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1.1 OVERVIEW 
This is Volume 4 of our Applications Handbooks for the ADSP-2100 family 
of DSP microprocessors. It presents a compilation of software for a variety 
of data communication applications, mostly related to the CCITT V.32 
modem recommendation. These examples may be used as they are or they 
may serve as a starting point for the development of your particular 
application. Each application is prefaced by a brief discussion of the 
algorithm that underlies the code. 

Along with the specific applications, the routines in this handbook 
demonstrate a variety of programming tactics. We believe that readers 
will want to scan every chapter, even if their application interests are 
confined to a single topic. 

This handbook does not explain the architecture or instruction set of the 
ADSP-2100. Refer to the literature page at the front of this book for 
additional publications describing the processors in the ADSP-2100 family 
and their hardware and software development tools. Contact your local 
Analog Devices Sales Representative for these materials if you need them. 

We do not attempt to explain the theory of any application area 
completely. We have assumed that our readers already understand the 
theory and practice of their own application areas. The references 
included in each chapter provide additional background. 

1.2 ADSP-2100 FAMILY OF PROCESSORS 
The processors in the ADSP-2100 family share the core architecture of the 
ADSP-2100 device. The ADSP-2100 contains three independent 
computational units-arithmetic/logic unit (ALU), multiplier I 
accumulator (MAC) and barrel shifter-that operate on 16-bit fixed-point 
data. The ADSP-2100 supports a modified Harvard architecture in which 
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data memory stores data and program memory stores both instructions 
and data. Its program sequencer and two address generators provide 
flexible addressing for performing DSP algorithms. 

• The ADSP-2100A is a version of the ADSP-2100 fabricated in 1.0µm 
CMOS. It is pin- and code-compatible with the ADSP-2100. It is 
available (currently) in IO MHz and 12.5 MHz versions, whereas the 
ADSP-2100 is offered in 6 MHz and 8 MHz versions. 

• The ADSP-2101 is a programmable single-chip microcomputer based 
on the ADSP-2100. Like the ADSP-2100, the ADSP-2101 contains an 
ALU, a multiplier I accumulator, and a barrel shifter, as well as a 
program sequencer and dual address generators. Additionally, there 
are lK words of data memory and 2K words of program memory on 
chip, two serial ports, a timer, boot circuitry (for loading on-chip 
program memory at reset), and enhanced interrupt capabilities. 

• The ADSP-2102 is identical to the ADSP-2101 with program memory 
ROM instead of RAM. 

• The ADSP-2105 is the same as the ADSP-2101 with half the on-chip 
memory (512 words of data memory and lK words of program 
memory) and one serial port instead of two. It is pin- and code
compatible with the ADSP-2101. 

• The ADSP-2111 contains all the features of the ADSP-2101 plus a host 
interface for direct connection (no glue logic) to a host processor. For 
example, the Motorola 68000, the Intel 8051, and the ADSP-2101 can all 
be connected easily to the ADSP-2111. The ADSP-2111 also provides 
additional flag outputs. 

All references to the ADSP-2100 in this handbook apply to all members of 
the ADSP-2100 family of processors, unless otherwise indicated. Because 
the processors are code-compatible, the programs in this handbook can be 
executed on any member of the family (some modifications for interrupt 
vectors may be necessary), although a program may not take advantage of 
specific functions, such as the serial ports of the ADSP-2101. 
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1.3 SUMMARY OF VOLUMES 1, 2 AND 3 
Volumes 1, 2 and 3 of the ADSP-2100 Family Applications Handbooks, 
formerly published as three separate books, are now available in a single 
book, Digital Signal Processing Applications Using the ADSP-2100 Family: 
This book presents information on the following topics: 

• Fixed-point arithmetic operations 
• Floating-point arithmetic operations 
• Function approximations 
• Digital filters 
• Fast Fourier transforms (FFTs), both one- and two-dimensional 
• Image processing 
• Graphics 
• Linear predictive speech coding (LPC) 
• Pulse code modulation (PCM) 
• Adaptive differential pulse code modulation (ADPCM) 
• High-speed modem algorithms 
• Dual-tone multifrequency (DTMF) coding and detection 
• Sonar beamforming 
• Memory interface 
• Multiprocessing 
• Host interface 

1.4 CONVENTIONS OF NOTATION 
The following conventions are used throughout this handbook: 

• In listings, all keywords are uppercase; user-defined names (such as 
labels, variables, and data buffers) are lowercase. In text, keywords are 
uppercase and user-defined names are lowercase and italicized. Note 
that this convention is for readability only; the Cross-Software 
modules do not distinguish between uppercase and lowercase letters. 

• In comments, register values are indicated by "=" if the register 
contains the value or"->" if the register points to the value in memory. 

• All numbers are decimal unless otherwise specified. In listings, 
constant values are specified in binary, octal, decimal, or hexadecimal 
by the prefixes B#, 0#, D#, and H#, respectively. 

1 
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1.5 PROGRAMS ON DISK 
An IBM PC 5-1I4 inch diskette containing the source code in this book is 
available. Consult your local Analog Devices Sales Office for a copy. As 
with the printed routines, we cannot guarantee their suitability for your 
application. 
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2.1 OVERVIEW 
The International Telegraph and Telephone Consultative Committee 
(CCITT), which determines protocols and standards for telephone and 
telegraph equipment, has authored a number of recommendations 
describing modem operation. This chapter surveys the fundamental 
algorithms of the V.32 modem recommendation, which describes the 
operation of a high-speed modem. Implementations of the algorithms on 
the ADSP-2100 family of DSP microprocessors are shown. 

A modem is an electronic device that incorporates both a modulator and a 
demodulator into a single piece of signal conversion equipment. 
Interfacing directly to the communication channel, modems establish 
communication links between various computer systems and terminal 
equipment. In most cases the communications channel is the general 
switched telephone network (GSTN) or a two- or four-wire leased circuit. 
The GSTN is, for the most part, a copper wire network. The bandwidth of 
this channel is limited to 200 Hz to 3400 Hz. 

Traditionally, a modem was implemented using analog discrete 
components. Today, digital circuits centered around a high performance 
digital signal processor can meet the demands of modem algorithms 
without the difficulties associated with analog circuitry. A digital modem 
implementation offers programmability, temperature insensitivity, ease of 
design and often reduced cost when compared with analog 
implementations. 

2.2 V.32 MODEM DEFINITION 
The V.32 recommendation describes a full duplex synchronous modem 
that operates on the general switched telephone network (GSTN) as well 
as point-to-point leased circuits. The V.32 modem communicates at a rate 
of 9600 bits per second (with a 4800 bit per second slow down mode) 
utilizing quadrature amplitude modulation (QAM). (QAM is discussed in 
detail in Chapter 3.) Four-bit symbols (bauds) modulate a carrier 
frequency of 1800 Hz with a modulation rate of 2400 bauds per second. 
The modulation of 4-bit symbols at a rate of 2400 symbols per second yields the 
9600 bit per second specification. 
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There are three signal coding modes to choose from in the V.32 
recommendation. 

• 9600 bit/second 16-point QAM. Four bits per symbol are transmitted. 
• 9600 bit/ second 32-point trellis-coded QAM. Transmitted symbols 

contain four information bits and an additional trellis encoded bit for 
error correction. 

• 4800 bit/ second 4-point QAM. 

The second method, which produces a redundant bit for error correction, 
is the method used in the implementation described in this chapter. 

Channel separation is achieved through echo cancellation. Echo cancellers 
are subject to CCITT specification G.165. An ADSP-2100 family 
implementation of an echo canceller is described in Chapter 4. 

The V.32 modem transmits with a carrier frequency of 1800 ±1 Hz and 
must be able to operate with received carrier frequency offsets of ±7 Hz. 
The V.32 recommendation also specifies the transmitted spectrum. 

2.2.1 Transmitter Algorithms 
A block diagram of the transmitter section of the V.32 modem 
implemented in this chapter is shown in Figure 2.1. The input serial bit 
stream is subject to a number of algorithms prior to modulation and 
transmission. Each step is described briefly below and in greater detail in 
the following sections. 

Scrambler. The input serial bit stream is first scrambled by a self
synchronizing (requires no clock signal) scrambler. Scrambling takes the 
input serial bit stream and produces a pseudo-random sequence. The 
purpose of the scrambler is to whiten the spectrum of the transmitted 
data. Without the scrambler, a long series of identical symbols could cause 
the receiver to lose carrier lock. Scrambling makes the transmitted 
spectrum resemble white noise, to utilize the bandwidth of the channel 
more efficiently, makes carrier recovery and timing synchronization easy 
and makes adaptive equalization and echo cancellation possible. 

Encoders. The scrambled bit stream is divided into groups of four bits. The 
first two bits of each 4-bit group are first differentially encoded and then 
convolutionally encoded. This produces a 5-bit symbol in which the first 
bit is a redundantly coded bit. 



Input bit 
stream 

SCRAMBLER 

SIGNAL 
MAPPING 

PULSE 
SHAPE 
FILTER 

PULSE 
SHAPE 

....._ ___ _. y(t) FIL TEA 

Figure 2.1 Transmitter Block Diagram 
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Signal Mapping. The 5-bit symbols are mapped into the signal space 
(defined in the V.32 recommendation) for modulation. The signal space 
mapping produces two coordinates, one for the real part of the QAM 
modulator and one for the imaginary part. 

Pulse Shape Filters. The pulse shape filter is based on the impulse response 
of a raised cosine function. Used prior to modulation, these filters 
attenuate frequencies above the Nyquist frequency that are generated in 
the signal mapping process. The filters are designed to have zero crossings 
at the appropriate frequencies to cancel intersymbol interference. 

Modulation. The modulation for all coding schemes in the V.32 modem 
recommendation is quadrature amplitude modulation (QAM). A QAM 
implementation on the ADSP-2100 family is described in Chapter 3. The 
carrier frequency is 1800 Hz and the modulation rate is 2400 symbols/ 
second. 

After modulation, the samples are converted to an analog signal. The 
analog output is filtered through a smoothing filter. 

LOW 
PASS 

FILTER 
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2.2.2 Receiver Algorithms 
A block diagram of the receiver section of the V.32 modem described in 
this chapter is shown in Figure 2.2. Each step is described briefly below 
and in greater detail in the following sections. 

TIMING 
LOOP 

DEMODULATION 

ADAPTIVE 
(FRACTIONALLY 

SPACED) 
EQUALIZER 

2X 
DECIMATION 

PHASE 
LOCKED 

LOOP 

Tentative 
Decision 

VITERBI 
DECODER 

PHASE DETECTOR 

DIFFERENTIAL 
DECODER RX~1~----t ....__ ____ ...... 

Figure 2.2 Receiver Block Diagram 

Input Filter. The received analog signal is oversampled by a factor of 4 at 
9600 samples per second. The sampled input is filtered with a raised 
cosine pulse shape filter. The output is then decimated by a factor of 2. 

Demodulation. Multiplication by e-i<2n1cnT/2l demodulates the signal. QAM 
demodulation techniques are described in Chapter 3. 

Adaptive Equalizer. An adaptive equalizer compensates for distortions 
introduced in the communications channel. A 64-tap fractionally spaced 
equalizer provides the performance necessary for V.32 applications. The 
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equalizer also feeds a timing loop which adjusts the 4X sampling input 
and the 2X sampling output of the input filter. An ADSP-2100 family 
implementation of an adaptive equalizer is described in Chapter 5. 

Viterbi Decoder. The decoder takes as input a demodulated, pulse shaped, 
equalized signal. The Viterbi algorithm is employed as a decoder in order 
to determine the appropriate signal constellation point received. This 
algorithm is a soft-decision maximum likelihood sequence decoder. By 
keeping a past history of 20 or so baud, the decoder can determine the 
signal point received in noisy conditions. The phase detector and delay 
adjust the feedback from the Viterbi decoder to the equalizer, which is 
constantly adapting in response to the received data. 

Differential Decoder and Descrambler. Once the amplitude and phase of the 
signal point received is known, the corresponding symbol must be back
mapped to decode the encoded bits. The decoded 4-bit symbol is then 
descrambled utilizing the same generating polynomials as the scrambler. 

2.3 SCRAMBLER 
The V.32 modem recommendation calls for the use of a scrambler in the 
transmit section of the modem and descrambler in the receive section of 
the modem. The scrambler and descrambler are based on simple 
polynomials. Each transmission direction uses a different scrambler, i.e., a 
different generating polynomial, as specified in the V.32 specification. The 
calling or call mode modem uses the following generating polynomial 
(GPC): 

GPC = 1 + x-18 + x-23 

where x is the input sample and the exponent on x indicates a time delay, 
e. g., x-23 is the twenty-third previous sample. The answering or answer 
mode modem uses a similar scrambler with the following generating 
polynomial (GPA): 

GP A = 1 + x-5 + x-23 

The additions are modulus 2 additions, that is, the bitwise exclusive-OR of 
the data values. The transmitting modem scrambles the input data 
sequence by dividing the message sequence by the generating polynomial. 
The receiving modem multiplies the scrambled sequence by the same 
polynomial to descramble and recover the original message sequence. 
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These polynomials can be thought of as digital filters. The scrambler has 
an all pole transfer function and the descrambler has an all zero transfer 
function. 

The scrambler output is pseudo-random. For a repetitive input signal, the 
scrambler output is also repetitive with a maximum period of 2k-1 
samples, where k is the order of the generating polynomial (23 in the case 
of the V.32 scrambler). In order to maximize the period of the pseudo
random output patterns, the specified GPC and GPA are irreducible and 
primitive. 

A block diagram of the call mode scrambler is shown in Figure 2.3; x. is 
the serial bit input stream and D is the scrambled data bit stream. E~~h 
delay block corresponds to a serial port cycle and each addition block is an 
exclusive OR operation. 

Figure 2.3 Call Mode Scrambler 

The answer mode scrambler block diagram (Figure 2.4) is similar. The 
fifth delay line sample, x-5, is used in the answer mode scrambler rather 
than the eighteenth delay line value as in the call mode scrambler. 

2.4 DESCRAMBLING 
The descrambler is implemented using a delay line, similar to the 
scrambler. The descrambler is the last functional block that the data passes 
through in the receiver. The data that is input to the descrambler is in 
effect multiplied by the appropriate generating polynomial. This 
multiplication performs the inverse operation of the scrambler. 



Figure 2.4 Answer Mode Scrambler 

There are two versions of the descrambler, one for call mode and one for 
answer mode. Block diagrams for the call mode and answer mode 
descramblers are shown in Figures 2.5 and 2.6. 

Figure 2.5 Call Mode Descrambler 

Figure 2.6 Answer Mode Descrambler 
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2.4.1 ADSP-2100 Family Implementation 
Fundamentally, the implementation of the generating polynomials for 
scrambling and descrambling is the management of a delay line. The 
scrambler generates its output from the current input bit and two delayed 
outputs. The call mode uses the eighteenth and twenty-third previous 
outputs, while the answer mode uses the fifth and twenty-third previous 
outputs. 

The ADSP-2100 family processors have two key features to facilitate 
efficient delay line management. First, each of two independent data 
address generators (DAGs) has four independent data pointers. An index 
register pointer can be programmed to handle each of the delay values 
and can be separately updated. Second, the DAGs support circular buffers 
into which delay lines are easily mapped. 

In either scrambler, the twenty-third value is the oldest value, and once 
used is no longer needed. Thus the newest value can be written over it, so 
the circular buffer always contains only the 23 most recent values. Figure 
2.7 illustrates the circular buffer implementation and shows the 
appropriate pointers. 
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Figure 2.7 Circular Buffer Implementation for Scrambler 
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The value x0 is the current input value. This value is put into an ALU 
register. The delayed value, D • x-18, is read from the circular buffer using 
the address supplied by a poiI~ter (represented in the above diagram with 
an arrow). Once the location is read, the pointer is decremented to the next 
location in the buffer, shown with the light arrow. The oldest value is then 
written to an ALU register; the pointer's address is not yet modified. The 
necessary XOR operations are performed and the result is output, as well 
as written to the last buffer location. This pointer is now decremented to 
the next value, now the oldest. 

This process is repeated with each new input bit. When a pointer comes to 
the first location in the circular buffer and is decremented, it wraps 
around to the last location in the circular buffer. Eighteen and twenty
three unit delays are maintained in the circular buffer, with no need to 
move data values, just pointer addresses. 

The answer mode scrambler works similarly, except with a delay of five 
units instead of eighteen units. The descrambler, for both call and answer 
modes, also uses the same basic structure, but with a different flow of data 
to accomplish the inverse operation. 

2.4.2 Scrambler/Descrambler Programs 
The code in Listings 2.1and2.2 implements the V.32 scrambler (call mode) 
on the ADSP-2100 family processors. There are two modules, a main 
module and a scrambler module. The main module sets up interrupts, 
initializes the appropriate registers for interrupt control, initializes index 
registers for maintenance of the circular buffer, clears the circular buffer to 
zero and waits in an infinite loop for an interrupt. The only interrupt 
active in this program is IRQ3. This is the highest priority interrupt, and in 
this case it corresponds to a sampling interrupt. When a sample is ready to 
be scrambled, this interrupt is asserted. 

The second program module is the actual scrambling routine. Included as 
part of this module is the bits subroutine, which takes 16-bit data values 
and strips off bits one at a time. The output of this subroutine is a string of 
simulated serial data values in the most significant bit position of 16-bit 
words. That is, a 16-bit word is input and 16 words (each of whose value 
is either H#8000 or H#OOOO) are output. These simulated serial bits are 
then passed to the scrambler. The scrambler output is in the AR register at 
the end of each pass and is written to the data memory location dac. 

