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New integrated circuits are usually accom­
panied by a wealth of theory and data 
sheets. Shortly thereafter follow the applica­
cation notes. The introduction of micropro­
grammable LSI parts, such as the Am2901 
and subsequent ICs in the family, adhered to 
this pattern. We thought this was adequate 
in light of the previously successful intro­
duction of fixed-instruction-set MaS micro­
processors, which were more complex. 
However, bit-slice microprocessor design 

proved more formidable than first realized. 
One reason was the intimate relationship 
between parts. These designs required the 
designer to pick and choose parts: How 
many slices are needed to do the job? 
Which microprogram sequencer and/or con­
troller to select? Is a carry lookahead gen­
erator needed? And on, and on and .... All 
these devices had to play together; no single 
device was complete by itself. 

For this added up-front design effort, the 
user got blazing speed and the utmost 
flexibility. The latter proved the second hin­
derance to easy designing. Users now had 
to design the instruction set as well as the 
hardware and applications programs. They 
no longer had the luxury of a fixed-instruction 
set. On the other hand, they could eliminate 
unnecessary instructions, easily modify or 
add instructions at a later date or emulate 
the existing instruction set of a slower CPU. 

Complicating matters was the fact that the 
2900 family did not spring whole into the 
world. Parts were introduced and redesigned 
over a period of years as engineering and 
processing resources could be brought to 

PREFACE 

bear. This evolutionary process still goes on. 
To alleviate matters, Advanced Micro 

Devices announced a nine-part course in 
microprogram mabie microprocessing, each 
part to stand alone but to bu i I d logically upon 
the preceding part. And, because engineer­
ing talent is our most important resource, 
this course was to unfold over a 22-month 
period. 

Since completion of the course, there has 
been no diminishing in demand for informa­
tion on the material covered. In fact, the 
market for bipolar microprogrammable LSI 
parts doubled in each of the previous two 
years and showed no signs of slowing. So, 
as our copies of individual course materials 
dwindled, we thought it only natural to bring 
them all together under one cover. This book 
is the result. 

We think the extraordinary time and ef­
fort was well worth it. 
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Chapter I 
Computer Architecture 





PREFACE 

In this introductory Chapter we intend to: 
1 ). develop a common terminology for future chapters. 
2). introduce several stored-program-computer design topics. 
3). define some of the computer architecfs problems (which 

will be solved in the subsequent chapters). 

In order to achieve these goals, we will start with computer 
basics. It should be stressed that approaches and solutions 
can be chosen which are different from the ones described in 
this and the subsequent chapters. However, the general ideas 
described wi" be appropriate to gain familiarity with the micro­
programmable bit-slice devices in order to use them in any 
deSign configuration. 

BACK TO THE BASICS ••• 

A STORED-PROGRAM-COMPUTER is defined as a machine 
capable of manipulating data according to predefined rules 
(instructions), where the program (co"ection of instructions) 
and data are stored in its memory (Fig. 1). Without some 
means of communication with the extemal world, the program 
and the data cannot be loaded into the memory nor can the 
results be read out. Therefore, an input/output device is re­
quired as shown in Fig. 2. 

CENTRAL 
"-PROCESSING 

UNIT MEMORY 
(CPU) 

MPR-439 

Figure 1. Basic Definition of a Stored-Program-Computer. 

CPU MEMORY 

EXTERNAL WORLD 
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Figure 2. 110 Added to the Basic Stored-Program 
Computer. 
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The memory is usually organized in words, each containing N 
bits of information. A unique address is allocated for each 
word which defines its position relative to other words. The 
Central Processor Unit (CPU) usually reads or writes one 
word at a time by addressing the memory and then when the 
memory is ready, reading the contents of the word or writing 
new contents into that word. To perform this operation, two 
registers are usually used: The Memory Address Register 
(MAR), which contains the address and the Memory Data 
Register (MDR) which contains the data (Fig. 3). 

[.;-, 
D Ie 

~ 
CPU r MEMORY 

r;l . 
~ 

I VD J 
~ 

EXTERNAL WORLD 

Figure 3. MAR and MDR Depicted for a 
Stored-Program Computer. 

MPR-441 

Since accessing a memory (reading from it or writing into it) is 
usually a relatively slow procedure, it is advantageous to have 
a few memory locations inside the CPU which can be read 
from or written into very fast. These locations are usually 
called Accumulators or Working Registers. Having these fast 
access registers inside the CPU (Fig. 4) enables many opera­
tions to be carried out without referring to the memory 
(through the MAR and the MDR) and therefore these opera­
tions are executed faster. 

The unit which actually performs the data manipulation is 
called the Arithmetic & Logic Unit (ALU). It has two inputs for 
operands and one output for the result. It usually operates on 
a" the bits of a word in para"el. The ALU can perform a" or 
part of the following operations: 

Arithmetic 

Add 
Complement 
Subtract 
Increment 
Decrement 

Logical 

OR 
AND 
XOR 
NAND 
NOR 
XNOR 
Complement 

In some architectures, one of the operands must always be in 
a special register (accumulator) and the result of the ALU op­
eration is always transferred to this register. In a more general 
CPU, any two of the internal registers can contain the 
operands and the result of the ALU operation can be trans­
ferred to any one.of them. 

Another very useful feature of a CPU is the ability to shift the 
contents of a register or the output of the ALU one or more 
bits in either direction as shown in Fig. 5. 
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INTERNAL REGISTERS 

CPU 
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Figure 4. CPU with Internal High Speed Registers. 
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Figure 5. ALU and Shifter Added to the CPU Design. 

We now have the elements to do any data manipulation re­
quired but we still need a unit which can properly set the MAR 
in order to find the next instruction of the program in the 
memory and to find its associated data. This unit is called the 
Program Control Unit (PCU) and its role is to load the MAR 
with the correct address in order to find the next instruction or 
data item or to point to a memory location where a data word 
should be written. 

Often, the program steps (instructions, data) are written in the 
memory in consecutive locations, starting at address zero or 
at any other predefined address. The PCU can simply be in­
cremented after each memory access thereby pointing to the 
address of the next instruction or data item. This counter-type 
PCU has very little fleXibility. Sometimes we wish to change 
the "normal" flow of the instructions, particularly if we want to 
enable our computer to "make decisions" according to condi­
tions prevailing at the current execution point. For example, 
we may want to execute one of two different sequences of in­
structions depending upon the result of the last operation per­
formed. This is accomplished by loading the MAR with a new 
value (the address of the next instruction to be executed) 
rather than incrementing it. This operation is called a 
BRANCH or JUMP and can be unconditional (which allows 
execution of a non-contiguous string of instructions) or condi­
tional (depending, for example, on whether the last opera­
tion's result was zero or not, was negative or positive, true or 
false, etc.). 

Even more flexibility can be achieved by using a stack (a 
group of temporary internal or external memory locations) to 
store vital data. A stack pointer is used to address the mem­
ory location currently at the top of the stack. Indirect and rela­
tive addressing and other sophisticated addressing modes (all 
of which can be handled by the PCU) will be discussed later. 
Meanwhile, Fig. 5 shows the PCU as a part of the CPU. 

Executing an instruction in our computer now requires the 
following steps: 

a). The PCU loads the address of the next instruction to the 
MAR and signals to the memory that a Read is re­
quested. InCidentally, the PCU may be as simple as a 
Program Counter equal to the address width. The mem­
ory loads the MDR with the contents of the location ad­
dressed. 

b). The CPU decodes the instruction: i.e., (assuming 
operands are in internal registers) selects the proper reg­
isters to feed the ALU, selects the proper function to be 
performed by the ALU, sets up the shifter to displace the 
result, if required, and selects the register in which the 
result should be stored. 

c). The ALU performs the function desired. 
d). The result is loaded into the destination register. 
e). The result is also examined to determine whether a 

BRANCH is to be performed. 
f). The PCU calculates the address of the next Instruction, 

(usually called a "FETCH"). 

This procedure becomes more complicated if the operands 
are not stored in the internal registers or if the result is not to 
be stored in one of them. Let's take an example instruction 
using relative addressing: 

"Take the first operand from the location specified by the 
sum of the word after this instruction (immediate) and the 
contents of register R1; take the second operand from 
the location specified by the sum of the second word 
after this instruction and the contents of R2; add the two 
operands and place the result in the location specified by 
the sum of the third word after this Instruction and the 
contents of register R3. Then execute the instruction lo­
cated at the address, which is the sum of the fourth word 
after this instruction and the contents of register R4 if 
there is a carry resulting from the addition. Otherwise 
continue sequentially". 

The steps required to execute this instruction are as follows: 

a). The PCU loads the address of the next instruction to the 
MAR, signalling to the memory that a Read is requested. 
The memory loads the MDR with the contents of the loca­
tion addressed. 

b). The CPU decodes the instruction, I.e., initiates the follow­
ing steps. 

c). The PCU is incremented and the next word is read from 
the memory. 

d). Register R 1 and the MDR are selected as source regis­
ters, MAR is the destination register. 

e). The ALU performs "ADD" and the result is placed in the 
MAR. 

f). The first operand is fetched from the memory and placed, 
for example, in R5. 

g). The PCU is incremented and the next word is read from 
the memory. 

h). Register R2 and the MDR are selected again as source 
registers and MAR as the destination. 



I). The ALU performs "ADD" and the result is placed in 
MAR. 

i). The second operand is fetched from the memory and is 
placed, for example, in R6. 

k). The PCU IS Incremented, the next word is read from the 
memory. 

I). Register R3 and the MDR are selected as source regis­
ters, the MAR as destination. 

m). The ALU performs "ADD" and the result is placed in the 
MAR, which now points to the location where the sum of 
the operands should be stored. 

n). Registers RS and R6 are selected as sources (they con­
tain the operands), MDR is now the destination. 

0.) The ALU performs "ADD" and the result IS placed in 
MDR. 

pl. A memory write cycle takes place and the contents of the 
MDR is stored at the desired address. 

q). The carry is examined to determine the next step to be 
performed. Assume there is no carry. 

r). The PCU is incremented twice (in order to skip the fifth 
word of the present instruction). It now points to the ad­
dress of the next instruction. 

As can be seen, 18 steps were used to perform a single ad­
dition using this complex relative addressing scheme. Obvi­
ously, our CPU needs some kind of "coordinator" which can: 

1). Decode an instruction fetched from the memory. 
2). Initiate the proper cycle of steps to be performed. 
3). Set up the various controls for each step. 
4). Execute the steps in an orderly sequence. 
5). Make decisions according to the state of various signals 

(conditions). 

We will call this coordinator the Computer Control Unit (CCU) 
and it is depicted in Fig. 6. Our CPU is now complete (more 
or less) and we will go into more detail later. 

SHIFT 
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THE MEMORY 

Let's now discuss the memory. The information stored in the 
memory is organized in words, where each word consists of N 
bits. N may be as small as 8 for very simple processors or as 
large as 64 in more powerful machines. The most common 
memory width for minicomputers is 16 bits. The number N is 
called the width of the memory and the number of bits In the 
MDR IS obviously also N; equal to the Width of the memory. 

The depth of a memory is the number of words it contains. 
With a MAR haVing k bits, 2k consecutive memory locations 
can be addressed. The addresses start from zero and range 
through 2k_1. 

The read access time of a memory directly accessible by the 
CPU is the time needed from stable address at the memory 
until the data is properly stored in the MDR. This access time 
depends on the type of memory used and can be as low as a 
few tens of nanoseconds and as large as several micro­
seconds. USing high speed memory improves the perfor­
mance of the computer as less time is wasted waiting for the 
memory to respond. In general, faster memories are costly, 
take more PC board area and use more power which results 
in more heat. A 32 bit wide, 2K (2048) word memory with 50 
nanosecond access time may need 10 amps from the +SV 
power supply and may require a board area of 10" x 6". Yet 
this is a very small memory space. 

It is usually not justified to have very large high-speed 
memories. Not all the programs and associated data need to 
reside in this memory at once. We may have the current pro­
gram (or only a part of it) in the memory while other programs 
or data files can reside elsewhere and be brought into mem­
ory during the appropriate part of the program when needed. 

REGISTER ALE 

M 
A 
R 

CENTRAL PROCESSING UNIT (CPU) 

MPR·444 

Figure 6. A Computer Control Unit (CCU) Included in a CPU. 
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This "elsewhere" may be a magnetic tape, cassette, disk, 
diskette, etc. and we will call it Bulk Memory. The distinctive 
characteristics of Bulk Memory are: 
1 ). very large capacity 
2). non-volatile (retains the information when not in use) 
3). not randomly acceSSible 
4). long access time 
5). inexpensive (per bit) 

Usually, Bulk Memory devices are serially accessible, i.e., the 
access time for the first word is large, but then consecutive 
words can be accessed relatively fast. 

In a later chapter the most efficient process of communication 
between the main and the bulk memory, called the Direct 
Memory Access (DMA), will be discussed in detail. 

THE EXTERNAL WORLD 

In any useful machine, some means of communicating with 
the ex1ernal word is needed. It may be a keyboard, a CRT, a 
card reader, a paper tape punch or, in a process controller, 
reading sensors or positioning actuators. The common de­
nominator of almost all of the input/output devices is that they 
are much slower than the CPU and therefore a timing prob­
lem arises; the CPU must know when the I/O device is ready 
for data transfer. Usually, a signal is sent by the device to the 
CPU in order to draw its attention. The CPU now can do one 
of two things: 

1). Test this signal periodically and when it is present, jump 
to a program which handles the data transfer. This type 
of operation is called "Polling". This technique has two 

major drawbacks: First, appreciable computer time IS 
spent performing these periodic tests where most of them 
will fail (no "Ready" signal present). Second, the recogni­
tion by the computer CPU of the appearance of a signal 
is delayed until the CPU arrives at this device in its pol­
ling sequence. 

Imagine what will happen if there are a large number of 
I/O devices. Long latency times (delays) will occur if 
many I/O deVices are busy simultaneously. 

2). Include some hardware in the CPU which can sense the 
presence of a "Ready" signal and interrupt the normal 
flow of the instructions and force the computer to "Jump" 
to the I/O service program whenever there is a request. It 
can even send the CPU to different programs according 
to the I/O device whose "Ready" flag was detected and 
even establish priority among the different devices if more 
than one device would like to have the CPU's attention at 
the same time. Moreover, under program control, this cir­
cuitry can ignore some or all of the signals if the com­
puter CPU must not be interrupted at that time. Obviously 
by paying the price of very little hardware, we gain 
enormously in computer performance. We will call this 
hardware the "Interrupt Controller" and will discuss it 
thoroughly later. 

Our computer is now depicted in Fig. 7. We have included the 
ALU, the internal register file and the shift circuit in one block, 
which we call the "Arithmetic Processor Unit." 

In the following pages and in the subsequent chapters, we will 
deal in more detail with each area of the machine. 
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Figure 7. The Stored-Program-Computer with DMA and Interrupt Control Added. 



A WORD ABOUT THE INSTRUCTION SET 

The internal architecture of the CPU depends to some extent 
on the instruction set the computer is to execute. If the in­
struction set is large, some of the instructions usually are 
more complicated and the computer is more powerful, faster 
and more efficient. On the other hand, the internal circuitry is 
also more complicated. Some examples of these tradeoffs are 
as follows. 

ALU Processing Capability: 

Although with three basic functions (add, complement, and 
OR/AND) all the arithmetic and logic operations can be per­
formed, most processors are built to perform subtract, NAND, 
XOR, etc. This is perhaps the most outstanding example of 
how performance and speed can be gained with little penalty 
on the complexity of the machine. With the added features an 
XOR operation can be performed in one instruction instead 
of 5. 

Data Movement: 

Let us assume 4 different computers whose data movement 
capabilities are described below: 

Machine A). A word can be read from the memory and 
loaded into Register A only. The contents of Register A can 
be written into the memory, or can be moved into any other 
register. The contents of any register can be copied into 
Register A. 

Machine B). The contents of any register can be copied into 
any other register or it can be written Into the memory. A word 
read from the memory can be loaded into any register. 

Machine C). As B above but with the added capability to read 
from one location in memory, to write that word into another 
location in memory. 

Machine D). As C above and also the memory-to-memory 
operation can be performed on consecutive addresses repeti­
tively. The number of word transfers (or upper and lower ad­
dress limits) are specified by the instruction. 

Machine A has very limited data movement capability. In 
order to perform an operation on two operands residing in the 
memory, we have to: 

1). Bring the first operand from the memory into Register A. 
2). Copy it into another register. 
3). Bring the second operand into Register A. 
4). Perform the operation required (result in A). 
5). Store the contents of Register A into the memory. 

If consecutive operations are required with several partial re­
sults, the drawbacks of machine A become more annoying, 
especially if the number of internal registers is small. 

Moving a data block from one location in the memory to 
another location can be performed by one Instruction in com­
puter D, but requires the transfer of each word first to an in­
ternal register then to the new memory location in machines 
A, B (two instructions for each word transferred). 

Obviously the decoding, multiplexing and sequencing of the 
computers grow in complexity as we proceed from machine A 
to machine D. We trade the complexity of hardware versus 
the software (programming), speed and performance. 

7 

Addressing: 

The operands for an operation can be found In several ways: 

• The operand is an explicit part of the instruction (Im­
mediate) 

• The address of the operand is an explicit part of the in­
struction. (Direct) 

• The address of the operand is in an internal register; the 
register itself is specified by the Instruction. (RR) 

• The address of the operand is the sum of the contents of 
an internal register (specified by the instruction) and a 
number (called the displacement) which is an explicit part 
of the instruction. (RX) 

• The contents of an internal register are added to a 
number found in an address specified by the instruction. 
The sum is the address of the operand. (Indirect) 

• The contents of an internal register are added to a 
number which is an explicit part of the instruction. The 
sum points to the location where the address of the 
operand is written. (Indirect) 

• The contents of an Internal register are added to a 
number which can be found at the 10caliOn explicitly 
specified by the instruction. The sum thus formed points to 
a location where the address of the operand is written. 

• Etc. 

Many other schemes can be formed by combining the above 
operations or by chaining them. In every case an "Effective 
Address" must be found by calculations and/or memory refer­
ences. Again, we can gain performance by using more 
sophisticated addressing schemes but we will pay for It by 
adding complexity to our machine, especially in its control por­
tion. 

TIMING, SEQUENCING, CONTROLLING 

In the previous paragraphs we have shown that we can gain 
performance in our computer by having a more complicated 
instruction set but more complex hardware is required, usually 
in the CCU. We have also shown an example for an "Add" 
operation which required 18 precisely controlled steps. Even if 
we assume that some of them can be performed simultane­
ously, we will need a multiphase clock to control these steps 
- something like that shown in Fig. 8. We can now load an 
instruction register at the beginning of an instruction with the 
first word of the instruction (the OP CODE) as is shown in 
Fig. 9. Using the outputs of the Instruction Register (IRa to 
IRn.1 ), the different phases of the clock and the various condi­
tion inputs to the CCU, we can now try to write the logical 
equations which should satiSfy all of the steps of all the in­
structions of our instruction set. Then use Karnough maps or 
other techniques to reduce these equations and finally realize 
them using AND, OR, INVERT gates and Flip Flops. Simple, 
isn't it? Imagine the complexity of a sophisticated computer 
and the debugging process it needs! 

The question posed immediately is: Isn't there a more or­
ganized and more easily understandable way to do that? Or, 
perhaps, can we have some processor do the job for us? 
Can't we have some kind of "micro-machine" which can take 
care of all the timing, sequencing and controlling jobs of our 
computer - a computer inside the computer? With the advent 
of the Am2900 family - new Bipolar LSI devices - the an­
swer is: Yes, we can! 
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00 -Il~ ________________ ~r1~ __________________ ~rl~ __ __ 
o,---1l~ ____________ ~r1~ _______________ ~ 

02 
____ ~r1~ ________________ ~r1~ ________________ ~rl_ 
________ ~r1~ ________________ ~rl~ ________________ _ 

o. 
__________ ~r1~ __________________ ~r1~ ______________ __ 
____________ ~r1~ ________________ ~r1~ ____________ _ 

o. 
______________ ~r1~ ________________ ~r1~ ________ __ 

07 ____________________ ~r1~ ____________________ ~r1~ ________ _ 
MPR-446 

Figure 8. An 8·Phase Clock. 
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Figure 9. The Instruction Register Bits. 
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Figure 10. The Micromachine. 

THE MICRO·MACHINE 

What we need is essentially a machine which can execute a 
number of well defined sequences. But, remember that this is 
exactly the purpose of a stored program computer. The only 
difference between our micro-machine and a general purpose 
computer is that in the general purpose computer the program 
to be executed is changed from task to task, while in our 
micro-machine it is fixed. This allows the use of PROM for its 
memory instead of the RAM needed in the general purpose 
(GP) computer. Our Computer Control Unit (CCU) using this 
micro-machine may now look like Figure 10. 

Basically, a microprogrammed machine is one in which a 
coherent sequence of microinstructions is used to execute 
various commands required by the machine. If the machine is 
a computer, each sequence of microinstructions can be made 
to execute a machine instruction. All of the little elemental 
tasks performed by the machine in executing the machine in­
struction are called microinstructions. The storage area for 
these microinstructions is usually called the microprogram 
memory. 

A microinstruction usually has two primary parts. These are: 
(1) the definition and control of all elemental micro-operations 
to be carried out and (2) the definition and control of the ad­
dress of the next microinstruction to be executed. 

The definition of the various micro-operations to be carried out 
usually includes such things as ALU source operand selec­
tion, ALU function, ALU destination, carry control, shift control, 
interrupt control, data-in and data-out control, and so forth. 
The definition of the next microinstruction function usually in­
cludes identifying the source selection of the next micro­
instruction address and, in some cases, supplying the actual 
value of that microinstruction address. 

Microprogrammed machines are usually distinguished from 
non-microprogrammed machines in the following manner. 
Older, non-microprogrammed machines implemented the con­
trol function by using combinations of gates and flip-flops 
connected in a somewhat random fashion in order to generate 
the required timing and control signals for the machine. Mi­
croprogrammed machines, on the other hand, are normally 



considered highly ordered and more organized with regard to 
the control function field. In its simplest definition, a micro­
program control unit consists of the microprogram memory 
and the structure required to determine the address of the 
next microinstruction. 

The OP-CODE (type of instruction to be executed by the 
computer) is loaded into the Instruction Register and the In­
struction Decoder decodes it. Actually, it generates the micro­
address where the first step of the execution sequence for 
that instruction resides in the microprogram memory. The 
Am2910 sequencer then generates the microaddress of the 
next microinstruction. The microprogram data supplies the 
control signals we need to control all the parts of the com-

MPR-449 

Figure 11. Computer Control Function Flow Diagram. 
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puter (and there are a lot of them), including the sequencer 
itself. When all the steps of a machine instruction are exe­
cuted, the microprogram will cause the reading (fetch) of the 
next machine instruction from the computer main memory. 
Typically, the Computer Control Unit is used to fetch instruc­
tions and decode them using a PROM for mapping the op 
code to the initial address of the sequence of microinstruc­
tions used to execute this particular instruction. It will also 
fetch all of the operands needed by the machine instruction 
and deliver them to the ALU for processing. An example of 
the flow of a typical Computer Control Unit is shown in Figure 
11. 

Assume the OP-CODE of the machine instruction that we 
fetch is 8 bits wide. This allows us to execute a minimum of 
256 different instructions. Assume also that an average of 6 
steps are needed to execute these instructions. Even if sepa­
rate microprogram memory locations are used, a depth of this 
microprogram memory is only 1-1/2K (K = 1024). But in that 
case, the sequencer can almost be replaced by a simple 
counter. Usually we would like to share some micro-routines 
among different instructions. With very little effort, we can 
shrink the depth of the microprogram memory of Figure 10 to 
less than 1/2K. Of course the sequencer will be a little more 
sophisticated; it will perform conditional Branch and micro­
subroutine CALL's; but we still don't need the complicated 
addressing schemes for microprogram control as were de­
scribed earlier as a part of the machine instruction set. 

On the other hand, the width of our microprogram memory 
may be large - maybe 60 to 100 bits. This will depend on the 
number of control lines needed in our computer. This is of no 
great disadvantage since the price of PROM devices is drop­
ping constantly. In a future chapter we will discuss techniques 
to reduce the depth and width of the microprogram memory to 
save cost. 

It is important to understand the distinction between machine 
level instructions and microprogram instructions. Figure 12 
shows a typical machine instruction for a 16 bit minicomputer 
that has an 8-bit opcode to identify one of 256 instructions; a 
4-bit source register specification to identify one of 16 source 
registers and a 4-bit destination register specification to iden­
tify one of 16 destination registers. The microprogram instruc­
tion of Figure 12 may contain from 32 to 128 bits in a typical 
design; or even more bits in a very fast, highly parallel mi­
crocoded machine. This microinstruction word usually will con­
tain fields for the ALU source operand, ALU function, ALU des­
tination, status load enable, shift multiplexer control, bus 
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The machine instruction is 16-bits and consists of an op code, source register and destination register specifica­
tion. The microprogram instruction defines all the elemental signals to control the various pieces of the machine. 
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cycle control, etc. These fields are used to control the various 
devices within the machine so that its execution is as desired 
on each clock cycle. This is more straightforward than using 
combinatorial logic and yields a more organized design. 

Let us now compare the depth-over-width (d/w) ratio of the 
computer's main memory to that of our microprogram mem­
ory. 

In the Am90S0A type microprocessor, the data field is S bits 
and the address field is 16 bits, allowing direct addressing of 
64K locations. The' ratio dlw is SK. In some minicomputers, 
the data width is 16-32 bits and the addressing capability is 
64-12SK. The d/w ratio is about the same. In larger computers 
with 32-64 bit data width, we find 256-512K deep memories or 
even deeper ones. The d/w ratio again is SK at least. 

On the other hand, the d/w ratio in microprogram memories is 
seldom greater than a few tens. Even if we assume that it is 
2K deep and only 64 bits wide, we arrive at a d/w ratio of only 
32; usually It Will be around 10. It is much easier to control a 
machine with a d/w ratio of 10 to 20 than to control one with 
d/w = SK. 

ONE MORE WORD 

We have suggested a replacement of the "random logic" 
realization of the CCU by a micro-machine. We call this a 
"Microprogrammed Architecture". Perhaps the biggest advan­
tage of this type of architecture is the ease of structuring the 
control sequence. We allocate a bit or a group of bits in the 
microprogram memory to control a certain function (e.g.: ALU 
source register selection, ALU function, ALU destination selec­
tion, condition selection, next address calculation selection, 
MOR destination selection, MAR source selection, etc., etc.) 
and for each microstep we write the appropriate state for 
these bits (LOW-HIGH) into this memory field. Later we will 
see that automated and sophisticated tools are avail­
able to perform this microprogram writing. One such tool is 
AMOASM™ as available on System 29. But, this is not the only 
advantage of the microprogrammed architecture. 

Am2919 

As nobody is perfect, some "bugs" may inadvertently slip into 
the design. In a random logic architecture, we will have to re­
design and usually rebuild the whole computer. On the other 
hand, in a microprogrammed machine it is usually sufficient to 
change a couple of bits in the microprogram to rectify the 
problem. This is even easier if a RAM instead of a PROM is 
used during the development and debugging phases. Of 
course, we must be able to load this memory with the micro­
program by some external means. Again, a powerful tool is 
available: AMO's System/29™. 

Finally, let's face the reality: The marketing guys usually 
change their requirements (i.e., the instruction set) when you 
are SO% through your logic design. Now you have to start 
over from scratch. Not sol Change some microcode, perhaps 
very little hardware too and here you are! It is even more 
convenient when only additions to the existing instruction set 
are considered. Just add a few lines to your microprogram to 
comply with those new ideas! A mere few minutes using Sys­
tem 29 - That's flexibility! Incidentally, don't tell the marketing 
guys how easy it is or you will NEVER get the product ou!!! 

SUMMARY 

The block diagram of Figure 13 shows a typical 16-bit 
minicomputer architecture. Also identified on this block dia­
gram are various Am2900 family elements that might be used 
In each of these blocks. Such a design might use either 
4-Am2901A's or 4-Am2903's for the data path ALU. An 
Am2910 could be used as the microprogram sequencer for 
control of up to 4K words of microprogram memory. Also 
shown on the block diagram are the Am9130 and Am9140 
MOS Static RAM's which are potential candidates for use in 
the computer's main memory. 

The following chapters will discuss various blocks of Figure 13 
in detail and give design examples for each section. Needless 
to say, the design engineer can appropriately tailor any design 
to meet his throughput requirements. Also, special algorithms 
can be executed by adding the appropriate hardware and mi­
crocode to the blocks described. 
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Figure 13. A Generalized Computer Architecture. 
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CHAPTER II 
MICROPROGRAMMED DESIGN 
INTRODUCTION 

A microprogrammed machine IS one in which a coherent se­
quence of microinstructions is used to execute various com­
mands required by the machine. If the machine is a computer, 
each sequence of microinstructions can be made to execute a 
machine instruction. All of the little elemental tasks performed 
by the machine in executing the machine instruction are called 
microinstructions. The storage area for these microinstructions 
is usually called the microprogram memory. This technique was 
identified by Wilkes In the 1950's as a structured approach to 
the random control logic in a computer. 

A microinstruction usually has two primary parts. These 
are: (1) the definition and control of all elemental micro­
operations to be carned out and (2) the definition and control of 
the address of the next microinstruction to be executed. 

The definition of the various micro-operations to be carried out 
usually Includes such things as ALU source operand selection, 
ALU function, ALU destination, carry control, shift control, inter­
rupt control, data-in and data-out control and so forth. The def­
inillOn of the next microinstruction function usually Includes 
identifying the source selection of the next microinstruction ad­
dress, and in some cases, supplYing the actual value of that 
microinstruction address. 

Microprogrammed machines are usually distinguished from 
non-microprogrammed machines in the following manner. Old­
er, non-microprogrammed machines implemented the control 
function by using combinations of gates and flip-flops con­
nected in a somewhat random fashion in order to generate the 
required timing and control signals for the machine. Micropro­
grammed machines, on the other hand, are normally considered 
highly ordered and more organized with regard to the control 
function field. In Its Simplest definition, a microprogram control 
unit consists of the microprogram memory and the structure 
required to determine the address of the next microinstruction. 

Microprogramming IS normally selected by the design engineer 
as a control technique for finite state machines because it im­
proves flexibility, performance, and LSI utilization. Several addi­
tIOnal key features of microprogrammed designs are listed be­
low: 

• More structured organizallOn 
• Diagnostics can be Implemented eaSily 
• Design changes are simple 
• Field updates are easy 
• Adaptations are straightforward 
• System definition can be expanded to include new features 
• Documentation and Service are easier 
• Design aids are available 
• Cost and design time are reduced 

THE MICROPROGRAM MEMORY 

The microprogram memory is simply an N word by M brt mem­
ory used to hold the various microinstructions. For an N word 
memory, the address locations are usually defined as location 
o through N-1. For example, a 256-word microprogram mem­
ory Will have address locations 0 through 255. Each word of 
the microprogram memory consIsts of M brts. These M bits are 
usually broken into various field definitions and the fields can 
consist of various numbers of bits. It is the definition of the var­
IOUS fields of a microprogram word that is usually referred to as 
FORMATTING. 

An example of how microinstruction fields are defined in a typ­
ical machine microprogram memory word is as follows: 

Field 1 - General purpose 
Field 2 - Branch address 
Field 3 - Next microinstruction address control 
Field 4 - Condition code multiplexer control 
Field 5 - Interrupt control 
Field 6 - Fast clock/slow clock select 
Field 7 - Carry control 
Field 8 - ALU source operand control 
Field 9 - ALU function control 
Field 10 - ALU destination control 
Field 11 - Shift multiplexer control 
Field 12 - etc. 

EXECUTING MICROINSTRUCTONS 

Once the microprogram format has been defined, it IS neces­
sary to execute sequences of these micrOinstructions if the 
machine IS to perform any real function. In Its simplest form, all 
that is required to sequence through a senes of microinstruc­
tions is a microprogram address counter. The microprogram 
address counter simply increments by one on each clock cycle 
to select the address of the next microinstruction. For example, 
If the microprogram address counter contains address 23, the 
next clock cycle will Increment the counter and it Will select ad­
dress 24. The counter will continue to Increment on each clock 
cycle thereby selecting address 25, address 26, address 27, 
and so forth. If thiS were the only control available, the machine 
would not be very fleXible and it would be able to execute only 
a fixed pattern of microinstructions. 

The technique of continuing from one microinstruction to the 
next sequential micrOinstruction is usually referred to as CON­
TINUE. Thus, in microprogram control definiDon, we will use the 
CONTINUE (CONT) statement to mean simply Incrementing to 
the next microinstruction. 

MICROPROGRAM JUMPING 

If the microprogram control unit IS to have the ability to select 
other than the next micrOinstruction, the control unit must be 
able to load a JUMP address. The load control of a counter 
can be a single bit field Within the microprogram word format. 
Let us call this one-bit field the microprogram address counter 
load enable bit. When this bit is at logiC 0, a load Will be inhib­
Ited and when this bit is a logic 1, a load Will be enabled. If the 
load IS enabled, the JUMP address contained within the micro­
program memory will be parallel loaded into the microprogram 
address counter. This results In the ability to perform an N-way 
branch. For example, ifthe branch address field IS eight bits wide, 
a JUMP to any address in the memory space from word 0 through 
word 255 can be performed. 

ThiS Simple branching control feature allows a microprogram 
memory controller to execute sequential microinstructions or 
perform a JUMP (JMP) to any address either before or after 
the address currently contained In the microprogram address 
counter. 

CONDITIONAL JUMPING 

While the JUMP instruction has added some flexibility to the 
sequencing of microprogram Instructions, the controller stili 
lacks any decision-making capability. ThiS deCISion-making 
capability is prOVided by the CONDITIONAL JUMP (COND 
JMP) instruction. Figure 1 shows a functional block diagram of 
a microprogram memory/address controller prOViding the capa­
bility to jump on either of two different conditions. In this exam­
ple, the load select control is a two-bit field used to control a 
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CONDITION 2 --------'--, 

CONDITION 1 ------, 

GND 

.----I S, 

So 
MULTIPLEXER 

MICROPROGRAM 
ADDRESS COUNTER 

ADDRESS 

MICROPROGRAM MEMORY 

MPR-455 

Figure 1. A Two-Bit Control Field Can be Used 
to Select CONTINUE, BRANCH, or 
CONDITIONAL BRANCH. 

four-input multiplexer. When the two· bit field is equivalent to bI­
nary zero, the multiplexer selects the zero input which forces 
the load control inactive. Thus, the CONTINUE microprogram 
control instruction IS executed. When the two·bit load select 
field contains binary one, the D1 input of the multiplexer is 
selected. Now, the load control is a function of the Condition 1 
input. If Condition 1 is logic 0, the microprogram address 
counter increments and if Condition 1 is logic 1, the jump ad­
dress Will be parallel loaded in the next clock cycle. This opera­
tion is defined as a CONDITIONAL JUMP. If the load select 
input contains binary 2, the D2 input is selected and the same 
conditional function is performed with respect to the Condition 2 
input. If the load select field contains binary 3, the D3 input of 
the multiplexer is selected. Since the D3 input is tied to logic 
HIGH, this forces the microprogram address counter to the load 
mode independent of anything else. Thus, the jump address is 
loaded Into the microprogram address counter on the next 
clock cycle and an UNCONDITIONAL JUMP is executed. This 
load select control function definition is shown in Table 1. 

TABLE 1. 
LOAD SELECT CONTROL FUNCTION. 

S, So Function 

o 0 Continue 
o 1 Jump Condition 1 True 
1 0 Jump Condition 2 True 
1 1 Jump Unconditional 

OVERLAPPING THE MICROPROGRAM 
INSTRUCTION FETCH 

Now that a few basic microprogram address control Instructions 
have been defined, let us examine the control instructions used 
In a microprogram control unit featuring the overlap fetching of 
the next microinstruction. This technique is also known as 
"pipelimng". The block diagram for such a microprogram con­
trol unit is shown in Figure 2. The key difference when com­
pared with previous microprogrammed architectures is the exis­
tence of the "pipeline register" at the output of the microprogram 
memory. By definition, the pipeline register (or microword 
register) contains the microinstruction currently being executed 
by the machine. Simultaneously, while this micrOinstruction is 
being executed, the address of the next microinstruction is 
applied to the microprogram memory and the contents of that 
memory word are being fetched and set-up at the Inputs to the 
pipeline register. This technique of plpelining can be used to 
improve the performance of the microprogram control unit. This 
results because the contents of the microprogram memory 
word required for the next cycle are being fetched on an over­
lapping basis with the actual execution of the current micro­
program word. It should be realized that when the pipeline ap­
proach is used, the design engineer must be aware of the fact 
that some registers contain the results of the previous mi­
croinstruction executed, some registers contain the current mi­
croinstruction being executed, and some registers contain data 
for the next microinstruction to be executed. 

CONDITION 2 --------, 

CONDITION 1 -----, 

GND 

.------I S, 

.-----\So 
CONDITION CODE 

MULTIPLEXER 

OUTPUT 

MICAOPROGRAM MEMORY 

MPR-456 

Figure 2. Overlapping (or Pipelining) the Fetch of the 
Next Microinstruction. 



Let us now compare the block diagram of Figure 2 with that 
shown in Figure 1. The major difference, of course, is the addi­
tion of the pipeline register at the output of the microprogram 
control memory. Also, notice the addition of the address multi­
plexer at the source of the microprogram memory address. 
This address multiplexer IS used to select the microprogram 
counter register or the pipeline register as the source of the 
next address for the microprogram memory. The condition code 
multiplexer is used to control the address multiplexer In this ad­
dress selection. By placing an Incrementer at the output of the 
address multiplexer, is is possible to always generate the cur­
rent microprogram address "plus one" at the Input of the micro­
program counter register. 

In Figure 1, the microprogram address counter was described 
as a counter and could be a device such as the Am25LS161 
counter. In the implementation as shown in Figure 2, the 
Am25LS161 counter is not appropriate. Instead, an incrementer 
and register are used to give the equivalent effect of a counter. 

The key difference between using a true binary counter and the 
Incrementer register descnbed here is as follows. When the 
jump address from the pipeline register is selected by the mul­
tiplexer, the inc rem enter will combinatorially prepare that ad­
dress plus one for entry into the microprogram counter register. 
This entry will occur on the LOW-to-HIGH transition of the 
clock. Thus, the microprogram counter register can always be 
made to contain address plus one, independent of the selection 
of the next microinstruction address. When the address multi­
plexer IS switched so that the microprogram counter register is 
selected as the source of the microprogram memory address, 
the Incrementer will again set-up address plus one for entry into 
the microprogram counter register. Thus, when the address 
multiplexer selects the microprogram counter register, the ad­
dress multiplexer, Incrementer and microprogram counter regis­
ter appear to operate as a normal binary counter: 

The condition code multiplexer SOS1 operates in exactly the 
same fashion as described for the condition code multiplexer of 
Figure 1. That IS, binary zero in the pipeline register (the cur­
rent microinstruction being executed) forces an unconditional 
selection of the microprogram register via Do. Binary one or bi­
nary two In the next address select control bits of the pipeline 
register cause a conditional selection at the address multiplexer 
via 01 or O2, Thus, a CONDITIONAL JUMP can be executed. 
Binary three In the next address select portion of the pipeline 
register causes an UNCONDITIONAL JUMP instruction to be 
executed via 03 , 

When the overall machine timing is studied, it will be observed 
that the key difference between overlap fetching and non­
overlap fetching involves the propagation delay of the micro­
program memory. In the non-pipelined architecture, the micro­
program memory propagation delay must be added to the 
propagation delay of all the other elements of the machine. In 
the overlap fetch architecture, the propagation delay associated 
with the next microprogram memory address fetch is a sepa­
rate loop independent of the other portion of the machine. 

SUBROUTINING IN MICROPROGRAMMING CONTROL 

Thus far, we have examined the CONTINUE instruction as well 
as the CONDITIONAL and UNCONDITIONAL JUMP Instruc­
tions for overlap fetch. Just as In the programming of mimcom­
puters and microcomputers, the advantages of SUBROUTIN­
ING can be realized in microprogramming. The idea here, of 
course, is that the same block of microcode (or even a single 
microinstruction) can be shared by several microinstruction 
sequences. This results In an overall reduction In the total 

number of microprogram memory words required by the de­
sign. If we are to jump to a subroutine, what is required is the 
ability to store an address to which the subroutine should return 
when it has completed ItS execution. Examining the block dia­
gram of Figure 3, we see the addition of a subroutine and loop 
(push/pop) stack (also called the file) and its associated stack 
pointer. The control signals reqUired by the stack are an enable 
stack signal (FILE ENABLE ~ FE) which Will be used to tell the 
file whenever we wish to perform a push or a pop, and a 
push/pop control (PUP) used to control the direction of the 
stack pointer (push or pop). 

In this architecture, the stack pointer always points to the address 
of the last microinstruction wntten on the stack. This al­
lows the "next address multiplexer" to read the stack at any 
time via port F. When this selection is performed, the last word 
wntten on the stack will be the word applied to the micropro­
gram memory. The condition code multiplexer of the previous 
example has also been replaced by a next address control umt. 
This next address control unit (Am29811 A) can execute 16 dif­
ferent next address control functions where most of these func­
tions are conditional. Thus, the device has four instruction In­
puts as well as one condition code test Input which IS con­
nected to the condition code multiplexer. Note also that the 
next address control field of the microprogram word has been 
expanded to a four-bit field. Outputs from the Am29811 A next 
address control block are used to control the stack pointer and 
the next address multiplexer of the Am2911. In addition, the 
device has outputs to control the three-state enable of the 
pipeline register and the three· state enable of the starting ad­
dress decode PROM. Also, the architecture has a counter that 
can be used as a loop-counter or event counter. 

The 16 Instructions associated with the Am29811 A are listed In 
Table 2. As is eaSily seen by referring to Table 2, three of the 
Instructions in this set are associated with subroutlning In mi­
croprogram rnemory. The first Instruction of this set, is a simple 
conditional JUMP-TO-SUBROUTINE where the source of the 
subroutine address is in the pipeline register. The RETURN­
FROM-SUBROUTINE Instruction IS also conditional and IS used 
to return to the next microinstruction follOWing the JUMP-TO­
SUBROUTINE instruction. There IS also a conditional JUMP­
TO-ONE-OF-TWO-SUBROUTINES, where the subroutine ad­
dress IS either In the PIPELINE register or in the internal REG­
ISTER In the Am2911. This Instruction Will be explained In 

more detail later. 

TYPICAL COMPUTER CONTROL UNIT 
ARCHITECTURE USING THE 
Am2911 AND Am29811 A 

The microprogram memory control unit block diagram of Figure 
3 IS eaSily implemented using the Am2911 and Am29811 A. 
This architecture proVides a structured state machine design 
capable of executing many highly sophisticated next address 
control Instructions. The Am2911 contains a next address mul­
tiplexer that prOVides four different Inputs from which the ad­
dress of the next microinstruction can be selected. These are 
the direct input (D), the register input (R), the program counter 
(PC), and the file (F). The starting address decoder (mapping 
PROM) output and the pipeline register output are connected 
together at the 0 input to the Am2911 and are operated in the 
three-state mode. 

The architecture of Figure 3 shows an instruction register ca­
pable of being loaded with a machine Instruction word from the 
data bus. The op code portion of the Instruction IS decoded 
using a mapping PROM to arrive at a starting address for the 
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TABLE 2. FUNCnONAL DESCRIPTION OF Am29811A INSTRUCnON SET. 

INPUTS OUTPUTS 

MNEMONIC 
INSTRUCTION 

FUNCTION 
TEST NEXTADDR 

FILE COUNTER MAP·E PL-E 
13 12 11 10 INPUT SOURCE 

JZ L L L L JUMP ZERO X 0 HOLD LL H L 
CJS L L L H COND JSB PL L PC HOLD HOLD H L 

H 0 PUSH HOLD H L 
JMAP L L H L JUMP MAP X 0 HOLD HOLD L H 

CJP L L H H COND JUMP PL L PC HOLD HOLD H L 

H 0 HOLD HOLD H L 
PUSH L H L L PUSH/COND LO CNTA L PC PUSH HOLD H L 

H PC PUSH LOAD H L 
JSRP L H L H CONO JSB R/PL L R PUSH HOLD H " H 0 PUSH HOLD H L 
CJV L H H L CONO JUMP VECTOR L PC HOLD HOLD H H 

H 0 HOLD HOLD H H 
JRP L H H H CONO JUMP R/PL L R HOLD HOLD H L 

H 0 HOLD HOLD H L 
RFCT H L L L REPEAT LOQP,CNTR '# 0 L F HOLD DEC H L 

H PC PDP HOLD H L 
RPCT H L L H REPEAT PL, CNTR .". 0 L 0 HOLD DEC H L 

H PC HOLD HOLD H L 
CRTN H L H L CONDRTN L PC HOLD HOLD H L 

H F POP HO."O H L 
CJPP H L H H COND JUMP PL & POP L PC HOLD HOLD H L 

H 0 POP HOLD H L 
LOCT H H L L LOAD CNTR & CONTINUE X PC HOLD LOAD H L 
LOOP H H L H TEST END LOOP L F HOLD HOLD H L 

H PC POP HOLD H L 
CONT H H H L CONTINUE X PC HOLD HOLD H L 
JP H H H H JUMP PL X 0 HOLD HOLD H L 
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TABLE 3. PIN FUNCTIONS. 

Abbreviation Name Function 

D, Direct Input Bit t Direct mput to register/counter and multiplexer. DO IS LSB 

I, InstructIon BIt I Selects one-ot-slxteen instructions for the Am291 0 
CC ConditIon Code Used as test cnterion. Pass test is a LOW on CC. 
CCEN Condition Code Enable Whenever the signal IS HIGH, CC IS ignored and the part operates 

as though CC were true (LOW). 

CI Carry-In Low order carry Input to Incrementer for microprogram counter 

RLD Register Load When LOW forces loading of register/counter regardless of 
Instruction or condition 

OE Output Enable Three-state control of Y, outputs 
CP Clock Pulse Triggers all tnternal state changes at LOW-ta-HIGH edge 

VCC +5 Volts 

GND Ground 

Vi Microprogram Address Brt I Address to microprogram memory. YO IS LSB, Y11's MSB 
FULL Full Indicates that five items are on the stack 

PL Plpe~!ne Address Enable Can select #1 source (usually Pipelme Register) as direct 
mput source 

MAP Map Address Enable Can select #2 source (usually Mappmg PROM or PLA) as 
direct Input source 

VECT Vector Address Enable Can select #3 source {for example, Interrupt Starting Address} 
as direct Input source 

microinstruction sequence required to execute the machine in­
struction. When the microprogram memory address IS to be the 
first microinstruction of the machine instruction sequence, the 
Am29811A next address control unit selects the multiplexer D 
input and enables the three-state output from the mapping 
PROM. When the current microinstruction being executed is 
selecting the next microinstruction address as a JUMP function, 
the JUMP address will be available at the multiplexer D input. 
This is accomplished by having the Am29811 A select the next 
address multiplexer D input and also enabling the three-state 
output of the pipeline register branch address field. The register 
enable input to the Am2911 is connected to ground so that this 
register Will always load the value at the Am2911 D input. The 
value at D is clocked into the Am2911 's register (R) at the end 
of the current microcycle, which makes the D value of this ml­
crocycle available as the R value of the next microcycle. Thus. 
by using the branch address field of two sequential micro­
instructions, a conditional JUMP-TO-ONE-OF-TWO­
SUBROUTINES or a conditional JUMP-TO-ONE-OF-TWO­
BRANCH-ADDRESSES can be executed by either selecting 
the D input or the R Input of the next address multiplexer. 

The controller contains a four·input multiplexer that IS used to 
select either the register/counter, direct input, microprogram 
counter, or stack as the source of the next microinstruction ad­
dress. 

When sequencing through continuous microinstructions in mi­
croprogram memory, the program counter In the Am2911 is 
used. Here, the Am29811 A simply selects the PC input of the 
next address multiplexer. In addition. most of these instructions 
enable the three-state outputs of the pipeline register as­
sociated With the branch address field, which allows the register 
within the Am2911 to be loaded. 

The 4 x 4 stack In the Am2911 IS used for looping and sub­
routining In microprogram operations. Up to four levels of sub­
routines or loops can be nested. Also, loops and subroutines 
can be intermixed as long as the four-word depth of the stack 
is not exceeded. 

ARCHITECTURE OF THE Am2910 

The Am2910 IS a bipolar microprogram controller Intended for 
use in high-speed microprocesSor applications. It allows ad­
dressing of up to 4K words of microprogram. A block diagram 
is shown In Figure 4. 

The register/counter consists of 12 D-type, edge-triggered fllp­
flops, with a common clock enable. When its load control, RLD, 
IS LOW, new data is loaded on a positive clock transition. A 
few Instructions Include load; In most systems, these instruc­
tions will be suffiCient, Simplifying the microcode. The output of 
the register/counter is available to the multiplexer as a source 
for the next micrOinstruction address. The direct input furnishes 
a source of data for loading the register/counter. 

Y, 

MPR-458 

Figure 4. Am2910 Block Diagram. 
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The Am2910 contains a microprogram counter (/LPC) that is 
composed of a 12-blt incrementer followed by a 12-bit register. 
The /LPC can be used in either of two ways When the carry-in 
to the incrementer is HIGH, the microprogram register is loaded 
on the next clock cycle with the current Y output word plus one 
(Y + 1 ..... /LPC). Sequential microinstructions are thus executed. 
When the carry-in is LOW, the incrementer passes the V output 
word unmodified so that /LPC is reloaded with the same V word 
on the next clock cycle (V ..... /LPC). The same microinstruction 
IS thus executed any number of times. 

The third source for the multiplexer is the direct (D) Inputs. This 
source IS used for branching. 

The fourth source available at the multiplexer input is a 5-word 
by 12-bit stack (file). The stack is used to prOVide retum ad­
dress linkage when executing mlcrosubroutines or loops. The 
stack contains a bUild-In stack pointer (SP) which always points 
to the last file word written. This allows stack reference opera­
tions (looping) to be performed without a pop. The stack pointer 
operates as an up/down counter. Dunng microinstructions 2, 4 
and 5, the PUSH operation is performed. This causes the stack 
pointer to I[lcrement and the file to be wntten with the required 
return linkage. On the cycle following the PUSH, the return 
data is at the new location pOinted to by the stack pointer. 

During SIX other microinstructions, a POP operation occurs. 
This places the information at the top of the stack onto the V 
outputs. The stack pointer decrements at the next rising clock 
edge follOWing a POP, effectively removing old Information from 
the top of the stack. 

The stack pointer linkage IS such that any sequence of pushes, 
pops or stack references can be achieved. At RESET (Instruc­
tion 0), the depth of nesting becomes zero. For each PUSH, 
the nesting depth Increases by one; for each POP, the depth 
decreases by one. The depth can grow to five. After a depth of 
five IS reached, FULL goes LOW. Any further PUSHes onto a 
full stack overwntes information at the top of the stack, but 
leaves the stack pointer unchanged. This operation will usually 
destroy useful Information and is normally aVOided. A POP from 
an empty stack places non-meaningful data on the V outputs, 
but IS otherWise safe. The stack pointer remains at zero 
whenever a POP is attempted from a stack already empty. 

The register/counter is operated during three microinstructions 
(8,9, 15) as a 12-bit down counter, with result = zero available 
as a microinstruction branch test criterion. ThiS provides effi­
cient iteration of micrOinstructions. The register/counter is ar­
ranged such that If it is preloaded With a number N and then 
used as a loop termination counter, the sequence will be exe­
cuted exactly N+1 times. During Instruction 15, a three-way 
branch under combined control of the loop counter and the 
condition code is available. 

The device provides three-state V outputs. These can be par­
ticularly useful in designs requiring automatic checkout of the 
processor. The microprogram controller outputs can be forced 
into the high-impedance state, and pre-programmed sequences 
of microinstructIOns can be executed via external access to the 
address lines. 

OPERATION 

Table 4 shows the result of each instruction in contrOlling the 
multiplexer which determines the V outputs, and In controlling the 
three enable Signals PL, MAP and VECT. The effect on the /LPC, 
the register/counter, and the stack after the next positive-going 
clock edge IS also shown. The multiplexer determines which 
Internal source drives the Y outputs. The value loaded into /LPC is 
either identical to the V output, or else one greater, as determined 
by CI. For each instruction, one and only one of the three outputs 
PL, MAP and VECT is LOW. If these outputs control three-state 
enables for the primary source of microprogram jumps (usually 
part of a pipeline register), a PROM which maps the instruction to 
a microinstruction starting location, and an optional third source 
(often a vector from a DMA or interrupt source), respectively, the 
three-state sources can drive the 0 inputs without further logic. 

Several inputs, as shown in Table 4 can modify instruction execu­
tion. The combination CC HIGH and CCEN LOW is used as a test 
in 10 of the 16 instructions. RLD, when LOW, causes the 0 input 
to be loaded into the register/counter, overriding any HOLD or 
DEC operation specified in the instruction. OE, normally LOW, 
may be forced HIGH to remove the Am291 0 V outputs from a 
three-state bus. 

TABLE 4. Am2910 MICROINSTRUCTION SET. 

REG/ FAIL PASS 

HEX CNTR CCEN - LOW and CC - HIGH CCEN - HIGH or CC - LOW REG/ CON· 
13-10 MNEMONIC NAME TENTS Y STACK y STACK CNTR ENABLE 

0 JZ JUMP ZERO X 0 CLEAR 0 CLEAR HOLD PL 

1 CJS CONO JSB PL X PC HOLD 0 PUSH HOLD PL 

2 JMAP JUMP MAP X 0 HOLD 0 HOLD HOLD MAP 

3 CJP COND JUMP PL X PC HOLD 0 HOLD HOLD PL 

4 PUSH PUSH/CONO LO CNTR X PC PUSH PC PUSH Note 1 PL 

5 JSRP CONO JSB R/PL X R PUSH 0 PUSH HOLD PL 

6 CJV COND JUMP VECTOR X PC HOLD 0 HOLD HOLD VECT 

7 JRP CONO JUMP R/PL X R HOLD 0 HOLD HOLD PL 

.. 0 F HOLD F HOLD DEC PL 
B RFCT REPEAT LOOP, CNTR '* 0 

POP PC POP HOLD PL =0 PC 

.. 0 0 HOLD 0 HOLD DEC PL 
9 RPCT REPEAT PL, CNTR '* 0 

=0 PC HOLD PC HOLD HOLD PL 

A CRTN CONO RTN X PC HOLD F POP HOLD PL 

B CJPP COND JUMP PL & POP X PC HOLD 0 POP HOLD PL 

C LDCT LD CNTR & CONTINUE X PC HOLD PC HOLD LOAD PL 

0 LOOP TEST END LOOP X F HOLD PC POP HOLD PL 

E CONT CONTINUE X PC HOLD PC HOLD HOLD PL 

F 
.. 0 F HOLD PC POP DEC PL 

TWB THREE-WAY BRANCH 
-0 0 POP PC POP HOLD PL 

Note If CCEN ~ LOW and CC ~ HIGH, hold; else load X = Don't Care 



The stack, a five-word last-in, first-out 12-bit memory, has a 
pointer which addresses the value presently on the top of the 
stack. Explicit control of the stack pointer occurs during instruc­
tion 0 (RESET), which makes the stack empty by resetting the SP 
to zero. After a RESET, and whenever else the stack is empty, the 
content of the top of stack IS undefined until a PUSH occurs. Any 
POPs performed while the stack is empty put undefined data on 
the F outputs and leave the stack pointer at zero. Any time the 
stack is full (five more PUSHes than POPs have occurred since 
the stack was last empty), the FULL warning output occurs. No 
additional PUSH should be attempted onto a full stack; If tned, 
Information at the top of the stack will be overwritten and lost. 

THE Am2910 INSTRUCTION SET 

The Am291 0 provides 16 instructions which select the address of 
the next microinstruction to be executed. Four of the instructions 
are unconditional - their effect depends only on the instruction. 
Ten of the instructions have an effect which IS partially controlled 
by an external, data-dependent condition. Three of the instruc­
tions have an effect which IS partially controlled by the contents of 
the Internal register/counter. The instruction set is shown in Table 
4. In thiS discussion i~ is assumed that CI is tied HIGH. 

In the ten conditional Instructions, the result of the data­
dependenttest IS applied to CC. Ifthe CC input is LOW, the test is 
considered to have been passed, and the action specified in the 
name occurs; otherwise, the test has failed and an alternate 
(often Simply the execution of the next sequenlial microinstruc­
tion) occurs. Testing of CC may be disabled for a specific micro­
Instruction by setting CCEN HIGH, which unconditionally forces 
the action specified In the name; that IS, It forces a pass. Other 
ways of using CCEN include (1) tying it HIGH, which is useful ifno 
microinstruction IS data-dependent; (2) tying it LOW if data­
dependent Instructions are never forced unconditionally; or (3) 
tying it to the source of Am2910 instruction bit 10, which leaves 
instructions 4, 6 and 10 as data-dependent but makes others 
unconditional. All ofthese tricks save one bit of microcode width. 

The effect of three instructions depends on the contents of the 
register/counter. Unless the counter holds a value of zero, it is 
decremented; If it does hold zero, it is held and a different micro­
program next address is selected. These instructions are useful 
for executing a microinstruction loop a known number of times. 
Instruction 15 is affected both by the external condition code and 
the internal register/counter. 

Perhaps the best technique for understanding the Am291 0 is to 
simply take each instruction and review its operation. In order to 
provide some feel for the actual execution of these instructions, 
Figure 5 is included and depicts examples of all 16 instructions. 

The exam!')les given In Figure 5 should be interpreted in the 
following manner: The intent IS to show microprogram flow as 
various microprogram memory words are executed. For exam­
ple, the CONTINUE instruction, instruction number 14, as shown 
In Figure 5, Simply means that the contents of microprogram 
memory word 50 IS executed, then the contents of word 51 is 
executed. This is followed by the contents of microprogram 
memory word 52 and the contents of microprogram memory word 
53. The microprogram addresses used in the examples were 
arbitrarily chosen and have no meaning other than to show in­
struction flow. The exception to this is the first example, JUMP 
ZERO, which forces the microprogram location counter to ad­
dress ZERO. Each dot refers to the time that the contents of the 
microprogram memory word is in the pipeline register. While no 
special symbology is used for the conditional instructions, the text 
to follow will explain what the conditional choices are In each 
example. 

It might be appropriate at this time to mention that AMD has a 
microprogram assembler called AMDASM, which has the capa­
bility of using the Am2910 Instructions in symbolic representa­
tion. AMDASM's Am2910 instruction symbolics (or mnemonics) 
are given in Figure 5 for each instruction and are also shown in 
Table 4. 

Instruction 0, JZ (JUMP and ZERO, or RESET) unconditionally 
specifies that the address of the next microinstruction IS zero. 
Many deSigns use thiS feature for power-up sequences and pro­
vide the power-up firmware beginning at microprogram memory 
word location O. 

Instruction 1 is a CONDITIONAL JUMP-TO-SUBROUTINE via 
the address prOVided In the pipeline register. As shown in Figure 
5, the machine might have executed words at address 50, 51 and 
52. When the contents of address 52 IS in the pipeline register, the 
next address control function IS the CONDITIONAL JUMP-TO­
SUBROUTINE. Here, If the test IS passed, the next instruction 
executed will be the contents of microprogram memory location 
90. If the test failed, the JUMP-TO-SUBROUTINE will not be 
executed; the contents of microprogram memory location 53 Will 
be executed Instead. Thus, the CONDITIONAL JUMP-TO­
SUBROUTINE instruction at location 52 will cause the instruction 
either In location 90 or In location 53 to be executed next. If the 
TEST Input is such that location 90 IS selected, value 53 will be 
pushed onto the Intemal stack. This provides the return linkage 
for the machine when the subroutine beginning at location 90 IS 
completed. In thiS example, the subroutine was completed at 
location 93 and a RETURN-FROM-SUBROUTINE would be 
found at location 93. 

Instruction 2 is the JUMP MAP instruction. This IS an uncondi­
tional instruction which causes the MAP output to be enabled so 
that the next microinstruction location is determined by the ad­
dress supplied via the mapping PROl\As. Normally the JUMP 
MAP instruction IS used at the end of the instruction fetch se­
quence for the machine. In the example of Figure 5, microinstruc­
tions at locations 50, 51, 52 and 53 might have been the fetch 
sequence and' at ,its completion at location 53, the jump map 
function would be contained in the pipeline register. ThiS example 
shows the mapping PROM outputs to be 90; therefore, an uncon­
ditional jump to microprogram memory address 90 is performed. 

Instruction 3, CONDITIONAL JUMP PIPELINE, derives ItS 
branch address from the pipeline register branch address value 
(BRo-BR11 In Figure 6). ThiS instruction provides a technique for 
branching to various microprogram sequences depending upon 
the test condition inputs. Quite often, state machines are de­
slgne'd which simply execute tests on various inputs waiting for 
the condition to come true. When the true condition is reached, 
the machine then branches and executes a set of microinstruc­
tions to perform some function. This usually has the effect of 
resetting the input being tested until some pOint In the future. 
Figure 5 shows the conditional jump via the pipeline register 
address at location 52. When the contents of microprogram 
memory word 52 are in the pipeline register, the next address will 
be either location 53 or location 30 In this example. If the test IS 
passed, the value currently In the pipeline register (3) will be 
selected. If the test fails, the next address selected will be con­
tained in the microprogram counter which, in this example, is 53. 

Instruction 4 is the PUSH/CONDITIONAL LOAD COUNTER in­
struction and is used primarily for setting up loops In micropro­
gram firmware. In Figure 5, when instruction 52 is in the pipeline 
register, a PUSH will be made onto the stack and the counter will 
be loaded based on the condition. When a PUSH occurs, the 
value pushed is always the next sequenlial instruction address. In 
thiS case, the address is 53. If the test fails, the counter IS not 
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o JUMP ZERO (JZ) 

3 COND JUMP PL (CJP) 

51 

52 

53 
so~ 
54 30 

31 

6 COND JUMP VECTOR (CJV) 

soh 51 

52 

53 20 

54 21 

8 REPEAT LOOP, CNTR '" 0 (RFCT) 

50 

51 

52 

53 

54 

55 

REGISTERI 
COUNTER 

11 COND JUMP PL & POP (CJPP) 

50 

51 
~(4!1~--------~ __ 
53 (t!...-jr----... 
54 

55 

56 

14 CONTINUE (CONT) 

sol 51 

52 

53 

70 

71 

72 

1 CON D JSB PL (CJS) 

50 HSTACK 51 53 

52 90 
53 91 

54 92 

55 93 

4 PUSH/COND LD CNTR (PUSH) 

k:STACK 
50 53 
51 

52 REGISTER! 

53 N COUNTER 

7 COND JUMP R/PL (JRP) 

70 

71 

50 

511 

52 

80 

81 

9 REPEAT PL, CNTR '" 0 (RPCT) 

~
COUNTER 

50 (LDCT) 

51 

52 

53 

12 LD CNTR & CONTINUE (LDCT) 

~COUNTER 
50 N 
51 

52 

53. 

15 THREE·WAY BRANCH (TWB) 

~
STACK 

62 64 (PUSH} 

63 REGISTER! 
64 N COUNTER 

65 72 

66 73 

Figure 5. Am2910 Execution Examples. 

2 JUMP MAP (JMAP) 

~~ 52 

53 90 

91 

5 COND JSB R/PL (JSRP) 

90 

91 

92 

93 
94 

10 COND RETURN (CRTN) 
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51 
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53 STACK 
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96 

97 

13 TEST END LOOP (LOOP) 

50 STACK 

51 (PUSH) 
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53 

54 
55 

56 

51 

84 
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loaded; if it IS passed, the counter is loaded with the value con­
tained in the pipeline register branch address field. Thus, a single 
microinstruction can be used to set up a loop to be executed a 
specific number of times. Instruction 8 will describe how to use 
the pushed value and the register/counter for looping. 

Instruction 5 IS a CONDITIONAL JUMP-TO-SUBROUTINE via 
the register/counter or the contents of the PIPELINE register. As 
shown in figure 5, a PUSH IS always performed and one of two 
subroutines executed. In this example, either the subroutine be­
ginning at address 80 or the subroutine beginntng at address 90 
will be performed. A return-from-subroutine (instruction number 
10) returns the microprogram flow to address 55. In order for thiS 
micrOinstruction control sequence to operate correctly, both the 
next address fields of instruction 53 and the next address fields of 
instruction 54 would have to contain the proper value. Let's 
assume that the branch address fields of Instruction 53 contain 
the value 90 so that It will be in the Am291 0 register/counter when 
the contents of address 54 are in the pipeline register. This 
reqUires that instruction at address 53 load the register/counter. 
Now, dUring the execution of instruction 5 (at address 54), if the 
test failed, the contents of the register (value = 90) will select the 
address of the next micrOinstruction. If the test input passes, the 
pipeline register contents (value = 80) will determine the address 
of the next microinstruction. Therefore, this Instruction provides 
the ability to select one of two subroutines to be executed based 
on a test condition. 

Instruction 6 is a CONDITIONAL JUMP VECTOR Instruction 
which provides the capability to take the branch address from a 
third source heretofore not discussed. In order for thiS instruction 
to be useful, the Am2910 output, VECT, is used to control a 
three-state control input of a register, buffer, or PROM containing 
the next microprogram address. This instruction provides one 
techntque for performing interrupt type branching at the micro­
program level. Since this instruction IS conditional, a pass causes 
the next address to be taken from the vector source, while failure 
causes the next address to be taken from the microprogram 
counter. In the example of figure 5, if the CONDITIONAL JUMP 
VECTOR instruction IS contained at location 52, execution will 
continue at vector address 20 if the TEST input is HIGH and the 
microinstruction at address 53 will be executed if the TEST input 
is LOW. 

Instruction 7 IS a CONDITIONAL JUMP via the contents of the 
Am2910 REGISTER/COUNTER orthe contents of the PIPELINE 
register. This Instruction IS very Similar to instruction 5; the condi­
tional Jump-lo-subroutlne via R or PL. The major difference be­
tween Instruction 5 and Instruction 7 is that no push onto the stack 
IS performed With 7. figure 5 depicts thiS instruction as a branch 
to one of two locations depending on the test condition. The 
example assumes the pipeline register contains the value 70 
when the contents of address 52 IS being executed. As the 
contents of address 53 IS clocked into the pipeline register, the 
value 70 IS loaded Into the register/counter in the Am291 O. The 
value 80 is available when the contents of address 53 IS In the 
pipeline register Thus, control IS transferred to either address 70 
or address 80 depending on the test condilion. 

Instruction 8 IS the REPEAT LOOP, COUNTER I ZERO instruc­
tion. ThiS micrOinstruction makes use of the decremenling capa­
bility of the register/counter. To be useful, some prevIous instruc­
tion, such as 4, must have loaded a count value into the reglster/ 
counter. This Instruction checks to see whether the register/ 
counter contains a non-zero value. If so, the register/counter IS 
decremented, and the address of the next microinstruction IS 
taken from the top of the stack. If the register counter contains 
zero, the loop eXit condition IS occurring; control falls through to 

the next sequential microinstruction by selecting /LPC; the stack 
IS POP'd by decremenling the stack pOinter, but the contents of 
the top of the stack are thrown away. 

An example of the REPEAT LOOP, COUNTER ;i ZERO instruc­
tion IS shown In figure 5. In this example, location 50 most likely 
would contain a PUSH/CONDITIONAL LOAD COUNTER in­
struction which would have caused address 51 to be PUSHed on 
the stack and the counter to be loaded With the proper value for 
looping the desired number of times. 

In this example, since the loop test is made at the end of the 
instructions to be repeated (microaddress 54), the proper value to 
be loaded by the Instruction at address 50 is one less than the 
desired number of passes through the loop. This method allows a 
loop to be executed from 0 to 4095 times. 

Single-microinstruction loops provide a highly efficient capability 
for executing a specific microinstruction a fixed number of times. 
Examples include fixed rotates, by1e swap, fixed pOint multiply, 
and fixed pOint divide. 

Instruction 9 IS the REPEAT PIPELINE REGISTER, COUNTER 
ic ZERO instruction. ThiS instruction is similar to instruction 8 
except that the branch address now comes from the pipeline 
register rather than the file. In some cases, this instruction may be 
thought of as a one-word file extension; that is, by using this 
instruction, a loop with the counter can still be performed when 
subroutines are nested five deep. ThiS Instruction's operation IS 
very simllarto that of instruction 8. The differences are thaton this 
instruction, a failed test condition causes the source of the next 
microinstruction address to be the D inputs; and, when the test 
condition is passed, this instruction does not perform a POP 
because the stack is not being used. 

In the example of figure 5, the REPEAT PIPELINE, COUNTER 
ic ZERO instruction IS instruction 52 and IS shown as a single 
microinstruction loop. The address in the pipeline register would 
be 52. Instruction 51 in thiS example could be the LOAD 
COUNTER AND CONTINUE instruction (number 12). While the 
example shows a single microinstruction loop, by simply chang­
Ing the address In a pipeline register, multi-instruction loops can 
be performed in this manner for a fixed number of times as 
determined by the counter. 

Instruction 10 IS the condilional RETURN-fROM-SUBROUTINE 
Instruction. As the name Implies, thiS Instruction IS used to branch 
from the subrouline back to the next microinstruction address 
follOWing the subroutine call. Since this Instruction IS conditional, 
the return IS performed only if the test IS passed. If the test IS 
failed, the next sequential microinstruction IS performed. The 
example In figure 5 depicts the use of the conditional RETURN­
fROM-SUBROUTINE Instruction In both the conditional and the 
unconditional modes. This example first shows a jump-to­
subroutine at instruction location 52 where control IS transferred 
to location 90. At location 93, a conditional RETURN-fROM­
SUBROUTINE Instruction IS performed. If the test IS passed, the 
stack is accessed and the program Will transfer to the next Instruc­
tion at address 53. If the test IS failed, the next microinstruction at 
address 94 Will be executed. The program will continue to ad­
dress 97 where the subroutine IS complete. To perform an un­
conditional RETURN-fROM-SUBROUTINE, the conditional 
RETURN-fROM-SUBROUTINE instruction is executed uncon­
ditionally; the microinstruction at address 97 IS programmed to 
force CCEN HIGH, disabling the test and the forced PASS 
causes an unconditional return. 

Instruction 11 IS the CONDITIONAL JUMP PIPELINE register 
address and POP stack Instruction. This Instruction provides 
another technique for loop termination and stack maintenance. 
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The example in Figure 5 shows a loop being performed from 
address 55 back to address 51. The instructions at locations 52, 
53 and 54 are all conditional JUMP and POP instructions. At 
address 52, if the TEST input is passed, a branch will be made to 
address 70 and the stack will be properly maintained via a POP. 
Should the test fall, the instruction at location 53 (the next sequen­
tial instruction) will be executed. Likewise, at address 53, either 
the instruction at 90 or 54 will be subsequently executed, respec­
tive to the test being passed or failed. The instruction at 54 follows 
the same rules, going to either 80 or 55. An instruction sequence 
as described here, using the CONDITIONAL JUMP PIPELINE 
and POP instruction, is very useful when several inputs are being 
tested and the microprogram IS looping waiting for any of the 
inputs being tested to occur befon~ proceeding to another se­
quence of instructions. This provides the powerful jump-table 
programming technique at the firmware level. 

Instruction 12 IS the LOAD COUNTER AND CONTINUE instruc­
tion, which simply enables the counter to be loaded with the value 
at its parallel inputs. These Inputs are normally connected to the 
pipeline branch address field which (in the architecture being 
described here) serves to supply either a branch address or a 
counter value depending upon the microinstruction being exe­
cuted. There are altogether three ways of loading the counter -
the explicit load by this instruction 12; the conditional load in­
cluded as part of instruction 4; and the use olthe RLD input along 
With any Instruction. The use of RLD with any instruction over­
rides any counting or decrementation specified in the Instruction, 
calling for a load instead. Its use provides additional microinstruc­
tion power, at the expense of one bit of microinstruction Width. 
This instruction 12 is exactly equivalent to the combination of 
instruction 14 and RLD LOW. Its purpose is to provide a simple 
capability to load the register/counter in those implementations 
which do not provide microprogrammed control for RLD. 

Instruction 13 is the TEST END-OF-LOOP instruction, which 
provides the capability of conditionally exiting a loop at the bot­
tom; that IS, this is a conditional instruction that will cause the 
microprogram to loop, via the file, if the test is failed else to 
continue to the next sequential instruction. The example in Figure 
5 shows the TEST END-OF-LOOP micrOinstruction at address 
56. If the test fails, the microprogram will branch to address 52. 
Address 52 IS on the stack because a PUSH instruction had been 
executed at address 51. If the test IS passed at Instruction 56, the 
loop is terminated and the next sequential microinstruction at 
address 57 is being executed, which also causes the stack to be 
POPd; thus, accomplishing the required stack maintenance. 

Instruction 14 is the CONTINUE instruction, which simply causes 
the microprogram counter to Increment so that the next sequen­
tial microinstruction is executed. This is the simplest micrOinstruc­
tion of all and should be the defaull InstrucllOn which the firmware 
requests whenever there is nothing better to do. 

Instruction 15, THREE-WAY BRANCH, is the most complex. It 
provides for testing of both a data-dependent condition and the 
counter during one microinstruction and provides for selecting 
among one of three microinstruction addresses as the next mi­
croinstruction to be performed. Like InstrucllOn 8, a previous 
Instruction will have loaded a count into the register/counter while 
pushing a mlcrobranch address onto the stack. Instruction 15 
performs a decrement-and-branch-untll-zero function similar to 
Instruction 8. The next address IS taken from the top of the stack 
until the count reaches zero; then the next address comes from 
the pipeline register. The above acllOn continues as long as the 
test condition falls. If at any execution of instruction 15 the test 
condlllOn IS passed, no branch IS taken; the microprogram 
counter register furnishes the next address. When the loop IS 

ended, either by the count becoming zero, or by passing the 
conditional test, the stack is POP'd by decrementing the stack 
pointer, since interest in the value contained atthe top olthe stack 
is then complete. 

The application of instruction 15 can enhance performance of a 
variety of machine-level instructions. For instance, (1) a memory 
search instruction to be terminated either by finding a desired 
memory content or by reaching the search limit; (2) variable­
field-length arithmetic terminated early upon finding that the con­
tent of the portion of the field still unprocessed IS all zeroes; (3) 
key search in a disc controller processing variable length records; 
(4) normalization of a floating point number. 

As one example, consider the case of a memory search instruc­
tion. As shown in Figure 5, the Instruction at microprogram ad­
dress 63 can be Instruction 4 (PUSH), which will push the value 
64 onto the microprogram stack and load the number N, which is 
one less than the number of memory locations to be searched 
before giving up. Location 64 contains a microinstruction which 
fetches the next operand from the memory area to be searched 
and compares it with the search key. Location 65 contains a 
microinstruction which tests the result of the comparison and also 
is a THREE-WAY BRANCH for microprogram control. If no match 
is found, the test fails and the microprogram goes back to location 
64 for the next operand address. When the count becomes zero, 
the microprogram branches to location 72, which does whatever 
is necessary if no match is found. If a match occurs on any 
execution of the THREE-WAY BRANCH at location 65, control 
falls through to location 66 which handles this case. Whether the 
instruction ends by finding a match or not, the stack will have 
been POP'd once, removing the value 64 from the top of the 
stack. 

Am29811A Instruction Set Difference 

The Am29811 A instruction set is identical to the Am291 0 except 
for instruction number 15. In the Am29811 A. instruction number 
15 is an unconditional JUMP PIPELINE REGISTER instruction. 
This provides the ability to unconditionally branch to any address 
contained In the branch address field of the microprogram. Thus, 
an unconditional N-way branch can be performed. Use of thiS 
Instruction as opposed to a forced conditional jump pipeline in­
struction simply allows the condition code multiplexer select field 
to be shared (formatted) with other functions. 

TYPICAL COMPUTER CONTROL UNIT ARCHITECTURE 
USING THE Am2910 

The microprogram memory control unit block diagram of Figure 6 
is easily implemented using the Am2910. This architecture pro­
vides a structured state machine design capable of executing 
many highly sophisticated next address control instructions. 

The architecture of Figure 6 shows an instruction register capable 
of being loaded With a machine Instruction word from the data 
bus. The op code portion of the instruction is decoded usmg a 
mapping PROM to arrive at a starting address for the mi­
croinstruction sequence required to execute the machine Instruc­
tion. When the microprogram memory address is to be the first 
micrOinstruction of the machine instruction sequence, the 
Am2910 next address control selects the multiplexer D input and 
enables the three-state output from the mapping PROM. When 
the current microinstruction being executed is selecting the next 
microinstruction address as a JUMP function, the JUMP address 
will be available at the multiplexer D input. This IS accomplished 
by having the Am291 0 selectthe next address multiplexer D Input 
and also enabling the three-state output of the pipeline register 
branch address field. The register enable input to the Am2910 
can be grounded so that this register Will load the value at the 



Am2910D Input. The value at 0 is clocked into the Am2910's 
register (R) at the end olthe current microcycle, which makes the 
o value of this microcycle available as the R value of the next 
mlcrocycle, Thus, by uSing the branch address field of two se­
quential microinstructions, a conditional JUMP-TO-ONE-OF­
TWO-SUBROUTINES or a conditional JUMP-TO-ONE-OF­
TWO-BRANCH-ADDRESSES can be executed by either se­
lecting the 0 input or the R Input of the next address multiplexer. 

When sequencing through continuous microinstructions in mi­
croprogram memory, the program counter in the Am291 0 IS used. 
Here, the control logic simply selects the PC input of the next 
address multiplexer. In addition, most of these Instructions ena­
ble the three-state outputs of the pipeline register assOCiated with 
the branch address field, which allows the register within the 
Am2910 to be loaded. The 5 x 12 stack in the Am291 0 IS used for 

looping and subroutlning in microprogram operations. Up to five 
levels of subroutines or loops can be nested. Also, loops and 
subroutines can be intermixed as long as the five word depth of 
the stack is not exceeded. 

CCU TIMING 

The minimum clock cycle that can be used in a CCU design is 
usually determined by the component delays along the longest 
"plpeline-reglster-clock to logic to plpeline-reglster-clock" path. 
At the beginning of any given clock cycle, data available at the 
output of the microprogram memory, counter status, and any 
other data and/or status fields, are latched Into their associated 
pipeline registers. At this point, all delay paths begin. Visual 
inspection will not always point out the longest signal delay path. 
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The obviously long paths are a good place to start, but each 
definable path should be calculated on a component by compo­
nent basIs until the truly longest logic signal path is found. 

Referring to Figure 6, a number of potentially long paths can be 
identified. These include the instruction register to pipeline regis­
ter time, the pipeline register to pipeline register time via the 
condition code multiplexer and the status to pipeline register time. 
In order to demonstrate the technique for calculating the AC 
pertormance of the Am2910 state machine design, the timing 
diagrams of Figure 7 are presented. Here, a number of propaga­
tion delay paths are evaluated such that the reader can learn the 
technique for pertorming these computations. 

All of the propagation delays have been calculated using typical 
propagation delays because at the time of this writing, the charac­
terization of the Am291 0 has not been completed. When the final 
data sheet is published, the user need only select the appropriate 
worst case specifications and he can compute the desired 
maximum propagation delays for his design. Also, by looking at 
the typical propagation delay numbers, the designer will be able 
to evaluate the design margin in the system after he has com­
pleted all of the worst case calculations. These typical prop­
agation delays represent the expected values if a system were 
set up on the bench and actual measurements would be taken at 
5V and 25°C operating temperature. 

While Figure 6 and Figure 7 deal with the Am291 0 microprogram 
sequencer, it is also instructive to evaluate the AC pertormance of 
a typical computer control unit using the Am2911 and 
Am29811 A. Figure 3 shows such a connection and will be used 
as the basis for pertorming the propagation delay path calcula­
tions. The calculations for the various propagation delay paths 
are demonstrated in Figure 8 and are intended to show the 

a) 

INSTRUCTION 
REGISTER 

Q MAP 
PROM 

technique for computing these delays. As before, the typical 
propagation delays have been used In the computation for com­
parison purposes. The user can derive the maximum numbers at 
25°C and 5V, commercial temperature range and power supply 
variations or military temperature range and power supply varia­
tions as required for his design. 

When Figure 7 and Figure 8 are reviewed in detail, the reader will 
recognize that the longest propagation delay paths in the case of 
the Am2910 as well as the Am2911 and Am29811A involve the 
three-state enables on the map PROM or the pipeline register for 
the branch address. If absolute maximum speed is desired, these 
paths can be eliminated by using one of several techniques. One 
technique IS to simply allocate one or more bits in the pipeline 
register to control the three-state enables of the various devices 
connected to the D input of the Am2910. For the example of 
Figure 6, one bit would be sufficient and the pipeline register 
could be implemented using an Am74S175 register. This would 
allow the true and complement outputs to be used to drive the 
pipeline register branch address output enable and the mapping 
PROM output enable. Thus, these longest paths would be elimi­
nated and an improvement of about 30ns would be achieved. A 
second technique for eliminating these propagation delay paths 
would be to use a four input NAND gate and a four input NOR gate 
to encode the equivalent function of the MAP enable and the PL 
enable. This technique is demonstrated in Figure 9. Again, an 
Am74S175 register would be used as the pipeline register to 
provide the ~nstruction inputs to the Am2910 sequencer. This 
would allow instruction 2 to be decoded to provide the MAP 
enable Signal and "NOT INSTRUCTION 2" to be decoded as the 
pipeline enable signal. This technique can be applied as well to 
the computer control unit of Figure 3 to accomplish the same 
longest path elimination. 
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In order to compare the performance of the Am2910 with the 
Am2911 and Am29811 A, Table 5 IS presented. Here the prop­
agation delays for the Am2911 and Am29811 A are for a 12-bit 
wide microprogram sequencer configuration. If a wider configu­
ration is used, only one additional carry inputto carry output delay 
must be added to the appropriate paths of these calculations. A 
12-bIt wide Am2911/29811 A configuration has been evaluated 
so that an "apples to apples" comparison can be made. 

As IS shown In Table 5, a number of combinations are possible for 
the longest AC propagation delay paths for these microprogram 
sequencers. First, the conllnue instruction can be executed the 
fastest of any of the microprogram Instructions If the continues 
are sequenllal. That IS, from the second conllnue on, the typical 
mlcrocycle can be either 61 or 64ns respectively. To achieve this 
speed, it IS reqUired that various signals throughout the architec­
ture be stable such thatthe only paths that enter into the propaga­
tion delay calculation are the clock-la-output of the microprogram 
counter, the microprogram memory and the pipeline register 
setup. 

The second group of instructions shown in Table 5 show some 
examples of Instruction execution and jumping. These examples 
assume that the MAP and OE outputs are not used as described 
earlier. These calculations apply to several of the instructions but 
not to all the Instructions. For the Am2910 sequencer all of the 
propagation delays are around 80 to 85ns; while for the 
Am2911/Am29811A combination, the propagation delays range 
from about 80ns to 1 OOns, depending on the instruction. It should 
be noted that certain other instructions such as push and condl­
tionalload counter should be evaluated to determine the speed at 
which they can be executed. 

The last two Instructions shown In Table 5 are for jumps where the 
output enable of the field supplying the address to the D inputs of 
the microprogram sequencers are controlled by either the 
Am291 0 or Am29811 A. Notice thatfor Am291 0 configuration, the 
jump map represents the longest propagation delay path and is 
1 03ns typical. Also, for the Am2911/Am29811 A combination, the 
jump map instruction also represents the longest propagation 
delay path and is 109ns typical. 

It IS not the purpose of thiS exercise to show every possible 
propagation delay path; but rather, to show the reader the 
technique for computing propagation delays such that any design 
can be evaluated and the worst case past derived. Even here, not 
all olthe worst case numbers shown In Table 5 have been derived 
In Figures 7 and 8. This was done Intentionally and IS left as an 
exercise for the student. 

If the Am2909 or Am2911 and the Am29811A are combined into 
microprogram sequencers of either 8 bits In Width or 16 bits In 
width, the calculations need only be modified slightly to determine 

the microcycle times. ObViously, if two Am2911 s are used, the 
worst case propagation delay paths do not change. However, if 
four Am2911 s are used, the carry path will become the longer 
propagation delay path on several of the computations. This may 
be offset however since larger microprogram PROMs may be 
used if 64K of microcode is actually being addressed or high 
power buffers may be placed between the Am2911 outputs and 
the microprogram memory to provide sufficient drive for such a 
large microprogram store. 

In addition, the Am2909 and Am2911 may be used without the 
Am29811 A where the user Wishes to generate a speCial purpose 
instruction set or very high speed control of the internal multi­
plexer and push pop stack. In some, designs as much as 25 to 
30ns, typical, can be removed from the longest propagation delay 
paths of the deSign by uSing high speed Schottky SSI. While this 
has not been the tYPical case, some deSigners have used It to 
provide a performance improvement not achievable with a stan­
dard Schottky condition code multiplexer and the Am29811A 
next address control Unit. 

APPLICATIONS 

It should be understood that the microprogram state machine 
bUilt uSing either the Am291 0 or the Am2911/29811 A represents 
a general purpose state machine controller. Applications for this 
type of microprogrammed control include uses in minicomputers, 
communications, instrumentation, controllers and peripherals as 
well as speCial purpose processors. Typically, the micropro­
grammed approach provides a more structured organizatIOn to 
the deSign and allows the deSign engineer the greatest flexibility 
In implementation. 

It IS important to understand that microprogrammed machines 
need not be part of a typical minicomputer type structure. That IS, 
a general purpose minicomputer usually has a machine instruc­
tion set that IS totally different from its microprogram InstructIOn 
control. As such, it IS essential thatthe designer new to computer 
deSign and microprogram design understand the difference be­
tween a machine Instruction and a microprogram instruction. ThiS 
differentiation IS shown in Figure 10 where a tYPical 16-bit 
machine level instruction is demonstrated as compared with a 
typical microprogram instruction. The machine level instruction 
usually consists of 16 bits and in thiS example, these bits are used 
to provide the op code, source register definitIOn and destinatIOn 
register definition. The microprogram instruction on the other 
hand usually consists of anywhere from 32 to 128 bits In a tYPical 
minicomputer type deSign. Here, the bits are used to control the 
elemental functions of a machine such as the Am291 0 instruction 
control and condition code multiplexer, the Am2903 source, AlU 
function and destination control and so forth. For purposes ofthis 
explanation, let us assume that the machine level instruction is 
available to the machine programmer while the microprogram 

TABLE 5. SUMMARY OF LONGEST AC PATHS FOR MICROPROGRAM SEQUENCERS. 

Am2911 
Instruction Am291 0 Am29811A Comments 

Continue 61 64 The fastest Instruction. 
Assumes sequenllal continues I 

Instruction Execute B4 BB If the MAP and PL outputs 

Jump Map (no OE) B3 7B are not used. 

Jump PL (No OE) 78 101 

Jump Map (via OE) 103 109 If the MAP and PL outputs 

Jump PL (via OE) 9B 104 
are used. 
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Figure 10. Understanding Machine and Microprogram Instructions. 

instruction is not available to the machine programmer at the 
assembly language level. Let it suffice to say that this assumptIOn 
is not necessarily valid In machines being designed today. 

Perhaps one of the most typical applications of the micropro­
grammed computer control unit state machine design IS as the 
controller for a minicomputer. Here, the function of the micropro­
grammed controller is to fetch and execute machine level instruc­
tions. The flow required to perform this function IS depicted In 
Figure 11 which should be representative for all general purpose 
type machines. Figure 11 shows that after initialization, the com­
puter control unit simply fetches machine instructions, decodes 
these instructions and then fetches the required operands such 
that the original instruction can be executed. This cycle of fetch­
ing and executing instructions is performed without end. Such 
things as hardware halts or resets are Ignored and should be 
assumed to only cause re-initialization. 

Once the flow of a typical computer control unit is understood, it is 
poSSible to evaluate a number of architectures using the Am291 0 
or Am2911/Am29811A such that the flow diagram of Figure 11 
can be Implemented. 

STATE MACHINE ARCHITECTURES 

After a machine instruction is fetched from memory, It is normally 
placed in the machine instruction register as described in Figure 
6. Then the op code portion of the instruction is decoded so that a 
sequence of microinstructions in the microprogram memory can 
be selected for execution. Each microinstruction is fetched and its 
contents placed in the pipeline register as shown in Figure 6 for 
execution. 

While the architecture of Figure 6 is recommended and has been 
used throughoutthe preceding portion ofthls chapter, It should be 
understood that a number of architectures are possible using 
these microprogram sequencers. The normal flow in fetching 
microinstructions IS to determine the address of the next mi­
croinstruction, fetch the contents at that address and set up this 
data at the input of the pipeline register such that it can be clocked 
into the pipeline register for execution. If we assume that a clock 
IS being used to clock the pipeline register, the Am2910, the 
machine Instruction register and the Am2903 microprocessor bit 
slices, it is possible to define a number of computer control unit 
designs where the relationship between the clock edges is dif­
ferent. 

There seem to be a minimum of seven different architectures that 
can be defined based on plaCing registers in the appropriate 
signal paths and storing data on the low-to-hlgh transition of the 
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Figure 11. Computer -Control Flow Diagram. 

clock. For purposes of this discussion, we will assume that all 
clocked deVices will operate using the same clock such that 
changes will occur on the LOW-to-HIGH transition of the clock. 
While It is possible to use multi phase clocks and tie different clock 
phases to Clifferent devices, that type of system operation will not 
be described here. In all cases, we will be talking about the flow of 
Signals between LOW-to-HIGH transitions of the clOCk. Typically, 
a cycle is started by a clock edge at a device and the Signals begin 
to flow from one device to the next until a set-up time to a clock 
edge results. Then, the next micrOinstruction IS executed In 



exactly the same manner. There are three different identifiable 
types of microinstruction sequences where only one register is in 
the signal flow loop. The first of these we shall call an Address­
Based microinstruction cycle. It usually starts with the address of 
a microprogram memory word being stored in a register by the 
clock. This address has been determined by the previous mi­
crOinstruction. This address then accesses the microprogram 
memory to fetch its contents which are presented at its outputs to 
control the Arithmetic Logic Unit and the results of the Arithmetic 
Logic Unit function may be used to determine the next address 
selected that will be stored in this microprogram address register. 
This is shown as Figure 12a. The second type of microprogram 
architecture IS called Instruction-Based. Here, the register is 
placed at the output of the microprogram memory as shown in 
Figure 12b. Again, the cycle consists of executing the mi­
croinstructIOn in the ALU; perhaps using the results of the opera­
tIOn to determine the address of the next microinstruction and 
then fetching the contents of that microinstructIOn and setting this 
new data up at the input to the register. The third basic architec­
ture for microprogram control is called Data-Based. Here, a regis­
ter is used to hold the status data from the ALU and this is the 
determining clock point for the cycle. Here, the status register 
imtiates the selection of the next address from which the micro­
programmed data is fetched and thiS microprogram instruction is 
used to execute a new function In the ALU thereby setting up the 
results for the status register. This scheme is shown in Figure 
12c. Note that this scheme requires an additional register at the 
output of the microprogram memory to hold a portion of the 
microprogram instruction for controlling the condition code mUl­
tiplexer and Am2910 instruction set. These primitive architec­
tures for microprogrammed control demonstrate the three points 
at which a register can be placed to provide a start and an end for 
the microcycle. In a general sense, each of these three architec-

(a) Addressed Based 

MAP 

SIA) 
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tures is one level pipelined. ThiS, however, IS not the definition 
normally associated with pipelining of microprogram control. 

If combinations of the above described architectures are im­
plemented, an improvement In performance Will be realized. In 
each of the three architectures thus desCribed (address-based, 
instruction-based, and data-based), all of the Signal paths are in 
series and must be transcended before a mlcrocycle can be 
completed. They are quite easy to program, however, since all of 
the tasks are completed In the loop before proceeding to the next 
microinstruction. As stated earlier, these tend to be the slowest of 
the possible architectures for microprogram control. This disad­
vantage can be overcome by using a technique referred to as 
plpelining in microprogram control. In a pipeline architecture, we 
overlap the fetch of the next microinstruction while we are exe­
cuting the current microinstruction. This is achieved by Inserting 
additional registers in the overall path such that we can hold the 
Signals step-by-step. There are three pOSSible combinations of 
the above mentioned architectures that can be utilized in micro­
program control. These are address-instruction-based, 
address-data-based, and instruction-data-based. While each of 
these represent two stages of pipelimng, we normally refer to 
these as the pipe lined architectures. These are shown in Figure 
12d, 12e and 12f. It is the Instruction-data based architecture that 
IS recommended for the Am291 0 and provides the overall best 
trade-off in cost versus performance. 

The last possible architecture using registers in the signal path is 
a combination of all three architectures and is called address­
instruction-data-based microprogram control and IS shown in 
Figure 12g. Here, three stages of pipeline are involved and we 
normally refer to this as two-level pipelined archiecture. Needless 
to say, if no pipelining were Involved at all, we would have a ring 
oscillator. 

(b) Instruction Based 

MAP 

SIAl 
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Shaded Lines Show Required Signal Flow to Complete a Microcycle: 
Determine Address, Fetch Instruction and Execute. 

Figure 12. Standard Microprogram Control Architectures. 
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(c) Data Based 

MAP 

MPR·481 

(d) Instruction-Data Based (e) Instruction-Address Based 

MAP MAP CLOCK 

MPR·482 MPR-483 

Shaded Lines Show Required Signal Flow to Complete a Microcycle: 
Determine Address, Fetch Instruction and Execute. 

Figure 12. Standard Microprogram Control Architectures (Cont.). 



(f) Address-Data Based (g) Instruction-Address-Data Based 

MAP CLOCK MAP 

MPR-484 MPR-485 
Shaded Lines Show Required Signal Flow to Complete a Microcycle: 
Determine Address, Fetch Instruction and Execute. 

Figure 12. Standard Microprogram Control Architectures (Cont.). 

The advantage of the Instruction-data-based architecture IS that 
the address and contents of the next microinstruction are being 
fetched while the current microinstruction In the pipeline register 
(Figure 6) IS being executed. This allows a shorter microcycle 
Since the microprogram memory fetch and ALU execullOn can be 
operated In parallel. The results of this type operation are dem­
onstrated In Figure 13 where we see a typical timing diagram of 
the microprogram execution of the address-data-based instruc­
tion architecture. It should be noted that when the computational 
aspects of a microinstruction are not completed In the same 
mlcrocycle, they obviously cannot be used to determine the ad­
dress of another mlcrocycle unlll the computation has been com­
pleted and stored In the status register. Thus, this plpelined 
architecture offers slgmflcant'speed Improvement except in the 
case of certain conditional jumps. In other words, the conditional 
jump may not use the status register Information of the Im-

CLOCK 

MEMORY 

PIPELINE REG 

ALU 

ACCUMULATOR & 
STATUS REG 

~ WCYCLE---j 

.J Ui----.U 
FETCH 
wlNSTI 

wfNST 1-1 

EXECUTE 
wlNST .-1 

RESULT OF 
wlNST 1-2 

FETCH 
wlNST .+1 

wlNSTI 

EXECUTE 
wlNSTI 

RESULT OF 
wlNST 1-1 

mediately preceding microinstruction because the computation IS 
just being performed. For this architecture, the conditional jump 
fetch must be executed on the cycle after the status register 
contains the proper execullOn results. This can be seen by study­
Ing Figure 13. In most microprogram designs this is not a disad­
vantage because other housekeeping and ALU operations can 
be performed while the address of the next microinstruction is 
being determined uSing the current contents of the status regis­
ter. While It IS not directly pertinent to the discussion at this time. 
let us point out that the Am2904 has been designed such that the 
machine architect can utilize both instructlon-data-based ar­
chitecture as well as instrucllOn-based architecture If no house­
keeping is required. Thus, the Am291 0 and Am2904 can be used 
In a vanable architecture cycle to achieve maximum performance 
for the machine. 

u 
FETCH 
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WINSTI+1 

EXECUTE 
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RESULT OF 
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FETCH 
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u 
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jlANST .+3 

EXECUTE 
wlNST 1+ 3 

RESULT OF 
wlNST 1+2 

MPR-486 

Figure 13. Timing Diagram of Microprogram Execution. 
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Figure 14. Typical Am2910 Microprogram Control Unit. 

The Am2910 in Computer Control 

A general state machine design using the Am2910 is shown in 
Figure 14. Here, all three output enables are used to advantage in 
order to control the mapping PROM, pipeline register and vector 
PROM In this design. This design is very straightforward and in 
fact is identical to that shown earlier. 

One area that should not be overlooked is that of Initializing the 
Am2910 at power up. One technique for accomplishing thiS is to 
use a pipeline register with a clear Input to provide all LOWs to the 
instruction inputs of the Am2910. This will cause a reset of the 
stack in the Am291 0 and force the outputs to the zero word and 
microcode which can be used for the initialization routine. TYPI­
cally, power up will result in the firing of a timer which can be 
connected to the clear input of the register. Figure 15 shows the 
technique for initializing the Am2910 using thiS method. 

One advantage of the Am2909 when compared to either the 
Am2910 or Am2911 is the OR inputs to the microprogram ad­
dress field. These OR Inputs allow two, four, eight or 16-way 
branching for each device if proper control IS used. This control 
can be accomplished using the Am29803A, 16-way branch con­
trol unit. A typical computer control unit uSing the Am2909, 
Am2911, Am29803A and Am29811 A IS shown In Figure 16. In 
this example, the least significant microprogram control se­
quencer is an Am2909 and the two more significant sequencers 
are Am2911 s. 

CLEAR 

12 

n 

FROM MICROPROGRAM 
MEMORY 

'0 

Arn2910 
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Figure 15. Initializing the Am2910. 
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Figure 16. A High Performance Microprogram Controller Using the Am2909, Am29811 A and Am29803A. 

DETAILED DESCRIPTION OF THE Am2911 AND 
Am29811A IN A COMPUTER CONTROL UNIT 

The detailed connection diagram of a straight-forward computer 
control unit is shown in Figure 17. This design features all of the 
next address control functions described previously and a few 
features have also been added. 

Referring to Figure 17, the instruction register consists of two 
Am25LS377 Eight-Bit Registers with Clock Enable. These reg­
isters are deSignated as U1 and U2 and provide ability to selec­
tively load a 16-bit instruction. This particular design assumes 
thatthe instruction word consists of an eight-bit op code as well as 
eight bits of other data. Therefore, the op code is decoded using 
three 256-word by 4-bit PROMs. The Am29761 has been 
selected for this function and is shown in Figure 17 as U3, U4 and 
U5. 

The basic control function for the microprogram memory is pro­
vided by the Am2911s. In this design, three Am2911s (U6, U7, 

Note: Figures 17, 18,20, and 24 are at back of the book. 

and US) are used so that up to 4K words of microprogram mem­
ory can be addressed. The microprogram memory can consist of 
PROMs, ROMs, or RAMs, depending on the particular design 
and the point of its development. This particular design shows the 
capability of a 64-bit microword; however, the actual number of 
bits used will vary from design to design. 

The pipeline register aSSOCiated with the computer control unit 
consists of five integrated circuits designated U16, U17, U1S, 
U19 and U20. 

One of the features of the architecture depicted in Figure 17 is the 
event counter shown as U9, U10 and U11. This event counter 
consists of three Am25LS163s connected as a 12-bit counter. 
The counter can be parallel loaded with a 12-bit word from 
pipeline registers U1S, U19 and U20. The multiplexer and Ootype 
flip-flop (U21 and U22) at the counter overflow output (U9) is 
present to improve system cycle time and will be described in 
detail later. 
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This design also features a 16-input condition code multiplexer 
using two Am74S251s, which are designated U12 and U14. 
Condition code polarity control capability has been added to the 
design by using an Am74S158 Two-Input Multiplexer designated 
as U13. The W outputs and Y outputs from U12 and U14 have 
been connected together but only one set of outputs will be 
enabled at a time via the three-state control signal designated as 
R20 and R20. Since the Y output is inverting and the W output is 
non-inverting, the two-input multiplexer, U13, can be used to 
select the test condition as either inverting or non-inverting. This 
allows the test input on the Am29811 A Next Address Control 
Unit, U15, to execute conditional instructions on either the in­
verted or non-inverted polarity of the test signal. For example, a 
CONDITIONAL BRANCH may be performed on either carry set 
or carry reset. Likewise, the same CONDITIONAL BRANCH 
might be performed on either the sign bit as a logic one or the sign 
bit as a logic zero. Note that the Am29811 A Next Address Control 
Unit has eight outputs. Four outputs to control the Am2911 's So, 
Sl, PUP and FE inputs. Two outputs to control the three-state 
enables of the devices connected to the D inputs, i.e., a map 
enable (MAP E) to select the mapping PROMs and a pipeline 
enable (PL E) to enable the three-state Am2918 outputs which 
make up a 12·bit wide branch address field. The remaining two 
Am29811 A outputs are for loading and enabling the Am25LS163 
counters. CNT ENABLE from the Am29811 A is active-LOW while 
the Am25LS163 counter requires an active-HIGH enable, there­
fore CNT ENABLE from the Am29811 A is passed through one 
section of the Two-Input Multiplexer (U13) for inversion. An alter­
native counter, the Am25LS169, has enable as active-LOW; 
therefore, this inversion through U13 is not required. 

Atthis pOint, a discussion of the typical operation olthis computer 
control unit is in order. First, bits 0-11 of the microprogram mem­
ory output word, are connected to the pipeline register desig­
nated U18, U19 and U20. The Am2918 has been selected for this 
portion of the pipeline register because of its continuous outputs 
and three-state outputs. The three-state outputs are connected to 
the D inputs of the Am2911 to provide a branch address 
whenever needed. These 12 bits are designated BRo-BRll . The 
Q outputs of these same Am2918s are designated Ro-Rll and 
are connected to the parallel load input of the Am25LS 163 
Counters. Thus, the counter can be loaded with any value be­
tween 0 and 4,095. Many designs will take advantage of Ro-Rll 
and use it as a general purpose field whenever the counter is not 
being loaded or a jump pipeline is not being performed. Using a 
microprogram memory field for more than one function (branch 
address and counter load value in this example) is called FOR­
MATTING and will be covered in greater detail later. The other 
two devices in the pipeline register shown on the architecture of 
Figure 17 are U16 and U17. First, U17 receives four bits (12,13, 
14 and 15) from the microprogram memory to provide four-bit 
instruction field to the Am29811 A. This four-bit field, designated 
R12-R15, provides the actual next address control instruction for 
the computer control unit. R16 is the polarity control bit for the test 
input and is connected to the select input of the Am74S158 
Two-Input Multiplexer. When R16 is LOW, the signal at the 
Am29811 A test input will be inverted, but when R16 is HIGH, the 
test input will be non-inverted. 

The Am74S175 has been used as part of the pipeline register 
(U16) because it has both inverting and non-inverting outputs. 
Signals R17 , R1B and R19 are used to control the One-of-Eight 
Multiplexer (U12 and U14) A, Band C inputs. Pipeline register 
output R20 and R20 are used to enable either the U12 outputs or 
the U14 outputs such that a one-of-sixteen multiplexer function is 
implemented. In this design, the TEST 0 input of U14 is con­
nected to ground. This provides a convenient path for converting 

Note Figures 17, 18,20, and 24 are at back of the book. 

any of the conditional instructions to non-conditional instructions. 
That is, any of the conditional instructions can be executed un­
conditionally by selecting the TEST 0 input which is connected to 
ground and forcing the polarity control to either the inverting or 
non-inverting condition. This allows the execution of uncondi­
tional JUMP, unconditional JUMP-TO-SUBROUTINE, and un­
conditional RETURN-FROM-SUBROUTINE instructions. 

Bit 21 from the microprogram memory utilizes a flip-flop in U17 as 
part of the pipeline register. This output, R2l , is used as the 
enable input to the instruction register. Needless to say, other 
techniques for encoding this enable function in a formatted field 
could be provided. 

A HIGH PERFORMANCE COMPUTER CONTROL UNIT 
USING THE Am2909 AND Am29803A 

The high performance CCU (Figure 18) is of a similar basic 
design as the previously described CCU. The major differences 
are, referring to Figure 18, the addition of an extended enable 
control (U16), a vector input (U24 and U25), and an Am29803A 
16-way Branch Control Unit (U23). These performance en­
hancements are more related to function than to actual circuit 
speed. The use of these enhancements by the microprogram 
provides greater flexibility in controlling a machine's environ­
ment, and can reduce the microinstruction count required to 
perform a particular task, which has the effect of increasing 
overall system throughput. 

In describing this high performance CCU design, those sections 
which remain unchanged from the previous description (Figure 
17), will not be covered again. This includes the mapping 
PROMs, sequencer, Am29811A, counter, condition test inputs 
and associated polarity control, and the pipeline register. The 
areas that will be covered are: extended enable control (U16), 
Vector inputs (U24 and U25), and the Am29803A 16-way Branch 
Control Unit (U23). 

Extended Enable Control 

Extended enable control is accomplished via an Am74S139 dual 
two-to-four line decoder in conjunction with the Am29811 A next 
address control unit. In Figure 17, PL E and MAP E of the 
Am29811 A were connected directly to the components that they 
are to control (pipeline registers and mapping PROMs, respec­
tively). Likewise, CNT LOAD and CNT ENABLE are connected 
directly to the counters that they control (with the exception that 
CNT ENABLE requires inversion when using Am25LS163 
counters). In Figure 18, PL E, MAP E, CNT LOAD and CNT 
ENABLE go to the inputs of the Am74S139 two-to-four line de­
coder (U16). When either PL E or MAP E is LOW, then either2Yl 

or 2Y 2 of U16 is LOW and either the pipeline branch address 
registers or mapping PROMs are enabled. If both PL E and MAP 
E are HIGH, then output 2Y 3 of U16 is LOW enabling the three­
state outputs of U24 and U25 which are alternate microprogram 
starting address decoders (alternate mapping PROMs), and 
called VECTOR INPUT in this design. Likewise, CNT LOAD and 
CNT ENABLE follow the same rules, enabling the counter to load 
or count via 1 Y 1 and 1Y 2 of U16. 

Vector Input 

The "Vector Input" provides the system designer with a powerful 
next starting address control. For example, one possible use 
might be as an interrupt vector. For instance, use the "Interrupt 
Request" output of an Am2914 Vectored Priority Interrupt Con­
troller (or group of Am2914s) as an inputto one olthe conditional 
test inputs of multiplexers (U12 or U14). Then connect the 
Am2914 Vector Out lines to the vector mapping PROMs (Vector 
input U24 and U25). The mlcroprogram then could, at the appro-



priate time, test for a pending interrupt and if present, jump in 
microprogram memory directly to the routine which handles the 
specific interrupt as requested via the Am2914 Vector Output 
lines. This routine will take the proper steps to preserve the status 
of the interrupt system, and then will service the interrupt. This is 
one of many possible uses for the Vector Input. Other possible 
uses include both hardware and software "TRAP" routines and 
so forth. As can be seen, the design presented here uses the 
Vector Enable line (output 2Y3 or U16) to enable an alternate 
starting address input at the Am2911. This, however, does not 
preclude the use of other devices in place of mapping PROMs as 
the D-input vector source. 

It should be understood that this does not accomplish a "micro­
interrupt" function in that it is not a random possibility. Instead a 
microprogrammed test is made and an alternate microroutine is 
performed. A true "microprogram interrupt" is one that could 
occur at any microinstruction. The Am291 0 does not handle this 
case internally. 

Am29803A 16-Way Branch Control Unit 

The Am29803A provides 16-way branch control when used in 
conjunction with the Am2909 bipolar microprocessor sequencer, 
and is shown as U23 in Figure 18 with its pipeline register U22. 
The Am29803A has four TEST-inputs, four INSTRUCTION­
inputs, four OR-outputs, and an enable control. The four OR­
outputs connect directly to the Am2909 OR-lnputs (U8 in Figure 
18). The four INSTRUCTION-inputs to the Am29803A provide 
control over the TEST-inputs and OR-outputs, and are provided 
by the microprogram via the pipeline register U22 (Figure 18). 

Basically, the INSTRUCTION-inputs (10-13) provide sixteen in­
structions (0-F16) which can select sixteen possible combinations 
of the TEST-inputs and provide a specific output on the OR­
outputs depending upon the state of the inputs being tested. (The 
subscript 16 refers to baSIC 16.) All possible combinations of 
instruction-inputs, TEST-inputs and OR-outputs are shown in 
Figure 19. 

Note that instruction zero does not test any inputs (a disable 
instruction). Instructions 1, 2, 4 and 8 test one input and can 
cause a branch to one of two words. Instructions 3,5,6,9,10 and 
12 test two inputs and can jump to one of four words (a 4-word 
page). Instructions 7,11,13 and 14 test three inputs and can 
jump on an eight word page. Instruction number 15 tests all four 
inputs and the result can jump to any word on a sixteen word 
page. 

USING THE Am29803A 

In the architecture of Figure 18, the Am29803A allows 2-way, 
4-wal/, 8-way or 16-way branching as determined by selectable 
combinations of the TEST-inputs. Referring to Figure 19, the 
ZERO instruction (all instruction bits LOW) Inhibits the testing of 
any TEST-inputs, thus prOViding LOW OR-outputs. Any single 
TEST-input selected (To, Tl , T2 or T3) will result in ORo being 
HIGH or LOW in correspondence with the polarity of the selected 
TEST -input. Selecting any combination of two TEST inputs re­
sults in the outputs ORo and/or ORl being HIGH or LOW, follow­
ing a mapped one-ta-one relationship, i.e., ORo and ORl will 
follow the TEST -inputs, but no matter which pair of TEST-inputs 
are selected, their HIGH/LOW condition is mapped to the ORo 
and ORl outputs. Likewise, selecting any three TEST inputs, will 
map their HIGH/LOW condition to the ORo, ORl and OR2 out­
puts. Selecting all four TEST -inputs, of course, causes a one-to­
one relationship to exist between the HIGH/LOW conditions of 
the TEST-inputs and the corresponding OR-outputs. Refer to 
Figure 19 to verify the relationships between INSTRUCTION­
inputs, TEST-input, and OR-output. It is very important that the 

Note Figures 17, 18, 20. and 24 are at back of the book 

mapping relationship between th"ese signals be completely un­
derstood. When using the Am29803A TEST -OR capability as 
shown in Figure 18, the microprogrammer must position the 
applicable microcode within microprogram memory so that the 
low-order address bits are available for ORing. Sequencer in­
structions using the Am2909/2911 D-inputs (JRP, JSRP, JP and 
CJS in particular) are ideally suited for the Am29803A TEST-OR 
capability. The jump-to-Iocation, available via pipeline BRo-BRll 
or the Am2909/2911 register, can contain the address of a branch 
table. A branch table is merely a sequential series of uncondi­
tional jump instructions. The particular jump instruction executed 
is determined by the low-order address bits; that is, the first jump 
in~truction in a branch table must start at a location in micropro­
gram memory whose low-order address bit (or bits) is zero. If a 
single Am29803A TEST-input is selected (2-way branching) then 
only the least significant bit in the beginning branch table address 
needs to be zero. Two Am29803A TEST-inputs selected (4-way 
branching) requires that the branch table start on an address with 
the low-order two bits equal to zero; 8-way branching requires 
three low-order zero bits, and 16-way branching requires four 
low-order zero address bits. Understanding this branch control 
concept is really quite simple. The branch table is located in 
microprogram memory beginning at a location whose address 
has sufficient low-order zero bits to accommodate the number of 
selected Am29803A TEST-inputs. If, for instance, three TEST­
inputs were selected, the first jump instruction in the branch table 
must be at an address whose low-order three bits are zero, such 
as address OF8l6. The second jump instruction in the branch 
table would begin in microprogram memory address OF9l6. The 
third jump at location OFA16, the fourth at OFB16, etc. Through all 
eight locations (OF8l6-OFF16). Assume the following pipeline in­
struction (referring to Figure 18): (1) U22 selects three 
Am29803A TEST-inputs, (2) U18 instructs the Am29811A Next 
Address Controller to select the Am2909/2911 D-inputs, (3) U16 
enables the pipeline branch address as the 0 source, and (4) 
U19, U20 and U21 supplies the address OF8l6 as the branch 
address. The Am29803A TEST-inputs will be ORed into the 
low-order three bit positions, thus providing a jump entry into the 
branch table indexed by the value olthe OR bits. Each instruction 
in the branch table is usually a jump instruction, which allows the 
selection of a particular microcode routine determined by the 
value presented at the Am29803A TEST-inputs. These jump 
instructions are the first instruction of the particular sequence. 
There are, of course, many other ways to use the Am29803A 
16-way Branch Control Unit. 

The microprogram memory address supplied via an Am2909 
sequencer can be modified by the Am29803A 16-way Branch 
Control Unit. Remember, however, that the microcode as­
sociated with this address modification relies on certain address 
bits being zero, therefore this microcode is not arbitrarily relo­
catable. The above discussion describes using the D-input and 
branching to provide low-order zeroes to use the OR Inputs. 
Through proper deSign, the Register, PC Counter, or File can be 
used equally well. 

THE COMPLETE COMPUTER CONTROL UNrr 
USING THE Am2910 

A detailed connection diagram for a straightforward computer 
control unit using the Am291 0 is shown in Figure 20. This design 
utilizes the Am25LS377 as U1 and U2 to implement a 16-bit 
instruction register. The op code outputs from the instruction 
register drive three Am29761 PROMs to perform the op code 
decoding function. These are shown in the diagram of Figure 20 
as U3, U4 and US. The Am2910 sequencer (U6) is used to 
perform the basic microprogram sequencing function. 
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Function 13 12 11 10 T3 T2 T1 TO OR3 OR2 OR1 ORO 

No Test L L L L X X X X L L L L 

H 
X X X L L L L L TestTo L L L X X X H L L L H 

L H L 
X X L X L L L L 

TestTl L X X H X L L L H 

X X L L L L L L 

L H H 
X X L H L L L H 

TestTo&T1 L X X H L L L H L 
X X H H L L H H 

L H L L X L X X L L L L 
TestT2 X H X X L L L H 

X L X L L L L L 

L H X L X H L L L H 
Test TO & T2 L H X H X L L L H L 

X H X H L L H H 

X L L X L L L L~ 

H L 
X L H X L L L H TestTl &T2 L H X H L X L L H L 
X H H X L L H H 

X L L L L L L L 
X L L H L L L H 
X L H L L L H L 

TestTO.Tl &T2 H H X L H H L L H H L H X H L L L H L L 
X H L H L H L H 
X H H L L H H L 
X H H H L H H H 

H L L L L X X X L L L L Test T3 H X X X L L L H 

L X X L L L L L 

L H L X X H L L L H 
Test TO & T3 H L H X X L L L H L 

H X X H L L H H 

L X L X L L L L 

H L L X H X L L L H TestT, &T3 H L H X L X L L H L 
H X H X L L H H 

L X L L L L L L 
L X L H L L L H 
L X H L L L H L 
L X H H L L H H 

TestTO.Tl &T3 H L H H H X L L L H L L 
H X L H L H L H 
H X H L L H H L 
H X H H L H H H 

L L X X L L L L 
Test T2 & T3 L H X X L L L H H H L L H L X X L L H L 

H H X X L L H H 

L L X L L L L L 
L L X H L L L H 
L H X L L L H L 

Test TO. T2 & T3 H L H 
L H X H L L H H H H L X L L H L L 
H L X H L H L H 
H H X L L H H L 
H H X H L H H H 

L L L X L L L L 
L L H X L L L H 
L H L X L L H L 

TestTl.T2&T3 H H H L L H H X L L H H 
H L L X L H L L 
H L H X L H L H 
H H L X L H H L 
H H H X L H H H 

L L L L L L L L 
L L L H L L L H 
L L H L L L H L 
L L H H L L H H 
L H L L L H L L 
L H L H L H L H 
L H H L L H H L 

TestTO.Tl.T2&T3 H H H 
L H H H L H H H H H L L L H L L L 
H L L H H L L H 
H L H L H L H L 
H L H H H L H H 
H H L L H H L L 
H H L H H H L H 
H H H L H H H L 
H H H H H H H H 

L"" LOW, H "" HIGH, X = Don't care 

Figure 19. Function Table. 



A 16 Input condition code multiplexer function is provided by 
using two Am2922s as U7 and U8. These devices allow one of 
sixteen Inputs to be tested and the polarity of the test can also be 
determined. The pipeline register consIsts of U9, U10, U11, U12 
and U13. These devices are edge triggered D type registers and 
have been selected to provide unique functions as required de­
pending on their bit positions in the pipeline register. An 
Am74S175 was selected for U9 because both a true and com­
plement output were desired to provide control to the condition 
code multiplexer three state enables. An Am74S17 4 register was 
selected as U10 because it provides a clear input for initializing 
the Am2910 microprogram sequencer. Three Am2918s were 
selected for U11, U12 and U13 because they have a three state 
output that can be used to provide the branch address field to the 
D inputs of the Am291 0 and they also have a set of outputs that 
can be used to provide other control signals via this field when it 
does not contain a branch address. No specific devices are 
shown for the microprogram memory as the user should select 
the desired width and depth depending on his design. 

ANOTHER DESIGN EXAMPLE 

The Am2909, Am2910, Am2911, Am29811A and Am29803A 
have been designed to operate in the microprogram sequencing 
section of any digital state machine. Typically, the examples 
shown are for performing the computer control unit function of a 
typical minicomputer class machine. The design engineer should 
not limit his thinking for the use of these devices simply to that of 
microprogram sequencing in a computer control unit. These de­
vices can be successfully used in other areas of designing such 
as memory control, DMA control, interrupt control and special 
purpose microprogrammed machine architectures. In order to 
provide an example of a design using these devices In something 
other than a typical computer control unit, a microprogrammed 
CRT controller is described in the following. 

In order to provide some baSIS for the design of a CRT controller, 
the requirements of this controller must be spelled out. These are 
given as follows· 

A) Character size: 5 x 7 dot matrix. The character field will be 7 
dots by 10 hOrizontal lines thereby providing ample space for 
the 5 x 7 character and the intervening space between 
characters and lines of characters. 

S) 80 characters per line. A standard 80 character per line dis­
play will be utilized and there will be 18 character periods 
allowed for horizontal retrace time. 

C) 24 lines of characters per frame. This provides a total of 240 
Visible lines per frame (24 lines of characters by 10 horizontal 
lines per character). There are a total of 24 lines provided for 
vertical retrace bringing the total number of lines per frame to 
264. 

D) Refresh rate 60 frames per second. Therefore, the hOrlzon­
tal line rate will be 264 x 60 = 15,840Hz. As there are a total of 
80 + 18 = 98 character periods In a line, the character rate 
Will be 98 x 15.84 = 1 ,552.32KHz, and the dot rate will be 7 x 
1.5288 = 10.86624MHz. (Note· No Interlace is used.) 

E) It is assumed that there is a 2K word deep x 8-bit Wide 
character RAM available to the host computer in which it can 
write the ASCII eqUivalent olthe characters to be displayed. If 
scrOlling IS to be used, the host computer must also write the 
first VISible character's address divided by 1610 Into the 
Am25LS374 "First Address Register". 

F) ThiS CRT controller must generate an II-bit character ad­
dress that IS used by the 2K word deep character RAM. It must 
also generate the required Video enable Signals and the hOri­
zontal and vertical blanking Signals. 

PrinCiple of Operation 

A detailed block diagram of the CRT controller IS shown in Figure 
21. The block diagram shows an Interface to an SSC-80/1 0 data 
bus, address bus and control bus. The outputs olthe CRT control­
ler are connected to a CRT monitor on the block diagram. Other­
wise the block diagram shows a straightforward use of the 
Am291 0 and three Am2911 s to implement the CRT control func­
tion using microprogrammed techniques. The SSC-80/10 was 
selected for thiS example since It is well known. 

A logiC diagram olthe CRT controller is shown In Figure 22. Three 
Am29775 512-word x 8-bit registered PROMs are used to contain 
the 23-blt Wide microprogram. While only a minimum number of 
words are used in the design as shown, many additional words 
can be used to add various options (as deSCribed later). The 
address for these Am29775 registered PROMs is prOVided by an 
Am2910 microprogram sequencer. Three Am2911 sequencers 
are used to generate the character address for the character 
RAM. The least significant Am2911 sequencer IS connected as a 
diVide by 16 counter. This RAM address IS compared with the 
deSired last character address (80 x 24 = 1920) value using an 
Am25LS2521 8-bit equal to detector. When the last address is 
detected, it can be sensed at the condrtion code multiplexer 
(Am25LSI53) that IS used to select the condition code for the 
Am2910 sequencer. 

The data derived from the 2K word character RAM is decoded by 
a character generator (6061) In this design and the character 
output is parallel loaded Into an Am25LS23 shift register. ThiS 
shift register IS used to provide the video Signal from ItS 0 0 output 
to eventually drive the display via an Am74S240 buffer. The 
diagram of Figure 22 depicts an oscillator input source to supply 
the dot frequency. In this deSign, a 10.86624MHz OSCillator 
should be connected to this oscillator Input point. This oscillator 
input signal IS used to clock the shift register containing the 
Individual dot bits (dot-on or dot-off) and also drives an 
Am25LS169 counter which divides thiS frequency by 7 to gener­
ate the character rate clock. ThiS character rate clock is used 
throughout the controller to provide a timing signal for the state 
machine design. 

An Am25LS168 decade counter IS used to generate the line 
inputs for the character generator and to count 10 hOrizontal lines 
per character space. ThiS counter is clocked by the horizontal 
blanking Signal (HS) and its RCO output is used as one of the 
condition code multiplexer inputs. The RCO output can be tested 
to determine when 10 counts have been executed by the counter 
and It IS also used to enable the last address comparator dUring 
the 10th hOrizontal line time. 

When the host computer accesses the character RAM, the 
HOST-ACCESS line is pulled LOW. This removes the Am2911 
outputs from the character RAM address bus. When thiS access 
occurs, Improper data may be present at the shift register inputs. 
Thus, the character generator PROM output IS disabled by the 
HOST-ACCESS Signal during this time. 

When power IS applied to thiS CRT controller or whenever It is 
reset, the RESET line is driven LOW. ThiS Signal IS Inverted 
through an Am25LS240 and then disables a part of the pipeline 
register outputs as well as enabling one half of an Am25LS241. 
ThiS Am25LS241 Inserts LOWs nnto the instruction (I) Inputs of 
the Am291 0 sequencer. Then, the next character rate clock Will 
force the microprogram address outputs to zero and the micro­
program for the CRT controller as shown In Figure 23 will be 
executed starting at address zero. 
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Figure 21. CRT Controller Block Diagram. 

The Microprogram for the CRT Controller 

Table 6 shows a complete description of the microprogrammed 
CRT controller microcode. Execution of these microinstructions 
is controlled by the Am291 0 sequencer. 

As can be seen in Table 6, several techniques were used in this 
short microprogram to provide the different counting require­
ments of this CRT controller. Although only one format (80 
characters per line, 24 lines per frame) was shown here, the 
designer can easily configure his own format by Simply changing 
some constants in the microprogram. As an exercise, the reader 
is encouraged to find a means to program the CRT controller for 
different formats. The host computer software could configure the 
controller format by using an additional register similar to the 
"First Address Register". This will be discussed in an appendix at 
the end of this chapter. 

A complete wiring diagram for the microprogrammed CRT con­
troller is shown in Figure 24. This can be used directly with the 
interface shown in Appendix A such that the CRT controller can 

Note' Figure 24 is at back of the book. 

be connected directly to an Am9080A based microprocessor 
system. Appendix A also depicts the use of a 2K word x 8 bit 
character RAM as described previously. 

CRT Controller Timing Considerations 

As was discussed earlier, the character clock frequency for the 
CRT controller IS 1,552.32KHz. Thus, it is desirable to calculate 
the longest path of the design to ensure that none exceed this 
clock period of 644.1ns. The timing diagrams of Figure 25 depict 
a number of different paths with the associated propagation delay 
calculations. 

