
ded in the prefix words. For long loops, the starting address must be explicitly written to 
the associated SCy regi~ter by executing a DOSETUPy instruction. Both short and long 
loops are interruptible. 

For long loops that are unaligned, meaning that the first execution set is not 
aligned on a 16-byte boundary, a one-cycle penalty is incurred at each branch to the top of 
the loop. This penalty can be avoided by aligning the loop through the addition of NOP 
instruction, or by using assembler directives to ensure alignment. 

The CONT instruction causes the current loop iteration to terminate before reach­
ing the last execution set of the loop. If the value of the loop counter is greater than one, .. 
then the CONT instruction causes the program to branch to the address stored in the start­
ing address register, and the loop counter is decremented by one. If the value of the loop 
counter is less than or equal to one, then the CONT instruction causes the program to 
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branch to the address specified by the CaNT instruction. The loop counter is cleared and 
the loop terminates. The CaNT instruction can only be used in long loops. 

The BREAK instruction causes the loop to terminate, regardless of the value of the 
loop counter. The program address bus is loaded with the address specified by the BREAK 
instruction; the value of the loop counter is not changed. 

Interrupts 

The SC140 core does not have pre-defined external interrupt source definitions; 
external interrupt sources are chip specific and require an interrupt controller circuit to be 
added to the SC140 core. 

The SC140 supports three hardware interrupts: one for illegal instruction and exe­
cution set exceptions, one for overflow exceptions (which can be activated or deactivated 
by the programmer), and one for debug exceptions which is initiated by the on-chip emu­
lation unit. The SC140 has one software interrupt which is activated by the TRAPinstruc­
tion. 

The SC 140 allows the user to determine the base address of the Interrupt Vector 
Table by writing it to the Vector Base Address (VBA) register. The reset value of VBA is 
zero. There are 64 possible interrupt vector locations. The distance between adjacent inter­
rupt vectors is 32 words. 

The programmer may enable or disable each interrupt by changing the bits in the 
Interrupt Priority Register (IPR) that are associated with that interrupt. Clearing all of the 
appropriate bits will disable the interrupt. All maskable interrupts can be simultaneously 
enabled/disabled by clearing/setting the master Disable Interrupt (DI) bit in the Status 
Register. 

The SC140 provides seven Interrupt Priority Levels (IPLs). The core,itself has a 
user programmable priority (set in bits 23-21 of SR); only interrupts with a higher priority 
than the core are serviced. Non-maskable interrupts and internal exceptions (on-chip hard­
ware interrupts and TRAP instruction) are serviced without regard to the current IPL. 

Motorola MSC8101 Interrupts 

The MSC8101 includes an interrupt controller to handle all on-chip peripheral and 
I/O interrupt requests. It supports 8 non-maskable interrupts and 24 maskable interrupts. 

Stack 

The SC140 has two stack pointers, one that is used by applications, and one that is 
used by interrupts and operating systems (called the "exception stack"). The core main­
tains shadow registers containing the values of each of the stack pointers decremented by 
one, to save pre-calculation time when the stack pointer is used for a "pop." If the stack 
pointer register is explicitly changed, however, the shadow stack pointer becomes invalid, 
and the next "pop" requires an extra cycle for pre-calculation. 
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The exception stack is used when there is a software or hardware interrupt. Since 
operating system calls are performed by executing the TRAP instruction (which generates 
a software interrupt), the exception stack is used for servicing operating system calls. 

Both stack pointers support PUSH and POP instructions. In addition, the stacks 
can be accessed by move or bit-mask instructions that use the stack pointer as a base 
pointer for short- and word-displacement addressing (see Address Generation section for 
discussion of short- and word-displacement addressing). 

Bootstrap Loading 

The SC140 includes boot-address lines that are intended to be hard-wired (in an 
SCl40-based chip) to specify any address in its internal or external memory space. Upon 
reset, the device will begin execution from this address. 

Motorola MSC8101 Bootstrap Loading 

The MSC8101 provides boot address pins that can be hard-wired or connected to 
an external device. The MSC8101 can download boot code via its host port or PowerPC 
bus interface. 

Peripherals 

The SC140 core does not include any peripherals; Lucent and Motorola will 
include various peripherals in their SCl40-based products. 

Motorola MSC81 01 Peripherals 

• Communications Processor Module (CPM) 
The CPM is a programmable protocol machine that uses a 32-bit RISC engine. The 
CPM supports a variety of interface protocols, including 155 Mbps ATM interface 
(including AAL 0/11215), 101100 Mbps Ethernet interface, up to four EIITI inter­
faces (or one E31T3 interface and one EIITI interface), and up to 256 channels of 
HDLC. The CPM operates at up to 150 MHz and is driven by its own clock. This 
module is an enhanced version of the CPM used in Motorola's MPC82xx Pow­
erPC family. 

• PowerPC bus interface 
The PowerPC bus interface provides a glueless interface to the PowerPC bus. It 
operates at up to 100 MHz with a 64- or 32-bit data width. It provides support for 
multiple bus masters. 

• Programmable memory controller 
The programmable memory controller controls up to eight banks of external mem­
ory. The memory controller supports programmable wait states and extends this 
concept via what Motorola calls "user programmable machines" (UPMs). The 
chip's three UPMs allow the user to define, in software, timings for the MSC8101 
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external memory interface and for on-chip memory and peripheral buses. This 
enables glueless interface to various memory types (SRAM, DRAM, EPROM, 
flash) and to other user-definable peripherals. The memory controller also includes 
a dedicated pipelined SDRAM memory interface. 

• DMA controller 
The DMA controller provides 16 DMA channels. The controller uses its own bus 
and thus does not require cycle stealing. The DMA controller and the core can 
access memory without contention, as long as they do not attempt to access the 
same 32 Kbyte block of memory in the same cycle. The DMA is FIFO based; data 
in external memory is loaded into a FIFO buffer, and then transferred by the DMA 
controller to local memory in burst mode. This is intended to reduce contention on 
the DMA bus, which is used by all 16 channels. 

• Enhanced filter co-processor (EFCOP) 
The enhanced filter co-processor independently and concurrently executes long fil­
ters (such as those used for echo cancellation) and runs at 300 MHz. This co-pro­
cessor is similar to the filter co-processors found on the DSP563xx family 
members, but has been enhanced to support 32-bit data. 

• 16-bit parallel host port 
This port provides a parallel host interface to other DSP processors or microcon­
trollers, or can be used for DMAtransfers. It can be directly connected to the data 
bus of a host processor. 

On-Chip Debugging Support 

The SC140 provides board and chip-level debugging capability through two 
on-chip modules: 

• Enhanced on-chip emulation (EOnCE) module 

• JTAG access module 

These modules can be accessed via the five-pin JTAG port. In addition, the 
EOnCE module can support six additional "event" pins, which can be used as inputs to, or 
outputs from, the EOnCE module. The EOnCE module allows access to the SC140 core 
and its peripherals, enabling users to examine registers, memory and on-chip peripherals. 
EOnCE supports: 

• Address breakpoints 

• Breakpoints on data bus values 

• Detection of events, including: 

• Program and data memory address bus range or value 

• Data memory or data bus range or value 

• Data written or read to/from a certain data memory address 
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• Access to the core and its peripherals 

• Profiling (including cycle counts and number of calls executed) 

• Program trace buffer, which can record the addresses of change-of-flow instruc­
tions, interrupts, hardware loops, and execution sets. 

Motorola MSC8101 On-Chip Debugging 

The MSC8101's on-chip debugging capabilities are as described above, with the 
following specific attributes: 

• The program trace buffer on the MSC81 0 1 is 8 Kbytes deep, supporting trace of up 
to 2K addresses 

• The MSC8101 includes five EOnCE pins 

Power Consumption and Management 

The SC140 features two different idle modes. "Wait" mode is triggered by the 
WAIT instruction. It takes 10 cycles to enter "wait" mode after the execution of the WAIT 
instruction. In "wait" mode, the global clock to entire core is halted, but peripherals con­
tinue to operate using the clock generated from the on-chip PLL. The second idle mode is 
the "stop" mode which is triggered by the STOP instruction. It takes 10 cycles to enter 
"stop" mode after the execution of the STOP instruction. In "stop" mode, both the core 
and the peripherals, including the PLL and clock generator, are halted. 

Upon occurrence of one of the following actions the processor exits from "wait" 
mode and resumes execution: 

• An enabled interrupt is received. 

• A non-maskable interrupt (NMI) request is received. 

• RESET is asserted. 

• The JTAG module issues a debug request. 

• The EED pin from the EOnCE module (if included in the chip and programmed as 
a debug request input) is asserted. 

When one of the following actions occurs, the processor exists from the "stop" 
mode, turns on the clock generator, and after a clock stabilization delay resumes execu­
tion: 

• A low level is applied to an external dedicated pin. 

• RESET is asserted. 
• The JTAG module issues a debug request. 

• The EED pin from the EOnCE module (if included in the chip and programmed as 
a debug request input) is asserted. 
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Motorola MSC8101 Power Consumption 

'IYpicru power consumption of the core and on-chip memory of the MSC81 0 1 run­
ning at 300 MHz is 250 mW in a 0.13 J.Lm process at 1.5 volts, according to .Motorola. 
Power consumption for the core in wait mode is 15 mW. Power consumption for the core 
in stop mode is 1.50 J.L W. However, the stop mode current is highly dependent on the le¥­
age current of the transistors thus can vary depending on the process technology used to 
manufacture the processor. BDT! has not verified these power consumption figures. 

Benchmark Performance 

The SC140 has been benchmarked with the BDT! Benchmarks™. Overall bench­
mark results for all benchmarked processors are presented in Chapter 8, BDT! Bench­
mark™ Results. We summarize and analyze the SCl40 benchmark performance in the 
paragraphs below. We first discuss instruction cycle counts, which indicate the relative 
power of the processor's architecture. Note that instruction cycle counts do not reflect the 
processor's instruction cycle rate; therefore, lower instruction cycle counts imply a more 
powerful architecture, but do not imply faster speed. Next we discuss benchmark execu­
tion times and cost-execution time products, indicating processor speed and cost-perfor­
mance, respectively. We then discuss the processor's energy consumption, which reflects 
the energy consumed by the processor in order to perform a task. Finally, we discuss the 
processor's memory usage. We divide the memory usage discussion into three parts: Con­
trol benchmark memory usage, overall benchmark program memory usage, and bench­
mark data memory usage. 

For cycle counts and memory usage, we report results for the SCl40 core. These 
results apply to the SC140 core under the assumption that the benchmarks execute from 
full-speed on-chip statically loaded memory (as opposed to, for example, dynamically 
loaded cache memory), as is the case for the MSC8101. These results my not apply to 
SC140-based chips with different memory configurations. For execution times, cost-exe­
cution times, and energy consumption, we report results that combine the SC140 cycle 
counts with the MSC8101 's speed, price, and power consumption, respectively. Results 
for other SC140-based chips, such as the StarPro 2000, will likely differ from the results 
presented here for the MSC8101. 

Execution Performance 

• Instruction cycle counts: The SC 140 has the lowest cycle counts of all of the pro­
cessors benchmarked here on all but the FFT, Viterbi, and Bit Unpack benchmarks. 
Cycle counts are illustrated graphically in Figure 8.1-13. The SCl40 has the low­
est total normalized cycle count-approximately 65% below the average of the 
processors benchmarked in this report. The total noImalized cycle count of the 
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SC140 is more than 25% lower than that of the TMS320C64xx-C, which has the 
second-lowest result. 
The SC140 is able to obtain these low cycle counts by virtue of parallel use ofmul­
tiple execution units and wide buses (two 64-bit data buses); for example, these 
features enable the processor to perform four multiply-accumulates on 16-bit oper­
ands together with two data load/store operations in a single cycle. The processor 
with results closest to those of the SC 140, the TMS320C64xx -C, has a similar pro­
cessing bandwidth. The remainder of this analysis will focus on analyzing their 
respective strengths and weaknesses. 
The SC140's ability to execute four 16-bit multiply-accumulates per cycle is sup­
ported by wide data buses and a powerful address generation mechanism; this 
allows the execution units to be utilized fully in the inner loops of the MAC-inten­
sive benchmarks. However, on the SC140 fetching four operands at once makes it 
impossible to use a conventional circular buffer as a delay line in some bench­
marks. When the processor attempts to read multiple data words that are split 
between the end and start of the buffer, a wrap-around read is necessary. The 
SC140, unlike the TMS320C64xx-C, is not capable of wrap-around multiple word 
data reads from a circular buffer, which is problematic in the single-sample bench­
marks which must step through the delay line a word at a time. In such cases, the 
use of a circular buffer is efficient only when a delay line with a size of four times 
the number of taps is used. This results in a significant amount of wasted memory, 
so instead, the delay lines are updated without using the circular buffer addressing 
support of the processor in these benchmarks. Hence, the SC 140 incurs additional 
overhead on the Single-Sample FIR and LMS benchmarks for updating the delay 
line using load-store operations instead of using circular buffers. The Two-Biquad 
IIR filter benchmark is not similarly affected; this benchmark is completely 
unrolled and uses short, two-word delay lines, so it would not benefit from circular 
buffering of the delay lines. 
Both the SC140 and the TMS320C64xx-C have the ability to perform four multi­
ply operations per cycle (the SC140 using its four MAC units and the 
TMS320C64xx-C using the two SIMD multiply units). The TMS320C64xx-C 
lacks a full-fledged MAC unit, but includes support for dot-product (DOTP2 and 
DOTPN2) instructions that perform operations of the form (ax±by); so successive 
DOTP2 or DOTPN2 instructions need to be followed by explicit ADD instructions 
that may often need to be carefully unrolled and pipelined. On the other hand, the 
TMS320C64xx-C has the capacity to schedule a wider class of operations in paral­
lel with the four multiplies using the remaining six execution units, while the 
SC140 is restricted to performing address arithmetic operations and memory 
moves on the remaining two address generation units. 
Unlike the ll-stage pipeline of the TMS320C64xx-C, the SC140 uses a simple 
five-stage pipeline. The simpler pipeline results in fewer delay slots and simplifies 
programming considerably. On the TMS320C64xx-C, unrolling of loops is exten-
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sively employed in benchmarks to maximize the use of the architectural features of 
the processor. The setup and cleanup code for these loops results in inflated cycle 
counts, especially for those benchmarks involving a small number of loop itera­
tions. For example, while the Single-Sample FIR benchmark inner loop on the 
TMS320C64xx-C requires (3*T/8) cycles, where T is the number oftaps in the fil­
ter, housekeeping and setup require up a considerable 19 cycles. On the SC140, 
while the inner loop requires (T/2) cycles (a nearly 35% increase over the 
TMS320C64xx-C inner loop), the housekeeping overhead is only 6 cycles. This 
implies that the TMS320C64xx-C would begin to achieve a lower cycle count than 
the SC140 only for T > 104. 

An advantage of the SC140 is its single-cycle latency on all ALU 
operations, including multiply-accumulate operations. Due to its 
deeper pipeline, the TMS320C64xx-C has one delay slot on multi­
ply operations and three on the DOTP2 and DOTPN2 instructions. 
Another cycle is required for the accumulate. To achieve cycle 
counts comparable to the SC140, loops have to be unrolled and 
software pipe lining used extensively, which leads to increased pro­
gramming complexity. 

On the Real Block FIR filter benchmark, the SC140 processes four input samples 
at a time in the inner loop. The inner loop performs 16 multiply-accumulates using 
four single-cycle execution sets, resulting in a throughput of four taps per instruc­
tion cycle. The execution sets include pointer updates and load-store operations. 
Single-cycle execution of four multiply-accumulates in parallel with the load-store 
operations and zero-overhead looping give the SC140 the lowest cycle count of the 
benchmarked processors. While the TMS320C64xx-C also achieves a throughput 
of four taps per instruction, it expends cycles in setting up the software pipeline, 
resulting in a slightly higher cycle count. The SC140 has a cycle count that is 
roughly half that of the TMS320C62xx on this benchmark. This is mainly due to 
the fact that the SC140 has twice as many multipliers as the TMS320C62xx. The 
SC140 has a cycle count on the Real Block FIR benchmark that is approximately 
70% below the average. 
On the Single-Sample FIR benchmark, the SC140 inner loop processes the filter 
with a throughput of two taps per instruction cycle rather than the four taps per 
cycle achieved in Real Block FIR benchmark. The single-sample nature of the 
benchmark means that the SC140 cannot use circular buffering for the delay line 
(except with the use of significant additional memory, as described above); 
instead, samples are copied to update the delay line. However, the SC 140 still has 
the lowest cycle count; its cycle count is about 55% below the average, and more 
than. 35% below the processor with the second lowest cycle count, the Lucent 
Technologies DSPI64xx. The DSP164xx also processes two taps per cycle, but 
has a higher cycle count on this benchmark because of overhead cycles consumed 
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for filling its instruction cache. The TMS320C64xx-C uses loop unrolling and 
software pipelining to achieve a better throughput of eight taps per three instruc­
tion cycles, but its cycle count on the benchmark is inflated by loop setup over­
head. 
On the Complex Block FIR filter benchmark, the SC 140 inner loop processes two 
taps per iteration and the outer loop processes two input samples per iteration. Fil­
ter throughput is largely determined by arithmetic operations in the inner loop. The 
SC140 performs memory accesses and pointer updates in parallel with arithmetic 
operations, and implements the loop with almost no overhead. In the inner loop, 
the SC 140 is capable of performing the complex filtering at a rate of two taps in 
two instruction cycles (calculation of each tap spans two cycles) by executing four 
multiply-accumulates per instruction cycle. In the outer loop, either four multiplies 
or four multiply-accumulates are performed in each cycle-with the exception of 
one cycle spent scaling the two complex output samples for overflow protection. 
The TMS320C64xx-C cycle count in this benchmark is roughly equivalent to that 
of the SC140. Pipeline overhead on the TMS320C64xx-C is alleviated by unroll­
ing the inner loop four times and the outer loop once and collapsing the two loops 
into a single loop. The SC140 has a cycle count on the Complex Block FIR bench­
mark that is approximately 70% below the average of the processors benchmarked, 
approximately equal to that of the TMS320C64xx-C and roughly half that of the 
TMS320C62xx. 
The LMS Adaptive benchmark is implemented in two stages on the SC140. The 
output of the filter is calculated in the first stage, and the filter coefficients are 
updated in the second stage. The filter output is computed at a rate of four taps per 
instruction cycle. Two extra cycles are consumed for summation of partial results, 
and one extra cycle is consumed for computing the difference between the desired 
and actual output. In the second stage, two coefficients of the filter are updated per 
instruction cycle, and the delay line is updated. On the TMS320C64xx-C and 
TMS320C62xx, the adaptation of coefficients is pipelined and done in parallel 
with the execution of the FIR filter. This is mainly due to the long latency of the 
multipliers; if the execution of the filter was followed by the adaptation of coeffi­
cients, many cycles would be spent computing the difference between actual and 
desired output, and multiplying this value by the adaptation rate. However, the 
loop setup overhead is still considerable. The SC 140 has a cycle count on this 
benchmark that is roughly 70% below the average, and roughly 55% below that of 
the processor with the second lowest cycle count, the TMS320C64xx-C. 
The SC140 has a cycle count on the Two-Biquad IIR filter benchmark that is 
approximately 60% below the average. The processors with the closest cycle 
counts on this benchmark, the Lucent DSP164xx and Texas Instruments' 
TMS320C54xx, have significantly higher results. The SC140 implementation, 
which is completely loop-unrolled, consumes only six cycles for the two biquads. 
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The TMS320C64xx-C, despite also executing a completely unrolled IIR filter, has 
a higher cycle count than the SC140 due to instructions with multi-cycle latencies. 
In the loop of the Vector Dot Product benchmark, the SC 140 performs four multi­
ply-accumulates per instruction cycle in parallel with data fetches. These opera­
tions are performed with almost no overhead except for two cycles for adding the 
partial results. Although the TMS320C64xx-C has an equivalent throughput using 
two parallel DOTP2 instructions, it has a significantly higher loop setup overhead. 
Thus, the SC140 cycle count is roughly 65% below the average and about 40% 
below the TMS320C64xx-C on the Vector Dot Product benchmark. 
On the Vector Add benchmark, the SC140 performs eight additions in three 
instruction cycles in the inner loop. The requirement of two 16-bit reads and one 
16-bit write for each output sample makes it impossible for the SC140 to fully uti­
lize its eight 16-bit adders (using SIMD in each ALU). Full utilization of its eight 
adders would require eight 16-bit reads and four 16-bit writes per cycle (i.e., 192 
bits per cycle), but the processor provides only 128 bits of data bandwidth. The 
TMS320C64xx-C is similarly bandwidth-limited. In addition, the 
TMS320C64xx~C has higher load latencies that warrant loop unrolling, resulting 
in higher overhead. In spite of its bandwidth limitations, the SC 140 has a cycle 
count approximately 70% below the average of the processors benchmarked on the 
Vector Add, and about 25% below that of the next-lowest processor, the 
TMS320C64xx -c. 
In order to utilize the SC140's multiple execution units on the Vector Maximum 
benchmark, the search is performed in three stages. In the first stage, the vector is 
partitioned into smaller sets and the local maximum is found for each set. In the 
second stage, the global maximum and the set to which it belongs are found. The 
last stage finds the index of the global maximum. The SC 140 is capable of making 
eight 16-bit comparisons and storing the results into registers in one instruction 
cycle. This capability is utilized in the first stage. The second stage makes use of 
the SC140's ability to conditionally execute portions of an execution set. Part of 
the execution set can be executed when a condition is met, and the other part can 
be executed either unconditionally or if the condition is not met. This capability is 
used not only to find the global maximum but also to determine which set contains 
it. The same method is used in the last stage for finding the index of the global 
maximum. The SC140 has a cycle count on the Vector Maximum benchmark that 
is about 70% lower than the average of the processors benchmarked and approxi­
mately 25% lower than that of the Lucent DSP164xx and the TMS320C64xx-C. 
The Control benchmark is designed to indicate a processor's memory usage on 
control-oriented software, and is optimized for memory usage rather than speed. 
The SC140 has a cycle count on the Control benchmark that is roughly 25% lower 
than the average of the processors benchmarked. This is largely due to the SC140's 
ability to conditionally execute execution sets using prefix words. While some of 
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the other processors must make conditional jumps and branches, the SC140 can 
avoid these in many cases by executing or omitting an execution set based on the 
condition coded into the prefix word. It consumes only one cycle for such an 
instruction, which is significantly less than the three or four cycles typically 
required for a branch. The TMS320C62xx and the TMS320C64xx-C provide a 
similar capability; they can conditionally execute instructions within execution 
sets and avoid branching in many cases. In addition to its conditional execution 
capabilities, the SC 140 makes efficient use of delayed branches and calls, resulting 
in a lower cycle count compared to the other benchmarked processors. 
The FIT benchmark is implemented on the SC 140 using a radix -4 algorithm and 
totally loop-unrolled stages. Radix-4 FFfs are addition-intensive algorithms. 
Throughout the radix-4 computations, the SC140 performs an average of four 
arithmetic operations (a combination of multiply, multiply-accumulate, addition, 
and subtraction) and two move operations (a combination of stores and loads) per 
instruction cycle yielding a cycle count that's about 75% lower than the average 
cycle count. The TMS320C64xx-C also uses a radix-4 FFf, but has a cycle count 
that is approximately 25% lower than that of the SC140. The DOTP2 and 
DOTPN2 instructions on the TMS320C64xx-C are particularly well tailored for 
the FFf and the two multiply units can achieve an effective throughput of one 
complete butterfly per cycle. However, since the DOTP2 and DOTPN2 instruc­
tions have a three cycle delay slot, efficient pipe lining is needed to achieve this 
single cycle throughput. This leaves the remaining L and S units free for other 
arithmetic and bitshift operations, while still allowing a load/store operation on the 
D units. In contrast the MAC operations on the SC140 preclude any other arith­
metic operations allowing only address computations on the address generation 
units. 
The SC140 has a significantly lower cycle count on the Viterbi benchmark than 
most other processors benchmarked. Its cycle count is roughly 85% lower than the 
average of the benchmarked processors, and it consumes less than one-third of the 
cycles required by the next lowest processor, the TMS320C67xx. The cycle count 
of the TMS320C64xx-C, however, is slightly lower than that of the SC140. The 
Viterbi decoding benchmark is composed of two stages. In the first stage, soft 
decision values are used to generate a state transition table. In the second stage, the 
transition information is traced back to determine the received bit stream. The 
SC140 has instructions dedicated to Viterbi decoding, such as MAX2VIT and 
VSL. The first stage of the Viterbi decoding is intensive in additions, subtractions, 
comparisons, and bit manipulations. The SC140 can process eight trellis butterflies 
in ten cycles by pipelining the MAX2VIT and VSL instructions. In contrast, the 
TMS320C64xx-C can process eight trellis butterflies in just six cycles using 8-bit 
data. This is facilitated by packing four bytes into a single 32-bit word and using 
the CMPGTU4 instruction, which performs comparisons on packed 8-bit data. 
Such an optimization is only useful for processors with 8-bit SIMD capability, and 
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cannot be applied to the SC140. The cycle efficiency of the loops on the 
TMS320C64xx-C is somewhat offset by the overhead required to prime the deep 
pipeline. The TMS320C64xx-C has a cycle count result that is roughly 10% less 
than that ofthe SC140. 
On the Bit Unpack benchmark, the SC140, the TMS320C62xx, and the 
TMS320C64xx-C execute a single loop without conditional branches. This is pos­
sible because of their ability to conditionally execute the whole set or a subset of 
the instructions within an execution set. In this benchmark implementation, either 
one part of an execution set or the other part of the same execution set is executed 
depending on the value of a condition code, in a single cycle. All other processors 
benchmarked here must use branches for the update of the temporary buffer. 
Unlike the other benchmarked processors, the SC140, the TMS320C62xx and the 
TMS320C64xx-C have cycle counts on the Bit Unpack benchmark that are inde­
pendent of the input data values. The TMS320C64xx-C has a cycle count that is 
about 25% lower than the SC140. This is primarily because of the ability of the 
TMS320C64xx-C to perform 64-bit unaligned data accesses, which are not sup­
ported on the SC140. The SC140's result is approximately 60% below the average 
of the benchmarked processors. 

• Execution times: The execution-time results are shown in Figure 8.2-13. The 
MSC8101 executes at 300 MHz, which combines with its very low cycle counts to 
yield the second-lowest total normalized execution time, roughly 85% faster than 
the average for the fixed-point processors. The TMS320C64xx-C, projected to 
execute at 600 MHz, has the highest instruction cycle rate among the processors· 
benchmarked in this report. Although the cycle count for most benchmarks are 
lower on the MSC8101 than on the TMS320C64xx-C, the latter is projected to 
operate at twice the clock speed, resulting in a net execution time that is about 30% 
faster than the MSC81 0 1. However, this result assumes all data and instructions 
are preloadedinto the TMS320C64xx L1 cache, and is therefore a best-case result. 

• Cost-execution time: The cost execution-time results are shown in Figure 8.3-13. 
Motorola has provided a price of $96 in quantities of 10,000 for the MSC8101. 
The MSC8101 's price tag is aggressively low compared to the $201 
TMS320C6203 but significantly higher than that of other conventional DSPs. 
Because of its very fast execution times, the total normalized cost-execution time 
result of the MSC8101 is better than that of all of the other benchmarked proces­
sors, except the Motorola DSP56853. It has a total normalized cost-execution time 
result that is less than one-third of that of the TMS320C6203 and roughly half the 
average of fixed-point processors. 

• Energy Consumption: The energy consumption figures are shown in 
Figure 8.4-13A and B. The Motorola MSC8101 has the lowest total normalized 
energy consumption of all benchmarked processors, with a result that is about 45% 
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lower than the average. The processor with the next-lowest result, the 
TMS320C551O, consumes more than twice as much energy as the MSC8101. 

Memory Usage 

The focus in our memory usage analysis is on Control benchmark memory usage. 
This benchmark is designed to indicate the processor's memory efficiency in control-ori­
ented tasks, where memory usage is often more important than speed. This is because con­
trol-oriented instructions often make up the bulk of the software in an application, but take 
up only a fraction of the application's instruction cycles. Hence, unlike the other bench­
marks, the Control benchmark is optimized for minimum memory usage rather than maxi­
mum speed. We also discuss overall program memory usage in the BDTI Benchmarks™, 
reflecting the processor's program memory usage in general DSP software. Finally, we 
discuss constant and non-constant data memory usage. 

Since memory usage is independent of the state of the cache, we do not distinguish 
between the TMS320C64xx and the TMS320C64xx-C when discussing memory usage. 

• Control benchmark memory usage: Figure 8.5-9 presents the Control bench­
mark total memory usage graphically. The SC140 has a total memory usage on the 
Control benchmark that is roughly 35% below the average of the benchmarked 
processors. There are several reasons for this lower memory usage. First, the 
SC140 groups 16-bit instructions into execution sets using two methods: prefix 
grouping and serial grouping. In prefix grouping the execution set is preceded by a 
16- or 32-bit prefix; the prefix requires two 16-bit words only when registers 
D8-D15 or R8-R15 are used in the execution set. The prefix provides information 
for the instruction decode unit about the number of instructions that are in the 
group, short looping, and conditional execution for the whole set or a subset. 
Embedding this information into the prefix results in more compact code. For most 
processors, the loop start and end addresses for hardware loops are either written 
into a register or embedded into an instruction (in which case the processor writes 
the values into registers that are invisible to the programmer). For a processor with 
16-bit program memory addresses this results in usage of at least two 16-bit words. 
These two 16-bit words are also used in the SC140, but they are better utilized 
because they also carry conditional execution information. In some cases, this con­
ditional execution information can be used to reduce the number of branches-and 
hence, the number of instructions. 
Although the SC140 has significantly lower total memory usage on the Control 
benchmark compared to the TMS320C62xx and the TMS320C64xx, which both 
use 32-bit instructions, its non-constant data memory usage (stack usage) is three 
times that of the Texas Instruments processors. The SC140 can group one or two 
PUSH instructions in an execution set, and in either case the stack pointer is incre­
mented only once by 8 bytes. However, executing multiple instructions in parallel 
takes up more memory than issuing each instruction by itself. Thus, there is a 
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trade-off between program memory and non-constant data memory. If the PUSH 
instructions are i~sued separately (as is done in the Control benchmark), the size of 
the non-constant data memory is significantly increased. 

The SC140's total memory usage result on the Control benchmark 
indicates that the SC140 will have better control code density than 
most other processors benchmarked here-and much better than 
that of the Texas Instruments TMS320C62xx and the 
TMS320C64xx. The SC140 has a control-code density that is even 
better than that of most of the conventional DSP processors bench­
marked here, which is unusual for a VLlW-based processor. 

• Program memory usage: The program memory usage results of the processors 
benchmarked are shown in Figure 8.5-13. The SC140 has a total normalized pro­
gram memory usage on DSP algorithm code that is about twice the average of that 
of the TMS320C54xx and the DSP16xxx, but much lower than that of the 
TMS320C62xx and the TMS320C64xx-C. The SC140 often must issue multiple 
instances of the same instruction with different operands at once to make effective 
use of its multiple execution units. For example, for every MAC instruction issued 
by the TMS320C54xx, there are typically four MAC instructions issued on the 
SC140, resulting in higher program memory usage. The TMS320C62xx and the 
TMS320C64xx have multiple execution units, like the SC140, and use instructions 
that are twice as wide. Since instruction latencies are short, the SC140 does not 
require significant software pipelining. In contrast, the TMS320C62xx and the 
TMS320C64xx have many instructions with multi-cycle latencies, forcing the pro­
grammer on compiles to use a significant level of software pipelining to achieve 
maximum speed-increasing program memory usage. Overall, the SC140 has 
roughly half the total normalized program memory usage of the TMS320C62xx 
and the TMS320C64xx. 

VLlW-based processors often require significantly more program 
memory to implement DSP algorithms than conventional DSP pro­
cessors. The SC140 is not an exception, but it does provide signifi­
cantly better code density than the other fixed-point VLlW-based 
processors benchmarked here, the TMS320C62xx and the 
TMS320C64xx. 

Because control code density is typically more important than DSP 
algorithm code density, high DSP algorithm program memory 
usage is generally not a serious disadvantage. The SC140's excel­
lent code density on the Control benchmark indicates that its high 
DSP algorithm program memory usage will be offset in many appli­
cations by its low control-code memory use. 

• Data memory usage: Data memory usage results are shown in Figure 8.5-14 and 
Figure 8.5-15. The SC140 constant and non-constant data memory usage are gen-
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erally as expected for a processor that uses 16-bit data. It should be noted that, on 
several benchmarks, one processor uses a small amount of constant data while all 
of the others use none. For example, on the Bit Unpack benchmark the 
TMS320C54xx uses two bytes of constant data while the other processors use 
none. In these cases, the normalized results are not particularly meaningful, and 
the reader should examine the actual memory usage rather than the normalized 
result. 

To summarize our results, the SC140 has the lowest cycle counts of 
the processors benchmarked here on most of the benchmarks. Only 
the TMS320C64xx-C has lower cycle counts on some of the bench­
marks. With an instruction cycle rate of 300 MHz, the MSC8101 S 
execution-time performance is significantly faster than those of all 
other processors benchmarked here, with the exception of the 
TMS320C64xx-C. 

On DSP algorithm software, the SC140S total memory usage is 
higher than that of the other benchmarked DSP processors except 
for the TMS320C62xx and the TMS320C64xx-C. Based on the 
memory usage results on BDTIs Control benchmark, however, con­
trol-oriented software memory efficiency on the SC140 can be 
expected to be very good. The SC140 achieves much better code 
density than the Texas Instruments TMS320C62xx and the 
TMS320C64xx on the Control benchmark. 

Cost 

Motorola MSC8101 Cost 

According to Motorola, the MSC8101 is priced at $96 in quantities of 10,000. 

Fabrication Details 

Motorola MSC8101 Fabrication 

According to Motorola, the MSC8101 is fabricated in a 0.13 J..lm effective gate 
length CMOS process using Motorola's copper interconnect process technology. Other 
SC140-based devices may be fabricated in other processes. 

Development Tools 

Currently, StarCore provides a variety of baseline application development tools 
for the SC140 core, including the following: 

• Assembler 

• Linker 
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• Optimizing·C/C++ compiler 

• Instruction set simulator 

These common baseline tools are integrated through an application program inter­
face (API). Third parties and customers can integrate their own development tools using 
the API. In addition, Lucent has extended its LUxWORKS development tools environ­
ment to support the StarPro chip. 

A number of third parties have announced plans to develop tools for the SC140. 
Green Hills Software, Inc. will develop an Integrated Development Environment (MULTI 
IDE), including a C/C++ compiler and debugger, for the SC140. Enea OSE Systems will 
port its RTOS to the SC140. According to StarCore, another RTOS, EmPower-RTXC 
from Embedded Power Corporation will also be available in the future. 

Applications Support 

StarCore will offer libraries of C-callable hand-optimized assembly routines on 
their website, www.starcore-dsp.com. According to StarCore, the following libraries are 
available in alpha versions: 

• Signal Generation Function Library 

• Control Function Library 

• Filtering Function Library 

• Frequency Domain Function Library 

• Image Processing Function Library 

• Math Utility Function Library 

• Modulation and Communication Function Library 

• Complex Vector and Matrix Function Library 

Signals and Software, Ltd., a UK-based DSP software vendor, has announced that 
it will develop telecommunications software including speech coders, modems, and echo 
cancellers for the SC140. 

Advantages 

• VLIW-based execution is highly parallel 

• Conditional instruction execution of nearly all instructions 

• Specialized support for Viterbi decoding 

• All DALU registers can be used as accumulators 

• Good on-chip data memory bandwidth 

• SIMD ALU operations 

• Nestable multi-instruction hardware looping 

• Very good execution times on the BDTI Benchmarks (MSC810 1) 
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• Very good energy efficiency on the BOTI Benchmarks (MSC8101) 

• Very good cost-execution times on the BOTI Benchmarks (MSC8101) 

• Very good memory usage result on Control benchmark 

Disadvantages 

• More complicated programming model than conventional, single-issue OSP pro­
cessors 

• No separate status bits for each data path, or for SIMO operations 

• Performance penalties for using off-chip memory are severe (MSC8101) 
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7.11 Texas Instruments TMS320C2xxx Family 
and T320C2xLP Core BDTlmark2000 Score: 

Not Available 

Introduction 

The TMS320C2xxx is a family of 16-bit fixed-point conventional DSP processors 
based on the T320C2xLP DSP core. Texas Instruments targets TMS320C2xxx processors 
at high-volume, cost-sensitive applications such as motor control, telephones, hard disk 
drives, and modems. The TMS320C24x and TMS320F24x devices, along with the newer 
TMS320LC24xx and TMS320LF24xx processors, are aimed at motor control applica­
tions. For sufficiently high volumes, Texas Instruments can build customer-designed SoCs 
based on the T320C2xLP core. The fastest members of the family run at 40 MIPS and 3.3 
volts. Some low-power members run at 20 MIPS and 3.3 volts. The TMS320C24x and 
TMS320F24x are only available at 20 MIPS and 5.0 volts. 

The TMS320C2xxx family was introduced in 1995 and represents a cross between 
Texas Instruments' earlier TMS320C2x and TMS320C5x families. The TMS320C209 
processor was the first member of the family and has some features that are different from 
the later family members. The TMS320C2xxx's data path is essentially identical to that of 
the 16-bit fixed-point TMS320C2x. 

The TMS320C2xxx is mostly compatible at the assembly-language source code 
level with the TMS32OC2x; some instructions have been changed, and others have been 
added. The core uses the same pipeline structure as the TMS320C5x and is fully static, 
enabling the system designer to slow or stop the processor's clock to reduce power con­
sumption. A summary of TMS320C2xxx family members is shown in Table 7.11-1. In 
Texas Instruments' TMS320C2xxx part numbers, "L" indicates a 3.3 volt device; devices 
without an "L" in their part numbers are 5.0 volt devices. Devices with "c" in their part 
numbers use mask ROM; those with "P' in their part numbers use flash EEPROM. 

TMS320C2xxx processors are well suited for low-cost applications 
that are not computationally demanding. The TMS320C2xxx is 
aggressively priced in quantities of 10,000. 

However, the maximum instruction cycle rate of 40 MIPS is quite 
low compared to that of many competing fixed-point DSP proces­
sors. Unlike most of the other processors in this report, the speed of 
the TMS320C2xxx has not increased since the last edition of this 
report nearly two years ago. 

This description covers both the T320C2xLP core and the TMS320C2xxx proces­
sors. Differences between TMS320C2xxx packaged processors and the T320C2xLP core 
are noted in the text. We use the term TMS320C2xxx to indicate features that are common 
to the TMS320C2xx, TMS320F2xx, TMS320LC24xx, and TMS320LF24xx family mem­
bers. We use the term TMS320C24xx to indicate features that are common only to the 
TMS320LC24xx and TMS320LF24xx family members. 
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On-Chip Memory 

Max. Dual- Single-
Part Speed Access Access Program Comments 

(MIPS) Data Program! ROM 
RAM Data RAM 

C203 40 544x16 - - Synchronous and asynchronous 
serial ports 

C2061 
ROM and flash EEPROM ver-

F206 
40 544x16 4Kx16 32Kx16 sions, synchronous and asynchro-

nous serial ports 

C209 28 544x16 4Kx16 4Kx16 
Limited features compared to 
other TMS320C2xxx processors 

ROM and flash EEPROM ver-
sions, synchronous and asynchro-

C2401 
20 544x16 16Kx16 

nous serial ports, dual lO-bit AID 
F240 - converters, 28 bidirectional I/O 

pins, 12 pUlse..;width modulation 
outputs, 5 timers 

Flash EEPROM, .synchronous and 
asynchronous serial ports, control 

F241 20 544x16 8Kx16 
area network unit, lO-bit AID con--
verter, 26 bidirectional I/O pins, 8 
pulse-width modulation outputs, 3 
timers 

ROM, asynchronous serial port, 

C242 20 544x16 4Kx16 
10-bit AID converter, 26 bidirec--
tional I/O pins, 8 pulse-width mod-
ulationoutputs, 3 timers 

Flash EEPROM, synchronous and 
asynchronous serial ports, control 

F243 20 544x16 8Kx16 
area network unit, lO-bit AID con--
verter, 26 bidirectional I/O pins, 8 
pulse-width modulation outputs, 3 
timers 

TABLE 7.11-1. TMS320C2xxx processor summary (continued on next page). 
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The T320C2xLP core can be used in SoCs designed by customers and fabricated 
by Texas Instruments. The T320C2xLP includes 544x16 bits of dual-access RAM 
(DARAM) on-core. According to Texas Instruments, the T320C2xLP core can operate at 
speeds of up to 40 MIPS at 3.3 volts. The core can be used as part of an ASIC imple­
mented using a standard cell or gate array methodology. Texas Instruments provides a 

On-Chip Memory 

Max. Dual- Single-
Part Speed Access Access Program Comments 

(MIPS) Data Program! ROM 
RAM Data RAM 

ROM and flash EEPROM+boot 
ROM versions, asynchronous 

LC2402/ 
40 544x16 

4Kx16/ serial port, lO-bit AID converter, 
LF2402 

-
8Kx16 21 bidirectional 110 pins, 8 

pulse-width modulation outputs, 3 
timers 

ROM, synchronous and asynchro-
nous serial ports, lO-bit AID con-

LC2404 40 544x16 1Kx16 16Kx16 verter, 41 bidirectional 110 pins, 16 
pulse-width modulation outputs, 5 
timers 

ROM and flash EEPROM+boot 
ROM versions, synchronous and 

LC2406/ 
asynchronous serial port, control 

LF2406 
40 544x16 2Kx16 32Kx16 area network unit, lO-bit AID con-

verter, 41 bidirectional 110 pins, 16 
pulse-width modulation outputs, 5 
timers 

Flash EEPROM+boot ROM, syn-
chronous and asynchronous serial 
ports, control area network unit, 

LF2407 40 544x16 2Kx16 32Kx16 10-bit AID converter, 41 bidirec-
tionalllO pins, 16 pulse-width 
modulation outputs, 5 timers, 
external memory interface 

TABLE 7.11-1. TMS320C2xxx processor summary (continued from previous page). 
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variety of memory, peripheral and support blocks that can be integrated· with the core on 
an SoC. Contact Texas Instruments for further information on their core-based SoC offer­
ings. 

The availability of the T320C2xLP core in packaged processors 
and as a core for .use in SoC designs provides a natural roadmap 
for designers to migrate from TMS320C2xxx-based board-level 
designs to T320C2xLP core-based SoCs when volumes become suf­
ficiently high. 

Arctiitectu re 

TMS320C2xxx processors are based on the T320C2xLP core's 16-bit fixed-point 
data path, program control unit, and bus structure, but feature different peripherals and 
amounts of on-chip memory. The architecture of the T320C2xLP core is shown in 
Figure 7.11-1. 

Program 
Control 

Unit 

Data 
Address 

Generator 

Data Read Address (16) . 

Fixed-Point 

Data Path 

16 
Logic 

t--r-', Interface 
Address 

Bus 

Memory 
Interface 

380 
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Data Read Data (16) 
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Data Write Data (16) 
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FIGURE 7.11-1. T320C2xLP core architecture. 
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Data Path 

The T320C2xLP core and the TMS320C2xxx processors use a 16-bit data path. 
The data path centers on a 16 x 16 ~ 32-bit single-cycle multiplier, a 32-bit ALU, a lim­
ited-capability input barrel shifter, a limited-capability output barrel shifter, and a single 
32-bit accumulator. 

Arithmetic operations include add and subtract, and logical operations include 
and, or, exclusive-or, and not. One ALU input always comes from the accumulator, while 
the other can come from either the product register (unshifted, shifted right by 6 bits, or 
shifted left by 1 or 4 bits) or the data bus (shifted left by 0 to 16 bits); these shifts are per­
formed by the input shifter. Both the 16-bit upper half of the accumulator and the 16-bit 
lower half of the accumulator can be left-shifted by 0 to 7 bits before being written to the 
data bus; these shifts are performed by the output shifter. 

Signed/signed or unsigned/unsigned inputs to the multiplier come from the 16-bit 
T register and either the program or data bus; multiplier outputs are placed in the product 
(P) register. The multiplier performs integer multiplication by default, but the processor 
can be configured to shift the product one bit left, thus allowing fractional multiplication. 
A single multiply-accumulate (MAC) operation takes three instruction cycles. When 
repeated in a single-instruction repeat loop, multiply-accumulate operations have sin­
gle-cycle throughput. 

Multi-cycle MAC operation is a disadvantage of the TMS320C2xxx. 
Good MAC throughput can only be achieved when MACs are exe­
cuted in a single-instruction repeat loop. 

No guard bits are available in the accumulator. To prevent overflow, the output of 
the product register may be right-shifted by six bits before being presented to the ALU for 
accumulation. This allows up to 128 multiply-accumulate operations before overflow 
becomes a possibility. 

The lack of accumulator guard bits reduces flexibility. However, the 
option to shift the contents of the product register six bits to the 
right before it is added or transferred to the accumulator creates an 
effect that is similar to guard bits and is sufficient in most applica­
tions. 

Accumulator saturation on overflow can be enabled via a mode bit, which is set or 
reset by special instructions. The ALU features a carry bit, permitting extended-precision 
arithmetic and rotate-through-carry instructions. In addition to the carry bit, a status bit 
indicates whether the last operation produced overflow. 16-bit round-to-nearest rounding 
is supported in hardware. 

The TMS320C2xxx supports one-bit logical left shift and one-bit logical or arith­
metic (depending on a mode bit) right shift of the accumulator. 

The fact that the ALU does not support a single-cycle multi-bit left 
shift operation is a limitation which may complicate programming 
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and hinder performance in some applications. However, the input 
and output shifters often allow an operand or result to be shifted 
without requiring explicit shift instructions. 

The TMS320C2xxx does not have hardware support for fast exponent detection 
and normalization, but an instruction that performs iterative exponent detection and nor­
malization on the accumulator is provided. 

ALU operations are performed with single-cycle throughput. The TMS320C2xxx 
cannot perform an instruction fetch and two data reads simultaneously; thus, although a 
multiply-accumulate instruction is provided, a multiply-accumulate operation has a 
throughput of two instruction cycles unless it is executed from the single-instruction 
repeat buffer (described below). 

A drawback of the TMS320C2xxx data path is that it includes only 
one accumulator, and all ALU operations use the accumulator as 
one of their input operands. As a result, the accumulator often 
becomes a bottleneck in the architecture. 

The single accumulator means that the processor is not well suited 
for arithmetic using complex numbers. 

Memory System 

This section describes the memory system of the T320C2xLP core. Unless other­
wise noted, this also applies to the memory system of the TMS320C2xxx processor. 

The T320C2xLP core and TMS320C2xxx processors use separate program and 
data memory spaces. Each memory space can contain up to 64 K words of word-address­
able 16-bit memory. In memory-direct addressing modes, memory is divided into pages of 
128 words each. The T320C2xLP core contains three separate sets of on-core 16-bit 
address and data buses: the program bus set, the data read bus set, and the data write bus 
set. 

The T320C2xLP includes 544x16 bits of dual-access RAM (DARAM) on-core. 
DARAM supports one read and one write operation (but not two read or two write opera­
tions) per instruction cycle. The on-core DARAM is broken up into two blocks. The first 
block, which is 256 words in length, can be mapped into program space or data space (but 
not both) under software control. The second block, which is 288 words long, is always 
mapped into data space. DARAM is included as part of the core to meet timing con­
straints, and cannot be expanded off-core. 

The inability to add additional dual-access RAM may be a problem 
in some applications, as the dual-access RAM is used to efficiently 
implement delay lines (e.g., for FIR filters) on TMS320C2xxx pro­
cessors. 

Texas Instruments provides four types of memory that can surround the 
T320C2xLP core: mask ROM, EPROM, flash EEPROM, and single-access RAM 
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(SARAM). These memory blocks are specially designed for use with the T320C2xLP 
core. Unlike DARAM, they support only one access per instruction cycle. They connect to 
the core through a special memory interface, described in the External Memory Interface 
section below. 

Because the DARAM memory is part of the T320C2xLP core, all TMS320C2xxx 
processors include 544x16 of on-chip dual-access RAM. In addition, the TMS320C206, 
TMS320F206, and TMS320C209 include two 2 Kword blocks of single-access RAM that 
is mapped into both program and data space. The TMS320LC2404 has one 1 Kword block 
of single-access RAM, while the TMS320LC2406, TMS320LF2406, and 
TMS320LF2407 each have one 2 K word block of single-access RAM that is mapped into 
both program and data space. Each of the single-access RAM blocks allows one access per 
instruction cycle. 

The flash EEPROM on the TMS320F240, TMS320F241 and TMS320F243 is 
comprised of a single bank. The flash EEPROM on the TMS320F206 and 
TMS320LF2402 is divided into two banks; the processor can execute instructions from 
one bank while reprogramming the other. For more flexibility, the 32 Kwords of flash 
EEPROM on the TMS320LF2406 and TMS320LF2407 is divided into four banks instead 
of two. In addition to flash EEPROM, the TMS320LF2402, TMS320LF2406, and 
TMS320LF2407 also contain 256 words of factory programmed boot ROM to facilitate 
reprogramming. For more information about bootstrap capabilities, see the Bootstrap 
Loading section below. Please refer to Table 7.11-1 for the configuration of on-chip mem­
ory in each TMS320C2xxx family member. 

On-chip flash EEPROM memory greatly eases development and 
prototyping and facilitates field upgrades or last-minute program­
ming of devices. Thus, the support for flash EEPROM in the 
TMS320F206, TMS320F24x, and TMS320LF24xx is an advantage. 

Coupled with appropriate types of memory, the three sets of buses allow the 
T320C2xLP to achieve one program fetch, one data read, and one data write per instruc­
tioncycle; i.e., a data memory bandwidth of forty million 16-bit words/second for reads 
and forty million 16-bit words/second for writes on a 40 MIPS TMS320C203. (The ability 
to perform a data read and a data write in the same instruction cycle is important for com­
patibility with previous Texas Instruments fixed-point processors.) 

In normal operation one instruction is fetched from program memory and one 
operand can be fetched from data memory in one instruction cycle. This implies that 
instructions requiring two data fetches (such as multiply-accumulate) execute in two 
instruction cycles. However, as on the TMS320C2x, the T320C2xLP core and 
TMS320C2xxx processors feature a single-instruction repeat buffer that frees the program 
buses for data fetches when an instruction is being repeated. In this case, instructions 
requiring two memory reads can execute in one instruction cycle. 

To achieve maximum performance, TMS320C2xxx instructions that 
require two operandfetches must be executedfrom a single-instruc-
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tion hardware loop. This complicates device programming and low­
ers performance when blocks of instructions must be repeated as a 
group (e.g., in an FFT butterfly). 

About half of the TMS320C2xxx family members have only 544 
words of on-chip·RAM. This is an unusually small amount ofmem­
ory. 

External Memory Interface 

The T320C2xLP core provides two separate external interfaces. The first, called 
the "memory interface," is specifically intended for connection to the on-chip memory 
blocks described above. The second, the "logic interface," presents a multiplexed external 
interface intended for connection to off-core peripherals and custom circuitry. To simplify 
development, the logic interface is similar to the external memory interfaces on the prede­
cessor TMS320C2x and TMS320C5x processors. 

The T320C2xLP memory interface brings out the three sets of on-core buses 
described above (three 16-bit address buses and three 16-bit instruction and data buses) 
plus associated control lines, such as read (or write) strobes and "ready" inputs. A unique 
aspect of the interface is the presence of three sets of five input pins: PRAMENDO-4, 
PROMENDO-4, and DRAMENDO-4. These inputs indicate to the core the ending 
addresses (which must be on 2 Kword boundaries) of program RAM, program ROM, and 
single-access data RAM, respectively. This allows SoCs created using the T320C2xLP 
core to have. varying amounts of memory on-chip without forcing the designer to create 
timing-critical address decoding. logic. Memory accesses past the boundaries specified by 
the PRAMENDO-4;. PROMENDO-4; and DRAMENDO-4 input pins oc~ur over the logic· 
interface. As discussed above, the memory interface is designed solely for connecting to 
on-chip memory blocks, and is not intended for connection to peripherals. 

The T320C2xLP logic interface provides one 16-bit address bus (which multi­
plexes the three on-core address buses), one 16-bit data input bus, and one 16-bit data out­
put bus. The on-core instruction, data read, and data write buses are multiplexed onto the 
two data buses. This interface differs from the TMS320C2x and TMS320C5x external 
interface in that the T32OC2xLP logic interface data bus is not bidirectio~al, but rather 
uses one data input bus and one data output bus. Texas Instruments states that this was 
done to simplify interfacing and to give users as much freedom as possible in designing 
T320C2xLP-based SoCs. 

The logic interface can achieve one external read per instruction cycle, assuming 
zero wait states. Writes over the logic interface take at least two instruction cycles, thus 
maximum memory bandwidth is, e.g., forty million 16-bit words/second to the processor 
core or twenty million16-bit words/second from the processor core on a 40 MIPS 
TMS32OC203. 

Like the TMS320C5x, the TMS320C2xxx requires multiple instruc­
tion cycles for writes to external memory. The additional cycles 
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required to access external data memory are a significant disad­
vantage, since the on-chip data memories are fairly small. 

The T320C2xLP logic interface includes a program strobe, a data strobe, and an 
liD strobe (discussed below) to identify the type of external access the processor is mak­
ing. Read and write strobes are also provided. Externally requested wait states are sup­
ported via the READY input. 

Like the earlier TMS320C2x and TMS320C5x, the T320C2xLP core supports 
shared memory via its bus request (BR) pin and the READY pin. Under software control, 
up to 32 Kwords of the processor's upper memory space can be defined to be "global 
memory." Accessing this memory causes the T320C2xLP to assert the bus request signal 
and wait for the READY signal to be asserted in acknowledgment. In a shared bus design, 
an external arbitration device treats BR assertion as a request for access to a shared 
resource (such as a bus or memory) and responds with READY when the shared resource 
is available. Global memory can alternatively be used to access up to 32 Kwords of addi­
tional unshared external memory by using the BR pin as an additional memory decode 
signal. 

Unlike the TMS320C2x and TMS320C5x, the T320C2xLP core does not include a 
HOLD input to stop the processor from accessing its external bus. Texas Instruments notes 
that an SoC designer using the T320C2xLP core can create this functionality via tri-state 
buses and appropriate logic connected to the core's READY pin. On all TMS320C2xxx 
processors other than the TMS320C209 the HOLD operation is supported, allowing other 
devices to take control of the TMS320C2xxx external bus. 

The T320C2xLP also provides a 64 Kbyte memory space for liD, accessible via IN 
and OUT instructions. liD space operations function like program or data space external 
bus cycles, but assert a special liD strobe signal to indicate to external devices that an liD 
cycle is occurring. 

The TMS320C2xxx external memory interface pins match the logic interface of 
the T320C2xLP's core, with a few exceptions. First, the TMS320C2xxx single external 
data bus is bidirectional, as on the TMS320C2x and TMS320C5x. Second, the 
TMS320C2xxx adds a programmed wait-state generator that supports from zero to seven 
wait states which can be separately selected for data, liD, or upper or lower program space 
accesses. On the TMS320C209 the programmed wait-state generator only allows zero or 
one wait state and does not distinguish between upper and lower program space. Lastly, 
the external memory interface is not available at all on the TMS320C24x, TMS320F24x 
or TMS320C24xx, except for the TMS320C240, TMS320F240, TMS320F243, and 
TMS320LF2407. 

The similarity between the T320C2xLP core's external inteifaces 
and the TMS320C2x1TMS320C5x1TMS320C2xxx processors' 
external inteifaces simplifies migration from older off-the-shelf 
parts to a core-based SoC design. 

© 2001 Berkeley Design Technology, Inc. 385 



Buyer's Guide to DSP Processors 

386 

Address Generation Unit 

The T320C2xLP core and TMS320C2xxx processors support immediate data, and 
register-direct, paged memory-direct, and register-indirect addressing. Paged mem­
ory-direct addressing uses a single 9-bit data page register that, combined with a 7-bit 
direct memory address specified in the instruction word, addresses the entire 64 K word 
address space. Pages are thus 128 words long. Register-indirect addressing uses one of 
eight address registers (ARO-AR7); the register used is selected by an address register 
pointer register. Register-indirect modification modes include post-increment by one, 
post-decrement by one, post-increment or decrement by the contents of address register 
ARO, and no update. Additionally, most instructions that support register-indirect address­
ing also allow the user to select the next address register to be used by modifying the 
address register pointer register. 

The TMS320C2xxx supports bit-reversed addressing through reverse carry propa­
gation. Using this mode, the currently selected address register pointer is used for address 
generation, but the register is post-modified by adding or subtracting address register ARO 
using reverse-carry arithmetic. 

Modulo addressing is not supported. 

The restriction that only address register ARO can be used for 
post-increment and post-decrement by a programmed offset is limit­
ing in some applications. 

The lack of modulo addressing is an inconvenience. However, the 
MACD instruction (discussed below) can be used to implement a 
delay line without overhead when performing a vector dot product. 

Pipeline 

The T320C2xLP core and TMS320C2xxx processors use a four-stage partially 
interlocked pipeline identical to that used in the earlier TMS320C5x family. The pipeline 
is made up of fetch, decode, operand read, and execute/write stages. This represents a sig­
nificant difference from the TMS320C2x family, which used a three-stage pipeline, and 
results in different instruction cycle counts for many instructions. The deeper 
TMS320C2xxx pipeline is visible to the programmer. For example, branches take four 
instruction cycles. Delayed branches are not available. 

Although the TMS320C2xxx pipeline is the same as that of the TMS320C5x fam­
ily, the TMS320C2xxx avoids the most serious pipeline hazard present in the 
TMS320C5x. On the TMS320C5x, certain processor registers can be accessed by writing 
to certain memory locations. Due to pipeline effects, values written to address registers via 
memory writes are not available for two instruction cycles after the values are written. The 
T320C2xLP core and TMS320C2xxx processors avoid this problem by not providing 
memory-mapped access to processor registers. Some pipeline hazards remain, however: 
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• If an instruction changes the global memory map (by writing to a designated regis­
ter), the next instruction will use the previous memory map. 

• If any of the two instructions immediately following the NORM instruction mod­
ify the address register used by the NORM instruction or modify the address regis­
ter pointer register, the address register or address register pointer register will be 
modified before the NORM instruction is executed. 

Instruction Set 

Tables 7.11-2 and 7.11-3 summarize the instruction set and registers of the 
T320C2xLP core and TMS320C2xxx processors. The T320C2xLP core and the 
TMS320C2xxx processors use mostly 16-bit instructions, but some instructions occupy 
two words of program memory. 

Assembly Language Format 

The T320C2xLP core and the TMS320C2xxx processors are mostly compatible at 
the assembly language source code level with the TMS320C2x, and are compatible with a 
subset of the TMS320C5x instruction set. Texas Instruments states that 
T320C2xLPffMS320C2xxx object code runs on TMS320C5x processors (although the 
reverse is not true). TMS320C2x object code does not run on the T320C2xLP core or 
TMS320C2xxx processors. 

The TMS320C2xxx instruction set differs in several ways from that of the 
TMS320C2x. The most significant of these differences are: 

• With its four-stage pipeline, many instructions take a different number of instruc­
tion cycles to execute on the T320C2xLP than on the TMS320C2x. 

• The T320C2xLP includes conditional call and return instructions that do not exist 
on the TMS320C2x. 

• The T320C2xLP includes INTR and NMI software interrupt instructions that do 
not exist on the TMS320C2x. 

• T320C2xLP conditional branch instructions can test multiple conditions. 
TMS320C2x instructions can only test a single condition. 

Registers Width Purpose 

ACC 32 bits Accumulator 

T 16 bits Multiplier input register 

ARO-AR7 16 bits Address registers 

ARP 3 bits Address register pointer register 

TABLE 7.11-3. T320C2xLPITMS320C2xxx registers. 
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• T320C2xLP IN and OUT instructions can address up to 65,536 I/O ports, as 
opposed to 16 on the TMS320C2x. 

• The TMS320C2x serial port configuration instructions are not available on the 
T320C2xLP and TMS320C2xxx processors. Instead, serial port configuration on 
these devices is handled via registers mapped into I/O space. 

Class Instructions 

Absolute value; add with 0- to IS-bit left shift; add with carry; add to high 
accumulator; add unsigned; accumulate; accumulate and load multiplier 

Arithmetic 
input; accumulate, load multiplier input, and move data in memory; 
negate; subtract with 0- to IS-bit left shift; subtract with borrow; subtract 
from high accumulator; subtract unsigned; subtract product and load mul-
tiplier input 

Multiply, multiply-accumulate, multiply-accumulate with data load and 
Multiplication store, multiply-subtract, unsigned multiply, square-accumulate, 

square-subtract 

Logic And, or, exclusive-or, not 

Shifting 
Arithmetic/logical shift left/right by one bit (input and output shifters 
before and afterthe accumulator provide alternative shift counts) 

Rotation Rotate left/right one bit 

Conditional 
Conditional subtract 

Execution 

Comparison Compare address register with ARO 

Looping Repeat single instruction 

Branching Conditional and unconditional branch 

Subroutine Call Conditional and unconditional call, conditional and unconditional return 

Bit Manipulation Bit test 

Block data-to-data memory move, block program-to-data memory move, 
Special Function read/write data to/from I/O port, move data word in memory to next 

higher memory location,normalize iteration, pop, push, wait for interrupt 

TABLE 7.11-2. T320C2xLP and TMS320C2xxx instruction set summary. New 
instructions not provided by the TMS320C2x are underlined. 
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The T320C2xLP core and TMS320C2xxx processors use the traditional 
opcode-operand assembly language format. For example, the instructions: 

RPTK 15 
MACD OFFOOH,*-

implement the kernel of a 16-tap FIR filter. In this example, the MACD (multiply-accu­
mulate with data move) instruction is repeated 16 times. Each execution of MACD accu­
mulates the previous product in the accumulator; fetches two operands, one from program 
memory (starting at address OxFFOO and increasing) and one from data memory via regis­
ter-indirect addressing (starting wherever the currently selected address register points and 
decreasing); multiplies these operands, depositing the result in the product register; and 
writes the value read from data memory back to data memory at one location higher than 
the location from which it was read, implementing a delay line. The MACD instruction 
requires that the operand located in data memory be located in on-chip data memory. If the 
operand is located in external data memory, the delay line update operation will not be 
performed. 

A drawback of the TMS320C2xxx is that its MACD instruction uses 
memory-direct addressing for one of its operands (the OxFFOO in 
the above example). This makes it difficult, for example, to write an 
FIR filter routine where the locations of both the coefficients and 
data are specified by addresses stored in registers. 

As on the TMS320C1x, TMS320C2x, and TMS320C5x, the T320C2xLP core and 
TMS320C2xxx processors handle indirect addressing somewhat differently from other 
DSP processors. In particular, most processors allow the programmer to directly specify 
which address register should be used in an instruction. On the T320C2xLP and 
TMS320C2xxx, however, the current instruction specifies the address register to be used 
by the next instruction by specifying a value to be loaded into the "address register 
pointer" (ARP); for example: 

LARp· AR3 
ADD *,AR7 
ADD * 

The LARP instruction makes the address register pointer point to AR3. The first ADD 
instruction adds the value pointed to by AR3 (denoted by "*") to the accumulator and sets 
the ARP for the next instruction to AR7. The second ADD instruction adds the value 
pointed to by AR 7 to the accumulator and does not update the ARP. 

Having to specify the address register to be used in the next instruc­
tion requires programmers to think "one step ahead" compared to 
most processors. Programmers seem to rapidly adapt to this style of 
coding, however. 

© 2001 Berkeley Design Technology, Inc. 389 



Buyer's Guide to DSP Processors 

390 

Parallel Move Support 

The TMS320C2xxx uses operand-related parallel moves. The few instructions that 
access two operands in parallel (such as multiply-accumulate and block move) must be 
executed within a single-instruction repeat loop to achieve single-cycle operation. 

Some instructions allow one operand-unrelated move; e.g., the LTA instruction 
that loads a multiplier input and accumulates the previous product in the accumulator. 

Orthogonality 

The TMS320C2xxx instruction set is not particularly orthogonal, but is fairly con­
sistent. This is largely because the number of registers to choose from is extremely limited 
(essentially consisting of the accumulator, the T register, and eight address registers), 
which simplifies the instruction set encoding. On the positive side, instructions that use 
memory-direct or register-indirect addressing all have the same set of allowable address 
register and update combinations. Unfortunately, the number of update modes is small. 
Other addressing modes (notably short and long immediate data) are available only for 
some instructions. 

The following aspects detract from the orthogonality of the TMS320C2xxx 
instruction set: 

• Extensive use of mode registers. The mode register approach reduces the number 
of actions that must be encoded within an instruction word, allowing a better repre­
sentation of those that are encoded. Unfortunately, while this approach increases 
the number of available instructions and enables more combinations of operands, it 
complicates programming. 

The reliance on mode registers complicates programming of the 
TMS320C2xxx for several reasons. First, some instructions use 
mode registers while others do not. Second, understanding the 
behavior of many instructions requires knowledge of the contents of 
various mode registers. Additionally, considerable overhead may 
be required to configure various registers before executing instruc­
tions that depend on their contents. 

For example, in a multiply-accumulate operation, the multiplier output is shifted 
depending on the pre-scale mode bits. In addition, accumulator operations are 
affected by the sign-extension and saturation mode bits. 

• Limited set of dual parallel move instructions. Multiply-accumulate, block move, 
and table read/write instructions are the only instructions on TMS320C2xxx pro­
cessors that allow multiple data accesses in a single instruction cycle. 

Execution Times 

Most single-word T320C2xLPITMS320C2xxx instructions executed from on-chip 
program memory take one instruction cycle to execute. However, instructions that access 
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multiple data words, such as the multiply-accumulate instruction, may take two or three 
instruction cycles unless executed from a single-instruction repeat buffer. All taken 
branches take four instruction cycles; branches that are not taken take two instruction 
cycles. Two-word instructions take at least two instruction cycles. 

T320C2xLPffMS320C2xxx instruction execution times differ from those of the 
TMS320C2x for some instructions due to the deeper pipeline. 

Instruction Set Highlights 

Noteworthy instructions on the T320C2xLP core and TMS320C2xxx processors 
include: 

• The multiply-accumulate with data move instruction fetches two data words from 
memory, multiplies and accumulates them, and moves one of the words up one 
location in memory, implementing a delay line. 

• Two block data move instructions move data from program to data memory or vice 
versa. 

• A normalization iteration instruction is available. 

One of the chief drawbacks of the instruction set is that the multi­
ply-accumulate instruction must be executed from within a sin­
gle-instruction hardware loop to achieve single-cycle throughput. 
The overhead associated with setting up such a loop makes the pro­
cessor poorly suited for tasks that require multiplies on small 
blocks of data, since the smaller the block, the greater the percent­
age of time that is consumed by overhead. 

Execution Control 

Clocking 

The T320C2xLP core uses an externally generated clock signal to generate a mas­
ter clock that runs at twice the instruction rate of the processor. However, the core contains 
an on-chip phase-locked loop frequency synthesizer that can be used to increase or 
decrease the frequency of the supplied clock signal. Five pins can be asserted or deas­
serted in various combinations to achieve input clock to master clock rate ratios of 1 :2, 
1:1,2:1,3:2,3:1, and 4:1. 

The TMS320C2xxx processor internally uses a master clock that runs at twice the 
instruction rate of the processor. The clock can be externally generated or generated via an 
external crystal used in conjunction with the TMS320C2xxx on-chip oscillator. The pro­
cessor can also use its on-chip phase-locked loop to generate a master clock from a 
lower-frequency clock operating at 1, 112, or 114 times the desired master clock rate. The 
TMS320C209 phase-locked loop only supports an external clock at half the desired mas­
ter clock rate. 
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On the TMS320F240, if the phase-locked loop and on-chip oscillator are 
bypassed, the processor's master clock can be generated from a IX or 2X external clock. 
In addition to the three ratios supported by the other TMS320C2xxx processors, the 
TMS320F240 phase-locked loop can also generate an input clock to master clock rate 
ratio of2:3, 2:5, 1:3, 1:4,2:9, 1:5, and 1:9, configurable by software. 

The TMS320F241, TMS320C242, TMS320C243, and TMS320F243 use an 
on-chip phase-locked loop to multiply an external clock signal by foUf. The phase-locked 
loop on these devices cannot be bypassed. 

Clock generation on the TMS320C24xx is similar to that of the TMS320C206, 
except that the phase-locked loop can be programmed to accept an external clock operat­
ing at eight different frequencies ranging from 114 the desired master clock to twice the 
desired master clock. 

Hardware Looping 

Like the TMS320C2x, the T320C2xLP core and TMS320C2xxx processors sup­
port single-instruction hardware loops. The RPT instruction repeats a single instruction 
from 1 to 256 times. Single-instruction repeats cannot be nested. Interrupts are disabled 
for the duration of the loop. 

As explained in the section on memory above, the RPf instruction frees the pro­
gram bus for parallel data moves and thus reduces the execution time of some instructions, 
most notably the multiply-accumulate instruction. 

Multi-instruction hardware loops are not supported. 

The lack of multi-instruction hardware looping is a serious draw­
back and limits performance in some applications. 

Interrupts 

The TMS320C2xLP core has six external maskable interrupt lines, an external 
non-maskable interrupt line, and an external reset input. No internal interrupt sources are 
provided, as the core does not include any peripherals. Each interrupt has its own interrupt 
vector in low memory and can be enabled and disabled individually. Interrupts are priori­
tized but not automatically nestable. Software interrupts are initiated using the TRAP or 
the INTR instructions. The INTR instruction can be used to invoke any of the processor's 
interrupts. 

When the T320C2xLP receives an interrupt, the processor acknowledges it, pro­
viding that interrupts are enabled and the interrupt is not masked. All maskable interrupts 
are then disabled, and the program counter is pushed onto the stack. The processor then 
executes from the appropriate interrupt vector. 

The TMS320C203 and TMS320F206 processors provide two external maskable 
interrupt lines, an external reset pin, a non-maskable interrupt line, and four peripheral 
interrupts. 
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The TMS320C209 processor has three external maskable interrupt lines, an exter­
nal non-maskable interrupt line, and an external reset pin. It also has one on-chip periph­
eral interrupt from the timer. 

The TMS320C24x, TMS320F24x, and TMS320C24xx processors include a unit 
that serves as arbiter for up to 31 peripheral interrupts. These interrupts are mapped to the 
core's six external maskable interrupt lines. 

In other respects the TMS320C2xxx processors provide the same interrupt support 
as the T320C2xLP core. 

Interrupt latency is 12 instruction cycles from the assertion of an external interrupt 
line to execution of the first word of the interrupt vector, assuming the processor is in an 
interruptible state. 

Stack 

The T320C2xLP and TMS320C2xxx hardware stack is eight levels deep and 16 
bits wide. It is used to store the program counter for subroutine calls and interrupts. PUSH 
and POP instructions are also available. 

Bootstrap Loading 

Neither the T320C2xLP core nor the TMS320C209 processor provide special 
bootstrap loading circuitry. The TMS320C209 does not provide bootstrap loading features 
since designers will typically have their own code in the on-chip mask-programmable 
ROM. On reset, the processor begins executing at program address zero. It is the responsi­
bility of the system or SoC designer to make sure that appropriate initialization code is 
available at that address on reset. 

TMS320C2xxx devices other than the TMS320C209 allow bootstrap loading from 
a byte-wide ROM connected to the external bus. The EEPROM in the TMS320F206 and 
TMS320F24x is factory-programmed with a bootstrap loader that allows bootstrap load­
ing over the serial port. The system designer can choose to replace the factory-pro­
grammed bootstrap loader with a program that is loaded over the serial port; this way, 
bootstrap loading only needs to be performed once. By including bootstrap loading capa­
bilities in the replacement code, the system designer can provide the capability of repro­
gramming the flash EEPROM later via bootstrap loading. The TMS320C24xx has a 
separate 256-word boot ROM that is factory programmed with a generic bootloader. The 
boot ROM can be disabled under software control after reprogramming is completed. The 
presence of the boot ROM can improve reliability, since the generic bootloader is always 
available, even if reprogramming is interrupted. 

The ability to bootstrap load and reprogram the on-chip flash 
EEPROM provides a convenient scheme for product upgrades after 
the product has been shipped. 
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Peripherals 

The T320C2xLP core does not contain anyon-core peripherals. Instead, the 
designer of an SoC containing the T320C2xLP core must add peripherals appropriate to 
the design at hand. Texas· Instruments provides a number of T320C2xLP core-compatible 
peripheral macrocells for their TGC1000, TGC2000, and TGC4000 fabrication processes. 
Among others, these include a number of 8-bit AID and D/A converters, a 16-bit timer, a 
wait-state generator, an interrupt synchronizer, a synchronous serial port, and an asynchro­
nous serial port. 

The T320C2xLP core and TMS320C2xxx processors provide one general-purpose . 
input and one general-purpose output pin. The output line, called the XF (external flag) 
pin, can be set or cleared under software control by the SETC instruction. The state of the 
input line, called the BID (branch I/O) pin, can be used as a condition for a conditional 
branch instruction. 

TMS320C2xxx processors feature various peripherals, ranging from only a timer 
on the TMS!320C209 to a variety of peripherals on the TMS320LF2407, including D/A 
and AID converters, pulse-width modulation outputs, etc. The peripherals featured by the 
TMS320C24x, TMS320F24x, and TMS320C24xx are primarily intended for motor con­
trol applications. These peripherals, grouped into one or two "event managers," include 
timers, timer comparators, pulse width modulation generators, and quadrature-encoder 
pulse units. 

• Serial Ports 
All TMS320C2xxx processors except the TMS320C209 provide an asynchronous 
serial port, and most provide a synchronous serial port as well .. However, the serial 
ports are not identical on all family members. 
The TMS320C20x and TMS320F206 synchronous serial port supports 16-bit data 
at bit rates up to the master clock rate divided by two (e.g., 20 Mbits/second on a 
40 MIPS TMS32OC203 processor). Data can be transinitted continuously or in 
burst mode. The receive and transmit sections of the port are independent and can 
be controlled independently. The transmitter clock can be generated internally or 
be taken from an external clock. The receive clock is supplied by an external 
source. Frame synchronization signals can be generated internally or can be taken 
from an external source. 
The TMS320C24x, TMS320F24x, and TMS320C24xx processors, except 'the 
TMS320C242, TMS320LC2402, and TMS320LF2402, include a synchronous 
serial port designated as the "serial-peripheral interface." The TMS320C240 and 
TMS320F240 serial-peripheral interface supports 1- to 8-bit data at a maximum bit 
rate equal to the master clock divided by 8. The remaining TMS320C24x, 
TMS320F24x, and TMS320C24xx processors allow a data rate of twice that of the 
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TMS320C240 and TMS320F240 (e.g., 5 Mbits/second on a 20 MIPS 
TMS320F241). 
The TMS320C20x and TMS320F206 asynchronous serial port supports 8-bit data 
with one start bit and one or two stop bits. The maximum transmission rate is the 
processor clock speed divided by 16 (e.g., 2.5 Mbits/second on a 40 MIPS 
TMS320C203 processor). The bit rate is determined either by writing a clock divi­
sor value to a register or by using the asynchronous serial port's baud-detection 
logic to determine the bit rate of received data automatically. 
The TMS320C24x, TMS320F24x, and TMS320C24xx include an asynchronous 
serial port designated as the "serial-communications interface." The TMS320C24x 
and TMS320F24x serial-communications interface supports 1- to 8-bit data with 1 
start bit, an optional parity bit, and 1 or 2 stop bits. The serial-communications 
interface supports bit rates up to the master clock rate divided by 32 (e.g., 625 
Kbits/second on a 20 MIPS TMS320C24x). 
The receiver and the transmitter are configured independently, although they 
require that the same data format be used. The serial-communications interface on 
the TMS320C24xx processors is essentially the same, except that bit rates up to 
the master clock rate divided by 16 are supported (e.g., 2.5 Mbits/second on a 40 
MIPS TMS320LC24xx processor). 

• Timers 
The TMS320C20x and TMS320F206 processors include a 16-bit timer which uses 
the master clock as its clock source. A 4-bit prescaler divides the master clock by 
up to 16 times, and a subsequent 4-bit "divide-down" scaler divides the prescaled 
signal further by up to 16 times. A 16-bit counter register uses the resulting signal 
as its input clock. The timer generates an output pulse on the TOUT pin and inter­
rupts the processor when the counter reaches 0, at which point the counter is 
reloaded with a user-specified value. 
The TMS320C24x, TMS320F24x, and TMS320C24xx include a watchdog timer 
that generates a reset signal when it reaches zero. Also, the event manager(s) on 
these processors each provide two prescalable 16-bit timers (three on the 
TMS320C240 and the TMS320F240) that can operate independently or can be 
synchronized with each other; i.e., the timers can be started and stopped simulta­
neously. These timers can generate interrupts when they underflow, overflow, or 
reach a pre-set value; the interrupts are configurable as one-time interrupts or peri­
odic interrupts. 

• Event Manager 
The TMS320C24x, TMS320F24x, TMS320LC2402, and TMS320LF2402 include 
one event manager. The other TMS320C24xx processors provide two independent 
event managers. In addition to the timers mentioned above, each event manager 
also contains several compare units that can be used to generate up to eight (twelve 
on the TMS320C240 and TMS320F240) timer compare and pulse-width modula-
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tion waveform outputs. Each event manager also provides three (four on the 
TMS320C240 and TMS320F240) capture units that can each log transitions on a 
different input pin; the timers are used to count the transitions. A quadra­
ture-encoder pulse unit can be used to receive a quadrature-encoder pulse (used to 
measure the rotation speed and position of a rotating motor) using two of the cap­
ture units. 

• Analog-to-Digital Converters 
The TMS320C240 and TMS320F240 provide 16 analog inputs that are multi­
plexed to two lO-bit analog-to-digital converters with conversion times of 6.6 ~s. 
The remaining TMS320C24x, TMS320F24x, and TMS320C24xx processors also 
provide 16 analog inputs (there are 8 input channels on the TMS320F241, 
TMS320F243, TMS320C242 and TMS320LC2402), but provide a single lO-bit 
analog-to-digital converter with a conversion time of 0.85 ~s (0.5 ~s for the 
TMS320C24xx). 

• Control Area Network Unit 
The TMS320F241, TMS320F243, TMS320LC2406, TMS320LF2406, and 
TMS320LF2407 feature a control area network (CAN) unit. The CAN protocol is 
a serial communications protocol that passes messages via mailboxes. The physi­
cal interface consists of one receive and one transmit pin. Messages are received in 
mailboxes contained in devices that contain a CAN unit; these messages can sub­
sequently be read by the processor. Similarly, outgoing messages are placed in 
local mailboxes, later to be transmitted on the CAN by the CAN unit. The CAN 
unit implements six mailboxes each with four 16-bit words of data. Two mailboxes 
are for receive, two can be configured for receive or transmit, and two are for 
transmit. 

• Bit I/O 
The TMS320C203 and TMS320F206 provide four bit I/O pins and the 
TMS320C209 provides two. The TMS320C240 and TMS320F240 provide 28 bit 
I/O pins, the TMS320F241 and TMS320F243 provide 26 bit I/O pins, and the 
TMS320C242 provides 32 bit I/O pins. The TMS320LC2402 and 
TMS320LF2402 provide 20 bit I/O pins, while the other TMS320C24xx parts pro­
vide 40 bit I/O pins. Most of the bit I/O pins found on the TMS320C24x, 
TMS320F24x, and TMS320C24xx are multiplexed with other functions. 

The TMS320C2xxxfamily members differ mostly in their configura­
tion of on-chip peripherals and memory. Whereas the TMS320C209 
has fewer peripherals than many DSP processors, the number of 
peripherals on the TMS320C24x, TMS320F24x, and 
TMS320C24xx is impressive. The peripherals on the TMS320C24x, 
TMS320F24x, and TMS320C24xx are mostly targeted at motor 
control applications. 
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On-Chip Debugging Support 

The T320C2xLP core and TMS320C2xxx processors have a JTAG-based interface 
to on-core/on-chip debugging circuitry for in-circuit emulation. Through the debugging 
interface an external device can read and write processor memory and registers, set and 
clear hardware and software breakpoints, and single-step the processor. 

Power Consumption and Management 

The T320C2xLP core operates at nominal voltages of both 3.3 and 5.0 volts. 
According to Texas Instruments, typical core power consumption is 270 mW at 5.0 volts 
when executing at 28 MIPS, and 66 mW at 3.3 volts when executing at 20 MIPS. These 
figures correspond to approximately 385 mWat 5.0 volts and 40 MIPS, and 160 mW at 
3.3 volts and 40 MIPS. 

The TMS320C2xxx chips operate at 5.0 and 3.3 volts. Texas Instruments states 
that typical power consumption is 380 mW when executing at 40 MIPS and 5.0 volts, and 
72 mW when executing at 20 MIPS and 3.3 volts, corresponding to approximately 144 
mW at 3.3 volts and 40 MIPS. The power consumption figures for the T320C2xLP core 
and the TMS320C2xxx assume that the processor is executing a FIR filter from on-core 
memory. 

The T320C2xLP core and all TMS320C2xxx processors except the TMS320F240 
provide a power-down mode via the IDLE instruction, which turns off the clock to the 
core. For example, the typical power consumption of the TMS320C203 processor in IDLE 
mode is 50 mW at 5.0 volts, and 15 mW at 3.3 volts. Any unmasked external interrupt 
wakes the processor from IDLE mode. 

The TMS320C240 and TMS320F240 provide four modes of low-power operation: 
idle 1, idle 2, standby, and halt. The TMS320F241 and TMS320F243 eliminate the 
standby mode. The four modes stop the clocks to various parts of the processor. The pro­
cessor can be configured by software to enter one of the four modes when it executes the 
IDLE instruction. Interrupts or reset bring the processor back to normal operation. 
According to Texas Instruments, the TMS320F240 power consumption in each of the four 
low-power modes is 250 mW for idle 1,35 mW for idle 2, 5 mW for standby, and less than 
2 m W for halt. In Idle 1 mode, the main processor clock is stopped, halting the core, 
memory interface and event manager peripherals. In Idle 2 mode, the clock to the remain­
ing peripherals is disabled as well. In standby mode the phase-locked loop is turned off, 
but the oscillator and watchdog timer are still active. In halt mode the oscillator and all 
clocks are disabled. 

The TMS320C24xx provides the same three low-power modes as the 
TMS320C24x. In addition, the peripherals can be individually powered down independent 
of the other low power modes. The clocks for each peripheral are disabled after a reset to 
allow low startup power, and can be turned on or off during execution by setting the clock 
enable bits in a control register. 
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Benchmark Performance 

The TMS320C2xxx has not been benchmarked with the current version of the 
BDTI Benchmarks so this report does not include benchmark results for the 
TMS320C2xxx. Based on its performance on previous versions of the BDTI Benchmarks, 
we provide a general, qualitative description of the TMS320C2xxx's performance relative 
to that of the other processors in this report. In particular, we will compare the 
TMS320C2xxx with the DSP568xx, as both are conventional fixed-point architectures 
and have similar target applications. 

Execution Performance 

• Instruction cycle counts: Based on previous BDTI Benchmark analyses, the 
TMS320C2xxx typically has very high cycle counts in comparison to other 
fixed-point processors, for several reasons. First, the processor lacks support for 
multi-instruction hardware loops. While the TMS320C2xxx does provide a decre­
ment-and-branch-if-not-zero instruction, this adds four instruction cycles to each 
loop iteration of block-based benchmarks-a significant increase. Second, many 
important DSP instructions (such as multiplies) execute in a single instruction 
cycle only if they are executed within a single-instruction hardware loop. This 
increases cycle counts on algorithms that have multi-instruction kernels, such as 
LMS Adaptive FIR filters, IIR filters, and FFTs. Third, the TMS320C2xx has only 
a single accumulator that must be used for all arithmetic and logic operations. This 
increases cycle counts on some algorithms, such as complex-valued block filters 
and FFfs. Fourth", an inability to move values from register to register without stor­
ing them temporarily in memory consumes additional cycles. Fifth, the processor 
provides only limited support for operand-unrelated parallel moves, which means 
that additional instructions are required to load or store data in many benchmarks. 
In comparison to the DSP568xx, cycle counts for the TMS320C2xxx can be 
expected to be nearly 1.5 times higher on average. 

• Execution times: The fastest member of the TMS320C2xx family has an instruc­
tion cycle rate of 40 MIPS. This is quite slow in comparison with most of the DSP 
processors presented in this report; however, it is similar to that of the fastest mem­
ber of the DSP568xx family, the 40 MIPS DSP56F801. Because the TMS320C2xx 
has significantly higher cycle counts than the DSP568xx and a comparable instruc­
tion cycle rate, its execution times will be significantly slower than those of the 
DSP568xx. 

• Cost-execution time: The 40 MIPS TMS320LC2404 is priced at $6.00 (quantity 
10K). In comparison, the 40 MIPS DSP56F801 is priced at $8.15. The 
TMS320LC2404 is likely to be roughly 40% slower than the DSP56F801 overall, 
and costs only 25% less. Hence, the TMS320LC2404 is likely to have worse 
cost-execution times than the DSP56F801. 
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• Energy consumption: According to Texas Instruments, the TMS320C2xxx con­
sumes 144 mW at 40 MIPS and 3.3 volts. In comparison, the DSP56824 consumes 
54 mW at 35 MIPS and 3.3 volts. Because the DSP56824 is faster than the 
TMS320C2xxx and has much lower power consumption, the DSP56824 will have 
much better energy consumption results than the TMS320C2xxx; TMS320C2xxx 
energy consumption is likely to be about three times higher than that of the 
DSP56824. 

Memory Usage 

The focus of our memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate a processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks, reflecting the processor's 
program memory usage in general DSP code. Finally we discuss constant and non-con­
stant data memory usage. 

Because the TMS320C2xxx has not been bench marked with the current suite of 
BDTI Benchmarks, we base our analysis on the processor's results on earlier versions of 
the BDTI Benchmarks. 

• Control code memory usage: Based on previous results for BDTI's control-ori­
ented benchmark, the TMS320C2xxx achieves fair code density on control code. 
Although it might be expected that TMS320C2xxx memory usage would be rela­
tively low because of its short, ·16-bit instructions, limitations of the 
TMS320C2xxx instruction set increase its memory usage on control code. For 
example, most arithmetic operations must use the accumulator, resulting in the 
need for transfer instructions to temporarily save and restore the accumulator con­
tents. In addition, the TMS320C2xxx instruction set lacks a PC-relative branch 
instruction. In comparison to the DSP568xx, which also uses 16-bit instructions, 
the TMS320C2xxx can be expected to have somewhat higher memory usage on 
control code (though not dramatically higher). 

• Program memory usage: Based on previous benchmark results, the 
TMS320C2xxx requires more program memory than the DSP568xx; on previous 
versions of the BDTI Benchmarks, the TMS320C2xxx's total normalized program 
memory result was roughly 30% higher than that of the DSP568xx. In order to 
achieve low instruction cycle counts on the TMS320C2xxx, it is often necessary to 
perform loop unrolling to a larger extent than on other DSPs, thus increasing pro­
gram size. In addition, because the TMS320C2xxx has only limited support for 
operand-unrelated parallel moves, several instructions are often required where 
other DSPs can perform the same operations in a single instruction (albeit often at 
the cost of larger instruction word widths). 
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• Data memory usage: Based on previous benchmark results, the TMS320C2xxx 
constant and non-constant data memory usage is about as expected for a 16-bit 
processor. 

Cost 

Price and packaging options for the TMS320C2xxx are shown in Table 7.11-4. 
Pricing of an SoC containing the T320C2xLP depends on many variables, including size, 
packaging, and production volume. Contact Texas Instruments for more information. 

The lower priced members of the TMS320C2xxx family are among 
the least expensive DSPs available. 

Fabrication Details 

The TMS320C203, TMS320LC203, TMS320C206, TMS320LC206, and 
TMS320C209 are fabricated in 0.35 !lm technology. The TMS320F206, TMS320C240, 
and TMS320F240 processors are fabricated in 0.72 !lm CMOS technology. The 
TMS320F241, TMS320C242 and TMS320F243 are fabricated in 0.65 !lm CMOS. All of 
the TMS320C24xx processors are fabricated in 0.25!lm CMOS. As mentioned above, the 
T320C2xLP is available as a core for use in SoCs fabricated by Texas Instruments. 

Development Tools 

Texas Instruments provides a comprehensive set of code generation, debugging, 
and system integration tools all of which are well described in their publication, The 
TMS320 DSP Development Support Reference Guide. Texas Instruments provides a macro 
assembler, linker, instruction-set simulator, and C compiler for the T320C2xLP core and 
TMS320C2xxx processors. The tools run on both mM PC-compatible computers under 
DOS and Windows and on Sun SPARC workstations under SunOS. With the exception of 
the simulator, which is specific to the TMS320C2xxx, the same tools support the 
TMS320C1x, TMS320C2x, and TMS320C5x families as well. 

Texas Instruments offers the XDS510 scan-based emulator, which can be used 
with TMS320C2xxx processors and SoCs built around the T320C2xLP core. The 
XDS510 emulator is hosted on an mM PC with a plug-in card. The emulator connects to 
the TMS320C2xxx in the target system via a five-wire JTAG interface. Texas Instruments 
also provides development boards (called "evaluation modules" or EVMs). 

The simulator, emulator, and EVM share a common character-based, windowed 
user interface. On the mM PC, the simulator runs in Microsoft Windows 3.1 and 95, but is 
not a true Windows application. The simulator and emulator support both assembly lan­
guage and C source-level debugging. 

The Texas Instruments-supplied software development tools for the 
TMS320C2xxx are quite capable, but not as easy to use as one 
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Part Speed Voltage Package 
Price 

(MIPS) (V) (Qty. 10,000) 

40.0 5.0 100TQFP $5.45 

TMS320C203 28.5 5.0 100TQFP $5.20 

20.0 5.0 100TQFP $5.20 

TMS320LC203 20.0 3.3 100TQFP $5.75 

TMS320C206 40.0 5.0 100TQFP $8.30 

TMS320LC206 40.0 3.3 100TQFP $9.15 

TMS320F206 40.0 5.0 100TQFP $13.50 

40.0 5.0 80TQFP $9.60 
TMS320C209 

28.5 5.0 80TQFP $10.15 

TMS320C240 20.0 5.0 132PQFP $10.20 

TMS320F240 20.0 5.0 132PQFP $14.74 

TMS320F241 20.0 5.0 
64PQFP/ $11.36/ 
68PLCC $12.11 

TMS320C242 20.0 5.0 
64PQFP/ $3.96/ 
68PLCC $4.54 

TMS320F243 20.0 5.0 144LQFP $12.85 

TMS320LC2402 
30.0/ 

3.3 100LQFP 
$2.95/ 

40.0 $3.25 

TMS320LF2402 
30.0/ 

3.3 64PQFP 
$8.75/ 

40.0 $9.63 

TMS320LC2404 
30.0/ 

3.3 100LQFP 
$5.45/ 

40.0 $6.00 

TMS320LC2406 
30.0/ 

3.3 100LQFP 
$5.95/ 

40.0 $6.55 

TMS320LF2406 
30.0/ 

3.3 100LQFP 
$9.95/ 

40.0 $10.95 

TMS320LF2407 
30.0/ 

3.3 144LQFP 
$10.45/ 

40.0 $11.50 

TABLE 7.11-4. TMS320C2xxx price and package summary as of June 2000. 
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might hope. For example, the simulator does not provide the ability 
to load values into memory from an ASCII file, and there is no 
on-line help. The simulator does provide good debugging and pro­
filing features. 

Texas Instruments also offers "Code Composer," a suite of software development 
tools. Code Composer consists of an IDE shell/project manager that uses Texas Instru­
ments' tools for assembling, compiling, linking, and simulating. Code Composer also 
includes a debugger which supports graphical data displays (e.g., an FFf "waterfall"), and 
can be used for debugging individual devices or multiple devices in parallel. Source-level 
debugging capabilities include breakpoints, watches, and function-profiling, all of which 
are fully Windows-based. Code Composer also supports a scripting language which 
allows automation of simple test tasks. Code Composer is available for Windows 95, 98, 
and NT. 

Applications Support 

TMS320C2xxx documentation consists of the TMS320C2xxx User s Guide, the 
TMS320F/C24X DSP Controllers CPU and Instruction Set Reference Guide, the 
'F243/F241/C242 DSP Controllers System and Peripherals Reference Guide, and the 
TMS320LFILC240x DSP Controllers System and Peripherals User's Guide. These docu­
ments describe the TMS320C2xxx architecture, instruction set, and peripherals. Qualified 
customers can obtain proprietary documentation on the T320C2xLP core from Texas 
Instruments. Separate data sheets for the TMS320C2xxx processors and the T320C2xLP 
core are available. 

Additionally, the articles contained in the TMS320C2x application handbooks are 
useful for TMS320C2xxx users. 

In general, TMS320C2xxx family documentation is well organized 
and clear. 

Applications support for all TMS320 family processors is provided by staff who 
are available via telephone hotline, fax, and e-mail. 

Texas Instruments has extensive World Wide Web pages (at www.ti.com) providing 
numerous applications notes, data sheets, and other information regarding the 
TMS320C2xxx family processors. 

Advantages 

• Eight address registers 

• Flash EEPROM versions available (TMS320F206, TMS320F24x, 
TMS320LF24xx) 

• Two or more serial ports (except on TMS320C209, TMS320C242, 
TMS320LC2402, TMS320LF2402) 

402 © 2001 Berkeley Design Technology, Inc. 



...• -

Processor Analyses - Texas Instruments TMS320C2xxx Family and T320C2xLP Core 

• Large number of peripherals on TMS320C24x, TMS320F24x, and 
TMS32OC24xx, including digital-to-analog converter, three timers, up to 40 bit 
I/O pins, one or two "event manager," and Control Area Network unit 

• Good third-party development tools 
• Good applications support in the form of software function and application librar­

ies 

• Low cost (e.g., $3.25 for the 40 MIPS TMS320LC2402, quantity 10,000) 

• Available as a DSP processor and as a foundry-captive core for application specific 
designs 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 
• 

Disadvantages 

Non-orthogonal instruction set 

Only one accumulator, and few additional arithmetic registers 

Limited parallel move support 

No guard bits 

Multiply and multiply-accumulate are multi-cycle instructions unless executed 
from within a hardware loop 

Multiplication operands restricted 

No· circular addressing 

Only one modifier register (ARO) 

No multi-instruction hardware loop 

Small on-chip data memory (some family members) 

Off-chip data accesses require multiple cycles unless executed within a sin­
gle-instruction hardware loop 

Few peripherals (only a timer) on TMS32OC209 

Slow execution times, based on previous BDTI Benchmark analysis 

Poor energy efficiency, based on previous BDTI Benchmark analysis 
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7.12 Texas Instruments TMS320C3x Family 
BDTlmark2000 Score: 

Introduction Not Available 

The TMS320C3x is a family of 32-bit floating-point conventional DSP processors 
from Texas Instruments. The TMS320C3x targets digital audio, data communications, and 
industrial automation and control applications. The fastest member of the TMS320C3x 
family (the TMS320VC33) executes at 75 MIPS with a core voltage of 1.8 volts. BDTI 
has not implemented its current suite of benchmarks on the TMS320C3x; hence, no 
BDTImark2000 score is currently available for this processor. Previous BDTI Benchmark 
results for this processor are available directly from BDTI. 

The TMS320C3x family is Texas Instruments' ftrst generation of floating-point 
DSPs. The ftrst family member, the TMS32OC30, was introduced in 1988. The 
TMS320C31, introduced in 1990, is a lower-cost version of the TMS320C30 and lacks the 
on-chip ROM, the second external expansion bus, and the second serial port of the 
TMS320C30. The TMS320C32, introduced in 1995, is a reduced-cost version of the 
TMS320C31 that includes several enhancements: an external memory interface designed 
for connection to 8- and 16-bit external memories, an extra channel in the DMA control­
ler, and other features. The TMS320VC33, introduced in 1999, is a higher-performance, 
reduced-cost, low-voltage version of the TMS320C31. Additional features include 34 
Kwords of on-chip RAM, an IEEE-1149.1 (JTAG) emulation port .. internally decoded 
page strobe signals, and a phase-locked loop for clock generation. TMS320C3x proces­
sors are summarized in Table 7.12-1. 

Part 

TMS320C30 

TMS320C31 

TMS320C32 

TMS320VC33 

The TMS320C3x has long been stagnant, with Texas Instruments 
focusing on its higher-performance TMS320C67xx floating-point 
family. The TMS320VC33 is the family ~ first new member in sev-

Maximum On-Chip Memory 
Speed Notes 

(MIPS) RAM ROM 

25 2Kx32 4Kx32 
Two external buses, two serial ports, 
one DMA channel 

40 2Kx32 -
One external·bus, one serial port, one 
DMAchannel 

30 512x32 
Enhanced external bus interface, one - serial port, two DMA channels 

75 34Kx32 - One external bus, one serial port, one 
DMA channel, JTAG interface, PLL 

TABLE 7.12-1. TMS320C3x processor summary. 
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eral years, and offers nearly twice the performance of the 
TMS320C31 for about half the price. 

The TMS320C31 and TMS320C32 are two of the lowest-cost float­
ing-point DSPs on the market. With a unit price of less than $10 for 
the 20 MIPS TMS320C32 (any quantity), the processor is competi­
tive in terms of cost with many fixed-point processors. 

Architecture 

Figure 7.12-1 illustrates the TMS320C3x family architecture as typified by the 
TMS320C30. Noteworthy features include the multiple address and data buses, the DMA 
controller and its dedicated buses, and the two external memory interfaces. 

Data Path 

The TMS320C3x data path consists of a multiplier, a barrel shifter and ALU, and a 
register file containing 28 registers, eight of which are 40:-bit "extended-precision" regis­
ters. 

The ALU operates on 32-bit signed integer and 40-bit floating-point data, provid­
ing arithmetic and logical operations as well as integer/floating-point conversions. There 
is no explicit support for rounding when converting from floating-point to integer. Instead, 
floating-point values are always floored to the nearest integer when converted. When 
40-bit floating-point data is stored to memory, the lower eight bits are discarded. However, 
a full precision store or load can be achieved with four instructions: two loads from the 
source register and two stores. Note that the stored data would occupy two words in mem­
ory. 

The barrel shifter is coupled to the ALU and can perform shifts of up to 32 bits left 
or right. The shifter supports rotate through carry. All multiplies, ALU operations, and 
shifts are performed in a single cycle. 

The multiplier can multiply 32-bit floating-point input data, producing a 4O-bit 
floating-point result, or 24-bit signed integer input data, producing a result of which the 
least-significant 32 bits are retained. 

Floating-point multiplier and ALU inputs must come from the eight extended-pre­
cision registers; integer inputs can come from any register. Multiplier and ALU outputs 
can be stored in subset of the register file. Guard bits are not provided when operating on 
integer values; only the lower 32 bits of a register are used for integer operations. Integer 
saturation can be enabled via a mode control bit. Carry and borrow are supported for inte­
g~r addition and subtraction respectively. 

Carry, overflow, underflow, zero, or negative status bits are set according to the 
outcome of an integer, logical, or floating-point operation. 
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IEEE floating-point formats are not supported. The TMS320C3x uses an internal 
40-bit extended-precision floating-point representation and a 32-bit single-precision float­
ing-point representation for storing floating-point data in memory. Both of these formats 
use 8-bit exponents and the extended-precision format has eight extra mantissa bits. The 
family also supports a 16-bit "short floating-point" data type for immediate floating-point 
operands which has a 12-bit mantissa and a 4-bit exponent. 

All arithmetic and logical operations are performed with single-cycle throughput. 
Some operations may be performed in parallel; for example, a floating-point multiply and 
a floating-point add can be performed in the same instruction cycle, and may be used for 
single-cycle multiply-accumulate or multiply-add operations. 
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FIGURE 7.12-1. TMS320C30 processor architecture. 
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Memory System 

The TMS320C3x family provides a unified address space that allows the program­
mer to use any portion of memory for program or data as appropriate. The address space is 
32-bit word addressable; however, on the TMS320C32, external memory is byte, 16-bit 
word, and 32-bit word addressable. 

On-chip buses include a 24-bit program memory address bus, a 32-bit program 
memory data bus, two 24-bit data memory address buses, and a 32.:.bit data memory data 
bus. The data memory data bus allows two sequential accesses per instruction cycle. 
These buses allow the processor to address up to 16 Mwords of program and 16 Mwords 
of data memory. Additionally, a separate on-chip 24-bit DMA address bus and a 32-bit 
DMA data bus attached to an on-chip DMA controller allow 110 to and from memory 
without conflicting with normal bus activity. 

The TMS320C30 and TMS320C31 provide two 1Kx32 blocks of on-chip RAM, 
the TMS320C32 provides two 256x32 blocks of on-chip RAM, and the TMS320VC33 
provides two 16Kx32 and two 1Kx32 blocks of on-chip RAM. The TMS320C30 also 
includes one 4Kx32 block of on-chip ROM. All of these memories support two accesses 
during every instruction cycle. Combined with the processor's bus configuration, the 
memory system penTIits an instruction word fetch and two data accesses per instruction 
cycle, assuming that no more than two accesses (instructions and data) are attempted to a 
single memory block. Additionally, the DMA controller can be used in parallel with these 
accesses to achieve an additional memory access per instruction cycle. Thus, the maxi­
mum sustainable on-chip data memory bandwidth is 300 million 32-bit words/second on a 
75 MIPS TMS320VC33. 

The dedicated DMA address and data buses are an advantage for 
IIO-intensive applications. 

The TMS320C3x architecture contains a 64-word instruction cache to speed 
accesses from slower external memories. The instruction cache is divided into two 
32-word segments, each of which is associated with a contiguous 32-word region of mem­
ory aligned on a 32-word boundary. When the processor attempts to fetch an instruction 
word from external memory, the cache circuitry checks to see if the word is in cache. If so, 
the word is used from cache, and the external fetch does not occur. If the word is not in 
cache,the instruction is fetched externally and the cache is updated in one of two ways. If 
the fetch was from a region of memory associated with one of the two cache segments, 
then the word is stored in the appropriate location in the cache. Otherwise, the contents of 
the least recently used 32-word cache segment are marked as invalid, and that segment 
becomes associated with the 32-word region of memory containing the instruction 
address. The word is then stored in the cache. The cache can be disabled or locked (i.e., no 
cache updates allowed) under software control. 
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The cache is not necessary for full-speed operation (indeed, it is not used when the 
processor executes from internal memory), but can increase performance when instruc­
tions are stored in slower external memories. 

External Memory Interface 

Each member of the TMS320C3x family has a somewhat different external mem­
ory interface, as described in the following paragraphs. 

The TMS320C30 provides two external bus interfaces: the primary bus interface 
and the expansion bus interface. The primary bus interface consists of a set of two external 
buses: one 24-bit address bus and one 32-bit data bus. The expansion bus interface con­
sists of a 13-bit address bus (with two strobe lines) and a 32-bit data bus. The primary and 
expansion buses are independent, and simultaneous accesses over both buses may be 
made. Both buses can be used for program, data, or liD. 

The two sets of external data buses on the TMS320C30 are an 
advantage for larger applications requiring multiple simultaneous 
access to external memories. However, the expansion port supports 
only 16 Kwords of external memory (two sets of 8 Kwords with one 
strobe line per set) which limits its utility. 

The TMS320C31 eliminates the TMS320C30 expansion bus. That is, it provides 
only the primary bus interface. 

Like the TMS320C31, the TMS320C32 has only the primary bus interface. On the 
TMS320C32 the primary bus is enhanced to handle 8-, 16-, and 32-bit data types and 8-, 
16-, and 32-bit physical memory. For each of three regions of memory, the programmer 
can specify the width of the physical memory available in that region and the width of the 
data stored in that memory. The enhanced memory interface then performs byte or word 
packing or unpacking as necessary. For an image processing application, for example, 
8-bit data might be used with 8-bit external memory. In this case no packing or unpacking 
needs to be done; the enhanced memory interface essentially provides a byte-addressable 
interface. In another application, 8-bit data might be stored in a 32-bit memory block 
made up of four individual8-bit memories. In this case the interface asserts the appropri­
ate byte select strobe to access the desired 8-bit value. In a third situation a 32-bit value 
might be stored in 8-bit-wide external memory. In this case the interface performs four 
8-bit reads and packs the values together to form a 32-bit word. 

The TMS320C32 enhanced external memory interface is very flexi­
ble and reduces system cost by supporting economical external 
memory configurations. 

The TMS320VC33's external interface is nearly identical to that of the· 
TMS320C31 but provides four page-select lines that are decoded from the upper two 
address bits. 
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The pre-decoded page-select lines of the TMS320C32· reduce sys­
tem cost by eliminating the need/or additional off-chip logic. 

The TMS320C30, TMS32OC31, and TMS320VC33 provide a STRB signal that is 
asserted during a primary bus access. The TMS32OC30 provides two additional strobe sig­
nals, MSTRB and IOSTRB, that can be asserted during an expansion bus access. Each of 
these strobe signals is associated with a fixed region of the processor's address space. 

The TMS320C32 has three sets of strobe signals; each set is associated with a 
fixed region of the processor's address space. The first two sets each contain four strobe 
lines. These lines serve as byte- or word-select signals when accessing data types or phys­
ical memory less than 32 bits wide. The third set contains only a single IOSTRB line. 

On all TMS320C3x processors, external bus writes take two instruction cycles. 
However, the external bus logic can buffer a single word so the CPU can execute the next 
instruction without delay provided that instruction is not another external bus write. Reads 
take one instruction cycle unless they follow a write, in which case they also take two 
cycles. This yields a maximum sustainable memory bandwidth for each external bus of 
37.5 million 32-bit words/second for writes and 75 million 32-bit words/second for reads 
on a 75 MIPS TMS320VC33. 

The two-cycle external writes reduce performance in some applica­
tions. 

The TMS320C3x can use a mixture of programmed and externally requested wait 
states: an external bus interface can be programmed to use between zero and seven master 
clock cycle wait states, or to wait until an external RDY pin is asserted, or to wait until 
either the earlier or later of these two events occurs. 

All TMS320C3x family members have programmable memory page boundary 
detection circuitry that can be used to add a wait state when the processor crosses a mem­
ory page boundary. Memory page size can be configured in powers of two, from 256 
words to 16 Mwords. 

The primary bus on all TMS320C3x family members has a HOLD input that 
allows an external device to obtain exclusive access to the processor's primary bus. When 
an external device asserts HOLD, the processor completes any external bus cycle in 
progress, places its external buses in a high-impedance state, and then asserts the HOLDA 
(hold acknowledge) pin. The external device can then read or write the processor's exter­
nal memory (e.g., for block-based I/O) without risk of bus conflicts. While HOLD is 
asserted, the TMS320C3x continues to execute normally as long as it does not attempt an 
external bus access. The processor is suspended upon attempting such access. When the 
external device is fmished with the external bus, it deasserts HOLD, allowing normal exe­
cution to resume. 

To support multiprocessor applications, TMS320C3x processors include several 
"interlocked" instructions that can be used for atomic read-modify-write sequences over 
the external bus. For example, execution of the "load interlocked" instruction asserts the 
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XFO pin and then attempts an external bus access. The access is delayed until an external 
bus arbiter asserts XFl indicating that the device has exclusive access to the bus. The read 
then completes; XFO is left asserted to maintain exclusivity. The processor then modifies 
the value read and executes a "store interlocked" instruction that writes to the external bus 
and deasserts XFO. The external bus arbiter then deasserts XF1 and allows other devices to 
access the bus. 

Address Generation Units 

The two address generation units (called "auxiliary register arithmetic units") are 
used for generating up to two addresses for data accesses in each instruction cycle. Mem­
ory is only word-addressable; accessing single bytes within a word is not possible. Sup­
ported addressing modes include immediate direct, register direct, paged memory direct, 
indexed, and register indirect. For paged memory-direct addressing, addresses are formed 
by combining eight bits stored in a data page register with 16 bits stored in the instruction 
word; pages are thus 64 Kwords long. Immediate data is also supported. 

Register-indirect addresses come from one of the eight 32-bit address registers, 
ARO-AR7, although only the lower 24 bits of these registers are used for address genera­
tion. Two modifier registers, IRO and IR1, provide 24-bit values for pre- and post-incre­
ment and decrement as well as indexed addressing. Additionally, pre- and post-increment 
and decrement and indexed addressing modes can use 8-bit immediate data for offsets in 
most cases. Three-operand instructions restrict this immediate offset to 1 or o. 

Although the processor has only two modifier registers (IRO and 
IRl) for pre- and post-modification, the support for 8-bit immediate 
offset and pre- and post-modification means that the limited num­
ber of modifier registers should not limit peiformance. 

Indexed addressing is useful for compiler-generated code. 

Because byte addressing is not supported, applications that require 
data shorter than 32 bits suffer a peiformance loss. 

Bit-reversed addressing is available, but only in one addressing mode: regis­
ter-indirect with post-increment by the contents of IRO. 

The TMS320C3x supports circular addressing through a single "blocksize" regis­
ter. Circular addressing can be used with post-increment or post-decrement register-indi­
rect addressing by placing a "%" suffix (similar to the C programming language's modulo 
operator) after the register name in the assembly code. Since there is only one block size 
register, only one size of circular buffer is supported at a time. A circular buffer can span 
the entire addressable range, but must start at an address that has at least as many least-sig­
nificant bits equal to zero as the number of bits required to represent the modulo buffer 
size (e.g., to implement a 200-entry buffer, the base address must be aligned at a 256-word 
boundary). 
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The lack of support for simultaneous circular buffers of more than 
one size is a disadvantage. 

Pipeline 

The TMS320C3x uses an interlocked, four-stage pipeline divided into instruction 
fetch, instruction decode, operand read, and instruction execute stages. The pipeline's 
interlock mechanisms guarantee that unexpected results are not produced due to pipeline 
effects. However, the pipeline is visible to the programmer because instructions that pose 
a pipeline hazard are delayed. This means that although the programmer does not have to 
worry about the pipeline affecting a program's functionality, the programmer must worry 
about extra execution time introduced by interlocks. 

The main sources of pipeline conflicts on the TMS320C3x are: 

• Instructions that read from an address register (i.e., ARO-AR7) or that use an 
address register for address generation following an instruction that directly loads 
any address register are delayed until the load finishes executing. This can result in 
up to two NOPs being inserted into the pipeline. (Note that pre- or post-modifica­
tion of an address register during register-indirect addressing does not count as a 
direct load of the address register.) 

• Instructions that directly read the value of an address register (e.g., in moving the 
value stored in an address register to another register, as opposed to using the 
address register for address generation) delay any subsequent instruction using any 
address register until the read has completed, which occurs in the operand read 
stage. This can result in one NOP being inserted into the pipeline. 

• Since the CPU is only allowed two data accesses per instruction cycle, sequences 
of instructions that attempt three data accesses in a single instruction cycle result in 
a delay. The two situations where this arises are when an instruction that stores a 
value to memory is followed by an instruction that reads two values from memory, 
and' when an instruction that stores two values to memory is followed by an 
instruction that performs at least one read from memory. One NOP is inserted in 
the pipeline in these situations. 

• Non-delayed branches flush the pipeline, resulting in three NOP instructions fol-
lowing the branch. Delayed branches are available. 

Writing efficient software for the TMS320C3x requires a thorough 
understanding of the device's pipeline. In particular, instructions 
that would seem to involve only two data accesses (and thus should 
execute in a single instruction cycle) may in/act take multiple 
instruction cycles due to conflicts with adjacent instructions. 
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Instruction Set 

TMS320C3x registers and instructions are summarized in Tables 7.12-2 and 
7.12-3. All TMS320C3x instructions are 32 bits wide. 

Assembly Language Format 

The TMS320C3x assembly language uses the traditional opcode-operand style. 
Almost all instructions on TMS320C3x processors use one of two basic instruction for­
mats. The first format uses a single register as a source and destination operand with a sec­
ond source operand that may be a 16-bit immediate value, any register, a directly 
addressed memory value, or an indirectly addressed memory value. The second instruc­
tion format uses three operands: one is a register, and two others are either registers or 
indirectly addressed memory locations. Fixed-point instructions may use any register as a 
source or destination operand, but floating-point operations may only use the eight 40-bit 
registers that support the floating-point data format. Typical two- and three-operand 
instructions are: 

ADD I 
MPYF3 

RO,Rl 
*ARO++(1),*AR1++(1),RO 

The first instruction performs an integer add ofRO to Rl, leaving the result in Rl. The sec­
ond instruction multiplies the floating-point values pointed to by ARO and ARI and stores 
the result in register RO. Registers ARO and ARI are post-incremented by one (indicated 
by "++(1)"). 

The TMS320C3x allows parallel execution of certain operations. These operations 
can be a multiply in parallel with an add or subtract operation; a multiply or ALU opera­
tion in parallel with a data move; or two data moves in parallel. A typical multiply-accu­
mulate instruction is: 

Registers 

RO-R7 

ARO-AR7 

IRO,IRI 

BK 

SP 

II 
MPYF3 
ADDF3 

Width 

40 bits 

32 bits 

32 bits 

32 bits 

32 bits 

*ARO++(1),*AR1++(1)%,RO 
RO,R2,R2 

Purpose 

Extended-precision registers for inte-
ger/floating -point 

Address registers 

Modifier registers 

Block size register (for circular addressing) 

Stack pointer 
! 

TABLE 7.12-2. TMS320C3x registers. 
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Class 

The "II" symbol indicates that the two instructions are to be executed in parallel. The 
MPYF3 instruction executes a floating-point multiply of the values stored in memory at 
the addresses specified by address registers ARO and ARt and places the product in regis­
ter RO: ARO and ARt are post-incremented by one; the "%" character indicates that ARt 
is updated using modulo addressing. The ADDF3 instruction adds the result of the previ­
ous multiply instruction (in RO) to R2, which serves as an accumulator in this example. 
The "3" suffix on the instructions indicates that they take three operands. 

Parallel Move Support 

Not including DMA, the TMS320C3x allows up to two data memory accesses 
(two loads, two stores, or a load and/or a store) per instruction cycle (assuming no pipeline 
conflicts occur, as described above). The processor provides parallel move \ support 
through two mechanisms. First, most instructions support two memory accesses via regis-

Instructions 

Arithmetic 
Absolute value (both), add with carry (integer), add (both), negate (both), 
subtract with borrow (integer), subtract (both), reverse subtract (both) 

Multiplication Multiply (both), multiply-accumulate (both), multiply-subtract (both) 

Logic And, not-and, not, or, exclusive-or 

Shifting Left or right arithmetic shift 0-32 bits, left or right logical shift 0-32 bits 

Rotation Rotate left/right one bit through carry or not through carry 

Conditional 
Conditional load, conditional store, conditional subtract (integer) 

Execution 

Comparison Compare (both) 

Looping Single- and multi-instruction repeat 

Branching 
Conditional and unconditional branch (delayed and non-delayed, with or 
without decrement) 

Subroutine Call Conditional and unconditional call, conditional and unconditional return 

Bit Manipulation Test bit field 

Convert floating-point to integer, convert integer to floating-point, wait 
Special Function for interrupt, normalize, push, pop, "interlocked" operations for 

read-modify-write, software interrupt, trap 

TABLE 7.12-3. TMS320C3x instructions. "Both" indicates that the instruction 
supports both fixed- and floating-point data types. 

414 © 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C3x Family 

ter-indirect addressing. This gives the processor operand-related parallel moves. As an 
example, the instruction: 

ASH3 *AR1,*ARO,RO 

executes an arithmetic shift of the value in memory pointed to by ARO and places the 
result in RO. The number of bits to shift by is given by the value in the memory location 
specified by ARl. 

Second, operand-unrelated parallel moves can be performed using the parallel 
instruction execution format shown in the multiply-accumulate example above. In addi­
tion to allowing the combination of certain ALU and multiply operations in a single cycle, 
the parallel execution format can also be used to combine an ALU or multiply operation 
with an unrelated load or store operation. For example: 

ASH3 RO,*ARO,Rl 

II STI R2,*ARl 

This executes an arithmetic shift of the value pointed to by ARO and places the result in 
register RI. The number of bits to shift by is specified by RO. In parallel, the processor 
executes an unrelated integer store instruction, writing the value in register R2 to the 
memory address specified in ARI. 

Orthogonality 

As described in the section on assembly language format above, the TMS320C3x 
instruction set is quite orthogonal. Most instructions fall into one of two categories, having 
either two or three operands chosen from a uniform set of options. This level of orthogo­
nality is in large part made possible by the 32-bit instruction word. 

Certain commonly used parallel instructions impose restrictions on allowable reg­
isters. For example, the MPY and ADD instructions are commonly executed in parallel to 
form a multiply-accumulate instruction. The destination registers for the multiply result 
can only be RO or RI, and for the accumulation, R2 or R3. 

The limitations on opcode-operand combinations increase pro­
gramming difficulty. 

Execution Times 

Most TMS320C3x instructions nominally execute in one instruction cycle. How­
ever, as explained in the section on pipelining above, the TMS320C3x interlocking pipe­
line can cause some single-cycle instructions to require multiple cycles. 