The descrambler program, in Listing 2.3, has the same fundamental 
structure as the scrambler program, performing the inverse operation of 
the scrambler. 
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.MODULE/RAM/ABS=O ems main routine; 

This module initializes registers, clears a buffer} 
of length 23 for the call mode scrambler, sets IMASK} 
and waits in a loop for sampling interrupt} 
CALLS: initial, clear_buffer} 
INTERRUPTS: only interrupt 3 active} 

.CONST 

.VAR/DM/RAM/CIRC 

.GLOBAL 

no bits per_word=l6; 
buffer[23], input_buffer [no_bits_per_word]; 
input_buffer; 

.PORT cntl_port; 

.EXTERNAL start scramble; 

{interrupt jump table} 

{main routine} 

mainloop: 

RTI; {only INT3 is used} 
RTI; 
RTI; 
JUMP start scramble; {INT3 8 kHz from codec} 

CALL initial; 
CALL clear_buffer; 
IMASK=H#8; 
JUMP mainloop; 

{enable interrupt 3} 
{loop until interrupted} 

~~~~~~INIT SUBROUTINE~~~~~~-

{One time initialization subroutine, sets up registers} 

initial: IMASK=B#OOOO; 
ICNTL=H#F; 
SI=O; 
DM(cntl_port)=SI; 

L0=%buffer; 
Ll=%buffer; 
L2=%buffer; 
L3=0; 
L4=0; 
L5=0; 
L6=0; 
L7=0; 

IO=Abuffer; 
Il=Abuffer + 17; 
I2=Abuffer + 22; 

{disable interrupts} 
{edge sensitive interrupts} 

{load codec control register} 

{length registers} 
{circular buffer length 23) 

{no other index circ buffer} 

{index registers} 
{ds(n-5)) 
{ds (n-18)} 
{ ds (n-23)} 



I3=0000; 
I4=Ainput buffer + 15; 

MO=O; 
Ml=-1; 
M2=1; 
M4=-1; 
MS=l; 
SE=4; 
RTS; 

{modify registers} 

{SE for nibble pack} 

~~~~~1CLEAR BUFFER SUBROUTINE~~~
{ initialize scramble buffer to zero) 

clear buffer: CNTR=%buffer; 
DO clear UNTIL CE; 

clear: DM(IO,Ml)=O; 
RTS; 

.ENDMOD; 

Listing 2.1 Call Mode Scrambler Main Routine 
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.MODULE call_mode scrambler; 

This module performs V.32 call mode scrambling } 
The generating polynomial is: xin + y(n-18) + y(n-23) 
CALLS: bi ts} 

.EXTERNAL 

.CONST 

.PORT 

.PORT 

.ENTRY 

start scramble: 

scrambl: 

input_buffer; 
no_bits_per_word 
codec; 

16; 

dac; 
start scramble; 

AYO=DM (codec) ; {read from port} 
CALL bits; {show as serial stream} 
CNTR=no_bits_per_word; {scramble 16 times} 

{once for every bit of input} 
DO scrambl UNTIL CE; 

AYO=DM (I4, MS); 
AXO=DM (I 1, Ml) ; 
AY1=DM(I2,M0); 

{d(n-18)} 
{d(n-23)} 

AR=AXO XOR AYl; {d(n-18) + d(n-23)} 
AR=AR XOR AYO; {d(n) + d(n-18) + d(n-23)} 
DM(I2,Ml)=AR; {store scramble in buffer} 

{write new value over oldest} 
DM(dac)=AR; {out to dac} 
MODIFY(I4,M4); {reset pointer to last buffer} 

{value for next input word} 
NOP; 

RTI; 

~~~~~BITS SUBROUTINE~~~~~~~ 

takes output from u_expand (16-bit word) and separates out } 
the bits; stores as MSB in a 16-word buffer 'input_buffer'} 
The most significant bit of the input word is at the top of } 
the buffer} 

bits: AXO=AYO; 
SE=lS; 
CNTR=no bits per_word; 
AYO=H#8000; 
DO bit loop UNTIL CE; 

AR=AXO; 
SR=LSHIFT AR (LO); 

{expanded output into ALU} 

{shift so next bit is} 
{MSB in reg SRO} 



bit loop: 

.ENDMOD; 

AR=ARO AND AYO; {mask out all except MS} 
DM(I4,M4)=AR; 
AYl=SE; 
AR=AYl-1; 
SE=AR; 

I4=Ainput_buffer; 
SE=4; 
RTS; 

{decrement SE for next} 

Listing 2.2 Call Mode Scrambler Scrambling Routine 

s 
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s 

.MODULE/RAM/ABS=O main routine; 

Descrambling Routine 
Call Mode Functions implemented:} 

d(n)=di(n) + d(n-18) + d(n-23)} 

System file: fullpm.sys} 
CALLS: initial, clear_buffer, output} 

.VAR/DM/RAM/CIRC buffer[23]; 

.PORT codec; 

.PORT dac; 

.PORT cntl_port; 

RTI; RTI; RTI; {int0-2 not used} 
JUMP start descramble; 
CALL initial; 

{INT3 8 kHz from codec} 

mainloop: 

CALL clear_buffer; 

IMASK=h#8; 
JUMP mainloop; 

descramble subroutine 

{enable interrupts} 
{loop until interrupted} 

{addressing circular buffer with 2 pointers for modem scrambler} 

start descramble: AYO=DM(codec); 
AXO=DM(Il,Ml); 
AYl=DM(I2,M0); 
AR=AXO XOR AYl; 
AR=AR XOR AYO; 
DM(I2,Ml)=AY0; 

CALL output; 
AR=O; 
RTI; 

initialize subroutine 
{initialize registers} 

initial: IMASK=B#OOOO; 
ICNTL=H#F; 
SI=O; 

{read from port} 
{d (n-18)} 
{d(n-23)} 
{d(n-18) + d(n-23)} 
{d(n) + d(n-18) + d(n-23)} 
{store scramble in buffer} 
{input stored ... not output} 

{clear AR for next time} 

{disable interrupts} 
{edge level interrupts} 

DM ( cntl _port) =SI; {load codec control reg} 
L0=%buffer; {circular buffer length 23) 
Ll=%buffer; 



L2=%buffer; 
L3=0; 
L4=0; 
L5=0; 
L6=0; 
L7=0; 
IO=Abuffer; 
Il=Abuffer + 17; 
I2=Abuffer + 22; 
MO=O; 
Ml=-1; 
SRO=O; 
SRl=O; 
SE=l 6; 
RTS; 

clear buffer subroutine 
{initialize buffer to zero} 

clear buffer: 

clear: 

CNTR=%buffer; 
DO clear UNTIL CE; 

DM (I 0, Ml) =0; 
RTS; 

{~~ output routine packs serial into 16 bit words ~~) 
output: SR=SR OR LSHIFT AR(LO); 

AYO=SE; 

out: 

.ENDMOD; 

AR=AYO -1; 
SE=AR; 
IF EQ CALL out; 
RTS; 

DM(dac)=SRl; 
SRO=O; 
SRl=O; 
SE=l6; 
RTS; 

Listing 2.3 Call Mode Descrambler Routine 
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2.5 RAISED COSINE FILTER 
For the V.32 modem recommendation, 5-bit symbols are modulated by a 
carrier of 1800 Hz. This modulation is performed digitally. Coupled with 
the modulator and the demodulator are pulse shaping low pass filters. 
These digital filters eliminate intersymbol interference (ISI) on the 
bandlimited GSTN. 

A brief development of the theory of pulse shaping filters follows. For a 
more complete theoretical discussion of pulse shaping filters, see 
"References" at the end of this chapter: Bingham, Lee and Messerschmitt, 
Proakis. 

Low pass transmitted signals can be shown to have the form 

L In g(t-nT) 
n=O 

where I is the discrete code word and g(t) is a pulse. For the bandlimited 
channef we desire a transmitted pulse g(t) that produces no ISi. If the 
channel is ideally bandlimited, then an ideally bandlimited pulse can be 
used. In the frequency domain, this ideally bandlimited pulse can be 
described as: 

G(f) = T for f < l/2T 
0 for f ~ l/2T 

This spectrum has an ideal rectangular shape. 

In the time domain, this ideal spectrum shape is the sine function: 

g(t) = sin(nt/T) I (nt/T) 

The nulls (zero values of the pulse function) occur at multiples of T, the 
baud rate. Because of the placement of the nulls, there is no additive 
interference due to previous symbols; there is no ISi. 

The ideal pulse shaping filter is not practical to implement. The ideally 
bandlimited frequency response has a corresponding infinite impulse 
response. Although the impulse response has a zero value at all multiples 
of T, any mistiming in the modem produces an infinite series of ISi terms. 



A pulse shaping filter that is practical and widely used in digital 
communications is the raised cosine pulse shaping filter. The raised cosine 
pulse shaping filter is realizable, unlike the ideal pulse shaping filter. The 
raised cosine function has tails that decay proportional to 1/t3, whereas 
the ideal pulse tails off proportional to 1 It. Mistiming errors in sampling 
in the modem therefore have a much less dramatic effect on the amount of 
ISi in the raised cosine pulse filter. 

A generic formula for the impulse response of the raised cosine filter, p(t), 
is shown below. Tis the symbol rate in Hz, t is the sampling rate in Hz, 
and ex is the rolloff factor. 

sin (nt/T) • cos (exnt/T) 
p(t) = ---------

(nt/T) • (1 - (2exnt/T)2l 

The rolloff factor, ex, represents the amount of excess bandwidth required. 
A raised cosine with a rolloff factor of 0 needs the least excess bandwidth. 
As ex varies from 0 to 1, the amount of excess bandwidth required 
increases from 0 to 100%. For purposes of this implementation, a common 
rolloff factor of 0.25 is used. For the V.32 modem, the symbol rate, T, is 
specified at 2400 symbols per second. The sampling rate, t, is usually 9600 
Hz. The frequency response of the raised cosine pulse shaping filter with 
these parameter values is shown in Figure 2.8, on the following page. 

The pulse shaping filter usually spans four baud intervals. For a sampling 
rate of 9600 Hz and a symbol rate of 2400 Hz, a 17-tap FIR filter can be 
used. 

2.5.1 ADSP-2100 Family Implementation 
The raised cosine pulse shaping filter can be implemented in the modem 
as a simple FIR filter. Implementation of FIR filters on the ADSP-2100 
family is straightforward. The dual DAGs with circular buffering and the 
on-chip Harvard architecture allows for efficient realization of FIR filter 
structures. A complete description of FIR filters as well as other fixed
coefficient filters can be found in Digital Signal Processing Applications 
Using the ADSP-2100 Family, Chapter 5 (see "Literature" at the beginning 
of this book). 

Filter coefficients are arrived at using the formula above, generated with a 
C program. The coefficients are scaled to provide a filter with 0 dB gain. 
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od 

Impulse response 

0.8 

0.6 

0.4 
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0 

0 

Figure 2.8 Raised Cosine Pulse Shaping Filter, a=0.25 

The coefficients represent a rolloff factor of 0.25, and the generated 
impulse response spans four baud intervals. 

For the V.32 modem, the filter input is a digitally modulated value (1800 
Hz carrier). Samples are processed at the baud rate (2400 baud) and are 
interpolated, zero-filled, to provide filter input at a rate of 9600 Hz. 
Samples are processed in quadrature. Figure 2.9 shows the relationship of 
the filter to the digital modulator and the data rates. 

Listing 2.4 contains the ADSP-2100 family code for implementation of the 
raised cosine filter. The coefficients can be found in the data file coef.dat. 
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SIGNAL 
MAPPING 

Real Part 

2400 Hz 

Imaginary Part 

2400 Hz 

Figure 2.9 Modem Transmitter 

.MODULE/boot=O fir_sub; 
{~~~~~~~~~~~~~~~~ 

PULSE 
SHAPE 
FILTER 

PULSE 
SHAPE 
FILTER 

Pulse Shape filter routine for V.32 
ICASSP DEMO 

cos 1800 Hz 

2400 Hz 9600 Hz 

2400 Hz 9600 Hz 

sin 1800 Hz 

Rev History 2/8/90 take APP VOL I FIR routine 
adapt for V.32 

.ENTRY pulse shape; 

PSF length = 89; 

Digitally 

Modulated output 

.CONST 

.EXTERNAL 

.EXTERNAL 
Real_PSF_delay_line, Imag_PSF_delay_line, Pulse_Shape Coeff; 
real_PSF iO, imag_PSF iO; 

.VAR/OM 

.VAR/OM 

.VAR/OM 

.VAR/DM 

.VAR/DM 

.VAR/DM 

psf_save_IO; 
psf_save_LO; 
psf_save I4; 
psf_save_L4; 
test_psfl; 
test_psf2; 

(listing continues on next page) 
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pulse_shape: 

2 V.32 

DM (psf_save_IO) 
DM(psf_save I4) 

ode ms 

IO; DM(psf_save_LO) 
I4; DM(psf_save_L4) 

IO DM(real_PSF_iO); 
I4 APulse_Shape_Coeff; 
LO psf_length; L4 = psf_length; 

LO; {save IO,LO,I4,L4} 
L4; 

{~- Do real part of the filter. axO contains the x value 
from the signal map module. 

sop: 

DM(I0,M2) = AXO; {dump new vals into delay line} 
CNTR = PSF_Length - 1; 
MR=O, MXO=DM(IO,M2), MYO=PM(I4,M5); 
MR=MR+MXO*MYO(SS), MXO=DM(I0,M2), MYO=PM(I4,M5); 
IF NOT CE JUMP sop; 
MR=MR+MXO*MYO(RND); 
IF MV SAT MR; 
AXO = MRl; {filtered X in axO} 
DM(real_PSF_iO) = IO; 

{~- Do the imaginary part of the Pulse Shape filter. axl contains 
the imaginary part of the point from the signal map module. 

imag_sop: 

.ENDMOD; 
RTS; 

IO= DM(imag_PSF_iO); 
DM(I0,M2) = AXl; 
CNTR = PSF_Length - l; 

{dump new vals into delay line} 

MR=O, MXO=DM(IO,M2), MYO=PM(I4,M5); 
MR=MR+MXO*MYO(SS), MXO=DM(I0,M2), MYO=PM(I4,M5); 
IF NOT CE JUMP imag_sop; 
MR=MR+MXO*MYO(RND); 
IF MV SAT MR; 
AXl = MRl; 
DM(imag_PSF_iO) = IO; 

IO 
I4 

DM(psf_save_IO); LO 
DM(psf_save I4); L4 

{filtered Y in axl} 

DM(psf_save_LO); 
DM(psf_save_L4); 

Listing 2.4 Raised Cosine Filter 
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od 

2.6 TRELLIS ENCODING 
The GSTN was intended for voiceband transmission and is bandlimited 
200 Hz to 3400 Hz. Data rates in excess of the upper band limit can be 
realized only by the transmission of multiple bits per symbol interval. 
Data rates of 9.6 Kbits per second can be achieved on unconditioned 
circuits and data rates of up to 16.8 Kbits per second can be realized on 
conditioned leased lines using the technique known as trellis coded 
modulation (TCM). 

The V.32 modem recommendation specifies trellis encoding as an option. 
Four-bit symbols are encoded into 5-bit symbols that are made up of four 
information bits and a redundant bit. These 5-bit symbols are used with a 
32 carrier state QAM modulator. A 2400 baud rate is used and 9600 
information bits per second are transmitted. A trellis encoded scheme 
offers much better performance than a non-encoded scheme. It results in a 
much higher immunity to noise for a given error rate and can reduce the 
block error rate by three orders of magnitude for a given signal-to-noise 
ratio. 

There are two fundamental types of codes used in channel encoding. 
Linear block codes include Hamming codes, BCH (Bose-Chadhuri
Hocquenghem) codes, Reed-Solomon codes, Galay codes and many 
others. The convolutional code, which is specified for V.32 modems can be 
implemented using a shift register and can be described using a diagram 
called a trellis diagram. 

Suppose we can achieve a certain Pe (probability of error) in an uncoded 
system operating on a bandlimited channel. We can attempt to improve 
system performance by coding. If we add a single redundant bit to a 
binary symbol with k bits, we increase the number of waveforms that the 
modulator must produce from 2k to 2k+1• An increase in alphabet size on 
the same bandwidth requires a 3 dB increase in the signal to noise ratio to 
achieve the same Pe. That is, coding alone decreases the performance of 
the system. 

Trellis coded modulation employs signal set partitioning in addition to 
redundant coding in order to increase the system performance. In the case 
of the V.32 modem, there are 32 modulator states. Of the four input bits to 
the encoder, only two are encoded. Two bits pass through uncoded and 
two bits are encoded into three output bits. The three bits provide a 
mechanism for dividing the 32 modulator states into 8 subsets of 4 
modulator carrier states. The coded bits identify the subset of the 32 
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modulator states and the uncoded bits select a point within the subset. 
Figure 2.10 shows the input and output bits of the trellis encoder. Bits Ql 
through Q4 are the input bits. Bits Q3 and Q4 pass through the encoder 
unchanged. Bits Ql and Q2 are encoded to give Yl, Y2 and the redundant 
error correcting bit YO. Bits YO, Yl, Y2 identify the subset while the bits Q3 
and Q4 identify the point within the subset. 

Input 

I 04 I 03 I 02 I 01 I 
Input Bits 

E 
N 
c 
0 
D 
E 
R 

Figure 2.10 Encoder Block Diagram 

Output 
_.... -

Output Bits 

The signal set for the V.32 modem (and other TCM schemes) has been 
designed so that there is a large distance between the members of each 
subset. The 32-state signal constellation for the V.32 modem is shown in 
Figure 2.11. Bits are ordered on this diagram left to right, most significant 
to least significant: YO Yl Y2 Q3 Q4. The signal space mapping for the 
redundant coding is from Figure 3/V.32 of the V.32 recommendation. 

The signal set is located on a quadratic grid known as a Z2 lattice and the 
signal set type is known as 32 CROSS. In order to transmit m bits per 
signalling interval, 2m+i signals are needed. The coding gain (performance 
of the coded signals versus uncoded signals) is approximately 4 dB for 
any m. The closest distance between any two points on the signal set is ~0. 
The closest distance between any two points in a subset (i.e .. points that 
have the same YO, Yl and Y2 bits) is '18 ~o for the 32 CROSS signal set. 

All bit patterns that begin with the same three bits are spread out on the 
signal constellation. This signal set partitioning along with the redundant 
coding are the fundamentals of TCM. 



Imaginary (Y) 
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• • YO Y1 Y2 Q3 Q4 11111 11000 
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2 

• • • • 10010 10101 10011 10100 

• • • • 00000 01111 00 10 01101 00011 
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11001 11110 11010 2 11101 4 
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-2 
• • • • 

10000 10111 10001 10110 
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-4 

• • 11100 11011 

Figure 2.11 V.32 Signal Constellation 

2.6.1 ADSP-2100 Family Implementation 
Trellis encoding for the V.32 modem consists of two encoding operations: 
a differential encoder, implemented as a lookup table and a convolutional 
encoder, performed using a shift register and Boolean logic. Together, 
these two encoders generate a 5-bit symbol from a 4-bit input word. 

The serial input bits to the encoder are QI, Q2, Q3 and Q4 (QI first, Q4 
last). Three of the output bits are YO, YI and Y2, and the other two output 
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bits are Q3 and Q4, unchanged from the input. Yl and Y2 are generated in 
the differential encoder. YO, the redundant bit for error correction, is 
generated in the convolutional encoder. 

The differential encoder takes as input the first two bits, Ql and Q2, and 
produces two output bits, Yl and Y2. Previous output bits, Yl(n-1) and 
Y2(n-1) are also used in the differential encoder. The encoder is easily 
implemented on the ADSP-2100 family as a lookup table. The input bits 
and the previous output bits are combined to a 4-bit value that serves as a 
pointer into the lookup table. For example, assume that the current input 
bits are Ql=l, Q2=0, Yl(n-1)=0 and Y2(n-1)=1, for a 4-bit value of 1001. 
This corresponds to the 1001 (ninth) entry in the lookup table, from which 
the current Yl and Y2 outputs are read. Table 2.1 shows the lookup table 
for differential encoding. 

Inputs Previous Outputs Outputs 
Ql Q2 Yl(n-1) Y2(n-1) Yl Y2 

0 0 0 0 0 0 
0 0 0 1 0 1 
0 0 1 0 1 0 
0 0 1 1 1 1 

0 1 0 0 0 1 
0 1 0 1 0 0 
0 1 1 0 1 1 
0 1 1 1 1 0 

1 0 0 0 1 0 
1 0 0 1 1 1 
1 0 1 0 0 1 
1 0 1 1 0 0 

1 1 0 0 1 1 
1 1 0 1 1 0 
1 1 1 0 0 0 
1 1 1 1 0 1 

Table 2.1 Differential Encoder Lookup Table 



The convolutional encoder (Figure 2.12) uses a shift register structure to 
examine the four incoming bits (the output of the differential encoder) and 
build a 5-bit symbol. The five output bits of the convolutional encoder 
consist of the four input bits plus an additional redundantly coded fifth 
bit. This additional bit increases the complexity of the signal set, but limits 
the number of possible transitions between bit patterns. For any given 5-
bit convolutionally encoded word, only half of the signal states can follow. 
In other words, the process of convolutional encoding prohibits 
transitions from any particular signal state to only half of the possibilities. 
This property is exploited in the Viterbi decoder in the receiver. 

Delay 
Element 

#1 

MSB 

input bits 

MS LS 

Delay 
Element 

#2 

Figure 2.12 Convolutional Encoder Block Diagram 

output bits 

MS LS 

Delay 
Element 

#3 

LSB 

Listing 2.5 contains a ADSP-2100 family subroutine that provides both the 
differential encoder and the convolutional encoder. The input is assumed 
to be a single bit residing in the most significant bit position of a 16-bit 
word. Listing 2.6 shows the convolutional encoder routine that is called by 
the program in Listing 2.5, and Listing 2.7 contains the routine that 
performs signal mapping on the encoded data. 
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.MODULE/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.INIT 

.ENTRY 

.PORT 

.PORT 

.GLOBAL 

trellis; 

t_table[l6]; 
last_ys; 
bit_count; 
diff out; 
delay_val_l; 
delay_val_2; 
delay_val 3; 
Yl; 
Y2; 
t table: 0,1,2,3,1,0,3,2,2,3,1,0,3,2,0,1; 
trellis_encode; 
dac; 
adc; 
t_table, bit count, last_ys; 

{~bit count is intially 4~) 
trellis encode: SE=DM(bit_count); 

SI=DM(adc); {take in new 8000 or 0000) 

Q1Q2_pack: 

packed: 

SR=SR OR LSHIFT SI (LO); {count up 4 bits,} 
AYO=SE; {shift into SR register} 
AR=AYO -1; 
SE=AR; 
DM(bit count)=SE; {store decremented count} 
IF EQ JUMP packed; 
RTI; 

AXO=SRl; 
AX1=4; 
DM(bit count)=AXl; 
SRO=O; 
SRl=O; 
CALL d_encode; 
RTI; 

{stored as 4 bits} 
{Ql Q2 Q3 Q4} 