When all of the timing diagrams of Figure 25 are examined, it will 
be found that only three show propagation delay times of over 
200ns typical. Of these, the worst case is 318ns as shown in 
Figure 25(i). Since the requirement of the design is to insure that 
none exceed 644.1 ns, we have more than a 2 to 1 margin in the 
design based on the typicals. Thus, we can see that the design 
will operate properly even over the full military temperature range 
and power supply variations based on this analysis. 
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Am291 0 Am2911 
ADDR 

(Hex) Label CCEN MUX 51 50 FE ZEROH ZERO[ Cn HB VB NUM Comments 

o 
1 

2 

3 
4 
5 
6 
7 

8 
9 
A 
B 

INIT 

MAIN 

CJV L 

LDCT X 

CONT X 

CJP 

CJP 

CJP 

CJP 

CJP 

CJ5 

CJ5 

CJP 

CJP 

L 
L 
L 
L 
L 

L 

L 
H 

C TENTH RPCT X 

o 
E 

F 
10 

11 

12 

13 

CJV 

LDCT 

PU5H 

CJP 

RFCT 

LDCT 

CRTN 

L 
X 

L 
L 
X 

X 
H 

3 H H L 

X L L H 
X H L H 

L L H 

L L H 
L L H 

L L H 
L L H 

o L L H 

2 L L H 
1 L L H 

X L L H 

X L L 

3 H H L 

Y L L H 

3 L L H 

L H 
X L L H 
X L L H 
X L L H 

H 
H 

H 

H 
H 
H 
H 
H 

H 
H 
H 
H 

H 

H 
H 

H 
H 
H 
H 
H 

L 
L 

L 

H 
H 
H 
H 
H 

H 
H 
H 
X 

H 

L 
X 

H 
H 
H 

H 
H 

L H L 

L H L 

H H L 

H L L 

H L L 

H L L 
H L 

H L L 

X ,Load first address from Register to 2911 's hie 

2310 ;lOad 2910's counter With member of rows/frame - 1 

X ,Address supplied by 2911 's hie 

$ 

$ 

$ 

$ 
$ 

;One row 5 x 16 = 80 characters 

H H L TENTH ,n tenth (la81) line of a row lump to "TENTH" subroutine 

H H L LA5TA ,lflas1 character jump to "LA5TA" subrou1lne 

H H L $ ,Wal~ until honzontallnvlsible coun1s done 

X H MAIN ,Then do the Main roubne again 

H H L GOBACK ,Push nexl addr on 2911 's hie lump to "GOBACK" rt not 

End of Frame 

X H H 
X H H 

H H H 

H H H 

H H H 

H H H 

H H H 

X ,Load 2911 's hie from First Address ReQister 

14610 ,Load 2910's counter with number of InVISible characters 

dunng Vert retrace dMdad by 16, minus 1 

X ;Push nexl PC to 2910's file lor double 

$ ,Walt for LS2911 to count 16 

X ,Decrement 2910's counter and lump one line back rt = 0 

2310 ;Load 2910's counter again with number of rowsJfrarne - 1 

X ;Retum from subroutine 

14 GOBACK CRTN H X L L H H H H H L X ;Return 

15 LASTA CRTN H X X X L L H H H L X ;Load zero to 2911 's file and retum, 

Figure 23. Microprogram for the CRT Controller. 

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER. 

Micro­
program 
Address 

0 

1 

2 
"MAIN" 

Low 
Order Am2911 

Since ZERO IS low, Its output 
will be LOW. The Cn Input 
(from the Pipeline Register) 
IS LOW so that the micro-
program Incrementer will not 
increment. 

ZERO and Cn are still LOW, 
so no changs in this device. 

Malntelnlng ZERO LOW 
~resthepropers18rtlng 
address. Cn IS HIGH; there-
lore, the InIemaJ PC will 
be Incremented. 

Note Figure 24 18 at bade 01 the boo!< 

High 
Order Am2911s 

Both 51 and So are HIGH so 
that the 0 Inpu1s will be routed 
to the Y outputs. These Inpu1s 
will come from the First Address 
Register (the Am2910 VECT is 
LOW). Cn IS LOW (see left 
column); therefore the micro-
progra!!!... counter Will not Incre-
"!ent. FE is LOW (and PUP IS 

always HIGH) causing the pre-
sent output to be pushed on 
the s18ck. The character ad-
dress IS already the "First 
Charactar Address". 

51 and 52 are LOW; thus, the 
Y outpu1s will be the current 
PC, (the same as the Y out-
puts were In the preVIOUS step). 
Cn IS still LOW, therefore no 
change wlH occur In the PC 

WHh ~ = HIGH, 50 = LOW 
and FE = HIGH, the Am2911 
will refer to Its intemal file 
(the sterting address of thIS 
particular charecter-row) 
wHhout POPPing 

Am2910 COmmsnts 

The CJV Instruction .:;,Iected. This ins1ructJon pushes the "First 
Therefore, VECT 0 t will be Charecter Address" more slgnn-
LOW, enabling the "First Ad- icant bits onto the Am2911's hie, 
dress Register onto lhe Intemal and oontinues to the nexl micro-
8-bit bus. CCEN IS LOW; the Instruction. 
MUX Is selecting a constant 
HIGH, and the sequencer Will 
address the nexl consecutive 
""croprogram address (word 1). 

LDCT IS selectad and the num-
ber of character-rows per frame 
""nus 1 (2310) Is loaded into 
the Am2910 register/counter. 
The sequencer addresses the 
nex1 microinstruction. 

The Am2910 will generate the This IS the s18rting location lor 
nexl microprogram address. the main loop. 



Micro­
program 
Address 

3 

4 
through 

7 

8 

9 

A 

B 

C 
"TENTH" 

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.). 

Low 
Order Am2911 

This Am2911 now counts up 
usmg Its PC Incrementer At 
the final count (moving from 
F16 to 0) Its Cn +4 output will 
be HIGH 

Same as 3. 

Continues to count (note that It 
enters thiS hne With an output 
of zero) 

Continues to count through 
the Internal PC Incrementer 

Continues to count At count 
15, Cn+4 goes HIGH. 

It doesn't matter what thiS 
deVice does at thiS mlcrostep 
because at the next micro-
step It Will receive LOW on 
rts ZE RO Input 

Continues to count 

High 
Order Am2911 s 

Inttlally these two Am2911 5 
will not change their Y outputs 
since their en Input IS LOW. 
However, when the Cn Input 
goes HIGH, the Internal PC 
will Increment 

Same B.!? 3. 

Since Cn IS LOW (see left 
column) no change occurs In 
these deVices. Note that the 
Y outputs contain the more 
significant bits of the address 
of the first character of the 
next character row 

No change 

No change until Cn goes 
HIGH, then count 

No change 

No change 

Am2910 Comments 

With the MUX selecting the This mlcrostep will be executed 
Cn+4 output from the least 16 times (Note that 80 = 5 x 16) 
signifICant Am2911 shce, the 
CC Input to the Am291 0 se· 
quencer will be LOW.J:!..ntll the 
Am2911 counts 16. CC ~ 
lOW will cause the next mi-
croprogram address to be the 
pipeline register contents; this 
IS also the current micropro-
gram address (word 3). When 
Cn+4 goes HIGH, CC w~ 
HIGH and together With CCEN 
~ LOW, will force the Am2910 
to address the next consecu-
tive microprogram address (4) 

Same as 3, except that at each The microprogram Itself IS used 
address, the current mlCro- as a counter In thiS appllca-
program address IS written tJon smce the count IS only 5, 

the microprogram IS relallvely 
short versus the memory's depth 
and thiS IS a conventent means 
to economize on chip count 

The MUX selects the We are now at the end of a TV 
Am25LS168 ten-hne-counters line Therefore, the HOrizontal 
RCO as the condition code In- Blanking Signal (HB) IS HIGH 
put to the Am291 0 (CC) If the The least significant Am2911 
hne count IS less than 10, CC shce now counts the InVIsible 
will be HIGH and the next ml- characters dunng the hOrlzon-
crolnstructlon will be addressed tal retrace. 
If the tenth hne of a character 
row IS executed, CC will be 
LOW and a JUMP-TO-SUB-
ROUTINE to an address, sup-
plied by the pipeline register 
("TENTH") will be executed 

The MUX now selects the Last Note that 80 characters/row 
Address Comparator output for and 24 rows/frame reqUires a 
CC If the current more slgnlf- 192010 word memory When 
Icant bits of the character- the last memory location 
address cOincide With the last (192010) IS read out, the scan will 
address + 1 (1920,0/16) a begin at 0 
subroutine call Will be per-
formed to "LASTA" Other-
Wise, the microprogram Will 
continue consecutively 

Same as at address 3. Waiting for the least significant 
Am2911 to count to 15 ThiS 
micro step Will be executed 
as many times as necessary 
to accomplish thiS 

Unconditionally (CCEN ~ Performing a JUMP to the 
HIGH) steers the micro pro- beginning of the main-loop 
gram to the address supplied (address 2). 
by the plpehne register 
("MAIN" ~ 2) 

If Internal counter IS equal to The deciSion whether the bottom 
zero, It means that 24 character of the CRT (End of Frame) IS 
rows were already displayed reached or not IS made Internally 
and we are at the bottom of the In the Am2910. uSing Its counter 
CRT display A vertical retrace 
period IS needed and the mi-
croprogram Will continue 
sequentially. If the counter IS 
not yet zero. we do not need 
to execute the vertical retrace 
routine and the next address 
Will be supplied by the plpe-
register ("GOBACK" ~ 
14,6) while the internal 
counter is decremented. 

55 



56 

Micro· 
program 
Address 

D 

E 

F 

10H 

"H 

12H 

13H 

14H 
"GOBACK" 

15H 
"LASTA" 

TABLE 6. DESCRIPTION OF THE MICROPROGRAM FOR THE CRT CONTROLLER (Cont.). 

Low 
Order Am2911 

ZERO ~ LOW, therefore, out-
put Y = 0 This IS necessary 
to assure that Cn+4 IS LOW 

Same as at address B 

Counts 

Counts When final count IS 

reached, Cn+4 ~ HIGH 

Counts 

Counts 

Counts 

Counts 

Counts 

High 
Order Am2911 s 

Same as at address 0 

No change 

No change. 

No change with Cn = LOW, 
Increments with Cn = HIGH 
This has no practical affect as 
the HB signal IS HIGH, and at 
the beginning of the next VIS-

Ible hne, the correct address 
Will be fetched from the file 
(address 2) 

No change 

No change 

No change 

No change 

Pushes zero Into file 

Am291 0 

Same as at address 0 

The Internal counter IS leaeed 
with 14610• supplied by the 
pipeline register The next 
consecutive mlcrostep IS 
addressed 

With CCEN ~ LOW and CC ~ 
HIGH (supphed from a con-
stant HIGH by lhe MUX), the 
next address (10,6) Will be 
pushed onto the Am2910 file, 
the counter Will not be af~ 
fected and the next consecutive 
mlcrostep Will be addressed 

The MUX supplies the CnH 
output of the less Significant 
Am2911 slice to the Am2910 
CC Input While thIs signal IS 
low, the Am291 0 Will select 
the pipeline register as the 
source of the next mlcrotn-
structlon address The current 
address (10H) being written 
there, this Instruction Will be exe-
cuted until CC goes HIGH Then 
the next consecutive instruc-
tion Will be selected through 
the Am291 0 Internal ~C 

If the final count has been 
reached, the next mlcro-
Instruction Will be addressed 
and the Internal stack Will be 
popped (adlusled) Otherwise, 
the next micrOinstruction ad-
dress Will be the one reSiding 
on the top of the stack (which 
IS 10,6), 

Same as at address 1 

Unconditional return from 
subroutine (CCEN ~ HIGH) 

Unconditional return from 
subroutine 

Unconditional return from 
subroutine 

Comments 

As we are at the End of Frame, 
the "Flrst-Address-Reglster" 
contents (enabted by the 
Am2910's VECT output) IS 
pushed onto the Am2911 's file 
Note that the Verttcal Blanking 
Signal (VB) goes HIGH 

(146,0 + 1) X 16,0 ~ 235210 
equals the number of character-
penods dUring vertical retrace. 
Loading 2352,0 directly Into the 
Am291 D's counter would require 
7 bits. USlngthls scheme we 
reduce the microprogram Width. 

This IS a preparatory step for the 
2 step "Vertical Retrace" double-
nested loop. 

Again, this IS a possible way to 
dwell on a certain mlcrostep 
waiting a condition to change 
Its status (lIke address 3 through 
7) This IS the Internal loop of 
a double-nested loop system 

This IS the external loop of the 
double-nested loop system, 
which counts the vertical retrace 
Interval. By adding a Single ml-
crOlnstructlon the chip count 
was reduced 

Relnltlahzes the Am291 0 Internal 
counter With the number of 
character rows per frame. 

End of "TENTH" subroullne at 
End of Frame (With vertical 
retrace). 

End of "TENTH" subroutine 
Without vertical retrace 

A one-hne subroutine to reln!-
tlallze character address to zero 
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a) 

DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 PATH 4 

29775 CPto D 15 15 15 15 18 ~ 2911 (A) Cn to Cn+4 9 - - -

2911 (A) ZERO to Cn+4 - 30 - - 0 

-l_Am25:S37. 2911 (B) Cn to Cn+4 9 9 - -
Am25LS153 vI-- Cc VEeT DE 

2911 (C) Cn (ts) 15 15 - - Am2910 

2911 (B. C) FE (Is) - -
" 

- C A.S _CLOCK 

2911 (B) So. $, to Cn+4 - - - 30 -
I,CCEN V PL 

2911 (C) Cn (ts) - - - 15 

1 is 2 
TOTAL-ns 48 69 29 60 

0 A 
D~=.d: CLOCK 

I 
C. L J ::::".= -Am25L$168 

FiCo I !f CNT ..c.--"'~K 
CP 0 I !II I ~ 

t3 .r- I, 

1 Am25L523 U----l '1 REG 

°Ho I 
Ao A2 DE 

~1 6061 ., Am25L52521 

A3-A9 A ZERO 0 

f~ 
'--- SO~ 

7 
FE FILE 

I~q:-
Am2911 

I 
0 

I 
~---

oJ IS) IA) -
Am91t4 

PC n 
n --ti.- --==.D F= n+4 

-Crt = 
A V V V 

" t I t I 
PATH 1 ----
PATH 2 CLl"CK 
PATH 3 ----
PATH 4 - ---

MPR-491 

b) 

DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 

29775 CPto D 15 15 15 ~8 1. 2911 IA) ZEROlO Y 19 - -
0 
-l ___ m .. :S37. 2911 (B. C) ZERO to y - 19 -

2911 (B. C) 50.51 toy - - 19 Am25LS153 VI-- Cc VEeT DE 

9114 AlOO 150 150 150 Am2910 
C A. S I-CLOCK 6061 AlOOuI 70 70 70 -

25LS23 OlO CP (IS) 23 23 23 I,CCEN V PL 

TOTAl-ns 277 277 277 2 I t· 
0 A DE 

CLOCK 

I CP I I 
Am25LSI68 

;;col f CNT r-·-~Jmit:K 
c. 0 

! i r 3 --_. 1 Am25LS23 1 REG 

f - ,,~, Ao-A2 

I y., DE 8f 8f i -"I" "~~ Am25LS2521 i 
A I~P 0 iE 0 0 

'--- ! ,~ 

~ ! A " " Am2." ! 
I 

0 

I 
C) 

Cn+\ 
j (Aj 

At· t ! Cn I--- Cn 1->-- Cn+4 ~~ 
A, \ V 

tll- - -..., .... ---11. 11 !I---=.- Jh 1J 
..j.. 

PATH 1 ---
cLbcK PATH 2 

PATH 3 --
MPR·'92 

Figure 25. 



58 

c) 

DE VICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 

75 

0 

297 

291 

291 

291 

297 

0 

0 

75 

TAL-ns TO 

CLOCK 

CP 

Am25LS23 

CPto 0 

ItoY 

CCENto Y 

CPtoy 

A (IS) 

I 
REG H 

o 0 • 
-

I 

15 

40 

-
-
40 

95 

Am25LSl68 
CNT 

Q 

f' 
Ao-A2 

6061 

A3-A9 

{7 

Q 

Am9114 

A 

t 

PATH 1 ---­
PATH 2 
PATH 3 

d) 

CP I 
FiCo I 

I 

I 

I 

DEVICE NO. DEVICE PATH PATH 1 

29775 CPtoD 15 

25LS153 A, B toY 19 

2910 CCtoY 21 

29775 A (IS) 40 

TOTAl-ns 95 
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- 54 

40 40 

78 94 
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- I It lA~ .. OE 

" I 
I 8f 
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Figure 25. (Cant.) 
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1 
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V 

I I 
I 
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Cn 

cLuCK 
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DEYlCENO. DEYlCEPATH PATH 1 PATH 2 

29775 CPto 0 15 15 

2910 I to PL. VECT V 27 

29775 E1 to D - 15 

25LS374 OEtoY 14 -
2910 PC (1S) - 34 

2911 o (IS) 17 -
TOTAL·.S 73 91 
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Figure 25. (Cont.) 

ZERO ~ ·oS, 
FE FILE 

Am2911 Am2911 
(8) (A)_ 

Cn I-- Cn+4 Cn 1-1-- Cn+4 
ZERO r-Cn 

Y Y 

I I t I 
1 

MPR·495 

D --;,;ry fCT 

I, CCEN iv I Pi 

I I I I 
1 I 

MPR·496 

59 



60 

g) 

DEVICE ND. DEVICE PATH PATH 1 PATH 2 PATH 3 

29775 CPto 0 15 15 -
2911 50.5, to Y - 19 - J8 8f 2911 CP to Y (5,50 = HL) - - 54 
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25LS2521 6 
DE 

E1 to EO - - I(c" .-1""'-
A, I 25L5153 OtoY 20 20 20 C A,B I-- CLOCK 

2910 CCtoY 21 21 21 

I I, CCEN I y Pi 
29775 A (tS) 40 40 40 

I 1 i~ I TOTAL-ns 121 124 144 i 2 

I D • A 

~-b CLOCK 

I Am~~168 ~ rrt- J '-= ---X-m29775 --r 
_.~K 

Q ""1"1 I CP 

I 
f3 I Jr[ Am2SLS23 8{' 

REG ~ '+.g: AO A2 

D 0 8081 
5 

A3-A9 ----
{7 

I 
Q 

Am9114 

A 

PATH 1 ----- I 
PATH 2 
PATH 3 -----

h) 

DEVlCEND. DEVICE PATH 

2911 CPto Y(S,S0 = Hl) 

2911 CP to Cn+< (5,50 = HL) 

2911 Cn (ts) 

9114 AtoO 

6061 AtoOur 

25LS23 o (tS) 

TOTAL·ns 

CLOCK 

I Am25l.S188 
CNT 

CP Q 
3 

Am2SLS23 
REG 

I Ao-A2 

u '"r ~ '----
A3~J9 

4 

I 
Q! 

Amat4 
A 

-. 
PATH1 ---­
PATH 2 

CP I 
RcO 

8{ 8{ I..!::= - ...-t,;;25LS. 

~p D ZE D 

I! 
·oS 

fi FE 
m2911 1~1 Am29ll 

I (C) (A)_ 

C, - -- CnH ZEHO I-

i 
Cn+4 en C, 

Y n y y 

L .......... _.J-U-.-- . ..iII I I 
I 

I 
CLOCK MPR·497 

PATH 1 PATH 2 18 8r 
39 - D H_Am":"74 I - 54 

CC YECT - 15 
Am25LS153 Y I--- DE 

Am2910 
150 - C A.a I-- CLOCK 
70 -

I,CCEN Y Pi 

I 23 -

262 69 
2 I {. 

D A DE 
I Am29775 

D CLOCK 

I r 81' 

Yo, DE 8{ "1 Am25LS2521 

A ZERO D ZERO D ... , ... , 
FE FE 

Am2911 Arn29l1 Amat11 
(C) (a) (A)_ 

C, I--- Cn+4 C, -- ZERO ", c, I-
Y (Y'I y 

11 I I il II I I -_. ---r-' 'n-' I 
T I 

CLOCK 

MPR·498 

Figure 25. (Coni.) 
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DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 

29ns ePto D 15 15 15 
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Figure 25. (Cont.) 

SUMMARY 

The Am2910 provides a powerful solution to the microprogram 
memory sequence control problem. The Am291 0 IS a fixed in­
struction set, 12·blt Wide microprogram sequencer. In addition, 
the Am2909, Am2911, Am29811 A and Am29803A provide 
another solution to the microprogram sequencing problem. 
These deVices are bit slice oriented and provide more potential 
flexibility to the microprogram sequencing solution, All of these 
deVices are particularly well sUited for the high performance 
computer control unit and structured state machine deSigns using 
overlap fetch of the next microinstruction - also referred to as 
Instruction-data-based microprogram architecture. 

These Am2900 family microprogram control deVices offer the 
highest performance LSI solution to the problem of microprogram 
control. They provide a number of conditional-branch source 
addresses as well as conditional Jump-to-subroutlne and 
conditional-return instructions, In addition, several techniques for 
timed and untlmed looping are provided such that loops from one 
to several microinstructions can be executed. All of the devices 
described in thiS chapter are competitively priced and currently 
available. In addition, all of these deVices are available with 
specifications guaranteed over the full commercial temperature 
range and power supply tolerance as well as the full military 
temperature range and power supply tolerance. All of these de­
vices undergo 100O/C reliability assurance testing In compliance 
with MIL-STO-883. 
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APPENDIX A 

Figure A 1 shows the logic diagram of an interface circuit used to 
connect the microprogrammed CRT controller to any Am90aOA 
type processor. Sixteen address-lines, eight data lines, a 
memory-read, a memory write and an I/O write signal are as­
sumed to be used in an active LOW polarity. 

An Am25LS2521 a-bit comparator is used to decode the addres­
ses olthe 2K by a character memory. This memory can be placed 
anywhere in the memory space in increments of 2K by using 5 
DIP-switches. The comparator is enabled by the presence of 
either the MMR or the MMW signal. The output olthis comparator 
is the HOST ACCESS signal. 

The HOST ACCESS signal enables the two Am25LS240 buffers 
which connect the processor address bus to the character mem-

Note Figure A2 IS at back of the book 

ory address bus. It also enables one half of an Am25LS241 buffer 
transferring the MMR or MMR active LOW signal to the proper 
data buffer enable (Am25LS240's) and to the WE pins olthe four 
Am9114 memories in case of a memory write operation. The CS 
of two of these memOries are driven by Al0 while the CS of the 
other two memories are driven by Al0' thus forming a 2K by a 
memory space. 

An Am25LS2521 a-bit comparator is enabled by the I/OW control 
line. If n matches the settings of the DIP switches at the B inputs of 
the comparator, an OUT n instruction will write the data into the 
Am25LS374 "First Address Register". 

Figure A2 shows the complete wiring diagram of this interface 
circuit. 
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APPENDIX B 

General 

A software emulation of the CRT controller was written in 
BASIC-E and run on the System 29 support processor. Figure Bl 
is a printout of this program. 

Notations 

For reference purposes, each clock pulse (CP) in the program is 
numbered. The clocks are character-rate clocks. A subscript "1 0" 
signifies thalthls variable belongs to the'Am2910 (e.g. Rl0 = the 
contents of the Am2910 Register Counter) and similarly a sub­
script 11 signifies the Am2911 dependent variables (e.g. Vll -
the V outputs of the two more significant Am2911 s). 

Usually the normal function names were used though for the 
active LOW functions the bar was deleted for simplicity. A 0 
signifies always a LOW and 1 signifies HIGH. Other abbrevia­
tions used in the program: 

MA = Microprogram Address (V output of the Am291 0) 
CA = Character Address 
PC = Program Counter (internal) 

R = Register (internal) 
F = File (internal) 

SP = Stack Pointer (internal) 
TENC = The Am25LS168 decade counter 

L4B = The 4 least significant bits of CA (the V outputs of 
the less significant Am2911 

CN = Carry-in into the less significant Am2911 
CN4 = Carry-out from the less significant Am2911 
CN4 = Carry-in to the next significant Am2911 

110 = The Am2910 instruction 
HB = Horizontal Blanking signal (active HIGH) 
VB = Vertical Blanking signal (active HIGH) 

CPM = Maximum Clock Pulse (at which the program 
stops) 

Description 

The different groups and subroutines of the emulation program 
are as follows: (See Figure Bl). 

<1000 series: The microcode. Subroutine 50 is the 
Am25LS168 decade counter clocking routine. 
TENTH is the RCa output of this device. 

1000 series: This is essentially the Am2910 emulation. 
Note the definition of the two functions 
FNFAIL and FNPASS at the beginning of the 
program, compare to the Am2910 instruction 
definitions in its data sheet. 

2000 series: The Am25LS153 multiplexer emulation. 
2500 series' The less significant Am2911 emulation. Note 

that the only input to this device is ZEROl. 
CN and the internal PC (called L4B) are con­
trolled in the CLOCK Subroutine (4000 series). 

3000 series: The two more significant Am2911's emulation, 
So and S1 are treated as a single number 
(ranging from 0 through 3) and denoted by 
Sll. 

4000 series' The Clocking routine. 
5000 series' The main emulation routine. It includes the 

Am25LS2521 comparator routine and checks 
the Clock Pulse against CPM to determine 
end of run. 

5500 series' Emulation parameter setup (initialization). 
The starting and ending CP numbers, MA, 
TENC, Rl0 and VECTOR (The "First Address 
Register") can be set. 

6000 series: Sets up the print-out parameters 
7000 series: Printout subroutine 
9000 series: Sets the program mode: RUN, PRINT or QUIT 

(return to CP/M) 

The emulation was exercised to evaluate fifteen different perfor­
mance aspects of the CRT Controller. The results indicated that 
in all cases, the design operated as desired. 



REM 
REV=12 
PRINT REV 
9000 REM HEADER 

PRINT 

REM 

REM 
REM 
REM 
REM 
REM 
REM 
9100 

REM 
9120 
REM 
9130 

REM 
9110 

REM 

PRINT 
PRI NT " ********-**********************************************" PRINT 
PRINT 
PRINT" A MICROPROGRAMMED CRT CONTROLLER EMULATION" 
PRINT 
PRINT 
PRINT " *****************************************************" PRINT 
PRINT 
PRINT " BY MOSHE M. SHAVIT" 
PRINT " ADVANCED MICRO DEVICES" 
PRINT" FEBRUARY 27, 1978" 
PRINT 
PRINT 

DIM Fl0(6) 
DEF FNFAIL=CCEN=O AND CC=l 
DEF FNPASS=CCEN=l OR CC=O 

GOTO 6000 

<--REV 6 

REM PROGRAM PARAMETERS (REMOVED REV 6) 

PRINT 
PRIN1· 
PRINT 
INPUT "R-UN, P-RINT OR Q-UIT ";MODES 
IF LEN(MODES)=O THEN GOTO 9100 
MODE=ASC(MODES)-79 
IF MOOE<l OR MODE > 3 , 

THEN PRINT MODES; " IS INVALIDo:, 
GOTO 9100 

ON MODE GOTO 9110,9120,9130 

RETURN 

REM RUN 
PRINT 
INPUT "PUT RESULTS ON FILE (0 IF DIRECT PRINTOUT)= ";UFILE$ 
PRINT °CP= o;CP;oMA= ";MA;"VECTOR= ";VECTOR;' 

"CPM= o;CPM;oROU= o;24-R10 
INPUT "INITIALIZE (Y OR N; CP,MA=O IF N)";S$ 
IF SS=oyo , 

THEN GOSUB 5500 , REM INIT. 
ELSE CP=O: MA=O 

IF UFILE$=ooo , 
THEN GOTO 6010 \ REM DIRECT PRINTOUT 
ELSE FILE UFILE$ GOTO 5000 REM MAIN 

REM PRINT 
PRINT 
INPUT "GET RESULTS FROM FILE=o;RFILE$ 
FILE RFILE$ 

6000 REM PRINT PARAMETERS 
PRINT 

6010 PRINT °OUTPUT FORMATS:" 
Figure 81. 
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REM 

PRINT " 
PRINT " 
PRINT " 
PRINT " 
PRINT 

A=CP AND CA ONLY" 
B=CP,CA,HB,VB,HA" 
C=CP,CA,HA,TENC,Rl0" 
D=ALL" 

INPUT "FORHAT=";FORHAT$ 
IF LEN(FORHAT$)=O THEN GOTO 6010 
IF ASC(FORHAT$)(65 OR ASC(FORHAT$»68 \ 

THEN PRINT FORHAT$;" IS ILLEGAL" :\ 
GOTO 6010 

PRINT 

6020 REH 

REM 

IF WFILE$ NE "0" \ 
THEN CONTROL$="A":\ 

GOTO 6030 
PRINT "CLOCK CONTROL" 
PRINT " A=CONTINOUS" 
PRINT " B=STEP" 
INPUT "CONTROL=";CONTROL$ 
IF LEN(CONTROL$)=O THEN GOTO 6020 
IF ASC(CONTROL$)(65 OR ASC(CONTROL$»66 \ 

PRINT 

THEN PRINT CONTROL$;" IS ILLEGAL" :\ 
GOTO 6020 

6030 PRINT "OUTPUT CONTROL" 
PRINT " A=AT EACH CP" 
PRINT " B=AT EVERY N-TH Cpo 
PRINT" C=MANUAL CONTROL" 
PRINT " D=BTARTING AT CPS AT EVERY Cpo 
PRINT " E=STARTING AT CPS AT EVERY N-TH cpa 
INPUT "OUTPUT=";OUTPUT$ 
IF LEN(OUTPUT$)=O THEN GOTO 6030 
IF ASC(OUTPUT$)<65 OR ASC(OUTPUT$»69 \ 

THEN PRINT OUTPUT$;" IS ILLEGAL" :\ 
GOTO 6030 

0.CTL=ASC(OUTPUT$)-64 
ON O.CTL GOTO 6090,6032,6090,6034,6036 

6032 INPUT "N=";N 
H=O 
GOTO 6090 

6034 INPUT "CPS= ";CPS 
GOTO 6090 

6036 INPUT ·CPS= ";CPS 
INPUT "N= ";N 

REM 
6090 

REM 

H=O 
GOTO 6090 

FORMAT = ASC(FORMAT$)-64 
ON FORMAT GOSUB 6190,6300,6200,6100 
IF WFILE$="O" THEN GOTO 5000 REM 

6900 PRINT 
IF END 11 THEN 6910 

MAIN 

FOR 1=1 TO 2 STEP 0 REM DO UNTIL END OF FILE 
READ 11; CP,Rl0,Fl,SP10,PC10,CA,MUX,CC.CCEN.MA,TENC,\ 

CN4 ,Fl1 ,HB,VB 
Fl0(SP10)=F1 
GOSUB 7000 REM PRINT 
GOSUB 5200 REM ESCAPE (REV 7) 
IF S=155 THEN PRINT:PRINT "ABORTED AT ";CP GOTO 6910 
NEXT I 
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REM 
6910 

. REM 
6100 

6190 
REM 
6200 

REM 
6300 

REM 
REM 
7000 

REM 
7002 

REM 
7003 
REM 
7004 
REM 
7005 

REM 
7010 
REM 
'7100 

REM 
'7200 

REM 
7300 

REM 
7400 

REM 
REM 
5000 

CLOSE 1 
OUT 100,12 
GO TO 9100 

REM PRINTER PAGE EJECT (REV 7) 

PRINT 
PRINT "CP","R10","F10","SP10","PC10" 
PRINT "CA","MUX","CC","CCEN","MA" 
PRINT "TENC","CN4","Fll","HB","VB" 
PRINT 
RETURN 

PRINT 
PRINT "CLOCK","CHAR.ADDR","2910 REG.","LINE CNTR.","NEXT MA" 
RETURN 

PRINT 
PRINT "CLOCK","CHAk.ADDR","H.BLANKING","V.RLANKING","NEXT MA" 
RETURN 

REM PRINT SUBROUTINE 
ON o.eTL GOTO 7010.7005,7002,7003,7004 

INPUT "OUTPUT (Y OR N)";S$ 
IF S$="Y" \ 

THEN GOTO 7010 \ 
ELSE RETURN 

IF CP(CPS THEN RETURN ELSE GOTO 7010 

IF CP(CPS THEN RETURN ELSE GO TO 7005 

M=M+1 
IF M=N THEN M=O : GOTO 7010 ELSE RETURN 

ON FORMAT GOTO 7100,7200,7300,7400 

PRINT "CP= ";CP,"CA= ";CA 
RETURN 

IF HB=O THEN HB$="L" ELSE HBS=" 
IF VB=O THEN VBS="L" ELSE VBS=" 
PRINT CP,CA,HBS,VBS,MA 
RETURN 

PRINT 
PRINT CP,CA,Rl0,TENC,MA 
RETURN 

PRINT 
PRINT CP,R10,F10(SP10),SP10,PC10 
PRINT CA,MUX,CC,CCEN,MA 
PRINT TENC,CN4,F11,HB,VB 
RETURN 

REM 
REM 

MAIN ROUTINE 

REM CLOCK 

H" 
H" 

GOSUB 4000 
REM FETCH 
ON MA+1 GOSUB 
GOSUB 2500 
GOSUB 3000 

MICROCODE 
30,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 

REM 2911L 
REM 2911H 
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CA·Y11*16+L4B REM CHARACTER ADDRESS 
REM COMPARATOR NEXT 

IF Yll=120 AND TENTH=O , REM REV 8 
THEN COMp·O \ 
ELSE COMP=l 

GOSUB 2000 REM MUX 
GOSUB 1000 REM 2910 

REM REV" 
IF WFILEI="O" THEN GOSUB 7000 , REM DIRECT PRINTOUT 

ELSE PRINT tl;CP,Rl0,Fl0CSP10),SP10,PC10,CA,MUX,\ 
CC,CCEN,MA,TENC,CN4,F11,HB,VB 

IF CONTROLI."B" THEN INPUT S5 REM SINGLE STEP 
REM CHECK END OF RUN 
GOSUB 5200 REM ESCAPE CREV 7) 
IF S=155 THEN PRINT:PRINT "ABORTED AT ";CP : GOTO 5100 
IF CP<CPM THEN GOTO 5000 REM REPEAT MAIN 

REM 
5100 IF WFILEI NE "0" THEN CLOSE Cl) 

OUT 100,12 REM PRINTER PAGE EJECT CREV 7) 
GOTO 9100 

REM 
REM 5200 SUB REV 7 
5200 REM ESCAPE SUBROUTINE 

S=INP(97) 

REM 

S=INT(S/2) 
S=S/2-INTCS/2) 
IF S NE 0 THEN S • INP(96) 
RETURN 

5500 REM INITIALIZATION 
PRINT 
SP10·1 
PRINT "MA= ";MA 

5505 INPUT "NEW MA CY OR N)";SI 
IF SI·"N" THEN GOTO 5510 
INPUT "MA=CO<=MA(22)";MA 
MA=INTCMA) 
IF MA<O OR MA)21 , 

THEN PRINT MA;" IS ILLEGAL" :\ 
G()TO 5505 

IF MA=O THEN TENC=O : HB=1 : TENTH=1 
REM 
5510 PRINT 

PRINT "VECTOR= ";VECTOR 
5515 INPUT "NEW VECTOR CY OR N)";SI 

IF SI."N" THEN GOTO 5520 
INPUT "VECTOR=CO(·VECTOR(120)";VECTOR 
VECTOR=INTCVECTOR) 
IF VECTOR(O OR VECTOR)119 \ 

THEN PRINT VECTOR;" IS ILLEGAL" :\ 
GOTO 5515 

REM 
5520 

5525 

REM 

PRINT 
PRINT "CP· ";CP 
INPUT "NEW CP CY OR N) ";S' 
IF SI·"N" THEN GO TO 5530 
INPUT "CPC)=O)· ";CP 
Cp·INTCCP) 
IF CP(O THEN PRINT CP;" IS ILLEGAL" 

5530 PRINT 
PRINT "CPM= ";CPM 

5535 INPUT "NEW CPM CY OR N)";S' 
IF SI·"N" THEN GOTO 5540 
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INPUT "CPM=(CP+l<CPM)";CPM 
CPM=INT<CPM) 
IF CPM(CP+l THEN PRINT CPM;" IS ILLEGAL";"CP= ";CP :GOTO 5535 

REM 
5540 PRINT 

PRINT "TENC= ";TENC 
IF MA=O THEN GOTO 5550 

5545 INPUT "NEW TENC (Y OR N)";S$ 
IF S$="N" THEN GOTO 5550 

REM 
5550 

5555 

REM 

INPUT "TENC=(0(=TENC(10)";TENC 
TENC=INT(TENC) 
IF TENC(O OR TENC)9 \ 

THEN PRINT TENC;" IS ILLEGAL" :\ 
(lOTO 5545 

IF TENC=9 THEN TENTH=O ELSE TENTH=1 

PRINT 
PRINT "R10= ";R10 
INPUT "NEW RIO (Y OR N)";S$ 
IF S$="N" THEN GOTO 5560 
INPUT "R10 (0(=R10(25)=";R10 
R10=INT<R10) 
IF R10(0 OR R10)24 THEN PRINT RIO;" IS ILLEGAL" 

5560 REM 

REM 
REM 
REM 
30 

REM 
2 

REM 
3 

REM 
4 

RETURN 

I10=6 
CCEN=O 
MUX=3 
811=3 
FE=O 
ZEROH=1 
ZEROL=O 
CN=O 
HB=l 
VB=O 
PL=O 
RETURN 

110=12 
S11=0 
FE=1. 
ZEROH=l 
ZEROL=O 
CN=O 
HB=1 
VB=O 
PL=23 
RETURN 

110=14 
Sl1=2 
FE=1 
ZEROH=1 
ZEROL=O 
CN=l. 
HB=l 
VB=O 
RETURN 

110=3 

REM REV 2 

REM REV 2 

REM REV 2 

Figure B1 (Cont.) 

GOTO 5555 

71 



72 

CCEN=O REM 
MUX=l 9 I10=1 
811=0 CCEN=O 
FE=l MUX=O 
ZEROH=l 811=0 
ZEROL=l FE=l 
CN::1 ZEROH=l 
HB=O ZEROL=l 
VB=O eN=l. 
I"L=3 GOSUB 50 REM TENC 
RETURN VB=O 

REM PL=12 
5 Il0=3 RETURN 

CCEN=O RI;:M 
MUX=!. 10 I10=!. 
Sl1=O CCEN=O 
FE=l MUX=2 
ZEROH=l 511=0 
ZEROL=l FE=l 
CN=l ZEROH=l 
HB=O ZEROL=l 
VB=O CN"l. 
1"'-=4 G08UB 50 
RETURN VB=O 

REM F'L=21 

6 I10=3 HETURN 

CCEN=O REM 

MUX=l 
11 Il0=3 

S11=0 
CCEN=O 

FE=l MUX=l. 

ZEROH=l 
811=0 

ZEROL=l FE=l 
eN=!. ZEROH=l 

HB=O 
ZEROL=l 

VB=O CN=!. 
F'L=5 GOSUB 50 

RETURN VB=O 

REM I"L=10 
7 Il0=3 RETURN 

CCEN=O 
REM 

MUX=l. 
12 I10=3 

811=0 CCEN=l 
Sl1=O 

FE=l FE=!' 
ZEROH=l 
ZEROL=l 

ZEROH=l 
GOSUB 50 

eN=l 
HB=O 

VB=O 

VB=O 
PL==2" 

PL=6 
RETURN 

RETURN 
REM 

REM 13 I10=9 

8 I10=3 811=0 
CCEN=O FE=O REM REV 5 

MUX=l ZEROH=l 

811=0 ZEROL=l 
FE=l eN=l 
ZEROH=l G05UB 50 
ZEROL=l VB=O 
CN::1 F'L=20 
HB=O RETURN 
VB=O REM 

F'L=7 
14 I10=6 

RETURN CCEN=O 
MUX=3 
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FE=O REM REV 10 
ZEROH=l 
ZEROL=O 
G05UB 50 
VB=l. 
RETURN 

REM 
15 I10=12 

511=0 REM REV 10 
FE=l REM REV 10 
ZEROH=1 

REM ZEROH=1 REM REMOVED REV 10 
GOSUB 50 
VB=1 
PL=119 
RETURN 

REM 
16 I10=4 

CCEN=O 
MUX=3 
Sl1=O 
FE=1 
ZEROH=1 
ZEROL=1 
CN=1 
G05UB 50 
VB=1 
RETURN 

REM 
17 I10=3 

CCEN=O 
MUX=l 
511=0 
FE=1 
ZEROH=1 
ZEROL=1 
CN=l 
GOSUB 50 
VB=1 
PL=16 
RETURN 

REM 
18 110=8 

511=0 
FE=1 
ZEROH=1 
ZEROL=1 
CN=1 
G05UB 50 
VB=1 
RETURN 

REM 
19 I10=12 

511=0 
FE=1 
ZEROH=1 
ZEROL=1 
CN=l 
G05UB 50 
VB=1 
PL=23 
RETURN 

REM 
20 I10=10 

Figure B1 (Cont.) 



74 

REM 

CCEN=l 
Sl1=O 
FE=l 
ZEROH=l 
ZEROL=l 
CN=l 
GOSUB 50 
VB=l 
RETURN 

21 I10=10 

REM 
22 

REM 

CCEN=l 
S11=0 
FE=l 
ZEROH=l 
ZEROL=l. 
GN=l 
GOSUB 50 
VB=O 
RETURN 

110=10 
CCEN=l 
FE"'O 
ZEROH=O 
ZEROL"'l 
CN=l 
GOSUB 50 
VB=O 
RETURN 

REM REV 9 

REM REV 9 

50 REM TEN-LINE-COUNTER CLOCKING SUBROUTINE 
IF HB=l THEN RETURN 
HB=l 
TENC=TENC+1 
IF TENC=9 THEN TENTH=O ELSE TENTH=l 
IF TENC=10 THEN TENC=O 
RETURN 

REM PUSH AND POP SUBROUTINES REMOVED REV 3 
1000 REM 2910 INSTRUCTIONS SUBROUTINE 

ON I10+1 GOTO 1100,1110,1120,1130,1140,1150, 1160~, 1170,1180, \ 
1190,1200,1210,1220,1230,1240,1250 

REM 
1100 

REM 
1110 

REM 

REM JZ 
MA=O REM 
SP10=0 REM 
RETURN 

REM CJS 
IF FNFAIL \ 

THEN 
ELSE 

RETURN 

2910 Y 
2910 STACK POINTER (=0 REV 3) 

MA=PC10 \ 
MA=PL :\ 
PUSH=l REM REV 3 

1120 REM JMAP 

REM 
1130 

PRINT "JMAP NOT PROGRAMMED" 
RETURN 

REM CJP 
IF FNFAIL \ 

THEN 
ELSE 

RETURN 

MA=PC10 \ 
MA=PL 
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REM 
1140 REM PUSH 

IF FNPASS THEN R10=PL REM 
MA=PC10 

LOAD COUNTER 

PUSH=l REM REV 3 
RETURN 

REM 
1150 REM JSRP 

REM 
1160 

REM 

PRINT "JSRP NOT PROGRAMMED" 
RETURN 

REM CJV 
IF FNFAIL , 

RETURN 

THEN 
ELSE 

MA=PC10 , 
MA=VECTOR 

1170 REM JRP 
IF FNFAIL , 

THEN MA=R10 , 
ELSE MA=PL 

REM 
1180 

REM 
1190 

REM 
1200 

REM 
1210 

RETURN 

REM RFCT 
IF R10=0 , 

THEN 

ELSE 

RETURN 

REM RPCT 
IF R10=0 , 

RETURN 

THEN 
ELSE 

REM CRTN 
IF FNFAIL , 

THEN 
ELSE 

RETURN 

REM CJPP 

MA=PC10 =, 
POP=l , 
MA=F10(SP10) =, 
Rl0=Rl0-1 

MA=PC10 , 
MA=PL =, 
R10=Rl0-1 

MA=PC10 , 
MA=F10(SP10) =, 
POP=l REM 

PRINT "CJPP NOT PROGRAMMED" 
RETURN 

REM 
1220 REM LDCT 

R10=PL 
MA=PC10 
RETURN 

REM 
1230 REM LOOP 

IF FNFAIL , 
THEN 
ELSE 

MA=Fl0(SP10) , 
MA=PC10 =, 

REV 3 

POP=l REM REV 3 

REM 
1240 

RETURN 

REM CONT 
MA=PC10 
RETURN Figure B1. (Cont.) 
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REM 
1250 

REM 
REM 
2000 

REM 
2100 

REM 
2200 

REM 
2300 

REM 
2400 

REM 
REM 
2500 

REM 
REM 
REM 
REM 
3000 

REM 
3100 

REM 
3200 

REM 
3300 

REM 
3400 

REM 
REM 
4000 
REM 

REM TI.IB 
PRINT "TWB NOT PROGRAMMED" 
RETURN 

REM MUX SUBROUTINE 
ON MUX+l GOTO 2100,2200,2300,2400 

IF TENTH=O \ 
THEN CC=O \ 
ELSE CC=l 

RETURN 

IF CN4=0 \ 
THEN CC=O \ 
ELSE CC=l 

RETURN 

IF COMP=O \ 
THEN CC=O \ 
ELSE CC=l 

RETURN 

CC=l 
RETURN 

REM LEAST SIGNIFICANT 2911 (2911L) SUBROUTINE 
IF ZEROL=O THEN L4B=0 
RETURN 

REM MORE SIGNIFICANT 29115 (2911H) SUBROUTINE 
ON 511+1 GOSUB 3100,3200,3300,3400 
IF ZEROH=O THEN Yll=O 
RETURN 

Y11=PCll 
RETURN 

Y11=Rll 
RETURN 

Y11=Fll 
RETURN 

IF 110=6 \ 
THEN 
ELSE 

RETURN 

Y 11 =VECTOR \ 
Y11=PL 

REM CLOCK SUBROUTINE 
PC10=MA+l REMOVED REV 4 
IF CN=l THEN L4B=L4B+l 
IF L4B>15 THEN L4B=0 : CN4=1 ELSE CN4=0 
IF CN4=1 \ 

THEN PC11=Y11+1 \ 
ELSE PCll=Y11 

IF FE=O THEN F11=PCll 
REM <--REV 3 
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REM 

REM 
REM 

IF PUSH=l \ 
THEN 

IF SP10>4 \ 
THEN 

IF POP=l \ 
THEN 

IF SP10<O \ 
THEN 

REV 3 --) 
PC10=MA+l 
CP=CP+l 
RETURN 

SP10=SP10+l :\ 
Fl0(SP10)=PC10 :\ 
F'USH=O 

PRINT "2910 STACK FULL " :\ 
SF'10=3 

SP10=SP10-l :\ 
POP=O 

PRINT "POP EMPTY FILE? ";CP :\ 
SP10=O 

REM REV 4 

Figure 81 (Cont.) 
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APPENDIX C 

A simple circuit was designed to accommodate five different 
display formats and also to comply with the European 50Hz TV 
standard. Figure C1 IS the circuit diagram ofthls additional circuit. 

The following parameters change when the format is changed: 
1) The number of characters/line. 
2) The, number of lines/frame. 
3) The number of characters to display (I.e., the address of the 

last character). 
4) The line frequency and therefore the dot frequency. 

The number of characters/line is counted by the least significant 
Am2911 sequencer via the microcode. Therefore, the microcode 
can be changed to change the number of characters/line. The 
number of lines/frame is counted by a constant, loaded Into the 

Am291 0 internal counter by the microcode. The microcode can 
be changed to vary the number of lines/frame. 

The scan is reimtialized to zero when the last address + 1 is 
attained. Ug (Am25lS2521) detects this address by comparing 
bits A.. through A '0 of the character address bus to a constant 
supplied to its B inputs. A table listing these constants IS shown in 
Figure C1. By setting the DIP switches according to that table, the 
character scan Will reinitialize correctly. The same constant is 
routed through one half of an Am25lS240 (U24) to the Internal 
data bus. At microprogram address zero, a JUMP MAP instruc­
tion enables these outputs thereby putting a starting address on 
the bus according to the table in Figure C1. 

The microprogram is shown on Figure C2. 

+5V +5V 

CONNECT .6 Is I. I. J.b 
FOR 50 Hz • 1Co 1C~.:C. 1C' 11I 1 -

~ --0- B 

Am2910 
~A Am25LS153 ..!!... Vee 

JIlO5 Do 1Y GRD 

7 

1" 
7 

~ +SV 

1 __ So 
m • 1A, 1Y, 

16 MOo 7 
"""V" ...;:. 8, • 1AO 1V. 

16 MD, 8 
~...-:::s. 6 

1A. 1V. 
1. MD, 9 

~""'::Sa 8 
1", 1Y. 

1. MD. 10 "V 
U' 

U40 +SV 

I § 
MD. 1. 

":" 
MDS 13 

U24 MDo 1. 
1/2 Am26lS240 

M~ 16 

18 16 1. 1. 9 h I5 la * ~ 
8 5 • • ';J B 

U9 
Am25LS2S21 

MPR·501 

LAST COMPARE AT MAP 

FORMAT CHAR. ADD. +1 LAST ADD/16 S3 S2 S, So ADDRESS DOT FREQ. (MHz) 

24 x 80 1920 1200 78H H H H H OFO 10.86624 

24 x 64 1536 960 60H H H L L OF3 9.09216 

24 x 32 768 480 30H L H H L OF9 5.544 

16 x 32 512 320 20H L H L L OFB 5.376 

16 x 16 256 160 10H L L H L OFO 3.65568 

A'OAg AaA7 

Figure C1. 



A)TYPE CRT.DEF , 
;ChT DEFI~ITION FILE 
;BY ~CSHE M. SHAVIT 
iREV 0 3/6/78 

TITLE 
WORD 

CRT CONTROLLER --DEFINITIONS 
24 

FE: DEF 
ZEROE: rEF 
Sl1: DE? 
I10: DEF 
C~J: DD' 
ZERCl: LEl 
VIi: DlF 
EIJ: DEF 
CCEti: DEF 
~UX0: DEF 
MUXl: LEF 
M1;X2: DEF 
MUX3: DEF 
PL: DEF 

L: E~U 
H: F.QU 

COUt\T: DEF 
COUt-TE: DEF 
COUtiTV: DEF 

1V]#1,23X 
1X,lV]#1,22X 
2X,2V%:Q#,20X 
4X,4.VH#,16X 
9X,lVB#1,14X 
10X,lVB#1,13X 
11 X , 1 V B# 2J , 12X 
12X, 1 VB#0, 11X 
13X,lVb#,10X 
14X,B#00,8X 
14X,13#10,8X 
14X,B#01,8X 
14X,B#11,8X 
leX,8V%: 

:R#0 
]#1 

E#1,B#1,B#00,5X,13#1,B#1,P#e,13#0,lX,2X,81 
E#1,B#1,13#00,5X,E#l,B#1,B#0,B#1,lX,21,8X 
B#1,B#1,B#00,5X,B#1,B#1,b#1,B#1,lX,2X,8X 

Figure C2. AMDASM Definition and Assembly Flies for the CRT Controller. 
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AMDOS/29 AMDASM MICRO ASS1MBLER. Vl.l 
CRT CCI\TROlLER 

0000 

JCFT CONTRCLLER ~ICROFROGRA~ 
; 
JEY MOSHE M. SEAV1T 
jREV 2 5/3/70 

110 H#2 ;JUMP MAP 

24 ROWS 80 CHARACTERS 60 F/S 

j 
0001 52480: 

I CN 
110 H#€ & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 

& VB L & HB H 
110 H#C 
PL D#23 
110 H#E & 
110 H#3 & 
110 H#3 & 
110 B#3 & 
110 H#3 & 
110 H#3 & 
110 H#l & 
110 H#l & 
110 H#3 & 
110 H#3 & 
110 H#9 & 

0002 & 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 
IVB & 

0003 M2480: 
0004 

511 2 & FE & ZEROB & ZEROI L & CN & HB H & VB 
CCEN L & MUll & COUNT & PL $ 

0005 
0006 
0007 
0008 
0009 
000A 
000B 
000C 

CCEN L & MUll & COUNT & PL $ 
CCEN L & MUll & COUNT & PL $ 
CCEN L & MUll & COUNT & PL $ 
CCEN L & MUll & COUNT & PL $ 
CCEN L & MUI0 & COUNTH & PL T2480 
CCE~ L & MUI2 & COUNTH & PL LASTA 
CCEN L & MUll & COUNTH & PL $ 

M2480 
000D T2480: 

CCEN H & S11 0 & FE & ZEROH & HB H & VB & PL 
511 0 & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB 

ACK 
000E 

000F 
0010 
0011 
0012 
0013 
0014 

j 

110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 
I HB H & VB H 

110 H#C & 
110 H#4 & 
110 H#3 & 
110 H#8 & 
I10 H#C & 
110 H#A & 

511 0 & FE & ZEROH & HB 
CCEN L & MUX3 & COUNTV 
CCEN L & MUll & COUNT V 
COUNTV 
COUNTV & PL D#23 
CCEN H & COUNTV 

H & VB H & PL D#146 

& PL $ 

0015 GOBACK: 110 H#A & CCEN H & COUNTH 
0016 LASTA: 110 H#A & CCEN H & FE L & ZEROH L & ZEROL & CN H & BB H & VB 

24 ROWS 64 CHARACTERS 60 FIS 

j 

0017 52464: 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 
& VB 

0018 

0019 
001A 
001B 
001C 
001D 
001E 
001F 
0020 
0021 
0022 

ACK 
0023 

0024 
0025 
0026 
0027 

I CN 
& 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 

L & HB B 
110 H#C 
PL D#23 
I10 H#E & 
110 H#3 & 
110 H#3 & 
110 H#3 & 
110 H#3 & 
110 H#l & 
110 H#l & 
110 H#3 & 
110 H#3 & 
110 H#9 & 

JVB & 
M2464: 

T2464: 

L & CN & HB H & VB 511 2 & FE & ZEROH & ZERCL 
CCEN L & MUll & COUNT & PL 
CCEN L & MUll & COUNT & PL 
CCEN L & MUll & COUNT & PL 
CCEN L & MUll & COUNT & PL $ 

i 
CCEN L & MUI0 & COUNTH & PL T2464 
CCEN L & MUI2 & COUNTH & PL LASTA 
CCEN L & MUll & COUNTH & PL $ 
CCEN H & 511 0 & FE & ZEROH & HB H & VB & PL 
511 0 & FE L & ZEROH & ZEROL & CN H & HB H & 

M2464 
VB & PL GOB 

110 H#6 & CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L & 
IBBH&VBH 

110 H#C & 
110 H#4 & 
110 H#3 & 
110 H#.8 & 

511 0 & FE & ZEROH & HB H & VB H & PL D#122 
CCEN L & MUX3 & COUNTV 
CCEN L & MUll & COUNTV & PL $ 
COUNTV 
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AMD05/29 AMDA5M MICRO A55EMBLER, Vl.l 
CRT CONTROLLER 

002E 
0029 

; 

110 HlfC & COUhTV & PL D#23 
110 H#A & CCEN H & COUNTV 

24 ROW5 32 CHARACTERS 60 F/5 

002A 52432: 110 li#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 
I CN 

002B 
IVB & 

002C 1"2432: 
002D 
002E 
01il2F 
0030 
0031 
0032 
01il33 T2432: 

L & HB H & VB 
110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & BB B & 
PL D#23 
110 H#E & 
110 B#3 & 
110 H#3 & 
Il0 B#l & 
110 B#l & 
110 H#3 & 
110 B#3 & 
110 H#9 & 

511 2 & FE & ZEROH & ZEROL L & CN & HB H & VB 
CCEN L & MUll & COUNT & PL $ 
CCEN L & MUll & COUNT & PL $ 
CCEN L & MUI0 & COUNTH & PL T2432 
CCEN L & MUI2 & COUNTH & PL LA5TA 
CCEN L & MUll & COUNTB & PL $ 
CCEN H & 511 0 & FE & ZEROB & HB H & VB & PL 
511 0 & FE L & ZEROH & ZlROL & CN B & BB H & 

M2432 
VB & PL GOB 

ACK 
01il34 

0035 
0036 
0037 
0038 
003& 
003A 

IHl H#6 & 
I HB H & VB H 

110 H#C & 
110 H#4 & 
110 H#3 & 
110 H#8 & 
110 B#C & 
110 H#A & 

CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 

511 0 & FE & ZEROH & HB H & VB H & PL D#74 

; 

CCEN L & MUI3 & COUNTY 
CCEN L & MUll & COUNTY & PL $ 
COUNTY 
COUNTV & PL D#23 
CCEN H & COUNTY 

16 ROW5 32 CHARACTER5 60 FIS 

003B 51632: 110 H#6 & CCEN L & M_UI3 & 511 3 & FE L & ZEROH & ZEROL L & 
I CN L & HB H & VB 

003C 110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 
liB So PL D#15 

003D M1632: 110 H#E & 511 2 & FE & ZEROH & ZEROL L & CN & HB H & VB 
003E 110 H#3 & CCEN L & MUll & COUNT & PL $ 
003F 110 H#3 & CCiN L & MUll & COUNT & PL $ 
0040 110 H#l & CCEN L & MUI0 & COUNTH & PL T1632 
0041 110 H#l & CCEN L & MUI2 & COUNTH & PL LA5TA 
0042 110 H#3 & CCEN L & MUll & COUNTH & PL $ 
0043 110 H#3 & CCEN H & 511 0 & FE & ZEROH & HB H & VB & PL M1632 
0044 T1632: 110 H#9 & 511 0 & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GOB 

ACK 
0045 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L &_ 

I HB H & VB H 
0046 110 H#C & 511 0 & FE & ZEROH & HB H & VB H & PL D#250 
0047 110 H#4 & CCEN L & MUI3 & COUNTY 
0048 110 H·#3 & CCEN L & MUll & COUNTV & PL $ 
0049 110 H#8 & COU~TV 
004A 110 H#C & COUNTV & PL D#48 
004B 110 H#4 & CCEN L & MUI3 & COUNTV 
004C 110 H#3 & CCEN L & MUll & COUNTY & PL $ 
004D 110 H#e & COUNTY 
004E 110 H#C & COUNTY & PL D#15 
004F 110 H#A & CCEN H & COUNTY 

16 ROWS 16 CHARACTERS 60 FI5 
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At':DOS/29 AMDASM MICRO ASSEMBLER, V1'.l 
CRT CONTROLLER 

210521 S1616: 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 
I CN L & HB H & VB 

0051 110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 
IVl! & PL D#15 

02152 MIE16: 1121 H#E & 511 2 & FE & ZEROH & ZEROL L & CN & HB H & VB 
0053 1121 H#3 & CCEN L & MUll & COUNT & PL $ 
0054 110 H#l & CCEN L & MUI0 & COUNTH & PL T1616 
0055 110 H#l & CCEN L & MUI2 & COUNTH & PL LA5TA 
0056 110 H#3 & CCEN L & MUll & COUNTH & PL $ 
0057 110 H#~ & CCEN H & 511 21 & FE & ZEROH & HB H & VB & PL M1616 
0058 TIE16: 110 H#9 & 511 0 & FE L & ZEROH & ZEROL & CN H & HB H & VB & P~ GO] 

ACK 
0059 110 H#6 & CCEN L & MUX3 & 511 3 & FE L & ZEROH & ZEROL L & 

I Hll H & Vl! H 
0e5A 110 H#C & 511 0 & FE & ZEROH & HB H & VB H & PL D#203 
005ll 110 H#4 & CCEN L & MUX3 & COUNTV 
005C 110 H#3 & CCEN L & MUll & COUNTV & PL $ 
005D 1121 H#8 & COUNTV 
005E 110 H#C & COUNTV & PL D#15 
005F 110 H#A & CCEN H & COUNTV 

00F0 
00Fe 

00F3 
00F3 

00F9 
00F9 

00FB 
00FB 

00FD 
00FD 

0100 

ORG H#0F0 ;24*80 
110 H#3 & CCEN H & Pt 52480 

ORG H#0F3 ;24*64 
110 H#3 & CCEN H & PL 52464 

ORG H#eF9 ;24*32 
110 H#3 F.. CCEN H & PL 52432 

ORG H#0FB ;16*32 
110 H#3 & CCEN H & PL 51632 

ORG H#0FD ;16*16 
110 .H#3 & CCEN H & PL 51616 

; 
;50 F/5 ROUTINES 

ORG H#100 

24 ROWS 80 CHARACTERS 50 FI5 

; 
0100 52480E: 110 H#E & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 

I CN L & Hll H & Vll 
0101 110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 

IVB & PL D#23 
0102 M2480E: 110 H#E & 511 2 & FE & ZEROH & ZEROL L & CN & Hll H & VB 
0103 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0104 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0105 110 H#3 & CCEN L & MUll & COUNT & PL ~ 
010E 110 H#3 & CCEN L & MUll & COUNT & PL T 
0107 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0108 110 H#l & CCEN L & MUl0 & COUNTH & PL T2480E 
0109 110 H#l & ceEN L & MUI2 & COUNTH & PL LA5TA 
010A 110 H#3 & CCEN L & MUll & COUNTH & PL $ 
010B 110 H#3 & CCEN H & 511 0 & FE & ZEROH & HB H & VB & PL M2480E 
010C T2460E: 110 H#9 & 511 0 & FE L & ZEROH & ZEROL & CN H & HB B & VB & PL GOB 

ACK 
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AMDOS/29 AMDASM MICRO ASSEMBLER. Vl.1 
CRT CONTROLLER 

010D 

010E 

110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZERCH & ZEROL L & 
I HB H & VB H 

110 H#C & 511 0 & FE & ZEROH & HB H & VB H & PL D#200 jlTERATES 
201 TIMES 

010F 
0110 
0111 

110 H#4 & CCEN L & MUI3 & COUNTV 
110 H#3 & CCEN L & MUll & COUNTV & PL $ 
110 H#8 & COUNTY 

0112 110 H#C & COUNTY & PL D#239 
0113 110 H#4 & CCEN L & MUI3 & COUNTY 
0114 11e H#3 & CCEN L & MUll & COUNTY & PL $ 
0115 110 H#8 & COUNTY 

0116 110 H#C & COUNTY & PL D#23 
0117 110 H#A & CCEN H & COUNTY 

24 ROWS 64 CHARACTERS 50 FIS 

; 
0118 52464E: 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 

I CN L & HB H & VB 
0119 110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 

IVB & PL D#23 
011A M2464E: 110 H#E & 511 2 & FE & ZEROH & ZEROL L & CN & HB H & VB 
011B 110 H#3 & CCEN L & MUll & COUNT & PL $ 
011C 110 H#3 & CCEN L & MUll & COUNT & PL $ 
011D 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0111 110 H#3 & CCEN L & MUll & COUNT & PL $ 
011F 110 H#l & CCEN L & MUI0 & COUNTH & PL T2464E 
0120 110 H#l & CCEN L & MUI2 & COUNTH & PL LASTA 
0121 110 H#3 & CCEN L & MUll & COUNTH & PL $ 
0122 110 H#3 & CCEN H & 511 0 & JE & ZEROH & HB H & VB & PL M24€4E 
0123 T2464E: 110 H#9 & 511 0 & FE L & ZEROH & ZEROL & CN H & HB H & VB & PL GCB 

ACK 
0124 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 

I HB H & VB H 
0125 110 H#C & 511 0 & FE & ZERCH & HB H & VB H & PL D#200 
0126 110 H#4 & CCEN L & MUI3 & COUNTY 
0127 110 H#3 & CCEN L & MUll & COUNTY & PL $ 
0128 110 H#8 & COUNTY 

0129 110 H#C & COUNT V & PL D#167 ;369 
012A 110 H#4 & CCEN L & MUI3 & COUNTY 
012B 110 H#3 & CCEN L & MUll & COUNTY & PL $ 
012C 110 H#8 & COUNTY 

012D 110 H#C & COUNTY & PL D#23 
012E 110 H#A & CCEN H & COUNTY 

24 ROWS 32 CHARACTERS 50 FIS 

j 

012F S2432E: 110 H#6 & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZERCL L & 
I CN L & HB H & VB 

0130 110 H#C & 511 0 & FE & ZEROH & ZEROL L & CN L & BB H & 
IVB & PL D#23 

0131 M2432E: 110 H#E & 511 2 & FE & ZEROH & ZEROL L & CN & HB H & VB 
0132 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0133 110 H#3 & CCEN L & MUll & COUNT & PL $ 
0134 110 H#l & CCEN L & MUI0 & COUNTH & PL T2432E 
0135 110 H#l & CCEN L & MUI2 & COUNTH & PL LAST! 
0136 110 H#3 & CCEN L & MUll & COUNTH & PL $ 

Figure C2 (Cont.) 
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AMD05/29 AMDA5M MICRO A55EMELER. Vl.l 
CRT CONTROLLER 

0137 110 B#3 & CCEh B & 511 0 & FE & ZEROH & BE B & VE & PL M2432E 
0138 T2432E: 110 B#9 & 511 0 & FE L & ZEROB & ZEROL & CN H & H~ B & VB & PL GOB 

ACK 
0139 110 H#6 & CCEN L & MUI3 & S11 3 & FE L & ZEROH & ZiROL L & 

I HB H & VB H 
013A 
013B 
013C 
013D 
013E 
013F 

; 

110 H#C & Sll 0 & FE & ZEROB & HB B & VE B & PL D#224 
110 B#4 & CCEN L & MUI3 & COUNTV 
110 H#3 & CCEN L & MUll & COUNTV & PL $ 
110 H#8 & COUNTY 
110 H#C 6. COUNTY & PL D#23 
110 B#A & CCEN H & COUNTV 

16 ROWS 32 CBARACTERS ~0 F/5 

0140 

0141 

51632E: 110 H#S & CCEN L & MUI3 & 511 3 & FE L & ZEROH & ZEROL L & 
I CN L & HE H & VB 

In & 
0142 M1632E: 
0143 
0144 
0145 
0146 
0147 
0146 
0149 T1632E: 

ACK 
014A 

110 H#C 6. 511 0 & FE & ZEROH & ZEROL L & CN L & HB H & 
PL 1)#15 
110 H#E & 511 2 & FE & ZEROB & ZIROL L & CN & HE B & VB 
110 H#3 & CCEN L & MUXl & COUNT & PL $ 
110 H#3 & CCEN L & MUll & COUNT & PL $ 
110 H#l & CCEN L & MUI0 & COUNTH & PL T1632E 
110 H#l & CCEN L & MUI2 & COUNTH & PL LASTA 
110 H#3 & CCE~ L & MUll & COUNTH & PL $ 
110 B#3 & CCEN H & 511 0 & FE & ZEROH & HB B & VB & PL M1632E 
110 H#9 & 511 0 & FE L & ZEROB & ZERCL & CN H & BB H & VE & PL GOB 

110 B#6 & CCEN L & MUX3 & 511 3 & FE L & ZEROB & ZEROL L & 
I HB B 6. n B 

014E 
1314C 
014D 
014E 
014F 
0150 
0151 
0152 
0153 
0154 

; 

110 H#C & 511 0 & FE & ZEROB & BB H & VB H & PL D#250 
110 H#4 & CCEN L & MUX3 & COUNTV 
110 H#3 & CCEN L" & MUll & COUNTV & PL $ 
110 H#S 6. COUNTV 
110 B#C & COUNTV & PL D#223 ;475 
110 H#4 & CCEN L & MUI3 6. COUNTV 
110 B#3 & CCEN L 6. MUll 6. COUNTY & PL $ 
1113 B#8 & COUNTY 
110 H#C & COUNTV & PL D#15 
1113 H#A & CCEN B & COUNTY 

16 ROW5 16 CHARACTERS 50 FIS 

13155 S1616E: 1113 H#6 6. CCEN L & MUI3 & Sll 3 & FE L & ZEROH & ZEROL L & 
I CN L & BE H & VB 

0156 
In & 

0157 M1ElSE: 
0158 
0159 
015A 
015B 
015C 
015D T161SE: 

!CK 
015E 

110 H#C & 511 0 & IE & ZEROH & ZEROL L & CN L & BB B & 
PL D#15 
110 H#E & 511 2 & FE & ZEROB & ZIROL L & CN & HB H & VB 
110 H#3 & CCIN L & MUll & COUNT & PL $ 
110 H#l & CCEN L & MUI0 & COUNTB & PL T1616E 
110 H#l & CCEN L & MUI2 & COUNTH & PL LASTA 
110 B#3 & CCEN L & MUll & COUNTH & PL $ 
110 H#3 & CCEN B & Sll 0 & FE & ZEROH & HB B & VB & PL M161SE 
110 B#9 & 511 0 & FE L & ZIROH & ZEROL & CN B & BB B & VE & PL GOE 

110 B#6 & CCIN L & MUX3 & 511 3 & FE L & 
IBEBo.VBB 

ZEROB & ZEROL L & 

B & PL D#200 015F 
0160 
0161 
13162 

110 H#C & S11 0 & FE & ZEROB & BB B & VB 
110 H#4 & CCEN L & MUX3 & COUNTV 
110 H#3 6. CCIN L & MUll & COUNTV & PL $ 
110 B#S & COUNTV 
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AMDOS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CRT CONTROLLER 

0163 110 H#C & COUNTY & PL D#121 ;323 
0164 110 H#4 & CCEN L & MU13 & COUNTY 
0165 110 H#3 & CCEN L & MUll & COUNTY & PL $ 
0166 110 H#B & COUNTY 

01137 110 H#C & COUNTY & PL D#15 
0168 110 H#A & CCEN H & COUNTY 

0lF0 ORG H#lF0 ;24*80 
01F0 p0 H#3 & CCEN H & PL 52480E 

01F3 ORG H#lF3 ;24*134 
01F3 110 H#3 & CCEN H & PL S2464E 

0lF9 ORG H#lF9 ;24*32 
01F9 110 H#3 & CCEN H & PL 52432E 

01FB ORG H#1FB ;16*32 
0lFB 110 H#3 & CCIN H & PL 51632E 

01FD ORG H#lFD ; 16*16 
01FD 110 H#3 & CCEN H & PL S1616E 

; 
END 

0000 XXXX0010XXXXXXXX XX XX XX XX 0022 0100100111101XXI 00010101 
0001 0111011010001011 lXXXXXXX 0023 01110110XX011011 XXIXXXXX 
0002 1100110010001XXX 00010111 0024 11001100XXX11XXX 01111010 
0003 11101110X1001XIX XXI xx XXI 0025 1100010011111011 xx xx xx xx 
0004 11000011X1100010 00000100 002€ 11000011X1111010 00100110 
0005 1100001111100010 00000101 0027 11001000X1111XXI XXI XX XXI 
00013 11000011X1100010 00000110 002E 11001100X1111XXX 00010111 
0007 11000011X1100010 00000111 0029 11001010X11111Xl XXXXXXXX 
000E IH10001111100010 00001000 002A 0111011010001011 XXXXXXXX 
0009 11000001X1101000 00001101 002B 11001100X0001XXX 00010111 
000A 11000001X1101001 00010110 002C 11101110X10011XX XXXXXXXX 
000B 11000011X110H'10 00001011 002I: 11000011X1100010 00101101 
000C 11000011XXX011XX 00000011 0f02E 11000011X1100010 00101110 
000D 01100100111101111 01010101101 002F 11000001X1101000 00110011 
000E 01110110XX011011 Ixxuxn 0030 1100000111101001 00010110 
000F 11001100XIXIIXXX 10010010 0031 1100001111101010 00110001 
0010 1100010011111011 XXXXXXXX 0032 11000011XIX0111X 00101100 
0011 11000011Xl111010 00010001 0033 01001001X1101Xl1 00010101 
0012 1100100011111XXX XXXXXXXX 0034 01110110X1011011 XXXXXXXX 
0013 11001100XIIIIXXX 00010111 0035 11001100XXI11XXI 01001010 
0014 11001010II1111XX· XIIIXIXX 0036 11000100Xl111011 XXXXXXXX 
0015 11001010X11011XX XXIXXXXX 01037 11000011Xll11010 00110111 
0016 00XX1010X11011XX XXXIXIIX 0038 11001000X1111XXX XXXXXXXX 
0017 0111011010001011 XIXXXXII 0039 11001100XI111Xll 00010111 
0018 11001100I0001XXX 00010111 003A 1100101011111111 XXXXXXXX 
0019 11101110110011Xl XIIIIIXX 003B 01110110X0001011 XXXXXXXX 
001A 1100001111100010 00011010 003C 1100110010001111 00001111 
001B 1100001111100010 00011011 003D 1110111011001111 XXXXXXIX 
001C 1100001111100010 00011100 003E 1100001111100010 00111110 
001D 11000011X1100010 00011101 003F 1100001111100010 00111111 
001E 11000001X1101000 00100010 0040 11000001Xl101000 01000100 
e01F 11000001Xl101001 00010110 0041 11000001X1101001 00010110 
0020 11000011X1101010 00100000 0042 1100001111101010 01000010 
0021 110000111XX011XX 00011001 0043 11000011111011Xl 00111101 
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AMDOS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CRT CONTROLLER 

0044 0100100111101111 00010101 
0045 0111011011011011 11111111 
0046 1100110011111111 11111010 
0047 1100010011111011 lIIIXXII 
0048 1100001111111010 01001000 
0049 1100100011111111 IXIIIIII 
004A 1100110011111111 00110000 
004B 1100010011111011 XIIIIIXI 
004C 1100001111111010 01001100 
004D 11001000XII11XXX XXXXXXXX 
004E 11001100I1111XXX 00001111 
004F 11001010I111111X l1Xlll11 
0050 01110110X0001011. XXXXXIXX 
0051 11001100X0001XXX 00001111 
0052 11101110X1001XXI XXXXXXXX 
005~ 11000011X1100010 01010011 
0054 11000001X1101000 01011000 
0055 11000001X1101001 00010110 
0056 11000011X1101010 01010110 
0057 11000011XXX011XX 01010010 
0058 01001001I1101XIX 00010101 
0059 01110110XX011011 XXXXXXXX 
005A 11001100XXXI11XX 11001011 
005B 1100010011111011 XIXIIIII 
005C 11000011Xll11010 01011100 
005D 11001000II111XXX XXXXXIIX 
005E 11001100IIII1XXX 00001111 
005F 11001010XII111XX XIXXXXXX 
00F0 XXX10011XI1XXIXX 00000001 
00F3 XXIX0011XXXIIIXI 00010111 
00F9 IIXX0011IIXII1XI 00101010 
00FB XXXX0011XXXXXIXX 00111011 
00FD lXXX0011XXXXXlII 01010000 
0100 01110110X0001011 XXXXXXXX 
0101 1100110010001XXX 00010111 
0102 11101110X1001XXX lII1IXXX 
010~ 11000011Xl100010 00000011 
010~ 1100001111100010 00000100 
0105 11000011X1100010 00000101 
0106 11000011Xl100010 00000110 
0107 11000011X1100010 00000111 
0108 11000001X1101000 00001100 
0109 1100000111101001 00010110 
010A 11000011X1101010 00001010 
010B 11000011XX10111X 00000010 
010C 01001001Xl101XXX 00010101 
010D 01110110XX011011 XIIIXXXX 
010E 11001100XXXI1XXI 11001000 
010F 11000100Xll11011 XXXXXIXX 
0110 11000011X1111010 00010000 
0111 11001000I1111XII XXXXXXXI 
0112 11001100II111IIX 11101111 
0113 1100010011111011 11111111 
0114 11000011X1111010 00010100 
0115 11001000II111XXX IXXIIIII 
0116 11001100Xl111111 00010111 
0117 11001010111111IX IIIIIIIX 
0118 0111011010001011 XIIIIIIX 
0119 11001100X0001XIX 00010111 
011A 11101110X1001XXX xlIIIIIX 
011B 1100001111100010 00011011 
011C 1100001111100010 00011100 
011D 1100001111100010 00011101 

Figure C2 (Cont.) 

011E 11000011X1100010 00011110 
011F 11000001Xl101000 00100011 
0120 1100000111101001 00010110 
0121 1100001111101010 00100001 
0122 11000011IXX011II.00011010 
012~ 01001001I1101XIX 00010101 
0124 01110110XX011011 XXIIXXXX 
0125 11001100XIXIIIXX 11001000 
0126 11000100X1111011 XXXIXXXX 
0127 11000011Xl111010 00100111 
0128 11001000XII11XXI XXIIXIIX 
0129 11001100X1111XXX 10100111 
012A 1100010011111011 XIIIIIIX 
012B 11000011X1111010 00101011 
012C 11001000XI111XXX XXXII XXX 
012D 11001100II111XXX 00010111 
012E 11001010X11111II XXXXIIXX 
012F 01110110X0001011 XXIIXXXX 
0130 11001100I0001XIX 00010111 
0131 11101110X1001XXX XXXIXXIX 
0132 11000011X1100010 00110010 
0133 11000011X1100010 00110011 
0134 11000001X1101000 00111000 
0135 11000001X1101001 00010110 
013€ 11000011Xl101010 00110110 
0137 11000011XIX011Xl 00110001 
0138 01001001X1101XXI 00010101 
0139 01110110XX011011 XXXXXXXX 
013A 11001100XXXI1XXX 11100000 
013B 11000100X1111011 XXXXXXXX 
013C 11000011Xl111010 00111100 
013D 11001000XI111XXX IXIXIIIX 
013E 11001100X1111IXX 00010111 
013F 11001010XI1111XX XIXXXXIX 
0140 0111011010001011 IXIXII1I 
0141 11001100I0001XXX 00001111 
0142 11101110I1001IIX XXIXXIII 
0143 1100001111100010 01000011 
0144 1100001111100010 01000100 
0145 1100000111101000 01001001 
0146 1100000111101001 00010110 
0147 1100001111101010 01000111 
014S 11000011IXX011XI 01000010 
0149 01001001X1101XXX 00010101 
014A 01110110IX011011 IIIXIIXI 
014] 11001100IIXI1XXI 11111010 
014C 11000100Xl111011 XXXII XIX 
014D 11000011X1111010 01001101 
014E 11001000XI111XIX XIIXXIXI 
014F 11001100IIII1XXX 11011111 
0150 1100010011111011 XIIIIXXX 
0151 11000011X1111010 01010001 
0152 11001000II111XXX XXXIIXXX 
0153 11001100XI111XXX 00001111 
0154 11001010III111XX IIIXXIIX 
0155 01110110X0001011 IXXXXIXI 
0156 11001100X0001XXX 00001111 
0157 11101110X1001XXX IXXIXIII 
0158 1100001111100010 01011000 
0159 1100000111101000 01011101 
015A 11000001X1101001 00010110 
015B 11000011X1101010 01011011 
015C 11000011IXI011XX 01010111 



AMLOS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CRT CONTROLLER 

015D ~10010~lX1101XXX 00010101 
015E 01110110XX011011 XXXXXXXX 
015F 11001100XXX11XXX 11001000 
0160 11000100Xl111011 XXXXXXXX 
0161 11000011X1111010 01100001 
0162 11001000X1111XXX IXIIIXIX 
0163 11001100I1111XIX 01111001 
0164 1100010011111011 IIXXIXXI 
0165 1100001111111010 01100101 
0166 11001000Il111IXX IIIXXXIX 
01E7 11001100Il111XXX 00001111 
0168 11001010Il1111XI XXXIIIII 
01F0 XXXX0011IXIXI1XX 00000000 
01F3 XIII0011XIIII11X 00011000 
01F9 XXXI0011IXIII1XX 00101111 
01FB XXII0011IIXXllXX 01000000 
01FD XXXX0011XIIXI1XX 01010101 

ENTRY POI NTS 

SYMBOLS 

GO BACK 0015 
H 0001 
L 0000 
LASTA 001E 
t-<106 0052 
M1t16E 0157 
rv1 E32 !l03D 
M1t32E 0142 
M2432 002C 
M2432E 0131 
M24E4 0019 
M2464E 0llA 
~i24b~ 0003 
M2480E 0102 
S 1616 0050 
SlE16E 0155 
S1E32 003:8 
S1632E 0140 
S2432 002A 
S2432E 012F 
S24E4 0017 
S2464E 0118 
S2460 0001 
S2480E 0100 
TH'16 0058 
T1n6E 015D 
T1632 0044 
T1E32E 0149 
T2432 0033 
T2432E 0138 
T2464 0022 
T2464E 0123 
T2480 000D 
T248eE 010C 

TOTAL PHASE 2 ERRORS '" 
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APPENDIX D 

The Microprogrammed CRT Controller was bUilt on a System 29 
universal card and exercised by the System 29 support proces­
sor. An Am9080A program was written to fill the character mem­
ory. Figure 01 IS the listing ofthis program. In order to observe the 

correct output of the controller, an oscilloscope or CRT monitor 
can be connected through an adaptation circuit shown in Figure 
02. 

01FF 
OOFF 
flOOO 

0200 
0200 
0201 
0203 

0100 
OJ.OO 31FF01 
Ot03 213087 
0:l06 220302 
0109 220102 
OlOC AF 
010D D3FF 
010F 320002 
0112 CD1BOl 
0:l15 CD2C01 
Oti8 C31501 

011B 0600 
011D 210080 
0120 110008 
0123 70 
0124 lB 
O'L25 23 
0126 7A 
0127 B3 
Ot28 C22301 
012B C9 

012C OE01 
012E CD0500 
Ot31 FE1A 
01.33 CAOOOO 
0136 2A0102 
0139 FEOD 
013B CA4401 
013E 77 
013F 23 
0140 220102 
Ot43 C9 

0144 E5 
0145 [15 

0146 C5 
O:l47 F5 
0148 1EOA 
O:l4A OE02 
014C CD0500 
014F F1 
0150 Cl 
0151 Dl 
015.2 El 
0153 EB 

; 
;PROGRAMM TO WRITE INTO CHARACTER MEMORY 
;BY MOSHE M. SHAVIT 
;REV 0 3/6178 

STACK 
FAR 
CHAR AD 

FA 
CURAD 
FIL 

MAIN 

, 
CLEAR 

CLEARl 

; 
CHAR IN 

CRlF 

EOU 
EflU 
EOU 

ORG 
DS 
DS 
DS 

ORG 
l.Xt 
LXI 
SHLD 
SHLD 
XRA 
OUT 
STA 
CALL 
CALL 
JMP 

MVI 
LXI 
LXr 
MOV 
DCX 
INX 
MOV 
ORA 
JNZ 
RET 

MVI 
CALL 
CPI 
JZ 
lHlD 
CPI 
JZ 
MOV 
INX 
SHUI 
RET 

PUSH 
F'USH 
PUSH 
PUSH 
MVI 
MVI 
CALL 
POP 
POP 
POF· 
POP 
XCHG 

1FFH 
OFFH 
8000H 

STACK+1 
1 

2 

;STACK POINTER 
;FIRST ADDRESS REGtSTER OIP PORl 
;CHARACTfR MEMORY STARTS HERE 

;WORKING SPACE ABOVE STACK 
;FIRST AVJrRESS 
;CURRENT ADDRRESS 
:AIFIRST ~HARACTER IN LINE) 

100H ;PROGRAM STARTS HERE 
SP,STA~I\ 
H,730H+CHARAD ;LAST LINE, fIRST CHARACTER 
FIL ; IN 'fIRST CHARACTff< J N LIN,-' !ltlt Fn· 
CURAD lAND IN CURRENT ADDR!:.BS BUFFER 
A ;CLEAR A 
FAR ;START ADDRESS=O 
FA ;SAVE IN BUFFER 
CLEAR ;CLEAR ALL CHAR. MEMORY 
CHARIN ;READ CHARACTER AND PUT IN CHAR. M[MORY 
MAIN ;DO IT AGAIN 

B,O ;DATA=O 
H,CHARAD ;FIRST CHARACTER A[lDRES~, 

D,2048D ;COUNTER 
M,B ;CLEAR THAT ADDRES~; 
[I ICOUNT 
H ;NEXT ADDRESS 
A,D ;CHECK 
E rr DONE: 
CLEARl ;NO. CONTINUE 

;YES. BACK TO CALLE], 

C,l ;CP/M READ CODE 
5 ;CP/M RLAD ROUTINE 
1AH ;CTl-Z? 
0 ;RETURN TO CPM IF YES 
CURAD ;FETCH CURRENT ADDRESS 
ODH ;CR'") 
CRlF ;YES. 
M,A ;WRITE CHARACTER 
H ; INCREMENT 
CURATI ;STORE IN BUFFER 

;BACK TO CAllER 

H 
D 
B 
PSW 
E,OAH 
C,2 
:') 

PSW 
B 
D 
H ;ROUTINE TO ECHO IF 

;SAVE CURRENT ATltlRESS IN I'E 

Figure D1 



1'1,800 
FIL 
1'1 

;80 CHARACTERS/LINE 
;FETCH FIRST CH. IN UNE ADDRESS 
;HL= AINEXT LINE'S f]RST CH. ADD.) 

0154 015000 
0157 2A0302 
015A 09 
0151'1 EI'I 
015C 0600 
015E 7C 
015F SA 
0160 C26801 
0163 7[1 

0164 1'11'1 
0165 CA6DOl 
0168 70 
0169 23 
016A C35EOl 
016D 7C 
016E E607 
0170 FE07 
0172 C27EOl 
0175 7D 
0176 FE80 
0178 C27EOl 
0171'1 210080 
017E 220302 
0181 220102 
0184 3AO002 
0187 C605 
0189 FE78 
0181'1 CC9401 
018E 320002 
0191 D3FF 
0193 C9 

LXI 
LHLD 
DAD 
XCHG 
MVI 
MOV 
CMP 
,INZ 
MOV 
CMP 
JZ 
MOV 
INX 
JMP 
MOV 
ANI 
CPI 
JNZ 
MOV 
CPI 
JNZ 
LXI 
SHLD 
SHLD 
LIlA 
AD! 
CPI 
CZ 
STA 
OUT 
RET 

;HL=CURRENT AOOR.,OE-AINEXT LIN~ ~[KHT CH. ADOR) 
1'1,0 ;DATA=O 

CRLF2 A,H ;MORE SIGNIFICANT CURRENT AODRESS 
o ;=NEXT LINE FIRST AOORESS' 
CRLF3 ;NO 
A,L ;LESS SIGNIFICANT CURRENT ADORESS 
E ; IS CURRENT LINE FULL? 
CRLF4 ;YES 

CRLF3 M,B ;STORE :I AT THAT ADDRESS 
H ;INCREMENT AOORESS 
CRLF2 ;GO CHECK AGAIN 

CRLF4 A,H ;MORE SIGNIFICANT PARoT OF AODRESS 
7 ;ONLY 3 LESS SIGNIFICANT BITS 
7 ;LAST LINE PASSED? 
CRLF5 ;NOT YET 
A,L ;LESS SIGNIFICANT BYTE OF ADDRESS 
80H ;ARE WE AT 780H=1920D? 
CRLF5 ;NOT YET, SKIP 
H,CHARAD ;YES, START WRITING AT BEGINNING OF CH. MEM. 

CRLF5 FIL ;STORE IN FIRST CH. IN LINE BUFFER 
CURAD ;AND IN CURRENT AO[tRESS BUFFER 
FA ;FETCH FlRST VISIIBU': CHARACTER AODRESS 
5 ; SCROLL. 
120D ;TOO MUCH? 
CRLFO ;YES 
FA ;STORE IN FIRST A[t[tRESS BUFFER 

0194 AF 
0195 C9 

; 
CRLFO XRA 

RET 

FAR ;LOAD REGISTER 
;RETURN TO CALLER 

A ;FIRST ADORESS=O 

Figure 01 (Cont.) 

Oscilloscope Connections. 

13 
VBI>-~------------------~ 

HB>--+--._--------------__=_� 

VIDEO 

>--+-1--.:2Of lA, 
4 1A2 

lA3 
+5V USO 

lY2 
I. 

lY3 

12 

12. 

VIDEO & 
BLANKING 

T 
x 
(HORIZONTAL) 
SYNCH 

Am25LS240 2200 y 

L-.JW\'-":'"'"1ZA1 2y11-'--+ _____ ~'W'.,.__._-:~=~~ICAL) 
(INVERSE) 

Figure 02. 

HB 

4700pF 

4 " 

Ball Monitor Interface. 

+5V 

5.6k 
U60 

Am26S02 

Q 7 
VB 

HORIZONTAL 
DRIVE 

+5V 

16 

12 -I, 

+5V 

33' 

0 • +5V 

VERTICAL 
DRIVE 

MPR-502 

89 





Chapter III 
The Data Path 





INTRODUCTION 

The heart of most digital arithmetic processors is the arithmetic 
logic unit (ALU). The ALU can be thought of as a digital subsys­
tem that performs various arithmetic and logic operations on two 
digital input variables. The Am2901 A and Am2903 are Low 
Power Schottky TTL arithmetic logic unit/function generators that 
perform arithmetic/logic operations on two four-bit input vari­
ables. In most ALUs, speed is generally a key ingredient. There­
fore, as much parallelism in the operation of the arithmetic logic 
unit as possible is desired. 

The Am2901A and Am2903 ALUs are designed to operate with 
an Am2902A carry lookahead generator to perform multi-level full 
carry lookahead over any number of bits. Therefore, the devices 
have both the carry generate and carry propagate outputs re­
quired by the Am2902A carry lookahead generator. The devices 
also have the carry output (Cn+4) and a two's complement over­
flow detection signal (OVR) available at the output. The net result 
is that a very high-speed 16-bit arithmetic logic unit/function 
generator can be designed and assembled using four of these bit 
slice devices and one Am2902A (the Am2902A is a high-speed 
version of the '182 carry lookahead generator). In addition, the 
Am2901A and Am2903 provide a minimum of 16 working regis­
ters for providing source operands to the ALU. 

UNDERSTANDING THE BASIC FULL ADDER 

The results of an arithmetic operation in any position in a word 
depends not only on the two-input operand bits at that position, 
but also on all the lesser significant operand bits of the two input 
variables. The final result for any bit, therefore, is not available 
until the carries of all the previous bits have rippled through the 
logic array starting from the least significant bit and propagating 
through to the most significant bit. A full adder is a device that 
accepts two individual operand bits at the same binary weight, 
and also accepts a carry Input bit from the next lesser significant 
weight full adder. The full adder then produces the sum bit for this 
bit position and also produces a carry bit to be used in the next 
more significant weight full adder carry input. The truth table for a 
full adder is shown in Figure 1. From this truth table, the equations 
for the full adder: 

S=AEElBEElC 
Co = AB + BC + AC, 

where A and B are the input operands to the full adder and C 
is the carry input into the adder. 

Inputs Outputs 

A B C S Co 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

Figure 1. Full Adder Truth Table. 

The sum output, S, represents the sum of the A and B operand 
inputs and the carry input. The carry output, Co, represents the 
carry out of this cell and can be used in the next more significant 
cell of the adder. Full adder cells can be cascaded as depicted in 
Figure 2 to form a four-bit ripple carry parallel adder. 

Note that once we have cascaded devices as shown in Figure 2, 
we may wish to discuss the equations for the i-th bit of the adder. 
In so doing, we might describe the equations of the full adder as 
follows: 

Sj = Aj EEl Bj EEl Cj 
C j+1 = AjB j + BjCj + AjC j 

where the Aj and Bj are the input operands at the i-th bit, and 
the Cj is the carry input to the i-th bit. (Note that the equa­
tions for this adder are iterative in nature and each depends 
on the result of the previous lesser significant bits of the 
adde r array.) 

The connection scheme shown in Figure 2 requires a ripple 
propagation time through each full adder cell. If a 16-bit adder is to 
be assembled, the carry will have to propagate through all 16 full 
adder cells. What is desired is some technique for antiCipating the 
carry such that we will not h.ave to wait for a ripple carry to 
propagate through the entire network. By using some additional 
logic, such an adder array can be constructed. This type of adder 
is usually called a carry lookahead adder. 

MPR·521 

Figure 2. Cascaded Full Adder Cells Connected as a Four-Bit Ripple-Carry Full Adder. 
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A FOUR-BIT CARRY LOOKAHEAD ADDER 

Looking back to the equations developed for i-th bit of an adder, 
let us now rewrite the carry equation in a slightly different form. 
When we factor the Cj in this equation, the new equation be­
comes: 

Cj+1 = AjBj + Cj(Aj + Bj) 

From the above equation, let us now define two additional equa­
tions. These are: 

Gj = AjBj 
Pj = Aj + Bj 

With these two new auxiliary equations, we can now rewrite the 
carry equation for the i-th bit as follows: 

Cj+1 = Gj + PjCj 

Note that we have now developed two terms: the Pj term is 
known as carry propagate and the Gj term is known as carry 
generate. An anticipated carry can be generated at any stage of 
the adder by implementing the above equations and using the 
auxiliary functions Pj and Gj as required. 

It is interesting to note that the sum equation can also be 
written in terms of these two auxiliary equations, Pj and Gj. For 
this case, the equation is: 

8j = (Aj + Bj)(AjBj) EtJ Cj 

The auxiliary function G; is called carry generate, because if it is 
true, then a carry is immediately produced for the next adder 
stage. The function Pj is called carry propagate because it implies 
there will be a carry into the next stage of the adder if there is a 
carry into this stage olthe adder. That is, Gj, causes a carry signal 
at the i-th stage of the adder to be generated and presented to the 
next stage of the adder while Pj causes an existing carry at the 
inputto the i-th stage of the adder to propagate to the next stage of 
the adder. 

Let us now write all of the sum and carry equations required for a 
full four-bit lookahead carry adder. 

8 0 = AoEtJ BoEtJ Co 
8 1 = A1 EtJ B1 EtJ (Go + PoCo) 
82 = A2EtJ B2EtJ (G1 + P1GO + P1POCO) 
83 = A3 EtJ B3 EtJ (G2 + P2G1 + P2P1GO + P2P1POCO) 
Cj+4 = G3 + P3G2 + P3P2G1 + P3P2P1GO + P3P2P1POCO 

An important point to note is that ALL of the sum equations and 
the final carry output equation, Cj+4, can be written in terms olthe 
Aj, Bj, and Co inputs to the four-bit adder. The configuration as 
described above is shown in Figure 3. This figure is divided into 
two parts - the upper blocks show the auxiliary function 
generator circuitry required to implement the Pj and Gj equations 
while the lower block implements the logic required to generate 
the sum output at each bit position. 

A serious drawback to the lookahead carry adder is that as the 
word length is increased, the carry functions become more and 
more complex, eventually becoming impractical due to the large 
number of interconnections and heavy loading of the Gj and Pj 
functions. The auxiliary function concept can be extended, how­
ever, by dividing the word length into fairly small increments and 
defining blocks of auxiliary functions G and P. 

It is possible for a given block to define a function G as the carry 
out generated with the block; and P can be defined as the carry 
propagate over the block. If the block size is set at four bits, then 
the functions for G and P for this block can be defined as follows: 

G = G3 + P3G2 + P3P2G1 + P3P2P1GO 
P = P3P2P1PO 

D-S3 

.,--...... ", 
D-s, 

BOI-I):>-_-+_~4-_-r""l 

COI----C~------

MPR-522 

Figure 3. Full Four-Bit Carry-Lookahead Adder. 

It is important to note that neither of these terms involves a 
carry-in (Co) to the block, so no matter how many blocks are tied 
in an adder, all the blocks have stable G and P functions available 
in a minimum number of gate delays. 

The G and P functions can be gated to produce a carry-in to each 
four-bit block, as a function of the lesser significant blocks. The 
carry-in to a block is therefore: 

Cn = Gn- 1 + Pn- 1Gn- 2 + Pn-1Pn-2Gn-3 + ... 
+ Pn-1Pn-2Pn-3",P2P1POCO 

Finally, the carry-in to each of the bits in a four-bit block must 
include a term for the actual least Significant carry-in; note, 
therefore, that the equations for the four-bit fuJI adder presented 
above include a term for carry-in at each bit position. 

Figure 4 shows the technique for cascading typical bit slice ALUs 
such as the Am2901A or Am2903 and one Am2902A in a full 
16-bit high-speed carry lookahead connection. Figure 5 shows a 
connection scheme using only four bit slices in a 16-bit arithmetic 
logic unit connection where the carries are rippled between the 
devices. Each bit slice does use internal carry lookahead over the 
four-bit block. 



MPR-523 

Figure 4. Full Lookahead Carry 16-8it Adder. 

Am2901A 
OR 

Am2903 

Am2901A 
OR 
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OR 
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Figure 5. Connection of 16-8it ALU Using Ripple Carry. 

In summary, the ripple carry method can be used in conjunction 
with the lookahead technique in several ways. 

1. lookahead carry over sections of the adder and ripple carry 
between these sections of the adder can be used. This 
method is often the most efficient in terms of hardware for a 
given speed requirement. It does not require the use of a 
lookahead carry generator such as the Am2902A. 

2. lookahead carry across 16-bit blocks with a ripple carry be­
tween 16-bit blocks can be used. This technique is usually 
called two-level carry lookahead addition. This technique re­
sults in very high-speed arithmetic function generation and 
makes a reasonable tradeoff between the speed and 
hardware for word lengths greater than 16 bits. 

3. Fuiliookahead carry across all levels and all block sizes can 
be used. This is the highest speed arithmetic logic unit con­
nection scheme. For word sizes up to 64 bits, it is referred to as 
three-level lookahead carry addition. Such a 64-bit AlU re­
quires the use of five Am2902A carry lookahead generator 
units in addition to the 16 bit slice AlU devices as shown in 
Figure 6. 

OVERFLOW 

When two's complement numbers are added or subtracted, the 
result must lie within the range of the numbers that can be 
handled by the operand word length. Numbers are normally 
represented either as fractions with a binary point between the 
sign bit and the rest of the word, or as integers where the binary 
point is after the least significant bit. The actual choice for the 
location of the binary point is really up to the design engineer, as 

the hardware configuration required for either technique is identi­
cal. It is also possible to use number notations that include both 
integer and fractional representations in the same numbering 
scheme. Overflow is defined as the situation in which the result of 
an arithmetic operation lies outside of the number range that can 
be represented by the number of bits in the word. For example, if 
two eight-bit numbers are added and the result does not lie within 
the number range that can be represented by an eight-bit word, 
we say that an overflow has occurred. This can happen at either 
the positive end of the number range or at the negative end of the 
number range. The logic function that indicates that the result of 
an operation is outside of the representable number range is: 

OVR = Cs $ CS+1 

where Cs is the carry-in to the sign bit and Cs+1 is the 
carry-out of the sign bit. 

Thus, for a four-bit AlU with the sign bit in the most significant bit 
position, the two's complement overflow can be defined as the 
Cn+4 term exclusive OR'ed with the Cn+3 term. 

Putting the AlU in the Data Path of a Simple Computer 

Once the Design Engineer understands the basic configuration 
and operation of a simple high speed carry lookahead adder, he 
can begin to understand the configuration required to implement 
the data handling section of a typical computing machine. The 
simplest architecture for the data handling path of a minicomputer 
is shown in Figure 7. Here, an accumulator is used in conjunction 
with an AlU to perform a basic arithmetic/storage capability for 
data handling. The computer control unit of Figure 7 can be a 
simple or sophisticated state machine as described in Chapter 2. 
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16 4-BIT SLICES 

Toe. ToCS TuC12 

Go Po 

'---------IHcn Am2902A 

ToCae Toc.w ToC"" 

C58 QCARRY'()UT 

Q P 'B-0VERFLOW 

·3 .. 

MPR·525 

Figure 6. 64-Bit ALU with Full Carry LDokahead Using 5 Am2902s and 16 4-Bit Slices. 

DATA-IN DATA.C)UT 

COMPUTER 
CONTROL 

UNIT 

OPCODE 

Figure 7. Basic Computer Data Path. 

MPR-526 

While the introductory material ofthis chapter concentrated on full 
adders, it should be understood that more ALU functions than 
addition are required if we are in to implement the data path of a 
typical minicomputer. Typically, some or all of the functions 
shown in Figure 8 are needed if we are to implement a powerful 
data handling capability. 

The operation of the ALU/accumulator configuration shown in 
Figure 7 can be described as follows. The accumulator can be 
loaded by bringing data In from the data-in port through the A 
input of the ALU, passed through the ALU and loaded into the 
accumulator. A second word of data can be presented at the 
data-in port to the A input of the ALU and the ALU can be used to 
perform an operation such as A + B, A OR B, A AND B, A - Band 
so forth. The results of this ALU operation can then be placed into 
the accumulator. The accumulator output is available at the 
data-out port for use elsewhere. Additional ALU functions such as 

• A + B + CARRY 
• A - B-1 + CARRY 
.AVB 
.AI\B 
.A"tB 

• B + CARRY 
• ZERO 
• PASS A 

Figure 8. Basic ALU Instructions. 

those shown in Figure 8 are easily implemented by adding some 
additional circuitry to the four-bit carry look ahead adder shown in 
Figure 3. If this Circuitry is added, we will arrive at a logic diagram 
as shown in Figure 9. This diagram certainly is familiar to most 
CPU designers and is the well known Am74S181 four-bit arith­
metic logic unit/function generator. 

Once the operation of the simple computer data path as shown in 
Figure 7 is understood, the Design Engineer will soon recognize 
the need for additional registers if our machine is to be general 
purpose and execute instructions. Very rapidly the need arises for 
a register to hold a program counter (PC) and a memory address 
register (MAR). The purpose of the program counter is to point to 
the address of the next instruction in main memory. Typically it is 
loaded into the memory address register which actually provides 
the address on to the address bus of the machine. Then, the 
program counter is incremented through the ALU and stored until 



., 
2 3 
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Figure 9. Logic Diagram for Am25LS181. 

ccu 

INST REG 

,. 
MPR-528 

Figure 10.Three Register Computer Data Path. 

it is needed again. The block diagram of Figure 10 shows these 
additional registers connected in parallel at the output of the ALU. 
This ALU output is called the F bus. Each of these registers (the 
accumulator, the PC, and the MAR) has an enable input from the 
CCU so that they can selectively be loaded with data from the 
ALU. In addition, each of these registers has an output enable 
such that they can be selectively enabled onto the 0 bus. The 0 
bus represents the data output path from the basic computer data 

path and also is used as one of the inputs to the actual ALU/func­
tion generator. The other input in this example is called the R bus 
and comes directly from the main memory data output as well as 
from the 1/0 data input. As shown in Figure 10, the memory 
address register (MAR) has a second output that is used to drive 
the address bus. In this example, this register always contains the 
address to be applied to the external memory whether it be the 
address of data or the Rddress of an instruction. 
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The best way to understand the operation ofthis single ALU/three 
register machine is to take an example. Let us assume we have 
just completed the execution of one machine instruction and are 
ready to fetch the next instruction. The first operation would be to 
transfer the current value of the program counter onto the D bus 
through the ALU onto the F bus and into the memory address 
register. This might be accomplished during one microcycle. The 
second operation might be to again put the PC on the D bus, pass 
itthrough the ALU B port and incrementthe value atthe B port and 
reload it into the PC register. Thus, the PC has again been 
updated to point to the address of the next intruction. During this 
time, the address from the MAR is on the address bus and we are 
fetching data from the external memory and placing it on the R 
bus. The third microcycle would be to bring the data out of the 
extemal memory and pass it to the instruction register in the CCU. 
The next microcycle might be to decode this instruction and 
determine that the next word after the current instruction in mem­
ory (an immediate operation) is to be added to the value currently 
in the accumulator. Thus, we would again need to place the PC 
into the MAR on one cycle and then increment the PC on the next 
cycle. FollOWing this, the data from the external memory could be 
brought to the R bus through the A port of the ALU and added to 
the accumulator value which is placed on the D bus and brought 
through the B port of the ALU. The result would be placed in the 
accumulator. This operation would complete the example and we 
would be ready to fetch the next instruction. As can be seen, a 
number of microcycles are required to fetch the instruction, de­
code it, fetch the data and execute the instruction. One of the best 
ways to understand the flow needed to implement a typical in­
struction set is shown in Figure 11. Here, we see the basic 
instruction fetch and decode operation followed by the path used 
to execute each of the various instructions. Then, we see a retum 
to the fetch operation to fetch the next instruction. 

Certainly from this discussion we can see how three registers 
have enhanced the performance of the simple ALUIaccumulator 
data path shown in Figure 7. Typically, even more registers than 
shown in Figure 10 are needed if we are to increase the power of 

BEGIN 

TRANSFER PC 
TOMAR 

READ INSTRUCTION 
INTOIR 

DECODE INSTRUCTION 
OP CODE 

our machine. If we examine the block diagram of Figure 12, we 
see a similar architecture to that as shown in Figure 10. Here, the 
number of working registers has been expanded to sixteen at the 
output of the ALU. These can be used to provide a program 
counter function and a number of accumulator functions simul­
taneously. In addition, note that the registers have two output 
ports such that the simultaneous selection of any two of the 
sixteen registers is possible. Both of these registers can be pre­
sented to the ALU so that operations on two registers simultane­
ously can be executed. In addition, a data input multiplexer is 
available at the A port of the ALU such that external data can be 
brought in to the configuration. Likewise, there is an output multi­
plexer such that either the A output of the registers or the ALU 
output can be selected. This output multiplexer is used to provide 
a data out port and the output can also be loaded into memory 
address register to provide an address as required. Thus, the 
architecture of Figure 12 is quite similar to that of Figure 10 except 
that the number of registers has been increased to provide addi­
tional flexibility. 

If we assume that one of the sixteen registers inside of this 
register file is to be used as the program counter, we see that the 
program counter can be brought out of the A output port and 
loaded into the memory address register and at the same time it 
can also be brought out the B output port and incremented in ALU 
and reloaded into the register file. In this architecture it appears 
the A output of the register stack can also be brought to the Input 
multiplexer and the A port of the ALU and incremented via that 
path and reloaded into the registers. While this is possible in the 
architecture of Figure 12, we are leading up to the implementation 
of an Am2901A and this path is not needed in the Am2901A. 
Thus, we can implement functions and operations in the diagram 
of Figure 12 just as we could in the diagram of Figure 10. How­
ever, what was previously performed in two microcycles can now 
be performed in one microcycle. That is, the MAR can be loaded 
with the current value of the PC and at the same time the PC can 
be incremented and the new value restored in the PC register. 

DATA ADDRESS' 
OUT OUT 

MPR·529 MPR·530 
~------------------------------------~ 

Figure 11. Steps for ADD Instruction. Figure 12. Multi-Register ALU. 



Another feature of the block diagram of Figure 12 is the depiction 
of the carry in bit to the ALU and the four output flags associated 
with the ALU. Here, carry in is the normal carry in as needed in 
any adder such that the device is cascadable. In addition, certain 
kinds of arithmetic functions such two's complement arithmetic 
also need the ability to provide a carry in for certain operations. 
The most common is two's complement subtract which is usually 
performed by complementing the operand to be subtracted, ad­
ding and adding one at the carry in. Also, the ALU shows the four 
output flags usually associated with a typical minicomputer. 
These are the carry output, the sign bit, the overflow detect, and 
the zero detect. These four status flags are used to determine 
various things about the operation being performed. The carry out 
flag and overflow flag are as described in the previous sections of 
this chapter. They provide the carry and overflow information 
about the addition. 

The sign bit is simply the most significant bit of the ALU and 
represents the sign of a two's complement number. That is, when 
the sign bit is LOW, we assume the two's complement number is 
positive and when the sign bit is HIGH, we assume the two's 
complement number is negative. Thus, the sign bit is active HIGH 
and carries negative weight as we assume in any standard two's 
complement number representation. If the reader is unfamiliar 
with two's complement number notations, a discussion of this 
topic can be found in an application note entitled "The Am25S05, 
Am2505 and Am25L05 Schottky, Standard and Low Power TTL 
Two's Complement Digital Multipliers" as found in Advanced 
Micro Devices' Schottky and Low Power Schottky Data Book 
dated 10/77. This application note begins on page 5-49 and fully 
details two's complement number notation and gives examples. 

The fourth status flag is called the zero flag and again is just what 
the name implies. This flag represents the fact that all of the ALU 
outputs are at logic zero. In this design, a logic zero means that all 
of the ALU output bits are LOW. 

If the architecture of Figure 12 is extended a little more, we will 
arrive at the Am2901 A as depicted in Figure 13. Here, we have 
redrawn the structure so that the registers are placed above the 
ALU; however, the function is identical. Two new functions have 
been added to this block diagram that have not previously been 
discussed. These are the RAM shift matrix located directly above 
the sixteen registers now described as a 16 x 4 dual port RAM. 
The purpose of the RAM shift network is to allow the ability of 
shifting the data word to be written into the register either up one 
bit position or down one bit position. The second function added 
to the block diagram is that of the Q register and shift network. 
Here, the Q register is used as an auxiliary register such that 
double length operations can be performed and it is also used in 
the multiply and divide algorithms. In addition, the shift network 
allows the Q register contents to be shifted up one bit position or 
shifted down one bit position. In addition, it should be pointed out 
that the memory address register is not part of the Am2901 A. This 
is because there were not enough pins on the package to imple­
ment the function and the additional power required by the output 
buffers would have reduced the performance of the ALU and 
register stack. Instead, this function is being Qesigned into other 
2900 family products. 

Am2901A ARCHITECTURE 

A detailed block diagram of the Am2901 A bipolar micropro­
grammable microprocessor structure is shown in Figure 14. The 
circuit is a four-bit slice cascadable to any number of bits. There­
fore, all data paths within the circuit are four bits wide. The two key 
elements in the Figure 14 block diagram are the 16-word by 4-bit 
2-port RAM and the high-speed ALU. 

A IREADI 
ADDRESS 

., 
IREAD/WRITEI 

ADDRESS 

DIRECT 
DATA IN 

MPR·004 

Figure 13. Am2901A Block Diagram. 

Data in any of the 16 words of the Random Access Memory 
(RAM) can be read from the A-port of the RAM as controlled by 
the 4-bit A address field input. Likewise, data in any of the 16 
words of the RAM as defined by the B address field input can be 
simultaneously read from the B-port of the RAM. The same code 
can be applied to the A select field and B select field in which case 
the identical file data will appear at both the RAM A-port and 
B-port outputs simultaneously. 

When enabled by the RAM write enable (RAM EN), new data is 
always written into the file (word) defined by the B address field of 
the RAM. The RAM data input field is driven by a 3-input multi­
plexer. This configuration is used to shift the ALU output data (F) if 
desired. This three-input multiplexer scheme allows the data to 
be shifted up one bit poSition, shifted down one bit position, or not 
shifted in either direction. 

The RAM A-port data outputs and RAM B-port data outputs drive 
separate 4-bit latches. These latches hold the RAM data while the 
clock input is LOW. This eliminates any possible race conditions 
that could occur while new data is being written into the RAM. 

The high-speed Arithmetic Logic Unit (ALU) can perform three 
binary arithmetic and five logic operations on the two 4-bit input 
words Rand S. The R input field is driven from a 2-input multi­
plexer, while the S input field is driven from a 3-input multiplexer. 
Both multiplexers also have an inhibit capability; that is, no data is 
passed. This is equivalent to a "zero" source operand. 

Referring to Figure 14, the ALU R-input multiplexer has the RAM 
A-port and the direct data inputs (D) connected as inputs. 
Likewise, the ALU S-input multiplexer has the RAM A-port, the 
RAM B-port and the Q register connected as inputs. 
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This multiplexer scheme gives the capability of selecting various 
pairs of the A, B, D, 0 and "0" inputs as source operands to the 
ALU. These five inputs, when taken two at a time, result in ten 
possible combinations of source operand pairs. These combina­
tions include AB, AD, AO, AO, BD, BO, BO, DO, DO and 00. It is 
apparent that AD, AO and AO are somewhat redundant with BD, 
BO and BO in that if the A address and B address are the same, 
the identical function results. Thus, there are only seven com­
pletely non-redundant source operand pairs for the ALU. The 
Am2901 A microprocessor implements eight of these pairs. The 
microinstruction inputs used to select the ALU source operands 
are the 10, I, and 12 inputs. 

The two source operands not fully described as yet are the D input 
and 0 input. The D input is the four-bit wide direct data field input. 
This port is used to insert all data into the working registers inside 
the device. Likewise, this input can be used in the ALU to modify 
any of the internal data files. The 0 register is a separate 4-bit file 
intended primarily for multiplication and division routines but it 
can also be used as an accumulator or holding register for some 
applications. 

The ALU itself is a high-speed arithmetic/logic operator capable 
of performing three binary arithmetic and five logic functions. The 
13, 14 and Is microinstruction inputs are used to select the ALU 
function. The definition of these functions is shown in Figure 15. 
The normal technique for cascading the ALU of several devices is 
in a look-ahead carry mode. Carry generate, G, and carry propa­
gate, P, are outputs of the device for use with a carry-Iook­
ahead-generator such as the Am2902A ('182). A carry-out, Cn+4' 

is also generated and is available as an output for use as the carry 
flag in a status register. Both carry-in (Cn) and carry-out (Cn+4) 

are active HIGH. 

SOURCE 
OPERANDS DESTINATION 

A, S S, 0 
A. D D,O SHIFT LOAD V-OUT 
A,Q Q,O UP RAM F 
A,O D,Q UP RAM &Q F 

DOWN RAM F 
DOWN RAM&Q F 
NONE NONE F 

ALU FUNCTIONS NONE Q F 

R+S R OR S NONE RAM F 

R-S RAND S NONE RAM A 

&-R R EXOR S 
R EXNOR S 
RAND S 

Figure 15. Am2901A Microinstruction Control. 

The ALU has three other status-oriented outputs. These are F3, F 
= 0, and overflow (OVR). The F3 output is the most significant 
(sign) bit of the ALU and can be used to determine positive or 
negative results without enabling the three-state data outputs. F3 
is non-inverted with respect to the sign bit output Y 3' The F = 0 
output is used for zero detect. It is an open-collector output and 
can be wire OR'ed between microprocessor slices. F = 0 is HIGH 
when all F outputs are LOW. The overflow output (OVR) is used to 
flag arithmetic operations that exceed the available two's com­
plement number range. The overflow output (OVR) is HIGH when 
overflow exists; that is, when Cn+3 and Cn+4 are not the same 
polarity. 

The ALU data output is routed to several destinations. It can be a 
data output of the device and it can also be stored in the RAM or 
the 0 register. Eight possible combinations of ALU destination 
functions are available as defined by the 16, 17 and la micro­
instruction inputs. These com~inations are shown in Figure 15. 

The four-bit data output field (Y) features three-state outputs and 
can be directly bus organized. An output control (OE) is used to 
enable the three-state outputs. When OE is HIGH, the Youtputs 
are in the high-impedance state. 

A two-input multiplexer is also used at the data output such that 
either the A-port ofthe RAM or the ALU outputs (F) are selected at 
the device Y outputs. This selection is controlled by the 16, 17 and 
la microinstruction inputs. 

As was discussed previously, the RAM inputs are driven from a 
three-input multiplexer. This allows the ALU outputs to be entered 
non-shifted, shifted up one position (X2) or shifted down one 
position (+2). The shifter has two ports; one is labeled RAMo and 
the other is labeled RAM3. Both of these ports consist of a 
buffer-driver with a three-state output and an input to the multi­
plexer. Thus, in the shift up mode, the RAM3 buffer is enabled and 
the RAMo multiplexer input is enabled. Likewise, in the shift down 
mode, the RAMo buffer and RAM3 input are enabled. In the 
no-shift mode, both buffers are in the high-impedance state and 
the multiplexer inputs are not selected. This shifter is controlled 
from the 16, 17 and la microinstruction inputs. 

Similarly, the 0 register is driven from a 3-input multiplexer. In the 
no-shift mode, the multiplexer enters the ALU data into the 0 
register. In either the shift-up or shift-down mode, the multiplexer 
selects the 0 register data appropriately shifted up or down. The 
o shifter also has two ports; one is labeled 0 0 and the other is 0 3, 
The operation of these two ports is similar to the RAM shifter and 
is also controlled from 16, 17 and la. 

The clock inputto the Am2901 A controls the RAM, the 0 register, 
and the A and B data latches. When enabled, data is clocked into 
the 0 register on the LOW-to-HIGH transition of the clock. When 
the clock input is HIGH, the A and B latches are open and will pass 
whatever data is present at the RAM outputs. When the clock 
input is LOW, the latches are closed and will retain the last data 
entered. If the RAM-EN is enabled, new data will be written into 
the RAM file (word) defined by the B address field when the clock 
input is LOW. 

Am2903 GENERAL DESCRIPTION 

The Am2903 is a four-bit expandable bipolar microprocessor 
slice that performs all functions performed by the industry stan­
dard Am2901 A. In addition, it provides a number of significant 
enhancements that are especially useful in arithmetic oriented 
processors. The Am2903 contains sixteen internal working re­
gisters arranged in a two address architecture and it also provides 
all of the necessary signals to expand the register file externally 
using the Am29705 register stack. Any number of registers can 
be cascaded to the Am2903 using this technique. In addition to its 
complete arithmetic and logic instruction set, the Am2903 pro­
vides a special set of instructions which facilitate the implementa­
tion of multiplication, division, normalization and other previously 
time consuming operations such as parity generation and sign 
extension. A block diagram of the Am2903 is shown in Figure 16. 

ARCHITECTURE OF THE Am2903 

The Am2903 is a high-performance, cascadable, four-bit bipolar 
microprocessor slice designed for use in CPU's, peripheral con­
trollers, microprogrammable machines, and numerous other ap­
plications. The microinstruction flexibility of the Am2903 allows 
the efficient emulation of almost any digital computing machine. 
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Figure 16. Basic Am2903 Block Diagram. 

The nine-bit microinstruction selects the ALU sources, function, 
and destination. The Am2903 is cascadable with fuiliookahead or 
ripple carry, has three-state outputs, and provides various ALU 
status flag outputs. Advanced Low-Power Schottky processing is 
used to fabricate this 48-pin LSI circuit. 

All data paths within the device are four bits wide. As shown in the 
block diagram of Figure 16, the device consists of a 16-word by 
4-bit, two-port RAM with latches on both output ports, a high-per­
formance ALU and shifter, a multi-purpose a Register with shifter· 
input, and a nine-bit instruction decoder. 

Two-Port RAM 

Any two RAM words addressed at the A and B address ports can 
be read simultaneously at the respective RAM A and B output 
ports. Identical data appear at the two output ports when the 
same address is applied to both address ports. The latches at the 
RAM output ports are transparent when the clock input, CP, is 
HIGH and they hold the RAM output data when CP is LOW. Under 
control of the OEB three-state output enable, RAM data can be 
read directly at the Am2903 DB 1/0 port. 

Extemal data at the Am2903 Y VO port can be written directly into 
the RAM, or ALU shifter output data can be enabled onto the Y 1/0 
port and entered into the RAM. Data is written into the RAM at the 
B address when the write enable input, WE, is LOW and the clock 
input, CP, is LOW. 

Arithmetic Logic Unit 

The Am2903 high-performance ALU can perform seven arithme­
tic and nine logic operations on two 4-bit operands. Multiplexers 
at the ALU inputs provide the capability to select various pairs of 
ALU source operands. The EA input selects either the DA exter­
nal data input or RAM output port A for use as one ALU operand 
and the OEB and 10 inputs select RAM output port B, DB extemal 
data input, or the a Register content for use as the second ALU 
operand. Also, during some ALU operations, zeros are forced at 
the ALU operand inputs. Thus, the Am2903 ALU can operate on 
data from two extemal sources, from an intemal and extemal 
source, or from two intemal sources. 

When instruction bits 14, 13, 12, 11 and 10 are LOW, the Am2903 
executes special functions. Figure 17 defines these special func­
tions and the operation which the ALU performs for each. When 
the Am2903 executes instructions other than the nine special 
functions, the ALU operation is determined by instruction bits 14, 

13, 12 and 11, Figure 18 defines the ALU operation as a function of 
these four instruction bits. 

Am2903s may be cascaded in either a ripple carry or lookahead 
carry fashion. When a number of Am2903s-are cascaded, each 
slice must be programmed to be a most significant slice (MSS), 
intermediate slice (IS), or least significant slice (LSS) of the array. 
The carry generate, G, and carry propagate, P, signals required 
for a lookahead carry scheme are generated by the Am2903 and 
are available as ontputs of the least significant and intermediate 
slices. 

The Am2903 also generates a carry-out signal, Cn+4, which is 
generally available as an output of each slice. Both the carry-in, 
Cn, and carry-out, Cn+4' signals are active HIGH. The ALU 
generates two other status outputs. These are negative, N, and 
overflow, OVA. The N output is generally the most significant 
(sign) bit of the ALU output and can be used to determine positive 
or negative results. The OVR output indicates that the arithmetic 
operation being performed exceeds the available two's comple­
ment number range. The Nand OVR signals are available as 
outputs of the most significant slice. Thus, the mUlti-purpose GIN 
and P/OVR outputs indicate G and P at the least significant and 
intermediate slices, and sign and overflow at the most significant 
slice. To some extent, the meaning olthe Cn+4' P/OVR, and GIN 
Signals vary with the ALU function being performed. 

ALU Shifter 

Under instruction control, the ALU shifter passes the ALU output 
(F) non-shifted, shifts it up one bit position (2F), or shifts it down 
one bit position (F/2). Both arithmetic and logical shift operations 
are possible. An arithmetic shift operation shifts data around the 
most significant (Sign) bit position olthe most significant slice, and 
a logical shift operation shifts data through this bit position (see 
Figure 19). SIOo and SI03 are bidirectional serial shift inputs/out­
puts. During a shift-up operation, SIOo is generally a serial shift 
input and SI03 a serial shift output. During a shift-down operation, 
SI03 is generally a serial shift input and SIOo a serial shift output. 

The ALU shifter also provides the capability to sign extend at slice 
boundaries. Under instruction control, the SIOo (sign) input can 
be extended through Yo, Y 1, Y 2, Y 3 and propagated to the SI03 
output. 
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Hex Special ALU Shifter Most Sig. Other Shlflar 

'a 7 16 15 Code Function ALU Function Function Slice Slices SIOO Function 01°3 01°0 WRITE 

L L L L 0 Uns'llnod MuI1Iply F S+Cn dZ L Log F/2-+Y HI-Z Input Fo Log Q/2-+0 Input 00 L 
F=R+S+Cn d Z=H (Note 1) 

L L H L 2 Two's Complement F-S+Cn oIZ-L Log F/2-+Y 
HI'Z Inpul FO Log 0/2-+0 Input 00 L MuI1JpIy F=R+S+Cn If Z=H (Nola 2) 

L H L L 4 
Increment by F=S+1+Cn F-+Y Input Inplll Panty Hold HI'Z HI·Z L One or Two 

L H L H 5 SigniMagnrtude· F-~+Cn If Z=L F-+Y Inplll Input Panty Hold HI'Z HI·Z L Two's Complement F=S+Cn If Z=H (Nola 3) 

L H H L 6 Two's Complement F-S+Cn It Z-L Log F/2-+Y 
HI-Z Input F. Log 0/2-+0 Input 0 0 L 

MultiPly, Last Cycle F=S-R-HCndZ~H (Note 2) 

H L L L 8 Single Length F=S+Cn F-+Y F3 F3 HI'Z Log 20-+0 0 3 Inplll L 
Nonnailze 

Double Length 
H L H L A Normahze and F=S+Cn 

FlistOIVlCleOp 
Log 2F-+Y R3'tF3 F3 Input Log 20-+0 0 3 Inplll L 

H H L L C 
Two's Complement F-S+R+Cn I' Z-l Log 2F-+Y R3 ¥ F3 F3 Input Log 20-+0 a. Input L 
DIVide F=S-R-1 +Cn IfZ=H 

Two's Complement F-S+R+Cn If Z-L 
H H H L E DMde. Correction F=S-R-HCn IfZ=H F-+Y F3 F3 HI'Z Log 20-+0 03 Input L 

and Remainder 

NOTES 1 At the most Significant stice only, the Cn+4 stgnallS Internally gated to the V3 output 
2 At the most slQntficant slice only, Fa V OVA IS Internally gated to the V3 output 

L~ LOW 
H = HIGH 

HI-Z = High Impedance 
V = Exclusive OR 
Panly = Sl03 't ~3 't F2 't F, 't Fo 3 At the most slgmftcant shce only. SaVF3 IS generated at the Ya output X "" Don't Care 

4 Op codes 1. 3. 7, 9, e, 0, and F are reserved tor future use 

Figure 17. Special Functions: 10 = 11 = 12 = 13 = 14 = LOW,IEN = LOW. 

14 13 12 11 Hex Code ALU Functions 

L L L L 0 
10 = L I Special Functions 

10 - H I Fj - HIGH 

L L L H 1 F - S Minus R Minus 1 Plus Cn 

L L H L 2 F - R Minus S Minus 1 Plus Cn 

L L H H 3 F - R Plus S Plus Cn 

L H L L 4 F = S PlusCn 

L H L H 5 F - ~PlusCn 

L H H L 6 F- R Plus Cn 

L H H H 7 F=l=!PlusCn 

H L L L 8 F, - LOW 

H L L H 9 F, - R, AND S, 

H L H L A Fj = R, EXCLUSIVE NOR Sj 

H L H H B Fj - Rj EXCLUSIVE OR S, , 
H H L L C Fj - Rj ANDSj 

H H L H D Fj = Rj NORS, 

H H H L E Fj - Rj NAND Sj 

H H H H F Fj = Rj ORS, 

L = LOW H = HIGH I=Oto3 

Figure 18. ALU Functions. 

A cascadable, five-bit parity generator/checker is designed into 
the Am2903 ALU shifter and provides ALU error detection capa­
bility. Parity for the Fo, F1, F2, F3 ALU outputs and 5103 input is 
generated and, under instruction control, is made available at the 
5100 output. 

