. BITSUCE
MICROPROCESSOR
- DESIGN

BN ICK AND I BRICK

BIT-SLICE MICROPROCESSOR DESIGN

BIT-SLICE MICROPROCESSOR
DESIGN

John Mick James Brick
Engineering Manager Manager of Systems and Applications
Systems and Applications AM2900 Family

Digital Bipolar Products Advanced Micro Devices
Advanced Micro Devices

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogota
Hamburg Johannesburg London Madrid Mexico
Montreal New Delhi Panama Paris Séo Paulo
Singapore Sydney Tokyo Toronto

Advanced Micro-Devices reserves the right to make changes in its
products without notice in order to improve design or performance
characteristics. The authors and the company assume no respon-
sibility for the use of any circuits described herein.

Library of Congress Cataloging in Publication Data

Mick, John.
Bit-slice microprocessor design.

Includes index.

1. Bit slice microprocessors—Design and construc-
tion. I. Brick, James, joint author. Il. Title.
TK7895.M5M44 621.3819'535 80-10610
ISBN 0-07-041781-4

Copyright © 1980 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. No part of this
publication may be reproduced, stored in a retrieval system,
or transmitted, in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher.

234567890 KPKP 89876543210

Note to the Reader: Advanced Micro Devices cannot
assume responsibility for use of any circuitry described
other than circuitry entirely embodied in an Advanced
Micro Devices product.

CONTENTS

Preface vi

Acknowledgments vii

Chapterl Computer Architecture 2
Chapterll Microprogrammed Design 12
Chapterlll TheDataPath 92
Chapter IV The Data Path—Partll 130
ChapterV Program Control Unit 190
Chapter VI Interrupt 206

Chapter VIl Direct Memory Access 208
Chapter VIl HEX-29 258
ChapterIX Super Sixteen 318

Index 385

New integrated circuits are usually accom-
panied by a wealth of theory and data
sheets. Shortly thereafter follow the applica-
cation notes. The introduction of micropro-
grammable LSI parts, such as the Am2901
and subsequent ICs in the family, adhered to
this pattern. We thought this was adequate
in light of the previously successful intro-
duction of fixed-instruction-set MOS micro-
processors, which were more complex.

However, bit-slice microprocessor design
proved more formidable than first realized.
One reason was the intimate relationship
between parts. These designs required the
designer to pick and choose parts: How
many slices are needed to do the job?
Which microprogram sequencer and/or con-
troller to select? Is a carry lookahead gen-
erator needed? And on, and on and. . .. All
these devices had to play together; no single
device was complete by itself.

For this added up-front design effort, the
user got blazing speed and the utmost
flexibility. The latter proved the second hin-
derance to easy designing. Users now had
to design the instruction set as well as the
hardware and applications programs. They
no longer had the luxury of a fixed-instruction
set. On the other hand, they could eliminate
unnecessary instructions, easily modify or
add instructions at a later date or emulate
the existing instruction set of a slower CPU.

Complicating matters was the fact that the
2900 family did not spring whole into the
world. Parts were introduced and redesigned
over a period of years as engineering and
processing resources could be brought to

PREFACE

bear. This evolutionary process still goes on.

To alleviate matters, Advanced Micro
Devices announced a nine-part course in
microprogrammable microprocessing, each
part to stand alone but tobuild logically upon
the preceding part. And, because engineer-
ing talent is our most important resource,
this course was to unfold over a 22-month
period.

Since completion of the course, there has
been no diminishing in demand for informa-
tion on the matérial covered. In fact, the
market for bipolar microprogrammable LSI
parts doubled in each of the previous two
years and showed no signs of slowing. So,
as our copies of individual course materials
dwindled, we thought it only natural to bring
them all together under one cover. This book
is the result.

We think the extraordinary time and ef-
fort was well worth it.

Acknowledgments

The authors wish to thank members of Ad-
vanced Micro Devices’ bipolar applications
department for their contributions to various
chapters in this book. In particular we would
like to thank Steve Cheng, Vernon Coleman,
Mike Economidis, Jerry Gray, Jack Hong,
Mike Miller, Warren Miller, Bob Schopme-
yer, and Moshe Shavit.

We would also like to thank Mike Simmons
and Lee McDonald of Monterey, CA,for al-
lowing us to use their HEX-29 microprogram-
mable microcomputer in Chapter VIII.

vii

BIT-SLICE MICROPROCESSOR DESIGN

a4
vV
4

Chapter |
Computer Architecture

PREFACE

In this introductory Chapter we intend to:

1). develop a common terminology for future chapters.

2). introduce several stored-program-computer design topics.

3). define some of the computer architect’s problems (which
will be solved in the subsequent chapters).

In order to achieve these goals, we will start with computer
basics. It should be stressed that approaches and solutions
can be chosen which are different from the ones described in
this and the subsequent chapters. However, the general ideas
described will be appropriate to gain familiarity with the micro-
programmable bit-slice devices in order to use them in any
design configuration.

BACK TO THE BASICS. ..

A STORED-PROGRAM-COMPUTER is defined as a machine
capable of manipulating data according to predefined rules
(instructions), where the program (collection of instructions)
and data are stored in its memory (Fig. 1). Without some
means of communication with the external world, the program
and the data cannot be loaded into the memory nor can the
results be read out. Therefore, an input/output device is re-
quired as shown in Fig. 2.

CENTRAL
PROCESSING
UNIT
(CPU)

<:> MEMORY

MPR-439

Figure 1. Basic Definition of a Stored-Program-Computer.

cPU MEMORY

INPUT/OUTPUT
(1r0)

EXTERNAL WORLD

MPR-440

Figure 2. 1/0O Added to the Basic Stored-Program
Computer.

The memory is usually organized in words, each containing N
bits of information. A unique address is allocated for each
word which defines its position relative to other words. The
Central Processor Unit (CPU) usually reads or writes one
word at a time by addressing the memory and then when the
memory is ready, reading the contents of the word or writing
new contents into that word. To perform this operation, two
registers are usually used: The Memory Address Register
(MAR), which contains the address and the Memory Data
Register (MDR) which contains the data (Fig. 3).

CcPU MEMORY

>z
A4

EXTERNAL WORLD MPR-441

Figure 3. MAR and MDR Depicted for a
Stored-Program Computer.

Since accessing a memory (reading from it or writing into it) is
usually a relatively slow procedure, it is advantageous to have
a few memory locations inside the CPU which can be read
from or written into very fast. These locations are usually
called Accumulators or Working Registers. Having these fast
access registers inside the CPU (Fig. 4) enables many opera-
tions to be carried out without referring to the memory
(through the MAR and the MDR) and therefore these opera-
tions are executed faster.

The unit which actually performs the data manipulation is
called the Arithmetic & Logic Unit (ALU). It has two inputs for
operands and one output for the result. It usually operates on
all the bits of a word in parallel. The ALU can perform all or
part of the following operations:

Arithmetic Logical
Add OR
Complement AND
Subtract XOR
Increment NAND
Decrement NOR
XNOR
Complement

In some architectures, one of the operands must always be in
a special register (accumulator) and the result of the ALU op-
eration is always transferred to this register. In a more general
CPU, any two of the internal registers can contain the
operands and the result of the ALU operation can be trans-
ferred to any one of them.

Another very useful feature of a CPU is the ability to shift the
contents of a register or the output of the ALU one or more
bits in either direction as shown in Fig. 5.

INTERNAL REGISTERS

|

—

s

MPR-442

cPU

ER 2

Figure 4. CPU with Internal High Speed Registers.

REGISTER FILE

SOURCE AND
DESTINATION
MULTIPLEXER

!]
M

h L ey [|
R

CENTRAL PROCESSING UNIT

MPR-443

Figure 5. ALU and Shifter Added to the CPU Design.

We now have the elements to do any data manipulation re-
quired but we still need a unit which can properly set the MAR
in order to find the next instruction of the program in the
memory and to find its associated data. This unit is called the
Program Control Unit (PCU) and its role is to load the MAR
with the correct address in order to find the next instruction or
data item or to point to a memory location where a data word
should be written.

Often, the program steps (instructions, data) are written in the
memory in consecutive locations, starting at address zero or
at any other predefined address. The PCU can simply be in-
cremented after each memory access thereby pointing to the
address of the next instruction or data item. This counter-type
PCU has very little flexibility. Sometimes we wish to change
the “normal” flow of the instructions, particularly if we want to
enable our computer to “make decisions” according to condi-
tions prevailing at the current execution point. For example,
we may want to execute one of two different sequences of in-
structions depending upon the result of the last operation per-
formed. This is accomplished by loading the MAR with a new
value (the address of the next instruction to be executed)
rather than incrementing it. This operation is called a
BRANCH or JUMP and can be unconditional (which allows
execution of a non-contiguous string of instructions) or condi-
tional (depending, for example, on whether the last opera-
tion’s result was zero or not, was negative or positive, true or
false, etc.).

Even more flexibility can be achieved by using a stack (a
group of temporary internal or external memory locations) to
store vital data. A stack pointer is used to address the mem-
ory location currently at the top of the stack. Indirect and rela-
tive addressing and other sophisticated addressing modes (all
of which can be handled by the PCU) will be discussed later.
Meanwhile, Fig. 5 shows the PCU as a part of the CPU.

Executing an instruction in our computer now requires the
following steps:

a). The PCU loads the address of the next instruction to the
MAR and signals to the memory that a Read is re-
quested. Incidentally, the PCU may be as simple as a
Program Counter equal to the address width. The mem-
ory loads the MDR with the contents of the location ad-
dressed.

b). The CPU decodes the instruction: i.e., (assuming
operands are in internal registers) selects the proper reg-
isters to feed the ALU, selects the proper function to be
performed by the ALU, sets up the shifter to displace the
result, if required, and selects the register in which the
result should be stored.

c). The ALU performs the function desired.

d). The result is loaded into the destination register.

e). The result is also examined to determine whether a
BRANCH is to be performed.

f). The PCU calculates the address of the next instruction,
(usually called a “FETCH”).

This procedure becomes more complicated if the operands
are not stored in the internal registers or if the result is not to
be stored in one of them. Let's take an example instruction
using relative addressing:

“Take the first operand from the location specified by the
sum of the word after this instruction (immediate) and the
contents of register R1; take the second operand from
the location specified by the sum of the second word
after this instruction and the contents of R2; add the two
operands and place the result in the location specified by
the sum of the third word after this instruction and the
contents of register R3. Then execute the instruction lo-
cated at the address, which is the sum of the fourth word
after this instruction and the contents of register R4 if
there is a carry resulting from the addition. Otherwise
continue sequentially”.

The steps required to execute this instruction are as follows:

a). The PCU loads the address of the next instruction to the
MAR, signalling to the memory that a Read is requested.
The memory loads the MDR with the contents of the loca-
tion addressed.

b). The CPU decodes the instruction, i.e., initiates the follow-
ing steps.

c). The PCU is incremented and the next word is read from
the memory.

d). Register R1 and the MDR are selected as source regis-
ters, MAR is the destination register.

e). The ALU performs “ADD” and the result is placed in the
MAR.

f). The first operand is fetched from the memory and placed,
for example, in R5.

g). The PCU is incremented and the next word is. read from
the memory.

h). Register R2 and the MDR are selected again as source
registers and MAR as the destination.

1). The ALU performs “ADD” and the result is placed in
MAR.

j). The second operand is fetched from the memory and is
placed, for example, in R6.

k). The PCU is incremented, the next word is read from the
memory.

1). Register R3 and the MDR are selected as source regis-
ters, the MAR as destination.

m). The ALU performs “ADD” and the result is placed in the
MAR, which now points to the location where the sum of
the operands should be stored.

n). Registers R5 and R6 are selected as sources (they con-
tain the operands), MDR is now the destination.

0.) The ALU performs “ADD” and the result i1s placed in
MDR.

p). A memory write cycle takes place and the contents of the
MDR is stored at the desired address.

q). The carry is examined to determine the next step to be
performed. Assume there is no carry.

r). The PCU is incremented twice (in order to skip the fifth
word of the present instruction). It now points to the ad-
dress of the next instruction.

As can be seen, 18 steps were used to perform a single ad-
dition using this complex relative addressing scheme. Obvi-
ously, our CPU needs some kind of “coordinator” which can:

1). Decode an instruction fetched from the memory.

2). Initiate the proper cycle of steps to be performed.

3). Set up the various controls for each step.

4). Execute the steps in an orderly sequence.

5). Make decisions according to the state of various signals
(conditions).

We will call this coordinator the Computer Control Unit (CCU)
and it is depicted in Fig. 6. Our CPU is now complete (more
or less) and we will go into more detail later.

THE MEMORY

Let's now discuss the memory. The information stored in the
memory is organized in words, where each word consists of N
bits. N may be as small as 8 for very simple processors or as
large as 64 in more powerful machines. The most common
memory width for minicomputers is 16 bits. The number N is
called the width of the memory and the number of bits in the
MDR s obviously also N; equal to the width of the memory.

The depth of a memory is the number of words it contains.
With a MAR having k bits, 2% consecutive memory locations
can be addressed. The addresses start from zero and range
through 2K.1.

The read access time of a memory directly accessible by the
CPU is the time needed from stable address at the memory
until the data is properly stored in the MDR. This access time
depends on the type of memory used and can be as low as a
few tens of nanoseconds and as large as several micro-
seconds. Using high speed memory improves the perfor-
mance of the computer as less time is wasted waiting for the
memory to respond. In general, faster memories are costly,
take more PC board area and use more power which results
in more heat. A 32 bit wide, 2K (2048) word memory with 50
nanosecond access time may need 10 amps from the +5V
power supply and may require a board area of 10” x 6”. Yet
this is a very small memory space.

It is usually not justified to have very large high-speed
memories. Not all the programs and associated data need to
reside in this memory at once. We may have the current pro-
gram (or only a part of it) in the memory while other programs
or data files can reside elsewhere and be brought into mem-
ory during the appropriate part of the program when needed.

REGISTER FILE

SHIFT :>

—

]

INSTRUCTION
DECODE

CONTROL

COMPUTER
CONTROL

UNIT
(ccu)

L
1l

TIMING

CENTRAL PROCESSING UNIT (CPU)

XNW NOILVYNILS3a ANV 30HNOS

AN

N

I>T
||

PCU

MPR-444

Figure 6. A Computer Control Unit (CCU) Included in a CPU.

This “elsewhere” may be a magnetic tape, cassette, disk,
diskette, etc. and we will call it Bulk Memory. The distinctive
characteristics of Bulk Memory are:

1). very large capacity

2). non-volatile (retains the information when not in use)

3). not randomly accessible

4). long access time

5). inexpensive (per bit)

Usually, Bulk Memory devices are serially accessible, i.e., the
access time for the first word is large, but then consecutive
words can be accessed relatively fast.

In a later chapter the most efficient process of communication
between the main and the bulk memory, called the Direct
Memory Access (DMA), will be discussed in detail.

THE EXTERNAL WORLD

In any useful machine, some means of communicating with
the external word is needed. It may be a keyboard, a CRT, a
card reader, a paper tape punch or, in a process controller,
reading sensors or positioning actuators. The common de-
nominator of almost all of the input/output devices is that they
are much slower than the CPU and therefore a timing prob-
lem arises; the CPU must know when the 1/O device is ready
for data transfer. Usually, a signal is sent by the device to the
CPU in order to draw its attention. The CPU now can do one
of two things:

1). Test this signal periodically and when it is present, jump
to a program which handles the data transfer. This type
of operation is called “Polling”. This technique has two

major drawbacks: First, appreciable computer time is
spent performing these periodic tests where most of them
will fail (no “Ready” signal present). Second, the recogni-
tion by the computer CPU of the appearance of a signal
is delayed until the CPU arrives at this device in its pol-
ling sequence.

Imagine what will happen if there are a large number of
1/0 devices. Long latency times (delays) will occur if
many |/O devices are busy simultaneously.

2). Include some hardware in the CPU which can sense the
presence of a “Ready” signal and interrupt the normal
flow of the instructions and force the computer to “Jump”
to the I/O service program whenever there is a request. It
can even send the CPU to different programs according
to the I/O device whose “Ready” flag was detected and
even establish priority among the different devices if more
than one device would like to have the CPU’s attention at
the same time. Moreover, under program control, this cir-
cuitry can ignore some or all of the signals if the com-
puter CPU must not be interrupted at that time. Obviously
by paying the price of very little hardware, we gain
enormously in computer performance. We will call this
hardware the “Interrupt Controller” and will discuss it
thoroughly later.

Our computer is now depicted in Fig. 7. We have included the
ALU, the internal register file and the shift circuit in one block,
which we call the “Arithmetic Processor Unit.”

In the following pages and in the subsequent chapters, we will
deal in more detail with each area of the machine.

COMPUTER

CENTRAL PROCESSING UNIT (CPU)

CONTROL
e UNIT <__
(ccu) !

™ N
D DATA
R V

N/

REGISTER FILE

V

ALY

o]

ITHME'
PROCESSOR UNIT (APU)

MEMORY

f T

CONTROL

PROGRAM ™M I
A
R

INTERRUPT

DMA
CONTROLLER CONTROLLER

ﬁ

i g

EXTERNAL WORLD

MPR-445

Figure 7. The Stored-Program-Computer with DMA and Interrupt Control Added.

A WORD ABOUT THE INSTRUCTION SET

The internal architecture of the CPU depends to some extent
on the instruction set the computer is to execute. If the in-
struction set is large, some of the instructions usually are
more complicated and the computer is more powerful, faster
and more efficient. On the other hand, the internal circuitry is
also more complicated. Some examples of these tradeoffs are
as follows.

ALU Processing Capability:

Although with three basic functions (add, complement, and
OR/AND) all the arithmetic and logic operations can be per-
formed, most processors are built to perform subtract, NAND,
XOR, etc. This is perhaps the most outstanding example of
how performance and speed can be gained with little penalty
on the complexity of the machine. With the added features an
XOR operation can be performed in one instruction instead
of 5.

Data Movement:

Let us assume 4 different computers whose data movement
capabilities are described below:

Machine A). A word can be read from the memory and
loaded into Register A only. The contents of Register A can
be written into the memory, or can be moved into any other
register. The contents of any register can be copied into
Register A.

Machine B). The contents of any register can be copied into
any other register or it can be written into the memory. A word
read from the memory can be loaded into any register.

Machine C). As B above but with the added capability to read
from one location in memory, to write that word into another
location in memory.

Machine D). As C above and also the memory-to-memory
operation can be performed on consecutive addresses repeti-
tively. The number of word transfers (or upper and lower ad-
dress limits) are specified by the instruction.

Machine A has very limited data movement capability. In
order to perform an operation on two operands residing in the
memory, we have to:

1). Bring the first operand from the memory into Register A.
2). Copy it into another register.

3). Bring the second operand into Register A.

4). Perform the operation required (result in A).

5). Store the contents of Register A into the memory.

If consecutive operations are required with several partial re-
sults, the drawbacks of machine A become more annoying,
especially if the number of internal registers is small.

Moving a data block from one location in the memory to
another location can be performed by one instruction in com-
puter D, but requires the transfer of each word first to an in-
ternal register then to the new memory location in machines
A, B (two instructions for each word transferred).

Obviously the decoding, multiplexing and sequencing of the
computers grow in complexity as we proceed from machine A
to machine D. We trade the complexity of hardware versus
the software (programming), speed and performance.

Addressing:
The operands for an operation can be found in several ways:

® The operand is an explicit part of the instruction (Im-
mediate)

® The address of the operand is an explicit part of the in-
struction. (Direct)

® The address of the operand is in an internal register; the
register itself is specified by the instruction. (RR)

® The address of the operand is the sum of the contents of
an internal register (specified by the instruction) and a
number (called the displacement) which is an explicit part
of the instruction. (RX)

e The contents of an internal register are added to a
number found in an address specified by the instruction.
The sum is the address of the operand. (Indirect)

® The contents of an internal register are added to a
number which is an explicit part of the instruction. The
sum points to the location where the address of the
operand is written. (Indirect)

e The contents of an internal register are added to a
number which can be found at the location explicitly
specified by the instruction. The sum thus formed points to
a location where the address of the operand is written.

e Etc.

Many other schemes can be formed by combining the above
operations or by chaining them. In every case an “Effective
Address” must be found by calculations and/or memory refer-
ences. Again, we can gain performance by using more
sophisticated addressing schemes but we will pay for it by
adding complexity to our machine, especially in its control por-
tion.

TIMING, SEQUENCING, CONTROLLING

In the previous paragraphs we have shown that we can gain
performance in our computer by having a more complicated
instruction set but more complex hardware is required, usually
in the CCU. We have also shown an example for an “Add”
operation which required 18 precisely controlled steps. Even if
we assume that some of them can be performed simultane-
ously, we will need a multiphase clock to control these steps
— something like that shown in Fig. 8. We can now load an
instruction register at the beginning of an instruction with the
first word of the instruction (the OP CODE) as is shown in
Fig. 9. Using the outputs of the Instruction Register (IR, to
IRn.1), the different phases of the clock and the various condi-
tion inputs to the CCU, we can now try to write the logical
equations which should satisfy all of the steps of all the in-
structions of our instruction set. Then use Karnough maps or
other techniques to reduce these equations and finally realize
them using AND, OR, INVERT gates and Flip Flops. Simple,
isn’t it? Imagine the complexity of a sophisticated computer
and the debugging process it needs!

The question posed immediately is: Isn’t there a more or-
ganized and more easily understandable way to do that? Or,
perhaps, can we have some processor do the job for us?
Can’t we have some kind of “micro-machine” which can take
care of all the timing, sequencing and controlling jobs of our
computer — a computer inside the computer? With the advent
of the Am2900 family — new Bipolar LS| devices — the an-
swer is: Yes, we can!

o0 I 1

2]

%2

3

%4

5

%6

M

=

MPR-446

Figure 8. An 8-Phase Clock.

[T Q—

[LFp——

| gua—

om>n

[BP—

Ry ~—ro]

FROM
MEMORY

(——— —

DO

MPR-447

Figure 9. The Instruction Register Bits.

AN

DATA BUS)

!

INSTRUCTION REGISTER

{

INSTRUCTION DECODE

CLOCK

CONDITION
TEST
Mux

Am2910
SEQUENCER

CONDITIONAL
CONTROL LINES
;. .l. l

MICROPROGRAM
MEMORY

PIPELINE

REGISTER

MPR-448

Vi)

CONTROL LINES FOR
ALL THE CIRCUITS
OF THE COMPUTER

Figure 10. The Micromachine.

THE MICRO-MACHINE

What we need is essentially a machine which can execute a
number of well defined sequences. But, remember that this is
exactly the purpose of a stored program computer. The only
difference between our micro-machine and a general purpose
computer is that in the general purpose computer the program
to be executed is changed from task to task, while in our
micro-machine it is fixed. This allows the use of PROM for its
memory instead of the RAM needed in the general purpose
(GP) computer. Our Computer Control Unit (CCU) using this
micro-machine may now look like Figure 10.

Basically, a microprogrammed machine is one in which a
coherent sequence of microinstructions is used to execute
various commands required by the machine. If the machine is
a computer, each sequence of microinstructions can be made
to execute a machine instruction. All of the little elemental
tasks performed by the machine in executing the machine in-
struction are called microinstructions. The storage area for
these microinstructions is usually called the microprogram
memory.

A microinstruction usually has two primary parts. These are:
(1) the definition and control of all elemental micro-operations
to be carried out and (2) the definition and control of the ad-
dress of the next microinstruction to be executed.

The definition of the various micro-operations to be carried out
usually includes such things as ALU source operand selec-
tion, ALU function, ALU destination, carry control, shift control,
interrupt control, data-in and data-out control, and so forth.
The definition of the next microinstruction function usually in-
cludes identifying the source selection of the next micro-
instruction address and, in some cases, supplying the actual
value of that microinstruction address.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines in the following manner.
Older, non-microprogrammed machines implemented the con-
trol function by using combinations of gates and flip-flops
connected in a somewhat random fashion in order to generate
the required timing and control signals for the machine. Mi-
croprogrammed machines, on the other hand, are normally

considered highly ordered and more organized with regard to
the control function field. In its simplest definition, a micro-
program control unit consists of the microprogram memory
and the structure required to determine the address of the
next microinstruction.

The OP-CODE (type of instruction to be executed by the
computer) is loaded into the Instruction Register and the In-
struction Decoder decodes it. Actually, it generates the micro-
address where the first step of the execution sequence for
that instruction resides in the microprogram memory. The
Am2910 sequencer then generates the microaddress of the
next microinstruction. The microprogram data supplies the
control signals we need to control all the parts of the com-

INITIALIZATION

FETCH MACHINE
INSTRUCTION

l

DECODE INSTRUCTION

NEED
OPERAND?

EXECUTE
INSTRUCTION

|

FETCH OPERAND

OPERATE NO

N
OPERAND?

EXECUTE

L

MPR-449

Figure 11. Computer Control Function Flow Diagram.

puter (and there are a lot of them), including the sequencer
itself. When all the steps of a machine instruction are exe-
cuted, the microprogram will cause the reading (fetch) of the
next machine instruction from the computer main memory.
Typically, the Computer Control Unit is used to fetch instruc-
tions and decode them using a PROM for mapping the op
code to the initial address of the sequence of microinstruc-
tions used to execute this particular instruction. It will also
fetch all of the operands needed by the machine instruction
and deliver them to the ALU for processing. An example of
the flow of a typical Computer Control Unit is shown in Figure
11.

Assume the OP-CODE of the machine instruction that we
fetch is 8 bits wide. This allows us to execute a minimum of
256 different instructions. Assume also that an average of 6
steps are needed to execute these instructions. Even if sepa-
rate microprogram memory locations are used, a depth of this
microprogram memory is only 1-1/2K (K = 1024). But in that
case, the sequencer can almost be replaced by a simple
counter. Usually we would like to share some micro-routines
among different instructions. With very little effort, we can
shrink the depth of the microprogram memory of Figure 10 to
less than 1/2K. Of course the sequencer will be a little more
sophisticated; it will perform conditional Branch and micro-
subroutine CALL'’s; but we still don’t need the complicated
addressing schemes for microprogram control as were de-
scribed earlier as a part of the machine instruction set.

On the other hand, the width of our microprogram memory
may be large — maybe 60 to 100 bits. This will depend on the
number of control lines needed in our computer. This is of no
great disadvantage since the price of PROM devices is drop-
ping constantly. In a future chapter we will discuss techniques
to reduce the depth and width of the microprogram memory to
save cost.

It is important to understand the distinction between machine
level instructions and microprogram instructions. Figure 12
shows a typical machine instruction for a 16 bit minicomputer
that has an 8-bit opcode to identify one of 256 instructions; a
4-bit source register specification to identify one of 16 source
registers and a 4-bit destination register specification to iden-
tify one of 16 destination registers. The microprogram instruc-
tion of Figure 12 may contain from 32 to 128 bits in a typical
design; or even more bits in a very fast, highly parallel mi-
crocoded machine. This microinstruction word usually will con-
tain fields for the ALU source operand, ALU function, ALU des-
tination, status load enable, shift multiplexer control, bus

MACHINE LEVEL INSTRUCTION

MPR-450

OP CODE

DESTINATION SOURCE
R1 R2

MICROPROGRAM INSTRUCTION

7 413 o

BRANCH | Am2910 | CC IR

Am2903 | Am2903 | Am2903 | Am2903 | STATUS | SHIFT ETC
ADDRESS INST MUX Lo A&B |SOURCE| ALU DEST LOAD MUX

| 3270 128 BITS -

The machine instruction is 16-bits and consists of an op code, source register and destination register specifica-
tion. The microprogram instruction defines all the elemental signals to control the various pieces of the machine.

Figure 12.

10

cycle control, etc. These fields are used to control the various

devices within the machine so that its execution is as desired

on each clock cycle. This is more straightforward than using
" combinatorial logic and yields a more organized design.

Let us now compare the depth-over-width (d/w) ratio of the
computer's main memory to that of our microprogram mem-
ory.

In the Am9080A type microprocessor, the data field is 8 bits
and the address field is 16 bits, allowing direct addressing of
64K locations. The ratio d/w is 8K. In some minicomputers,
the data width is 16-32 bits and the addressing capability is
64-128K. The d/w ratio is about the same. In larger computers
with 32-64 bit data width, we find 256-512K deep memories or
even deeper ones. The d/w ratio again is 8K at least.

On the other hand, the d/w ratio in microprogram memories is
seldom greater than a few tens. Even if we assume that it is
2K deep and only 64 bits wide, we arrive at a d/w ratio of only
32; usually it will be around 10. It is much easier to control a
machine with a d/w ratio of 10 to 20 than to control one with
d/w = 8K.

ONE MORE WORD

We have suggested a replacement of the “random logic”
realization of the CCU by a micro-machine. We call this a
“Microprogrammed Architecture”. Perhaps the biggest advan-
tage of this type of architecture is the ease of structuring the
control sequence. We allocate a bit or a group of bits in the
microprogram memory to control a certain function (e.g.: ALU
source register selection, ALU function, ALU destination selec-
tion, condition selection, next address calculation selection,
MDR destination selection, MAR source selection, etc., etc.)
and for each microstep we write the appropriate state for
these bits (LOW-HIGH) into this memory field. Later we will
see that automated and sophisticated tools are avail-
able to perform this microprogram writing. One such tool is
AMDASM™ as available on System 29. But, this is not the only
advantage of the microprogrammed architecture.

As nobody is perfect, some “bugs” may inadvertently slip into
the design. In a random logic architecture, we will have to re-
design and usually rebuild the whole computer. On the other
hand, in a microprogrammed machine it is usually sufficient to
change a couple of bits in the microprogram to rectify the
problem. This is even easier if a RAM instead of a PROM is
used during the development and debugging phases. Of
course, we must be able to load this memory with the micro-
program by some external means. Again, a powerful tool is
available: AMD’s System/29™.

Finally, let's face the reality: The marketing guys usually
change their requirements (i.e., the instruction set) when you
are 80% through your logic design. Now you have to start
over from scratch. Not so! Change some microcode, perhaps
very little hardware too and here you are! It is even more
convenient when only additions to the existing instruction set
are considered. Just add a few lines to your microprogram to
comply with those new ideas! A mere few minutes using Sys- .
tem 29 — That's flexibility! Incidentally, don't tell the marketing
guys how easy it is or you will NEVER get the product out!!

SUMMARY

The block diagram of Figure 13 shows a typical 16-bit
minicomputer architecture. Also identified on this block dia-
gram are various Am2900 family elements that might be used
In each of these blocks. Such a design might use either
4-Am2901A’s or 4-Am2903’s for the data path ALU. An
Am2910 could be used as the microprogram sequencer for
control of up to 4K words of microprogram memory. Also
shown on the block diagram are the Am9130 and Am9140
MOS Static RAM’s which are potential candidates for use in
the computer’s main memory.

The following chapters will discuss various blocks of Figure 13
in detail and give design examples for each section. Needless
to say, the design engineer can appropriately tailor any design
to meet his throughput requirements. Also, special algorithms
can be executed by adding the appropriate hardware and mi-
crocode to the blocks described.

Am2919
Am2918 N\
Amzs0 I Am2920 WORKING I Am2901A
Am2911 R Am2902
Amaott REGISTE! f_' REGISTERS :mzm
Am2976 \m2904
m29761 COMPUTER CONTROL UNIT ARITHMETIC Am2021
Loaic Am2919
Am2920
MICROINSTRUCTION REGISTER —J
Am2930
Am2918
Am2920
Am2933
AND
MEMORY ADDRESS
o REGISTER
=1
cl
<
<
Am2925 B
Am2910
Am2922
NEXT
et MICROPROGRAM cLOCKS
sl ADDRESS CONTROL
m2920
Am9114
Am9130
M 2 MEMORY Am9140
TEST 2 BANK 1 Amg124
CONDITIONS Am2914 @ Amg1a7
Am2913 ol
3
CONTROL PANEL INTERRUPT <
OTHER PROCESSOR UNIT
INTERRUPT REQUEST TO INTERFACE CONTROLLERS
Am2905/06/07/15A116A17A
MPR-451

Figure 13. A Generalized Computer Architecture.

Chapter Il
Microprogrammed Design

CHAPTER Il
MICROPROGRAMMED DESIGN

INTRODUCTION

A microprogrammed machine is one in which a coherent se-
quence of microinstructions is used to execute various com-
mands required by the machine. If the machine is a computer,
each sequence of microinstructions can be made to execute a
machine instruction. All of the little elemental tasks performed
by the machine in executing the machine instruction are called
microinstructions. The storage area for these microinstructions
is usually called the microprogram memory. This technique was
identified by Wilkes in the 1950’s as a structured approach to
the random control logic in a computer.

A microinstruction usually has two primary parts. These
are: (1) the definition and control of all elemental micro-
operations to be carried out and (2) the definiton and control of
the address of the next microinstruction to be executed.

The definition of the various micro-operations to be carried out
usually includes such things as ALU source operand selection,
ALU function, ALU destination, carry control, shift control, inter-
rupt control, data-in and data-out control and so forth. The def-
initon of the next microinstruction function usually includes
identifying the source selection of the next microinstruction ad-
dress, and in some cases, supplying the actual value of that
microinstruction address.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines in the following manner. Old-
er, non-microprogrammed machines implemented the control
function by using combinations of gates and flip-flops con-
nected in a somewhat random fashion in order to generate the
required timing and control signals for the machine. Micropro-
grammed machines, on the other hand, are normally considered
highly ordered and more organized with regard to the control
function field. In its simplest definition, a microprogram control
unit consists of the microprogram memory and the structure
required to determine the address of the next microinstruction.

Microprogramming 1s normally selected by the design engineer
as a control technique for finite state machines because it im-
proves flexibility, performance, and LSI utilization. Several addi-
tional key features of microprogrammed designs are listed be-
low:

More structured organization

Diagnostics can be implemented easily

Design changes are simple

Field updates are easy

Adaptations are straightforward

System definition can be expanded to include new features
Documentation and Service are easier

Design aids are available

Cost and design time are reduced

THE MICROPROGRAM MEMORY

The microprogram memory is simply an N word by M bit mem-
ory used to hold the various microinstructions. For an N word
memory, the address locations are usually defined as location
0 through N—1. For example, a 256-word microprogram mem-
ory will have address locations O through 255. Each word of
the microprogram memory consists of M bits. These M bits are
usually broken into various field definitions and the fields can
consist of various numbers of bits. It is the definition of the var-
lous fields of a microprogram word that is usually referred to as
FORMATTING.

An example of how microinstruction fields are defined in a typ-
ical machine microprogram memory word is as follows:

Field 1 — General purpose

Field 2 — Branch address

Field 3 — Next microinstruction address control
Field 4 — Condition code multiplexer control
Field 5 — Interrupt control

Field 6 — Fast clock/slow clock select

Field 7 — Carry control

Field 8 — ALU source operand control

Field 9 — ALU function control

Field 10 — ALU destination control

Field 11 — Shift multiplexer control

Field 12 — etc.

EXECUTING MICROINSTRUCTONS

Once the microprogram format has been defined, it is neces-
sary to execute sequences of these microinstructions if the
machine I1s to perform any real function. In its simplest form, all
that is required to sequence through a series of microinstruc-
tions is a microprogram address counter. The microprogram
address counter simply increments by one on each clock cycle
to select the address of the next microinstruction. For example,
if the microprogram address counter contains address 23, the
next clock cycle will increment the counter and it will select ad-
dress 24. The counter will continue to increment on each clock
cycle thereby selecting address 25, address 26, address 27,
and so forth. If this were the only control available, the machine
would not be very flexible and it would be able to execute only
a fixed pattern of microinstructions.

The technique of continuing from one microinstruction to the
next sequential microinstruction is usually referred to as CON-
TINUE. Thus, in microprogram control definition, we will use the
CONTINUE (CONT) statement to mean simply incrementing to
the next microinstruction.

MICROPROGRAM JUMPING

If the microprogram control unit 1s to have the ability to select
other than the next microinstruction, the control unit must be
able to load a JUMP address. The load control of a counter
can be a single bit field within the microprogram word format.
Let us call this one-bit field the microprogram address counter
load enable bit. When this bit is at logic 0, a load will be inhib-
ited and when this bit is a logic 1, a load will be enabled. If the
load 1s enabled, the JUMP address contained within the micro-
program memory will be parallel loaded into the microprogram
address counter. This results in the ability to perform an N-way
branch. For example, if the branch address field is eight bits wide,
aJUMP to any address in the memory space from word 0 through
word 255 can be performed.

This simple branching control feature allows a microprogram
memory controller to execute sequential microinstructions or
perform a JUMP (JMP) to any address either before or after
the address currently contained in the microprogram address
counter.

CONDITIONAL JUMPING

While the JUMP instruction has added some flexibility to the
sequencing of microprogram instructions, the controller stili
lacks any decision-making capability. This decision-making
capability is provided by the CONDITIONAL JUMP (COND
JMP) instruction. Figure 1 shows a functional block diagram of
a microprogram memory/address controller providing the capa-
bility to jump on either of two different conditions. In this exam-
ple, the load select control is a two-bit field used to control a

13

CONDITION 2 v
CONDITION 1~ cc
GND _—l
L) Dy D2 b3
$q
MULTIPLEXER
So
ouTPUT
I 1
DATA LOAD
MICROPROGRAM
ADDRESS COUNTER
N /1/N
ADDRESS
MICROPROGRAM MEMORY
BRANCH LOAD
ADDRESS SELECT OTHER
OTHER
MPR-455

OVERLAPPING THE MICROPROGRAM
INSTRUCTION FETCH

Now that a few basic microprogram address control instructions
have been defined, let us examine the control instructions used
In a microprogram control unit featuring the overlap fetching of
the next microinstruction. This technique is also known as
“pipelining”. The block diagram for such a microprogram con-
trol unit is shown in Figure 2. The key difference when com-
pared with previous microprogrammed architectures is the exis-
tence of the “pipeline register” at the output of the microprogram
memory. By definition, the pipeline register (or microword
register) contains the microinstruction currently being executed
by the machine. Simultaneously, while this microinstruction is
being executed, the address of the next microinstruction is
applied to the microprogram memory and the contents of that
memory word are being fetched and set-up at the inputs to the
pipeline register. This techrique of pipelining can be used to
improve the performance of the microprogram control unit. This
results because the contents of the microprogram memory
word required for the next cycle are being fetched on an over-
lapping basis with the actual execution of the current micro-
program word. It should be realized that when the pipeline ap-
proach is used, the design engineer must be aware of the fact
that some registers contain the results of the previous mi-
croinstruction executed, some registers contain the current mi-
croinstruction being executed, and some registers contain data
for the next microinstruction to be executed.

Figure 1. A Two-Bit Control Field Can be Used
to Select CONTINUE, BRANCH, or
CONDITIONAL BRANCH.

four-input multiplexer. When the two-bit field is equivalent to bi-
nary zero, the multiplexer selects the zero input which forces
the load control inactive. Thus, the CONTINUE microprogram
control instruction I1s executed. When the two-bit load select
field contains binary one, the D4 input of the multiplexer is
selected. Now, the load control is a function of the Condition 1
input. If Condition 1 is logic 0, the microprogram address
counter increments and if Condition 1 is logic 1, the jump ad-
dress will be parallel loaded in the next clock cycle. This opera-
tion is defined as a CONDITIONAL JUMP. If the load select
input contains binary 2, the D, input is selected and the same
conditional function is performed with respect to the Condition 2
input. If the load select field contains binary 3, the D3 input of
the multiplexer is selected. Since the Dj input is tied to logic
HIGH, this forces the microprogram address counter to the load
mode independent of anything else. Thus, the jump address is
loaded into the microprogram address counter on the next
clock cycle and an UNCONDITIONAL JUMP is executed. This
load select control function definition is shown in Table 1.

TABLE 1.
LOAD SELECT CONTROL FUNCTION.

S1Sp Function

0 0 | Continue

01 Jump Condition 1 True
1 0 | Jump Condition 2 True
11 Jump Unconditional

CONDITION 2 Vee

CONDITION 1

GND ——‘
Do Dy Dz Dg

s
1 CONDITION CODE
So MULTIPLEXER

OUTPUT

- |

2 o MICROPROGRAM
. COUNTER |=—
S2 Mux REGISTER
OUTPUT
I TER
N N

ADDRESS

MICROPROGRAM MEMORY

NEXT
Jrrtarl ADDRESS OTHER
SELECT

I
I PIPELINE REGISTER]——4
L

CLOoCK

MPR-456

Figure 2. Overlapping (or Pipelining) the Fetch of the
Next Microinstruction.

Let us now compare the block diagram of Figure 2 with that
shown in Figure 1. The major difference, of course, is the addi-
tion of the pipeline register at the output of the microprogram
control memory. Also, notice the addition of the address multi-
plexer at the source of the microprogram memory address.
This address multiplexer 1s used to select the microprogram
counter register or the pipeline register as the source of the
next address for the microprogram memory. The condition code
multiplexer is used to control the address multiplexer in this ad-
dfess selection. By placing an incrementer at the output of the
address multiplexer, is is possible to always generate the cur-
rent microprogram address “plus one” at the input of the micro-
program counter register.

In Figure 1, the microprogram address counter was described
as a counter and could be a device such as the Am25LS161
counter. In the implementation as shown in Figure 2, the
Am25LS161 counter is not appropriate. Instead, an incrementer
and register are used to give the equivalent effect of a counter.

The key difference between using a true binary counter and the
incrementer register described here is as follows. When the
jump address from the pipeline register is selected by the mul-
tiplexer, the incrementer will combinatorially prepare that ad-
dress plus one for entry into the microprogram counter register.
This entry will occur on the LOW-to-HIGH transition of the
clock. Thus, the microprogram counter register can always be
made to contain address plus one, independent of the selection
of the next microinstruction address. When the address multi-
plexer 1s switched so that the microprogram counter register is
selected as the source of the microprogram memory address,
the incrementer will again set-up address plus one for entry into
the microprogram counter register. Thus, when the address
multiplexer selects the microprogram counter register, the ad-
dress multiplexer, incrementer and microprogram counter regis-
ter appear to operate as a normal binary counter.

The condition code multiplexer SyS; operates in exactly the
same fashion as described for the condition code multiplexer of
Figure 1. That 1s, binary zero in the pipeline register (the cur-
rent microinstruction being executed) forces an unconditional
selection of the microprogram register via Dy. Binary one or bi-
nary two In the next address select control bits of the pipeline
register cause a conditional selection at the address multiplexer
via Dy or D,. Thus, a CONDITIONAL JUMP can be executed.
Binary three in the next address select portion of the pipeline
register causes an UNCONDITIONAL JUMP instruction to be
executed via Dj.

When the overall machine timing is studied, it will be observed
that the key difference between overlap fetching and non-
overlap fetching involves the propagation delay of the micro-
program memory. In the non-pipelined architecture, the micro-
program memory propagation delay must be added to the
propagation delay of all the other elements of the machine. In
the overlap fetch architecture, the propagation delay associated
with the next microprogram memory address fetch is a sepa-
rate loop independent of the other portion of the machine.

SUBROUTINING IN MICROPROGRAMMING CONTROL

Thus far, we have examined the CONTINUE instruction as well
as the CONDITIONAL and UNCONDITIONAL JUMP instruc-
tions for overlap fetch. Just as in the programming of minicom-
puters and microcomputers, the advantages of SUBROUTIN-
ING can be realized in microprogramming. The idea here, of
course, is that the same block of microcode (or even a single
microinstruction) can be shared by several microinstruction
sequences. This results in an overall reduction In the total

number of microprogram memory words required by the de-
sign. If we are to jump to a subroutine, what is required is the
ability to store an address to which the subroutine should return
when it has completed its execution. Examining the block dia-
gram of Figure 3, we see the addition of a subroutine and loop
(push/pop) stack (also called the file) and its associated stack
pointer. The control signals required by the stack are an enable
stack signal (FILE ENABLE = FE) which will be used to tell the
file whenever we wish to perform a push or a pop, and a
push/pop control (PUP) used to control the direction of the
stack pointer (push or pop).

In this architecture, the stack pointer always points to the address
of the last microinstruction written on the stack. This al-
lows the “next address multiplexer” to read the stack at any
time via port F. When this selection is performed, the last word
written on the stack will be the word applied to the micropro-
gram memory. The condition code muitiplexer of the previous
example has also been replaced by a next address control unit.
This next address control unit (Am29811A) can execute 16 dif-
ferent next address control functions where most of these func-
tions are conditional. Thus, the device has four instruction in-
puts as well as one condition code test input which Is con-
nected to the condition code multiplexer. Note also that the
next address control field of the microprogram word has been
expanded to a four-bit field. Outputs from the Am29811A next
address control block are used to control the stack pointer and
the next address multiplexer of the Am2911. In addition, the
device has outputs to control the three-state enable of the
pipeline register and the three-state enable of the starting ad-
dress decode PROM. Also, the architecture has a counter that
can be used as a loop-counter or event counter.

The 16 instructions associated with the Am29811A are listed in
Table 2. As is easily seen by referring to Table 2, three of the
Instructions in this set are associated with subroutining in mi-
croprogram memory. The first instruction of this set, is a simple
conditional JUMP-TO-SUBROUTINE where the source of the
subroutine address is in the pipeline register. The RETURN-
FROM-SUBROUTINE instruction 1s also conditional and 1s used
to return to the next microinstruction following the JUMP-TO-
SUBROUTINE instruction. There i1s also a conditional JUMP-
TO-ONE-OF-TWO-SUBROUTINES, where the subroutine ad-
dress i1s either in the PIPELINE register or in the internal REG-
ISTER in the Am2911. This instruction will be explained Iin
more detail later.

TYPICAL COMPUTER CONTROL UNIT
ARCHITECTURE USING THE
Am2911 AND Am29811A

The microprogram memory control unit block diagram of Figure
3 I1s easily implemented using the Am2911 and Am29811A.
This architecture provides a structured state machine design
capable of executing many highly sophisticated next address
control instructions. The Am2911 contains a next address mul-
tiplexer that provides four different inputs from which the ad-
dress of the next microinstruction can be selected. These are
the direct input (D), the register input (R), the program counter
(PC), and the file (F). The starting address decoder (mapping
PROM) output and the pipeline register output are connected
together at the D input to the Am2911 and are operated in the
three-state mode.

The architecture of Figure 3 shows an instruction register ca-
pable of being loaded with a machine instruction word from the
data bus. The op code portion of the instruction 1s decoded
using a mapping PROM to arrive at a starting address for the

15

TABLE 2. FUNCTIONAL DESCRIPTION OF Am29811A INSTRUCTION SET.

INPUTS OUTPUTS
INSTRUCTION TEST | NEXT ADDR
MNEMONIC 13 12 11 Ip FUNCTION INPUT SOURCE FILE | COUNTER | MAP-E | PL-E
I3 L L L L | JUMPZERO X) HOLD LL H L
cis L L LH | CONDJSBPL L PC HOLD HOLD H L
H) PUSH HOLD H L
JMAP L LHL JUMP MAP X D HOLD HOLD L H
ciP L L HH | CONDJUMPPL [PC HOLD HOLD H C
H) HOLD HOLD H L
PUSH LHLL PUSH/COND LD CNTR L PC PUSH HOLD H L
H [PUSH LOAD H L
JSRP L H L H | CONDJSBR/PL L R PUSH HOLD H L.
H) PUSH HOLD H L
civ L H H L | CONDJUMPVECTOR L PC HOLD HOLD H H
H) HOLD HOLD H H
JRP L H HH | CONDJUMPR/PL L R HOLD HOLD H L
H D HOLD HOLD H L
RFCT H L L L | REPEAT LOOP,CNTR #0 N F HOLD DEC H L
H PC POP HOLD H L
RPCT H L L H | REPEATPL,CNTR#0 L D HOLD DEC H L
H [HOLD HOLD H L
CRTN HLHL COND RTN L PC HOLD HOLD H L
H F POP HOLD H L
cIPP H L H H | CONDJUMPPL &POP N PC HOLD HOLD H L
H [} POP. HOLD H L
LDCT HHLL LOAD CNTR & CONTINUE | X PC HOLD LOAD H L
LooP H H L H | TESTEND LOOP L F HOLD HOLD H L
H [POP HOLD H L
CONT, H H H L_| CONTINUE X PC HOLD HOLD H L
P H H HH | JUMPPL X D HOLD HOLD H L
DATA BUS
INSTRUCTION REGISTER
OP CODE J OTHER
D, ADDRESS Am2911 MICROPROGRAM SEQUENCERS
] TC COUNTER S;;:gg;s(; OF f=—y FE,PuP I STACK POINTER |
DECODER I
LOAD/COUNT OuTPUT
REGISTER
l SUBROUTINE |
AND LOOP STACK
COUNTER REGISTER
D R F_pC
S0 NEXT ADDRESS
S, MULTIPLEXER ! INCREMENTER I
ouTPUT
2 2 A2 l 1
Lole
CARRY i 7 Am29811A
ovR—=] 6 B NEXT
ot ADDRESS ADDRESS
zro—s 24 5 POLARITY CONTROL MICROPROGRAM MEMORY
son—m|s EE % [—T| contRoL [T TEST
wr—s 82 RS
ec——{2 ° l ‘ J
1 1
ot PIPELINE REGISTER J
1 4 [__‘

B

Am2901A
OR Am2903

OTHER

MPR-457

Figure 3. A Typical Computer Control Unit Using the Am2911 and Am29811A.

PIN FUNCTIONS.

Function

TABLE 3.

Abbreviation Name

D, Direct Input Bit 1

N Instruction Bit

cc Condition Code

CCEN Condition Code Enable

Cl Carry-in

RLD Register Load

OE Output Enable

cP Clock Puise

Vee +5 Volts

GND Ground

Yi Microprogram Address Bit 1

FULL Full

L Pipeline Address Enable
MAP Map Address Enable
VECT Vector Address Enable

Direct input to register/counter and multiplexer. Dg i1s LSB
Selects one-of-sixteen instructions for the Am2910
Used as test criterion. Pass test is a LOW on CC.

Whenever the signal 1s HIGH, CC is ignored and the part operates
as though CC were true (LOW).

Low order carry input to incrementer for microprogram counter
When LOW forces loading of register/counter regardless of
instruction or condition

Three-state control of Y, outputs

Triggers all internal state changes at LOW-to-HIGH edge

Address to microprogram memory. Yq 1s LSB, Y11 1s MSB
Indicates that five items are on the stack

Can select #1 source (usually Pipeline Register) as direct
input source

Can select #2 source (usually Mapping PROM or PLA) as
direct input source

Can select #3 source (for example, Interrupt Starting Address)

as direct input source

microinstruction sequence required to execute the machine in-
struction. When the microprogram memory address Is to be the
first microinstruction of the machine instruction sequence, the
Am29811A next address control unit selects the multiplexer D
input and enables the three-state output from the mapping
PROM. When the current microinstruction being executed is
selecting the next microinstruction address as a JUMP function,
the JUMP address will be available at the multiplexer D input.
This is accomplished by having the Am29811A select the next
address multiplexer D input and also enabling the three-state
output of the pipeline register branch address field. The register
enable input to the Am2911 is connected to ground so that this
register will always load the value at the Am2911 D input. The
value at D is clocked into the Am2911’s register (R) at the end
of the current microcycle, which makes the D value of this mi-
crocycle available as the R value of the next microcycle. Thus,
by using the branch address field of two sequential micro-
instructions, a conditional JUMP-TO-ONE-OF-TWO-
SUBROUTINES or a conditional JUMP-TO-ONE-OF-TWO-
BRANCH-ADDRESSES can be executed by either selecting
the D input or the R input of the next address multiplexer.

When sequencing through continuous microinstructions in mi-
croprogram memory, the program counter in the Am2911 is
used. Here, the Am29811A simply selects the PC input of the
next address multiplexer. In addition, most of these instructions
enable the three-state outputs of the pipeline register as-
sociated with the branch address field, which allows the register
within the Am2911 to be loaded.

The 4 x 4 stack in the Am2911 i1s used for looping and sub-
routining In microprogram operations. Up to four levels of sub-
routines or loops can be nested. Also, loops and subroutines
can be intermixed as long as the four-word depth of the stack
is not exceeded.

ARCHITECTURE OF THE Am2910

The Am2910 I1s a bipolar microprogram controller intended for
use in high-speed microprocessor applications. It allows ad-
dressing of up to 4K words of microprogram. A block diagram
is shown in Figure 4.

The controller contains a four-input multiplexer that is used to
select either the register/counter, direct input, microprogram
counter, or stack as the source of the next microinstruction ad-
dress.

The register/counter consists of 12 D-type, edge-triggered flip-
flops, with a common clock enable. When its load control, RLD,
1s LOW, new data is loaded on a positive clock transition. A
few Instructions include load; in most systems, these instruc-
tions will be sufficient, simplifying the microcode. The output of
the register/counter is available to the multiplexer as a source
for the next microinstruction address. The direct input furnishes
a source of data for loading the register/counter.

CPO

|
Ed
ol

REGISTER/
COUNTER

STACK
|, POINTER

bs WORD X 1281T
STACK

out

T

T/

HOLD/LOAD

MULTIPLEXER

ER-

D R F upC | MICROPROGRAM l

cGISTER
R HPC|

INCREMENTER

SELECT

0

INSTRUCTION
PLA

PUSH/
POP/HOLD/CLEAR
CLEAR/COUNT

890

-
l2 l; |§ f

MPR-458

Figure 4. Am2910 Block Diagram.

17

18

The Am2910 contains a microprogram counter (uPC) that is
composed of a 12-bit incrementer followed by a 12-bit register.
The wPC can be used in either of two ways When the carry-in
to the incrementer is HIGH, the microprogram register is loaded
on the next clock cycle with the current Y output word plus one
(Y+1—=>uPC). Sequential microinstructions are thus executed.
When the carry-in is LOW, the incrementer passes the Y output
word unmodified so that uPC is reloaded with the same Y word
on the next clock cycle (Y —>uPC). The same microinstruction
1s thus executed any number of times.

The third source for the multiplexer is the direct (D) inputs. This
source 1s used for branching.

The fourth source available at the multiplexer input is a 5-word
by 12-bit stack (file). The stack is used to provide return ad-
dress linkage when executing microsubroutines or loops. The
stack contains a build-in stack pointer (SP) which always points
to the last file word written. This allows stack reference opera-
tions (looping) to be performed without a pop. The stack pointer
operates as an up/down counter. During microinstructions 2, 4
and 5, the PUSH operation is performed. This causes the stack
pointer to increment and the file to be written with the required
return linkage. On the cycle following the PUSH, the return
data is at the new location pointed to by the stack pointer.

During six other microinstructions, a POP operation occurs.
This places the information at the top of the stack onto the Y
outputs. The stack pointer decrements at the next rising clock
edge following a POP, effectively removing old information from
the top of the stack.

The stack pointer linkage 1s such that any sequence of pushes,
pops or stack references can be achieved. At RESET (Instruc-
tion 0), the depth of nesting becomes zero. For each PUSH,
the nesting depth increases by one; for each POP, the depth
decreases by one. The depth can grow to five. After a depth of
five is reached, FULL goes LOW. Any further PUSHes onto a
full stack overwntes information at the top of the stack, but
leaves the stack pointer unchanged. This operation will usually
destroy useful information and is normally avoided. A POP from
an empty stack places non-meaningful data on the Y outputs,
but I1s otherwise safe. The stack pointer remains at zero
whenever a POP is attempted from a stack already empty.

The register/counter is operated during three microinstructions
(8, 9, 15) as a 12-bit down counter, with result = zero available
as a microinstruction branch test criterion. This provides effi-
cient iteration of microinstructions. The register/counter is ar-
ranged such that if it is preloaded with a number N and then
used as a loop termination counter, the sequence will be exe-
cuted exactly N+1 times. During instruction 15, a three-way
branch under combined control of the loop counter and the
condition code is available.

The device provides three-state Y outputs. These can be par-
ticularly useful in designs requiring automatic checkout of the
processor. The microprogram controller outputs can be forced
into the high-impedance state, and pre-programmed sequences
of microinstructions can be executed via external access to the
address lines.

OPERATION

Table 4 shows the result of each instruction in controlling the
multiplexer which determines the Y outputs, and in controlling the
three enable signals PL, MAP and VECT. The effect on the uPC,
the register/counter, and the stack after the next positive-going
clock edge I1s also shown. The multiplexer determines which
internal source drives the Y outputs. The value loaded into uPC is
either identical to the Y output, or else one greater, as determined
by Cl. For each instruction, one and only one of the three outputs
PL, MAP and VECT is LOW. If these outputs control three-state
enables for the primary source of microprogram jumps (usually
part of a pipeline register), a PROM which maps the instruction to
a microinstruction starting location, and an optional third source
(often a vector from a DMA or interrupt source), respectively, the
three-state sources can drive the D inputs without further logic.

Several inputs, as shown in Table 4 can modify instruction execu-
tion. The combination CC HIGH and CCEN LOW is used as a test
in 10 of the 16 instructions. RLD, when LOW, causes the D input
to be loaded into the register/counter, overriding any HOLD or
DEC operation specified in the instruction. OE, normally LOW,
may be forced HIGH to remove the Am2910 Y outputs from a
three-state bus.

TABLE 4. Am2910 MICROINSTRUCTION SET.

. REG/ | ___ FAIL . PASS __
HEX CNTR | CCEN = LOW and €C = HIGH | TCEN =HIGH orCC=LOW | peg/
1319 | MNEMONIC NAME T%?«Nr's Y STACK Y STACK CNTR | ENABLE
0 Jz JUMP ZERO X 0 CLEAR 0 CLEAR HOLD PL
1 cJs COND JSB PL X PC HOLD D PUSH HOLD PL
2 JMAP JUMP MAP X D HOLD D HOLD HOLD MAP
3 cJP COND JUMP PL X PC HOLD D HOLD HOLD PL
4 PUSH PUSH/COND LD CNTR X PC PUSH PC PUSH Note 1 PL
5 JSRP COND JSB R/PL X R PUSH D PUSH HOLD PL
6 [COND JUMP VECTOR X PC HOLD D HOLD HOLD VECT
7 JRP COND JUMP R/PL X R HOLD D HOLD HOLD PL
8 RFCT REPEAT LOOP, CNTR # 0 *0 F HOLD F HOLD DEC PL
’ =0 PC POP PC POP HOLD PL
9 RPCT REPEAT PL,CNTR # 0 *0 0 HOLD 0 HOLD DEC PL
’ =0 PC HOLD PC HOLD HOLD PL
A CRTN COND RTN X PC HOLD F POP HOLD PL
B CJPP COND JUMP PL & POP X PC HOLD D POP HOLD PL
C LDCT LD CNTR & CONTINUE X PC HOLD PC HOLD LOAD PL
D LOOP TEST END LOOP X F HOLD PC POP HOLD PL
E CONT CONTINUE X PC HOLD PC HOLD HOLD PL
F T™W8B THREE-WAY BRANCH *0 F HOLD pe Pop DEC PL
=0 D POP PC POP HOLD PL
Note If CCEN = LOW and CC = HIGH, hold; else load X = Don‘t Care

The stack, a five-word last-in, first-out 12-bit memory, has a
pointer which addresses the value presently on the top of the
stack. Explicit control of the stack pointer occurs during instruc-
tion 0 (RESET), which makes the stack empty by resetting the SP
to zero. After a RESET, and whenever else the stack is empty, the
content of the top of stack is undefined until a PUSH occurs. Any
POPs performed while the stack is empty put undefined data on
the F outputs and leave the stack pointer at zero. Any time the
stack is full (five more PUSHes than POPs have occurred since
the stack was last empty), the FULL warning output occurs. No
additional PUSH should be attempted onto a full stack; if tried,
information at the top of the stack will be overwritten and lost.

THE Am2910 INSTRUCTION SET

The Am2910 provides 16 instructions which select the address of
the next microinstruction to be executed. Four of the instructions
are unconditional — their effect depends only on the instruction.
Ten of the instructions have an effect which is partially controlled
by an external, data-dependent condition. Three of the instruc-
tions have an effect which s partially controlled by the contents of
the internal register/counter. The instruction set is shown in Table
4. In this discussion it is assumed that Cl is tied HIGH.

In the ten conditional instructions, the result of the data-
dependent test is applied to CC. Ifthe CC input is LOW, the test is
considered to have been passed, and the action specified in the
name occurs; otherwise, the test has failed and an alternate
(often simply the execution of the next sequential microinstruc-
tion) occurs. Testing of CC may be disabled for a specific micro-
instruction by setting CCEN HIGH, which unconditionally forces
the action specified in the name; that 1s, it forces a pass. Other
ways of using CCEN include (1) tying it HIGH, which is useful if no
microinstruction I1s data-dependent; (2) tying it LOW if data-
dependent instructions are never forced unconditionally; or (3)
tying it to the source of Am2910 instruction bit Iy, which leaves
instructions 4, 6 and 10 as data-dependent but makes others
unconditional. All of these tricks save one bit of microcode width.

The effect of three instructions depends on the contents of the
register/counter. Unless the counter holds a value of zero, it is
decremented; If it does hold zero, it is held and a different micro-
program next address is selected. These instructions are useful
for executing a microinstruction loop a known number of times.
Instruction 15 is affected both by the external condition code and
the internal register/counter.

Perhaps the best technique for understanding the Am2910 is to
simply take each instruction and review its operation. In order to
provide some feel for the actual execution of these instructions,
Figure 5 is included and depicts examples of all 16 instructions.

The examples given in Figure 5 should be interpreted in the
following manner: The intent i1s to show microprogram flow as
various microprogram memory words are executed. For exam-
ple, the CONTINUE instruction, instruction number 14, as shown
in Figure 5, simply means that the contents of microprogram
memory word 50 Is executed, then the contents of word 51 is
executed. This is followed by the contents of microprogram
memory word 52 and the contents of microprogram memory word
53. The microprogram addresses used in the examples were
arbitrarily chosen and have no meaning other than to show in-
struction flow. The exception to this is the first example, JUMP
ZERO, which forces the microprogram location counter to ad-
dress ZERO. Each dot refers to the time that the contents of the
microprogram memory word is in the pipeline register. While no
special symbology is used for the conditional instructions, the text
to follow will explain what the conditional choices are in each
example.

It might be appropriate at this time to mention that AMD has a
microprogram assembler called AMDASM, which has the capa-
bility of using the Am2910 instructions in symbolic representa-
tion. AMDASM’'s Am2910 instruction symbolics (or mnemonics)
are given in Figure 5 for each instruction and are also shown in
Table 4.

Instruction 0, JZ (JUMP and ZERO, or RESET) unconditionally
specifies that the address of the next microinstruction Is zero.
Many designs use this feature for power-up sequences and pro-
vide the power-up firmware beginning at microprogram memory
word location 0.

Instruction 1 is a CONDITIONAL JUMP-TO-SUBROUTINE via
the address provided in the pipeline register. As shown in Figure
5, the machine might have executed words at address 50, 51 and
52. When the contents of address 52 Is in the pipeline register, the
next address control function 1s the CONDITIONAL JUMP-TO-
SUBROUTINE. Here, If the test 1s passed, the next instruction
executed will be the contents of microprogram memory location
90. If the test failed, the JUMP-TO-SUBROUTINE will not be
executed; the contents of microprogram memory location 53 will
be executed instead. Thus, the CONDITIONAL JUMP-TO-
SUBROUTINE instruction at location 52 will cause the instruction
either in location 90 or in location 53 to be executed next. If the
TEST input is such that location 90 is selected, value 53 will be
pushed onto the internal stack. This provides the return linkage
for the machine when the subroutine beginning at location 90 I1s
completed. In this example, the subroutine was completed at
location 93 and a RETURN-FROM-SUBROUTINE would be
found at location 93.

Instruction 2 is the JUMP MAP instruction. This I1s an uncondi-
tional instruction which causes the MAP output to be enabled so
that the next microinstruction location is determined by the ad-
dress supplied via the mapping PROMs. Normally the JUMP
MAP instruction Is used at the end of the instruction fetch se-
quence for the machine. In the example of Figure 5, microinstruc-
tions at locations 50, 51, 52 and 53 might have been the fetch
sequence and at its completion at location 53, the jump map
function would be contained in the pipeline register. This example
shows the mapping PROM outputs to be 90; therefore, an uncon-
ditional jump to microprogram memory address 90 is performed.

Instruction 3, CONDITIONAL JUMP PIPELINE, derives Iits
branch address from the pipeline register branch address value
(BRo-BR+4 In Figure 6). This instruction provides a technique for
branching to various microprogram sequences depending upon
the test condition inputs. Quite often, state machines are de-
signed which simply execute tests on various inputs waiting for
the condition to come true. When the true condition is reached,
the machine then branches and executes a set of microinstruc-
tions to perform some function. This usually has the effect of
resetting the input being tested until some point in the future.
Figure 5 shows the conditional jump via the pipeline register
address at location 52. When the contents of microprogram
memory word 52 are in the pipeline register, the next address will
be either location 53 or location 30 in this example. If the test 1s
passed, the value currently in the pipeline register (3) will be
selected. If the test fails, the next address selected will be con-
tained in the microprogram counter which, in this example, is 53.

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER in-
struction and is used primarily for setting up loops in micropro-
gram firmware. In Figure 5, when instruction 52 is in the pipeline
register, a PUSH will be made onto the stack and the counter will
be loaded based on the condition. When a PUSH occurs, the
value pushed is always the next sequential instruction address. In
this case, the address is 53. If the test fails, the counter is not

19

20

0 JUMP ZERO (42)

N - O
z

1 COND JSB PL (CJS)

50 STACK
51

52 90

53 91

54 92

55 a3

2 JUMP MAP (JMAP)

50

51

52

53 920
91

3 COND JUMP PL (CJP)

4 PUSH/COND LD CNTR (PUSH)

STACK
50

51
52
53

REGISTER/
COUNTER

l\

6 COND JUMP VECTOR (CJV)

7 COND JUMP R/PL (JRP)

71 81

65 COND JSB R/PL (JSRP)

8 REPEAT LOOP, CNTR # 0 (RFCT)

STACK
(PUSH)
s REGISTER/
51 COUNTER
52
53
54
55

9 REPEAT PL,CNTR # 0 (RPCT)

COUNTER
{LocT)

51
52
53

!

11 COND JUMP PL & POP (CJPP)

STACK
50 (PUSH)
51
52
53 20

54 80 91
55 i 81 92
56 82

70

72

12 LD CNTR & CONTINUE (LDCT)

10 COND RETURN (CRTN)

STACK
50
51 90
52 91
53 92
54 93
55 94
95
96
97

COUNTER

51
62
53

+

14 CONTINUE (CONT)

15 THREE-WAY BRANCH (TWB)

STACK
62 (PUSH)
63 REGISTER/
COUNTER
65 @ 72

73

13 TEST END LOOP (LOOP)

50 STACK
51 (PUSH)
52
53
54
55
56
57

Figure 5. Am2910 Execution Examples.

MPR-111

loaded; if it I1s passed, the counter is loaded with the value con-
tained in the pipeline register branch address field. Thus, a single
microinstruction can be used to set up a loop to be executed a
specific number of times. Instruction 8 will describe how to use
the pushed value and the register/counter for looping.

Instruction 5 1s a CONDITIONAL JUMP-TO-SUBROUTINE via
the register/counter or the contents of the PIPELINE register. As
shown in Figure 5, a PUSH Is always performed and one of two
subroutines executed. In this example, either the subroutine be-
ginning at address 80 or the subroutine beginning at address 90
will be performed. A return-from-subroutine (instruction number
10) returns the microprogram flow to address 55. In order for this
microinstruction control sequence to operate correctly, both the
next address fields of instruction 53 and the next address fields of
instruction 54 would have to contain the proper value. Let's
assume that the branch address fields of instruction 53 contain
the value 90 so that it will be in the Am2910 register/counter when
the contents of address 54 are in the pipeline register. This
requires that instruction at address 53 load the register/counter.
Now, during the execution of instruction 5 (at address 54), if the
test failed, the contents of the register (value = 90) will select the
address of the next microinstruction. If the test input passes, the
pipeline register contents (value = 80) will determine the address
of the next microinstruction. Therefore, this instruction provides
the ability to select one of two subroutines to be executed based
on a test condition.

Instruction 6 is a CONDITIONAL JUMP VECTOR instruction
which provides the capability to take the branch address from a
third source heretofore not discussed. In order for this instruction
to be useful, the Am2910 output, VECT, is used to control a
three-state control input of a register, buffer, or PROM containing
the next microprogram address. This instruction provides one
technique for performing interrupt type branching at the micro-
program level. Since this instruction 1s conditional, a pass causes
the next address to be taken from the vector source, while failure
causes the next address to be taken from the microprogram
counter. In the example of Figure 5, if the CONDITIONAL JUMP
VECTOR instruction i1s contained at location 52, execution will
continue at vector address 20 if the TEST input is HIGH and the
microinstruction at address 53 will be executed if the TEST input
is LOW.

Instruction 7 1s a CONDITIONAL JUMP via the contents of the
Am2910 REGISTER/COUNTER or the contents of the PIPELINE
register. This instruction is very similar to instruction 5; the condi-
tional jump-to-subroutine via R or PL. The major difference be-
tween instruction 5 and instruction 7 is that no push onto the stack
1s performed with 7. Figure 5 depicts this instruction as a branch
to one of two locations depending on the test condition. The
example assumes the pipeline register contains the value 70
when the contents of address 52 i1s being executed. As the
contents of address 53 i1s clocked into the pipeline register, the
value 70 1s loaded into the register/counter in the Am2910. The
value 80 is available when the contents of address 53 is in the
pipeline register Thus, control is transferred to either address 70
or address 80 depending on the test condition.

Instruction 8 1s the REPEAT LOOP, COUNTER # ZERO instruc-
tion. This microinstruction makes use of the decrementing capa-
bility of the register/counter. To be useful, some previous instruc-
tion, such as 4, must have loaded a count value into the register/
counter. This instruction checks to see whether the register/
counter contains a non-zero value. If so, the register/counter is
decremented, and the address of the next microinstruction is
taken from the top of the stack. If the register counter contains
zero, the loop exit condition i1s occurring; control falls through to

the next sequential microinstruction by selecting uPC; the stack
1s POP’d by decrementing the stack pointer, but the contents of
the top of the stack are thrown away.

An example of the REPEAT LOOP, COUNTER # ZERO instruc-
tion 1s shown in Figure 5. In this example, location 50 most likely
would contain a PUSH/CONDITIONAL LOAD COUNTER in-
struction which would have caused address 51 to be PUSHed on
the stack and the counter to be loaded with the proper value for
looping the desired number of times.

In this example, since the loop test is made at the end of the
instructions to be repeated (microaddress 54), the proper value to
be loaded by the instruction at address 50 is one less than the
desired number of passes through the loop. This method allows a
loop to be executed from 0 to 4095 times.

Single-microinstruction loops provide a highly efficient capability
for executing a specific microinstruction a fixed number of times.
Examples include fixed rotates, byte swap, fixed point multiply,
and fixed point divide.

Instruction 9 1s the REPEAT PIPELINE REGISTER, COUNTER
ZERO instruction. This instruction is similar to instruction 8
except that the branch address now comes from the pipeline
register rather than the file. In some cases, this instruction may be
thought of as a one-word file extension; that is, by using this
instruction, a loop with the counter can still be performed when
subroutines are nested five deep. This instruction’s operation Is
very similar to that of instruction 8. The differences are that on this
instruction, a failed test condition causes the source of the next
microinstruction address to be the D inputs; and, when the test
condition is passed, this instruction does not perform a POP
because the stack is not being used.

In the example of Figure 5, the REPEAT PIPELINE, COUNTER
ZERO instruction s instruction 52 and i1s shown as a single
microinstruction loop. The address in the pipeline register would
be 52. Instruction 51 in this example could be the LOAD
COUNTER AND CONTINUE instruction (number 12). While the
example shows a single microinstruction loop, by simply chang-
ing the address in a pipeline register, multi-instruction loops can
be performed in this manner for a fixed number of times as
determined by the counter.

Instruction 10 s the conditional RETURN-FROM-SUBROUTINE
instruction. As the name implies, this instruction 1s used to branch
from the subroutine back to the next microinstruction address
following the subroutine call. Since this instruction i1s conditional,
the return 1s performed only if the test I1s passed. If the test 1s
falled, the next sequential microinstruction is performed. The
example in Figure 5 depicts the use of the conditional RETURN-
FROM-SUBROUTINE instruction in both the conditional and the
unconditional modes. This example first shows a jump-to-
subroutine at instruction location 52 where control is transferred
to location 90. At location 93, a conditional RETURN-FROM-
SUBROUTINE instruction i1s performed. If the test 1s passed, the
stack is accessed and the program will transfer to the next instruc-
tion at address 53. If the test Is failed, the next microinstruction at
address 94 will be executed. The program will continue to ad-
dress 97 where the subroutine 1s complete. To perform an un-
conditional RETURN-FROM-SUBROUTINE, the conditional
RETURN-FROM-SUBROUTINE instruction is executed uncon-
ditionally; the microinstruction at address 97 I1s programmed to
force CCEN HIGH, disabling the test and the forced PASS
causes an unconditional return.

Instruction 11 1s the CONDITIONAL JUMP PIPELINE register
address and POP stack instruction. This instruction provides
another technique for loop termination and stack maintenance.

21

22

The example in Figure 5 shows a loop being performed from
address 55 back to address 51. The instructions at locations 52,
53 and 54 are all conditional JUMP and POP instructions. At
address 52, if the TEST input is passed, a branch will be made to
address 70 and the stack will be properly maintained via a POP.
Should the test fail, the instruction at location 53 (the next sequen-
tial instruction) will be executed. Likewise, at address 53, either
the instruction at 90 or 54 will be subsequently executed, respec-
tive to the test being passed or failed. The instruction at 54 follows
the same rules, going to either 80 or 55. An instruction sequence
as described here, using the CONDITIONAL JUMP PIPELINE
and POP instruction, is very useful when several inputs are being
tested and the microprogram is looping waiting for any of the
inputs being tested to occur before proceeding to another se-
quence of instructions. This provides the powerful jump-table
programming technique at the firmware level.

Instruction 12 1s the LOAD COUNTER AND CONTINUE instruc-
tion, which simply enables the counter to be loaded with the value
at its parallel inputs. These inputs are normally connected to the
pipeline branch address field which (in the architecture being
described here) serves to supply either a branch address or a
counter value depending upon the microinstruction being exe-
cuted. There are altogether three ways of loading the counter —
the explicit load by this instruction 12; the conditional load in-
cluded as partof instruction 4; and the use of the RLD input along
with any instruction. The use of RLD with any instruction over-
rides any counting or decrementation specified in the instruction,
calling for a load instead. Its use provides additional microinstruc-
tion power, at the expense of one bit of microinstruction width.
This instruction 12 is exactly equivalent to the combination of
instruction 14 and RLD LOW. Its purpose is to provide a simple
capability to load the register/counter in those implementations
which do not provide microprogrammed control for RLD.

Instruction 13 is the TEST END-OF-LOOP instruction, which
provides the capability of conditionally exiting a loop at the bot-
tom; that 1s, this is a conditional instruction that will cause the
microprogram to loop, via the file, if the test is failed else to
continue to the next sequential instruction. The example in Figure
5 shows the TEST END-OF-LOOP microinstruction at address
56. If the test fails, the microprogram will branch to address 52.
Address 52 1s on the stack because a PUSH instruction had been
executed at address 51. If the test 1s passed at instruction 56, the
loop is terminated and the next sequential microinstruction at
address 57 is being executed, which also causes the stack to be
POPd; thus, accomplishing the required stack maintenance.

Instruction 14 is the CONTINUE instruction, which simply causes
the microprogram counter to increment so that the next sequen-
tial microinstruction is executed. This is the simplest microinstruc-
tion of all and should be the default instruction which the firmware
requests whenever there is nothing better to do.

Instruction 15, THREE-WAY BRANCH, is the most complex. It
provides for testing of both a data-dependent condition and the
counter during one microinstruction and provides for selecting
among one of three microinstruction addresses as the next mi-
croinstruction to be performed. Like instruction 8, a previous
instruction will have loaded a count into the register/counter while
pushing a microbranch address onto the stack. Instruction 15
performs a decrement-and-branch-until-zero function similar to
Instruction 8. The next address Is taken from the top of the stack
until the count reaches zero; then the next address comes from
the pipeline register. The above action continues as long as the
test condition fails. If at any execution of instruction 15 the test
condition 1s passed, no branch i1s taken; the microprogram
counter register furnishes the next address. When the loop 1s

ended, either by the count becoming zero, or by passing the
conditional test, the stack is POP’d by decrementing the stack
pointer, since interest in the value contained at the top of the stack
is then complete.

The application of instruction 15 can enhance performance of a
variety of machine-level instructions. For instance, (1) a memory
search instruction to be terminated either by finding a desired
memory content or by reaching the search limit; (2) variable-
field-length arithmetic terminated early upon finding that the con-
tent of the portion of the field still unprocessed is all zeroes; (3)
key search in a disc controller processing variable length records;
(4) normalization of a floating point number.

As one example, consider the case of a memory search instruc-
tion. As shown in Figure 5, the instruction at microprogram ad-
dress 63 can be Instruction 4 (PUSH), which will push the value
64 onto the microprogram stack and load the number N, which is
one less than the number of memory locations to be searched
before giving up. Location 64 contains a microinstruction which
fetches the next operand from the memory area to be searched
and compares it with the search key. Location 65 contains a
microinstruction which tests the result of the comparison and also
is aTHREE-WAY BRANCH for microprogram control. If no match
is found, the test fails and the microprogram goes back to location
64 for the next operand address. When the count becomes zero,
the microprogram branches to location 72, which does whatever
is necessary if no match is found. If a match occurs on any
execution of the THREE-WAY BRANCH at location 65, control
falls through to location 66 which handles this case. Whether the
instruction ends by finding a match or not, the stack will have
been POP’d once, removing the value 64 from the top of the
stack.

Am29811A Instruction Set Difference

The Am29811A instruction set is identical to the Am2910 except
for instruction number 15. In the Am29811A, instruction number
15 is an unconditional JUMP PIPELINE REGISTER instruction.
This provides the ability to unconditionally branch to any address
contained in the branch address field of the microprogram. Thus,
an unconditional N-way branch can be performed. Use of this
instruction as opposed to a forced conditional jump pipeline in-
struction simply allows the condition code multiplexer select field
to be shared (formatted) with other functions.

TYPICAL COMPUTER CONTROL UNIT ARCHITECTURE
USING THE Am2910

The microprogram memory control unit block diagram of Figure 6
is easily implemented using the Am2910. This architecture pro-
vides a structured state machine design capable of executing
many highly sophisticated next address control instructions.

-The architecture of Figure 6 shows an instruction register capable

of being loaded with a machine instruction word from the data
bus. The op code portion of the instruction is decoded using a
mapping PROM to arrive at a starting address for the mi-
croinstruction sequence required to execute the machine instruc-
tion. When the microprogram memory address is to be the first
microinstruction of the machine instruction sequence, the
Am2910 next address control selects the multiplexer D input and
enables the three-state output from the mapping PROM. When
the current microinstruction being executed is selecting the next
microinstruction address as a JUMP function, the JUMP address
will be available at the multiplexer D input. This is accomplished
by having the Am2910 select the next address multiplexer D input
and also enabling the three-state output of the pipeline register
branch address field. The register enable input to the Am2910
can be grounded so that this register will load the value at the

Am2910 D input. The value at D is clocked into the Am2910’s
register (R) at the end of the current microcycle, which makes the
D value of this microcycle available as the R value of the next
microcycle. Thus, by using the branch address field of two se-
quential microinstructions, a conditional JUMP-TO-ONE-OF-
TWO-SUBROUTINES or a conditional JUMP-TO-ONE-OF-
TWO-BRANCH-ADDRESSES can be executed by either se-
lecting the D input or the R input of the next address multiplexer.

When sequencing through continuous microinstructions in mi-
croprogram memory, the program counter in the Am2910 1s used.
Here, the control logic simply selects the PC input of the next
address multiplexer. In addition, most of these instructions ena-
ble the three-state outputs of the pipeline register associated with
the branch address field, which allows the register within the
Am2910 to be loaded. The 5 x 12 stack in the Am2910 1s used for

looping and subroutining in microprogram operations. Up to five
levels of subroutines or loops can be nested. Also, loops and
subroutines can be intermixed as long as the five word depth of
the stack is not exceeded.

CCU TIMING

The minimum clock cycle that can be used in a CCU design is
usually determined by the component delays along the longest
“pipetine-register-clock to logic to pipeline-register-clock” path.
At the beginning of any given clock cycle, data available at the
output of the microprogram memory, counter status, and any
other data and/or status fields, are latched into their associated
pipeline registers. At this point, all delay paths begin. Visual
inspection will not always point out the longest signal delay path.

<r DATA BUS >
INSTRUCTION REGISTER
OP CODE I OTHER
; |
ADDRESS Am2910
MAPPING STACK
proM OF ‘ POINTER
ouTPUT
REGISTER/
COUNTER
SUBROUTINE
AND LOOP STACK
CARRY —] 8 \‘2
ovR —] 7 a 7
uz
zZERO —f 6 8
O&E 12 MICROPROGRAM
SiGN —J 5 zUE
HE] COUNTER REGISTER
INRPT ——] 4 E &3
o
ETC — 3 5§
—2 = D R F PC
' NEXT ADDRESS
I MULTIPLEXER INCREMENTER
= ouTPUT
fl 1 1
cc
TEST
. CONTROL
12
ADDRESS
MICROPROGRAM MEMORY
PIPELINE REGISTER
BRANCH NEXT
ADDRESS | ADDRESS SELECT OTHER
BRy-BR
Ro-BR14 * 12 I_.
8 T0
Am2901A/Am2903
ETC
. MPR-459

Figure 6. A Typical Computer Control Unit Using the Am2910.