~~~~~~-ENCODE~~~~~~~ 

{input: AXO -> 0 0 0 X where X -> bits 0 0 0 0 QlQ2Q3Q4) 

d encode: 

.ENDMOD; 

I3=At_table; 
AYO=h#OOOC; 
AR=AXO AND AYO; 
AYl=DM(last ys); 
AR=AR XOR AYl; 

M3=AR; 
MODIFY ( I3, M3); 

SI=DM(I3,MO); 
DM(last_ys)=SI; 

AY1=3; 

{mask to keep Ql Q2} 

{last output Yl Y2} 
{AR is Ql Q2 Yl Y2} 

{address in lookup} 
{for new Yl Y2} 

{AYO ->encoded Yl Y2} 

AF=AXO AND AYl; {keep Q3 Q4} 
SR=LSHIFT SI BY 2(LO); 
AR=SRO+AF; 
DM(diff out)=AR; 
DM(dac)=AR; 
CALL c encode; 
RTS; 

{AR ->Yl Y2 Q3 Q4} 
{store output of diff encode} 

{call convolutional encode} 

Listing 2.5 Trellis Encoder Program 
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od 

.MODULE/RAM conv encode; 

Trellis Encoder for V.32 Modem 
Implements convolutional encoder 

Input: Four bit symbols, output of the differential encoder 

Output: Five bit symbol in the LSB positions} 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.GLOBAL 

.GLOBAL 

.GLOBAL 

.ENTRY 

.EXTERNAL 

di ff out; {differential encode output} 
conv out; - {convolutional encode output} 
packed_4_bits; {QlQ2Q3Q4 as 4 LSBs} 
delay val 1; {conv. enc delay element} 
delay_val 2; {conv. enc delay element} 
delay val 3; {conv. enc delay element} 
intermed l; 
intermed 2; 
YO; {output bit YO} 
Yl; {output bit Yl} 
Y2; {output bit Y2} 

conv_out; 
delay_val 1, delay_val 2, delay_val 3; 
intermed_l, intermed_2, packed_4_bits; 

c_encode; 
sig_map, dac; 

CONVOLUTIONAL ENCODE~~~~~ 
{Input is YlY2Q3Q4 located in "diff_out" 4 LSBs} 
{Output is 3 encoded bits in data mem locations YO Yl Y2} 
{calls "pack_up_S_bits" for output to dac} 

c encode: SRO=O; 
SRl=O; 
SI=DM(diff out); 
SE=-3; 

{clear shift result} 

{get input from diff encoder} 

SR=LSHIFT SI BY -3(HI); {put Yl in LSB position} 
AYO=l; 
AR=SRl AND AYO; 
DM (Yl) =AR; 
AXO=AR; 
SR=LSHIFT SI BY -2(HI); 
AR=SRl AND AYO; 
DM(Y2)=AR; 
AYO=AR; 

{separate Yl} 

{separate Y2 and store} 



AR=AXO XOR AYO; 
AYl=DM(delay_val 3); 
AR=AR XOR AYl; 
DM(intermed_l)=AR; 

AXO=DM(delay_val l); 
AR=AXO XOR AYO; 
DM(intermed_2)=AR; 

AYO=DM(delay_val 2); 
DM(delay_val 3)=AYO; 
AR=AR AND AYO; 

AYl=DM(intermed_l); 
AR=AR XOR AYl; 
DM(delay_val l)=AR; 

AXl=DM(Yl); 
AR=AXl AND AYO; 
AYO=DM(intermed_2); 
AR=AR XOR AYO; 

DM(delay_val 2)=AR; 
DM(YO)=AR; 

CALL pack_up_5_bits; 
RTS; 

{op #1) 

{op #2) 

{delay val 1 XOR Y2 op #5) 

{update delay val 3) 
{and_l} 

{update delay_val 1) 

{and_2} 

{update delay val 2) 

OUTPUT FORMATTER ~~~~-
{Packs up convolutional bits as 5 LSBs YO Yl Y2 Q3 Q4} 
{Outputs to DAC} 

pack_up_5_bits: 

.ENDMOD; 

SRO=O; 
SRl=O; 

SRl=DM(diff_out); 
SI=DM(YO); 

{pack up bits as YOY1Y2Q3Q4) 
{clear SR} 

SR=SR OR LSHIFT SI BY 4 (HI); 
DM(conv_out)=SRl; 
DM(dac)=SRl; 

SRO=O; 
SRl=O; 

CALL sig_map; 
RTS; 

Listing 2.6 Convolutional Encoder Routine 
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.MODULE signal_map; 

This module takes the output of the convolutional encoder, 
that is, a five bit code residing in the LSBs of the data 
memory location "conv_out", and looks up the x and y coordinates 
as defined by the CCITT spec for the V.32 modem. 

The coordinates are given in the CCITT spec as whole integers. 
They are represented in a 16-bit fixed format as follows: 

integer hexadecimal 
0 0000 
1 2000 
2 4000 
3 6000 
4 7FFF 
-1 EOOO 
-2 cooo 
-3 AOOO 
-4 8000 

Registers used: 

.VAR/DM 

.VAR/DM 

.INIT 

.INIT 

x_table[32]; 
y_table[32]; 

x table: H#8000, H#OOOO, H#OOOO, H#7FFF, H#7FFF, 
H#OOOO, H#OOOO, H#8000, H#COOO, H#COOO, H#4000, 
H#4000, H#4000, H#4000, H#COOO, H#COOO, H#AOOO, 
H#2000, H#AOOO, H#2000, H#6000, H#EOOO, H#6000, 
H#EOOO, H#2000, H#AOOO, H#2000, H#2000, H#EOOO, 
H#6000, H#EOOO, H#EOOO; 

y_table: H#2000, H#AOOO, H#2000, H#2000, H#EOOO, 
H#6000, H#EOOO, H#EOOO, H#6000, H#EOOO, H#6000, 
H#EOOO, H#AOOO, H#2000, H#AOOO, H#2000, H#COOO, 
H#COOO, H#4000, H#4000, H#4000, H#4000, H#COOO, 
H#COOO, H#7FFF, H#OOOO, H#OOOO, H#SOOO, H#8000, 
H#OOOO, H#OOOO, H#7FFF; 



.EXTERNAL 

.ENTRY 

sig_map: 

.ENDMOD; 

conv_out, dac; 
sig_map; 

Il=Ax table; 
I2=Ay_table; 

MO=O; 

Ml=DM(conv out); 
MODIFY (Il,Ml); 
MODIFY(I2,Ml); 

AXO=DM ( Il, MO) ; 
AXl=DM (12,MO); 

DM(dac)=axO; 
DM(dac)=axl; 

RTS; 

Listing 2.7 Signal Mapping Routine 

2.7 VITERBI DECODING 

{x value in axO} 
{y value in axl} 

The V.32 recommendation specifies a trellis or convolutional encoding of 
data before transmission. The most common technique used for decoding 
received data is Viterbi decoding. The Viterbi algorithm is a general 
purpose technique for making an error-corrected decision. Viterbi 
decoding provides a certain degree of error correction by determining 
from the received bit pattern the value that was the most likely to have 
been transmitted. The Viterbi algorithm can be used for many applications 
where error correcting is required. Its application in the V.32 modem is 
similar to that used in other digital data communication schemes, such as 
digital telephones. 

In order for the Viterbi algorithm to decode received data properly, the 
model for encoding the transmitted data must be known. In trellis 
encoding, it is assumed that the three delay elements of the encoder 
contain zeros initially. At each time period, a new 2-bit input is presented. 
The contents of the delay elements are changed accordingly and a 3-bit 
output is produced. If the three delay elements are treated as a 3-bit word, 
where delay element 1 is the most significant bit and delay element 3 is 
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the least significant bit, then the state of the delay elements collectively 
can be represented by that 3-bit value. 

It is possible to derive a state diagram or table from this specification. The 
three delay elements in the encoder are labelled from left to right as 
element 1, 2 and 3, respectively, in Figure 2.12 (on page 2-25). At any 
moment, each delay element has stored in it a 1 or a 0. The possible 
combinations of bits in the three delay elements or the possible states is 
eight. The state table shows the eight possible states of these three storage 
elements. It also shows that for any 2-bit input to the encoder, the three 
delay elements go to some new state and the encoder also produces an 
output. The state table showing the state transitions with the encoder 
inputs and outputs is shown in Table 2.2. 

Beginning End Beginning End 
State Input Output State State Input Output State 
000 00 000 000 100 00 000 010 
000 01 101 011 100 01 101 001 
000 10 010 010 100 10 010 000 
000 11 111 001 100 11 111 011 

001 00 000 100 101 00 000 110 
001 01 101 101 101 01 101 111 
001 10 110 111 101 10 110 101 
001 11 011 110 101 11 011 100 

010 00 100 001 110 00 100 011 
010 01 001 010 110 01 001 000 
010 10 110 011 110 10 110 001 
010 11 011 000 110 11 011 010 

011 00 100 111 111 00 100 101 
011 01 001 110 111 01 001 100 
011 10 010 100 111 10 010 110 
011 11 111 101 111 11 111 111 

Table 2.2 State Table for Convolutional Encoder 
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Table 2.2 can also be used to derive a trellis diagram. The trellis diagram 
and the state diagram convey equivalent information. The trellis diagram 
for the convolutional encoder of the V.32 modem is shown in Figure 2.13. 

Each node of the trellis represents a state and each node is labelled with 
the three-bit value of that particular state out of the eight possible states. A 
line is drawn from a state in one time window to a state of the next time 
window and represents the transition from one state to another for any 
given 2-bit input. Figure 2.13 shows some of the trellis paths labelled with 
the 3-bit output that was produced as the delay elements went from one 
state to another. 

111 • 
110 • 
101 • 
100 • 
011 • 
010 

Time window 1 

• 101 

111 
000 

111 • 
110 • 
101 • 
100 • 

Time window 2 

111 
Time window 3 

111 

00~1 010 

ooo~~--io:::;..~~~~~~~..,.o:::;_~~~~~~~-=-

Figure 2.13 Trellis Diagram for Convolutional Encoding 

It is assumed that at time t=O, the contents of each delay element is 0. 
Therefore the starting point for the trellis is at state 000. There are four 
possible combinations of 2-bit inputs and therefore, four lines that come 
out of state 000 and connect to the corresponding states at time window 2 
as specified by the state table. For example, an input of 01 results in a 
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change in the state of the delay elements from 000 to 011 with an output of 
101. This information is conveyed in the trellis diagram by a line from 
state 000 to 011labelled101. The trellis diagram in Figure 2.13 has some of 
the branches labelled with the output value that is produced for a specific 
state transition; the rest can be determined from the state table. 

2.7.1 Data Constellation 
A 2-bit input to the convolutional encoder produces a 3-bit output 
containing a redundant bit. Because of redundancy, this 3-bit data value 
can be corrected for errors that occur during transmission. 

In the transmission of information in a V.32 modem, the three bits from 
the output of the convolutional encoder are combined with two bits 
coming directly from the data bit stream. In essence, four bits from the 
data stream are being encoded to five bits (one redundant bit is added to 
the four original bits). 

To modulate a carrier with this information, a constellation is created that 
maps any 5-bit data value to an X and Y coordinate or a real and 
imaginary term associated. The real and imaginary terms are used to 
modulate sine and cosine carriers for quadrature amplitude modulation 
(see Chapter 3). Figure 2.14 shows the V.32 constellation with the 3-bit 
output of the convolutional encoder underlined. 

The demodulated carrier yields the original X and Y coordinates which 
determine the original 5-bit data value. Since the transmission medium for 
the carrier is noisy, the demodulated data may not be correct. The Viterbi 
algorithm corrects errors introduced in transmission. 

2.7.2 Viterbi Algorithm 
The Viterbi algorithm decides whether demodulated data is the data that 
was sent and if not, corrects it. It works by analyzing the pattern of data 
values received over a period of time to deduce the data value that is most 
likely to have occurred at the beginning of the period. 

The received carrier is demodulated to produce X and Y coordinates of a 
point on the signal constellation. The distances from that point on the 
constellation to the nearest eight points that all have different leading 
three bits are calculated. These Euclidean distances are then used to label 
the branches of the trellis diagram. After a number of samples have been 
received and mapped to the trellis diagram in this fashion, the diagram 
can be read to determine the shortest path back to the original state, which 
determines the data value that has the highest probability of having been 
transmitted at that time. 



Imaginary (Y) 

• • 11111 11000 

• • 01000 001 1 01010 

• • • • 10010 10101 10011 10100 

• • • • 00000 01111 00 10 01101 00011 

Real (X) 

11001 11110 11010 11101 

• • • • 
00111 01001 0 110 01011 00100 

• • • • 10000 10111 10001 10110 

• • 01110 00 01 01100 

• • 11100 11011 

Figure 2.14 Signal Constellation Showing Convolutional Encoder Output 

For example, assume that the received signal at time window 1 is mapped 
into the constellation at coordinate 2, 2 (x, y). This does not correspond to 
a five-bit code on the constellation. The Euclidean distances from this 
point to the nearest eight points are calculated. Because of the way the 
signal map is configured, each of these points has a different value for its 
first three bits (underlined in Figure 2.14). 

In the trellis diagram, the line connecting state 000 to state 011 in time 
window 1 is labelled 101. The point in the signal constellation that is 
nearest to 2, 2 and has the value 101 as its first three bits is 10100, at 
coordinate 3, 2. The Euclidean distance between coordinate 2, 2 and 3, 2 is: 

[(2-3)2 + (2-2)2]112 = 1 
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od 

Therefore, the branch of the trellis diagram going from state 000 to state 
011 is labelled 1. This process is repeated to label the other branches on the 
trellis diagram. As a new sample is received in each time window, the 
trellis branches are labelled with the corresponding Euclidean distances. 

After a given number of time windows have elapsed, the shortest path 
back to the start of the first time window is calculated. The branch of the 
shortest path in the first time window represents the original data value 
that was transmitted. 

Since the data point is determined only after a given number of time 
windows has elapsed, a delay of (number of time window multiplied by 
the symbol rate) is incurred. The more time windows that elapse before a 
decision is made, the more accurate the decision. Thus there is a tradeoff 
between accuracy and execution time. 

2.7.3 ADSP-2100 Family Implementation 
The first task of the program is to determine which eight points in the data 
constellation are the nearest to the X and Y coordinates produced by the 
demodulator. This is done using a lookup table. Each group in the lookup 
table contains the X and Y coordinates of the four points in the 
constellation that have the same 3-bit leading sequences. There are 32 
points in the constellation, and therefore eight groups. Because the ADSP-
2100 is a 16-bit machine, the X and Y values are normalized for 16-bit data. 
A negative full scale value of H#8000 and a positive full scale value of 
H#7FFF are used for both the X and Y values. 

For example, 00000, 00001, 00010 and 00011 are in group 0. The Euclidean 
distance between the received point and the points in the group 0 are 
calculated. The shortest distance is then written into another table called 
min_dist in which the first location holds the shortest distance of the first 
group, the second location holds the shortest distance of the second group, 
etc. Table 2.3 shows the X and Y coordinates in each of the eight groups. 



Group 
000 

001 

010 

011 

x y 
4 1 
0 1 
--4 1 
0 -3 

4 -1 
0 -1 
--4 -1 
0 3 

2 3 
-2 3 
2 -1 
-2 -1 

2 1 
-2 1 
2 -3 
-2 -3 

Group 
100 

101 

110 

111 

x y 
1 2 
-3 2 
1 -2 
-3 -2 

3 2 
-1 2 
3 -2 
1 0 

1 0 
1 4 
-3 0 
1 --4 

3 0 
-1 0 
-1 4 
-1 --4 

Table 2.3 Lookup Table of X and Y Coordinates 

2.7.4 Shortest Path Through Trellis Diagram 
After the distance from the received point for the current time window to 
the closest point in each group is known, the total distance back to the 
beginning of the trellis diagram can be calculated. Each time, only the 
incremental distance for the time window, not the total distance, is 
calculated. 

An 8-location table acc_dist stores the accumulated distance through the 
trellis diagram. Because the trellis diagram starts at state 000, the first 
location of the table is initialized with a 0 and all other locations with the 
positive full scale value. This ensures that, for the first time window, all 
paths converge back to state 000, since this state starts with the shortest 
accumulated distance. 

At each time window, the surviving path to each state is determined and 
the accumulated distanc'e table is updated with the accumulated distance 
of each of the eight surviving paths. The surviving path is determined by 
taking the length of all of the possible paths going into a state and adding 
that distance to the accumulated distance of the state at the other end of 
the path. 
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For example, Figure 2.15 shows the four paths that lead into state 001. The 
length of each path is added to the accumulated distance of the state from 
where the path emanates. The length of path 111 is added to the 
accumulated distance of state 000, the length of path 100 to is added the 
accumulated distance of state 010, the length of path 101 to is added the 
accumulated distance of state 100, and the length of path 110 is added to 
the accumulated distance of state 110. The lengths of these paths are read 
from the min_dist table. 

The minimum of these four distances becomes the new accumulated 
distance to state 001 and is written into the appropriate location of the 
accumulated distance table (acc_dist). As each surviving path leg is 
determined, a table is filled with the distance of the path and the state 
from which it came, to allow the program to trace back along the 
surviving path to the beginning of the trellis diagram. 

111 

• 
110 

• 
101 

• 
100 

• 
011 

• 

000 

• 

New Accumulated 
Distance to State 001 

= Minimum of 

Accumulated Distance Table 

Accumulated Distance to State 000 

Accumulated Distance to State 001 

Accumulated Distance to State 010 

Accumulated Distance to State 011 

Accumulated Distance to State 100 

Accumulated Distance to State 101 

Accumulated Distance to State 11 O 

Accumulated Distance to State 111 

Old Distance to state 000 + length of path 111 

Old Distance to state 010 +length of path 100 

Old Distance to state 100 +length of path 101 

Old Distance to state 11 O + length of path 11 O 

Figure 2.15 Accumulated Distance Table Update Example 



After all eight accumulated distances are updated, the shortest of the eight 
accumulated distances is determined. This path is traced back the given 
number of time windows. The distance of the branch in the first time 
window determines the data value most likely to have been transmitted. 
The point in the data constellation that is this distance from the received 
point represents the error-corrected symbol. 

2.7.5 Viterbi Program 
The example program uses N=20 time windows. In general, a value of N 
which is greater than or equal to three times the constraint length gives 
good results. In this case, the constraint length is 3, the number of bits 
needed to describe the possible states at each time window. The larger the 
value of N, the better the performance of the Viterbi algorithm, but the 
longer the execution time and the larger the table sizes. 

2. 7.5.1 Initialization 
The first part of the program declares buffers and initializes variables. A 
buffer to store input data, eight tables holding the coordinates of the eight 
data groups, eight tables holding the 5-bit codes for the eight data groups, 
the accumulated distance buffer, eight state-tracing tables, eight buffers to 
hold surviving path distances and some pointer tables are all declared in 
the initialization section. 

2.7.5.2 Data Input and Euclidean Distance 
Data values are placed in registers AXO and AXI as X and Y coordinates, 
respectively, for input to the Viterbi program. The code starting at 
find_dist calculates the distances by calling the subroutine dist (which 
calculates the Euclidean distance squared) followed by the subroutine sqrt. 
This subroutine is repeated for each data group. The table min_dist is filled 
with the shortest distance for each group. 