Slo, -rr:r: : 1 51°0 Slo, ---+-11_: -+:1- SID. 

-. 
&gruhcant 
m,~ 

'-"" 
&1I1' .. fll:antol 

IntermacllateShce 

Am2903 Arithmetic Shift Path 

Sl03 --111--: :--"1I1r- SID. 

All 
Slice PosttlOflS 

Am2903 Logical Shift Path 

Figure 19. 

MPR-031 

The instruction inputs detennine the ALU shifter operation, Figure 
17 defines the special functions and the operation the ALU shifter 
perfonns for each, When the Am2903 executes instructions other 
than the nine special functions, the ALU shifter operation is de­
tennined by instruction bits 18171615' Figure 20 defines the ALU 
shifter operation as a function of these four bits, 

Q Register 

The Q Register is an auxiliary four-bit register which is clocked on 
the LOW-to-HIGH transition of the CP input. It is intended primar­
ily for use in multiplication and division operations; however, it can 
also be used as an accumulator or holding register for some 
applications, The ALU output, F, can be loaded into the Q Regis­
ter, and/or the Q Register can be selected as the source for the 
ALU 5 operand, The shifter attha input to the Q Register provides 
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Hex AlU Shifter 

'S '7 '6 '5 ~ Function 

l L L L 0 Anth F/2_Y 

l l L " , log F/2-Y 

L l " l 2 Anth FI2-• .y 

L L H " 
, log F/2-Y 

l H L l 4 F_Y 

l " l " 5 F_Y 

l " " l 6 F_Y 

L H " H 7 F-Y 

" L L L 8 Arrlh 2F-Y 

H L l H , Log 2F_Y 

H L " L A Arrth 2F-Y 

" l H " B log 2F-Y 

H " l l C F-Y 

H H L " D F-Y 

H " H L E SIOo-Vo, Yl, Y2. V3 

H " H " F F-Y 

Panty ~ F3 V F2 V Fl V FO V Sl03 
V = Exclusive OR 

S'03 

Most 51g. Other 
Slice Slices 

Input Input 

Input Input 

Input Input 

Input Input 

Input Input 

Input Input 

Input Input 

Input Input 

F, F, 

F, F, 

F, F, 

F, F, 

F, F, 
F, -- --7--

F, 

5100 SIOo 
F, F, 

L ~ LOW 
H ~ HIGH 

V3 

Most 5.g. 
Slice 

F, 

5103 

F, 

5103 

F, 

F, 

F, 

F, 

F, 

F, 

F, 

F, 

F, 
---c~-

F, 

SIOo 

F, 

V, a Reg" 
Other Most 51g Other 

"Write 
Shifter 

Slices Slice Shces V, Vo S'OO Function 0'03 0'00 

5103 5103 F, F, F, Fo l Ho" HI-Z Hi-Z 

5103 F, F, F, F, FO l Ho" HI-Z HI-Z 

51°3 5103 F, F, F, Fo L Log 0/2_Q Input aO 

8103 F, F, F, F, Fo L Log Q/2_0 Input aO 

F, F, F, F, Fo Panty L "Old HI'Z HI-Z 

F, F, F, F, Fo Panty " Log 0/2_Q Input ao 

F, F, F, F, Fo Panty H F-a HI-Z H,-Z 

F, F, F, F, Fo Panty l F-a H,-Z H,-Z 

F, F, F, Fo SIOo Input l Hold HI-Z HI-Z 

F, F, F, Fo SIOo Input l Ho" HI-Z HI-Z 

F, F, F, Fo SIOO Input l Log 20-Q a, Input 

F, F, F, Fo 5100 Input l Log 20-0 a, Input 

F, F, 'F, F, Fo HI-Z " Hold HI'Z HI-l 

F, F, F, F, Fo HI-Z " Log 2Q-+Q a, Input 

SIOo 51°0 SIOo SIOO SIOo Input L HOld HI-Z HI-Z 

F, F, F, F, Fo HI-Z l HOld H,-Z HI-l 

H,-Z = High Impedance 

Figure 20a. ALU Destination Control for 10 or 11 or 12 or 13 or 14 = HIGH, lEN = LOW. 

ALU RAM 
OPERATION SHIFTER WRITE Q 

SINGLE 
UP 

LENGTH 
DOWN 

YES NC 
SHIFT 

ARITH UP 
ARITH DOWN 

DOUBLE 
UP UP 
DOWN DOWN 

LENGTH 
ARITH UP 

YES 
UP 

SHIFT 
ARITH DOWN DOWN 

a-SHIFT PASS NO 
UP 
DOWN 

RAM YES NC 

LOAD 
RAM & a 

PASS 
YES LOAD 

a NO LOAD 
NONE NO NC 

SIGN EXTEND SIOo YES NC 

NC ~ No Change 

Figure 20b. Am2903 ALU Destination Control Summary. 

the capability to shift the Q Register contents up one bit poSition 
(2Q) or down one bit poSition (Q/2). Only logical shifts are per­
formed. QIOo and QI03 are bidirectional shift serial inputs/out­
puts. During a Q Register shift·up operation, QIOo is a serial shift 
input and QI03 is a serial shift output. During a shift-down opera­
tion, QI03 is a serial shift input and QIOo is a serial shift output. 

Double-length arithmetic and logical shifting capability is pro­
vided by the Am2903. The double-length shift is performed by 
connecting QI03 of the most significant slice to SIOo of the least 
significant slice, and executing an instruction which shifts both the 
ALU output and the Q Register. 

The Q Register and shifter operation is controlled by instruction 
bits 18171615' Figures 17 and 20 define the Q Register and shifter 
operation as a function of these four bits. 

Output Buffers 

The DB and Y ports are bidirectional I/O ports driven by three­
state output buffers with external output enable controls. The Y 
output buffers are enabled when the OEy input is LOW and are in 
the high-impedance state when OEy is HIGH. Likewise, the DB 
output buffers are enabled when the OEa input is LOW and in the 
high-impedance state when OEB is HIGH. 

The zero, Z, pin is an open collector input/output that can be 
wire-OR'ed between slices. As an output it can be used as a zero 
detect status flag and generally indicates that the Y 0-3 pins are all 
LOW, whether they are driven from the Y output buffers orfrom an 
external source connected to the YO-3 pins. To some extent the 
meaning ofthis signal varies with the instruction being performed. 

Instruction Decoder 

The Instruction Decoder generates required internal control sig­
nals as a function of the nine Instruction inputs, '0-8; the Instruc­
tion Enable input, lEN; the LSS input; and the WRITE/MSS in­
put/output. The WRITE output is !-OW when an instruction which 
writes data into the RAM is being executed. 

When lEN is LOW, the WRITE output is enabled and the Q 
Register and Sign Compare Flip-Flop can be written according to 
the Am2903 instruction. The Sign Compare Flip-Flop is an on­
chip flip-flop which is used during an Am2903 divide operation. 

Programming the Am2903 Slice Position 

Tying the LSS input LOW programs the slice to operate as a least 
significant slice (LSS) and enables the WRITE output signal onto 
the WRITE/MSS bidirectional I/O pin. When LSS is tied HIGH, the 
WRITE/MSS pin becomes an input pin; tying the WRITE/MSS pin 
HIGH programs the slice to operate as an intermediate slice (IS) 
and tying it LOW programs the slice to operate as a most signifi­
cant slice (MSS). This is shown in Figure 21. 
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Figure 21. Am2903 - 16-Bil CPU with Carry Look Ahead. 

EXPANDING THE NUMBER OF Am2903 REGISTERS 

The Am2903 contains 16 internal working registers configured in 
a standard two port architecture. The number of working registers 
in the ALU configuration can be increased by utilizing the 
Am29705 16-word by 4-bit two-port RAM. Any number of 
Am29705's can be connected to the Am2903 to increase the 
number of working registers. Figure 22 shows a block diagram of 
the basic Am29705. As is seen, the device consists of a 16 word 
by 4 bit two port RAM with latches at the A and B outputs similar to 
the RAM contained within the Am2903. Each of the latch outputs 
has three state drivers capable of driving the DA and DB inputs of 
the Am2903. The Am29705 is a non-inverting device. That is, 
data presented at the inputs is stored in the RAM and when 
brought to tre RAM outputs, it is non-inverted from when it was 
orginally brought into the device. 

V 

4f 1 

I 
Cn, 

Cn 

DATA IN 

MPR·531 

B 
ADDRESS 

The technique for using the Am29705 to expand the number of 
registers in the Am2903 can best be visualized by referring to 
Figures 23 and 24 Simultaneously. In Figure 23, the data bus 
connections are shown such that the Am2903 Y output is used to 
drive the Am29705 inputs. Here, we also assume this bus may be 
tied to a data bus through a bi-directional buffer. In Figure 23, the 
A outputs of the Am29705 are connected together and also 
connected to the DA input olthe Am2903. Likewise, the B outputs 
from the Am29705 are also shown connected to the DB inputs of 
the Am2903. In all cases, we are assuming 16-bit data busses. 
Thus, four Am2903's are assumed and eight Am29705's are 
assumed. As shown in Figure 23, one of the write enable inputs to 
the Am29705 is tied to the latch enable input of the Am29705 and 
these pins are also tied to the clock input of the Am2903. This 
allows the latches in the Am29705 to perform identically to those 
in the Am2903. 

'---+-+--_LE 

VA YB 

MPR-532 

Figure 22. Am29705 Block Diagram. 
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If we refer to Figure 24, we see the connections required to set up 
the addressing for additional registers associated with the 
Am2903. Here, three two-line to four-line decoders are used to 
properly control the A address, B address and write enable sig­
nals to the devices. As shown in Figure 24, the four A address 
lines are all tied in parallel between the Am2903 and the 
Am29705's. The two-line to four-line decoder is used to enable 
the appropriate output enable from the Am29705's or switch the 
EA MUX inside the Am2903 such that the proper register is 
selected. The B address operates in a similar fashion in that the 
four B address lines are also all tied together. Likewise, a two-line 
to four-line decoder is used to properly select the output enable of 
either the Am29705's orthe Am2903 such that the correct source 

16 

IN 

Am29705 
ll'1----, 
WE 1----4 

CLOCK 

MPR·533 

Figure 23. Am2903 - Data Bus Cascading. 
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operand register is selected. In addition, a two-line to four-line 
decoder is used to control the write enable signal such that only 
one register is written into as a destination. This is controlled by 
properly selecting the write enable of either the Am2903 or the 
Am29705 as determined by the two most significant bits of the B 
address. 

If this technique is used properly, any number of Am29705's can 
be used in conjunction with the Am2903. It may be necessary to 
use either a three-line to eight-line decoder or perhaps even a 
larger circuit to decode the more significant bits of the A and B 
addresses. Likewise, the write enable signal must be controlled 
so that the correct destination register will be written. 

UNDERSTANDING BIT SLICE TIMING 

Perhaps one of the most important aspects of designing with 
either the Am2901 A or the Am2903 is understanding the calcula­
tions required to compute the worst case AC performance. In 
order to perform these calculations, we have selected a number 
of standard Schottky devices and assigned minimum, typical and 
maximum speeds at 25°C and 5V for use in these calculations as 
shown in Figure 25. Certainly the design engineer should use the 
exact specifications of the devices he has selected for his design 
in order to perform the worst case calculations. What is intended 
here is an understanding of the technique to perform these calcu­
lations and some method to allow a comparison of the Am2901 A 
and Am2903 in terms of their AC performance. Since at the time 
of this writing the Am2903 is still being characterized, only the 
typical AC data is currently available. Thus, all calculations will be 
made using the typical AC times such that we can compare the 
Am2901 A with the Am2903. When final characterization data on 
the Am2903 is available, the designer can then compute his 
performance by selecting the appropriate temperature range and 
power supply variations as required by hiS design. 

Figure 26 shows the typical AC calculations for the functions 
usually considered in an Am2901 A design. These functions are 
usually the speed for a logic operation, arithmetic operation, logic 
operation with shift and arithmetic operation with shift. In each 
case, we are computing speeds from the LOW-to-HIGH transition 
of a clock through an entire microcycle to the next LOW-to-HIGH 
transition of a clock. 
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Figure 24. Am2903 - RAM Addr_ Cascading. 



DEVICE & PATH MIN. TYP. MAX. 

S Register 

Clock to Output 9 15 
OE to Output 13 20 
Set·Up 5 2 

SMUX 

Data to Output 5 8 
Select to Output 12 18 
OE to Output 13 20 

Microprogram PROM 

Address to Output 30 50 
OE to Output 18 25 

Mapping PROM 

Address to Output 25 45 
OE to Output 18 25 

Decoder 

Select to Output 8 12 

Counter 

Clock to Q 9 13 
Clock to TC 12 18 
CETto TC 8 12 
Data Set·Up 8 4 
Load Set-Up 16 10 
CEP or CET Set-Up 12 7 

S-EXOR 

IN to OUT 7 11 

Am2922 

Clock to Output 21 32 
Data to Output 13 19 
OE to Output 10 17 
Data Set-Up 10 5 

Am29811A 

Input to Output 25 35 

Am29803A 

Input to Output 25 35 

Am2902A 

Cn to Cn+x,y,Z 7 11 
G, Pto G, P 7 10 
G, P to Cn+x,y,Z 5 7 

Figure 25. Standard Device Schottky Speeds. 

Similarly, Figure 27 shows the same type of computations for an 
Am2903 system. There is one very important distinction that 
should be made in computing the timing of an Am2903 16-bit ALU 
when compared with an Am2901 A ALU in that in the Am2903, the 
Shifter is at the output of the ALU and is followed by the zero 
detector. Thus, In an Am2903 design, the flags are no longer 

independent of the shift operation. This is easily seen in Figure 
27. 

By way of comparison, Figure 28 shows speeds for the four types 
of operations for the Am2901A 16-bit system as compared with 
the Am2903 16-bit system. 
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a) 

DEVlCEHO. 

S - REG 

2901A 
2901A 
2901A 
S-REG 

TOTAL-na 

b) 

DEVICE NO. 

8-REG 
2901A 

2902A 
2B01A 
2901A 
2901A 
S-REG 

TOTAl.-ns 

LOGIC OPERATION 
SPEED COMPUTATIONS 

DEVICE PATH PATH 1 

CPtoQ 9 
REAO-MOOFY·WRrTE 55 
AB- Y -
AB - Zero -
SET·UP 0 -

64 

ARITHMETIC OPERATION 
SPEED COMPUTATIONS 

DEVICE PATH PATH 1 

CPtoQ 
ABtoGP 40 

GPto Cn+x)'Z 5 
SET-UP Cn 40 
en to Y 
en to Zero 
SET-UP 0 .. 

Q 

PATHZ PATH 3 

9 9 
- -

4S -
- .. PATH 1 
2 2 PATH 2 .. 76 PATH 3 

Q 

PATHZ PAnl3 

'" 40 
5 5 

20 
3S PATH 1 

PATH 2 
76 91 PATH 3 

Figure 26_ Typical AC Calculations for the Am2901 A_ 

---------------- MPR-535 

--------------- MPR-536 



c) 

LOGIC OPERATION WITH SHIFT 
SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 PATtt2 

S - REG ePlo a • • 
2901 A ABla RAM03 60 -
S·MUX DloY 5 -
2901 A SET -UP RAMo3 15 -
2901A ABloY - 45 
2901 A ABtoZ - -
S·AEG SET·UP D - 2 

TOTAL-os 8. 56 

d) 

TWO'S COMPLEMENT ARITHMETIC OPERATION 

WITH SHIFT DOWN 
SPEED COMPUTATIONS 

DEVJCE NO DEVICE PATH PATH 1 PATH 2 

S - REG CPtoQ 

2901 A ABta GP 40 40 

2902A GP to Cn+XYl 5 
2901 A Cn to F3 • OVA 20 

S·EXOA IN - OUT 
S-MUX Dto Y 
2901 A SET-UP RAM3 15 
2901 A CnlOY 20 
2901A Cn to Zero 

S-REG SET·UP D 

TOTAL-os 101 7. 

109 

Q 

PATH 3 

• 
-
-
-

65 PATH 1 
2 PATH 2 

7. PATH 3 
MPR-537 

CARRY 

PATH 3 Q 

40 

5 

35 PATH 1 
PATH 2 

" PATH 3 MPR-538 

Figure 26, (Cont.) 
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e) 

MAGNITUDE ONLY ARITHMETIC OPERATION 

WITH SHIFT DOWN 
SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 

S ~ REG CPtoO 
2901A AB to GP 40 

2902A GP 10 Cn+xYl 
2901A en toCnH 10 
S-MUX Dto y 
2901A SET-UP RAM3 15 
2901A en to Zero 
S-REG SET-UP D 

TOTAl-ns 84 

a) 

LOGIC OPERATION 

9 
40 

5 

35 

91 

Q 

Figure 26. (Cont.) 

Q 

PATH 1 
PATH 2 

SPEED COMPUTATIONS 

DEVICE NO DEVICE PATH PATH 1 PATH 2 PATH 3 

S - REG ePlo Q 9 
2903 A, 810 Y 56 56 56 
2903 YloZ 16 PATH 1 
S-REG SET-UP D 

2903 SET-UP Y PATH 2 

TOTAL-ns 67 83 74 
PATH 3 

Figure 27. Typical AC Calculations for the Am2903. 

MPA-539 
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b) 

ARITHMETIC OPERATION - 16 BIT 
SPEED COMPUTATIONS 

DEVICE NO DEVICE PATH PATH 1 PATH 2 

S-REG CPtoQ 
2903 A,BloG,P .. .. 
2902A G, Pto Cn+MlIz 

2903 CnloY 2' 
2903 en to FLAG 38 
2903 Y lol ,. 
S-REG SET-UP 0 2 
2903 SET-UP Y 

TOTAl-ns 113 11O 

C) 

LOGIC OPERATION WITH SHIFT 
SPEED COMPUTATIONS 

DEYlCENO DEVICE PATH PATH 1 PATH 2 

S - REG CPtoQ 
2903 A, 810 So 64 64 

MUX OlaV 
2903 53 lOY 13 13 
2903 VlaZ ,. ,. 
S-AEG SET-UP 0 2 
2903 SET-UP Y 

TOTAL-ns 109 104 

Q 

PATH 3 

.. 
2' 

104 

Q 

PATH 3 

64 

13 

100 

Figure 27. (Cont.) 

PATH 1 ----------­
PATH 2 - --- -- --­
PATH 3 .--- --- - -

PATH 1 
PATH 2 
PATH 3 
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d) 

TWO'S COMPLEMeNT ARITHMETIC OPERATION 
WITH SHIFT DOWN - 16 BIT 
SPEED COMPUTATIONS 

DEVICE NO DEVICE PATH PATH 1 PATH 2 

S - REG CPloQ 
2903 A, BtoG, P 56 56 

29Q2A GP to Cn+~Yz 
2903 Cn to SIOo 21 
2903 SI03 to Y 13 
2903 Cn to N, OVA 3. 
S-EXOA IN to OUT 

S-MUX o to Y 

2903 Sl03 to Y 13 
2903 y to Z 16 16 
2903 SET-UP Y 

S-AEG SET-UP D 

TOTAL-ns 122 '" 
e) 

MAGNITUDE ONLY ARITHMETIC OPERATION 
WITH SHIFT DOWN 

SPEED COMPUTATIONS 

DEVICE NO DEVICE PATH PATH 1 PATH 2 

S - REG CP to Q 

2903 A,BtoG,P 56 56 
2902A GP to Cn +xyz 

2903 Cn to Cn+4 21 21 
S-MUX o to Y 5 5 
2903 SI03 to Y 13 13 
2903 Y to Z 16 
S-REG SET-UP D 

2903 SET-UP Y 

TOTAL-ns 127 11. 

56 a 

3. 

13 

142 

a 

Figure 27. (Cont.) 

PATH 1 
PATH 2 
PATH 3 

PATH 1 
PATH 2 

CARRY 

MPR-543 

MPR-544 



Functional Am2901A Am2903 
Operation 

Logic 76 83 

Arithmetic 94 113 

Logic with Shift 89 109 

Two's Complement 
Arithmetic with 101 151 
Shift Down 

Magnitude Only 
Arithmetic with 91 127 
Shift Down 

Figure 28. Summary of Am2901 A and Am2903 AC 
Performance in a 16-Bit Configuration. 

USING THE Am29031N A 16-BIT DESIGN 

Perhaps the best technique for understanding the design of the 
16-bit ALU is to simply take an example. Figure 29 shows a block 
diagram overview of four Am2903's with the appropriate shift 
matrix control, status register, MAR and the usual interface to a 
CCU and main memory. This block diagram represents the nor­
mal data handling path associated with a simple 16-bit minicom­
puter. If we expand this block diagram to show what would nor­
mally be considered to be the complete 16-bit central processing 
unit, the block diagram of Figure 30 results. Here, we see the 
Am2903's surrounded by a typical set of MSI support chips. In 
addition, the block diagram shows a typical computer control unit 
as described in Chapter 2 of this series. Thus, all of the blocks are 
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MAIN ADOR 

MEMORY AIW 
DATA OUT 

now in place to show a simple 16-bit microcomputer built using 
the Am2900 family devices. The full design for such a machine is 
shown in Figure 31. 

Figures 31A, Figure 31 B and Figure 31 C detail the connection of 
each IC used in this design. Quite simply, the design can be 
described as follows. Figure 31 A represents the microprogram 
sequencer portion of the design. U1, U2 and U3 are the instruc­
tion register that receive a 16-bit instruction from main memory. 
U4, U5 and U6 are the mapping PROMs used to decode the OP 
code portion of the instruction to arrive at a starting address for 
the microprogram sequencer. The microprogram sequencer is 
the Am2910 and is shown as U7. The branch address pipeline 
register is U8, U9 and U10 and can be enabled to the D inputs of 
the Am291 0 sequencer to provide the jump address from micro­
code. The pipeline register for the instruction inputs to the 
Am2910 is U14. This machine also has the ability to select the A 
and B addresses for the Am2903 devices from the microprogram 
as well as the instruction register and U11 and U12 provide this 
capability as a partofthe pipeline register. U13 is a two line to four 
line decoder used as part of the control for the A and B address 
select for the Am2903's. U15 is part of the pipeline register and 
provides both true and complement outputs for bit 11. U16 and 
U17 represent a one of sixteen decoder whose output can be 
applied to the DA bus to allow the implementation of all the bit 
operations. These include bit set, bit clear, bit toggle and bit test. 
U18 and U19 are PROM's that provide the ability to enter one of 
thirty-two preprogrammed constants onto the DA bus. 

Figure 31 B is predominately the data handling portion of the 
design. Here, U20 and U21 represent a data register that re­
ceives data from the data bus. U26, U27, U28 and U29 are the 
four Am2903's that form a 16-bit register/ALU combination. U30 
IS the carry look ahead generator for the ALU section. U22, U23 
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2 

1 2 

EN S oi-.J 
>--- MUX l-H 

B 
2_L 

SIOo f---
DB f---

CCU 
Cn 

A 

B 

INST 

MAA LD 

1 

INSTRUCTION 

I 

MPR·545 

Figure 29. Am2903 with Shift Mux and Status Register. 
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and U24 represent the status register with the ability to save and 
restore the flags in main memory. U25 is the condition code 
multiplexer for the microprogram sequencer. U33, U34, U35 and 
U36 represent the shift linkage multiplexers that tie together the 
internal shifters within the Am2903's. U37 is part of the pipeline 
register and provides both true and complement outputs of a 
number of the microprogram bits. U38 is part of the carry in logic 
control such that double length arithmetic operations can be 
performed. U31 and U32 are the data out register that can be 
used to accept data from the Am2903s and enable this data onto 
the data bus. U39 and U40 represent the memory address regis­
ter and are used to hold the address provided from the CPU to 
main memory. 

The microprogram store is shown in Figure 31C. Here, we have 
used both the 512 x 8 registered PROM's and 512 x 4 non­
registered PROM's in this design. A total of 68 microprogram bits 
have been depicted in this design. These are shown so that 
maximum flexibility is achieved. In most typical designs some 10 
to 20 of these bits would not be used. Figure 31 C shows four 
512-word by 8-bit registered PROM's (U41 , U42, U43 and U44). It 
also shows nine 512-word by 4-bit PROM's represented as U45 
through U53. 

Perhaps the best way to review the design is to simply understand 
the function of each of the microprogram control bits. If the pur­
pose of each of these bits is well understood, the design engineer 
will be well along in understanding the design of the simple 
minicomputer CPU presented here. 

The Microprogram Structure 

The microprogram for the design shown in Figure 31 is 68 bits 
wide. The functions of the microprogram control bits are as fol­
lows: 

Bits PLO 
through PL8 

Bits PL9, 
PL10, PL11 

Bits PL12 
through PL 14 
(JL 12 through 
JL14) 

The 9 instruction bits of the Am2903 super­
slices. 

The lEN, EA, OEB control inputs of the 
Am2903 supersllces, respectively. PL 11 is also 
connected to the data-in registers (U20 and 
U21) output-enable. This connection assures 
that there will be no conflict on the DB pins. 

Select the source for SIO of the Am2903, both 
for shift-up and for shift-down operations. The 
following table summarizes the functions of 
these bits. 

Microprogram Bits SIOn 5100 

14 13 

L L 
L L 
L H 
L H 
H L 
H L 
H H 
H H 

Bits PU5 
through PL 17 
(JL 15 through 
JL17) 

12 (Shift-down) (Shift-up) 

L 0 0 
H SIOo Sian 
L 0100 alan 
H Carry Carry 
L Zero Zero 
H Sign Sign 
L Not allocated Not allocated 
H 1 1 

Select the source for ala of the Am2903, both 
for shift-up and shift-down operations. The fol­
lowing table summarizes the functions of 
these bits. 

Microprogram Bits QIOn QIOo 
17 16 

L L 
L L 
L H 
L H 
H L 
H L 
H H 
H H 

Bit PU8 

Bit PL19 

Bit PL20 

Bit PL21 

Bit PL22 

Bit PL23 

Bits PL24 
through PL27 

Bits PL28 
through PL31 

Bits PL32 
and PL33 

Bits 

33 

L 
L 
H 
H 

Bit PL34 

Bit 
34 

L 
H 

32 

L 
H 
L 
H 

15 (Shift-down) (Shift-up) 

L 0 0 
H SIOo Sian 
L 0100 alan 
H Carry Carry 
L Zero Zero 
H Sign Sign 
L Not allocated Not allocated 
H 1 1 

When LOW, enables the MAR clock input, i.e. 
the data appearing on the Y output pins of 
the Am2903 Superslices™ will be clocked into 
the MAR at the LOW-to-HIGH transition of 
the clock pulse. 

When LOW, enables the MAR output onto the 
Memory Address Bus. 

When LOW, enables the data output register 
clock, i.e. the data appearing in the Y output 
pins of the Am2903 Superslices™ will be 
clocked into the data output registers (U31 
and U32) at the LOW-to-HIGH transition of 
the clock pulse. 

When LOW, enables the data output registers 
onio the Data Bus. 

When LOW, enables the data-in register clock, 
i.e. the data appearing in the Data-Bus will be 
clocked into the data-in registers at the 
LOW-to-HIGH transition of the clock pulse. 

This is the CI input of the Am2910 micropro­
gram sequencer. 

This is a 4-bit wide field which can be used 
either for the A-address, for the B-address or 
for both A and B addresses of the Am2903 
superslices. 

This is a 4-bit wide field, which can be 
used for either the A-address of the Arri2903 
superslice or to designate one of sixteen bits to 
the DA inputs of the Am2903 superslice via the 
Am2921's (JL16 and JL17). 

Select the source for the Am2903 A-address, 
according to the table below: 

A-Address Source 

Data Bus bits 0 through 3 
Microprogram bits 28 through 31 
Data Bus bits 4 through 7 
Microprogram bits 24 through 27 

Selects the source of the Am2903 B-address, 
according to the table below: 

B-Address Source 

Data Bus bits 4 through 7 
Microprogram bits 24 through 27 
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Bit PL35 

Bits PL36 
and PL37 

Bits 

37 

L 

L 

H 
H 

Bit PL38 

Bit PL39 

Bit PL40 

Bit PL41 

Bit PL42 

Bit PL43 

Bit PL44 

Bit PL45 

Bit PL46 
and PL47 

36 

L 

H 

L 
H 

Is the Cn input of the least significant Am2903 
via an Am74S157 mux {/L38). 

Affect the status register input signals, ac­
cording to the table below: 

Next Carry Next Zero, Sign, Overflow 

Previous Carry Previous Zero, 
Sign, Overflow 

Previous SI01S Previous Zero, 
Sign, Overflow 

Am2903 superslices' Output 
Data Bus bits 0 through 3 

Selects either the carry flip-flop or the PL35 bit 
for carry in. 

When LOW, enables the status register output 
to the data bus bits 0 through 3. 

Controls the output polarity 01 the one-ol-six­
teen bit select logic. 

When LOW, enables the Instruction register 
(U1, U2, U3) clock. The data present at bits 0 
through 15 of the Data-Bus will be latched into 
the Instruction register at the next LOW-to­
HIGH transition of the clock pulse. 

This is an output signal. When HIGH, it signals 
the main memory that a memory read is re­
quested. 

This is an output signal. When HIGH, it signals 
to the main memory that a memory write is re­
quested. 

Selects the source 01 the one of sixteen bit de­
coders (U16 and U17) . When LOW, the output 
of the Am2919 register (U12) containing the pre­
viously latched microprogram bits 28 through 
31 will be applied to the decoders. When HIGH, 
the output of the Am2919 register (U3) con­
taining the previously latched Data-Bus bits 0 
through 3 will be applied to the decoders. 

Selects the Am2903 Superslices™' DA port 
source. When LOW, the output of the one of six­
teen bit decoder (U16 and U17) will be applied 
to that port. When HIGH, the output of the 
Am29771 PROM's (U18 and U19) will be ap­
plied to the Am2903 DA ports. 

These are the RLD and CCEN control inputs 
of the Am2910 sequencer, respectively. 

Bits PL48 These select the condition code according to 
through PL50 the following table: 

Bits Condition Code Selected 
50 49 48 

L L L Carry 
L L H Sign 
L H L Zero 
L H H Overflow 
H L L 
H L H Not Allocated 
H H L 
H H H 

Bit PL51 

Bits PL52 
through PL55 

Bits PL56 
through PL67 

Is the condition code polarity control. When 
HIGH, the condition code selected will pass non­
inverted. When LOW, the selected condition 
code will be complemented. 

Are the I inputs of the Am2910 sequencer. 

This is a 12-bit wide field and it serves, usu­
ally as the next microprogram address.How­
ever, the 5 least significant bits of this field (bits 
56-60) serve also as an address field of the 
Am29771 "constant" PROM's (U18 and UI9). 

Some Sample Microroutines 

Figure 32 shows the microprogram code for a few sample micro­
routines. Different addressing schemes are demonstrated with 
the "ADD" operation. All the other arithmetic or logic operations 
can be easily programmed by substituting the 11-14 field of the 
Am2903 with the appropriate function. Since the main memory 
address is generated by the Am2903 superslices, the internal 
register No. 15 servl1s as the program counter. 

The following is a description of some sample micro routines. The 
reader should refer to the description of the microprogram bits 
given earlier in this chapter and to the data sheets of the Am291 0 
sequencer and of the Am2903 supers lice. 

Microword INIT. 

This microword should be at address 0 and when the machine is 
reset, the Am291 0 will start executing from here. The purpose of 
this location is to reset the machine program counter (Register 
15) to zero. Ultimately more microinstructions can be added, 
should the necessity of other reset functions arise. 

Bits 1-4 (Am2903 '1-'4) being 8H will cause the superslices to 
generate all zeroes at the F-points (internal). Bits 5-8 (Am2903 
Is-Is) being FH will cause this data (all zeroes) to appear on the Y 
outputs. Bit 9 (lEN) is LOW and therefore, WRITE will be LOW 
and this data will be written into the internal register selected by 
the B-address inputs. Bit 34 is HIGH; therefore, microprogram 
bits 24-27 will be selected as B address source. Since FH is in 
these bits, all zeroes will be written into the program counter 
(Register 15). Bit 18 is LOW; therefore, the data at the Youtputs 
(all zeroes) wil be latched into the MAR at the next clock pulse. 
Bits 36 and 37 are set such that the flags will be updated, namely 
CY=N=OVF=O, Z=l. 

Bits 42, 43 are both LOW so no memory reference Signal is sentlo 
the main memory (the MAR is still in an undetermined state). Bits 
52-55 (Am2910 I) are set to EH which will force the sequencer10 
continue to the next sequential address (1) as the CI (bit 23) is 
HIGH. 

Bits 21 and 39 are both HIGH to ensure thatthere is no conflict on 
the data bus though in this case one of them could be a DON'T­
CARE. Bit 38 could also be a DONT-CARE as the carry is zeroed 
by the ALU: Making a HIGH in bit 46 enables executing this 
microstep without disturbing the Am2910 sequencer's internal 
register which at power-up has no significance but may be impor­
tant, should a software restart be issued. 

All the other bits are DONT-CAREs. 

Microword FETCH 

This is the first step in the machine instruction fetch routine. In this 
step, the main memory is addressed by the MAR, a read signal is 
issued (bit 42 = HIGH), and the machine instruction (mac­
roinstruction) is placed on the data bus by the memory. It is 
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2910 DA 

PL I CCP CC CLEN RLD CONS BIT MMW MMR IRE POL FDOE CY=O Flags 

Number of Bits 12 4 1 3 1 1 1 1 1 1 1 1 1 1 2 

Bit No. .... on : .... 
~ '9 In .... ~ ';j ~ \;l '" :;r !if '" <D ~ <D 

~ 
.... .... '" M .., 

M 

INIT X E X X X 1 X X 0 0 X X 1 0 2 
FETCH X E X X X 1 X X 0 1 0 X 1 0 0 
FETCH + 1 X 2 X X X 1 X X 0 0 1 X 1 0 0 

ADD FETCH + 1 7 X X 1 1 X X 0 1 0 X 1 0 2 

ADDIMM X E X X X 1 X X 0 1 1 X 1 0 0 
ADDIMM + 1 FETCH + 1 7 X X 1 1 X X 0 1 0 X 1 0 2 

ADD DIR X E X X X 1 X X 0 1 1 X 1 0 0 
ADD DIR + 1 X E X X X 1 X X 0 0 1 X 1 0 0 
ADD DIR + 2 ADDIMM + 1 7 X X 1 1 X X 0 1 1 X 1 0 0 

ADD RR1 X E X X X 1 X X 0 0 1 X 1 0 0 
ADD RR1 + 1 X E X X X 1 X X .0 1 1 X 1 0 0 
ADD RR1 + 2 FETCH + 1 7 X X 1 1 X X 0 1 0 X 1 0 2 

2903 2910 Y-D MAR 2903 

Cn B A R2 R1 CI DOsE OE E OE E Q S OEB EA lEN 15- 8 11- 4 10 

Number of Bits 1 1 2 4 4 1 1 1 1 1 1 3 3 1 1 1 4 4 1 

Bit No. M 

~ 
.... r- .... .., .... '? '" M '" C;; 0 ~ ~ ;:: ~ m <D "f 0 M M '" ~ '" '" '" ,;, N ,;, 

M '" ~ 

INIT X 1 X X F 1 X 1 X X 0 X X X X 0 F B X 
FETCH X X X X X 1 1 1 1 0 1 X X 0 X 1 X X X 
FETCH + 1 1 1 X X F 1 1 1 1 0 0 X X 0 X 0 F 4 0 

ADD 0 0 0 X X 1 1 1 1 0 1 X X 0 0 0 F 3 0 

ADDIMM 1 1 X X F 1 0 1 1 0 0 X X 0 X 0 F 4 0 
ADDIMM + 1 0 0 0 X X 1 1 1 1 0 1 X X 1 0 0 F 3 0 

ADD DIR 1 1 X X F 1 0 1 1 0 X X X 0 X 0 F 4 0 
ADD DIR + 1 0 X X X X 1 1 1 1 X 0 X X 1 X 1 X 4 0 
ADD DIR + 2 0 X 3 X F 1 0 1 1 0 0 X X X 0 1 F 6 X 

ADD RR1 0 X 0 X X 1 X 1 1 X 0 X X X 0 1 F 6 X 
ADD RR1 + 1 0 X 3 X F 1 0 1 1 0 0 X X X 0 1 F 6 X 
ADD RR1 + 2 0 0 2 X X 1 1 1 1 0 1 X X 1 0 0 F 3 0 

1. 4-bit fields in hex, others in octal. 
2. X = Don't Care. 

Figure 32. Example Microcode for Figure 31 Design. 
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latched into the instruction register (Ul, U2, and U3) at the next 
clock LOW-to-HIGH transition (bit 41 = LOW). It is assumed that 
if a relatively slow main memory is used, the clock is haHed until 
the data is stable on the data bus and the register set up times are 
met. We will see in a later chapter how easy it is to implement this 
requirement using the Am2925 clock generator. The same as­
sumption will also be made in a memory write cycle. 

Bit 9 (Am2903 lEN) is HIGH; thus, we don't care what the ALU 
does during this microstep. We prevent the flags from changing 
by setting bits 36-38 LOW. Also, the registers althe Youtput have 
the E input HIGH (bits 18, 20). Bits 21 and 39 are both HIGH; thus, 
the data bus is free to accept data from the main memory (bit 42 is 
HIGH, signaling memory read request). The MAR is enabled to 
the address bus (bit 19 = LOW) and at the next clock, the 
macroinstruction will be latched into the instruction registers (bit 
41 = LOW). The Am2910 sequencer will continue to the next 
instruction (bits 52-55 = EH). 

Mlcroword FETCH + 1 

This is the second step in the macroinstruction fetch routine. The 
instruction already resides in the instruction registers Ul, U2 and 
U3). 

The Am2910 sequencer receives a JUMP MAP instruction (bits 
52 though 55 = 2). The next microinstruction will begin to execute 
the present macroinstruction - according to the mapping PROM. 

We use this microstep to update (increment) the program counter 
(Register 15). Bit 34 being HIGH, mi~ogram bits 24-27 (= FH) 
will be the B address. The Am2903 OEB and 10 are LOW, there­
fore, the contents of Register 15 will serve as the S operand for 
the ALU. Cn being HIGH, a 4 in the 11-14 field will increment this 
value. lEN = LOWwith 15-la = Fwill write this (incremented) value 
into the same register (R15). At the same time, the MAR is also 
updated (bit 18 = LOW). 

We could update the program counter and the MAR in the previ­
ous microstep (location FETCH), but then we had to leave the 
ALU idle during this microcycle. By adopting the present scheme, 
we can overlap the first step of the macroinstruction fetch routine 
(the memory-read cycle) with the execution of the last step of the 
previous macroinstruction - provided the memory and the data 
bus are free to perform it. The JUMP MAP cycle is always neces­
sary - and that is why we prefer to update the PC at this step. 

Microword ADD 

This is a sample register-to-r~gister operation. The two operands 
reside in the internal registers pointed to by the two 4-bit fields of 
the macroinstruction: 

15 8 7 43 o 

1 st Operand and 2nd Operand 
OPCODE Destination Register Register Number 

Number 

Bits 32-33 are set LOW, instruction register bits 0-3 are selected 
as A address. Bit 34 = LOW selects instruction register bits 4-7 as 
B address (see Fig. above). Bit 1 (10), bit 10 (EA) and bit 11 (OEB) 
are also LOW; therefore, the contents of the selected registers 
will be presented to the ALU's Rand S inputs. Bits 1-4 (11-14) = 3, 
the ALU will perform: 

F = R plus S plus Cn• 

Note that bit 35 and 38 are LOW. With 15-la (bits 5-8) = FH and lEN 
(bit 0) = LOW, the result will be written into the internal register 
pointed at by the B address lines. 

Bits f8 and 20 are HIGH and inhibit the MAR and the data out 
registers from being affected, while bits 36, 37 (=2) allow the 
flags to assume values according to the result of the operation. 

During the execution of the function required (ADD in this exam­
ple) we fetch the next OP CODE from the main memory. The 
MAR is enabled to the address bus (bit 19 = LOW) and a memory 
read is requested (bit 42 = HIGH). Althe end ofthis microstep the 
next macroinstruction will be latched into the instruction registers 
(bit 41 = LOW). 

The Am291 0 sequencer is instructed to select the pipeline regis­
ter bits 56-67 as the next microprogram address (bits 52-57 = 7, 
bit 47 = HIGH) where the location of FETCH + 1 (2 in this 
example) is written. The next step will be JUMP MAP and update 
PC. 

Mlcroword ADD IMMEDIATE 

This 2 step microroutine adds the contents of an internal register, 
pointed at by bits 0-3 of the macroinstruction with its second word, 
placing the result into the internal register pointed at by bits 4-7 of 
the OPCODE. 

15 8 7 

OPCODE 
Result 

Register Number 

43 

First word of the macroinstruction 

15 

DATA (1st Operand) 

2nd Operand 
Register Number 

Second (next consecutive) word of the macroinstruction 

o 

o 

The first step is to read the fitst operand from the memory (bit 19 
= LOW, bit 42 = HIGH) and to latch it into the data-in register 
(U20 and U21) (bit 22 = LOW). Althe same time the ALU updates 
(increments) the program counter (register 15) and the MAR (bit 
18 = LOW). (Compare the location FETCH + 1 ). The Am291 0 
sequencer will continue to the next microprogram address (com­
pare to location FETCH). 

Location ADDIMM + 1 is the second step of this macroinstruc­
tion.lt is very similar to location ADD, the only difference is that bit 
11 (OEB) is HIGH, selecting the Data-in register as source for the 
ALU's S operand. The same macroinstruction fetch overlap 
technique is used again. 

Mlcroword ADD DIRect 

This is the starting location to execute a macroinstruction where 
the second word is the address of the operand: 

15 

OPCODE 

8 7 

Result 
Register Number 

First word of the macroinstruotion 

4 3 

2nd Operand 
Register Number 

o 



15 o 

Address of the 1 st operand 

Second (next consecutive) word of the macroinstruction 

The first step is to read the second word of the macroinstruction 
into the Data-in register. This microword is identical to the one 
written at location ADDIMM. 

Microword ADD DIR + 1 

The Data-in register now contains the address of the operand. 
We have to transfer it into the MAR. 

With 10 (bit 0) LOW and OEB (bit 11) HIGH, the ALU's operand will 
be the DB bus, i.e., the Data-in register. 1,-14 (bits ~ = 4 will 
pass this inputto its output, as Cn (bit3) is LOW. With lEN (bit 9) = 
HIGH, the WRITE line will be HIGH too, assuring that the internal 
registers maintain their contents. Since Is-Is (bits 5-8) = FH, the 
ALU output will appear on the Am2903 Y pins. This data which is 
actually the operand address and will be transferred into the MAR 
at the next clock cycle. The Am291 0 sequencer continues to the 
next consecutive microstep. 

Mlcroword ADD DIR + 2 

Now we read in the operand from the main memory. The MAR is 
enabled to address bus (bit 19 = LOW), a memory read signal is 
issued (bit 42 = HIGH) and the data-in register's clock is enabled 
(bit 22 = LOW). At the next LOW-to-HIGH transition of the clock, 
the operand will be placed in the data-in register. 

Meanwhile, we need to restore the address of the next mac­
rOinstruction in the MAR. Bits 32-33 = 3 select microprogram bits 
24-27 as the A address (an FH is written there); therefore, the 
internal program counter will be addressed, as EA (bit 10) = 
LOW. The ALU performs an F = R + Cn with Cn (bit 35) LOW, 
thus passing the program counter contents to the output. lEN (bit 
9) = HIGH prevents disturbance of internal Am2903 registers and 
bit 18 will enable the MAR to receive the next macroinstruction 
address. 

Note that the situation now is exactly the same as after the first 
step of ADD IMMediate. The operand is in the data register and 
the MAR points to the next macroinstruction. Therefore, the 
Am291 0 sequencer will address, as the next microstep, location 
ADDIMM + 1. The step after this will, of course, be FETCH + 1. A 
total of 5 microsteps were needed to execute this macroinstruc­
tion but it occupies only 3 microprogram locations. 

It is worthwhile to note here that by adding two more Am2920 
registers between the Data-bus and the Address-bus and a 
couple of control-bits in the microprogram, we could shorten the 
microprogram by one step. In this design we chose not to do so in 
order to demonstrate the Data-bus to Address-bus path through 
the ALU. 

Mlcroword ADD RR1 

The macroinstruction to be excuted here pOints to the register in 
which the first operand is written, and also into which the result 
should be written. The second 4-bit field of the OP-CODE (bits 
0-3) points to the register in which the address of the second 
operand is stored. 

15 8 7 4 3 o 

1 st Operand and 2nd Operand's 
OPCODE Result Register Address Register 

Number Number 

Bits 32 and 33 are LOW. Therefore, instruction register bits 0-3 
will form the A-address. Now we take the contents of this register 
and place it in the MAR exactly the same way as we did in location 
ADD DIR + 2 with the program counter. The Am291 0 continues. 

Mlcroword ADD RR1 + 1 

Here we fetch the operand and place it in the Data-in register. At 
the same time, we restore the program counter into the MAR. 

Mlcroword ADD RR1 + 2 

Bits 32, 33 = 2 and instruction register bits 4-7 serve as the 
A-address. Bit 34 = LOW; the same instruction register bits serve 
as B-address, too. Note, that OEB (bit 11) is HIGH; therefore, the 
ALU R-source will be the Data-in register and the S-source will be 
the register addressed by A-address. The result (sum), however, 
wi~ be written to the correct register, as lEN (bit 9) is LOW. 

At the same time, the next macroinstruction is fetched in the 
usuall oooveriapping way and the next microinstruction to be 
excut~d will be at location FETCH + 1. 

Summary 

In this design shown in Figure 31, we have demonstrated some of 
the addressing schemes mentioned in Chapter 1. We used the 
ADD instruction throughout these examples, but any other arith­
metic or logic instruction can be executed, In exactly the same 
manner by changing the microcode bits 1-4 to the appropriate 
ALU code. 

The reader is encouraged to write several microcode-lines to 
execute the other addressing modes mentioned in Chapter 1. He 
will discover that when the result of the macroinstruction is to be 
written into main memory, the overlapping instruction-fetch is not 
feasible. In some cases, when the MAR no longer contains the 
Program Counter value, an additional microstep is needed in 
order to restore the Program Counter into the MAR. The read,er is 
again encouraged to modify location FETCH in order to save this 
additional microstep. 

Appendix 
Throughout Chapter 3, a number of AC calculations have been 
made to show typical speeds for an Am2901 A and Am2903 16-bil 
ALU configuration. This Appendix shows the latest SWITCHING 
CHARACTERISTICS for the Am2901A and Am2903. 

The typical data on the Am2901 A shown in this Appendix super­
sedes that shown on page 2-12 of the Am2900 Family Data Book 
dated 4-78 (AM-PUBOO3). The only difference between the data 
shown In the typical column of the switching characteristic and 
this Appendix appears in Table 3. The typical carry in set-up time 
should be 40ns. 

The typical switching characteristic data for the Am2903 as 
shown in this Appendix supersedes the data presented in the 
Am2903 Bipolar Microprocessor Slice/Am2910 Microprogram 
Controller Data Booklet dated 3-78. Here, a number changes 
have been made to the table for both the combinatorial propaga-· 
tion delays and the set-up and hold times. 

Should any questions arise concerning the switching characteris­
tics for either the Am2901 A or Am2903, please do not hesitate to 
contact the AMD factory and ask for Bipolar Microprocessor 
Marketing or Bipolar Microprocessor Applications. 
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Am2901 A - (MAY 18, 1978) 

ROOM TEMPERATURE 
SWITCHING CHARACTERISTICS 
(See next page for AC Characteristics over operating range.) 

TABLE I 

CYCLE TIME AND CLOCK CHARACTERISTICS 

Tables I, II, and III below define the timing characteristics of 
the Am2901A at 2SoC. The tables are divided into three types 
of parameters; clock characteristics, combinational delays 
from inputs to outputs, and set-up and hold time require­
ments. The latter table defines the time prior to the end of the 
cycle (Le., clock LOW-to-HIGH transition) that each input must 
be stable to guarantee that the correct data is written into one 
of the internal registers. 

TIME TYPICAL GUARANTEED 

All values are at 25°C and 5.0V. Measurements are made at 
1.SV with Vil = OV and VIH = 3.0V. For three-state disable 
tests, Cl = 5.0pF and measurement is to O.SV change on 
output voltage level. All outputs fully loaded. 

Read·Modify·Wnte Cycle 
(time from selection of 
A, B registers to end of 
cycle) 

Maximum Clock Frequency to 
Shift Q Register (50% duty 
cycle) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

TABLE II 

55ns 

40MHz 

30ns 

30ns 

75ns 

COMBINATIONAL PROPAGATION DELAYS (all in ns, CL = SOpF (except output disable tests)) 

93ns 

20MHz 

30ns 

30ns 

93ns 

TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V 

.~ 
Shift Shift 

F Output 
F=O Outputs F=O Outputs 

Y F3 Cn+4 G,P RL= OVR Y F3 Cn+4 G,P RL= OVR rom 
Input 270 RAMO 00 270 

RAMO 00 
RAM3 03 RAM3 03 

A, S 45 45 45 40 65 50 60 - 75 75 70 59 85 76 90 -
o (arithmetic mode) 30 30 30 25 45 30 40 - 39 37 41 31 55 45 59 -
D (I = X37) (Note 5) 30 30 - - 45 - 40 - 36 34 - - 51 53 
Cn 20 20 10 - 35 20 30 - 27 24 20 - 46 26 45 -

1012 35 35 35 25 50 40 45 - 50 50 46 41 65 57 70 -

1345 35 35 35 25 45 35 45 - 50 50 50 42 65 59 70 -
1678 15 - - - - - 20 20 26 - - - - - 26 26 

DE Enable/Disable 20/20 - - - - - - - 30/33 - - - - - - -
A bypassing 

30 - - - - - - 35 - - - - - - -ALU (I = 2xx) 

Clock S (Note 6) 40 40 40 30 55 40 55 20 52 52 52 41 70 57 71 30 

SET-UP AND HOLD TIMES (all in ns) (Note 1) TABLE III 

From Input Notes 
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V 

Set-Up Time Hold Time Set-Up Time Hold Time 

A,S 2,4 40 
0 

93 
0 Source 3, 5 tpw L + 15 tpwL + 25 

B Dest. 2,4 tpwL + 15 0 tpwL + 15 0 

D (anthmetlc mode) 25 0 70 0 

D (I = X37) (Note 5) 25 0 60 0 
Cn 40 0 55 0 

1012 30 0 64 0 

1345 30 0 70 0 

1678 4 tpwL + 15 0 tpwL + 25 0 

RAMO, 3, QO, 3 15 0 20 0 

Notes 1. See next page. 
2. If the B address is used as a source operand, allow for the "A. B source" set·up time, If it is used only for the destination address, use the 

"B dest." set-up time 
3 Where two numbers are shown, both must be met. 
4 "tpwL" IS the clock LOW time 
5 ova IS the fastest way to load the RAM from the 0 mputs. This function IS obtained with I = 337 
6 USing Q register as source operand In arithmetic mode Clock IS not normally in cntlcal speed path when Q is not a source. 



A. Am2903 SWITCHING CHARACTERISTICS (TYPICAL ROOM TEMPERATURE PERFORMANCE) - (MAY 18, 1978) 

Tables lA, IIA, and iliA define the nominal timing characteris­
tics of the Am2903 at 25°C and 5.0V. The Tables divide the 
parameters into three types: pulse characteristics for the 
clock and write enable, combinational delays from input to 
output, and set-up and hold times relative to the clock and 
write pulse. 

TABLE IA - Write Pulse and Clock Characteristics 

Time 

Minimum Time CP and WE both LOW 15ns 

Measurements are made at 1.5V with VIL = OV and VIH = 
3.0V. For three-state disable tests, CL = 5.0pF and mea­
surement is to 0.5V change on output voltage level. 

to write 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

TABLE IIA - Combinational Propagation Delays (All in ns) 
Outputs Fully Loaded. CL = 50pF (except output disable tests) 

15ns 

35ns 

5100 ~ From Input Y Cn+4 G,P (5) Z N OVR DB WRITE QIOo, QI03 5100 5103 (Parity) 

A, B Addresses 
65 60 56 - 64 70 33 - - 65 69 87 (Arith. Mode) 

A, B Addresses 
56 - 46 - 56 - 33 - - 55 64 81 

(Logic Mode) 

DA, DB Inputs 39 38 30 - 40 56 - - - 39 47 60 

EA 38 33 26 - 36 41 - - - 36 41 58 

Cn 25 21 - - 20 38 - - - 21 25 48 

10 40 31 24 - 37 42 - 15(1) - 41 39 63 

14321 45 45 32 - 44 52 - 17(1) - 45 51 68 

18765 25 - - - - - - 21 22/29(2) 24/17(2) 27117(2) 24/17(2) 

lEN - - - - - - - 10 - - - -

OEB Enable/Disable - - - - - - 12115(2) - - - - -

OEY Enable/Disable 114/14(2) - - - - - - - - - - -

SIO., SI03 13 - - - - - - - - - 19 20 

Clock 58 57 40 - 56 72 24 - 28 56 63 76 

Y - - - 16 - - - - - - - -

MSS 25 - 25 - 25 25 - - - 24 27 24 

Notes 1. Applies only when leaving special functions. 
2. Enable/Disable. Enable IS defined as output active and correct. Disable is a three-state output turning off. 
3. For delay from any Input to Z, use input to Y plus Y to Z. 

TABLE iliA - Set-Up and Hold Times (All in ns) 
CAUTION: READ NOTES TO TABLE III. NA = Not, Applicable; no timing constraint. 

HIGH-ta-LOW LOW-ta-HIGH 

Input 
With Respect to ~-_----.r-

Comment 
to this Signal Set-up Hold Set-up Hold 

Y Clock NA NA 9 -3 To store Y in RAM or 0 

WE HIGH Clock 5 Note 2 Note 2 0 To Prevent Writing 

WE LOW Clock NA NA 15 0 To Write into RAM 

A.B as Sources Clock 19 -3 NA NA See Note 3 

B as a Destination Clock and WE both LOW -4 Note 4 Note 4 -3 
To Write Data only into 
the Correct B Address 

0100.0103 Clock NA NA 10 -4 To Shift 0 

18765 Clock 2 Note 5 Note 5 -18 

lEN HIGH Clock 10 Note 2 Note 2 0 To Prevent Writing Into 0 

lEN LOW Clock NA NA 10 -5 To Write into 0 
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CHAPTER IV 
THE DATA PATH 

The previous CPU example (See Chapter III) utilized SSI and MSI 
components to accomplish the shift-linkage, carry control, and 
status register functions associated with the ALU. These func­
tions can all be implemented with the Am2904 status and shift 
control unit. 

The Am2904 is an LSI device that contains all the logic necessary 
to perfonn the shift and status control operations associated with 
the ALU portion of a microcomputer. These operations include 
storage for ALU status flags; carry-in generation and selection; 
data-path, carry bit linkage for shift/rotate instructions; and status 
condition code generation and selection. The ALU status flags: 
carry, zero, negative, and overflow; may be stored in either oftwo 
registers, a machine status register or a micro status register. The 
carry-in multiplexer can select the true or complement of the 
microstatus carry flag or machine status carry flag, as well as an 
external carry, a logical one, or a logical zero. The shift linkage 
multiplexers provide paths to rotate/shift single and double length 
words up, down, around the carry flag, and through the carry flag. 
The status condition code multiplexer provides tests on the true or 
complement of any status flag, as well as more complicated 
logical combinations of these flags to facilitate magnitude com­
parisons on unsigned and two's complement numbers, and nor­
malization operations. 

STATUS REGISTERS 

The status registers contained in the Am2904 are shown in the 
upper portion of Figure 1. Each register is independently con­
trolled by a combination of instruction signals and enable signals. 

MICRO STATUS REGISTER o.SR) 

The p.SR is enabled when the CEp. signal is low. When CEp. is low 
the instruction present on 15 through 10 will be executed on the 
LOW to HIGH transition of the Clock input. These instructions fall 
into three main categories: Bit Operations, Register Operations 
and Load Operations. 

The bit operations allow individual bits of the p.SR to be set or 
reset. (See Table 1.1). 

The register operations allow the p.SR to be loaded from the 
machine status register, to be set to all one's, reset to all zero's, or 
swapped with the machine status register. (See Table 1.2). 

The load operations allow the p.SR to be loaded from the I inputs 
directly, from the I inputs with Ie complemented, or from the I 
inputs with overflow retained, 10VR + P.OVR -+ ILOVR (See Table 
1.3). The load operation with Ic complemented can be used to 
emulate machines which use direct subtraction and thus need to 
complement the carry to obtain a borrow. The load with overflow 
retained allows a series of arithmetic instructions to be executed 
without the need for a check for overflow after each instruction. If 
an overflow occurred at any time during the series it will be 
"trapped." Thus a single test for overflow, althe end ofthe series, 
is all that is required. 

MACHINE STATUS REGISTER (MSR) 

The MSR is enabled when CEM is low. If CEM is low the in­
struction present on 15 through 10 will be executed on the LOW 
to HIGH transition of the Clock input. Additionally the individual 
bits of the MSR may be selectively enabled through the use of 
the Enable inputs Ez, Ec , EN and EoVR (See Figure 1). This 
allows all possible combinations of the four status flags to be 
selectively operated on for maximum flexibility. Thus the in­
struction specified by 15-10 only effect the enabled status flags. 

~
C' 

'C 
Me M~X Co 

o POL , 

,. 
CT 

"INTERNAL 

Figure 1. Am2904 Block Diagram. 

The MSR instructions fall into two main categories: register op­
erations and load operations (bit operations can be implemented 
through the use of the selective enable control lines). 

The register operations allow the MSR to be loaded from the 
bi-directional Y port, or the p.SR. Additionally the MSR may be 
set, reset, or complemented (See Table 2.1). These three in­
structions, combined with the selective enables, allow any com­
bination of MSR bits to be set, reset, or complemented. 

The load operations allow the MSR to be loaded directly from the I 
inputs, from the I inputs with Ic complemented, or from the I inputs 
for shift through overflow (See Table 2.2). The load with Ic com­
plemented can be used to produce a borrow. The load for shift 
through overflow loads the zero flag and the negative flag from 
the I inputs while swapping the overflow and carry flags. This 
allows the shift through overflow operation to be easily im­
plemented. 

SHIFT UNKAGE MULTIPLEXERS 

The shift linkage multiplexers control bi-directional shift lines 
SIOn, SIOo (RAM shifter on the Am2903) and OIOn, 0100 (0 
register shifter on the Am2903). To enable the shift linkage mUl­
tiplexers the shift enable line SE must be low. When SE is low the 
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1543210 

Octal 

10 

11 

12 

13 

14 

15 

16 

17 

1543210 

Octal 

00 

01 

02 

03 

1543210 
Octal 

06,07 

30,31 
50,51 
70,71 

04,05 
20·27 
32·47 
52·67 
72·77 

TABLE 1. MICRO STATUS REGISTER 
INSTRUCTION CODES. 

Table 1-1. Bit Operations. 

!-,SR 

Operation 
Comments 

0 -+ /LZ RESET ZERO BIT 
1 -+ /LZ SET ZERO BIT 
0 -+ /LC RESET CARRY BIT 
1 -+ /LC SET CARRY BIT 
0 -+ /LN RESET SIGN BIT 
1 -+ /LN SET SIGN BIT 
0 -+ /LOVR RESET OVERFLOW BIT 
1 -+ /LOVA SET OVERFLOW BIT 

Table 1-2. Register Operations. 

!-,SR 
Comments 

Operation 

Mx -+ !-'x LOAD MSR TO /LSR 
1 -+ /LX SET /LSR 

Mx -+ /LX REGISTER SWAP 
0 -+ /LX RESET /LSR 

Table 1-3. Load Operations. 

!-,SR 
Comments 

Operation 

Iz -+ /LZ 
Ic -+ /LC LOAD WITH 
IN -> /LN OVERFLOW RETAIN 

10VA + /LOVA -> /LOVA 

Iz -+ /LZ 
Ic -+ /LC LOAD WITH 
IN -+ /LN CARRY INVERT 
10VR -> /LOVA 

Iz -+ /LZ 
Ic -+ /LC LOAD DIRECTLY 
IN -> /LN FROM 

10VA -+ /LOVA Iz, Ic, IN, 10VA 

Note' The above tables assume CE is LOW. 

shift linkage data path will be set-up depending on the state of 
instruction lines 110 through 16 (See Table 3). These instructions 
allow single length or double length shifts/rotates either up, or 
down. Additionally shifts/rotates may be done through or around 
the MSR carry and negative flag. Special operations exist to 
provide support for add and shift (multiply) instruptions. These 
instructions select the present carry Ic (for unsigned multiply), 
or the Exclusive-OR of the sign flag In with the overflow flag 
10VA (for two's complement multiplication). 

CONDITION CODE MULTIPLEXER 

The condition code multiplier selects one of sixteen possible 
logical combinations of the !-,SR, MSR or I inputs, depending on 
the state of the 15-10 input lines. These combinations include the 
true or complement fonm of any individual bit in the !-,SR, MSR or I 
inputs. Additionally several more complicated logical operations 
may be performed to provide magnitude tests on both two's 

complement numbers and unsigned numbers. Table 5 lists the 
conditional test outputs (CT) corresponding to the state ofthe klo 
instruction lines. Table 6 lists the possible relations between two 
unsigned or two's complement numbers and the corresponding 
status and instruction codes. The three-state conditional test 
output CT is active only if OECT is low. 

CARRY IN MULTIPLEXER 

The Carry output can be selected from one of seven different 
sources depending on the state of instruction input lines. The 
seven possible sources are: logical zero, logical one, the !-,SR 
carry flag, the complement of the !-,SR carry flag, the MSR carry 
flag, the complement of the MSR carry flag, or the external carry 
input Cx (See Table 4). 

1543210 

Octal 

00 

01 

02 

03 

05 

1543210 

Octal 

04 

10, 11 

30,31 

50,51 
70,71 

06, 07 
12·17 
20·27 
32·37 
40·47 
52·67 
72·77 

TABLE 2. MACHINE STATUS REGISTER 
INSTRUCTION CODES. 

Table 2-1. Register Operations. 

MSR 
Comments 

Operation 

Yx -> Mx 
LOAD Yz, Yc, YN, YOVA 
TOMSR 

1 -+ Mx SET MSR 

/LX -+ Mx REGISTER SWAP 

o -> Mx RESET MSR 

Mx -+ Mx INVERT MSR 

Table 2-2. Load Operations. 

MSR 
Comments 

Operation 

Iz -> Mz LOAD FOR SHIFT 
MOVR -> Mc THROUGH OVERFLOW 
IN -+ MN OPERATION 
Mc -+ MOVA 

Iz -+ Mz 
Ic -> Mc LOAD WITH 

IN -> MN CARRY INVERT 

10VA -> MOVA 

Iz -> Mz 
Ic -> Mc LOAD DIRECTLY 
IN -+ MN FROM Iz, Ic 
10VA -+ MOVA IN,IOVA 

Note' 1. The above tables assume CEM, Ez, Ec, EN, EOVA are LOW. 

Y INPUT/OUTPUT LINES 

The bi-directional Y data lines may be used for extra data input 
lines when the Y output buffer is disabled (OEy high). 
Additionally, when klo are low, the Y buffer is disabled, irre­
spective of the OEy signal. When the Y buffer is enabled (OEy 
is low) the Y data lines are selected from the MSR, !-,SR, or I 
input lines depending on the state of instruction lines 15 and 14 
(See Table 7). 
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TABLE 3. SHIFT LINKAGE MULTIPLEXER INSTRUCTION CODES. 

110 19 18 17 16 MC RAM a 5100 SIOn alOo alOn 
Loaded 
into Mc 

MSB '-SB MSB LSB 
0 0 0 0 0 o '-C=::J- '-C=::J- z 0 z 0 

0 0 0 0 1 o '-c=::J-'-c=::J- z 1 Z 1 

0 0 0 1 0 D ,=EJJ.N-c=::J- z 0 Z MN 5100 

0 0 0 1 1 D'~ z 1 Z 5100 

0 0 1 0 0 ~ Z Me Z 5100 

0 0 1 0 1 D·N~ Z MN Z 5100 

0 0 1 1 0 D'~ z 0 Z 5100 

0 0 1 1 1 [],~ Z 0 Z 5100 0100 

0 1 0 0 0 ~ [EjJ Z 5100 Z 0100 5100 

0 1 0 0 1 6=E]J [EjJ Z Me Z 0100 5100 

0 1 0 1 0 0 [EjJ [EjJ Z 5100 Z 0100 

0 1 0 1 1 D'c~ Z Ie Z 5100 

0 1 1 0 0 o I I I jJ Z Me Z 5100 0100 

0 1 1 0 1 ~ Z 0100 Z 5100 0100 
IN el IOVR 

0 1 1 1 0 0 ~ Z IN EEl IOVR Z 5100 

0 1 1 1 1 0 Y I I jJ Z 0100 Z 5100 

MSB LSB MSB LSB 
1 0 0 0 0 o----c=:J-. -c::=::::J-' 0 z 0 Z 510n 

1 0 0 0 1 o----c=:J-' ~-, 1 Z 1 Z 510n 

1 0 0 1 0 0 -c::=J-' -c=J-' 0 z 0 Z 

1 0 0 1 1 0 ~-, -c::=::::J-' 1 Z 1 Z 

1 0 1 0 0 D~' OIOn Z 0 Z 510n 

1 0 1 0 1 D~' OIOn Z 1 Z 510n 

1 . 0 1 1 0 0 ~, OIOn Z 0 Z 

1 0 1 1 1 0 ~, OIOn Z 1 Z 

1 1 0 0 0 ~ CGJ 510n Z OIOn Z 510n 

1 1 0 0 1 6=E]J CGJ Me Z OIOn Z 510n 

1 1 0 1 0 0 CGJ CGJ 510n Z OIOn Z 

1 1 0 1 1 0 -l-jJ -c==J-' Me Z 0 Z 

1 1 1 0 0 o I-I l-jJ OIOn Z Me Z 510n 

1 1 1 0 1 o I I I 1- jJ OIOn Z 510n Z 510n 

1 1 1 1 0 [] -l I 1- ~ OIOn Z Me Z 

1 1 1 1 1 0 Y -I I-~ OIOn Z 510n Z 

Notes 1., Z = High Impedance (outputs 011) state. 3. loading 01 Me from 110-6 overrides controllrom 15•0• CEM• Ee· 
2. Outputs enabled and Me loaded only if SE is LOW. 
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TABLE 4. CARRY-IN CONTROL MULTIPLEXER INSTRUCTION CODES. 

1'2 I" 15 13 12 I, Co 

0 0 X X X X 0 

0 1 X X X X 1 

1 0 X X X X Cx 

1 , 0 0 X X /LC 

1 1 0 X 1 X /LC 

1 1 0 X X 1 /LC 

1 1 0 , 0 0 iIc 

1 1 1 0 X X MC 

1 1 , X 1 X MC 

1 1 1 X X 1 MC 

1 1 , 1 0 0 MC 

TABLE 5. CONDITION CODE OUTPUT (CT) INSTRUCTION CODES. 

13-0 
13 12 I, 10 15=14=0 15 = 0, 14 = 1 15 = 1,14 = 0 15 = 14 = 1 HEX 

0 0 0 0 0 (/LN$/LOVR) + /LZ (/LN $/LOVR) + /LZ (MN $ MOVR) + MZ (IN $ IOVR) + Iz 
1 0 0 0 1 (/LN<!)/LOVR) • ji.z (/LN0/LOVR) • ji.z (MN<!) MoVR) • Mz (IN<!) IOVR) • Tz 
2 0 0 1 0 /LN$/LOVR /LN$/LOVR MN$ MOVR IN$ IOVR 
3 0 0 1 1 /LN0I'-OVR /LN0I'-OVR MN<!)MoVR I~IOVR 
4 0 1 0 0 /LZ /LZ Mz Iz 
5 0 1 0 1 iLz iIz Mz Tz 
6 0 1 1 0 I'-OVR /LOVR MOVR IOVR 
7 0 1 1 1 /lOVR iZOVR MOVR TOVR 
8 1 0 0 0 /LC + /LZ /LC +/Lz Mc + Mz Tc + Iz 
9 1 0 0 1 ji.c·ji.z iIc· iIz Mc·Mz Ic·Ti 
A 1 0 1 0 /LC /LC Mc Ic 
B 1 0 1 1 iIc iIc Mc Tc 
C 1 1 0 0 iIc + /LZ iIc + /LZ Mc+ Mz Tc + Iz 
D 1 1 0 1 /Lc· jZz /LC ·iIz Mc·Mz Ic·Ti 
E 1 1 1 0 IN$ MN /LN MN IN 
F 1 1 1 1 IN<!)MN iIN MN IN 

Notes 1 $ Represents EXCLUSIVE-OR o Represents EXCLUSIVE-NOR or coincIdence. 

TABLE 6. CRITERIA FOR COMPARING TWO NUMBERS FOLLOWING "A MINUS B" OPERATIONS. 

For Unsigned Numbers For 2's Complement Numbers 

13-0 13-0 

Relation Status CT = H CT = L Status CT= H CT = L 

A=B Z = 1 4 5 Z = 1 4 5 

A=B Z=O 5 4 Z=O 5 4 

A"'B C=1 A B N00VR = 1 3 2 

A<B C=O B A N (B OVR = 1 2 3 

A>B C·Z = 1 D C (N00VR). Z = 1 1 0 

A .. B C+Z=1 C D (N (B OVR) + Z = 1 0 1 

(B = ExclusIve OR H = HIGH Note For Am2910. the CC input is actove LOW. so use 13-0 code to produce 
o = ExclusIve NOR L = LOW CT = L for the deSired test. 



TABLE 7. Y OUTPUT INSTRUCTION CODES. 

OEy 15 14 Y OUtput Comment 

1 X X Z 
Output Off 
High Impedance 

0 0 X ILi ->- Yi See Note 1 

0 1 0 Mi ->- Yi 

° 1 1 Ii ->- Yi 

Notes' 1. For the conditions. 
~4' 13, 12, 11, 10 are LOW, Y IS an input. 
OEy IS "Don't Care" for thiS condition. 

2. X IS "Don't Care" condition. 

TIMING ANALYSIS 

In the previous chapter a timing analysis was presented with the 
shift·linkage, carry-control, and status registers implemented in 
SSI and MSI. ThiS timing analysis will be repeated with the SSI 
and MSllogic replaced with the Am2904. Tables 8.1, 8.2, 8.4 and 
8.5 list the typical AC characteristics of the registers, Am2902A, 
Am2901A, Am2903, and Am2904 used In these calculations. 
Table 8.3 lists the assumed AC characteristics for the set-up time 
of the Am2904. 

Figure 2 illustrates the timing analysis for an Am2g01 A based 
design. The analysis begins with the LOW to HIGH transition of 
the system clock. All Signals must be valid for the next LOW to 
HIGH transition of the system clock, i.e. one-mlcrocycle later. 

Figure 3 Illustrates a similar timing analysIs for the Am2903. The 
results of both analysIs are listed in Table g. 

USING THE Am29041N A 16-BIT DESIGN 

Perhaps the best technique for understanding the Am2904 is to 
simply compare 16-bit ALU designs with and without the 
Am2904. The first design, Figure 4a, is an example of a 16-bit 
CPU design using SSI/MSI parts instead of the Am2904. In 
Figure 4b, the second 16-bit CPU design, the Am2904 is shown 
replacing the SS I/MSI. The Am2904 substitutes for the appro­
pnate shift matrix control and status registers. A more detailed 
comparison may be obtained by referring to the 16-blt ALU de­
signs in Chapter III and the one in Appendix C ofthis chapter. To 
understand the Am2904 further, the usage of the Am2904 is 
described through the microprogram bits in the microprogram 
structure and shown later In the actual microprograms. 

TABLE 8-1. STANDARD DEVICE SCHOTTKY SPEEDS. 

Device and Path Min. Typ, Max. 

S-REGISTER 
Clock to Output 9 15 
OE to Output 13 20 
Set-up 5 2 

Am2902A 
Cn to Cn+x, Y, Z 7 11 
G, Pta G, P 7 10 
G, Pta Cn+x, Y, Z 5 7 

TABLE 8-2. 

PRELIMINARY SWITCHING CHARACTERISTICS. 

Combinational Delays (ns) 

From (Input) To (Output) tpd 

Iz Yz 
Ie Ye 20 
IN YN 
IOVR YOVR 

CP Yz, Ye, YN, YOVR 30 

14, 15 Yz, Ye, YN, YOVR 23 

Iz, Ie, IN, 10VR CT 30 

CP CT 30 

10-15 CT 30 

Cx Co 12 

CP Co 20 

11,2,3,5,11,12 Co 24 

SIOn,OIOn SIOo 16 

SIOo' 0100 SIOn 16 

Ie, IN, IOVR SIOn 20 

SIOn,OIOn 0100 16 

SIOo, 0100 OIOn 16 

CP 
SIOo, SIOn 21 
OIOo,OIOn 

16-110 
SIOo, SIOn 
OIOo,OIOn 

19 

TABLE 8-3. ASSUMED SET-UP TIME.' 

Input 

IOVR, IZ, IN, IC 

'The actual set-up times where not available at the time thiS was wntten. 
See current data sheets for correct timing on these signals. 
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TABLE 8-4. 

TABLE I 
Am2901A - (MAY 18,1978) 

ROOM TEMPERATURE 
SWITCHING CHARACTERISTICS CYCLE TIME AND CLOCK CHARACTERISTICS 

Tables I, II, and III below define the timing characteristics of 
the Am2901 A at 25°C. The tables are divided into three types 
of parameters; clock characteristics, combinational delays 
from inputs to outputs, and set-up and hold time require­
ments. The latter table defines the time prior to the end of the 
cycle (i.e., clock LOW-to-HIGH transition) that each input must 
be stable to guarantee that the correct data is written into one 
of the internal registers. 

TIME TYPICAL GUARANTEED 

All values are at 25°C and 5.0V. Measurements are made at 
1.5V with V1L = OV and V1H = 3.0V. For three-state disable 
tests, CL = 5.0pF and measurement is to 0.5V change on 
output voltage level. All outputs fully loaded. 

Read·Modify-W"te Cycle 
(time from selection of 
A, B reg"ters to end of 
cycle) 

Maximum Clock Frequency to 
Shift Q Register (50% duty 
cycle) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

M,nimum Clock Period 

TABLE II 

55ns 

40MHz 

30ns 

30ns 

75ns 

COMBINATIONAL PROPAGATION DELAYS (all in ns, CL = 50pF (except output disable tests)) 

TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V 

~ 
Shift 

F=O Outputs F=O 
F Output Y F3 Cn+4 G,P RL= OVR Y F3 Cn+4 G,P RL= OVR rom 
Input 270 RAMO 00 270 

RAM3 03 

A,8 45 45 45 40 65 50 60 - 75 75 70 59 85 76 

D(anthmetic mode) 30 30 30 25 45 30 40 - 39 37 41 31 55 45 

D (I = X37) (Note 5) 30 30 - - 45 - 40 - 36 34 - 51 
Cn 20 20 10 - 35 20 30 27 24 20 46 26 

1012 35 35 35 25 50 40 45 - 50 50 46 41 65 57 

1345 35 35 35 25 45 35 45 - 50 50 50 42 65 59 

1678 15 - - - - - 20 20 26 - - - - -
OE EnablelDlsable 20/20 - - - - - - - 30/33 - - - - -
A bypassing 

30 - - - - - - - 35 - - - - -
ALU (I = 2xx) 

Clock S (Note 6) 40 40 40 30 55 40 55 20 52 52 52 41 70 57 

TABLE III 

SET-UP AND HOLD TIMES (all In ns) (Note 1) 

93ns 

20M Hz 

30ns 

30ns 

93ns 

Shift 
Outputs 

RAMO 00 
RAM3 03 

90 -

59 -
53 

45 

70 -

70 -
26 26 

- -
- -

71 30 

From Input Notes 
TYPICAL 25°C, 5.0V GUARANTEED 25°C, 5.0V 

Set-Up Time Hold Time Set-Up Time Hold Time 
A,8 2,4 40 93 
Source 3,5 tpwL + 15 0 tpwL + 25 0 

8 Dest. 2,4 tpwL + 15 0 tpwL + 15 0 
D (arithmetic mode) 25 0 70 0 
D (I = X37) (Note 5) 25 0 60 0 
Cn 40 0 55 0 

1012 30 0 64 0 

1345 30 0 70 0 

1678 4 tpwL + 15 0 tpwL + 25 0 
RAMO, 3, QO, 3 15 0 20 0 

Notes: 1. See next page. 
2. If the B address is used as a source operand, allow for the "A. B source" set-up time, if It IS used only for the destination address, use the 

"8 dest." set-up time. 
3. Where two numbers are shown, both must be met. 
4. "tpwL" IS the clock LOW time 
5. DVa is the fastest way to load the RAM from the 0 inputs. This function IS obtained with I = 337 
6. Using Q register as source operand in arithmetIc mode. Clock is not normally in cntical speed path when Q IS not a source. 



TABLE 8-5. 

A. Am2903 SWITCHING CHARACTERISTICS (TYPICAL ROOM TEMPERATURE PERFORMANCE) - (MAY 18, 1978) 

Tables lA, IIA, and lilA define the nominal timing characteris­
tiCS of the Am2903 at 25"C and 5.0V. The Tables divide the 
parameters into three types' pulse characterlsllcs for the 
clock and write enable, combinational delays from Input to 
output, and set-up and hold times relative to the clock and 
write pulse 

TABLE IA - Write Pulse and Clock Characteristics 

Time 

MInimum Time CP and WE both LOW 15ns 

Measurements are made at 1.5V with VIL = OV and VIH = 

3.0V For three-state disable tests, CL = 5.0pF and mea­
surement IS to 0 5V change on output voltage level. 

to write 

Minimum Clock LOW Time 

MInimum Clock HIGH Time 

TABLE IIA - Combinational Propagation Delays (All in ns) 
Outputs Fully Loaded. CL = 50pF (except output disable tests) 

15ns 

35ns 

SIOo ~t 
From Input y Cn+4 G,P (S) Z N OVR DB WRITE QIOo, QI03 SIOo SI03 (Parity) 

A, B Addresses 
65 60 56 ~ 64 70 33 - - 65 69 87 

(Arith. Mode) 

A, B Addresses 
56 - 46 ~ 56 - 33 - - 55 64 81 

(LogiC Mode) 

DA, DB Inputs 39 38 30 ~ 40 56 - - - 39 47 60 

EA 38 33 26 ~ 36 41 - - - 36 41 58 

Cn 25 21 - ~ 20 38 - - - 21 25 48 

10 40 31 24 ~ 37 42 - 15(1) - 41 39 63 

14321 45 45 32 ~ 44 52 - 17(1) - 45 51 68 

18765 25 - - ~ - - - 21 22/29(2) 24/17(2) 27/17(2) 24/17(2) 

lEN - - - - - - - 10 - - - -

OEB Enable/Disable - - - ~ - - 12/15(2) - - - - -

OEY Enable/Disable 1'4/'4(2) - - - - - - - - - - -
SIOo, SI03 13 ~ - ~ ~ - - - - - 19 20 

Clock 58 57 40 ~ 56 72 24 - 28 56 63 76 
t-----

Y ~ ~ ~ 16 ~ ~ ~ ~ ~ ~ ~ 
~ 

MSS 25 ~ 25 ~ 25 25 ~ ~ 
~ 24 27 24 

Notes 1 Applies only when leaVing special functions 
2 Enable/Disable Enable IS defined as output active and correct. Disable IS a three-state output turning off 
3 For delay from any Input to Z, use Input to Y plus Y to Z. 

TABLE iliA - Set-Up and Hold Times (All in ns) 
CAUTION: READ NOTES TO TABLE III. NA = Note Applicable; no timing constraint. 

HIGH-ta-LOW LOW-ta-HIGH 

Input 
With Respect to ~--~ Comment 

to this Signal Set-up Hold Set-up Hold 

Y Clock NA NA 9 -3 To store Y in RAM or a 
WE HIGH Clock 5 Note 2 Note 2 0 To Prevent Writing 

WE LOW Clock NA NA 15 0 To Write Into RAM 

A,B as Sources Clock 19 -3 NA NA See Note 3 

B as a Destination Clock and WE both LOW -4 Note 4 Note 4 -3 
To Write Data only into 
the Correct B Address 

0100, 0103 Clock NA NA 10 -4 To Shift a 
18765 Clock 2 Note 5 Note 5 -18 

lEN HIGH Clock 10 Note 2 Note 2 0 To Prevent Writing Into a 
lEN LOW Clock NA NA 10 -5 To Write into a 

" 
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CLOCK 

INSTRUCTIONS 

LOGIC OPERATION 
SPEED COMPUTATIONS 

DEVICE NO. DeVICE PATH 

S-REG CP toa 
2901. READ-MODiFY-WRITE 
2901A AB - Y 
2901. AB - Zero 
2904 SET-UP I 
S-REG SET-UP 0 

TOTAL-ns 

CLOCK 

INSTRUCTIONS 

ARITHMETIC OPERAnON 
SPEED COMPUTAnON$ 

DeVICE NO. DEVICE PATH 

5-REG CPtoQ 
2901,1\ ABtoGP 
2902A GPto Cn+)(yz 
2901A SET·UP en 
2901. entoY 
2901A Cn to Zero 
2904 SET-UP I 
5-REG SET-UP 0 

TOTAl-ns 

PATH 1 

55 

64 

PATH 1 

9 
40 

5 
40 

94 

PATH 2 PATH 3 

45 
65 

20 

56 94 

DA,DB 

SHIFT 

Cn+4 

,-------.F3 

OVR 

PATH 2 PATH 3 

9 
40 40 

5 5 

20 
35 
20 

76 109 

Figure 2-1. 

Figure 2-2. 

CLOCK 

CLOCK 

Cn+z 

PATH 1 
PATH 2 
PATH 3 

PATH 1 
PATH 2 
PATH 3 

G P 
CARRY 

Am2902A en 1-------

CARRY 



01 10 
J 

REGISTER 
CLOCK 

I~S fR 

0 
,,-~ "---"~~-"~ 

I 
CLOCK -r> SI'" "'" 

OA, DB A, ,I OA, DB A,B, 

<s.!On 
CLOCK CLOCK ,;,w;: t==-I SHIFT 1< I-- - I> 

Am2904 leJ-- ! 
Cn+4 IAm2901~ . . . . Am2901Aj 

Int-- F3 ,--
IOVR I "": OVR 

y I INSTRUCTIONS --I;; 10-1 12 CT Iz Iz- Cn Cnl-
13 J-- y 

I r-__ ~IJ 
LOGIC OPERATION WITH SHIFT o C---~~'~ 
SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 PATH 2 PATH 3 ~ DATA OUT 
Cn+z G P 

S-AEG CPtoQ 9 
2901A AS to RAMOO 60 
2904 SIOo to SIOn 16 
2901A SET-UP RAM03 15 
2901A ABtoY -
2901A ABlo Z -
2904 SET-UP I -
S-REG SET-UP D -
TOTAL-ns 100 

CLOCK 

INSTRUCTIONS 

TWO'S COMPLEMENT 
ARITHMETIC OPERATION 
WITH SHIFT DOWN SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 

S-REG CPtoQ 
290M ABtoGP 4() 

2902A GP to Cn+)(yz 
290M Cn to F3, OVA 20 
2904 IN, IOVR to 510n 24 
2901 A SET-UP AAM3 15 
2901A CnloY 
2901A Cn to Zero 
2904 SET-UP 1 
S-REG SET-UP 0 

TOTAL-ns 113 

9 9 
- -

- -
- -

45 -

- 65 
- 20 
2 -

56 94 

4() 40 
5 

20 
35 
20 

76 109 

REGISTER 

10 

Figure 2·3. 

Figure 2·4. 

PATH 1 
PATH 2 
PATH 3 

PATH 1 
PATH 2 
PATH 3 

Am2902A Cn 
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CLOCK 

INSTRUCTIONS 

MAGNITUDE ONLY ARITHMETIC OPERATION 
WITH SHIFT DOWN SpeED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 

S·AEG CPto Q 
2001A ABto GP 40 
2902A GPto Cn + xyz 
2901A Cnto Cn+4 10 
2904 ICto SIOn 24 
2901A SET-UP RAM3 15 
2901A Cnto Zero 
2901A SET-UP r 

TOTAL-ns 100 

CLOCK 

INSTRUCTIONS 

LOGIC OPERATiON 
SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 

S-REG CPto Q 

2903 A,Bta Y 56 
2903 VIoZ 
2904 SET-UP I 
S-REG SET-UP 0 
2903 SET-UP Y 

TOTAl-ns ., 

PATH 2 

9 
40 
5 

35 
20 

109 

SIOo 
SIOn 

IOVR 

Iz 

PATH 2 PATH 3 

56 56 ,. 
20 

101 74 

CLOCK 

CLOCK 

Figure 2-5. 

CLOCK 

OA. DB 

CLOCK 
SHIFT 

Ami, Cn+4 

F3 I OVR 

Figure 3-1. 

CLOCK --i"'_;(l 

CLOCK 

PATH 1 
PATH 2 

CLOCK 

Cn+z 

PATH 1 
PATH 2 
PATH 3 

Am2902A en 

G P 

Am2902A en 

CARRY 

CARRY 



CLOCK 

INSTRUCTIONS 

ARITHMETIC OPERATION - 16-BIT 
SPEED COMPUTATIONS 

DEVICE NO. DEVICE PATH PATH 1 

S·REG CPtoQ 9 
2903 A,Bta G,P 56 
2902A G,P to Cn+xyz 
2903 Cnto Y 25 
2903 Cn to OVR 
2903 Ytol ,. 
2904 SET-UP IOVA, IZ 20 
2903 SET-UP Y 

TOTAL-ns 131 

CLOCK 

INSTRUCTIONS 

LOGIC OPERATION WITH SHIFT 
SpeeD COMPUTATIONS 

DEVICE NO. DEV1CE PATH PATH 1 

S-REG CPtoQ 
290' A,Bto SO 84 
2909 5100 to SIOn 18 
2903 53toY 13 
2903 Ytol 18 
2904 SET-UP I 20 
2903 SET·UP Y 

TOTAl-ns 136 

SIOO 

SIOn 

Ie 

In 

SHIFT 

Cn+4 

F3 

IOVR r::::==:::Lll 
Iz 

PATH 2 PAlH3 

56 56 

25 
38 

20 

128 104 

PATH 2 PATH 3 

84 84 
18 

13 13 
18 
20 

122 111 

Figure 3-2. 

Figure 3-3. 

PATH 1 
PATH 2 
PATH 3 

Cn+z 

PATH 1 
PATH 2 
PATH 3 
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CLOCK 

INSTRUCTIONS 

ARITHMETIC OPERAOON 
TWO'S COMPLEMENT 
WITH SHIFT DOWN - 16-BIT SPEED COMPUTAnONS 

DEVICE NO DEVICE PATH PATH 1 PATH 2 

8-REG CPtoQ • • 2903 A,Bto G,P 56 56 
'902A GPtoCn+xyz 5 
2903 CntoSIOO 21 
2903 8103 to y 13 
2903 Cn 10 N, OVR 38 ,- IOVR,INto SlOn '4 
2903 810310 Y 13 
2903 VIDZ ,. 

" 2903 SET-UP Y ,_ SET-UP I ,. ,. 
TOTAL-ns 12. ,., 

CLOCK 

INSTRUCTIONS 

MAGNrruDE ONLY ARITHMETIC OPERATION 
WITH SHIFT OOWN SPEED COMPUTAnONS 

DEVICE NO. DEVICE PATH PATH 1 PATH 2 

8-AEG CPtDQ • 
2903 A,BwO,P 56 .. 
2902A GPto Cn+xyz , , 
'903 Cnto Cn+4 21 21 
2904 IC10 810n 20 ,. 
2903 SlOtoV 13 13 
.903 VbZ ,. 
2904 SET·UP I • 
2903 SET-UP Y 

TOTAl-os 14, 133 

CLOCK 

38 
24 
13 

154 

Figure 3-4. 

CLOCK 

Figure 3-5. 

PATH 1 
PATH2 ------­
PATH3 -----

Am2902A Cn 

PATH 1 
PATH2 ------

CARRY 
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12 

IJOCONTROL 

COMPUTER CONTROL 
UNIT (CCU) 

MICROPROGRAM 
MEMORV 

,. 

,. 

12 

Am2904 
STATUS AND SHIFT 

CONTROL UNIT 

Figure 4b. 

TABLE 9. TIMING ANALYSIS SUMMARY (n8). 

Operation Am2901 A Am2903 

Logic 94 101 

Arithmetic 109 131 

Logic w/Shift 100 138 

Two's Complement 
Arithmetic with 113 161 
Shift Down 

Magnitude only 
Arithmetic with 109 142 
Shift Down 

THE Mtc:AOPROGRAM STRUCTURE 

The functions of the pipelined (PL) microprogram bits are il­
lustrated in Figure 5 and as follows: 

Bits,PLO ThiS is a shared control field, The field is used 
through PL 11 for branching to a microprogram address or to 

load the CCU counter or control bits for I/O. 

Bit PI:.12 

Bit PL13 

The shared control field is determined by 
PL12, LOW for branching and counting or 
HIGH for I/O control. 

When LOW, enables the WRITE output and 
allows the Q Register and Sign Compare flip-
flop to be written into. . 

Bits PL14 
and PL15 

The CElt and SE control inputs of the Am2904, 
respectively. CElt enables the Micro Status 
Register. SE enables the Am2904 shift opera-
tions. 

Bits PL 16 CCU Next Address. 
through' PL19 

Bits PL20 CCU Multiplex test select. 
through PL23 

Bit PL24 This bit determines the polarity of the incoming 
test signal to the CCU. 

Bit PL25 Active LOW Instruction Register enable. 

Bits PL26 CCU mUlti-way branching select. 
through PL29 

Bits PL30 Selects the ALU operand sources. 
through PL32 

Pl31l PL31 PL32 ALU Operand R ALU Operand S 

L L L RAM Output A RAM Output B 

L L H RAM OutpulA D80_3 

L H X RAM Output A Q Register 

H L L DAo_3 RAM Output 8 

H L H OAo-3 0i\0..3 
H H X OAo-3 Q ReQlSter 

L= LOW x = Don't Care 



Bits PL33 Selects the ALU functions. 
through PL36 

14 13 12 

L L 

L L 

L L 

L L 

L H 

L H 

L H 

L H 

H L 

H L 

H L 

H L 

H H 

H H 

H H 

H H 

Bits PL37 
through 40 

'8 '7 '6 
L 

f-c. 
L 

H L 

I-H-l 

H 

H 

'L 

H 

H 

L 

L 

H 

H 

L 

L 

H 

H 

L 

L 

H 

H 

L 

L 

H 

H 

IS 

11 Hex Code ALU Functions 

L 0 
10 - L I Special Functions 
10 ~ H J Fj ~ HIGH 

H 1 F ~ S Minus R Minus 1 Plus Cn 
L 2 F - R Minus S Minus 1 Plus Cn 
H 3 F - R Plus S Plus Cn 
L 4 F - S Plus Cn 
H 5 F-SPlusCn 
L 6 F - R PlusCn 
H 7 F - R PlusCn 
L B Fj - LOW 

H 9 Fj - Rj AND Sj 

L A Fj - Rj EXCLUSIVE NOR Sj 
H B Fj - Rj EXCLUSIVE OR Sj 

L C Fj - Rj ANDSj 

H D Fj - Rj NOR Sj 

L E Fj ~ Rj NAND Sj 

H F Fj - Rj OR Sj 

H ~ HIGH 

Selects the ALU destination controls. 

He. Special 

Ie .., I. IS Code Function 

L L UnSigned Multlply 

L L H L 
Two's Complement 
Multiply 

L H L L 
Incramentby 
One or Two 

L H L H 
SlgniMagnrtude-
Two's Complement 

L H H L 
Twos Complement 
MUltiply, Last Cycle 

H L L L 
Single Length 
Normalize 

Double Length 
H L H L Normalize and 

First Divide Op 

H H L L C 
Two's Complement 

DlvJde 

Two's Complement 

H H H L DIVide, CorrectIOn 
and Remainder 

Sl03 Y3 

He. ALU Shifter Most Sig. Other Most Sig. Other 
Code Function Slice Slices Slice Slices 

Anlh F/2_Y Input Input F3 Sl03 
Log F/2_Y Input Input SI03 SI03 

Anth F/2_Y Inpul Input F3 5103 
log FI2_Y Input Input "r----SI03 5103 
F_Y Input Input F3 F3 
F_Y Input Input I F3 F3 
F_Y Input Input F3 ~. 
F-Y Input Input F3 ~~---r,;-- --.-, Anth 2F-Y F, F3 F, 

-9 log 2F ..... Y 
_. r--;"_. ~--.- -~-

F3 ~.- -~-- f--'" Anth 2F-Y F, 
--

~.- F3 F, -- j---log 2F ...... Y F3 F3 F, F, 

F-Y F3 -~t-~.J_--- F3 
F-Y F3 -~ F3 F3 

t-·F3 

SIOO ...... YO, Y1. Y2. Y3 ~~-
-- t---oo; 

f---~~ 5100 5100 
F_Y F3 

----r;;"---r-F;--
F3 

The Am2903 special functions can be selected by the following conditions: 
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Bits PL41 This 4-bit wide field is used for the A-address 
through PL44 source. 

Bits PL45 This 4-bit wide field is used for the B-address 
through PL48 source. 

Bits PL49 ThiS 4-blt wide field is the B destination ad-
through PL52 dress into which new data is written. 

Bit PL53 Am2903 control Input OEy . When LOW enables 
the ALU shifter output data onto the Y bus. 

Bits PL54 Am2904 instruction code field. 
through PL59 

Bits PL60 Am2904 shift linkage multiplexer instruction 
through PL63 code field. 

Bits PL64 Am2904 "carry-in" control multiplexer field. 
and PL65 

Bits PL66 The CEM , OECT , OEy control inputs of the 
through PL68 Am2904, respectively. 

Bit PL69 

Bit PL70 

Bit PL71 

Bit PL72 

Bit PL73 

This bit when LOW, enables bits PL74 through 
PL89 onto the Am2903 DA Bus. 

When LOW, zeros the carry in's to the Am2903 
slices. 

When HIGH, enables a status register used in 
BCD calculations. 

When LOW, clears the status register. 

When LOW, enables Am2909/11 registers. 

Bits PL74 ThiS field contains a 16-bit constant from mi­
through PL89 crocode that is passed to the Am2903's via 

the DA bus. Constant is enabled by PL69. 

10 OR 11 OR 12 OR 14 = HIGH, lEN = LOW 

Y2 o Reg • 
Most 51g. Other, Shifter 

Slice Slices LV1 YO SlOo Write Function 0103 0100 

Sl03 F3 ' F, F, Fo HoOd HI'Z HI'Z 

F3 F3 : F2 F, Fo Ho~ HI-Z HI-Z 

SI03 F3 F, F, Fo Log Q/2-0 Input 00 

F3 F3 F, F, Fo Log 0/2_Q Input 00 

F, F, F, Fo Panty Hold HI-Z Ht-Z 

F, F, F, Fo Panty Log 012_0 Input 00 

F, F, F, Fo Panty F-O H,-Z HI-Z 

--~- F, F, Fo Panty F-O HI'Z HI'Z 

F, F, F. SIOo Input Hold HI'Z HI'Z 

. F, F, FO SIOO Input Hold HI'Z HI-Z 

j--~~ F, Fo SIOo Input Log 20-0 03 Input 
1--:.-

Log 20-0 03 F, F, Fo SIOo Input Input 

F, F, F, Fo HI-Z Hold HI·Z HI·Z 

F, F, F, Fo HI-Z log 2Q-<l 03 Input 

."~9 5100 5100 5100 Input Hold HI'Z HI'Z 

F, F, F, Fo HI'Z Hold HI-Z Ht·Z 

10 ~ I, ~ 12 ~ 13 ~ 14 ~ LOW, lEN ~ LOW 
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SOME SAMPLE MICROROUTINES 

The following algorithms are implemented using the Am2903 
Superslices ™ and Am2904 status and shift control unit. The 
algorithms were developed with the aid of AMDASM on System 
29. All algorithms assume values and constants to be initialized 
prior to the entrance of the algorithms. Appendix A relates the 
actual microcode to the microword fields. Appendix B is the 
AMDASM Phase 1 and Phase 2 listings of the microprograms 
and the definitions of mnemonics. Figure 4b is a block diagram 
of the CPU hardware including the Am2904 Status and Shift 
Control Unit from which the microroutines were developed. A 
detailed diagram of the CPU hardware is in Appendix C. 

Normalization, Single- and Double-Length 

Normalization is used as a means of referencing a number to a 
fixed radix point. Normalization strips out all leading sign bits such 
that the two bits immediately adjacent to the radix point are of 
opposite polarity. 

Normalization is commonly used in such operations as fixed-to­
floating point conversion and division. The Am2903 provides for 
normalization by using the Single-Length and Double-Length 
Normalize commands. Figure 6a represents the Q Register of a 
16-bit processor which contains a positive number. When the 
Single-Length Normalize command is applied, each positive 
edge of the clock will cause the bits to shift toward the most 
significant bit (bit 15) olthe Q Register. Zeros are shifted in via the 
QIOO port. When the bits on either side of the radix pOint (bits 14 
and 15) are of opposite value, the number is considered to be 
normalized as shown in Figure 6b. The event of normalization is 
externally indicated by a HIGH level on the Cn+4 pin of the most 
significant slice (Cn+4 MSS ~ Q3 MSS V Q2 MSS) .. 

There are also provisions made for a normalization indication via 
the OVR pin one microcycle before the same indication is avail­
able onthe Cn+4 pin (OVR ~ Q2 MSSV Q1 MSS). This is for use 
in applications that require a stage of register buffering of the 
normalization indication. 

Since a number comprised of all zeros is not considered for 
normalization, the Am2903 indicates when wuch a condition 
arises. If the Q Register is zero and the Single-Length Normaliza­
tion command is given, a HIGH level will be present on the Z line. 

RADIX 

a) Unnormalized Positive Number. 

RADIX 

b) Normalized Positive Number. 

MPR-Q40 

Figure 6. 



The sign output, N, indicates the sign of the number stored in the 
o register, 03 MSS. An unnormalized negative number (Figure 
7a) is normalized in the same manner as a positive number. The 
results of single-length normalization are shown in Figure 7b. The 
device interconnection for single-length normalization is outlined 
in Figure 8. During single-length normalization, the number of 
shifts performed to achieve normalization can be counted and 
stored in one of the working registers. This can be achieved by 
forcing a HIGH at the Cn input of the least significant slice, since 
during this special function the ALU performs the function [6] + 
Cn and the result is stored in 6. Figure 9 illustrates the single­
length normalize. However, the microcode is shown in Figure 10. 
Microcode for both single and double normalization can be re­
duced by one step by testing for zero during passing of number 
into O. 

Normalizing a double-length word can be done with the Double­
Length Normalize command which assumes that a user-selected 

RADIX 

a REGISTER 

DEVICE 4 DEVICE 3 DEVICE 2 DEVICE 1 

a) Unnormalized Negative Single Length Number. 
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RAM Register contains the most significant portion of the word to 
be normalized while the 0 Register holds the least significant half 
(Figure 11.) The device interconnection for double-length nor­
malization is shown in Figure 12. The Cn+4, OVR, N, and Z 
outputs of the most significant slice perform the same functions in 
double-length normalization as they did in single-length normali­
zation excaplthat Cn+4, OVR, and N are derived from the output 
of the ALU of the most significant slice in the case of double­
length normalization, instead of the 0 Register of the most sig­
nificant slice as in single-length normalization. A high-level Z line 
in double-length normalization reveals thatthe outputs ofthe ALU 
and 0 Register are both zero, hence indicating that the double­
length word is zero. 

When double-length normalization is being performed, shift 
counting is done either with an extra microcycle or with an exter­
nal counter. Figure 13 illustrates the double-length normalize 
flowchart and Figure 14 shows the microcode. 

b) Normalized Negative Single Length Number. 

MPR-041 

Figure 7. 
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Figure 8. Single Length Normalize. 

Unsigned Multiply 

ThiS Special Function allows for easy implementation of unsigned 
multiplication. Figure 15 is the unsigned multiply flow chart. The 
algOrithm requires that imtlally the RAM word addressed by Ad­
dress port 6 be zero, that the multiplier be in the 0 Register, and 
that the multiplicand be i(l the register addressed by Address port 
A. The initial conditions for the execution of tlie algorithm are 
that: 1) register R, be reset to zero; 2) the multiplicand be in Ro 
and 3) the multiplier be In R,5' The first operation transfers the 

multiplier, R'5, to the 0 Register. The Unsigned Multiply instruc­
tion is then executed 16 times. During the Unsigned Multiply 
instruction, R1 is addressed by RAM address port 6 and the 
multiplicand is addressed by RAM address port A. 

When the unsigned Multiply command is given, the Z pin of 
device 1 becomes an output while the Z pins of the remaining 
devices are specified as inputs as shown in Figure 18. The Z 
output of device 1 is the same state as the least significant bit of 
the multiplier in the 0 Register. The Z output of device 1 informs 
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START 
NUMBER INQ 
TO BE NORMALIZED 

Figure 9. Single Length Normalize. 

013C 
0130 
013E 
013F 
0140 AGAIN 
0141 
0142 

SLN R2,R2,OFF & CONT & SHOLD 
MAl & T & CJP & GOTO ABORT 
MAC & T & LOW RO & CJP & GOTO END 
SLN R2,R2 & MAO & T & CJP ONE & GOTO END & SUL 
SLN R2,R2_& MIO & T & CJP ONE & GOTO AGAIN & SUL 
soap & SMS & CONT 
SRS R2,R2,RO & CONT 

RADIX 

END 
NORMALIZED NUMBER IN Q 
EXPONENT NUMBER IN R2 

MPR-043 

Figure 10. Figure 11. Double Length Word. 

(F3V'F2) 

(F2V'F,) 

F3 

F=(B]+Cn. 

b 0103 

MSS_ Cn+4 

MSS_ OVR Am2903 

MSS- N - SI03 
Z 

•• ". 00· 5, •• 0" 1 

Log.2F-->Y.B 

0100 

SIOO 

20 ...... 0 

0103 0100 aiDa 0100 0103 0100 '-0 

Am2903 Am2903 Am2903 Cn~O 

SI03 
Z 

SIOo SI03 
Z 

SIOO SI03 
Z 

SIOO 
+5 

1 i i t 
Figure 12. Double Length Normalize. 



START 

lS NUMBER IN a 
MS NUMBER IS R15 

R2-R2 + 1 

END 
NORMALIZED 

LS NUMBER IN a 
MS NUMBER IN R15 

EXPONENT NUMBER 
IN R2. 

Figure 13. Double Length Normalize. 

0148 
0149 
014A 
014B 
014C LOOP4 
0140 
014E JUMP1 
014F 

OLN R15,R15,OFF & CONT & SHOLD 
MAZ & T & CJP & GOTO ABORT 
LOW R2 & MAC & T & CJP & GOTO END2 
OLN R15,R15 & SDUL & MAO & T & CJP & GOTO JUMP1 
DLN R15,R15 & SOUL & MIO & T & CJP & GOTO JUMP1 
PAR R2,R2 & JP ONE & GOTO LOOP4 
PAR R2,R2 & CONT ONE 
SORQ R15, R15 & SDMS & END 

Figure 14. 

START 
MULTIPLICAND tN RD 
MULTIPLIER IN R15 

NO 

END 
PRODUCT (MS) IN R1 
PRODUCT (LS) IN a 

Figure 15. Unsigned 16 X 16 Multiply. 

the ALUs of all the slices, via their Z pins, to add the partial product 
(referenced by the B address port) to the multiplicand (referenced 
by the A address port) if Z = 1. If Z = 0, the output of the ALU is 
simply the partial product (referenced by the B address port). 
Since Cn is held LOW, it is not a factor in the computation, Each 
positive-going edge of the clock will internally shift the ALU out­
puts toward the least significant bit and simultaneously store the 
shifted results in the register selected by the B address port, thus 
becoming the new partial sum. During the down shifting process, 
the Cn+4 generated in device 4 is internally shifted Into the Y3 
position of device 4. At this time, one bit of the multiplier will 
down shift out of the 0100 ports of each device into the 0103 
port of the next less Significant slice. The partial product IS 
shifted down between chips In a like manner, between the SIOo 
and SI03 ports, With SIOo of device 1 being connected to 0103 
of device 4 for purposes of constructing a 32-blt long register to 
hold the 32-blt product. Shifting of the partial product between 
the B address and 0 registers are accomplished via the 
Am2904. At the finish of the 16 x 16 multiply, the most signlfl' 
cant 16 bits of the p'roduct will be found in the register refer­
enced by the B address lines while the least significant 16 bits 
are stored In the 0 Register. USing a typical Computer Control 
Unit (CCU), as shown in Appendix C, the unSigned multiply 
operation requires only two lines of microcode, as shown In 

Figure 16, and IS executed in 17 microcycles. 

010C 
0100 

LQPT R15 & F & GRO & PUSH & COUNT OOE 
UMUL Rl ,R1 ,RO & F & CNT & SOOL & RFCT 

Figure 16. 
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Two's Complement Multiplication 

The algorithm for two's complement multiplication is illustrated by 
Figure 17. The initial conditions lor two's complement multiplica­
tion are the same as for the unsigned multiply operation. The 
Two's Complement Multiply Command is applied for 15 clock 
cycles in the case 01 a 16 x 16 multiply. During the down shifting 
process the term N V OVR generated in device 4 is internally 
shifted into the V3 poSition 01 device 4. The data flow shown in 
Figure 18a is still valid. After 15 cycles, the sign bit 01 the multiplier 
is present at the Z output of device 1. At this time, the user must 
place the Two's Complement Multiply Last cycle command on the 
instruction lines. The interconnection lor this instruction is shown 
In Figure 18b. On the next positive edge 01 the clock, the Am2903 
will adjust the partial product, il the sign 01 the multiplier is nega­
tive, by subtracting out the two's complement representation 01 
the multiplicand. lithe sign bit is positive, the partial product is not 
adjusted. At this pOint, two's complement multiplication is com­
pleted. Using a typical CCU, as shown in Appendix C, the two's 
complement multiply operation requires only three lines of micro­
code, as shown in Figure 19, and is executed in 17 microcycles. 

TWO'S COMPLEMENT DIVISION 

START 
MUL TlPUCAND IN AD 
MULTIPLIER IN R15 

NO 

END 
PRODUCT (MS) IN Rt 
PRODUCT (LS) IN Q 

The division process is accomplished using a lour quadrant non­
restoring algorithm which yields an algebraically correct answer 
such that the divisor times the quotient plus the remainder equals 
the dividend. The algorithm works lor both single precision and Figure 17. 2's Complement 16 X 16 Multiply. 

X INole) 

CoLSS 

F= Is) +Cnlfl-O 
F-(B) +(AJ +Cn,fZ·' 

L DEVICE 4 

0103 - Cn+4 - OVR Am2903 

-N - SI03 
Z 

t 

Log F/Z-+V B 0/2 .... 0 

DEVICE 3 

0100 OJ"o 0100 

Am2903 

SIOO SI03 
Z 

SIOO 

t 

DEVICE 2 DEVICE 1 

CoLSS 
0103 0100 0103 ?'Co r--

Am2903 Am2903 en t-o 

FOLSS 
SI03 

~ 
SIOO SO"O 

Z 
SIOO 

f t j 
Note: For unsogned multoply, Cn + 4 MSS os internally shofted into position Y3 MSS; 2's complement multoply N¥OVR 

IS Internally shifted Into position Va MSS. 

a) Multiply. 

F= 181 +Cn,fZ"O 
F"IB) -IAI-1+Cn ,fZ-1 Log F/z-+V B Qfz ..... a 

L 010, 0100 0103 aroO 0103 0100 0103 0100 ~ - Cn +4 - OVR AmZ903 Am2903 AmZ9" AmZ903 

C
n

_ 

-N 
FO LSS 

X (Notel - SI03 
Z 

SIOO SI03 
Z 

SIOO SO"o 
Z 

SIOO SI03 
Z 

SIOO 
+5 

"oLSS 1 j I 1 t 
Note N ¥ OVR Is IOternally shofted onto posltoon Y3 MSS. 

b) Complement Multiply, Last Cycle. 

Figure 18. 
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0113 
0114 
0115 

LQPT R15 & F & GRO & PUSH & COUNT 000 
TCM R1 ,R1 ,RO & F & CNT & SOOL & RFCT 
TCMC R1 ,R1 ,RO & SDOL & CONT CZ 

Figure 19. 

multi-precision divide operations. The only condition that needs 
to be met is that the absolute magnitude of the divisor be greater 
than the absolute magnitude of the dividend. For multi-precision 
divide operations the least significant bit of the dividend is trun­
cated. This is necessary if the answer is to be algebraically 
correct. Bias correction is automatically provided by forcing the 
least significant bit of the quotient to a one, yet an algebraically 
correct answer is still maintained. Once the algorithm is com­
pleted, the answer may be modified to meet the user's format 
requirements, such as rounding off or converting the remainder 

START 
DIVISOR IN RO' 
DIVIDEND (MS) IN R1 
DIVIDEND (LS) IN R4 

SCALE 
DIVIDEND 

so that its sign is the same as the dividend. These format modifi­
cations are accomplished using the standard Am2903 instruc­
tions. 

The true value of the remainder is equal to the value stored In the 
working register times 2n-, when n is the number of quotient 
digits. 

The following paragraphs describe a double precision divide 
operator. 

Referring to the flow chart outlined in Figure 20, we begin the 
algorithm with the assumption that the divisor is contained in 
Ro, while the most significant and least significant halves of 
the dividend reside in R, and R4 respectively. The first step is 
to duplicate the divisor by copying the contents of Ro into RJ . 

Next the most significant half of the dividend is copied by 
transferring the contents of R, into R2 while simultaneously 
checking to ascertain if the divispr (Ro) is zero. If the divisor is 
zero then division is aborted. If the divisor is not zero, the 
copy of the most significant half of the dividend in R2 is con­
verted from its two's complement to its sign magnitude rep­
resentation. The divisor in RJ is converted in like manner in 

END 
QUOTIENT IN Q 
REMAINDER IN R1 

Figure 20. Two's Complement Division. 
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the next step, while testing to see if the results of the dividend 
conversion yielded an indication on the overflow pin of the 
Am2903. If the output of the overflow pin is 'one' then the 
dividend is _2n and hence is the largest possible number, 
meaning that it cannot be less than the divisor. What must be 
done in this case is to scale the dividend by down shifting the 
upper and lower halves stored in R, and R4 respectively. After 
scaling, the routine requires that the algorithm be reinitiated at 
the beginning. 

Conversely, if the output of the overflow pin is not a one, the sign 
magnitude representation of the divisor (R3) is shifted up in the 
Am2903, removing the sign while at the same time testing the 
results of two's complement to sign magnitude conversion of the 
divisor in the Am2910. If the results of the test indicate that the 
divisor is _2n i.e., overflow equals one, then the lower half of the 
dividend is placed in the Q register and division may proceed. 
This is possible because the divisor is now guaranteed to be 
greater than the dividend. If overflow is not a one then we must 
proceed by shifting out the sign of the sign magnitude represen­
tation of the dividend stored in R2. At this point we are able to 
check if the divisor is greater than the dividend by subtracting the 
absolute value of the divisor (R3) from the absolute value of the 
upper half of the dividend (R2) and storing the results in R3. Next, 
the least significant half of the dividend is transferred from R4 to 
the Q register while simultaneously testing the carry from the 
result of the divisor/dividend subtraction. If the carry (Cn+4) is 

F= fBI +Cn• Log 2F--Y,B 20"""0 

Q3 MSS 

0103 0100 0103 0100 

FJ'tF1MSS- Cn+4 

F2VF,MSS- OVR Am2903 Am2903 

'3MSS- N 

(R3'tF31 MSS 
SI03 

Z 
SIOO SI03 

Z 
SIOO 

'",',.00. 0 , •• 0, i ! 

one, indicating the divisor is not greater than the dividend then a 
scaling operation must occur. This involves either shifting up the 
divisor or shifting down the dividend. If the carry is not one then 
the divisor is greater than the dividend and division may now 
begin. 

The first divide operation is used to ascertain the sign bit of the 
quotient. The two's complement divide instruction is then exe­
cuted repetitively, fourteen times in the case of a sixteen bit 
divisor and a thirty-two bit dividend. The final step is the two's 
complement correction command which adjusts the quotient by 
allowing the least significant bit of the quotient to be set to one. At 
the end of the division algorithm the sixteen bit quotient IS found in 
the Q register while the remainder now replaces the most sig­
nificant half of the dividend in R,. It should be noted that the 
remainder must be shifted down fifteen places to represent its 
true value. The interconnections for these instructions are shown 
in Figures 21, 22, 23. Using a typical CCU as shown in Appendix 
C, the double preCision divide operation microcode, is shown in 
Figure 24. 

For those applications that require truncation instead of bias 
correction, the same algorithm as above should be implemented 
except one additional Two's Complement Divide instruction 
should be used in lieu of the Two's Complement Divide Correc-

, tion and Remainder instruction. However, this technique results 
in an invalid remainder. 

01°3 0100 0103 0100 

Am2903 Am2903 C,I-0 

SI03 
Z 

SIOO SI03 
Z 

SIOO t---:;-

1 1 J 
MPR-053 

Figure 21. Double Length Normalize/First Divide Operation. 

F = fBI + [AI + Cn .f Z = 0 
F = IB] - [A] - 1 + Cn.f Z = 1 Log 2F~V,B 2Q ...... O 

Q 3 MSS 

0103 0100 0103 0100 0103 0100 01°3 QlOO 

- Cn +4 - OVR Am2903 Am2903 Am290J Am2903 C, 

-N 

Sl03 SIOO SI03 
Z 

SIOO SI03 
Z 

SIOO SI03 
Z 

SIOO 
(F3'1fR3) MSS z +5 

SIGN COMPARE FF j I 1 1 1 
MPR-054 

Figure 22. 2's Complement Divide. 



F= (B] + (A) +CnlfZ=O 
F"[Bl- (A) -l+CnlfZ=l F ..... Y.B 2Q ..... a 

°3 MSS - 010, 0100 01°3 01°0 010, 01°0 01°3 0100 _1 

- Cn+4 - OVR Am2903 Am2903 Am29D3 Am2903 c" 
-N 

- SI03 SIOO SI03 SIOO SI03 SIOO Sl03 SIOO -Z Z Z Z 

SIGN CO MPARE FF ! 1 1 1 ~ 
Figure 23. 2'$ Complement Divide Correction. 

0119 DlV LOW R10 & JSR & GOTO INP 
011A PAR R7,R15 & JSR & GOTO INP 
0116 PAR R1,R15, & JSR & GOTO INP 
011C PAR R4,R15 & CONT 
0110 LOOP1 PAR R3,R7 & CONT 
011E PAR R2,R1 & T & MIZ & CJP & GOTO ABORT 
011F SMTC R2,R2 & CONT Z 
0120 SMTC R3,R3 & T & MIO & CJP CZ & GOTO SCALE1 
0121 ALUOFF & T & MIO & CJP & GOTO SKIP6 
0122 SURL R3, R3 & SUL & CONT 
0123 SURL R2,R2 & SUL & CONT 
0124 ALUOFF & JP & GOTO LOOP2 
0125 SCALE1 LOPT R4 & JSR & GOTO SDiVO 
0126 ALUOFF & JP LOOP1 
0127 LOOP2 SSR R3,R2, YBUS & CONT ONE 
0128 SKIP6 LOPT R4 & F & MIC & CJP & GOTO SKIP3 
0129 ALUOFF & JSR & GOTO SDiVO 
012A SURL R2,R2 & SOL & CONT 
012B ALUOFF & JP & GOTO LOOP2 
012C SKIP3 ALUOFF & F & GRO & LOCT & COUNT OOC 
0120 OLN R1,R1',R7 & T & GRO & SOUL & PUSH 
012E TOIV R1,R1,R7 & F & CNT-& SOUL & RFCT CZ 
012F TOC R1,R1,R7 & SUH & CONT CZ 
0130 OMOV R15 & JSR & GOTO OUTP 
0131 PAR R15,R1 & JSR & GOTO OUTP 
0132 ALUOFF & JP & GOTO DlV 
0133 SDiVO PAR R1,R1 & CONT 
0134 ALUOFF & T & MIS & CJP & GOTO NEG 
0135 PAR R1,R1,AORO & SOOL & CONT 
0136 ALUOFF & JP & GOTO RET 
0137 NEG. PAR R1,R1,AORO & SOOL & CONT 
0138 RET OMOV R4 & CONT 
0139 PAR R10,R10 & RTN ONE 

Figure 24. 

NON-RESTORING BINARY ROOTS 

The algorithm for Non-Restoring Binary Roots is illustrated in 
Figure 25. The initial conditions required are: 1) the non-negative 
number to be rooted in the radicand register, R,; 2) R2 has the 
positive append bits 101 8 ; 3) R3 has the negative append bits 
011 8 ; 4) R4 is the mask register with BFFFH; 5) Rs is the partial 
register with 4OOOH; and 6) the counter register, R6, with the 
value OSH' 

An example of the Non-Restoring Binary Root algorithm is shown 
in Figure 26. Starting at the binary pOint, the number to be rooted 
is partitioned into pairs. The partial value IS subtracted from the 
first pair. An intermediate remainder and sign are then produced. 

START 
NUMBER TO BE ROOTED IN R1 

RS--RS v R2 

SHOLD 

END 
ROOTED NUMBER IN RS 

Figure 25. Non-Restoring Binary Root. 
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ROOT .. 0 0 0 0 1 
87H -fo ('0 OAO 1A1 1AO OA1 1AO 0"0 

4731 H 
1'-1822510 13510 - 1 

L BINARY POINT 1st J 0.0 0 0 
PARTIAL VALUE - 1 0 

1.0 1 0 
+ 0 1 

1.1 0 0 0 .. AN INTERMEDIATE 
+ 1 0 0 REMAINDER 

1.1 0 1 1 0 0 0 
+ 1 0 0 0 1 1 

1.1 1 1 0 1 1 1 
+ 1 0 0 0 0 1 

0.0 0 0 0 0 1 0 0 1 0 0 0 
SIGN t 0 0 0 0 1 0 1 
BIT 0.0 1 0 0 0 0 a 0 

- 1 0 0 0 0 0 0 

0.0 0 0 o 0 0 0 0 0 

L REMAINDER 

Figure 26. Non·Restorlng Binary Root Example. 

If the remainder is positive, a 1 is entered in the corresponding 
root bit. Then a 01 is appended to the partial, shifted and sub­
tracted from the present remainder to produce the next remain­
der. When the remainder becomes negative, the present remain­
der is not restored. A 0 is entered in the next corresponding root 
bit. Then an 11 is appended to the partial, shifted and added to the 
present remainder. The entire process is repeated until the 
partial root has developed into 8 bits or the remainder is zero. 

Referring to Figure 26, the same method of finding the root 
applies. A starting partial value, Rs, is subtracted from the 
radicand, Rlo which produces the intermediate remainder Ro. 
During this time, the sign of the remainder is stored within the 
Am2904. Then Rs is masked by ~ to obtain the next partial value 
and R4 is shifted to obtain a new mask for the next cycle. Status is 
obtained from the Am2904 and tested. If the remainder is posi­
tive, a root bit of 1 is developed and bits 01 appended by R2. 

When negative, a root bit of 0 is developed and bits 11 appended 
by R3. At this point R6 is decremented and tested for zero. If R6 t= 
0, then addition or subtraction is performed on the remainder 
depending on the sign bit stored in the Am2904. A new remainder 
is produced and cycled through the procedure again. Figure 27 
illustrates the microcode. 

BCD HARDWARE ADDITIONS 

In applications where fast BCD operations are needed the de­
signer has the option of using a slight amount of additional 
hardware to dramatically increase the performance of these op­
erations. These firmware/hardware trade-oft's are very applica­
tion sensitive. The hardware-firmware examples given below are 
specifically for an intensive BCD system with a large fraction of 
conventional logic-arithmetic operations. The designer is willing 
to reduce cycle time slightly to increase BCD thru-put. Small 
hardware additions are acceptable as long as flexibility is re­
tained. 

0152 SORT. LOW R10 & CONT 
0153 LOW RO & CO NT 
0154 PAR R1 ,R15 & CO NT 
0155 PAR R2,RO"DARB & CONST 0005 & CO NT 
0156 PAR R3,RO"DARB & CONST 0003 & CONT 
0157 PAR R4,RO"DARB & CONST H#BFFF & CONT 
0158 PAR R4,RO"DARB & CONST 4000 & CO NT 
0159 PAR R6,RO"DARB & CONST 0008 & CONT 
015A SRS RO,R1 ,R5 & CONT & SHOLD 
015B CYCLE AND R5,R5,R4 & CO NT 
015C SDRL R4,R4 & MAS & CJP & GOTO END3 
015D SDRL RO,RO, & T & MAS & CJP & GOTO POS 
015E OR R5,R3 & JP & GOTO CNT 
015F POS OR R5,R2 & CONT 
0160 CNT' SRS R6,R6,RIO & CONT 
0161 SDRL R2,R2, & T & MIZ & CJP & GOTO END3 
0162 SDRL R3,R3 & T & MAS & CJP & GOTO SUB 
0163 ADD RO,RO,R5 & JP & GOTO CYCLE & SHOLD 
0164 SUB SRS RO,RO,R5 & JP & GOTO CYCLE & SHOLD 
0165 END3 JP & GOTO SORT 

Figure 27. 

The hardware additions finally decided on were chosen to In­
crease the performance of BCD to binary conversion, binary to 
BCD conversion and BCD addition. The performance increases 
were approximately an order of magnitude in the first two cases, 
and a factor of 4 or 5 in the last case. A diagram of the additions 
(3% ICs) is given in Figure 28. 

The 74S08 AND gates normally pass the carry from the 
Am2902A to the Am2903s. When microbit CZER is low the 
Carries-in are forced to zero. This is used to "disconnect" the 
carry so that a test may be done on each slice simultaneously. For 
example if a test for 5 or greater is desired a HEX B is added and 



BCD HARDWARE ADDITIONS 

Am2904 Am2903 Am2903 Am2903 Am2903 

- COUT CIN f--TOEv v ~1 G, ~1 GP '.~ 0;;; 

ENSR 

CLOCK 

elSR 

lot 
J'I 
lot 
J'I 
lot 
J'I 
lot 
.... 