Non-delayed branch, call, return, and repeat instructions execute in four instruc­
tion cycles; delayed branches execute in one instruction cycle and provide three delay 
slots. ' 
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Instruction Set Highlights 

The most noteworthy features of the TMS320C3x instruction set are the parallel 
execution instructions, the preponderance of three-operand instructions, and the inter­
locked instructions for read-modify-write bus cycles. Other· noteworthy instructions 
include: 

• Conditional load 

• Delayed and non-delayed branches 

• A delayed decrement-and-branch instruction that provides software looping with 
only one instruction cycle of overhead per loop iteration 

Execution Control 

Clocking 

The TMS320C3x master clock can come from either an externally generated clock 
signal or an external crystal used in conjunction with an on-chip oscillator. The crystal or 
clock frequency is twice the instruction execution rate of the processor, e.g., 60 MHz for 
30 MIPS execution on a 30 MIPS TMS320C31. The master clock and its complement are 
available on two output pins; The TMS320VC33 is the only family member to provide a 
phase-locked loop (PLL) to generate a master clock from a lower-frequency external 
clock. The TMS320VC33 PLL uses a fixed 5X multiplier and allows input frequencies 
from 5-20 MHz to the PLL. 

Hardware Looping 

The TMS320C3x provides both single- and multi-instruction hardware loops 
through the RPfS ("repeat single") and RPTB ("repeat block") instructions. RPTS repeats 
a single instruction from 1 to 232 times. Interrupts are disabled during repetition. RPTB 
repeats a block of any number of instructions from 1 to 232 times and allows interrupts. 
The RPTB instruction requires the programmer to explicitly load the repeat counter before 
the RPTB instruction. 

Block repeats are not automatically nestable, although the programmer can nest 
loops by explicitly saving and restoring the state of the count, start address, end address, 
and status registers before and after the nested loop. 

The inability to nest hardware loops without explicit save and 
restore operations costs cycles in some algorithms that contain sev­
eral nested loops, e.g., the fast Fourier transform. The delayed dec­
rement-and-branch instructions used for software loops incur less 
overhead than saving and restoring the multi-instruction hardware 
loop registers. 
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Bootstrap Loading 

The TMS320C30 does not provide any bootstrap loading support; on reset, the 
processor jumps to the memory address stored at memory location O. In contrast, the 
TMS320C31, TMS320C32, and TMS320VC33 sample the status of the interrupt pins at 
reset. These pins can be used to cause the processor to bootstrap load over the serial port 
or from external memory at one of three locations, or to begin execution at the address 
contained in memory location O. The TMS320C32 also provides a "handshake" bootstrap 
mode that uses the XFO and XFl pins as data-ready and data-acknowledge signals. The 
TMS320C31, TMS320C32, and TMS320CV33 all support bootstrap loading from 8-, 16-, 
and 32-bit-wide memory. 

Interrupts 

TMS320C3x processors provide a reset pin and four general-purpose external 
interrupt lines. The general-purpose external interrupt lines are level-sensitive on the 
TMS320C30 and TMS320C31, but can be configured to be edge- or level-sensitive on the 
TMS320C32 and TMS320VC33. 

Internal interrupt sources include transmit and receive interrupts from the serial 
port (or ports, on the TMS320C30), one interrupt from each of the two timers, and a DMA 
controller interrupt. Software interrupts can be generated via the SWI instruction, the 
TRAP instruction, or by explicitly setting an interrupt flag. 

Interrupts are prioritized but not automatically nestable. Each interrupt source can 
be individually enabled or disabled, and each interrupt source has its own interrupt vector. 
On the TMS320C32 (but not other TMS320C3x family members) the interrupt vector 
table can be relocated beginning at any 256-word boundary in memory. However, the reset 
interrupt vector is always at address O. 

When an interrupt occurs and interrupts are enabled, interrupts are disabled and the 
processor completes all fetched instructions. The program counter is then pushed onto the 
stack and then loaded with the address fetched from the appropriate entry in the interrupt 
vector. 

For the TMS320C30 and any other family members that are not bootloaded, reset, 
interrupt, and trap vectors point directly to the appropriate interrupt service routines 
(ISRs). In this case interrupt latency is ten instruction cycles from the assertion of an 
external interrupt signal to the execution of the first word of the ISR, assuming the proces­
sor is in an interruptible state. If the TMS320C31 and TMS320VC33 are bootloaded, vec­
tors are hard-coded in an internal ROM. If the TMS320C32 is bootloaded, the reset vector 
is at address 0 and, as mentioned above, the rest of the interrupt vector table can be located 
at any 256-word boundary. In either case, these vectors point to contiguous RAM loca­
tions that are presumed to contain instructions that branch to the appropriate ISR. Due to 
the extra branching instruction the pipeline must be purged before execution of the ISR, 
adding four more cycles to the latency. 
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Stack 

The TMS320C3x uses a software stack with a dedicated stack pointer register. The 
stack pointer is not initialized at reset. 

Peripherals 

Peripherals on the TMS320C3x include synchronous serial ports (two on the 
TMS320C30, one on the TMS320C31, TMS320C32, and TMS320VC33), two 32-bit tim­
ers, a DMA controller, and two bit I/O pins. 

• Serial Ports 
The TMS320C3x synchronous serial ports support 8-, 16-, 24-, or 32-bit data 
words at bit rates of up to the master clock divided by two (e.g., up to 
30 Mbits/second on a 30 MIPS TMS320C31 processor). The receive and transmit 
sections of the ports are independent and can each be controlled by an external or 
internal clock. Internally generated clocks are the result of dividing the master 
clock by a programmable 16-bit divisor. If a serial port is not used, it can be used 
as two 16-bit timers or its pins can be used for bit I/O. 

• Timers 
The 32-bit timers can take their clock from the processor's master clock divided by 
two or from an external clock input. They then count up until reaching values spec­
ified by their individual period registers, at which point they produce output pulses 
and/or generate interrupts. Timer outputs can be either pulses or square waves. 
There is only one external pin per timer, so a timer cannot both use an external 
clock source and produce an output pulse. The timer external pins can be used for 
general-purpose I/O if they are not used by the timers. 

• DMA 
All TMS320C3x family members include an on-chip DMA controller with dedi­
cated on-chip DMA address and data buses. The DMA controller on the 
TMS320C30, TMS320C31, and TMS320VC33 supports one channel of DMA, 
while the TMS320C32 DMA controller provides two channels. The programmer 
can configure each channel with a source memory address, a destination memory 
address, and a transfer count. The programmer can also specify whether the source 
or destination address should be incremented, decremented, or not changed after 
each transfer. The DMA controller can run free, or it can be synchronized to an 
external interrupt source (in which case it delays either reads or writes until a spe­
cific interrupt occurs). Once started, the DMA controller transfers data from the 
source address to the destination address independently of the CPU. 
In the event of a conflict between the DMA controller and the CPU (e.g., the CPU 
attempts two reads from a block of memory at the same time as the DMA control­
ler attempts one read, exhausting memory bandwidth), the CPU is always given 
priority on the TMS320C30, TMS320C31, and TMS320VC33. On the 
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TMS320C32, the programmer can select whether the CPU or DMA controller 
should be given priority, or if they should alternate in priority. The programmer 
can also select which of the TMS320C32's two DMA channels is the higher-prior­
ity channel. 

The presence of a DMA controller is an advantage. However, the 
DMA controller is not as flexible as DMA controllers found on 
other processors. 

• Bit 110 
Two bits of bit 110 are provided in the form of "external flag" pins. These can be 
configured as inputs or outputs under software control. These pins are also used by 
the "interlocked" instructions discussed previously. 

On-Chip Debugging Support 

The TMS320C30, TMS320C31, and TMS320C32 provide a five-pin, scan-based, 
on-chip debugging/emulation facility called the "Modular Port Scan Device" (MPSD) 
interface. This port allows the user to read and write memory and registers and execute 
instructions on the device. The debugging/emulation facility allows the user to insert 
breakpoints and to perform single-stepping. The port is not JTAG-compatible, although it 
is quite similar to a JTAG port. It does not support chaining together multiple 
TMS320C3x devices, nor does it support boundary scan. 

The TMS320VC33 provides a JTAG-compatible debug port instead of the MPSD 
port of the other family members. This alternative allows multiple TMS320VC33s and 
other JTAG-compatible devices to be emulated with a single header, and supports bound­
ary scan. Otherwise,debugging features of the two different ports are identical and Texas 
Instruments' emulation software is compatible with both. 

Power Consumption and Management 

The TMS320C31 is available in both 3.3- and 5.0-volt versions; the TMS320C30 
and TMS320C32 are only available at 5.0 volts. The TMS320VC33 uses a dual supply of 
1.8 V for the core and 3.3 V for external interfaces. 

According to Texas Instruments, typical TMS320VC33 power consumption is 200 
mW at 75 MIPS and 1.8 volts. The TMS320C31 has a typical power consumption of 1.2 
W at 30 MIPS and 5.0 volts. 

The TMS320C31, TMS320LC31, TMS320C32, and TMS320VC33 provide two 
power-down modes not available on the TMS320C30. The first mode, activated by the 
LOPOWER instruction, internally divides the processor clock down by a factor of 16. 
This slows processor execution and reduces power consumption approximately by a factor 
16. The processor can be restored to full-speed operation via the MAXSPEED instruction; 
full-speed operation is attained during the read phase of the MAXSPEED instruction. In 
LOPOWER mode, the TMS320LC31 has a typical power consumption of 28 mW at 20 
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MIPS and 3.3 volts, theTMS320C31 has a typical power consumption of 63 mW at 30 
MIPS and 5.0 volts, and the TMS320VC33 typically consumes approximately 12.5 mWat 
75 MIPS andJ.8 volts. Note that in the LOPOWER mode the processors do not actually 
execute at a rate of 20, 30, or 75 MIPS respectively, as the clock is divided by a factor of 
16. The actual instruction rates are 1.25, 1.88, and 4.69 MIPS. 

The second power-down mode, entered via the IDLE2 instruction, disables the 
clock to the processor core (and turns off the output clock signal) until an unmasked exter­
nal interrupt occurs. According to Texas Instruments, in IDLE2 low-power mode, the 
TMS320LC31 has a power consumption of 66 J.LW at 20 MIPS and 3.3 volts, the 
TMS320C31 consumes 250 J.LWat 30 MIPS and 5.0 volts, and the TMS320VC33 has a 
typical power consumption of 45 J.LW at 75 MIPS and 1.8 volts. 

Benchmark Performance 

This report does not include benchmark results for the TMS320C3x. Based on its 
performance on previous versions of the BDTI Benchmarks, we provide a general, quali­
tative description of the TMS320C3x's performance relative to that of the other processors 
in this report. In particular, we will compare the TMS320C3x with the ADSP-2106x as 
both are conventional floating-point architectures with many of the same target applica­
tions. 

Execution Performance 

• Instruction cycle counts: The TMS320C3x and ADSP-2106x have similar data 
paths. However, based on previous BOTI Benchmark analyses, the ADSP-2106x 
typically achieves slightly lower cycle counts on the BOTI Benchmarks. For 
example, the ADSP-2106x supports more versatile bit-field manipulation opera­
tions, and has more powerful conditional execution features. A key difference 
between the two architectures is that the AOSP-2106x supports a simultaneous add 
and subtract instruction that is not available on the TMS320C3x; hence, in earlier 
versions of the BOTI Benchmarks, the ADSP-2106x cycle counts for the FFT 
benchmark were approximately half as high as those of the TMS320C3x. 

• Execution times: Although the TMS320C3x cycle counts are likely to be higher 
than those of the ADSP-2106x, the TMS320C3x is available with a slightly faster 
instruction execution rate; 75 MIPS for the TMS320VC33 compared to 66 MIPS 
for the ADSP-21065L. Thus, the execution times for the TMS320VC33 are likely 
to be similar to those of the ADSP-21065L, with the exception of the FFr algo­
rithm (on which the ADSP-21065L is expected to be much faster because of its 
support for simultaneous add and subtract operations). 

• Cost-execution time: In general, the TMS320VC33 and ADSP-2106x are likely 
to have similar execution times, but the price of the TMS320VC33 is more than 
30% lower than that of the ADSP-21065L. This combination indicates that the 
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TMS320VC33 will have a better overall cost-execution time result than the 
ADSP-21065L. 

• Energy consumption: The TMS320VC33 has much lower power consumption 
than the ADSP-21065L (approximately 200 mW for the TMS320VC33 compared 
to approximately 930 mW for the ADSP-21065L). Since their execution times are 
generally comparable, the TMS320VC33 is likely to have significantly lower 
energy consumption results than the ADSP-21065L. 

The TMS320VC33 runs nearly twice as fast as any of the other 
TMS320C3x family members. Coupled with its decreased power 
consumption, the TMS320VC33 provides a long-overdue perfor­
mance upgrade for the TMS320C3x family. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate a processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks, reflecting the processor's 
program memory usage in general DSP code. Finally we discuss constant and non-con­
stant data memory usage. 

Because the TMS320C3x has not been benchmarked with the current suite of 
BDTI Benchmarks, we base our analysis on the processor's results on earlier versions of 
the BDTI Benchmarks. 

• 

• 

• 

Control code memory usage: Based on previous .results on BDTI's control-ori­
ented benchmark, the TMS320C3x achieves significantly better code density on 
control code than the ADSP-2106x, in large part because of the difference in the 
two processors' instruction word widths: The TMS320C3x uses 32-bit instruc­
tions, compared to 48-bit instructions on the ADSP-2106x. 

Program memory usage: Based on previous benchmark results, the TMS320C3x 
requires much less program memory than the ADSP-2106x. Although the 
ADSP-2106x has a slightly more powerful instruction set than the TMS320C3x 
(and thus may require fewer instructions to implement some DSP algorithms), the 
ADSP-2106x still requires significantly more program memory because its 
instructions are so much wider than those of the TMS320C3x. 

Data memory usage: Based on previous benchmark results, the TMS320C3x data 
memory usage is typically somewhat higher than that of other processors that use 
32-bit data words (such as the ADSP-2106x), in part because the TMS320C3x 
restricts immediate data to 16 bits. Unfortunately, the TMS320C3x uses 24-bit 
addresses that do not fit in 16 bits. Therefore, in order to load an address register 
with an address, look-up tables with the necessary addresses are used. On previous 
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versions of the BDTI Benchmarks, this consumed a small amount of constant data 
(typically, a few bytes per benchmark). 

Cost 

Price and packaging options for some members of the TMS320C3x family are 
shown in Table 7.12-4. 

Fabrication Details 

The TMS320C30, TMS320C31, and TMS320C32 are fabricated in a 0.62 /lm, 
three-metal-layer CMOS process. The TMS320VC33 is fabricated in a 0.18 /lm, 
four-metal-layer CMOS process. 

The TMS320C3x is available as a core for use in ASICs designed by customers 
and fabricated by Texas Instruments. 

Part 
Speed Voltage 

Package 
Price 

(MIPS) (V) (Qty. 10,000) 

25.00 $178.50 

TMS320C30 20.00 5.0 181 PGA $155.20 

16.5 $135.00 

40.00 $34.51 

30.00 $31.36 
TMS320C31 5.0 132PQFP 

25.00 $28.52 

20.00 $25.93 

TMS320LC31 20.00 3.3 132 PQFP $25.93 

30.00 $16.40 

TMS320C32 25.00 5.0 144PQFP $14.91 

20.00 $9.95 

75.00 3.3110 $16.37 
TMS320VC33 

1.8 core 
144PQFP 

60.00 $12.32 

TABLE 7.12-4. TMS320C3x price and package summary as supplied by Texas 
Instruments, June 2000. 
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Development Tools 

Texas Instruments provides a comprehensive set of code generation, debugging, 
and system integration tools all of which are well described in their publication, The 
TMS320 DSP Development Support Reference Guide. The basic code generation tools 
include an optimizing C and Ada-compiler, assembler, linker, and archiver. These tools are 
available for DOS, Windows 9x, or UNIX (HP-UX or Solaris). Also for Windows 9x, 
Texas Instruments offers "Code Composer," an integrated development environment that 
integrates all of the above code generation functionality with simulation, emulation, and 
profiling tools. 

The development and debugging facilities of Code Composer are 
much more sophisticated than those of the Texas Instruments tOols. 

Debugging and emulation software tools include a simulator and emulator. These 
tools employ one of two interfaces. One runs from a DOS command prompt in Windows 
and supports basic mouse functionality. The more sophisticated Code Composer interface 
is a true Windows application. The emulator supports both JTAG and MPSD and can 
interface to a variety of different hardware. Hardware offered by Texas Instruments 
includes the Extended Development System (XDS) and the TMS320C30 Evaluation 
Module (EVM). The XDS is a card that plugs into either a PC or a SPARC workstation 
and connects to any TMS320 hardware that implements the ITAG or MPSD interface. The 
TMS320C30 EVM is available as a PC card that employs a 16.5 MIPS TMS32OC30 and 
some peripheral devices for real-time verification of TMS320C3x code. Another hardware 
tool from Texas Instruments, the DSP Starter Kit (DSK), is a low-cost board with paral­
lel-port PC interface, a reduced-feature debugger, self-linking assembler, and some 
peripherals. This evaluation tool is targeted towards fIrst-time users. A variety of other 
hardware is also available through Texas Instruments third-party vendors. Code Composer 
supports many of these third-party emulation boards with pre-installed drivers. 

The basic DOS-based interface for the TMS320C3x tools is quite 
capable, but not as easy to use as one might hope. For example, 
values can not be loaded into memory from an ASCII file. The inter­
face does provide good debugging and profiling features, and it has 
strong support for C source-level debugging. 

The Code Composer interface adds many useful project manage­
ment and debugging features that make it more flexible then the 
basic DOS-based interface. 

The simulator (used in both the DOS-based tools and Code Com­
poser) is not cycle accurate. This greatly decreases its utility as a 
measuring tool. 

The number of third-party vendors providing tools and software for 
Texas Instruments' DSPs is the largest of any DSP processor ven­
dor. This is due partly to Texas Instruments early entry into the DSP 
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processor market and to its strong efforts to cultivate third-party 
support. 

Applications Support 

The main source of documentation for the TMS320C3x is the TMS320C3x User's 
Guide, which covers the architecture, instruction set, and programming of the device. At 
the time of writing, however, the manual has not been updated with the details of the 
TMS320VC33. Instead, Texas Instruments has provided a supplement entitled How to 
Begin Development Today with the TMS320VC33 DSP. Also, volume III of Texas Instru­
ments' Digital Signal Processing with the TMS320 Family contains a number of applica­
tion notes and article reprints relevant to the processor. A number of shorter application 
notes are also available as part of Texas Instruments' "Designer's Notebook Pages" and 
"DSP Application Reports." Both of these resources can be downloaded from Texas 
Instruments' website. All of these resources are adequately summarized in the TMS320 
DSP Development Support Reference Guide. 

Advantages 

• Fairly orthogonal instruction set 

• Barrel shifter 
• Good parallel move support 

• 32-bit floating-point arithmetic 

• Eight 4O-bit extended-precision registers 

• Many address registers 

• Instruction cache for accelerating external memory access 

• Large, unified address space 

• Two independent address generation units 

• Flexible external memory interface with byte packing/unpacking (TMS320C32 
only) 

• Programmable and externally generated wait states 

• Two external buses (TMS320C30 only) 

• Good on-chip memory bandwidth 

• Software stack plus indexed addressing mode facilitate compiler code generation 

• On-chip DMA controller with separate DMA address and data buses 

• Two timers 
• Two serial ports (TMS320C30 only) 

• Clock divider (TMS320C31, TMS320C32, and TMS320VC33) 

• Special instructions for inter-processor communication 
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• Flexible bootstrap modes (TMS320C31, TMS320C32, and TMS320VC33) 

• Core version available 

• Low-cost family variants available (e.g., less than $10 for a 20 MIPS 
TMS320C32, any quantity; less than $13 for a 60 MIPS TMS320VC33, quantity 
10K) 

• JTAG-compatible emulation port on TMS320VC33 

• Extensive third-party support 

Disadvantages 

• No guard bits on integer operations 

• Multiply-accumulate operands are restricted 

• Pipeline effects complicate code optimization 

• Only one circular buffer size at a time 

• Limited indexing features for bit-reversed addressing mode 

• Large instruction word increases system cost 

• External memory writes take two instruction cycles 

• Second external bus on TMS320C30 supports only 16 Kwords of memory 

• Hardware loops not nestable without explicit state saving 

• Scan-based emulation port on TMS320C30, TMS320C31, and TMS320C32 not 
JTAG compatible 

• User's Guide not updated for TMS320VC33 

• Simulator not cycle-accurate 
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7.13 Texas Instruments TMS320C54xx Family 
BDTlmark2000 Score: 

500 at 160 MHz Introduction 

The Texas Instruments TMS320C54xx is a family of 16-bit fixed-point DSPs. 
TMS32OC54xx processors are targeted at high-volume wireless applications (such as dig­
ital cellular telephones) and at networking, wireline voice communications, and computer 
telephony applications. The first members of the TMS320C54xx family were introduced 
in Japan in 1994 and in the U.S. in 1995. 

The fastest processors in the family run at 160 MHz with a 1.6-volt core voltage 
supply in a 0.15 J.1m process (TMS320YC5416). Other family members execute at 120 
MHz with a 2.5-volt supply fabricated in 0.25 J.1m (TMS320YC541O); at 80 MHz with a 
1.8-volt supply fabricated in 0.18 J.1m (TMS320UC5402); and at 30 MHz with a 1.2-volt 
supply fabricated in 0.18 J.1m (TMS320UYC5402). Multiple-core TMS320C54xx family 
members are available with each core running at 100-133 MHz. 

Despite their confusingly similar names, the TMS320C54xx and TMS320C5x are 
distinct processor families with different architectures, and the TMS320C54xx is not com­
patible with predecessor Texas Instruments processor families. The TMS320C54xx archi­
tecture is similar to that of the earlier TMS320C5x family, but adds a number of 
significant architectural enhancements such as accumulator guard bits, improved parallel 
moves, increased memory bandwidth, and hardware to accelerate Yiterbi decoding. Char­
acteristics of the various family members are shown in Table 7.13-1. 

The TMS320C54xx is available as a core for use in SoCs designed by customers 
and fabricated by Texas Instruments. The core is designated the "CLEAD." Contact Texas 
Instruments for further information on their core-based SoC offerings. 

In February of 2000, Texas Instruments announced the successor to the 
TMS32OC54xx architecture, the TMS320C55xx. This architecture is discussed in detail in 
Section 7.14. 

Architecture 

TMS320C54xx processors contain a 16-bit fixed-point data path used for integer 
or fractional arithmetic, a data address generator, a program control unit, RAM and ROM, 
four sets of on-chip buses, and several peripheral interfaces. Figure 7.13-1 illustrates the 
TMS320C54xx family architecture as typified by the TMS320C541. 

Data Path 

The TMS320C54xx data path is based on five function units: a 16xI6~32-bit 
multiply-accumulate unit which contains a 40-bit dedicated adder, a 40-bit ALU, a barrel 
shifter, an exponent detector, and a compare-select-store unit. Two 40-bit accumulators, 
designated A and B, are available. 
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On-Chip Memory Serial 
Ports 

Device 
#of Core Core Program Program (StdI Host DMA 

Cores MHz Volts /Data /Data TDMI Port Ch. 

RAM ROM BSPI 
McBSP) 

'VC5441 4 133 1.5v 640Kx16 - 01010112 HPI16 24 

'VC5421 2 100 1.8v 256Kx16 4Kx16 01010/6 HPI16 12 

'VC5420 2 100 1.8v 200Kx16 - 01010/6 HPI16 12 

'VC5416 1 160 1.5v 128Kx16 16Kx16 01010/3 HPI8116 6 

'VC541O 1 120 2.5v 64Kx16 16Kx16 010/0/3 HPI8 6 

'VC5409 1 100 1.8v 32Kx16 16Kx16 010/0/3 HPI8116 6 

'VC549 1 120 2.5v 32Kx16 16Kx16 0/1/0/2 HPI -

'VC5402 1 100 1.8v 16Kx16 4Kx16 0/0/0/2 HPI8 6 

'UVC5409 1 30 1.2v 32Kx16 16Kx16 0/0/0/3 HPI8116 6 

'UVC5402 1 30 1.2v 16Kx16 4Kx16 0/0/0/2 HPI8 6 

'UC5409 1 80 1.8v 32Kx16 16Kx16 0/0/0/3 HPI8116 6 

'UC5402 1 80 1.8v 16Kx16 4Kx16 0/0/0/2 HPI8 6 

'LC549 1 ·80 3.3v 32Kx16 16Kx16 011/2/0 HPI -

'LC546A 1 66 3.3v 6Kx16 48Kx16 1/011/0 - -

'LC545A 1 66 3.3v 6Kx16 48Kx16 1/0/1/0 HPI -

'LC543 1 50 3.3v lOKx16 2Kx16 01111/0 - -

'LC542 1 50 3.3v lOKx16 2Kx16 01111/0 HPI -

'LC541 1 66 3.3v 5Kx16 28Kx16 2/0/0/0 HPI -

'C542 1 40 5.0v lOKx16 2Kx16 01111/0 HPI -

'C541 1 40 5.0v 5Kx16 28Kx16 2/010/0 HPI -

TABLE 7.13-1. TMS320C54xx family variants. RAM and ROM sizes are approximate 
because some registers are memory mapped to the lower portion of memory. 
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The TMS320C54xx provides a 40-bit ALU that is used for arithmetic and logical 
operations. ALU inputs can come directly from data memory, the output of the barrel 
shifter, or the accumulators. Data can be fetched from memory, flow through the barrel 
shifter, and serve as an input to the ALU within a single instruction cycle, thus enabling 
combined ALU/shifter operations. ALU outputs are always stored in one of the two accu­
mulators. 

The ALU supports sign extension and saturation. Sign extension is enabled by set­
ting a sign extension mode bit in a control register. In this mode, 16-bit ALU inputs are 
sign extended to 40 bits. Similarly, saturation is enabled by setting an overflow mode bit 
in a control register. In overflow mode, ALU outputs that require more than 32 bits to rep­
resent are saturated to the maximum magnitude positive or negative number that fits in 32 
bits as they are stored in the destination accumulator. Otherwise, the upper eight bits in the 
accumulator are used as guard bits. Except for the TMS320LC542 and TMS320LC543, 
the TMS320C54xx has an additional saturation mode that allows the result of a multipli­
cation to be saturated before it is accumulated in multiply-accumulate operations. In this 

Program Data Address Fixed-Point 
Control Unit Generator Data Path 

JII' ~ ~ ~ ~ J II' ~ 

Program Address Bus ['\ • C Address Bus A 1~ to.. 

+ V / 
o Address Bus ~.' v .. Extemal V Address Bus 

E (Write) Address Bus 

Proaram Data Bus 1\ t 
C Data Bus A 1~ to.. 

.t t -+ ~- ~. / ;> o Data Bus Extemal .,. ~ V 
Data Bus 

E (Write) Data Bus 

~,. , , ,. ,. , ,,. , ,. ~ , , 
~ , .. 

Serial On-Chip Memory 
Ports (2) Timer 

Program/data Program/data dual-access 
RAM ROM 

FIGURE 7.13-1. TMS320C541 processor architecture. 
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mode a multiplication of the two largest negative numbers representable with 16 bits is 
automatically saturated to the largest positive number representable with 32 bits. 

The TMS320C54xx provides status bits that indicate if the last operation produced 
a carry or overflow. Add-with-carry and subtract-with-borrow operations are supported. 

The TMS320C54xx ALU supports dual 16-bit operations. In this mode, the lower 
32 bits of the ALU act as two parallel 16-bit ALUs. Among other things, this capability is 
useful in conjunction with the compare-select-store unit (described below) for use in 
implementing the Viterbi algorithm. Dual-operation mode is enabled by setting a bit in a 
control register. 

The TMS320C54xx features a 40-bit barrel shifter that can shift values left by up 
to 31 bits or right by up to 16 bits in a single instruction cycle. Shifter inputs can come 
directly from data memory or either of the two accumulators. Shifter outputs can be sent to 
the ALU or stored in memory. 

The TMS320C54xx multiply-accumulate (MAC) unit performs a 16x16~32-bit 
multiply-accumulate operation in a single instruction cycle. A dedicated 40-bit adder 
allows the multiplication result to be accumulated with the contents of either 40-bit accu­
mulator, or with zero. The output of the 40-bit adder is always stored in accumulator A or 
B. The multiplier supports signed/signed multiplication, signed/unsigned multiplication, 
and unsigned/unsigned multiplication. These operations allow efficient extended-preci­
sion arithmetic. Also, fractional multiplication may be supported through the use of a frac­
tional mode bit in a control register. Many instructions using the MAC unit can optionally 
specify automatic biased rounding. Inputs to the MAC unit can come directly from data 
memory, program memory, a 16-bit temporary data register T, or bits 16 to 32 of the A 
accumulator. 

A compare-select-store unit (CSSU) is part of the processor's data path and can be 
used to implement the Viterbi algorithm efficiently. The CSSU compares two 16-bit 
halves of the lower 32 bits ofan accumulator, storing the larger of the two values to mem­
ory. It also shifts a bit indicating which half was the larger into the 16-bit transition regis­
ter (TRN). The TRN register is then used to keep track of the comparison history for 
determining the maximum likelihood path through the Viterbi algorithm's state trellis. 

An exponent detector in the data path can be used to compute the number of redun­
dant sign bits in either accumulator in a single instruction cycle via the EXP instruction. 
The exponent value is stored in the T register. A subsequent NORM instruction can be 
used to normalize an accumulator by the shift amount stored in the T register in a single 
instruction cycle. 

All arithmetic and logical operations as well as multiplications are performed in a 
single instruction cycle. 

The TMS320C54xx data path is both powerful and well thought out. 
The CSSU and dual 16-bit operations should be extremely useful in 
many wireless communications applications requiring Viterbi 
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decoding, and the MAC unit is well suited for extended-precision 
arithmetic. 

Memory System 

The TMS320C54xx divides memory into word-addressable program, data, and 110 
spaces. Each space can contain 64 K words of instructions or data. The newer 
TMS320C54xx members support 256K - 8M words of program memory using a page reg­
ister that is modified in software. When internal RAM is mapped to program memory, the 
internal program RAM is mapped in the lower 32 Kwords of each page and the upper 32 
Kwords are paged external memory. All TMS320C54xx family members access no more 
than 64 K words of memory per page. 

The processor accesses on-chip memory over four sets of address and data buses: 
one set of program address and data buses, two sets of data read address and data buses, 
and one set of data write address and data buses. The program bus set is connected to pro­
gram/data ROM and RAM. In addition, the data bus sets are connected to one or more 
blocks of dual-access program/data RAM (DARAM) that support two read operations or 
one read and one write operation per instruction cycle. DARAM can be mapped as data 
space only or program/data space. Most of the TMS320C54xx family members also con­
tain single-access RAM (SARAM) that can be mapped either as data space or as pro­
gram/data space. 

Most TMS320C54xx family members have both on-chip SARAM and DARAM; 
the TMS320VC5402, TMS320VC5409, and TMS320VC5416 contain on-chip 
dual-access RAM only. The TMS320VC5410, for example, includes 56 Kwords of 
on-chip single-access RAM and 8 Kwords of dual-access RAM, mapped into data space 
or program/data space. The amount of DARAM varies between 4 Kwords and 128 
Kwords among family members. The amount of SARAM varies between 0 Kwords and 
256 Kwords. DARAM and SARAM is divided into blocks of I Kword, 2 Kwords, 4 
Kwords, or 8 Kwords (depending on the family member) so that data from one block can 
be accessed by the CPU while another block is being accessed by the DMA without incur­
ring a stall. 

The dual-core TMS320C5420 contains both DARAM and SARAM that can be 
used as data space only or as program/data space. Each core on the TMS320C5420 has 16 
Kwords ofDARAM and 84 Kwords of SARAM. None of the memory is shared between 
the cores. The dual-core TMS320C542I and four-core TMS320C5441 do allow sharing of 
program SARAM only. Each core in the TMS320C5421 has 32 Kwords of program/data 
DARAM and 32 Kwords of data SARAM. The two cores share 120 Kwords of program 
DARAM. Each core in the TMS320C5441 has 64 Kwords of single-access program 
RAM, 32 Kwords of program/data DARAM, and 64 Kwords of data SARAM. The four 
cores are grouped in two pairs where each pair shares (two-way, read-only) the combined 
128 Kwords of single-access program RAM. 
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The combination of dual-access RAM, single-access RAM, program ROM, and 
the processor's four sets of buses could allow the processor to perform one instruction 
fetch, two data reads, and one data write per instruction cycle. However, the 
TMS320C54xx does not provide instructions that perform two data reads and one data 
write simultaneously. The maximum data bandwidth that is supported by the instruction 
set is two data reads, or one data read and one data write. Thus, at the maximum master 
clock speed of 160 MHz (TMS320VC5416), this yields an on-chip peak and maximum 
sustainable data memory bandwidth of 320 million 16-bit words/second for reads, or 160 
million 16-bit words/second for reads and 160 million 16-bit words/second for writes. 

Although the TMS320C54xx provides four sets of buses, its 
per-cycle memory bandwidth is not larger than those of most com­
petitor conventional DSP processors. 

DARAM can be mapped into either program space or program and data spaces 
under software control on all TMS320C54xx family members. Additionally, all family 
members except the TMS320VC5420 and TMS320VC5441 feature on-chip program 
ROM. On the processors that have program ROM, the ROM can be disabled allowing 
mapping of more external memory. In the case of the TMS320VC5402, approximately 4 
Kwords of program ROM can optionally be mapped into both program and data memory 
space. On the TMS320LC545A and the TMS320LC546A, approximately 16 Kwords of 
program ROM can be mapped into program and data memory space. Depending on the 
processor, program ROM is divided into blocks of 2 or 4 Kwords each, and each block 
supports a single read access per instruction cycle. Thus, fetching two values from data 
ROM per instruction cycle can only occur if the values reside in different blocks. Attempt­
ing to fetch two data operands (or one program fetch and one data fetch) simultaneously 
from the same ROM block results in a one-instruction-cycle penalty. 

The TMS320C54xx has special support for handling 32-bit data. 32-bit values can 
be stored in contiguous memory locations in on-chip RAM or ROM, and special "double" 
mstructions (double load, double store, double add, etc.) can be used to access two 
sequential 16-bit values as one 32-bit value in one instruction cycle. The address specified 
for the 32-bit value is the address of the upper 16 bits of the 32-bit word. The lower 16 bits 
are fetched from the location before or after the address given, depending on the address 
of the 32-bit value being odd or even. 

Few competing 16-bit conventional DSP processors have this level 
of support for double-precision operations. However, memory 
accesses on 32-bit quantities execute differently for even and odd 
addresses. This can cause difficulties for applications that do not 
align operands in memory correctly. 

Many of the processor's registers (for example, accumulators and status registers) 
are mapped into the lower 32 words of data RAM. This allows context save and restore 
operations to be accomplished by using the processor's block memory move instructions. 
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Some TMS320C54xx instructions can access read-only data from program ROM 
over the program bus. These instructions execute in multiple instruction cycles due to con­
tention for the program data bus, unless they are repeated within a single-instruction 
repeat loop. Examples of these instructions include various program/data memory move 
instructions as well as some TMS320C5x-compatible multiply-accumulate instructions. 

For the TMS320C541, TMS320LC545A, and TMS320LC546A, the ROM 
includes an interrupt vector table and built-in self-test code; the remaining ROM is fac­
tory-programmed with customer code. 

The 2Kx16 ROM on the TMS320LC542, TMS320LC543, TMS320LC549, and 
TMS320VC541O is factory programmed with a 256-word J..l-Iaw expansion table, a 
256-word A-law expansion table, a 256-word sine table, built-in self-test code, an inter­
rupt vector table, and a boot loader. The 16 Kword ROM on the TMS320VC541O and 
TMS320VC5416 adds 256/l024-point radix-2 decimation-in-time (DIT) FFf functions 
and twiddle factors (coefficients), and coefficient tables for the GSM EFR speech coder. 

External Memory Interface 

The external address and data buses on the TMS320C541, TMS320C542, 
TMS320LC543, TMS320LC545A, and TMS320LC546A are 16 bits wide, addressing 64 
Kwords of external program memory. Most of the newer TMS320C54xx family members 
have a 16-bit data bus and an 18-bit to 23-bit external address bus, thus addressing 256 
Kwords to 8 Mwords of paged program memory. (Paging is discussed further in the 
Address Generation Units subsection, below.) The four-core TMS320VC5441 does not 
extend address and data buses off-chip; data must be transferred in and out of the device 
through the host port interface (HPI) or via DMA transfers through the serial ports. 

For processors with an external memory interface, external reads take one instruc­
tion cycle assuming no wait states; external writes take two instruction cycles in the 
absence of wait states, unless the write is immediately preceded or followed by an external 
read, in which case the write takes three instruction cycles. At 160 MHz, this yields a peak 
and maximum sustainable external memory bandwidth of 160 million 16-bit words/sec­
ond for reads and 80 million 16-bit words/second for writes. 

Like the TMS320C5x, the TMS320C54xx requires multiple instruc­
tion cycles for writes, to external memory. This reduces performance 
in some applications. 

The four on-chip bus sets are multiplexed onto the single external bus set. If an 
instruction requires more than one external access, the accesses are sequenced over multi­
ple instruction cycles. Priority is given first to data writes, then to data reads, and then to 
instruction fetches. 

Slow external devices can be accommodated either via programmed or externally 
requested wait states. Programmed wait-state support allows zero through seven wait 
states to be generated when accessing external memory. The newer TMS320C54xx family 
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members, such as the TMS320VC5402, TMS320VC5416, and TMS320VC5421, have a 
control register bit to double the number of wait states. When this bit is set,' an area of 
memory programmed for seven wait-states will wait for 14 cycles. Different wait-state 
values can be programmed for 110 space, the lower half of data memory, the upper half of 
data memory, the lower half of program memory, and the upper half of program memory. 
Externally requested wait states are generated by an external device asserting the READY . ' 

pm. 

The TMS320C54xx HOLD input allows an external device to obtain exclusive 
access to the processor's external memory. When an external device asserts HOLD, the 
processor completes any external bus cycle in progress, places its external buses in a 
high-impedance state, and then asserts the HOLDA (hold acknowledge) pin. The external 
device can then read or write the processor's external memory (e.g., for block-based 110) 
without fear of bus conflicts. When finished, the external device deasserts HOLD, allow­
ing normal execution to resume. When HOLD is asserted, the TMS320C54xx can proceed 
in one of two user-selectable modes: if the HM bit in the STI control register is set, the 
processor simply halts when HOLD is asserted. If HM is cleared, the processor continues 
to execute while HOLD is asserted, as long as no external memory accesses are required. 

The TMS320C54xx can automatically insert an extra wait state when it crosses 
certain memory address boundaries. This feature, called programmable bank switching, 
provides extra time for a slower memory to release the bus when switching from one 
memory bank to another. Bank sizes can be powers of two from 4 Kwords to 32 Kwords, 
inclusive. 

Address Generation Units 

The TMS320C54xx supports immediate data and register-direct, paged mem­
ory-direct, stack pointer (SP) relative, memory-direct, and register-indIrect addressing 
modes. 

Paged memory-direct addressing and stack pointer relative addressing use the 
same instructions; the CPL (compiler mode) bit in status register STI determines which 
addressing mode is used. Paged memory-direct addressing is implemented as on the 
TMS320C5x family: a 9-bit data-page register is combined with a 7-bit memory-direct 
address stored in the instruction word to form a complete 16-bit data address. In stack 
pointer-relative addressing, the 7-bit value stored in the instruction word is interpreted as 
an unsigned offset that is added to the stack pointer to produce the effective address. Stack 
pointer-relative addressing is supported by the TMS320C54xx C compiler. Most 
TMS320C54xx instructions support long memory-direct addressing, meaning that the data 
address is specified by a 16-bit extension word following the instruction. 

The long memory-direct addressing mode costs extra cycles and 
memory, but is very convenient for the programmer. 
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Addresses generated in register-indirect addressing come from eight address regis­
ters, ARO-AR7. The TMS320C54xx data address generator can generate addresses for 
two register-indirect accesses every instruction cycle. 

Two different sets of register-indirect modification modes are supported. The first 
set supports post-increment (optionally with circular addressing), post-decrement (option­
ally with circular addressing), pre-increment, post-increment by the contents of ARO 
(optionally with either circular or bit-reversed addressing), post-decrement by the contents 
of ARO (optionally with either circular or bit-reversed addressing), indexed by 16-bit 
immediate data, and pre-increment by 16-bit immediate data. These update modes are 
only available for instructions that access a single operand (which in some cases can be 
32 bits wide) from data memory. 

The second set of register-indirect modification modes are used with instructions 
that use operand-unrelated parallel moves. This set is more limited than the previous set 
and allows only post-decrement, post-increment, and post-increment by the contents of 
ARO with circular addressing. Additionally, only registers AR2 through AR5 can be used 
in such instructions. 

The restriction that only address register ARO can be used for 
post-incrementing and post-decrementing by an offset other than 
one is limiting in some applications. 

A common problem in supporting operand-unrelated parallel 
moves on processors with 16-bit instructions is that there are not 
enough bits in an instruction word to encode all possible operation 
and addressing combinations, resulting in a non-orthogonal 
instruction set. Texas Instruments' solution of supporting a wide 
variety of indirect update modes for single-operand instructions but 
relying on a standard subset of addressing modes for instructions 
with dual accesses is a good compromise. However, the instruction 
set is still non-orthogonal compared to other DSPs with wider 
instruction words. 

The newer TMS320C54xx members support 256K - 8M words of program mem­
ory using a page register that is modified in software. The page register selects which of 
up to 128 64-Kword pages (8 Mword versions) of program memory is active. Special 
instructions are also provided for branching to 23-bit addresses. Some instructions have 
been modified to allow loads and stores at 23-bit program memory addresses. 

The TMS320C54xx differs from previous fixed-point processors from Texas 
Instruments in that instructions specify the address register to use for the current instruc-
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tion rather than for the next instruction. That is, to add the values pointed· to by AR3 and 
AR4 to the accumulator on the earlier TMS320C5x, one would write: 

; Assume ARP points to AR3 
ADD *,0,AR4 
ADD *,0 

In the above instructions, the ",AR4" indicates that on the next instruction the value of "*,, 
will be the value pointed to by AR4. In contrast, TMS320C54xx code would look like: 

ADD *AR3,0,A 
ADD *A~4,0,A 

The TMS320C54xx has a "compatibility mode" that allows it to function like a 
TMS320C5x processor in this regard. 

The ability to specify address registers to be used in the current 
instruction rather thftn for the next instruction simplifies assembly 
language programming compared to the predecessors of the 
TMS320C54xx, and is standard on competing processors. 

The TMS32OC54xx supports bit-reversed addressing through reverse carry propa­
gation. Using this mode, the currently selected address register pointer is used for address 
generation, but the register is post-modified by adding or subtracting the contents of 
address register ARO using reverse carry arithmetic. 

The TMS320C54xx supports modulo addressing for use with circular buffering. 
Any auxiliary register can be used with modulo addressing, but only one circular buffer 
size, specified by the BK register may be active at one time. The circular buffer can be any 
size that fits in memory; however, the buffer must be aligned on an address that is evenly 
divisible by k, where k is the smallest power of two that is greater than or equal to the size 
of the circular buffer. 

Most competitor DSP processors support at least two simultaneous 
circular buffers of different lengths. The TMS320C54xx restriction 
to a single size will be a limitation in some applications. 

Pipeline 

The TMS320C54xx uses a six-stage partially interlocked pipeline, broken into 
prefetch, fetch, instruction decode, "access" (data address generation), data read, and exe­
cute/write. 

There are a number of pipeline effects that are visible to the user. Some of the more 
important are: 

• Unconditional branches take four instruction cycles due to the. pipeline being 
flushed. Conditional branches take five instruction cycles if the condition is true, 
and three if the condition is false and the blianch is not taken. Delayed versions of 
both kinds of branches are available. Delayed unconditional branches take four 
instruction . cycles to execute, but two of these cycles can be used to execute 
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instructions in the delay slots. Delayed conditional branches take five instruction 
cycles whether or not the condition is true, but, as with unconditional delayed 
branches, two of these instruction cycles can be used for instructions in the delay 
slots. 

• The conditions used by the conditional execution instruction (XC) are those estab­
lished two instruction cycles prior to the execution of the XC instruction. 

• Some instructions that modify an address register or the circular buffer size regis­
ter may require up to two instruction cycles before the new value in the address 
register is available. The exact number of cycles depends on the instructions fol­
lowing the modification of the address register. 

• Similarly, some instructions that modify the data page pointer (DP) or stack 
pointer (SP) may require up to three instructions cycles before the new value can 
be used. 

The TMS320C54xx six-stage pipeline is deep compared to many 
other conventional DSPs. The TMS320C54xx pipeline impacts the 
programmer more than those of previous generations of fixed-point 
processors from Texas Instruments, due to its greater depth. 

Instruction Set 

The TMS320C54xx registers and instruction set are summarized in Tables 7.13-2 
and 7.13-3, respectively. The processor uses mostly single 16-bit word instructions; 
instructions that use long immediate data use two 16-bit words. Also, instructions using 
the long memory-direct addressing mode will use an extra 16-bit word, so that some 
instructions require a total of three 16-bit words. 

The TMS320C54xx instruction set includes the instructions used by its predeces­
sors, the TMS320C2x, TMS320C2xxx, and TMS320C5x, but uses a different operand for­
mat and is not assembly language source-code compatible with these earlier processors. 

Although the TMS320C54xx is not compatible at the assembly lan­
guage level with its predecessors in the Texas Instruments 

Registers Width Purpose 

A,B 40 bits Accumulators 

T 16 bits Multiplier input register 

SP 16 bits Stack pointer register 

ARO-AR7 16 bits Address registers 

BK 16 bits Circular buffer block size register 

TABLE 7.13-2. TMS320C54xx register summary. 
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Class 

Arithmetic 

Multiplication 

Logic 

Shifting 

Rotation 

Conditional 
Execution 

Comparison 

Looping 

Branching 

fixed-point nsp processor families, it uses many of the same 
instructions; a programmer migrating from a TMS320C54xx prede­
cessor would feel fairly familiar with the TMS320C54xx instruction 
set. 

Instructions 

Absolute value, add, add with carry, add with shift, negate, subtract, 
subtract with borrow, subtract with shift, sum and difference 

Multiply-accumulate (with or without rounding), multiply 
(signed/signed, signed/unsigned, unsigned/unsigned), multiply-sub-
tract, square-accumulate, square-subtract 

And, or, exclusive-or, not 

Arithmetic/logical shift left 0-31 bits, right 0-16 bits 

Rotate accumulator left/right through carry, rotate accumulator left 
through carry and TC bit 

Execute one or two instructions conditionally, store certain registers 
conditionally 

Test for less than, greater than 

Single and multi-instruction repeat, multi-instruction repeat delayed 

Conditional and unconditional branch, branch on value of address reg-
ister, branch to address in accumulator. (All branches available in 
delayed and non-delayed versions.) 

Conditional and unconditional call, indirect call, return, return condi-
Subroutine Call tionally. (All calVreturn instructions available in delayed and 

non-delayed versions.) 

Bit Manipulation Test bit in memory; and, or, exclusive-or bit pattern direct to memory 

Absolute difference between two points, compare-select, exponent 
detect, load register and move data in delay line, LMS filter tap update, 

Special Function maximum value, minimum value, normalize, polynomial evaluation 
step, saturate, square difference between two points, stack push, stack 
pop, symmetric FIR filter computation 

TABLE 7.13-3. TMS320C54xx instruction set summary. 

438 © 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instrumehts TMS320C54xx Family 

Assembly Language Format 

TMS320C54xx assembly language uses the traditional opcode-operand format. As 
an example, the following code implements the inner loop of a 128-tap FIR filter: 

RPT #127 
MAC *AR2+,*AR3+,A 

The RPf instruction starts a hardware loop for 128 repetitions, causing the MAC 
instruction to be repeated 128 times. Each execution of the MAC instruction fetches the 
two operands pointed to by AR2 and AR3 over the data buses, multiplies them, and accu­
mulates the products in the A register. AR2 and AR3 are then post-incremented. 

Some instructions allow operand-unrelated parallel moves. The parallel move is 
specified as a separate field of the instruction; for example: 

ST A, *AR2 

I I ADD * AR3 , B 

which stores the contents in accumulator A to the memory location specified by the con­
tents of AR2, and simultaneously adds the contents of accumulator B to the contents of the 
memory location specified by AR3 and stores the result in accumulator B. The "II" key­
word indicates that the two instructions are to be executed in parallel. 

Parallel Move Support 

In a departure from the previous-generation TMS320C5x architecture, the 
TMS320C54xx adds limited support for operand-unrelated parallel moves. Adopting syn­
tax from the TMS320C3x1C4x families, the TMS320C54xx includes instructions to load 
or store a value from or to memory in parallel with ALU and multiply operations such as 
multiply, multiply-accumulate, add, and subtract. The TMS320C54xx also has an instruc­
tion that permits a store in parallel with a load. 

The TMS320C54xx is the first Jixed-point processor from Texas 
Instruments to support operand-unrelated parallel moves. This sim­
plifies programming and increases performance on algorithms that 
require frequent, nonlinear access to single values in memory, such 
as the FFI' butterfly. 

The TMS320C54xx can perform up to one load or one store in parallel with 
another operation. 

Orthogonality 

The TMS320C54xx instruction set is not particularly orthogonal for a 16-bit DSP 
processor. The number of classes of instructions that support different addressing modes is 
limited, and the large number of specialized instructions consume bits in the instruction 
word that could otherwise have been used to implement a more orthogonal instruction set. 

© 2001 Berkeley Design Technology, Inc. 439 



Buyer's Guide to DSP Processors 

440 

Execution Times 

Most TMS320C54xx instructions execute in a single instruction cycle when exe­
cuted from internal memory. Instructions that use 16-bit immediate data (which is stored 
in a separate program word from the instruction) require an additional instruction cycle. 
Some instructions that use the program bus for data movement (e.g., MACD) execute in 
multiple instruction cycles unless they are repeated within a single-instruction repeat loop. 
Branches take four or five cycles, but delayed branches allow up to two instructions to be 
executed within the delay slots. 

Instruction Set Highlights 

The TMS320C54xx has a large number of instructions optimized for communica­
tions applications: 

• The compare-select instruction (CMPS) compares two 16-bit values stored in an 
accumulator, stores the larger of the two to memory, and shifts a bit indicating 
which one was larger into a history register. CMPS is useful in implementing a Vit­
erbi decoder. 

• Six instructions (DADD, DADST, DRSUB, DSADT, DSUB, DSUBT) perform 
32-bit arithmetic operations by fetching two 16-bit words from memory. Depend­
ing on a mode bit, these instructions can perform either two separate 16-bit opera­
tions or one 32-bit operation. In the former case, several of the instructions 
compute both sum and difference values, which is useful for Viterbi decoding. 
Separate 32-bit load and store instructions (DLD and DST) are also available. 

The CMPS instruction and the various dual 16-bitarithmetic 
instructions will be very useful for many communicationsapplica­
tions. 

• MIN and MAX instructions that store the smallest or largest values of the two 
accumulators in either accumulator, and set the carry bit to indicate the source. 

• A delayed decrement-and-branch instruction that provides software looping with 
only two instruction cycles of overhead per loop iteration. 

• The FIRS instruction can be used in a single-instruction repeat loop to implement a 
symmetric FIR filter in one-half the execution time and one-half the coefficient 
memory of a standard implementation. This is accomplished by fetching a coeffi­
cient from program memory, multiplying it by the value in the A accumulator, and 
accumulating the result in the B accumulator. Simultaneously, the instruction 
fetches two state variables (stored in different banks of dual-access memory) from 
memory and adds them together, storing the result in the A accumulator for the 
next iteration of the FIRS instruction. 

The FIRS instruction allows a considerable performance gain for 
symmetric filters (which are quite common in communications 
applications). FIRS loses one bit of precision relative to a standard 
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implementation of an FIRfilter because the two state variables that 
are added together must be scaled by one bit to ensure that their 
sum does not overflow. This is likely to be an acceptable trade-offin 
many cases. 

• The LMS instruction performs both a dot product iteration and a coefficient update 
(including rounding) for an LMS adaptive filter. 

• The POLY instruction allows computation of an nth-order polynomial in n instruc­
tion cycles. 

• The ABDST and SQDST instructions compute the absolute difference (Le., Ix-yl) 
or squared difference (i.e., (X_y)2) between the values stored in two memory loca­
tions. In parallel, the instruction accumulates the distance computed by the last 
instruction. Thus, in a repeat loop these instructions compute the absolute or 
squared distance between two vectors. 

Other noteworthy instructions include: 

• Single-cycle exponent detect 

• Single-cycle normalize 

• Both delayed and non-delayed versions for branch, call, and return instructions 

• A general-purpose conditional execution instruction that conditionally executes 
the following one or two instructions 

• Several instructions (ANDM, aRM, XORM) that manipulate bits directly in mem­
ory without interfering with the accumulators 

The number and capabilities of TMS320C54xx special function 
instructions is impressive. 

Execution Control 

Clocking 

Internally, the TMS320C54xx uses a IX master clock. The TMS320C54xx has a 
phase-locked loop frequency synthesizer that can be used to derive this master clock from 
a lower- or higher-frequency source. The external source can come from either an external 
clock generator or from an external crystal operating in conjunction with the processor's 
on-chip oscillator. 

The TMS320C54xx phase-locked loop is either hardware configurable or software 
configurable, depending on the processor. The TMS 320C54 I , TMS320LC542, 
TMS320LC543, TMS320LC545A, and TMS320LC546A use a hardware-configurable 
phase-locked loop. All newer TMS320C54xx family members, such as the 
TMS320VC5402, use a software-configurable phase-locked loop. 

On the older TMS320C54xx family members that have an on-chip hardware-con­
figurable phase-locked loop, three clock configuration pins define how the input clock 
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source or crystal is treated. Additionally, the processors. are available in two mask options 
that have slightly different clocking features. The input clock frequencies relative to the 
desired master clock frequency available under the different options are summarized in 
Table 7.13-4. 

The newer TMS320C54xx family members add a software-configurable 
phase-locked loop that is software programmable in one of two configurations: either in 
divider mode where the input clock is divided by two or four, or in PLL mode where the 
input clock is multiplied by one of 31 possible ratios from 1/4 to 15. The processor is ini­
tially configured by the three clock configuration pins to either divide an internal or exter­
nal clock source by two to generate the master clock, or to use the phase-locked loop to 
generate a master clock from an external clock at the same frequency. 

On all TMS320C54xx processors the clock configuration pins also allow an exter­
nal device to put the processor into a low-power state that is equivalent to executing the 
IDLE3 instruction. 

Hardware Looping 

The TMS320C54xx features both single- and multiple-instruction hardware loops 
via the RPf, RPfB, and RPfBD instructions. RPf repeats a single instruction from one to 
65,536 times and is not interruptible. 

RPfB and RPfBD repeat an arbitrary-length block of instructions from one to 
65,536 times. Two registers are loaded with the start and end addresses of the block, and 
the RPfB and RPfBD instructions specify the number of iterations. The RPfBD instruc­
tion is a delayed version of the RPfB instruction: it executes the two instructions immedi­
ately following it only once, and then repeats the block of instructions following them. As 
a result, the RPfBD instruction executes in only two instruction cycles, as opposed to four 
for the RPfB instruction. Clearing the "block repeat active" flag in the STI status register 
allows code within a block repeat to conditionally terminate the repeat loop. The 
multi-instruction hardware loops are interruptible. 

Mask Option 
Clock Source 

1 2 

Externally 
1/3, 1/2,2/3, 1,2 1/5,2/9, 1/4, 1,2 

Generated Clock 

External Crystal 1/3,2 1/5,2 

TABLE 7.13-4. TMS320LC542 and TMS320LC543 clocking options. The 
values shown in the table are the ratio of the input clock frequency to the 
master clock frequency. 
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The RPT instruction can be nested within an RPTB or RPTBD loop, but 
RPTBIRPTBD instructions cannot be nested within an RPTBIRPTBD loop without saving 
and restoring certain repeat registers. 

The inability to nest hardware loops without explicit save and 
restore operations costs cycles in some algorithms, e.g., the fast 
Fourier transform. The delayed decrement-and~branch instruction 
used for software loops incurs less overhead than saving and 
restoring the multi-instruction hardware loop registers. 

Instructions that access data in both program memory and data memory (for exam­
ple, instructions that move data between the two memory spaces) execute faster within a 
single-instruction RPT loop. This is because the instruction does not need to be fetched for 
each iteration through the loop, freeing the program bus to be used for data accesses. 

Interrupts 

The TMS320C54xx architecture allows for up to 16 maskable interrupts and 16 
non-maskable interrupts. Not all of these interrupts are used on all family members. 
Non-maskable interrupts on current family members include reset, non-maskable inter­
rupt, and software interrupts generated by the TRAP instruction. Maskable interrupts 
include receive and transmit interrupts for each serial port, a timer interrupt, and interrupts 
associated with four general-purpose interrupt lines. 

Interrupts are prioritized but are not automatically nestable. That is, interrupts are 
only nestable if the interrupt service routine explicitly reenables interrupts. Each interrupt 
has its own four-word vector location. The spacing of the vector locations permits using a 
delayed branch to a main interrupt service routine followed by two instructions, which can 
be used to fetch data, from a serial port, for example. The interrupt vectors can be 
remapped to the beginning of any 512-word page in memory by ~riting to the PMST con­
figuration register. 

On interrupt, the TMS320C54xx acknowledges the interrupt and disables inter­
rupts. Only the program counter is saved onto the software stack; the interrupt service rou­
tine must save any other registers that it wishes to preserve. 

Interrupt latency is 13 instruction cycles from the assertion of the external interrupt 
line to the execution of the first word of the interrupt vector if the processor is in an inter­
ruptible state. The first two words of the interrupt vector typically contain a delayed 
branch to !he interrupt service routine. The two words following the delayed branch 
instruction in the interrupt vector are executed in the delay slots of the delayed branch. 
Thus, the latency from the assertion of the interrupt line to the execution of the first word 
following the delayed branch is 15 instruction cycles. 

Sta6k 

The TMS320C54xx features a software stack in data memory with a dedicated 
stack pointer. The stack is used for saving the return address for interrupts and subroutine 
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calls. It can also be accessed via the PUSHD and POPD instructions, which push or pop a 
word to or from data memory onto or off of the stack. Because TMS320C54xx registers 
are also accessible as memory locations, the PUSHD and POPD instructions can also be 
used to move registers to and from the stack. 

The TMS320C54xx provides an instruction (FRAME) that adds an offset to the 
stack pointer, and allows stack pointer-relative addressing. This can be used to ensure 
stack alignment to an even address, which is required for correct operation of subsequent 
double word load and store operations to the stack. 

The TMS320C54xx FRAME instruction and stack pointer-relative 
addressing mode are particularly useful for C compilers where 
parameters are passed to subroutines via the stack. 

Bootstrap Loading 

TMS320C54xx processors provide several mechanisms for bootstrap loading. 
Shortly after reset, the processor performs a read from I/O port address OxFFFF and uses 
the lower eight bits of the data read to determine the bootstrap mode. Most TMS320C54xx 
processors support bootstrap loading over the serial ports (using 8- or 16-bit words in sev­
eral formats), over the parallel port (using 8- or 16-bit words), over I/O space (using 8- or 
16-bit words), and from 8- or 16-bit-wide EPROM. Many of the processors, such as the 
TMS320VC5402, TMS320VC5409, TMS320VC5410, and TMS320VC5416, support 
bootstrap loading over the host port as well. The TMS320VC5409 and TMS320VC5416 
also support serial bootloading from an SPI serial EEPROM. 

The dual-core TMS320VC5420 allows either a host-controlled boot over the host 
port interface (HPI) or a stand-alone boot. In stand-alone boot mode, either both cores 
boot the same program from external memory simultaneously, or in sequential mode, the 
master core boots a program from external memory and then releases control to the slave 
core allowing it to boot. 

The TMS320VC5421 supports the same host-controlled HPI booting as the 
TMS320VC5420, but supports different stand-alone boot modes, including 8/16-bit paral­
lel EPROM booting and an 8-bit serial boot from the serial ports. 

The four-core TMS320VC5441 can only be boot loaded using the same host-con­
trolled HPI booting available on the TMS320VC5420 and TMS320VC5421. Serial boot 
loading is not supported, nor is boot loading from external memories since the 
TMS320VC5441 does not extend the memory address and data buses off chip. 

Peripherals 

TMS320C54xx on-chip peripherals include a timer and combinations of synchro­
nous serial ports, time-division multiplexed serial ports, buffered serial ports, multi-chan­
nel buffered serial ports, and host ports. Parallel I/O is also available on all processors 
except the TMS320VC5441 through the external memory interface. Refer back to 
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Table 7.13-1 for combinations of serial ports and host ports on different members of the 
TMS320C54xx family. 

• Serial ports 
Synchronous serial ports are like those found on TMS320C5x processors and sup­
port 8- or 16-bit words. When using an internally generated bit clock, they can run 
at bit rates up to the instruction rate divided by four (e.g., 25 Mbits/second for a 
100 MHz processor); when using an externally generated bit clock, they can run at 
bit rates up to the instruction rate divided by three. The transmit and receive por­
tions of the serial port are independent and have their own clock, frame sync, and 
data pins. The receive clock is always externally supplied, while the transmit clock 
can be either internally generated, with frequency equal to the instruction rate 
divided by four, or externally supplied. The clock pins can be used as general-pur­
pose inputs if the serial port is not in use. 
The buffered serial port is divided into two parts: a synchronous serial port inter­
face and an "auto buffering unit": 

• The serial port interface is a synchronous serial interface that transfers 8-, 10-, 
12-, or 16-bit words at a maximum bit rate equal to the processor's master 
clock rate for devices operating at up to 50 MHz. For faster devices, the maxi­
mum operating frequency is 50 Mbits/second. The transmit and receive por­
tions of the serial port are independent and have their own clock, frame sync, 
and data pins. The receive clock is always externally supplied, while the trans­
mit clock can be either internally generated (with frequency equal to the master 
clock rate divided by a five-bit selectable divisor) or externally supplied. The 
clock pins can be used as general-purpose inputs if the serial port is not in use. 
Transmit clock and frame sync polarity can be selected by the user. 

• The auto buffering unit (ABU) is associated with a 2-Kword block of on-chip 
dual-access RAM. It allows up to 2,048 words to be transferred between main 
memory and the serial ports via a form of DMA before the processor is inter­
rupted. For both serial port data transmission and reception, the auto buffering 
unit allows the programmer to specify a buffer size (up to 2,048 words) and an 
ll-bit starting memory address within the 2 Kword memory block. The auto 
buffering unit performs transfers between the serial port and memory automat­
ically and independent of the processor, interrupting the processor when the 
buffer is empty, half full, or entirely full. If the CPU and the ABU attempt to 
access the 2-Kword buffer memory block simultaneously, the CPU is delayed 
access by one cycle. For newer processors such as the TMS320VC541O and 
TMS320VC5421, the ABU buffer may be placed anywhere in memory. For 
older TMS320C54xx devices, such as the TMS320LC545A, the ABU buffer is 
fixed in location and maximum size. 
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The auto bUffering unit will be quite valuable in some applications, 
significantly reducing the amount of time the processor must spend 
servicing serial /10. 

The time-division multiplexing (TDM) serial port is identical to the TOM serial 
port on TMS320C5x processors and supports up to eight transmit slots per frame. 
Please refer to the section discussing the TMS320C5x for details on the TDM 
serial port. 
The multi-channel buffered serial port (referred to as the "McBSP" by Texas 
Instruments) offered on the TMS320VC541O is similar to the buffered serial port 
available on other TMS320C54xx' devices, and supports up to 128 channels per 
port. The McBSP is intended for connection to TIIEI framers, as well as other 
high-speed serial devices. The McBSP on the TMS320VC541O and other newer 
TMS320C54xx family members shares the enhanced DMA features of that part, 
allowing serial data to be spooled to or from any point in the address space. In 
addition, the McBSP supports transparent A-law and Jl-Iaw compression and 
decompression in hardware. ' 

• Host Port Interface 
The TMS320LC542, the TMS320LC545A, the TMS320LC549, and 
TMS320VC541O provide an 8-bit parallel host port interface (HPI). The HPI 
allows a host processor to read and write a l-Kword region of the DSP's on-chip 
RAM. The host processor specifies (one byte at a time) the starting address, and, if 
writing, the 16-bit data value to write. On subsequent reads and writes, the 
addresses can be updated automatically. In normal mode, both the host and the 
DSP can access this memory. If the DSP agrees to not access the memory for a 
period of time, the host is given higher-bandwidth access to the memory. Both the 
host and the DSP can interrupt one another through the HPI. 
The host port interface (HPI) supports both non-multiplexed or separate address 
and data bus interface which is common on most microprocessors. It also supports 
a multiplexed address and data bus interface where the address is latched first fol­
lowed by a data read or write. Multiplexed interfaces are common on 8051 family 
microcontrollers and other 8-bit microcontroller functions. 
The newer, single core processors, such as the TMS320VC5409, have a 16-bit par­
allel host port interface, but also support an 8-bit HPI for interface to lower cost 
8-bit microcontrollers. The multiple-core devices, the TMS320VC5420, 
TMS320VC5421, and TMS320VC5441, only support the 16-bit HPI interface. 

• Timer 
Most members of the TMS320C54xx family include a timer with 20-bit resolution 
that uses the processor's master clock signal as its clock source. A prescaler 
divides the master clock by a programmable 4-bit count. A programmable 16-bit 
counter register uses the resulting frequency as its input clock. The values in both 
the prescaler and counter are readable under software control. The timer generates 

446 ©2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C54xx Family 

an interrupt and pulses the TOUT pin when a counter reaches zero, at which point 
the counter is reloaded with the user-specified value. 
Each core on the TMS320VC5441 has two timers with 32-bit resolution; a gen­
eral-purpose timer and a watchdog timer. The general-purpose timer has program­
mable 16-bit prescaler and 16-bit count registers. A maskable interrupt, TINT, is 
generated when the counter register reaches zero. The timer can be started, 
stopped, reset, and reloaded via the software-controllable timer control register. 
The timeout period of the watchdog timer is controlled by a 16-bit count register 
and a 16-bit period register. Under normal system operation, the watchdog timer is 
periodically reset before the timeout period expires. When the watchdog timer 
reaches zero, the watchdog output flag is asserted; this flag can be connected, via a 
GPIO (general-purpose 110) pin to the NMI (nort-maskable interrupt) input to 
restart the system in the case of a watchdog timeout event. 

Each core on the TMS320VC5441 has two timers; a general-purpose timer and a 
watchdog timer. Both timers have 32-bit resolution since the prescaler divides the 
master clock by an amount determined by a programmable 4-bit field. Each 4-bit 
value yields a prescale count equal to 2(n+1L l. The watchdog timer prevents the 
system from locking up and must be accessed periodically to prevent it from dec­
rementing to zero. In the case when the watchdog decrements to zero, if enabled, a 
maskable interrupt is triggered. A general-purpose 110 (GPIO) pin can be config­
ured to pulse low, thus notifying the system of the watchdog event. 

• BitVO 
Bit I/O is provided by two pins. One of these (BIO) is an input and the other (XF) 
is an output. The state of the BIO pin can be used in conditional branches, while 
the XF output pin can be set or cleared by the SSBX and RXBX instructions. 
The multiple-core devices, the TMS320VC5420, TMS320VC5421, and 
TMS320VC5441, each have four GPIO pins and an XF output pin for each core. 
One GPIO pin functions as the ROM enable input on reset, but afterward can be 
programmed as an input or output. The second pin can be programmed as input or 
output with no alternate function. A third GPIO pin, when programmed as an 
input, is compatible with the BIO pin. A fourth GPIO pin can function as the timer 
output, pulsing when the timer resets. 

• Parallel VO 
TMS320C54xx processors also provide a general parallel 110 mechanism via 110 
memory space. Essentially, 110 space operations function like normal external bus 
operation, with the 110 port address on the address pins and data on the data pins, 
but they also assert a special 110 strobe pin to indicate to external devices that an 
110 operation is occurring. Unlike regular external bus cycles, 110 reads always 
take a minimum of two instruction cycles to complete. The 110 address space is 16 
bits, permitting 65,536 logical ports to be accessed via PORTR and PORTW 
instructions. The four core TMS320VC5441 is the only device that does not sup-
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port 110 memory expansion because the device does not extend the address and 
data buses off-chip. 

On-Chip Debugging Support 

The TMS320C54xx offers a JTAG-based interface to on-chip emulation and 
debugging circuitry. Through the JTAG interface, an external device can read and write 
processor memory and registers, set and clear breakpoints, and single-step through a pro­
gram. The JTAG port can also be used for boundary scan. 

Power Consumption and Management 

The TMS320C54xx provides three low-power modes via the IDLE 1 , IDLE2, and 
IDLE3 instructions. In all idle modes, the clock is turned off to the processor's core, 
reducing power consumption. In IDLEI mode, on-chip peripherals (the serial port and 
timer) and interrupt lines remain active, and any unmasked interrupt, e.g., if the auto­
buffered serial port receive buffer is full, wakes the processor. In IDLE2 mode, the 
on-chip peripherals are turned off, and only an interrupt on an external interrupt line 
wakes the processor. IDLE3 mode is similar to IDLE2 mode but it also turns off the 
on-chip crystal oscillator and PLL circuitry. As a result, wake-up from IDLE3 mode can 
require up to 2,053 clock cycles for the PLL to recover. 

As an additional power management feature, the output clock and the internal 
clock to the external interfaces can be turned off if they are not needed. 

The newer TMS320C54xx family members use dual supply voltages as shown in 
Table 7.13-1. For example, the TMS320VC549 uses a 2.5-volt supply and the external 
interface uses 3.3 volts. The lower core supply lets the processor operate at 100 MHz with 
a typical power consumption in normal operation of 125 mW, according to Texas Instru­
ments. Newer, lower-voltage processors such as the TMS320UVC5402 operate from a 
1.2-volt internal supply and from a range of external supply voltages of 1.2 volts to 2.75 
volts. Typical power consumption for some TMS320C54xx family members are listed in 
Table 7.13-5. 

Benchmark Performance 

The TMS320C54xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTI 
Benchmark™ Results. We summarize and analyze TMS320C54xx benchmark perfor­
mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
reflect the processor's instruction cycle rate; therefore, lower instruction cycle counts 
imply a more powerful architecture, but do not imply faster speed. Next we discuss bench­
mark execution times and cost·execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 

@2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C54xx Family 

which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 

Processor 
Speed Voltage Typical Power 
(MHz) (V) Consumption 

TMS320C541 40 5.0 200mW 

TMS320LC541B 66 3.3 80mW 

TMS320C542 40 5.0 200mW 

TMS320LC542 50 3.3 165mW 

TMS320LC543 50 3.3 165mW 

TMS320LC545A 66 3.3 131 mW 

TMS320LC546A 66 3.3 131 mW 

TMS320LC549 80 3.3 106mW 

TMS320VC549 120 2.5/3.3 135mW 

TMS320VC5410 120 2.5/33 144mW 

TMS320VC5402 100 1.8/3.3 60mW 

TMS320UC5402 80 1.811.8-3.6 50mW 

TMS320UVC5402 30 1.2/1.2-2.75 12mW 

TMS320VC5409 100 1.8/3.3 72mW 

TMS320UC5409 80 1.811.8-3.6 50mW 

TMS320UVC5409 30 1.211.2-2.75 12mW 

TMS320VC5420 100 1.8/3.3 266mW 

TMS320VC5416a 160 1.5/3.3 90mW 

TMS320VC5421 100 1.8/3.3 160mW 

TMS320VC5441 a 133 1.5/3.3 550mW 

TABLE 7.13-5. TMS320C54xx family typical power consumption, 
according to Texas Instruments. 

a. Not available as of this writing. 
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three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

Execution Performance 

• Instruction cycle counts: As illustrated in Figure 8.1-13 in Chapter 8, BDT! 
Benchmark™ Results, the TMS320C54xx's total normalized instruction cycle 
count is approximately 25% higher than the average for all benchmarked proces­
sors. Although the TMS32OC54xx's has a dual-accumulator data path, sin­
gle-cycle MAC instructions, and parallel memory move instructions, it has higher 
cycle counts compared to newer DSP architectures that have more execution units 
and hence higher levels of parallelism. 
The TMS320C54xx has a fairly low instruction cycle count on the Two-Biquad 
IIR filter benchmark-approximately 15% lower than the average for all bench­
marked processors. The TMS320C54xx is able to use only five instruction cycles 
per biquad due to support for multiply-accumulate operations using two data mem­
ory operands in a single instruction, parallel memory move support, and zero-over­
head hardware looping. 

The TMS320C54xx also has a fairly low instruction cycle count on the Viterbi 
benchmark, at approximately 25% lower than the average for all benchmarked 
processors. The TMS320C54xx has a specialized single-cycle add-compare-select 
instruction that reduces the cycles required for the first stage of this benchmark. 
However, compared to other processors benchmarkedthat also have specialized 
Viterbi decoding instructions or have higher levels of parallelism, the 
TMS320C54xx has a cycle count that is approximately 40% higher than average. 
The TMS320C54xx has a high instruction cycle count on the Control benchmark. 
However, the Control benchmark is optimized for minimum memory usage, not 
for minimum instruction cycles. The TMS320C54xx instruction cycle count on 
this benchmark is about 85% above average for all benchmarked processors. The 
fact that the TMS320C54xx does not support short immediate data or PC-relative 
branches increases its instruction cycle count (and also program memory usage) on 
this benchmark. 
The Texas Instruments TMS320C54xx has the highest cycle count for the Bit 
Unpack benchmark, about 30% higher than that of typical conventional DSPs 
benchmarked here. Compared to the other conventional DSPs benchmarked, the 
TMS320C54xx lacks flexible bit-field manipulation capabilities· and thus must 
perform a larger number of discrete shift-and-Iogical-operation steps for each 
bit-field extraction. The TMS320C54xx also has limited register-to-register move 
support; hence, loading the shift control register takes more cycles than in compet­
ing processors that have more flexible register move support. Limited support for 
conditional instruction execution and operand-unrelated parallel moves also con­
tribute to the high cycle count. 
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• Execution times: The TMS320VCS416's 160 MHz instruction cycle rate com­
bined with its higher-than-average instruction cycle counts yields a total normal­
ized execution time that is approximately 10% below the average of the 
fixed-point processors benchmarked, as presented in Figure 8.2-13. However, the 
TMS320VCS416 is almost four times slower than the fastest processor, the Texas 
Instruments TMS320C64xx. At 160 MHz, the TMS320CS4xx has a 
BDTImark2000 score of SOO. 

• Cost-execution time: The TMS320VCS416's better-than-average execution time 
performance coupled with its relatively high price of $33.S0 (quantity 10,000) give 
it fifth place among all benchmarked fixed-point processors in terms of total nor­
malized cost-execution time product. As shown in Figure 8.3-13, the total normal­
ized cost-execution time product for the TMS320CS4xx is roughly IS% higher 
than the average for all benchmarked fixed-point processors. 

• Energy consumption: As illustrated in Figure 8A-13B, the l.S-volt 
TMS320VCS416 has the third-lowest energy consumption of all benchmarked 
DSP processors, trailing only the Motorola MSC8101 and the Texas Instruments 
TMS320C5510. The TMS320VCS416's total normalized energy consumption is 
about one-half of the average for benchmarked fixed-point processors. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

• Control benchmark memory usage: The TMS320C54xx's total memory usage 
on the Control benchmark is the third-highest of the fixed-point processors bench­
marked, and is average compared to all of the processors benchmarked, as pre­
sented in Figure 8.5-9A. The TMS320CS4xx lacks PC-relative branches and 
support for short immediate data. Branch addresses and short immediate data must 
be encoded using an extra 16-bit instruction word, increasing memory usage on the 
Control benchmark. 

• Program memory usage: The total normalized program memory usage for the 
TMS320CS4xx is about 20% lower than average for benchmarked fixed-point 
DSP processors with 16-bit instructions. Program memory usage results are pre­
sented in Figure 8.5-13. 
The TMS320CS4xx's program memory usage is the lowest of the fixed-point pro­
cessors benchmarked on the real-block FIR filter benchmark. The TMS32OC54xx 
has specialized instruction support for calculating the output of FIR filters, allow-
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ing the output samples to be calculated in fewer instructions than other fixed-point 
processors with 16-bit instructions. 
The program memory usage for the TMS320C54xx on the Vector Dot Product 
benchmark is the second-lowest of all processors benchmarked. Flexible multi­
ply-accumulate instructions and parallel storelload and store/multiply instructions 
help the TMS320C54xx to achieve low program memory usage on this bench­
mark. 

• Data memory usage: The TMS320C54xx's constant data memory usage is the 
lowest of all benchmarked 16-bit fixed-point DSP processors. Total normalized 
constant data memory usage is shown in Figure 8.5-14. 
The TMS320C54xx's non-constant data memory usage is slightly lower than the 
average for benchmarked 16-bit fixed-point DSP processors. Total normalized 
non-constant data memory usage is shown in Figure 8.5-15. 

The TMS320C54xx combines higher-than-average instruction cycle 
counts with a relatively high instruction execution rate, resulting in 
lower than average execution time results on the BDT! Bench­
marks. This, combined with the third-lowest power consumption 
among processors benchmarked, results in the third-lowest total 
normalized energy consumption of all benchmarked processors. 

The TMS320C54xx has good overall program and data memory 
usage, which is the result of a relatively powerful data path and a 
16-bit instruction word size. 

Cost 

Price and packaging options for TMS320C54xx processors are shown in 
Table 7.13-6. 

Fabrication Details 

TMS320C54xx family members use a variety of fabrication processes, ranging 
from a 0.55 /-lm three-metal-layer CMOS process for the 5.0-volt TMS320C541, to a 0.15 
/-lm four-layer-metal CMOS process for the single-core TMS320VC5416, dual-core 
TMS320VC5421, and four-core TMS320VC5441. 

The 80 MHz, 1.8 volt TMS320UC5402 and TMS320UC5409 are fabricated in a 
0.18 /-lm four-layer-metal CMOS process. The 30 MHz, 1.2 volt TMS320UVC5402 and 
TMS320UVC5409 are fabricated in a 0.15 /-lm four-layer-metal CMOS process. 

The TMS320C54xx is available as a core for use in SoCs designed by customers 
and fabricated by Texas Instruments. 
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Part 
Speed Voltage 

Package 
Price 

(MHz) (V) (Qty. 10,000) 

TMS32OC541 40 5.0 100TQFP $14.98 

TMS320LC541 66 3.3 100TQFP $8.37 

TMS320C542 40 5.0 144TQFP $18.47 

TMS320LC542 50 3.3 128, 144 TQFP $20.32 

TMS320LC543 50 3.3 100TQFP $19.41 

TMS320LC545A 66 3.3 128,144 TQFP $16.66 

TMS320LC546A 66 3.3 100TQFP $15.43 

TMS320LC549 80 3.3 
144TQFP 

$19.43 
144BGA 

TMS320VC549 120 2.5/3.3 $25.65 

TMS320VC5402 100 1.8/3.3 $5.42 

TMS320UC5402 80 1.8/1.8-3.6 $6.32 

TMS320UVC5402a 30 1.211.2-2.75 
144TQFP 

$6.85 
144BGA 

TMS320VC5409 120 1.8/3.3 $11.93 

TMS320UC5409 80 1.8/1.8-3.6 $14.31 

TMS320UVC5409a 30 1.2/1.2-2.75 $15.50 

TMS320VC541O 120 2.5/3.3 
144TQFP 

$32.24 
176BGA 

TMS320VC5416 160 1.5/3.3 
144BGA 

$33.50 
144TQFP 

TMS320VC5420 100 1.8/3.3 144BGA $56.41 

TMS320VC5421 100 1.8/3.3 144TQFP $84.21 

TMS320VC5441 a 133 1.5/3.3 
179BGA 

$168.43 
176TQFP 

l. 

TABLE 7.13-6. TMS320C54xx price and package summary. Pricing data is 
provided by Texas Instruments as of June 2000. 
a. Not available as of this writing. 
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Development Tools 

Texas instruments provides a COFF-based assembler, linker, archiver, instruc­
tion-set simulator, emulation debugger, and an optimizing ANSI C compiler for the 
TMS320C54xx. The tools run on IBM PC-compatible computers under Microsoft Win­
dows 95 or higher. 

Texas Instruments bundles the tools in a package called "Code Composer Studio" 
(CCS), a suite of software development tools. Code Composer Studio is an integrated 
development environment that integrates the assembler, C compiler, linker, and simulator 
or emulator debugger. CCS's support for JTAG-based emulation includes debugger sup­
port of graphical data displays (e.g., an FFT "waterfall"). The debugger can be used for 
debugging individual devices or multiple devices in parallel. Source-level debugging 
capabilities include breakpoints, watches, and function-profiling, all of which are fully 
windows-based. Code Composer Studio also supports a scripting language which allows 
automation of simple tasks. Code Composer Studio is available for Windows 95/98 and 
Windows NT. 

Texas Instruments provides a "TMS320C54xx DSKplus" development board 
based on the TMS320VC5402. The accompanying software includes a true Microsoft 
Windows-based debugger interface. An evaluation module based on the TMS320VC549 
and TMS320VC541O device is also available as a plug-in card for IBM PC compatible 
systems. 

The XDS510 emulator can be used with the TMS320C54xx with appropriate host 
software. There is a large variety of third-party support for the TMS320C54xx in the form 
of development boards, emulators, and function and application software libraries. 

Texas Instruments and TechOnline, Inc. provide a "VirtuaLab" where registered 
users may allocate time and compile or upload code to an on-line TMS320C54xx develop­
ment board at the TechOnline, Inc. World Wide Web home page via the Internet. 

A wide variety of third-party vendors offer tools and DSP software libraries for the 
TMS320C54xx. 

The number of third-party vendors providing tools and software for 
Texas Instruments' DSPs is the largest of any DSP processor ven­
dor. This is due partly to Texas Instruments' early entry into the 
DSP processor market and to its strong efforts to cultivate 
third-party support. 

Applications Support 

The primary documentation for the TMS320C54xx family is the four-volume 
TMS320C54xx Reference Set. This manual covers the archit~cture, instruction set, and 
programming of the device. Separate data sheets discuss the hardware aspects of the pro­
cessors. 
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Applications support for all TMS320 family processors is provided by staff who 
are available via telephone hotline, fax, and Internet electronic mail. 

Texas Instruments also provides a computer bulletin board system that allows 
TMS320 users to download code and brief application notes. Internet users can access 
copies of bulletin board files via anonymous FrP and via the World Wide Web. 

Advantages 

• Rich instruction set 

• Conditional instruction execution 

• Specialized instructions for LMS, symmetrical FIR filter, polynomial evaluation, 
exponent detect, and absolute or squared difference 

• Barrel shifter 

• Support for dual I6-bit operations; support for multi-precision arithmetic 

• Special function unit in data path for Viterbi decoding 

• Many address registers 

• High per-cycle memory bandwidth 

• Flexible bootstrap modes 

• Software stack with frame pointer and indexed addressing supports HLL compil­
ers 

• 
• 

• 

• 
• 
• 
• 
• 

Three low-power modes; low-voltage versions have low power consumption 

Two or more serial ports; autobuffering serial port on some family members; TDM 
serial port on some family members; enhanced multi-channel serial ports on some 
family members; enhanced DMA on some family members 

Uses IX or slower external clock; flexible PLL (software configurable on some 
devices) 

JTAG emulation port with boundary scan 

Large number of family variants including two and four core versions 

Core version available 

Good third-party tool and library support 

Good energy consumption results on the BDTI Benchmarks 

Disadvantages 

• Exposed pipeline 

• Only one circular buffer size can be used at a time 

• Only one modifier register (ARO) 

• Writes to external memory take at least two instruction cycles 
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7.14 Texas Instruments TMS320C55xx Family 
BDTlmark2000 Score: 

Introduction Not Available 

The TMS320C55xx is a very long instruction word (VLIW), 16-bit fixed-point 
DSP processor family from Texas Instruments, announced in February 2000. The 
TMS320C55xx can execute up to two instructions in parallel, with instruction widths 
varying from 8 to 48 bits. Instruction widths depend on the number of arguments, bytes of 
immediate data, and number of parallel operations. The TMS320C55xx is based on Texas 
Instruments' earlier fixed-instruction-Iength TMS320C54xx family, but adds significant 
enhancements to the architecture and instruction set. The TMS320C55xx is assembly 
source-code upward compatible with the TMS320C54xx; the TMS320C55xx can execute 
assembly code written for the TMS320C54xx, but not object code. 

Target applications for the TMS320C55xx include traditional DSP applications, 
such as cellular telephones and modems; and telecom infrastructure applications, such as 
voice over IP gateways and multi-channel modem banks. The TMS320C55xx interfaces 
directly to SDRAM, making it well suited for use in portable consumer products where 
large memory buffers are required; e.g., digital cameras and portable digital audio players. 

The first device based on the TMS320C55xx core, the TMS320C551O 
(Table 7.14-1), is currently sampling at 160 MHz using a 1.6-volt supply, according to 
Texas Instruments. The 160 MHz· device is slated for production in the fourth quarter of 
2000. BDTI has executed the BDTI Benchmarks on a TMS320C55xx development board, 
but was unable to verify the projected clock speed of 160 MHz (the development board 
executed at a much lower clock rate). Hence, the BDTImark2000 score for this processor 
is not available pending verification of the clock speed. Check BDTI's website 
(www.BDTI.com) for the latest BDTImark2000 scores. A 200 MHz device fabricated 
using a copper process is planned for the first quarter of 2001, according to Texas Instru­
ments. The TMS320C55xx supports two multiply-accumulate (MAC) operations per 
instruction cycle; peak MAC throughput is 320 million MACs per second at 160 MHz. 

On-Core Memory 
Max. 

TMS320C55xx Speed Program Single Dual Access 
Instruction 

Version (MHz) and Data Access RAM RAM 
Cache 

ROM (SARAM) (DARAM) 

TMS320C551O 160 16 K x 16 128 K x 16 32 Kx 16 24Kx8 

TMS320C551O 200 16 K x 16 128 K x 16 32 Kx 16 24Kx8 

TABLE 7.14-1. TMS320C55xx family summary. The memory configuration of each 
devices includes on-Chip ROM, dual-access RAM (DARAM), single-access RAM 
(SARAM), and an instruction cache that stores the most recent instructions 
accessed from external memory. 
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Support for variable-length instructions allows the TMS320C55xx 
to use complex, multi-operation instructions for signal processing 
tasks while achieving compact code density for control tasks. On 
many tasks the TMS320C55xx is faster and requires fewer cycles 
than older architectures such as the Motorola DSP563xx, Texas 
Instruments TMS320C54xx, and Analog Devices ADSP-218x. It is 
comparable in many respects to recent dual-MAC architectures 
such as the Lucent DSP 16xxx and Infineon TriCore. 

Architecture 

The TMS320C55xx is a VLIW architecture, executing up to two instructions in 
parallel per instruction cycle. Instructions are scheduled for parallel execution at com­
pile-time by the assembly programmer or code-generation tool. Unlike most VLIW archi­
tectures, the TMS320C55xx does not use simple, RISC-like instructions, however; the 
instruction set supports multiple parallel operations within a single instruction (for exam­
ple, a single instruction can specify two MAC operations). A more detailed discussion of 
the processor's instruction execution model is contained in the Instruction Set section of 
,this chapter. 

The TMS320C55xx architecture consists of a 16-bit fixed-point data path, an 
address unit, a program flow control unit, and an instruction buffer unit. The 
TMS32OC551O architecture is illustrated in Figure 7.14-1. 

The 16-bit fixed-point data path includes, among other execution units, two 17 x 
17-bit multipliers (compared with one on the TMS320C54xx) with four 40-bit accumula­
tors (compared with two on the TMS320C54xx). The data path supports special instruc­
tions designed to optimize implementation of FIR filters, echo cancellers, Viterbi 
decoders, and codebook search algorithms. Each MAC unit can !l1ultiply two data oper­
ands and generate a product per instruction cycle, but one operand is shared between the 
two multipliers. 

Since one operand must be shared between the two multipliers, the 
processor s dual-multiply feature is limited to use in algorithms 
where one vector is shared, such when using the same filter on two 
channels of data. Other dual-MAC processors, such as the Lucent 
DSP 16xxx and Infineon TriCore, can multiply two pairs of unique 
daJa operands, but can execute these computations at full speed 
only if pairs of data operands are fetched from contiguous memory 
locations. 

The address unit contains stack pointers and eight address registers capable of 
accessing data using several addressing modes. It is also capable of performing 16-bit 
ALU operations in parallel with computations performed in the main data path. 
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The program control unit handles all instruction flow control tasks such as 
branches, subroutine calls, returns from interrupts and subroutines, conditional instruction 
execution, and resolving pipeline conflicts. 

Instruction lengths vary from 8 to 48 bits. 32 bits of instruction data is fetched 
from memory or the instruction cache in each instruction cycle. The instruction buffer unit 
stores up to 64 bytes of recently fetched instructions in the instruction buffer queue, parses 
the buffered instructions to determine wher~ instructions start, and dispatches parsed 
instructions. When executing small loops, the instruction buffer queue retains the most 
recently executed instructions for reuse, thus avoiding the need to reload the instructions 
from memory. 

Data Path 

The TMS320C55xx fixed-point data path, called the "Data Computation Unit," 
contains a 40-bit ALU, a 40-bit barrel shifter, two 17 x 17-bit multiply-accumulate units, 
and four 40-bit accumulator registers. In addition, the TMS320C55xx address unit, desig­
nated the "Address-Data Flow Unit," contains a general-purpose 16-bit ALU that is inde-

Memory 

Prog/Data Instruction 
Instruction Program Address 

SARAM DARAM Buffer 
ROM 128Kx 16 32K x 16 Cache Unit Flow Unit Unit 

16K x 16 24Kx8 External 
I Memory 
I tTl t II T Interface 

"- (SRAM, 
Program-Read Address Bus (24) • • I • I I I I I 

SDRAM) 

A 21 t.. Program-Read Data Bus (32) 1 I I ~ I I 'I I' 

Three Data-Read Address Buses (24) 
Address 

• • I • I I I 
Three Data-Read Data Buses (16) 

I 1 i ~ A 3¥ t.. 

I 
Two Data-Write Address Buses (24) 'I I' 

I I • Data 

Two Data-Write Data Buses (16) 

! 
"... 

Serial 16-Bit EJ 16-bit 
Ports Timers §] Host Fixed-Point (3) (2) Pins Port Data Path 

FIGURE 7.14-1. The TMS320C55xx architecture, as illustrated by theTMS320C5510. 
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pendent from the processor's three address generators and can be used in parallel with the 
main data path. The TMS320C55xx (like the TMS32OC54xx) includes eight 16-bit "auxil­
iary registers," ARO-AR7. These registers are primarily used (with 7-bit extension regis­
ters) as address registers but, unlike on the TMS320C54xx, they can also be used as 
general-purpose registers in some cases. 

The data path operates on data directly from memory when performing high 
throughput operations such as single-cycle, dual multiply-accumulates. This reduces the 
need for data registers to only those needed for storage of intermediate results. The 
instruction set allows multiplier, ALU, or shifter inputs to be sourced from the auxiliary 
registers or from the accumulators instead of from memory when necessary. 

TMS320C55xx arithmetic ALU operations include addition, subtraction, absolute 
value, compare, negation, minimum, maximum, round, and saturate. Results from the 
4O-bit ALU may overflow into the upper 8 bits of the 40-bit accumulator register, or, if a 
saturation mode bit is enabled, results can be limited to a 32-bit range. In some cases of 
addition and subtraction instructions, the second data operand (accumulator, memory, or 
16-bit constant) can be pre-shifted arithmetically up to 31 bits left or 32 bits right before 
computation; the shift amount is specified as an immediate value in the instruction or by 
the contents of one of the T registers. 

TMS320C55xx logical operations include bitwise AND, OR, XOR, and comple­
ment. For some logical instructions, the second data operand (accumulator or constant) 
can be pre-shifted logically up to 31 bits left or 32 bits right before computation. 

ALU operations execute in a single cycle unless a memory access incurs pipeline 
stalls or wait states. Most ALU instructions (ADD, SUB, NEG, MIN, MAX, AND, OR, 
NOT, XOR, and single-bit shifts) can be performed in either the 40-bit ALU or 16-bit 
ALU. Unlike the 40-bit ALU, the 16-bit ALU cannot use accumulators as destination reg­
isters, but can use the lower 16 bits of an accumulator as an input operand. The 40-bit 
ALU supports 16-bit and 4O-bit input operands, which can come from a register or directly 
from memory. In addition to the 40-bit accumulator registers, the auxiliary registers and 
four temporary registers (TO-T3) in the address generation unit can be used as operand 
sources for the ALUs. Alternatively, one operand can be specified as immediate data if the 
other operand comes from an accumulator. 

The TMS320C55xx is not a load/store architecture; the processor 
primarily operates on data directly from memory. This approach 
eases assembly programming and makes the processor more C 
compiler friendly since the compiler does not have to keep track of 
data registers beyond the four accumulators. 

Like the ALU in the TMS320C54xx, the TMS320C55xx 40-bit ALU supports 
dual parallel (SIMD) additions and subtractions by treating 32-bit memory operands as 
pairs of 16-bit words. (The 16-bit ALU does not support SIMD operations.) For SIMD 
operations, the ALU operates on a 32-bit data operand from memory and/or a 40-bit data 
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operand from one of the accumulators. In this mode, the ALU computes two additions, 
two subtractions, or one addition and one subtraction in paralleL The ALU supports dual 
16-bit maximum and minimum operations; dual 16-bit maximum and minimum instruc­
tions operate on pairs of 16-bit data. One of the results is stored in the lower 16 bits of the 
accumulator, and the other is stored in the upper 24 bits of the accumulator, but is limited 
to 16 bits if the saturation mode bit is enabled. Two transition registers, TRNO and TRNl, 
are updated to reflect the results of the two comparisons. 

Dual 16-bit ALU capability is useful in many applications, includ­
ing computation of path metrics in Viterbi decoding. This is evi­
denced by the processor's relatively low cycle counts on BDTI's 
Viterbi benchmark. 

The TMS320C55xx also supports a maximum difference instruction that, when 
combined with a dual memory store, replaces two TMS320C54xx compare-select instruc­
tions. 

A conditional subtract instruction is used for iterative division to obtain the result 
of a 32-bit dividend divided by a 16-bit divisor. The result is obtained by repeating the 
conditional subtract 16 times, yielding a result in 16 cycles. 

The TMS320C55xx's two multiply-accumulate (MAC) units perform 
17 x 17 ~ 40-bit multiplication. Multiplier results can be stored in an accumulator, added 
to an accumulator, or subtracted from an accumulator. Both MAC units can operate in par­
allel with single-cycle throughput and latency. The multiplier product can by automati­
cally shifted left by one bit to support fractional multiplies via a mode-controlled option. 
Accumulator results can be limited to 32 bits in saturation mode, or can expand into the 
upper 8 bits of the 40-bit accumulator, depending on the setting of a mode bit. 

The two multipliers share one operand input, taken directly from memory. The 
other multiplier inputs are unique to each multiplier, and can be accessed from memory 
using a single address register (ARO-AR7) with two address offsets or using two address 
registers, or can be sourced from one of the T registers in the address generation unit. Mul­
tiply and multiply-accumulate instructions have single-cycle latencies. 

Combined with its 160 MHz instruction execution rate, the dual 
MAC units enable the TMS320C55xx to achieve 320 million multi­
ply-accumulates per second. The TMS320C55xx's single-cycle, 
dual multiply-accumulate capability is comparable to that of the 
Lucent DSP 16.xxx family in tasks such as FIR jilters, correlations, 
and multi-channel operations where two multipliers can readily 
share an operand. Other algorithms, such as BDTI's Vector Dot 
Product benchmark, may not be able to take advantage of a shared 
operand between multipliers, demoting the TMS320C55xx to sin­
gle-MAC performance. 
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Multiplication operands can be signed/signed, signed/unsigned, or 
unsigned/unsigned. Multiplication operations include multiply, multiply-add, and multi­
ply-subtract. The TMS320C55xx can optionally shift the multiplier product 16 bits right 
before adding to the accumulator, improving the efficiency of multi-precision operations 
by combining a multiplication and a shift into a single instruction. 

The zero-overhead 16-bit right shift of multiplier products enables 
the TMS320C55xx to implement 32-bit multiplications where the 
least significant 16 bits of the product are dropped in three cycles. 
In contrast, the Analog Devices ADSP-218x family, for example, 
takes five cycles because separate shift instructions are required. 

The TMS320C55xx barrel shifter is capable of performing arithmetic and logical 
shifts of up to 31 bits left or up to 32 bits right in a single instruction cycle. Shift opera­
tions can optionally set the carry flag. All shift operations take the shift amount either 
from an immediate operand encoded in the instruction word or from one of the T registers. 
A single-bit left or right rotate instruction is also provided. 

The TMS320C55xx barrel shifter supports single-cycle exponent detection of a 
value stored in an accumulator. The processor also supports single-cycle normalization, in 
which the processor calculates the exponent and normalizes the accumulator contents. The 
TMS320C55xx lacks support for single-cycle block exponent calculations, in which a 
block of data is scanned iteratively and the exponent of the largest-magnitude value is 
returned. 

Block floating-point capability would make the TMS320C55xx 
more efficient in algorithms which use block floating-point arith­
metic, such as some FFTs, speech coders (e.g., G.728), and 
state-space control algorithms. 

The TMS320C55xx barrel shifter supports single-bit and bit-field modification, 
extraction, and insertion, along with bit and bit-field test instructions. Bit-field modifica­
tion is useful for parsing packed data structures and for graphics functions. Bit-field test 
operations are useful in network applications where a header must be found a bit stream. 
The barrel shifter's bit count instruction counts one bits in an accumulator and can be used 
for parity calculations. 

The TMS320C55xx barrel shifter instruction set should facilitate 
efficient code whether programming in assembler or in C, assum­
ing the C compiler takes advantage of these instructions. The 
TMS320C55xx s advantage over other processors is that the barrel 
shifter operates on data directly from memory while many other 
processors, such as the Analog Devices ADSP-218x, require that 
data operands first be loaded into registers. 

TMS320C55xx arithmetic and logical ALU operations, multiplier operations, and 
barrel shifter operations update carry and overflow (one for each accumulator) status bits 
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that can be used for conditional branches, conditional returns, or the execute conditional 
instructions. The same instructions can directly test any accumulator, address, or tempo­
rary register for an arithmetic condition relative to zero (equal to zero, less than zero, not 
equal to zero, or greater than zero.). 

Most processors have shared arithmetic status bits that contain the 
status generated by the last arithmetic instruction executed. The 
TMS320C55xx's approach of testing individual accumulators, aux­
iliary registers, and temporary (T) registers eliminates some extra­
neous register comparison instructions when testing a register s 
status relative to zero. 

Testing a register's status relative to zero is not always useful. TMS320C55xx 
compare instructions generate status in one of two auxiliary bits, TCI and TC2, when 
comparing two registers or when comparing a memory location with an immediate data 
value. The TC bits are also set by instructions such as register minimum/maximum 
instructions and bit test instructions, and serve as the carry bit for some shift instructions. 
One or both TC bits can be used as conditions for conditional branches, conditional 
returns, and the execute conditional instructions. The execute conditional (XCC and 
XCCPART) instructions allow single-cycle conditional execution of any TMS320C55xx 
non-branch instruction such as arithmetic or data move instructions. Simpler instructions 
can be executed in parallel with XCC, yielding single-cycle conditional execution. More 
complex instructions must follow XCC, yielding two-cycle conditional execution. 

Conditional execution of non-branch instructions optimizes search 
loops and other routines that require frequent decision making by 
eliminating the need for branches. This improves code execution 
time and, by improving code density, facilitates re-use of instruc­
tions from the 64-byte instruction buffer queue when executing 
loops. 

The TMS320C55xx accumulator can be set for a 32-bit or 40-bit overflow bound­
ary. If the saturation mode bit is enabled and the accumulator overflow boundary is set to 
32 bits, results of operations are limited to the largest positive or negative 32-bit value. To 
achieve bit-exact results for many of the lTV voice compression algorithms (e.g., G.723, 
G.729), 32-bit saturation must be enabled. If saturation is enabled and the accumulator 
overflow boundary is set to 40 bits, results are saturated upon overflow past the 40-bit 
boundary. If saturation mode is disabled or if 40-bit accumulator overflow boundaries are 
being used, an explicit instruction can be used to perform saturation on a 32-bit accumula­
tor boundary. 

Saturation is performed when data transfers to and from memory include a shift 
operation. When accumulator data is shifted left before a transfer to memory, if the result 
overflows and saturation mode is enabled, the data will be saturated to 32 bits or 40 bits 
depending the setting for the accumulator overflow boundary. If saturation mode is 
enabled, when data from memory is shifted before being loaded into an accumulator and 
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the shifted data exceeds the accumulator overflow boundary, the accumulator is loaded 
with a saturated data word. Data operands taken directly from memory and pre-shifted are 
saturated before input to a computation. 

There is an explicit instruction to perform rounding between bits 15 and 16 of an 
accumulator. Alternatively, rounding can be optionally performed as part of a multiply, 
multiply-accumulate, or multiply-subtract instruction. Rounding can also be optionally 
performed on an accumulator when performing a memory read, memory store, or a satura­
tion instruction. 

Rounding and saturation incur no overhead since they can be per­
formed in combination with arithmetic and load instructions. 

Two special finite impulse response (FIR) filter instructions accomplish FIR filter 
computation at a rate of two multiply-accumulates per instruction for FIR filters with sym­
metric coefficients. The instruction adds the delayed input samples that are equidistant 
from the left and right of the center tapes), since these two samples share the same filter 
coefficient. On the next cycle, the summed samples are multiplied by the coefficient while 
the next two equidistant samples are summed. Another form of the instruction subtracts 
the equidistant taps before multiplying, implementing a coefficient array that is arithmeti­
cally inverted (anti-symmetrical) about the center tapes). 

In cases where filter coefficients are not symmetric (such as LMS 
filters where the coefficients change for each execution of the fil­
ter), a shared filter coefficient in a multiply-accumulate is not use­
ful for achieving two multiply-accumulates per instruction cycle. 
Processors such as the Lucent DSP 16.nx can read four data oper­
ands in parallel with dual multiply-accumulates, and so can per­
form dual multiply-accumulates in a wider range of applications. 

The TMS320C55xx includes special instructions that combine use of the data path 
ALU and multiplier-accumulator for efficient calculation of distances for Viterbi decod­
ers. Also, an LMS instruction allows two-cycle least mean-squared (LMS) filter coeffi­
cient update. 

The LMS instruction optimizes the coefficient update loop to two 
cycles, as on the TMS320C54xx. Many older DSP architectures, 
such as the Analog Devices ADSP-21xx, support two-cycle LMSfil­
ter coefficient update loops. Considering that many telephony 
applications developers desire for improved line echo canceller 
performance, it is surprising that Texas Instruments did not further 
optimize calculation of LMS filters to improve performance over 
that of the TMS320C54xx. 
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Memory System 

The TMS320C55xx memory system implements a modified Harvard architecture, 
with multiple memory blocks within a 16 Mbyte (24-bit address) unified memory map. 
Instruction and data accesses occur simultaneously using multiple address and data buses. 
Memory regions include on-chip dual-access RAM (DARAM) , on-chip single-access 
RAM (SARAM), on-chip ROM, and external memory. 

The TMS320C551O uses the following memory configuration: 

• 16K x 16 of on-chip program/data ROM (or external memory if disabled) 

• 32K x 16 of on-chip dual access RAM 

• 128K x 16 of on-chip single-access RAM 

• 16032K x 8 of external memory space, with four chip selects each governing 
approximately 25% of the external memory. 

The TMS320C55xx fetches instructions using a 24-bit program memory address 
bus and a 32-bit program memory data bus. The TMS320C55xx uses 8-, 16-,24-,32-,40-, 
and 48-bit instructions. Internal memory can be treated as being 16 or 32 bits wide, and 
external memory can be up to 32 bits wide. The variable-length instructions stored in 
memory do not have to be aligned on memory word boundaries. The instruction buffer 
unit fetches instruction.data from memory, stores the instruction data into the 64-byte 
instruction buffer queue, and parses the variable-length instructions from the instruction 
buffer queue for decoding. 

As shown in Figure 7.14-1, the TMS320C55xx includes five unidirectional, 
on-chip data memory bus sets: three data read bus sets and two data write bus sets. Each 
bus set includes a 24-bit address bus and 16-bit data bus. The write buses support storage 
of two 16-bit words from separate accumulators or one 32-bit word from one accumulator. 
Therefore, maximum data write bandwidth is 320 million 16-bit words per second on a 
160 MHz TMS320C5510. The TMS320C55xx can read up to three data operands per 
instruction cycle; thus, maximum on-chip data read bandwidth is 480 million 16-bit words 
per second at 160 MHz. 

With three data read buses, the TMS320C55xx supports sin­
gle-cycle dual two multiply-accumulates when the two multipliers 
share one operand. In contrast, for example, the dual-MAC Lucent 
DSP16xxx provides two 32-bit buses to read two pairs of contigu­
ously located data operands. 

Care must be taken in mapping instructions and data to intemal RAM in order to 
achieve single-cycle instruction execution. Internal DARAM and SARAM are divided 
into 4 K word (8 Kbyte) blocks. To avoid stalls in the case where three data operands are 
required for dual multiply-accumulates, the programmer must be careful to arrange data in 
memory to avoid memory stalls; for example, by sourcing two data operands from the 
same DARAM block, the coefficient data operand from a different ROM, DARAM, or 
SARAM block, and the instruction from a different SARAM block. 
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The TMS320C55xx architecture requires a programmer to plan 
memory usage in order to ensure that vector data is placed in dif­
ferent areas of memory. Otherwise, memory conflict stalls are 
incurred due to too many accesses to the same memory block. An 
example of where this maybe a problem is an autocorrelation algo­
rithm that. uses both multipliers, where all data operands are from 
the same vector. To avoid memory conflict stalls in this case, a copy 
of the vector must be made before computation. 

The TMS320C55xx supports DMA transfers in parallel with instruction-related 
data accesses. The DMA controller is discussed in the Peripherals subsection. 

External Memory Interface 

The TMS320C551O multiplexes its internal program and data buses onto a single 
external memory interface consisting of a 24-bit address bus and a 32-bit data bus. The 
external memory interface provides signaling to access approximately 15.6 Mbytes parti­
tioned into four areas, with the size of each area fixed at approximately 4 Mbytes. Each 
area is controlled by a separate chip select pin and can be configured for a different type of 
memory device: SDRAM, synchronous burst SRAM (SBSRAM), or asynchronous mem­
ory (SRAM, flash ROM, or parallel peripherals). 

The TMS320C5510's large address space and supportfor low-cost 
memory devices such as SDRAM provides good flexibility for sys­
tem designers and accommodates large programs. 

Zero wait-state operation is supported if sufficiently fast memory devices are used. 
Wait states are programmed independently for each of the four external memory areas to 
support, for example, one area using a slower flash memory device and another area using 
fast SDRAM. The TMS320C551O has an ARDY pin that functions as an asynchronous 
wait input, allowing an external device to halt the processor until requested data is avail­
able. 

The TMS320C551O is capable of reading one instruction, transferring up to three 
data operands between the CPU and memory, and performing two DMA transfers in a sin­
gle instruction cycle. As long as only one of those memory transfers requires the external 
memory bus and the transfer does not require wait states, no penalty is incurred. When 
more than one of the transfers accesses off-chip memory, the TMS320C551O prioritizes 
the requests and performs the transfers sequentially. 

Data stored in external memory can be 16 or 32 bits wide. If an external memory 
bank is 32 bits wide, even and odd word addresses correspond to the lower and upper 
halves of a 32-bit memory location. 

The TMS320C55xx supports memory read and write instructions to access 8-bit 
data located in 16-bit or 32-bit memory, but the instruction must explicitly specify the 
lower or upper byte of a 16-bit word. Since the TMS320C55xx supports 8-, 24-, and 40-bit 
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instructions (among other sizes), instruction addresses can fallon any byte boundary. The 
processor does not support 8-bit external memory. 

The TMS320C55xx allows other devices to take control of its external buses by 
asserting a bus hold pin; a corresponding hold acknowledge output pin indicates to the 
requestor that the bus is available. The TMS320C55xx continues program execution while 
the bus is held as long as all instructions and data operands are accessed from internal 
memory. The processor stalls when an instruction or data access to external memory is 
attempted and remains stalled until the external bus is released by the requestor. 

Address Generation Units 

The TMS320C55xx Address-Data Flow Unit contains three address generation 
units and eight 24-bit address registers, XARO-XAR7. The Address-Data Flow Unit also 
contains a 16-bit ALU, which can be used for general-purpose ALU computations as 
described in the Data Path section. The XARO-XAR7 registers are referred to as 
"extended auxiliary registers" since the lower 16 bits of these registers are actually the 
auxiliary registers discussed earlier, ARO-AR7. The upper 7 bits of the extended registers 
contain the data page, and are used to support the wider address space of the 
TMS320C55xx relative to that ofthe TMS320C54xx. ARO-AR7 are memory mapped reg­
isters; XARO-XAR7 are not. The address generators also contain a number of other spe­
cial-purpose addressing registers, such as circular buffer registers, as described below. 
Like the auxiliary registers, many of these registers concatenate 7-bit extension registers 
with 16-bit base registers to create 23-bit addresses. 

The TMS320C55xx supports memory-direct and register-indirect addressing for 
accesses of 16-bit and 32-bit data. The upper of lower 8 bits of 16-bit location can be 
accessed by specifying a "high_byte" or "low_byte" qualifier in a data access instruction. 
The 8-bit data is read into or written from the lower 8 bits of a register regardless of 
whether the high or low byte of the memory location is accessed. Immediate data loads to 
registers are supported. Register-indirect addressing uses one of the eight 23-bit address 
registers (XARO through XAR7) and the 23-bit extended coefficient data pointer (XCDP) 
to read or write data operands. Register-indirect modification modes include pre- or 
post-modification by -1, 0, or +1 for 16-bit data accesses, or if performing a 32-bit data 
access, by -2, 0, or +2. Addresses can be pre- or post-modified by the contents of one of 
two 16-bit modifier registers, TO and Tl. Another mode allows an address register or the 
stack pointer to be indexed by an immediate constant. When performing an indexed access 
of data using a 16-bit immediate offset, the resultant address is not fed back into the 
address register, so that the address register can be reused as the base address of a structure 
or for stack data. 

To allow more freedom in addressing modes without the use of wider instruction 
words, the operation of the address generators is controlled by a special mode bit, ARMS. 
When ARMS is cleared, the processor is in "DSP mode," and the addressing modes avail­
able include those commonly used in DSP algorithms, such as bit-reversed addressing. 
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When ARMS is set, the processor is in "Control mode," and the addressing modes avail­
able include those that are particularly useful for general-purpose CPU.operations, such as 
indexed addressing with a short (3-bit) immediate index. Many addressing modes are 
available in both OSP and Control modes. The TMS320C55xx assembler provides macros 
to switch between . modes in one cycle. The TMS320C55xx also provides an assembly 
directive to allow tracking the status of the ARMS bit, which generates a warning if an 
unavailable addressing mode is specified. 

The ARMS bit increases the number of addressing mode without 
increasing the number of bits per instruction. The result can be 
interpreted as either more orthogonality in the instruction set and 
improves code density for control code. This approach forces the 
programmer to keep track of one more mode bit while program­
ming, though increasing the chances of bugs during software devel­
opment; however, the assembly directive provides some assistance 
in this regard. 

When performing dual multiply-accumulates, three data operands are accessed. 
The 16-bit coefficient data pointer (COP) is used to access the operand common to both 
multipliers, while each multiplier uses one of eight auxiliary registers (ARO-AR7) to 
access a unique second data operand. When performing dual multiply-accumulates, the 
coefficient data pointer update options are limited compared to those supported for 
ARO-AR7. The coefficient data pointer (COP) does not support pre-increment, pre-decre­
ment, update with the temporary registers, or bit-reversed addressing. The coefficient data 
pointer can also be used for single multiply-accumulates or for individual data accesses. 

When compared to similar DSP architectures, the TMS320C55xx 
has fewer address register update restrictions when performing a 
dual multiply-accumulate in parallel with access of multiple data 
operands. One significant limitation is that only the coefficient data 
pointer (CDP) can be usedfor the common data operand. 

The TMS320C55xx allows access of 32-bit data operands from memory with 
address register update to point to the next or previous 32-bit memory location when 
incrementing or decrementing the address register. 16-bit or 32-bit data can be transferred 
from memory to memory with single-cycle throughput. Two 16-bit data operands can be 
accessed using separate address registers and placed in the lower and upper 16-bit halves 
of an accuIIlulator register for a subsequent dual 16-bit ALU operation. Likewise, results 
of a dual 16-bit ALU operation can be stored two separate areas in memory. 

Transfer of 32-bit data words makes use of two of the' 
TMS320C55xx:SO five internal 16-bit data buses, thus restricting 
execution of parallel instructions that require data transfers. 

The TMS320C55xx supports circular addressing. Each pair of address registers 
share a common buffer start address and two groups of four address registers share a 
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buffer size. Each address register has a circular buffer enable bit so that one address regis­
ter in a pair can be constrained to the circular buffer boundaries while the other accesses 
memory linearly. The coefficient data pointer has its own circular buffer start address and 
buffer size register. The maximum circular buffer length is 64K x 16. There are no restric­
tions on circular buffer start addresses. 

The TMS320C55xx supports five circular buffers simultaneously, 
but four of the buffers are shared by two address registers. Another 
limitation is that the circular buffers pointed to by address registers 
ARO-AR3 must share the same buffer size. The same is true for 
address registers AR4-AR7. This is more flexible than the 
TMS320C54xx family, but still less flexible than the Analog Devices 
ADSP-218x and Motorola DSP563xxfamilies in which each of the 
eight address registers have unique circular buffer control. How­
ever, the TMS320C55xx allows unrestricted placement of circular 
buffers. In contrast, many other DSP processors require circular 
buffers to be aligned on a 2n-sized block boundary, where n=ceil­
ing[logibuffer size)]. 

Any of the TMS320C55xx auxiliary registers (ARO-AR7) can be used for 
bit-reversed addressing. The coefficient data pointer, CDP, cannot be used for bit-reversed 
addressing. Bit-reversed addressing is specified in the instruction word. In this addressing 
mode, the lower 16 bits of the address register are output in reverse order and are 
post-incremented or decremented by the contents of the temporary register, TO. 
Bit-reversed addressing mode enables the processor to transparently perform the data 
scrambling required for radix-2 FFfs. 

Memory-direct-like addressing is accomplished using a 16-bit immediate value as 
an address offset. There are two mutually exclusive modes of memory-direct addressing, 
which are controlled by the CPL mode bit. Accesses can be made relative to the 16-bit 
data page pointer (DP mode), or relative to the 16-bit stack pointer (SP mode). SP mode is 
required when executing code in the C run-time environment since it allows access of 
local function data from a local stack frame based on the stack pointer address. 

The CPL mode bit is an another example of Texas Instruments 
packing more flexibility and parallelism into the TMS320C55xx 
instruction set at the expense of the programming complexity, in the 
form of mode bits. 

Pipeline 

The TMS320C55xx uses a seven-stage execution pipeline consisting of stages for 
instruction decode, address generation, data access (two stages), reading data into the 
input registers, execution, and writing of results to registers or register contents to mem­
ory. This is deeper than the six-stage pipeline of the TMS320C54xx. 
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The pipeline is fully interlocked; that is, the processor inserts pipeline stalls to 
avoid unexpected results due to pipeline conflicts. Pipeline stalls are a common occur­
rence on the TMS320C55xx, but in many cases can be avoided with a thorough under­
standing of where in the pipeline instructions update addresses, load immediate data, 
access data from memory, execute arithmetic operations, and update arithmetic registers. 

The fast clock speed of the TMS320C55xx is enabled partially by a 
deep pipeline. The TMS320C55xx pipeline can stall up to two 
cycles on arithmetic operations, but most conflicts can be avoided 
by a knowledgeable assembly language programmer or 
well-crafted C compiler. 

An example of where a pipeline stall can occur is when one instruction loads an 
address register and the next instruction uses the same address register as an address 
source. The example below loads ARl with an immediate constant in the first instruction, 
an operation that is performed in pipeline stage six (the execute stage). The next instruc­
tion uses ARI as an address source, but stalls for four cycles in pipeline stage two, the 
address phase, waiting for the first instruction to pass through pipeline stage six. 

MOV #y16,ARl 

; 4 pipeline stalls incurred 

MOV *AR1+,ACO 

One workaround to this common problem is to place non-conflicting instructions 
between the stall-inducing instructions. The instruction set provides another workaround 
to the programmer. In the example below, the first instruction instead loads ARI with an 
immediate data value using the AMAR (modify address register) instruction. AMAR 
loads the address register in pipeline phase 2, the address phase. Since the next instruction 
completes the transfer in the same pipeline phase, it does not wait for the first instruction 
to complete, thus no pipeline stalls occur. 

AMAR #y16,ARl 

; no pipeline stalls 

MOV *AR1+,ACO 

Another case of where a pipeline stall will occur is when the first instruction trans­
fers an address register to another address register or accumulator register and the next 
instruction uses the same address register as an address source, with an address register 
update. The first instruction transfers the address register in phase 5, the read phase. The 
next instruction uses the address register in phase 2, the address phase, resulting in a 
two-cycle pipeline stall waiting for the first instruction to start its phase 5. No workaround 
is available in this situation except for placement of two unrelated instructions between 
the stall-inducing instructions. 