23

24

The obviously long paths are a good place to start, but each
definable path should be calculated on a component by compo-
nent basis until the truly longest logic signal path is found.

Referring to Figure 6, a number of potentially long paths can be
identified. These include the instruction register to pipeline regis-
ter time, the pipeline register to pipeline register time via the
condition code multiplexer and the status to pipeline register time.
In order to demonstrate the technique for calculating the AC
performance of the Am2910 state machine design, the timing
diagrams of Figure 7 are presented. Here, a number of propaga-
tion delay paths are evaluated such that the reader can learn the
technique for performing these computations.

All of the propagation delays have been calculated using typical
propagation delays because at the time of this writing, the charac-
terization of the Am2910 has not been completed. When the final
data sheet is published, the user need only select the appropriate
worst case specifications and he can compute the desired
maximum propagation delays for his design. Also, by looking at
the typical propagation delay numbers, the designer will be able
to evaluate the design margin in the system after he has com-
pleted all of the worst case calculations. These typical prop-
agation delays represent the expected values if a system were
set up on the bench and actual measurements would be taken at
5V and 25°C operating temperature.

While Figure 6 and Figure 7 deal with the Am2910 microprogram
sequencer, itis also instructive to evaluate the AC performance of
a typical computer control unit using the Am2911 and
Am29811A. Figure 3 shows such a connection and will be used
as the basis for performing the propagation delay path calcula-
tions. The calculations for the various propagation delay paths
are demonstrated in Figure 8 and are intended to show the

technique for computing these delays. As before, the typical
propagation delays have been used in the computation for com-
parison purposes. The user can derive the maximum numbers at
25°C and 5V, commercial temperature range and power supply
variations or military temperature range and power supply varia-
tions as required for his design.

When Figure 7 and Figure 8 are reviewed in detail, the reader will
recognize that the longest propagation delay paths in the case of
the Am2910 as well as the Am2911 and Am29811A involve the
three-state enables on the map PROM or the pipeline register for
the branch address. If absolute maximum speed is desired, these
paths can be eliminated by using one of several techniques. One
technique 1s to simply allocate one or more bits in the pipeline
register to control the three-state enables of the various devices
connected to the D input of the Am2910. For the example of
Figure 6, one bit would be sufficient and the pipeline register
could be implemented using an Am74S175 register. This would
allow the true and complement outputs to be used to drive the
pipeline register branch address output enable and the mapping
PROM output enable. Thus, these longest paths would be elimi-
nated and an improvement of about 30ns would be achieved. A
second technique for eliminating these propagation delay paths
would be to use a four input NAND gate and a four input NOR gate
to encode the equivalent function of the MAP enable and the PL
enable. This technique is demonstrated in Figure 9. Again, an
Am74S175 register would be used as the pipeline register to
provide the instruction inputs to the Am2910 sequencer. This
would allow instruction 2 to be decoded to provide the MAP
enable signal and “NOT INSTRUCTION 2” to be decoded as the
pipeline enable signal. This technique can be applied as well to
the computer control unit of Figure 3 to accomplish the same
longest path elimination.

a)
< DATA BUS >
fo
Q ‘f" ————————————————, {
INsTRUCTION [MaP RiE ID. T ’
REGISTER A PROM - 1
MAP
= | Hl
CLOCK CP.""“""”{"TMDTT—'“"' ‘P_&—'.\]— ‘ l
<q 1 I l
=3 = il
cP cP i) Y l l i [
—2 a 2 l] L : [
Am2922 : ! [
. RSELAI;:':ESR L4 Corone A [l MICROPROGRAM i i
. . MUX TEST i l f“"“‘““s MEMORY l I l l
CONDITIONAL JUMP L ' ! ; % I I [: ;
SPEED COMPUTATIONS | l ! ! |
DEVICENO.| DEVICE PATH PATH 1 PATH2 PATH 3 l b [l ; l
S - REG CPtoY 9 9 9 ! ‘ — ; ‘
2910 I'to PC 27 27 27 PIRELING - : I
S - REG OEtoY 13 13 13 l l rf —-— ©° (‘RE{
2910 DtoY 14 - - H - T l . l
PROM ADDR to OUT 30 - - L\ 1Y ‘«L’—v o
2022 SET-UP R 5 - - R e
2910 SET-UP PC - 34 -
2910 SET-UP R - - 9 PATH 1
TOTAL-ns 98 83 58 PATH 2 -
PATH3 o = e e e wPRa0

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer.

b)

DATA BUS >
{o
Q
N Q MAP I,
REGISTER A PROM .
MAP
3
cLock : cp Am2910 PL
! r el SEQUENCER
Y PC
L l STACK
1
cpP P 3
D Q D l A
Arh 2922 }
—_— STATUS c J—
I REGISTER . bDE — ROGRAM
. . MUX TEST MEMORY
—_—
FAS /|
CONDITIONAL JUMP
SPEED COMPUTATIONS D D
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PIPELINE PIPELINE
|
2922 CPtoY 21 21 REGISTER cP REGISTER OF
2910 CCroY 21 -
PROM ADDR to OUT 30 Y I] Y
2922 SET-UP R 5 -
2910 SET-UP PC - 46
TOTAL - o PATH 1
-ns
PATH 2 MPR-461
c)
DATA BUS >
fo :
Q
INSTRUCTION Q MAP I o
REGISTER ry PROM _
MAP
3
cLock v s Am2910 L
SEQUENCER
— @
I = =
l)
I .
cP cP l
D] Q D
——
[SSURS U, RS—.\,) - - W—— 'J
—_— STRTUS CONDITION
. REGISTER 4 MICRQPROGRAM
. . MUX TEST MEMORY
—_—
jiS /|
CONDITIONAL JUMP
SPEED COMPUTATIONS
D D
DEVICE NO. DEVICE PATH PATH 1 PATH 2
S - REG CPtoQ 9 9 PIPELINE PIPELINE
2022 Doy 13 13 REGISTER cP REGISTER 22—
2910 CCtoY 21 -
PROM ADDR TO OUT 30 ‘ Y l | Y
2022 SET-UP R 5 -
2910 SET-UP PC - 46
TOTAL. 78 68 PATH
o PATH 2 s mmm omes oe

MPR-462

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer (Cont.).

26

d)
DATA BUS >
{o
(’;.. e = e ot s+ s 4
H
INSTRUCTION Q MAP Vb
REGISTER ry PROM
H
[\ {=]
cLock A zr,, PL
SEQUENCER
PC
STACK
cp cp 4
: o o I A
—_—
Am 2922 H
—_— STATUS [, Y
o REGISTER . MICROPROGRAM
. . MUX TesT | i v
JUMP MAP i H
SPEED COMPUTATIONS ’ ‘
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH3 i D D
S - REG CPQ 9 [9 ’ l PIPELINE
2910 1 to MAP 27 27 27 ! REQISTER .. ["—cp REGISTER |2
MAP-PROM OE to OUT 18 18 18 i fasns
2910 DtoY 14 - - H I
PROM ADDR to OUT 30 - - : L___!"""‘”"‘“"‘ J g Y
2922 SET-UP R 5 - - [e—
2910 SET-UP PC - 34 -
2910 SET-UP R - - 9 PATH 1
TOTAL: 103 88 63 PATH 2
-Ns
PATH 3 e — — MPR-463
e)
DATA BUS >
Io
S e ey
r PRR—— W -
INS a E _:':,_,m/ I
, E * PROM _
’ WAP E}
” I
cLock l cp Ah2910 PL
= SEQUENCER
1
cp cp
D Q D A
—_—
Am2922
E— STATUS Y
. REGISTER . CODE MICROPROGRAM
. . MUX TEST MEMORY
—]
JUMP MAP " I
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH3 [[
S - REG CPoQ [9 9 PE
MAP-PROM ADDR to OUT 25 25 25 :émi s :'EZE,'S'}NEER f—"
2910 Doy | 1a - - o
PROM ADDR to OUT 30 - - I l
2922 SET-UP R 5 - - y Y
2910 SET-UP PC - 34 -
2910 SET-UP R - - [PATH 1
TOTAL-ns 83 68 43 PATH 2
PATH 3 o o s o e MPR-464

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequencer (Cont.).

DATA BUS >
fo
Q
INSTRUCTION Q MAP l o
REGISTER ry PROM
WAP
3
cLock cp L
&= SEQUENCER
(_ N SR T — _._...l pC ‘
T n
cp cp { 3
D Q D A
J—
Am2922
[— STATUS CONDITION Y
. REGISTER . CODE MICROPROGRAM
. . MUX TEST ! MEMORY
—_—
i J]
INSTRUCTION CONTROL
SPEED COMPUTATIONS ! D D
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PIPELINE
S - REG CP—>Q 9 9 2 “Te OE
2910 oY 40 - T
PROM ADDR TO OUT 30 Nt _JI Iv
2922 SET-UPR 5 - [———
2910 SET-UP PC -
TOTAL-ns 84 73 :::: ;
MPR-465
g)
DATA BUS >
I D
Q
INSTRUCTION Q MAP n
REGISTER ry PROM
MAP
o€ /{sncx l
7
cLock oCR|” Am2g10 P
o R
= \SEOUEn CEl
{ee]
1
CP cP
D Q D ‘
—
Am 2922
— STATUS c Y
. REGISTER . CODE MICROPROGI
. . ™ TEST
UX MEMORY
i — d
D D
1 £ - | 4 - PIPELINE PIPELINE
8,9,15 8,9,15 8,9,15 8,9,15 REGISTER cp REGISTER I5e
DEVICE NO. DEVICE PATH PATH 1 PATH 1 PATH 2 PATH 2
2010 CPtoY 2 54 2 54 __]v l—_"
PROM ADDR to OUT 30 30 30 30
2922 SET-UP R 5 5 5 5
PATH 1
TOTAL-ns 61 89 61 89 PATH 2

MPR-466

Figure 7. Propagation Delay Calculations on the Am2910 Microprogram Sequenoe’r (Cont.).

27

28

a)
DATA BUS
D
Y - \
INSTRUCTION Q MAP
A PROM (('
S
OF
3
cLocK l
[—
cP CP WMAP CP ; D cP 0 CP ‘
D D STK STK. STK
—
Qa SoS1 SoS1 SoS1
- Am2g22 Am29811A
STATUS NEXT \m Am2911 \m2911
REGISTER . CBDE. TEST DDR SEQUENCER SEQUENCER SEQUENCER
. MUX ICONTROL.
— ! re ; Tn Cn+a Cn+a
[|
PATH 1
[N R —— A
CONDITIONAL JUMP ICROPROGRAM
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2)]
2922 CPtoY 21 21
29811A TEST to PL 25 25 [D
S - REG OEtoY 13 13
2911 DtoY 9 - PIPELINE PipepNE——} 08—
PROM ADDR to OUT 30 - REGISTER cp
2022 SET-UP R 5 -
2911 DtoCpiq - 14 A
2911 Cn10Cpts - 9 | — —
2911 SET-UP Cj, - 15
TOTAL-ns 103 o7 €Tc
MPR-467
b)
DATA BUS
)
Y
INSTRUCTION Q MAP - (
PROM
A
oF
3
cLock l
T
LP cP MAP cP ‘ D cP D cP ‘ D
P H o STK STK STK
RN YR A— . PN E— Y N N3Y
] AMZIBLIA,
STATUS conpmoN [¥ NEXT m2911 Am2911 | Am2ot1
REGISTER ° CODE g ADDR EQUENCER SEQUENCER QUENCER
. MUX CONTROL
[el= |
— Cn Cn+a
] PL t [v Y J
PATH 1
[T I v — A
CROPROGRAM
CONDITIONAL JUMP MEMORY
SPEED COMPUTATIONS
DEVICE NO DEVICE PATH PATH 1 PATH 2 "
S - REG cPtoQ 9 9 “ e o
2022 DtoY 13 13
29811A TESTt0 S P 25 PPELINE PPELNE oF
2011 Sy 19 - REGISTER P REGISTER [~
PROM ADDR to OUT 30 -
2022 SET-UP R 5 - " "
2011 S10Cpya - 30 I
2011 Cnt0Cnts - 9
2911 SET-UP Cpy - 15
ETC
TOTAL-ns 101 101
MPR-468

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design.

c)
DATA BUS
D
Y
Q MAP Y
" PROM
OF
cp
cLock l
cP gcp WMAP cP n cP D [‘ D
D D i STK STK STK
Q \ EIEV S QRSS! SR——
— Amgez2 JrrTIIT
STATUS . CcoNDITIoN ™[V NEXT Am2911 Am2911 : Am2911
REGISTER CODE TesT ADDR jsouzucsn
. MUX CONTROL
JE— Cria
1 PL tn Y I
PATH 1
PATH 2 oo s s s s
CROPROGRAM
CONDITIONAL JUMP MEMORY
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 U
2922 CPtoQ 21 21 o D
29811A TESTt0 S 25 25
2011 StoY 19 - PIPELINE PIPELINE | OF
PROM ADDR to OUT 30 - REGISTER PYS REGISTER
2922 SET-UPR 5 -
2911 S10Cpis - 30 Y Y
2911 [Y - 9
2911 SET-UP Cpy - 15
TOTAL-ns 100 100 ETC
MPR-469
d)
DATA BUS
D
X. i
S\
Q MAP
PROM (__
A
A FGE e ey
cLock lcp I
CP LP % k’ cP ‘ D cP i D CP ‘
o o J STK STK / STK
—
— 2 Am2922 / 29611A o S0 So
n m
STATUS . N ek NEXT Am2911 Amzqh Am2911
REGISTER CODE m— ADDR SEQUENCER
. MUX CONTROL ?
— i re E Cn Cn+a Cn+a
[PL t [P L Y l
[R Ry ——
PATH 2 A
L g
JUMP MAP) (_ Mooy
SPEED COMPUTATIONS 1 ;
DEVICE NO. DEVICE PATH PATH 1 PATH 2 I 1
2922 CPloY 21 21 Lw-*"ﬁ"“”*“m"‘"‘ o o
29811A TEST to MAP 25 25
MAP-PROM OEtoY 18 18 PIPELINE PIPELINE oF
2911 DtoY 9 - REGISTER Py REGISTER =]
PROM ADDR to OUT 30 -
2022 SET-UP R 5 - v v
2911 DtoCpig - 14 |
2911 Cnto Cppg - 9
2911 SET-UP C,, - 15
TOTAL-ns 108 102 ere
MPR-470

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

29

30

e)
DATA BUS
D
e . Y
e PROM
OE
1 ce
CcLOCK
B
ey
CP cP MAP cP ' D cP D CP l
[D STK STK STK
Q SoS1 SgS1 S0S1
— Am2922 Am29811A
STATUS R CONDITION Y NEXT m2911 Am29)1 Am201t
REGISTER CODE TEST ADDR SEQUENCER SEQUENCER SEQUENCER
. MUX CONTROL]
— [Pc} Cn Cn+a ™
[L ’ [j Y Y YT
PATH 1
PATH 2 s oo oot s A
MICROPROGRAM
MEMORY
JUMP MAP
SPEED COMPUTATIONS]
DEVICE NO. DEVICE PATH PATH 1 PATH 2
S - REG cP0oQ 9 9 2 2
MAP-PROM ADDR to OUT 25 25 Une PIPELINE oF
PIPELIN
20m1 DioY M - REGISTER P REGISTER =
PROM ADDR to OUT 30 -
2922 SET-UP R 5 - " "
2911 Do Chyg - 14
2911 Cnto Cpys - 9
2911 SET-UP Cp, - 15
TOTAL-ns 78 73 Eve
MPR-471
DATA BUS
D
Y
INSTRUCTION | @ MAP w(
PROM
A
OF
cp
CLOCK l
CP cP WAP cp l D CcP D cP l]
[D STK STK STK
—
Q oS5 {"ACK! SoS1 SoS1
- Am2922 Am208: WA (O wespet W -
R STATUS R NEXT [et “AREDIT™ Am2911
REGISTER CODE e ADD! r SEQUENCER SEQUENCER SEQUENCER
. . MUX \
I [i
— H t \\ To Chta Ch+a
[PL I, Y v
PATH e e e e l [— A —— M|
PATH 2 R A
PATH 3 == wen s . s L J
H MICROPROGRAM
INSTRUCTION PATH ™ mmmm mss s 2™ MEMORY
SPEED COMPUTATIONS ’
H
DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 [l
S - REG CPtoQ 9 9 9 S o b
29811A oS 25 25 25 l
2911 SwY 19 - - O oF
PIPELINE. PIPELINE
PROM ADDR TO OUT 30 - - : ! x e =]
2922 SET-UP R 5 - - |
2911 S$10Cnig - 30 - J Y
2911 Cn 10 Cpiq - 9 - i J— H
R
2911 SET-UP Cp, - 15 - { - ==J
2011 SET-UP STK - - 15
P ETC
TOTAL-ns 88 88 9 MPR-472

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

9)
DATA BUS
[}
Y
Q MAP)
REGISTER " PROM
OF
cp
cLock 1
cP CP MAP CP ‘ L] CP D CP| ‘ D
[D STK STK STK
——
Q SoS1 SoS1 SoS1
— Am2922 Am2s811A
STATUS . Y NEXT Am2911 m2911 Ampot1
REGISTER CODE TEST ADDR SEQUENCER SEQUENCER QUENCER
. MUX CONTROL
—] ECJ"ET”W‘WW ¢
[PL t ' E Y]
A
PATH 1
PATH 2 s o s MICROPROGRAM
MEMORY
CONTINUE
SPEED COMPUTATIONS U
DEVICE NO. DEVICE PATH PATH 1 PATH 2 D D
2011 CPtoY 29 -
via PC PIPELINE PIPELINE | OF
PROM ADDR to OUT 20 REGISTER b REGISTER
2922 SET-UP R 5 -
2911 CP 1o Cptq - Y Al
2911 CntoCpig - 9
2911 SET-UP Cp, - 15
TOTAL-ns 64 58 ETC
MPR-473
h)
DATA BUS
D
Y
Q MAP)
REGISTER A PROM
OE
lcp
cLock
CP CP MAP cP Lo cP D
[D STK STK
—_—
Q SoS1 SoS1
— Am2922 Am29811A
Y NEXT Am2911 Am2911
REGISTER ° CODE EST ADDR SEQUENCER SEQUENCER
. MUX CONTROL
i Pci
—] Cn Cn+4
| PL t [Iv ¥
PATH 1 b
A
N R ——
MICROPROGRAM
JUMP STACK MEMORY
SPEED COMPUTATIONS
DEVICE NO. DEVICE PATH PATH 1 PATH 2 jJ
2911 CPtoY 39 - D D
via STACK
PROM ADDR to OUT 30 PIPELINE PIPELINE oE
2002 SET-UPR 5 _ REGISTER P REGISTER
2911 CP10Cpis - 54
via STACK v Y
2911 Cn 10 Cpia - 9
2911 SET-UP C, - 15
TOTAL-ns 74 78 ETC
MPR-474

Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).

31

32

DATA BUS
D
Y
INSTRUCTION Q MAP \f
PROM
A
oF
cLOCK ch
CP cP WMAP CP ‘ D CP D cP 1 [
D D STK v sSTsK :T:
Q S % i
1 Al 22, 4(Am29811A = il el
STATUS . ‘CONDITION A NEXT Am2911 Am2911 Am2911
REGISTER TEST ADDR SEQUENCER SEQUENCER SEQUENCER
. Mux CONTROL
—_— Cn Cn+a Cota
1 PL t 1 Y ¥ ¥ l
A
PATH 1 MICROPROGRAM
MEMORY
D D
CONDITIONAL PUSH
SPEED COMPUTATIONS PIPELINE PIPELINE OF
REGISTER Pry REGISTER =)
DEVICE NO. DEVICE PATH PATH 1
2922 CPtoY 21 A Y
29811A TEST to SP 25
2911 SET-UP SP 15
TOTAL-ns 61 ETC
MPR-475
Figure 8. Propagation Delay Calculations for the Am2911 and Am29811A Design (Cont.).
DATA BUS
lo
Q
INSTRUCTION Q MAP n
REGISTER A PROM
OE G
CLOCK CP CP 2010
< SEQUENCER
I
cP cP Y
s S >
2922
—— STATUS CONDITION Y
. REGISTER . CODE TEST MICROPROGRAM
. . MUX PROM
—]
’ [
D D
PIPELINE PIPELINE
4 REGISTER CcP REGISTER OF
L)
MPR-476

Figure 9. Using NAND and NOR Gates to Improve Am2910 Speed.

In order to compare the performance of the Am2910 with the
Am2911 and Am29811A, Table 5 i1s presented. Here the prop-
agation delays for the Am2911 and Am29811A are for a 12-bit
wide microprogram sequencer configuration. If a wider configu-
ration is used, only one additional carry inputto carry output delay
must be added to the appropriate paths of these calculations. A
12-bit wide Am2911/29811A configuration has been evaluated
so that an “apples to apples” comparison can be made.

As s shown in Table 5, a number of combinations are possible for
the longest AC propagation delay paths for these microprogram
sequencers. First, the continue instruction can be executed the
fastest of any of the microprogram instructions if the continues
are sequential. That 1s, from the second continue on, the typical
microcycle can be either 61 or 64ns respectively. To achieve this
speed, it is required that various signals throughout the architec-
ture be stable such that the only paths that enter into the propaga-
tion delay calculation are the clock-to-output of the microprogram
counter, the microprogram memory and the pipeline register
setup.

The second group of instructions shown in Table 5 show some
examples of instruction execution and jumping. These examples
assume that the MAP and OE outputs are not used as described
earlier. These calculations apply to several of the instructions but
not to all the instructions. For the Am2910 sequencer all of the
propagation delays are around 80 to 85ns; while for the
Am2911/Am29811A combination, the propagation delays range
from about 80ns to 100ns, depending on the instruction. It should
be noted that certain other instructions such as push and condi-
tional load counter should be evaluated to determine the speed at
which they can be executed.

The lasttwo instructions shown in Table 5 are for jumps where the
output enable of the field supplying the address to the D inputs of
the microprogram sequencers are controlled by either the
Am2910 or Am29811A. Notice that for Am2910 configuration, the
jump map represents the longest propagation delay path and is
103ns typical. Also, for the Am2911/Am29811A combination, the
jump map instruction also represents the longest propagation
delay path and is 109ns typical.

It 1s not the purpose of this exercise to show every possible
propagation delay path; but rather, to show the reader the
technique for computing propagation delays such that any design
can be evaluated and the worst case past derived. Even here, not
all ofthe worst case numbers shown in Table 5 have been derived
in Figures 7 and 8. This was done intentionally and 1s left as an
exercise for the student.

If the Am2909 or Am2911 and the Am29811A are combined into
microprogram sequencers of either 8 bits in width or 16 bits in
width, the calculations need only be modified slightly to determine

the microcycle times. Obviously, if two Am2911s are used, the
worst case propagation delay paths do not change. However, if
four Am2911s are used, the carry path will become the longer
propagation delay path on several of the computations. This may
be offset however since larger microprogram PROMs may be
used if 64K of microcode is actually being addressed or high
power buffers may be placed between the Am2911 outputs and
the microprogram memory to provide sufficient drive for such a
large microprogram store.

In addition, the Am2909 and Am2911 may be used without the
Am29811A where the user wishes to generate a special purpose
instruction set or very high speed control of the internal multi-
plexer and push pop stack. In some, designs as much as 25 to
30ns, typical, can be removed from the longest propagation delay
paths of the design by using high speed Schottky SSI. While this
has not been the typical case, some designers have used it to
provide a performance improvement not achievable with a stan-
dard Schottky condition code multiplexer and the Am29811A
next address control unit.

APPLICATIONS

It should be understood that the microprogram state machine
built using either the Am2910 or the Am2911/29811A represents
a general purpose state machine controller. Applications for this
type of microprogrammed control include uses in minicomputers,
communications, instrumentation, controllers and peripherals as
well as special purpose processors. Typically, the micropro-
grammed approach provides a more structured organization to
the design and allows the design engineer the greatest flexibility
In implementation.

It 1s important to understand that microprogrammed machines
need not be part of a typical minicomputer type structure. That Is,
a general purpose minicomputer usually has a machine instruc-
tion set that 1s totally different from its microprogram instruction
control. As such, it i1s essential that the designer new to computer
design and microprogram design understand the difference be-
tween a machine instruction and a microprogram instruction. This
differentiation 1s shown in Figure 10 where a typical 16-bit
machine level instruction is demonstrated as compared with a
typical microprogram instruction. The machine level instruction
usually consists of 16 bits and in this example, these bits are used
to provide the op code, source register definition and destination
register definition. The microprogram instruction on the other
hand usually consists of anywhere from 32 to 128 bits in a typical
minicomputer type design. Here, the bits are used to control the
elemental functions of a machine such as the Am2910 instruction
control and condition code multiplexer, the Am2903 source, ALU
function and destination control and so forth. For purposes of this
explanation, let us assume that the machine level instruction is
available to the machine programmer while the microprogram

TABLE 5. SUMMARY OF LONGEST AC PATHS FOR MICROPROGRAM SEQUENCERS.

Am2911

Instruction Am2910 Am29811A Comments

Continue 61 64 The fastest instruction.
Assumes sequential continues!

Instruction Execute 84 88 If the MAP and PL outputs
Jump Map (no OE) 83 78 are not used.
Jump PL (No OE) 78 101
Jump Map (via OE) 103 109 If the MAP and PL outputs
Jump PL (via 6E) 98 104 are used.

33

34

MACHINE LEVEL INSTRUCTION

OP CODE

DESTINATION SOURCE
R1 R2 "

MICROPROGRAM INSTRUCTION

7 413 o

BRANCH | Am2910 | CC IR
ADDRESS INST MUX LD

Am2903 | Am2903 | Am2903 | Am2903 | STATUS | SHIFT ETC
A&B |SOURCE| ALU

DEST LOAD MUX

| 3270 128 BITS -]

MPR-477

Figure 10. Understanding Machine and Microprogram Instructions.

instruction is not available to the machine programmer at the
assembly language level. Let it suffice to say that this assumption
is not necessarily valid in machines being designed today.

Perhaps one of the most typical applications of the micropro-
grammed computer control unit state machine design is as the
controller for a minicomputer. Here, the function of the micropro-
grammed controller is to fetch and execute machine levelinstruc-
tions. The flow required to perform this function 1s depicted in
Figure 11 which should be representative for all general purpose
type machines. Figure 11 shows that after initialization, the com-
puter control unit simply fetches machine instructions, decodes
these instructions and then fetches the required operands such
that the original instruction can be executed. This cycle of fetch-
ing and executing instructions is performed without end. Such
things as hardware halts or resets are ignored and should be
assumed to only cause re-initialization.

Once the flow of a typical computer control unit is understood, itis
possible to evaluate a number of architectures using the Am2910
or Am2911/Am29811A such that the flow diagram of Figure 11
can be implemented.

STATE MACHINE ARCHITECTURES

After a machine instruction is fetched from memory, it is normally
placed in the machine instruction register as described in Figure
6. Then the op code portion of the instruction is decoded so that a
sequence of microinstructions in the microprogram memory can
be selected for execution. Each microinstruction is fetched and its
contents placed in the pipeline register as shown in Figure 6 for
execution.

While the architecture of Figure 6 is recommended and has been
used throughout the preceding portion of this chapter, it should be
understood that a number of architectures are possible using
these microprogram sequencers. The normal flow in fetching
microinstructions Is to determine the address of the next mi-
croinstruction, fetch the contents at that address and set up this
data at the input of the pipeline register such that it can be clocked
into the pipeline register for execution. If we assume that a clock
1s being used to clock the pipeline register, the Am2910, the
machine instruction register and the Am2903 microprocessor bit
slices, it is possible to define a number of computer control unit
designs where the relationship between the clock edges is dif-
ferent.

There seem to be a minimum of seven different architectures that
can be defined based on placing registers in the appropriate
signal paths and storing data on the low-to-high transition of the

INITIALIZATION I

FETCH MACHINE
INSTRUCTION

i

DECODE INSTRUCTION

NEED
OPERAND?

EXECUTE
INSTRUCTION

S

FETCH OPERAND

OPERATE
N
OPERAND?

EXECUTE

L |

MPR-478

Figure 11. Computer Control Flow Diagram.

clock. For purposes of this discussion, we will assume that all
clocked devices will operate using the same clock such that
changes will occur on the LOW-to-HIGH transition of the clock.
While itis possible to use multiphase clocks and tie different clock
phases to different devices, that type of system operation will not
be described here. In all cases, we will be talking about the flow of
signals between LOW-to-HIGH transitions of the clock. Typically,
acycle is started by a clock edge at a device and the signals begin
to flow from one device to the next until a set-up time to a clock
edge results. Then, the next microinstruction 1s executed in

exactly the same manner. There are three different identifiable
types of microinstruction sequences where only one register is in
the signal flow loop. The first of these we shall call an Address-
Based microinstruction cycle. It usually starts with the address of
a microprogram memory word being stored in a register by the
clock. This address has been determined by the previous mi-
croinstruction. This address then accesses the microprogram
memory to fetch its contents which are presented at its outputs to
control the Arithmetic Logic Unit and the results of the Anthmetic
Logic Unit function may be used to determine the next address
selected that will be stored in this microprogram address register.
This is shown as Figure 12a. The second type of microprogram
architecture 1s called Instruction-Based. Here, the register is
placed at the output of the microprogram memory as shown in
Figure 12b. Again, the cycle consists of executing the mi-
croinstruction in the ALU; perhaps using the resulits of the opera-
tion to determine the address of the next microinstruction and
then fetching the contents of that microinstruction and setting this
new data up at the input to the register. The third basic architec-
ture for microprogram control is called Data-Based. Here, aregis-
ter is used to hold the status data from the ALU and this is the
determining clock point for the cycle. Here, the status register
initiates the selection of the next address from which the micro-
programmed data is fetched and this microprogram instruction is
used to execute a new function in the ALU thereby setting up the
results for the status register. This scheme is shown in Figure
12c. Note that this scheme requires an additional register at the
output of the microprogram memory to hold a portion of the
microprogram instruction for controlling the condition code mul-
tiplexer and Am2910 instruction set. These primitive architec-
tures for microprogrammed control demonstrate the three points
at which aregister can be placed to provide a start and an end for
the microcycle. In a general sense, each of these three architec-

tures is one level pipelined. This, however, is not the definition
normally associated with pipelining of microprogram control.

If combinations of the above described architectures are im-
plemented, an improvement in performance will be realized. In
each of the three architectures thus described (address-based,
instruction-based, and data-based), all of the signal paths are in
series and must be transcended before a microcycle can be
completed. They are quite easy to program, however, since all of
the tasks are completed in the loop before proceeding to the next
microinstruction. As stated earlier, these tend to be the slowest of
the possible architectures for microprogram control. This disad-
vantage can be overcome by using a technique referred to as
pipelining in microprogram control. In a pipeline architecture, we
overlap the fetch of the next microinstruction while we are exe-
cuting the current microinstruction. This is achieved by inserting
additional registers in the overall path such that we can hold the
signals step-by-step. There are three possible combinations of
the above mentioned architectures that can be utilized in micro-
program control. These are address-instruction-based,
address-data-based, and instruction-data-based. While each of
these represent two stages of pipelining, we normally refer to
these as the pipelined architectures. These are shown in Figure
12d, 12e and 12f. Itis the instruction-data based architecture that
1s recommended for the Am2910 and provides the overall best
trade-off in cost versus performance.

The last possible architecture using registers in the signal path is
a combination of all three architectures and is called address-
instruction-data-based microprogram control and i1s shown in
Figure 12g. Here, three stages of pipeline are involved and we
normally refer to this as two-level pipelined archiecture. Needless
to say, if no pipelining were involved at all, we would have a ring
oscillator.

(a) Addressed Based

MPR-479

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

(b) Instruction Based

$—— CLOCK

© 1A+

REGISTER: / Joddid
o

245 83y w2y g T

N

MPR-480

Figure 12. Standard Microprogram Control Architectures.

35

36

(c) Data Based

CLOCK

REGISTER

ll(A—l)

MPR-481

(d) Instruction-Data Based (e) Instruction-Address Based

MAP CLOCK

| S(A-1)

MPR-482 MPR-483

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

Figure 12. Standard Microprogram Control Architectures (Cont.).

(f) Address-Data Based

MAP CLOCK

f: woi e

|

MPR-484

Shaded Lines Show Required Signal Flow to Complete a Microcycle:
Determine Address, Fetch Instruction and Execute.

(9) Instruction-Address-Data Based

p——- cLOoCK

PIPELINE - -
REGISTER #%

o

Figure 12. Standard Microprogram Control Architectures (Cont.).

The advantage of the instruction-data-based architecture Is that
the address and contents of the next microinstruction are being
fetched while the current microinstruction in the pipeline register
(Figure 6) i1s being executed. This allows a shorter microcycle
since the microprogram memory fetch and ALU execution can be
operated In parallel. The results of this type operation are dem-
onstrated in Figure 13 where we see a typical timing diagram of
the microprogram execution of the address-data-based instruc-
tion architecture. It should be noted that when the computational
aspects of a microinstruction are not completed in the same
microcycle, they obviously cannot be used to determine the ad-
dress of another microcycle until the computation has been com-
pleted and stored in the status register. Thus, this pipelined
architecture offers significant'speed improvement except in the
case of certain condrtional jumps. In other words, the conditional
jump may not use the status register information of the im-

mediately preceding microinstruction because the computation is
just being performed. For this architecture, the conditional jump
fetch must be executed on the cycle after the status register
contains the proper execution results. This can be seen by study-
ing Figure 13. In most microprogram designs this is not a disad-
vantage because other housekeeping and ALU operations can
be performed while the address of the next microinstruction is
being determined using the current contents of the status regis-
ter. ‘While it 1s not directly pertinent to the discussion at this time,
let us point out that the Am2904 has been designed such that the
machine architect can utilize both instruction-data-based ar-
chitecture as well as instruction-based architecture If no house-
keeping is required. Thus, the Am2910 and Am2904 can be used
In a variable architecture cycle to achieve maximum performance
for the machine.

|——— F-cvcn.e—»l

o | L]

FETCH FETCH
MEMORY wINST 1 peINST 1+1
PIPELINE REG w#-INST 1—1 wINST 1

EXECUTE EXECUTE
ALU weINST 1—1 #-INST 1
ACCUMULATOR & RESULT OF RESULT OF
STATUS REG p-INST 1-2 p-INST 11

Ll

[|

FETCH FETCH FETCH
w-INST 1+2 w-INST 143 w-INST 1+4
ueINST 141 peINST 142 uINST 1+3
EXECUTE EXECUTE EXECUTE
pINST 1+1 p-INST 1+2 wINST 1+ 3
RESULT OF RESULT OF RESULT OF
w-INST 1 #-INST 1+ 1 wANST 142

MPR-486

Figure 13. Timing Diagram of Microbrogram Execution.

37

38

DATA BUS

1

' INSTRUCTION REG

—‘ 1

ADDR

s

TEST EN

LOAD

INST

PROM
Am291!

—
E
ol

cpP

12

o

ADDR

MICRO-
PROGRAM
MEMORY

Am2918
PIPELINE
REGISTER

—

|
cp | EN

n

n
Lo SYSTEM
f CONTROL

Q

Y

—71‘2— OTHER

]

VECTOR

MAPPING
PROM
cp Am2922
STATUS MUX

ADDR Do

Dy D D3 Dy Ds Dg Dy

SEL

POL

REQ

VECT

L

Q1 G Q3 Q4

Am25LS377
STATUS REG

Dy D, D3 Dy Dg Dg

Am2914 Qs Qs

INTERRUPT

T

CLOCK

trrttt

MPR-487

Figure 14. Typical Am2910 Microprogram Control Unit.

The Am2910 in Computer Control

A general state machine design using the Am2910 is shown in
Figure 14. Here, all three output enables are used to advantage in
order to control the mapping PROM, pipeline register and vector
PROM in this design. This design is very straightforward and in
fact is identical to that shown earlier.

One area that should not be overlooked is that of initializing the
Am2910 at power up. One technique for accomplishing this is to
use a pipeline register with a clear input to provide all LOWSs to the
instruction inputs of the Am2910. This will cause a reset of the
stack in the Am2910 and force the outputs to the zero word and
microcode which can be used for the initialization routine. Typi-
cally, power up will result in the firing of a timer which can be
connected to the clear input of the register. Figure 15 shows the
technique for initializing the Am2910 using this method.

One advantage of the Am2909 when compared to either the
Am2910 or Am2911 is the OR inputs to the microprogram ad-
dress field. These OR nputs allow two, four, eight or 16-way
branching for each device if proper control is used. This control
can be accomplished using the Am29803A, 16-way branch con-
trol unit. A typical computer control unit using the Am2909,
Am2911, Am29803A and Am29811A Is shown in Figure 16. In
this example, the least significant microprogram control se-
quencer is an Am2909 and the two more significant sequencers
are Am2911s.

N

Am2910

CLEAR —

G O 0 Q3
CIR cp
Do Dy D2 D3

— cLOCK

~————

FROM MICROPROGRAM
MEMORY

MPR-488

Figure 15. Initializing the Am2910.

-

£ DATA BUS

INSTRUCTION REGISTER
0P CODE I OTHER
) ADDRESS Am2909 AND Am2911 MICROPROGRAM.SEQUENCER
STARTING __ FE pPUP
— TC COUNTER ADDRESS 3 STACK POINTER
DECODER I—_
LOAD/COUNT OUTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
1 FLAGS
D R F PC a
S0 NEXT ADDRESS
1 MULTIPLEXER INCREMENTER TEST
OUTPUT
. Am29803A
OrR ISWAY
OR BRANCH
CONTROL UNIT
1
2 2 12
— 4
CARRY ——e={ 7 Am29811A
w NEXT
OVR —={ 6 8§ ADDRESS ADDRESS
ZERQ —e=] 5 zW 5 POLARITY CONTROL MICROPROGRAM MEMORY
sz & |— |—e{ TEST
sioN ¢ 55 3 conTRoL BRANCH NEXT ADDRESS
INRPT —ef 3 §§ ADDRESS SELECT OTHER
ETC —e] 2 ‘r ; ‘
! 1
.L_. ———IEE PIPELINE REGISTER J
' ‘ j L
TO Am2901A
OR Am2903

OTHER

MPR-313

Figure 16. A High Performance Microprogram Controller Using the Am2909, Am29811A and Am29803A.

DETAILED DESCRIPTION OF THE Am2911 AND
Am29811A IN A COMPUTER CONTROL UNIT

The detailed connection diagram of a straight-forward computer
control unit is shown in Figure 17. This design features all of the
next address control functions described previously and a few
features have also been added.

Referring to Figure 17, the instruction register consists of two
Am25LS377 Eight-Bit Registers with Clock Enable. These reg-
isters are designated as U1 and U2 and provide ability to selec-
tively load a 16-bit instruction. This particular design assumes
that the instruction word consists of an eight-bit op code as well as
eight bits of other data. Therefore, the op code is decoded using
three 256-word by 4-bit PROMs. The Am29761 has been
selected for this function and is shown in Figure 17 as U3, U4 and
Us.

The basic control function for the microprogram memory is pro-
vided by the Am2911s. In this design, three Am2911s (U6, U7,

Note: Figures 17, 18, 20, and 24 are at back of the book.

and U8) are used so that up to 4K words of microprogram mem-
ory can be addressed. The microprogram memory can consist of
PROMs, ROMs, or RAMs, depending on the particular design
and the point of its development. This particular design shows the
capability of a 64-bit microword; however, the actual number of
bits used will vary from design to design.

The pipeline register associated with the computer control unit
consists of five integrated circuits designated U16, U17, U18,
U19 and U20.

One of the features of the architecture depicted in Figure 17 is the
event counter shown as U9, U10 and U11. This event counter
consists of three Am25LS163s connected as a 12-bit counter.
The counter can be parallel loaded with a 12-bit word from
pipeline registers U18, U19 and U20. The multiplexer and D-type
flip-flop (U21 and U22) at the counter overflow output (U9) is
present to improve system cycle time and will be described in
detail later.

39

40

MULTIPLEXER SELECT

R20 R1g Rig Ry7 SELECT
0 0 0 0 TEST 0
0 0 0 1 TEST 1
0 0 1 0 TEST 2
L] L]
L] L]
L] L]
1 1 1 1 TEST 15
POLARITY CONTROL
R16 OUTPUT
0 COMPLEMENT
OF TEST
1 TRUE TEST
NEXT ADDRESS CONTROL
R15 R14 Ri13 Rq2 FUNCTION
NEXT
X X X X INSTRUCTION

MACHINE INSTRUCTION REGISTER

Ra1 FUNCTION
0 LOAD
1 HOLD

CONTROL VALUE

R11-Ro

FUNCTION

XXX--- XXX

VALUE

JUMP ADDRESS

BR11-BRg

FUNCTION

XXX--- XXX

JUMP ADDRESS

Figure 17. Computer Control Unit with Am2911.

{
~
Vee
)] |
R11R1g Rg Rg Ry Rg Rs Ry Rz Ry Ry Rg
6| 5{ 4] 3 6| 5] 4] 3} 1 o 5] 4] 3] 4 6| 5] 4] 3]
1Cy 1C; 1€, 1iC. D C B ACLR D C B ACLR D C B ACLR
o ™ T2 s 5] 0 15| o LCIRL] PN 10
1 Uz 2 Ug T Uro ¢ Un T Rt 1
—
Amz5i5153 B Am25L5163 Am25L5163 Am25L5163
L M A [OAD P CP [OAD P CP TOAD P CP
7 9r7 2 sr 7| 2 o] 7| 2
v —>2
cc 3 —>3
Do
1|l Uy 9
CLR pm7asiza ©F
Q
2
TEST 15 12
D7
TEST 14 B,
TEST 13 I D° 4
TEST 12 [IS
| 4 12
TEST 11 1S
TEST 10 2] .2 6
| o, w 7
TEST9 3],
TEST8 4] vl 2l ¥
| 0,
c A_S k] P
9' o] n| 7
6
2
Uiz
Am745158 5
28 7 6
TEST 7 1] CNT _ CNTLOAD| ,
TEST 6 13 D7 s s 10 ENABLE wape
TESTS 1 De f G v TEST > 5
5 s 3
TEST4 5] o Ui L u pUP >6
TEST 3 £l = 1 15 .
— 7] s Amraszs . Am20811A $1 7
D, wh—— s 8
TEST1 E IS 5 .
TEST 0 4 D‘ v [PLE —>9
o0
B A = | 2 41 Y
= of 1of 1| 7 | 3] 12| n 10
19 [R1g [R17 [Rzo | R20 R16 |R15 {R1q |R13 |Rq2
v v
10| 7| 2] 15} 1a oc cc 12| 0] 7| sf 2 ZERO b:;
@ 0 9 0 Ty 1 |1 Q Q3 G QO G |},
U CLR CLR Uy Qg
9 9
Am745175 o Am745174 .
D Dy Dp D3 Dy D3 D, Dy Dy Dg
DR 1] 1| e af 3] 1]
9 18 17 20 % 15 14 13 12 21
[13
—>14
t——>15
(Rg—Rqq)
—> 16

M

—

Dy5 D14 D13Dq2 D17 Dq9 Dg Dg 16:8IT DATA BUS D; Dg Dg Dy D3 D, Dy Dy
18|17]14] 13| 8] 7| 4| 3 8|17{14[13] 8] 7] 4] 3
8D 7D 6D 5D 4D 3D 2D 1D 8D 7D 6D 5D 4D 3D 2D 1D
1| u 11 1) u 1
1>>—F 1 cp | £ 2 P b
Am25L377 Am25L8377
80 70 60 5Q 4Q 3Q 20 10 8 70 6Q 50 4Q 30 20 10
19]16[15] 12| of 6] 5[2 10]16] 15[12] of 6] s[2]
g l OTHER
T
15] 1| 2| 3] 4] 7[6] s 1] 1] 2[3] 4] 7] 6] s 5] 1] 2f 3] ¢f 7] 6] s
A7 Ag Ag Aq Az Az Ay Ag A7 Ag Ag Ag Az Az Ay Ag A7 Ag As Ag A3 Az A1 Ag
Uz | Uy | Ug |
Am29761 s Am29761 s l Am29761 s
03 02 0 Oy & | = 03 07 01 0 & 03 07 07 O s | =
4 9f10f 11112 131 gl10]11]12 131 8l10]11]12 13|
BRyq
BRqg
BRg
BRg
BRy
BRg
BRg
BR,
BRy
BR,
BR)
4 BRy
I a| s] 6] 7 AERE AERE
= D
D3 Dy Dy Dy o |z 18] P3 P2 D1 Do i £ 18| P3 P2 P1 Do 2
19 up P, Coig "5 " Cn+a Cn 3 Vee
5 FE RE |— FE RE | FE RE —
20 20 20
6 PUP Ug PUP Uy PUP Ug
7 s, Am2911 s, Am2911 s, Am2911
10 1 10 1 10
8 So cp So cp So o cLock
1 9 _
9 ZERO OE u —] ZERO OF i —] ZERO OF 16
Y3 Y2 Y1 Yo Y3 Y2 Y1 Yo Y3 Y2 Y1 Yo
10 1514 13] 12 5] 14] 13] 12 15[1a]13] 12
OE
1
125
Mq1 Myg Mg Mg Mz Mg M5 My M3 My My Mo
MICROPROGRAM MEMORY
T o [T [[[[T
€ 56 52 48 44 40 36 32 28 24 2 16 12 8 4 0
(12-21)]
13 -1
14
p—
n w0 8 8 7 & s & 3 2z 1 0
] 2] o] 4] 5] 2] e] 1]] 2] 4] 1]
b3 Dz Dy Do D3 Dz Dy Dy b3 D Dy Do
7 u 9 7 u. 9 7 v 9
15 >———0] o€ 18 cp —- 3 19 cp p—o 3 20 cp
Am2918 Am2918 Am2918
Q3 Q; Q7 Qg Y3 Y3 Y1 Yp Q3 Q2 01 Qg Y3 Y2 Y1 Yo Q3 Q2 Q1 Qg Y3 Y2 Y1 Yo
[s] 2]13 1o| s 3] DEEBEBE ml 6 3| 1| 1] 8] 2[13]10] 6] 3f
Rqy1Ryg Rg Rg | BRyg | BRg Ry Rg Rg Ry | BRg | BR,y Rg Ry Ry Ry | BR, | BRg
BRy; BRg BR; BRg - BR; BR,

16 I' ll I (BRy—BRqq)

42

This design also features a 16-input condition code multiplexer
using two Am74S251s, which are designated U12 and U14.
Condition code polarity control capability has been added to the
design by using an Am74S158 Two-Input Multiplexer designated
as U13. The W outputs and Y outputs from U12 and U14 have
been connected together but only one set of outputs will be
enabled at a time via the three-state control signal designated as
Rao and Ry Since the Y output is inverting and the W output is
non-inverting, the two-input multiplexer, U13, can be used to
select the test condition as either inverting or non-inverting. This
allows the test input on the Am29811A Next Address Control
Unit, U15, to execute conditional instructions on either the in-
verted or non-inverted polarity of the test signal. For example, a
CONDITIONAL BRANCH may be performed on either carry set
or carry reset. Likewise, the same CONDITIONAL BRANCH
might be performed on either the sign bit as a logic one or the sign
bit as a logic zero. Note that the Am2981 1A Next Address Control
Unit has eight outputs. Four outputs to control the Am2911’s S,
S;, PUP and FE inputs. Two outputs to control the three-state
enables of the devices connected to the D inputs, i.e., a map
enable (MAP E) to select the mapping PROMs and a pipeline
enable (PL E) to enable the three-state Am2918 outputs which
make up a 12-bit wide branch address field. The remaining two
Am29811A outputs are for loading and enabling the Am25LS163
counters. CNT ENABLE from the Am29811A s active-LOW while
the Am25LS163 counter requires an active-HIGH enable, there-
fore CNT ENABLE from the Am29811A is passed through one
section of the Two-Input Multiplexer (U13) for inversion. An alter-
native counter, the Am25LS169, has enable as active-LOW;
therefore, this inversion through U13 is not required.

At this point, adiscussion of the typical operation of this computer
control unit is in order. First, bits 0-11 of the microprogram mem-
ory output word, are connected to the pipeline register desig-
nated U18, U19 and U20. The Am2918 has been selected for this
portion of the pipeline register because of its continuous outputs
and three-state outputs. The three-state outputs are connected to
the D inputs of the Am2911 to provide a branch address
whenever needed. These 12 bits are designated BRy-BR44. The
Q outputs of these same Am2918s are designated Ry-Rq¢ and
are connected to the parallel load input of the Am25LS163
Counters. Thus, the counter can be loaded with any value be-
tween 0 and 4,095. Many designs will take advantage of Ry-R44
and use it as a general purpose field whenever the counter is not
being loaded or a jump pipeline is not being performed. Using a
microprogram memory field for more than one function (branch
address and counter load value in this example) is called FOR-
MATTING and will be covered in greater detail later. The other
two devices in the pipeline register shown on the architecture of
Figure 17 are U16 and U17. First, U17 receives four bits (12, 13,
14 and 15) from the microprogram memory to provide four-bit
instruction field to the Am29811A. This four-bit field, designated
Rq2-Rys, provides the actual next address control instruction for
the computer control unit. Ry is the polarity control bit for the test
input and is connected to the select input of the Am74S158
Two-Input Multiplexer. When Ry is LOW, the signal at the
Am29811A test input will be inverted, but when R4g is HIGH, the
test input will be non-inverted.

The Am74S175 has been used as part of the pipeline register
(U16) because it has both inverting and non-inverting outputs.
Signals Ry, Ryg and Ryg are used to control the One-of-Eight
Multiplexer (U12 and U14) A, B and C inputs. Pipeline register
output Ry and Ry are used to enable either the U12 outputs or
the U14 outputs such that a one-of-sixteen multiplexer function is
implemented. In this design, the TEST 0 input of U14 is con-
nected to ground. This provides a convenient path for converting

Note Figures 17, 18, 20, and 24 are at back of the book.

any of the conditional instructions to non-conditional instructions.
That is, any of the conditional instructions can be executed un-
conditionally by selecting the TEST 0 input which is connected to
ground and forcing the polarity control to either the inverting or
non-inverting condition. This allows the execution of uncondi-
tional JUMP, unconditional JUMP-TO-SUBROUTINE, and un-
conditional RETURN-FROM-SUBROUTINE instructions.

Bit21 from the microprogram memory utilizes a flip-flopin U17 as
part of the pipeline register. This output, R4, is used as the
enable input to the instruction register. Needless to say, other
techniques for encoding this enable function in a formatted field
could be provided.

A HIGH PERFORMANCE COMPUTER CONTROL UNIT
USING THE Am2909 AND Am29803A

The high performance CCU (Figure 18) is of a similar basic
design as the previously described CCU. The major differences
are, referring to Figure 18, the addition of an extended enable
control (U16), a vector input (U24 and U25), and an Am29803A
16-way Branch Control Unit (U23). These performance en-
hancements are more related to function than to actual circuit
speed. The use of these enhancements by the microprogram
provides greater flexibility in controlling a machine’s environ-
ment, and can reduce the microinstruction count required to
perform a particular task, which has the effect of increasing
overall system throughput.

In describing this high performance CCU design, those sections
which remain unchanged from the previous description (Figure
17), will not be covered again. This includes the mapping
PROMSs, sequencer, Am29811A, counter, condition test inputs
and associated polarity control, and the pipeline register. The
areas that will be covered are: extended enable control (U16),
Vector inputs (U24 and U25), and the Am29803A 16-way Branch
Control Unit (U23).

Extended Enable Control

Extended enable control is accomplished via an Am74S139 dual
two-to-four line decoder in conjunction with the Am29811A next
address control unit. In Figure 17, PL E and MAP E of the
Am29811A were connected directly to the components that they
are to control (pipeline registers and mapping PROMs, respec-
tively). Likewise, CNT LOAD and CNT ENABLE are connected
directly to the counters that they control (with the exception that
CNT ENABLE requires inversion when using Am25LS163
counters). In Figure 18, PL E, MAP E, CNT LOAD and CNT
ENABLE go to the inputs of the Am74S5139 two-to-four line de-
coder (U16). When either PL E or MAP E is LOW, then either 2Y
or 2Y, of U16 is LOW and either the pipeline branch address
registers or mapping PROMs are enabled. If both PL E and MAP
E are HIGH, then output 2Y3 of U16 is LOW enabling the three-
state outputs of U24 and U25 which are alternate microprogram
starting address decoders (alternate mapping PROMSs), and
called VECTOR INPUT in this design. Likewise, CNT LOAD and
CNT ENABLE follow the same rules, enabling the counter to load
or count via 1Yy and 1Y, of U16.

Vector Input

The “Vector Input” provides the system designer with a powerful
next starting address control. For example, one possible use
might be as an interrupt vector. For instance, use the “Interrupt
Request” output of an Am2914 Vectored Priority Interrupt Con-
troller (or group of Am2914s) as an input to one of the conditional
test inputs of multiplexers (U12 or U14). Then connect the
Am2914 Vector Out lines to the vector mapping PROMs (Vector
input U24 and U25). The microprogram then could, at the appro-

priate time, test for a pending interrupt and if present, jump in
microprogram memory directly to the routine which handles the
specific interrupt as requested via the Am2914 Vector Output
lines. This routine will take the proper steps to preserve the status
of the interrupt system, and then will service the interrupt. This is
one of many possible uses for the Vector Input. Other possible
uses include both hardware and software “TRAP” routines and
so forth. As can be seen, the design presented here uses the
Vector Enable line (output 2Y; or U16) to enable an alternate
starting address input at the Am2911. This, however, does not
preclude the use of other devices in place of mapping PROMs as
the D-input vector source.

It should be understood that this does not accomplish a “micro-
interrupt” function in that it is not a random possibility. Instead a
microprogrammed test is made and an alternate microroutine is
performed. A true “microprogram interrupt” is one that could
occur at any microinstruction. The Am2910 does not handle this
case internally.

Am29803A 16-Way Branch Control Unit

The Am29803A provides 16-way branch control when used in
conjunction with the Am2909 bipolar microprocessor sequencer,
and is shown as U23 in Figure 18 with its pipeline register U22.
The Am29803A has four TEST-inputs, four INSTRUCTION-
inputs, four OR-outputs, and an enable control. The four OR-
outputs connect directly to the Am2909 OR-inputs (U8 in Figure
18). The four INSTRUCTION-inputs to the Am29803A provide
control over the TEST-inputs and OR-outputs, and are provided
by the microprogram via the pipeline register U22 (Figure 18).

Basically, the INSTRUCTION-inputs (lo-13) provide sixteen in-
structions (0-F4g) which can select sixteen possible combinations
of the TEST-inputs and provide a specific output on the OR-
outputs depending upon the state of the inputs being tested. (The
subscript 16 refers to basic 16.) All possible combinations of
instruction-inputs, TEST-inputs and OR-outputs are shown in
Figure 19.

Note that instruction zero does not test any inputs (a disable
instruction). Instructions 1, 2, 4 and 8 test one input and can
cause a branch to one of two words. Instructions 3, 5, 6, 9, 10 and
12 test two inputs and can jump to one of four words (a 4-word
page). Instructions 7, 11, 13 and 14 test three inputs and can
jump on an eight word page. Instruction number 15 tests all four
inputs and the result can jump to any word on a sixteen word
page.

USING THE Am29803A

In the architecture of Figure 18, the Am29803A allows 2-way,
4-way, 8-way or 16-way branching as determined by selectable
combinations of the TEST-inputs. Referring to Figure 19, the
ZERQO instruction (all instruction bits LOW) inhibits the testing of
any TEST-inputs, thus providing LOW OR-outputs. Any single
TEST-input selected (Ty, T4, T, or T3) will result in OR, being
HIGH or LOW in correspondence with the polarity of the selected
TEST-input. Selecting any combination of two TEST inputs re-
sults in the outputs ORq and/or OR4 being HIGH or LOW, follow-
ing a mapped one-to-one relationship, i.e., ORy and OR will
follow the TEST-inputs, but no matter which pair of TEST-inputs
are selected, their HIGH/LOW condition is mapped to the ORg
and OR; outputs. Likewise, selecting any three TEST inputs, will
map their HIGH/LOW condition to the ORj, OR; and OR; out-
puts. Selecting all four TEST-inputs, of course, causes a one-to-
one relationship to exist between the HIGH/LOW conditions of
the TEST-inputs and the corresponding OR-outputs. Refer to
Figure 19 to verify the relationships between INSTRUCTION-
inputs, TEST-input, and OR-output. It is very important that the

Note Figures 17, 18, 20, and 24 are at back of the book

mapping relationship between these signals be completely un-
derstood. When using the Am29803A TEST-OR capability as
shown in Figure 18, the microprogrammer must position the
applicable microcode within microprogram memory so that the
low-order address bits are available for ORing. Sequencer in-
structions using the Am2909/2911 D-inputs (JRP, JSRP, JP and
CJS in particular) are ideally suited for the Am29803A TEST-OR
capability. The jump-to-location, available via pipeline BRy-BR14
orthe Am2909/2911 register, can contain the address of abranch
table. A branch table is merely a sequential series of uncondi-
tional jump instructions. The particular jump instruction executed
is determined by the low-order address bits; that is, the first jump
ingtruction in a branch table must start at a location in micropro-
gram memory whose low-order address bit (or bits) is zero. If a
single Am29803A TEST-inputis selected (2-way branching) then
only the least significant bit in the beginning branch table address
needs to be zero. Two Am29803A TEST-inputs selected (4-way
branching) requires that the branch table start on an address with
the low-order two bits equal to zero; 8-way branching requires
three low-order zero bits, and 16-way branching requires four
low-order zero address bits. Understanding this branch control
concept is really quite simple. The branch table is located in
microprogram memory beginning at a location whose address
has sufficient low-order zero bits to accommodate the number of
selected Am29803A TEST-inputs. If, for instance, three TEST-
inputs were selected, the first jump instruction in the branch table
must be at an address whose low-order three bits are zero, such
as address OF8,¢. The second jump instruction in the branch
table would begin in microprogram memory address 0F9¢. The
third jump at location OFAqg, the fourth at OFB,g, etc. Through all
eight locations (0F84¢-0FF). Assume the following pipeline in-
struction (referring to Figure 18): (1) U22 selects three
Am29803A TEST-inputs, (2) U18 instructs the Am29811A Next
Address Controller to select the Am2909/2911 D-inputs, (3) U16
enables the pipeline branch address as the D source, and (4)
U19, U20 and U21 supplies the address OF8,¢ as the branch
address. The Am29803A TEST-inputs will be ORed into the
low-order three bit positions, thus providing a jump entry into the
branch table indexed by the value of the OR bits. Each instruction
in the branch table is usually a jump instruction, which allows the
selection of a particular microcode routine determined by the
value presented at the Am29803A TEST-inputs. These jump
instructions are the first instruction of the particular sequence.
There are, of course, many other ways to use the Am29803A
16-way Branch Control Unit.

The microprogram memory address supplied via an Am2909
sequencer can be modified by the Am29803A 16-way Branch
Control Unit. Remember, however, that the microcode as-
sociated with this address modification relies on certain address
bits being zero, therefore this microcode is not arbitrarily relo-
catable. The above discussion describes using the D-input and
branching to provide low-order zeroes to use the OR inputs.
Through proper design, the Register, PC Counter, or File can be
used equally well.

THE COMPLETE COMPUTER CONTROL UNIT
USING THE Am2910

A detailed connection diagram for a straightforward computer
control unit using the Am2910 is shown in Figure 20. This design
utilizes the Am25LS377 as Ut and U2 to implement a 16-bit
instruction register. The op code outputs from the instruction
register drive three Am29761 PROMs to perform the op code
decoding function. These are shown in the diagram of Figure 20
as U3, U4 and U5. The Am2910 sequencer (U6) is used to
perform the basic microprogram sequencing function.

43

44

AY
MULTIPLEXER SELECT < '\
)] Vee
R R R
R20 19 18 L SELECT Ryq Ryg Ry Rg Ry Rg Rg Ry Rs Ry Ry Ry
0 0 0] TEST O 6] 5| af 3 6 5| 4] 3] 1 6] s 4] 3] JEHEOER
cg 1, 1C; 1 D C B ACR D C B ACR D C B ACLR
o 2 o0 | Sl Lt e, e
° ° 1 16 Am25LS153 Am25L8163 cp 2_ Am25L8163 cP &2_ Am25L5163 P 2_
. M oA s » [ORD » [ORD » [R5
° . = 7|14 zl 7' 91 7] 91 7l 9
1 1 1 1 TEST 15 2
J 1 I
Vec
e
POLARITY CONTROL P o
Am748174 9 3
R1e OUTPUT %
0 COMPLEMENT OF TEST
1 TRUE TEST TEST 15 12{o, [y
;ESTH 13] o wl® Ll P A 3
ST 13 1) o, 1w, |8
TEST 11 1 e Y Ll : 1 s e ZT'
NEXT ADDRESS CONTROL — 5] 00 A=t L | e he
I e .
D .
Ris Ryq R13 Ry2 FUNCTION c A_s w2 5
NEXT of w0 1 7 2 3] 1] 13
X X X X
INSTRUCTION
TEST INPUTS
CONDITIONAL
TEST
MACHINE INSTRUCTION REGISTER
7
TESTT 2, 6 3 2v)
R21 FUNCTION T =] w 8 » .
OAD TESTS ia n: s 2 r >‘7‘.
LOA TEST4 151, Ugg Al 1A Uy 2A n 4
1 HOLD ::::; Z‘ D3 Am74s251 Am74s158 5 °
o 9
TEST 1 3 of =l v e > 10
TESTO 4} o, L 15
A - s 1 1
COUNTER VALUE 'L_ of] ni 7 1 w[sl e n] =
Rig [R1g |R17 R0 |R20 R16 [R15 |R1a [R13 |Rez [“zu
- 10 7 2| 15 14 v, 12| 10 7 5 2] 15
R11-Rg | FUNCTION oo o 05 & s B I EEREEE > 12
XXX---XXX | VALUE Uy i 1 S5 v
Am748175 Am748174
O Oy Dy D3 Dy D3 D Dy Dy Dg
2| s e 3] BIE sl af 3] ul
JUMP ADDRESS Yo M M Mo Mig Mig Mg Mig i May
BR11-BRg FUNCTION ‘1:
XXX---XXX | JUMP ADDRESS cLock 15
OR BRANCH CONTROL
R2s R24 R23 R22 FUNCTION
TEST
X X X X INSTRUCTION Ao R
o~ R >16

Figure 18. High Performance Computer Control Unit with Am2909/2911.

45

NS

' D45 D14 D13D12 D11D19 Dg Dg 16BIT DATA BUS D7 Dg Dg Dg D3 D D3 Dy
18[17}14]13} 8] 7] 4] 3 . 18)17]14| 13| 8} 7| 4] 3
N EEEECEERD
E ™
n Am25L8377
P OTHER STARTING
8 70 60 50 40 30 20 1Q ADDRESS
——
19]16] 18] 12 o 6] 5] 2 19[16]1s]12] o 6] 5[2| « o & - o
2 EEEEE
— $ 2 % g 2
OTHER R
3>— 11
5] 1] 2fs[e[7] e[5] 1] 2| [4] /6] s 5] 1) 2| 3| &| 7| 6| s 1a] 13 12 11] 10 1a] 13 12| 11| 10
A7 As A5 Ag Az Az A1 Ay A7 Ag As Ag Az Az Ay Ag A7 g As Ag Az Ay Ay Ag Ay Az Ry A1 Ag As A3 Ay Ay Ag
. 14 u, 14 =114 u. 1515 u;
'3 = ' = Ys s 24 = = 25
Am29761 Am29761 Am29761 Am29751 Am29751
O3 02 01 Op & 03 0 01 Og & 03 07 01 O & 05 04 O3 02 01 Og 05 04 O3 Oy 03 Og
oftof11]12 3] 9] 10[11]12] 3] 9f10]11]12 13] sI5032| 6| s| 4] 3[2f 1
1 BRy,
BRyg
4 BRg
BRg
5 BR;
BRg
BRg
BR,
B8Ry
on:
1
T BR,
1 °
ABRBE 4 s] 8] 7 7] o 1] 2[3] o] 5]
D3 Dy Dy Do ¢, |7 18] D3 Dz D1 D ¢ 117 24] D3 D Dy Dg Ry Ry Ry Ry |23
n Catg n Caia Sl
=13 =
19 L 19| RE[— 2 RE ;
6 13 U 3 [e vg ong |2
7 2 Am2011 208 pup Am2011 254 pop Am2909 OR, TEST INPUT FOR
8 s, uls, s, [16 WAY BRANCH
9 pE ol I) ed 17 o]
ZERO ZERD L1 ZERO, =2
10 Y3 Y, ¥q Yo OF 1 Ya v, v1 Yo oF M1 YaY ¥y Y oF
15[14| 13] 12 15 [14]13]12 21]20]18[18
n . .
L
Ros | R2a |R23 [Raz
al | s| 2
12 05 0 0 0o
] [—
v
A11 A0 A9 Ag A7 A As Ay Az Az Ay Ag - Am2918 o¢ et
MICROPROGRAM MEMORY 0y D Oy D
RGN RAAN AL AA | R B R A T W] o] 1]
Mgo Mss Mgz Mg Mgy Mg Mzg Mz Mg My Mg Mz Mg My M M2s Maq Ma3 Mzp
Ma2~Mas
M12-Mgy |
13 | oot
14 I {
15
My Myg Mg Mg My Mg Mg Mg Mo
5] 12| 4] 5] 12|] 1] 1]
7 O3 D; Dy Dy 7 b3 D Dy D 7 By
o [L] oe Uz
k] Am2918 N Am2918 S
03 0 Q1 Qg Y3 Yz Y3 Yo 03 G 03 Qg Y3 Y2 Y1 Yo Q3 Qp Q1 Qg Y3 Yz Y3 Yo
CEEEBEEEER [sf 2[13]10] 6] 3 DHEBEEEE
Ri1RioRg Rg | BRyg | BRg R7 Rg Rs Ry | BRg | BRy Ry Ry Ry Rg | BRy | B8Ry
BRy; BRy BR; BRg BRy BRy

16 t ll BRg-BRy;

46

(= <
m 4|44 T| AT JI| 4 (4TI JTI | 4TI JT|JIJIJIJT|JTI|JTI T JIJT | JIJI AT AT | JIJT | AT AT U T JI | LI AT OTI T | JI QT dTIJIJTI 4TI AT AT
-
[- 3)) PO PRRE. 5= - ISV PP b= o) O . offe o O . s o OO e of O O, o of O e i of [O e e P O s o off (PO . o o [P . o O O e o PO . e O O . o o P T . e o O . s O A s e O QB o o
o
N
m Al a0 00 (a0 03| dd| AU ST ITI T A0 |0 J 0 J 0TI I Jd | JIJJUTITT (JJJJIITIT(JJJITIITITIJJIIIIIT
e
mﬂv dlaalaalagad| A0 00 |dadd|dd a0 d 00| Ad ||| A0 d 00 d | A0 DD D0 d 000 30 d | JAJIJJIJIJIJTIIIIITE T
—Io XIAT(XX| AT AT XX |JT ST [XXXX | AT AT JT AT (XX | AT AT |XXXX| AT JTJTJIT [XXXX[{ T JT JT 3T | XXXXXXXX | AT JIJTIJIJTJTJT AT
.hl XXX AT AT T XX [XXXX|ATJT|JJTTJITIT(XX[XXXX| JTJT|[JJTTJATT[XXXX[XXXXXXXX | JTJIJIJT | JJITJJI T JIJIT I T
.H. X XX XX [XXXX| ST | I T T | T T | T TTT XX |XXXX|XXXX[XXXXXXXX| JT I | JJ T T 4T {JJTTJJTT | Jd AT TTTJJJJTIIT
.Mo XX XXX XXX X| XX [XXXX[XXXX[XXXXXXXX|JL|[JIJTIT|JIJIT|(JJIJIJI I I | JITT|JJJJTIIIT | LJJJIIIIT |0 S JJJJJJTIIIIIIT
ol PN - S T - T - T - T - T - T) T
=] 4 I T) =) T I - - I T - - I T
Ny g o - T T T T -) - - T T T T
o3 I R - - - -] T T T T T T T T
©
~ ™ g o L]
5 - [Lol = o~
° - N N L o ™ L] ™ L] =)
c [[= - [[d - [d o~ o~ -
g & E & L% & & - & Lot o4 -
& o N o =4] o - o o~ =) - S
g s F O fhy = JRc I s F e c s RS
2l - | F = = = = o - = 8 = = - = 2

LOW, H = HIGH, X = Don’t care

L=

Figure 19. Function Table.

A 16 input condition code multiplexer function is provided by
using two Am2922s as U7 and U8. These devices allow one of
sixteen inputs to be tested and the polarity of the test can also be
determined. The pipeline register consists of U9, U10, U11, U12
and U13. These devices are edge triggered D type registers and
have been selected to provide unique functions as required de-
pending on their bit positions in the pipeline register. An
Am74S175 was selected for U9 because both a true and com-
plement output were desired to provide control to the condition
code multiplexer three state enables. An Am74S174 register was
selected as U10 because it provides a clear input for initializing
the Am2910 microprogram sequencer. Three Am2918s were
selected for U11, U12 and U13 because they have a three state
output that can be used to provide the branch address field to the
D inputs of the Am2910 and they also have a set of outputs that
can be used to provide other control signals via this field when it
does not contain a branch address. No specific devices are
shown for the microprogram memory as the user should select
the desired width and depth depending on his design.

ANOTHER DESIGN EXAMPLE

The Am2909, Am2910, Am2911, Am29811A and Am29803A
have been designed to operate in the microprogram sequencing
section of any digital state machine. Typically, the examples
shown are for performing the computer control unit function of a
typical minicomputer class machine. The design engineer should
not limit his thinking for the use of these devices simply to that of
microprogram sequencing in a computer control unit. These de-
vices can be successfully used in other areas of designing such
as memory control, DMA control, interrupt control and special
purpose microprogrammed machine architectures. In order to
provide an example of a design using these devices in something
other than a typical computer control unit, a microprogrammed
CRT controller is described in the following.

In order to provide some basis for the design of a CRT controller,
the requirements of this controller must be spelled out. These are
given as follows:

A) Character size: 5 x 7 dot matrix. The character field will be 7
dots by 10 hornizontal lines thereby providing ample space for
the 5 x 7 character and the intervening space between
characters and lines of characters.

80 characters per line. A standard 80 character per line dis-
play will be utilized and there will be 18 character periods
allowed for horizontal retrace time.

24 lines of characters per frame. This provides a total of 240
visible lines per frame (24 lines of characters by 10 horizontal
lines per character). There are a total of 24 lines provided for
vertical retrace bringing the total number of lines per frame to
264.

Refreshrate 60 frames per second. Therefore, the horizon-
tal line rate will be 264 x 60 = 15,840Hz. As there are a total of
80 + 18 = 98 character periods In a line, the character rate
will be 98 x 15.84 = 1,552.32KHz, and the dot rate will be 7 x
1.5288 = 10.86624MHz. (Note* No interlace is used.)

It is assumed that there is a 2K word deep x 8-bit wide
character RAM available to the host computer in which it can
write the ASCII equivalent of the characters to be displayed. If
scrolling 1s to be used, the host computer must also write the
first visible character's address divided by 1644 Into the
Am25LS374 “First Address Register”.

This CRT controller must generate an 11-bit character ad-
dress that s used by the 2K word deep character RAM. It must
also generate the required video enable signals and the hori-
zontal and vertical blanking signals.

B

-~

C

-~

D

-~

E

-

F

-~

Principle of Operation

A detailed block diagram of the CRT controller is shown in Figure
21. The block diagram shows an interface to an SBC-80/10 data
bus, address bus and control bus. The outputs of the CRT control-
ler are connected to a CRT monitor on the block diagram. Other-
wise the block diagram shows a straightforward use of the
Am2910 and three Am2911s to implement the CRT control func-
tion using microprogrammed techniques. The SBC-80/10 was
selected for this example since it is well known.

Alogic diagram of the CRT controller is shown in Figure 22. Three
Am29775 512-word x 8-bit registered PROMs are used to contain
the 23-bit wide microprogram. While only a minimum number of
words are used in the design as shown, many additional words
can be used to add various options (as described later). The
address for these Am29775 registered PROMs is provided by an
Am2910 microprogram sequencer. Three Am2911 sequencers
are used to generate the character address for the character
RAM. The least significant Am2911 sequencer is connected as a
divide by 16 counter. This RAM address I1s compared with the
desired last character address (80 x 24 = 1920) value using an
Am25L52521 8-bit equal to detector. When the last address is
detected, it can be sensed at the condition code multiplexer
(Am25LS153) that 1s used to select the condition code for the
Am2910 sequencer.

The data derived from the 2K word character RAM is decoded by
a character generator (6061) in this design and the character
output is parallel loaded into an Am25LS23 shift register. This
shift register 1s used to provide the video signal from its Qg output
to eventually drive the display via an Am74S240 buffer. The
diagram of Figure 22 depicts an oscillator input source to supply
the dot frequency. In this design, a 10.86624MHz oscillator
should be connected to this oscillator input point. This oscillator
input signal 1s used to clock the shift register containing the
individual dot bits (dot-on or dot-off) and also drives an
Am25LS169 counter which divides this frequency by 7 to gener-
ate the character rate clock. This character rate clock is used
throughout the controller to provide a timing signal for the state
machine design.

An Am25LS168 decade counter is used to generate the line
inputs for the character generator and to count 10 horizontal lines
per character space. This counter is clocked by the horizontal
blanking signal (HB) and its RCO output is used as one of the
condition code multiplexer inputs. The RCO output can be tested
to determine when 10 counts have been executed by the counter
and It 1s also used to enable the last address comparator during
the 10th horizontal line time.

When the host computer accesses the character RAM, the
HOST-ACCESS line is pulled LOW. This removes the Am2911
outputs from the character RAM address bus. When this access
occurs, improper data may be present at the shift register inputs.
Thus, the character generator PROM output is disabled by the
HOST-ACCESS signal during this time.

When power Is applied to this CRT controller or whenever it is
reset, the RESET line is driven LOW. This signal is inverted
through an Am25LS240 and then disables a part of the pipeline
register outputs as well as enabling one half of an Am25LS241.
This Am25LS241 inserts LOWSs onto the instruction (I) inputs of
the Am2910 sequencer. Then, the next character rate clock will
force the microprogram address outputs to zero and the micro-
program for the CRT controller as shown in Figure 23 will be
executed starting at address zero.

47

48

MULTIPLEXER SELECT
Ry, Ryg Ryg Ry | SELECT
o o o o |TESTO 2
o o o 1 |TESTH
o o 1 o |TEST2
1 1 1 1 | TESTs Voo
CLOCK 7 cp R i_J
NEXT ADDRESS CONTROL — o
12 Dg
Ris Rys Ry3 Ry [FUNCTION TEST 13], s
X X X X | Nexr :z::f :; D, .
D. —
INSTRUCTION o - D: Am2922 Po: _::
TEST 9 19 D 6
1 Bp— 18
TEST 8 1 ' A L17
CONTROL VALUE ol
Ri1-Ro FUNCTION = =
XXX --- XXX | VALUE 3 2
1
3 2 = Ve
POLARITY CONTROL e ™ "m _°_|
R16 OUTPUT TEST 7 11 D;
o | COMPLEMENT JESTS 21pg
TEST TEST 5 13 Ds M 15 - 3
1 | TRUE TEST TEST e L. . — >4
TEST3 17405 amoe22 POL f— 16 ————% 5
TEST 2 1#lp, cB—1o ’ ___ﬁ"“ 6
TEST 1 19 6 R12
Dy Bl—18 7
MACHINE TESTO o, Py L 12 J10 |7 |5 |z
INSTRUCTION REGISTER _[ol rYrr———
[FUNCTION = R20 o e 1o =l
RESET Am748174
? :gtg A20 Ra1 Dy D3 D Dy Do
vee 15 14 10 —Fs |" I°]‘ |3
o @ Q, 15 14 13 12
cP uo
JUMP ADDRESS L‘_ &R Am748175 8
BR;1-BR, FUNCTION i Dz
13 12
XXX - - - XXX | JUMP ACDRESS zlo 2|1 L>9

Figure 20. Computer Control Unit with Am2910.

&t

16-BIT DATA BUS

\ 49
‘ D15 Dig4 D13 D42 D4y Dyg Dg Dg D; Dg Ds Dy D3 Dy Dy Do
|1a]17 lu l1s Ia]4 3 Ls 17 |14 |13 la—L IAJS
8D 7D 6D 5D 4D 3D 20 1D 8D 7D 6D SD 4D 3D 20 1D
1] 1 1] 1
Ul U2
13 E Am25L5377 ce E Am25L8377 cp
80 70 60 50 4Q 30 20 1Q 80 70 60 50 40 3Q 20 1Q
19 [16 [15 [12 9 [6 [5 |2 19 Ine |15 |1z ls 's F Iz
N J
2 [OTHER
cLock
15 |1 |2 |3 Ja |7 |6 |5 1151234755 1151234 6 |5
A7 Ag As Ay Az Ay A1 Ag A7 Rs As Ay A3 Az Aq A Az Ay A
u3 us us
Am29761 N Am29761 14 Am29761 I
cs cs cs ~—_L
03 0, 04 O [03 0, 04 O [I 03 0 04 Og [
9 10 |11 |12 - 9 [10 |11 |12 113 - 9 [10 11 |12 Tu -
BRyqy)
BRyo
BRg
BRg
BR;
BRg
BRs [
BR,
BRy
BR,
BR,
- B8Ry J
27 |25 |23 |21 19 |17 |4 |2 40 f38 [36 |34 cc
7] D41 Dy Dy Dg D; Dg Ds D4 D; D; Dy Do 32
14 | MAP cl
3>——cc 15
8 —
4>——1, ALD
9
5>——2 ue
1 Am2910 MICROPROGRAM CONTROLLER . P _
6>——h OE OE
12
7>——hb
13 — 3
CCEN =3
I Y11 Yio Yo Yg Y7 Y Ys Y4 Y3 Y2 Y1 Yg
= [zs |zs |24 | IJ‘SL l [a:[:n Iss
M1 Mip Mg Mg M7 Mg M5 My M3 My M,
MICROPROGRAM MEMORY
IIIIIIllllllll'[llll'[lll[lllIIIIIIIIIIIIII‘II[IIIIIIII'I(I[IIII
60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 [
| W——
12-21
8
0-11
9 CLOCK
I~ AY 4 \ r \
1" 10 9 8 7 6 5 4 3 2 1 °
l‘5 |12 Il I1 Ils |1z |4 It 115 |1z |4 lr
Dy D, D. Do D3 A D. Dy D3 D, Dy Do
7| — 9 7] — 9 7| — 9
Ut ; u12 u13 p
OE Am2918 P o€ Am2918 P o€ Am2918 ¢
Q3 @ G Gy Y3 Y, Yy Yo Q3 @ Q@ Qy Y3 Y, Yy Yg Q3 Q2 Q Qp Y3 Yo Yy Yo
Iu lu ls [2 In I1o ls Ia lu '11 Is Iz lu |1o 'e I:« FA]n [s |2 |13 ||o ls F
Ry Ryg Ry Rg BRyq BRyg BRg R; Rg Rs n4 BR; BRg BR; BR4 R; Rz Ry Ry BR3 BRy BR; BRg
\ I\ T , \ T \ B /\)
T BRg-BRqy
OTHER

50

D Y
& VERTICAL con cope [VECT OF FIRST ADDR. |=—
cRT BLANKING DITION
_ MUX SELECT
MONITOR —— Am2910 SBC 80/10
l I — DATA BUS
,CCEN PL
Y
A — 5= Map
uPROGRAM MEMORY _OE OF gurrer
MAP
SWITCHES
(Fig. C1)
MAP SWITCHES
S, FE D
ZERS
DECODE LASTADDR &=
oNTR ACOI—4-=1 companator Eof— 3-Am2911
CHARACTER
DATA BUS 2K by 8-BIT
[} CHARACTER A
RAM N
WE AV
Y
</ I OE HI-Z BUFFER
SBC 80/10
HLZ BUFFER O ﬁ ADDR. BUS
ADDRESS <lL
VAN DECODE >
SBC 80/10 SBC 80/10
DATA BUS CONTROL BUS
MPR-489

Figure 21. CRT Controller Block Diagram.

The Microprogram for the CRT Controller

Table 6 shows a complete description of the microprogrammed
CRT controller microcode. Execution of these microinstructions
is controlled by the Am2910 sequencer.

As can be seen in Table 6, several techniques were used in this
short microprogram to provide the different counting require-
ments of this CRT controller. Although only one format (80
characters per line, 24 lines per frame) was shown here, the
designer can easily configure his own format by simply changing
some constants in the microprogram. As an exercise, the reader
is encouraged to find a means to program the CRT controller for
different formats. The host computer software could configure the
controller format by using an additional register similar to the
“First Address Register”. This will be discussed in an appendix at
the end of this chapter.