L 
D3 '0 

" CK 
Am25LS195A 

CL 
Q3 Q' Q1 QO 

~~~II 
TO Am2909 OR INPUTS 

L 
CZER 

I 

I I I C G, P 
C G, P C G, P 

Am2902A CIN 

Figure 28. 

the carry out of each slice will indicate the result of the test. This 
allows simultaneous tests on each individual slice and greatly 
increases thru-put. This addition increases the performance of 
BCD to binary conversion and binary to BCD conversion by at 
least an order of magnitude, The drawback to this addition is that 
the AND-gates introduce an extra gate delay in a critical path, The 
machine cycle time may be increased by about 8ns, The increase 
in BCD performance will more than offset this delay for BCD 
intensIve systems. 

Another hardware addition is the Am25LS241 three-state buffer. 
This buffer allows the Am2904 to be used to store the carry-out 
status bits via the bl-directional Y bus. 

The 25LS195A is wired as a 4-bit register with clear and enable, 
This register is used to store the carry-out bits from a test cycle, 
The outputs of the 25LS195A are ORed with the output of the 
Am2904 V-bus and connected to the Am2909 OR inputs in the 
CCU, This allows a multi-way branch on the OR of two test 
cycles, greatly increasing the performance of BCD addition, 

BCD TO BINARY CONVERSION 

The usual method of BCD to binary conversion is to divide the 
BCD number by 2, The l-bit remainder will indicate if a 1 
existed in the BCD number. The previous division result is di­
vided by 2 again and the remainder will indicate if a 2 existed 
in the BCD number. In general the remainder from a division 
by 2n will indicate if a 2n-, existed in the BCD number. 

These remainders can be used to construct the binary rep­
resentation, bn2n + bn_,2n-, + bn_22n- 2 + , .. + b,2' + 
bo2°' The bn bit is thus the remainder from division step n + 
1. The binary representation may thus be created by shifting 
the remainders down until the m-bit BCD number has been 
divided by 2 m times. 

To divide a BCD number by 2 a down shift is executed. The 4, 2 
and l-bit positions will contain the correct result, but the 8-bit 
position IS incorrect. Its value has changed from 10 to 8 instead of 
from 10 to 5, This means the resulting BCD number Will have a 
value 3 greater than It should for the division by 2 to be correct. A 3 
must be subtracted from any digit in which a 1 entered its 8-blt. 

A sample conversion is given in Table 10, The BCD number is 
gradually shifted down and corrected when necessary, The bi­
nary number is finally correct after 16 cycles, 

A flow diagram for the algorithm is given in Figure 29. The BCD 
input, A, is shifted down into the binary output B, to start the loop. 
The constant 0888 is added to A With the carries-in forced to zero, 
The resulting carnes-out Will indicate if A contained a 1 in any of 
the 8-bit positions. These carries are saved in status register 
SRL A multi-way branch is then executed to enter the adjust 
table. The digits are adjusted depending on the previous test. At 
the same time a shift can be executed to prepare for the next test 
instruction. A test for end of loop is also done in this cycle to 
provide an exit if 16 iterations of the loop are complete. Finally a 
shift up of B is needed to cancel the extra right shift when the loop 
is exited. The microcode for this algorithm is given in Figure 30. 
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Digit Digit 
3 2 

0010 1001 
0001 0100 
0001 0100 
0000 1010 
0000 0111 
0000 0011 
0000 0011 
0000 0001 
0000 0001 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 
0000 0000 

A: = BCD NUMBER 
B. = BINARY RESULT 
0: = DUMMY REGISTER 

Digit Digit 
1 0 

0000 0100 
1000 0010 
0101 0010 
0010 1001 
0010 0110 
1001 0011 
0110 0011 
1011 0001 
1000 0001 
1100 0000 
1001 0000 
0100 1000 
0100 0101 
0010 0010 
0010 0010 
0001 0001 
0001 0001 
0000 1000 
0000 0101 
0000 0010 
0000 0010 
0000 0001 

0001 
0000 
0000 
000 
000 
00 
00 
0 
0 

TABLE 10. 

BCD-Binary 
Result Operation 

0 SHIFT 
ADJUST DIGITI 

00 SHIFT 
ADJUST DIGITS 2, 0 

000 SHIFT 
ADJUST DIGITI 

1000 SHIFT 
ADJUST DIGITI 

11000 SHIFT 
ADJUST DIGITI 

011000 SHIFT 
ADJUST DIGIT 0 

1011000 SHIFT 
ADJUST NONE 

01011000 SHIFT 
ADJUST NONE 

101011000 SHIFT 
ADJUST DIGIT 0 

1101011000 SHIFT 
ADJUST NONE 

01101011000 SHIFT 
ADJUST NONE 

101101011000 SHIFT 
ADJUST NONE 

0101101011000 SHIFT 
ADJUST NONE 

00101101011000 SHIFT 
ADJUST NONE 

000101101011000 SHIFT 
ADJUST NONE 

0000101101011000 SHIFT 
ADJUST NONE 

BINARY TO BCD CONVERSION 

A method very similar to the one used for BCD to binary conver­
sion may be used for binary to BCD conversion. The BCD number 
is created by shifting the binary number up, into a partial BCD 
result. The BCD number is adjusted to provide a multiplication by 
2. The shift adjust process continues until the least significant 
binary bit is shifted into the BCD result. 

The adjustment is needed when a 1 is shifted from the a-bit 
position to the l·bit position of the next digit. the value has 
increased from a to 10, instead of from a to 16. To correct this a 6 
must be added to any digit that has a 1 shifted out of its a-bit 
position. Alternately a 3 could be added before the shift to any 
digit that has a 1 in its a-bit position. 

Another correction is needed whenever an invalid BCD digit is 
encountered. If a number greater than 9 is detected in any digit a 
10 must be subtracted from that digit and a 1 added to the next 
highest digit. The same correction can be accomplished if a 6 is 
added to the invalid digit after the shift. To correct before the shift 
a 3 is added to any digit which contains a 5, 6 or 7. These 
adjustments are summarized in Table 11. Both adjustments may 
be accomplished by adding a 3 to any digit which is greater than 4. 

Figure 29. BCD to Binary Conversion (16 Bits to 14 Bits). 

Table 12 shows an example conversion. The binary number is 
gradually shifted up and the BCD partial result adjusted. After 14 
iterations the conversion is complete. A flow diagram for the 
algorithm is given in Figure 31. 



A. = RO 
B: = a 

1 ENR & COUNT LOOP & CONT 
2 PAS RO, RO LORa & SOOL & LOCT & CONST 15 
3 AOO Rl, RO, RO, OARB'& ALUOFF & CONST 0888 & CZERO & ENSURl & CLSR2 & RPCT LOOP: 
4 ALUOFF & MULTI 8WAY 

ALIGN 8 
5 ALUOFF & CJRP & CNTR & GOTO EXIT 
6 SUB RO, RO, RO, LORa,OARB & CONST 0003 ~ CJRP & CNTR & GOTO EXIT 
7 SUB RO, RO, RO, LORa,OARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
8 SUB RO, RO, RO, LORa,OARB & CONSTil003 & CJRP & CNTR & GOTO EXIT 
9 SUB RO, RO, RO, LORa,OARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 

10 SUB RO, RO, RO, LORa,OARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
11 SUB RO, RO, RO, LORa,OARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
12 SUB RO, RO, RO, LORa,OARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 

EXIT: 13 PAS RO, RO, RO, LURa & SOUL & RTN 

Figure 30. 

TABLE 11. 

Adjustment 
Present # Before Shift Reason 

0000 NONE -
0001 NONE -

0010 NONE -

0011 NONE -
0100 NONE -

0101 
+3} 0110 +3 "legal BCD 

0111 +3 
1000 +3 
1001 +3 
1010 +3 
1011 +3 Shift Thru 
1100 +3 Correction 
1101 +3 
1110 +3 
1111 +3 

Initia"y the 14-bit binary number is left justified by two shift up 
operations. To start the loop the binary input, B, is shifted up, into 
the partial BCD result, A. The constant BBBB is added to A, with 
the carries-in forced to zero. The resulting carries-out are stored 
In status register SR 1. A multi-way branch is used to enter the 
adjust table. The digits are adjusted depending on the result of the 
previous test. In the same instruction a shift is executed to pre­
pare for the next test cycle. Additionally an end of loop test is used 
to provide an exit if 16 iterations of the loop are complete. Before 
the exit a fix-up cycle is used to cancel the extra shift executed in 
the loop. The microcode for this algorithm IS given in Figure 32. 

BCD ADD 

One method of performing a 4-digit BCD add is to do a 16-bit 
binary add, with the carries-in forced to Zefo, and adjust the 
resulting sum. The adjustments are necessary to change invalid 
BCD digits to valid BCD digits. When an invalid digit is modified 
a carry to the next highest digit is generated. This could cause a Figure 31. Binary to BCD Conversion (14 Bits to 16 Bits). 
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a. =Binary Input 

RO. = BCD Result 

LOOP 

EXIT 

1 SURL RO, RO & SUL & CONT 
2 SURL RO, RO, & SUL & ENR & COUNT LOOP & CONT 
3 PAS RO, RO, ,LURa & SOUL & LOCT & COUNT 15 
4 ADD R1,RO, RO, DARB & ALUOFF & CONST BBBB & CZERO & ENSR1 & CLSR2 & RPCT 
5 ALUOFF & MULTI 16WAY 

ALIGN 16 
6 ALUOFF & CJRP & GOTO EXIT 
7 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
8 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
9 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 

10 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
11 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
12 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
13 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
14 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
15 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
16 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
17 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
18 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
19 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
20 ADD R1, RO, RO, LURa, DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
21 ADD R1, RO, RO, LURa,DARB & CONST 0003 & CJRP & CNTR & GOTO EXIT 
22 SDRL RO, RO, & SOL & RTN 

Figure 32. Binary to BCD Conversion Microcode (14 Bits to 16 Bits). 

Digit 
3 

10 
10 

2 

Digit 
2 

0 
0 

01 
01 

011 
011 

0111 
1010 
0100 
0100 
1001 
1001 

9 

Result 

Digit 
1 

0 
0 

01 
01 

010 
010 

0100 
0100 
1001 
1100 
1000 
1011 
0110 
1001 
0010 
0010 
0101 
1000 
0000 
0000 

0 

Digit 
0 

0 
0 

00 
00 

001 
001 

0010 
0010 
0101 
1000 
0001 
0001 
0010 
0010 
0101 
1000 
0000 
0000 
0001 
0001 
0011 
0011 
0110 
1001 
0010 
0010 
0100 
0100 

4 

TABLE 12. 

Binary-BCD 
Conversion Operation 

00101101011000 
0101101011000 SHIFT 

ADJUST NONE 
101101011000 SHIFT 

ADJUST NONE 
01101011000 SHIFT 

ADJUST NONE 
1101011000 SHIFT 

ADJUST NONE 
101011000 SHIFT 

ADJUST DIGIT 0 
01011000 SHIFT 

ADJUST NONE 
1011000 SHIFT 

ADJUST NONE 
011000 SHIFT 

ADJUST DIGIT 0 
11000 SHIFT 

ADJUST DIGIT 1 
1000 SHIFT 

ADJUST DIGIT 1 
000 SHIFT 

ADJUST DIGIT 1 
00 SHIFT 

ADJUST DIGIT 2 
0 SHIFT 

ADJUST DIGIT 1 
SHIFT 
ADJUST NONE 



previously valid digit to become invalid. The word must be 
checked and modified until all digits are valid (up to four modifi­
cation cycles could be necessary). 

Initially the two BCD numbers are added with the carries-in to 
each digit forced to zero. The carries out are saved. Next the hex 
number 6666 is added to the sum, with the carries-in forced to 
zero, and the resulting carries out are saved. This tests each 
digit for validity, a carry-out indicating an invalid BCD digit 

Figure 33. BCD Add. 

SUMMARY 

In this chapter, a detailed description of the Am2904 was pre­
sented, along with an example timing analysis. Several micro­
code algorithms were,discussed to show how the Am2904 oper­
ates in a 2903 based CPU. As can be seen, the Am2904 provides 
a powerful, single-chip LSI solution to the shift multiplexer, status 
register, and carry multiplexer design portion of a CPU using 
either the Am2901 B or the Am2903. 

(greater than 9). If a carry was generated in either cycle a 6 is 
added to the invalid digit, with carries-in forced to zero, to create 
the valid BCD digit. Additionally a 1 must be added to the next 
highest digit to provide the BCD carry-out. Each time a digit is 
adjusted the carry-out may invalidate the next highest digit. Thus 
adjustment cycles must be followed by validity tests until all 
digits are valid. A flow diagram for this algorithm IS given in 
Figure 33. The microcode for this algorithm is given In Figure 34. 

A ~ R1 
B ~ RO 

1 ADD R1.R1.RO & CZERO & ENSR1 & CONT Z 
2 ADD R1 ,R1.RO.,DARB & ALUOFF & CZERO & ENSR2 & CONST 6666 
3 ALUOFF & MULTI 16WAY & RMAC 

ALIGN 16 
4 ALUOFF & JMP & GOTO EXIT & ENSR1 
5 ADD R1.R1 ,RO.,DARB & CONST 0016 & GOTO LOOP & CLRSR1 
6 ADD R1,R1,RO.,DARB & CONST 0160 & GOTO LOOP & CLRSR1 
7 ADD R1,R1,RO.,DARB & CONST 0176 & GOTO LOOP & CLRSR1 
8 ADD R1,R1,RO.,DARB & CONST 1600 & GOTO LOOP & CLRSR1 
9 ADD R1,R1,RO.,DARB & CONST 1616 & GOTO LOOP & CLRSR1 

10 ADD R1 ,R1 ,RO.,DARB & CONST 1760 & GOTO LOOP & CLRSR1 
11 ADD R1,R1,RO.,DARB & CONST 1776 & GOTO LOOP & CLRSR1 
12 ALUOFF & JMP & GOTO LOOP & SMAC & CLRSR1 
13 ADD R1 ,R1,RO.,DARB & CONST 0016 & GOTO LOOP & SMAC & CLRSR1 
14 ADD R1 ,R1 ,RO"DARB & CONST 0160 & GOTO LOOP & SMAC & CLRSR1 
15 ADD R1,R1,RO"DARB & CONST 0176 & GOTO LOOP & SMAC & CLRSR1 
16 ADD R1,R1,RO"DARB & CONST 1600 & GOTO LOOP & SMAC & CLRSR1 
17 ADD R1,R1,RO.,DARB & CONST 1616 & GOTO LOOP & SMAC & CLRSR1 
18 ADD R1,R1,RO"DARB & CONST 1760 & GOTO LOOP & SMAC & CLRSR1 
19 ADD R1,R1,RO.,DARB & CONST 1776 & GOTO LOOP & SMAC & CLRSR1 

EXIT 

Figure 34. BCD Add Microcode. 

The Appendix includes a full microcode listing. The interested 
reader is encouraged to study these listings to gain a better 
understanding of the hardware organization (Appendix C). An 
additional microcode listing (Appendix B) gives the AMDASM™ 
definition file and source file for the microcode. The reader should 
study these listings while referring to the AMDASM Manual. (The 
Am2900 Family Data Book contains an AMDASM Reference 
Manual, document AM-PUB003, 4-78 FRODO.) 
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APPENDIX A 

COMMENTS 

CONSTANT 

ADDRESS LABEL 

III~ Ire re Ire "''''III 1111 ... Z N reulllu 
8988 87 86 85 84 83 82 81 80 79 78 77 76 75 74 737271 70 6968 

UNSIGN 
MULTIPLY 

a 1 a C x x x x x x x x x x x x x x x x x x x x x x 
a 1 a D x X x x x x x x x x x x x x x x x x x x x x 

TWO'S 
COMPLEMENT 
MULTIPLY a 1 1 3 X X X X X X X X X X X X X X X X X X X X X X 

a 1 1 4 X X X X X X X X X X X X X X X X X X X X X X 
a 1 1 5 X X X X X X X X X X X X X X X X X X X X X X 

TWO'S 
COMPLEMENT 
DIVIDE a 1 1 9 X X X X X X X X X X X X X X X X X X X X X X 

a 1 1 A X X X X X X X X X X X X X X X X X X X X X X 
a 1 1 B X X X X X X X X X X X X X X X X X X X X X X 
a 1 1 C X x x x x x x x x x x x x x x x x x x x x x 
a 1 1 D LOOP 1 X X X X X X X X X X X X X X X X X X X X X X 
a 1 1 E X X X X X X X X X X X X X X X X X X X X X X 
a 1 1 F X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 a x x x x x x x x x x x x x x x x x x x x x x 
a 1 2 1 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 2 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 3 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 4 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 5 SCALE 1 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 6 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 7 LOOP 2 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 8 SKIP 6 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 9 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 A X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 B X X X X X X X X X X X x x x x x x x x x x x 
a 1 2 C SKIP 3 X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 D X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 E X X X X X X X X X X X X X X X X X X X X X X 
a 1 2 F X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 a x x x x x x x x x x x x x x x x x x x x x x 
a 1 3 1 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 2 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 3 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 4 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 5 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 6 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 7 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 8 X X X X X X X X X X X X X X X X X X X X X X 
a 1 3 9 X X X X X X X X X X X X X X X X X X X X X X 

Am2904 CONTROL FIELD 

SHIFT INSTRUCTION 
>- OP OP 

I~I~ 
re re 

15 14 13 12 11 10 I~ C 
19 18 17 16 U 

6766 6564 636261 60 59 58 57 56 55 54 3 

x x a a x x x x xxxxxxo 
x x a a a 1 1 OXXXXXXO 

X X a a x x x x xxxxxxo 
X X a a a 1 1 OXXXXXXO 
X X 1 1 a 1 1 OXXXXXXO 

X X a a x x x x xxxxxxo 
X X a a x x x x XXXXXXO 
X X a a x x x x XXXXXXO 
x x a a x x x x XXXXXXO 
X X a a x x x x XXXXXXO 
a x a a x x x x a 1 a 1 a a a 
X X 1 a x x x x XXXXXXO 
a x 1 a x x x x a 1 a 1 1 a a 
a x a a x x x x a 1 a 1 1 a x 
X X a a a a 1 a x x x x x x a 
X X a a a a 1 OXXXXXXO 
X X a a x x x x XXXXXXX 
X X a a x x x x XXXXXXO 
X X a 1 x X x x xxxxxxx 
X X a 1 x X x x xxxxxxo 
a x a a x x x x a 1 1 a 1 a a 
X X a a x x x x xxxxxxx 
X X a a a a a a x x x x x x a 
x x a a x x x x xxxxxxx 
X X a a x x x x xxxxxxx 
X X a a 1 1 1 1 xxxxxxo 
X X 1 a 1 1 1 1 XXXXXXO 
X X 1 a a a 1 1 X X X X X X a 
x x a a x x x x xxxxxxo 
X X a a x x x x xxxxxxo 
X X a a x x x x xxxxxxx 
X X a a x x x x xxxxxxo 
a x a a x x x x a 1 1 1 1 a x 
X X a a a 1 1 oxxxxxxo 
X X a a x x x x xxxxxxx 
X X a a a 1 1 OXXXXXXO 
X X a a x x x x xxxxxxo 
X X a 1 x X x x XXXXXXO 

..... 
OJ 
o 



Am2903 CONTROL FIELO CCU CONTROL FIELD DEVICE 
ENABLE 

SHARED CONTROL FIELD 

----~----~----~----~--~----~--~~~----~---+~~~Ir---------------

BIB I A ADDRESS ADORESS ADDRESS 
DEST. SRC. SRC. 

DEST. FUNCT. SRC. 
MULTI­
WAY 

z w 
~ TEST 29811 /ffi: ~ 

Iz I :5 SELECT NEXT t ~ Q 
W 0 ADDRESS % ell!; iii 

18 17 16 151 I IE II. CII Iii I!!! Ii: 
52515049/484746 45/44 43 4241/40393837/363534331323130/29282726/25/24/2322 2120/19181716/15/14/13/12/11 10 9 

INPUT/OUTPUT 
BRANCH 

COUNTER 

8 7 6 5 4 3. 2 1 0 

XXXXIXXXXllllll0 11010110100010000111010000101 00lXI01011100000000 1110 
000 1 000 1 0 0 0 0 000 0 000 0 0 0 000 001 0 1 1 1 0 0 0 0 0 0 x x x x x x x x x x x x x 

XXXXIXXXXlllll101 010110100010000111010000101 00lXI01011100000000 101 
000 1 000 1 0 0 0 0 0 0 000 000 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 x x x x x x x x x x x x x 
000 1 000 1 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 1 XII 1 0 0 0 0 0 0 x x x x x x x x x x x x x 

1 0 0 x x x x x x x X 1 0 0 0 x x x 0 0 0 0 000 0 0 000 x 0 0 000 000 000 0 0 
011 X X X X 1 0 1 0 0 0 0 0 0 0 0 000 0 0 000 x 0 0 000 000 0 0 0 0 0 
000 1 X X X X 1 000 0 0 000 0 000 0 0 000 1 X 001 000 0 0 0 0 0 0 0 0 
o 1 0 0 x x x XII 000 0 0 0 0 0 0 x x x x X lOX 0 0 x x x x x x x x x x x x x 
o 0 1 X X X X 0 1 1 000 0 0 0 0 0 0 x x x x XII 0 X 0 0 x x x x x x x x x x x x x 
o 0 0 x x x x 000 1 1 1 0 1 100 0 0 0 0 0 0 1 101 1 0 0 1 X 0 0 1 000 1 0 1 100 1 0 
o 0 000 0 x x x x 0 0 0 0 000 0 0 0 0 0 0 x x x x XII 0 X 0 0 x x x x x x x x x x x x x 
o 0 100 1 1 X X X X 0 1 0 1 0 0 000 0 0 0 0 0 0 000 1 X 0 0 000 0 0 001 0 1 
X X X X X X X X X X X X X X X X X X X X X X X 0 0 0 0 1 011 0 0 1 X 0 1 000 1 001 0 1 000 
o 0 100 1 X X X X 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 x x x x x x x x x x x x x 
001 000 lOX X X X 1 001 0 1 0 1 0 0 0 0 0 0 0 x x x x x 0 0 0 0 x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 x x x x XII 1 X 0 1 000 0 0 001 
X X X X X X X X 0 1 000 1 1 001 100 0 0 0 0 0 0 000 0 0 000 x 0 0 1 000 1 0 0 100 1 1 
X X ¥ X X X X X X X X X X X X X X X X X X X X 000 0 x x x x X 1 X 0 1 X X X X X X X X X X X X X 
1 1'001100 10 1 00 00 00000000 x x x x XIII 0 X 0 0 x x x x x x x x x x x x x 
x x x x x x x x 0 1 000 1 1 001 100 0 0 0 0 0 0 0 1 011 001 X 0 0 000 1 0 0 0 1 100 
x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 000 0 0 000 1 X 0 000 001 0 0 
001 000 lOX X X X 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 x x x x X 100 0 0 x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 x x x x XII X 0 000 1 001 001 1 1 
X X X X X X X X X X X X X X X X X X X X X X X 0 0 001 0 0 0 0 0 1 1 0 0 x 0 1 0 0 0 0 0 000 1 100 
000 000 0 0 1 000 000 0 0 0 0 0 0 x x x x x x x x x x x x x x x x x x x x x x x x x x 
000 1 000 0 0 0 0 0 0 0 0 0 0 0 0 000 1 1 0 0 0 0 0 0 x x x x x x x x x x x x x 
o 0 0 1 0 0 0 0 .1 1 0 0 0 0 0 0 0 0 0 0 0 0 x x x x XIII· 0 0 0 0 x x x x x x x x x x x x X 

1 X X X X X X X X 1 000 0 1 000 0 0 0 ~ 0 0 0 000 x 0 0 000 0 0 0 0 0 0 0 
1 1 X X X X 0 0 0 1 1 1 1 0 1 1 000 000 0 0 000 0 0 000 x 0 0 000 0 0 0 0 0 1 0 0 

x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 x x x x XII X 0 1 1 000 1 000 1 100 1 
000 1 X X X X 000 1 1 110 100 0 0 000 0 x x x x XII 0 X 0 0 x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 101 100 1 X 0 1 1 000 1 001 101 1 1 
000 1 X X X X 0 0 0 0 0 100 000 0 0 0 0 0 0 x x x x X 1 0 0 0 0 x x x x x x x x x x x x x 
x x x x x x x x x x x x x x x x x x x x x x x 0 0 0 0 x x x x X 1 X 0 1 1 000 1 001 100 0 
000 1 X X X X 000 1 0 0 0 0 1 000 000 0 0 x x x x x 0 0 0 0 x x x x x x x x x x x x x 
o 1 0 0 x x x x x x x x 0 000 1 0 0 0 0 0 x x x x X lOX 0 0 x x x x x x x x x x x x x 

o 0 x x x x 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 x x x x x x x x x x x x x 
... 
~ 



APPENDIX A 

COMMENTS I Am2904 CONTROL FIELD 

~ 

CONSTANT 

ADDRESS LABEL SHIFT INSTRUCTION 

Fs I~ 
> OP OP 

I~ I~ 
a: 
a: 

'5 '4 '3 '2 " '0 I~ C 
19 IS '7 '6 0 

8988 87 86 85 84 83 82 8, 80 79 78 77 76 7574 7372 7, 70 6968 6766 6564 63626, 60 59 58 57 56 55 54 53 
SINGLE 

LENGTH 
NORMALIZE 0 , 3 C X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 

0 , 3 D X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , 0 , o 0 X 
0 , 3 E X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , 0 , , 0 0 
0 , 3 F X X X X X X X X X X X X X X X X X X X X X X o X o , X X X X 0 , 0 , , 0 0 
0 , 4 0 AGAIN X X X X X X X X X X X X X X X X X X X X X X o X 0 , X X X X 0 , 0 , , 0 0 
0 , 4' , X X X X X X X X X X X X X X X X X X X X X X X X o 0 o 0 , o X X X X X X 0 
0 , 4 2 X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 

DOUBLE 
LENGTH 
NORMALIZE 0 , 4 8 X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 

0 , 4 9 X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , 0 , o 0 X 
0 , 4 A X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , 0 , , 0 0 
0 , 4 B X X X X X X X X X X X X X X X X X X X X X X o X 000 1 , o 0 , 0 , , 0 0 
0 , 4 C LOOP4 X X X X X X X X X X X X X X X X X X X X X X o X 000 , , o 0 , 0 , , 0 0 
0 , 4 D X X X X X X X X X X X X X X X X X X X X X X X X 0 , X X X X X l< X X X X 0 
0 , 4 E JUMP, X X X X X X X X X X X X X X X X X X X X X X X X 0 , X X X X X X X X X X 0 
0 , 4 F X X X X X X X X X X X X X X X X X X X X X X X X 000 , 0 , X X X X X X 0 

BINARY 
ROOTS 

0 , 5 2 X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 3 X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 4 X X X X X X X X X X X X X X X X X X'X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 5 o 0 0 0 0 0 0 0 0 0 000 , 0 , X X X X o X X X o 0 X X X X X X X X X X 0 
0 , 5 6 o 0 000 0 0 0 0 000 0 0 , , X X X X o X X X o 0 X X X X X X X X X X 0 
0 , 5 7 , 0 , , , , , , , , , , , , , , X X X X o X X X o 0 X X X X X X X X X X 0 
0 , 5 8 o , o 0 0 0 0 0 000 0 0 0 0 0 X X X X o X X X o 0 X X X X X X X X X X 0 
0 , 5 9 o 0 0 0 0 0 000 000 , 000 X X X X o X X X o 0 X X X X X X X X X X 0 
0 , 5 A X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 B CYCLE X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 C X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X , 0 , , , 0 0 
0 , 5 D X X X X X X X X X X X X X X X X X X X X X X o X o a X X X X , 0 , , , 0 0 
0 , 5 E X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 5 F POS X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 
0 , 6 0 CNT X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X XX 0 
0 , 6 , X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , 0 , o 0 0 
0 , 6 2 X X X X X X X X X X X X X X X X X X X X X X o X o 0 X X X X 0 , , , , 0 0 
0 , 6 3 X X X X X X X X X X X.X X X X X X X X X X X X X 00 X X X X X X X X X X 0 
0 , 6 4 SUB X X X X X X X X X X X X X X X X X X X X X X X X o 0 X X X X X X X X X X 0 



Am2903 CONTROL FIELD CCU CONTROL FIELD DEVICE SHARED CONTROL FIELD 
ENABLE 

b 
B B A MULTI- ~ TEST 29811 

/i i,~ 
~ 

INPUT/OUTPuT w 
ADDRESS ADDRESS ADDRESS DEST. FUNCT. SRC. WAY a: SELECT NEXT 

UI BRANCH 
DEST. SRC. SRC. IZ :5 ADDRESS ~ COUNTER 

IS 17 IS 15 ~~ ii: 
5251 50 49 48474645 44434241 40 39 38 37 36353433 3231 30 29282726 2524 232221 20 19181716 15 1413 1211 10 9 8 7 6 5 4 3 2 1 a 

a 0 1 o a a 1 a x x x X 1 000 a 0 a a 000 a 0 a a 1 x X x x X 1 1 1 a x o 1 X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X X X X X X a a 001 1 1 o 1 1 a a 1 1 X a x 1 o a a 1 a 1 1 001 1 a 
000 a x x x x x x x X 1 1 1 1 1 o a a x x x a a a 0 1 1 1 a 1 1 a a 1 1 X a a 1 o a a 1 a 1 a a 0 1 a 1 
o a 1 000 1 o X x x X 1 000 a 0 a a 000 a a a a 1 1 1 o 1 1 a a 1 1 X 0 a 1 o a a 1 a 1 a a 0 1 a 1 
a a 1 a 0 a 1 a x x x X 1 000 a 0 a a o a a a 0 a a 1 a 1 a 1 1 a 0 1 1 X 001 a a a 1 a 1 a a 0 000 
x x x x x x x x x x x x o 1 a 1 x X x x 000 o 0 a a 1 x X x x X 1 1 1 o 0 a 0 x x x x x x x x x x x x x 
a a 1 a a a 1 a a a a 0 1 1 1 1 a 0 a 1 o a a o 0 a a 1 x X x x X 1 1 1 o X o 0 x x x x x x x x x x x x X 

1 1 1 1 1 1 1 1 X X X X 1 o 1 00000 000 o 0 0 a 1 x X x x X 1 1 1 o X o 1 X X X X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X X X X X X o 0 a a 1 1 1 o l' 1 o 0 1 1 X 0 X 1 000 1 o 1 1 o 0 1 1 0 
o a 1 a x x x x x x x X 1 1 1 1 1 000 x x x o 0 0 0 1 1 1 a 1 1 a a 1 1 X a o 1 000 1 o 1 o 1 o a a 1 
1 1 1 1 1 1 1 1 X X X X 1 a 1 o a a a a 000 a a a a 1 1 1 a 1 1 o 0 1 1 a a o 1 o 0 a 1 o 1 001 1 1 a 
1 1 1 1 1 1 1 1 X X X X 1 a 1 a a 0 a a o a a o a 001 1 1 a 1 1 o a 1 1 a 0 a 1 a a a 1 o 1 a a 1 1 1 a 
a a 1 o X x x x a a 1 a 1 1 1 1 a 1 1 a a a a a a a a 1 x X x x X 1 1 1 1 X a o 1 a a a 1 a 1 a a 1 1 a a 
a a 1 a x x x x a a 1 a 1 1 1 1 a 1 1 a 0 a 0 o a a a 1 x X x x X 1 1 1 a x a 0 x x x x x x x x x x x x x 
x x x x x x x x x x x x a 1 a 1 x X x x 000 o a 0 a 1 a a a 0 a o a a 1 a a a 1 a a a 1 o a a a a 1 a a 

1 o 1 a x x x x x x x X 1 1 1 1 1 a a a x x x o 0 a a 1 x X x x X 1 1 1 a x a 0 x x x x x x x x x x x x x 
a a 0 a x x x x x x x X 1 1 1 1 1 a a a x x x o a a a 1 x X x x X 1 1 1 a x a a x x x x x x x x x x x x x 
a a a 1 x X x X 1 1 1 1 1 1 1 1 a 1 1 a 0 a a a a a a 1 x X x x X 1 1 1 a x a a x x x x x x x x x x x x x 
a a 1 a x x x x a a a a 1 1 1 1 a 1 1 a 1 a a a a a a 1 x X x x X 1 1 1 a x a 0 x x x x x x x x x x x x x 
o a , 1 X X X X a a a 0 1 1 1 1 a 1 1 o 1 a a a a a 0 1 X X X X X 1 1 1 a x a a x x x x x x x x x x x x x 
a 1 a a x x x x a a a a 1 1 1 1 a 1 1 o i a a a a 001 X X X X X 1 1 1 a x a a x x x x x x x x x x x x x 
o 1 a 1 x X x x a a a a 1 1 1 1 a 1 1 a 1 a a o 0 a a 1 'X X X X X 1 1 1 a X a a X X X X X X X X X X X X X 
a 1 1 a X X X X a a a 1 1 1 1 1 o 1 1 o 1 o a Q 0 a a 1 X X X X X 1 1 1 a X a a X X X X X X X X X X X X X 
a a a 1 a a a 1 a 1 0 1 1 1 1 1 a a a , a a a a 0 a a 1 X X X X X 1 1 1 a X a a X x X X X X X X X X X X X 
a 1 a 1 a 1 a 1 a 1 a a 1 1 1 1 1 1 a a 000 a a a a 1 X X X X X 1 1 1 a x a 0 x X X X X X X X X X X X X 
a 1 a a a 1 a a X X X X a a 0 1 a a a 1 o 0 a a 0 0 a 1 X 1 o 1 1 a a 1 1 X 0 o 1 o a a 1 a 1 1 a a 1 a 1 
o a a a a a 0 a X X X X 1 a a 1 1 a a 1 000 a 0 a a 1 1 1 a 1 1 a a 1 1 X 0 a 1 a a a 1 a 1 a 1 1 1 1 1 
a 1 o 1 a a 1 1 X X X X 1 1 1 1 1 1 1 1 a 0 a a 000 1 X X X X X 1 1 1 1 X a o 1 000 1 a 1 1 a a a a a 
a 1 a 1 o a l' a x X X X 1 1 1 1 1 1 1 1 a 0 a a 0 a a 1 X X X X X 1 1 1 a x a a X x X X X X X X X X X X X 
a 1 1 a a 1 1 a 1 a 1 a 1 1 1 1 o a a 1 000 o 0 a a 1 X X X X X 1 1 1 a X a a X X ~ X X X X X X X X X X 
a a 1 a a a 1 a X X X X a a a 1 o 1 o a 000 a a a a 1 1 1 a 1 1 a a 1 1 X a a 1 a a 0 1 a 1 1 001 a 1 
a a 1 1 a 0 1 1 X X X X a a a 1 a 1 o a 000 a 0 0 a 1 1 1 a 1 1 a a 1 1 X a a 1 000 1 a 1 1 001 a a 

.... 
~ 

a a a a a 0 0 a a 1 a 1 1 1 1 1 001 1 000 a 0 0 a 1 X X X X X 1 1 1 1 X a a 1 a 0 a 1 0 I o 1 1 a 1 1 
a a 0 a o a a a a 1 a 1 1 1 1 1 o a a 1 a 0 a o 0 a a 1 X X X X X 1 1 1 1 X a a 1 a a 0 1 a t 0 1 1 a 1 1 



APPENDIX A ...... 
~ 

COMMENTS Am2904 CONTROL FIELD 

CONSTANT 

ADDRESS LABEL SHIFT INSTRUCTION 

I" Iffi i! II~ 
> OP OP 

I~I~ " " ZNZ..I C 19 18 17 16 15 14 13 12 11 10 WUW U 

89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 737271 70 6968 6766 6564 636261 60 59 58 57 56 55 54 
0 ENTER X X X X X X X X X X X X X X X X o 1 o 1 1 o 1 1 X X X X X X X X X X X X 

BCD TO BINARY 1 X X X X X X X X X X X X X X X X 1 1 o 1 1 o 1 1 X X o 1 1 o X X X X X X 
CONVERSION 2 o 000 1 000 1 000 1 000 1 o 0 0 o 1 1 000 X X X X 00000 0 
ROUTINE 3 LOOP X X X X X X X X X X X X X X X X 1 1 o 1 1 0 1 1 X X X X X X X X X X X X 

BRANCH 8 o 0 0 0 0 0 0 0 0 0 0 0 000 0 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
TABLE 9 o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 

10 o 0 0 0 0 0 0 0 001 1 o 0 0 0 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
11 o 0 0 0 0 0 0 0 001 1 001 1 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
12 o 0 0 0 0 0 1 1 o 0 0 0 0 0 0 0 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
13 o 0 0 0 0 0 1 1 o 0 0 0 001 1 1 1 o 1 o 0 1 1 0 1 o 1 1 1 X X X X X X 
14 o 0 0 0 0 0 1 1 o 0 1 1 o 0 0 0 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
15 o 0 0 0 0 0 1 1 o 0 1 1 001 1 1 1 o 1 o 0 1 1 o 1 o 1 1 1 X X X X X X 
16 EXIT X X X X X X X X X X X X X X X X 1 1 o 1 1 0 1 1 X X 1 1 1 o X X X X X X 

BINARY TO BCD 0 ENTER X X X X X X X X X X X X X X X X 1 1 o 1 1 0 1 1 o 0 000 0 X X X X X X 
CONVERSION 1 X X X X X X X X X X X X X X X X o 1 o 1 1 0 1 1 o 0 000 0 X X X X X X 
ROUTINE 2 X X X X X X X X X X-~ X X X X X 1 1 o 1 1 0 1 1 000 1 o 0 X X X X X X 

3 LOOP 1 0 1 1 1 0 1 1 1 o 1 1 1 o 1 1 1 o 0 0 o 1 1 000 X X X X 000 000 
4 X X X X X X X X X X X X X X X X 1 1 o 1 1 o 1 1 X X X X X X X X X X X X 

BRANCH 16 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
TABLE 17 o 0 0 0 0 0 0 0 0 0 0 0 001 1 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 

18 o 0 0 0 0 0 0 0 000 1 1 000 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
19 o 0 0 0 0 0 0 0 001 1 001 1 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
20 o 0 0 0 0 0 1 1 o 0 0 0 0 0 0 0 1 1 o 1 o 0 1 1 000 1 o 0 X X X X X X 
21 o 0 0 0 0 0 1 1 o 000 0 0 1 1 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
22 o 0 0 0 0 0 1 1 001 1 o 0 0 0 1 1 o 1 001 1 o 0 o 1 o 0 X X X X X X 
23 o 0 0 0 0 0 1 1 o 0 1 1 o 0 1 1 1 1 o 1 001 1 o 0 o 1 o 0 X X X X X X 
24 001 1 o 0 0 0 0 0 0 0 0 0 0 0 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
25 o 0 1 1 o 000 0 0 0 000 1 1 1 1 o 1 001 1 o 0 o 1 o 0 X X X X X X 
26 o 0 1 1 o 000 0 0 1 1 o 0 0 0 1 1 o 1 001 1 000 1 o 0 X X X X X X 
27 o 0 1 1 o 000 0 0 1 1 001 1 1 1 o 1 o 0 1 1 000 1 o 0 X X X X X X 
28 o 0 1 1 001 1 o 0 0 0 0 0 0 0 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
29 o 0 1 1 001 1 o 0 0 0 001 1 1 1 o 1 001 1 000 1 o 0 X X X X X X 
30 o 0 1 1 o 0 1 1 o 0 1 1 o 0 0 0 1 1 o 1 001 1 o 0 o 1 o 0 X X X X X X 
31 o 0 1 1 o 0 1 1 o 0 1 1 001 1 1 1 o 1 o 0 1 1 o 0 o 1 o 0 X X X X X X 
32 EXIT X X X X X X X X X X X X X X X X 1 1 o 1 1 o 1 1 X X o 1 o 0 X X ,X X X X 
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o .......... xo oooooooox x .......... xo oooooooooooooooox 
............... xo oooooooox x .......... xo oooooooooooooooox 

0 
....I NO ..... XO oooooooox x'a ..... X a OOOOOOOOOOOOOOOOx 
W 
u:: 5 

MO ..... X- OOOOOOOOX x 0 ..... xo oooooooooooooooox 
....I -.:rooxo ......................... _ .......... x xooX'P"" OOOOOOOOOOOOOOOOX 0 Q,:z:a:: 
a:: I-U W 

I/)OOXO OOOOOOOOX xooxo ~-~-~~~~~~-~~~~-x !Z ;:)z!z 
8 §c;:) CDOOXO oooooooox xooxo oooooooooooooooox a:: 0 
c Q,lDu ,.....ooxo oooooooox xooxo oooooooooooooooox 
W iE CDOOXO oooooooox xooxo oooooooooooooooox a:: 
c mooxo oooooooox xooxo oooooooooooooooox :z: t/) 

~ooxo oooooooox xooxo oooooooooooooooox 
::ooxo oooooooox xooxo oooooooooooooooox 

.L::l:l13S 01:11:1 ~ .................... ............................................. .................... ..... ..................................................................................... 

WW N:l1 ~_oo ..... 000000000 .......... 0 .......... 00000000000000000 u....l -ID N3 Sn.LY.1S ::! .................... ,.....,.... ..... ...- ......................... ............... ,... ..... ,....,....,....,....,....,....,....,....,....,.... ..... ,....,....,....,....,....,.... 
~~ 
OW N:I.1:IIHS ~ ..... o ..... ,.... 000000000 000..- ..... 00000000000000000 

t/) ~oo .......... __ .............................. 0 
000 .......... .....~ .......... ~~~ .......... ~ ..... ~ ............... ~O 

::=81 ~~OO ..... ..... ~~~ ..... ~ ............... ..... ..... 00 ..... ~~ ......................... ~ ..... ~ ................................... 
!wa:: ~ .......... o ..... z8 ........................................ 0 ............... 0 ..... ..... ~ .......... ~ ....................................................... o 

C C ~ .......... ~ ..... 00000000 ..... ..... .................... 0000000000000000 ..... 
....I 

0 W xxxx ........................................ 0 xxxxx ..... ~ ......................... ~ ........................................ o u:: l- N 

....I Iii&: N xxxx ........................................ 0 xxxxx ..... ~ ...................................................................... o 
0 I!! iii N xxxx .............................. ~ ..... o xxxxx ..... ~~ ................................................................. o a:: N 
l- t/) 

(') Z N XXXX ............... ~ .................... o xxxxx ..... ~~~ ............... ~ .......... ~ ......................... o 
0 

A.LIIIY10c1 ~xxxx u ........................................ 0 xxxxx ..... ~ ..... ~ ............... ~ ........................................ o 
;:) ltU! lG ............................................. .................... ..... ..... ~ ........................................................................... 

8 
~ 000 ..... 000000000 0000 ..... 00000000000000000 

~~ "- ooo~ 000000000 0000 ..... 00000000000000000 N 

i~ co 000 ..... 000000000 0000 ..... 00000000000000000 N 

~oooo 000000000 0000 ..... 00000000000000000 

gxoox 000000000 oooox 00000000000000000 
U C;;xoox 009000000 oooox 00000000000000000 a:: t/) 

~xo ..... x ............... __ ............... 0 o 00 ..... x ..... _ ............... ~ ..... _ .................... _ .......... _o 

~xo ..... x ........................................ 0 o 00 ..... X ................................... _ ........................................ 0 

..: 
~x~-x 00000000 ..... .................... x ............... _ ................................................................. U 

Z 
~x-ox ;:) 00000000- ........... -ox 0000000000000000 ..... 

IL 
~xoox 000000000 oooox 00000000000000000 

~ ~x-ox .......... ~ .......... -............... ..... ~ .......... 0 X -_ ..... _---_ ............... _ .......... _ ..... -
c Iii ~ ~x ..... ox oo-ox -_ ........................................................................... ....I ..... _---- ..... _-W 
u:: W ..!:'" ~xo ..... x 000000000 ooo ..... x 000'0 ')000000000000 

0 
....I ..!!' 0 xoox 00000000- - ..... -ox -_ .......... _ ....................................................... 0 0 ... 
a:: t/) :; xoox 000000000 oooox 00000000000000000 !Z :n0 ~xoox 0 ca::1i! 

000000000 oooox 00000000000000000 
U 

~xoox ... ~t/) 000000000 oooox 00000000000000000 

i :3xoox 000000000 oooox 00000000000000000 
N 
E t/) ~xoox 000000000 oooox 00000000000000000 
C t/) 

ID~U ~xoox 000000000 oooox 00000000000000000 

8 lli !;;:xoox 000000000 oooox 00000000000000000 

C ~xoox 000000000 oooox 00000000000000000 

(II ~xoox 000000000 oooox 00000000000000000 

:n..: ~xoox 000000000 oooox 00000000000000000 1Da::t/) 
QW u;xoox 000000000 oooox 00000000000000000 
00 
c ~xoox 000000000 oooox 00000000000000000 

A:lO ~ ..... o .......... 000000000 000 ..... 0 00000000000000000 



APPENDIX A 

COMMENTS 

CONSTANT 

ADDRESS LABEL 

I~I~ ~~ WUWU III~ 
89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 737271 70 6968 

0 ENTER X X X X X X X X X X X X X X X X 1 o 0 1 1 1 
BCD ADD 1 o 1 1 o 0 1 1 o 0 1 1 o 0 1 1 0 1 0 1 1 0 1 
ROUTINE 2 X X X X X X X X X X X X X X X X 1 1 0 1 1 0 

ADJUST 16 TAB 000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 000 1 
TABLE 17 00000 0 0 0 0 0 0 1 o 1 1 0 1 1 000 1 

18 o 0 0 0 0 001 0 1 1 o 0 0 0 0 1 1 000 1 
19 000 000 0 1 o 1 1 1 o 1 1 0 1 1 000 1 
20 000 1 0 1 1 o 0 0 0 0 0 0 0 0 1 1 000 1 
21 000 1 0 1 1 o 0 0 0 1 o 1 1 0 1 1 000 1 
22 000 1 0 1 1 1 0 1 1 00000 1 1 000 1 
23 000 1 0 1 1 1 o 1 1 1 o 1 1 0 1 1 000 1 
24 00000 0 0 0 0 0 0 0 0 0 0 0 1 1 000 1 
25 000 0 0 0 0 0 0 0 0 1 0.1 1 0 1 1 000 1 
26 o 0 0 0 000 1 o 1 1 00000 1 1 000 1 
27 o 0 0 0 000 1 o 1 1 1 o 1 1 0 1 1 000 1 
28 000 1 o 1 1 o 0 0 0 000 0 0 1 1 000 1 
29 000 1 o 1 1 o 0 0 0 1 o 1 1 0 1 1 000 1 
30 000 1 o 1 1 1 o 1 1 o 0 0 0 0 1 1 000 1 
31 000 1 o 1 1 1 o 1 1 1 o 1 1 0 1 1 000 1 

EXIT 

Am2904 CONTROL FIELD 

SHIFT INSTRUCTION 
> OP OP 

I~I~ 
II: 
II: 
C 19 18 17 16 15 14 13 12 I, 10 u 

6766 6564 636261 60 59 58 57 56 55 54 
1 o 1 1 X X X X o 0 0 0 0 0 
1 1 o 0 X X X X X X X X X X 
1 o X X X X X X o 0 0 0 1 1 

1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 1 o 0 X X X X X X X X X X 
1 000 X X X X o 0 0 0 0 1 
1 000 X X X X o 0 0 0 0 1 
1 000 X X X X o 0 0 0 0 1 
1 000 X X X X 00000 1 
1 000 X X X X o 0 0 0 0 1 
1 000 X X X X o 0 0 0 0 1 
1 o 0 0 X X X X o 0 0 0 0 1 
1 000 X X X X 00000 , 

0> 
0> 



Am2903 CONTROL FIELD CCU CONTROL FIELD DEVICE 
ENABLE 

SHARED CONTROL FIELD 

Olf--------------z w 
B B A MULTI· ~ TEST 29811 z W iil 

ADDRESS ADDRESS ADDRESS DEST. FUNCT. SRC. WAY I ii: SELECT NEXT- W ~ 1/1 

1
1U1 DEST. SRC. SRC. ffi :5 ADDRESS ~ !C z ~ 
o ~~~~ ~~ ~~~~ 

INPUT/OUTPUT 
BRANCH 

COUNTER 

535251 50494847464544434241 40393837363534333231 30292827262524232221 201918171615 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o 0 0 0 1 000 1 0 000 1 1 1 100 1 1 0 0 000 0 0 1 X X X X X 1 1 101 101 X X X X X X X X X X X X 
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1, 1 0 0 1 1 1 0 0 0 0 0 0 1 X X X X X 1 1 1 0 1 1 1 1 X X X X X X X X X X X X 
1 X X X X X X X X X X X X X X X X X X X X X X X 1 1 1 1 1 X X X X X 1 1 111 1 1 1 0 0 0 0 0 001 0 0 0 0 

o 0 001 000 0 0 0 0 001 1 0 0 0 0 a 0 1 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 1 0 0 0 0 0 
o 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 X X X X X 1 1 1 '1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 
o 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 X X X X X 1 1 1 1 1 0 0 1 0 0 0 0.0 0 0 0 0 0 0 
o 0 0 0 000 000 0 1 1 1 001 0 000 001 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 000 0 0 
o 0 0 0 000 000 0 1 1 a a 1 0 000 a 0 X X X X X 1 1 1 1 100 1 a 0 0 0 0 0 0 0 000 
o 0 0 0 1 000 0 000 1 0 0 0 0 0 0 0 0 X X X X X 1 1 1 1 100 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 1 000 000 0 1 0 0 0 000 0 0 X X X X X 1 1 1 1 100 0 0 0 0 0 0 0 0 0 0 0 
o 0 001 000 000 0 1 1 0 0 1 1 000 0 0 0 X X X X X 1 1 1 100 0 0 0 0 0 0 0 0 000 
o 0 0 0 1 000 000 0 1 1 0 0 1 1 0 0 0 0 0 0 X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 
o a 0 0 000 0 0 0 0 1 1 100 000 0 0 0 X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 000 000 0 0 0 1 0 0 0 a 0 0 1 X X X X X 1 100 1 0 0 0 0 0 0 0 0 000 
o 0 0 0 1 000 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 X X X X X 1 1 1 100 1 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 1 000 000 0 100 1 1 0 0 0 000 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 1 000 000 0 1 1 100 0 000 0 0 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 0 0 000 
o 0 0 0 1 000 1 000 0 1 1 1 100 0 0 0 000 1 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 0 0 0 0 0 
o 0 0 0 1 000 1 000 0 1 1 1 100 1 1 0 0 000 0 1 X X X X X 1 1 1 1 100 1 0 0 0 0 0 0 0 0 0 0 0 

(j) 
'-.i 
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APPENDIX B 

AM~OS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CPUII DEFINITIONS 

;AJVANCI ~ICRO DEVICES 
; A~2ge3 AND AM2904 DEFINITION FILE FOR CPUII 
j 
;REV. OCTOEIR 17, 1978 

'iOPD 90 

I"SM: EQU 5#F 
SP?: IOU F.#0 
OF·I: IQU E#l 

;2903 DESTINATION MODIFIERS 

ADF:: 
LDF: 
ADRQ: 
LDRQ: 
ItPr: 
LDQP: 
QPT: 
RQPT: 
AUF. : 
IUR: 
AURQ: 
LURQ: 
nus: 
LUO: 
SINX: 

FQU H#0 
EOU H#l 
IQU E#2 
EQU H#3 
EQU E#4 
IQU F#5 
lQU 3#6 
EQU H#7 
EQU E#8 
tQU H#9 
EQU H#A 
EQU P#B 
'EQU !I#C 
rou R#D 
IQU E#I 

jCONSTANTS 

R0: EQU P#0 
Rl: lQU H#l 
R2: EQU E#2 
R3: EQU R#3 
Ii4: lQU ::1#4 
Ji5: EQU R#5 
R6: IQU E#6 
F7: EQU H#7 
FE': IOU H#8 
R9: EQU E#9 
U0: IQU ~#A 
Ell: EQU H#B 
R12: rQu E#C 
R13: liQU H#D 
F.H: EQU H#E 
P.15: EOU H#F 



AMDOS/29 A~DASM MICRO ASSEMBLER, Vl.l 
CPUII DEFINITIONS 

;G903 SOURCE MODIFIERS 

BADE: EQU 3B#001 
RAQ.: EQU 3B#010 
DARB: EQU 3E#100 
DAD!! : EQU 3B#101 
DAQ: EQU 3B#110 

; I 10 

lOIN: EQU 12H#01 
BIN: EQU 12E#10 
!IOU'!': EQU 12H#08 
LMAR: EQU 12H#10 
YREG: EQU 12H#02 
AOUT: EQU 12H#40 
lOUT: EQU 12H#04 

;CARRY SELECT 

ON~: ~QU 2B#01 
CZ: EQU 2B#10 

;·SUB DEFINITIONS 

SUE0: 
SUBl : 
SU"B2: 
SUB3: 
SUH: 
SUi!5: 
SUB6: 
SUB?: 
SU:e8: 
SUl!9: 
SU810: 
SUE 11 ! 
SUE12: 
SU313: 
SUE14 : 
SUB15: 
SUB16: 
SUE1?: 
SU B18: 
SUB19: 
SU'B20: 
STJB21: 

SUB 36X,lB#0,4VX,4VX,4VX 
SUB 36X,lB#0,4VX,4VX,4VX,4VH#F 
SUE 36X,lB#0,4VX,~VX,4X.4VH#F 
SUB 3VB#000,16X,lB#0,13X 
SUB 36X,lB#0,12X 
SUE HX, lM0, 15X 
SUB 44X, lB#0 ,151 
SUB 26X 
SUB 36X,lB#0,4VX,FX,4VH#F 
SUB 36X,lB#0,4VX,4X,4VX,4VH#~ 
SU336X,lB#0,4VX,4Vl,4X 
SUB 24X,2V=#00,34X,4~#0000,l~#1,5X 
SUB 77X,lB#1,12VXE#0% 
SUB SPF,3VE#000,16X,lB#0,13X 
SUB 24X,2VE#00,34X,4:S#0000,2~#10 
SUB 23X,lB#(li,6X 
SUB SPF,3B#000,16X,lVB#0,13X 
SUB 54X 
SUB 22X,lB#0,7X 
SUB 161..,lB#0,13X 
SUB lX,lVB#0,14X 
SUB 30X,H#B,20X 

iCCU CCNTRCL 
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£~DOS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CPUII n~FINITIONS 

ACK: 
OBF: 
CNT: 
GRD: 
JZ·: 
CJS: 
JMAP: 
CJP: 
PUSH:-­
JSRP: 
CJV: 
JRP: 
RFCT: 
RPCT: 
CRH]: 
CJPF: 
LDCT: 
LoeF: 
CaNT: 
JP: 
JSR: 
RTN: 

DEF 66X,E#9,20X 
DEF 66X,H#A,20X 
DEF 66X,H#F.20X 
DEl' 66X,E#0,20X 
DEF SUBll,H#0,SUB20 
DEF SUB11,H#l,SUP20 
DE·F SUBll ,B#2,SUB20 
DEY SUBll,H#3,SU!20 
DEF SUBll,R#4,SUP20 
DEF SUBll,H#5,SUB20 
DEF SUB11,E#6,SUB20 
DEF SUBll,n#7,SUP20 
DEF SUBll,H#e,SUB20 
DtF SUB11,H#9,SUB20 
DEF SUBll,H#A,SUP20 
nEP SUBll,E#B.SUB20 
DEF SUBll,H#C,SUB20 
DEF SUBll,H#D,SUB20 
DEF SUB11,H#E.SUB20 
DEF SUB11,H#F.SUB20 
DEF SUB14,E#01,SUB20 
DE~ SUB14,H#0A.SUB20 

;S~ARED CONTROL FIELD 

GOTe: 
COUNT: 
PUT: 

DEi SUB12 
DEF SUB12 
DEF 77X.1B#0,12VXH#0% 

;PetARITY CONTROL 

1: DIF 65X,lB#1,24X 
F: DEF 65X .1:8#0, 24X 

;2903 CONTROL/FUNCTIONS 

IN: 
"UT: 
YOFF: 
HIGH: 
SRS: 
SSR: 
AD:;): 
PAS: 
::0"'l5: 
PAR: 
CO!"R: 
LOW: 
C'B AS : 
XNRS: 
XOR: 
AN:;): 
~!OR : 
NUD: 
OR: 

DiF 36X,1!#1,H#F,eX,H#¥,H#0,19X.1B#0.13X 
rEF 36X,lB#0,8X,H#F,H#r,H#6,SUB3 
DEF 36X,lB#1,531 
DEF SUB8.H#0,3!#010.SUB19 
DEF SUB1.H#1,SUB3 
DIF SUB1,H#2,SUB3 
DEF SUB1,H#3,SUB3 
DEF SUB2,H#4,SUB3 
DEF SUB2.B#5,SUB3 
DEF SU]9,H#6,SUB3 
DEF SUB9,B#7,SU~Z 
DEF SUB8,H#6.3X,SUB19 
DEF SUB1,H#9,SUB3 
DEF SUB1,H#A.SUB3 
DEF SUB1.E#B,SUB3 
DEF SUB1,H#C,SUB3 
DEF SUP1.E#D,SUB~. 
DEF SUB1.H#!.SUB3 
DIF SUB1,E#F,SUB3 

;2903 SPECIAL FUNCTIONS 



AMDOS/29 AMDASM MICRO ASSEMBLER, Vl.l 
CPUII DEFINITIONS 

U:vJUL: 
TCM: 
SMTC: 
TCMC: 
SLN: 
DLN: 
TDIV: 
TDC: 
INC: 
SDQP: 
SUQP: 
LQPT: 
RMOV: 
QMOV: 
SDRL: 
SURL: 

DEF SUB0,H#0,SUB16 
DEF SUB0,H#2,SUB16 
DEF SUB10,H#5,SUB16 
DEF SUB0,H#6,SUB16 
DEF SUB10,H#8,SUB16 
DEF SUB0,H#A,SUB16 
DEF SUB0,H#C,SUB16 
DEF SUB0,H#E,SUB16 
DEi SUB10,H#4,SUP16 
DEF SUB4,H#5,4X,SUB3 
DEF SUB4,H#D,4X,SUB3 
DEF 36X,lB#0,8X,4VX,H#6,E#6,SUB3 
DEF SUB2,H#4,SUB3 
DEF 36X,lB#0,4VX,8Y,MEM,H#4,3B#010,SUB19 
DEE SUB10,H#1,H#4,SUP3 
DEF SUB10,H#9,H#4,SUB3 

;2904 SHIFT CONTROL 

SDDB: 
SDUH: 
SDDL: 
SDUL: 
liDD: 
RDU: 
SSI0: 
RSD: 
RSU: 
SUL: 
SUR: 
SDL: 
SDH: 
SDMS: 
S~S: 
S'DDC: 
SDUC: 

DEE SUB7,H#3,SUB€ 
DEE SUB7,H#7,SUB5 
DEF SUB7,H#6,SUB6 
DEF SUB7,H#6,SUB5 
DEF SUB7,H#F,SUB€ 
DEF SUB7,H#F,SUB5 
DEF SUB7,H#E,SUB6 
DEF SUB7,H#A,SUB6 
DEI SUB7,H#A,SUB5 
DEF SUB7,H#2,SUB5 
DEF SUB7,H#3,SUB5 
DEF SUB7,H#0,SUB6 
DEF SU]7,H#l,SUB6 
DEF SUB7,H#5,SUB€ 
DEF SUP7,H#2,SUB6 
DEF SUB7,H#7,SUB6 
DEF SUB7,H#4,SUB5 

;2904 MICRC INSTRUCTION CODES 

RSTI: 
SiVAP: 
SELD: 

DEF 30X,6B#000011,SlTB17. 
DEF 3 X,6B#000010,SUB17 
EQU 113#1 

;2904 MACHINE INSTRUCTION CODES 

LMA: 
RSTA: 
SROLD: 

DEF SUE15,6B#000000,SUB17 
DEF SUB15,6B#000011,SUP17 
DFF 23X,lB#0,66X 

;2904 MICRO STATUS SELECT 
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AMDOS/29 AMDAS~ MICRO ASSE~BLER, Vl.l 
CPUII DEFINITICNS 

MIZ: DEF SUB18,6B#010100,SUB21 
MIO: DEF SUB18,6B#010110,SUB21 
~IC: DEF SUB16,6B#~11010,SUB21 
MIS: DEF SUB18,6B#011110,SUB21 

i2904 MACHINE STATUS SELECT 

MAZ: DEi SUB18,6B#100100,SUB21 
MAO: DEF SUB18,6B#100110,SUB21 
MAC: DEF SUB18,6B#101010,SUB21 
~AS: DE]' SUB18,6B#1P11110,SUB21 

iDEvrCE DISABLE 

ALUCFF: DEF 7 X,lB#l,131 
ALLOFF: DEF 7 1,3B#111,131 

;LOAD CONSTAN T 

CONST: DEl 16 VIH#0%,4X,1P#0,691 

iBCD STATUS REGISTER CONTROL 

ENR: 
CLSR2: 
ENSR1: 
CURO: 

END 

DEF 16X,lB#0,73X 
DEF 171,lB#0,721 
DEl 18X,l]#l,711 
DEl 19X,lB#0,70J 

TOTAL PRASE 1 ERRORS = Ii! 



AMllOS!29 AMD!SM MICRO ASSEMBLER, V1.1 

010~ 
elli:~ 
0101 
01~2 
21103 

(:104 
010!:l 
01r2E 
.011217 
01108 
0109 

0110A 
01011 
:tn0C 
010D 
0101 
010F 
011J 

0111 
0112 
0113 
0114 
10115 
12111€ 
ell? 
011E:: 

0118 
011A 
011B 
e11C 
011D 
e1H 
01n 
10120 
0121 
121122 
012.3 
121124 
012:: 
n26 
012? 
0128 
0129 
,o12A 
~12:B 
012C 
012D 
012E 
012F 
0130 

;ALVANCE MICaO DEVICES 
AM29Z3 AND AM2S04 CPUII SOURCE FILE 

I~P: 

CUTP: 

uSM: 

5M: 

DIV: 

LOOPl : 

OR; EItH~0 
ALUOFI & T & OBF & CJP 5. GOTO l~F 
ALUOFF & PUSH 
IN & T & OEt & LOOP & PUT IOI~ 
ALUOFF & RTN 

CUT & CO~T & PUT YREG 
ALUOFF & PUSH 
ALUCFF & F & ACK & LOOP & PUT lOUT 
ALUCFF & PUSH 
ALUCFF & T & ACK & LOOP 
ALUOFF & RTN 

LOW R1 & JSR & GOTO I~P 
PAR R0,R15 & JSR & GOTO INP 
LQP1 R15 & F ~ GRD & PUSH & COUNT 0121E 
UMUL R1,R1,R0 & F & CNT & SDDL & RFCT 
PAR h15,R1 & JSR & GOTO OUTP 
QMOV R15 & JSR & ~OTO OUTP 
JP I> GCTO USM 

LOW H1 & JSR & ~OTO I«P 
PAR RIO,R15 & JSR & GOTO INP 
LQPT R10 & F & GRD & PUSH & COUNT Z0D 
TCM R1,R1,Re & F 5. CNr 5. SDDL & RFCT 
TCMC R1,R1,R0 5. SDnL & ceNT CZ 
PAR R15,R1 5. JSR & GOTO OUTP 
QMOV R15 & JSR 5. ~OTO OUTP 
ALUOFF & JP 5. GCTO SM 

LO';'/ R10 & JSR 5. GOTO IMP 
PAR h?,R15 5. JSR 5. GOTO I~P 
PAR R1,R15 & JSR & ~OTO INP 
PAR R4,R15 & CO~T 
PAR R3, R7 &. CON'f 
PAn R2,R1 & T & MIZ & CJP & GOTO ABCRT 
SMTC R2,R2 & CONT CZ 
SMTC R3,R3 &. T & MIO 5. CJP CZ & GOTO SCALEl 
ALUOFF & T & MIO & CJ~ & GOTO SKIP6 
SURl R3,R3 & SUL & CONT 
SURL R2,R2 & SUL & CONT 
ALuOFF & JP & GOTO LCOP2 

SCALE1: LQPT R4 & JSR &. ~OTO SDIVD 
ALUOFF & JP LOOPl 

LOOP2: SSR R15,R3,R2,YBUS & CO~T ONE 
SKIP6 : LQPT R4 S F 5. MIC &. CJP & GOTO SKIP3 

ALUOFF & JSR 5. GOTO SDIVD 
SDRL R2.R2 & SDL & CONT 
ALUOFF & JP &. GOTO LOOP2 

SKIP3 : ALUCFF &. F & GRD 5. LDCT &. COUNT 00C 
DLN Rl,R1,R? & T & GRD & RDU & PUSH 
TDIV Rl,Rl,R? & F & CNT & RDU & RFCT CZ 
TDC Rl,Rl,R? & SUH &. CO NT CZ 
QMOV R15 & JSR & GOTO OUTP 
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AMDCS/29 AMDASM MICRO ASSEMBLER, V1.1 

e131 
121132 
0133 SDIVD: 
121134 
0135 
10136 
121137 NE3- : 
0138 RET : 
013£' 

013A SLNORt-':: 
e1~B 
013C 
013D 
013E 
013F 
0140 AJAr K : 
0141 
0H~ 
0143 
121144 
0145 li:~,D· 

12114c l'lNORM: 
0147 
0148 
rz:l4S 
fH4A 
014E 
214C LOOP4: 
IZ14D 
014}; .TUMP1: 
e-14F 
121:5121 
!t151 END2: 

0152 S~B.T: 
0!.j'; 
10154 
121~t 

iC15e 
0157 
0158 
015S-
~lbA 
015B CYCLE: 
015C 
12151 
1l15E 
015'F POS: 
2160 Cl'<T: 
;:;161 
,0162 
01e3 
iZ164 SUB: 
21165 Kf\D3: 

PAR R15,R1 & JSR & GO TO OUTP 
ALUOFF & JP & GOTC DIV 
PArt R1,R1 & CONT 
ALUOFF & T & r.IS & CJP & GOTO 
PAR R1,R1,ADRQ & SDDL & CONT 
ALUOFF & JP & GOTO RET 
PAR R1,R1,ADRQ & SDtL & CONT 
QMOV R4 & CCNT 
PAR Rll21,R10 & RTN 

JSR & GOTO INP 
LQPT R15 & CONT 

ONE 

SLN R2,R2,OFF & CCNT & SHOLD 
MAZ & T & CJP & GOTO ABORT 

NEG 

MAC & T & LOW R0 & CJP & GOTO END 
SLN R2,R2 & MAC & T & CJP ONE & GOTO 1~'D & Sur. 
SIN R2,R2 & ~IO & F & CJP ONE & GOTO AGAIN & SUL 
S~~P & SMS & CONT 
SRS R2,R2,R0 & CON~ 
QMOV R15 & JSR & JOTO OUTP 
PAR R15,R2 & JSR & GOTe OUTP 
JP & GOTC SLNORM 

JSii & (}OTO INF 
L~PT R15 & JSR & GOTO I~P 
DLN R15,R15,R15,CFF & ceNT & SBOLD 
MAZ & T & CJP & GOTO ABORT 
LOW R2 & MAC & T & CJP & GOTO END2 
DLN R15,R15,R15 & SDUL & MAO & T & CJP & GCTC JUMP1 
DIN R15,R15,B15 & SDUL & MIO & T & CJP & GOTO JUMP1 
PAa R2,R2 & JP ONE & JOTO LOOP4 
PA~ R2,R2 & CONT OKE 
strlQ R15,R15 & SDMS & JSR & ~u10 OUTP 
QMOV R15 & JSR & GOTO OUTP 
JP & GCTO DLt\ORM 

IO\v R10 & CO~;T 
LOW Re & JSR & GOTe I~P 
PAR R1,R15 & CO~T 
PAK h2,R0"DARB & COKST 0005 & COKT 
fAR 33,R0"tARB & CONST 0003 & CO~T 
PA~ h4,R0"DARP & CCKsr F#BJFF & CONT 
PAR R5,RZ"LARb & co~sr 412100 & COKT 
FA3 R6,R0"DARB & co~sr 0008 & CO~T 
SRS R0,R1,R5 & CONT & SHCLD 
A~D R5,R5,R~ & CONT 
SDRL R~,R4 & MAS & CJP & GOTO END3 
SUtiL ~0,~0 & T & ~AS & CJP & JOTO P~S 
OR R5,Rj & JP & JOTO CNT 
CR R5,R2 & COWl' 
SRS R€,R6,Rl121 & CONT 
SDRL R2,R2 & T & MIZ & CJP ,SHLD & JOTO END3 
SD3L R3,R3 & T & MAS & CJP & GCTC SUP. 
ADD R0,R0,R5 & JP & GOTO CYCL1 & SrlOLL 
SRS R0,R0,R5 & JP & GOTO CYCLE ~ SH01D 
JP & GaTe SQRT 
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AMDCS/2~ AMDASM IHCRO ASSEMBLER, V1.1 

~16€ ABCRT: ALUOFF & JP & GOTO ABORT 
0167 JP & GOTO DIV 

Ef'..D 
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A~DOS/29 AMDASM MICRO ASSEMBLER, V1.1 

0100 XXXXXXXXXXXXXXXX XXXXXXXX0~XX~XX XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000 
1110100011X01100 01~00Z0000 

0101 XXXXXXXXXXXXXXXX XXIXXXXX00XXXXXX XXXXXXXJJXXXXXXX XX1XXXXXXXX10000 
1XXXXX0100X01XXX XXXXX!XX!X 

0102 XXXXXXXXXX~XXXXX XXXXXXXX00XXXXXX XXXX11111X:XlXXXX X1111~000XXX0000 
1110101101X0000@ 0000000001 

0103 XXXXXXXXXXXXXXXX XXXXXXX7.00XXXXXX XXXXXXXXXXIXX"XXX XXXXXXXXXXXX0000 
1000001010X01X~X XXXXXXXXXX 

0104 XXXXXXXXXXXXX!XX XXXXXXXX001XXX1X XXXX0XXXXXXXX111 1110001100000000 
1XXXXXll10X00000 0000000010 

0105 XXXXXXXX!XIXXXXX XXXXXXXX00~XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000 
1XXXXX0100X01XXX XXXXXXXXXX 

H06 XXXXXXXXXXXXXXXX XXXXXXX7.00XXXXIX XXXXXXXXXIXXXXXX XXXXXYXXXXXX0000 
1010011101X01~00 0000000100 

0107 XXXXXXXXXXIXXXXX XXXXXXXY00XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000 
1XXX1X0100X01XXX XXXXXXXXXI 

010b XXXXXIXXXXXXXXIX XXXXXXXX00XXXXXX XXXXXXXIXXXIIXXX XXXXXXXXXXIX00~0 
1110011101X01XIX XXIXIXX~XX 

010S XIIIXXXxxixXXIXX IXI1XXXI00XXIXXX XII1XIXIXX1.XXXIX XX.l\.XXXXXXXXI0000 
100~001010X01XXX XXIXXXIXIX 

re10A lXIXXXXXXXXXXXIX XXIXXXIJ00111lYX IXXX000011XXIXXX Xl111101Z0XXX0000 
1000000001X00100 0100000000 

01J:B XXXXXXXXXXAXXXXX XXXXXXXX00XIXX11 XXXX0.o00Z1XHX111 11111011000001Z00 
1000e00001X00100 0100000000 

~10C JIXXX~XXXXXXXXXX XXXIXIIX00XXXIXX XXXX0XXXXXXXX111 1011001100000000 
100J~00100Xi~100 00100001110 

0Hm 1.XX1XIXI11XXIX11 XXXXII1X0001101X XXXX000010001000 0000000000000000 
101111101Z0000XXX XXXXXXXXXX 

01101 XXXXXIXXXXXXIXXX XXXXXXXX~0XXXXXX XXXX01111XXIX000 111110110210000100 
1000000~01100100 0100000100 

il10F XXXXXXXXIXXIXXXX XX1XXXXX00XXXXXX XXI101111XI1XXXI X 111101000100000 
1Z2l00002101X001~0 0100000100 

01110 lXXXXXXXIXXXXXXX l1XIXI1X00XIXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXIZ000 
1XXXXI1111X01100 010121201010 

,0111 XXXXXXXXIX!XXXXX XXXXXXXX0JXXXXXX XXXXZt0~1XXYXXXX X 11111000 XXX2I000 
1000000~01X00100 01001Z0e000 

12112 XIXXXXXXXXAXXXXX XXXXXX1.Xe0IXXXXX XY.XX0l000XXXXl11 1111101100000000 
1000000~~110~1~0 01210000020 

0113 XXXXXIIXXXXIXXXX XXXXXXXX00XXXXXX XXXX0XXXXXXXX111 le1100110000e000 
100000011Z0xe0100 00000121101 

21114 XXXXXXXXXXIXXXXX XXXXXXXXJJ2I110XX X),XX Jrt0~10001oil00 0001J000000000J0 
1ell111000000XXX XXXXXXXXXX 

~11~ XXXXXX1XXXXXXI1X XXXXXXX11001101.X XXXX0000100e1000 0011000e00e:~12000 

1XXXXXll102001XX XXXXXXXXXX 
1211 ( 1IXXI}XYXXXJXXXX XXXXXXX~00XXXX1X XXXX01111:XYXX 000 11111011210000000 

1000000001X0e100 010000e100 
0117 XXXXXXXXXXX~XXXX XXXXXXXX00XXXIXX n:XX01111XXXXXXX X11112'lZ00100000 

10000e0001X00100 0100020100 
011E lXXXX1YXXXX7.XXIX XXXX7.IXX00XXXX1J XXXXXXXXYXXXXXXX XXXXXXXIXXXX0000 

1XXXXX1111X01100 0100010e01 
12119 XXXXXXXXXXXXXXXX XXXXXXXX00XXXXXX XXXX01010XXXXXXX Xl1111000XXX000e: 

1Z00~00001X0e.100 01~0000000 
011A XXXXXXXXXXXXXXXX XXXXXXIX~0XXXXXX nxx,00111XXXY.111 111110110001010000 

100~000001100100 01000e:00e0 
lc:~l1F XXX1XAXXXXXXXXXX XXXXXXYX00XXXXXX XXXX0012'12'1 XXH111 111110110000!Z00e 

103~~00001X0013e: 0101000000 
!ll1C XXXXXXXXXXXXX!XX XXXXXXXX00XXXXXX XXXX02100XXH111 111110111012'010012'100 

1XXXXX111e:A00XXX XXXXXXXYXX 



A~LC3/29 AMDASM MICRO ASSEMBttR, V1.1 

011D XXXXXXXXXXXXXXXX XXXXXXXX00XXXXXX XXXX00011XI1X311 111110110~0Z0e00 
1XXXXJ.1110X0~XXX XX1XXXXX11 

011~ XXXXXXXXXXY.1XXXX XX1XXX0X00XXXX01 01000~01~XXXX000 1111101100000000 
1110110011X0~103 4101130110 

011F l11XI1X11XXXXXIX IXXXIXIX101XIXIX 1111000100010XXI 1010100000000000 
iXXXXX111eX0~XXX XXXXXXXIXX 

01~0 XXXXXIXXXXXXXXXX XXXXXX0X10XXXXJ1 01100001100111Xl X010100000000000 
1110110011100100 0100100101 

0121 IIXXXIXXIX1XXXIX XXXXXX010~XXXXe1 01101XXIXIX11XII IXIYXXXXXXXX0000 
1110110011101100 0100101000 

0122 XXXXXXXXXXXXXXXX XXXIXIXX0000101X XXXX00011001111X 1100101000000000 
1XIIX11110000XXX XXXXXXXXXX 

~123 lxxxxlxXIXIXXXXX XXXXXXXX00001JXX XXXX0001000101XX 1100101000000J00 
1XXXXX1110000XXX XXXXXXXXIX 

0124 XXXXXIXIXXI1XXXX XXXXXXIX00XXXXXX XXXXIIXXXXXXXXXX XXXXXXXXXXIX0000 
1XXXIX1111X01100 ~100100111 

0125 XXXXXXXXXXXXXXXX XXXXXIXX00IXXXXX XXXX0XXXXXXXX010 0011001100000000 
1000000001X00100 0100110011 

012e XXXXXXXXXXXXXXXX XXXXXXXX01XXXXXX XXXXXXXXXXXXXXXX XXIXXXXXXXXX0000 
1XIXXX1111X01XXI XXXXXXXXXX 

0127 lXXXXXXXXXIXXXII XXXXXXXX01XXXXXX XXXX011110011001 0110000100000000 
1XXXI11110100XXX XXXXXXXXXX 

0128 XXXXXXXXXXXXXXXX XIXXXI0X00XXXX01 10100XIXXXIXX010 0011001100000000 
1010110011X00100 0100101100 

012S XXXXXXXXXX!XXXXX XXXXXXXX00XXXXXX XXXXXXXXXXXXXXXX XXXXXXIXXXXX0000 
1000000001i01100 0100110011 

012A XXXXXXIXXXXXXXXX XIXXXXII000000XI XXXX0001000101XI X000101000000000 
1XXIIX1110000XXX XXXXXXXXXX 

012~ IXI1XIXXXXXXXXXX IXXXXXXX120XXXXIX XXI1XI1XXXXXXXIX XIXIXXXXXXXX0e00 
1111XX1111X011e0 01001012111 

012C XXXXXXXXIXiXXXXX XXXXXXXX00XXXXIX XXXXXI1X41XXXXIX XXXIXXI11XXX0000 
1012012011001121100 0000001100 

012L IXIXIXXI1X1IXXXI IXXXXIXI00111111 XXXX000010001Z11 1101000000000000 
1100000100d00XXX XIXXXXXXXX 

012E XXXXXIIIXIXIXIIX XXXXXXYX101111Xl XXXX000010~01011 11100012000000000 
1011111e00d001XX XIXXXXXlf.X 

~12F XIXIXIXXXX1XXXXX XXXXIXXX1J0011XX XXXX000010001011 1111000000000000 
1XXXIX111120001Xl XXIXXXXXXX 

01~~ lXXIXXXlXXXIXXIX XIXXXXXX001XXXIX XXXI01111XXXXXXX X1111010012100e0e 
1000000001100100 0100000100 

e1~1 l11XXI11XXIXII1X IXXXXXXX00XXXXXI XIXX01111XXXX000 111110110001200012 
10000000121Xfl,.01e0 01000001120 

d13~ XXXXIXXXXXXXXIXX IXXXXXXX00XXXXXX XXIXXXXXXXXXIXXX XXX11XIXXIXX0030 
1XXXIX1111X011012 0100011001 

e1~~ XXXXXXXXXXXIXXXX XXXXXXYX00XXXIXX XXXX00e01XIXI0120 11111011012000000 
1XXXIX1110X00XXX Xlxixxxxxx 

0134 XXXXXXXIXXXXXXXI XIIXXX3X001XI101 1110XIXXXXXXXXXX XXXXXXXXXXXI0000 
1110110011X01100 0100110111 

0135 XXXXIXXXXXXXXXXX XXXIXXXX000110XX XXXX~0001XXXX000 1001001100000000 
1XXXXX1110000XXX XXXXIXIXXX 

0136 IXxixx!xxxXXXXXX XXXXXXXX00XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXI0000 
1XXXXX1111X01100 ~100111000 

01~7 XXXXXIXXXXXXXXXX XXXXXXXX000110XX XXXX00001XXXX000 1001001100000000 
1XXXXX11100e0XXX,XXXXXXXXXX 

0138 XXXXXXXXXX!XXXXX XXXXXXXX00XXXXXX XXXX00100XXXXXXX X111101000100000 
11XXXX1110100XXX XXXXXXIXXX 

0139 XXXXXXXXXXXXXXXX XXXXXXXX01XXXXXX XXXX01010XXXX101 0111101100000000 
1000001010X00XXX XXXXXXXXXX 
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lMDOS/2& tMrASM MICkO ASSEMBLER, V1.1 

e13A XXXXXXXXXXXXXXXi XXXXXXXX0~XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXlXXX0000 
1000000001 X0'X100 0100012,0000 

013B XXXXXXXXXXX1XXXX XXXXXXXX:iJ0XXXXXX XXXX0XXXXXXY.Xl11 101100110;:'000000 
lUXX X 1110X00XX1 XXXlXXXXXX 

013C xxxxnnx::O,XXXXX XXXXXXX000XXXXXX XXXXe00100010XXX Xl12'01Z00000000000 
lXXXXX1110X01XXX XXXXXXXXXX 

12:131' lXXXXXXXxXXXXXXX XXXXXX0XIZ0XXXX10 0100XXXXY.XXXXXXX XXXIXXXXXXXX0000 
1110110~11X0X100 12'101100110 

{"13E XXXXXXXXXXXXXXXX XXXXXXl.X~0XXXX10 10100.iJ000XXXXXXX X11111000XXX:a000 
1110110011i00100 0101000101 

1013] XXXXxXXXXXXXXXXX XXXIXX0X01001010 0110000100010XXX X10e000000000000 
1110110011000100 ~101000101 

IZglZ 1XXXXXXXXXIXXXXX XXXXXX0X01001001 0110000100010XXX X10e0eH~000000000 
1010110011000100 0101000000 

Z141 11XXJ~JXXljJXXYX XXXXIXXX000013XI IXXX0XXXXXXXJXXX X0101XXXI~00~000 
lXXXI)111e600XXX XXXXXXXXXX 

~142 XXXXXIXXXXXXXXXJ XXXXXXXX00XXXXXX XXXX000100n0000 0111100010000000 
lXXXXX111010~XXX XXXXXXIIXI 

e14~ JXXX!XXX1XXXiX1l XXX1XXXX00XXXXXX XIXX011111XXXIXX Xl11101000100000 
1000000001X00100 0100000100 

J144 XXXXXXXXXXXIXXXX XXXXXXXXJ0XXXXXX XXXX J1111XXJt.X001 0111101100000000 
1000ee0e01X001e0 0100000100 

014j XXXXxlX1XX'XXXXX XXXXXXIJ00XXXXIX XXXXxxxxxxxxnxx XXXJ.XXXXXXXX0000 
lXXXIXll11X0X100 0100111010 

e14f XXXXX!XXXX!!XXXX XXXXXXXX001XIXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000 
1~~0000001X0X100 0100000000 

0147 XXXXXXXXXXIXXXX! XXXXXXXX00XXXXXI XXXX0XXXXXXXX111 1;t1 Ul01100:!l00000 
1000000001X00100 0100000000 

~14t: XXXXXXXXXXXXXXXX XI1XXXX000JXIXXI XXXX011111111111 11011000000000000 
lXXXXI1110X01XXl XXXXXXXXXX 

~149 XxXXXXXXXX~XXXXX XXXXXX0X0roXXXX10 010exxxxxxxxxxxx XXXXXXXXXXXX0000 
1110110011X0X10e ~101100110 

014A 1XXXXXXXXXXXIXXX XXXXXX0X00XXXX1J It>1::?00010X1.XXXXX Xl1111000XXX0000 
1110110011X001100 010110101001 

014:8 JXXXXXIXXIXXXXX1 XXXXXX0X00011010 0110011111111111 11(2:10000100000000 
11101110011000100 J1010~1110 

0-14C XXXXXXXXXXXXlXXX XXIXXX01001211001 0110011111111111 1101000000000000 
1110110011000100 0101001110 

~14D XXXXX1XXXXXXXXXX XXXXXXX701XXXXXX XXXX00010XXXX001 0111101100000000 
lXXIXX1111X00100 0101001100 

014E XXXXX1XXXXXXXXXX XXXXXXX1011XXXXX XXXX00010XXXX001 0111101100000000 
1XXXXX1110X00XXX XXXXXXXXXX 

014F lXXX1XXXIXXXXXXX XXXXXXXX000101XX XXXX011111111XXX X0011011210012100000 
100121000001000100 121100000100 

0150 XXXXXA1XXX1XXXXX XXXXXXXX00XXXXXX XXXX 01111XXXXXXX X1111e10001000ee 
1000000001X00100 01010000100 

0151 lIIXXIXXXXAXXYXX XXXXXXXX00XXXXX1 XXXXXXXXXXXXXXXX xxxxxxxxxxxxe00121 
1XXXXX1111X01100 0101000110 

0152 XXXXXXXXXXXXXXXX XXXXXXXXI2I0XXXXXX XXXX01010XXXXXXX X11111000XXX0000 
1XXIX~1110X001XX XXXXXXXIXX 

0153 XXXIXIX1XXIXXXXX XXXIXXX100XXXX1X XXXXIZ1Z01OIOXXXXXXX X11111000XXX0012110 
1000000001X001e0 010001010000 

0154 XXXXX1XXXXXIXXXX XXXXXXXX00XXXXIX XXXX00001XXXX111 1111101100000000 
lXX1111110X00XXX XXXXXXXX1X 

0155 0000000000000101 XXXX0XXX~XXXXXX XXXX00010XXXX01210 0111101101000000 
1XXxXX1110X00XXX XXXXXXXXXX 

0156 0000000000a00011 lXXX13XXX00XXXXXX XXXX00011XXXX000 0111101H1100000121 
lXXXXX1110X00XXX XXXXXXXXXX 
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A~DCS/2S AMDASM MICRO ASSEMBnER, V1.1 

2167 1111111111111111 AXXX0Y.XI130XXXXXY. HXX00100XXXX13130 01111011131133001313 
1XXXX111101~3XXX XXXXXXXXXX 

l15f- ~lZ0e00l0eJ0e602 XX1XeXXX00XXXXXX XXXX e ~101X XXX13130 0111112 11131130130013 
1XXYXX1110x0~XXX XXXXXIXXXX 

.:31% 00000000000~lJZ0 XXXX0XXX00XXXXXX XXXX21~110XnX1300 101111131101130130013 
1XXXXX1110X0~XXX XXXXXXXXXX 

noA ;XXXXXXXXXlXXXXX XXXXIXJ0130XXXXXY. HXY.00012J130e.01010 1111112J0010013el3l313 
1XXXXX111ZXI2J0XXX XXXXXXXXXX 

2151 f.XXXXIXXXXXYXXXX XXXXXJXX00XXXXXX XXXX130113101131010 011111113013013001313 
1XIX111110X00Xll XIXXXXXXXX 

015C XXXXXXXXXX1XXXXX XXXXXX0X0~XXXX10 11100.o1l100100Xn X0001l1113130I2Jel13I2J:2J0 
1X10110211X02100 0101100101 

12131 XXXYX1)YXXIXXXXX XXXXXX01012JXXXX10 1110000fl12J12J0e0XXX X100101013013000013 
1110113~11~00100 ~101011111 

<;151 XX HXXXnX.o. XXX X XXXXXXXX00XXXXXX XXXX13010101311XXX X11111111I2JeI2J0130I2J 
lXXXXX1111X00100 01e1100000 

iJ15F XXXXXXXXXXXXllXX XXXXXXXX00XXXXrX XXXX0010112J010XXX X 1111111113131300013 
lXXXXX111eX012JXXX XXXXXXXXXX 

,7,1 erz ~XXXXXXXXXXXXXXX XXXXXXXX00XXXXXX Xn.X001100110101 011110001130000130 
lXXXXX111:2JX0JXXX XXXXXX!!XX 

~161 {XXXXXXYXXXXXXXX XXXXXX0X00XXXX01 01000t0113012J10XXX X0001010000012J12J013 
1110110011Xl12J1l0 1010111313101 

016': XXXXXXXXXXXXXXXX XXXXXX0X00XXXX10 1110000110011XXX X012J01012'1300013000 
111011e011X0010e 0101100100 

e16~ lXXIXXXXJXIXXX)X XXXIXIX0013XXXXXX XXXX00000131301(,010 111110011130000013 
1XX.XXII11X00100 ~101011011 

0164 )XXXX1XXJXAXXXXX XXXXXXX000XXXXXX XXXX001300000130113 1111100011300001313 
1XXXXX1111X00100 12'101011011 

0165 XXXXXXXXXX1XXXXX XXXXXXXX00XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX00130 
1XXXXX1111XI2JX10e 0101131131310 

0166 XXXXXXXXXXXXXXXX XXXXXXXX130XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX00013 
1XXXXX1111X01100 :2J10110C110 

0167 XXXXXXXXXXXXXXXI XXXXXXXX00XXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000 
lXXXXX1111X13X1012J 0100011001 
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SPF 
HIGH 
SRS 
SSR 
ADD 
PAS 
COMS 
PAR 
COMR 
LOW 
CRAS 
XNRS 
XOR 
AND 
NOR 
NAND 
OR 

ADR 
LDR 
ADRO 
LDRO 
RPT 

• LDOP 
• OPT 

RaPT 
AUR 
LUR 
AURa 
LURa 

• YBUS 
• LUO 

SINX 
REG 

• = WRITE = H 

UMUL 
TCM 
INC 
SMTC 
TCMC 
SLN 
DLN 
TON 
TOC 

Am2903 MNEMONICS 

10 FUNCTION 

RAMB 
a 
SPF 

RAM B - OUTPUT 
a REGISTER 
SPECIAL FUNCTIONS 

ALU Functions 

Special Functions 
Fi = HIGH 
Subtract R from S 
Subtract S from R 
Add Rand S 
Pass S 
2's Complement S 
PassR 
2's Complement R 
Fi = LOW 
Complement R AND with S 
Exclusive NOR R with S 
Exclusive OR R with S 
AND R with S 
NOR Rwith S 
NAND Rwith S 
OR Rwith S 

HIGHS 
S - R - 1 + Cn 
R - S - 1 + Cn 
R+S+Cn 
S + Cn 
S + Cn 
R + Cn 
R + Cn 
LOW'S 
RAS 
RVS 
RVS 
RAS 
RVS 
RAS 
RVS 

ALU Destination Control 

Arithmetic Shift Down, Results Into RAM 
Logical Shift Down, Results Into RAM 
Arithmetic Shift Down, Results Into RAM and a Register 
Logical Shift Down, Results Into RAM and a Register 
Results Into RAM, Generate Parity 
Logical Shift Down Contents of a Register, Generate Parity 
Results Into a Register, Generate Parity 
Results Into RAM and a Register, Generate Parity 
Arithmetic Shift Up, Results Into RAM 
Logical Shift Up, Results Into RAM 
Arithmetic Shift Up, Results Into RAM and a Register 
Anthmetlc Shift Up, Results Into RAM and a Register 
Results to Y BUS Only 
Logical Shift Up the Contents of the a Register 
Sign Extend 
Results to RAM, Sign Extend 

Special Functions 

Unsigned Multiply 
Two's Complement Multiply 
Increment by One or Two 
Sign Magnitude +-+ Two's Complement 
Two's Complement Multiply Last Step 
Single Length Normalize 
Double Length Normalize 
Two's Complement Multiply Division 
Two Complement Division Correction 



1'0 19 18 

SDL 0 0 0 

SUH 0 0 0 

SUL 1 0 0 

SUH 1 0 0 

SDDH 0 0 0 

SDDL 0 0 1 

SDUL 1 0 1 

SDUH 1 0 1 

RSD 0 1 0 

RSU 1 1 0 

SSXO 0 1 1 

RDD 0 1 1 

RDU 1 1 1 

SDMS 0 0 1 

SMS 0 0 0 

SDDC 0 0 1 

SDUC 1 0 1 

17 16 

0 0 

0 1 

1 0 

1 1 

1 1 

1 0 

1 0 

1 1 

1 0 

1 0 

1 0 

1 1 

1 1 

0 1 

1 0 

1 1 

0 0 

Me 

Am2904 Mnemonics 

SHIFT 
INSTRUCTIONS 

RAM Q 

MSB LSB Mse LSB 

Do~o~ 

D'~'~ 

0 -c=:::J-o -c=:::J-o 

0 -c=:::J-1 -c=:J-1 

D1~ 

Do~ 

0 ~o. 

0 ~1 

0 CGJ CGJ 
0 CGJ CGJ 

IsED10VR 
D~ 

0 4 I I rl 
0 ~ 
D~ 
o 0-1 J-l M.!.c=J-
r50~ 
~O 

Mlcrostatus Register Instruction Codes 

RSTI 
SWAP 
SHLD 

Reset /LSR 
Register Swap 
Hold Status 

Machine Status Register Instruction Codes 

LMA 

RSTA 
SHOLD 

Load Yz• Ye• YN• YOVA 
ToMSR 
Reset MSR 
Hold Status 

Yx ~ Mx 

o ~ Mx 

SIOo SIOn QIOo QIOn 
Loaded 
into Me 

z 0 z 0 

z 1 Z 1 

0 z 0 Z 

1 Z 1 Z 

Z 1 Z SIOo 

z 0 Z SIOo 

QIOn Z 0 Z 

QIOn Z 1 Z I 

Z SIOo Z 0100 

SlOn Z OIOn Z 

Z IN e IOVR Z SIOo 

Z 0100 Z SIOo 

OIOn Z SIOn Z 

Z MN Z SIOo 

Z 0 Z MN SIOo 

z 0 Z SIOo 0100 

OIOn Z .0 Z SlOn 

Microregister Condition Code Output '(CT) 

MIZ 
MIO 
MIC 
MIS 

Zero 
Overflow 
Carry 
Sign 

/Lz ~ CT 

/LOVA ~CT 
/Le ~ CT 
/LN ~ CT 

Machine Register Condition Code Output (CT) 

MAl 
MAO 
MAC 
MAS 

Zero 
Overflow 
Carry 
Sign 

Mz ~ CT 
MOVA~ CT 

Me ~ CT 
MN ~ CT 

181 
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APPENDIX C 

MICROPROGRAM BITS 

D3 02 01 DO 03 D2 01 DO D3 02 01 DO 
CP- CP I---- CP f--CLOCK 

Am2918 Am2918 Am291B 

0.-
03 Q2 Q1 aD V3 V2 Y1 YO 03 02 01 aD V3 Y2 V1 

0.1----
VO 

o.f_ 
00 02 Q1 00 Y3 V2 V1 VO 

DeB A 

Am25lS191 

I' 
L-------_4----~4 

L-----+-+-+-+_----------4_----.s 
L-------+-+_~~----------+_----.6 

L-----+-+-+-+_-------------4-4~~f__--------_4----~9 
L--------+~f_+_+_--------------~_+~f_+_----------_+----~10 

L----------r_t-f~--------------_t_4~f_~----------4_----+11 
L---________ ~~_+--~+_----------------~+_~_+------------_+----~12 

ENP 
ENT RCO 

DeB A 

Am2SLS191 

ENP DeB A ENP 
EEtNTO' ~-------I RCO 

Am25LS191 
Unlh UID~ ::R 

L-__ !R~CO~ ____ ~C~p~~L~DJ>--~--1-______ ~cp~ ____ ~LD~~~--iL ______ ~c~p~ ____ ~L~D~ 

I I 
-+13 

L---------------------4-------------------------~------CLOCK 

D7 

TESTINPUTS1 ~ ~ 
_ D2 Am25LS2535 

-D1 

~DO 
"L- CL 

f;LC B A 

~ I I I I 

TESTINPUTS1-_=_ ~ 
D2 Am25l$2535 

D1 

fL~ 

V-

v I---

PL19 -r,;;.-------; .. J---!-lJ--..:!-.14 
PL1. - 12 s11--+--I--I--+_15 
PL17 - 11 i'E1--+--1--I--+_16 
PL1. - 10 PUP 1--+--1--1--+-+17 

Am29811 [5----j 

ji[-f-­

EIiIl: .,:;-0. 
- TEST MAP 

18 

fjiLiii o. 
.u.24 .u.22 p.21 .u.20 PL23 PL23 



DATA BUS 

;1 ~ M N 6 
Q 

81 Ei 0 Q Q Q 1: 

07 06 05 04 03 02 01 DO 

CP -CLOCK 

Am2SLS377 

DE 0-- PL25 

Q7 06 05 04 Q3 a2 al ao 

f 

j I 
A7 A6 AS A4 A3 A2 Al AO A7 A. 

CSl -
Am27S21 

03 Q2 al ao 
CS2 ~ 

1 
2 

3 

4 

5 
6 

7 

8 

9 
10 

11 
12 

13 

14>-- SO 03 02 01 DO r-- SO 

15>-- 51 r-- 51 

16>-- FE r-- FE 
17>-- PUP r-- PUP 

Cn I--- Cn-.-4 

Am2911 

CLOCK- CP r-- CP 

PL73- RE I--- RE 
18 ZERO r-- ZERO 

rOE f------<: OE V3 Y2 Yl YO 

JJJovl. 

I I 
AS A. A3 A2 Al AD A7 A. 

CS1-

Am27S21 

03 Q2 Q1 ao C52~ 

03 D2 Dl DO - SO 

- 51 

- FE 

- PUP 

Cn- Cn+4 

Am2911 

- CP 

I--- RE 

r-- ZERO 

Y3 Y2 Yl YO f----<: OE 

yLLLl. 

AS A. '3 A2 Al 

Am27S21 

03 Q2 a1 ao 

03 02 Dl DO 

Am2909 

Y3 Y2 Yl YO 

J,1J yl, 

AO 

CSl 

C52 i1 

ROJ 

Rlr--

R2 

:~~ 

OR3 r-
OR2 r-
ORl r-
ORO r-

183 

131---
12 r---
1'1---
101---

T3 -Am29803 
T2 r---
Tl-

TO-

0E1=J OE2 

PL29 

PL28 

PL27 

PL26 

T3 

Tl 

TO 



184 APPENDIX C 

MICROPROGRAM MEMORY 

VA'--------------------~------------------------_4r_------------------------~--------------------------~--~1 

VA7------------------~+_----------------------_4~~----------------------~~------------------------~+_--~ 

VA6----------------~t_t_--------------------_4r_r,r_--------------------~~~----------------------~t_t_---. 

VA5--------------~t_t_t_------------------_4~r_r,r_------------------~~~~--------------------~t_t_t_---. 

VA4----------__ ~+_+_+_+_----------------~~~~~~----------------~~~~~------------------~+_+_+_+_---. 
VA3----------~+_+_+_+_+_--------------~~~~~~~--------------~~~~~~----------------~+_+_+_+_+_--~ 

VA2------__ ~+_+_+_+_+_+_------------~~~~~~r_~------------~~~~~~~------------~~+_+_+_+_+_+_--~ 
VA1----~~+_+_+_+_+_t_t_----------_1~~~~~r_r,r_----------~~_r~_r~~~----------_4r_r_+_+_+_+_t_t_--~ 

VAO --.-++-t--++-t-H--H"--++-t-H-++----.-,,t-H-++-t-+-+-------..,-+-, ++-t--++-+-I--
~~~~M~MUM ~~~~M~MUM AS A7 A6 AS A4 A3 A2 A1 AO 

CLOCK- CP - CP 

f E1 Am29775 - E1 Am29775 [ -
E2 -E2 cs 
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 00 01 02 03 

~ ~I ~I ~ ~I ~p ~I ~I ~PI ~ ~I ~I ~ ~I ~I ~ ~~I--::;--!i -::-;--:1 ~:-r--' 
/ L---~M~,~CR~O~P=R=O~GR~A~M~B=,T=SJ-----,I 

r-------------------------------------~ 

Am27S13 

PIPELINE BITS 

~--------------------~----------------------~--------------------~--~1 
~--------------------~_r--------------------~r_------------------_r_r--~1 

~----------------------~+_+_------------------~+_+_------------------~4_+_--~1 

L---------------------~~_r--------------~~_+_r--------------~_+_+_+_--~1 

L---------------------~_r_r+_+_--------------~r4_+_+_--------------~_r+_+_r_--~1 

L---------------------~r+_++_+_----------~~_++_+_r_----------~_+_+_+_~--~1 

L---------------------_r_+_+_+_~r4------------~r4_+_+_+_+_----------~+_+_~r4_+--~1 

L------------------~I~+-~4_~-------~I~~_++_~------~T~~+4~+-~~l 

L------~,+'~~H---~14'~H+~---~1H+'+H~--1 

/~ ________________________________________________________ ~\23 

/ 



1 

2 
3 

4 

5 

6 

7 

8 

9 1 
II 

AD A1 A2 A3 A4 A5 A6 A7 A8 

0>-- Cs Am27S13 

00 01 O. 03 

~ g ~ 
N . '-

CLOCK Dl D2 D3 

- CP 
Am25LS08 

rT -Qii 01 'iii Q2 Q2 03 03 

h hi h I~I 

11 

12 

13 

14 

15 

16 

17 

18 
19 

>--20 

21 >--

-

23 \ 

PIPELINE BITS 

T 

I I 
AD A1 A2 A3 A4"'A5 A6 A7 A8 

CP 

E1 Am29775 

E2 
00 01 02 03 04 05 06 07 

1111 M ~I §I ~ ~ ~I 
~ ~ ~ 
... ... ... .. .. .. .. .. .. .. 

PIPELINE BITS 

T 

I I 
AD A1 A2 A3 A4 A5 A6 A7 A8 

- Cs Am27S13 

00 01 02 03 

~I " "J. "J. '-

I 

I 

T 

I I 
AD A1 A2 A3 A4 AS A6 A7 A8 

I--- CP 

f---- E1 Am29775 

I--- E2 
00 01 02 03 04 05 06 07 

~I ~I ~ ~I ~ I ~ ~ 1 ~I ......... .. .. .. .. .. .. 

185 

I II r 
I 

AO A1 A2 A3 A4 A5 A6 A7 A8 AD A1 A2 A3 A4 A5 A6 A7 A8 

f---- Cs Am27S13 - Cs Am27S13 

00 01 02 03 00 01 02 03 

"- ~ ~ 

~I ~I '1 '- 'l. . 
MICROPROGRAM BITS 

~ ~ 
EN 

Am25lS371 

CLOCK - CP 

~ I ~ I ~ , 
~ I ~ 1 : 1 ~ 

I/O CONTROL BITS 

I II 1 
I I 

AD A1 A2 A3 A4 A5 A6 A7 A8 AD A1 A2 A3 A4 A5 A6 A7 A8 

I--- CP - CP 

f---- E1 Am29775 - E1 Am29775 

r-- E2 - E2 
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07 

'1 ; I ~ 31 ~ I ~ ~I ~ I ~I ~I ~I ~I §I ~ ~PI 
~ ~ ~ 
... ... ... ...... .. .... 0.. Q. G. c.. a. 11. 

I 



186 

l~Y6 
CLDCK- CP 

.--- Of' 

V7 V6 '(5 

I----- cTI 

I--- " 

r---- '" 

APPENDIX C 

o 8 
--'1 

l1111J11 
DA3 DA2 OAt DAD DBl 082 OBI DOO 

PL31- 10 

PL33-11 

Pl34_12 

PL35-13 

Pl36- 14 

Pl37- 15 

PL38-16 

PL39-17 

Pl..40-16 

OS 04 03 02 01 DO I--- Eor 06 05 04 03 02 01 DO 

10 r-- 1"(.54 

11 r-- Pl55 

12r- PL56 

13 r-- Pl57 

14~PL58 

15 r-- PL59 

16 r-- PL60 f------i 
17 r-- PL61 

AO- AD 

41_ AI 

1>.2- A2 

43- 43 

01 DO 

"r---­
WI--­

aEt-r---

'(4 '(3 '(2 VI YOEI--

18 r--PL62 

19r-- PL63 

110r-PL40 

111r- PLIl-I 

112r-PL65 
H::=: 

82- 82 

83 -::-: 83 
QH 0103 

SH 5103 0100 r---:-- 11 

t-::=====+=+===~CY C~ 4 SIOO ~12 I- OVF OVR eN ~ 13 

t::====~ff===?N :IGN : h ~ CP EA j"5jOEEiQEY '(3 '(2 VI YO WE ~ 

:::r-- J ,!. ,!.~ J 14 
OECY p-- PL6Bj I -

OE~~ ~ :~~~ If-t-Hrl '----:-15 
CE,.; p-- I"L14 1 16 

~ " " " '" "'" p- ,,,0) 1~ "hi 19 "r-- noo< H I 
Y4 Y3 '(2 VI : t--a RESET '--i'-1-'r--1T" I_"~ I",~I,-,~ ij ~ ~~ 

1----ltL='----t-----+------~23 
~-~~-----_t--------~24 

~--_t------t_-------~25 

PL52-­

PL51-

Pl50-

Pl49_ 

PL48_ 

Pl47-

Pl48-

Pl45-

F' 
csc - C;4LS109 

f'LI3-K 



I 

4>-+-+-~~--------------------------" 
5>-+-+-~~--------------------------~ 

;~~========~=====+==============~~=====t================~----~ 
:~~========~=====t======~~======~=====t======~ 
10~-+-+----------~---------+--------~~~---------4----------~------, 

I I I I I I I I I I I I I I I I I I I I I I I I 
DA3 DA2 OAt DAD DBl DB2 OBI DBO DAl DA2 OAt DAD DBl DB2 0111 060 DAl DA2 OAt DAD OB3 DB2 081 DBO 

PL3t-IO PL3t_1ll PL3t-IO 

Pl33-11 PU3- 'I PL33-11 

PI..34-12 PL34-12 Pl34_12 

PL35_13 PL35-13 PL35_13 

l....-PL36_14 PU6-14 PL36- 14 

PL37-15 PL37-i5 PL37-15 

PL3S-16 PU8-IS PL38-16 

Pl39-17 PL39-17 PL39-17 

PL40-18 PL40-18 PL40-IB 

y"-" -f'-" y"-" M- AI "-,, 1\1- AI 

1\2- "'2 Am2903 1\2- 1\2 Am:ZOO3 11.2- A2 Am2903 

A3- A3 A3- A3 A3- A3 

Y'"-'" 80-5\1 80- BO 

81-BI 61- 61 81- al 

62- 82 82-82 62- 82 

83- 83 83- 63 B3-83 

11 al03 0100 0103 moo 0103 0100 

187 

l~>--- Sl03 SIOO 5103 SIOO 5103 SIDOr----

- , 
;,~ 

r----- , 
" - -, "I---

.--- ' -, 
""~ 

-, MSS :--, , 
'" 

, LSS 11-CP EA iEf,j 6E8 OEY 

,!"!,ll f CP EA IEiii OEB em> Wi' CP EA lEN 6E8 6EY Wi' 

14 
j 1 ,l,~ !,,~ I I ;, J, ;, J, I 

15>-
16 
17 
18>-
19 
20 :) 21 

Y BUS 

22 
I I I I 

I~ I~ > I. 1< ~ 1:3 I~ 
8 Am2902A 8 

23 
24 
25 

Central Processing Unl! 
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Introduction 

In order to access instructions and data in an orderly manner 
within a computer, a Program Control Unit is usually used to 
provide the most efficient mechanism for program control. A 
program is a set of instructions which direct the processor to 
perform a specific task. Ordinarily, program instructions are 
stored in sequential memory locations. During the normal pro­
cessing of a program, an instruction is fetched from the location 
specified by the program counter, the instruction is executed, the 
program counter is incremented, and another fetch and execute 
cycle begins. The addressing mechanisms that such control unit 
might employ are various. Indeed there are some machines that 
literally use dozens of addressing modes to fetch instructions and 
data. In this discussion of program control units, several of the 
addressing modes and their common implementation techniques 
will be discussed. The addressing modes used commonly in 
tOOay's machines include register, immediate, direct, indirect, 
index, and relative and various combinations thereof. 

Data Formats 

Technically, an instruction set manipulates data of various length 
words. Generally speaking, most 16 bit minicomputers can ma­
nipulate data of three different word lengths: 8-bit bytes, 16-bit 
words and 32-bit double words. This data may represent fixed 
point numbers, floating point numbers, or logical data. The data is 
used as operands for the instructions, and is manipulated as 
indicated by the particular instruction being executed. 

Typically, fixed point data is treated as signed 15-bit integers In 
the 16-bit representation or as signed 31-bit integers in the 32-bit 
double length notation. Positive and negative numbers are rep­
resented in the ordinary 2's complement notation with the sign bit 
carrying negative weight. Positive numbers have a sign bit of zero 
and negative numbers have a sign of one. The numerical value of 
zero IS always represented with all bits LOW. 

Floating pOint numbers consist of a signed exponent and a signed 
fraction. Many different formats are used by manufacturers in 
expressing floating point data and these variations will not be 
described here. Let it simply suffice to say that the floating point 
number represents a quantity expressed as the product of a 
fraction times the number 2 raised to the power of the exponent. 
In some cases, the number 16 is raised to the power of the 
exponent. Typically, all floating point numbers are assumed to be 
normalized prior to their use as operands. No pre-normalization is 
performed and all results are post-normalized. Usually, the float­
ing point instruction set will normalize un-normalized floating 
point numbers. 

Logical operations are used to manipulate 8-bit bytes, 16-blt 
words or 32-bit double words. All bits participate in the logical 
operations. 

Instruction Formats 

Various minicomputers use different types of Instruction formats 
ranging from the very simple straight forward formats to the more 
complicated difficult to decode formats. For example, a register to 
register format can consist of a simple 8-bit opcode and two 4-bit 
source operand specifiers. On the other hand, it may consist of a 
byte or word specifier, an opcode specifier, source and destina­
tion register specifiers, and mode specifiers for each of the source 
and destination register selections. Again, it is not the purpose of 
this application note to describe all of the trade-offs In selecting 
instruction formats but rather to select a simple format such that 
the student of bipolar microprogrammed microprocessors can 
understand the techniques used by instructions for operating the 
machine. 

Thus, we will use a few 16-bit and 32-bit formats in this application 
note to demonstrate the function of the program control unit in 
various types of instruction execution. 

Instruction Types 

For purposes of this application note, we will define nine different 
instruction types using various addressing modes. As we define 
these instruction types, we will use the basic ADD instruction as 
the example in all cases. It should be recognized that the opera­
tions of the instructions are similar for all the arithmetic as well as 
logical type operations. However, by using the ADD instruction it 
will be easier to describe the operation of each of these instruc­
tions rather than to try to be very general in their description. 
Figure 1 shows all nine instruction types with their appropriate 
names. As is seen, four bf the instruction types are single 16-bit 
word instructions while five of the instruction types are double 
word or 32-bit, instructions. The advantage of the double word 
instructions is that a second word can be used as an address 
whereby it provides an index value or a second word can be used 
for data which is used as an immediate value. 

Register-to-Register Instructions 

When the register-to-register (RR) instruction is executed, It is 
simply a technique for selecting two of the machine's Internal 
working registers in order to execute the desired operation. The 
instruction is fetched from memory and placed in the instruction 
register and the source register R2 and second source register 
Rl are selected as the two source operands for the ALU. Register 
Rl is the destination register in addition to being a source register 
and the results of the ALU operation will be placed in the register 
specified by the Rl field. In the instruction format shown in Figure 
1 for the register-to-register instruction, the 8-bit opcode field 
specifies the machine operation to be performed. The next 4-bit 
field, R 1 , In the Instruction format specifies the address of the first 
operand. In most machines, the Rl field is normally the address 
of a general register. The 4-bit R2 field in the register-to-register 
Instruction format specifies the address of the second operand; 
this also is normally the address of a general register. In most 
machines, the Rl field also In addition to being a source operand 
is the destination general register select. Thus, the results of the 
operation are stored in the register selected by the Rl field. 

The RR instructions are used for operations between registers. 
We are assuming in this discussion that the machine contains 16 
general registers which function as accumulators or index regis­
ters in all arithmetic and logical operations. Each general register 
contains a 16-bit word consisting of two 8-bit bytes. For arithmetic 
operations, the most significant bit is considered the sign bit using 
2's complement representation. The general registers of the 
machine are usually numbered from 0 to 15 (decimal) and written 
in hexadecimal notation as 0 through F. In this example, the 
general registers have not been given specific functional assign­
ments. However, In some machines certain registers are as­
sumed to perform specific functions. These can Include specific 
stack pointer registers and program counter registers. Figure 2 
depicts the typical signal path for executing the RR instruction in a 
bit-slice system. 

The actual operation of the Register-to-Register Instruction is as 
follows. First, the instruction is fetched and placed in the instruc­
tion register as shown in Figure 2. ThiS is part of the fetch routine. 
Next, the instruction is decoded via the mapping PROM and the 
appropriate microinstruction in the microprogram memory 
selected and placed In the pipeline register. Then, the instruction 
is executed where the two registers in the general purpose regis­
ters of the Am2903 are selected by the contents of the Rl and R2 
fields of the instruction register. The actual microcode required to 
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Reglster-to-Reglster ADD INSTRUCTION 

1° OP 
71 8 Rtttlt2R2151 

(Rl) <- (Rl) + (R2) 

Reglster-to-Memory Reference 

1° OP RI X2
15 

1 (RI) <- (RI) + [(X2)] 

Memory-to-Memory 

1° OP XI X2
15 

1 [(XI)]<- [(XI)] + [(X2)] 

Register Short Immediate 

1° OP I Rl 
15

1 I DATA: (Rl)<- (Rl) + DATA 

Register-to-Indexed Memory 

1 ° OP I Rl x2
15

1
16 

ADDRESS 31
1 

(Rl) +- (Rl) + [(X2) + A] 

Register-to-Memory Immediate 

1° OP I Rl x2
15

1
16 

DATA 31
1 (RI) +- (RI) + DATA + [(X2)] 

Memory-to-Memory Indexed 

1 ° OP Xl x2
15

1
16 

ADDRESS 
31

1 [(Xl)] +- [(Xl)] + [(X2) + A] 

Register Immediate 

1 ° OP RI 15
1
16 DATA 31

1 (Rl) +- (RI) + DATA 

Memory Immediate 

1 ° OP Xl 15
1
16 DATA 31

1 [(Xl)] +- [(Xl)] + DATA 

Note' (RI) means the contents of register 1. 
[(XI) 1 means the contents of the word whose address IS in RI. 

Figure 1. Various Instruction Types for the ADD operation. 

DATA BUS 

Am2903 

MPR-562 

Figure 2. Register-to-Reglsler Instructions Select Two Registers In the Am2903 Array for Instruction Execution. 



execute this instruction is shown in Figure 3. Here, we assume 
the Program Counter (PC) value is contained in one of the gen­
eral registers and can be selected by microcode as well as the R1 
and R2 fields. This was shown in Chapter 3. 

Register-to-Memory-Reference 

The register-to-memory-reference instruction is one whereby the 
contents of the memory location pOinted to by the register iden­
tified with the X2 value is fetched from memory and then added to 
the register value specified in the R1 field. The result of this 
operation is placed in the register specified by the R1 field. 

Figure 4 shows a general block diagram of the hardware used to 
implement the instruction types described in the first part of this 
application note. As shown, the memory address register can be 
driven by either the Y outputs or the DB outputs of the Am2903s. 

Microinstruction ~ 
Operation TO T1 T2 T3 

PC ~ MAR; PC + 1 ~ PC X 

Fetch Inst to IR X 

Decode X 

R1+R2 ~ R1 X 

In addition, the Y outputs of the Am2903s can be placed onto the 
memory data bus by means of a three-state buffer. The computer 
control unit is intended to be representative of that described in 
Chapter 2 of this application note series. For purposes of this 
discussion, we assume the program counter (PC) is one of the 
general purpose registers within the Am2903 register stack. 
Later, we will change this concept and use the PC external to 
Am2903. 

The operation of the register-to-memory-reference instruction as 
depicted in Figure 1 can best be described by referring to Figure 
5. Here, we see the first three microinstructions that represent the 
fetch routine for the currently described machine. First, the pro­
gram counter is placed in the memory address register and the 
program counter is incremented and returned to the PC register. 

Microcycle Time 

T4 T5 T6 T7 T8 T9 T10 T11 T12 

Figure 3. Register-to-Register Instruction Microcode. 
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I 
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'------ CONTROL 

DATA 

MEMORY 
(MEM) 

ADDRESS 

Figure 4. Simple Memory Addressing Scheme with PC in the ALU. 
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Microinstruction ~ Microcycle Time 

Operation TO Tl T2 T3 T4 T5 T6 T7 T8 T9 Tl0 Til T12 

PC -+ MAR; PC + 1 -+ PC X 
Fetch Inst to I R X 
Decode X 
(X2) -+MAR X 
MEM + R1-+ R2 X 

Figure 5. Register to Memory Reference Instruction Microcode. 

Next, the instruction is fetched from memory and placed in the 
instruction register within the CCU. Thirdly, the instruction is 
decoded via the mapping PROM and the appropriate micro· 
instruction selected and placed in the pipeline register. To exe­
cute this particular register-to-memory-reference instruction, it is 
necessary to place the contents of the register specified by the X2 
field into the memory address register. Then the contents of 
memory can be fetched and the operand added to the value 
currently contained in the register specified by the R1 field. The 
result of this operation is placed in the register specified by the R1 
field. All totaled, the execution of this register to memory refer­
ence instruction requires five microcycles as depicted in this 
example. 

Memory to Memory 

This instruction is one whereby the memory location pointed to by 
the contents of the register specified in the X2 field is fetched and 
the memory location pointed to by the contents of the register 
locations specified in the X1 is fetched and these two operands 
are added together. At the completion of the instruction, the 
resultant is placed in the memory location as defined by the 
contents of the register specifieq in the XI field. 

The Memory to Memory Instruction operation is also depicted by 
the block diagram shown in Figure 4. In fact, all of the next six 
instructions to be defined utilize the block diagram of Figure 4 to 
represent the hardware required for implementing these instruc­
tions. 

The microcode required for the memory to memory instruction is 
detailed in Figure 6. The first three microinstructions represent 
the fetch routine. In the fourth microinstruction, the contents of the 
register specified by the X2 field are placed in the memory ad­
dress register. Then, in the fifth microinstruction the contents of 

Microinstruction ~ 
Operation TO Tl T2 T3 

PC -+ MAR; PC + 1 -+ PC X 
Fetch Inst to IR X 
Decode X 
(X2) -+ MAR X 
MEM -+Q 
(X1) -+MAR 
MEM + Q-+Q 
Q -+MEM 

this memory location is loaded into the Q register within the 
Am2903. This value is temporarily held for use later. In the sixth 
microinstruction, the contents of the register specified by the X1 
field in the instruction is placed in the memory address register. 
On the seventh microinstruction, this operand is fetched from 
memory and added to the contents of the Q register with the result 
being placed in the Q register. In the eighth microinstruction, the 
current contents of the Q register is retumed to the memory 
location. This memory location is specified by the contents of the 
register specified by the X1 field and is still in the memory address 
register. Thus, we have used the Q register as a temporary 
holding register for the data used in this instruction. 

Register with Short-Immediate 

This instruction is a technique whereby a 4-bit field is added to the 
contents of the register specified by the R1 field. Thus, short 
jumps or branches can be executed within a range of zero to 
fifteen memory locations. The more significant 12-bits of the word 
are zero filled. 

The register with short immediate instruction operates very simi­
lar to the register-to-register instruction. The microcode for this 
instruction is shown in Figure 7. The only difference between the 
register-to-register instruction and the register short-immediate 
instruction is that Instead of adding operands specified by the RI 
and R2 fields, we take a data value contained in a four-bit field in 
the instruction as depicted in Figure 1 and add it to the contents of 
the register specified in the R1 field. The results of the operation 
are returned to the register specified by the RI field. This addition 
is performed by taking the 4-bit data value shown in Figure 1 as 
the DATA and zero filling the twelve most significant bits. This 
gives us a 1S-bit word ranging in value between zero and fifteen. 
Thus, short jumps can be implemented using this technique. 

Microcycle Time 

T4 T5 T6 T7 T8 T9 Tl0 T11 T12 

X 
X 

X 
X 

Figure 6. ,Memory to Memory Instruction Microcode. 



Microinstruction ~ Microcycle Time 

Operation TO T1 T2 T3 T4 T5 T6 T7 TS T9 no n1 n2 

PC .... MAR; PC + 1 -+ PC X 
Fetch Inst to IR X 
Decode X 
R1 + Data .... R1 X 

Figure 7. Register Short Immediate Instruction Microcode. 

Register to Indexed Memory 

The 16-bit word in the register defined by X2 in the instruction is 
added to the address that is the second word of memory. Then, 
this address is used to fetch an operand from memory which is 
added to the contents of the register pointed to by R1. The results 
of this operation are then placed in R 1. The instruction format for 
this instruction was shown in Figure 1. 

The Register to Indexed Memory Instruction is shown is Figure 8 
and executed in the following manner. First, the current PC value 
is placed In the MAR and PC + 1 is returned to the PC register. 
Next, the instruction at this memory location is fetched and placed 
in the instruction register. On the third cycle this instruction is 
decoded and the contents of the microprogram memory placed in 
the pipeline register. On the fourth microinstruction, the PC value 
is again placed in the MAR and PC + 1 is returned to the PC 
register. On the fifth microinstruction, the value at this location in 
memory is fetched and added to the contents of the X2 register 

Microinstruction_~ 
Operation TO T1 T2 T3 

PC -+ MAR; PC + 1 -+ PC X 

Fetch Inst to IR X 

Decode X 

PC -+ MAR; PC + 1 -+ PC X 

MEM + X2 -+ MAR 

MEM + R1 -+ R1 

with the result being placed in the MAR. And on the sixth mic­
roinstruction, the operand pointed to by this address is fetched 
and added to the contents of R1 with the result being placed in the 
register pOinted to by the R1 field of the instruction. 

Register to Memory Immediate 

In the register to memory immediate instruction, the contents of 
the memory location pointed to by the register specified in the X2 
field is fetched from the memory and the data valu'e which is in the 
second word of the instruction is also fetched from memory and 
added to it. This result is then added to the contents of the R1 
register and the final result replaces the value currently in R1. 

The register to memory immediate instruction as shown in Figure 
1 is implemented using the microcode shown in Figure 9. Again, 
the first three microinstructions are the fetch routine. The fourth 
microinstruction is used to take the contents of the register 
specified by the X2 field and place it in the memory address 

Microcycle Time 

T4 T5 T6 TI- TS T9 T10 T11 n2 

X 

X 

Figure S. Register to Indexed Memory Instruction Microcode. 

Microinstruction ~ Microcycle Time 

Operation TO T1 T2 T3 T4 T5 T6 T7 TS T9 T10 T11 n2 

PC -+ MAR; PC + 1 -+ PC X 

Fetch Inst to IR X 

Decode X 

(X2) -+ MAR X 

MEM + R1 -+ R1 X 

PC -+MAR; PC + 1 -+PC X 

MEM + R1 -+ R1 X 

Figure 9. Register to Memory Immediate Instruction Microcode. 
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register. Next, the operand at this memory location is brought into 
the Am2903's and added to the contents of the register specified 
by the R1 field with the results retumed to that register. The sixth 
microinstruction is used to set up the memory address register to 
fetch the second word of the instruction. The seventh micro­
instruction brings this data value into the Am2903 ALU via the 
data bus and adds this value to the contents of the register 
specified by the R1 field. The result of the operation is placed into 
the register specified by the R1 field. 

Memory to Memory Indexed 

The memory to memory indexed instruction is one whereby the 
contents of the register specified in the X2 field are added to the 
second word of the instruction to form a new address. This 
address is then used to fetch an operand which is added to the 
operand selected by taking the contents of the register specified 
in the R1 field and using that as a memory address to fetch an 
operand. The result of this addition is then replaced in the mem­
ory location pointed to by the contents of the register specified in 
the X1 field. 

The memory to memory indexed instruction is probably the most 
complicated olthe instruction formats described in the application 
note. In all, nine microinstructions are required for its implemen­
tation. Basically, the first three microinstructions are used to fetch 
the instruction from memory, place it in the instruction register, 
and decode the instruction for initial operation. Again, the basic 
fetch routine. Microinstruction number 4 sets up the memory 
address register to fetch the second word of the instruction and 
microinstruction number 5 is used to bring this value from mem-

MicrOinstruction ~ 
Operation TO n T2 T3 

PC -+ MAR; PC + 1 -+ PC X 

Fetch Inst to IR X 

Decode X 

PC -+ MAR; PC + 1 -+ PC X 

MEM + X2 -+ MAR 

MEM -+0 

(X1) -+MAR 

MEM + 0-+0 

o -+MEM 

ory into the Am2903 ALU where it is added to the X2 register. The 
results of the addition are placed into the memory address regis­
ter during this microinstruction. This value is used to fetch a value 
from memory which is placed in the 0 register using micro­
instruction number 6. In the seventh microinstruction, the con­
tents of the register pointed to by the X1 field are placed in the 
memory address register so that microinstruction eight can be 
utilized to bring this memory value into the Am2903s where it is 
added to the contents of the 0 register with the result being 
placed into the 0 register. Microinstruction number 9 is used to 
place this value back into the memory location as specified by the 
contents of the register pointed to by the X1 field. This memory 
address is still contained in the memory address register so that 
no updating is required. The total microcode required to imple­
ment this instruction routine is shown in Figure 10. 

Register Immediate 

The register immediate instruction is a very useful instruction 
which allows data to be added to the contents of the register. In 
this example, the second word of the instruction is fetched and 
added to the contents of the register specified in the R1 field. 

Figure 11 depicts the microcode used to implement the register 
immediate instruction. Here, the first three microinstructions are 
the fetch routine for the instruction. The fourth microinstruction of 
this routine sets up the MAR to fetch the second word of the two 
word Instruction. The contents of thiS memory location is brought 
into the Am2903 ALU and added to the contents of the register 
specified by the R1 field. The result of this operation is placed in 
the register specified by the R1 field. 

Mlcrocycle Time 

T4 T5 T6 T7 T8 T9 no T11 n2 

X 

X 

X 

X 
X 

Figure 10. Memory to Memory Indexed Instruction Microcode. 

Microinstruction ~ Microcycle Time 

Operation TO T1 T2 T3 T4 T5 T6 T7 T8 T9 no T11 T12 

PC -+MAR; PC + 1 -+ PC X 

Fetch Inst to IR X 

Decode X 

PC -+ MAR; PC + 1 -+ PC X 

MEM + R1 -+ R1 X 

Figure 11. Register Immediate Instruction Microcode. 



Memory Immediate 

The memory immediate instruction is used to add immediate data 
contained in the second word of the Instruction to a location in 
memory. The memory location is contained in the register 
specified in the XI field of the instruction. 

The memory immediate instruction is similar to the register im­
mediate instruction except that an indirect addressing scheme is 
used. Again, the firstthree microinstructions fetch and decode the 
memory immediate instruction. The fourth and fifth microinstruc­
tions are used to fetch the data value which is the second word of 
this memory immediate instruction. Microinstruction number 4 
sets up the memory address register and microinstruction 
number 5 brings the data into the Am2903 0 register. Micro­
instruction number 6 places the contents of the register specified 
by the X 1 field into the memory address register so that the 
contents of this memory location can be brought into the Am2903 
during microinstruction number 7. Here, during microinstruction 7 
the contents of the 0 register are added to this value and returned 
to the 0 register. At microinstruction 8, the 0 register is written 
back to the memory location as specified by the contents of the 
register pointed to by the XI field. This value was already in the 
memory address register because it was used to fetch the 
operand originally at this location. The microcode for this instruc­
tion is detailed in Figure 12. 