MOVAR1,ACl 

; 2 pipeline stalls incurred 

MOV *AR1+,ACO 

© 2001· Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C55xx Family 

When vectoring to interrupts, calling subroutines, branching, or returning from 
interrupts or subroutines, the TMS320C55xx discards instructions that have not completed 
the decode pipeline stage. Instructions that have been decoded finish execution, and are 
followed by instructions starting at the new program address. Conditional branches exe­
cute in four cycles if the branch is not taken, or in five cycles if the branch is taken. 
Unconditional branches execute in five cycles for relative addresses or three cycles for an 
immediate address. Subroutine calls and conditional returns have similar cycle counts. 
Unconditional returns from subroutines or interrupts execute in three cycles. 

Unlike the TMS320C54xx, the TMS320C55xx does not support delayed branches. 
To maintain assembly source code compatibility, the TMS320C55xx mnemonic assembler 
relocates instructions that occupy delay slots in software written for the TMS320C54xx, 
placing these instruction before the branch. 

In some cases, TMS320C54xx code that is reassembled and exe­
cuted on the TMS320C55xx may require more cycles to execute on 
the TMS320C55xx, for several reasons: the TMS320C55xx does not 
support delayed branches, it has a deeper pipeline, and it has the 
potential for stalls in the instruction buffer queue. Since the 
TMS320C5510 executes at the same clock rate as the fastest mem­
bers of the TMS320C54xx family, such a cycle count increase has 
the surprising effect of causing software written for the 
TMS320C54xx to run more slowly on the TMS320C55xx. 

Unlike some competitor DSP processors, the TMS320C55xx does 
not support delayed branches. Each instance of a branch results in 
up to four wasted cycles-cycles that could be occupied by useful 
instructions if delayed branching were supported. This is particu­
larly problematic in control code (where branches are more com­
mon). Three features mitigate this disadvantage; first, the processor 
allows a compute and data transfer instruction to be combined with 
a branch, reducing the branch penalty. Second, the TMS320C55xx 
can avoid branching in some cases by using conditional instruc­
tions. And lastly, the execute conditionally (XC) instruction 
replaces the next instruction with a NOP if a condition is not true, 
thus avoiding the full branch penalty. In cases where only a single 
instruction needs to be executed conditionally. 

Instruction Set 

The TMS320C55xx provides limited VLIW capabilities, executing up to two 
instructions in parallel in each instruction cycle. The TMS320C55xx instruction set is a 
superset of that of the TMS320C54xx, in many cases allowing two TMS320C54xx-like 
instructions to be executed in parallel. As a superset of the TMS320C54xx instruction set, 
the TMS320C55xx instruction set is not similar to the RISC-like instruction sets com-
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monly seen on other VLIW DSP processors, such as the TMS320C62xx. TMS320C55xx 
instructions vary in size from 8 to 48 bits depending on the amount of parallelism and 
whether immediate operands are used. Many TMS320C55xx instructions specify two par­
allel operations in addition to parallel data moves. 

The TMS320C55xx places a number of restrictions on which instructions can be 
executed in parallel,the most significant of which are: 

• The combined width of two instructions executed in parallel cannot exceed 48 bits. 

• Parallel instructions cannot load or store more data than is supported by the data 
buses in one cycle. 

• Two instructions accessing the data or system stack cannot execute in parallel. 

Only instructions which use a 16-bit immediate address or address register offset 
require 48 bits. Because of their width, these instructions cannot be executed in parallel 
with another instruction. Only program control instructions which use absolute 24-bit 
addresses require 40 bits. Only the NOP,MMAP, and reserved instructions for future 
co-processors require 8 bits. Therefore, the majority of common instructions require 16-32 
bits. The TMS320C55xx instruction set and key registers are summarized in Table 7.14-2 
and Table 7.14-3. 

The TMS320C55x:x instruction set thoroughly exercises the proces­
sor's hardware, providing single-cycle throughput for nearly every 
instruction. The processor supports dual 16-bit mUltiplications, 
dual 16-bitadditions, and parallel use of both the 16-bit address 
unit and the 32140-bit data path for arithmetic operations. 

Assembly Language Format 

TMS320C55xx prograinmers have a choice of an algebraic or a mnemonic style 
assembly instruction syntax. Examples in this report use the mnemonic assembly language 
syntax. 

Some instructions support up three data reads in parallel with arithmetic opera­
tion(s), as illustrated by the following instruction: 

MAC *AR3+, *CDP+, ACO 

:: MAC *AR4+, *CDP+, ACl 

The above instruction performs two multiply-accumulate operations using three 
data operands: a common coefficient pointed to by address register CDP and a unique 
operand for each MAC unit pointed to by address registers AR3 and AR4. The two prod­
ucts are summed in accumulators ACO and AC1. Address registers AR3, AR4, and CDP 
are each incremented after being used to read data from memory. This instruction has 
options (not shown) to designate multiplier inputs as unsigned, to specify accumulator sat­
uration, and to specify accumulator rounding between bits 15 and 16. 
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The two colons (::) shown in this example indicate that the two multiply-accumu­
lates are part of the same instruction rather than being two separate instructions. Texas 
Instruments refers to this type of parallelism as "implied parallelism." When two instruc­
tions are paired for parallel execution, the II notation is used (as TMS320C6xxx architec:­
tures). Pairing two instructions is referred to by Texas Instruments as "user parallelism." 

Class Instructions 

Arithmetic 
Absolute value, add, negate, subtract, add-subtract, minimum and maxi-
mum, dual 16-bit add, dual 16-bit subtract 

Multiply-
Single or dual multiply, multiply-add, or multiply-subtract (support any 
combination of signed and unsigned multiplier inputs, rounding, and satura-

Accumulator 
tion) 

Logic And, exclusive-or, or, complement 

Shifting 
Arithmeticllogical/rotate shift left/right by 0-31 bits, single-bit shift in 
addressing units 

Conditional 
Conditional branch, conditionally execute next one instruction, condition-

Execution 
ally execute parallel instruction, conditional shift, conditional subtract for 
iterative division, conditional add/subtract for Viterbi decoder algorithm 

Compare 16-bit, 32-bit or 40-bit registers with instruction-specified condi-
Comparison tion (>, >=, <, <=, ==, !=). Comparison of memory to register for == condi-

tion. Result is a single true or false status bit 

Looping Nested single- and multi-instruction hardware loops 

Branching 
Conditional relative branch, absolute branch, absolute branch on counter 
status, compare and branch 

Subroutine Call 
Conditional subroutine call, conditional return, return from interrupt, push, 

Pm! 

Bit 
Bit-field extract, bit-field expand, bit-field ones count; register bit test, bit 

Manipulation 
complement, bit set, bit clear; memory bit test, bit complement, bit set, bit 
clear 

Special Arith- Division step, absolute distance, FIR filter two taps, LMS filter tap and 
metic Functions update, round and saturate, square distance, exponent detect, normalize 

l 

TABLE 7.14-2. TMS320CSSxx instruction set summary. Underlined instructions 
are new for the TMS320CSSxx and are not supported on the TMS320CS4xx. 
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In some cases, an instruction with implied parallelism can be paired with another instruc­
tion, thus combining implied and user parallelism. 

Parallel Move Support 

The TMS320C55xx supports up to three operand-related parallel data moves 
within a single instruction, such as in the example shown above. Three data operands are 

Unit Register(s) Width Description 

ARO-AR7 16 bits Auxiliary registers 

XARO-XAR7 24 bits Extended auxiliary registers 

TO-T3 16 bits Temporary registers 

CDP 16 bits Coefficient data page pointer 

DP 
Address 

16 bits Data page pointer 

Unit SP 16 bits Stack pointer 

PDP 7 bits Peripheral data pointer 

SSP 16 bits System stack pointer 

BK03. BK47. BKCa 16 bits Circular buffer size registers 

BSAOI. BSA23. 
16 bits Circular buffer start address registers 

BSA45. BSA67. BSAca 

Data Path ACO-AC3a 40 bits Accumulator registers 

PC 24 bits Program counter 

RETA 24 bits Return address register 

BRCO,BRCla 
Control 

16 bits Block repeat counters 

Unit BRSI 16 bits Block repeat save register 

RSAO,RSAL 
24 bits 

Block repeat start and end address 
REAO,REAla registers 

RPTC 16 bits Single repeat counter 

TABLE 7.14-3. TMS320C55xx programmer-controlled registers, Underlined 
registers are not included in the TMS320C54xx 
a. The TMS320C54xx has two 40-bit accumulators, one circular buffer size register, one circular buffer start 

address register, and one block repeat counter. 
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read directly from memory when performing single-cycle, dual multiply-accumulates. In 
simpler instructions, only one or two data operands are read directly from memory. 

The TMS320C55xx supports operand-unrelated parallel data moves in some 
instructions with implied parallelism, such as the multiply-and-store instruction shown 
below: 

MPYMR *ARO+,TO,AC1 
:: MOV HI (ACO«T2) , *AR1+ 

This instruction performs a multiplication and stores the results in ACl; in parallel, 
the processor shifts and stores the upper 16 bits of ACO to memory. Depending on the 
instruction, the move must specify either a16-bit load or a l6-bit store. 

In addition to the operand-unrelated parallel move support within a single instruc­
tion, a pair of instructions that are executed in parallel may include a move instruction, 
thus achieving the same effect. Two 16-bit data operands can be stored to separate loca­
tions; or one 32-bit data operand can be stored to a 32-bit memory location. Similar opera­
tions are supported for loading data. Register-to-register, immediate-data-to-register, and 
memory-to-register data move instructions can be paired with arithmetic, data transfer, or 
branch instructions. In addition, the TMS320C55xx supports a swap instruction that 
exchanges the contents of one or two register pairs (i.e., AR6<=> T2 or both AR4<=> TO 
and AR5<=>T1) in a single cycle. 

Below are examples of parallel move support on the TMS320C55xx. 

1) MOV #3, AC1 

II MOVAC2, dbl(*AR4) 

2) MOV #3 « #16, AC1 

II MPY T1, AC3 

3) MPY *AR3+, *CDP+, ACO 

:: MPY *AR4+, *CDP+, AC1 

II RPT CSR 

The two operands for an arithmetic operation can both be accessed from memory, 
one from memory and one from a register, or both from registers. There are several restric­
tions on addressing modes used for parallel moves. When both operands are from mem­
ory, both must be accessed using register-indirect addressing with a non-immediate (-1, 0, 
+1, TO or T1 register) address register post-modify, and may use bit-reversal and modulo 
addressing. When only one of the two operands are from memory, more flexibility is 
allowed in data addressing modes; a pre-modified address register, stack pointer with 
16-bit immediate offset, or a 16-bit paged direct address is allowed. However, when a 
16-bit immediate address register offset, stack pointer offset, or paged direct memory 
address i~ specified, the instruction requires 40 or 48 bits. 

The TMS320C55xx also supports read-modify-write arithmetic and logical opera­
tions, as illustrated by the following example: 

XOR 030h,*AR3(012h) 
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This instruction reads an operand from memory, xors it with an immediate oper­
and, and stores the result back to the same location· in memory. This form of data access 
has the same effect as an operand-related parallel data move, in that the data is accessed by 
the same instruction that performs the arithmetic operation. In this example, address regis­
ter AR3 is the base address and 012h is an immediate offset. This instruction executes in 
one cycle and is 48 bits long. 

Orthogonality 

As discussed in the Instruction Set section, the TMS320C55xx allows two instruc­
tions to be paired for parallel execution, but imposes several restrictions on which instruc­
tions can be paired. In addition, there are a number restrictions on the use of addressing 
modes for parallel data moves, depending on the type of data accessed and on whether the 
instruction is paired with another instruction for parallel execution. These restrictions 
complicate programming and reduce the orthogonality of the processor. 

The TMS32OC55xx instruction set and instruction execution model are unusual 
and fairly complex. "Implied" and "user-defined" parallelism can be confusing, and will 
likely create a need for programmers to look up instruction syntax regularly even after 
they are familiar·with the device. In addition, the processor uses a number of mode bits 
(such as the ARMS bit) to control various aspects of its operation, which improve code 
density but complicate programming and debugging. 

Overall, the TMS320C55xx is not particularly orthogonal. Its 
unusual instruction set allows the processor to maintain assembly 
source code compatibility with its predecessor while extending par­
allelism, but as a result it suffers somewhat from legacy constraints 
and does not provide a clean, straightforward programming model. 

Execution Times 

Most TMS32OC55xx instructions execute in a single cycle, including the 
read-modify-write instructions discussed earlier. Many program control instructions force 
pipeline flushes, and thus require four to seven cycles to execute. Program control instruc­
tions include all branches and subroutine calls (regardless of whether they use a relative or 
absolute address) and return instructions (Le., subroutine and interrupt returns). 

The first iteration of block repeat loops suffer a one-cycle stall if the first instruc­
tion in the loop requires more than 32 bits (thus requiring two fetches by the instruction 
buffer) and this instruction is the destination of a program discontinuity. 

Pipeline conflicts are discussed in an earlier section. Most notably, a two-cycle 
pipeline stall occurs when an address register is loaded into a register, and the programmer 
attempts to use the source address register with address modification in the next instruc­
tion cycle. 
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Instruction Set Highlights 

The TMS320C55xx instruction set and instruction execution model are unusual. 
The processor combines the ability to execute the complex, compound instructions typical 
of conventional DSP processors with the VLIW-like ability to execute up to two instruc­
tions in paralleL Other notable features of the TMS320C55xx instruction set include: 

• Variable instruction widths ranging from 8 bits to 48 bits 

• Instructions can specify multiple operations, and the processor can execute up to 
two instructions in paralleL 

• Uniform single-cycle execution of instructions and instruction pairs with the 
exception of program flow-control instructions. 

• . The execute conditionally instructions (XCC and XCCPART) allow conditional 
execution of an instruction combined with them in parallel, or allow the following 
parallel instructions or non-parallel instruction to be executed conditionally. 

• Dual 16-bit multiply, multiply-accumulate, add, subtract instructions. 

• Read-modify-write instructions. 

• Input data to computations, whether from memory or a register, can be pre-shifted 
before use as an operand. 

• Register data can be shifted as it is stored to memory. 

• Indexed addressing modes allow stack data or structure members to be operands of 
compute instructions. 

• Exponent detect and normalize instructions. 

• Division-step instruction. 

• Specialized minimum/maximum, square distance, LMS filter tap and update, FIR 
dual tap, and absolute distance instructions. 

Execution Control 

Clocking 

The TMS320C55xx allows use of an external crystal with its on-chip oscillator, or 
an external clock oscillator. The TMS320C55xx supports two clock modes: bypass and 
lock. In bypass clock mode, the master clock is the external clock frequency divided by 1, 
2,4, or 8. 

In lock mode, the PLL multiplies the external clock frequency by an integer value 
between 2 and 31, or divides the external clock frequency by 1,2,3, or 4. The PLL output 
clock drives the master clock. In lock mode, when a 200 MHz master clock is desired, the 
external clock can vary between 6.45 MHz and 800 MHz depending on the PLL multiplier 
and divider settings. A clock output pin represents the master clock, and is phase locked to 
the external clock when in lock mode. 
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Hardware Looping 

The TMS320C55xx allows three levels of nested hardware loops. Additional lev­
els of loop nesting can be implemented using conditional branches or by storing and 
restoring loop control registers. Single and block repeat loop status are saved to the stack 
upon interrupt or subroutine call and restored upon return. This allows an interrupt service 
routine or subroutine to use loops without having to restore loop status before return. In 
single or block repeat loops, these routines must save upon entry and restore upon return 
the loop count, loop start address, and loop end address registers. 

When all three hardware looping levels are used, the two outermost loops are 
block repeat loops; the innennost loop must be a single-instruction repeat loop which can 
repeat either one instruction or two parallel instructions. A single-instruction repeat can be 
used more than once inside a block repeat. Unlike on the TMS320C54xx, both single and 
block hardware loops are interruptible. 

Support for interruptible single-instruction hardware loops is an 
advantage. 

The block repeat instruction uses a loop count register that must be preloaded. 
When two block repeat loops are nested, the inner loop relies on a block repeat save 
(BRSO) register that can be preloaded before the outer loop; this can save cycles inside the 
outer loop when the inner loop uses a fixed repeat count. BRSO can be modified inside the 
outer loop, but the modification must be done three cycles before execution of the inner 
loop's block repeat instruction to avoid a pipeline stalL Block repeats are terminated when 
the loop counter decrements below zero or if the program branches past the loop end 
address (similar to a C-Ianguage break inside a while loop). 

There are two forms of block repeat instructions: repeat-block, and 
repeat-block-Ipcal .. Repeat-block-Iocal uses the instruction buffer queue to store the com­
plete loop contents; loop contents must not exceed 56 bytes. This form of hardware loop 
conserves power and eliminates overhead due to program-memory wait-states or instruc­
tion buffer unit stalls. The assembler will generate a warning if the 56-byte limit is 
exceeded. If the limit is exceeded and the assembler warning is ignored, the, loop will 
behave as a non-local repeat-block and fetch instructions from memory if they are not 
already contained in the instruction buffer queue. When the repeat block is bigger than the 
size of the instruction buffer queue, the instruction buffer queue provides a prefetch mech­
anism which tests the contents of the block repeat counter and starts refetching instruc­
tions at the top of the loop if BRC is greater than zero. This prefetch mechanism is not 
active for block-repeat-Iocalloops. 

The single-instruction repeat allows repetition of a single instruction or two paral­
lel instructions. The repeat count can either be specified by an immediate constant or pre­
loaded into a dedicated register. The contents of the dedicated register are copied into a 
second repeat count register, preserving the original repeat count. Thus, the repeat count 
can be reused, or (using a special form of the single repeat instruction) it can be incre-
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mented or decremented by a 4-bit constant or 16-bit register each time the single-repeat 
instruction is executed. The single-repeat instruction can be executed conditionally so that 
the loop is only executed if the result of a previous calculation is true. 

The ability to re-use the loop count of a single-repeat loop across 
each iteration of the outer loop saves overhead cycles that would 
otherwise be required in some applications for setting up the inner 
loop. For example, this capability will be usefulfor the correlations 
used in speech compression algorithms. 

Interrupts 

The TMS320C551O has the following interrupt sources: 

• External reset 

• Non-maskable interrupt (NMI) 

• Six edge-triggered external interrupts 

• Two timer interrupts 

• 13 interrupts generated by peripheral events (DMA, serial I/O, etc.) 

• Bus error 
• Data log event (described in the On-Chip Debugging section) 

• Real-time operating system (RTOS) interrupt ) 

• Six software interrupts 

All interrupts are maskable except for the reset, non-maskable, data log event, 
RTOS, and bus error interrupts. Interrupts that occur simultaneously are serviced in order 
based on a fixed priority scheme. 

TMS320C551O peripheral interrupts include events from the host port, six serial 
port interrupts (one transmit and one receive from each of three serial ports), and inter­
rupts from each of six DMA channels. The peripheral, software, and the external inter­
rupts are individually maskable and all maskable interrupts can, as a group, be disabled by 
a global enable bit. Each maskable interrupt is also individually controlled by a unique 
debug interrupt enable bit in a control register. This bit, when set, allows the interrupt to be 
serviced, even when the processor is halted by on-chip emulation activity. 

Each interrupt is assigned a unique eight-byte area in the interrupt vector table. 
When an interrupt event occurs, if the interrupt is unmasked, the processor starts execut­
ing code at the address stored at the vector location. 

Normally upon interrupt (before executing code at the vector address), the address 
of the instruction in the decode pipeline phase is stored to the stack. In fast interrupt mode, 
the instruction's address is instead stored into a return address (RETA) register. Simulta­
neously, the contents of RETA, which are likely to contain the return address of the previ­
ously called subroutine, are pushed onto the stack. The instructions already in the pipeline, 
between the decode and execute phases, are completed as the instruction pipeline is fed 
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new instructions starting from the address stored in the interrupt vector table. In fast inter­
rupt mode, by not relying on retrieving of the return address from the stack, the interrupt 
return is completed faster. 

Interrupts are executed with eight cycles of latency due to the seven- stage pipeline 
of the TMS320C55xx. During this latency, the four status registers, the loop cOhtrol regis­
ter, and debug status register are saved to the stack. 

Thefast interrupt feature on the TMS320C5510 should not be con­
fused with the fast interrupt feature of Motorola DSPs, which 
reduces interrupt latency by inserting a small number of interrupt 
service routine instructions into the processor s pipeline without 
requiring a branch operation. 

The TMS320C5510 lacks a watchdog timer, a feature commonly 
used on processors that are responsible for system control. A 
watchdog timer forces a software reset if the processor fails to peri­
odically rewrite a register. If this functionality is required on the 
TMS320C5510, it can be implemented in software via an interrupt 
service routine. 

Stack 

The TMS320C55xx maintains two 16-bit wide software stacks, the system stack 
and data stack, each with unique stack pointers. Upon interrupt or subroutine call, the 8-bit 
loop status and 24-bit return address are pushed into the two 16-bit stacks simultaneously, 
using the two stacks as a single 32-bit stack. (The two stack pointers move together as a 
32-bit stack, but the two stack pointers contain different addresses.) Upon interrupt or sub­
routine return, loop status and return addresses are popped from the two stacks. 

The stacks can be configured in three modes. In 32-bit stack mode, the stacks are 
used in tandem, forming a single 32-bit wide stack; the two 16-bit stack pointers move in 
lock-step even when values are only pushed into the data stack. In addition, there are two 
dual 16-bit stack modes in which the two stack pointers are independent, and push and pop 
operations only affect the data stack. One 16-bit stack mode uses the fast interrupt return 
mode, in which the loop status and return addresses are stored to dedicated registers 
instead of to the stack in order to save cycles upon subroutine or interrupt return. The sys­
tem stack is still used in this mode, because the previous contents of the dedicated regis­
ters mustbe stored order to support interrupt and subroutine nesting. 

The second dual 16-bit stack mode saves the return address and loop status directly 
to the system stack as in 32-bit stack mode, and uses the data stack for local variables. 
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Bootstrap Loading 

The TMS32OC55xx, like earlier TMS320 families, supports a microprocessor 
(MP) mode and microcomputer (MC) mode, selected via the BOOTM pins upon hardware 
reset. There are three boot mode (BOOTM) input pins. 

In microcomputer mode, the TMS320C551 0 boot loads RAM from the 16-bit host 
port, 8- or 16-bit buffered serial port, or from an 16- or 32-bit external parallel device such 
as a flash EEPROM. In microcomputer mode, the on-chip ROM is memory mapped. 

In microprocessor mode, the TMS320C5510 executes from external memory and 
the on-chip ROM is not accessible. Mter hardware reset or booting, the processor can be 
manually switched between microprocessor and microcomputer mode through software 
control, removing or inserting the on-chip ROM in the memory map. 

The TMS320C5510 boot modes support 16-bit and 32-bit booting 
from an external device such as a flash memory, but 8-bit parallel 
booting is not supported. This is unfortunate, since it is often more 
cost-effective for system designers to use 8-bit flash memory. 

Peripherals 

The TMS320C551O includes a host port, three serial ports, a DMA controller, two 
timers, and a bit I/O port. Data may be transferred to and from peripherals directly under 
program control. In addition, DMA may be used to automate data transfers when using 
serial ports, making transfers between two memories, or between memory and an asyn­
chronous external peripheral (for example, a FIFO, analog/digital converter, or digi­
taVanalog converter). 

• Host port 
The host port is a 16-bit interface that allows a host processor to access 
TMS320C551O internal and external memory. The host port interface consists of 
separate address and data buses. The host processor drives a 20-bit address 
(addressing the ftrst 1M x 16 of TMS320C55xx memory), read or write signals, 
chip select, and data in the case of a write operation. 
Data access is indirect. When the host processor places addresses and data (in case 
of data write) on the host port bus, the host sees the TMS320C551O as an asyn­
chronous memory device. Within the TMS320C5510, the latched address and data 
(in the case of a data write) is handed to the DMA controller, which performs the 
data transfer. Upon completion, the TMS320C551O DMA controller releases the 
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host ready (HRDY) signaL HRDY is typically connected to the host's memory 
acknowledge input pin, stalling the host until the transfer is completed. 
The host can interrupt the nsp by setting a bit in a host port control register. The 
nsp can interrupt the host processor by setting a control register bit, indirectly 
pulsing a pin that can be connected to one of the host processor's interrupt inputs. 
The host port can operate in a multiplexed mode where the host processor's 
address and data is latched over the host data bus. Optionally, once the address has 
been latched, subsequent reads or writes can automatically increment the address 
so that address reloads are not necessary for contiguous data accesses. Upper and 
lower byte-enable input pins allow host processor access of the upper or lower 
bytes ofTMS320C5510 16-bit memory locations. 

• Serial port 
The TMS320C551O's three buffered serial ports (BSPs) are synchronous, bidirec­
tional, and buffered. On the transmit side, each serial port is double-buffered and 
on the receive side, it is triple-buffered, allowing the processor more latency to 
respond to serial port events. The serial ports can be configured for up to 128 TOM 
time-slots where each transmit and. receive time-slot can be selected· by setting a 
unique bit in a bank of control registers. 
The serial ports can be used in a interrupt-driven mode where each word transmit­
ted or received generates an interrupt, or in a nMA mode where interrupts are gen­
erated when a buffer of serial transmit data has been emptied or a buffer of receive 
data has been filled. 
Serial port transmit and receive clocks, frame syncs, and data lines are separate so 
that transmit and receive data streams can operate independently if desired. Serial 
clocks and frame syncs can be derived from the master clock and sent to a serial 
device. Alternatively, they can be received from a serial device or from another 
processor's serial port. 

• DMA controller 
The TMS320C5510 DMA controller allows simultaneous DMA transfers in paral­
lel with the normal memory accesses required by the processor's instruction flow. 
The DMA controller maintains up to six channels served in a round-robin priority 
scheme, and is capable of two 16-bit transfers per instruction cycle or 320 million 
16-bit words/second on a 160 MHz TMS320C5510. 
Each DMA channel can be configured to transfer data between two memories 
(each either external or on-chip), between a serial port and memory, or between a 
memory-mapped device in external memory and memory. Each DMA channel has 
two eight-word FIFOs, one for reads and one for writes, to protect against over­
writes of data in the event a DMA transfer cannot be immediately serviced. Source 
and destination data can be packed or unpacked by the DMA controller to accom­
modate differing device widths or data types of 8, 16, or 32 bits. DMA data trans-
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ferred between memory and memory or memory and peripherals can be 
synchronized to serial port transfers, external interrupts, or timer interrupts. 
The TMS320C551O DMA controller has five ports. Two ports are dedicated to 
access of on-chip memory, one for DARAM and one for SARAM. These two ports 
can handle transfers simultaneously, but if two DMA channels attempt to use 
DARAM or SARAM in the same cycle, a conflict occurs and one of the DMA 
transfers is stalled until the other completes . 

. The TMS320C551O has 32K x 16 of DARAM and 128K x 16 of SARAM, each 
divided into 4K x 16 blocks. The 4K x 16 block granularity is significant because 
DMA transfers cannot simultaneously use the same memory block as instructions 
or data operands required by processor instruction flow. When such a conflict 
occurs, DMA accesses are stalled since the CPU has priority. 
In addition to the two ports for on-chip memory access, the DMA controller has 
three additional ports. One port connects to the host port, one port connects to the 
external memory interface, and one port connects to on-chip peripherals such as 
the buffered serial ports. 
Each DMA port is capable of one transfer per instruction cycle. Stalls are incurred 
when DMA channels attempt to simultaneously use the same port for either source 
or destination data. The host port"s DMA port is not considered a DMA channel. It 
resides in the DMA controller because host port transfers access DARAM and 
SARAM using DMA controller ports. 

The TMS320C5510's DMA capability is more flexible than that of 
many older DSP processors because the six DMA channels are not 
dedicated to particular on-chip peripherals or to types of transfers. 
The ability to configure each DMA channel's transfers to synchro­
nize to timer events or to an activity on an external interrupt pin 
adds to this flexibility. 

• Timers 
The TMS320C551O has two timers. One timer can be dedicated to a real-time 
operating system or simple task switcher, for example, while the other timer is 
used for more general-purpose tasks such as timing flash memory writes or sector 
erases. Each timer's 16-bit counter can be decremented every 1 to 16 cycles 
depending on the value in the 4-bit pre-scaler register, providing up to 20 bits of 
range. The timer clock can be the master clock or an external timer clock input. A 
timer output pin can be used to create a clock with pulse widths equal to the timer 
interval or to generate a single pulse each time the timer reaches zero. 

A 16-bit timer counter may be inadequate for applications requir­
ing long timer intervals. For example, if the processor is running at 
200 MHz, the timer will elapse every 5 milliseconds if the maximum 
pre-scaler value is used. If longer time intervals are necessary, an 
external clock can be used instead. 
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• BitVO 
The TMS320C5510 has eight general-purpose input/output pins to, for example, 
test flag outputs from peripherals or control peripheral inputs. Three of the gen­
eral-purpose input/output pins double as boot-mode configuration inputs on reset, 
but can be used as inputs or outputs after reset. A separate dedicated programma­
ble output pin, XF, is a vestige from earlier generations of Texas Instruments' digi­
tal signal processors. 

On-Chip Debugging Support 

. The TMS320C5510 has a JTAG port for hardware debugging. Through this port, 
an emulator can download programs, set breakpoints, start and stop program execution, 
and view or modify memory and register contents. 

Texas Instruments' on-chip debug circuitry includes an analysis module. The anal­
ysis module uses address and data hardware breakpoint ranges combined' with event 
counters to halt the processor after a specific number of occurrences of an event. The 
event can be the reading or writing of data in a specific range of memory addresses, evalu­
ation of a conditional branch, or execution of an instruction at a specific program location. 
The event counter also tallies cycle counts for benchmarking or profiling purposes, elimi­
nating the need to use one of the general-purpose timers for this purpose. 

The TMS320C5510 on-chip debug circuitry allows a programmer to monitor reg­
isters or memory during program execution using the real-time data exchange (RTDX) 
facility. Texas Instruments' Code Composer debugger uses RTDX to provide features 
such as an oscilloscope-like display of a variable real-time, real-time watchpoint updates, 
and periodically storing the value of a variable into a file. These features are configured 
through the debugger and do not require modification of user code. 

If debug data is time-critical, the transfer of debug data can be given priority over 
program execution, halting the processor as needed. RTDX also allows a programmer to 
send data from a host computer to the processor during run-time over the JTAG port. The 
data stream, for example, may emulate an input deyice not yet implemented in hardware 
or may temporarily replace an input device in order to inject test data. 

The goal of hardware debugging tools is to approach the config­
urability of a software simulator while not requiring modification of 
user code or affecting real-time execution. The TMS320C55xx 
real-time data exchange features are state-of-the-art. The ability to 
monitor data in real-time, whether in a register or in memory, while 
simultaneously injecting test input data. makes development more 
productive. The ability to stream test data to the target instead 
acquiring data through an actual YO device also helps in test and 
debug. 
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The TMS320C551O can service maskable interrupts during debug while halted. 
This is controlled via a second set of interrupt mask registers that allow a programmer to 
select which interrupts are serviced when the processor is halted. 

The on-chip debug circuitry includes an instruction trace FIFO. The FIFO stores 
either the last 32 program locations or the last 16 program location discontinuities. By 
storing the last 32 locations, the debugger can report exact program flow leading up to an 
event such as a breakpoint. By storing the last 16 program discontinuities, a longer history 
of program execution can be provided. 

Power Consumption and Management 

The TMS320C551O is projected to consume 109 mWat 160 MHz and 1.6 volts, 
according to Texas Instruments. 

The TMS320C55xx's configurable IDLE domains provide a means for a program­
mer to select which regions of the device will be disabled after an IDLE instruction has 
been executed. The regions are the processor core, DMA, instruction cache, peripherals, 
clock generation circuitry, and external memory interface. The internal memory is always 
powered regardless of which idle domains have been selected. 

After execution of an IDLE instruction, the processor remains in an idle state until 
an interrupt (either non-maskable, or maskable and unmasked) occurs. If the serial ports 
and DMA controller have not been not configured as idle regions, serial data acquisition 
may continue as long as the serial port clocks and framing signals are provided externally 
or if generated internally, the clock generation circuitry is not configured as an idle region. 

Benchmark Performance 

The TMS320C55xx has been benchmarked with the BDTI Benchmarks™. In this 
section, we summarize and analyze the benchmark performance of the TMS320C55xx. 
We first discuss instruction cycle counts, which indicate the relative power of the proces­
sor's architecture. Note that instruction cycle counts do not consider the processor's 
instruction cycle rate; hence, lower instruction cycle counts do not necessarily indicate 
better performance. Next we discuss benchmark execution times and cost-execution time 
products, indicating processor speed and cost-performance, respectively. We then discuss 
the processor's energy consumption, which reflects the energy consumed by the processor 
in order to perform a task. Finally, we discuss the processor's memory usage, dividing the 
discussion into three sections: Control benchmark memory usage, overall program mem­
ory usage, and overall data memory usage. 

The cycle counts serve as the basis for execution time results. The cycle counts 
presented here were obtained by BDTI using a pre-production TMS320C55xx develop­
ment board, because a cycle-accurate simulator was not available at the time of this writ­
ing. Even with the assistance of Texas Instruments, however, it was not possible to 
measure cycle count results that matched our expected results to within one cycle. In addi-
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tion, we were not able to determine the reason for the discrepancies. The results we 
present here are the measured results (rather than the results estimated via hand calcula­
tion). Unlike other benchmark results presented in this report, the TMS320C55xx results 
should be considered to be accurate only to within a few cycles. 

Our execution time results use 160 MHz, the clock rate at which Texas Instruments 
states the TMS320C551O is currently sampling; the pre-production device clock speed 
was measured at 20 MHz. 

• Instruction Cycle Counts: As shown in Figure 8.1-13, the TMS320C55xx has a 
total normalized cycle count result that is approximately 10% lower than the aver­
age for all of the processors benchmark. The TMS320C55xx requires fewer cycles 
than the average of the processors benchmarked on eight of the twelve bench­
marks. On four benchmarks the TMS320C55xx consumes more cycles than the 
average. As might be expected, in general the TMS320C55xx requires fewer 
cycles than processors with a single multiply unit (such as the ADSP-218x and 
TMS320C54xx), but more cycles than processors with more than two multipliers 
(the SC140 and TMS320C64xx). 
Several of the processors benchmarked in this report are similar to the 
TMS320C55xx in that they have two multipliers; these include the ADSP-2116x, 
DSP164xx, TMS320C62xx, and TMS320C67xx. These processors have total nor­
malized benchmark cycle counts that are roughly 10-30% lower than that of the 
TMS320C55xx. A key difference between the TMS320C55xx and these proces­
sors is that the TMS320C55xx's two MAC units must share an input, a restriction 
not imposed by the other architectures. The TMS320C55xx's two MAC units are 
fully utilized on some benchmarks, but are not fully utilized on the Single-Sample 
FIR, LMS Adaptive FIR, and Vector Dot Product benchmarks because of this lim­
itation. 
On the Real Block FIR filter benchmark, the TMS320C55xx is able to fully uti­
lize its dual MAC units despite of the fact that the implementation does not use the 
processor's special FIR filter instruction (FIRADD) because that instruction 
requires use of symmetrical filter coefficients (a condition that cannot be guaran­
teed in the BDTI Benchmarks). The TMS320C55xx requires roughly half of the 
cycles required by most single-multiplier processors, but more than twice the 
cycles required by the two four-multiplier processors. Compared to the 
TMS320C54xx, the TMS320C55xx requires roughly 45% fewer cycles on this 
benchmark. 
The parallelism in the TMS320C55xx instruction set improves the processor's 
efficiency in the loop setup and function termination code; the repeat instruction is 
combined with the first dual multiply-accumulate, and immediate data loads are 
combined with indirect data transfers. 
For the Single-Sample FIR benchmark, the TMS320C55xx requires about 20% 
fewer cycles than the average. As in the Real Block FIR, the TMS320C55xx does 
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not use the special FIR filter instruction (FIRADD) on this benchmark. The Sin­
gle-Sample FIR benchmark processes only one sample per invocation. Therefore, 
each multiplication requires unique sample and coefficient inputs. The 
TMS320C55xx's dual multiply-accumulate capability cannot be used since it 
requires the two multipliers to share one data operand. However, the 
TMS320C55xx still has a lower cycle count than the TMS320C54xx because of its 
efficient loop setup and function termination code, as described in the Real Block 
FIR Filter benchmark discussion, above. 
On the Complex Block FIR filter benchmark, TMS320C55xx requires about 55% 
fewer cycles than the average. The requirement that both TMS320C55xx multipli­
ers must share a one operand is not an impediment when performing complex mul­
tiplications because each real and imaginary operand is used twice within a 
complex multiplication. On this benchmark, the TMS320C55xx requires fewer 
cycles than most of the other two-multiplier architectures: the ADSP-2116x, 
DSP164xx, and TMS320C67xx. However, the TMS320C55xx requires more 
cycles than the two-multiplier TMS320C62xx, which has several additional execu­
tion units in comparison to the TMS320C55xx and has shorter instruction latencies 
than the TMS320C67xx. 
The TMS320C55xx has a relatively low cycle count on this benchmark because of 
its dual-MAC capabilities, and its ability to perform immediate data loads in paral­
lel with data transfers and a block repeat instruction in parallel with the dual multi­
plications. In addition, the TMS320C55xx can shift accumulator results as part of 
a memory write, an operation that often requires two separate instructions on other 
processors. 
TMS320C55xx cycle count is about average on the LMS Adaptive FIR Filter 
benchmark, and roughly 15% lower than that of the TMS320C54xx. The require­
ment that the two TMS320C55xx multipliers must share a data operand reduces 
the processor's efficiency in the FIR filter portion of the LMS Adaptive FIR filter. 
Since coefficients are updated every sample interval, two adjacent sample intervals 
cannot be calculated in parallel (the technique employed in the Real Block FIR fil­
ter). The coefficient-update portion of theLMS Adaptive FIR filter uses dual-mul­
tiply-accumulates because all multiplications have a common "error times 
adaptation rate constant" operand. In the second instruction of the two-cycle, 
two-coefficient update loop, the TMS320C55xx performs a dual 16-bit read and 
dual 16-bit write in parallel, each transferring two filter coefficients, in a single 
cycle. 
The Two-Biquad IIR Filter on the TMS320C55xx has a cycle count that is about 
15% lower than the average and is equal to that of the TMS320C54xx. The 
TMS320C55xx implementation splits the coefficient buffer into two separate buff­
ers, one for the numerator and one for the denominator. Computations using 
numerator and denominator coefficients are performed in parallel. However, the 
results of the two accumulators need to be summed, requiring an extra cycle, 
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which results in a net advantage over the TMS320C54xx of just one cycle. Even 
that advantage is masked by the extra cycle needed to initialize pointers for the 
split coefficient buffers. Thus, the advantage of the dual MAC capability is not 
apparent on this benchmark, but would be seen if the number of biquad sections 
were increased. 
The TMS320C55xx requires more cycles on the Vector Dot Product benchmark 
than other two multiplier-accumulator processors such as the ADSP-2116x and 
DSP164xx. It requires about 15% more cycles than the average. The Vector Dot 
Product benchmark multiplies elements of two vectors and accumulates the prod­
ucts. Each vector element is used only once. The TMS320C55xx's relatively high 
cycle count on this benchmark is obtained because it can only use one multi­
plier-accumulator. In order for the TMS320C55xx to use both multiplier-accumu­
lators, one multiplier input must be shared, which is not possible with this 
algorithm. Hence, the TMS320C54xx has a similar cycle count result on this 
benchmark. Surprisingly, though, the TMS320C54xx result is 5% lower than that 
of the TMS320C55xx. As mentioned earlier, BDTI was not able to measure cycle 
counts on the TMS320C55xx hardware that were accurate to within a cycle. 
Hence, it is possible that the actual cycle counts for the TMS320C55xx are not 
higher than those of the TMS320C54xx. It is also possible that this difference does 
exist; as discussed earlier in this chapter,the TMS320C55xx may require more 
cycles than the TMS320C54xx to execute the same code because of differences in 
the two processors' pipelines, a lack of delayed branches, and because of potential 
stalls from the instruction buffer queue. 
TMS320C55xx is able to take advantage of dual 16-bit arithmetic operations for 
the Vector Add benchmark because it can perform two parallel 16-bit adds, fetch 
four operands, and store two results in a two-cycle, two-instruction loop. The 
TMS320C551O's ability to perform a dual 16-bit read and dual 16-bit write in par­
allel, as done in the LMS filter benchmark coefficient update, is a key enabler of 
the two-cycle loop, along with its ability to operate on operands in memory. 
Among the processors benchmarked, the TMS320C55xx requires 25% fewer 
cycles than the average. This result is comparable to the ADSP-2116x and 
DSP164xx, which also are capable of performing dual arithmetic operations. 
The TMS320C55xx's Vector Maximum benchmark implementation requires 
roughly 20% fewer cycles than the average, more cycles than required by the other 
dual-MAC processors capable of dual arithmetic operations: the ADSP-2116x, 
DSP164xx, TMS320C62xx, and TMS320C67xx. Finding the maximum is per­
formed efficiently on the TMS320C55xx, which can process two 16-bit vector ele­
ments each cycle. The TMS320C55xx uses the MAXDIFF instruction to calculate 
the Vector Maximum. This instruction compares two adjacent 16-bit operands in a 
32-bit register with a two adjacent 16-bit operands from memory, finding two 
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16-bit maxima. Mterward, however, determining the maximum's index requires 
many cycles of post-processing. 
The inefficient calculation of the maximum index is a side effect of the way in 
which MAXDIFF records the occurrence of a maximum. MAXDIFF shifts the 
16-bit TRNO and TRN1 registers right one bit and sets the most significant bit to 
one when an input is greater than the previously determined maximum, and to zero 
when the input is not greater than the previous maximum. For 16 inputs, the 
most-significant bit set in TRNO and TRN1 represents the index of the most 
recently determined maximum for the lower and upper 16 bits in the 32-bit regis­
ter. In order to find the maximum's index, the programmer must determine which 
bit in either TRNO or TRN1 represents the most recent maximum and, based on the 
bit's position, determine the maximum's offset in the input data buffer. 

A better TMS320C55xx maximum instruction would have automati­
cally saved the index registers for the lower and upper maxima to 
two temporary registers. This would have eliminated much of the 
overhead required to enable use of the MAXDIFF instruction. 

The TMS320C55xx has the highest cycle count on the Control benchmark, requir­
ing about 60% more cycles than the average. Note, however, that this benchmark is 
optimized for minimum memory usage rather than minimum cycle counts, and is 
primarily an indicator of the processor's memory use efficiency. The 
TMS320C54xx has a slightly lower cycle count, about 45% higher than the aver­
age. The TMS320C55xx's ability to perform single-cycle arithmetic operations 
using immediate constants and to perform unrelated arithmetic and data move 
operations in parallel are useful features for this benchmark. The TMS320C55xx's 
high cycle count is due to branch and subroutine call overhead, which consumes 
four or five cycles per instance depending on whether the instruction is conditional 
and if conditional, whether the condition is true. Other processors either have 
shorter instruction pipelines or support delayed branches such that instructions can 
be placed after a branch to occupy otherwise empty pipeline slots. 

Lack of delayed branches on the TMS320C55xx increases cycle 
counts in control code. 

The TMS320C55xx cycle count on the FFf benchmark is about 15% higher than 
the average. The TMS320C54xx, in contrast, required 65% more cycles than the 
average. Another dual multiplier-accumulator 16-bit processor in this study, the 
DSP164xx, requires 10% more cycles than the average. The ADSP-2106x, 
ADSP-2116x, SC140, TMS320C62xx, TMS320C64xx, and TMS320C67xx all 
have very low cycle counts because they either have special instructions designed 
to optimize the FFf butterfly, or they have a large number of parallel multiplier 
and ALU units accessing data from a large bank of data registers. These processors 
have very low cycle counts which skew the average somewhat. The 
TMS320C55xx's radix-2 FFT butterfly, the most critical loop, requires five 
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instructions and executes in six cycles due to pipeline stalls. In comparison, the 
ADSP-2106x's radix-2 butterfly executes in four cycles. 
TMS320C55xx requires about 55% fewer cycles than the average on the Viterbi 
decoder benchmark. The TMS320C55xx cycle count is much lower than that of 
the TMS320C54xx, which is about 25% lower than the average. The 
TMS320C55xx replaces the TMS32OC54xx's· CMPS instruction with the 
MAXDIFF instruction. MAXDIFF simultaneously determines the two maxima 
from two 16-bit input pairs and shifts a one or zero into two transition registers, 
recording whether or not each maximum operation yielded a new maximum. In 
contrast, the TMS320C54xx CMPS instruction only generates one transition bit 
for one 16-bit input pair. The transition register results from the add-com­
pare-select section of the algorithm reduce the trace-back section to a two-instruc­
tion loop in the TMS320C55xx. 
Like the Control benchmark, the Bit Unpack benchmark demonstrates a proces­
sor's ability to handle functions sometimes delegated to a host microprocessor; in 
this case, extraction of bit fields from a block of 16-bit packed full-length words in 
memory. TMS320C55xx's cycle count on the Bit Unpack benchmark is about 20% 
lower than the average. In contrast, the TMS320C54xx requires 85% more cycles 
than the average. The TMS320C55xx's efficiency on this benchmark is partly due 
to its ability to use the address generation unit ALU as a 16-bit general-purpose 
ALU and to combine 16-bit ALU operations with data path operations using the 
accumulators. Also, the ability to perform arithmetic operations on data from 
memory rather than having to first load registers, as is the case with the 
ADSP-218x and DSP563xx processors, reduces the number of instructions 
required in the main loop. 

• Execution times: The TMS320C5510's instruction cycle rate of 160 MHz is rela­
tively fast, and gives the TMS320C551O faster-than-average execution time 
results, despite its overall middle-of-the-road cycle counts. TMS320C551O's exe­
cution times are faster than those of non-VLIW processors, such as the 
ADSP-:-219x, ADSP-21065L, and TMS320C5416. The TMS320551O's total nor­
malized benchmark execution time is about 35% below the average for fixed-point 
processors. Total normalized execution time results are illustrated in Figure 8.2-13. 

• Cost-execution time: The TMS32OC551O's moderately fast execution time per­
formance coupled with its low price of $29.00 (quantity 10,000) give it a strong 
total normalized cost-execution time product, at about 30% below the average for 
the fixed-point processors in this report. As shown in Figure 8.3-13, the total nor­
malized cost-execution time product for the $33.50 TMS320C5416 is about 65% 
higher than that of the TMS32OC551O. The low cost of the ADSP-2186M at $8.50 
(quantity 10,000) allows it to score similarly to the TMS320C551O even though its 
instruction cycle rate is roughly half as fast at 75 MHz and it has a 50% higher 
benchmark cycle count. 
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• Energy consumption: As illustrated in Figure 8.4-13A and Figure 8.4-13B, the 
1.6-volt TMS320C551O has the second-lowest total normalized energy consump­
tion of all benchmarked DSP processors, trailing only the MSC8101. The 
TMS320C5510's total normalized energy consumption is about half of the average 
for fixed-point processors. 

Memory Usage 

The focus in our memory usage analysis is on Control benchmark memory usage. 
This benchmark is designed to indicate the processor's memory efficiency in control-ori­
ented tasks, where memory usage is often more important than speed. This is because con­
trol-oriented instructions often make up the bulk of the software in an application, but take 
up only a fraction of the application's instruction cycles. Hence, unlike the other bench­
marks, the Control benchmark is optimized for minimum memory usage rather than maxi­
mum speed. We also discuss overall program memory usage in the BDTI Benchmarks™, 
reflecting the processor's program memory usage in general DSP software. Finally, we 
discuss constant and non-constant data memory usage. 

• Control benchmark memory usage: The TMS320C55xx has better than average 
total memory usage on the Control benchmark, requiring about 30% less memory 
than the average of all benchmarked processors, as shown in Figure 8.5-9A. The 
TMS320C55xx has variable-length instruction words that range from 8 bits to 48 
bits. For control-oriented code, the processor relies primarily on 16-bit instruc­
tions, with a few exceptions. The TMS320C55xx requires 16 bits for short imme­
diate data loads, stack push/pop operations, and arithmetic operations adding short 
immediate data to the accumulators. It requires 24 bits for PC-relative subroutine 
calls and branches. More complex instructions use 48 bits, but these are most com­
monly used for multiplier-accumulator intensive functions, not for control func­
tions. 
The TMS320C55xx requires roughly 20%-25% less memory than processors with 
24-bit instructions, such as the ADSP-218x, ADSP-219x, and DSP563xx. The 
TMS320C55xx requires roughly 10% more memory than the 16-bit instruction 
word processors such as the DSP568xx and DSP5685x. It requires 30% less mem­
ory than its predecessor, the TMS320C54xx, due to its support for PC-relative 
branches and short immediate constants for arithmetic and logical operations. The 
TMS320C54xx requires an absolute address for branches and only supports 16-bit 
immediate constants with arithmetic and logical operations. 

Part of the rationale for the TMS320C55xx's variable-length 
instruction word is to increase code density in control-oriented 
tasks. In this respect, the instruction set seems to have fulfilled its 
promise; the processor requires fewer program bytes than the 
24-bit instruction word processors, and fewer than Texas Instru­
ments' previous generation architecture, the TMS320C54xx. 
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• Program memory usage: As shown in Figure 8.5-13, the TMS320C55xx's total 
nonnalized program memory usage is comparable to that of non-VLIW, 
fixed-point processors with fixed-size, 16-bit or 24-bit instruction words such as 
the ADSP-218x, ADSP-219x, DSP563xx, DSP568xx, and TMS320C54xx. Over­
all, the TMS32OC55xx requires less program memory than the average, but this 
statistic is skewed by the fact that some of the VLIW processors, such as the 
TMS320C62xx, TMS320C64xx, and TMS320C67xx, require three to four times 
more program memory. This is not surprising since VLIW processors often require 
loop unrolling when optimizing for cycle counts, while non-VLIW DSPs such as 
the ADSP-218x and DSP563xx usually do not benefit from loop unrolling. 
The TMS32OC55xx's highest program memory usage result occurs on the IIR Fil­
ter and Vector Maximum benchmarks. On the IIR Filter, the program size is high 
because the TMS320C55xx uses a high concentration of 48-bit instructions. The 
48-bit instructions are parallel arithmetic instructions and long immediate address 
register loads. The TMS32OC55xx's program memory usage on the Vector Maxi­
mum benchmark is expanded by the post-processing required to extract the maxi­
mum's index. On the Viterbi benchmark, the TMS320C5510 requires 50% less 
program memory than the average because of its dedicated instructions designed 
to optimize the algorithm's cycle count. 

• Constant data memory usage: As shown in Figure 8.5-14, the TMS320C551O's 
constant data memory usage is comparable to that of other 16-bit data word pro­
cessors such as the ADSP-218x, ADSP-219x, DSP568xx, SC140, DSPI64xx, 
TMS320C54xx, TMS320C62xx, and TMS320C64xx on almost all benchmarks. 
The only significant difference is evident on the FFf benchmark, where the 
TMS320C55xx is able to perfonn the benchmark using smaller cosine/sine tables. 
Addressing mode limitations force most processors to use larger cosine/sine tables 
in order to optimize for cycle count. The TMS320C55xx has the second-lowest 
constant data memory usage result on the FFf; its constant data memory require­
ment is less than those of the ADSP-218x, ADSP-219x, DSPI64xx, SC140, 
TMS320C62xx, and TMS320C64xx, but 50% more than the TMS320C54xx. 

• Non-Constant data memory usage: As shown in Figure 8.5-15, the 
TMS320C5510's nonnalized non-constant data memory usage is similar to those 
of other 16-bit data word processors such as the ADSP-218x, ADSP-219x, 
DSP568xx,.DSPI64xx, TMS320C5416, TMS320C62xx, and TMS320C64xx. As 
expected, the 32-bit data word processors require roughly twice as much non-con­
stant data memory. The most significant differences among 16-bit processors 
occur on the Viterbi benchmark, where the TMS320C55xx's specialized instruc­
tions eliminate the need for some intennediate data buffers required by other pro­
cessors. 
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Cost 

The quantity 10K pricing for the TMS320C551O is $29 for the 160 MHz (320 
MMACS) version and $35 for the 200 MHz (400 MMACS) version, each packaged in a 
240-pin ball grid array (BGA) package. 

Fabrication Details 

The 160 MHz TMS320C551O devices sampling at the time of this writing are fab­
ricated using a 0.15 J..Lm CMOS process with a 1.6 volt core supply. Texas Instruments 
expects to migrate the 160 MHz and 200 MHz devices to a 0.13 J..Lm copper process in 
2001. 

Development Tools 

The TMS320C55xx development software is based on the Code Composer IDE 
and tool suite. Code Composer includes an IDE that allows a programmer to configure and 
manage projects through a graphical user interface. When a build is selected, the IDE calls 
the Texas Instruments C compiler, assembler, linker, library builder, and hex conversion 
utilities as needed. Code Composer is available for Microsoft Windows 95/98 and Win­
dows NT operating systems. The code generation tools can be called from the DOS com­
mand line, enabling use of another IDE or editor. 

At the time of this writing, the TMS320C5510 assembler and simu­
lator had several bugs. Most notably, the simulator was not yet 
cycle-accurate, making code timing difficult. 

The Code Composer debugger allows C and assembly level debug of software 
using a simulator or using a JTAG-based hardware emulator. The simulator and hardware 
emulator share the same user interface. The software simulator allows a programmer to 
simulate input or output pin activity and configure input/output data streams using files. 
Using JTAG emulation, a host data file can supply target hardware with real-time data. 
Real-time data streaming is made possible by the TMS320C551O's on-chip debug cir­
cuitry and its real-time data exchange (RTDX) feature. 

Multiple Code Composer debug sessions can be controlled by the parallel debug 
manager. In the case of the hardware emulator, the JTAG ports of multiple TMS320C55xx 
processors in a system can be serially chained together and each processor can be individ­
ually controlled. The parallel debug manager allows multiple processors to be stepped, 
started, and halted together. Debug commands can be broadcast to one processor, a sub­
group, or to all of the processors. 

For the TMS320C55xx, Texas Instruments offers a tools suite called C5000 Code 
Composer Studio that includes the IDE, code generation tools, visual linker, software sim­
ulator, hardware emulator, DSP function libraries based on Texas Instruments' eXpress­
DSP algorithm coding standard, and eXpressDSP BIOS, a low-level operating system, for 
$2,995. The same package minus the hardware emulator costs $1,495. The C5000 Code 
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Composer Studio is augmented by Texas Instruments' third-party network, which includes 
a variety of suppliers of hardware and software. Code Composer Studio is available for 
Windows 9x and Windows NT. 

In general, Texas Instruments provides an extremely competent 
software development environment with an advanced IDE, mature 
C compilers, sophisticated on-chip JTAG emulation capabilities, 
and cohesive multi-processor development tools. They also enjoy 
the largest third-party network of providers of algorithms, operat­
ing systems, emulators, target hardware, and engineering services. 
During our evaluation of the TMS320C55xx, however, we encoun­
tered a number of problems with the TMS320C55xx tools, including 
a lack of cycle accuracy in the instruction-set simulator. 

Applications Support 

Texas Instruments' documentation includes separate manuals for the processor 
core, peripherals, instruction set, C compiler, and assembly language tools, plus specific 
processor datasheets. All documentation is available on-line or on a CD-ROM in PDF for,. 
mat. At the time of this writing, the TMS320C55xx DSP Peripherals User's Guide was 
only available as an on-line help document. 

Web-based support includes answers to frequently asked questions (FAQs) and 
on-line forms for requesting literature or for asking a technical support question. Email 
applications support is reliable, usually responding within 24 hours. 

Texas Instruments' telephone applications support staff includes front-line support 
personnel. If the problem is beyond the abilities of the front-line person, users are often 
connected to a more experienced applications engineer. If all engineers are busy, one will 
usually call back within a half day. 

Texas Instruments' has very good applications support for gen­
eral-purpose digital signal processors. Response is surprisingly 
prompt and helpful considering the number of processor families 
and customers that require support. 

Advantages 

• Conditional execution of all instructions except program control instructions. 

• Zero-overhead shifting of accumulators, inputs from memory, and results stored to 
memory. 

• Zero-overhead saturation of computation results and of overflowed data when 
stored to memory. 

• Eight address registers. 

• Five simultaneous circular buffers. 
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• Good on-chip memory bandwidth. 

• SIMO 16-bit adds and subtracts. 

• Special instructions to optimize execution of FIR filters, LMS adaptive FIR filters, 
and Viterbi decoders. 

• Exponent detection and normalization. 

• Interruptible single-instruction hardware loops. 

• Six simultaneous, concurrent OMA channels, each supporting memory-to-mem­
ory, peripheral-to-memory, or memory-to-peripheral. 

• Three buffered, synchronous serial ports (up to 128 software selectable TOM time 
slots). 

• Large on-chip memory (TMS320C551O). 

• On-chip ITAG-based debug circuitry allows event trapping, real-time data 
exchange, and interrupt servicing while halted. 

• Assembly source-code upward compatibility with previous generation 
(TMS320C54xx). 

• Good benchmark energy consumption results on the BDTI Benchmarks. 

Disadvantages 

• Lack of delayed branch, delayed subroutine call, and delayed return from subrou­
tine. 

• Current devices do not support boot load from an 8-bit parallel device. (Only 
16-bit and 32-bit devices are supported.) 

• Timer range of only 20 bits (5 ms at 200 MHz master clock). 

• As of this writing, simulator is not cycle-accurate. 
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7.15 Texas Instruments TMS320C62xx Family 
BDTlmark2000 Score: 

1920 at 300 MHz Introduction 

The TMS320C62xx is a family of VLIW -based fixed-point DSP processors from 
Texas Instruments. The TMS320C62xx architecture, introduced in 1997, is completely 
different from that found in earlier DSP processor families from Texas Instruments. The 
processor contains eight execution units, including two multipliers and four ALUs. Using 
these eight execution units, the processor can execute up to eight 32-bit RISC-like instruc­
tions in a single clock cycle, enabling it to achieve a high level of parallelism. Instructions 
operate on 16-, 32-, or 40-bit data. The TMS320C62xx family targets applications with 
demanding performance requirements, such as wireless base stations, digital subscriber 
loops, multi-line modems, ISDN modems, imaging, and sonar systems. 

Because the TMS320C62xx can execute a group of up to eight parallel instructions 
per clock cycle, the term "instruction cycle" is potentially ambiguous when discussing this 
processor. As used here, "instruction cycle" refers to the minimum time required to issue a 
group of parallel instructions. On the TMS320C62xx, this time is equal in length to one 
master clock cycle, i.e., one group of parallel instructions can be issued on every cycle of 
the master processor clock. 

The first member of the TMS320C62xx family, the TMS320C6201, was 
announced in February 1997. This original 0.25 Jlm member used a 2.5-volt core supply 
(with 3.3-volt 110). Texas Instruments has since replaced the 0.25 Jlm member with a 0.18 
Jlm fabrication process; the 2.5-volt version is obsolete. The 0.18 Jlm version operates at 
200 MHz using a lo8-volt core supply (with 3.3-volt 110) and executes up to 400 million 
MACs per second. (This device is referred to as a "1,600 MIPS" processor by Texas 
Instruments, since it executes a maximum of eight RISC-like instructions per clock cycle, 
when running at 200 MHz.) 

In 1998, Texas Instruments announced two new variants of the TMS320C62xx: 
the TMS320C6202 and the TMS320C621lo The TMS320C6202 supports more on-chip 
memory and a higher clock frequency (250 MHz) compared to the TMS320C620lo The 
TMS320C6211 is a reduced-cost version providing on-chip caches for data and instruc­
tions and a lower operating frequency (150 MHz). 

In 1999, Texas Instruments expanded the TMS320C62xx family further, announc­
ing three new processor variants: the TMS320C6203, TMS320C6204, and 
TMS320C6205. These processors use a 0.15 Jlm fabrication process. The TMS320C6203 
is currently the fastest TMS320C62xx processor: it runs at 300 MHz and executes up to 
600 million MACs per second. The TMS320C6202, TMS320C6203 and TMS320C6204 
are pin-compatible (the TMS32OC6201 is not pin-compatible with the other 
TMS320C62xx processors). 

In 2000, Texas Instruments announced a new revision of the TMS320C6202 using 
the 0.15 Jlm fabrication process. This new device is referred to as the TMS320C6202B. It 
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will be equivalent to the TMS320C6202, but will use a lower core supply voltage and will 
therefore have lower power consumption. 

The TMS320C6201, TMS320C6202, and TMS320C6211 are currently being pro­
duced in volume. The TMS320C6203, TMS320C6204, TMS320C6205 are sampling now, 
with volume production scheduled for the fourth quarter of 2000, according to Texas 
Instruments. Samples of the TMS320C6202B are scheduled for the first quarter of 2001. 
The TMS320C62xx family members are summarized in Table 7.15-1. 

Texas Instruments also offers a floating-point version of the TMS320C6xxx archi­
tecture, the TMS32OC67xx. The TMS320C67xx is covered in Section 7.17 of this report. 
The TMS320C67xx instruction set is a superset of that of the TMS320C62xx, adding 
floating-point support. The TMS320C67xx can execute TMS320C62xx object code 
unmodified, but the TMS320C62xx cannot execute all TMS320C67xx instructions. 

In 2000, Texas Instruments announced the next generation of the fixed-point 
TMS320C6xxx family, the TMS320C64xx. This processor is covered in Section 7.16 of 
this report. The TMS320C64xx instruction set is a superset of that of the TMS320C62xx, 
adding an extensive range of SIMD operations and application-specific instructions (for 
telecom, audio, and image processing applications). The TMS320C64xxcan execute 
TMS320C62xx object code unmodified, but the TMS32OC62xx cannot execute all 
. TMS320C64xx instructions. 

The TMS320C62xx was the first commercially successful VUW 
DSP processor. Since its introduction in 1997, many other 
VUW-based DSP architectures have emerged, including the 
StarCore SC140. 

By using a VUW architectural approach, the TMS320C62xx 
achieves a high level of parallelism while avoiding the need for 
complex instruction scheduling and dispatch hardware in the pro­
cessor. Instead, the burden of instruction scheduling is shifted to the 
code generation tools or the assembly language programmer. This 
results in a simpler and faster processor architecture compared to 
processors with run-time instruction scheduling. , 

VUW architectures typically suffer from several disadvantages, 
such as high program memory usage and complexity in designing 
efficient compilers. The TMS320C62xx architecture includes sev­
eralfeatures designed to reduce program memory requirements and 
alleviate other disadvantages typically associated with VUW archi­
tectures. These features include instruction packing, conditional 
execution for all instructions, and variable-length execution pack­
ets, all of which are discussed below. Despite these features, the 
TMS320C62xx consumes more program memory than other 
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fixed-point DSPs, as detailed in our discussion of benchmark 
results. 

Texas Instruments newer TMS320C64xx architecture, the next gen­
eration of the TMS320C62xx, was developed in an effort to address 
some of the weaknesses of the TMS320C62xx while providing sub­
stantially faster performance. 

Max. On-Chip Memory 

Operating 
Speed 

(Millions 
Voltage 

ofMACs Program Data Notes 
(V) 

per RAM RAM 
Second) 

Four-channel DMA, 16-bit 
1.8/3.31 400 16KX32 32KX16 host port interface, two buff-

ered serial ports, two timers 

Four-channel DMA, 32-bit 
1.8/3.31 500 64Kx32 64KX16 expansion bus, three buff-

ered serial ports, two timers 

1.5/3.33 500 64Kx32 64KX16 
Same as 'C6202, but with 
improved DMA 

1.5/3.33 600 96KX32 256KX16 
Same as 'C6202, but with 
improved DMA 

Four-channel improved 

1.5/3.33 400 16Kx32 32KX16 
DMA, 32-bit expansion bus, 
two buffered serial ports, 
two timers 

Four-channel DMA, two 
1.5/3.33 400 16Kx32 32Kx16 buffered serial ports, two 

timers, 32-bit PCI interface 

128x256 512x64 16-channel enhanced DMA, 
Ll cache Ll cache 16-bit host port interface, 

1.8/3.31 300 
8Kx64 unified L2 two buffered serial ports, 

cache two timers 

TABLE 7.15-1. TMS320C62xx processor family summary. 
[1) The core operates at 1.8 volts while all 1/0 signals are 3.3-volt compatible. 
[2] The TMS320C6202B is not yet available and will be sampled in early 2001 , according to Texas Instruments. 
[3] The core operates at 1.5 volts while all 1/0 signals are 3.3-volt compatible. 
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The TMS320C62xx and TMS320C67xx are the only DSP processor 
families to offer instruction set compatibility between fixed- and 
floating.,.point processors. This can be an advantage in applications 
where algorithms are initially designed using floating-point arith­
metic and are later converted to a fixed-point implementation for 
volume production, because control code from the floating-point 
implementation does not need to be re-written for the fixed-point 
version. However, due to the different latencies of fu:ed- and float­
ing-point instructions and other restrictions, algorithm kernels will 
almost always have to be completely re-written when migrating 
from the TMS320C67xx to the TMS320C62xx. 

Architecture 

The core architecture of the TMS320C62xx family consists of two fixed-point data 
paths, a program control unit (including program fetch, instruction dispatch, and instruc­
tion decode units), and program and data memory interfaces. Figure 7.15-1 illustrates the 
TMS320C62xx family architecture as typified by the TMS320C6201. 

Data Path 

The TMS320C62xx has two nearly identical data paths. As illustrated in 
Figure 7.15-2, each data path has a set of four execution units, a general-purpose register 

Program Memory 

256 

Data Path 1 Data Path 2 

Data Memory 

FIGURE 7.15-2. TMS320C62xx data paths. Each data path includes four execution 
units (L, S, M, and D), described in the text. The arrow between the data paths 
denotes the cross paths that allow each data path to access the register file of the 
other data path. 
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file, and paths for moving data between memory and the data path. The execution units in 
each data path consist of L, S, M, and D units. Typically the L, S, and D units operate on 
32-bit operands, but the L and S units can also operate on 40-bit ("long") operands. The M 
units operate on 16-bit operands. As described below, each execution unit is capable of 
performing a specific set of operations. All of the execution units can operate in parallel. 

• The L units (LI for data path one, L2 for data path two) each contain a 40-bit inte­
ger ALU. They are used for 32/40-bit arithmetic and compare operations, 32-bit 
logical operations, and 32140-bit normalization. The L units support saturated 
arithmetic for 32/40-bit operands. All L-unit operations execute in a single instruc­
tion cycle. 

• The S units (S I for data path one, S2 for data path two) each contain a 32-bit inte­
ger ALU and a 40-bit shifter. The S units are used to perform 32-bit arithmetic, 
logical and bit field operations, and 32/40-bit shifts. In addition, they are used for 
branching, constant generation, and register transfers to and from control registers. 

On-Chip Memory 
Program Fixed-Point I Program RAM I Data RAM I Control Unit +--+ 

Data Paths (2) 
16Kx32 32Kx 16 

~ ~ 

Program Address Bus 32 bits) 

~ 
Data Path 1 Address Bus (32 bits) 32 

I\. + / 
Data Path 2 Address Bus (32 bits) , .v 

Extemal 

DMA Address Bus (32 bits) 
II Address Bus 

.. t 
Proaram Data Bus (256 bits) 1,\ .. ~ 

Data Path 1 Data Bus (32 bits) .,;t 32L J ~ ~ " / Data Path 2 Data Bus (32 bits) ~Externa( .. / 
Data Bus 

DMA Data Bus (32 bits) 
~ 

Host Port Serial 
JTAG Interface DMA Timers (2) Ports (2) 

{7 {16 

FIGURE 7.15-1. TMS320C6201 processor architecture. 
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Most S-unit operations execute in a single instruction cycle. The only exceptions 
. are branch instructions, which have single-cycle throughput but a six -cycle 
latency. . 

• Multiplications are performed by the M units (M1 for data path one, M2 for data 
path two), which are capable of performing 16 x 16 ~ 32-bit multiplications. 
Multiplier operands may come from the higher or lower 16-bit portions of any of 
the 32-bit general-purpose registers, enabling the use of pairs of 16-bit operands 
packed into 32-bit registers. Each multiplier can complete one multiplication per 
cycle, but multiplications have a latency of two cycles. The multipliers support 
integer multiplications of signed, signed/unsigned, and unsigned operands. In 
addition, fractional multiplication is supported for signed operands. 

• The D units (D1 for data path one, D2 for data path two) each contain a 32-bit 
adder/subtractor. They are used for address generation including linear and circular 
address calculations. Because each data path has one D unit, the processor can per­
form a total of two address calculations in one instruction cycle. 

In the best case, all units operate in parallel, and the processor performs four arith­
. metic operations, two multiplications, and two address calculations in one instruction 
cycle. 

As a result of the processor s high clock speed and its ability to per­
form a maximum of eight operations in parallel, the TMS320C62xx 
offers a significant performance improvement over conventional 
DSP processors. This enables the use of a programmable DSP pro­
cessor in applications that previously required multiple processors 
or custom hardware. 

However, in many cases the processors maximum level ofparallel­
ism cannot be achieved due to application constraints and resource 
limitations. In the BDTI Benchmarks™, the / typical level of paral­
lelism achieved in algorithm kernels is six to seven instructions per 
cycle. Additionally, the fact that several instructions require multi­
ple cycles to complete (e.g., the multiplier has a two cycle latency 
and the branch instruction has a six cycle latency) complicates pro­
gramming and forces the use of software pipe lining in typical DSP 
algorithm implementations (e.g., convolution). 

Note that the TMS320C62xx instruction execution rate of eight 
RISC-like instructions per instruction cycle, e.g., "1,600 MIPS" at 
200 MHz, cannot be directly compared to the instruction execution 
rates of conventional DSP processors. For example, a MAC opera­
tion consisting of one multiplication, one addition, and two parallel 
moves is implemented as a single instruction on conventional DSP 
processors, but as four instructions on the TMS320C62xx. 
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The TMS320C62xx provides two register files, A and B, each 'containing sixteen 
32-bit general-purpose registers. These registers can be used for storing addresses or data. 
The registers are labeled AO-A15 for data path one and BO-B15 for data path two. To sup­
port 40-bit arithmetic, pairs of adjacent registers can be used to hold 40':bit ("long") data. 
In this case the 32 LSBs (least significant bits) are stored in an even-numbered register 
and the 8 MSBs (most significant bits) are stored in the 8 LSBs of the next (odd-num­
bered) register. The remaining bits of the odd-numbered register are zero filled. 

The TMS320C62xx implements a load-store architecture: operands must be 
loaded into the registers before they can be used by the execution units. Generally, the 
execution units of data path one operate on registers in register file A and the units of data 
path two operate on registers in register file B. However, the register files are intercon­
nected to the opposite data path's functional units via cross paths. This allows each data 
path to fetch one 32-bit operand per instruction cycle from the register file of the other 
data path. 

In each data path, each execution unit has its own read and write ports to its regis­
ter file. Thus, all execution units in each data path can access the local register file simul­
taneously. This means that in an ideal situation all execution units in both data paths 
operate independently and eight simultaneous operations can be performed. However, 
some restrictions apply, the most significant of which are: 

• Only one 40-bit (long) result can be written to each register file per instruction 
cycle. 

• A 40-bit (long) register read cannot be issued in the same instruction cycle as a 
memory write from the same register file. 

• Two simultaneous memory accesses cannot use registers of the same register file 
as address pointers. 

• More than four reads of the same register cannot be performed in one instruction 
cycle. 

These limitations are minor considering the complex architecture of 
the processor and should not cause any major problems in most 
applications. However, selecting 40-bit arithmetic reduces the num­
ber of available registers and restricts parallelism. 

Overflow protection is supported on the TMS320C62xx via saturation logic and 
40-bit arithmetic. Saturation is supported by the L, S, and M units via special instructions, 
such as add and subtract with saturation (SADD and SSUB). These instructions perform 
the indicated arithmetic operation and, in case of overflow, saturate the result to the largest 
positive or negative value that can be represented using 2's complement arithmetic. The 
saturated result is either a 32- or 40-bit value, depending on the width of the destination 
register. The L, S, and M units automatically set the saturation bit in the control status reg­
ister when saturation occurs; this bit can only be cleared via an explicit instruction. The L 
and S units can operate on 40-bit operands, which corresponds to having a 32-bit register 
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with 8· guard bits. A dedicated instruction can be used t6 convert a 4O-bit value to 32 bits 
with saturation. 

Besides the bit that indicates the occurrence of saturation, no other status bits 
(carry, negative, etc.) are provided by the TMS320C62xx data paths. The TMS320C62xx 
does not provide hardware rounding. 

The lack of common status bits is not a problem on the 
TMS320C62xx; due to its parallel architecture and conditional 
instruction execution, status bits can be implemented (emulated) in 
software without a significant performance penalty. 

Memory System 

The ort-chip memory system of the TMS320C62xx implements a modified Har­
vard architecture providing separate address spaces for program and data memory. Pro­
gram memory has a 32-bit address bus and a 256-bit data bus. Data memory has two 
32-bit address buses and two 32-bit data buses. Both program and data memory spaces are 
byte-addressable for all of the TMS320C62xx processors. 

The TMS320C62xx 32-bit address space is among the largest of 
jixed-point DSP processors. However, the external memory inter­
face of the TMS320C6201, TMS320C6202, TMS320C6203, 
TMS320C6204, and TMS320C6205 can only address up to 52 
Mbytes of memory (combining all of the four sub-memory regions 
described in the External Memory Interface section), which is 
equivalent to a 26-bit address space. The TMS320C6211 external 
memory interface can address up to 1,024 Mbytes of external mem­
ory. 

All memory accesses on the TMS320C62xx must be aligned. For example, this 
means that when a 16-bit access is performed, the address of the memory location 
accessed must be a multiple of 2. For 32-bit accesses, the address must be a multiple of 4. 
If an address is not aligned, no exception is generated. Instead, the next-lowest aligned 
address is used. 

The fact that memory accesses must be aligned complicates pro­
gramming and sometimes reduces performance. For example, in 
filters that require a delay line to be maintained to store successive 
inputs, the delay line is typically implemented using a circular 
buffer, and the starting location of the buffer is advanced by one 
sample position for each iteration of the convolution. In order to 
use the full processing power of the TMS320C62xx, it is necessary 
to load a pair of samples from the delay line via a single read. Due 
to the alignment requirement, though, this cannot be done if a cir­
cular buffer is used. Hence, filter implementations on the 
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TMS320C62xx often use a different approach to implementing 
delay lines. 

The TMS320C6201, TMS320C6204, and TMS320C6205 have 64 Kbytes of 
32-bit on-chip program RAM and 64 Kbytes of 16-bit on-chip data RAM. The 
TMS320C6202 has 256 Kbytes of 32-bit on-chip program RAM and 128 Kbytes of 16-bit 
on-chip data RAM. According to Texas Instruments, the TMS320C6202B will have the 
same on-chip memory as the TMS320C6202. The TMS320C6203 has 384 Kbytes of 
32-bit on-chip program RAM and 512 Kbytes of 16-bit on-chip data RAM. The 
TMS320C6211 has 4 Kbytes of on-chip level-1 cache program memory and 4 Kbytes of 
on-chip level-1 data memory. Additionally, it has 64Kbytes of unified level-2 on-chip pro­
gram and data memory. 

An on-chip program memory size of 64 Kbytes may appear to be 
large but is quickly consumed by the large code size of typical 
TMS320C62xx programs. As a result, the 64 Kbyte on-chip pro­
gram memory of the TMS320C6201, TMS320C6204, and 
TMS320C6205 can be expected to accommodate roughly the same 
amount of application code as about 20 Kwords of on-chip memory 
on conventional16-bit fixed-point DSP processors. 

The on-chip program memory of the TMS320C6201 comprises a single block that 
consists of eight 8 Kbyte banks of 32-bit RAM. The data bus width of the program mem­
ory is 256 bits and thus, eight 32-bit instructions (called a "fetch packet" by Texas Instru­
ments)- are always loaded from the on-chip program memory at a time. The on-chip 
program memory can be accessed on 32-byte boundaries and can be configured to operate 
as on-chip RAM or as a direct-mapped instruction cache. Direct mapping means that an 
external program memory address can be mapped t9 only one cache location. (In contr~st, 
with a set-associative cache an external address might be mappable to two or four possible 
cache locations, for example.) The processor's on-chip program' memory can operate in 
the following modes: 

• Program memory. The on-chip program memory is used as program memory 
space and cache operation is disabled. 

• Cache enable. The on-chip program memory acts as a direct-mapped instruction 
cache. Program memory reads access the cache and cache misses cause the cache 
to be updated. 

• Cache freeze. The contents of the entire cache are locked. Program memory reads 
access the cache, but the cache is not updated on cache misses. 

• Cache bypass. All program memory accesses are performed from external mem­
ory, i.e., the on-chip cache is completely bypassed. Cache misses do not cause the 
cache to be updated. 

The on-chip program memory of the TMS320C6205 follows the same single block 
organization found on the TMS320C6201, but with an increased bank size. The on-chip 
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program memory of the TMS320C6202, TMS320C6203, and TMS320C6204 is organized 
as a pair of blocks, one of which can be configured to serve as a program cache. The same 
four modes (program memory, cache enabled, cache freeze, cache disabled) are associated 
with the first block of on-chip program memory as on the TMS320C620L The second 
block of program memory is always configured as program memory (not cache). 

The support for two distinct blocks allows the programmer to implement a pro­
gram-paging scheme. E.g., this partitioning allows the processor to execute a program 
from one block while the DMA is simultaneously loading the next segment of the code 
into the other block without contention. 

The on-chip data memory of the L8-volt core TMS320C6201, TMS320C6202, 
TMS320C6203, TMS320C6204, and TMS320C6205 is divided into two equal-sized 
blocks (the initial 2.5 volt TMS320C6201 processor had only one block of data memory). 
On the L8-volt TMS320C6201, each block contains 32 Kbytes organized as four banks of 
single-access 16-bit RAM. This memory can be accessed 8 or 16 bits at a time, or 32 bits 
at a time when two memory banks are combined. Via the two 32-bit address and two 
32-bit data buses, it is possible to fetch four 16-bit data operands at a time assuming that 
each operand comes from a different memory bank. Assuming no memory bank conflicts, 
the maximum on-chip data access rate is two 32-bit words or four 16-bit words (iflocated 
as pairs of adjacent words) per instruction cycle. On a 300 MHz TMS320C6203, this 
results scale in a maximum on-chip data memory bandwidth of 600 million 32-bit words 
per second (or 1,200 million 16-bit words per second). 

Conventional DSP processors provide a single data path and typi­
cally support an on-chip data access rate of two data memory 
accesses per instruction cycle. On the TMS320C62xx, if two 16-bit 
operands are packed in one 32-bit data word, four 16-bit operands 
can be fetched in one instruction cycle. Special multiply instruc­
.tions support this technique by allowing operands to be selected 
from the lower or upper halves of 32-bit registers. This functional­
ity provides sufficient data memory bandwidth for the processor s 
two data paths. 

The TMS320C6211 replaces the on-chip program and data RAM found on the 
other TMS320C62xx processors with a 4 Kbyte on-chip level-l program cache and a sep­
arate 4 Kbyte on-chip level-l data cache. It also features a unified 64 Kbyte on-chip 
level-2 cache. The on-chip level-2 cache services requests from the level-l data and pro­
gram caches as well as from the DMA controller. The level-l caches are only accessible 
by the CPU. The level-l program cache of the TMS320C6211 is organized as a 
direct-mapped cache and features a 64-byte line size whereas the level-l data cache is 
based on a 32-byte line size. The level-l data cache is a two-way set-associative cache 
with a LRU (least-recently-used) replacement policy. The line size of the level-2 cache is 
128 bytes. The level-2 cache is a one- to four-way set-associative cache, also with a LRU 
replacement policy, and each set can be independently and dynamically configured to 
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serve as cache memory or on-chip RAM. The overall organization of caches and associ­
ated buses is depicted in Figure 7.15-3. 

As mentioned earlier, the processor's core always fetches a group of eight instruc­
tions at a time, regardless of whether they are executed sequentially or in parallel. When 
groups are already present in the level-1 instruction cache (Le., a cache hit occurs), up to 
eight instructions can be executed by the core every cycle. In contrast, when a group of 
instructions isn't found in the level-1 instruction cache but lies in the level-2 cache (Le., a 
cache miss occurs in the level-l instruction cache), five cycles are required to update a 
cache line. Two groups of eight instructions are copied from the level-2 memory to the 
level-l program cache; the core's instruction pipeline stalls until the cache line update is 
complete. 

The level-1 data cache of the TMS320C6211 is based on a dual-ported memory. 
As with the level-1 program cache, there is no cycle penalty when cache hits occur. This 
means that two load or two store operations can be issued every cycle (assuming no 
instruction cache miss occurs). Moreover, the dual-ported architecture of the level-l data 
cache allows two concurrent accesses to the same cache line without cycle penalty. As 
with the level-1 program cache, when a cache miss occurs in the level-1 data cache, datais 
copied from the level-2 cache to the level-1 data cache. Because the level-l line size is 
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twice the width of the bus between the level-l data cache and the level-2 cache, two copy 
operations are required between the level-2 and level-l data cache. Each copy operation 
takes 2 cycles to complete. Hence, a latency of four cycles is required to update an entire 
level-l data cache line. 

The level-2memory of the TMS320C6211 is organized as four 64-bit wide banks. 
The level-l program and data caches and the DMA can all access the level-2 memory 
whether it is configured as cache or as on-chip RAM. Concurrent accesses to the level-2 
memory by any of these three requestors occur without contention when they access dis­
tinct banks. When concurrent accesses to the same bank are detected, a configurable prior­
ity mechanism gives access to the highest priority requestor. The priority level of the 
requestor can be configured by the application. 

When the level-2 memory is configured as cache, the DMA controller is used to 
update a 128-byte level-2 cache line. A 64-bit data path is used to convey instructions or 
data between the enhanced DMA controller and the level-2 cache. 

The bus between the level-2 controller and the DMA controller of the 
TMS320C6211 is 64 bits wide. Therefore, multiple requests are necessary to update a 
level-2 cache line. The number of cycles required to service each 64-bitrequest depends 
on the type of external memory being accessed, and whether the· cache line being replaced 
must be written back to external memory before being replaced. For synchronous-burst 
SRAM (SBSRAM), if no write-back is required, the processor stalls for 47 cycles. During 
this period of time, the level-2 controller updates a 128-byte line of the level-2 cache. 
(This data was provided by Texas Instruments, assuming a 2: 1 frequency ratio between the 
processor master clock and the SBSRAM clock. In the case of more conventional syn­
chronous DRAM (SDRAM), the CPU stalls for 48 cycles if the requested SDRAM page is 
active and for 53 cycles if the SDRAM page is inactive, according to Texas Instruments.) 

Roughly 2.5 cycles per byte are required to update a .level-2 cache 
line in the scenario detailed above~ This penalty is significant, and 
may cause severe bottlenecks when an application requires the 
cache to be frequently updated. Configuring part of the level-2 
cache to serve as on-chip RAM somewhat mitigates the bandwidth 
limitation. In typical applications, the level-2 memory is partitioned 
as cache and on-chip RAM. The cached region usually holds 
instructions and the stack. One non-cached portion of the level-2 
memory can be used to hold the input stream currently being pro­
cessed, while an EDMA transfer request (issued by the program) 
uses another section of the non-cached region to import the next 
block of data. With this approach, the program is not required to 
wait for input samples to be downloaded into the level-2 memory 
before processing can occur. 

The TMS320C6211 allows manual invalidation of a specified range of addresses 
in the level-l and level-2 cache by writing to a dedicated control register. The level-l and 
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level-2 caches can be flushed (causing the resident data to be copied back to external 
memory) and additionally, the level-2 cache can be cleared (causing the requested data to 
be tagged as not present without copying it back to external memory). The cache architec­
ture of the TMS320C62 I I allows a subset of memory ranges to be individually configured 
so as not to be cached in the level-2 and level-1 caches, This implements a cache bypass 
mechanism that allows, for example, reading a single word of data without the need to 
update an entire level-2 line. According to Texas Instruments, 35 cycles are required to 
read a single word from external memory. 

The TMS320C6211 is the first commercial DSP processor to feature 
both level-l and level-2 caches on chip. The use of small caches 
instead of large banks of on-chip RAM lowers the cost of this 
device, but increases the frequency of external memory accesses 
(each of which takes multiple cycles to complete), thus reducing 
performance. Additionally, the use of caches may result in unpre­
dictable execution times in many applications. This can be a prob­
lem in applications with tight real-time constraints. These 
drawbacks are alleviated to some extent by the ability to configure 
portions of the level-2 cache as on-chip RAM and, to a smaller 
extent, by the manual invalidation mechanisms that are provided. 

The on-chip program and data memory interfaces of the TMS320C62xx are pipe­
lined. Data memory reads have a throughput of one instruction cycle but a latency of five 
instruction cycles. Data memory writes have a throughput and an apparent latency of one 
instruction cycle. In fact, data memory writes take three instruction cycles to complete. 
However, the contents of a memory location written by the immediately preceding instruc­
tion can be read by the current instruction. 

The latency of five instruction cycles for data memory reads com­
plicates programming. 

All TMS320C62xx family members support both little- and big-endian byte order­
ing via an external pin. The state of this pin is readable in the control status register. 

The TMS320C6201, TMS320C6202, TMS320C6203, TMS320C6204, and 
TMS320C6205 provide a four-channel DMA controller. The TMS 320C62 I I provides an 
enhanced DMA controller that supports 16 channels. These DMA controllers are dis­
cussed in more detail in the Peripherals section. 

External Memory Interface 

All TMS32OC62xx external memory accesses pass through the processor's exter­
nal memory interface (EMIF). The EMIF provides a 23-bit external address bus and a 
32-bit data bus. These buses are multiplexed between program and data memory accesses. 

External memory is divided into four spaces: CEO, CEI, CE2, and CE3. Each 
space has a dedicated chip-enable signal that is asserted during accesses to that space. On 
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aU TMS32OC62xx family members except the TMS32OC6211, spaces CEO, CE2, and 
CE3 are always 32 bits wide, while space CE1 can be accessed 8, 16, or 32 bits at a time to 
support low-cost boot ROM devices. In addition, the EMIF provides the necessary set of 
signals to interface to multiple types of external memory including asynchronous SRAM, 
synchronous DRAM, and synchronous burst SRAM. For synchronous DRAM, the neces­
sary refresh signals are provided by the EMIF and the refresh period can be programmed 
in a dedicated period register. With synchronous memory, the speed of the external mem­
ory interface on the TMS320C6201 can be either IX or 112-X the master clock rate. It is 
restricted to 1I2-X the master clock rate on the other TMS320C62xx members, except for 
the TMS32OC621 1. The TMS320C6211 employs a separate clock thus supporting a wider 
range of memory speeds. 

The external memory interface of the TMS320C6202, TMS32OC6203, 
TMS320C6204, and TMS320C6205 is similar to that found on the TMS320C6201. One 
important difference is that the external memory interface of the TMS320C6201 (and 
TMS320C6211) allows connection of synchronous burst SRAMand synchronous DRAM 
devices to the same DSP; the TMS320C6202, TMS320C6203, TMS320C6204, and 
TMS320C6205 do not support this capability. 

The external memory interface of the TMS320C6211 is more flexible than those of 
the other TMS320C62xx members. On the TMS32OC6211, accesses to asynchronous 
memory, SDRAM, and SBSRAM can be 8, 16, or 32 bits wide for each of the four CE 
memory regions. Additionally, unlike other TMS320C62xx processors, there are no 
restrictions on the type of memory associated with each CE region. 

The external memory interface of the TMS320C62xx family is very 
flexible, providing logic to interface with many different types of 
memories. 

As with all processors, off-chip memory bandwidth depends heavily on the type 
and speed of the external memory. Given the high clock speed of the TMS320C62xx, 
however, obtaining and affording off-chip memory fast enough to keep up with the pro­
cessor's maximum transfer rates may be a challenge. In the fastest case, when connected 
to a high-speed SBSRAM, the first memory access in a series requires additional cycles, 
but subsequent accesses can be performed in a single instruction cycle. In this configura­
tion, the TMS320C6201 achieves a peak access rate of one 32-bit word per instruction 
cycle. This corresponds to a peak external memory bandwidth of 200 million 32-bit words 
per second on a 200 MHz TMS320C6201. (Because the external memory interface is lim­
ited to one half of the master clock rate on the TMS320C6203, the peak external memory 
bandwidth on a 300 MHz TMS320C6203 is 150 million 32-bit words per instruction 
cycle.) The external memory bandwidth for other types of memories is significantly 
lower; e.g., bandwidth is limited to 100 million 32-bit words per second for asynchronous 
SRAM and synchronous DRAM on the TMS320C6201. Additionally, the peak memory 
bandwidth for any particular type of memory can only be achieved via DMA transfers and 
instruction fetches. When accessing external memory via load or store instructions, laten-
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cies are always incurred due to the pipelined memory interface. The latency incurred for 
load and store instructions varies depending on the type of memory used and whether a 
load or a store is being performed and ranges from six cycles for a store to SBSRAM or 
asynchronous SRAM, to as many as 42 cycles for a load from an inactive row of SDRAM. 
Latencies are incurred for each 32-bit word accessed-performing loads or stores from or 
to sequential external memory locations does not eliminate the latencies after the first 
access. 

The memory map organization of the TMS320C6204 and TMS320C6205 is iden­
tical to that of the TMS320C6201. The TMS320C6204 and TMS320C6205 also support 
the same variety of memory types and CE memory partitions as the TMS320C6201. The 
TMS320C6203 memory map is a superset of the TMS320C6202 memory map, which is a 
superset of the TMS320C6201 memory map. The internal and external memory map orga­
nization of the TMS320C6211 processor is not compatible with those of other 
TMS320C62xx members but is identical to that of the TMS320C6711 floating-point pro­
cessor. 

In typical applications, the peak external memory bandwidth will 
be significantly lower than 200 Million 32-bit words/second at 200 
MHz for the TMS320C6201. The reason for this is that the 
full-speed SBSRAM inteiface would require very fast (5 ns) SRAM 
memory, which is not practical in many applications. 

Evenwith high-speed SBSRAM memory, the TMS320C62xx cannot 
execute at full speed from off-chip memory. For example, if a pro­
gram is executed entirely from off-chip memory, the peak instruc­
tion execution rate will be 50 million MACs per second at 200 MHz 
for synchronous burst SRAM on the TMS320C6201 (or 37.5 million 
MACs per second on a 300 MHz TMS320C6203, because the exter­
nal memory inteiface is limited by the master clock rate on this 
device J. Additionally, the external memory inteiface can become a 
serious bottleneck for applications that require the use of external 
data memory due to the latencies incurred by load and store 
instructions that access external memory. 

Considering the bottleneck created by the relatively slow external 
memory inteiface of the TMS320C62xx, the size of the 
TMS320C6201, TMS320C6204, and TMS320C6205 on-chip mem­
ory is fairly small. In addition, the use of direct mapping (as 
opposed to two- or four-way set associativity) will limit the effi­
ciency of the cache and increase traffic between the cache and 
external memory. The additional on-chip memory and 32-bit exter­
nal expansion bus provided on the TMS320C6202 and 
TMS320C6203 alleviate this problem for many applications. 
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The two-level cached memory system of the TMS320C6211 has the 
advantage that external data memory accesses an entire cache line 
ratMr than fetching a single word from external memory. Thus, the 
latencies incurred for the access can be amortized over 32 data 
words. However, the small size of on-chip cache memory means 
that more external memory accesses will be required in most appli­
cations compared to other TMS320C62xx processors, thus reducing 
peTjormance. 

Address Generation Units 

As mentioned earlier, the TMS320C62xx has two address generation units, DI and 
D2, one for each data path. In each unit, a 32-bit adder/subtractor is uSed for calculating 
memory addresses. Any general-purpose register can be used as an address register by 
these units. The D units can also be used as general-purpose ALUs (for 32-bit fixed-point 
addition or subtraction) if they are not needed for address generation in a given cycle. 

The TMS320C62xx supports register-direct and register-indirect addressing 
modes and immediate data. In register-indirect addressing mode, the address register mod­
ification options include pre;..incrementldecrement by a short (5-bit) immediate or by the 
contents of any general-purpose register, and post-incrementldecrement by a short imme­
diate or by the contents of any general-purpose register. 

Register-indirect addressing with indexing is also supported. In this case, immedi­
ate data or any general-purpose register can be used as an index. The immediate index can 
be either a short (5-bit) or long (I5-bit) value. In the case of a long immediate index, only 
two registers, BI4 and BI5, can be used to hold the base address. 

The iuldress register modification options on the TMS320C62xx are 
flexible. The availability of indexed addressing is useful for compil­
ers. 

A sufftx of B, H, or W is used with load and store instructions to indicate the data 
. width: byte, half word (16 bits), or word (32 bits). The modifier values are scaled accord­
ing to the data width; i.e., depending on the data width-byte, half word, or word-the 
modifier value is left-shifted by 0, 1, or 2 bits, respectively. 

Register-indirect addressing with a long immediate index can be used to imple­
ment an addressing mode similar to paged-memory-direct addressing: the registers B 14 
and BI5 can be used as memory page pointers and 32 Kwords within each page can be 
addressed using I5-bit immediate index values. 

The TMS32OC62xx supports modulo addressing. Up to eight registers, A4-A7 for 
data path one and B4-B7 for data path two, can be configured to operate under modulo 
addressing. Two different circular buffer sizes can be simultaneously active. These buffer 
sizes must be powers of two and are programmed by specifying two 5-bit block-size fields 
in the "addressing mode register" (AMR). The circular buffer size is calculated as: 
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Buffer size (in bytes) = 2(N+l) 

where N is the 5-bit value in either of the block size fields. (Thus circular buffers can be of 
size 2, 4, 8, 16, ... ,232 bytes.) In addition, the starting address of the buffer must be a mul­
tiple of the buffer size. For each register that supports circular addressing the AMR speci­
fies the addressing mode used, which can be one of the following: linear (default), modulo 
addressing using block size field one, or modulo addressing using block size field two. 

The restriction that circular buffer sizes must be powers of two is a 
slight drawback. While this does not significantly reduce perfor­
mance in most applications, working around this limitation often 
requires more data memory in comparison to the data memory used 
by DSPs that support arbitrary circular buffer sizes. 

The TMS320C62xx does not support bit-reversed addressing. 

Pipeline 

The pipeline stages of the TMS320C62xx consist of fetch, decode, and execute 
operations which are further divided into 11 stages as presented in Table 7.15-2. The pipe­
line of the TMS320C62xx is non-interlocked and is significantly deeper than those found 
in most currently available DSP processors. 

As mentioned earlier, instructions from on-chip program memory are always 
fetched eight at a time by the program fetch unit regardless of the number of instructions 
that will be executed in parallel. A group of eight 32-bit instructions comprises a "fetch 
packet." The instructions within a fetch packet that are to be executed in parallel form an 
"execution packet." Thus, one execution packet may contain up to eight instructions. Exe­
cution packet boundaries are identified by the least significant bit (LSB) of each instruc­
tion. If the bit is set for a particular instruction, then the instruction is dispatched in 

Operation Stage Description 

PO Program address generate 

PS Program address send 
Fetch 

PW Program address ready wait 

PR Program fetch packet receive 

DP 
Decode 

Instruction dispatch 

DC Instruction decode 

El 
Execute 

Execute stage 1 

E2-E5 Execute stages 2-5 (used by multiply and load instructions) 

TABLE 7.15-2. Pipeline stages of the TMS320C62xx. 
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parallel with the next instruction. This is illustrated in Figure 7.15-4. For example, if one 
fetch packet contains eight execution packets, each execution packet contains only one 
instruction (Fetch Packet A in Figure 7.15-4). If one fetch packet contains only one execu­
tion. packet, the execution packet contains eight instructions (Fetch PacketB in 
Figure 7.15-4). If a fetch packet contains four execution packets, each execution packet 
may contain from one to five instructions (Fetch Packet C in Figure 7.15-4). It is up to the 
code generation tools or the programmer to determine which instructions can be executed 
in parallel. 

The LSB of the last instruction of the fetch packet is always zero because execu­
tion packets cannot cross fetch packet boundaries. If an execution packet attempts to cross 
a fetch packet boundary, the linker places it in the next fetch packet. The remainder of the 
current fetch· packet is filled with NOP instructions. 

Note that the architecture of the TMS320C62xx differs from tradi­
tional VUW architectures by allowing the processor to fetch multi­
ple execution packets at a time. Texas Instruments implements this 
by utilizing variable-length execution packets. (In traditional VUW 
architectures, execution packets have a fixed length.) This tech­
nique is used to reduce the large program memory requirements 
typically associated with earlier VUW architectures. The restric­
tion that execution packets cannot cross fetch packet boundaries 
limits the effectiveness of this technique, however. This restriction is 
removed in the TMS320C64xx to improve code density. 

Instructions are grouped into execution packets by the assembly language pro­
grammer andlor the code generation tools. The processor performs no resource contention 
checking among instructions in an execution packet, and therefore resource conflicts in 
manually written assembly language code that are not detectable by the tools may lead to 
unwanted behavior. This is discussed in more detail in the Instruction Set section, below. 

After a 256-bit fetch packet is fetched by the processor, the instructions of one exe­
cution packet are dispatched to the corresponding execution units in parallel. If a fetch 
packet contains more than one execution packet, the next fetch packet is not fetched until 
the last execution packet of the current fetch packet has been dispatched. 

Note that in contrast to some VUW architectures, instructions 
within execution packets on the TMS320C62xx are not positional. 
This allows the length of execution packets to vary, as described 
above. 

Most TMS320C62xx instructions require only one execution stage (El), and thus 
execute in seven pipeline stages. However, multiplications and data loads require multiple 
execution stages and thus use more than seven pipeline stages. 

The pipeline of the TMS320C62xx is visible to the programmer in the following 
cases: 
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• Multiply operations take two execution stages to complete (El and E2), thus intro­
ducing a latency of two instruction cycles. However, multiplications have sin­
gle-cycle throughput allowing a new operation to be started in every instruction 
cycle. 

• Data loads have a throughput of one instruction cycle but introduce a latency of 
five instruction cycles. For a data load instruction, the execution stage El is used 
to calculate the memory address and four additional stages (E2-ES) are used to 
address the data, read the data, and load it into a register. 

• All branches on the TMS320C62xx are delayed branches introducing five delay 
slots. This is because the branch instruction is executed in the El stage, and all pre­
viously fetched instructions are dispatched before the branch takes effect. 

• The pipeline is stalled by one instruction cycle if two data memory operands are 
read from the same memory bank in one execution packet. Additionally, interrupts 
may stall the pipeline. 

Pipeline effects significantly complicate TMS320C62xx assembly 
programming. Because the pipeline is both deep and completely 
exposed, writing assembly code that is both correct and efficient 
can be extremely tricky. 

Additionally, the exposed pipeline of the TMS320C62xx can cause 
problems when servicing interrupts. This issue is discussed further 
below. 

1---,------- 256 bits (1-8 execution packets) ----~--i 

Fetch Packet A 

LSBs ...-E!!f.~~:=:::::~~~~~==========:~==: 
Fetch Packet B 

Execution packets ~~~=====;~::~======;;;;;~~;;;:;;;;;;;:;==== ........ __ ...., 
Fetch Packet C 

FIGURE 7.15-4. Example fetch packets A, B, and C. Fetch packet A consists of eight 
instructions (i1-i8), each forming its own execution packet indicated by the LSB of 
each instruction. Fetch packet B contains one execution packet consisting of eight 
instructions. Fetch packet C contains four execution packets, each consisting of 
one to three instructions. Execution times for fetch packets A, B, and C are eight, 
one, and four cycles, respectively. 
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The pipeline of the TMS320C62xx is a good target for high-level 
language compilers in the sense that the pipeline latencies are 
readily predictable, and each instruction has single-cycle through­
put. On the other hand, the TMS320C62xx architecture introduces 
many challenges for both high-level language compilers and 
assembly programmers, such as complicated instruction scheduling 
and parallel dispatching. To alleviate some of the complexity 
encountered by an assembly programmer, Texas Instruments devel­
oped a new tool, the "Assembly Optimizer. " This tool is further dis­
cussed in the Development Tools section. 

Instruction Set 

The TMS320C62xx registers and instruction set are summarized in Tables 7.15-3 
and 7.15-4, respectively. 

Assembly Language Format 

The TMS320C62xx uses an opcode,..operand assembly language format where 
each instruction has an opcode field for the operation and an operand field for one to four 
operands. In addition, three optional fields can be used to indicate parallel execution, con­
ditional execution, and the targeted execution unit. 

For example, the instruction: 
II [AD] SADD .Ll Al,A2,Al 

''-3--1-___ ~___I.... _____ Optional fields 

adds the 32-bit value stored in register A2 to register Al and saturates the result. The "II" 
symbol indicates that the instruction is to be executed in parallel with the previous instruc­
tion. The "[AO]" symbol indicates that this instruction will be executed only if the contents 
of register AO are non-zero. The ".LI" directive indicates the execution unit to be used. 

If the target execution unit field is omitted from the instruction, the assembler 
attempts to automatically select an appropriate execution unit. 

Registers Width Purpose 

AO-AI5 32 bits General-purpose registers for data path I 

BO-BI5 32 bits General-purpose registers for data path 2 

TABLE 7.15-3. TMS320C62xx register summary. 
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Class Instructions 

32/32 or 32/40-bit signed or unsigned addition or subtraction with 
Arithmetic optional saturation; dual 16-bit SIMD addition or subtraction of two 

16-bit integers 

Multiplication 
Signed, signed/unsigned, and unsigned 16 x 16 -732 multiply; signed 
multiply and left shift by one with saturation 

Logic And, or, exclusive-or, not 

Shifting 
Arithmeticllogicalleftlright shift by 0-40 bits, left shift by 0-40 bits 
with saturation 

Rotation none 

Load/store from/to memory with/without indexing, move data 
Data move between registers, move a 16-bit signed constant into a register, store 

to program memory, zero a register 

Comparison Compare for equality, signed/unsigned compare for greaterlless than 

Looping none 

Branching 
Branch, branch using interrupt return pointer, branch using 
non-maskable interrupt (NMI) return pointer 

Subroutine Call Branch using register 

Bit Manipulation 
Setlclear bit field, extract and sign-extend a bit field, extract unsigned 
bit field 

Absolute value with saturation,leftmost significant bit (exponent) 

Special Function 
detection, normalize, convert a 40-bit value to 32 bits with saturation, 
conditional subtract and shift (to support division), IDLE (multi-cycle 
NOP with no termination until interrupt), NOP 

TABLE 7.15-4. TMS320C62xx: instruction set summary. Note that all instructions 
can be executed conditionally. 
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As mentioned earlier, an execution packet on the TMS320C62xx consists of up to 
eight simple,RISC-like instructions. All instructions inside an execution packet are exe­
cuted in parallel. For example, the execution packet: 

LOOP: 
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The conditional execution support provided on the TMS320C62xx 
is very flexible and powerful. 

The assembler and compiler are capable of detecting "simple" resource conflicts 
such as multiple writes to the same register within one execution packet. More compli­
cated conflicts cannot be detected by the assembler or compiler and may lead to incorrect 
results. These include: 

• Instructions with different latencies writing to the same destination register. For 
example, issuing an ADD one cycle after a MPY with the same destination register 
will cause a failure because of their different latencies. 

• Instructions that share resources and are executed conditionally depending on the 
contents of unrelated registers. For example: 

[Al] ADD .Ll Al,A3,Al 
I I [Bl] ADD .L2 Al,A3,Al 

If both Al and Blare non-zero, multiple writes to register Al will be performed, 
causing a failure. In this case, it is the programmer's responsibility to ensure that 
Al and Blare not simultaneously non-zero. 

Parallel Move Support 

The TMS320C62xx supports operand-unrelated parallel moves by allowing up to 
two data move instructions to be executed in parallel with other instructions. These data 
moves can be either two loads, two stores, or a load and a store. 

Orthogonality 

Due to its 32-bit instruction width, simple (RISC-like) instructions, and uniform 
register sets, the instruction set of the TMS320C62xx is extremely orthogonal. Restric­
tions regarding the use of registers apply to conditional execution, circular addressing, and 
the use of I5-bit immediate indexes in indirect addressing. 

Despite the orthogonal instruction set of the TMS320C62xx, the 
processor is extremely complex to program due to its high level of 
parallelism and the need for the programmer to manually schedule 
instructions for maximum performance. Texas Instruments' assem­
bly optimizer tool (discussed below) and C compiler simplify code 
development by automating the scheduling and parallelization pro­
cesses, but these tools do not always result in optimal code. 

Execution Times 

Most instructions on the TMS320C62xx have a latency of one single cycle of the 
master processor clock (assuming no delays due to memory bank conflicts or interrupts). 
The branch, multiply, and load instructions produce results (or produce an effect in case of 
a branch) only after multiple cycles. (E.g., once issued, six cycles are required for a branch 
to take effect.) This multi-cycle latency does not mean that other instructions can not be 
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issued while results or effects are pending. Indeed, assuming all instructions and data 
reside in on-chip memory and that memory bank conflicts and interrupts are avoided, all 
of the TMS320C62xx instructions have single-cycle throughput. This means that a new 
instance of an instruction can be issued in every cycle. This single-cycle throughput makes 
it possible for the pipeline to dispatch one execution packet (containing up to eight 
instructions) per instruction cycle, although some of the instructions issued can have a 
multi-cycle latency. 

Instruction Set Highlights 

The RISC-like instruction set of the TMS320C62xx is small and consists of fairly 
simple instructions. Noteworthy features include: 

• Conditional execution of all instructions. 

• Normalization instruction. This instruction can be used for exponent detection and 
as a part of normalization operation. It counts the number of redundant sign bits. 

• Multicycle Nap. This instruction can be used to fill the branch and load delay slots 
without significantly increasing code size. 

Execution Control 

Clocking 

The TMS320C62xx uses a IX master clock. An on-chip PLL is provided to allow 
the on-chip master clock to be generated from a slower external clock. The 
TMS320C62xx requires an external oscillator to drive the PLL. On the TMS320C6201, 
TMS320C6211, and TMS320C6202, the PLL can be programmed to multiply the input 
clock by a factor of 1 or 4 via two dedicated clock mode pins. Setting the multiplication 
ratio to one causes the PLL to be bypassed. The TMS320C6203, TMS320C6204, and 
TMS320C6205 offer an extended range of frequency multipliers: factors of 1, 4, 6, 7, 8, 9, 
10, and 11. The TMS320C6202B will also support the same set of extended factors, 
according to Texas Instruments. 

Hardware Looping 

The TMS320C62xx does not support hardware looping; all loops must be imple­
mented in software. However, the parallel architecture of the processor allows the imple­
mentation of software loops with virtually no overhead. 

Loops are implemented on the TMS320C62xx by conditionally decrementing the 
loop counter (stored in a general-purpose register) and branching to the top of the loop in 
parallel with other instructions. The branch instruction latency of six instruction cycles 
complicates assembly language programming, especially when loops contain fewer than 
six execution packets. In such short loops, the pipeline must be properly filled with 
branches to the top of the loop prior to execution of the first loop instruction. The example . 
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in Figure 7.15-5 illustrates the programming of single-packet software loops. As presented 
in this example, the pipeline is filled with branches in the loop-prologue code. After the 
loop prologue is executed, the loop can be started with a throughput of one execution 
packet per instruction cycle. In the first five iterations of the loop, the five branches exe­
cuted in the loop prologue take effect. After the first five loop iterations, in each loop iter­
ation k>5, the branch encountered in loop iteration k-5 takes effect. 
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Due to the deep pipeline and the delayed branch instructions of the 
processor, implementing loops on the TMS320C62xx in assembly 
language is very tricky. The long branch latency leads to heavily 
pipelined loop implementations that result in increased program 
memory usage for computer-generated and hand-optimized assem­
bly codes, and assembly code that is difficult to write and under­
stand. 

; Execution packet 1: 
.. . <0-6 other instructions> ... 
II [BO]B LOOP Branch to LOOP 
II [BO]ADD -l,BO,BO i Decrement loop cnt 

; Execution packet 2 : 
.. . <0-6 other instructions> ... 
II [BO]B LOOP Branch to LOOP 
II [BO]ADD -l,BO,BO ; Decrement loop cnt 

; Execution packet 3 : 
... <0-6 other instructions> ... 
II [BO]B LOOP Branch to LOOP 
II [BO]ADD -l,BO,BO ; Decrement loop cnt 

; Execution packet 4: 
.. . <0-6 other instructions> ... 
II [BO]B LOOP Branch to LOOP 
II[BO]ADD -l,BO,BO ; Decrement loop cnt 

; Execution packet 5 : 
.. . <0-6 other instructions> ... 
II[BO]B LOOP Branch to LOOP 
I I [BO]ADD -l,BO,BO ; Decrement loop cnt 

; Execution packet k: 

LOOP: 
... <0-6 other instructions> ... 
I I [BO] B LOOP ; Branch to LOOP 
I I [BO]ADD -l,BO,BO ; Decrement loop cnt 

FIGURE 7.15-5. An example "single-packet" loop. 
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Interrupts 

The TMS320C62xx architecture supports up to twelve maskable interrupts and 
two non-maskable interrupts. The non-maskable interrupts include reset and NMI. Not all 
of these interrupts are· available on all TMS320C62xx family members; for example, the 
TMS320C6201 has seven maskable and two non-maskable interrupts. 

Interrupts are prioritized with non-maskable interrupts having the highest priori­
ties. A low-to-high transition on interrupt pins sets the pending flags of an interrupt flag 
register. If the interrupt is. enabled, control is then transferred to the appropriate interrupt 
service routine. Maskable interrupts can be enabled and disabled by setting or clearing the 
corresponding bits in the interrupt enable register. 

Each interrupt has a 32-byte space (the size of one fetch packet) in the interrupt 
vector table where the interrupt service routine is stored. If the service routine is larger 
than 32 bytes, the routine must branch out of the table. 

A performance penalty will often be encountered if the service rou­
tine branches out of the table. This is because the programmer is 
forced to fill the five delay slots of the branch within the same fetch 
packet as the branch. This severely limits the number of instruc­
tions that can be executed in parallel in the delay slots of the 
branch. 

The service packet for the reset interrupt is always located at address zero. The 
"interrupt service table pointer" (ISTP) determines the starting location of the service 
table for the other interrupts and can point to any memory location on a 1,024-byte bound­
ary. 

Upon interrupt, the return address is stored to the "interrupt return pointer" (IRP), 
or "NMI return pointer" (NRP) register. In addition, interrupts are disabled and control is 
transferred to the corresponding service routine. The minimum interrupt latency from the 
assertion of the interrupt line until the execution of the first instruction of the service rou­
tine is 12 instruction cycles. The processor is not interruptible while any execution packet 
in the pipeline contains a branch or is in the delay slot of a branch. Additionally, interrupts 
can cause unexpected program behavior due to the exposed pipeline. For example, load 
instructions have a latency of five cycles. Thus, the result of a load into register AO exe­
cuted at cycle N is available in AO at cycle N+4. An arithmetic instruction can still read 
the old contents of register AO until cycle N+3. Suppose, however, that an interrupt occurs 
at cycle N+ 1. The delay caused by the interrupt means that once the is serviced and the 
pipeline returns to executing the arithmetic instruction, the arithmetic instruction reads the 
new value of AO instead of the old value of AO. To avoid such problems, interrupts must 
often be disabled when executing efficient code. 

The fact that the processor is not interruptible while a branch is 
pending means that tight loops are not interruptible on the 
TMS320C62xx. In applications where interrupt latency is a con-
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cern, programmers will often have to make significant sacrifices in 
performance in order to ensure reasonable interrupt latency. The 
fact that interrupts can interfere with the TMS320C62xx s exposed 
pipeline and cause unexpected program behavior further exacer­
bates this problem. 

An interrupt service routine is exited using dedicated branch instructions. These 
instructions re-enable interrupts and use IRP or NRP as a return address. Interrupts are not 
automatically nestable on the TMS320C62xx. In order to nest interrupts, the IRP and NRP 
must be saved and interrupts must be re-enabled by the service routine. 

Stack 

The TMS320C62xx does not provide a hardware stack. 

A software stack can be implemented using any general-purpose register as a stack 
pointer. Push and pop operations can be implemented using load and store instructions 
with pre- or post-increment or decrement. 

Bootstrap Loading 

The TMS320C62xx provides bootstrap loading capability via its DMA controller 
and host port (HPI) or via the expansion bus that replaces the HPI for some 
TMS320C62xx members. (The DMA controller, HPI, and expansion bus are discussed in 
detail in the Peripherals section below.) Additionally, the TMS320C6211 processor can 
boot directly from external SDRAM (this option is referred to as the "no boot process"). 

For DMA bootstrap loading, the DMA controller may be configured to load the 
internal program memory from 8-, 16-, or 32-bit wide external memory. Except for the 
TMS320C62ll processor, when bootstrap loading via the DMA controller, the DMA con­
troller loads 16 K words from CE 1 memory space to internal program memory starting at 
address 0, after which the processor starts executing automatically (the enhanced DMA of 
the TMS320C6211 loads 256 32-bit words from CE1). 

When bootstrap loading via the HPI, it is up to the host processor to load the inter­
nal program memory and signal the TMS320C62xx when bootstrap loading is complete. 
After bootstrap loading via either the DMA controller, the HPI, or the expansion bus, the 
processor begins execution at address o. 

The bootstrap loading options are flexible in terms of supported 
memory type, speed, and width. 

Peripherals 

The TMS320C6201 and TMS320C6211 include a host port, a multi-channel DMA 
controller, a multi-channel buffered serial port, and two 32-bit timers. The 
TMS320C6202, TMS320C6203, and TMS320C6204 include the same peripherals as the 
TMS320C6201, except the host port has been replaced with the more sophisticated 
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"Expansion Bus." The TMS320C6205 features the same peripherals as the 
TMS320C6201, except the host port has been replaced with a PCI interface. 

• Host Port (HPI) 
The TMS320C6201 and TMS320C6211 provide a 16-bit parallel host port inter­
face. Through this port, an external device (host) can access the internal memory 
of the TMS320C62xx. 
The HPI contains a 32-bit control register, a 32-bit data register, and a 32-bit 
address register. The host can read and write each of these 32-bit registers by per­
forming two 16-bit reads or writes over the 16-bit parallel interface. To perform a 
read or write from or to the TMS320C62xx's memory space, the host must first 
write the desired memory address into the HPI address register, then read or write 
the HPI data register. Data transfers between the HPI data register and memory 
occur over the DMA controller's auxiliary channel. The HPI address register can 
be configured to be automatically incremented to the next word address when a 
read or write of the HPI data register occurs. 
The host can interrupt the TMS320C62xx by setting a bit in the HPI control regis­
ter. Similarly, a bit in the HPI control register is provided to enable the 
TMS320C62xx to interrupt the host processor. 

• Expansion Bus 
Instead of the 16-bit host port interface, the TMS320C602, TMS320C6203, and 
TMS320C6204 processors include a more sophisticated 32-bit expansion bus. 
Like the HPI, this 32-bit interface allows external device accesses to the 
TMS320C62xx internal memory space. The expansion bus can operate in synchro­
nous or asynchronous mode. In asynchronous mode, the expansion bus operates 
like the 16-bit HPI of the TMS320C6201 processors, although the throughput is 
improved via a wider 32-bit bus. Compared to the TMS320C6201, the added syn­
chronous mode allows the TMS320C6202, TMS320C6203, and TMS320C6204 to 
be readily interfaced with a broader range of external devices including other pro­
cessors, FIFOs, and PCI bridges. 

• PCI Interface 
The TMS320C6205 replaces the host port with a 32-bit PCI interface. This inter­
face is compliant with Revision 2.2 of the PCI Local Bus specification and sup­
ports 33 MHz master and slave targets. The interface features parity generation, 
error detection and reporting, and power management capabilities. An on-chip 
EEPROM interface is embedded in the TMS320C6205 to allow loading a PCI 
configuration from an external serial EEPROM. 

• DMA Controller 
With the exceptIon of the TMS320C611 which supports 16 channels, all current 
TMS320C62xx processors provide a four-channel DMA controller. The DMA 
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controller can move data to or from any part of the TMS320C62xx address space, 
including on- and off-chip memory and peripherals. 

Each of the four channels can be independently configured to transfer 8-bit, 16-bit, 
or 32-bit data elements. DMA transfers are performed on blocks of data, which are 
subdivided into an arbitrary number of frames, each containing an arbitrary num­
ber of data elements. The number of bytes between two blocks and the number of 
bytes between two frames (both offsets are referred to as a "stride") must be con­
figured as part of the transfer request parameters. The support for strides allows the 
DMA controller to automatically generate the source or destination addresses that 
occur during relatively complex data transfers. For example, a two-dimensional 
array contained in another larger two-dimensional array can be automatically 
extracted by splitting the information into frames and blocks and setting up the 
strides appropriately. Because of this capability, the DMA controller can be char­
acterized as supporting multi-dimensional transfers. Additionally, apart from the 
address calculations that occur during a transfer, the source and destination 
addresses of a transfer can be automatically updated upon transfer completion. 
Each channel can be configured to interrupt the CPU at the end of a frame or block 
transfer. Additionally, each channel can automatically re-initialize itself at the end 
of a block transfer for continuous operation. 

A split-channel mode allows one of the DMA channels to handle simultaneous 
input and output streams for the same peripheral (full duplex mode), if the periph­
eral uses a destination address equal to the source address +4 bytes. 
DMA element or frame transfers can be automatically synchronized to a variety of 
events such as timer, serial port, or external interrupts. The DMA controller also 
features programmable channel priorities. 
A fifth, auxiliary DMA channel is used by the HPI or the expansion bus (described 
above) to allow an external host to access the TMS320C62xx memory space. 