2. 7.5.3 Shortest Path 
The code starting at short_path determines the shortest surviving path to 
each state for the current time window. It also fills the eight state tables 
with the distance of the surviving branch and the state from which the 
branch came. The subroutine min_calc compares the four possible 
surviving paths and determine the shortest. 

2.7.5.4 Last Surviving Path 
After the accumulated distances to all eight states are calculated, the 
shortest is determined. The code starting at search determines the shortest 
path and traces this path back to the start of the trellis diagram. 
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2.7.5.5 Determination of Error Corrected Data 
When the surviving branch of the first time window is determined, the 
closest point of the data constellation in that data group is found. This 5-
bit code is put into the SRI register . 

. MODULE/RAM viterbi; 

{Viterbi decoder program for convolutional encoded data for a V.32 modem. This program 
decodes information using N=20 levels or time windows of Viterbi decoding. 

Demodulated data is stored as input to this routine in registers AXO and AXl as 
follows; 

AXO X coordinate 
AXl Y coordinate 

This data is used as input. 

The 5-bit data word output by this routine is placed in register SRl.} 

N=20; 
base=h#OD49, sqrt2=h#5A82; {required for square root} 
sqrt_coeff[S]; 

.CONST 

.CONST 

.VAR/PM/RAM 

.INIT sqrt coeff: h#SDlDOO, h#A9ED00, h#46D600, 
h#DDAAOO, h#072DOO; 

{table for storing last N inputs, as X and Y coordinate 
table will contain alternating X, Y for each time window} 

.VAR/DM/RAM/CIRC inputs[N+N]; 

{variables to hold new X and Y inputs} 
.VAR/DM/RAM x_input; 
.VAR/DM/RAM y_input; 
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{tables for X and Y coordinates of data constellation points. Coordinates of both axes 
are -4, -3, -2 ,-1, O, 1, 2, 3, 4. They are represented in binary as: 

-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.VAR/PM/RAM 

.INIT groupO: 

. INIT groupl: 

.INIT group2: 

.INIT group3: 

.INIT group4: 

.INIT groups: 

.INIT group6: 

.INIT group?: 

H#8000 
H#AOOO 
H#COOO 
H#EOOO 
H#OOOO 
H#2000 
H#4000 
H#6000 
H#7FFF 

group0[8]; 
groupl[B]; 
group2[8]; 
group3[8]; 
group4[8]; 
group5[8]; 
group6[8]; 
group7[8]; 

H#7FFFOO, H#200000, H#OOOOOO, H#200000, 
H#800000, H#200000, H#OOOOOO, H#AOOOOO; 

H#7FFF00, H#EOOOOO, H#OOOOOO, H#EOOOOO, 
H#800000, H#EOOOOO, H#OOOOOO, H#600000; 

H#400000, H#600000, H#COOOOO, H#600000, 
H#400000, H#EOOOOO, H#COOOOO, H#EOOOOO; 

H#400000, H#200000, H#COOOOO, H#200000, 
H#400000, H#AOOOOO, H#COOOOO, H#AOOOOO; 

H#200000, H#400000, H#AOOOOO, H#400000, 
H#200000, H#COOOOO, H#AOOOOO, H#COOOOO; 

H#600000, H#400000, H#EOOOOO, H#400000, 
H#600000, H#COOOOO, H#EOOOOO, H#COOOOO; 

H#200000, H#OOOOOO, H#200000, H#7FFFOO, 
H#AOOOOO, H#OOOOOO, H#200000, H#800000; 

H#600000, H#OOOOOO, H#EOOOOO, H#OOOOOO, 
H#EOOOOO, H#7FFFOO, H#EOOOOO, H#800000; 

{lookup table to get proper group} 
.VAR/DM/RAM group_table[8]; 

.INIT group_table: AgroupO, Agroupl, Agroup2, Agroup3, 
Agroup4, Agroup5, Agroup6, Agroup7; 

(listing continues on next page) 
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{eight tables which show the 5-bit codes that correspond to the X and Y coordinates in 
the 8 group tables} 
.VAR/DM/RAM codes0[4]; 
.VAR/DM/RAM codes1[4]; 
.VAR/DM/RAM codes2[4]; 
.VAR/DM/RAM codes3[4]; 
.VAR/DM/RAM codes4[4]; 
.VAR/DM/RAM codes5[4]; 
.VAR/DM/RAM codes6[4]; 
.VAR/DM/RAM codes7[4]; 

.!NIT codesO: h#0003, h#0002, h#OOOO, h#OOOl; 

.!NIT codesl: h#0004, h#OOO 6, h#0007, h#0005; 

.!NIT codes2: h#OOOA, h#OOOS, h#OOOB, h#0009; 

.!NIT codes3: h#OOOD, h#OOOF, h#OOOC, h#OOOE; 

.INIT codes4: h#0013, h#0012, h#OOll, h#OOlO; 

.!NIT codes5: h#0014, h#0015, h#0016, h#0017; 

.INIT codes6: h#OOlA, h#0018, h#0019, h#OOlB; 

. !NIT codes7: h#OOlD, h#OOlE, h#OOlF, h#OOlC; 

.VAR/DM/RAM codes_table[8]; 

. !NIT codes table: "codesO, "codesl, "codes2, 
"codes4, "codes5, "codes6, 

{table for accumulated distances at each state} 
.VAR/DM/RAM/CIRC acc_dist[8]; 
.VAR/DM/RAM temp_dist[8]; 

"codes3, 
"codes7; 

{eight tables where each table contains the possible states from where a path could 
come for each of the eight states} 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

to_state0[4]; 
to state1[4]; 
to_state2[4]; 
to state3[4]; 
to_state4(4J; 
to_state5[4]; 
to_state6[4]; 
to_state7[4]; 
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{table is stored with state numbers in backwards order} 
.INIT to stateO: 2' 4' 6, 0; 
.INIT to statel: 0' 6, 4' 2; 
.INIT to state2: 6, 0' 2' 4; 
.INIT to state3: 4' 2' 0' 6; 
.INIT to state4: S, 3, 7' 1; 
.INIT to states: 3' s, 1, 7; 
.INIT to state6: 1, 7' 3' s; 
. INIT to state7: 7' 1, s' 3; 

{eight tables, each with N entries, where each entry contains the label of the leg of 
the surviving path for a given time window} 

.VAR/DM/RAM/CIRC stateO[N]; 

.VAR/DM/RAM/CIRC statel[N]; 

.VAR/DM/RAM/CIRC state2[N]; 

.VAR/DM/RAM/CIRC state3[N]; 

.VAR/DM/RAM/CIRC state4[N]; 

.VAR/DM/RAM/CIRC stateS[N]; 

.VAR/DM/RAM/CIRC state6[N]; 

.VAR/DM/RAM/CIRC state7[N]; 

{eight variables to hold the most recent pointer into the eight state tables above} 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

.VAR/OM/RAM 

pointerO; 
pointerl; 
pointer2; 
pointer3; 
pointer4; 
pointers; 
pointer6; 
pointer7; 

.INIT pointerO:AstateO; 

.INIT pointerl:Astatel; 

.INIT pointer2:Astate2; 

.INIT pointer3:Astate3; 

.INIT pointer4:Astate4; 

.INIT pointerS:AstateS; 

.INIT pointer6:Astate6; 

.INIT pointer7:Astate7; 

{table used to look up pointers declared above} 
.VAR/DM/RAM point table[S]; 

(listing continues on next page) 
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s 

{initialize table with the addresses of the pointers} 
.INIT point_table: ApointerO, Apointerl, Apointer2, 

Apointer3, Apointer4, Apointer5, 
Apointer6, Apointer7; 

{table to hold the eight possible distances, minimum of each group} 
.VAR/OM/RAM min_dist[8]; 

{interrupt vectors} 
RTI; 
RTI; 
RTI; 
JUMP decode; 

IMASK=O; 
ICNTL=8; 
ENA AR_SAT; 

IO=Ainputs; 
L0=%inputs; 
MO=l; 
Ml=O; 
M3=-l; 

L3=N; 
LS=O; 

{disable all interrupts} 
{interrupts edge sensitive, non-nested} 

{init. IO to start of input buffer} 
{init. LO to size of input buffer} 

{initialize input buffer to all Os} 
CNTR=%inputs; {load counter with size of buffer} 
SI=O; {put a 0 into register si} 
DO clear_buf UNTIL CE; 

clear buf: DM(IO,MO)=SI; {transfer 0 into buffer location) 

{initialize accumulated distance table} 
Il=Aacc_dist; 
Ll=%acc_dist; 

clear ace: 

OM ( I1, MO) =0; 
CNTR=%acc dist - l; 
DO clear_acc UNTIL CE; 

DM(Il,MO)=h#7FFF; 
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{initialize eight tables with 0) 
I2=Astate0; 
L2=%state0; 
CNTR=N; 

init tableO: 

init tablel: 

init table2: 

init table3: 

init table4: 

init tableS: 

init table6: 

DO init tableO UNTIL CE; 
DM (I 2, MO) =SI; 

I2=Astatel; 
L2=%statel; 
CNTR=N; 
DO init tablel UNTIL CE; 

DM (I2,MO) =SI; 

I2=Astate2; 
L2=%state2; 
CNTR=N; 
DO init table2 UNTIL CE; 

DM(I2,MO)=SI; 

I2=Astate3; 
L2=%state3; 
CNTR=N; 
DO init table3 UNTIL CE; 

DM(I2,MO)=SI; 

I2=Astate4; 
L2=%state4; 
CNTR=N; 
DO init table4 UNTIL CE; 

DM(I2,MO)=SI; 

I2=AstateS; 
L2=%stateS; 
CNTR=N; 
DO init tables UNTIL CE; 

DM(I2,MO)=SI; 

I2=Astate6; 
L2=%state6; 
CNTR=N; 
DO init table6 UNTIL CE; 

DM(I2,MO)=SI; 

I2=Astate7; 
L2=%state7; 
CNTR=N; 
DO init table7 UNTIL CE; 
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init table7: 

waitlp: 

decode: 

DM(I2,MO)=SI; 

L2=0; 
IMASK=8; 
JUMP waitlp; 

AXO=DM(codec); 
AXl=DM(codec); 
DM(IO,MO)=AXO; 
DM(IO,MO)=AXl; 
DM (x _input) =AXO; 
DM(y_input)=AXl; 

s 

{enable interrupt 3} 

{store X input in input buffer} 
{store Y input in input buffer} 

{Calculate Euclidean distances from received point to 32 points of data constellation. 
The shortest distance in each data group is saved and will represent the distance for 
the trellis branch for the current time window} 

find dist: M4=1; 
L4=0; 
I4=Agroup0; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 
DM(min_dist)=SRl; 

I4=Agroupl; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

{store shortest dist in table} 

{put distance squared into AR} 

DM(min_dist+l)=SRl; {store shortest dist in table} 

I4=Agroup2; 
CALL dist; 
AR=PASS AF; {put distance squared into AR} 
MRO=O; 
MRl=AR; 
CALL sqrt; 
DM(min_dist+2)=SR1; {store shortest dist in table} 
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I4=Agroup3; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

DM(min_dist+3)=SR1; {store shortest dist in table} 

I4=Agroup4; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

DM(min_dist+4)=SR1; {store shortest dist in table} 

I4=Agroup5; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

DM(min_dist+5)=SR1; {store shortest dist in table} 

I4=Agroup6; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

DM(min_dist+6)=SR1; {store shortest dist in table} 

I4=Agroup7; 
CALL dist; 
AR=PASS AF; 
MRO=O; 
MRl=AR; 
CALL sqrt; 

{put distance squared into AR} 

DM(min_dist+7)=SR1; {store shortest dist in table} 

SR1=H#7fff; 
DM(min_dist+B)=SRl; 

{Add each path distance to accumulated distance to yield 4 accumulated distances for 
each state. The shortest accumulated distance becomes the new accumulated distance to 
that state. } 

(listing continues on next page) 
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{Find shortest path into state 0. Choose from 0, 1, 2, 3 of min_dist table; these 
correspond to paths back to states O, 6, 4, 2 respectively. The accumulated distances 
to these states are added with the paths of the current time window to determine the 
shortest accumulated path to this point.} 

short_path: I2=Amin_dist; 
I3=Ato stateO + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist)=AR; {store temporarily} 

AX0=4; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 

{find the state from which the shortest path came} 
I2=Ato stateO - 1; 

M2=SI; 
MODIFY(I2,M2); 
SI=DM(I2,Ml); 

{point to 1 before start of table} 
{get index into table} 
{point into table} 
{get state at end of surviving path} 

{now that state at end of path is known, store for later along with the 3-bit output 
label of the suriving path; pack both into 1 word; state in high byte, label low byte} 

SR=SR OR LSHIFT SI BY 8 (HI); 
I3=DM (pointerO) ; 
DM(I3,MO)=SR1; 
DM(pointer0)=I3; 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 

{find shortest path into state 1, choose from 4, 5, 6, 7 of min dist table these 
correspond to paths back to states 2, 4, 6, 0 respectively} 

I2=Amin_dist + 4; 
I3=Ato statel + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + l)=AR; {store temporarily} 

AX0=8; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 

{find the state from which the shortest path came.} 
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ode 

{point to start of table} 
{get index into table} 
{point into table} 

s 2 

I2=Ato statel - 1; 
M2=SI; 
MODIFY(I2,M2); 
SI=DM(I2,Ml); {get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR or LSHIFT SI BY 8 (HI); 
I3=DM(pointerl); {get pointer for state path} 
DM(I3,MO)=SR1; {store state for current time window} 
DM(pointerl)=I3; {store new pointer} 

{find shortest path into state 2, choose from O, 1, 2, 3 of min dist table these 
correspond to paths back to states 4, 2, O, 6 respectively} 

I2=Amin_dist; 
I3=Ato state2 + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + 2)=AR; {store temporarily} 

AX0=4; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 

{find the state from which the shortest path came.} 
I2=Ato state2 - 1; {point to start of table} 
M2=SI; {get index into table} 
MODIFY(I2,M2); {point into table} 
SI=DM(I2,Il); {get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR or LSHIFT SI BY 8 (HI); 
I3=DM(pointer2); 
DM (I3, MO) =SRl; 
DM(pointer2)=i3; 

(listing continues on next page) 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 
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2 V.32 ode 

{find shqrtest path into state 3, choose from 4, 5, 6, 7 of min dist table these 
correspond to paths back to states 6, O, 2, 4 respectively} 

I2=Amin_dist + 4; 
I3=Ato state3 + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + 3)=AR; {store temporarily} 

AX0=8; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 

{find the state from which the shortest path came.} 
I2=Ato state3 - 1; {point to start of table} 
M2=SI; {get index into table} 
MODIFY(I2,M2); {point into table} 
SI=DM(I2,Ml); {get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR OR LSHIFT SI BY 8 (HI); 
I3=DM(pointer3); 
DM (I3, MO) =SRl; 
DM(pointer3)=I3; 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 

{find shortest path into state 4, choose from O, 1, 2, 3 of min dist table these 
correspond to paths back to states 1, 7, 3, 5 respectively} 

I2=Amin_dist; 
I3=Ato state4 + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + 4)=AR; {store temporarily} 

AX0=4; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 
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{find the state from which the shortest path came.} 
I2=Ato state4 - 1; {point to start of table} 
M2=SI; {get index into table} 
MODIFY(I2,M2); {point into table} 
SI=DM(I2,Ml); {get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR OR LSHIFT SI BY 8 (HI); 
I3=DM (pointer4) ; 
DM (I 3, MO) =SRl; 
DM(pointer4)=I3; 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 

{find shortest path into state S, choose from 4, S, 6, 7 of min dist table these 
correspond to paths back to states 7, 1, S, 3 respectively} 

{find the 

I2=Amin_dist + 4; 
I3=Ato states + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + S)=AR; {store temporarily} 

AXO=S; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

state from which the 
I2=Ato states -
M2=SI; 
MODIFY(I2,M2); 
SI=DM(I2,Ml); 

{calc. label from index of survivor} 
{store label into SRl, will pack later} 

shortest path came.} 
1; {point to start of table} 

{get index into table} 
{point into table} 
{get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR OR LSHIFT SI BY 8 (HI); 
I3=DM(pointerS); 
DM(I3,MO)=SR1; 
DM(pointerS)=I3; 

(listing continues on next page) 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 
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{find shortest path into state 6, choose from O, 1, 2, 3 of min dist table these 
correspond to paths back to states 5, 3, 7, 1 respectively} 

I2=Amin_dist; 
I3=Ato state6 + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + 6)=AR; {store temporarily} 

AX0=4; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 

{find the state from which the shortest path came.} 
I2=Ato state6 - l; {point to start of table} 
I2=SI; {get index into table} 
MODIFY(I2,M2); {point into table} 
SI=DM(I2,Il); {get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte} 

SR=SR or LSHIFT SI BY 8 (HI); 
I3=DM(pointer6); 
DM ( I3, MO) =SRl; 
DM(pointer6)=I3; 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 

{find shortest path into state 7, choose from 4, 5, 6, 7 of min dist table these 
correspond to paths back to states 3, 5, 1, 7 respectively} 

I2=Amin_dist + 4; 
I3=Ato state? + 3; 
CNTR=4; 
CALL min_calc; 
DM(temp_dist + 7)=AR; {store temporarily} 

AX0=8; 
AYO=SI; 
AR=AXO-AYO; 
SRl=AR; 

{calc. label from index of survivor} 
{store label into SRl, pack later} 
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{find the state from which the shortest path came.} 
I2=Ato state7 - 1; {point to start of table} 
M2=SI; 
MODIFY(I2,M2); 
SI=DM(I2,Ml); 

{get index into table} 
{point into table} 
{get state at end of surviving path} 

{now that state at end of path is known, store for later use along with the 3-bit 
output label of the suriving path pack both into 1 word state is in high byte, label lo 
byte.} 

SR=SR OR LSHIFT SI BY 8 (HI); 
I3=DM(pointer7); 
DM(I3,MO)=SR1; 
DM(pointer7)=I3; 

{get pointer for state path} 
{store state for current time window} 
{store new pointer} 

{Put data from temp_dist back into ace dist as new accumulated distance up to this 
point.} 

replace: 

move buf: 

CNTR=B; 
I2=Aacc_dist; 
Il=Atemp dist; 
Il=O; 
DO move buf UNTIL CE; 

SI=DM(Il,MO); 
DM(I2,MO)=SI; 

{read data from temp_dist} 
{put back as new ace dist} 

{Search through the ace dist table for the shortest distance. This will indicate the 
end point of the surviving path.} 

search: 

short dst: 

I2=Aacc_dist; 
CNTR=B; 

SI=CNTR; 
AYO=h#7FFF; 
AF=PASS AYO; 
AX0=DM(I2,M0); 

{initialize with largest number} 

DO short dst UNTIL CE; 
AR=AF-AXO; 
IF LE JUMP short dst; 
SI=CNTR; 
IF GE AF=PASS AXO; 
AXO=DM(I2,M0); 

{save index of smallest} 
{if smaller, update} 

AXO=B; 
AYO=SI; 
AR=AXO-AYO; {calc. which state is at end of surviving path} 

(listing continues on next page) 
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{Now that the end of surviving path is known (in AR), trace back N time windows to find 
starting path or path of survivor in first time window.} 

trace: CNTR=N; {trace back N time windows} 
DO search back UNTIL CE; 

{read entry from proper state table 
I2=Apoint_table; 
M2=AR; 
MODIFY(I2,M2); 
AXO=DM(I2,Ml); 

I2=AXO; 
AYl=DM(I2,M2); 
I2=AY1; 
AYO=N+l; 
AXO=CNTR; 
AR=AXO-AYO; 
M2=AR; 
L2=N; 
MODIFY(I2,M2); 
L2=0; 
SI=DM(I2,Ml); 
AXO=SI; 
AYO=h#FF; 
AF=AXO AND AYO; 

to find from which state path 
{point to start of table} 
{get offset into table} 

came} 

{modify pointer to point into table} 
{read pointer address from table} 

{put pointer address into I2} 
{get pntr value, add. into state table} 

{calculate index into state table} 

{point into state table using circ} 

{read contents of state table} 

{set up mask to isolate path label} 
{extract path label} 

search back: 
SR=LSHIFT SI BY -8 (HI); 
AR=SRl; 