A complete wiring diagram for the microprogrammed CRT con-
troller is shown in Figure 24. This can be used directly with the
interface shown in Appendix A such that the CRT controller can

Note* Figure 24 is at back of the book.

be connected directly to an Am9080A based microprocessor
system. Appendix A also depicts the use of a 2K word x 8 bit
character RAM as described previously.

CRT Controller Timing Considerations

As was discussed earlier, the character clock frequency for the
CRT controller 1s 1,552.32KHz. Thus, it is desirable to calculate
the longest path of the design to ensure that none exceed this
clock period of 644.1ns. The timing diagrams of Figure 25 depict
anumber of different paths with the associated propagation delay
calculations.

When all of the timing diagrams of Figure 25 are examined, it will
be found that only three show propagation delay times of over
200ns typical. Of these, the worst case is 318ns as shown in
Figure 25(i). Since the requirement of the design is to insure that
none exceed 644.1ns, we have more than a 2 to 1 margin in the
design based on the typicals. Thus, we can see that the design
will operate properly even over the full military temperature range
and power supply variations based on this analysis.

ENP ENT c B

<

DDp ——— |

06v-ddW

] L :{'a ,{’-
Am745169 a5 l = 1 L
28-n 07 & “FIRST ADDRESS
cc Vect REGISTER"
Am25L8374
1Y
Am2910
Am25L5153
6, Ic, [N
' ———e1 CCEN
—]
cp PLE s
+5V Yo-8
RES §
PLCS 4 (]
A3-g 5
6061
° ’ —
By E Ay AL A = * A OE A oE
E
Am29775 Am29775 Am29775
Do.3 D47 Do—y Dy D3 Dy D5 Dg Do-7
|) |
. | I
4
@ o 05 O M pr
uid ACD .
Am25L5168 Am25L.5241 e |
cp s
ENF D C B A ENT 2
= 0o-7 —
So b FE
s PUP PUP ZERG
FE RE RE
l VIDEO A6
Am297 St ameons
m2911 m
Ay @) ;so
oN ——{Cn+4
Ys cP cP
€ OE v OE v
VIDEO —% &
—1 B 7
; CONTROLLER
B g ADDRESS
BUS
e 8§,
& A7 kX
B, &
Bs <
5 1
L -

Figure 22. CRT Controller.

1S

52 Am25LS153
3
1Cy
7
2ic, ¥
e, 1/2 Am25L5241
5
1Cq
oe
= us u1s
—] 2,
11 9
24 vy P
—] 2, 2y f— r1 b 2 ‘s
2 = W l—1p
! 16 273 3 —1h 14
17 3
— ¢ Vee 28, 2vg B 1y
8 20
—] 2 |
A B = 26 Vec
[I 2 = . W] o
12 =
>2
13
L VWA >3
14 +5V
15 CHARACTER-RATE CLOCK
16
| —
8 Vec
, 17- Am25LS23
1L P ov, e
Ita o ore |4 +5V
L ovs 5
19 ov, |2 vy
S 14
5V AAA s Y3
0 un 6
s oY, A
2 ov, |2 N
Gy 7
I o
. 20 o |
cc
10 O
-I:_ cp CIR
DOT-RATI CK 12 ®
oscin (O E cLo |
rre————— 8
HOST ACCESS °
(FIGURE A2) 9
AT 18
E3 E
Dg L2 W 10
[Ll P
o, Ha os 4 —>n
(FIGURE A2) | Dy L3 PW 00 |2 12
0, 31 a, o |
s u12 10
0 Ay mmi 02
5 6061
Dy A3 o fr
6
Az
L Y | Vee
8 12
o 12 “5 s []
of & o I = 13
o =
5 us 2 =
c ac P2 —> 14
gy 8 o2
14
Ha Q
15
= RACO
+5V ——AAA—1] ud e vee
8
D cpP
T =
1/2 Am25L.5240
2 o L) RESET]
RESET " 1A e HOST ACCESS
L2114, ::2 m 15
L1 PN i i) 16
8 Wa
1A L
— U4 L
— [0
=V,
— 0o
At =
Ay
s (SEE FIGURE A2) 1
Ay —
YA
(FIGURE A2) | Ag —
[V p— 1 7
Ay ——
Ay ———
J VY
Ao

Figure 24. CRT Controller.

Am2910 8
27 28
3 D41 Yi1 =
2] 210 o Am25LS374
Dy Yo b— o
1
‘2; Dg Yg %m, — M il
L (wor—Ho, v7 A — Y¢ }—mpg
Mo — 06 Yo [5—MAs —_ vs |5 _wo,
MDg —=] b, | wma
s Rl Ys I3 s — Y4 2w,
o, —= o, Yo g WA SEE FIGURE A2 vl e
mp; —24 o, Yo F2ma, FORINPUTS ~ — 3 |—Mog
w0,] o E AND CLOCK vie MD.
36 35
—] vy E—wo,
—] Yo MD,
20
Voo
10
[L=
= ll
VERTICAL
py— BLANKING
mag —8 ag o; PE—mo,
s 1
ma; 5 a; ag |4 mpg
4 13
mag — ag as P2 mog
mag —2 a5 as P2_wmo,
2 10
ma, —2] a, [LA
ma; —a; U2 g |5
ma, 21 A, a; —wo,
ma; 2] A, ap H—mp,
19
il 22
MAo Ao 122 vee
p 11
4 L& _E cr E E cp I
= 1]n 16 |e| 17 |16 = ®
8
9
10 4 HORIZONTAL
BLANKING
AMA— +5V
11>
12>
Am2911 Am2911 Am2911
4 | l
1 1
L4 P Cnsa P L7 en S L L8 en [y L
Ry R wlz
zn —2 zEro 5 L —2] ZERo s s, 2 Zero va [Ay
S0 — s so 21 5],
s, =Y s, Y, P4 _ay, s, s, Yo P ag s, Yo P4 a,
1 =1
13 cp Hep cp
il 6] = 13 1
GE 8 3

wp, — 1 0y .__L

14 16 w1 Piea G u v o Bl us i,
20 20 20
puP PuP 2] pup
_— 1 = 12 —
L] vol2_s, Lo]m vo P2,) Y vo 2,
MD; 4 [4 D3 a
5 3 4 5
mDg — 24 D, —] 02
mos — 4 o, 12 o vee wo, —&] o, 12 o vee —%o, 2 . vee
) 7 7)

15
16

17 -0) vioeo!

54

Am2910 Am2911
ADDR
(Hex) | Label | CCEN|MUX|S; So FE ZEROH ZEROL C,|HB VB| NUM Comments
0 INIT [e8)Y) L 3 |HH L H L LIH L X ,Load first address from Register to 2911’s file
1 LDCT X X |L L H H L L{H L[2349 |[;Load2910's counter with member of rows/frame — 1
2 MAIN CONT X X |H L H H L HIH L X ,Address supplied by 2911's file
3 CJP L 1 (L L H H H HIL L $
4 Sl L 1 L LH H H HiL L $;One row 5 x 16 = 80 characters
5 CJP L 1 |L L H H H HlL L $
6 CuP L 1]L L H H H HlL L $
7 cJP L |1|c L H H H H|L L| s
8 CJs L 0 (L L H H H H| H L | TENTH | if tenth (last) ine of a row jump to “TENTH" subroutine
9 CJs L 2 |L L H H H H| H L | LASTA | |if last character jump to “LASTA” subroutine
A CJP L 1L L H H H HiH L $ Watt, until honzontal invisible counts done
B CJP H X |L L H H X X|H L | MAIN | Then do the Mamn routine again
C TENTH RPCT X X JL L L H H H| H L |GOBACK| ,Push next addr on 2911's file jump to “GOBACK" if not
End of Frame
D CJv L 3 |HH L L X{H H X JLoad 2911’s file from First Address Register
E LDCT X Y |L L H H X X|H H| 14649 | Load 2910's counter with number of invisible characters
duning Vert retrace divided by 16, minus 1
F PUSH L 3 |L L H H H Hi{H H X ;Push next PC to 2910’s file for double
10 CJP L 1 |L L H H H H{H H $ Wait for LS2911 to count 16
1 RFCT X X L L H H H HIH H X ,Decrement 2910's counter and jump one line back f = 0
12 LDCT X X L L H H H HfH H| 2349 ;Load 2910's counter again with number of rows/frame — 1
13 CRTN H X |L L H H H HiH H X ;Return from subroutine
14 | GOBACK |CRTN H X |L L H H H H{H L X ;Return
15 | LASTA |CRTN H X |X X L L H HIH L X ;Load zero to 2911’s file and return.
Figure 23. Microprogram for the CRT Controller.
TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER.
Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments
0 Since ZERO s low, its output Both Sy and Sy are HIGH so The CJV i ion is selected. | This i pushes the “First
will be LOW. The Cy, input that the D inputs will be routed | Therefore, VECT outpﬁ will be | Character Address” more signif-
(from the Pipeline Register) to the Y outputs. These inputs | LOW, enabling the “First Ad- icant bits onto the Am2911’s file,
15 LOW so that the micro- will come from the First Address | dress Register onto the internal | and continues to the next micro-
program incrementer will not Register (the Am2910 VECT is | 8-bit bus. CCEN 1s LOW; the nstruction.
increment. LOW). C,, 1s LOW (see left MUX is selecting a constant
column); therefore the micro- HIGH, and the sequencer will
program counter will not incre- | address the next consecutive
ment. FE is LOW (and PUP 1s | microprogram address (word 1).
always HIGH) causing the pre-
sent output to be pushed on
the stack. The character ad-
dress 1s already the “First
Character Address”.
1 ZERO and C,, are still LOW, Sq and S, are LOW; thus, the | LDCT 1s selected and the num-
so no change in this device. Y outputs will be the current ber of character-rows per frame
PC, (the same as the Y out- minus 1 (234¢) is loaded into
puts were in the previous step). | the Am2910 register/counter.
Ch, 1s still LOW, therefore no The dd! the
change will occur in the PC next microinstruction.
2 Maintaining ZERO LOW With Sy = HIGH, §p = LOW The Am2910 will generate the | This Is the starting location for
“MAIN" | assures the proper starting and FE = HIGH, the Am2911 next microprogram address. the main loop.
address. Cp, 1s HIGH; there- will refer to its internal file
fore, the internal PC will (the starting address of this
be incremented. particular character-row)
without popping

Note Figure 24 1s at back of the book

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.).

Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments
3 This Am2911 now counts up Initially these two Am2911s With the MUX selecting the This microstep will be executed
using its PC incrementer At will not change their Y outputs | C,,44 output from the least 16 tmes (Note that 80 = 5 x 16)
the final count (moving from since their C, input 1s LOW. significant Am2911 slice, the
F16 to 0) its Cpt 4 output will However, when the C,, input CC input to the Am2910 se-
be HIGH goes HIGH, the internal PC quencer will be LOW until the
will increment Am2911 counts 16. CC =
LOW will cause the next mi-
croprogram address to be the
pipeline register contents; this
1s also the current micropro-
gram address (word 3). When
Cn+4 goes HIGH, CC will go
HIGH and together with CCEN
= LOW, will force the Am2910
to address the next consecu-
tive microprogram address (4)

4 Same as 3. Same as 3. Same as 3, except that at each | The microprogram itself 1s used

through address, the current micro- as a counter in this applica-

7 program address Is written tion since the count 1s only 5,
the microprogram 1s relatively
short versus the memory’s depth
and this 1s a convenient means
to economize on chip count

8 Continues to count (note that it | Since Cp, 1s LOW (see left The MUX selects the We are now at the end of a TV

enters this line with an output column) no change occurs in Am25LS168 ten-line-counters line Therefore, the Horizontal
of zero) these devices. Note that the RCO as the condition code in- | Blanking Signal (HB) is HIGH
Y outputs contain the more put to the Am2910 (CC) If the | The least significant Am2911
significant bits of the address line count is less than 10, CC slice now counts the invisible
of the first character of the will be HIGH and the next mi- characters during the honzon-
next character row croinstruction will be addressed | tal retrace.
If the tenth hine of a character
row 1s executed, CC will be
LOW and a JUMP-TO-SUB-
ROUTINE to an address, sup-
phed by the pipeline register
(“TENTH") will be executed
9 Continues to count through No change The MUX now selects the Last | Note that 80 characters/row
the internal PC incrementer Address Comparator output for | and 24 rows/frame requires a
CC If the current more signif- 192040 word memory When
icant bits of the character- the last memory location
address coincide with the last (19204¢) 1s read out, the scan will
address + 1 (19204¢/16) a begin at 0
subroutine call will be per-
formed to “LASTA" Other-
wise, the microprogram will
continue consecutively
A Continues to count At count No change until Cp, goes Same as at address 3. Waiting for the least significant
15, Cy 44 goes HIGH. HIGH, then count Am2911 to count to 15 This
microstep will be executed
as many times as necessary
to accomplish this
B It doesn't matter what this No change Uncondttionally (CCEN = Performing a JUMP to the
device does at this microstep HIGH) steers the micropro- beginning of the main-loop
because at the next micro- gram to the suppled (add 2).
step 1t will receive LOW on by the pipeline register
its ZERO input (“MAIN" = 2)
C Continues to count No change If internal counter Is equal to The decision whether the bottom
“TENTH" zero, it means that 24 character | of the CRT (End of Frame) Is

rows were already displayed
and we are at the bottom of the
CRT display A vertical retrace
period 1s needed and the mi-
croprogram will continue
sequentially. If the counter 1s
not yet zero, we do not need
to execute the vertical retrace
routine and the next address
will be supplied by the pipe-
register (“GOBACK" =

1446) while the internal
counter is decremented.

reached or not is made internally
in the Am2910, using its counter

56

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.).

Micro-
program Low High
Address Order Am2911 Order Am2911s Am2910 Comments
D ZERO = LOW, therefore, out- | Same as at address 0 Same as at address 0 As we are at the End of Frame,
put Y = 0 This 1s necessary the “First-Address-Register”
to assure that C, 4 1s LOW contents (enabled by the
Am2910’s VECT output) I1s
pushed onto the Am2911’s file
Note that the Vertical Blanking
Signal (VB) goes HIGH
E Same as at address B No change The internal counter s loaded (14649 + 1) x 1649 = 235249
with 14644, supplied by the equals the number of character-
pipeline register The next periods during vertical retrace.
consecutive microstep is Loading 23524 directly into the
addressed Am2910’s counter would require
7 bits. Usingthis scheme we
reduce the microprogram width.
F Counts No change. With CCEN = LOW and CC = | This 1s a preparatory step for the
HIGH (supplied from a con- 2 step “Vertical Retrace” double-
stant HIGH by the MUX), the nested loop.
next address (104¢) will be
pushed onto the Am2910 file,
the counter will not be af-
fected and the next consecutive
microstep will be addressed
104 Counts When final count is No change with C, = LOW, The MUX supplies the Cp 44 Again, this 1s a possible way to
reached, Cy, 44 = HIGH increments with C, = HIGH output of the less significant dwell on a certain microstep
This has no practical affect as | Am2911 slice to the Am2910 warting a condition to change
the HB signal 1s HIGH, and at CC input While this signal is its status (like address 3 through
the beginning of the next vis- low, the Am2910 will select 7) This s the internal loop of
ible line, the correct address the pipeiine register as the a double-nested loop system
will be fetched from the file source of the next microin-
(address 2) struction address The current
address (10y) being wnitten
there, this instruction will be exe-
cuted until CC goes HIGH Then
the next consecutive instruc-
tion will be selected through
the Am2910 internal PC
1y Counts No change If the final count has been This 1s the external loop of the
reached, the next micro- double-nested loop system,
instruction will be addressed | which counts the vertical retrace
and the internal stack will be Interval. By adding a single mi-
popped (adjusted) Otherwise, | croinstruction the chip count
the next microinstruction ad- was reduced
dress will be the one residing
on the top of the stack (which
1S 104¢).
12y Counts No change Same as at address 1 Reinitializes the Am2910 internal
counter with the number of
character rows per frame.
13y Counts No change Unconditional return from End of “TENTH" subroutine at
subroutine (CCEN = HIGH) End of Frame (with vertical
retrace).
14y Counts No change Unconditional return from End of “TENTH" subroutine
“GOBACK" subroutine without vertical retrace
154 Counts Pushes zero into file ‘Unconditional return from A one-line subroutine to reini-
“LASTA” subroutine tialize character address to zero

a)

DEVICE NO. | DEVICE PATH | PATH1 | PATH 2 | PATH 3 | PATH 4
29775 CP1oD 15 15 15 15 B .'i
2911 (A) Cn 10 Cnta 9 - - -
2911 (A) ZERO 10 Cpyq - 30 - - o N M .
2911 (B) CntoCntg 9 9 - - Am25LS153 Y cc VECT OE
2911 (C) Cn (ts) 15 15 - - Am2910
2911 (B,C) | FE (tg) - - 14 - cC__AsB ’-— cLock
2911 (8) $0.S110Cnta| - - - 30 LCCEN Y PL
2911 (C) Cn (ts) - - - 15
2 9
TOTAL-ns 48 69 29 60
) A OF
CLTX Am2sLsies CP { p-—Amaorzs e~ el
N oS . 1 =1 =]"croCK
cP Q T L_
i (-
3 I'— i 3 Zamm
REG l
Ao-Az 3 .r. H— l
D)—vsé o 6061 E; Am2sLs2521 ! {
As-Ag A ZERO D %sno] l
A‘
] el [l
Am2911 | Am2o11 Am2911
) o J__J ® w___ J
Amo1t4 ad | Cn Cnis [Cnta “‘,‘.:-c—
A Y Y Y
{ o i i !
PATH1 e —e —
PATH 2 e CLOCK
PATH3 —— — — — ——
PATH4 ————————
MPR-491
b)
DEVICE NO. | DEVICE PATH | PATH1 |PATH2| PATH3
29775 CPto D 15 15 15 '{'3 34/
2911 (A) ZEROto Y 19 - - > M
2911 (B,C) | ZEROto Y - 19 - Am25L8374
2911 (B, C) Sp. SqtoY - - 19 Am25LS153 Y cc VECT OE
9114 AtoD 150 150 150 c as Am2910
6061 Ato Out 70 70 70 - _ [crocx
250523 Do CP (tg) 23 23 23 LCCEN v P
TOTAL-ns 277 277 277 2 l »i/]
D A OF
cLock Amzstsies P —
oNT
RCo
cP Q
3
Am25LS23
REG —
Ao-Az OE
) e 1 _\m B Amastszs2t
Ab-py A
1l
afl
Arho f
HH
LL___.___._ e | N E—

PATH 1 — e o e
PATH 2
PATH3 —— — — — —

CLOCK

MPR-492

Figure 25.

58

c)
DEVICE NO.| DEVICEPATH | PATH1 | PATH2 | PATH3 ,t’ 8 c/}/
20775 CPtoD 15 15 - D Y
2910 oY 40 - - _ _ _Am25LS374
2910 CCENto Y - 23 - Am25LS153 Y C o oF
2910 CPtoY - - 54 c as F = cLock
29775 Ats) 40 40 40 e, {
S | degm =y v} A
TOTAL-ns 95 78 94]
2 i o |
H
o! Y OF
cLock L >
Am2stsies CP Am29775
L [
CNT s 2] ¢rock
cP Q
3 8
Am25L523
REG =
Ro-Az OE Py
[4—,54- o 6061 E; Am25LS2521
Az-Ag A ZERO D
7
Am2911 Am2911
) () @ __
¢ ZERO
Amo114 Cn e Cn
A Y ¥
! " i !
PATH1 —— — o o cLock
PATH 2
PATH3 —— = — —— MPR-493
d)
DEVICE NO. | DEVICE PATH PATH 1 /{/ 8 B/I/
29775 CPtoD 15 D Y
2505153 ABtoY 19 _ . _Am2sLsa74
2010 cCroY 21 Am25LS153 X & veer OF
Am2910
29775 A(tg) 40 ¢ A (N clooe
TOTAL-ns 95 r 1, CCEN \ PL
H ' “9
D s, OE
..“-"%.‘
oLoex Am2sLsies CP L._.. Am29775 Rt
oNT] cLock
cp Q
3 8
Am25LS23
REG —
Ag-Az OE 8
o pqsé [6061 E; Ama2sLs2s21
Asz—Ag A ZERO D
SoS1
, FE
Am2911 Am2911
Q (8) A ___
¢ ZERO
Amot1a Cnts Cn e Cn
A Y Y
T o ! !
cLock
PATH1 — —— e e W

Figure 25. (Cont.)

)

DEVICE NO. | DEVICE PATH | PATH1 | PATH2 ,t'f N /i, = {
29775 CPtoD 15 15 > Y
2910 I'to PL, VECT 27 27 I _Am25L§a74 !
29775 E1 toD - 15 Am25LS153 Y cc VECT OE)
2515374 OEtoY 14 - ¢ as [Am2eio0 }
j=—— CLOCK
2910 PC (tg) - 34 4: = N l
2011 D (tg) 17 - L qeeh Y
TOTAL-ns 73 91 2 9 l
Pl C l
cLock Am2sLstes CP L L Am29775 l
oNT —
RCO ' D TLUTK
cP Q I ‘
3)
Am25LS23 4 l
REG L S
Ao-Az oE s ——)
] “o 6061 E; AmasLs2521
Az-Ag A ZERO D
SoS1
7 FE
Am2911 Am2911
Q (©) *)
ZERO
Amg114 Cn Cn+a [o
A Y Y Y
! n { i !
cLock
PATH1 —— e e e
PATH 2
MPR-495
DEVICE NO. | DEVICE PATH | PATH1 | PATH2 | PATH3
8 8
20775 CPto D 15 15 15 ,t' ’%
2911 ZERO 10 Cpyq - - 30 o M
Am25LS374
2911 CntoCpisg - 9 - g Y. ce CcT OE
2515168 CP 10 RCO 19 - - ! [4 Am29
2518153 DtoY 20 20 20 jilc as H l—— cLock
2910 cCroY 21 21 21 T - lv A
H ,
29775 A (tg) 40 40 40 l l +
2
TOTAL-ns 115 105 126 l H I !1
|) 7 —— oF
\ e
cLocK HH AmaazS.
Am25LS168 H [iniap . va—
oNT H [r o
cP Q M .
(W —— e —
3 "% X} -
Am25LS23 I 4 * -}
REG — i H
Ag-Az OE i !
D -—,SL o 6061 E; Am25LS2521 H H
\ | |
H
. i 1
2 Am2911
a [MO
[&~ ZEROY =
Amo114 "
A Y
f 0 !
PATH 1 "“ cLock
PATH 2 _
PATH 3 MPR-496

Figure 25. (Cont.)

g)

DEVICE NO. | DEVICE PATH PATH1 | PATH2 | PATH3
20775 CPtoD 15 15 -
2911 Sp. SqtoY - 19 - . .
2911 CP 10 Y (S1Sg = HL) - - 54 ’k 4’
2515168 CP to RCO 19 - - D Y
25152521 Ato Eg - 9 9 e _ Am25LS374
A 2 cC "WECT OE
25182521 | Eqt0 g 6 - - !’. mesLo12d =
2518153 DtoY 20 20 20 (; AB q ’ cLocK
H H f—
2910 CCtY 21 21 21 ; H \ coen ; v! A
29775 A (tg) 40 40 40 ! - —
H
TOTAL-ns 121 124 144 l i 2 I | ’h*’
l D 7 — OE
: [e
' o sy
oLock Am2sLstes G 2w 'Am29775
! CNT { H ——
l M 4 L CLOCK
cP Q o j l
: l | ;
Am25LS23
REG —= 7
0o~ A2 _ — :? 8
o0 6061] & ~&masLs;
A3-Ag 5
: l
H Am2911
a l [0}
c ZERO
Am9114 * n+4 Cn a—
5 ; .
H
' (- 11 1
PATH 1 = o s s
PATH 2
PATH 3 —— ~ e = o cLock MPR-497
h)
DEVICE NO. | DEVICE PATH PATH1 | PATH2 /t 8 s/*/
2911 CP1o Y (S1Sg = HL) 39 -) 7
2911 CP 10 Cn4 (S1Sg = HL) - 54 _ _ _ Am25LS374
2011 Cn ts) _ 15 Am25LS153 Y cc VECT OE
n Am2910
9114 AtoD 150 - ¢ AB cLook
6061 Ato OUT 70 - y A
1, CCEl
25L.523 D (tg) 23 - N
TOTALns 282 69 2 ‘ {/ o
[} A O
cLock Am2sLstes CP Am29775
| —
= ¢ RCO * D cLock
T I
3 8
Am25L523 s
REG L
Ag-Az OE s
=—240 6ot E Am2sLs2521
5 —
Az-hg A ZERO D
SoS1
L FE
H Am2911 Am2911
af ® [0}
ZER
‘"’9{“ Cn+a Cn Cnla c: |
Ay ax Y
T "] !
-

cLock
PATH 1 e e s
PATH 2

MPR-498

Figure 25. (Cont.)

i)
DEVICE NO. | DEVICE PATH | PATH1 [PATH2 | PATH3
29775 CPtoD 15 15 15
2910 o PL 36 36 36 /t’ u}r-~-~._\
29775 EqytoD 15 - - H
255374 OEtoY - 14 14 o and 5v e !
2om Dy 9 ® - Am25LS153 Y =g ECT OF T H
9114 AtoD 150 150 - F";z;;,—"-— B l
6061 AtoD 70 70 - c AB cLOCK H
250523 ts (D) 23 23 - l
2911 ts (D) - - 17 H
TOTAL-ns 318 317 82 l
cGLocK Am2sLstes CP L‘ l
CNT — jo—
RCO CLOCK|
cp Q l
3 r’ J
Am25L523
REG ——
Ag-Ay OE
“5 40 £ Am2sLs2521
¥ "\
A —}9 A
7
of
.
Anvstﬂ
AL
J | | O E—
PATH 1 oo s s o
PATH 2 cLOCK
PATH 3~ = momme o e MPR-499
Figure 25. (Cont.)
SUMMARY These Am2900 family microprogram control devices offer the

The Am2910 provides a powerful solution to the microprogram
memory sequence control problem. The Am2910 is a fixed in-
struction set, 12-bit wide microprogram sequencer. In addition,
the Am2909, Am2911, Am29811A and Am29803A provide
another solution to the microprogram sequencing problem.
These devices are bit slice oriented and provide more potential
flexibility to the microprogram sequencing solution. All of these
devices are particularly well suited for the high performance
computer control unit and structured state machine designs using
overlap fetch of the next microinstruction — also referred to as
instruction-data-based microprogram architecture.

highest performance LSI solution to the problem of microprogram
control. They provide a number of conditional-branch source
addresses as well as conditional jump-to-subroutine and
conditional-return instructions. In addition, several techniques for
timed and untimed looping are provided such that loops from one
to several microinstructions can be executed. All of the devices
described in this chapter are competitively priced and currently
available. In addition, all of these devices are available with
specifications guaranteed over the full commercial temperature
range and power supply tolerance as well as the full military
temperature range and power supply tolerance. All of these de-
vices undergo 100% relability assurance testing in compliance
with MIL-STD-883.

61

62

APPENDIX A

Figure A1 shows the logic diagram of an interface circuit used to
connect the microprogrammed CRT controller to any Am9080A
type processor. Sixteen address-lines, eight data lines, a
memory-read, a memory write and an /O write signal are as-
sumed to be used in an active LOW polarity.

An Am25L.52521 8-bit comparator is used to decode the addres-
ses of the 2K by 8 character memory. This memory can be placed
anywhere in the memory space in increments of 2K by using 5
DIP-switches. The comparator is enabled by the presence of
either the MMR or the MMW signal. The output of this comparator
is the HOST ACCESS signal.

The HOST ACCESS signal enables the two Am25L.S240 buffers
which connect the processor address bus to the character mem-

Note Figure A2 1s at back of the book

ory address bus. It also enables one half of an Am25LS241 buffer
transferring the MMR or MMR active LOW signal to the proper
data buffer enable (Am25LS240’s) and to the WE pins of the four
Am9114 memories in case of a memory write operation. The CS
of two of these memories are driven by A, while the CS of the
other two memories are driven by Ay, thus forming a 2K by 8
memory space.

An Am25LS2521 8-bit comparator is enabled by the I/OW control
line. If n matches the settings of the DIP switches at the B inputs of
the comparator, an OUT n instruction will write the data into the
Am251L.S374 “First Address Register”.

Figure A2 shows the complete wiring diagram of this interface
circuit.

00S-HdW

I HOST ACCESS
G
A Y
s Am25L5240 . CONTROLLER
(2% ADDRESS BUS
SBC-80/10 ADDRESS BUS Ag—15
AoArs A v |44
1
16 +5V 8 16 6
10 10
RES.
5 PLCS Ao-9 Ao—9
5 Eo 5
L—dAi—5 Bi_s
Aji-1s) s
= Am9114 Am114
Am25L.§2521 -
A p4t A
A B 710 4 10 74)
6-8 Bo-g
3 3
3
= = Am25L5240 8 — — =
e WE Cs WE Cs
MR
MMW 1 [_‘+5V 1 I
! bs Ao
s 2 8
iow
+5V
144 € 1y, Am9114 Am9114
1Az 1Y, o RES g, A b4 Ll» A
1
A3 1Y XACK 8 pLCS 10 4 10 4
_[8
= Am25L5241 Am25L52521
8 A WE & wE
e 1 WE C§ wIE [
B 4
A ¥ 8
Am25LS5240 CONTROLLER
DATA BUS
Y B A " Do-7
80/10 G 4 2~
DATA BUS 8 2 ’
Do_7 18
G 4 (4 “FIRST ADDRESS
¥ A cp REGISTER"
Am25L.5240
A ¥
4 13 4 Am25LS374

Figure A1. CRT Controller.

€9

64

18
[IR7 v .
P143 Ay “
Pras Ay, "
Pras Ay .
(SR TYpu— 2 .
Ao 1
47
1 A;: d -
P50 &g : -
Plap Ay
—2
2 18 a
il 4 16 s
[IET) . © .
. 0 12
o L 1, & v, A
P183 A, mgmp n
P156 Ay — g :
& 24, & W,
prss & e . .
P1s8 A, me
P157 Ky it
u3o
)
L o7 8;
- 16
]
-0 Bs
12
OO B4
-0 LY
i o6 L
s > v
5 oo o i
i o o] AL
g
= a LN
@ oo -], g wur
£ = 15 E
£ A A <
- = 13
As As
= "
Ay ———— Ay
= 0
Ay —— Ay
i —2a,
A —2a
0 2
AN —24n
— ° Ein
1
19 MR
P1-20 MMW ’
12 Am25LS241
(SEE FIGURE 24)
2w .
. 16
", v, ‘
L EVIRTY Al
e w2
— us
4
2L, v, 8
p— _— D, w8
T LJ RV fil
E 2l g w2 ‘
o vcc¢—IJ_- [{ ’zv,§u|] 0y
"o & 7 av, & 2a, |13)N '
o Slav, £ 2, 1S 05
s lav, a7 D,
e Vee 2 uzs
10 .
ic_ 26
= 1] [
5 L FTammsTY ki o.
o Whiv, o.
s L) TSP L o
o, 2live g a2 T o
e] | SET] P BP9 CIER |]
L] 2A7g av, |2 v
$1am; & av S
LLA PYORE N £
20
Voo =) 27
cc—0] v
261G
= 19 1 y
»7
P1.22 IOW

Figure A2. CRT Controller.

65

HOST ACCESS FIGURE 24

Ao R
—_—y
—Ag
A7
As
—— As }FIGURE 24
— A
—_
—_—
JR—H
Ao
T |
B EEER
uta
—1 8%
0w
<4
{2
EQ
—] E2
I
— o4
—
XACK P1-23
—0
De
—0s
FIGURE 24
——0n
D2
b— Dy
—— Do
L
O
0y [| seeFiGuRE 24
7] FOR OUTPUTS
op—P — AND ENABLE
D, LI, -
3 E
[Do -
20
e vee
10
3 [L

1n

66

APPENDIX B

General

A software emulation of the CRT controller was written in
BASIC-E and run on the System 29 support processor. Figure B1
is a printout of this program.

Notations

For reference purposes, each clock pulse (CP) in the program is
numbered. The clocks are character-rate clocks. A subscript “10”
signifies that this variable belongs to the Am2910 (e.g. R10 = the
contents of the Am2910 Register Counter) and similarly a sub-
script 11 signifies the Am2911 dependent variables (e.g. Y11 —
the Y outputs of the two more significant Am2911s).

Usually the normal function names were used though for the
active LOW functions the bar was deleted for simplicity. A 0
signifies always a LOW and 1 signifies HIGH. Other abbrevia-
tions used in the program:

MA = Microprogram Address (Y output of the Am2910)
CA = Character Address
PC = Program Counter (internal)
R = Register (internal)
F = File (internal)
SP = Stack Pointer (internal)
TENC = The Am25LS168 decade counter
L4B = The 4 least significant bits of CA (the Y outputs of
the less significant Am2911
CN = Carry-in into the less significant Am2911
CN4 = Carry-out from the less significant Am2911

CN4 = Carry-in to the next significant Am2911
110 = The Am2910 instruction
HB = Horizontal Blanking signal (active HIGH)
VB = Vertical Blanking signal (active HIGH)
CPM = Maximum Clock Pulse (at which the program
stops)

Description

The different groups and subroutines of the emulation program
are as follows: (See Figure B1).

<1000 series: The microcode. Subroutine 50 is the
Am25LS168 decade counter clocking routine.
TENTH is the RCO output of this device.

1000 series: This is essentially the Am2910 emulation.

Note the definition of the two functions

FNFAIL and FNPASS at the beginning of the

program, compare to the Am2910 instruction

definitions in its data sheet.

The Am25LS153 multiplexer emulation.

The less significant Am2911 emulation. Note

that the only input to this device is ZEROL.

CN and the internal PC (called L4B) are con-

trolled in the CLOCK Subroutine (4000 series).

The two more significant Am2911’s emulation,

Sp and S, are treated as a single number

(ranging from 0 through 3) and denoted by

S11.

The Clocking routine.

The main emulation routine. It includes the

Am25LS2521 comparator routine and checks

the Clock Pulse against CPM to determine

end of run.

Emulation parameter setup (initialization).

The starting and ending CP numbers, MA,

TENC, R10 and VECTOR (The “First Address

Register”) can be set.

Sets up the print-out parameters

Printout subroutine

Sets the program mode: RUN, PRINT or QUIT

(return to CP/M)

The emulation was exercised to evaluate fifteen different perfor-
mance aspects of the CRT Controller. The results indicated that
in all cases, the design operated as desired.

2000 series:
2500 series*

3000 series:

4000 series*
5000 series*

5500 series’

6000 series:
7000 series:
9000 series:

REM

REV=12

PRINT REV

9000 REM HEADER
PRINT
FRINT

REM

REM
REM
REM
REM
REM
REM
?100

REM
9120
REM
?130

REM
?110

REM
6000

6010

FRINT % %M%M K65 H KR IR KN H NI NN NN RN RN RN KR NNNNN
PRINT

FRINT

FRINT * A MICROPROGRAMMED' CRT CONTROLLER EMULATION®

PRINT

FRINT
FRINT ® 2696965 3 36 3 3 3 3 3 3 36 36 96 3 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 36 36 96 36 36 36 36 36 I J ¢ J 3 36 °

PRINT

FRINT

PRINT * BY MOSHE M. SHAVIT"
PRINT * ANVANCED MICRO DEVICES®
PRINT * FERRUARY 27, 1978"
FRINT

FRINT

0DIM F10(6)
DEF FNFAIL=CCEN=0 AND CC=1
DEF FNFASS=CCEN=1 OR CC=0

GOTO 6000 REM PROGRAM PARAMETERS (REMOVED REV &)
Z--REV 6

PRINT
FRINT
FRINT
INFUT "R-UN, P-RINT OR Q-UIT ";MODES
IF LEN(MODES$)=0 THEN GOTO 9100
MODE=ASC(MODES$)-79
IF MODE<1 OR MODE > 3 \
THEN FRINT MODES; * IS INVALID":\
GO0TO 2100
ON MODE GOTO 9110,%9120,9130

RETURN

REM RUN
FRINT
INFUT °"PUT RESULTS ON FILE (0 IF DIRECT FRINTOUT)= *;WFILES
PRINT "CP= ";CF;"MA= °*;MA;"VECTOR= ";VECTOR;\
“CPM= ";CPM;"ROW= ";24-R10
INFUT "INITIALIZE (Y OR N; CF,MA=0 IF N)>"3:;5%
IF 8$="Y" \
THEN GOSUE 5500 \ REM INIT.
ELSE CF=0 : MA=0
IF WFILES="0" \
THEN GOTO 6010 \ REM DIRECT PRINTOUT
ELSE FILE WFILES : GOTO S000 REM MAIN

REM PRINT

FRINT

INFPUT *"GET RESULTS FROM FILE="j;RFILES
FILE RFILES

REM PRINT FARAMETERS
PRINT
PRINT "OUTPUT FORMATS:"
Figure B1.

PRINT A=CF AND CA ONLY"

FRINT * B=CP,CA,HE,VE,MA"
PRINT * C=CF,CA,MA, TENC,R10"
FRINT * D=ALL®

FRINT

INFUT "FORMAT=";FORMATS
IF LEN(FORMATS)=0 THEN GOTO 4010
IF ASC(FORMATS$)<65 OR ASC(FORMATS)>68 \
THEN PRINT FORMATS;® IS ILLEGAL" =\
GOTO 6010
PRINT
REM
6020 REM
IF WFILES NE "0" \
THEN CONTROLS="A" =\
GOTO 6030
PRINT °"CLOCK CONTROL"
PRINT * A=CONTINOUS®
PRINT * E=8STEF"
INPUT "CONTROL=";CONTROLS
IF LEN(CONTROLS$)=0 THEN GOTO 6020
IF ASC(CONTROL$)<65 OR ASC(CONTROLS$)>»66 \
THEN PRINT CONTROLS$;" IS ILLEGAL" :\
GOTO 6020
PRINT
REM
6030 PRINT "OUTFUT CONTROL®

PRINT * A=AT EACH CF"

FRINT * E=AT EVERY N-TH CP"

PRINT * C=MANUAL CONTROL"

FRINT * 1=8TARTING AT CFS AT EVERY CP"

FRINT * E=STARTING AT CFS AT EVERY N-TH CFP*®
INFUT "OUTPUT=";0UTPUTS
IF LEN(OUTPUTS)=0 THEN GOTO 6030
IF ASC(OUTPUTS)<65 OR ASC(OUTFUTS)>69 \
THEN FRINT OUTFUTS;"* IS ILLEGAL" :\
GOTO 6030
0.CTL=ASC(OUTPUTS) 64
ON 0.CTL GOTO 6090,6032,6090,6034,6036
6032 INPUT *N=";N

M=0
GOTO 6090

6034 INFUT "CFPS= ";CFS
GOTO 6090

6036 INFUT °"CFS= ";CFS8
INFUT *N= ";N
M=0
GOTO 6090

REM
6090 FORMAT = ASC(FORMATS)-64
ON FORMAT GOSUR 6190,6300,6200,6100
IF WFILE$="0" THEN GOTO S000 REM MAIN
REM
6900 PRINT
IF END' #1 THEN 6910

FOR I=1 TO 2 STEP O REM DO UNTIL END OF FILE

READ #1; CF,R10,F1,SF10,FC10,CA,MUX,CC,CCEN,MA, TENC,\
CN4,F11,HE,VR

F10(SF10)=F1

GOSUR 7000 REM PRINT

GOSUER 5200 REM ESCAFE (REV 7)

IF S=159 THEN FRINT2PRINT "ARORTED AT ";CP : GOTO 6910

NEXT I

Figure B1 (Cont.)

REM
6910

. REM
4100

4190
REM
6200

REM
6300

REM
REM
7000

REM
7002

REM
7003
REM
7004
REM
7005

REM
7010
REM
7100

REM
7200

REM
7300

REM
7400

REM
REM
5000

CLOSE 1
ouT 100,12 REM PRINTER FAGE EJECT (REV 7)
GOTO 2100

PRINT

PRINT *CP*,*R10"*,"F10","SF10","FC10"
PRINT "CA®,"MUX*,*CC","CCEN", "MA"
FRINT "TENC®",®*CN4*,"*F11","HR","VUB"
FRINT

RETURN

FRINT
FRINT *CLOCK®,"CHAR.ADDR","2910 REG.","L1INE CNTR.", "NEXT MA"
RETURN

PRINT
FRINT *"CLOCK®",*CHAR.ADDR®, "H.BLANKING", "V.RLANKING", "NEXT MA"
RETURN

REM FRINT SUEBROUTINE
ON 0.CTL GOTO 7010,7005,7002,7003,7004

INPUT *"OUTPUT (Y OR N)";8%
IF S8%="Y" \
THEN GOTO 7010 N\
ELSE RETURN

IF CP<CPS THEN RETURN ELSE GOTO 7010
IF CFP<CFS THEN RETURN ELSE GOTO 7005

M=M+1
IF M=N THEN M=0 : GOTO 7010 ELSE RETURN

ON FORMAT GOTO 7100,7200,7300,7400

PRINT *CF= *;CF,"CA= *;CA
RETURN

IF HE=0 THEN HE$="L" ELSE HR&$=" H*
IF VE=0 THEN VE$='L* ELSE VES$=" H*
FRINT CP,CA,HES,VES,MA

RETURN

FRINT
FRINT CP,CA,R10,TENC,MA
RETURN

PRINT
FRINT CP,R10,F10(SP10),5FP10,PC10
PRINT CA,MUX,CC,CCEN,MA

PRINT TENC,CN4,F11,HB,VB

RETURN

REM MAIN ROUTINE

REM

GOSUE 4000 REM CLOCK
REM FETCH MICROCODE

ON MA+1 GOSUR 30,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
GOSUB 2500 REM 29111
GOSUR 3000 REM 2911H

Figure B1 (Cont.)

69

CA=Y11%16+L4E REM CHARACTER ADDRESS
REM COMFARATOR NEXT
IF Y11=120 AND TENTH=0 \ REM REV &
THEN COMF=0 \
ELSE COMP'=1

GOSUE 2000 REM MUX
GOSUE 1000 REM 2910
REM REV 6

IF WFILE$="0" THEN GOSUEB 7000 \ REM DIRECT PRINTOUT
ELSE FRINT #1;CP,R10,F10(8SF10),5F10,FC10,CA,MUX,\
CcC,CCEN,MA, TENC,CN4,F11,HE,VE

IF CONTROLS$="B" THEN INFUT S% REM SINGLE STEF
REM CHECK ENID OF RUN
GOSUE 5200 REM ESCAFE (REV 7)
IF S=155 THEN PRINT:PRINT °*ARORTED AT *;CP : GOTO 5100
IF CP<CPM THEN GOTO 5000 REM REFEAT MAIN
REM
5100 IF WFILE$ NE "0*" THEN CLOSE (1)
OuUT 100,12 REM PRINTER PAGE EJECT (REV 7)
GOTO 9100
REM
REM 5200 SUR REV 7
5200 REM ESCAPE SUEBROUTINE
S=INP(97)
S=INT(S/2)
8§=8/2-INT(S/2)
IF 8 NE O THEN 8 = INF(96)
RETURN
REM
5500 REM INITIALIZATION
FRINT
8F10=1

FRINT *"MAa= ";MA
5505 INFUT "NEW MA (Y OR N)*";8¢
IF 8$="N" THEN GOTO 5510
INPUT *MA=(0<=MA<22) " ;MA
MA=INT (MA)
IF MA<0 OR MAZ»21 \
THEN FRINT MA;" IS ILLEGAL® =\
GOTO 5505
IF MA=0 THEN TENC=0 : HE=1 : TENTH=1
REM
8510 PRINT
PRINT "VECTOR= ";VECTOR
5515 INPUT °"NEW VECTOR (Y OR N)";8¢%
IF S$="N" THEN GOTO 35520
INPUT *VECTOR=(0<=VECTOR<120)";VECTOR
VECTOR=INT(VECTOR)
IF VECTOR<0 OR VECTOR>119 \
THEN PRINT VECTOR;" IS ILLEGAL® =\
GOTO 5515

8520 PRINT

PRINT *CF= *;CP

INPUT "NEW CP (Y OR N) ";S8%

IF 8$="N" THEN GOTO 5530
5525 INFUT *CF(:=0)= ";CF

CP=INT(CF)

IF CP<0 THEN PRINT CP;* IS ILLEGAL®" : GOTO 5325
REM '
5530 PRINT

FPRINT *CPM= ";CFM
5535 INPUT “"NEW CPM (Y OR N)*;5¢%

IF 8$="N" THEN GOTO 5340

Figure B1. (Cont.)

REM
5540

5545

REM
5560

REM

REM
REM

30

REM

&

REM

REM

INPUT *CFM=(CP+1<CPM)";CPM
CPM=INT(CPM)

IF CPM<CF+1 THEN PRINT CPM;" IS ILLEGAL";"CP= ";CP :G0OTO 5335

FPRINT

PRINT *TENC= *;TENC

IF MA=0 THEN GOTO 5550

INPUT "NEW TENC (Y OR N)*";S$

IF S§$="N" THEN GOTO 5550

INFUT "TENC=(0<{=TENC<10)";TENC

TENC=INT(TENC)

IF TENC<0 OR TENC:>9 \

THEN FRINT TENC;®" IS ILLEGAL® =\

GOTO 5545

IF TENC=9 THEN TENTH=0 ELSE TENTH=1

PRINT

FRINT "R10= ";R10

INFUT "NEW R10 (Y OR N)";S8s

IF S$="N" THEN GOTO S540

INPUT *R10 (0<=R10<25)=";R10

R10=INT(R10)

IF R10<0 OR R10>24 THEN PRINT R10;* IS ILLEGAL®" = GOTO 5555

REM
RETURN

I10=6
CCEN=0
MUX=3
§11=3
FE=0
ZEROH=1
ZEROL=0
CN=0
HR=1 REM REV 2
VE=0
FL=0
RETURN

110=12
§11=0

FE=1

ZEROH=1

ZEROL=0

CN=0

HE=1 REM REV 2
VB=0

PL=23

RETURN

110=14
S11=2

FE=1

ZEROH=1

ZEROL=0

CN=1

HE=1 REM REV 2
VB=0

RETURN

110=3
Figure B1 (Cont.)

71

72

REM

=

REM

REM

REM

CCEN=0
MUX=1
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
HE=0
VB=0
Fl=3
RETURN

110=3
CCEN=0
MUX=1
§11=0
FE=1
ZERQOH=1
ZEROL=1
CN=1
HE=0
VE=0
Fl.=4
RETURN

I10=3
CCEN=0
MUX=1
S11=0
FE=1
ZEROH=1
ZEROL =1
CN=1,
HE=0
VE=(
PL=%
RETURN

I110=3
CCEN=0
MUX=1
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
HE=0
VB=0
FL=6
RETURN

I10=3
CCEN=0
MUX=1
§11=0
FE=1
ZERQOH=1
ZEROL=1
CN=1
HE=0
VB=0
FL=7
RETURN

Figure B1 (Cont.)

REM

REM
10

REM
11

REM

12

REM
13

REM
14

110=1
CCEN=0
MUX=0
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1

GOSUER 50 REM TENC

VB=0
FL=12
RETURN

110=1
CCEN=0
MUX=2
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUE 50
VE=0
FL=21
RETURN

I10=3
CCEN=0
MUX=1
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUB 50
VB=0
FL=10
RETURN

110=3
CCEN=1
$11=0
FE=1
ZEROH=1
GOSUE S0
VE=0
PL=2"
RETURN

I10=9
511=0
FE=0
ZEROH=1
ZEROL=1
CN=1
GOSUER S50
VB=0
FL=20
RETURN

I10=6
CCEN=0
MUX=3
§11=3

REM

REV §

REM

15

REM

REM
16

REM
17

REM
18

REM

REM
20

FE=0 REM REV 10
ZEROH=1

ZEROL=0

GOSUE 50

VB=1

RETURN

110=12

$11=0 REM REV 10
FE=1 REM REV 10
ZEROH=1

ZEROH=1 REM
GOSUB S0

VB=1

FL=119

RETURN

I110=4
CCEN=0
MUX=3
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUB S50
VB=1
RETURN

110=3
CCEN=0
MUX=1
S11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUR S0
VB=1
FL=16
RETURN

110=8
§11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUR S50
VB=1
RETURN

I10=12
S11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUE S0
VB=1
PL=23
RETURN

I110=10

REMOVED REV 10

Figure B1 (Cont.)

73

CCEN=1
$11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUB 50
VB=1
RETURN
REM
21 110=10
CCEN=1
S11=0
FE=1
ZEROH=1
ZEROL=1
CN=1
GOSUR 50
VEB=0
RETURN
REM
22 110=10
CCEN=1
FE=0 REM REV 9
ZEROH=0
ZEROL=1 REM REV 9
CN=1
GOSUE 50
VE=0
RETURN
REM
50 REM TEN-LINE-~COUNTER CLOCKING SUBROUTINE
IF HB=1 THEN RETURN
HE=1
TENC=TENC+1
IF TENC=9 THEN TENTH=0 ELSE TENTH=1
IF TENC=10 THEN TENC=0
RETURN
REM PUSH AND POF SURROUTINES REMOVED REV 3
1000 REM 2910 INSTRUCTIONS SUBROUTINE
ON 1I10+1 GOTO 1100,1110,1120,1130,1140,1150,1160,1170,1180, \
1190,1200,1210,1220,1230,1240,1250
REM
1100 REM Jz
MA=0 REM 2910 Y
SP10=0 REM 2910 STACK FOINTER (=0 REV 3)
RETURN
REM
1110 REM cJs
IF FNFAIL \
THEN MA=PC10 \
ELSE MA=PL 2\
PUSH=1 REM REV 3
RETURN
REM
1120 REM JMAP
FRINT *JMAP NOT PROGRAMMED®
RETURN
REM
1130 REM CJP
IF FNFAIL \
THEN MA=PC10 \
ELSE MA=PL

RETURN Figure B1 (Cont.)

REM
1140

REM

1150

REM
1160

REM
1170

REM
1180

REM
1190

REM
1200

REM
1210

REM
1220

REM
1230

REM
1240

REM PUSH
IF FNPASS THEN R10=PL REM
MA=FC10
PUSH=1 REM REV 3
RETURN
REM JSRP
FRINT *"JSRP NOT PROGRAMMED"
RETURN
REM cv
IF FNFAIL \
THEN MA=PC10 \
ELSE MA=VECTOR
RETURN
REM JRP
IF FNFAIL \
THEN MA=R10 \
ELSE MA=FL
RETURN
REM RFCT
IF R10=0 \
THEN MA=PC10 =\
POF=1 \
ELSE MA=F10(SF10) =\
R10=R10~-1
RETURN
REM RPCT
IF R10=0 \
THEN MA=PC10 \
ELSE MA=FL =\
R10=R10-1
RETURN
REM CRTN
IF FNFAIL \
THEN MA=PC10 \
ELSE MA=F10(SP10) =\
FOP=1 REM
RETURN
REM CJPP
PRINT *"CJPP NOT PROGRAMMED"
RETURN
REM LDCT
R10=PL.
MA=PC10
RETURN
REM LOOP
IF FNFAIL \
THEN MA=F10(SP10) \
ELSE MA=FC10 =\
FOP=1 REM REV
RETURN
REM CONT
MA=FC10
RETURN Figure B1. (Cont.)

LOAD COUNTER

REV 3

3

REM

1250 REM TUB
PRINT *TWB NOT PROGRAMMED®
RETURN

REM

REM

2000 REM MUX SUBRROUTINE

ON MuX+1 GOTO 2100,2200,2300,2400
REM
2100 IF TENTH=0 \
THEN CC=0 \
ELSE CC=1
RETURN
REM
2200 IF CN4=0 \
THEN CC=0 \
ELSE CC=1
RETURN
REM
2300 IF COMF=0 \
THEN CC=0 \
ELSE CC=1

RETURN
REM
2400 CC=1
RETURN
REM
REM
2500 REM LEAST SIGNIFICANT 2911 (2911L) SUBROUTINE
IF ZEROL=0 THEN L4E=0
RETURN
REM
REM
REM
REM
3000 REM MORE SIGNIFICANT 29118 (2911H) SUBROUTINE
ON S11+1 GOSUB 3100,3200,3300,3400
IF ZEROH=0 THEN Y11=0
RETURN
REM
3100 Y11=PC11
RETURN
REM
3200 Y1i=R11
RETURN
REM
3300 Yii=F11
RETURN
REM

3400 IF I10=6 \
THEN Y11=VECTOR \
ELSE Yii=PL

RETURN
REM
REM
4000 REM CLOCK SUBROUTINE
REM FC10=MA+1 REMOVED REV 4
IF CN=1 THEN LA4E=L4B+1
IF LA4B>15 THEN L4BE=0 : CN4=1 ELSE CN4=0
IF CN4=1 \
THEN PC1i=Y11+1 \
ELSE FC11=Y11
IF FE=0 THEN F11=PCl1
REM <--REV 3

Figure B1 (Cont.)

IF PUSH=1 \
THEN SP10=5P10+1 :\
F10(SF10)=FPC10 =\
FUSH=0
IF SF10>4 \
THEN PRINT "2910 STACK FULL * =\

5F10=3
IF POP=1 \
THEN SP10=5F10-1 :\
POF=0

IF SP10<0 \
THEN PRINT "POP EMPTY FILE? ";CP =\

5P10=0
REM REV 3 -->
PC10=MA+1 REM REV 4
CP=CF+1
RETURN
REM
REM

Figure B1 (Cont.)

78

APPENDIX C

A simple circuit was designed to accommodate five different
display formats and also to comply with the European 50Hz TV
standard. Figure C1 1s the circuit diagram of this additional circuit.

The following parameters change when the format is changed:

1) The number of characters/line.

2) The number of lines/frame.

3) The number of characters to display (i.e., the address of the
last character).

4) The line frequency and therefore the dot frequency.

The number of characters/line is counted by the least significant
Am2911 sequencer via the microcode. Therefore, the microcode
can be changed to change the number of characters/line. The
number of lines/frame is counted by a constant, loaded into the

Am2910 internal counter by the microcode. The microcode can
be changed to vary the number of lines/frame.

The scan is reinitialized to zero when the last address +1 is
attained. Ug (Am25LS2521) detects this address by comparing
bits A4 through A4, of the character address bus to a constant
supplied to its B inputs. A table listing these constants 1s shown in
Figure C1. By setting the DIP switches according to that table, the
character scan will reinitialize correctly. The same constant is
routed through one half of an Am25LS240 (U24) to the internal
data bus. At microprogram address zero, a JUMP MAP instruc-
tion enables these outputs thereby putting a starting address on
the bus according to the table in Figure C1.

The microprogram is shown on Figure C2.

+5V +5V

6 Is]4]3

1Co 1€y 1C; 1C3

|||—-

CONNECT
FOR 50 Hz

~——O— —] 17;.1._

Am';;‘lo 14 U4t 16
A Am5LSISI yo o
WAP Dg 1Y GRD
7 7 8
21
+5V =
>
2222 <
[
o/c%’ L1 v, | Dy,
MD.
041 4 1A, A 16 1 g
o o2 Ll YW 1vg P2 Mo,
) Blia, 1v, P2 MDs_ 10 "
MD,
L U0 +5V AN 12
—'—_‘VW_—& 13
u24 AAA MDs 44
1/2 Am25L5240 w "
AVAVAv D7 15

MPR-501

LAST COMPARE AT MAP
FORMAT CHAR. ADD. +1 | LAST ADD/16 | S3 S, S; S; | ADDRESS DOT FREQ. (MHz)
24 x 80 1920 1200 78H |H H H H 0F0 10.86624
24 x 64 1536 96D 60H |HH L L OF3 9.09216
24 x 32 768 48D 30H | LHHL 0F9 5.544
16 x 32 512 32D 20H | L HL L OFB 5.376
16 x 16 256 16D 10H | L L HL OFD 3.65568
A10Ag Ag A7

Figure C1.

ADTYPE CRT.DEF

’

;CHT DEFINITION FILE
;) BY MCSEE M. SHAVIT
SREV ¢ 3/8/78

’
TITLE CRT CONTRCLIER --DEFINITIONS

WORD 24

’

FE: DEF 1VE#1,23X

ZEROn: TEF 1X,1VE#1,22X

S11: DEF 2X,2V%:Q#,20X

I112: DEF 4X,4VH#,1€6X

CN: DEF 9X,1VB#1,14X

ZERCL: TLEF 10X,1VB#1,13X

VE: DLF 11X,1VB#0,12X

ER: DEF 12X,1VB#90,11X

CCEN: DEF 13X,1VE#,10X

MUX D e TEF 14X,B#0¢0,8X

MUX1: LEF 14X,B#12,8X

MUXz: DEF 14X,EB#01,8X

MUX3: DEF 14X,3#11,8X

PL: DEF 1€X,8V%:

’

L: EQU R#d

He EQU B#1

’

CCUNT: DEF B#1,B#1,R#04,5X,B#1,B#1,R4C ,B#2,1X,2X,8Y
COUNTE: LEF 3#1,B#1,B#02,5X ,E#1,B#1,B#¢ ,B#1,1X,2¥,8X
COUNTV: LEF B#l,B#1,R#00¢,5X,B#1,8#1,b#1,B#1,1%X,2X,8X
’

UND

A>

Figure C2. AMDASM Definition and Assembly Files for the CRT Controller.

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTKOLLER

3 CFT CONTRCLLER MICROFRGGRAVM

4

yEY MOSHE M. SHAVIT
yREV 2 5/3/7&

)

)

00ee 110 H#2 ;JUMP MAP
24 ROWS 80 CHARACTERS 6@ F/S

€N e we we eo

9021 S248¢: 110 H#E
/ CNL &HBH
0002 110 H#C
/VB & PL D#23

0003 M2480: 110 H#E

CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
VB
S11 @ & FE & ZERCH & ZEROL L & CN L & HB H &

S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB

&
&
&
&
0004 110 H#Z & CCEN L & MUX1 & COUNT & PL ¢
0205 I11¢ H#3 & CCEN L & MUX1 & COUNT & PL $
0006 110 H#3 & CCEN L & MUX1 & COUNT & PL $
0007 11¢ H#3 & CCEN L & MUX1 & COUNT & PL $
0008 116 H#3 & CCEN L & MUX1 & COUNT & PL $
2009 110 H#1 & CCEN L & MUX@ & COUNTH & PL T2480
000 A I1¢ B#1 & CCEN L & MUX2 & COUNTH & PL LASTA
20eB 110 H#3 & CCEN L & MUX1 & COUNTH & PL $
0ee6C 110 H#3 & CCEN B & S11 @ & FE & ZERCH & HB H & VB & PL M2480
020D T2480: 110 H#9 & S11 @ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOR
ACK
Q00E I10 B#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ BB HG& VBH
coeF I10 H#C & S11 @ & FE & ZEROH & HR E & VB H & PL D#146
oele 110 H#4 & CCEN L & MUX3 & COUNTV
0011 I1e H#3 & CCEN L & MUX1 & COUNTV & PL $
ep12 110 H#8 & COUNTV
0013 116 H#C & COUNTV & PL D#23
0014 110 H#A & CCEN H & COUNTV
’
@015 GOBACK: 110 H#A & CCEN H & COUNTH
0016 LASTA: 110 H#A & CCEN H & FE L & ZERCH L & ZEROL & CN E & EB H & VB

’

’
H 24 ROWS 64 CHARACTERS 60 F/S
’
]
@017 S2464: 110 H#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CN L& HBHG& VB
po18 I1¢ B#C & S11 @ & FE & ZEROH & ZEROL L & CN L & HB H &
/VB & PL D#23
0019 M2464: 110 H#E & S11 2 & FE & ZERCH & ZERCL L & CN & EB H & VB
2014 110 H#3 & CCEN L & MUX1 & COUNT & PL $
9018 110 H#3 & CCEN L & MUX1 & COUNT & PL 2
201C 110 H#3 & CCEN L & MUX1 & COUNT & PL
201D I1¢ H#3 & CCEN L & MUX1 & COUNT & PL $
001E 110 H#1 & CCEN L & MUX® & COUNTH & PL T2464
Pe1F 110 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
2020 110 H#3 & CCEN L & MUX1 & COUNTH & PL $
021 I11¢ H#3 & CCEN H & S11 € & FE & ZEROH & HB H & VB & PL M24€4
@922 T2464: 11¢ H#9 & S11 @ & FE L & ZFROH & ZEROL & CN H & HB H & VB & PL GOB
ACK
0023 119 H#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ BB H & VB H
0024 116 H#C & S11 @ & FE & ZERCH & HB H & VB H & PL D#122
0825 110 H#4 & CCEN L & MUX3 & COUNTV
2026 110 H#3 & CCEN L & MUX1 & COUNTV & PL $
o027 110 H#8 & COUNTV

Figure C2 (Cont.)

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

oe2¢ 110 H4C & COUNTV & PL D#23
2029 110 E#A & CCEN H & COUNTV

24 ROWS 32 CHARACTERS 60 F/S

€N e o wo wy wo o

PL2A S2432: 110 h#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CNLG& HB H& VB
9928 110 H#C & S11 @ & FE & ZERCH & ZEROL L & CN L & HB H &
/VB & PL D#22
902C M2432: T10 HH#E & S11 2 & FE & ZERCHE & ZEROL L & CN & HE H & VB
02T 110 H#3 & CCEN L & MUX1 & COUNT & PL $
CO2E 110 H#3 & CCEN L & MUX1 & COUNT & PL $
ge2F 1190 H#1 & CCEN L & MUXO & COUNTH & PL T2432
2030 I10 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
0031 11¢ H#2 & CCEN L & MUX1 & COUNTH & PL $
2e32 I11¢ H#3 & CCEN H & S11 @ & FE & ZEROH & HB H & VB & PL M2432
9033 T2432: 112 H#9 & S11 ¢ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB
ACK
0034 11¢ H#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ HB H & VB H
0035 110 H#C & S11 ¢ & FE & ZEROH & HB H & VB H & PL D#74
09036 110 H#4 & CCEN L & MUX3 & CCUNTV
2037 110 E#3 & CCEN L & MUX1 & COUNTV & PL $
0028 110 H#8 & COUNTV
2039 110 B#C & COUNTV & PL D#23
PO3A I1¢ H#A & CCEN H & COUNTV

16 ROWS 32 CHARACTERS €0 F/S

T2 we weae we o

@03B S1€32: 110 B#6
/ CNL & HB H
283C I11¢ H#C

/VB & PL D#15

903D M1632: 110 H#E

CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
VB
S11 @ & FE & ZEROH & ZEROL L & CN L & HR H &

S11 2 & FE & ZEROH & ZERCL L & CN & HB H & VB

PO3E 110 H#3 CCEN L & MUX1 & COCUNT & PL $

PO3F I1¢ B#3 CCEN L & MUX1 & COUNT & PL $

004¢ 110 H#1 CCEN L & MUX@ & COUNTHE & PL T1632

0041 I1e E#1 CCEN L & MUX2 & COUNTH & PL LASTA

2042 110 H#3 CCEN L & MUX1 & COUNTH & PL $

2e43 110 H#3 CCEN H & S11 ¢ & FE & ZEROE & HB E & VB & PL M1632

ACK

2945 116 E#6 CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ BB H & VB H

004€ 116 H#C S11 ¢ & FE & ZEROH & HB H & VB H & PL D#250

&
&
&
&
&
&
&
&
&
&
0044 T1€32: 110 B#9 & S11 @ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB
&
&
&
&
&
&
&
&
&
&
&

gean 110 B#4 & CCEN L & MUX3 & COUNTV
2048 110 B#3 CCEN L & MUX1 & COUNTV & PL $
0049 110 H#8 COUNTV
0C4A I10 H#C COUNTV & PL D#48
004B 110 H#4 CCEN L & MUX3 & COUNTV
004C 110 H#3 CCEN L & MUX1 & COUNTV & PL $
2940 110 H#e COUNTYV
PO4E 110 H#C COUNTV & PL D#15
&

004F 110 H#A CCEN H COUNTV

16 ROWS 16 CHARACTERS 6@ F/S

e we wo we we

Figure C2 (Cont.)

82

AMDOS/29 AMDASM MICRO
CRT CONTROLLER

2050
2051

9052
2053
0954
2055
e05€
2057
eets
ACK
@o5¢9

0054
@058
2e5C
205D
QOSE
gesF

0OF 0
oere

@OF3
BOF3

00F9
00FC

@OFB
POFB

@OFD
@0FD

2109

o1ee
0101

g1e2
0103
0104
2105
010€
2107
2128
2129
Q104
0108
g1ec
ACK

S1€16: 110

H#E

/ CNL&HBEH

110

H#C

/VB & PL D#15

M1€1€: I1p
110
110
110
110
110
T1€16: 110

110

H#E
H#3
H#1
H#1
H#3
H#2
H#9

B#€

/ HB H & VB H

110
110
110
110
110
110

ORG
110

~e

.o we

ORG
110

.o e

ORG
110

-eee

ORG
110

..

ORG
110

we o we e we

ORG

U2 we e we e

2480E: 110

H#C
H#4
H#3
H#8
H#C
H#A

H#3

H#3

H#3

H#3

H#3

5@ F/S ROUTINES

24 ROWS

H#€E

/ CNL & HBH

110

H#C

/VB & PL D#23

M2482E: 11€
110
110
110
110
110
110
110
110
110
T2460E: 110

H#E
H#3
H#3
H#2
H#3
H#3
H#1
B#1
H#3
H#3
H#O

ASSEMBLER, V1.1

CCEN L & MUX3 & S11 3 & FE L & ZEROE & ZEROL L &
VB
S11 @ & FE & ZEROH & ZEROL L & CN L & HB H &

S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB

CCEN L & MUX1 & COUNT & PL $

CCEN L & MUX@ & COUNTH & PL T1616

CCEN L & MUX2 & COUNTH & PL LASTA

CCEN L & MUX1 & COUNTH & PL $

CCEN H & S11 © & FE & ZEROH & EB H & VB & PL M1616

S11 @ & FE L & ZEROH & ZEROL & CN E & HB E & VB & PL GOB
CCEN L & MUX2 & S11 3 & FE L & ZEROH & ZERCL L &

S11 @ & FE & ZEROH & HE E & VB H & PL D#203
CCEN L & MUX3 & COUNTV

CCEN L & MUX1 & COUNTV & PL %

COUNTV

COUNTV & PL D#15

& CCEN H & COUNTV

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

H#OF0Q 5 24%80
& CCEN H & PL S2480

H#OF3 7 24%64
& CCEN H & PL S2464

H#OQF9 §24%32
& CCEN H & PL 52432

H#OFB 7 16%32
& CCEN H & PL S1632

H#QFD 7 16%16
& CCEN H & PL S1616

H#100
80 CHARACTERS 5@ F/S

CCEN L & MUX3 & S11 3 & FE L & ZEROE & ZEROL L &
VB

S11 @ & FE & ZEROH & ZEROL L & CN L & HB E &

S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB

CCEN L & MUX1 & COUNT & PL $

CCEN L & MUX1 & COUNT & PL $

CCEN L & MUX1 & COUNT & PL $

CCEN L & MUX1 & COUNT & PL ¢

CCEN L & MUX1 & COUNT & PL $

CCEN L & MUXZ & COUNTH & PL T2480F

CCEN L & MUX2 & COUNTH & PL LASTA

CCEN L & MUX1 & COUNTH & PL $

CCEN H & S11 @ & FE & ZERCH & HB H & VB & PL M2480E

PP PP

511 ¢ & FE L & ZEROH & ZEROL & CN H & HEB BE & VB & PL GOB

Figure C2 (Cont.)

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

910D 110 E#6 & CCEN L & MUXZ & S11 3 & FE L & ZERCH & ZEROL L &
/ HB H & VB H
G10E 110 H#C & S11 @ & FE & ZEROE & HB H & VB H & PL D#200 s ITERATES
201 TIMES
910F I11¢ H#4 & CCEN L & MUX3 & COUNTV
0110 119 H#3 & CCEN L & MUX1 & COUNTV & PL $
9111 110 H#8 & COUNTV
’
2112 119 E#C & COUNTV & PL D#239
0113 110 H#4 & CCEN L & MUX3 & COUNTV
2114 11¢ H#3 & CCEN L & MUX1 & COUNTV & PL $
9115 110 E#8 & COUNTV
’
9116 110 H#C & COUNTV & PL D#23
9117 116 H#A & CCEN E & COUNTV

24 ROWS €4 CHARACTERS 50 F/S

9118 S2464E: 110 H#6
/ CNL & HB E
2118 116 H#C
/VB & PL D#23

911A M2464E: 110 B#E

CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
VB
S11 @ & FE & ZEROH & ZEROL L & CN L & HB H &

S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB

&
&
&
&
9113 110 H#3 & CCEN L & MUX1 & COUNT & PL $
211C I11¢ E#3 & CCEN L & MUX1 & COUNT & PL $
911D 11¢ E#3 & CCEN L & MUX1 & COUNT & PL $
@11E 11¢ H#3 & CCEN L & MUX1 & COUNT & PL $
P11F 119 H#1 & CCEN L & MUX@ & COUNTH & PL T2464E
0120 110 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
@121 11¢ H#3 & CCEN L & MUX1 & COUNTH & PL $
9122 I11¢ H#3 & CCEN H & S11 @ & FE & ZERCH & HB H & VB & PL M24€4E
9122 T24€4E: 110 H#S & S11 0 & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB
ACK
2124 119 H#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ HB H & VB H
9125 110 H#C & S11 @ & FE & ZEROH & HB H & VB H & PL D#200
012€ 110 H#4 & CCEN L & MUX3 & COUNTV
2127 110 H#3 & CCEN L & MUX1 & COUNTV & PL $
0128 110 H#8 & COUNTV
’
0129 I1¢ H#C & COUNTV & PL D#167 s 3ES
91zA 110 H#4 & CCEN L & MUX3 & COUNTV
212B 119 H#3 & CCEN L & MUX1 & COUNTV & PL $
212C 110 H#8 & COUNTV
’
212D 110 B#C & COUNTV & PL D#23
012E I1¢ H#A & CCEN H & COUNTV
,
i
’
H 24 ROWS 32 CHARACTERS 5@ F/S
’
©12F S2432E: 110 H#6 & CCEN 1 & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CNL & HBHG&UVB
2130 1190 H#C & S11 @ & FE & ZEROH & ZEROL L & CN L & HB H &
/VB & PL D#23
9131 M2432E: I1¢ H#E & S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB
9122 110 B#3 & CCEN L & MUX1 & COUNT & PL $
2133 11¢ H#3 & CCEN L & MUX1 & COUNT & PL $
2134 110 B#1 & CCEN L & MUX@ & COUNTH & PL T2432E
9135 110 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
2136 119 H#3 & CCEN L & MUX1 & COUNTH & PL $

Figure C2 (Cont.)

AMDOS /29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

2137 110 H#3 & CCEM H & S11 @ & FE & ZEROH & HB H & VB & PL M2432E
@138 T2432E: 110 H#9 & S11 @ & FE L & ZEROH & ZEROL & CN H & HB. H & VB & PL GOB
ACK

@139 119 H#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &

/ HBH& VBE

0134 I1¢9 E#C & S11 @ & FE & ZEROE & HB E & VB H & PL D#224

@138 110 H#4 & CCEN L & MUX3 & COUNTV

213C 11¢ H#3 & CCEN L & MUX1 & COUNTV & PL $

213D 110 E#8 & COUNTV

Z13E 110 H#C & COUNTV & PL D#23

@13F I1¢ H#A & CCEN H & COUNTV

16 RQWS 32 CHARACTERS £@ F/S

T2 we we we wowe

2140 S1632E: 119 H#€ & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CNL & HB H & VB
o141 110 H#C & S11 @ & FE & ZEROH & ZEROL L & CN L & HB K &
/VB & PL L#15
9142 M1€32E: 110 H#E & S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB
0143 11¢ H#Z & CCEN L & MUX1 & COUNT & PL $
2144 I11¢ H#3 & CCEN L & MUX1 & CCUNT & PL $
9145 I11¢ H#1 & CCEN L & MUX® & COUNTH & PL T1632E
2146 110 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
0147 110 H#3 & CCEN L & MUX1 & COUNTH & PL ¢
2146 116 H#3 & CCEN H & S11 @ & FE & ZEROH & HB H & VB & PL M1€32E
9140 T1632E: 110 H#0 & S11 @ & FE L & ZEROH & ZERCL & CN H & HB H & VB & PL GOB
ACK
2144 110 H#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL I &
/HB H & VB H
2143 110 H#C & S11 @ & FE & ZEROH & HB H & VB H & PL D#25@
214C 11 H#4 & CCEN L & MUX3 & COUNTV
014D 110 H#3 & CCEN L & MUX1 & COUNTV & PL $
014E 11¢ H#8 & COUNTV
914F 110 H#C & COUNTV & PL D#223 ;475
0150 1190 H#4 & CCEN L & MUX3 & COUNTV
2151 110 H#3 & CCEN L & MUX1 & COUNTV & PL §
9152 110 H#8 & COUNTV
9153 110 H#C & COUNTV & PL D#15
p154 110 H#A & CCEN H & COUNTV

16 ROWS 16 CHARACTERS 50 F/S

€N e e o we we

2155 S1€16E: I1¢ H#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ CNL & HB H & VB
9156 110 H#C & S11 @ & FE & ZEROB & ZEROL L & CN L & EB H &
/VB & PL D#15
0157 M1€1€E: 110 B#E & S11 2 & FE & ZEROH & ZEROL L & CN & HB H & VB
2158 110 H#2Z & CCEN L & MUX1 & COUNT & PL $
@15¢ 110 E#1 & CCEN L & MUX@ & COUNTH & PL T1616E
2154 110 H#1 & CCEN L & MUX2 & COUNTH & PL LASTA
915B 110 H#3 & CCEN L & MUX1 & COUNTH & PL $
915C 110 H#3 & CCEN B & S11 © & FE & ZEROH & EB H & VB & PL M161€E
215D T161€E: I10 H#S & S11 @ & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB
ACK
@15E I19g E#6 & CCEN L & MUX3 & S11 3 & FE L & ZEROH & ZEROL L &
/ HBH & VB H
@15F I1p B#C & S11 @ & FE & ZEROH & HB H & VB H & PL D#200
0160 116 H#4 & CCEN L & MUX3 & COUNTV
161 110 H#3 & CCEN L & MUX1 & COUNTV & PL $
gl62 110 B#€ & COUNTV

Figure C2 (Cont.)

AMTO0S/29

AMDASM MICRO

CRT CONTROLLER

.
’

ASSEMBLER, V1.1

7323

21001001X1101XXX
01110119XX011011
110211060XXX11XXX
11000100X1111611
11000011X1111010
11001000X1111XXX
11001190X1111XXX
11001016X11111XX
¢1110110X0001011
11001100X00&1XXX
11101110X1001XXX
11002011X1100010
11000011X1100010
11000¢01X1101020
11000001X1101001
11000011X1101010
11000011XXX011XX
01001001X1101XXX
©1112110XX011011
11001100XXX11XXX
11000100X1111011
11000011X1111010
11001000X1111XXX
11001100X1111XXX
11001012X11111XX
01110110X0001011
11001100X00@1XXX
11101110X1001XXX
11000011X1100010
11000011X1100010
11000001X1101000
11000001X1101001
11000011X1101010

9162 110 H#C & COUNTV & PL D#121
0164 110 H#4 & CCEN 1L & MUX3 & COUNTV
2165 119 H#3 & CCEN L & MUX1 & COUNTV & PL %
0166 110 HE#8 & COUNTV
’
P1€7 110 E#C & COUNTV & PL D#15
0168 110 H#A & CCEN H & COUNTV
’
@1F0 ORG H#1F0 §24%8Q
01F0 1190 H#3 & CCEN H & PL S2480F
b
1
B1F2 ORG H#1F3 124%€64
B1F3 110 H#3 & CCEN H & PL S2464E
,
?
@1F9 ORG H#1F9S 324%32
21F9 119 H#3 & CCEN H & PL S2432E
?
’
Q1FB ORG H#1FB 716%32
O1FB 110 E#2 & CCEN H & PL S1632E
?
’
@1FD ORG H#1FD 716%16
¢1FD 110 H#3 & CCEN H & PL S1616E
;
’
END
000¢ XXXXO0O1O0XXXXXXXX XXXXXXXX P22
0001 21110110X0001011 XXXXXXXX 0023
0002 11¢001100X0001XXX 00010111 0024
9003 11101110X1001XXX XXXXXXXX ve25
0004 11000011X1100010 00000100 002€
0025 11000011X1100010 00000101 0027
0P0€E 11000011X1100010 00000110 pe2E&
0007 11¢00011X1100010 00000111 0029
PO0E 11000011X110001¢ 00001000 0024
000S 11000001X1101000 00001101 0028
P0CA 11000001X1101001 00010110 802C
000B 11000011X1101010 00001011 202L
000C 11000011XXX011XX 00000011 Q202K
00¢D 01001221X1101XXX 00010101 002F
POOE ©1110110XX011011 XXXXXXXX 0030
P00F 11001100XXX11XXX 10010010 9021
0010 110001900X1111211 XXXXXXXX 0032
9011 11000011X1111010 00010001 0033
0012 11001000X1111XXX XXXXXXXX 0034
2213 11001100X1111XXX 00010111 0035
0014 11001010X11111XX- XXXXXXXX 0e3€
0015 11001019X11011XX XXXXXXXX 0037
2216 0¢XX1016X11011XX XXXXXXXX 0038
0017 ©01110110X0001011 XXXXXXXX 0B3c
001€ 11001100X0001XXX 00010111 0034
2219 11121110X1001XXX XXXXXXXX 2038
PC1A 11000011X1100010 90011010 203C
901B 11000011X1100010 00011011 903D
901C 11000011X1100010 00011109 903E
291D 11000011X1100010 00011101 203F
PP1E 11022001X1101000 00100010 0040
2C1F 11000001X1101001 00010110 0041
0020 11000011X1121010 00100000 0042
0021 11000011XXX011XX 00011001 2043

11000011XXX011XX

Figure C2 (Cont.)

00010101
XXXXXXXX
91111010
XXXXXXXX
201001190
XXXXXXXX
00010111
XXXXXXXX
XXXXXXXX
20012111
XXXXXXXX
09101101
00101110
09110011
20010110
09110€01
00101100
00010101
XXXXXXXX
01001010
XXXXXXXX
00110111
XXXXXXXX
00010111
XXXXXXXX
XXXXXXXX
00001111
XXXXXXXX
00111110
00111111
01000100
00010110
01000010
90111101

86

AMDOS /29 AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

0044
0045
0046
0047
0048
0049
0044
0043
204C
204D
PO4E
PO4F
(4"
9051
9052
9052
2054
2855
0056
0957
2058
0059
2054
@358
085C
Q95D
@O5E
@O5F
(337
Q@0F3
P0F¢S
BOF3B
@0FD
2100
2101
0102
9102
0104
0105
0126
ele7
0108
0105
210A
01038
21ec
210D
Q10F
010F
0110
9111
@112
9113
0114
2115
g11¢€
0117
9118
2119
2114
91138
211C
211D

01001001X1101XXX
01110110XX011011
11001100XXX11XXX
110090100X1111011
1100€011X1111010
11001000X1111XXX
11601100X1111XXX
11000100X1111011
11000011X1111010
11001000X1111XXX
11201100X1111XXX
11001010X11111XX

01110110X0001011.

11001100X0001XXX
11101110X1001XXX
11000011X1100010
110¢0001X1121020
11000001X1101001
11000011X1101010
1100001 1XXX011XX
21001001X1101XXX
01110110XX¢11011
11001100XXX11XXX
110090100X1111011
11000011X1111010
11001009X1111XXX
11001120X1111XXX
11001010X11111XX
XXXX@011XXXXX1XX
XXXX0011XXXXX1XX
XXXX0011XXXXX1XX
XXXX0011XXXXX1XX
XXXX@@11XXXXX1XX
21110110X0001011
11001100X02€1XXX
11121110X1001XXX
11000011X1100010
11000011X110€01¢
11000011X1100010
11000011X1100010
11000011X1100010
11000001X1101000
11000001X1101001
11000011X1121010
11000011XXX011XX
#1001001X1101XXX
©91110110XX011011
11001100XXX11XXX
11000100X1111011
11000011X1111010
11001000X1111XXX
11001100X1111XXX
110900100X1111011
11000011X1111010
11001000X1111XXX
110011060X1111XXX
11001010X11111XX
01110110X0001011
11001100X0001XXX
11101110X1001XXX
11000011X1120010
11000011X110001¢
11000011X1100019

00010101
XXXXXXXX
11111010
XXXXXXXX
01001000
XXXXXXXX
20110000
XXXXXXXX
01001100
XXXXXXXX
00001111
XXXXXXXX
XXXXXXXX
20001111
XXXXXXXX
01010011
01011000
00010110
01010110
01010010
00010101
XXXXXXXX
11001011
XXXXXXXX
01011100
XXXXXXXX
00001111
XXXXXXXX
2000e001
20010111
00101010
20111011
01010000
XXXXXXXX
00010111
XXXXXXXX
00000011
00000100
00000101
00000110
00000111
00001100
00010110
00001210
00000010
00010101
XXXXXXXX
11001000
XXXXXXXX
00010000
XXXXXXXX
11101111
XXXXXXXX
00010100
XXXXXXXX
00010111
XXXXXXXX
XXXXXXXX
00010111
XXXXXXXX
00011011
00011100
00011101

Figure C2 (Cont.)