Microinstruction ~ 
Operation TO T1 T2 T3 

PC -+ MAR; PC + 1 -+ PC X 

Fetch Inst to IR X 

Decode X 

PC -+ MAR; PC + 1 -+ PC X 

MEM -+0 

(XI) -+ MAR 

MEM + 0-+0 

o -+MEM 

Improving Program Control Unit Performance 

If we examine the microcode as shown for the various instruction 
types depicted in Figure 1, we find that all of these microroutines 
have several things in common. First, the very first microinstruc­
tion simply sets up the memory address register with the current 
value of the program counter. In addition, this microinstruction 
increments the current program counter value. The second mi­
croinstruction simply fetches the contents of memory and places 
it in the instruction register. The third microinstruction is used to 
decode the microinstruction, select the appropriate micromemory 
word and set it into the pipeline register. Finally, the fourth micro­
instruction begins actual execution of the desired instruction. In 
all of these examples and using the block diagram of Figure 4, we 
find that a bottle neck occurs in the ALU because of our need to be 
operating on program counter data and operand data intermixed. 
We can improve the performance of the program control unit by 
making the program counter an external register and using a 
multiplexer to select either the program counter or the Am2903 
output to load the memory address register. This is depicted in 
block diagram form in Figure 13. 

The first effect of Implementing a program control unit with this 
architecture is that one of the instruction types IS shortened by 
one microcycle. This IS the register-to-memory-immediate In­
struction. The new microcode flowcharts for this instruction IS 

Microcycle Time 

T4 T5 T6 T7 T8 T9 T10 T11 T12 

X 

X 

X 

X 

Figure 12. Memory Immediate Instruction Microcode. 
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Figure 13_ Memory Addressing Scheme with PC Outside of the ALU. 
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shown in Figure 14. In this case, we see that a PC value can be 
placed into the memory address register and the PC incremented 
while the ALU within the Am2903 is being used to perform either a 
pass or an addition. Thus, this architectural change has made 
some improvement in the thru-put of our machine. 

The most important improvement in thru-put realized by the ar­
chitecture shown in Figure 13 can be seen by evaluating the 
timing for sequential instructions. That is, what happens when 
several instructions are executed sequentially? 

To keep the examples simple, let's visualize the microcycle timing 
chart for three register-to-register inst(uctions executed sequen­
tially. The most obvious timing chart would simply be to take the 
register-to-register microinstruction flows as shown in Figure 3 
and concatenate three examples of this timing chart. If we do this, 
we will see thatthe final execution olthe values of Rl + R2 return 
to R1 utilize the ALU, but the program counter is not in operation. 
However, the next microcycle requires placing the program 
counter into the memory address register. Thus, the architecture 
of Figure 13 allows us to do these two micro-operations during the 
same microinstruction. If we assume three register-to-register 
instructions in sequence in memory; let's call them instruction A, 
Band C; the timing chart of Figure 15 results. What we see in this 
diagram is that the execution of instruction A can be overlapped 
with the set up the program counter in memory address register 
for fetching instruction B. Thus, instead of instruction B starting at 
time T 4, it may be started at time T3. This can be accomplished by 
simply having the execution microinstruction also load the MAR 
with the current PC value and increment the PC. From this dis­
cussion, we can see that instead oltwelve microcycle times being 
required to execute three register-to-register instructions, only 
nine microcycle times will be required. We should caution that if 
the reader counts the microcycles in Figure 15, he will arrive at 1 0 
microcycle times being required. This leads us to our next pOint. 

If we examine all of the instructions described earlier in this 
application note, we will find that in all cases, the execution of the 
instruction (the last microcycle) can be overlapped with the first 

Microinstruction ~ 
Operation TO Tl T2 T3 

PC -+ MAR; PC + 1 -+ PC X 
Fetch Inst to IR X 
Decode X 
(X2) -+ MAR X 
MEM + Rl -+ Rl 

PC -+ MAR; PC + 1 -+ PC 

MEM + Rl -+ Rl 

microinstruction of the fetch routine. Thus, the architectural 
change shown in Figure 13 not only allows three of the instruc­
tions to execute faster during their total microcode, but in fact all 
microinstructions can be executed at least one microcycle faster 
because of the ability to overlap the first microcycle of the fetch 
routine with the execution of the instruction. This architectural 
change therefore saves one or two microcycles depending on the 
instruction. 

In Chapter 9 we will show how further overlapping at the machine 
instruction level can allow us to execute a register-to-register 
instruction during every microcycle, effectively; rather than every 
three microcycles as shown in Figure 15. At the present time, let 
us Simply leave the discussion at this pOint. 

Subroutining 

An implementation technique that is common to the different 
addressing modes is the subroutine (also called stack and link). 
The subroutine allows sections of main program to access a 
common subsection of the program. The general effect is to allow 
less lines of machine code to be written for any given program that 
employs subroutines. 

Figure 16 shows an example of a subroutine within the program. 
The main program executes instructions until it gets to instruction 
52 which is a call to subroutine. This instruction puts address 80 In 
the program counter while saving address 53 in a separate reg­
ister called Return Register. The program continues on from 
address 80 to address 85 where it encounters the return from 
subroutine command. The return-from-subroutine command 
takes a value out of the return register and puts that into the 
program counter. At that point the program counter continues 
down in the main body of the program until It reaches address 57. 
At this time, another call to subroutine may occur forcing the 
program counter back to the value of 80 while putting the value 58 
into the return address. The subroutine is executed and at ad­
dress 85 the return command is again encountered. At this pOint, 

Microcycle Time 

T4 T5 T6 T7 T8 T9 Tl0 Tl1 T12 

X 
X 

X 

Figure 14. Register to Memory Immediate Instruction Improved Microcode. 

Microinstruction ~ Microcycle Time 

Operation TO Tl T2 T3 T4 T5 T6 T7 T8 T9 Tl0 Tll T12 

PC -+MAR; PC + 1 ---PC A B C 
Fetch Inst to IR A B C 

Decode A B C 

Rl + R2 -+ Rl A B C 

Figure 15. Register to Register Instruction with Overlap of Execute and PC Control. 
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Figure 16. Subroutine Execution. 
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the subroutine will return control of the program to address 58 of 
the Instruction stream and the main program continues to se­
quence through its Instructions. 

In many systems, one subroutine may very well call another 
subroutine wnich may in turn call yet another subroutine and so 
on. To accomplish this the return address linkage must now be 
"nested" using a last-In first-out (LIFO) stacking arrangement. 
Figure 17 illustrates subroutine nesting. In this example, the main 
program contains a subroutine call or jump-to-subroutine com­
mand (JSB) at address 53. Program control IS passed to the first 
subroutine at address 88, while the return address 54 is placed In 
the stack. At address 89 the of the subroutine 1 another JSB 
command is encountered passing the program control to Sub­
routine 2 at address 502. The return address value 90 is pushed 
onto the top of the stack. This continues In like fashion for calls to 
Subroutine 3 and 4 with return address 506 and 723 being placed 
on the stack. At address 785 of Subroutine 4, a Return from 
Subroutine (RTS) command IS decoded causing the return ad­
dress 723 on the top of the stack to be placed In the program 
counter and the contents of the stack are "poped" up one place. 

MAIN 

At address 725 another RTS command IS found, causing the top 
of the stack, address 506, to be placed In the program counter 
and the stack IS poped. The Identical action occurs for the RTS 
commands at address 507 and 92 such that control is eventually 
returned to the main program and the stack IS empty. 

The LIFO or subroutine stack in the program control hardware IS 
shown In Figure 18. When the call from subroutine command IS 
decoded by the computer control unit, the pipeline register out­
puts cause the stack control to accept the output of the program 
counter register and place It at the top of the stack. Next the 
subroutine address IS brought In from the memory passed 
through the multiplexer and placed In the MAR. The subroutine 
address IS also brought through the multiplexer incrementer, 
through the Incrementer and placed in the program counter reg­
ister to be used as a possible next source of address. The sub­
routine return address IS recovered from the stack when the 
pipeline register instructs the stack control logic to place the 
return address at the multiplexer. The return address IS passed 
through the multiplexer and clocked Into the MAR. The return 
address is also clocked into the PC register via the Incrementer 
multiplexer and the Incrementer, for use as the next sequential 
address. Figure 19 shows the jump to subroutine instructIOn and 
Figure 20 shows the mlcrocycles that are used In a typical call to 
subroutine command uSing the program control hardware shown 
in Figure 18. At TO the program counter is placed Into the MAR 
and updated. Time Tl finds the MAR accessing the subroutine 
call Instruction, With the instruction being placed into the instruc­
tion register. At T2 the opcode is decoded by the CCU, and the 
first Instruction microcode bits are clocked Into the pipeline reg­
ister. At time T3, the PC IS placed In the MAR. At T4 the starting 
address of the subroutine is being fetched and placed Into the 
MAR; the stack pOinter IS Incremented; the current program 
counter is placed on the LIFO stack; and the starting address of 
the Subroutine plus one IS placed Into the program counter. 

Figure 21 details the microcycle timing for a return-from-sub­
routine execution. At time zero the current program counter IS 
placed Into the MAR, then Incremented by one. DUring time one 
the contents of the MAR fetches the return from subroutine com­
mand, which IS then clocked Into the instructIOn register atthe end 
of the microcycle. At time 2 the contents of the instruction register 
IS decoded in the CCU with the control bits being clocked Into the 
pipeline register. During time 3 the return address on the top of 
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Figure 17. Nested Subroutine Example. 
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Figure 18. Subroutine Stack Architecture. 
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Figure 19. Jump to Subroutine (Branch and Stack) Instruction. 

Microinstruction ~ 
Microcycle Time 

Operation TO n T2 T3 T4 T5 T6 T7 T8 T9 T10 n1 T12 

PC -+ MAR; PC + 1 -+ PC X 
Felch Insllo IR X 
Decode X 

PC -+MAR; PC + 1 -+PC X 

{MEM -+ MAR; PC -+ STACK } 
MEM + 1 -+ PC; SP + 1 -+ SP 

X 

Figure 20. Branch and Stack Instruction Microcode. 
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PC -+MAR; PC + 1 -+PC X 

Felch Insllo IR X 

Decode X 

{ Slack -+ MAR; Slack + 1 
SP - 1 -+SP 

-+SP} X 

Figure 21. Return from Subroutine Instruction Microcode. 



the LIFO stack is placed into the MAR, while that value plus one is 
stored into program counter. The stack pointer is then 
decremented. 

The basic program control hardware thus developed with some 
embellishments added are contained within the Am2930 program 
control unit as shown in Figure 22. The Am2930 is a 4-bit slice of 
the program control unit. It therefore easily allows the address 
bus to be virtually independent of the data bus in terms of width. 
The Am2930 has a general purpose auxiliary register which has 
two sources and two destinations. One source being the D inputs 
which flow through the R multiplexer and hence into the auxiliary 
register and the other source being the output of the full adder 
which is the second input to the R multiplexer. The two outputs of 
the auxiliary register go to the A and B multiplexers which in turn 
source the A and B inputs to the full adder. The register enable pin 
(RE) allows the auxiliary register to be unconditionally loaded 
from the D Inputs of the Am2930. The A multiplexer selects as its 
sources a logical zero, the output ofthe auxiliary register, orthe D 
inputs. The B multiplexer accepts the outputs of the auxiliary 
register, a logical zero, the output of the subroutine stack file, or 
the output of the program counter register as its sources. 

In the Am2930 design the LIFO stack is 17 words deep, allowing 
up to seventeen levels of subroutine. The LIFO stack is controlled 
by the stack pointer logic which gives a FULL indication when the 

Co D-+--r~ 

stack is full and an EMPTY indication when the stack has 
emptied. The input to the LIFO stack is fed through a stack 
multiplexer whose inputs may be D inputs or the output of the 
program counter. Thus, depending upon the application, the 
stack may be used as either a subroutine stack or a general 
purpose LIFO stack which resides on the D bus. The incrementer 
and the full adder are controlled by the Ci and Cn carry-in bits 
respectively. Figure 23 details the ripple carry connections be­
tween Am2930s in a 16-bit array. The Ci input of the least signifi­
cant slice (LSS) is controlled from the pipeline register. 

The Ci signal is internally propagated through the incrementer of 
each device using carry look ahead logic. The microprogram 
memory, using the Ci input may now cause the Am2930s to 
repeatedly access the same main memory instruction if so de­
sired. The full adder has its Cn input tied to ground for the LSS 
device of the Am2930 array. The Cn signal is progagated in 
parallel through the Am2930s. 

For a faster propagation of the Cn signal the interconnection 
shown in Figure ~ ~ould be employed. The generate and 
propagate pins (G, P) of the Am2902A carry look ahead 
generator. The look ahead carries (Cn + x, y, z) are connected to 
the Cn inputs of their respective devices. The output of the 
Am2930 is three-state and is controlled by the output enable pin 

Do 01 

17 X4 
REGISTER 

STACK 
IS) 

(LIFO) 

'----1-----<:::1 c, 

130+--------+-----1 INC· 

Cn+4 0+---------1---------1 

OE C>------01 
DEN* 

y cp vee GND 

CEN* 
RST" 
DEN· 
INC· 

RSEL" 
RCE"' 

Figure 22. Am2930 Block Diagram. 
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Figure 24. Parallel Look-Ahead Expansion Scheme for Am2930's. 

(OE). Other features of the Am2930 include an Instruction Enable 
pin (lEN). This pin allows the Am2930 array to be taken off of the 
microprogram data bus thus allOWing the bits that were formerly 
committed to the Am2930 to be used in conjunction with other 
devices. The Am2930 also includes a condition code input (CC). 
The Condition Code input permits the conditional testing of a 
single bit. This allows the feasibility of such techniques as condi­
tional branching at the macroprogram level. For more detailed 
explanation of the Am2930, its instructions and its applications, 
see the Am2930 Data Sheet. Figure 25 shows a typical system 
interconnection using the Am2930. The instruction lines, Ci, RE 
and the OE control pins are connected directly to the outputs of 
the combination microprogram memory and pipeline registers 
contained in the Am24775 devices. The condition code inputs are 
obtained from the Am2904 status and control device, thus allow­
ing conditional jumps on status. Status from the Am2904 IS also 

fed into the test mux for use by the Am2910 for its conditional 
code input. Likewise the full and empty indicatIOns from the 
Am2930 are fed into the test MUX for use by the Am2910 to 
ascertain the current status of the stack. If the stack is full and the 
user wishes to push the data onto the stack then the current data 
must be emptied from the stack under microprogram control, 
using additional hardware. 

Another feature of the Am2930 Program Control Unit as shown in 
Figure 22 is the full adder between the program counter and Y 
outputs. This allows for the execution of PC relative addressing 
types of instructions. While this can be an effective addressing 
scheme, it will not be covered in detail in this application note. 

While the Am2930 offers advantages in small high performance 
systems requiring a small LIFO stack, it is not intended to be the 
solution for all program counter requirements. 
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Figure 25. System Interconnection Using the Am2930. 

Using the Am2901A as a Program Control Unit 

Up to this point, the discussion has concerned a general ar· 
chitecture which includes 16 general registers in the ALU section 
and the LIFO stack is a program control section as shown in 
Figure 18. An alternative architecture and that used by most 
general purpose machines, is to place the LIFO stack in main 
memory. The stack pointer for the main memory LIFO stack can 
be contained in' the program control unit to be d!lscribed in this 
section. If the program control unit is built using Am2901 A's it now 
has the capability of using its internal registers' as the program 
counter, stack pointer, upper stack bound pointer, lower stack 
bound pOinter, and internal temporary registers. This of course 
provides considerable flexibility in the architecture and also al­
lows for a much greater repertoire of instructions to be executed. 
Particularly, several stack instructions can be Included in the 
instruction set, most of which will use the form of the register-to­
indexed-memory instruction format as shown in Figure 1. 

Another advantage of the architecture shown in Figure 25 is 
speed. The Am2901A's slightly surpass the Am2903 In speed. 

Thus, a 16-bit Am2901 A program control unit architecture can be 
implemented and it will perform well within the microcycle times 
budgeted for the system. 

Looking at Figure 26 which shows the Am2901 A used as a 
program control unit and the Am2903 used for the general regis­
ter stacks! ALU section, we see a three-state buffer on the V 
outputs of the Am2903 connected to the data bus as well as a 
three-state buffer at the input of the Am2903's from the data bus. 
This provides isolation and buffering for the bus as well as allow­
ing appropriate disconnects so that certain microcycles can be 
combined to improve the overall performance of the machine. In 
addition a transfer register IS used between the Am2903's and 
Am2901 s to allow a microcycle to be terminated if an ALU opera­
tion is taking place within the Am2903's. This provides higher 
performance operation for the machine. In addition, a bi-dlrec­
tional buffer (such as the Am8304B) is used between the 
Am2901A V-outputs and the Am2903 V-outputs. This gives the 
ability to push the program counter contained in the Am2901 A on 
the stack for interrupt handling. In addition, values coming from 
the Am2903 can be placed in the memory address register. 
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Figure 26. PCU Architecture Using the Am2901A. 

Summary 

The thrust of this discussion has been aimed at defining and 
implementing hardware to accomplish addressing of main mem­
ory. We have shown that a speed advantage is realized if the 
program counter is kept separate from the main general purpose 
register stack/ALU hardware. The most general purpose program 
control unit is the Am2901 A. It offers several advantages in terms 
of program control, stack pointer control, and stack pOinter 
boundary conditions. The Am2930 can be used in program con­
trol units occupying less space and including a built-in stack, but 

has some speed and performance limitations. Both devices can 
be used to implement the basic addressing modes associated 
with the instructions described in this application note. 

Another purpose of this application note is to set the stage for 
Chapter 9 where we will overlap machine instructions such that 
register to register instructions can be executed in a single 200ns 
microcycle and the memory reference instructions can be exe­
cuted in 600ns (3 microcycles) as the effective execution time. 
Also, we will expand on the use of the Am2901 A as a Program 
Control Unit. 
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INTRODUCTION 

A digital computer can be viewed as a finite state machine that 
moves from state to state via the execution of a program. Inter­
rupt mechanisms provide a well-defined way of altering the flow 
of states in response to outside asynchronous events (inter­
rupts). There is a wide variety of ways of handling interrupts 
depending upon the system requirements. The choice of a par­
ticular Interrupt mechanism can have a large impact on the 
through-put and flexibility of a system. Therefore, time should be 
spent carefully defining the interrupt mechanism of a new com­
puter design. 

POLLING VS. NON·POLLING 

One of the simplest ways to handle asynchronous events is the 
polling method. With each pOSSible event there is an associated 
flag that can be accessed by the program. The processor then 
interrogates each flag In order to determine If service is required. 
ThiS method trades simple hardware for software. This not only 
uses memory space but also uses time for polling the flags when 
no service IS required. The polling method has low system 
through-put, high real time overhead and slow response time. 

In non-polling systems, the asynchronous event generates an 
interrupt request Signal which IS passed to the processor. The 
processor In turn suspends the execution of the current process 
and starts execution of an Interrupt service routine. When the 
Interrupt routine is completed, the processor resumes execution 
of the suspended process. This system is called an interrupt 
driven system because it executes interrupt service routines that 
are Initiated by Interrupt requests. 

Although the non-polling method requires more hardware, it has 
many advantages. Because the execution of interrupt service 
routines is transparent to the current process, less thought and 
time is required of the programmer of the current process. The 
response time is faster because no time is spent interrogating the 
other non-active Interrupts, which In turn increases the system 
throughput. There is less real time overhead and less memory 
space required because only the service routine exists in memory 
and no polling routine is required. 

MACHINE VS. MICROPROGRAM LEVEL INTERRUPTS 

There are two levels on which interrupts may be handled. The 
first and most common is the machine level Interrupt. In thiS 
method possible interrupt requests are checked for dUring the 
machine instruction fetch cycle. This guarantees that an Inter­
rupt can only happen when a machine instruction IS complete 
and before a new instruction starts. 

The second level of handling interrupts IS on the microprogram 
level. In the machine level interrupt system, the microprogram 
has complete control of when to recognize an Interrupt but In the 
microprogram level system the microprogram can be Interrupted 
at any time. ThiS method has a smaller response time for ser­
VICing Interrupt requests but requires that restrictions may be 
placed on the microprogram and the interrupt mechanism. 
These restrictions come from setting aside space on the finite 
microprogram stack In the sequencer for pOSSible Interrupt re- ' 
quests. Special consideration may also have to be given to loop 
counters. 

TYPES OF INTERRUPTS 

There are basically four types of Interrupts based on the re­
lationship of the source of the Interrupt to the processor: within 
the processor, within the system, between software, and be­
tween processors. A multiprocessor has to be able to handle all 
four levels of interrupts. Therefore, the interrupt structure that IS 
picked Will have these deSign tradeoffs to consider. 

A. Intraprocessor Interrupts are those asynchronous events 
that happen within the processor during the execution of a 
machine instruction. This group includes such things as zero 
divide, overflow, accessing restricted memory, execution of 
a privileged instruction, machine failure, etc. 

B. Intrasystem interrupts are Interrupts created by system 
peripherals such as disks, CRT's and printers that require 
service. 

C. Executive interrupts are those Interrupts caused by the cur­
rent program that is executing. This provides a way for the 
current program to make a request of the executive (operat­
Ing system) program. These requests might include such 
things as starting new tasks, allocating hardware resources 
(disks, line printers), communication with other tasks, etc. A 
good example would be the supervisor call (SVC) In the IBM 
360/370 computers. 

D. Interprocessor Interrupts Include those interrupts between 
two Intelligent processors. For example, thiS class of Inter­
rupts would be used to initiate data and status transfer be­
tween a local processor and a processor at a remote site. 

SEQUENCE OF EVENTS FOR INTERRUPT HANDLING 

When an interrupt occurs there is a sequence of six events that 
happen. These events, which can be Implemented In microcode 
or machine code, Integrated together with the hardware com­
prise the Interrupt mechanism. The sequence of events de­
sCribes the steps that occur to prOVide for a smooth transfer from 
the current process environment to an Interrupt servicing enVI­
ronment and back again. The sequence ensures that the proces­
sor status will be the same immediately after an interrupt is 
serviced as immediately before the Interrupt occurred. The 
events listed in the next few paragraphs may differ in order or 
overlap depending upon the machine design and application. 

Interrupt Recognition 

ThiS step consists of the recggnitlOn of an Interrupt request by 
the processor via an interrupt request line. In thiS step the pro­
cessor can determine which deVice made the request. The 
method that is used to determine which device to service IS 
directly related to the Interrupt structure of the machine. The 
different types of interrupt structures will be discussed in more 
detail below. 

Save Status 

The goal of this step is to make the interrupt sequence trans­
parent to the Interrupted process. Therefore, the processor saves 
a minimum set of flags and registers that may be changed by the 
Interrupt service routine, so that after the service routine is 
finished they may be restored. 

The minimum set of flags and registers would be those which 
will be destroyed in the transfer of control from the current pro­
cess to the Interrupt service routine. It is then the responsibility 
of the service routine to save any other registers which it might 
change. The minimum set of flags and registers might Include 
the Program Counter, OverflOW Flag, Sign Flag, Interrupt Mask, 
etc. The minimum set also Includes any register or flag that 
needs to be saved that the Interrupt service routine cannot 
access. 

Interrupt Masking 

ThiS step can overlap some of the other steps. For the first few 
steps of the sequence all interrupts are masked out so that no 
interrupt may occur before the processor status IS saved. The 
mask is then usually set to accept interrupts of higher priority. 
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Some machines allow the service routine to selectively enable 
or disable interrupts also. There may be different variations to 
this step depending upon the application. 

Interrupt Acknowledge 

At some point the processor must acknowledge the Interrupt 
being serviced so that the interrupting device knows that it is free 
to continue its task. The processor can acknowledge several 
different ways. One of the ways is to have a line devoted to 
interrupt acknowledge. Another method relies upon the inter­
rupting device recognizing an acknowledge when the cause of 
the interrupt is serviced. 

Some processor deSigns also use this signal as a request for the 
interrupting device to send an 1.0. down the data bus. This as­
pect will be discussed in more detail below. 

Interrupt Service Routine 

At this point the processor can call the interrupt service routine. 
The address of the routine can be obtained several ways de­
pending upon the system architecture. The most trivial is when 
there is only one routine which polls each device to find out 
which one interrupted. Some designs require that the interrupt­
ing device put an address on the data bus so that the processor 
can store it in its program counter and branch to It. Other de­
signs use an 1.0. number derived from the priority ofthe interrupt 
and put it through a mapping PROM or look-up table in memory 
in order to obtain the address of the service routine. 

Restore and Return 

After the interrupt service routine has retumed via some varia­
tion of an Interrupt Return instruction, the processor should re-

.A 

~ I CPU A 

~ 

store all the registers and flags that were saved previous to the 
Interrupt roullne. If this IS done correctly, the processor should 
have the same status as before the interrupt was recognized. 

INTERRUPT STRUCTURES 

There are several Interrupt structures that can be Implemented. 
As usual there is a trade-off between hardware and software (or 
flnnware). listed below are some of the more common struc­
tures used. The particular structures vary in the way that the 
processor determines which device made the interrupt request. 

Sirlgle Request, Multiple Poll 

In this structure there IS one request line which is shared among 
all interrupting deVices. When the processor recognizes an Inter­
rupt request It polls all the devices to find the Interrupting device 
(see Figure 1). PriOrity is introduced via the order in which the 
devices are polled. This scheme also allows dynamic realloca­
tion of priority. 

Single Request, Daisy Chain Acknowledge 

In this structure there IS one request line which is shared. When 
the processor receives an interrupt it sends out a signal 
acknowledging the Interrupt. The acknowledge Signal is passed 
from I/O deVice to I/O device until the Interrupting deVice re­
ceives the signal. At this point the interrupting deVice identifies 
Itself by pulling an 1.0. number on the <Ciata bus (see Figure 2). 
ThiS structure requires less software, but has a static priOrity 
associated with each Interrupting device. There is also a time 
delay associated With daisy chain acknowledge structure be­
cause in each device INT A signal has to pass through several 
gate delays. 
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Multiple Request 

This structure features one line per priority level (see Figure 3). 
The multiple line structure gives the fastest response time since 
the Interrupting device can be Identified immediately. It also re­
sults in simpler Interfaces In the peripheral units, In general, a 
single interrupt request flip-flop. This structure allows for the 
possibility of having a mask bit associated with each priority 
level (device). The trade-off of this circuit IS a wider bus and a 
limit of one peripheral per pnority level. 

Multiple Request, Daisy Chain Acknowledge 

This structure combines the Single Request/Daisy Chain 
Acknowledge with the Multiple Request structure (see Figure 4). 
For each Interrupt request line there IS an interrupt acknowledge 
line which is connected to a stnng of devices In a daisy chain 
fashion. When the appropriate device receives the interrupt 
acknowledge, It puts an I.D. number on the data bus. 

The advantage of this structure is that a lot (more than available 
Interrupt levels) of devices may be handled by breaking them up 

IRQ I-- INTERRUPT 
CONTROLLER 

CPU I, 

INTERRUPT 

~ 
I, 

VECTOR 10 !--

DEVICE 
#1 '--

into short daisy chains. This gives a shorter access time than a 
pure daisy chain with less hardware than an interrupt request 
line per device. This advantage is that each device must be 
intelligent to pass on the acknowledge signal which requires 
more hardware In each device. 

PRIORITY SCHEMES 

When handling asynchronous requests one must assume that 
sometimes two or more requests can happen simultaneously. In 
order to handle this situation, there must be some sort of priority 
scheme implemented to pick which request is serviced first. 

The two most common priority schemes are the static and the 
rotating structures. In the static structure, all the interrupt levels 
are ordered from the lowest priority to the highest priority. This 
can be fixed in software or hardware and is usually permanent. 

In the rotating structure the possible interrupt requests are ar­
ranged in a circle. There IS a pointer which points to the lowest 
priority Interrupt. The priority of each interrupt increases as one 
travels around the circle, with the highest priority interrupt being 
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Figure 3. Multiple Request. 
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adjacent to the lowest priority interrupt. The lowest priority Inter­
rupt pointer is changed to point at the interrupt that was just 
serviced. This structure is advantageous when all interrupts 
have similar priority and service bandwidth requirements. 

NESTING 

Nesting allows only higher priority interrupts to interrupt a pro­
cessing interrupt service routine. Nesting requires fencing off 
equal and lower level interrupts. Fencing requires that the inter­
rupt structure hold the value of the highest priority interrupt being 
serviced. This can be implemented with a Status Register that 
holds the value as a binary encoded number or in other systems 
as an In-Service Register with a different bit associated with 
each interrupt. 

Whether nesting is performed in microcode or not, all computers 
must have machine instructions to enable and disable interrupts 
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and set and clear mask bits. With these instructions, interrupt 
handlers can be written to accomplish nesting of interrupts al­
though less efficiently than when done with microcode and 
hardware. In low-end computers, the interrupt structure only 
prioritizes interrupts leaving nesting to the software interrupt 
handlers. 

A UNIVERSAL HARDWARE INTERRUPT STRUCTURE 

While designing a hardware interrupt structure, the designer 
should consider the specific functions that are to be achieved. 
This provides for system optimization in not only hardware but 
also software. In the following paragraphs is a step by step 
development of a general purpose interrupt structure as related 
to the design concepts involved. 

Multiple Interrupt Request Handling 

Since interrupt requests are generated from a number of 
sources, the interrupt structures ability to handle interrupt re­
quests from several sources is important. 

As implemented in Figure 5, the register configuration allows the 
hardware to handle interrupt requests from several sources. The 
first column of registers catches the asynchronous interrupt re­
quest. The second column of registers synchronizes the re­
quests with respect to the system. After the interrupt is serviced, 
one of the CLR lines can be used to selectively clear the inter­
rupt request. 

Interrupt Request Prioritization 

Since the processor can service only one interrupt request at a 
time, the interrupt structure should have the ability to prioritize 
the requests and determine which has the highest prjority. As 
shown in Figure 6, a priority encoder can be put on the output of 
the interrupt storage registers. The priority encoder will identify 
the highest interrupt request as a binary encoded number. 

Dynamic Interrupt Request Masking 

The ability to selectively inhibit or "mask" individual interrupt 
requests under program control is desirable. For example at 
times it may be important to inhibit all interrupts except Power 
Failure. As shown in Figure 7 this is realized by ANDing the 
output of a mask register with the output of the interrupt storage 
registers. Therefore, the mask register can be used to select 
which interrupt requests will pass through to the rest of the 
hardware. 

Interrupt Request Clesring 

Flexibility in the method of clearing the interrupt allows different 
modes of interrupt system operation. Of particular value are the 
abilities to clear the interrupt currently being serviced or clear all 
interrupts. 
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Figure 7. 

This IS implemented in FIgure 8 by use of the Vector Hold reg­
Ister on the output of the Priority Encoder. This register holds the 
latest interrupt request that was recognized. Before another 
interrupt request is recognozed, the output of the Vector Hold 
register can be fed through some clear control logic to selec­
tively clear the old interrupt. 

Interrupt Request Priority Threshold 

The abIlity to establish a priority threshold is valuable. In this 
type of operation, only those interrupt requests which have 
higher pnority than a specified threshold priority are accepted. 
The threshold priority can be defined by microprogram or can be 
automatically established by hardware at the interrupt currently 
being servoced plus one. This automatIc threshold prevents mul­
tIple interrupts from the same source. 

CLR 
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STORAGE 
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REGISTER 

PRIORITY 
ENCODER 

ThIS feature IS implemented in Figure 8 using an incrementer 
and status register whIch is compared with the current request. 
Each time an interrupt is recognized, the status register IS up­
dated with one plus the current level. 

Interrupt Service Routine "Nesting" 

This feature allows an Interrupt service routine for a given pn­
ority request to be interrupted on tum by a hIgher pnonty Interrupt 
request. This can be achieved by saving the status regIster be­
fore each interrupt is serviced and restoring it afterwards. 

Microprogrammability and Hardware Modularity 

These last two design concepts bring us to the Vectored Priority 
Interrupt controller, the Am2914. The Am2914 is a modular inter­
rupt system block which is beneficial in two ways. FIrst, 
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Figure 9. Am2914 Block Diagram. 

hardware modularity provides expansion capability. Additional 
modules may be added as the need to service additional re­
quests arises. Secondly, hardware modularity provides a struc­
tural regularity which simplifies the system structure and also 
reduces the number of hardware part numbers. 

The Am2914 is microprogrammable, which permits the con­
struction of a general purpose or "universal" interrupt structure 
which can be microprogrammed to meet a specific application's 
requirement. The universality of the structure allows standardi­
zation of the hardware and amortization of the hardware de­
velopment costs across a much broader user base. The end 
resull is a flexible, low cost interrupt structure as shown in 
Figure 9. 

PROGRAMMING THE Am2914 

The Am2914 is controlled by a four-bit microinstruction field 10-13, 

The microinstruction is executed if iE (Instruction Enable) is 
LOW and is ignored if iE is HIGH, allowing the four I bits to be 
shared with other functions. Sixteen different microinstructions 
are executed. Figure II shows the microinstructions and the 
microinstruction codes. 
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In this microinstruction set, the Master Clear microinstruction is 
selected as binary zero so that during a power-up sequence, the 
microinstruction register in the microprogram control unit of the 
central processor can be cleared to all zeros. Thus, on the next 
clock cycle, the Am2914 will execute the Master Clear function. Figure 10. Am2914 Logic Symbol. 



MICROINSTRUCTION 
MICROINSTRUCTION CODE 

DESCRIPTION 131211 10 

MASTER CLEAR 0000 

CLEAR ALL INTERRUPTS 0001 

CLEAR INTERRUPTS FROM 
M-BUS 0010 

CLEAR INTERRUPTS FROM MASK 
REGISTER 0011 

CLEARINTERRUPT,LAST 
VECTOR READ 0100 

READ VECTOR 0101 

READ STATUS REGISTER 0110 

READ MASK REGISTER 0111 

SET MASK REGISTER 1000 

LOAD STATUS REGISTER 1001 

BIT CLEAR MASK REGISTER 1010 

BIT SET MASK REGISTER 1011 

CLEAR MASK REGISTER 1100 

DISABLE INTERRUPT REQUEST 1101 

LOAD MASK REGISTER 1110 

ENABLE INTERRUPT REQUEST 1111 

Figure 11. Am2914 Microinstruction Set. 

This Includes clearing the Interrupt Latches and Register as well 
as the Mask Register and Status Register. The LGE flip-flop of 
the least sigmflcant group IS set LOW because the Group Ad­
vance Receive Input IS tied LOW. All other Group Advance Re­
ceive inputs are tied to Group Advance Send outputs and these 
are forced HIGH during this Instruction. This clear Instruction 
also sets the Interrupt Request Enable flip-flop so that a fully 
Interrupt driven system can be easily initiated from any Interrupt. 

The Clear All Interrupts microinstruction clears the Interrupt 
Latches and Register. 

The Clear Interrupts from M-Bus microinstruction clears those 
Interrupt Latches and Register bits which have corresponding 
M-Bus bits set equal to one. 

The Clear Interrupts from Mask Register microinstruction clears 
those Interrupt Latches and Register bits which have cor­
responding Mask Register bits set equal to one. The M-Bus is 
used by the Am2914 during the execution of this microinstruction 
and must be floating. 

The Clear Interrupt, Last Vector Read microinstruction clears 
the I nterrupt Latch and Register bit associated with the last 
vector read. 

The Read Vector micrOinstruction IS used to read the vector 
value of the highest pnorlty request causing the Interrupt. The 
vector outputs are three-state drivers that are enabled onto the 
IS instruction. This microinstruction also automatically loads the 
value "vector plus one" Into the Status Register. In addition, this 
instruction sets the Vector Clear Enable flip-flop and loads the 
current vector value Into the Vector Hold Register so that this 
value can be used by the Clear Interrupt, Last Vector Read 
microinstruction. This allows the user to read the vector as­
sociated with the interrupt, and at some later time clear the 
Interrupt Latch and Register bit assOCiated with the vector read. 

During the Read Status Register microinstruction, the Status 
Register outputs are enabled onto the Status Bus (SO-S2)' The 
Status Bus is a three-bit, bi-directional, three-state bus. 

The Read Mask Register microinstruction enables the Mask 
Register outputs onto the bi-directional, three-state M-Bus. 

The Set Mask Register microinstruction sets all the bits in 
the Mask Register to one. This results In all interrupts being 
Inhibited. 

The Load Status Register micrOinstruction loads S-Bus data into 
the Status Register and also loads the LGE flip-flop from the 
Group Enable input. 

The Bit Clear Mask Register micrOinstruction may be used to 
selectively clear individual Mask Register bits. This micro­
instruction clears those Mask Register bits which have cor­
responding M-Bus bits equal to one. Mask Register bits with 
corresponding M-Bus bits equal to zero are not affected. 

The Bit Set Mask Register micrOinstruction sets those Mask 
Register bits which have corresponding M-Bus bits equal to one. 
Other Mask Register bits are not affected. 

The entire Mask Register IS cleared by the Clear Mask Register 
microinstruction. This enables all Interrupts subject to the Inter­
rupt Enable flip-flop and the Status Register. 

All Interrupt Requests may be disabled by execution of the Dis­
able Interrupt Request micrOinstruction. ThiS microinstruction 
resets an Interrupt Request Enable flip-flop on the chip. 

The Load Mask Register microinstruction loads data from the 
three-state, bi-directlonal M-Bus Into the Mask Register. 

The Enable Interrupt Request microinstruction sets the Interrupt 
Enable flip-flop. Thus, Interrupt Requests are enabled subject to 
the contents of the Mask and Status Registers. 

Am2914 BLOCK DIAGRAM DESCRIPTION 

The Am2914 block diagram IS shown In Figure 9. The Micro­
Instruction Decode Circuitry decodes the Interrupt Microinstruc­
tions and generates required control signals for the chip. 

The Interrupt Register holds the Interrupt Inputs and IS an 
eight-bit, edge-triggered register which IS set on the rising edge 
of the CP Clock Signal if the Interrupt Input IS LOW. 

The Interrupt latches are set/reset latches. When the Latch 
Bypass signal IS LOW, the latches are enabled and act as nega­
tive pulse catchers on the Inputs to the Interrupt Register. When 
the Latch Bypass Signal IS HIGH, the Interrupt latches are 
transparent. 

The Mask Register holds the eight mask bits assOCiated with the 
eight Interrupt levels. The register may be loaded from or read to 
the M-Bus. Also, the entire register or Individual mask bits may 
be set or cleared. 

The Interrupt Detect CircUitry detects the presence of any un­
masked Interrupt Input. The eight-Input PriOrity Encoder deter­
mines the highest priority, non-masked Interrupt Input and forms 
a binary coded Interrupt vector. FollOWing a Vector Read, the 
three-bit Vector Hold Register holds the binary coded inter­
rupt vector. This stored vector can be used later for clearing 
interrupts. 

The three-bit Status Register holds the status bits and may be 
loaded from or read to the S-Bus. During a Vector Read, the 
Incrementer increments the Interrupt vector by one, and the re­
sult is clocked into the Status Register. Thus, the Status Reg­
ister points to a level one greater than the vector just read. 
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The three-bit Comparator compares the Interrupt Vector with the 
contents of the Status Register and indicates if the Interrupt 
Vector IS greater than or equal to the contents of the Status 
Register. 

The Lowest Group Enabled Flip-Flop is used when a number of 
Am2914's are cascaded. In a cascaded system, only one Low­
est Group Enabled Flip-Flop is LOW at a time. It indicates the 
eight Interrupt group, which contains the lowest priority interrupt 
level which will be accepted and is used to form the higher order 
status bits. 

The Interrupt Request and Group Enable logic contain various 
gating to generate the Interrupt Request, Parallel Disable, Rip­
ple Disable, and Group Advance Send signals. 

The Status Overflow signal is used to disable all Interrupts. It 
Indicates the highest priority interrupt vector has been read and 
the Status Register has overflowed. 

The Clear Control logic generates the eight individual clear sig­
nals for the bits in the Interrupt Latches and Register. The Vector 
Clear Enable Flip-Flop indicates If the last vector read was from 
thiS chip. When It IS set it enables the Clear Control Logic. 

The CP clock signal is used to clock the Interrupt Register, Mask 
Register, Status Register, Vector Hold Register, and the Lowest 
Group Enabled, Vector Clear Enable and Status Overflow Flip­
Flops, all on the clock LOW-to-HIGH transition. 

CASCADING THE Am2914 

A number of InpuVoutput signals are provided for cascading the 
Am2914 Vectored Priority Interrupt Encoder. A definition of 
these I/O signals and their required connections follows: 

Group Signal (GS) - ThiS signal is the output of the Lowest 
Group Enabled flip-flop and during a Read Status micro­
instruction is used to generate the high order bits of the Status 
word. 

Group Enable (GE) - This signal is one of the inputs to the 
Lowest Group Enable flip-flop and is used to load the flip-flop 
during the Load Status microinstruction. 

Group Advance Send (GAS) - During a Read Vector micro­
instruction, thiS output signal is LOW when the highest priority 
vector (vector seven) of the group is being read. In a cascaded 
system Group Advance Send must be tied to the Group Ad­
vance Receive Input of the next higher group in order to transfer 
status information. 

Group Advance Receive (GAR) - DUring a Master Clear or 
Read Vector microinstruction, this Input signal is used with other 
Internal signals to load the Lowest Group Enabled flip-flop. The 
Group Advance Receive Input of the lowest priority group must 
be tied to ground. 

Status Overflow (SV) - ThiS output signal becomes LOW after 
the highest priority vector (vector seven) of the group has been 
read and Indicates the Status Register has overflowed. It stays 
LOW until a Master Clear or Load Status microinstructIOn IS 
executed. The Status Overflow output of the highest priority 
group should be connected to the Interrupt Disable input of the 
same group and serves to disable all interrupts until new status 
IS loaded or the system IS master cleared. The Status Overflow 
outputs of lower priority groups should be left open (see Fig­
ure 14). 

Interrupt Disable (iD) - When LOW, this input signal inhibits the 
Interrupt Request output from the chip and also generates a 
Ripple Disable output. 

Ripple Disable (RD) - This output signal IS used only in the 
Ripple Cascade Mode (see below). The Ripple Disable output is 
LOW when the Interrupt Disable input is LOW, the Lowest 
Group Enabled flip-flop is LOW, or an Interrupt Request is gen­
erated in the group. In the ripple cascade mode, the Ripple 
Disable output IS tied to the Interrupt Disable Input of the next 
lower PrIOrity group (see Figure 13). 

Parallel Disable (PD) - ThiS output is used only in the parallel 
cascade mode (see below). It is LOW when the Lowest Group 
Enabled flip-flop is LOW or an Interrupt Request IS generated in 
the group. It is not affected by the Interrupt Disable input. 

CASCADING CONFIGURATIONS 

A single Am2914 chip may be used to Prioritize and encode up to 
eight Interrupt inputs. Figure 12 shows how the above cascade 
lines should be connected in such a single Chip system. 
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Figure 12. Cascade Lines Connection for 
Single Chip System. 

The Group Advance Receive and Group Enable inputs should 
be connected to ground so that the Lowest Group Enabled flip­
flop IS forced LOW dUring a Master Clear or Load Status micro­
Instruction. Status Overflow should be connected to Interrupt 
Disable In order to disable interrupts when vector seven IS read. 
The Group Advance Send, Ripple Disable, Group Signal and 
Parallel Disable pins should be left open. 

The Am2914 may be cascaded in either a Ripple Cascade Mode 
or a Parallel Cascade Mode. In the Ripple Cascade Mode, the 
Interrupt Disable Signal, which disables lower PriOrity interrupts, 
IS allowed to ripple through lower priority groups. Figures 13, 16, 
and 17 show the cascade connections reqUired for a ripple cas­
cade 32 Input interrupt system. 

In the parallel cascade mode, a parallel lookahead scheme IS 
employed using the high-speed Am2902 Lookahead Carry 
Generator. Figures 14, 15, and 17 show the cascade'connections 
required for a parallel cascade 32-input interrupt system. For thiS 
application, the Am29021s used as a Iookahead interrupt disable 
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J, 

generator. A Parallel Disable output from any group results in the 
disabling of all lower priority groups in parallel. Figure 15 shows 
the Am2902 logic diagram and equations. 

In Figures 16 and 17 the Am2913 Priority Interrupt Expander is 
shown forming the high order bits of the vector and status, re­
spectively. The Am2913 is an eight-line to three-line priority en­
coder with three-state outputs which are enabled by the five 
output control signals Gl, G2, G3, G4, and G5. In Figure 16, the 
Am2913 is connected so that its outputs are enabled during a 
Read Vector instruction, and In Figure 17 the Am2913 is con­
nected to mlcr-einstruction bits so that its outputs are enabled 
during a Read Status Instruction. The Am2913 logic diagram and 
truth table are shown in Figure 18. 

The Am25LS138 three-line to eight-line Decoder also is shown In 
Figure 17. It is used to decode the three high order status bits 
dunng a Load Status Instruction. The Am25LS138 logiC diagram 
and truth table are, shown In Figure 19. 

Am2914 IN THE Am2900 SYSTEM 

The block diagram of Figure 20 shows a typical 16-bit mini­
computer architecture. The Am2914 IS the heart of the Interrupt 
Control Unit as shown at the bottom of the block diagram. It 
receives its microinstructions from the Computer Control Unit. 
The mask, Status and Interrupt vector Information are passed on 
the data bus. The interrupt request line from the Am2914 input 
into the next microprogram Address Control unit where It can be 
tested to determine if an Interrupt request has been made. 

Figures 21 and 22 show the detailed hardware design of two 
example Interrupt control units (ICU's) for an Am2900 Computer 
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Cn+x = Go + PoCn 
Cn+v = G1 + P1GO + P1POCn 
Cn+z = G2 + P2G1 + P2P1GO + P2P1POCn 
G = G3 + P3G2 + P3P2G1 + P3P2P1GO 
P = P3P2P1PO 

Figure 15. Am2902 Carry Look-Ahead Generator Logic Diagram and Equations • 
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Figure 16. Vector Connections for both the Parallel and Ripple Cascade Modes. 

System. Figure 21 shows an eIght interrupt levellCU, and Figure 
22 shows an ICU whIch has sIxteen levels. In both designs, the 
Am2914 InstructIon Inputs and InstructIon Enable input are driven 
by the 10-3 field and iE bit, respectively, of the MicroinstructIon 
RegIster. Note that Am2914 Instruction inputs are enabled only 
when the IE bit is LOW. Therefore, the 10-3 field of the Micro­
instruction Register may be shared with another functional unit 
of the computer such as the ALU. 

The Latch Bypass Input IS shown connected to ground so that a 
Low-gOing pulse will be detected at any of the Interrupt Inputs. 
The deSIgner has the option of connecting the Latch Bypass Input 
to a pull up resIstor connected to +5 volts. ThIS makes the inputs 
low level sensitive. They are clocked in by each system clock. It IS 
therefore implied that the processor will have to acknowledge the 
interrupt so that the interrupting device WIll know when to release 
the Interrupt request line. 
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MICROINSTRUCTION REGISTER 

I'E I '0-3 I 

! ! FROM DATA BUS 
SOURCE CONTROL , 

STATUS 'NT LOrC 
O'FLOW D'S 

INST EN GRPSIG 

3 CS 

~ INSTc}3 VECTOR 0-2 Ao-2 Am29751 
MAPPING 

PAR DIS A3 PROM 
12) 

Am2914 
GRP EN ..... 

~ 
A, 

...... B 
INT INPUTS 

PITP7 
DBB 15 

MASK 0-7 B 
DBO 2 DBO 3 

LATCH BYP 3 
STATUS 0-2 

3 , 
CLOCK 

R'P 
I APT REO 0---

DB 3 

GAR D'S 

'i 'i " 'i 'i 
I I G, G2 G3 G, G, 

vcc -
GAS 'NT 

Y2-Y7 

D'S Am2913 

INST EN GRPSIG L-.: V, AO I---

I DB3 

L- INSl0-3 
VECTOR ().2 Vo 

E' 
Am2914 GRP EN l 

B DB 0-7 
INT INPUTS MASK 0-7 

B POP7 
{CC 3 

LATCH BYP STATUSG-2 4700 

'-- CLOCK IRPT REO TO MICROPROGRAM 

GAR 
NEXT ADDRESS 
CONTROL 

- 1 
Figure 22. 16 Level Interrupt Control Unit for Am2900 System. 

219 

DBa 15 ,. 
DBa 15 

,. 
:!! 
0 
m 
9 

~ 
"" !;( 
0 



220 

In Figures 21 and 22, the Status and Mask Inputs/outputs are 
connected to the data bus in a bi-directional configuration so that 
Status and Mask Registers may be loaded from or read to the 
data bus with appropriate Am2914 instructions. This gives the 
designer two possibilities which could be very advantageous. 

Number one is the ability to store the Status and Mask information 
on a stack in memory. This is very advantageous when doing 
nested interrupts. Secondly, it allows the designer to construct 
machine instruction that can mOdify these two registers. This is 
very Important to the system programmer who is involved in 
writing software to manage the interrupts. 

For the eight levellCU of Figure 21 , the Status Overflow output IS 
connected to the Interrupt Disable input, and the Group Advance 
Receive and Group Enable inputs are connected to ground, as 
previously described. 

For the 16 interrupt level ICU of Figure 22, the Parallel Disable 
output of the higher priority group serves as the high order vector 
bit. An Am2913 Priority Interrupt Expander is gated by the 
Am2914 Instruction lines so that its output is enabled only during a 
Read Status instruction, and is used to encode the high order bit 
of the status. An inverter suffices to decode the high order bit of 
the status bit during a Load Status instruction. As described 
previously for a ripple cascade system, the Group Advance Re­
ceive input of the next higher priority group; the Ripple Disable 
output IS connected to the Interrupt Disable input ofthe next lower 
priority group; the Status Overflow output of the highest priority 
group is connected to the Interrupt Disable input of the same 
group, and the Group Advance Receive input ofthe lowest priority 
group is connected to ground. 

In both designs, two Am29751 32-word by 8-bit PROM's with 
three-state outputs are used to map the Am2914 Vector outputs 
into a 16-bIt address vector. The PROM outputs are connected to 
the data bus. When a Read Vector Instruction (Am2914) is exe­
cuted, the address vector is available to be used either as the 
address of the next instruction or a location to find the address of 
the next instruction to execute. 

Figure 23 shows a design where the address vector from the 
mapping PROM can be clocked into a register in the Am2903's. 
The registers in the Am2903's would be split between general 
purpose, scratch, stack pOinters and Program Counter registers. 

The address vector also may be gated directly to the "0" inputs of 
the Am2911 Microprogram Sequencer as shown in Figure 24, 
and used as the start PROM address of a microinstruction inter­
rupt service routine. ThiS method would be most useful in a 
controller application. This method would trade faster service for 
a bigger microprogram that accommodates all the code to service 
each Individual interrupt. 

FIRMWARE EXAMPLE FOR Am2914 INTERRUPT SYSTEM 

The software for handling interrupt requests is on two levels. 
The first level to come into play is the microprogram level. This is 
the level at which the request is recognized and the program 
counter is manipulated to start execution of a machine level 
interrupt service routine which is the second level. When the 
machine level interrupt service routine is finished, some form of 
a Return Interrupt instruction IS executed. The microcode for the 
return instruction manipulates the program counter so that 
execution of the current machine program previous to the re­
quest is restored as shown in Figure 25. 

This example is concerned With the microprogram level. This 
microcode goes along with the hardware shown in Figure 23. In 
this example the code is shown in the form of Flow Charts be-

cause the actual microprogram format will vary from machine to 
machine. 

The important features to notice that have a direct relevance to 
the firmware are the Latch Bypass and where the Mask, Status 
and Vector busses go. For this example, the Latch Bypass is 
LOW making the Interrupt Latches latch up on a negative going 
pulse. The Mask and Status busses go to the data bus allowing 
the Status and Mask data to be transferred to and from memory. 
The Vector bus passes through a mapping PROM to the data 
bus where it can be read into the Program Counter contained in 
the Am2903's. The PROM contains addresses of service 
routines which correspond to the different interrupt levels. 

Another relevant fact, important to understanding the firmware is 
that the interrupt mechanism is limited to handle interrupts on 
the machine level. 

As shown in Figure 26a, the first thing that happens in the fetch 
routine (written in microcode) is a conditional subroutine call that 
will be taken if an interrupt request is present. This happens 
before the current machine Instruction Is fetched and the pro­
gram counter is incremented. 

In the Interrupt routine (shown in Figure 26b) a microprogram 
subroutine is first called to push the program counter onto the 
system stack. This is done so that the program counter can be 
restored in order to resume execution of the machine program 
after the interrupt service routine is done. The next thing that is 
saved on the system stack is the contents of the Am2914 Status 
Register. This is done because the status register which contains 
the priority level that would be serviced prior to the interrupt, will 
be restored after the interrupt is serviced. This maintains a nested 
interrupt structure (fence). 

After saving the program counter and status register, the vector 
is read out of the Am2914 through the mapping PROM to obtain 
the address of the machine interrupt service routine. The ad­
dress is then read into the program counter which resides in the 
Am2903's. When the Vector is read, the interrupt request priority 
plus one is automatically put into the status register by the 
Am2914 so that all interrupt requests of lower priority than the 
one being serviced are ignored. This is often referred to as 
moving the fence up. Since the vector has been read and the 
new address is in the program counter, the interrupt request can 
be cleared from the interrupt register via the Clear Interrupt/Last 
Vector Read instruction. At this point a jump is made to the 
Fetch routine which will now fetch the first instruction of the 
machine Interrupt Service routine. 

The last instruction that the machine level interrupt service exe­
cutes is an Interrupt Return. This will in turn call Return Interrupt 
microprogram. The status is first popped off the system stack 
and loaded back into the status register. This restores the Inter­
rupt Fence. The program counter is then popped off the system 
stack and loaded into the program counter register. This re­
stores the program counter to point to the Instruction that was 
going to be executed when the interrupt request occurred. 

TIME DELAY WHEN USING THE Am2914 

An aspect that should be covered when using any part is how it 
will fit into the system timing; because the cycle time of the 
system will be as long as the longest delay path In the machine. 
Shown in Figure 27 is the longest delay path through the 
Am2914 for the previous 16-bit computer example. The calcula­
tions were using both typical and worst case values at 25°C and 
5.0V. 

The longest delay path for the system where the vector from the 
mapping PROM feeds into the "0" inputs of the Am2910 is 
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Figure 25. Machine Level Instruction Flow During Interrupt 
Request. 

Figure 26a. Flow Chart for a Simplified Microprogram Fetch 
Routine. 

Figure 26b. Call Interrupt Service Routine Microprogram 
Flow Chart. 

Figure 26c. Return Interrupt Microprogram Flow Chart. 
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Device No. Device Path Typ. Max. 

29775 CP to D 15 20 
2914 I to V 40 55 
2918 ts (Data) 5 5 

Cycle n Total·ns 60 80 

2918 CP to Q 8.5 13 
27819 A to 0 25 40 
2910 D to Y 14 22 
29775 ts (A) 40 50 

Cycle n+1 Total-ns 97.5 125 

Figure 28f. 

Device No. Device Path Typ. Max. 

2914 CP to IRQ 65 82 
2922 Dn to Y 13 19 
2910 CC to Y 27 44 
29775 t5 (A) 40 50 

Total-ns 145 195 

Figure 28g. 

Device No. Device Path Typ. Max. 

2914 CP to IRQ 65 82 
74874 ts (Data) 3 3 

Cycle n T otal-ns 68 85 

74874 CP to Q 6 9 
2922 Dn to Y 13 19 
2910 CC to Y 27 44 
29775 t5 (A) 40 50 

Cycle n+1 Total-ns 86 122 

Figure 28h. 

shown In Figure 28. This path IS much longer because of the two 
PROM's that have to be accessed. Therefore, there may be a 
trade-off of slightly longer system cycle time for faster service of 
interrupts via service routines In microcode. 

For some systems the delay time shown In Figure 28b may be 
too long. Therefore, the designer can split the delay time into 
parts by puttmg a register between the Am2914 and the mapptng 
PROM as shown in Figure 28c. When done In two system clock 
cycles, the delay time Will be as shown In Figure 28f. 

Figure 28d shows the delay path from the Interrupt Request 
Register through the Condition Code MUX to the Am291 O. The 
time calculations are shown in Figure 28g. Again, for some sys­
tems, this path may be too long. Therefore, as shown above, this 
path may be broken In two, which is shown in Figure 28e. This 
will result In two system clock cycles. The delay involved In each 
cycle is shown in Figure 28h. 

ANOTHER EXAMPLE OF Am2900 SYSTEM 
USING THE Am2914 

As shown In Figure 29, this example varies in the way that the 
Interrupt request IS recognized by the microprogrammed 

machine. In this example the interrupt ,equest line for the 
Am2914 enables or disables the MAP signal going to the map­
ping PROM. When an interrupt request is present and a Jump 
Map instruction is executed, the output of the mapping PROM 
remains tri-stated; and the bus connected to the "D" inputs of 
the Am291 0 is HIGH because of the pUll-Up resistors. Therefore, 
the microprogram will start executing at the highest location in 
microprogram memory when an interrupt request is present. At 
this location a Jump Instruction to the microprogram interrupt 
service routine could be placed. The microcode is written so that 
the only time a Jump Map instruction is executed is at the end of 
the Fetch microprogram routine as shown in Figure 30a. 

In the prevIous example the interrupt request was recognized 
before the program counter is Incremented after which the Jump 
Map Instruction is executed. When the Jump Map is executed, 
either the Instruction is executed or an interrupt request IS ser­
viced. Therefore, when the Return Interrupt machine Instruction 
IS executed, the program counter needs to be backed up via 
microcode, as shown in Figure 30b, in order to refetch the 
machine Instruction which was lost. This also dictates that the 
program counter have a path to an Incrementer/decrementer or 
ALU, which in this example is handled by putting the program 
counter in the Am2903's. 

MICROPROGRAM LEVEL INTERRUPT EXAMPLE 

Some high-speed control applications require extremely fast 
interrupt response. While it may ordinarily be desirable to com­
plete an entire processing sequence (such as executing a mi­
croprogram for a macroinstruction) prior to testing for the inter­
rupt and allOWing it to occur, it is not always possible to achieve 
the required Interrupt response time desired. If this is the case, 
microinstruction level interrupt handling must be employed. The 
technique described below has a maximum latency of three mi­
crocycles which can be 450-600ns total. Implementation is 
straightforward uSing the Am291 0 Microsequencer, a 40-pln LSI 
device that can control 4096 words of microprogram at a 150ns 
cycle time, and a few extra MSI and SSI packages. In this appli­
cation, the Am2910 IS configured in ItS standard architecture. 
The addlltOnal logic does not Influence the normal system cycle 
time. 

If mlcrolevellnterrupt handling IS to be employed, logic must be 
provided to generate a substitute microprogram address corre­
sponding to the location of the interrupt service routine. In the 
event of a mlcrolevel interrupt, the sequencer address outputs 
are tri-stated and the substitute address is placed on the micro­
program address bus, causing the next mlcromstruction fetch to 
be determined by the interrupt control vector generator. While 
this IS happentng, steps must be taken with the Am291 0 to In­
sure that the Interrupted routine can be properly restored. To 
understand this procedure, It will be necessary to examine the 
Am291 0 in more detail. 

Refernng to Figure 31, the microprogram address bus is driven 
by the Y outputs of the Am2910 through a tri-state buffer than 
can be disabled by means of the OE Input. The address is 
selected In a multiplexer from a direct input, from a register/ 
counter, from a push/pop stack, or from a microprogram counter 
register. The microprogram counter register is commonly used 
as the address source when executing the next microinstruction 
in sequence. Whenever an address appears at the multiplexer 
outputs, It IS incremented and presented to the microprogram 
counters inputs. At the rising edge of the clock, this new address 
that IS current address-plus-1' IS loaded into the microprogram 
counter and a microprogram access begins at this address. 
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Figure 30a. Return Interrupt Microprogram 
for Second Example. 

RLD D------l 

o 

" a: 

DE C>--------+-~~--------------~ 

Figure 30b. Fetch Microprogram for the Second Example. 

-==> 12-BIT DATA PATH 

v, --- CONTROL PATH 

Figure 31. Am2910 Block Diagram. 
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Note that at this time, whatever was fetched at the previous 
address was loaded into the microword register for execution. 
Thus, the microprogram sequencer is always looking for the 
address of the next microinstruction to be executed (while a 
previously fetched microinstruction is residing in the microword 
register). Subroutine and microprogram loops may be ac­
complished by using the stack and the register counter. Re­
gardless of what is selected as source of next address, the 
selected address will be incremented and presented to the 
microprogram counter. So to accomplish a microprogram 
branch, one would simply select the D inputs for a branch ad­
dress for one cycle, then the next address source could be 
switched back to the program counter on the next cycle which 
would then contain the branch address plus t. 

This is a carry input to the incrementer which is normally tied 
HIGH. In the case of a microlevel interrupt, the microprogram 
sequencer will not determine the address of the next microin­
struction to be executed. Instead the sequencer output will be 
tri-stated and a substitute address will be placed on the bus. The 
sequencer continues to operate in a normal fashion with its mul­
tiplexer output being incremented and presented to the micro­
program counter register. It must now be noted that the Instruc­
tion located at the address then coming out of the multiplexer 
outputs will not be executed but rather the next microinstruction 
to be executed will be determined by the interrupt vector 
generator. It would therefore, be wrong to Increment this micro­
program address but rather It must be saved intact In order to 
push it onto the stack for access during interrupt retum. This is 
easily accomplished in the Am2910 by grounding the carry input 
to the incrementer Simultaneously with three-stating the se­
quencer output. Then the multiplexer output will be stored in the 

SYSTEM 
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CONDITIONS 
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SYSTEM 

OR 
(OUTSIDE) 

SYNC AND 
CONTROL 

LOGIC 
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CONTROL 

AND 
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microprogram counter register and on the next microcycle the 
Am2910 must be told to push In order to preserve this address 
on the stack. 

This carry-In Input is all important and exists on all Advanced 
Micro Devices' microprogram sequencers. Unless the carry-in is 
grounded, whatever address was in the multiplexer output when 
the sequencer output was tri-stated is incremented and an in­
struction is missed in the interrupted routine. This, of course, 
would likely be disastrous. The key to this microinterrupt 
technique is that the address of the unexecuted instruction 
(when the Am2910 was tri-staled and a substitute address 
supplied) is preserved by inhibiting the increment via the carry 
input, so the address is passed on intact to the microprogram 
counter. If the microinterrupt is to be more than one cycle long, 
the microprogram counter must be pushed so as to save the 
retum address. Otherwise, a "continue" may be used to return 
from the interrupt on the very next cycle. In this event the mic­
rointerrupt effectively Inserts one instruction in the stream. 

Figure 32 is the block diagram of a hardware design that imple­
ments the above concept. The SYNC/CONTROL and INTER­
RUPT CONTROUVECTOR GENERATOR logiC are shown in 
detail in Figure 33. Part of the Am2918 and both 'LS74 Flip­
Flops are used to synchronize the recognition of the asynchron­
ous interrupt request as shown in Figure 34. The interrupt re­
quest arnves at the interrupt Input. On the next clock cycle it is 
clocked Into the Am2918. In the follOWing clock cycle a pulse 
that is one system clock cycle long is put out by the flip-flop pair 
FF1 and FF2. The pulse is used to disable the carry Input of the 
Am2910, tri-state the output of the Am2910, and enable the 
jump vector onto the Input of the PROM. The vector indexes into 
a table in microprogram memory that contains "JUMP SUB­
ROUTINE" instructions to different interrupt service routines. 

MAPPING 
PROM 

CONTROLS TO SYSTEM (OR OUTSIDE) 

Figure 32. Computer Control Unit Set-up for High-Speed Micro-Level Interrupt Handling. Latency is a Malj:imum 
of Two Microcycle8 (i.e., about 300 to 500n8). 
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NEXTILPC 
ADDRESS 

ADDRESS 
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COMMENT 
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A 
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A+1 
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X 
X 
X 
X 
X 

NORMAL 
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II 
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0 
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D+1 
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X 
X 
X 
X 
X 

INTERRUPT 
PROCESSING 

BEGINS 

"This IS a JSB instruction, but observe that the return address will be the yet-to-be executed location A+3. 

Figure 35. Interrupt Sequence Timing • 
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Figure 36_ Return-From-Interrupt Sequence Tlmlng_ 
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Figure 35 shows how the interrupt sequence timing fits into the 
normal flow of microprogram address in the Am2910. Note how 
the stack is used. This demonstrates the need for always re­
serving room on the stack to allow for interrupts. This applies to 
any room that the interrupt service routine may require as well 
as the retum address. This limitation may require that only one 
interrupt request be serviced at a time. 

Figure 36 shows how the return from the interrupt service 
routine fits into the microprogram flow. Notice that a Return 
instruction is used to accomplish this. 

SUMMARY 

In this chapter, Interrupts were discussed beginning with a def­
inition of the Interrupt Mechanism and proceeding to a classifi­
cation of different interrupts and how they are handled. A dis-

cussion of the concepts that go into designing the "Universal 
Interrupt" hardware was given which culminated with the 
Am2914. The chapter ends with several Interrupt Mechanism 
applications using the Am2914 and Am2910. 

In this chapter it was shown how interrupts can be handled using 
parts from the Am2900 family. Because of their hardware mod­
ularity and universal architecture, they may be used in a variety 
of applications. Since the Am2900 Family parts are micropro­
grammable, they allow the user's system to grow with time as 
system requirements change. Together these attributes make 
the Am2900 Family the flexible cost effective family that it is. 
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Chapter VII 
Direct Memory Access 





Introduction 

The transfer of data between the microcomputer and the 
peripheral devices is generally referred to aslnput'Output (1/0). 
What is desired is a high speed technique of transferring data 
between the peripherals and the memory. Generally speaking, 
there is a minimum of three types of 110. These are, Programmed 
I/O, Memory Mapped I/O and Direct Memory Access I/O. All of 
these schemes are common in today's currently available 
minicomputers. A basic understanding of these I/O techniques is 
helpful in fully comprehending DMA. The first two of these types 
of I/O can be interrupt driven. That is, programmed I/O or memory 
mapped I/O can be initiated by an interrupt from the peripheral 
device. 

Programmed I/O 

In this type of I/O, all operations are controlled by the CPU 
program. In other words, the peripheral device performs the 
functions of inputting or outputting data as it is controlled by the 
CPU. Normally, the machine will include a set of I/O instructions 
which are used to transfer data to or from the peripheral devices 
via an Input'Output port. All data for the peripheral devices 
passes through these I/O ports to the CPU and the resources of 
the CPU must be utilized in order to effect an I/O transfer. Figure 1 
shows the Block Diagram of a programmed I/O system used in a 
typical microcomputer. Figure 2 shows an example of that portion 
of the program used to output data to the peripheral device. 

CPU MEMORY 

110 PORT 

I 
I!ODEVICES 

MPR-550 

Figure 1. Programmed I/O System. 

CPU Program Comments 

Load R, M Load CPU Register R with the Contents of 
Memory Address M 

Out D, R Transfer the Contents of CPU Register R to 
I/O Device D via the I/O port. 

Figure 2. Example Output Program - Programmed I/O. 

Programmed I/O IS simple to implement and does not require the 
utilization of any memory addresses for its realization. In additton, 
special instructions are available to the programmer to execute 
the peripheral data transfers. Programmed I/O is also low cost 
relative to other types of I/O; however, it has the follOWing disad­
vantages. Since I/O device operation is asynchronous with re-

spect to CPU operation, the CPU has no way of knowing when a 
peripheral device is ready to transfer data and must periodically 
poll the device to determine its readiness. This results in an 
inefficient I/O transfer. Also, since the CPU must be used to effect 
the I/O transfer, the CPU resources are tied up during the time of 
transfer and the time of polling and cannot be used for other tasks. 
For these reasons, Programmed I/O is generally limited to use 
with low speed devices. 

Perhaps, one of the best known programmed I/O microcom­
puters in the industry today is the Am9080A. This device features 
two instructions for either inputting data or outputting data to any 
one of 256 Input'Output ports. 

Memory Mapped I/O 

Memory Mapped I/O is a technique whereby the transfer of data 
to and from peripheral devices is accomplished by using some of 
the normally available memory space. In this technique, memory 
addresses are decoded within the peripheral devices and are 
thus used to determine when a specific device is being ad­
dressed. Usually, each type of function within the peripheral 
deVice is assigned a memory address and can then be accessed 
by the CPU. For example, the peripheral device may contain a 
command register, a status register, a data in register and a data 
out register. Thus, four memory addresses might be utilized in 
performing I/O to this peripheral. Figure 1 is also the block dia­
gram for a Memory Mapped I/O scheme. 

The chief advantage of Memory Mapped I/O is that all of the 
memory reference instructions are usually available to perform 
the I/O function. Consequently, no special I/O instructions are 
required in the machine. The key disadvantage of this techntque 
IS that a block of the memory addressing range must be set aSide 
for assignment to the peripheral devices. Thus, the overall mem­
ory addressing range of the machine IS reduced by the size of this 
block. Again, the resources of the CPU are tied up while the I/O is 
being performed. A well known machine using only Memory 
Mapped I/O is the PDP 11. In it the upper 4k of memory space IS 
usually used for the I/O devices. 

Interrupt Driven I/O 

Interrupts are means by which a peripheral device can stop the 
normal flow of the CPU instruction execution and force the CPU to 
temporarily suspend its current program. Then, the program 
"jumps" to a different program which executes an I/O transfer. 
Typically, this eliminates the need for polling the peripheral de­
vices to determine if an I/O transfer is ready. Thus, the interrupt 
driven scheme provides a more efficient I/O transfer technique. 
However, there is an overhead burden associated with interrupts 
in that the CPU must store away and later restore all of the 
parameters required to resume the interrupted program. This 
overhead degrades the CPU performance. Depending on the 
overall Interrupt structure, the CPU still may have to do some 
polling of devices which may be tied to the same interrupt level. 

It should be pointed out that both Programmed I/O and Memory 
Mapped can take advantage of the interrupt technique. That IS, an 
interrupt can be used to initiate the peripheral data transfer in 
either type of system. The CPU still must control the transfer of 
the data between the memory and the peripheral deVice and the 
CPU resources are unavailable for executing other instructions 
during this time. 

What is DMA? 

DMA is a technique for data transfer which provides a direct path 
between the I/O device and the memory without CPU interven­
tion. With thiS path, a peripheral device has "Direct Memory 
Access" and can transfer data directly to or from the memory. The 

239 



240 

COMMON BUS 

I I I I I 
MEMORY CPU I/O I/O I/O 

DEVICE DEVICE DEVICE 

MPR-551 

Figure 3. DMA 1/0 System. 

purpose of the DMA is to relieve the CPU of the task of controlling 
the 1/0 transfer, thereby freeing it to perform other tasks during 
this time, and to provide a means by which data can be transfer­
red between an 1/0 device and memory at very high speed. 
Figure 3 shows the Block Diagram of a system where several 1/0 
devices can perform DMA transfers into memory. Note that the 
CPU and peripheral devices share a common bus to the memory 
and that the CPU and peripheral devices cannot access memory 
during the same cycle. DMA can also be designed to perform 
memory-to-memory transfers or I/O-to-I/O transfers. 

Several DMA transfer methods exist, such as the CPU halt 
method, the memory times lice method, and the "cycle steal" 
method. In the CPU halt method, the CPU is halted and switched 
off the bus while a DMA transfer occurs. This is the most 
straightforward method. However, it takes a relatively long time to 
switch the CPU on and off the bus, and the CPU cannot do 
anything during the transfer. 

The memory timeslice method works by splitting each memory 
cycle into two timeslots; one is reserved for the CPU and the other 
for DMA. This method provides the highest CPU execution rate 
as well as the highest DMA transfer rate because both the CPU 
and DMA are guaranteed access to memory during every mem­
ory cycle. The disadvantage of this method is that high speed, 
costly memories must be used. 

The "cycle steal" method is a cost/performance compromise 
between the low cost of the CPU halt method and the high 
performance of the memory timeslice method. Cycle stealing 
refers to a DMA device "stealing" a CPU memory cycle in order to 
execute a DMA transfer. CPU program execution continues dur­
ing the DMA transfer (the CPU is not halted), resulting in an 
overlap of CPU program execution with DMA transfer. If the CPU 
and a DMA device require a memory cycle at the same time, 
priority is granted to the DMA device and the CPU waits until the 
DMA cycle is completed. DMA causes CPU performance degra­
dation only in those applications where the CPU uses the entire 
memory bandwidth. In many applications the CPU is slow relative 
to memory cycle time and "cycle stealing" provides satisfactory 
performance at relatively low cost. 

How is DMA Implemented? 

In order to relieve the CPU of the 1/0 transfer control task, circuitry 
external to the CPU must be added. This circuitry is called the 
DMA Controller and performs the following functions. 

Address Line Control - In a DMA system, the memory address 
lines are driven by either the CPU or a DMA device, depending on 
which is using the memory during a given cycle. The DMA con­
troller must switch the appropriate address onto the memory 
address lines. 

Data Transfer Control - The DMA Controller must provide the 
control signals required to transfer data directly between memory 
and an I/O device. As with the address lines, these control signals 
must be switched onto and off of the memory control lines appro­
priately. 

Address Maintenance - Just as the CPU has the program 
counter and one or more other registers for memory address 
pointers, the DMA controller must also maintain an address 
pointer that Indicates where the next word of data will be read or 
written in memory. This pointer must be incremented or dec­
remented after each word transfer. 

Word Count Maintenance - At the initialization of a DMA 
transfer, the CPU specifies to the DMA .controller the total 
number of words to be transferred. During the transfer, the DMA 
controller must maintain a count of the number of words that have 
been transferred and terminate the transfer when the specified 
number of words has been reached. 

Mode Control - Certain aspects of a DMA transfer, such as 
direction of data flow, method of termination, etc., may vary from 
one DMA transfer to the next. For this reason, a number of DMA 
modes may be required. Mode control logic contained in the DMA 
eontroller, is set by the CPU althe initialization of a DMA transfer. 

A DMA Controller can be placed in each 1/0 device (Distributed 
DMA) or DMA control circuitry for a number of I/O devices can be 
placed in a separate unit (Centralized DMA). The former provides 
the advantage of incremental cost; DMA control circuitry is added 
only as I/O devices are added. The latter provides the advantages 
of consolidation. 

At DMA initialization, the CPU normally specifies the mode, the 
starting memory address and the number of words to be trans­
ferred (word count) to the DMA controller. In some applications, it 
is desirable to repeat a DMA transfer over and over again without 
disturbing the CPU. This capability is called Repetitive DMA, and 
can be implemented by adding two registers to the DMA con­
troller. One register saves the starting address and the other the 
starting word count. This allows the DMA Controller to automati­
cally reinitialize itself after the transfer of the data has been 
completed, thereby eliminating the need for CPU intervention. 



The Am2940 DMA ADDRESS GENERATOR 

The design of the Address Line Control, Data Transfer Control 
and Mode Control circuitry of a DMA Controller is dependent 
upon system architecture and timing; therefore, it varies con­
siderably from system to system. However, the address mainte­
nance and word count maintenance circuitry is independent of 
these variables, and is common to almost all DMA Controllers. 
The Am2940 DMA Address Generator is designed for use in DMA 
Controllers and provides the Address and Word Count mainte­
nance circuitry that is common to most. It combines the advan­
tages of high speed bipolar LSI with the flexibility and general 
purpose usefulness of microprogrammed control. 

Am2940 GENERAL DESCRIPTION 

The Am2940, a 28-pin member of Advanced Micro Devices 
Am2900 family of Low-Power Schottky bipolar LSI chips, is a 
high-speed, cascadable, eight-bit Wide Direct Memory Access 
Address Generator slice. Any number of Am2940s can be cas­
caded to form larger addresses. 

The pnmary function of the device IS to generate sequential 
memory addresses for use in the sequential transfer of data to or 
from a memory. It also maintains a data word count and gener­
ates a DONE signal when a programmable terminal count has 
been reached. The device is designed for use in penpheral con­
trollers with DMA capability or in any other system which transfers 
data to or from sequential locations of a memory. 

The Am2940 can be programmed to Increment or decrement the 
memory address in any of four control modes, and executes eight 
different instructions. The initial address and word count are 
saved Internally by the Am2940 so that they can be restored later 
in order to repeat the data transfer operation. 

Am2940 ARCHITECTURE 

As shown in the Block Diagram of Figure 4, the Am2940 consists 
of the following: 
• A three-bit Control Register. 
• An eight-bit Address Counter with input multiplexer. 
• An eight-bit Address Register. 
• An eight-bit Word Counter with input multiplexer. 
• An eight-bit Word Count Register. 
• Transfer complete circuitry. 
• An eight-bit wide data multiplexer with three-state output buf­

fers. 
• Three-state address output buffers with external output enable 

control. 
• An instruction decoder. 

Control Register 

Under instruction control, the Control Register can be loaded or 
read from the bidirectional DATA lines Do-D7. Control Register 
bits 0 and 1 determine the Am2940 Control Mode, and bit 2 
determines whether the Address Counter increments or dec­
rements. Figure 5 defines the Control Register format. 

Address Counter 

The Address Counter, which provides the current memory ad­
dress, is an eight-bit, binary, up/down counter with full look-ahead 
carry generation. The Address Carry Input (ACI) and Address 
Carry Output (ACO) allow cascading to accommodate larger 
addresses. Under instruction control, the Address Counter can 
be enabled, disabled, and loaded from the DATA inputs, Do-D7, 
or the Address Register. When enabled and the ACI input is 
LOW, the Address Counter increments/decrements on the LOW 
to HIGH transition of the CLOCK input, CP. The Address Counter 
output can be enabled onto the three-state ADDRESS outputs 
Ao-A7 under control of the Output Enable Input, OEA • 

A~~~=~<J~r-----~~----~----------~~~---t-------------------------, 

OEA D--t-------' 

,g::~ ~~~-----<~--------~~------------------------------------------~ 

INSTRUCTION ~L-__ '_NS_T_R_U_CT_'_ON_---IC'" (10-12) ~ DECODER _ 

Figure 4. Am2940 DMA Address Generator. 
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Control Register 

I CR2 I CR, I CRo I 
Control Done Output Signal 
Mode Control Word 

CR, CRo Number Mode Type Counter WCI ~ LOW WCI ~ HIGH 

L L 0 Word Count Equals Zero Decrement HIGH when HIGH when 
Word Counter = 1 Word Counter = 0 

HIGH when HIGH when 
L H 1 Word Count Compare Increment Word Counter + 1 = Word Counter = 

Word Count Register Word Count Register 

H L 2 Address Compare Hold HIGH when Word Counter ~ Address Counter 

H H 3 Word Counter Carry Out Increment Always LOW 

CR2 Address Counter I 
H = HIGH L Increment 

I L - LOW H Decrement 

Figure 5. Control Register Format Definition. 

Address Register 

The eight-bit Address Register saves the initial address so that it 
can be restored later in order to repeat a transfer operation. When 
the LOAD ADDRESS instruction is executed, the Address Reg­
ister and Address Counter are simultaneously loaded from the 
DATA inputs, Do-D7' 

Word Counter and Word Count Register 

The Word Counter and Word Count Register, which maintain and 
save a word count, are similar in structure and operation to the 
Address Counter and Address Register, with the exception that 
the Word Counter increments in Control Modes 1 and 3, decre­
ments in Control Mode 0, and is disabled in Control Mode 2. The 
LOAD WORD COUNT instruction simultaneously loads the Word 
Counter and Word Count Register. 

Transfer Complete Circuitry 

The Transfer Complete Circuitry is a combinational logic network 
which detects the completion of the data transfer operation in 
three Control Modes and generates the DONE output signal. The 
DONE signal is an open-collector output, which can be dot-anded 
between chips. 

Data Multiplexer 

The Data Multiplexer is an eight-bit wide, 3-input multiplexer 
which allows the Address Counter, Word Counter, and Control 
Register to be read at the DATA lines, Do-D7' The Data Multi­
plexer and three-state Data output buffers are instruction con­
trolled. 

Address Output Buffers 

The three-state Address Output Buffers allow the Address 
Counter output to be enabled onto the ADDRESS lines, Ao-A7, 
under external control. When the Output Enable input, OEA, is 
LOW, the Address output buffers are enabled; when OEA is 
HIGH, the ADDRESS lines are in the high-impedance state. The 
address and Data Output Buffers can sink 24mA output current 
over the commercial operating range. 

Instruction Decoder 

The Instruction Decoder generates required internal control sig­
nals as a function of the INSTRUCTION inputs, 10-12 and Control 
Register bits 0 and 1. 

Clock 

The CLOCK input, CP, is used to clock the Address Register, 
Address Counter, Word Count Register, Word Counter, and 
Control Register, all on the LOW to HIGH transition of the CP 
signal. 

Am2940 CONTROL MODES 

Control Mode 0 - Word Count Equals Zero Mode 

In this mode, the LOAD WORD COUNT instruction loads the 
word count into the Word Count Register and Word Counter. 
When the Word Counter is enabled and the Word Counter 
Carry-in, WCI, is LOW, the Word Counter decrements on the 
LOW to HIGH transition of the CLOCK input, CPo Figure 5 
specifies when the DONE signal is generated in this mode. 

Control Mode 1 - Word Count Compare Mode. 

In this mode the LOAD WORD COUNT instruction loads the word 
count into the Word Count Register and clears the Word Counter. 
When the Word Counter is enabled and the Word Counter 
Carry-in, WCI, is LOW, the Word Counter increments on the LOW 
to HIGH transition olthe clock input, CPo Figure 5 specifies when 
the DONE signal is generated. 

Control Mode 2 - Address Compare Mode 

In this mode, only an initial and final memory address need be 
specified. The initial Memory Address is loaded into the Address 
Register and Address Counter and the final memory address is 
loaded into the Word Count Register and Word Counter. The 
Word Counter is always disabled in this mode and serves as a 
holding register for the final memory address. When the Address 
Counter is enabled and the ACI input is LOW, the Address 
Counter increments or decrements (depending on Control Reg­
ister bit2) on the LOW to HIGH transition olthe CLOCK input, CPo 
The Transfer Complete Circuitry compares the Address Counter 
with the Word Counter and generates the DONE signal during the 
last word transfer, i.e., when the Address Counter equals the 
Word Counter. 



Control Mode 3 - Word Counter Carry Out Mode 

For this mode of operation. the user can load the Word Count 
Register and Word Counter with the two's complement of the 
number of data words to be transferred. When the Word Counter 
IS enabled and the WCI input IS LOW. the Word Counter incre­
ments on the LOW to HIGH transition olthe CLOCK input. CPo A 
Word Counter Carry Out signal. WCO. indicates the last data 
word is being transferred. The DONE signal is not required in this 
mode and. therefore. is always LOW. 

Am2940 INSTRUCTIONS 

The Am2940 instruction set consists of eight instructions. Six 
instructions load and read the Address Counter. Word Counter 
and Control Register. one instruction enables the Address and 
Word Counters. and one instruction reinitializes the Address and 
Word Counters. The function of the REIN ITIALIZE COUNTERS. 
LOAD WORD COUNT. and ENABLE COUNTERS instructions 
vary with the Control Mode being utilized. Table 1 defines the 
Am2940 Instructions as a function of Instruction inputs 10-12 and 
the four Am2940 Control Modes. 

The WRITE CONTROL REGISTER instruction writes DATA 
input Do-D2 into the Control Register; DATA inputs D3-D7 are 
"don't care" inputs for this Instruction. The READ-CONTROL 
REGISTER instruction gates the Control Register outputs to 
DATA lines. Do-D2. DATA lines D3-D7 are in the HIGH state 
during this instruction. 

The Word Counter can be read using the READ WORD 
COUNTER Instruction. which gates the Word Counter ouputs to 
DATA lines Do-D7' The LOAD WORD COUNT instruction is 
Control Mode dependent. In Control Modes 0.2. and 3. DATA 
inputs Do-D7 are written into both the Word Count Register and 
Word Counter. In Control Mode 1. DATA inputs Do-D7 are written 
into the Word Count Register and the Word Counter IS cleared. 

The READ ADDRESS COUNTER instruction gates the Address 
Counter outputs to DATA lines Do-D7. and the LOAD ADDRESS 
Instruction writes DATA inputs Do-D7 into both the Address Reg­
ister and Address Counter. 

In Control Modes O. 1. and 3. the ENABLE COUNTERS instruc­
tion enables both the Address and Word Counters; in Control 
Mode 2. the Address Counter is enabled and the Word Counter 

-holds ItS contents. When enabled and the carry Input is active. the 
counters increment on the LOW to HIGH transitiqn of the CLOCK 
input. CPo Thus. with this instruction applied. counting can be 
controlled by the carry inputs. 

The REINITIALIZE COUNTERS Instruction also is Control Mode 
dependent. In Control Modes O. 2. and 3. the contents of the 
Address Register and Word Count Register are transferred to the 
respective Address Counter and Word Counter; in Control Mode 
1. the content of the Address Register is transferred to the Ad­
dress Counter and the Word Counter is cleared. The 
REINITIALIZE COUNTERS instruction allows a data transfer 
operation to be repeated Without reloading the address and word 
count from the DATA lines. 

Am2940 Timing 

Vanous computations must be performed by the designer to 
determine how fast the Am2940 can be operated reliably in a 
given design. The exercises of this section demonstrate how 
these computations are performed. 

Worst case A.C. characteristics. over the full temperature and 
voltage operating range should be used in these computations. 
Since. at the time of thiS writing. the Am2940 is still being charac­
terized. only typical A.C. characteristics are available. These 
typlcals are used here merely to demonstrate how the computa­
tions are performed; the designer must use worst-case charac­
tenstlcs. Figure 6 shows the characteristics of a Schottky register 
and a memory which are assumed for thiS exerCise. 

Figures 7 A. B. and C show the typical cycle time calculations for 
the 16-bit Am2940 configuration. The typical delay along the 
longest path for any of the eight Am2940 instructions determines 
the typical cycle time. In each case. delays are computed from the 
LOW to HIGH transition of a clock through an entire microcycle to 
the next LOW to HIGH transition of a clock. The typical cycle time 
for a 16-bIt Am2940 configuration IS 64ns. 

TABLE I. Am2940 INSTRUCTIONS 

Octal Control Word Word Address Address Control Data 
12 11 10 Code Function Mnemonic Mode Reg. Counter Reg. Counter Register DO-~ 

WRITE 
L L L ° CONTROL WRCR 0.1.2.3 HOLD HOLD HOLD HOLD Do-D2->CR INPUT 

REGISTER 
READ 

L L H 1 CONTROL RDCR 0.1.2.3 HOLD HOLD HOLD HOLD HOLD f:a;;~rD2 REGISTER 
READ 

L H L 2 WORD RDWC 0.1.2.3 HOLD HOLD HOLD HOLD HOLD WC .... D 
COUNTER 

READ 
L H H 3 ADDRESS RDAC 0.1.2.3 HOLD HOLD HOLD HOLD HOLD AC~D 

COUNTER 
REINITIAUZE 0.2.3 HOLD WCR->WC HOLD AR->AC HOLD Z 

H L L 4 
COUNTERS 

REIN 
1 HOLD ZERO .... WC HOLD AR->AC HOLD Z 

H L H 5 
LOAD LOAD 0.1,2,3 HOLD HOLD D->AR D->AC HOLD INPUT ADDRESS 
LOAD 0,2,3 D->WR D->WC HOLD HOLD HOLD INPUT 

H H L 6 WORD LDWC 
COUNT 1 D-->WR ZERO-->WC HOLD HOLD HOLD INPUT 

ENABLE ENABLE 
0,1,3 HOLD COUNT HOLD COUNT HOLD Z 

H H H 7 ENABLE ENCT 
COUNTERS 2 HOLD HOLD HOLD ENABLE HOLD Z 

COUNT 

CR = Control Reg. WCR = Word Count Reg L= LOW 
AR = Address Reg. WC = Word Counter H = HIGH Note \. 
AC = Address Counter 0= Data Z = High Impedance Data Bits 03-07 are high dUring this InstruCllOn. 
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Min. 

Schottky Register 
Clock to Output Delay 
Input Set-Up Time 5 

Memory 
Address Set-Up Time 20 

Typ. 

9 
2 

10 

Max. 

15 

Figure 8 shows the address output enable lime computations. 
Since the Am2940 has an asynchronous address output enable 
control, the address output enable time may not be related to the 
Am2940 cycle time. 

Figure 9 shows the typical cycle time calculation for an 8-bit 
Am2940 configuration. The path shown IS the longest path and 
determines an 8-bit typical cycle time of 52ns. 

The typical cycle time calculation for a 24-bit Am2940 configura­
tion IS shown In Figure 10. The path shown is the longest path and 
determines a 24-bit typical cycle time of 76ns. 

Figure 11 IS a summary of tYPical Am2940 cycle times for the 8, 16 
Figure 6. Assumed AC Characteristics. and 24-bit configurations. 

a) CALCULATIONS FOR 

DEVICE TYPE 

Schottky Reg 

2940 

2940 

Schottky Reg 

2940 

Schollky Reg 

2940 

2940 

Schottky Reg 

TOTAL-ns 

READ CONTROL REG, 
READ ADDRESS COUNTER, 
READ WORD COUNTER 
INSTRUCTIONS 

MEMORY 

DEVICE PATH PATH 1 PATH 2 

CLKloQ 9 9 

Insl Sel·Up 33 

Inst. to Data 21 

o Sel·Up 2 

CLKloDONE 

DSel-Up 

CLK10 WCO 

WCltoDONE 

o Set-Up 

42 32 

PATH 3 PATH 4 

50 

2 

35 

27 

2 

52 64 

Figure 7. 16-Bit Typical Cycle TIme Computations. 

PATH 1 <_.-.. ,,",,-,-_ .... 
PATH 2 
PATH 3 

MPR-552 



b) 

CALCULATIONS FOR 
WRITE CONTROL REG, 
LOAD WORD COUNT, 
LOAD ADDRESS 
INSTRUCTIONS 

c) 

CALCULATIONS FOR 
REINITIALIZE COUNTERS, 
ENABLE COUNTERS 
INSTRUCTIONS 

MEMORY 

DEVICE TYPE DEVICE PATH PATH 1 PATH 2 PATH 3 

Schottky Reg CLKtoQ 9 9 

2940 Inst Set-Up 33 

2940 Data Set-Up 13 

2940 CLKto WCO 35 

2940 WCltoDONE 27 

Schottky Reg D Set-Up 2 
PATH 1 
PATH 2 

TOTAL-ns 42 22 64 PATH 3 ' 

elK 

MEMORY 

DEVICE TYPE DEVICE PATH 

Schottky Reg ClK to Q 

2940 Inst Set-Up 

2940 CLKtoWCO 

2940 WCI to DONE 

Schottky Reg D Set-Up 

TOTAL-ns 

Am2940 

PATH 1 PATH 2 

33 

35 

27 

2 

42 64 

o 
weD 
ACO 

PATH 1 
PATH 2 

Figure 7. 16-Bit Typical Cycle Time Computations. (Cont.) 

elK 
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REG 
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CALCULATIONS FOR 
ENABLE MEMORY ADDRESS 
(ASYNCHRONOUS) 
INSTRUCTIONS 

we. 

Ae. 

elK 

o 
weo 

MEMORY 

DEVICE TYPE DEVICE PATH PATH 1 PATH 2 

2940 OEtoA 19 

2940 ClKtoA 35 

Memory ADR Set-Up 10 10 
PATH 1 

TOTAl-ns 29 45 PATH 2 

Figure 8. Speed Computations. 

elK 

weo 
ACO STATUS 

1----1 REG 

MEMORY 

DEVICE TYPE DEVICE PATH PATH 1 

2940 ClK to DONE 50 

Schottky Reg. D Set-Up 2 

TOTAl-ns 52 PATH 1 

Figure 9_ 8-Bit Typical Cycle Time Computation. 

elK 

elK 

STATUS 
REG 
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ADDRESS 

MEMORY 

DEVICE TYPE DEVICE PATH PATH 1 

2940 CLKloWCO 35 

2940 WClloWCO 12 

2940 WCltoDONE 27 

Schottky Reg o Sel-Up 2 

TOTAL-ns 76 
MPR·557 

Figure 10. 24-Blt Typical Cycle Time Computation. 

8-Bit Configuration 
16-Bit Configuration 
24-Bit Configuration 

Typical 
Cycle Time 

52ns 
64ns 
76ns 

Figure 11. Summary of Am2940 Cycle Times. 

AN EXAMPLE DESIGN 

The Am2940 is designed for use in high speed peripheral Con­
trollers using DMA and provides the address and word count 
maintenance circuitry that is common to most. As indicated previ­
ously, DMA Control can be placed in each 1/0 Controller (Distri­
buted DMA) or DMA Control for a number of 1/0 devices can be 
centralized In a separate unit. 

Figure 12 shows a block diagram of a microprogrammed 1/0 
Controller which is deSigned for use in a Distributed DMA system. 
The Am2910 Microprogram Sequencer, Microprogram Memory 
and the Microinstruction Register form the microprogram control 
portion of this 110 Controller. The Am2940 maintains the memory 
address and word count required for DMA operation. An internal 
three-state bus provides the communication path between the 
Microinstruction Register, the Am2917 Data Transceivers, the 
Am2940, the Am2901 A Microprocessor, and the Device Interface 

Circuitry. The Address Line Control, Data Transfer Control and 
Mode Control functions of this DMA Controller are incorporated 
into the 110 Controller Microprogram and the Asynchronous 
Interface Control Circuitry. The 110 Controller Microprogram also 
controls the Am2940. 

The Am2940 Interconnections are shown in detail in Figure 13. 
Two Am2940s are cascaded to generate a sixteen-bit address. 
The Am2940 ADDRESS and DATA output current sink capability 
IS 24mA over the commercial operating range. This allows the 
Am2940s to drive the System Address Bus and Internal Three­
State Bus directly, thereby eliminating the need for separate bus 
drivers. Three bits in the Microinstruction Register provide the 
Am2940 Instruction Inputs, 10-12 , The microprogram clock is used 
to clock the Am2940s and, when the ENABLE COUNTERS in­
struction IS applied, address and word counting is controlled by 
the CNT bit of the Microinstruction Register. 

Asynchronous interface control Circuitry generates System Bus 
control signals and enables the Am2940 Address onto the Sys­
tem Address Bus at the appropriate time. The open-collector 
DONE outputs are dot-anded and used as a test input to the 
Am2910 Microprogram Sequencer. 

The 1/0 controller read operation is flowcharted In Figure 14. The 
CPU initializes the 110 controller by sending a read command, the 
starting memory address, the word count and any other parame­
ters required to perform the operation. The 1/0 Controller then 
obtains a word of data from the 1/0 device and requests use of the 
system bus for a DMA transfer. When the bus is granted, the 1/0 
Controller requests a memory data transfer. Upon receipt of the 
memory acknowledge signal, which indicates the memory trans-
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\ MICAO-

I PROGRAM 
CONTROL 

SYSTEM ADDRESS BUS 

DEVICE 

Figure 12. DMA Peripheral Controller Block Diagram. 
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Figure 13. Am2940 Interconnections. 
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Figure 14. Read Control Flowchart. 

fer is complete. the I/O Controller tests the word count. If the word 
count is not equal to zero. the word counter is decremented. the 
address counter is incremented and another data word IS trans­
ferred. When the word count reaches zero. the I/O Controller 
terminates the data transfer and informs the CPU thatthe transfer 
has been completed. 

THE Am2942 PROGRAMMABLE TIMER/COUNTER, 
DMA ADDRESS GENERATOR. 

GENERAL DESCRIPTION 

The Am2942. a 22-pin version of the Am2940. can be used as 
a high-speed DMA address Generator or Programmable 
Timer/Counter. It provides multiplexed Address and Data lines. 
for use with a common bus. and additional Instruction Input and 
Instruction Enable pins. The Am2942 executes 16 instructions; 
eight are the same as the Am2940 instructions. and eight in­
structions facilitate the use of the Am2942 as a Programmable 
Timer/Counter. The Instruction Enable Input allows the sharing 
of the Am2942 instruction field with other devices. 

When used as a Timer/Counter. the Am2942 provides two in­
dependent. programmable. eight-bit. up-down counters in a 
22-pin package. The two on-chip counters can be cascaded to 
form a single chip. 16-bit counter. Also. any number of chips 
can be cascaded - for example three cascaded Am2942s form 
a 48-bit timer/counter. 

Relnitialization instructions provide the capability to reimtiahze 
the counters from on-chip registers. Am2942 Programmable 
Control Modes. identical to those of the Am2940. offer four dif­
ferent types of programmable control. 

Am2942 ARCHITECTURE 
As shown in the Block Diagram. the Am2942 consists of the 
following' 
• A three-bit Control Register. 
• An eight-bit Address Counter with input multiplexer. 
• An eight-bit Address Register. 
• An eight-bit Word Counter with input multiplexer. 
• An eight-bit Word Count Register. 
• Transfer complete circuitry. 
• An eight-bit wide data multiplexer with three-state output 

buffers. 
• An instruction decoder. 
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Figure 15. Am2942 Block Diagram. 

Control Register 

Under instruction control, the Control Register can be loaded or 
read from the bidirectional DATA lines, 0 0-07, Control Register 
bits 0 and 1 determine the Am2942 Control Mode, and bit 2 
determines whether the Address Counter increments or dec­
rements. Figure 16 defines the Control Register format. 

Address Counter 

The Address Counter, which provides the current memory ad­
dress, is an eight-bit, binary, up/down counter with full look-ahead 
carry generation. The Address Carry input (ACI) and Address 
Carry Output (ACO) allow cascading to accommodate larger 

addresses. Under instruction control, the Address Counter can 
be enabled, disabled, and loaded from the DATA inputs, 0 0-07 , 

or the Address Register. When enabled and the ACI input is 
LOW, the Address Counter increments/decrements on the LOW 
to HIGH tranSition of the CLOCK input, CPo 

Address Register 

The eight-bit Address Register saves the initial address so that it 
can be restored later in order to repeat a transfer operation. When 
the LOAD ADDRESS instruction is executed, the Address Reg­
ister and Address Counter are simultaneously loaded from the 
DATA inputs, 0 0-07, 

Control Regleter 

CR, CRo 

L L 

L H 

H L 

H H 

H = HIGH 
L= LOW 

Control 
Mode 

Number 

0 

1 

2 

3 

CR. CR, CRo 

Done Output Signal 
Control Word 

Mode Type Counter WCI = LOW WCI = HIGH 

Word Count Equals Zero Decrement HIGH when HIGH when 
Word Counter = 1 Word Counter = 0 

HIGH when HIGH when 
Word Count Compare Increment Word Counter + 1 = Word Counter = 

Word Count Register Word Count Register 

Address Compare Decrement HIGH when Word Counter"" Address Counter 

Word Counter Carry Out Increment Always LOW 

FIgure 16. Control Register Format DefinItIon. 



Word Counter And Word Count Register 

The Word Counter and Word Count Register, which maintain and 
save a word count, are similar in structure and operation to the 
Address Counter and Address Register, with the exception that 
the Word Counter increments in Control Modes 1 and 3 and 
decrements in Control Modes 0 and 2. The LOAD WORD 
COUNT instruction simultaneously loads the Word Counter and 
Word Count Register. 

Transfer Complete Circuitry 

The Transfer Complete Circuitry is a combinational logiC network 
which detects the completion of the data transfer operation in 
three Control Modes and generates the DONE output signal. The 
DONE signal is an open-collector output, which can be dot-anded 
between chips. 

Data Multiplexer 

The Data Multiplexer is an eight-bit wide, three-input multiplexer 
which allows the Address Counter, Word Counter and Control 
Register to be read at DATA lines 0 0-07, The Data Multiplexer 
output, Y 0-Y 7, is enabled onto DATA lines 0 0-07 if, and only if, the 
Output Enable input, OED, IS LOW. (Refer to Figure 17.) 

OED 0 0-07 

L DATA MULTIPLEXER OUTPUT, YO-Y7 

H HIGHZ 

Figure 17. Data Bus Output Enable Function. 

Instruction Decoder 

The Instruction Decoder generates required internal control sIg­
nals as a function of the INSTRUCTION inputs, 10-13 Control 
Register bits 0 and 1, and the INSTRUCTION ENABLE input, IE. 

Clock 

The clock input, CP, is used to clock the Address Register, 
Address Counter, Word Count Register, Word Counter, and 
Control Register, all on the LOW to HIGH transition of the CP 
signal. 

Am2942 CONTROL MODES 

Control Mode 0 - Word Count Equals Zero Mode 

In this mode, the LOAD WORD COUNT instruction loads the 
word count into the Word Count Register and Word Counter. 
When the Word Counter is enabled and the Word Counter 
Carry-in, WCI, is LOW, the Word Counter decrements on the 
LOW to HIGH transition of the CLOCK input, CPo Figure 16 
specifies when the DONE signal is generated in this mode. 

Control Mode 1 - Word Count Compare Mode 

In this mode the LOAD WORD COUNT instruction loads the word 
count into the Word Count Register and clears the Word Counter. 
When the Word Counter is enabled and the Word Counter 
Carry-in, WCI, is LOW, the Word Counter increments on the LOW 
to HIGH transition of the clock input, CPo Figure 16 specifies 
when the DONE signal is generated. 

Control Mode 2 - Address Compare Mode 

In this mode, only an initial and final memory address need to be 
specified. The initial Memory Address is loaded into the Address 
Register and Address Counter and the final memory address is 
loaded into the Word Count Register and Word Counter. The 
Word Counter serves as a holding register for the final memory 
address. When the Address Counter is enabled and the ACI input 
is LOW, the Address Counter Increments or decrements (de­
pending on eontrol Register bit 2) on the LOW to HIGH transition 
of the CLOCK input, CPo The Transfer Complete Circuitry com­
pares the Address Counter with the Word Counter and generates 
the DONE signal during the last word transfer, i.e., when the 
Address Counter equals the Word Counter. 

Control Mode 3 - Word Counter Carry Out Mode 

For this mode of operation, the user can load the Word Count 
Register and Word Counter with the two's complement of the 
number of data words to be transferred. When the Word Counter 
is enabled and the WCI input is LOW, the Word Counter incre­
ments on the LOW to HIGH transition ofthe CLOCK input, CPo A 
Word Counter Carry Out signal, WCO, indicates the last data 
word is being transferred. The DONE signal IS not required in this 
mode and, therefore, is always LOW. 

Am2942 INSTRUCTIONS 

The Am2942 instruction set consists of sixteen instrucllOns. 
Eight are DMA instructions and are the same as the Am2940 
instructions. The remaining eight instructions are designed to 
facilitate the use of the Am2942 as a Programmable Timer! 
Counter. Figures 18 and 19 define the Am2942 Instructions. 

Instructions 0-7 are DMA instructions. The WRITE CONTROL 
REGISTER instruction writes DATA input 0 0-02 into the Control 
Register; DATA inputs D3-Dr are "don't care" inputs for this 
instruction. The READ CONTROL REGISTER instruction gates 
the Control Register to Data Multiplexer outputs Y 0-Y 2' Outputs 
Y3-Y7 are HIGH during thiS instruction. 

The Word Counter can be read uSing the READ WORD 
COUNTER instruction, which gates the Word Counter to Data 
Multiplexer outputs, YO-Y7• The LOAD WORD COUNT Instruc­
tion is Control Mode dependent. In Control Modes 0, 2 and 3, 
DATA inputs Do-Dr are written into both the Word Count Register 
and Word Counter. In Control Mode 1, DATA inputs 0 0-07 are 
written into the Word Count Register and the Word Counter is 
cleared. 

The READ ADDRESS COUNTER instruction gates the Address 
Counter to Data Multiplexer outputs, YO-Y7, and the LOAD AD­
DRESS instruction writes DATA inputs 0 0-07 into both the Ad­
dress Register and Address Counter. 

In Control Modes 0, 1, and 3, the ENABLE COUNTERS instruc­
tion enables both the Address and Word Counters; in Control 
Mode 2, the Address Counter is enabled and the Word Counter 
holds its contents. When enabled and the carry input is active, the 
counters increment on the LOW to HIGH transition of the CLOCK 
input, CPo Thus, with this instruction applied, counting can be 
controlled by the carry inputs. 

The REINITIALIZE COUNTERS instruction also is Control Mode 
dependent. In Control Modes 0, 2, and 3, the contents of the 
Address Register and Word Count Register are transferred to the 
respective Address Counter and Word Counter; in Control Mode 
1, the content of the Address Register is transferred to the Ad­
dress Counter and the Word Counter is cleared. The 
REINITIALIZE COUNTERS instruction allows a data transfer 
operation to be repeated without reloading the address and word 
count from the DATA lines. 
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HEX 
l; 13 12 I, 10 CODE 

0 0 0 0 0 0 WRITE CONTROL REGISTER 
0 0 0 0 1 1 READ CONTROL REGISTER z 
0 0 0 1 0 2 READ WORD COUNTER III 

-i 
0 0 0 1 1 3 READ ADDRESS COUNTER ::U c 
0 0 1 0 0 4 REINITIALIZE COUNTERS C:;.: 

~» 0 0 1 0 1 5 LOAD ADDRESS 0 
0 0 1 1 0 6 LOAD WORD COUNT z 
0 0 1 1 1 7 ENABLE COUNTERS III 

1 0 X X X 0-7 INSTRUCTION DISABLE 

0 1 0 0 0 8 WRITE CONTROL REGISTER, TIC 
0 1 0 0 1 9 REINITIALIZE ADDRESS COUNTER z:::! 
0 1 0 1 0 A READ WORD COUNTER, TIC III I: 

-i m 
0 1 0 1 1 B READ ADDRESS COUNTER, TIC ::u~ 

c:o 
0 1 1 0 0 C REINITIALIZE ADDRESS & WORD COUNTERS 00 
0 1 1 0 1 D LOAD ADDRESS, TIC :::!i 

~nl 0 1 1 1 a E LOAD WORD COUNT, TIC 
0 1 1 1 1 F REINITIALIZE WORD COUNTER 1Il::u 
1 1 X X X 8-F INSTRUCTION DISABLE, TIC 

o = LOW 1 = HIGH X = DON'T CARE 

Notes, 1 When 13 IS tied LOW, the Am2942 acts as a DMA CircUit. When 13 IS tied HIGH, the Am2942 acts 
as a Tlmer/Counter CircUit 

2, Am2942 instructions 0 through 7 are the same as Am2940 Instructions, 

Figure 18_ Am2942 Instructions 

When ~ is HIGH, Instruction inputs, 10-12, are disabled, If 13 is 
LOW, the function performed is identical to that of the 
ENABLE COUNTERS instruction, Thus, counting can be con­
trolled by the carry inputs with the ENABLE COUNTERS instruc­
tion applied or with Instruction Inputs 10-12 disabled, 

Instructions 8-F facilitate the use of the Am2942 as a Pro­
grammable TImer/Counter_ They differ from instructions 0-7 in 
that they provide independent control of the Address Counter, 
Word Counter and Control Register_ 

The WRITE CONTROL REGISTER, TIC instruction writes DATA 
input 0 0-02 into the Control Register_ DATA inputs 0 3-07 are 
"don't care" inputs for this instruction_ The Address and Word 
Counters are enabled, and the Control Register contents appear 
at the Data Multiplexer output. 

The REINITIALIZE ADDRESS COUNTER instruction allows the 
independent reinitialization of the Address Counter_ The Word 
Counter is enabled and the contents of the Address Counter 
appear at the Data Multiplexer output. 

The Word Counter can be read, using the READ WORD 
COUNTER, T/C instruction_ Both counters are enabled when this 
instruction is executed_ 

When the READ ADDRESS COUNTER, T/C instruction is exe­
cuted, both counters are enabled and the address counter con­
tents appear at the Data Multiplexer output. 

The REINITIALIZE ADDRESS and WORD COUNTERS instruc­
tion provides the capability to reinitialize both counters at the 
same time_ The Address Counter contents appear at the Data 
Multiplexer output. 

DATA inputs 0 0-07 are loaded into both the Address Register 
and Counter when the LOAD ADDRESS, T/C instruction is exe­
cuted_ The Word Counter is enabled and its contents appear at 
the Data Multiplexer output_ 

The LOAD WORD COUNT, T/C instruction is identical to the 
LOAD WORD COUNT instruction with the exception that Ad­
dress Counter is enabled_ 

The Word Counter can be independently reinitialized using the 
REINITIALIZE WORD COUNTER instruction_ The Address 
Counter is enabled and the Word Counter contents appear at the 
Data Multiplexer output. 

When the ~ input is HIGH, Instruction inputs, 10 -12, are disabled_ 
The function performed when 13 is HIGH is identical to that per­
formed when 13 is LOW, with the exception thatthe Word Counter 
contents appear at the Data Multiplexer output. 

EXAMPLE DESIGNS 

Figure 20 shows an Am2942 used as two independent, pro­
grammable eight-bit timer/counters_ In this example, an 
Am2910 Microprogram Sequencer provides an address to 
Am29775 512 x 8 Registered PROMs_ The on-chip PROM out­
put register is used as the Microinstruction Register_ 

The Am2942 Instruction input, 13 is tied HIGH to select the eight 
Timer/Counter instructions_ The i;, 10-12, and OEo inputs are 
provided by the microinstruction, and the 0 0-07 data lines are 
connected to a common Data Bus_ GATE WC and GATE AC are 
separate enable controls for the respective Word Counter and 
Address Counter_ The DONE, ACO and WCO output signals 
indicate that a pre-programmed time or count has been reached_ 



131211 10 Control 
I;; (Hex) Function Mnemonic Mode 

L ° 
WRITE CONTROL 

WRCR 0,1,2,3 
REGISTER 

L 1 
READ CONTROL 

RDCR 0,1,2,3 
REGISTER 

L 2 
READ WORD 

COUNTER 
RDWC 0,1,2,3 

READ ADDRESS 
RDAC L ~ 

COU"ITER 
0,1,2,3 

REINITIALIZE 0,2,3 
L 4 REIN 

COUNTERS 1 

L 5 
LOAD 

ADDRESS 
LOAD 0,1,2,3 

LOAD WORD 0,2,3 
L 6 

COUNT 
LDWC 

1 

ENABLE 0,1,3 
L 7 ENCT 

COUNTERS 2 

INSTRUCTION 0, 1,3 
H 0-7 -

DISABLE 2 

L 8 
WRITE CONTROL 

WCRT 0, 1,2,3 
REGISTER, TIC 

L 9 
REIN ITIALIZE 

ADR COUNTER 
REAC 0,1,2,3 

L A 
READ WORD 

RWCT 0,1,2,3 
COUNTER, TC 

B 
READ ADDRESS 

RACT L 
COUNTER, TIC 

0,1,2,3 

REINITlALIZE 0,2,3 
L C ADDRESS AND RAWC 

WORD COUNTERS 1 

0 
LOAD 

LDAT 0,1,2,3 L 
ADDRESS, TIC 

LOAD WORD 0,2,3 
L E 

COUNT, TIC 
LWCT 

1 

REINITIALIZE 0,2,3 
L F 

WORD COUNTER 
REWC 

1 

INSTRUCTION 0,1,3 
H 8-F 

DISABLE, TIC 
-

2 

WR ~ WORD REGISTER 
WC ~ WORD COUNTER 
AR ~ ADDRESS REGISTER 

AC ~ ADDRESS COUNTER 
CR ~ CONTROL REGISTER 
o ~ DATA 

Word Word Adr. 
Reg. Counter Reg. 

HOLD HOLD HOLD 

HOLD HOLD HOLD 

HOLD HOLD HOLD 

HOLD HOLD HOLD 

HOLD WR--+WC HOLD 

HOLD ZERO--+WC HOLD 

HOLD HOLD o -AR 

D-+WR D--+WC HOLD 

D-+WR ZERO--+WC HOLD 

HOLD ENABLE HOLD 

HOLD HOLD HOLD 

HOLD ENABLE HOLD 

HOLD HOLD HOLD 

HOLD ENABLE HOLD 

HOLD ENABLE HOLD 

HOLD ENABLE HOLD 

HOLD ENABLE HOLD 

HOLD WR--+WC HOLD 

HOLD ZERO--+WC HOLD 

HOLD ENABLE D-+AR 

D--+WR D--+WC HOLD 

D-+WR ZERO--+WC HOLD 

HOLD WR--+WC HOLD 

HOLD ZERO --+WC HOLD 

HOLD ENABLE HOLD 

HOLD HOLD HOLD 

Figure 19. Am2942 Function Table. 
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Data 
Adr. Control Multiplexer 

Counter Reg. Output 

HOLD 00-2 --+ CR 
FORCED 

HIGH 

HOLD HOLD 
CONTROL 

REG 

HOLD HOLD 
WORD 

COUNTER 

HOLD HOLD 
ADR 

COUNTER 

AR-AC HOLD ADR CNTR 

AR--+AC HOLD ADR CNTR 

D-+AC HOLD 
WORD 

COUNTER 

HOLD HOLD FORCED HIGH 

HOLD HOLD FORCED HIGH 

ENABLE HOLD ADR CNTR 

ENABLE HOLD ADR CNTR 

ENABLE HOLD ADR CNTR 

ENABLE HOLD ADR CNTR 

ENABLE 00_2 --+ CR 
CONTROL 

REG 

AR--+AC HOLD 
ADR 

COUNTER 

ENABLE HOLD 
WORD 

COUNTER 

ENABLE HOLD 
ADR 

COUNTER 

AR-+AC HOLD ADR CNTR 

AR--+AC HOLD ADR CNTR 

o -+AC HOLD 
WORD 

COUNTER 

ENABLE HOLD FORCED HIGH 

ENABLE HOLD FORCED HIGH 

ENABLE HOLD WD CNTR 

ENABLE HOLD WD CNTR 

ENABLE HOLD WD CNTR 

ENABLE HOLD WD CNTR 
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DONE 
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Figure 20. Two 8-Bit Programmable Counters/Timers in a 22-Pin Package. 

Figure 21 shows an Am2942 used as a single 16-bit, pro· 
grammable timer/counter. In this example, the Word Counter 
~-out, WCD, is connected to the Address Counter carry-in, 
ACI, to form a single 16-bit counter which is enabled by the 
GATE signal. 

OTHER 
TEST 
INPUTS 

MUX I-------l co 

OTHER 

.-----Iwco 

L--------------------~---~ACO 

Figure 22 shows two Am2942s cascaded to form a 32-bit pro­
grammable timer/counter. The two Word Counters form the low 
order 16 bits, and the two Address Counters form the high 
order bits. This allows the timer/counter to be loaded and read 
16 bits at a time. 

Am2910 
MICROPROGRAM SEQUENCER 

Am29775 
REGISTERED PROMS 

CP 

MICROINSTRUCTION REG CP 

1---........ - CLOCK 

Am2942 WCI 1----- GATE 

Aai----.., 
DONE 

L--------------------t--------------------~~~--+5V 

MPR-235 

Figure 21. 16-Bit Programmable CounterlTimer Using a Single Am2942. 
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Figure 22. 32-Bit Programmable Counter/TImer Using Two Am2942s. 

In Figure 23, two Am2942s are shown cascaded to form dual 
16-bIt counters/timers. GATE WC and GATE AC are separate 
enable controls for the respective Word Counter and Address 
Counter. Using the 16-bit Data Bus, each 160bit counter can be 
loaded or read in parallel. 
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Figure 24 shows two Am2942s used as DMA address Generators 
on a common DATNADDRESS bus_ The common bus allows the 
use of the Am2942 multiplexed data and address pins, Do'Or. The 
Am2942 is in a 22 pin package whereas the Am2940, which has 
separate address and data pins, requires a 28 pin package_ 
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Figure 23. Dual 16-Bit Programmable Counters/Timers. 
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Figure 24. Am2942s Used as DMA Address Generator on Common Bus. 

In this example the Am2942 Address Counter, Word Counter 
and Control Register are loaded and read directly from the 
CPU via the OATNAOORESS bus. Since the bus carries ad­
dresses as well as data, the 0 0-07 pins can be used also to 
enable the address onto the bus. 

Four bits in the Microinstruction Register provide the Am2942 
Instruction Inputs, 10-12 and the Instruction Enable input iE. The 
14 input is tied LOW, selecting the eight OMA instructions. The 

microprogram clock is used to clock the Am2942s, and when 
the ENABLE COUNTERS instruction is applied or the instruc­
tion is disabled (iE = HIGH), address and word counting is 
controlled by the CNT bit of the Microinstruction Register. 

I 

Interface control circuitry generates bus control signals and en­
ables the Am2942 address onto the bus at the appropriate. The 
open-collector DONE outputs are dot-anded and used as a test 
input to the microprogram sequencer. 
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INTRODUCTION 

Modern digilal systems are becoming faster and Increasingly 
complex. As a result, more IS being demanded of digital design 
engineers. Fortunately, there is a design technique that can 
greatly simplify the design process. It can also lead to cleaner, 
more efficient, more reliable finished devices. This technique is 
called MICROPROGRAMMING. Do not be confused by this 
word; it has nothing whatever to do with machine level language 
or programming a microprocessor. Microprogramming is Inher­
ently more powerful than programming in a processor's Instruc­
tion set for many reasons, not the least of which IS the access to 
the entire functional resources of the hardware on a machine 
cycle by machine cycle basis. An excellent treatment of micro­
programming and microprogrammed machines is available from 
AMD in previous application notes. Perhaps the easiest to com­
prehend introduction to thiS subject is in AM D's Microprogram­
ming Handbook. This is highly recommended reading for any 
newcomer to thiS area of digital design. 

Though microprogramming has always been an inherently more 
powerful deSign technique since its invention In 1955, it has been 
little used until recently (1976), and with some jusllfication. The 
reason is quite Simple. The very large majority of IC's available 
until the 1976-1978 time frame were specifically designed to be 
used with 'random logiC' deSign techniques. Since these random 
logiC IC's were poorly SUited to the highly structured nature of well 
deSigned microprogrammed systems, the potential advantages 
of microprogrammed systems could not be realized easily. 

Fortunately for all of us, in the mid 1970's AMD made a Significant 
deCISion to develop a very extensive family of Schottky technol­
ogy IC's specifically optimized for use in microprogrammed sys­
tems. These circuits belong to the Am2900 family as well as the 
Am25S, Am26S, Am27S, and Am25LS families. The acceptance 
has been so great that many of the other large IC manufacturers 
are now second sourcing many of these parts and Introducing 
others. So, in just three to four years, microprogrammed machine 
deSign has come of age. Now, for most any job of medium to very 
high complexity, a microprogrammed system is the only way to go 
If a microprocessor Isn't fast or versatile enough. 

The purpose of this application note is to illustrate the use of 
microprogramming and 'bit-slice' technology in a high perfor­
mance 16-bit time-sharing CPU.This application note is unique in 
that the CPU being described IS the heart of a new commercially 
available minicomputer system. Thus, it IS possible to examine 
the nature of the CPU as It relates to a complete basic minicom­
puter system. For this reason, a very short section follows that 
describes the basic system elements and the system goals to­
ward which the CPU was designed. 

The product deSCribed herein is called the "HEX-29" CPU. Infor­
mation on the AMD devices embodied In this application note 
should be directed to AMD via your local AMD representatives. 
InqUiries about the HEX-29 CPU and minicomputer system for 
OEM and/or end user applications should be directed to: 

HEX-29 
. Digital Microsystems, Inc. 
4448 Piedmont 
Oakland, CA 94661 
(415) 658-8532 

SYSTEM DESIGN GOALS 

In any significant project it is mandatory that reasonable, coher­
ent system design goals be spelled out before serious work is 
begun. This can be a surprisingly short list of general specifica-

tlons, but a well thought out system philosophy can make all the 
difference. Most Important, everyone Involved should have a 
copy so everyone will be pulling in the same direction. 

The following list represents the system deSign goals for the 
HEX-29 CPU and system. 

1. Compact, reliable, easy to use. 
2. Multi-user, mUlti-task, timesharing. 
3. Fast, code-effiCient high level language processing. 
4. Low cost for complete system. 
5. Intelligent microprogrammed channel controllers for high 

speed I/O 

Indeed, thiS seems like a short list, but It IS the list from which the 
more detailed speciflcallOns were developed. For example, in 
order to be compact, SWitching power supply technology IS em­
ployed. Reliability evolves from many factors Including burn In 
and testing cycles. Probably the Single largest cause of 'flaklness' 
In digital systems IS insufficient COOling. An oversize fan moves 
about five times the volume of air past the IC's as IS nonmally 
recommended. ThiS large, slower speed fan has the additional 
advantage that the lower frequency 'white nOise' It generates is 
far less annoYing than the 'whine' from smaller high speed fans. 

So, It IS easy to see that many of the more speCific details of 
system deSign Will fall readily out of these overall design goals. 
The features of the final HEX-29 system are shown below. It 
should be instructive to trace each of these features to one (or 
more) olthe design goals listed above. Reviewing this list will also 
prepare the context for the more detailed sections to follow in later 
sections. 

HEX-29 FEATURES 

VERY FAST 
-160ns baSIC machine cycle 
-Only two machine cycles for many Instructions 
-Microprogrammed clock for Increased through-put 

COMPLETE SET OF DATA TYPES 
-Bit operations 
-Nibble operations 
- Byte operations 
-Word operations 
-Double word operations 
-Quad word operations 
- Variable field operations 

EXTENSIVE REGISTER SET 
-16 general purpose/defined purpose registers 
-16 memory management registers 
- Extended function condillOn code register 
-4 Interrupt control/status registers 

MICROPROGRAMMED 
-Expandable instruction set (on board) 
- Writable/fixed control store capability 
-Integral fixed/floating point processor 
-Highly structured, comprehendible, modular deSign 

SOPHISTICATED MEMORY MANAGEMENT 
-Multi-user and multi-task timesharing structure 
-Complete intertask protection and security 
-Megabyte addressing space (expandable) 
-Software protectable pages for shared re-entrant coding 
-Dual mode operating capability 

MULTIPLE STACK PROCESSOR 
-Sophisticated program linkage through defined control stack 

pointer 
-Multiple, general register, data stack processing 
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SOPHISTICATED INTERRUPT STRUCTURE 
-8 level maskable vectored priontized hardware interrupts 
-Second level pnontized expansion on each hardware level 
-256 levels of program controlled software Interrupts 
-Invalid memory access trap is a vectored interrupt 
- Non-existent instruction trap is a vector Interrupt 
- Breakpoint instruction is a special vectored interrupt 
-Automatic mode switching on all interrupts 

HIGH THRU-PUT DMNREFRESH CONTROL 
-8 level prioritized DMA requests and acknowledges 
- Up to four Mega-byte/second DMA transfer rate without slowing 

program execution 
- Up to 12 Mega-byte/second DMA transfer rate 
-Integral transparent dynamic memory refresh control 

EXTENSIVE HIGH LEVEL INSTRUCTION SET 
- Multitude of data types handled 
- Enormous vanety of addreSSing modes 
-General register and defined register classes of instructions 
-Many very fast numenc and string macroinstructions 
-Integral 16 and 32-blt Integer and 64-blt floating pOint ADD, 

SUB, MUL, DIV, CMP, NEG, etc 
-Advanced character, byte and word stnng processing 
- Microcoded high level language pnmltlves 

VERY HIGH QUALITY PHYSICAL DESIGN 
-Four layer P.C. cards throughout system (Internal GND and 

Vee) 
- All bus signals Interleaved with direct return ground path 
-All bus signals active low; three-state to Inactive level 

INTELLIGENT CHANNEL CONTROLLERS 
-Microprogrammed floppy disk and hard disk controllers 
-Services multiple users I/O Simultaneously and transparent to 

CPU program execution 
- Reduces executive program compleXity and speeds execution 

SOFTWARE SUPPORT 
-Multl-user/muill-task time shanng operating system Includes 

sophisticated file management features 
-Sophisticated reSident macro-assembler 
- Customized micro-assembler 
-Superfast, super extended BASIC Interpreter 
- True PASCAL compiler (not Interpreter) 
-Advanced editor and word processor package 
- More software coming 

It should be clear from thiS list that the HEX-29 minicomputer IS a 
powerful/sophisticated deSign ThiS IS DIRECTLY attnbutable to 
the availability of the excellent Schottky technology I.C.'s availa­
ble from AMD for use In microprogrammed digital systems. 