{extract state info} 

{At this point the surviving leg label is in AF and the state number in AR find the 5-
bi t code in the group specified by value in AF that is closest to the data recieved N 
time windows ago.} 

final stage: AR=PASS AF; 
MXl=AR; 
I2=Agroup_table; 
M2=AR; 
MODIFY(I2,M2); 
AXO=DM(I2,Ml); 
I4=AXO; 

AXO=DM(IO,MO); 
M2=-l; 
AXl=DM(I0,M2); 
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{put leg label into AR} 
{store leg label in MXl,for later} 
{point to start of group table} 
{get displacement into table} 
{update pointer} 
{get address of proper table} 
{load i4 with start of group table} 

{get X coord. of input N windows ago} 

{get Y coord. of input N windows ago} 



ptloop2: 

AY0=32767; 
AF=PASS AYO, AYO=PM(I4,M4); 
CNTR=4; 
DO ptloop2 UNTIL CE; 

AR=AXO-AYO, AY1=PM(I4,M4); 
IF AV JUMP ptloop2; 
MYO=AR, AR=AXl-AYl; 
IF AV JUMP ptloop2; 
MYl=AR; 
MR=AR*MYl(SS), MXO=MYO; 
MR=MR+MXO*MYO(RND); 
AR=MRl-AF; 
IF GE JUMP ptloop2; 
AF=PASS MRl; 
SI=CNTR; 
AYO=PM(I4,M4); 

AX0=4; 

{init with max distance} 
{get X value from table} 
{4 points in group} 

{do X-X' and get Y} 
{if overflow, go on} 
{copy X-X', do Y-Y'} 
{if overflow, go on} 
{copy Y-Y'} 
{square Y-Y', copy X-X') 
{add square of X-X'} 
{compare with previous} 
{if larger, no update} 
{if smaller, update} 
{save index of closest point} 
{get next X value} 

AYO=SI; 
AR=AXO-AYO; 
I2=Acodes table; 
M2=MX1; 
MODIFY(I2,M2); 
SI=DM(I2,Ml); 
I2=SI; 

{calculate index from min pointer} 
{point to start of codes table} 
{leg label is offset into table} 

M2=AR; 
MODIFY(I2,M2); 
SR1=DM(I2,Ml); 

{get address of which codes buf} 

{get index into codes table} 

{get 5-bit code from table} 

{SRl now contains the answer} 
answer: DM(dac)=SRl; 

RTI; 

SUBROUTINES 

{Calculate the Euclidean distance squared between the point specified by the x and y 
coordinates found data memory locations x input and y_input and the points specified by 
the x and y coordinates found in the table pointed to by index register i4. The index 
denoting the table entry which is closest to the input point is left in register SI and 
the shortest distance squared is left in register AF.} 

dist: AY0=32767; 
AXO=DM(x_input); 
AXl=DM(y input); 
AF=PASS AYO, AY0=PM(I4,M4); 
CNTR=4; 

(listing continues on next page) 

{init min distance to max num} 

{get X value from table} 
{4 points in group} 
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ptloop: 

DO ptloop UNTIL CE; 
AR=AXO-AYO, AYl=PM(I4,M4); {do X-X' and get Y} 
IF AV JUMP ptloop; 
MYO=AR, AR=AXl-AYl; 
IF AV JUMP ptloop; 
MYl=AR; 
MR=AR*MYl(SS), MXO=MYO; 
IF MV SAT MR; 
MR=MR+MXO*MYO(RND); 
IF VM SAT MR; 
AR=MRl-AF; 
IF GE JUMP ptloop; 
AF=PASS MRl; 
SI=CNTR; 
AYO=PM (I4, M4); 

RTS; 

{if overflow, go on} 
{copy X-X', do Y-Y'} 
{if overflow, go on} 
{copy Y-Y'} 
{square Y-Y', copy X-X'} 

{add square of X-X'} 

{compare with previous} 
{if larger, no update} 
{if smaller, update} 
{save index of closest point} 
{get next X value} 

{Take a 32-bit number whose most significant portion is in register MRl and least 
significant portion in register MRO and calculate the 16-bit square root. If the input 
is interpreted as a 16.16 unsigned number, the output in register SRl is in 8.8 signed 
format.} 

sqrt: 

approx: 

I7=Asqrt coeff; 
M4=1; 
L7=0; 
SE=EXP MRl (HI) ; 
SE=EXP MRO (LO); 

{pointer to coeff. buffer} 

{check for redundant bits} 

AXO=SE, SR=NORM MRl (HI); {remove redundant bits} 
SR=SR OR NORM MRO (LO); 
MYO=SRl, AR=PASS SRl; 
IF EQ RTS; 
MR=O; 
MRl=base; {load constant value} 
MF=AR*MYO(RND), MXO=PM(I7,M4); {MF x squared} 
MR=MR+MXO*MYO(SS), MXO=PM(I7,M4); {MR= base+ CX} 
CNTR=4; 
DO approx UNTIL CE; 

MR=MR+MXO*MF(SS), MXO=PM(I7,M4); 
MF=AR*MF(RND); 

AY0=15; 
MYO=MRl, AR=AXO+AYO; 
IF NE JUMP scale; 
SR=ASHIFT MRl BY -7 (HI); 
RTS; 
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{SE + 15 = 0?} 
{no, compute square-root} 



scale: 

compute: 
pwr ok: 

frac: 

MR=O; 
MRl=sqrt2; 
MYl=MRl, AR=ABS AR; 
AYO=AR; 
AR=AY0-1; 
IF EQ JUMP pwr ok; 
CNTR=AR; 
DO compute UNTIL CE; 

MR=MRl*MYl (RND); 
IF NEG JUMP frac; 

{load 1 over square rt of 2) 

{compute (1/sqr-rt 2)A(SE+l5)} 

AYl=h#OOBO; {load a 1 in 9.23 format} 
AYO=O; 
DIVS AYl, MRl; {compute reciprocal MR} 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
DIVQ MRl; 
MXO=AYO; 
MR=O; 
MRO=h#2000; 
MR=MR+MXO*MYO(US); 
SR=ASHIFT MRl BY 1 (HI); 
SR=SR OR LSHIFT MRO BY 1 (LO); 
RTS; 
MR=MRl*MYO (RND); 
SR=ASHIFT MRl BY -7 (HI); 
RTS; 

(listing continues on next page) 
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{Take the distances found in the table pointed to by register I2, add them to the 
accumulated distance to the state specified in the state table pointed to by register 
I3, and determine the shortest of these total distances. The shortest distance is 
placed in register AR and the index of the shortest distance is placed in register SI.} 

min calc: 

read nxt: 

short dist: 

.ENDMOD; 

L3=0; 
SI=CNTR; 
AYO=h#7FFF; 
AF=PASS AYO; 

MR1=DM(I2,M0); 
SR=ASHIFT MRl BY -1 (HI); 
AXO=SRl; 

DO short dist UNTIL CE; 

AY1=DM(I3,M3); 
I5=Aacc dist; 
M5=AY1; 
MODIFY(I5,M5); 
MRl=DM(I5,M4); 
AR=MRl-AYO; 
IF EQ JUMP read_nxt; 
SR=ASHIFT MRl BY -1 (HI); 
AYl=SRl; 

AR=AXO+AYl; 

AXO=AR; 

AR=AF-AXO; 
IF LE JUMP read_nxt; 
SI=CNTR; 
IF GE AF=PASS AXO; 

MRl=DM(I2,M0); 
SR=ASHIFT MRl BY -1 (HI); 
AXO=SRl; 

AXO=DM(I2,MO); 
AR=PASS AF; 
L3=N; 
RTS; 

Listing 2.8 Viterbi Decoder 
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{initialize with largest number} 

{half scale} 

{read state number} 

{point to proper ace dist val} 
{get ace dist value} 
{check for max value of acc_dist} 
{if max go to next} 
{half scale} 

{add new path to ace dist} 

{save index of smallest} 
{if smaller, update} 

{half scale} 
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Quadrature Amplitude • 3 
Modulation 

3. 1 INTRODUCTION 
The CCITT V.32 modem recommendation calls for the use of quadrature 
amplitude modulation (QAM) in the transmit section and quadrature 
amplitude demodulation in the receive section of the modem. The 
encoded digital sequence to be transmitted is amplitude modulated in the 
digital domain and then converted to analog form (via a DI A converter) 
for transmission over the telephone wires. At the receiving end of the V.32 
system, the received analog signal is digitized (via an AID converter) and 
demodulated in the digital domain in order to recover the information 
that was sent. 

This chapter describes the implementation of quadrature amplitude 
modulation and demodulation on the ADSP-2100 family of processors. 
See Chapter 2 for information on other aspects of the V.32 modem 
recommendation. 

3.2 QAM METHODOLOGY 
Double-sideband quadrature amplitude modulation (QAM) is a very 
efficient modulation technique in terms of bandwidth usage. In QAM, two 
quadrature (90° phase-shifted) carriers, cos mck and sin m k, are 
amplitude-modulated by two separate information-beari~g signals, as 
shown in Figure 3.1, which can be found on the following page. 

The synthesized digital sequence can be expressed as: 

x(k) = m/k) cos ffick + m/k) sin mck 

where m 1(k) and m/k) are the two separate information-bearing signals. 
The QAM signal sequence x(k) has the spectrum: 

X(2rtF) = 112 [M/ffi- m) + M1(m + m)l -j 112 [M)ffi- m)- M)m + m)l 
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Figure 3.1 QAM Modulator Block Diagram 

x(k) 

The spectrum components of the information-bearing signals overlap. 
However, the quadrature phase relationship in the carrier components cos 
rock and sin rock allows the receiving end of the V.32 system to separate the 
two signals. 

The demodulation is performed as shown in Figure 3.2. A digital phase
locked loop is used to obtain the carrier component cos rock and to 
generate sin rock. 

Subsequently, the received sequence is multiplied by the two quadrature 
carriers. This multiplication results in two signal sequences: 

x(k) cos rock= 1/2 m1(k) + 1/2 m1(k) cos 2rock + 1/2 m2(k) sin 2rock 

x(k) sin rock= 1/2m/k)+1/2 m2(k) cos 2rock + 1/2 m1(k) sin 2rock 



The information-bearing signal components m 1 (k) and m/k) can be 
recovered by passing each of the sequences through a filter that rejects the 
double-frequency terms centered at 2ffi. 

In this particular V.32 implementation, the carrier frequency (F) is 1800 
Hz, the symbol rate is 2400 Hz and the sample rate of the modulator is 
9600 Hz. Thus, the desired cosine carrier is: 

cos ffick =cos 2nFckT5 =cos 2n(1800)(1 /9600) k = cos 3n/8 k 

and similarly the sine carrier is: 

sin ffick =sin 3n/8 k 

Again, in this particular V.32 implementation, the sequences m 1(k) and 
m2(k) correspond to i(k) and q(k) respectively. These input streams are the 
filtered versions of quadrature and in-phase portions of the encoded 
symbols to be transmitted. 

x(k) 
CARRIER 
SIGNAL 

GENERATOR 

Figure 3.2 QAM Demodulator Block Diagram 

From Timing 
Loop & PLL 

~---i~ m 1 (k) 

To Equalizer 
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. MODULE/RAM 

.VAR/PM/CIRC 

.VAR 

.PORT 

.INIT 

.INIT 

.EXTERNAL 

.GLOBAL 

.ENTRY 

modulate: 

.ENDMOD; 

3.3 ADSP-2100 FAMILY IMPLEMENTATION 
There are two ADSP-21XX assembly modules that handle the modulation 
and demodulation tasks separately. These modules are arranged as 
interrupt service routines that can be called from a main program which is 
presumably managing the V.32 modem. 

Modulation is performed by the modulator routine shown on Listing 3.1. 
The first section of the code contains the necessary variable, constant and 
buffer declarations. The cosine table contains 16 discrete values of a cosine 
wave between 0 and 2rt, in increments of rt/8. This table is used to 
generate the cos3rt/8k and sin3rt/8k values for the modulation process. 
The variable mod_ptr stores a pointer into the cosine table between 
interrupts. The mod_ptr points to the cosine value to be modulated with 
the next arriving data sample . 

modulator; 
cosine[l6]; 
cos_ptr; 
mod_out; 

cosine:<cosval.dat>; 
cos_ptr:"cosine; 

q_in, i_in; 
cosine, mod_out; 
modulate; 

I4=DM(cos_ptr); 
M4=-4; 
M5=7; 
L4=16; 
MXO=PM(I4,M4); 
MYO=DM(i in); 

{Declare cosine table} 

{Initialize the cosine table} 
{and the pointer} 

{Input ports for i(k) and q(k)} 

{Read current pointer to cosine table} 

{Read current cos value} 
{Read I(k)} 

MR=MXO*MYO(SS),MXO=PM(I4,M5); {cos(k)*I(k) and get -sin value} 
MYO=DM(q_in); {Read Q(k)} 
MR=MR+MXO*MYO(RND); {cos(k)*I(k)-sin(k)*Q(k)} 
SR=ASHIFT MR2 BY -1 (HI); {Scale modulated output by 1/2) 
SR=SR OR LSHIFT MRl BY -1 (LO); 
DM(mod_out)=SRO; 
DM(cos_ptr)=I4; 
RTI; 

{Send scaled output} 
{Save the cosine table pointer} 

Listing 3.1 Modulator Code 
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The main body of the modulator code starts at the label modulate. The 
current cosine pointer is read and used to fetch the proper cosine value 
from the table. This fetch is done using M4=-4, which modifies the 14 
register to point to the proper sine value on the following program 
memory (PM) fetch. Next, the i(k) input is read and multiplied with the 
cosine value. Subsequently, the proper sine value is fetched, multiplied 
with the q(k) input and added to the previous multiplication result. The 
sine value is fetched using M5=7 which modifies the 14 register to point to 
the proper cosine value on the following PM fetch. At this point, the MR 
register contains the output of the QAM modulator. Next, the contents of 
MR are scaled down by 1 /2 using the shifter. This is necessary to keep the 
output of the modulator within a 16-bit field without causing overflows or 
underflows. Finally the current 14 value is saved as mod_ptr and the 
output is sent to the DI A converter. 

The demodulation is handled by the demodulator routine shown in Listing 
3.2, on the next page. The first section of the code contains the necessary 
variable, constant and buffer declarations. This module also uses the cosine 
table that is declared and initialized in the modulator program. The 
variable demod_ptr points to the next cosine value for the demodulator, 
just as mod_ptr does for the modulator. 

The main body of the demodulator code starts at the label demodulate. 
First, the current cosine pointer is read into 14. Next, the variable 
phase_shift is read in order to determine whether the phase-locked loop 
requires a phase shift in the cosine values to be used in demodulation. If a 
shift is required, the subroutine cos_gen is called to compute new values 
for the cosine table. Once this is completed, the appropriate cosine value is 
read from program memory using M4=-4. This value is multiplied with 
the input from the AID converter and sent out to the memory location 
xcos which represents x(k) cos mck. Subsequently, the proper sine value is 
fetched from program memory using M5=7 and multiplied with the A/D 
input. This result is sent to the memory location xsin which represents x(k) 
sin mck. Finally, the current 14 value is saved as demod_ptr. 

3.4 REFERENCES 
Proakis, John G. 1989. Digital Communications. Second Edition. New York, 
N.Y.: McGraw-Hill. 

Proakis, John, G. and D.G. Manolakis. 1988. Introduction to Digital Signal 
Processing. New York, N.Y.: McMillan Publishing Co. 
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.MODULE/RAM 

.VAR 

.PORT 

.PORT 

.PORT 

.INIT 

.EXTERNAL 

.GLOBAL 

.ENTRY 

demodulate: 

phase_shift: 

.ENDMOD; 

3 QM 

demodulator; 
cos_ptr; 
xsin; 
xcos; 
ad in; 

cos_ptr:Acosine; 

ph_shift_flag, cosine; 
xsin, xcos; 
demodulate; 

I4=DM(cos_ptr); 
AYO=DM(ph_shift flag); 

AR=PASS AYO; 

{Sine demodulated received signal} 
{Cosine demodulated received signal} 
{Input port from the A/D} 

{Initialize cosine table pointer} 

{Read current ptr to cosine table} 
{Read phase shift flag from the} 
{carrier recovery routine} 

IF NE CALL phase_shift; {Call if phase shift desired} 
M4=-4; 
M5=7; 
L4=16; 
MXO=PM(I4,M4); 
MYO=DM(ad_in); 

{Read the current cosine value} 
{Read the A/D input} 

MR=MXO*MYO(RND),MXO=PM(I4,M5); {cos(k)*x(k), get sine value} 
DM(xcos)=MRl; {Output cosine demodulated sample} 
MR=MXO*MYO(RND); {sin(k)*x(k)} 
DM(xsin)=MRl; 
DM(cos_ptr)=I4; 
RTI; 

MODIFY(I4,M4); 
MODIFY(I4,M5); 
RTS; 

{Output sine demodulated sample} 
{Save the cosine table pointer} 

Listing 3.2 Demodulator Code 
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Echo Cancellation • 4 

4.1 INTRODUCTION 
Most voiceband telephone connections involve several connections 
through the telephone network. The 2-wire subscriber line available at 
most sites is generally converted to a 4-wire signal at the telephone central 
office. The signal must be converted back to a 2-wire signal at the far-end 
subscriber line. The 2-to-4-wire interface is implemented with a circuit 
called a hybrid. The hybrid intentionally inserts impedance mismatches to 
prevent oscillations on the 4-wire trunk line. The mismatch forces a 
portion of the transmitted signal to be reflected or echoed back to the 
transmitter. This echo can corrupt data the transmitter receives from the 
far-end modem. 

The telephone system and sources of echo are shown in Figure 4.1. There 
are two types of echo in a typical voiceband telephone connection. The 
first echo is the reflection from the near-end hybrid, and the second echo is 
from the far-end hybrid. 

Receiver 

Transmitter 

Far-End Modem 

( Far-End 
\; Echo 

Receive 
Channel 

Four Wire Trunk 

Figure 4.1 Telephone Channel Block Diagram 

Transmit 
Channel 

Hybrid 

Transmitter 

( Near-End 
\; Echo 

----~ 

Receiver 

Near-End Modem 
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4 Echo ancellation 
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In long distance telephone transmissions, the transmitted signal is 
heterodyned to and from a carrier frequency. Since local oscillators in the 
network are not exactly matched, the carrier frequency of the far-end echo 
is offset from the frequency of the transmitted carrier signal. In modem 
applications this shift can affect the degree to which the echo signal can be 
cancelled. It is therefore desirable for the echo canceller to compensate for 
this frequency offset. 

4.2 ECHO CANCELLATION ALGORITHM 
A data signal produced by a modem with a two-dimensional signal 
constellation has the form 

s(t) =RE [I. bmg{t-mT) e i27tft] 

where bm is the complex data symbol and g(t) is the baseband pulse shape. 
The frequency f is the carrier frequency. The echo signal is the transmitted 
signal convolved with the channel transfer function, H(f). This transfer 
function usually involves a linear delay and some dispersive filtering. The 
echo signal has the form 

s (t) = RE [ I. b h{t-mT) e i2it<f+f'lt ] 
e m 

where f' is the frequency offset (Weinstein, 1977). 

If the near-end modem is transmitting a signal s(n) and the far-end 
modem is transmitting a signal y(n), the near-end received signal is: 

r(n) = y(n) + sn/n) + sfe(n) + w(n) 

where sne and sfe are the near-end and far-end echo respectively, and w(n) 
is random noise introduced by the system. 