The TMS320C6203, TMS320C6204, and TMS320C6205 DMA controller is 
improved by the addition of separate internal buffers (FIFOs) used for each DMA 
channel in place of a single buffer for all of the channels as found on the 
TMS320C6201 and TMS320C6202. The features are the same as those of the 
DMA controllers on the TMS320C6201 and TMS320C6202, and programs writ­
ten for the TMS320C6201 and TMS320C6202 can run unmodified on the 
TMS320C6203, TMS320C6204, or TMS320C6205 with respect to the use of 
DMA. This improves the overall throughput of transfers when multiple channels 
are used in parallel to access the peripherals (e.g., the external memory interface, 
the serial ports or the expansion bus). The DMA controller processes one channel 
at a time but a transfer performed through a higher priority channel can interrupt a 
transfer occurring in a lower priority channel. The overhead from switching chan-
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nels is reduced when multiple FIFOs are used to convey the atomic read and write 
requests. 
The DMA controller of the TMS32OC6211 is referred to as an enhanced DMA 
controller (EDMA) by Texas Instruments. TheEDMA controller differs from the 
other TMS320C62xx members in several ways. First, it supports sixteen channels 
instead of four. Second, the EDMA controller provides the ability to link transfers; 
i.e., once a transfer completes, another one can automatically be started. 

The support for linked DMA requests can increase performance 
since the core isn't required to intervene when two consecutive 
transfer requests are issued. This somewhat mitigates the drawback 
that the TMS320C62xx is rarely in an interruptible state in many 
applications. 

Third, instead of the configuration registers that are used to configure DMA 
requests on the other TMS320C62xx processors, DMA transfer request parameters 
are gathered in a separate 2 Kbyte on-chip memory section of the TMS320C6211 
memory map. Fourth, the EDMA controller of the TMS32OC6211 provides a 
"quick" transfer mode that reduces the set-up latency required to begin a DMA 
transfer. Five cycles are required to submit a quick DMA request rather than 36 for 
a conventional DMA request. . 

The quick DMA mode supported by the enhanced DMA controller 
supports DMA transfers with minimum overhead. This feature is 
most useful when the location of the data to process is determined 
at run-time. For example, when compensating block motion in 
MPEG-like video decompression algorithms, the location of the 
blocks to be reconstructed is determined during run-time process­
ing and depends on the contents of the compressed data stream 
being decoded. This type of run-time dependency defines 
"data-dependent" prqgrams. 

Finally, the EDMA controller features three transfer-request queues that allow the 
controller to multiplex groups of atomic read and write accesses (or burst accesses) 
of up to three pending transfers with minimum contention when switching from 
burst accesses. This feature further improves the sophisticated DMA controller of 
the TMS320C6203, TMS320C6204, and TMS320C6205 in the sense that transfers 
in the three channels are performed concurrently. (In comparison, only one channel 
can operate at a time on the TMS320C6201 and TMS320C6202, although a 
higher-priority channel can interrupt a transfer occurring in a lower priority chan­
neL) Additionally, although the EDMA allows for concurrent transfers, it also 
implements three priority levels for each of the concurrent transfers. Each EDMA 
queue is given a fixed priority level. Transfers initiated by a host or by 
TMS320C62xx software can be configured to use one of the two lowest-priority 
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queues. The highest-priority queue (the "urgent" priority queue) is reserved for 
level-2 cache controller requests. 

The structure of the EDMA is unique in the industry. The three-level 
priority queues allow balanced bandwidth usage when accessing 
the external memory interface, the host port, or the serial ports 
concurrently rather than allowing a single channel to monopolize 
the entire bandwidth. 

The TMS320C6211 EDMA controller has the same multi-dimensional transfer 
support as the DMA controller of the other TMS32OC62xx members; transferred 
data is grouped per block, frame, and elements. 

In several ways, the EDMA controller of the TMS320C6211 resem­
bles the DMAfound on the now-obsolete TMS320C8x multi-proces­
sor DSPs (three-dimensional DMA, parameter RAM to hold 
transfer requests, supportfor linked transfer requests), although the 
TMS320C8x supported additional transfer modes intended for 
image processing applications. 

The EDMA controller of the TMS320C6211 supports the same ability to synchro­
nize with a variety of internal and external events as other TMS320C62xx family 
members. Sixteen external events are supported, each of which is associated with a 
DMA channel on the TMS320C6211. Like the TMS320C62xx DMA controller, 
the event synchronization support of the EDMA controller can trigger submission 
of an entire DMA request or the transfer of an element or block. 

The TMS320C62xx DMA and EDMA controllers are very flexible. 
The ability of the DMA controllers to synchronize to peripheral or 
external interrupts is extremely useful, and somewhat mitigates the 
drawback that the TMS320C62xx is rarely in an interruptible state 
in many applications. 

• Serial Ports 
The serial ports of the non-cache based TMS320C62xx family members (all 
devices except the TMS320C6211) are identical. The TMS32OC6201, 
TMS320C6204, and TMS320C6205 provide two serial ports. The TMS320C6202 
and TMS320C6203 provide three serial ports. The TMS320C6202B will also pro­
vide three serial ports, according to Texas Instruments. 
Each serial port is capable of transferring 8-, 12-, 16-, 20-, 24-, or 32-bit words. 
The receive and transmit sections of each serial port can be independently config­
ured to use internally generated or externally supplied bit clock and frame sync 
signals. The polarity of the clock and frame sync signals can be independently con­
figured for receive and transmit. Only one clock and frame sync generator is pro­
vided per serial port, so if the receive and transmit sections of a serial port are both 
configured to use internally generated clock and/or frame sync, the two sections 
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must share the same clock and frame sync signals. The internally-generated bit 
clock can be derived from the CPU clock or from an externally supplied clock by 
dividing it by a programmable 7-bit value. 
The serial ports support automatic A-law or J.1-law companding for 8-bit transfers. 
The serial ports support multi-channel time-division-multiplexed operation. Up to 
128 logical TOM channels are supported. Up to 32 channels, selected from one of 
eight groups of 32 channels each, can be selected to be active at one time, or all 
128 channels can be active at once. 
Using the DMA controller (described above), data received by the serial ports can 
automatically be stored to a memory buffer without CPU intervention. Similarly, 
the DMA controller can automatically fetch data for transmission over the serial 
ports. 
The serial port pins can be used as general-purpose bit-liD pins when the serial 
ports are not in use. 
The two serial ports found on the TMS320C6211 are similar to those found on the 
other TMS320C62xx processors. One key difference is that the TMS320C6211 
serial ports can be configured for LSB-frrstor MSB .. first reception and transmis­
sion. 

The serial ports on the TMS320C62xx are flexible and support var­
ious communication protocols (e.g., PS, AC97, SP1, ST-BUS and 
10M2). The serial ports of the TMS320C62x:x processors are very 
similar to those of the TMS320C54x:x processors. 

• Timers 
All current TMS320C62xx family members include two identical 32-bit timers. 
The timers can be clocked by the CPU clock divided by four, or can count external 
events. Each timer has an input pin and an output pin. The input pin is used for 
counting external events. The output pin can be configured to output a pulse with a 
width of one or two CPU clock cycles when the timer's count register reaches the 
timer period. Alternatively, the output pin can be configured to toggle its state 
when the count register reaches the timer period. When the timer is not in use, the 
timer input pin can be used as a general-purpose input pin and the timer output pin 
can be used as a general-purpose output pin. 
When the timer period is reached, the count register is automatically reset to zero 
and the CPU can be interrupted. 

On-Chip Debugging Support 

The TMS32OC62xx offers a ITAG-based interface to on-chip emulation and 
debugging circuitry. Through the JTAG interface, an external device can read and write 
processor memory and registers, set and clear hardware breakpoints, and single-step 
through a program. The JTAG port can also be used for boundary scan. 
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The ITAG interface can also be used to convey a small amount of information in 
real-time (such as text messages or data to display). Texas Instruments refers to this fea­
ture as the Real-Time Data Exchange (RTDX). When coupled with the use of Texas 
Instruments' DSP-BIOS real-time operating kernel (further discussed in the Development 
Tools section), the ITAG interface can be used to provide the programmer with kernel 
information such a message log or a task-switching trace. 

Power Consumption and Management 

The typical power consumption for the various TMS320C62xx members is pre­
sented in Table 7.15-5. 

The TMS320C62xx features three low-power modes that can be entered by setting 
the power-down control bits in the control status register. In IDLEI mode, the core is dis­
abled but the PLL and peripherals continue to operate and may wake up the core. In 
IDLE2 mode, the core and the peripherals are disabled, but the PLL stays active. The 
interrupt that wakes up the processor in this case must come from an external device. 
IDLE3 mode completely shuts down the processor. In this mode the core and peripherals 
are disabled and the PLL is halted. The only way to exit IDLE3 mode is to reset the pro­
cessor. 

Note that the IDLE instruction is not used to enter the low-power modes described 
above. Instead, the IDLE instruction causes the processor to start executing a multicycle 
NOP instruction. This instruction can only be terminated by an interrupt. 

The TMS320C6202, TMS320C6203, TMS320C6204, and TMS320C6205 pro­
vide the ability to disable each peripheral, including the serial ports, the EMIF interface, 

Device . Frequency 
Typical power 
consumption 

TMS320C6201 (1.8V) 200 MHz 1.3W 

TMS320C6202 200 MHz 1.7W 

TMS320C6202 250 MHz 2.1 W 

TMS320C6211 150 MHz 0.9W 

TMS320C6203 250 MHz 1.1 W 

TMS320C6203 300 MHz 1.3W 

TMS320C6204 200 MHz 0.8W 

TMS320C6205 200 MHz 0.8W 

TABLE 7.15-5. Typical TMS320C62xx power consumption summary. 
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and the OMA controller in addition to the three IDLE modes supported on the 
TMS32OC6201 and TMS32OC6211. 

Benchmark Performance 

The TMS32OC62xx has been benchmarked with the BOTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDT! 
BenchmarkTM Results. We summarize and analyze TMS320C62xx benchmark perfor­
mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
take into account the processor's instruction cycle rate. Therefore, lower instruction cycle 
counts imply a more powerful architecture,but do not imply better performance. Next we 
discuss benchmark execution times and cost-execution time products, indicating processor 
performance and cost-performance, respectively. We then discuss the processor's energy 
consumption, which reflects the energy consumed by the processor in order to perform a 
task. Finally, we discuss the processor's memory usage. We divide the memory usage dis­
cussion into three parts: Control benchmark memory usage, overall benchmark program 
memory usage, and benchmark data memory usage. 

Except for the TMS32OC6211, TMS320C62xxprocessors have on-chip program 
RAM that can be configured to operate as a program memory or as direct-mapped instruc­
tion cache (the TMS320C6211 program memory is always configured as cache). The 
benchmark results presented here and in Chapter 8 assume that the on-chip program RAM 
is configured as program memory and that the benchmarks are pre-loaded and executed 
from this memory. In addition, all data are assumed to be pre-loaded in the on-chip data 
memory. Thus, these results neglect penalties associated with cache misses, which can be 
significant. BOTI has attempted to estimate the effect of cache miss penalties on the 
TMS320C6211 and has measured several of the BOTI Benchmarks on a TMS320C6211 
development board. Although we do not present detailed results for each benchmark that 
include cache miss penalties, this analysis does include a general assessment of the perfor­
mance impact for the case where the TMS32OC6211 Ll cache is flushed at the inception 
of the benchmark. 

TMS320C62xx performance strongly depends on the use of on-chip 
memory. For example, when executing instructions exclusively from 
off-chip memory, even if the fastest type of off-chip memory is used 
(full-speed synchronous burst SRAM), the TMS320C62xx's maxi­
mum instruction execution rate is slowed by a factor of eight. Thus, 
if there is a need to use external memory for program and/or data 
in a potential application for the TMS320C62xx, we urge readers to 
carefully consider how the processor's external memory interface 
and on-chip instruction cache will perform in that application. 
Relatedly, the impact of the TMS320C6211 two-level cache archi­
tecture on performance varies for each benchmark and can some-

© 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C62xx Family 

times significantly increase the cycle counts discussed in this 
report. 

Execution Performance 

• Instruction cycle counts: 
On all BDTI Benchmarks, the TMS320C62xx cycle count is among the five low­
est results. As illustrated in Figure 8.1-13, the total normalized instruction cycle 
count for the TMS320C62xx is third-lowest for all benchmarked processors, at 
about 40% below the average. However, its result is roughly 20% higher than that 
of the TMS320C64xx-C (the TMS320C64xx with L1 cache preloaded) and about 
70% above that of the SC140. 
The TMS320C62xx has low cycle counts primarily because it contains a total of 
eight independent execution units and can execute up to eight instructions per 
instruction cycle. The TMS320C62xx is particularly effective in convolution-ori­
ented benchmarks that process blocks of data, such as the Real Block FIR filter. 
The processor's cycle counts on the single-sample benchmarks are not as low, as it 
cannot make full use of its parallelism and it suffers from pipeline delays. 
The only two processors that consistently achieve lower cycle counts on most of 
the BDTI Benchmarks are the SC140 and the TMS320C64xx-C. The 
TMS320C64xx is an enhanced version of the TMS320C62xx, adding a number of 
new instructions and additional hardware. The TMS320C64xx-C's lower instruc­
tion cycle counts are largely due to three key extensions: new dot-product instruc­
tions, application-specific instructions (such as the bit-reversing instruction used in 
the FFf benchmark and the bit de-interleaving operation used in the Viterbi bench­
mark), and a wide range of added arithmetic and logical SIMD instructions. The 
SIMD extensions include support for four 16-bit multiplies in parallel-twice as 
many as the TMS320C62xx. 
Compared to the TMS320C62xx, the SC140 has a lower cycle count on all bench­
marks (much lower on many benchmarks) due to three key factors. First, the 
SC 140 can execute four MACs in parallel (compared with two on the 
TMS320C62xx). Second, the SC140 has a shallower pipeline and single-cycle 
latencies for most operations, which is particularly advantageous on single-sample 
benchmarks. Finally, the SC140 provides a powerful fractional-data store instruc­
tion capable of storing the upper 16-bit part of the product of a fractional 
16 x 16 ~ 32-bit multiplication. In comparison, the TMS320C62xx does not pro­
vide this feature and, in many cases, requires that multiplication products be 
explicitly shifted to select the desired portion. 
The TMS320C62xx cycle counts are notably low· on the Real and Complex Block 
FIR filter, Vector Add, Vector Maximum, FFf, Viterbi, and Bit Unpack bench­
marks. 
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The TMS32OC62xx achieves instruction cycle counts on the Real Block FlR and 
Complex Block FIR benchmarks that are roughly 45% and 40% lower, respec­
tively, than the average for all of the benchmarked DSP processors. The 
TMS320C62xx's key advantages on these benchmarks are its high on-chip mem­
ory bandwidth and high level of parallelism, which enable the processor to com­
pute two filter taps per instruction cycle. In addition, the TMS32OC62xx makes 
effective use of its ability to conditionally execute instructions to eliminate the 
housekeeping overhead associated with loading the next input value, resetting the 
convolution loop counter, and shifting and storing the previous result. The inner 
(convolution) loop is combined with the outer (housekeeping) loop by condition­
ally executing the housekeeping instructions within the convolution loop; new 
input samples are loaded during the last iterations of the convolution loop while 
the previous results are saved during the first iterations of the next convolution 
loop's execution (the convolution loop is executed one extra time to load the new 
input samples). 
Although it can compute two FIR filter taps in a single cycle, on the Single-Sam­
ple FIR benchmark the TMS320C62xx takes two cycles to compute two taps. The 
additional cycle is used for moving data to update the filter delay line FIFO. An 
alternative implementation would avoid moving data by using circular buffering. 
Moving data to update the delay line allows the setup time for the main loop to be 
significantly reduced, however, resulting in an implementation that is slightly 
more efficient for modest numbers of filter taps and that is therefore preferred for 
this benchmark. 
On single-sample benchmarks (such as the Single-Sample FIR filter or the LMS 
Adaptive filter), setting up the main loop takes a relatively large number of cycles 
on the TMS32OC62xx compared to the inner loop cycles required. For this reason, 
the TMS320C62xx cycle counts are relatively high compared to those on 
block-oriented benchmarks, but are still approximately 20-30% lower than the 
average of the benchmarked DSP processors. This also applies to the Two-Biquad 
IIR Filter, although the TMS320C62xx implementation of this benchmark doesn't 
use a loop (the implementation is optimized for two biquads and is completely 
unrolled). For these three single-sample benchmarks, the TMS320C62xx suffers 
from its deep pipeline and the multi-cycle latencies of some of its key instructions 
(such as loads, multiplies, and branches). Unlike block-oriented benchmarks, 
which can amortize the multi-cycle latencies via optimization techniques such as 
software pipelining, the single-sample benchmark cycle counts are strongly 
affected by the processor's pipeline depth and long latencies. 
On the Vector Add benchmark, the TMS320C62xx's instruction cycle count is 
about 40% lower than the average of all benchmarked processors. Due to the pro­
cessor's high on-chip data memory bandwidth, four 16-bit vector elements can be 
read or written at a time. Together with the two parallel data paths and the use of 

© 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C62xx Family 

dual 16-bit SIMD addition instructions, this enables the TMS320C62xx to process 
four vector elements every three clock cycles. 
On the Vector Maximum benchmark, the TMS320C62xx's instruction cycle 
count is roughly 60% lower than the average for all benchmarked processors. Par­
allelism and conditional execution are the key TMS320C62xx features on this 
benchmark; two comparisons and two conditional assignments are performed in 
parallel. 
On the FFT benchmark, the TMS320C62xx achieves an instruction cycle count 
that is roughly 60% below the average of all benchmarked processors. The 
TMS320C62xx executes one radix-4 butterfly in just ten cycles. The dual 16-bit 
SIMD add and subtract instructions (ADD2 and SUB2) are used to speed up the 
loop kernel. An average of six parallel instructions per cycle (out of a possible 
eight) are executed in this inner loop, demonstrating good resource usage. 
On the Viterbi benchmark, the TMS320C62xx has the fifth lowest cycle count 
result, at roughly 60% below the average of all benchmarked processors. On this 
benchmark, the TMS320C62xx performs the traceback loop using only three clock 
cycles per bit. Conditional execution and the bit-extraction instruction are used to 
optimize the implementation of the benchmark. Also, a specific addition instruc­
tion, the "addressing mode" addition, is used to further reduce the number of 
cycles. This instruction is primarily intended for incrementing a pointer by an off­
set that is automatically scaled (multiplied) by a factor of two or four depending on 
the width of the data referred to by the pointer. This instruction combines a shift 
and an add significantly reducing the cycle count for the traceback loop. 
On the Viterbi benchmark, the TMS320C64xx-C and the SC140 achieve cycle 
counts more than three times lower than that of the TMS320C62xx, for two key 
reasons. First, the SC140 and the TMS320C64xx-C feature dedicated instructions 
for the Viterbi algorithm (bit-interleaving and de-interleaving instructions on the 
TMS320C64xx-C, special dual 16-bit SIMD maximum instructions associated 
with a conditional shifting instruction on the SC140). The TMS320C64xx-C also 
uses an unusual optimization that allows it to take advantage of its quad 8-bit 
SIMD capabilities; the TMS320C64xx uses quad 8-bit SIMD additions, quad 
SIMD compares, and quad SIMD maximum instructions in the bit-interleaving 
loop of the Viterbi benchmark (also known as the add-compare-select loop), result­
ing in an extremely efficient implementation. The TMS320C62xx does not support 
8-bit SIMD operations. 
The TMS320C62xx has low cycle counts on the Bit Unpack benchmark primarily 
because of its high level of parallelism and support for conditional execution, dis­
cussed earlier. The TMS320C62xx lacks support for unaligned 64-bit data 
accesses, however, and this is the main reason why its cycle count on this bench­
mark is higher than that of the TMS320C64xx-C and about equal to that of the 
SC140. The floating-point TMS320C67xx uses the same implementation of this 
benchmark as the fixed-point TMS320C62xx, since floating-point operations are 
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not useful in this benchmark. Hence, the cycle counts of the two processors are 
equal. 
The results discussed above do not include cache miss penalties for the 
TMS320C62xx. To estimate the effect ofL1 cache miss penalties, BDTI measured 
the cycle counts for several benchmarks on a TMS320C6211 development board. 
For these measurements, we flushed the level-1 instruction and data cache but 
pre-loaded the unified level-2 cache with data and instructions. 

Focusing only on the level-l cache impact is reasonable for many 
applications, since the level-2 memory can be configured to serve 
as cache or on-chip RAM. If used as on-chip RAM, data and 
instructions can be pre-fetched into level-2 memory with a mini­
mum cycle penalty using the DMA controller. 

BDTI measured the effect of L1 cache misses on the Vector Dot Product, Real 
Block FIR filter, FFI', and Viterbi benchmarks. Note that the level-1 instruction 
and data cache sizes of the TMS320C6211 are sufficiently large (4 Kbytes each) to . 
contain all of the instructions and data for these benchmarks. Additionally, the 
benchmarks are optimized to avoid cache conflicts. Therefore, the level-1 cache 
impacts are proportional to the memory usage and the cycle count of each bench­
mark (and not to the memory access patterns of the benchmarks). 

On the Vector Dot Product benchmark, the combined level-1 data and instruction 
cache miss penalties of the TMS320C6211 roughly double the cycle count. In the 
absence of cache effects, this benchmark has a relatively .low cycle count of 31 
cycles. On the Real Block FIR filter, which has a higher cycle count than the Vec­
tor Dot Product (348 cycles without cache impact), the level-1 cache miss penal­
ties is lower; i.e., about 20%. The FFI' benchmark has a cycle count of 2,492 
cycles when cache misses are neglected; the effect of level-1 cache miss penalties 
increases this cycle count by roughly 25%. Finally, cache riss penalties increases 
cycles by less than 5% for the Viterbi benchmark. 

Our limited analysis of the effect of Ll cache misses indicates that 
the cache miss penalty can be significant (e.g., a 25% increase in 
cycles for the FFT, and a 100% increase for the Vector Dot Prod­
uct). Therefore, we urge readers to carefully consider cache miss 
penalties when estimating the performance of the TMS320C621l. 

• Execution times: 
Among the processors benchmarked, the TMS320C6203 shares the second-high­
est instruction cycle rate, 300 MHz, with the Motorola MSC8101. Only the 600 
MHz projected instruction cycle rate of the TMS320C64xx is faster. The low cycle 
counts of the TMS320C62xx combine with its high instruction cycle rate to give a 
total normalized execution time that is roughly 4.2 times faster than the average for 
the fixed-point processors. The execution time results for the TMS320C6203 is 
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60% slower than that of the MSC8101, however, and nearly 2.5 times slower than 
the TMS320C64xx-C, as shown in Figure 8.2-13. 

• Cost-execution time: 
The TMS320C6203 is the most expensive processor here ($201.42 in quantity of 
10K for the 300 MHz TMS320C6203). Its price is roughly twice that of the second 
most expensive fixed-point processor, the $96 MSC8101. The TMS320C6203's 
fast execution times do not compensate for its high cost. The TMS320C6203 's 
total normalized cost-execution time is roughly 1.7 times worse than the average 
for the fixed-point processors, and roughly 3.5 times worse than that of the 
MSC8101. 

The TMS320C6203 's speed and price data are used to generate the 
cost-execution time result for the TMS320C62xx family. It should be 
noted, however, that the cost-execution time result for the 
TMS320C62II would be significantly better, since the 
TMS320C62II costs seven times less than the TMS320C6203 while 
running half as fast (neglecting cache penalties). 

• Energy consumption: 
The TMS320C6204 uses a low, 1.5-volt core supply, but still has relatively high 
power consumption (0.8 watts). As illustrated in Figure 8.4-13B, the 
TMS320C6204 total normalized energy consumption is roughly 1.8 times higher 
than the average for the fixed-point processors. (Note that the TMS320C64xx and 
ADSP-219x are excluded from this average since power consumption figures have 
not been disclosed for these processors.) The TMS320C6204 result is roughly' 
eight times higher than that of the MSC8101, which has exceptionally low energy 
consumption. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code, and constant and non-constant 
data memory usage. 

As mentioned earlier, TMS320C62xx instructions are 32 bits wide. Each 32-bit 
.) 

instruction is a simple, RISC-like instruction, and up to eight parallel 32-bit instructions 
can be executed in each instruction cycle. Since each instruction is quite simple, the 
TMS320C62xx often requires multiple instructions to perform the same work as one 
instruction on a conventional DSP processor. In addition, making efficient use of the pro­
cessor's multiple execution units often requires programmers to issue multiple instances 
of the same instruction (e.g., to isslle two multiply instructions in parallel) and to use opti-
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mization techniques such as loop unrolling (in which the loop body is replicated one or 
more times inside the loop structure). These optimizations increase speed at the cost of 
increased memory usage. Relatedly, the TMS320C62xx branches, loads, and multiplies 
introduce five, four, and one delay slots, respectively, encouraging the use of software 
pipelining to avoid wasting cycles waiting for results. Filling and flushing deep software 
pipelines often requires many instructions, thus increasing code size. 

• Control benchmark memory usage: The Control benchmark implementation for 
the TMS320C62xx is identical to that of its floating-point counterpart, the 
TMS320C67xx. As illustrated in Figure 8.5-9i\, the TMS320C62xx's Control 
benchmark memory usage is roughly 50% higher than the average for fixed-point 
processors. The floating-point ADSP-2106x and ADSP-2116x (which have 48-bit 
instructions and share their benchmark implementation) have the highest total 
memory usage on this benchmark. The processor's high Control benchmark mem­
ory usage is primarily due to the processor's 32-bit instruction width and the fact 
that TMS320C62xx instructions are fairly simple. The only other processor with 
32-bit instructions, the TMS320C64xx, has a total memory usage result that is 
roughly 15% lower than that of the TMS320C62xx. 
Because the Control benchmark is optimized for memory usage rather than speed, 
the processor does not use a deep software pipeline in this benchmark. However, 
without deep software pipelining, multi-cycle NOP instructions must sometimes 
be used to fill branch delay slots. 

• Program memory usage: The TMS320C62xx has the highest program memory 
usage of all of the benchmarked fixed-point DSPs in eight out of twelve of the 
BDTI Benchmarks. As illustrated in Figure 8.5-13, the total normalized program 
memory usage for the TMS320C62xx is about twice the average of all of the pro­
cessors. 
The main reasons for the TMS320C62xx's high program memory usage were dis­
cussed earlier, and include the processor's wide, RISC-like instructions and the 
fact that many of the TMS320C62xx benchmark implementations use speed opti­
mizations (such as loop unrolling) that result in higher memory use. For instance, a 
MAC operation takes 12 bytes (three32-bit instructions: a multiply, an add, and a 
shift) on the TMS320C62xx versus 2 bytes on most 16-bit fixed-point processors. 
In addition, as discussed earlier in this chapter, TMS320C62xx execute packets 
must be entirely contained within fetch packets. The assembler automatically 
inserts parallel NOPs as necessary to prevent execute packets from crossing etch 
packet boundaries. This doesn't affect cycle counts, but it contributes to the pro­
cessor's high program memory use. 
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• Data memory usage: Constant data memory usage of the TMS320C62xx is as 
expected for a 16-bit fixed-point processor. Normalized constant data memory 
usage is shown in Figure 8.5-14. 
The TMS320C62xx non-constant data memory usage is slightly· higher than the 
average for 16-bit fixed-point DSP processors, as presented in Figure 8.5-15. The 
TMS320C62xx's non-constant data memory use is higher as a result of optimiza­
tions made to increase speed on some benchmarks. For example, the LMS Adap­
tive filter benchmark implementation uses a coefficient buffer that is twice the 
normal size. The extra buffer size is used to store invalid coefficient values gener­
ated on the first iteration of the loop as a result of software pipelining. Some 
benchmarks, the non-constant data memory usage is slightly above the average of 
all benchmarked 16-bit fixed-point processors because the TMS320C62xx uses 
32-bit memory addresses and requires four bytes each time it stores a pointer in 
memory. 

As mentioned earlier, the TMS320C62xx provides several features 
to reduce program memory use. These features include variable 
size execution packets and conditional execution of all instructions. 
In spite of these features, the TMS320C62xx program memory use 
on DSP algorithm code is dramatically higher than that of the other 
processors in this report. However, its total memory usage on the 
Control benchmark is only 30% higher than that of the other 
fixed-point processors, and in general, a processor S code density 
on control code is more important than its code density on DSP 
algorithm code. 

Cost 

Price and packaging options for TMS320C62xx processors are shown in 
Table 7.15-6. 

Fabrication Details 

The 1.8 volt TMS320C6201, TMS320C6202, and TMS320C6211 are fabricated 
using a 0.18 !lm five-metal-layer CMOS process. The TMS320C6203, TMS320C6204, 
and TMS320C6205 are fabricated using a 0.15 !lm five-metal-layer CMOS process. The 
TMS320C6202B will be fabricated using a 0.15 !lm five-metal-layer CMOS process, 
according to Texas Instruments. 

Development Tools 

Texas Instruments provides aCOFF-based C/C++ compiler, assembler, linker, 
archiver, instruction-set simulator and emulator for the TMS320C62xx. The same tool set 
is shared by all of the TMS320C6xxx processors: the TMS320C62xx, TMS320C67xx, 
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and TMS320C64xx. The assembler, linker, archiver, C/C++ compiler, assembler and sim­
ulator are command-line-driven tools. They are available for PC-compatible computers 
under Microsoft Windows 9x, Windows NT, and Windows 2000, and for Sun SPARC 
computers under Solaris. The tools can also be used from within the Code Composer Stu­
dio integrated development environment; Code Composer Studio is discussed further 
below. 

Compiler 

Version 4.0 of the compiler adds support for C++, covering most of the latest C++ 
extensions. The support for C++ is not complete, however; for example, the C++ excep­
tion-handling mechanism is not currently supported. Texas Instruments states that future 
versions of the compiler will expand support for C++. 

Device 

Support for c++ is not common among DSP processors, though 
several vendors (including StarCore and Analog Devices) have 
recently announced C++ compilers. The use of c++ often results 
in increased code size in comparison to code generated using C, 
without necessarily providing faster speed. This combination has 
historically made C++ less attractive for DSP processors, which 
are often used in speed, cost, and memory-sensitive applications. 

Speed 
(Millions of Voltage 

Package 
Price 

MACsper (V) (Qty. 10,000) 
second) 

TMS320C6201-200 400 1.8/3.31 352BGA $81.64 

TMS320C6202-200 400 1.8/3.31 352/384BGA $96.78 

TMS320C6202-250 500 1.8/3.31 352/384BGA $129.12 

TMS320C6203-250 500 1.5/3.32 352/384BGA $154.94 

TMS320C6203-300 600 1.5/3.32 3521384BGA $201.42 

1.5/3.32 288BGA $35.14 
TMS320C6204-200 400 

1.5/3.32 340BGA $42.17 

TMS320C6205-2oo 400 1.5/3.32 288BGA $47.14 

TMS320C6211-150 300 1.8/3.31 384BGA $28.74 

TABLE 7.15-6. TMS320C6201 price and package summary. Prices as of June 2000. 
[1] The core operates at 1.8 volts while all 1/0 signals are 3.3-volt compatible. 
[2] The core operates at 1.5 volts while all 1/0 signals are 3.3-volt compatible. 
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The compiler supports a variety of directives to enable the programmer to better 
control characteristics of the generated code. For example, as discussed earlier, the 
TMS320C62xx can rarely be interrupted during optimized small loops (see Interrupts sec­
tion). To ensure that software is periodically interruptible, programmers can use a com­
pile-time directive in their ClC++ source code. This directive tells the compiler to 
generate code that allows interrupts to be serviced after a specified maximum number of 
cycles. To achieve this goal, the compiler adds an interruptible outer loop surrounding the 
inner loop. In general, this approach reduces speed and increases code size. 

Version 4.0 of the ClC++ compiler is also able to automatically unroll a loop; i.e., 
to replicate the contents of a loop to expose more operations to be executed in parallel. 
Usually, the effect of this optimization is to improve speed at the cost of increased mem­
ory usage. The number of times a loop kernel is replicated is determined by the compiler 
or set by the programmer using a spec,ific directive. 

Other directives can be included in the C/C++ source code to enable the compiler 
to apply more aggressive optimizations. For example, the programmer can specify that 
two pointers in a critical tight loop don't point to an overlapping external memory region, 
allowing the compiler to make use of the fact that no data dependency exists and imple­
ment additional optimizations. Similarly, the programmer can specify that a loop will exe­
cute a specific number of times to enable the compiler to use this information to reduce the 
size of the generated code. 

Programmers can also use intrinsic functions in C/C++ programs to aid the com­
piler in generating optimized code. Intrinsic functions force the compiler to use a given 
specific assembly instruction without disturbing the C/C++ usage of registers. This par­
tially compensates for the fact that the C/C++ compiler isn't always able to determine the 
best assembly instruction (or instructions) to use. On the other hand, the use of intrinsic 
functions requires more expertise from the programmer and renders the C/C++ program 
more difficult to port to other targets. 

Texas Instruments' C/C++ compilerfor the TMS320C62x:x is easy 
to use but experiments using simple algorithms (e.g., convolu­
tion-orientedfunctions) show that the compiler generated code that 
was slower than hand-optimized code by about a factor of two. In 
an experiment using a relatively complex algorithm., the compiler 
generated code that was slower than hand-optimized code by about 
afactor offive. This level of efficiency is good considering the com­
plexity of the processor and is better than that of other DSP proces­
sor compilers that we have evaluated. Nevertheless, programmers 
will often need to hand-optimize their software to meet their perfor­
mance goals. The performance of compiler-generated code can 
often be enhanced by providing more information to the compiler 
via compiler directives. 
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Assembler Optimizer 

To achieve maximum performance, programming in assembly language is still 
required. Recognizing that the complexity of the TMS320C62xx architecture creates chal­
lenges for assembly· programmers, Texas Instruments developed a new class of tool, the . 
"assembly optimizer," to assist developers in creating optimized assembly code. The 
assembly optimizer accepts sequential (Le., not parallelized) meta-assembly code and pro­
duces optimized, parallelized assembly code. The input meta-assembly (called "linear" 
assembly by Texas Instruments) code is distinguished from regular TMS320C62xx assem­
bly code in three ways. First, it uses symbolic names for register variables; the optimizer 
assigns these variables to registers. Second, the programmer specifies the operation, but 
not the execution unit; the optimizer assigns operations to execute units. Third, the pro­
grammer is free to assume that all meta-assembly instructions have single-cycle latencies, 
significantly simplifying programming. The assembly optimizer schedules the instructions 
based on their latencies, assigns variables to registers, and decides what functional unit to 
use for each instruction. 

The assembly optimizer does not detect opportunities to exploit parallelism that 
are not explicitly expressed in the meta,;,assembly code. For example, if the meta-assembly 
implementation of an FIR fIlter is written to process one filter tap ata time, the assembly 
optimizer does not optimize the code to process two taps at a time. Thus, to get the best 
results from this tool, the programmer must be familiar with the TMS320C62xx architec­
ture and the capabilities of the tool, and must tailor the meta-assembly code accordingly. 

The assembly optimizer is available for Microsoft Windows 95/98/NT. 

Texas Instruments' TMS320C62xx assembly optimizer is an innova­
tive tool and represents a step in the right directionfor helping pro­
grammers develop optimized DSP software. 

The assembly optimizer provides significant assistance for creating 
optimized assembly code on the TMS320C62xx, but it is not a com­
plete substitute for expert manual crafting of code. Programmers 
desiring maximum performance will need to understand the full 
details of the TMS320C62xx architecture and will optimize their 
code-or at least portions of it-manually. However, due to the 
complexity of programming the TMS320C62xx, the effort required 
to manually optimize significant portions of an application is likely 
to be prohibitive. Therefore, designers of large or complex applica­
tions should not assume they will be able to tap the maximum per­
formance of the TMS320C62xx. 

Code generated by the assembly optimizer is often significantly dif­
ferent from the meta-assembly source and is often difficult to under­
stand. This complicates the debugging and further optimization of 
code generated with the assembly optimizer. 
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Code Composer Studio 

Code Composer Studio (CCS) is a DSP-oriented integrated development environ­
ment common to the TMS320C5xxx and TMS320C6xxx processors. CCS combines an 
editor, an integrated debugger (based on the simulator or emulator), a code profiler, a 
project manager ("makefile" generator and parser), and integration with all of the 
TMS320C6xxx code-generation tools. Code Composer Studio is available for Windows 
9x and Windows NT. 

The instruction-set simulator and the emulator share a common graphical interface 
embedded in the Code Composer Studio integrated development environment. Through 
this interface, the simulator and emulator support C/C++ language source-level debug­
ging. The simulators for the TMS320C6201, TMS320C6202, TMS320C6203, 
TMS320C6204, and TMS320C6205 are cycle accurate and properly model external mem­
ory accesses in most cases. However, the throughput enhancement added to the DMA of 
the TMS320C6203, TMS320C6204, and TMS320C6205 (as discussed in the Peripherals 
section) is not modeled by the current simulators. The PCI interface of the TMS320C6205 
is also not modeled. Additionally, external accesses to synchronous burst SRAM 
(SBSRAM) or asynchronous memory are only modeled with 85% cycle accuracy on the 
TMS320C6211 simulator, according to Texas Instruments. 

CCS has several key features to support software development for DSP/embedded 
applications, described below. 

First, CCS's debugging ability is enhanced by the use of advanced breakpoints, 
which Texas Instruments refers to as "probe points." Probe points make it possible to save 
or load data once a break point instruction is reached, or to display data sets in various for­
mats (e.g., in the frequency domain, using eye diagrams, or as two dimensional images). 

Second, CCS provides an integrated tool for configuring DSP BIOS, the real-time 
operating system bundled with CCS. DSP BIOS includes optional libraries containing var­
ious features (e.g., task communication/synchronization mechanisms, softwarelhardware 
interrupt management, I/O programming models). These libraries can be included or 
excluded from the executable in order to optimize the overall memory footprint of the 
application. CCS provides a graphical means of selection of the various DSP BIOS com­
ponents and parameters. 

CCS supports Texas Instruments' Real-Time Data Exchange technology (RTDX). 
RTDX is ITAG-interface-based communication protocol which, together with the DSP 
BIOS infrastructure, enhances debugging support with the ability to trace task-related 
information and/or to retrieve message logs via a PC host. Most of the time, the very low 
overhead associated with the debugging functions allows programmers to leave the calls 
to the debugging functions in the production version of the code. This feature allows 
inspection of the on-site and real-context behavior of the final product using a JTAG probe 
and the CCS environment. 
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Revision 1.2 of CCS introduces a new tool to profile the compilation process. This 
tool is able to test various compiler options and graph the speed vs. memory usage charac­
teristics of the resulting code. Using this tool, the programmer can select the compiler 
option that produces code that best meets the desired speed vs. memory trade-off. 

Texas Instruments recently introduced software development guidelines to help 
third-parties provide ready-to-integrate software libraries. This technology is known as the 
XDAIS (eXpressDSP Algorithm Interoperability Standard). These rules mainly govern 
how a module must use and/or declare use of the internal memory space and I/O resources 
in order to ease integration of modules from multiple sources, including modules provided 
in object code form. (For example, XDAIS-compliant modules must allow several 
instances of a given algorithm to exist simultaneously.) To be labeled as XDAIS compli­
ant, a module must be reviewed and certified by Texas Instruments. 

The high speed of the TMS320C62xx processors allows them to be 
used to implement more complex applications, such as multi-chan­
nel audio encoders and decoders. To realize the maximum benefit of 
this powerful but complex architecture, software tools have become 
Increasingly important. In recognition of this, Texas Instruments 
has invested significant resources in tool development. As a result, 
Texas Instruments' tool suite and support infrastructure are among 
the most advanced offeredfor any DSPprocessor. 

Recently, Texas Instruments has made available two royalty-free assembly-opti­
mized digital signal processing libraries for the TMS320C62xx. The first library is a gen­
eral-purpose digital signal processing library consisting of 32 high-level DSP functions. 
The second library contains 22 image processing functions. 

In addition, Texas Instruments offers a TMS320C6201-based EVM (EValuation 
Module) board that fits into a standard PCI slot. With the EVM, an on-board program can 
be debugged using the debugger function of CCS without the need for a Texas Instruments 
XDS510 emulator interface. The EVM board can also be used without a PCI connection, 
using a separate power supply. 

Texas Instruments also offers a stand-alone TMS320C6211-based board with a 
separate power supply .. This kit is referred to as the "starter kit" and costs roughly $300. 
The EVM and the starter kit boards both include various synchronous and asynchronous 
memories and an audio codec. Third-party daughter boards (such as a video-processing 
board) can be plugged to EVM boards or to the starter kit. 

Third-party support for the TMS320C62xx exists in the form of development 
boards, emulators, application boards, development tools and software libraries. 
Third-party vendors are numerous and include Pentek, Hunt Engineering, and Blue Wave 
Systems. Texas Instruments' website includes a list of third-party companies. 

The number of third-party vendors providing tools and software for 
Texas Instruments' nsps is the largest of any nsp processor ven-
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dor. This· is due partly to Texas Instruments' early entry into the 
DSP processor market and to its strong efforts to cultivate 
third-party support. 

Applications Support 

The TMS320C62xx family shares most of its documentation with the 
TMS320C67xx and the TMS320C64xx. This includes the TMS320C6xxx CPU and 
Instruction Set Manual and the TMS320C6xxx Programmer's Guide. These manuals cover 
the architecture, instruction set, and programming model of the device. The peripherals 
are described in the TMS320C6xxx Peripherals Reference Manual. 

In several sections, the peripherals documentation (currently 
labeled SPRU190C by Texas Instruments) is incomplete or insuffi­
ciently clear. For example, this document does not provide all of the 
necessary information required to understand the impact that the 
TMS320C6211 two-level cache architecture has on performance. 
Also, this document does not cover all peripheral-related variations 
associated with the various TMS320C62x:x members. Several sup­
plementary application reports discussing each of the processor's 
details are available on Texas Instruments' website, but the fact 
that the information is spread over multiple documents complicates 
understanding the differences between various TMS320C62x:x fam­
ily members. 

Separate data sheets and application reports discuss the hardware aspects of the 
processors. 

Applications support for all TMS320 family processors is provided by Texas 
Instruments staff who are available via telephone, fax, and electronic mail. Documentation 
and brief application reports are also available via the World Wide Web. 

Advantages 

• Highly orthogonal instruction set 

• Good parallel move support (two 32-bit or four 16-bit words per instruction cycle) 

• Conditional instruction execution 

• Four ALUs, two multipliers, and two barrel shifters 

• Good on-chip memory bandwidth 

• Large number of registers for operands and addressing (thirty-two 32-bit gen-
eral-purpose registers) 

• Exponent detect instruction. 

• Large, unified· address space 

• Instruction cache for accelerating off-chip memory accesses 
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• Flexible external memory interface: ROM, asynchronous. SRAM, synchronous 
burst SRAM, and synchronous DRAM support; DRAM refresh generation 

• On-chip DMA controller with dedicated address and data buses 

• JTAG emulation port with boundary scan 

• Two serial ports, two timers 

• Compatible floating-point family (TMS320C67xx) 

• Good BDTI Benchmark execution times 

Disadvantages 

• Two-cycle multiplier latency 

• Exposed pipeline complicates programming and interferes with ability to service 
interrupts 

• No bit-reversed addressing 

• Off-chip memory accesses take multiple cycles 

• . Requires execution from on-chip memory/cache for good performance 

• Poor Control benchmark memory usage 

• Poor BDTI Benchmark program memory usage 

544 © 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C64xx Family 

7.16 Texas Instruments TMS320C64xx Family 
BDTlmark2000 Score: 

Introduction Not Available 

The TMS320C64xx is a VLIW -based, 16-bit fixed-point family of DSP processors 
from Texas Instruments. Announced in February 2000, the TMS320C64xx is an extension 
to Texas Instruments' earlier TMS320C62xx architecture. Its instruction set is a superset 
of the TMS320C62xx instruction set, and adds significant SIMD (single-instruction, mul­
tiple-data) processing capabilities, among other enhancements. Texas Instruments has not 
yet announced any products based on the TMS320C64xx core, but states that the first 
member of the family will begin sampling in the first half of 2001. Because the chip has 
not yet been demonstrated in silicon, there is no BDTImark2000 score currently available 
for this processor. Check BDTI's website (www.BDTI.com) for updated BDTImark2000 
scores. 

Like the TMS320C62xx, the TMS320C64xx family targets high-performance 
applications such as wireless base stations, digital subscriber loops, multi-line modems, 
ISDN modems, imaging, 3D imaging applications, and radar and sonar systems. Initial 
family members are projected to execute at 600 MHz with a 1.2-volt core voltage and 
3.3-volt I/O. Table 7.16-1 summarizes characteristics of the initial TMS320C64xx family 
members. With its combination of increased parallelism and increased clock speed, the 
TMS320C64xx will be significantly more powerful than its predecessor. 

When it was introduced in 1997, the TMS320C62xx gained wide­
spread attention because of its unusual architecture and extremely 
high speed relative to other DSP processors of the time. Its success 
has been hindered, however, by high memory usage and high 
energy consumption. With the TMS320C64xx, Tl has attempted to 
address the weaknesses of its earlier architecture, and to offer a 
processor that is competitive with newer VUW-based processors, 
such as the StarCore SC140. 

Noteworthy enhancements include support for 8-bit SIMD opera­
tions, which make the TMS320C64xx very well suited for image 
processing and image compression/decompression algorithms such 
as MPEG-2 HDTV video decoding. New application-specific 
instructions also improve the processor:r performance in some tra­
ditional audio- and telecom-oriented algorithms. 

Like the TMS320C62xx, the TMS320C64xx uses a VLIW-like architecture with 
eight execution units, including two multipliers and four ALUs. Using its eight execution 
units, the processor can execute up to eight 32-bit instructions in a single clock cycle, 
allowing it to achieve a high level of parallelism. Compared to the TMS320C62xx, the 
TMS320C64xx adds quad 8-bit and dual 16-bit SIMD arithmetic and logical instructions 
to most of the execution units, and introduces new quad 8-bit and dual 16-bit vector 
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dot-product instructions to the two multiply units. With this enhancement, the 
TMS320C64xx is able to perform four 16-bit multiplications in parallel. 

In addition, the new architecture improves overall code density by removing some 
of the constraints associated with packing instructions found in the TMS320C62xx, and 
by enabling algorithms to be implemented using fewer (more powerful) instructions. 

As on the TMS320C62xx, one instruction cycle is equal in length to one master 
clock cycle on the TMS320C64xx; At 600 MHz, the TMS320C64xx will execute up to 2.4 
billion 16-bit fixed-point MACs per second. Since the processor can execute up to eight 
instructions in every cycle, Texas Instruments characterizes the TMS32OC64xx as execut­
ing at 4,800 MIPS at 600 MHz. 

As is the case with the TMS320C62xx, it is not always possible to 
execute eight inStructions in parallel on the TMS320C64xx. In 
addition, many TMS320C64xx instructions are much simpler than 
those of conventional DSP processors. This combination makes 
MIPS-based performance comparisons between the TMS320C64xx 
and conventional DSP processors misleading. Unlike the 
TMS320C62xx, however, some of the new instructions found on the 
TMS320C64xx (e.g., SIMD instructions) perform more than one 
RISe-like atomic operation. 

The TMS320C64xx is object-code upward compatible with the TMS320C62xx. 
That is, the TMS320C64xx can execute TMS320C62xx object code unmodified, but the 
TMS320C62xx cannot execute all TMS320C64xx instructions. Because the two rTOG~!i:­
sors are similar, this analysis highlights only the key differences between the 
TMS320C64xx and the TMS320C62xx. Readers should refer to the TMS320C62xx anal­
ysis for a full discussion of the TMS320C62xx architecture, including features common to 
the TMS320C62xx and TMS32OC64xx. 

Operating 
Millions of On-Chip Memory 

16-bit Peripherals 
Part Voltage 

MACsper Program Data (Preliminary) (V) 
Second RAM RAM 

512x256 4Kx32 32-channel DMA, 32-bit host 
Ll cache Ll cache port interface, three 

\ 

C64xx 1.2/3.3* 2,400** multi-channel buffered serial 
ports, three timers, one 64-bit 

546 

4Kx256 unified L2 
cache external memory interface 

(BMIF), one 16-bit EMIF 

TABLE 7.16-1. Projected characteristics of (as' yet unannounced) initial 
TMS320C64xx family members . 
• The core operates at 1.2 volts while all I/O signals are 3.3-volts compatible . 
•• Projected 
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Architecture 

Like the TMS320C62xx, the core architecture of the TMS320C64xx family con­
sists of two fixed-point data paths, a program control unit (including program fetch, 
instruction dispatch, and instruction decode units), and program and data memory inter­
faces. Figure 7.16-1 illustrates the TMS320C64xx family architecture. Like one member 
of the TMS320C62xx family, the TMS320C6211 (and like the floating-point 
TMS320C6711), initial TMS320C64xx family members will provide a two-level 
cache-based memory architecture. Figure 7.16-1 depicts the level-l and level-2 cache con­
trollers as well as the two data paths of the core. 

Data Path 

Like the TMS320C62xx, the TMS320C64xx has two identical fixed-point data 
paths (numbered 1 and 2). Four functional execution units (L, S, M, D) are associated with 
each data path. The eight functional units are capable of executing up to eight 32-bit 
instructions in parallel using two register files. As in the TMS320C62xx, each register file 
is associated with one data path: register file A is associated with the data path 1 and reg­
ister file B is associated with the data path 2. As in the TMS320C62xx, execution units in 
one data path can access registers associated with the other data path (with some restric­
tions) through the use of register cross-paths. 

The TMS320C64xx has 64 32-bit general-purpose registers, twice as many as the 
TMS320C62xx. For each of the A and B register files, the TMS320C64xx adds 16 gen­
eral-purpose registers (A16-A31 and B16-B31) to those found on the TMS320C62xx. 
Each register file has eleven 32-bit read ports and eight 32-bit write ports, allowing multi­
ple concurrent accesses from a group of parallel instructions to various registers of each 
register file. 

The TMS320C64xx can operate on 8-, 16-,32- and 40-bit ("long") data (as can the 
TMS320C62xx), and can also operate on 64-bit ("double word") data when loading or 
storing data from or to memory. The TMS32OC64xx uses 64-bit data words to hold the 
results of some multiply operations. The TMS320C64xx handles 64-bit data by using a 
pair of registers; an even-numbered register and the next consecutive odd-numbered regis­
ter. 

The TMS320C64xx adds support for SIMD instructions that can process four 8-bit 
data operands packed into 32-bit registers. It also extends the support for SIMD process­
ing of two 16-bit operands packed into 32-bit registers. As in the TMS32OC62xx, all exe­
cution units in the TMS320C64xx have a throughput of one cycle and latencies from one 
to several cycles, depending on the instruction. 

For each pair of execution units (LIIL2, S 1IS2, MIIM2, DIID2), the key differ­
ences between the TMS320C64xx data paths and the TMS320C62xx data paths are 
described below. 
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• The L units on the TMS320C64xx have added support for 16-bit dual and 8-bit 
quad integer SIMD additions and subtractions. Dual16-bit and quad 8-bit mini­
mum and maximum SIMD instructions have also been added. These instructions 
use packed data from two 32-bit operand registers (two 16-bit operands or four 
8-bit operands are packed in each 32-bit operand register for dual or quad opera­
tions, respectively) and produce packed results in 32-bit registers. The 
TMS320C64xx, like the TMS320C62xx, does not support 32-bit minimum and 
maximum instructions. 

L2 Unified Cache and/or RAM 
4K x 256 

t • .~ 

L2 Cache I 
Controller I .. 

L1 Caches 

I Program Cache I I Data Cache I Program 
~ Fixed·Point 

512x256 4Kx32 Control Unit Data Paths (2) 

I 

I 

I 

I 
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: ~ ~ 

L 1 cache controllers 

t t t t t 
Program Address B\,Is 32 bits) 1'\ I I I I ~ 

Data Path 1 Address Bus (32 bits) ,/l 

=> I I I ~ ~ Data Path 2 Address Bus (32 bits) r-.. 

J 1 • 1/ ~ v 
EDMA Address Bus (32 bits) External 

... I I t Address Buses 

Proaram Data Bus (256 bits) 

~ I ~ A "-
Data Path 1 Data Bus(64 bits) / 

... ~ ~ 16~ 
Data Path 2 Data Bus (64 bits) / / 

-+ 
'l I 16v 

EDMA Data Bus (64 bits) / External 
Data Buses 

Real·Time Host Port Extended DMA Serial 

Debug Interface (EDMA) limers (3) Ports (3) 

17 132 

FIGURE 7.16-1. TMS320C64xx processor architecture. Peripherals and cache 
configurations are based on preliminary information from Texas Instruments; 
actual family members may include different peripherals and memory 
configurations. 
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The L units also add support for dual 16-bit and quad 8-bit packed-data manipula­
tion instructions, such as data swapping, data selecting, and data re-arranging. 
These instructions are discussed later (refer to Table 7.16-5 for a summary of these 
instructions). All of the new L-unit instructions have single-cycle latencies. 

• The S units on the TMS320C64xx support dual 16-bit saturating additions. Fur­
thermore, the TMS320C64xx adds support for quad 8-bit saturating additions. For 
dual 16-bit operations, packed data in each of the 32-bit operand registers can be 
all signed or unsigned, or one 32-bit operand register can contain all signed packed 
data and the other one all unsigned packed data. For quad 8-bit operations, the pro­
cessor only supports unsigned operands. 
The TMS320C64xx also supports dual 16-bit or quad 8-bit compare instructions. 
For dual 16-bit compares, the processor supports compare for equal, greater than, 
or less than with signed operands. For quad 8-bit compares, the processor supports 
only unsigned operands. The processor supports dual 16-bit arithmetic shift right 
operations (in which the signed 16-bit lower and upper parts of a 32-bit register are 
individually shifted right). Like the L units, the S units of the TMS320C64xx have 
added support for packed-data manipulation. Apart from some new branching 
instructions, all of the new instructions that execute in the S unit have single:-cycle 
latencies. 

• Each M unit on the TMS320C64xx can perform SIMO multiplications on 16-bit 
and 8-bit operands. Each M unit can perform dual 16 x 16 ~ 32-bit multiplica­
tions on signed operands, producing two packed signed results in a 64-bit register 
pair (each 64-bit register is composed of a 32-bit odd- and even-numbered register 
pair). Like the TMS320C62xx, the TMS320C64xx does not provide guard bits. 
Each M unit can also perform four 8 x 8 ~ 16-bit signed/unsigned multiplies, pro­
ducing four packed signed results in a 64-bit register pair. Quad 8-bit 
unsigned/unsigned multiplies are also supported, producing four unsigned results 
in a 64-bit register pair. 
The TMS320C62xx supports fractional multiplications via a signed 
16 x 16 ~ 32-bit multiply instruction that includes a left-shift-by-one operation. 
The TMS320C64xx extends this support with a dual signed 16 x 16 ~ 32-bit mul­
tiply producing two left-shifted-by-one and saturated results in a 64-bit register 
pair. (Note that this operation isn't supported for quad 8~bit multiplications.) 
Additionally, the TMS320C64xx offers support for extended-precision multiplica­
tions via signed 16 x 32-bit ~ 48-bit multiplications. The 48-bit results are written 
to the lower part of a 64-bit register pair. This form of multiplication can optionally 
include rounding and right-shifting by 15 to produce a 32-bit result. 
Like the TMS320C62xx, the TMS320C64xx does not explicitly support 
32 x 32 ~ 64-bit multiplications. 
In addition to support for SIMO-style multiplications, the M units of the 
TMS320C64xx also add support for dual and quad SIMO dot products. The results 
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of dual 16-bit x 16-bit or quad 8-bit x 8-bit SIMD multiplications are summed 
together (within the M units) and placed in a 32-bit register. For dual 16-bit arith­
metic, packed data in each of the 32-bit operand registers can be all signed or 
unsigned, or one 32-bit operand register can contain all signed packed data and the 
other can contain all unsigned packed data. For quad 8-bit operations, packed data 
in each C of the 32-bit operands register can be all unsigned, or one 32-bit operand 
register can contain all signed packed data and the other one can contain all 
unsigned packed data (all signed data isn't supported). Additionally, the dual 
16-bit dot product instruction supports three variations. First, the two intermediate 
results of dual 16-bit signed/signed SIMD multiplications can be subtracted 
instead of added. Second, the result of a dual 16-bit signed/unsigned dot product 
operation can be rounded and right shifted by 16 bits to produce a 16-bit result. 
Third, the two intermediate results of dual 16-bit signed/signed rounded and 
shifted multiplications can be subtracted instead of added prior to rounding and 
shifting. J 

The TMS320C64xx SIMD dot product instructions increase code 
density for MAC-based DSP junctions and increase performance by 
allowing more parallelism. The multiply, addIsubtract, and shift 
operations are all performed within a single M-unit dot product 
instruction. Unlike in the TMS320C62xx, these operations don't 
require the use of the other execution units, freeing the other units 
for additional parallel operations. 

As on the TMS320C62xx, all TMS320C64xx multiply and dot product instruc­
tions have a multi-cycle latency. The TMS320C64xx supports the 
16-bit x 16 ~ 32-bit multiplication (with any combination of signed/unsigned 
operands) found on the TMS320C62xx with the same two-cycle latency and sin­
gle-cycle throughput. On the TMS320C64xx, all other SIMD and non-SIMD mul­
tiplies (i.e., extended-precision multiplies) and SIMD dot product instructions 
have four-cycle latencies and single-cycle throughput. Table 7.16-2 summarizes 
the key attributes of all TMS320C64xx multiply and dot product instructions. 
The M units on the TMS320C64xx also add support for 32-bit rotate instructions 
and 32-bit bidirectional shifts by a variable amount (for which the shift amount 
and direction depend on the contents of an operand register). These instructions 
have two-cycle latencies and single-cycle throughput. 

The TMS320C64xx supports twelve multiply instructions (including 
dot product instructions). The variety of distinct instructions com­
plicates learning and programming the architecture. 

• The D units on the TMS320C64xx have added support for 64-bit loads and stores 
and related address computations. Compared to the TMS320C62xx, the D units of 
the TMS320C64xx also add support for non-aligned loads and stores, i.e., memory 
accesses whose addresses aren't necessarily multiples of the size of the accessed 
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Signed! 
MUnit Description SIMD 

Unsigned Latency 
Instr. Operand Cycles 

Support 

MPYxxzza,b 16-bit x 16-bit multiply -7 32-bit result 
None 

SxS, UxS, 
(as on TMS320C62xx) UxU 

MPY2 Packed x packed operands Dual SxS 

MPYzz4b -7 64-bit packed results Quad SxU, UxU 

Fractional 16-bit x 16-bit mUltiply 
SMPY -7 32-bit left-shifted and saturated None SxS 

result (as on TMS320C62xx) 

Fractional packed x packed operands 
SMPY2 -7 64-bit left-shifted and saturating Dual SxS 

packed results 

MPYIzzb Extended precision 
None SxS 

16-bit x 32-bit -7 48-bit result 

Extended precision with round and 
MPYIzRb right shift None SxS 

16-bit x 32-bit -7 32-bit result 

DOTP2 Dual 
SxS, UxU, 

Sum of packed x packed operands SxU 
-7 32-bit result 

DOTPzz4b Quad SxU, UxU 

DOTPN2 
Difference of packed x packed results 

Dual SxS 
-7 32-bit result 

DOTPRz2b Rounded sum of packed x packed 
Dual SxU 

results -7 32-bit result 

DOTPNRzz2b Rounded difference of packed x 
Dual SxS 

packed results -7 32-bit summed result 

TABLE 7.16-2. TMS320C64xx support for multiply and dot product operations. 

a. Like the TMS320C62xx, the TMS320C64xx supports instructions that access the 16-bit upper or lower part 
of 32-bit register operands. The "xx" in the instruction name here indicates that the programmer specifies 
the high or low 16 bits of two 32-bit registers in the instruction mnemonic; e.g., MPYLH uses the low 16-bit 
part of the first operand and the high part of the second one. 

b. A "z" or "zz" in an instruction name indicates that the programmer specifies one or more options for the 
instruction in the instruction mnemonic; for example, whether the operands are Signed, unsigned, or mixed. 
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data word. As on the TMS320C62xx, all load instructions on the TMS320C64xx 
have a five-cycle latency and store instructions have single-cycle latency. 

The above latencies' (and more generally, all latencies discussed 
here) must be understood as best-case latencies,· i.e., these latencies 
apply when accesses to memory locations require data that is 
already in on-chip level cache memory. When a cache miss occurs 
because the required data isn't in the cache memory, the entire 
instruction pipeline stalls to allow the cache to be updated. In this 
case, load and store instructions require more cycles than the num­
ber of cycles expressed above. Preliminary information regarding 
cache miss penalties is discussed in the Memory System section 
below. 

As on the TMS320C62xx, all load and store instructions on the TMS320C64xx 
(including non-aligned loads/stores) allow the address pointer to be pre/post modi­
fied as part as the load instruction. The modified address is updated with sin­
gle-cycle latency (in contrast to the actual load itself, which has a latency of five 
cycles). 
The D units on the TMS320C64xx can execute AND and OR instructions (on the 
TMS320C62xx only the S and L units can execute these instructions). In addition, 
the D units support two new instructions that compute bitwise logical xor and 
and-not (and-not is a bitwise logical and between one 32-bit operand and the bit­
wise logical inverse of a second 32-bit operand). These two instructions can also 
execute in the S and L units of the TMS320C64xx. 
In contrast to the TMS320C62xx, the TMS32OC64xx L and D units can be used to 
load immediate 5-bit constants, in addition to the S unit's ability to load 16-bitcon­
stants. 

As with the TMS320C62xx, there are no status bits associated with any of the 
arithmetic instructions (e.g., adds, subtracts, multiplies, absolute values) on the 
TMS320C64xx. Overflow and underflow protection is supported only by certain instruc­
tions (e.g., add and subtract instructions with saturation). 

, 

The lack of status bits is not a problem on the TMS320C64xx; due 
to its parallel architecture and conditional instruction execution, 
status bits can be implemented (emulated) in software without a 
significant performance penalty. 

Like the TMS320C62xx, the TMS320C64xx allows up to four reads from a given 
register in a given cycle. In addition, the TMS320C64xx allows up to two 64-bit loads to 
be written to each register file per instruction cycle (through the parallel use of the Dl and 
D2 units). 

Some register ports are specifically designated for transferring 40-bit "long" val­
ues to theL and Sexecution units. These ports are shared between execution units, poten-
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tially causing resource contention when instructions that read or store 4O-bit values from 
or to registers are scheduled to execute in parallel with other instructions. Specific cases of 
resource contention vary among the TMS320C62xx, TMS320C67xx, and TMS320C64xx 
processors. Table 7.16-3 summarizes the differences among the TMS320C6xxx architec­
tures in this respect. Unlike the TMS320C62xx, the TMS320C64xx allows the S and L 
units of the same data path to manipulate two 40-bit values in parallel. In addition, the 
TMS320C64xx also allows 32-, 16-or 8-bit stores (but not 64-bit stores) to read data from 
the same register file that is used as a 40-bit long source by the L unit. Like the 
TMS320C62xx, though, the TMS320C64xx does not allow the use of 32-, 16-, or 8-bit 
store instructions while the S unit reads a 4O-bit long source in the same data path. In addi­
tion, the TMS320C64xx introduces two new constraints when using a 64-bit load or store 
instruction while a 40-bit value is accessed by the S or L unit, detailed in Table 7.16-3. 

Although the TMS320C64xx reduces the number of restrictions on 
operations that can be performed in parallel with manipulation of 
40-bit operands in comparison to the TMS320C62xx (and 
TMS320C67xx), the use of 40-bit arithmetic is still subject to such 
constraints, which complicate programming. 

On the TMS320C62xx, only one execution unit per data path can access an oper­
and register from the register file associated with the opposite data path. (In other words. a 
total of two cross-path accesses are allowed per instruction cycle.) The TMS320C64xx 

, 40-bit Operation C62xx C67xx C64xx 

Both Sand L units on the same side (i.e., SlIL1 or S21L2) read or 
Invalid Invalid Valid 

write a 40-bit long data operand 

A 64-bit load instruction writes data to the same register file used N/Aa Invalid Invalid 
as the destination of a 40-bit long result produced by the S unit 

A 64-bit load instruction writes data to the same register file used N/A Invalid Valid 
as the destination of a 40-bit long result produced by the L unit 

A 32-, 16-, or 8-bit store instruction reads data from the same reg-
Invalid Invalid Invalid 

ister file that is used as a 40-bit long source by the S unit 

A 32-, 16-, or 8-bit store instruction reads data from the same reg-
Invalid Invalid Valid 

ister file that is used as a 40-bit long source by the L unit 

A 64-bit store instruction reads data from the same register file N/A N/A Invalid 
that is used as a 4O-bit long source by the L unit 

TABLE 7.16-3. TMS320C62xx, TMS320C67xx, TMS320C64xx 40-bit (long) resource 
conflicts. Invalid combinations of operations are rejected by -the assembler. 

a. N/A means "Not Applicable", i.e., rejected by the assembler because 64-bit loads or stores are not supported 
for the target processor. 
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alleviates this restriction by allowing up to two execution units per side to simultaneously 
access the same cross-path (i.e., the same register from the opposite data path). Unlike the 
TMS320C62xx, however, the TMS320C64xx may incur "cross-path stalls." Cross-path 
stalls occur whenever an instruction attempts to read a cross-path register that was updated 
in the previous cycle. In this case, a single-cycle stall occurs. No stall occurs when the 
cross-path register is the destination of a load instruction. 

Cross-path stalls complicate software optimization for the 
TMS320C64xx, and also complicate the process of porting code 
among the three TMS320C6xxx architectures. For example, soft­
ware written for the TMS320C62xx may incur cross-path stalls 
when executed on the TMS320C64xx, thus requiring more cycles to 
execute on the newer architecture. In the worst case, this increase 
in cycle counts may entirely offset the performance gains afforded 
by the TMS320C64xx's higher clock rate. 

Cross-path stalls can sometimes be avoided by rescheduling 
instructions; i.e., by rewriting or recompiling code specifically for 
the TMS320C64xx. When possible, the C compiler and assembly 
optimizer of the TMS320C64xx attempt to avoid or reduce 
cross-path stalls, according to Texas Instruments. To improve the 
performance of existing C code, TMS320C62xx software can be 
recompiled for the TMS320C64xx using the same tool suite. 

To achieve optimal performance, however, software may have to be 
re.:.engineered to limit the impact of cross-path stalls. This detracts 
jrOrr1: the value of the code compatibility between the TMS320C64xx 
and the other TMS320C6xxx families. 

On the TMS320C62xx, the D units have limited,support for cross-path register 
accesses in comparison with the other execution units; cross-path accesses are only sup­
ported for loads or stores. In contrast, the TMS320C64xx can use cross-path accesses for 
logical and arithmetic instructions in the D unit. For load and store instructions, the 
TMS320C64xx, like the TMS320C62xx, must use an address register from the same side. 
of the data path as the Dl or D2 unit uses to execute the instruction. Destination/source 
registers for load/store instructions can use a cross path, however, as on the 
TMS320C62xx. 

Memory System 

The on-chip memory system of the TMS320C64xx is similar to that of the 
TMS320C62xx, but improves data memory bandwidth by supporting 64-bit data transfers 
in addition to 32-bit and 16-bit transfers. Each of the two data paths on the TMS320C64xx 
can load or store one 64-bit word per instruction cycle, compared to one 32-bit word per 
data path on the TMS320C62xx. The TMS320C64xx supports the wider data word via 
wider data buses in each data path (64 bits, compared to 32 bits on the TMS320C62xx). 
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Initial TMS320C64xx devices will use a similar two-level cache organization as 
the TMS320C6211, according to Texas Instruments. The on-chip memory architecture of 
initial TMS320C64xx devices is depicted in Figure 7.16-2. Numbers in bold-italics in 
Figure 7.16-2 are key differences between the TMS320C6211 and the projected 
TMS320C64xx family members. All information regarding cache miss penalties 
described in this section is based on preliminary data provided by Texas Instruments. 
Texas Instruments states that this information may change prior to fabrication of 
TMS320C64xx-based devices. 

The level-1 memory is organized as separate program and data caches. The level-2 
cache is a unified on-chip cache; i.e., it is used both for instructions and data. The level;,,2 
cache of the initial TMS320C64xx devices comprises two memory banks, each of which 
can be dynamically continued to serve as second-level cache or as direct-mapped RAM 
(i.e., reducing the size or eliminating the L2 cache). In comparison, the level-2 cache of 
the TMS320C62xx comprises four banks. As on the TMS320C6211, the two level-1 
caches of the TMS320C64xx are always active. . 

As on the TMS320C6211, the level-1 instruction cache of the initial 
TMS320C64xx devices is organized as a read-only direct-mapped cache comprising a sin-

On-Chip Level-1 Program Cache 
(32-byte line size) 

256 

Level-1 Program Cache Controller 

256 

CPU Core 

Program 
Control Unit 

Fixed-Point 
Data Paths (2) 

On-chip RAMI 
unified level-2 
cache memory 

(128-byte Line Size) 

~ :1 EDMA 1 ~ ~ ~; 
L.... ______ ..J ~ External 

Data Buses 

FIGURE 7.16-2. TMS320C64xx two-level cache organization as projected for 
initial family members. Numbers in bold-italics reflect key differences between 
the TMS320C64xx and the TMS320C6211. 
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gle-ported 256-bit wide memory bank. The line size of the TMS320C64xx.-Ievel-l instruc­
tion cache is 32 bytes (it holds an entire fetch packet). The level-1 instruction cache of the 
initial TMS320C64xx can store up to 4K 32-bit instructions. 

As on the TMS320C6211, the level-1 data cache of the initial TMS320C64xx 
devices is organized as a two-way set associative read/write cache. The line size is 
64-:bytes, twice that of the TMS320C6211. The cache can contain a maximum of 16 
Kbytes. As on the TMS320C6211, the replacement policy of the level-l data cache on the 
TMS320C64xx is based on the Least Recently Used (LRU) algorithm. The 
TMS320C6211 uses a dual-ported memory for the level-l data cache in order to allow the 
two D units to perform two concurrent accesses in a single cycle. In comparison, the 
level-l data cache of the TMS320C64xx consists of eight 32-bit wide single-ported mem­
ory banks. As on the TMS320C620x and TMS320C6701, the memory banks of the 
TMS320C64xx level-l data cache are interlaced so that consecutive 16-bit data are spread 
over the various memory banks rather than grouped into a single bank. Consequently, 
even though the level-l data cache of the TMS320C64xx is single-ported, two concurrent 
accesses from the D units are supported when the requested data words are not located in 
the same memory bank. 

The frequency of conflicts can be reduced or even avoided when the 
set of data being accessed concurrently (i.e., in the same cycle or 
execute packet) is properly arranged in external memory. Multiple 
adjacent accesses (e.g., array accesses in which adjacent 16-bit 
data words are read one after another in a loop) can best benefit 
from this optimization. In order to reduce conflicts, when possible 
the programmer should align the starting address of arrays being 
accessed so that no bank conflicts occur throughout the execution 
of the loop. Wherever necessary, this technique is used in the imple­
mentation of the BDTI Benchmarks™ as discussed below. Although 
this approach increases efficiency, it complicates programming. 

When level-l cache misses occur, a request for information is sent to the level-2 
cache controller. If the required information is in the level-2 memory (whether it is config­
ured as cache or RAM), several cycles are needed to copy the necessary information from 
the level .. :2 memory to the level-l instruction or data cache. 

According to Texas Instruments, the TMS320C64xx implements instruction 
prefetching in order to reduce the number of cycles associated with instruction cache 
misses. Once a miss has occurred, the instruction cache controller determines whether a 
miss will also occur in the next cycle. If this is the case, the cache line updates occur in 
parallel and the average number of cycles required to update a line is reduced. Depending 
on the number of instructions executing in parallel, the stall penalty is either zero or four 
cycles. More precisely, if two consecutive groups of up to four parallel instructions occur 
in a program (i.e., two consecutive execute packets containing four or fewer parallel 
instructions), the prefetching mechanism allows the second group to execute without a 
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level-l cache miss penalty. This is because the second group was prefetched during the 
cache miss of the previously executed instruction. On the other hand, if an execute packet 
of more than four parallel instructions follows an execute packet with fewer than four 
instructions, the second execute packet has a level-l cache miss penalty of four cycles. 
Similarly, if an execute packet containing fewer than four instructions follows an execute 
packet having more than four parallel instructions, the CPU also stalls for four cycles dur­
ing the execution of the second packet after a level-l cache miss. 

The level-l data cache also implements prefetching. As with the level-l instruction 
cache, the stall penalty varies according to the sequence of data accesses. Due to the 
TMS320C64xx's ability to perform cache line updates in a concurrent manner, the cache 
miss penalty of the level-l data cache varies from 4 to 2.5 cycles per 64-byte line. This 
penalty varies depending on the number of cache misses occurring during a cycle (one 
cache miss per data path or D unit can arise), and depending on the total number of cache 
misses measured during two successive execute packets. With two consecutive execute 
packets, a total of one to four cache misses can occur. The lowest per-line cache impact 
(Le., 2.5 cycles per line) is encountered when a total of four cache line misses occur during 
two consecutive execute packets (Le., one miss per data path for both execute packets). A 
4-cycle stall is encountered when only one cache miss occurs (either in the D 1 or D2 func­
tional unit) during the execution of an execute packet that is followed by an execute 
packet which doesn't suffer a cache miss. 

As on the TMS320C6211, the unified level-2 cache of the TMS32OC64xx is orga­
nized as a set associative cache with a variable number of supported cache "ways." As on 
the TMS320C6211, the cache replacement policy of the level-2 cache of the 
TMS320C64xx is based on the Least Recently Used (LRU) algorithm. One to four ways 
can be configured on the TMS320C6211, one per level-2 cache memory bank excluding 
banks configured to serve as direct-mapped RAM. This also applies to the 
TMS320C64xx: each of the two banks is divided into two regions and each region can be 
configured to be part of the level-2 unified cache. When all four regions of the 
TMS320C64xx level-2 memory are configured as cache, the level-2 memory acts as a 
four-way set associative cache. 

When a level-2 cache miss occurs, the enhanced DMA (EDMA) controller updates 
the appropriate LRU line of the cache. The number of cycles required to update a level-2 
cache line depends on the type of external memory used. 

Simultaneous accesses to the level-2 memory banks are allowed without penalty 
only when distinct banks are used. Conflicts may arise when, for example, the level-l 
instruction cache accesses a bank of the level-2 memory while,'in parallel, the level-l data 
cache and/or the EDMA controller attempts to access the same memory bank. 

As on the TMS320C6211, a set of external memory regions can be configured so 
as not to be cached in the level-lor level-2 caches. 

The penalties due to cache misses can have a major effect on per­
formance. For example, functions that operate on a small set of 
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data or functions that execute in a few cycles can easily see their 
performance drop by a factor of two if their instructions and data 
are not pre-loaded in the caches. Functions that randomly access 
an array whose size is greater than the projectedlevel-1 cache size 
(i.e., 16 Kbytes) can also suffer severely from cache miss penalties. 

The use of cache memory enables faster clock speeds, but signifi­
cantly impairs the programmer's ability to predict software execu­
tion times. Consequently, ensuring that real-time constraints are 
met and optimizing software can be very difficult on a cache-based 
processor such as the TMS320C64xx. 

External Memory Interface 

Unlike the TMS320C62xx processors, initial TMS320C64xx devices will provide 
two distinct external memory interfaces (EMIFs), EMIFA and EMIFB. The two interfaces 
support a wide range of asynchronous and synchronous external memories: RAM, ROM, 
flash, synchronous DRAM or SRAM, synchronous-burst SRAM (SBSRAM), and FIFO. 
EMIFA has a data bus width of 64 bits, whereas EMIFB has a data bus width of 16 bits. 
As in other TMS320C6xxxprocessors, the addressable space of each BMIF interface is 
divided into four areas. As on the TMS320C62xx, asynchronous memory can be used in 
all areas. When combining all of the areas, the EMIFA interface can address up to 1024 
Mbytes of external memory and EMIFB can address up to 512 Mbytes of external mem­
ory. 

EMIFA and EMIFB are both byte addressable. EMIFA can. access memory widths 
of8 bits, 16 bits, 32 bits, and 64 bits, while EMIFB is restricted to accessing memory 
widths of 8 and 16 bits. Similar to the EMIF on the TMS320C6211 and TMS320C6711, 
EMIFA and EMIFB require that an external clock source be provided by the system to 
drive the external memory (the same external clock is used for both EMIFs). From this 
signal, the processor generates another clock signal at half or one quarter of the input 
clock rate. This second signal can be used to drive, peripherals operating at different 
speeds on the same bus. Preliminary information from Texas Instruments states that the 
maximum memory cycle rate supported will be 133 MHz for SDRAM and SBSRAM on 
both TMS320C64xx EMIFs. EMIFA and EMIFB allow for programmable SBSRAM and 
SDRAM read and write latency, providing support for a wide range of SBSRAM memo­
ries (other TMS320C6xxx families support programmable read and write latencies for 
SDRAM, but not for SBSRAM). As on the other TMS320C6xxx devices, refresh signals 
for SDRAM are provided by EMIFA and EMIFB, and the refresh period is programmable. 
For a TMS320C64xx running at 600 MHz, the projected maiimum bandwidth is 1,064 
Mbytes per second for the 64-bit EMIF and 266 Mbytes per second for the 16-bit EMIF, 
according to preliminary information from Texas Instruments~ Both EMIFs will be able to 
operate in parallel, thus achieving a total bandwidth of about 1,300 Mbytes per second. 
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In contrast to the EMIFs found in other TMS320C6xxx families, the 
TMS320C64xx EMIFs add support for "peripheral data transfers." This feature allows 
data to be transferred directly between external devices (e.g., from a FIFO to an external 
memory) under the control of the EMIF. In peripheral data transfers, the EMIF generates 
control signals and addresses to effect a direct transfer between external devices, rather 
than the typical approach of performing a read followed by a write. This increases 
throughput between external devices. 

Peripheral data transfers should prove valuable for off-loading the 
TMS320C64xx from routine data-transfer duties, which should 
facilitate efficient use of the processor in many applications. 

Address Generation Units 

The D1 and D2 address generation units on the TMS320C64xx are similar to those 
of the TMS320C62xx, but they add support for 64-bit data addressing. 64-bit loads and 
stores use pairs of 32-bit registers. 

Additionally, compared to the TMS320C62xx, the TMS320C64xx adds support 
for non-aligned loads and stores. Non-aligned memory accesses allow references to data 
whose addresses aren't necessarily multiples of the size of the accessed data word. In con­
trast, all 16-bit and 32-bit load instructions on the TMS320C62xx must use addresses that 
are divisible by two and four, respectively (no restrictions apply when loading byte val­
ues). 

Non-aligned loads and stores are supported on the TMS320C64xx through specific 
instructions that execute in the D1 or D2 units.·LDNx and STNx are the non-aligned load 
and store instructions, where x is the data size suffix: W for word (32-bit) and DW for 
double word (64-bit). Non-aligned half-word (16-bit) loads aren't supported. The 
TMS320C64xx restricts the use of non-aligned memory accesses in each execute packet: 
when a D unit executes an LDNx or STNx operation, the other D unit cannot perform a 
memory access in parallel. 

Despite these restrictions, the support for non-aligned accesses 
provides flexibility for the programmer and compiler, which is par­
ticularly valuable when using SIMD instructions. In addition, since 
the D units can now execute more non-memory related operations 
(like logical operations), one D unit can perform other useful work 
while the other D unit is performing a non-aligned access. 

The TMS320C64xx supports modulo addressing through the same set of instruc­
tions and the same set of registers (A4-A7 and B4-B7) as used on the TMS320C62xx. 
Like the TMS32OC62xx, the TMS320C64xx supports eight concurrently active circular 
buffers. The TMS320C64xx architecture adds support for double word modulo addressing 
through the aligned and non-aligned double-word load and store instructions. 
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As on the TMS320C62xx, two simultaneous memory accesses on the 
TMS320C64xx cannot use registers in the same register file as their address pointers. 

Pipeline· 

The TMS320C64xx pipeline is identical to that of the TMS320C62xx. The number 
of stages and the description of these stages are unchanged. This information is presented 
in Section 7.15. 

The TMS320C64xx alleviates the restriction found on the TMS320C62xx (and the 
TMS320C67xx) which requires each execute packet to be contained entirely within a sin­
gle fetch packet. (A fetch packet is a group of eight instructions loaded from memory; exe­
cute packets are groups of instructions that execute in parallel.) As on the TMS320C62xx, 
the TMS320C64xx always fetches eight instructions from on-chip memory at a time. 
These instructions can all be scheduled to execute in parallel (in which case the execute 
packet matches the fetch packet). Alternatively, each instruction in a fetch packet can exe­
cute sequentially or some instructions can be scheduled to execute in parallel and others to 
execute sequentially. This approach increases instruction packing density when compared 
to conventional VLIW architectures with fixed-length instructions. However, the 
TMS320C62xx does not allow an execute packet to span two fetch packets. Instead, the 
TMS320C62xx tools insert NOP instructions to ensure that execute packets are always 
entirely contained within fetch packet bounds. Note that these inserted NOPs execute in 
parallel with padded fetch packets and hence don't directly impact speed (see comment 
below), but they do increase memory usage. The TMS320C64xx removes this restriction, 
and allows execute packets to span fetch packets. 

NOP padding is handled automatically by the TMS320C62xx (and 
the TMS320C67xx) assembler, so from a TMS320C64xx program­
mer s point of view, nothing has changed. With the removal of this 
constraint, however, TMS320C64xx code density is increased over 
that of the TMS320C62xx. With the improvement in code density, a 
larger number of relevant instructions can be cached in internal 
memory at a time, causing an indirect speed gain due to a reduction 
in cache misses. 

Texas Instruments states that on average, TMS320C64xx code size 
is reduced by 25% compared to TMS320C62xx code size. When 
reassembling BDTI's Control benchmark optimized for the 
TMS320C62xx on the TMS320C64xx, however, the code size did 
not change. On average, reassembling the TMS320C62xx BDTI 
Benchmarks on the TMS320C64xx (without optimizing themfor the 
newer architecture) reduced the code size by about 12%. Compar­
ing optimized TMS320C64xx BDTI Benchmarks to optimized 
results for the TMS320C62xx, the code size is reduced by roughly 
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i5%. Our analysis indicates that the improvement in code density is 
likely to be less than the 25% projected by Texas Instruments. 

Instruction Set 

The TMS320C64xx instruction set is a superset of the TMS320C62xx instruction 
set, which is summarized in Table 7.15-4. Key instructions added to the TMS320C64xx 
include SIMD and application-specific operations. 

The 16-bit fixed-point ADD2 and SUB2 instructions found on the TMS320C62xx 
allow two 16-bit additions or subtractions to be calculated concurrently in each S unit. The 
two sets of two 16-bit operands are packed into two 32-bit registers and the packed results 
are written into the 16-bit upper and lower parts of a 32-bit register. The TMS320C64xx 
extends the SIMD capability of the TMS320C62xx in two ways: it allows more functional 
units to execute the ADD2 and SUB2 instructions, and supports more SIMD instructions 
(multiply, dot product, shift, compare, etc.). 

Noteworthy TMS320C64xx SIMD instructions are described in the Data Path sec­
tion above and are summarized in Table 7.16-4. Separate instructions are provided for 
dual 16-bit and quad 8-bit versions of each operation. For example, the ADD4 instruction 
is used to perform quad 8-bit SIMD additions whereas the ADD2 instruction performs 
dual 16-bit SIMD additions. All SIMD instructions add a "2" or "4" suffix to the base 
name of the instruction. 

Associated with its wide range of SIMD instructions, the TMS320C64xx adds a 
number of packed-data manipulation instructions. These instructions allow packed data in 
32-bit operand registers to be accessed, combined, and re-ordered. Table 7.16-5 summa­
rizes these instructions for dual 16-bit and quad 8-bit processing, illustrating how packed 
data is rearranged in the destination register for the various key instructions. 

The packed data manipulation instructions of the TMS320C64xx 
are flexible and very useful when using SIMD arithmetic. For 
example, the. quad 8-bit unpack and pack instructions allow 
expanding (unpacking) of two 8-bit values into a pair of i6-bit val­
ues packed into a 32-bit operand register. Then, duali6-bit SIMD 
arithmetic instructions can be used to improve the precision of 
intermediate results. The i6-bit results can be converted back to 
two 8-bit values using the dedicated packing instruction. 

In addition, the instruction set has been extended with application-specific instruc­
tions, most of which execute in the M units. Noteworthy application-specific instructions 
include: 

• The L units add the quad 8-bit SIMD SUBABS4 instruction which produces four 
absolute differences. This instruction targets motion-estimation algorithms found 
in video compression standards. Dual 16-bit SIMD absolute-difference operations 
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are not supported, but dual 16-bit SIMD absolute value operations (without the dif­
ference calculation) are supported by the L unit. 

Combined with the quad 8-bit SIMD absolute-difference instruction 
of the L unit, the quad dot-product instruction allows efficient 
implementation of the MAD (mean absolute difference) operation 
used in motion estimation for video compression standards. 

• The M units add most of the application-specific instructions. They add support 
for dual 16-bit and quad 8-bit SIMD mask-generating instructions that execute 
with a two-cycle latency. These instructions convert the two or four least-signifi­
cant bits of an operand register to the corresponding two or four packed 16-bit or 
8-bit masks in a 32-bit register. For example, 1001 in binary produces an ordered 
sequence of four masks; OxFF, OxOO, OxOO and OxFF gathered in a 32-bit register 
(i.e., OxFFOOOOFF). In comparison, 01 in binary produces the two masks OxOOOO 
and OxFFFF or OxOOOOFFFF in a 32-bit result register. 

The combination of SIMD comparison instructions with separate 
status bits and mask generation instructions is useful for image 

Execution Unit 
SIMD Operation 

Quad 8-bit Support Dual 16-bit Support 

Multiply M M 

Multiply with Saturation not supported M 

Dot Product M M 

Addition/Subtraction L L, S, D 

Addition with Saturation S S 

Absolute Value not supported L 

Subtract with Absolute Value L not supported 

Comparison S S 

Shift not supported S 

Packed-data manipulation L or S depending on operation and data type 

MinimumIMaximum L L 

Mask generation· M M 

TABLE 7.16-4. Overview of the main TMS320C64xx SIMD operations. Note that 
all instructions can be executed conditionally. 

© 2001 Berkeley DeSign Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C64xx Family 

thresholding and video motion compensation. For example, to per­
form a thresholding operation, an SIMD comparison instruction is 
first executed, comparing mUltiple data values against a threshold. 
The status bits indicating the outcomes of each of these compari­
sons are then used to generate a mask. Finally, the mask is used 
with a logical AND instruction to pass only those values greater 
than the threshold, setting the other values to zero. 

The M units of the TMS320C64xx introduce support for dual I6-bit or quad 8-bit 
averaging operations. The AVG2 and AVGU4 instructions compute the mean val-

1 
Dual 16-bit Operations: 

132 01 

Src1: I al aO I Srcl: 

Quad 8-bit Operations: 
132 01 

I a3 I a2 I al aO I 
t=-
O Src2: I bl bO Src2: I b3 I b2 I b I I bO I 

PACK2b aO bO 

PACKH2 al bl a3 al b3 bl 
~~--~----~------------------+-----------~------------------~ 

csl PACKHL2 al bO 
ll~t------+----------I 

I PACKLH2 aO bl 
u .~~----------~-----------------r-----------.~----~----------~ 

PACKL4C a2 aO b2 bO -= ;~ 
Il.l"'? 
5~ .... 
1:$1 
e~ 
l~ 
jooooI ~ 

;:i 

SHLMBd b2 I bl I bO I a3 I 

SHRMBd aO I b3 I b2 bl 

SWAP2 aO al a2 a3 aO al 

Ul\:PACKHU4 

UNPACKLU4 

IOxool a3 IOxool a2 I 

IOxool al IOxool 

TABLE 7.16-5. TMS320C64xx packed-data manipulation instructions. 
a. Instructions on a black background use only the Srcl packed 32-bit operand register. All other instruc­

tions use Srcl and Src2. 
b. An additional SPACK2 instruction treats Srcl and Src2 operands as non-packed 32-bit values in order to 

saturate and merge them into two l6-bit values packed in a 32-bit destination register. 
c. An additional SPACKU4 instruction treats Srcl and Src2 operands as two packed l6-bit values in order 

to saturate and merge the four l6-bit values into four 8-bit results packed in a 32-bit destination register. 
d. SHLMB/SLRMB stand for SHift Left/Right and Merge Byte. 

aO 
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ues of two or four pairs of data packed into two 32~bit registers. After adding the 
data in each pair, division is performed using a signed arithmetic right shift by one 
operation for dual arithmetic and an unsigned right shift by one for quad arith­
metic. Results are written to a 32-bit register. These instructions have a two-cycle 
latency. 

The SIMD averaging instructions can ease implementation of video 
motion compensation algorithms. 

Also targeted at image and video processing applications, the M unit of the 
TMS320C64xx includes a quad 8-bit SIMD bit-count instruction (not found on the 
TMS320C62xx) that counts the number of" 1" bits in each of the four SIMD oper­
ands contained in a 32-bit register, writing the four 8-bit results to a 32-bit register 
with two-cycle latency. 
Compared to the TMS320C62xx, the M units of the TMS320C64xx add support 
for a bit-reverse instruction, easing implementation of the radix-2 fast Fourier 
transform. 

The M units of the TMS320C64xx also add support for error-correction coding 
schemes found in many modern digital communication systems. First, each M unit 
adds a Galois "field modulo-multiply operator that targets the implementation of 
Reed-Solomon encode and decode functions. This dedicated multiplication opera­
tor is implemented as a quad 8-bit SIMD multiply instruction. It performs four 
modulo multiplications in the form of packed 8-bit unsigned/unsigned multiplies, 
with the four results written to a packed 32-bit register. This instruction has a 
latency of four cycles (and has one-cycle throughput, like all other instructions on 
the TMS320C64xx). The number of elements in the Galois field is configured 
through an added control register and varies between 21 and 28. 

Also, to further ease and optimize the implementation of error correction algo­
rithms, the M units add bit interleaving and de-interleaving instructions. Ute 
de-interleaving instruction re-organizes the bits contained in a 32-bit register to 
gather all even-numbered bits of the operand register in the lower 16-bit part of the 
32-bit destination register and all odd-numbered bits in the upper 16-bit part of the 
destination register. The interleaving (or shuffle) instruction performs the opposite 
action; i.e., it interleaves each bit found in the lower 16-bit part of an operand reg­
ister with the bit found in the same location in the upper 16-bit part of the same 
operand register. These instructions have a two-cycle latency. 

The interleaving and de-interleaving instructions greatly ease 
implementation of convolutional encoders and decoders. 

Finally, to optimize the implementation of lTV vocoders, the M units on the 
TMS320C64xx add support for bidirectional shifts for which the shift amount and 
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direction depend on the contents of an operand register. These instructions have a 
latency of two cycles. 
Table 7.16-6 summarizes application-specific instructions discussed in this sec­
tion. 

Assembly Language Format 

The TMS320C64xx uses the same assembly language syntax as the 
TMS320C62xx, where parallel bars ('II') are used to indicate that instructions are to be 
executed in parallel. As on the TMS320C62xx, all instructions on the TMS320C64xx can 
be executed conditionally. Five general-purpose registers, BO, BI, B2, AI, and A2, can be 
used as condition registers on the TMS320C62xx. The TMS320C64xx adds support for 
the AO register as a conditional register. 

Compared to the TMS320C62xx, the TMS320C64xx allows more operations to be 
executed in parallel in a single instruction. For example, Table 7.16-7 shows the assembly 
language code for a 16-bit dot-product loop implemented on the TMS320C62xx and on 
the TMS320C64xx. Instructions in bold show the key differences between the two loops. 
The TMS320C64xx loop loads two 64-bit data blocks (each containing four 16-bit words) 
using the LDDW instructions and executes two dual, signed 16-bit dot product instruc­
tions (DOTP2) allowing the processor to compute four 16-bit multiplication results in 
each iteration of the loop. Each iteration consumes one cycle since all instructions can be 
grouped into a single execute packet. In comparison, the TMS320C62xx can only load 
two 32-bit values per cycle (using the LDW instructions) and perform two non-SIMD 
signed 16-bit multiplies per cycle (using the MPY and MPYH instructions). Therefore, 

Typical Targeted 
Instruction Description 

Application Domain 

SVBABS4 Quad 8-bit absolute difference 

Image processing/ AVG2/AVGV4 Dual 16-bitlquad 8-bit average 

Image compression XPND2IXPND4 Dual 16-bitlquad 8-bit bit expansion 

BITC4 Quad 8-bit count 

Transform: FFf BITR 32-bit bit reversal operation . 

GMPY4 Quad 8-bit Galois Field multiply 

Communication SHFL Bit interleaving 

DEAL Bit de-interleaving 

lTV vocoders SSHVL, SSHVR Signed variable shift 

TABLE 7.16-6. TMS320C64xx application-specific instructions. 
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half as many results are produced during each iteration of the loop compared with the 
TMS320C64xx. 

Parallel Move Support 

The TMS320C64xx extends the parallel move support of the TMS320C64xx in 
the sense that it can load or store aligned 64-bitc!,ouble words with the use of a 64-bit reg­
ister pair. The TMS320C64xx has the same support as the TMS320C62xx for byte and 
aligned 16-bit half-word and aligned 32-bit word load and store instructions. As with the 
TMS320C62xx, the TMS320C64xx uses the two D units to allow up to two memory 
accesses during each cycle in parallel with the use of the other functional units. Hence, up 
to four 32-bit registers can be loaded or stored in every cycle on the TMS320C64xx­
twice as many as on the TMS320C62xx. This applies to aligned memory accesses only; 
only one TMS320C64xx non-aligned 32-bit word or 64-bit double word transfer can be 
issued per cycle. Also, assuming the level-l data cache is pre-loaded, two TMS320C64xx 
aligned loads or stores can execute in a single cycle only if the two concurrent accesses 
point to distinct level-l data memory banks. (This is further discussed in the Memory Sys­
tem section). This restriction doesn't apply to the TMS320C6211 where the level-l data 
memory is dual-ported, allowing two concurrent accesses to occur without cycle penalty 
(as long as the level-l cache is loaded). 

Orthogonality 

In comparison to the TMS320C62xx, the TMS320C64xx eases a number of the 
restrictions that contribute to the earlier architecture's lack of orthogonality. For example, 
logical and arithmetic instructions can now be executed by the D unit in addition to the S 

! 

Code Comparison: 16-bit Dot-Product Inner Loop Implementation 
(A 7 + B7 = Lh(i) X x(i)) 

I 
I 

TMS320C62xx TMS320C64xx I 

LOW.D1 *A3++,AS ;Load h(i)&h(i+1) LDDW.D1 *A3++,AS:A4 ;Load h(L .i+3) 
LDW.D2 *B3++,B5 ;Load x(i)&x(i+1) II LDDW.D2*B3++,BS:B4 ;Load x(i •• i+3) 
[BO]SUB.S2 BO,l,BO;Dec. loop cntr I I [BO]SUB.S2 BO,l,BO ;Dec. loop cntr 
[BO]B.S1LOOP ;Branch if loop !=O I I [AO]BDEC.S1 LOOP,AO ;Branch if loop !=O 

MPY.M1x AS,BS,A6 ;A6=x(lo)*h(lo) I IDO~P2.M1x BS,AS,A6 ;2 16x16 mult+add 
I IMPYH.M2x AS,BS,B6 ;B6=x(hi)*h(hi) I IDO~P2.M2x B4,A4,B6 ;2 16x16 mult+add 
IIADD.L1 A7,A6,A7 ;A7=A7+A6 I I [!BO]ADD.L1 A7,A6,A7 ;A7=A7+A6 
IIADD.L2 B7,B6,B7 ;137=B7+B6 II [!BO]ADD.L2 B7,B6,B7 ;B7=B7+B6 

Two products are produced by this sin- Four products are produced by this sin-
gle-cycle execution packet. gle-cycle execution packet. 

TABLE 7.16-7. Example assembly language comparison between the 
TMS320C62xx and the TMS320C64xx. An "x" in the execution-unit assignment 
portion of an instruction (e.g., ".M1x") indicates that a register cross-path is used. 

I 
I 
! 
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and L units. In addition, most of the restrictions on cross-path register accesses have been 
removed. For example, the D units of the TMS320C62xx do not support register 
cross-paths except for loads and stores, whereas cross-path accesses are also supported for 
logical and arithmetic operations that execute on the D units of the TMS320C64xx. 

Although some of the causes of the lack of orthogonality on the TMS320C62xx 
have been eliminated in the TMS320C64xx, the TMS320C64xx is still not an orthogonal 
processor, for a number of reasons. Different instructions often must be used for different 
data types (e.g., there are different SIMD instructions depending on whether quad 8-bit or 
dual 16-bit values are used). Similarly, different instructions are required to perform 
aligned versus non-aligned accesses. Not all SIMD instructions have both dual and quad 
counterparts. For example, the quad 8-bit SIMD absolute-difference instruction is pro­
vided but a dual 16-bit SIMD absolute-difference isn't. In addition, support for signed and 
unsigned multiplication operands varies depending on which dot-product instruction is 
used. 

Texas Instruments states that the TMS320C64xx is more orthogonal 
than the TMS320C62xx, in part because several instructions can 
execute in a wider variety of execution units. We believe, however, 
that despite the alleviation of some resource constraints, the 
instruction set of the TMS320C64xx is generally less orthogonal 
than that of the TMS320C62xx. Because of its deep pipeline and 
instructions with multi-cycle latencies, the older TMS320C62xx is a 
difficult processor to program in assembly language. The 
TMS320C64xx is even more difficult to program in assembly 
because of the complexity of its extended instruction set. For this 
reason, the quality of the C/C++ compiler will be particularly 
important for the TMS320C64xx. 

Execution Times 

All fixed-point arithmetic, logic, load/store, and branch instructions of the 
TMS320C62xx have the same latency and throughput on the TMS320C64xx as on the 
TMS320C62xx. The new TMS320C64xx instructions have latencies from one to five 
cycles and all have a throughput of one cycle. (Even when instructions have multi-cycle 
latencies, a throughput of one cycle allows the processor to issue a new instance of the 
instruction in every cycle, though the results of previous instructions are not yet avail­
able.) 

Instruction Set Highlights 

In addition to noteworthy features of the TMS320C62xx instruction set described 
in Section 7.15, the TMS320C64xx adds the following noteworthy features: 

• A wide range of dual/quad arithmetic and logical SIMD instructions with support 
for saturation 
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• A wide range of bit and packed-data manipulation instructions 

• Compound instructions that perform more than a single basic operation (e.g., dot 
product, averaging instructions). 

• Application-specific instructions to ease development and improve performance of 
typical image processing, communication and audio applications 

• Instructions to improve code density (such as the dot-product instructions) 

In addition to having a higher clock rate, the TMS320C64xx 
enhances the TMS320C62xx architecture with a significant number 
of new and powerful instructions. Although these instructions allow 
the processor to perform more operations in parallel, they result in 
a less RISC-like instruction set. The detracts from the processor's 
compiler-friendliness and programmability relative to that of the 
TMS320C62xx. 

Execution Control 

Clocking 

Like on other TMS320C6xxx processors, an on-chip PLL is provided on the 
TMS320C64xx to allow the on-chip master clock to be generated from a slower external 
clock. The PLL can be programmed to multiply the input clock by a factor of 1, 5, 6.67, 
7.5, 10, 15, 20 or 30 on initial TMS320C64xx family members. These factors are prelimi­
nary, according to Texas Instruments. 

Hardware Looping 

Unlike the TMS320C62xx (which does not support hardware looping or hard­
ware-assisted software looping), the TMS320C64xx provides hardware-assisted software 
looping. The TMS320C64xx adds the BDEC instruction, which combines a branch 
instruction with the decrement of any of the 32-bit registers that serves as a loop counter. 
Only one BDEC may be issued per cycle. Since BDEC can use any of the general-purpose 
registers as a loop counter, several BDEC instructions can be used to implement nested 
loops. 

A new BPOS instruction can also be used to implement looping: it combines a 
test-positive and a branch operation. In addition, like all of the TMS320C64xx instruc­
tions, the BDEC and BPOS instructions can be predicated using a subset of general-pur­
pose registers. 

The new BDEC instruction replaces three instructions required to 
perform the same function on the TMS320C62xx, freeing up proces­
sor resources. This enhancement reduces code size and improves 
performance. 
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Like TMS320C62xx branches, the BPEC and BPOS instructions have a latency of 
five cycles. 

Because of the processor s deep pipeline and delayed branch 
instructions, implementing loops on the TMS320C64xx is very 
tricky. This leads to heavily pipe lined loop implementations that 
result in increased program memory usage and assembly code that 
is difficult to write and understand. 

Interrupts 

At the time of this writing, the number and sources of maskable and non-maskable 
interrupts for the TMS320C64xx devices have not been disclosed by Texas Instruments. 

Note that like the TMS320C62xx, the TMS320C64xx is not interruptible while 
any execution packet in the pipeline contains a branch or is in the delay slot of a branch. 
The programmer can avoid this problem by unrolling loops, but this approach signifi­
cantly increases code size. 

Interrupts can cause unpredictable program behavior due to the exposed pipeline. 
For example, load instructions have a latency of five cycles. Thus, the result of a load into 
register AO executed during cycle N is available in AO during cycle N+4. An arithmetic 
instruction can still read the old contents of register AO during cycle N+3. Suppose, how­
ever, that an interrupt occurs during cycle N+1. The delay caused by the interrupt means 
that the arithmetic instruction now executes in cycle N+4 or later, and therefore reads the 
new value of AO instead of the old value of AO. Thus, interrupts must often be disabled 
when executing heavily optimized software. 

The fact that the processor is not interruptible while a branch is 
pending means that tight loops are not interruptible on the 
TMS320C64xx. In applications where interrupt latency is a con­
cern, programmers will often have to make significant sacrifices in 
performance (or code density) in order to ensure reasonable inter­
rupt latency. The fact that interrupts can interfere with the 
TMS320C64xxs exposed pipeline further exacerbates this problem. 

Stack 

Like the TMS320C62xx, the TMS320C64xx does not provide a hardware stack. A 
software stack can be implemented using any general-purpose register as a stack pointer. 
Push and pop operations can be implemented with load and store instructions using 
pointer pre/post-increment or decrement. Compared to the TMS320C62xx, the 
TMS320C64xx adds an instruction that helps reduce the number of instructions needed to 
set up the return address for a function call. 
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Bootstrap Loading 

Texas Instruments had not disclosed information on the TMS320C64xx bootstrap 
loading features at the time of this writing. Bootstrap loading support will be specific to 
each TMS320C64xx device, according to Texas Instruments. 

Peripherals 

According to Texas Instruments, the initial TMS320C64xx family member will 
include a host port, a 32-channel DMA controller, three multi-channel buffered serial 
ports and three 32-bit timers. 

• Host port (HPJ) 
The initial TMS320C64xx device will include a 32-bit host port that extends the 
capabilities of the 16-bit host port found on the TMS320C6211 and 
TMS320C6711 processors. It can operate in two modes, referred as to HPI-16 and 
HPI-32 by Texas Instruments (the mode is selected at boot time). The modes sup­
port a 16-bit or 32-bit external interface, respectively. Like the TMS320C6211 and 
TMS320C6711 16-bit host port, the HPI-16 mode of the TMS320C64xx provides 
a 32-bit data path to the processor's on-chip memory with a 16-bit external inter­
face. In HPI -16 mode the host port combines successive 16-bit transfers to provide 
32-bit data to the processor's internal memory. The HPI-32 mode improves 
throughput by providing wider external accesses that don't require a pair of 16-bit 
reads or writes. A separate read and write buffer also improves the transfer 
throughput in autoincrement mode (in autoincrement mode the host port automati­
cally updates the on-chip address for successive reads or writes). Preliminary 
infonnation from Texas Instruments states that a maximum bandwidth of 133 
Mbytes per second can be achieved by the TMS320C64xx HPI. Unlike the 32-bit 
expansion bus found on the TMS320C6202, TMS320C6203, and TMS320C6204 
processors, which extends the TMS320C6201 16-bit host port, the 32-bit host port 
of the initial TMS320C64xx doesn't support synchronous memories or synchro­
nous external peripherals. 

• DMA Controller 
Like that of the TMS320C6211, the DMA controller of the TMS320C64xx is a 
chainable full-duplex multi-channellmulti-dimensional DMA controller that sup­
ports auto-initialization and an extensive range of prioritized synchronizing inter­
nal and external events. The TMS320C64xx's DMA controller supports all of the 
key attributes found on the TMS320C6211 's EDMA controller and adds various 
key extensions. (The TMS320C64xx's DMA controller is also referred to as the 
EDMA controller by Texas Instruments.) First, the TMS320C64xx's DMA con­
troller supports 32 channels instead of 16 channels. Second, all of the 
TMS320C64xx's channels can be chained whereas only four channels can be 
chained on the TMS320C6211. Third, four transfer request queues are provided 
instead of three. (Request queues support interleaved data transfer to improve the 
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bandwidth utilization of the external bus.) Fourth, commensurate with the wider 
external memory interface, the TMS320C64xx's maximum external DMA band­
width is twice that of the TMS320C62xx processors (up to 2,400 Mbytes per sec­
ond for a 600 MHz TMS320C64xx device). 

The projected TMS320C64xx DMA bandwidth should be sufficient 
to sustain the combined maximum bandwidth of the two external 
memory interfaces (EMJFA and EMJFB), the HPJ, and the serial 
ports discussed below. 

• Serial Ports 
The initial TMS320C64xx device will include three multi-channel buffered serial 
ports. The serial port architecture of the initial TMS320C64xx device is similar to 
that of the TMS320C6211. As on the TMS320C62xx, each serial port supports 128 
channels through time-division multiplexed data streams. The key difference 
between the TMS320C64xx and the TMS320C62xx serial ports is that only up to 
32 out of 128 channels can be selected to be active at one time on the 
TMS320C62xx, compared to 128 channels on the TMS320C64xx; however, all 
channels can be operated without selection on both processors (all data is trans­
ferred or received). As on the TMS320C62xx, each channel on the TMS320C64xx 
can be configured independently for transmission and reception. The 
TMS320C64xx serial ports support MSB-first or LSB-first transmission like those 
of the TMS320C6211 (not supported on other TMS320C62xx devices). Prelimi­
nary information from Texas Instruments indicates that the bandwidth per serial 
port will be 100 Mbits per second. 

• Timers 
The three timers found on the initial TMS320C64xx device feature the same 
attributes as those found on the TMS320C62xx processors, according to Texas 
Instruments. 

On-Chip Debugging Support 
The initial TMS320C64xx member will offer the same on-chip debugging support 
as the TMS320C62xx, according to Texas Instruments. 

Power Consumption and Management 

At the time of this writing, Texas Instruments hasn't disclosed information regard­
ing power-down modes or projected power consumption. 

Benchmark Performance 

The TMS320C64xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTJ 
Benchmark™ Results. We summarize and analyze TMS320C64xx benchmark perfor-
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mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
reflect the processor's instruction cycle rate; therefore, lower instruction cycle counts 
imply a more powerful architecture, but do not imply faster speed. Next we discuss bench­
mark execution times and cost-execution time products, indicating processor speed and 
cost-performance, respectively. We then discuss the processor's energy consumption, 
which reflects the energy consumed by the processor in order to perform a task. Finally, 
we discuss the processor's memory usage. We divide the memory usage discussion into 
three parts: Control benchmark memory usage, overall benchmark program memory 
usage, and benchmark data memory usage. 

The initial TMS320C64xx family members will use a two-level cache architecture. 
The results reported for the "TMS320C64xx-C" assume that all needed instructions and 
data are pre-loaded into the level-l cache prior to each benchmark's execution. The 
"TMS320C64xx" results, in contrast, assume that the level-2 cache is pre-loaded with 
instructions and data but that the level-l instruction and data caches aren't pre-loaded. 
This is a reasonable assumption for many applications, since the level-2 memory can be 
configured to serve as cache or on-chip RAM. If used as on-chip RAM, data and instruc­
tions can be pre-fetched into level-2 memory with a minimum cycle penalty using the 
DMA controller. 

As described in Chapter 8, BDT! BenchmarkTM Results, the "TMS320C64xx" 
results are estimated based on preliminary cache-miss penalty information provided by 
Texas Instruments. At the time of this writing, the TMS320C64xx simulator was not 
cycle-accurate in modeling cache miss penalties; hence, we were not able to confirm the 
results we report here (unlike the "TMS320C64xx-C" results, which were confirmed by 
simulation). We include the "TMS320C64xx" results in this report to provide an estimate 
of the effect of cache miss penalties on the processor's performance. 

• Instruction cycle counts: 
As illustrated in Figure 8.1-13 in Chapter 8, BDT! BenchmarkTM Results, the 
TMS320C64xx and TMS320C64xx-C total normalized instruction cycle counts 
are the second- and fourth-lowest among all benchmarked processors. The 
TMS320C64xx architecture achieves the lowest normalized instruction cycle 
counts on the FFf, Viterbi and Bit Unpack benchmarks. The TMS320C64xx arcbi­
tecture takes advantage of its dual data paths and dual and quad SIMD instructions 
to boost per-cycle throughput. Most benchmarks also take advantage of 64-bit load 
and store instructions, as well as the new unaligned load/store instructions. 
The SC140 is the only processor with a total normalized instruction cycle count 
result that is lower than that of the TMS320C64xx-C for most of the benchmarks 
(all benchmarks except the FFf, Viterbi and Bit Unpack benchmarks). The SC140 
and the TMS320C64xx are both VLIW architectures with a similar level of paral­
lelism. For example, both the SC140 and the TMS320C64xx can execute up to 
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eight 16-bit additions per cycle or up to four 16-bit multiplies per cycle. However, 
the SC140 has two key advantages relative to the TMS320C64xx. 
First, the SC140 supports store instructions that save the upper 16 bits of a value in 
a register. This feature allows the SCI40 to save the result of fractional multiplies 
without requiring an additional shifting step. In contrast, explicit shifting is 
required in most cases on the TMS320C64xx. Second, the SCI40 has a short pipe­
line, and most arithmetic instructions (such as MAC instructions) have sin­
gle-cycle latency. In comparison, a single TMS320C64xx MAC operation must be 
implemented using a multiply instruction followed by an add instruction, with a 
resulting total latency of three cycles. A dual-MAC operation implemented using a 
SIMD dot product instruction followed by an add instruction has a total latency of 
five cycles. Although the effect of these long latencies can be mitigated, in some 
cases, via the use of optimization techniques such as software pipelining, these 
latencies still exert a considerable influence on the TMS320C64xx cycle counts, 
particularly in the single-sample benchmarks. 
In most benchmarks, these two major differences are key to the cycle count differ­
ences between the two architectures. The overall normalized cycle count of the 
SC140 is about 30% lower than that of the TMS320C64xx-C and about 50% lower ' 
than that of the TMS320C64xx. 
It is also of interest to compare the cycle counts of the TMS320C64xx to those of 
its predecessor, the TMS320C62xx. Although the TMS320C64xx has a much 
more powerful architecture and can execute twice as many 16-bit multiplies per 
cycle as the TMS320C62xx, it does not always have significantly lower cycle 
count results on the benchmarks. As a general rule, the cycle count reduction 
between the TMS320C62xx and the TMS320C64xx-C isn't significant in bench­
marks that execute a modest number of loop iterations, such as benchmarks that 
process a single sample. For benchmarks in this category, the cycle counts of both 
the TMS320C64xx and the TMS320C62xx are both dominated by the processors' 
deep pipelines and instructions with multi-cycle latencies (such as multiply, load, 
and dot-product instructions). Where possible, software pipelining is used in 
benchmark implementations to reduce the effect of these latencies. However, pipe­
lined loops require initialization and termination stages to fill and flush the instruc­
tion pipeline, adding overhead cycles outside of the loop. 
Software pipelining overhead is often more significant on the TMS320C64xx than 
on the TMS320C62xx, for two reasons. First, in the case of convolution-oriented 
benchmarks, the dual TMS320C64xx 16-bit SIMD dot-product instruction has a 
latency of four cycles compared to two for the multiply instruction used on the 
TMS320C62xx. This longer latency usually results in longer loop termination 
code. Second, the higher parallelism offered by the TMS320C64xx is most effec­
tively utilized via optimization techniques such as loop unrolling. However, this 
technique often increases the loop set-up overhead-as the loop performs more 
parallel instructions, more setup operations (and more cycles) are required before 
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entering the loop (for instance, to allow input data to be loaded into registers prior 
to running the first iteration of theloop). 
For these reasons, the TMS320C64xx architecture is at its most efficient in loops 
with high repetition counts, where the large initialization and termination penalties 
can be amortized. To illustrate, consider the Vector Dot Product benchmark. For 
this benchmark, the cycle count for the TMS320C62xx will be identical to that of 
the TMS320C64xx-C when the number of samples N is equal to sixteen, and the 
TMS320C64xx-C cycle count will be 1.5 times lower than that of the 
TMS320C62xx when N=92. (N=40 is used in the BDTI Benchmarks.) 
The loop setup overhead is also larger on the TMS320C64xx than on the 
TMS320C62xx for the Vector Add and Vector Maximum benchmarks. However, 
as in the Vector Dot Product benchmark, this increase is offset by a significant 
reduction in cycle counts in the main loop body. The inner loop of the 
TMS320C62xx Vector Addition implementation executes in N/2 cycles; the 
TMS320C64xx implementation executes in N/4 cycles. The TMS320C64xx-C 
Vector Addition benchmark benefits from support for 64-bit loads. (SIMD 
dual-addition instructions are used in both the TMS320C64xx and the 
TMS320C62xx implementations, but because of its support for wide loads, the 
TMS320C64xx processes twice as much data per cycle in the loop.) The inner loop 
of the TMS320C62xx Vector Maximum implementation executes in 3*N/5 cycles; 
the TMS320C64xx-C implementation executes in 3*N/8 cycles. On the Vector 
Maximum benchmark, the TMS320C64xx-C makes good use of its dual 16-bit 
maximum instruction. Including the initialization overhead, the cycle counts of the 
Vector Addition and Vector Maximum benchmarks on the TMS320C64xx-C are 
roughly: 30% and 3% lower, respectively, than those of the TMS320C62xx. 
For the Two-Biquad IIR benchmark, the cycle count is two cycles higher on the 
TMS320C64xx-C than on the TMS320C62xx. It should be noted, though, that 
executing the TMS320C62xx implementation of the. Two-Biquad IIR benchmark 
on the TMS320C64xx produces the same number of cycles on both architectures. 
Nevertheless, a different TMS320C64xx implementation of the IIR benchmark is 
used in this report, because the TMS320C64xx implementation (which uses the 
dot-product instruction) results in a 40% decrease in program memory usage at the 
expense of only two cycles, resulting in a better speed-memory usage tradeoff. A 
similar decision was made for the Control benchmark; although the 
TMS320C64xx Control benchmark implementation requires 15% more cycles 
than the TMS320C62xx implementation, program memory usage (the more 
important figure of merit on the Control benchmark) is reduced by 15%. 
The cycle count of the Bit Unpack benchmark is about 25% lower on the 
TMS320C64xx-C than on the TMS320C62xx. For this algorithm, the key to the 
cycle count decrease is support for 64-bit non-aligned loads. 

© 2001 Berkeley Design Technology, Inc. 



Processor Analyses - Texas Instruments TMS320C64xx Family 

For the FFT and Viterbi benchmarks, the TMS320C64xx-C has cycle count 
results that are reduced by factors of 2 and 3.5, respectively, in comparison to 
results for the TMS320C62xx. In addition to the extensive use of new SIMD 
instructions in these benchmarks, the TMS320C64xx cycle count is lowered via 
the new application-specific instructions. The FFT benchmark requires a 
digit-reversal step in order to reorder the output data; this operation is efficiently 
implemented using the bit reversing instruction. 
The TMS320C64xx-C has a very low cycle count on the Viterbi benchmark. This 
is mostly due to the use of 8-bit data with quad SIMD arithmetic and logical (com­
pare) instructions in the first part of the function (for the "add-compare-select" 
loop). The TMS320C64xx-C can process eight trellis butterflies in just six cycles 
using this approach. In order to work with 8-bit data, a modified algorithm is 
employed that takes advantage of bounds on the differences between metrics. This 
requires a simple control loop to be set up to keep the metrics within the allowed 
8,...bit range. This is facilitated by packing four bytes into a single 32-bit word and 
using the CMPGTU4 instruction (which performs comparisons for greater than on 
packed 8-bit data). Such an optimization is only useful for processors with 8-bit 
SIMD capability; the TMS320C64xx is the only processor benchmarked in this 
study that supports quad 8-bit arithmetic and quad 8-bit compare instructions, and 
thus it is the only processor that can benefit from this optimization. The 
TMS320C64xx cycle count is also lowered by the use of the application-specific 
bit de-interleaving instruction (DEAL), which is intended for convolutional error 
correction algorithms. 

Cache Impact 

As discussed in Chapter 8, BDTI Benchmark™ Results, BDTI used preliminary 
cache miss penalty information provided by Texas Instruments to generate esti­
mates of the effects of cache misses on BDTI Benchmark cycle counts for the 
TMS320C64xx. 
The estimated level-l cache miss impact on the TMS320C64xx cycle count results 
varies across the BDTI Benchmarks. The impact of flushing the level-l caches 
prior to benchmark execution ranges from almost no impact (less than 1 % on the 
cycle count for the Control benchmark) to an increase of about 85% (for the Sin­
gle-Sample FIR). On average, not preloading the level-l caches causes cycle 
counts to increase by about 45%. 