Q11E
211F
0120
2121
@122
0128
@124
9125
0126
0127
0128
@l1z2¢
2124
0123
012C
212D
B12E
Q12F
0130
2131
0132
2133
3134
0135
213€
9137
0138
9139
2134
91338
913C
013D
913k
@13F
9140
2141
0142
9143
0144
2145
0146
0147
0148
2149
0144
0143
014C
914D
014E
214F
0150
2151
2152
8152
9154
2155
9156
9157
0158
@15¢
@15A
015B
215C

11000011X1100010
11000001X1101000
11000001X11010021
11000011X1101010
11000011XXX011XX
¢1001001X1101XXX
21119110XX011011
110901100XXX11XXX
11000102X1111011
11¢00011X111101¢
11001000X1111XXX
11001100X1111XXX
11000100X1111211
11000011X1111010
11001000X1111XXX
1100110€X1111XXX
11001010X11111XX
01110110X0001011
11001100X0001XXX
11101110X1001 XXX
11000011X1100010
11000011X1100010
11000001X1101000
11000001X1101001
11000011X1101010
11000011XXX211XX
01001001X1101XXX
21110110XX011€11
11001100XXX11XXX
11000100X1111011
11000011X1111010
11001000X1111XXX
11001100X1111XXX
11001010X11111XX
21110110X0001011
11001100X0001XXX
11101110X1001XXX
11000011X1100010
11000011X1100010
11000001X1101000
11000001X11010601
11000011X1101010
11000011XXX011XX
01001001X11061XXX
©1110110XX011011
11001100XXX11XXX
11000100X1111011
11000011X1111010
110€100¢X1111XXX
11001100X1111XXX
11200100X1111011
11000011X1111010
11001200X1111XXX
11001100X1111XXX
11001010X11111XX
©91110110X0001011
11001100X0001XXX
11101110X1001XXX
11000011X1100010
11000001X1101000
110¢0001X11021001
11000011X1101010
11000011XXX011XX

00011110
00100011
00010110
00102001
00011010
00010101
XXXXXXXX
11001000
XXXXXXXX
09100111
XXXXXXXX
10100111
XXXXXXXX
00101011
XXXXXXXX
00010111
XXXXXXXX
XXXXXXXX
00012111
XXXXXXXX
00110010
02110211
00111000
00010110
00110110
00110001
00010101
XXXXXXXX
11100000
IXXXXXXX
00111100
XXXXXXXX
00010111
XXXXXXXX
XXXXXXXX
00001111
XXXXXXXX
01000011
01000100
01001001
00010110
01000111
01000010
00010101
XXXXXXXX
11111010
XXXXXXXX
91001101
XXXXXXXX
11011111
XXXXXXXX
01010001
XXXXXXXX
90001111
XXXXXXXX
XXXXXXXX
00001111
XXXXXXXX
01011000
01011101
00012110
01011011
01010111

AMIO0S/2S AMDASM MICRO ASSEMBLER, V1.1
CRT CONTROLLER

215D
015E
@15F
0160
9161
0162
81€3
0164
2165
2166
o1€7
2168
21F0
Q1F3
B81F9
01FB
91FD

ENTRY

£1001001X1101XXX
01110110XX011011
11001100XXX11XXX
11000100X1111011
11000011X1111010
11001000X1111XXX
11001100X1111XXX
11000100X1111011
11000011X11110810
11001000X1111XXX
11001100X1111XXX
11001010X11111XX
XXXX@811XXXXX1XX
XXXX0011XXXXX1XX
XXXX2011XXXXX1XX
XXXX@011XXXXX1XX
XXXX0011XXXXX1XX

POINTS

SYMBOLS

GOBACK 0015
H

L

LASTA
M1EL1E

oee1
2000
P01€
2052

M1€16E 2157

M1€32

2e3D

M1€E32E 2142

M2432

002C

MZ243ZE 2131

M24€4

201¢

M2464E 211A

M24Eg

0003

M2480EF 2102

S1€1€

0050

S1€16E 2155

S1€32

023B

S16Z2E 0142

52432

2ozA

S2432%F P12F

Sz4€4

0217

SZ2464E 2118

52480

2001

S2480E 010¢

T1€16

2o5e

T1€E16E 215D

T1622

0044

T1€22E 2149

T2432

0033

T2432E 2138

T2464

0022

T24€64E 0123

T248¢

290D

T248CE 210C

TCTAL

PHASE 2 ERRORS =

00010101
XXXXXXXX
11001000
XXXXXXXX
91100001
XXXXXXXX
91111001
XXXXXXXX
01100101
XXXXXXXX
00001111
XXXXXXXX
00000000
00011000
00101111
01000000
01010101

2

Figure C2 (Cont.)

87

88

APPENDIX D

The Microprogrammed CRT Controller was built on a System 29
universal card and exercised by the System 29 support proces-
sor. An Am9080A program was written to fill the character mem-
ory. Figure D1 is the listing of this program. In order to observe the

correct output of the controller, an oscilloscope or CRT monitor
can be connected through an adaptation circuit shown in Figure
D2.

H

s FROGRAMM TO WRITE INTO
sBY MOSHE M. SHAVIT
sREV 0 3/6/78

CHARACTER MEMORY

O1FF = éTACK EQU 1FFH sSTACK FOINTER
OOFF = FAR EQU OFFH sFIRST AODRESS REGISTER O/F FORT
8000 = CHARAD EQU 8000H sCHARACTER MEMORY STARTS HERE
0200 ’ ORG STACK+1 ;WORKING SPACE AROVE STACK
02200 FA ns 1 sFIRST ALDRESS
0201 CURAD ns 2 sCURRENT ADNDRRESS
02203 FIL ns 2 sA(FIRST CHARACTER I[N L [NE)
y
0100 ORG 100H s FROGRAM STARTS HERE
0100 31FFO1 LXT SF,STACK
0103 213087 LXI H, 730H+CHARALD sLAST LINE, F1KST CHARACTER
0106 220302 SHLD FIL sIN *FIRST CHARACTER IN LINE® Bt FEF
0109 220102 SHLD CURAD sANDN IN CURRENT ADDRESS BUFFER
010C AF XRA A sCLEAR A
010DV D3FF ouT FAR sSTART ADDRESS=0
010F 320002 STA FA $SAVE IN BUFFER
0112 CD1ERO1 CALL CLEAR sCLEAR ALL CHAR. MEMORY
0115 CD2COo1 MAIN CALL CHARIN ;READ CHARACTER AND FUT IN CHAR. ML'MORY
0118 C31501 JMF MAIN ;00 IT AGAIN
H
y
011B 0600 CLEAR MUI E,0 ;DATA=0
011D 210080 LXI H,CHARAD sFIRST CHARACTER ADDRESE
0120 110008 LXT 0,20480 ;COUNTER
0123 70 CLEAR1 MOV M,E sCLEAR THAT ADDRESS
0124 1R ncx o s COUNT
0125 23 INX H sNEXT AIDKRESS
0126 74 MOV A,D 5 CHECK
0127 B3 ORA E H TF DONE
0128 C22301 JNZ CLEAR1 3NO. CONTINUE
012k C? RET sYES. BACK TO CALLER
9
v
012C OEO1 CHARIN MVI c,1 sCF/M READ COLE
012E CLOS00 CALL S sCF/M READI ROUTINE
0131 FE1A CFI 1aH sCTL-Z?
0133 CA0000 JZ [sRETURN TO CFM IF YFG
0136 2A0102 LHLD CURAD sFETCH CURRENT ADDRESS
0139 FEOD CPI OIH sCR™
013k CA4401 JZ CRLF sYES.
013E 77 MOV M,A sWRITE CHARACTER
013F 23 INX H 5 INCREMENT
0140 220102 SHLD CURAD sSTORE IN BUFFER
0143 C9 RET sBACK TO CALLER
5
0144 ES CRLF FUSH H
0145 IS FUSH I
0146 CS FUSH B
0147 FS FUSH FSW
0148 1EOA MVI E,0AH
0l14A OEQ2 MVI c,2
014C CL0500 CALL]
014F F1 FOF FSW
0150 C1 FOP B
0151 Il FOF n
0152 E1 FOFP H sROUTINE TO ECHO LF
0153 EB XCHG $SAVE CURRENT ADDRESS IN DE

Figure D1

0154 015000 LXI E,80D 580 CHARACTERS/LINE
0157 2A0302 LHLD FIL sFETCH FIRST CH. IN LINE AINDRESS
015A 09 DAL R sHL= A(NEXT LINE’'S FI1KST CH. ADD.)
015k ER XCHG sHL=CURRENNT ADDR.,DE=A(NEXT LINt FIRST CH. ADDR)
015C 0600 MVUI B,0 sDATA=0
015E 7C CRLF2 MoV A,H sMORE SIGNIFICANT CUKRENT ADDRESS
015F RA CMF n s=NEXT LINE FIRST ADDNRESS?
0160 C26801 JNZ CRLF3 sNO
0163 70 MoV A,L sLESS SIGNIFICANT CURRENT ADDRESS
0164 BE CMF E IS CURRENT LINE FULL?
0165 CA6DO1L JZ CRLF4 sYES
0168 70 CRLF3 MOV M,B sSTORE 0 AT THAT ADDRESS
0169 23 INX H s INCREMENT ADDRESS
016A C3SEO01 JMF CRLF2 ;G0 CHECK AGAIN
016D 7C CRLF4 MOV A,H ;MORE SIGNIFICANT FART OF ADDRESS
016E E&607 ANI 7 sONLY 3 LESS SIGNIFICANT RITS
0170 FEO7 CPI 7 sLAST LINE PASSED?
0172 C27E01 JINZ CRLFS sNOT YET
0175 7 MOV A,L sLESS SIGNIFICANT RYTE OF ADDRESS
0176 FE80 CPI 80H sARE WE AT 780H=192007
0178 C27E01 JNZ CRLFS sNOT YET, SKIP
017k 210080 LXI H,CHARAD sYES, START WRITING AT BEGINNING OF CH. MEM.
O017E 220302 CRLFS SHLD FIL 5STORE IN FIRST CH. TN LINE RUFFER
0181 220102 SHLD CURAD sAND IN CURRENT AINRESS RUFFER
0184 3A0002 LDA FA sFETCH F1RST VISIIELE CHARACTER AIDRESS
0187 C605 ADI S 5 SCROLL.
0189 FE78 CPI 120n 3 TOO MUCH?
018E CC9401 Cz CRLFO sYES
018E 320002 STA FA 5STORE IN FIRST ADDRESS BUFFER
0191 D3FF ouTt FAR sLOAD REGISTER
0193 C9 RET sRETURN TO CALLER
y
y
0194 AF CRLFO XRA A sFIRST ADDRESS=0
0195 C9 RET
§
¥
Figure D1 (Cont.)
Oscilloscope Connections. Ball Monitor Interface.
13y VIDEO & +5V +8V
vB BLANKING
HE pm -0 sk 23
A ! 47000F uso .
_E 1 lao ';145217 = oo Am26502 O1uF
i Vec 1r| 2 +5V ‘SI—' 14
VIDEO 2|, w e (,:' onzoNTAL s cnzx Rx/Cx |_‘6‘ chx Ry/Cx
4 1A, 1v, 16 +5V SYNCH
2 1ag 3 f""— e >—= 1, aff vs)——n-j 0 af® v
+5V uso 12k
Am25LS240 2200 v sl nlg
|——/w»—" 24, v, |2 A T e l‘ © I— -
s T 1uF (INVERSE) 3 =
_]_w ln I l 1

HORIZONTAL VERTICAL
DRIVE DRIVE
MPR-502

Figure D2.

89

Chapter il
The Data Path

INTRODUCTION

The heart of most digital arithmetic processors is the arithmetic
logic unit (ALU). The ALU can be thought of as a digital subsys-
tem that performs various arithmetic and logic operations on two
digital input variables. The Am2901A and Am2903 are Low
Power Schottky TTL arithmetic logic unit/function generators that
perform arithmetic/logic operations on two four-bit input vari-
ables. In most ALUs, speed is generally a key ingredient. There-
fore, as much parallelism in the operation of the arithmetic logic
unit as possible is desired.

The Am2901A and Am2903 ALUs are designed to operate with
an Am2902A carry lookahead generator to perform multi-level full
carry lookahead over any number of bits. Therefore, the devices
have both the carry generate and carry propagate outputs re-
quired by the Am2902A carry lookahead generator. The devices
also have the carry output (C,, +4) and a two’s complement over-
flow detection signal (OVR) available at the output. The net result
is that a very high-speed 16-bit arithmetic logic unit/function
generator can be designed and assembled using four of these bit
slice devices and one Am2902A (the Am2902A is a high-speed
version of the '182 carry lookahead generator). In addition, the
Am2901A and Am2903 provide a minimum of 16 working regis-
ters for providing source operands to the ALU.

UNDERSTANDING THE BASIC FULL ADDER

The results of an arithmetic operation in any position in a word
depends not only on the two-input operand bits at that position,
but also on all the lesser significant operand bits of the two input
variables. The final result for any bit, therefore, is not available
until the carries of all the previous bits have rippled through the
logic array starting from the least significant bit and propagating
through to the most significant bit. A full adder is a device that
accepts two individual operand bits at the same binary weight,
and also accepts a carry input bit from the next lesser significant
weight full adder. The full adder then produces the sum bit for this
bit position and also produces a carry bit to be used in the next
more significant weight full adder carry input. The truth table for a
full adder is shown in Figure 1. From this truth table, the equations
for the full adder:

S=A®B®C
Co = AB + BC + AC,

where A and B are the input operands to the full adder and C
is the carry input into the adder.

Inputs Outputs
A B C S Co
0 0 O 0 0
0 0 1 1 0
0o 1 0 1 0
o 1 1 0 1
1 0 O 1 0
1 0 1 0 1
1 1 0 0o 1
1 1 1 11

Figure 1. Full Adder Truth Table.

The sum output, S, represents the sum of the A and B operand
inputs and the carry input. The carry output, Cq, represents the
carry out of this cell and can be used in the next more significant
cell of the adder. Full adder cells can be cascaded as depicted in
Figure 2 to form a four-bit ripple carry parallel adder.

Note that once we have cascaded devices as shown in Figure 2,
we may wish to discuss the equations for the i-th bit of the adder.
In so doing, we might describe the equations of the full adder as
follows:
Si=A®B®C
Ci+1 = AiB; + BiC; + AC;
where the A; and B; are the input operands at the i-th bit, and
the C; is the carry input to the i-th bit. (Note that the equa-
tions for this adder are iterative in nature and each depends
on the result of the previous lesser significant bits of the
adder array.)

The connection scheme shown in Figure 2 requires a ripple
propagation time through each full adder cell. If a 16-bit adder s to
be assembled, the carry will have to propagate through all 16 full
adder cells. What s desired is some technique for anticipating the
carry such that we will not have to wait for a ripple carry to
propagate through the entire network. By using some additional
logic, such an adder array can be constructed. This type of adder
is usually called a carry lookahead adder.

Y X Y X Y. X; Y: X
on Io lﬂ |1 1) 2 2 ls 3
[B A c B A (4 B A c B A
s Co s Co s Co s Co
So $1 S2 S3 Cout

MPR-521

Figure 2. Cascaded Full Adder Cells Connected as a Four-Bit Ripple-Carry Full Adder.

94

A FOUR-BIT CARRY LOOKAHEAD ADDER

Looking back to the equations developed for i-th bit of an adder,
let us now rewrite the carry equation in a slightly different form.
When we factor the C; in this equation, the new equation be-
comes:

Ci+1 = AiB; + Ci(A; + By)

From the above equation, let us now define two additional equa-
tions. These are:

Gj = A

P; = Ai + Bi
With these two new auxiliary equations, we can now rewrite the
carry equation for the i-th bit as follows:

Ciy1 = Gi + PG

Note that we have now developed two terms: the P; term is
known as carry propagate and the G; term is known as carry
generate. An anticipated carry can be generated at any stage of
the adder by implementing the above equations and using the
auxiliary functions P; and G; as required.

It is interesting to note that the sum equation can also be
written in terms of these two auxiliary equations, P; and G;. For
this case, the equation is:
Si = (Ai + B)(AB) @ C;

The auxiliary function G; is called carry generate, because if it is
true, then a carry is immediately produced for the next adder
stage. The function P; is called carry propagate because itimplies
there will be a carry into the next stage of the adder if there is a
carry into this stage of the adder. Thatis, G;, causes a carry signal
atthe i-th stage of the adder to be generated and presented to the
next stage of the adder while P; causes an existing carry at the
inputto the i-th stage of the adder to propagate to the next stage of
the adder.

Let us now write all of the sum and carry equations required for a
full four-bit lookahead carry adder.

So =A@ Bo® G

S1=A1® B1® (Go + PoCyp)

S, Aze B, ® (G1 + PjGo + P«'PoCo)

S3; = A3® B3 @ (Gy + PGy + PoP1Go + P2P1PoCo)
Ci+4 = G3 + P3G2 + P3P2G1 + P3P2P1Go + P3P2P1POC0

[}

An important point to note is that ALL of the sum equations and
the final carry output equation, C; + 4, can be written in terms of the
A;, B;, and Cy inputs to the four-bit adder. The configuration as
described above is shown in Figure 3. This figure is divided into
two parts — the upper blocks show the auxiliary function
generator circuitry required to implement the P; and G; equations
while the lower block implements the logic required to generate
the sum output at each bit position.

A serious drawback to the lookahead carry adder is that as the
word length is increased, the carry functions become more and
more complex, eventually becoming impractical due to the large
number of interconnections and heavy loading of the G; and P;
functions. The auxiliary function concept can be extended, how-
ever, by dividing the word length into fairly small increments and
defining blocks of auxiliary functions G and P.

Itis possible for a given block to define a function G as the carry
out generated with the block; and P can be defined as the carry
propagate over the block. If the block size is set at four bits, then
the functions for G and P for this block can be defined as follows:

G = G3 + P3G, + P3P,Gy + P3P,P1Gy
P= P3P2P1P°

B;

2 &
L

LI

;

A;

By

A

Ao

7 8
if

Co

MPR-522

Figure 3. Full Four-Bit Carry-Lookahead Adder.

It is important to note that neither of these terms involves a
carry-in (Cg) to the block, so no matter how many blocks are tied
in an adder, all the blocks have stable G and P functions available
in a minimum number of gate delays.

The G and P functions can be gated to produce a carry-in to each
four-bit block, as a function of the lesser significant blocks. The
carry-in to a block is therefore:

Cn = Gn—1 + Pn_1Gn—2 + Pn_1Pp_2Gn_3+ ...
+ Pn_1 Pn—ZPn—B e P2P1 PoCo
Finally, the carry-in to each of the bits in a four-bit block must
include a term for the actual least significant carry-in; note,

therefore, that the equations for the four-bit full adder presented
above include a term for carry-in at each bit position.

Figure 4 shows the technique for cascading typical bit slice ALUs
such as the Am2901A or Am2903 and one Am2902A in a full
16-bit high-speed carry lookahead connection. Figure 5 shows a
connection scheme using only four bit slices in a 16-bit arithmetic
logic unit connection where the carries are rippled between the
devices. Each bit slice does use internal carry lookahead over the
four-bit block.

AgA1AzA3 BoByByB3 AgA5Ag A7 BgBgBg By

AgAgAigA11 Bg BgBigByy A12A13A14A15 B12813814 By

LIl LI NN AN AR
CARRY IN © AoAiAzA3 BBy By g . AgAjAgA3 Bg By By B c Ag A1Ap A3 Bg Bf By B3 cﬂAgAlAzA:; Bg By 8283 |Cour
" Am2901A " Am2901A " Am2901A Am2901A Coes
OR OR OR
Am2903 Am2903 Am2903 Am2903 OVERFLOW
Fo Fi Fy F3 T F Fo F1 F2 F3 G 7 Fo Fi F2 F3 T 7 Fo Fi Fp F3 VR
Fo F1 Fp F3 Fa F5 Fg Fy Fg Fg Fio Fn Fi2 F13 Fia Fis
[G B Gy P Cpsg
Ca Am2902A

MPR-523

Figure 4. Full Lookahead Carry 16-Bit Adder.

AgAjAz A3 B By By B3

Ag A5 Ag A7 Bq Bg Bg By

.

AgAgA1oA11 Bg BgBigByy

LT

A12A13A14A15 812813814815

]

. Ag A1A2 A3 Bg By By B3 AoA1A2A3 Bp BBy B3 | Coyr
n

CARRY IN ELEEEEEED) Ao A1 Az Az Bo By Bz By
n Crea Cn Crta
Am2901A Am2901A
oR oR
Am2903 Am2903

Fo F1

Cn+a n Cora
Am2901A " Am2901A 4
OR OR
Am2903 Am2903
OVR OVERFLOW
F3

Fo F1 Fo F3

Fg F F, 3

Fo F1 Fp Fy Fa s

F2 F3
Fg Fy

Fo F1 Fp
Fg Fg Fio Fny Fiz Fi3 Fua Fis

MPR-524

Figure 5. Connection of 16-Bit ALU Using Ripple Carry.

In summary, the ripple carry method can be used in conjunction
with the lookahead technique in several ways.

1. Lookahead carry over sections of the adder and ripple carry
between these sections of the adder can be used. This
method is often the most efficient in terms of hardware for a
given speed requirement. It does not require the use of a
lookahead carry generator such as the Am2902A.

2. Lookahead carry across 16-bit blocks with a ripple carry be-
tween 16-bit blocks can be used. This technique is usually
called two-level carry lookahead addition. This technique re-
sults in very high-speed arithmetic function generation and
makes a reasonable tradeoff between the speed and
hardware for word lengths greater than 16 bits.

3. Full lookahead carry across all levels and all block sizes can
be used. This is the highest speed arithmetic logic unit con-
nection scheme. For word sizes up to 64 bits, itis referred to as
three-level lookahead carry addition. Such a 64-bit ALU re-
quires the use of five Am2902A carry lookahead generator
units in addition to the 16 bit slice ALU devices as shown in
Figure 6.

OVERFLOW

When two’s complement numbers are added or subtracted, the
result must lie within the range of the numbers that can be
handled by the operand word length. Numbers are normally
represented either as fractions with a binary point between the
sign bit and the rest of the word, or as integers where the binary
point is after the least significant bit. The actual choice for the
location of the binary point is really up to the design engineer, as

the hardware configuration required for either technique is identi-
cal. Itis also possible to use number notations that include both
integer and fractional representations in the same numbering
scheme. Overflow is defined as the situation in which the result of
an arithmetic operation lies outside of the number range that can
be represented by the number of bits in the word. For example, if
two eight-bit numbers are added and the result does not lie within
the number range that can be represented by an eight-bit word,
we say that an overflow has occurred. This can happen at either
the positive end of the number range or at the negative end of the
number range. The logic function that indicates that the result of
an operation is outside of the representable number range is:

OVR = C¢® Coyq

where Cg is the carry-in to the sign bit and Cg4 is the
carry-out of the sign bit.

Thus, for a four-bit ALU with the sign bit in the most significant bit
position, the two’s complement overflow can be defined as the
Cp+4 term exclusive OR’ed with the C, ;3 term.

Putting the ALU in the Data Path of a Simple Computer

Once the Design Engineer understands the basic configuration
and operation of a simple high speed carry lookahead adder, he
can begin to understand the configuration required to implement
the data handling section of a typical computing machine. The
simplest architecture for the data handling path of a minicomputer
is shown in Figure 7. Here, an accumulator is used in conjunction
with an ALU to perform a basic arithmetic/storage capability for
data handling. The computer control unit of Figure 7 can be a
simple or sophisticated state machine as described in Chapter 2.

16 4-BIT SLICES

-CARRY-OUT
OVERFLOW

o)
L]

Q O Q
Go Po Gq Py Gz P2 Gg3 P3| Go Po G1 Gz Py G2 P2 G3 P3 Go Pg G1 Py Gz P G3P3
4 4
—cn Am2902A —icn Am2902A —fcn Am2902A p— Cn Am2902A
G G
Crix Crty Cniz Cntx Cniy Cn+z Crix Crvy Cniz Cnx Crty. Cr+z
ToC4 ToCg ToCyp ToCzp ToC24 ToCzg ToCzg ToCgg ToCaq ToCs; ToCsg ToCgp

Go Po G1 P1 G2 Py

Cy Am2902A

Cnix _ Cnty Catz

ToC1g ’ ToCqg

ToC32

MPR-525

Figure 6. 64-Bit ALU with Full Carry Lookahead Using 5 Am2902s and 16 4-Bit Slices.

|
o]

ALU

COMPUTER
CONTROL
UNIT

ACC LOAD

ouTt

DATA-IN DATA-OUT OP CODE

MPR-526

+ CARRY
— 1 + CARRY

>+
wwwo

e B + CARRY
e ZERO
e PASS A

Figure 7. Basic Computer Data Path.

While the introductory material of this chapter concentrated on full
adders, it should be understood that more ALU functions than
addition are required if we are in to implement the data path of a
typical minicomputer. Typically, some or all of the functions
shown in Figure 8 are needed if we are to implement a powerful
data handling capability.

The operation of the ALU/accumulator configuration shown in
Figure 7 can be described as follows. The accumulator can be
loaded by bringing data in from the data-in port through the A
input of the ALU, passed through the ALU and loaded into the
accumulator. A second word of data can be presented at the
data-in port to the A input of the ALU and the ALU can be uséd to
perform an operationsuch as A + B,AORB,AAND B, A — Band
so forth. The results of this ALU operation can then be placed into
the accumulator. The accumulator output is available at the
data-out port for use elsewhere. Additional ALU functions such as

Figure 8. Basic ALU Instructions.

those shown in Figure 8 are easily implemented by adding some
additional circuitry to the four-bit carry look ahead adder shown in
Figure 3. If this circuitry is added, we will arrive at a logic diagram
as shown in Figure 9. This diagram certainly is familiar to most
CPU designers and is the well known Am74S181 four-bit arith-
metic logic unit/function generator.

Once the operation of the simple computer data path as shown in
Figure 7 is understood, the Design Engineer will soon recognize
the need for additional registers if our machine is to be general
purpose and execute instructions. Very rapidly the need arises for
aregister to hold a program counter (PC) and a memory address
register (MAR). The purpose of the program counter is to point to
the address of the next instruction in main memory. Typically it is
loaded into the memory address register which actually provides
the address on to the address bus of the machine. Then, the
program counter is incremented through the ALU and stored until

£
2
—
o
>

<3 — =

Py

_L

015253

H
=10

25

Hil

:::F

F—
—‘"-“]—C(

&=

ol

Cua G

MPR-527
Figure 9. Logic Diagram for Am25LS181.
DI
o R BUS D BUS
Do

<2 5
CONTROL
aw /

F BUS
16 16 16
LD LD
ACC PC MAR
EN N ccu
4
16)
16 Tmm Deus 16
DATA IN
ADDR ADR BUS
EXTERNAL
MEMORY RW]
EN = = 7
DATA OUT INST REG
I]
16
MPR-528

Figure 10.Three Register Computer Data Path.

itis needed again. The block diagram of Figure 10 shows these
additional registers connected in parallel at the output of the ALU.
This ALU output is called the F bus. Each of these registers (the
accumulator, the PC, and the MAR) has an enable input from the
CCU so that they can selectively be loaded with data from the
ALU. In addition, each of these registers has an output enable
such that they can be selectively enabled onto the D bus. The D
bus represents the data output path from the basic computer data

path and also is used as one of the inputs to the actual ALU/func-
tion generator. The other input in this example is called the R bus
and comes directly from the main memory data output as well as
from the 1/O data input. As shown in Figure 10, the memory
address register (MAR) has a second output that is used to drive
the address bus. In this example, this register always contains the
address to be applied to the external memory whether it be the
address of data or the address of an instruction.

97

98

The best way to understand the operation of this single ALU/three
register machine is to take an example. Let us assume we have
just completed the execution of one machine instruction and are
ready to fetch the next instruction. The first operation would be to
transfer the current value of the program counter onto the D bus
through the ALU onto the F bus and into the memory address
register. This might be accomplished during one microcycle. The
second operation might be to again put the PC on the D bus, pass
itthrough the ALU B port and increment the value atthe B port and
reload it into the PC register. Thus, the PC has again been
updated to point to the address of the next intruction. During this
time, the address from the MAR is on the address bus and we are
fetching data from the external memory and placing it on the R
bus. The third microcycle would be to bring the data out of the
external memory and pass it to the instruction register in the CCU.
The next microcycle might be to decode this instruction and
determine that the next word after the current instruction in mem-
ory (an immediate operation) is to be added to the value currently
in the accumulator. Thus, we would again need to place the PC
into the MAR on one cycle and then increment the PC on the next
cycle. Following this, the data from the external memory could be
brought to the R bus through the A port of the ALU and added to
the accumulator value which is placed on the D bus and brought
through the B port of the ALU. The result would be placed in the
accumulator. This operation would complete the example and we
would be ready to fetch the next instruction. As can be seen, a
number of microcycles are required to fetch the instruction, de-
code it, fetch the data and execute the instruction. One of the best
ways to understand the flow needed to implement a typical in-
struction set is shown in Figure 11. Here, we see the basic
instruction fetch and decode operation followed by the path used
to execute each of the various instructions. Then, we see areturn
to the fetch operation to fetch the next instruction.

Certainly from this discussion we can see how three registers
have enhanced the performance of the simple ALU/accumulator
data path shown in Figure 7. Typically, even more registers than
shown in Figure 10 are needed if we are to increase the power of

BEGIN
TRANSFER PC
PC ~MAR To MAR
INCREMENT PC
PC+1—PC | AND RETURN
- READ INSTRUCTION
Moo ~IR INTO IR
BRS:C" DECODE INSTRUCTION
op OP CODE
T ADD Im | I I
NST1 PC — MAR READ DATA | ot
EXEC PC+1—PC | AND ADD EXEC
MDO+ACC —AcCC | TO AcC
MPR-529

our machine. If we examine the block diagram of Figure 12, we
see a similar architecture to that as shown in Figure 10. Here, the
number of working registers has been expanded to sixteen at the
output of the ALU. These can be used to provide a program
counter function and a number of accumulator functions simul-
taneously. In addition, note that the registers have two output
ports such that the simultaneous selection of any two of the
sixteen registers is possible. Both of these registers can be pre-
sented to the ALU so that operations on two registers simultane-
ously can be executed. In addition, a data input multiplexer is
available at the A port of the ALU such that external data can be
brought in to the configuration. Likewise, there is an output muilti-
plexer such that either the A output of the registers or the ALU
output can be selected. This output multiplexer is used to provide
a data out port and the output can also be loaded into memory
address register to provide an address as required. Thus, the
architecture of Figure 12 is quite similar to that of Figure 10 except
that the number of registers has been increased to provide addi-
tional flexibility.

If we assume that one of the sixteen registers inside of this
register file is to be used as the program counter, we see that the
program counter can be brought out of the A output port and
loaded into the memory address register and at the same time it
can also be brought out the B output port and incremented in ALU
and reloaded into the register file. In this architecture it appears
the A output of the register stack can also be brought to the input
multiplexer and the A port of the ALU and incremented via that
path and reloaded into the registers. While this is possible in the
architecture of Figure 12, we are leading up to the implementation
of an Am2901A and this path is not needed in the Am2901A.
Thus, we can implement functions and operations in the diagram
of Figure 12 just as we could in the diagram of Figure 10. How-
ever, what was previously performed in two microcycles can now
be performed in one microcycle. That is, the MAR can be loaded
with the current value of the PC and at the same time the PC can
be incremented and the new value restored in the PC register.

DATA
IN

INPUT
MUX
Cout A 8
SIGN c
OVR ALU N
2ZERO F
2]
16 REGISTERS
A B
l OUTPUT MUX]

DATA ADDRESS
out out

MPR-530

Figure 11. Steps for ADD Instruction.

Figure 12. Multi-Register ALU.

Another feature of the block diagram of Figure 12 is the depiction
of the carry in bit to the ALU and the four output flags associated
with the ALU. Here, carry in is the normal carry in as needed in
any adder such that the device is cascadable. In addition, certain
kinds of arithmetic functions such two’s complement arithmetic
also need the ability to provide a carry in for certain operations.
The most common is two’s complement subtract which is usually
performed by complementing the operand to be subtracted, ad-
ding and adding one at the carry in. Also, the ALU shows the four
output flags usually associated with a typical minicomputer.
These are the carry output, the sign bit, the overflow detect, and
the zero detect. These four status flags are used to determine
various things about the operation being performed. The carry out
flag and overflow flag are as described in the previous sections of
this chapter. They provide the carry and overflow information
about the addition.

The sign bit is simply the most significant bit of the ALU and
represents the sign of a two’s complement number. That is, when
the sign bitis LOW, we assume the two’s complement number is
positive and when the sign bit is HIGH, we assume the two’s
complement number is negative. Thus, the sign bit s active HIGH
and carries negative weight as we assume in any standard two’s
complement number representation. If the reader is unfamiliar
with two’s complement number notations, a discussion of this
topic can be found in an application note entitled “The Am25S05,
Am2505 and Am25L05 Schottky, Standard and Low Power TTL
Two’s Complement Digital Multipliers” as found in Advanced
Micro Devices' Schottky and Low Power Schottky Data Book
dated 10/77. This application note begins on page 5-49 and fully
details two’s complement number notation and gives examples.

The fourth status flag is called the zero flag and again is just what
the name implies. This flag represents the fact that all of the ALU
outputs are atlogic zero. In this design, a logic zero means that all
of the ALU output bits are LOW.

If the architecture of Figure 12 is extended a little more, we will
arrive at the Am2901A as depicted in Figure 13. Here, we have
redrawn the structure so that the registers are placed above the
ALU; however, the function is identical. Two new functions have
been added to this block diagram that have not previously been
discussed. These are the RAM shift matrix located directly above
the sixteen registers now described as a 16 x 4 dual port RAM.
The purpose of the RAM shift network is to allow the ability of
shifting the data word to be written into the register either up one
bit position or down one bit position. The second function added
to the block diagram is that of the Q register and shift network.
Here, the Q register is used as an auxiliary register such that
double length operations can be performed and it is also used in
the multiply and divide algorithms. In addition, the shift network
allows the Q register contents to be shifted up one bit position or
shifted down one bit position. In addition, it should be pointed out
that the memory address register is not part of the Am2901A. This
is because there were not enough pins on the package to imple-
ment the function and the additional power required by the output
buffers would have reduced the performance of the ALU and
register stack. Instead, this function is being designed into other
2900 family products.

Am2901A ARCHITECTURE

A detailed block diagram of the Am2901A bipolar micropro-
grammable microprocessor structure is shown in Figure 14. The
circuit is a four-bit slice cascadable to any number of bits. There-
fore, all data paths within the circuit are four bits wide. The two key
elements in the Figure 14 block diagram are the 16-word by 4-bit
2-port RAM and the high-speed ALU.

8]7]e[s[a[3]2[1]0
ussnmnoul ALY l ALY
CONTROL | FUNCTION | SOURCE
MICROINSTRUCTION DECODE

RAMg RAMSHIFT RAMy|

cLock % >
O QSHIFT
B DATAIN
A (Reab) — N, oo
AbDRESS —J| A ADDRESS cp

RAM F a
16 ADDRESSABLE REGISTERS
—\ QREGISTER
8 ADDRESS
A

B
(READWRITE)
ADDRESS 7 cp o
e l—
Logic

DIRECT o
DATAIN 1

0 A 8] Q

ALU DATA SOURCE
SELECTOR

8
DATA DATA
out uT

R s 6

CARRY IN ~—f=|Cin — P

| Cyea
— F; (SIGN)
| OVERFLOW
£ L F-0000

A F
ouTeuT |
ENABLE — | OUTPUT DATA SELECTOR J

U DATA OUT

Figure 13. Am2901A Block Diagram.

MPR-004

Data in any of the 16 words of the Random Access Memory
(RAM) can be read from the A-port of the RAM as controlled by
the 4-bit A address field input. Likewise, data in any of the 16
words of the RAM as defined by the B address field input can be
simultaneously read from the B-port of the RAM. The same code
can be applied to the A select field and B select field in which case
the identical file data will appear at both the RAM A-port and
B-port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is
always written into the file (word) defined by the B address field of
the RAM. The RAM data input field is driven by a 3-input multi-
plexer. This configuration is used to shift the ALU output data (F) if
desired. This three-input multiplexer scheme allows the data to
be shifted up one bit position, shifted down one bit position, or not
shifted in either direction.

The RAM A-port data outputs and RAM B-port data outputs drive
separate 4-bit latches. These latches hold the RAM data while the
clock input is LOW. This eliminates any possible race conditions
that could occur while new data is being written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three
binary arithmetic and five logic operations on the two 4-bit input
words R and S. The R input field is driven from a 2-input multi-
plexer, while the S input field is driven from a 3-input multiplexer.
Both multiplexers also have an inhibit capability; that is, no datais
passed. This is equivalent to a “zero” source operand.

Referring to Figure 14, the ALU R-input multiplexer has the RAM
A-port and the direct data inputs (D) connected as inputs.
Likewise, the ALU S-input multiplexer has the RAM A-port, the
RAM B-port and the Q register connected as inputs.

99

RAMg RAM3
B |
] 9
3IN 3IN 3IN
EE EEE
S %o 0 02 03 <8y Q ~ \—!
»eV'II <8, 5
. > : R — 3IN 3IN K
AWORD 1 16 BIT BY 4 BIT 2PORT RAM cs, [ADDRESS [a an o k
o "2 DATA OUT 8. 1—
; oATA OUT aam oy _
s | Ao Ay Az Ay By 8 By 83 _ _
T | — I
L <16
ALY
R a DMWM_ZOQ)NM_OZ —< 1y
QREGISTE
cLock € A LATCH € —
e — By By B, B
T >_ _ ﬂ _e 9 9 Qg
03
oiRect) 02
DATA
INPUTS 0y —V
%
<
2IN 2IN 2IN 3IN hbﬂ hhﬂ .
Mux MUX MUX MUX ey)
_ — 1 DECODE
<1,
S S2 G
N) Ry Ry S G
ALU N ;
. V ‘NMMM_.uOMZ \ ARITHMETIC LOGIC UNIT (ALU) Covra
: L —<ovr
F, Fy F2 F3
Ca o
N
F=0 E.
— \— _ (orc) 3
2N 218 _ _ 2N am — —
_ G:cx :ﬁcx :c“x T Note: LSB i1s numbered ‘‘0’’; MSB 1s numbered "3,
THREE
STATE
Fro D]
Yo vy Y Y3 .

100

Figure 14.

This multiplexer scheme gives the capability of selecting various
pairs of the A, B, D, Q and “0” inputs as source operands to the
ALU. These five inputs, when taken two at a time, result in ten
possible combinations of source operand pairs. These combina-
tions include AB, AD, AQ, A0, BD, BQ, B0, DQ, DO and QO. Itis
apparent that AD, AQ and A0 are somewhat redundant with BD,
BQ and BO in that if the A address and B address are the same,
the identical function results. Thus, there are only seven com-
pletely non-redundant source operand pairs for the ALU. The
Am2901A microprocessor implements eight of these pairs. The
microinstruction inputs used to select the ALU source operands
are the ly, |y and |, inputs.

The two source operands not fully described as yet are the D input
and Qinput. The D input is the four-bit wide direct data field input.
This portis used to insert all data into the working registers inside
the device. Likewise, this input can be used in the ALU to modify
any of the internal data files. The Q register is a separate 4-bit file
intended primarily for multiplication and division routines but it
can also be used as an accumulator or holding register for some
applications.

The ALU itself is a high-speed arithmetic/logic operator capable
of performing three binary arithmetic and five logic functions. The
13, 14 and |5 microinstruction inputs are used to select the ALU
function. The definition of these functions is shown in Figure 15.
The normal technique for cascading the ALU of several devices is
in a look-ahead carry mode. Carry generate, G, and carry propa-
gate, P, are outputs of the device for use with a carry-look-

ahead-generator such as the Am2902A ('182). A carry-out, C, 44, °

is also generated and is available as an output for use as the carry
flag in a status register. Both carry-in (C,,) and carry-out (Cy,+4)
are active HIGH.

SOURCE
OPERANDS DESTINATION
A B BO
AD DO SHIFT LOAD Y-ouT
AQ Q0 uP RAM F
A0 DQ uP RAM&Q F
DOWN RAM F
DOWN RAM&Q F
NONE NONE F
ALU FUNCTIONS NONE Q F
R+S RORS NONE RAM A
RS RANDS NONE RAM A
SR REXORS
R EXNOR S
RAND S

Figure 15. Am2901A Microinstruction Control.

The ALU has three other status-oriented outputs. These are F3, F
= 0, and overflow (OVR). The F3 output is the most significant
(sign) bit of the ALU and can be used to determine positive or
negative results without enabling the three-state data outputs. F5
is non-inverted with respect to the sign bit output Y;. The F = 0
output is used for zero detect. It is an open-collector output and
can be wire OR’ed between microprocessor slices. F = 0is HIGH
when all F outputs are LOW. The overflow output (OVR) is used to
flag arithmetic operations that exceed the available two’'s com-
plement number range. The overflow output (OVR) is HIGH when
overflow exists; that is, when Cp,; 3 and C,,4 are not the same

polarity.

The ALU data output is routed to several destinations. It can be a
data output of the device and it can also be stored in the RAM or
the Q register. Eight possible combinations of ALU destination
functions are available as defined by the lg, |; and lg micro-
instruction inputs. These combinations are shown in Figure 15.

The four-bit data output field (Y) features three-state outputs and
can be directly bus organized. An output control (OE) is used to
enable the three-state outputs. When OE is HIGH, the Y outputs
are in the high-impedance state.

A two-input multiplexer is also used at the data output such that
either the A-port of the RAM or the ALU outputs (F) are selected at
the device Y outputs. This selection is controlled by the lg, |; and
lg microinstruction inputs.

As was discussed previously, the RAM inputs are driven from a
three-input multiplexer. This allows the ALU outputs to be entered
non-shifted, shifted up one position (X2) or shifted down one
position (+2). The shifter has two ports; one is labeled RAM, and
the other is labeled RAM;. Both of these ports consist of a
buffer-driver with a three-state output and an input to the multi-
plexer. Thus, in the shift up mode, the RAM; buffer is enabled and
the RAM, multiplexer input is enabled. Likewise, in the shift down
mode, the RAM, buffer and RAM; input are enabled. In the
no-shift mode, both buffers are in the high-impedance state and
the multiplexer inputs are not selected. This shifter is controlled
from the lg, I; and Ig microinstruction inputs.

Similarly, the Q register is driven from a 3-input multiplexer. In the
no-shift mode, the multiplexer enters the ALU data into the Q
register. In either the shift-up or shift-down mode, the multiplexer
selects the Q register data appropriately shifted up or down. The
Q shifter also has two ports; one is labeled Qg and the other is Q.
The operation of these two ports is similar to the RAM shifter and
is also controlled from lg, |; and Ig.

The clock input to the Am2901A controls the RAM, the Q register,
and the A and B data latches. When enabled, data is clocked into
the Q register on the LOW-to-HIGH transition of the clock. When
the clock inputis HIGH, the A and B latches are open and will pass
whatever data is present at the RAM outputs. When the clock
input is LOW, the latches are closed and will retain the last data
entered. If the RAM-EN is enabled, new data will be written into
the RAM file (word) defined by the B address field when the clock
input is LOW.

Am2903 GENERAL DESCRIPTION

The Am2903 is a four-bit expandable bipolar microprocessor
slice that performs all functions performed by the industry stan-
dard Am2901A. In addition, it provides a number of significant
enhancements that are especially useful in arithmetic oriented
processors. The Am2903 contains sixteen internal working re-
gisters arranged in atwo address architecture and it also provides
all of the necessary signals to expand the register file externally
using the Am29705 register stack. Any number of registers can
be cascaded to the Am2903 using this technique. In addition to its
complete arithmetic and logic instruction set, the Am2903 pro-
vides a special set of instructions which facilitate the implementa-
tion of multiplication, division, normalization and other previously
time consuming operations such as parity generation and sign
extension. A block diagram of the Am2903 is shown in Figure 16.

ARCHITECTURE OF THE Am2903

The Am2903 is a high-performance, cascadable, four-bit bipolar
microprocessor slice designed for use in CPU’s, peripheral con-
trollers, microprogrammable machines, and numerous other ap-
plications. The microinstruction flexibility of the Am2903 allows
the efficient emulation of almost any digital computing machine.

101

102

J

DATA IN
Ao-3) A 8 4 Bo_3
= ADDRESS AppRESs [~
RAM WRITE
ENABLE o WE
A B
4 DATA OUT DATA OUT

4

cpP E LATCH
A
4
4

E’;"_’___',; oo
%

D_—_k wox] I wox sl__.o

4

0-
Cove Lo
si03 I_
& L T
aiog
&
OEy ;r cp
=
1EN 4
o -
lo-'s o .
Oo———]
=
INSTRUCTION | ©® Yo-3
DECOD! ZERO
W%T/ . cp
 ———]
| Veo
z -—d
é : GND
———]
MPR-030

Figure 16. Basic Am2903 Block Diagram.

The nine-bit microinstruction selects the ALU sources, function,
and destination. The Am2903 is cascadable with full lookahead or
ripple carry, has three-state outputs, and provides various ALU
status flag outputs. Advanced Low-Power Schottky processing is
used to fabricate this 48-pin LSI circuit.

All data paths within the device are four bits wide. As shown in the
block diagram of Figure 16, the device consists of a 16-word by
4-bit, two-port RAM with latches on both output ports, a high-per-

formance ALU and shifter, a multi-purpose Q Register with shifter

input, and a nine-bit instruction decoder.
Two-Port RAM

Any two RAM words addressed at the A and B address ports can
be read simultaneously at the respective RAM A and B output
ports. Identical data appear at the two output ports when the
same address is applied to both address ports. The latches atthe
RAM output ports are transparent when the clock input, CP, is
HIGH and they hold the RAM output data when CP is LOW. Under
control of the OE g three-state output enable, RAM data can be
read directly at the Am2903 DB 1/O port.

External data at the Am2903 Y I/O port can be written directly into
the RAM, or ALU shifter output data can be enabled onto the Y I/O
port and entered into the RAM. Data is written into the RAM at the
B address when the write enable input, WE, is LOW and the clock
input, CP, is LOW.

Arithmetic Logic Unit

The Am2903 high-performance ALU can perform seven arithme-
tic and nine logic operations on two 4-bit operands. Multiplexers
at the ALU inputs provide the capability to select various pairs of
ALU source operands. The E, input selects either the DA exter-
nal data input or RAM output port A for use as one ALU operand
and the OEj and Iy inputs select RAM output port B, DB external
data input, or the Q Register content for use as the second ALU
operand. Also, during some ALU operations, zeros are forced at
the ALU operand inputs. Thus, the Am2903 ALU can operate on
data from two external sources, from an internal and external
source, or from two internal sources.

When instruction bits |y, I3, 15, I; and lo are LOW, the Am2903
executes special functions. Figure 17 defines these special func-
tions and the operation which the ALU performs for each. When
the Am2903 executes instructions other than the nine special
functions, the ALU operation is determined by instruction bits |4,
I3, I and 14. Figure 18 defines the ALU operation as a function of
these four instruction bits.

Am2903s may be cascaded in either a ripple carry or lookahead
carry fashion. When a number of Am2903s-are cascaded, each
slice must be programmed to be a most significant slice (MSS),
intermediate slice (IS), or least significant slice (LSS) of the array.
The carry generate, G, and carry propagate, P, signals required
for a lookahead carry scheme are generated by the Am2903 and
are available as ontputs of the least significant and intermediate
slices.

The Am2903 also generates a carry-out signal, C, 14, which is
generally available as an output of each slice. Both the carry-in,
Cn, and carry-out, Cp44, signals are active HIGH. The ALU
generates two other status outputs. These are negative, N, and
overflow, OVR. The N output is generally the most significant
(sign) bit of the ALU output and can be used to determine positive
or negative results. The OVR output indicates that the arithmetic
operation being performed exceeds the available two’s comple-
ment number range. The N and OVR signals are available as
outputs of the most significant slice. Thus, the multi-purpose GIN
and P/OVR outputs indicate G and P at the least significant and
intermediate slices, and sign and overflow at the most significant
slice. To some extent, the meaning of the C,, .4, P/OVR, and G/N
signals vary with the ALU function being performed.

ALU Shifter

Under instruction control, the ALU shifter passes the ALU output
(F) non-shifted, shifts it up one bit position (2F), or shifts it down
one bit position (F/2). Both arithmetic and logical shift operations
are possible. An arithmetic shift operation shifts data around the
most significant (sign) bit position of the most significant slice, and
a logical shift operation shifts data through this bit position (see
Figure 19). SIO, and SIO; are bidirectional serial shift inputs/out-
puts. During a shift-up operation, SIOy is generally a serial shift
input and S10; a serial shift output. During a shift-down operation,
SI0; is generally a serial shift input and SIOg a serial shift output.

The ALU shifter also provides the capability to sign extend at slice
boundaries. Under instruction control, the SIO; (sign) input can
be extended through Yy, Y, Y, Y3 and propagated to the SIO;
output.

SI0g
Q Reg &
Hex Special ALU Shifter | Most Sig. | Other Shifter
Is Iy Ig s Code Function ALV Function Function Slice Slices | SIO, | Function QIO3 Qlo, WRITE
|F=S+Cpif Z=L Log Fl2—+Y
L L L L 1] Unsigned Multiply F=R+S4C, f Z=H (Note 1) Hi-Z Input Fo Log Q2+Q | Input | Qg L
Two's Complement | F=S+Cp if Z=L Log F/2—Y
L L H L 2 Multiply F=R +SQ Cp tf Z=H (Note 2) HI-Z Input Fo Log Q/2-+Q | Input | Qg L
L HL L| 4 g‘ﬁ:’;’:‘;‘:‘gy F=S+1+Cp, Fay Input input | Panty | Hold H-Z | H-z L
Sign/Magnitude- F=8+Cp, f Z=L F-Y
L H L H 5 Two's Complement F=§+C: W Z=H (Note 3) Input Input Panty | Hold H-Z | H-Z L
Two's Complement | F=S+Cp, if Z=L Log F2-+Y R
LoHH LT 6 | \itply, Last Cycle |F=S-R-14CpitZ=H| (Note 2) H-z input | Fo | Log @2=+Q | Input | Qo L
Single L
H L L L| 8 N':r?n‘;";f‘g‘“ F=S+C, FY F3 F3 H-Z | Log 20+Q | Q; | Input L
Double Length .
H L H L A Normalize and F=S+C, Log 2F—+Y R3V F3 F3 Input | Log 2Q—-+Q | Q3 Input L
First Divide Op
Two's Complement |F=S+R+C,, if Z=L =F
H n
H L L C | vde Fo8-R14G, (1 Z<H Log 2F—Y Ry ¥ F3 Fa Input | Log 20—+Q | Q3 Input L
Two's Complement |F=S+R+C, if Z=L
H H H L E Dwvide, Correction | F=S—-R-1+Cp1fZ=H| F—Y F3 F3 H-Z | Log 2Q—+Q | Q3 Input L
and Remainder
NOTES 1 At the most significant slice only, the Cp,4 signal is internally gated to the Y3 output L = LOW HI-Z = High Impedance
2 Atthe most significant shice only, F3 ¥ OVR is internally gated to the Y3 output. H = HIGH ¥ = Exclusive OR
3 At the most significant slice only, S3¥ F3 1s generated at the Y3 output X = Don't Care Panty = SIO3 ¥ F3 ¥ F, ¥ F1 ¥ Fg
4 Opcodes 1,3,7,9, B, D, and F are reserved for future use
Figure 17. Special Functions: Iy = |, = I, = I3 = |, = LOW, IEN = LOW.
14 13| 12| 13 | Hex Code ALU Functions _IE_ —E—
s103 10y s103 $10g
lp=1L | Fi
0~ i=Hl Significant Sgnificant or
LIL|L]|H 1 F = S Minus R Minus 1 Plus C, Shee Tmtermediata Slice
LiL{H|L 2 F = R Minus S Minus 1 Plus Cp, Am2903 Arithmetic Shift Path
LIL|H]|H 3 F = RPlus S Plus C,
LI{H]L]L 4 F =S PlusCy, 5105 ._%_. 10
LI{H|L|H 5 F =S Plus Cp,
C[H|H[L 6 F = R Plus C, Stce posons
L{H|H]|H 7 F =TRPlus C, Am2903 Logical Shift Path
HiLt|L|L 8 F, = LOW
H{L|L][H 9 F, = R, AND S, MPR-031
H{L[H]|L A F; = R, EXCLUSIVE NOR §; Figure 19.
H{L|H]|H B | Fi = R{ EXCLUSIVE OR S,
HIH[L[L C Fi = R AND S;
HiH|L]H o Fi = Ri NOR S, The instruction inputs determine the ALU shifter operation. Figure
HIH{HIL E Fi = Ri NAND §; 17 defines the special functions and the operation the ALU shifter
H|H|H|H F Fi = RiORS, performs for each. When the Am2903 executes instructions other
L=Low H = HIGH 1=0t03 than the nine special func_:tions, the AFU shifter opgration is de-
termined by instruction bits Igl;lgls. Figure 20 defines the ALU
shifter operation as a function of these four bits.

Figure 18. ALU Functions.

A cascadable, five-bit parity generator/checker is designed into
the Am2903 ALU shifter and provides ALU error detection capa-
bility. Parity for the Fy, F4, F2, F3 ALU outputs and SIOj3 input is
generated and, under instruction control, is made available at the
S10g output.

Q Register

The Q Register is an auxiliary four-bit register which is clocked on
the LOW-to-HIGH transition of the CP input. Itis intended primar-
ily for use in multiplication and division operations; however, it can
also be used as an accumulator or holding register for some
applications. The ALU output, F, can be loaded into the Q Regis-
ter, and/or the Q Register can be selected as the source for the
ALU S operand. The shifter atthe input to the Q Register provides

103

105 Y3 Y2 QReg &
Hex ALU Shifter Most Sig. | Other | Most Sig. | Other | Most Sig | Other J— Shifter
Ig 17 g Is Function Shce | Slices | Slice | Shices | Shice | Shices | Yy | Yo | SIOg | Write Function | QI0, (QIO,
L L oL L] Anth F12—Y Input Input Fy S103 SI03 F3 F, | Fy Fo L Hold H-Z [HI-Z
L L L H 1 Log Fl2=Y Input Input SI0; 103 F3 F3 F, |Fy Fo L Hold H-Z | Hi-Z
L L H L 2 Anth F2—Y Input Input F3 SI03 SI0; | Fa F2 |Fy Fo L Log Q2-+Q | Input | Qg
L L H H 3 Log Fl2—Y Input Input SI03 SI03 F3 Fy Fa |Fy Fo L Log Q2-+Q Input | Qg
L H L L 4 FY Input Input F3 F3 Fa Fp Fy |Fo Parity L Hold HI-Z | H-Z
L H L H 5 Fy Input Input Fy F3 F2 [Fy |Fo Panity H Log Q2-Q Input | Qp
L H H L 6 FY Input Input s Fs F F, Fr | Fo Partty H F=Q H-Z | HI-Z
L H H H 7 F-Y Input Input F3 F3 Fp Fp Fy |Fp Party L F~Q H-Z | HI-Z
H L L L 8 Arth 2F—+Y Fp Fy3 Fy Fp Fy Fi_ | Fo [SIOg Input L Hold HI-Z | H-Z
H L L H 9 Log 2F—Y F3 F3 Fp Fa Fq Fy Fo |SIOg Input L Hold Hi-Z HI-Z
H L H L A Anth 2F—Y Fp Fy F3 Fp Fy Fy Fo |SIOp Input L Log 2Q—+Q Q3 Input
H L H H B Log 2F—Y Fy F3 Fp 23 Fy Fy Fo | SIOg Input L Log 2Q—Q Q3 Input
H H L L c F=Y Fy F3 Fa [Fa Fa Fi |Fo HI-Z H Hold Hi-Z | HI-Z
H H L H D F=Y F3 F3 F3 F3 Fa 23 Fq Fo H-Z H Log 2Q—+Q Q3 Input
H H H L E SI0g—Yo, Y1, Y2, Y3 SI0p SI0y SI0g SI0g SI0g SI0p | SI0g[Si0g | Input L Hold HI-Z | Hi-Z
H H H H F F=Y F3 Fy F, | Fy [Fa Fy |Fo HI-Z L Hold H-Z | Hi-Z
Party = F3 ¥ Fp ¥ Fq ¥ Fg ¥ SIO3 L =LOW Hi-Z = High Impedance
¥ = Exclusive OR H = HIGH

Figure 20a. ALU Destination Control for Iy or Iy or Iy or I3 or I; = HIGH, IEN = LOW.

ALU RAM
OPERATION SHIFTER | WRITE | a
SINGLE ggwr\:
LENGTH YES |NC
i ARITH UP
ARITH DOWN
uP uP
e ARITH UP uP
ARITH DOWN DOWN
uP
Q-SHIFT PASS NO | Down
RAM YES |NC
RAM & Q YES |LOAD
toro | o PASS NS v
NONE NO |NC
SIGN EXTEND SI100 YES |NC
NC = No Change

Figure 20b. Am2903 ALU Destination Control Summary.

the capability to shift the Q Register contents up one bit position
(2Q) or down one bit position (Q/2). Only logical shifts are per-
formed. QIO, and QIO; are bidirectional shift serial inputs/out-
puts. During a Q Register shift-up operation, QIO is a serial shift
input and QIO; is a serial shift output. During a shift-down opera-
tion, QIO; is a serial shift input and QIO is a serial shift output.

Double-length arithmetic and logical shifting capability is pro-
vided by the Am2903. The double-length shift is performed by
connecting QIO; of the most significant slice to SIO of the least
significant slice, and executing an instruction which shifts both the
ALU output and the Q Register.

The Q Register and shifter operation is controlled by instruction
bits lgl;lgls. Figures 17 and 20 define the Q Register and shifter
operation as a function of these four bits.

Output Buffers

The DB and Y ports are bidirectional I/O ports driven by three-
state output buffers with external output enable controls. The Y
output buffers are enabled when the OEy inputis LOW and are in
the high-impedance state when OEy is HIGH. Likewise, the DB
output buffers are enabled when the OEg inputis LOW and in the
high-impedance state when OEg is HIGH.

The zero, Z, pin is an open collector input/output that can be
wire-OR’ed between slices. As an output it can be used as a zero
detect status flag and generally indicates that the Y_5 pins are all
LOW, whether they are driven from the Y output buffers orfrom an
external source connected to the Y3 pins. To some extent the
meaning of this signal varies with the instruction being performed.

Instruction Decoder

The Instruction Decoder generates required internal control sig-
nals as a function of the nine Instruction inputs, lq.g; the Instruc-
tion Enable input, IEN; the LSS input; and the WRITE/MSS in-
put/output. The WRITE output is LOW when an instruction which
writes data into the RAM is being executed.

When IEN is LOW, the WRITE output is enabled and the Q
Register and Sign Compare Flip-Flop can be written according to
the Am2903 instruction. The Sign Compare Flip-Flop is an on-
chip flip-flop which is used during an Am2903 divide operation.

Programming the Am2903 Slice Position

Tying the LSS input LOW programs the slice to operate as a least
significant slice (LSS) and enables the WRITE output signal onto
the WRITE/MSS bidirectional I/O pin. When LSS is tied HIGH, the
WRITE/MSS pin becomes an input pin; tying the WRITE/MSS pin
HIGH programs the slice to operate as an intermediate slice (IS)
and tying it LOW programs the slice to operate as a most signifi-
cant slice (MSS). This is shown in Figure 21.

4 ADDRESS BUS B
4 ADDRESS BUS A
9 INS DN BUS
||| L] 4
. DA DB . DA DB \ DA DB DA DB
1
A N Y L —ofa S Y
B Am2903 B aAm2903 B am2003 B Am2903
—1Q3 Q Q3 Qo Qg Qo Q3 Qq f—
—{Ss So S3 So S3 So S3 So f—
~—Cn+s 45 +5 ____ +5
N W/MSS -j_ W/MSS W/MSS :j— W/MSS
—~—ovr E—J_ —c P ss| —|&F 1SS F—E,F 55|
zv 'sz‘c"'- F-zv ﬁc,, —zv Wc,,.-.- _Zy WE_,,-.--_—
4 2 4/1/ 2 4% 2 5/3/
% Cnt+z G2,P2 Cnty G, Py Cnix Go, Po Cn
Am2902A Cn
Vee
MPR-531
Figure 21. Am2903 — 16-Bit CPU with Carry Look Ahead.
EXPANDING THE NUMBER OF Am2903 REGISTERS
The Am2903 contains 16 internal working registers configured in
a standard two port architecture. The number of working registers
in the ALU configuration can be increased by utilizing the
Am29705 16-word by 4-bit two-port RAM. Any number of DATA IN
Am29705's can be connected to the Am2903 to increase the
number of working registers. Figure 22 shows a block diagram of
the basic Am29705. As is seen, the device consists of a 16 word
by 4 bit two port RAM with latches at the A and B outputs similar to ApoAEss —] ‘::M" . B
the RAM contained within the Am2903. Each of the latch outputs nour we sour ADDRESS

has three state drivers capable of driving the DA and DB inputs of
the Am2903. The Am29705 is a non-inverting device. That is,
data presented at the inputs is stored in the RAM and when
brought to the RAM outputs, it is non-inverted from when it was
orginally brought into the device.

The technique for using the Am29705 to expand the number of
registers in the Am2903 can best be visualized by referring to
Figures 23 and 24 simultaneously. in Figure 23, the data bus
connections are shown such that the Am2903 Y output is used to
drive the Am29705 inputs. Here, we also assume this bus may be
tied to a data bus through a bi-directional buffer. In Figure 23, the
A outputs of the Am29705 are connected together and also
connected to the DA input of the Am2903. Likewise, the B outputs
from the Am29705 are also shown connected to the DB inputs of
the Am2903. In all cases, we are assuming 16-bit data busses.
Thus, four Am2903's are assumed and eight Am29705’s are
assumed. As shown in Figure 23, one of the write enable inputs to
the Am29705 is tied to the latch enable input of the Am29705 and
these pins are also tied to the clock input of the Am2903. This
allows the latches in the Am29705 to perform identically to those
in the Am2903.

MPR-532

Figure 22. Am29705 Block Diagram.

105

106

If we refer to Figure 24, we see the connections required to set up
the addressing for additional registers associated with the
Am2903. Here, three two-line to four-line decoders are used to
properly control the A address, B address and write enable sig-
nals to the devices. As shown in Figure 24, the four A address
lines are all tied in parallel between the Am2903 and the
AmM29705’s. The two-line to four-line decoder is used to enable
the appropriate output enable from the Am29705'’s or switch the
EA MUX inside the Am2903 such that the proper register is
selected. The B address operates in a similar fashion in that the
four B address lines are also all tied together. Likewise, a two-line
to four-line decoder is used to properly select the output enable of
either the Am29705’s or the Am2903 such that the correct source

< DATA BUS >
l BUFFER I
N =
WE
—— a-out B-0UT
N =
Am29705 WE
p~—] a-our B-OUT |——¢
(0 1
Ie
Am2903 cP
DAIN out DBAN |-—
| cLock
MPR-533

Figure 23. Am2903 — Data Bus Cascading.

operand register is selected. In addition, a two-line to four-line
decoder is used to control the write enable signal such that only
one register is written into as a destination. This is controlled by
properly selecting the write enable of either the Am2903 or the
Am29705 as determined by the two most significant bits of the B
address.

If this technique is used properly, any number of Am29705's can
be used in conjunction with the Am2903. It may be necessary to
use either a three-line to eight-line decoder or perhaps even a
larger circuit to decode the more significant bits of the A and B
addresses. Likewise, the write enable signal must be controlied
so that the correct destination register will be written.

UNDERSTANDING BIT SLICE TIMING

Perhaps one of the most important aspects of designing with
either the Am2901A or the Am2903 is understanding the calcula-
tions required to compute the worst case AC performance. In
order to perform these calculations, we have selected a number
of standard Schottky devices and assigned minimum, typical and
maximum speeds at 25°C and 5V for use in these calculations as
shown in Figure 25. Certainly the design engineer should use the
exact specifications of the devices he has selected for his design
in order to perform the worst case calculations. What is intended
here is an understanding of the technique to perform these calcu-
lations and some method to allow a comparison of the Am2901A
and Am2903 in terms of their AC performance. Since at the time
of this writing the Am2903 is still being characterized, only the
typical AC data is currently available. Thus, all calculations will be
made using the typical AC times such that we can compare the
Am2901A with the Am2903. When final characterization data on
the Am2903 is available, the designer can then compute his
performance by selecting the appropriate temperature range and
power supply variations as required by his design.

Figure 26 shows the typical AC calculations for the functions
usually considered in an Am2901A design. These functions are
usually the speed for a logic operation, arithmetic operation, logic
operation with shift and arithmetic operation with shift. In each
case, we are computing speeds from the LOW-to-HIGH transition
of a clock through an entire microcycle to the next LOW-to-HIGH
transition of a clock.

Am29705 Bl I— 2704
OEA WE | obecoper
S
e — 2
OEB
2704 A B L4]Bo'Bs
DECODER oEA WE 7
S
2 -] s
Ag-As [44 OEB 2704
7 A Am2903 sl DECODER
EA — —
WRITE WE E
TWO ADDRESS OPERATION
MPR-534

Figure 24. Am2903 — RAM Address Cascading.

DEVICE & PATH MIN. TYP. MAX.
S Register
Clock to Output 9 15
OE to Output 13 20
Set-Up 5 2
S MUX
Data to Output 5 8
Select to Output 12 18
OE to Output 13 20
Microprogram PROM
Address to Output 30 50
OE to Output 18 25
Mapping PROM
Address to Output 25 45
OE to Output 18 25
Decoder
Select to Output 8 12
Counter
Clock to Q 9 13
Clock to TC 12 18
CET to TC 8 12
Data Set-Up 8 4
Load Set-Up 16 10
CEP or CET Set-Up 12 7
S-EXOR
IN to OUT 7 11
Am2922
Clock to Output 21 32
Data to Output 13 19
OE to Output 10 17
Data Set-Up 10 5
Am29811A
Input to Output 25 35
Am29803A
Input to Output 25 35
Am2902A
Cn 10 Crixy.z 7 1
G,PtoG,P 7 10
G, P10 Cpix,y,z 5 7

Figure 25. Standard Device Schottky Speeds.

Similarly, Figure 27 shows the same type of computations for an
Am2903 system. There is one very important distinction that
should be made in computing the timing of an Am2903 16-bit ALU
when compared with an Am2901A ALU in that in the Am2903, the
shifter is at the output of the ALU and is followed by the zero
detector. Thus, in an Am2903 design, the flags are no longer

independent of the shift operation. This is easily seen in Figure
27.

By way of comparison, Figure 28 shows speeds for the four types
of operations for the Am2901A 16-bit system as compared with
the Am2903 16-bit system.

107

108

a)
I [
DATA CK _ melKeprmmgge
REG B v
= .ﬂﬁ_.mﬂl'\m
r.. O -
DA, DB} a8, 1 oA DB} i{ia B,
Y
SHIFT ‘ e oK I | Mux
RAM ‘L RAM
[Am2+1A e|loee 29014
cx / .
KB
i
[" T
STATUS cK]
REG
D Cn+ 2 GP
oK
cLock DATA QUT Am2902A CARRY
Cn
Q
LOGIC OPERATION
SPEED COMPUTATIONS
DEVICE NO.| _ DEVICE PATH PATH 1 PATH 2 PATH 3
S-REG |CPtQ 9 9 9
2901A READ-MODIFY-WRITE 55 - -
2901A AB - Y - 45 -
2901A AB - Zero - - 65 PATH 1
S-REG SET-UP D - 2 2 YN 1 I I ———
TOTALns 5 56 76 PATH 3 T ———— MPR-535
b)
Io |
DATA oK K T y
REG e REG, 1
i
°
DA, DB A8, A, 0B | B, 1
i 4
SHIFT m cK cK “\ SHIFT f MUX
N+ 4 \
e Am2901A eloee Am290}A!,
i OVR N S
N ¢
F3 RN bl
!) 2\
STATUS oK i
REG
b |
cK
cLock OATA OUT = CARRY
ARITHMETIC OPERATION e
SPEED COMPUTATIONS
DEVICE NO, | DEVICE PATH PATH | PATH 2 PATH 3
S-REG cPoQ 9 9 9
2901A AB to GP 40 “ w0
29024 GP 10 Cpxyz 5 5 5
2601A SET-UP C,, 40 - -
2901A Cnto Y - 20 -
2901A Cp to Zero - - 35 PATH 1 o
S-REG SET-UP D - 2 2 PATH 2 o s s s
TOTAL-ns 94 76 91 PATH 3 oo o e o s MPR-536

Figure 26. Typical AC Calculations for the Am2901A.

c)
Y
Lo T 1
i
DATA CK... . CKL A i
REG i 3
-
R |
R 1l %
T
DADBJ . fAB1I DA,DB'? A B, {
D cK cK { e v | WUX
! RAM
{
Am2901A L] LN) j Am2901A
o o
bl
|
v]
STATUS cK [I [R
REG
{{o N+ 2 5P
cK
cLock oATAuT Am2902A CARRY
Cn
LOGIC OPERATION WITH SHIFT °
SPEED COMPUTATIONS
DEVICE NO.| DEVICE PATH PATH 1 PATH2 PATH3
S - REG cPwoQ 9 9 9
2001A AB to RAMg; 60 - -
S-MUX DtoY 5 - -
2901A SET-UP RAMg, 15 -
2901A ABto Y - 45 -
2901A ABtoZ - - 6 L L T
S-REG SET-UP D - 2 2 PATH 2 =ooo o omon oo
TOTALns 89 56 76 PATH3 o o omcrs o MPR-537
d) >
I To
DATA cr‘:‘.l:d”f e
REG —~-8EG]
id
} 1
a ‘ - i a
i
{ o DA, DB A B,1 oa DB} {i{AsB1
-1t v
i | SHIET. ... A B o AY SHIFT | Mux
| Cnt 4 ’L,‘ \\ \\
i
} z o Am2901A Aly
{ ovR e
i i o
ot <
IR L =
]
STATUS cK !
REG '
i qo
oK
cLock DATA VT CARRY
TWO'S COMPLEMENT ARITHMETIC OPERATION Cn
WITH SHIFT DOWN
SPEED COMPUTATIONS |
DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH3 a
S - REG cPLQ 9 9 9
2901A AB 1o GP 4 40 40
2902A GP 10 Cpxyz 5 5 5
2901A Cn 10 Fy, OVR 20 - -
S-EXOR IN - OUT 7 - -
S-MUX DtoY 5 - -
2901A SET-UP RAM; 15 - -
2901A Coto Y - 20 -
2901A C, to Zero - - 35
S-REG SET-UP D - 2 2
TOTALns 101 6 91 PATH3 s ver e oo MPR-538

Figure 26. (Cont.)

109

110

e)
Jf Jf
DATA S
REG A !
o | A
DA, DB fA81 oA, 08} iA B, |
T A |
cK cK HIFT
— SHIFT. iy \ st MUX
k4 A
W - %NOIA co . Am2! 1\
] e on
i B \
¥ } { i
STATUS cK J i
R
EG D i Cn+ 2 GR i
cK i,
MAGNITUDE ONLY ARITHMETIC OPERATION cLocK "“L‘E g‘" T J CARRY
WITH SHIFT DOWN) on
SPEED COMPUTATIONS ‘
DEVICENO.| DEVICE PATH PATH 1 PATH 2 .
S - REG cPtoQ 9 9
2901A AB 10 GP 40 40
20027 GP 10 Cpixyz 5 5
2901A Cnt0Cpys 10 -
S-MUX DtoY 5
2901A SET-UP RAM; 15 -
2901A Chp to Zero -
S-REG SET-UP D - 2 PATH 1
TOTAL-ns 84 91 PATH 2 o MPR-539
Figure 26. (Cont.)
a)
Jf jf
DATA CK ooy,
REG [momai :BT’
P IPUR——
a f]
il
[DA, DB A A, DB | A8 I
| N ' v
MUX SHIFT H cK CK SHIFT J MUX
Cn+ 4 i
(. H
—" Am: oo 2903
H -] \ on
i N AN ‘wwgnm! n
L~
ijo -
STATUS oK S
REG b Cn+Z GP
cK
cLock DATA JUT Am2902A - CARRY
N
LOGIC OPERATION Q
SPEED COMPUTATIONS
DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH 3
S - REG CP10Q 9 9 9
2003 ABloY 56 56 56
2003 Yoz - 16 - e
S-REG SET-UP D 2 2 - PATH 1
2903 SET-UP Y - - 9 PATH 2 oon oo o s
PATH 3w o o o o
TOTAL-ns 67 83 74 MPR-540

Figure 27. Typical AC Calculations for the Am2903.

b)
IS Jf
DATA [T—
REG = m&.'}
T
[} | r
DA, DB {a81 oA 0B} |t s
) ¥
SHIFT (_.{E:m ; CK CK \ SHIFT | MUX
1 @ y *
{l— Am2903 e |oee A 3\
OvR I Y
e o 0 ‘\§ X cn
r— LT 4 'O
| " ; i | % 1
STATUS oK i {
REG . H
b i|Bnt 2] li f
| oaraour [t
cLock e S CARRY
Cn
ARITHMETIC OPERATION — 16 BIT Q
SPEED COMPUTATIONS
DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH 3
S-REG cPooQ 9 9 9
2903 A BG,P 56 56 56
2902A G, P10 Cixyz 5 5 5
2903 CatoY 2 - 25
2903 Cq to FLAG - 38 -
oheo sEopo P P . PATHY
2903 SET-UP Y - - 9 PAT: 2 e e o
TOTAL-ns 13 110 104 PATH3 - MPR-541
c)
»
o e e+ e e i e e - ppee—
o [
DATA CK ek R B :
REG o Wmam} |
a ‘yylnww«m B e —— §
DA, DB ' A, B, DA, DB i % B, 1 3
L..s J
— = SHIFT oK cK HIFT =< MUX
NS Ns‘ \ Newssenmssisssoommd
2 Am2o0s \ Am2903
[o0 0
(oA \\ sHFRf 2 8.8 .o} SHIFT
NN Cn ¢
N N "“§ RAM ; N
x zi Y RAM
D
: Y ! |
STATUS = b
REG _
D Cn+Z 1]
cK
cLock DATA OUT Am2902A ~ CARRY
N
LOGIC OPERATION WITH SHIFT e
SPEED COMPUTATIONS
DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH 3
S - REG cPoQ 9 9 9
2903 ABtoS, 6 64 6
MUX DtoY 5 - 5
2903 Szt0Y 13 13 13
2903 Yoz 16 16 - . .
S-REG SET-UP D 2 2 - PATH 1
2903 SET-UP Y - - 9 PATH 2 oo oo o
TOTAL-ns 109 104 100 MPR-542

Figure 27. (Cont.)

111

112

d)

DATA CK Oy~
REG ~-REG,
o o
o
I I D A, B, |
—] ¢ v
! L MUX | SHIFT MUX
! \
i ST pma
LU ,
—— \ Cn
T
GPRYi
TWO’'S COMPLEMENT ARITHMETIC OPERATION
WITH SHIFT DOWN — 16 BIT ck| bataour { S |
SPEED COMPUTATIONS cLock REG Am26028 == CARRY
DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH 3
S - REG cPQ 9 9 9 ‘
2903 ABtG,P 56 56 56 Q
2902A GP 10 Crnyz 5 5 5
2903 Cp 10 SI0g 21 - -
2903 SI0t0 Y 13 - -
2003 Cnt0 N, OVR - 38 38
S-EXOR IN to OUT - 7 7
S-MUX Dtoy 5 5
2903 Si0gto Y - 13 13
2903 Yoz 16 16 -
2903 SET-UP Y - - 9 PATH 1 o
S-REG SET-UP D 2 2 - L R ae—
TOTAL-ns 122 151 142 PATH 3 o oo oo s e MPR-543
e)
Lo b
DATA CK oo Oy
REG e BN .1
DA, DB § A8
v
cK \ SHIFT al MUX
o0 Am2! k
“ \ oy |
s
3
p
Y | | 1
STATUS oK |
REG
D } N+ 2 GP i
cK S I
CLOCK M?Eg‘" t "Am2807A s CARRY
N
MAGNITUDE ONLY ARITHMETIC OPERATION 1
WITH SHIFT DOWN
SPEED COMPUTATIONS Q
DEVICE NO DEVICE PATH PATH 1 PATH 2
S - REG CPtoQ 9 9
2003 ABW0G P 56 56
2902A GP 10 Csxyz 5 5
2903 Cnt0Cnsa 21 21
S-MUX Dtoy 5 5
2903 S0z to Y 13 13
2903 Yoz 16 -
S-REG SET-UP D 2 -
2903 SET-UP Y - 9 LN R I ——
TOTAL-ns 127 118 PATH 2 oo v e MPR-544

Figure 27. (Cont.)

Functional Am2901A Am2903
Operation

Logic 76 83
Arithmetic 94 113
Logic with Shift 89 109
Two’s Complement

Arithmetic with 101 151
Shift Down

Magnitude Only

Arithmetic with 91 127
Shift Down

Figure 28. Summary of Am2901A and Am2903 AC
Performance in a 16-Bit Configuration.

USING THE Am2903 IN A 16-BIT DESIGN

Perhaps the best technique for understanding the design of the
16-bit ALU is to simply take an example. Figure 29 shows a block
diagram overview of four Am2903’s with the appropriate shift
matrix control, status register, MAR and the usual interface to a
CCU and main memory. This block diagram represents the nor-
mal data handling path associated with a simple 16-bit minicom-
puter. If we expand this block diagram to show what would nor-
mally be considered to be the complete 16-bit central processing
unit, the block diagram of Figure 30 results. Here, we see the
Am2903's surrounded by a typical set of MSI support chips. In
addition, the block diagram shows a typical computer control unit
as described in Chapter 2 of this series. Thus, all of the blocks are

now in place to show a simple 16-bit microcomputer built using
the Am2900 family devices. The full design for such a machine is
shown in Figure 31.

Figures 31A, Figure 31B and Figure 31C detail the connection of
each IC used in this design. Quite simply, the design can be
described as follows. Figure 31A represents the microprogram
sequencer portion of the design. U1, U2 and U3 are the instruc-
tion register that receive a 16-bit instruction from main memory.
U4, U5 and U6 are the mapping PROMSs used to decode the OP
code portion of the instruction to arrive at a starting address for
the microprogram sequencer. The microprogram sequencer is
the Am2910 and is shown as U7. The branch address pipeline
register is U8, U9 and U10 and can be enabled to the D inputs of
the Am2910 sequencer to provide the jump address from micro-
code. The pipeline register for the instruction inputs to the
Am2910 is U14. This machine also has the ability to select the A
and B addresses for the Am2903 devices from the microprogram
as well as the instruction register and U11 and U12 provide this
capability as a part of the pipeline register. U13 is a two line to four
line decoder used as part of the control for the A and B address
select for the Am2903’s. U15 is part of the pipeline register and
provides both true and complement outputs for bit 11. U16 and
U17 represent a one of sixteen decoder whose output can be
applied to the DA bus to allow the implementation of all the bit
operations. These include bit set, bit clear, bit toggle and bit test.
U18 and U19 are PROM's that provide the ability to enter one of
thirty-two preprogrammed constants onto the DA bus.

Figure 31B is predominately the data handling portion of the
design. Here, U20 and U21 represent a data register that re-
ceives data from the data bus. U26, U27, U28 and U29 are the
four Am2903’s that form a 16-bit register/ALU combination. U30
1s the carry look ahead generator for the ALU section. U22, U23

4
2
1) 2
S EN EN S I
0 [
H—a]1 MlA.IX MlEJX e—n
L—]2 2]-—1
L——s10,5 SI0y }—
SERIAL /0 PORT —~————=1 Q045 DB }—
DA
PARALLEL 4-Am2903's ccu
1/0 PORT ov! Cn
STATUS Cn+4 A
REG N B
z INST
4
MAR LDI
DATA IN
MAIN ADDR
MEMORY pi
DATA OUT INSTRUCTION

MPR-545

Figure 29. Am2903 with Shift Mux and Status Register.