Echo cancellation is accomplished by subtracting an estimate of the echo 
return signal from the actual received signal. The received signal after 
echo cancellation is 

r'(n) = y(n) + (s (n) - As (n)) + (sf (n) - Ast (n)) + w(n) 
ne ne e e 

where Asfe(n) is the estimate of the far-end echo and Asn/n) is the estimate 
of the near-end echo. Ideally, the estimates are equal to the echo signals 
and the echo terms drop out (Quatieri and O'Leary, 1989). 
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The estimated echo is generated by feeding the transmitted signal into an 
adaptive filter whose transfer function tries to model the telephone 
channel's (see Figure 4.2). The filter coefficients are determined using the 
stochastic gradient (Least Mean Squared, or LMS) algorithm (Kamilo and 
Messerschmitt, 1987) during a training sequence prior to full duplex 
communications. The LMS algorithm attempts to minimize the mean 
squared error I E(n)2 I . A more detailed description of the LMS algorithm 
can be found in Chapter 5. 

In the training sequence, because the far-end modem is not transmitting, 
the received signal consists of echo: 

The output of the filter is an estimate of the received signal, 

r"(n) = "sn/n) + "s1e(n) 

and the difference is the error term that the LMS algorithm operates on. 

E(n) = r(n) - r"(n) 

( Sne(n) + Ste) -
/\ /\ 

( Sne(n) + Ste (n) ) 

To Receive Circuit 

Figure 4.2 Echo Canceller 

Adaptive 
Filter 

R(n) 

S(n) 
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The adaptive filter is commonly implemented with a transverse FIR filter. 
The structure of this filter is shown in Figure 4.3. The LMS update 
equation for tap Cat sample time n is 

C(n\+1 = C(n)k + PA(n)E(n) 

where A(n) is the sample transmitted at sample time n, E(n) is the residual 
error and pis an adaptation constant related to the rate of convergence. 

C(n) k+ 1 = C(n) k + ~ A(n) E(n) 

4-4 

Figure 4.3 LMS Adaptive Filter 

In a modem application, the filter taps are only updated during the 
training periods. The tap update algorithm is either disabled or the 
adaptation constant p is greatly reduced during full duplex operation. In 
the second case, reducing p allows the echo canceller to track a slowly 
changing telephone channel without retraining the modem. 

4.2.1 ADSP-2100 Family Implementation of LMS Algorithm 
Figure 4.4 shows a flowchart for implementing the LMS stochastic 
gradient algorithm on the ADSP-2100 family of processors. The LMS 
algorithm is implemented in an interrupt service routine so that the 
arrival of a new sample forces one iteration of the algorithm. In this 
example, the FIR filter and the tap update are implemented as subroutine 
calls from the interrupt service routine. 



u ti 

In applications such as V.32 modems, the tap update algorithm gets 
disabled during full duplex operation. 

Start 

Get Next 
Transmitted 
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I\ 
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Figure 4.4 Flowchart for LMS Stochastic Gradient Algorithm 
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.MODULE/RAM/ABS=O 

Ill 

I 

Listing 4.1 contains the LMS filter code. The ADSP-2100 family can 
execute a multiply I accumulate operation and fetch two operands in a 
single cycle. The FIR filter loop and the tap update loop are executed 
without any additional cycles for loop overhead. These features allow the 
FIR filter to execute in one cycle per tap and the coefficient update to 
execute in two cycles per tap. Table 4.1, on page 4-17, summarizes the 
execution speeds. 

Some applications require the echo canceller to operate on complex data. 
A complex data implementation of the LMS algorithm is described in 
Chapter 5. 

adaptive; 

{ Near and Far End Echo Canceller 
INPUT: Received Data from Channel 
Transmitted Data 
OUTPUT: To Rest of Modem 

.PORT 

.PORT 

.PORT 

received_data; 
transmitted_data; 
out; 

.CONST 

.CONST 

.VAR/DM/RAM/CIRC 

.VAR/DM/RAM/CIRC 

.VAR/PM/RAM/CIRC 

A=l54; 
beta=H#CC; 
enable; 
afilt_data [A]; 
afilt coeff [A]; 

{Received sample from channel} 
{Transmitted sample from modem} 
{Output to rest of modem} 

{Adaptive filter length} 
{Adaptation constant} 
{Update enabled bit} 
{Filter delay line} 
{Filter coefficients} 

{ Each new sample asserts interrupt 3) 
start: RTI; 

RTI; 
RTI; 
JUMP sample; 
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{ Initialize Routine: This is executed during system startup} 
.ENTRY setup; 

setup: 

foo3: 

fevr: 

ICNTL=B#Ollll; 
MO=O; 
Ml=l; 
M3=-l; 
M4=1; 
M5=1; 
M6=-l; 
M7=2; 
IO=Aafilt_data; 
I4=Aafilt_coeff; 
L0=%afilt_data; 
L4=%afilt_coeff; 
AXO=H#OOOO; 
AYl=H#OOOO; 
CNTR=%afilt data; 

{Initialize Interrupts} 
{Initialize DAGS} 

{Initialize filter to 0} 

DO foo3 UNTIL CE; 
PM(I4,M4)=AY1,DM(IO,Ml)=AXO; 

IMASK=B#lOOO; {Enable IRQ2} 
JUMP fevr; {Wait for Interrupt} 

{ Interrupt Routine: This code processes one data sample} 
sample: AYO=DM(received_data); {Received data: r(n)} 

SRO=DM(transmitted_data); {Transmitted data: A(n)} 
CALL fir; {Calculate rA(n)} 
AR=AYO-MRl; {AR=error=r-rA} 
DM(out)=AR; {Output cancelled data} 
AXO=DM(enable); {Update taps if enabled} 
AF=PASS AXO; 
IF EQ CALL update; 

done: RTI; 

{ FIR Filter 
INPUTS: 

IO=Start of data buffer in DM 
I4=Start of coeff buffer in PM 
SRO=Newest input value 
Ml,M4=1 

OUTPUTS: 
MR=Output value 

ALTERS: 
MR, MYO, MXO 

(listing continues on next page) 
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.ENTRY 

fir: 

floop: 

fir; 

DM(IO,Ml)=SRO; 
MR=O, MXO=DM(IO,Ml), MYO=PM(I4,M4); 
CNTR=A-1; 
DO floop UNTIL CE; 

II 

I 

MR=MR+MXO*MYO(SS), MXO=DM(IO,Ml), MYO=PM(I4,M4); 
MR=MR+MXO*MYO(RND); 
RTS; 

Adaptive Filter Coefficient Update 
INPUTS: 

IO=Start of data buffer in DM 
I4=Start of coeff buffer in PM 
Ml,M4=1 
M6=-1 
M7=+2 
AR=error of last iteration 

Executes the coeff update algorithm as follows: 

.ENTRY 

update: 

uloop: 

.ENDMOD; 

Ck+l=Ck+Beta*Error*A(n) 

update; 

MYl=beta; {Load Beta} 
{MF=Beta*Error, Load Ck, A(n)} 

MF=AR*MYl(RND), AYO=PM(I4,M4), MXO=DM(IO,Ml); 
MR=MXO*MF (RND); 
CNTR=A; {Tap update loop} 
DO uloop UNTIL CE; 

AR=MRl+AYO, AYO=PM(I4,M6), MXO=DM(IO,Ml); 
PM(I4,M7)=AR, MR=MXO*MF(RND); 

MODIFY(I0,M3); 
MODIFY (I4,M6); 
RTS; 
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Listing 4.1 LMS Stochastic Gradient Implementation 

4.3 FREQUENCY OFFSET COMPENSATION 
Frequency offset in the far-end echo can limit convergence of the adaptive 
filter. In order to compensate for shifts in the carrier frequency, it is 
necessary to shift the received signal back to the original carrier frequency. 
Figure 4.5 shows a block diagram for performing this operation. The 



Echo Cancellatio 

frequency shifter is a first-order digital phase locked loop (DPLL). The 
magnitude of the frequency shift is defined as 

0"(n+ 1) = 0"(n) + P A(n) (0(n) - 0"(n)) r(n) 

where P is the adaptation constant, 0(n) is the frequency offset of sample 
n, 0"(n) is the estimate of the frequency offset, A(n) is the transmitted 
sample, and r(n) is the received sample from the echo channel (Wang and 
Werner, 1988). 

A(n) 

To Rest 
of System 

0(n) 

156 Tap 
Adaptive FIR 

Filter 

Phase 
Update 

A A 

Sne(n) + Ste (n) 

t----.--• 0( n+ 1 ) 

Figure 4.5 Block Diagram of Echo Canceller with Frequency Shift 

r(n) 
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When compensating for frequency offset, the received sample must be 
rotated before the error term is calculated. The new error equation is 

E(n) = r(n) ei"t - r(n)" 

In a real system, the frequency shift is implemented in the time domain 
with a Hilbert transform algorithm. Figure 4.6 shows the general structure 
of this algorithm. 

REAL R(n)e A(n)e 

HT 

Figure 4.6 Block Diagram of Hilbert Transform 

The Hilbert algorithm is best understood in the frequency domain. 
Consider the real, bandlimited signal shown in Figure 4.7a. The Hilbert 
transfer function is 

H(co) = -j co > 0 
= +j co< 0 

The output of the Hilbert transform is multiplied by +j so that the 
frequency magnitude is real. The sum of the Hilbert transform and the 
original sample is complex in the time domain and contains only positive 
frequencies in the frequency domain. The magnitude in the frequency 
domain is equal to twice the magnitude of the original sample (Figure 
4.7d). 

The frequency shift is accomplished by convolving (in the frequency 
domain) the signal in Figure 4.7d with the desired frequency. This 
convolution is equivalent to multiplying the time domain signal by 
e-i'"}, where co is the desired frequency shift. The sample is converted 
back to a real ~ignal by taking the real part of the complex waveform. 
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Figure 4.7 Spectrum of Hilbert Frequency Shift 

4.3.1 ADSP-2100 Family Implementation of Hilbert Transform 
Code implementing a Hilbert transform is shown in Listing 4.2. The 
received signal must be rotated before En, the error signal for the adaptive 
filter, can be calculated. The Hilbert transform is thus performed in a 
subroutine called from the LMS interrupt service routine. 
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The Hilbert transform is implemented with a 31-tap transverse FIR filter. 
Since every other coefficient is zero, the circular buffers in the ADSP-2100 
are programmed to access every other data sample. This is possible using 
multiple modify registers with a single index register in the data address 
generators. The 31-tap Hilbert transform executes in 20 cycles. 

To compensate for the group delay in the Hilbert transform, a 15-cycle 
linear delay is required for the real-valued input signal. Again, the circular 
buffering capabilities of the ADSP-2100 family allow for a simple 
implementation. Once the delay line is initialized, the index registers 
automatically increment to the next value, even when the end of the buffer 
is reached. The 15-tap delay line executes in just 3 cycles per sample. 

The addition operation described shown in Figure 4.6, (page 4-10), is 
actually summing of a real and a complex number. Since a real and 
imaginary number cannot be added, this operation is not implemented in 
the code. Instead, the real and imaginary parts are used in the complex 
multiplication. 

The complex multiply by e-iroot would normally require four 
multiplications and two additions. In practice, the desired output is 
contained entirely in the real part of the product. Therefore, only two 
multiplications and one addition are required. The values for sin(ro t) and 
cos(ro0 t) must be calculated for each successive sample. 0 

The single cycle multiply I accumulate operation on the ADSP-2100 family 
allows both multiplications and the addition to be executed in two cycles. 
Execution time is also reduced when operands are fetched from data 
memory in parallel with the multiplications. In transmit mode, the entire 
Hilbert frequency shift requires about 100 cycles to execute. 



.MODULE/RAM/ABS=O hilbert rotator; 

Hilbert Rotator 
INPUT: Received Sample 
OUTPUT: To Adaptive Filter 

Ill! 

I 

.CONST 

.PORT 

.PORT 

.VAR/DM/RAM/CIRC 

.VAR/DM/RAM/CIRC 

.VAR/PM/RAM/CIRC 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

.VAR/DM/RAM 

H=31; 
received data; 
out; 

{Length of Hilbert xform filter} 
{Received sample from channel} 
{Output to rest of modem} 

.INIT 

hdelay[H]; 
hil_dat [HJ; 
hilbert_coeff[16]; 
time; 
delta_time; 
high; 
low; 
ovr; 

{Delay line for phase matching} 
{filter data values} 
{Hilbert filter coefficients} 

{Delta for frequency shift} 

hilbert coeff: <hilb.dat>; 
{Hilbert filter coefficients} 

{ Initialize Routine: This is executed during system startup} 
.ENTRY setup; 

setup: 

iloop: 

fevr: 

AXO=H#OO; 
DM (time) =AXO; 
AXO=H#02; 
DM(delta_time)=AXO; 
CNTR=~HIL_DAT; 

DO iloop UNTIL CE; 
DM(IO,Ml)=H#OOOO; 
DM(Il,Ml)=H#OOOO; 

IMASK=B#lOOO; 
JUMP fevr; 

{Init Delay line, Hilbert data} 

{Enable IRQ2} 
{Wait for Interrupt} 

{ Interrupt Routine: This code processes one data sample} 
sample: AYO=DM(received_data); {Received data: r(n)} 

CALL delay; {Insert r(n) into delay line} 
CALL hilb; {Execute Hilbert transform} 
CALL rotate2; 
AR=MRl; 
DM(out)=AR; 
RTI; 

(listing continues on next page) 
4-13 



4-14 

II 

0 I 

{ 31 Tap Linear Delay 
INPUTS: 

Line 
AYO=Newest 
IO=Oldest 
MO=O 

Input Value 
value in delay 

.ENTRY 

delay: 

OUTPUTS: 

delay; 

AXl=DM(IO,MO); 
DM(IO,Ml)=AYO; 
RTS; 

Ml=l 
AXl=Delay line output 

{ 31 Tap Fir Hilbert Filter 

.ENTRY 

hilb: 

INPUTS: AYO=Newest Input Data 
Il=Oldest data value 
I4=First Coeff value 
MO=O 
Ml=l 
M4=1 

OUTPUTS: AYO=Hilbert output 

hi lb; 

MR=O, MXO=DM(Il,M2), MYO=PM(I4,M4); 
CNTR=l6; 
DO hil_loop UNTIL CE; 

hil loop: MR=MR+MXO*MYO(SS), MXO=DM(Il,M2), MYO=PM(I4,M4); 
MR=MR+MXO*MYO(RND); 
DM(Il,Ml)=AYO; 
AYO=MRl; 
RTS; 

Hilbert Rotator 
Perform the calculation: 

Y(t)=RE[(Xr(t)+jXi(t)*(exp(-jWt))] 

INPUTS: 

OUTPUTS: 

AYO=Xi(t) 
AXl=Xr(t) 
AYl=W in degrees-ql5 format 
W*t=DM(time)=time in ql5 
MR=Y(t) 



.ENTRY rotate2; 

rotate2: AXO=OM(time); 
AYl=OM(delta_time); 
AR=AXO+AYl, MYO=AYO; 
IF AC AR=PASS 0; 
OM(time)=AR; 
CALL sin; 
MR=AR*MYO(SS), MYO=AXl; 
OM (ovr) =MR2; 
OM (high) =MRl; 
OM(low)=MRO; 
AYO=H#4000; 
AR=AXO+AYO; 
AXO=AR; 
CALL sin; 
MRO=OM (low) ; 
MRl=OM(high); 
MR2=0M(ovr); 
MR=MR+AR*MYO(RNO); 
RTS; 

{ Sine Calculation 

{Get and update rotate time} 
{on unit circle} 
{MYO=im(x)} 

{Xi(t)*IM[exp(-jwt)]} 

{Xr (t) *sin (wt+90)} 

Sine Approximation: Y=Sin(x) 

INPUTS: 

OUTPUTS: 

AXO=x in scaled 1.15 format 
M3=1 
L3=0 
AR=y in 2.14 format 

Computation Time: 25 cycles 

(listing continues on next page) 
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.VAR/DM sin coeff[S]; 

.INIT sin coeff: H#3240, H#0053, H#AACC, H#08B7, H#lCCE; 

.ENTRY sin; 

sin: I3=Asin_coeff; 
AYO=H#4000; 
AR=AXO, AF=AXO AND AYO; 
IF NE AR=-AXO; 
AYO=H#7FFF; 
AR=AR AND AYO; 
MYl=AR; 

{Pointer to coeff. buffer) 

{Check 2nd or 4th quad) 
{If yes, negate input) 

{Remove sign bit) 

MF=AR*MYl(RND), MXl=DM(I3,M3); 
MR=MXl*MYl(SS), MX1=DM(I3,M3); 
CNTR=3; 

{MF=x2} 
{MR=Clx} 

DO approx UNTIL CE; 
MR=MR+MXl*MF(SS); 

approx: MF=AR*MF(RND), MXl=DM(I3,M3); 
MR=MR+MXl*MF(SS); 
SR=ASHIFT MRl BY 2(HI); 
SR=SR OR LSHIFT MRO BY 2 (LO); {Convert to 2.14 format) 

.ENDMOD; 

AR=PASS SRl; 
IF LT AR=PASS AYO; 
AF=PASS AXO; 
IF LT AR=-AR; 
RTS; 

Listing 4.2 Hilbert Transform Implementation 

{Saturate if needed} 

{Negate output if needed) 

4.4 V.32 MODEM IMPLEMENTATION 
V.32 modems operate in full duplex mode; both the near-end and far-end 
modem are transmitting data at the same time. The echo canceller is 
responsible for channel separation as well as cancelling the near-end and 
far-end echos. 

The echo canceller can be implemented in the passband or the baseband. 
The advantage of passband cancellation is reduced computation. A 
baseband echo canceller must execute all algorithms on complex data. In 
addition, compensating for frequency shift in the baseband is difficult. The 
disadvantage of passband echo canceller is a longer convergence time for 
the adaptive filter and the digital phase locked loop. Figure 4.8 shows a 
block diagram of a V.32 modem with a passband echo canceller. 
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Figure 4.8 V.32 Modem Block Diagram 
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The CCITT specification for V.32 modems recommends a carrier 
frequency of 1800±7 Hz. The echo canceller must be able to cancel 16 ms of 
echo. At 9600 samples/second, a 154-tap FIR filter is required to cancel the 
echo. It is recommended that the echo canceller be implemented with a 
minimum number of taps. 

Assuming that the canceller and frequency shifter have converged during 
the training period, about 200 cycles are required to cancel a V.32 signal. 
Benchmarks are summarized in Table 4.1. 

Operation 
Real FIR Filter 
Complex FIR Filter 
Real LMS Update (Stochastic) 
Complex LMS Update (Stochastic) 
154-Tap LMS Filter With Update 

N =Number of Taps 

Cycles 
N+6 
4 (N-1) + 21 
2N +9 
6N +10 
935 

Table 4.1 ADSP-2100 Family Benchmarks for Echo Cancellation 

@12.SMHz 
80 ns per tap 
240 ns per tap 
160 ns per tap 
480 ns per tap 
74.8 µs 

------------·-

Transmit 
LPF 

S(t) 

Received 
Sample Signal 

And Hold ·------

AID 
R(t) 
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5.1 INTRODUCTION 
This chapter presents an ADSP-2100 family implementation of an adaptive 
channel equalizer for a high speed modem. The CCITT's V.32 
recommendation for a 9600 bps modem specifies the use of this type of 
equalizer in the receiver section. 

The architecture used in this equalizer is a fractionally-spaced tapped 
delay line with a least-mean-squared (LMS) algorithm for adapting the tap 
weights. 

The topics discussed in this chapter are: 

• Historical perspective of adaptive filters 
• Applications of adaptive filters 
• Channel equalization in a modem 
• Equalizer structures 
• Least Mean Square (LMS) Algorithm 
• Program Structure 
• Practical considerations 

5.2 HISTORY OF ADAPTIVE FILTERS 
Until the mid-1960s, telephone-channel equalizers were either fixed 
equalizers that caused performance degradation or manually adjustable 
equalizers that were cumbersome to adjust. 

In 1965, Lucky (see "References" at the end of this chapter) introduced the 
zero-forcing algorithm for automatic adjustment of the equalizer tap 
weights. This algorithm minimizes a certain distortion, which has the 
effect of forcing the intersymbol interference (ISi) to zero. This 
breakthrough by Lucky inspired other researchers to investigate different 
aspects of the adaptive equalization problem, leading to new improved 
solutions. 