The estimated effect of cache misses on the cycle counts of the 
TMS320C64xx is quite large compared to the instruction cache 
impact found on Analog Devices' ASDP-2116x or ASDP-219x pro­
cessors (about 10% and 5%· respectively). 

It is worth noting that despite the significant impact of not preloading the level-l 
caches, the cycle counts for the TMS32OC64xx on the FFT, Viterbi, and Bit 
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Unpack benchmarks are still the lowest of all benchmarked processors, even when 
the level-l caches are not preloaded. Not preloading the level-l caches increases 
the TMS320C64xx cycle count by more than 30% only when benchmarks have 
fairly small cycle counts (below 200 cycles). For larger benchmarks, the level-l 
cache impact is lower than 20%. Keep in mind, however, that the figures estimated 
here do not take into account penalties associated with L2 cache misses. 

• Execution times: 
The TMS320C64xx-C's low cycle counts and high projected instruction execution 
rate (600 MHz) make it the fastest of all benchmarked processors by a significant 
margin. The projected total normalized execution time presented in Figure 8.2-13 
shows that the TMS320C64xx-C is approximately 30% faster than the sec­
ond-fastest processor, the MCS8101. The impact of not preloading the level-l 
caches causes the TMS320C64xx to have an estimated total normalized execution 
time that is slightly (about 5 %) slower than that of the M CS81 0 1. 
Compared to the TMS320C6203, the TMS320C64xx-C is roughly 2.4 times faster. 
The total normalized execution time of the TMS320C64xx-C is roughly 10 times 
faster than the average for fixed-point processors. This factor is reduced to about 7 
times when the level-l caches are not pre-loaded. 

• Cost-execution time: At the time of this writing, Texas Instruments has not dis­
closed pricing information for TMS320C64xx family members. Thus, the 
TMS320C64xx is not evaluated on this metric. 

• Energy consumption: At the time of this writing, Texas Instruments hasn't dis­
closed power consumption information for the initial TMS320C64xx family mem­
bers. Thus, the TMS320C64xx is not evaluated on this metric. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

Since memory usage is independent of the state of the cache, we do not distinguish 
between the TMS320C64xx and the TMS320C64xx-C when discussing memory usage. 

• Control benchmark memory usage: As presented in Figure 8.5-9A, the 
TMS320C64xx's total memory usage on the Control benchmark is the sec­
ond-highest of the fixed-point processors benchmarked, after the TMS320C62xx. 
The TMS320C64xx's total memory usage on the Control benchmark is about 45% 
higher than the average of fixed-point processors, and equal to the average of all 
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benchmarked processors. Compared to the TMS32OC62xx, the program memory 
use of the TMS320C64xx implementation on the Control benchmark is about 15% 
lower. 
The TMS320C64xx has lower total memory usage than the TMS320C62xx on this 
benchmark for two reasons. First, the TMS32OC64xx implementation takes advan­
tage of the new "BNOP" and "ADDKPC" instructions. The BNOP instruction per­
forms a branch instruction followed by a multi-cycle NOP instruction (Le., a NOP 
instruction that executes for a given number of cycles). The multi-cycle NOP 
instruction is primarily intended to consume a specified number of cycles so that 
none of the instructions that follow the branch instruction in memory are executed 
while the branch is still pending. To accomplish this on the TMS320C62xx, a sep­
arate branch (B) and a multi-cycle latency NOP instruction are needed, consuming 
twice as many instructions to achieve the same effect. Similarly, the ADDKPC 
instruction helps to reduce the number of instructions needed when a return 
address is set up for a function calL ADDKPC combines the saving of the program 
counter and a multi-cycle NOP instruction that has the same purpose as the NOP 
operations of the BNOP instruction. 
The second reason for the reduced memory usage comes from a key architectural 
difference between the TMS32OC62xx and TMS320C64xx. Unlike the 
TMS320C62xx, groups of instructions to be executed in parallel (referred to as an 
"execute packet") aren't restricted to be entirely contained in a group of instruc­
tions read from memory at one time (referred to as a "fetch packet"). This is dis­
cussed in more detail in the Pipeline section above. On the TMS32OC62xx, an 
execute packet that would otherwise cross a fetch packet boundary is automati­
cally aligned by the compiler or assembler using NOPs. The NOP instructions are 
executed in parallel with the other instructions in the execute packet, and don't 
affect performance. They do, however, consume program memory. Even though 
the TMS320C62xx implementation of the Control benchmark is optimized to 
avoid such mis-aligned execute packets where possible, the TMS320C64xx still 
achieves lower program memory usage. 

• Program memory usage: The total normalized program memory usage for the 
TMS320C64xx is the second-highest of all benchmarked fixed-point processors, 
after the TMS320C62xx. Program memory usage results are presented in 
Figure 8.5-14. 
The program memory usage of the TMS320C64xx is about 15% lower than that of 
the TMS320C62xx, for two reasons; first, NOPs aren't required to align execution 
packets on the TMS320C64xx increases code density. Second, in general, the 
higher parallelism of TMS320C64xx instructions increases code density because 
the TMS320C64xx can often accomplish more work in a single instruction than 
can the TMS320C62xx. It should be noted, though, that on some benchmarks the 
TMS32OC64xx uses more program memory than does the TMS320C62xx. Both 
processors' memory usage is increased due to frequent use of loop unrolling to 
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optimize· the benchmarks; however, this technique increases program memory 
usage more on the TMS320C64xx than on the TMS320C62xx. As previously dis­
cussed,this is because, compared to the TMS320C62xx, the higher level of paral­
lelism on the TMS320C64xx motivates programmers to unroll loops more than 
with the TMS320C62xx. For this reason, four benchmarks out of twelve (Real 
Block FIR, Single-Sample FIR, LMS Adaptive, and Vector Maximum bench­
marks) require more program memory on the TMS320C64xx than on the 
TMS320C62xx. 
To better measure the impact of NOP padding in execution packets, we measured 
the program memory usage of the TMS320C62xx benchmarks· after reassembling 
them for the TMS320C64xx. Results from this experiment show that on average, 
program memory usage is about 10% lower on the TMS320C64xx than on the 
. TMS320C62xx due to the removal of alignment requirements; 
Despite this improvement, the program memory usage of the TMS320C64xx is 
among the highest of all of the processors benchmarked. Among fixed-point pro­
cessors, only the TMS32OC62xx has a higher program memory usage. In contrast, 
the SC140, which uses 16-bit instructions, has a program memory usage approxi­
mately half that of the TMS320C64xx. 
Even despite their 48-bit instruction words, Analog Devices' ADSP-2106x and 
ADSP-2116x floating-point processors achieve a total normalized program mem­
ory usage that is about half that of the TMS320C64xx. 

• Data· memory usage: The TMS320C64xx constant data memory usage is as 
expected.for a 16-bit fixed-point nsp processor. Constant data memory usage is 
shown in Figure 8.5..;14. 
Overall, the non-constant data memory usage of the TMS320C64xx is also as 
expected for a 16-bit fixed-point DSP processor, except for the Viterbi benchmark. 
Normalized non-constant data memory usage is shown in Figure 8.5-15. 
On the Viterbi benchmark, the TMS320C64xx has a non-constant data memory 
usage that is among the lowest of all benchmarked processors. One reason for this 
is the use of 8-bit words to store the samples of the input soft decision array instead 
of a larger word as used by other architectures (in most cases, 16-bit words are 
used on the other fixed-point DSPs). On the TMS320C64xx, 8-bit words are used 
in conjunction with quad 8-bit SIMD arithmetic and logical instructions. This 
allows the TMS320C64xx to achieve both a low cycle count and low memory 
usage for this benchmark. As mentioned earlier, the TMS320C64xx is the only 
processor benchmarked in this study featuring support for quad 8-bit arithmetic 
and quad 8-bit compare instructions that are useful for the Viterbi benchmark. 

Cost 

Texas Instruments has not yet announced pricing for TMS320C64xx products. 
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Fabrication Details 

The frrst member of the TMS320C64xx family will be fabricated using a 0.12 J.Lm 
six-metal-layer CMOS process, according to Texas Instruments. 

Development Tools 

The TMS320C64xx shares the same assembler, linker, archiver, instruction-set 
simulator, C/C++ compiler, and assembly optimizer as the TMS320C62xx and the 
TMS320C67xx. The Code Composer Studio environment (CCS) is also common to the 
TMS320C62xx, TMS320C67xx and TMS320C64xx devices. Please refer to Section 7.15 
for discussion of the TMS320C62xxITMS320C67xxITMS320C64xx development tools. 

Version 4 of the C/C++ compiler used at the time of this writing is not able to auto­
matically take advantage of the TMS320C64xx dot-product instruction nor is it able to 
automatically use the new SIMD instructions. C/C++ programmers can force the compiler 
to issue these instructions by inserting intrinsics or compiler directives in their source 
code. At the time of this writing, the TMS320C64xx simulator doesn't model the effect of 
the level-l and level-2 caches or of external memory accesses on code execution time. A 
cycle-accurate simulator is expected to be provided by the frrst quarter of 2001, according 
to Texas Instruments. 

Note that the TMS320C62xx assembly optimized digital signal processing library 
and the TMS320C62xx image processing library, which are distributed without charge by 
Texas Instruments, can be used with the TMS320C64xx, although the instruction set 
extensions of the TMS320C64xx aren't used in these libraries. Optimized DSP libraries 
for the TMS320C64xx are expected to be available in the second quarter of 2001, accord­
ing to Texas Instruments. 

A TMS320C64xx-based evaluation board (similar to the TMS320C62xx and 
TMS320C67xx EVM boards) is scheduled for beta release in the second quarter of 2001, 
and for production by the second half of 2001, according to Texas Instruments. 

Third-party support for the TMS320C64xx exists or is planned in the form of 
development boards, emulators, application boards, development tools and software 
libraries from a variety of vendors. 

Applications Support 

The TMS32OC64xx shares most of its documentation with the TMS320C62xx and 
TMS320C67xx. This includes reference and programmer's guides and a peripherals 
guide. Separate data sheets will discuss the hardware aspects of specific devices. 

Applications support for all TMS320 family processors is provided by Texas 
Instruments staff via telephone hotline, fax, and Internet electronic mail. 

Texas Instruments also provides a website that allows TMS320 users to download 
code and application notes. 
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Advantages 

• High level of parallelism 

• Flexible support for SIMD processing 

• Good parallel move support 

• Support for non-aligned load and stores 

• Conditional instruction execution 

• Four ALUs, two multipliers, two barrel shifters 

• Powerful and flexible SIMD MAC instructions 

• Exponent detect instruction 

• Bit manipulation and bit-field manipulation instructions (and support for 
bit-reversed addressing) 

• Dedicated instructions for video and image processing applications, communica­
tion applications and audio processing applications 

• Single-cycle throughput of all instructions 

• Flexible external memory interface: ROM, asynchronous SRAM, synchronous 
burst SRAM, and synchronous DRAM support; DRAM refresh generation 

• On-chip DMA controller with dedicated address and data buses 

• Powerful DMA controller with many features and high bandwidth 

• JTAG emulation port with boundary scan 

• Three serial ports, three timers and two independent external memory interfaces 

• Code compatibility with previous generation 

• Very good projected execution times on the BDTI Benchmarks 

• 
• 
• 

• 

• 
• 
• 

• 
• 

Disadvantages 

Long instruction latencies which are different for different instructions 

Two-cycle multiplier latency 

Exposed pipeline complicates programming and interferes with ability to service 
interrupts 

Many variants of instructions performing the same task (e.g., more than 12 multi­
ply instructions) 

Difficult to program 

Complex resource constraints when processing 40-bit data 

Cache-based architecture complicates software optimization and creates difficul­
ties in guaranteeing real-time performance 

Processor not yet available at the time of this writing 

High program memory usage on the BDTI Benchmarks 
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7.17 Texas Instruments TMS320C67xx Family 

Introduction 

BDTlmark2000 Score: 
820 at 167 MHz 

The TMS320C67xx family is the 32-bit floating-point version of Texas Instru­
ments' TMS320C62xx family of 32-bitfixed-point DSP processors. The TMS320C67xx 
instruction set is a superset of the TMS320C62xx instruction set, adding floating-point 
arithmetic to the TMS320C62xx instruction set. The TMS320C67xx family is a high-per­
formance, VLIW -based architecture targeting performance-hungry applications such as 
wireless base stations, digitai subscriber loops, 3D graphics, medical imaging, radar, and 
speech recognition. 

Like its fixed-point counterpart, the TMS320C67xx uses a VLIW-like architecture 
with eight execution units that include two multipliers and four ALUs. Using these eight 
execution units, the processor can execute up to eight 32-bit RISC-like instructions in a 
single clock cycle, enabling it to achieve a high level of parallelism. 

Because the TMS320C67xx can execute a group of up to eight parallel instructions 
per clock cycle, the term "instruction cycle" is potentially ambiguous when discussing this 
processor. As used here, "instruction cycle" refers to the minimum time required to issue 
one group of parallel instructions. On the TMS320C67xx, this time is equal in length to 
one master clock cycle; i.e., one group of parallel instructions can be issued during every 
cycle of the master processor clock. 

The first member of the TMS320C67xx family, the TMS320C6701, was 
announced in April of 1998. The TMS320C6701 executes at a maximum 167 MHz clock 
rate with a 1.9-volt core supply and a 3.3-volt 110 supply. At 167 MHz, the 
TMS320C67xx executes up to 334 million floating-point MACs per second. In March 
1999, Texas Instruments announced a new TMS320C67xx member, the TMS320C6711. 
The TMS320C6711 is a reduced-cost version of the TMS320C6701 (a 100 MHz 
TMS320C6711 costs $24, compared to $139 for the 167 MHz TMS320C6701). The 
TMS320C6711 provides on-chip caches for data and instructions. In September 2000, the 
lowest-cost family member was announced, the TMS320C6712. The TMS320C6712 
eliminates the host port interface and operates at 100 MHz. The TMS320C6712 is cur­
rently available in sample quantitates, with volume production planned for the first quarter 
of 2001, according to Texas Instruments. Like the TMS320C6711, the TMS320C6712 is a 
cache-based architecture, and features the same amount of on on-chip memory as the 
TMS320C6711. Table 7.17-1 shows the key characteristics of the TMS320C67xx proces­
sors. 

The TMS320C67xx is backward-compatible with the TMS320C62xx; the 
TMS320C67xx can execute TMS320C62xx object code unmodified, but the 
TMS320C62xx cannot execute all TMS320C67xx instructions. The TMS320C67xx is not 
object-code compatible with the TMS320C64xx, Texas Instruments' next generation of 
the fixed-point TMS320C6xxx architecture, since the TMS320C64xx extends the 
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TMS320C62xx instruction set with instructions that aren't supported by the· 
TMS320C67xx. 

Because the TMS320C67xx and TMS320C62xx are similar, this analysis high­
lights only the differences between the two processors. Readers should refer to 
Section 7.15 for a full discussion of the TMS320C62xx architectures and for details of 
features identical between the two families. 

The TMS320C62xx and TMS320C67xx are currently the only nsp 
processor families to offer instruction set compatibility between 
fixed- and floating-point processors. This can be an advantage in 
applications where algorithms are initially designed using float­
ing-point arithmetic and are later converted to a fixed-point imple­
mentation for volume production, because control code from the 
floating-point implementation does not need to be re-written for the 
fixed-point version. However, due to the different latencies offixed­
and floating-point instructions and other restriction~, and because 
of differences in numeric fidelity, algorithm kernels will almost 
always have to be completely re-written when migrating from a 
floating-point to a fzxed-point implementation. 

Maximum On-Chip Memory 
Operating Speed 

Device Voltage (Millions of ' Program Data Notes 
(V) MACsper RAM RAM 

Second) 

C6701 1.9/3.31 334 16Kx32 16Kx32 

128x256 512x64 
Ll cache Ll cache 

C6711 1.8/3.32 300 

8Kx64 unified L2 cache 

128x256 512x64 

C6712 1.8/3.32 200 
Ll cache Ll cache 

8Kx64 unified L2 cache 

TABLE 7.17-1. TMS320C67xx characteristics . 
. [1] The core operates at 1.9 volts while all I/O signals are 3.3-volt compatible. 
[2] The core operates at 1.8 volts while all I/O signals are 3.3-volt compatible. 

4-channel DMA, 16-bit host 
port interface, 32-bit external 
memory interface, two buff-
ered serial ports, two timers 

16-channel enhanced DMA, 
16-bit host port interface, 
32-bit external memory inter-
face, two buffered serial 
ports, two timers 

16-channel enhanced DMA, 
two serial ports, 16-bit exter-
nal memory interface, two 
timers 
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The low-cost TMS320C6712 is intended to provide an alternative to 
Analog Devices' low-cost ADSP-2106x (SHARe) processors; the 
100 MHz TMS320C6712 cost is expected to sellfor $21.95 in quan­
tity 10K units, according to Texas Instruments, compared to roughly 
$25.00 for a 60 MHz ADSP-2106x processor. 

Architecture 

The core architecture of the TMS320C67xx family consists of two floating-point 
data paths, a program control unit (including program fetch, instruction dispatch, and 
instruction decode units), and program and data memory interfaces. Figure 7.17-1 illus­
trates the TMS320C67xx family architecture as typified by the TMS320C6701. 

Data Path 

The TMS320C67xx's two floating-point data paths provide a superset of the func­
tionality of the fixed-point data paths of the TMS320C62xx, adding support for IEEE-754 

On-Chip Memory 
Program Floating-Point I Program RAM I Data RAM I 

Control Unit 
..-. 

Data Paths (2) 16Kx32 16Kx32 

~ ~ ~ ,~ , 

Program Address Bus (32 bits) \ 
~ 

Data Path 1 Address Bus (32 bits) 3~ t-.. 

~ ,I ;> Data Path 2 Address Bus (32 bits) 
External 

DMA Address Bus (32 bits) 
/ Address Bus 

~ t 
I"'rogram uata !:IUS (2:5ti Dlts) 1\ + + 

Data Path 1 Data Bus (64 bits) A 32, "-

~ ~ K / ;> 
Data Path 2 Data Bus (64 bits) "'External 

~ II 
Data Bus 

DMA Data Bus (32 bits) , 

~ 

Host Port Serial 
JTAG Interface DMA Timers (2) Ports (2) 

17 116 

FIGURE 7.17-1. TMS320C6701 processor architecture. 
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32-bit single-precision and 64-bit double-precision floating-point arithmetic. Since 
TMS32OC67xx general-purpose registers are 32 bits wide, 64-bit floating-point values are 
supported by pairing an even-numbered register with the next higher odd-numbered regis­
ter. For example, registers A2 and A3 can be paired to hold a single 64-bit floating-point 
value. 

The TMS320C67xx is the first mainstream DSP to support 
IEEE-754 double-precision floating-point arithmetic. Because the 
TMS320C67xx memory bandwidth and execution units are much 
better suited for single-precision floating-point and fixed-point 
arithmetic, however, the speed of double-precision floating-point 
arithmetic will be several times slower than the performance of sin­
gle-precision floating-point arithmetic on this processor. The sin­
gle-precision floating-point format will be sufficient for. most 
applications. In the rare case where an application needs to make 
light use of double-precision floating-point arithmetic, the 
TMS320C67xx will have an advantage over other floating-point 
DSPs. 

Specific differences between the TMS320C62xx data paths and the 
TMS320C67xx data paths are listed below: 

- The L units on the TMS320C67xx have added support for 32- and 64-bit float­
ing-point arithmetic operations, conversions between fixed- and floating-point for­
mats, and conversion from 64- to 32-bit floating-point format. 

- The S units on the TMS320C67xx have added support for 32- and 64-bit float­
. ing-point absolute value, comparison, reciprocal seed, and reciprocal-square-root 

seed operations, and conversion from 32- to 64-bit floating-point format. 

-The M units on the TMS320C67xx have added support for 32-and 64-bit float­
ing-point multiplication, and 32-bit by 32-bit integer multiplication. 

- The D units on the TMS320C67xx have added support for 64-bit loads and related 
address computations. 

- The latencies of floating-point operations on the TMS320C67xx are typically 
longer than those of the corresponding fixed-point operations. Additionally, while 
all fixed-point operations on the TMS320C62xx and TMS320C67xx have sin­
gle-cycle throughput, double-precision floating-point operations and 32-bit by 
32-bit integer multiplications on the TMS320C67xx often have throughput longer 
than one cycle. When an instruction with throughput longer than one 'cycle uses a 
cross path to access the register file of the other data path, the cross path cannot be 
used by subsequent instructions until the functional unit using it becomes avail­
able. That is, the throughput of the instruction applies to both the functional unit 
and the cross path used by the instruction. 
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The long and varying latencies and throughputs of floating-point 
instructions complicate programming. Additionally, the fact that 
latencies of floating-point instructions differ from those of the cor­
responding fixed-point instructions complicates the conversion of 
algorithms from floating-point to fixed-point implementation. 

The multi-cycle throughput of many double-precision floating-point 
operations and the restrictions on using the cross paths while per­
forming these operations mean that the speed of algorithms that use 
double-precision floating-point arithmetic will be several times 
slower than that of the same algorithm using single-precision arith­
metic. 

• The TMS320C67xx provides three control registers that contain status and config­
uration bits for floating-point arithmetic operations. Configuration bits allow one 
of four rounding modes to be selected for each of the L, S, and M units. Rounding 
modes include convergent rounding, round toward zero, round toward positive 
infinity, and round toward negative infinity. Status bits for each of the L, S, and M 
units indicate the occurrence of overflow or underflow, whether a source operand 
is denormalized or "Not a Number" (NaN), whether a result is infinite, inexact, or 
invalid, and whether the source operand for a reciprocal operation was zero. 

On the fixed-point TMS320C62xx, only one 4O-bit fixed-point result can be writ­
ten to each register file per instruction cycle. On the TMS320C67xx, this restriction also 
applies to 64-bit floating-point results. 

Memory System 

The on-chip memory system of the TMS320C67xx is similar to that of the 
TMS320C62xx, but improves data memory bandwidth to accommodate 64- and 32-bit 
floating-point data as opposed to 32- and 16-bit fixed-point data. Each of the two data 
paths on the TMS320C67xx can load a 64-bit double-word per instruction cycle, com­
pared to a 32-bit word on the TMS320C62xx. This is accomplished via an additional bus 
in each data path that can be used to load the most significant 32 bits of a 64-bit dou­
ble-word. 

Only one 40-bit or 64-bit result can be written to each register file 
per instruction cycle, as described above. This can limit the proces­
sor's ability to make use of 64-bit loads in applications that use 
double-precision floating-point' arithmetic or 40-bit fixed-point 
arithmetic operations. Since use of double-precision floating-point 
arithmetic or combined 64-bit loads and 40-bit arithmetic should 
be rare, however, this restriction will not be a problem in most 
applications. 

As on the TMS32OC62xx, all memory accesses on the TMS320C67xx must be 
aligned. For example, this means that when a 32-bit access is performed, the address of the 
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memory location accessed must be a multiple of 4. For 64-bit accesses, the address must 
be a multiple of 8. If an address is not aligned, no exception is generated. Instead, the 
next-lowest aligned address is used. 

The fact. that memory accesses must be aligned complicates pro­
gramming and sometimes reduces performance. For example, in 
filters that require a delay line to be maintained to store successive 
inputs, the delay line is typically implemented using a circular 
buffer, and the starting location of the buffer is advanced by one 
sample for each iteration of the convolution. In order to use the full 
processing power of the TMS320C67xx, it is necessary to load a 
pair of samples from the delay line via a single read. Due to the 
alignment requirement, though, this cannot be done if a circular 
buffer is used. Hence, filter implementations on the TMS320C67xx 
often use a different approach to implementing delay lines. 

The on-chip data memory of the TMS320C6701 consists of two blocks of 32 
Kbytes each. Each block is further divided into eight banks of single-access 16-bit mem­
ory (by comparison, each block of on-chip data memory on the TMS32OC62xx has four 
banks). This memory can be accessed 8 or 16 bits at a time, or 32 or 64 bits at a time when 
two or four memory banks are combined. Via the two 32-bit address and four 32-bit data 
buses, it is possible to fetch two 64-bit data operands at a time assuming that each 16-bit 
suboperand comes from a different memory bank. Assuming no memory bank conflicts, 
the maximum on-chip data access rate is thus two 64-bit double-words or four 32-bit 
words (if located as pairs of adjacent words) per instruction cycle. On a 167 MHz 
TMS320C6701 this results in a maximum sustainable on-chip data memory bandwidth of 
334 million 64-bit double words or 668 million 32-bit words per second. 

Most older DSP processors provide a single data path and support 
an· on-chip data access rate of two data memory accesses per 
instruction cycle. On the TMS320C67xx, if two 32-bit operands are 
packed in one 64-bit double data word, four 32-bit operands can be 
fetched in one instruction cycle when accessed as groups of adja­
cent memory words. This provides sufficient data memory band­
width for the processor s two data paths. 

As on the TMS320C6201, the 64 Kbyte on-chip program memory of the 
TMS32OC6701 can be dynamically configured to act as a program cache. 

The TMS32OC6711 has the same two-level on-chip cache organization as the 
TMS320C6211. As with the TMS320C6211, the level-2 memory can be configured to 
serve as cache or as on-chip RAM. The amount of memory in each cache (i.e., the level-l 
data/instruction caches and unified level-2 cache), the cache line size, cache replacement 
policy and cache miss penalties are the same on the TMS320C6711 and the 
TMS320C6211. The buses between on-chip memories, the DMA controller and the core 
have the same width as on the TMS320C6211, except for the 64-bit read paths between 
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the TMS320C6711 core and its level-l data cache. This extension allows for single-cycle 
64-bit loads from the level-l data cache. (Store operations still use a 32-bit write path 
between the core and the level-l data cache.) Figure 7.17-2 shows the memory organiza­
tion of the TMS320C6711. 

As with the TMS320C6211, the TMS320C6711 level-l and level-2 caches can be 
explicitly flushed by the program during execution. Also as with the TMS320C6211, the 
external memory is partitioned into sub-regions that can individually configured to be 
cached or to be directly accessed, bypassing the cache. 

The cache architecture of the TMS320C6712 is identical to that of the 
TMS320C6711, according to Texas Instruments. 

External Memory Interface 

The TMS320C6701 32-bit external memory interface is identical to that of the 
TMS320C6201. As with all processors, off-chip memory bandwidth depends heavily on 
the type and speed of the external memory. In the fastest case, i.e., when connected to 
high-speed synchronous-burst SRAM, the first memory access in a series requires addi­
tional cycles, but subsequent accesses can be performed in a single instruction cycle. In 
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FIGURE 7.17-2. TMS320C6711 cache organization. 
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this configuration, the TMS320C6701 achieves a peak access rate of one 32-bit word per 
instruction cycle. This corresponds to a peak external memory bandwidth of 167 million 
32-bit words per second on a 167 MHz TMS320C6701. The external memory bandwidth 
for other types of memories is significantly lower; e.g., up to 83 million 32-bit words per 
second for asynchronous SRAM and synchronous DRAM. Additionally, the peak memory 
bandwidth for any particular type of memory can only be achieved via DMA transfers and 
instruction fetches. When accessing external memory via load or store instructions, wait 
states are always incurred. The number of wait states incurred for load and store instruc­
tions varies depending on the type of memory used and whether a load or a store is being 
performed, and ranges from six cycles for a store t6 synchronous-burst SRAM or asyn-, 
chronous SRAM to as many as 42 cycles for a load from an inactive row of SDRAM. Wait 
states are incurred for each 32-bit word accessed-performing loads or stores from or to 
sequential external memory locations does not eliminate the wait states after the first 
access. 

As with the TMS320C62xx, external memory bandwidth will be a 
significant bottleneck in many applications using the 
TMS320C67xx. Please refer to the TMS320C62xx analysis for a 
more detailed discussion of this issue. Because applications using 
32-bit floating-point data may require twice the data memory band­
width of similar applications using 16-bit fixed-point data, the 
external memory bandwidth bottleneck will have a greater impact 
on the TMS320C67xx in comparison to that on the TMS320C62xx. 

The external memory interface of the TMS320C6711 is similar to that of the 
TMS320C6211 but supports more memory device types. Unlike the TMS320C6701 and 
TMS320C6711, the external memory interface of the TMS320C6712 is 16 bits wide. At 
the time of this writing, no other information regarding the TMS320C6712 external mem­
ory interface was available. 

The memory bottleneck discussed in the previous comment will 
likely be even more severe on the TMS320C6712 due to its 16-bit 
external memory interface. 

Address Generation Units 

The D1 and D2 address generation units on the TMS320C67xx are similar to those 
of the TMS320C62xx, but add support for 64-bit data addressing as described below. 

• A 64-bit load instruction allows a pair of 32-bit registers consisting of an even 
numbered register and the next-highest odd numbered register to be loaded with a 
64-bit double-word. 

• A 64-bit address calculation instruction allows an index into an array of 64-bit 
double-words to be shifted left by three bits and added to. the base address of an 
array, producing the byte address of the desired element. The index and base 
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address come from general-purpose registers and the value loaded is placed in a 
general-purpose register. 

Pipeline 

Compared to the TMS320C62xx pipeline, the TMS320C67xx pipeline adds five 
new execute stages, resulting in a pipeline depth of 16 stages. The TMS320C67xx pipe­
line stages are summarized in Table 7.17-2. 

The pipeline of the TMS320C67xx is by far the deepest of those 
found in other currently available mainstream DSP processors. 

The fetch and decode stages of the TMS320C67xx pipeline are identical to those 
of the TMS320C62xx. Additionally, all TMS320C62xx instructions use the same number 
of execute stages on the TMS320C67xx as they do on the TMS320C62xx. Floating-point 
instructions on the TMS320C67xx use from one to ten execute stages. Most 
TMS320C67xx instructions have single-cycle throughput. However, as mentioned above, 
32-bit by 32-bit fixed-point multiplies and most double-precision floating-point instruc­
tions have throughputs longer than one cycle. For example, double-precision float­
ing-point additions have a latency of six cycles and a throughput of one addition every two 
cycles. If a program issues an instruction to the same execution unit in the cycle following 
a double-precision addition, the new instruction will be discarded, unless the double-pre­
cision addition instruction is conditional and the condition was false. TMS320C67xx 
instruction latencies and throughput are shown in Table 7.17-3. 

As on the TMS320C62xx, all branches on the TMS320C67xx are delayed 
branches introducing five delay slots. This is because the branch instruction is executed in 
the E1 stage, and all previously fetched instructions are dispatched before the branch takes 

Operation Stage Description 

PG Program address generate 

PS 
Fetch 

Program address send 

PW Program address ready wait 

PR Program fetch packet receive 

DP Instruction dispatch 
Decode 

DC Instruction decode 

E1 Execute stage 1 

Execute Execute stages 2-10 (used by floating-point, 
E2-ElO 

fixed-point multiply, and load instructions) 

TABLE 7.17-2. Pipeline stages of the TMS320C67xx. 
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effect. Additionally, memory access conflicts and interrupts can stall the TMS320C67xx 
pipeline in the same way that they stall the TMS320C62xx pipeline. 

Pipeline effects significantly complicate TMS320C67xx assembly 
programming. Because the pipeline is both deep and completely 
exposed, writing assembly code that is both correct and efficient 
can be extremely tricky. Due to the long latencies of floating-point 
instructions, pipeline effects complicate TMS320C67xx program­
ming more severely than on the TMS320C62xx. 

Instruction Set 

The TMS320C67xx instruction set is a superset of the TMS320C62xx instruction 
set. TMS320C67xx registers are identical to those found on the TMS320C62xx. 

Instruction Latency Throughput 

Load 5 1 

Branch 6 1 

Fixed-point arithmetic and logic 1 1 

Fixed-point 16-bit by 16-bit multiplication 2 1 

Single-precision floating-point add, subtract, multiply; floating-
point to integer conversion, integer to single-precision floating-

4 1 
point conversion; double-precision to single-precision float-
ing-point conversion 

Double-precision floating-point add and subtract 7 2 

Double-precision floating-point multiply, 32-bit by 32-bit integer 
10 4 

multiply with 64-bit result 

32-bit by 32-bit integer multiply with 32-bit result 9 4 

Single-precision floating-point absolute value, compare, reciprocal 
1 1 

estimate, reciprocal square root estimate 

Double-precision floating-point absolute value, reciprocal estimate, 
reciprocal square root estimate, single- to double-precision float- 2 1 
ing-point conversion 

Double-precision floating-point compare 2 2 

Integer to double-precision floating-point conversion 5 1 

TABLE 7.17-3. Instruction latencies and throughput on the TMS320C67xx. 
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TMS320C67xx instructions not supported in the TMS320C62xx instruction set are sum­
marized in Table 7.17-4. 

Assembly Language Format 

The TMS320C67xx uses the same assembly language syntax as the 
TMS320C62xx. 

Parallel Move Support 

The TMS320C67xx has the same parallel move support as the TMS320C62xx. In 
addition, the TMS320C67xx also supports 64-bit double-word loads but not stores. 

Orthogonality 

The TMS320C67xx instruction set has about the same level of orthogonality as 
that of the TMS320C62xx. The TMS320C67xx support of double-word loads but not 
stores detracts slightly from its orthogonality. 

Execution Times 

As discussed in the Pipeline section above, fixed-point arithmetic, logic, 
load/store, and branch instructions on the TMS320C67xx have the same latency and 
throughput as on the TMS320C62xx. Floating-point operations have latencies from one to 
ten cycles. Double-precision floating-point operations also have reduced throughput as 
described above in the Pipeline section. The latency and throughput of floating-point 
instructions are summarized in Table 7.17-3 above. 

Class Instructions 

Arithmetic Single- and double-precision floating-point add, subtract, absolute value 

Multiplication 
Single- and double-precision floating-point multiply, 32 x 32 -7 64 inte-
ger multiply, 32 x 32 -7 32 integer Illultiply 

Data move Double-word (64-bit) load, double-word address calculation 

Comparison Single- and double-precision floating-point compare 

Single- and double-precision floating-point reciprocal estimate and 
Special Function reciprocal square-root estimate; fixed~pointlfloating-point conversions; 

single-precisionldouble-precision floating-point conversions 

TABLE 7.17-4. TMS320C67xx instructions not found in the TMS320C62xx 
instruction set. Note that all instructions can be executed conditionally. 
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Instruction Set Highlights 

In addition to noteworthy features of the TMS320C62xx instruction set, the 
TMS320C67xx instruction set includes the following noteworthy features: 

• Double-precision floating-point support 

• Floating-point reciprocal estimate and reciprocal square-root estimate instructions 

• Instructions to convert between fixed- and floating-point formats 

Execution Control 

Clocking 

The TMS32OC6701 clocking features are the same as those of the TMS320C62010 
TMS320C6711 clocking is the same that of the TMS320C6211. The TMS320C6712 is 
expected to operate at a maximum frequency of 100 MHz. No further information regard­
ing TMS320C6712 clocking features was available at the time of this writing. 

Hardware Looping 

Like the TMS320C62xx, the TMS320C67xx does not support hardware looping. 
Therefore all loops must be implemented in software. However, the parallel architecture 
of the processor allows the implementation of software loops with virtually no overhead. 

Due to the deep pipeline and the delayed branch instructions of the 
processor, implementing efficient loops on the TMS320C67xx in 
assembly language is very tricky. The C compiler confronts these 
same issues when generating code for loops. This leads to heavily 
pipelined loop implementations that result in increased program 
memory usage and assembly code that is difficult to write and 
understand. 

Interrupts 

The TMS320C67xx provides the same interrupt support as the TMS320C62xx. 
Note that the processor is not interruptible while any execution packet in the pipeline con­
tains a branch or is in the delay slot of a branch. Additionally, interrupts can cause unpre­
dictable program behavior due to the exposed pipeline. For example, load instructions 
have a latency of five cycles. Thus, the result of a load into register AO executed during 
cycle N is available in AO during cycle N+4. An arithmetic instruction can still read the 
old contents of register AO in cycle N+3. Suppose, however, that an interrupt occurs dur­
ing cycle N+ 1. The delay caused by the interrupt means that the arithmetic instruction now 
executes during cycle N +4 or later, and therefore reads the new value of AO instead of the 
old value of AO. Therefore, interrupts must often be disabled when executing efficient 
code. 
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The fact that the processor is not interruptible while a branch is 
pending means that tight loops are not interruptible on the 
TMS320C67xx. In applications where interrupt latency is a con­
cern, programmers will often have to make significant sacrifices in 
performance in order to ensure reasonable interrupt latency. The 
fact that interrupts can interfere with the TMS320C67xx s exposed 
pipeline further exacerbates this problem. 

Stack 

Like the TMS320C62xx, the TMS320C67xx does not provide a hardware stack. 

A software stack can be implemented using any general-purpose register as a stack 
pointer. Push and pop operations can be implemented using load and store instructions 
with address pre/post-incrementldecrement. 

Bootstrap Loading 

The TMS320C6701 provides the same bootstrap loading capabilities as the 
TMS32OC6201. The TMS320C6711 provides the same bootstrap loading capabilities as 
the TMS320C6211. No specific information regarding the bootstrap loading capabilities 
of the TMS320C6712 was available at the time of this writing. 

Peripherals 

The TMS320C6701 provides the same peripherals as the TMS320C6201. The 
TMS320C6711 provides the same peripherals as the TMS320C6211. 

The TMS320C6712 includes a DMA controller, two timers, and two serial ports, 
all of which are expected to be identical to those of the TMS320C6711. Unlike the' 
TMS320C6711, the TMS320C6712 doesn't have a host port. 

Unlike Analog Devices' floating-point ADSP-2106x and 
ADSP-2116x families, the TMS320C67xx family does not offer 
extensive I/O features to facilitate the design of multiprocessor sys­
tems. This is somewhat surprising, as floating-point DSPs are often 
used in multiprocessor designs. Texas Instruments' earlier 
TMS320C4x family did provide multiprocessor-oriented I/O fea­
tures. 

On-Chip Debugging Support 

The TMS320C67xx offers the same on-chip debugging support as the 
TMS320C62xx. 
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Power Consumption and Management 

Typical power consumption data provided by Texas Instruments is summarized in 
Table 7.17-5. 

The TMS320C6701 provides the same power management features as the 
TMS320C6201 and TMS320C6211. The power management features of the 
TMS320C6712 are expected to be identical to those of the TMS320C6711. 

The fact that the 167 MHz and 150 MHz versions of the 
TMS320C6701 processors require a different voltage for the core 
(i.e., 1.9 or 1.8 V) is unusual but is unlikely to pose significant 
problems. 

Benchmark Performance 

The TMS320C67xx has been benchmarked with the BDTI Benchmarks™. Overall 
benchmark results for all benchmarked processors are presented in Chapter 8, BDTI 
Benchmark™ Results. We summarize and analyze TMS320C67xx benchmark perfor­
mance in the paragraphs below. We first discuss instruction cycle counts, which indicate 
the relative power of the processor's architecture. Note that instruction cycle counts do not 
take into account the processor's instruction cycle rate. Therefore, lower instruction cycle 
counts imply a more powerful architecture, but do not imply better performance. Next we 
discuss benchmark execution times and cost-execution time products, indicating processor 
performance and cost-performance, respectively. We then discuss the processor's energy 
consumption, which reflects the energy consumed by the processor in order to perform a 
task. Finally, we discuss the processor's memory usage. We divide the memory usage dis­
cussion into three parts: Control benchmark memory usage, overall benchmark program 
memory usage, and benchmark data memory usage. 

Unlike the TMS320C6711 and TMS320C6712, the TMS320C6701 has 64 Kbytes 
of on-chip program RAM that can be configured to operate as a program memory or 
direct-mapped instruction cache (the TMS320C6711 and TMS320C6712 program mem-

Device Frequency 
1)rpical power 
consumption 

TMS320C6701 (1.9V) , 167 MHz 1.4 W 

TMS320C6701 (1.8V) 150 MHz 1.3W 

TMS320C6711 150 MHz 1.1 W 

TMS320C6711 100 MHz 0.8W 

TMS320C6712 100 MHz 0.7W 

TABLE 7.17-5. Typical TMS320C67xx power consumption summary. 
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ory is always configured as cache). The benchmark results presented here and in 
Chapter 8 assume that the on-chip program RAM is configured as program memory and 
that the benchmarks are pre-loaded into and executed from this memory. In addition, all 
data is assumed to be pre-loaded in the on-chip data memory. 

TMS320C67xx performance is strongly dependent on the use of 
on-chip memory. As discussed above, results shown in this report 
assume that the program and data are preloaded in the on-chip 
memory. For example, they do not apply to the cache-based 
TMS320C67xx family members (i.e., the TMS320C6711 and the 
TMS320C6712) except in a "best-case" scenario where the 
instruction and data caches are preloaded. (Although the 
TMS320C6701 has an instruction cache, we classify the 
TMS320C6701 as non-cache based since, unlike the TMS320C6711 
and TMS320C6712, it doesn't have a data cache and the level-l 
instruction cache can be de-activated.) The impact that the 
two-level TMS320C6711 or TMS320C6712 cache architecture can 
have on performance varies for each benchmark and in some cases 
significantly increases cycle count numbers discussed in this report. 

The on-chip memory usage on the non-cache based TMS320C6701 
can also significantly decrease the cycle count. When executing 
instructions exclusively from off-chip memory, even if the fastest 
type of off-chip memory is used (full-speed synchronous burst 
SRAM), the TMS320C6701s maximum instruction execution rate is 
slowed by a factor of eight. Thus, if there is a need to use external 
memory for program and/or data in a potential application for the 
TMS320C67xx, we urge readers to carefully consider how the pro­
cessor s external memory interface /and the on-chip instruction 
cache will perform in that application. 

Execution Performance 

• Instruction cycle counts: 
The TMS320C67xx has a total normalized instruction cycle count that is second 
lowest of the three floating-point DSPs benchmarked: about 20% lower than that 
of the ADSP-2106x with its cache preloaded, and about 10% higher than that of 
the ADSP-2116x with its cache preloaded. The TMS320C67xx total normalized 
cycle count is about 15% lower than the average for all benchmarked DSP proces­
sors, as illustrated in Figure 8.1-13 in Chapter 8, BDTI Benchmark™ Results. 
TMS320C67xx benchmark cycle counts are low primarily due to its two data paths 
and eight execution units. These execution units include two floating-point multi­
pliers and four floating-point ALU s, enabling the processor to achieve low cycle 
counts on benchmarks that perform block processing. However, the 
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TMS320C67xx cycle count are increased by the long latencies of floating-point 
multiply instructions and add instructions. These latencies necessitate the use of 
deep software pipelines that take a large number of cycles to set up and to flush. 
This overhead can outweigh the benefits of the multiple execution units on sin-
gle-sample benchmarks. -
On the Real Block FIR benchmark, the TMS320C67xx computes two multi­
ply-accumulate operations per cycle but its throughput is hindered somewhat by 
the long instruction latencies described above. On this benchmark, the 
TMS320C67xx has the lowest cycle count of all benchmarked floating-point pro­
cessors and a cycle count about 20% below the average of all benchmarked pro­
cessors. 
On the Single-Sample FIR, the TMS320C67xx cannot take advantage of its abil­
ity to perform two MACs in a single cycle, because it cannot load unaligned dou­
ble words. Thus, the processor cannot always access two samples in the delay line 
per cycle, and requires additional load instructions in the convolution loop. In 
addition, the TMS320C67xx requires more cycles outside the inner loop in com­
parison to other DSPs due to the long instruction latencies described above; Nap 
instructions must be executed while waiting for the results of floating-point 
instructions. Thus, the TMS320C67xx has the third highest cycle count of all 
benchmarked DSPs on the Single-Sample FIR benchmark. 
On the Complex Block FIR benchmark, the TMS320C67xx computes two multi­
ply-accumulate operations per cycle but its throughput is hindered somewhat by its 
long instruction latencies (as with the Real Block FIR benchmark). The 
TMS320C67xx Complex Block FIR benchmark has a cycle count that is about 
35% lower than that of the ADSP-2106x with its cache preloaded, and about 20% 
higher than that of the ADSP-2116x with its 'cache preloaded. The TMS320C67xx 
cycle count is about 15% below the average of all benchmarked processors. 
Despite its extensive parallelism, the TMS320C67xx has the highest cycle count of 
the benchmarked processors on the 'fwo-Biquad IIR benchmark. The higher cycle 
count of the TMS320C67xx on this benchmark is largely due to the processor's 
exceptionally deep pipeline and long instruction latencies (for example, four 
cycles for single-precision add and multiply operations). These latency cycles 
inflate the cycle count for this benchmark. 
On the LMS benchmark, the TMS320C67xx has a cycle count that is about 5% 
below the average of all benchmarked processors. The TMS320C67xx combines 
the coefficient update and the ftlter convolution of the LMS benchmark in a single 
inner loop. Using its ability to perform two floating-point multiplications per 
cycle, the TMS320C67xx processes four filter taps in five cycles in the inner loop, 
compared to at least one tap in two cycles on most DSP processors. Combining the 
filter convolution and coefficient update in a single loop also reduces the required 
memory bandwidth and helps limit the impact of the double-word load alignment 
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restriction discussed above for the Single-Sample FIR benchmark. Additionally, 
because it is a floating-point processor, the TMS320C67xx does not need to per­
form rounding when updating filter coefficients, simplifying the inner loop. How­
ever, due to the long latencies of some floating-point instructions, the 
TMS320C67xx uses a deep software pipeline on this benchmark. As in the Sin­
gle-Sample FIR, NOP instructions must be executed outside the inner loop while 
waiting for the results of some instructions. This detracts somewhat from the bene­
fits of the large number of execution units. 

On the Vector Dot Product benchmark, the TMS320C67xx has a cycle count that 
is about 10% higher than the average of all benchmarked DSPs. Although it can 
compute two MACs per cycle, the TMS320C67xx takes 24 cycles-more than 
half of its total cycle count-to fill and flush the software pipeline on this bench­
mark. 

On the Vector Add benchmark, the TMS320C67xx has a cycle count that is 
roughly 25% lower than the average of all benchmarked processors. This is due to 
the TMS320C67xx's ability to load four floating-point values from memory in a 
single cycle. The TMS320C67xx can load two elements from each of two vectors, 
perform two additions, and store two results in two cycles in the inner loop of this 
benchmark. In contrast, most DSPs perform only one addition every two cycles on 
this benchmark due to memory bandwidth limitations. 
On the Vector Maximum benchmark, the TMS320C67xx has the lowest cycle 
count of the benchmarked floating-point DSPs, about 50% lower than the average 
cycle count of all benchmarked processors. The TMS320C67xx benefits from its 
ability to perform two floating-point comparisons per cycle and from flexible con­
ditional execution features. Since floating-point comparison instructions do not 
have long latencies on the TMS320C67xx, the processor does not suffer from long 
instruction latencies as severely on this benchmark as on other benchmarks. 
On the FFf benchmark, the TMS320C67xx has a cycle count about 5% lower than 
that of the ADSP-2106x with its cache preloaded, and about 35% higher than that 
of the ADSP-2116x with its cache preloaded. The TMS320C67xx cycle count for 
the FFT benchmark is about 45% below the average for all benchmarked proces­
sors. Although the ADSP-2106x has only one multiplier compared to two on the 
TMS320C67xx, the ADSP-2106x achieves a similar cycle count on the FFf 
benchmark due to its powerful instruction set, including an instruction specifically 
designed to accelerate FFTs. The SIMD-based, dual-multiplier ADSP-2116x also 
benefits from these specialized instructions, and achieves an even lower cycle 
count due to its SIMD parallel operations. Although the TMS32OC67xx takes 
advantage of its high parallelism in this benchmark, the long latencies of its float­
ing-point arithmetic instruction (four cycles for additions and multiplications using 
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single precision) combined with the lack of floating-point SIMD addition and sub­
tract instructions prevent it from obtaining a lower cycle count. 

On the Viterbi benchmark, the TMS320C67xx has the lowest cycle count among 
the floating-point processors, and is among the lowest of all benchmarked proces­
sors, after the TMS320C62xx, TMS320C64xx, and the StarCore SC140. The 
TMS320C67xx achieves a cycle count that is about 65% lower than the average of 
all benchmarked processors. On this benchmark, the TMS320C67xx traceback 
loop requires very few cycles-only three clock cycles per bit. Conditional execu­
tion and the bit-extraction instruction are used to optimize the implementation of 
the benchmark. Also, as with the TMS320C62xx Viterbi benchmark implementa­
tion, a special addition instruction is used in the TMS320C67xx implementation. 
This instruction is referred to as the "addressing mode" addition. It is primarily 
intended to be used to increment a pointer by an offset that is automatically scaled 
(multiplied) by a factor of two or four depending on the data width referred to by 
the pointer. This instruction is useful in the traceback loop, and helps to reduce 
cycle counts on this benchmark. 
On the Viterbi benchmark, the TMS320C64xx and the SC140 (both fixed-point 
processors) achieve cycle counts which are roughly 3 and 2.7 times lower than that 
of the TMS320C67xx, respectively. Two key reasons explain this difference. First, 
the SC140 and the TMS32OC64xx feature dedicated instructions for the Viterbi 
algorithm (bit-interleaving and de-interleaving instructions on the TMS320C64xx, 
and special dual 16-bit SIMD maximum and conditional shifting instructions on 
the SC140). Second, the TMS320C64xx uses quad 8-bit SIMD addition, quad 
SIMD compare and quad SIMD maximum instructions in the add-compare-select 
loop of the Viterbi benchmark, which are not supported by the TMS320C62xx. 

The results. discussed above do not include cache miss penalties for the 
TMS320C67xx. To estimate the effect of Ll cache miss penalties, BDTI measured 
the cycle counts for several benchmarks on a TMS320C6711 development board. 
For these measurements, we flushed the level-l instruction and data cache but pre­
loaded the unified level-2 cache with data and instructions. 

Focusing only on the level-l cache impact is reasonable for many 
applications, since the level-2 memory can be configured to serve 
as cache or on-chip RAM. If used as on-chip RAM, data and 
instructions can be pre-fetched into level-2 memory with a mini­
mum cycle penalty using the DMA controller. 

BDTI measured the effect of Ll cache misses on the Vector Dot Product, Real 
Block FIR fllter, FFT, and Viterbi benchmarks. Note that except for the FFT bench­
mark, the level-l instruction and data cache sizes of the TMS320C6711 are large 
enough (4 Kbytes each) to contain all of the benchmarks' instructions and data. 
Additionally, the benchmarks are optimized to avoid cache conflicts (i.e., instruc­
tions and data aren't loaded twice in the level-l caches). Therefore, the level-l 
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cache impacts are mostly proportional to the data/program memory usage and the 
cycle count of each benchmark (and do not depend on the order of memory 
accesses in the benchmark). 
On the Vector Dot Product benchmark, the combined L1 data- and instruc­
tion-cache misses more than double the cycle count of the TMS320C67xx. On the 
Real Block FIR, the L1 cache impact is lower, increasing the cycle count by about 
20%. The effect of L1 cache misses on the FFf benchmark increases the cycle 
count by about 25%, which is partially due to the large amount of data required for 
the function. Finally, the L1 cache impact increases the cycle count by less than 
5% for the Viterbi benchmark. 

Our limited analysis of the effect of L1 cache misses indicates that 
the cache miss penalty can be significant (e.g., a 25% increase in 
cycles for the FFT, and a 100% increase for the Vector Dot Prod­
uct). Therefore, we urge readers to carefully consider cache miss 
penalties when estimating the performance of the TMS320C6711. 

• Execution times: Its moderately low cycle counts and high instruction cycle rate 
(for a floating-point processor) of 167 MHz give the TMS320C6701 a total nor­
malized execution time on the BDTI Benchmarks that is the fastest of the bench­
marked floating-point processors by a significant margin. As illustrated in 
Figure 8.2-13, the total normalized execution time of the TMS320C6701 is about 
2.2 times faster than the average for the floating-point DSPs, and about 1.8 times 
faster than its closest competitor, the Analog Devices ADSP-21160':'C. At 167 
MHz, the TMS320C6701 has a BDTImark2000 score of 820. 

• Cost-execution time: The TMS320C6701 's high price of $139 (in quantity 
10,000) combined with its fast execution times give it a total normalized cost-exe­
cution time product that is worse than the ADSP-21065L-C but better than the 
ADSP-21160-C (both floating-point processors from Analog Devices). As illus­
trated in Figure 8.3-13, the TMS320C6701 has a total normalized cost-execution 
time product that is about twice as high as that of the ADSP-21065L-C but about 
25% better than that of the ADSP-21160-C. 

The TMS320C6701 ~ speed and price data are used to generate the 
cost-execution time result for the TMS320C67xx family. It should be 
noted, however, that the cost-execution time for the TMS320C6711 
would be significantly better, since the 100 MHz TMS320C6711 
costs nearly six times less than the TMS320C6701 while maintain-

_ ing roughly 60% of its speed. 

• Energy consumption: As illustrated in Figure 8.4-13B, the TMS320C6701's fast 
execution times combine with its moderate power consumption (for a float­
ing-point DSP) to give it a total normalized energy consumption that is the lowest 
of the benchmarked floating-point DSPs by a wide margin. The TMS320C6701 's 
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total normalized energy consumption is about half as high as that of its nearest 
floating-point competitor, the Analog Devices ADSP-21065L-C. 

Memory Usage 

The focus in the memory usage analysis is on Control benchmark memory usage. 
Unlike other benchmarks, the Control benchmark is optimized for minimum memory 
usage. This benchmark is designed to indicate the processor's memory efficiency in con­
trol-oriented tasks, where memory usage is often more important than speed. We also dis­
cuss overall program memory usage in the BDTI Benchmarks™, reflecting the 
processor's program memory usage in general DSP code. Finally we discuss constant and 
non-constant data memory usage. 

As mentioned earlier, TMS320C67xx instructions are 32 bits wide. Each 32-bit 
instruction is a simple, RISC-like instruction, and one execution packet may consist of up 
to eight 32-bit instructions. Thus, fewer operations per instruction are usually performed 
on the TMS320C67xx than on other floating-point DSP processors. This is the one reason 
why TMS320C67xx program memory usage tends to be higher (by a significant margin) 
than that of other benchmarked floating-point DSP processors. In addition, the fact that 
branches, loads, adds, and multiplies introduce five, four, three, and three delay slots, 
respectively, requires the use of software pipelining in most loop implementations. Filling 
and flushing deep software pipelines often requires many instructions, increasing code 
size. 

• Control benchmark memory usage: On this benchmark, the TMS320C62xx and 
TMS320C67xx have the third-highest total memory usage of all benchmarked pro­
cessors. These processors use the same implementation of this benchmark, since 
floating-point arithmetic is not useful here. As illustrated in Figure 8.5-9A, the 
total Control benchmark memory usage of the TMS32OC67xx is lower than those 
of the other benchmarked floating-point DSPs (Analog Devices ADSP-2106x and 
ADSP-2116x, which use 48-bit instruction words), but higher than that of all other 
benchmarked DSPs. 
As discussed above, the high Control benchmark memory usage is primarily due to 
the 32-bit instruction width and the fact that TMS320C67xx instructions are fairly 
simple. Because the Control benchmark is optimized for memory usage rather than 
speed, the benchmark does not make use of deep software pipelining. However, 
without deep software pipelining, multi-cycle Nap instructions must sometimes 
be used to fill branch delay slots. 
On this benchmark, the conditional execution of instructions and a large number 
registers help the TMS320C67xx reduce program memory usage. 

• Program memory usage: 
As illustrated in Figure 8.5-13, the total normalized program memory usage for the 
TMS320C67xx is the highest of all benchmarked floating-point DSPs, and is more 
than two times higher than that of the Analog Devices ADSP-2116x. The 
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TMS320C67xx has the highest program memory usage of all of the benchmarked 
floating-point DSPs in all BDTI Benchmarks except for the Control benchmark. 
The main reasons for the TMS320C67xx's large program memory usage were dis­
cussed above. For example, a MAC operation takes 12 to 16 bytes (three to four 
32-bit instructions) on the TMS320C67xx versus 6 bytes on the ADSP-2116x. 

• Data memory usage: The constant and non-constant data memory usage of the 
TMS320C67xx are mostly as expected for a 32-bit floating-point processor. The 
TMS320C67xx has the lowest overall non-constant data memory usage of the 
benchmarked floating-point processors, primarily due to its low non-constant data 
. memory usage on the Viterbi benchmark. On this benchmark, the TMS320C67xx 
uses the minimum amount of non-constant data memory necessary, while the other 
benchmarked floating-point DSPs use additional non-constant data memory for 
various speed optimizations. Total normalized constant data memory usage is 
shown in Figure 8.5-14 and total normalized non-constant data memory usage is 
shown in Figure 8.5-15. 

On the majority of BDTI Benchmarks, the TMS320C67xx achieves 
the fastest execution times of the benchmarked floating-point pro­
cessors. This provides the TMS320C6701 with a moderately good 
cost-execution time for a floating-point processor despite its high 
price. Additionally, the TMS320C6701 has the lowest energy con­
sumption of the benchmarked floating-point DSPs by a wide mar­
gzn. 

. As mentioned earlier, the TMS320C67xx provides several features 
to reduce memory use. These features include variable-size execu­
tion packets, conditional execution of all instructions, and instruc­
tion packing. Unfortunately, despite these features, the 
TMS320C67xx's total normalized program memory usage is the 
highest of all benchmarked processors. Compared to other bench­
marked floating-point processors, the TMS320C67xx program 
memory usage is the highest in all benchmarks except the Control 
benchmark. Memory usage is often dominated by control-oriented 
code, however, making the Control benchmark memory usage result 
more important than memory usage on the other benchmarks. 

Cost 

Price and packaging options for TMS320C67xx processors are shown In 

Table 7.17-6. 
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Fabrication Details 

The TMS320C6701 and TMS320C6711 are fabricated using a 0.18 Ilm 
five-metal-layer CMOS process. The TMS320C6712 is also fabricated using a 0.18 Ilm 
process, according to Texas Instruments. 

Development Tools 

The TMS320C67xx shares the same assembler, linker, archiver, instruction-set 
simulator, C compiler, assembly optimizer, and Code Composer Studio environment as 
used by the TMS320C62xx and TMS320C64xx. Please refer to Section 7.15 for a discus­
sion of the TMS320C62xxffMS320C67xxffMS320C64xx development tools. 

As with the TMS320C6211 simulator, the current TMS320C6711 simulator mod­
els external memory accesses. Like the TMS320C6211 simulator, the TMS320C6711 sim­
ulator is about 85% cycle-accurate when modeling external accesses to synchronous burst 
DRAM (SBSRAM) or asynchronous memory, according to Texas Instruments. 

Note that the TMS320C62xx assembly optimized digital signal processing library 
and the TMS320C62xx image processing library, freely available from Texas Instruments, 
can be used with the TMS320C67xx. The floating-point features of TMS320C67xx are 
not currently used in these libraries, however. 

An evaluation board for the TMS32OC6701 is available from Texas Instruments 
and is designed to be used with a PCI expansion slot in a PC. This board is known as the 
TMS320C6701 EVM (for EValuation Module). Like the TMS320C6201 EVM, the 
TMS320C6701 EVM supports JTAG-based emulation that allows the user to debug 
on-chip programs from the CCS environment without the need for an XDS510 JTAG pod. 
Like the TMS320C6201 EVM, the TMS320C6701 EVM can be used as a stand-alone 
board (without the need for a host PC). The TMS320C6701 EVM provides the same 
amount and type of external memory (256 Kbytes of 133 MHz SBSRAM memory and 8 
Mbytes of 100 MHz SDRAM). Like the TMS320C6201 EVM. an audio capture device 

Device 
Frequency Speed (Millions of Voltage 

Package 
Price 

(MHz) MACs per second) (V) (Qty. 10,000) 

TMS320C6701 167 334 1.9/3.31 352BGA $139.06 

TMS320C6701 150 300 1.8/3.32 352BGA $96.78 

TMS320C6711 150 300 1.8/3.32 256BGA $39.78 

TMS32OC6711 100 200 1.8/3.32 256BGA $23.99 

TMS320C6712 100 200 1.8/3.32 256BGA $16.73 

TABLE 7.17-6. TMS320C67xx price and package summary. Prices as of June 2000. 
[1} The core operates at 1.9 volts while all I/O signals are 3.3-volt compatible. 
[2] The core operates at 1.B volts while all 110 signals are 3.3-volt compatible. 
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and external audio jacks are provided to connect a microphone and speakers to the board. 
As with the TMS320C6211 EVM, another less-sophisticated TMS320C6711-based evalu­
ation board is also provided by Texas Instruments. This board is referred to as the Device 
Starter Kit (DSK) and is priced $295. The TMS320C6711 DSK board embeds 16 Mbytes 
of SDRAM and an audio codec. 

Third-party support for the TMS320C67xx exists in the form of development 
boards, emulators, application boards, development tools and software libraries from a 
variety of vendors. 

The number of third-party vendors providing tools and software for 
Texas Instruments' DSPs is the largest of any DSP processor ven­
dor. This is due partly to Texas Instruments' early entry into the 
DSP processor market and to its strong efforts to cultivate 
third-party support. 

Applications Support 

The TMS320C67xx shares most of its documentation with the TMS320C62xx and 
TMS320C64xx. This includes reference and programmer's guides and a generic peripher­
als guide for all of the TMS320C6xxx processors. Separate data sheets discuss the hard­
ware aspects of specific devices. 

Applications support for all TMS320 family processors is provided by Texas 
Instruments staff who are available via telephone, fax, and electronic mail. Documentation 
and brief application reports are also available via the World Wide Web. 

Advantages 

• Supports IEEE-754 single- and double-precision floating-point arithmetic 

• Supports floating-point arithmetic and also provides instruction set compatibility 
with a fixed-point variant 

• Highly orthogonal instruction set 

• Good parallel move support (two 64-bit double-words or four 32-bit words can be 
loaded per instruction cycle) 'l 

• Conditional instruction execution 

• Four ALUs, two multipliers, and two barrel shifters 

• Good on-chip memory bandwidth 

• Large number of registers for operands and addressing (thirty-two 32-bit gen-
eral-purpose registers) 

• Exponent detect instruction 

• Large, unified address space 

• Instruction cache for accelerating off-chip memory accesses 
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• Flexible external memory interface: ROM, asynchronous SRAM, synchronous 
burst SRAM, and synchronous DRAM support; DRAM refresh generation 

• On-chip DMA controller with dedicated address and data buses 

• Ability to use IX or slower external clock 

• JTAG emulation port with boundary scan 

• Two serial ports, two timers 

• Good BDTI Benchmark execution times for a floating-point processor 

• Good BDTIBenchmark energy consumption for a floating-point processor 

Disadvantages 

• Multi-cycle instruction latencies complicate programming and increase code size 

• Exposed pipeline complicates programming 

• Exposed pipeline conflicts with ability to service interrupts 

• No bit-reversed addressing 

• Off-chip memory accesses take multiple cycles if not performed via DMA 

• Requires execution from on-chip memory/cache for good performance 

• Poor BDTI Benchmark program memory usage 
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8. BDTI Benchmark™ Results 
This chapter presents the results of processor comparisons using the BDTI Bench­

marks TM. The BDTI Benchmarks are a set of DSP software functions that Berkeley 
Design Technology, Inc. has independently designed to provide an objective basis for 
comparing processor performance characteristics including speed, cost-performance, 
energy consumption, and memory usage for DSP applications. Benchmark functions have 
been programmed in assembly language by expert DSP programmers. The resulting code 
has been verified for functional correctness and adherence to the BDTI Benchmark speci­
fication, and its performance has been measured through detailed simulation and/or hard­
ware measurements. 

Note that the BDTI Benchmarks were significantly revised in 1999. This report 
presents benchmark results based on the 1999 version of the BDTI Benchmarks. 

Note: Benchmark results obtained using the 1999 version of the BDTI 
Benchmarks should not, in general, be compared to results obtained using the 
previous version of the benchmarks, such as those presented in several of 
BDTI's prior reports: Buyer's Guide to DSP Processors, 1999 and earlier edi­
tions; DSP on General-Purpose Processors; Inside the Siemens TriCore; and 
Inside the Lucent DSP 16000. 

More specifically, results for the FFf, IIR Filter, and Control (which 
replaces the earlier FSM) benchmarks cannot be compared to previously 
released BDTI Benchmark results because the specifications for these bench­
marks were changed in the 1999 version of the BDTI Benchmarks. The Viterbi 
and Bit Unpack benchmarks were added in the 1999 version of the BDTI 
Benchmarks, so results for these benchmarks do not appear in BDTI reports 
published prior to 2000. Other benchmarks may be comparable; contact BDTI 
for details. 

As an introduction to the benchmarks, we flrst discuss the motivation for their 
development and some considerations that led to the current selection of benchmarks and 
processors. This is followed by an explanation of how the benchmark comparisons were 
performed and how results are organized and annotated. Finally, the results are presented 
in detail, with analysis that reveals why certain processors perform better or worse than 
others on individual benchmarks and overall. 

The Need for Benchmarks 

Execution speed is often the primary characteristic that designers use to compare 
DSP processors. This is a simple concept, but is difficult to measure fairly. Some manu­
facturers are fond of quoting the MIPS (millions of instructions per second) ratings of 
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their processors. But different DSPs accomplish very different amounts of work in a single 
instruction, making MIPS-based comparisons misleading. Other possible measures are 
MOPS (millions of operations per second) or MFLOPS (millions of floating-point opera­
tions per second). But these pose a similar problem: there is no standard definition of an 
"operation." Some processor vendors say their chips can perform six operations per 
instruction (instruction fetch, multiply, add, two data reads, and a data write), resulting in 
inflated MOPS figures when compared to vendors who use a more conservative definition 
of "operation." 

Another possibility is to standardize on a single, simple type of operation for com­
parison purposes. For DSP applications, the natural choice for this is the multiply-accu­
mulate, or MAC, operation, which is at the heart of many DSP algorithms: filtering, 
correlation, dot products, etc. While virtually all DSPs have MAC instructions, measuring 
the execution time of this instruction misses a number of important aspects of processor 
performance. Important though it may be, the MAC instruction is not by itself representa­
tive of the computations that take place in applications. Even the most MAC-intensive 
applications inevitably make heavy use of many other types of instructions. Further, not 
all MAC instructions are equal. For example, some processors have MAC instructions that 
allow a variety of independent data moves and address pointer updates to be executed in 
parallel with the MAC operation, while others place severe restrictions on such parallel 
operations. In addition, limited memory bandwidth or other restrictions may make it diffi­
cult to execute MAC operations in an application at the maximum rate that is theoretically 
possible. Finally, while some processors have the ability to execute multiple MAC opera­
tions in parallel, some algorithms have data dependencies that make it difficult or impossi­
ble to use such capabilities. 

A standard suite of application-oriented benchmarks, implemented fairly across all 
processors, avoids the limitations of simplified measures likes MIPS and MOPS. Below 
we discuss some approaches to DSP processor benchmarking. 

Benchmarking Approaches 

Ideally, DSP processor benchmarks would be entire DSP applications, or even 
suites of applications. Examples might include personal digital audio players, xDSL 
modems, disk drive servo controllers, or voice-over-IP phones. Teams of engineers would 
implement the applications using assigned DSPs and would report back with completed 
designs. The designs could then be evaluated on the basis of overall design time, execu­
tion time, memory usage, and a host of other factors. This type of application benchmark 
has long been used for benchmarking the performance of computer systems for business 
and scientific applications. 

This approach works best in cases where there is application software portability; 
i.e., when applications are implemented in a high-level language like C. Unfortunately, 
because of the limited efficiency of C compilers for the most cost-effective nsp proces­
sors and the demanding performance requirements of DSP applications, developers typi-
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cally write significant amounts of assembly code to maximize perfonnance of key code 
sections on a particular architecture. Therefore, benchmarks written in high-level lan­
guages have limited relevance when judging processor perfonnance for OSP applications. 
Benchmark applications written in high-level languages measure both the compiler and 
the processor, making it difficult to draw conclusions about the perfonnance of the proces­
sor alone. 

Even if application benchmarks are coded in assembly language, one encounters 
four practical problems with OSP application benchmarks: First, most applications are not 
sufficiently well defined to pennit fair comparisons. For example, two implementations of 
a standard-compliant modem can use different equalizers, one much simpler than the 
other, depending on whether the objective is a high-quality implementation or one that 
makes minimum demands on the processor. Second, when implementing complex appli­
cations, it is virtually impossible to ensure that software is optimal, or even near optimal. 
This means that a benchmark based on a complete application is likely to be measuring the 
programmer, as well as the processor. Third, complete-application benchmarks tend to 
measure a system's perfonnance, not just a processor's. Isolating the perfonnance of the 
processor from that of other system components like external memory and host processors 
can be very difficult. Last, optimizing an entire application can take years of engineering 
time. 

Because of the practical difficulties of complete-application benchmarks for OSP, 
we have chosen an alternative approach: the use of application kernels to represent larger 
applications. These are small fragments of OSP software that fonn the key pieces of larger 
applications. Example kernels include FIR and IIR filters, vector processing functions, 
fast Fourier transfonns (FFTs), error correction coders, and decision-making control code. 
Application kernels have several compelling advantages for use as benchmarks: 

• Relevance. Application kernels can be selected by examining common OSP appli­
cations and focusing on those portions of the applications that account for the larg­
est share of the processing time. This guarantees their relevance. 

• Ease of specification. By virtue of their modest size, application kernels can be 
well defined: a specification can state their input and output requirements and indi­
cate which algorithm variants and optimizations are allowable. Test vectors can be 
provided to ensure confonnance to the specification. 
Note, however, that while application kernel benchmarks can be well defined, they 
often are not. When processor manufacturers publish kernel benchmark results, for 
example, they often don't clearly specify the functionality that is implemented or 
the optimizations used. This can make processor comparisons based on manufac­
turer-supplied application kernel benchmark data hazardous. 

• Optimization. Because application kernels are of a moderate size, a skilled pro­
grammer can be fairly; certain that their implementation is optimal, or very close to 
optimal, for a given processor. 
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• Ease of implementation. Due to their moderate size, application kernels can be 
implemented in-assembly language in a reasonable amount of time, even with thor­
ough optimization. 

The trickiest part of the application kernel approach lies in specifying the bench­
marks. The goal is to allow programmers enough freedom to attack each benchmark in a 
natural way on each processor, while also constraining them to stay within the bounds of 
reasonable implementation practices. 

For example, an FFf benchmark can be implemented using a number of algo­
rithms: radix-2, radix-4, in-place, not in-place, decimation-in-time, decimation-in-fre­
quency, and permuted algorithms, to name just a few. Not all of these are equivalent in 
terms of functionality or in terms of the theoretical number of arithmetic operations 
required. Even if the algorithm is precisely specified, there are a large number of optimiza­
tions (e.g., eliminating multiplications in the outer loops, loop unrolling) that can be used 
to speed up the implementation. It is critical that the benchmark specification dictate 
which of these optimizations are permissible. The challenge is to do this without overly 
constraining the implementor. 

Our experience has shown that even with good benchmark specifications, ques­
tions still arise when benchmarks are implemented by different programmers. Thus, to 
help ensure consistency, BDTI serves as an impartial arbiter for BDTI Benchmark pro­
grammers, making fair and consistent decisions regarding the admissibility of different 
implementation approaches. Without such an arbiter, fair comparisons of processor perfor­
mance are impossible. 

Note that benchmark results published by processor manufacturers are 
sometimes very aggressively optimized, using optimizations that might not be 
permitted under the BDTI Benchmarks. In addition, the functionality imple­
mented by manufacturers' benchmarks is often inconsistent or ill-defined (for 
example, some FFf implementations include shuffling the input or output data 
while others do not). These problems motivated us to develop the BDTI 
Benchmarks. For these same reasons, manufacturer-reported benchmark 
results for benchmark functions similar to those found in the BDTI Bench­
marks may suggest significantly better performance than that shown by the 
BDTI Benchmarks. 

This highlights the fact that the BDTI Benchmarks are not designed to 
reveal the speed of the fastest-possible implementation of a given function on a 
particular processor. Rather, our benchmarks are designed to reveal the perfor­
mance that is attainable under a reasonable and consistent set of assumptions 
and restrictions, and thus to provide a fair basis for comparison among proces­
sors. 

@ 2001 Berkeley Design Technology, Inc. 



BOTI Benchmark™ Results 

Benchmarking Limitations 

Application kernel benchmarks implemented in a fair manner can be an extremely 
useful tool for comparing processor performance in OSP applications. In developing and 
implementing the BOTI Benchmarks and the analyses of our results, we have striven to 
provide OSP processor users with an objective basis for comparing processors and for 
selecting the processor which will best suit the needs of an application. But as with any 
tool, the user of these benchmark results must respect their inherent limitations. Like all 
benchmarks, ours suffer from important limitations that should be thoroughly understood 
by anyone using them. The following paragraphs describe these limitations. 

• Completeness. One of the key shortcomings of benchmarking is that it is very dif­
ficult to capture all of the important aspects of processor performance in a set of 
benchmarks. For example, our benchmarks do not attempt to measure the 
input/output performance of processors, even though J/O performance is a signifi­
cant consideration for many, if not most, applications. Other potentially important 
operations, such as context switching, are also omitted. We plan to expand the 
BOTI Benchmarks in future releases to address some of these aspects. 
No matter how comprehensive it is, a set of benchmark functions usually doesn't 
include all of the functions that are important for a particular application. This 
means that in using benchmarks to compare processors, users must be prepared to 
work ,:"ith incomplete information. 

• Numerical accuracy. Processors with larger native data word sizes generally pro­
duce more accurate results than processors with smaller word sizes. Floating-point 
processors generally produce more accurate results than fixed-point processors. In 
this sense, a processor with a larger numeric format or with a floating-point format 
can be considered to do more work in the course of computing a given function 
than a processor with a smaller or fixed-point format, if both processors use their 
native data types. These differences are mostly ignored in our benchmarks. In the 
. BOTI Benchmarks, each processor uses its native numeric format(s) for all bench­
marks. In using the benchmark results, the DSP processor user must be aware of 
the precision and dynamic range requirements of their application, and interpret 
the benchmark results accordingly. For example, if a user is planning to implement 
an FIR filter with 24 bits of precision, this can be done on a 16-bit processor, but it 
will require the use of multi-precision arithmetic, and this means that the FIR filter 
implementation will be significantly slower than suggested by the benchmark 
results. 
In the BDTI Benchmarks, each processor uses its native data word size. In cases 
where processors support multiple data word sizes, BDTI Benchmark implementa­
tions generally use the data word size that yields best performance while maintain­
ing a reasonable level of numeric fidelity for the benchmark function. An 
exception to this is floating-point processors, which use their floating-point data 
type for most benchmarks, even in cases where use of a fixed-point data type 
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would be faster. A few of the benchmarks, however, are inherently integer in 
nature, and do not use floating-point data types in any case. This includes the Con­
trol and Bit Unpack benchmarks, for example. 

• System design. Many aspects of processor perfonnance depend very strongly on 
overall system design, not just on processor design. For example, if an application 
becomes too large for the entire program and data to be stored in on-chip memory, 
the capabilities of the off-chip memory and memory interfaces significantly impact 
perfonnance and cost. Our benchmarks mostly ignore issues of system design, and 
focus exclusively on the processor. Earlier chapters of this report (especially 
Chapter 7, Processo~ Analyses) highlight various issues impacting overall system 
perfonnance. We urge readers to use our benchmark results in conjunction with 
our detailed processor qualitative evaluations found in Chapter 7. 

• Weighting of individual benchmarks. In the analysis that follows, we first 
present performance results for individual benchmarks. We then compute aggre­
gate perfonnance results for each processor by combining the results for each 
benchmark function. When combining the results for each benchmark function, we 
apply a uniform weighting to the results from each individual benchmark function. 
The unifonn weighting ensures that the overall score reflects the contributions of 
each benchmark equally. This approach gives a balanced picture, but the unifonn 
weighting is almost certainly not appropriate for any specific application. For a 
particular application, some of the BDTI Benchmark functions will be more 
important and some will be less important. The correct weighting for a particular 
application must be determined by the user. The profiling data and analysis pro­
vided in Chapter 6, Choosing a Processor should aid in determining appropriate 
weightings for many kinds of applications. 

• Changing speeds and prices. To enable fair comparisons, the analysis presented 
here is based on processor speeds and prices available as of June 2000. But proces­
sor speeds and prices change frequently. Readers should consult processor vendors 
for the latest speed and price data before making a processor selection. 

BDTI offers the Benchmark Analysis ToolTM for users who wish to customize the 
analysis presented here. The Benchmark Analysis Tool allows the user to specify weight­
ings to be applied to the individual benchmark functions for purposes of computing aggre­
gate results, to update speed and pricing data, and to add data for new or proprietary 
processors. For more information on the Benchmark Analysis Tool, please contact BDTI. 

Processors Benchmarked 

Of the processor families reviewed in detail in the previous chapters, 14 have been 
analyzed using the BDTI Benchmarks. The benchmarked processors are listed in 
Table 8.0-1. A few processors included in previous chapters are not included here, for var­
ious reasons. In some cases, such as the Texas Instruments TMS320C2xxx, we elected not 
to invest the effort in implementing the new version of the BDTI Benchmarks because ear-
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lier benchmarking had shown the processor to be in a different (that is, lower) perfor­
mance class than most of the other processors benchmarked here. In other cases, we were 
unable to obtain final BDTI Benchmark results in time for this publication. 

Most of the processors listed in Table 8.0-1 were in production, or available in 
sample quantities at the time of this writing. A few were not yet available in sample quan­
tities, or had not been demonstrated in silicon at their target speeds; results for these pro-

Intro· Datal Arithmetic 
Vendor ModeJ/Family 

duced 
Comments 

Width Type 

ADSP-218x 1986 16 Fixed 
24-bit instructions 

ADSP-219x 1999 16 Fixed 
Analog Devices 

ADSP-2106x 1994 32 Floating 
48-bit instructions 

ADSP-2116x 1998 32 Floating 

Lucent 
DSPI64xx 1997 16 Fixed 

16- and 32-bit 
Technologies instructions 

DSP563xx 1995 24 Fixed 24-bit instructions 

DSP568xx 1990 16 Fixed 16-bit instructions 

Motorola DSP5685x 2000 16 Fixed 16-bit instructions 

MSC8101 1999 16 Fixed 
Based on the 

SCI40 

StarCore SCI40 1999 16 Fixed 
LucentIMotorola 

joint design 

TMS320C54xx 1994 16 Fixed 16-bit instructions 

TMS320C55xx 2000 16 Fixed 
VLIW-based 
architecture 

Texas TMS320C62xx 1997 16 Fixed 
VLIW-based 

Instruments 
architecture 

TMS320C64xx 2000 16 Fixed 
VLIW-based 
architecture 

TMS320C67xx 1998 32 Floating 
VLIW-based 
architecture 

TABLE 8.0-1. DSP processors benchmarked in this report. 
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cessors are marked "projected" throughout this chapter. These processors include the 
Analog Devices ADSP:-219x, Motorola DSP5685x, and Texas Instruments 
TMS320C55xx and TMS32OC64xx. 

Within a single processor family, multiple devices often exist with different mem­
ory configurations, peripherals, and low-power features. Moreover, these variants may be 
offered with different maximum clock frequencies. Benchmark results may vary between 
these family members. To obtain fair comparisons in our benchmark analysis, in each sec­
tion of our analysis we selected the processor variant from each family that best matched 
the nature of the analysis category. For our analysis of execution time and cost/execu­
tion-time product, we chose the fastest version of each processor, in its least expensive 
packaging variant. For our analysis of energy consumption,. we chose the lowest-voltage 
version of each processor, in its fastest speed and lowest-cost package. We restricted our­
selves to processor variants that contain sufficient (but not excessive) on-chip memory to 
run the benchmarks efficiently. The criteria for selecting family members are stated in 
each section of our benchmark analysis. 

Note that for many processor families, selecting family members other than 
those used here yields significantly different benchmark results. For example, 
our cost/execution time product analysis of the Texas Instruments 
TMS32OC62xx family uses the TMS32OC6203, the fastest family member. If 
we instead chose a low-cost family member, such as the TMS320C6211, 
cost-performance results would be improved significantly, while speed would 
be reduced, and less on-chip memory would be available. Users may wish to 
adjust the results presented in this chapter, using data provided in Chapter 7, 
Processor Analyses, based on the family members determined to be most suit­
able for a particular application. 

Organization of Benchmarking Results 

The benchmark results are organized as follows: 

• Instruction Cycles 
In Section 8.1 we compare the number of instruction cycles that each processor 
requires to complete each of the twelve benchmark functions. 

• Execution Time 
In Section 8.2, we use the instruction cycle rate of the fastest available version of 
each processor to calculate the actual time required for each processor to compute 
each benchmark function. This section also includes the BDTImark2000 scores of 
the processors benchmarked. 

• Cost-Execution Time Product 
In Sec~on 8.3, we use processor cost data to calculate the cost-execution time 
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product of each processor. The cost-execution time product is a combined figure of 
merit that reflects both a processor's cost and its speed. 

• Energy Consumption 
In Section 8.4, we use processor power consumption data to estimate the amount 
of energy each processor requires to compute each benchmark function. This gives 
an estimate of the energy efficiency of each processor. 

• Memory Use 
~n Sectiqn 8.5, we evaluate processors' memory use efficiency on the BDTI 
Benchmarks. We report and analyze Control benchmark memory use, overall pro­
gram memory use, overall constant data memory use, and overall non-constant 
data memory use. 

Note that in all of these analyses except for instruction cycle counts, lower num­
bers imply better performance. As we discuss below in Section 8.1, Instruction Cycle 
Counts, lower instruction cycle counts are not necessarily an indicator of good perfor­
mance. 

Each section begins with an introduction that explains the meaning and interpreta­
tion of that section's analysis. Next, the detailed results for each processor are presented in 
tabular form. Then the processor families are compared directly in bar graph form for each 
benchmark. Finally, the overall results obtained from combining results for each processor 
over all benchmarks are displayed in bar graph form. 

The results given in tabular form are intended for those readers who wish to extend 
or modify the analyses for their own purposes; Section 8.1 discusses this further. The 
casual reader may choose to turn directly to the graphical representations to gain the 
essence of the results. But please review each section's introduction to obtain a clear 
understanding of how the results were obtained and what they mean. 

Benchmark SpeCification and Methodology 

This section highlights important aspects of our benchmark specification, imple­
mentation, and measurement. It focuses on general issues applicable to the set of bench­
marks as a whole. We begin by discussing benchmark specification, touching upon issues 
of code structure, optimization, and memory use. 

Table 8.0-21ists the benchmarks. Although we refer to the individual benchmarks 
as functions, in fact our benchmarks are not programmed using the formal programming 
notion of a function. Rather, our model for the organization of the benchmark programs is 
based on a program macro, a parameterized block of code that is expanded in-line in the 
final program. If multiple references to a macro are made in a program, then the macro 
code is repeated for each reference. A macro clarifies the calling parameters and return 
values (the interface) of a reusable block of code, but does not incur the overhead of a sub­
routine call. As a rule, BDTI Benchmarks™ are not implemented as subroutines, nor do 
they use subroutines internally. The Control benchmark is an exception to this rule. 
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Function Description Example Applications 

Finite impulse response fIlter that oper-
Speech processing (e.g., 0.728 

Real Block FIR ates on a block of real (not complex) 
data. 

speech compression). 

Single- FIR filter that operates on a single sam- Speech processing, general fil-
Sample FIR pIe of real data. tering. 

Complex Block FIR filter that operates on a block of 
Modem channel equalization. 

FIR complex data. 

LMS Adaptive Least-mean-square adaptive filter; oper-
Channel equalization, servo 
control, linear predictive cod-

FIR ates on a single sample of real data. 
ing. 

Two-Biquad Infinite impulse response filter that oper- Audio processing, general fil-
IIR* ates on a single sample of real data. tering. 

Vector Dot Sum of the pointwise multiplication of 
Convolution, correlation, 
matrix multiplication, multidi-

Product two vectors. 
mensional signal processing. 

Vector Add 
Pointwise addition of two vectors, pro- Graphics, combining audio sig-
ducing a third vector. nals or images, vector search. 

Vector Find the value and location of the maxi-
Error control coding,. algo-

Maximum mum value in a vector. 
rithms using block float-
ing-point. 

Viterbi Decodes a convolutionally encoded bit-
Wired and wireless communi-
cations; e.g., digital cellular 

Decoder stream. 
phones. 

A contrived series of control (test, VIrtually all DSP applications 
Control* branch, push, pop) and bit manipulation include some control opera-

operations. tions. 

Fast Fourier transform converts a normal 
Radar, sonar, MPEO audio 

256-Point FFT* time-domain signal to the frequency 
compression, spectral analysis. 

614 

domain. 

Bit Unpack 
Unpacks words of varying lengths from Audio and speech decompres-
a continuous bit stream. sion. 

TABLE 8.0-2. BOTI Benchmark™ functions. 
*. These func;:tlons are significantly different from the similarly named func;:tlons found in the earlier version of the 

BDTI Benchmarks. 
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Structurally, each benchmark program is divided into two sections: power-up ini­
tialization and the main benchmark body. The power-up initialization includes processor 
configuration actions that are required only once at power-up. The main benchmark body 
contains all of the functionality required to execute the benchmark, except for the 
one-time initialization steps included in the power-up initialization section. The main 
benchmark body does include initialization and clean-up steps that must be performed for 
each invocation of the benchmark; for example, loading memory pointer registers and 
configuring special addressing modes. Since the kind of code found in the power-up ini­
tialization section of the benchmarks is usually not relevant to application performance, 
we exclude power-up initialization code when reporting benchmark results. 

A detailed specification of each benchmark function has been created to define the 
precise functionality required and the allowable implementation approaches for each 
benchmark. This specification is available under license from BDTI. 

In all but one benchmark (the Control benchmark), the primary goal of the pro­
grammer is to minimize execution time, and the secondary goal is to minimize memory 
use. In the Control benchmark, however, conservation of memory is the primary goal, and 
speed of execution is secondary. This is because the Control benchmark is designed to be 
representative of decision-making control code, which often makes up the bulk of an 
application's code space but only takes up a small fraction of the execution time. Thus, 
speed is generally less important than code density in control-oriented code. 

All benchmark programs are written entirely in assembly language and carefully 
optimized. Some of the benchmark programs were implemented by BDTI, while others 
were implemented by processor manufacturers. In all cases, the functionality and perfor­
mance of the benchmark programs were independently verified by BDTI. In addition, we 
have carefully reviewed each benchmark implementation on each processor to ensure that 
it follows the coding guidelines set out in the specification and to help ensure optimality. 

We have measured the performance of each benchmark on each processor using 
simulators developed by the processor manufacturers. On the whole, we have found these 
simulators to be accurate in their reports of program cycle counts. Nevertheless, we have 
encountered some erroneous reports. Therefore, for the most critical sections of the bench­
mark programs (primarily the kernels) we have manually checked the results reported by 
the simulators. Where practical, we have also confmned out results via measurements on 
processor hardware. 

Benchmark Programming Restrictions and Optimizations 

Here, we briefly discuss some of the more important resttictions placed on bench­
mark programmers by the BDTI Benchmark™ specifications. The complete BDTI Bench­
mark specification is available under license from BDTI. 

The specification includes coding guidelines that outline the kinds of algorithmic 
and programming optimizations that are permissible for each benchmark function. In 
assembling the c~ng guidelines for the BDTI Benchmarks, we have attempted to strike a 
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balance between the conflicting goals of optimization and creating a level playing field, 
which sometimes precludes improvements· in the code which might very well be reason­
able in some applications. Our guidelines generally permit the use of optimizations that 
we consider reasonable (i.e., that an application programmer would be likely to use in pro­
duction software), but prohibit more extreme optimizations that are not likely to be practi­
cal in most applications. 

• Sharing of processor resources. 
We require each benchmark function to be written as if it were one of many func­
tions in an application. Each benchmark must be written so that it can be executed 
multiple times to process a continuous stream of data, and so that its execution can 
be interleaved with the execution of other code. This means that between invoca­
tions each benchmark function must store all of its private state information in 
memory and not in processor registers that may be used by other code. For exam­
ple, the IIR filter benchmark must store its state variables in memory between 
invocations. 

• Multiprocessors. 
For chips containing multiple processors, the BDTI Benchmarks are implemented 
using only one of the processors. Different types of applications and algorithms 
differ in how efficiently they can be parallelized using multiple processors.There­
fore, in general it is not correct to assume that an N-processor chip will have N 
times the performance of one of the processors. The only multiprocessor device in 
this report is the Lucent DSPl64xx. The DSPl64xx is used here instead of the sin­
gle-processor DSP162xx because the multiprocessor device incorporates instruc­
tion-set enhancements and achieves a higher clock speed. 

Note that the results shown in the report for the Lucent DSPl64xx use only 
one of the chip's two processors. 

• Caches 
On-chip caches are increasingly common among DSP processors. As detailed in 
Chapter 7, Processor Analyses, the caches found in DSP processors differ signifi­
cantly from one processor to another. The Analog Devices ADSP-219x, 
ADSP-2106x, and ADSP-2116x, for example, use very specialized instruction 
caches. These processors provide two on-chip memory buses. Their caches are 
used to hold instructions only in the case where the instruction fetch conflicts with 
one of two data accesses performed by the previous instruction. 
The Lucent DSPl64xx uses a similar approach: its specialized instruction cache is 
used to free up one of its two on-chip memory buses for performing a second data 
access. In contrast with the Analog Devices processors, though, the Lucent proces-
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sor uses its cache only when a hardware loop is executed, and stores all of the 
instructions within the hardware loop body in the cache. 

In contrast, the TMS32OC64xx and some members of the TMS320C62xx and 
TMS320C67xx families from Texas Instruments rely on a two-level instruction 
and data cache architecture similar to those found in high-perfonnance gen­
eral-purpose processors. Unlike caches typically found in high-perfonnance gen­
eral-purpose processors, though, the second-level caches found in these Texas 
Instruments processors can be configured by the programmer to act as conven­
tionalRAM. 
The state of a processor's caches upon entering the benchmark can have a signifi­
cant impact on performance for benchmarks that spend a significant amount of 
time executing code that is not contained in small loops. Thus, caches must be 
taken into account when implementing benchmarks and when interpreting bench­
mark results. If all or part of the benchmark code has been previously loaded into 
the cache, some benchmarks execute much more quickly than if none of the 
needed code is contained in the cache. In the BOTI Benchmarks, this difference 
affects single-sample benchmarks (Single-Sample FIR, IIR, and LMS filters) more 
than block-oriented benchmarks. 
In implementing the BOTI Benchmarks, we have addressed caches in various 
ways, depending upon the details of each processor's cache design: 

'. If all members of a processor family rely on caches, we present two sets of 
results: the first set (which appears under the heading of the processor name) is 
measured with the first-level cache empty when the benchmark begins execu­
tion; the second set (which appears under the processor name with a "-C" 
appended; e.g., "ADSP-2106x-C") is measured with the frrst-level cache pre­
loaded with the needed instructions and data prior to benchmark execution. In 
both cases, the second-level cache or on-chip RAM is "assumed to be preloaded 
with the necessary instructions and data. 

Processors in this category include the Analog Devices ADSP-219x, 
ADSP-2106x, and ADSP-2116x, and the Texas Instruments TMS320C64xx. 
The Lucent OSPl64xx is excluded from this group because the small size of its 
instruction cache means that the cache-preloaded scenario is unlikely to be 
encountered in typical applications. 

• If some members of a processor family rely on caches and some members do 
not, we have chosen to ignore caches in our benchmark results. This means 
that the benchmark results do not apply to family members with caches. This 
applies to cache-based members of the Texas Instruments TMS320C62xx and 
TMS32OC67xx families. 

For processors for which two sets of results are reported, if there was a trade-off to 
be made in optimizing for the cache-preloaded versus the non-cache-preloaded 
scenario, the cache-preloaded scenario was given priority. 
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For processors for which two sets of results are reported, users must determine 
whether the cache-preloaded or non-cache-preloaded results, or some mixture of 
the two, are more relevant to the target application. 

Readers should compare cache-preloaded ("-C") results for processors 
with caches to other cache-preloaded results, and to results for processors 
without caches. Comparing non-cache-preloaded results to cache-preloaded 
results or to results for non-cached processors may not yield meaningful com­
parisons. Determining whether cache-preloaded or non-cache-preloaded 
results are more relevant requires a detailed understanding of the memory 
access behavior of the target application. 

As explained in Chapter 7, Processor Analyses, non-cache-preloaded results for 
the Texas Instruments TMS32OC64xx are estimated, because, at the time of this 
writing, Texas Instruments had not released final specifications for the 
TMS320C64xx caches. 

• Memory. 
In general, each benchmark has been programmed so that the entire benchmark 
program and all associated data are located in on-chip memory to allow the proces­
sor to execute the benchmark as' fast as possible. While this is not necessarily a 
realistic scenario for all applications, it allows benchmark performance to be mea­
sured independently of complex considerations such as external memory structure, 
interfaces, and cost. In most 'cases, processors will achieve the performance 
reported here only for relatively small data and program sizes. The threshold 
beyond which external memory becomes a bottleneck varies from processor to 
processor and system to system, based on the size and organization of on..;.chip 
memory and the capabilities of the off-chip memory system and interface(s). 
Chapter 7, Processor Analyses, presents detailed analyses of the on-chip memory 
architectures and off-chip memory interfaces of each of the processors covered in 
this report. 

• Loop unrolling. 
An example of an optimization that we consider extreme and have therefore pro­
hibited in implementation of BDTI Benchmarks™ is excessive loop unrolling. 
Loop unrolling is a technique for increasing execution speed by replacing program 
looping structures (like for-next loops) with repetitive sets of instructions accom­
plishing the same effect. Loop unrolling can improve performance, for example, 
on processors where loop constructs consume processorcyc1es, and on processors 
with limited address register update capabilities. In some cases, loop unrolling can 
also allow algorithmic transformations that enabl~ improved performance. How­
ever, excessive loop unrolling can result in unreasonably large programs, and 
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reduces the generality (and therefore the reusability) of code. In some benchmarks 
previously published by other organizations, some programmers used loop unroll­
ing, while others did not, resulting in unrealistic results and unbalanced compari­
sons. In implementing the BDTI Benchmarks™, we have limited loop unrolling. 
In deciding how much loop unrolling to allow in a specific case, we compared the 
increase in code size to the resulting performance gain for different amounts of 
unrolling. We chose an amount of unrolling that does not cross the point of dimin­
ishing returns in this respect, and that also does not result in unreasonable loss of 
generality. 

• Look-up tables. 
Like loop unrolling, the use of look-up tables is an optimization technique that can 
often be used to improve execution speed at the cost of additional memory use. In 
our opinion, the use of look -up tables tends to obscure meaningful differences in 
processor performance. Therefore, in most cases we have prohibited the use of 
such tables in implementations of the BDTI Benchmarks. An exception is the use 
of tables to store "twiddle factors" for the FFT benchmark. 

The detailed specification for the BDTI Benchmarks outlines many additional 
restrictions placed on implementation of these benchmarks in an effort to ensure that the 
benchmark results are fair and accurate. 

Benchmark Parameters and Scaling of Results 

Many common DSP functions operate on varying quantities of data (and coeffi­
cients), depending on the needs of the application. For example, an FIR filter can have any 
number of taps and can operate on any number of input samples. For some (but not all) of 
the BDTI Benchmarks, the specification requires that benchmark programmers implement 
the benchmarks so that they can accommodate a reasonable range of data andlor coeffi­
cient set sizes. Other benchmark functions have fixed data set sizes. 

The IIR, Control, 256-point FFf, Viterbi, and Bit Unpack benchmarks have fixed 
data set sizes. The Real Block FIR, Single-Sample FIR, Complex Block FIR, LMS Adap­
tive FIR, Vector Dot Product, Vector Add, and Vector Maximum benchmarks have vari­
able data-set andlor coefficient-set sizes. In addition, some implementations of the Vector 
Maximum and Bit Unpack benchmarks have data-dependent execution times. 

For the benchmarks with variable data-set andlor coefficient-set sizes, or 
data-dependent execution times, the following parameters are used to characterize the data 
and coefficients: 

• Number of points, N 
The number of input or output data points (real or complex) processed by a bench­
mark function. 

• Number of fIlter taps, T 
The number of filter taps for FIR-type filter benchmarks. 
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• Number of new relative maxima, M 
For the Vector Maximum benchmark, the number of new relative maxima encoun­
tered when scanning the input data from beginning to end. 

For the benchmarks with variable data-set and/or coefficient-set sizes, the instruc­
tioncycle counts and data memory use results presented in this chapter are fIrst presented 
as algebraic expressions in terms of the size of the parameters listed above. Next, we sub­
stitute a set of reasonable but otherwise arbitrary values for these parameters and evaluate 
the expressions. The resulting values are used in our subsequent analysis. The parameter 
values chosen for our analysis are listed in Table 8.0-3. The parameter values we have 
chosen are not appropriate for all applications. Therefore, readers may wish to repeat our 
analysis, substituting values that are better suited to their applications. 

Note, however, that benchmark results cannot be arbitrarily scaled using the 
expressions provided. A number of factors complicate the scaling of benchmark results. 
First, benchmark implementors are permitted (and encouraged) to optimize their imple­
mentations for the particular parameter values listed in Table 8.0-3 and used in this analy­
sis. Thus, for different data set sizes, a different benchmark implementation may yield 
better performance. (This also explains why benchmark results for benchmark functions 
with fixed data-set sizes, such as the 256-point FFT, are not scalable, and thus, why results 
for these benchmarks are reported as constant values rather than as expressions.) In addi­
tion, common optimizations often yield a loss of generality; for example an FIR filter 
implementation on a dual-MAC processor will typically only accommodate FIR filters 
with even numbers of coefficients. Finally, while scaling of benchmark results can be 
effective within a range of parameter values, there are always limits beyond which the 
extrapolation breaks down; for example, when the size of internal memory is exceeded, 
and data must be moved to and from slower, off-chip memory. 

Note that cycle counts for the Texas Instruments TMS32.oC64xx with caches not 
preloaded are expressed as constants for all benchmarks, rather than as formulas. This is 
because the timing effects of the TMS320C64xx caches make it difficult to characterize 
benchmark cycle counts as formulas. These constants are valid only for the particular 
benchmark parameters used in this analysis; that is, they are not scalable. For the Texas 
Instruments TMS320C55xx, a cycle-accurate instruction-set simulator was not available, 
so the benchmarks were timed exclusively via hardware measurement, and cycle count 
formulas could not readily be derived from these measurements. 

BOTI offers the Benchmark Analysis TooITM for users who wish to customize the 
analysis presented here. The Benchmark Analysis Tool allows the user to repeat the analy­
sis presented here after substituting other values for the parameters. The Benchmark Anal­
ysis Tool also allows the user to specify weightings to be applied to the individual 
benchmark functions for purposes of computing aggregate results, and to add data for new 
or proprietary processors. For more information on the Benchmark Analysis Tool, contact 
BOTI. 
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Table 8.0-3. Benchmark Parameters 

DSP Building Block Functions 
Fixed Variable 

Parameters Parameters 

Real Block FIR N=40, T=16 

Single-Sample FIR N=1 T=16 

Complex Block FIR N=40, T=16 

LMS Adaptive FIR N=1 T=16 

Two-Biquad IIR N=1, B=2 

Vector Dot Product N=40 

lVector Add N=40 

lVector Maximum N=40, M=5 

Control 

!256-Point FFT N=256 

Viterbi 

Bit Unpack 

Key: N = input vector length, B = number of biquad sections, 
T = number of taps, M = number of new relative maxima. 
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Notation 

Table 8.0-4 and Table 8.0-5 define the notation used throughout this chapter. Every 
table and figure presented in this chapter uses this notation. 

Symbol Definition Meaning 

Program 
Total program memory use for processor p on benchmark b (in 

MP[p,b] bytes). The program memory use reported here is for the main bench-
memory use 

mark body, and does not include the power-up initialization section. 

MC[p,b] 
Constant data 

Constant data memory use for processor p on benchmark b (in bytes). 
memory use 

MD[p,b] 
Non-constant data Non-constant data memory use for processor p on benchmark b (in 

memory use bytes). 

ROMabie memory use, 
ROMable memory use for processor p on benchmark b (in bytes). 

MPC[p,b] 
MP[p,b] + MC[p,b] 

ROMable memory includes program memory and constant data 
memory. 

Total memory use, 
Total memory use for processor p on benchmark b (in bytes). Total 

MPCD[p,b] 
MPC[p,d] + MD[p,b] 

memory use includes program memory use, constant data memory 
use, and non-constant data memory use. 

AMP[b] 
Average program Average program memory use on benchmark b. (Average across all 

memory use processors, in bytes.) 

AMC[b] 
Average constant data Average constant data memory use on benchmark b. (Average across 

memory use all processors, in bytes.) 

AMD[b] 
Average non-constant Average non-constant data memory use on benchmark b. (Average 

data memory use across all processors, in bytes.) 

AMPC[bJ 
Average ROMable Average ROMable memory use on benchmark b. (Average across all 

memory use processors, in bytes.) 

AMPCD[b] 
Average total Average total memory use on benchmark b. (Average across all pro-
memory use cessors, in bytes.) 

TABLE 8.0-4. Notation used in presentation of benchmark results (1 of 2). 
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Symbol Dermition Meaning 

p Processor 
Index of processors in tables. In each table or figure, p= 1 for the first pro-
cessor listed, p=2 for the second processor listed, and so on. 

b Benchmark 
Index of benchmark functions in tables. In each table or figure, b= 1 for 
the first benchmark listed, b=2 for the second, and so on. 

Instruction Cycle 
Instruction cycles required for processor p to complete benchmark b. 

C[P,b] 
Count 

Includes cycles for the main benchmark body, but not power-up cycles 
(see text). 

I[P] 
Instruction Cycle Instruction cycle time for processor p (for single-cycle instructions), in 

Time nanoseconds. 

T[P,b] 
Execution Time, Execution time for processor p to complete benchmark b, in microsec-

C[p,b] * I[p] 11000 onds. (The factor of 1000 converts from nanoseconds to microseconds.) 

P[p] Power Estimated ''typical'' power consumption for processor p, in watts. 

Energy, 
Energy consumption for processor p on benchmark b. The result of multi-

E[p,b] 
P[p] * T[p,b] 

plying execution time by typical power consumption, in watt-microsec-
onds. 

O[P] Cost 
Quoted unit cost for processor p based on a purchase of 10,000 units, in 
U.S. dollars. 

AC[b] Average Cycles 
Average number of instruction cycles required for processors to complete 
benchmark b. (Average across all processors.) 

AT[b] Average Time 
Average time required for processors to complete benchmark b, in micro-
seconds. (Average across all processors.) 

Cost-Execution The result of mUltiplying the cost of processor p by the execution time 
OT[p,b] Time Product required for the processor to complete benchmark b. This is a figure of 

O[p] * T[p,b] merit reflecting both execution time and cost in microsecond-dollars. 

Average Cost-
Average cost-execution time product for benchmarkb, across all proces-

ADT[b] Execution Tune 
Product 

sors, in microsecond-dollars. 

AE[b] Average Energy 
Average energy consumption for benchmark b, across all processors, in 
watt-microseconds. 

TABLE B.o-S. Notation used in presentation of benchmark results (2 of 2). 
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8.1 Instruction Cycle Counts 

In this section we present and analyze the BDTI Benchmark™ results in terms of 
the number of instruction cycles required for each processor to complete individual bench­
mark functions. These results form the foundation for subsequent metrics of execution 
time, cost-execution time, and energy use. They also provide a basis for extending the 
scope of subsequent sections' analysis to specific processor family members that were not 
selected for our benchmarking, but may be of interest to particular readers. For example, 
new execution time results can be calculated for a new family member with a higher clock 
speed by referring to the cycle count results in this section. 

In most cases, cycle count results apply uniformly to all members of a particular 
processor family. This is also true for memory use results, but is not the case for other 
benchmark metrics, such as execution time, where results are specific to one family mem­
ber. For a few processors, the cycle count results shown in this section do not apply to all 
family members. In particular, the Lucent DSP164xx results do not apply to the 
DSP162xx, because the former processor provides some instructions not found in the lat­
ter. In addition, the cycle count results shown for the Texas Instruments TMS320C62xx 
and TMS320C67xx do not apply to members of these families that rely on caches. Simi­
larly, the results for the SC140 and MSC8101 do not apply directly to the recently 
announced Lucent StarPro 2000, which is a multiprocessor device based on the SC140 
core and which uses caches. 

As mentioned above, the cycles counts reported are for the main benchmark body. 
We exclude the power-up cycle counts from our analysis because the time spent in 
one-time processor setup code is usually inconsequential to overall performance in an 
application. 

Instruction cycle counts by themselves are not especially useful as a performance 
measure. Only when combined with information about the rate at which each processor 
can execute instructions do cycle counts yield meaningful information about processor 
performance. (We refer to this rate as the processor instruction cycle rate.) Such a combi­
nation is the next step in our analysis and appears in Section 8.2, Execution Times. 

Nevertheless, we include detailed processor instruction cycle count information in 
this section for two reasons. First, instruction cycle counts give some indication of the 
power of the architecture of a given processor. A processor with a more powerful architec­
ture will execute a benchmark function in fewer cycles than a processor with a less power­
ful architecture. Of course, executing a function in fewer instruction cycles mayor may 
not translate into executing the function more quickly, depending on the relative instruc­
tion cycle rates of the processors being compared. Second, processor instruction rates 
increase over time, as processor manufacturers improve their fabrication processes and 
circuit designs. Users may therefore want to use more recent processor instruction cycle 
rates to update the analysis presented in later sections of this report. 

The benchmark instruction cycle count information presented in this section is 
organized as follows. 
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• Benchmark instruction cycle count formulas and calculated values. 
Benchmark instruction cycle count fonnulas and the values that result from substi­
tuting our selected values for each of the variable parameters are shown in Tables 
8.1-1A and 8.1-1B, respectively. Note that each of these tables extends over two 
facing pages. The cycle count values are also plotted in Figures 8.1-1 through 
8.1-12. Power-up cycles are excluded from these results, as discussed earlier. 

• Normalized total instruction cycle count values. 
As the first step in creating aggregate cycle count results that illustrate each pro­
cessor's overall cycle counts, we nonnalize the instruction cycle count for each 
processor on each benchmark. This nonnalization is done by dividing each proces­
sor's cycle count on a given benchmark by the average over all processors on that 
benchmark. This is done so that benchmarks that are inherently more time con­
suming are not automatically weighted more heavily when we aggregate the 
results for each processor over all benchmarks. The nonnalized total instruction 
cycle count values for each processor on each benchmark are shown in 
Table 8.1-2. 

• Total normalized. instruction cycle count values through a1Lbenchmarks. 
Figure 8.1-13 and the last row of Table 8.1-2 show the result of adding together the 
normalized instruction cycle counts for each processor across all benchmarks. This 
creates an overall processor instruction cycle count metric. Note that this approach 
applies a unifonn weighting to each of the benchmark cycle counts. This weight­
ing is arbitrary and will not be the best for most applications. Readers may wish to 
repeat our analysis with different weightings applied to the individual benchmarks, 
as called for by the application at hand .. BDT! offers the Benchmark Analysis 
TooFM to assist users in customizing our benchmark analysis in this way. 

Note that in this section and in the later sections of this chapter, there may appear 
to be small errors in some calculated values. These small discrepancies are due to the fact 
that many values are displayed with limited precision, although full precision is used for 
calculations. For example, a value of 1.15 may be printed as 1.2. If two such values are 
added (i.e., 1.15 + 1.15), the correct result (2.3) is printed, rather than the sum of the 
rounded-off values (2.4). 

Analysis of Results 

This section presents analysis of the cycle counts for each benchmark. In this anal­
ysis, we focus on those processors that have especially large or small cycle counts for each 
benchmark and explain why this is the case. Bear in mind that while instruction cycle 
counts provide useful infonnation about the power of a processor's architecture and 
instruction set, they are not reliable indicators of performance. To determine a processor's 
perfonnance, one must take into account the instruction cycle time of that processor. In 
many cases, manufacturers make trade-Mfs between offering a powerful instruction set 
(requiring more complex hardware) and achieving a short instruction cycle time (using 
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simpler hardware). This means that processors with large benchmark cycle counts may 
have much faster instruction cycle times than processors with small cycle counts. In 
Section 8.2 we combine instruction cycle time information with the cycle counts pre­
sented in this section to determine each processor's execution time on the benchmark 
functions. 

Throughout the analysis in this section we present simplified descriptions of each 
of the benchmark functions. Detailed definitions of the benchmark functions are included 
in the BDTI Benchmarks specification. 

General Observations 

The more work a processor can get done per cycle on a given benchmark, the 
lower the cycle count. Overall, the newest processors, which use VLIW andlor SIMD 
techniques, achieve the highest parallelism on the BDTI Benchmarks and therefore the 
lowest cycle counts. Conventional DSPs, including newly introduced architectures like 
the Analog Devices ADSP-219x-C and Motorola DSP5685x, generally achieve less paral­
lelism and therefore have higher cycle counts. 

It is important to note, however, that different processors employ different kinds of 
parallelism, and therefore relative cycle counts can vary significantly from one benchmark 
to another. For example, some of the benchmarks, such as the Real Block FIR, are domi­
nated by arithmetic computations, and are readily parallelized. On these benchmarks, 
highly parallel architectures tend to have the lowest cycle counts. In other benchmarks, 
even those with rather similar overall functionality, like the Single-Sample FIR, initializa­
tion and housekeeping operations play an important (in some cases, dominant) role in 
determining cycle counts. The Single-Sample FIR benchmark, for example, requires a 
total of 16 multiply-accumulate operations. The DSPs with the most parallel data paths 
can complete these MAC operations in a mere four cycles. Thus, tasks such as initializing 
address pointers, launching loops, and priming software pipelines typically account for 
most of the cycles in a Single-Sample FIR benchmark implementation on such processors. 
This suggests (and the benchmark results that follow confirm) that it is critical to evaluate 
a processor using benchmarks that are representative of the kinds of tasks that dominate 
the application at hand. 

In the following paragraphs, we analyze the cycle count results for each bench­
mark function individually. As stated earlier, we focus on processors with unusually low 
or high cycle counts, and explain the reasons for these results. The cycle count results for 
each benchmark function are plotted in Figures 8.1-1 through 8.1-12. Further information 
on processor features that affect cycle count results can be found in Chapter 7, Processor 
Analyses. 

Real Block FIR (Figure 8.1-1) 

The Real Block FIR filter benchmark executes a 16-tap filter on 40 samples of 
input data. The benchmark nominally consists of an outer loop that is repeated 40 times 
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(once for each input sample), and an inner loop that is repeated 16 times (once for each fil­
ter tap). Each output must be scaled. (Floating-point processors are exempt from this 
requirement since on floating-point processors coefficients can generally be scaled with­
out loss of precision.) Additionally, processors must update the filter delay line; this can 
be done either by explicit copying of data or via a circular buffer. 

The arithmetic-intensive nature of the Real Block FIR benchmark, and the ample 
parallelism available in the algorithm, mean that processors with highly parallel data paths 
(in particular, with more than one multiplier) can obtain low cycle counts. Conventional 
DSP processors (which provide a single MAC unit) generally require one instruction cycle 
per filter tap to compute the filter convolution, and one instruction cycle for scaling and 
storing the result. Conventional DSPs therefore spend at least 680 instruction cycles 
([16 + 1] x 40) on the core of this benchmark, and require additional instruction cycles for 
initialization and housekeeping tasks. Processors that sport two multipliers can perform 
the convolution at a rate of two filter taps per instruction cycle. Assuming that one instruc­
tion cycle is needed for scaling and storing the result, two-multiplier processors spend at 
least 360 instruction cycles in the core of this benchmark. Similarly, processors with four 
multipliers can perform the convolution at a rate of four filter taps per instruction cycle, 
and require at least 200 cycles for the benchmark core. Note that every extra overhead 
cycle spent inside the outer loop costs cycles each time the outer loop is executed; most 
processors require some cycles in the outer loop for housekeeping and branching back to 
the start of the loop. 

As expected, the conventional architectures uniformly require significantly more 
cycles on this benchmark compared with the enhanced conventional and VLIW -based 
processors. Among conventional DSPs, the Texas Instruments TMS320C54xx achieves 
the lowest cycle count: 730 cycles, quite close to the minimum of 680 cycles predicted 
above for the benchmark core on single-multiplier processors. The TMS320C54xx 
achieves its relatively low cycle count on this benchmark by making use of a specialized 
instruction (primarily intended for LMS filter implementations) to compute the convolu­
tion. This reduces the overhead in the outer loop by allowing the output to be scaled and 
stored in parallel with a multiplication operation in a single instruction cycle. In contrast, 
the cycle counts of the Analog Devices ADSP-218x and the Motorola DSP563xx, 
DSP568xx, and DSP5685x range from 855 to 983. These higher cycle counts are due to 
the fact that these processors spend more cycles on set-up and housekeeping overhead (for 
example, reloading address registers for each iteration of the outer loop) than the other 
conventional DSPs included here. Compared with the older Motorola DSP563xx, the 
Motorola DSP5685x achieves a lower cycle count; this is due to the fact that fewer cycles 
are required to initiate a hardware loop on the DSP5685x. 

Also as expected, the processors with the most extensive data path parallelism 
have the lowest cycle counts on this benchmark. The processors with four multipliers-' 
the StarCore SC140 and Texas Instruments TMS320C64xx-C-have the lowest cycle 

© 2001 Berkeley Design Technology, Inc. 



BOTI Benchmark™ Results -Instruction Cycle Counts 

counts by a significant margin. The cycle counts of the two-multiplier processors are 
roughly twice as large those of the four-multiplier processors. 

Not all of the highly parallel processors achieve their parallelism in the same way. 
For example, among dual-multiplier processors, the Texas Instruments TMS320C62xx 
and TMS320C67xx use the VLIW approach of executing multiple instructions in parallel, 
while the Analog Devices ADSP-2116x-C uses its SIMD feature to perform two multi­
plies in parallel under the control of a single instruction. The ADSP-2116x-C, however, 
spends a significant number of cycles in the outer loop to set up software pipelining and 
for explicitly enabling and disabling the SIMD mode; this gives it a higher cycle count 
than the other two-multiplier processors, which can perform some of the overhead opera­
tions in parallel with other operations. 

Single-Sample FIR (Figure 8.1-2) 

The Single-Sample FIR filter benchmark runs a 16-tap FIR filter on a single real 
input sample, producing a single output sample per invocation of the function. The proces­
sor must properly maintain the filter delay line (typically via a circular buffer), and 
fixed-point processors must scale the output. Because the benchmark only processes one 
sample of data at a time, initialization and housekeeping operations play a much larger 
role than they do in the cycle counts for the block-oriented benchmarks. Therefore, this 
benchmark is more reflective of processors' performance on housekeeping types of opera­
tions (e.g., setting up buffers and loops, loading and saving registers) than is the block-ori­
ented FIR filter benchmark, which tends to emphasize processors' arithmetic capabilities. 
Processors with deep pipelines often suffer higher cycle counts on this benchmark, 
because pipeline latencies can increase the number of cycles required to perform initial­
ization and housekeeping operations. 

The inner loop of the benchmark requires 16 multiply-accumulate operations. 
Thus, a conventional DSP processor with one multiplier typically requires at least 16 
cycles to perform the inner loop. A DSP with two multipliers typically requires at least 8 
cycles, and a DSP with four multipliers typically requires at least four cycles for the inner 
loop. Among the processors benchmarked here, the lowest cycle count (14 cycles) is 
achieved by the StarCore SC140, which provides four multipliers. Approximately half of 
these 14 cycles are consumed by set-up and housekeeping operations. This supports the 
observation, mentioned above, that the set-up and housekeeping work required by this 
benchmark represents a large share of the work in the benchmark. 

Other processors with notably low cycle counts on the Single-Sample FIR bench­
mark include the Lucent DSP164xx and Analog Devices ADSP-2116x-C (with cache pre­
loaded). These processors utilize their dual multipliers effectively on this benchmark, and 
are efficient in the set-up and housekeeping code, in part due to their relatively shallow 
pipelines. 

The Texas Instruments TMS320C64xx-C, despite its four multipliers, has a cycle 
count that is slightly higher than that of the two-multiplier Lucent DSP164xx on this 
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benchmark, even with the TMS320C64xx-C caches preloaded. This difference is due to 
the higher number of cycles required by the TMS320C64xx-C for initialization and house­
keeping code, which in tum is due partly to the deep pipeline of the TMS320C64xx-C. 
When its level-one caches are not preloaded, the estimated additional cycles required for 
loading the cache raise the TMS320C64xx cycle count substantially on this benchmark, 
yielding the highest cycle count of all of the benchmarked processors. 

Texas Instruments' floating-point TMS320C67xx has an even deeper pipeline than 
does the TMS320C64xx, and this contributes to its notably high cycle count on this bench­
mark. In addition, on the TMS320C67xx, circular addressing does not support loading of 
two elements at a time, and this limitation hinders the processor in the inner loop of this 
benchmark. 

The Analog Devices ADSP-219x-C also has a high cycle count on this benchmark, 
about 35% higher than the cycle count of its predecessor, the ADSP-218x. The relatively 
high cycle count of the ADSP-219x-C is due primarily to cycles required to initialize cir­
cular buffers on this processor and to stall cycles attributable to the deeper pipeline of the 
ADSP-219x-C. 