113

il

MPR-546

DATA BUS
AN
8 INSTRUCTION 8 AN
REGISTER
OP CODE SOURCE/DESTINATION]
REGISTER REGISTER 4 4
DATA IN
—— REGISTER

BIT
— — CONDITION
mIC (‘ ‘:ﬁ:’f CONSTANT
CONTROLLER PROM L |
- Am2910 \ AN L <—— '

»rm
co»rm
L
>
8
E
)

G
FUTURE 3 6
EXPANSION 7L REGISTER

MICROPROGRAM MEMORY

-
5
z
Y B4
HH
8
H
<
1
ADDRESS
REGISTER

29775 27813
PROM'S PROM'S

SUPER SLICES

ADDRESS BUS

CONTROL SHIFT
BITS 12 CONTROL

OF PIPELINE PIPELINE
REGISTER REGISTER

[=]
mi

| o |
v

CONTROL
BITS

Figure 30.

and U24 represent the status register with the ability to save and
restore the flags in main memory. U25 is the condition code
multiplexer for the microprogram sequencer. U33, U34, U35 and
U36 represent the shift linkage multiplexers that tie together the
internal shifters within the Am2903’s. U37 is part of the pipeline
register and provides both true and complement outputs of a
number of the microprogram bits. U38 is part of the carry in logic
control such that double length arithmetic operations can be
performed. U31 and U32 are the data out register that can be
used to accept data from the Am2903s and enable this data onto
the data bus. U39 and U40 represent the memory address regis-
ter and are used to hold the address provided from the CPU to
main memory.

The microprogram store is shown in Figure 31C. Here, we have
used both the 512 x 8 registered PROM’s and 512 x 4 non-
registered PROM'’s in this design. A total of 68 microprogram bits
have been depicted in this design. These are shown so that
maximum flexibility is achieved. In most typical designs some 10
to 20 of these bits would not be used. Figure 31C shows four
512-word by 8-bitregistered PROM’s (U41, U42, U43 and U44). It
also shows nine 512-word by 4-bit PROM’s represented as U45
through U53.

Perhaps the best way to review the design is to simply understand
the function of each of the microprogram control bits. If the pur-
pose of each of these bits is well understood, the design engineer
will be well along in understanding the design of the simple
minicomputer CPU presented here.

The Microprogram Structure

The microprogram for the design shown in Figure 31 is 68 bits
wide. The functions of the microprogram control bits are as fol-
lows:

17

16

Microprogram Bits

15

Qlo,
(Shift-down)

Qio,
(Shift-up)

0

SIO,

QlO,

Carry

Zero

Sign

Not allocated

0

SI0,

Qio,

Carry

Zero

Sign

Not allocated

Bits PLO The 9 instruction bits of the Am2903 super-
through PL8 slices.
Bits PL9, The IEN, EA, OEB control inputs of the
PL10, PL11 Am2903 superslices, respectively. PL11 is also
connected to the data-in registers (U20 and
U21) output-enable. This connection assures
that there will be no conflict on the DB pins.
Bits PL12 Select the source for SIO of the Am2903, both
through PL14 for shift-up and for shift-down operations. The
(112 through following table summarizes the functions of
pnid) these bits.

ITIIIrrrr
ITIrrIIrr

IrIrIrIr

1 1

Bit PL18

Bit PL19

Bit PL20

Bit PL21

Bit PL22

Bit PL23

Bits PL24
through PL27

Bits PL28
through PL31

When LOW, enables the MAR clock input, i.e.
the data appearing on the Y output pins of
the Am2903 Superslices™ will be clocked into
the MAR at the LOW-to-HIGH transition of
the clock pulse.

When LOW, enables the MAR output onto the
Memory Address Bus.

When LOW, enables the data output register
clock, i.e. the data appearing in the Y output
pins of the Am2903 Superslices™ will be
clocked into the data output registers (U31
and U32) at the LOW-to-HIGH transition of
the clock pulse.

When LOW, enables the data output registers
onto the Data Bus.

When LOW, enables the data-in register clock,
i.e. the data appearing in the Data-Bus will be
clocked into the data-in registers at the
LOW-to-HIGH transition of the clock pulse.

This is the Cl input of the Am2910 micropro-
gram sequencer.

This is a 4-bit wide field which can be used
either for the A-address, for the B-address or
for both A and B addresses of the Am2903
superslices.

This is a 4-bit wide field, which can be
used for either the A-address of the Am2903
superslice or to designate one of sixteen bits to
the DA inputs of the Am2903 superslice via the
Am2921’s (u16 and u17).

Microprogram Bits SIo, SIo,

14 13 12 (Shift-down) (Shift-up)

L L L 0 0

L L H SIOg SIO,

L H L QlOo, Qlo,

L H H Carry Carry

H L L Zero Zero

H L H Sign Sign

H H L Not allocated Not allocated

H H H 1 1
Bits PL15 Select the source for QIO of the Am2903, both
through PL17 for shift-up and shift-down operations. The fol-
(n15 through lowing table summarizes the functions of

ui7)

these bits.

Bits PL32 Select the source for the Am2903 A-address,
and PL33 according to the table below:
Bits A-Address Source
33 32
L L Data Bus bits 0 through 3
L H Microprogram bits 28 through 31
H L Data Bus bits 4 through 7
H H Microprogram bits 24 through 27
Bit PL34 Selects the source of the Am2903 B-address,
according to the table below:
Bit
34 B-Address Source
L Data Bus bits 4 through 7
H Microprogram bits 24 through 27

115

116

DATA BUS

J

w] <] o] 8] =] o] o]
g Io’) 5]5 8 °I°
D; Dg Dg Dy D3 Dy Dy Do D3 Dz Dy
cp vt cp u2
OF Am25LS377 E Am2919
Plgy
OEW
Q; Qg G5 Q4 Q3 Qp Q1 Qg W3 Wy Wy Wo v3‘
p> 1
2
3
4
5
| 11
A7 Ag As Ay Az Az Ay Ag A7 Ag As A4 Az Ay Ay Ag A7 Ag As Ag Az Ap Ay Ag W3 Wp Wy W Ys)
S1 (53] Sq L—icp
ua us us g ut
Am27521 Am27521 . Am27521 . — L] Am2919
(5 Cs; Csp Plagg = oEW
03 0z 04 0g 03 0z 04 09 03 0z] [cLock Pl D3 D Dqf
PLs7
i gl 8
LS ES /
cpP cl RLD CCEN \ ,
WAP Yo b— YAq
Yy }_ YA
z" Yo |— YAy
01 Yaf— YAl gy
o Yo j— va,
3
o w o B
b, Am2910 6 |— YAs 6
5 Y7 |— var
Dg vg |— vag RESET
o7 PL
Dg L . N,
Plog
Dy 12 BT 8
53
Dyo Iy Y 9
52
Dy 1o ——>10
PL
R K R 3 3 g 8 H KRR
R YR PV e oS =
ajajlaja alajaja ajajofa 11
12
>13
14
| 111 1] | — T *
Y3 Y2 Yy Yo Q3 G2 @1 Q Y3 Y2 Y1 Yo Q3 Gz @y Qo Y3 Y2 ¥4 Yo Q3 G2 Q1 Qp__ As A3 Az AL A
us o8 us o8 uto o cLock ren & 16
Am2918 o Am2918 cp Am2918 op 27819 >
D3 Dz Dy Do D3 Dy Dy Do D3 D Dy Do 03 02 01 Op 03 Oz Oy Og
HHEEIREER
~ " al s = [Ll<|<|a| ||
gl %] & & g % & § g 8 & 8 s|5|5]3] ala|ala
MICRO BITS ‘

>

Figure 31a.

117

PLao

< © S S
D1 » Ql Q O] a
) Do D3 D, Dy Dy Flas
cp us OEW
E Am2g19
GEY] 58V —
(Y2 v1 Yo W3 Wo Wy Wy Y3 Yo ¥q Yo
Ao
Aq
Az
1 A3
2 — Bo
3 By
4 B2
5 B3
Y2 Y1 Yo W3 Wy, Wy Wo Y3 Yp Yq Y PLyy
cp OEW
- u12
. Am2919 .
OEY OEV
D Dy D, Dy Dp
(2 3 PLy,
J 1A
PLyz
3 1Y3 yy3 1B
2 w31 | u30| p29| p28 Am745139
MICRO BITS —{ 2y, 2A f—
813138 — 2y,
ES I B Y -
2v,
cLock | D38 D2sD15 D0g D3s D24 D14 DO
i i u1a
65 s Am25LS399 _
@ Q@ Q@ Q
7 [1] |
8
9> | Dy C B A Ey Ej E; Eq POL C B A Eq Ej Ep EqPOL
10> LR uts ute OF4 u17 OF;
cLock cp Am25LS175 Am2921 o5 Am2921 o5
Qo [Y7 Yo Y5 Y4 Y3 Y2 ¥q Yo Y7 Y6 Y5 Y4 Y3 Y2 Yy Yo
1 >— L
12 11 I
13 PLy elstel o2 o w rlol ol o|lol ol sl
14 <|g|glg|g|g|<| <K glglg|g|giLg| L
15 I | ojalo|jalo|o|a|Q ojojojolo|jajo|o
/ DA BUS
Ay A3 Ay Ay A
PL.
u19 = [45
16> 27819 e
03 02 04 Op 03 02 01 Op
cJ2lzls] 4lslals]
<< gL Llgig| <
Qjajo o o|lojo|o

J

e

DA BUS

118

e
DATA BUS ‘
BEGE n.sloulvnlnulnnln‘ol Dsl Dg
D, Dg Ds 04 D; Dz D; Dy
cLock cp ‘"'I‘::m 1
CLR OF Y; Yg Y5 Y4 Y3 Y, Yy ¥
PLyy
PL;
DAy-DA.
PIPELINE PLg-PL ¥ }
AgAy
8083 I 8
—) 1 —) 1
w oz 28 ‘0 o2 oo o o - e o
2 2 8 8 x 2 8 r g 2 £ 2 &
fEEE FEgE g §gdi g dfd
DA3 DAy DA; DAg DB3 DB, DBy DBy [o5 oA, DA; DA, DE, DB, DB, OB
Pro— o PL— 1y
PLy—f 1t PLy—] by
jad Py —1p Plo—q V2
PLy—{13 PLy L]
Py, n‘j 1
ovr PLs —] 15 [P
11 [i [e e
[1 Pl.yq [
2C3 2C; 2C, 2C 1C3 1C; 1C4 11 2C3 2C; 2C4 2 1C€31C;5 1C4 1C, PL;
3262 2 2o 103162 1C11Cp 32C2 2€42Cp 1C31C2 164 1Co 36 Py —]ig PLg—1g
Plyy
vz uz o —Jag Ao — Ao
Am745153 16 Am745153 A —] A, AW‘ A Ay M:m
\m2903 12903
26 A —{ A2 Az Az
2 1y 2v v Ay —ay Ay —] Ay
I_ S 8, —8, 8 —{8;
8 —{8, 8 —8,
B, — B, By — B2
“l 8y —{8; B3 —8;
£
3l o =z +_ a0y a0 3 Qg |—>9
03 D2 Dy Do o s103 $i0g $104 S100 }—> 10
ovF CN+4 oN 3 ecNpF—>11
v24 Plyy ovR ss|
oL oF| N mss —1%
Am2918 SIGN
:' z =5 —z -
Y3 ¥y ¥y Yo Q3 Q0 Qp rf':lgv,vzv,voﬁ $|f:|!gE L
o IF2 Tizfs
;‘—J N—_—
12
P — o 13
PLy 1
cLock PLiy :g
u48 cp CLR
- 0o g 17
= o TTTT I
i x : 1])
st
L D;
POL as o N 4
Am2022 Dq > uso
Ds 8 AmM2902A
Y Ds]
[N I— PIPELINE
OF_RE_WE cLock 2
o 22
SH 23
1 24
TC Am2910 25
. 26
Y WE cp RE CLRGE v ME CP RE CLR OF v
A A —>27
8 v 8 uza ° uss —>28
c Am2922 —c Am2922 —i¢c Am2922 P29
POL POL. POL
17 07 06 0504 05 02 01 06 1™ 00605 040302 0, 0 i Do D5 D4 D3 B, Dp
| - T — L- 30
{4 31
32
33
34
elelx MEE ofe|~ MEE
L 2155 HE 5[5 SRR/

\ MICROPROGRAM BITS

Figure 31b.

119

yan
‘ DATA BUS
J n,ln. Ds‘n4|03l°z|7||’o 213188151 818)8 slg|&lsielsls|s
D; D D5 Ds D3 D D, Dy
o 2t
CLR OF E Y7 Y AL Yy Y3 Y2 Y1 Yo
[C—
T .
T
i E—— — R
- - - e 2 o & - o N
§&di ad8dd §did 853
DA; DA, DA; DAg DB; DB DBy DB DA; DAz DA, DA, DB; DB, DB; DBg
Po—lo P —to
P —] P, —
P, [P TN
Ply—] I3 Py 1y
Ply — s Ply —te
e s S l_i’s'sh's"z Y1 Yo %‘vsvt; Yo Y3 Y2 Y Yo
CLR
:‘L“—I" :5—'5 cLock ——] cp ust P us2
7" 7—{" o8 Am2920 oF Am2920
[P e —] s B ke
a1t a 20— %0 ro,nsn;mn 0, D, Dy ©; D D5 Dy Dy 07 Dy Dy
v2s u29
A — A Ay — Ay
Am2903 Am2903
A2 — A Ay — A2
Az —] Ay Ay —fAg
a—{ 8y 8 —{ 80
As —] 8, B, —{ 8
S % 5, s,
A7 —{83 8y —8;
9> Qio; QIO Qio; Qioy
10>———si0; 10y si0g SI0g
M>— T 7
— T S| —T [
T =1 | -
-
sEEE WE scEBR 1
=L e s J;::;:
[l [
12
13
14
15
16
17 ¥-BUS
18 ol =
19 IJTII ILIII] EEEEEEEE BEEEEGESGE
Fr <16 1S
(ke I8
3 3 Cn 07 Dg Ds D4 D3 D, Dy Do D7 Dg D5 Dy D3 Dy D; Do
) cP P cLock
U39 R uao
(PIPELINE OE For1
20 Am2920 oE Am2020 <] meser
21 E
22 St 1 Y7 Y6 Y5 Vg Y3 Yp Yq Yo Y7 g Y5 Y4 Y3 Yo ¥y Yo
HEER
BEEER HE
5 #(2E| 2| R
25
26 wlelololzlelo|= ~lo|w| <l of~f o
NEEEEBEER 2
= . 8 g g g
a ME CPREGLR OF v L] @& e300 a) ADD BUS >
Plas— 1A
8 uss U3z ‘V—‘
c Am2s22 Am25LS175 18 y3g
POL. Am74S157
0, D5 D5 D4 D3 D; D; Dy D, D2 D by
30 1
31 CARRY
32 oL
33
33>
g % 3 =

120

YAg 1
YA, >2
YAg
3
YAg 4
YA, —>5
YAz
6
™
7
YA 8
YAy 9
Ao A1 Az Az Ay As Ag A7 Ag Ro Ay Az Az Ay Ag Ag A7 Ag Ao Ay Ay Az Ay A5 Ag A7 Ag
cLock —| cp cp cp —> 10
3 u41 g u42 g u43 > 11
— Am29775 = Am29775 — Am20775
5 [g L > 12
Op 01 O O3 04 O5 Og O7 Op Oy Oz O3 O4 Os O O7

O 04 0, O3 04 O5 Og O

] I I I I
alaj ol al aj o

PLy

PLg
PL1g
PLig
PLyg
PLyg
PLyy
Ply,
Plas

Plgg
Plyo
PLgy

3
a

PLzp
PL3z
PLgg
PL37

Ll

13

14

15

16

—>17

18

19

—> 20

-

|

|

Rg A1 Ay Az Ay Ag Ag A7 Ag

Ag Ay Ax Az Ay Ag Ag A; Ag

cs uaz7
Am27S13

0 ©O0; 0, O3

Ag A1 Ay Az Ay As Ag A7 Ag

cs u4s
Am27S13

Op 01 Oz O3

Ag Ay Ay Az Aq Ag Ag A7 Ag

s ud9 R

Am27$13

0 ©0, 0, 03

cs uso
Am27513

O O3 0 03

—>22

u2r

{ &
3 i

u24

I

34
35

3 ¢

n48

g 2]

ES ES
MICROPROGRAM BITS

Ll

Figure 31c.

121

1
2
3

4

5

6

7

8

M |

Ag Ay Ay Az Ay As Ag A7 Ag Ag A Ay Az Ag As Ag A7 Ag Ag Ay Ay Az Ay As Ag A7 Ag

10 >—
1>— uas s u4s & U4

P Am29775 f— Am27513 Am27513

Oy O 0, O3 04 05 O O7) = 0p O, 0, O3 0p 0y ©0p 0
) \ MICROPROGRAM BITS
U
PIPELINE

13

14

15

16

17

18

19

20

R 1 |

Ag Ay Az A3 Aq A Ag A7 Ag Ag Ay Az Az A4 As Ag A7 Ag Ao Ay Az Az Ag As Ag A7 Ag
22— Cs ust cs us2 [us3
Am27513 Am27513 Am27813
O 0 O O3 Op Oy 02 03 Oy 04 O O3
g %] %] % gl %] ¥ % 3 8 & % J)

N

122

Bit PL35

Bits PL36
and PL37

Is the C,, input of the least significant Am2903
via an Am74S157 mux {«38).

Affect the status register input signals, ac-
cording to the table below:

37

Bits

36

Next Carry Next Zero, Sign, Overflow

H
H

Previous Carry Previous Zero,

Sign, Overflow

Previous SI045 Previous Zero,

Sign, Overflow

Am2903 superslices’ Output
Data Bus bits 0 through 3

Bit PL38

Bit PL39

Bit PL40

Bit PL41

Bit PL42

Bit PL43

Bit PL44

Bit PL45

Bit PL46

and PL47

Bits PL48
through PL50

Selects either the carry flip-flop or the PL35 bit
for carry in.

When LOW, enables the status register output
to the data bus bits 0 through 3.

Controls the output polarity of the one-of-six-
teen bit select logic.

When LOW, enables the Instruction register
(U1, U2, U3) clock. The data present at bits 0
through 15 of the Data-Bus will be latched into
the Instruction register at the next LOW-to-
HIGH transition of the clock pulse.

This is an output signal. When HIGH, it signals
the main memory that a memory read is re-
quested.

This is an output signal. When HIGH, it signals
to the main memory that a memory write is re-
quested.

Selects the source of the one of sixteen bit de-

coders (U16 and U17) . When LOW, the output

of the Am2919 register (U12) containing the pre-
viously latched microprogram bits 28 through

31 will be applied to the decoders. When HIGH,

the output of the Am2919 register (U3) con-

taining the previously latched Data-Bus bits 0

through 3 will be applied to the decoders.

Selects the Am2903 Superslices™’ DA port
source. When LOW, the output of the one of six-
teen bit decoder (U16 and U17) will be applied
to that port. When HIGH, the output of the
Am29771 PROM'’s (U18 and U19) will be ap-
plied to the Am2903 DA ports.

These are the RLD and CCEN control inputs
of the Am2910 sequencer, respectively.

These select the condition code according to
the following table:

Bits Condition Code Selected
50 49 48
L L L Carry
L L H Sign
L H L Zero
L H H Overflow
H L L
H L H Not Allocated
H H L
H H H

Bit PL51 Is the condition code polarity control. When
HIGH, the condition code selected will pass non-
inverted. When LOW, the selected condition
code will be complemented.

Bits PL52 Are the | inputs of the Am2910 sequencer.

through PL55

Bits PL56 This is a 12-bit wide field and it serves, usu-

through PL67 ally as the next microprogram address.How-
ever, the 5 least significant bits of this field (bits
56-60) serve also as an address field of the

Am29771 “constant” PROM's (U18 and U19).

Some Sample Microroutines

Figure 32 shows the microprogram code for a few sample micro-
routines. Different addressing schemes are demonstrated with
the “ADD” operation. All the other arithmetic or logic operations
can be easily programmed by substituting the I4-l, field of the
Am2903 with the appropriate function. Since the main memory
address is generated by the Am2903 superslices, the internal
register No. 15 serves as the program counter.

The following is a description of some sample microroutines. The
reader should refer to the description of the microprogram bits
given earlier in this chapter and to the data sheets of the Am2910
sequencer and of the Am2903 superslice.

Microword INIT.

This microword should be at address 0 and when the machine is
reset, the Am2910 will start executing from here. The purpose of
this location is to reset the machine program counter (Register
15) to zero. Ultimately more microinstructions can be added,
should the necessity of other reset functions arise.

Bits 1-4 (Am2903 |4-14) being 8 will cause the superslices to
generate all zeroes at the F-points (internal). Bits 5-8 (Am2903
15-1g) being Fy, will cause this data (all zeroes) to appear on the Y
outputs. Bit 9 (IEN) is LOW and therefore, WRITE will be LOW
and this data will be written into the internal register selected by
the B-address inputs. Bit 34 is HIGH; therefore, microprogram
bits 24-27 will be selected as B address source. Since Fy is in
these bits, all zeroes will be written into the program counter
(Register 15). Bit 18 is LOW; therefore, the data at the Y outputs
(all zeroes) wil be latched into the MAR at the next clock pulse.
Bits 36 and 37 are set such that the flags will be updated, namely
CY=N=OVF=0, Z=1.

Bits 42, 43 are both LOW so no memory reference signal is sent to
the main memory (the MAR is still in an undetermined state). Bits
52-55 (Am2910 |) are set to Ey which will force the sequencer-to
continue to the next sequential address (1) as the Cl (bit 23) is
HIGH.

Bits 21 and 39 are both HIGH to ensure that there is no conflict on
the data bus though in this case one of them could be a DON'T-
CARE. Bit 38 could also be a DON'T-CARE as the carry is zeroed
by the ALU. Making a HIGH in bit 46 enables executing this
microstep without disturbing the Am2910 sequencer’s internal
register which at power-up has no significance but may be impor-
tant, should a software restart be issued.

All the other bits are DON'T-CAREs.
Microword FETCH

This is the first step in the machine instruction fetch routine. In this
step, the main memory is addressed by the MAR, a read signal is
issued (bit 42 = HIGH), and the machine instruction (mac-
roinstruction) is placed on the data bus by the memory. It is

123

(2]

&|n| se0e |njoo|n|onw|ooco|ocow
w
o
o
w

W1 6€ B B E) [S R
'Y
-

D r| op | xPx|x|xx|xxx|xxx
_E

|~ 34 Xor-|O|rO|r+rr|+r+voO
[

W.l rA'd olvrvo|r||[~Or|[O+r+
3

Elrl o | xox| x| xx|xxx|xxx
8 a

S| v [x|xox|x|xx|xxx|xxx
o
Q

_m.. o |rlrrlr|me|ree |-
z

oW[~] & |[XXX|-|xX=|xX+|[xx~
g o

[S || osey |x|xx|x|xx|xxx|xxx
o

- <! g2 |wWwa |~ |lwns{wws|ww~

-

-l - " -

+ + = +

| x T

BN 2905 [X[xx|5|x5|xx2|{xx5

~ ~ Q -

w w (=) w

w w < w

2 -~ - - A

@ - T + + + +

° + ss|ccac|crx

CCC|TxE

3l 55 S5|coo|cxca

2 |sBi|s|35|283|388

Z E
2| & ZPw Q| << |<<<

2|~ 0 X/xo|lo|loo|oox|xxo
<
AR - XX | O TO TTO | ©O®
«©
AR 8-S Wi |w|wwwxewwuw

m_m - 6 olro|lo|loo|orr~|+rvro
_ﬂ - ol XXX |o|Xo|XXo|o0o0
m
_% - ¥ Xloo|ojor|Or X|X X+
Do P2l [XXX [X[XX|XXX|XXX
Ol | LG [XXX [X|[XX|XXX|XXX

o W 8l olro|lr|or|xXx0co0|oco~

<

M_% - 61 Xloo|o|loo|oxo|xoo
Jw |~ 0z [[[SR NN R —

D._% - 12 JE) R IR S [, |

>
_W - 2 Xlrr|r|or-|or-o|xo0~
o

)

mm - €2 R RSN (U S RS S,
Elw| Z2ve |uwlxu|x|wx|wxuw|xuwx
e | 1682 [X|x X |[X[XX|XXX]|xXXx

MA | €82 | X[XX|o|[Xo|XxXxm|oman
Q|- ve -IXr|o|rOo|-XX|XXoO
S|-| se X|x -|o|-o|-ocoo0|l0coo

2 -
= - -

M - + + + + +
= s R
8 s 55 SS|coo|ccc
€| 2 [N NaNal NaNaNal faNala)
S| = Flwwig|gao|@goao|joog
Z| o fiu|g(<<|[<<<|<<<

Don't Care.

1. 4-bit fields in hex, others in octal.

2. X

Figure 32. Example Microcode for Figure 31 Design.

124

latched into the instruction register (U1, U2, and U3) at the next
clock LOW-to-HIGH transition (bit 41 = LOW). Itis assumed that
if a relatively slow main memory is used, the clock is halted until
the data is stable on the data bus and the register set up times are
met. We will see in a later chapter how easy it is to implement this
requirement using the Am2925 clock generator. The same as-
sumption will also be made in a memory write cycle.

Bit 9 (Am2903 ﬁ'ﬁ) is HIGH; thus, we don’t care what the ALU
does during this microstep. We prevent the flags from changing
by setting bits 36-38 LOW. Also, the registers atthe Y output have
the E input HIGH (bits 18, 20). Bits 21 and 39 are both HIGH; thus,
the data bus is free to accept data from the main memory (bit 42 is
HIGH, signaling memory read request). The MAR is enabled to
the address bus (bit 19 = LOW) and at the next clock, the
macroinstruction will be latched into the instruction registers (bit
41 = LOW). The Am2910 sequencer will continue to the next
instruction (bits 52-55 = Ey).

Microword FETCH + 1

This is the second step in the macroinstruction fetch routine. The
instruction already resides in the instruction registers U1, U2 and
U3).

The Am2910 sequencer receives a JUMP MAP instruction (bits
52 though 55 = 2). The next microinstruction will begin to execute
the present macroinstruction — according to the mapping PROM.

We use this microstep to update (increment) the program counter
(Register 15). Bit 34 being HIGH, microprogram bits 24-27 (=Fy)
will be the B address. The Am2903 OEB and |y are LOW, there-
fore, the contents of Register 15 will serve as the S operand for
the ALU. C, being HIGH, a 4 in the |-14 field will increment this
value. IEN = LOW with I5-lg = F will write this (incremented) value
into the same register (R15). At the same time, the MAR is also
updated (bit 18 = LOW).

We could update the program counter and the MAR in the previ-
ous microstep (location FETCH), but then we had to leave the
ALU idle during this microcycle. By adopting the present scheme,
we can overlap the first step of the macroinstruction fetch routine
(the memory-read cycle) with the execution of the last step of the
previous macroinstruction — provided the memory and the data
bus are free to perform it. The JUMP MAP cycle is always neces-
sary — and that is why we prefer to update the PC at this step.

Microword ADD

This is a sample register-to-register operation. The two operands
reside in the internal registers pointed to by the two 4-bit fields of
the macroinstruction:

15 87 43 0

1st Operand and
Destination Register
Number

2nd Operand

OPCODE Register Number

Bits 32-33 are set LOW, instruction register bits 0-3 are selected
as A address. Bit 34 = LOW selects instruction register bits 4-7 as
B address (see Fig. above). Bit 1 (lp), bit 10 (EA) and bit 11 (OEB)
are also LOW; therefore, the contents of the selected registers
will be presented to the ALU’s R and S inputs. Bits 1-4 (14-14) = 3,
the ALU will perform:

F = R plus S plus C,,.
Note that bit 35 and 38 are LOW. With Is-Ig (bits 5-8) = Fyy and IEN

(bit 0) = LOW, the result will be written into the internal register
pointed at by the B address lines.

Bits 18 and 20 are HIGH and inhibit the MAR and the data out
registers from being affected, while bits 36, 37 (=2) allow the
flags to assume values according to the result of the operation.

During the execution of the function required (ADD in this exam-
ple) we fetch the next OP CODE from the main memory. The
MAR is enabled to the address bus (bit 19 = LOW) and a memory
read is requested (bit42 = HIGH). Atthe end of this microstep the
next macroinstruction will be latched into the instruction registers
(bit 41 = LOW).

The Am2910 sequencer is instructed to select the pipeline regis-
ter bits 56-67 as the next microprogram address (bits 52-57 = 7,
bit 47 = HIGH) where the location of FETCH + 1 (2 in this
example) is written. The next step will be JUMP MAP and update
PC.

Microword ADD IMMEDIATE

This 2 step microroutine adds the contents of an internal register,
pointed at by bits 0-3 of the macroinstruction with its second word,
placing the result into the internal register pointed at by bits 4-7 of
the OPCODE.

15 87 4 3 0

Result
Register Number

2nd Operand

OPCODE Register Number

First word of the macroinstruction

15 0

DATA (1st Operand)

Second (next consecutive) word of the macroinstruction

The first step is to read the fitst operand from the memory (bit 19
= LOW, bit 42 = HIGH) and to latch it into the data-in register
(U20 and U21) (bit 22 = LOW). Atthe same time the ALU updates
(increments) the program counter (register 15) and the MAR (bit
18 = LOW). (Compare the location FETCH + 1). The Am2910
sequencer will continue to the next microprogram address (com-
pare to location FETCH).

Location ADDIMM + 1 is the second step of this macroinstruc-
tion. Itis very similar to location ADD, the only difference is that bit
11 (OEB) is HIGH, selecting the Data-in register as source for the
ALU's S operand. The same macroinstruction fetch overlap
technique is used again.

Microword ADD DIRect

This is the starting location to execute a macroinstruction where
the second word is the address of the operand:

15 87 43 0

Result
Register Number

2nd Operand

OPCODE Register Number

First word of the macroinstruotion

15 0

Address of the 1st operand

Second (next consecutive) word of the macroinstruction

The first step is to read the second word of the macroinstruction
into the Data-in register. This microword is identical to the one
written at location ADDIMM.

Microword ADD DIR + 1

The Data-in register now contains the address of the operand.
We have to transfer it into the MAR.

With I (bit 0) LOW and OEB (bit 11) HIGH, the ALU’s operand will
be the DB bus, i.e., the Data-in register. I;-l4 (bits 1-4) = 4 will
pass this inputto its output, as Cy, (bit 3) is LOW. With IEN (bit9) =
HIGH, the WRITE line will be HIGH too, assuring that the internal
registers maintain their contents. Since ls-lg (bits 5-8) = Fy, the
ALU output will appear on the Am2903 Y pins. This data which is
actually the operand address and will be transferred into the MAR
at the next clock cycle. The Am2910 sequencer continues to the
next consecutive microstep.

Microword ADD DIR + 2

Now we read in the operand from the main memory. The MAR is
enabled to address bus (bit 19 = LOW), a memory read signal is
issued (bit 42 = HIGH) and the data-in register’s clock is enabled
(bit 22 = LOW). At the next LOW-to-HIGH transition of the clock,
the operand will be placed in the data-in register.

Meanwhile, we need to restore the address of the next mac-
roinstruction in the MAR. Bits 32-33 = 3 select microprogram bits
24-27 as the A address (an Fy is written there); therefore, the
internal program counter will be addressed, as EA (bit 10) =
LOW. The ALU performs an F = R + C,, with C,, (bit 35) LOW,
thus passing the program counter contents to the output. IEN (bit
9) = HIGH prevents disturbance of internal Am2903 registers and
bit 18 will enable the MAR to receive the next macroinstruction
address.

Note that the situation now is exactly the same as after the first
step of ADD IMMediate. The operand is in the data register and
the MAR points to the next macroinstruction. Therefore, the
Am2910 sequencer will address, as the next microstep, location
ADDIMM + 1. The step after this will, of course, be FETCH + 1. A
total of 5 microsteps were needed to execute this macroinstruc-
tion but it occupies only 3 microprogram locations.

It is worthwhile to note here that by adding two more Am2920
registers between the Data-bus and the Address-bus and a
couple of control-bits in the microprogram, we could shorten the
microprogram by one step. In this design we chose notto do soin
order to demonstrate the Data-bus to Address-bus path through
the ALU.

Microword ADD RR1

The macroinstruction to be excuted here points to the register in
which the first operand is written, and also into which the result
should be written. The second 4-bit field of the OP-CODE (bits
0-3) points to the register in which the address of the second
operand is stored.

15 87 43 0

1st Operand and
Result Register
Number

2nd Operand'’s
Address Register
Number

OPCODE

Bits 32 and 33 are LOW. Therefore, instruction register bits 0-3
will form the A-address. Now we take the contents of this register
and place itin the MAR exactly the same way as we did in location
ADD DIR + 2 with the program counter. The Am2910 continues.

Microword ADD RR1 + 1

Here we fetch the operand and place it in the Data-in register. At
the same time, we restore the program counter into the MAR.

Microword ADD RR1 + 2

Bits 32, 33 = 2 and instruction register bits 4-7 serve as the
A-address. Bit 34 = LOW; the same instruction register bits serve
as B-address, too. Note, that OEB (bit 11) is HIGH; therefore, the
ALU R-source will be the Data-in register and the S-source will be
the register addressed by A-address. The result (sum), however,
wil'l be written to the correct register, as 1EN (bit 9) is LOW.

At the same time, the next macroinstruction is fetched in the
usuall oooverlapping way and the next microinstruction to be
excuted will be at location FETCH + 1.

Summary

In this design shown in Figure 31, we have demonstrated some of
the addressing schemes mentioned in Chapter 1. We used the
ADD instruction throughout these examples, but any other arith-
metic or logic instruction can be executed, in exactly the same
manner by changing the microcode bits 1-4 to the appropriate
ALU code.

The reader is encouraged to write several microcode-lines to
execute the other addressing modes mentioned in Chapter 1. He
will discover that when the result of the macroinstruction is to be
written into main memory, the overlapping instruction-fetch is not
feasible. In some cases, when the MAR no longer contains the
Program Counter value, an additional microstep is needed in
order to restore the Program Counter into the MAR. The reader is
again encouraged to modify location FETCH in order to save this
additional microstep.

Appendix

Throughout Chapter 3, a number of AC calculations have been
made to show typical speeds for an Am2901A and Am2903 16-bit
ALU configuration. This Appendix shows the latest SWITCHING
CHARACTERISTICS for the Am2901A and Am2903.

The typical data on the Am2901A shown in this Appendix super-
sedes that shown on page 2-12 of the Am2900 Family Data Book
dated 4-78 (AM-PUB003). The only difference between the data
shown in the typical column of the switching characteristic and
this Appendix appears in Table 3. The typical carry in set-up time
should be 40ns.

The typical switching characteristic data for the Am2903 as
shown in this Appendix supersedes the data presented in the
Am2903 Bipolar Microprocessor Slice/Am2910 Microprogram
Controller Data Booklet dated 3-78. Here, a number changes

have been made to the table for both the combinatorial propaga-

tion delays and the set-up and hold times.

Should any questions arise concerning the switching characteris-
tics for either the Am2901A or Am2903, please do not hesitate to
contact the AMD factory and ask for Bipolar Microprocessor
Marketing or Bipolar Microprocessor Applications.

125

126

Am2901A - (MAY 18, 1978)

ROOM TEMPERATURE
SWITCHING CHARACTERISTICS
(See next page for AC Characteristics over operating range.)

TABLE |

CYCLE TIME AND CLOCK CHARACTERISTICS

Tables |, Il, and Ill below define the timing characteristics of TIME TYPICAL |GUARANTEED|
the Am2901A at 25°C. The tables are divided into three types N

of parameters; clock characteristics, combinational delays Rea(g"x: ?:;ﬁvzg;;zt?gflgf

from inputs to outputs, and set-up and hold time require- A, B registers to end of 55ns 93ns
ments. The latter table defines the time prior to the end of the cycle)

cycle (i.e., clock LOW-to-HIGH transition) that each input must Maximum Clock Frequency to

be stable to guarantee that the correct data is written into one Shift Q Register (50% duty 40MHz 20MHz
of the internal registers. cycle)

All values are at 25°C and 5.0V. Measurements are made at | Minimum Clock LOW Time 30ns 30ns
1.5V with V, = 0V and V, = 3.0V. For three-state disable [Minmum Clock HIGH Time 30ns 30ns
tests, C, = 5.0pF and measurement is to 0.5V change on — -

output voltage level. All outputs fully loaded. Minimum Clock Period 76ns 93ns

TABLE II
COMBINATIONAL PROPAGATION DELAYS (all in ns, C_ = 50pF (except output disable tests))

TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V
To Shift Shift

From Output | v | Fs (Chea|G.P ;=g OVR Outputs Y | F3 |Cni4| G P ;:Z OVR Outburs
Input i R - RAMo| Qo "1 | 20 RAMo| Qo

RAM3| Q3 RAM3| Q3
A, B 45 | 45 | 45 | 40 | 65 | 50 | 60 | — 75 | 75| 70 | 59 | 85 | 76 | 90 | —
D (arithmeticmode)| 30 [30 [30 | 25 | 45 | 30 | 40 | — 39 [37| 41| 31 | 55| 45 | 59 | —
D(1=X37) (Note5)[30 | 30 | — | — |45 | — | 40 | = 36 | 38| — - | s1| - |s83| -
Cn 20 | 20| 10| - [3|2 [3]| - 27 | 24| 20| — [46| 26 | 45 | —
1012 35 | 35 | 35 | 25 | 50 | 40 |45 | — || 50 | 50 | 46 | 41 | 65 | 57 [70 | —
1345 3 | 35 | 35 | 25 | 45 | 35 |45 | — || 50 | 50 | 50 | 42 | 656 | 59 | 70 | -
1678 15 | — -l -]-]-]l20)2}|2}| -| -] -1 - - | 26 | 26
OE Enable/Disable |20/20] — -{-1-1- - | — |30/33] — | — - | - - - -
e e e e e e R R R R R R
Clock _4 (Note6)| 40 | 40 | 40 | 30 | 65 | 40 | 55 | 20 || 52 | 62 | 62 | 41 | 70 | 67 | 71 | 30

SET-UP AND HOLD TIMES (all in ns) (Note 1) TABLE Il
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V
From Input Notes
Set-Up Time Hold Time Set-Up Time Hold Time
A, B 2,4 40 93
Source 3,5 tpwl +15 0 tpwl + 25 0
B Dest. 2,4 tpwl + 15 0 tpwk + 15 0
D (arithmetic mode) 25 0 70 0
D (I = X37) (Note 5) 25 0 60 0
Cn 40 0 55 0
012 30 0 64 0
1345 30 0 70 0
'678 4 tpwl + 15 0 tpwl + 25 0
RAMo, 3. Qq, 3 15 0 20 0
Notes 1. See next page.

2. If the B address is used as a source operand, allow for the ‘A, B source’’ set-up time, If it is used only for the destination address, use the
B dest.”” set-up time

3 Where two numbers are shown, both must be met.

4 “tpyl” s the clock LOW time

5 DVO s the fastest way to load the RAM from the D inputs. This function is obtained with | = 337

6 Using Q register as source operand in arithmetic mode Clock i1s not normally in critical speed path when Q is not a source.

A. Am2903 SWITCHING CHARACTERISTICS (TYPICAL ROOM TEMPERATURE PERFORMANCE) —

Tables IA, lIA, and llIA define the nominal timing characteris-
tics of the Am2903 at 25°C and 5.0V. The Tables divide the
parameters into three types: pulse characteristics for the

(MAY 18, 1978)

TABLE IA — Write Pulse and Clock Characteristics

clock and write enable, combinational delays from input to Time
output, and set-up and hold times relative to the clock and Minimum Time CP and WE both LOW 15ns
write pulse. to write
Measurements are made at 1.5V with V; = OV and V|y = Minimum Clock LOW Time 15ns
ey e e S o, ™ ™ animun ok i T
TABLE IIA — Combinational Propagation Delays (All in ns)
Outputs Fully Loaded. CL = 50pF (except output disable tests)
To Output _ . SI0g
From Input Y | Ciys | GP [(SYZ| N | OVR DB | WRITE | QIO,, QIO; | SIO, | SIO; |(Parity)
&rghé‘:z:z?es 65 | 60 % | - |64 | 70 33 - - 65 | 69 87
&ozi:‘:;’;z:?es 56 | - % | - |56 | - 3 - - 55 | 64 81
DA, DB Inputs 39 38 30 - 40 56 - - - 39 47 60
EA 38 33 26 - 36 41 - - - 36 41 58
C, 25 21 - - 20 38 - - - 21 25 48
lo 40 31 24 - 37 42 - 15(1) - 41 39 63
14321 45 45 32 - 44 52 - 17(1) - 45 51 68
lg765 25 - - - - - - 21 22/29(2) 24117(2)| 27/17(2) | 24/17(2)
EN - - - - - - - 10 - - - -
OEB Enable/Disable | - - - - | - = s - _ _ _ _
OEY Enable/Disable |14/14(2)| - - | - - - - - - - -
SIO,, SIO; 13 - - - - - - - - - 19 20
Clock 58 57 40 - 56 72 24 - 28 56 63 76
Y - - - |6 | - - - - - - - -
MSS 25 - 25 - 25 25 - - - 24 27 24
Notes 1. Applies only when leaving special functions.
2. Enable/Disable. Enable 1s defined as output active and correct. Disable is a three state output turning off.
3. For delay from any input to Z, use input to Y plus Y to Z.
TABLE llIA — Set-Up and Hold Times (All in ns)
CAUTION: READ NOTES TO TABLE lll. NA = Not Applicable; no timing constraint.
HIGH-to-LOW LOW-to-HIGH
N
Input v?c:%::ss,‘:;ita:o Set-up Hold Set-up Hold Comment
Y Clock NA NA 9 -3 To store Y in RAM or Q
‘WE HIGH Clock 5 Note 2 | Note 2 0 To Prevent Writing
WE LowW Clock NA NA 15 To Write into RAM
A,B as Sources Clock 19 -3 NA NA See Note 3
B as a Destination Clock and WE both LOW -4 Note 4 Note 4 -3 ;Zvégtfegag ::éyr;:?
QIO Q10,4 Clock NA NA 10 -4 To Shift Q
la76s Clock 2 Note 5 | Note 5 -18 ,
TEN HIGH Clock 10 Note 2 | Note 2 0 To Prevent Writing into Q
TEN LOW Clock NA NA 10 -5 To Write into Q

127

i s i —— o
. B \
S II II 1 = 1\
[s S S -
4 /4@_2% -
Py R T =
BE. LIPREAST ST LA RGES \
TP ENTES G ST S)
BRI T o
I 7 1 7 S DI soir R serT Arry PICE, TEOC
L ST FE S TR
Chapter IV

The Data Path — Part Il

CHAPTER IV
THE DATA PATH

The previous CPU example (See Chapter lll) utilized SSI and MSI
components to accomplish the shift-linkage, carry control, and
status register functions associated with the ALU. These func-
tions can all be implemented with the Am2904 status and shift
control unit.

The Am2904 is an LSl device that contains all the logic necessary
to perform the shift and status control operations associatéd with
the ALU portion of a microcomputer. These operations include
storage for ALU status flags; carry-in generation and selection;
data-path, carry bit linkage for shift/rotate instructions; and status
condition code generation and selection. The ALU status flags:
carry, zero, negative, and overflow; may be stored in either of two
registers, a machine status register or a micro status register. The
carry-in multiplexer can select the true or complement of the
microstatus carry flag or machine status carry flag, as well as an
external carry, a logical one, or a logical zero. The shift linkage
multiplexers provide paths to rotate/shift single and double length
words up, down, around the carry flag, and through the carry flag.
The status condition code multiplexer provides tests on the true or
complement of any status flag, as well as more complicated
logical combinations of these flags to facilitate magnitude com-
parisons on unsigned and two’s complement numbers, and nor-
malization operations.

STATUS REGISTERS

The status registers contained in the Am2904 are shown in the
upper portion of Figure 1. Each register is independently con-
trolled by a combination of instruction signals and enable signals.

MICRO STATUS REGISTER (uSR)

The uSRis enabled when the CE. signal is low. When CEw is low
the instruction present on ls through Iy will be executed on the
LOW to HIGH transition of the Clock input. These instructions fall
into three main categories: Bit Operations, Register Operations
and Load Operations.

The bit operations allow individual bits of the uSR to be set or
reset. (See Table 1.1).

The register operations allow the uSR to be loaded from the
machine status register, to be setto all one’s, reset to all zero’s, or
swapped with the machine status register. (See Table 1.2).

The load operations allow the SR to be loaded from the | inputs
directly, from the | inputs with Ic complemented, or from the |
inputs with overflow retained, loyg + rovr — rovr (See Table
1.3). The load operation with I complemented can be used to
emulate machines which use direct subtraction and thus need to
complement the carry to obtain a borrow. The load with overflow
retained allows a series of arithmetic instructions to be executed
without the need for a check for overflow after each instruction. If
an overflow occurred at any time during the series it will be
“trapped.” Thus a single test for overflow, at the end of the series,
is all that is required.

MACHINE STATUS REGISTER (MSR)

The MSR is enabled when CEy, is low. If CEy is low the in-
struction present on |5 through | will be executed on the LOW
to HIGH transition of the Clock input. Additionally the individual
bits of the MSR may be selectively enabled through the use of
the Enable inputs Ez, Ec, Ey and Egyr (See Figure 1). This
allows all possible combinations of the four status flags to be
selectively operated on for maximum flexibility. Thus the in-
struction specified by Is-1 only effect the enabled status flags.

12, Ins Ic. lovR

4

-

il |

o cP D cCP

&, MICRO MACHINE En
H STATUS STATUS
-9 REGISTER REGISTER Eovn
v
_E.M
KC KZ MN HOVR Mc Mz My Mova T
6 Yz Yc
- INSTR ,\
. DECODE L)
0 5

M

r ozw
ovR
IN MMy uc

LT

10, 100
-—

Qio, Mux QI0o
-— |— MUX
&

o —| PoL

N

hi bz

“INTERNAL

Figure 1. Am2904 Block Diagram.

The MSR instructions fall into two main categories: register op-
erations and load operations (bit operations can be implemented
through the use of the selective enable control lines).

The register operations allow the MSR to be loaded from the
bi-directional Y port, or the uSR. Additionally the MSR may be
set, reset, or complemented (See Table 2.1). These three in-
structions, combined with the selective enables, allow any com-
bination of MSR bits to be set, reset, or complemented.

The load operations allow the MSR to be loaded directly fromthe |
inputs, from the | inputs with |c complemented, or from the linputs
for shift through overflow (See Table 2.2). The load with Ic com-
plemented can be used to produce a borrow. The load for shift
through overflow loads the zero flag and the negative flag from
the | inputs while swapping the overflow and carry flags. This
allows the shift through overflow operation to be easily im-
plemented.

SHIFT LINKAGE MULTIPLEXERS

The shift linkage muitiplexers control bi-directional shift lines
SIOn, SIO, (RAM shifter on the Am2903) and QIOn, QIO (Q
register shifter on the Am2903). To enable the shift linkage mul-
tiplexers the shift enable line SE must be low. When SE is low the

131

132

TABLE 1. MICRO STATUS REGISTER
INSTRUCTION CODES.

Table 1-1. Bit Operations.

lsas210 #SR Comments
Octal Operation

10 0 = uz RESET ZERO BIT

11 1 = uz SET ZERO BIT

12 0 = uc RESET CARRY BIT

13 1 = uc SET CARRY BIT

14 0 = uN RESET SIGN BIT

15 1 = uN SET SIGN BIT

16 0 = wovR RESET OVERFLOW BIT

17 1 = povm SET OVERFLOW BIT

Table 1-2. Register Operations.

complement numbers and unsigned numbers. Table 5 lists the
conditional test outputs (CT) corresponding to the state of the I5-ly
instruction lines. Table 6 lists the possible relations between two
unsigned or two’s complement numbers and the corresponding
status and instruction codes. The three-state conditional test
output CT is active only if OE¢r is low.

CARRY IN MULTIPLEXER

The Carry output can be selected from one of seven different
sources depending on the state of instruction input lines. The
seven possible sources are: logical zero, logical one, the uSR
carry flag, the complement of the uSR carry flag, the MSR carry
flag, the complement of the MSR carry flag, or the external carry
input Cy (See Table 4).

TABLE 2. MACHINE STATUS REGISTER
INSTRUCTION CODES.

ls43210 uSR
Comments -1. ions.
Octal Operation Table 2-1. Register Operations
00 My = ux LOAD MSR TO uSR ls43210 MSR Comments
o1 1 - uy SET uSR Octal Operation
02 My = py REGISTER SWAP LOAD Yz, Y¢, Yn. Yovr
03 0 = ux RESET uSR 0o Yx > Mx TO MSR
o1 1 = My SET MSR
Table 1-3. Load Operations. 02 mx = My REGISTER SWAP
0 P 03 0 - My RESET MSR
543210 Iz —
Comments 05 My = M INVERT MSR
Octal Operation X X
06, 07 Iz = uz
Ic = uc LOAD WITH
IN = BN OVERFLOW RETAIN T 2.2. Load O .
IoVR + HOVR —> HOVR able 2-2. Load Operations.
30, 31 Iz = uz Is43210 MSR
Comments
50,51 lc = uc LOAD WITH Octal Operation
70, 71 IN = BN CARRY INVERT
lovR > Hova 04 'ﬁ - "il " LOAD FOR SHIFT
04, 05 l; > uz OVR C THROUGH OVERFLOW
IN -> MN
2027 | Ig = uc LOAD DIRECTLY Mc ~ Movr OPERATION
32-47 IN = &N FROM
52-67 lovR = HOVR Iz, Ic, In. lovr 10, 11 Iz > Mz
72-77 30, 31 Ic = M¢ LOAD WITH
Note' The above tables assume CE is LOW. 50,51 In > My CARRY INVERT
70, 71 lovkR = Movr
06, 07 Iz > Mz
shift linkage data path will be set-up depending on the state of 12-17 Ic = Mc LOAD DIRECTLY
instruction lines 1¢ through Ig (See Table 3). These instructions 20-27 Iy = My FROM Iz, Ic
allow single length or double length shifts/rotates either up, or 32-37 lovk = Movr In, lovr
down. Additionally shifts/rotates may be done through or around 40-47
the MSR carry and negative flag. Special operations exist to 52-67
provide support for add and shift (multiply) instructions. These 72-77

instructions select the present carry I¢ (for unsigned multiply),
or the Exclusive-OR of the sign flag I,, with the overflow flag
lovr (for two’s complement multiplication).

CONDITION CODE MULTIPLEXER

The condition code multiplier selects one of sixteen possible
logical combinations of the uSR, MSR or | inputs, depending on
the state of the Is-ly input lines. These combinations include the
true or complement form of any individual bitin the SR, MSRor |
inputs. Additionally several more complicated logical operations
may be performed to provide magnitude tests on both two’'s

Y INPUT/QUTPUT LINES

The bi-directional Y data lines may be used for extra data input
lines when the Y output buffer is disabled (OEy high).
Additionally, when l5-ly are low, the Y buffer is disabled, irre-
spective of the OEy signal. When the Y buffer is enabled (OEy
is low) the Y data lines are selected from the MSR, uSR, or |
input lines depending on the state of instruction lines Is and 14
(See Table 7).

TABLE 3. SHIFT LINKAGE MULTIPLEXER INSTRUCTION CODES.

o lo g 1 lg| Mc RAM Q sio, | sio, |aio, | alo, i';::d;g
MSB 1.SB MSB LSB
0 0 0 0 0 O oT=F o= z 0 z (]
60 0o 0o o0 1 0O = = z 1 z 1
0 0 0 1 0| Qed=pw=F | 2 0 z My sI0,
o 0o o 1 1 T ey N ey z 1 z SI0,
0 0 1 0 0 —1=F z M z SI0,
o o 1 0 1 OmT—=1—1T—F z My z S10,
0 0 1 1 o Oo=F——=F | z 0 z | sio,
0o 0 1 1 1| Qe=—T=H | z 0 z SI0, Qio,
o 1 0o o o H=H z SI0, z | ao, SI0,
o 1 0 o 1| b——Hl=]|: Mc z Qio, S0,
o 1 0 1 o0 d ’E}j z SI0, z QIo,
o 1 0o 1 1 Oe-—=3 z Ic z SI0,
0o 1 1 0 o0 ﬁ——lZ}——ElJ z Mc z SI0, Qlo,
o 1 1 0 1 z Qlo, z SI0, Qlo,
o 1t 1 1 o0 DN Z |IN®lovr| Z SI0,
o 1 1 1 1 [@ z Qlo, Z slo,
MSB LSB MSB LSB
10 0 0 0| [J—=Fco-[=Fc| O z 0 z SO,
10 0 0 1 o =] z 1 z SO,
1 0 0 1 o O -=tF°-=1-°| o0 z 0 z
10 0 1 1 O =1 =1 1 z 1 z
1 0 1 0 o0 O——_"=—1 (— 1 | QIO, z 0 z SIO,
10 1 0 1 O—"—"—"J—{=1] Qio, z 1 z Slo,
1 0 1 1 0 O {=F—"A=—1-|ao, z 0 z
10 1 1 1 O -[—F—=1F"]|ao, z 1 z
1 1 0 0 0 SIO, z QlIo, z SIO,
11 0 0 1 LE!-] Mc z Qlo, z SIO,
1 1 0 1 0 O @ @ Slo, z Qlo, z
11 0 11 If]——_-EJ—J =1 | M z 0 z
1 1 1 0 0 O -—E—j—l Qio, z Mc z SIO,
11 1 0 1 D—EE Qlo, z SIO, z SIo,
111 o1 o O T/——=H QIO, z Mc z
11 111 O Qio, z slo,, z

Notes 1. Z = High impedance (outputs off) state.

2. Outputs enabled and M loaded only if SE is LOW.

3. Loading of M¢ from l4q.¢ overrides control from Is_q, (_:EM, Ec.

133

134

TABLE 4. CARRY-IN CONTROL MULTIPLEXER INSTRUCTION CODES.

ha Iy Is Iy I I Co
0 X X X X 0
1 X X X X
1 0 X X X X Cx
1 1 0 0 X X ue
1 1 0 X 1 X ne
1 1 [X X 1 re
1 1 0 1 0 0 ic
1 1 1 0 X X Mc
1 1 1 X X Mc
1 1 1 X X 1 Mc
1 1 1 1 0 0 Mc

TABLE 5. CONDITION CODE OUTPUT (CT) INSTRUCTION CODES.

I"?I-E.xo |3 |2 |1 |o I5=I4=0 |5=0,|4=1 |5=1,|4=0 |5=|4=1
0 0 0 0 0 | (un®uovr)+nrz (kN @ povR) + Kz (MN® Movr) + Mz (IN® lovR) + Iz
1 0 0 0 1 | (unOuovr)*iz (uN®rovR) * Az (MNO® MoyR) « Mz (IN® lovr) * Tz
2 0 0 1 0| un®rovr uN @ uovr Mn @ Movr IN® lovr
3 0 0 1 1| unOrovr uNOrOVR MNO Movr INOlovr
4 0 1 0 0| pz uz Mz Iz
5 o 1 0 1| g 7z Mz 7z
6 0 1 1 0| povr KOVR Movr lovr
7 0 1 1 1] #oyr FovR Movr Tovr
8 1 0 0 0 ue + uz ue t+ uz MC+MZ |c+|z
9 1.0 0 1| Ace Bz Ac*iz Mc - Mz Ic*Tz
A 1 0 1 0 | uc ue Mc Ic
B 10 1 1| me Zc Mc Tc
c 11 0 0| Ec+euz e + nz Mc + Mz Tc+lz
D 110 1| peeRz uc* iz Mc - Mz Ic*Tz
E 11 1 0| IN®My N My In
F 11 1 1| \OMy BN My in

Notes 1 @ Represents EXCLUSIVE-OR ©® Represents EXCLUSIVE-NOR or coincidence.

TABLE 6. CRITERIA FOR COMPARING TWO NUMBERS FOLLOWING “A MINUS B’ OPERATIONS.

For Unsigned Numbers For 2's Complement Numbers
I3-0 l3.0
Relation Status CT=H |CT=L Status CT=H| CT=L
A=B Z=1 4 5 zZ=1 4 5
A=B Z=0 5 4 Z=0 5 4
A=B c=1 A B NGOVR =1 3 2
A<B c=0 B A N @ OVR =1 2 3
A>B CeZ=1 D (¢ (NOOVR)-Z =1 1 0
A<B CT+zZ=1 c D N@®OVR)+Z=1 0 1
@ = Exclusive OR H=HIGH Note For Am2910, the CC input is active LOW, so use I3_g code to produce

® = Exclusive NOR

L=LOW

CT = L for the desired test.

TABLE 7. Y OUTPUT INSTRUCTION CODES.

TABLE 8-1. STANDARD DEVICE SCHOTTKY SPEEDS.

OEy Is Iy Y Output Comment Device and Path Min. Typ. Max.
] X X z Output Off S-REGISTER
High Impedance Clock to Output 9 15
° ° ” PV See Note 1 OE to Output 13 20
o 1 M; = Y; Setup 2 -
Am2902A
o 1 1 i >Yi Cnto Cn+x, Y, Z 7 "
Notes* 1. For the conditions. g‘ ,E :o g’ E Y Z ; 12
Is, 14, 13, 12, 11, lp are LOW, Y is an input. ot ¥

OEy 1s “Don’t Care” for this condition.
2. X1s “Don’t Care” condition.

TIMING ANALYSIS

In the previous chapter a timing analysis was presented with the
shift-linkage, carry-control, and status registers implemented in
SSI and MSI. This timing analysis will be repeated with the SSI
and MS logic replaced with the Am2904. Tables 8.1, 8.2, 8.4 and
8.5 list the typical AC characteristics of the registers, Am2902A,
Am2901A, Am2903, and Am2904 used In these calculations.
Table 8.3 lists the assumed AC characteristics for the set-up time
of the Am2904.

Figure 2 illustrates the timing analysis for an Am2901A based
design. The analysis begins with the LOW to HIGH transition of
the system clock. All signals must be valid for the next LOW to
HIGH transition of the system clock, i.e. one-microcycle later.

Figure 3 illustrates a similar timing analysis for the Am2903. The
results of both analysis are listed in Table 9.

USING THE Am2904 IN A 16-BIT DESIGN

Perhaps the best technique for understanding the Am2904 is to
simply compare 16-bit ALU designs with and without the
Am2904. The first design, Figure 4a, is an example of a 16-bit
CPU design using SSI/MSI parts instead of the Am2904. In
Figure 4b, the second 16-bit CPU design, the Am2904 is shown
replacing the SSI/MSI. The Am2904 substitutes for the appro-
pnate shift matrix control and status registers. A more detailed
comparison may be obtained by referring to the 16-bit ALU de-
signs in Chapter lil and the one in Appendix C of this chapter. To
understand the Am2904 further, the usage of the Am2904 is
described through the microprogram bits in the microprogram
structure and shown later in the actual microprograms.

TABLE 8-2.
PRELIMINARY SWITCHING CHARACTERISTICS.

Combinational Delays (ns)

From (Input) To (Output) tod
Iz Yz

Ic Yc 20
In YN

lovr Yovr

cp Yz, Yo Yn. Yovr 30
g Is Yz, Yo Yn. Yovm 23
Iz.lc. Inlove | CT 30
CP CT 30
Io-ls cT 30
Cx Co 12
cP Co 20
1,2,3,5,11,12 Co 24
SI0,,, QIO, SI0, 16
S10,, QI0, SIO, 16
Ic: In lovr SIO, 20
SIOp, QIO,, Qlo, 16
S10,, QIO Qlo,, 16
e I
RFEE

TABLE 8-3. ASSUMED SET-UP TIME.*

Input TS
IOVR, 1Z, IN, IC 20ns

*The actual set-up times where not available at the time this was written.
See current data sheets for correct timing on these signals.

135

136

TABLE 8-4.

Am2901A — (MAY 18, 1978)

ROOM TEMPERATURE

SWITCHING CHARACTERISTICS

Tables |, I, and Ill below define the timing characteristics of
the Am2901A at 25°C. The tables are divided into three types
of parameters; clock characteristics, combinational delays
from inputs to outputs, and set-up and hold time require-
ments. The latter table defines the time prior to the end of the
cycle (i.e., clock LOW-to-HIGH transition) that each input must
be stable to guarantee that the correct data is written into one
of the internal registers.

All values are at 25°C and 5.0V. Measurements are made at
1.5V with V| = OV and V,y = 3.0V. For three-state disable
tests, C, = 5.0pF and measurement is to 0.5V change on
output voltage level. All outputs fully loaded.

TABLE |
CYCLE TIME AND CLOCK CHARACTERISTICS
TIME TYPICAL |GUARANTEED

Read-Modify-Write Cycle

(time from selection of

A, B registers to end of 56ns 93ns

cycle)
Maximum Clock Frequency to

Shift Q Register (50% duty 40MHz 20MHz

cycle)
Minimum Clock LOW Time 30ns 30ns
Minimum Clock HIGH Time 30ns 30ns
Minimum Clock Period 75ns 93ns

TABLE I
COMBINATIONAL PROPAGATION DELAYS (all in ns, C_ = 50pF (except output disable tests))
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V
To Shift Shift
Output _ _|F=0 Outputs _ _|F=0 Outputs
C G,P =|0OVR Y F C G,P [RL=|OVR
'From Y | F3 [Ch#a |G, 2;.0 RAMg| Qo 3 |“n+4 2 ;—0 RAMg| Qg
nput RAM3| Q3 RAM3| Q3
A, B 45 45 45 40 65 50 | 60 - 75 75 70 59 85 76 90 -
D (arithmetic mode)| 30 30 30 25 | 45 30 | 40 — 39 37 41 31 55 45 59 —
D (1=X37) (Note 5)| 30 30 - - 45 - 40 - 36 34 - - 51 - 53 -
Cn 20 20 10 - 35 20 | 30 - 27 24 20 - 46 26 | 45 —
1012 35 35 35 25 50 40 | 45 - 50 50 46 41 65 57 70 -
1345 35 35 35 25 | 45 35 | 45 - 50 50 50 42 65 59 70 -
lg78 15 - — - - - 20 20 26 - - - -~ - 26 26
OF Enable/Disable [20/20 — | — | = | = [= | = | = J80o/33f - | - | = | - | = | = | -
A bypassing _ _ _ _ _ _ _ _ — _ - _ - -
ALU (1 = 2xx) 30 .
Clock _4 (Note6)| 40 | 40 | 40 | 30 | 65 | 40 | 55 | 20 || 52 | 52 | 52 | 41 | 70 | 67 | 71 | 30
TABLE 11l
SET-UP AND HOLD TIMES (all in ns) (Note 1)
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V
From Input Notes
Set-Up Time Hold Time Set-Up Time Hold Time
A, B 2,4 40 93
Source 3,5 tpwlk + 15 0 tpwk + 25 Y
B Dest. 2,4 towl + 15 0 tpwk + 156 o
D (arithmetic mode) 25 0 70 0
D (I = X37) (Note 5) 25 0 60 0
Ch 40 0 55 0
lo12 30 0 64 0
|345 30 0 70 0
'678 4 towl + 15 0 towl + 25 0
RAMp, 3, Qp, 3 15 0 20 0
Notes: 1. See next page. -
2. If the B address is used as a source operand, allow for the ‘A, B source’’ set-up time, if 1t 1s used only for the destination address, use the
‘B dest.”” set-up time.
3. Where two numbers are shown, both must be met.
4. “tpwlk' 1s the clock LOW time
5. DV O0is the fastest way to load the RAM from the D inputs. This function i1s obtained with | = 337
6. Using Q register as source operand in arithmetic mode. Clock is not normally in critical speed path when Q i1s not a source.

TABLE 8-5.

A. Am2903 SWITCHING CHARACTERISTICS (TYPICAL ROOM TEMPERATURE PERFORMANCE) — (MAY 18, 1978)

Tables IA, HIA, and IlIA define the nominal timing characteris-
tics of the Am2903 at 25°C and 5.0V. The Tables divide the
parameters into three types- pulse characteristics for the

TABLE IA — Write Pulse and Clock Characteristics

clock and write enable, combinational delays from input to Time __
output, and set-up and hold times relative to the clock and Minimum Time CP and WE both LOW 15ns
write pulse to write
Measurements are made at 1.5V with V| = OV and V| = Minimum Clock LOW Time 15ns
500 For Dt ssve s, O = SO 082 [ook i e
TABLE IIA — Combinational Propagation Delays (All in ns)
Outputs Fully Loaded. CL = 50pF (except output disable tests)
To Output _ - S10g
From Input Y | Chita | GP |[(SYZ| N | OVR DB | WRITE | QIO,, QIO; | SIO, | SI0; |(Parity)
?A rghf\:?;:zfes 65 | 60 56 - | 64 70 33 - - 65 69 87
':L'ozi:d;zf)‘es 56 | - % | - || - 3 - - 55 | 64 | 81
DA, DB Inputs 39 38 30 - 40 56 - - - 39 47 60
EA 38 33 26 - | 3 41 - - - 36 41 58
Cn 25 21 - - 20 38 - - - 21 25 48
lo 40 31 24 - 37 42 - 15(1) - 41 39 63
14321 45 45 32 - | 44 52 - 17(1) - 45 51 68
laz6s 25 - - - | - - - 21 22/29(2) |24117(2)| 2717(2) | 24117(2)
IEN - - - - |- - - 10 - - - -
OEB Enable/Disable | - - - - |- - |2ns@ | - - - - -
OEY Enable/Disable [14/14(2) - - - - - - - - - - -
SIO,, SIO; 13 - - - - - - - - - 19 20
Clock 58 57 40 - 56 72 24 - 28 56 63 76
Y - - - 16 - - - - - - - -
MSS 25 - 25 - 25 25 - - - 24 27 24
Notes 1 Applies only when leaving special functions
2 Enable/Disable Enable 1s defined as output active and correct. Disable 1s a three-state output turning off
3 For delay from any input to Z, use input to Y plus Y to Z.
TABLE IlIA — Set-Up and Hold Times (All in ns)
CAUTION: READ NOTES TO TABLE lll. NA = Note Applicable; no timing constraint.
" HIGH-to-LOW LOW-to-HIGH
. | A
Input VIt::"tl::: sspi;::‘ta:o Set-up Hold B Set-up Hold Comment
Y Clock NA NA 9 -3 To store Y in RAM or Q
‘WE HIGH Clock 5 Note 2 | Note 2 0 To Prevent Writing
WE LOW Clock NA NA 15 0 To Write into RAM
A,B as Sources Clock 19 -3 NA NA See Note 3
B as a Destination Clock and WE both LOW -4 Note 4 Note 4 -3 To Wte Data only into
the Correct B Address
QI0,, QI0; Clock NA NA 10 -4 To Shift Q
lg76s Clock 2 Note 5 | Note 5 -18)
TEN HIGH Clock 10 Note 2 | Note 2 0 To Prevent Writing into Q
EN LOW Clock NA NA 10 -5 To Write into Q

137

138

of \C
DATA) e B!
REGISTER cLock cLock >'ﬂ'}u; ER
Q o s s e s s s s o o S
i 7
| |
i] P
cLock > $100 DA, DB X B/I DA, DB B,I
B CLOCK CLOCK Pt
sion SHIFT ;n AM] —] [Ram | sHiFT
Am2904 Ic Cn+4 ﬁLN 1A e o o o [Am2901A
In F3 i
I0VR OVR J ;
INSTRUCTIONS —/—] - Iz ==y cn cn
1372 cr Y Iy
oil
LOGIC OPERATION OATA OUT Cn+z GP
PEED COMPUTATIONS —
SPEED Co RecisTER n LCARRY
DEVICE NO. | DEVICE PATH PATH1 | PATH2 | PATH3
S-REG CPtoQ 9 9 9 j Q
2901A READ-MODIFY-WRITE 55 - -
2901A AB - Y - 45 -
2901A AB - Zero - - 85
2904 SET-UP | - - - PATH 1
S-REG SET-UP D - 2 20 PATH 2 o s s s
TOTAL-ns 64 56 94 PATH 3 oo o o s st
Figure 2-1.
of Yo
DATA e R
REGISTER cLocK cLock
Q
cLocK > S0 DA,DB A B, I DA,DB A,B,
sion SHIFT -m <] crock crock > IFT
R —] |-
i
Am2904 I Cn+d4 Am2901A e o o o Am2901A
in F3
IOVR OVR £
INSTRUCTIONS -l Iz fRmm e g e e —y e cn
e . vf,,m‘:"f,,.,j\ v
l 3 W T T
[| ;
ARITHMETIC OPERATION N ;
SPEED COMPUTATIONS i il
C +k SUR—— { j
DEVICE NO. | DEVICE PATH PATH1 | PATH2 | PATH3 DATA OUT e o om——
REGISTER e e, s CARRY
S-REG cPoQ 9 9 9 n .
2901A AB to GP 40 40 40
20027 GP 10 Cn+xyz 5 5 5 —[Q
2901A SET-UP Cn 40 - -
2901A CntoY - 20 -
2901A Cn to Zero - - 35
2904 SET-UP | - - 20 PATH 1
S-REG SET-UP D - 2 - NG RE ——
TOTAL-ns 94 76 109 TN 1 I o U ——

Figure 2-2.

= N
of iE
DATA R By
REGISTER < cLock cLock }ﬂmgsr R
T
Q e s e e e e e o)| 1
DA,DB AB, I DA,DB A, s,?
cLock o]/
> éﬁ_"“ r— CLOCK CLOCK N
n SHFT L fram | < —p HIFT [=—
Am2904 e Cn+d4 {Am2901A e o o o Am2901A
In B o _.J
IOVR OVR ”}
INSTRUCTIONS ——] Ig-l12 [Peniadion ¢ Sy cn cn
13 cT \ Y
LOGIC OPERATION WITH SHIFT r (T T
SPEED COMPUTATIONS D
DEVICENO. | DEVICEPATH | PATH1 | PATH2 | PATH3 DATA OUT Cn+z Gp
S-REG CPtoQ 9 9 9 REGISTER cn . CARRY
2901A AB to RAMO03 60 - -
2904 SI0, to SIO, 16 - - Q
2901A SET-UP RAMO03 15 - -
2901A ABtoY - 45 -
2901A ABtoZ - - 65
2904 SET-UP | - - 20
S-REG SET-UP D - 2 .
TOTAL-ns 100 56 94
Figure 2-3.
of
DATA
REGISTER cLocK cLock
A 3
Q] ’
;
i i
cLOCK > si0, DA,DB A B,I DA,DB A, B,(I%
o ew Jerock crock {
ston et sHET_____[oaw} < —> SHIFT [=—
i }
% le Cn+4 Am2901A e o o o Am2901A g !
e L E
IQVR ovR___\. ! i
INSTRUCTIONS —#~—] 1-1 Iz 7 T %n If
137 "% cr e i
TWO'S COMPLEMENT { i g
ARITHMETIC OPERATION |
WITH SHIFT DOWN SPEED COMPUTATIONS I i i
DEVICENO. | DEVICEPATH | PATH1 | PATH2 | PATH3) 1
S-REG CPtoQ 9 9 9 j}
2901A AB 1o GP 40 40 40 DATA OuT <+— CARRY
2902A GP 1o Cn+xyz 5 5 s REGISTER l
2901A Cnto F3, OVR 20 - -
2904 IN, IOVR to SIOn 24 . = Q
2901A SET-UP RAM3 15 - -
2901A CntoY 20 =
2901A Cn to Zero - - 35
2904 SET-UP | - - 20 TN I I i ——
S-REG SET-UP D - 2 - PATH 2 S———-— — ——— ————
TOTAL-ns 13 76 109 PATH 3 o R ——

Figure 2-4.

139

140

of

DATA A7§, |
REGISTER < cLock cLock REGISTER
Q
DA,DB A,B,I DA,DB A 4I
cLock P> Si% CLOCK CLOCK
sion SHIFT [<3— —> SHIFT }=——
Am: le Cn+d4 Am2%01A o o o o Am2901
In F3 i
I0VR OVR -
INSTRUCTIONS ot 1z z Th cn
o2 — [— ¥
a2
MAGNITUDE ONLY ARITHMETIC OPERATION o
WITH SHIFT DOWN SPEED COMPUTATIONS
e S
DEVICE NO. | DEVICE PATH PATH1 | PATH2 DATA OUT \ j CARRY
S-REG CPtoQ 9 9 REGISTER cn !
2901A AB to GP 40 40
29024 GP 10 Cn + xyz 5 5 ‘0
2901A CntoCn+4 10 -
2904 IC to SIOn 24 -
2901A SET-UP RAM3 15 -
2901A Cn to Zero = 35
2901A SET-UP | - 20 PATH 1
TOTAL-ns 103 109 PATH 2 e e oo e
Figure 2-5.
of 1o
DATA o] 8, |
REGISTER cLock crocx —— Z-'__Qﬁilz'fin
= t
e —— |
D B, ,DB A/B!I
cLock —> S10g f=— oA-8 ;{ l CLOCK CLOCK >
sion SHIFT <+— — B SHIFT |
d .
Am2904 ¢ Cn+d4 Am2903 e o o o AmZ9d3
In F3
=
. P S
INSTRUCTIONS _—’1La-‘ lo-ly2 1z [2 Cn ., Cn
D
LOGIC OPERATION <
n+z GP
SPEED COMPUTATIONS DATA OUT
REGISTER CARRY
DEVICE NO. | DEVICE PATH PATH1 | PATH2 | PATH3 cn .
S-REG CPtoQ 9 9 9 Q
2903 ABwY 56 56 56 ‘
2003 YtoZ - 16 -
2904 SET-UP | . 20 -
S-REG SET-UP D 2 - - PATH 1
2903 SET-UP Y - - 9 (-7 (I i —
TOTAL-ns 67 101 74 PATH 3w o sommn e

Figure 3-1.

of 1o
DATA 78, 1
REGISTER cLock CLOCK === .:;EE?ISTER
Q
! %
| §
DA,DB A B,I DA,DB AlB]I
cerock P> $1% CLOCK CLOCK it
sion SHIFT - E nw} <}— —> “ SHIFT f=—di
Am2904 e Cn+4 Am2903 e o o o Am2903}
In F3]
oV fe——HJovR___
INSTRUCTIONS ——] o} 1z z i{ cn
1] " Zer Y E |
t |
|
ARITHMETIC OPERATION — 16-BIT o {
SPEED COMPUTATIONS }
o S §
DEVICENO. | DEVICEPATH | PATH1 | PATH2 | PATH3 DATA OUT -
REGISTER CARRY
S-REG CPwoQ 9 9 9 Cn o
2903 AB1o GP 56 56 56
2002A G.P 1o Cn+xyz 5 5 5 —[Q
2903 CntoY 25 - 25
2903 Cnto OVR - 38 -
2903 YtoZ 16 - -
2904 SET-UP IOVR, 1Z 20 20 - PATH 1 —
2903 SET-UP Y - - 9] PATH 2 e cmmo s s
TOTAL-ns 131 128 104 PATH 3 - e o—— o ———
Figure 3-2.
{ —= = 1)
! 1
l DT D i
H DATA A, | !
} REGISTER cLock CLOCK —— %ﬂﬁ\ ISTER 1
1 Q) ?
! () H i
| I
! 1 ,
»/j DA,DB A/B,I DA,DB AjB;I H
cLocK | ,) ,
P> A% CLOCK CLOCK L] ,_.)
== swn__,_\} <+ — SHIFT o)
Am2904 Ic Cn+4 Am2903, gucr] o o o o |sHFr AM2903
i s B
IOVR OVR H !
INSTRUCTIONS —/—] I} iz z cn cn
13" er = Y ! %
R \)
LOGIC OPERATION WITH SHIFT D
SPEED COMPUTATIONS
Cn+z GP
DEVICE NO. | DEVICE PATH | PATH1 | PATH2 | PATH3 DATA OUT 4 CARRY
REGISTER A cn
S-REG CPwoQ 9 9 9 N
2903 AB to SO 64 64 64 Q !
2909 SI00 to SIOn 16 - 16 ‘
2903 S3toY 13 13 13
2903 YtoZ 16 16 -
2904 SET-UP | 20 20 - PATH 1
2903 SET-UP Y - - 9 PATH 2 oo o s s,
TOTAL-ns 138 122 m PATH 3 B R —

Figure 3-3.

141

142

cLock

INSTRUCTIONS

ARITHMETIC OPERATION

of

oo/, v
=
J

DATA —
RECISTER cLock cLock
Q
P> S19 f= ohoe A CLOCK CLOCK
¢8ion —
e R R
Am: Ic —{Ciny, 03
n s i SHIFT
VR F——""4GVR
VR \
lo-h2 ¢ Iz Mz)’“"\\ \” Cn
AY

l

TWO’S COMPLEMENT
WITH SHIFT DOWN — 16-BIT SPEED COMPUTATIONS
DEVICENO | DEVICE PATH PATH1 | PATH2 | PATH3 D
S-REG CPtoQ 9 9 9
DATA OUT
2903 AB10GP 56 56 56 <— CARRY
20024 GP to Cnxyz 5 5 5 REGISTER :
2003 Cn to SI00 21 - -
2903 SI03 10 Y 13 - - ‘ Q
2003 Cnto N, OVR - 38 38
2004 IOVR, IN to SIOn - 24 24
2903 Si0310 Y - 13 13
2903 Yoz 16 16 -
2003 SET-UP Y - - 9 PATH 1
2904 SET-UP | 20 20 - PATH 2 e s s st
TOTAL-ns 120 161 154 PATH 3 s o o oo e
Figure 3-4.
of
DATA]
K LOCK
REGISTER cLoc cLo
Q
] |
DA DB A B,I DA, DB A,B{l
cLock >] CLOCK CLOCK
- Lo GRS et [
Am2! le 3.... o o o o Am2903
In
IOVR
INSTRUCTIONS I+t 1z t Cn cn
ol or ~ 4
MAGNITUDE ONLY ARITHMETIC OPERATION ‘ ! I
WITH SHIFT DOWN SPEED COMPUTATIONS r !
DEVICE NO. | DEVICE PATH PATH1 | PATH2 Ll
JROUSR—
S-REG cPwQ 9 9 DATA OUT ct__ T
29003 ABWGP 6 56 REGISTER <I— et CARRY
29024 GP to Cn+xyz 5 5 Cn ¢
2903 CntoCn+4 21 21
2004 IC to SI0, 20 20 l Q
2903 SilOtoY 13 13
2003 Yoz 16 -
2904 SET-UP | 2 -
2903 SET-UP Y - 9 T N 1 R ———
TOTAL-ns 142 133 T R —

Figure 3-5.

DATA BUS

INSTRUCTION ar /\
ﬁEGISTEH

[REGISTER

OP CODE SOURCE/DESTINATION I .I

L _—=— L =TT

BIT

CONDITION
CODE

4P micRoPROGRAM WX CONSTANT

cc
CONTROLLER PROM L]
L G 7 =

il

DA oB

| S
C/__L ADDR "
-

F F

L L

A A

9 G G

FUTURE 6
EXPANSION 7L REGISTER MUX
Am2903
MICROPROGRAM MEMORY Am2903 L 2
4 | | a
Y &
29775 27813 8
PROM S PROM'S 2
SUPER SLICES

REGISTER
ADDRESS BUS

CONTROL SHIFT
8iTs 2 CONTROL

BE PIPELINE PIPELINE
REGISTER REGISTER

O
mi

CONTROL
BITS

Figure 4a.

eyl

144

THE MICROPROGRAM STRUCTURE

The functions of the pipelined (PL) microprogram bits are il-
lustrated in Figure 5 and as follows:

Bits.PLO
through PL11

Bit PL12

Bit PL13

This is a shared control field. The field is used
for branching to a microprogram address or to
load the CCU counter or control bits for I/O.

The shared control field is determined by
PL12, LOW for branching and counting or
HIGH for 1/O control.

When LOW, enables the WRITE output and
allows the Q Register and Sign Compare flip-
flop to be written into. :

through PL32

16/
< DATA BUS >
— RSN
12/ l DATA U [DATA OUT I
REGISTER REGISTER
7
COMPU’:ETF: é:é)NTROL 16/ 1% 16
i 7
N
el V¥ I.__ L_ L or B AA:J, :n DA DB ‘ﬂ L
1 K "z N.cow]
MICROPROGRAM
MEMORY Am2904 *
STATUS AND SHIFT oo 2
CONTROL UNIT o 2
PROM Eg :IJ> u
L 2/ 2y 3
g 7 SUPER SLICES 1// *
REGISTERED
L PROM §101/Q101
8 $103/5103
- —
Ig-112/CONTROL
J
1/0 CONTROL 7
Figure 4b.
TABLE 9. TIMING ANALYSIS SUMMARY (ns). Bits PL14 The CEg and SE control inputs of the Am2904,
and PL15 respectively. CEu enables the Micro Status
Operation Am2901A Am2903 Register. SE enables the Am2904 shift opera-
Logic 94 101 tions.
Arithmetic 109 131 Bits PL16 CCU Next Address.
through PL19
Logic w/Shift 100 138 . .
Bits PL20 CCU Muitiplex test select.
Two’s Complement through PL23
Arithmetic with 113 161 . X
Shift Down Bit PL24 This t?lt determines the polarity of the incoming
" oo test signal to the CCU.
lagnitude on .
Aritametic withy 109 142 Bit PL25 Active LOW Instruction Register enable.
Shift Down Bits PL26 CCU multi-way branching select.
through PL29
Bits PL30 Selects the ALU operand sources.