----------
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Proakis and Miller (1969) reformulated the adaptive equalizer problem 
using a new criterion known as the mean squared error (MSE). This 
formulation requires a relatively modest amount of computation and 
remains the most popular approach for data rates up to 9600 bits/s. 

Three years later, Ungerboeck (1972) improved on this work by presenting 
a detailed mathematical analysis of the convergence properties of an 
adaptive transversal equalizer using the least-mean-squared (LMS) 
algorithm. This algorithm is described later in this chapter. 

A more powerful algorithm for adjusting the tap weights based on 
Kalman filtering theory was developed soon afterward (Godard, 1974). 
This algorithm is computationally demanding, but it was later modified 
by Fakomer and Ljing (1978) to simplify its computational complexity. 

All of these adaptive equalizer implementations are synchronous, that is, 
the spacing between taps is equal to the reciprocal of the symbol interval. 
Other possible structures include the fractionally spaced equalizer (FSE) 
and the decision feedback equalizer (DFE). 

The FSE has the ability to better compensate for channel distortion by 
spacing the tap weights more closely than in the conventional 
synchronous equalizer. Brady (1970) did some early work on this class of 
equalizers and was followed by Ungerboeck (1976). The DFE, on the other 
hand, uses a more elaborate structure and can yield good performance in 
the presence of severe ISI as experienced in fading radio channels. 

5.3 APPLICATIONS OF ADAPTIVE FILTERS 
Adaptive filters offer a significant improvement in performance over 
fixed-tap-weight digital filters because of their ability to detect signals in 
environments of unknown characteristics. They are successfully used in 
several areas including: 

System Identification and Modeling 
An adaptive transversal filter can be forced to converge to the same 
impulse response as an unknown linear system and then can be used to 
model the unknown system. To determine the taps for this filter, an 
excitation input drives both the unknown system and the adaptive filter. 
The outputs of these two systems are compared, and the error signal 
generated is used to adjust the tap weights of the adaptive filter to reduce 
the error size. After a sufficiently large number of iterations, the error is 



reduced to some small value (in a statistical sense) and the tap weights 
converge to model the real system. 

If the unknown system is dynamic and time-variant, the adaptive filter 
can track these variations provided they are sufficiently slow compared to 
the convergence time of the filter. 

Echo Cancellation 
In telephone systems that include both 2-wire and 4-wire loops, hybrid 
circuits couple these lines. These hybrid circuits create impedance 
mismatches which in turn create signal reflections, heard at both ends of 
the line as echo. This echo is tolerable to some degree over long distance 
voice connections, but can be catastrophic in high-speed data transmission 
over cross-Atlantic links. 

Echo cancellers, in the form of adaptive filters, model the impulse 
response of the echo path. Cancellation is achieved by making an estimate 
of the echo and subtracting it from the return signal. See Chapter 4 for a 
detailed discussion of echo cancellation. 

Linear Predictive Coding 
In the past 20 years, digital coding of speech waveforms has become a 
popular technique for reducing speech degradation due to transmission. 
Of the speech coding techniques, linear predictive coding (LPC) stands 
out for its ability to produce low data rates. Basic speech parameters (e.g. 
pitch, vocal tract, formants) are estimated, transmitted and then used at 
the receiver to resynthesize the speech through a speech production 
model. Adaptive filters can be used to estimate speech parameters in 
model-based speech coding systems. 

The speech quality of LPC is synthetic when compared to other coding 
techniques such as PCM or ADPCM; however, its significantly lower data 
rates make it attractive. The GSM standard for the Pan-European cellular 
digital mobile radio network specifies an LPC-based coding scheme. 

Adaptive Beamforming 
A spatial form of adaptive signal processing finds applications in radar 
and sonar. By combining signals from an array of sensors, it is possible to 
change the directivity pattern of the array. Independent sensors (e.g. 
antennas or hydrophones) placed at various locations in space or water 
detect incoming waveforms. The collection of sensor outputs at a 
particular instant is analogous to the set of consecutive tap inputs in a 
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transversal filter. The sensitivity and directivity of the sensor array can be 
adaptively adjusted. Beamforming is discussed in Chapter 15 of Digital 
Signal Processing Using the ADSP-2100 Family. 

Adaptive Channel Equalization for Data Transmission 
Adaptive filters used in digital communication systems as channel 
equalizers minimize transmission distortion and maximize the use of 
channel bandwidth. A typical bandlimited telephone channel or radio link 
suffers from intersymbol interference (ISi) and additive noise. To improve 
system performance in additive-noise channels, transmission power can 
be increased. However, increased power has no effect on ISI since it 
amplifies both the intended symbol sample as well as interfering ones. 

The traditional technique for alleviating ISI is an equalizing filter at the 
receiver. The receiver equalizer filter combines the channel characteristics 
and the transmitter filter to minimize ISI distortions. Channel 
characteristics, however, vary over time. An adaptive equalizer is needed 
to ensure a constant transmission quality. 

Since the channel conditions are unknown, a training sequence is 
transmitted to bring up the equalizer from its initial (usually zero) state. 
This sequence is known at the receiver and therefore the deviation error of 
received samples from the expected sequence is used to adjust the 
equalizer tap weights. Once the training period is completed, the weights 
can still be continually updated in a decision directed mode. In this mode, 
a minimum distance detector at the receiver decides which symbol was 
transmitted. In normal operation these decisions have a high probability 
of being correct, and thus are good enough to allow the equalizer to 
maintain proper adjustment. 

5.4 CHANNEL EQUALIZATION IN A MODEM 
The International Telegraph and Telephone Consultative Committee 
(CCITT) sets standards and protocols for telephone and telegraph 
equipment. Its V.32 modem recommendation specifies a fractionally 
spaced transversal filter as the channel equalizer in the receiver. This 
equalizer, along with trellis coding and quadrature amplitude modulation 
(QAM), maximizes data rates over the bandlimited telephone channel. 



A telephone channel can suffer from a variety of limitations as a 
communications medium: 

• As a bandlimited channel, it creates an environment for ISL 
• Channel additive noise requires increased transmitted power to 

improve signal-to-noise ratio. 
• Radio links create fading channels and echo in cross-Atlantic 

connections 
• When sev·eral connections are frequency multiplexed, baseband speech 

signals are modulated into the passband using different carrier 
frequencies for transmission. Demodulating these passband signals 
can create frequency offsets as well as amplitude and phase distortion. 

• Phase jitter (poor timing recovery). 
• Envelope delay or harmonic distortion is another limitation. 

These channel limitations combined with the dense symbol constellation 
of the V.32 modem necessitate adaptive equalization for acceptable error 
rates at 9600 bits/s. 

5.4.1 Equalization 
The basic function of the equalizer is to create an ideal transmission 
medium from a real channel. An example channel's short impulse 
response {hl, h2, h3, h4} is shown in Figure 5.1. The ideal medium is 
characterized as a pure delay, shown in Figure 5.2 (on the next page). 

h2 

h(t) 

Figure 5.1 Example Short Impulse Response 
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t 

Figure 5.2 Pure Delay Impulse Response 

Take for example the equalizer shown in Figure 5.3 which has three taps 
{cl, c2, c3}. Convolving this response with the channel's impulse response 
from Figure 5.1 yields 

Y1 c1 0 0 0 hl 

Y2 c2c10 0 h2 

Y3 = c3c2c10 x h3 

Y4 0 c3c2c1 h4 

Ys 0 0 c3c2 
y6 0 0 0 c3 

c(t) • 
c3 

t 

c2 

Figure 5.3 Equalizer Impulse Response 



Ill 

I r 

The outputs {y1, y2, y3' y4, y5, y6} represent samples of the impulse response 
of the combined channel/ equalizer system. 

If the equalizer is to create ideal conditions for transmission, all the y's 
should be zeros except for one main sample. Rewriting the equation for 
ideal equalization yields: 

0 c1 0 0 0 
0 c2 c1 0 0 
1 c3 c2 c1 0 
0 0 c3 c2 cl 
0 0 0 c3 c2 
0 0 0 0 c3 

or 

0 = c1h1 

0 = c1h2 + c2h1 

1 = c1h3 + c2h2 + c3h1 

0 = c1h4 + c2h3 + c3h2 

0 = c2h4 + c3h3 

0 = c3h4 

hi 
h2 

x h3 
h4 

The system of equations above has only three controllable variables 
(unknowns) but six simultaneous equations. The system is 
overdetermined and can only be solved approximately. To approximate 
this solution, a reformulation of a recursive technique known as method 
of steepest descent can be used. This iterative algorithm is defined by the 
equation: 

where E is a defined performance index to be optimized. It is a function of 
some controllable parameters (tap weights Ck). Eis minimized by 
adjusting the tap weights in small steps(~). The gradient vector oE/oCk 
indicates the direction of the adjustment required to minimize E. This 
method converges to an optimum solution when oE/oCk is zero. 
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5.4.2 Performance Index 
It is important to choose a meaningful performance index that is a linear 
function of the tap weights and that defines a smooth error surface (bowl) 
in the space spanned by the tap weight vector. This ensures the 
convergence of the algorithm to the lowest point (minimum) of the error 
surface. 

In some cases, a desirable performance index is a nonlinear function of the 
adjustable parameters and the solution is unrealizable. As an example, 
consider the probability of error in a digital communication system. Even 
though this is a meaningful measure of system performance, it is a highly 
nonlinear function of the equalizer tap weights. Using the method of 
steepest descent, it cannot be determined whether the adaptive equalizer 
has converged to the optimum solution or to one of the relative minima of 
the surface. For this reason some desirable performance indices must be 
rejected. 

A practical and popular index for performance is the mean squared error 
(MSE). The error is measured as the difference between the received signal 
and the ideal signal value. The MSE index is a measure of the energy in 
this error signal averaged over a signaling interval. It results in a quadratic 
performance surface as a function of the filter coefficients and thus has a 
single minimum (optimal solution). An implementation of an MSE-based 
iterative adaptation algorithm is developed for the ADSP-2100 processor 
family in this chapter; it is discussed in a later section. 

5.5 EQUALIZER ARCHITECTURES 
The preferred form of a linear equalizer is a tapped delay line. The delay 
line consists of delay elements in a feedforward path and possibly a 
feedback path. 

If the delay line has feedforward delays only, its transfer function can be 
expressed as a single polynomial in z-1 and therefore the equalizer has a 
finite impulse response (FIR). This type of equalizer is often called a 
nonrecursive or transversal equalizer (Figure 5.4). 

If the delay line also has feedback delay elements, its transfer function is a 
rational function of z-1 and the equalizer has an infinite impulse response 
(IIR) due to its nonzero poles (Figure 5.5). 

The V.32 modem equalizer has no feedback delay elements and is 
therefore an FIR equalizer. 
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Figure 5.4 Transversal (FIR) Delay Line 

5.5.1 Real Or Complex 
In a one-dimensional communication system (e.g. pulse amplitude 
modulation or PAM), the signal is real and the equalizer has real 
coefficients. The V.32 modem, which uses quadrature amplitude 
modulation (QAM), transmits complex data by modulating two 
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Figure 5.5 llR Delay Line 
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orthogonal carrier signals. Because of cross-distortion between the in
phase and quadrature channels in this two-dimensional communication 
system, an equalizer with complex tap coefficients is required. 

Algorithms for the complex equalizer are essentially the same as for the 
real equalizer with the added burden of complex arithmetic. A complex 
equalizer typically requires four times as many multiplications and 
introduces the complex conjugation operator in recursive algorithms such 
as LMS adaptation. 

5.5.2 Sampling Rates 
It is often advantageous to space the delay elements in an equalizer more 
closely than the symbol rate, as shown in Figure 5.6. This has the effect of 
oversampling the input to the filter and thus increasing the effective 
bandwidth of the equalizer. The input is pushed onto the delay line twice 
for every one output computed. Fractionally spaced equalizers have 
superior performance because of wider bandwidth, and they simplify the 
problem of phase synchronization between transmitter and receiver. They 
do, however, suffer from stability problems in low noise conditions and 
are more computationally demanding (Ungerboeck, 1976). 

X(KT) ~- T/2 ,___~-T/2 T/2 

C1 
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Figure 5.6 Fractionally Spaced Delay Line (FSE) 

A fractionally spaced filter can be designed the same way as a T-spaced 
delay line filter. The basic delay line structure is the same for both. For a 
T /2 FSE filter, the samples are shifted in at 2f5 (twice the sampling 
f~equency) but the output is only computed at f5, i.e. every other input 
hme. 

The ADSP-2100 routine to implement the delay line with complex tap 
weights is in Listing 5.1. 
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Fractionally Spaced Filter (FSE) Subroutine 

This Complex Fractionally Spaced Filter (FSE) Subroutine is used in the V32 equalizer. 
The basic structure for the delay line is the same as that of a T-Spaced Filter (TSE) . 
In the FSE case, however, samples are shifted in at 2Fs (Fs = Sampling Frequency) and 
the output is computed at Fs, i.e. at alternate times. This subroutine will therefore 
be called after 2 new input samples have been pushed onto the delay line. 

Calling Parameters 
IO-> Oldest data value in real delay line (Xr's) 
LO = filter length (N) 
Il ->Oldest data value in imag. delay line (Xi's) 
Ll = filter length (N) 
I4 ->Beginning of real coefficient table (Cr's) 
L4 = filter length (N) 
IS-> Beginning of imaginary coefficient table (Ci's) 
LS = filter length (N) 
M0,M6 = 1 
AXO = filter length minus one (N-1) 
CNTR = filter length minus one (N-1) 

Return Values 
IO -> Oldest data value in real delay line 

Oldest data value in imaginary delay line 
Beginning of real coefficient table 
Beginning of imaginary coefficient table 
real output (rounded, cond. saturated) 
imaginary output (rounded, cond. saturated) 

I1 -> 
I4 -> 
IS -> 
SRl 
MRl = 

Altered Registers 
MXO,MYO,MR,SRl 

Computation Time 
2*(N-1) + 2*(N-1) + 13 + 8 cycles 

All coefficients and data values are assumed to be in 1.lS format. 
} 

(listing continues on next page) 
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fir: MR=O, MXO=DM(Il,MO), MYO=PM(I5,M6); 
DO realloop UNTIL CE; 

MR=MR-MXO*MYO(SS), MXO=DM(IO,MO), MYO=PM(I4,M6); 
realloop: MR=MR+MXO*MYO(SS), MXO=DM(Il,MO), MYO=PM(I5,M6); 

MR=MR-MXO*MYO(SS), MXO=DM(IO,MO), MYO=PM(I4,M6); 
MR=MR+MXO*MYO(RND); 

{Xi * 
{Xr * 
{last 
{last 

Ci} 
Cr} 
Xi * Ci} 
Xr * Cr} 

IF MV SAT MR; 
SRl=MRl; {Store Yr} 
MR=O, MXO=DM(IO,MO), MYO=PM(I5,M6); 
CNTR=AXO; 
DO imagloop UNTIL CE; 

MR=MR+MXO*MYO(SS), MXO=DM(Il,MO), MYO=PM(I4,M6); {Xr *Ci} 
imagloop: MR=MR+MXO*MYO(SS), MXO=DM(IO,MO), MYO=PM(I5,M6); {Xi* Cr} 

MR=MR+MXO*MYO(SS), MXO=DM(Il,MO), MYO=PM(I4,M6); {last Xr *Ci} 
MR=MR+MXO*MYO(RND); {last Xi* Cr} 
IF MV SAT MR; {MRl=Yi} 
RTS; 
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Listing 5.1 Delay Line Routine, Complex Tap Weights 

5.6 LEAST MEAN SQUARED (LMS) ALGORITHM 
Since the mean squared error (MSE) performance index is a convex 
function of the tap weights (has a bowl-shaped surface), the optimum tap 
weights can be obtained by the steepest descent algorithm. In this 
algorithm, tap weights are assumed to have an arbitrary initial setup and 
are moved in the direction of optimum value when MSE is minimized. 
The direction is determined by the gradient of the objective function of 
performance, 

(2) E = I e(kt) I 2 

where e(kt) is the error between the estimated symbol and the received 
sample and the bar above the expression denotes time averaging. 
Optimum tap weights are determined when the derivative of the MSE 
surface with respect to all the tap weights is zero. 

(3) 1 ::; k::; N, for an N-tap filter 

The error function Eis a complex quadratic function because of the 2-
dimensional modulation scheme (QAM). The derivative expression is: 

(4) oE/oC (k) = -2 e(kt) y(kT - nTt ) n sym aps 
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where Ttaps is the spacing between the taps 
Tsym is the spacing between symbols 

Combining with equation (1) yields: 

(5) C (k+ 1) = C (k) + ~e(kt) y*(kT - nT1 ) 
n n sym aps 

The implementation of the steepest descent algorithm requires the 
evaluation of the cross-correlation of error signal e(kt) and received signal 
y(t). Cross-correlation requires time-averaging, which is not a viable 
option considering the real time requirements of the equalizer. To 
alleviate this problem, the approximation: 

(6) e(kt) y*(kT - nT1 ) "' e(kt) y*(kT - nT1 ) sym aps sym aps 

is used instead of time-averaging. This simplification of the steepest 
descent algorithm greatly reduces the amount of computation. It is very 
popular and is generally referred to as the least mean square (LMS) 
algorithm. 

An LMS algorithm updates the equalizer tap weights according to 

(7) C (k+l) = C (k) + Ae(kt) y*(kT - nT1 ) 
n n I-' sym aps 

Listing 5.2, on the following page, shows an LMS algorithm implemented 
on the ADSP-2100 family. 
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Complex SG Update LMS Subroutine. 

This routine updates the complex taps according to the relation: 

upd_taps: 

adaptc: 

Cn(k+l) Cn(k) - Beta.E(k) .Y*(n-K) 

where: <Beta> =Adaptation step size 
<E(k)> estimation error at time k 
<Y*(n-k)> =Received signal complex 

conjugated & sampled at time (n-k) 

Calling Parameters 
IO -> Oldest data value 
Il -> Oldest data value 
I4 -> Beginning of real 
I5 -> Beginning of imag 
MXO = real part of Beta 
MXl = imag part of Beta 
MO,M5 1 
Ml = -1 
M6=0 
CNTR = Filter length (N) 

Return Values 
Coefficients updated 

in real delay line LO 
in imag. delay line 
coefficient table L4 
coefficient table L5 
* Error 
* Error 

IO -> Oldest data value in real delay line 
Il -> Oldest data value in imag delay line 
I4 -> Beginning of real coefficient table 
I5 -> Beginning of imag coefficient table 

Altered Registers 
MYO,MYl,MR,SR,AYO,AYl,AR 

Computation Time 
6*N + 10 cycles 

N 
Ll 

N 
N 

All coefficients and data values are assumed to be in 
1.15 format. 

N 

MYO=DM(IO,MO); 
MR=MXO*MYO(SS), MYl=DM(Il,MO); 
DO adaptc UNTIL CE; 

{Get Xr} 
{Er*Xr, get Xi} 

MR=MR+MXl*MYl(RND), AYO=PM(I4,M6); 
AR=AYO-MRl, AY1=PM(I5,M6); 
PM(I4,M5)=AR, MR=MXl*MYO(SS); 
MR=MR-MXO*MYl(RND), MYO=DM(IO,MO); 
AR=AYl-MRl,MYl=DM(Il,MO); 

PM(I5,M5)=AR, MR=MXO*MYO(SS); 
MODIFY (IO,Ml); 
MODIFY (Il,Ml); 
RTS; 

Listing 5.2 LMS Routine 
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{Ei*Xi, get Cr} 
{Cr-(Er*Xr+Ei*Xi), get Ci} 
{Store new Cr, Ei*Xr} 
{Er*Xi, get Xr} 
{Ci-(Ei*Xr-Er*Xi), get Xi} 
{Store new Ci, Er*Xr} 
{point back to start} 
{of complex delay line} 



Ill 

I 

5.7 PROGRAM STRUCTURE 
The flowchart shown in Figure 5.7 depicts the sequence of operations of 
an equalizer program. Each program section is discussed below. 