Complex Block FIR (Figure 8.1-3) 

The Complex Block FIR filter benchmark is similar to the Block FIR filter bench­
mark except that the input, output, and filter coefficient values are complex. As with the 
Real Block FIR, the filter parameters are 16 taps and 40 input samples, and (on fixed-point 
processors) the outputs are scaled. Processors must update the filter delay line. 

Computing one tap of a complex FIR filter requires one complex multiplication, 
which consists of four real multiplies and two real additions. This requires four instruction 
cycles per tap on a processor capable of one multiply-accumulate per instruction cycle. 
Including two instruction cycles for scaling and storing results after each filter kernel, con­
ventional DSP processors require at least 2,640 instruction cycles for the core of this 
benchmark. Processors with two multipliers are-ideally-capable of performing a com­
plex multiplication using two instruction cycles per tap. On these processors, at least 1,280 
instruction cycles are required in the benchmark core, not including cycles required for 
scaling and storing results. Similarly, on processors with 4 multipliers, at least 640 cycles 
are required for the benchmark core. As with the real FIR filter, extra cycles spent within 
the outer loop add significantly to the benchmark cycle count. 

As in the Real Block FIR benchmark, the conventional architectures uniformly 
require significantly more cycles on this benchmark compared with the enhanced conven­
tional and VLIW -based processors. Among conventional DSPs, the Analog Devices 
ADSP-218x and ADSP-219x-C and the Motorola DSP568xx have relatively high cycle 
counts. As in the Real Block FIR benchmark, these higher cycle counts are largely due to 
the fact that these processors spend more cycles on set-up and housekeeping overhead (for 
example, reloading address registers for each iteration of the outer loop) than the other 
conventional DSPs included here. In addition, the ADSP-218x is hampered by having 
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only one accumulator; ideally, two accumulators would be used, one to accumulate the 
real part and one to accumulate the imaginary part of the running sum. . 

Also as expected, the processors with the most extensive data path parallelism 
have the lowest cycle counts on this benchmark. The processors with four multipliers­
the StarCore SCI40 and Texas Instruments TMS32OC64xx-C-have the lowest cycle 
counts by a significant margin. The cycle counts of the two-multiplier processors are 
roughly twice as large those of the four-multiplier processors. 

LMS Adaptive Filter (Figure 8.1-4) 

The LMS benchmark implements a least mean-square adaptive FIR filter, which is 
an FIR filter whose coefficients are adjusted after each new output sample is produced. 
Each execution requires computing one output point of an FIR filter, computing an error 
signal (by subtracting the output from a supplied reference signal), and then, for each filter 
coefficient, multiplying a scaled version of the error value by the corresponding entry in 
the delay line, adding this product to the coefficient, and writing the new coefficient value 
back to memory (after rounding on fixed-point processors). As with the FIR filter bench­
marks, the processor must also properly maintain the delay line; this is usually done via a 
circular buffer. The LMS Adaptive FIR filter is a single-sample benchmark, like the Sin­
gle-Sample FIR benchmark. This means that it processes a single sample of input data per 
invocation of the function, and that initialization and housekeeping operations playa sig­
nificant role in determining a processor's cycle count. 

The StarCore SCI40 has a markedly low cycle count on this benchmark-less 
than half that of the processor with the next-highest result, the Texas Instruments 
TMS32OC64xx-C (with caches preloaded), which along with the TMS320C62xx, also has 
a low cycle count on this benchmark. The SC140 and TMS32OC64xx-C achieve similar 
levels of parallelism in the inner loop of this benchmark. In fact, the TMS320C64xx-C has 
a slightly lower cycle count in the inner loop (3/4 cycle per tap) than does the SCl40 
(which requires about 1 cycle per tap). The significant difference in the cycle counts of 
these two processors is mostly explained by two factors. First, the deep pipeline of the 
TMS320C64xx-C and the resulting latencies associated with some key operations cause 
delays in the availability of certain results. Second, the MAC instructions of the SC140 are 
quite well suited to the computation required in this benchmark, including support for 
scaling and rounding of results. The TMS320C64xx-C uses its dot-product instruction, 
which is not quite as well matched to the needs of this benchmark; additional instructions 
are thus required for rounding and scaling of results. As a result of these differences, while 
the TMS320C64xx-C does have the second-lowest cycle count of the benchmarked pro­
cessors on the LMS benchmark, its cycle count is about twice that of the SCI40, and only 
about 10% less than that of the TMS32OC62xx. Note that while the cycle counts of the 
TMS320C64xx-C and TMS320C62xx on this benchmark are higher than that of the 
SC140, they are lower than those of all of the other processors benchmarked, and are 
about 35% below the average. 
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Conventional DSPs generally have relatively high cycle counts on the LMS Adap­
tive Filter benchmark, due to their lower levels of parallelism. An exception to this is the 
Analog Devices ADSP-2106x-C; it takes advantage of the many general-purpose regis­
ters, flexible instruction set, and good support for operand-unrelated parallel moves to 
compute the FIR filter convolution in parallel with the coefficient update in two instruc­
tion cycles per tap, significantly fewer cycles than most conventional DSPs. The enhanced 
conventional ADSP-2116x-C cannot make efficient use of its SIMD mode·in this bench­
mark; it uses the same implementation as the ADSP-2106x-C. 

Among conventional DSPs, the Motorola DSP563xx and Analog Devices 
ADSP-219x-C have notably high cycle counts on this benchmark. Both of these proces­
sors compute one tap of the filter and peIform one coefficient update in three cycles, as do 
most conventional DSPs. Thus, the higher cycle count results of these processors com­
pared to other conventional DSPs are due to tasks outside of the inner loop(s) of the 
benchmark. In the case of the DSP563xx, the high cycle count is due in part to the cycles 
required to set up modulo addressing for the three separate circular buffers used. The 
ADSP-219x-C cycle count is significantly higher than that of its predecessor, the 
ADSP-218x. This is largely due to the five cycles required to launch a hardware loop on 
the· ADSP-219x -C, and to the fact that some instructions that execute in one cycle on the 
ADSP-218x require multiple cycles on the ADSP-219x-C . 

. Two-Biquad IIR Filter (Figure 8.1-5) 

The Two-Biquad IIR Filter is a single.,sample benchmark, like the LMS Adaptive 
Filter and Single-Sample FIR Filter. The benchmark implements a cascade of two biquad 
filters, each of which involves four multiply-accumulate operations and the update of a 
two-sample delay line. Because practical IIR filters often require coefficient values with 
magnitudes larger than 1.0, this benchmark, unlike others, requires that processors accom­
modate coefficient values in the range of -2.0 to slightly less than +2.0. Because 
fixed-point processors generally use a fractional arithmetic format that accommodates val­
ues from -1.0 to almost + 1.0, they must peIform extra scaling steps to handle larger coeffi­
cient values and especially to mix them with data (e.g., input data) that may be represented 
using a different format. Some processors can implement these scaling steps more easily 
than others, often through mode bits that cause the processor to perform appropriate scal­
ing when accessing multiplier outputs or when writing results to memory. These issues do 
not hinder floating-point processors, since they can handle numbers with very large 
dynamic range automatically. 

For conventional DSPs, assuming one multiply-accumulate operation per instruc­
tion cycle, and assuming that the delay line update can be done in parallel (either through 
explicit data moves or modulo address arithmetic), each biquad takes at least 4 instruction 
cycles, for a total of 8 instruction cycles for the core of this benchmark (4 instruction 
cycles per biquad times 2 biquads). The cycle counts of the benchmarked processors range 
from 8 (for the StarCore SCI40) to 30 (for the Texas Instruments TMS32OC67xx). As 
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with the Single-Sample FIR and LMS Adaptive Filter benchmarks, initialization and 
housekeeping operations contribute significantly to cycle counts on this benchmark. 

The SC140 has the lowest cycle count on this benchmark-approximately half that 
of the processor with the next-lowest cycle count, the Lucent DSPl64xx. The SC140 
makes effective use of its data path parallelism, in this benchmark, performing up to four 
multiply or multiply-accumulate operations in parallel, and also benefits from its simple 
pipeline. 

The Lucent DSPl64xx has a relatively low cycle count on this benchmark. The 
DSP164xx makes good use of its two multipliers, direct support for the fractional number 
format used in this benchmark, and relatively good support for operand-unrelated parallel 
moves. These capabilities enable each IIR biquad to be calculated using three instruction 
cycles. The DSPl64xx also benefits from its simple pipeline. 

The cycle count of the Texas Instruments TMS320C64xx-C (with caches pre­
loaded) on the IIR benchmark is about equal to the average, despite the processor's exten­
sive parallelism. The higher cycle count of the TMS320C64xx-C is largely due to the 
processor's deep pipeline. Because of the deep pipeline, some key instructions have 
multi-cycle latencies. In addition, the TMS32OC64xx-C requires a shift instruction to 
align results before storing them to memory, whereas the SC140 combines the shift with 
the store operation. Note that the cycle count for the TMS320C64xx-C on this benchmark 
is slightly higher than that of the TMS320C62xx. The TMS320C64xx-C is compatible 
with the TMS320C62xx and could use the same implementation of the benchmark. Our 
analysis uses a different implementation, however, because it has a similar cycle count but 
significantly lower memory use. 

Similarly, although the Texas Instruments TMS320C55xx has significantly 
increased parallelism compared to the older TMS320C54xx, the two processors have the 
same cycle count on this benchmark. The TMS32OC55xx implementation makes use of 
the processor's increased parallelism but, in order to do so, requires more elaborate initial­
ization and housekeeping operations. The increased initialization and housekeeping cycles 
offset the reduction in cycle count due to the increase parallelism. 

Despite its extensive parallelism, the Texas Instruments TMS320C67xx has the 
highest cycle count of the benchmarked processors on the IIR benchmark, roughly 
40-50% higher than those of the conventional DSPs. As with the TMS32OC64xx-C, the 
higher cycle count of the TMS320C67xx on this benchmark is largely due to the proces­
sor's deep pipeline. The pipeline of the TMS320C67xx is exceptionally long, and the 
resulting latencies (for example, four cycles for single-precision add and multiply opera­
tions) add a significant number of cycles to the cycle count for this benchmark. 

If the benchmark were to use a longer filter (that is, more biquad sections), the 
cycle counts of processors with high levels of parallelism would be lower relative to those 
of other processors. For example, the TMS320C55xx would have a lower cycle count than 
the TMS32OC54xx, as initialization and housekeeping operations would become a less 
significant component of the cycle counts. 
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Vector Dot Product (Figure 8.1-6) 

The Vector Dot Product benchmark requires that processors perform a pair-wise 
multiplication of elements in two vectors and sum the resulting products. The vectors are 
40 elements long. Although it has many other applications, the Vector Dot Product is 
essentially the heart of an FIR filter implementation, without the data movement and 
buffer management that is normally part of an FIR implementation. 

Because this benchmark is comprised mostly of multiply-accumulate operations, a 
processor's multiply-accumulate throughput is a major factor in determining its cycle 
count on this benchmark. Since the vector lengths are moderate, though, additional cycles 
required for initialization, housekeeping, and pipeline latencies can also contribute signif­
icantly; this contribution can be particularly noticeable for processors that perform the 
MAC operations efficiently. 

The StarCore SC140 has the lowest cycle count on the Vector Dot Product bench­
mark, significantly lower than that of the processor with the second-lowest result, the 
Texas Instruments TMS32OC64xx-C. The SC140 uses its full data path parallelism to per­
form four multiply-accumulates per instruction cycle in parallel with data loads. The dot 
product computation is performed with no overhead except for two cycles used for adding 
the partial results; Other overhead cycles are limited to three, for launching a hardware 
loop, loading address registers, and priming the software pipeline. 

The TMS320C64xx-C (with caches preloaded) has the second-lowest cycle count 
on this benchmark, but its cycle count is about 65% (10 cycles) higher than that of the 
SC140. Like the SCl40, the TMS320C64xx-C uses its full data path parallelism to per­
form four multiply-accumulates per instruction cycle in parallel with data loads, yielding 
equivalent throughput in the inner loop. The difference in cycle counts is mostly attribut­
able to pipeline latencies. 

Although the Lucent DSPl64xx has only two multipliers, its relatively short pipe­
line and its efficiency in executing the initialization and housekeeping operations in this 
benchmark give it a low cycle count-just slightly higher than that of the 
TMS32OC64xx-C. 

Conventional DSPs generally have relatively high cycle counts on the Vector Dot 
Product benchmark, due to their lower levels of parallelism. There are significant differ­
ences, though, among the cycle counts of the conventional DSPs, ranging from 45 for the 
Analog Devices ADSP-218x to 56 for the Analog Devices ADSP-219x-C (with cache pre­
loaded). All of the conventional DSPs execute the dot product inner loop at a rate of one 
multiply-accumulate with two memory loads per cycle; hence, the differences in cycle 
counts among these processors are attributable to initialization and housekeeping opera­
tions, including pipeline delays associated with these operations. The higher cycle count 

. of the ADSP-219x-C is due largely to the multiple cycles requires to launch and terminate 
a hardware loop. 
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Although the Texas Instruments TMS320C55xx has significantly increased paral­
lelism compared to the older TMS320C54xx, the two pr.ocessors have roughly the same 
cycle count on this benchmark. The reason for this is that the TMS32OC55xx cannot make 
use of its increased parallelism here. The nature of the Vector Dot Product benchmark pre­
cludes use the TMS320C55xx's dual multipliers, because the two multipliers cannot share 
an operand in implementing this algorithm. 

Vector Addition (Figure 8.1-7) 

The Vector Addition benchmark requires processors to perform pair-wise addition 
of elements in two vectors, creating a third vector that represents the sum of the first two. 
Intuitively one might expect that since addition is a simpler operation than multiplication, 
the Vector Addition benchmark cycle counts would be at least as low, if not lower than 
those for the Vector Dot Product. However, this is not the case. While DSP processors are 
specifically optimized for computing dot products, they are often not as well suited to per­
forming vector addition. One difference is that the Vector Add requires a memory write 
for each pair of input elements processed. 

Again on this benchmark, the StarCore SC140 has the lowest cycle count, about 
30% lower than that of the processor with the second-lowest cycle count, the Texas Instru­
ments TMS32OC64xx-C (with caches preloaded). Both the SC140 and the 
TMS320C64xx-C execute the inner loop at a rate of eight additions (with associated data 
moves) every three instruction cycles. As in the Vector Dot Product benchmark, the 
TMS32OC64xx-C's higher cycle count is due to cycles required for initialization and 
housekeeping operations; the number of cycles required for these non-inner-Ioop opera­
tions is higher on the TMS320C64xx-C due to pipeline latencies. 

The benchmarked conventional DSPs, with their limited parallelism and memory 
bandwidth, all have higher cycle counts that the enhanced conventional and VLIW -based 
DSPs on this benchmark. Cycle counts for the conventional DSPs are clustered fairly 
closely together, ranging from 75 for the Texas Instruments TMS320C54xx to 95 for the 
Analog Devices ADSP-219x-C (with caches preloaded). 

Vector Maximum (Figure 8.1-8) 

The Vector Maximum benchmark requires a processor to scan a vector of 40 data 
values to find the largest item in the vector. The processor must determine not only the 
value of the largest item, but also its position within the input vector. Unlike the bench­
mark functions described above, the Vector Maximum includes conditional operations 
(comparing two values and either conditionally executing certain instructions based on the 
result, or conditionally branching based on the result). Processors that have powerful and 
flexible conditional execution features achieve lower cycle counts on this benchmark, as 
do processors with limited conditional execution facilities that happen to be well suited to 
this benchmark. Refer to BDTI's textbook DSP Processor Fundamentals, for a discussion 
of conditional execution. 
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The StarCore SCl40 has the lowest cycle count on this benchmark, about 20% 
lower than that of the processor with the second-lowest cycle count (the Lucent 
DSPl64xx). This low cycle count is attributable to the SC140's ability to use the full par­
allelism of its data path in this benchmark-performing eight 16-bit comparisons and stor­
ing the results in a single cycle-and its extensive support for conditional execution of 
instructions. 

The DSP164xx also has a low cycle count on this benchmark. The DSP164xx 
achieves this low cycle count via highly specialized data path and instruction set features. 
Owing to these specialized features, in a single cycle the DSPl64xx uses its "trace-back 
encoder" to update one counter, make dual comparisons between two operands (using spe­
cialized dual compare instructions), and record which operands were largest. In parallel, 
two new operands can be loaded. Since these steps are exactly what are required in the 
Vector Maximum benchmark, the DSPl64xx can process the elements at a rate of two ele­
ments per instruction cycle. 

The Texas Instruments TMS320C62xx and TMS320C64xx-C (with caches pre­
loaded) also achieve low cycle counts on this benchmark, taking advantage of their paral­
lel data paths and conditional instruction execution capabilities. For this benchmark, these 
processors have less parallelism in their data paths than does the SC140. The 
TMS320C64xx-C performs four 16-bit comparisons per cycle, compared with eight for 
the SC140. The TMS320C62xx, unlike the TMS320C64xx-C and the SC140, does not 
have a maximum instruction that performs a comparison and a conditional assignment. 
Hence, the TMS320C62xx requires significantly more cycles in the inner loop of this 
benchmark. However, compared with the TMS320C64xx-C, this disadvantage is offset 
due to the lower number of housekeeping and initialization operations required by the 
TMS320C62xx implementation of the benchmark. 

The benchmarked conventional DSPs, with their limited parallelism and (in most 
cases) limited conditional execution capability, all have higher cycle counts that the 
enhanced conventional and VLIW -based DSPs on this benchmark. Cycle counts for the 
conventional DSPs vary significantly, however, ranging from 89 for the Motorola 
DSP563xx and DSP568xx, to 170 for the Analog Devices ADSP-219x-C (with cache pre­
loaded). 

The high cycle count of the ADSP-219x-C is mostly due to the lack of support for 
a maximum compare instruction, which are offered on some current DSP processors. 
Also, the ADSP-219x-C benchmark implementation, unlike that of the ADSP-218x, does 
not use a conditional branch instruction in the inner loop, since branches on' the 
ADSP-219x-C incur a significant cycle count penalty. Instead, the ADSP-219x-C replaces 
the conditional branch with several conditionally executed instructions. This results in an 
inner loop that requires more cycles than that of the ADSP-218x (because the conditional 
instructions each consume a cycle regardless of whether they are executed or bypassed). 
The low cycle count of the DSP563:xx relative to other conventional DSPs is attributable 
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to the use of a specialized MAX instruction and a conditionally executed single-move 
instruction. 

Control (Figure 8.1-9) 

The Control benchmark is considerably different from most common signal pro­
cessing benchmarks. The Control benchmark is a contrived series of operations common 
in decision-making control tasks. The benchmark consists of a "while" loop surrounding a 
"switch" statement, with the various switCh cases performing bit manipulation, data 
moves, subroutine calls, and stack manipulations. The primary goal for programmers 
implementing the Control benchmark is minimum memory use, and the secondary goal is 
speed of execution. (For the other functions in the BOTI Benchmarks, the priority of these 
goals is reversed.) Implementors are instructed to avoid optimizations that decrease the 
benchmark's execution time if the optimizations increase the benchmark's memory use. 
The Control benchmark replaces, and is different from, the FSM benchmark found in ear­
lier BOTI publications. 

In this section we compare the processors' cycle counts on the Control benchmark. 
While these cycle count results can reveal interesting architectural differences, readers 
should bear in mind that Control benchmark implementations are optimized for minimum 
memory use, not for minimum cycle counts. Memory usage results are discussed in 
Section 8.5, Memory Usage Benchmarking .. 

Control benchmark cycle counts for most processors are clustered within about 
25% of the average. There.is no clear correlation between architecture type and cycle 
count on this benchmark; for example, both conventional OSPs and VLIW -based DSPs 
are found among the processors with the highest and lowest cycle counts. In part this is 
because the Control benchmark does not offer much parallelism, instead emphasizing 
sequential processing. 

The Analog Devices ADSP-218x and StarCore SCl40 have the lowest cycle 
counts·on this benchmark; their cycle counts are roughly equal. The ADSP-218x achieves 
its low instruction cycle count on this control-oriented benchmark through the use of reg­
ister-to-register parallel moves, good immediate data support, and single-cycle branches 
and subroutine calls. 

The low cycle count of the SCl40 is largely due to the SCl40's ability to condi­
tionally execute execution sets (groups of instructions executed in parallel) using prefix 
words. While some of the other processors must make conditional jumps and branches, 
the SCl40 can avoid these in many cases by executing or omitting an execution set based 
on the condition coded into the prefix word. It consumes only one cycle for such an 
instruction, which is significantly less than the three or four cycles required for a branch. 
(The Texas Instruments TMS32OC62xx, TMS320C64xx-C, and TMS32OC67xx provide a 
similar capability; they can conditionally execute instructions within execution sets and 
avoid branching in many cases.) In addition to its conditional execution capabilities, the 
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SC 140 makes efficient use of delayed branches and calls, resulting in a lower cycle count 
compared to the other benchmarked processors. 

The TMS320C62xx and TMS320C67xx use the same implementation for the Con­
trol benchmark, and achieve a low cycle count. The processors take advantage of condi­
tional instruction execution, which helps eliminate many costly branches. Also, the 
processors have good support for immediate operands, which helps reduce cycle counts. 

The high Control benchmark cycle count of the Texas Instruments TMS320C55xx 
is due to branch and subroutine call overhead, which consumes four or five cycles depend­
ing on whether the instruction is conditional and if conditional, whether the condition is 
true. Other processors either have a shorter pipeline or support delayed branches that 
allow instructions to be placed after a branch to execute in otherwise empty pipeline slots. 

The cycle count of the Texas Instruments TMS320C54xx is also high for this 
benchmark, due to poor support for short immediate operands encoded in the instruction 
word, and because branches take several instruction cycles to execute on this processor 
even when delayed branches are used. Similarly, branches on the Motorola DSP563xx 
take between three and five cycles to execute, inflating cycle counts. 

256-Point Fast Fourier Transform (Figure 8.1-10) 

Fast Fourier transforms are a class of computationally efficient algorithms for 
computing the discrete Fourier transform. This transform is used to convert conventional 
time-domain signals into their frequency-domain representations. Our benchmark func­
tion specifies a complex, 256-point FFf. Implementations can use the radix-2 or radix-4 
FFf variants, or a combination of the two. The radix-4 variant requires fewer arithmetic 
operations, but consumes more registers; therefore processors with few registers usually 
use the radix-2 approach. Within the inner loop of the FFr, a group of multiplication and 
addition operations called a butterfly is performed. The butterfly operates on complex 
numbers and involves computing the sum and the difference of one or more pairs of com­
plex products. In addition to performing the FFT itself, processors must also reorder the 
input or output data, so that both input and output appear in natural order. (Without this 
step, the output is generated in a scrambled order, or the input must be provided in a 
scrambled order.) 

Note that the 256-point FFT benchmark used here is different from the 256-point 
FFr used in earlier BDTI publications. The earlier version did not require reordering, and 
did not permit use of the radix-4 approach. For this reason, in general it is not meaningful 
to compare results from the earlier FFT benchmark with results from the current bench­
mark. 

On the FFr benchmark, the Texas Instruments TMS320C64xx-C (with cache pre­
loaded) has the lowest cycle count of the benchmarked processors, regardless of whether 
its level-one caches are preloaded. The TMS320C64xx-C cycle count is approximately 
half that of its predecessor, the TMS320C62xx. The TMS320C64xx-C makes good use of 
its extensive data path parallelism on this benchmark via its new (compared with the 
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TMS320C62xx) SIMD instructions. For example, the DOTP2 and DOTPN2 instructions 
on the TMS320C64xx-C are particularly well tailored for the FFf. In addition, new 
TMS320C64xx-C bit manipulation instructions, such as the bit reversing instruction, are 
effective for efficiently implementing the data reordering step of the FFf benchmark. 

The StarCore SCl40 also achieves a low cycle count on the FFT benchmark, 
approximately 30% higher than that of the TMS320C64xx-C. Like the TMS320C64xx-C, 
the SC140 makes good use of its data path parallelism on this benchmark. Throughout the 
core of the benchmark the SCl40 performs an average of four arithmetic operations (a 
combination of multiply, multiply-accumulate, addition, and subtraction) and two move 
operations (a combination of stores and loads) per instruction cycle. While the SCl40 
requires the use of all four of its ALUIMAClbit-field units to perform four arithmetic 
operations, the TMS320C64xx-C can perform four arithmetic operations (via two SIMD 
instructions) using only two of its eight execution units, leaving the remaining six execu­
tion units free to perfonn other arithmetic and shift operations. This enables the 
TMS320C64xx-C to achieve a higher level of parallelism than the SCl40 on the FFf 
benchmark. 

Due to the arithmetic-intensive nature of the FFf, and the ample parallelism avail­
able in the algorithm, it is not surprising that the conventional architectures generally 
require significantly more cycles on this benchmark compared with the enhanced conven­
tional and VLIW -based processors. 

Among conventional DSPs, the Analog Devices ADSP-2106x-C has an unusually 
low cycle count. The ADSP-2106x-C provides specialized instructions that assist in effi­
ciently performing the butterfly operation. A single, specialized instruction can compute 
the sum and the difference of two operands. The ADSP-2116x-C, the enhanced-conven­
tional successor to the ADSP-2106x-C, also benefits from this feature. 

The Motorola DSP568xx has the highest cycle count on this benchmark. This is 
mainly a result of several limitations regarding dual parallel memory moves on this pro­
cessor: A dual parallel move is limited to a dual read. A dual write, or a parallel read and 
write, is not possible. Further, only address register R3 can be used as an address register 
for the second parallel read in an instruction, and in such a read, address register R3 can be 
incremented or decremented only by one. The processor's cycle counts are further 
increased because it has no hardware support for bit-reversed addressing. 

Viterbi Decoder (Figure 8.1-11) 

Viterbi decoding is a technique commonly employed in communications systems 
to recover a convolutionally encoded signal from a noisy channel. While Viterbi decoding 
is often thought of as a signal processing algorithm, it is very different from more conven­
tional signal processing algorithms such as mters and transforms. For example, while 
more conventional DSP algorithms typically make heavy use of operations such as multi­
plication, Viterbi decoding does not use multiplications, but rather is based on bit-manipu­
lation, comparison, addition, and decision-making operations. The Viterbi Decoder 
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benchmark is composed of two stages. In the fIrst stage, "soft" decision values are used to 
generate a state transition table. In the second stage, the transition information is 
back-traced to determine the received bitstream. 

The TMS320C64xx-C has the lowest cycle count on the Viterbi Decoder bench­
mark, regardless of whether its level-one caches are preloaded. This is mostly due to the 
use of quad SIMD arithmetic and quad SIMD logical.(compare) instructions in .the fIrst 
part of the function (during the "add-compare-select" loop), using 8-bit data. The cycle 
count is also lowered by the use of the application-specifIc bit deinterleaving instruction 
(DEAL), which is intended for algorithms like the Viterbi decoder. 

The StarCore SC140 also has a very low cycle count on the Viterbi benchmark, 
just slightly higher than that of the TMS320C64xx-C. The SC140 achieves a low cycle 
count via special instructions dedicated to Viterbi decoding, such as MAX2VIT and VSL. 
As mentioned above, the TMS320C64xx-C achieves a low cycle count via use of 8-bit 
data and associated quad 8-bit compare and add/subtract instructions. The SCI40 does not 
support 8-bit data, but this difference is largely offset by the SCl40's application-specific 
instructions and lower instruction latencies (due to a shallower pipeline). 

Due to the specialized nature of the Viterbi algorithm, and the ample parallelism 
available in the algorithm, highly parallel architectures with specialized support for Vit­
erbi decoding have the lowest cycle counts. In contrast, conventional architectures without 
specialized Viterbi support have the highest cycle counts. 

The Motorola DSP568xx, a conventional DSP, has the highest cycle count on this 
benchmark by a signifIcant margin. This is due primarily to restrictions on double-word 
read operations, and to its limited number of data registers. For the add-compare-select 
operation, the DSP568xx must reload operands to perform successive adds and subtracts 
since it does not have enough data registers to avoid reloading data words. On other pro­
cessors with more flexible double-word read capabilities, it takes .fewer instructions to do 
the reload. On other processors with more data registers, the data can be loaded once and 
used several times. 

The Analog Devices ADSP-218x and ADSP-219x-C also have notably high cycle 
counts on the Viterbi Decoder benchmark. The main reason for this is that the ADSP-218x 
and ADSP-219x-C processors lack a shift-through-carry operation or other means for effi­
cient bit interleaving. In addition, due to width of the processors' barrel shifter (16 bits), 
shifting a 32-bit word requires two cycles. 

In contrast, the Texas Instruments TMS320C54xx, which is also a conventional 
DSP, has a cycle count about 70% lower than that of the DSP568xx. This is due in large 
part to a specialized single-cycle add-compare-select instruction that reduces the cycles 
required for the fIrst stage of the benchmark. 
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Bit Unpack (Figure 8.1-12) 

Like the Viterbi Decoder benchmark, the Bit Unpack benchmark is not a conven­
tional signal processing algorithm. Rather, the Bit Unpack algorithm requires the proces­
sor to unpack data words of varying lengths from a continuous bit stream. This type of 
operation is common in audio and speech compression applications, where the com­
pressed signal is transmitted as a compacted sequence of words of varying length. Typi­
cally, before these words can be processed further, they must separated and stored in 
distinct memory locations. The Bit Unpack benchmark therefore tests processors' 
bit-field-manipulation capabilities rather than their arithmetic capabilities. 

The StarCore SC140 and the Texas Instruments TMS320C62xx, TMS320C67xx, 
and TMS320C64xx-C all make use of their extensive parallel resources and conditional 
instruction execution capabilities on this benchmark. Using conditional execution, these 
processors implement the Bit Unpack benchmark using a single loop without conditional 
branches. All other processors benchmarked here use branches. Thus, unlike the other 
benchmarked processors, the SC140, TMS320C62xx, TMS320C67xx, and 
TMS320C64xx-C have cycle counts on the Bit Unpack benchmark that are independent of 
the input data values. 

The TMS320C64xx-C (with caches preloaded) has a cycle count that is about 25% 
lower than that of the SCl40. This is primarily due to the ability of the TMS320C64xx-C 
to perform unaligned 64-bit data accesses, which are not supported on the SC140. In addi­
tion, the TMS320C64xx-C data path achieves more parallelism in this benchmark. 

The TMS320C62xx lacks support for unaligned 64-bit data accesses, and this is 
the main reason why its cycle count is higher than that of the TMS320C64xx-C, and about 
equal to that of the SC140. The floating-point TMS320C67xx uses the same implementa­
tion of this benchmark as the fixed-point TMS320C62xx, since floating-point operations 
are not useful in this benchmark. Hence, the cycle counts of the two processors are equal. 

The Texas Instruments TMS320C54xx has the highest cycle count for the Bit 
Unpack benchmark, about 30% higher than that of typical conventional DSPs bench­
marked here. Compared to the other conventional DSPs benchmarked, the TMS320C54xx 
lacks flexible bit-field manipUlation capabilities and thus must perform a larger number of 
discrete shift-and-Iogical-operation steps for each bit-field extraction. The TMS320C54xx 
also has limited register-to-register move support; hence, loading the shift control register 
takes more cycles than in competing processors that have more flexible register move sup­
port. Limited support for conditional instruction execution and operand-unrelated parallel 
moves also contribute to the high cycle count. 

Total Normalized Cycle Counts (Figure 8.1-13) 

The total normalized cycle counts provide a summary of the processors' cycle 
counts across the BDTI Benchmarks. As we would expect, processors with highly parallel 
data paths and powerful instruction sets achieve lower cycle counts overall than proces-
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sors without these features. Nevertheless, even among processors with similar levels of 
parallelism, we find significant differences in cycle counts. 

Of the processors benchmarked here, the two with the most extensive parallelism 
are the StarCore SC140 and the Texas Instruments TMS32OC64xx. Not surprisingly, the 
SC140 has the lowest total normalized cycle count, about 65% below the average. In addi­
tion to its extensive parallelism,the SC140 is aided by its short pipeline, which helps 
reduce overhead cycles, and by its flexible conditional execution capabilities and powerful 
instructions. 

The TMS320C64xx-C (with caches preloaded) has a total normalized cycle count 
that is about 40% higher than that of the SCl40. While the data path parallelism of the 
TMS320C64xx-C is comparable to (indeed, in some cases, greater than) that of the 
SC140, the TMS320C64xx-C cycle counts are increased due to its deep pipeline and, in 
some cases, less powerful instructions. 

The processors with the next-highest cycle counts are those with moderate paral­
lelism (for example, two multipliers): the Texas Instruments TMS320C62xx, 
TMS320C67xx, and TMS320C55xx (all VLIW-based DSPs), and the Analog Devices 
ADSP-2116x-C and Lucent DSPl64xx (both enhanced conventional DSPs). The total nor­
malized cycle counts for these processors span the range between the highly parallel 
SC140 and TMS320C64xx-C (for example, the total normalized cycle count of the 
TMS320C62xx is only about 25% higher than that of the TMS320C64xx-C) to the much 
less parallel conventional architectures like the Analog Devices ADSP-2106x-C (which 
has a total normalized cycle count about 10% higher than that of the Texas Instruments 
TMS32OC55xx). 

Conventional DSPs have total normalized cycle counts that lie within a fairly nar­
row range, particularly if we exclude the floating-point ADSP-2106x-C with its 48-bit 
instruction words (which help give this processor an unusually powerful instruction set). 
The Texas Instruments TMS320C54xx; Motorola DSP563xx, DSP568xx, and DSP5685x; 
and Analog Devices ADSP-218x and ADSP-219x-C all have total normalized cycle 
counts that lie withjn 10% of their average. 

It is important to note, however, that the total normalized instruction cycle counts 
can obscure significant benchmark-to-benchmark variations in relative cycle counts. For 
example, the Lucent DSPl64xx has one of the lowest cycle counts on the Single-Sample 
FIR filter, but has one of the highest cycle counts on the Bit Unpack benchmark. On the 
Single-Sample FIR benchmark, the DSPl64xx cycle count is about 30% lower than that of 
the Analog Devices ADSP-218x, while on the Bit Unpack benchmark, the DSPl64xx 
cycle count is about 30% higher. This emphasizes the importance of selecting benchmarks 
that are relevant to the particular application under consideration, as we discussed earlier 
in this chapter. 

Finally, the total normalized cycle counts show a correlation between large instruc­
tion word widths (which often correspond to a larger instruction set and more powerful 
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instructions) and low instruction cycle counts. All of the processors with lower than aver­
age total nonnalized cycle counts use 32-bit instructions, mixed 16- and 32-bit instruc­
tions, or (in the case of the Texas Instruments TMS320C55xx) variable-length instructions 
ranging from 8 to 48 bits long. In contrast, the processors with significantly above-average 
total normalized instruction cycle counts all use 16- or 24-bit instructions. 
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Table 8.1-1A. Total Benchmark Cycle Formulas 

asp Building Block ADI ADI ADI 

Functions 21 ax 219x 219x-C 

Notes [1,2) [1,2) 

Real Block FIR 15+N*(5+T) N*(T+3)+36 N*(T+3)+19 

Single-Sample FIR 14+T 28+T 24+T 

Complex Block FIR 14+N*(14+4*T) 28+N*(22+4*T) 16+N*(22+4*T) 

I.MS Adaptive FIR 18+3*T 39+3*T 31+3*T 

Two-Biquad ItR 21 25 22 

Vector Dot Product 5+N 18+N 16+N 

Vector Add 6+2*N 17+2*N 15+2*N 

Vector Maximum 10+3*N+M 4*N+10 4*N+10 

Control 440 618 618 

~56-Point FFT 10142 10163 10152 

!viterbi 30727 30737 30737 

Bit Unpack 379 460 460 

T = # of Taps N .. # of POinIs M = # of New Relative Maxima 

Table 8.1-1B. Total Benchmark Cycle Counts 

asp Building Block ADI 

Functions 21ax 

Notes: 

Real Block FIR 855 

Single-Sample FIR 30 

Complex Block FIR 3134 

LMS Adaptive FIR 66 

Two-Biquad ItR 21 

Vector Dot Product 45 

Vector Add 86 

Vector Maximum 135 

Control 440 

256-Point FFT 10142 

Viterbl 30727 

Bit Unpack 379 

Substituted Values: T = 16 N = 40 M = 5 
Notes: 

ADI ADI 

219x 219x-C 

[1,2) [1,2) 

796 n9 

44 40 

3468 3456 

87 79 

25 22 

58 56 

97 95 

170 170 

618 618 

10163 10152 

30737 30737 

460 460 

ADI ADI ADI 

2106x 2106x-C 2116x 

(1) (1) (1) 

17+N*(7+(T- 12+N*(7+(T-
26+N*(6+ TI2) 

3)) 3)) 

15+T 10+T 21+TI2 

23+N*(5+4*T) 14+N*(5+4*T) 30+N*(6+2*T) 

32+2*T 23+2*T 32+2*T 

23 17 22 

11+N 6+N 15+NI2 

8+2*N 6+2*N 9+N 

3+3*N 3+3*N 11+N 

493 493 493 

3766 3761 2622 

14620 14620 11402 

270 270 270 

ADI ADI ADI 

2106x 210ax-C 2116x 

[1) [1] [1] 

817 812 586 

31 26 29 

2783 2n4 1550 

64 55 64 

23 17 22 

51 46 35 

88 86 49 

123 123 51 

493 493 493 

3766 3761 2622 

14620 14620 11402 

270 270 270 

(1) These processors use on-Chip caches. Results under processor names denoted with '-C' represent performance with 
caches preloaded. Results for, the processors listed under processor names without '-C' represent performance with 
caches uninitialized; see text for details. 

ADI 

2116x-C 

(1) 

18+N*(6+TI2) 

16+TI2 

24+N*(6+2*T) 

23+2*T 

16 

10+N12 

7+N 

11+N 

493 

2617 

11402 

270 

ADI 

2116x-C 

(1) 

578 

24 

1544 

55 

16 

30 

47 

51 

493 

2617 

11402 

270 

(2) Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[3] Results are for one of the two-on-chip cores. . 

(4) Results are estimated based on preliminary cache information provided by Texas Instruments. 

(cont.) 

Lucent 

164xx 

(3) 

N*(T/2+3.5)+2 
2 

TI2 + 14 

N*(2*T+10)+ 9 

(312)*T+32 

15 

N/2+6 

48 

Nl2+13 

567 

7118 

9358 

487 

(cont) 

Lucent 

164xx 

[3) 

482 

22 

1689 

56 

15 

26 

48 

33 

567 

7118 

9358 

487 
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Table 8.1-1A. (cont.) 

Motorola Motorola Motorola starCo,. TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 
[2) [2] [1,2. 4] [1,2] 

24+N*(7+T) N*(T+8)+23 N*(T+S)+23 N*(T+1)14+13 T*(N+2)+N+1 393 
8*ceiling(T/8,1 279 34+(T*N)/4 

13+(1514)*N+( 
8 )*Nl2+28 N*TI2) 

18+T 14+T 13+T TI2+6 T+1S 2S T+9 46 (3*T)/8+19 (3*T)/4+31 

25+N*(7+4*T) 23+N*(4*(T- 25+N*(4*(T-
N*(T+D.S)+12 21+N*(13+4*( 

1410 
ceiJing(T/4,1 )* 749 35+(T*N) 14+«2*T)+291 

2)+22) 2)+1S) T-1» 8*N+27 2)*N 

35+3*T 23+3*(T-1) 22+3*T (3*T)l4+8 (3*T)+26 63 T*918+24 67 (3*T)/4+26 44+(T-4)*(514) 

20 20 22 8 17 17 16 27 18 30 

12+N N+9 N+7 Nl4+S N+S 48 Nl2+11 44 Nl4+1S Nl2+26 

13+2*N 11+N*2 11+N*2 3*(N/8)+4 3*(N/2)+1S 46 (Nl4)*3+1 0 46 3*Nl8+12 10+N 

9+2*N 13+4*(Nl2-1 ) 26+S*(Nl2-1) N/4+16 30+S*«Nl2)-1) 71 (N/S)*3+12 56 318*N+20 14+«3*N)/4) 

840 663 726 443 862 945 479 548 543 479 

8824 14860 11708 1632 10406 7386 2492 1444 1246 3557 

18029 35983 28533 1938 11264 68n 6436 1830 1741 5320 

398 478 453 129 584 249 132 126 97 132 

Table 8.1-1B. (cont.) 

Motorola Motorola Motorola starCo,. TI TI TI TI TI TI 

563xx 568xx 5685x $0140 C54xx C55xx C62xx C64xx C64xx-C C67xx 
[2) [2) [1,2. 4] [1,2) 

944 983 863 183 730 393 348 279 194 483 

34 30 29 14 31 25 25 46 25 43 

2865 3143 2865 672 2941 1410 1307 749 675 1874 

83 68 70 18 74 63 42 67 38 59 

20 20 22 8 17 17 16 27 18 30 

52 49 47 15 45 48 31 44 25 46 

93 91 91 19 75 48 40 46 27 50 

89 89 121 26 125 71 36 56 35 44 

840 663 726 443 862 945 479 546 543 479 

8824 14860 11708 1632 10406 7386 2492 1444 1246 3557 

18029 35983 28533 1938 11264 68n 6436 1830 1741 5320 

398 478 453 129 584 249 132 126 97 132 
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Buyer's Guide to DSP Processors 

Table 8.1-2. Normalized Benchmark Cycle Counts 

DSP Building Block ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 219x-C 2106)( 21OSX-C 2116)( 

NOt8S [l,2J [1,2J [lJ [lJ [lJ 

Real Block FIR 1.39 1.29 1.26 1.32 1.32 0.95 

Single-Sample FIR 0.99 1.45 1.31 1.02 0.85 0.95 

Complex Block FIR 1.45 1.60 1.60 1.29 128 0.72 

LMS Adaptive FIR 1.07 1.41 1.28 1.04 0.89 1.04 

Two-Biquad IIR 1.06 1.26 1.11 1.16 0.86 1.11 

Vector Dot Product 1.08 1.39 1.35 1.23 1.11 0.84 

Vector Add 1.32 1.48 1.45 1.35 1.32 0.75 

Vector Maximum 1.57 1.98 1.98 1.43 1.43 0.59 

Control 0.74 1.04 1.04 0.83 0.83 0.83 

256-Point FFT 1.60 1.61 1.60 0.60 0.59 0.41 

Viterbi 2.04 2.04 2.04 0.97 0.97 0.76 

Bit Unpack 1.21 1.47 1.47 0.86 0.86 0.86 

Total 15.51 18.02 17.49 13.09 12.31 9.81 

Notes: 
[1] These processors use on-chip caches. Results under processor names denoted with "-C' represent performance with 

caches preloaded. Results for the processors listed under processor names without "-C" represent performance with 
caches uninitialized; see text for details. 

ADI 

2116)(·C 

[1] 

0.94 

0.79 

0.71 

0.89 

0.81 

0.72 

0.72 

0.59 

0.83 

0.41 

0.76 

0.86 

9.03 

[2] Projected; as of this writing. these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[3] Results are for one of the two-on-chip cores. 
[4] Results are estimated based on preliminary cache information provided by Texas Instruments. 

(cont.) 

Lucent 

164xx 

[3J 

0.78 

0.72 

0.78 

0.91 

0.76 

0.62 

0.73 

0.38 

0.95 

1.12 

0.62 

1.55 

9.95 
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BDTI Benchmark™ Results - Instruction Cycle Counts 

Table 8.1-2. (cont.) 

Motorola Motorola Motorola 51arCora TI TI TI n TI n 
563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2] [2] [1,2, 4] [1,2] 

1.53 1.59 1.40 0.30 1.18 0.64 0.56 0.45 0.31 0.78 

1.12 0.99 0.95 0.46 1.02 0.82 0.82 1.51 0.82 1.41 

1.33 1.45 1.33 0.31 1.36 0.65 0.60 0.35 0.31 0.87 

1.35 1.10 1.14 0.29 1.20 1.02 0.68 1.09 0.62 0.96 

1.01 1.01 1.11 0.40 0.86 0.86 0.81 1.37 0.91 1.52 

1.25 1.18 1.13 0.36 1.08 1.15 0.74 1.06 0.60 1.11 

1.42 1.39 1.39 0.29 1.15 0.73 0.61 0.70 0.41 o.n 

1.03 1.03 1.41 0.30 1.45 0.83 0.42 0.65 0.41 0.51 

1.41 1.11 1.22 0.74 1.44 1.58 0.80 0.92 0.91 0.80 

1.39 2.35 1.85 0.26 1.64 1.17 0.39 0.23 0.20 0.56 

1.20 2.39 1.89 0.13 0.75 0.46 0.43 0.12 0.12 0.35 

1.27 1.52 1.44 0.41 1.86 0.79 0.42 0.40 0.31 0.42 

15.31 17.12 16.26 4.26 15.01 10.71 7.30 8.85 5.93 10.06 
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Figure 8.1-13. Normalized Benchmark Cycle Counts 
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BDTI Benchmark™ Results - Execution Times 

8.2 Execution Times 

The execution time for a BDTI Benchmark™ function is defined as the amount of 
time required by the processor to execute the main body of the benchmark. To determine 
the execution time of a particular benchmark on a given processor, we multiply the num­
ber of instruction cycles the processor requires to execute the benchmark by the proces­
sor's instruction cycle time. 

A processor's instruction cycle time sometimes differs from its master clock 
period. Further, the ratio of input clock period to instruction cycle time may vary even for 
a single processor, since some processors have programmable clock dividers or come in 
versions with different master clock rate divider ratios. As a result, care is required to cor­
rectly determine the instruction cycle time for a particular processor. 

In Table 8.2-1 we list the instruction cycle time used for each of the selected pro­
cessor families. The table also gives the processor's instruction cycle rate, the reciprocal 
of its instruction cycle time. Most of the processors included here were available, at least 
in sample quantities, at the time of this writing (October, 2000). In such cases, we use the 
speed of the fastest family member available at the time of this writing. For processors not 
available yet, we use the vendor's projected clock rate, and mark the results as projected. 
This includes the Analog Devices ADSP-219x, the Motorola DSP5685x, and the Texas 
Instruments TMS320C64xx. Table 8.2-1 also includes pricing information that is used in 
the next section of our analysis. 

Note: Except where noted, the instruction cycle times shown here and used in the 
subsequent analysis are for the fastest version of each processor available in sample quan­
tities as of June 2000, according to the manufacturer. Unit prices are for quantity 10,000 
purchases, also as reported by the manufacturer. BDTI has not independently verified this 
information. 

Note that the Analog Devices ADSP-219x, Motorola DSP5685x, and Texas Instru­
ments TMS320C64xx are not available as of this writing. In these cases, we use the ven­
dors' projected speeds, and mark the results as projected. 

Readers should be aware that, over time, device speeds tend to increase and prices 
tend to decrease, even for existing products. In addition, unit prices for DSP processors 
vary significantly depending upon the volumes purchased. For these reasons, we strongly 
recommend contacting manufacturers for updated information about prices and maximum 
device speeds. 

The analysis of benchmark execution times is presented as follows: 

• Benchmark execution times 
The execution time for the fastest version of each processor on each benchmark is 
shown in Table 8.2-2 and Figures 8.2-1 through 8.2-12. The execution time 
includes time for the main benchmark body, but not for the power-up section. 

• Normalized benchmark execution times 
As the first step in creating aggregate execution time results that show each pro-
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cessor's overall execution time performance, we normalize the execution time for 
each processor on each benchmark. This normalization is done by dividing each 
processor's execution time on a given benchmark by the average over all proces­
sors on that benchmark. This is done so that benchmarks that are inherently more 
time-consuming are not automatically weighted more heavily when we aggregate 
the performance of each processor over all benchmarks. Normalized benchmark 
execution times are presented in Table 8.2-3. 

• Total benchmark execution times through all benchmarks 
Adding together the normalized benchmark execution times for all benchmarks for 
each processor produces an overall execution-time measure for that processor. 
This sum effectively applies a uniform weighting to each benchmark for this sec­
tion of the analysis. Without the normalization step, benchmarks that require more 
time would tend to be weighted more heavily in the overall results. The results are 
shown in Figure 8.2-13 and at the bottom of Table 8.2-3. 

• BDTImark2000™ scores 
The BDTlmark2000 is a composite performance metric that is based on a proces­
sor's execution time performance on the BDTI Benchmarks .. The BDTImark2000 
scores differ from the total normalized.execution time results in two ways: First, a '. 
higher BDTlmark2000 score indicates a faster processor, whereas a lower execu­
tion time result indicates a faster processor.' Second; compared to the total normal­
ized execution time results, the BDTImark2000 is calculated using a different 
approach for combining results on individual benchmarks .. The BDTlmark2000 is 
designed to provide a convenient shorthand for processors' DSP speed, and is far 
more accurate than MIPS or MFLOPS for this purpose. BDTImark2000 scores are 
shown in Figure 8.2-14. BDTImark2000 scores are not provided for processors not 
yet available in silicon. BDTImark2000 scores for additional processors are posted 
on BDTI's website, www.BDTI.com. A white paper that describes the methodology 
used to develop the BDThnark2000 is also available on the site. 

Note that BDTImark2000 replaces the original BDTImark metric. 
Whereas the original BDTImark was based on an earlier version of the BDTI 
Benchmarks, the BDTImark2000 is based on the latest version of the BDTI 
Benchmarks .. Hence, BDThnark2000 scores are not comparable to earlier 
BDTImark scores. 

BDTImark2000 scores are formulated so that in general, a processor's 
BDTImark2000 score will be much higher than its BDTImark score; this has 
been done to help avoid accidental comparisons between BDTImark2000 
scores and older BDTImark scores. 
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Analysis of Results 

This section presents a brief analysis of the benchmark execution times, summa­
rized in Figure 8.2-13. As discussed in the preceding paragraphs, benchmark execution 
time is computed by multiplying a processor's instruction cycle time by the number of 
instruction cycles required for the processor to complete a given benchmark function. 

Before beginning our discussion of execution time results, it is important to note 
the very wide range of maximum instruction cycle rates of the benchmarked processors. 
As illustrated in Table 8.2-1, instruction cycle rates range over an order of magnitude, 
from 40 MHz for the Motorola DSP56F801 (with an 80 MHz clock) to a projected 600 
MHz for the Texas Instruments TMS320C64xx. The wide differences in instruction cycle 
rates, combined with variations in instruction cycle counts, create a very wide range of 
total normalized execution time results, as presented in Figure 8.2-13. In the total normal­
ized cycle count results, the difference between the lowest result and the highest result is 
approximately a factor of four. In contrast, in the total normalized execution time results, 
the difference between the lowest result and the highest result is approximately a factor of 
forty. This large range is not completely unexpected, given that the processors evaluated 
here are targeting a variety of applications. For example, the Texas Instruments 
TMS320C64xx-C, which has the fastest total normalized execution time result, is target­
ing performance-hungry infrastructure applications, while the Motorola DSP56F801, 
which has the slowest total normalized execution time result, is targeting applications 
where cost and energy efficiency are primary considerations. 

In reviewing the normalized execution times over all benchmarks presented in Fig­
ure 8.2-13, a few key points emerge. First, some processors with high cycle counts also 
have slow instruction cycle rates, and consequently achieve slow execution times. This is 
the case, for example, with the Motorola DSP56F801. However, processors with high 
instruction cycle counts do not necessarily achieve the slowest execution times. For exam­
ple, the Analog Devices ADSP-219x-C has the highest total normalized instruction cycle 
result of the processors benchmarked here, but this is somewhat offset by its moderately 
fast projected instruction cycle rate of 160 MHz. As a result, the total normalized execu­
tion time result for the ADSP-219x-C is roughly equal to the average of the processors 
benchmarked here. 

Only three floating-point processors are benchmarked here, reflecting the rela­
tively small number of floating-point DSPs available. Among the three benchmarked 
floating-point DSPs, the Texas Instruments TMS320C6701 has by far the fastest total nor­
malized execution time result, roughly a factor of two faster than the Analog Devices 
ADSP-21160, and approximately a factor of three faster than the older Analog Devices 
ADSP-21065L. The total normalized cycle count results for these processors are quite 
similar; hence, the execution time differences are almost entirely due to instruction cycle 
rate differences. The TMS320C6701 runs at 167 MHz, while the ADSP-21160 runs at 80 
MHz and the ADSP-21065L runs at 66 MHz. 
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Note that while the floating-point DSPs implement the same benchmark algo­
rithms as the fixed-point devices, the floating-point DSPs provide much better numeric 
fidelity. Therefore, comparisons between benchmark results for fIXed-point processors and 
floating-point processors should be made with caution. We avoid such comparisons here, 
except to point out that, in general, floating-point DSPs have significantly slower execu­
tion time results than fixed-point DSPs with similar architectures. This is mostly due to the 
lower instruction cycle rates of the floating-point DSPs. 

Among high-performance fixed-point DSPs, the Texas Instruments 
TMS320C64xx-C (with caches preloaded) has the fastest total normalized execution time 
result. Note, however, that this result is projected; at the time of this writing Texas Instru­
ments had not announced any products based on the TMS32OC64xx architecture. The pro­
jected execution time advantage of the TMS32OC64xx-C is due to its remarkably high 
projected instruction cycle rate of 600 MHz; the fastest instruction cycle rate among the 
other processors benchmarked here is 300 MHz (for the Motorola MSC8101, which uses 
the SCI40 core, and the Texas Instruments TMS32OC6203). This factor-of-two advantage 
in instruction cycle rate allows the TMS320C64xx-C to offset a total normalized instruc­
tion cycle count result that is roughly 40% higher than that of the SCI40. As a result, the 
projected total normalized execution time result for the TMS320C64xx-C is roughly 30% 
faster than that of the MSC810 1. 

The Texas Instruments TMS320C6203, with its 300 MHz instruction cycle rate, 
has a total normalized execution time result that is approximately 2.5 times longer (Le., 
slower) than that of the TMS32OC64xx-C, and roughly 1.7 times longer than the 
MSC8101. As a group, these three processors are much faster than any of the others 
benchmarked here. The Lucent DSPI64lO, the processor with the next.;.fastest total nor .. 
malized execution time result, is approximately 2.5 times slower than the TMS320C6203 
based on this metric. This large gap is due to a combination of the DSPI64lO's higher 
cycle counts and lower instruction cycle rate. Note, however, that the benchmark results 
used here for the DSP 1641 0 use only one of the processor's two cores. 

The Texas Instruments TMS320C551O, which combines attributes of a conven­
tional DSP with attributes of a VLIW -based DSP, has a projected total normalized execu­
tion time result that lies between those of the VLIW -based DSPs (which are significantly 
faster than that of the TMS32OC5510) and those of the conventional DSPs (which have 
total normalized execution time results that range from slightly slower to much slower 
than that of the TMS32OC5510). This is not surprising, given that the TMS32OC551O has 
a total normalized instruction count that is about average, and a moderate 160 MHz pro­
jected clock speed. 

Among the benchmarked conventional DSPs, the Texas Instruments 
TMS32OC5416 and Motorola DSP56311 have relatively fast total normalized execution 
time results, roughly 10-20% lower faster than the average of all processors. Compared 
with other conventional DSPs, these processors achieve their relatively fast speeds 
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through a combination of cycle counts that are slightly lower than those of other conven­
tional DSPs, and instruction cycle rates that are the highest among this group. 

The Motorola DSP568FOl has the slowest total nonnalized execution time result, 
trailing the next-slowest processor by over a factor of two. This is due to a combination of 
high cycle counts and a very slow instruction cycle rate of 40 MHz (with an 80 MHz 
clock). 

Variations on individual benchmarks are often larger than variations in the overall 
results. For example, on the Real Block FIR. benchmark, execution times for fixed-point 
DSPs range from a projected 0.32 J.1s for the TMS320C64xx-C to about 25 J.1s for the 
DSP56F801; i.e., they vary by a factor of almost 100. Such large variations in perfor­
mance on individual benchmarks underscore the need to understand the details of a partic­
ular application before trying to make a determination as to which processor will provide 
the best performance. 
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Table 8.2-1. Processor Speeds and Related Information 

Fastest Version of Each Processor, Lowest Price Variant 
June 2000 Unit Prices, Qty. 10,000 Purchases (see note 1) 

_(contj 

ADI ADI ADI ADI ADI ADI ADI Lucent 
2186M 219x 219x-C 2106SL 2106SL-C 21160 21160-C 16410 

Notes [2,3] [2,3] [3] [3] [3] [3) 

Instruction Cycle Time 
of Fastest Shipping 13.3 6.3 6.3 15.2 15.2 12.5 12.5 5.9 

Version, ns (= I[p]) 

Speed of Fastest 
Version, Millions of 

75.0 160.0 160.0 66.0 66.0 80.0 80.0 170.0 
Instruction Cycles per 
second (= 10001l[p]) 

Cost of Processor 
(Least Expensive at $8.50 NfA N/A $25.00 $25.00 $99.00 $99.00 
Fastest Speed) (=D[p]) 

Notes: 
[1] The instruction cycle times shown here are for the fastest version of each processor available in sample quantities as of 

June 2000, according to the manufacturer. Unit prices are for quantity 1 O,OOOpurchases, also as reported by the 
manufacturer. BOTI has not independently verified this information. In addition, readers should be aware that device speeds 

are constantly increasing, and prices for existing processor versions are constantly decreasing. Therefore, we strongly 

recommend contacting manufacturers for updated information about prices and maximum device speeds. 

NfA 

[2] Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 

[3] These processors use on-chip caches. Results under processor names denoted with '-C' represent performance with 
caches preloaded. Results for the processors listed under processor names without '-C' represent performance with 

caches uninitialized; see text for details. 
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Table 8.2-1. (cont) 

Motorola Motorola Motorola Motorola TI TI TI TI TI TI 

56311 56F801 56853 MSC8101 C5416 C5510 C6203 C64xx C64xx-C C6701 

[2] [2] [2.3] [2.3] 

6.7 25.0 8.3 3.3 6.3 6.3 3.3 1.7 1.7 6.0 

150.0 40.0 120.0 300.0 160.0 160.0 300.0 600.0 600.0 167.0 

$47.70 $8.15 $3.75 $96.00 $33.50 $29.00 $201.42 NlA NlA $139.06 
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Table 8.2-2. Benchmark Execution Times 

Fastest Version of Each Processor, Lowest Price Variant 
T[p,b] .. C{p,b] • I[p] /1000, microseconds 

DSP Building Block ADI ADI ADI 

Functions 2186M 219x 219x-C 

Notes [1.2) [1.2) 

Real Block FIR 11.40 4.98 4.87 

Single-Sample FIR 0.40 0.28 0.25 

Complex Block FIR 41.79 21.68 21.60 

LMS Adaptive FIR 0.88 0.54 0.49 

Two-Biquad ItR 0.28 0.16 0.14 

Vector Dot Product 0.60 0.38 0.35 

Vector Add 1.15 0.61 0.59 

Vector Maximum 1.80 1.06 1.06 

Control 5.87 3.86 3.86 

2SS-Point FFT 135.23 63.62 63.45 

Viterbi 409.69 192.11 192.11 

Bit Unpack 5.05 2.88 2.88 

Notes: 

ADI ADI ADI ADI 

21065L 21065L-C 21160 21160-C 

(1) (1) [1) (1) 

12.38 12.30 7.33 7.23 

0.47 0.39 0.38 0.30 

42.17 42.03 19.38 19.30 

0.97 0.83 0.80 0.69 

0.35 0.26 0.28 0.20 

0.77 0.70 0.44 0.38 

1.33 1.30 0.61 0.59 

1.86 1.86 0.64 0.64 

7.47 7.47 6.16 6.16 

57.06 56.98 32.78 32.71 

221.62 221.52 142.53 142.53 

4.09 4.09 3.38 3.38 

(1) These processors use on-chip caches. Results under processor names denoted with '-C' represent performance with 
caches preloaded. Results for the processors listed under processor names without '-C' represent performance with 
caches uninitialized; see text for details. 

(cont. 

Lucent 

16410 

(3) 

2.84 

0.13 

9.94 

0.33 

0.09 

0.15 

0.28 

0.19 

3.34 

41.87 

55.05 

2.86 

(2) Projected; as of this writing. these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[3] Results are for one of the two on-chip cores. 
(4) Results are estimated based on preliminary cache information provided by Texas Instruments; see text. 
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Table 8.2-2. (cont.) 

Motorola Motorola Motorola Motorola TI TI TI TI TI TI 

56311 56F801 56853 MSC8101 C5416 C5510 C6203 C64xx C64xx·C C6701 

[2] [2] [1.2.4] [1,2] 

6.29 24.58 7.19 0.61 4.56 2.46 1.16 0.47 0.32 2.89 

0.23 0.75 0.24 0.05 0.19 0.16 0.08 0.08 0.04 0.26 

19.10 78.58 23.88 2.24 18.38 8.81 4.36 1.25 1.13 11.22 

0.55 1.70 0.58 0.06 0.46 0.39 0.14 0.11 0.06 0.35 

0.13 0.50 0.18 0.03 0.11 0.11 0.05 0.05 0.03 0.18 

0.35 1.23 0.39 0.05 0.28 0.30 0.10 0.Q7 0.04 0.28 

0.62 2.28 0.76 0.06 0.47 0.30 0.13 0.08 0.05 0.30 

0.59 2.23 1.01 0.09 0.78 0.44 0.12 0.09 0.06 0.26 

5.60 16.58 6.05 1.46 5.39 5.91 1.60 0.91 0.91 2.87 

58.83 371.50 97.57 5.44 65.04 46.16 8.31 2.41 2.08 21.30 

120.19 899.56 237.78 6.46 70.40 42.98 21.45 3.05 2.90 31.86 

2.65 11.95 3.78 0.43 3.65 1.56 0.44 0.21 0.16 0.79 
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Table 8.2-3. Normalized Execution Times 

Fastest Version of Each Processor, Lowest Price Variant 
T[p,b}/AT[b} 

DSP Building Block ADI ADI ADI 

Functions 2186M 219x 219x-C 

Notes (1,2] [1,2] 

Real Block AR 1.80 0.79 0.77 

lSingle-Sample FIR 1.55 1.06 0.97 

!complex Block AR 1.94 1.01 1.01 

LMS Adaptive FIR 1.59 0.98 0.89 

~wo-Biquad IIR 1.82 0.91 0.80 

r-rector Dot Product 1.58 0.95 0.92 

~ectorAdd 1.79 0.95 0.93 

Vector Maximum 2.19 1.29 1.29 

Control 1.15 0.76 0.76 

256-Point FFT 2.09 0.98 0.98 

Viterbi 2.45 1.15 1.15 

Bit Unpack 1.68 0.95 0.95 

Total 21.44 11.79 11.42 

Notes: 

ADI ADI ADI ADI 

21065L 21065L-C 21160 21160-C 

[1] [1] [1) [1] 

1.96 1.95 1.16 1.14 

1.82 1.52 1.40 1.16 

1.96 1.96 0.90 0.90 

1.75 1.51 1.45 1.24 

2.02 1.49 1.59 1.16 

2.03 1.84 1.15 0.99 

2.09 2.04 0.98 0.92 

2.27 2.27 0.78 0.78 

1.47 1.47 1.21 1.21 

0.88 0.88 0.51 0.51 

1.32 1.32 0.65 0.85 

1.36 1.36 1.12 1.12 

20.93 19.60 13.08 11.98 

[1] These processors use on-chip caches. Results under processor names denoted with '-C' represent performance with 
caches preloaded. Results for the processors listed under processor names without '-C' represent performance with 
caches uninitialized; see text for details. 

Lueant 

16410 

[3] 

0.45 

0,50 

0.46 

0.60 

0.51 

0.40 

0.44 

0.24 

0.66 

0.65 

0.33 

0.95 

6.18 

[2] Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[3] Results are for one of the two on-chip cores. 
[4] Results are estimated based on preliminary cache information provided by Texas Instruments; see text. 
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BDTI Benchmark™ Results - Execution Times 

Table 8.2-3. (cont.) 

Motorola Motorola Motorola Motorola TI TI TI TI TI TI 

56311 56F801 56853 MSC8101 C5416 C551 0 C6203 C64xx C64xx·C C6701 

[2] [2] [1,2.4] [1,2] 

1.00 3.89 1.14 0.10 0.72 0.39 0.18 0.07 0.05 0.46 

0.88 2.90 0.93 0.18 0.75 0.60 0.32 0.30 0.16 1.00 

0.89 3.66 1.11 0.10 0.86 0.41 0.20 0.06 0.05 0.52 

1.00 3.07 1.05 0.11 0.84 0.71 0.25 0.20 0.11 0.64 

0.77 2.90 1.06 0.15 0.62 0.62 0.31 0.26 0.17 1.04 

0.91 3.23 1.03 0.13 0.74 0.79 0.27 0.19 0.11 0.73 

0.97 3.56 1.19 0.10 0.73 0.47 0.21 0.12 0.07 0.47 

0.72 2.71 1.23 0.11 0.95 0.54 0.15 0.11 0.07 0.32 

1.10 3.26 1.19 0.29 1.06 1.16 0.31 0.18 0.18 0.56 

0.91 5.75 1.51 0.08 1.01 0.71 0.13 0.04 0.03 0.33 

0.72 5.37 1.42 0.04 0.42 0.26 0.13 0.02 0.02 0.19 

0.88 3.97 1.25 0.14 1.21 0.52 0.15 0.07 0.05 0.26 

10.75 44.26 14.12 1.54 9.90 7.18 2.61 1.62 1.09 6.52 
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Figure 8.2-14. BOllmark2000 Scores 
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BDTI Benchmark™ Results - Cost-Execution Time Product 

8.3 Cost-Execution Time Product 

In this section, we combine processor execution time results from the previous sec­
tion with processor cost information to create a cost-performance measure. Specifically, 
we multiply the benchmark execution times for each processor on each benchmark by the 
unit cost of the processor, yielding a cost-execution time product. The lower the cost-exe­
cution time product, the better the processor's score on this particular figure of merit. We 
apply equal weighting to cost and execution time in our analysis. Depending upon the 
requirements of a given application, different weightings may be appropriate. 

Since this analysis is based upon execution times from the previous sec­
tion, the results apply to the same member of each processor family as was 
used in that section. In particular, this analysis uses prices and speeds from 
Table 8.2-1. Prices are based on the least expensive packaging option of the 
fastest version of each processor. In many cases, vendors offer other members 
of their processor families with reduced performance and reduced cost. Such 
versions may fare significantly better or worse on the cost-execution time met­
ric compared to the versions used here. BDTI's Benchmark Analysis Tool 
allows readers to repeat the analysis shown here with different processor fam­
ily members. 

The unit cost data used in this analysis was provided by processor manufacturers 
or their distributors for June 2000, and is based on orders of 10,000 units. Bear in mind 
that DSP processor prices change frequently, tending to decrease significantly over time, 
and are strongly dependent upon the volume purchased. Therefore, we urge readers to 
check with vendors to obtain updated pricing information when comparing processors. 

Several of the processors included in earlier sections of our analysis are excluded 
from this section. Since our analysis of the Lucent DSP164xx single-chip multiprocessor 
uses only one of the device's processors, it would not be reasonable to include the 
DSP164xx in this section of the analysis, and it is omitted. At the time of this writing, 
Analog Devices had not announced a product based on the ASDP-219x architecture, and 
Texas Instruments had not announced a product based on the TMS320C64xx architecture, 
so these processors are excluded from our analysis in this section. Pricing for the Motorola 
DSP56853 is projected, as this product was not available at the time of this writing. 

The data and analysis presented in this section are organized as follows: 

• Cost-execution time products for each benchmark. 
Table 8.3-1 and Figures 8.3-1 through 8.3-12 show the cost-execution time prod­
ucts for each processor on each benchmark. These results are based on the execu­
tion times shown in the previous section. 
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• Normalized cost-execution time products. 
As the first step in creating aggregate cost-execution time results that show each 
processor's overall cost-execution time result, we normalize the cost-execution 
time product for each processor on each benchmark. This nonnalization is done by 
dividing each processor's cost-execution time product on a given benchmark by 
the average over all processors on that benchmark. This is done so that bench­
marks that are inherently more time-consuming are not automatically weighted 
more heavily when we aggregate the perfonnance of each processor over all 
benchmarks. Nonnalized cost-execution time products are shown in Table 8.3-2. 

• Total normalized cost-execution time product over all benchmarks. 
The result of adding the nonnalized cost-execution time products over all bench­
marks for each processor produces an overall cost-execution time measure for that 
processor. This sum effectively applies a uniform weighting to each benchmark for 
this section of the analysis. The results are shown in Figure 8.3-13 and at the bot­
tom of Table 8.3-2. 

Analysis of Results 

This section presents a brief analysis of the benchmark cost,..execution time prod­
ucts, summarized in Figure 8.3-13. As discussed in the preceding paragraphs, the bench­
mark cost-execution time product is computed by multiplying a processor's execution 
time for a given benchmark function by the processor's cost. Where noted, these values 
are projected for processors. not available at the time of this writing. Bear in mind thatdif­
ferent cost values and different processor family members may be appropriate for your 
analysis. 

In reviewing the normalized cost-execution time products over all benchmarks 
presented in Figure 8.3-13, several conclusions emerge. First, floating-point processors 
generally have the highest cost-execution time result, meaning that they are expensive rel­
ative to their speed when compared with fixed-point processors. For example, the Analog 
Devices ADSP-21160 and Texas Instruments TMS320C6701 have the highest total nor­
malized cost-execution time results of the processors benchmarked here. The Analog 
Devices ADSP-21065L, however, has a total nonnalized cost-execution time result com­
parable to those of several fixed-point DSPs. 

It must be noted that while the floating-point DSPs implement the same algorithms 
as the fixed-point devices, they provide much better numeric fidelity. In addition, float­
ing-point processors sometimes have on-chip peripherals and memory beyond what is typ­
ical in fixed-point DSPs. Therefore, comparisons between benchmark results for 
fixed-point processors and floating-point processors should be made with caution. 

Turning to fixed-point processors, the Motorola DSP56853 has the lowest total 
normalized cost-execution time result by a large margin; it should be noted, however, that 
this result is based on projected pricing, as the DSP56853 was not available at the time of 
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this writing. As presented in Section 8.2, Execution Times, the DSP56853 has average 
speed as measured by its total normalized execution time. Hence, its advantage on the 
cost-execution time is due to its price, which is a remarkably low $3.75. Similarly, the 
Analog Devices ADSP-2186M has a very low price of $8.50, and this overcomes its rather 
slow execution time result to yield a fairly low total normalized cost-execution time result. 

The Motorola MSC8101, based on the StarCore SC140, also has a relatively low 
total normalized cost-execution. time result. The price of this device is moderately high, at 
$96.00, but this disadvantage is overcome by the processor's very fast execution time 
results. 

Texas Instruments' projected $29.00 pricing for the TMS320C551O is aggressive 
compared to the current $33.50 price of its lower-performance TMS320C5416. Since 
on-chip memory is often the primary determinant of silicon area, and the two devices have 
similar amounts of on-chip memory, we would expect similar prices. Still, it is surprising 
to see a lower price for the higher performance product. Not surprisingly given these 
prices, the TMS320C5510 bests the TMS320C5416 in terms oftotal normalized cost-exe­
cution time product by a significant margin. 

The total normalized cost-execution time result for the Texas Instruments 
TMS320C6203 is roughly equal to the average for the processors benchmarked here. It 
should be noted, though, that there are members of the TMS320C62xx family with much 
lower prices than the TMS320C6203. These devices have lower instruction cycle rates 
and less on-chip memory, and in some cases use on-chip caches. This highlights the fact, . 
mentioned earlier, that the cost-execution time products used in this section are based on 
the fastest version of each processor available as of this writing (or projected for proces­
sors not yet available), in the least expensive packaging variant. In most cases, manufac­
turers offer different versions of their processors at lower speeds and lower prices. Since 
speed and price do not scale proportionally, choosing a lower-speed version of a processor 
would in most cases result in a different benchmark cost-execution time product for that 
processor. 

Note also that the choice of processor affects overall system cost. For example, a 
processor with low cost-execution time products may not have enough on-chip memory 
for a given application, requiring external memory to be used in the system. Overall sys­
tem cost may thus be higher than if another processor with more on-chip memory is cho­
sen, although the latter processor may have higher cost-execution time products. We do 
not take these issues into account in our analysis. 
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Table 8.3-1. Benchmark Cost-Execution Time Product 

Fastest Version of Each Processor, Lowest Price Variant (_ note 5) 
Benchmark ExtIcutIon Time· PTOCe$SOI' Cost, mlc:rosecond-dof/ars, DT[p,b} = D[p} • T[p,b} 

DSP Building Block ADI AD! ADI ADI ADI ADI ADI 
Functions 2186M 219x 219xoC 21065L 21065LoC 21160 211600C 

Notes rt] [1] [2] [21 [2] 121 

Real Block FIR 96.9 NlA NlA 309.5 307.6 725.2 715.3 

!single-Sample FIR 3.4 NlA N/A 11.7 9.8 35.9 29.7 

Complex Block FIR 355.2 NlA NlA 1054.2 1050.8 1918.1 1910.7 

MS Adaptive FIR 7.5 N/A N/A 24.2 20.8 79.2 68.1 

ITwo-Biquad IIR 2.4 N/A N/A 8.7 6.4 27.2 19.8 

[vector Dot Product 5.1 NlA NlA 19.3 17.4 43.3 37.1 

[vector Add 9.7 NlA NlA 33.3 32.6 60.6 58.2 

~ector Maximum 15.3 NlA NlA 46.6 46.6 63.1 63.1 

pontrol 49.9 N/A NlA 186.7 186.7 610.1 610.1 

~6-Point FFT 1149.4 N/A N/A 1426.5 1424.6 3244.7 3238.5 

~iterbi 3482.4 N/A NlA 5537.9 5537.9 14110.0 14110.0 

~ilUnpack 43.0 N/A NlA 102.3 102.3 334.1 334.1 

Notes: 
[1) As of this writing, pricing has not been disclosed for these processors. Hence, they are excluded from this metric. 
[2) These prooessors use on-chip caches. Results under processor names denoted with o_C' represent performance with 

caches preloaded. Results for the prooessors listed under processor names without o_C' represent performance with 
caches uninilialized; see text for details. 

(con1. 

Lucent 

16410 

13l 

NlA 

NlA 

NlA 

NlA 

NIP. 

NlA 

NlA 

N/A 

NlA 

NlA 

N/A 

NlA 

[3) This chip contains two cores. Therefore, comparing its cost-execution time resulllo those of the other processors is not meaningful. 
[4) Projected; as of this writing, these prooessors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[5) Please see Table 8.2-1 for information about processors used in this section. 
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Table 8.3-1. (cont.) 

Motorola Motorola Motorola Motorola TI TI TI TI TI TI 

56311 56F801 56853 MSC8101 C5416 C5510 C6203 C64xx C64xx-C C6701 

[41 [41 [11 111 

300.2 200.3 27.0 58.6 152.8 71.2 233.2 N/A N/A 402.2 

10.8 6.1 0.9 4.5 6.5 4.5 16.8 NlA NlA 35.8 

911.1 640.4 89.5 215.0 615.8 255.6 875.7 N/A NlA 1560.5 

26.4 13.9 2.2 5.8 15.5 11.4 2B.l NlA N/A 49.1 

6.4 4.1 0.7 2.6 3.6 3.1 10.7 N/A N/A 25.0 

16.5 10.0 1.5 4.8 9.4 8.7 20.8 NlA N/A 38.3 

29.6 18.5 2.B 6.1 15.7 B.7 26.8 N/A NlA 41.6 

28.3 18.1 3.B 8.3 26.2 12.9 24.1 N/A N/A 36.6 

267.1 135.1 22.7 141.8 180.5 171.3 320.9 N/A NlA 398.9 

2806.0 3027.7 365.9 522.2 217B.8 1338.7 1669.6 NlA N/A 2961.9 

5733.2 7331.5 891.7 620.2 2358.4 1246.5 4312.1 N/A N/A 4429.9 

126.6 97.4 14.2 41.3 122.3 45.1 88.4 NlA N/A 109.9 
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Table 8.3-2. Normalized Cost-Execution Time Product 

Fastest Version of Each ProcessQr, Lowest Price Variant (see note 5) 
CQat-Execution Time Product I Awnge for Benchmark, DT[p,b] I ADT[b] 

DSP BuUdinll Block ADI ADI AD! AD! 

Functions 2186M 219x 219x-C 21065L 

Nates I1J (1) 12] 

Real Block FIR 0.35 NlA NlA 1.12 

Single-Sample FIR 0.25 NlA NIA 0.87 

Complex Block FIR 0.40 NlA NlA 1.20 

LMS Adaptive FIR 0.28 NlA NIA 0.89 

wo-Biquad IIR 0.26 NlA NlA 0.94 

Vector Dot Product 0.29 NlA NlA 1.08 

Vector Add 0.37 NlA NIA 1.26 

Vector Maximum 0.51 NIA NIA 1.54 

Control 0.20 NlA NIA 0.74 

I25s-Poin1 FFT 0.59 NIA NlA 0.73 

Vi1ei'bi 0.65 NlA NIA 1.03 

Bit Unpack 0.36 NlA NlA 0.85 

Total 4.49 12.25 

Notes: 

AD! AD! ADI 
21065L-C 21160 211&O-c 

12J 12J 12J 

1.11 2.62 2.58 

0.73 2.64 2.19 

1.19 2.18 2.17 

0.77 2.92 2.51 

0.69 2.94 2.13 

0.98 2.42 2.08 

1.23 2.29 2.20 

1.54 2.09 2.09 

0.74 2.42 2.42 

0.73 1.66 1.66 

1.03 2.63 2.63 

0.85 2.78 2.78 

11.59 29.59 27.44 

(1) As of this writing, pricing has not been disclosed for these processors. Hence, they are excluded from this metric. 
[2) These processors use on-chip caches. Results under processor names denoted with '-C' represent performance with 

caches preloaded. Results for the processors listed under processor names without '-C' represen1 performance with 
caches uninitialized; see text for details. 

(conI. 

Luc:ant 

16410 

13J 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

NlA 

[3] This chip contains two cores. Therefore, comparing its cost-execution time result to those of the other processors is not meaningful. 
[4) Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[5) Please see Table 8.2-1 for Information about processors used in this section. 
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Table 8.3-2. (cont.) 

Motorola Motorola Motorola Motorola TI TI n TI TI TI 

56311 56F801 56853 MSC8101 C5416 C5510 C6203 C64xx C64xx-C C6701 

j41 [41 [11 [11 

1.08 0.72 0.10 0.21 0.55 0.26 0.84 NlA NlA 1.45 

0.80 0.45 0.07 0.33 0.48 0.33 1.23 NlA NlA 2.64 

1.03 0.73 0.10 0.24 0.70 0.29 0.99 N/A NlA 1.77 

0.97 0.51 0.08 0.21 0.57 0.42 1.04 N/A NlA 1.81 

0.69 0.44 0.07 0.28 0.38 0.33 1.16 NlA NlA 2.69 

0.93 0.56 0.08 0.27 0.53 0.49 1.16 N/A NlA 2.14 

1.12 0.70 0.11 0.23 0.59 0.33 1.01 NlA NlA 1.57 

0.94 0.60 0.13 0.28 0.87 0.43 0.80 NlA N/A 1.21 

1.06 0.54 0.09 0.56 0.71 0.68 1.27 NlA NlA 1.58 

1.44 1.55 0.19 0.27 1.12 0.69 0.86 N/A NlA 1.52 

1.07 1.37 0.17 0.12 0.44 0.23 0.80 NlA NlA 0.83 

1.05 0.81 0.12 0.34 1.02 0.38 0.74 NlA NlA 0.92 

12.17 8.98 1.30 3.34 7.96 4.85 11.90 20.14 
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8.4 Energy Consumption 

In many applications, processor power or energy consumption is a key consider­
ation. Power consumption is the rate at which a processor consumes energy. If the power 
consumption is constant over some period, then the energy consumption is equal to the 
product of the power consumption multiplied by the time period. 

There are two main power-related criteria that might be used to compare proces-
sors: 

• For many applications, energy consumption is a paramount concern. This is espe­
cially true of battery-powered applications, where energy consumption translates 
directly into battery life. The energy consumed fora particular task that is periodi­
cally repeated in an application, divided by the period of repetition, yields the 
average power consumption of the task in the application. This is generally differ­
ent from a processor's typical power consumption and is often a more useful met­
ric than typical power consumption. Average power consumption may also be a 
metric of interest if heat dissipation is a concern. 

• Some applications are sensitive to the maximum short-term processor power con­
sumption because of limits on the maximum amount of power that can be supplied 
or heat that can be dissipated. 

In this section, we analyze and compare processor energy consumption. To esti­
mate the energy required for a processor to complete a given benchmark function, we mul­
tiply the execution time for the processor on the given benchmark by the estimated typical 
power consumption for that processor. In most cases, we use manufacturer-supplied "typi­
cal" power ratings. In some cases, however, manufacturer-supplied power ratings are 
skewed due to reduced clock speeds or voltages, or assumptions regarding processor 
activity. In these cases, we have adjusted the manufacturer-supplied power data to yield 
what we believe to be a more realistic and comparable power consumption value. 

Note that a processor with a lower power consumption may actually consume 
more energy in computing a given benchmark if the processor requires more time to com­
plete the benchmark than another processor. By applying appropriate weightings to the 
energy consumption values for the various benchmarks, the reader can compute an overall 
energy consumption estimate that reflects the activities comprising a particular applica­
tion. 

For the energy consumption analysis presented here, the processor family member 
used may differ from that used in the preceding execution-time analysis. Here, the low­
est-voltage member of each family that has enough on-chip memory to run the BDTI 
Benchmarks™ is used, at its fastest speed. Therefore, the instruction cycle times used here 
may differ from those used in the previous section. 

This analysis is based on manufacturer-supplied power consumption data, and 
therefore has a higher uncertainty associated with it than other parts of our benchmark 
analysis. The power consumption data used here was not independently verified, and ven-
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dors' definition of "typical" power consumption is sometimes vague. Therefore, small dif­
ferences between processors' energy consumption benchmark results should not be 
considered significant. BDTI did analyze power consumption data reported by vendors, 
and made adjustments where deemed necessary to obtain comparable data. 

The analysis presented here does not include power and energy required by the 
processor to drive signals onto external pins and buses and into other connected devices. 
The amount of power and energy required for external signals depends on the number and 
type of external devices connected to the processor and the physical characteristics of the 
interconnections, as well as the amount of activity on the pins. 

Some of the processors included in earlier sections of our analysis are excluded 
from this section. Since, at the time of this writing, Analog Devices had not announced a 
product based on the ASDP-219x architecture, and Texas Instruments had not announced 
a product based on the TMS320C64xx architecture, these processors are excluded from 
our analysis in this section and the next. 

Since the Lucent DSP164xx includes two cores, but only one of the cores is used 
by the BDTI Benchmarks, the typical power consumption value used in our analysis for 
this device is equal to half of the typical power consumption value for the entire chip. 

Typical power consumption for the Motorola DSP56854 is projected, and should 
therefore be considered less reliable. 

The analysis and results presented in this section are organized as follows: 

• Processor summary power data. 
Table 8.4-1 lists the typical power consumption for each processor. As mentioned 
above, we have chosen the lowest-voltage member of each processor family for 
the analysis in this section. Power consumption data is for the fastest variant of the 
lowest-voltage version of each processor. 

• Benchmark energy consumption. 
The estimated energy consumption for each processor on each benchmark is 
shown in Table 8.4-2 and Figures 8.4-1 through 8.4-12. The energy consumption 
includes the main benchmark body, but not the power-up section. 

• Normalized benchmark energy consumption. 
As the first step in creating aggregate energy consumption results that show each 
processor's overall energy consumption performance, we normalize the energy 
consumption for each processor on each benchmark. This normalization is done by 
dividing each processor's energy consumption on a given benchmark by the aver­
age over all processors on that benchmark. This is done so that benchmarks that 
are inherently more time consuming are not automatically weighted more heavily 
when we aggregate the performance of each processor over all benchmarks. Nor­
malized benchmark energy consumption values are presented in Table 8.4-3. 

• Total normalized energy consumption through all benchmarks. 
Adding the normalized benchmark energy consumption values for all benchmarks 
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for each processor produces an overall energy consumption measure for that pro­
cessor. This sum effectively applies a uniform weighting to each benchmark for 
this section of the analysis. The results are shown in Figure 8.4-13A and 8.4-13B 
and at the bottom of Table 8.4-3. Note that Figure 8.4-13B is a magnified version 
of Figure 8.4-13A; the Y-axis has been scaled so that data for processors with rela­
tively small results are more visible. As a result, the bars representing processors 
with relatively high results extend beyond the top of the graph and are truncated. 

Analysis of Results 

This section presents a brief analysis of the benchmark energy consumption 
results, summarized in Figures 8.4-13A and 8.4-13B. As discussed in the preceding para­
graphs, benchmark energy consumption is estimated by multiplying a processor's execu­
tion time for a given benchmark function by an estimate of its power consumption. 

In reviewing the normalized energy consumption results over all benchmarks pre­
sented in Figure 8.4-13A, several important points are revealed. First, floating-point pro­
cessors generally consume much more energy than their fixed-point counterparts, 
regardless of variations in operating voltage. All three of the floating-point DSPs bench­
marked here have notably high total normalized energy consumption results, at best 
roughly three times higher than that of the fixed-point DSPs with the highest energy con­
sumption. This is not surprising, since floating-point processors require more complex cir­
cuitry for arithmetic operations and usually operate on larger data words, and since these 
processors generally do not target energy-sensitive applications. However, it must be 
noted that while the floating-point DSPs implement the same algorithms as the fixed-point 
devices, they provide much better numeric fidelity. In addition, floating-point processors 
often have on-chip peripherals and memory beyond what is typical in fixed-point DSPs. 
Therefore, comparisons between benchmark results for fixed-point processors and float­
ing-point processors should be made with caution. 

Although all of the floating-point processors have high energy consumption results 
relative to the benchmarked fixed-point DSPs, there is significant variation among the 
floating-point DSPs. Among this group, the Texas Instruments TMS320C6701 has the 
best energy consumption result; its total normalized energy consumption result is approxi­
mately half that of the Analog Devices ADSP-21065L, and roughly one third that of the 
Analog Devices ADSP-21160M. 

Among fixed-point DSPs, there is also significant variation in energy efficiency. 
The Motorola MSC81 0 1 has the lowest total normalized energy consumption result of the 
processors benchmarked here. In contrast, the Texas Instruments TMS320C6204 has an 
energy consumption result approximately eight times higher. 

The very low energy consumption result of the MSC8101 is particularly notable 
considering the processor's high speed (as analyzed in Section 8.2, Execution Times). The 
MSC8101 uses an operating voltage of 1.5 volts, which it shares with many of the other 
processors benchmarked here. 
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The Motorola DSP56854 and the Texas Instruments TMS32OC5416 and 
TMS320C551O also have low energy consumption results. Note that DSP56854 result is 
based on projected power consumption, as this device has not yet been manufactured. The 
TMS32OC54xx has been among the most energy efficient DSP families for several years, 
and the TMS32OC5510 builds on that legacy, reducing energy consumption by about 10% 
while also boosting speed. These energy-efficient conventional DSPs benefit from low 
operating voltages (1.5-1.8 volts) and relatively simple architectures compared with many 
of the other processors benchmarked here. 

Note that the overall energy consumption results can obscure significant differ­
ences on the individual benchmarks. For example, on the Real Block FIR benchmark the 
TMS320C5510 uses about half as much energy as the DSP56854 projected result. On the 
Control benchmark, however, the DSP56854 is projected to use about half as much energy 
as the TMS320C5510. Thus, if processing like that found in the Control benchmark con­
sumes a significant percentage of the processor's time in an application and low energy 
consumption is vital, the DSP56854 may be a better choice than the TMS320C551 O. This 
underscores the importance of understanding the mix of operations that a particular appli­
cation uses before attempting to choose a processor based on energy consumption. 
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Table 8.4-1. Processor Power Consumption 

Lowest Voltage Version of Each Processor at the Fastest Speed and Lowest Cost 

Typical power consumption values in watts, P[PJ (_ note 1) 
(cont) 

API ADI ADI ADI AD! ADI API Lucent 

2186M 219x 219x.c 21065L 21065L.c 21160M 2116OM.c 16410 

Notes [2,4) [2,4) (3) (3) [3) [3) [5] 

Voltage 2.S 2.S 2.S 3.3 3.3 2.S 2.S 1.8 

Instruction Cycle Time, 
13.3 6.3 6.3 1S.2 1S.2 12.S 12.S S.9 

ns (I[p]) 

Instruction Rate, 
Millions of Instruction 

75.0 160.0 160.0 66.0 66.0 80.0 80.0 170.0 
pycles per second 
(111[p]) 

[Typical. Power 
0.113 NlA NlA 0.930 0.930 2.350 2.350 0.282 

Consumption [PI, watts 

Notes: 
[1) The power consumption figures presented here do not include power required to drive extemalloads; see text. 
[2) As of this writing, power consumption has not been disclosed for these processors. Hence, they are excluded from this metric. 
[3) These processors use on-chip caches. Results under processor names denoted with '·C' represent performance with 

caches preloaded. Results for the processors listed under processor names without -·C' represent performance with 
caches un initialized. 

[4) Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
[S) Power consumption is for one of the two on-chip cores and half of the on-chip memory; see text. 
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Table 8.4-1. (cont.) 

Motorola Motorola Motorola Motorola 11 11 11 11 11 11 

56333 56824 56854 MSC8101 C5416 C5510 C6204 C64xx C64xx.c C6701 

[4] [4] [2.4] [2.4] 

1.8 3.3 1.8 1.5 1.5 1.6 1.5 1.5 1.5 1.9 

6.7 28.6 8.3 3.3 6.3 6.3 5.0 1.7 1.7 6.0 

150.0 35.0 120.0 300.0 160.0 160.0 200.0 600.0 600.0 167.0 

0.189 0.054 0.065 0.250 0.090 0.109 0.800 N/A NlA 1.400 
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Table 8.4-2. Benchmark Energy Consumption 

E[P,b] = C[P,b] "I[P] " P[p]11000 
Based on "Typical· Powar Consumption, In watt-microseconds 

Lowest Voltage Version of Each Processor at the Fastest Speed and Lowest Cost 

(cant. 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI Lucent 

Functions 2186M 219x 219x-C 21065L 21065L-C 21160M 21160M-C 16410 

Notes (1) [1] (2) (2) (2) (2) (3) 

Real Block FIR 1.29 NlA NlA 11.51 11.44 17.21 16.98 0.80 

~ingle-sample FIR 0.05 NlA NlA 0.44 0.37 0.85 0.71 0.04 

pomplex Block FIR 4.72 NlA N/A 39.22 39.09 45.53 45.36 2.80 

LMS Adaptive FIR 0.10 NlA NlA 0.90 0.78 1.88 1.62 0.09 

iT'wo-Biquad IIR 0.03 NfA NlA 0.32 0.24 0.65 0.47 0.02 

~ ector Dot Product 0.07 NfA NlA 0.72 0.65 1.03 0.88 0.04 

WectorAdd 0.13 N/A NlA 1.24 1.21 1.44 1.38 0.08 

Vector Maximum 0.20 NfA NlA 1.73 1.73 1.50 1.50 0.05 

~ntrol 0.66 NlA NlA 6.95 6.95 14.48 14.48 0.94 
\ 

~56-point FFT 15.28 NlA NlA 53.07 53.00 77.02 76.87 11.81 

~iterbi 46.30 NfA NlA 206.01 206.01 334.93 334.93 15.52 

Bit Unpack 0.57 NlA NlA 3.80 3.80 7.93 7.93 0.81 

Notes: 
(1) As of this writing, power consumption has not been disclosed for these processors. Hence, they are excluded from this metric. 
(2) These processors use on-chip caches. Results under processor names denoted with '-C' represent performance with 

Oiches preloaded. Results for the processors listed under processor names without '·C' represent performance with 
caches uninitiaJized. 

(3) Power consumption is for one of the two on-chip cores and half of the on-chip memory; see text. 
(4) Projected; as of this writing, these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
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Table 8.4-2. (cont.) 

Motorola Motorola Motorola Motorola n n n TI TI n 
56333 56824 56854 MSC8101 C5416 C5510 C6204 C64xx C64xx-C 06701 

[4] (4) [1] [1] 

1.19 1.52 0.47 0.15 0.41 0.27 1.39 NlA N/A 4.05 

0.04 0.05 0.02 0.01 0.02 0.02 0.10 N/A N/A 0.36 

3.61 4.85 1.55 0.56 1.65 0.96 5.23 NlA N/A 15.71 

0.10 0.10 0.04 0.02 0.04 0.04 0.17 NlA N/A 0.49 

0.03 0.03 0.01 0.01 0.01 0.01 0.06 NlA NlA 0.25 

0.07 0.08 0.03 0.01 0.03 0.03 0.12 NlA N/A 0.39 

0.12 0.14 0.05 0.02 0.04 0.03 0.16 NlA N/A 0.42 

0.11 0.14 0.07 0.02 0.07 0.05 . 0.14 N/A N/A 0.37 

1.06 1.02 0.39 0.37 0.48 0.64 1.92 NlA NlA 4.02 

11.12 22.93 6.34 1.36 5.85 5.03 9.97 NlA N/A 29.82 

22.72 55.52 15.46 1.62 6.34 4.68 25.74 N/A N/A 44.60 

0.50 0.74 0.25 0.11 0.33 0.17 0.53 N/A NlA 1.11 
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Table 8.4-3. Normalized Energy Consumption 

Lowest Voltage Version of Each Processor at the Fastest Speed and Lowest Cost 
Energy / Average for Benchmark, E[p,bJ / AE[bJ 

DSP Building Block ADI ADI ADI ADI ADI 

Functions 2186M 219x 219x-C 21065L 21065L-C 

Notes [1] [1] [2] [2] 

Real Block FIR 0.26 N/A N/A 2.35 2.33 

Single-Sample FIR 0.21 N/A N/A 2.00 1.68 

Complex Block FIR 0.31 N/A N/A 2.60 2.60 

MS Adaptive FIR 0.22 NlA N/A 1.98 1.70 

Irwo-Biquad IIR 0.21 NlA NlA 2.11 1.56 

Vector Dot Product 0.23 N/A N/A 2.43 2.20 

Wector Add 0.28 N/A N/A 2.69 2.63 

Vector Maximum 0.37 N/A N/A 3.16 3.16 

Control 0.17 N/A N/A 1.79 1.79 

256-Point FFT 0.56 N/A N/A 1.96 1.96 

Witerbi 0.49 N/A N/A 2.18 2.18 

Bit Unpack 0.28 N/A N/A 1.86 1.86 

Total 3.59 27.12 25.64 

Notes: 

(cont. 

ADI ADI Lucent 

21160M 2116OM-C 16410 

[2] [2] [3] 

3.51 3.46 0.16 

3.91 3.23 0.17 

3.02 3.01 0.19 

4.13 3.55 0.20 

4.21 3.06 0.16 

·3.48 2.98 0.15 

3.12 2.99 0.17 

2.73 2.73 0.10 

3.73 3.73 0.24 

2.84 2.84 0.44 

3.55 3.55 0.16 

3.89 3.89 0.40 

42.12 39.03 2.54 

[1] As of this writing, power consumption has not been disclosed for these processors. Hence, they are excluded from this metric. 
[2) These processors use on-chip caches. Results under processor names denoted with "-C' represent performance with 

caches preloaded. Results for the processors listed under processor names without "_CO represent performance with 
caches uninitialized. 

[3) Power consumption is for one of the two on-Chip cores and half of the on-chip memory; see text. 
[4) Projected; as of this writing. these processors were not yet sampling or have not been demonstrated in silicon at their target speed. 
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Table 8.4-3. (cont.) 

Motorola Motorola Motorola Motorola Tl Tl Tl Tl Tl Tl 

56333 56824 56854 MSC8101 C5416 C5510 C6204 C64xx C64xx-C C6701 

[4] [4] [1] [1] 

0.24 0.31 0.10 0.03 0.08 0.05 0.28 N/A N/A 0.83 

0.20 0.21 0.07 0.05 0.08 0.08 0.46 N/A N/A 1.65 

0.24 0.32 0.10 0.04 0.11 0.06 0.35 NlA N/A 1.04 

0.23 0.23 0.08 0.03 0.09 0.09 0.37 NlA NlA 1.09 

0.16 0.20 0.08 0.04 0.06 0.08 0.42 NlA NlA 1.64 

0.22 0.26 0.09 0.04 0.09 0.11 0.42 NlA NlA 1.31 

0.25 0.30 0.11 0.03 0.09 0.07 0.35 NlA N/A 0.91 

0.20 0.25 0.12 0.04 0.13 0.09 0.26 NlA N/A 0.67 

0.27 0.26 0.10 0.10 0.12 0.17 0.49 NlA NlA 1.03 

0.41 0.85 0.23 0.05 0.22 0.19 0.37 N/A N/A 1.10 

0.24 0.59 0.16 0.02 0.07 0.05 0.27 NlA NlA 0.47 

0.25 0.36 0.12 0.05 0.16 0.08 0.26 NlA NlA 0.54 

2.92 4.14 1.36 0.53 1.30 1.12 4.30 12.28 

© 2001 Berkeley Design Technology, Inc. 717 



"'" -0. 
OCt 

@ 
I\) 
c 
C 
-0. 

m 
CD 

~ 
of 
;, 

u::a 
:J 

~ 
n 
:r 
5 
c8 
~ 
s­
f! 

ADIADSP_218BM . 

([:lxerJ-Point) 13 ..... _ 

'-'IS, 25\1 ADI ADSP-219 . 

~ (f:IXed-POint) 6<>_ 

. ""S, 2.5\1 ADIADSP_219X_O . 

(f:IXed-Point) 6 <>_ 

''''''S, 2.5 \I ADI ADSP_21 065( [:1 . 

(, O<ltmg-Pointl15 

J .2ns, a3 \I 
ADI ADSP_21 "" 

"'05(-0 (f:l . 
O~tmg-POinll 1<-

I v. 2n.s, a 3 \I A.DI ADSP-21160M f:. . 

(. IO~tmg-Point I 1" 

J <.5ns, 2.5 \I ADI ADSP.21 16OM_0 M • 

(. JOcttlng-POint) 125 

· ns, 2.5 \I (IIGent DSP1B410 . 

(f:lxed-POint) 59 

· ns, 1.8 \I Motoro/~ DSPS(;333 . 

(f:lxed-Point) B ii 

· ns, 1.8 \I 
Motoro/~ DspS(; 

824 (f:iXed-Point') 28 " . 

.uns, 3.3 \I Motoro/~ DSPsa85 . 

4 ([:lxedPoint) 8 3 

· ns, 1.8 \I St~rcore 1.11308101 . 

(f:lxed-Point') 3 '" 

,uns, 1.5 \I IIIMS.,.,,,,,,, 
~<"'-'v416IM' 

I' IXed-POint) B 3 

· ns, 1.5 \I 1'1 IMS3;?GtlSs10 . 

mxed-POint') B 3 

· ns, 1.6 \I 1'1 IMS3;?GtlB2 • 

04 (f=Jxed-POint) 5ns 
IIIMS3;?00B4 . , 1.5 \I 

~ ([:Ixed-Point) 1 ii 

· ns' 1.5\1 
II IMS<nor-... 

~<, ~o4~_0 'M' 
I' Ixed-Poin/11 ., 

J • Ins, 1.5 \I 1'11'."" 
'VI<>3;?GtlB701 '(:1 • 

(J O<ltmg-Point) Bns 

, 1.9 \I 

o 

" 
NlA 

NlA 

NlA 

NlA 

I\) 

" 
1>­
o 

(J) 

a 

Energy (watt-microseconds) 

c» 

" 
..... 
o 
o 

..... 
I\) 

a 
..... 
.j>. (J) 

o o 
..... 
c» o 

I\) 
o o 

." 
to· 
e ... 
co 
00 
:.::. 

I .... 
m 
:::J 
co ... 

-CQ .'< 
~ 0 
co 0 
... :::J 
_. tn 
tn e 
m 3 
co"C == co 0 
~:::J 

cr ... 
:IJ co 
m 

2! 
o 
n 

" !! 
:IJ 

m 
c 
~ ... 
I/i 
C) 
C a: 
CD 

S' 
~ 
"tI 
"tI a 
m 
I/) 

o 
iiJ 



Energy (watt-microseconds) 
@ 

ADIAD I\) 
0 S(:>-218 0 ~ 0 0 0 0 0 0 0 0 0 6M ('" • ~ (,) ~ in en ~ ro <0 .... l>ced_ . 0 

OJ Pomt) 
ADI AD 13. 3ns CD SP.219!( , 2. 5 \I ... 

;II\' (f::i>Ced 
!2. ADI AD Paint) 63. 

." CD :';;(:>-219 . ns, 2.5 \I '< NlA cS' 0 >c-c (f::i>ce 
CD ADI AD:.;;? d-Point) 6 an C 
CII ... 
..c' -21065L (f::l . . s, 2.5 \I NlA (1) 
::J AD ~~g 

CO -I I ADSP-21D6 -Point) 15.2ns 
~ CD 5L-c (f::/ ' 33 \I g. I Oatin I\) 

::J ADI ADs. 'SJ-POint) 15 . 
0 P-21160M (r: .2ns, 3.3 \I m 0 A loatin :s ca 01 ADSp 'SJPoint) 12 (1) '< 
~ -2116DM .5ns ... 
:;- -C (F=/~/" ' 2. 5 \I CQ 
n lng-POi '< LUCent 0 ntJt2.Sns -:';;P16410 . ' 2.5 \I r-O 

(F='>Ced ~ g Motorola Os -POint) 5.9ns 
P56333 ' 1.8 \I (1) fn 

(F=i>Ced ... C 
Motorola 0 -Point) 6 /i fn 3 

SP56824 . . ns, 1.8 \I "C 
(F='Xed OJ=. 

Motorola 0 -Point) 28.6n (1) 0 
SP56854 . s, 33 \I =:s OJ 

(F='>Ced (1) .... ~ Stareo -Point) 8 3. ~O 
reM . ns ... OJ 8C8101 ' 1.8 \I 

(J) CD (F=iJ(ed_ . ::J 
II IMs Polnt)3.a :s n 

:::J' 320()S,16 • ns, 1.5 \I CQ 3 (F='>Ced_ . (j) III 
II IMs. POmt) 6.3. ... 

I 
~ 320()5510 . ns, 1.5 \I (J) ;: 

(F='>Ced D) 
::u 111M -Paint) 6. 3. 3 CD 

s32O() ns, 1. 6 \I "C CII 
6204 (F;' (j) 

c 
'>Ced ;::;: 

II IMs -Paint) 5ns CII 
320C64!O( , 1.5 \I !! I (F=ixed ::rJ m II IMS32, Point) 1 /i ::J 
OC64XX_c . . ns, 1.5 \I NlA CD ... 

(F='xed ca 
II IMs. -Point) 1. /i '< 

3:?0Cs701 (1=/. ns, 1.5 \I NlA 0 
0 

~t'ng ::J 
-Point)6ns CII 

c , 1.9 \I 
3 

.... 'S. .... o· 
CD ::J 



~ 

@ 

8 ... 
r 
li 
.f 
i' 

cO" 
:::s 

i 
:::s 
2-

~ 
S­
f' 

ADI ADSP-<?186M • 

(FI>rea-Polnt) 1,3.~_ 
o 
b 

• .... 16, 2.5 \I ADIADSP-<!19>( . 

(FlJ(ea-PO/nt)6~ NlA 
· '2.5 \I I ADiADSP_<?19>(-C • 

(F;>rea-Point) 6.~ I NlA ADIA{)sp 
' <?5 \I -<?10Ss1. (FICl<lti • 

ng.Polnt) 1 S. <?ns 
, 3.,3 \I 

ADI ADSP_<?1DB 

st..-c (F!~fing.Point) 15~_ 
.~'t.s, 3.3 \I ADI ADSP-<?1160M (FICl<lting.. • 

Point) 1<?5ns, <.5 \I ADI ADSP-<?116 

OM-C (FICl<lting1Jointl 1 

/ 2.5ns, <? 5 \I I.lIcent DSP16410 /f:,' 

I' l>red-pO/fII) 59 

· Ils, 1,8 \I MotorOla DspSe . 

~ (FI>rea-Poiflll 6 /l 

/ . ns, 1.8v MotorOla {)spSe 

824 (Fi>rea-Point 1 <?8 

/ .6ns, 3.3 \I MotOrola ()sPSe8S4 . 

(FI>rea"Point) 8 .<>h. 

. "'IS, 1.8 \I Starcore •• "' ..... 
''''''-'8101 /F:,' 

I' l>rea-Point) 38n& 
· ,1.5V 1'1 1'MS3<!OC&t16 . 

(FlJ(ea-PO/nt l 6.3 
/ . Ils, 1.5 \I 1"1'MS~OC5s10 . 

(FI>rea"POlnt) 6.<>h. 
· .... IS, 1.6 \I 1'11'M~oc 

B:?04 (Fi>rec:l-pO/nt) 5/ls 

, 1.5\1 1'11'MS3<!OCg 

410( (Fhrec:l-Point) 1 /l I NlA 
· ns, 1.5 \I 

1'11'M&".,n.-... 
"'<'WVb"41O(_C /f:,' 

I' lJ(ed-Point) 1 ~. NlA 
"'16, 1.5V 1', 1'MS3<!0Cs701 'F. • 

(J 7Cl<ltlflg"Point) 6ns 
, 1.9 \I 

Energy (watt-microseconds) 
QJ 

...... ...... I\) I\) (,) (,) 
~ ~ 

(J1 c 
(J1 0 (J1 0 (J1 0 (J1 0 1 
b b b b b b b b b b .. 

tII~ 

C) 
c 

'TI 
a: 
CD 

ca' ... 
0 

C C ... CD CD 'V 
CO 'V :.:. .. 

0 • i ~ 
m 0 
:::s fil 
CD .. 

CQ 
'< 

-0 
r-'o i :::s 
CD CD 
.. C _. 3 
CD"tS 
a:J= 
~g CD _ 

~~ 
0 
0 
3 

"tS 
CD 
>< 
a:J 
0' 
() 
;:II;' 

:!! 
:D 



Energy (watt-microseconds) 
@ 
N ADIAD 
o SP-<18 0 0 0 0 0 f\) 
g 6M (f:iXeq_ . (:) i\l ~ m i:D (:) i\l ~ m i:D (:) 

Pomt') 
OJ ADI AD 13. 3fls 
~ SP-<19x . ' 2.S\.I 
lI'r (f:fJ(eq 
!2. ADI "D -Paint) 6 .?. m ~~ .~~ 
'< -<19x_e • ' <.S \.I NlA 'T1 
C ~C/ -m ADI ADS" -Point) 6 <>_ (Q 
o ~~ .~~ C 
_. 6S/..(FI . ' <,S\.I NlA ""'I 
~ "D ~~ ~ 
~ ~ I AD "-Point') 
-4 SP-<106 1S·<fls 00 
m S/..-C(F ,3.3\.1 • 
n ~ ~ 
::r ADI "D . g-Point') I 
~ ~ Sp 152, ~ o -<1160M . ns, 33 • 
0" A (f:/oalin . \.I m 
~ DIADSp_ g-POint) ,< ::::I 
~ <1160M .5ns < ~ 
:; -C (f:/~t" ' .5 \.I ""'I 

n mg-POint (Q 
l.UCent DS ') '<.5ns _ '< 

'P16410 . ' <.5 \.I r ,.. 
~ 0" 

Motorol -Paint) 5 9 :e 0 
a DSP5s333 • . ns, 1.8 \.I ~ ; 

~~q ""'I C 
Motorola D "Point) 6. i': 3 

SPSs8<4 ns, 1.8 \.I fI) 

~d m~ 
Motorol -Point) <8 6 ~ =. 

a DSPSs85 . ns, 3.3 \.I ::= g OJ 
4~C/ ~ C 

Stane -Point) 8 <> ""'I - ::I 
are.. '''ns - 0 

"/SC81a ' 1.8 \.I ""'I OJ 
1~~ . ~ 

IllMs Pomt) 3.3 l; n 
32,OCS fls, 1.5 \.I ::=. ::r 
~~ en 3 

.' IXeC/_ . III 
Ii IMs POmt) 6.3 » ~ 

32,OC5510 . ns, 1.5 \.I a. ~ 
(f:IXeC/_ . ~ 

IllMs POmt) 6.3ns ~ ~ 
32,OC6<D4 ' 1.6 \.I =: :g 

~C/ < ~ 
Ii IMs -Paint) 5ns ~ 0 

32,OC64XX . ' 1.5 \.I 'T1 I 
~ -

IIIMS32, -Point) '. 7ns ::0 g' 
OC64xx_C • ' 1.5 \.I NlA ~ 
~ ~ 

III~' -Point) 1 .. '< 
'~ .~ 0 

0Cs701 (F/ . ' 1.5 \.I NlA 0 
~ ~ 
~~ 0 

, 1.9\.1 § 
~ ~ 
N 0 
~ ~ 



~I 
Energy (watt-microseconds) m 

c 
AD/ADs 1 

'P-218 0 P 0 0 0 0 0 0 ... 
8M(F:ik, 0 N 00 :,:,.. c.n m ~ III· 

ed-Po' g AD 'nt)18 
f ADSP_2 .8n,s, 2.5 If C 

19>< (F:,' a: 
IX6Cj-pof. CD 

,0,0/,0,0 nl)B.8n,s 
'TI S' SP-219 ' 2.5 If NlA ~-C (F:r CC· e 

AD/ AOSp IXed-Poinl) 8 8n,s c: 0 
~1~ . 'U 

(F:t . ' 2.5 If NlA ""l 
CD 'U AD oa//fjg. a iADsp_2106 Poinl)1S,2ns po n 

Si..-o (F:~ • ' 3. 8 11 0l:Io CD 

40, AOsp oat/fjg.POinl) 15 
I III 

~ 
III 

-211 .2ns 0 
80M ' 3.811 m iii (F:/Oali 

AD, ADSP-21 18 1lg.POinl) 12.51ls ::::J 
CD OM-c (F:~ • ' 2.5 II ""l 

oa//fjg _CQ 
t~nt "POinlj12S .'< 

DSP18410. .' Ils, 2.511 
~O (F:'xe~ 

MOfo,-O'a Os 'nl) S, 91ls CD 0 
'PSe88a, , 1.811 ""l i 

M (F:iXect _. c: 
olo,-o'a Ds -Point) 6. 71ls o 3 

'PSe824 (F:,' ' 1.8 II tD"a 'Xee/- CD ... 
MOfOrol Point) 28 B = _. 

a OsPSsBs4 . ns, 3.8 II CD 0 
(f:;Xect ""l ::::J 

Sfarcor. -Point) 8 8n,s --0 e MSC8101 . " 1.811 ""l 
(F:IXee/- • 

~ @ 1', 1'Ms Po'nt) 3.8n,s 
~ooStt18 • ' 1.511 

~ (F:IXect 0 
I 

CI 1', 7M~ "POint) B.3ns tD .... 
m 005510 (A ' 1.5 II ]j' 
CD 'lxerJ-pO/ c: ... 1'/ 1'Ms nt) B. 31ls 
~ I» :3<008204 ' 1.811 Q. 
~ (FiXerJ-p 

1', 1'Ms Oinl) f5ns --e :3<0Ce4 ' 1.5 II JJ CD >C>c (F:ixee/-III 
ca' 1'/ 1'MS 'Polnl) 1 iI 
::I :3<0Ce4 . ns, 1.5 II NlA 

~ 
XX-C(A' 

IXee/-Po/ 
1'/1'MS3<1 nf) 1. 71ls 

::I" 0Ce701 ' 1.5 II NlA ::I (F/oalin 
2- '9-Polnr) 81ls 0 

CO ' 1.911 
~ 
S' p 



@ 
Energy (waH-microseconds) 

0 ADI ADSP_21 B6 • 
0 

~ 
1\.1 (1=1)(eC/-Point) 133ns 

0 

· ,2.5\1 

... 
ADI ADSP_2t 9)( (f::' 

OJ 

NlA 

CD 

l)(eC/-POint) 8 3ns 
... 

· ,2.5\1 

;: 
ADI ADSP-219>c_O CD 

(1={)(eC/-Point) 8.3ns NI A 

'< 

, <5\1 I 
i ADI ADsp_21 D6s 

1.. (1=1Oiff 
!!. 

/f)g-Point) 152ns 
co 

· ,3.3 \I 

:::s 
4DI ADSP_21 OBst.. 

~ 
-C (1=IOifting.POint) 15 2ns 

n 

· ,3.3 \I 

::J' 
ADI ADSP-21180 g 

"" (1=Ioafing.POint) 12. S. ~ 
· Ils, 2.5 \I 

ADtADSP_2118OM . 

-0 (1=10ift' 
1f1J1JOint) 1 

2.51ls, 2.5 \I I..Ucent DSP18"110 (1=; 

l)(eC/-POint) 5 9 

· Ils, 1.8 \I MotOrOla DSPSa33a "'. 

(I Ixea-Point) 8 /i 

· na, 1.8 \I 
Motorola DspSe, 

"82"1(1=; 
Ixed-Point) 28 

.81ls, 3.3 \I MotOrOla DspSe, 
"85"1 (1=; 

Ixea-Point) 8 a 
· ns, 1.8 \I 

StC/roar. M 

e S08101 (l=iXed-Po' 

,nt) 3.3na, 1.5 \I IIIMS32.OCs,,'8 • 

(1=IXeC/-POint) 8 a 
· ns, 1.5 \I IIIMS32.OCSs10 . 

(1=IXea-POint) 8 a 

· Ils, 1.8 \I IIIMS32.OC8 

'204 (l=ixeC/1JOint) 51ls 

, 1.5 \I IIIMS32.oes 
"IXX(f::' 

lXea-Point) 1 /i 

NlA · Ils, 1.5\1 I 
IIIMS32.oes 

"IXX-o (1=; 
Ixea-Point) 1 71 

NlA · Ils, 1.5\1 I IIIMS32.0Ca701 '" • 

(i 70iftlng1Joint) 8 
Ils, 1.9 \I 

0 0 0 0 
i\> ~ en ex, 0 i\> 

"T1 
cC' 
C ... 
CD 
00 
~ 
I 

!» 
m 
::I 
CD ... 
~ 

-0 
'0 
~ ::I 
CD (I) 
... C _. 3 
(1)-0 
m=. 
!!g OJ CD _ 

~ ... 0 - ... OJ 

~ CD :::s 

51 
n 
::J' 

0 3 ... lit ... 
C ~ 
0 i: - ::u 
"tJ I ... c 
0 iJf a. 
c I 
51 m :::s 

CD ca 
'< 
n 
0 :::s 
1/1 c 
3 

..... 
~ 

'i 
0 :::s 



~ 

@ 

8 .... 
f .. 
ff 
of 
i 
ca' 
:I 

i 
:I o 

i 
S' p 

o 
o "'" ADsp.., .... "" I 

.' l>rer;J..Point) 18.~_ 
AOI ADSP0219X ' .~~. 2.5 I! 

(FlxedoPOint) 6.~ tWA 

· ... '8. 2.5 I! I ''11, 
AO/AOSPo"19 

C >roO'F[ 

I' Ixed'Point)6.~_ I NlA 
.~~. 2.5 I! AOI AOsPo210Ss 

I.. (FIOqlino-Po' 

mt) 15.2n.s. 3.81! AOI AOSPo21 OSSt. 

-C (FIOatino-POint' 15 

I .2na, 3.81! AO, AOSP0211Bot..., (Fl ' 

oatlno-POintJt2.Sn.s. 2.5 I! AO/AOSPo2116DMoO'f:. ' 

(J 7oatlflg-Point) 12 s. 
· ns, 2.5 I! 

l.!teent OsP16410 (FiXed0POi. 

nt) 5.9n.s. 1.8 I! Moto,1>/CI OSPSs, , 

38a (FIXed'Point) 6 7; 

· n.s. 1.81! 
MotOrola Dspsa 

824 (Fbrer;J..Point) 28 "' __ 

..... ~. 3.8 I! Motorola OsPsa 

854 (Fixed°Point) 8 a 
· ns. 1.81! 

Starecr. A~~ 
e ''''<i081Of (Fixer;J.. , 

PoInt) 3.8n.s. 1.5 I! 117-".,S82.oo 

5416 (FixedoPOint, 6a 
I • ns, 1.5 I! IIIMS82.OCSs10 ' 

. (FIXSd-Point' 6 a 
I . ns. 1.6 I! II IMS82.OCB2 , 

IIIMs~_. 
04 (FlXedoPOint) Sn.s 

• ',SI! -~VI.,'B4>r>r (FiXer;J.. 

Po1nth 7n.s. 1.5 I! I NlA II IMS8<nr._ 
-v0"4>r>r-C If:.' 