PL30[PL31| PL32 | ALU Operand R | ALU Operand S

L L L RAM Output A RAM Output B

L|L H RAM Output A DBy.3

L H X RAM Output A Q Register

H| L L DAg.3 RAM Output B

H L H DAo_s DBo_3

H H X DAg.3 Q Register
L=LOW H = HIGH X = Don't Care

145

Bits PL33 Selects the ALU functions. Bits PL41 This 4-bit wide field is used for the A-address
through PL36 through PL44 source.
lg | 13| 12 | 11 | Hex Code ALU Functions Bits PL45 This 4-bit wide field is used for the B-address
Clolole 0 lo=1L Special Functions through PL48 source.
lo=H | Fi=HGH Bits PL49 This 4-bit wide field is the B destination ad-
LILJL]H 1 F = S Minus R Minus 1 Plus Cp, through PL52 dress into which new data is written.
LIL|H|L 2 F = R Minus S Minus 1 Plus C,, -
L{L|{H[H 3 F = R Plus S Plus C, Bit PL53 Am2903 cqntrol input OEy. When LOW enables
CTRTLTL 2 F=SPusC, the ALU shifter output data onto the Y bus.
LIH|L|H 5 F =SPlus Cy Bits PL54 Am2904 instruction code field.
LIH[H|L 6 F=RPlusC, through PL59 -
el A Rl ! F = RPus Gy Bits PLGO Am2904 shift link itiplexer instructi
— its m shift linkage multiplexer instruction
L 8 Fi = Low through PL63 code field.
HiL|[L|H 9 F; = R AND S;
HIL|H|L A F; = Rj EXCLUSIVE NOR S; Bits PL64 Am2904 “carry-in” control multiplexer field.
HIL[H|H B F; = R; EXCLUSIVE OR S; and PL65
Al L el © Fi = B AND & Bits PL66 The CEy, OEcy, OEy control inputs of th
i e CEp, cT y control inputs of the
H|H =R ; r
LIH D Fi = Ri NOR'S; through PL68 Am2904, respectively.
HIH|H|L E Fi = R; NAND S;
HIHIHIH F Fi=RiORSi BitPL69 This bit when LOW, enables bits PL74 through
L=LOW H = HIGH 1=0t03 PL89 onto the Am2903 DA Bus.
Bits PL37 Selects the ALU destination controls. Bit PL70 When LOW, zeros the carry in's to the Am2903
through 40 slices.
Bit PL71 When HIGH, enables a status register used in
g b lg 5 Code| Funetion BCD calculations.
Lt L Li 0 | UnsgnedMutiply Bit PL72 When LOW, clears the status register.
L L OH L 2 Two's Complement)
Muttiply Bit PL73 When LOW, enables Am2909/11 registers.
L H L L| 4 |Horementby
One or Two
L n L w5 | SevMagatude Bits PL74 This field contains a 16-bit constant from mi-
::: Zm":m through PL89 crocode that is passed to the Am2903's via
MR L8 Mupy, Last Cycle the DA bus. Constant is enabled by PL69.
H oL L L[8 |poge engh
Double Length
H L H L A Normalize and
First Divide Op
HHLL|] C ;"zwm‘
Two's Complement
H H H L E Divide, Correction
and Remainder
1 OR I; OR I OR I4 = HIGH, gy = LOW
SI04 A Y, Q Reg &
Hex ALU Shift Most Sig. | Other | Most Sig. | Other | Most Sig. | Othe —_— Shifter
lg 1y lg g | Code Function ssl:eelg Stices | " Slice” | Stices | " Stice " | Slices [Y1 | Yo | stop | Write Function | QIO, | QIO
[0 Anth F2—Y Input Input F3 SIO; SI03 s 'F |F Fo L Hold H-Z | H-Z
L L L H 1 Log Fi2=Y Input Input S04 SI03 F3 F3 . Fp |Fy Fo L Hold H-Z | H-Z
L L H L 2 Anth Fi2—Y Input Input F3 SI03 SI0; F3 Fa |Fy Fo L Log Q2-Q | Input | Qg
L L H H 3 Log Fl2—Y Input Input SI05 SI03 F3 F3 F2 |F Fo L Log Q2+Q | Input | Qo
L H L L 4 F—y _input Input F3 F3 Fp Fa Fy |Fo Parity L Hold H-Z | H-Z
L H L H 5 F-Y Input Input [[F Fp Fy |Fo Party H Log Q2-Q Input | Qg
L H H L 6 F—y Input Input F3 F3 Fy Fy Fy |Fo Panty H F=Q HI-Z | Hi-Z
L H H H 7 F=y Input Input Fy F3 Fa Fa Fy |Fo Panty L F—=Q Hi-Z HI-Z
H L L L 8 Arth 2F =Y Fa F3 F3 Fa Fy Fq Fo |SIOp | Input L Hold H-Z | H-Z
H L L H| 9 [Log2Fay Fa F3 Fy F2 Fy Fy Fo |SIOp | Input L Hold H-Z | H-Z
H L H L A Anth 2F—Y Fy F3 Fy [Fy Fy Fo | SIOg Input L Log 2Q—+Q Q3 Input
H L H H B Log 2F—Y F3 F3 Fp Fp Fy Fy Fo [SI0p | Input L log 20~Q | Q3 | Input
H H L L c F=y F3 s [F3 Fy Fp Fi |Fo H-Z H Hold HI-Z | H-Z
H H L H D F—Y F3 F3 F3 F3 Fp Fp Fy |Fo HI-Z H log 20-+Q | Q3 | Input
H H H L E SI0p—Yq, Y1. Y2. Y3 S10, SI0y SI0g SI0g SI0g SI0g | SIOg[SI0g | Input L Hold HI-Z | H-Z
H H H H F F—Y Fay Fy Fsy Fy Fa Fa Fy Fo H-Z L Hold Hi-Z H-Z

The Am2903 special functions can be selected by the following conditions: lp = |y = Ip = I3 = I = LOW, gy = LOW

146

SHARED CONTROL FIELD

INPUT/OQUTPUT
BRANCH
COUNTER

103713S @134

DEVICE

ENABLE

[E]

CCU CONTROL FIELD

29811
NEXT
ADDRESS

SELECT

TEST

[24]23 22 21 2019 18 17 16[15| 13]12/1110 9 8 7 6 5 4 3 2 1 0O

32 31 30[29 28 27 2625

SOME SAMPLE MICROROUTINES

The following algorithms are implemented using the Am2903
Superslices™ and Am2904 status and shift control unit. The
algorithms were developed with the aid of AMDASM on System
29. All algorithms assume values and constants to be initialized
prior to the entrance of the algorithms. Appendix A relates the
actual microcode to the microword fields. Appendix B is the
AMDASM Phase 1 and Phase 2 listings of the microprograms
and the definitions of mnemonics. Figure 4b is a block diagram
of the CPU hardware including the Am2904 Status and Shift
Control Unit from which the microroutines were developed. A
detailed diagram of the CPU hardware is in Appendix C.

Normalization, Single- and Double-Length

Normalization is used as a means of referencing a number to a
fixed radix point. Normalization strips out all leading sign bits such
that the two bits immediately adjacent to the radix point are of
opposite polarity.

Normalization is commonly used in such operations as fixed-to-
floating point conversion and division. The Am2903 provides for
normalization by using the Single-Length and Double-Length
Normalize commands. Figure 6a represents the Q Register of a
16-bit processor which contains a positive number. When the

'g 3 " Single-Length Normalize command is applied, each positive
Eolg edge of the clock will cause the bits to shift toward the most
o . =25 significant bit (bit 15) of the Q Register. Zeros are shifted in viathe
¥ g i i QIOO0 port. When the bits on either side of the radix point (bits 14
3 22 and 15) are of opposite value, the number is considered to be
£ 8 M normalized as shown in Figure 6b. The event of normalization is
° “8 g | externally indicated by a HIGH level on the Cn+4 pin of the most
% < 3 significant slice (Cn+4 MSS = Q3 MSS ¥ Q2 MSS).
< o % 9 |¥ There are also provisions made for a normalization indication via
g” M the OVR pin one microcycle before the same indication is avail-
2 |2 able on the Cn+4 pin (OVR = Q2 MSS¥ Q1 MSS). This is for use
ok f : in applications that require a stage of register buffering of the
2° 13 normalization indication.
303 . .
- e Since a number comprised of all zeros is not considered for
g =|2 normalization, the Am2903 indicates when wuch a condition
q 25 ol arises. If the Q Register is zero and the Single-Length Normaliza-
o 2 2 E tion command is given, a HIGH level will be present on the Z line.
2 AE
(3 =|®
E ~le
g 2 §’ RADIX
H AuBvO |\ 15914 1312|1110 9 8|7 6 5 a3 2 1 0
L"‘:“gi OREGISTERIO OIOIO 1||‘1I| 1‘0 0|1 0|0|||1|
A230[
D | ISS Lss
11“;‘; ; DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1
HSN3 [T
i a) Unnormalized Positive Number.
K RADIX
;':’ 15914 13 12|11 10 9 8|7 6 5 4|3 2 1 0
; ; QREGISTER | 0 1I1l1 1|1|0[0 1|0L0|I llilolol
3 b mss Lss
© 5
g b) Normalized Positive Number.
= MPR-040
Figure 5. Figure 6.

The sign output, N, indicates the sign of the number stored in the
Q register, Q3 MSS. An unnormalized negative number (Figure
7a) is normalized in the same manner as a positive number. The
results of single-length normalization are shown in Figure 7b. The
device interconnection for single-length normalization is outlined
in Figure 8. During single-length normalization, the number of
shifts performed to achieve normalization can be counted and
stored in one of the working registers. This can be achieved by
forcing a HIGH at the Cn input of the least significant slice, since
during this special function the ALU performs the function [B] +
Cn and the result is stored in B. Figure 9 illustrates the single-
length normalize. However, the microcode is shown in Figure 10.
Microcode for both single and double normalization can be re-
duced by one step by testing for zero during passing of number
into Q.

Normalizing a double-length word can be done with the Double-
Length Normalize command which assumes that a user-selected

147

RAM Register contains the most significant portion of the word to
be normalized while the Q Register holds the least significant half

(Figure 11.) The device interconnection for double-length nor- -

malization is shown in Figure 12. The Cn+4, OVR, N, and Z
outputs of the most significant slice perform the same functions in
double-length normalization as they did in single-length normali-
zation except that Cn+4, OVR, and N are derived from the output
of the ALU of the most significant slice in the case of double-
length normalization, instead of the Q Register of the most sig-
nificant slice as in single-length normalization. A high-level Z line
in double-length normalization reveals that the outputs of the ALU
and Q Register are both zero, hence indicating that the double-
length word is zero.

When double-length normalization is being performed, shift
counting is done either with an extra microcycle or with an exter-
nal counter. Figure 13 illustrates the double-length normalize
flowchart and Figure 14 shows the microcode.

RADIX
15914 13 12|11 10 9 8|7 6 5 4|3 2 1 0
QREGISTER[1 ‘Il‘ll'l oo 0/0 o 1l1l0 1!1] 1|
mss : LSS
DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1

a) Unnormalized Negative Single Length Number.

15 14 13 12|11 10 9 8

7 6 5 4|3
1

T

OREGISTERI‘IIOIOIO

©

b) Normalized Negative Single Length Number.

MPR-041
Figure 7.
F=(B] +Cp, F~Y,B 20-a

azmss =] iog Qio, Qiog Qiog Qi0g Qio, Qlo; Q0 f=—nr o
Q3v¥Q, MSS ~——— Cp4g
0,0, Mss =——] OVR Am2903 Am2903 Am2903 Am2903 Cp f—— 1

QzMss =—— N

—— sio SI10, sio. SI0 sto. 10 slo. s10,
3 2 (] 3 z (] 3 2 0 3 z 0 +5

pd
o
.
ol
3

MPR-042

Figure 8. Single Length Normalize.

Unsigned Multiply

This Special Function allows for easy implementation of unsigned
multiplication. Figure 15 is the unsigned multiply flow chart. The
algorithm requires that imitially the RAM word addressed by Ad-
dress port B be zero, that the multiplier be in the Q Register, and
that the multiplicand be in the register addressed by Address port
A. The initial conditions for the execution of the algorithm are
that: 1) register Ry be reset to zero; 2) the multiplicand be in Rq
and 3) the multiplier be in Rys. The first operation transfers the

multiplier, Rys, to the Q Register. The Unsigned Multiply instruc-
tion is then executed 16 times. During the Unsigned Multiply
instruction, R1 is addressed by RAM address port B and the
multiplicand is addressed by RAM address port A.

When the unsigned Multiply command is given, the Z pin of
device 1 becomes an output while the Z pins of the remaining
devices are specified as inputs as shown in Figure 18. The Z
output of device 1 is the same state as the least significant bit of
the multiplier in the Q Register. The Z output of device 1 informs

148

START
NUMBER IN Q
TO BE NORMALIZED

SINGLE LENGTH
NORMALIZE
ALU DISABLE
SHOLD

R2=-0

Q30Q2 = 1

SINGLE LENGTH
NORMALIZE
R2=—R2'+ 1

{

Q2eQl=1

SINGLE LENGTH
NORMALIZE
R2=-R2 +1

Q20Q1 =1

Q=-Q2
Ms—=- Q3

R2=—R2 -1

END
NORMALIZED NUMBER IN Q
EXPONENT NUMBER IN R2

Figure 9. Single Length Normalize.

RADIX

31

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

013C SLN R2,R2,0FF & CONT & SHOLD
013D MAZ & T & CJP & GOTO ABORT L I I [| [I [| U | I I |
013E MAC & T & LOW RO & CJP & GOTO END
013F SLN R2,R2 & MAO & T & CJP ONE & GOTO END & SUL
0140 AGAIN SLN R2,R2 & MIO & T & CJP ONE & GOTO AGAIN & SUL
0141 SDQP & SMS & CONT HEGISTEg 5 1413121110 9 8 7 6 5 4 3 2 1 0
0142 SRS R2,R2,R0 & CONT l I l [l [IT[—[I | I l I |
MPR-043
Figure 10. Figure 11. Double Length Word.
F=[B] +Cp, Log. 2F-Y,B 20~Q
Qg Mss
Q03 Q10 Q03 a0y alog Qi0, Qlog Q10 fe— 0
(F3¥F2) MSS <a—d Cpig
(F2¥Fq) MSS <-—— OVR Am2903 Am2903 Am2903 Am2903 Chf=——0
F3 MSS ~=—— N
~— 5103 Slog 103 s10g siog s10y slog §10g [=——
Fo+ Fpes Fpe Gge By ee Gy
MPR-044

Figure 12. Double Length Normalize.

START

LS NUMBER IN Q
MS NUMBER IS R15

DOUBLE LENGTH
NORMALIZE
ALU DISABLE
SHOLD

R2—=—0

DOUBLE LENGTH
NORMALIZE
Qo =0

Q20Q1 =1

DOUBLE LENGTH
NORMALIZE
Qo =0

R2=—R2 + 1

Q20Q1 =1

NORMALIZED

LS NUMBER IN Q
MS NUMBER IN R15
EXPONENT NUMBER

IN R2.

Figure 13. Double Length Normalize.

0148
0149
014A
0148
014C
014D
014E
014F

LOOP4

JUMP1

DLN R15,R15,0FF & CONT & SHOLD

MAZ & T & CJP & GOTO ABORT

LOW R2 & MAC & T & CJP & GOTO END2

DLN R15,R15 & SDUL & MAO & T & CJP & GOTO JUMP1
DLN R15,R15 & SDUL & MIO & T & CJP & GOTO JUMP1
PAR R2,R2 & JP ONE & GOTO LOOP4

PAR R2,R2 & CONT ONE

SDRQ R15, R15 & SDMS & END

START
MULTIPLICAND IN RO
MULTIPLIER IN R15

)

16 =—CTR
R15—=Q

UNSIGNED
MULTIPLY
DECREMENT CTR

END
PRODUCT (MS) IN R1
PRODUCT (LS) IN Q

Figure 15. Unsigned 16 X 16 Multiply.

the ALUs of all the slices, via their Z pins, to add the partial product
(referenced by the B address port) to the multiplicand (referenced
by the A address port) if Z = 1. If Z = 0, the output of the ALU is
simply the partial product (referenced by the B address port).
Since Cn is held LOW, it is not a factor in the computation. Each
positive-going edge of the clock will internally shift the ALU out-
puts toward the least significant bit and simultaneously store the
shifted results in the register selected by the B address port, thus
becoming the new partial sum. During the down shifting process,
the Cn+4 generated in device 4 is internally shifted into the Y3
position of device 4. At this time, one bit of the multiplier will
down shift out of the QIO ports of each device into the QIO;
port of the next less significant slice. The partial product is
shifted down between chips in a like manner, between the SIO,
and SIO; ports, with SIO, of device 1 being connected to QIO;
of device 4 for purposes of constructing a 32-bit long register to
hold the 32-bit product. Shifting of the partial product between
the B address and Q registers are accomplished via the
Am2904. At the finish of the 16 x 16 multiply, the most signifi-
cant 16 bits of the product will be found in the register refer-
enced by the B address lines while the least significant 16 bits
are stored in the Q Register. Using a typical Computer Control
Unit (CCU), as shown in Appendix C, the unsigned multiply
operation requires only two lines of microcode, as shown In
Figure 16, and 1s executed in 17 microcycles.

LQPT R15 & F & GRD & PUSH & COUNT 00E
UMUL R1,R1,R0 & F & CNT & SDDL & RFCT

010C
010D

Figure 14.

Figure 16.

149

150

Two’s Complement Multiplication

The algorithm for two’s complement multiplication is illustrated by
Figure 17. The initial conditions for two’s complement multiplica-
tion are the same as for the unsigned multiply operation. The
Two’s Complement Multiply Command is applied for 15 clock
cycles in the case of a 16 x 16 multiply. During the down shifting
process the term N % OVR generated in device 4 is internally
shifted into the Y3 position of device 4. The data flow shown in
Figure 18ais still valid. After 15 cycles, the sign bit of the muiltiplier
is present at the Z output of device 1. At this time, the user must
place the Two’s Complement Multiply Last cycle command on the
instruction lines. The interconnection for this instruction is shown
in Figure 18b. On the next positive edge of the clock, the Am2903
will adjust the partial product, if the sign of the multiplier is nega-
tive, by subtracting out the two’s complement representation of
the multiplicand. If the sign bit is positive, the partial product is not
adjusted. At this point, two's complement multiplication is com-
pleted. Using a typical CCU, as shown in Appendix C, the two's
complement multiply operation requires only three lines of micro-
code, as shown in Figure 19, and is executed in 17 microcycles.

TWO’S COMPLEMENT DIVISION

The division process is accomplished using a four quadrant non-
restoring algorithm which yields an algebraically correct answer
such that the divisor times the quotient plus the remainder equals
the dividend. The algorithm works for both single precision and

START
MULTIPLICAND IN RO
MULTIPLIER IN R15

15—CTR
Ris—™Q

2'S COMPLEMENT
MULTIPLY
DECREMENT CTR

YES

2'S COMPLEMENT
MULTIPLY

END
PRODUCT (MS) IN R1
PRODUCT (LS) INQ A\

Figure 17. 2’s Complement 16 X 16 Multiply.

F=(B] +ChifZ=0

F=(B] +[A] +CpifZ=1 Log F/2-Y,B 02-Q
DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1
Qo Lss
Qi0, Qio, Qiog Qi0, aiog aio, Qiog a0y —
~=—1Cn+a
—<——OVR Am2903 Am2903 Am2903 Am2903 ¢, f=—0
—-—nN F
o LSS
X (Note) s105 $10g SI03 s10g siog s10, sI03 si0g
z z z z 5

Qo 155

1s internally shifted into position Y3 MSS.

a) Multiply.

Note: For unsigned multiply, Cp, + 4 MSS 1s internally shifted into position Y3 MSS; 2's complement multiply Nv¥OVR

MPR-049
F=[B] +CnifZ=0
F=[B] —[A] —1+ChifZ=1 Log F/2-Y,B /2-a
L Qo Lss
Qiog Qloo Qiog moo Qiog QIOo Qlog QI0g p——e
~-—Cr s
~—— OVR Am2903 Am2903 Am2903 Am2903 Cn
-] e
oLSS
X (Note)——‘ SI0. SIO Sio. SI0, SI0: SI0, SI0. SIO,
3 z 0 3 z 0 3 z 0 3 z 0 +5
Qo 1ss %
Note N ¥ OVR is internally shifted into position Y3 MSS.
b) Complement Multiply, Last Cycle. MPR.0S1

Figure 18.

0113 LQPT R15 & F & GRD & PUSH & COUNT 00D
0114 TCM R1,R1,R0 & F & CNT & SDDL & RFCT
0115 TCMC R1,R1,R0 & SDDL & CONT CZ

Figure 19.

multi-precision divide operations. The only condition that needs
to be met is that the absolute magnitude of the divisor be greater
than the absolute magnitude of the dividend. For multi-precision
divide operations the least significant bit of the dividend is trun-
cated. This is necessary if the answer is to be algebraically
correct. Bias correction is automatically provided by forcing the
least significant bit of the quotient to a one, yet an algebraically
correct answer is still maintained. Once the algorithm is com-
pleted, the answer may be modified to meet the user’s format
requirements, such as rounding off or converting the remainder

so that its sign is the same as the dividend. These format modifi-
cations are accomplished using the standard Am2903 instruc-
tions.

The true value of the remainder is equal to the value stored in the
working register times 2"~ when n is the number of quotient
digits.

The following paragraphs describe a double precision divide
operator.

Referring to the flow chart outlined in Figure 20, we begin the
algorithm with the assumption that the divisor is contained in
Rg, while the most significant and least significant halves of
the dividend reside in Ry and R, respectively. The first step is
to duplicate the divisor by copying the contents of Ry into Rj.
Next the most significant half of the dividend is copied by
transferring the contents of Ry into Ry while simultaneously
checking to ascertain if the divisor (Ro) is zero. If the divisor is
zero then division is aborted. If the divisor is not zero, the
copy of the most significant half of the dividend in R is con-
verted from its two’s complement to its sign magnitude rep-
resentation. The divisor in Rj; is converted in like manner in

START
DIVISOR IN RO
DIVIDEND (MS) IN R1
DIVIDEND (LS) IN R4

START

SIGN/MAGNITUDE
TWO’S COMPLEMENT

R2

SIGN/MAGNITUDE
TWO'S COMPLEMENT
R3

vEs

NO

2R3—=R3

SCALE
DIVIDEND

A
YES
NO
2R2—=R2
R3
YES

9

R2 -

SCALE

9

o]

N
18T
DIVIDE OP

2’S COMPLEMENT
DIVIDE

R1

NO
YES

2'S COMPLEMENT
DIVIDE
R1

END
QUOTIENT IN Q
REMAINDER IN R1

Y

Figure 20. Two’s Complement Division.

151

152

.

the next step, while testing to see if the results of the dividend
conversion yielded an indication on the overflow pin of the
Am2903. If the output of the overflow pin is ‘one’ then the
dividend is —2" and hence is the largest possible number,
meaning that it cannot be less than the divisor. What must be
done in this case is to scale the dividend by down shifting the
upper and lower halves stored in Ry and R, respectively. After
scaling, the routine requires that the algorithm be reinitiated at
the beginning.

Conversely, if the output of the overflow pin is not a one, the sign
magnitude representation of the divisor (R3) is shifted up in the
Am2903, removing the sign while at the same time testing the
results of two’s complement to sign magnitude conversion of the
divisor in the Am2910. If the results of the test indicate that the
divisor is —2" i.e., overflow equals one, then the lower half of the
dividend is placed in the Q register and division may proceed.
This is possible because the divisor is now guaranteed to be
greater than the dividend. If overflow is not a one then we must
proceed by shifting out the sign of the sign magnitude represen-
tation of the dividend stored in R,. At this point we are able to
check if the divisor is greater than the dividend by subtracting the
absolute value of the divisor (R3) from the absolute value of the
upper half of the dividend (Ry) and storing the results in Rz. Next,
the least significant half of the dividend is transferred from R, to
the Q register while simultaneously testing the carry from the
result of the divisor/dividend subtraction. If the carry (Cn+4) is

one, indicating the divisor is not greater than the dividend then a
scaling operation must occur. This involves either shifting up the
divisor or shifting down the dividend. If the carry is not one then
the divisor is greater than the dividend and division may now
begin.

The first divide operation is used to ascertain the sign bit of the
quotient. The two’s complement divide instruction is then exe-
cuted repetitively, fourteen times in the case of a sixteen bit
divisor and a thirty-two bit dividend. The final step is the two’s
complement correction command which adjusts the quotient by
allowing the least significant bit of the quotient to be set to one. At
the end of the division algorithm the sixteen bit quotient is found in
the Q register while the remainder now replaces the most sig-
nificant half of the dividend in R;. It should be noted that the
remainder must be shifted down fifteen places to represent its
true value. The interconnections for these instructions are shown
in Figures 21, 22, 23. Using a typical CCU as shown in Appendix
C, the double precision divide operation microcode, is shown in
Figure 24.

For those applications that require truncation instead of bias
correction, the same algorithm as above should be implemented
except one additional Two’s Complement Divide instruction
should be used in lieu of the Two’s Complement Divide Correc-
tion and Remainder instruction. However, this technique resuits
in an invalid remainder.

F=[B] +Cn, Log 2F - Y,B 20-~Q
Q3 Mss
Qioz Qiog Qlog Qlog Qloz Q109 Qo3 Qlog
F3¥ Fy MSS =———] C,44
Fp¥ F1MSS =——] OVR Am2903 Am2903 Am2903 Am2903 Cpf——0
F3 MSS ~=—— N
SI03 SI0g siog SI0g S103 SI0g S103 SI0g
(R3VF3) MSS Z +5
FreeFpeTgeTye sy %
MPR-053
Figure 21. Double Length Normalize/First Divide Operation.
F=(B] +[A]l +ChifZ=0
F=[B] — [A] —1+CnhifZ=1 Log 2F =Y, B 20-Q
Q3 Mss
Qiog Qi0g Qiog Qloy aiog Qi0g Qlog Qiog
~——cnea
~———— OVR Am2903 Am2903 Am2903 Am2903 Cn
-—]n
s103 S10g SI103 sI0g SI03 S10g slog SI0g
(Fa¥R3) MSS Z +5
SIGN COMPARE FF %
MPR-054

Figure 22. 2’s Complement Divide.

F=[B] +[Al +CnifZ=0

F=[B] - [Al ~1+CnifZ=1 F—V,B 20-a
Q3 MSS w——] 010, Qio, aiog Qi0g
~——Cn+a
~——] ovR Am2903 Am2903
N
—— si05 s10y SI105 $10g
z z

SIGN COMPARE FF

Qiog

105

Am2903

Qiog

Q105 QI0g f——1

Am2903 C,

s10g

S105 S10g
z

MPR-055

Figure 23. 2’s Complement Divide Correction.

0119 DIV LOW R10 & JSR & GOTO INP

011A PAR R7,R15 & JSR & GOTO INP

011B PAR R1,R15, & JSR & GOTO INP

011C PAR R4,R15 & CONT

011D LOOP1 PAR R3,R7 & CONT

O0M1E PAR R2,R1 & T & MIZ & CJP & GOTO ABORT
011F SMTC R2,R2 & CONT Z

0120 SMTC R3,R3 & T & MIO & CJP CZ & GOTO SCALE1

0121 ALUOFF & T & MIO & CJP & GOTO SKIP§

0122 SURL R3,R3 & SUL & CONT

0123 SURL R2,R2 & SUL & CONT

0124 ALUOFF & JP & GOTO LOOP2

0125 SCALE1 LQPT R4 & JSR & GOTO SDIVD

0126 ALUOFF & JP LOOP1

0127 LOOP2 SSR R3,R2,YBUS & CONT ONE

0128 SKIP6 LQPT R4 & F & MIC & CJP & GOTO SKIP3
0129 ALUOFF & JSR & GOTO SDIVD

012A SURL R2,R2 & SDL & CONT

0128 ALUOFF & JP & GOTO LOOP2

012C SKIP3 ALUOFF & F & GRD & LDCT & COUNT 00C
0120 DLN R1,R1,R7 & T & GRD & SDUL & PUSH
012 TDIV R1,R1,R7 & F & CNT-& SDUL & RFCT CZ
012F TDC R1,R1,R7 & SUH & CONT CZ

0130 QMOV R15 & JSR & GOTO OUTP

0131 PAR R15,R1 & JSR & GOTO OUTP

0132 ALUOFF & JP & GOTO DIV

0133 SDIVD PAR R1,R1 & CONT

0134 ALUOFF & T & MIS & CJP & GOTO NEG
0135 PAR R1,R1,ADRQ & SDDL & CONT
0136 ALUOFF & JP & GOTO RET

0137 NEG. PAR R1,R1,ADRQ & SDDL & CONT
0138 RET QMOV R4 & CONT

0139 PAR R10,R10 & RTN ONE

Figure 24.

NON-RESTORING BINARY ROOTS

The algorithm for Non-Restoring Binary Roots is illustrated in
Figure 25. The initial conditions required are: 1) the non-negative
number to be rooted in the radicand register, Rq; 2) Ry has the
positive append bits 101g; 3) R3 has the negative append bits
011g; 4) R4 is the mask register with BFFF; 5) Rs is the partial
register with 4000y; and 6) the counter register, Rg, with the
value 08y,.

An example of the Non-Restoring Binary Root algorithm is shown
in Figure 26. Starting at the binary point, the number to be rooted
is partitioned into pairs. The partial value 1s subtracted from the
first pair. An intermediate remainder and sign are then produced.

RO-=-R1 - R5
SHOLD

START

RO-=—RO + R5
SHOLD

END
ROOTED NUMBER IN R5

R5—=—R5 V R2

NUMBER TO BE ROOTED IN R1

Figure 25. Non-Restoring Binary Root.

153

154

ROOT———— = 1 0 0 0 0 1 1 1 4731
874 & 7,V VA SRy W, SR, Sy v H
T, 2:00011100110001.«—1822510
1st ' 0.000 I—BINARY POINT
PARTIAL VALUE - 101
1.01101
+101 1
11100011 =— AN INTERMEDIATE
+1001 1 REMAINDER
1.111011000
+10001 1
1.11111101111
+1000011
0.0000011001000
SIGN | - 10000101
BIT 0.010000Q 101
- 100000101
0.000000000
T—REMAINDER

Figure 26. Non-Restoring Binary Root Example.

If the remainder is positive, a 1 is entered in the corresponding
root bit. Then a 01 is appended to the partial, shifted and sub-
tracted from the present remainder to produce the next remain-
der. When the remainder becomes negative, the present remain-
der is not restored. A 0 is entered in the next corresponding root
bit. Then an 11 is appended to the partial, shifted and added to the
present remainder. The entire process is repeated until the
partial root has developed into 8 bits or the remainder is zero.

Referring to Figure 26, the same method of finding the root
applies. A starting partial value, Rs, is subtracted from the
radicand, Ry, which produces the intermediate remainder Ry.
During this time, the sign of the remainder is stored within the
Am2904. Then Ry is masked by R, to obtain the next partial value
and Ry is shifted to obtain a new mask for the next cycle. Status is
obtained from the Am2904 and tested. If the remainder is posi-
tive, a root bit of 1 is developed and bits 01 appended by R,.
When negative, a root bit of 0 is developed and bits 11 appended
by Rs. At this point Rg is decremented and tested for zero. If Rg #
0, then addition or subtraction is performed on the remainder
depending on the sign bit stored in the Am2904. A new remainder
is produced and cycled through the procedure again. Figure 27
illustrates the microcode.

BCD HARDWARE ADDITIONS

In applications where fast BCD operations are needed the de-
signer has the option of using a slight amount of additional
hardware to dramatically increase the performance of these op-
erations. These firmware/hardware trade-off's are very applica-
tion sensitive. The hardware-firmware examples given below are
specifically for an intensive BCD system with a large fraction of
conventional logic-arithmetic operations. The designer is willing
to reduce cycle time slightly to increase BCD thru-put. Small
hardware additions are acceptable as long as flexibility is re-
tained.

0152 SQRT. LOW R10 & CONT

0153 LOW RO & CONT

0154 PAR R1,R15 & CONT

0155 PAR R2,R0,,DARB & CONST 0005 & CONT
0156 PAR R3,R0,,DARB & CONST 0003 & CONT
0157 PAR R4,R0,,DARB & CONST H#BFFF & CONT
0158 PAR R4,R0,,DARB & CONST 4000 & CONT
0159 PAR R6,R0,,DARB & CONST 0008 & CONT
015A SRS RO,R1,R5 & CONT & SHOLD

0158 CYCLE AND R5,R5,R4 & CONT

015C SDRL R4,R4 & MAS & CJP & GOTO END3
015D SDRL RO,R0, & T & MAS & CJP & GOTO P0OS
015E OR R5,R3 & JP & GOTO CNT

015F POS OR R5,R2 & CONT

0160 CNT SRS R6,R6,RI0 & CONT

0161 SDRL R2,R2, & T & MIZ & CJP & GOTO END3
0162 SDRL R3,R3 & T & MAS & CJP & GOTO SUB
0163 ADD RO,RO0,R5 & JP & GOTO CYCLE & SHOLD
0164 SUB SRS RO,RO0,R5 & JP & GOTO CYCLE & SHOLD
0165 END3 JP & GOTO SQRT

Figure 27.

The hardware additions finally decided on were chosen to In-
crease the performance of BCD to binary conversion, binary to
BCD conversion and BCD addition. The performance increases
were approximately an order of magnitude in the first two cases,
and a factor of 4 or 5 in the last case. A diagram of the additions
(3% ICs) is given in Figure 28.

The 74S08 AND gates normally pass the carry from the
Am2902A to the Am2903s. When microbit CZER is low the
Carries-in are forced to zero. This is used to “disconnect” the
carry so that atest may be done on each slice simultaneously. For
example if a test for 5 or greater is desired a HEX B is added and

BCD HARDWARE ADDITIONS

CLSR O O cL

Q3 Q2 Q1 Qo

TO Am2909 OR INPUTS

Am2904 Am2903 Am2903 Am2903 Am2903
3% OEV ri cout cIN CIN CIN CIN f=—
Y GP GP GP
-f -0 CZER
D3 l
ENSR O- S0 Q Q
L st C GP C GP G, P
Am25LS195A
CLOCK O—— D> cx Am2902A O CIN

Figure 28.

the carry out of each slice will indicate the result of the test. This
allows simultaneous tests on each individual slice and greatly
increases thru-put. This addition increases the performance of
BCD to binary conversion and binary to BCD conversion by at
least an order of magnitude. The drawback to this addition is that
the AND-gates introduce an extra gate delay in a critical path. The
machine cycle time may be increased by about 8ns. The increase
in BCD performance will more than offset this delay for BCD
intensive systems.

Another hardware addition is the Am25LS241 three-state buffer.
This buffer allows the Am2904 to be used to store the carry-out
status bits via the bi-directional Y bus.

The 25LS195A is wired as a 4-bit register with clear and enable.
This register is used to store the carry-out bits from a test cycle.
The outputs of the 25L.S195A are ORed with the output of the
Am2904 Y-bus and connected to the Am2909 OR inputs in the
CCU. This allows a multi-way branch on the OR of two test
cycles, greatly increasing the performance of BCD addition.

BCD TO BINARY CONVERSION

The usual method of BCD to binary conversion is to divide the
BCD number by 2. The 1-bit remainder will indicate if a 1
existed in the BCD number. The previous division result is di-
vided by 2 again and the remainder will indicate if a 2 existed
in the BCD number. In general the remainder from a division
by 2" will indicate if a 2"~ existed in the BCD number.

These remainders can be used to construct the binary rep-
resentation, b,2" + bp_12""1 + bp_2""2 + ...+ b2 +
be2°" The b, bit is thus the remainder from division step n +
1. The binary representation may thus be created by shifting
the remainders down until the m-bit BCD number has been
divided by 2 m times.

To divide a BCD number by 2 a down shift is executed. The 4, 2
and 1-bit positions will contain the correct result, but the 8-bit
position is incorrect. Its value has changed from 10 to 8 instead of
from 10 to 5. This means the resulting BCD number will have a
value 3 greater than it should for the division by 2 to be correct. A3
must be subtracted from any digit in which a 1 entered its 8-bit.

A sample conversion is given in Table 10. The BCD number is
gradually shifted down and corrected when necessary. The bi-
nary number is finally correct after 16 cycles.

A flow diagram for the algorithm is given in Figure 29. The BCD
input, A, is shifted down into the binary output B, to start the loop.
The constant 0888 is added to A with the carries-in forced to zero.
The resulting carnies-out will indicate if A contained a 1 in any of
the 8-bit positions. These carries are saved in status register
SR1. A multi-way branch is then executed to enter the adjust
table. The digits are adjusted depending on the previous test. At
the same time a shift can be executed to prepare for the next test
instruction. A test for end of loop is also done in this cycle to
provide an exit if 16 iterations of the loop are complete. Finally a
shift up of B is needed to cancel the extra right shift when the loop
is exited. The microcode for this algorithm is given in Figure 30.

156

TABLE 10.
Digit Digit Digit Digit BCD —Binary
3 2 1 [} Resuit Operation
0010 1001 0000 0100
0001 0100 1000 0010 0 SHIFT
0001 0100 0101 0010 ADJUST DIGIT 1
0000 1010 0010 1001 00 SHIFT
0000 o1 0010 0110 ADJUST DIGITS 2,0
0000 0011 1001 0011 000 SHIFT
0000 0011 0110 0011 ADJUST DIGIT 1
0000 0001 1011 0001 1000 SHIFT
0000 0001 1000 0001 ADJUST DIGIT 1
0000 0000 1100 0000 11000 SHIFT
0000 0000 1001 0000 ADJUST DIGIT 1
0000 0000 0100 1000 011000 SHIFT
0000 0000 0100 0101 ADJUST DIGIT O
0000 0000 0010 0010 1011000 SHIFT
0000 0000 0010 0010 ADJUST NONE
0000 0000 0001 0001 01011000 SHIFT
0000 0000 0001 0001 ADJUST NONE
0000 0000 0000 1000 101011000 SHIFT
0000 0000 0000 0101 ADJUST DIGITO
0000 0000 0000 0010 1101011000 SHIFT
0000 0000 0000 0010 ADJUST NONE
0000 0000 0000 0001 01101011000 SHIFT
0001 ADJUST NONE
0000 101101011000 SHIFT
0000 ADJUST NONE
000 0101101011000 SHIFT
000 ADJUST NONE
00 00101101011000 SHIFT
00 ADJUST NONE
0 000101101011000 SHIFT
0 ADJUST NONE
0000101101011000 SHIFT
ADJUST NONE

A: = BCD NUMBER
B. = BINARY RESULT
D: = DUMMY REGISTER

SHIFT A
DOWN INTO B

—

D~—A +0,8,8,8,
CARRIES-IN =—0;
SR1—=- CARRIES-OUT;

!

MULTI-WAY BRANCH
ON SR1

T

SHIFT A DOWN INTO
8; LOOP 15 TIMES;

!

SHIFTUP B

)

BINARY TO BCD CONVERSION

A method very similar to the one used for BCD to binary conver-
sion may be used for binary to BCD conversion. The BCD number
is created by shifting the binary number up, into a partial BCD
result. The BCD number is adjusted to provide a multiplication by
2. The shift adjust process continues until the least significant
binary bit is shifted into the BCD result.

The adjustment is needed when a 1 is shifted from the 8-bit
position to the 1-bit position of the next digit. the value has
increased from 8 to 10, instead of from 8 to 16. To correct this a 6
must be added to any digit that has a 1 shifted out of its 8-bit
position. Alternately a 3 could be added before the shift to any
digit that has a 1 in its 8-bit position.

Another correction is needed whenever an invalid BCD digit is
encountered. If a number greater than 9 is detected in any digit a
10 must be subtracted from that digit and a 1 added to the next
highest digit. The same correction can be accomplished if a 6 is
added to the invalid digit after the shift. To correct before the shift
a 3 is added to any digit which contains a 5, 6 or 7. These
adjustments are summarized in Table 11. Both adjustments may
be accomplished by adding a 3 to any digit which is greater than 4.

Table 12 shows an example conversion. The binary number is
gradually shifted up and the BCD partial result adjusted. After 14
iterations the conversion is complete. A flow diagram for the

Figure 29. BCD to Binary Conversion (16 Bits to 14 Bits). algorithm is given in Figure 31.

A. = RO
B: =Q
1 ENR & COUNT LOOP & CONT
2 PAS RO, RO LDRQ & SDDL & LDCT & CONST 15
LOOP: 3 ADD R1, RO, RO, DARB & ALUOFF & CONST 0888 & CZERO & ENSUR1 & CLSR2 & RPCT
4 ALUOFF & MULTI 8WAY
ALIGN 8
5 ALUOFF & CJRP & CNTR & GOTO EXIT
6 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
7 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
8 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
9 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
10 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
11 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
12 SUB RO, RO, RO, LDRQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
EXIT: 13 PAS RO, RO, RO, LURQ & SDUL & RTN
Figure 30.
TABLE 11.
Adjustment
Present # Before Shift Reason @
0000 NONE -
0001 NONE -
0010 NONE -
0011 NONE _ SHIFT UP B
0100 NONE - -
0101 +3 ‘
0110 +3 lilegal BCD
0111 +3 SHIFT UPB
1000 +3 l
1001 +3
1010 +3 SHIFT UP B
1011 +3 Shift Thru INTO A
1100 +3 Correction ‘
1101 +3
1110 +3 O CARRIES N0
1111 +3 SR1-=— CARRIES-OUT
i
Initially the 14-bit binary number is left justified by two shift up MULTI-WAY BRANCH
operations. To start the loop the binary input, B, is shifted up, into ON SR1
the partial BCD result, A. The constant BBBB is added to A, with T,e
the carries-in forced to zero. The resulting carries-out are stored
In status register SR1. A multi-way branch is used to enter the SHIFT.UP B INTO A;
adjusttable. The digits are adjusted depending on the result of the LOOP 15 TIMES;
previous test. In the same instruction a shift is executed to pre- l
pare for the next test cycle. Additionally an end of loop testis used
to provide an exit if 16 iterations of the loop are complete. Before SHIFT DOWN A
the exit a fix-up cycle is used to cancel the extra shift executed in
the loop. The microcode for this algorithm is given in Figure 32.
BCD ADD
One method of performing a 4-digit BCD add is to do a 16-bit
binary add, with the carries-in forced to zero, and adjust the
resulting sum. The adjustments are necessary to change invalid

BCD digits to valid BCD digits. When an invalid digit is modified
a carry to the next highest digit is generated. This could cause a

Figure 31. Binary to BCD Conversion (14 Bits to 16 Bits).

157

158

. =Binary Input
RO. = BCD Result
1 SURL RO, RO & SUL & CONT
2 SURL RO, RO, & SUL & ENR & COUNT LOOP & CONT
3 PAS RO, RO, ,LURQ & SDUL & LDCT & COUNT 15
Loop 4 ADD R1,R0, RO, DARB & ALUOFF & CONST BBBB & CZERO & ENSR1 & CLSR2 & RPCT
5 ALUOFF & MULT! 16WAY
ALIGN 16
6 ALUOFF & CJRP & GOTO EXIT
7 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
8 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
9 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
10 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
11 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
12 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
13 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
14 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
15 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
16 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
17 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
18 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
19 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
20 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
21 ADD R1, RO, RO, LURQ,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT
EXIT 22 SDRL RO, RO, & SDL & RTN
Figure 32. Binary to BCD Conversion Microcode (14 Bits to 16 Bits).
TABLE 12.
Result
Digit Digit Digit Digit Binary — BCD
3 2 1 0 Conversion Operation
00101101011000
0 0101101011000 SHIFT
0 ADJUST NONE
00 101101011000 SHIFT
00 ADJUST NONE
001 01101011000 SHIFT
001 ADJUST NONE
0010 1101011000 SHIFT
0010 ADJUST NONE
0 0101 101011000 SHIFT
0 1000 ADJUST DIGIT O
01 0001 01011000 SHIFT
01 0001 ADJUST NONE
010 0010 1011000 SHIFT
010 0010 ADJUST NONE
0100 0101 011000 SHIFT
0100 1000 ADJUST DIGIT 0
0 1001 0000 11000 SHIFT
0 1100 0000 ADJUST DIGIT 1
01 1000 0001 1000 SHIFT
ot - 1011 0001 ADJUST DIGIT 1
011 0110 0011 000 SHIFT
o011 1001 0011 ADJUST DIGIT 1
0111 0010 0110 00 SHIFT
1010 0010 1001 ADJUST DIGIT 2
1 0100 0101 0010 0 SHIFT
1 0100 1000 0010 ADJUST DIGIT 1
10 1001 0000 0100 SHIFT
10 1001 0000 0100 ADJUST NONE
2 9 0 4

previously valid digit to become invalid. The word must be
checked and modified until all digits are valid (up to four modifi-
cation cycles could be necessary).

Initially the two BCD numbers are added with the carries-in to
each digit forced to zero. The carries out are saved. Next the hex
number 6666 is added to the sum, with the carries-in forced to
zero, and the resulting carries out are saved. This tests each
digit for validity, a carry-out indicating an invalid BCD digit

(greater than 9). If a carry was generated in either cycle a 6 is
added to the invald digit, with carries-in forced to zero, to create
the valid BCD digit. Additionally a 1 must be added to the next
highest digit to provide the BCD carry-out. Each time a digit is
adjusted the carry-out may invalidate the next highest digit. Thus
adjustment cycles must be followed by validity tests until all
digits are valid. A flow diagram for this algorithm i1s given in
Figure 33. The microcode for this algorithm is given in Figure 34.

A—=—A + B + CIN;
CARRIES-IN=—0;
SR1-=—CARRIES-OUT;

T

D—=—A + 6,6,6,6;
CARRIES-IN~=—0;
SR2-=—CARRIES-OUT;

!

MULTI-WAY
BRANCH ON
SR1 OR SR2

,{/15

ADJUST DIGITS;
SR1=—0;
NO
ADJUST ADJUST

o

Rt
RO

A
B

1 ADD R1,R1,R0 & CZERO & ENSR1 & CONT Z

2 ADD R1,R1,R0,,DARB & ALUOFF & CZERO & ENSR2 & CONST 6666
3 ALUOFF & MULTI 16WAY & RMAC

ALIGN 16

4 ALUOFF & JMP & GOTO EXIT & ENSR1

5 ADD R1,R1,R0,,DARB & CONST 0016 & GOTO LOOP & CLRSR1

6 ADD R1,R1,R0,,DARB & CONST 0160 & GOTO LOOP & CLRSR1

7 ADD R1,R1,R0,,DARB & CONST 0176 & GOTO LOOP & CLRSR1

8 ADD R1,R1,R0,,DARB & CONST 1600 & GOTO LOOP & CLRSR1

9 ADD R1,R1,R0,,DARB & CONST 1616 & GOTO LOOP & CLRSR1

10 ADD R1,R1,R0,,DARB & CONST 1760 & GOTO LOOP & CLRSR1

11 ADD R1,R1,R0,,DARB & CONST 1776 & GOTO LOOP & CLRSR1

12 ALUOFF & JMP & GOTO LOOP & SMAC & CLRSR1

13 ADD R1,R1,R0,,DARB & CONST 0016 & GOTO LOOP & SMAC & CLRSR1
14 ADD R1,R1,R0,,DARB & CONST 0160 & GOTO LOOP & SMAC & CLRSR1
15 ADD R1,R1,R0,,DARB & CONST 0176 & GOTO LOOP & SMAC & CLRSR1
16 ADD R1,R1,R0,,DARB & CONST 1600 & GOTO LOOP & SMAC & CLRSR1
17 ADD R1,R1,R0,,DARB & CONST 1616 & GOTO LOOP & SMAC & CLRSR1
18 ADD R1,R1,R0,,DARB & CONST 1760 & GOTO LOOP & SMAC & CLRSR1
19 ADD R1,R1,R0,,DARB & CONST 1776 & GOTO LOOP & SMAC & CLRSR1

EXIT

Figure 33. BCD Add.

Figure 34. BCD Add Microcode.

SUMMARY

In this chapter, a detailed description of the Am2904 was pre-
sented, along with an example timing analysis. Several micro-
code algorithms were-discussed to show how the Am2904 oper-
ates in 22903 based CPU. As can be seen, the Am2904 provides
a powerful, single-chip LSI solution to the shift multiplexer, status
register, and carry multiplexer design portion of a CPU using
either the Am2901B or the Am2903.

The Appendix includes a full microcode listing. The interested
reader is encouraged to study these listings to gain a better
understanding of the hardware organization (Appendix C). An
additional microcode listing (Appendix B) gives the AMDASM™
definition file and source file for the microcode. The reader should
study these listings while referring to the AMDASM Manual. (The
Am2900 Family Data Book contains an AMDASM Reference
Manual, document AM-PUB003, 4-78 FRODO.)

159

160

APPENDIX A

A0 2 oo coo COO0O0O00O0OXOOXOXOOXOXXO0OOOOXOXOX00O0
z S X X X X X XX XXXOXOOXXNXXXNXXODXNXNXDX)XXDXNXXNXXXOXXXXX
o =8 x X X X X XX XXXOXmr=XXXXXXrmXXXXXXXXXXXmXXXXX
° WW =8 x X X X X XX X)X Xrm =X XXXXNXOXMXXNXXXXNXXNXNXXX=XXXXX
o £ 25 X X X X X XX XXX OXOOXXXXXXmXXXXXXXXX)XXXr=XXXXX
T 2 =8 x < X X X X X X X X = X e XX XX X X m X X X X X X X X XX X = X X X X X
° - 2|3 X X X X X XX XXXOXOOXXXXXXOXXXXXXXXXXXOXXXXX
m »|3 x © X oo XXXXXXXXXOOXXXXXXOXXrmrr=XXXXXOXOXX
w. HP L Y X - X - - XX XXXNHXXXrm = XXXXXXOXX ==X XXXX XXX
WO -] X - X - - XXXXXXXXXOOXXXXXXOXXrmr=OXXXXXrmXr=XX
m 2|3 X © X o o XXXXXXXXXOOXXXXXXOXXr-r-OXXXXXOXOXX
m >IE<0M o o (== [« NeoNeNeNoNeNeoNeNeNo NN iR e N Ne No Neo No oo NoNoN-N-N-No M- NN R
% o o (=N = CO0O0O0O0O0O+yrr OO0 O0DO0OO0O0OO0DO0O0OO0OO0OO0OrrrOO0OO0O0OCOOODOOO
W32 | 8§ X X X X X XXX XX XXX X KX X XX XXX X X X X X X X X X X X X X X X
1930|5 X X X X X XX XXXOXOOXXXXXXOXXXXXXXXXXXOXXXXX
AJ30| 3 x X xX X X XXX X XX X X XXX XX XX XX XXX XXX XXX XXX XXX X
4SNOJ | 3 x X x X X XXX X XK K X X X XK X X X XK X X X XK X X XX X X XX XX X XXX X
¥3zo| X X X X X XX XXX X X X X XX X X XX X X X X X X X X X X X X X X X X X X
HSN3| - x % X X X XXX XX X X X XX X XX X
US| N x X X X X XX X X X XX X X XK X X X X X X X X X X X X XX XXX XXX XX X
EEIRS X X X X X 3K X X X XX XXX X X XX X X XX X X X X X X X X X X X X X X
NS x X X X X XX XX XXX XXX XXX X XXX XXX XXXXXXXXXXXXX
° X X X X X XXX XXX XX XX XX X
© X X X X X XXX XX XXX X XXX XXX X X X XXX X X X X X X X X X X X X
N X X X X X XXX XX XX X
I x X X X X XXX XX XX XX X X X XXX X X XX X X X X X X X X X X X X X X
2 x X X X X XXX XX XXX X XX X X XK X X X X X X X X X X X X X X X X X X X
1 S X X X X X XXX XX XX X
W o X X X X % XXX XX XXX X XK X XX XX X X X X X X X X X X X X X X X X X X
2 S X X X X X XXX X X XX X X XK X X X X X X X X X X X X X X X X XX XX XXX
w 3 x X X X X XXX XX XXX XX X XX X X X X XX X XX X X X X X X X X X X X
h:3 X x X X X XXX XX XX X X XK X X X XX X X X X X X X X X X X X X X X X X X
3 x % X X X XXX XX XXX X X X X X XXX X XX XX X XK X X X X X X X X X X
8 x X X X X XXX XXX XXX X X XX X
5 X x X X X XXX XX XX X X XX X X X X X X X XX X X XX X X X X X X X X X
3 X x X X X XXX XXX XX X XX X X XX X X XX X X X X XX X X X X X X X X
3 x X X X X XXX XX XX X XK X X X XX X XX X XX X X X X X X X X X X X X X
a -
N
S 8 9% &
$ (o) a] M <0 OCNOOWULO~NMITLONDOICDOOWULO-NOMTOWONDO
P u oo - - FrrrrrrAANANNANANNNANNNANNNNNODOODODOOOOO®
& g . e e
M < oo coo o - - R NN N N N N N N N - K- N-N-R-N- N N-N-N- NN
3
o = =
z 4
> > -
z a2z T
85 Swm Swm
23 mwm mwm
=

161

o
p]
&
-]
(<]
m =)
o 5 -
(3] a o~ =)
o WHR x
w oc... © -
« ﬂmm
g URU v - -
% WBO 7] - x
E o = OXX
© o
~ 0“ HX” o
©) x 000
83 1537 2 - ox sooxx
MW ows m o x OXX OOOXXOX
w N3 WM1 e x OXX 000XX1X10
S| N N o x o < - o >
z::.a x o x) o x x =) x
hl“w1 °© x o x o - x -
14IH < 1X OXX 000XX0X00XX11X
k.
a - S| x o x o =) x x - x 1XX
] 1T$ 2) x o x - o > - o
w MXE S =] o x - o x x o > o x -
g 2=N__R = oo 1XX 011XX1X11XX00XX01X1
3 2 ~ x x) x 1) =) <) B3 - x o
2 < © (=) o > o o x x (=] x - = o - x
®) o o x - o > - x - x =] x
-5 @ 00 000 000XX0X10XX01XX00X11XXX0
w ou = o b) - o x x - x) x - o x x)
TL 1 - o - x =) o x o x - XOlXX 001
2 w [S] (=] =} o - x x =] x =} x - x x
m » b =) <] o x =) <) x - x o x o > -) -
AL - o o =) o x x o x - = © - x > - x x
]] =) =] o (=} - o x =] x (=] x =] x 000 - o
v - - o x o o > o x <) > o o x x x x x
0 QL o =) x =) =] - x o x - x (=] x o - - =) >
N d - o (S] - x o o - x o x - =] x x =] > x x x
h&u o - - x o o < o x) x o x 001X0 OXX
L 1} - o — =} - x =] - x =) > o - x x > x
5 9) - =} o x =) <) - x (=} x) x 000X1X1XX
UY - o - o o =] x =) =] - x o (=] x x x
MA 8) - o - - =) - < o x o x 000 - - x
E o) - =) =) - =] > o o x o =] x x x x x >
N - - =) - - - =) (=) - - x o = -) o - x
© - o - [=) o - - - (=] o =] - OOX x - x x x x
2 =) -) - o - (=] x o =) x x o - =) =) x
o o - o o - - - =] > o - - x x o x x x x
4] [) =) 1) 3) o - - >) o - x 000 - o x
['4 o - > o (=} x - o - - x o - x x x x x x
(7] 8 o - o > - o - - - > o - > o o o - >
(=] o - o o > > o - (=} o > o x > o XOX x b4
pos o o o x - - - - - - o o o - o o 1%
o o (=] o o > > - - o - - x x o - x x x >
= 3 o o o < o - x - - - o < =) o - =) ° x
[} (4] o o o - o x > - b (= - (=] - > (=] (=] > > x >
= z 2 =) 1) - x - o = = - =] - 5] =) o - - =) >
w > =] o o o - x x o x =) - =] 10X =] =3 =] x x x
© w 3 =) <) o - - - x > x o - o x =) - - x
L © o (=} o o (=} - x - 3 =) > (=] - XOO x o o x x
3 9l o o o o - - x x x - - - .1 x =] - x
I3 © [=] [=] [=] [=] o (=] - - x =] x [=] - x - - x =] o x
= = 53 - =] (=} (=} o - x x x - x - =4 = - x (=] o
z Iy - (=] o o o o o o - x o x <) > < - (=] =] =) o o
Q w GW - o =) =) =) =) - x x o x) - 001 10X000
-Q a - o o o x o o o o Al o x o x x -Oo - x
© - o) [S] o o =) o - x - x o - 01 - - o <
% < [=] - [=] x [=] [=] (=) (=] (<] - x [=] x x x 101
E4 8% o o o =] o =) o o - o x o - o - - =)
] oo <) - (S x) (=) =) =) o o - o XOX x o 101 - o
m 3 2 - [=] o =] (=] (=] (=) =] (=] - x - [=] x - -
<@ o o o o o <) o o o o o - XOX > =) x - - -
DQ b - =] S =) o o o <) =) <) - - <) x - 1110
DR ~ o =] (=] [=] (=] [=] (= x [=] [=] (=] (=) - x x =] x x
As 9 o o - o (=] (=] o (=] o [=] [=] - (=] (= x - x -
- =3 - <) o - o =) x o =) o o (=] x x o x x x -
Q - - - - o =) =) x o o) o - o x o x x
] b =) - - - - - o > o o o =) o (=] - o x x > o
7] 3 - o o - - =) =) x x 000 o) - < - x x
BE = o =) - - o - =) x =) o o o (=]) - x = x o
MC o - o - =} - o - > > o o =} (=} o - - x x
DH o - o - - (=] o x - o o x 000 (=] o - > > (=)
AS ? - o - - =) o [=] x bad =] o (=] =) =] - x x
N o - o - - - o x o o =) x x o o) o - = o
5 x <) - - - =) - x > =) o < =) =) <) o - x
] - - o - - - - x - - o = x o o o o) - =)
B& 2 < =) - - - - © > < o =) x) o <) (<) =) -
Rl > =} - <) X,1 - o x o - - x x (=] o =) o o o -
DS 2 x <) - - - o - x > - - < o o o =) =))
DE ° o x =] x - - - > - (=]) > x =) =] o o IS =) =)
AD 3 b3 - - - - - o > x - o x o - x =] o o
(= > - x - - (=] x o (=] o x x (=] o (=] (=] o (=] o
S x o - - - [=) =} x x (=] - x o o x x o (=)
o~ -~ x (=] > - - > x o - (=] x > o o o oxo o (=]
P b d [- - (=] > - > > o o x (=] (=] x x o
(=] x (=] > - - x > - - o x XXO o (=] o o o o
x o > - o x = x > - - =) o XOX x =)
o x o > x) x < x =) - x x 000 - XO (=] o
x - > x =] x x = x - o x 01 x < -o
) x - x x x x x <) - x x o 01X1X0X0
o x x x x x x x =) o x o ° 00
< o > < x (=] = x (S =) x x -) X1x0 =)
,0 > < < - x x x o) x =) - ° < oo
x o (=] x < - < x - - x x) - - XO -
=) - < < - - x > (=] b3 < - - x OX o
o - - < o x (S o o x > - - - - X1 -
-) < =) - x > - < x - - x x 01
o o - =3 x - = =) x x - - - - - 01
- =) o o o x x =) XXX - - x > > °
- o - o > =) > - x X1 - - - - o
o - - - <) < = x x - < x x x -
o o - x =3 < - XOXX1 1X1 - =) - -
o o - - b3 x x - x x x -
=3 o < o b3 o x x 001 =] - =) <) -
o o - x < < 1XX OXOX x > -
=) < - x =] < x1 0X1 (=) -
=) <) x = x o x - XOX x -
< o x - > o - OXO - -
) x >¢ x OXXOO XXXO OX <
o < - < o < o x o =)
= x x = 00 x x x x
x - < = OXX x o <) -
< x - x oo XX x x x
- < X1 XXX o <)
x) - x x < >
x XX001 < XXX = -
) 01 > x x
XXOO - x x x =
- x x x x
(=) = - - > < x
=) - x x x x
(=] - o - > x
- x x x x
- o [=] - x
< x x o
OXO o =)
0X001
< -
000

162

APPENDIX A

A30| 3 oxooooo oOxXooooo0o OCDO0OO0OO0OO0OO0OO0OO0OO0OO0O0OOO0O0O OO0
2 2|3 X 0000 XX X 000 0XXX XXX XXXXXXXOOXXXOOoXX
o <8 X O == = XX X O - = =XXX XX XXXXXXXXr™wr=XXXOrXX
WP O e X - X X X ==X XX XXX XXXXXXX = =XXXw=wrXX
m mo 2|5 X 0000 XX X 0000 XXX XXXNXXXXXXXr~r=XXXOrmXX
frel m I.«% X o - X X X o = - X X X XX XXXXXXXXOOXXXr~r XX
m - 2|3 X C OO0 O XX X 0000 XXX XX XXXXXXXXrm+=XXXO0OXX
m 2|3 X X X X X O X XXX O OXX - XX X X X X XXX XXX XXXXXXX
M WP <o X X X X X = X X X X ==X XO XX X X XX XXX XXXXXXXXXX
o wo LY X X X X X O X X X X v =X X - XX X X X X X X X X X X X XXX XXX
m 2|3 X X XX X OX XXX0O0XXOo XX X XX XXX XXXXXXXXXXX
m >EE<°M OO0OO~vr-OO OCO0OO0O0OO0O O 0000000000000000000
o) coooooo coooo0o0O00 COODODO0OO0ODOOOOOOOOOOO0
W3D0| 8 X X X X X X X X X X X X X X X XX X X X X X X X XXX XXXXXXX
1030 | 55 X 000 0XX X 0000 XXX XXXXXXXXXXOOXXXOOXX
AJ30|3 X X X X X X X X X X X X X X X XX X X X X X X X X XX XXX XXXX
4SNOQ | X X X X X X X X X X X X X X X XXX OO0OO0OO0OXXXDXXXXXXXX
[XXX XXXXX
g XXX X XXX
N X
Q) XXX
NS X X X X X X X X X X X X X X X XXX rmrr~0OXXXXXXXXXXX
0 X X X X X X X X X X X X X X X XXXOr=rOOXXXXXXXXXXX
© X X X X X X X X X X X X X X X XXX m-Or-0OXXXXXXDXDXXXX
IN X X X X X X X X X X X X X X X XXXOO 0O r=XXXXXXXXXXX
2 X X X X X X X X X X X X X X X XXXOO -0 OXXXXXXXXXXX
2 X X X X X X X X X X X X X X X XXX OO =00 XXXXXXXXXXX
E S X X X X X X X X X X X X X X X XXXOO =0 OXXXXXXDXXXXX
n b=y X X X X X X X X X X X X X X X XXXOO O OXXXXXXXXXXX
m S X X X X X X X X X X X X X X X XXXOO+0OXXXXXXXXXXX
w 3 X X X X X X X X X X X X X X X XXXOO+-0OOXXXXXXXXXXX
> X X X X X X X X X X X X X X X XXXOO+~0OXXXXXDXXDXXXX
8 X X X X X X X X X X X X X X X XXXOO+~0OXXXXXXXXDXXX
8 X X X X X X X X X X X X X X X XXXOO=0OXXXXXXXXXXX
> X X X X X X X X X X X X X X X XXXOO+OOXXXXXXXXXXX
3 X X X X X X X X X X X X X X X XX XOO O~ 0XXXXDXDXDXXXXX
E4 X X X X X X X X X X X X X X X XXXOO+0OOXXXXXXXXXXX
a z i & u
E: 3 8 3 g 3%z g
- <] 5 (6] a o %]
% OoQwWuworuwn o< O0O0 W NOTLONDOOICDOOWULO~NOY
» “ OMONOOT T T T T T T HOLLOLLLLOLLO VLWL, O OO OO
—m_ < [=leNeleNeNoNa] (=Nl NN NN Nl [NeN-NeNeNeNeleNeNeNe oo NeNeNeNo o Nol
=
o
© w w
5 B
Emm Emm Ym
8&0 225 £3
z232 0-=2 zZc
@ la] o

163

Q
: o
; ° xX ©
: x -0
o 2 - : X
- x
: W : o oo x
- - xX ©
& < - 1
o Wc...-. < oo - x.- =
. 0 X
=} WMN | e o : : 0
w URU : : :
[PBO © x - o : O X
< z o < coo 9 = = =
I ~ - X X 9 - 1 X X
S X : - S X X X xX X X
© oo X X 9 oo : : :
%3 oo -oo *e i : :
9 : : X : e x X x X (=34
o x - - o x o < : : :
1 : : : : 9 X X x X o x o~
W 1031 - x oo x --- = = : : - |
i -~ : - x x ~ oo x X X x X X X X o x X -
WB WEZ : - oo X o x x - O - -
| : X X : - x x > (=]
as o o - : - : X 0
| | X 0 : - x x - (=]
DN : : : : o - x X x [=] o
E - 1 - - o2 oo x X X X x X X ~ O X X © - -
-
- M - xx % oo © }% x x xX X - X o -
_ : 0 0 - = X ~ x -
N3 1dIHS |2 oo oo oo x o 9 < 3 : .
- 0 .M < o oo ° X - - oo Xxo e b : = :
1“3 1 Oxxxxoo 1x0111x x X X x X X X X — 0xx011l
mER ~ - (=] o oo - : = = : 0
D : 1 11 X 0 : 5 X X X o x X o o
L D 8 : : = - > x X x X oo - -
F._ A 1 11 | - = == X X X o x X -
F 9 : 11 = = - e X X o o S o
- - o - o~ o X : X : X 0
TT =) - oo - g : XX 00 XO |
| C | 00 1.1 1 . ° =) x X o oo
| SE 0 1 1 o2 oo - > X =)
= w - x o - - - °° 0 0 1» 0
TL - - - : : 0 1 00
an ﬁ 2 | - 1 : = — oo o ocooo xX X - o
C H 1. . 1 . - x x X oo oo - -
: : : = ° o =) -
U 3 . : - ° - oo x X o o oo
C I<._On_2 : -o- - X — - - coo X X X oo o © o
(3] < - > - - - = : : :
zw 2 - - X - x - - o - > [=]
Hl{w© > -~ X - - X © - - = - Xx
.P 2 & x - = - - - oo x X
—I_IV. % - o X X P4 OOOXXO e o = = :
- : :
UA ~ oo - - xe - bk : : =
Mw N oo - X - - X X x X x X X =2 oo =
| : : : - - xX X x - o
N ° coo o R -x X X X X x X X T 110011
<)
. 2 0000000 0001111 S0k XXXXXX1 X X X - -
e 3 coo oo oo coo il XXXXXXX XX01XXX i
7] - o =] oo oc X X 0 11
ixoos - -
3 Xo 0 - = x > X - x X X X
o o x co oo oo p —— - . =
. 3 : 0 = o2 e - x X X X x X
_«U 3 o X X o oo o x coco © 000000011111XXX11XX
Z < o X o o - g 0 : : .l.l
=) [} o o o =) - : 0 1 X
-
a © o coco - o x X coo s 00000000 = :
H. 5% X oo xX o 0X000000 XXOOOOO 000 = -
| ..m i - = 0 - : < co coco coo coo
L 0 X 0 - ° o =) o
E ; 0 0 ° S oo oo <) o
o x x oo 9 - 0 0 0 0
R D 3 : . ° - x o [5) o <)
| 00 : 1 - °° o o oo (=}
T | : 1 0 - x - =} =) o
m 83 o ~-oo - o X r O~ X - = = 5 :
o 7] < x - o - o x oo = . : : -
173 - o o - (=} - - oo oo o o
[w = x - - oo = - : 1 0 :
m ARC. N X 5 1 = o o - o - - coco =]
m W% 4 = 3 ° °°- - -—O - coo - - coo
< < Q x X x X ~-o - o oo - o o~ oo
< X X =] - - o~ - °° o < :
4 : : . - i - oo (IR o
S 4 X 0 X ° - - -
7] x > - - : 0 0 0
| X 0 X : - - — - o
ac © <) x X - - : 11 : : |
DR < > X xX X o < x X x > = - : :
ms ~ - © o X X X X e = = : : 0
| w : ::: - 90 x > oo - - (=3 o
o > <) - . : : 11
[7] > o o x o x i 1 : 0
W= <+ > X e - . X 0 | 1 |
BR-«N o o == x X x X X - O oo o< = i
DE [vs] xX o X o - -~ - 9 - : 0 X 0
> > - 0 O X 1
DD | | : X : T2 co x X o x -
< o xX © xX © - - = - ; 1 X X
o o - - x X x X X X X —°2 o - 11
n x > - - - 9 - : 0 X X
00 X X - ° <) x <)
o o X o - X X < - : : 0
: 0 1 : 0 x X - x X x -
oo x - oo x < : : : 1
X o 1X0111 =e- e . = XOO
1 - = - 0 X o o - o~ -
x <) - : 1 1 0
: . - e - o - o
-~oo ~-oo -0 222 ooc -2
x oo ooe ~oe g =
. - °° oo -
- : - : :
o - - 1 0
: - °° oo -
- °° oo e
<) - -
- °r oo
°- oo
oo oo
<)
o
oo

164

2 2(g[x xo x X X X X X X X X X XXX O X XXX XXXXXXXXXXNXXXXX
o = |8|x x o x X X X X X X X X X XXX OX X XXXXXXXXXXXXXXXX
ﬂP 8 Ix x o x X X X X X X X X X XXX O X XX XXXXXXXXXXXXXXX
2
=) mO D5x x o x XX X X X X X X X XXX O X XX XXXXXXXXXXXXXXX
=
w 2 8% x o x X X X X X X X X X XXX O X XX XXXXXXXXXXXXXXX
o F
o 2 (Bx x o x X X X X X X X X X XXX O X XX XXX XXX XXXXXXXXX
m LIZBIx ox x R) COOXX OO0O0OO0O0OO0O0OO0OO0OO0OO0O0OO0OOO
=4
z HP SIS |x = x x e COOXX OO0OO0OOODOO0OO0OOOOOOOOOO
m W-O |8&X1XX - 00O~ X X e e
m 2(B|x o x x CR-R-R-W-N-R-WCR COOXX OO0OOO0OOO0OO0OOO0OOOOOOOO
T >¢¢<0.MXXOX B 3 COOOX ©OO0COO0OO0OO0O0O0OO0O0O0O0OOX
< Blx x o x ococoocooocoox COOOX O0OOCOOOOOOO0OO0OOO0OOX
:w0%1101 - -0 - e
15[~ -~ - - - e e rrrr e,
A0 (BJ|loo -0 ocooooococoo COOr-r0O ©OOOOOO0OOOO0OO0OOO0OO0OO0OOO
4SNOQ @+ - o ~ cococoo0co0O0O~ ~--r-rOr OOOOOOOCOOOOOOOOOOS~
HSH1D Q|- — o ~ - B - T e
HSN3|Z|oc oo o coooocoooo OCO0OOO ©OOOOODOOOOO0OOOOOOOO
QH3ZI |V |- - o ~ . -———0 B T T T
Ezwn0111 —Frrrr O - - e
N[x xox OrO0rO0Or-0Or~X XXXv+=X OrOrOrOrOrOrO+~O«~X
2% x o x or-rorororx XXX+-X OrOrOrO+OrOr~O+O~X
2fx x o x cooocooooXx XXXOX OO0O0OO0O0O0OO0O0OO0O0O0O0O0O0OOX
Rix x =~ x cooocoooox XXXr-X OO0OrO0O0OO0O0O0O0OO0O0O0O0O0O0OX
PIx x o x COrr 00+~ X XXXr-rX OOr+~OO0Or+rOO0Or~r-r0O0O~+ X
2lx x o x corr-O0O~r~X XXX+-X OOOrOO~~OO+r-r0O~ X
- Slx x o x cocooooocoX XXXOX O0OO0O0O0O0O0O0OO0O0O0O0OO0O0OX
m X X = x cocoococoooXx XXXr+-X OO0O0OO0O0O0O0O0O0O0O0O0O0O0OOX
% Fx x o x 0COO0O -+~ X XXX+-X OO0OO0Or+=+r+r-0O0O0O0~r+ v+ X
w Blx x o x 0000 ™+ +rXx XXX+-X OO0OOCOrrr~00O0O0 =+ ww+X
Slx x o x cocooooocoXx XXXOX OO0O0O0O0O0O0OO0O0OO0OO0OO0O0OOOX
Blx x - x cocoocooooXx XXXr-X O0OO0O0O0O0OO0O00O0OO0O0O0O0OOX
8|x x o x coooooocox XXX+-X O0OO0OO0O0O0O0Orrrmrrmvr =X
B|x x o x cocoocooocoOX XXXr-X OO0OO0O0O0O0O0O0rrmrvr~vr~=vX
Bix x o x cocooocoooXx XXXOX O0O0O0OO0DO0OO0O0OOCO0OO0O0OO0OOO0OX
Blx x o x coocoocooox XXX-X OO0OO0O0O0O0O000O0O0O0O0O0OOX
-
@
i i
a
3 g e g3 £
z < z m x
w pur} w w 3 w
=)
e 2 mee sogruwIee o-weov OLEORRNNNKSRERRSSY
w
w 8
z]
H <
Q
(3]
>z Qz
3] 85
< 22w ofw
x Oy Z2 T FwZ T
= [e == o >>E 5
2 -Z 2 S>w xZ2 w
00 23 <Q0 z4
w 3o« z2 z0a sa
o < = <
a @ o~ @ o -
<

165

ol--xo coocoooooX Xr-r-XO O0O0OO0O0OO0O0OO0O0OO0O0O0O0O0OOX

-l--xo0 cooocoooox X-r-XO O0O0O0OO0O00O0O0OO0O0OO0O0O0OO0OX

g Njo - X O coococooooXx XO+-XO O0O0O0O0OO0OO00CO0O0O0O0O0O0OONX

Iy - oo - x ~ coocoocooox XOr-rXO0O O0O0OO0O0O0OO0O0OO0OO0OO0O0O0O0OONX

§ EIE <|loox o e - - XOOXr~-r OO0OO0OO0O0CO0OO0O0OO0OO0OO0OO0O0OOOX

£ ggs wlo o x o coocoocooox XOOXO +rrrrrrerrr e eX

8 Egg ©oloox o coooocooox XOOXO O0O0OO0O0OO0OO0OO0OOOOOOOOX

a a®o ~Nloo x o coocoococoox XOOXO O0O0O0O0O0OO0OO0OO0OO0OO0OO0O0OOO0OX

e £ ®loox o coocooocoox XOOXO ©0OO0O0O0O0O0OO0OO0OO0OO0O0O0OOOO0OX

§ olo o x o coocoococoox XOOXO OO0O0O00O0O0OO0OO00OO0OOO0O0OX

@ Cloox o coocoocoooXx XOOXO 0000000000000 O0OX

Clooxo coooooo0oX XOOXO ©OO0O0OO0O0OO0OO0OO0OO0O0OO0OO0OO0OX

10313s @A [N |- - ~ ~ - - Rttt R i

33 NP |[-o0 0 ~ coooooooo --rOr+- OOOOOOOOOOOOOOOOO

S@ [NIsnivis[E[- - - - i F e crrrrrrrr e~

gg N3 LdIHS ||~ o ~ ~ cocoooooococo OO0~ OOOO0OOOO0OOO0OO0OO0OOOOOOO
w =

» Qoo -~ ~ O o000~ - e —————— --o0

:§ﬁ N-oo -~ e, FEOOF rrrErrEEEE R,

§§8 Rl- - o -~ - -O Frr O rrrrErE e - O

a < Pl - -~ cooooocoo - - OOOOOOOOOOOOOOOO -

ﬁ - Qlx =< x x -0 XXXXX +~rrrrrrrrerrerer~~0O

. 58 < x x x —Fr-rr---r-o0 XXXXX +mrremremereeer——-==0

8 ua Qx> x x O XXXXX +wrrrrrerr e~ O

E @ Qlx x x x -, -0 XXXXX +=rrererrrrre e~ O

8 ALIHVIOd | § % x % x -+~ 0 XXXXX +rrrrrrrr e~ O

3 ERTI R e - - Frrrr rrrrrrrr e,

o Qlooo ~ cocooooocooo OCOO0OO+ OOOODOOOOOOOOOOOOO

E: Nlooco~ cocoooocooo OCO0O0OO0O~- 0OO0OO0O0OO0OO0OO0OO0OO0OO0OOOOOOO

g; Looo ~ coocococoocooo OC0OO0OO~- ©0OOOOO0OO0OOOO0OO0OOO0OOOOO

Qoocoo cocooooooo OCO0OO0OO+~ OOOOCOOOOOOOOOOOOOO

. Flx oo x cococoooooo COO0OOX OOOOOO0OOOOOOOOOOOO

2 Slx oo x cococoocococoo OCOOOX O0OO0O0OO0OO0OO0OO0OO0O0OOOOOOOO0O

@ Nx o~ x . -+ +-+-+-o0O COOFrX +rrrrrrerrrrrerr-~=0

. Fx o~ x -0 COO+rX +rrrrrrrrrecrerrr -0

5 gx——% cocooooco0o0-- FrrrEX mrrrr e e -

g BIx - o x cocooooo0o0- ~~rOX OO0OODO0OO0OO0OO0OO0OO0OO0OOOO0OOO -

* 8ix oo x coocoocoococoo COOOX ©OO0OO0DO0OO0OO0OOOOOOOOOOOO

LIS5IX - o x .- FrErOX rrr e

§ 5 LiB|x -~ o x e e - COrOX rrrrrrrrr e~

g 8 |8xo-x coocooococoo OCO0OO0O+-X 0OO0OO0OO>OOOOOOOOOOOO

6 LIQ|x oo x [cR-N-N-E-N-N-N-1 FrrOX rreErrErrrErrsrrrEemes-e-0O

E @ Ilxocox coocoocoococooo COOOX O0O0OO0OOOO0OO0OOO0OOOOOOO

8 <gg Yx oo x coocooocooo OCOOOX O0OOO0OOCOOOOOOOOOOOO

s 3m Qx oo x coooooo0o0o0 COO0OOX 0OOOO0O0O0OO0OOO0OO0OO0OO0O0OOO0O0

§ < Jixoox coooooooo COO0OOX 0000000000000 OOOO

s @ QIx oo x coocoococooo COO0OOX OO0OO0COO0OO0OOCOOO0OO0OO0OOOOOOO

mgg Llx oo x cooooooo0o0 OCOO0OOX 0OO0OOO0OO0OO0OO0OO0OO0OOOOOOOOOC

gm S[xocox cocooocoocooo OCOOOX 0OO0OO0OO0OO0O0O0OO0O0O0OO0OOOOOO0O

< L=< oo x coocooocooo COOOX 0000000000000 OOO0O

» R[x oo x coocoocoococoo COO0OOX 0O0OO0OO0OO0OO0OOOO0O0OOO0OOOOO

mﬁg FIx oo x coocoocoooo COO0OOX 0000000000000 OOOO

gg Bix oo x cooooocooo COO0OOX 0O0O0OO0ObOOOOOOOOOOOO

< Yix oo x coooococooo COO0OOX 0000000000000 OOOO

A0 Q|- o~ - cooooooo0O COO+~0 ©OO0OOOOCO0OO0OO0O0OO0OO0OOOOOOO

166

APPENDIX A

W L RoX - XXXXXXXX ===
o T|BoXr XXXXXXXXOOOOOOOO
=
Ya SBloxo XXXXXXXXO0OOOOOOOO
9 mo LIfloxo XXXXXXXXO0O0O0Oo0O0OOO
m 2 T IBloX O XXXXXXXXOOO0OOOOOO
o - LIBOXO XXXXXXXXOOOOOOOO
[<]
T OB X X X X X X X X X X X X X X X X X X X
=
an _HP S HX X X XX XXX XX X XX X XXX XX
3] IO 2@ xxx X xX>XXXXXXXXXXXXX
W 2 B x X x X X X X X X X XX X X XXX X X
- >EI<OM10X OCocoooo0o0O0OOOOOOOO
< Bl-mrox ©ooocoocooocoocoocoocoocooocooo
WD |§oc-r©o ~+++-++-+--00O0OO0OOOCOCO
DG~ r- rrrrrrrrr e rrn
AWP(Z- -6 rrrrr e -
ISNOD |Bl-ro~- ©0o0o0OCcOCOOOCOOOOOOOCOO
HSH1Y [P~~~ o©oo0o0OoCcOOOOOCODOOOOOO
HSN3 |J|o - o Coo0O0O0OO0OO0OOODODOO0OOOOO
OHIZI (Vo O+ rrrrrrrrr -~
T]
¥[xox ooocoooococoocoococooocoo
VIx+-X OrOrOrO+rOrO~OrOnr
Px+~x or-r0or-rOr-rOrO+rO+~Ow~oO~r
onx OO0 O00DO0OO0O0DO0OO0O0DO0OO0O0OO0OO0
PIxox or-ror-r0orOv-OrO+-OwoOr
Px -X 0OO++0O0O+r+rO0OO0C+ 0O+~
M Fx-x oorroor-o0O+-r-r0O~r~
g HXOoX oocoococoocoococoocoocoococoo
2 SYxox ocor-rocoorvrooOorr-o0O~-r~
w [YxXx =X 0OO0OOCOr+rrr-~00O0O0+ -+~
3x-x cococor-rrr-rr00O0O~
Bxox ocoocococoocococoococoocoococoo
Yxox ococoOrrrro0O0O0COFrr~~
BlXx+~-x ooocoocococococococoocoocooo
BIx~-x oocoocoococoococoocoocooo
JJxox ococoocococoocoococoocoocococo
]
o o
w
g [= @ =
z < =
] = w
O~ o NMITNHDON~NDDO
» % ora o222l AANANNCANA OO
: |4
w
3 [=]
S Q
o <
o
ow
Qz =
<E Qu
pu
o2 So
00 O«
oo <