In a well deSigned microprogrammed system there should be 
VERY few random logiC gate packages reqUired. In the HEX-29 
CPU, there are only a few gates used as such. If anywhere near 
20';' of a microprogrammed system IS composed of gate pack­
ages, It IS probable that the deSign can be further Simplified to 
replace the random logiC With microcode and/or structured logiC 
techniques It IS Important to note that the more functIOns that are 
Implemented With structured logiC and controlled by microcode 
bitS, the more versatile and general IS the whole design 

MICROPROGRAMMED MACHINES 

It IS highly recommended that AMD's MICROPROGRAMMING 
HANDBOOK be studied before thiS application note If a detailed 
understanding of the HEX-29 CPU is desired. The idea IS, of 
course, that the basic principles of microprogrammed machines 
be familiar before thiS specific example is examined. The 
Am2900 Learning and EvaluatIOn Kit IS also recommended as a 
practical introduction tool. For those only interested in the capa­
bilities of a well designed microprogrammed CPU, that reading is 
not entirely necessary, and Section V of this Application note will 
be superfluous. Section IV is a more general discussion for these 
readers, but is also necessary for those going on to Section V. 

A short discussion of microprogrammed systems appears here 
only as a short refresher for those who have studied the MICRO­
PROGRAMMING HANDBOOK by John Mlck and Jim Bnck of 
AMD. 

A'hy microprogrammed machine can be divided into the following 
two discrete parts: 

1. Control store and microprogram control 
2. Data routing and function logiC 

These two sections of a microprogrammed machine are really 
quite nearly Independent. In effect, the control store and micro­
program control section is the 'boss and brains' olthe operation. It 
Issues all of the orders and makes all the deCisions. The data 
routing and function logic devices are merely puppets that carry 
out the commands selected by the microprogram control logic 
from the control store. Note that 'microword memory' and 'mi­
crocode' are used interchangeably with 'control store' and are 
synonomous. 

Control Store and Microprogram Control 

The control store IS simply a number of PROM's. The number of 
locations in thiS memory is chosen to be large enough to hold the 
desired number of microprogram routines. The width of the word 
IS chosen to have suffiCient bits to control all of the possible 
functions in the data routing and function logiC. Admittedly, RAM 
or EPROM could be used as the memory devices, but it is best to 

MICROPROGRAM 
ADDRESS BITS 
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IMICROADDRESSl ~ ADDRESS FROM MICROPROGRAM 
CONTROL LOGIC LINES 

(MICROPROGRAM SEQUENCER) DATA OUT 
BITS 

6~ 
MICROWOAD BITS TO DATA ROUTING 

MPR-666 AND fUNCTION LOGIC DEVICES 

Figure 1. 

think of it as an array of read only memory devices. So, schemati­
cally an example of a control store array looks like Figure 1. 

In practice, there is a register between the mlcroword data bits 
and the actual data routing and function control devices. This 
register assures that all bits change simultaneously at the begin­
ning of each new microinstruction cycle and allows the execution 
of one microinstruction with the fetching of the next. The addition 
of this 'pipeline register' is shown in the Figure 2 expansion of our 
block schematic 

The remaining part of thiS section IS the microprogram control 
Unit, more commonly called the microprogram sequencer. The 
microprogram sequencer is nothing more than a presettable bi-



nary counter with a few extra functions. Figure 3 shows this 
device in place. 

We show the sequencer as a 12-bit binary counter with a few 
other Inputs. The outputs (Y) drive the address lines of the control 
store PROMs. So, each time the system clock rises, the counters 
Increment and sequential addresses are accessed from the 
PROM Note that the current output of the control store IS cap­
tured In the pipeline register on this same LOW-to-HIGH transI­
tion. Thus, the sequencer is always fetching the NEXT control 
store word which Will control the fetching of the next, and so on 
and so on. 

Note that there are several bits from the pipeline register that are 
routed back to the sequencer. In our example, 12 bits are used as 
a mlcroword branch address and another bit IS used as a preset 
enable (load) line Normally, each cycle of the system clock 
Increments the sequencer outputs and the next mlcroword IS 
fetched from the control store. However, somewhere down the 
line we are gOing to want to branch to a microcode sequence that 
IS not 'In line' With the code that IS currently executing. It IS very 
easy to see how thiS IS done. 

The mlcroaddress of the routine to which we want to branch IS 
Imbedded in the current microword, 12 bits In our example. The 
mlcroword bit that IS connected to the load Input of the sequencer 
IS coded to be low on thiS cycle. So, the sequencer, which IS really 
Just a 12-blt counter With a unique load control In our example, 
Will cause the branch address we selected to pass through to the 
output of the counters and fetch the mlcroword from the mlcro­
address to which we branched. The routine Will now continue to 
execute sequentially addressed mlcrowords until we execute 
another branch code 

The only other really necessary function we need from our se­
quencer IS the ability to do conditIOnal branches. In other words, 
we want to be able to branch to some microcode routine, but only 
If a certain condition eXists. As usual, thiS capability IS easily 
added; only one multiplexer IS needed. Figure 4 shows the new 
configuration. 
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Figure 2. 

Now two additIOnal mlcroword bits control the conditions under 
which a mlcrobranch will take place. If Input 0 IS selected, a 
branch Will always take place since the logic LOW level on input 0 
Will appear at the load Input of the sequencer. Conversely, If Input 
3 IS selected, a HIGH logic level is always routed through the 
multiplexer to the load Input and a load IS not performed. Thus the 
next sequential microinstruction IS fetched. So far we can do 
branch and continue functions With the multiplexer. . 

If we select Inputs 1 or 2 on the condition select mUltiplexer, we 
may get one of two conditions. If the selected Input IS HIGH, It Will 
be routed to the load Input of the sequencer and no load Will take 
place. But If the selected condition IS at a LOW logiC level, the 
load Input of the sequencer IS pulled LOW, a load is performed, 
and a branch has been accomplished. Since a branch only occurs 
when the condition bit IS LOW, this function IS called a 'branch on 
condition = 0'. Clearly a 'branch on condition = l' can be Im­
plemented Simply by Inverting the condition bit before It enters the 
multiplexer. 

So as far as controlling the flow of microprograms goes, It IS clear 
that we can make It look very much like assembly language 
programming of a microcomputer. We can execute sequential 
microinstructions (In line code), branch conditionally, or branch 
unconditionally. If we use real live sequencers like the Am2909, 
Am291 0 or Am2911 Instead of binary counters we get several 
other very Important functions Including mlcro-subroutlnlng and 
looping 

When we substitute Am2909's, Am2910's or Am2911's as our 
sequencers, the final element of our complete microprogram 
memory and control section IS In place. Figure 5 shows thiS 
configuratIOn. 

The next address PROM of Figure 5 converts the microcode 
branch function bits Into one of two sets of bits that control the 
function performed by the Am2911's. Which of the two IS chosen 
depends upon the logiC level of the particular condition bit that IS 
selected. 

ThiS IS the baSIC structure of any microprogram control unit re­
gardless of what the rest of the system looks like The Width of the 
mlcroword data word, the mlcroaddress field, the conditIOn select 
field, etc, Will change as needed, but the structure remains the 
same. Note that some of the mlcroword data pitS are used to 
control the microprogram sequencing logiC. The bits left over are 
used to control the data routing and function logiC In the deVice, 
I.e., everything else I 

Data Routing and Function Logic 

The data routing and function logiC section of a micropro­
grammed machine closely reflects the lob the deVice IS to per­
form. In thiS respect there IS some Similarity With random logiC 
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designs. The key difference is the glue that binds all of the small 
functional units that make a device work. In a random logic design 
it is a more or less random array of gates and flip-flops that 
interconnect and control these functional units. 

The chief advantage of a microprogrammed machine is that this 
random logiC is largely replaced by the coherent sequences of 
control bits that is the microprogram. Problems such as race 
conditions, undeSirable interactions between functional elements 
and marginal timing nearly disappear in a microprogrammed 
design. Often there are one or two internal data buses on which all 
transfers of Internal data between functional umts take place. 

Think of several possible sources of information that may be 
needed in a particular design. If they are all three-statable de­
Vices, mlcroword bits could be tied to the output enable of each 
and the desired deVice enabled onto the internal bus on a micro· 
cycle by microcycle baSIS. Likewise one or more devices may 
capture this data. Microword bits attached to the clock pulse (CP) 
inputs of registers and the like can achieve this function. 

Further, mlcroword bits select other functions to be performed, for 
example an ALU or shift function. Much of Section V of this 
application note Will demonstrate the use of these data routing 
and function logic control bits. 



GENERAL SPECIFICATIONS 

The following section of this applicatIOn note explores the design 
of the HEX-29 CPU on an Intermediate level. It will be similar In 
detail to the detailed hardware and software specifications given 
for most microprocessors by the manufacturers. In other words, 
all the Information needed to use the HEX-29 CPU, including bus 
timing and Instruction set, are examined. This will serve to dem­
onstrate what can be achieved In a medium level micropro­
grammed machine. It will also serve as a necessary transition for 
those planning to study the more detailed Internal structure of the 
CPU In the next section of this applicatIOn note. 

It IS very Important, when deSigning a microprogrammed ma­
chine, that the target deVice be specified In detail approaching 
that given In this section. Only then can an Intelligent attempt at 
hardware deSign begin. It IS especially Important to define a 
clean, simple, reliable Interface between the microprogrammed 
deVice and other system elements. Considerable attention 
should also be paid to defining data types, InstructIOn formats, 
interrupt reqUirements, etc. 

Internal CPU Registers 

The HEX-29 CPU has 36 Internal registers. Of these, 16 are 
memory management (map) registers, 16 are general purpose 
registers, three are associated with the Interrupt structure, and 
one IS the conditIOn code register. 

Table 1 shows the functions associated with the 16 general pur­
pose registers of the HEX-29. It IS most Significant that all 16 
general purpose registers have alternate functions. This should 
not imply that they are not true general purpose registers how­
ever. Any register can be used as an accumulator, stack pOinter, 
Index register, memory pOinter, data counter, etc., In most in­
structions. To Increase coding efficiency and executIOn speed, 
however, some Instructions use the defined register assignments 
In Table 1. 

TABLE 1. 

Alternate Alternate 
Name Name Function 

RF PC Program Counter 
RE SP Stack POinter 
RD RD Data Passing 
RC y Y Index Register 
RB X X Index Register 
RA A Accumulator 
R9 CT Counter 
R8 SC Scratchpad 
R7 R7 FP1 (LSW) 
R6 R6 FP1 
R5 R5 FP1 (MSW) 
R4 R4 FP1 (EXP) 
R3 R3 FPO (LSW) DW1 
R2 R2 FPO DW1 
R1 R1 FPO (MSW) DWO 
RO RO FPO (EXP) DWO 

Notes FPl ~ Floating POint Register 1 
FPO ~ Floating POII'lt Register 0 
DWI ~ Double Word Register 1 
DWO ~ Double Word Register 0 

(LSW) 
(MSW) 
(LSW) 
(MSW) 

For example, the Instruction set of the HEX-29 CPU can load 
Immediate, push, pop, and move Indexed and direct any of the 
multiple register combinatIOns (FP1, FPO, DW1, DWO) In one 
InstructIOn. One mode of Indexed addreSSing and many byte 
processing Instructions benefit greatly from the alternate use of 
some registers. 

Condition Code Register 

The condition code register contains all zeros In ItS upper byte. 
The bit assignments In the low byte are shown In Table 2 

TABLE 2. CONDITION CODE REGISTER BITS. 

Position Name Function 

Bit 7 U2 User Flag #2 
Bit 6 U1 User Flag #1 
Bit 5 UO User Flag #0 
Bit 4 H Half Sign Flag (Bit 7, MSb of low byte) 
Bit 3 Z Zero Flag 
Bit 2 N Negallve Flag (MSb of result) 
Bit 1 V 2's Complement overflow flag 
Bit 0 C Carry Flag (arithmetic and shift carry) 

The user flags (U2, U1, UO) are an extra feature of the HEX-29 
CPU. They are not altered by any but five special flag modification 
Instructions (SETF, CLRF, COMF, POPF, LDF) These op codes 
set, clear, complement, pop, or load the flags respectively. Since 
the user flags are Immune to change except by these special 
purpose flag altering Instuctlons, they are excellent for passing 
status Information between routines 

The half sign flag (H) IS set If the result of an operation contains a 1 
in the most Significant bit of the low byte; otherwise It IS cleared. 
ThiS flag IS useful In many byte processing and loop counting 
routines 

If the result of an operation IS zero, the zero flag (Z) IS set, or else It 
IS cleared ThiS is the most useful of all the flags and IS used on 
comparisons, arithmetiC and logical operations, loop counting, 
etc ... 

When the most Significant bit of the result of an operation IS a logiC 
1, the negative flag (N) IS set. Otherwise It IS cleared. Note that In 
two's complement notation, the most Significant bit of a number 
determines the sign of the number If It IS a logiC 1, the number IS 
negative, if It IS a logiC 0, the number IS positive. 

If the two's complement result of an arithmetiC operation results In 
a two's complement overflow, the V flag IS set. ThiS flag IS also 
used as a general error flag by the HEX-29 CPU For example. the 
V flag IS set if a diVide by zero Instruction IS attempted. In floating 
point notation, If the exponent becomes too large or small, (arith­
metic overflow/underflow). the V flag IS set to so indicate. 

The carry flag (C) IS used for two purposes It IS a source and/or 
destination bit In shift and rotate Instructions, and as a carry-out 
bit when an arithmetiC function result IS too large to fit In the 
appropriate destination register. The convention With regard to 
the carry flag on addition and subtractIOn follows 

C flag ~ 1 If 1. Binary add results In a carry out. 
2. Binary subtract results In no borrow. 

C flag ~ 0 If 1. Binary add results In no carry out. 
2 Binary subtract results In a borrow. 
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All of the conditIOn code flags, except the user flags, have some 
special meanings in some of the complex 'macro' instructions. 
These are descrrbed In the detailed section on the HEX-29 in­
struction set. 

Interrupt Registers 

There are three special purpose Interrupt registers in the HEX-29 
CPU. They are: 

1. Mask Register 
2. Status Register 
3. Vector Register 

These registers are command driven, that IS, the register selected 
IS a function of the interrupt command being executed. More 
detailed information on the nature ofthese registers appears later 
in this application note. 

Memory Management Registers 

A sophisticated memory management structure is embodied rn 
the HEX-29 CPU. Integral to this structure IS the set of 16 memory 
map registers. These a-bit registers contain transformation val­
ues that allow multiple users and tasks to share the processing 
time of the CPU without Interacting with each other. Each task 
logged onto the HEX-29 is unrque from all others through ItS 
memory map image. When It is chosen to run on the CPU, ItS 
memory map image becomes synonomous with the CPU mem­
ory map registers. More detailed Information on this aspect of the 
HEX-29 CPU appears later In this applrcation note. 

Instruction Formats 

The Instruction formats of the HEX-29 CPU are simple and few In 
number For this reason, the HEX-29 instruction set IS not difficult 
to learn and use, even though It IS very extensive and qUite 
sophisticated. 

EmphaSIS on the useof 4-blt (hexadeCimal), and a-bit (byte) fields 
In the instruction formats slmplrfy the organrzatlon of the Instruc­
tion set. All of the Instruction formats used In the HEX-29 are 
shown In Figure 6. 

FEDCBA9876543210 

I I I I II I I I I I I I I I I I 
--OPCODE--
--OPCODE--
--OPCODE--

'EF' 

I 
Rs I Ad 
R : H 

BYTE 
--OPCODE--

Rs = Source Register (operand, pOinter, Index reg, stack 
pointer, etc) 

Rd = Destination Register (operand, pOinter, stack pOinter, etc) 
H = 4-blt (hex) quantity 
Byte = a-bit byte (data. Index, offset, address, etc.) 

MPR-661 

Figure 6. Instruction Formats. 

Most Instructions Involve operations on 16-blt words. However, 
the HEX-29 Instruction set also Includes op-codes that operate on 
the follOWing data types 

1 1 Bit (Bit) 
2. 4 Bits (.Hex or Nibble) 
3 a Bits (Byte) 
4. 16 Bits (Word) 
5 32 Bits (Double Word) 
6 64 Bits (Quad Word' Floating POint) 
7. N Bits (Varrable Format) 

In addition to working on the fixed length data types, there are 
many 'macro' Instructions that operate on variable length 
character, byte, and word strrngs in memory. These strrngs can 
be either contiguous in memory or In the form of linked lists. 
Several of these 'macro' Instructions are highly optimized micro­
coding of the most crrtlcal routines used In high level language 
processing. 

The multlplrclty of data types processed effiCiently by the HEX-29 
Increases ItS abllrty to meet the diverse demands of modern 
computing 

Addressing Modes and Assembly Language 

Much of the power and slmplrclty of the HEX-29 Instruction set IS 
derrved from the large number of useful addressing modes avail­
able for the most used baSIC functions such as MOV, ADD, SUB, 
INC, DEC, CMP, etc. AddreSSing modes specify where operands 
of an Instruction are to be found and where the result IS to be 
stored. 

The 16 general purpose 16-bit registers are designated RO, Rl, 
R2 ... RC, RD, RE, RF. These are the primary names of the 16 
registers and refer directly to the corresponding registers. In other 
words, when 'RD' IS wrrtten In a HEX-29 Msembly Language 
(HAL) program, the contents of this register are used as an 
operand or destination in the instruction. 

The use of a register as a pOinter to memory IS called memory 
pornter addreSSing. The names MO, Ml, M2, ... MC, MD, ME, 
MF apply to the 16 general purpose registers when they are used 
as memory pOinters 

When a register pOints to a memory location which contains the 
address of the memory location holdrng the value of Interest, the 
register IS said to be an "Indrrect pOinter". The names 10, II, 
12, ... IC, ID, IE, IF are used to specify the 16 general purpose 
registers when they are berng used with this type of addreSSing. 

Indexed addreSSing IS possible using the names ZO, ZI , Z2, ... , 
ZC, ZD, ZE. The use of one ofthese names means thatthe data IS 
at the address formed by adding the contents of the register 
referenced to the contents of word follOWing the instruction in 
main memory 

Most often, when a register IS used as a memory pointer (MD for 
example), or as an indrrect pOinter (19 for example), It IS extremely 
desrrable that the register auto-Increment or perhaps auto­
decrement since programs, Irsts, and stacks are ordered In a 
positive drrectlon through memory. 

In HEX-29 Assembly Language (HAL) it IS qUite Simple to specify 
that a memory, ,ndrrect pOinter register, etc. IS auto-Incremented 
or auto-decremented by appending a '+' or '-' character to the 
respective register speCification. 

For example. 

MOV M7 +, R6 The contents of memory pOinted to by R7 IS 
moved Into R6. R7 IS then Incremented. 

MOV RA, ME - Decrement RE Then move the contents of RA 
into the memory location pOinted to by RE. 

It IS significant that auto-incrementing takes place after the oper­
ation while autO-decrementing takes place before the operation; 
(auto-post-Increment and auto-pre-decrement.) 



Several very fundamental addressing modes arise from auto­
incrementing memory and indirect pointers. Consider the follow­
ing examples: 

A. Program Counter (RF) as an auto-incrementing pointer yields 
'immediate addressing'. 
MOV MF+, RA = Move immediate into RA. 
ADD MF+, R6 = Add immediate to R6. 
MOV MF+, RF = Jump to address in Immediate word. 

B. Stack Pointer (RE) as an auto-incrementing pointer yields 
'stack addressing'. 
MOV ME +, R2 = Pop top of stack into R2. 
XOR ME+, Rl = Pop top of stack and XOR into Rl. 
MOV ME+, RF = Return from subroutine! 

C. General registers used as data stack pointers. 
ADD MD+, MD = Add top two members of data stack + 

leave result on top of the stack. 
CMP MD+, M8+ = Compare top members of two stacks + 

remove these values from the stacks. 
AND MF+, M6 = AND immediate word with the top mem­

ber of stack pointed to by R6. 

D. Program Counter (RF) as an auto-incrementing indirect 
pointer Yields 'direct addressing'. 
MOV IF+, R7 = Move direct into R7. 
ADD IF+, RC = Add direct into RC. 
MOV IF+, IF+ = Move direct to direct. 

It should be clear that these examples represent only a few of the 
most useful of many possible uses of autO-incrementing and 
auto-decrementing with memory and indirect pointers. Careful 
study of the HEX-29 instruction set will reveal many more uses 
not examined in these examples. 

Classes of Instructions 

The instruction set of the HEX-29 includes many different func­
tions and a multitude of addressing modes. Nonetheless, all 
instructions fall Into one of two classes of instructions. The gen­
eral register class of Instructions are extremely flexible because 
of the enormous number of variations Inherent in each op-code. 
The defined register class of instructions permits extremely fast 
and memory efficient code for often used functions and register 
sets. The power of the HEX-29 instruction set is derived from an 
extensive combination of the most powerful and efficient instruc­
tions from each class. 

General Register Instructions 

In a general register instruction, the function and addressing 
mode are specified in the op-code field (upper byte). The lower 
byte then holds two 4-bit (hex) values that specify the registers 
used in the instruction. It should be clear, therefore, that for every 
general register instruction there are 256 possible specific ac­
tions that can be performed. 

The full power of these instructIOns may not be evident without an 
example. A discussion of just 5 of the 256 possible variations on 
the MOV M+, R instruction will demonstrate the extreme flexi­
bility of each and every general register instruction. Execution of 
the MOV M+, R instruction proceeds as follows: 

1. Contents of Rs are moved to the address bus. 
2. Rs is auto-incremented by one. 
3. The data addressed by Rs is loaded into Rd. 

In this instruction, Rs is used as an auto-incrementing mem­
ory pOinter, hence the M+ notation. Rs and Rd are the source 
on destination registers. Below is the set of 5 examples of 
how the one op-code can be used to implement a number of 
important functions. 

1. MOVMF+,R3 
2. MOV MF+, RF 
3. MOV ME+, R6 
4. MOV MD+, R4 
5. MOV ME+, RF 

(W) = Load immediate word (W) into R3. 
(W) = Jump direct to address (W). 

= Pop top of control stack into R6. 
= Load next member of list Into R4. 
= Return from subroutine. 

Taking a few minutes to review this section and understand how 
all of these functions are achieved With the single MOV M+, R 
op-code should reveal the nature olthe power and flexibility olthe 
general register class of instructions. 

Defined Register Instructions 

A defined register instruction is an instruction whose function, 
addressing mode, and register assignments are all defined In the 
op-code field (upper byte). The low byte is then available for use 
as an offset for short relative branching instructions, an im­
mediate byte or character, an 8-bit index value, an 8-bit logical 
mask, etc. With this class of instructions, often only one word is 
required for the entire instruction. This speeds execution and 
improves coding efficiency markedly in most applications. It is for 
this class of instruction that the a~ernate register function as­
Signments appear in the model of the HEX-29 register set. An 
example of a one word defined register instruction With the two 
word instruction it can replace follows: 

ADC X, A 26 Defined Register Instruction 
ADC ZB, RA 0026 General Register Instruction 

Both of the instructions accomplish the same thing. In both cases 
RB (X index register) is used as an index register and RA (Ac­
cumulator) is the destinatIOn operand. The value in memory at the 
address pointed to by the sum olthe X index register (RB) plus the 
hex constant 26 IS added to the contents olthe Accumulator (RA) 
and the sum left in Accumulator (RA). 

The Significant difference between the two instructions is that the 
defined register instruction takes only half as much code (one 
word vs. two), and executes faster since there are fewer memory 
accesses and fewer machine cycles. Very often the defined reg­
ister instruction will be adequate for the job. But when the 
chOices of registers RB and RA are not acceptable or if an 8-bit 
index offset is not large enough, the general register instruction 
would be the proper choice. It allows any register pair to be 
specified as the Index register and destination/accumulator and 
has a 16-bit index offset in the word following the instruction. 

As mentioned earlier, it is largely the ability of mixing defined and 
general purpose instructions freely that makes programs written 
in HEX-29 Assembly Language very code effiCient and fast. 

HEX-29 Instruction Set 

The HEX-29 instruction set is quite extensive. It not only of­
fers all of the basic functions in a wide variety of addressing 
modes, it also includes a multitude of special purpose instruc­
tions. These special purpose instructions cover many impor­
tant aspects of programming including program control, 
numeric processing, string mampulation and searching, list 
processing, etc. 

Fortunately, all of these types of instructions fall Into one of 
only four different instruction formats. These were shown in 
Figure 6. Table 3 shows all of the instructions for the HEX-29 
machine. 
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TABLE 3. SUMMARY OF MNEMONICS ARITHMEnC OPERATIONS. 

ADC 
ADD 
ADDB 
ADDH 
DADD 
FADD 

SBB 
SUB 
SUBB 
SUBH 
RSUB 
DSUB 
FSUB 

UMUL 
SMUL 
DMUL 
FMUL 

UDIV 
SDIV 
DDIV 
FDIV 

CMP 
CMPB 
CMPBA 
CMPH 
CMPHN 
CMPHA 
DCMP 
FCMP 

NEG 
DNEG 
FNRM 
DTST 
FTST 

INC 
DEC 

Add words plus carry 
Add words w/o carry 
Add byte to word 
Add hex value (nibble) to word 
Add double word values (32 bits + 32 bits ..... 32 bits) 
Add floating point values (64-bit FP + 64-bit FP ..... 64-bit FP) 

Subtract with borrow 
Subtract w/o borrow 
Subtract byte from word 
Subtract hex value from word 
Subtract words in reverse order 
Subtract double word values (32 bits - 32 bits ..... 32 bits) 
Subtract floating point values (64-bit FP - 64-bit FP ..... 64-bit FP) 

Unsigned word multiply (16 bits • 16 bits ..... 32 bits) 
Signed word multiply (16 bits' 16 bits ..... 32 bits) 
Double word signed multiply (32 bits • 32 bits ..... 64 bits) 
Floating point multiply (64-bit FP • 64-bit FP ..... 64-bit FP) 

Unsigned word divide (16 bits + 16 bits ..... 16 bits + 16-bit remainder) 
Signed word divide (16 bits + 16 bits..... 16 bits + 16-bit remainder) 
Double word signed divide (32 bits + 32 bits ..... 32-bit + 32-bit remainder) 
Floating pOint divide (64-bit FP ~ 64-bit FP ..... 64-bit FP) 

Compare words 
Compare byte with word 
Compare byte with byte 
Compare positive hex value (nibble) with a word 
Compare negative hex value (nibble) with a word 
Compare hex value (nibble) with another nibble 
Compare signed double word values 
Compare floating pOint values 

Negate word (2's complement) 
Negate signed double word value 
Normalize floating point number 
Test signed double word value for zero + sign 
Test floating point value for zero + sign 

Increment word by one 
Decrement word by one 

Shifts Be Rotates 

ASR Arithmetic shift right 
ASL Arithmetic shift left 
CSL Count and shift left (until MSb=1) 
DSL Double word shift left 
DSR Double word shift right 
LSR Logical shift right 
RCL Rotate closed left 
ROL Rotate left (through carry flag) 
ROR Rotate right (through carry flag) 
VSL Variable shift left (0 to 15 places) 
VSR Variable shift right (0 to 15 places) 



TABLE 3. SUMMARY OF MNEMONICS ARITHMETIC OPERATIONS. (Cont.) 

Logical Operations 

AND 
ANDB 
lOR 
IORB 
XOR 
XORB 
COM 
CLR2 
BTS 
BTC 
BTl 
BTT 
CLRF 
SETF 
COMF 

Boolean AND words 
Boolean AND byte with word 
Boolean inclusive OR words 
Boolean inclusive OR byte with word 
Boolean exclusive OR words 
Boolean exclusive OR byte with word 
Complement word 
Clear the specified 2 registers 
Bit set 
Bit clear 
Bit invert 
Bit test 
Clear specified flags 
Set specified flags 
Complement specified flags 

Data Movement 

MVN 
MOV 
MVM 
MVB 
LDB 
STB 
MVH 
MVHN 
LDI2 
XCH 
DXCH 
FXCH 
XCHM 
DUP 
SWT 
JAM 
SWP 
PSH2 
POP2 
PSHF 
POPF 
PSH8 
POP8 
PSHD 
POPD 
LDINT 
RDINT 
RMM 
LMM 
FMM 
BMBF 
BMBR 
BMWF 
BMWR 

Move, no flags altered 
Move, update flags 
Move multiple words 
Move a byte 
Load a byte 
Store a byte 
Move a positive nibble 
Move a negative nibble 
Load immediate 2 registers 
Exchange contents of two registers 
Exchange contents of DW1 and DWO 
Exchange contents of FP1 and FPO 
Exchange top two members of any stack 
Duplicate top member of any stack 
'Switch'. Store register indexed and reload indexed 
Move any bit field from one word to another 
Swap high and low bytes in a word 
Push any two registers onto control stack 
Pop top two words on control stack into two registers 
Push flags (condition code register) onto control stack 
Pop top of control stack into condition code register 
Push 8 registers onto control stack 
Pop 8 registers from control stack 
Push R8, R9, RA. RB, RC, RD onto control stack 
Pop R8, R9, RA, RBRC, RD from control stack 
Load interrupt register 
Read interrupt register 
Read a memory map location 
Load a memory map location 
Fill memory map 
Block move bytes forward in memory 
Block move bytes reverse in memory 
Block move words forward in memory 
Block move words reverse in memory 

PROGRAM CONTROL 

EXR 
RTI 
BPT 
JFS 
JFC 
CFS 
CFC 
JIFS 
JIFC 
CIFS 
CIFC 
RTFS 
RTFC 
JMP 
CALL 
CEX 
BGT 
BGE 
BLT 
BLE 

*TTWB 
*TTBB 
DBNZ 
BZD 

*CBB 
BR 
BSR 
BC 
BNC 
BV 
BNV 
BN 
BNN 
BZ 
BNZ 
BH 
BNH 

Execute contents of register as an instruction 
Return from interrupt 
Breakpoint trap 
Jump if specified flags are set 
Jump if specified flags are clear 
Call subroutine if specified flags are set 
Call subroutine if specified flags are clear 
Jump Indirect if specified flags are set 
Jump indirect if specified flags are clear 
Call subroutine if specified flags are set 
Call subroutine if specified flags are clear 
Return from subroutine if specified flags are set 
Return from subtoutine if specified flags are clear 
Jump to the address specified 
Call subroutine 
Call executive (software interrupt) 
Branch If greater than 
Branch if greater than or equal 
Branch if less than 
Branch if less than or equal 
TransitIOn table word branch 
Transition table byte branch 
Decrement and Branch Non-Zero 
Branch on zero or decrement 
Compare and branch if in bounds 
Branch 
Branch to subroutine 
Branch if carry flag set 
Branch if carry flag not set 
Branch if overflow flag set 
Branch if overflow flag not set 
Branch If negative flag set 
Branch if negative flag not set 
Branch if zero flag set 
Branch if zero flag not set 
Branch if half sign flag set 
Branch If half sign flag not set 

Miscellaneous Instructions 

NOP 
*SCNB 
*SCNW 
*SEAF 
*SEAL 

No operallon for 2 to 256 cycles 
Scan for match with specified byte 
Scan for match With specified word 
Basic fixed entry length list search 
Basic variable entry length linked list search 

*These 'macro' instructions are examined In more detail on the follOWing pages, 
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SUMMARY OF SELECTED 'MACRO' INSTRUCTIONS 

UMUL Unsigned 16-bit multiply 
16 bits 16 bits ..... 32-bit answer 
R3 R2 ..... R3 (MSW of answer) 

..... R2 (LSWof answer) 

..... Rl (LSW of answer) 

..... RO (MSW of answer) 

If V=l then RO is oot zero (Answer is longer than 16 bits) 
If N= 1 then MSb of RO = 1. (No particular significance) 
If Z=l then answer is zero (Rl and RO are cleared) 

SMUL Signed 16-bit multiply (Two's complement notation) 
16 bits 16 bits ..... 32-bit answer 
R3 R2 ..... R3 (MSW of answer) 

..... R2 (LSW of answer) 

..... Rl (LSW of answer) 

..... RO (MSW of answer) 
If V=l then answer is longer than 16 bits (overflowed LSW) 
If N = 1 then answer is negative 
If Z= 1 then answer is zero (Rl and RO are cleared) 

UDIV Unsigned 16-bit divide 
16 bits / 16 bits ..... 16-bit answer and 16-bit remainder 
R3 / R2 ..... R2 R3 holds remainder 
If V = 1 then an attempt to divide by zero was refused 
If N=l then MSB of answer = 1 
If Z= 1 then answer is zero (R2 = 0 R3 need not be zero) 

SDIV Signed 16-bit divide (Two's complement notation) 
16 bits / 16 bits ..... 16-bit answer and 16-bit remainder 
R3 / R2 ..... R2 R3 holds remainder 
If V=l then an attempt to divide by zero was refused, or overflow 
If N= 1 then the answer is negative 
If Z=l then the answer is zero (R2 = 0 R3 need not be zero 
R3 has sign of numerator 

DADD Double word signed add 
32 bits + 32 bits -+ 32 bits 
DWl + DWO ..... DWO ie. R3,R2 + Rl,RO ..... Rl,RO 
The C flag is treated the same as in Rngle word addition 
If V = 1 then a two's complement overflow occurred 
If N = 1 then the answer is negative 
If Z=l then the answer is zero 

DSUB Double word signed subtract (Two's complement notation) 
32 bits - 32 bits ..... 32 bits 
DWl - DWO ..... DWO ie. R3,R2 - Rl ,RO -+ Rl,RO 
The C flag is treated the same as in single word subtract 
IF V=l then a two's complement overflow occurred 
If N = 1 then the answer is negative 
If Z=l then the answer is zero 
If one divides "8000" by "FFFF" (-3276B + -1) the answer is "BOOO" (+32768). However, 8000 is a negative 
number in two's complement, so an overflow has occurred 

DMUL Double word signed multiply 
32 bits = 32 bits ..... 64 bits 
DWl DWO ..... DWO,DWl ie. R3,R2 Rl,RO ..... Rl,RO,R3,R 
NOTE: The order of the answer words is as follows: 

MSW ..... R2 
MSW-l ..... R3 
MSW - 2..... RO 
MSW - 3 ..... Rl (LSW) 



SUMMARY OF SELECTED 'MACRO' INSTRUCTIONS (Cont.) 

The reason for this seemingly unnecessary odd order concerns the results that are desired In DWO (RO,Rl) at the end 
of the operation. The desired result of 32-bit math operations are nearly always 32-bit answers. However, a 32-
bit .. 32-bit multiply can generate up to 64 bits. Therefore, the least significant 32 bits of the answer are stored In 

DWO where the answer is expected on all double word (DW) instructions The most slgmflcant 32 bits must be stored 
in DW1, therefore the seemingly reversed order of storage. If the V flag = 0 at the completion of an operation, then 
only the 32 bits In DWO are significant and the user program can store this 32-bit double word without fear of losing 
slgmflcant bits. So, in the normal situation where only the least significant 32 bits of the answer is desired and the 
more slgmflcant 32 bits of the answer does not contain sigmflcant bits, the answer is where the normal convention 
specifies, In DWO If the V flag IS found set and It IS desirable to save the 64-bIt result rather than go to an error 
routine, a simple DXCH Will exchange the contents of DWI and DWO and leave the 64-bIt answer in a logical order 
with the MSW in RO and the LSW In R3. It can then be buffered with any of the floating pOint register 0 buffer 
instructions. If V=1 then the answer has greater than 32 bits of sigmficance. 
If N = 1 then the answer IS negative 
If Z= 1 then the answer is zero 

DOIV Double word signed divide (Two's complement notation) 
32 bits / 32 bits ..... 32-blt answer and 32-bit remainder 
DWI / DWO ..... DWO Remainder ..... DWI 
If V=1 then attempted divide by zero was refused, or overflow 
If N = 1 then answer is negative 
If Z=1 then answer is zero (DWO = O. DWI not tested) 

DCMP Double word compare (Two's complement notation) 
32 bits - 32 bits ..... Nowhere (Update V,N,Z flags) 
DWI - DWO ..... Nowhere 
The C flag is treated the same as in a single word compare 
If V=1 then a two's complement overflow occurred 
If N = 1 then the difference IS a negative value 
If Z= 1 then the difference is zero 

DXCH Double word exchange 
Operates on any contents of DWI and DWO 
DWI ..... TEMP DWO ..... OWl TEMP ..... DWO 
DWI = R3 and R2 
DWO = Rl and RO 
No flags are altered 

DNEG Double word negate (Two's complement notation) 
0000 0000 - 32 bits ..... 32 bits 
0000 0000 - OWO ..... DWO 
If V=1 then a two's complement overflow occurred OWO = 8 0000 0000 
If N = 1 then the final value in DWO IS negative 
If Z= 1 then the final value In DWO is zero 

TST DWO Double word test value (Two's complement notation) 
Set flags based upon the contents of DWO 
00000000 + OWO ..... Nowhere (Update V,N,Z) 
If V=1 then a valid 2's complement value overflows the LSW 
If N = 1 then the value in DWO IS negative 
If Z= 1 then the value in DWO IS zero 

FPADD Floating point add Double Precision (64 bits) 
Standard HEX-29 floating point format 

FPSUB 

FPl + FPO ..... FPO 
If V=1 then an overflow in the 2's complement exponent occurred 
If N = t then the answer is negative 
If Z=1 then the answer is zero 

Floating point subtract Double Precision (64 bits) 
Standard HEX-29 floating point format 
FPl - FPO ..... FPO 
If V=1 then an overflow in the 2's complement exponent occurred 
If N = 1 then the answer is negative 
If Z=1 then the answer is zero 
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FPMUL 

SUMMARY OF SELECTED 'MACRO' INSTRUCTIONS (Cont.) 

Floating point multiply Double Precision (64 bits) 
Standard HEX-29 floating point format 
FPI FPO .... FPO 
If V=I then an overflow In the 2's complement exponent occurred 
If N = I then the answer is negative 
If Z= I then the answer is zero 

FPDIV Floating point divide Double Precision (64 bits) 
Standard HEX-29 floating pOint format 

FPCMP 

FPI I FPO .... FPO 
If V=I then an overflow in the 2's complement exponent occurred or negative zero refused. 
If N=I then the answer IS negative 
If Z= I then the answer is zero 

Floating pOint compare Double Precision (64 bits) 
Standard HEX-29 floating point format 
Compare the magnitudes of FPI and FPO 
If N XOR V = I, then FPI < FPO 
If Z= I then FPI = FPO 

NOTE: WE HAVE TO FURTHER DEFINE THE WAY THIS WORKS, BUT THIS INSTRUCTION WILL SET THE FLAGS 
SUCH THAT THE 2's COMPLEMENT BRANCH ON THE EF PAGE WILL WORK!!! 

FPNRM Floating point normalize Double Precision (64 bits) 
Standard HEX-29 floating point format 
The sign of the mantissa must be in the MSb of the exponent word before this Instruction IS executed 
Shift mantissa left and increment exponent until MSb of the MSW of the mantissa is one. (Operates on FPO only) 
If V=I there was a 2's complement overflow of the exponent 
The C flag is trashed 
N=I result is negative 
Z= I result is zero 

FPXCH Floating point exchange Double Precision (64 bits) 
Operates on any contents of FPI & FPO (R7 thru RO) 
FPI .... TEMP FPO .... FPI TEMP .... FPO 
FPI = R7, R6, R5, R4 
FPO = R3, R2, RI, RO 
No flags are altered 

TST FPO Floating point test Double Precision (64 bit) 
Standard HEX-29 floating point format 
Set the flags based upon the contents of FPO 
If N = I then the value in FPO is negative 
If Z= I then the value in FPO is zero 

SEAL BASIC string variable I numeric or string matrix element search 
The SEAL instruction provides a very flexible way to rapidly and efficiently search linked lists for a particular entry. 
In each entry in the list, the first two 16-bit words are ordered as follows: The first word of each entry is the link 
offset to the next entry in the linked list. The second word is the entry name word. Any 16-bit value can be used in 
this field. 

The name of the entry to be searched for must be put in the accumulator (RA) before this instruction is executed. The 
format of the instruction is as follows: 

SEAL F,Md where F is the literal binary value 1111. 

The destination field of the instruction (Md) specifies the register that must point to the beginning of the linked list. 
Starting at.this point, this instruction will link Its way thru the list looking for a match between the word after the link 
offset word (the entry name) and the contents of the accumulator (RA). 

At the completion of the instruction, the Z flag indicates the results of the instruction in the following manner: 

Z = I No match was found in list (End of list reached) 
Z =0 A match was found and Md is pointing to the word after the entry name that matched the accumulator 



SUMMARY OF SELECTED 'MACRO' INSTRUCTIONS (Cont.) 

Since the link offset word is a two's complement value, it can link to any other location in memory. The link offset is 
equal to the difference between the address of the next link offset word and the address of the current link offset 
word, minus one. 

Note that this instruction can be used to search linked lists with entry names that are much longer than 16 bits with 
ease. For example, If the entry names to be matched are 2 words long, all that need be done IS to compare the word 
at which the pOinter is aimed with the second word of the desired variable name. If it matches, then the pOinter now 
points to the first element in the list after the double word entry name. If it d'oes not match, the search can be 
continued by backing up the pointer to the link offset of the current entry and re-executmg the SEAL instruction. 

At the completion of the instruction. the contents of the register specified by the Md field in the instruction will 
contain the address of the word AFTER the variable name in the list entry that matched the one in the accumulator 
(RA). At the completion of the instruction the Z flag will indicate the results of the instruction execution. If the Z flag 
is at a zero level, the search was successful and the pOinter to the table (Md) contains the appropriate value. On the 
other hand, if the Z flag IS set to a one level, no match to the variable name in the accumulator was found anywhere 
in the linked list. 

LO VN da da... da da LO VN da... da da LO VN ... 

LO = Link Offset word 
VN = Variable Name word 
da = data entries irrelevant to instruction 

SEAF Basic fixed link offset variable search 

The SEAF instruction provides a very flexible way to rapidly and efficiently search lists for a particular entry. It IS 
slightly different from the SEAF instruction in that the link offset word is not imbedded in the list entries. Instead, this 
instruction assumes that all list entries are of the same length (even though the internal formats may vary). The value 
of the link offset is the immediate word following the BASF op code word. 

Perhaps the most obvious use of this instruction is for searching a numeric variable list for a specific variable name 
followed by the value. The lists entries can be any length, so single and double word integers and floating point lists 
can all be handled with equal ease, but not all with the same instruction since the list entries will not be the same 
length for all of these. 

The link offset word following the instruction IS a two's complement number. Therefore, any fixed length can be 
searched forwards or backwards in memory. The link offset constant equals the number of words in each list entry, 
or its 2's complement for a backwards search. 

Agam the variable name word to be searched for must be put into the accumulator (RA) before the BASF instruction 
is executed. And the contents of the destination field register (specified by Md) points to the first element of the list. 
The form of this instruction is shown below: 

SEAF O,Md where 0 = binary 0000 

SCNW Scan for word 

The SCNW instruction is of the following form: 

SCNW MS,Md 

This instruction scans a table of words (pointed to by Rs) for a match with the contents of the accumulator. Each 
time a word is fetched from the table, Rd is incremented. If Rd contains zero at the beginning of the instruction, then 
it will contain the number of the words searched in the source table before a match with the accumulator occurred. 

Alternatively Rd may contain a pOinter to another table. When a match between the accumulator and the source table 
occurs, Rd will pOint to a corresponding entry in the 'destination' table. 

If the source list pOinter and the destination list pointer are the same, then the two tables are interleaved; ie. the 
combined list would start: 

Source list word #1 
Destination list word #1 
Source list word #2 
Destination list word #2 
Source list word #3 

etc. 
etc. 
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SUMMARY OF SELECTED 'MACRO' INSTRUCTIONS (Cont.) 

This instruction can be very useful in command processing routines and for searching lists that are not linked within 
the list itself (see BASS and BASF). 

The last entry in the source list must be a zero. If no matches were found previous to this zero word, then the Z flag 
is set. If the Z flag was not set, then a match was found and the pointers are valid. This instruction is interruptable 
on a word by word basis. 

SCNB Scan for byte 

The scan for byte instruction (SCNB) works identically to the scan for word instruction except that the source list 
contains bytes packed into words. Thus the source list is only half as long as the destination list (if there is one). 

Note that both lists must start on word boundaries. Only the low byte of the accumulator is used in the compare with 
the source bytes. The contents of the accumulator are not affected by the instruction. This instruction is interruptable 
on every other byte that is compared. The Z flag has the same meaning as for the SCNW instruction. 



Instruction Matrix 

A convenient way to present all of the basic op-codes of the 
HEX-29 CPU is by way of an 'instruction matrix'. The eight-bit 
op-code in the upper byte is broken into two nibbles. The most 
significant nibble of the op-code appears on the left side of the 
matrix shown in Figure 7. The lower nibble appears along the top 
row. The second matrix shown in Figure 8, is called the 'extended 
function' matnx. In the HEX-29 CPU, the low byte of the instruc­
tion word is interpreted as an 'extended function' op-code if the 
upper byte IS an 'EF' hex. 

Memory Management 

The HEX-29 incorporates a sophisticated memory management 
structure. Though very clean and elegant in implementation, the 
capabilities of the processor are greatly extended by this circuitry. 
Transparent to the user not requiring its many features, this 
structure is vital to many very important applications; most sig­
nificantly the support of mUlti-user, mUlti-task, time-sharing 
operations. 

To all programs executing on the HEX-29, all memory addresses 
are 16 bits long. But before these 16 lines reach the system bus, 
they pass through the memory management section of the 
HEX-29 CPU. In this circuitry, the most significant four bits 
(A 15-A 12) are 'mapped' Into eight bits on the bus (a 'write-protect' 
bit (WP) and seven address lines (A18-A12».The net increase of 
three address bits expands the total addressable memory space 
to 512k words or 1 Megabyte. The WP bit is used to write protect 
the memory in blocks as desired by the executive program. 

Since each of the 16 locations in the memory map represents a 4k 
word block (or page), up to 64k words can be addressed by a 

0 1 2 3 4 5 6 7 

MVN "OV ADD ADC SUB sac AND lOR 
0 R. R R. R R. R R. R R. R R, R R, R R. R 

1 
MVN .. OV ADD ADC SUB SBC AND lOR 
"+R "+R M+R "+R "+R "+R "+R "+R 

2 
MVN "OV ADD ADC SUB sac AND lOR 
I+R I+R I+R I+R I+R I+R I+R I+R 

.. VN "OV ADD ADC SUB sac AND lOR 
3 Z, R Z,R Z, R Z, R Z, R Z, R Z, R Z, R 

"VN .. OV ADD ADC SUB SBC AND lOR 
4 X,A X,A X,A X,A X,A X,A X.A X,A 

.. VN .. OV ADD ADC SUB sac AND lOR 
5 .. + .. .. + .. .. + .. .. + .. "+M .. + .. .. + .. .. + .. 

6 
LOl2 CLR2 PSH2 POP2 XCH ASR ASL ROR 
R, R R, R R, R R, R R, R R,R R, R R, R 

7 
BTS BTC BTl Bn .. VH MVHN ADOH SUBH 
R,H R,H R, H R, H R,H R, H R,H R, H 

8 
BTS BTC BTl Bn ANDB IORB XORB SWT 
Z,H Z,H Z,H Z, H B,A B,A B,A R,Z 

9 "VB .. VB .. VB .. VB LOB STB ADDS suss 
B,A Z,Z Z, R R,Z M,M M,M B, A B,A 

A 
MOV MOV MOV MOV .. OV "OV MOV MOV 
M, R I, R M+M+ M+I+ "+Z M+M- A,X Z,I+ 

B MOV .. OV MOV "OV "OV MVN "OV MOV 
R,M R, I R, M+ R,I+ R,Z R, M- R,"- 1+1+ 

MV .. .. VM "V" .. VM "V" "V" .. V .. MV" 
C FPO FP' FPO FP' FPO FP' FPO FP' 

M+.OWO M+DW1 owo, M- DW1,M- Z.DWO Z.DW1 DWD,Z DW1,Z 

0 
JFS JFC CFS CFC JIFS JIFC CIFS CIFC 
B B B B B B B B 

BR B-R BC BNC BV BNV BN BNN 
E +L +L ±8 ±B ±B ±B ±B ±B 

BR BSR CALLO JMPO 
F -L -L B 8 

program at any time. Any location in the memory may contain any 
8-bit value, so memory that is contiguous to a program need not 
be contiguous in physical memory. For clarity, Figure 9 shows 
schematically how this 'memory mapping' works. 

The low 4k words of physical address space is reserved for the 
nucleus of an operating system; also called an executive or 
supervisor program. This is called physical page zero. The con­
tents of the memory map can only be altered if the low location of 
the memory map contains all zeros. Since this is synonymous 
with the physical page zero address block, only the executive 
program is able to change the contents of the memory map. And 
since all 1/0 devices and channel control blocks are located in 
physical page zero, all I/O must also be done through the execu­
tive program. Likewise, all hardware and software interrupts in-
voke the supervisor automatically. -

Because of this simple but fool-proof security scheme, complete 
protection of all users memory space and I/O deVices can easily 
be maintained by the executive program. 

Also I)ote that the supervisor program can safely make programs 
that are re-entrant available to several users simultaneously as 
long as it write protects the code. Since user programs are often 
no larger than the host program under which it is running, this 
technique can result in a savings of 30% to 50% in system 
memory usage. 

OccaSionally, for special purposes, a single user may wish sole 
access to the entire resources of the system. Examples would 
include programs too large to run in a single user's 128k bytes of 
memory. Or perhaps a new 1/0 access method. In any case, it is 
possible for a single user on the system to gain complete control 

8 9 A B C 0 E ' 'F 

XOR C .. P RSUB INC DEC CO .. NEG SWP 
R, R R,R R,R R, R R, R R,R R, R R, R 

XOR C .. P Rsue INC DEC CO .. NEG SWP 
"+R "+R "+R ", R ", R M, R ", R ", R 

XOR C .. P ASUB INC DEC CO .. NEG SWP 
I+R I+R I+R I+R I+R I+R I+R I+R 

XOR C .. P ASUB INC DEC CO .. NEG SWP 
Z, R Z,R Z. R z,~ Z, R Z,R Z, R Z, R 

XOR C .. P ASUB INC DEC CO" NEG SWP 
X,A X,A X,A X,SC X,SC x,se x,se x,se 

XOR C .. P RSUB 
.. + .. M+M+ ..+ .. 

ROL LSR RCL CSL VSR VSL DSR DSL 
R, R R, R R, R R, R R, R R, R R, R R, R 

C .. PHA C .. PH C .. PHN F .... VSR VSL EXR JAM 
R, H R,H R, H R, H R, H R,H R R, R, W 

MeV MOV LOBI STBI XCH M COMF "VN MOV 
A, Y Y,A R,R R,R DUPM B CC, R R,CC 

CMPBA CMPB CMPS CMPS CUPS CMPB SETF ClRF 
B, A B,A Z, Z R, Z R, R M," B 8 

MOV "OV MCV MOV MCV .. VM lOINT LDINT 
Z, z~ Z.M- AD, Y RB, Y R9. Y RR, Y "+H R, H 

MOV .. OV .. OV "OV MCV .. V .. R .... ROINT 
1+, Z I+M- Y.RD Y, RB Y, A9 Y,R, R R, R R, H 

.. VM MV .. MVM "V" .. V .. "V" "V" .. v .. 

X. FPO X, FP1 FPC. X FP1, X X,OWO X,OWl DWD,X OWl, X 

RTFS RTFC J"P CALL CALL CALL CALL CEX 
B B R R X Y Z B 

BZ BNZ BH BNH DBNZ BZD CBB EF 
±B ±B ±B ±B ±B ±B ±B 

SMWF BMWR SEALM SCNW SCNS nWB nBB NOP 

"," "," SEAF .. "," "," "," "," B 

Figure 7. HEX-29 Instructions. 
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0 1 2 3 4 5 6 7 8 8 A B C 0 E F 

0 
FADD FSUB FMUl FOIV FCMP FXCH FNRM FTST 

FPO FPO 

1 
DADO DSUB DMUl DDIV OCMP DXCH DNEG OTST 

OWO OWO 

2 
SMUl SOIV UMUL UDIV 

3 
P$HF PSH8 PSHO LMM RTI 

A 

4 
POPF POP8 POPO BPT 

B 
MVM MVM MVM MVM MVM MVM 
FPO. FP1 FP1, FPO ASS. FPO ABS. FPI FPO. ABS FP1. ABS 

C 
MVM MVM MVM MVM MVM MVM 
DWO,OW1 DWI.DWO ABS.OWO ABS, OWl OWO. ABS OWl. ABS 

0 
CALL CALL 
REL ABS 

E 
BGT BGE BlT BlE 

F BMBF BMBR SRCH 

Figure 8. HEX·29 EF Instructions. 

AIS AI4 AI3 A12 All AI A9 AS A7 AS AS A4 A3 A2 AI AO 

I I I I I I I 
1 1 1 1 1 1 1 
I I I I I I I 

A3 A2 AI AU 1 1 1 
I I I 

18 X a HIGH SPEED RAM 1 I 1 
I 1 I 

07 DB os D4 D3 D2 01 DO I I I 
I I '1 

I I I I 1 I 1 I I 1 I 
I I I I I I I I I I I 
I I I I I I I I I I I I 

WP Ala A17 Ala A1S A14 A13 A12 All AIO A9 AS A7 AS AS A4 A3 A2 AI AO 

BUS ADDRESS (Physical Add .... ) 

MPR-8S2 

Figure 9. Memory Mapping Program Address (Logical Address). 

and access to the system by assigning himself as the executive 
program. This can only be accomplished after a system reset 
Hence only those with physical access to the computer (and who 
have a reset key) can accomplish this operation. This user is then 
empowered with all of the features and capabilities of the 
machine with no limitations. Direct access to all of the system 1/0 
devices, the entire interrupt structure, the memory map, etc., is 
then at the command of the Single user in the executive or 
supervisor mode. 

Most often, each user needs only one or two 4k pages of memory 
in addition to the host program which is probably shared. Thus it 
would be very wasteful if each user were to have access to a full 
65k words of physical memory space. For this reason, a page of 
physical memory has a speCial designation in the system. 

The highest possible physical address block when write pro· 
tected is called the 'invalid access' block. Whenever a user ac· 
cesses memory that the supervisor has mapped into the invalid 
access block, the processor 'traps' to a special location in the 
supervisor program called the 'invalid access trap'. This occurs 

before the current machine cycle is completed. This is treated 
identically to an interrupt by the processor except that the current 
instruction is not completed. 

Any number of actions can be taken by the supervisor althis time. 
This will usually depend upon the resources of the machine and 
the circumstances under which the problem arose. For example, 
the executive program could inform the program that its memory 
space had been exceeded, or perhaps just allocate another block 
of memory to that user's memory map and continue the execution 
of the offending program. A more detailed discussion of the 
s~quence of events that takes place upon an invalid access 
appears in the section on the interrupt structure of the HEX·29 
CPU. 

The highest physical address page, when not write protected, is 
called the 'dead page'. No action of any kind takes place in this 
block and there is no memory there for the program to reference. 
Any number of pages from any number of users may be assigned 
to this physical page without fear of interaction. This is the block 
that Will normally be asSigned by the executive program to all user 
areas that are not needed or are not to be used. 



Interrupt Structure 

The HEX-29 CPU contains a powerful interrupt structure. As with 
memory management, this aspect of the CPU operation is largely 
transparent to users of the system. In most applications the HEX 
OPERATING SYSTEM FOR TIMESHARING (HOSn program 
services all interrupts. Nonetheless, it is useful to know the basic 
structure of the interrupt system. The three types of interrupts 
serviced by the HEX-29 CPU are examined in the following 
paragraphs. 

The hardware interrupts are caused by signals from physical 
devices outside of the processor. These Signals, generated by 
peripherals, their controllers, or the real time clock, serve to notify 
the CPU of some condition or requirement of the Interrupting 
device. 

The HEX-29 CPU has eight hardware interrupts. They are indi­
vidually maskable and are prioritized into eight levels. Each prior­
ity level has ~s own vector associated with it. In other words, each 
interrupt level has a corresponding memory location through 
which program control IS passed upon that level Interrupt. These 
memory locations are within the defined executive page (phYSical 
page 0) and thus all interrupts cause the HEX-29 to switch into 
executive mode automatically. The eight hardware interrupt 
levels and the associated memory locations are shown below. 

Hardware Interrupt Level 

Highest Priority 7 
6 
5 
4 
3 
2 
1 

Lowest Priority 0 

Memory Location of Vector 

0407H 
0406H 
0405H 
0404H 
0403H 
0402H 
0401 H 
0400H 

So, for example, when an interrupt occurs on level 3, the HEX-29 
CPU will enter supervisor mode, save the users PC and SP, and 
call the appropriate service routine at the address stored in mem­
ory location O403H. 

Normally, each hardware interrupt level is reserved for a class of 
devices such as hard disc controllers, floppy disc controllers, 
serial channels, etc. If, for example, there are eight serial devices 
that are interrupting on level 0, the service routine is required to 
locate the one (or more) devices that are requesting service on 
that interrupt level and processes them accordingly. Thiscould be 
done by polling all the serial devices whenever the interrupt was 
received. A more efficientlechnique, used in the HEX-29 system, 
is to further prioritize the like devices on a given interrupt level. 
Then when an interrupt occurs, a vector is read by the executive 
program that instantly informs it of the highest priority device 
requesting service on that level. When that device is serviced, the 
vector is read again to locate any other devices in need of service 
(if any), and finally resumes normal program execution when all 
devices are serviced. 

A software interrupt is an instruction that, when executed, causes 
an Interrupt to occur. The mnemonic used for this op-code in the 
HEX-29 CPU is 'CEX', which stands for 'call executive'. This 
instruction passes an 8-bit vector to the 'HOST operating system 
which is used to determine the action requested by the program 
executing the CEX. Except that this interrupt is caused by a 
program rather than a physical device, the CEX operates in the 
same manner as a hardware interrupt. It vectors through memory 

location 040C. A pseudo software interrupt is the breakpoint 
'BPT instruction which vectors through memory location 040B. 
The BPT instruction does not pass an 8-bit vector to the executive 
and is thus useful in program debugging. 

The third type of interrupt is called a 'trap'. A trap takes place 
when certain conditions occur that require the processor's im­
mediate attention. For example, if the program currently running 
on the CPU tries to execute an op-code for which there is no 
defined instruction, an 'invalid instruction trap' occurs. This is 
essentially a service to notify a user that his program was defec­
tive and that an attempt was made to execute an op-code which 
has no meaning. These locations are left blank in the instruction 
matrix since they can subsequently be defined as new instruc­
tions. This 'trap' vectors through memory address 0400 and acts 
identically to all other interrupts. The only other trap in the HEX-29 
CPU is the 'invalid memory access' condition. This is discussed in 
more detail in the previous section on memory management. The 
'invalid memory access' trap vectors through memory address 
0408. 

Table 4 shows the memory locations that are defined in the 
HEX-29 for interrupt handling. 

TABLE 4. INTERRUPT MEMORY LOCATIONS. 

Memory 
Location System Defined Uses 

040F Reserved 
040E Reserved 
0400 Vector for Invalid Instruction trap 
040C Vector for call executive (CEX) Instruction 
040B Vector for breakpoint (BPT) instruction 
040A Temperature storage for user stack pointer 
0409 Temperature storage for executive stack 

pointer 
0408 Vector for invalid memory access trap 
0407 Vector for hardware Interrupt level 7 
0406 Vector for hardware Interrupt level 6 
0405 Vector for hardware Interrupt level 5 
0404 Vector for hardware interrupt level 4 
0403 Vector for hardware interrput level 3 
0402 Vector for hardware Interrupt level 2 
0401 Vector for hardware Interrupt level 1 
0400 Vector for hardware interrupt level 0 

Again, note that all interrupts are processed identically so thatlhe 
one return from Interrupt (RTI) Instruction properly terminates all 
interrupt service rouMes. 

DMAIREFRESH CONTROL 

In order that an effiCient multi-user or multi-task system be Im­
plemented, it IS necessary that the processor not be burdened 
with the relatively slow transfer of programs and data between 
system memory and mass storage deVices such as floppy and 
hard disks. For this reason, the controllers for these devices are 
designed with a high degree of Intelligence and self-reliance. 
These controllers take virtually all of the burden of mass storage 
transfers upon themselves. This frees the HEX-29 CPU to exe­
cute programs for all users not waiting for these mass storage 
transfers to take place. Because these controllers are essentially 
separate special purpose microprogrammed CPUs, they are 
often called 'peripheral processors', 'channel processors', or just 
'channels' . 
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For this scheme to be effective, both the CPU and the channel 
processors must be accessing system memory concurrently. 
Fortunately, the inherent structure and operation of the HEX-29 
CPU is eminently suited to this requirement. 

In every instruction there is at least one machine cycle during 
which the HEX-29 CPU is decoding or internally executing an 
instruction. During these machine cycles the CPU does not use 
the system bus; the system bus and memory are available for 
access by devices other than the HEX-29 CPU. This is called a 
'Free DMA cycle' or 'bus available' cycle. During these machine 
cycles a channel processor may read or write memory without 
interfering with, or assistance from the HEX-29 CPU. The act of 
accessing system memory by any device other than the CPU is 
called 'direct memory access' or DMA since the channel pro­
cessor is directly accessing system memory without CPU assis­
tance or intervention. 

Resident in the HEX-29 CPU is a very clean, very powerful 
multi-level prioritized DMA structure. Within this structure up to 
ten groups of devices can share the system bus on a priority 
basis. Normally the priority levels are assigned on the basis of 
transfer speeds ... the faster the device is able to support mem­
ory transfers, the higher the priority it is assigned. In this manner 
several channel processors can access system memory concur­
rently at the intervals they require. The DMA structure of the 
HEX-29 CPU can support very high combined transfer rates with 
multiple DMA devices using this technique. With high speed 
memory, the HEX-29 CPU need not even slow down its program 
execution to support a concurrent combined DMA transfer rate of 
4 Megabytes per second. With slower memory, this figure drops 
to about 2 to 3 Megabytes per second. Even this slower rate 
corresponds to concurrent DMA by one high speed hard disk plus 
several floppy disks plus room to spare. Still, the CPU can be 
halted, if necessary, to achieve combined DMA rates of up to 12 
Megabytes per second maximum. 

The support of dynamic memory in the HEX-29 system is Simpli­
fied by signals associated with this DMA structure. Whenever 
there are no devices requesting the bus for DMA, a signal on the 
bus indicates this condition. Dynamic memory refresh controllers 
can take advantage of these unused free DMA cycles to refresh 
internal dynamic RAM chips if desired. Even when very heavy 
use of the bus by DMA devices occurs, it is unlikely that too few of 
these unused free DMA cycles will be available for the dynamic 
memory refresh controllers. In this event, however, another signal 
can be used to disable all other DMA priorities and allow the 
refresh controllers as much time as is required. 

SYSTEM BUS AND TIMING 

When specifying the bus signals and their timing relationships 
during the early design stage of the HEX-29 CPU, utmost atten­
tion was paid to simplicity and reliability. The result is that there 
are very few signals reqUired to interface to the bus properly, and 
the timing requirements are quite straight forward and easy to 
meet. 

The follOWing section is a description of the mnemonic names and 
functions of the HEX-29 system bus signals: 

System Bus 

AI8-AO 
(Address Bus) 

Three-state outputs. AI8-AO are the 19 physical 
address lines of the HEX-29 system address 
bus. A18 is the most significant bit, AO is the 
least significant bit. These outputs are three­
stated whenever the bus is available (BA is lOW). 

DI5-DO 
(Data Bus) 

WP(alsoWE) 
(Write Protect) 

RiW 
(Read/Write) 

Three-state and bi-directional input/outputs. 
DI5-DO are the 16 lines that make up the 
HEX-29 system data bus. D15 is the most sig­
nificant bit, DO is the least significant bit. 

Three-state output. WP is used to protect 
areas of memory from being written. Practically 
speaking this signal is active-lOW and would 
have been called WE (Write Enable) if not for 
possible confusion with the read/write signal 
which also must be lOW to write memory. 

Three-state output. The RiW signal detenmnes 
whether a read or write operation is performed. A 
lOW level of the R/Vii line indicates a write 
memory is to be performed if VMA (valid memory 
access) is also lOW when the system clock 
(ClK) goes lOW. 

VMA Three-state output. VMA is lOW during all 
(Valid Memory cycles that a memory access (read or write) 
Access) will be performed by the processor. 

ClK Output, not three-state. ClK is the system 
clock. All timing in the HEt<-29 system is defined 
relative to this signal. For convenience, the 
period of each machine cycle that the clock is 
high is called <1>1 (phase 1) and the period that it 
is low is called <1>2 (phase 2). All system 'chip 
selects' are derived from this signal. 

SDMA Output, not three-state. SDMA is mnemonic 
for 'synchronize direct memory access'. This 
bus Signal is lOW the cycle before DMA is per­
missible. The sole purpose of this signal is to 
notify DMA devices early of an upcoming 'free 
DMA' cycle. This will make it easier to 'grab the 
bus' very early in a 'free DMA' cycle to improve 
the address generation timing. 

BA Output, not three-state. BA is lOW on all 
(Bus Available) cycles during which DMA is permitted by the 

CPU. When BA is lOW, all three-stateable out­
puts from the HEX-29 CPU card are turned off 
and control is relinquished to DMA devices for 
the current cycle. BA is mnemonic for 'bus avail­
able'. 

STR 
(Stretch Clock) 

ClR 
(Clear) 

17-iO 
(Interrupts) 

Input to HEX-29 CPU. When an addressed de­
vice is not fast enough to be reliably accessed 
(read or written) within the minimum access time 
olthe HEX-29 CPU, it should pull the STR signal 
lOW. For each 40ns that STR is held lOW, the 
system clock is lengthened by 40ns and thus the 
access time required of the addressed device. 
This signal can be held lOW for as many as 
40ns increments as required to meet the access 
time of the addressed memory or I/O device. 

Output, not three-state. ClR is a lOW level 
pulse which is just a 'cleaned up' RESET signal. 
Any device that requires an initialization pulse 
should use this line. 

Inputs to HEX-29 CPU. 17-iO are the eight 
hardware interrupt inputs. i7 is the highest prior­
ity and iO is the lowest. These inputs are nega­
tive edge catching; that is, an interrupt signal is 
recognized by the interrupt circuitry in the 
HEX-29 CPU when the line goes lOW. These 



R7-RO 
(DMA 
Requests) 

07-00 
(DMA 
Acknowledge) 

NRO 
(No DMA 
Request) 

DDMA 
(Disable DMA) 

FETCH 
(Fetch 
Instruction) 

OSC 
(Oscillator) 

lines should be driven by open collector outputs 
so that multiple devices can interrupt on the 
same priority level. 

Inputs to HEX-29 CPU. R7-RO are the eight 
DMA request Inputs. R7 is the highest prior­
Ity, RO IS the lowest. These lines are active­
LOW; i.e., a LOW level requests DMA time. 

Outputs, not three-state. 07-00 are the eight 
DMA acknowledge lines that reply to the cor­
responding DMA request lines (R7-RO). A reply 
to the highest requesting priority is acknowl­
edged by a LOW level on the corresponding 
acknowledge line. Only one of these lines will 
be LOW at any given time; I.e., the highest 
priority request gets the acknowledge. 

Output, not three-state. NRO is LOW when no 
DMA requests (R7-RO) are being received. This 
IS used primarily as a signal to dynamic memory 
refresh controllers that a refresh may be per­
formed on any 'free DMA' cycle. 

Input to HEX-29 CPU. When DDMA IS pulled 
LOW, no DMA requests are acknowledged. Es­
sentially this line IS just the highest priority DMA 
request line - except there is no corresponding 
acknowledge signal. This signal is normally re­
served for dynamic memory refresh controllers. 
Ifthe refresh interval is aboullo expire and some 
locations have not yet been refreshed, this line 
can be pulled LOW to disable all other DMA 
deVices and assure adequate time to refresh the 
remaining locations. Note that NRO is not LOW 
when DDMA is active (LOW). The DDMA line 
should be driven by open collector outputs. 

Input to HEX-29 CPU. When pulled LOW, 
the HALT Input will cause the processor to ter­
minate program execution at the conclUSion of 
the current instruction. At this time the bus will 
become continuously available for DMA as all 
three-state outputs of the HEX-29 CPU will turn 
off and BA "I'iII go active (LOW). This line can be 
held LOW ihdefinitely. When released, the pro­
cessorwill continue program execution. This line 
should be driven by open collector outputs. 

Output, not three-state. This signal is LOW only 
on memory read cycles when an instruction is 
being fetched from system memory. Otherwise 
this signal is normally not used except during 
system development and debugging for single 
instruction execution. 

Input to HEX-29 CPU. This is the signal 
from which system reset (CLR) is derived. Nor­
mally this input IS simply grounded With a 
pushbutton or keyswitch to reset the HEX-29 
system. 

Output, not three-state. This IS the crystal con­
trolled master oscillator from which the system 
clock is derived. The period of thiS oscillator is 
normally 40ns. (25M Hz). 

System nming 

In any microprogrammed system which must interface to a 
number of external devices (as a CPU must), It is critical that 
considerable forethought be given to the methods of inter-device 
communication. It is quite common to design and build devices 
that operate with very high degrees of reliability - only to find that 
overall system reliability is inadequate when the various devices 
are interfaced. 

One of the utmost goals In deSigning the HEX-29 CPU was to 
develop an extremely reliable, easy to use, system bus definition. 
SimpliCity and reliability go hand in hand and this is reflected In the 
HEX-29 system bus. Perhaps the single most important decision 
In thiS regard was to define that all memory and I/O device 
accesses by the processor or DMA deVices would share one set 
of timing rules. In other words, one set of timing specifications 
applies to any kind of access of any deVice by any other deVice. 
Some systems have different timing requirements for all sorts of 
reasons; a few examples are listed here. 

1. Memory read timing is more critical (shorter) if the memory 
being fetched IS an Instruction. 

2. Variations exist in the set-up and hold times required on 
read memory vs. write memory cycles. 

3. Memory devices and I/O devices use some different signals 
and timing specifications. 

4. DMA devices are required to meet a different set of timing 
requirements than the processor. 

5. Interrupt processing routines violate the normal memory 
access techniques. 

SpeCial cases carry special problems and should be avoided like 
the plague. It is always best and easiest to have all devices and 
situations share one set of control signals and one set of timing 
relationships. Another good practice put into effect on the HEX-29 
CPU is the exclusive use of active-LOW bus signals. This IS 
important in many respects. First, bipolar logic IC's can sink (pull 
LOW) far more current than they can source. Thus any noise 
spikes need to carry far more energy to force the signal into an 
invalid level. Secondly, all signals thatthree-state (turn-off) will be 
pulled-up (float) to the inactive level. Furthermore, this scheme 
tends to reduce the power required by bus Signal drivers and 
therefore reduce heat dissipation. 

PhYSical design is also Important to system reliability. It is wise to 
use four layer PC cards with GND and Vcc planes as the Internal 
layers, as do all of the HEX-29 system cards. An additional 
feature ofthe HEX-29 system bus is that all signals are Interlaced 
with GND traces that retum directly to the internal GND plane next 
to each bus signal. System termination should also be provided 
whenever signals must travel more than 18". Bypass capacitors 
should abound on all system cards, one per three IC's as a 
minimum. The HEX-29 averages one per IC. 

The timing of each machine cycle in a HEX-29 system is a 
combination of synchronous and asynchronous characteristics. 
Actually, all signals are synchronous With - or are synchromzed 
by - the master oscillator from which the system clock is derived. 
Thus, despite the fact that some signals seem to be asynchron­
ous, they are actually synchronized automatically with the system 
clock. The simpliCity of this approach will become clear once the 
relationship of all signals to the system clock is explained. 

The conventions regarding the HEX-29 system clock are very 
Simple. All machine cycles begin when the system clock goes 
HIGH and end simultaneously with the begimng of the next 
machine cycle. The period of time that the system clock (CLK) is 
HIGH is called $1 (phase 1) and the period of time that It is LOW 
is called $2 (phase 2) See Figure 10 for clarification. 
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During all memory and 1/0 accesses, the processor (or DMA 
controller) must guarantee that all address lines and control sig­
nals are valid for at least 20ns before the end of <P1 (falling edge 
of clock), Depending upon the addressing mode, the processor 
will require a variable period of time to generate a valid address. 
Thus it is the responsibity of the processor to control the period 
of <P1 to meet its requirements. If no external accesses are made 
by the CPU, <P1 and <P2 will last only 80ns each unless a DMA 
device takes control of the bus on that cycle and requires longer 
times. 

Similarly, <P2 is controlled by the memory and 1/0 devices on the 
bus, If none are being accessed on a particular machine cycle, 
no control need be exercised on the system clock and <P2 will last 
for 80ns, However, when accessed, many memory and 1/0 de­
vices more than 80ns to perform a successful read or write 
operation. They must be able to lengthen <P2 of the system clock 
to increase the access time appropriately. This is accomplished 
with the STR bus signal. When a device is accessed that re­
quires that <P2 be longer than 80ns, it must bring STR LOW 
within SOns of the falling~e of system clock (I.e., SOns into 
<P2)' For every 40ns that STR is held LOW, the system clock is 
held in its present state for an additional 40ns. <P2 can thus be 
extended indefinitely as required by the access time of the ad­
dressed device, <P1 can also be extended in 40ns increments 
with the STR signal if so required by DMA devices with slow 
address generation times, or the like, 

A DMA device must gain access to the bus before it can access 
the memory location that it desires_ This is very simple, It simply 
pulls its DMA request line LOW and waits for the corresponding 
DMA acknowledge signal to go LOW in reply, Then, at the be­
ginning of the first machine cycle which finds these signals plus 
SDMA LOW, the DMA device has been granted access to the 
bus and may immediately generate the appropriate signals on 
the address, data, and control buses to accomplish the transfer. 
The memory device being accessed does not care whether it is 
the processor or a DMA device on the bus since the bus signals 
and timing used by the memory card is identical for both. Thus it 
controls <P2 with the STR signal as necessary and the access is 
completed in exactly the same manner as if it had been the 
processor controlling the bus. The Boolean equation for a DMA 
device gaining access to the bus follows - and Figure 11 is a 
schematic showing how easy the implementation can be, 

ax • Rx • SDMA • CLK = DMA device has access for the 
current cycle 

X = any DMA priority level 

The timing relationships for the HEX-29 bus are shown in 
Figure 12. 

PULSE THIS 
.-----lINETO 

+5V REQUEST DMA 

+5V 

0-.1 
74574 

CANCEL ReQUEST 

74$74 

~Cl~K~)K~ ______ ~cp Q 

ENABLES OMA 
ADDRESS BUFFERS 
AND CONTROL 
SIGNALS ONTO 
BUS WHEN LOW R S 

+5V 

Figure 11. DMA Bus Signals. 

INTERNAL OPERATION 

Block Diagram 

MPR __ 

The block diagram of the HEX-29 CPU (Figure 13) shows the 
following functional modules: 

1. System Clock 
2. Microprogram Control 
3, JLWord Memory (Control Store) 
4, Am2901A Bit Slice ALU/Register Sets 
5. ALU Arithmetic Carry In Control 
6, Shift and Rotate Linkages 
7, Condition Code Control 
8, Am2901A Output Bus 

a. Data Output Latches 
b, Address Latches 
c. Memory Management RAM 
d. Condition Code Register 

9, Am2901A Input Bus 
a, Data Bus Input Registers 
b, Byte Swap Input Registers 
c Microword Data Registers 
d, Clear By tel Bit Set Logic 
e, Instruction Decode PROMs 
f, Condition Code Register 

10, Interrupt Control 
11. DMNRefresh Control 

Sections 8 and 9 are more difficult to isolate on the block diagram 
since they are the buses that connect many function modules 
together. A full detailed schematic of the HEX-29 is shown in 
Figure 14; a fold out drawing at the back of the chapter. A 
discussion of the function of each of the above modules follows, 

System Clock (Figure 15) 

All timing In the HEX-29 CPU IS controlled by the system clock, 
The positive going edge of the system clock (LOW-to-HIGH 
transition) marks the end of one machine cycle and the beginning 
of the next. All Input signals to the HEX-29 CPU from the system 
bus are captured on this edge. The next microinstruction is 
clocked into the pipeline register on thiS edge, 
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Normally a system clock is a simple square wave or more com­
plex waveform with a fixed period and duty cycle. But the system 
clock of the HEX-29 CPU is microprogrammed. In other words, 
the period and duty cycle are selected by microword bits in each 
microcycle. The advantage of this approach is one of through-put 
(speed). 

In any CPU, some internal operations require longer to execute 
reliably than others. And one or more olthese operations requires 
the maximum length of time to complete reliably. This is called the 
worst case delay path or "critical path". Normally the period of 
time required to perform this "critical path" operation is chosen as 
the clock period for all instructions. 

Since the "critical path" operation may take a factor of 30% to 
100% longer to execute than typical operations, it is clear that 
much processor time is being wasted in any typical program. Two 
microword bits are used to controlthe HEX-29 microprogrammed 
system clock so that each microcycle lasts only as long as 
necessary for the operation being performed. An overall speed 
gain of about 30% to 40% is realized with this technique. This 
was discussed in detail An Chapter II and Chapter III. 

The mast~r oscillator from which the system clock is derived is a 
25MHz crystal controlled oscillator. Phase 1 (<1>,) of the system 
clock cycle (Figures 10 and 12) is programmed to be 2, 3, 4 or 5 
times the 40ns fundamental period of the oscillator. The duration 
of rf>2 of the system clock is 80ns. Since main memory will rarely 
be as fast as 80ns access time, a method to allow system mem­
ory cards to lengthen <1>2 is also provided with the STR bus 
signal. When the STR signal is low, the Am74S161 is disabled 
from counting and the state of the clock will not change until it is 
released and it counts out normally. 

The conventions regarding the system clock are very simple and 
were chosen as the easiest to interface with a variety of memory 
and 110 devices. 

All machine cycles begin when the system clock goes HIGH. 
The period of time that the clock remains at a HIGH logic level is 
called rf>,. rf>2 is the period that it is LOW. During all memory 
access (and I/O since I/O is memory mapped), the processor 
guarantees that all address lines and control bus signals (RlW, 
VMA,WP, etc.) are valid and stable at least 20ns before the end 
of rf>,. In other words, the CPU must make all bus Signals valid at 
least 20ns before rf>2 begins. 

Depending upon the addreSSing mode being used, the pro­
cessor will require more or less time to make all necessary 
signals to the system bus and memory cards valid. 

For example, indexed addreSSing requires an arithmetic opera­
tion from the Am2901 B's rather thi;l.n logical operations or a di­
rect pass, therefore indexed addressing is bound to take slightly 
longer than immediate, dire&t, or pointer addressing. 

It is for these indexed operations and some others that rf>, can 
be lengthened in 40ns increments by microword bits ST, and 
ST o. So the processor controls the system clock during rf>1 to 
meet its requirements. When there is no memory access, the 
minimum SOns for <1>1 is generally more than adequate. Simple 
addressing modes require 80ns-120ns. The most complex ad­
dressing modes can take 160ns to 190ns using the worst case 
specs for aU IC's in the address generation path. 

At the end of rf>1 (the beginning of rf>2), the processor relin­
quishes control of the system clock to the memory or I/O device 
that is being accessed. Since I/O is mapped into normal memory 
space, there is only one set oftiming rules for both memory and 
110 accesses. If no more than SOns is required to properly com­
plete the read or write operation, then rf>2 will last only 80ns. But 

the access time of most main memory cards will be greater than 
SOns so a way of increasing the duration of rf>2 is provided with 
S'I'R bus signals. 

If this signal (STR) is pulled LOW within the first SOns of rf>2' rf>2 
will be lengthened by 40ns for every 40ns that STR is held LOW. 
Thus rf>2 can be extended indefinitely to match the access time 
of the device being addressed. Naturally this input should be 
driven by open collector outputs so that all cards can share the 
one STR line. 

Though the STR signal is intended to be used during rf>2 on 
memory reference cycles, it works in an identical fashion during' 
<1>1' This can be used to advantage by DMA controllers that 
require more than SOns to generate valid address, data, or con­
trol signals on transparent DMA cycles. 

A jumper option on the microprogrammable system clock allows 
the default period of rf>2 to be increased from 80ns to 120ns on 
memory reference cycles only. This is useful in systems where 
no memory or I/O devices have access times of 80ns or less, 
and/or when more than SOns is required to pull STR LOW to 
lengthen rf>2' Figure 16 is a table of the rf>1 and default rf>2 periods 
available with the microprogrammed clock on the HEX-29 CPU. 

Default rf>2 
DeIIIult Period with VMA 

STt STO VilA 1/>1 Period 1/>2 Period Option Jumperecl 

1 1 1 BOns BOns BOns 

1 1 0 BOns SOns 120ns 

1 0 1 120ns 80ns BOns 

1 0 0 l20ns SOns 120ns 

0 1 1 lBOns SOns BOns 

0 1 0 l60ns SOns 120ns 

0 0 1 200ns SOns BOns 

0 0 0 200ns SOns 120ns 

Figure 16. Microprogrammed System Clock Timing. 

Microprogram Control 

The microprogram control section (Figure 17) olthe HEX-29 CPU 
performs several functions; they are: 

1. System reset and initialization 
2. Interrupt and halt control 
3. Machine level instruction to microinstruction mapping 
4. Microinstruction sequencing and microsubroutining 
5. Invalid Access Memory Management Trap 

When the system reset button or keyswitch is closed, the input to 
a one-shot IS pulled LOW. When it is released, the rising edge 
triggers a 500 }LS pulse. This is synchronized with the system by 
gating it through a flip-flop driver by system clock. The resulting 
signal is used to zero the outputs of the Am2909 microprocessor 
sequencer. Thus, when the one-shot times out, the microprogram 
will begin execution at microaddress 000. The microcode needed 
to initialize the system is stored at this and the following several 
microaddresses and assures the proper system start-up. 

Each time a machine level instruction is fetched, the micro­
program control logic checks for a hardware Interrupt or halt 
signal from the system bus. If either signal is active, the micropro­
gram branches to the appropriate micrOinstruction address to 
execute the appropriate microcode to service the request. The 
interrupt routine will buffer user registers, switch to supervisor 
mode, and call a machine level routine through a vector table 
element as defined by the priority level of the interrupt. If the halt 
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signal is pulled LOW, the external system bus is released to DMA 
devices or refresh controllers until the halt bus line is released and 
the program continues execution. 

When an instruction has been fetched and there are no interrupts 
or halt signals pending, the microprogram must begin executing 
microinstructions at a new microaddress. This microaddress is a 
function of the machine instruction to be executed. The "map­
ping" of the machine level instruction into a microaddress is done 
courtesy of the Am27S29 instruction decode PROM's. The op­
code is placed on the PROM address lines and the microaddress 
appears althe outputs which are connected to the direct inputs to 
the Am2909's. The Am2909's simply pass this microaddress to 
the microword memory by executing a Branch to Address on 
direct inputs function. 

This, and all other microprogram sequencer operations are 
selected by the outputs of the microprogram branch PROM which 
is driven by microword bits. This PROM, an AM27S21 contains 
the output combinations required to execute a variety of micro­
program control functions including microbranchlng, micro­
subroutimng, and two-way microbranching either unconditionally 
or upon condition code bits selected by microword bits. The 
function code for this PROM is shown in Figure 18. 

As part of the multi-user, multi-task time sharing capabilities, the 
HEX-29 CPU provides an invalid memory access trap. In this 
structure, the executive program can assign any unused page of 
user memory space as either non-existent (transparent) or as an 

Address Function 

0 BR C = 0 or continue 
1 BR C = 1 or continue 
2 BR V = 0 or continue 
3 BR V = 1 or continue 
4 BR N = 0 or continue 
5 BR N = 1 or continue 
6 BR Z = 0 or continue 
7 BR Z = 1 or continue 
8 BR H = 0 or continue 
9 BR H = 1 or continue 
A BR LZ = 0 or continue 
B BR LZ = 1 or continue 
C BR HL T = 0 or continue 
0 BR HL T = 1 or continue 
E BR IH = 0 or continue 
F BR IH = 1 or continue 
10 BR 
11 Not used 
12 CALL 
13 Not used 
14 CALL N=O 
15 Not used 
16 RTS Z = 1 
17 Not used 
18 RTS 
19 Not used 
1A Not used 
1B Not used 
1C Not used 
10 Not used 
1E BRMAP IH = 0 or BR 
1F CONTINUE 

Figure 18. Microprogram Sequencer Branch Code. 

invalid access area. If any user instruction attempts to access 
memory in a page that has been assigned as an invalid access 
page, the microprogram control logic takes action. 

Before the current machine cycle completes, the next instruction 
address is forced to the highest value in the current 512-word 
microword block using the Am2909 OR inputs. At this point a 
microbranch to the invalid access trap microroutine is performed. 
The Invalid access is processed just like another (highest) level of 
hardware vectored interrupt exceptthalthe current machine level 
instruction does not complete before the microprogram recog­
mzes and acts upon the condition. 

MICROWORD MEMORY 

Any number of memory device types could have been chosen for 
the microword memory in the HEX-29 CPU. RAM has the ad­
vantage that it IS dynamically alterable, but ilthis feature is utilized 
much more hardware support would have been necessary and 
the overall cost increased Significantly. Besides, the effect of 
writable control store can be simulated with fixed memory devices 
by microcode bank switching at much lower cost and complexity if 
the feature is desirable. For development of new microcode 
routines, RAM writable control store in the address space of 
another computer system offers many advantages. This is par­
ticularly true if the other computer happens to support a micro­
assembler and file management system as does the System 29: 

Though EROM's and EAROM's are also viable microword mem­
ory devices for microcode development, they are much too slow 
to make efficient use of the rest of the high speed micro­
programmed processor in the production device. 

Fuse-link bipolar PROM's are the only viable microword memory 
devices for production systems for a variety of reasons. They are 
very fast, (45ns maximum access on the HEX-29 CPU), small 
(512 x 8 in 20 pins), less expensive than fast RAM, and more 
flexible than a mask ROM would be. It is a simple matter to alter or 
extend the microprogram of commercial systems With fuse-link 
PROM microword memory. 

As mentioned, the microword memory of the HEX-29 is com­
posed of AM27S29 512 x 8 fuse-link PROM's and is shown in 
Figure 19. These space efficient 20 pin parts have worst case 
access times of 45ns over the commercial temperature and 
voltage range. Up to 4k of microword memory can be addressed 
by the set of three Am2909 microprogram sequencers on the 
CPU card. Space for up to 2k of microword memory PROM's is 
available on the HEX-29 CPU card. Though a perfectly 
adequate instruction set can be coded in less than 512-words of 
microword memory, the HEX-29 has a very extensive high level 
instruction set including 16 and 32-bit integer and 64-bit floating 
point ADD, SUB, MUL, DIV, CMP, and extensive buffering in­
structions. In addition to the extremely complete numeric pro­
cessing package, numerous nibble, character, byte, and word 
macroinstructions are implemented with scans, linked and un­
linked searches, block moves, and etc. A stack processor is a 
subset of this more than complete instruction set. For all of the 
capabilities of the HEX-29 CPU, less than 1.5k of microword 
memory was required. Thus, more than 0.5k of space remains 
for future expansion by the user before a larger PC card IS 
needed (extremely unlikely). 

Connections for the mlcroword data, address and select lines are 
available at connectors at the top olthe HEX-29 CPU card. Thus, 
It is quite straightforward to support off-board microword memory. 

• System 29 IS a development system for mIcroprogrammed systems avaIlable from 
Advanced MICro Computers. 
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It is even perfectly reasonable to use an off-board writable control 
store With up to 2k of mlcroword RAM concurrently With up to,2k of 
PROM resident on the PC card. 

If the on board PROM contains an Instruction set, it is then a 
simple matter to use the off board writable control store to develop 
new microcode for the machine interactively on the one HEX-29 
system! 

The outputs of the mlcroword memory devices are attached to the 
Inputs of Am74S374 registers. These registers are called the 
pipeline registers since they allow the fetching of the next micro­
instruction concurrently with execution of the current one. Clock­
Ing of the pipeline registers occurs on the LOW-to-HIGH transi­
tion of the system clock. The outputs of the pipeline registers are 
the 64 mlcroword (or pipeline) bits that control every aspect of the 
processor. 

These 64 bits can be logically grouped into several functional 
fields a follows: 

1. Microword Data/Mlcrobranch Address and Control 
2. ALU Source Select 
3. ALU Destination Select 
4. ALU Function Select 
5. ALU Carry In Select 
6. Shift Linkage Select 
7. ALU A and B Specifications 
8. A and B Fields Select 
9. Enable onto ALU Inputs Select 

10. Latch External Data Inputs 
11. Latch CPU Outputs 
12. Control Bus Signals 
13. Microprogrammed Clock 
14. Condition Code Controls 
15. Enable Interrupt Circuitry 
16. Memory Map Control 

Notice that With the exception of the mlcroword data and micro­
branch address and control fields, no other fields are overlapped. 
This is a 'horizontally' structured design. Overlapping several 
fields leads to 'vertically' structured systems. This latter class of 
machines can save some microword memory, but only at the 
expense ofthrough-put and increased hardware complexity. Now 
that the oost of the PROM's has come down significantly, the 
savings accrued from using a vertically structured design ap­
proach IS generally Insignificant when compared with the overall 
system cost. 

A summary of the functions of the microword bits IS shown in 
Figure 20. 

Am2901B ALU/REGISTER SETS 

The heart olthe HEX-29 CPU IS the set of four Am2901B bit slice 
ALU/Register Sets depicted in Figure 21. All arithmetic and logi­
cal operations are performed in these bipolar LSI IC's, including 
address generation. The user accessible set of 16 registers and 
routing functions are also internal to these remarkable and ex­
tremely versatile chips. 

The operation of these Units, though very elegant and com­
prehendible, is too lengthy to include here and the user IS referred 
to the Am2900 Family Data Book by AMD. 

Carry lookahead is accomplished by the Am2901 B's and an 
external IC, the Am2902A. Shift control is partially within the 
Am2901B's and is supported by other external circuitry to be 
discussed later. 

A summary sheet of the Am2901B ALU functions appears on 
page 29 but should be supplemented by studying the AMD 
literature already mentioned. A good supplement is the AMD 
Schottky and Low Power Schottky Handbook. 

The A and B input fields to the Am2901B's are multiplexed by 4 
Am74S253's in the following four ways. 

Am2901B B Inputs Am2901B A Inputs 

p.word Memory p.word Memory 
Upper Nibble ABL Upper Nibble ABL 
Lower Nibble ABL Lower Nibble ABL 
Upper Nibble ABL Lower Nibble ABL 

ABL = A,B Latch (On data bus bits 27-20.) 

CARRY IN CONTROL 

The arithmetic carry-in (CN) signal (Figure 22) to the Am2901 B bit 
slices can be selected from four sources as follows: 

1. Logic 0 (No carry-in add instruction, borrow in subtract 
instruction.) 

2. Logic 1 (Carry-in in add instruction, no borrow in subtract.) 
3. Carry Flag (C bit in condition code register.) 
4. Q Shift Bit (Double length shifts.) 

Note that the natural state of the Carry Flag output from the 
Am2901B is 1 for carry on add, 0 for no carry on add, 1 for no 
borrow on subtract, and 0 for borrow on subtract. This convention 
has been maintained in the condition code and carry in logiC. 
Some other machines operate differently with respect to this 
convention, but others do not and the HEX-29 maintains the 
faster convention for lack of a good reason to alter It. Some 
programmers will be required to remember this convention while 
others will be used to it. 

SHIFT AND ROTATE LINKAGE 

The shift and rotate linkage (Figure 23a) of the HEX-29 is com­
posed of an Am74S253 and an Am74LS125 plus the internal shift 
control structure of the Am2901B's. The functions that can be 
performed by this circuitry are shown in Figure 23b. 

The solid lines in Figure 23b delineate the basic shift linkages. 
The dotted lines are optional linkages which can also be enabled. 
With these linkages, all of the normal shifts and rotates can be 
performed plus a number of double word shifts including special 
shifts for high speed multiplies and divides. 

CONDITION CODE CONTROL 

The condition code register shown In Figure 24 of the HEX-29 has 
eight flags. The definitions and placement of these flags are 
defined in Figure 25. 

In addition to the very useful and fairly common C, V, N, Z flags, a 
half sign is provided for easier byte processing. The three user 
flags are not changed by any of the normal arithmetic or logical 
operations. However, they can be read by the processor and 
written by the processor with special instructions such as load 
flags, read flags, set bits In flags, clear bits in flags, Invert bits in 
flags. The fact that none of the user flags is changed by any but 
this type of speCial routine is very significant. It means that vanous 
routines and program segments can pass flags back and forth 
freely Without fear of modification or restriction on the Instructions 
that can be executed. Reading the condition code flags into the 
processor, or branching or subroutining upon combinations of bits 
set or clear does not alter the flags. 



Name 

O. J.'DO 
1. J.'D1 
2. J.'D2 
3. J.'D3 
4. J.'D4 
5. J.'D5 
6. J.'D6 
7. J.'D7 
8. J.'D8 
9. J.'D9 

10. J.'DA 
11. J.'DB 
12. J.'DC 
13. J.'DD 
14. J.'DE 
15. J.'DF 
16. 
17. LIN 
18. ROTO} 
19. ROn 
20. SRCO} 
21. SRC1 
22. SRC2 
23. CIA 

24. ALUO} 
25. ALU1 
26. ALU2 
27. CIB 

28. DSTO} 
29. DSn 
30. DST2 
31. FET 

32. 801 33. B1 
34. B2 
35. B3 

36. AOI 
37. A1 
38. A2 
39. A3 
40. ABMO} 
41. ABM1 
42. STO} 
43. ST1 
44. LDI 

45. LNZ} 
46. LCV 
47. LCC 
48. RCC 
49. SDA 
50. DIL} 
51. DIH 
52. SWPL} 
53. SWPH 
54. CLL} 
55. CLH 
56. LMM 
57. RMM 
58. LAD 
59. BA 
60. RlW 
61. VMA 
62. SDMA 
63. INE 

BRAO 
BRA1 
BRA2 
BRA3 
BRA4 
BRA5 
BRA6 
BRA7 
BRAS 
BRAg 
BRAA 
BRAB 

Function 

Microprogram 
Branch 
Address 

Mlcroword data to Intemal 
data bus to Am2901 B's 

BRC1 Microprogram BRCOI 

BRC2 Branch 
BRC3 Control 
BRC4 

Latch in low nibble of data bus 
Control Bits 
Shift and Rotate MUX 

Am2901 Source Select Code 

Carry-In MUX Select Bit A 

Am2901 ALU Function Code 

Carry-In MUX Select Bit B 

Am2901 Destination Code 

Fetch Instruction this cycle 

Am2901 'B' field register specification 

Am2901 'A' field register specification 

A 
B 

A, B fields MUX Select Bit 0 (A, B fields on Am2901) 
A, B fields MUX Select Bit 1 (A, B fields on Am2901) 
Microprogrammed system clock stretch bit 0 
Microprogrammed system clock stretch bit 1 
Latch Data In - Both Swapped and Unswapped 
Latch N, Z, H flags - MUX Select 
Latch C, V flags - MUX Select 
Latch Condition Codes - U2, U1, UO, H, Z, N, V, C MUX Select 
Read Condition Codes onto intemal bus, low byte 
Select Microword bits 15-0 to internal bus, else branch code 
Data In Low Byte Enable onto internal bus 
Data In High Byte Enable onto internal bus 
Swapped Data In Low Byte Enabled onto intemal bus 
Swapped Data In High Byte Enabled onto internal bus 
Clear Low Byte on intemal bus - Bit Set Enable HIGH 
Clear High Byte on internal bus - Bit Set Enable LOW 
Load Memory Map - Write into Memory Map RAM 
Read Memory Map - Enable Memory Map to data bus 
Latch Address - Enable Transparent Address Latch 
Bus Available - Busses available for DMA this cycle 
REad/Write Memory (Write if low) 
Valid Memory Address (Read or Write) this cycle 
Sync. DMA - Active cycle before bus is available 
Interrupt Logic Enable 

Agure 20A. Microword Bits. 
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0 BR C = 0 10 BA 
1 BR C - 1 11 
2 BA V - 0 12 BSR 
3 BR V - 1 13 
4 BA N - 0 14 BSA N - 0 
5 BA N - 1 15 
6 BR Z 0 16 ATSIZ 1 
7 BR Z -1 17 
8 BA HS - 0 18 ATS 
9 BA HS - 1 19 
A BR LZ - 0 lA 
B BR LZ - 1 lB 
C BA HLT - 0 lC 
0 BA HLT - 1 10 
E BR IH - 0 lE BA IH - 1 or MAP 
F BR IH-l IF CONTINUE 

Figure 20B. Am2909 Microprogram Branch Control, 
Bits 12-16. 

ALU CIB CIA 0 1 2 

0 0 A+O A+B 0 
0 0 1 A+ 0 + 1 A+B+l 0+1 

1 0 A+O+C A+B+C O+C 

0 0 0- A-l B-A-l 0-1 

1 0 1 O-A B-A 0 

1 0 O-A-C B-A-C O-C 

0 0 A-O-l A-B-l - 0-1 

2 0 1 A-O A-B -0 

1 0 A-O-C A-B-C -O-C 

3 - - AVO AVB 0 

4 - - A/\O A/\B 0 

5 - - A/\O A/\B 0 

6 - - A¥O A¥B 0 

7 - - A¥O A¥B 0 

3 

B 
B + 1 

B+C 

B-1 

B 

B-C 

- B-1 

-B 

-B-C 

B 

0 

B 

B 

B 

LCC LCU LNZ 

LCN 0 0 0 NewCVNZH 

LC 0 0 1 New CV Old NZH 

LN 0 1 0 Old CV New NZH 

(Nom.) 0 1 1 OldCVNZH 

BCC 1 0 0 Bus .... CVNZHV 

1 0 1 Bus .... CV Old NZH 

1 1 0 Shift Old V Bus .... NZHU 

LSC 1 1 1 ShIft C Old V Old NZH 

Figure 2OC. Condition Code Manipulation, 
Bits 45-47. 

4 5 6 7 

A O+A 0+0 0 
A + 1 O+A+l 0+ 0 + 1 0+1 

A+C O+A+C O+O+C O+C 

A - 1 A-O-l 0- 0-1 -0-1 

A A-O 0-0 -0 

A-C A-O-C O-O-C -O-C 

-A-l O-A-l 0-0-1 0-1 

-A O-A 0-0 0 

-A-C O-A-C O-O-C O-C 

A OVA OVO 0 

0 O/\A 0/\0 0 

A O/\A 0/\0 0 

A O¥A O¥O 0 

A O¥A O¥O 0 

Figure 200. Am2901 Source, Carry-in & Function Select, Bits 20-27. 

DST Aotates 

0 F .... O 

1 NONE 

2 F .... B A .... Y 

3 F .... B 

4 RIGHT F/2 .... B 0/2 .... 0 

5 AIGHT F/2 .... B 

6 LEFT 2F -+ B 20 -+ 0 

7 LEFT 2F -+ B 

Figure 20E. Am2901 Destination Codes, 
Bits 28-30. 

Right Left 

0 MUL ACL 
1 ROA AOL 
2 ASR DRL 
3 LSR LSL 

Figure 20G. Shift & Rotate Control, 
Bits 18-19. 

Figure 20 (Cont.). 

ABMUX A reg Breg 

0 p.WA p.Wa 

1 Rs RD 

2 Rs Rs 

3 AD RD 

Figure 20F. Am2901 A, B Field Selects, 
Bits 40-41. 

STR CLOCK 

0 280ns 

1 240ns 

2 200ns 

3 160ns 

Figure 20H. Microprogrammed System 
Clock Stretch, Bits 42-43~ 
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Carry Flag (Arithmetic) 

Overflow (Two's Complement Arithmetic) 

~--- Negative (Most significant bit = 1) 
for N = 1) 

~---- Zero - (Z = 1 if bits in 
word = 0) 

~-----Half SIgn - (H ~ 1 if bit 7-1) 
(Note: Not half carry) 

~------ User Flag 0 - (Can be set/resetl 
Tested by user only) 

~------- User Flag 1 - (Can be set/resetl 
tested by user only) 

~-------- User Flag 2 - (Can be set/resetl 
tested by user only) 

MPR-674 

Figure 25. 

Eight condition code operaltOns provide all the useful operations 
needed for complete flexibility. They are shown in Figure 26a and 
26b In two different formats. Note that the codes are grouped into 
three categories; arithmetic (C and V), logical/arithmetic (N, Z, H) 
and user (U2, U1 , Uo). 

These eight conditions Include all the necessary and desirable 
features such as updating only the shift carry bit and the ability to 
do operations that read, operate on, and reload the condition 
code register all in one machine cycle (160ns). Also, a feature of 
immense importance where microcoded floating point or fixed 
point math is concerned is the ability to update flags on a cycle by 
cycle basis! An unusual feature. 

Carry/ Negative/Zero/ User Flags 
Overflow C, V Half N, Z, H U2, U1, UO 

7 Shift Bit C,V V No Change No Change 
'6 Shift Bit C,V V Load From Bus Load From Bus 
'5 Load From Bus No Change No Change 
4 Load From Bus Load From Bus Load From Bus 
3 No Change No Change No Change 
2 No Change Update No Change 
1 Update No Change No Change 
0 Update Update No Change 

'Less useful than other codes but pertectly legal. 

Figure 26A. 

Name U2 U1 UO H Z N V C 

Shift MSb or LSb into C NC NC NC NC NC NC NC S 
'Shift into C -
Bus Load Rest B B B B B B NC S 

'Bus Load C & V Flags NC NC NC NC NC NC B B 
Bus Load All Flags B B B B B B B B 
No Changes NC NC NC NC NC NC NC NC 
Update N, Z, H Flags NC NC NC IL IL IL NC NC 
Update C and V Flags NC NC NC NC NC NC IL IL 
Update C, V, N, Z, H NC NC NC IL IL IL IL IL 

IL = updated, NC = unchanged, B = loaded from Internal bus, 
S = Shift Bit 

Figure 26B. 

Am2901 B OUTPUT BUS 

Being a highly structured, modular device, the HEX-29 CPU is 
very bus oriented. The output bus of the Am2g0 1 B's generate the 
addresses and data to the rest of the system devices as well as 
some internal function. The four logical units on this bus (shown in 
Figure 27) are: 

1. Address Out Latches - (System Address bus) 
2. Data Out Latches-(System data bus) 
3. Memory Map/Latches-(Memory Management Features) 
4. Condition Code MUX - (For updating flags from processor) 

Any memory reference requires that an address be valid on the 
system address bus. The source of this address is generally one 
of the Am2901 B internal registers or modifications thereof from 
previous fetch cycles (such as indexed addressing). 

On a write cycle, data must be placed on the system data bus. 
This is accomplished in the same manner as address generation 
except that a different microword bit is used to activate the data 
latches. 

In a multi-user/multi-task/timesharing environment, it is desirable 
to have a powerful memory management scheme. The HEX-29 
CPU implements this via a flexible memory mapping system 
where the upper four bits of the 16-bit address generated by the 
Am2901 B's are 'mapped' into seven address bits and a write 
protect bit. Invalid access traps and one Megabyte address space 
are integral features of this system. The loading of this MAP RAM 
(2 Am29701 's) is also accomplished via the Am2901 B output bus. 

Another important characteristic of the HEX-29 CPU is its ability 
to read, write, test and operate upon the eight condition code flags 
In the byte form. All eight flags can be written to by the Am2901 B's 
at one time, in one microcycle. This is very useful for many flag 
operations and IS absolutely necessary for efficient updating of 
the user flags for interroutine parameter and condition passing. 

The logic of these bussed systems is quite simple. A separate 
microword bit or bit field is used to cause each of these logical 
units on the bus to accept the data bus. Therefore, simple micro­
programming techniques are applicable to thiS busing approach. 

Am2901B INPUT BUS 

Much of the power and modularity of the HEX-29 design is due to 
the highly structured bus approach on the Am2901 B Data Inputs. 
The logical units that can drive this bus (Figure 28) are listed 
below: 

1. Data Input Registers 
2. Swap Input Registers 
3. Microword Data Registers 
4. Clear Upper Byte/Clear Lower Byte/Bit Op LogiC 
5. Condition Code Register 

Data input from the system bus is captured in the data input 
registers and the swap input registers. The data input registers 
bring the upper and lower bytes of the data bus to the corre­
sponding bytes in the Am2901B cascade while the swap Input 
registers switch the upper byte of the data bus to the lower byte on 
the Am2901 B cascade and the lower byte of the data bus to the 
upper byte of the Am2901 B cascade. 

Additionally, logic to set all bits in the upper or lower byte to zeros, 
(clear upper byte and clear lower byte), allow selecting arithmetic 
or logical zeros in either byte field. If the bit set option IS enabled, 
all bits are pulled low except the one selected by the hexadecimal 
value in the low nibble of the nibble latch from an instruction or 
other data source. 

All eight condition code bits can be enabled onto the low byte if 
desired. All flags can thus be sampled by the Am2901B's at once. 
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Data from microword memory from three-state registers in par­
allel with the pipeline register can be enabled onto the upper 
and lower bytes for direct loading of the Am2901 B's from 
microprograms. 

In the absence of any device being enabled onto a particular by1e 
on this bus, It will be pulled up into a logic 1 state. This can be 
useful for masking in logical operations and filling or biasing in 
arithmetic operations. 

An Important factor in the fleXibility of thl~ approach on the 
HEX-29 is that the upper and lower bytes of the data In registers, 
swap In registers, and the clear upper/lower byte logic are sepa­
rately enabled. Also, the condition code register only drives the 
lower byte and the pull-up feature will operate on either byte 
Individually. Thus the upper and lower by1es can be individually 
driven on a 'mix and match' basis from several sources. 

The versatility so generated allows numerous fast processing 
modes. See Table 5 for a list of all of the possible combinations of 
high and low by1e Inputs to the 29018's. 

TABLE 5. 

Into Upper By1e I nto Lower Byte 
of Am2901's of Am2901's 

O. M,croword memory bits P15·P8 M,croword memory bits P7·PO 
1 Bit set value (upper byte) Bit set value (lower byte) 
2 Upper byte - data bus Lower byte - data bus 
3. Upper byte - data bus Upper byte - data bus 
4. Upper byte - data bus Clear lower byte 
5. Upper byte - data bus All high generator 
6. Upper byte - data bus Condition code register 
7. Lower byte - data bus Lower byte - data bus 
8. Lower byte - data bus Upper byte - data bus 
9 Lower byte - data bus Clear lower byte 

10. Lower byte - data bus All high generator 
11 Lower byte - data bus Condition code register 
12. All high generator Lower byte - data bus 
13. All high generator Upper byte - data bus 
14 All high generator Clear lower byte 
15 All high generator All high generator 
16 All high generator Condilion code register 
17 Clear upper byte Lower byte - data bus 
18. Clear upper byte Upper byte - data bus 
19. Clear upper byte All high generator 
20. Clear upper byte Condition code register 

'21. Clear upper byte Clear lower byte 

'Note: Interestingly enough this is the only case In the entire table 
that the hardware CANNOT generate on the bus, but IS the 
ONLY one of these codes that CAN be generated by the AMD 
2901 B slices! (How convement!) 

Examples of uses for some of these modes include: 

1. Clearing upper by1e for 8-bit Index offset 
2. Fast bit set/clear/test/invert operations 
3. Set upper byte high to AND lower byte With upper byte 

change 
4. Clear upper by1e to AND off upper by1e and operate lower 
5. Upper by1e of data bus to lower byte for all by1e ops on upper 

byte 

6. Load defined values from microcode for tamper-proof con­
stants, vectors, etc. 

7. Normal data Input or address Input without swap or modifi­
cation. 

8. Clear upper by1e and data in lOW-bite Immediate ops, etc. 

INTERRUPT CONTROL 

The powerful maskable priority vectored interrupt system (Figure 
29) of the HEX-29 is a direct derivative of the incredible Am2914 
bipolar LSI interrupt control IC. This CirCUit is so well integrated 
that it uses only one microword bit and requires very little support 
circuitry. The general set of operations that can be executed by 
the Am2914IS shown below. For more detailed information on this 
chip see the Am2900 Family Data Book. 

F. Enable Request 
E. Load Mask Register 
D. Disable Request 
C. Clear Mask Register 
B. Bit Set Mask Register 
A. Bit Clear Mask Register 
9. Load Status Register 
8. Set Mask Register 
7. REad Mask Register 
6. Read Status Register 
5. Read Vector 
4. Clear Interrupts Last Vector Read. 
3. Clear Interrupts via M Register 
2. Clear Interrupts via M Bus 
1. Clear all Interrupts 
O. Master Clear 

Flow charts ofthe actions taken in microcode by the HEX-29 CPU 
are shown in Figure 30 and Figure 31. 

DMA CONTROL 
The DMA structure is quite straightforward. There are eight ac­
tive-LOW DMA request lines and eight corresponding DMA 
acknowledge lines. The highest priority requesting a DMA cycle 
at the beginning of the mlcrocycle before DMA will be allowed 
gets an acknowledge signal that lasts up until the DMA cycle - at 
least. 

If no deVices are requesting DMA, the NRQ (no request) bus 
Signal goes LOW. ThiS is an excellent opportunity for dynamic 
RAM Circuitry to refresh sequential rows on each DMA cycle that 
NRQ IS LOW. 

Another input signal DDMA, will overnde all priorities and not 
acknowledge any level of DMA request. ThiS could be used by 
dynamic RAM refresh circuitry when it must be permitted to 
refresh Itself soon or chance losing data. 

Many schemes of DMA handling can be accomplished with this 
simple and uncomplicated priority controlled system. An 
Am74S374 captures the DMA requests (Figure 32) on a cycle by 
cycle basis. An Am2913 prioritizes these requests and acknow­
ledges the highest level request With a three-bit binary code. An 
Am74S138 expands this to the eight bits of DMA acknowledge 
that correspond to the eight input bits. The Am2913 supplies the 
NRQ bus Signal and prOVides for the DDMA bus signal. 
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SAVE MMO IN INTERNAL TEMP REQ. 

D-MMD (SWITCH TO SUPERVISOR) 

SAVE SP (RE) AT PHYSICAL OO4OA 

LOAD SP (RE) FROM PHYSICAL 00409 

PUSH USER MMD (IN TEMP.) ONTO STACK 

~ ____________ ~I=NTE~R=R=U=PT~SEQUENCE 

EXECUTE INSTRUCTION 

NO 

NO 

YES 

PUSH MMO ONTO STACK 

PUSH CC ONTO STACK 

DISABLE ALL LEVELS OF INTERRUPTS 

PUSH P.C. ON STACK 

JUMP INDIRECT ON 
INTERRUPT VECTOR 

EXECUTION OF INTERRUPT 
ROUTINE IN SUPERVISOR. 

SUPERVISOR MAY RE-ENABLE 
INTERRUPTS IF DESIRED. AT 

END OF INTERRUPT PROCESSING 
ROUTINE. THE SUPERVISOR 

RETURNS CONTROL TO USER 
PROGRAM WITH AN 
RTI INSTRUCTION. 

Figure 30. 
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ILLEGAL ATTEMPT OF 
USER TO EXECUTE A 

PROTECTED INSTRUCTION. 
NO OPERATION 

RETURN FROM INTERRUPT HEX 29 

MPR·878 

Figure 31. 
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SYSTEM BUS INTERFACE EXAMPLE 
HEX-64KBS STATIC MEMORY CARD 

It was possible to design the system bus to be very simple to work 
with because the HEX-29 is a microprogrammed device. The 
following section discusses an implementation of a 64k byte static 
memory card for the HEX-29 system bus using Am"9t24 memory 
ICs. The purpose is to show that designing cards that interface 
with the HEX-29 system bus is relatively easy. Note that a design 
for 1/0 devices would be similar to this implementation since 1/0 
devices are memory mapped and share exactly the same set of 
bus signals and timing requirements. 

Starting Irom the left hand of the schematic shown in Figure 33, 
we find that the low 13 bits of the address bus and the four control 
bus signals (CLK, VMA, RIW, and WP) are buffered from the 
system bus by two Afn74S240 ICs and three sections of an 
Am74S244. These are inverting and non-inverting buffers re­
spectively, and offer extremely high current drive (64mA sink 
current) and very high speed (-4 to 6ns) with only very light bus 
loading (400ILA low level). 

Ten of the address lines buffered by these ICs then drive the 
address lines of half of the memory array through series type 
termination resistors. These resistors (-33 ohms) serve to pre­
vent undershooting zero volts by more than the permissible 0.5V 
on negative edge transitions of the address lines. This type of 
termination has the advantage that it does not draw current from 
the driver ICs; it is highly recommended over split termination for 
memory arrays where current loading is negligible, but capacitive 
loading is significant. Note that to further reduce these capacitive 
loading effects, the address lines of only half 01 the memory array 
are driven by one set of buffers. (Find the second set of 
Am74S240 address buffers at the !ar right of the schematic.) 

The remaining 3 address lines that were buffered by the 
Am74S240s drive the A, B, and C inputs of (4) Am74S138 
one-of-eight decoders. These ICs develop the 32 1 k word chip 
selects that enable the appropriate Am9124 memory ICs for read 
and write operations when they are addressed. 

Of course only one of the Am74S1381Cs should be enabled when 
the board is addressed. This is a function of the higher address 
lines, AI8-AI3. Since each Am74S138 is able to select lk word 
blocks of memory, each Am74S138 should be addressable on 8k 
word boundaries. Decoding the upper address lines (A 18-A 13) to 
match selectable 8k boundary addresses is accomplished with 
four Am25LS2521 8-bit equal to comparators, one for each 
Am74S138. 

The DIP switches on the right hand side of each Am25LS2521 
define the conditions under which the corresponding Am74S138 
will be selected. When the eight inputs on the left hand side of 
these chips correspond to the values set on the DI P switch on the 

right, the Am74S138 is enabled. Note that the VMA bus signal 
(Valid Memory Access) must be LOW to enable the 
Am25LS2521. Also note that each 8k word bank can be uncondi­
tionally removed from the $ystem memory space by leaving the 
lowest DIP switch open. Thus the board may be filled in 8k word 
increments if desired. 

The Am74S138 ICs are also enabled by the system clock via the 
CLK signal. Therefore, memory chip selects can only occur dur­
ing the time that the system clock is LOW (called <1>2)' The impor­
tance of this will be discussed shortly. Another Signal that must be 
valid for these ICs to be enabled is the DIS Signal. Whenever the 
R/W signal is LOW (indicating a write) and WP (write protect) is 
HIGH (protect the memory), then the DIS Signal is brought LOW. 
This disables the Am74S138's and blocks the selecting of any 
memory ICs, thereby write protecting all on-board memory. 

Above the memory array on the schematic are the data bus 
buffers, one set for each half. Again, this is done to reduce 
capacitive loading, this time on the data lines. Am74S373 octal 
tri-state latches are used for all eight of these data buffers. The 
enable inputs are driven by the inversion of the system clock bus 
signal so that they are transparent during all of <1>2, which is when 
the data is transferred. The appropriate Am74S373 latches are 
turned on (OE LOW) during read and write signals so that the data 
is buffered in the proper direction. 

The Am26S02 one-shot is used to stretch <1>2 of the system clock 
to meet the access time of the memory. Without this Signal, <1>2 
would last only 80ns and the access time specifications of the 
Am9124 memory ICs would not be met. The Am26S02 is acti­
vated whenever memory ICs on the board are addressed when 
the system clock enters <1>2 (negative edge). Once fired, the 
duration of <1>2 is stretched by 40ns for every 40ns that the STR 
bus signal is held LOW. Since the Am9124 EPC memory de­
vices have an access time of 200ns worst case, <1>2 must be 
stretched by 120ns. 

Summary 

As can be seen, the HEX-29 16-bit design represents a simple, 
straightforward design approach to building a high-performance 
16-bit processor. This design takes advantage of many of the 
features of the Am2901 and Am2909. The instruction set shown 
in this application note is intended to be representative of the 
more common types of instructions to be executed on a machine 
of this class. In addition, microcode could be developed to exe­
cute a great many additional instructions as well as other classes 
of instruction such as entire floating point package. This design 
utilizes microprogram control throughout, and is a good demon­
stration of parallel microprogramming in a most straightforward 
application. 

AMD wishes to thank Mr. Mike Simmons and Mr. Lee McDonald 
of HEX for their work on this invited paper as a part of this 
application note series. 



APPENDIX 

HEX-29 Microcode 

This appendix contains 256 words of HEX-29 microcode. The first 
part is a definition file which defines the HEX-29 hardware struc­
ture for the AMDASM™ assembler. The various inputs to the 
Am2901 are defined via equates while all other microword fields 
are literally defined. The second part is the assembly file which 
symbolically, via terms defined in the definition phase, constructs 
each microword. Each microword begins with an optional label 
(such as RESET:). Next is the Am2909 branch control field, 
followed by all of the remaining control fields. This structure gives 
the appearance of a conventional assembler, i.e., LABEL, OP­
ERATION, OPERANDS. A microinstruction which has no 

Am2909 branch control specified, such as microwords 3 and 4, 
uses microword bits 0-15 (which includes the branch control field) 
to place immediate data directly on the internal Am2901 bus. The 
Am2909 is then forced to "CONTINUE" by the "LIN" field. LIN, 
besides hatching lli the data on the Am2901 bus, disables the 
microprogram branch control register output, causing the "CON­
TINUE" function to be selected in the branch control' PROM (see 
Figure 20B). 

These 256 microwords represent a reasonable subset of the 
HEX-29 standard Instructions, i.e., branch, conditional branch, 
data moves (MDV), and, or, add, sub: etc. 
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: HEX-29 DEFINITION PHASE (PHASE 1) 

~ORD 84 

~ A.M2~"1 REGISTER EQUA'l'IS 
; 
liJi!: EQU .,. 
Rl: EQU , .. 
R2; E~U , .. 
R3: EQU .. 3 
B4: EQC , .. 
R5: 'QU 805 
R6: EQU , .. 
R?: EQU 8#. 
HS: EQU •• S 
RS: EQU .,. 
R1B: EQU ... 
ill: EQU ", 
R121 EQU HOC 
R13: EQU HoD 
R14: EQU '0' 
R15: EQU , .. 
~!M2gel SOURCE (R 5) OPERAND EQUATES 

!Q: 'QU Q'. 
AB. EQU Q01 
ZQ: EQU Q •• 
ZB: EQU Q03 
U; EQU Q" 
Di: EQU QO' 
DQ: EQU QO. 
DZ. EQU Q'. 

: 111291111 ALo }'UNeT ION (R JUNCTION 5) EQUATES 
; 
ADD: EQU QO' ;R+5 
suu: SQU Qol ;5-1 
SUBS: EQU ~ .. ;R-5 
OR. EQU Q'3 ift S 
AND: EQU QO' ;R S 
NOT: EQU Q" 1ft 5 
EXOR: EQU QO. ;R 5 
EXNCR: EQU Q'. IR S 

:AM2SU DESTINATION CONnOL EQUATES 

~REG: EQU 
NOOP: EQU 
RAMA: EQU 
UHF: EQU 
RAMQD: EQU 
RAMD: EQU 
RAMQU: EQU 
RAMU: EQU 
; 

iM291i11: DEl 
; 
HOINE: DEF 
INI: DEl 
; 
~CSD~A: DEF 
SDMA: DEl 

VMA: DEi 
NOVMA.: DE> 
; 
.RITE: DEI 
RUD: DEl 
; 
:sA: DE> 
Hau: DEl 
; 
NOLAD: DEi 
LAD: DIF 

iMM: DIF 
NORMM: DEl 
; 
LMM: DEl 
NOLMM: DEl 

haRL: DEl' 
eLRLO: DEJ 
CLRBI. DEl 
NOGLE: DIf 

S\lPHL: DEl 
S'lPLO: DIf 
SWPBI: DEl 
NOSWP; DIF 

DI~HLI DEl 
DINLO; DE! 
DINHI: DEl 
tlODIN; Dil 

~OSDAI DE! 
SDA.: Dl:F 

RCC; DEl 
NORce: DEl 

HOLGC: DEF 
LCC: DEY 
Ley: DE> 
LeCLev: DEI' 
LNZ: DIF 
LUCC: DE> 
LHIev; DE1 
LUCCV: DE1 

~OLDI: DEF 
tDt: DEl 

~OSTR: "IF 
STR1: DEF 
STR2: DEl 
STR3: DEl 

I"-liAMWB: DEF 
RSHD: DEF 
RSiS: DEl 
RDRD: DIF 

Q" iF Q I T=' 
Q#I ; NO'l'HI NG t T=J' 
Q •• iF 11 I T-l 
Q#3 iF :a • y .. r 
Q" ;F/2:a • Q/2 Q I Y;1 
Q#5 iF/2 ]I t I"'F 
QO. i 2F II I 2Q Q • Y=F 
Q'. ;21 11 , 1=' 

24I,4VI,4YX ,1X ,3VX.1I,3YI.1I,3YX, 2131 

B#e,1531 
1#1,63]( 

ll,B#!II,62I 
lX,B"l,621 

2X,BN0,61X 
2X,BII:1,61X 

3X,BM0,60X 
:3X,BI#1,601 

41,BI#!II,591 
4I,B#1.591 

::I,B#0,58X 
5X,BIfl,58I 

61,BI#0.571 
6X,B#1,571 

71,11#0.561 
n.B#l,S61 

ex. B#e0. 541 
8X,lI#01,54X 
eX,BlUe.54X 
ax ,B#11 .541 

101.B'00,521 
1.1'X. :8#01. 521 
teX , Blf1e,521 
HlIX,:8#11,52X 

12X,1I1100,50X 
12X, BII!U, 50X 
12I,BN10,50X 
12I,Blll1,50I 

14X,B#0,491 
HI,Blll,49X 

15X,B"e,4ex 
15I,Blll,481 

16X,QII0,45X 
16X,Q#1,451 
16X,Q#2.45X 
16X,QII3,451 
16I,Q#4,45X 
16X,Q#5,451 
16X,Q#6,45X 
16X,Q#7,45X 

19X,B#0,44X 
19X ,Ji#l,44X 

20I,B#00,42X 
20X ,B#el,42X 
20X,U10,42X 
201,BII11,42X 

221 ,M00, 401 
22X.1#01,40X 
22l,BNle,,,ex 
22I,B#11 ,401 

;Ito.E ... INTERRUPT LOGIC EMULE 

ISDM! .. SYNC DMA 

HALID MEMORY ACCESS THIS CYCLE 

IREAD/NOT-WRITE MIlMOR! 