.' lXer;J..Point, 1 ~ "'I A 
I "n.s. ',SI! I ''If, 

II IMS3<?OCsi'i 

01 (FIOqtlngoPolnl) 6n.s 
• 1.91! 

o 
N 

o 
~ 

Energy (waH-microseconds) 

o 
i:» 

o 
00 o 

.... 
N ~ i:» 

'TI 
cS' 
c 
CiJ 
90 

~ 
m :;:, 

_CD 
r-"'I 

~~ 
CDO 
"'I 0 _. :;:, 
fn fn 
m c 
~3 
CD '2 "'I _. 
_0 

:;:, 

a-
"'I 

~ 
~ 
"'I 

l> 
8: 

OJ c 
1 .. 
fII" 

m 
c 
i 
S' 
c 
U) 
'U 
'U 

I o 
ill 



@ 
Energy (watt-microseconds) 

I\) AD/AO 
Q &1"-218 0 0 0 0 0 I\) 
Q 6M(F: ' i\l :.:.. m ro 0 i\l :.:.. m ro 0 .... IXed_ ' 0 
OJ Polr/I) 
CD 4DIAD 133ns ... SI"-218 ' <5 V 

~ J( (FiXed_ • 
ADIAD POlr/I) 6 3n 

~ SI"-218 . s, 2.5 V NlA " C )(-0 (FiXe 
cE' CD ADI ADSp d-Point) 6 3-

(/I 
-210651. (FI ' . ns, 2.5 V C ce' NlA '" :s AD Oqtlr/g CD 

~ 
IADSp -Poin1Jt5 

CO -21OSS!. .2ns 
n -O(f': ' 33V ~ loatin ::r AD/ADSp 'g-POinl) 15 I :s pi) 0 -21160M (Fj , .2ns, 33 V 
0' AD Oatln m CO /ADSp 'g-POinl) 12 :.< :::l -211601.4 .5ns 2 CD S' -0 (FIOq(' , .5 V 

'" P L/.JCenIO lng-POint) 12,5ns 
CQ 

-'< 
&1"1641 ' 2.5 V r- . 

a (FiXed o 0 
MOloro/ -Poinl) 59 ~ 0 

q 0 81"563.3 . ns, 18 V CD :::l 
3. (FiXed '" en 

MOlorOla 0 'Point) 6 7- C 
81"56824 ' ' ns, 1,8 \I en 3 

(Fixed m-C 
Motorola D -Poinl) 28.6ns CD =. 

&1"5685 ' 3.3 \I -0 OJ 
4 (FiXed O):::l ~ Staro -Point) 8 3 '" .... ore 1.4 . ns -0 OJ S081 ' 1.8 \I 

01 (f':' '" CD 
IXed_ ' < :s 

Ii 1MB Polr/I) 33n n 
3<.0054 s, 1.5 V CD ::r 

16(f':' (') 3 
IXed_ ' - III 

111MB POlr/I) 63 0 ... 
3<.005510 ns, 1.5 V '" ~ 

s: :;: 
(FiXed XI Ii 1M -POint) 63 D» CD 

S3<.oo ns, 1.6 \I ~, (/I 

6204(f':' C 
IXed 3 ::; 

Ii 1MB -POint) 5ns (/I 

3<.0064XX ' 1.5 V C I 
(FiXed 3 m Ii 1MB -Poinl) 1 7- :s 

3<.0064XX_O . . ns, 1.5 \I CD 
NlA ... 

(FIXed CO 
111MB -Point) 1. 7ns '< 

3<.006701 ' 1. 5 \I NlA 0 
0 (F/Oqf :s Ir/g'Po' en Ir/I) 6ns C , 1.8 V 3 .., ~ 

N 0' 
UI :s 



~ 

@ 

8 .... 
OJ 

i 
i' cs· 
::s 

R :::r 
::s 
2-

~ 
5' 
~ 

401 40SP_21 B6 • 

M (NXer:/-Poinl) 13 _~_ 
40/4DSP_21 . '-IS, 2.5 \I 

9x (F=1>(er:J-POinl) 6 ~ 
· ,2.5\1 4DI4Dsp_219X-C • 

(f:1xer:/-Point) 6. _~_ 
'-IS, 2.5 \I 

40/40SP_21 

06s1. (f:laalin9-Point) 15 

.2/la, 3.3 \I 
4DI 4Dsp_21 Os 

"St..-c (FIOaling_POint) 15 

.2na, 3.3 \I 
40/ .tJ,DSP_2116OM 

(FIOa.ling..POinl) 12.5/la, 2.5 \I 
40/4DsP-2116OM_O'f:, • 

" 1oa.l1fIg-POinlJt2.5. 
· /la,2.5\1 I.lJoenl OSP16410 '1=, 

"l>(er/..POint)S9 
· /la, 1.8 \I MOIOrola. DSpSe, • 

33a (F1xer:/-Poinl) 6 7-

· lis, 1.8 \I 
MOIOrO/a. Dsp",~ 

vri824 (Fixer/..Po· 

tnl) 28.6na, 3.3 \I MoIOrOIa. OSP5B. • 

"8&, (F1xer:/-Poinll 8 

I .311s, 1.8 \I SIa.roOre MSa 

'81Of (Fixer/..Point) 3:3 

· n.s, 1.5\1 IIIMS3-.?~ 
5416 (f:i>Cer:/-n,., 

r-U/nl) B311s, 1.5 \I II 'MS3-.?ooSs 

10 (Fixer:/-POinl' 6:3 

I . lis, 1.6 \I It IMS3-.?OO6 

. eo., (Fixer/..POint. 5. 

I /la, 1.5 \I It IMS3-.?00s4 . 

>or (f:lxer/..Poinl) 1 7-

· /la, 1.5\1 
II 'MS32or-... . 

-~"">or-O IF:,' 

I' Ixer/..Poinl'1 7l 
I . lis, 1.5 \I II 'MS3-.?00e701 'f:, 

f< lOallng_Point• 6. 

I lis, 1.9 \I 

o o 

NlA 

NlA 

NlA 

NlA 

I\) 

o 
.j:I. 

o 

Energy (watt-microseconds) 

0) 

o Ol o o o 
..... ..... 
I\) .j:I. 

o o 
..... 
0) 

o 

." 
cS' 
c ... 
CD 
Q) 

t 
m 

-:::J 
ICD 
~ca 
CD'< 
"'0 _. 0 
en :::J 
men 
~c 
CD 3 
~'9. o· 

:::J 

0-... 
o o 
a 
2. 

OJ 

~ ... 
m-
e:> 
c 
i 
S' 
i 
"0 

""0 

a 

I 
UJ 



@ 

8 
-" 

r 
~ 
.f 
~ 
ca' 
:::I 

i 
§. 
o 
~ 
3' p 

~ 

o AD, AOSP-2188M ". 0 

" IX6d-Polnt) laans 
AD, AOSP-219X ,,,. · ,2.5\1 

I' IX6d-PoIntj 6.."'--. I NlA 
~IS, <'.5 \I AD, AOSP-<'19l<_0 . 

(F:,X6d-pa1nt) 8."'--. I NlA 
·...,IS, <'.5 \I 

AOIAOSP_21 

06s1.. ((:'Cl<!lIng_Poi 
nt) 15.2ns, 3.a \I AD, AOSP_21 08St.. 

-c ((:IOQllng.POint I 15 

, .2ns, 3.a \I AOIAOSP_211B 

OM ((:IOating_POint) 1'" 

c.5ns, <'.5 \I 
AOI AOSP-211"'fIA. 0 

""'VI- ((:'''~t. 
.... 109-Point I 1" 

, c.5ns, 2.5 \I 
l..Uoent OSP18410 ((:11(

6
d-,,_, 

I"'Vfnt) 5.9ns, 1.8\1 MotarO/q OSPSBaaa . 

((:IX6d-palnt I 8 /l 
J . ns, 1.8\1 Motorola OSP5Bs<'4 • 

((:IX6r1-Polnt I ...... 

J c O .8ns, 8.a \I Motaro/q OsPSBSS4 . 

((:IX6d-Polnt) 8 ."'--. 
'~IIB, 1.8\1 StqTCar6 ""0 

I.'Q, 8101 '(: .. 

I' IX6d-Point) a .~~_ 
. ...,"", 1.5\1 IIIMS8;?OCS,'8 . 

((:IX6d-POintl 8 3. 

J . ns; 1.5 \I IIIMS8;?OCSSI0 . 

(F:,X6d-POint) 8 a 
· ns, 1.8 \I II IMS8;?ocs: 

'<'04 ((:iX6d-POint I 5 

J Ils, 1.5 \I II IMs:""nr... 
~<""0"41O( '(: .. 

I' IXed-Polntl1 /l I NlA 
J • ns, 1.5\1 

II IMS8;?nr.... 
-"0"410(_0,,,. 

I' Ixed-Point) 1 i'l I NlA 
· fI.9, 1.5\1 II IMS8;?1JCB701 ((:, . 

Oqtlng-paint l B 
J ns, 1.9\1 

.... 
o 
o 

I\) 
o o 

Energy (waH-microseconds) 

c.> o o ~ 
o 

01 o o 
m 
o o 

-...J o o 
(Xl 
o o 

(0 
o 
o 

-n 
cD' 
c 
CiJ 
CO 

to ..... 
~ 
m 
:::s 
CD - ~ rca 

0'< :eO 
CD 0 
~ :::s 
-en en c 
m3 
~"2 CD -, 
~ 0 -:::s 

a-
~ 

N 
en 
0) 
I 

"tJ o 
5' --n 
:!I 

m 
~ 
m 
CD 
:::I 
n ::r 
i! 
~ 
m-e 
if 
I 
m 

J 
'< 

~ 
:::I 
til e 
3 

"5L g' 



~ 

@ 

8 .... 

i 
~ 

f. 
:::I 

i 
:::I" 

S 
i 
~ 
5' 
p 

o AD/A . (:) 
D8P'218B"" 'I:.' 

.' /)(6ct'Point) 13.'+._ 
'-IS, 2.5 I! ADIAD8P'219 . 

'X (f:/XecJ'POint) Ban.s NlA 
· ,2.51! I AD/ A{)sP'219X-C 'I:.' 

.' /)(6d'Poinfj B .. '+._ NlA 
"IS, 2.5 I! I 

IJ,D/A{)sp 

-21OBSI. (f:/Oc!ting.Point) 15 

.21)&, 3. 3 I! 
AD/ ADSP'21 OS 

Si.-c (f:/oating.POint'15 

J .2~ 3.311 
AD/ ADSP'211 Baa. 

'VI (f:/Ol!ltif1g..Po;nt. 

J 12.51)&, 2.5 I! AD/ AD8P'211BDM 0 

• (f:/Oc!tiTlg-POint. 12 

J .51)&, 2.5 II 
...... Osp' .. ,o~)S, 

· 119, 1.81! ""otoro/a D8PSe . 

3aa (AXed·Point. B 7i 
J • ~ 1.811 ""OIOro'a DSPSe824 'I:.' 

.' IXerl-Point • ..,,, 
JC;o.BI)&, 3.311 ""otoro/a {)sPSeSS

4 
• 

(A>red'Point) 8 .3 Starcor. M 
· 1ls, 1.8 I! 

e 'S08101 (f:ixerl-Po' 

Int) 3.3~ 1.511 1'/1'''''832,00&'1B • 

(Axed-POint) IS .~~_ 
• .... IS, 1.5 I! 1'/1'''''832005510 . 

(Axed'POint) IS .~~_ 
• .... IS, 1.81! 1'/1'II.1S32 

008204 (f:iXerl-Po;nt) 51)& 

, 1.51! 1'/ 1'''''S32,OCs 

4XX (f:lxerl-Point) 1 7J NlA 1'/ 1'11.1832,n.-._ 
• 1)&, 1.5 I! I 

- vti4XX-C 'f:iu '" • 
•• ... e .... Potnt• 1 il· .. IIA 

J • 1)&, 1.5 I! I I'C/. 
1"1'''''832,,,,,,,-,> 

"'-'1$ '01 (f:,,,~.. • 
.... lIng·Potnt) 8ns 

• , 1.91! 

~ 
(:) 

~ 

8 
(:) 

Energy (watt-microseconds) 
~ 

~ 
(:) 

8 ~ 
(:) (:) 

(,) 

8 
(:) 

m 
(:) 

8 
(:) 

"T1 ca· 
e 
Cil 
00 ,. 
...l 
...l . 

-m r-::s 
~ ~ 
CD~ ... 
-·0 
fit 0 
m::s 
CD fit =e 
CD 3 
~"tJ -o· 

::s 
o ... 
< =: 
CD ... 
D" _. 

aJ 

i 
tit" 
G) 
c 

i 
S' 
~ 
~ 
~ 

I 
Ul 



o 

" 
A0/40SP-2186M . ~L=--:-----'---

(Flxed-POintj 13 3 

· ns, <.5 It OJ 40/40SP_<19X (F: 

@ 

~ 
CI .... 

-" 

" 
ell Ixed-POlntj 6 " 
.. ">Os, 2.5 It ~ AOI AOSP_"19 
- c: x-C (Ft 

.\l ~...",.,)."" 2." ~ 40/40SP_210651. F, • 

!!!. (. IOatmg-Pointl 15 
:::J 401 AD'" 
IQ , .2ns, 3.3 It -t " CJP-210851._C F, • 

ell (. IOating-Pointj 15 :T AOI 
() .2ns, 3.3 It S AOSP-21160M F, • 

- (. IOatmg-POintl 12 
o I .5ns, 2.5 It ~ 40/40SP-21180M 

~ -C (F/oating_POintl 1 

I 2.5ns, 2.5 It I.ucent OSP18410 . 

~ 

(f:,xed-POintj 5 9 

· ns, 1.8 It MotorOla OSP56 

333 (Fixed-Point) 8 ~ 
· ns, 1.8 It Motorola OSP58824 F,' 

(. Ixed-POint) 28 

.8ns, 3.3 It Motorola OSP58854 F,' 

(. /Xed-POintj 8 " 
·"ns. 7.8 It Starcore ""SC8101 . 

(f:,xed-POintj 3 3 
· ns, 1.5 It l'IMS32OC5418 

(F'Xed-POintl 6 
I .3ns, 1.5 It l'IMS320C5510 . 

(Flxed-POintj 8 " 
·.,ns, 1.8 It I' IMS320C8204 . 

(Flxed-POintl 5 
Ins, 1.5 It .,., IMS320C84XX F,' 

(. Ixed-POintl 1 ~ 
I • ns, 1.5 It I' IMS320C84xx_C 

(f:Jxed-POint) 1 ~ 
· ns, 1.5 It IIIMS320C8701 F, 

(. loating-POintl 8 
Ins, 1.9 It 

N/A 

N/A 

N/A 

N/A 

I\) 

" 
CJJ 

" 

Energy (watt-microseconds) 

.I:>­

" 
0'1 

" 
m 

" "" " 
Ol 

" 
co 
b 

" _. 
CC 
e 
C1J 
00 
~ 
I ... 

N . 
m 
:::s 

-CD 1""1 
OCC 

~~ 
""I 0 _. :::s 
o 0 

OJ me 
~ ~3 

CD "2- OJ 
ell 

""I _. 

:::J -0 
() :::s 
:T - 3 0 DI .. ""I 

~ m ;: ;::;: 
:D 
ell C III 
C :::s 
:;::;: "C 
III m 
I n ,.. 
m 
:::J 
ell .. 

IQ 
'< 
(') 
0 
:::J 
III 
C 
3 -g, 
0 
:::J 



c 
.2 
'So 
E 
:::II 
", 
C 
0 
() 

~ u c 
U..I 
'tS 
U 
.t! 
'i 
E .. 
0 z 

Buyer's Guide to DSP Processors· 

45.0 

40.0 

35.0 

30.0 

25.0 

20.0 

15.0 

10.0 

5.0 

0.0 

730 

Figure S.4-13A. Normalized Energy Consumption 
Sum for all b of E[p,b] I AE[b] 

• Real Block FIR 
~ LMS Adaptive FIR 
IlI'IVector Add 
f'J256-Point FFT 

(Lower is Better) 

8Single-Sample FIR 
EBTwo-Biquad IIR 
mVector Maximum 
I3Viterbi 

[]Complex Block FIR 
IS Vector Dot Product 
lBControl 
I!I Bit Unpack 

© 2001 Berkeley Design Technology, Inc. 



@ 

8 ..... 

I 
~ 

i 
cO' 
:s 

i :r 
6 

~ 
$' 
p 

fj ..... 

ADI ADSP-2186M (",. 

O(SCi-POlnl) 1a~ 
· '<511 ADI AQsP-219x • 

(1=/)(6ct-Poinl) IS .~~ 
• .... 18, 2.5 II ADI AQsP'219X-C '1=,' 

(i /xed-Polnt) IS ~ ~ ., . ,2.511 IS 13 .:.1:0 ADI AQsP-21 '1=,. 

(I) 0Bst. (, loaltng-Polnl) 15 ~ .2~'8.all 
I\)<r 
(Jl ~ :s: 
CPa-Cf) 
"U .... 1> 
Q. » b. a c..g 

OJ ADI ADSP_21 OS5£. 0 

0' . (1=Ioallng..Pofnl',S 
(') / .2~, 8.a ll ~ ADI AoSP-2116'OM 

::!! (1=loallflg.Pofnt) 12. s. 
:0 . ~, 2.511 

"11c.=::t. 
:!1 ii3 

"11 
:0 

Elamm 
«-fCJ) 
it ~ ~ s· 
::::L"" Occ 
0- ° I -_' .... m (I) 

:s: ii' en 
~ c ~ 
~, ~ 3 
3 -"2-
c :0 (I) 

3 ::!! 
:0 

13 II 1'2HJ 
mo<o 
::;: ° ~ ° caa-3 
-6 a .... "2-
~-o~ 
~ !am 

"UO' a (') 
c.~ 
c "11 
(') -
-:0 

ADI ADSP-2116OM 

-0 (1=Ioallflg-Pofnl) 12. S 

· ~, 2.511 t~nlQsP1641 . 

o (I=/xed-Pofnl' 59 
/ . ns, 1.8 II MOIO/'O/<l, DSp5B, • 

~ (Axed-Point) 6 7. 

· ~, 1.8 II 
MOIO/'o/<l, DSp5B, 

824 (I=hted-Po• 

Int)28.6~, 8.a ll MOIO/'O/<l, DSp5B, 

854 (1=Ixed-Po' 

Inl) 8.a~, 1.8 II ... """, """",, .......... ) .. 
· ns, 1.5 II "'M~ 

005416 (1=lxect • 

-POlnl) ~a~, 1.5 II 1/7-""S32.oo5510 . 

(1=IXect-Pofnt. 6 .,. 
. / .<i~, 1.6 II II IMS3<.0062 . 

04 (F=,xed-pofnl)",_. 
"'18, 1.511 II IMS3<.0Cs4 . 

10( (I=/X6d-Polnl) 1 7. 

· ns, 1.5 II 
II IMS3!>n~ . 

~'v\'"B41O(_0 '1=: 
\' Ixed-Point'1 7. 

I . ns, 1.511 IIIM~ 
006701 (1=Ioat' • 

tng-Potnl) 6ns, 1.9 II 

Normalized Energy Consumption 

...... ...... ...... 
o I\) ~ en (XI o I\) ~ 

NlA 

NlA 

'11 
CJ' 

en!:; 
C CD 
3!» 
_-1=10 
o • ........ 
mW 
=~ _O"z 

roo 
~ - 3 CD'!!!m 
... 'C :: _ .... N 
UI 0" CD 
m":::: Q. 
a~m -m:::J CD ..... CD 
~ 0" ... ...... ca 

-'< 
Qo 
o 0 
UI :::J cp UI 
C C 
'C 3 
-'C -o· 

:::J 

m 
~ 
f :s 
n :r 
:I 
III 

~ 

= c 
ii 
I 
m 
iii .a 
'< 
n g 
In 
C 
:I 
"9. 
0' 
:s 



Buyer's Guide to DSP Processors 

732 © 2001 Berkeley Design Technology. Inc. 



BDTI Benchmark™ Results - Memory Usage Benchmarking 

8.5 Memory Usage Benchmarking 

The preceding sections of our analysis have focused on evaluating processor exe­
cution speed and related figures of merit. However, the memory requirements of an appli­
cation implementation can have significant impact on overall system cost. Additionally, if 
application code and data cannot fit entirely in on-chip memory, a significant performance 
degradation may occur on many processors. Because of these and other factors, memory 
use efficiency is an important metric for processor selection. 

This section of our analysis focuses on processor memory use. We first examine 
memory use for the Control benchmark, a benchmark which is designed to be representa­
tive of typical control code. We next assess ROMabie memory use in the BOTI Bench­
marks™. Finally, we evaluate total'memory use in the BOTI Benchmarks. 

Control Benchmark Memory Use 

The BOTI Benchmarks™ include one benchmark function specifically designed to 
evaluate memory use for control-oriented programs. Control-oriented code usually takes 
up the bulk of an application's code space but only a fraction of the application's process­
ing time. Thus in control-oriented code, memory use is usually a more serious concern 
than execution speed. 

As mentioned above, the Control benchmark replaces the FSM benchmark found 
in earlier versions of the BOTI Benchmarks. 

The Control benchmark is a contrived series of operations common in control and 
decision processing. The benchmark consists of a "while" loop surrounding a "switch" 
statement, with the various switch cases performing bit manipulation, data moves, subrou­
tine calls, and stack manipulations. The primary optimization goal for programmers 
implementing the Control benchmark is minimum memory use, and the secondary goal is 
speed of execution. (For all other BOTI Benchmarks,the priority of these goals is 
reversed.) Implementors are instructed to avoid optimizations that decrease the bench­
mark's execution time if the optimizations increase the benchmark's memory use. 

Since the Control benchmark is designed to be representative of decision-making 
control code, memory use results on the Control benchmark are not necessarily indicative 
of processors' memory use on signal-processing-intensive tasks. Memory use on sig­
nal-processing-intensive tasks is evaluated via the other BOTI Benchmarks. 

The two most important processor features that enable good Control benchmark 
memory performance are: 

• Short immediate data support. The Control benchmark manipulates a number of 
relatively small constants. Processors that are able to embed short immediate data 
into an ALU operation instruction word have a distinct advantage here. For exam­
ple, a processor that can encode the instruction: 

eMP #14,A 
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in a single instruction word typically uses less memory on this benchmark than one 
that requires multiple instruction words. 

Some processors can use short immediate data only in move operations. These 
processors generally use less memory on the Control benchmark than those that 
cannot use short immediate data at all, but, due to the overhead of extra move 
instructions, their advantage is not as great as that of a processor that can use short 
immediate data as part of an ALU instruction. 

• PC-relative branch support. The Control benchmark includes about a dozen 
branch instructions. Processors that are able to use short PC-relative branching 
(where the destination address is encoded as part of a single branch instruction 
word, in terms of an offset from the current program counter value) conserve 
memory related to branch instructions. This is in contrast to processors that must 
store the destination address as a separate instruction extension word. That is, a 
processor that can encode the instruction: 

JLT test20 

in a single instruction word (by using a relative branch to destination "test20") 
generally uses less memory on this benchmark than one that requires two instruc­
tion words. 

ROMabie Memory Use 

The cost of ROM is typically much lower than the cost of RAM of the same size 
and speed. Therefore, when evaluating the memory use of processors for the purpose of 
analyzing overall system cost, it is important to differentiate between instructions and data 
that remain constant, and thus can be placed in on- or off-chip ROM, and instructions and 
data that are modified in the course of executing the application, and thus must be placed 
in more expensive RAM. We refer to instructions and data that remain constant through­
out the execution of an application as ROMable. 

None of the BOT! Benchmark™ implementations use self-modifying code. There­
fore, all program memory used in the BOTI Benchmarks is ROMable. We refer to the 
amount of memory needed to store benchmark program as program memory use. In addi­
tion, several benchmarks require filter coefficients or other data that is never modified. We 
refer to the amount of memory needed to store this data as constant data memory use. 

Program Memory Use 

Computationally intensive OSP algorithm code tends to be fairly compact by 
nature, so memory use for DSP algorithms is typically less important than memory use for 
control code. Hence, our analysis of program memory use focuses on the Control bench­
mark, described above. In all BDTI Benchmarks except the Control benchmark, bench­
mark code has been optimized for speed frrst and memory use second. 
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Programming style strongly affects program memory use. Loop unrolling that 
excessively increases program memory use is prohibited in the BDTI Benchmarks. How­
ever, to achieve low instruction cycle counts, loop unrolling and software pipelining are 
often used to a limited extent. 

The most important architectural features that affect program memory use in DSP 
algorithms (as opposed to control tasks) are: 

• Instruction word widths. On the processors we have benchmarked in this report, 
instruction word widths range from 16 bits to 48 bits. Most processors have fixed 
instruction word widths, but a few have variable instruction widths. Obviously, a 
processor with short instruction words uses less program memory per instruction 
than a processor with wide instruction words. 

• Operations performed within each instruction. Many DSP processors allow 
several operations to be specified within a single instruction. The fewer operations 
that can be performed per instruction, the more instructions are generally required 
to perform a task, increasing program memory use. 

• Flexibility of instruction set. On processors with very restricted instruction sets, 
it may be necessary to use more instructions to perform a given operation than on a 
processor with a more flexible instruction set. For example, some processors place 
many restrictions on which registers can be used as operand sources for certain 
instructions, which may force the programmer to insert extra instructions to move 
operands into the appropriate registers. 

Processors that have flexible instruction sets or that allow several operations to be 
performed within each instruction often have larger instruction word widths than proces­
sors that do not provide such features. Thus, although processors with shorter instruction 
word widths use less memory per instruction than processors with wider instruction 
words, they generally use more instructions to accomplish a task. 

Constant Data Memory Use 

Many DSP algorithms such as fixed-coefficient filters and fast Fourier transforms 
rely on arrays of coefficients, "twiddle factors," or other data that is not modified. The two 
primary factors affecting constant data memory use are the data word width and the data 
set size. For example, processors with wider data words require more memory to store the 
same number of filter coefficients, and filters with a larger number of taps require more 
coefficients to be stored. 

It is often possible to increase the execution speed of algorithms via the use of 
look-up tables, sacrificing constant data memory use for speed. In general, we have disal­
lowed such optimizations in the BDTI Benchmarks. However, in a few cases we have 
allowed an array of filter coefficients to be duplicated in memory if doing so resulted in a 
significant improvement in speed. Occasionally, we have also allowed benchmark imple­
mentations to use a few extra words of constant data memory in order to boost perfor­
mance. In deciding whether to permit such performance optimizations, we weighed the 
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increase in memory use against the resulting performance gain, and judged whether this 
trade-off would be reasonable in a typical application. 

Total Memory Use 

Although many applications use ROM for all instructions and constant data, in 
some applications this is not possible. For example, in multimedia applications, memory 
may be dynamically allocated for instructions and data as needed for various multimedia 
functions. Thus, the system must contain enough RAM to hold the largest amount of 
instructions and data that may be in use simultaneously. In such applications, total mem­
ory use is a more useful metric than ROMabie memory use. 

Non-Constant Data Memory Use 

In addition to the program code and constant data included in ROMabie memory 
use as discussed above, total memory use also includes non-constant data. Non-constant 
data is any data that may need to be updated during execution of the benchmark. This 
includes delay lines, stack use, input/output buffers, and state variables that must be stored 
between invocations of the benchmark function. 

Note that the amount of non-constant data used by a benchmark function, referred 
to as non-constant data memory use, complements ROMabie memory use in two ways. 
First, non-constant data memory use accounts for the difference between ROMabie mem­
ory use and total memory use. Second, non-constant data memory use represents the 
smallest amount of RAM (as opposed to ROM) needed to execute the benchmark. 

Like constant data,the two primary factors affecting non-constant data memory 
use are the data word width and the data set size, although occasionally execution speed 
optimizations make use of additional non-constant data memory. As with constant data 
memory, in implementing the BDTI Benchmarks we weighed the increase in memory use 
of such optimizations against the improvement in performance, and only allowed an opti­
mization if we felt this trade-off would be reasonable in a typical application. 

Organization of Results 

The memory usage data and analysis presented in this section are organized as fol-
lows: 

• Program memory use. 
The program memory use for each processor on each benchmark is shown in 
Table 8.5-1 and Figures 8.5-1B through 8.5-12B. (The lower segment of each bar 
in the figures represents program memory use.) Program memory use includes 
program memory for the main benchmark body, but not for the power-up section. 

• Normalized program memory use. 
As the first step in creating aggregate program memory use results that show each 
processor's overall program memory use, we normalize the program memory use 

736 ©2001 Berkeley Design Technology, Inc. 



BDTI Benchmark™ Results - Memory Usage Benchmarking 

for each processor on each benchmark. This normalization is done by dividing 
each processor's memory use on a given benchmark by the average over all pro­
cessors on that benchmark. This ensures that benchmarks that consume more 
memory by their nature are not automatically weighted more heavily when we 
aggregate the program memory use of each processor over all benchmarks. Nor­
malized benchmark program memory use values are presented in Table 8.5-2. 

• Total normalized program memory use for all benchmarks. 
Adding together the normalized benchmark program memory use for all bench­
marks for each processor produces an overall program memory use measure for 
that processor. This sum effectively applies a uniform weighting to each bench­
mark for this section of the analysis. Without the normalization step, benchmarks 
that require more program memory would tend to be weighted more heavily in the 
overall results. The results are shown in Figure 8.5-13 and at the bottom of Table 
8.5-2. 

• Constant data memory use. 
Tables 8.5-3A and 8.5-3B and Figures 8.5-1B through 8.5-12B show each proces­
sor's constant data memory use on each benchmark. (The upper segment of each 
bar in the figures represents constant data memory usage.) 

• Normalized constant data memory use. 
Normalized benchmark constant data memory use values for each processor on 
each benchmark are presented in Table 8.5-4. The normalization of the constant 
data memory use is performed in the same way as the normalization of program 
memory use. It should be noted that, on some benchmarks, one processor uses a 
small amount of constant data while all of the others use none. For example, on the 
Bit Unpack benchmark, the Texas Instruments TMS320C54xx uses two bytes of 
constant data while the other processors use none. This phenomenon tends to dis­
tort the normalized results. Hence, we focus on the non-normalized constant data 
memory use results, presented in Table 8.5-3B and Figures 8.5-1B through 
8.5-12B, rather than on the normalized constant memory use results. 

• Total normalized constant data memory use for all benchmarks. 
Adding together the normalized benchmark constant data memory use for all 
benchmarks for each processor produces an overall constant data memory use 
measure for that processor. This sum effectively applies a uniform weighting to 
each benchmark for this section of the analysis. Without the normalization step, 
benchmarks that require more constant data memory would tend to be weighted 
more heavily in the overall results. The results are shown in Figure 8.5-14 and at 
the bottom of Table 8.5-4. As explained above these results are prone to distortions 
because on some benchmarks most processors use no memory while some proces­
sors use a small amount of memory. Hence, we focus on the non-normalized con­
stant data memory use results, presented in Table 8.5-3B and Figures 8.5-1B 
through 8.5-12B, rather than on the normalized constant memory use results. 
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• Non-constant data memory use. 
Table 8.S-SA and 8.S-SB and Figures 8.5-1A through 8.5-12A show each proces­
sor's non-constant data memory use on each benchmark. (The lower segment of 
each bar in the figures represents non-constant data memory usage.) 

• Normalized non-constant data memory use. 
Normalized benchmark non-constant data memory use values for each processor 
on each benchmark are presented in Table 8.S-6. The normalization of the 
non-constant data memory use is performed in the same way as the normalization 
of program memory use. 

• Total normalized non-constant data memory use for all benchmarks. 
Adding together the normalized benchmark non-constant data memory use for all 
benchmarks for each processor produces an overall non-constant data memory use 
measure for that processor. This sum effectively applies a uniform weighting to 
each benchmark for this section of the analysis. Without the normalization step, 
benchmarks that require more non-constant data memory would tend to be 
weighted more heavily in the overall results. The results are shown in Figure 
8.S-15 and at the bottom of Table 8.S-6. 

• ROMable memory use. 
Program memory use and constant data memory use are added together to com­
pute each processor's ROMabie memory use on each benchmark. These results are 
shown in Table 8.S-7. Figures 8.5-1B through 8.S-12B show each processor's 
ROMabie memory use on each benchmark, divided into program memory and 
constant data memory components. 

• Normalized ROMable memory use. 
Normalized ROMabie memory use values for each processor on each benchmark 
are presented in Table 8.S-8. The normalization of the ROMabie memory use val­
ues is performed in the same way as the normalization of program memory use. 

• Total normalized ROM able memory use for all benchmarks. 
Adding together the normalized benchmark ROMabie memory use for all bench­
marks for each processor produces an overall ROMabie memory use measure for 
that processor. This sum effectively applies a uniform weighting to each bench­
mark for this section of the analysis. Without the normalization step, benchmarks 
that require more ROMabie memory would tend to be weighted more heavily in 
the overall results. The results are shown in Figure 8.S-16 and at the bottom of 
Table 8.S-8. 

• Total memory use. 
Non-constant data memory use, constant data memory use, and program memory 
use are added together to compute each processor's total memory use on each 
benchmark. These results are shown in Table 8.S-9. Figures 8.S-1A through 
8.S-12A show the total memory use for each processor on each benchmark, 
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divided into non-constant data memory, constant data memory, and program mem­
ory components. 

• Normalized total memory use. 
Normalized total memory use values for each processor on each benchmark are 
presented in Table 8.5-10. The normalization of the total memory use values is per­
formed in the same way as the normalization of program memory use. 

• Overall normalized total memory use for all benchmarks. 
Adding together the normalized benchmark total memory use for all benchmarks 
for each processor produces an overall total memory use measure for that proces­
sor. This sum effectively applies a uniform weighting to each benchmark for this 
section of the analysis. Without the normalization step, benchmarks that require 
more memory would tend to be weighted more heavily in the overall results. The 
results are shown in Figure 8.5-17 and at the bottom of Table 8.5-10. 

As explained earlier in this chapter, for some processors that use caches, we report 
two sets of results. Memory usage is not affected by the state of the caches. For consis­
tency throughout the report, however, we include the memory usage for these processors 
in both the non-cache-preloaded versions and the cache-preloaded versions. In calculating 
the averages of memory usage, though, we count processors with caches as a single pro­
cessor. 

Analysis of Results 

Control Benchmark Memory Use 

Table 8.5-9 shows processor total memory use (in bytes) for all benchmarks, 
including the Control benchmark. Figure 8.5-9A presents this information graphically. In 
the Control benchmark, most processors use only 4-12 bytes of non-constant data memory 
and no constant data memory. Hence, program memory represents the vast majority of the 
memory used in this benchmark on each processor. It is therefore not surprising that pro­
cessors with shorter instruction words generally use less memory in this benchmark than 
processors with larger instruction words. 

The three processors with the lowest Control benchmark memory use results all 
use 16-bit instructions words. These are the Motorola DSP568xx and DSP5685x, and the 
StarCore SC140 (which uses 16-bit instructions with optional prefixes that can add 16 or 
32 bits to the length of a group of parallel instructions). 

The key features that enable the DSP5685x to achieve good code density on con­
trol-oriented code are its 16-bit instruction word width, PC-relative branches, and support 
for short immediate data. The second-lowest total memory usage for the Control bench­
mark is achieved by the DSP568xx, which requires slightly more program memory. Com­
pared with the DSP568xx, the DSP5685x gains the advantage here due to its ability to 
load and store long (32-bit) data in one instruction. 
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The low Control benchmark memory use of the SCl40 is particularly noteworthy 
considering the processor's very high speed. Prior to the SC140, VLIW -based DSPs have 
generally had relatively high memory use. The main reason for the lower memory use of 
the SCl40 is its efficient encoding of instructions, using 16-bit instructions with optional 
16- or 32-bit prefixes that are shared among the instructions in an execution set. For exam­
ple, on most processors, the loop start and end addresses for hardware loops are either 
written into a register or embedded into an instruction (in which case the processor writes 
the values into registers that are invisible to the programmer). For a processor with 16-bit 
program memory addresses, this results in usage of at least two 16-bit words. These two 
16-bit words are also used in the SC140, but they are better utilized because they also 
carry conditional execution information. Further, in some cases, this conditional execution 
information can be used to reduce the number of branches-and hence, the number of 
instructions required to implement the benchmark. 

The two worst performers on this benchmark, the ADSP-2106xand ADSP-2116x, 
use the same code for the Control benchmark. The reason for their high memory usage is 
that the ADSP-2106x and ADSP-2116x use 48-bit instruction words. To compete with 
processors with 16-bit instruction words, these processors would have to implement the 
benchmark using one third as many instructions as the processors with 16-bit instructions. 
Although the processors' wide instruction words allow flexibility for performing several 
operations within each instruction, on the Control benchmark this does not make up for 
the wider instruction words. 

The Texas Instruments TMS32OC62xx and TMS320C67xx use the same imple­
mentation for this benchmark, and have relatively high memory use. This is primarily due 
to the processors' 32.,bit instruction width and the fact that their instructions are fairly sim­
ple. Because the Control benchmark is optimized for memory usage rather than speed, the 
processors do not use a deep software pipeline in this benchmark. Unfortunately, without 
deep software pipelining, multi-cycle NOP instructions must sometimes be used to fill 
branch delay slots. 

Compared to the TMS320C62xx, the Control benchmark memory use of the 
TMS320C64xx is about 15% lower. Two architectural changes explain this. First, the 
TMS320C64xx implementation takes advantage of the new "BNOP" (branch followed oy 
multi-cycle NOP) and "ADDKPC" (save program counter followed by multi-cycle NOP) 
instructions. Second, on .the TMS320C64xx, unlike the TMS32OC62xx, groups of instruc­
tions to be executed in parallel (referred to as an "execute packet") aren't restricted to be 
entirely contained in a group of instructions read from memory at one time (referred to as 
a "fetch packet"). On the TMS320C62xx, an execute packet that would otherwise cross a 
fetch packet boundary is automatically aligned by the compiler or assembler using NOPs. 
The NOP instructions are executed in parallel with the other instructions in the execute 
packet, and don't affect execution time. They do, however, consume program memory. 

Note that while the Texas Instruments TMS320C55xx maintains assembly source 
code compatibility with the older TMS320C54xx, the TMS320C55xx introduces a num-
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ber of new instructions. The TMS320C55xx achieves a Control benchmark memory use 
approximately 30% lower than that of the TMS320C54xx, mainly due to its support for 
PC-relative branches and short immediate constants for arithmetic and logical operations. 
Although the TMS320C55xx also supports variable-length instructions from 8- to 48-bits 
long (compared with a fixed 16-bit instruction word length for the TMS320C54xx), in 
control code the TMS320C55xx mostly uses 16-bit instructions, so this feature does not 
significantly reduce control code memory use. 

ROMabie Memory Use 

This section presents a brief analysis of the benchmark ROMabie memory use 
results, summarized in Table 8.5-7, Figures 8.5-1B through 8.5-12B, and Figure 8.5-16. 
Note that in the figures, the ROMabie memory use results are divided into program mem­
ory and constant data memory components. We frrst discuss program memory use, then 
constant data memory use, and finally we combine the two and discuss the overall ROM­
able memory use of each processor. 

When reviewing the total normalized program memory use results presented in 
Figure 8.5-13, note that the 12 benchmarks are weighted uniformly. This weighting is 
arbitrary and may not be appropriate for any particular application. For most applications, 
the Control benchmark should be weighted heavily since control code generally makes up 
the bulk of an application's program memory use. 

In benchmarks other than the Control benchmark, fixed-point conventional DSPs 
generally have the lowest memory use. This is due in part to their relatively small, 16- or 
24-bit instruction word sizes. A more important factor, however, is the relatively simple 
nature of these processors, including fairly shallow pipelines, and execution of only one 
instruction at a time. In contrast, on more complex processors that execute multiple 
instructions in parallel, DSP algorithm implementations typically execute multiple 
instances of the same instruction in parallel (for example, four MAC instructions), which 
consumes more program memory. Similarly, in processors with deep pipelines, extensive 
software pipelining is typically used in DSP algorithm implementations to minimize the 
effects of pipeline latencies; this amounts to duplicating sequences of instructions, and 
consumes program memory. These effects are particularly evident in the Texas Instru­
ments TMS320C62xx, TMS320C64xx, and TMS320C67xx. These processors have the 
highest total normalized program memory use results, approximately double those of the 
processors with the next-highest results. In addition to the pipeline and parallel instruction 
execution factors described above, the program memory use of these Texas Instruments 
processors is increased due to the processors' relatively simple, 32-bit instructions. 

The total normalized program memory usage of the TMS320C64xx is about 15% 
lower than that of the TMS320C62xx, for two reasons. First, unlike on the 
TMS320C62xx, NOPs aren't required to align execution packets on the TMS320C64xx, 
increasing code density. Second, in general, the higher parallelism of TMS320C64xx 
instructions increases code density because the TMS320C64xx can often accomplish 
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more work in a single instruction than can the TMS32OC62xx. It should be noted, though, 
that on some benchmarks the TMS32OC64xx uses more program memory than does the 
TMS320C62xx. Both processors' memory usage is increased due to frequent use of loop 
unrolling to optimize the benchmarks; however, this technique increases program memory 
usage more on the TMS320C64xx than on the TMS32OC62xx. This is because, compared 
to the TMS32OC62xx, the higher level of parallelism on the TMS32OC64xx motivates 
programmers to unroll loops more than with the TMS32OC62xx. For this reason, four 
benchmarks out of twelve require more program memory on the TMS320C64xx than on 
the TMS320C62xx. 

Among conventional DSPs, the Analog Devices ADSP-2106x has an unusually· 
high total normalized program memory use result, owing to its unusually long 48-bit 
instructions. Excluding the ADSP-2106x, the total normalized program memory use 
results of the conventional DSPs benchmarked here lie within a narrow range, from 
approximately 6 for the Texas Instruments TMS320C54xx to approximately 7.5 for the 
Motorola DSP563xx. I 

Shifting our attention to constant data memory use, it should be noted that, on 
some benchmarks, one processor uses a small amount of constant data while all of the oth­
ers use none. For example, on the Bit Unpack benchmark, the Texas Instruments 
TMS320C54xx uses two bytes of constant data while the other processors use none. This 
phenomenon tends to distort the normalized results. Hence, we focus on the non-normal­
ized constant data memory use results, presented in Table 8.5-3B and Figures 8.5-1B 
through 8.5-12B. 

On most benchmarks, all benchmarked processors use the same number of data 
words. Of course, the size of a word varies from one· processor to another: the bench­
marked floating-point DSPs use 32-bit words, and all of the benchmarked fixed-point 
DSPs use 16-bit words except for the Motorola DSP563xx, which uses 24-bit words. 
Thus, in most cases, the most important factor in determining a processor's constant data 
memory use is its data word size. Processors with 24-bit data words generally use about 
1.5 times the constant data memory of processors with 16-bit data words, while processors 
with 32-bit data words generally use about twice as much constant data memory as pro­
cessors with 16-bit data words. There are some exceptions to this, though. In particular, 
constant data memory use on the FFT does vary significantly from processor to processor, 
even after accounting for different data word sizes. These variations are a consequence of 
particular speed-oriented optimizations made by the benchmark implementors. Different 
optimizations are effective on different processors, depending on the details of the proces­
sor's capabilities, and different optimizations use different amounts of constant data mem­
ory. 

For example, on the FFT benchmark, the constant data memory use of the Texas 
Instruments TMS320C54xx is roughly half that of most of the other processors bench­
marked here. On this benchmark, the TMS32OC54xx takes advantage of symmetries in 
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the twiddle factors (FFT coefficients) to reduce the amount of constant data memory 
required, without increasing execution time. 

Generally speaking, a processor's constant data memory use can be deduced by 
knowing the benchmark parameters: for example, if a processor with 16-bit data processes 
T taps in the real block FIR filter benchmark, the processor will require 2T bytes of con­
stant data memory for the coefficients. The ADSP-2116x, which uses 32-bit floating-point 
data, is an exception to this rule. On the real block FIR filter and the Single-Sample FIR 
filter benchmarks, the ADSP-2116x uses two copies of the filter coefficient array in order 
to better take advantage of its SIMD architecture. The ADSP-2116x therefore uses twice 
as much constant data memory on these benchmarks as other DSPs with 32-bit data sizes. 

When program memory and constant data memory are combined to yield the 
ROMabie memory use results, the overall normalized results (shown in Figure 8.5-16) are 
very similar to the overall normalized program memory use results (shown in Figure 
8.5-13). This is because seven of the benchmarks use no constant data memory on most 
processors, and most of the remaining five benchmarks show little variation in constant 
data memory use. 

Comparing the benchmarked processors' overall normalized ROMabie memory 
use, the Texas Instruments TMS320C64xx, TMS320C62xx, and TMS320C67xx have the 
highest results by a wide margin, due to their very high program memory use, discussed 
above. (TMS320C67xx ROMabie memory use is higher than that of the TMS320C62xx 
and TMS320C64xx due to higher program memory use and higher data memory use; the 
latter is due to the fact that the TMS320C67xx uses 32-bit data.) Similarly, the Analog 
Devices ADSP-2106x and ADSP-2116x have high total normalized ROMabie memory 
use due to their large 48-bit instruction words that increase program memory use, and their 
32-bit data word size. The ADSP-2116x is further hindered by the fact that it requires 
some additional code in order to combine data from its two data paths, and also requires 
additional constant data as described above. 

The processors with the lowest total normalized ROMabie memory use are all con­
ventional DSPs: the Texas Instruments TMS320C54xx, the Analog Devices ADSP-218x 
and ADSP-219x, and the Motorola DSP5685x and DSP568xx. The VLIW-based Texas 
Instruments TMS320C55xx and the enhanced conventional Lucent DSP164xx also have 
fairly low total normalized ROMabie memory use. 

Total Memory Use 

This section presents a brief analysis of the benchmark total memory use results 
summarized in Table 8.5-9, Figures 8.5-1A through 8.5-12A, and Figure 8.5-17. Note that 
in the figures the total memory use results are divided into non-constant data memory, 
constant data memory, and program memory components. In this section, we .focus our 
discussion on non-constant data memory use. Constant data memory use and program 
memory use are discussed above in the analysis of ROMabie memory use. We conclude 
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by discussing how non-constant data memory and ROMabie memory use combine to 
yield the overall total memory use of each processor. 

Overall normalized non-constant data memory use results are presented in Figure 
8.5-15. As with constant data memory use, native data word width is the primary factor 
determining each processor's non-constant data memory use. Thus, the floating-point 
DSPs (the Texas Instruments TMS320C67xx and Analog Devices ADSP-2106x and 
ADSP':'2116x) have notably high non-constant data memory use results due to their large 
32-bit floating-point native data format. Similarly, the Motorola DSP563xx uses about 
50% more non-constant data memory than most 16-bit, fixed-point DSPs due to its 24-bit 
data word size. 

Nearly all of the 16-bit, fixed-point processors have very similar total normalized 
non-constant data memory results, ranging from approximately 9.3 for the Texas Instru­
ments TMS320C55xx to approximately 10.4 for the Texas Instruments TMS320C62xx. 
The StarCore SC140 has a total normalized non-constant data memory result that is about 
20% higher than those of the other 16-bit fixed-point DSPs. This is due to the SC140's rel­
atively high non-constant memory use on the Control benchmark, which in tum is due to 
the way in which stack operations work on the SC140. The SC140 can group one or two 
PUSH instructions in an,execution set, and in either case the stack pointer is incremented 
only once by 8 bytes. However, executing multiple instructions in parallel takes up more 
memory than issuing each instruction by itself. Thus, there is a trade-off between program 
memory and non-constant data memory. If the PUSH instructions are issued separately (as 
is done in the Control benchmark), the size of the required non-constant data memory is 
significantly increased. Nevertheless, since non-constant data memory use in this bench­
mark is small relative to program memory use, the SC140's total memory use on the Con­
trol benchmark is among the lowest of the benchmarked processors, as discussed above. 

Next we discuss the overall normalized total memory use results presented in Fig­
ure 8.5-17. Note that in some benchmarks, such as the Complex Block FIR, data makes up 
the bulk of the benchmark's total memory use on most processors. This is not surprising, 
since many DSP algorithms are implemented using small loops that process large amounts 
of data. Note, however, the very large influence of data memory use on total memory use 
is not typical of most DSP applications. Recall that the normalized total memory use 
results weight all of the benchmarks uniformly. In contrast, control code accounts for the 
bulk of program memory use in most applications, so greater weight would typically be 
appropriate for the Control benchmark compared to other benchmarks. Since the Control 
benchmark typically uses no constant data and very little non-constant data, a more appro­
priate weighting would decrease the influence of data memory use on total memory use, 
making program memory use the dominant factor. Nevertheless, the overall normalized 
total memory use results reveal a few important points. 

The TMS320C67xx takes last place in terms of overall normalized total memory 
use because it has both extremely high program memory use and a 32-bit, floating-point 
data format. The TMS320C62xx ties (with the ADSP-2116x) for second-to-Iast place in 
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terms of overall normalized total memory use despite its 16-bit native data word width, 
mostly due to its extremely high program memory use. The Analog Devices ADSP-2116x 
is penalized by its 32-bit, floating-point data format and moderately high program mem­
ory use. 

The Motorola DSP5685x has the lowest overall normalized total memory use, fol­
lowed by the Motorola DSP568xx. The low total memory use of these processors is due to 
their low program memory use and 16-bit native data word width. The Lucent DSPl64xx 
also has a very low overall normalized total memory use result. While the DSPl64xx has 
16- and 32-bit instructions, most instructions are 16-bits long. This, combined with the 
processor's 16-bit data word size, explains its low overall normalized total memory use 
result. Note that several other processors have overall normalized total memory use results 
just slightly higher than those of the three processors just mentioned. The Texas Instru­
ments TMS320C55xx and TMS320C54xx and the Analog Devices ADSP-218x and 
ADSP-219x all have overall normalized total memory use results within 10% of that of 
the DSP5685x. 
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Table 8.5-1. Program Memory Use 
(MP[p,b], bytes) 

asp Building Block ADI ADt ADI AD' ADI ADI AD' 
Functions 218x 219X 219X-C 2106X 2106x-C 2116x 2116x-C 

Notes [1,2) [1,2) 

Real Block FIR 66 108 108 

Single-SafT1)1e FIR 48 60 60 

Complex Block FIR 114 114 114 

LMS Adaptive FIR 66 84 84 

Two-Biquad IIR 48 48 48 

Vector .Oot Product 18 18 18 

Vector Add 24 24 24 

Vector Maximum 51 42 42 

pontrol 213 222 222 

~56-Point FFT 255 255 255 

~iterbi 288 306 306 

~itUnpack 57 57 57 

Table 8.5-2. Normalized Program Memory Use 

(MP[p,b]lAMP[b], bytes) 

asp Building Block AD, ADI AD, 

[1) (1) (1) (1) 

120 120 168 168 

78 78 114 114 

186 186 216 216 

186 186 186 186 

72 72 72 72 

54 54 78 78 

54 54 66 66 

66 66 84 84 

342 342 342 342 

1020 1020 1074 1074 

474 474 486 486 

132 132 132 132 

ADI ADI ADI ADI 

Functions 218x 219X 219x-C 2106x 2106X-C 2116x 2116x-C 

Notes [',2) ['.2) ['1 ['1 ['1 

Real Block FIR 0.32 0.53 0.53 0.59 0.59 0.82 

~ingle-Sample FIR 0.54 0.68 0.68 0.88 0.88 1.28 

Complex Block FIR 0.53 0.53 0.53 0.86 0.86 1.00 

LMS Adaptive FIR 0.34 0.44 0.44 0.97 0.97 0.97 

Irwo-Biquad IIR 0.68 0.68 0.68 1.02 1.02 1.02 

Vector Dot Product 0.29 0.29 0.29 0.86 0.86 1.24 

Vector Add 0.44 0.44 0.44 1.00 1.00 1.22 

Vector Maximum 0.44 0.37 0.37 0.57 0.57 0.73 

pontrol 0.97 1.01 1.01 1.55 1.55 1.55 

~6-Point FFT 0.39 0.39 0~39 1.55 1.55 1.63 

Viterbi 0.58 0.62 0.62 0.95 0.95 0.98 

Bit Unpack 0.55 0.55 0.55 1.27 1.27 1.27 

Total 6.07 6.50 6.50 12.07 12.07 13.71 

Notes: 

[1] Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 
to be consistent with earlier sections, but only one result from each chip is used for normaDzed calculations. 

[2] Projected; as of this writing, these processors were not yet sampling. 

['1 

0.82 

1.28 

1.00 

0.97 

1.02 

1.24 

1.22 

0.73 

1.55 

1.63 

0.98 

1.27 

13.71 

(cont) 

Lucent 
164xx 

90 

46 

98 

102 

40 

20 

32 

56 

182 

302 

188 

102 

(cont) 

Lucent 
164xx 

0.44 

0.52 

0.45 

0.53 

0.57 

0.32 

0.59 

0.49 

0.83 

0.46 

0.38 

0.98 

6.55 
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Table 8.5-1. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54XX C55xx C62xx C64xx C64xx-C C67XX 

(2) [1,2) [1,2) 

84 64 60 250 54 99 568 624 624 496 

45 30 28 114 30 38 176 180 180 256 

114 96 82 246 76 103 536 568 568 480 

105 46 60 174 66 49 640 248 248 680 

42 40 42 86 34 74 140 100 100 148 

21 14 14 60 16 22 168 120 120 260 

42 24 24 56 36 35 112 100 100 128 

30 32 56 176 72 106 288 316 316 232 

210 128 122 122 222 152 288 248 248 288 

318 578 464 604 236 401 1244 1000 1000 1488 

651 926 734 476 248 249 576 460 460 896 

72 56 44 112 82 60 184 184 184 184 

Table 8.5-2. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx .5685x SC140 C54XX C55xx C62xx C64xx C64xx-C C67XX 

[2) [1,2] [1.2) 

0.41 0.31 0.29 1.23 0.27 0.49 2.79 3.06 3.06 2.44 

0.51 0.34 0.32 1.28 0.34 0.43 1.98 2.03 2.03 2.88 

0.53 0.44 0.38 1.14 0.35 0.48 2.48 2.63 2.63 2.22 

0.55 0.24 0.31 0.90 0.34 0.25 3.33 1.29 1.29 3.54 

0.60 0.57 0.60 1.22 0.48 1.05 1.99 1.42 1.42 2.10 

0.33 0.22 0.22 0.95 0.25 0.35 2.66 1.90 1.90 4.12 

0.78 0.44 0.44 1.04 0.67 0.65 2.07 1.85 1.85 2.37 

0.26 0.28 0.49 1.53 0.63 0.92 2.51 2.75 2.75 2.02 

0.95 0.58 0.55 0.55 1.01 0.69 1.31 1.13 1.13 1.31 

0.48 0.88 0.70 0.92 0.36 0.61 1.89 1.52 1.52 2.25 

1.31 1.86 1.48 0.96 0.50 0.50 1.16 0.93 0.93 1.80 

0.69 0.54 0.42 1.08 0.79 0.58 1.n 1.n 1.n 1.n 

7.40 6.71 6.21 12.80 5.98 6.99 25.93 22.27 22.27 28.82 
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Table 8.S-3A. Constant Data Memory Use Formulas 
(MC[p,b], bytes) 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 21SX-C 2106x 2106x-C 2116x 2116x-C 

Notes [1.2J [1.2J [IJ [IJ [IJ [IJ 

Real Block FIR 2'T 2'T 2'T 4'T 4*T 4'T 4'T 

~ingle-SaI11lIe FIR 2*T 2*T 2*T 4*T 4*T 4*T 4'T 

pomplex Block FIR 4*T 4'T 4'T S*T S'T S*T S'T 

LMS Adaptive FIR 0 0 0 0 0 0 0 

Irwo-Biquad IIR 16 16 16 32 32 32 32 

Vector Dot Product 0 0 0 0 0 0 0 

Vector Add 0 0 0 0 0 0 0 

Vector Maximum 0 0 0 0 0 0 0 

Control 0 0 0 0 0 0 0 

256-Point FFT 640 640 640 1536 1536 1536 1536 

Viterbi 0 0 0 0 0 0 0 

Bit Unpack 0 0 0 0 0 0 0 

I=#ot la s p 

Table 8.S-3B. Constant Data Memory Use 
(MC[p,b] bytes) , 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 219x-C 2106x 2106x-C 2116x 2116x-C 

Notes [1.2) [1.2J [IJ [IJ [IJ 

Real Block FIR 32 32 32 64 64 64 

~ingle-Sample FIR 32 32 32 64 64 64 

pomplex Block FIR 64 64 64 128 12S 128 

LMS Adaptive FIR 0 0 0 0 0 0 

Irwo-Biquad IIR 16 16 16 32 32 32 

rvector Dot Product 0 0 0 0 0 0 

rvector Add 0 0 0 0 0 0 

Vector Maximum 0 0 0 0 0 0 

Pontrol 0 0 0 0 0 0 

!2sS-Point FFT 640 640 640 1536 1536 1536 

rviterbi 0 0 0 0 0 0 

Bit Unpack 0 0 0 0 0 0 

Substituted Values. T = 16 
Notes: 
(1) Memory use is the same tor both cached and non-cached versions of the chip. Both versions are presented 

to be consistent with earlier sections, but only one result from each chip is used for normalized calculations. 
(2) Projected; as of this writing, these processors are not yet sampling. 

(1) 

64 

64 

128 

0 

32 

0 

0 

0 

0 

1536 

0 

0 

(coot) 

Lucent 
164xx 

2*T 

2'T 

2'(T*2) 

0 

16 

0 

0 

0 

0 

1000 

0 

0 

(cont) 

Lucent 
164xx 

32 

32 

64 

0 

16 

0 

0 

0 

0 

1000 

0 

0 
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Table 8.5-3A. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 
563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67XX 

(2) [1,2) [1,2) 

3"T 2"T 2*(T+1) 2*T 2*T 2*T 2*T 2*T 2*T 4*T 

3*T 2*T 2"T 2*T 2*T 2*T+8 2*T 2*T 2*T 4*T 

6*T 4*T 4*T 4*T 4*T 4"T 4*T 4*T 4*T 8"T 

0 0 0 0 0 0 0 0 0 0 

24 16 16 16 16 16 16 16 .16 32 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

768 764 764 812 384 512 800 1024 1024 1568 

0 0 0 0 0 2 0 0 0 0 

0 0 0 0 2 0 0 0 0 0 

Table 8.5-38. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568XX 5685x SC140 C54xx C55xx C62Xx C64xx C64xx-C C67xx 

(2) [1,2) [1,2) 

48 32 34 32 32 32 32 32 32 64 

48 32 32 32 32 40 32 32 32 64 

96 64 64 64 64 64 64 64 64 128 

0 0 0 0 0 0 0 0 0 0 

24 16 16 16 16· 16 16 16 16 32 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

768 764 764 812 384 512 800 1024 1024 . 1568 

0 0 0 0 0 2 0 0 0 0 

0 0 0 0 2 0 0 0 0 0 
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Table 8.5-4. Normalized Constant Data Memory Use 
(MC[p,byAMC[b], bytes) 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 219xoC 2106)( 210SXOC 211SX 211SXOC 

Notes [l,2J [l,2J [1 J [1 J [lJ 

Real Block FIR 0.80 0.80 0.80 1.59 1.59 1.59 

Single-Sample FIR 0.79 0.79 0.79 1.58 1.58 1.58 

Complex Block FIR 0.80 0.80 0.80 1.60 1.60 1.60 

LMS Adaptive FIR 1.00 1.00 1.00 1.00 1.00 1.00 

~wo-Biquad IIR 0.80 0.80 0.80 1.60 1.60 1.60 

Vector Dot Product 1.00 1.00 1.00 1.00 1.00 1.00 

Vector Add 1.00 1.00 1.00 1.00 1.00 1.00 

Vector Maximum 1.00 1.00 1.00 1.00 1.00 1.00 

Control 1.00 1.00 1.00 1.00 1.00 1.00 

256-Point FFT 0.70 0.70 0.70 1.69 1.69 1.69 

Vilerbi 0.00 0.00 0.00 0.00 0.00 0.00 

Bit Unpack 0.00 0.00 0.00 0.00 0.00 0.00 

Total 8.89 8.89 8.89 13.06 13.06 13.06 

Notes: 

[1] Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 
to be consistent with earlier sections, but only one result from each chip is used for normalized calculations. 

[2] Projected; as of this writing, these processors are not yet sampling. 

[1 J 

1.59 

1.58 

1.60 

1.00 

1.60 

1.00 

1.00 

1.00 

1.00 

1.69 

0.00 

0.00 

13.06 

(cont.) 
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0.80 

0.79 

0.80 

1.00 

0.80 

1.00 

1.00 

1.00 

1.00 

1.10 

0.00 

0.00 

9.28 
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Table 8.5-4. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2J [1.2J [1.2J 

1.20 0.80 0.85 0.80 0.80 0.80 0.80 0.80 0.80 1.59 

1.18 0.79 0.79 0.79 0.79 0.99 0.79 0.79 0.79 1.58 

1.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.60 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.60 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.84 0.84 0.84 0.89 0.42 0.56 0.88 1.12 1.12 1.72 

0.00 0.00 0.00 0.00 0.00 14.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 14.00 0.00 0.00 0.00 0.00 0.00 

10.62 9.02 9.07 9.08 22.61 22.95 9.06 9.31 9.31 13.09 
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Table 8.S-SA. Non-Constant Data Memory Use Formulas 

(MD[p,b], bytes) 

DSP Building Block ADI ADI ADI 

Functions 218x 219x 21SX-C 

Nores (1,2) (1,2) 

Real Block FIR 4'N+2'T+2 4'N+2'T+2 4'N+2'T+2 

Single-Sample FIR 2'T+2 2'T+2 2'T+2 

Complex Block FIR S'N+4'T+2 S'N+4'T+2 S'N+4'T+2 

LMS Adaptive FIR 4'T+4 4'T+4 4'T+4 

rrwo-Biquad IIR 10 10 10 

Vector Dot Product 4'N 4'N 4'N 

Vector Add 6'N 6'N 6'N 

Vector Maximum 2'N 2'N 2'N 

Control 4 4 4 

256-Point FFT 1792 1792 1792 

Viterbi 1238 1238 1238 

Bit Unpack 188 188 188 

T = #of Taps N =# of Points 

Table 8.5-56. Non-Constant Data Memory Use 
(MD[p,b], bytes) 

DSP Suilding Block ADI ADI ADI 

Functions 218x 219x 219x-C 

Nares [1,2) [1,2) 

Real Block FIR 194 194 194 

Single-Sample FIR 34 34 34 

Complex Block FIR 386 386 386 

LMS Adaptive FIR 68 68 68 

Irwo-Biquad IIR 10 10 10 

Vector Dot Product 160 160 160 

Vector Add 240 240 240 

Vector Maximum 80 80 80 

Control 4 4 4 

256-Point FFT 1792 1792 1792 

Viterbi 1238 1238 1238 

Bit Unpack 188 188 188 

substItuted Values. T = 16 N = 40 
Notes: 

ADI 
2106x 

[1 ) 

S'N+4'T+4 

4'T+4 

8+16'N+8'T 

S'T+8 

16 

S'N 

12'N 

4'N 

S 

4096 

2460 

348 

ADI 

210Sx 

(1) 

388 

68 

776 

136 

16 

320 

480 

160 

8 

4096 

2460 

348 

ADI ADI ADI 
210ax-C 211ax 211Sx-C 

(1) [1 J (1) 

8'N+4'T+4 8'N+4'T+16 8'N+4'T+16 

4'T+4 8+4'T S+4'T 

S+16'N+8'T 
16'N+8'T+1 16'N+8'T+1 

6 6 

S'T+8 S'T+8 S'T+8 

16 16 16 

S'N S'N S'N 

12'N 12'N 12'N 

4'N 4'(N+2) 4'(N+2) 

8 S 8 

4096 4096 4096 

2460 2460 2460 

348 348 348 

ADI ADI ADI 

210ax-C 211ax 211ax-C 

(1] (1) [1 ) 

388 400 400 

68 72 72 

776 784 784 

136 136 136 

16 16 16 

320 320 320 

480 480 480 

160 168 168 

8 8 8 

4096 4096 4096 

2460 2460 2460 

34S 348 348 

[1) Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 
to be consistent with earlier sections, but only one result from each chip is used for normalized calculations. 

[2) Projected; as of this writing, these processors are not yet sampling. 

(cont) 
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2'T+4'N 

2'T 

2'(N'4+1} 

(4'T)+8 

S 

4'N 

6'N 

2'(N+2) 

12 

1032 

1232 

188 

(cont) 
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72 

8 
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12 
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Table 8.S-SA. (cant.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2] [1,2] [1,2] 

6'N+3'T+3 2'(2'N+T+2) 2'(2'N+T+1) 
(4'N)+(2'T)+ (4'N)+(2'(T-

4'N+4'T-4 
4+4'N+powe 4'N+4'power 4'N+4'power 

8'N+8'T 
12 1)) r(2 . (2 floor(log(T (2 floor(log(T 

3'T 2'T+2 2'T+2 2'T (2'T)+2 2'T+8 2'T 
power(2, power(2, power(2,trun 

trunc(looCT 2 trunc(loo(T 2 c(loo(T.2))+2 

6*T+12'N+3 4'(2'N+ T +2) 4'(2'N+T)+2 
(8'N)+(4*T)+ (8'N)+( 4*T)+ 

8*N+12'T-8 
(8*N)+(8*T)+ 

8*N+4*T+16 8*N+4'T+16 16*N+8*T 
12 4 4 

S*T+3 2*(2*T+3) 2'(2'T+3) 4*T 4'T 4'T+2 (S'T)+4 
8+2'T+powe 8+2*T+powe 

8*T+8 
r(2 trunc(log( r(2 trunc(log( 

12 8 8 12 8 8 8 8 8 16 

6'N 4'N 4*N 4*N 4*N 4*N 4'N 4*N 4*N 8'N 

9*N 6'N 6*N 6*N 6*N 6*N+2 6'N 6'N 6*N 12*N 

3*N 2*N 2*N (2*N)+12 (2'N)+4 2'N+4 2'N 2*N+16 2*N+16 4*N 

0 12 12 24 4 8 8 8 8 8 

3072 1054 1042 2056 2056 1032 2048 2048 2048 4096 

2130 1424 1420 1428 1476 466 844 780 780 1310 

270 190 188 158 192 188 240 188 188 240 

Table 8.5-58. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2] [1,2] [1,2] 

291 196 194 204 190 220 228 224 224 448 

48 34 34 32 34 40 32 32 32 64 

579 392 386 396 388 504 452 400 400 768 

99 70 70 64 64 66 100 72 72 136 

12 8 8 12 8 8 8 8 8 16 

240 160 160 160 160 160 160 160 160 320 

360 240 240 240 240 242 240 240 240 480 

120 80 80 92 84 84 80 96 96 160 

0 12 12 24 4 8 8 8 8 8 

3072 1054 1042 2056 2056 1032 2048 2048 2048 4096 

2130 1424 1420 1428 1476 466 844 780 780 1310 

270 190 188 158 192 188 240 188 188 240 
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Table 8.5-6. Normalized Non-Constant Data Memory Use 

(MD[p,b]/AMD[b], bytes) 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 219x-C 2106x 210axoC 211ax 211ax-C 

Notes [1.2) [1.2) (1) (1) (1) [1) 

Real Block FIR 0.76 0.76 0.76 1.52 1.52 1.57 1.57 

iSingle-Sample FI R 0.81 0.81 0.81 1.61 1.61 1.71 1.71 

lComplex Block FIR 0.78 0.78 0.78 1.57 1.57 1.59 1.59 

I'-MS Adaptive FI R 0.78 0.78 0.78 1.56 1.56 1.56 1.56 

trwo-Biquad IIR 0.95 0.95 0.95 1.51 1.51 1.51 1.51 

Vector Dot Product 0.80 0.80 0.80 1.60 1.60 1.60 1.60 

Vector Add 0.80 O.So 0.80 1.60 1.60 1.60 1.60 

Vector Maximum 0.77 0.77 0.77 1.55 1.55 1.62 1.62 

iControl 0.47 0.47 0.47 0.93 0.93 0.93 0.93 

~6-Point FFT 0.80 0.80 0.80 1.83 1.83 1.83 1.83 

~iterbi 0.87 0.87 0.87 1.73 1.73 1.73 1.73 

Bit Unpack 0.85 0.85 0.85 1.56 1.56 1.56 1.56 

Total 9.43 9.43 9.43 18.59 18.59 18.82 18.82 

Notes: 
[1] Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 

to be consistent with earlier sections. but only one result from each chip is used for normalized calculations. 
[2] Projected; as of this writing. these processors are not yet sampling. 

(cont) 
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Table 8.5-6. (cont.) 

Motorola Motorola Motorola starCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62XX C64xx C64xx-C C67xx 

(2] (1,2] (1,2] 

1.14 o.n 0.76 0.80 0.75 0.86 0.90 0.88 0.88 1.76 

1.14 0.81 0.81 0.76 0.81 0.95 0.76 0.76 0.76 1.52 

1.17 0.79 0.78 0.80 0.79 1.02 0.91 0.81 0.81 1.55 

1.14 0.80 0.80 0.73 0.73 0.76 1.15 0.83 0.83 1.56 

1.14 0.76 0.76 1.14 0.76 0.76 0.76 0.76 0.76 1.51 

1.20 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.60 

1.20 0.80 0.80 0.80 0.80 0.81 0.80 0.80 0.80 1.60 

1.16 o.n o.n 0.89 0.81 0.81 o.n 0.93 0.93 1.55 

0.00 1.40 1.40 2.80 0.47 0.93 0.93 0.93 0.93 0.93 

1.37 0.47 0.47 0.92 0.92 0.46 0.92 0.92 0.92 1.83 

1.50 1.00 1.00 1.00 1.04 0.33 0.59 0.55 0.55 0.92 

1.21 0.85 0.85 0.71 0.86 0.85 1.08 0.85 0.85 1.08 

13.37 10.03 9.99 12.15 9.53 9.33 10.37 9.80 9.80 17.42 
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Table 8.5-7. ROMabie Memory Use 

(MPC[p,b) = MP[p,b) + MC[p,b), bytes) 

asp Building Block ADI ADI 

Functions 218x 219x 

Notes [1,2] 

Real Block FIR 98 140 

Single-Sample FIR 80 92 

Complex Block FIR 178 178 

LMS Adaptive FIR 66 84 

Two-Biquad ItR 64 64 

Vector Dot Product 18 18 

Vector Add 24 24 

Vector Maximum 51 42 

Control 213 222 

256-Point FFT 895 895 

Viterbi 288 306 

Bit Unpack 57 57 

Total 2032 2122 

ADI 

219X-C 

[1,2] 

140 

92 

178 

84 

64 

18 

24 

42 

222 

895 

306 

57 

2122 

Table 8.5-8. Normalized ROMabie Memory Use 

(MC[p b]/AMC[b), bytes) , 

asp Building Block ADI ADI ADI 

Functions 218x 219X 219x-C 
Notes [1,2] [1,2] 

Real Block FIR 0.40 0.57 0.57 

Single-Sample FIR 0.62 0.71 0.71 

Complex Block FIR 0.60 0.60 0.60 

LMS Adaptive FIR 0.34 0.44 0.44 

Two-Biquad ItR 0.71 0.71 0.71 

Vector Dot Product 0.29 0.29 0.29 

Vector Add 0.44 0.44 0.44 

Vector Maximum 0.44 0.37 0.37 

Control 0.97 1.01 1.01 

~56-Point FFT 0.57 0.57 0.57 

[-/iterbi 0.58 0.62 0.62 

Bit Unpack 0.55 0.55 0.55 

Total 6.51 6.87 6.87 

Notes. 

ADI ADI ADI ADI 

210SX 21OSX-C 2116X 211SX-C 

[1] [1] [1] [1] 

184 184 232 232 

142 142 178 178 

314 314 344 344 

186 186 186 186 

104 104 104 104 

54 54 78 78 

54 54 66 66 

66 66 84 84 

342 342 342 342 

2556 2556 2610 2610 

474 474 486 486 

132 132 132 132 

4608 4608 4842 4842 

ADI ADI ADI ADI 

210SX 210SX-C 2116X 2116X-C 
[1] [1] [1] [1] 

0.75 0.75 0.95 0.95 

1.10 1.10 1.38 1.38 

1.06 1.06 1.16 1.16 

0.97 0.97 0.97 0.97 

1.15 1.15 1.15 1.15 

0.86 0.86 1.24 1.24 

1.00 1.00 1.22 1.22 

0.57 0.57 0.73 0.73 

1.55 1.55 1.55 1.55 

1.63 1.63 1.66 1.66 

0.95 0.95 0.98 0.98 

1.27 1.27 1.27 1.27 

12.86 12.86 14.25 14.25 

[11 Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 
to be consistent with earlier sections, but only one result from each chip is used for normalized calculations. 

[21 Projected; as of this writing, these processors are not yet sampling. 

(cont) 
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Table a.S-7. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 
563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2] [1,2] [1,2] 

132 96 94 282 86 131 600 656 656 560 

93 62 60 146 62 78 208 212 212 320 

210 160 146 310 140 167 600 632 632 608 

105 46 60 174 66 49 640 248 248 680 

66 56 58 102 50 90 156 116 116 180 

21 14 14 60 16 22 168 120 120 260 

42 24 24 56 36 35 112 100 100 128 

30 32 56 176 72 106 288 316 316 232 

210 128 122 122 222 152 288 248 248 288 

1086 1342 1228 1416 620 913 2044 2024 2024 3056 

651 926 734 476 248 251 576 460 460 896 

72 56 44 112 84 60 184 184 184 184 

2718 2942 2640 3432 1702 2054 5864 5316 5316 7392 

Table a.s-a. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 
[2] [1,2] [1,2] 

0.54 0.39 0.39 1.16 0.35 0.54 2.46 2.69 2.69 2.30 

0.72 0.48 0.46 1.13 0.48 0.60 1.61 1.64 1.64 2.47 

0.71 0.54 0.49 1.05 0.47 0.56 2.02 2.13 2.13 2.05 

0.55 0.24 0.31 0.90 0.34 0.25 3.33 1.29 1.29 3.54 

0.73 0.62 0.64 1.13 0.55 1.00 1.73 1.28 1.28 1.99 

0.33 0.22 0.22 0.95 0.25 0.35 2.66 1.90 1.90 4.12 

0.78 0.44 0.44 1.04 0.67 0.65 2.07 1.85 1.85 2.37 

0.26 0.28 0.49 1.53 0.63 0.92 2.51 2.75 2.75 2.02 

0.95 0.58 0.55 0.55 1.01 0.69 1.31 1.13 1.13 1.31 

0.69 0.85 0.78 0.90 0.39 0.58 1.30 1.29 1.29 1.95 

1.31 1.86 1.48 0.96 0.50 0.50 1.16 0.93 0.93 1.80 

0.69 0.54 0.42 1.07 0.81 0.58 1.76 1.76 1.76 1.76 

8.26 7.05 6.68 12.37 6.46 7.23 23.92 20.65 20.65 27.68 
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Table 8.5-9. Total Memory Use 
(MPCD[p,b] = MP[p,b] + MC[p,b] + MD[p,b], bytes) 

DSP Building Block ADI ADI 
Functions 218x 219x 

Notes [1,2) 

Real Block FIR 292 334 

Single-Sample FIR 114 126 

Complex Block FIR 564 564 

LMS Adaptive FIR 134 152 

Two-Biquad IIR 74 74 

Vector Dot Product 178 178 

lVector Add 264 264 

lVector Maximum 131 122 

!control 217 226 

!256-Point FFT 2687 2687 

jviterbi 1526 1544 

~itUnpack 245 245 

Total 6426 6516 

Notes. 

ADI 
219xoC 

[1,2) 

334 

126 

564 

152 

74 

178 

264 

122 

226 

2687 

1544 

245 

6516 

ADI ADI ADI ADI 

2106x 2106xoC 211ax 211axoC 
(1) [lJ (1) (1) 

572 572 632 632 

210 210 250 250 

1090 1090 1128 1128 

322 322 322 322 

120 120 120 120 

374 374 398 398 

534 534 546 546 

226 226 252 252 

350 350 350 350 

6652 6652 6706 6706 

2934 2934 2946 2946 

480 480 480 480 

13864 13864 14130 14130 

[1) Memory use is the same for both cached and non-cached versions of the chip. Both versions are presented 
to be consistent with earlier sections, but only one result from each chip is used for normalized calculations. 

[2) Projected; as of this writing, these processors are not yet sampling. 

Table 8.5-10. Normalized Total Memory Use 
(MPCD[p,b]lAMPCD[b], bytes) 

DSP Building Block ADI ADI ADI ADI ADI ADI ADI 

Functions 218x 219x 219xoC 210ax 210SXOC 211ax 211axoC 

Notes [1,2) [1,2) [1] (1) (1) (1) 

Real Block FIR 0.59 0.67 0.67 1.15 1.15 1.27 1.27 

~ingle-Sarnple FIR 0.66 0.73 0.73 1.22 1.22 1.46 1.46 

pomplex Block FIR 0.71 0.71 0.71 1.38 1.38 1.43 1.43 

LMS Adaptive FIR 0.48 0.54 0.54 1.15 1.15 1.15 1.15 

Irwo-Biquad IIR 0.73 0.73 0.73 1.19 1.19 1.19 1.19 

Vector Dot Product 0.68 0.68 0.68 1.42 1.42 1.51 1.51 

lVector Add 0.75 0.75 0.75 1.51 1.51 1.54 1.54 

Vector Maximum 0.60 0.56 0.56 1.04 1.04 1.15 1.15 

pontrol 0.95 0.99 0.99 1.53 1.53 1.53 1.53 

~6-Point FFT 0.71 0.71 0.71 1.75 1.75 1.76 1.76 

jviterbi 0.80 0.80 0.80 1.53 1.53 1.54 1.54 

Bit Unpack 0.75 0.75 0.75 1.47 1.47 1.47 1.47 

Total 8.40 8.62 8.62 16.33 16.33 17.00 17.00 

Notes. 
[1J Memory use is the sarne for both cached and non-cached versions of the chip. Both versions are presented 

to be consistent with earlier sections, but only one result from each chip is used for normaUzed calculations. 
[2J Projected; as of this writing, these processors are not yet sampling. 
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Table 8.5-9. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 
563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67XX 

[2] [1,2] [1,2] 

423 292 288 486 276 351 828 880 880 1008 

141 96 94 178 96 118 240 244 244 384 

789 552 532 706 528 671 1052 1032 1032 1376 

204 116 130 238 130 115 740 320 320 816 

78 64 66 114 58 98 164 124 124 196 

261 174 174 220 176 182 328 280 280 580 

402 264 264 296 276 277 352 340 340 608 

150 112 136 268 156 190 368 412 412 392 

210 140 134 146 226 160 296 256 256 296 

4158 2396 2270 3472 2676 1945 4092 4072 4072 7152 

2781 2350 2154 1904 1724 717 1420 1240 1240 2206 

342 246 232 270 276 248 424 372 372 424 

9939 6802 6474 8298 6598 5072 10304 9572 9572 15438 

Table 8.5-10. (cont.) 

Motorola Motorola Motorola StarCore TI TI TI TI TI TI 

563xx 568xx 5685x SC140 C54xx C55xx C62xx C64xx C64xx-C C67xx 

[2] [1,2] [1,2] 

0.85 0.59 0.58 0.98 0.55 0.70 1.66 1.77 1.77 2.02 

0.82 0.56 0.55 1.04 0.56 0.69 1.40 1.42 1.42 2.24 

1.00 0.70 0.67 0.89 0.67 0.85 1.33 1.31 1.31 1.74 

0.73 0.42 0.47 0.85 0.47 0.41 2.65 1.14 1.14 2.92 

0.77 0.63 0.65 1.13 0.57 0.97 1.62 1.23 1.23 1.94 

0.99 0.66 0.66 0.84 0.67 0.69 1.25 1.06 1.06 2.20 

1.13 0.75 0.75 0.84 0.78 0.78 0.99 0.96 0.96 1.72 

0.69 0.51 0.62 1.23 0.71 0.87 1.69 1.89 1.89 1.80 

0.92 0.61 0.59 0.64 0.99 0.70 1.29 1.12 1.12 1.29 

1.09 0.63 0.60 0.91 0.70 0.51 1.07 1.07 1.07 1.88 

1.45 1.22 1.12 0.99 0.90 0.37 0.74 0.65 0.65 1.15 

1.05 0.75 0.71 0.83 0.84 0.76 1.30 1.14 1.14 1.30 

11.49 8.03 7.96 11.16 8.42 8.31 17.00 14.75 14.75· 22.20 

© 2001 Berkeley Design Technology. Inc. 759 



at 
C) 

AD, ADSP_<18 

x (F:;Xed-POint) 
AD, ADSP_<19 

x (F:;xed-POint) 
AD, ADSP_<19 

x-C (f:,. 
IXed-POlnt) 

AD, ADSP-<106X f:, . 

(. loafing-POint) 
AD, ADSP-<106X_C fF:l . 

oating-Point) 
AD'ADsp_<116x f:, . 

(. loafing-POint) 
AD/ ADSP-<116X_C . 

(Aoating-Point) 
LUcent DSP164xx (f:; 

Ixed-Point) Motoro/a DsPSe 

3xx (f:i)(ed-Point) 
Motoro/a DspSe 

8xx (f:i)(ecJ..Point) 
MotorOla DSP5685x (f:,. 

Ixed-POint) 
Starcore Sc 140 

(Axed-Point) 
" IMS3<OC54 . @ 

XX (f:lxed-POint) N 

" 7Ms3<Oc55 . 
C) 

XX (f:lxed-POint) 

C) .... 
1/ IMS3<OC6< . 

OJ 

XX (f:lxed-POint) 

CD .. 
1/7Ms3<oC64 . j 

XX (f:lxed-POint) C 
1/ IMS3<OC64XX_C 

CD 

(F:;xed-Point) 

!!!. 

1/ IMS3<OC67: 
ca 
:s 

Xx (Aoating-POint) 
~ n 
:r 
:s 
0 
0' ca 

::c: 
:; 
p 

I\) 
0 

0 0 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

"'" o o 
m o o 

co o o 

.... 
o o o 

.... 
I\) 
o o 

"T1 
cO' 
c 

.... (; 
g,po 
SI) (J1 
- I s: ..... 
CD 1> 
3 ::D o CD 
-<!!. 
em 
til -
CD 8 ,... 

!! 
::D 

OJ c 
~ .. 
"r 
C> 
c 
0: 
CD 

cr 
g 
" " a 
m 
en o 
Ul 



1->.S m II 
ftC 

CD-
II) C 
~.; 
~c 

~8 
CD + 
:E E 
.! ! .a= 
~ E aa. a:-

500 

400 

300 

200 

BDTI Benchmark™ Results - Memory Usage Benchmarking 

Figure 8.5-1 B. Real Block FIR 
ROMabie Memory Use 

(Program + Constant Data) 

I r:J Program Memory Use 8 Constant Data Memory Use I 

© 2001 Berkeley Design Technology, Inc. 761 



Buyer's Guide to DSP Processors 

450 

400 

_350 

~ 
'E 
! 300 

en C 

~9 
ID C 

.r ~ 250 
en + 
:) lIS 

~1 
00 E .. 
~ j 200 
- en S C o 0 
... 0 

+ 150 E 
! 
Q 

e 
a. 
-100 

50 

o 

Figure 8.5-2A. Single-Sample FIR 
Total Memory Use 

I_ Non-Constant Data Memory Use 8 Constant Data Memory Use CJ Program Memory Use I 

762 © 2001 Berkeley Design Technology, Inc. 



@ 

8 .... 

i 
~ 

Ii' 
ca' ::s 

i 
::s o 

~ 
5' 
~ 

~ 

.'" """P .• ,,,,, I~ J',',":':':-:-:':':-:':':-:H IIIIIIII1 ADI ADSP-219 ... 

I\' (f:;xed-Point) 

o ~ 
.... 
g 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

.... 
~ 

I\) 
o o 

.'" """"-"""" ~ • . .... "1111111111 
1>o;nt) J ..... . ,',',' ....... . 

IJ """"'''-'''''''' 1%, ........ 0 .......................... ... :::::::::::::::::::: "'0 ADI ADSP-2106x C I 

a - (l:foating.Point) 1 ~ ADIADsp-2116x 

3 . (f:7oating.POint) s::: ADIADSP-2116xC 

....................... ...................... ....................... 
................................. ................................. ................................. ~ - (f:7oating.Point) o LUcent DSp 

-< '64"" ""' ... """'0 ............ " " '" ~ MotorOla Dsp J .... 
(I) S63xx (f:ixerJ..Po1nt) m MotorOla DsPStJ 

................................. ................................. ................................. 

~ ... I""'~ .... .."" , " " ~ MotorOla DsP568S -.:- ... 
iii x (f:ixed-POint) a StarcoreSCl40 o 
~ 
:s:: 
(I) 

~ 
-< 
c 
8l 

(f:ixerJ..Point) 
r, 1MS3z0CS4 . 

"'X ff:txed-Point) 

................................. ................................. ................................. 

r, 1MS3z0Css 

""I~O .................. .. 

I\) 
OJ o 

17~.... . ...... : :: : .................. :.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: .............. ::: ':...:1. ~ .... '''"'__ I~O ...................... . ............ . 171l1~.. ................ :: :'. ' .. ::::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.::::::: .. ::::: 4"" I1'~O .... ': ......• :........ . ••••••• : .... . 

17ll1S02oc. ":": ...... :: ............ ::::.:.:.:.:.:.:.:.:.:.:-:.:.:.:.::::::: ...... : ....... :: ........ :.:.:.:.:.: .:.: .:.: ""'-c I"",....."",. .... '::::: ... :::::..... .. . . ..... ':::::: .. '::::: ....... . 17h. , ................ . ........................ ::::: ........ . .~ ....... :::::::.:.::: .. : ....... . (l:foating-PO/f't'l ..... ,':,',' ... ',':: ....... . "., "0"::: ....... . 

c.J 
g 

c.J 
OJ o 

"TI 
_ cC' 
"'D c ... ... . 
o :u (1) 
caOe» ... s: ' 
1I)1I)Cf' 
30"N 
+ _m 

(1)' 

&>s:~ :s (1) :s 
U)3ce. 
&t~CP 
:s '< en 
... II) 

ii=3 
... (1)'C 
II) -'-' (1) 

!! 
:u 

OJ 

~ 
OJ 
! 
g. 
3 
I» , 
i c 
if 
I 
i: 

I 
~ 
c 

= ca 
CD 

r 
g. 
i! 
~ 
::s 
ca 



~ 

40/408P0218 

x (J:jxec:J-POint) 
40/408P0219 

X (J:jxec:J-POint) 
40/408P0219XoC . 

('f:lxec:J°POint) 
40/408P02106X ('f:l . (J 

Oating.POint) ~ 4014DSP02106J( C 
$: 

o (/':foaling0Point) <D 

4D'4DsP02116X 'f:l . § 
(. oatingoPOint) -< 

40, 40SP02116J( C C 

o (/':foaling-Point) 
(J) 

l.ucent OSP164XX m 
<D 

m 
Ixec:J°Point) 

0 
Motoro'a OSP56 0 

3xx ('f:ixec:J°Point) 

:::J 
!e. 

Motoro'a OSP56 I» 
:::J 

8xx ('f:ixec:J°Point) -(J 
MotorOla DSPS I» 

68SX('f:: -
Ixec:J-POint) 

I» 

$: 
StarCore Sc 1 <D 

40 (J:jxec:J0Point) § 
" IMS320CS4 . -< 

XX ('f:1xec:J'Point) 
@ 

C 

" IMS320CSS . 8 (J) 

XX ('f:1xec:J-Point) 

<D .... 
[l 

" IMS320C62 . 
III 

"U 

XX (f:,xec:J0Point) 

CD 

a ~ 

I' IM8320C64 . 
!2. <C 

~ iil 
xx (f:,xec:J-POint) 

3 
1"Ms C 

$: 
320C64xxoc m CD 

Ixec:J°Point) 

!!!. <D 

" IMS320C67xx (/':f0at; . 

CQ 3 :::J 
0 

ngopolnt) 

-I -< CD 

C n ::r 
(J) :s 
<D 2-

0 
CQ 
~ 
S' 
r 

I\) 
0 

0 0 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

.f.>o. 
o 
o 

Ol 
o o 

co o o 

..... 
o 
o o 

..... 
I\) 
o o 

..... 

.f.>o. 

8 
..... 
Ol 

8 

"T1 
cO' 
e 
a 

-I!» 
g,'fI 
D» W -» 
3:' 
(I) (') 

3 0 
o 3 
-<'2. 
c:(I) 
tn >< 
(I) OJ 

0' 
(") 
;:II:" 

:!! 
::xJ 

OJ c 

~ 
I/I~ 

Ci) 
C c: 
CD .... o 
~ 
"D 
"D 

§ 
g: 
o ;;; 



@ 

g 
..... 

r 
f 
of 
i 
c' 
:s 

~ 
::r 
:s o 

~ 
5' 
p 

it 

[J 
-u a 

CQ 

ii1 
3 
s::: 

~ 
-< 
c 
~ 
m 
~ 
::J 

~ 
::J -o ; 
s::: 
m 

~ 
-< 
C 
fR m 

o 
..... 
8 

ACt ADsp_., .. I~ y:::_:_:_:.:.:.:.:.:./:.!!!!!!!!!! ADI ADSP-219 /:i -t ...... . 

!l( ~ txed-POlnt) ::::::::: ... , ••• 

I\) 

8 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

(0) .j:o. 

8 8 

"'" ADs".",,,.., " " " I 
"'" ADs" ~~ f':':::::::':":" "':::::::11111111111111111111 2106x'~~" •....••.••••.•.••. 

ADI ADSP-2106x C ':::: ••...•.. Ir
11wq

"n9-Point) ...• ': ...... ': ..•...•. 

- (FJoaUn9-Polnt) ADI A/JsP-211 

.. I ............ V ....... 11111111111 II 1111111 
ADI ADsp,"1 .. .. . .. .. 

-< 16x_C,,,,", ., .....•• ':: .....•.• 
1 rfoatJn9-Poinl) ~:::::::.': .••.•••. (Uoem OSP164xx,r;" 

........................... 
••••••••••••••• 11 •••••••••• ........................... 

1 '-'xed-Point) 

........ Ds"..~ ""'" "O_~ (f:Jxerl,n.,.. """" 
.... '"""nl) •..•.•... Motorola OSP5e l' .... 

8xx ((:bced-Point) 
MotorOla OSP568S 

~ o g 

• ~ ......... :::::.;.,1 111111111 StarCoreSC14Q '/:il'''e.~. l ·· .... ·::::::::: .. ::0·: ...... .. I' " • .... l"Ulnl) ....•.• ,.. .. 

71 "'....., .... I"~ /;:;.;.;.;.;.;.;.ii i I)! @ .. :: ....... ':::::::.:1111111111 
71 "'"""SS . . ...... '::::: ... ::::: ....... . .. "' ......... V ••.•••• ':::: ... '::::. • • • • • • • • •.. 
71 "'''-%! •. ....... '::::::':':':':':':':':':':-:':'::::::: ............... ':::::::::::::::::: ... . "" .... I~ I .... "::::: ... ::::::....... .. ....... ::::: ...... .. 71h_ , :::::........ .. ....... ::::::::: ........ . ' IV1S~0c64"" I . • ••••.. '::::::: ••••••••. 7i "" 1'Plxed-POint) I':::::: ....... . 7 n",S~OC64xx_Ch 

( rlxed-Point) 
77 'rMS32Oc67xx 'f:/, . 

I' oafilJg-Point) 

.................................................................................... ................................................................................... 

....................................................................... ...................................................................... ....................................................................... 

~ o 

"'11 
eii 

- c "U "" 
"" :D CD 
°Oe» CD • 
""3:Cf1 DlDIe,) 
3 golD 
+ CD • 
05: 0 
o CD 0 
:::I 3 3 
!.0'2. 
DI "" CD a '< >c 
oc:m ale 
DI n - ~ 

:!! 
:D 

m 
~ 
m 
! 
g. 
3 
ID 

~ 
I: , 
if 
I 
i: 

I 
~ 
c 

t 
m 
! 
n 
::r 
3 
ID 

~ 
:s 
co 



...... en en 

40/40SP2 

- l8X (F:;xed-POint) 
40/40SP_219 

~ (f:;Xed-POint) 
40/40SP_219 

X-C (f:, 
IXed-POint) 

40/40SP_2106X (A . 0 

70qting-POint) ~ 40/40SP_2l06X 
~ 

-C (f:fOqfing-Point) CD 

4DI40SP-2116X(f:~ . ~ 
Oqting.POint) -< 

401 40SP_2 116X_C . C 

(f:fOqtlng.Point) 
(J) 
CD 

LUcentosp m 
164XX (f:;xed-Point) 0 

MotorO/q DsP563}( . 
0 
::J 

J( (f:IXed-Point) ~ 
Motoro/q DsP56 ::J 

8XX (f:lJ(ed-Point) 
-0 

Motoro/q DSP5685 . 
I» -

J( (f:IXed-POint) 

III 

~ 
SlqrCoresc CD 

140 (f:;xed-Point) ~ 
IIIMS320C54 . -< 

J(J( (f:IXed1Joint) 
C @ (J) 

IIIMS320C55 . 
CD 

J(J( (Axed-POint) 

~ 
C 0 

II IMS320C62 . 

..... 
-0 

J(J( (f:lxed-Point) 

OJ a CD 
(Q 

"IMS320C64 . 

... ., ~ 
III 

J(J( (f:lxed1Joint) 

!. 
3 CD 

IIIMS320C64XX_C (A 

'< 
~ i' CD 

Ixed-Point) 
!!!. ~ 

IIIMS320C67xx (A . 
co 

-< 
7OQttng-POint) 

::s 
-I C 
~ (J) 

CD :T ::s 
0 
0' co 

::c: 
5' 
r 

..... 
0 

0 0 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

I\) 
o 
o 

(a) 
o 
o 

.f;>. 
o o 

01 o o 
0> o 
o 

...... 
o o 

co 
o 
o 

co 
o o 

:!! 
CD 
C 
C; 

-fC» o· -C{I s:u ,f::Io -» ::. 
m r-
3 :: o en 
-<» 
cD. 
tn s:u m"S 

~. 

:!! 
::xJ 

OJ 

~ 
~ 
C) 
c 
i 
S' 
~ 
" " B 
(J) 

~ 
U; 



BDTI Benchmark™ Results - Memory Usage Benchmarking 

800 

700 

600 

1-
~I 500 
~Q 
·c II) G 
~ .. 
~~ 
~ 8 400 
CD + 
:e E • - e -ga) 
:e 2 300 oa. 
0::-

200 

100 

Figure 8.5-48. LMS Adaptive FIR 
ROMabie Memory Use 

(Program + Constant Data) 

.. .:. 

.'. . :. 

'.' 
'.' 
'.' 

. :. 

'.' 

I CJ Program Memory Use 8 Constant Data Memory Use I 

© 2001 Berkeley Design Technology, Inc. 

. '. 

.' . . ' . . :. 
'.' 
'.' 
'.' 
'.' 
'.' 
'.' 
'.' -:. 

.:. 

.:. 

'.' 
'.' 

. . . '. 

.' . . '. -:. 

.:. .' . .' . . : . 

. :. 

.' . . : . 

.:. 

.. .:. 

.: . 

• :. "0" 

'.' 

'.' 
'.' 

'.' 
'.' 
'.' 
'.' 

'.' 
'.' 

'.' 

'.' 
'.' 
.:. 
'.' 
'.' 

.' . .: . 

.: . 

'.' 

767 



Buyer's Guide to DSP Processors 

Figure 8.S-SA. Two-Biquad IIR 
Total Memory Use 

_ 200 
S 
IS 
C 
C 
IS -It 

It C 

~9 150 m C 
~ 0 

CDZ 
(I) + 
~ IS 

~-o IS 

E~ 
CD C 
:ES 
- (I) 100 S C o 0 
t-O 

+ 
E 
! 
D) 

E a. - 50 

I_ Non-Constant Data Memory Use 8 Constant Data Memory Use CJ Program Memory Use 1 

768 © 2001 8erkeley Design Technology, Inc. 



@ 

~ 
Q ..... , 
OJ 
~ ;: 
~ 

i 
ca' 
~ 

3 
::r 
~ 

~ 
~ 

it 

[) 
"tJ a 
co 
; 
3 
s:: 
(II 

B 
-< 
c 
m 
m 
o o 
~ 

~ 
3-
o 
~ 
s:: 
(II 

B 
-< 
c 
(IJ 
(II 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

..... ..... 
o 

I\) 
o o o 

I\) 
o ~====~~~~~mn~'ir--~~----L-----· , 

AD/ADsp_ t ' ...... .. ::::!!!!!!!!! 2,,,,, (""'~ \;.;.;.;-: .;.;.;.;.: ...... ::: .... . AD/ ADSP_<19 _ 

~ (F:;xec:/-Pointj 

AOt ADsI>.2,,,,,-C (I< ........... ~""" "II: 

01::0-
o m o CD o 

A::'~~P-2'''' ('Too:::: r:;:;:;:;:;:;:::;:;:::::;:;:;:;:;:;:;:;·;·,:·:·:·:·:::;:::::::~::::::::::: : i i 
-<106x_c (Floating-Point) {. •••• ::::::::::::::: •••••••• 

AOt AOoI>.2" .. !I'l . . . .. • ........ :::::::.;.;:.;.;.;:::: 
.. ~ .:.o.o.o:.o.; •.... :... • ••. 

AD/ ADSP-<116" C . . . •... .-. '::::::: .... 
,,- (f:/oaung-Point) .:::::::::::::: •• : •••••. LUcent DSP164XX 'I::; 

I' Ixec:/-Point) MotOt'ola DsP56 

3xx (F:ixec:J..Point) MotorOla DsP56 

8xx (f:"lJ(ec:/-Point) 
MotorOla DSP568S: . 

J( (F:1xec:/"POint) 
Starcore SC140 

(f:iX9c:J..Point) ;/ iMS3<OCs. 

..... 
01::0-o 

4XX (f:"1J(9c:/-POint) 

n 1\r",""""ss ....... :::::: "" (~ ........ ::::: ::::::.;.;.;.;::::. . . . . .. .. . n~ ........ :::: ....... . """" ("""""""",,q , .... ::.o.o:::::. • • • • • • • .. . .......• :: 
n %Ozoc. . . ... . ....... :.o.o.o.o.o:.o.o.;:.;.o.o.o.o .. : ... : .. . 

... ~ ••••••• :.o::.o ..... ::... . .....•. 

n ~ ........ ....... :::::::.;.;.;.;.;.;.;.; ::. . . . . . .. . ....... ::::::::: C64XX_C (f:ixec:J.Po· t" •••.••• '::: •••••• ':. • . . • • •••••• '::: •••••••. 
- In

, 
:::........ • ••••••• :::::::: .•••.••• n ~7,"" ('Too.... . ....... :.o:.o::.o.o::::. . . . . . . . . -'~-Point) :::::: •••• :... . .. .... 

..... 
m o 

..... 
g: 

I\) 

8 

!! 
- ca "U c .. :D .. o 0 CD 
~s::s» 
t»t»cp 
3C"cn 
+iii'm 
Os:~ 
o CD ~ 
; 3 9 
"'0 01 t» -< _. 
3. c:.g 
Cent» 
!,CDQ, 
t» = 
- :D 

OJ 

~ 
OJ 
!! 
g. 
~ .. 
~ 
:u 
m c ;r 
I 
i: 
m 
~ 
c 

= ca 
CD 
OJ 
!! n 
::r 

~ 
~ 
~ ca 



~ 
I 

AD/ ADSP-2 18, 

')( (~Xect-POint) 
AD/ADSP 

-219X mXect1Jolnt) 
AD/ ADSP-219X_C (F:,0 

lJ(ect"Po;nt) 
AD/ ADsp_<106X (f::/, 0 

C) OQOn~~nt) m- AD/ ADSP-2106X_C (f::/, 0 

oatin~Polnt) s:: AD/ ADsp 
CD -<116)( (f::~ 
3 OQOn~~nt) o AD/ADs 
-< P-2116x_C (f::/, 0 

C oatin~Point) 
m LUCent DSP164XX (f::i 

1xea-Point) m MotorOla Dsp 

fl .......... ~ 
; MotorOla Dsp 

g ...... .".~ 
- MotorO/. a 

a 'SPS68Sx (f::'/. 
'Xect-~nt) Starcoresc 

140 (~xer/.Point) 7"/~S.3<Oc 
54XX (J:"lJ(ect"Po;nt) @ 

C 
77 ~S.3<OcSS N 

m 
XX (f::lxect-POInl) 

0 

7"/~S3<Oc 
0 

[1 
... 

6<XX (f::iXect-~nl) 
DJ 

'"tI CD a 7"/~S3<Oc64 ;1-
ee 

xx (F:;xect-PO/nt) 

!. 
PJ 

7"/ ~S3<OC64xx_c (J:"lJ(er/. . 

CD 
'< 3 
i s:: 

Point) 
!e. CD 

7", ~S3<Oc67xx (f::/, 0 

ca 
~ 

oating-~nl) 
::::J 

~ -< 
C ::::J" UJ ::::J CD 2-

c8 
::c 
5" 
p 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) ... I\) Co) 

""" 
C1l 0') 

0 
0 0 8 8 8 8 8 

'-I o o 

." 
iij' 
C 
CiI 

-I!» 
&~ -» 
5:' 
CD~ a S1 o 0 .c! ... 
cO :9-

"U 
a a. 
c 
S1 

DJ 
c 
~ .. 

fIIW 

G) 
c 
i 
S' 
~ 
"U 
"U a 

I 



@ 
I\) 
0 
0 
-" 

AD'ADSp' 

-218X (F:;Xe(j.Point) 

·m 
~ 

AD, ADSP-219X (J::i 
( 

I)(ed-Pointj 
~ 

AD, ADSP-219~ ~ 
-C (F:;Xed-POintj 

AD, ADSP-2108Jc (f::l . 
ca 

Oating-POint) 

::J 
-I 

AD, AOsP-210 ~ 
6X-C (F:JOa • 

::J' 

ting-Point) 
::J 

AD'AOsp-2116X(~ . 
2-
0 

Oating-POint) 

ca 

AD, ADSP-2116~ C 
~ 

- (F:Joating-Point) 
LUcent DSP164 

Xx (F:;X9d-Point) 
MotOrOla OsP56 

3xx (f::bcecJ..Polnt) MotOrOla Osp 

5"68X)( (f::"lJ(e(j.Point) 

Motc....Os"... .. ~ 
StarCOre SC140 

(F:;xecJ..Point) 
iJ 7MS3<'OC54X)( (f::i)(, 

ed-POint) 
1", 7MS32OCS5 . 

~ (f::lJ(ed-POint) 1"'7MS32OC 

62X)( (f::ixed1Jolnt) 1"'7MS32OC 

64Xx (f::ixed-POint) 
1"'7Ms3<'OC 

64Xx_C (F:;xecJ..Point) 
1", 7MS320C67xx (~ 

Oating1Jolnt) 

I 
:::I 
-" 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

o g: 

........................ ........................ ........................ 

........................ ........................ 

..... ..... 
8 g: 

..................................................... .................................................... ..................................................... 

...................................... ....................................... ....................................... 

...................................... ..................................... ...................................... 

8 ~ 

.................................................................................. ................................................................................. .................................................................................. 

g 

"'11 
c' _ C 

"tJ .. 
.. :oCD 
°oQ) CO ' ;s::Y1 
3 Dl o) 

+ !lm 
CD' 

os::~ 
oCD51 
i 3 0 
&to" 
::::I~ C ... ° cC:'" 
Dlfn"tJ ... CD .. 
Dl ° - a. c 

51 

m 
g 
m 
! 
g. 
3 
II» 

~ , 
;r 
I 
i: 
CD 
3 
! 
c :: 
i 
m g 
n 
::J' 
3 
II» 

~ 
::J 
ca 



Buyer's Guide to DSP Processors 

700 

600 

I 
1: 500 

~ 
fO S t9 
m c 
af ~ 400 
fO + 

:;) ., 
~-0" 
E~ 
~ i 300 
- fO ., c 
'0 0 
1-0 

+ 
E e 200 
Q 

e a. -
100 

o 

Figure 8.S-7A. Vector Add 
Total Memory Use 

I_ Non-Constant Data Memory Use 8 Constant Data Memory Use CJ Program Memory Use I 

© 2001 Berkeley Design Technology, Inc. 



@ 

g .... 
OJ 
(I) ... 
f! 
~ 

~ 
US· 
:s 

~ 
::T 
:s o 
.& 
~ 
:; 
r 

~ 

[] 
"'U a 
co 
iil 
3 
s:: 
(\) 

B 
-< 
c 
C/I 
(\) 

m 
o o 
::s 

~ 
::s 
.-+ 

o 
III 
6i 
s:: 
(\) 

B 
-< 
c 
C/I 
(\) 

ADI ADsP-<18 

x (f:txed-POint) 
ADI ADsP_<19 . 

x mXed-Point) 
ADI ADSP-<19x_C . 

(f:lxed-POint) ADI ADsp"10 
-", 6x /f:lo fi 

I' a ng-POint) ADI ADSP-<10Bx C 

- (f:toaling-Point) 
ADI ADSP-<11Bx f:, . 

(. lOafing_Point) ADI ADsp_< 
71 Bx-C /f:lo ., 

I' a'tng-Point) 
LUcent DSP'e 

4xx (f:txed-Point) 
Motorola DsPSB3. . 

Xx (f:txed-Point) Motorola Dsps, 

B8xx (f:ixed-Point) 
Motorola' DSPS685 . 

X (f:lxed-Point) 
StarCore SC140 

(Axed-Point) 
1', I'MS320C54 . 

XX (f:lxed-POint) 
.,., rMS3<OC55 . 

XX mXed-POint) 
.,., rMS3<OC62 . 

XX (f:lxed-POint) 
.,., f'MS3<OCB4 . 

XX mxed-POint) ""rMs 
3<OCB4xx_c /f:j 

I' IX ed-Point) 
1'1 rMS3<OC67xx . 

(f:tOqftng-POint) 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

o 
I\) 
o 

. .............. ] ............... ............ .... 

...... ·· .. · .... ·1 ............... ................ 

:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

..,. 
o 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:] 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: ·:·:·:1 

(J) 
o 

.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,:,:,:,:,:,:-:,:,:,:,:,:,:,:,:,:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 
:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.j 
............... '1 ............... ................ 

:·:·:·:·:·:-:·:·:·:-:-:·:·:·:·:1 
·····································1 ..................................... 

r····································· 
:.:.:.:.:-:.: ·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

·:·:·:·:·:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

co o 
.... 
o o 

I:':::;:;:::;:::::::;:;:;:;:::;:.:;:·:::::;:·:::::::;:;:;:;:,:::;:::;:;:::;:::;:;:;:;:::;:::,:;,;:;:::;::,,::.::::::::':':::::';:;::\':':-:-:':':':1 

.: .:.:.:.:.:.:.:.:.:.:.:.:.:.: .:.:.:.:.:.: .:.:.:.:.:.:.:.:.:.:.: .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. :.:.:. :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

.... 
I\) 
o 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:·:·:·:1 

.... ..,. 
o 

- "TI "tJ _. 
~ :IJ CQ 
o 0 c ca s: ca 
11,)11,) co 
3 C" • -en + (I) .!.a 
OS:m o (1) • 

:::I 3 ~ 
tn 0 , .. 
S'~51 
:::I '< 0 
~c:~ 
00» 
a(1)a, 
II,) a, --

OJ 

~ 
OJ 
(I) 
:s g. 
3 
1\1 

~ 
:D 
(I) 
III 
C 

~ 
I 
i: 
(I) 

3 

~ 
c 

'" ca 
(I) 

OJ 
(I) 
:s 
n 
:I' 
3 
1\1 

~ 
:s 
ca 



~ 

ADI ADSP-2 18 

X (F:;xed'POint) 
ADI ADSP'219 

X (F:;xed-POint) 
ADI ADSP'219 

x'C (f:"( 
IXed'POint) 

ADI ADSP'2106X (f:"l _ 

oating-POint) 
ADI ADSP'2106X.C fA, _ 

oattng-Point) 
ADI ADSP'2116x (f:"l _ 

Dating-POint) ADI ADSP-2116X.C _ 

(F:{oating-Point) 
LUcent DSP16 

4xx (F:;xed'Point) 
Motorola DsP583 _ 

Xx (f:"lxecJ.Point) 
Motorola DsP5e8 

o Xx (f:"ixed'Point) 
!!t Motorola DSP5885. _ 

DI X (F=",xef/'POint) ~ StarCore SC14Q (A 

3 Ixed-Point) o 117M, 
-< S320C54XX (t::.-
C Ixed-POint) 

@ ~ II IMS320C55. _ 

ill [] "" I~_""",~ 
g "U It IMS320C82. _ 

.. a ""'~~~ 
!l- il " ""%Ie.. _ 
• 3 "" 1~""""'9 '< s:: II IMs320c 
C 64xx_c (f:;xea _ 
CD ~ 'Polnt) Jl- 0 " ""'''2Oc6''''' II> _ ~ "1 """-"""'9 -t c 
~ (J) 
::::r ([) 
::J 
2-
0 
IQ 
::c: 
:;-
!' 

0 
OJ o 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

.... 
o o 

.... 
OJ 
o 

I\) 
o o 

I\) 
OJ o 

(,.) 
o o 

(,.) 
OJ o 

~ o o 
~ 
OJ o 

!'! 
CC 
C 
C; 

-100 
2.0. m I 
-00 
s:~ 
(I) < 
3 (I) 
o n 
-<0 .., 
Cs: 
tn m 
(I) >< 

3' 
c 
3 

OJ 
c 
~ .,. 
(II 

G') 
c 
0: 
CD 

S' 
c 
UJ 
"'D 
"'D 

§ 
~ 
iii 



@ 

8 
A.OI A.OSP_21 

.... 

8x (F:;xecJ1JoInt) 
OJ 
CD 

A.OI A.OSP-219 I ~ (F:;xecJ-POlnt) 
A.OI A.OSP-219X_C (~. C 

IxecJ""Po;nt) 
m. 

A.OI A.OsP-2106x (f:/, 
CD 

CJaUng.Point) 

:::s 

i A.OI A.OSP-2106x. C 

- (f:Joaung.Polnt) 
:::s 

A.OI A.OsP-2116X (f:l 
2-

CJaUng.Point) 

0 

~ 
A.OI A.OSP-2116X. C 

- (f:Joaung.Point) 
LUCent OSP16 

4xx (F:;xecJ-Point) MotorOla OsPse 

.3xx (f:/xecJ..Point) 
MotorOla OsPSe 

8xx (f:/xecJ..Po1nt) 
MotorOla OSP5685x (~. 

IxecJ-Point) 
Starcore Sc 1 

40 (F:;xecJ..Polnt) 117Ms32Oc 

S4XX (f:ixecJ-Po;nt) 
IIIMS320cS5 . 

XX (f:1xecJ-POlnt) 
IIIMS320C62. 

XX (f:ixecJ-Po;nt) 
IIIMS320C64 . 

XX (f:1xecJ-POlnt) IIIMS320C 

64xx_c (F:;xecJ..Point) 
IIIMS320C67xx (f::/, . 

. CJatiflg""Po;nt) 

~ 

o ~ 

·············1 ............. ............. 

.... ····· .. 1 . ........ . ........... 

···········1 .......... ........... 

·················1 ................. ................. 

·················1 ................. ................. 

·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

·:·:;:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 
···············1 .............. ............... 
~ 
~ 

········1 ........ 

···············1 .............. ............... 

.... 
8 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

.... I\) 

~ 8 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 
. .................. , ................... ................... 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:1 

I\) 
01 o 

:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::) 

Co) 
o o 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:1 

Co) 
01 o 

-n - ~ . 
"tI c 
.. :D .. 
o 0 CD 
~ s: ~ 
m m 0'1 
3crc» 
+ii'PJ 
os:< o CD CD 
:::1 3 n 
!too m .... 
a'< s: 
C C:m 

fI) )( m CD _. 
.. 3 ,e c 

3 

OJ 

~ 
OJ 
! n 
~ a 
I» 

~ , 
c 
ii 
I 
5: 
CD 
a o 
~ 
c 
II 
'i 
OJ 
CD 
:::s n 
~ a 
I» 

~ 
:::s 

CD 



~ 

IJ,O/IJ,OSPO<18. 

~ (/:;J(erJ-POint) 
IJ,O/IJ,OSPo<19J( (A. 

'XerJ"Polnt) IJ,O/lJ,Ospo 

<19J(oC (f:iJ(erJ. . 
""Point) 0 IJ,O/IJ,OsPo<106J( (f:~ 

~ 
Oetting-Point) IJ,O/IJ,Osp, s: 0< 106J(oC (f:foati 

ng-Polnt) 

(II 

IJ,O/IJ,OsP-2116J( (f:~ . ~ 
Oetting-Point) 

-< 
IJ,O/IJ,OsPO<116X C C 

m 

° (f:foaling-Point) 
(II 

LUcent OSP164J(J( (A. 
m 
0 

'XerJoPoint) 
0 

MotOrOla OsP5e :s 

3J(J( (f:/xe(J.Point) ~ 
MotOrO/; Os 3-

a P5e8J(J( (f:iJ( . 0 
e(J.Po1nt) !!t 

""""""'"........ (~I I» 

s: 
StarcOre SC140 

CD 

~ 
(f:;J(erJoPoint) -< 11lMs~oc 

C 
S4XX (f:iJ(erJ""Point) 

@ m 

"lMS3<OCsS 
(II 8 [J 

XX (f:IJ(erJ"Point) 
... 

-0 
17 lMs3<OC6< . 

UJ a 
xx (f:IJ(eaoPoint) 

(II 
co 

17lMs3<oc6 I ... 
I» 

4XX (f:IJ(erJ""Point) 
3 ~ s: 

"lMs3<oC6 i CD 

4XJ(oc (f:;J(e(J.Point) 
!!. ~ 

17 lMs3<OC67J(J( (f:/, • 

ca 
-< :s 

oaring°Point) i c 
m 

:J' (II 
:s 
2-

~ 
S' p 

0 
01 o 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

.... 
o o 

.... 
~ 

I\) 

8 
I\) 
01 o 

CtJ 

8 
CtJ 

~ 
.... o o 

"T1 
-I {ij' 

~~ _CD 

s:!» 
CDUI 

g~ 
<" o 
c:O 
en ::J CD=: 

2. 

UJ 
c 
~ .. 
m-
e> 
c 
i 
S' 
i 
'V 
'V 

I 



© 
~ 
g 
g' 
i 
.f 
~ 

cO' 
:s 

~ 
:r 
:s o 

~ 
:i 
p 

~ 

o 
"tJ a 

<0 
~ 
3 
s:: 
(\) g 
-< 
C 
en 
(\) 

m 
(') 
o 
:s 

~ 
:s 
.-+ 

o 
~ 
s:: 
(\) 

g 
-< 
C 
en 
(\) 

...... 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

...... 

o 01 o o o 01 o 
I\) 
o o 

AD, ADsp,,. ....... ':::::::':':':':':':-:-:':-:':-:-:-:':':':-:':-:-:'. 

I\) 
01 
o 

c.J 
o o 

. • I"""""""""Q ..... :::::::.:-.......... ..... . .. . . . . . ....... :::::: 
AD! ADsp.". ..\.: ...... : .. : .... ":::::::.:.:.:.:.:.:-:.:.:.:.:-:.:-:-:-:-:-:.:.:::::::. : : : : : : 

Ox I""'""""",,, . . . .. ............... . ...... ' ..... . 
AD, ADs"". ':::: .............. ':: .. :::.:.:.:.:-:-:-:.:-:. :':':':'::::::: ...... ' ......... ::::::':':-:-:':: .. . 

<-c IFIx ....... O .... :::::::.:................ . . . . . . . .....•• ::::::.:.................. . . • • . • . .. 

AD! ADsp"'08. ':: ................ ::::::.:.:-:.:.:.:-:-:-:.:-:.:.:.:.:.:.: .... :::: .... : : : .... '::::::.:.:.: .:.:-:-:.:.:-:.:-:-:.:.:.: ..... . x (f:IOating'Point' ...... '. . . .• . ..... . . . . . . ...... ':. . . . . . .... . . . . . . . 

4DI 4Dsp.,> 108 ' ........... :. . . .• . . • •••••.. : .. :::: ... :.:.:.:-:-:.:.:.: ........... :... . . . . . . . . . " •.. ':::::::.:.:.:.:.:.:.:.:.:-. 
< ··c,~ . ...... ............. . . . . .. ...... . .... . w""'· ... """o .. '::::::. '::::::. . . . . . . . ....... ':::::. ':::::: ....... . 

AD! ADs" ''':. . . . . . . . . ...... ':::::::.:.:.:.:.:.:.:.:-: .:............... . . . . . . . ...... '''::::::':':':':':':':' .. ::::. "''''' 11'70,,""""""0 ..... ':::::: .. :::....... . . . .. . . . ....... : .. :: .......... : .. :: ....... . AD, ADs"-,,, •• c ::::: .................... ::::.:.:-:-:-:-:-:-:-:.:.:-:.::::: .. : ....... . . 1"""""9-"""0 ..... '::::::':':::::::. . . . . . . . .. 
Lu..", Dsp .:: ::: ..... : : ........ :: .... : ... :. :':':':':':':':':-:-:':':':'::. ' .... I""' ........ , .... :::::: ....... :::...... .... . ....... ::::: " , :::. .. . .. . . ...... ':::::::. ::::::: .... . • ;""" Ds~ (/'i •...•••• :::::::-:.:.::::::: ....... . Ixed-Point) ':::: .. '::::: ....... . 

Mo'''' , ......... .... "::::. 
•• Ds"..""" 1"""'<1-Po/"O ...... :::::::.:.:.:.: .................... . 

Motorola OSp,~ :::::. . . . . . . . . ....... ::::: 

<J

8
8S

x 
q::;- .••.••• '::: •.• ':::: .••... I' Ixedpoint) . . . .. ....... .... . 

Stare ::::::. . . . . . . . ....... :::: 
or

e
S

C140 
............. . 1""'.....,"'1 ................... :.::::::. . . . . . . . . ...... '::::::.: 

n "'''-'2ocS4
. ::: ..... :: : .... ':::::::.:.:.:-:-:.:-:-:-:-:.:-:-:-:.:.:::::: ........ . xx (f:lxed'POint) ..... ::: ..... ::: ....... . 