Initialize 
Variables 

Input 2 New Samples 

N 

Equalize and 
Compute Output, S0 

Estimate Reference 
Symbol Based On 

Min. Euclidean Distance 

y 

Sr = Received sample 

S0 = Output sample 

2 input samples for 
every output in this 
fractionally-spaced 
equalizer 

Read Reference Sr From 
Training Sequence 

Estimate Error 
So- Sr 

Update Tap Using LMS 

To Input New 
Samples 

Output Decided Symbol 

Figure 5.7 Adaptive Equalizer Flowchart 

r 
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5.7.1 Input New Sample 
The equalizer program is interrupt-driven. The arrival of a new complex 
sample causes the equalizer to start executing. The sample_in port in 
Listing 5.3 holds the new sample (real, then imaginary). Index registers IO 
and 11 point to the complex delay line. 

The V.32 modem recommendation specifies a fractionally spaced 
equalizer. The delay line therefore consists of delays that are spaced at 
one-half the symbol rate. This means that the output (at 2400 symbols/s) 
is only computed for every two input samples (at 4800 symbols/s). The 
variable decimator _flag is used to decide whether to get another sample or 
to start computing the output. 

input_new_sample routine 

This part will read a new sample from the port 'sample_in' and 
place it on the delay line. This new complex sample will overwrite 
the oldest value on the delay line (complex also) . 
} 

start: AR=DM(sample_in); 
DM(IO,MO) =AR; 
AR=DM(sample_in); 
DM(Il,MO)=AR; 
AR=DM(decimator_flag); 

AR=NOT AR; 
DM(decimator_flag)=AR; 

IF EQ RTS; 

Listing 5.3 Input Routine 

5.7.2 Filtering (Equalizing) 

{read in real & imag. values) 
{of new sample and store them) 
{in delay line} 

{check flag to see if filtering} 
{is required this time through.} 

{Then toggle the flag} 
{to ensure that we filter} 
{every other sample} 
{as required in an FSE} 

The actual filtering is performed in the subroutine in Listing 5.4. The 
calling parameters for the filter are initialized, and after the subroutine is 
called the return values are stored in data memory. 
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do the fir filtering (equalization) 

Performs the actual fir filtering. Takes the input sample 
from the receiver front end & produces an output value 
(fir_out real & fir_out_imag ) 
} 

AXO = no_of_taps - 1; 
CNTR= no_of_taps - 1; 
CALL fir; 
DM(fir out_real)=SRl; {save return values of} 

{subroutine in} 

r 

DM(fir_out imag)=MRl; {their designated var names:} 
{fir_out_real & fir_out_imag} 

Listing 5.4 Filter Routine 

5.7.3 Training Sequence 
Initially the tap weights of the equalizer are at some arbitrary state 
(possibly zero) that is typically far from the optimum state. The receiver 
decisions based on the output of the equalizer are therefore incorrect with 
a high probability. Decision-directed adaptation is not guaranteed to work 
because of the initial high error rate. The equalizer might be unable to 
move into the error-free region and the adaptation would diverge or stop 
(MSE neither increasing nor decreasing significantly). 

To train the equalizer through this blind stage, a data sequence that is 
known at the receiver is used for initial transmission. If the locally 
generated reference is properly synchronized to the received signal, this 
training brings the equalizer to its optimum state. After training, slow 
channel variations are tracked using decision-directed adaptation. 

The stored training sequence at the receiver is read at the training_list port 
(real, then imaginary) in Listing 5.5. The received signal is read in from the 
filter outputs fir _out_real and fir _out_imag. A complex error value which is 
equal to the Euclidean distance between the two samples is generated. The 
estimation error is stored in data memory (error _real and error _imag). 
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estimate the transmitted symbol ( training ) 

Given fir_out real & fir out imag, we compute the error value 
(real and complex) using the training sequence as a reference. 
This estimate for error is used only initially to train the 
equalizer. Following the training, decision directed adaptation 
would take over. 

AXO=DM(fir_out_real); 
AXl=DM(fir_out imag); 
AYO=DM(training_list); 
AYl=DM(training_list); 
CALL est_error_train; 

{inputs are fed in directly} 
{from output of fir} 

Est error train subroutine: Returns the equalizer output minus the 
ideal value available from the training sequence. 

AXO fir out real 
AXl fir_out_imag 
AYO ideal symbol real 
AYl ideal symbol imag 

Returns: 
error real 
error_imag 

est error train: AR=AXO-AYO; 
DM(error_real)=AR; 
AR=AXl-AYl; 
DM(error_imag)=AR; 
RTS; 

Listing 5.5 Training Sequence Routine 

5.7.4 Decision-Directed Adaptation 
Once the equalizer is trained, decision-directed adaptation is possible. In 
this mode, symbols estimated at the receiver are used as the reference 
from which to measure the deviation error and subsequently adjust the 
taps. With the equalizer trained, low decision-error rates make it possible 
to continue to adapt to small changes in channel conditions. 
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In Listing 5.6, the estimated symbol is chosen as the symbol geometrically 
closest to the received coordinates. A 15-instruction loop (worst case) 
computes the distance to each of the 32 symbols in the symbol table and 
determines the nearest one. The routine returns a pointer to the estimated 
symbol in the table as well as the real and imaginary values of the error. 

estimate the transmitted symbol ( no training ) 

Given fir out real & fir out imag, we compute the error value (real and complex) using 
a Euclidean distance routine (decision directed adaptation) . In this mode the estimated 
symbol is the geometrically closest to the received coordinates. This routine also 
returns the complex error value. 

AXO=DM(fir out real); 
AXl=DM(fir_out imag); 
CALL est error eucl; 

{these inputs are fed in directly} 
{from the output of the fir} 

{Estimate error_euclidean Symbol Subroutine 
(normal mode, i.e. no training): 

Maps input sample onto an ideal symbol in the constellation table This routine also 
returns the value of the error measured as the Euclidean distance between received 
signal and its ideal value. 

Calling Parameters 
AXO contains Xr 
AXl contains Xi 
MO 1 
Ml = -1 

Return Values 
SI = decision index j 
(position with respect to end of table) 

AF = minimum distance (squared) 
I2 -> Beginning of constellation table 

Altered Registers 
AY0,AY1,AF,AR,MX0,MY0,MY1,MR,SI 
AR SAT mode enabled 

Computation Time 
15*N + 5 (maximum) 

(listing continues on next page) 
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est error eucl: 

ptloop: 

I2 
L2 

Ill 

I 

Aconstellation_table; 
3; 

r 

AY0=32767; 

{number of symbols in} 
{constellation table} 
{Initialize minimum distance to} 
{largest possible value} 

ENA AR_SAT; {put ALU in saturation mode to} 
{prevent overflow} 

AF=PASS AYO, AYO=DM(I2,M0); {Get Cr} 
CNTR =32; 
DO ptloop UNTIL CE; 

AR=AXO-AYO, AYl=DM(I2,MO); {Xr-Cr, Get Ci} 
{Copy Xr-Cr, Xi-Ci} 
{Copy Xi-Ci} 
{(Xi-Ci) A2, } 

MYO=AR, AR=AXl-AYl; 
MYl=AR; 
MR=AR*MYl (SS), MXO=MYO; 

MR=MR+MXO*MYO (SS); 
IF MV SAT MR; 
AR=MRl-AF; 
IF GE JUMP ptloop; 
AF=PASS MRl; 
AR=AXO-AYO; 
DM(error_real)=AR; 
AR=AXl-AYl; 
DM(error imag)=AR; 
SI=CNTR; 
AY0=DM(I2,MO); 

MODIFY(I2,Ml); 
RTS; 

{Copy Xr-Cr} 
{ (Xr-Cr) A2} 

{clip result to max value} 
{Compare with previous minimum} 

{New minimum if MRl<AF} 
{error is euclidean distance} 
{between actual received} 
{signal and ideal symbol} 
{coordinates} 
{Record constellation index} 

{Point to beginning of table} 

Listing 5.6 Decision-Directed Adaptation Routine 

5.7.5 Tap Update (LMS Algorithm) 
Once an estimate error is computed, it is possible to adapt the equalizer 
coefficients to a new set of values closer to the optimum vector. The LMS 
routine in Listing 5.7 performs the computation. The estimation error is 
first scaled down by the adaptation step size (p). This constant provides a 
mechanism to trade off convergence speed against the amount of jitter in 
the steady state value of the tap vector. 
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update the taps 

Takes the estimation error values previously computed multiply 
them by the step size (beta). The upd_taps routine is then called 
to update coefficients of the equalizer. 

MYO=DM (error real); {MXO=beta x error real 
MXO=beta; 
MR =MXO*MYO (SS); 
MXO=MRl; 

MYl=DM(error imag); 
MXl=beta; {MXl=beta x error_imag 
MR =MXl*MYl(SS); 
MXl=MRl; 
CNTR=No_of_taps; 
CALL upd_taps; 

Listing 5.7 Tap Update Routine 

5.7.6 Output 
These equalizer routines can be integrated into other modules to form the 
receiver block of a V.32 modem (see Chapter 2). As specified in the V.32 
recommendation, the equalized sample is decoded using the Viterbi 
algorithm. The equalizer output (real and the imaginary) is therefore 
written to an 1/0 port sample_out. 

output the resulting sample of the equalizer} 

AR=DM(fir_out_real); 
DM(sample_out)=AR; 
AR=DM(fir_out imag); 
DM(sample out)=AR; 
RTS; 

Listing 5.8 Output Routine 

{output the equalizer output} 
{to the outport port} 

{return from equalizer routine and} 
{wait for a new sample interrupt} 
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5.8 PRACTICAL CONSIDERATIONS 
This section describes considerations for using and modifying the routines 
in this chapter. 

5.8.1 Viterbi Decoder 
In the implementation of decision-directed adaptation, the received 
sample is matched to the nearest symbol and the error is used to adjust the 
taps. A few wrong decisions could cause the equalizer to wander off 
temporarily, but because right decisions have a proportionately larger 
effect, convergence is ensured. 

If a sophisticated algorithm such as Viterbi decoding is used to improve 
the decision, the signal sample and error are not available until several 
symbol intervals after the input time. This Viterbi delay requires a 
modified LMS updating routing with delayed coefficient adaptation 
(DLMS). It can be shown that the DLMS adaptation has the same steady 
state behavior as the LMS adaptation, provided the adaptation constant is 
within a certain range (Long et al, 1989). 

5.8.2 Pseudo-Random Training Sequence 
The routines in this chapter have been validated with a pseudo-random 
training sequence. This training sequence consists of a set of symbol 
values with a repetition period that is much longer than the convergence 
time of the equalizer. The benefit of using such a sequence is that the 
approximation of the gradient vector dE/dCk is less noisy. Noisy estimates 
of the gradient vector can cause the tap coefficients to wander a long way 
from the path of the steepest descent (Bingham, 1988). 

5.8.3 Delay Line Length 
If the exact source of the channel's distortion is known and the impulse 
response can be modeled precisely, it is possible to calculate the minimum 
order of the equalizer transfer function needed to reduce the MSE to an 
acceptable level. In general, the only practical method of deciding the 
length of the delay line is to derive a theoretical length based on several 
worst-case channel characteristics. The equalizer is then designed slightly 
longer than the theoretical minimum to compensate for the cumulative 
effects of finite precision arithmetic in the ADSP-2100 family processor. 
For a discussion of quantization effects in the LMS algorithm, see Bershad, 
1989. 
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Continuous Phase • 6 
Frequency-Shift Keyed 

Modulation -----~---------

6.1 INTRODUCTION 
Constant phase modulation (CPM) techniques find applications in satellite 
communications. Because of power amplifier considerations, satellite 
communications require a modulation technique with a constant or nearly 
constant envelope versus time (no amplitude modulation). Technological 
and regulatory limitations also require low error probability for a given 
signal-to-noise ratio and high bits per second of transmitted information 
for a given bandwidth. The technique of multi-h CPM, which combines 
encoding and modulation, achieves all of these goals. 

This chapter describes an implementation of continuous phase frequency
shift keying (CPFSK), a sub-class of multi-h CPM, on the ADSP-2100 
family of processors. Only modulation is described here; demodulation is 
usually performed with the Viterbi algorithm, described in Chapter 2. 

Fast frequency-shift keying (FFSK) is a special case of CPFSK with h= 1 /2. 

6.2 CPFSK METHODOLOGY 
The general form for a multi-h CPM signal is: 

s(t; a) = '1(2E/T) cos [27tf0t + <p(t; a) + <p0] 

Es = symbol energy 
Ts =symbol duration 
f0 = carrier frequency (Hz) 

'Po =carrier phase (arbitrary) 
cp(t; a)= information-carrying phase function, expressed as: 

t 

2n: f 
00 

-oo i=-oo 
-oo<t<oo 
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where: 

a 
h. 

1 

g(t) 

= (. .. , a_2, a_1, a0, a1, a2, ... ), representing the data sequence 
= set of K modulation indices cycled through periodically, 
i.e., hi+K = hi 

= frequency pulse-shape function 

For CPFSK, all hi are equal and the pulse-shape function is: 

g(t) = T/2 for 0 ::::;; t ::::;; Ts' otherwise 0 

6.3 ADSP-2100 FAMILY IMPLEMENTATION 
Figure 6.1 shows a flowchart of the CPFSK program implemented on the 
ADSP-2100 family of processors. This particular implementation uses the 
ADSP-2101 to take advantage of its on-chip serial ports and timer. The 
timer generates a clock at the symbol rate (2400 baud) for reading input 
data. The ADSP-2101 outputs CPFSK modulated data to a digital-to
analog converter (DAC) at the rate of 8 kHz. 

The CPFSK program is shown in Listing 6.1. This program sets up a buffer 
of dummy data for demonstrations; in actual use, the data would come 
from an input device and could be read from the FI (Flag In) input of the 
ADSP-2101. 

The CPFSK routine calls two external routines not shown here. The 
cntlreg_inits routine initializes the ADSP-2101's control registers. The 
boot_sin routine computes the sine of the input in AXO, returning the 
output in AR. See Chapter 4 for a similar routine. 

After setup (initializing variables, etc.) the processor waits for one of two 
interrupts. The SPORTO interrupt causes the processor to calculate the 
next output sample by adding the current phase increment to the phase 
accumulator and computing the sine of the result. The output samples are 
transmitted from SPORTO and are also sent to a DAC for display (for 
demonstration). 

The timer interrupt causes the processor to select a new phase increment 
based on the value of the input data. Because the data is binary (1 or 0) it 
could be input through the flag input (FI) pin instead of data memory as 
shown. The code would have to be modified to use the state of the input 
flag as a condition for selecting the phase increment. 



SPORT 
INTERRUPT 

INITIALIZE 

IDLE--WAIT FOR 
INTERRUPT 

(at sampling rate, 8 kHz) 

<p = <p + A<p 

output = sin <p 

TIMER 
INTERRUPT 
(at symbol rate, 2400 baud) 

check input data value 

0 

A<p = A<p a 

<p = current phase value (stored in "phase accumulator") 

A<p = current phase increment 

A<p a = phase increment for tone a 

A<p b = phase increment for tone b 

Figure 6.1 CPFSK Flow Diagram 
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.MODULE/BOOT=O/ABS=O cpfsk_modulator; 

CPFSK - Continuous Phase Frequency Shift Keying modulator 

input: 

output: 

.EXTERNAL 

.EXTERNAL 

.PORT 

.PORT 

.PORT 

.CONST 

.CONST 

.CONST 

.CONST 

.VAR/CIRC 

.VAR 

.VAR 

.VAR 

data stream stored in DM circ buffer (for demo) 
in actual use, data could be state of FLAG_IN pin 
dacO - CPFSK output waveform 
dacl - input data stream (echoed for demo display) 
spkr - CPFSK "soundn 

boot sin; 
cntlreg_inits; 
write dacO; 
write dacl; 
load_dac; 

lo_tone=220; {Hertz} 
hi_tone=880; {Hertz} 
logic one=H#7FOO; 
logic zero=O; 

demo input_data[7]; 
hertzO, phase incr_O; 
hertzl, phase incr l; 
phase_accumulator, phase increment; 

JUMP start; RTI; RTI; RTI; {Reset Vector} 
{irq2} RTI; RTI; RTI; RTI; 

RTI; RTI; RTI; RTI; 
JUMP sample; RTI; RTI; RTI; 
RTI; RTI; RTI; RTI; 
RTI; RTI; RTI; RTI; 
CALL symbol; RTI; RTI; RTI; 

start: CALL cntlreg_inits; 
M7=1; L7=0; 

baud clock: 

{H#3FFB} 
{H#3FFC} 
{H#3FFD} 

LO=O; 
MO=l; 
IO=H#3FFB; 

DM(IO,MO)=O; 
DM (I 0, MO) =511 9; 
DM (I 0, MO) =511 9; 

6-4 

{sportO TX} 
{sportO RX} {at 8 kHz rate} 
{irqO} 
{irql} 
{timer} {at 2400 baud} 

{set up SPORTS, TIMER, etc} 
{used by bootsin routine} 

{point to DM-mapped TIMER ctrl regs} 
{2400 baud=5120 cycles @ 12.288 MHz} 

{TIMER - TSCALE} 
{TIMER - TPERIOD} 
{TIMER - TCOUNT} 



make demo data: SI=lo tone; 
SI=hi tone; 
SI=logic one; 
SI=logic zero; 

IO=Ademo input data; 
L0=%demo input_data; 

DM(hertzO)=SI; 
DM(hertzl)=SI; 
DM(demo_input_data)=SI; 
DM(demo_input data+l)=SI; 
DM(demo_input_data+2)=SI; 
DM(demo_input_data+3)=SI; 
DM(demo_input_data+4)=SI; 
DM(demo_input_data+5)=SI; 
DM(demo input_data+6)=SI; 

{These segments convert "Hertz" to 8 kHz Phase Increment} 

load tonel: 

load toneO: 

SI=O; 

SI=DM(hertzl); 
SR=ASHIFT SI BY 3(HI); 
MYO=H#4189; {mult Hz by .512*2} 
MR=SRl*MYO(RND); {i.e. mult by 1.024} 
SR=ASHIFT MRl BY l(HI); 
DM(phase incr l)=SRl; 

SI=DM(hertzO); 
SR=ASHIFT SI BY 3(HI); 
MYO=H#4189; {mult Hz by .512*2} 
MR=SRl*MYO(RND); {i.e. mult by 1.024} 
SR=ASHIFT MRl BY l(HI); 
DM(phase incr O)=SRl; 

DM(phase accumulator)=SI; 
CALL symbol; 
ICNTL=B#Ollll; 
IMASK=B#001001; 

{clear phase accumulator on startup} 
{start with first symbol} 

ENA TIMER; 

here: JUMP here; 

{enable SPORTO_RX, TIMER now} 
{start baud clock now} 

{wait for symbol and sample interrupts} 

(listing continues on next page) 
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{=============================================================} 
{========== P R 0 C E S S A N E W S A M P L E ==========} 
{=============================================================} 
sample: AXO=DM{phase_accumulator); 

AYO=DM{phase_increment); 
AR=AXO+AYO; 
DM{phase_accumulator)=AR; 
AXO=AR; 
CALL boot_sin; 

sound: DM{write_dacO)=AR; 
DM{load_dac)=AR; 
SR=ASHIFT AR BY -2(HI); 
TXO=SRl; 
RTI; 

{"display" CPFSK on oscilloscope} 

{"hear" CPFSK from speaker {PCM out)} 

{=============================================================} 
{========== P R 0 C E S S A N E W S Y M B 0 L ==========} 
{=============================================================} 
symbol: AXl=DM{IO,MO); 

DM(write_dacl)=AXl; 
DM(load_dac)=AR; 

{get input data (could be FLAG_IN)} 
(echo input data stream for demo} 

one: 
zero: 

.ENDMOD; 

AF=PASS AXl; 
IF EQ JUMP zero; 
SI=DM(phase_incr_l); 
SI=DM(phase incr 0); 

DM(phase_increment)=SI; RTS; 
DM(phase increment)=SI; RTS; 
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Listing 6.1 CPFSK Program {ADSP-2101) 
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