167

o|xX X o Orrrrr e, - -
~[xxo ooocoocoocoococoococooocoocoooo
(=]
a AfX X0 oOo00OO0OO0OO0OOOOOOOOOOO
o - MXXO O0O0CcO0OO0O0OOO0OO0OOCO0OO0OO0OOO
]
o WHR XX+~ o©oOO0OOOOOOOCOOOCOOOOOCOO
m Wmm BWXXO ~0000O0O0COCOOOOOOOO
w WMW o[x X0 oocoooococooocooocoococoooo
=]
a WBC NX X0 oo0ooocoocoo0oocooco00o0O0O0O
u = DXXO 0000000000000 OOO
4
T OX X0 O0cO0OO0OOOO0OO0OOOCOOOOOO
7]
O x X0 o©oo0oo0O0OO0OO0OOOOOOOOOOO
—|xx o [-NeN-N-NoNoNeNoNeNeNoN-NeNNeNa]
19313 @134 | YN~ ~ ~ T ———
w W NI Plo-+ ©O0C0OCOOOCOOOCOOOOOOOOOO
o
Wﬂ N3ISNLVIS (Y|~ -+~ ©OO0OOCOOOOOOOOOOOOO
8z NILHS |2 - = - rrrrr e - - -
» Cloor rrrrrrrrrr e~
7]
ﬂﬂ“ NMervrer rrrrerrrrrr e~
©
Q28 [Brrr rrrrrrrr e
o L
] - QX x X X X X X X X X X X X X X X X X X
U 59 QX X X XXX XXXXXXXXXXXXX
o] QX X X XXX XXXXXXXXXXXXX
© w Y
e K QX XX X XXXXXXXXXXXXXXX
W ALIHVIO [J[x X X X X X X X X X X X X X X X X X X
3 NBUI[S[- -+ rerrrerrrrrerrere -
o Qoor ococoocococococooocococoococoo
.
UM Nleco~- ocococococoocococococococoooo
WW Qoo o©cocoocoococococoocoocoocococoocoo
Qoo+ ocococoocooocoococoocoocoooocoo
. oox ococococococoococoococococooo
[$] -
& Sloox oococoocoococoococooococooo
o JorxXx rrrrrrrrrrr -
. %11X T EE_—_————
m 3= - x T E—E——_—————
r4
2 Bloox oooococooooocoococoococoooo
Boox o©oococcocoocooocococoooco
5] - x T
m ..N. LIBYIr X rrrrrrrrr e
m M DBrrX rrrrrrr e
N_v LI rr X rrrr e
m » JlooX ©ooooooocoooo0ooocooo0oo
(7]
W MQ Yoox o©oooocooocoococoocoocoooco
<
o mm Foox oooocoococooococococo0oo0o
m < Jloox ocococococooococoocococoo
m » Q- - x —Fr e, E T,
[7]
4y Qoox ooococoocooococococo0oo0o0o
]
mm Jloox ocoococoococococoocococoococoo
< Yoox o©ooococoocococococoocooooo
» R+ - x U
@» .
Mﬂ RQoox oocoocoocococoocoocoocoocoooo
]
WM Hloox ooocoocococoococoocoococoococoo
< Hoox oococoocoocoocoocococoocoocoocoo
A0 |Blo-r+~ coocoocococoococoocoocoocooo

168

APPENDIX B

AMDOS /29 AMDASM MICRC ASSEMBLER, V1.1
CPUII DEFINITIONS

3ADVANCE MICRO DEVICES

3 AM2923 AND AM29@4 DEFINITION FILE FOR CPUII
]
H

REV. OCTOBER 17, 1g97&

WOFPD 82
3 ZQUATES

EQU L#F
EQU E#0
F: FQU B#1

329903 DESTINATION MODIFIERS

ADE: FQU H#@
LDER: I0U H#1
ADRQ: EQU E#2
LDRQ: EQU H#3
hPT: EQU H#4
1DQP: EQU E#5
QPT: EQU F#€
RQPT: ZQU H#7
AUR: EQU E#8
TUR: EQU E#S
AURQ: EQU H#4A
LURQ: EQU F#B
Y3US: FQU H#C
LUQ: EQU E#D
SINX: EQU E#E

3 CCNSTANTS

HZ: EQU v#¢
R1: EQU H#1
R2: EQU E#2
R3: EQU E#3
h4: IQU H#4
E5: EQU E#5
RE: FQU E#6
R7: EQU H#7
Re: EQU H#8
RO: EQU H#9

F10: FQU H#A
Ell: EQU H#EB
R12: FQU E#C
k13: EQU H#D
El4: EQU H#E
R15: EQU H#F

AMDOS /290 AMDASM MICRO ASSEMBLER, V1.1
CPUIT DEFINITIONS

12923

RADB:
RAQ:
DARE:
DADR:
DAQ:

3170

ICIN:
BIN:

30UT:
LMAR:
YREG:
AQUT:
I0UT:

SOURCE MCDIFIERS

EQU
EQU
FQU
EQU
EQU

EQU
EQU
EQU
EQU
FQU
EQU
EQU

2B#¢01
3B#010@
3B#100
3B#1¢1
3B#11¢

12H#01
120#10
12H#08
12H#10
12H#02
12H#40
12H#024

;CARRY SELECT

ONZ:
CZ:

EQU
EQU

2B#01
2B#10

ySUB DEFINITIONS

SURG:
SUB1:
SUR2:
SUB3:
SURB4:
SUz5:
SUBE:
SUB7?:
SUEg:
SURS:
SUR1G:
SUE11:
SUE12:
SU213:
SUR14:
SUB1%5:
SUB1E:
SUB17:
SUB1&:
SU%19:
SUR2@:
STIB21:

SUB
SUB
SUB
SUB
SUB
SUE
SUB
SUB
SUB
SUB
SU3
SUB
SUEB
SUB
SUEB
SUB
SUB
SUB
SUB
SU3
SUE
SUB

36X, 1B#2,4VX,4VX,4VX
36X,1B#@,4VX,4VX,4VX ,AVE#F
26X ,1R#0,4VX,4VX,4Y,4VA4F
3VB#000,16X,1B40,13X

36X, 1B#2,12X

44X,1B#0,15X

44X ,1B#2,15X

26X

36X, 1B#2 ,4VX,EX,4VH#F

36X, 1B#0,4VX,4X,4VX,AVE#F
36X ,1R#0,4VY,4VY, 4X ,
24X,2VI#00 34X ,4R40C00 , 1F41,5X
77%,1B#1,12VXE#0%
SPF,3VR#002,16%,1B#0,13X
24X ,2VE#00 , 34X , 4240000, 2R# 10
23X, 1B#0,6X
SPF,3B#000,16%,1VB#0,13X
54X

22X,1B#0,7X

16X,1B#2,13X

1X,1VB#2,14X

39X ,H#B,20X

3CCU CCNTRCL

169

170

AMDOS/2S AMDASM MICRO ASSEMBLER, V1.1
CPUII DEFINITIONS

ACK: DEF €6X,E#9,20X
OBF: DEF 66X,H#A,20X
CNT: DEF 66X,B#F,20X
GRD: DEF €6X,F#¢,20X

JZ: DEF SUB11,H#9,SUBR20
CJS: DEF SUB11,E#1,SUR2@
JMAP: DEF SUB11,H#2,SUB2¢
CJP: DEF SUB11,H#3,5UB20
PUSH: DEF SUB11,H#4,SUR20
JSRP: DEF SUB11,H#5,SUR2C
CJv: DEF SUB11,E#6,SUB20
JRP: DEF SUB11,R#7,SUR20Q
RFCT: DEF SUB11,H#&,SUB2¢
RPCT: DEF SUB11,E#9,S5UB20
CRIN: DEF SUB11,H#A,SUR2@Q
CJPF: DEF SUB11,E#B,SUB2@
LDCT: DEF SUB11,H#C,SUBZ0
LOCP: TEF SUB11,H#D,SUB20
CONT : DEF SUB11,H#E,SUR20
JP: DEF SUB11,H#F,SUBZ@
JSR: TEF SUB14,E#01,SUB20
RTN: DETX SUB14,H#0A,SUB20

3 STARED CONTEOL FIELD

GOTC: DEF SUB12
COUNT: DEF SUB12
PUT: DEF 77X,1B#2,1zVYH#GY

$PCLARITY CONTRCL

T: DEF 65Y,1B#1,24X
F: DEF 65X,1B#0,24X
32923 CONTROL/FUNCTIONS

IN: DFF 3£€X,13#1,H#F,8X,H#r ,H#0,190X,1B#0,13X
nUT: TEF 26X,1B#0,8X,H#F ,H#4C,H#6,SUES

YOFF: DEF 36X,1B#1,53X

EIGH: DEF SUB8,H#Z,33#01¢,8UB19

SRS: DEF¥ SUR1,H#1,SUB3
SSR: DEF SUB1,E#2,SUB3
ADD: DEF SUB1,H#3,SUB3

PAS: DEF SUB2,H#4,SUR3
JOMS:: DEF SUB2,E#5,SUB3

PAR: DEF SUB9,H#6,SUB3
COMR: DEF SUB9,H#7,SUBZ
LOW: DEF SUB8,E#6,3X,SUB19

CRAS: DEF SUB1,H#9,SUR3
XNRS: DEF SUE1,H#A,SUBZ

XOR: TEF SUB1,E#B,SUB3
AND: DEF SUB1,H#C,SUBS
NCR: DEF SUP1,E#T,SUBZ
NAND: DEF SUB1,H#%,SUBS
CR: DEF SUB1,B#F,SUB3

32602 SPECIAL FUNCTIONS

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1
CPUII DEFINITIONS

UMUL: DEF SUB@,E#0,SUB16
TCM: DEF SUB®,H#2,SUB16
SMTC: DEF SUB1@,H#5,SUB16
TCMC: DEF SUBQ,H#6,SUB1S
SLN: DEF SUB18,H#8,SUB16
DLN: DEF SUBZ,H#A,SUB16
TDIV: DEF SUB@,H#C,SUB1€
IDC: DEF SUBZ,H#E,SUB16
INC: DEF SUB10,H#4,SUR16
SDQP: DEF SUB4,H#5,4X,SUB3
SUQP: DEF SUB4,E#D,4X,SUB3

LQPT: DEF 36X,1B#0,8X,4VX,H#E,E#6,SUB3

RMOV: DEF SUB2,H#4,SUB3

QMOV: DEF 36X,1R##,4VX,8Y ,MEM,H#4,3B#010,SUB19

SDRL: DEF SUB1@ ,H#1,H#4,SUR2
SURL: DEF SUB1¢,H#9,H#4,SUB3

32904 SHIFT CONTROL

SDDE: DEF SUB7,H#3,SUBE
SDUH: DEF SUB7,H#7,SUBS
SDDL: DEF SUB7,E#6,SUB6
SDUL: TEF SUB7,H#6,SUBS
RDD: DEF SUB7,H#F,SUBE
RDU: DEF SUB7,H#F,SUBS
SSXO0: DE¥ SUB7,H#E,SUB6
RSD: DEF SUB7,H#A,SUBE
RSU: DEF SUB7,B#A,SUBS
SUL: DEF SUB7,H#2,SUBS
sUH: DEF SUB7,H#3,SUBS
SDL: DEF SUB7,H#0,SUB6E
SDH: DEF SUB7,E#1,SUBE
SDMS: DEF SUB7,H#5,SUBE
SMS: LEF SUBR7,H#2,S5UB6
SDDC: DEF SUB7,H#7,SUB6B
SDUC: DEF SUB7,H#4,SUBS

32904 MICRC INSTRUCTICN CODES
RSTI: DEF 3¢X,6B#000@11,SUB17

SWAP: DEF 3 X,6B#00001¢,SUB17
SHLD: EQU 1B#1

;2904 MACEINE INSTRUCTION CODES
LMA: DEF SUE15,6B#20000¢@,SUB17

RSTA: DEF SUB15,6B#020¢11,SUR17
SEOLD: LFF 23X,1B#0,66X

}29¢4 MICRO STATUS SELECT

171

172

AMDOS/29 AMDASY MICRO ASSEMBLER, V1.1
CPUITI DEFINITICNS

MIZ: DEF SUB18,6B#2101¢6,5UB21
MIO: DEF SUB16,6B#£10110,SUB21
MIC: DEF SUB1&,6B#411016,SUB21
MIS: DEF SUB18,6B#211110,SUB21
12924 MACHINE STATUS SELECT

MAZ: DEF SUB18,EB#100100,SUE21
MAO: DEF SUB18,6B#1001106,SUB21
MAC: DEF SUB18,6B#10121¢,SUB21
MAS: DEF¥ SUB18,6B#141110,SUR21
sDEVICE DISABILE

ALUCFF: DEF 7 X,1B#1,13X

ALLOFF: LEF 7 X,3B#111,13X

yLOAD CONSTANT

CCNST: DEF 16 VXH#0%,4X,1R#0,69X
+BCD STATUS REGISTER CONTROL

ENB: DEY¥ 1€X,1B#0,73X

CLSR2: DEF 17X,1B#0,72X

ENSR1: DEF 18X,1B#1,71X
CZERO: DEF 19X,1B#0,70F

END
TCTAL PHASE 1 ERRORS = @

173

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1

g1ee
clee
2121
2122
2183

€104
2195
21lee
J187
glee
219¢e

2124
212k
21ecC
©¥14D
¢12L
zlor
2114

@111
2112
d113
2114
2113
211¢€
2117
2lle

211¢
211A
2113
211¢C
211D
211k
p11F
2120
4121
2122
g1z2d
2124
@122
¢12€
g1z
2128
2129
J124
0128
¢12c
212D
212EF
B12F
2130

sALVANCE

MICnC DEVICES

3 AMZCZ3 AND AM2SP4 CPUII SOURCE FILE

INP:

CUTP:

JSM:

SM:

DIV:

LOOP1:

SCALE1:

LOCP2:
SKIPE:

SKIP3:

OR3 Exl€d

ALUCFF & T & CBF & CJP & GCTO INEF
ALUGFF & PUSH

IN & T & OBF & LOCP & PUT ICIN
ALUCFT & RTN

CUT & CONT & PUT YREG

ALUCFF & PUSH

ALUCFF § ¥ & ACK & LOOP & PUT IOUT
ALJYCFF & PUSH

ALUGCFF & T & ACK & LOCP

ALUOFF & RTN

L0W R1 & JSR & GCTO INP

PAK R2,R15 & JSR & GOTO INP

LQPT R15 & F & GRD & PUSH & COUNT @CE
UMUL R1,R1,R2 & F & CNT & SDDL & RFCT
PAR K15,R1 & JSR & GOTO OUTP

MOV R15 & JSR & GOTO OUTP

JP & GCTO USM

LOW K1 & JSKE & GOTO INP

PAR RZ,R15 & JSK & GOTC INP

LQPT Rlb F & GRD & PUSH & COUNT 22D
TCM R1,R1,k¢ & F & CNT & SDDL & RFCT
TCMC R1,R1,R2 & SDDL & CCNT CZ

PAR R15,R1 & JSR & GOTC OUTP

QMOV R15 & JSR & GOTO OUTP

ALUCFF & JP & GCTO S

LOw R1¢ & JSR & GOTC INP

PAR k7,k15 S JSR & GOTC INP

PAR R1,R15 & JSR & GOTO INP

PAR R4,R15 & CCONT

PAR R3,R7 & CONT

PAR R2,R1 & T & MIZ & CJP & GOTO ABCRT
SMTC R2,R2 & CONT CZ

SMTC RS, R3 & T & MIC & CJP CZ & GOTO SCALE1
ALUCFF & T & MIO & CJP & GOTC SKIP6
SURL R3,R3 & SUL & CONT

SURL R2,R2 & SUL & CONT

ALJCFF & JP & GCTO LCOP2

LQPT R4 & JSR & GOTO SDIVD

ALUOFF & JP LOCPL

SSR R15,R3,R2,YBUS & CONT ONE

LQPT R4 & F & MIC & CJP & GOTO SKIP3
ALUOFF & JSR & GOTO SDIVD

SDRL R2,R2 & SDL & CONT

ALUOFF & JP & GOTC LOOP2

ALUCFF & F & GRD & LDCT & COUNT 2&C
DLN R1,R1,R? & T & GRD & RDU & PUSH
TDIV Rl.Rl,F7 & F & CNT & RDU & RFCT CZ
TDC R1,R1,R7 & SUH & CONT CZ

QMQV R15 & JSR & GOTO OUTP

174

AMDCS/25 AMDASM MICRO ASSEMBLER, V1.1

€131
0132
3133
2134
@135
4136
@137
213&
213¢

213A
21ZB
213C
©13D
¢13%
d13F
914@
2141
21léz
2143
2l4e4
©¥145

214€
4147
0148
214¢
©14A
U14EF
214C
214D
J14L
Z14F
215¢
£151

©132
€138
4154
£15z
¢1o€
@157
©158
215¢
2154
2158
J315¢C
2151
158
Y15F
21€e
v1lg1l
2162
G1e3
2164

3165 &

SDIVD:

SLNORN

AGAIN:

ErND -

4

.

I'INGR

3

LOCP4:

JUMP1:

ENDZ:

SQET:

PAR R15,R1 & JSR & GOTO OUTP
ALUCFF & JP & GOTC DIV

PAR R1,R1 & CONT

ALUOFF & T & MIS & CJP & GOTO NEG
PAR R1,R1,ADRQ & SDDL & CONT
ALUOFF & JP & GOTO RET

PAR R1,R1,ADRQ & SDIL & CONT

MOV R4 & CONT

PAR R10,R19 & RTN ONE

JSk & GOTO INP

LQPT R15 & CONT

SLN R2,R2,0FF & CCNT & SHCLD

MAZ & T & CJP & GOTO ABOERT

MAC & T & LOW RZ & CJP & GOTO END

SLN k2,R2 & MAC & T & CJP ONE & GOTC END & SUL

SIN K2,R2 & MIO & F & CJP ONF & GOTC AGAIN & SUL

SDIP & SMS & CONT

SRS R2,R2,R¢ & CONT

QMOV k15 & JSK & JOTC OUTP
PAR R135,R2 & JSR & GOTC OUTP
JP & GCTC SLNGRM

JSR & GOTC INF

LPT R15 & JSR & GOTC INP

DLN R15,R15,R15,CFF & CCNT & SHOLD

MAZ & T & CJP & ¢OTO ABCRT

LOw R2 & MAC & T & CJP & GCTC ENDZ

DLN R15,R15,R15 & SDUL & MAO & T & CJP & GCTC

TLN R15,R15,815 & SDUL & MIO & 7 & CJF & GOTO J

PAR R2,R2 & JP CNE & 30TO LOOP4

PAR R2,Rz & CCNT ONE

SLRQ RK15,R15 & SDMS & JSR & w(UT0 OUTP
QMOV R15 & JSR & GOTC OUTP

JP & GCTC DLNORM

ICW R1@ & COMNT

LO¥W RZ & JSR & GOTC INP

PAR R1,r15 & COAT

PAR k2,R?,,0ARB & CONST 28¢5 & CONT
FAR RZ,RC,,TARB & CONST 2603 & CONT
FAR k4,R3,,DARP & CCNST F#BJFFF & CONT
PAR R5,RZ,,LARb & CONST 42492 & CONT
FAR RE,RQ,,DARB & CONST @@28 & CONT
SES RC,R1,R5 & CONT & SHCLD

AND R3,R5,R4 & CONT

SDRL R4,R4 & MAS & CJP & GOTO END3
SURL k&,k¢ & T & MAS & CJP & 30TO POS
OR R5,RS & JP & GOTC CNT

CR R5,RZ & CONT

SES RE,RE,R18 & CONT

SDRL R2,R2 & T & MIZ & CJP ,SHLD & GOTO ENDS3
SDXL R3,R3 & T & MAS & CJP & GCTC SUER
ATD RKZ,RO,R5 & JP & GOTO CYCLEL & SHOLL
SRS RE,RZ,R5 & JP & GOTG CYCLE & SHOLD
JP & GCTC SQRT

AMDCS/25 AMDASM MICRC ASSEMBLER, V1.1

¢16€ ABCKT: ALUOFF & JP & GCTOC ABORT
2187 JP & GCTO DIV

175

176

AMDOS/29 AMDASM MICRO ASSEMBLER, V1.1

0192
0101
0192
2183
gle4
2185
¢10€
2107
219s
0129
g124A
V1JE
©1eC
£1¢D
J10L
21eFr
211y
2111
2112
glie
2114
4119
211¢€
0117
wllE
¢11¢
©11A
€11ER

211C

XXXXXXXXXXXXXXXX
11101¢0011%0119@
XXXXXXXXXXXXXXXX
1XXXXX0100X01XXX
XXXXXXXXXXLXXXXX
1110101101X000¢8
FXXXXEXXXXXXXXXX
1000001010 X31XXX
IXXXXXXXXXXXXXXX
1XXXXX1110X02¢0e0d
XXXXXXXXXXXXXXXX
1XXXXX0100X01XXX
¥XXXXXXXXXXXXXXX
1014411101X01000
XXXXXXXXXXXXXXXX
1XXXXX0100XC1XXX
RXXXXXXXXXXXXXXX
1112011101X01XXX

TXYXXXXXXLXAXKXX

140081210 X831 XXX
IXXXXXXXXXXXXXXX
10@0c00ee1X0¢1¢0
XXXXXXXXXX A XXXXX
1000¢20001500109
IXXXX2XXXXXXXXXX
12006001083 ¢2180
XXXXXXXXXXXXXXXX
1911111002020 X%X%
LXXXXXXXXXXXXXXX
100¢Cce2e 1102120
IXFXXXXXXXXXXXXX
142¢000291%X2910¢
AXXXXXXAXXAXXXXX
1XXXXX1111X2X1¢¢e
AXXXXXXXXXXXXXXX
1eceo00e01Xe212
FXXXXAXXXXAXXXXX
1200088001 400140
ZXXXXXXEXXXKXXXXX
leeodoelevxevled
IXXXXXXXXXLXXXXX
1211111¢0€C822 XXX
19999959 9999999.9¢
1XXXXX111030d3 XXX
AAXXXIXTXXXXXLXX
1000000021X¢C1002
IXXXXXXXXXXXXXXX
122¢0vd2C1£22122
AXXXXRXXXKXYXXYX
1XXXXX1111X01122
XXXZXXXXXXKXXXXX
12C202ed21X22100
IXXXXXXXXXXXXXXX
1222¢eve01Xe01e2
IRERXAXXXXXXXXXX
1224600201%X20122
FXXXXXXXXXXXXXXX
1XXXXX111@52 XXX

XXXXXXXXO0XXXXXX
2122022029
XXXXYXXYX@OXXXXXX
XXXXXXXXXX
XXXXXXXXQOXXXXXX
0002000021
XXXXXXXY¥Q0XXXXXX
XXXXXXXXXX
XXXXXXXXO@XXXXXX
200000082010
XXXXXXXXO0XXXXXX
XXXXXXXXXX
XXXXXXXYORXXXXXX
20000321282
XXXXXXXY¥22X XXXXX
XXXXXXXXXX
XXXXXXXX@2XXXXXX
XXXXXXXXXX
XXXXXXXXP0XXXXXX
XXXXXXXXXX
XXXXXXXYQO@XXXX¥X
gleeceveew
XXXXXXXXZOXXXXXX
@l1eoeeveee
XXXXXYXXX0u¥ XXXXX
2200001119
XXXXXXXX002118XX
XXXXXXXXXX
XXXXXXXX3@XXXXXX
21eco0201¢0
XXXXXXXX22XXXXXX
0160243193
AXXXXXXY@2X XXXXX
Zleeeelele
XXXXXXXXZIXXXXKX
2122202020
XXXXXXYX@2XXXXXX
4124200222
XXXXXXXX22XXXXXX
pozecel1lgl
XXXXXXXX322113XX
XXXXXXXXXX
XXXXXXX¥10e110¥X
XXXXXXXXXX
LXXXXXAXQOXXXX2X
C10020¢100
XXXXXXXX22XXXXXX
2122222123
XXXXYXXX@OXXXXYX
4100210€01
XXXXXXXX22XXXXXX
21c000aees
XXXXXXXXA2XXXXXX
210200022 e
XXXXXXYXC@XXXXXX
2122233222
XXXXXXXX2@XXXXXX
XXXXXXX¥XX

XXXXXXXXXXXXXXXX
YXXXXXXXXYXXXXXX
XXXX11111X%XXXXXX
XXXXXXXXXXXXXXXX
¥XXXe¥XXXXXXXX111
XXXXXXXXXXXXXXXX
XXXXXXXXXX XXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXX ¥XXXXX
¥XXX@e0C1X XXXXXX
XXXX02092Xx¥K111
XXXXZXXX¥XXXK111
XXXX222010201280
XXXX21111XXXX294d
¥YXXXP1111XXXXXXX
XXXXXXXXXXZXXXXX
XXXXZ26201XXXXXXX
XYXX@2Ze¢eXXXXx111
XXXX@XXXXXXXX111
¥2XX2204102014020
XXXX@ueelzvelode
¥XXX21111X¥XX22¢
¥¥YXX?21111XXXXXXX
XXXXXXXXYXXXXXXX
XXXX21212XXXXXXX
YXXXJ2111X¥X¥X¥111
XXXXp2221XXx¥X111

XXXX2z122XXXX111

XXXXXXXXXXXX2020
XXXEXXXYXXXXPD00
X11112090XXX2229
XXX XXXXXXXXX2000
1112001102020000
XXXXXXXXXXKX2020
XXXXXYXXXXXX02ee
XXXXXXXXXXXX@200
XXXXXXXXXXXX002¢
XXXXX¥XXXXXXC00Q
X111110¢2XXX¢000
1111121120300202
12116¢11020¢2200
200200CRE0BLC0D0
1111101122603080
¥11110100010¢000
XXXXXIXXXXXXZ000
X11111800XXX2002
111110110200200¢
1211621100020¢00
200120¢200802000
001122220 2E22000
1111101120020¢00
X111121206128229
XXXXXXTXXEXKO290
X11111220XXX22C0
1111121182822220
111118112202220¢

11111¢1100202222

AMDC3S/25 AMDASM MICRU ASSEMBLER, V1.1

211D
211y

211F

2138
0139

XXXXXXXXXXXXXXXX
1XXXXY1110X@Z XXX
XEXXXXXXXXVXXXXX
1114119211X24182
YXXXXXRXXXXXXXXX
1XXXXX111¢X20XXX

¢ XXXXXXXXXXXXXXXX

1112110011X02102
XXXXXXXXXXXXXXXX
1110112211X4112€
XXXXXXXXXXKXXXXX
1XXXXX1110208 XXX
XXXXXXXXXXAXXXXX
1XXXXX1112022XXX
XXXXXXXXXXEXXXXXX
1XXXXX1111X21100
AXXXXXXXXXXRXXXX
100e000ee1X021008
XXXXXXXXXXXXXXXX
1XXXXX1111X01XXX
XXXXXXXXXXXXXXXX
1XXXXX1112Xd0XXX
XXXXXXXXXXXXXXXX
121211¢011X001060¢
XXXXXXXXXXXXXXXX
1¢6¢o000e1X01100
XXXXXEXXXXXKXXXXX
1XXXXX11106200XXX
XXXXXEXXXXXXXXXX
1XXXXX1111X¢11¢9
AKXXXXXXXXX KX XXXX
1000621190X¢112¢
YXXXXXXXXXEXXXXX
1180602106403 XXX
XXXXXXXXXX XXX XXX
1211111222 40¢ XXZ2
XXXZXXXXXXXXXXXX
1XXXXX1112000XXX

o XXXXXXXXXXXXXXXX

1600000661 £02162
XXXXXXXXXXXXXXXX
10000000e1X60102
XXXXXXXXXXXXXXXX
1XXXxX1111X011¢2¢
IXXXXXXXXXXXXXXX
1XXXXX1112X00XXX
XXXXXXXXXXXXXXXX
1110110011X21120
XXXXXXXXXXXXXXXX
1XXXXX1110922XXX
XXXXXXXXXXXXXXXX
1XXXXX1111X01100¢
XXXXXXXXXX XXXXXX

1XXXXX11100¢0XXX-

XXXXXXXXXXXXXXXX
1XXXXX1110X22XXX
KXXXXXXXXXXXXXXX
1900061010 X26XXX

XXXXXXXX2QXXXXXX
XXXXXXXXXX
XXYXXXXZYXe2XXXX21
2141120119
XXXXXXXX1@X XXXXX
XXXXXXXXXX
XXXXXX2X1dXXXX31
21ev120101
XXXXxX@¥eeXXXxel
J12012109v¢
XXXXXXXX202¢010XX
XXXXXXXXXX
XXXXXXXX2922J13XX
XXXXXXXXXX
KXXXXEXXPEXXXXXX
4100140111
XXXXXXXX@CYXXXXXX
0120112011
XXXXXXXX@1XXXXXX
XXXXXXXYXX
XXXXXXXX@1XXXXXX
XXXXXXXXXX
XXXXXXCXCZOXXXX21
2100101100
XXXXXXXXZIXXXXXX
0122110011
XXXXXXYX0Ue23e3X
XXXXXXXXXX
XXXXXXXX@CXXXXXX
21e21e¢111
XXXXXXXX2@XXXXXX
0000eT1120
XXXXXXXX@21111XX
XXXXXXXXXX
XXXXXXYX101111XX
XXXXXXXXLX
XXXXXXXX120311XX
XXXXXXXXXX
XXXXXXXXOIXXXXXX
2142200129
XXXXXXXXQOXXXXXX
2100220120
XXXXXXXX22XXXXXX
21000110021
XXXXXXYXOOXXXXXX
XXXXXXXXXX
XXXXXX2X22XX¥Xe1
2100112111
XXXXXXXX200116XX
XXXXXXXXXX
XXXXXXXXQ@XXXXXX
4102111202
XXXXXXXX002110XX
XXXXXXXXXX
XXXXXXXXOPXXXXXX
XXXXXXYXXX
XIXXXXXXXO1XXXXXX
XXXXXXXXXX

XXXX220011XXXX211
21020¢01eXXXXQ0¢Q
XXXXe221¢e@12XXX
2110¢4601184911XX%
@11GXXXXXXXXXEXX
XXXX022112211XXX
XXXX002102012XXX
XXXXXXXXXXXXXXXX
XXXXCZXXXXXXXX21@
XXXXXXXXXXXXXXXX
¥XXX011112011001
1210¢XXXXXXXX@1¢
XXXXXXXXXXXXXXXX
XXXX@00122010XXX
XXXXXAXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXX0¢eo100e¢1211
XXXX20@¢12201011
XXXX200010021211
XXX¥@1111X XXXXXX
XXXX01111XXXX022
XXXXXXXXXXXXXXXX
XXXX00¢01XXXX200
1110XXXXXX XXXXXX
XXXX20001XXXX009
XXXXXXXXXXXXXXXX
XXXX02001XXXX000Q
XXXX0210@0XXXXXXX
XXXX01010XXXX101

11111921104022229
1111121120220020v0
X01¢122200020002
X21610222¢902022¢
XXXYXXXXXXXXC202
X12212100090¢20028
X10010128028023%
XXXXXXXXXXXX0000
gz11¢e11020020009
XXYXXXXXXXXX0d20
0110002100222000
0011021122002¢00
XXXXXXXXXXXX2022
X0e21210200¢¢000
XXXXXXXXXXXXC2e2
XXXXXXXXXXXX020¢
112100000000 200¢0

111000¢ 202220200

1111003200002000

X1111¢leoeleocoe
1111121100002202
XXXXXXXXXXXX2020
111112110020¢0020
XXXXXXXXXXXXC000
1221901100000020
XXXXXXXXXXXX002e0o
1¢01201120002020
X1111901220100030
0111121100000000

177

178

AMDCS/2¢ AMLASYM MICKC ASSEMBLER, V1.l

0145
2r4€
4147
“l4c
€149
2144

Z14B

XXLXXXXXXXXXXXXL
122002C0¢81 XC¢X122

¢ XXXXXXXXXXAAXXXX

1XXXXXK111GX0UXXX
XXXAXEXXXKAXXXXX
1XXXXX1112X01XXX

P AXXXXXXXXXXXXXEX

111211¢¢11%¢X1¢@

, XXXXXXXXXXIXXXXX

1110110211X¢0128
ZXEXX¥XXXXREXXXX
11101129119021¢0
XXXXXXXXXXXXXXXX
1v1011021120¢10¢¢C
ARXLY XY KXFAXXK¥E
1XXX¥X%111¢ ¢ CXXX
) 99999 999089.90994
1XXXXX1110X42XXX

 FXXXXXXXXXZXXXXX

12e06ec0z1X0¢122

: XXXXXXXXXXXXXXXX

legeeeeeel1Xeelie?
ZXXXXXXXXX AXXKAX
1XXXXX1111X2X124
19999099 999990094
100 ev1i0X10¢
LXXAXXXXXXXXXXXX
1200e20201X20120
XFXXXXXXXXXXXXXX
1XXXXX1110X01XXX
XXXXXXXXXXxXXXXX
111011¢211%@X1e¢€
EXXXXXXXXXXXXXXX
1110112211X2012¢
FXXXXXXXXXXXXXXY
1110110211002149
XXXXXXXXXXXXXXXX
111011201100¢120
KXXXXXXXXXAXXXXX
1XXXXX1111X¢01¢%
AXXXXXXXXX AXXXXX
1XXXXX1113X0dXXX

- AXXXXXXXXXXXXXXX

1¢o000eoclooelee
IXXEXAXAXXAXEXXX
140C0eeo01Xeel1e?d
2XXXXEXXXXXAXXY XX
1XXXXX1111X¢X140@
XXXXXXXXXXXXXXXX
1XXXXX1110 X6 XXX
XXXXXXXXXXEXXXXX
10000¢00¢1X001¢2
XAXXXXXXXXXXXXXXX
1XXXXX1110X@dXXX
R00eLoCL00de0161
1XXXXX1110X20XXX
2000000000 200211
1XXXXX1110X20XXX

XXXXXXXX@2XXXXXX
A12eee0eee
XXXXXXXXZPXXXXXX
XXXAXXXAXX
XXXXXEXXZZZXXXXXX
XXXXXXXXXX
XXXXXXZXZ2XXXX10@
2121100110
XXXXXX?X20XXXX1¢2
2191¢e2121
KXXXXXCX0102121¢
01919284181
XXXXXX0X21921€¢21
g1elezooee
XXEXXXXXQ22213%X
XXXXXXXXXX
XXXXXXXXQCYXXXEXX
XXXXXXXXXX
XXXXXXXXCZXXIXXX
Gloeeeeled
KXXXXXXXJIOXEXXXX
212¢0¢0C1ee
XXXXXXXXQOXXXXXX
2140111919
XXXXXXXXZ@XXX XXX
C12022¢2020
XXXXXXXX2UXXXXXX
2100e0e02e
KXXXXXXQZ2XXXXXX
XXXXXXXXXX
XXXXXX@XCZXX¥X1¢
2101102112
XXXXXXQXOP0XXXX12
¢1o1z1e¢el
XXXXXX@X02211012
4101021112
XXXXXX2Xe¢e11¢01
¢121¢0111@
XXXXXXXY21XXXXXX
21¢1¢211¢2
XEXXXYXXXC1XXXXXX
XXXXXXXXXX
XXXXXXXXC22181XX
P10 e100
XXXXXXXXZOXXXXXX
210¢02C10¢
XXXXXXXXQOXXXXXX
V101020112
XXXXXXXXOP0XXXXXX
XXXXXXXXXX
XXXXXXXXPIXXXXXX
21020Ce0ew
KXXXXXXX@OXXXXXX
XXXXXXXXXX
XXXXQXXX0QXXXXXX
XXXXXXXXXX
XXXXJXXX20XXXXXX
XXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXX3XXXXXX¥X111
XYXX2o0120212XXX
G12@XX¥XYXXXXXXXX
191000920 XXXXXLX
0110022182 21¢XXX
€11¢22210¢212XXX
XXXZX2¥XXXXXXYXXX
XXXXguelogel1eeee
XiXX21111X XXXXXX
XXXX¥J1111XXXxX291
XXXEXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXX¥PXX¥XXX¥X111
XX¥XX¥¢11111111111
C12CXEXXXX XXXXXX
1012¢69213XXXXXXX
211¢@211111111111
0119211111111111
XXXXZ0o310XXXX201
XXXX2¢010XXXX001
XXX¥211111111XXX
XXEX21111XXXXXXX
XXXXXXXXXXXXXXXX
XXXX@1010XXXXXXX
XXXXCZoCZXXXXXXX
XXXX@0e@1XXXX111
XXXX22@10XXXX00¢
XXXX22011XXXX000

XXXXXXXXXXXX202C
14114211022022359
X120eoeeeeoeiooe
XXXXXXXXXXXXeeoe
X11111922XXX249922
X10Czeecacaeeseo
X1222220020222082
XC121XXXX0C07202
0111122¢12222002
X111121020210%00¢
0111101102222229
XXXXXXXXXXXX200¢
XXXXXXXXXXXX0022
14112911002272300
11@1@@@2@@@?@@@@
XXXXXXXXXXXXC2o0
X11111289XXX2029
licleeoeeeoeeeee
11¢10C2000C22¢0292
21111011602222920
01111011¢20022¢0
X001121000202000
X11112120210020¢
XXXXXXXXXXXXeeeo
X111110@2XXX2229
X11111000XXX0000
111112110¢000009
2111101101000000
21111211213202089

AMDCS/25 AMDASM MICRG

1211111111111111
1XXXXX1110 5L 35XX
L12TLTRLwR LBL LD
1XXTXX1110%66 XXX

s £ 00008040v01222

1XZXXZT111C G LXXX
SXEXXEXRXXTZEXXIL
1XXXXX1116X00XXX
ZXZXXEXAXXRXXXXX
1XXXZX2111€¢XCG XXX

> XXXXXXXXXXXXXXXX

1X1211¢4211%ez1ae

31 KXEFXIXYXXEXYXEXX

o
-
[¢]]
i

1114112211X431¢0
EXXXKXXXXXIXXXEXX
1XXXXX1111%¢0100

9F XXXXXXXXXXXXXXXX

1XXXXX1112X22 XXX
)R 999.99999.999899
1XXXXX1112X40JXXX
KXXXAX XX XX ZXXEYX
1119112211x1@12¢
ZXXXXXXXXXLXXXXX
1110112¢11X2012¢2
AXXXXXXXTXLXXX2X
1XXYXX1111%69160
XXXXXAXXXX A XXXXX
1XX¥XX1111X¢0129
XXXXXXXXXXLXXXXX
1XXXXX1111:0X12¢
XXX XXXXXXXEXXX
1XXXXX1111X4112@
ZXXXXXXXXXXXXXXX
1XXXXX1111X2X100

ASSEMBLER, V1.1

AXXXCIXXOOXXXXX¥
XXXXXXXXXX
XXXXCXEXPZXXXXXX
XXXXXXXXXX
XXXX2XXXOZXXXXXX
XXXXXXXXXX
XXXXYXZQ00XXXXXY
XXXXXXXXXX
XXXEXXX XX 2ZXXXXXX
XXXXXXXXXX
XXXXXX2XZoXXXX19
¢10114¢121
KXXXXX0XC0XXXX10
2131211111
KXXXXXXXZZXXXXXX
2121120220
XXXXXXXX22XXXXYX
XXXXXXXXXX
XXXXXXXX@OXXXXXX
XXXXXXXXXX
XXXXXX@X@2XX¥X¢Z1
glelleelel
XXXXXX2X20XXXX1d
¢12110212¢
XXXXXXXQUOXXXXXX
2121211211
XXXXXXX22C2XXXXXX
e1z1e11¢11
XXXXXXXXOOXXXXXX
2101210010
XXXXXXXX2OXXXXXX
21211¢¢11¢
XXXXXXXXQ2XXXXXX
J1064011001

¥XXX@2 120X XXX00¢
XXXX24121X XXX000
XXXX22112XXXX002
¥XXYeedcvooezgliele
XXXX0¢1901212101¢
1112491232128 XLX
1110¢202¢000¢3XXX
XXXX221210211XXX
XXXX021210616XXX
XXxXeo11ze11¢1e1
210¢e42100210XXX
1110630112911XXX
XXXX@eoewoLez1e
XXXX0¢ceee20c0e1?
TXXXXXXXXXXEXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

211112110103¢200
21111¢211010¢2220
¥111121121009320
111110¢¢19220¢200
011111100000¢200
X0081212020203002
Xlee101eoecodecoee
X1111111102026229
X11111111002¢200
21111ee01000200¢
X00012100C02C0C0
X202141200022309
11111221100020¢9
1111120¢10022000
FXXXXXXXXXXX0000
IXXXXXXXXXXXeoeo
XXXXXXXXXXXXoeoe

179

180

SPF
HIGH
SRS
SSR
ADD
PAS
COMs
PAR
COMR
LOW
CRAS
XNRS
XOR
AND
NOR
NAND
OR

ADR

ADRQ
LDRQ

* LDQP

Am2903 MNEMONICS

lo FUNCTION
RAMB RAM B — OUTPUT
Q Q REGISTER
SPF SPECIAL FUNCTIONS

ALU Functions

Special Functions

Fi = HIGH HIGHS

Subtract R from S S-R-1+C,
Subtract S from R R-S-1+C,
Add Rand S R+S+C,
Pass S S+C,

2's Complement S S+ C,

Pass R R+ C,

2's Complement R R+C,

Fi = LOW Lows
Complement R AND with S RAS

Exclusive NOR R with S RVS

Exclusive OR R with S RVS

AND R with S RAS

NOR R with S RVS

NAND R with S RAS

OR R with S RVS

ALU Destination Control

Arithmetic Shift Down, Results Into RAM

Logical Shift Down, Results Into RAM

Arithmetic Shift Down, Results Into RAM and Q Register
Logical Shift Down, Results Into RAM and Q Register
Results Into RAM, Generate Parity

Logical Shift Down Contents of Q Register, Generate Parity
Results Into Q Register, Generate Parity

Resuits Into RAM and Q Register, Generate Parity
Arithmetic Shift Up, Results Into RAM

Logical Shift Up, Results Into RAM

Arithmetic Shift Up, Results Into RAM and Q Register
Arthmetic Shift Up, Results Into RAM and Q Register
Results to Y BUS Only

Logical Shift Up the Contents of the Q Register

Sign Extend

Results to RAM, Sign Extend

Special Functions

Unsigned Multiply

Two’s Complement Multiply

Increment by One or Two

Sign Magnitude <— Two’s Complement
Two's Complement Multiply Last Step
Single Length Normalize

Double Length Normalize

Two’s Complement Multiply Division

Two Complement Division Correction

Am2904 Mnemonics

SHIFT
INSTRUCTIONS
o lg lg 1 lg| Mc RAM Q sio, | sio, |aio, | a0, #32"»32
MSB LSB MSB LSB
SOL [0 0 0 0 0| [Jof—=Fo =} | 2 0 z 0
SUH [0 0 0 0 1| Oi{=fi[=F | 2 1 z 1
SUL |1 0 0o 1 0| O -[=F}o-=%To| 0 z 0 z
SUH |1 0 0 1 1| O -[=11-{=1F1] 1 z 1 z
SDDH| 0 0 0 1 1| [OJ1=] z 1 z | sio,
sobL |0 0 1 1 o Qo{=F——[=F | 2 0 z | sio,
souL|1 o 1 1 o O -=3—{=10|ao, z 0 z
SDUH| 1 o 1 1 1 | — -1 Qio, z 1 z
o o 1 0 1 o O == 2 S0, z | ao,
RSU 1 1 0 1 o0 O SIO, z QIo, z
Is®lovr

ssxo{ o0 1 1 1 ol O Y=F+—_=F+ | zZ |WN@®lowva| 2 | SIO,
ROD |0 1 1 1 1 O z Qlo, Z SIO,
RDU | 1 1 1 1 1 O @ Qio, z SO, z
soms| 0 o 1 o 1| OM—=——v 0= | 2z My z | sio,
sMs [0 o o 1 o Jo=H"Sr=1 | z 0 z | my | sio
sooc| o o 1 1 1| DolT=F—T=H | z 0 z | sio, | aio,
souc| 1 o 1 o o| O—{=F—{=710|ao, z 0 z | sio,

Microstatus Register Instruction Codes

RSTI
SWAP
SHLD

Reset uSR
Register Swap
Hold Status

0 - ux
My — ux

Machine Status Register Instruction Codes

LMA Load Yz, Yc, YNv YOVH Yx - M)(
To MSR

RSTA Reset MSR 0 - My

SHOLD Hold Status

Microregister Condition Code Output (CT)

MiZ Zero pnz — Cy
MIO Overflow move = .Cr
MIC Carry ue - Cr
MIS Sign un = Cp

Machine Register Condition Code Output (CT)

MAZ Zero Mz - Cy
MAO Overflow Movkr = Ct1
MAC Carry Mc = Cy
MAS Sign My = Cq

181

182

APPENDIX C

MICROPROGRAM BITS

SRR 2 O O O R O A
D3 D2 Di DO D3 D2 D1 DO D3 D2 Di DO
cp cp cp }—cLock
Am2918 Am2918 Am2918
3 OE OE
Q3 Q2 Q1 Q0 Y3 Y2 Y1 YO Q3 Q2 Q1 Q0 Y3 Y2 Y1 YO Q3 Q2 Q1 Q0 Y3 Y2 Y1 Y0
L.
2
3
4
5
6
7
8
9
10
1"
12
D C B A g D C B A g D C B A g
ENT RCO ENT. RCO ENT
Am25LS191 Y — Am25LS191 vof— Am25LS191 o q
RCO cp_ LDJo——] cp Lo jo———— cp Lo jo——— —> 13
[l l cLock
o7
D6
D5
D4 PLIg — 13 so 14
TEST INPUTS D3 Y|/ Pus—n2 st 15
D2 Am25LS2535 PLI7 — 1 FE 16
D1 PL1IE — 10 PUP 17
Do Am29811 [}—d
Ao AT
RE —]°€ ENC
",‘gl_ c B A OE = { TEST VAP
= I L
o7
D6
05
TEST INPUTS D4
D3 vy — 18
D2 Am25LS2535
o1 .
Do
-l- 4 cL
- RE
_F gg._c B A OF
24 p22 21 ,.L PL23 PL23

183

DATA BUS
of 2| of af =f of o
a| 8| a| &| af &| 8| 8
D7 D6 D5 D4 D3 D2 D1 DO
cP — crLock
Am25LS377
OE JO— PL25
Q7 Q6 Q5 Q4 Q3 QG2 Q1 QO
A7 A6 A5 A4 A3 A2 Al A0 A7 A6 AS A4 A3 A2 Al A0 A7 A6 A5 A4 A3 A2 A1 A0
cst1 cs1 cst
Am27s21 Am27521 Am27521
cs2 cs2 cs2
Q3 Q2 Q1 Q0 Q3 Q2 Q1 Qo l Q3 G2 01_Qo
1
2
3
4
5
6
7
8
9
10
"
12 1
13
14>— so D3 D2 D1 DO so D3 D2 DI DO so D3 D2 D1 Do RO
15>— st st st A1
16 >— FE FE FE R2
17 >— PUP PUP PUP R3
Cn Cn+4 Cn Cn+4 Cn |4
Am2911 Am2911 Am2909
cLock —{ cp P cp
oR3 |— 13
OR2 |— 12
pL73 — RE RE RE OR1 n
ZERO ZERO ZERO ORoO 10
= = T3
OE Y3 Y2 Y1 YO OE Y3 Y2 Y1 Y0 ——-0| OE Y3 Y2 Y1 YO Am29803
= l l’ I "
To
YA11 YA10 YA9 YA8 YA7 YA6 YAS YA4 YA3 YA2 YA1 YAO _
3]
OE2

PL29
PL28
PL27
PL26
T3
T2
T

To

]

APPENDIX C

MICROPROGRAM MEMORY
YA8 1
YA7 2
YA6 3
YAS 4
YA4 5
YA3 6
YA2 7
YA1 8
YAO r] 9
A0 A1 A2 A3 A4 A5 A6 A7 A8 A0 A1 A2 A3 Ad A5 A6 A7 A8 A8 A7 A6 A5 A4 A3 A2 AT AO
cLock —| cp cp

El Am29775 El Am29775 3 Am27813 L—) 10

2 E2

00 O1 02 03 04 05 06 07 00 O1 02 03 04 05 06 O7 o0 o01 02 03

= ol ol =] 2] 2| = ~] © w|l o of ~| o w| = o = < o -
a| 8 5 8] & & 5| & gl 2| 2| &| e e 2| 2 3 g s F
a| 2| & &) 2| &a] & & g| z| @] & & & & & = 2 = <
PIPELINE BITS | MICROPROGRAM BITS |

12
13
14
15
16
17
18
| | |)
A0 A1 A2 A3 A4 A5 A6 A7 AB AD A1 A2 A3 A4 A5 A6 A7 A8 AO A1 A2 A3 Ad A5 A6 A7 A8
CLOCK ——{cP cp cP —> 20
El Am29775 5 Am29775 51 Am29775 — 21
& B2 B2 }—)22
00 01 02 03 04 05 06 O7 00 01 02 03 04 05 06 07 00 O1 02 03 04 05 06 O7
/
] \23
J

185

1
2
3
4
5
6
7
8
1
A0 A1 A2 A3 A4 A5 A6 A7 A8 A0 A1 A2 A3 A4 A5 A6 A7 A8 AD A1 A2 A3 A4 A5 A6 A7 A8 A0 A1 A2 A3 A4 A5 AG A7 A8
10>—cs Am27513 & Am27513 3 Am27513 cs Am27513
00 01 0. 03 00 O01 02 03 00 01 02 03 00 01 02 03
gl & § g 3 g 2% 2 Y - EY R Y Y S -t
MICROPROGRAM BITS
CLOCK Dt D2 D3 :

cP
Am25LS08
EN _ _
Q1 Q1 Q2 Q2 Q3 Q3

7

Qo

Qo
Tz| Ts| Tsl

PL23

PIPELINE BITS

e e

CLOCK ——{ cP

Am25LS377

17
16
15

1]

13

12

n

10

1/0 CONTROL BITS

"
12
13
14
15
16
17
18
19 I]
AO A1 A2 A3 A4A5 A6 A7 A8 AD A1 A2 A3 A4 AS A6 A7 A8 A0 A1 A2 A3 A4 A5 A6 A7 AB A0 A1 A2 A3 Ad A5 A6 A7 A8

20>—{cp cP cp P
21> &l Am29775 El Am29775 E Am29775 El Am29775

— & B2 E2 E2

00 O1 02 03 04 05 06 O7 00 01 02 03 04 05 06 O7 00 01 02 03 04 05 06 O7 00 01 02 03 04 05 06 O7

ya

23\ PIPELINE BITS

186

APPENDIX C

DATA BUS ‘1
el ===l =] 2 S 2 sl = o1 014 1
HEEHHEEHER 5| 8| 8f 3| 8(8| 5{8 sovlonln:{
D7 D6 D5 D4
cLock —— cp Am2920
CR O E I Yo s va_ [/
o l 4
n 5
6
6
7
8
PLa1 PLAG 9
10
ez 2 8 % 3z 2 9
3 8 T 3 8 T 3 3
DA3 DAZ DAl DAO DB3 DB2 DB1 DBO
P —f 0
pLas — 1
PLas — 1
cp pLas —
' PLIE —] 1
Y7 Y6 Y5 Y& Y3 Y2 Y1 YO Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO cp o }— pLsa PLI7 —] 15
&R R nf— puss pLas —le
cLock —— cp 12— PLS6 P39 —— 17
— Am2920 . Am2520 ol— pus? pLao — 18
1z i 14 f— puss 20 —] a0
15 f— puso
D7 D6 D5 D4 D3 D2 DI_DO 07 D6 D5 D4 D3 D2 DI_DO Al At
16— PLEO a2 — A2 Am2903
17— pust 23— s
18— pLez
1o — pLes 80 — B0
1o |— pLeo 81— 81
11— pLes 82 — &2
12— pLes 83— B3
aion 2] G103
sion] si03 a0 (—> 11
:c [P 5100 —> 12
— _‘ — ovF| ovm oN > 13
X m;
alzlel szl o]l = N e s ") son =
AHBHBEEBE HEBEHEEEE 3 z I E‘j’
P CP _EA iEN GEB OEV Y3 Y2 Y1 Yo WE
00 Y15 v1a v13 vz
—
OECY fo— PLE8
SE PLIS PLS3 14
OECT fo— pLE7 >15
CEx o— PL1a e 16
e fo— pLes PL32 17
D7 D6 D5 04 DI D2 DOV DO 07 D6 D5 D4 D3 D2 DI 0O 18
cp ox
cp [cLock - PL30 19
CrR Ez 20
Am2920 Am2920 & L
ot 21
. N
EOVR 22
Y7 Y6 Y5 Y4 Y3 Y2 V1 YO Y7 Y6 Y5 Ya Y3 Y2 V1 YO YC_¥Z_YN_YOVR
2 23
B 24
" 25
3
elelelolzle cLock
elzlefolzlelale of o] | of «f -
8 g g 8 sz —|
L5t —
{ ADD BUS L0 0
pLag — I
Am25L8157
pLa8 — 82
pLa7 —f — 83
pLes —
pLas —

e B

cLock

2

%)

187

1) oATA BUS

o7 o1

IEEEE

©7 0s D5 D4 D3 D2 01 DO

D“l

e Amas20
T——_T OE E Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
4
5
6
7
8
9
10
S 2 2 2 : 2 3 3 s 2 2 : &5 8 8 3 2 v z 2 2 & 5 8
3 5 3 88 8 3 i 33 & 588 38 § i 8 88 88858 8
DA DAZ DAT OA0 D83 082 081 080 DA DAz OAT DAV 083 D8z 081 0BD TAS DAz DAY DAT g3 0Bz DAY DB
P —{ 10 P —] pLat—] 10
pLas —{n Pz —{n pLss —{n
P —] e Pt —] 2 P —] 2
pLos —{ 18 puas —J1 pLas —
pas —{u pLas —] e pLis —] 14
a7 —{s par —is Pz — 1
pias — e pus —J 16 pLis —] 16
pLas —w pLas —{ 1 pLas — 1
pLao — e pLao — 18 pLao —] 18
A0 — A0 Al)—‘An A0 — A0
A1 — A1 A1 —f A1 Al — A1
A2 — A2 ‘Am2903 A2 —f A2 Am2903 A2 — A2 Am2903
— w—n n— w0
80— 80 80 —] 0 80 —] &0
o1 —{ et o1 —] ot a1 —] o1
82 — B2 82 —f B2 82 — B2
83 — 83 83 — B3 83 — 83
N> oo a0 awoa a0 a3
12>—————sio3 100 s103 100 103 100
13>— 3 oN 3 oN 3 oN
—¢& [e [S3 G (=3
z ss —z s — z iss
cP EA [EN OEB OEV WE CcP EA IEN OEB OEV WE cp EA iEN OEB GEV WE 1_
Y11 Y10 Y8 Y8 Y7 Y6 Y5 Y4 Y3 v2 vi Yo
A N —
14
15
16
17
18
19
20
Veus
o I TTT1 1111
z [1] TTT
MEIG > 5 Iz 18 18 |
S Am2902A & § J
23
24
25

Central Processing Unit

Chapter V
Program Control Unit

Introduction

In order to access instructions and data in an orderly manner
within a computer, a Program Control Unit is usually used to
provide the most efficient mechanism for program control. A
program is a set of instructions which direct the processor to
perform a specific task. Ordinarily, program instructions are
stored in sequential memory locations. During the normal pro-
cessing of a program, an instruction is fetched from the location
specified by the program counter, the instruction is executed, the
program counter is incremented, and another fetch and execute
cycle begins. The addressing mechanisms that such control unit
might employ are various. Indeed there are some machines that
literally use dozens of addressing modes to fetch instructions and
data. In this discussion of program control units, several of the
addressing modes and their common implementation techniques
will be discussed. The addressing modes used commonly in
today’s machines include register, immediate, direct, indirect,
index, and relative and various combinations thereof.

Data Formats

Technically, an instruction set manipulates data of various length
words. Generally speaking, most 16 bit minicomputers can ma-
nipulate data of three different word lengths: 8-bit bytes, 16-bit
words and 32-bit double words. This data may represent fixed
point numbers, floating point numbers, or logical data. The datais
used as operands for the instructions, and is manipulated as
indicated by the particular instruction being executed.

Typically, fixed point data is treated as signed 15-bit integers in
the 16-bit representation or as signed 31-bit integers in the 32-bit
double length notation. Positive and negative numbers are rep-
resented in the ordinary 2's complement notation with the sign bit
carrying negative weight. Positive numbers have a sign bit of zero
and negative numbers have a sign of one. The numerical value of
zero Is always represented with all bits LOW.

Floating point numbers consist of a signed exponent and a signed
fraction. Many different formats are used by manufacturers in
expressing floating point data and these variations will not be
described here. Let it simply suffice to say that the floating point
number represents a quantity expressed as the product of a
fraction times the number 2 raised to the power of the exponent.
In some cases, the number 16 is raised to the power of the
exponent. Typically, all floating point numbers are assumed to be
normalized prior to their use as operands. No pre-normalization is
performed and all results are post-normalized. Usually, the float-
ing point instruction set will normalize un-normalized floating
point numbers.

Logical operations are used to manipulate 8-bit bytes, 16-bit
words or 32-bit double words. All bits participate in the logical
operations.

Instruction Formats

Various minicomputers use different types of instruction formats
ranging from the very simple straight forward formats to the more
complicated difficult to decode formats. For example, a register to
register format can consist of a simple 8-bit opcode and two 4-bit
source operand specifiers. On the other hand, it may consist of a
byte or word specifier, an opcode specifier, source and destina-
tion register specifiers, and mode specifiers for each of the source
and destination register selections. Again, it is not the purpose of
this application note to describe all of the trade-offs In selecting
instruction formats but rather to select a simple format such that
the student of bipolar microprogrammed microprocessors can
understand the techniques used by instructions for operating the
machine.

Thus, we will use a few 16-bit and 32-bit formats in this application
note to demonstrate the function of the program control unit in
various types of instruction execution.

Instruction Types

For purposes of this application note, we will define nine different
instruction types using various addressing modes. As we define
these instruction types, we will use the basic ADD instruction as
the example in all cases. It should be recognized that the opera-
tions of the instructions are similar for all the arithmetic as well as
logical type operations. However, by using the ADD instruction it
will be easier to describe the operation of each of these instruc-
tions rather than to try to be very general in their description.
Figure 1 shows all nine instruction types with their appropriate
names. As is seen, four &f the instruction types are single 16-bit
word instructions while five of the instruction types are double
word or 32-bit, instructions. The advantage of the double word
instructions is that a second word can be used as an address
whereby it provides an index value or a second word can be used
for data which is used as an immediate value.

Register-to-Register Instructions

When the register-to-register (RR) instruction is executed, It is
simply a technique for selecting two of the machine’s internal
working registers in order to execute the desired operation. The
instruction is fetched from memory and placed in the instruction
register and the source register R2 and second source register
R1 are selected as the two source operands for the ALU. Register
R1 is the destination register in addition to being a source register
and the results of the ALU operation will be placed in the register
specified by the R1 field. In the instruction format shown in Figure
1 for the register-to-register instruction, the 8-bit opcode field
specifies the machine operation to be performed. The next 4-bit
field, R1, in the instruction format specifies the address of the first
operand. In most machines, the R1 field is normally the address
of a general register. The 4-bit R2 field in the register-to-register
instruction format specifies the address of the second operand;
this also is normally the address of a general register. In most
machines, the R1 field also in addition to being a source operand
is the destination general register select. Thus, the results of the
operation are stored in the register selected by the R1 field.

The RR instructions are used for operations between registers.
We are assuming in this discussion that the machine contains 16
general registers which function as accumulators or index regis-
ters in all arithmetic and logical operations. Each general register
contains a 16-bit word consisting of two 8-bit bytes. For arithmetic
operations, the most significant bit is considered the sign bit using
2's complement representation. The general registers of the
machine are usually numbered from 0 to 15 (decimal) and written
in hexadecimal notation as 0 through F. In this example, the
general registers have not been given specific functional assign-
ments. However, in some machines certain registers are as-
sumed to perform specific functions. These can include specific
stack pointer registers and program counter registers. Figure 2
depicts the typical signal path for executing the RR instructionin a
bit-slice system.

The actual operation of the Register-to-Register Instruction is as
follows. First, the instruction is fetched and placed in the instruc-
tion register as shown in Figure 2. This is part of the fetch routine.
Next, the instruction is decoded via the mapping PROM and the
appropriate microinstruction in the microprogram memory
selected and placed in the pipeline register. Then, the instruction
is executed where the two registers in the general purpose regis-
ters of the Am2903 are selected by the contents of the R1 and R2
fields of the instruction register. The actual microcode required to

191

192

Register-to-Register ADD INSTRUCTION
0 7|18 11]12 15
OP R1 R2 (R1) < (R1) + (R2)

Register-to-Memory Reference

0 15 .
oP | Rt | x2 (R1) < (R1) + [(X2)]
Memory-to-Memory
0 15
op [x1i | xe [oxn] < [xn] + [x2)]
Register Short Immediate
0 15
OP | Rt Jpata (R1) < (R1) + DATA
Register-to-Indexed Memory
0 15|16 31
oP | R | xe ADDRESS (R1) < (R1) + [(X2) + A]
Register-to-Memory Immediate
0 15|16 31
oP | Rt] xe DATA (R1) < (R1) + DATA + [(X2)]
Memory-to-Memory Indexed
0 15|16 31
oP | x1 | xe ADDRESS [x1)] < [(x1)] + [(x2) + A]
Register Inmediate
0 15|16 31
oP [R T DATA (R1) « (R1) + DATA
Memory Immediate
0 15|16 31
oP | x1 | DATA [(x1)] < [(X1)] + DATA

Note' (R1) means the contents of register 1.
[(x1)] means the contents of the word whose address Is in R1.

Figure 1. Various Instruction Types for the ADD operation.

INSTRUCTION REGISTER

OP CODE l Rt | R2

]

REGISTERS

Am2903

Am2910

MPR-562

Figure 2. Register-to-Register Instructions Select Two Registers in the Am2903 Array for Instruction Execution.

execute this instruction is shown in Figure 3. Here, we assume
the Program Counter (PC) value is contained in one of the gen-
eral registers and can be selected by microcode as well as the R1
and R2 fields. This was shown in Chapter 3.

Register-to-Memory-Reference

The register-to-memory-reference instruction is one whereby the
contents of the memory location pointed to by the register iden-
tified with the X2 value is fetched from memory and then added to
the register value specified in the R1 field. The resuit of this
operation is placed in the register specified by the R1 field.

Figure 4 shows a general block diagram of the hardware used to
implement the instruction types described in the first part of this
application note. As shown, the memory address register can be
driven by either the Y outputs or the DB outputs of the Am2903s.

In addition, the Y outputs of the Am2903s can be placed onto the
memory data bus by means of a three-state buffer. The computer
control unit is intended to be representative of that described in
Chapter 2 of this application note series. For purposes of this
discussion, we assume the program counter (PC) is one of the
general purpose registers within the Am2903 register stack.
Later, we will change this concept and use the PC external to
Am2903.

The operation of the register-to-memory-reference instruction as
depicted in Figure 1 can best be described by referring to Figure
5. Here, we see the first three microinstructions that represent the
fetch routine for the currently described machine. First, the pro-
gram counter is placed in the memory address register and the
program counter is incremented and returned to the PC register.

Microinstruction

Microcycle Time
T4 |T5 | T6 | T7 | T8 | T9 | T10 | T11 | T12

Operation TO | T1 | T2 | T3
PC -MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
R1+R2 - R1

Figure 3. Register-to-Register Instruction Microcode.

ccu ——ﬁ_—_—_‘-l

I

INSTRUCTION
REGISTER

Am2903

!

SEQUENCER

J

MICROPROGRAM
MEMORY

l

PIPELINE

| |
| |
| |
| |
| |
| s |
| |
| |
| |
| |
| |
| |

REGISTER

\————————————= CONTROL

i L
_ém

A B GENERAL
PURPOSE | Q l
REGISTERS

MEMORY
ADDRESS
REGISTERS

DATA

MEMORY
(MEM)

ADDRESS

MPR-563

Figure 4. Simple Memory Addressing Scheme with PC in the ALU.

193

194

Microinstruction

Operation TO | T1 | T2 [T3

Microcycle Time

T4 |T5 ([T6 | T7 | T8 | T9 [T10 | T11 | T12

PC -MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) - MAR

MEM + R1 - R2

X

Figure 5. Register to Memory Reference Instruction Microcode.

Next, the instruction is fetched from memory and placed in the
instruction register within the CCU. Thirdly, the instruction is
decoded via the mapping PROM and the appropriate micro-
instruction selected and placed in the pipeline register. To exe-
cute this particular register-to-memory-reference instruction, it is
necessary to place the contents of the register specified by the X2
field into the memory address register. Then the contents of
memory can be fetched and the operand added to the value
currently contained in the register specified by the R1 field. The
result of this operation is placed in the register specified by the R1
field. All totaled, the execution of this register to memory refer-
ence instruction requires five microcycles as depicted in this
example.

Memory to Memory

This instruction is one whereby the memory location pointed to by
the contents of the register specified in the X2 field is fetched and
the memory location pointed to by the contents of the register
locations specified in the X1 is fetched and these two operands
are added together. At the completion of the instruction, the
resultant is placed in the memory location as defined by the
contents of the register specified in the X1 field.

The Memory to Memory Instruction operation is also depicted by
the block diagram shown in Figure 4. In fact, all of the next six
instructions to be defined utilize the block diagram of Figure 4 to
represent the hardware required for implementing these instruc-
tions.

The microcode required for the memory to memory instruction is
detailed in Figure 6. The first three microinstructions represent
the fetch routine. In the fourth microinstruction, the contents of the
register specified by the X2 field are placed in the memory ad-
dress register. Then, in the fifth microinstruction the contents of

this memory location is loaded into the Q register within the
Am2903. This value is temporarily held for use later. In the sixth
microinstruction, the contents of the register specified by the X1
field in the instruction is placed in the memory address register.
On the seventh microinstruction, this operand is fetched from
memory and added to the contents of the Q register with the result
being placed in the Q register. In the eighth microinstruction, the
current contents of the Q register is returned to the memory
location. This memory location is specified by the contents of the
register specified by the X1 field and is still in the memory address
register. Thus, we have used the Q register as a temporary
holding register for the data used in this instruction.

Register with Short-Immediate

This instruction is a technique whereby a 4-bit field is added to the
contents of the register specified by the R1 field. Thus, short
jumps or branches can be executed within a range of zero to
fifteen memory locations. The more significant 12-bits of the word
are zero filled.

The register with short immediate instruction operates very simi-
lar to the register-to-register instruction. The microcode for this
instruction is shown in Figure 7. The only difference between the
register-to-register instruction and the register short-immediate
instruction is that instead of adding operands specified by the R1
and R2 fields, we take a data value contained in a four-bit field in
the instruction as depicted in Figure 1 and add it to the contents of
the register specified in the R1 field. The results of the operation
are returned to the register specified by the R1 field. This addition
is performed by taking the 4-bit data value shown in Figure 1 as
the DATA and zero filling the twelve most significant bits. This
gives us a 16-bit word ranging in value between zero and fifteen.
Thus, short jumps can be implemented using this technique.

Microinstruction

Operation TO [T1 | T2 | T3

Microcycle Time

T4 | T5 | T6 | T7 | T8 [T9 | T10 | T11 | T12

PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) > MAR
MEM = Q

(X1) - MAR
MEM + Q - Q
Q - MEM

Figure 6. Memory to Memory Instruction Microcode.

Microinstruction

Microcycle Time

Operation TO | T1 | T2 T4 | T5 | T6 ([T7 | T8 | T9 | T10 | T11 | T12
PC -MAR; PC + 1 > PC X
Fetch Inst to IR X
Decode X
R1 + Data = R1

Figure 7. Register Short Inmediate Instruction Microcode.

Register to Indexed Memory

The 16-bit word in the register defined by X2 in the instruction is
added to the address that is the second word of memory. Then,
this address is used to fetch an operand from memory which is
added to the contents of the register pointed to by R1. The results
of this operation are then placed in R1. The instruction format for
this instruction was shown in Figure 1.

The Register to Indexed Memory Instruction is shown is Figure 8
and executed in the following manner. First, the current PC value
is placed in the MAR and PC + 1 is returned to the PC register.
Next, the instruction at this memory location is fetched and placed
in the instruction register. On the third cycle this instruction is
decoded and the contents of the microprogram memory placed in
the pipeline register. On the fourth microinstruction, the PC value
is again placed in the MAR and PC + 1 is returned to the PC
register. On the fifth microinstruction, the value at this location in
memory is fetched and added to the contents of the X2 register

with the result being placed in the MAR. And on the sixth mic-
roinstruction, the operand pointed to by this address is fetched
and added to the contents of R1 with the result being placed in the
register pointed to by the R1 field of the instruction.

Register to Memory Immediate

In the register to memory immediate instruction, the contents of
the memory location pointed to by the register specified in the X2
field is fetched from the memory and the data value whichiis in the
second word of the instruction is also fetched from memory and
added to it. This result is then added to the contents of the R1
register and the final result replaces the value currently in R1.

The register to memory immediate instruction as shown in Figure
1 is implemented using the microcode shown in Figure 9. Again,
the first three microinstructions are the fetch routine. The fourth
microinstruction is used to take the contents of the register
specified by the X2 field and place it in the memory address

Microinstruction Microcycle Time
Operation TO(T1 | T2 (T3 |T4|T5 |76 | T7| T8 | T9 | T10 | T11 | T12
PC -MAR; PC + 1 =»PC X
Fetch Inst to IR X
Decode X
PC - MAR; PC + 1 = PC X
MEM + X2 - MAR X
MEM + R1 = R1 X
Figure 8. Register to Indexed Memory Instruction Microcode.
Microinstruction Microcycle Time
Operation TO[(T1 | T2 | T3 |T4|T5|(T6 | T7 | T8 | T9 | TI0| T11 | T12
PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) - MAR

MEM + R1 = R1
PC - MAR; PC + 1 > PC
MEM + R1 - R1

Figure 9. Register to Memory Immediate Instruction Microcode.

195

196

register. Next, the operand at this memory location is brought into
the Am2903’s and added to the contents of the register specified
by the R1 field with the results returned to that register. The sixth
microinstruction is used to set up the memory address register to
fetch the second word of the instruction. The seventh micro-
instruction brings this data value into the Am2903 ALU via the
data bus and adds this value to the contents of the register
specified by the R1 field. The result of the operation is placed into
the register specified by the R1 field.

Memory to Memory Indexed

The memory to memory indexed instruction is one whereby the
contents of the register specified in the X2 field are added to the
second word of the instruction to form a new address. This
address is then used to fetch an operand which is added to the
operand selected by taking the contents of the register specified
in the R1 field and using that as a memory address to fetch an
operand. The result of this addition is then replaced in the mem-
ory location pointed to by the contents of the register specified in
the X1 field.

The memory to memory indexed instruction is probably the most
complicated of the instruction formats described in the application
note. In all, nine microinstructions are required for its implemen-
tation. Basically, the first three microinstructions are used to fetch
the instruction from memory, place it in the instruction register,
and decode the instruction for initial operation. Again, the basic
fetch routine. Microinstruction number 4 sets up the memory
address register to fetch the second word of the instruction and
microinstruction number 5 is used to bring this value from mem-

ory into the Am2903 ALU where itis added to the X2 register. The
results of the addition are placed into the memory address regis-
ter during this microinstruction. This value is used to fetch a value
from memory which is placed in the Q register using micro-
instruction number 6. In the seventh microinstruction, the con-
tents of the register pointed to by the X1 field are placed in the
memory address register so that microinstruction eight can be
utilized to bring this memory value into the Am2903s where it is
added to the contents of the Q register with the result being
placed into the Q register. Microinstruction number 9 is used to
place this value back into the rhemory location as specified by the
contents of the register pointed to by the X1 field. This memory
address is still contained in the memory address register so that
no updating is required. The total microcode required to imple-
ment this instruction routine is shown in Figure 10.

Register Inmediate

The register immediate instruction is a very useful instruction
which allows data to be added to the contents of the register. In
this example, the second word of the instruction is fetched and
added to the contents of the register specified in the R1 field.

Figure 11 depicts the microcode used to implement the register
immediate instruction. Here, the first three microinstructions are
the fetch routine for the instruction. The fourth microinstruction of
this routine sets up the MAR to fetch the second word of the two
word instruction. The contents of this memory location is brought
into the Am2903 ALU and added to the contents of the register
specified by the R1 field. The result of this operation is placed in
the register specified by the R1 field.

Microinstruction

Operation TO | T1 | T2 | T3

Microcycle Time

T4 | T5 | T6| T7 | T8 | T9 | T10 | T11 | T12

PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X

MEM + X2 - MAR
MEM - Q

(X1) > MAR

MEM + Q - Q

Q - MEM

PC - MAR; PC + 1 - PC X

Figure 10. Memory to Memory Indexed Instruction Microcode.

Microinstruction

Operation TO | T1 | T2 | T3

Microcycle Time

T4 | T5 | T6 | T7 | T8 | T9 | T10 | Ti1 | T12

PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X

MEM + R1 - Rt

PC - MAR; PC + 1 - PC X

Figure 11. Register Inmediate Instruction Microcode.

Memory Immediate

The memory immediate instruction is used to add immediate data
contained in the second word of the instruction to a location in
memory. The memory location is contained in the register
specified in the X1 field of the instruction.

The memory immediate instruction is similar to the register im-
mediate instruction except that an indirect addressing scheme is
used. Again, the first three microinstructions fetch and decode the
memory immediate instruction. The fourth and fifth microinstruc-
tions are used to fetch the data value which is the second word of
this memory immediate instruction. Microinstruction number 4
sets up the memory address register and microinstruction
number 5 brings the data into the Am2903 Q register. Micro-
instruction number 6 places the contents of the register specified
by the X1 field into the memory address register so that the
contents of this memory location can be brought into the Am2903
during microinstruction number 7. Here, during microinstruction 7
the contents of the Q register are added to this value and returned
to the Q register. At microinstruction 8, the Q register is written
back to the memory location as specified by the contents of the
register pointed to by the X1 field. This value was already in the
memory address register because it was used to fetch the
operand originally at this location. The microcode for this instruc-
tion is detailed in Figure 12.

Improving Program Control Unit Performance

If we examine the microcode as shown for the various instruction
types depicted in Figure 1, we find that all of these microroutines
have several things in common. First, the very first microinstruc-
tion simply sets up the memory address register with the current
value of the program counter. In addition, this microinstruction
increments the current program counter value. The second mi-
croinstruction simply fetches the contents of memory and places
it in the instruction register. The third microinstruction is used to
decode the microinstruction, select the appropriate micromemory
word and set it into the pipeline register. Finally, the fourth micro-
instruction begins actual execution of the desired instruction. In
all of these examples and using the block diagram of Figure 4, we
find that a bottle neck occurs in the ALU because of our need to be
operating on program counter data and operand data intermixed.
We can improve the performance of the program control unit by
making the program counter an external register and using a
multiplexer to select either the program counter or the Am2903
output to load the memory address register. This is depicted in
block diagram form in Figure 13.

The first effect of implementing a program control unit with this
architecture is that one of the instruction types I1s shortened by
one microcycle. This is the register-to-memory-immediate in-
struction. The new microcode flowcharts for this instruction is

Microinstruction Microcycle Time
Operation TO | T1 | T2 | T3 |T4|T5(T6| T7 | T8 | T9 | T10| T11 | T12
PC - MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
PC - MAR; PC + 1 - PC X
MEM = Q X
(X1) = MAR X
MEM + Q ->Q X
Q - MEM X
Figure 12. Memory Immediate Instruction Microcode.
DATA
—_—t _] Am2903's
l l R | | Y
‘ ccu | PROGRAM [~ LOAD
L _, COUNTER le— count
<f" |
oE

MUX SELECT

MAR j=—— LOAD

DATA
MEMORY

ADDRESS
MPR-564

Figure 13. Memory Addressing Scheme with PC Outside of the ALU.

197

198

shown in Figure 14. In this case, we see that a PC value can be

placed into the memory address register and the PC incremented
while the ALU within the Am2903 is being used to perform either a
pass or an addition. Thus, this architectural change has made
some improvement in the thru-put of our machine.

The most important improvement in thru-put realized by the ar-
chitecture shown in Figure 13 can be seen by evaluating the
timing for sequential instructions. That is, what happens when
several instructions are executed sequentially?

To keep the examples simple, let’s visualize the microcycle timing
chart for three register-to-register instructions executed sequen-
tially. The most obvious timing chart would simply be to take the
register-to-register microinstruction flows as shown in Figure 3
and concatenate three examples of this timing chart. If we do this,
we will see that the final execution of the values of R1 + R2 return
to R1 utilize the ALU, but the program counter is not in operation.
However, the next microcycle requires placing the program
counter into the memory address register. Thus, the architecture
of Figure 13 allows us to do these two micro-operations during the
same microinstruction. If we assume three register-to-register
instructions in sequence in memory; let's call them instruction A,
B and C; the timing chart of Figure 15 results. What we see in this
diagram is that the execution of instruction A can be overlapped
with the set up the program counter in memory address register
for fetching instruction B. Thus, instead of instruction B starting at
time T4, itmay be started attime T3. This can be accomplished by
simply having the execution microinstruction also load the MAR
with the current PC value and increment the PC. From this dis-
cussion, we can see thatinstead of twelve microcycle times being
required to execute three register-to-register instructions, only
nine microcycle times will be required. We should caution that if
the reader counts the microcycles in Figure 15, he will arrive at 10
microcycle times being required. This leads us to our next point.

If we examine all of the instructions described earlier in this
application note, we will find that in all cases, the execution of the
instruction (the last microcycle) can be overlapped with the first

microinstruction of the fetch routine. Thus, the architectural
change shown in Figure 13 not only allows three of the instruc-
tions to execute faster during their total microcode, but in fact all
microinstructions can be executed at least one microcycle faster
because of the ability to overlap the first microcycle of the fetch
routine with the execution of the instruction. This architectural
change therefore saves one or two microcycles depending on the
instruction.

In Chapter 9 we will show how further overlapping at the machine
instruction level can allow us to execute a register-to-register
instruction during every microcycle, effectively; rather than every
three microcycles as shown in Figure 15. At the present time, let
us simply leave the discussion at this point.

Subroutining

An implementation technique that is common to the different
addressing modes is the subroutine (also called stack and link).
The subroutine allows sections of main program to access a
common subsection of the program. The general effect is to allow
less lines of machine code to be written for any given program that
employs subroutines.

Figure 16 shows an example of a subroutine within the program.
The main program executes instructions until it gets to instruction
52 which is a call to subroutine. This instruction puts address 80 in
the program counter while saving address 53 in a separate reg-
ister called Return Register. The program continues on from
address 80 to address 85 where it encounters the return from
subroutine command. The return-from-subroutine command
takes a value out of the return register and puts that into the
program counter. At that point the program counter continues
down in the main body of the program until it reaches address 57.
At this time, another call to subroutine may occur forcing the
program counter back to the value of 80 while putting the value 58
into the return address. The subroutine is executed and at ad-
dress 85 the return command is again encountered. At this point,

Microinstruction Microcycle Time
Operation TO|T1 (T2 | T3 |T4|T5|T6| T7 | T8 | T9 | T10| T11 | T12
PC -MAR; PC + 1 = PC X
Fetch Inst to IR X
Decode X
(X2) > MAR X
MEM + R1 - R1 X
PC - MAR; PC + 1 > PC X
MEM + R1 > R1 X
Figure 14. Register to Memory Immediate Instruction Improved Microcode.
Microinstruction Microcycle Time
Operation TO| T | T2 | T3 | T4| T5 | T6 | T7| T8 | T9 | T10 | T11 | T12
PC -MAR; PC + 1 - PC A B C
Fetch Inst to IR A B C
Decode A B C
R1 + R2 — R1 A B C

Figure 15. Register to Register Instruction with Overlap of Execute and PC Control.

MAIN
PROGRAM
50 SUBROUTINE
51 80
52
53 82
54 83
55 84
56 85
57
58

59
60
61

MPR-565

Figure 16. Subroutine Execution.

the subroutine will return control of the program to address 58 of
the instruction stream and the main program continues to se-
quence through its instructions.

In many systems, one subroutine may very well call another
subroutine which may in turn call yet another subroutine and so
on. To accomplish this the return address linkage must now be
“nested” using a last-in first-out (LIFO) stacking arrangement.
Figure 17 illustrates subroutine nesting. In this example, the main
program contains a subroutine call or jump-to-subroutine com-
mand (JSB) at address 53. Program control 1s passed to the first
subroutine at address 88, while the return address 54 is placed in
the stack. At address 89 the of the subroutine 1 another JSB
command is encountered passing the program control to Sub-
routine 2 at address 502. The return address value 90 is pushed
onto the top of the stack. This continues in like fashion for calls to
Subroutine 3 and 4 with return address 506 and 723 being placed
on the stack. At address 785 of Subroutine 4, a Return from
Subroutine (RTS) command 1s decoded causing the return ad-
dress 723 on the top of the stack to be placed in the program
counter and the contents of the stack are “poped” up one place.