" .:............. ...... ':::::::.: ...... . 
1 "'''-'2oc

ss 
.. .. .. . . .... . . . . . . .. .. .. .. .. . .. 1"'· ... """0 '.:-:-:.:.:-:-:-:.:.:-:.:.:.::: ::::. ' ............. '::::::.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:-:-:.: ... ::: : ......... . It ItvtS3<OC80 . .. ...... ':::: ... :.......... .. .. . .. ..... . <xx '1"-1'" d . . . . . . . "' . . .. . . . . . . . . .. . '"'~ """0 .......... ...... .. .............. .. 

n '" ............ . .. . . . . . ...... ':::::::. :.:. :.:.:.:.: ...................... . S""""6.", 'Fe ....... ':::::. . ............ . . .. ... . ....... :::: ,. ' ........ 0 ..... ............... .. ................. . 
n "'" :::::. .. .. . . . ...... '::":::':':':':':-:':-:':':':'::::::. . . . . . . . .' ............ . """"""'-c 1"""<1-""". . ......... : ....... :.:. :':':::::::.. . . . . . . ............... ::.:.:. :.:.::::: ......... . 
> , :::........ .. ..... ':::::: ................... .. ,

1 ""''''''''87 ....... '::: .... :::: ....... . Xx (f:IOating'POint, ...... ::::::.::::::: ...... . 
1 "::::: .•..... 

c.J 
01 o 

.J>. o o 

..-
"tJ 
o:U"T1 CC 0 _. 
... :::- CC 
D) ::::a C 
3 D)'" tr(1) 
+-00 (1). 
0s:Cf1 ° (1) CD :::I3t'D UJ • 
;-00 
:::I ~ ° 
- :::I ee-
D) UJ ... 
_(1)2-
.e 

OJ 

~ 
OJ 
CD :s 
n 
::r 
3 
II» .. 
~ 
;: 

::D 
CD en c 
::+ en 
I 
i: 
CD 
3 

~ 
c: 

i 
CD 

g' 
:s 
n 
:r 

~ 
~ s· 

CD 



Buyer's Guide to DSP Processors 

8000 

7000 

-.§ 
d 6000 

1: 
! 

(I) C t 8 5000 
me 
af~ 
(I) + 
:J IS 
~ .. 4000 o IS 

E~ e c 
:ES 
- (I) IS C 

~ 8 3000 
+ 
E 
! 
1:1) e 2000 

Q. -
1000 

0 
;::.. 
·s 
~ 

"Sf 

;::.. ;::.. ;:). 

·s t :I. ~ 
"Sf ~ 

.$ 

Figure 8.5-10A. 256-Point FFT 
Total Memory Use 

:;::.. 
·s 

;::.. :;::.. ;::.. 
·s oS 

;::.. ;::.. :;::.. ;::.. 
.s ·s .s 

;::.. 
-§ t I. £ £ I J I I t ~ "6 

.$ .$ (I) (I) 

;::.. ;::.. ;::.. ;::.. :;::.. 

t t t ·s t J "6 "6 "6 Q, 
(I) ,§ I .$ ~ § § .§ .§ ~ ~ .:S i! i! .:S ~ g ~ .8 a .8 a g il. €. ~ ~ ~ i:t i -.;. -.;:. -.;:. -.;:. ...... -.;. g g J: ~ ~ 0 ~ ~ H I ,If ~ I I R ; 0 -.;. - - ~ i 0 ~ o : ~ ~ ~ ~ ~ $!! ~ - ~ - I I If f;J g l1 § § fI. "'-

~ ~ ~ - ~ - ~ lli G 8 § Q Q (( ~ ~ 
- Q f8 f8 f8 G Pi Pi Pi 0 

~ ~ f8 (( 
~ 

(( 
~ 

j l l ! ! I Pi f8 f8 ... 
'B i 'B is is ~ ~ & i ! ~ ~ is ~ Q ~ .§ .§ C'IJ j:: j:: j::: j:: ~ is is ~ ~ ~ ~ -.J ~ ~ ~ j::: j::: ~ is ~ is 

~ ~ 

I_Non-constant Data Memory Use BConstant Data Memory Use ClProgram Memory Use I 
778 © 2001 Berkeley Design Technology, Inc. 



© 
~ 
0 .... 

IIDIIIDSP_218 
o:J 

X (F:;xeC/-POint) 

III 

~ 
IIDIIIDSP_219 . III 

X (f:1xeC/-POint) 
'< 

IIDIIIDSP.219X_C . 
C 
III 

(f:1xeC/-POint) 
!!!. 

IIDIIIDSP-2106X M . 
CO 
::::I 

(, lOafJng-POint) 

-I 

IIDIIIDSP-2106X_C . 

III n 

mOatlng-Point) 

::r 
::::I 

IIDI IIDSP-2116X f:~ 
0 
0' 

(, OafJng-POint) 

CO 
~ 

IIDI IIDSP-2116X C 

- mOating.Point) 
Lucent DSP164 

Xx (f:;xeC/-Point) Motorola Dsp 

~3xx (f:ixeC/-Point) 
Motorola DsP56 

8xx (f:ixeC/-Point) Motorola DSps, 
685X(f:,. 

IXf1C/-Point) StarCoresc 

140 (f:;Xf1C/-Point) 
II IMS320C54 . 

XX (f:IXf1C/-POint) 
.,., IMS320C55 . 

XX (f:IXf1C/-POint) 
II IMS320C62 . 

XX (f:lxed-POint) 
II IMS320C64 . 

XX mXf1d-POint) ""IM8 
320C64XX_C (I:; 

IXf1d-Point) II IMS320C67: 

Xx moating-Point) 

I 
~ 

o 
(]I 
o o 

.... 
o o o 

........................... ........................... ........................... 

:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.: 
........................... .......................... 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

..... 
(]I 
o o 

I\) 
o o 
o 

I\) 
(]I 
o o 

w 
o 
o o 

w 
(]I 
o 
o 

..-. !! 
." cc 
~:Dc 

c8 0 CiJ 
~s:()C) 
II) II) • 

30-Y' +_ ...... 
CDo o,m o :::. . 

::JCD!\) 
tn3cn 
-00) 
II) ~ I 

::J '< ." 
- 0 C c: _. 
... tn ::J 
=.CD-
II) "11 

-- ~ 

o:J 
g 
o:J 
III 
::::I 
n 
::r 
3 
II 

~ 
;;: 

:u 
III 
III 
C 

iJf 
I 
i: 
~ 
o 
~ 
c: 
:: 
co 
III 
o:J 
III 
::::I 
n 
::r 

i! ... 
Co 
::::I 

co 



c;l 
0 

AD/ ADSP-218X (f:; 

lXed'"Pointj 
AD/ ADsp-219 

I\' (F:jx~'"Point) 
AD/ ADSP-219X_C (/:,o 

Ixed1Jointj AD/ ADsp'2106 

o x (f:/oatino-POint) 
;. AD/ ADSP-2t06X_C (f:/, 0 

:s:: Oafino-PoilJtj 
CD AD/ ADsp-2116)( (f:/, 

a oatinO-POint) -< AD/ ADsp'2116X_C 0 

C (f:/OEttinO-Polnt) = L ..... Osp, .... ,/'i 
m lXed-Po1nt) o MotarO/Et DsPSe 

g 3xx (f:hced-Po1nt) !eo Motot"o!. Ds 
I» Et PSe8xx (f:i)(, 
a ed-Point) MotOt"o/a Dsps 

685)( (f:;xed-POint) 
Slttrcare 8C14O 

(I:;xed-Pointj 1"/ 7MS32Ocs.q 

XX (f:/xed-POint) 
@ 

1"/7MS3<OC55XX (/:,o 8 
Ixed-POint) 

.... 
[J 

1"/ 7M83<Oc OJ 
"1J 

6<XX (f:i)(ed-POint) l- e 
1"/ 7M83<OC64XX (f:; 

co !. .. 
Ixerl-po;nt) 

~ I» 
3 

lJ~-c,~ 0 
:s:: CD 

!!!. CD 

.,., 7MS32OC67XX (f:/, 0 

co 
~ ::I 

oafing1Joint) 
'iil -< 
C') C ::r UI ::I 

CD 2-
0 

~ 
S' 
p 

()J 

0 8 

Total Memory Use, Bytes 
(Program + Constant Data + Non-Constant Data) 

-" o o o 

.... 
()J 

8 
I\) 
o 
8 

I\) 
()J 
o o 

(0) 
o o o 

(0) 
()J 

8 

'11 
-I iQ' 
g,c 
!!,CiI 
s:!» 
(D Y' 
3...1. o ...I. 

~1> 
C:S 
:I ~ 

C" _. 

OJ c 
1 
;} 
Q 
c 
i 
S' 
~ 
'1J 

" a 

I 



@ 

~ o 
-0. 

~ 
( 
~ 

i' 
cS' 
;, 

~ g, 
o 

~ 
S' 
p 

~ 
-0. 

[) 
"tI a 
(Q 

iiJ 
3 
s:: 
CD a 
-< 
c 
m 
m 
o o 
:J 

~ 
:J -o 
~ 
s:: 
CD a 
-< 
c 
fIj 
CD 

AD'ADSP,2 

- 18x (J::;Xed'Point) 
AD'ADSP_21 

9x (J::;xed-POint) 
AD, ADSP-219X_C 'F( 

I' Ixed-Point) 
AD, AOsP-2106X (F{, 

Oatlng.Point) AD, ADSP-2106x C 

- (F:foaung.Point) 
AD, AOsP-2116x (F{, 

Oatlng.POInt) AD, ADSP-2116x C 

- (F:foaung.Point) 
Lucent DSP164XX q::i 

I' IXecJ-Point) MotorOla OsP56 

3xx (Fixed-Point) 
MotOrOla OsP568XX 'I::",' . 

I' '"eC/..Po1nt) 
MotOrOla DSP5685x ,""' 

I rtXed-Point) 

-0. I\) 

o g g 

Slarcore SCI40 

(f:'IXec/"Point) 

7"'7MS3:!OC54..... ....... ----":":":".~. 
XX fFtxed"Po;nt) 

177MS3:!Oc 

55XX (Fixed-Point) 

lJ~(~9 

c.l g 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

~ o o ~ o ~ o 
...... o 
o 

co o o 
CD g 

7"'7MS32Oc64 . 

"" (~q ....... ::::: lJ~ .. . 

64xx_C (J::;xeC/..Polnt) 
7", 7MS32OC67XX (f:/, 

Oating-Point) 

-0. 

o o o 

-"'tJ 
-':rJ::!! o Oce 
~ s:: c 
I) I) CiJ 
32::00 
+CDin 
OS::.!.. 
°CD ..... 
23m v. 0 . 
S'.,~ :s "< .... 
.... CCD 
Ctn-' 
I)CDsr. 
! 

m 
~ 
m 
! n 
:::r 
3 
I» 

~ 
f 
fIj 
c 
if 
I 
a: 
I 
S 
c 
! 

CD 
m 
! g. 
~ 
~ ;, 

(Q 



Buyer's Guide to DSP Processors 

-ca 
1i 
Q .. 
e 
S 
(I) 

(I) e 
0 ;9 

me 
~O 

CDZ 
(I) + 
::;)ca 
~1i 
OQ 
E .. 
CD c 
::rES 
- (I) S e o 0 
1-0 

+ 
E 
! 
c:J) 

2 
D. -

782 

600 

500 

400 

300 

200 

100 

0 
;:- ;:- ;:- ;:- ;:-

.£0 ·s .£0 oS ·s 
8. ~ ~ g ~ -0 "51 "51 Q) 

11 :§ :§ 

Figure 8.S-12A. Bit Unpack 
Total Memory Use 

;::.. ;::.. ;:- ;:- ;::.. ;:-
oS ·s ·s oS ·s oS 
~ ~ ~ p. ~ ~ 

Q) l! "51 "51 § ;:: 

;::.. ;:- ;:- ;:- ;:- ;::.. ;:-
oS oS oS ·s ·s .£0 oS 
~ ~ ~ ~ p. ~ ~ 

"51 "51 "51 "51 Q) 
:§ 1 I 1 1 ·lS !l !l .~ I! I! !l .~ Ii: ~ § i i § g ~ g g ~ § ~ ~ ~ ~ ~ ~ -..;;. 

~ ~ () g g .$ R I J§ .~ 11 ~ $ ! () !1: -..;;. ~ -.;;. 
~ ~ - - ~ () ~ () I - ;g I§ ~ C)t C)t 0) 

~ ~ 
(0 t8 t8 & & - <:) - - Q (6 Ii ffi C)t - & - co 9; &i BS 8i ~ & H ~ tj 

C; C)t C)t - ~ Q 
Q C - - Q Q C) C) t1 & ~ "it" "t" C) C; C)t Ii C)t 

§ -!9 -!9 -!9 2 ~ ~ &1 is is "it" Q 9; C) 9; e e e Jg J.;;; ~ ~ J.;;; ~ "it" "t" is "it" C) "it" Q g oS oS oS C'Q i::: i::: i::: i::: ~ 
"t" is "it" is "it" -.J i i i 

J;;;;. 

"it" is "it" is i::: i::: 
"t" "it" 

I_ Non-Constant Data Memory Use B Constant Data Memory Use [] Program Memory Use I 
© 2001 Berkeley Design Technology, Inc. 



@ 

8 .... 

J 
~ 

ciS' 
:::I 

i 
:::I o 

~ 
J 

~ 

C 
-0 a co 
iiI 
3 
s: 
CD 
3 o 
-< 
c 
m 
m 
o o 
:J 

~ 
;;t 
o a 
DI 

s: 
CD 
3 o 
-< 
c 
m 

ADI ADSP"<18 . 

)( (f::lxed-POlnt) 

ADI ADSP-219x 'Az 
,- 'Xed1JoInt) 

ADI ADSP-219x 

-c (f::;xed-Polnt) 
ADI ADSP-2108x . 

(f=foatmg1Joint) 
ADI ADSP-2108X_C 

(f::Joatlng-Point) 
ADI ADSP-2116x . 

(f=foatmg-Point) 
ADI ADSP-2116x_C 'A . 

(. 10atlng1Joint) 
LUcent DSP164 . 

XX (Axed-Point) 
MotOrola DSP583 . 

XX (AXed1Joint) 
MotorOla DSP568 

XX (f::iXed-Point) 
MotorOla DSP568S 

x (f::ixed1JoInt) 

Starcore SCI40,,,., 

,rtXed-POint) 
ItlMS320C54 

XX (f::iXed-Point) 
ItlMS320C55 

Xx (f::lxed-Point) 

II TMS320C62xx 'f::;." 

,- "ed-POint) 
II IMS320Ce4x. . 

x (Axed-POint) 
II IMS320C64xx_C 

(f=fxed-POint) 
II IMS320C67XX 'A 

(. loafing_POint) 

ROMabie Memory Use, Bytes 
(Program + Constant Data) 

o ~ ~ 

····························1 ••••••• 11 •••••••••••••••••• ............................ 

····························1 ........................... ............................ 

:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:1 

... ... 
~ g;: g ~ 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:1 

............. : ............ : ....................... ·················1 ................................................................. ................................................................. 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:1 

·····················1 ..................... ..................... 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:':1 

·······························:·········11 ........................................ ........................................ 

·····························1 ............................. ............................. 

... 
~ 

... ... 
~ g;: 

.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:·:1 

.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:·:·:·:·:·:·:·:·:·:1 

8 

- '11 "'0 - • 
... ::D cc 
o 0 !:; 

cea 5: CD 
DImeo 
3D"i.n - . + CD -" 
05:1\) 
°CD!D 
::::I 3 m 
fn 0 _. ;.., .... 
::::I '< c: .... c:::::I 
Cfni !,CD n .e ;II\' 

CD g 
CD 
!! g. 
~ ... 
~ 

!II: , 
if 
I 
il: 

~ o 
~ 
c 
II 
CD 
CD 

f 
:::I 
n 
=r 

~ 
~ 
:::I 

CD 



Buyer's Guide to DSP Processors 

II 25 
(/) 

:;:) 

~ 

~ 
II 

20 :E 
E 
! .,. 
e 
0-

15 
] 
"i 
~ 
0 z 10 

784 

Figure 8.5-13. Normalized Program Memory Use 
Sum for All b of MP[p,b]lAMP[b} 

• Real Block FIR 
I'ZI LMS Adaptive FIR 
• Vector Add 
a 256-Point FFT 

8Single-Sample FIR 
EBTwo-Biquad IIR 
[])Vector Maximum 
I3Viterbi 

ClComplex Block FIR 
IS Vector Dot Product 
IBControl 
[;:] Bit Unpack 

©2001 Berkeley Design Technology, Inc. 



BDTI Benchmark™ Results - Memory Usage Benchmarking 

25 

Figure 8.5-14. Normalized Constant Data Memory Use 
Sum for All b of MC[p,b]lAMC[b] 

CD 20 en 
;:) 

~ 

~ 
CD 
:is 
S 

15 IS 
C 

c 
I c 
0 
0 • c 
0 10 z 
" .~ 
ii 
E .. 
0 z 

5 

0 
o. o. o. 0- o. o. ;::. o. ;::. o. o. o. o. o. 0- 0- o. o. 
'5 ·s t t ·s t ·s .S .S ·s '5 .s '5 '5 .s '5 .s r:: . 

p. £ £ ~ J J J 0 J '9. ~ .: .: ~ .: .: "f1 "f1 "6 ~ ~ "f1 "f1 ~ 
.§ :§ :§ :§ :§ .§ § .§ Q) Q) .§ .§ Q) :§ t If il !l il .~ If !f § /1 ,8 /1 ~ ~ !f ~ !f !f i " ..... " "" "" "" "'" ~ ~ 0 ~ g !f g tJ H i ,if ~ I ~ H I 0 '" .... .... ~ 
~ 0 ~ 0 ;g 13 ~ tJ C}I CIt 0) 

II !! fJ 8 eJ 8 8 ~ ti. .... ~ .... ~ .... If "-Il: C}I .... & .... (Q & 0 0 ~ 8 & f3 ~ 
C}I C}I .... & & & ~ {JJ {JJ {JJ {JJ 0 

Il: 
.... 

& 
.... 

~ ~ ~ Q f8 
C}I C}I - .$! e e j ! ~ ~ ! {JJ 

CS CS ~ & Il: i ! ! f8 J ~ ~ 
~ ~ CS ~ ~ .§ .§ 0 j:;: I=: I=: I=: 

~ cs ~ cs ~ -.I i i i I=: I=: ~ cs ~ cs 
~ ~ 

• Real Block FIR 8Single-Sample FIR I:IComplex Block FIR 
faLMS Adaptive FIR EBTwo-Biquad IIR ESJVector Dot Product 
.. Vector Add mVector Maximum lBControl 
fJ 256-Point FFT I3Viterbi [!J Bit Unpack 

© 2001 Berkeley Design Technology, Inc. 785 



Buyer's Guide to DSP Processors 

CD 
(It 

:;) 

~ 
0 
E 
CD 
~ 

CIS -CIS c 
'! 
~ c 
0 
0 • c 
0 z 

" .~ 
Ii 
E ... 
0 z 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 

Figure 8.5-15. Normalized Non-Constant Data Memory Use 
Sum for All b of MD[p,b)/AMD[b] 

;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. ;::::.. 
.g ·s .g .g ·s .g .S ·s ·s ·s .g ·s .g .g .g .g 0 ~ ~ ~ ~ 9- 9- ~ ~ 

;::::.. ;::::.. 
.S 

J 
.g 
9-J J ~ ~ ~ ~ ~ ; ~ t:ll ~ ~ "if 't; ~ 

<l> <l> .§ ,g :§ ,g § .§ .~ .§ <l> .§ .§ .§ <l> :§ 
t! t! ~ ~ .~ t! 
>0..;:. >0..;:. !:f § 8 8 8 >0..;:. !:f ~ !:f -..;;. ~ ~ ~ ~ "'- § 
~ .if Q ~ !£ it !£ Sf ~ Sf ,if ~ $ H $ $ () ~ "'-..... ..... ~ ~ () ~ () (g' (J) Q) 

~ ..... ~ Sf ~ ~ 0) II II /;1 10 It) 8 (0 ~ ..... 0 ~ ..... ~ ..... 1£ g g g r..:. 
t:( t:( ~ ..... & ..... (() a. 0 & (0 

& & ~ ~ ..... 
& & & & ~ &i &1 &1 &1 g t:( ..... ..... 0 

0:{' 0:{' & t:( 
~ 

t:( 
~ 0 

1 ! 1 ! &i &1 
CS CS 0:{' & ~ & t:( J ~ i ~ ~ 

~ ~ & e e ..IE 
0:{' 0:{' 0:{' Q 0:{' .s .§ .s (I.) CS ;::: ;::: ;::: ;::: CS CS f;. ~ 

0:{' 0:{' 0:{' -..J j j ~ ;::: ;::: 0:{' CS 0:{' CS 
0:{' 0:{' 

• Real Block FIR 
E:2LMS Adaptive FIR 
II Vector Add 
I?J 256-Point FFT 

8 Single-Sample FIR 
81Two-Biquad IIR 
[]]Vector Maximum 
[::J Viterbi 

ClComplex Block FIR 
~Vector Dot Product 
IS Control 
I;] Bit Unpack 

786 © 2001 Berkeley Design Technology, Inc. 



BDTI Benchmark™ Results - Memory Usage Benchmarking 

30 

25 

I 
:» 20 
~ 

~ 
CD 
:! 
:! 
o 15 a: 

j 
; .. 
o 10 
Z 

5 

0 
;::-

'5 
;::-

oS 
0 

Figure 8.5-16. Normalized ROMabie Memory Use 
(Program + Constant Data) 

Sum for All b of MPC[p,b]lAMPC[b] 

;::- ;::- ;:::.. ;:::.. ;:::.. ;::- ;:::.. ;:::.. ;:::.. ;::- ;::- ;:::.. ;::-

'5 ·s § oS .S .S ·s '5 .S ·s -5 
;::- ;::- c-
§ ·s i i i £ £ 1 1 J 1 8. 1 fl. fl. .Q. : .: f .g-

il 1 "b ~ "b "b j .§ :S :S :S ,§ : .§ § .1 CZI .§ .1 CZI : If t1 .:$ If ~ g ~ g -.;. ~ I 8 ,8 8 ~ ~ -.;;. ~ ~ ~ '-'=- I ~ ~ 0 -.;;. g ~ g ~ H 11 ,1f ~ I I H I ;( -.;. .... .... ~ 
~ 0 ~ 0 ~ 

Q) fa ~ ~ ~ ~ ~ .... ~ .... ! I Jf f5 g g § (Q ~ 

" R R (\J .... & .... (Q & g tf g r:I.. ~ ~ - IS IS IS G &! &J 9 .... - &J 0 

3 a: c:-t R ~ "( "( IS R tJ 1:: ~ -B e 2 # # ~ ! Pi &J 
is is "( I g # ! or:( or:( is or:( "( 0 .§ .,§ ;3 j:: j:: j:: j:: is is ... 

"( "( "( -.J i i i j:: j:: "( is or:( is 
"( "( 

• Real Block FIR 8 Single-Sample FIR (::::JComplex Block FIR 
12:1 LMS Adaptive FIR BlTwo-Biquad IIR £SIVector Dot Product 
.Vector Add mVector Maximum IBControl 
II 256-Point FFT ClViterbi ~Bit Unpack 

© 2001 Berkeley Design Technology, Inc. 787 



Buyer's Guide to DSP Processors 

CD 
fI) 

::) 

~ 
0 
E 
CD 

:!E 
'ii 
~ 

{:. 
"C 

.~ 
'ii 
E ... 
0 
Z 

788 

25 

20 

15 

10 

5 

0 
~ ~ 

'8 '8 ;-

Figure 8.5-17. Normalized Total Memory Use 
Sum for All b of MPCD[p,b]/AMPCD[b] 

~ ~ ~ ~ ~ ~ ;:::. ;:::. ;:::. ;:::. . ;:::. .;::.. 

'8 .§ ·s -§ ·s ·s .S .S .§ ·s -§ '8 : ~ £ ~ £ ~ ? ? : ? ;- : ~ ~ ~ 'b 'b 'b 

;:::. ;:::. ~ ;:::. 

'8 '8 .S '8 .: : ! ~ 
~ ;-

J1 If .§ :§ :§ :§ :§ 
il .~ .~ .~ .~ .i!S .~ .~ .~ .§ :§ 

-..;. -..;. !f /j /j /j /j -..;. !f !f !f ~ !f !f !f ~ !f I ~ -cv 
t:l.. 

f8 
'<:" 

is 
'<:" 

6f Q it g it g ti l; -..;. -..;. 

~ 
~ ,}f ~ $ ,H ~ $ Q -..;. 

~ - ~ Q 
~ 0) - 0 ~ Cl ~ - & f8 Cl ~ -'<:" f8 Cl ~ f8 Cl is '<:" 

'<:" f8 '<:" is is '<:" '<:" 
'<:" is 

'<:" 

• Real Block FIR 

mTwo-Biquad IIR 

lSControl 

~ CJ ;g !8 ~ ~ - ~ /;j It) It) (ci <:0 ~ - .>(- - if if 8 8 8 8 "-- <:0 ll. 
~ 8 <:0 

~ - f8 f8 f8 F! &f &f &f &f 8 - 0 Cl ~ 0 

~ ~ g g &f &! f8 .... 
~ ~ ~ f:> 5; c:: 

'<:" 8 P P P ..!!; F:. F:. g ! is 
0 ~ ..9 .s .s (/) ;::: ;::: ;::: ;::: '<:" -..J i i i ;::: ;::: '<:" is 

'<:" 

8 Single-Sample FIR ClComplex Block FIR taLMS Adaptive FIR 

lSVector Dot Product II Vector Add [lIVector Maximum 

~Bit Unpack G256-Point FFT [3Viterbi 

© 2001 Berkeley DesignTechnology, Inc. 



Conclusions 

9. Conclusions 
In this chapter we briefly review the broad themes of this report, summarize our 

findings, and provide a perspective on the state of the art and the future of nsp processors 
and applications. 

9.1 Comparing Processors 
The frrst commercially successful nsps appeared in the early 1980s. For the 15 

years that followed, nsp processor architectures changed little. Architectural improve­
ments were mostly incremental and vendors concentrated on increasing clock speeds, low­
ering power consumption, and integrating more on-chip memory and peripherals. As a 
result, many nsps shipping in volume today strongly resemble the commercial nsps of 
the 1980s. 

The past few years, however, have seen dramatic changes in nsp architectures. 
Today, nsps use a wide range of architectural techniques. Most major manufacturers have 
adopted VLIW -based designs for their high-performance processors. At the same time, 
many of these same vendors also offer conventional and enhanced conventional nsps. For 
example, Texas Instruments' product line is based on nine different instruction set archi­
tectures, ranging from low-cost devices for applications such as disk-drive servo control to 
high-performance devices for applications like cellular telephone base stations. 

What has motivated this rapid diversification in architectures? One key consider­
ation is that, fundamentally, nsp applications themselves are very diverse: nsps are 
found in products ranging from hearing aids to satellites; from air conditioners to tele­
phone company central office switches. Not surprisingly, these applications have vastly 
different requirements. In addition, the market for nsp processors has grown rapidly, to 
an estimated $6 billion in 2000. The diversity of application requirements and the increas­
ing number of competitors aiming for a piece of this growing market have combined to 
create the unprecedented range of nsp processor architectures available today. 

Even within the somewhat constrained category of nsp processors, choosing 
among processors has recently become more complex due to the rapidly increasing com­
plexity and expanding diversity of nsp processor architectures. nsp processors now use a 
wide variety of innovative and complex architectures; understanding these architectures 
can require a significant investment of time and energy. It is important, though, not to 
focus exclusively on architectures. A processor's architecture is important in that it con­
tributes to achieving a particular level of speed, cost, energy consumption, programmabil­
ity, and so forth, but ultimately it is these latter factors, rather than the architecture itself, 
that determine the suitability of a processor for an application. 

nifferentprocessors clearly excel in different areas. One important attribute is exe­
cution speed. Even among processors with comparable instruction execution rates, appli­
cation execution speed can vary significantly. Gaining insight into real differences in 
processor performance is a challenge. In general, performance measures of all kinds 
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should be regarded with caution-this is complex territory, and the temptation to stretch 
the truth is powerful. Comparisons based on MIPS and MFLOPS are particularly suspect, 
given the large differences in the amount of useful processing that different processors can 
accomplish with a single instruction or floating-point operation. It is our firm belief that 
benchmarks, if carefully chosen and fairly implemented, provide invaluable insights into 
processor performance. Benchmark results, however, should not be accepted at face value. 
To draw meaningful conclusions from benchmarks, one must look beneath the surface to 
understand what the benchmarks really measure. Further, as our benchmark results vividly 
illustrate, it is critical to use appropriate benchmarks, relevant to the content of the appli­
cation at hand; relative performance can vary dramatically from one type of algorithm to 
another. 

Additionally, processor users should keep in mind that many features important to 
processor selection cannot readily be quantified via benchmarking. Applications support, 
quality of development tools, ability of the vendor to consistently deliver its products, and 
I/O performance are all examples of processor selection criteria that are not captured in 
typical benchmark results. Users therefore must weigh both qualitative and quantitative 
considerations when choosing a processor. 

9.2 DSP Processors Trends and Challenges 

Achieving Balance 

Over the past few years, many vendors have attempted to attract attention by 
claiming to have produced the "world's fastest DSP." While the veracity of these claims is 
often questionable, they do raise an important question: Who cares? When comparing pro­
cessor performance, there is a tendency to focus exclusively on speed. But for embedded 
applications, often speed is not the most important aspect of a processor's performance. In 
fact, for the most commercially important DSP applications, obtaining adequate process­
ing speed is not the major challenge. Rather, the challenge is obtaining an appropriate 
level of processing speed while minimizing system cost, energy consumption, memory 
use, size, and development effort and risk. These factors often must be traded off against 
one another and different applications place different weights on each factor. Achieving an 
appropriate balance for a wide range of applications is a key challenge facing processor 
vendors and users alike. Doing so depends only in part on processor architecture; many 
other factors, such as fabrication technology and development tools, are also critical. 

Not surprisingly, processor vendors make different trade-offs in designing their 
processors. Many recent DSP processors, such as Texas Instruments' TMS320C62xx, 
have pursued maximum speed, which is useful for applications such as network infrastruc­
ture equipment where many channels aggregated in a single piece of equipment create an 
enormous appetite for performance. Others, such as Analog Devices' ADSP-2116x, have 
emphasized compatibility, gaining less dramatic performance improvements but providing 
a simpler upgrade path for users of previous-generation devices. Still others have pursued 
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energy efficiency, critical in the expanding variety of high-volume, battery-powered nsp 
applications ranging from MP3 players to hearing aids. The diversity of nsp applications 
means that there are opportunities for a variety of architectural approaches to succeed. As 
a result, we expect to see more non-traditional architectures emerge for use in nsp appli­
cations in the coming years. 

Although much attention has been given recently to the emerging wave of new, 
complex, high-performance nsp architectures, we should note that the vast majority of 
the nsps shipping today use conventional nsp architectures (similar to those of the first 
commercially successful nSps); this will continue to be true for some time. Partly this is 
due to the natural time lags associated with the design and market penetration of new sys­
tem-level products, but it is also due in part to the fact that for many applications, conven­
tional nsp processors offer a very attractive mix of performance, cost-effectiveness, 
energy efficiency, and development infrastructure. 

Compiler-Friendliness 

One of the most interesting and significant changes in nsp processor architecture 
in the last few years is the importance placed on compiler-friendliness by processor archi­
tects. Whereas the mainstream nsps of 1995 were very poor compiler targets, those of 
2000 are in many cases much better compiler targets, increasing the likelihood that users 
will have access to efficient and robust high-level language compilers. This has become 
critical as the size of typical nsp application software has increased from hundreds of 
lines of source code to tens of thousands. Some of the newer VLIW -based nsps, such as 
the StarCore SC140, incorporate RISC-like instruction sets, uniform register files, and 
other features designed to simplify compiler code generation. Of course, designing a com­
piler-friendly processor architecture does not ensure that an efficient compiler will 
become available. To help users judge the relative efficiency of compilers, BDTI has 
recently begun benchmarking C compilers for DSP applications. Our early results show 
that order-of-magnitude differences in compiler efficiency are common. 

Floating-Point DSPs: Uncertain Future 

Choices in floating-point DSPs remain relatively narrow. Of the major DSP ven­
dors, only Analog Devices and Texas Instruments offer floating-point DSPs, and there are 
very few licensable DSP cores with floating-point support. This reflects the fact that float­
ing-point nsps comprise a very small fraction of the DSP processor market. Going for­
ward, high-performance floating-point DSPs will face increasingly serious competition 
from high-performance CPUs, such as the Motorola PowerPC 7400, many of which are 
significantly faster than the DSPs in typical DSP benchmarks. 

Growing Competitiveness of General-Purpose Processors 

Separate from the high-performance general-purpose processors intended for use 
as CPUs in computer systems, general-purpose processors that target embedded applica­
tions are increasingly offering DSP capabilities. 
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A wide variety of techniques has been used to add DSP capabilities to existing 
embedded general-purpose architectures. Some processor designers have made modest 
enhancements to their processors' instruction set architectures; for example adding a sin­
gle-cycle multiply-accumulate operation, as has been done on the Integrated Device Tech­
nology R46xO and Motorola ColdFire. Others have extensively renovated their existing 
architectures; for example, the Hitachi SH-DSP adds a DSP data path, memory architec­
ture, addressing modes, and other features to the SH-2 microcontroller. Other vendors 
have opted for a co-processor approach, as Massana has with its licensable DSP co-pro­
cessor cores. In addition, many vendors continue to develop single-chip multiprocessors, 
combining a DSP core and a microcontroller core in a single device. All of these 
approaches have the potential to achieve both strong DSP capabilities and strong micro­
controller capabilities. In addition, we are seeing the emergence of a class of new, hybrid 
architectures, such as the Infineon TriCore, designed from the ground up to address both 
DSP and microcontroller tasks. Such processors are blurring the traditional distinctions 
between DSPs and general-purpose devices. 

Today, general-purpose processors often effectively meet the needs of DSP appli­
cations. In some cases, the performance of general-purpose processors in DSP applica­
tions is surprisingly strong. In addition, these processors often have much broader tool 
support than is typically available for DSP processors. These factors, combined with the 
fact that many existing system product designs already contain one or more general-pur­
pose processors, make it worthwhile for users to consider implementing DSP tasks on 
general-purpose processors in many cases. 

In DSP applications that also contain a large amount of complex, non-DSP soft­
ware (for example, graphical user interfaces and network protocols), DSP processors may 
find it increasingly difficult to compete, because the prospect of implementing such 
non-DSP software on DSPs-with their comparatively limited tools and often idiosyn­
cratic architectures-is unattractive. On the other hand, in applications that consist exclu­
sively or primarily of DSP tasks, general-purpose processors are often at a disadvantage, 
because their tools may lack features important for DSP software and their software librar­
ies often do not include important DSP components. 

Just as general-purpose processors have been adopting features to improve their 
DSP capabilities, many DSP processors have been adopting features from high-perfor­
mance CPUs to boost performance and adding other features to improve their microcon­
troller capabilities. For example, the Motorola DSP568xxand Texas Instruments 
TMS320C28xx both include features specifically intended to improve the processors' 
suitability for microcontroller tasks, and the LSI Logic LSI40xZ uses run-time instruction 
scheduling and branch prediction techniques borrowed from high-performance CPUs. 

While it is straightforward for DSP processors to adopt general-purpose processor 
features to boost performance and enhance functionality, it is not so easy for DSPs to 
match the strong general-purpose development tools and infrastructure, broad industry 
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familiarity, compatibility, and wide availability associated with the most successful gen­
eral-purpose processor architectures. 

Compatibility 

In the world of embedded general-purpose processors, software compatibility has 
been an important architectural consideration for many years. Hence, today's embedded 
general-purpose processors often provide binary compatibility with their predecessors. 
For example, the ARM and MIPS families have maintained compatibility through several 
generations. In contrast, DSP processor designers have often not maintained software 
compatibility from one generation to the next. For example, the processors comprising the 
initial wave of high-performance, VLIW -based DSPs, including the Analog Devices 
ADSP-TSOxx, the StarCore SC140, and the Texas Instruments TMS320C62xx, are all 
incompatible with their predecessors. 

As DSP applications have become larger (typically consisting of thousands or tens 
of thousands of lines of source code today), though, and as the "installed base" of existing 
DSP applications has grown, software compatibility has become an increasingly important 
concern among DSP users. In addition, as general-purpose processors become more com­
petitive in DSP applications, the lack of compatibility of DSP processors increasingly 
stands out as a competitive disadvantage. In response to these considerations, some DSP 
processor designers have recently begun to make compatibility a priority in designing new 
processors. For example, Texas Instruments' two newest designs, the TMS320C64xx and 
TMS320C55xx, are both compatible with their predecessors. (The TMS320C64xx is 
object-code compatible with the TMS320C62xx and the TMS320C55xx is assembly 
source-code compatible with the TMS320C54xx.) Nevertheless, limited compatibility 
among different processors from a single vendor (for example, the TMS320C55xx and 
TMS320C64xx are not software compatible) continues to be a concern for users and a 
weakness compared to some general-purpose processor families. 

Scaling 

Scaling is one approach to creating families of processors sharing a single instruc­
tion set, but with a wide range of performance, price, and energy efficiency levels. The 
idea of scaling is to vary the complement of execution units (and, commensurately, mem­
ory bandwidth and other resources), while maintaining at least a minimum complement of 
resources required to efficiently execute the common instruction set. Processors created in 
this way may have very different levels of parallelism, but are mutually compatible. 
Among the various types of DSP processor architectures in use today, VLIW -based 
designs lend themselves more naturally to scaling than do conventional or enhanced con­
ventional architectures. 

StarCore has highlighted the scalability of the SC 1 00 instruction set via its recent 
introduction of the SC110, a scaled-down version of the SC140 containing only one 
ALUIMAClbit-field unit (compared with four on the SC140). StarCore expects that pro­
cessors based on the SC110 core will be competitive for applications such as digital cellu-
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lar phones. If so, this will be the first VLIW -based DSP from a major DSP processor 
vendor to address this type of cost- and energy-sensitive application. 

Fot users, scalability can be attractive, allowing a single instruction set-and 
hence a single set of tools and software-to be used across a range of applications with 
different speed, price, power, and integration needs. For example, developers of communi­
cations syst~ms can often gain significant simplifications by using compatible processors 
for both base stations and terminals. For vendors, scaling a single instruction set offers 
efficiencies in the provision of tools, documentation, training, application software, and 
support. 

Examples of scaled DSP processor families are few and recent. As a result, it 
remains to be seen whether this approach will be successful in creating highly competitive 
processors for vastly different classes of applications-spanning, for example, very 
low-cost and low-power applications as well as very speed-hungry applications. 

9.3 Business and Infrastructure Trends and Challenges 

In this section we briefly discuss some of the significant trends that we have 
observed related to nsp processors, apart from trends related to the architectures of the 
devices themselves, which are discussed above. 

Increased Competition 

As markets for DSP-capable processors continue to grow, it is natural to expect 
increased competition. This competition comes from many sources. New entrants, large 
and small, are flooding the DSP processor business. Perhaps the most dramatic example of 
this is Intel's recent re-entry into the DSP processor business via its architecture collabora­
tion with Analog Devices. In addition, general-purpose processors increasingly pose seri­
ous competition for DSP processors in many applications, as discussed above. And for 
maturing applications, application-specific standard products are often a viable alternative 
to DSPs. Finally, as we discuss below, alternatives such as FPGAs and custom hardware 
are attractive for some applications. 

For vendors, this increased competition means an increasingly demanding busi­
ness and technical environment. For users, it means expanded options and more complex 
choices. 

Increasing Collaboration Among Chip Vendors 

Over the past two years, two DSP architecture collaborations have been formed 
among major vendors: Lucent and Motorola have formed StarCore, and Intel and Analog 
Devices have engaged in a similar joint effort for the design of a next-generation DSP 
architecture. The results so far from StarCore are promising; Analog Devices and Intel 
have yet to reveal the results of their collaboration. 
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If successful, such collaborations offer several benefits. A pooling of resources 
may allow partners to develop better products faster than they could working separately. 
Costs can be reduced, because instead of each vendor developing its own tools, applica­
tion software components, documentation, and so on, these resources can be developed 
once for the shared architecture. Also, attracting the support of third-party tool and appli­
cation software developers may be easier if the third-party vendors believe that the shared 
architecture will create a significant market for their products. Finally, users may be 
attracted by the potential availability of software-compatible products from the two part­
ner chip vendors. 

History shows, however, that such collaborations are tricky to manage. The partner 
companies must cooperate on architecture development (including planning future gener­
ations of products years into the future) while simultaneously competing to sell chip prod­
ucts based on their jointly designed architectures; being competitors and effective 
collaborators at the same time is a major challenge. 

Tools and Infrastructure Emerge as Critical Components of Success 

Tools for DSP processor software development and debugging have made signifi­
cant advances over the past few years. For example, Microsoft Windows-based graphical 
debuggers are now common, and nearly all vendors have functional C compilers for their 
DSPs. Most DSPs provide on-chip emulation support with JTAG-compatible interfaces 
and an increasing number provide code profiling tools. 

Nevertheless, as discussed earlier in this chapter, tools continue to be a weak link 
for DSP processor users. A vast amount of production software for DSP processors (espe­
cially fixed-point DSPs) is written in hand-optimized assembly code using very rudimen­
tary tools. As DSP processors have become increasingly powerful, cost-effective, and 
energy-efficient, the biggest challenge facing users is often the efficient development of 
hardware and software using these processors. DSP applications have become much larger 
and more complex, time-to-market windows have become shorter, and skilled developers 
are in short supply. As a result, for many users, the selection of a processor hinges increas­
ingly on the quality of the available tools, application software components, technical sup­
port, and other development infrastructure. 

Code-generation tools, in particular, represent the greatest challenge for processor 
developers. As vendors adopt more powerful and more complex architectures such as the 
VLIW -based designs discussed above, the need for truly efficient code-generation tools 
increases. Developing efficient code-generation tools for these complex processors, how­
ever, is not straightforward. Thus, we expect both users and vendors to place increased 
importance on code-generation tools (especially C compilers) in the next few years, paral­
leling the increased emphasis on compiler-friendliness of new architectures, discussed 
above. 

Software libraries, including building-block functions (like filters and transforms) 
and application modules (like speech coders and modulators) are essential enablers for 
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processor users who want to deploy products. quickly while focusing their development 
efforts on features that differentiate from-rather than duplicate-those already available 
elsewhere. nsp processor vendors are actively courting third-party software developers 
and, as mentioned above, are developing their own application software components in 
some cases. Nevertheless, the availability of off-the-shelf software remains spotty. 

Some vendors (for example, Texas Instruments) have invested aggressively in 
strengthening their development tools and infrastructure through acquisitions, internal 
efforts, and facilitating the work of third-party developers; others have not. Relatedly, 
when a third-party developer considers supporting a new architecture, a key factor in its 
decision is the number of users expected to create new designs with the architecture. This 
helps to explain why Texas Instruments, with its inclusive market strategy, broad product 
line, and large market share, enjoys very strong third-party support while Lucent, with its 
specialized product line and narrowly focused market strategy, has very little third-party 
support-despite having the second-largest market share in nsps. Indeed, we believe that 
concerns about development tools and infrastructure were a major factor motivating 
Lucent and Motorola to form their StarCore partnership. The partnership allows the two 
companies to pool their resources and their user bases to foster internally developed and 
third-party tools, application software, and other infrastructure. . 

Factors such as the different market and product orientations of processor vendors, 
and differing levels of investment, are creating a widening gap between the best-supported 
and the least-supported DSPs in terms of the quality and capabilities of the available tools 
and infrastructure. This makes it increasingly critical for users to evaluate these items 
thoroughly before selecting a processor. Going forward, we expect that success or failure 
of a new nsp architecture will be increasingly influenced-in some cases decisively-by 
the quality of the associated tools and other development infrastructure. The importance of 
tools and infrastructure also helps explain why general-purpose processors are becoming 
increasingly attractive for nsp applications. 

Vertical Integration Accelerates 

As applications become larger and more complex, processor vendors are increas­
ingly providing more than just processors. Tools and other development support, men­
tioned above, are an important example of this. Another example is complementary chips, 
such as analog-to-digital and digital-to-analog converters designed to integrate easily with 
a nsp. Yet another, increasingly important example is sophisticated application software, 
such as xDSL modem software (which Analog Devices, Texas Instruments, and Lucent all 
offer for selected DSPs). Such software, bundled with the nsp, allows the processor ven­
dor to offer a "black box" application solution to system developers, which in tum helps 
system developers to successfully create products without mastering all of the associated 
signal processing content, and' without making the sometimes immense investment 
required to develop high-quality implementations of functions such as modems and audio 
compression. 
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As with tools, the past few years have seen accelerating investment by some DSP 
processor vendors in application software for specific markets. And, as with tools, the 
availability of appropriate application software is often a critical factor in users' proces­
sor-selection decisions. Going forward, we expect to see further increases in the level of 
investment by DSP processor vendors in application software. 

System-on-Chip (SoC) Designs Become Mainstream 

More and more of the most important DSP applications place a priority on low 
cost, low energy consumption, and small size. Ever-improving IC fabrication technology 
allows more circuitry to be packed into a single small chip. The combination of these 
trends suggests that an increasing number of products will use specialized chips that com­
bine a DSP core with other significant modules, such as a microcontroller, applica­
tion-specific accelerators, and custom hardware. Processor vendors have the capacity to 
design only a very limited number of such specialized devices. Therefore, we expect that 
an increasing number of system designers and specialty chip companies will create their 
own DSP core-based SoC devices targeting specific application areas or even a single 
end-product design. 

DSP cores are a less mature technology than packaged DSP processors, and there 
are still significant barriers to their effective, widespread use. For example, the number of 
DSP core offerings today is fairly limited, and the required tools and expertise for creating 
a DSP core-based SoC are often lacking. A major challenge to the widespread use of DSP 
cores remains the complexity of delivering a DSP core design, along with associated doc­
umentation, diagnostics, and tools, to multiple design teams, each with a unique set of 
design methodologies, know-how, and requirements. Core vendors and EDA tool devel­
opers have begun to recognize this problem and are taking steps towards addressing it. For 
example, the VSI (Virtual Socket Interface) Alliance is developing and promoting stan­
dard interfaces for licensable electronic intellectual property such as DSP cores. 

Despite many challenges, there is little doubt that DSP cores will play an increas­
ingly important role in the coming years. Unfortunately for users, most of the established 
DSP processors are either not available as cores, or are available on a very limited basis 
(for example, only to selected customers, or only for extremely high-volume products). 
Some vendors of packaged DSP processors do provide "foundry-captive" DSP cores. 
Texas Instruments, for example, makes some of its cores available for use in high-volume 
SoCs designed by customers and fabricated by Texas Instruments. Several core specialists, 
such as DSP Group, offer licensable DSP cores-licensees can combine these cores with 
building blocks from other vendors or of their own design and fabricate the resulting chip 
wherever they choose. 

Going forward, the proliferation of SoC designs poses a significant challenge for 
esU!,blished DSP processor vendors. These processor vendors cannot hope to directly 
engage with all of the users who wish to create SoC designs using their processors. There­
fore, many SoC designers will be forced to look elsewhere for their DSP cores unless the 
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established vendors decide to make their processors available as licensable cores. In recent 
years, a few nsp processor vendors have begun to offer their architectures as licensable 
cores. For example, Infineon offers its Carmel architecture as a licensable core, and LSI 
Logic licenses its LSI40xZ design. These two companies, relatively new to the nsp pro­
cessor market, hope to increase the chances for success of their architectures by enabling 
customers to create their own SoC designs without direct involvement from the processor 
vendor. In addition, Motorola has announced that it will license its new nSP56800E core. 

Specialization Continues 

As markets for nsp processors expand, it becomes attractive to tailor processors to 
the needs of specific applications or classes of applications. Processors that are specialized 
in this way can gain a competitive advantage by focusing resources where they have the 
most benefit for the application. While this trend is not new, over the past few years we 
have observed an increase in the number of specialized nsps. 

Specialization can take place in many ways. Among the most obvious are the 
inclusion of co-processors or accelerators, or the addition of new data path features and 
instructions to boost performance in certain types of algorithms. Other approaches focus 
on integrating an appropriate mix of on-chip memory, peripherals, and 110 interfaces. In 
the extreme, these devices cease to be sold as programmable "processors," and are instead 
sold as application-specific standard products (ASSPs), with all necessary software pro­
vided by the processor vendor. 

The degree and specificity of tailoring varies. For example, Motorola's DSP56307 
is intended for GSM base stations, and some members of Zoran's ZR38xxx family are 
designed exclusively for Dolby AC-3 audio decompression applications. In contrast, pro­
cessors like Texas Instruments' TMS320C54xx have features that make them well suited 
to wireless telecommunications applications, but most of these features aren't specific to 
one particular wireless application. 

Another manifestation of the trend towards specialization is the size of nsp pro­
cessor families. Some vendors have created very large families of nsps based on a com­
mon core architecture but offering varying levels of performance and cost and different 
types of integration and specialization. Perhaps the largest is Analog Devices' 
ADSP-21xx family, which includes over 30 distinct products, including devices special­
ized for applications such as motor control. 

Some types of specialization, such as integrating application-specific functionality 
into a processor's data path and instruction set, are inconsistent with the trend towards 
more RISC-like architectures, which is motivated by the need to create efficient compil­
ers. To resolve this conflict, we expect that in the future many nsp processor vendors will 
create specialized chips by combining generalized cores with special-purpose co-proces­
sors and on-chip peripherals. Other vendors, though, will likely find it worthwhile to sac­
rifice compiler-friendliness in exchange for performance and efficiency by incorporating 
application-specific features into the core architecture. 
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Other, emerging approaches to specialization include enabling users to modify the 
processor architecture, and combining programmable logic with a processor to provide a 
"reconfigurable processor." For example, Tensilica, a core licensor, uses the former 
approach, while Chameleon Systems, a chip vendor, uses the latter. Going forward, we 
expect that both of these approaches will have success in DSP applications. 

9.4 Conclusions 

Broadening Options 

Today more than ever before, selecting among implementation options for DSP 
applications is a complex task rife with subtle trade-offs. Users have an unprecedented 
range of options for implementing DSP tasks, including: 

• Conventional DSP processors, such as the Texas Instruments TMS320C54xx. 

• Enhanced conventional DSP processors, such as the Analog Devices 
ADSP-2116x. 

• High-performance, VLIW-based DSP processors, such as the Motorola MSC8101. 

• High-performance general-purpose processors, such as the Intel Pentium ill. 

• Embedded-oriented general-purpose processors with DSP enhancements, such as 
the Hitachi SH3-DSP. 

• Customizable processors, such as the ARC processor core. 

• Reconfigurable processors, such as the Chameleon Systems CS2000. 

• Application-specific standard products, such as MP3 player chips. 

• Programmable logic devices, which increasingly are provided with DSP-oriented 
design tools and intellectual property. 

• Custom-designed hardware, which may incorporate hard-wired logic in combina­
tion with one or more of the above-listed technologies. 

Choosing among this proliferation of offerings can be a daunting task. In many 
applications, the decision isn't simply a matter of picking the single "best" implementa­
tion technology. Rather, the most successful system designs are typically heterogeneous­
using multiple technologies, each for the portion of the system where it best meets the 
needs of the application. 

For those applications where a DSP processor is appropriate, no one architecture, 
and no single processor, can effectively serve the needs of all, or even most users. For this 
reason, we expect to see continuing specialization and diversification in DSP processor 
architectures, and we expect that different DSPs will succeed in different applications. 
General-purpose processors will increasingly challenge DSPs in many applications, and 
the line between general-purpose processors and DSPs will continue to blur. Nevertheless, 
we expect that in the next few years, DSPs will dominate in many of the most important, 
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most signal-processing-intensive applications, such as advanced cellular phones, xDSL 
modems, and voice-over-packet networks. 

As a result of the continuing acceleration in DSP processor architectural innova­
tions, the task of comparing and selecting processors is much more complex than it was 
just a few years ago. Understanding the key attributes of all of the new types of DSP and 
DSP-enhanced general-purpose architectures can be a complex task; understanding the 
implications of those attributes for an application can be daunting. Users, therefore, must 
be prepared to invest significant time in selecting a processor. 

For chip vendors, the path ahead includes many new options. Although the leading 
DSP chip vendors have all adopted VLIW techniques for their fastest devices, those same 
companies are in many cases continuing to develop more conventional DSP architectures 
to target applications that demand a different balance of speed, cost, power consumption, 
and compatibility with previous-generation processors. 
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Appendix A. Vendor Contact Information 
The following tables provide contact information for both vendors of nsp proces­

sors and for development tool and library vendors mentioned in this report. 

DSP Processor Vendors 

Vendor Address 
Telephone, Fax, Electronic Processor 

Mail, Website Families 

(781) 329-4700 ADSP-218x 
1 Technology Way (800) 262-5643 - Sales ADSP-219x 

Analog Devices, Inc. P. O. Box 9106 (800) 446-6212 - Lit. Faxback ADSP-2106x 
Norwood, MA 02062-9106 Email: cpd_support@analog.com ADSP-2116x 

http://www.analog.com TigerSHARC 

(800) 372-2447 
(610) 712-4323 
(610) 712-4106 - Fax 

Lucent Technologies, Inc. 
1247 S. Cedar Crest Blvd. (610) 712-4593 - Tech. Supp. Fax DSP16xxx 
Allentown, PA 18103 Email: research@stlouis.cp.lucent.com StarPro 

Tech. Supp. web site -
http://www.lucent.com/micro/warnltse 
http://www.lucent.com 

(800) 521-6274 
(847) 538-8099 

DSP563xx 
MDOE314 (512) 895-2030 - Marketing 

DSP568xx 
Motorola, Inc. 6501 William Cannon Drive (512) 895-3230 - Tech. Support 

DSP5685x 
Austin, TX 78735 (512) 895-4665 - Fax 

MSC81xx 
Email: help@mot.com 
http://www.mot.com 

StarCore Technology 
2100 Riveredge Parkway, (770) 618-2500 
Suite 600 (770) 937-4534 SC140 

Center 
Atlanta, GA 30328 http://www.starcore-dsp.com 

TMS32OC2xxx 

(281) 274-2320 
TMS32OC3x 
TMS32OC54xx 

Texas Instruments, Inc. 
12500 TI Blvd. (281) 274-2324 - Fax 

TMS32OC55xx 
Dallas, TX 75243 Email: dsph@ti.com 

TMS32OC62xx 
http://www.ti.com 

TMS32OC64xx 
TMS32OC67xx 
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DSP Software and Development Tool Vendors 

Telephone, Fax, 
Vendor Address Electronic Mail, Web Products 

Site 

2107 Dwight Way 
(510) 665-1600 

Optimized DSP soft-
Berkeley Design (510) 665-1680 
Technology, Inc. (BDTI) 

Second Floor 
Email: info@BDTI,com 

ware; expertise in digi-
Berkeley, CA 94704 

http://www.BDTI.com 
tal audio 

Cadence Design Systems, 555 N. Mathilda Avenue 
(408) 733-1595 High-level DSP system, 

Inc. (formerly Alta Group) Sunnyvale, CA 94086 
(408) 523-4601- Fax software and hardware 
http://www.altagroup.com development tools 

DSPSoftware (781) 275-3733 
Application libraries for 

Engineering, Inc. 175 Middlesex Turnpike (781) 275-4323 - Fax 
(Voice-Over-IP solutions Bedford, MA 01730 Email: info@dspse.com 

Texas Instruments pro-

acquired by Tellabs) http://www.dspse.com 
cessors 

1700 Alma Drive 
(972) 578-1121 

Domain Technologies, Inc. Suite 495 
(972) 578-1086- Fax In-circuit emulators for 
Email: info@domaintec.com Motorola DSPs 

Plano, TX 75075 
http://www.domaintec.com 

101 Metro Drive 
(408) 392-9300 

ENEA OSE Systems, Inc. Suite 680 
(408) 392-9301 - Fax 

Real time as 
Email: infor@enea.com 

San Jose, CA 95110 
http://www.enea.com 

GO DSP, 
150 John Street (416) 599-6868 

GO DSK visual develop-
A Texas Instruments 

Suite 899 (416) 599-7171- Fax 
ment environment for 

Company 
Toronto, Ontario MSV Email: sales@go-dsp.com 

Texas Instruments DSPs 
3E3 Canada http://www.go-dsp.com 

(805) 965-6044 

Green Hills Software, Inc. 
30 West Sola Street (805)965-6343 - Fax DSP software develop-
Santa Barbara, CA 93101 Email: sales@ghs.com ment tools 

http://www.ghs.com 

2700 Augustine Drive (408) 980-8170 
ILLICO Suite 145 (408) 980-9327 - Fax Fax, modem software 

Santa Clara, CA 95054 http://www.illico.com 

(800) 377-5416 

9801 Metric Blvd. 
(512) 997-4700 

DSP software develop-
Metrowerks (512) 997-4901 - Fax 

Austin, TX 78758 
Email: info@metrowerks.com 

ment tools 

http://www.metrowerks.com 
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Vendor Contact Information 

DSP Software and Development Tool Vendors 

Telephone, Fax, 
Vendor Address Electronic Mail, Web Products 

Site 

Semiconductor Products 
Sector + 91 80559 8615 

Motorola India Ltd. 
Area 1B, The Senate + 91 80559 4687 - Fax DSP software develop-
No.33A, Ulsoor Road http://www.apspg.com/region ment services 
Bangalore 560 042 a1Jbangalore.html 
INDIA 

700 E. Middlefield Road 
(800) 388-9125 High-level DSP system, 

Synopsys 
Bldg. C 

(650) 962-5000 software and hardware 
Mountain View, CA 

http://www.synopsys.com development tools 
94043 

(800) 458-8276 

333 Elm Street 
(781) 320-9400 

Tasking Inc. Dedham,MA 
(781) 320-9212 - Fax DSP software develop-
Email: sales.us@tasking.com ment services 

02026-4530 
or support.us@tasking.com 
http://www.tasking.com 

(650) 323-3232 
Real-time speech cod-

299 California Avenue (650) 323-4222 - Fax 
ing and telecommunica-

Voice Pump, Inc. Suite 200 Email: 
tions software for 

Palo Alto, CA 94306 sales@voicepump.com 
various DSPs 

http://www.voicepump.com 

1350 Pear Avenue 
(650) 962-8722 

Optimized software 
Wideband Computers, Inc. Mountain View, CA 

(650) 962-8790 - Fax 
libraries for TI, ADI 

Email: info@wideband.com 
94043 

http://www.wideband.com 
processors 

Note: The above includes only vendors mentioned in this report; it is not a compre­
hensive list. 
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Glossary 

Glossary 

Absolute addressing 
Alternative term for memory-direct addressing. See also: memory-direct addressing. 

Accumulator 
A register used to hold the output of the ALU or multiply-accumulate unit. DSP processors 
typically have from one or more accumulators. On fixed-point processors, accumulators are 
usually at least twice as wide as the processor's native data word width (in bits) and may be wider. 

AC·3 
A compression scheme for high-fidelity digital audio, developed by Dolby Laboratories. Also 
called "Dolby Digital." 

AID converter 
(Analog-to-digital converter.) A circuit that converts an analog voltage into a numeric (digital) 
representation. 

Address generation unit 
A unit responsible for generating effective addresses. 

Address match breakpoint 
A debugging feature provided by in-circuit emulators and instruction-set simulators. The 
emulator or simulator halts processor execution when the processor attempts to access program or 
data from a specified memory address. 

Address space 
The range of memory addresses that can be selected by an address bus. For example, a 16-bit 
address bus can be used to select any of 65,536 addresses. 

Add.with.carry 
An addition where the value of the carry bit from the previous operation is added to the result. See 
also: subtract-with-borrow. 

ADPCM 
(Adaptive differential pulse code modulation.) An audio compression technique. 

ADSP·21xx 
A family of 16-bit, fIxed-point DSP processors from Analog Devices, Inc. 
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ADSP-219x 
A family of 16-bit, fixed-point DSP processors from Analog Devices, Inc. 

ADSP-21020 
A 32-bit, floating,...point DSP processor from Analog Devices, Inc. 

ADSP-2106x 
A family of 32-bit, floating-point DSP processors from Analog Devices, Inc., notable for their 
communications ports and large on-chip memories. Also referred to as "SHARC." 

ADSP-2116x 
A family of 32-bit, floating-point DSP processors from Analog Devices, Inc., notable for their 
dual data paths supporting SIMD operations. Also referred to as "Hammerhead." 

AE 
(Applications engineer.) An engineer employed by a processor vendor who is responsible for 
assisting customers with implementing their applications on that vendor's processors. 

A-law 
A European encoding standard for digital representation of speech signals. Non-uniform 
quantization levels are used to achieve the effect of compressing the dynamic range prior to 
quantization. See also: companding, J.L-Iaw. 

Algorithm 
A description of the arithmetic operations to be performed on a signal that does not specify how 
that arithmetic is to be implemented. 

ALU 
See arithmetic logic unit. 

Analog signal processing 
The manipulation of analog signals in the analog domain. 

ANSI 
(American National Standards Institute.) A standards-setting body. Among other standards, ANSI 
has defined a standard for the C programming language. 

Arithmetic logic unit 
A processor execution unit that is responsible for arithmetic (add, subtract, shift, etc.) and logic 
(and, or, not, exclusive-or) operations. 
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ASIC 
(Application-specific integrated circuit.) An integrated circuit intended for use in a particular 
product or application, typically containing one or more processor cores and a variety of 
application- or product-specific features, such as algorithm accelerators and specialized 
peripherals. Also sometimes referred to as an SoC (system-on-chip). 

Assembly statement in-lining 
The inclusion of an assembly language statement (or statements) in high-level language code. 
Assembly statement in-lining is a technique commonly used to improve performance of 
high-level language programs. 

ASSP 
(Application-specific standard product.) An integrated circuit intended to be used in a range of 
products within a particular application field. In contrast, an ASIC is often used only in a single 
product. See also: ASIC, SoC, FASIC. 

ATPG 
(Automatic test pattern generation.) The automated generation of test data (often called test 
vectors or test patterns) to be used for production testing of integrated circuits or other hardware 
components. 

BBS 
(Bulletin board system.) Many DSP processor vendors provide BBSs accessible by modem that 
hold source code and application notes for their processors. 

Big-endian 
The ordering of bytes within a mUlti-byte data word. In big-endian ordering, bytes within a 
multi-byte word are arranged most-significant byte first. See also: little-endian. 

Biquad f"liter 
A second-order digital filter commonly used in signal processing. Biquads are often used as 
building blocks in higher-order digital filters. 

Bit field 
A group of bits. See also: bit-field manipulation. 

Bit-field manipulation 
Logical or bit operations applied to a group of bits at a time. Bit-field manipulation is a key type 
of operation in error control coding and decoding. 

© 2001 BE!rkE!IE!Y DE!sign Technology. Inc. 811 



Buyer's Guide to DSP Processors 

Bit 110 port 
An 110 port in which each pin is individuallyconfigurable to be an input or an output and in 
which each pin can be independently read or written. 

Bit-reversed addressing 
An addressing mode in which the order of the bits used to form a memory address is reversed. 
This simplifies reading the output from radix-2 fast Fourier transform algorithms, which produce 
their results in a scrambled order. 

Block floating-point 
A technique for computation using a set of mantissas sharing a common exponent. 

Block repeat 
A hardware looping construct in which a block of instructions is repeated a number of times. See 
also: hardware loop. 

Bootstrap loading 
The capability to load and execute code from an off-chip device (such as non-volatile memory or 
a host processor) at power-up. 

Boundary scan 
A facility provided by some integrated circuits that allows the values on the IC's pins to be 
interrogated or driven to specified logic levels through the use of a special serial test port on the 
device. This is useful for testing the interconnections between ICs on a printed circuit board. 

Bounding box 
The boundary of a circuit component, such as a nsp processor, SoC, standard cell, or nsp core. 
The bounding-box definition includes a list of all signals and associated timing and electrical 
properties. 

Branch 
A change in a processor's flow of execution to continue execution at a new address. 

Breakpoint 
An address or condition specified by a debugger that causes the processor to stop execution when 
the address is reached or the condition is met. See also: address match breakpoint. 

Bubble 
A delay in instruction execution caused by a pipeline conflict. So called because when depicted 
graphically the unused pipeline slot appears to "bubble up" towards the execute stage of the 
pipeline. 
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Bus 
A shared electrical connection that enables access to a resource, such as a memory shared among 
several hardware subsystems. 

Bus-functional simulation model 
A partial simulation model of a programmable processor that models activity on the pins or 
bounding box only. It is not capable of simulating the execution of a program. See also: 
full-functional simulation model, bounding box. 

Butterfly 
(1) An operation used in the computation of the fast Fourier transform. A fast Fourier transform 
butterfly computation involves multiplication, addition, and subtraction of complex numbers. (2) 
An operation used in the computation of the Viterbi algorithm. A Viterbi butterfly computation 
involves two additions, two subtractions, and two comparisons. See also: Viterbi decoding. 

Byte-addressable 
A memory space that can be accessed at any byte-aligned address. See also: word-addressable. 

C54XDSP 
A 16-bit fixed-point DSP core from IBM Microelectronics. This processor is a clone of Texas 
Instruments'TMS320C54x. 

Cache 
A (small) amount of fast memory where recently executed instructions are automatically stored to 
speed up execution. If the processor accesses instructions stored in the cache, a cache hit is said to 
occur; otherwise a cache miss occurs. DSP processors typically cache only instructions; however, 
some DSP families cache both instructions and data. 

CAD 
(Computer-aided design.) 

CAE 
(Computer-aided engineering.) 

Cascade of biquads 
An implementation for IlR filters where the transfer function is factored into second-order terms 
that are then implemented as biquad filters. See also: IlR. 

CD2400 
A 16-bit fixed-point DSP core from Clarkspur Design, Inc. 
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CD2450 
A fixed-point DSP core with configurable data word widths from Clarkspur Design, Inc. 

cDSP 
(Configurable DSP.) Texas Instruments' term for DSP core-based SoCs. 

CELP 
(Codebook excited linear prediction.) A speech coding technique. CELP usually refers to the 
CELP algorithm specified in USFS 1016 which compresses speech to 4,800 bits/second. See also: 
USFS 1016. 

Circular addressing 
Another term for modulo addressing. See also: modulo addressing. 

Circular butTer 
A region of memory used as a buffer that appears to wrap around, i.e., the buffer uses a pointer 
that is automatically reset to the beginning of the buffer if the pointer is advanced beyond the last 
location in the buffer. Circular buffers are typically implemented in software on general-purpose 
processors and via modulo addressing on DSPs. 

Clock cycle 
The time required for one cycle of a processor's master clock. See also: instruction cycle. 

Clock divider 
A circuit that reduces the frequency of a processor's master clock. Programmable clock dividers 
allow the programmer to slow the processor's clock during times when full speed operation is not 
needed, thus reducing power consumption. 

Clock doubler 
A frequency synthesizer circuit that allows an input clock with frequency of one-half of the 
processor's desired master clock frequency to be used to generate the master clock. See also: 
phase-locked loop. 

CMOS 
(Complementary metal-oxide semiconductor.) A semiconductor technology that results in lower 
power consumption than other technologies. Most IC technology used today is based on CMOS. 

Codec 
(Coder-decoder.) An AID and D/A converter for speech or telephony applications. The term 
"codec" carries with it an implication that the samples produced and consumed by the device are 
encoded using companding, but the term is not always used in this strict a fashion. 
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COFF 
(Common object file fonnat.) An object file fonnat developed by AT&T. Most assembly language 
tools for nsp processors use and generate COFF files. 

Companding 
Short for compressing-expanding, a technique for reducing the dynamic range of audio signals 
and then later expanding it again. Companding uses a non-unifonn quantization scheme that 
features finer quantization intervals at lower signal levels (where the input signal probabilisticly 
spends more time) to achieve a higher signal-to-noise ratio in most cases. Companding is used in 
A-law and J..l-law codecs. 

Conditional assignment 
An operation in which a value is assigned (e.g., to a register) only if a certain condition is met. 
Conditional assignment can eliminate the need for a branch in many cases. . 

Conditional execution 
A situation in which an individual instruction is executed or ignored depending upon on a certain 
condition. Conditional execution can eliminate the need for a branch in many cases. 

Conflict wait state 
A wait state inserted due to contention for a resource. Similar to a pipeline interlock, except that a 
pipeline interlock is usually attributable to contention for a resource in the processor's core; a 
conflict wait state may be attributable to contention for a resource outside of the core, such as an 
external memory interface. See also: wait state. 

Convergent rounding 
A rounding technique used to avoid the bias inherent in the conventional round-to-nearest 
approach. This technique attempts to randomize rounding behavior when the input value to be 
rounded lies exactly halfway between two output values. In half of these cases the value is 
rounded up, and in the other half it is rounded down. 

Convolutional encoder 
An error control coding technique used to encode bits before their transmission over a noisy 
channel. Used in modems and digital cellular telephony. Convolutional encoding is usually 
decoded via the Viterbi algorithm. See also: Viterbi decoding. 

Core 
The central execution units of a processor, excluding such items as on-chip memory and on-chip 
peripherals. In many cases,· nsp processor manufacturers use a common core with different 
combinations of memory and peripherals to create a family of processors with the same 
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architecture. Some vendors provide DSP cores that their customers can use to create their own 
customized application-specific ICs. 

COSSAP 
A block-diagram-based DSP design, simulation, and implementation environment from 
Synopsys, Inc. 

CPP 
(C preprocessor.) A preprocessor for the C programming language. CPP expands macros, filters 
out comments, and resolves conditional compilation directives. It is automatically invoked by the 
compiler. Some DSP assemblers use CPP to implement macros. 

CQFP 
(Ceramic quad flat pack.) A type of IC packaging. 

Cycle 
See instruction cycle or clock cycle. 

Cycle stealing 
Delaying an operation to allow access to processor resources for another operation, such as DMA. 

D950-CORE 
A 16-bit, fixed-point DSP core from ST Microelectronics. 

DI A converter 
(Digital-to-analog converter.) A circuit that outputs an analog voltage given a numeric (digital) 
representation of the voltage as input. 

Data hazard 
A condition where an instruction tries to use the result of a previous instruction before that result 
is available. 

Data path 
A collection of execution units (adder, multiplier, shifter, etc.) that process data. A processor's 
data path determines the mathematical operations that can be efficiently performed on that 
processor. 

Data-stationary 
An unusual instruction set style for pipelined processors where an instruction specifies the actions 
that should be performed on a set of data values, even if these actions are distributed over several 
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instruction cycles and coincide with actions specified in other instructions. Contrast with: 
time-stationary. 

DAU 
(Data arithmetic unit.) Lucent Technologies' term for the data path of the DSP16xx and 
DSP16xxx. 

Debugger 

Glossary 

A front -end program that provides the user interface and much of the functionality of an emulator 
or instruction-set simulator. 

Decibels 
(Abbreviated dB.) A base-lO logarithmic expression of a value. When expressing the relative 
magnitude of a number n in decibels, the formula 201og lO(n) is used. When expressing the relative 
power of a signal in decibels, 101oglO(n) is used. 

Delay line 
A buffer used to store a fixed number of past samples. Delay lines are used to implement both FIR 
and IIR filters. 

Delayed branch 
A branch instruction where the branch actually occurs later than the lexical appearance of the 
instruction. In other words, one or more instructions appearing after the branch in the program are 
executed before the branch is executed. 

Denormalized number 
A floating-point value with a mantissa whose magnitude is below one. Some processors round 
denormalized numbers to zero. Other processors take special steps to store and process 
denormalized numbers. Denormalized numbers can be used to extend dynamic range without loss 
of precision. 

Die 
A single integrated circuit as a portion of a silicon wafer. 

Digitize 
Perform analog-to-digital conversion. See also: NO converter. 

DMA 
(Direct memory access.) A mechanism by which data can be moved between on-chip peripherals 
and on-chip memory or between on-chip memory blocks without the processor having to execute 
data movement instructions~ 
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DRAM 
(Dynamic random access memory.) DRAM provides greater memory densities and is less 
expensive thanSRAM, but is also slower and requires external circuitry to refresh it periodically. 
Some DSP processors provide on-chip DRAM interfaces. See also: SRAM. 

DSP 
(1) Digital signal processing. (2) Digital signal processor. 

DSP16xx 
A family of 16-bit, fixed-point DSP processors from Lucent Technologies. 

DSP16xxx 
A family of 16-bit, fixed-point DSP processors from Lucent Technologies, notable for containing 
dual multipliers. 

DSP32xx 
A family of 32-bit, floating-point DSP processors from Lucent Technologies. 

DSP32C 
A family of 32-bit, floating-point DSP processors from Lucent Technologies. 

DSP560xx 
A family of 24-bit, fixed-point DSP processors from Motorola, Inc. 

DSP561xx 
A family of 16-bit, fixed-point DSP processors from Motorola, Inc. 

DSP563xx 
A family of 24-bit, fixed-point DSP processors from Motorola, Inc. 

DSP568xx 
A family of 16-bit, fixed-point DSP processors from Motorola, Inc., enhanced with 
microcontroller capabilities. 

DSP568xxE 
A family of 16-bit, fixed-point DSP cores from Motorola, Inc., enhanced with microcontroller 
capabilities. 
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Dynamic logic 
A circuit design technique used to design processors. Processors designed with dynamic logic 
require a minimum frequency input clock to function correctly. See also: static logic. 

El 
A telecom standard for high-speed serial communication. 

EDA 
(Electronic Design Automation.) CAD tools for electronic design. 

EEPROM 

(Electrically erasable read-only memory.) An EEPROM can be erased and reprogrammed by the 
user multiple times. Unlike EPROM, an EEPROM does not require exposure to ultra-violet light 
to erase its contents. See also: flash EEPROM, EPROM, PROM, ROM. 

Effective address 
An address used to access memory. 

Embedded system 

A system containing a processor (for example, a digital signal processor or a general-purpose 
processor) wherein the processor is not generally reprogrammable by the end-user. For example, a 
modem containing a DSP processor is an embedded system. A personal computer is not. 

EPROM 
Erasable programmable read-only memory. An EPROM can be erased (by exposing it to 
ultra-violet light) and reprogrammed by the user multiple times. See also: EEPROM, flash 
EEPROM, PROM, ROM. 

Event counter 

In the context of in-circuit emulators, an event counter counts the number of times a 
user-specified event occurs while the processor is executing. An event may consist of, for 
example, access to specified program or data memory addresses, a branch taken by a program, or 
an external interrupt. Not all in-circuit emulators provide event counters. 

Exception 
An unplanned-for event that results from a software operation, such as division by zero. On some 
processors, interrupts are called exceptions. 

Exponent 
A part of the representation of a floating-point number. See also: floating-point. 
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Extended precision 
(1) The use of data representations that provide higher precision than that of a processor's native 
format. (2) In the IEEE-754 standard, extended single-precision refers to floating-point numbers 
that are at least 43 bits wide, and extended double-precision refers to floating-point numbers that 
are at least 79 bits wide. 

Externally requested wait state 
Wait states that are requested by an external device. See also: wait state. 

FAE 
(Field application engineer.) An application engineer based in a vendor's field office. 

FASIC 
(Function- and application-specific integrated circuit.) An integrated circuit that performs a 
specialized, high-level function (e.g., speech coding, image compression) that is sold off-the-shelf 
for use in products of different companies. FASICs are sometimes referred to as ASSPs­
application-specific standard products. See also: ASIC, SoC, ASSP. 

Fast interrupt 
An interrupt where the service routine can only execute one or two instructions but that offers 
reduced interrupt latency. Fast interrupts are typically used to quickly move data from a peripheral 
to a memory location or vice versa. 

Feature size 
An overall indicator of the density of an IC fabrication process. It usually refers to the minimum 
size of one particular kind of silicon structure or "feature," specifically the minimum length of the 
"channel, " or active region of a MOS transistor. The sizes of other structures on the IC are usually 
roughly proportional to the minimum transistor channel length. A smaller feature size translates 
into a smaller chip. 

FFT 
(Fast Fourier transform.) A computationally efficient method of estimating the frequency 
spectrum of a signal. The FFf algorithm is widely used in nsp systems. 

Field-programmable gate array 
A programmable logic chip having a high density of gates. 

FIFO 
(First-in, first-out.) A buffer arrangement where the first sample stored in the buffer is the first one 
to be retrieved. See also: circular buffer. 
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FIR 
(Finite impulse response.) A category of digital filters. As compared to the other common 
category, IlR filters, FIR filters are generally more expensive to implement, but offer several 
attractive design characteristics. See also: IlR. 

Fixed-point 
An arithmetic system where each number is represented using a fixed number of digits, and of 
these, a fixed subset specifies the integer part, with the remaining subset specifying the fractional 
part. Contrast with: floating-point. 

Flash EEPROM 
A type of EEPROM that can be reprogrammed without the use of special voltage levels, making it 
suitable for use in products where field reprogrammability is important. 

Floating-point 
An arithmetic system for representing integers or fractions where each number is represented by 
three fixed-point numbers, one specifying the sign, another the "mantissa," and the third the 
"exponent." The value of the number being represented is computed by raising the base (usually 
2) to the power given by the exponent and then multiplying it by the mantissa. The sign bit 
indicates whether the value is positive or negative. 

FPGA 
See field-programmable gate array. 

FrP 
(File transfer protocol.) A protocol for transferring files over the Internet. "Anonymous FTP" 
refers to retrieving or sending files to a public directory of files over the Internet. 

Full-functional simulation model 
In the context of commercial processor simulation models, a simulation model that models the 
processor internals and the activities on the bounding box of the processor. See also: 
bus-functional simulation model. 

G.711 
An lTV -T standard for encoding and decoding of audio signals. The standard compresses 16-bit 
samples of audio sampled at 8 kHz (128 kbits/second) to 64 kbits/second. The standard specifies 
two forms of companding: Il-law (used in North America and Japan) and A-law (used in Europe). 
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G.721 
An ITU-T standard for speech encoding and decoding. The standard is based on ADPCM and 
compresses speech to 32 kbits/second. It is a subset of the G.723 algorithm. See also: ADPCM, 
G.723. 

G.722 

An ITU-T standard for audio encoding and decoding. The standard is based on sub-band ADPCM 
and compresses a 7-kHz bandwidth audio signal to 64 kbitslsecond. See also: ADPCM. 

G.723 

An ITU-T standard for speech encoding and decoding. The standard is based on ADPCM and 
compresses speech to 24,32, or 40 kbits/second depending on the quality level desired. G.721 is 
G.723 running at 32 kbitslsecond. See also: ADPCM, G.721. 

G.728 

The ITU-T standard for low-delay CELP, a speech compression technique. G.728 compresses a 
4-kHz/audio bandwidth speech signal into a·16-kbitlsecond bit stream. See also: CELP. 

Gate array 
A digital integrated circuit consisting primarily of a regular array of cells. The final few steps of 
the fabrication process add customer-specified metal interconnection layers that both define the 
logic function of each cell and the interconnections between the cells. Because most of the 
fabrication steps are'identical regardless of the application of the gate array, significant economies 
of scale are possible. See also: field-programmable gate array. 

Gec 
(GNU C compiler.) A C compiler developed by the Free Software Foundation. GeC forms the 
basis of many C compilers for DSP processors. 

GDB 
(GNU debugger.) A C-Ianguage source level debugger for use with GCC. See also: GCC. 

GNU 
(GNU's not UNIX.) The name given by the Free Software Foundation to UNIX-like programs 
developed independently of AT&T or U.c. Berkeley and protected by a copyright agreement 
requiring free distribution of source and object code for original GNU software and derivative 
works. 
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GSM 

(Global System for Mobile Communications.) The standard specifying the pan-European digital 
cellular telephone. network first installed in the early 1990s. GSM also sometimes refers to the 
GSM full-rate and half-rate speech coder standards. See also: TDMA. 

Guard bits 
Extra bits in an accumulator used to prevent overflow during accumulation operations. Most DSP 
processors provide from four to eight guard bits in their accumulators. 

Hard real-time 
A system that is required to perform certain actions within a strictly delimited set of deadlines. 

Hardware loop 
A programming construct in which one or more instructions are repeated under the control of 
specialized hardware that minimizes the time overhead for the repetition. 

Hardware stack 
A push-down stack implemented in hardware. This facilitates subroutine calls and interrupt 
servicing. In DSP processors, these are usually small, which limits the nesting depth of subroutine 
calls or interrupts. 

Harvard architecture 
A processor architecture with two separate memory address spaces. The processor fetches 
instructions from one space and data from the other. Most DSP processors are based on variants of 
the basic Harvard architecture. 

Host interface (or port) 
A specialized parallel port on a DSP intended to interface easily to a host processor. In addition to 
data transfer, some host interfaces allow the host processor to force the DSP to execute interrupt 
service routines, which can be useful for control. See also: host processor. 

Host processor 
A general-purpose computer or microprocessor. Depending upon the context, a host computer 
could be a PC or workstation or might be a microprocessor used for control functions in an 
embedded system. 

I2C bus 
Inter-integrated circuit bus, a synchronous serial protocol used to connect integrated circuits. The 
I2C protocol was designed and promoted by Philips. 
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I2S 
A synchronous serial protocol developed by Philips and used for transferring digital audio signals 
between integrated circuits or between systems. 

ICASSP 
(International Conference on Acoustics, Speech, and Signal Processing.) One of the main 
technical conferences in the DSP field. 

ICE 
(In-circuit emulator.) A common tool for the development of microprocessor-based systems. An 
ICE usually consists of an adapter that takes the place of the processor in the target system or that 
connects to the target processor, interface and control electronics, and software running on a host 
computer. Using an ICE, the engineer can interactively monitor and control the execution of the 
processor while it runs inside the target system. Many recently designed processors include 
ICE-like capabilities on-chip, with a serial port for host platform access. 

IEEE standard 754 
An IEEE standard for floating-point arithmetic. A number of DSP processors support IEEE-754 
arithmetic. IEEE 754 is now an international standard, IEC 60559:1989. 

IEEE standard 854 
An IEEE standard for floating-point arithmetic. A generalized version of IEEE 754, in which the 
word width is not limited to 32 or 64 bits. 

IEEE standard P1149.1 
An IEEE standard for boundary-scan testing of integrated circuits. A small serial port conforming 
to this standard is frequently used on DSP processors to access on-chip debugging facilities. 
IEEE-P1149.1 is commonly called JTAG. See also: JTAG. 

llR 
(Infinite impulse response.) A category of digital filters. As compared to FIR filters, IIR filters 
generally require less computation to achieve comparable results, but sacrifice certain design 
characteristics which are often desirable. See also: FIR. 

Immediate data 
An operand for an instruction that is encoded as a part of the instruction or is encoded in the 
following instruction word. 

Indexed addressing 
An addressing mode where the effective address is computed by adding the contents of two 
registers, or by adding a constant to the contents of a register. 
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Input/output 
Interfaces and devices used for transferring data and control information between devices or 
systems (e.g., between a processor and peripheral). 

Instruction cycle 
The time required to execute the fastest instruction on a processor. See also: clock cycle. 

Instruction-set simulator 
A program that simulates the execution of programs on a specific processor. Instruction-set 
simulators provide a software view of the processor; that is, they display program instructions, 
registers, memory, and flags, and allow the user to manipulate register and memory contents. 

Interlock 
The delay introduced by an interlocking pipeline to resolve a resource conflict or data hazard. See 
also: interlocking pipeline. 

Interlocking pipeline 
A pipeline architecture in which instructions that cause data hazards or contention for resources 
are delayed by some number of instruction cycles. 

Interrupt 
An event that causes the processor to suspend execution of its current program and begin 
execution elsewhere in memory. 

Interrupt latency 
The maximum amount of time from the assertion of an interrupt line to the execution of the first 
word of the interrupt's service routine, assuming that the processor is in an interruptible state. 

I/O 
See input/output. 

IS-54 
A standard for U.S. digital cellular telephony. 

IS-95 
A standard for U.S. digital cellular telephony. IS-95 uses CDMA. 

IS-136 
A standard for digital cellular telephony. Also known as IS-54 revision C. 
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JEDEC 
(Joint Electron Device Engineering Council.) 

Joule 
A unit of energy. One watt is the amount of energy used by a device consuming one joule of 
energy in one second. 

JTAG 
The informal name for IEEE-P1149.1. JTAG stands for "Joint Test Action Group," the group that 
defined the standard. See also: IEEE-P1149.1 

Kernel 
(1) Software (such as an operating system) that provides services to other programs. (2) A small 
portion of code that forms the heart of an algorithm. 

Latency 
The time it takes after an instruction has started execution until the result is available. See also: 
throughput. 

Linker 
A program that combines separate object code modules into a single object code module and 
resolves cross references between modules. 

Little-endian 
The ordering of bytes within a multi-byte data word. In little-endian ordering, bytes within a 
multi-byte word are arranged least-significant byte first. See also: big-endian. 

Loop unrolling 
A programming or compiler strategy whereby instruction sequences that are to be executed 
multiple times are written repeatedly rather than once within a loop. The overhead of looping is 
avoided or reduced. 

Low voltage 
The use of a supply voltage of less than the five volts that used to be standard for digital logic. 
This is usually done to conserve power, but can also better match a given battery technology. 

LPC 
(Linear predictive coding.) A speech coding and analysis technique. 
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LPC-IOILPC-IOE 
A speech coder based on an LPC algorithm that compresses speech to 2,400 bits/second. See also: 
LPC, USFS 1015. 

M320C25 core 
A 16-bit, fixed-point nsp core from 3Soft Corporation. 

M320C50 core 
A 16-bit, fixed-point nsp core from 3Soft Corporation. 

MAC 
See multiply-accumulate. 

Mantissa 
A part of the representation of a floating-point number. See also: floating-point. 

Master clock 
The highest-frequency clock signal used within a processor. The master clock frequency is 
typically between one and four times the instruction execution rate of the processor. 

MC68356 
A single-chip multiprocessor containing both a Motorola nSP56002 and MC68000 processor. 

MCM 
(Multi-chip module.) A packaging technology that mounts multiple integrated circuits (the dies 
themselves) directly on a substrate that interconnects them. 

MDSP2780 
A 16-bit, fixed-point nsp with a 24-bit instruction word from IBM Microelectronics. 

Memory-direct addressing 
An addressing mode where the address is specified as a constant that forms part of the instruction. 
For example, "MOV 1234,XO" moves the contents of memory location 1234 into register XO. See 
also: register-direct addressing, register-indirect addressing. 

Meta assembly language 
Assembly language that is parameterized with conditional constructs and variables, and does not 
contain direct specifications of processor registers. Meta assembly language is used in some code 
generation tools to allow more efficient code to be generated. 
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Micron 
(Abbreviated "J..lm") A unit of length equal to 10-6 meters. Integrated circuit feature sizes are 
usually specified in microns, and typical sizes range from 0.25 to 0.8 microns. See also: feature 
size. 

Mil 

One one-thousandth of an inch. A unit sometimes used for describing integrated circuit die sizes. 

Modifier register 
A register used in the computation of addresses. Some vendors use this term to refer to a register 
that contains a value to be added to an address register after an access is performed with that 
address register (post-incrementing); this definition is used throughout this report. Other vendors 
use it to refer to a register that is used to configure a processor's address generation unit for a 
special addressing mode, such as modulo addressing or bit-reversed addressing. 

Modulo addressing 
An addressing mode where hardware is provided to perform modulo arithmetic when registers 
used for indirect addressing are incremented. This causes values larger than the modulus value to 
"wrap around" and is used to implement circular buffers. 

MOS 

(Metal oxide semiconductor.) MOS is the silicon fabrication process used to implement most 
programmable DSP processors. The name refers to the three layers making up a transistor. The 
most common type ofMOS used in digital circuits is CMOS, or complementary metal oxide 
semiconductor. 

MQFP 

(Metal quad flat pack.) A type of IC package. 

J..l-Iaw ("mu-Iaw") 

An encoding standard for digital representation of speech signals. Non-uniform quantization 
levels are used to achieve the effect of compressing the dynamic range prior to quantization. See 
also: companding, A-law. 

J..lPD7701x 

A family of 16-bit, fixed-point DSPs with 32-bit instructions from NEC Electronics, Inc. 

Multiply-accumulate 
The dominant operation in many DSP applications, where operands are multiplied and added to 
the contents of an accumulator register. Frequently abbreviated to "MAC." See also: 
multiply -add. 
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Multiply-add 
An important operation in DSP applications, where the operands are multiplied and the result is 
added to the contents of a register. Multiply-add is distinguished from multiply-accumulate in that 
the result is written to a different register than the one that provides the addend value for the 
product. See also: multiply-accumulate. 

Multi-ported memory 
Memory that can be accessed by two or more units simultaneously. 

Multi-precision 
Construction of larger data w"ords out of sequences of native-width data words in order to obtain 
higher precision. 

Multirate DSP system 
A DSP system which performs operations on signals with different sample rates. 

Multitasking 
Execution of two or more tasks, either on different processors so that the tasks execute 
simultaneously or on the same processor using time slots so that the tasks appear to execute 
simultaneously. 

NaN 
(Not a number.) The IEEE-754 specifies that floating-point processors should reserve a special 
representation in their numeric formats to indicate that a register or memory location does not 
contain a valid number. This representation is referred to as NaN. 

Native word width 
The number of bits used to represent the largest data operand that can be used in all arithmetic and 
logical operations provided by the processor's data path. 

N estable interrupts 
Interrupts whose service routines can be interrupted. 

Normalization 
The detection and elimination of redundant sign bits in a fixed-point data word. Normalization is 
heavily used in block floating-point arithmetic. 

NumericalC 
A proposed extension to the C language including complex arithmetic and iterators. C compilers 
featuring Numeric C support are available for ADSP-21Oxx DSPs. 
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OakDSPCore 
A 16-bit, fixed-point DSP core from DSP Group, Inc. 

Object code 
Binary instructions and data for use on a programmable processor. Object code is usually 
produced by an assembler and is often "relocatable," meaning that it does not contain absolute 
references to particular memory locations. 

Off-core 
A resource (such as memory or a peripheral) that is not contained wi~in the actual processor core. 

OnCE 
(On-chip emulation port.) A serial debugging port found on Motorola DSP processors. 

On-core 
A resource (such as memory or a peripheral) that is contained within the actual processor core. 

One-time programmable 
Used to refer to a read-only memory (ROM) that can be programmed only once. 

Operand-relatedloperand-unrelated parallel move 
See parallel move. 

Orthogonal instruction set 
An instruction set that is regular and consistent with respect to combinations of operations, data 
types, and addressing modes. 

OTP 
See one-time programmable. 

Overflow 
A situation that occurs when the result of a mathematical operation (typically an add or subtract) 
requires more bits than are available in the register to which it is to be stored. See also: saturation, 
wrap-around . 

. Paged DRAM 
A DRAM chip that allows faster than normal access when a group of memory accesses occur 
within the same region (or page) of memory. 
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PalmDSPCore 
A family of 16-, 20-, and 24-bit cores from DSP Group, Inc. 

Parallel move 
A movement of data carried out in parallel with the execution of another operation. DSP 
processors typically provide the ability to move two data values in parallel while executing 
another operation, although the number of instructions that support parallel moves may be 
limited. 

PC-relative addressing 
An addressing mode where the effective address is computed by adding an offset to the current 
location pointed to by the program counter. 

Peripheral 
An on-chip unit or external device that performs specialized tasks such as serial or parallel 
communication, DMA, ND or DI A conversion, etc. 

PGA 
(Pin grid array.) A type of integrated circuit package. The external connections are made available 
on metal pins arranged in a grid. 

Phase-locked loop 
A feedback system in which an oscillator tracks a periodic input signal. There are many uses for 
phase-locked loops, including timing recovery in modems and generation of an on-chip master 
clock at a higher frequency from a lower-frequency signal. 

PineDSPCore 
A 16-point, fixed-point DSP core from DSP Group, Inc. 

Pipeline 
An organization of computational hardware in which different stages of the execution of an 
instruction proceed in parallel for different instructions. 

PLL 
(Phase-locked loop.) See phase-locked loop. 

PQFP 
(Plastic quad flat pack.) A type of integrated circuit package. 
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Pre-/post-incrementJdecrement 
Incrementing or decrementing the contents of a register before or after the register is used for 
indirect addressing. Pre-increment/decrement means that the contents of the register are modified 
before the memory access; post-increment/decrement means that the contents of the register are 
modified after the memory access. 

Prioritized interrupts 
A scheme used to determine which of several simultaneous interrupts is serviced. Interrupts with 
higher priority are serviced first. 

Profiling 
The process of determining the amount of time a processor spends in different sections of a 
program. The results of profiling are useful during the process of optimizing software for 
execution speed. 

Programmable DSP 
An integrated circuit implementing a programmable processor intended for signal processing. 

Programmed wait state 
A wait state that is automatically generated by the processor when accessing certain ranges of 
extemalmemory. Most processors that support programmed wait states allow the number of wait 
states to be configured by the programmer. 

PROM 
(Programmable read-only memory.) PROM memory can be programmed once by the user after 
the chip has been fabricated. This is sometimes called one-time-programmable memory. See also: 
EPROM,ROM. 

PWM 
(Pulse width modulation.) PWM is used in some control applications. It is also sometimes used as 
an inexpensive way to implement a DI A converter. 

QFP 
(Quad flat pack.) A type of integrated circuit package. ICs packaged in QFP packages are 
typically less expensive than the same ICs in PGA packages. 

Quantization error 
The difference between the original value and the truncated value. 
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Quantization noise 
Another word for quantization error. The term is used because quantization errors add noise to 
signals. 

Quick interrupt 
See fast interrupt. 

Real-time breakpoint 
A debugging feature provided by in-circuit emulators. The processor executes at full speed and 
execution is halted when a specified condition (called the breakpoint condition) evaluates true. 

Real-time operating system (RTOS) 
An operating system that allows the developer to place an upper bound on the amount of time a 
process must wait to execute after a critical event occurs. Examples of real-time operating 
systems for DSPs include DSP-BIOS and OSE. UNIX is an example of a non-real-time operating 
system, in that programs may wait an indefinite amount of time before executing. 

Refresh 
Periodic access required by dynamic memory (DRAM) to avoid loss of data. 

Register 
A circuit that holds a set of contiguous bits that are treated as a group. An accumulator is an 
example of a register. 

Register-direct addressing 
An addressing mode where operands come from registers, and the registers are identified by 
constants in the instruction. For example, the instruction "ADD XO,YO,A", which adds the 
contents of the XO and YO registers and places their sum in the A register, uses register-direct 
addressing. 

Register file 
Another word for the set of registers that supply operands for the data path. 

Register-indirect addressing 
An addressing mode in which the operand address is contained in a register, and the register is 
identified in the instruction. For example, the instruction "MOVE (RO) ,A" , which moves the 
contents of the memory location whose address is stored in register RO to register A, uses 
register-indirect addressing. In DSPs, the contents of the register are often modified before or 
after the address is used. 
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Relocatable code 
Object code that does not contain absolute memory addresses, but instead has symbolic references 
that a loader can resolve when it loads the program. This allows the program to be loaded into 
memory at any starting address. See also: object code. 

Relocate 
The copying of a segment of code from one memory location to another. This requires the code to 
be relocatable. See also: relocatable code. 

Repeat buffer 
A (small) buffer where instructions can be loaded to allow fast execution of the instructions a 
specified number of times. The repeat buffer frees the processor from fetching the instructions 
from memory. 

Reverse-carry arithmetic 
An alternative to bit-reversed addressing, where an increment of an address is done by adding a 
high-order bit and propagating the carry signal in the reverse direction, towards the low-order bit. 

RIse 
(Reduced instruction set computer.) A computer architecture with simple instructions that can be 
executed very quickly. 

ROM 
(Read-only memory.) Mask-programmed ROM, meaning ROM whose memory contents are fixed 
when the chip is fabricated. See also: PROM, EPROM. 

Round-to-nearest 
A rounding technique wherein numbers are rounded to the nearest representable number. A value 
that is equidistant between two representable numbers is always rounded up (or down, depending 
on the implementation). This introduces bias into calculations. 

RTOS 
See real-time operating system. 

Sample 
The value of a signal at a specified time. The outputs of an AID converter are called samples. 

Saturation 
A strategy for handling overflow in which the largest representable magnitude is used. Contrast 
with: wrap-around. 
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SBSRAM 
(Synchronous burst static random-access memory.) Like SRAM, SBSRAM does not require 
periodic refreshing. SBSRAM is synchronized with a clock signal, allowing faster timing by 
clocking in a new address while reading the data for the previous address. In addition, SBSRAM 
includes "burst" transfers where one access to memory can be followed by fast subsequent reads 
or writes to consecutive memory addresses. See also: SRAM. 

Scan-based debugging/emulation 
A debugging approach that uses dedicated hardware on a processor to debug the processor while 
it is operational and in-circuit within its target system. 

SC140 
A 16-bit VLIW processor core from StarCore, Inc. The core is used by Lucent Technologies and 
Motorola in their own chip-level products. 

Shadow register 
An alternative set of registers in addition to the processor's primary register file. Processors that 
provide shadow registers can switch between the primary registers and the shadow registers. This 
can be used to efficiently switch between two different contexts. 

Signed magnitude 
A fixed-point number representation where one bit indicates the sign of the number, and the 
remaining bits represent the magnitude. The disadvantage of signed magnitude representation is 
that the value zero has multiple representations. 

Sleep mode 
A power-conservation mode in which much of the hardware on the DSP is· turned off. 

SoC 
(System-on-Chip.) An integrated circuit intended for use in a particular product or application, 
typically containing one or more processor cores and a variety of application- or product-specific 
features, such as algorithm accelerators and specialized peripherals. Also referred to as an ASIC 
(application-specific IC). 

SPDIF 
An IEC-958 standard for transferring digitally encoded audio signals. 

SPI 
(Serial peripheral interface.) A synchronous serial protocol used to connect integrated circuits. 
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SRAM 

(Static random-access memory.) SRAM is often used in DSP systems because it is very fast and 
does not require periodic refreshing, as DRAM does. However, SRAM is more expensive than 
DRAM and is not available in as high densities. 

Standard cell 
A physical layout element in an IC foundry's library, that conforms to certain standard 
characteristics, such as physical dimensions and electrical drive capability. A standard-cell 
integrated circuit is constructed by tiling together standard cells and interconnecting them. 

Static column DRAM 
Another word for paged DRAM. 

Static logic 
A circuit design technique used to design processors. A processor designed with static logic will 
run with an arbitrarily low frequency input clock and still function correctly, although more 
slowly. Because power consumption is proportional to clock frequency in CMOS circuitry, a 
static processor allows one to reduce power consumption by slowing or stopping the input clock. 
See also: dynamic logic. 

Subroutine 
A unit of software that can be invoked from multiple locations in one or more other units of 
software to perform a specific operation or set of operations. Subroutines allow a programmer to 
avoid the need for repeatedly specifying often-used sequences of instructions in a program. 

Subroutine call 
The action by which a processor transfers execution to a subroutine. At a minimum, this usually 
involves storing the current program counter value (so that execution can be resumed at the 
correct location when the subroutine completes) and executing a branch instruction. 

Subtract-with-borrow 
A subtraction where the value of the carry bit from the previous operation is subtracted from the 
result. See also: add-with-carry. 

Superscalar 
An architecture in which multiple instructions (usually between two and four) are issued in every 
instruction cycle and executed in parallel. The determination of which instructions will be 
executed in parallel ("scheduling") is performed by specialized hardware in the processor, and 
takes place at run-time. 
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Tl 
A telecom standard for high-speed serial communication. 

T.4 
An ITU-T standard for lossless compression and decompression of two-tone images based on 
Huffman coding. It is used in Group 3 facsimile machines. 

Tap 
(1) A fundamental section of an FIR filter, consisting of a coefficient, a multiplication, and a delay 
line stage. (2) Output of a delay line stage. 

Target system 
The end system or product in which a processor will be used. 

TDMA 
(Time-division multiple access.) A multiple access method in which a communication channel is 
divided into multiple time slots, and only one user transmits in a given time slot. 

Throughput 
Frequency with which an execution unit, processor, or interface is capable of producing or 
transferring results. See also: latency. 

Time-stationary 
An instruction set design for pipelined processors in which an instruction specifies the operations 
performed by the various pipeline stages in one instruction cycle. The Lucent Technologies 
DSP16xx and all MotorolaDSPs are good examples of this style. Contrast with: data-stationary. 

TMS320Clx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C2x 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C2xxx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C27xx 
A family of 16-bit, fixed-point DSP cores with microcontroller features from Texas Instruments, 
Inc. 
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TMS320C3x 
A family of 32-bit, floating-point DSPs from Texas Instruments, Inc. 

TMS320C4x 
A family of 32-bit, floating-point DSPs from Texas Instruments, Inc. 

TMS320C5x 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. The TMS320C5x is the 
successor to the TMS320C2x family. 

TMS320C54xx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C55xx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C62xx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C64xx 
A family of 16-bit, fixed-point DSPs from Texas Instruments, Inc. 

TMS320C67xx 
A family of 32-bit, floating-point DSPs from Texas Instruments, Inc. 

TMS320C8x 
A DSP processor from Texas Instruments, Inc. The TMS320C8x contains three or five processors 
on a single chip: a RISC-based "master processor" and two or four 16-bit, fixed-point DSP 
processors. The TMS320C8x is intended for image and video processing applications. 

TQFP 
(Thin quad flat pack.) A type of integrated circuit package similar to, but thinner than, a plastic 
quad flat pack. TQFP packages are typically used in small, portable electronic systems, such as 
cellular telephones and pagers. See also: PQFP. 

Transducer 
A device that converts a physical representation of a signal (e.g., pressure or light) to an electronic 
representation or vice versa. 
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Truncation 
Discarding the least-significant bits of a value. 

Two's complement 
The binary representation of numbers most commonly used in DSPs for fixed-point numbers. 

Underflow 
Underflow occurs when a value is too small to be represented in a certain format. This may 
happen when two small numbers are multiplied, for example. 

Unit delay 

A delay of one sample period. 

USFS 1015 
(United States Federal Standard 1015.) The standard specifying the LPC-lOE speech coder. See 
LPC. 

USFS 1016 
(United States Federal Standard 1016.) The standard specifying the CELP speech coder. See 
CELP. 

V.22bis 
An ITU-T standard for 2,400-bitlsecond modems. 

V.27 
An ITU-T standard for 4,800- and 2,400-bitlsecond facsimile modems. 

V.29 
An ITU-T standard for 9,600- and 7,200-bitlsecond facsimile modems. 

V.32 
An ITU-T standard for 9,600-bitlsecond modems. 

V.32bis 
An ITU-T standard for 14,400-bitlsecond modems. 

V.32terbo 
A protocol for 19,200-bitlsecond modems promulgated by Lucent Technologies before the V.34 
standard was available. 
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V.34 
An ITU-T standard for 28,800-bitlsecond modems. 

V.42 
An ITU-T standard for error correction. 

V.42bis 
An ITU-T standard for data compression. 

VerilogHDL 
A hardware description language originally developed by Gateway Design Automation (now part 
of Cadence Design Systems, Inc.) for use with their digital hardware simulator. Verilog HDL is 
now a public standard, maintained by Open Verilog International. The language supports 
modeling of hardware at levels of abstraction ranging from gate level up to very abstract 
behavioral or performance models. Numerous companies market design entry, simulation, and 
synthesis tools that process Verilog HDL. See also: VHDL. 

VHDL 
(VHSIC hardware description language.) A hardware description language specified by 
IEEE-l 07 6. The language supports modeling of hardware at levels of abstraction ranging from 
gate level to very abstract behavioral or performance models. Numerous companies market , 
design entry, simulation, and synthesis tools that process VHDL. See also: Verilog HDL. 

VHSIC 
(Very high-speed integrated circuit.) A U.S. government program aimed at improving integrated 
circuit technology. The program is now defunct. The VHDL language resulted from this program. 

,Viterbi decoding (or Viterbi algorithm) 
A computationally efficient (but still relatively complex) mechanism for decoding a 
convolutionally encoded bit stream. 

VLIW 
(Very large instruction word.) An instruction word encoding technique used on some processors 
with execution units that can operate in parallel. A VLIW instruction is essentially a compound 
instruction word created by concatenating a number of smaller instructions that specify the 
operations to be performed by each of the execution units. By executing a VLIW instruction, all 
the encoded, smaller instructions are executed in parallel. The determination of which instructions 
will be executed in parallel ("scheduling") is performed by the programmer or code-generation 
tool, and hence takes place at compile...,time. 
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VLSI 
(Very large-scale integration.) 

Von Neumann architecture 
A processor with one memory address space used for both instructions and data. 

VSELP 
(Vector sum excited linear prediction.) A speech coding technique used in the U.S. IS-54 digital 
cellular telephone system. 

Wafer 
A disc of silicon on which chip dies are produced. 

Wait state 
A delay inserted during external memory accesses to give a slow peripheral or memory time to 
decode the address and retrieve data. 

Watt 
A unit of power. One watt is the power consumed by a device that uses one joule of energy in one 
second. 

Word-addressable 
A memory space that can be addressed only at word-aligned addresses. See also: 
byte-addressable. 

Wrap-around 

An overflow strategy in which overflow is ignored, and results are allowed to wrap around the 
ends of the range of representable numbers. The least significant bits (those that fit the 
representable range) are preserved. 

Z893xx 
A family of 16-bit, fixed-point DSPs from Zilog, Inc. 

Z894xx 
A family of 16-bit, fixed-point DSPs from Zilog, Inc. 

ZR38xxx 
A family of 20-bit, fixed-point DSPs with 32-bit instruction words from Zoran Corporation. 
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ZSP164xx 
A family of 16-bit, fixed-point DSP processors from ZSP Corporation, notable for its superscalar 
architecture. 
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Numerics 
3DNow!: see under "T" 19 

A 
AID and DI A converters 9 
adaptive beamforming 75 
address generation unit 22 
addressing modes 21,22 

bit-reversed 22 
circular 22 
modulo 22 

ADPCM speech coder, instruction profiling 105 
ADSP-2106x: see Analog Devices ADSP-2106x 
ADSP-2116x: see Analog Devices ADSP-2116x 
ADSP-219x: see Analog Devices ADSP-219x 
ADSP-21xx: see Analog Devices ADSP-21xx 
ADSP-TSOxx: see Analog Devices ADSP-TSOxx 
advantages of DSP 9 
algorithm analysis 44 
algorithms, common DSP 10 
AMD 19 
Analog Devices 

ADSP-21020 40 
ADSP-2106x "SHARC" 

processor analysis 161-187 
ADSP-2116x "Hammerhead" 

processor analysis 189-203 
ADSP-219x 

processor analysis 143-159 
ADSP-21cspxx 40 
ADSP-21xx 

processor analysis 115-142 
ADSP-TSOxx "TigerSHARC" 

processor analysis 205-234 
analog signal processing 9 
analog systems 10 
analog-to-digital converter: see AID and D/A converters 
application kernels 607 
applications 17,41-105 

embedded systems 18 
high-performance 18 
PC multimedia 18 

arithmetic: see fixed-point arithmetic, floating-point arith­
metic 

ASIC: see application-specific integrated circuits 
author biographical sketches 6 

B 
battery-powered systems 18 
BDT! 

about 5 
contact information 6 

BDTI Benchmarks 605 
BDTImark2000 36 
beamforming, function profiling 75 
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benchmarking 605-788 
approaches 606 
Bit Unpack 641 
Complex Block FIR Filter 630 
Control 637 
cost-execution time product 687-706 
energy consumption 707-732 
execution times 661-684 
Fast Fourier Transform 638 
IIR Filter 632 
instruction cycle counts 625, 625-660 
limitations 609 
LMS Adaptive FIR Filter 631 
memory usage benchmarking 733-788 
notation 622 
processors benchmarked 610 
Real Block FIR Filter 627 
Single-Sample FIR Filter 629 
Two-Biquad IIR Filter 632 
Vector Addition 635 
Vector Dot Product 634 
Vector Maximum 635 
Viterbi 639 

Berkeley Design Technology, Inc. 5 
Bier, Jeffrey C. 6 
biographies of authors 6 
Bit Unpack benchmark 641 
bit-reversed addressing 22 
Bonetto, Laurent 6 
branch prediction 16 
bulletin board systems (BBSs) 

vendor contact information 801 
Butterfly DSP 

C 

BDSP9124 DSP processor 31 
BDSP9320 address generator 31 

C2xxx: see Texas Instruments TMS32OC2xxx 
C3x: see Texas Instruments TMS32OC3x 
C54xx: see Texas Instruments TMS32OC54xx 
C55xx: see Texas Instruments TMS32OC55xx 
C62xx: see Texas Instruments TMS32OC62xx 
C64xx: see Texas Instruments TMS32OC64xx 
C67xx: see Texas Instruments TMS320C67xx 
cache: see benchmarking cache effects 
caches 15 
Cavagnolo, Brian 6 
CELP speech coder, function-level profiling 67 
chip sets 31 
choosing a DSP processor 41 
circular addressing 22 
C1arkspur Design 

CD2400 DSP core 32, 39 
CD245x DSP core 39 

clock rate 12 
code excited linear predictor (CELP), function 

profiling 59,67 
codec: see AID and D/A converters 
compact disc player 12 
Complex Block FIR Filter benchmark 630 

Index 

843 



Buyer's Guide to DSP Processors 

conclusions 789-800 
Control benchmark 637 
conventional DSP architectures 23 
cores: see DSP .cores and DSP core-based SoCs 
cost: see individual processor analyses 
cost-execution time product 687 
custom hardware 34 
cycle counts: see benchmarking 

D 
data path 21 
development tools 17 
digital audio tape 12 
digital systems 9 
digital-to-analog converter: see AID and D/A converters 
DMA 23 
DotPToductbenchmark 634 
DRAM 15 
DSP core-based SoCs 31-33 
DSPcores 39 

foundry-captive 33 
licensable 33 
see also Analog Devices, Clarkspur Design, DSP Group, 

Infineon, SGS-Thomson, Texas Instruments 
DSPGroup 32 

DSPcores 32 
OakDSPCore 39 
PineDSPCore 39 

DSP processors 
advantages 9 
alternatives 27-35 
embodiments 30-34 
overview 21-23 
see also individual processor or vendor names 

DSF'Software Engineering 49, 59, 75 
DSP systems 

characteristics 10 
defined 9 

DSPtheory 9 
DSPI6xx: see Lucent Technologies DSP16xx 
DSPI6xxx: see Lucent Technologies DSP16xxx 
DSP563xx: see Motorola DSP563xx 
DSP566xx: see Motorola DSP566xx 
DSP5685x: see Motorola DSP5685x 
DSP568xx: see Motorola DSP568xx 
DSP568xxe: see Motorola DSP5685x 

E 
electronic mail 6 

vendor contact information 801 
embedded processors 28 
embedded systems 18 
energy consumption 707 
engineering support 34 
enhanced conventional archictures 24 
execution control 22 
execution times 661 
execution-time predictability 14 

development tools 17 
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Eyre, Jennifer 6 

F 
Fast Fourier Transform benchmark 638 
FFf: see fast Fourier transform 
field-programmable gate arrays 35 
FIR Filter (Complex Block) benchmark 630 
FIR Filter (Real Block) benchmark 627 
FIR Filter (Single-Sample) benchmark 629 
fixed-function arithmetic units 35 
fixed-point arithmetic 

vs. floating-point arithmetic 13 
floating-point arithmetic 28 

vs. fixed-point arithmetic 13 
foundry-captive DSP cores 33 
FPGA 

see field-programmable gate arrays 
function- or application-specific integrated circuits 35 
function-level profiling: see profiling 

G 
G.728 speech coder, function profiling 59,63 
general-purpose processors 39 

overview 27-29 
GSM channel coder, instruction profiling 89 
GSM digital receiver, instruction profiling 93 
GSM speech coder, function profiling 79 
guard bits 22 

H 
H.261 video compression, function profiling 71 
Hammerhead: see Analog Devices ADSP-2116x 
hard real-time constraints 14 
high-level languages 28 
high-performance applications 18 
Hori, Bjorn 6 
Hyperstone 

I 

EI-16X 30 
EI-32X 30 

I/O 21,23 
see also peripherals, on-chip 

IIR Filter benchmark 632 
ILLICO 49,55 
Infineon Carmel 39 
instruction execution rate 625 
instruction scheduling 16, 26 
instruction set 28 
instruction-level profiling: see profiling 
integer arithmetic 28 
Intel 

K 

Signal Processing Library 19 
Streaming SIMD Extensions 19 

Keller, Cynthia 7 

L 
Lapsley, Phil 6 
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licensable DSP cores 33 
Lins, Adam 6 
LMS Adaptive FIR Filter benchmark 631 
logic devices 35 
Lohier, Frantz 7 
low-delay CELP speech coder, function profiling 59 
LSI Logic LS 140XZ 40 
Lucent Technologies 

M 

DSP16xx 40 
DSP16xxx 

processor analysis 235-263 
DSP32C 40 
DSP32xx 40 
StarPro: see StarCore SC140 

MAC: see multiply-accumulate 
memory architectures 28 

multiple-access 21,22 
memory usage 733 
Mentor Graphics 

M320C25 DSP core 39 
M320C50 DSP core 40 

MFLOPS 36, 606 
millions of floating-point operations per second 36 
millions of instructions per second 36, 605 
millions of macs per second 36 
millions of operations per second 36, 606 
MIPS 36,605 
MMACS 36 
modulo addressing 22 
MOPS 36,606 
Motorola 

DSP560xx 40 
DSP561xx 40 
DSP563xx 

processor analysis 265-291 
DSP566xx 40 
DSP5685x 

processor analysis 317-342 
DSP568xx 

processor analysis 293-316 
MSC8101: see StarCore SC140 

Motorola India Electronics 79, 97 
MSC8101: see StarCore SC140 
multi-chip module 31 
multi-issue architectures 25 
multimedia 18 
multiple-access memory architecture 21,22 
multiply-accumulate operation 21, 606 
multiprocessor DSP systems 33 

on a single chip 31 
multi-processor system 18 
multirate systems 12 
multitasking 19 

N 
native signal processing 19 
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NEC 
uPD7701x 40 
V80030 

NSP: see native signal processing 
numeric representations 13 

o 
optimization techniques 45 
out-of-order execution 16 
overflow 13 . 

p 
packaging 30, 34 
PC (personal computer) multimedia 18 
PC processors 27 
performance 28,29,35 

BDTImark2000 36 
MFLOPS 36 
millions of floating-point operations per second 36 
millions of instructions per second 36, 605 
millions of operations per second 36, 606 
MIPS 36,605 
MOPS 36,606 

performance measures 42 
peripherals, on-chip 21, 23,29 
portable systems 18 
power consumption 18,29 
power consumption profiling 44 
pricing information 

see individual processor analyses 
printed circuit board 34 
processors benchmarked 610 
processors: see DSP processors 
profiling 43 

function-level 43,47 
adaptive bearnforming 75 
G.728 speech coder 59 
GSM speech coder 79 
H.261 video compression 71 
USFS 1016 CELP 67 
V.17 modem 55 
V.32bis modem 49 

instruction-level 43, 87 
GSM channel coder 89 
GSM digital receiver 93 

power consumption 44 
program control 21 

R 
Real Block FIR Filter benchmark 627 
real-time operating system (RTOS) 

SPOX 19 

S 
sample rate 12 
samples 9 
saturation arithmetic 13 
SC140: see StarCore SC140 
SGS-Thompson D950 CORE 39 
SHARC: see Analog Devices ADSP-2106x 
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Sholuim, Amit 7 
Siemens: see Infineon 
simulator 

cycle-accurate 17 
Single-Sample FIR filter benchmark 629 
SoC 32 
SPOX 19 
ST Microelectronics D950-CORE 32 
StarCore 

SC140 
processor analysis 343-375 

StarPro: see StarCore SC140 
static superscalar 25 
superscalar architectures 25, 29 
synthesizable VHDL 33 
system-on-chip 

with DSP core 32 

T 
Texas Instruments 

DSPcores 32 
T32OC2xLP Core 39 
TMS32OC1x 40 
TMS32OC27xx 40 
TMS320C2x 40 
TMS320C2xxx 

processor analysis 377-403 
TMS32OC3x 

processor analysis 405-425 
TMS32OC4x 40 
TMS32OC54x 

processor analysis 427-455 
TMS32OC62xx 

processor analysis 497-544 
TMS32OC64xx 

processor analysis 545-580 
TMS32OC67xx 

processor analysis 581-604 
TMS320C8x 40 

3DNow! 19 
TigerSHARC: see Analog Devices ADSP-TSOxx 
TMS320C2xxx: see Texas Instruments TMS32OC2xxx 
TMS320C3x: see Texas Instruments TMS32OC3x 
TMS32OC54xx: see Texas Instruments TMS32OC54xx 
TMS32OC55xx: see Texas Instruments TMS32OC55xx 
TMS32OC62xx: see Texas Instruments TMS320C62xx 
TMS320C64xx: see Texas Instruments TMS320C64xx 
TMS32OC67xx: see Texas Instruments TMS32OC67xx 
transducers 9 
Two-Biquad fiR Filter benchmark 632 

U 
USFS 1016 C;::BLP speech coder, function profiling 67 

v 
V.17 modem, function profiling 55 
V.32bis modem, function profiling 49 
Vector Addition benchmark 635 
Vector Dot Product benchmark 634 
Vector Maximum benchmark 635 

846 

Verilog HDL 33 
very long instruction word 16, 25 
Viterbi benchmark 639 
VLIW 16,25 
Voice Pump 63 

W 
word width 13 
World Wide Web 6 

vendor contact information 801 

Z 
Zoran 

ZR38xxx 40 
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