;BUS AVAILAlILE THIS CYCLE 

;LAD '" ENAB TRANSPARENT ADDR LATCH 

IREAD MEMORY MAP 

;LOAD MEHORI MAP 

; CLEAR HI/LO BYTE INTERNAL BUS 

;SWAP DUA HI/LO INTERN!L BUS 

;DATA IN HI/LO INTERNAt BUS 

;SD! '" SELECT MICROWORD BITS 15-e 
; TO I~TERNAL :BUS 

iREAD CC TO INTER-NAt BUS 

iCC HUX SELECT 

JLDI ., LATCH DATA IN, SWAPPED & UNSWAPPED 

;STH • CLOCK STRETCH CO~TROL 

;2901 A.B HUI SELECT 

; 
NOFTCH: DEP 
FETCH: DEl 

~ocn: DEi 
~n: Dil 

NOClA: D;;F 
CIA: DEI 

BCLMUL: DEF 
IWLiCR: DEl 
DRLASR: DEi 
LSLLSB: DEl 

~OLIN; DEl 
LIN: DEF 

~Rce: DEl 
:BRCl: DEI 
JlBU: DEl 
:BRil: DEi 
BRNS: DEl 
BRNl: Dil 
BRZ0: DEF 
BRZ1: DEl 
BliBS0: DEi 
lIRBSl; DEl' 
BBLZS: DEl 
lIRLZl: DtF 
IRBLT0: DEl 
lIRHLT1: DEl 
lIRlR01 DEl 
lIRIHl: DII 
BRANCH: DEl 
CALL: DEl 
CNII DEl 
RTSZ1: DEi' 
RET: DEl 
lIIi.IKMAP: DIF 
CONTNUE: DIF 

tATA: DEl 
; 

iND 

321.1"0,311 ;nTCH '" FETCH INSTRUCTION THIS CYCLE 
~2X,ln,31I 

361,B#0,27X ~ClB " CARRY-IN Mt'X SELECT l!IT B 
361,1I#1,21X 

4Zl,BlFI,231 ;CIA '" CARItY-IN HUX SELECT BIT A 
401,11#0,231 

441,11100,181 ;SHIFT 6. ROTATE MUX CTL BITS 
44X,II"ll.181 
44X ,:8#10 ,18X 
44X,I"11,181 

461,INt,17X iLl'l'CR-IN LOW' tHBBLE or DATA BiJS 
461,1#1,171 

47X,I#80000,12X ;2909 NEX'l' INSTRUCTION COt..TROL 
47X,Pl01i101H,12X 
47X.)#80810,121 
471, B#018011,12X 
471,11#00100,121 
471 .1I#01U01 ,121 
471,1#00110,121 
47I,Btt00111.12X 
4?X ,BII0101"',12X 
471,11101001,121 
471.1#01010,121 
4'1X ,11#01011,121 
4:?X,1I111 11110, 121 
471.B101181,121 
471,11#11110.121 
47I,B#81111 ,121 
47I.B#10000,121 
471 .1III1S010 ,121 
471,11111188.121 
471,1#11110,121 
47I,B#11000,12J 
47X,I#11110,12X 
t7X,BI'11111,12X 

48X ,16VD#e000 ;M! CROWORD DATA 

; HEX-29 ""ICROPROGRAt'I ASSEMBLY PHASE . . 
; (FIRST 256 MICROPROGRAM 'II0RDS) 
; 
; 

iESET: 
I 
I 
I 
I 
I 

nETeRI 
I 
I 
I 
I 
I 

CONTNUl 

CONThUE 

CO folTNUE 

&. AH2911 RI!! ,RS • QJtrG ,ADD ,AQ 
6. NOINE 6. SDHA &. HOVMA &. READ 
&. U & NOLAD &. ,.,ORHM &. LMM 6. fl,OCLB 
50 NOS~P 5. NOIllN &. NOSDA &. NORCC So LCCLC' 
& NOLDI &. NOSTR &. MWAM'IB 6. NOFTCF &. NOCII 
&. NOCI A &. RCLMUL So NOl IN 

&. AM2SS1 H0 , Re , QREG ,ADD ,.lQ 
&. f<OINE &. NOSDM! So NOVHA &. READ 
&. 1IA &. NOLAD Ii. NORHM 6. LHH &. hOCIB 
6. ~OSWP &. HODIN Ii. NOSDA & t.ORCC &. LceLev 
&. NOLDI &. NOSTR &. HWAH"'! &. NOFTCB &. Noe IB 
&. NOClA 6. RCLMUL So NOLIN 

& AH2911 R0 • R0 , r.OOP • AND ,DZ 
&. NOINE &. NOSDHA &. ~OVH1 &. WRITE 
& NOBA &. NOUD Go NORt'I!'! &. NOLMH &. NoeLB 
&. NOS1IP 6. NODIN 6. NOSDA 6. r.ORCC &. LeCLCV 
&. NOLDI 6. NOSTR 6. H1I1M'1 6. NOF'l'CP &. NOCII 
&. NOCl! 6. RCLMUL &. NOLIN 

&. AH2901 R0 ,R0 ,NOOP, OR ,DZ 
&. IN! &. SDMA 6. NOVHA &. VRIU 
&. NODA Ii. NOLAD Ii. NORHH &. LHM &. NOCLB 
&. NOSWP &. NODn. &. SD! Ii. NORCC &. LCCLCV 
& NOLDI &. NOSTR Ii. HWAHiB &. HOFTCB &. NoelD 
&. NOClA &. RCLHUL &. LIN &. DAT A H#010D 

&. &1'12901 R15 R15, 'UMF • OR ,DZ 
Ii. INE Ii. SD!'!A &. hOVHA &. BEAD 
&. 111 &. NOLAD &. NORHI'! &. LHH &. NOCLl! 
&. NOSWP &. hODIN &. SDA &. NORce &. LeCLCV 
& NOLDI &. NOSTB So HWAMIrIlI &. HOFTCH &. NOCIB 
&. NOClA &. RCLMUL &. LIN &. DATA H#0200 

BRUCH InTCR &. AH29fJ1 Re ,R0 , QREG • ADD , AQ 
&. NOINE &. NOSDHl &. NOVMA Ii. READ 
&. B1 &. NOLAD &. NORHI'! &. L!'!M &. NOCLl! 
&. NOSWP & NODIN & NOSIlA &. NORCC &. LCCLCV 
&. NOLDI &. NOSTR So MWAHWB &. NOFTCR &. NOCID 
&. NOCIA &. RCLHUL &. NOLIN 

ORG B#0008 

&. AM2901 H15 ,R1S • RAMA ,ADD ,ZA 
&. NOINE &. SDHA &. VH! &. READ 
&. NODA &. LAD &. NORMM &. LMM &. ,.OCLB 
Ii. NOSWP &. NODIN &. NOSDA &. NORCC &. LCCtCi 
&. tDI &. NOSTR &. HlIAHVB Ii. rETCH &. NOell! 
&. HOCIA &. HeLMUL &. LIN &. DATA HNne0 

I:-lSTR: BRIHMAP IRR &. AM2901 R15 ,H15 ,RAHY , ADD , ZB 
I 
I 
I 
I 
I 

iiRA+: 
I 
I 

i 
I 

BRA-: 
I 
I 

&. t>.OINE &. ~OSDMA &. NOVHA &. READ 
&. BA &. LAD &. NORHI": &. LMM Ii. NOCLD 
&. NOS~P &. DINiL So hOSt! &. NORCC &. LCCLCV 
&. ~OLDI &. NOSTR &. M1IAM1IB &. NOFTCR Ii. hOCIB 
&. CIA &. RCLMUL &. NOLIN 

ORG H#000C 

bUNCH INSTR &. AM2901 itS • R15 • RAMi' • ADD ,Dl 
&. ~OINE &. SDH! &. VHA &. READ 
&. NOU &. LAD &. "OHMM &. LMM &. CLRtO 
& r.JOSVP &. DINHI &. "OSDA &. NORCC &. LCCLCV 
&. LDl &. NOSTR (" MWAHW'B &. FETCH "Nocn 
&. NOClA &. RCLHUL &. NOLIto. 

BRANCH INSTR &. AM2901 R15 • R15 t R!I'Il ,ADD ,DA 
&. r.J01NE &. SDMA &. iH! &. READ 
&. .. OU &. UD & to.CRHM &. LHH &. hOCLB: 



bSR.;.: 
I 
I 
I 
I 
I 

BSR-: 
I 
I 
I 
I 
I 

BC+: 
I 
I 
I 
I 
I 

BC-: 
I 
I 
I 
I 
I 

BNC';': 
I 
I 

~ 
I 

BNC-: 
I 
I 
I 
I 
I 

BY.;.: 
I 
I 
I 
I 
I 

Bi-: 
I 
I 
I 
I 
I 

BN'.;.. 
I 
I 
I 
I 
I 

Ii NOSWP &. DINHI &. NOSDA &. NORCC &. lCCLC' 
&. LnI So NOS'!R So MWAMd So FETOH &. NOOIB 
So NOOlA &. RCLMUL &. hOLIN 

CON'INUE &. lM2981 R14 ,R14. ,RAMr • sun • ZA 
&. NOlfoIl &. NOSDMA &. NO,MA &. READ 
&. BA &. LAD 6. NORMI'I &. LMM &. NOCLB 
&. NOSWP &. NOTlIN &. NOSDA &. NOliCC &. LOCLO' 
&. NOLDI &. NOSTR 5. HWAMwB &. NOlTOH &. NOOIB 
'" ttOCIA &. RCLMUL &. hOLI" 

lIilAhCE. liiTCH &. AM2981 R15 • R15 • RAM! • !DD • DA 
&. hOlNE &. NOSDM! &. VM! 6. WRITE 
&. hvBA &. NOLAD &. NORMI'! &. LMM &. CLItLO 
s. NOSWP 6. DINHI &. NOSDA &. NORCO &. LeCLCi 
&. NOLDI &. NOSTa 6. MUHwB &. HonCH &. NOCIB 
6. NOCIA &. RCLMUL 6. hOLIK 

COhTfoIUE &. !H2901 R14 • R14 ,RAMF • SUlIR • Z! 
&. toOINE &. NOSDH! &. hOVl'" &. READ 
&. BA &. 1.1D &. NORtll1 &. LMM &. NOCLI 
&. NOSWP &. NODIN 6. NOSDA &. NORCC &. LCCLCi 
&. NOLDI &. NOSTR &. MUHU .& NOlTOB &. NOCIB 
&. NOel! &. RCLMUL &. NOLIN 

DRAhCH IFErCH &. lM2901 R15 ,R15 • RAMA • ADD • DA 
5. t.lOINE &. NOSDHA &. it'lA &. WRITE 
&. NOBA &. NOLAD &. hORMM &. LMH &. NOClB 
&. NOSWP &. DINHI 50 NOSDA &. NOHCC &. LCCLCV 
&. NOlDI &. KOS'lR &. MV!MWB &. NOrTCR &. hOClB 
& NOClA &. RCLI'IUl 5. NOLIN 

lIFC0 IFETCd &. .'M29U R15 ,R15 • QREG • ADD • D1 
&. ~OINE &. NOSDMA &. NOiMA &. READ 
&. BA &. NOLAD &. NORM'" 5. LMM &. CLHLO 
&. NOSWP &. DINHI & NOSD! & NORCC & LCCLOV 
&. NOL!)] & NOS1'R 5. MW!MWB &. NOFTCH &. NOCIll 
& ttOCIA 5. RCLMUL &. NOLIN 

BRANCH INSTR &. AM2901 R15 I R15 ,RAMF • ADD • ZQ 
& ,.OINE &. SDM" &. VM! 5. READ 
&. NOBA &. LAD &. ttORl'lf" &. Lf"M &. ttOCllI 
&. NOSWP &. NODItt &. ttOSD! & NORCC &. LCCLC' 
& tnI &. NOSTR &. MWAMII:P & nTCH 5. NOCIB 
6. NOClA,&' RCLMUL &. NOLIN 

BRce IrnCH & I\M29B1 R15 • R1~ • QREG • ADD • DA 
& NOINE &. NOSIIMl &. HOVMA 6. READ 
& BA & N01.1D &. NORMM & LMM & NOCLlI 
&. NOSWP &. DINHI &. NOSD! &. NCRCC &. lCCLCV 
&. NOLDI & ttOSTR &. MWAHWB 5. NCiTCe 5. NOCIII 
&. NOCH & RCLMIJL &. ~OlIfoi 

BRANCH If\STR & iM2901 R1~ • R15 • RAM!' • ADD • ZQ 
& NOINE & SDf"A &. YMi &. READ 
&. hOBA &. LAD &. hORI1H & LI1I1 &. NOCLD 
&. NOSYP 5. NODIN & NOSDA & NORCC &. LCCLCY 
&. LDI &. NOSTI &. MVAI1WB &. FITCB &. NOCll! 
& NOClA &. RCLMUL & NOLIN 

BRCI IrETCH &. A1'12901 R15 • R15 • QRiG • ADD • D! 
&. NOINE &. NOSDM! &. NOiHA &. RUD 
&. lA & hOLAD &. toORI"IM 5. lMI"I 6. CL1I.LO 
&. NOSwP &. JHNHI &. NOS tA &. NORCC &. LCCLCY 
&. NOLDI &. NOSTR &. MV1HYB So Moncp 5. NOC III 
& NOCI! &. RCLMUL &. NOLIN 

BRAhCB INSt'R &. AM29"1 Ill5 • R15 • RAMI' • ADD • ZQ 
&. NOINE &. SIlHA &. YHA &. READ 
&. NCIBA &. LAD &. NORHf"I &. LMH 5. NOCLI 
& NOSwP &. NODIN &. NOSDA 6, NORCC &. lCCLCV 
&. lDI &. NOSTa & HVAHWB &. FEilCR 5. NOCIlI 
5. NOClA &. RCLMUl & NOLIN 

BRC 1 IliTCR 6. I\H2981 i1,} • R15 • Qat:; • ADD • D! 
&. NOINE & NOSDMl &. ttOYMl & READ 
& 1I! &. NOLAD 5. NORMM &. lMM 6. NOCLB 
&. NOSWP 6. DINHI &. NOSDA & NOPCC &. LCCLCi 
6. NOLDI &. NOS'l'R &. MIfAI1WB 6. NonCH 5. NOCID 
&. NOClA & RCLMUL &. NOLIN 

BRANCH INSTR &. !112901 R15 • R15 • R!MF • !DD ,ZQ 
&. NOINE 6. SDMA & YH! & READ 
&. NOllA &. LAD &. hORMM & lMM &. NOCLli 
&. NOSWP & NODIN & NOSDA & hORCC &. LCClCV 
&. LDI &. NOSTR 50 MWAMWB 5. FETCH &. NOC IB 
&. NOOlA &. RCLMUL & NOLIft 

BRVe IrETCH & !H2901 R15 • R15 ,QiEG ,ADD ,D! 
&. NOINE & NOSDM! & NOYMA &. READ 
&. BA &. t.lOLAD 5. NORMM &. LMM 5. CLlILO 
&. NOSWP &. DIN?I & NOSD! &. toOiCC 5. leeLC' 
5. NOLDI &. NOSTR &. MWAI1'IB 5. NCrTCH &. NOCIB 
&. MOClA &. RClMUL 5. NOLIN 

BR!hCH INSTR &. AM291H R15 • HIS • RAMF ,ADD • ZQ 
&. NOINE &. SDM! &. 'MA & READ 
&. NOB! &. LAD & NOR 11M &. LMM &. hOCLB 
&. NOSWP &. NODIN & NOSDA &. NORCC & LCCLCY 
& LDt & NOSTR &. MWAMIIB &. FETCH &. NOCIB 
& NOCIA &. RClMUL 5. NOLIN 

BRV0 IFJ:TCH & AH.£9f.ll R15 • H15 • QREG • ADD ,D! 
& NOINE &. NOSDI1! &. NOiMA &. READ 
&. 1I! &. HOLAD 5. NORMM &. LMM & NOCllI 
&. Naswp & DINbl & NOSDA & NORCC &. LCCLC' 
&. NOLDI &. NOSTR &. MWAMWlI &. NOFTCH &. NOCIli 
& NOCIA &. RCLMUl & NOtIN 

BlnCE IhSTR &. AM29e1 US • R15 ,RAMF I ADD • ZQ 
&. NOIn &. SDM! 6. iMl &. READ 
&. NOB! &. LAD &. NORMM &. LMM &. NOCLD 
&. NOSWP &. MODlh &. NOSD! &. NORCC 5. LeCLC' 
-'i. LDI &. NOSTR &. MWAMWB &. FETCH &. NOCIlI 
&. NOCI! & RClMUL &. NOtIN 

BRYl IrETCH &. IM2901 R15 • R15 • QRIG • ADD • DA 
&. NOItt[ & NOSDI'Il & NOYMA &. READ 
&. BJ. & NOLAD &. NORMM & LMM &. CLRtO 
&. NOSWP &. DINHI &. NOSD! &. HORce &. LCCLC' 
&. PlOLDI &. NOSTR & MWAMWB &. NOFTCH & NOC IB 
&. NOCI! &. RCLMUL &. NOLIN 

BRANCH INSTR & !M2981 R15 • R15 ,RAMr ,ADD I ZQ 
&. NOINE 5. SDM! &. YMA & READ 
&. NOB! &. LAD & NORMM &. LtlM &. NoeLi 
5. MOSWP 5. NODJN &. NOSD! &. NORCC &. LCCLCV 

Bt.V-: 
I 
I 
I 
I 
I 

BNY.;.: 
I 
I 
I 
I 
I 

B\-: 
I 
I 
I 
I 
I 

l!Nto.;.: 
I 
I 
I 
I 
I 

:B~N-: 

I 
I 
I 
I 
I 

EZ.;.: 
I 
I 
I 
I 
I 

BZ-: 
I 
I 
I 
I 
I 

&. LDI &. NOSTH &. MW!H~B &. JETCR &. NOCIlI 
&. NOCU &. ROLMUL &. NOLIN 

BRU HnCH &. AM2901 RlS • R15 • QREG • ADD I D1 
&. NOINE &. hOSDI'I! &. MO,I1A &. RIAD 
&. BA &. NOLAD &. MORI'IM &. LMI'I & NOCLI 
& NOSIIP & DINBI &. NOSDA &. NORCC &. LOCLCV 
50 NOLDI &. MOSTR & MWAMWB &. NOlTCH &. NOeIB 
&. NOCU &. iCLMOL &. NOLIN 

BUNCH INS'rR t :~~~;1 &R~~I1! I l1S,I1A' Bt~:UD lDD I ZQ 
&. NOB! &. LAD &. NORH'" &. LI1M &. NOCLI 
&. NOSWP &. NODlh &. NOSDA &. NORCC 6. LCCLC' 
&. LDI & NOS'rR &. I1W!MWB & FEfCR &. NOC III 
& NOClA &. RCLMUL &. NOLIN 

IIRh0 IrETCR & AI'I2901 11:15 • U5 • QREG • ADD I DA 
&. NOlNE &. NOSDM! &. MOVHA &. HEAD 
&. BA &. NOUD &. NORMM &. LI1M &. CLRtO 
&. NOSWP &. DIMHI &. NOSDA &. NORCC &. LCCLCi 
& NOLDI &. NOSTR &. HWAHIIB &. NonCH &. NOCII 
&. NOClA &. !CLMUL &. NOLIN 

BUhCB aSTR 5. AH298! R15 • R15 • RAMF • ADD • ZQ 
& NOINE &. SDM! &. VMA &. READ 
& NOIIA &. LAD & NORMM &. LMM &. NOClB 
&. NOSVP 5. NODI N &. NOSDA &. NORCC &. LCCLe, 
& LDI &. NOST! & MW!I1WB &. FETCH &. NOCn 
& NOCIA & RCLMUL &. !lOLlN 

Blt.0 IFETCR &. !M2901 R15 • H15 • QB:i:G • ADD • D! 
&. NOINE &. NOSDMA &. NOVM! &. READ 
&. BA &. NOLAD & NORMM &. ll1M & MOClB 
&. NOSW'P &. DINEI &. NOSDA &. NORCC &. LCCLCV 
5. t.OLDI &. Nosn &. I1WAMWB &. NOlTCH &. NOCIB 
5. NOCIA Ii. RClMUL &. NOI IN 

BRANCH INSTR &. AI'I2901 R15 ,HIS • RAH!' • ADD I ZQ 
&. NOINE & SDMA &. iMl &. READ 
& NOBA &. LAD &. NOHMI'! &. LMM &. MOCLlI 
& NOSYP &. NODIN & NOSDA & NORCC &. LCCLC' 
& LDI &. NOS'l'R &. I1VAMWB &. rETCR & NOC III 
& NOC IA &. ROLMUL &. NOLI N 

BRr..! IrETCR &. AM2gel 11.15 • R15 I QRIG I ADD • D1 
5. NOlNE & NOSDM! &. NOiMA &. HEAD 
&. BJ. &. NOLAD &. NORMM &. LI1M & CLRto 
&. NOSWP &. DINHI &. NOSD! &. NORCC &. LCCLCi 
&. hOLD I & NOSTR &. MIf!MWB &. NonCH & NOCIB 
&. NOCI! &. RCLMUL &. NOLIN 

lIRU.CH INsn &. A"'2901 R15 • R15 • RAMP • ADD • ZQ 
5. tWINE &. SDH! &. il1A &. DAD 
&. NOllA & LAD &. NORMI1 &. LI1M &. HOCLI 
&. NOSVP &. NODIN &. hOSDA &. NORCC 6. LCCLC' 
oS. LDI &. NOSTR &. MVAMWB &. rETCH &. NOCII 
& NOClA &. RCLMUL & NOLIN 

IIRt<o1 IrETCa & A"'291i11 R15 ,R15 • QREG • ADD • DA 
& NOINl: &. NOSDH! &. NOVHA &. READ 
& B.l 6. NOLAD &. NORM" 6. LMM &. HOCLlI 

~ :gt~~ t :~:~i t ~~~~:B ~ :g~~~H t ~g~~~' 
& NOCIA &. RCLMUL &. NOLIN 

BUNCH INS'lR &. !M2901 R15 • R15 • RAMr ,ADD • ZQ 
&. NOINE &. SDMA &. iMl & RUD 
&. NOllA & LAD &. HORMM &. LMI1 &. NOCLI 
&. NOSVP &. NODIN & NOSDA &. HORCC &. LOCLC' 
&. LDI &. NOSTR &. MWAMYB &. rETCR &. NOCII 
& NOCU &. RCLMUL & NOLIN 

BRZ0 IFETCH & AM291i11 R15 ,R15 • QREG • 1DD I DA 
&. hOINE & NOSDM! 5. hOVMA &. BE!D 
& lIJ. &. NOLAD &. NOiM" &. LI1I1 &. CLILO 
5. NOSWP &. DaBI &. NOSDA &. NORCC &. LCCLCV 
&. NOLDI &. NOSTR &. HWAMWB &. NOlTCH &. NOCIlI 
&. NOCI! &. RCLMUt &. NOLlN 

BRHCH IhSTR & !M291i11 R15 • R15 • RAHr • iDD • ZQ 
&. NOINE 5. SDM! &. YM! &. READ 
& NOBA & LAD &. NORMM &. LI1M & NOCLB 
&. NOSVP & NODIH & NOSIlA &. NORCC &. lCCLCi 
& LDI &. NOSTI &. HWAMWB &. FETCH &. NOC III 
&. NOCIA &. RCLMUl & NOLIN 

BRZ0 0008 &. AI'42901 H15 ,R15 ,QREG • ADD • D! 
&. NOINE & NOSDM! &. NO'MA &. RUD 
&. l!A & toOLAD &. NORMM &. LMI1 &. NOCLB 
& NOSWP &. DINHI &. NOSDA &. NORCC & LCClCi 
&. NOLDI &. NOSTI & 11'11I1I11B & NOnCR &. NOCIB 
& NOCl! &. RCLMUL 5. NOLIN 

BRANCH INSTR 5. AM2901 R15 ,R15 • RAMF • ADD • ZQ 
&. NOINE 5. SDMA & VI1A 5. READ 
&. NOB! &. LAD &. NORHM g; lMM & NOCU 
& NOSlI'P &. NODIN 6. NOSDA & NORCC & LCCLCV 
5. LDI &. NOSTR 5. MWAM'iB & FETCH 5. NOC IB 
6. NOCIA &. HCLMUL &. NOLIN 

BNZ+; 1IHZl 0088 &. AM29£11 R15 IRIS • QRiG • ADD I D! 
I 
I 
I 
I 
I 

BNZ-; 
I 
I 
I 
I 
I 

& NOlNE &. NOSDMJ. & NOiMA &. READ 
&. BA &. MaLAD & NORMM &. lMI1 &. CLRLO 
&. NOSVP & DINHI & NOSDA &. NORCC &. LCCLC' 
5. NOLDI &. NOSTR &. MIlAMWB 5. NOFTCR &. NOCIB 
&. NOClA &. RCLf"UL & NOLIN 

BRANCH It.lSTR & AM291i11 H15 ,HIS • RAMr • ADD • ZQ 
&. NOINE & SDH! &. iHA & READ 
So NOB! &. LAD &. NORHM & LMM &. NOCLB 
&. NOSliP &. NODIN &. NOSDA &. NORCC &. LCClCi 
&. lDI &. NOSTR &. HUMWB & nTCH 5. NOC IB 
&. NOCl! &. RCLI1Ut & NOLIN 

BRZI 0008 &. 11'12981 115 ,R15 • QRlG • ADD • DA 
& NOINE &. NOSDMJ. &. NOVMA &. RUD 
&. B! &. MOLAD &. NORMM &. LMH &. NOCLB 
&. NOSVP &. DINHI &. NOSDA &. NORCC &. LCCLCi 
&. NOLDI &. NOSTR &. ""AMWB &. NOlTCB &. NOCIB 
&. HOClA &. HCLI1UL &. NOLIh 

BRANCH INSTR &. AM2901 HIS ,R15 • UMr • ADD I ZQ 
&. )IOINE &. SDMA &. VMA &. RUD 
&. NOBA 6. LAD & NORMM &. LMH &. NOCLB 
&. NOSWP & NOD II' &. hOSDA &. NCRCC & LCCLCV 
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BB+: 
I 
I 
I 

~ 

)8-; 
I 
I 
I 
I 
I 

JNS. ~ 
I 
I 
I 
I 
I 

lINB-: 
I 

~ 
I 
I 

&. 1.Dl &. NaSTa "HVlHWlI 6. rlTCH 6. Noen 
&. NoeU &. ICLHut " NOLIN 

IRBSe IllTeR" &H29.l 115 • 115 • QRIG • ADD • D1 
"NalHE &. NOSDf1! "HOVMA "IUD 
&. u. &. MOLAD &. NORI'II1 &. LHH &. CLaW 
&. NOSWP &. DINBI &. NOSDA &. NOICC &. LCCLe, 
&. MOLD I &. HOSTI &. l'lWAHVB &. lIonCR &. Hoell 
&. MOCU. &. RCLHUL 6. NOLIN 

BUNCH INS'll &. 11'12981 815 I 815 • RAM' ,ADD ,ZQ 
5. NOIrU: "S.Pf"IA &. VI"I1 &. llAD 
&. NOllA &. LAD &. NORH" &. IoHH &. NOCLI 
&. NOSVP &. NODIN "NOSD.l "NORce &. LeCLe, 
&. tDI &. NOStB &. HV1HWlI &. FETCB &. Noen 
&. MOCIA &. RCLHUL &. NOLIN 

BRUSS nneR &. Af'I2901 115 ,115 ,QREG • ADD I DA 
&. MOINE &. NDstN'tJ. &. NOv"'1 &. RIAD 
&. Bi &. NOL1D &. NORHI"! &. LHH 6. Moeu 
6. NOSWP &. DINHI &. NOSD! &. NORce &. LeCLe, 
&. NOLDt &. NOSTI &. HV.lMWB &. NOFTeR & Noell 
&. HOClA &. RCLHUL &. NOLU. 

BiAttC& INS'l'R &. .lf12981 115 • 115 • RAMF • ADD • ZQ 
& ,.OINE &. Sl)HA &. '1'11 &. aUD 
6. NOBA &. LAD &. hOR"'" &. LM!'! &. ~CCLll 
5. NOSWP &. NODIN &. NOSD! &. NORCC C. LeCLev 
&. LDI &. NOST! So I'1WlI'1~1I &. fiTCH &. NOClB 
&. NOClA &. RCLMUL So NOLIN 

JRBS1 IFETCR &. AI'12901 115 • 115 • QIEG • AIlD • DA 
&. NOINE &. NOSDI'1! &. ~OVI'1A &. RU.D 
&. JA &. NaIAD &. hORMM &. LMI'1 &. ClllLO 
&. NOSWP &. DI,.HI &. NOSDA &. NORCC §. LCCLCY 
&. NOLDI &. NOST! &. I'1VA ... "1I &. NOlTCH &. NOC IJ 
&. NOCU &. RCLHUL &. NOUN 

BRAto.CH INSTR &. .6H2981 R15 • U5 • RAI'1F • ADD • ZQ 
&. NOIHI &. SDMA &. VM! &. RElD 
&. NOU &. LAD &. NORMH &. LHH &. hOCLJ 
&. NOSWP &. NODIN &. NOSDA &. NORCC &. LCCLCY 
&. LDI &. NOS'l'R &. H'i'A"'WB &. lETCl' &. NOCIB 
&. NOCU &. RCL~UL &. NOLIN 

BRBS1 UErCR &. It'I291U 115 • 115 • QIEG • ADD • D! 
&. NOIM! &. MOSDMA &. NOYMA &. RUD 
&. Bl &. NOL1D &. NORMH &. LHM &. NOCLB 
&. hOSWP &. DINHI &. NOSDA &. NOICC &. LCCLC' 
&. NOLDl &. NOSn. &. MUI'1WB 6. NOFTCH &. NOClB 
&. NOClA &. HCLMUL &. NOLIN 

BRnCH INS'!'R &. Af'I2ge1 U5 • 115 • R1Ml • ADD ,ZQ 
&. hOINE &. SDM! &. VH! &. REiD 
&. NOBA &. LAD &. NORMM &. 1.1'11'1 &. NOCL) 
&. NOSIfP &. NODIN &. NOSDA &. NORCC &. LCCtC' 
50 LDI &. NOSTR &. MWll'ltIB &. llTCH &. MaC IB 
&. hOCU &. BeLHUL &. NOLIN 

DBNZ'" I CONThUI 
I 

&. AI'12981 89 ,89 • RAMP I SUBi ,Zl 
&. HOINI &. SDHA &. NOVH! &. i!i..lD 

I 
I 
I 
I 

DBNZ-: 
I 

~ 
I 
I 

&. BJ. &. NOLAD &. NORMM &. LMH &. HOCLI 
&. NOSWP &. NODIH So NOSDA 5. NORce &. LeeLC' 
&. NOLDI &. NOSTR &. HVAHWB &. NonCD &. NOCIB 
&. NOCU 5. RCLMUL &. NOLIN 

IIRLZl IPlTCB 6. Af'I2981 115 I 115 • QRJ.G • 10D I Dl 
&. NOINE &. NOSDI'IA 5. NOYt'! &. BUD 
&. B..l 6. NOUD 6. NOBMH &. LI'1M &. CLRLO 
So NOSWP &. DINHI &. NOSDA &. NORCC &. LCCLCY 
&. NOLDI &. NOSTR &. MWAHVB &. NOrTCR &. NOC IB 
&. NOCU &. RCLHUL &. NOLIN 

BRANCH INSTJi &. !M2981 115 • R15 I RAHr ,OR ,ZQ 
5, NOIN! &. SDMA &. TH& & RIAD 
&. NOB.! S. LAD &. NDRHH &. 1.HH &. NOCLB 
So NOSWP &. NODlh &. NOSDA &. NORCC &. LCCLC' 
6. LDI &. NOSTa &. MWJ.MIiIII &. FI'l'CH &. NOCIB 
&. NOCU 6. RCLI'IUL &. NOLlIw 

CONfNDE &. &1129"1 19 I R9 • RAMF • SUBft • ZA 
&. NOINE &. SDH& &. NOVMA 6. RUD 
&. BJ. &. NOLAD "NORMH &. LMH &. NOCLB 
&. NOS.P S. NODIN &. NosnA &. NOBCC &. LCCLCV 
&. NOLDI &. NOSTa &. MWAH.II 6. NOFTCH &. NOCIB 
&. NOCU &. RCL"IUL &. NeL u.: 

BUZl IFE'l'CP So Af'I2ge1 11.15 • a15 • QBEG • ADD • DA 
&. NOIN! &. NOSDHl &. tlOVMA &. RU.D 
&. BA &. NOLAD &. NORI1,.. &. LMH &. NOCLB 
&. HOSWP &. DINBI &. NOSDA &. NORce "LCCLCV 
&. NOLDI &. NOSTR &. HWAMWB &. NOlTCB &. NOCIB 
&. NOCI! &. RCLMUL &. NOLIN 

BRANCH INSTR &. AM29fH 115 ,115 I RiMl ,OR • ZQ 
&. hOINE &. SDHA &. VI'IA &. RIAD 
& HOB! &. LAD &. NORMM &. LMM &. NOCLB 
&. NOSWP &. NODIN & NOSDA 6. NORCC &. LCCtC, 
&. LDt &. NOSTR &. MWAMU &. FITCH &. NOCU 
&. NOClA &. aCLMDL &. NOLIN 

SQUEEZ: CO~fNUE &. AM2911 R8 • ae ,QREG I up ,AQ 
I 
I 
I 
I 
I 

CBB+: 
I 
I 
I 
I 
I 

CBB-; 
I 
I 
I 
I 

6. NOINE &. NOSDHA 6. NOVI11 &. READ 
&. i.l &. NOLAD S. NORHM &. LMI'I &. NOCLB 
& NOS.P &. NODIN &. NOSDA 6. NORCC &. LCCLCV 
&. NOLDI &. NOSU &. RSRS &. NonCH &. NOCU 
&. NOClA &. RCLHOL &. HOLIN 

BUhCB INSTR &. 11'12901 ae • Re I NOOP ,sun • DQ 
&. NOIHE 6. SDH! &. VHl &. RUD 
&. NOB!. &. NOLAD &. NORMM &. LMM &. CLRLO 
&. NOSH &. DINBI &. NOSDA &. NORCC &. NOLCC 
&. LDI &. NOSTi &. MWAMWB &. FiTCH &. NOCIB 
&. CI..l &. RCLMUL &. NOLIN 

BRANCH BIe 6. AH2901 R15 I R15 I QRiG • ADD • Dl 
So HOINE &. SDMA &. NOVMA &. READ 
&. BA &. NOLAD &. NORI'IM &. LMM &. CLRtO 
&. NOSWP &. DINHI &. NOSJ:J. &. NOBCC &. LCeLC' 
&. NOLDI &. NOSTR 6. HWAI'1WB &. NOPTCR &. NOCll! 
&. NOCl! &. RCLHOL &. NOLIN 

COht'NUE &. !112901 R15 • R15 I QREG I ADD • DA 
&. MOINE &. SDMA &. NOVMA &. RIAD 
&. B1 &. NOLlD &. NORMM &. LI'1I1 &. NOCLB 
&. NOSWP &. DINBI &. NOSDA &. NORCC "LeCLC' 
6. NOLDI &. NOSTi &. I'lWAMWlI &. NonCH &. NOCID 

BIC: 
I 
I 
I 
I 
I 

ALSiR: 
I 
I 
I 

~ 
DlLAG: 

~ 
I 
I 
I 

lSRRI: 
I 
I 
I 
I 
I 

ROLlB: 
I 
I 
I 
I 
I 

BORRR: 
I 
I 
I 
I 
I 

iLCRI: 
/' 
I 
I 
I 
I 

HYNCCli.: 
I 
I 
I 
I 
I 

LSRRB: 
I 
I 
I 
I 
I 

YLSRR: 
I 
I 
I 
I 
I 

&. NOCU &. RCLHUL &. NOLIN 

&. 1H2ge1 BII ,18 ,R1Mr I lND I DA 
50 NOINI 50 NOSDH! &. NO'"A &. ilAD 
&. B.l &. NOLlD &. NOBHH &. LMH &. NOCLJ 
&. hOSWP &. NODIN &. SDA &. HOllCC &. LCCLC' 
&. NOLDI So NOS'I'R &. I'InMW) &. HonCII &. Nocn 
&. NOCU &. HCLHUL &. LIN &. DAU ule" 

CONTNUI &. 11'12901 i15 ,115 • RAHA I ADD I Z1 
&. NOINE &. SDt1A &. YHA &. RUll 
50 NOlA &. UD &. NORI111 "LMM &. NOCLB 
&. NOSWP &. NODIN &. NOSD1 &. NOllCC &. LCCLC' 
&. LDI &. NOSTI &. f1WAHWB &. NOlTCH So Noen 
&. CU &. HCLHut &. NOLIN 

COt..ThUE &. AM2981 B8 I H8 ,NOOP, SUIS • D1 
&. NOINE &. SDH! &. NOVMA &. READ 
&. B! 6. NOLAD S. NORMH &. LI1H &. CLJlLO 
&. SWPIII "NODIN &. NOSDA &. NOICC &. LCC 
&. "OLDI &. ,..OSTR &. MWAMWl! 6. ~OFTCB &. hOCIB 
&. CIA &. DCLr-UL &. NOLIN 

BRCI nETCE &. AH2981 R8 • H8 • NOOP • sun • DA 
&. NOINE 6. NOSD"! &. NOVHA &. RElD 
6. :sA &. HOLAD 6. NOltHM &. LM" 6. CLRLO 
&. NOSWP &. DIItBI &. NOSDA &. hORCC &. LCC 
&. NOLDI &. NaSTa &. HWlI1llB &. NcrTCR &. NOCIB 
&. CU 6. RCLMIJL &. NOLIh 

BRce UETCB &. AI'I2981 HI • Re • NOOP • ADD • AQ 
&. NOINE &. NOSDH! &. NOYHA &. READ 
&. :Bl &. tIIOLAD &. tIIORHI1 &. LHI'I &. hDeL! 
&. NOSWP 6. tIIODIN &. HOSDA &. HORce &. LCCLCY 
&. NOLDI &. HOSTa &. MWAHWB " NOlTCH &. NOCIl! 
&. NOCU &. RCLMUL &. NOLIN 

BRANCR INSl'JI. &. AM2911 R15 I H15 • RAHF • ADD ,ZQ 
&. NOlliE &. SDHA &. VHA &. RUD 
&. NOBA &. LiD &. NORMH &. LMH &. hOCLB 
&. t.OSWP &. NODIN &. NOSDA &. NORCC 6. LCCLC' 
&. LDl 6o' NOSTB &. MWAI'1WB &. PETCH 6. NOC IB 
&. NOCll &. ICLI'IOL &. NOL I N 

CONINO! &. .lH2911 ill • R. I RAMU I ADD • ZA 
&. NOINI &. HOSDM1 &. NOYHA &. RE1J) 
&. :Bl &. hOL1D &. NORt1H &. LI'!H &. NOCL! 
&. NOSVP &. NODIIw &. NOSDA &. Noacc &. LNZCC' 
6. HOLDI &. NOSTR 6. ISBD &. NorrCB &. Nocn 
&. NOCIA &. LSLLSB &. 1iI0UN 

IRANCR INsn &. ..lM2901 ae t R' I NOOP • A'DD • ZB 
& NOINI &. SDM! 6. THA &. BElD 
&. NOllA &. NOLAD &. NORMH &. "I'll'! &. NOCL) 
&. NOSWP &. NODIN &. NOSDA &. NOBCC &. Ley 
&. LDI &. NOSTi &. ISRD &. lETCH &. NOCII 
&. NOCU &. RCLHUL &. NOLIN 

BRANCH RlL1G &. !H2981 B8 I R8 • RAMD .!DD • Z1 
&. NOINE &. NOStHl &. MOYMA &. RUD 
&. 111 &. NOLlD "NORMH &. LMM &. NOCLB 
&. NOSWP &. NODIN "NOSDA &. NORce 6. LUCCi 
&. NOLDI &. NOS'rR &. RSRD &. HOlTCH &. NOCIB 
&. NOCU &. DRLlSH &. IiIOLIf4 

BRUCH RltAG 5. AH2981 Ie • R0 I R1MU ,ADD • ZA 
&. NOI NI &. NOSIl"l &. NOYHA &. IUD 
&. BA "NOLAD &. NORMI'! &. LHH &. NOCU 
&. NOSWP 6. NODIN &. NOSDA &. Noacc &. LNZCC' 
&. NOLDI &. NaSTa s. RSID &. MonCH 6. NOCIB 
&. NOC IA &. ROLROR &. NOL It-

BRUCR alLA:; &. J.l'!2ge1 ae • Ie • RAMD • ADD • Zl 
&. NOINE &. MOSDM! &. NOVI1! &. READ 
6. IA "MOLAD 6. NORHI'1 &. LHH &. NOCL! 
&. NOSWP S. NODIN &. NOSDA &. NORCC 6. LNzecv 
&. HOLD I &. hOSTH &. ISHD &. NOFTCR &. hoe JB 
&. NOCU &. ROLHOH &. hOLIN 

BRAhCH RrtAG &. J.t12ge1 R8 • HI I RAHU I ADD • ZA 
&. NOlNE &. NOSioHA &. NOVM! &. BUD 
&. 111 6. NOLAD 6. NORMH &. LH" &. NOCL! 
6. NOSVP "NODIN &. NOSDl &. NORCC &. LNZCC' 
&. NOLDI &. NOS'l'R &. RSiD &. NOFTCH &. NOCIl! 
&. NOClA &. HCLMUL &. NOLIN 

lIIi.ANCa U.STR &. »12901 Re • Bra • RAHF • OR • DZ 
&. NOINE &. SDMA &. 'HA &. BUD 
&. NOli! &. NOLAD &. NORMI1 &. L"" &. CLRLO 
&. NOSWP &. NODIN &. NOSDl &. RCC &. LCCLC' 
&. LIlI &. NOST! &. RDRD &. FETCH &. NOCII 
&. hOClA & RCLHUL &. II0LIN 

BRANCH alLAG &. AH2901 R8 • Re • RAHD • ADD I Z! 
&. NOINE &. NOSDHl &. flOYHl &. RIAD 
&. :u &. NOUD &. NOIMI1 &. LHH &. NOClB 
&. NOSWP &. NODIN &. NOSDA &. NORCC 50 LNZCC, 
&. NOLDI &. NOS'rR &. iSID &. NOPTCR &. NOCIB 
&. NOClA &. LSLLSI &. NOLIN 

&. AH2901 R0 • R' • QREG I AND • DA 
&. ~OINI &. SDHA &. NOVM! &. RUD 
6. BA &. NOLiD &. fIIORMH &. LMH &. NOCL! 
&. NOSWP & NODIN &. SDA &. NORCC &. LCCLCV 
&. NOLDI &. NaSTa &. HDRD &. NonCH &. NOCl) 
&. NOCU 6. ReLHUL &. LIN &. D1U HM00IfJ' 

VLSOOP; BRLU IrETeR &. AM2901 RI ,RI • NOOP • 1DD • ZlI 
I &. NOINE &. NOSDM! &. NOVM! &. READ 
I &. BA &. NOLiD &. NORMH &. LMM &. NOCLB 
I &. NOSWP &. NODIN & NOSDA &. NOBCC &. LCY 
I &. NOLDI &. NOSTi &. BSiS &. NonCB &. NOCIl! 
I &. NOCU &. HCLHUL 6. NOLIN 

CONTNUJ: &. lM29e1 R0 • R8 I R1HU • !DD • ZJ. 
&. NOINI &. SDHA &. HOYMA &. READ 
&. BA &. NOLiD &. .. ORMH &. LHM &. NOCLlI 
&. NOSWP &. NODIN &. NOSD! &. NORCC &. LNzce, 
.s. NOLDI oS. NOSTR &. RSRS &. HonCII &. Mocn 
6. NOCU 6. LSLLSR & NOLIN 

BRUCR YSLOOP &. AH2911 if) • al • QBtG • smR • ZQ 
6. NOINI oS. SDMA &. ~OVH1 &. RUD 
&. Bl &. ~OLiD &. NORMH &. LMM &. NOCL) 
&. KOSVP oS. NODIN &. NOSDA &. NORCC So LCCLCY 
&. NOLDI oS. NOSTa oS. HWAMU &. NOlTCR &. NOCIlI 
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6. NOCIA oS. RCL~UL &. NOLIN &. NOCIA oS. HeLMUt oS. NOLIN 

HUH: So AM2911 .0 ," • QREG , 0. , .Z BRlHCH usn oS. '1'12911 R. , R. • RAMr • ADD , ZQ 

1 & NOlt-1 & SDHA &. NOYMA &. READ 1 Ii. MOIN! oS. SDMl , 
'"A &. IUD 

1 , .. &. N'OLAD &. NORMH oS. LHM &. NOCLJ 1 &. HOU &. NOLiD &. NOJU1H &. LM" oS. NoeLl 
1 &. NOS"P &. NODIN &. SD! &. hORee &. LeCLe, I oS. NOSVP &. NODIN S. NOSDA &. NORCC &. LeCLe, 
1 & NOLDI &. ,"OSTR &. MWAI'IWB &. NOlTCR &. Noen 1 &. LDI &. NOS'l'R &. ISiS &. llTCB oS. Noell 
1 oS. NOClA &. RCLMUL &. LIN &. Di'll nIl., 1 &. NOCIA &. ReLMut &. NOLIN 

",VNU: BlANCH lNsn Ii. 11'12901 •• , .. • RAMF • ADD ,Zl 
BRANCH VSLOOP &. 1112901 •• , R. • QRIG • 1IIID , .Q 1 &. NOINE &. SDM! , VHA &. IiE.tD 

&. MOINI &. SOMA &. NOiHA &. HiD 1 oS. Non oS. NOLlD oS. NOIMH &. LI1I1 &. NOCLlI 

• BA 
&. NOL1D & NORMM &. LI1I1 6. CLBLO 1 &. NOSIIP &. IrIODIN &. NOSDA &. "'ORee oS. LeCLey 

&. IiOSWP ;., DINHI 6. NOSDA &. NORce oS. LeCLeY 1 &. LDI &. NOSTa &. RSHD 6. JETCH oS. NOel! 
s. kOLDI &. ,.05TR 6. MUMWB &. NOFTCR S. Nocn 1 &. NOeI! &. ReLMut &. NOLIN 
&. NOClA &. RCLMUL ~ PlCtIN 

110VlR: BRANCH INS'l'R &. AM2981 a. , .. • R!Mr • ADD , ZA 
CSLRR: CONTNUI &. AI12901 a8 , .8 • RAMF • AND , DZ 1 &. NOINI &. SDI1A , 

'"A &. RUD 

1 &. "OINE So SDMl &. HOVMA &. READ 1 &. HOB! &. NOLlD &. NoaroM &. LMH &. NOCLB 

1 , .. 6. NOLAD 6. NORI1M &. LHM 6. NOCLlI 1 &. NOSVP &. NODIN &. NOSDA &. NORCC &. LCY 

1 So fIIOSWP &. "ODIN &. foIOSDA &. NORCC &. LCCLCV 1 &. LDI &. hOS'lR &. RsaD &. rETOH &. Nocn 

1 ' &. NOLDI &. Nosra So MUM.B &. NonCR &. NOC IB 1 &. ,,-OCI! &. ROLMUL &. NOLIN 
1 S. "OCtA &. RCL'1UL &. PlOLIN 

ADDU: BUNCH INsn &. !112901 .0 , R. • R!t'P • ADD ," 
&. AM2981 •• , RS • QREG • AND , DA 1 &. NOINI &. SDMA , 'HA &. RUD 
&. HOINI &. SDMA &. NOVMA &. RUD 1 &. NOB! &. NOLAD &. NORH" &. LMM &. NOCL) , .. &. NOLlIl 6. NORMr. & LMI'I &. Nocn 1 &. NOSWP &. NODIN &. NOSD! &. NORCC &. NOLCC 
&. NOS,"P &. NODIN &. SDA &. NORCC &. LCCLCV 1 &. LDI &. Nosn &. 15RD &. rETCH &. Nocn 
&. NOLDI &. NOSTR &. MUM"! &. NOlTCR &. Nocn 1 &. hOCIA &. RCLMUL &. NOLIIt 
&. NOCI! 6. HCLMUt &. LIN II. DUA a:,,00U' 

ADCi:R: lUNCH INSTB &. AM2911 i. , .0 • RAMl • ADD ," 
C5100P: !RUI lrETCR &. AM2981 R. , RO • NOOP • ADD , ZA 1 &. NOlNE &. SDI1A , '.A &. READ 

1 &. MOINE &. NOSDMA So HOVMA &. REiD 1 &. NOJA &. NOLAD &. NORMH &. LMM &. HOCLlI 

1 , .. &. NOLAD &. NORMM &. LMM &. NOCLI 1 &. NOSWP &. NODIN &. NOSDA &. NORCC &. NOLCC 

1 &. NOSWP &. HODIN &. foIOSDA &. NOBCC &. LCV 1 &. LDI &. N05'1'1 &. RSRD &. rETCR &. cn 

1 &. NOLDI &. NOST! Ii. RDRD &. NOlTCR &. NOCIB 1 &. NOCIA &. ICLMUL &. NOLIN 

1 &. NOCI! &. RCLMUL &. "OLIN 
SUlIRRl IIIANCR INSTI &. AM2911l1 .1 , .1 • RAI'11 • SUlIk , .. 

lIRNI lFETCR &. !M2901 R. , R. • HOOP • ADD , AQ 1 &. NOINI &. 5DHA , 'HA &. RIAD 
&. NOINE &. NOSDHA &. NOVM! &. IUD 1 &. NOllA &. NOLAD &. NORM!'! &. LMH &. NOCLB 
, .A &. NOL!D &. NORMH , Ll!H So NOCLI 1 &. NOSWP &. NODIN &. NOSDA &. NOBCC &. NOLCC 
&. NOS"P &. NODIN &. NOSDA &. NORCC &. LCCLC' 1 &. LDI &. NOST! &. RSKD &. lITCR &. NOCII 
&. NOLDI &. NOSTR So MlIAMWJI &. NOiTCH &. NOCIB 1 &. CU &. ICLMUt &. NOLIN 
&. NOClA &. RCLHUL &. hOLIN 

SlICBB: lIllANCH INS'l'I &. 1112911 •• , .. • RAMP • SUlI! , A. 
CONTNUE &. AM2901 .1 , R. • RAMU • ADD , ZA 1 &. NOINE &. SDMJ. , 'HA &. lEAD 

1 &. NOINE 6. SDHA &. NOYM! &. READ 1 &. NOlli &. NOLAD &. NORMH &. LMM &. NOCLD 

1 , .l &. NOLlD &. NORMM , Ll!H So NOCLlI 1 &. NOSWP &. NODIN &. IIOSDA &. NORCC &. hOLCC 

1 &. NOSWP &. NODa &. NOSD! &. NORCC &. LNZCCV 1 &. tDI &. NOS'fR &. RSRD &. lETCR &. CII 

'I &. NOLDI &. NOSTi &. ISRS &. NonCH &. NOCII 1 &. NOCU &. ICLHUL &. NOLIN 

1 6. NOCU 6. L5LL5B &. NOLIN 
lNDBR: lUNCH IHsn &. ,"29111 RI , .1 • lAM)' • AND ," 

CONtHUE &. AM291111 HI ,RO • RAMU • !DD , ZA 1 &. NOINI &. SDI1! , V"A &. RtAD 
&. NOINE &. SDHA &. NOYMA &. READ 1 So ttOllA &. NOLAD &. NOIMM &. LHM &. NOCLI 
, BA &. MaLAD &. NORM'" &. LMM &. NOCLI 1 &. NOSWP &. HODIN &. NOSDA &. NOICC &. LCi 
&. hOSWP &. HODI" &. NOSDA s.. NORIfC &. LNZCOV 1 &. LDI &. NOSti &. RSBlI s.. FETCH &. NOCIB 

&. NOLDI &. NOST! &. RDRD Ii. NOlTCR &. Nocn 1 &. NOCU &. BCLMUt &. NOLIN 
&. NOCU &. ROLROI Ii. NOLIN 

IORU: BRANCR IKsn &. .lH2911J1 ao , .e • RAI'1J' , 0. ," 
CONtNU! &. &H2911J1 .8 , R8 • RAMP • ADD , Z. 1 &. NOINE &. SDHA , THA &. itAD 

&. NOINE &. SIlH1 &. NOVM! &. RUD 1 &. ttOIA &. NOLlD &. NORMM &. LMM &. NOCLI , .. &. NOLlD &. NORMM &. LMM &. NOCLI 1 &. MOSWP &. NODIN &. NOSDA &. NOICC &. LCY 

&. NOS"P &. NODIN &. NOSD! &. NORCC &. LCCLCY 1 &. LDI &. NOS'!'! &. iSRI: &. lnCH &. NOCIB 

6. NOLDI &. NOSTR 6. MV!M.B &. NOlTCR &. NOCII 1 &. NOCU s.. BCLMUL &. NOLIN 
&'CIA &. ReLMUL 6. NOLIN 

101RR: BRUCH INS'fR &. lM291l11 Re , Re • R1Ml • lIaR ," 
BRANCR CSLOOP &. AM2901 I. , Re • QREG • SUlIK , ZQ 1 &. NOINE &. SDHA , 'Hi &. READ 

&. NaitO' &. SPHI &. NOVMA &. HAD 1 &. NOlA &. NOLAD &. NORMM &. LMM 6. NOCLB , .. &. NOLAD So NOHMM &. LMM &. NOCLI 1 &. NOSVP &. PlODIN &. NOSDA &. NOICC &. LCi 
&. NOS"P &. NODIN &. NOSDA &. NORce &. LCetCY 1 So LDI &. MOS'l'i &. RSRD &. llTCH &. MOCIlI 
&. ,,"OLDI &. NOS1'I &. MWAMVB &. NonCR &. NOCII 1 &. hOCI! &. RCLHUL &. NOLIN 
&. NOCrA &. BCLMUL 6. NOLIN 

CMPRF: IIRANCR INS'rR &. lM2901 R. , Re • NOOP • SUI I ," 
DSLIR: &. AM2981 •• , ft. • QR!G • AND , .A 1 &. NOINE &. SDHA , 

'"A &. RUD 

1 &. NOIN! &. 5DHA &. NOVHA &. READ 1 So NOllA &. MaLAD &. NORMM &. LMH &. NOCL! 

1 & BA &. NOLAD &. NORMM &. LMM &. NOCLB 1 &. NOSWP &. NODIN &. MOSD! &. NORce &. NOLCC 

1 6. MOSWP So NODIN &. SDA &. NOICC &. LeCLC' 1 &. tDl So NOSTI &. RSRt &. 1'ITCR &. NOCIlI 

1 So NOLDI &. MOST! So MW!MVB &. NOlTCH &. Mocn 1 So CIA &. HCLMUL &. NOLIN 

I &. NOCI! &. RCLMUL So NOLIN & DAT! HtI801P 
I NCRIi.: !RlNCH INSTR &. AM2901 •• , R. • U.Ml • ADD ,Il 

DSLOOP: ERLZI InTCR &. AM2901 .0 , .. • NOOP • ADD ,Zl 1 &. hOINE &. SDMA , '.A &. READ 

1 &. HOINE &. NOSDMA &. NOVMA &. READ 1 &. NOB! &. NOLAD &. NORHH &. LMM &. NOOLlI 

1 
• BA 

&. NOLAD &. NORMM &. LMM &. NOCL! 1 &. NOSWP &. NODn. &. NOSDA &. NORCC &. LC' 

1 So NOSIilP &. NODIN & NOSDA &. NOBCC &. LCY 1 50 LDI &. NOSTI &. ISRD &. pnCH &. NOCIlI 

1 &. NOLDI &. NOS'l'R r.. RDRD &. NOlTCH &. HOCIlI 1 &'CIA &. ICLHUt &. NOLIN 

1 &. NOCIA &. RCLMut &. NOLIN 
DECRR: BRANCH It.STR &. AM2901 .1 , Ie • RiHF • sun , ZA 

CCNTliUE &. 1H2&1IJ1 •• ," • DAHU • ADD ,Zl 1 &. NOINE &. SJ)HA , 'Hi &. RUD 

&. NOINE &. SDH.l &. NOYMA &. lEAD 1 6. NOB! &. NOLAD &. NORMH 6. LMM 6. NOCL' 

• .A 
&. NOLAD &. NOBMM , LI!" &. NOCLI 1 &. NOSWP &. NODIN &. NOSDA &. NORCC &. LCV 

&. NOSwP '&. NODIN &. NOSDA &. NOICC &. LHZCC' 1 &. tDI &. NOSTI &. ISftD &. liT CD &. Nocn 

&. NOLDI &. NOST! &. ISRS &. NOlTCD &. NOCIB 1 &. hOCIA &. HCLMut &. NOLIN 

6. HOCIA &. LSLLSB &. foIOL I N 
COHRB: BRiNCH IltS'!'1 &. AM2901 .. , .1 • RAMF • EINOR • ZA 

CONfNUE &. lM2gel R. , .. • RAMU , ADD ,Z& 1 -& NOINI &. SDHA , 'HA &. RIAD 

&. NOINE &. SDHA &. NOVHA &. RUD 1 &. NOli! &. NOUD &. NOIM'" &. LMM &. NOCLI 

Ii. BA &. NOLAD &. NORMM &. LMH &. NOCLI 1 &. NOSWP &. HODIN &. NOSDA &. NOiCC &. LC' 

&. NOSWP &. NODIN &. HOSDA &. NORCC &. LNZCCY 1 &. LDI &. NOSTI &. ISRD &. PETCH &. NOCII 
&. NOLDI &. NOSTR So IIDRD &. NOlTCD &. NOC II 1 &. NOCIA &. ICLMUL &. NOLIN 
&. Noeu &. ROLIOH &. NOLIN 

NEGRiz BRUca INsn &. AM291i!1 •• ,II • IAMF • S.UIIS ," 
BRANCR DSLOOP &. 11"12981 HI Ie • QREG , SUBI , ZQ 1 &. NOUlE &. SDMA , V.l &. RIiD 

&. NOINE &. SDMA 6. NOYMA &. IIAD 1 &. NOBA &. NOLAD &. NORMM &. LMM &. NOCLI 
, BA &. NOLAD &. NORM'" &. LMH &. NOCLB 1 &. NOSWP &. NODIN &. NOSDA &. NOICC &. NOLCC 

&. NOSWP So NODIN &. NOSDA &. NORce &. LCCtC' 1 &. LDI &. NOST! &. aSBD &. FITCH &. Nocn 
So NOLDI &. NOS'l'R &. HWJ.HWlI &. NanCR &. NOCIB 1 &. CI! &. ICLMUL &. NOlIN 
&. NOCIA &. RCLI'IUL &. NOLIN 

SWPlI.R: COt.TNUE &. AM291!11 R. ,II , NOOP , AD. ," 
MOVRCC: :BRANCH INSTI &. AM2901 Ie , R. , NOOP • ADD ," 1 &. NOINE &. NOS DM1 &. NOVMA &. WIlIn; 

1 &. NOINi &. SDMA • 'HA &. RIAD 1 &. NOllA &. NOLAD Ii NORMH &. LHM &. NOCLlI 

1 &. NOlA &. NOLlD &. NORMM &. LHM &. NOCLlI 1 &. NOSWP &. MODIII &. hOSD! &. NORCC &. LCCLC' 

1 &. MOSWP &. NODIN &. NOSD! &. NORCC &. LNZ 1 So LDI &. NOSTI &. ISBD &. Nonca &. Nocn 

1 &. LDl &. NOST! &. RDRD &. llTCH &. Mocn 1 &. NOCIA &. ICLMUL &. NOLIN 

1 &. NOCIA &. HCLMUL 6. NOLIN 
IIRANCH IhSTR &. AM291011 •• ,BI • IAHl , 0. , .Z 

ICRRR: CONTNU! &. 1M2981 Re , .. • QRIG , AD. , .. &. NOlME &. SDI1A , 'HA &. BEID 

1 &. NOINI &. SDH1 &. NOVMA &. READ &. NOB! &. NOLlD &. NORMM &. LMH &. NOCL! 

1 , 'A &. NOLlD &. NORMH &. LHH &. NOCLlI &. SWPHL &. NODIN &. NOSDA &. NORCC 6. LCY 

1 &. NOSWP &. NODIN &. NOSDA &. NOICC &. LCCtC' &. LDI &. NOSTR &. RSRD &. FETCR &. NOCII 

1 &. NOLDI &. NOST! &. RDRD &. Nonca &. NOC IB &. NOCIA &. RCLMUL &. NOLIN 

1 & hoe II &. RCLHUL &. NOLIN R0 RSUBRR: BRANCR HI STH &. AH2911J1 , Ie • IAHl • SUBS ," 
CeNTNU) &. J.H2981 Re , .e • RiHF • ADD , ZA 1 50 NOINl: &. SDH.l , '.A &. BEiD 

&. 'WINE &. NOSDMA &. NOVMA &. IUD 1 &. NOB! &. HOLAD &. NOIMM &. LMM &. NOCLlI , .. &. NOLAD &. toORMI1 &. LHM &. NOCLI 1 &. HOSWP &. NODIII &. NOSD! &. NORCC &. NOLCC 

& NOS"P &. NODIN &. NOSDA &. NOICC &. LCeLCY 1 &. LDI &. NOST! 50 RSRD 6. lITCR &. NOeI! 

&. NOLDI &. NOS'fR &. RSRD &. Nonca &. MoeIlI 1 &'CIl 6. RCLI11IL &. NOLIN 
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MOV AX: CO~TNUE &. 1112901 Rll • Rll • HOOP • ADD • D1 
/ 
/ 
/ 
/ 
/ 

MVNX!: 
/ 
/ 
/ 
/ 
/ 

MOYlA: 
/ 
/ 
/ 
/ 
/ 

!IN: 
/ 
/ 
/ 
/ 
/ 

ADDXA: 
/ 
/ 
/ 
/ 
/ 

ADClA: 
/ 
) 
/ 
/ 

&. HOINE &. NOSDMA 6. NOVMA &. READ 
5. B! 6. LAD & NORMM £:. 111M 6. CLHLO 
Ii. NQSliP &. Dlf..HI 6. IlIOSD! 6. NORce Ii. LeCLev 
&. NOLDI S. NOSTR &. MWAMWB 6. NOFTCH 5. NOCIE 
&. HOCIA 6. HelMUt & NOLIN 

BRANCH IrETCE &. 1M2901 RU! • R10 • RAr'" • OR I ZA 
&. HOINE &. NOSDMA &. VHA &. WRITE 
&. NOB! 6. NOLAD &. NORMM &. LI1M I) rwen 
6. NOSWP &. SODIN &. NOSDA &. ~ORCC &. LCV 
& NOLDI &. NOSTa 6. MWAM'iB & NOFTeH &. ~OCIB 
&. NOClA &. RelMUt &. NOLIN 

CONTNUE &. 1112901 Rll • Rll • NOOP • ADD • DA 
&. NOIfn &. NOSDMl Ii. YHi &. READ 
&. NOllA 5. LAD &. t<lORMM &. LI1M &. CLIlLO 
&. NOSH &. DINEI &. HOSDA 6. NORGe &. LeeLev 
Ii. LD! 6. NOSTR I) MWAMWB 6. SOfTeE &. NOCIB 
&. HOCIA 6. ReLMut &. NOl!t.. 

BRANCH INSTR &. 1M2901 Hl5 • RUI • RAM! • OR • DZ 
&. NOINE &. SDMA £.. VHA 6. READ 
Ii. NOli! &. LAD &. HORMM &. LMM &. t-,OCLB 
6. NOSWP &. DINEL &. NOSDA 6. r.ORCC 6. LCCLCV 
6. LDI &. NOSTR 6. MWAMWII &. FETCE So NOCIII 
6. ~OCIA 6. RCLMUL & NOLIN 

CONTtWE 6. A~29W!11 Rl1 • Rll • NOOP • ADD • D! 
So NOINE &. NOS OM! &. YN! 6. READ 
6. NOBA &. LAD 6. fjORMM 6. LMM 6. CLRLO 
6. NOSWP 6. DINBI 6. NOSDA 6. NORCC I> LCCLCV 
&. LDI 6. NOSTR S. MWAMWB So NOrTCH 6. NOCIII 
6. hOCIA I> HClHUl 6. NOLIN 

BRANCH INSTR &. AM2901 R15 • R10 • RAMA • OR • DZ 
&. NOINE &. SDHA 6. VHA &. READ 
6. NOBA &. LAD & NORHM 6. LHH 6. NOClII 
6. NOSwP &. DINHL &. NOSDA &. NORCC 6. LCV 
6. LDI I> NOSTR 6. MWAMWB & FITCH 6. Nocn 
6. NOCIA &. iCLMUL 6. NOLIN 

CONTNUE &. AM2981 Rll 1111 • HOOP • !Dr • DA 
&. NOINE &. SDMA Ii. VMI 6. READ 
&. HOBA 6. LAD 6. NORMM 6. LMM Ii. CLIILO 
Ii. NOSWP &. DINHI 6. NOSDA &. NORCC &. LCCLCV 
&. LDI &. NOSTR &. MWAMWII &. NOFTCH &. Nocn 
&. NOCH &. RCL~UL &. NOLIN 

BRANCH IrETCR &. AI12gel R1B • RU! • RAMF • ADD • DA 
& NOIHE &. NOSDMA &. NOYMA & READ 
& BA & NOlAD &. HORMM &. LMM &. NOCLl! 
&. NOSWP So DINEl & r.OSDA &. NORCC &. NOLCC 
&. NOLO! &. NOSTR &. MWAMWl! &. NOFTCR & NOCn 
&. NOCI! &. RCLMUL &. NOLIN 

CON!NUE & AM2901 Rll • R 11 • NOOP • ADD • Iil 
6. NOINE &. SOMA 6. VNA 6. READ 
&. NOE! &. LAD &. NOHMM 5. LMM &. C r RlO 
&. NCSiP &. DIhRI &. t.OSDA &. HCRCC &. LCClCV 
5. LDI &. hOSTR & MWAMWli &. HCFTCH & HOCIF 
5. NOCIA &. RClMUL & NOLIt. 

BRANCP !FETCH 5. AM29fl R10 • R10 • RAMF • ADD • DA 
&. NOINE & NOSDMA I> NOVMA &. READ 
&. BA &. NOLAD I> NORMM & LMM &. ~OCLl! 

I> NOSWP 5. DINHL &- ~OSDA 5. NORCC &. NOLCC 
& NOLDI &. NOSTR I> M\rIAM'I1l & NOFTCH & CIlI 
&. NOCIA &. RCLMUL & NOI IN 

SUBXA: CONTNUE &. AM2901 Rl1 Rll. NOOP • ADD • DA 
/ &. HOINE & SDMA & VMA I> READ 
/ &. NOBA & L!D &. NORMM 5. LMM I> elRlO 
/ Ii. NOSWP &. DINHI 5. ~OSDA I> NORCC I> LeCLCV 
/ &. LDI &. NOST.R 5. MWAMWF. I> NOFTCR &. NOCIB 
/ & NOClA &. RCLMUt &. NOLIN 

BRANca HiTCH I> AM2901 RU • R10 • RAMF • SUBR • DA 
&. NOINE &. NOSDMA &. NOVMA &. READ 
&. BA I> NOLlD I> NORHM 5. LMM &. ~OCLB 
& NOSWP &. DINHt 6. HOSDA 5. NORCC &. NOLCC 
I> NOLDI &. NOSTR &. MWAMWB I> NOFTCH 5. NOCI! 
&. CIA &. RCLMUL &. NOLIN 

S BCU: CONTNUE & AM2901 Rll • Rll • NOOP • ADD • D! 
/ I> NOINE & SOMA 5. VMA &. READ 
/ & NOllA &. LiD & NORMM 6. !.MM & CLRLO 
/ &. NOSWP &. DINHI & NOSDA 5. NORCC & lCCLCV 
/ 5. LDI & NOSTR &. MWAMWB &. NOFTCH &. Nocn 
/ 5. NOCU &. RCLMUt 5. NOLIN 

BRANCH IrETca I> AM2901 RlB • R10 • RAMf • SUBR • DA 
r. NOINE &. NOSDM! &. NOVM! I> READ 
&. B.1 & NOLAD &. NORMH &. LMM &. NOCLB 
5. NOSWP &. DINHL 5. MOSDA & NORCC &. NOLCC 
5. NOLDI &. NOSTR 5. MWAMW! I> HOFTCH &. cn 
&. NOCIA &. HClMUL &. NOLIN 

ANDH: CONTNUE I> AM2901 Rll • Ii: 11 • NOOP • ADD • DA 
/ &. NOINE &. SDMA &. VMi &. RUD 
/ &. NOllA &. LAD &. NORMI'" 6. LMM &. C LRlO 
/ Ii. NOSWP & DINHI &. NOSDA &. NORCC &. LCCLCV 
/ &. LDI &. NOSTR &. MWAMWl! &. NOFTCa &. NOCII! 
/ I> NOCIA &. HCLMUL I> NOLIN 

BRANCH IrETCB &. AM2901 RU! • R10 • RAMT • AND • DA 
& NOINE &. NOSDMA & NOVM! &. READ 
Ii. BA Ii. NOLAD &. NORMM I> tMM &. NOCU 
&. NOSWP &. DINBL &. NOSDA I> NORce &. LCY 
& NOLDI &. NOSTR & MWAMWB Ii. NOrTCH &. Nocn 
Ii. NOCIA & RCLMUL 5. NOLIH 

IORXA: CONTNUE I> AH2901 Rll Rll. NOOP • !DD • D! 
/ & NOINE &. SOMA &. VMA & RUD 
/ &. NOBA Ii. LAD I> NORMM &. lMM &. CLRLO 
/ &. NOSWP &. DINHI &. NOSD! & NORCC &. LCCLCV 
/ &. LDI & NOSTR &. MWlMWB &. NOFTCH & NOC HI 
/ &. NOCIA & RCLMUL &. NOLIN 

BRANCH IrETCH 5. !H2901 RU • Rle • RAMF • OR • DA 
&. NOIHE &. NOSDMA & NOVMA & READ 
& BA & ~OLAD I> NOR":'" I> If'4M &. t..orlB 
Ii. NOSWP I> DINHL &. NOSD! s.. NCRCC :;. LCV 
5. NOLDI &. NOSTR &. MWA", ... E & HOFTCH & ~ocn 
&. NOCIA &. HcLMUL &. NOLIN 

XORX!: CONTNUE & AH29et Rll Rll. NOOP • ADD • [A 
/ 5. ~OINE & SOMA i., VMA (. RU\) 
/ &. NOBA &. LAD 6. NOR~M &. LM!" 6. Clii.IO 
/ &. NOSWP I> DINBI &. NOSl)! I> NORCC & lCCLCV 
/ 6. LDI & NOSTE &. MWAM\'F 6. NOfTn. & NOCll! 
/ 5. NOCIA 5. RCL"UL 6. NOLU 

BRANCH HETCH & AM2901 J1l0 • R10 • RA~F • EXCR ,DA 
&. NOINE 5. NOSDMA & NOVMA S RUD 
&. BA 5. NOLAD &. ~ORHM &. LMM & HOCLP 
&. NOSWP & DINEL 6. NOSDA &. NORce &. LCV 
& NOLDI & NOS'tR I> I1WAM'IIB I> NorTCR &' NOCIII 
& NOClA &. RCLMUl &. NOLIN 

CMPU: CONTNUE &. AM2901 Rll • Rll • HOOP • ADJ) • DA 
/ 
/ 
/ 
/ 
/ 

INCI: 
/ 
/ 
/ 
/ 
/ 

DECI: 
/ 
/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 
COMX: 
/ 
/ 
/ 
/ 
/ 

NEGX: 
/ 
/ 
/ 
/ 
/ 

SWPX: 
/ 
/ 
/ 
/ 
/ 

&. NOINI 5. SDMA &. VMA I> RUD 
& NOB! &. LAD &. NORMM &. LI1M & CLRLO 
&. NOSWP {" DINEI &. NOSDA &. hORCC & lCCLCV 
5. LDI Ii. NOSTR I> MWAMill 6. NOFTCH &. NOC IB 
&. NOCl! & RCLMUL &. ~OLIN . 

ERANCH HUCH &. AM2901 H10 • au: • NOOP • SUJlli • DA 
&. NOINE &. NOSDMA &. NOVM! I> RUD 
6. B! &. NOLAD &. NORt"M &. LI1M & t..OCLE 
5. NOSWP & DINSL &. NosrA 5. t.ORCC s. NOICC 
& NOLDI &. NOSTR & MWAM .. 'B & NOFTCH I> socn 
&. CIA 5. ReLMUL &. NOLIN . 

CONTNUE 6. AM2901 Rll • Rll • NOOP ,ADr • DA 
& NOINE &. NOSDMA & VHA &. RUD 
5. NOB! &. LAD & NORMM (.. LMM &. CLPlO 
I> NOSWP &. DINBI &. NOStA I> NORCC I> LCCICV 
&. LDI 5. NOSTR &. HWAM't1l & NOFTCH 5. NOC IB 
6. HOCIA & RClMUL & NOLIN 

BRANCH InTCR &. AM2901 RS • RB • UHF ,ADD • D2 
Ii. NOINI: &. NOSDMA (.. VMA &. WRITE 
&. NOB! I> NOLAD &. NORMM 6. lMM I> hOClS 
& NOSWP I> DINBl I> NOSDA I> NORCC I> LCV 
&. NOlDI & NOSTR 6. MWAMWB 5. NOFTCH &. NoeIll 
6. CIA. &. RCLMUl I> "OLIN 

CONTNUI: I> AM2901 Rll • Rll • NOOP • Uti • DA 
&. NOINE & HOSDMA & VMA & RUD 
& HOB! & LAD & NORMM 5. LM!" &. C lHO 
5. NOSWP &. DINBI I> NOSDA &. ~ORCC 5. LCCLC) 
& LDI 5. NOS!R 6. MWAM'IF &. HOFTCH I> NOCIB 
&. NOCIA &. HClHUl &. NOll'" 

BRANCH IFETCH 6. AM2911 HB • RB ,HAMF. SUlIS • DZ 
5. NOINE &. NOSDM~ 6. VMA &. WRITE 
I> NOBA &. NOLAD 6. NORMM &. LMM I> "OClB 
& NOSWP &. DINHL s. NOSDA &. NORCC &. LCV 
I> NOLD! &. NOSTR &. MWAM .. R &. NOFTCE &. NOCIB 
&. NOClA. &. ReLMUL & NOlIt. 

CONT",UI 5. AM2901 Rll • RlI • NOOP • ADD • D! 
&. NOINI: 6. HOSDMA I> VMA 6. hEAD 
&. NOB! &. LAD &. ~ORMM & LMM &. CLRLO 
&. NOSWP I> DINHI 5. NOSDA 5. NORCC 5. LCCLCV 
Ii. LDI &. NOSTR I> MWAMWB &. NOFTCH &. Nocn 
I> NOCIA &. RCLMUL &. NOLIN 

BRA NCR lFETCH &. AM2901 RB • RB • RAMF • EXNOR , DZ 
&. HOINE 5. NOSDM! &. VHA &. WRITE 
&. NOB! & NOLAD &. NORMM 5. lMM &. ~OCLB 

Ii. NOSWP & DINHL &. NOSDA & NORCC &. LCV 
& NOlDI &. NOSTR I> MWAM'IB &. HOFTCR &. NOCIB 
5. NOClA I> RClMUL &. NOLIN 

CONTNUE & AM2901 Rll • Rll • NOOP •• DD • DA 
Ii. NOINE &. HOSDMA 5. VMA &. RElD 
&. NOB! & LAD I> NORMM 5. LMM &. CLRLO 
5. NOSWP &. DINHI 6. NOSDA & NORCC 5. LceLCV 
& LD! &. NOSTl! &. MWAMWB &. NOFTCH 5. ",OCIB 
5. NOCIA &. RCLMUt &. NOLIN 

BRANCH !FETCH &. AI12901 RB • RB • RAMF • SUBR • DZ 
&. hOlNE &. NOS OM A I> VMA 5. WRITE 
&. NOB! &. NOLlD &. NORMM & L!1M &. NOCLB 
I> NOSWP &. DINBl &. NOSD! &. NORCC &. hOLCC 
&. NOLD! &. NOSTR I> MWAMWB 5. NOFTCH & hoe IB 
6. CIA &. RCLMUL Ii. NOLIN 

CO"'THUI: &. AM2901 Rll • Rll • HOOP • ADD • DA 
&. NOINE & NOSDMA & YM! 6. iiAD 
5. NOB! & LAD &. hORMM &. LMM &. CLRLO 
5. NOSWP Ii. DINHI &. NOSDA 5. NORCC &. lCCLev 
&. LDI &. NOSTa 5. MWAM'IlI 5. HOFTCR & Noelll 
5. NOCIA &. RCLMUL &. NOLIN 

BRANCH IFETCH &. AI12901 HB • RS • RAI"F • OR • 02 
S, NOINE 5. NOSDMA &. VMA I> WRITE 
&. NOB! 6. NOLAD &. NORMM 6. LMI1 & NOCLB 
&. SWPBL 5. HODIN 6. NOSDA & NORCC & LCV 
6. NOLDI &. NOSTR &. MWAMWlI 6. NOFTCR &- NOCIlI 
&. NOCIA 5. RClMUL &. NOLIN 

RSUBXA: CONTNUE 5. AM29U Rll Rll. NOCP • ADD • DA 
/ 5. NOINE &. SDMA & VMA &. RElD 
/ &. NOBA 6. 1.AD I> NORMM &. LMM &. CIRLO 
/ &. NOSWP &. DINBI & HOSDA &. NORCC &. LCCLCV 
/ 5. LD1 &. NOSTli &. MWAMWI! 5. MonCH 5. Nocn 
/ &. NOCl! I> HCLMUL 5. NOLIN 

BRANCH IrETCH &. I.M2901 R10 • H10 • RAMF • SUBS • D! 
5. NOINE &. NOSDM! &. "'OVM1 5. READ 
&. :ilA I> NOUD &. NORHM 5. LMM &. Noeu 
I> "'OSWP Ii. DINaL &. NOSDA 5. NORCC &. NOLCC 
6. HOLDI & NOStR &. MWAMWB Ii. NOFTeR &. NOCIII 
&. CI A & HClMUL 6. hOLlh 

MVNRN-: CONTNUE &. AM2901 R0 • Re • RAMF • SUBR • ZE 
/ &. NOINE &. HOSDMA 6. NOVMA &. READ 
/ I> B! &. LAD &. NORMM 5. LMM & NOCLB 
/ & NOSWP 5. NODH. & t.OSOA &. NORCC & LCClCV 
/ I> hOLD! &. NOSTR I> RDRD I> NOFTCR 6. NOCIB 
/ & NOCIA 5. HCLMUL &. NOLI'" 

MOUT: 
/ 

BRANCH lrETCH I> o\M2901 R0 • R0 • RAMA • ADD • ZB 
&. NOINE I> NOSDMA 6. VMA & 'tRITE 

/ I> NCB! & NOLAD &. NORMM I> LMM s.. NOCl! 
/ I> NOSWP 5. HODIN I> ~OSDA & fjORCC & LCClCV 
/ &. NOLDI 5. NOSTR &. RSllS & NOFTCR 5. NoeIll 
/ & NOCIA & HCLMUt &. NOLIN 

MVNM+R: CONTNUE 6. AM2901 R0 • R0 • RAMA • ADD • ZA 



MVNII..: 
/ 
/ 
/ 
/ 
/ 

MVt:I+R: 
/ 
/ 
/ 
/ 
/ 

BRANCH 

eONTNUE 

&. NOINE 
&. NOllA 
&. NOSWP 
&. LDI 
&. cu 

IFETCl!. &. AM2901 
&. NOINE 
& B! 
&. NOSWP 
&. NOLDI 
& NOCIA 

&. AM2901 
&. NOI,..I 
&. NO]! 
&. NOSWl' 
& LDI 
& CIA 

&. SDM! &. VMA &. READ 
&. LAD &. NORMM &. LMM ~ NOCn 
&. NODIN &. NOSDA &. NORCC &. LCCLCV 
&. NOSTR &. RSRS &. NOFTCH &. NOC IB 
&. RCLMUL &. NOLIN 

R. , R. • RAMF , OR , DZ 
&. NOSDM! &. NOVM! &. READ 
&. NOLAD &. NORMM &. LMM & NOCn 
&. DINRL &. HOSDA &. NORCC &. LCCLCV 
&. NOSTR &. RSRD &. NOFTCR &. NOCIB 
& RCLMUL & NOLIN 

R. , R. • RAM! • ADD ZA 
&. NOSDMA &. YO! &. READ 
&. LAD &. NORMM &. LMM &. NOCLB 
6. NODIN &. NOSDA &. NORce & LCCLCV 
6. NOSTR &. RSRS 6. NOFTCH &. NOCIB 
& RCLMUL &. NOLIN 

BRANCH MVNIN &. AM2901 Re • Re • NOOl' • OR • DZ 
&. NOINE &. SDMA &. VMA I> READ 
&. NO]! &. LAD &. NORMM &. LMM &. NOCLl! 
&. NOSWP & DIHHL &. NOSDA & NORCC &. LCCLCV 
I> LDI &. NOSTR &. MYAMWB &. NOFTCH & NOCIS 
6. NOCIA &. RCLMUL 6. NOLIN 

MVNZR: COt:TNUE 6. AM2901 R1S • R15 • RAM! • A.DD • ZA 
/ 6. NOINE &. NOSDMA 6. VMA &. READ 
/ &. NOBA 6. LAD &. NORMH &. LMM 6. NOCLB 
/ 6. NOSWP &. NODIN Ii. NOSDA &. NORCC I> LCCLCV 
/ &. LDI &. NOSTR 6. MWAMt.'l! &. NOFTCH 6. NOCIS 
/ &. CIA &. RCLMUL 6. NOLIN 

BRANCH MYN IN &. AM2901 Re • Rril • NOCP • ADD • DA 
6. NOINE "SDMA "VM! 6. READ 
6. NOB! 6. LAD 5. NORMM I> LMM Ii. NOCL! 
6. NOS'iP & DINHL & NOSDA &. NORCC &. LCCLCV 
&. LDI I> to.OSTR & HSRD &. NOFTCH &. !IoOCIB 
& NOClA &. RCLMUL 6. NOLIN 

MOYM+H: CONTNUE 6. AM291il'1 Ril • Rei • RAMA • ADD • ZA 
/ 
/ 
/ 
/ 
/ 

MOVIN: 
/ 
/ 
/ 
/ 
/ 

6. NOINE &. SDMA 6. VNA. &. RUD 
6. NOB! &. LAD & NORMM &. LMM & NOCLB 
6. NOSWP 6. NODI~ &. NOSDA &. NORCC &. LCCLCV 
&. LDI & NOSTR 6. RSHS &. NonCH 6. IiOCIB 
& CIA &. RCLMUL &. NOLIN 

BRANCH !FiTCR 6. 11'12901 R0 • Ril • RAMF • OR • DZ 
6. ~OINE &. NOSDMA 6. NOVMA & READ 
&. SA & NOLAD 6. ~OR"'M 6. LMM & ~wcn 
I> NOSWP & DINHL & NOS!:A 6. NORCC & LCV 
6. HOLDI 6. NOSTR &. RSRD & NOFTCR (" Nocn 
& NOCIA & HCLMUL &. NOLIN 

MOVI+R: CO~TNUE Ii. !M2901 Re • R0 • PAM! • ADD • ZA 
/ 
/ 
/ 
/ 
/ 

liN: 
I 
/ 
/ 

; 

&. NOINE I> NOSDM' &. VMA & rtEAD 
&. NO!.A & LAD &. NORMM &. LMM 6. NO CLB 
6. NOSH 6. NODIN & ,,"OSDA 6. NORCC 6. LCCLCY 
& LDI 6. ~OSTR 6. RSRS &. NOF'l'CH & !Iooca 
6. CIA &. RCLMUL &. NOLIN 

BRANCH MOVIN &. !M2901 Re • H0 • Noop • CIR • DZ 
6. NOINE & SDMA &. YMA Ii. hEAD 
&. NOB! & LAD & NORMM & LMM So IIIOCLE 
&. NOSWP &. DINHL 6. NOSDA & !IoOHeC & LCCLCV 
& LDI &. NOSTR 6. MWAMwE & NOFTCF 6. I'OOeIB 
& ,,"OCIA I> RCLMUL 6. ~OLIN 

MOV ZR: CONTNUE &. AM2gel R15 • R15 • RAf"1A • ADD • ZA 
/ 6. NOINE &. NOSDMA 6. VMA 6. READ 
/ &. NOllA 6. LAD 6. ~ORMM 6. LMM & "'OCLB 
/ I> NOSWP 6. NODIN 6. NOSDA & NORce & LCCLCV 
/ &. LDI 6. NOSTR &. MWAMWB &. NOFTCH &. NOCU 
/ & CIA & RCLMUL 6. NOLIt. 

BRANCH MOVIN &. !M2901 Re • R0 • NOOP • UD • DA 
& NOINE & SDM! 6. VMA & READ 
&. NOBA 6. LAD I> ~ORMM 6. LMM & ~WC1B 
6. NOSWP &. DINE! &. NOSDA 6. NORCC S lCCLCV 
&. LDI &. NOSTR I> RSRD £. NOFTCH £. NOCII! 
&. NOCIA &. RClMUt & NOLH. 

ADDM+R: CONTNUt £. AM2901 R0 • Re • RAM! • ADD • ZA 
/ 
/ 
/ 
/ 
/ 

!DDIN: 
/ 
/ 
/ 
/ 
/ 

ADDI +R: 
/ 
/ 
/ 
/ 
/ 

&. HOINE &. SDMA & iM! &. READ 
&. NO:B! &. LAD 6. NORMM &. LMM &. NOClB 
&. NOSWP &. NODIN & NOSDA &. NORCC 6. LCCICV 
&. LDt &. NOSTR &. RSRS &. HOFTCR 5. NOCIl! 
&. CIA 6. RCLMUL &. NOtIN 

nANCH lJ'ETCE &. AM2901 Re • Re • RAMF • ADD • DA 
&. NOINE &. NOSDMA 6. NOVM! &. READ 
I> BA &. NOLAD &. NORMM &. Lf'lM 6. NOCIE 
6. NOSWP &. DINHL &. NOSDA £. NORCC & NOLCC 
& NOLDI I> NOSTR £. RDRD &. NOFTCH & NOCIB 
&. NOCIA &. RCLMUL 6. NOLIN 

CONTNUE 6. !M2901 R0 • RB • RA~A • ADD • ZA 
6. NOINE &. NOSDMA &. VMA &. READ 
I> NOBA & LAD 6. NORMM I> LMM Ii. NOCLE 
&. NOSWP &. ~ODIN 6. NOSD! &. NORCC &. lCCLCV 
& LDI & NOSTR I> RSRS 6. NOITCH 6. NOCIB 
&. CIA &. HCLMUL 6. HOLIN 

BRANCR ADDIN &. AH2901 Re Re • NOOP • OR • DZ 
6. NOINE 6. SDMA. 6. VMA S READ 
&. NOBA &. LAD 6. NORMM &. Ll"M &. !;octI! 
6. NOSWP &. DINHL &. NOSDA 6. NORce & LCCLCV 
&. LDI 6. NOSTR &. MVAMlriB 6. NOFTCR & HOCI.a,,~ 

& !;OCI! 6. RCLMUL & NOLl~ 

ADDZR: CONTNUE 6. !M29Bl R15 • RlS • RA!':A • ADD • ZA 
/ &. NOINE 6. NOSDM.\ &. VM! 6. READ 
/ &. ~OE! &. LAD 6. NORf"IM 6. LMM & NOClIi 
/ &. NOSWP &. NODIh &. NOSDA 6. NORCC &. tCCLCV 
/ &. LDI I> NOSTR &. M...."MWB 6. t.lOFTCE &. t.lGCII! 
/ &. ClA £. RCLMUL &. NOLIN 

BRANCH lDDIN &. AM2901 Re • Rril • NOCP .... DD • DA 
£. NOINE 6. SDMA &. VMA &. READ 
&. NOB! &. LAD £. NORMM &. LNM &. NOCL l! 
&. HOSWP 6. DlNEL £. NCSDA 6. NORCC &. tCClCY 
& LDI &. NOSTR 6. RSJtS 6. NOFTCH & NOCIE 
&. NOCIA &. RCLMUL & NOLIN 

& AM2901 Re • R0 • RAMA • ADD • ZA 

& HOINE &. SDMA & VMA &. RUD 
& NO]! &. LAD & NORMM &. LMM £. IWCLB 
&. NOSWP 6. HODIN &. t.OSDA 6. NORCC &. LCCLCV 
&. LDI I> NOSTR &. RSRS &. NOFTCR & NOCIB 
6. CIA &. RCLMUL &. NOLIN 

!DCIN: BRANCR ,-lFETCR 6. AM2901 R0 • Re • RAMF • ADD • Dl 
/ &. NOI NE &. NOSDM! & NOVMA &. READ I 

I &. B! & NOLAD &. NORMM 6. LMM 6. NOCLE 
/ & NOSWP &. DIMHL &. HOSDA &. NORCC &. NOLCC 
I &. NOLDI &. NOSTR &. RDRD 6. NOFTCH &. C U 
/ &. NOClA &. RCLHUt 6. NOLIN 

ADCI+R: CONTNUE 6. !M2901 RII • R0 • R!MA • ADD • ZA 
/ & NOINE &. NOSDMA & VMA &. READ 
/ &. NOBA &. LAD &. hORMM S LMM & !;OCLB 
/ &. NOSWP &. NODIN &. NOSDA &. NORCC &. LCCLCT 
'/ &. LDI 6. NOSTR &. RSRS &. NOFTCR &. Nocn 
I s. CIA &. RCLMUL 6. NOLIN 

BRANCH ADCIN & AM29f11 R0 • He • t.OOP • OR • DZ 
&. NOINE &. SDMA &. VMA &. READ 
&. NOBA &. LAD &. NORMM 6. LMM 6. NOCLE 
6. NOSWP &. DINHL &. NOSt! &. NORCC Ii. LCCLCY 
6. LDI & NOSTR 6. MVAM'IIB I> NonCH &. MOCIB 
& NOCIA & RCLMUL 6. NOLIN 

ADCZR: eONTNUi &. AM2901 R15 • R15 • RAMA • ADD • ZA 
/ &. KOINE & NOSDMA &. VMi &. READ 
I 6. NOBA 6. LAD 6. NORMM 6. LMM & NOCLE 
/ &. NOSWP & NODIN &. NOSDA 6. NORCC 6. LCClCV 
/ &. LDI & NOSTR 5. M'ikMWB &. NOFTCH &. NOCIB 
/ & CIA 6. RCLMUL 6. !;OLIN 

BRANCH ADCIN &. AM2901 R0 • RIl • NOOP • ADD • DA 
&. NOINE 6. SDMA & VMA & READ 
6. NOllA &. LAD &. NORMM &. LMM &. fl'OCLB 
&. NOSWP &. DINHL &. NOSDA &. NORce 5. LCCLCY 
6. LDI &. NOSTR & RSRS &. NOFTCH &. !;Ocn 
&. NOClA &. RClMUl 6. NOLIN 

SUBM+R: CONTNUE &. AM2901 R0 • Rfl • RAMA • ADD • ZA 
/ &. NOINE 6. SDMA & VMA I> READ 
/ &. NOllA &. LAD &. NORMM &. Lf'lM &. NOCLB 
/ &. NOSWP & NGDIN &. NOSDA &. NORCC 6. LCCLCV 
/ &. LDI I> NOSTR & RSRS & NOFTCH 6. Noe IB 
/ &. ClA &. RCLMUl 6. NOlIN 

SUl!IN: 
/ 

BRANCE. IFETCH & AM292il R0 • R0 • RAMF • sun • DA 
5. HOINE &. NOSDMA £. NOVMA & READ 

/ £. BA 5. NOLAD & NORMM 5. lMM So NOCL!! 
/ &. NOSWP &. DINHL £. NOSDA &. NORCC 6. NOLCC 
/ &. NOLDI &. NOSTR &. RDRD I> NOFTCR &. NOCI:B 
/ &. CIA &. RCLMUL 6. NOLIN 

SUB!+R: COt;TNUE &. AM2901 Re • R0 • RAMA • ADD • ZA 
/ &. NOINE I> NOSDMA & iH! & READ 
/ &. NOB! &. LAD 6. NORMM & LMM &. NOCLS 

&. NOSWP &. NODIN &. NOSDA &. NORce & LCCLCV 
6. LDI 6. NOSTR &. RSRS £. NOFTCH &. NOClB 

/ 
/ 
/ 6. CU 5. ReLMUL &. NOLIN 

BRANCH SUBIN I> AM2901 Re • Re • NOOP • OR • DZ 
&. NOINE Ii. SDMA &. VMA &. RUD 
&. NOBA & LAD 5. NORMM 6. LMM 6. Nocn 
&. NOSWP &. DINHl &. NOSDA &. NORCC &. LCCLCV 
&. LDI &. NOSTR &. MWAMWB &. NOFTCH &. NOClB 
I> NOCU 6. HCLMUl &. NOLIN 

SUJ3ZR: CONTNUE & A~2901 R15 • Rl5 • RAMA • ADD • ZA 
/ & NOINE &. NOSDMA 6. VMA &. READ 
/ &. NOBA & LAD &. NORMM 5. LMM & NOCLB 
/ 6. NOSWP & NODIN 6. NOSDA &. NORCC &. LCCLCV 
/ 6. LDI &. NOSTR & MWAMWB &. NorTCR &. NOCIB 
/ & CIA &. RCLMUL &. NOLIN 

BRANCH SUBIN & AM2901 R0 • R0 • NOOP • ADD • DA 

SUBCf"+R: CO!'.TNUE 
/ 
/ 
/ 
/ 
/ 

& NOINE &. SDMA 6. VMA &. READ 
I> NOBA 6. LAD &. NORMM 6. LMM 6. NOCLB 
& NOSWP &. DINBL 6. NOSDA 6. NORCC 6. LCCLCV 
6. LDI &. NOSTR &. RSRS I> NOTTCH 6. ,,"OCIB 
&. NOCI! &. RCLMUL &. NOLIN 

6. AM2911!1 R0 • R0 • RAMA • ADD • ZA 
6. NOINE &. SDMA &. VMA I> READ 
&. NOBA &. LAD &. NORMM &. LMM &. NOCLB 
6. NOSWP & NODIN 6. NOSDA 5. t.ORCC 5. LCClCV 
& LDI & NOSTa 5. RSRS & NOFTCH I> NoelB 
&. CIA 6. RCLMUL 6. NOLIN 

SUBCIN: 
/ 

BRANCH IFETCH &. AM2901 Re • R0 • RAMF • SUSR • DA 

/ 
/ 
/ 
/ 

SUBtI+R: COt.T~UE 

/ 
/ 
/ 
/ 
/ 

&. t.OINE &. NOSDMA 6. NOVM! &. READ 
&. BA &. ~OLAD & NORHM 6. LMM 5. NOCLB 
£. NOSWP &. DINHL &. NOSDA & NORCC 6. NOLCC 
&. NOLDI &. NOSTR 50 RDRD & NOFTCH & CI!! 
& NOCIA 6. RCLMUL I> NOLIN 

6. AM2901 RIll • R0 • RAMA • ADD • ZA 
&. NOINE &. NOSDMA &. V"IA & READ 
& NOB! 6. LAD 6. NORMM &. LMM &. NOCLS 
6. NOSWP & NODIN & !;OSDA 5. NORCC I> LCCLCV 
6. LDI & NOSTR & RSRS 6. NonCH &. NOCIB 
6. CIA 6. RCLMUt &. NOLIN 

BRANCH SUBCIN &. AM2gel R0 R0 • NOCP • OIl , DZ 
6. NOINE 6. SDMA. &. VM.'. & READ 
&. ""DBA &. LAD 1> NCRMI'" I> Lf"~ & NCCL!! 
&. t.OSliP &. DINhL S. !IoOSDA 6. ~CRCC 6. LcctCY 
6. LD1 5. fIlOSTR &. MlnMw!! 6. NOTeI' 6. ,,"OCIB 
& NOCI! & RClMUt 6. ~OLIN 

SUBCZR: CONTNUE &. AM29'H R15 ,RlS • RAMI. • UI. • U 
/ &. NOIhE & NOSDM\ £. V'1A 6. READ 
/ & NOB! & LAD & t-ORt"M oS. LMM & !'.OCLB 
/ &. NOSWP &. "ODIN & NOSDA & "ORCC So LCCLCY 
/ &. LDI &. NOSTR F. MUMWil 6. t-JFTCH & NvCIB 
/ &. CIA & RCLMUt &. ~OLI!Io 

BRAt;CH SUBCIN 6. AM2901 R0 • R0 • t-OCP • AtD • D' 
&. NOINE 6. SOMA I> VMA 6. READ 
&. NOBA & LAD & NORM!': 6. lMM &. f';OCLB 
&. NOSWF &. DINHL & NOSDA £. NORCC I> LceLCV 
& LDI & NCSTR I> RSftS &. NonCH 6. f';CCIB 
6. NOC!A &. RCLMUL & NOLIN 

ANDM+R: CONTNUE &. 11'12901 R0 RIl! • RAI1A • ADL • ZA 
/ 6. NOlt-1 6. SDMA. ~ YMA &. READ 

313 



314 

S. NOllA 6. LAD &. NORMM So LMM &. NOeL! 
6. NOSVP &. NODIN &. NeSDA &. NORce 6. LeCLCV 
&. LDI 6. NaSTR &. RSRS &. t-oOFTCH 6. I,ICCIl! 
&. CIA &. HeLMUt & hOLIN 

ArIODIN: 
/ 

BRANCH nETeH 6. AM2981 RI!I • Re • RAto'r • ,"[I . DA 

/ 

~ 
/ 

ANDI+R: CONTNUJ 
I 
/ 
/ 
/ 
/ 

&. NOlME &. hOSDMA &. HOVMA &. RUD 
6. BA 6. NOLAD 6. hORMM &. L"IM &. t.CCL~ 
&. ttOSWP &. Il INRL &. NOSDA &. NORce &. Lev 
&. NOLDI &. NOSTR &. RDRD &. NOFTCH &. NOC III 
&. NOCU &. RCLHUl. 6. ~OLIN 

&. 1112911 Re • RIiJ • U,.." • ADD • ZJ. 
&. NOIHE &. NOSDMA &. 'Hi &. RUD 
&. NO:BA &. LAD oS. NOR'1P1 &. LMI'! &. NoeLlI 
&. NCSVP 5. HODIN &. NOSD! 6. "ORce &. leelev 
&. LDl &. t.lOSTR &. RSKS S. NOFTCH &. NCCllI 
&. CIA &. ReLMUt &. hOLIN 

BRANCH ANDIN &. 11129B1 RI • Be • NOOP I OR • DZ 
6. NOINE &. SDf'tA &. VHl &. READ 
&. NallA &. LAD &. NOR~M &. 11'1"1 &. NOeLl! 
&. NOSWP &. DIMHt & NOSDA &. NORce &. LeeLCY 
&. LDI &. NaSTR &. "'WAMi'lI &. ~orTCH & NCCIB 
&. NOCU &. HeLMUt Ii. NOLIN 

nDZR: CaNiNUI &. AM2981 us • H15 I RAMA • ADD • ZA 
/ &. NOlNE &. t.:OSDH! 6. 'MA &. RUD 
/ So NOBA 6. LAD 6. NORMM 6. LMI'! ~ ~OCLB 

/ &. NOSYP &. NCDIN &. NOSDA &. ~ORCC &. LCCLCY 
/ &. LDI &. NOSTR &. MW4.Md 6. NeFTCR &. ,.ceIB 
/ 6. CIA &. RCLMUt J;. hOUN 

BB.Ar.CH Ar.Dlfo. &. .\M2901 R0 • Rill ,foIOCP. ADD • DA 
&. NOINE &. SD"'IA &. Vf":! So RUD 
&. NOB! &. LAD 50 NORMI'! So LMM &. Noe18 
&. NOSWP &. DINHL & ~CSDA &. ~ORCC & LcetCY 
&. IDI &. ,.CSTR &. liSPS &. NOrTCH &. NOCIB 
&. NOCIA So RCLMUL Ii. NOLIN 

IORM+R: CC.t\TNlJE &. AM2901 R0 • R0 • RAMA • ADD • ZA 
/ &. NOINt &. SDMI &. VHA &. RFAD 
I &. NOBA So LAD &. NORMH &. LMM &. ~OCLB 
I &. hCSYP &. NODn. 6. NOSDA &. NCRCC &. LCCLCY 
/ 50 LDI So NOSTR 50 aSkS &. NOFTCH &. NOCIB 
I &. CIA &. RCLHUL &. hOLIt. 

IORIN: BUNCH IFETCH &. 11"12981 R0 • R0 • RAMF • OR • DA 
I 
I 
I 
/ 
/ 

IORI +.: CONTr.UE 
/ 
I 
/ 
I 
I 

&. NOINE &. NOSDM! &. NOVMA &. READ 
&. B1 &. NOLAD &. HORMI'! &. LMM &. ,..oCLB 
&. ","OSWP &. DIHHL &. NOSDA &. NORCC &. LCV 
&. NOLDI &. NCSTR 50 RDRD &. NOFTCi oS. NOCIB 
&. NCCIA &. RCLMUL &. NOLIr. 

&. AM2921 RIB • Re • RAMA • ADD • ZA 
&. NOINE &. NOSDMA &. VMA &. READ 
&. NOBA &. LlD &. hOR!':H 6. LMM &. NOCLB 
&. NCSliP &. NODIr. &. r.OSDA &. NORCC &. LCCLCY 
&. LDI &. NOSTR &. RSRS &. 1I0F"rCB &. NOCIB 
6. CIA 50 RCLMUL 6. NOLIN 

BRANCH IORIN &. AM2901 Rill • Re • NOCP • OH • DZ 
&. NOlhE 6. SDMA & YMA &. READ 
6. NOBA &. UD &. hORMM &. LHM S. NoeLB 
6. NOSIII'P &. DINH &. hOSDA &. NORCC &. LCCLCY 
&. LDI &. NOSTR &. MWAMWB &. MOrTCH 6. NOCIB 
&. NOCU. &. RCLHUL &. NOLIN 

IOEZR: CON'rNUE 
/ 

&. AM291111 R15 • R15 • RAM! • ADD • Z1 
&. NOINE &. NOSDMA 6. 'MA &. RUD 

I &. NOIlA &. LAD &. NORMH &. LMM &. NO CLl 
/ &. NOSWP &. HODIN &. NOSDA &. NORCC &. LCCtCV 
I &. LDI &. folOSTR &. ~HM'B &. NOFTeH &. folOClB 
I &. CIA &. RCLMUL 6. NCLIN 

BRANCI! IORIfo. &. AM291111 R0 , RIiJ ,NOOP, ADD ,DA 
&. NOINE &. SDMA &. VHA &. RUD 
6. NOBA &. LAD &. NORHM &. LMM &. NoeLl 
6. NOSWP &. DINHL &. NOSDA &. NORCC &. LCCLCV 
6. LDI 6. NOSTR &. ISRS &. NonCB &. NOCIII 
&. NOClA &. RCLMut 6. NOLIN 

XORM+R: COr.Tto.UI 6. AM2901 RI!! • R0 • RAMA • ADD • ZA 
I 6. NOINE &. SD"IA &. VMA 6. RUD 
/ &. hOB! &. LAD &. ... ORHM &. LMM &. Nocn 
/ &. NOSWP &. NODIN &. NOSDA &. NORCC S. LCClCY 
I &. LDI & hOSTR &. RSRS & NOFTCH &. Nocn 
I &. CIA & ReLMUL &. NOLth 

IORI ... : BRAhCR IFiTCH &. !"2901 R0 • lI.0 • RAMF • nOR • DA 
I 
/ 
I 
/ 
/ 

XCRI+P: CO~Tt.lUE 

/ 
/ 
/ 
/ 
/ 

&. HOINE &. ... OSDMA &. NOVMA &. READ 
&. BA &. ~OLAD 6. NORHM &. Lf'lM 6. NOCLB 
&. NOSWP 5. DINHL &. "lOSO! &. hORCC &. LC' 
&. ";OLDI &. ,..OSTR &. BDRD &. NOrTCR &. r<OCIB 
&. NOClA &. HCLMUL &. NOLIN 

&. A"2901 R0 • Re • RAM! • ADD • ZA 
&. NOINE &. hOSDMA & V'11 6. PEAD 
&. NOB! &. UD &. NORt',., &. lMI': &. fo,OCLB 
&. NOS"P &. NODIN & HOSDA &. ... ORCC &. LceLCV 
&. LDI &. NCSTa &. RSRS &. folO1TCH &. hCClF 
&. CIA &. RCLMUL &. NOlIto. 

BRUCE IORI,. &. AM2901 Re • R0 • fooOCP • OR • DZ 
&. NOINi &. SO"!A &. Y"'A &. RUD 
6. NOBA &. LAD J;. NORMM & LMM &. '10CLB 
&. NOSWP &. DINHL & fooOSDA &. NCRCC &. LCCtcv 
So IDI &. hOSTR 6. HWAMiB &. NOnCp. &. ,.CCIB 
&. NOCIA J;. HCLMUL &. hOLIN 

IORZR: CONTNUJ: &. AM2981 R15 ,R15 • RAt'! • ADD • ZA 
/ &. NOlNE 6. NOSDMA &. YMA &. RUO 
/ 6. r.OBA &. L!D &. ,.ORH" &. LMM &. Nocn 

~ 
6. N05WP &. HODIN & NOSDA &. NORCC S. LCCLCY 
&. LDI &. HOSTR &. MWAH ... B &. HOFTCH &. fooCCIB 

/ &. CIA &. RCLMUL &. NOLIN 

BRANCH IOBIN 6. AM29i11 Ie ,Re • hOOP • ADD • DA 
&. NOINE &. SDI1! &. '''IA &. RUD 
&. NOB! &. LAD &. NORM" &. LM" 6. Nocn 
6. NOSWP &. DINHL &. NOSDA 6. NORce & LCCLCY 
&. LDI &. NOSTR &. RSRS 5. honCR &. NOCIB 
&. NOClA &. RCLMUL &. NOLIN 

CMPH+R: COfoo"rNUE &. AH291111 H0 R0 • RAMA • ADD • ZA 
/ 6. NOINi &. SDM! &. YHA &. RUD 

&. NOBA &. LAD &. t..OIiMM &. LMM 6. hOCLB 
6. NCSWP &. NODIN &. NOSDA &. NORCC So LCCLCY 
&. LDI &. NOSTR &. RSRS &. NOlTCR &. "CCIB 
&. CIA S. RCLHUL 6. NOlIt.. 

CMPJN~ 

/ 
BRANCH unCH &. AH2901 Rlil • RI • HOOP • SUU • DA 

&. NOINE &. NOSDM! &. NOYMA &. RFAD 
/ &. BA S. NOLAD &. NORM~ So t!'1H So ~OCLB 

/ &. NOSYP &. DIMHL &. NOSDA &. r..CRCC &. ... OlCC 

~ &. NOLDI &. r.OST! & RDill: So hOFTCS &. \OC!B 
6. CIA &. RCLHUL So NOLIN 

CMPI +R: CO"ThUi &. AM291111 Hlil • H0 • HAMA • ADD • ZA 
/ &. NOINE &. NOSDMA &. 'MA &. IIEAD 
/ &. NOBA &. LAD 6. NORMH 6. LM"! oS. NeCLB 
/ &. NCSWP &. hODIN 6. NOSDA &. ,.ORCC &. LCCLC' 
/ &. LDI 6. NOSTit So RSRS &. NOFTCH &. hCClE 
/ &. CIA &. RCLMUL &. NOLlr. 

IlRAhCB CMPIN 6. AH2901 Rlil • Re • NOOP • OR • rz 
&. NOINE 5. SDMA &. VM! &. READ 
&. NOB! &. LAD &. NORMH &. LMI1 &. "('CLl! 
&. NOSWP &. DINHL &. NOSDA 6. NORCC &. LeCICV 
&. LDI S. hOSTR Ii. MWif"WB &. ,..:>FTCH s. Kecn 
&. HOClA & ReLMUL &. NOLIN 

CHPZH: CONTNUE &. A,..2901 R1b • R15 • RAMA ,ADD • Z! 
I &. HOINE &. NOSOMA So VHA I;. RUD 
/ &. NOB! &. LAD &. hCRM"'l &. lMM f.,. '10CLII 
/ &. NOSWP &. ~ODlh &. NOStA &. hORCC &. LCCLCV 
I &. LDI &. hOSTR 6. MWAMIIoB So NOFTeR So r..OCIB 
I &. CIA &. HCLMUL &. NOLU 

BRAhCH CMPIN &. AH291'1 He I Re • NOOP • ADD • D1 
&. ,.OINE &. SD'1A &. VHA &. READ 
6. NOB! &. UD &. NORMM &. 1MM &. ,"OCLl! 
&. NOSWP &. DINPL 5. NOSDA So NORCC &. LCCLC' 
&. LDI &. NOSTR &. RSRS Ii. NOFTCR & hocn 
&. "OClA &. ReLMUL &. NOLIN 

RSBM+R: CONTNUE &. 1M2901 Rill • Rlil • RAMA • ADD I ZA 
/ &. NOIN! &. SOH! &. VMA &. READ 
/ &. NOBA &. LAD &. NORMH &. LMM &. NOCLB 
/ &. NOSWP &. NODIN &. NOSDA &. NOkCC &. teCLCY 
/ &. LDI &. NO&TR &. RSRS 6. HOlTCH &. r..OClB 
/ &. CU &. HCLMut &. NOLIN 

RSUBIN: 
/ 

BRUCH IitTCB &. AM2901 Rill • R0 • RAMl • SUBS • DA 
6. NOINE &. NOSDM! &. NOVMA 6. RUD 

I &. )A & NOLAD &. NORMM &. LMM &. NoeLII 
/ &. NOl:lWP &. DIN8L & NOSCA &. ~ORCC &. NOlCC 
I &. hOLDI &. NOSTR &. RDRD b. NonCH So NceIB 
/ 6. CIA &. ReLMUL &. NOLIN 

RSBI+R: CONnUE &. AM2901 R0 • Rill • RAMA • ADD I ZA 
/ &. NOINE &. NOSDM! &. ''''IA &. RUD 
/ &. NOU &. LAD 6. NOltHM &. LM" &. NOCLB 
/ &. NOSWP & r.ODIh &. NOSDA &. NORCC 6. LCClCV 
/ 6. LOI 6. NOSTR &. RSBS &. NonCH &. NOCIB 
/ &. cu. &. RCLMUL &. NOLIt. 

IlRAhCH RSUBIN &. 11"12911 R0 B8 • NOOP • OR • DZ 
&. IIOINE &. SDMA &. 1M!. &. RElD 
&. NOB! &. UD &. NORMM &. LI'IH &. r.OCLB 
&. NOSWP &. DINHL &. NOSDA &. NORCC &. LCCLCV 
&. LDI &. NOS"rR &. HWAMWB 6. honea &. NOCI! 
&. NOCI A &. HCLMUL &. NOLIN 

RSUBZR: CC.KTNUE &. AI"I2981 R15 ,R15 • RAMA • ADD • ZA 
I 6. NOINi &. NOSDM! &. Y"'I! &. RUD 
/ &. NOBA &. LAD &. NORMM &. LHtI &. NOCLi 
I &. NOSWP &. NODIN &. NOSD! &. NORCC &. LCeLCY 
/ &. LOI &. NOSTB &. MUMWB &. NOrTCH &. NCCIlI 
/ &. CIA So BCLHUL &. NOLIN 

BRAhCH RSUIIIN &. AM2901 RIll • Rill • NOCP • ADD • D! 
&. NOINE Ii. SDMA &. 'MA &. RUD 
&. folOB! &. LAD &. NORI'IM &. LMH &. NOCLB 
&. NOSWP & DINHL &. toOSDl t. NCRCC 6. LCCLCY 
&. LDI &. NOSTit 6. RSFS 6. NOfTCH & NOCIB 
&. ~OCIA &. BCLMUL .s. NOLIN 

INCMR: COt."rHUE &. AM2901 R0 • R0 ,Ufo'A. ADD • Z! 
/ &. NOINE &. NOSDMA 6. V""A &. RUD 
/ &. NOBA &. LAD 6. NORI'IM &. LMH J;. NOCLB 
/ &. t.OSWP &. NODU. &. NOSD! &. NORCC &. LCCLCV 
/ So lDI &. NOSTR So BSRS 6. HOfTCD &. NOCIB 
I & NOCIA &. RCLMUL 6. NOLIN 

IKCOUT: 
/ 

.Bltl,..CH IFUCH &. !H2901 RI • R0 • RAMF • ADD ,DZ 
&. toOINF. 6. NOSDM! &. YMi &. "RITE 

/ &. NOBA &. ,.OLAD Ii. NOP.I1M &. LMM & "(lCLB 
/ &. NOSWP &. DINPL &. NOSDA &. hORCC &. lCV 
/ &. NOlDI &. r.OSTR &. RDJi.t 6. NOllCd &. hOCIB 
/ &. CIA & RCLMUL & hOLIN 

IhCI +R: COhTNUE &. 11"12901 Ril • Ril • Ri"'A • ADD ,ZA 
/ &. NOINE &. NOSLMA &. 'HA & }(EAD 
I &. NOBA &. LAD So NORMM & LMM &. NoeLB 
I &. NOSitP & NODIN &- NOSDA &. r.CBCC &. LCCLCV 
/ 50 lDI &. NOSTR &. RSRS &. NOirCH &. 'WCIII 
I &. CIA &. RCLM{JL & ~ei.n. 

BanCH INCOU"r 6. AM291iJ1 R0' • R0 ,NOOP. OR • OZ 
&. NOINE &. NOSDMA &. VMA &. RUD 
&. ~OBA &. LAD 6. NORM"1 &. LMI'! 60 NoelB 
&. NOSWP &. DINHL Ilo NtiS»! &. NCRCC 6. tecLCV 
6. tDt &. NOSTR & MliIAM'tB &. NOrTCR S. hOCIB 
&. NOCIA &. HCLMUL &. NOLI N 

IHCz:R: CO~TNUE 6. AM291111 R15 ,R15 ,RAt-A • ADD • ZA 
/ &. NOINE &. NOSDM! &. YH! 6. RHD 
/ &. "OBA &. LAD &. fo,ORMM Ii. LMH & NOCLl! 
/ &. NOSWP &. NOD IN 6. NOSDA &. hORce &. leCLCV 
/ &. LDI &. NOSTR &. MWAMU &. NOFTCH &. hOCIB 
/ &. CIA 6. iCLMUL &. HeLa 

BRANCH INCOUT &. !H291111 Rlil • R2I • NOOP • ADD • DA 
&. hOINE &. NOSDMA &. '1"1' 6. RUD 
&. NOB! &. LAD &. NORfo'fo! 6. LMI'! &. ~OCLII 
&. NOSWP 6. D INHL &. NOSDA \, NORCC &. LCCLCV 
&. LDI &. NOSTR 6. IiSRS &. NcnCR ~ NCCIB 
&. NOClA &. iCLHOL 6. NOLn 

OECMR I CONTNUE &. 1.1"12981 HI • Re • R1I':A • ADD ,ZA 
/ &. NOlHi &. NOSDM! &. 'HA 6. READ 



DEC our : 
I 
I 
I 
I 
I 

& NOBA &. LAD 6. HOEMM &. LMN &. NOClli 
&. NOSWP &. NODlh Ii. hOSDA So "'ORCC 6. LCCLCV 
Ii. LDl Ii. NOSTR /). RSRS <> NOF1'CH <> !'oOCIB 
Ii. NOClA Ii. RCLMUL 6. NOLIN 

:BRAt.lCE HETCE Ii. AM2901 R0 • R0 • RiMF • SUPS • DZ 
&. hOINE &. NOS DNA &. VNA 6. WRl TE 
&. NOB! Ii. NOLAD &. NORMM Ii. LMM 6. NOCLB 
&. NOSWP & DINHL f NOSDA (. ,,"oPCC 6. lCV 
& NOLDI & ~OSTR 6. ROH !:. NOFTCH (, NOCIB 
Ii. NOCIA 6. HClMUL /). NOLl~ 

DiCI +R; CCt-TNUE <> AM2901 Rill • R0 • RAMA • ADD • ZA 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
DECZR: 
I 
I 
I 
I 
I 

& NOINE & NOSDMA &. VI"'A &. RHO 
& ",O"3A &. LAD &. NOTtMM & L11M 5. t.c CLE 
Ii. NOS'tP &. NODIt-; Ii. ,",CSDA 5. t-.ORce 6. LCCLCV 
&. LOI &. NOSTR I> RSRS 6. tWFTCl! 6. t-;oca 
6. CIA 6. RCLMUL 6. NOLI'" 

BR!~CH nCOUT & A!':2901 R~ • R0 • NOeP • OR • DZ 
5. NOINE So NOSOMA 5. V.., A &. RHD 
5. NOBA & LAD & NORMi"', 5. Lt"M 6. hOCLB 
5. NOSWP 5. DINHL 5. "'05DA 6. NORCC Ii. LeeLev 
& LDI 5. NOSTR & MWAM ... ·E 5. NonCH 6. "ocn 
& NOClA &. ReLMUL &. NOLH.. 

CO"Tt-.UE & AM2901 R1~ • R1!J • RAI'1A • ADD • ZA 
5. NOINE & NOSIJMA 6. VNA 6. READ 
5. t\OBA 6. LAD ~ NORMM 50 LMM I;. NOCLB 
5. NOSWP 6. ,"CDxr.. 6. ",OSDA 6. NChCC 6. LCCLCV 
5. LDI 6. ~OSTR & MWAf"tE 6. NOFTCH 6. hOClE 
6. CIA 6. RCLMUL 5. NOLI~ 

ERANCB nCOU! 6. AM2901 Re • R0 • NOOP • ADD • DA 
6. ~IOINE 6. NOSDM! 6. VMA 6. READ 
6. NOllA 6. LAD 6. NORMM 6. LMM 6. NOCLE 
& NOSWP 6. DINHL 6. ~OSDA 5. t-;CRCC 6. LCCLCV 
6. LDI 5. t;OSTR I). RSES & NOFTeR 6. Noca 
6. ~OCIA & RCLMUL 6. ,",OLI" 

COMf"R: CONTN!;"E & AM29f1l1 R0 • R0 • RAMA • ADD • ZA 
I 6. r-.OINE & NOSDMA S. VMA 6. READ 
I 6. NOllA 5. LAD t. t-.ORMM 6. LMM 6. NOCLll 
I 6. NOSWF 5. NODIN 5. NOSDA 50 NORCC &. LCCLCV 
I 6. LDl 6. NOSTR 5. RSRS & NOFTCR 6. Nocn 
I & tWCIA 5. RCLMUL 6. NOLIN 

COMOLT: BRHCH IUTCH 6. AM2901 R0 • H0 • R!MF • EXt-OR • DZ 
I 
I 
I 
I 
I 

COMI+R: COt;ThUE 
I 
I 
I 
I 
I 

6. tWINE 5. NOSOMA 6. VMA & .. RITE 
& NOEA &. NOLAD 6. hOJlMM &. LM!': &. NOCLl! 
5. NOS'wP 5. DINHL 5. NOSDA & NORCC &. LCV 
6. t.OLDI & NOSTR 6. RDRD 6. NOFTCH 6. NOCIE 
So NOCrA 6. RCLMUL 6. NOLIN 

5. AM2901 R0 • Rll • RAMA • ADD • ZA 
6. t.OINE 6. NOSDMA 6. VMA 6. READ 
6. NOE! 5. lAD 5. tWPMM & LMM & NOCLl! 
&. NOSWP 6. NODIN 6. t;OSDA 6. NORCC &. LCCLCV 
6. LDI 6. t10STR 6. RSRS 6. NOFTCH 6. tlOCIE 
6. CIA I.>. ReLMUL 6. NOI IN 

ERHCH COMOUT I> AM2901 R0 • R0 • ~OCP • OR • DZ 
5. NOINE & NOSDMA I> VMA 6. READ 
I> NOllA 6. LAD Ii. NORMM 6. L'1M 5. NOCLB 
6. t-OSWP & DINHL & "OSDA 5. t.ORec 6. LCCLCV 
6. LDI 6. NOSTR 5. MW!MWB 6. NOFTCH & "OCIE 
6. NOCIA & ReLMUL 5. NOLIN 

COMZR: CONTt.UE & AM2901 R15 • R15 • RAMA • ADD • ZA 
I 5. NOINE I> NOS OM! & VMA & READ 
I & NOBA 5. LAD & NORMM 6. LMM 5. NOCLE 
I & NOS'w'P 5. t.ODlfi 6. NOSDA & NORCC Ii. LCCLCV 
I 5. LDI I> NOSTR 5. MWAM'wB 5. NOFTCH & Noca 
I I> CIA £. RCLMUL 5. NOLIN 

BRANCH COMCUT & AM2901 R0 • R~ • NOOP • ADD • D! 
& t.OH'!: 5. "'OSDMA & VMA 6. READ 
& NOBA 5. LAD oS. ~ORMr, 6. lMM &. NOelE 
5. NO~WP 5. IlINHL ~ NOSDA 6. NORCC S. LCCLCV 
& LDI 5. NOSTR & RSRS 5. NOFTCH &. NOClll 
& NOCIA I;. RCLMUL & NOLIN 

NE"MR: eOt;Tt'o:lIE 6. AM2901 Re • R0 • RAMA • ADD • ZA 
I & NOINE 6. NOSDMA 6. VNA & READ 
I 5. NOE! & LAIJ 6. t-ORMf'" & LMM & NOCIB 
I & NOSWP 5. NODI~ 5. NOSDA 5. NORCC I> LCCLCV 
7 & LDI & t.OSTR I> RSRS 5. t;OFTCP & t;O('IF 
I 5. t.OC!A S. ReLMut 5. t;OI,It. 

hEGCUT: BRHCR IrETCH & AM2901 R3 • Re • RA~F • SUBR ,Dl 
I 
I 
I 
I 
I 

NEGI+R: CCNTt.UE 
I 
I 
I 
I 
I 

& NOlliE 5. NOSDn 6. Vt-'A & ."hITE 
6. t.OllA 5. tWLAD 5. NORMM S. L'1M 6. ~OCLB 

5. NOSWP & DIt;H 6. NOSDA &. ",ORCC (. NetCC 
6. NOLO I 6. t;OSrR & R:LlRI: <;, NOFTCH I> NOel}! 
6. CIA 5. RCLMUL .<;. NOLIf. 

6. A!':2901 R~ • R0 • RAMA I !DO ,ZA 
5. ,",OINE & NOSOMA 6. Vi': A & RH~ 
& NCBA & LAD I> hOFMM &. LMM 6. Necr.B 
& NOSWP 6. NCDH. 6. NQsrA 6. NORCC 5. LCCLCV 
6. LDI 5. NOSTR & RShS &. NonCR 5. ",OcrE 
& CIA & RCLMUL 6. NOLlt\ 

BRANCH NEGOUT & AM2901 R0 • R0 ,NCOP. OR • DZ 
& NOINE 6. NOSDMA 6. VMA 6. READ 
&. NOEA 5. LAD & NORMM & LMM & /'ooeLE 
6. NOSWP 6. DINHL 6. IWSDA & ,"ORce & LCClCV 
6. LDI 5. IIIOSTR &. MHM'IoP 5. NonCH <;, '-IOC IE 
6. NOCI A & RCLMUL 6. NOLIN 

NEGZR: CONTNUE & AM29ll1 II15 • R15 • RA!":A • ADD • ZA 
I &. hOINE 5. NOSDMA & '1"1 A & READ 
I 6. NOB! 6. tAD I:. NORMM 6. LMM & NCCLE 
I 6. NOSWP 6. NODIN & NOS LA & NORec 6. LCGlCV 
I 6. LDI 6. NOSTR & M'tAM't:s 5.. NOFTCR 5. NOCIE 
I &. CIA & RCLMUL & NOLIh 

BRANCH NEGOUT & !M2901 R0 • RQ: • HOOF • ADD • DA 
6. t;OlhE & NOSDMA & VNA & READ 
& NO]! &. LAD 6. NORM!': & LMM &. Noel] 
6. NOS'iP &. DINt'L & NOSDA 5. fiORce & LCCLCV 
& LDI &. NOSTR &. RSRS 6. flOFTCE 5. Nocn 
I> r-.OClA 6. RCLMUL 5. NOLIN 

SWPMR: CONTNUE I> AM2901 R0 • R0 • RAM! • ADD • ZA 
I & t-;OINE &. NOSDMA 6. iMA 6. READ 
I & NOBA 5. LAD S NORMM Ii. lMM & NOCLB 

SWPOUT: 
I 
I 
I 
I 
I 

&. NOSWF 5. NGDIN 5. NOStA & hORCC 5. LCCLCV 
&. LDI & NOSTR & RSRS & NOFTCH & ,"ocn 
Ii. NOClA 6. RCLMUL 6. NCLIN 

BRA-hCB InTCR 5. AM29f1l1 Re • R0 • PArF • OR • DZ 
& NOli'll 5. NOS OM! 5. VMA 5. WRITE 
& t;OIlA 6. ,",OLAD & NORMM 6. LMM 5. ,"OClE 
& SWPHL & NODI/'i & NosrA <> t;ORCC & LC ... 
5. NOLDI 6. NOSTR &. RDRD 6. NOFTCF 50 Nocn 
6. NOCIA 5. RCLMUL & NOLI" 

S'IIPI+R: COhTIIIUE & !M29tU R0 • Re' • RAMA I ADD • Z' 
I 
I 
I 
I 
I 

SWPZR: 
I 
I 
I 
I 
I 

'" 

6. NOINE & NOSDMA 6. V;,,\! &. READ 
6. NOllA 6. LAD 6. tWRMM 5. Lf"'r-' & ~'OCLB 
6. flOSWP 6. NODIN 5. NCSD! 5. NORCC 6. LCCLCV 
6. LD1 6. ~OS':R So RSRS 5. NOFTCh 6. "ccn 
I> CIA 5. RCLMUL 6. NOUN 

llRAt;CH 5WPOUT & AM2901 Re • Re • NOOF • OR • 1'z 
& NOINl. 5. ,"CSDMA & VMA & READ 
5. NOlsA 5. LAD & NORMM 5. LMM 6. NOCLB 
5. t.,OSWP 6. DINHl 5. t;OSDA 6. NORce & LCCLCV 
6. LDI 6. NOSTR & MWAMVlP 5. tWFTCP 5. t-oeIE 
& NOClA 5. RCLMUl 6. NOLIN 

CC"TNUE 5. AM2901 R15 • R15 • RAMA • ADD • ZA 
& NOINE 6. NOSDI"! & VMA 6. READ 
6. NOBA 5. LAD So NORMM & LMM 5. tWeLB 
5. t.OSWP 5. NODlfol 6. NOSDA & ~ORCC 5. LCCLCV 
& LOI 6. NOSTR & MW}f""I,'B 5. NOFTCH 6. NOCIB 
&. CIA S RCLMUL 6. NOLIN 

ERAt.CR SWPOUT & AM2901 Re • R0 • NCOP • ADD • DA 
6. NOINE & NOSDMA 6. vrA & RFAD 
& NOBA S LAD S NORMM 5. LMM & NoeLB 
6. N05WP 5. OINHL & NOSDA 6. ~ORCC 5. LCCLev 
6. LDI &. NOS':.'R & RShS & NcFTCH & NOC III 
&. NOCIA 6. RCLMUt &. NOLIN 
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Chapter IX 
Super Sixteen 





INTRODUCTION 

The AMD 16-Blt Computer design IS an example of a high-speed 
microprocessor system which takes full advantage of AMD's 
Am2900 Family of Bipolar microprocessor CircUits to provide an 
economical, high performance, self contained 16-blt computer. 
It was designed to demonstrate the pnnciples of a micropro­
grammed system. 