At address 725 another RTS command 1s found, causing the top
of the stack, address 506, to be placed in the program counter
and the stack I1s poped. The identical action occurs for the RTS
commands at address 507 and 92 such that control is eventually
returned to the main program and the stack 1s empty.

The LIFO or subroutine stack in the program control hardware is
shown in Figure 18. When the call from subroutine command is
decoded by the computer control unit, the pipeline register out-
puts cause the stack control to accept the output of the program
counter register and place i1t at the top of the stack. Next the
subroutine address Is brought in from the memory passed
through the multiplexer and placed in the MAR. The subroutine
address 1s also brought through the multiplexer incrementer,
through the incrementer and placed in the program counter reg-
ister to be used as a possible next source of address. The sub-
routine return address Is recovered from the stack when the
pipeline register instructs the stack control logic to place the
return address at the multiplexer. The return address i1s passed
through the multiplexer and clocked into the MAR. The return
address is also clocked into the PC register via the incrementer
multiplexer and the incrementer, for use as the next sequential
address. Figure 19 shows the jump to subroutine instruction and
Figure 20 shows the microcycles that are used in a typical call to
subroutine command using the program control hardware shown
in Figure 18. At TO the program counter is placed into the MAR
and updated. Time T1 finds the MAR accessing the subroutine
call instruction, with the instruction being placed into the instruc-
tion register. At T2 the opcode is decoded by the CCU, and the
first instruction microcode bits are clocked into the pipeline reg-
ister. At time T3, the PC is placed in the MAR. At T4 the starting
address of the subroutine is being fetched and placed into the
MAR; the stack pointer 1s incremented; the current program
counter is placed on the LIFO stack; and the starting address of
the Subroutine plus one Is placed into the program counter.

Figure 21 details the microcycle timing for a return-from-sub-
routine execution. At time zero the current program counter Is
placed into the MAR, then incremented by one. During time one
the contents of the MAR fetches the return from subroutine com-
mand, which is then clocked into the instruction register at the end
of the microcycle. Attime 2 the contents of the instruction register
1s decoded in the CCU with the control bits being clocked into the
pipeline register. During time 3 the return address on the top of

MAIN
PROGRAM

SUBROUTINE 1

SUBROUTINE 2

SUBROUTINE 4
SUBROUTINE 3
720

STACK STACK STACK STACK STACK
54 90 506 723
54 90 506
54 90
54

MPR-566

Figure 17.

Nested Subroutine Example.

199

200

stack [~ rowten
REG’TgTER
DATA BUS DA Am2903's '
Y
INCREMENTER
%]
"‘_$_ l MUX
MUX '
OF
MAR
ADDRESS
MEMORY
MPR-567
Figure 18. Subroutine Stack Architecture.
oP | | BRANCH ADDRESS
Figure 19. Jump to Subroutine (Branch and Stack) Instruction.
Microinstruction Microcycle Time
Operation TO| T | T2 (T3 | T4 |T5 (T6 | T7 | T8 | T9 | T10| T11 | T12
PC - MAR; PC + 1 > PC X
Fetch Inst to IR X
Decode X
PC - MAR; PC + 1 =>PC X
MEM - MAR; PC = STACK X
MEM + 1 - PC; SP + 1 - SP
Figure 20. Branch and Stack Instruction Microcode.
Microinstruction , Microcycle Time
Operation TO| T1 | T2 (T3 | T4 |{T5 | T6 | T7 | T8 | T9 | T10| T11| Ti12
PC - MAR; PC + 1 =PC X
Fetch Inst to IR X
Decode X
Stack - MAR; Stack + 1 = SP X
SP -1—->SP

Figure 21. Return from Subroutine instruction Microcode.

the LIFO stack is placed into the MAR, while that value plus one is stack is full and an EMPTY indication when the stack has
stored into program counter. The stack pointer is then emptied. The input to the LIFO stack is fed through a stack
decremented. multiplexer whose inputs may be D inputs or the output of the
program counter. Thus, depending upon the application, the
stack may be used as either a subroutine stack or a general
purpose LIFO stack which resides on the D bus. The incrementer
and the full adder are controlled by the Ci and Cn carry-in bits
respectively. Figure 23 details the ripple carry connections be-
tween Am2930s in a 16-bit array. The Ci input of the least signifi-
cant slice (LSS) is controlled from the pipeline register.

The basic program control hardware thus developed with some
embellishments added are contained within the Am2930 program
control unit as shown in Figure 22. The Am2930 is a 4-bit slice of
the program control unit. It therefore easily allows the address
bus to be virtually independent of the data bus in terms of width.
The Am2930 has a general purpose auxiliary register which has
two sources and two destinations. One source being the D inputs
which flow through the R multiplexer and hence into the auxiliary
register and the other source being the output of the full adder
which is the second input to the R multiplexer. The two outputs of
the auxiliary register go to the A and B multiplexers which in turn
source the A and B inputs to the full adder. The register enable pin
(RE) allows the auxiliary register to be unconditionally loaded
from the D Inputs of the Am2930. The A multiplexer selects as its
sources a logical zero, the output of the auxiliary register, or the D
inputs. The B multiplexer accepts the outputs of the auxiliary
register, a logical zero, the output of the subroutine stack file, or
the output of the program counter register as its sources.

The Ci signal is internally propagated through the incrementer of
each device using carry look ahead logic. The microprogram
memory, using the Ci input may now cause the Am2930s to
repeatedly access the same main memory instruction if so de-
sired. The full adder has its Cn input tied to ground for the LSS
device of the Am2930 array. The Cn signal is progagated in
parallel through the Am2930s.

For a faster propagation of the Cn signal the interconnection
shown in Figure 24 should be employed. The generate and
propagate pins (G, P) of the Am2902A carry look ahead

In the Am2930 design the LIFO stack is 17 words deep, allowing generator. The look ahead carries (Cn + x, y, z) are connected to
up to seventeen levels of subroutine. The LIFO stack is controlled the Cn inputs of their respective devices. The output of the
by the stack pointer logic which gives a FULL indication when the Am2930 is three-state and is controlled by the output enable pin
D RE FOLL EWPTY
0 0
4
P
STACK
; MULTIPLEXER
R
MULTIPLEXER t
RSEL*
I STACK Do Di
POINTER }—=1 A
(SP) 17 X4
AUx CE REGISTER
REGISTER STACK
(R) 1 [
RCE* RST* (LIFO)
g s
PROGRAM
A B COUNTER
MULTIPLEXER MULTIPLEXER REGISTER
N (PC)
A B
cn O \/ INCREMENTER|—(> Ci+4
FULL ADDER
CEN*
F< —3 o
g < INC*
PC
Cnta <F MULTIPLEXER
oF v —] 2
Y o 7
OEN* ~=—
RSEL* ~a—
©) RCE® ~——] e
Y CP VCC GND MPR-568

Figure 22. Am2930 Block Diagram.

201

202

DATA 1
5
INSTRUCTIONS
14 [4 4
5 5 5 5
D D D D
| | 1 |
mMSsS Lss
Am2930 Am2930 Am2930 Am2930
FROM
EMPTY ci Ci+4 Ci Ci+4 Ci ci+4 ¢i —— PIPELINE
REG
~=—— FULL Cn Cn+4 Cn Cn+4 Cn Cn+4 Cn —1
Y Y Y Y =
ADDRESS i‘ 't 4 "/ 4 j‘
TO
MAR 16
MPR-569
Figure 23. Ripple Expansion Scheme for Am2930’s.
DATA >
INSTRUCTIONS
4 4 4 a
D 5 D 5 D 5 D 5
| | 1 1
Am2930 Am2930 Am2930 Am2930
FROM
~—] EMPTY ci Ci+4 c Ci+4 Cci Ci+4 Ci j=— PIPELINE
REG
~— FULL cnj=— —GP Cn — G, P Cnfe— —GF Cn
Y \ Y \
ADDRESS /r 4 2 'E 2 * 4 2 it a
TO
MAR 16
Cn+z G2P2 Cn+y G1P1 Cn+x GOPO
cn
Am2902A £
MPR-570

Figure 24. Parallel Look-Ahead Expansion Scheme for Am2930’s.

(OE). Other features of the Am2930 include an Instruction Enable
pin (IEN). This pin allows the Am2930 array to be taken off of the
microprogram data bus thus allowing the bits that were formerly
committed to the Am2930 to be used in conjunction with other
devices. The Am2930 also includes a condition code input (CC).
The Condition Code input permits the conditional testing of a
single bit. This allows the feasibility of such techniques as condi-
tional branching at the macroprogram level. For more detailed
explanation of the Am2930, its instructions and its applications,
see the Am2930 Data Sheet. Figure 25 shows a typical system
interconnection using the Am2930. The instruction lines, Ci, RE
and the OE control pins are connected directly to the outputs of
the combination microprogram memory and pipeline registers
contained in the Am24775 devices. The condition code inputs are
obtained from the Am2904 status and control device, thus allow-
ing conditional jumps on status. Status from the Am2904 s also

fed into the test mux for use by the Am2910 for its conditional
code input. Likewise the full and empty indications from the
Am2930 are fed into the test MUX for use by the Am2910 to
ascertain the current status of the stack. If the stack is full and the
user wishes to push the data onto the stack then the current data
must be emptied from the stack under microprogram control,
using additional hardware.

Another feature of the Am2930 Program Control Unit as shown in
Figure 22 is the full adder between the program counter and Y
outputs. This allows for the execution of PC relative addressing
types of instructions. While this can be an effective addressing
scheme, it will not be covered in detail in this application note.

While the Am2930 offers advantages in small high performance
systems requiring a small LIFO stack, it is not intended to be the
solution for all program counter requirements.

Am2904
STATUS
AND STATUS
CONTROL Am2903 DATA
DEVICE —=!
MAP Y
—=1 1 °
Am2910
&t Am2930
TEST ARRAY
| cc MUX ——1 Ci
FULL, EMPTY
p—1 RE
»—=1 OF
Y
MAR
Am29775
J —L ADDRESS
DATA DATA
OTHER out MEM IN
CONTROL

MPR-571

Figure 25. System Interconnection Using the Am2930.

Using the Am2901A as a Program Control Unit

Up to this point, the discussion has concerned a general ar-
chitecture which includes 16 general registers in the ALU section
and the LIFO stack is a program control section as shown in
Figure 18. An alternative architecture and that used by most
general purpose machines, is to place the LIFO stack in main
memory. The stack pointer for the main memory LIFO stack can
be contained in the program control unit to be described in this
section. If the program control unitis built using Am2901A’s it now
has the capability of using its internal registers as the program
counter, stack pointer, upper stack bound pointer, lower stack
bound pointer, and internal temporary registers. This of course
provides considerable flexibility in the architecture and also al-
lows for a much greater repertoire of instructions to be executed.
Particularly, several stack instructions can be included in the
instruction set, most of which will use the form of the register-to-
indexed-memory instruction format as shown in Figure 1.

Another advantage of the architecture shown in Figure 25 is
speed. The Am2901A’s slightly surpass the Am2903 in speed.

Thus, a 16-bit Am2901A program control unit architecture can be
implemented and it will perform well within the microcycle times
budgeted for the system.

Looking at Figure 26 which shows the Am2901A used as a
program control unit and the Am2903 used for the general regis-
ter stacks/ALU section, we see a three-state buffer on the Y
outputs of the Am2903 connected to the data bus as well as a
three-state buffer at the input of the Am2903’s from the data bus.
This provides isolation and buffering for the bus as well as allow-
ing appropriate disconnects so that certain microcycles can be
combined to improve the overall performance of the machine. In
addition a transfer register 1s used between the Am2903's and
Am2901s to allow a microcycle to be terminated if an ALU opera-
tion is taking place within the Am2903’s. This provides higher
performance operation for the machine. In addition, a bi-direc-
tional buffer (such as the Am8304B) is used between the
Am2901A Y-outputs and the Am2903 Y-outputs. This gives the
ability to push the program counter contained in the Am2901A on
the stack for interrupt handling. In addition, values coming from
the Am2903 can be placed in the memory address register.

203

204

TRANSFER o
REGISTER
Am2901A's
%
>
OE
<
MAR
OE

T
[h o
I I R | | DA
| | Am2903's
| | v
L ccu J
OE
DATA
BUS
ADDRESS BUS
MEMORY

MPR-572

Figure 26. PCU Architecture Using the Am2901A.

Summary

The thrust of this discussion has been aimed at defining and
implementing hardware to accomplish addressing of main mem-
ory. We have shown that a speed advantage is realized if the
program counter is kept separate from the main general purpose
register stack/ALU hardware. The most general purpose program
control unit is the Am2901A. It offers several advantages in terms
of program control, stack pointer control, and stack pointer
boundary conditions. The Am2930 can be used in program con-
trol units occupying less space and including a built-in stack, but

has some speed and performance limitations. Both devices can
be used to implement the basic addressing modes associated
with the instructions described in this application note.

Another purpose of this application note is to set the stage for
Chapter 9 where we will overlap machine instructions such that
register to register instructions can be executed in a single 200ns
microcycle and the memory reference instructions can be exe-
cuted in 600ns (3 microcycles) as the effective execution time.
Also, we will expand on the use of the Am2901A as a Program
Control Unit.

2 XN «N

D 2

Chapter Vi
Interrupt

INTRODUCTION

A digital computer can be viewed as a finite state machine that
moves from state to state via the execution of a program. Inter-
rupt mechanisms provide a well-defined way of altering the flow
of states in response to outside asynchronous events (inter-
rupts). There is a wide variety of ways of handling interrupts
depending upon the system requirements. The choice of a par-
ticular interrupt mechanism can have a large impact on the
through-put and flexibility of a system. Therefore, time should be
spent carefully defining the interrupt mechanism of a new com-
puter design.

POLLING VS. NON-POLLING

One of the simplest ways to handle asynchronous events is the
polling method. With each possible event there is an associated
flag that can be accessed by the program. The processor then
interrogates each flag in order to determine If service is required.
This method trades simple hardware for software. This not only
uses memory space but also uses time for polling the flags when
no service I1s required. The polling method has low system
through-put, high real time overhead and slow response time.

In non-polling systems, the asynchronous event generates an
interrupt request signal which 1s passed to the processor. The
processor In turn suspends the execution of the current process
and starts execution of an interrupt service routine. When the
interrupt routine is completed, the processor resumes execution
of the suspended process. This system is called an interrupt
driven system because it executes interrupt service routines that
are initated by interrupt requests.

Although the non-polling method requires more hardware, it has
many advantages. Because the execution of interrupt service
routines is transparent to the current process, less thought and
time is required of the programmer of the current process. The
response time is faster because no time is spent interrogating the
other non-active interrupts, which in turn increases the system
throughput. There is less real time overhead and less memory
space required because only the service routine exists in memory
and no polling routine is required.

MACHINE VS. MICROPROGRAM LEVEL INTERRUPTS

There are two levels on which interrupts may be handled. The
first and most common is the machine level interrupt. In this
method possible interrupt requests are checked for during the
machine instruction fetch cycle. This guarantees that an inter-
rupt can only happen when a machine instruction is complete
and before a new instruction starts.

The second level of handling interrupts I1s on the microprogram
level. In the machine level interrupt system, the microprogram
has complete control of when to recognize an interrupt but in the
micrcprogram level system the microprogram can be interrupted
at any time. This method has a smaller response time for ser-
vicing interrupt requests but requires that restrictions may be
placed on the microprogram and the interrupt mechanism.
These restrictions come from setting aside space on the finite
microprogram stack in the sequencer for possible interrupt re-
quests. Special consideration may also have to be given to loop
counters.

TYPES OF INTERRUPTS

There are basically four types of interrupts based on the re-
lationship of the source of the interrupt to the processor: within
the processor, within the system, between software, and be-
tween processors. A multiprocessor has to be able to handle all
four levels of interrupts. Therefore, the interrupt structure that is
picked will have these design tradeoffs to consider.

A. Intraprocessor interrupts are those asynchronous events
that happen within the processor during the execution of a
machine instruction. This group includes such things as zero
divide, overflow, accessing restricted memory, execution of
a privileged instruction, machine failure, etc.

B. Intrasystem interrupts are interrupts created by system
peripherals such as disks, CRT’s and printers that require
service.

C. Executive interrupts are those interrupts caused by the cur-
rent program that is executing. This provides a way for the
current program to make a request of the executive (operat-
ing system) program. These requests might include such
things as starting new tasks, allocating hardware resources
(disks, line printers), communication with other tasks, etc. A
good example would be the supervisor call (SVC) in the IBM
360/370 computers.

D. Interprocessor Interrupts include those interrupts between
two Intelligent processors. For example, this class of inter-
rupts would be used to initiate data and status transfer be-
tween a local processor and a processor at a remote site.

SEQUENCE OF EVENTS FOR INTERRUPT HANDLING

When an interrupt occurs there is a sequence of six events that
happen. These events, which can be implemented in microcode
or machine code, Integrated together with the hardware com-
prise the interrupt mechanism. The sequence of events de-
scribes the steps that occur to provide for a smooth transfer from
the current process environment to an interrupt servicing envi-
ronment and back again. The sequence ensures that the proces-
sor status will be the same immediately after an interrupt is
serviced as immediately before the interrupt occurred. The
events listed in the next few paragraphs may differ in order or
overlap depending upon the machine design and application.

Interrupt Recognition

This step consists of the recognition of an interrupt request by
the processor via an interrupt request line. In this step the pro-
cessor can determine which device made the request. The
method that is used to determine which device to service is
directly related to the interrupt structure of the machine. The
different types of interrupt structures will be discussed in more
detail below.

Save Status

The goal of this step is to make the interrupt sequence trans-
parent to the interrupted process. Therefore, the processor saves
a minimum set of flags and registers that may be changed by the
interrupt service routine, so that after the service routine is
finished they may be restored.

The minimum set of flags and registers would be those which
will be destroyed in the transfer of control from the current pro-
cess to the interrupt service routine. It is then the responsibility
of the service routine to save any other registers which it might
change. The minimum set of flags and registers might include
the Program Counter, Overflow Flag, Sign Flag, Interrupt Mask,
etc. The minimum set also includes any register or flag that
needs to be saved that the interrupt service routine cannot
access.

Interrupt Masking

This step can overlap some of the other steps. For the first few
steps of the sequence all interrupts are masked out so that no
interrupt may occur before the processor status 1s saved. The
mask is then usually set to accept interrupts of higher prionty.

207

208

Some machines allow the service routine to selectively enable
or disable interrupts also. There may be different variations to
this step depending upon the application.

Interrupt Acknowledge

At some point the processor must acknowledge the interrupt
being serviced so that the interrupting device knows that it is free
to continue its task. The processor can acknowledge several
different ways. One of the ways is to have a line devoted to
interrupt acknowledge. Another method relies upon the inter-
rupting device recognizing an acknowledge when the cause of
the interrupt is serviced.

Some processor designs also use this signal as a request for the
interrupting device to send an |.D. down the data bus. This as-
pect will be discussed in more detail below.

Interrupt Service Routine

At this point the processor can call the interrupt service routine.
The address of the routine can be obtained several ways de-
pending upon the system architecture. The most trivial is when
there is only one routine which polls each device to find out
which one interrupted. Some designs require that the interrupt-
ing device put an address on the data bus so that the processor
can store it in its program counter and branch to it. Other de-
signs use an |.D. number derived from the priority of the interrupt
and put it through a mapping PROM or look-up table in memory
in order to obtain the address of the service routine.

Restore and Return

After the interrupt service routine has returned via some varia-
tion of an Interrupt Return instruction, the processor should re-

store all the registers and flags that were saved previous to the
interrupt routine. If this 1s done correctly, the processor should
have the same status as before the interrupt was recognized.

INTERRUPT STRUCTURES

There are several interrupt structures that can be implemented.
As usual there is a trade-off between hardware and software (or
firmware). Listed below are some of the more common struc-
tures used. The particular structures vary in the way that the
processor determines which device made the interrupt request.

Single Request, Multiple Poll

In this structure there i1s one request line which is shared among
all interrupting devices. When the processor recognizes an inter-
rupt request it polis all the devices to find the interrupting device
(see Figure 1). Priority is introduced via the order in which the
devices are polled. This scheme also allows dynamic realloca-
tion of priority.

Single Request, Daisy Chain Acknowledge

In this structure there 1s one request line which is shared. When
the processor receives an interrupt it sends out a signal
acknowledging the interrupt. The acknowledge signal is passed
from 1/O device to I/O device until the interrupting device re-
ceives the signal. At this point the interrupting device identifies
itself by putting an 1.D. number on the data bus (see Figure 2).
This structure requires less software, but has a static priority
associated with each interrupting device. There is also a time
delay associated with daisy chain acknowledge structure be-
cause in each device INTA signal has to pass through several
gate delays.

<

ADDRESS AND DATA >

CPU

% t

CONTROL

>

INTERRUPT

REQUEST

T

1

DEVICE
#1

DEVICE
#2

DEVICE
#3

Figure 1. Single Request, Multiple Poll.

DATA

CPU

1 l

CONTROL

INTERRUPT
IRQ

D
)

REQUEST

wra ! l

DEVICE
#1

DEVICE
#2

DEVICE
#3

INTERRUPT
ACKNOWLEDGE

Figure 2. Single Request, Daisy Chain Acknowledge.

Muiltiple Request

This structure features one line per priority level (see Figure 3).
The multiple line structure gives the fastest response time since
the interrupting device can be identified immediately. It also re-
sults in simpler interfaces n the peripheral units, in general, a
single interrupt request flip-flop. This structure allows for the
possibility of having a mask bit associated with each priority
level (device). The trade-off of this circuit is a wider bus and a
imit of one peripheral per priority level.

Multiple Request, Daisy Chain Acknowledge

This structure combines the Single Request/Daisy Chain
Acknowledge with the Multiple Request structure (see Figure 4).
For each interrupt request line there 1s an interrupt acknowledge
line which is connected to a string of devices In a daisy chain
fashion. When the appropriate device receives the interrupt
acknowledge, 1t puts an 1.D. number on the data bus.

The advantage of this structure is that a lot (more than available
interrupt levels) of devices may be handled by breaking them up

into short daisy chains. This gives a shorter access time than a
pure daisy chain with less hardware than an interrupt request
line per device. This advantage is that each device must be
intelligent to pass on the acknowledge signal which requires
more hardware In each device.

PRIORITY SCHEMES

When handling asynchronous requests one must assume that
sometimes two or more requests can happen simultaneously. In
order to handle this situation, there must be some sort of priority
scheme implemented to pick which request is serviced first.

The two most common priority schemes are the static and the
rotating structures. In the static structure, all the interrupt levels
are ordered from the lowest priority to the highest priority. This
can be fixed in software or hardware and is usually permanent.

In the rotating structure the possible interrupt requests are ar-
ranged in a circle. There i1s a pointer which points to the lowest
priority interrupt. The priority of each interrupt increases as one
travels around the circle, with the highest priority interrupt being

INTERRUPT
1RQ CONTROLLER
cpPU 2
INTERRUPT b
VECTOR 2 lo
DEVICE DEVICE DEVICE
#1 #2 #3
Figure 3. Muitiple Request.
< DATA/CONTROL >
cpu l ' T }
IRQ lo
INTERRUPT
INTA INTAo DEVICE DEVICE DEVICE | bver
v I #1 #2 #3 "
2 INTA,
2
INTA, |—
INTERRUPT ! ! !
CONTROLLER
INTERRUP’
DEVICE DEVICE pevice | lever T
-t #4 — #5 —— #6 #2
DEVICE DEVICE DEVICE | e nuPT
#1 #8 #9 -

Figure 4. Multiple Requests, Daisy Chain Acknowledge.

209

210

adjacent to the lowest priority interrupt. The lowest priority inter-
rupt pointer is changed to point at the interrupt that was just
serviced. This structure is advantageous when all interrupts
have similar priority and service bandwidth requirements.

NESTING

Nesting allows only higher priority interrupts to interrupt a pro-
cessing interrupt service routine. Nesting requires fencing off
equal and lower level interrupts. Fencing requires that the inter-
rupt structure hold the value of the highest priority interrupt being
serviced. This can be implemented with a Status Register that
holds the value as a binary encoded number or in other systems
as an In-Service Register with a different bit associated with
each interrupt.

Whether nesting is performed in microcode or not, all computers
must have machine instructions to enable and disable interrupts

I——% cLock

cp

INTERRUPT

REQUEST 0 INTERRUPT 0

CLR CLR

t Y CLR

INTERRUPT 0

CcP

INTERRUPT
REQUEST 1

INTERRUPT 1
CLR CLR

? ? CLR

INTERRUPT 1

CcP

INTERRUPT
REQUEST 2

INTERRUPT 2
CLR CLR

? ? CLR

INTERRUPT 2

cP

REaUEST 3 o 3 o o
CLR CLR

? i CLR

INTERRUPT 3

INTERRUPT 3

Figure 5.

and set and clear mask bits. With these instructions, interrupt
handlers can be written to accomplish nesting of interrupts al-
though less efficiently than when done with microcode and
hardware. In low-end computers, the interrupt structure only
prioritizes interrupts leaving nesting to the software interrupt
handlers.

A UNIVERSAL HARDWARE INTERRUPT STRUCTURE

While designing a hardware interrupt structure, the designer
should consider the specific functions that are to be achieved.
This provides for system optimization in not only hardware but
also software. In the following paragraphs is a step by step
development of a general purpose interrupt structure as related
to the design concepts involved.

Multiple Interrupt Request Handling

Since interrupt requests are generated from a number of
sources, the interrupt structures ability to handle interrupt re-
quests from several sources is important.

As implemented in Figure 5, the register configuration allows the
hardware to handle interrupt requests from several sources. The
first column of registers catches the asynchronous interrupt re-
quest. The second column of registers synchronizes the re-
quests with respect to the system. After the interrupt is serviced,
one of the CLR lines can be used to selectively clear the inter-
rupt request.

Interrupt Request Prioritization

Since the processor can service only one interrupt request at a
time, the interrupt structure should have the ability to prioritize
the requests and determine which has the highest priority. As
shown in Figure 6, a priority encoder can be put on the output of
the interrupt storage registers. The priority encoder will identify
the highest interrupt request as a binary encoded number.

Dynamic Interrupt Request Masking

The ability to selectively inhibit or “mask” individual interrupt
requests under program control is desirable. For example at
times it may be important to inhibit all interrupts except Power
Failure. As shown in Figure 7 this is realized by ANDing the
output of a mask register with the output of the interrupt storage
registers. Therefore, the mask register can be used to select
which interrupt requests will pass through to the rest of the
hardware.

Interrupt Request Clearing

Flexibility in the method of clearing the interrupt allows different
modes of interrupt system operation. Of particular value are the
abilities to clear the interrupt currently being serviced or clear all
interrupts.

PULSE
CATCHER

D Q D

REQUESTS ‘8

INTERRUPT
REQUEST
REGISTER

INTERRUPT > cP > cp

PRIORITY
ENCODER
ENCODED

Q |——<— INTERRUPT
8 3 VECTOR

cLock

Figure 6.

f~e————— CONTROL
8 CLEAR L
] 7 CONTROL 73
CLR
—t 8 INTERRUPT .8
STORAGE
VECTOR
HOLD
/8] PRIORITY /3 i INTERRUPT
7 ENCODER 7 VECTOR
8 MASK 8
>+ reaster [0
1
———D—/—- INTERRUPT REQUEST

Figure 7.

This 1s implemented in Figure 8 by use of the Vector Hold reg-
ister on the output of the Priority Encoder. This register holds the
latest interrupt request that was recognized. Before another
interrupt request is recognized, the output of the Vector Hold
register can be fed through some clear control logic to selec-
tively clear the old interrupt.

Interrupt Request Priority Threshold

The ability to establish a priority threshold is valuable. In this
type of operation, only those interrupt requests which have
higher priority than a specified threshold priority are accepted.
The threshold priority can be defined by microprogram or can be
automatically established by hardware at the interrupt currently
being serviced plus one. This automatic threshold prevents mul-
tiple interrupts from the same source.

This feature I1s implemented in Figure 8 using an incrementer
and status register which is compared with the current request.
Each time an interrupt is recognized, the status register I1s up-
dated with one plus the current level.

Interrupt Service Routine ‘“Nesting”

This feature allows an interrupt service routine for a given prni-
ority request to be interrupted in turn by a higher priority interrupt
request. This can be achieved by saving the status register be-
fore each interrupt is serviced and restoring it afterwards.

Microprogrammability and Hardware Modularity

These last two design concepts bring us to the Vectored Priority
Interrupt controller, the Am2914. The Am2914 is a modular inter-
rupt system block which is beneficial in two ways. First,

CLEAR
l CONTROL I
CLR VECTOR
HOLD
REGISTER
>_/_8, INTERRUPT
STORAGE
8
PRIORITY .3 3
ENCODER T g INTERRUPT
VECTOR
8 8
>__/_°, MASK
REGISTER
D— D
| INTERRUPT

REQUEST

I INCREMENTER

A<=8B

[COMPARE

1

STATUS
REGISTER

Figure 8.

21

212

LATCH
BYPASS I
8 1 VECTOR
P CLEARENABLE |=——
' 8 INTR | 8 INTR CLEAR FLIP FLOP
INTERRUPT [>—40f | arces [0 ReG CONTROL
INPUTS 3
_] 8]
3_sT 3BIT
VECTOR HOLD
REGISTER
8 8INPUT 3
™, 8 88IT o PRIORITY N 3 D
M- BUS MASK REGISTER ENCODER I v , IT
3-BIT v>s
COMPARATOR INTR REQUEST
AND
5 GROUP ENABLE
s LOGIC - D
INTERRUPT
At I INCREMENTER 2
INSTRUCTION |
EnABLE L o
INTERRUPT
K 4 MICRO
INSTRUCTION [>—4——] INSTRUCTION H DISABLE oi;:;fgw
INPUTS ECODE . . VERELOM
GROUP
ENABLE LOWEST GROUP
cp N STATUS STATUS ENABLED
clock VvV [REGISTER FLIP-FLOP
GROUP ADVANCE
RECEIVE
PIN SYMBOLS
OPEN COLLECTOR
[—— eutein QUTPUY
—{> outputriN
BIDIRECTIONAL THREE-STATE
o ouTPUT

vl
VECTOR
ouTPUT

INTERRUPT
REQUEST

PARALLEL
DISABLE

RIPPLE
DISABLE
GROUP
ADVANCE
SEND

STATUS
OVERFLOW

GS
GROUP
SIGNAL

Figure 9. Am2914 Block Diagram.

hardware modularity provides expansion capability. Additional
modules may be added as the need to service additional re-
quests arises. Secondly, hardware modularity provides a struc-
tural regularity which simplifies the system structure and also
reduces the number of hardware part numbers.

The Am2914 is microprogrammable, which permits the con-
struction of a general purpose or “universal” interrupt structure
which can be microprogrammed to meet a specific application’s
requirement. The universality of the structure allows standardi-
zation of the hardware and amortization of the hardware de-
velopment costs across a much broader user base. The end
result is a flexible, low cost interrupt structure as shown in
Figure 9.

PROGRAMMING THE Am2914

The Am2914 is controlled by a four-bit microinstruction field ly-I3.
The microinstruction is_executed if IE (Instruction Enable) is
LOW and is ignored if IE is HIGH, allowing the four | bits to be
shared with other functions. Sixteen different microinstructions
are executed. Figure 11 shows the microinstructions and the
microinstruction codes.

In this microinstruction set, the Master Clear microinstruction is
selected as binary zero so that during a power-up sequence, the
microinstruction register in the microprogram control unit of the
central processor can be cleared to all zeros. Thus, on the next
clock cycle, the Am2914 will execute the Master Clear function.

GROUP INTERRUPT
—=0| P7 ADVANCE DISABLE
—=0|Ps SEND GROUP |y
o SIGNAL
——Q}f P5
—=0f P4 | INTERRUPT Vo b
——0|P3 [iINPUTS 2
— g b
—=0} P1
—=0|P0 Vo
LATCH
— STATUS
BYPASS overFLow [0
-—imy
- Mg [y P——
e x5 wASK Am2914
Mg BITS STATUS{ S1 [=—w
NN [V 7y S—
-] My
—-—|M
INSTRUCTION GROUP
~O] ENABLE enasLE [0
J— 7N
—_—1i INTERRUPT
12 [INSTRUCTION REQUEST [O—
——l g
GROUP
——=] CLOCK ADVANCE RIPPLE PARALLEL
RECEIVE DISABLE DISABLE

Figure 10. Am2914 Logic Symbol.

MICROINSTRUCTION
MICROINSTRUCTION CODE
DESCRIPTION I3lol41g
MASTER CLEAR 0000
CLEAR ALL INTERRUPTS 0001
CLEAR INTERRUPTS FROM
M-BUS 0010
CLEAR INTERRUPTS FROM MASK
REGISTER 0011
CLEAR INTERRUPT, LAST
VECTOR READ 0100
READ VECTOR 0101
READ STATUS REGISTER 0110
READ MASK REGISTER 0111
SET MASK REGISTER 1000
LOAD STATUS REGISTER 1001
BIT CLEAR MASK REGISTER 1010
BIT SET MASK REGISTER 1011
CLEAR MASK REGISTER 1100
DISABLE INTERRUPT REQUEST 1101
LOAD MASK REGISTER 1110
ENABLE INTERRUPT REQUEST 111

Figure 11. Am2914 Microinstruction Set.

This includes clearing the Interrupt Latches and Register as well
as the Mask Register and Status Register. The LGE flip-flop of
the least significant group is set LOW because the Group Ad-
vance Recelve input 1s tied LOW. All other Group Advance Re-
ceive inputs are tied to Group Advance Send outputs and these
are forced HIGH during this instruction. This clear instruction
also sets the Interrupt Request Enable flip-flop so that a fully
interrupt driven system can be easily initiated from any interrupt.

The Clear All Interrupts microinstruction clears the Interrupt
Latches and Register.

The Clear Interrupts from M-Bus microinstruction clears those
Interrupt Latches and Register bits which have corresponding
M-Bus bits set equal to one.

The Clear Interrupts from Mask Register microinstruction clears
those Interrupt Latches and Register bits which have cor-
responding Mask Register bits set equal to one. The M-Bus is
used by the Am2914 during the execution of this microinstruction
and must be floating.

The Clear Interrupt, Last Vector Read microinstruction clears
the Interrupt Latch and Register bit associated with the last
vector read.

The Read Vector microinstruction 1s used to read the vector
value of the highest priority request causing the interrupt. The
vector outputs are three-state drivers that are enabled onto the
1s instruction. This microinstruction also automatically loads the
value “vector plus one” into the Status Register. In addition, this
instruction sets the Vector Clear Enable flip-flop and loads the
current vector value into the Vector Hold Register so that this
value can be used by the Clear Interrupt, Last Vector Read
microinstruction. This allows the user to read the vector as-
sociated with the interrupt, and at some later time clear the
Interrupt Latch and Register bit associated with the vector read.

During the Read Status Register microinstruction, the Status
Register outputs are enabled onto the Status Bus (So-Sj). The
Status Bus is a three-bit, bi-directional, three-state bus.

The Read Mask Register microinstruction enables the Mask
Register outputs onto the bi-directional, three-state M-Bus.

The Set Mask Register microinstruction sets all the bits in
the Mask Register to one. This results in all interrupts being
inhibited.

The Load Status Register microinstruction loads S-Bus data into
the Status Register and also loads the LGE flip-flop from the
Group Enable input.

The Bit Clear Mask Register microinstruction may be used to
selectively clear individual Mask Register bits. This micro-
instruction clears those Mask Register bits which have cor-
responding M-Bus bits equal to one. Mask Register bits with
corresponding M-Bus bits equal to zero are not affected.

The Bit Set Mask Register microinstruction sets those Mask
Regster bits which have corresponding M-Bus bits equal to one.
Other Mask Register bits are not affected.

The entire Mask Register Is cleared by the Clear Mask Register
microinstruction. This enables all interrupts subject to the Inter-
rupt Enable flip-flop and the Status Register.

All Interrupt Requests may be disabled by execution of the Dis-
able Interrupt Request microinstruction. This microinstruction
resets an Interrupt Request Enable flip-flop on the chip.

The Load Mask Register microinstruction loads data from the
three-state, bi-directional M-Bus into the Mask Register.

The Enable Interrupt Request microinstruction sets the Interrupt
Enable flip-flop. Thus, Interrupt Requests are enabled subject to
the contents of the Mask and Status Registers.

Am2914 BLOCK DIAGRAM DESCRIPTION

The Am2914 block diagram 1s shown in Figure 9. The Micro-
Instruction Decode circuitry decodes the Interrupt Microinstruc-
tions and generates required control signals for the chip.

The Interrupt Register holds the Interrupt Inputs and 1s an
eight-bit, edge-triggered register which is set on the rising edge
of the CP Clock signal if the Interrupt Input 1s LOW.

The Interrupt latches are set/reset latches. When the Latch
Bypass signal 1s LOW, the latches are enabled and act as nega-
tive pulse catchers on the inputs to the Interrupt Register. When
the Latch Bypass signal i1s HIGH, the Interrupt latches are
transparent.

The Mask Register holds the eight mask bits associated with the
eight interrupt levels. The register may be loaded from or read to
the M-Bus. Also, the entire register or individual mask bits may
be set or cleared.

The Interrupt Detect circuitry detects the presence of any un-
masked Interrupt Input. The eight-input Priority Encoder deter-
mines the highest priority, non-masked Interrupt input and forms
a binary coded interrupt vector. Following a Vector Read, the
three-bit Vector Hold Register holds the binary coded inter-
rupt vector. This stored vector can be used later for clearing
interrupts.

The three-bit Status Register holds the status bits and may be
loaded from or read to the S-Bus. During a Vector Read, the
Incrementer increments the interrupt vector by one, and the re-
sult is clocked into the Status Register. Thus, the Status Reg-
ister points to a level one greater than the vector just read.

213

214

The three-bit Comparator compares the Interrupt Vector with the
contents of the Status Register and indicates if the Interrupt
Vector I1s greater than or equal to the contents of the Status
Register.

The Lowest Group Enabled Flip-Flop is used when a number of
Am2914’s are cascaded. In a cascaded system, only one Low-
est Group Enabled Flip-Flop is LOW at a time. It indicates the
eight interrupt group, which contains the lowest priority interrupt
level which will be accepted and is used to form the higher order
status bits.

The Interrupt Request and Group Enable logic contain various
gating to generate the Interrupt Request, Parallel Disable, Rip-
ple Disable, and Group Advance Send signals.

The Status Overflow signal is used to disable all interrupts. It
indicates the highest priority interrupt vector has been read and
the Status Register has overflowed.

The Clear Control logic generates the eight individual clear sig-
nals for the bits in the Interrupt Latches and Register. The Vector
Clear Enable Flip-Flop indicates If the last vector read was from
this chip. When 1t is set it enables the Clear Control Logic.

The CP clock signal is used to clock the Interrupt Register, Mask
Register, Status Register, Vector Hold Register, and the Lowest
Group Enabled, Vector Clear Enable and Status Overflow Flip-
Flops, all on the clock LOW-to-HIGH transition.

CASCADING THE Am2914

A number of input/output signals are provided for cascading the
Am2914 Vectored Prionty Interrupt Encoder. A definition of
these 1/0 signals and their required connections follows:

Group Signal (GS) — This signal is the output of the Lowest
Group Enabled flip-flop and during a Read Status micro-
instruction is used to generate the high order bits of the Status
word.

Group Enable (GE) — This signal is one of the inputs to the
Lowest Group Enable flip-flop and is used to load the flip-flop
during the Load Status microinstruction.

Group Advance Send (GAS) — During a Read Vector micro-
instruction, this output signal is LOW when the highest priority
vector (vector seven) of the group is being read. In a cascaded
system Group Advance Send must be tied to the Group Ad-
vance Receive input of the next higher group in order to transfer
status information.

Group Advance Receive (GAR) — During a Master Clear or
Read Vector microinstruction, this input signal is used with other
internal signals to load the Lowest Group Enabled flip-flop. The
Group Advance Receive input of the lowest priority group must
be tied to ground.

Status Overflow (SV) — This output signal becomes LOW after
the highest priority vector (vector seven) of the group has been
read and indicates the Status Register has overflowed. It stays
LOW until a Master Clear or Load Status microinstruction is
executed. The Status Overflow output of the highest priority
group should be connected to the Interrupt Disable input of the
same group and serves to disable all interrupts until new status
1s loaded or the system I1s master cleared. The Status Overflow
outputs of lower priority groups should be left open (see Fig-
ure 14).

Interrupt Disable (ID) — When LOW, this input signal inhibits the
Interrupt Request output from the chip and also generates a
Ripple Disable output.

Ripple Disable (RD) — This output signal Is used only in the
Ripple Cascade Mode (see below). The Ripple Disable output is
LOW when the Interrupt Disable input is LOW, the Lowest
Group Enabled flip-flop is LOW, or an Interrupt Request is gen-
erated in the group. In the ripple cascade mode, the Ripple
Disable output 1s tied to the Interrupt Disable input of the next
lower priority group (see Figure 13).

Parallel Disable (PD) — This output is used only in the parallel
cascade mode (see below). It is LOW when the Lowest Group
Enabled flip-flop is LOW or an Interrupt Request Is generated in
the group. It is not affected by the Interrupt Disable input.

CASCADING CONFIGURATIONS

A single Am2914 chip may be used to prioritize and encode up to
eight interrupt inputs. Figure 12 shows how the above cascade
lines should be connected in such a single chip system.

—

INTERRUPT
DISABLE

+50V STATUS
overrLow [°

IR Am2914 Po.7 f—r—

GROUP

ENABLE

GROUP
ADVANCE
RECEIVE

I

Figure 12. Cascade Lines Connection for
Single Chip System.

The Group Advance Receive and Group Enable inputs should
be connected to ground so that the Lowest Group Enabled flip-
flop 1s forced LOW during a Master Clear or Load Status micro-
instruction. Status Overflow should be connected to Interrupt
Disable in order to disable interrupts when vector seven is read.
The Group Advance Send, Ripple Disable, Group Signal and
Parallel Disable pins should be left open.

The Am2914 may be cascaded in either a Ripple Cascade Mode
or a Parallel Cascade Mode. In the Ripple Cascade Mode, the
Interrupt Disable signal, which disables lower priority interrupts,
1s allowed to ripple through lower priority groups. Figures 13, 16,
and 17 show the cascade connections required for a ripple cas-
cade 32 input interrupt system.

In the parallel cascade mode, a parallel lookahead scheme i1s
employed using the high-speed Am2902 Lookahead Carry
Generator. Figures 14, 15, and 17 show the cascade’connections
required for a parallel cascade 32-input interrupt system. For this
application, the Am2902 Is used as a lookahead interrupt disable

+50V

—

STATUS OVERFLOW
INTERRUPT jO—

INTERRUPT
REQUEST

CLoCK

Am2914

DISABLE IRQ 24-31
Po7 f—F—

8
RIPPLE |
DISABLE

cP

Am2914

INT

o—
OIS [” 1pq 16-23
Po.7

8
RD [0o—

INTERRUPT
REQUEST
OUTPUT

CLOCK
INPUT

CcP

Am2914

INT

lo—
DISI” |pa 815
Po.7

RD [0—

cpP

Am2914

INT

lo—
bis IRQ 0-7
Po.7 ‘+_

RD jO—

Figure 13. Interrupt Disable Connections for

Ripple Cascade Mode.

generator. A Parallel Disable output from any group resulits in the
disabling of all lower priority groups in parallel. Figure 15 shows
the Am2902 logic diagram and equations.

In Figures 16 and 17 the Am2913 Priority Interrupt Expander is
shown forming the high order bits of the vector and status, re-
spectively. The Am2913 is an eight-line to three-line priority en-
coder with three-state outputs which are enabled by the five
output control signals G1, G2, G3, G4, and G5. In Figure 16, the
Am2913 is connected so that its outputs are enabled during a
Read Vector instruction, and in Figure 17 the Am2913 is con-
nected to microinstruction bits so that its outputs are enabled
during a Read Status Instruction. The Am2913 logic diagram and
truth table are shown in Figure 18.

The Am25LS138 three-line to eight-line Decoder also is shown in
Figure 17. It is used to decode the three high order status bits
during a Load Status instruction. The Am25LS138 logic diagram
and truth table are shown in Figure 19.

Am2914 IN THE Am2900 SYSTEM

The block diagram of Figure 20 shows a typical 16-bit mini-
computer architecture. The Am2914 i1s the heart of the Interrupt
Control Unit as shown at the bottom of the block diagram. It
receives its microinstructions from the Computer Control Unit.
The mask, Status and Interrupt vector information are passed on
the data bus. The interrupt request line from the Am2914 input
into the next microprogram Address Control unit where it can be
tested to determine if an interrupt request has been made.

Figures 21 and 22 show the detalled hardware design of two
example interrupt control units (ICU’s) for an Am2900 Computer

+50V

4700

INTERRUPT
REQUEST

OUTPUT

CLOCK

INPUT

STATUS OVERFLOW
————| INTERRUPT INTERRUPT fo
REQUEST DISABLE
Am2914 o ARALLEL
—] crock DISABLE
IRPT 24-31
d o fo——
s +50V
Am2914 .
—lcp PD b
0
L Cnx
Go
Py
8 G
-0 IR N Cay S !
DS
E G,
Am2914 p, <
Gg
—— cp PD ———O Cny2
P3
=k b p—
Am2914
cp PD
c7

Figure 14. Interrupt Disable Connections for Parallel Cascade Mode.

215

216

3 %o Py &5 5,5, Py
1 1
1 1 Ral o 1l
Chax Chey Cn+z 7
Cn+x = Go + PoCn
Chty = Gy + P1Gg + P1PoCp
Cn+z = Gy + PGy + P2P1Go + P2P1P0Cn
= G3 + P3G2 + PQPQG«] + P3P2P1GO
P = P3P2P1P0

Figure 15. Am2902 Carry Look-Ahead Generator Logic Diagram and Equations.

e b 1

Al

Am2914

Gs Gy G
mlo— 5 G4 G3

Kyl

\]
Vi

vn—‘

ol

A Vs

Am2913 Ay [—— V4

sl

Am2914

— V;
RD [0 Ao 3

&

\H

éoulﬁééé

sl

VECTOR

G2 Gi E OUTPUT

Am2914

RD [O-

Va
V2
v, — v
Vo—¢

Vo

INSTRUCTION
NABLE

I3 I3

INSTRUCTION | |2 I2
I Iy b

lo lo

Am2914

IRPTS 0-7

RD jo

A\
Vi
Vo

Figure 16. Vector Connections for both the Parallel and Ripple Cascade Modes.

System. Figure 21 shows an eight interrupt level ICU, and Figure
22 shows an ICU which has sixteen levels. In both designs, the
Am2914 Instruction inputs and Instruction Enable input are driven
by the o3 field and IE bit, respectively, of the Microinstruction
Register. Note that Am2914 Instruction inputs are enabled only
when the IE bit is LOW. Therefore, the lo.5 field of the Micro-
instruction Register may be shared with another functional unit
of the computer such as the ALU.

The Latch Bypass input is shown connected to ground so that a
Low-going pulse will be detected at any of the Interrupt Inputs.
The designer has the option of connecting the Latch Bypass input
to a pull up resistor connected to +5 volts. This makes the inputs
low level sensitive. They are clocked in by each system clock. Itis
therefore implied that the processor will have to acknowledge the
interrupt so that the interrupting device will know when to release
the interrupt request line.

I3 b T
Gy G; Gs GROUP GROUP
Ol SIGNAL ADVANCE
SEND
f GROUP
s O Ol enaBLE
Llo—oo Am2914
s,
Am2913 2
Ao e S GROUP
s ADVANCE
lo o o RECEIVE
INTR24-31
E, Gy G
i l [GROUP GROUP
1 Ol SIGNAL ~ ADVANCE
= hk GROUP SEND
ENABLE
s Am2914
Sy —9 $1 GROUP
s So ADVANCE
STATUS | o, RECEIVE
OUTPUT
S
So
GROUP GROUP
SIGNAL ADVANCE
GROUP SEND
ENABLE
Am2914
S2
Sy GROUP
So ADVANCE
RECEIVE
Y3 o I
B8 Y, o
Am25LS138 e GROUP
—1A Yq o SIGNAL ADVANCE
GROUP SEND
Yo [o- ENABLE
Am2914
S2
S1 GROUP
ADVANCE
+50V So RECEIVE

INTRO-7 §

Figure 17. Group Signal, Group Enable, Group Advance Send, Group Advance Receive and Status Connections for Both

the Parallel and Ripple Cascade Modes.

A Az

Inputs Outputs
ElTo Ty T 03 Ta 15 Tg T7|Ag Ay A EO
H X X X X X X X X]L L L H
L H H H HHHHHIL L L L
L X X X X X X X L|H H H H
L X X X X X X L H|L H H H
L X X X X X L H HI|H L H H
L X X X X L H H H|L L H H
L X X X L H H H H|H H L H
L X X L H H H H H[L H L H
L X L H H HHHHIH L L H
L L H H H H H H HlL L L H

H = HIGH Voltage Level
L = LOW Voltage Level

X = Don’t Care

ForGqi=H,Gp=H,G3=L,G4=L,Gg=L

Gl G2 G3 G4 G5|Ag Ay A;
H H L L L Enabled

L X X X X z z z
X L X X X z z z
X X H X X z z z
X x X H X z z z
X X X X H Z Z Z

Z = HIGH Impedance

Figure 18. Am2913 Priority Interrupt Expander Logic Diagram and Truth Table.

217

218

(1)

[Do
G2A Inputs Outputs
Enable Select
D"_"" Gl G2A G2B|CBA| Yo Y1 Y2 Y3 Ys Ys Ye V7
L X X [XXX| H H H H H H H H
-
Do—"z X H X |XXX| H H H H H H H H
X X H|XXX| H H H H H H H H
H L L |LLL| L H H H H H H H
v H L L ([LLH| H L H H H H H H
N H L L JLHL| H H L H H H H H
H L L JLHH| H H H L H H H H
'_‘Do—v H L L [HLL| H H H H L H H H
4
D D H L L |HLH| H H H H H L H H
A
H L L |HHL| H H H H H H L H
—~} H L L [HHH| H H H H H H H L
Ys
H = HIGH
—>°_ L=LOW
B
— X =Don’t Care
[D
Figure 19. Am25L.S138 3 to 8 Line Decoder Logic Diagram and Truth Table.
INSTRUCTION WORKING
REGISTER (—_’ REGISTERS
— /
ARITHMETIC
— COMPUTER CONTROL UNIT LodIC
= UNIT
MICROINSTRUCTION REGISTER J
L PROGRAM COUNTER
AND
L MEMORY ADDRESS
o« REGISTER
_ 2
\]
g
k_ﬁ a
NEXT —
MICROPROGRAM CLOCKS
ADDRESS CONTROL
I @ MEMORY
TEST] BANK 1
CONDITIONS @
w
4
8
CONTROL PANEL INTERRUPT <
OR CONTROL MEMORY
OTHER PROCESSOR UNIT
INTERRUPT REQUEST TO INTERFACE CONTROLLERS

Am2905/06/07/15A/16A/17A

Figure 20. A Generalized Computer Architecture.

INTERRUPT
REQUEST
INPUTS

2900
SYSTEM

CLOCK

MICROINSTRUCTION REGISTER

1]

T

‘o3 SOURCE CONTROL
LOGIC
4 ‘
Q
INST INSTRUCTION cs
ENABLE
VECTOR Am29751
A
02 3 02 MAPPING DB O 15
INTERRUPT PROM 0 m
ﬁ%—o INPUTS @
PPy _L_ Az 4
= 3
- o
LATCH STATUS D88 10 2
I——‘ BYPASS 02 3 @
— 2
= Am2914 2
I
DBO7 v
cc =
———=] cLock masK
8
4700
_L—O GAR IRPT REQ [O- L%I(wcr:gnoeam
T ADDRESS
= CONTROL
INT STATUS GRP
DIS OFLOW EN

FROM DATA BUS

AN

L7

1

Figure 21. 8 Level Interrupt Control Unit for Am2900 System.

MICROINSTRUCTION REGISTER

[l o]
} FROM DATA BUS
Q SOURCE CONTROL
4 STATUS INT oGIC
O'FLOW DIS
O] INST EN - GRP SIG |O- ‘l
3 cs
b1 INsT 03 VECTOR 0-2 Ao2 Am29751
MAPPING DB O 15
PAR DIS Az PROM
@ 16
Am2914 :} A
‘4
INTERRUPT s GRPEN ..L_
REQUEST o| INT inpuTS = D8O 15
INPUTS PoP7 MASK 0.7 e
815 g 8 16
DBO2 DBO3
LATCH BYP 3
STATUS 0-2 3 a
2900 SYSTEM DB3
cLocK cLock ap IRPTREQO-
GAR DIS hWol2 3 fo g
Gy Gy G3 G4 Gs
Vee— YoY:
GAS INT « z7
DIs Am2913
INST EN of ¥ Ap b—
of GRPSIG [O 1 °F o83
e INsT O3 VECTOR 02 o] Yo
El
Am2914 GRPEN [O- _T_
INTERRUPT =
8 DBO-7
REI'O\.L;S?IS’ O| INT INPUTS MASK 0-7 8
s PoP; s Vee
LATCH BYP STATUS 0-2 4700
CLOCK IRPT REQ O TO MICROPROGRAM
NEXT ADDRESS
GAR CONTROL

DATA BUS (DB O 15)

Figure 22. 16 Level Interrupt Control Unit for Am2900 System.

220

In Figures 21 and 22, the Status and Mask inputs/outputs are
connected to the data bus in a bi-directional configuration so that
Status and Mask Registers may be loaded from or read to the
data bus with appropriate Am2914 instructions. This gives the
designer two possibilities which could be very advantageous.

Number one is the ability to store the Status and Mask information
on a stack in memory. This is very advantageous when doing
nested interrupts. Secondly, it allows the designer to construct
machine instruction that can modify these two registers. This is
very important to the system programmer who is involved in
writing software to manage the interrupts.

For the eight level ICU of Figure 21, the Status Overflow output 1s
connected to the Interrupt Disable input, and the Group Advance
Receive and Group Enable inputs are connected to ground, as
previously described.

For the 16 interrupt level ICU of Figure 22, the Parallel Disable
output of the higher priority group serves as the high order vector
bit. An Am2913 Priority Interrupt Expander is gated by the
Am2914 instruction lines so that its output is enabled only during a
Read Status instruction, and is used to encode the high order bit
of the status. An inverter suffices to decode the high order bit of
the status bit during a Load Status instruction. As described
previously for a npple cascade system, the Group Advance Re-
ceive input of the next higher priority group; the Ripple Disable
output is connected to the Interrupt Disable input of the next lower
priority group; the Status Overflow output of the highest priority
group is connected to the Interrupt Disable input of the same
group, and the Group Advance Receive input of the lowest priority
group is connected to ground.

In both designs, two Am29751 32-word by 8-bit PROM'’s with
three-state outputs are used to map the Am2914 Vector outputs
into a 16-bit address vector. The PROM outputs are connected to
the data bus. When a Read Vector Instruction (Am2914) is exe-
cuted, the address vector is available to be used either as the
address of the next instruction or a location to find the address of
the next instruction to execute.

Figure 23 shows a design where the address vector from the
mapping PROM can be clocked into a register in the Am2903’s.
The registers in the Am2903’s would be split between general
purpose, scratch, stack pointers and Program Counter registers.

The address vector also may be gated directly to the “D” inputs of
the Am2911 Microprogram Sequencer as shown in Figure 24,
and used as the start PROM address of a microinstruction inter-
rupt service routine. This method would be most useful in a
controller application. This method would trade faster service for
a bigger microprogram that accommodates all the code to service
each individual interrupt.

FIRMWARE EXAMPLE FOR Am2914 INTERRUPT SYSTEM

The software for handling interrupt requests is on two levels.
The first level to come into play is the microprogram level. This is
the level at which the request is recognized and the program
counter is manipulated to start execution of a machine level
interrupt service routine which is the second level. When the
machine level interrupt service routine is finished, some form of
a Return Interrupt instruction 1s executed. The microcode for the
return instruction manipulates the program counter so that
execution of the current machine program previous to the re-
quest is restored as shown in Figure 25.

This example is concerned with the microprogram level. This
microcode goes along with the hardware shown in Figure 23. In
this example the code is shown in the form of Flow Charts be-

cause the actual microprogram format will vary from machine to
machine.

The important features to notice that have a direct relevance to
the firmware are the Latch Bypass and where the Mask, Status
and Vector busses go. For this example, the Latch Bypass is
LOW making the Interrupt Latches latch up on a negative going
pulse. The Mask and Status busses go to the data bus allowing
the Status and Mask data to be transferred to and from memory.
The Vector bus passes through a mapping PROM to the data
bus where it can be read into the Program Counter contained in
the Am2903’s. The PROM contains addresses of service
routines which correspond to the different interrupt levels.

Another relevant fact, important to understanding the firmware is
that the interrupt mechanism is limited to handle interrupts on
the machine level.

As shown in Figure 26a, the first thing that happens in the fetch
routine (written in microcode) is a conditional subroutine call that
will be taken if an interrupt request is present. This happens
before the current machine instruction is fetched and the pro-
gram counter is incremented.

In the Interrupt routine (shown in Figure 26b) a microprogram
subroutine is first called to push the program counter onto the
system stack. This is done so that the program counter can be
restored in order to resume execution of the machine program
after the interrupt service routine is done. The next thing that is
saved on the system stack is the contents of the Am2914 Status
Register. This is done because the status register which contains
the priority level that would be serviced prior to the interrupt, will
be restored after the interrupt is serviced. This maintains a nested
interrupt structure (fence).

After saving the program counter and status register, the vector
is read out of the Am2914 through the mapping PROM to obtain
the address of the machine interrupt service routine. The ad-
dress is then read into the program counter which resides in the
Am2903’s. When the Vector is read, the interrupt request priority
plus one is automatically put into the status register by the
Am2914 so that all interrupt requests of lower priority than the
one being serviced are ignored. This is often referred to as
moving the fence up. Since the vector has been read and the
new address is in the program counter, the interrupt request can
be cleared from the interrupt register via the Clear Interrupt/Last
Vector Read instruction. At this point a jump is made to the
Fetch routine which will now fetch the first instruction of the
machine Interrupt Service routine.

The last instruction that the machine level interrupt service exe-
cutes is an Interrupt Return. This will in turn call Return Interrupt
microprogram. The status is first popped off the system stack
and loaded back into the status register. This restores the Inter-
rupt Fence. The program counter is then popped off the system
stack and loaded into the program counter register. This re-
stores the program counter to point to the instruction that was
going to be executed when the interrupt request occurred.

TIME DELAY WHEN USING THE Am2914

An aspect that should be covered when using any part is how it
will fit into the system timing; because the cycle time of the
system will be as long as the longest delay path in the machine.
Shown in Figure 27 is the longest delay path through the
Am2914 for the previous 16-bit computer example. The calcula-
tions were using both typical and worst case values at 25°C and
5.0V.

The longest delay path for the system where the vector from the
mapping PROM feeds into the “D” inputs of the Am2910 is

DATA BUS (16 BITS) >

INSTRUCTION v le8ms
REGISTER 1 Ay BUS INTERFACE <
©x
1z si0 H
Am2904 | I
Ic si0, H
lovn al0o H 16 BITS
™ a0, H
D
'
MAPPING MAPPING
PROM proM F ” N N/ N/
9 - ai0; °* aiog o, °* aio, aio; ®* aio, a0 °* aio,
si0; siog so; SI0p si0; siop si10; SI10p
OTHER STATUS Cn s Ca G Cn f— G
Am2003 P am2903 P am2003 P amasos S0 [T
Cn+a] Cn+a —1Cn+a ~Cn+a
Am2922 OVR lo-s lo-8 [~ lo-8 —\ fo-8 [\
<A N ‘N N
" R . ° 1 N v D
\
+5V
(] REGISTER Am2902
Py
OPERAND I Vi Z L J
SELECT
So2 Vo2
lo-4 .
Am2914
OTHER
RPT Jo————
Por J los 9) y, Y
+5V
d
INTERRUPT
l MEMORY ADDRESS REGISTER Am2520 | I MEMORY ADDRESS REGISTER Am2920 |

& L L 2y VN

Figure 23. Example of a 16-Bit Computer #1.

lee

222

‘v 81nbig

<

(suid 94) sna sS3saav

A#

AV

$

$

H3HI0

4315I038
aNM3did

U

— 0Z6ZWY HILSIDIY SSIHAAY AHOWIN — _’ 026ZWY HILSIDIY SSIHAAY AHOWIN _
((((6
103138
(((_ ONVH3dO
i s M
206zwWY
AS+
)
A A A A I;
Ne z Ne z |- Na 2 NMa z xnm
v v v v N oo
—]eo] e-o] -0] 5o, s zz6zuy
vrugl vrugl vrogl— vrug
ug COBZWY coszuy soszwy coszuy *
Ll Y o Ya o Ya SNLVLS HIHLO
%ois fois %ois fois Oois fois Yoi1s o
o £ o 2 o € £ 4
00 o 0P oo o for oo o fo o0 va ‘o®
AN PAN AN o
1
\
H “oi0 N
sL1a 91 M ‘o0 U0y
_ _ H vois %
PO6ZWY
H %ois 21
g *o
3OVIHILNI SN H os 19—
sug o N

Woud _
30 ouigavw

43151938
NOLLONHLSNI

i
i

WOld
ONIddVIN

(sua 91) sna viva

INTERRUPT
MAIN SERVICE
ROUTINE ROUTINE
1000
50 1001
INTERRUPT 1002
REQUEST
OCCURS
1003
53
1004
54
1005
55
56

Figure 25. Machine Level Instruction Flow During Interrupt

Request.
START
FETCH

CJMP INTERRUPT

I

LOAD MAR ——PC

JSB MEMREAD

|

LOAD PC—=- PC+1

LOAD INSTRRG

1

JMP MAP

Figure 26a. Flow Chart for a Simplified Microprogram Fetch
Routine.

START
INTERRUPT

JSB PUSHPC

READ STATUS

JSB PUSH

READ VECTOR

[

LOAD PC

CLEAR INTERRUPT,
LAST VECTOR READ

JMP FETCH

Figure 26b. Call Interrupt Service Routine Microprogram

Flow Chart.

* START
RETI

JSB POP

LOAD STATUS

I

JSB POPPC

l

JMP FETCH

Figure 26¢. Return Interrupt Microprogram Flow Chart.

223

Y 16 BITS.
INSTRUCTION]
TS « wnaamee |
1z s10o H I [
I sion H
love Q10 [
n a0, H
' 4
MAPPING MAPPING
PROM | eroM OF . N v
[I
o - a0, °* aio, a0, °* aio, a0, ®* aio, a0, °* aio,
sio; siog si10; siop $I0; si0p s10; si0g
OTHER STATUS Cn G Cn G Cn G
Am2%03 P Am2eo3 P am2s03 P amasos S0 [*
Cnia] Casa —Cars —{cns
Og-11 WAP Am2022 OvR to-, o [I
— B AR o ") 0
to-3 BL Mux ’72 v 8N —z M B8N —z v 8 N l—z v B
PIPELINE v
8 REGISTER Am2902
% o t=—
e < < —
oy (e, =
- PT OTHER|
f Po.7 / o8, 9 Y J
= +5V
(]
INTERRUPT %
REQUESTS
. I MEMORY ADDRESS REGISTER Am2920 | I MEMORY ADDRESS REGISTER Am2920 I
Figure 27b.
Device No. | Device Path | Typ. Max. < 'ADDRESS BUS (16 BITS) >
29775 CPtoD 15 20
2914 Ito Vo12 40 55
27519 AtoO 25 40
2917A Bus to R 18 30 DELAY PATH
2903 ts to (Y) 10 16
Total-ns 108 161

Figure 27a. AC Calculations.

vee

DATA BUS (16 BITS)

.|}-—1
&

Figure 28b.

Device No. | Device Path | Typ. | Max.
29775 CPtoD 15 20
2914 ItoV 40 55
27519 Ato O 25 40
2910 DtoY 14 22
29775 ts (A) 40 50
Total-ns 134 187

DELAY PATH

Y 16 BITS
'",f;;,sma er Co 4 BUS INTERFACE
o Am2917A
7z SIo
amasos 0] I
¢ Si0n N
lova a0, H 16 BITS.
N aio, H
f 4
MAPPING MAPPING
* e N
ROM PROM N/ v
oE
o H a0, 2 a0, ai0; ** ai0 ao; ®* a0y ai0; °* aio,
si0; $10p sio; sI0p si0; siog s, sI0p
OTHER STATUS Cn e Cn N o f—r s
Am2903 P am2003 P Ama2soa P amagos Cn [T
Cn+a —{Cn+a =1 Cn+s —Cn+a
Do_1 WAP OVR to-a [lo-8 ™ lo-8 o 8 [
Am2910 & CONDITION N A A
CODE ™\ ™\ ™
LSS - [‘ « N 1~ "N M__°N !*’ v
\
MICROPROGRAM l
MEMORY
d N\
PIPELINE sV
(] O REGISTER Am2902
oy
OPERAND l Z J
SELECT
So2 dod
LSO S)
s BHer
Par Yo-s o 9 J W, /
+5V
(]
INTERRUPT %
REQUESTS 4

I MEMORY ADDRESS REGISTER Am2920 —| I MEMORY ADDRESS REGISTER Am2920 I

v Y U

Y

ADDRESS BUS (16 BITS)

¢

>

Figure 28a.

Gece

DATA BUS (16 BITS)

DELAY PATH, CYCLE n+1

STRUCTION v L
INSTI H
REGISTER cr o Bus WTEREACE
Cx
z sio, H
L Amas I [
'c n 1
lovr 10, H 16 BITS
e N a0, H
=)
'
PPING MAPPING
ROM | PrON % e A4 U N
DA
- aloy PA 4100 Qioy P2 9100 Qioy DA Qiog aio; Qioy
sio; S0 sio; S0 si; siog sio; siop
N OTHER STATUS Cn G Ca G G
Am2903 P am2eos P am2903 P amzs0s On 1
i Cass —{Case —{enes —Cnes
o1 map Am2922 ovR lo-s to-g fo-s ==\ s
REGISTER Am2910 & oo N AN AN AN 32N
MUX z B z B8 z z B
C'P lo-3 PL v 1 v B v ~ v
S " AROGRAM
cLock oy
a
PIPELINE sV
8 REGISTER Am2902
% co b
OPERAND | J/ J Vi J
SELECT
So2 Moo
L CO—
[IRPT jo—— SR
Poi7 o s J / —/
= +5V
(Q
INTERRUPT %
REQUESTS
MEMORY ADDRESS REGISTER ~ Am2920 —| L MEMORY ADDRESS REGISTER Am2920]
< ADDRESS BUS (16 BITS) >
DELAY PATH, CYCLE n S———

Figure 28c.

9¢e

227

'pge ainbiy

Hlvd Av13d

A $ $ $ {sua 91) sna ssauaav j v

— 0262WY H3LSIDIY SSIHAQY AHOWIN _ _ 0262WY H3LSIOIH SSIHAQY AHONIW —

| | S | S =

H3IML0

103138

_ aNvu3do

1“2
2082wy uaisO3Y 20 o
ﬁ As+ INN3die
J v
’ AHONIN
WYHOOUOHOIN

P

T
|

a z b

2 oLezuy
-0 HAO zz6zwy li-og
v’ o p— vug b— yug =
sogzwy

| (7
r‘ﬁ,
9
(7

§

d

° ° ° ‘2 ° “ SNLVLS HIHLO
%oi1s fois Oois. So1s o018 cois
010 £ 0 £ o ¢
va "O° 00 g 00 o0 o fo

e
o 30
0 om WOud
ONIdavH ONIddYN

sug 9 Ao,

] a

zl

X2

VLLBZWY
_— yaLSI93Y
30vaUALN SNE -
s NOLLONLSNI

A (su1a 1) sna viva v

DATA BUS (16 BITS)

v 16 BITS
INSTRUCTION — cr coH BUS INTERFACE
REGISTER
Cx
3 siop H
Am2sos _ ° l l
fc Sion 1
ova aioo H 16 BITS
Iy aio, H
,— 4
'
MAPPING MAPPING o v
(]
PROM PROM N\ N
(] - aio; °* a0, aio; °* aioy aio; ** a0, aio; ** a0,
8103 S0y $10, $10p 5103 si09 Si0; SI0g
~ OTHER STATUS Cn [Cn G Cn —— G
l Am29003 P Am2s03 P am2003 P amasos On
Ca+s —1Cn+s —{Cn+a ~—{Cn+a
Am2922 ovR lo-8 == lo-8 =\ to-8 lo-8 [T
CONDITION N A A A A
CODE A M N
z] —z] —z B z)
v B v v MY v B
| \
—
+5V
0 Am2902
cn =
OPERAND I ., W . L/
SELECT
So-2 0-2
Mo.7 lo.4 ry
" Amast4 RPT OTHER
Pog= s 9 y, b, J
= +5V
(]]
INTERRUPT
REQUESTS o Q J
g~ s
SYSTEM
CLOCK

DELAY PATH, CYCLE n
DELAY PATH, CYCLE n+1

l MEMORY ADDRESS REGISTER ~ Am2920

MEMORY ADDRESS REGISTER Am2920

U

Y

<

ADDRESS BUS (16 BITS)

D

Figure 28e.

8c¢

Device No. Device Path Typ. Max.
29775 CPto D 15 20
2914 ltoV 40 55
2918 ts (Data) 5 5
Cycle n Total-ns 60 80
2918 CP to Q 8.5 13
27519 Ato O 25 40
2910 DtoY 14 22
29775 ts (A) 40 50
Cycle n+1 Total-ns 97.5 125

Figure 28f.

Device No. Device Path Typ. Max.
2914 CP to IRQ 65 82
2922 Eﬂ toY 13 19
2910 CCtoY 27 44
29775 ts (A) 40 50
Total-ns 145 195

Figure 28g.

Device No. Device Path Typ. Max.
2914 CP to IRQ 65 82
74874 ts (Data) 3 3
Cycle n Total-ns 68 85
74874 CP to Q 6 9
2922 & toY 13 19
2910 CCtoY 27 44
29775 ts (A) 40 50
Cycle n+1 Total-ns 86 122

Figure 28h.

shown in Figure 28. This path 1s much longer because of the two
PROM'’s that have to be accessed. Therefore, there may be a
trade-off of slightly longer system cycle time for faster service of
interrupts via service routines in microcode.

For some systems the delay time shown in Figure 28b may be
too long. Therefore, the designer can split the delay time into
parts by putting a register between the Am2914 and the mapping
PROM as shown in Figure 28c. When done in two system clock
cycles, the delay time will be as shown in Figure 28f.

Figure 28d shows the delay path from the Interrupt Request
Register through the Condition Code MUX to the Am2910. The
time calculations are shown in Figure 28g. Again, for some sys-
tems, this path may be too long. Therefore, as shown above, this
path may be broken in two, which is shown in Figure 28e. This
will result in two system clock cycles. The delay involved in each
cycle is shown in Figure 28h.

ANOTHER EXAMPLE OF Am2900 SYSTEM
USING THE Am2914

As shown In Figure 29, this example varies in the way that the
interrupt request I1s recognized by the microprogrammed

machine. In this example the interrupt request line for the
Am2914 enables or disables the MAP signal going to the map-
ping PROM. When an interrupt request is present and a Jump
Map instruction is executed, the output of the mapping PROM
remains tri-stated; and the bus connected to the “D” inputs of
the Am2910 is HIGH because of the pull-up resistors. Therefore,
the microprogram will start executing at the highest location in
microprogram memory when an interrupt request is present. At
this location a Jump Instruction to the microprogram interrupt
service routine could be placed. The microcode is written so that
the only time a Jump Map instruction is executed is at the end of
the Fetch microprogram routine as shown in Figure 30a.

In the previous example the interrupt request was recognized
before the program counter is incremented after which the Jump
Map instruction is executed. When the Jump Map is executed,
either the instruction is executed or an interrupt request I1s ser-
viced. Therefore, when the Return Interrupt machine instruction
1s executed, the program counter needs to be backed up via
microcode, as shown in Figure 30b, in order to refetch the
machine instruction which was lost. This also dictates that the
program counter have a path to an incrementer/decrementer or
ALU, which in this example is handled by putting the program
counter in the Am2903’s.

MICROPROGRAM LEVEL INTERRUPT EXAMPLE

Some high-speed control applications require extremely fast
interrupt response. While it may ordinarily be desirable to com-
plete an entire processing sequence (such as executing a mi-
croprogram for a macroinstruction) prior to testing for the inter-
rupt and allowing it to occur, it is not always possible to achieve
the required interrupt response time desired. If this is the case,
microinstruction level interrupt handling must be employed. The
technique described below has a maximum latency of three mi-
crocycles which can be 450-600ns total. Implementation is
straightforward using the Am2910 Microsequencer, a 40-pin LSI
device that can control 4096 words of microprogram at a 150ns
cycle time, and a few extra MSI and SSI packages. In this appli-
cation, the Am2910 is configured in its standard architecture.
The additional logic does not influence the normal system cycle
time.

If microlevel interrupt handling 1s to be employed, logic must be
provided to generate a substitute microprogram address corre-
sponding to the location of the interrupt service routine. In the
event of a microlevel interrupt, the sequencer address outputs
are tri-stated and the substitute address is placed on the micro-
program address bus, causing the next microinstruction fetch to
be determined by the interrupt control vector generator. While
this 1s happening, steps must be taken with the Am2910 to in-
sure that the interrupted routine can be properly restored. To
understand this procedure, 1t will be necessary to examine the
Am2910 in more detail.

Referring to Figure 31, the microprogram address bus is driven
by the Y outputs of the Am2910 through a tri-state buffer than
can be disabled by means of the OE nput. The address is
selected In a multiplexer from a direct input, from a register/
counter, from a push/pop stack, or from a microprogram counter
register. The microprogram counter register is commonly used
as the address source when executing the next microinstruction
in sequence. Whenever an address appears at the multiplexer
outputs, It 1s incremented and presented to the microprogram
counters inputs. At the nising edge of the clock, this new address
that 1s current address-plus-1 1s loaded into the microprogram
counter and a microprogram access begins at this address.

230

‘g# 1aindwo) ug-gi e Jo sjdwex3 ‘6z anbiy

-

(sui@ 91) S8 ss38aqY

A 1t

%ﬂ

AV

S1S3N03Y
LdNHHILNG

[
@
H Yoo Ny
su8 91 H o b
H vois o
voszWY
H cors 2
X
vei6zuy >
30V4HAINI SNE H % e
sua 9 A

U

—\ 0z62wy ¥3LSIOIW SSIHOAY AHOWIW ; _ 0Z62Wy Y3LSIOTY SSIUAAY AHOWIN 1_
As+
— 7 7 (§78 0 (
H3HLO
v
103138
- > dNvE3d0
F—tus
202wy wausIo3Y
ASH INNIdId
AHOWIN
WYHDOHAOHOIN
x x X x
ﬁn z NMe ~L N e 2 ra z XW W e
v v v v N NoLan05 2 orezwy
20 (N Jeo 8 0o uAO 2252wy avi 11-0g
voupf voug|— peogl— brugy
uy EOSTWY coewy soszwy £oszwy
2
) R ° uy ° Uy SNLVLS HIHLO
ois fois o1s fors o1s ors Oo1s o1s 77
%0 ‘oo oo € o P o €
va 0 o 00 o . oo o | Foio

o+
woud
30 oNiddvw

&
— Ly

3 woud
ONIddV

[ETCOE
NOILONKLSNI

(sug 91) sna viva

START
RETI2

JSB POP

LOAD STATUS

JSB POPPC

LOAD PC—=—PC -1

JMP FETCH

START
FETCH2

LOAD MAR - PC

LOAD PC—=—PC+1

1

JSB MEMREAD

LOAD INSTRRG

1

JMP MAP

Figure 30a. Return interrupt Microprogram

Figure 30b. Fetch Microprogram for the Second Example.
for Second Example.

D, Q cp

3|
=
0

REGISTER/ STACK N
COUNTER POINTER
R —>

ZERO.
DETECTOR
§WORD X 12 BIT
P sTack
out
E
R F

—

a
-
2
° EQ b upC —]> MICROPROGRAM
« &5 MULTIPLEXER COUNTER—
z- REGISTER
w WwPC
S «
w
SR il
-t
2
o zD 4 INCREMENTER [—<T] CI
- R
TCEN z
CCEN H o
G«
Z& |PUSH/POP/HOLD/CLEAR
&
4 2
[C>—74——

o o AY
__—'_I > 12-BIT DATA PATH
wV &) Uvesr

e Y ———— CONTROL PATH

Figure 31. Am2910 Block Diagram.

231

232

Note that at this time, whatever was fetched at the previous
address was loaded into the microword register for execution.
Thus, the microprogram sequencer is always looking for the
address of the next microinstruction to be executed (while a
previously fetched microinstruction is residing in the microword
register). Subroutine and microprogram loops may be ac-
complished by using the stack and the register counter. Re-
gardless of what is selected as source of next address, the
selected address will be incremented and presented to the
microprogram counter. So to accomplish a microprogram
branch, one would simply select the D inputs for a branch ad-
dress for one cycle, then the next address source could be
switched back to the program counter on the next cycle which
would then contain the branch address plus 1.

This is a carry input to the incrementer which is normally tied
HIGH. In the case of a microlevel interrupt, the microprogram
sequencer will not determine the address of the next microin-
struction to be executed. Instead the sequencer output will be
tri-stated and a substitute address will be placed on the bus. The
sequencer continues to operate in a normal fashion with its mul-
tiplexer output being incremented and presented to the micro-
program counter register. It must now be noted that the instruc-
tion located at the address then coming out of the multiplexer
outputs will not be executed but rather the next microinstruction
to be executed will be determined by the interrupt vector
generator. It would therefore, be wrong to increment this micro-
program address but rather it must be saved intact in order to
push it onto the stack for access during interrupt return. This is
easily accomplished in the Am2910 by grounding the carry input
to the incrementer simultaneously with three-stating the se-
quencer output. Then the multiplexer output will be stored in the

microprogram counter register and on the next microcycle the
Am2910 must be told to push in order to preserve this address
on the stack.

This carry-in input is all important and exists on all Advanced
Micro Devices’ microprogram sequencers. Unless the carry-in is
grounded, whatever address was in the multiplexer output when
the sequencer output was tri-stated is incremented and an in-
struction is missed in the interrupted routine. This, of course,
would likely be disastrous. The key to this microinterrupt
technique is that the address of the unexecuted instruction
(when the Am2910 was tri-stated and a substitute address
supplied) is preserved by inhibiting the increment via the carry
input, so the address is passed on intact to the microprogram
counter. If the microinterrupt is to be more than one cycle long,
the microprogram counter must be pushed so as to save the
return address. Otherwise, a “continue” may be used to return
from the interrupt on the very next cycle. In this event the mic-
rointerrupt effectively inserts one instruction in the stream.

Figure 32 is the block diagram of a hardware design that imple-
ments the above concept. The SYNC/CONTROL and INTER-
RUPT CONTROL/VECTOR GENERATOR logic are shown in
detail in Figure 33. Part of the Am2918 and both ‘LS74 Flip-
Flops are used to synchronize the recognition of the asynchron-
ous interrupt request as shown in Figure 34. The interrupt re-
quest arrives at the interrupt input. On the next clock cycle it is
clocked into the Am2918. In the following clock cycle a pulse
that is one system clock cycle long is put out by the flip-flop pair
FF1 and FF2. The pulse is used to disable the carry input of the
Am2910, tri-state the output of the Am2910, and enable the
jump vector onto the input of the PROM. The vector indexes into
a table in microprogram memory that contains “JUMP SUB-
ROUTINE” instructions to different interrupt service routines.

INTERRUPT
CONTROL
AND
VECTOR
GENERATOR

L]

Test | — MAPPING
CONDITIONS | —] PROM
FROM | —— TEST
SYSTEM | — Mux
OR | —
(OUTSIDE) | —
Lt
i Am2910
SYSTEM L ?:LNN(':I‘ :gE MICROSEQUENCER SYSTEM
cLoCK LOGIC —{lk gz CLOCK
% MICROADDRESS BUS

#WORD PROM

i — |

#WORD REGISTER <

T E

CONTROLS TO SYSTEM (OR OUTSIDE)

Figure 32. Computer Control Unit Set-up for High-Speed Micro-Level Interrupt Handling. Latency is a Maximum

of Two Microcycles (i.e., about 300 to 500ns).

233

+5
% Ls00 | Cy\ OF Am2910
s s
FF1 FF2
D Q D Q ¢ _
OF OF Am2910
'LS74 ‘Ls7a | |
> a —L a|—
R R
T T +5
—
SYSTEM
cLock INTERRUPT REQUEST
1
Qs -
Q, LS20 o Tt/
& ETC. ——————
— b, Q ————
| —p —_———
INTERRUPT 2 2918 OF R
INPUTS o, A™
0o Y,
Y2
Yy
SYSTEM "
cLoCK o
MICRO-
ADDRESS
BUS
INTERRUPT INTERRUPT
ACKNOWLEDGE/ MASK/RESET
RESETS FROM PIPELINE
FROM PIPELINE REGISTER
REGIST