This design IS Intended to show some of the techniques used to 
achieve high performance. This Includes plpelinlng at the micro­
program level as well as plpelining at the macro or machine 
Instruction program level. A powerful instruction set IS demon­
strated which allows the user to write efficient programs In a 
minimum amount of time. 

One of the unique features olthe design IS that In addition to uSing 
the high performance Am2900 Bipolar microprocessor family, It 
takes advantage of the MOS penpherals normally associated 
with MOS microprocessors. These are used to perform the 
slower functions, particularly In the I/O Interface area. 

SYSTEM ORGANIZATION 

The 16-Blt Computer IS designed to perform In a system environ­
ment as shown In Figure 1. The system consists of a central 
processing unit (the 16-Blt Computer), memory Units, I/O units 
(peripheral controllers), and a bus controller. These Units com­
municate over the system bus consisting of a 16-bit Wide address 
bus, 16-blt Wide bl-dlrectional data bus, and a control bus. The 
control bus is a collection of signals that Include the memory and 
I/O Interface controls and the Interrupt request lines. 

ADDRESS BUS 

DATA BUS 

CONTROL BUS 

ThiS organization allows systems to be configured with more than 
one CPU and multiple memory and I/O Units. The bus controller 
arbitrates requests for bus use from the CPU's or I/O Units that 
require DMA transfers. 

ThiS application note concentrates on the design of the CPU 
portion of the system. 

INSTRUCTIONS 

An Instruction IS either one or two 16-blt words In length and must 
be located In main memory on an Integral word boundary The left 
most eight bits of the InstructIOn IS always the operatIOn code, 
followed by two, 4-blt register designatIOn fields (Figure 2). The 
16-blt (one word) Instruction IS always thiS format. The 32-blt (two 
words) Instruction has the first (left most) word exactly like the 
16-bIt Instruction. The second word of the 32-blt instruction IS 
always full 16-blt value (d) which acts as a memory reference 
address or an Immediate value (Figure 3). ThiS architecturally 
Simple instruction format becomes very powerful when Im­
plemented on a microprogrammed machine. 

The 8-bit opcode prOVides for 256 primary Instructions, which IS 
usually more than enough for most general purpose computers. 
The 4-blt register fields (R, and R2) each designate one of the 
Sixteen, 16-bit registers (Ro-R ,5). Depending upon the operatIOn, 
each register can act as either an accumulator for anthmetlc and 
logic operations, or an Index register In modulo address arithme­
tiC. On operations where the result IS placed In a register, the R, 
field depicts the deslinatlOn register and R2 (or R2+d) IS, or pOints 
to the source field In main memory. On operations where the 

MPR-684 

Figure 1. System Organization. 

OPCODE 

15 

MPR-685 

result IS transferred from a register to memory, the R, field depicts 
the source register and R2 (or R2+d) pOints to the destination 
memory locatIOn. Memory to memory transfers Will have R2 as 
the source pointer and R, as the destination pointer. Even though 
the R, and R2 fields are architecturally wired to the Am2903 
register address inputs, vanatlons of the source/destination as­
signment may be implemented via microcode. 

Figure 2, 16-Bit Instruction (RR, RS, SS). 
The complete defined standard Instruction set is given In Table 1 . 
ThiS IS a typical "machine level" Instruction set. It allows manlpu-

OPCOOE R1 R2 16-BIT VALUE (d) 

31 24 20 16 

MPR-686 

Figure 3. 32-Bit Instruction (RX, RSI). 
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Table 1. 16-Bit Computer Instruction Summary Mnemonic Instruction Format. 

FIXED-POINT LOAD/STORE INSTRUCTIONS EXTENDED INSTRUCTIONS 

LD LOAD RR, RS, SS, RX, RSI TR TRANSLATE RR 
ST STORE RS, RX TRT TRANSLATE AND TEST RR 

FIXED-POINT ARITHMETIC INSTRUCTIONS 
MVCL MOVE LONG RR 
CLCL COMPARE LONG RR 

ADD ADD RR, RS, SS, RX, RSI EXEC EXECUTE RX 
ADC ADD WITH CARRY RR,RX DA DECIMAL ADD RR,RX 
SUB SUBTRACT RR, RS, SS, RX, RSI DS DECIMAL SUBTRACT RR,RX 
SBC SUBTRACT WITH DI DECREMENT INDEXES RR 

CARRY RR,RX 
AND AND RR, RS, SS, RX, RSI SHIFT/ROTATE 

OR OR RR, RS, SS, RX, RSI SRL SHIFT RIGHT LOGICAL RX, RSI 
XOR XOR RR, RS, SS, RX, RSI SRA SHIFT RIGHT 
TSTI TEST IMMEDIATE RSI ARITHMETIC RX, RSI 
CMP COMPARE RR, RS, SS, RX, RSI RR ROTATE RIGHT RX, RSI 
CMPL COMPARE LOGICAL RR, RS, SS, RX, RSI SLL SHIFT LEFT LOGICAL RX, RSI 
MUL MULTIPLY RR,RX RL ROTATE LEFT RX, RSI 
MULU MULTIPLY UNSIGNED RR, RX SRDL SHIFT RIGHT DOUBLE 
DIV DIVIDE RR,RX LOGICAL RX, RSI 
COMP ONES COMPLEMENT RR, RS, SS, RX, RSI SRDA SHIFT RIGHT DOUBLE 

BYTE INSTRUCTIONS ARITHMETIC RX, RSI 
SLDL SHIFT LEFT DOUBLE 

LDB LOAD BYTE RR, RX, RSI LOGICAL RX, RSI 
IC INSERT CHARACTER RR, RX, RSI SLDA SHIFT LEFT DOUBLE 
STC STORE BYTE RR, RX, RSI ARITHMETIC RX, RSI 
XCHB EXCHANGE RR, RX, RSI RRD ROTATE RIGHT DOUBLE RX, RSI 
BS BYTE SWAP RR,RX RLD ROTATE LEFT DOUBLE RX, RSI 
CLB COMPARE LOGICAL 

BYTE RR, RS, RX, RSI I/O INSTRUCTIONS 

ANDB AND BYTE RR, RS, RX, RSI IN INPUT WORD RR,RX 
ORB OR BYTE RR, RS, RX, RSI INB INPUT BYTE RR,RX 
XORB XOR BYTE RR, RS, RX, RSI OUT OUTPUT WORD RR,RX 

, OUTB OUTPUT BYTE RR,RX 
SYSTEM INSTRUCTIONS 

LPSW LOAD PROGRAM BRANCHES 

STATUS WORD RX B UNCONDITIONAL 
SPSW STORE PROGRAM BRANCH RX 

STATUS WORD RX BR UNCONDITIONAL 
EPSW EXCHANGE PROGRAM BRANCH REGISTER RR 

STATUS WORD RR BC BRANCH ON CONDITION 
SVC SUPERVISOR CALL RX TRUE RX 
SETP SET BIT PSW RI BAL BRANCH AND LINK RX 
RSTP RESET BIT PSW RI BALR BRANCH AND LINK 
TSTP TEST BIT PSW RI REGISTER RR 
CMPP COMPLEMENT BIT PSW RI BXH BRANCH ON INDEX HIGH RX 

STACK INSTRUCTIONS 
BXLE BRANCH ON INDEX LOW 

OR EQUAL RX 
CALL BRANCH AND STACK RR,RX 
RTN RETURN RR 

-PUSH PUSH RR 
POP POP RR 
PPUSH PARTIAL PUSH RR 
PPOP PARTIAL POP RR 
LDSP LOAD STACK POINTER RX 
LDSLL LOAD STACK LOWER 

LIMIT RX 
LDSUL LOAD STACK UPPER 

LIMIT RX 
STSP STORE STACK POINTER RX 
STSLL STORE STACK LOWER 

LIMIT RX 
STSUL STORE STACK UPPER 

LIMIT RX 



latlon of bit, byte, word and multlbyte data; PUSH/POP single or 
multiple registers to/from stacks; maintain multiple stacks; deci­
mal, binary and integer arithmetic; byte and word I/O; and 
maintain supervisory control over hardware and software gen­
erated interrupts. 

Instruction Format 

Many of the instructions have multiple formats. These formats 
depict addressing modes and determine where the source and 
destination fields are located. The defined Instruction formats are 
shown In Figure 4. 

INSTRUCTION 

The Program Control Unit 

The Program Control Unit (PCU) under control of the micropro­
gram IS used to update the Program Counter and load this value 
into the Memory Address Register (MAR) for reading instruc­
tions/data from main memory. The PCU is also used to update the 
stack pOinter and compare this value to the stack hmlts during 
stack operations. As can be seen in Figure 5, the Computer Block 
Diagram, data can be sent to the PCU from the ALU via the 
Transfer Register. The PCU can also output data onto the PCU 
bus to the Y -bus of the ALU via the bi-direcllonal PCU transfer 
drivers. 

ADDRESSING MODE 

op RR REGISTER REGISTER 

op X2 RS REGISTER STORAGE 

op X, X2 SS STORAGE TO STORAGE 

OP X2 RX REGISTER INDEXED STORAGE 

L..-I _o_P ----L-I _R1 -L--X2 -1-1 ___ -----II RSI 
REGISTER STORAGE IMMEDIATE 

~::_,.I'_5 _---101 
MPR-687 

Figure 4. Instruction Formats. 

The instructions set consists of nine Instruction groups: 

- Fixed-point load/store 
- Fixed-point anthmellc 
- Byte 
- Shift/rotate 
- Branch control 
- I/O 
- Stack 
- Extended 
- System 

A complete description of each instruction IS given In Appendix A. 

CENTRAL PROCESSING UNIT ARCHITECTURE 

Processor Organization 

The organization of the computer IS shown In Figure 5 (Computer 
Block Diagram) The computer IS organized Into several distinct 
sections, the Program Control Unit (PCU), the ArithmetiC and 
LogiC Unit (ALU), and the Computer Control Unit (CCU), the Data 
Path, the Memory Control and Clock Control, and Input/Output 
Interface and Interrupt Section The logiC diagrams for the CPU 
are located In Appendix F. Earher chapters In the BUild a Micro­
computer senes have descnbed the pnnclple sections of a com­
puter and the Am2900 components used In these sections. ThiS 
chapter descnbes how these components are used to Implement 
a very high-speed low cost computer. 

Note Figure 5 IS sheet 1 of the logiC diagrams 

The PCU IS organized around four Am2901 'so The use of 
Am2901's allow the PCU to generate addresses With the flexibihty 
of an ALU ChiP, to Increment the Program Counter by two In one 
mlcrocycle, and to provide the stack pOinter registers for In main 
memory stack operations. The registers of these Am2901 's are 
defined as shown In Figure 6 Register 0 holds the program 
counter and Registers 4 and 5 hold constants for incrementing. 
Byte addressing requires the address to be Incremented by two 
every time 16 bits of instruction data are fetched. 

The Arithmetic and Logic Unit (ALU) 

The ALU shown In Figure 7 IS organized around four Am2903's. 
The Am2903 performs all of the functions performed by the 
Am2901 A but also provides the computer With separate DA bus 
and DB bus Input ports as well as additional Instructions to im­
plement multlphcatlon and diVISion. Three major buses connect to 
the ALU. DA, DB and Y buses. The memory data from the Zo 
Register and microcode Immedlates are brought Into the Am2903 
through the DA port While Program Status Bits 16-23 enter via the 
DB port. The Am2903's output or receive data on the Y bus for 
loading Into the RAM registers. The Am2903's zero decode logiC 
detects zero on the Y port whether or not the Y port IS receiving or 
sending data. 

To Implementthe defined Instruction set, the RAM register selec­
tion controls are sent from the Instruction (I) Register to the 
Am2903's. 10.3 (used With Instructions With the R2 or X2 field) are 
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Register Number Register Assignment 

0 Program Counter 

1 Stack POinter 

2 Stack Lower Limit 

3 Stack Upper Limit 

4 +2 

5 + 4 

6 Not used - available 

7 Not used - available 

8-15 Not used (wired disable) 

Figure 6. PCU Register Assignments. 

connected to the A address Inputs on the Am2903 while 14-7 are 
connected to the B address Inputs. The ALU operations per­
formed are controlled by microcode bits M7s-s6 which are con­
nected to the Am2903 lo-s inputs. 

The Am2904 proVides the microcode and machine status reg­
Isters holding the carry, negative, zero and overflow status The 
machine status bits C, N, Z and OVR are defined as PSW bits 
16-23. Logic In the Am29041ncludes a condition code multiplexer 
to select the true or complement of any of the four status bits and 
combinations of status bits from either the machine or mlcro­
status registers or directly from the ALU. ThiS condition code 
multiplexer IS controlled by Instruction Register bits 14-7 which are 
gated to the Am2904 10-3 inputs dUring the execution of a condi­
tional branch. The output of the multiplexer, labeled TEST IS 
routed to the testtree for Input Into the Am2910. The Am2904 also 
proVides the shift linkages and shift linkage control and selection 
of the type of carry Signal to the ALU and lookahead carry Unit. 

The ALU IS deSigned to work With by1e operations as well as 16-bit 
operations. Byte operations operate only on the lower 8 bits of 
register data Without affecting the upper 8 bits of data. DUring byte 
operations the WORD Signal (Mgo) goes Inactive disabling the 
Write Enable and Output Y Enable for ALU bit slices 3 and 4. The 
word/by1e multiplexer circuit will select C, Nand OVR status bits 
from ALU bit slice 2 and at the same time ALU bit slice 2 has Its 
MSS Input pulled LOW to Indicate most Significant slice. The 
zero status bit being OR lied to all of the ALU bit slices cannot be 
multiplexed. Instead the Y bus Signals 8-15 are forced to zero by 
gating zeroes from the PCU resulting in the Z Signal line state 
being a function of ALU bit slices 1 and 2 only. 

The Computer Control Unit 

The Computer Control Unit controls the sequence of execution of 
the microinstructions. The Am2910 Microprogram Controller pro­
vides the sequencer for the microprogram (see logic diagrams 
Sheet 5). Branch addresses and counter values loaded into the 
Am2910 DO-ll inputs, originate from the Pipeline Register 
(MO-11 ), the interrupt vector decoder, and the machine Instruction 
decoder. The Instruction decoder, also called Mapping ROM, (a 
512 x 8 PROM) uses the Instruction Register IS-15 as address bits 
with the PROM outputs being the starting address of the micro­
code sequence that executes each machine Instruction. In thiS 
deSign the Am29775 Registered PROM's are used to provide 
both the microprogram memory (512 x 96 bits wide) and the 
Pipeline Register. The microcode bits M16-20 are output from 
Am29774 because these Signals require open collector outputs 
rather than the standard tn-state outputs to allow the Am2910 
Inputs 10-3 to be pulled to zero. 

The starting address generation for the Interrupt service routine 
and initialization routine IS accomplished with a minimum of extra 
logiC. Dunng the last microcode cycle of the previous machine 
Instruction, the MAPEN signal IS activated to enable the output of 
the Mapping ROM. However, if an interrupt request IS pending, 
the Mapping ROM IS disabled and the pull-up resistors force the 
eight least Significant microprogram branch address lines to all 
ones, vectonng the microprogram to the interrupt service 
routine. After a reset, the microprogram should be vectored to 
address zero, the starting address of the Initialization routine. 
ThiS IS accomplished by haVing the reset Signal force zeroes into 
the Am2910 10-3 inputs which causes the Am291 0 to output ad­
dress zero. 

Clock and Memory Control 

The architecture of thiS computer achieves its high throughput by 
being able to execute machine instructions in as little as one 
:TIlcrocycle. ThiS IS accomplished by overlapping (also called 
plpelinlng) the fetch and decode With the execute mlcrocycles. An 
essential part of thiS design IS the memory control section. The 
clock and memory control cirCUits shown In Sheet 6 of the logiC 
diagrams work together to prOVide a very effiCient mechanism for 
Integrating memory operations With the computer. The memory 
Interface timing IS a clocked handshaked protocol shown In Fig­
ure 8. Each memory transfer conSists of a Bus Request, Bus 
Acknowledge response, Memory Request, Address Accept re­
sponse, Data Request and a Data Sync response. At the 
maximum rate a memory Interface response can occur 50ns after 
the computer activates a control line. ThiS makes It pOSSible to 
read from main memory once every mlcrocycle (4 x 50ns = 
200ns); however should a particular memory board require a 
longer cycle, It can delay sending Data Sync to the computer to 
extend the cycle. 

The read and wnte timing are shown In more detail In Figures 9 
and 10. Note that If a memory read IS taking place dunng mlcrocy­
cle N, the Bus Request, Bus Acknowledge and the start of 
memory address are output from the computer in the prevIous 
N-1 cycle, and the data is sent to the computer during the first 
half of the follOWing N+1 cycle. Now consider the case of 
back-to-back main memory read cycles. In this case, in the ml­
crocycle that the computer sends the address to the memory 
board, the memory board IS sending data to the computer; but thiS 
is not the data associated With the address being received but the 
data associated With the address received during the prevIous 
mlcrocycle. 

A free running or uncontrolled 20MHz clock on the backplane IS 
connected to all of the deVices which effect memory transfers 
(CPU, bus controller, and memory modules). All of the signal 
handshaking that IS reqUired by the memory Interface protocol IS 
clocked With the same 20MHz clock to ensure no metastable 
conditions occur dunng memory transfer. Careful examination of 
thiS memory Interface operation Will reveal that not only does It 
solve the very senous metastable problem, but also that the clock 
synchrOnization and bus propagation delay occur during the 
memory read access time (or wnte time) and do not slow down 
the memory transfer rate. 

The CPU clock generation IS intimately related to the Memory 
Control LogiC The CPU clock signals Phase 1 (<1>1) and Phase 2 
(<1>2) are shown along With the memory interface Signals In Figure 
8. Phase 1 IS a square wave set high at the beginning of the 
mlcrocycle and has a penod of 200ns. Almost all operations of the 
computer are clocked With the leading edge of <1>1' The clock 
control logic will enable the next cycle only if a Bus Request has 
received a Bus Acknowledge and only If a Memory Request has 
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20MHzCLK 

CPU CLOCK (~,) ________________ --J 

CPUCLOCK(~" ____________ -1 ___ ..... 

REQ(CPU) 

ACK(BUS) 

MREQ(CPU) 

ADRS ACCP (MEM) 

DATA REQ (CPU) -------------------1 
DATA SYNC (MEM) 

MPR·889 

Figure 8. Clocked Handshaked Protocol. 

received a Data Sync response. If the bus or memory resources 
of the system are temporarily being used by other processors, the 
computer will stop the clock and wait. 

Data Path 

The Data Path logic incorporates 8-bit wide devices wherever 
possible. The 0 Register drives directly onto the external data 
bus. Both main memory and 1/0 data are received through the Z 
Registers. Registers Z, Zo and Z, are actually latches Im­
plemented with Am74S373's. The Z Register enable latch signal, 
LDZ is denved from the memory control logic and main memory 
board logic both of which are clocked With the uncontrolled 
20MHz clock (20MHzUNC). Using the uncontrolled clock allows 
the memory operation to go to completion at memory speed even 
when single stepping the microcode. ThiS allows the system to 
use dynamiC RAM's In the main memory since stopping the 
handshaking CirCUits dunng single step would prevent refresh 
operations from taking place. 

Data from the main memory passes through the Z Register to the 
Zo and Z, Registers. The Zo and Z, Registers are enabled trans­
parent at the beginning of the microcycle follOWing the read main 
memory microcycle. ThiS allows memory data to flow through the 
Z and Zo Registers (actually latches) to the ALU or flow through 
the Z and Z, Registers to the Instruction Decoder (Mapping 
ROM). The Z, and Zo Reglstets are locked down halfway through 
the microcycle guaranteeing the computer solid data and making 
it possible to send data from the D-Register out to the external 
Data Bus dUring the second half of the same microcycle. This is 
another example of how this deSign tightly dovetails data trans­
fers in order to gain very high execution rates. 

Interrupt and Input/Output 

The interrupt and 1/0 section is shown In Sheet 7 of the logic 
diagrams. 

The basic Interrupt handling is controlled by the Am2914. In this 
design the Am2914 IS used to priOritize and enable Interrupts, 
prOVide the mask register, generate an Interrupt Request and 
Interrupt Vector. Interrupt nesting IS done in the machine software 
interrupt handler. The external interrupt request signals (INTo­
INT 7) are Input Into the Am2914 from the external Control Bus (C 
Bus). When a penpheral controller requests computer servicing, 
it activates Its assigned Interrupt line. If thiS interrupt level IS 
unmasked and interrupts are enabled, the Am2914 activates the 
INTERRUPT REO Signal that goes to the Computer Control Unit 
which causes the microprogram to vector to the microcode Inter­
rupt service routine. ThiS microcode routine pushes the PSW 
onto the main memory stack, then reads the interrupt vector from 
the Am2914 and uses this value to vector the computer to the 
machine software routine that services the interrupt. 

The Am9519 MOS Universal Interrupt Controller is incorporated 
into the deSign and ItS Group Interrupt signal is connected to the 
least slgmflcant INTo input of the Am2914. The Am9519 handles 
an additional eight Interrupt levels for low speed requesting de­
vices. This MOS LSI component offers the computer comprehen­
sive interrupt handling capabilities at low cost. One feature the 
Am9519 offers is the capability of software generated Interrupts. 
The console function, single Instruction stepping, is Implemented 
using a microcode routine that uses the software generated inter­
rupt capability. 
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The 1/0 protocol for the AMD 16-Blt Computer IS similar to that 
reqUired to control Am8080/9080 peripheral CirCUits. As shown In 
Figures 11 and 12, the computer outputs the address over the 
system address bus, activates a control line (e.g., lORD) and 
holds these outputs until receiVing a response, 10ACK, from the 
peripheral controller. Execution of the 1/0 operation IS done al­
most entirely In microcode With the 1/0 Control Register, a Single 
Am2920, being the only additional hardware required. This IS an 
example of a design precept followed In thiS computer which IS to 
Implement all features In microcode wherever possible. ThiS re­
sults in a low cost computer, although sometimes slower, and a 
design that IS flexible and eaSily modifiable to meet new 
requirements. 

The 1/0 sectIOn has two Am8251/9551 Programmable Communi­
cation Interface components giving the computer two senal 1/0 
Ports, one of which IS reserved for the console. The console can 
be any standard RS-232 Interface terminal 

Instruction Execution 

To execute InstructIOns, the main steps performed by the com­
puter are: (1) form memory address, (2) Instruction fetch, (3) 
decode, (4) displacement fetch, (5) form operand address, (6) 
operand fetch, and (7) execute. Every Instruction type IS made up 
of microinstructions that execute these basIc steps, but most 
Instructions require three steps or less. Instruction sequences for 
Register to Register (RR) and Register to Indexed Storage (RX) 
Instructions are shown In Figures 13 and 14 to Illustrate how the 
computer operates. These figures show the RR InstructIOn re­
qUiring four mlcrocycles and the tYPical RX Instruction requlnng 

I---200n'---I 

seven microcycles. However, as will be explained later, In actual 
operation the effective time for an RR instruction is one mlcrocy­
cle and three for the RX. 

Form Instruction Address 

Dunng thiS mlcrocycle the instruction address is formed by having 
the Program Control Unit (PCU) under control of the micropro­
gram Increment the Program Counter by two. ThiS address IS 
then loaded Into the MAR and back Into the PC. 

At the beginning of the cycle, Bus Request IS activated causing 
the Bus Controller to respond With Bus Acknowledge. The ad­
dress is then output from the MAR out on the Address Bus 50ns 
pnor to the beginning of the next cycle. 

Instruction Fetch 

Dunng thiS cycle, the main memory IS fetching the contents of the 
address previously generated. The computer IS designed to work 
With high-speed main memory capable of reading a memory 
locatIOn In one microcycle so that the Instruction Will be sent back 
to the computer at the beginning of the next cycle. 

Decode Cycle 

The instructIOn fetched from main memory dunng the previous 
cycle is sent to the computer at the beginning of the cycle. The 
Instruction falls through the Z and Z1 Registers (actually trans­
parent latches) and IS routed to the Instruction Decoder (Mapping 
PROM). The InstructIOn Decoder translates the 8-bit operation 
code of the Instruction Into an 8-bit address used as the starting 
address for the microprogram that Will execute this instruction. 

- ~ ~ IL IL IL IL ~ ~ 
REO BUS (CPU) L 

LOAD MAR r 
LOAD 0 REG I 

ACK (BUS) L W 
IDREa (CPU) 

ADDRESS OUT ~ ~ VAL.lD ~ 

lORD (CPU) 

10 DATA (DEVICE) ~ ~ VALID ~ ~ 

TEST IOACK 

IQACK (DEVICE) II I 

IOACKFF (IN CPU) 

STROBE 

MPR-692 

Figure 11. 1/0 Read Timing. 
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~200ns-_1 

- n-n-IL n-n-IL IL ~ 
REO BUS (CPU) L 

LOAD MAR I 
LOAD 0 REG I 

ACK (BUS) LW 
ItO REQ (CPU) 

AODRS OUT ;;:;:; ~ VALID ~ 

IOWAT 

DATA OUT ~ ~ VALID ~ 

TEST FOR fOACK I 

IOACK (DEVICE) II 

IOACKFF (IN CPU) 

Figure 12. I/O Write Timing. 

Microinstruction Microcycle Time 

Operation To T1 T2 T3 

Form Instruction Address A 

Instruction Fetch A 

Decode A 

Displacement Fetch 

Form Operand Address 

Operand Fetch 

Execute A 

Figure 13. RR Instruction Sequence. 

Microinstruction Microcycle Time 

Operation To T1 T2 T3 T4 T5 Ts 

Form Instruction Address B 

Instruction Fetch B 

Decode B 

Displacement Fetch B 

Form Operand Address B 

Operand Fetch B 
Execute B 

Figure 14. RX Instruction Sequence. 

Displacement Fetch Cycle 

After every Instruction fetch another read cycle takes place. The 
second memory read will be another instruction fetch or an 
operand displacement fetch. The computer does not know what 
kmd of a read out it IS until the instruction decode IS finished. For 
an RX Instruction, after the memory read IS completed, the com­
puter identifies It as a displacement. 

Form Operand Address Cycle 

The memory word IS sent from the main memory at the beginning 
of this cycle and then passes through the Z and Zo Register and 
goes to the AlU (Am2903's). The AlU adds the displacement 
and the contents of the register specified by X2 field In the opcode 
and forms an operand address which IS then loaded Into the MAR. 
This has to be completed 50ns before the end of the cycle. 

Operand Fetch Cycle 

The memory read cycle is performed and the operand IS sent to 
the computer at the beginning of the next cycle. 

Execute Cycles 

As the name Implies, these are the microcycles that perform the 
task of the Instruction but with the Am2903's normally only one 
execute cycle IS reqUired; however, some InstructIOns (e.g., I/O 
Instructions) take as many as seven execute cycles. 

Simultaneously With the last execute cycle the Instruction De­
coder IS enabled. 



Pipellned Operations 

If the architecture of the computer executed each of the instruc­
tions and each mlcrostep sequentially, this computer would be 
just another computer relYing on a high-speed clock to gain high 
throughput. However, the 16-Bit Computer becomes an excep­
tional machine by using plpelimng techniques. In this approach, 
the instruction steps forthe following Instructions are done during 
the decode and execute steps of the current instruction. The 
pipelining operation for a Registerto Registerclass of instructions 
is shown in Figure 15. W~h the pipeline full, note that when 
instruction A is being executed, instruction B is being decoded, 
instruction C is being fetched from Main Memory and the MAR is 
being loaded with the address for instruction D. In the following 
cycle, RR Instruction B is executed and RR instructions C, D and 
E proceed through the pipeline. The pipe lining technique results 
in an RR instruction effectively being executed in one microcycle. 
As illustrated in Figure 16, a new RX instruction can be executed 
every three microcycles. 

Pipe lining is great for throughput, but it is a bear to microcode 
especially the first time through since during anyone cycle up to 
four instruction sequences have to be considered. It IS not as bad 
as It first appears. Note that an Instruction decode cannot take 
place until the last execute cycle of the current instruction. The 
major pipellmng takes place dUring the first three steps: form 
memory address, instruction fetch, and decode. Execute and 
operand fetch steps allow full overlapped operation only dunng 
the last execute cycle. Instructions that require many execute 
microcycles (e.g., I/O instructions) cause the computer perfor­
mance to drop down to nearly that of a non-pipe lined machine. 

Action 

Form Instruction Address A B C D 

Fetch Instruction A B C 

Decode A B 

Fetch Displacement 

Form Operand 
Address 

Fetch Operand 

Execute A 

Pipeline Operation with Regard to Branching 
and Interrupts 

Pipeline operations greatly reduce instruction execution time If 
machine instructions are executed in sequential order; how­
ever, if a branch is taken this advantage is lost because the 
steps set up In preparation for a decode cycle become use­
less. The pipeline is said to be "flushed out" when a branch IS 
taken. The RX Branch on Condition instruction has the form: 

WORD 1 OP 

WORD 2 DISPLACEMENT 

Where: M is a 4-blt field specifying the conditions for the 
jump. 
(X2) + displacement IS the branch address 

Figure 17 shows the sequence chart for a RX Branch on 
Condition instruction. DUring the microcycle A1 the target ad­
dress K for the branch is formed and loaded Into the MAR 
and also the instruction B is fetched for the no branch case. 
By microcycle A2, it has been determined to take or not take 
the branch. If the branch IS not taken, the MAR IS loaded with 
address B+2, while If the branch is taken, an instruction fetch 
IS performed for K and the MAR is loaded with K+2. Finally In 

A3 the next Instruction is decoded. By proper microcodlng, the 
conditional branch IS executed in only three microsteps even 
though the pipeline was "flushed out". 

A, B, C, Dare RR instructions 

D 

C D 

B C D 

Figure 15. Register-ta-Reglster Pipeline Operation. 

Action A, B, C, Dare RX instructions 

Form Instruction Address A B C 

Fetch Instruction A B C 

Decode A B C 

Fetch Displacement A B C 

Form Operand Address A B C 

Fetch Operand A B C 

Execute A B C 

Figure 16. Register-to-Indexed Storege Pipeline Operation. 
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A = RX Branch Instruction 

Action B = Next RX Instruction if branch IS not taken 
K = next RX Instruction if branch is taken 

B+2 
Form Instruction Address A B K 

K+2 

Fetch Instruction A B 
B+2 

K 
K+2 

Decode A 
B 

etc. 
K 

Fetch Displacement A 
B 

K 

Form Operand Address 
B 

K 

B 
Fetch Operand 

K 

B 
Execute A1 A2 A3 

K 

Figure 17. Branch on Condition RX Pipeline Operation. 

As with branching, an interrupt response alters the sequence 
of execution and "flushes" the pipeline. As was discussed 
previously in the Interrupt and InpuVOutput section, an inter­
rupt request blocks the decoding of the next machine Instruc­
tion and causes the Computer Control Unit to vector to the 
Interrupt service routine. This microcode service routine 
pushes the PSW consisting of flags and Program Counter 
(PC) value onto the stack. The PC value is the current PC 
value minus 4. It is necessary to back the PC up to two in­
struction words (4 bytes), because the fetch instruction and 
form instructIOn address steps In the pipeline at the time of 
the jump to the interrupt microcode sequence have to be re­
peated when returning to the main machine program. 

MICROINSTRUCTION FORMAT 

All operations of the AMD 16-Bit Computer are under control 
of the mlcrolnstruct,lon. Each microinstruction is 96 bits in 
length. The microinstruction format is summarized in Figure 
18. The microinstruction definition is summarized In Figures 
19a and 19b and is detailed in Table 2. 

Figure 20 Illustrates the AMDASM® Definition file for the 16-Bit 
Computer. AMDASM® is a meta-assembler developed by AMD 

for writing microprogams. The definition file defines microword 
length (WORD statement). formats (DEF statements) and con­
stants (EQU statements) for the use of t~e actual microprogram 
(Figure 31). 

The definition file is divided into 8 parts: 

1. Am2910 sequencer opcode definitions 
2. Am2903 ALU opcode definitions 
3. Am2901 A PCU opcode definitions 
4. Am2904 shift mux and status control definitions 
5. Datapath control bits definitions 
6. Memory control bits defimtlOns 
7. Control strobe and control bits definitions 
8. Immediate operand field definition 

Am2910 Sequencer 

Bit 91 olthe microword is the input of CCEN olthe Am291 O. When 
bit 91 is a logical 1, the conditional operations are forced to 
unconditional operations. Bits 19-16 are the input to the instruc­
tion inputs to the Am291 O. Bits 11-0 are the jump address field for 
instructions that need an address operand. 

PROGRAM CONTROL (11) 
MEMORY 

CONTROL (5) 

STATUS (9) 

Figure 18. Summary of Microinstruction Word Fields. 

NEXT MICRO 
ADOASIIMMEDIATE (16) 
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ROUTE TO B RTB 
<D 
01 
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Am2903 lEU WORD/BYTE WORD <D 
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Am2903 EA (Xl 
<D 

Am2903 OEY (Xl 
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Am2903 OEB (Xl ..., 
Am2903 18 

(Xl 
CJ) 

Am2903 17 
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~~ 01 

Am2903 16 
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Am2903 IS 
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w 

Am2903 14 
(Xl 

'" Am2903 13 ~ 
Am2903 12 

(Xl 
0 

Am2903 11 
..., 
<D 

Am2903 10 
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(Xl 
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0 

ENTREG ENABLE TRANSFER REG 
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0 
LOAD TRANSFER REG. LDTREG 

..., 
CJ) 0 

I-REG EN CTR ENCTR 
..., 

0 01 

I-REG INC/DEC INC 
..., z 

~ ... -oj 
C(' PCU TRANS CHIP DISABLE PCUCD 
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-::~~ 

:0 
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LOAD MEMORY ADDR. REG LDMAR :1 :IE 0 

LOAD D-REG LDD 
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CJ) c "0 
<D aJ c: 
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ENABLE PSW PSW CJ) 
C :0 ..., 

SHIFT CNT Am2910 ADDR. SHTCNTEN CJ) m 
CJ) " BRANCH INSTR. EN BRIEN 0> Z 01 

:3 
0 
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!/J 

Am2901 F --> Bio PCUI7 0> ... 
Am2901 PCUI3 0> 

W 
Am2901 PCUI2 0> 

n4' '" Am2901 PCUl1 ~ -:::;:gc8 
Am2901 PCUlo 01 ~- .. <D -"", 
Am2901 PCUA2 01 2.3 

(Xl 

Am2901 PCUA1 01 ..., 
Am2901 PCUAo 01 

0> 
Am2901 PCUB2 01 

01 
Am2901 PCUB1 01 ... 
Am2901 PCUBo 

BUS REQUEST REQB 01 _~if 
w cn::J3 

MEMORY REQUEST MREQ 01 - It 0 

'" 2.-<1 
HOLD REQUEST HREQ ~ 
MEMORY WRITE/READ WRITE 01 

0 

MEMORY WORD/BYTE MWORD ... 
<D 

Figure 198_ Micro Control Word Bit Definitions. 
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Am2914 ENlo-ENI3 INTRIEN .j:> 
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'" 
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I\) 
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GENERAL CNTLBs .j:> 

0 0 
USE CNTLB4 '" CD !!! g <D 
CONTROL CNTLB3 '" -c;r~ <Xl 
BITS CNTLB2 '" .... 

CNTLB1 '" a> 
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X 
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EOVR '" 
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I\) :IE 0 a> 
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Am2904 TESTs 
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I\) 
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Am2904 TEST3 
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Figure 19a. Micro Control Word Bit Definitions (Cont.) 
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~ Control Strobes ROMIIREGEN VO Control Register Am2914 10-13 Am2904 Shift Enable 
Bits (35-42) Bit 47 Bit 46 Bit 44 Bit 43 

CNTLB7 B3 1/07 
CNTLB6 B2 1/06 
CNTLBs B1 1/05 
CNTLB4 Bo 1/04 110 
CNTLB3 A3 1/03 13 19 
CNTLB2 A2 1/02 12 Is 
CNTLB1 A1 1/01 11 17 
CNTLBo Ao 1/00 10 16 

Figure 19b. Detailed Description of Bits 34 through 47. 

Table 2. Microinstruction Definition. 

Definition 

95 RTB Routes second register field to B-RAM of Am2903. 

92 Z --> Z1 Loads the value In the Z register into the Z1 Register at the beginning of the mlcrocycle. 

91 CCEN Enables the CC input of the Am2910. 

ALU 

90 WORD 
89 EA 
88 OEY These bits control the four Am2903·s. The function of EA, OEY, OEB. and Is-o IS listed in 
87 OEB Figure 20. WORD when enabled (LOW) causes the Am2903's to operate on words (16-bits). 
86 Is When disabled (HIGH) the ALU operates on bytes (the least significant byte). This bit disabled 
85 17 blocks WE to the upper two Am2903's and turns off their Y outputs. 
84 16 
84 16 Zeroes should be forced to the upper 8 bits of the Y bus via the PCU to allow the zero status 
83 15 to operate correctly when the WORD bit is disabled. Also, when disabled the status (C, OVR, S) 
82 14 sent to the Am2904 is taken from the second Am2903 (numbering 0-3 least significant to 
81 13 most significant slice) Instead of the most significant Am2903. 
80 12 
79 11 
78 10 

77 ENTREG Enable Transfer Register - enables the Transfer Register onto the DA mput bus of the 
Am2901A's and Am2903's. 

76 LDTREG Load Transfer Register - loads the Transfer Register from the Y bus. 

75 ENCTR Enable I Register Counter - enables the I Register Counter (17-14) to count. ThiS value IS 
used to address the general registers dUring stack InstrucllOns and by Incrementing or 
decrementing thiS value the microprogram can read or write successive registers. 

74 INC I Register INC/DEC - the value In 17-14 can be either Incremented (If this bit is HIGH) or 
decremented. 

73 PCUCD PCU Transceiver Disable - when HIGH this bit disables the PCU Transceivers from receiving 
or transmitting data. 

72 PCU ..... Y PCU Transceiver Control - when HIGH thiS bit allows the PCU Transceivers to pass data 
from PCU to the Y bus. [WORD high (mlcrobit 90) disables the least Significant 8 bits of 
these transceivers.] When LOW data passes from the Y bus to the MAR. 

71 LDMAR Load Memory Address Register (MAR) - this bit loads the Memory Address Register. 

70 LDD Load D Register - thiS bit loads the D Register with data from the Y bus. 

69 Z1 ..... I Load Z1 Into I Register - thiS bit loads data from Z1 Into the I Register. The I Register holds 
only the upper 16 bits of the Instruction. 

68 ENZo Enable Zo ..... DA - thiS bit LOW enables the Zo Register onto the ALU DA. 
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67 

66 

65 

PCU 

64 
63 
62 
61 
60 
59 
58 
57 
56 
55 
54 

53 

52 

51 

50 

49 

48 

47 

46 

45 

44 

43 

PSW 

SHTCNTEN 

BRIEN 

PCUI7 

PCUI3 
PCUI2 

PCUI1 
PCUlo 
PCUA2 

PCUA1 

PCUAo 
PCUB2 

PCUB1 

PCUBo 

REQB 

MREQ 

HREQ 

WRITE 

MWORD 

ROM/I 

Table 2. Microinstruction Definition. (Cont.) 

Definition 

Enable PSW - thIs bit LOW enables the PSW onto the ALU DA. 

ShIft Count to Am2910 - this bIt LOW enables the least sIgnIficant four bIts of the InstructIOn 
(1 0.3) onto the D input to the Am2910 sequencer. ThIs allows the value to be entered into the 
Am2910 Internal counter to be used during shIft Instructions. 

Branch Instruction Enable - thIS bIt LOW enables 14-] of the InstructIon Register onto the 
Am2904 10.3 Input. The 10. 3 Inputs control the tests of the status register. 

These bits control the PCU whIch IS desIgned around four Am2901's. The PCUI7 , PCUI3, 
PCUI2, PCUI1 and PCUlo bits connect dIrectly to the Am2901 17 , 13, 12, 11 and 10 respectively. 
The PCUA2-PCUAo and PCUB2-PCUBo connect to the A and B Address inputs of the Am2901. 
14, 15, 18, A3 and B3 are tIed to ground. 16 IS tIed to 17 , 

Request Bus - thIS bit requests use of the system bus. This request IS made the mlcrocycle 
preceding a Memory Request or use of the bus for an I/O transfer. If the request IS not honored, 
the processIng of the next microinstructIon IS halted until the acknowledge IS issued. 

Memory Request - this bIt requests the memory to do a read or write operatIOn. 

Hold Request - this bIt LOW blocks the bus controller from releasing the system bus to 
another deVIce. Normally a Bus Request is cleared as soon as the Bus Acknowledge IS issued. 
HREQ holds Bus Request and prevents any other deVIce from using the bus. 

Memory Write/READ - this bit IndIcates to the memory the MREQ IS for a write operation 
(If HIGH) and a read operation (If LOW). 

Memory Word/BYTE - the Memory Word/BYTE microblt specifies whether the memory 
operatIOn WIll be a word operation or a by1e operation. If the operation speCIfied is a by1e 
operation the least signifIcant address bit determines which by1e of the two by1e pair in memory 
IS affected. If the LSBlt IS a zero, the most significant by1e is read or written, and the LSBlt is a 
one, the least significant by1e is read or written. 

EN ImmedIate DA Bus - thIS bit LOW enables the 16-bit immediate value (least significant 
16 bits of the microinstruction) to the ALU DA bus. 

ROMII REG Enable - thIS bIt enables eIther the ROM bits 42-35 or the I register bits 10-7 onto 
the NB address Inputs of the ALU according to the follOWIng: 

8 4 4 

I op I R, I R2/X2 I 
ROM 42·39 I 1 ROM 38-35 

MUX MUX 

8 0_3 A O_3 MPR·695 

I/O Control Register Enable - this bit loads the I/O Control Register WIth microbits 42-35. 

Am2914 Interrupt Disable - this bIt disables the Am2914 Interrupt Controller from recognizing 
interrupt requests. 

Am2914 ENlo-ENI3 - this bit is the instructIon enable for the Am2914. The instruction Inputs 10-3 
are connected to microbits 35-38 respectively. 

Am2904 Shift Enable - this bit is connected to the shift enable of the Am2904. The shift 
controls 16•10 are connected to microbits 35-39 respectively. 



Table 2. Microinstruction Definition. (Cont.) 

Definition 

42 CNTLB7 
41 CNTLB6 
40 CNTLBs 
39 CNTLB4 This control field is used to provide several different functions as defined by the previously 
38 CNTLB3 described control strobes (mlcroblts 47-43). 
37 CNTLB2 
36 CNTLB1 
35 CNTLBo 

34 OECT OUT EN COND1TIONAL TEST 
33 EZ EN ZERO 
32 EC EN CARRY 
31 ES EN SIGN These bits are used to control the Am2904. Their functions 
30 EOVR EN OVERFLOW are defined in Figure 21. OECT IS used to enable the test 
29 CEM EN MACRO STATUS output of the Am2904 to the CC Input of the Am2910. 
28 CE EN MICRO STATUS 
27 112 CARRY OUT CONTROL 
26 111 CARRY OUT CONTROL 

25 TESTs 
24 TEST4 Th~se bits determine which test is to be performed for the conditional branch and stack 
23 TEST3 functions. The various tests are listed in Figure 25. The testing IS done both in the Am2904 
22 TEST2 and an 8 to 1 multiplexer. 
21 TEST1 
20 TESTo 

19 NAC3 291013 
18 NAC2 291012 These bits are connected to the 13-0 inputs of the Am2910 to control 
17 NAC1 291011 the sequencing of the microprogram. Their definitions are listed In Figure 26. 
16 NACo 291010 

15 M1S 
14 M14 
13 M13 
12 M12 
11 M11 
10 M10 
9 Mg 
8 Me 

These bits provide the branch address for the Am2910 and the 16-bit immediate field. 7 M7 
6 M6 
5 Ms 
4 M4 
3 M3 
2 M2 
1 M1 
0 Mo 

Am2903 ALU 

The first 16 equates assign mnemonics for the 18-15 of the 
Am2903 which controls the destination of the ALU result. The 
next 16 equates assign mnemonics for 14-11 of the Am2903 
which control the operations of the ALU. The ALU definition 
Indicates the default is the Y bus forced to zero with no operation 
on destination. The next group of definition selects the source 
.operand, followed by the special function definitions of the 
Am2903. 

Am2901A PCU 

The PCU definitions Include a group of often used PC instructions 
such as PCU. NEXT, PCU. JUMP etc. The PCU definition itself 

allows a not predefined Instruction be accessible to the micro­
programmer. 

AM2904 Shift Linkage Multiplexer and Status Register 

The group of equates control the updating of the status register 
and the TEST definition controls the shift linkage multiplexer. The 
carry control controls the carry Into the least Significant Am2903 
slice. 

Datapath Control 

The data control equates assign mnemonics to different datapath 
control bits. . 
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AMDQS/29 AMDASM MICRO ASSEMBLER, V1.1 
Dl:FINITION FILE FOR 16 lilT COMPUTER 

JZ: 
CJS: 
JSB: 
JMAP: 
CJP: 
JMP: 
PUSH: 
PHLe: 
JSRP: 
CJV: 
JMPV: 
JRP: 
RFCT: 
RPCT: 
CRT~ : 
RTN: 
CJPF: 
LDGT: 
LOOP: 
CONT: 
TWB: 

ADR: 
LDR: 
ADR'l: 
LDRQ: 
RPT: 
LDQP: 
QPT: 
RQFT: 
AUR: 
LUR: 
AURQ: 
LURQ: 
nus: 
LlJQ: 
SINEX: 
REG: 

; 

HIGH: 
SUllR: 
SUBS: 
ADD: 
PASS: 
COMPLS: 
PASSR: 
COMPLR; 
LOW: 
NOTRS: 
EINOR: 
nOR: 
AND: 
NOR: 
NAND: 
011.: 

ALU: 

AB: 
ADB: 
AQ: 
DAB: 
DAD!: 
DAQ: 
; 

WORD: 

OEl: 

AMDASM DUINTION FILE FOR 1f-BIT COMPUTER 
USING Ai12901A, AM2S03, AM2ge4 6. AM2910 
FILE CRUTED BY STEVE CHENG- 8/25/78 

REVISION 2.0 

WORD 96 

12/€/?e 

Dn'INITIONS FOR AM2910 SEQUENCER 

DEF 4X,B#0.71X,Hlt0,16X 
DEF 4X,B#0,71X,H#1.4X ,12V% 
DEr 4X,E#l,711,H#1,4X,12vt 
DEF 4X,B#il,71X,H#2,lSX 
DEF 4X,B#0.7lX.H#3,4X.12V~ 
DEF 4X,B#l,71X,H#3,4X,12V% 
DEl' 4X,B#0,71X,H#4,4X,12V'; 
DEF 4X,:i!#l,71X,Hlf4,4l;,12V:!; 
DEr 4X,H'e:.71X,H#5,4X,12V't 
DEF 4X,BII0,71X,H#6,16X 
DEF 4X,B#l,71X,H#6,16X 
DEr 4X • .B#0,71X,cl17,4X,12V% 
DE}' 4X,.2#0, ?1X,Hltf',4X, 12V% 
Di.F 4X,B#';;',7lX,HIt9,4X.l.2V~ 
DEF 4X.B#~,71X,H#A,16X 
DEF 4X,B#l,71X,H#A,16x 
DEF 4X,:B#0,71X,H#B,4X,l.2V":; 
DEF 4X,BN0,71X,HNC,4X,l.2V%HNFFF 
DE,' 4X,Bllid,71.X,HltD,16X 
Di.F 4X,BH0,7l.X,HkE,16X 
DEl 4X,:BN0,71X,BR1',4J,l.2Yt 

DEFINITION::' FOR. AM2903 -\LU 

i JUr'P ZERO 
iCON)) JSB PL 
i ilfo,CONDITICNAL ';SJI PL 
i JUMP MAP 
i COND ,TUM? PL 
iUNCONDIT01\AL JU~P PL 
i PUSH/COND I,D CNTR 
; pUSH '\"lD ID C~TR 
;co'r JS-" RIPL 
;CONE JUMP VECTOR 
;U"lCCNDTI("II:AL JU,'1P VF.CTC'!l 
j CONI JUMF 11/PL 
,REPEAT LOOF, CNT~ () e 
iREHAT PL, C~TR <> " 
;COtiD RTN 
iUNCOtiDTIC%l.L HTt:Rt. 
; COND JUMP PL S. POP 
ilD Ct.TJi (. CaNT 
iTEST END !'OOP 
;CO~'Tp.;UE 

iTEItbE-Vi,l.Y PRHC}! 

TEl AlU DUINTIOt. IS OF THE FOLLOYING JOR!",AT 
!LU nSrINATION CONTROL, }'lINCTICN 

E~UA'l'ES FOR ALU DESTINATION CONTn(ll 

EQU Elt0 
EQU H#l 
EQU R#2 
rCou 11#3 
EI.!U Hlt4 
EQU HIFb 
EQU bilE 
EQU B#7 
EQU E#6 
IQU hIF9 
EQU BU 
E~U H#Il 
EQU h#C 
EQU HIID 
EQU HU 
EQU b#}' 

;ARITRMETIC SHIFT DO';N, RESULTS I~TC UN 
; LOGICAL SHIFT DO\'N, In.selTS BTO ~A~ 
; .\RITE. SHIFT DOWti, RESULTS INTO RAM AND Q 
;LOGICAL SHIFT DOWN, RESULTS aTC filM HL Q 
,RESULTS INTO RAM, GENERATE HRITY 
iLOGICAL SHIFT DOIliN ~. GENERAn PlRITY 
jRESULTS INTO Q, j';U.ERAU PAlIIn 
iRESULTS INTO RAM AND ~, GEt>ERATJ<.; PAtiIT) 
; ARI TH. sa IFT UP. RI!.SULTS 1 NTO R 0\101 
iLOGICH SHIFT UP, Rlsun"> INTO RAM 
;ARITH. SHIF'l' UP, RESULTS INTO RAM .It~'P ~ 
;LOGIC!L SHIF1' UP, FEStJLTS INTO RAM ANIt ~ 
JRESUITS TO Y BUS ONLY 
:LOGICAL SHUT UP Q 
; SIGN EXTEND 
iRESULTS TO RAl", SIGtI nnNL 

EQUAT£S FOR ALJ FUCNTIONS 

EQU HU 
EQU BU 
EQU B#2 
IQU H#3 
EQU H#~ 
EQU HII5 
EQU H#6 
EQU HII7 
EQU Hlte 
EQU HII9 
EQU H#A 
EQU HltoS 
EQU HIIC 
EQU HlfD 
EQU HNE 
E~U H#F 

ALU DEFINTION 

iF! = 1 
iSU1IT1I.ACT :It FROM S 
; SU:IlTRACT S fROM R 
iADD RAND S 
JPASS S 
; 2 "s CO~,PLEMENT Of S 
;PASS R 
;2"S COMPLEMENT OF R 
iFI = i 
i COMPLEMnT R AND WITH S 
iElCLUSIVE NOR R 'IIITH S 
JEXCLUSIVE OR R 'rITE S 
iAND R WITH S 
iNOR R WITH S 
iNAND Ii. WITH S 
iOR R WITH S 

DEF 91 ,4VBltC ,",VHNS. 791 

ALV OPEHAND SOURCES 

DEl 6I.Elte,lI,BU,6I,Bltll,78X 
DiF 6X,:B#iI,U:,Blll,8X,:B#e,78X 
DEF 6I,lI#0.UilX,B#l,78'; 
DEP 6X,lIltl,lX,B#e,8x,B~0,7ex 

~~~ ~~~:i :i~i ~;~i~;8~#0, 78X 

WORD/llYn CONTROL 

DEi' 5X,BU,9iX 

OUTPUT Y ENULE 

DEI' 7I,lIU,88X 

,R = RAM A, S = RAM ] 
jR '" RAM A, S = DB 
;R :. RAM A, S "" Q 
; R = DA, S = RAM II 
iR = DA, S '" DB 
iR '" DA, S = Q 

SPEC JAL FUNCTIONS FOR AM.29i3 

TO USE THE SPECIAL FUf,CTIONS, THE DESfINA'IION 
CONTROL MUST NOT :BE AQ OR DAQ 

SPECIAL FUNCTION EQUATES 

USMUL: EQU Hltl" UNS IGNED MULTIPLY 
TCMUL: EQU R#.20 
INCTWO: EQU R#40 
SMTC: EQU RII'511 
TCMLS: EQU Hlt6/iJ 
SLN: FJ;!U HII8i 
DU: EQU HII'U 
TeDIV: EQU Bll'CIl 

T'IO"S COMPLEMENT MULTIPLY 
INCREMENT :BY ONE OR T'IIO 
SIGN-MAGNITUDE/TWO'S COMPlFM1NT 
TWO'S CO~PLEMENT MULT. LAST STEP 
SINGLE J.ENGTH NORMALIZE 
DOUllLE LENGTH NORMALIZE AND 1ST DHIDE OP. 
TWO"S COMPLEME~T DIVIDE 

Tcnc: EQU HNti ; TWO'S COMPLEMEf'iT DlV IS tON CORIIECTIuti 

SPECIAL FUt-CTION DEfINITION 

SPFl4: DEF 9I,BVHIt,79X 

PCUAQ 
PCUAlI 
PCUZQ 
PCUZ!! 
PCUZ! 
PCUD"&: 
PCUDQ 
PCUDZ 

Ail: 
Ai : 
!.2 : 
A3: 
14: 
A!:l: 
1.6: 
17; 

; 
b": 
111: 
112: 
b3: 
B4: 
E5: 
116: 
:87: 

; 
PCU: 

DEFINITION FOR AM.29il PROGRAM CONTROL UNIT (PCU) 

PCU REGISTiR DEFINITIONS: 
RI == PC PROGRAM COUNTER 
Rl = SP STACK POINTER 
R.2 :. SPLt STACK POINTER LOYER LIMIT 
R3 = SPUL STACK POINTER UPPER LIMIT 
R4 = 2 CONSTANT il 
R5 = 4 CONSTANT .2 

EQUATES FOR PCU DtFINITIONS 

EQU 11#0 iQ REG::: ZERO, B-RAM ::: ONE DEU.ULT 

EQUATE FOR peu lUNCT IONS 

EQU Bltl iSUlI '" Of'JE, ADD::: zno DEFAULT 

EQUATES FOR SOURCE CONTROL 

EQU Q#Ii! 
iQU Q#l 
EQU QIt.2 
EQU Q#3 
EQU Q#4. 
EQU Q#5 
EQU Qlt6 
EQU QII7 

EQUATES FOR FCU A-RAM 

EQU Q#il 
EQU Q#l 
EQU :;j1l2 
EQU QII'3 
EQU Q#4 
EQU Q#5 
EQU Q#6 
EQU Q#7 

EQUATES FOR PCU b-RAM 

EQU Q#I 
EQU Qlfl 
EQU Q#2 
EQU Q#3 
EQU QN4 
EQU Q#5 
EQI1 Q#€ 
EQU Q#7 

PCU DEFINITION 

DEl 31l.l un, 1 VB#0, 3VQU ,3VQIt ,3VQ#, 54X 

PCU.NEXT: DEl 31l,lIUililll.U.iJ,54X 
DEi" 311 ,l!#1100110.3'0l,tJH 
DEF 31X,lI#UfI011!!1eI1l01,54X 
DE!' 31X,:E#1~l1U01J';H'0.54""( 
DEF 3lX.B#1I1il101101l10.54:X 
DEI' 31X,B#lUllS.011i1I,54X 
DEF 31I,lI#101i11100100l,!:lH 
rEF 31X,Ulll:iIl10HlIiH'I,54X 

PC '" PC l' 2 
SP = SP - .2 
SP ::: SP l' .2 
PC '" D 

PCU.PUSH: 
PCU .POP: 
PCU .JUMP: 
PCU.TR.2: 
PCU .NOP: 
PCU.SP: 
peu .DEC4: 

PC = 'IPE'3- t 2 
PC TO OUTPUT 
SP TO CUTPUT 
PC'"PC-4 

f)HIFTEN: 
OECT: 
EZ: 
EC: 
ES: 
EOVR: 
CEM: 
CEU: 

DEFINTIONS FOR AM.2904 RELUED CO"lTROL BITS 

A~29Q14 :BIT DEFINITIO~S ARE AS FOLLOWS: 
BITS 95-44 '" DON O'T CARES 
BIT 43 '" SHlF'!' ENAllLE 
BITS 4.2-35 = GENERAL PURPOSE CONTROl. BITS 
BIT 34 '" OUT EN CONDITIONAL TEST 
BIT 33 '" ENAllLE ZERO 
BIT 32 '" '!;NABLE CARRY 
BIT 31 '" ENABLE SIGN 
BIT 3" '" ENABLE OVERFLOW 
BIT 29 '" ENABLE MACRINE STATUS 
BIT 28 '" ENABLE MICRO STATLlS 
BITS .27-26 = CARRY OUT COHO L 
!ITS .25-.2i'" CONDTIONAL BUNCH TES1' 

iQU B#£1 
EQU 1\#13 
EQU ]1#0 
EQU B#e 
EQU ]1#0 
E~U B#0 
EQU B#0 
EQU !#0 

jSHIFT Ef'iAllL~' 
lOUT EN COt.DITIONAl nST 
iENABLE z:ERO 
iENAllLE CARRY 
; ENABLE SIGN 
jEhULE OVERFLOW 
;ENABLE MACHINE S'fATJS 
iE~ABLE MICRO STATUS 

fM.29.4: DEF 5.21,1 V]I# 1 ,ax ,1 VE# l,lVlll#l ,lVEU, 1 VlI#l. 1 VB#l ,1 Vll#l ,1V:B#l,28X 

TEST ElTS DEFINTION 

TEST: DEF 70X,6V~#,.2IiJX 

COEQI: 
COEQl: 
COEQCI: 
IOEQST: 

EQUATiS fOR AM.2ge4 CARRY-OUT CONTROL 

EQlI B#0:o 
EQU B#01 
EQU :8#10 
EQIJ Mll 

j CARRY -OUT = " 
; CARRY-OUT'" 1 
i CARRY-OUT", CARRY-IN 
iCARRY-OUT "" CARRT OF STATUS REGISTER 

CARRY-OUT CONTROL DEFINITION 

CARRYCTL: DEY 68I,2VBN0Q1.26X 

REG I STiR MUl SELECT 

Figure 20. Definition File for 16-Bit Computer. 



.lI1DOS/29 AMDASH MICRO ASSEH!LE1I:. iLl 
DiFINITION lILE FOR 16 BIT COHPU'l'1R 

DEl' iMiI,95X j ROUTE Ht TO RAM II 

EQUATES FOR DATAPA.'l'H DEFINITION 

izx: EQU .,1 
EliTREG ~ .EQU I.e 
LDTltiG; :t:QU :BIt 
INCTR: EQU II'" 
UC: EQU 11#1 
peun EQU B'81 
IH1R: EQU Blt811 
PCUHA1/.: EQU 11#11 
LDMD.: EQU BU 
LDO: EQU ."1 
ZII: EQU 11#1 
ENZ': EQU :awe 
PS'I : EQU ),"1 
SBTCNTiN :EQU BII, 
BlIIN: EQU UI 

iZ REG TO ZI REG 
U:NULE TRAhSFER RE~ISTER 
jL01D TRANSFER ltEGISTEIt 
j I-RIG EN cn 
jI-REG INC/DEC. 
; PCU TRANSCEIVD TO Y-BUS 
;PCU TRANSCEIVER TO MiR BUS 
JPCU TBAHSCEIVER CEIP DISABLE 
;L01D HAll: 
iL01D DREG 
;tOlD ZI INTO I -REG 
j nULE ZI '1'0 DA 
illNULE PS~ 
iSBIF'!' CNT 2910 ADDR 
j!lRANCH INSTRUC'l'IOh ENABLE 

DATAP.1TH DEFINITION 

DATAPUB: 
I 
; 

DEl 31.1 tn" .14.X ,1VIIII1, 1 VB~fJ ,lVJIIl,111l#Iil,2VU11,l VB''''. 
IVBIf:',lVl1I1',1Vhl ,lVBII!, 1 VEl1.1Hll1.55I 

EQUA'l'ES Fall HEMOK! CONTROL 

~QII: EQU]#1 iBUS REQUEST 

HRlQ: EQU B"1 
BBEQ: EQU B#. 
VIJ'rI: EQU Bill 
HYOID: IQU:8#1 

;HEl'iOIT BEQUEST 
;BOLD REQUES'1' 
;MEMO&:Y WRIU 
jMIMORY WORD/lIT'lE'" 

DEFINTION FOR I1Et'lORY CONTROL 

MEM .CON'l :DEf 4:21 ~1 nile, 1 VU'. 1VB,,1 ,1 VB"~.l V:Bt#e,491 
; 
; EQUATES rOR CONTROL STRons 

ROf'!: EQtJ IM1 iROH/litEGEft* 
lOIN: EQU i#8 ; I/O CONTROL REG. ENABLE 
INTIlIS: EQU Bit' i INTERRUPT DIS1lILE 
IN'l'RIIN:EQU BII' ;ENULI It-13 ON 1M2914 
; 
; CONTROL UROIIE DEJINTION 

~OtlTlOL: DEl 48X,1VBII",lVB#ltlVBnt1n"1,~u 
; 
~ CONROl BITS DUlNl'1'ION 

CHUBI 
; 
I 

iHHD: , 
IHMEDU'fE ROM DEFINITION 

DU 4:7I,nil.321,16YR' ;E~ABLE IMMEDIATE OPERAND 

, .. 
faTAL PB.ASE 1 ERRORS .. 

Figure 20. Definition File for 16-Bit Computer (Cont.). 

Memory Control 

The memory control equates assign mnemonics to different 
memory control bits. 

Control Strobe and Control Bits 

The control strobe equates assign mnemonics to the control bit 
strobe signals. The control bit definition defines a hexadecimal bit 
pattern for the 8 control bits. 

Immediate Operand 

When the Am2910 sequencer is executing an Instruction which 
does not require an address operand. bits 15-0 In the mlcroword 
can be used as a 16-bit eonstant to load ALU. PCU etc. ThiS is 
accomplished by putting the constant in bits 15-0 and force bit 48 
to logic O. 

MICROCODE 

Flowcharts 

The flowcharts of the major instruction types are shown in the 
following figures. 

Figure 21 illustrates the basic microprogram flowchart and dem­
onstrates how the pipelining is done in microcode. This figure 
illustrates the sequencing of the computer starting With no In­
structioos in the pipeline. By the fourth microinstruction. the 
pipeline is full and the CPU can execute for example a mac­
roinstruction every microcycle. 

Figure 22 illustrates the execution of an RR instruction. During an 
RR Instruction. PC + 6 is loaded into the MAR and a bus request is 
issured for the content of PC+6. The contents of PC+4 are read 
into the Z register. The Z1 and I Registers are loaded with the 
contents of PC+2. The instruction at PC is executed. The inpulto 
the mapping PROM is loaded with the contents of PC+2. Thus in 
a stream of RR instructions. four instructions are in progress 
concurrently. 

Figure 23 Illustrates the execution of an RX instruction. In this 
figure the decode operation takes the microprogram to the mi­
crostep where the form address operation is done. Since the 
decode of the instruction has been completed in the previous 
step. the form address microinstructions are unique to each RX 
Instruction in spite of the fact the operation performed is identical. 

START 

START1 

START2 

INSTN 

REQB 
PC_MAR 

REQB, MREQ 
PC+2_MAR. PC 

REQB, MREQ 
PC+2_MAR. PC 
z-Z,.Z,--I 

DECODE 

EXECUTE 
INSTRUCTION 

LOADS PC INTO MAR 
REQUESTS BUS FOR INST N 

LOADS PC+2 INTO MAR AND PC 
REQUESTS BUS FOR INST N+1 
READS INSTN 

LOADS PC+2 INTO MAR AND PC 
REQUESTS BUS FOR INST N+2 
READS INST N+1 
LOADS Z, REG WITH INs1 N 
LOADS I REG WITH INST N; 
DECODES INST N. 

y EXECUTE 
INTERRUPT 

ROUTINE 

MPR_ 

Figure 21. Microprogram Start Up Flow Chart. 

From the form address step. the microprogram jumps to 
FETCHOP where the operand is fetched. This step returns to 
where the instruction is actually executed, 

Figure 24 illustrates the execution of an RSI instruction. Althe first 
microstep. the Immediate operand is already in the Zo register. So 
the instruction is executed in the first step. The microprogram IS 
then jumped to START2 to refill the pipeline. 
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INST N 

FROM INST N-1 

REQB, MAEQ 
PC+2_MAR, PC 
Z-Z"Z,--I 

EXECUTE 
DECODE 

REQUESTS BUS FOR INST N+3 
READS INST N+2 
PUTS PC+2 INTO PC AND MAR 
LOADS Z1 AND I WITH INST N+1 
EXECUTES INST N 
DECODES INST N + 1 

TO 
INTERRUPT 

HANDLER 

OPCODE 
LR 
AR 
SR 
NR 
ORR 
CLR 
XORR 

RR INSTRUCTIONS IMPLEMENTED 

R1, R2 
Load Register 
Add Register 
Subtract Register 
AND Register 
OR Register 
Compare Logical Register 
Exclusive OR Register 

R1 = (R2) 
R1 = (R1) + (R2), Set CC 
R1 = (R1) ~ (R2), Set CC 
R1 = (R1) AND (R2), Set CC 
R1 = (R1) OR (R2), Set CC 
Set CC with (R1) ~ (R2) 
R1 = (R1) XOR (R2), Set CC 

Figure 22_ RR Instruction Flow Chart 

FROM 
INSTN-l 

INST N 

TO 
INTERRUPT ----< 

HANDLER 

OPCODE 
LD 
ST 
ADD 
SUB 
N 
o 
CMP 

REQS, MREQ 
Zo+X 2-MAR 
JSB FETCHOP 

FOAMS OPERAND ADDRESS BV ADDING ZO+X2 
REQUESTS BUS FOR OPERAND 
READS INST N+1 

FETCHOP 

REQB, MReQ 
PC+2_MAR, PC 

z-z, 

LOADS PC+2 INTO PC, MAR 
REQUESTS 8US FDA INST N+2 
READS OPERAND 

REQS, MREQ 
PC+2 -MAR, PC 

Z,--I 
DeCODe 
EXECUTE 

RTN 

LOADS PC+2 INTO PC, MAR 
REQUESTS BUS FOR INST N+3 
READS INST N+2 
LOADS Z, WITH N+1 
DECODES INSl N + 1 
EXECUTES INST N 

LOADS INST N+ 1 INTO Z, 

RX INSTRUCTIONS IMPLEMENTED 

R1, X2 (DISP) 
R1, X2 (D) 
R1, X2 (D) 
R1, X2 (D) 
R1, X2 (D) 
R1, X2 (D) 
R1, X2 (D) 
R1, X2 (D) 

R1 = (X2) + D 
(X2) + D = (R1) 
R1 = (R1) + [(X2) + Dj, Set CC 
R1 = (R1) ~ [(X2) + Dj, Set CC 
R1 ~ (R1) AND [(X2) + Dj, Set CC 
R1 = (R1) OR [(X2) + Dj, Set CC 
Set CC FOR (R1) ~ [(X2) + Dj 

Figure 23_ RX Type Instruction. 

MPR-697 

MPR-698 



INSTN 

START2 

TO 

INST N-1 

REQB. MREQ 
PC+2_MAR, PC 

EXECUTE 
JMP START2 

REQB. MREQ 
PC+2_MAR, PC 
2-2,,2, -1 

DECODE 

INTERRUPT ---< 
HANDLER 

LOADS PC+2 INTO MAR, PC 
REQUESTS BUS FOR INST N+2 
READS INST N+1 
EXECUTES INST N WITH IMMEDIATE OPERAND IN Zo 

JUMPS TO ST ART2 

LOAD PC+2 INTO MAR, PC 
REQUESTS BUS FOR INST N+3 
READS INST N+2 
LOADS INST N+1 INTO 2, 
LOADS IREG 
DeCODES FOR INST N+1 

IMMEDIATE INSTRUCTIONS IMPLEMENTED 

OP CODE 
LI 
NI 
01 
XI 
AI 
51 
CI 

R1, DATA 
Load Immediate 
AND Immediate 
OR Immediate 
Exclusive or Immediate 
Add Immediate 
Subtract Immediate 
Compare Immediate 

R1 = DATA 
R1 = (R1) AND DATA, Set CC 
R1 = (R1) OR DATA, Set CC 
R1 = (R1) XOR DATA, Set CC 
R1 = (R1) + DATA, Set CC 
R1 = (R1) - DATA, Set CC 
Set CC with (R1) - DATA 

MPR-899 

Figure 24_ Immediate Instructions. 

Figure 25 Illustrates the execution of an unconditional branch 
Instructlon_ At the first mlcrostep the displacement is already In 
the Zo register. The branch address IS formed by adding the 
contents of the ZD register to the contents of the index register Xl' 
The MAR IS loaded with the branch address and a bus request IS 
Issued for the contents of the branch address. The branch ad­
dress IS also loaded into the transfer register for subsequent 
loading of PC. In the next step, the contents of the transfer 
reglster+2 IS loaded Into the PC and MAR. A bus request IS 
Issued to BA+2. The content of BAis read. The microprogram IS 
then transferred to START2 to fill up the pipeline. 

Figure 26 Illustrates the Conditional Branch Instruction. In step 1, 
unlike the Unconditional Branch Instruction, the contents of the 
memory (Instrucllon N+1) IS read, In case the test condition fails 
and the macro program falls through. The condition test IS en­
abled In thiS step_ lithe test passes, the microprogram transfers to 
Uncondilional Branch routine. If the test falls, the microprogram 
proceeds to fill the pipeline and continue. 

Figure 27 Illustrates the branch and link instruction. The flowchart 
IS similar to Uncondilional Branch except an extra step (STEP 2) 
IS Inserted. This step saves PC In Rl . 

Figure 28 Illustrates a shift or rotate Instruction. In STEP 1 the 
opcode of the next instructIOn IS loaded Into Zl registers and the 
shift count of the shift Instruction is loaded Into the loop counter of 
Am291 O. STEP 2 executes the shift Instruction N+ 1 times, where 
N IS the shift count In the Instruction. It should be noted that since 
Am2910 detects - 1 as the stop conditIOn, the shift count loaded 
should be one less than the deSired count. Step 3 is the same as 
the RNI (request next InstructIOn). It IS duplicated because the fail 
conditIOn of RPCT In Am2910 can only fall through. 

ox, 

START2 

y 

TO 
INTERRUPT 
HANDLER 

INST N-1 

ReQS 
Zo+X2 -MAR 
Zo+X2 -TREG 

REQO, MREQ 
TREG+2 -MAR 
TREG+2-PC 

REQB, MREQ 
PC+2--MAR, PC 
z-Z"Z,--I 

DECODE 

LOADS MAR AND TREG WITH 
BRANCH ADDRESS 
REQUESTS BUS FOR INST AT SA 

REQUESTS BUS FOR INST BA+1 
READS INST SA 
LOADS MAR AND PC WITH 
ADDRESS OF INST BA+1 

REQUESTS BUS FOR INST BA+2 
READS INST BA+1 
LOADS INST SA INTO Z, AND I REG 
DECODES INST SA 

BA = BRANCH ADDRESS 

ax x,. (D) BRANCH PC = (X,)+o 

MPR-700 

Figure 25_ Uncoriditional Branch. 
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INSTN-1 

REGS, MREQ 
ZO+X2-MAR 
ZO+X2-TREG 

REQUESTS BUS FOR BRANCH ADDR 
READS INST N+ 1 

BRIEN 
LOADS MAR AND TREG WITH BRANCH ADDR 

TRUE 

START2 

REoe 
PC+2 -PC, MAR 

z-z, 

REQUESTS BUS FOR INST N+2 
LOADS PC AND MAR WITH PC+2 
LOADS z, WITH INST N+1 

REQS, MREQ 
TREG+2_MAR, PC 

REQUESTS BUS FOR BA+1 
READS INST AT SA 
LOADS PC, MAR WITH TREG+2 

RNI 

TO 

REGS, MREQ 
PC+2-MAR, PC 

Z,--I 
DECODE 

REQUESTS BUS FOR INST N+3 
READS INST N+2 
LOADS PC, MAR WITH PC + 2 
LOADS Z, WITH INST N+1 
DECODES FOR INST N+1 

TO 

REGS, MREQ 
PC+2_MAR, PC 
Z-Z"Z2-1 

DECODE 

REQUESTS BUS FOR BA+2 
READS INST AT BA+1 
LOADS PC. MAR WITH PC+2 
LOADS Z" IREG WITH INST AT SA 
DECODES FOR INST AT BA 

INTERRUPT ----< y 
INTERRUPT -----'< 

HANDLER HANDLER 

Be ce, Xl (D) TO INST AT BRANCH ADDR 

MPR-70' 

Figure 26. Conditional Branch. 

Figure 29 Illustrates the input instruction. In STEP 1, the I/O Port 
Address is formed by adding Zo and X2 . Bus request is issued for 
the I/O Port. The desired width of the I/O read pulse is loaded into 
the Am2910 Loop Counter. The width of the I/O read pulse is 
(N+2) X cycle time where N is the number loaded. The I/O read 
signal is turned on. In STEP 2, the bus is held for the I/O address 
and the loop counter is decremented until it becomes -1. In 
STEP 3, I/O read pulse is turned off but I/O address is held for 
possible address hold time requirement of the I/O device. On the 
trailing edge of the I/O read pulse, the content of the I/O Port is 
strobed into the Zo register. In STEP 4, the content of Zo register 
is loaded into R" thus completing the I/O read. Bus request is 
issued for the next instruction and microprogram Jumps to 
STARTI to refill the pipeline. 

Figure 30 illustrates the output instruction. In STEP 1, bus request 
is ussued for the I/O Port Address. In STEP 1, the content of R, is 
transferred to the D register for outputting to the data bus. The I/O 
write pulse IS set and the width of the write pulse is loaded into the 
Am2910 Loop Counter as in the input instruction. In STEP 3, the 
I/O address IS held until loop counter becomes -1.ln STEP 4, the 
content of the D register is strobed into the I/O Port by turning off 
the I/O Write Pulse. The microprogram jumps to START to refill 
the pipeline. 

The Figures 21-30 illustrate the major Instruction types im­
plemented. These are by no means the only possible Instructions 
for the 16-bit computer described. Some other Instructions such 
as stack instructions are shown In the microcode but not in the 
figures and should be easily understood with the above examples 
as a guide. 

Figure 31 illustrates the Implementation of some typical instruc­
tions. Instruction 0 is the restart instruction. It jumps to INIT 
which is located in location H#180 because the mapping PROM 
maps only into the first 256 locations. So it is desirable to pre­
serve these locations for Macro instructions. The initialization 
routine does the following: 

1. Turn on I/O reset signal and jump (Inst H#O) 
2. Set Ro in ALU to 0 (Inst H#180) 
3. Set Ro In PCU (PC) to 0 (Inst H#181) 
4. Set R, In PCU (SP) to H#4000 (Inst H#182) 
5. Set R4 in PCU to 2 (Ins! H#183) 
6. Set Rs in PCU to 4 (Inst H#184) 
7. Turn off I/O reset Signal (Inst H#185) 
8. Initialize console USART (Inst H#186-H#190) 

The micrOinstruction that executes macroinstructions are 
grouped as follows: 

Type Figure Microinst # 
(Hex) 

RR Instructions 22 005-00B 
RX Instructions 23 OOC-OIB 
RSI Instructions 24 01C-022 
Branch Instructions 25-27 023-02A 
Shift Instructions 28 02B-042 
Input Instruction 29 043-046 
Output Instruction 30 047-04A 
Stack Instructions 048-059 
Interrupt Instructions 05A-061 



START2 

Y 

TO 
INTERRUPT 
HANDLER 

INST N 

N 

TO 
INTERRUPT 
HANDLER 

INST N-1 

ZO+X2-MAR 
Zo+X2-TREG 

PC-R1 
REGB 

REQB, MREQ 
TREG+2-PC 

TREG+2 __ MAR 

REQB, MREQ 
PC+2 - MAR, PC 
Z-Zl. Z1-1 

DECODE 

BAL R" X,(D) 

Figure 27. 

FROM 
INST N-1 

Z-- Zl 
N-SHIFTeNT 

EXECUTE SHIFT 
OR ROTATE 

CNT-1 __ CNT 

REQB, MREQ 
PC+2 --MAR. PC 

Z,--I 
DECODE 

LOADS MAR AND TREG WITH 
BRANCH ADDRESS 

SAVES PC IN R, 
REQUESTS BUS FOR INST N+l 

REQUESTS BUS FOR INST N+2 
READS INST N+1 
LOADS TREG+2 INTO pc, MAR 

REQUESTS BUS FOR INST N+3 
READS INST N+2 
LOADS PC+2 INTO PC, MAR 
LOADS INST N+l INTO 2, AND IREG 
DECODES FOR INST N+ 1 

R, = (PC), PC = (X,)+D 

MPR-702 

Branch and Link. 

LOADS INST N+1 INTO Z 
LOADS SHIFT COUNT OF INST N 
INTO LOOP COUNTER 

EXECUTE 1 CYCLE OF SHIFT 
OR ROTATE DECREMENT 
LOOP COUNTER 

IF LOOP COUNTER = - 1, 
GO TO NEXT INST 
OTHERWISE, REPEAT CURRENT INST 

REQUESTS BUS FOR INST N+3 
READS INST N+2 
LOADS Z, WITH INST N+1 
DECODES INST N+1 

MPR-103 

Figure 28. Shift and Rotate Instructions. 

N 

N 

INST N_1 

REQB, HREQ 
Zo+X2-MAR 
IceNT-CTR 

SET lOR 

HREQ 
CTR-1--CTR 

HREQ 
RESET lOR 

REQB 
Zo-R1 

JMP STARn 

TO 
START1 

Figure 29. 

REQB, HREQ 
X2+Zo--MAR 

SET lOW, HREQ 
R,-DREG 

IOCNT--CTR 

HREQ 
CTR-1--CTR 

RESET lOW, HREO 
JMPSTART 

TO START 

REQUESTS BUS FOR INPUT PORT 
HOLDS THE BUS 
LOADS MAR WITH UO ADDRESS 
LOADS I/O COUNT INTO 
LOOP COUNTER 
TURNS ON 1/0 READ 

HOLDS BUS 
DEC, LOOP COUNTER 
UNTIL CTR = -1 

HOLDS BUS 
TURNS OFF I/O READ 
READS I/O PORT CONTENT 

REQUESTS BUS FOR INST N+ 1 
LOADS 110 PORT CONTENT INTO Rl 
RE-RLLS PlPEUNE FROM "START1" 

MPR-704 

Input Instruction. 

LOADS MAR WITH 
OUTPUT PORT NUMBER 
REQUESTS BUS FOR OUTPUT 
HOLDS THE BUS 

TURNS ON I/O WRITE 
HOLDS THE BUS 
LOADS DREQ WITH R1 
LOADS 110 CNT INTO LOOP COUNTER 

HOLDS THE BUS FOR I/O ADDRESS 
DEC LOOP COUNTER 
UNTILCTR =-1 

WRITES THE CONTENT OF DREQ 
INTO OUTPUT PORT 
HOLDS THE BUS 
JUMPS TO "START' 
TO REFILL PIPELINE 

MPR-105 

Figure 30. Output Instruction. 
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Upon an interrupt, the 16-Bit Computer finishes its current in­
struction and jumps to microinstruction H#1 FF. The interrupt 
handler works as follows: 

1. Current PSW IS stored in DREG and SP = SP-2 (Inst 
H#1FF). 

2. The content of PSW is written onto the stack in memory. PC = 

PC-4 to flush out the pipeline (Inst H#1 FO). 
3. SP = SP-2 (Inst H#1F1). 
4. The content of the adjusted PC is written to the DREG (Inst 

H#1F2). 
5. The content of the PC is written onto the stack in memory and 

the vector in the Am2914 is output to the interrupt vector 
PROM. A vector jump IS made following this instruction de­
pending on the interrupt number (Inst H#1 F3). 

111D05/29 AMDASM MICRO ASSIM:BLER. H.I 
MICROPROGft!t1 lOR 16 BIT COMPUTER 

, 
~ 
, , 
, 

.8111 RESET: 

i 
, 

0il'liJ1 START: 
/ 
/ 

******** •• ****** •••••••••••••••••• ** 
MICROPROGRAM rOR AMD 16-BIT COMPUTER 

WRITTEN BY STEVE CHENG 9/78 
REVISION 1.1 12/15/78 

RESET SEQUENCE STARTS RERE 

ALU & WORD Ii. CONTROL ,IOEN,INTDIS, Ii. CNTLB H#'i'!' Ii. DUlPATH Ii. 
MEM.CON'!' REQll"HREQ"M'IIORD 5. AM29fl4 & PCU.NOP Ii. JMP IUT 

REQUEST BUS JOR INSTRUCTION N 

!LU nus,PASS Ii. !!! 6. WORD & aEY & CARRTeTt Ii. CONTROL & 
DATA PATH , ••••• LDMAR •••• ,. Ii. HEM.caNT REQlI •••• MWORD Ii. 
1M2904 &. PCU.NOP &. CaNT 

REQUEST BUS FOR INSTRUCTION N+L RUD INSTRUCTION N 

''''il2 START1: 1LU nus.PASS &. t..! &. WORn &. OEI &. CARRICTL &. CONTROL 6. 
I DA'l'APATH •••••• LDMAR •••••• &. HEM.CONT REQB.MRiQ ••• MWORD &. 
I A1129.4 &. PCU.NIXT &. CaNT 

REQUEST BUS FOR INSTRUCTION N+2. READ INTR!JCTIOH N+L 
LOAD Zl REGISTER WITH INSTRUCTION N. 
DECODE FOR INSTRUCTION N 

11181:3 STUTZ: ALlJ",\TBUS,PASS 6. DAlI 6. CARRICTL 6. OEI &. lORD &. CONTROL &. 
/ DATA'PATH ZZI •••••• LDMAR •• ZII ••• , &. I1EM.CONT REQB.MREQ ••• I1WORD &. 
{ 111291f4 &. FCU.HEIT 6. JM!P 

, 
/illIJ'4 RNI: 

/ 
/ 

, 
0005 LR: 

/ 
I , 
, 

01!HiJ6 AR: 
I 
/ 

00.7 SR: 
I 
I , , 

~Hi'08 NR: 
I 
( 
, , 

0009 ORR: 

~ 

000A ~LR: 
/ 
/ , 

REQUEST NEXT INSTRUCTION 

ALU nUS,PASS &. DAB &. CARRYCTL &. OEY &. WORD &. CONTROL &. 
DATAPA'l'B •••••• LDMAR •• ZII., •• &. MEM.CON!' REQB.MREQ ••• M'IIORD &. 
1M291114 &. PCU.NEXT &. JI1AP 

RR TIPE INSTRUCTIONS 

LOAD REGISTER 18 RR CC: NONE 
LR Rl.R2 Rl = (R2) 

ALV REG .PASSR &. AB &. CARRIcn &. OEY /" WORD &. 
DATAPATH ZZI, •• , •• LDMAR •• ZII" •• &. HEM.CONT REQB.MRIQ ••• I1'110RD &. 
1H2904 &. CONTROL &. PCU. NEXT &. JMAP 

ADD REGISTERS 1A RR CC: csvz 
AR RI,RZ Hl '" (Rl) + (R2) 

ALU REG.ADD Ii. U &. CARRYCTL &. OEI 6. WORD &. 
DATAP1TH ZZI., •••• LDMAR •• ZlI., •• &. MEM.CONr aEQlI.MREQ, •• MWORD &. 
.11'12904 ,.EZ,EC.ES.EOVR.CEH. &. CONTROL &. PCU.NEXT &. JMAP 

SUBTRACT REGISTERS 1:8 HR CC: CSVZ 
SR Rl,R2 RI = (Rl) - (RZ) 

ALU REG. SUlIR &. AB &. CARRICTL COEQI &. OEY /::. WORD &. 
DATAPATH ZZI, •••• ,LDMAR. •• ZII •••• &. MEM.CONT REQB,MREQ ••• MWORD &. 
AM2984 .,EZ,EC.ES.EOVR,CEM. &. CONTROL &. PCU .NUT &. JMAP 

AND REGISTERS 14 RR CC: CSVZ 
tlR RI.RZ RI'"' (Rl) AND (a2) 

ALU REG .AND /::. AB &. CARRICTL &. OEY &. WORD &. 
DATAPATH ZZI" .... LDHAR .. ZII .... &. MEM.CONT RE~B.MREQ ... MWORD Ii. 
11'12904 •• EZ,EC,ES.EOVR.CEM. & CONTROL &. PCU.NUT &. JMAP 

OR REGISTERS 16 RR CC: CSVZ 
OR Rl.RZ RI'" (RI) OR (R2) 

!tu REG.OR & All & CARRYCTL & OEY &. liaRD & 
DArAPATH ZZI •••••• LDMAR.,ZII •• ,. & MEM.CONT REQB.MREQ ••• MWOHD & 
AH2904 •• EZ,EC.ES.EOVR.CEM. & CONTROL /::. PCU.NEXT &. JHAP 

COMPARE LOGICAL REGISTERS 15 RR CC: CSVZ 
eLR Rl.HZ CC = RESULT OF (Rl) - (R2) 

CONTENTS OF Rl AND HZ AU NOT UFECTED 

ALU nus .SUBR Ii. All &. CARRICTL COEQI &. OEY &. WORD &. 
DATAPATB ZZI ...... LDMAR .. ZII" .. &. MEM.CONT REQB.MREQ ... MWORD &. 
AM2ge4 "EZ.EC.ES.EOYR.CEM. &. CONTROL &. PCU.NEXT &. JMAP 

6. The vector jump directs to 1 of Blocations labelled INT o-INT 7. 

For INT1-INT7, the first instruction disables interrupt in the 
Am2914 and forces new PC value into PC. INTo requires an 
extra instruction to clear the Am9519. The interrupt vector in 
the Am9519 is to be determined by the macro interrupt 
handler. 

7. This next instruction IS the same as the START instruction. 
The previous instruction cannot jump to START directly be­
cause the immediate operand uses the jump address field. 
The macroprogram resumes at the new PC value. 

The instructions implemented cover only a small portion of all 
possible Instructions. Only 137 or 512 microinstructions are used. 
The rest of the instruction space could be used to vastly enhance 
the instruction set such as byte operations, storage to storage 
instructions, etc. 

, 
011l!ll1l XORR: 

I 
I 

I1Ili!iC iD: 

000r 

I 
I , 

; 
000E 5T: 

0001 

I 
I , 

0011 ADDX: 
/ 
I , 

~"H2 

0313 ~UBX: 

0014 

I 
/ 

0015 ~: 

"'16 

I 

i 
I 
I , 

01il1? 0: 

; , 
0118 

, 
e019 eMP: 

I 
I 

EXCLUSIVE OR REGISTERS 1? 
1011 Rl t R2 H1 =- (Hl) XOR (H2) 

RR 

lLU RlG.EXOR &. .\E &. CARRIcn &. OET & WORD &. 

CC: CSVZ 

DATAPATH ZZI,., ••• LDI1AR,.ZII •••• &. MEM.CONT REQlI.MREQ, •• MWOHD 6. 
AI12904 •• EZ. EC, 8S .EOVR .CEM, &. CONTROL &. PCU .NEXT &. JMAP 

RX 'rIPE INSTRUCTIONS 

LOAD 58 RX CC: NONE 
LD RI,X2(D) RI = [(X2) + DJ 

ALU nus. !DD &. DA] &. CARRYCTL &. on &. WORD &. CONTROL &. RTB &. 
DATAPATH , •••• YMAR.LDMAR •• ,ENUl •• , I). MEM.CONT REQIl.MREQ ••• MWORD &. 
AM2911l4 &. PCU. NOP 6. JSB FETCHOP 

ALU REG. PASSR & DAB &. CARRYCTL &. OEY & WORD &. CONTROl 6. 
Dl'rAPATH .. " .. LDMAR"ZII.ENZIIl ... & MEM.CONT REQB.MREQ."MWORD Ii. 
AM2904 &. }>CU.NFXT &. JMAP 

STORE 
ST Rl.XZ(D) " (X2) + D '" (Rl) 

RX CC: NOt-.E 

lLU YEUS.ADD & DAB 6. CARRYCTL & OEY Ii. WORD & CONTROL &. RTB &. 
DATAPATH ••••• YMAR.LDMAR ••• ENZ0 ••• &. MEM.CONT REQB.MREQ, •• MWORD &. 
AMZ9Z4 & PCU.NOF & CONT 

ALD nus. PASS & AI! &. CAPRYCTL & OEY /" 'liaRD &. CONTROL &. 
DATAPATH ZZI ..... "LDD ..... &. MEM.CON'T REQIl .... MWORD &. 
AM2S'IH & PCU. Nap &. CaNT 

ALU YBUS.PASS &. AB & CARRYCn & OEY &. WORD &. CONTROL &. 
DATUATH •• , ••• LDMAR, ••• ,. &. MEM.CONT R~QI!.MREQ •• WRITE.'1WORD &. 
1.M2904 6. PCU.NEXT 6. JMP RNI 

ADD 51. RX CC: CSVZ 
ADD Rl.X2(D) lil = (Rl) + [(X2) + D) 

ALU nUS.ADD &. DAB &. CARRYCTL Ii. OEY &. ~ORD 6. CONTROL &. RTll &. 
DATAPATH ..... IMAR,LDMAR",ENZ0 ... (. !'EM.CONT REQb.MREQ ... MWORD &. 
AM291114 & PClJ.t-.OP &. JSB FETCFOP 

ALL! REG.ADD & DAll &. C.'RRYCTL &. OEY & 'liaRD & CONTROL &. 
DArAPATH •• , ••• LDMo\Ji •• ZII.ENZ0 •• , &. MEM.CONT REQI!.MREQ ••• M'IIORD &. 
AM2904 •• £Z.EC,ES,tOVR.CEM. &. FCU.NEXT &. JMAP 

SUBTRACT 5B RX CC: CSYZ 
SUB Rl.X2(D) Rl = (BI) - [(X2) + D] 

A1U YBUS.ADD (. DAR & CARRYCn &. OEI 1-. WORD Ii. CO/l.TROL &. RTB & 
DATAPATR •• , •• YMAR.LDMAR ••• ENZ0 •• , & ME:-1.CONT REQB.MREQ ••• MWORD &. 
AI':2904 5. PCU.I'lOP &. JSB FETCHOP 

nu REG .SUBR &. DAB 6. CARRYCTL COEQl &. DEl & WORD &. CONTROL &. 
DArAPA.TR •••••• LDMAR •• ZII.ENZ0 ••• &. MEM.CONT R1Ql!.MREQ ••• MWORD &. 
AM2904 •• EZ,EC.ES,EOVR,CEM, 6. PCU.NEXT 5. JHAP 

AND 54 RX CC: CSVZ 
N Rl,XZ(D) Rl = (Rl) AND [(X2) + DJ 

ALU nus ,ADD 6. DAP & CARRYCTL & DEI &. WORD (. CONTROL &. RTE &. 

DI,TAPATH ••••• IHAR.LDHAR ... ENZI ••• &. MEM.CONT REQB.MRIQ ••• I1'110RD &. 
AI1291'" 6. PCU. Nap & JSlI FETCHOP 

ALU REG.AND &. DAB &. CARRlCTL &. OEY &. WORD & CONTROL & 
DATA PATH , ••• "LDMAR •• ZIl.ENZ0." &. MEM.CONT REQB.MRIQ.,.MYORD &. 
AM29'4 •• EZ.EC,ES.EOYR,CEM. 6. PCU.NEXT &. JMAP 

OR 56 RX CC: csvz 
o Rl.XZ(D) RI '" (Rl) OR ((X2) + DJ 

lLU nUS,ADD &. DAB 6. CARRICTL & OEY 6. YaRD &. CONTROL &. RU &. 
DArAPATH ., ••• YMAR,lDMAR.,.ENZ0 ••• 6. MEH.CONT REQB.HREQ ••• M'IIORD &. 
AM2984 &. PCU.NOP &. JSB J'ETCHOP 

At;,) REG,OR & DAB & CARRlCTt 6. OEY &. WORD &. CONTROL 6. 
DATAPATF! .. , ... LDMAR .. ZII.ENZ .... &. MU'I.CONT REQ'B.MREQ ... MVORD 6. 
Atl29(it~ ,.EZ,EC.ES.EOVR.Cl.'M. &. PCU.NEXT & JMJ.P 

COHPARE 55 RX CC: csvz 
CMF Rl,X2(D) CC = RESULT or (RI) - [(XZ) + DJ 

THE CONTEt-lTS OF Rl AND (X2) + D ARE NOT AFFECTED 

lLU Y'BUS.UD 6. DAB & CARRrCTt Ii. OEY & WORn &. CONTROL & aT! &. 
DATAPATH ., ••• YMAR.LDHAR ••• ENZ0,., &. MEM.CONT REQB.MREQ ••• MWORD & 
AH2904 6. FCU .t.OP &. JSB FETCHOP 

Figure 31. Microprogram for 16-Bit Computer. 



AMDos/29 AHDASH MICRO ASSEMBLER, iLL 
MICROPROGRAM FOR 16 BIT COMPUTER 

eea !tU nUS,SUB! &. DAB 6. CARRICTt COEQl &. OEY 6. WORD oS. CONTROL &. 
DATAPA'I'H ••• ,.,1DMAR •• '':}I,ENZIil ••• So HEM.CONT R!QB,MRIQ ••• MWORD 6. 
111291114, .,EZ,EC,iS,EOVR,CEH, &. peU.NElT &. JMAP 

###IIIUI#IUI#IO,IIII*IIIIIIIOI##II#I",I1I1*####I#IIIIII#1# 

SUBROUTINE TO J'ETCH OPERAND FROM MEMORY 

######II####II####II###II###IUiliN#IIIIlIlI#tllI### 

etlB incHcP:ALU nUS,PASSR &. DAlI &. CARRICTt &. OEl &. WORD Ii. CONTROL &. 
I DATAPA!! ZZI ••••• ,LDMAR •••••• 6. HEM.CONT REQ:8,HRiQ •• ,MwoaD 6-
I 11'12904 6. peu . NEXT 6. RTN 

, , , 
011C tl: 

/ 

i 
, 

i.1D NI: 
I 
/ 

i , 
telE 01: 

I 
/ , 

1811' iI; 
/ 

i 

0020 AI: 
I 
I 

, , 
0121 SI: 

/ 
I 

; 
i 

0122 el: 
/ 
/ 

, 
0.23I1X: 

I 

! 
""24 ::aX1: 

; 
, 

"825 ic: 
/ 

; 

0i12€ 

, 
0027 BAL: 

/ 
/ , 

"'28 lIAtI: 
/ 

i 

0020 BALR: 

; , 

IMMEDIATE INS1'RUCTIONS 

LOAD IMMEDIAtE ASI CC: NONE 
Ll Rl,DI Ht '" DI 

!LU REG,PASSR &. DAB &. CARRlett &. eE! I;. WORD &. CONtROL &. 
DATAPATH •••••• LDMAR ••• INZ' ••• &. M~M.CONT REQll.MREQ. ••• /1WORD &. 
AH29U &. FCU.NElT &. JMF STUT2 

AND IMI1EDI ATE 94 RSI CC: CSH 
NI U,DI Rt ... Rt AND DI 

ALu REG.A.ND &. DAll &. CARRYCTL &. on &. WORD &. CONTROL &. 
DATAP1TH .", •• tDMAR ••• ENZ', •• &. ~EM.CONt REQB.MIiEQ, •• MWORD & 
AM2904. .. EZ.EC.ES.EOVR,CEM. &. PCD.NEXT &. JI1P ST.1RT2 

OR IMMEDIATE 96 asl CC: Csvz 
01 Rl,DI Rl '" Rl OR DI 

uti RE~.OR &. DAB 6. CURYCTL &. OEY S. WORD 6. CONTROL &. 
DATAPATH ", •• ,LDMAR, •• ENZII ••• &. HiH.CONT REQB,HREQ ••• MWORD &. 
AM291i'14 •• EZ,EC,ES,EOVR.CEM. I) PCU.NiIT 6. JMP STUT2 

EXCLUSIVE OR IMMEDIATE 97 RSI CC: CS'lZ 
II Rl,DI Rl " Rl lOR DI 

!LU REG.EXOR 6. DAlI &. CARRYCTL &. OEY &. WORD &. CONTROL &. 
D1TAPATH """ LDMAR ••• ENZI', •• & MEM.CONT REQII.HREQ ••• MWORD &. 
11'12914. •• EZ.EC.ES.EOVR.CEM. &. PCU.NElT &. JMP SURT2 

ADD IMMEDIATE 91 RSI CC: CSVZ 
AI Rl.DI il '" Rl + DI 

ALU REG,ADD &. DAB &. CARRYCTt &. OEY 6. wORD &. CONTROL &. 
DAT1PATH ., •• ,, LDMAR ••• INZ",., &. ME~.CONT RJQlI.MREQ, •• M'IIORD &. 
1112904. ,.EZ.EC.IS."EOVR.CEM. &. PCU.NEXT &. JMP STUT2 

SUBTiACT IMMEDIATE 911 ASI CC: CSVZ 
SI Rl.DI Rl =' RI - DI 

ALU REG.SUBE. &. DAB &. CARRYCTL COEQ.l &. OEY &. WORD &. CONTROL &. 
DATAP1TH •••••• LIlMAR ••• EN Z0 ••• &. HIM .CONT REQB.MREQ ••• MVORD &. 
.11'12904 •• EZ.1C.ES.EOVR.CEI1, &. peU.NEXT &. JI1P STUT2 

COMPARE IMMEDIATE 95 RSI CC: CSVZ 
CI RI,DI CC = RESULT OF Rl - DI 

THE CO~TENT or Rl IS NOT AFFECTED 

!LU nus. SUER &. DAB &. CARRYCTL COEQl &. OEY & WORD &. CONTROL &. 
D1TAPATB ••• ", LDMAR,.,ENZ0 ••• &. MEM.CONT REQlI.MREQ ••• MWORD So 
AH29"4 •• EZ,EC.ES.EOVR.CEH. &. PCU.NEXT &. JHP START2 

BRANCH I t;STRUCTIONS 

BRANCH UNCONDITIONAl 74. 'I CC: NONE 
II 12(D) PC '" (X2) + D 

lLU nUS.ADD &. DAJI &. CARRYCTt &. OEI &. WORD &. CONTROL 5. iTl! &. 
D!'l'APATB .ENTREG. , ••• LDMAR. ,, •• , &. 
MiM.CO~T REQll.MREQ ... MWORD &. AMZge4 &. PCU.TR2 6. JMP STUTZ 

'LU YIIUS .PASS &. !:B &. 'IIORD &. OEY /;. CONTROL 6. 
DATAPATH ,ENTREG ••••• LDMAR •• "" &. MEM.CONT RI.QB.MREQ.,.MWORD &. 
AI12904 &. PCU.TR2 &. JMP START2 

llRANCH ON CONDITION 4.7 Rl CC: NONE 
BC C.X2(D) IF cc = 1. PC " (X2) + D 

ELSE PC '" (PC) + 2 

!LU YBUS.ADD &. DAB &. CARRYCTL &. OEY &. WORD &. CONTROL &. RTl! &. 
DATAPUB •• LDTREG.,.YMAR.LDMAR ••• 1';NZ0 •• , BRIEN &. TEST 57 &. 
MEM.CONT REQl!,MREQ".MWCRD &. 
AH2f.e4 ,OECT ••• ' •• &. PCU.NOP So CJP BXl 

lIRANCa NOT ~EEDED 

.!LU nus.PASS £. All &. WORD &. OEY &. CONTROL &. 
I)ATAPATFI ZZI,.".,LDMAR " .", &. HEM.COIIT REQll •• ,.MWORD &. 
AM29iJ4 6. PCU. hEXT &. JMP RN I 

BRANCH AND LINK ~5 HI CC: NONE 
BAL Rl.X2(D) Rl '" PC + 2, PC'" {(X2) + DJ 

ALU nUS.ADD & D!lI &. CARRICTL &. OEY &. WORD &. CONTROL &. RTB &. 
DATAPATH •• LDTREG,.,YMAR.LDMAR ••• ENZIII". &. MEM.CONT •••• HWORD 5. 
AM29046. peU.hOP &. CONT 

ALU REG. PASS &. DAl! &. CARRICTL &. WORD &. CONTROL &. 
DATAPATH .. ' .. PCUY II ..... &. MEM.CONT REQlI .... MlIORD &. 
AI12G04 &. peU.NOP &. JMP BI1 

BRANCH AND LINK REGISTER /15 RR CC: NO~E 
BALR Rl.R2 Rl = (PC)' PC " (R2) 

ALU YBlJS.PASSR & DAB &. CARRYCTt & OEY &. WORD &. CONTROL &. 
DATAPATH "LDTREG ... YMAR,LDMAR",EtlZ0 ... &. MEM.CONT .... MVORD 6. 
AM2S1B4 &. FCU.NOP &. JMP BALl 

012.1 ER: 
I 
/ 

! 
etZll SLA: 

/ 

! 
I!lIZC 

002D 

; 
012E 511: 

/ 

! 
00Z1 

, 
00:31 SRA: 

/ 
/ , 

01'13:! 

1035 

1136 

~ 
0037 RRt: 

"038 

1039 

I 
/ , 

, 
003.1 RLL: 

/ 
/ 

003D RRC: 
/ 
/ , 

0e3E 

0031 

0"40 RLC: 
/ 

BRANCH REGISTER ALWAYS .8 " CC: NONE 
lIRA Rl PC " (Rl) 

!LU YBUS.PASS &. DAB &. CARRlCTt &. OEl &. WORD &. CONTROL &. 
D1TAP1TH ,.LDTREG ••• YMAR.LDM1R ••••• & MEM.CONT REQlI •••• MWORD &. 
A/129"4. &. PCU.NOP &. JMP Bll 

SHIFT INSTRUCTIONS 

SHIFT LEFT ARITHMETIC 8B RSI ec: csvz 
SLA Rl.CNT Rl '" SHIFT (RI) ARITHMETIC LEFT CNT PLACES 

ALU nus.PASS &. All &. WORD &. OEY &. CURYCTL &. CONTROL &. 
DATAPATH ZZI., •• ,., •••• SHTCN1'itl. &. MEM.CONT , ••• MWORD &. 
1M29114 6. PCU. Nap 6. LDCT 

lLU AUR.PASS &. AB &. WORD 6. OEY &. CARRYCTL &. CONTROL I;. CNUB H#Fr1 &. 
DAlAPATIl 6. MEM.CONT ••• ,MWORD &. 
AM29"4. SHIFTEN"EZ,EC.ES.EOYR.CtM. &. PCU.hOP &. RPCT $ 

!LU nUS,PASS &. AB &. WORD &. OEY &. CURYCTt &. CONTROL &. 
DATAPATH •••••• LDMAR •• ZU., •• & MEM.COftT REQl!,MREQ ••• HWORD &. 
AMZ964 &. PCU. NEH &. JMAP 

SHIfT LEFT LOGICAL 89 RSI CC: CSVZ 
SLL Rl.CNT Rl " SHIFT (Rl) LEFT LOGICAL CNT PLACES 

UU nus.PA.SS &. All &. WCRD &. OF.! &. CARRYCn &. CONTROL &. 
DAT1PATH ZZI. ,." , •• " .SHTCNTEII. &. HEM .CONT ., •• HYORD &. 
AM29Ql4. &. FCU.NOP &. LDCT 

ALU LUR,PASS &. AB &. WORD &. on &. CARRICTL &. CONTROL &. CNTLB H#FIl S. 
DATAPATH oS. HEM.CONT .' I ,MWORD & 
AM2914 SHIfTEN"EZ.EC.ES,EOYR.CRM. &. PCU.NOP &. RPeT $ 

nu nUS,PASS 6. All &. WORD &. OEI & CARRYCTL &. CONTROL &. 
DATAPATH •••••• LDHAR.,ZII., •• &. MEM.CONT REQll , I1REQ ••• MWORD &. 
1M29.34. &. PCU.NEXT &. JMAF 

SHIFT RIGS"1' ARI1Rt-'ETIC 81 RSI CC: CSVZ 
SRA Rl.CNT Rl '" SHIFT (Rl) RIGHT ARITHMETIC e~T FLACES 

ALU YBUS.FASS &. AB &. WORD &. OEY &. CARRYCTL &. CONTROL S. 
DATAPATH ZZI ••• ". " I I.SRTCNTEII. &. MEM .COru •• , ,MWORD &. 
.11129&14 oS. peu .NOP &. LDCT 

!LU AIlR,PASS &. All &. WORD &. OEI &. CARRyeTt &. CONTROL oS. CNTLll H#U &. 
DATAPATR &. MEH.CONT •• ,.MWORD & 
AM2904 SHIFTEN. ,EZ,EC.ES.EOYR,CEM, &. PCU.NOF s. RFCT $ 

ALU nus .PASS I> 1] 6. WORD &. OEY &. eARRYCTL &. CONTROL &. 
D1TAP1TH ...... LDMAR .. ZII .... & MEM.CONT REQlI.MREQ."M'IIORD &. 
A.M29"4 &. peU. NEXT &. JMAP 

SHIFT RIGHT LOGICAL 88 RSI CC: CSVZ 
SRL Rl.CNT R1 " SElFT (Rl) RIGHT LOGICAL CNT PLACES 

ALU nus.PASS &. AB 6. WORD & OEY &. CARRYCTt & CONTROL &. 
IlATAFATH ZZI •••••••• , •• SHTCNTE~. &. MEM.CO"!T •••• MWORD &. 
1112984 &. PCU .NOP &. LDCT 

ALU LDR,PASS &. All &. WORD &. OEY &. CARRYCTL &. CONTROL &. CNTLB H#E. &. 
DATAPATH &. HEH.CONT .... HWORD &. 
AH29i14 SHIFTEN •• EZ.EC.ES,EOYR.CEM. &. PCU.NOP &. BPCT $ 

ALU nus .PASS &. 1B 6. VORD &. OEY &. CARRICTt &. CONTROL &. 
DATAPATH ...... LDMAR .. ZII .... &. MEH.CONT REQB.MREQ ... MWORD &. 
AM29/14 &. PCU. NEXT &. JMAP 

RO'U.'I'I RIGHT A8 RSI CC: CSVZ 
RR Rl.Cr.T Rl " ROTATE (Rl) RIGHT GNT PLACES 

ALU HUS,PASS &. U! &. WORD &. OEY 6. CARRYCTt oS. CONTROL 6. 
DATAPATH ZZI ••••••• ",.SHTCNTEN. &. MEM.CONT •• ,.MWORD &. 
AM2914 &. PCU.NOP &. LDCT 

ALU LDR,PASS &. AI! &. WORD &. OEI &. CARRYCTL &. CONTROL &. CNTLll HNIA &. 
DATAPATH &. MEM.CONT ... ,MWORD &. 
AM2904 SRIFTEN .. EZ.EC,ES.EOYR.CEM. &. PCU.NOP &. RPCT $ 

ALU nUS.PASS &. All &. WORD £. OEl &. CARRICTL &. CONTROL &. 
DATAPATH ., •••• LDMAR •• ZII •••• &. HEM.CONT REQlI.MREQ ••• HWORD &. 
AH2904 &. PCU.NEXT &. JM1.P 

ROTATE LEl'T 
RL Hl.CNT 

A! RSI CC: CSVZ 
HI '" ROTUE (Rl) LEIT CNT PLACES 

ALD nus.PASS &. AB &. WORD &. OEY & CARRYCTt &. CONTROL &. 
DATAPATB ZZI ••••• , ••••• SRTCNTEN , &. Mltt.CONT ., •• MVORD &. 
lH2994 &. PCU. NOP &. LDCT 

ALD LUR,PASS &. AI! €. WORD &. OEY &. CARRYCTL &. CONTRCL &. CNTLB HItH &. 
DATAUTH 6. MEM.CONT •••• MWORD &. 
AH29214 SHIFT}:N •• EZ,EC.ES,EOVH.CEM, &. PCU.NOP &. RPCT $ 

AlU UUS.PASS 6. All &. WORD &. OEY & CARRICTL 6. CONTROL &. 
DA1APATR ".".LDMAR •• ZII •••• &. MEM.CONT REQB.MREQ ••• MWORD & 
AM2914 &. PCU .NEXT &. JMAP 

ROTATE RIGHT THROUGH CARRY 
RRC RI.CNT 

A9 RSI CC: CSVZ 

.!LU nUS.PASS &. AB &. ilORD &. OEY & CARRYCTt &. CONTROL 5. 
DATAPA'l'H ZZI""., •• ,.,SHTCNTEN. &. MEM.CONT ••• ,MWORD &. 
.1112914 &. PCU.NOP So lDCT 

!LU LDR.PASS &. All &. WORD &. on &. CARRYCTL 6. CONTROL &. CNTLII 8#E9 &. 
DATAPATH &. MEM.CONT • II ,I1WORD 6. 
A.M2904 SHIFTEN •• EZ,EC.ES.EOVR.CEM, &. PCU.NOP & RPCT $ 

ALU HUS.PASS &. A:b &. WORD &. OEI &. CURYCTL &. CONTROL 5. 
DATAPATH .. , ",LDHAR .. ZIl .... &. MEM.CONT REQB.I1REQ" .MWORD &. 
AM29,. &. PCU .tiEXT &. JMAP 

ROTAn LEFT TEROUGH CARRY U RSI CC: CSYZ 
RLe: R1~CNT ROTATE (Rl) CNT TItlE LEFT THROUGH CARRY 

ALU YBUS.PASS &. All &. WORD &. OEY &. CARRYCTL &. CONTROL 5. 
DATAPATH ZZI ••• , •• "" .SHTCNTEN. &. MEM.CONT ., •• I1WORD &. 

Figure 31. Microprogram for 16-Bit Computer (Cont.) 
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'&'I'ID05/29 AtlDASM MICRO ASs:EHBLlJI, Vl.1 
MICROPROGRAM rOR 16 BI'1' COMPUTER 

IM2984 &. peU.NOP 6. LDCT 

0141 !LO LUR, PASS So Ai &. WORD S. OIY &. CARRYCTt &. CON'lROL &. CN'fLII 8#1'9 &. 

0042 

; 
; 
; 
; 
; 
; 
; 
; 

.uz ~N; 

.IU 

11.6 

~ 
; 

I 
I 
; 
; 
; 

""7 ~Ui': 

"4.8 

111149 

.'u 

I 
I 
; 

I 
I 
I 
; 

; 
; 
; 
; 
; 
; 
; 
; 
; 
; 
! 

18U PUSH: 

12!140 

flUD 

0141 

~ 
; 

I 
I 
; 
; 
; 
; 
; 
; 
; 

114.F POP; 
I 

11.5, 

8151 

.... 

I 
; 

; 
; 

1'5:3 CALL: 

81S4. 

"55 

I 
I 
; 

I 
I 
; 

D!T1PA1'H &. MEM.CONT ... ,MWORD &. 
AM291. sBlruN,.EZ.EC.!S.EOJR.CE .... &. peU.hOP &. RPCT $ 

!LV nU5,P!5S &. .lJI & WORD &. on &. CJ.RRYCTL &. CONTROL oS. 
DA'1'APAT'R •••••• LDMAB •• ZIl •••• &. I'IEI'I.CONT R1QB,MREQ:,.,HWORD &. 
AM29lf &. peU.NEXT &. JI1AP 

I/o INSTRUCTIONS 

INPU'l' AI RI CC: NONE 
IN 11.12(D) 11 .. POR'! (121 + D 

nu !BUS,IDD &. DIB &. CIIITcn &. all &. VOID &. CONTROL &. BTl & 
DAT.lPI'lB ••••• TMJ.R.LDMAR ••• DlZ •••• &. MIM.CONt IEQII •• BRIQ.IMWORD &. 
1M2ge4 &. peu. NOP &. LDcr UNlll 

lI.U &. VOID &. OIT &. CONTROL .IOEN &. CN'lLB InD &. 
DIUPUB &. HEM.eONT , .BB.BQ I .11111'0RD &. 
,"29.4 &. peU.NOP &. IPCT $ 

UU &. VORD &. CIT &. CONTROL • IOEN. I &. CNUB lIn &. 
DATAPUI &, KlI1.CONT •• BJ.!QI.MWORD &. 
11'129'4 &. peu .NOP &. CONT 

!LU RlG,PASSR 6. DAB &. WOIiD &. OIT &. C1R1.TCTL &. CONTROL &. 
Dlf1PATB ., •••• LDMARI •• INZ.,.. &. HEM.CONT IEQB .... HWORD &. 
,1129'4 &. PCU. NaP &. JI1P SUlTl 

OU'!PUT A2 II CC: HONE 
OU" 11.12(D) POIf (12) + 0 '" (11) 

ltu nUSIADD &. DAB &. CARRTCTL &. OIT &, WORD &. COIITIOL 50 au &. 
Dl'llP1T! ,," •• Tt1J.R.LDtI.ll ••• ENZ' ••• &. HIM.CON! REQB .. BRIQ •• I"IWORD &. 
1112914- &. PCO.NOP &. CON'l' 

lLU nUS.PASS &. .&B &. ClRlTCTL &. OET 6. VORD &. 
CON'l'ROt .IOIN .. &. CNUI Ifill &. 
DATAP'fH " .... ,LDD ..... &. I1EH.CON't' 1.II:t:Q •• I'1VORD & 
1112914. &. PCU. Nap 6. LDC'!' 1#111111 

ltU &. WOlD & CClN'l'ROL & OIT &. 
OAUPATB ,5, MItt.CONT IllllIlQI.MWOltD &. 
1112911. &. PCU ./fOP &. iPC,. $ 

lLU &. WOlD &. COntlOL .IOBN" &. CNTtl INFl &. OEY &. 
DUlPATB &. HIM.CONT .,IIIQ .. I1WOID &. 
1M2914 &. PCU.NOP &. JMP STliT 

sucr OPUATIONS 

PUSB REGISTERS 
PUSI il.ltN (SP-2)-11 

(SP-4.)-12 
(SP - 2"'N) ;;. RN 
SP '" SP - 2"'N 

c. CC: NONE 

lLU nus .PASS &. AB &. CARRTC'lL &. OIT &. WORD &. CON'l'ROL & 
DA'r.lPAi'1 nI ..... , ••• I •• &. Mlff.CON" RIQB,MRIQ ••• MWOID &. 
.tH29f14 &. PCD.NOP &. CON" 

,1.0 YBUS.PASS " All &. ClBRYCrt &. OEl &. VORD &. caNUOL &. 
DAi'APA'!'1 ...... LDMU.LDD .... , &. I1IH.CON'l R.J:QIIIHREQ .. ,MWORD" 
11'129'" &. PCO.PUSI &. COM' 

!ttl YBUS.PASS &. AI &. CARIYCn &. OIT &. WORD Ii. CONTROL & 
OlU,P,TI ••• ENC!R.INC •••••••• &. HEM.CONT RlQI.HRIQI.VII'l'I,I1VORD &. 
'lES'!' Q#78 & AH2P84 &. PCU.NOP &. CJP POSI+l 

ALU TIIUS .PASS &. All &. CARBYCTt &. OIT &. WOItD &. CONTIot &. 
DATAPA"P •• I •• ,LDI1'R., •••• &. HIM.CON" RIQB,HilQ.,.HVORD &. 
lH2914 &. PCU. NOP &. JMP R~I 

POP REGISTERS 
POP R2.Rl :~: ~~~)+ 2) 

R.H -- (SP + 2*N) 
SP=SP+2*H 

C1 II CC: NONE 

ALU TBUS.PlSS &. AI &. CARRTCTL &. OE! &. WOlD &. CONTROL &. 
DA'l'PA'lB ZU I •• I ••• I .... &. I'IEM.CON'!' REQB,HRiQ •• ,MWORD S. 
AI1291114 &. PCU.HOP Ii. CON! 

ALU REG. PASS &. AB &. C.llIRTCTL &. OE! &. VORD &. CONUOt &. 
D1!1PUH "," •• LDI1'R ... !NZI ... &. HEH.CONf IIQBI ••• HWORD &. 
AM2914, &. PCU .SP &. CaNT 

'LU TBUS.PISS &. 111 &. CARRYCn &. on &. WORD &. COHi'ROL s. 
D',....PA,.P , •• ENcrIt •• f ...... &. HEM.CON" IEQlI.MRJ:Q ... HVORD &. 
TlST Q#?' &. AH29'4 &. PCU .POP &. CJP POP+1 

iLU TBUS.PASS &. AB &. CUIITcn " on &. WORD &. COIl'l'ROL &. 
D'TAP1TH •• , ,.ILDMAR •••••• 6. HEH.CON" REQB.MREQ ••• 1'1111'010 &. 
AM2914 &. PCU.NOP &. JMP RNI 

SUBROU'l'INE CALL C2 IX CCI hONE 
CALL Xl(D) SP • SP - 2 

(SP - 2) .. (PC) 
PC ., [(11) + D) 

uu nUS,ADD &. DAB &. CARRTCTL &. OIT &. VORD &. CONTIOL &. RU &. 
DUIPA"! •• LD'1'RIG., •• LDMiRf,.INZ .... &. 
HIH.CONT RlQI.I1REQII.I1VOID &. ,"29114 &. PCll.PUSI &. CaNT 

UU nus.PASS &. .l! 6. CARRTCTL &. VOID &. CONTIOL &. 
DATAPATI I. tflPCUT IILDD ..... &. HEM.COtor RIQJ,MRiQ ••• HWORD &. 
AM2914 &. PCU.NOP &. CaNT 

UU nUSIPASS &. II &. CARRTC'lL &. OET &. WORD &. CON'l'ROL &. 
DiU-PAi'B .INTREG ..... LDHARI" •• I &. 
MIM.CONT REQB.l'lREQ .. VRITE.MWORD &. '1'12914 &. PCU.JUHP &. II'IP STAlIl'1 

; 
; 
; 
; 

inURN nOM SUBROUi'INE 
BI! PC .. (SP) 

SP=SP+2 

CCt NONI 

11'.56 RETURN: .lLO nUS,PASS 6. U &. CARRIott &. OII &. \lORD" CONTROL 6. 
~ f~i~:!,r~ PCU:s:pL~~~';f.'" & HIM.CON'l' REQB., .. MVORD & 

; 
1157 !LO YBUS ,PASS &. 11 &. CURleTt &. OEY &. WORD &. CONTROL &. 

.... 

.159 

; 
; 
; 
; 
; 
; 
; 
; 
; 

1151 LII1: 
I 
I 
I 
; 
; 
; 

115J iI: 
I 
I 
I 
; 

i 
I.5C DII 

~ 
I 
; 
; 

: 
115D ~TI: 

'.5E 

""SF 

916" 

0.61 

'18, 

I 
I 
; 

~ 
; 

, 
'18. INal 

IUS1 

8182 

0183 

0184 

'185 

1186 

11B"I 

U8S 

1189 

~ 
; 
; 
; 
; 

I 

• ; 

I 
I 
; 

D1'UP1'fH •••••• I.DIU.R •••••• &. MEM.CONT IBQB.HJl.EQ.I.t1VORD &. 
11129'" &. PCU. SP &. CONT 

!LU nus, PlSSli. &. DAJ &. CARRTC'l'L &. OET 50 VORD &. CONfROL &. 
D1'l1P.l'l'B •• LD'tRIG ••• YI1.lR.I.DI111 ••• ENze ••• &. 
I1EI1.CON'l' UQJ .MR!Q ••• /'tWORD &. AI1291" & FeU .POP &. CON" 

lLU !BUS.PASS &. .llI &. CURre"L &. OBT &. WORD &. CO~TROL ,5, 
DA'l'lPATH .BN"REG ••••••••••• &. I1EI1.eou' ., •• I1WORD &. 
11'129'4 &. PCU.JUt1P &. JMP STun 

INTEJliUPl' INS'rRUC'1'IONS 

L01D INURRUP'I' H1Sl eA RI CC: NONI 
LII1 DI LOAD LOWER BYrE or DI INTO I'IASI IEGISTEI 

nu YlIUS,PASS! &. DAJ &. CARRlCTL &. OET &. WORD &. 
CONTHOL ••• IN'lRIEh &. CNrtJJ DUE &. 
DU'APATB , •• , .. LDI1!B. "hlZ'". &. I1EH .CONT REQB ,HREQ, "HVORD &. 
1112914: &. PCD.NIX" &. JI1P SUlf2 

ENAIlLI INTERRUPt C8 en 
II EN1:BLI INURRUP'!' SYSTEH 

nu nus, PASS &. All &. CARRTC'l'L &. OEl &. VORD &. 
COI'l'IOL ••• INTllIN &. CNUB HNF' &. 

CC: NONE 

DA'lAPA'l'H ZZI ...... LDHlB .. ZII .... &. HEH.CONT REQB.MREQ ... MWORD &. 
.1H2984 &. PCU.NII'1' &. JI'IAP 

DISPULE rNURRUPT C9 cn CC:NONI 
DI DISABLE INTERRUP'1' STSTEH 

nu nus.PASS & All &. ClBRTC'l'L &. OET &. WORD &. 
CON'1'ROL ,. IINflliN &. CNTLB BIlD &. 
D'UPU! ZZI.I •••• LDHJR •• ZII. I • I &. MIM.CON'l REQ!.MIEQ ••• HWORD &. 
AI12904 &. PCU.NIIT &. JM.tP 

RETORN FROM INURRUP'l CB CTL CC: (SP+2) 
Ri'I PC • (SP) .PSW .. (SP+2) 

SP .. SP + 4. IN'l'IRRUP'l' ENABLED 

UU TlIUS.PASS &. 1lI &. C'RRTCTt &. OET &. WORD &. CON'1'IOt &. 
DAf.1PATH .1 •• "L0I1AR •••••• &. HII'I.CON'1' REQBI1 •• I'!WOBD &. 
1112904. &. PCU.SP &. CaNT 

ALU nus.p,SS! &. DAlI &. CARRYCi'L &. OET " VOID &. CONtROL &. 
DU'lP1,.X I,LDfREG",," •• !Nze ••• &. HEH.CONi' REQB.I'IRIQ, •• HVORD &. 
'1'129114, &. PCU.POP &. CONT 

ALU nus.PASS &. !B 6. CARRlC'lL &. OEY &. VOID &. CONTROL & 
DAi'AP',.U .Eh'lREG •••• , •••••• &. I1EM.CONT ","f'1VOID" 
.6.H2904 &. PCO.JUI1P &. CON! 

ALU TliUS,P!SS &. AB &. CURTCTL &. OIT &. VORD " 
CONTROl ••• IN1'RUiN Ii. CNi'LB H#19 &. 
DA,.APA'l''fI •••••• LDI1,II,",.I. &. HIM.CON" RIQ! •••• I1WORD &. 
11'12914: &. peu.sp &. CONi' 

ALU TIOS.PASSR &. DAB &. CARRTCTL &. all &. WORD &. 
CONi'ROL I •• IN'lRIEN &. CNfLI I.n " nST Q#l1II &. 

~~i~:!t! IEz:ic:iS:=~;~:ciH! ~~i:~?~~p RfQ~M~R=~.i.HHVORD &. 

IHITULIZUION RODtINlS 

ORG BUse 

UU RIGIPlSSR. Ii. DAB &. WORD &. on &. eARRTCTL &. 
DA'UPA'l'H &. MlH.CON! ,"lkEQ •• HIfORD &. CON'l'ROL ROH ••• " CNHI II &. 
IMI1D l,a,,11 &. CaNT 

INI'l'IALIZE REGISTERS IN AM29'11 
II '" iii. Rl • UCl91, it • 21 AND R5 • 4 

UU &. WORD" CONTROL ••• I.tiIb &. CNUB HIli &. 
»iTUUH &. I1Jf'1.CONT .,BRlQ,.MWORD &. 
1M29.4 &. PCU .. PCUDZ.AI.1II " II1HD nil', & CaNT 

nu &. WORD &. CONTROL ".INTRIDI &. eNTLB Hn8 &. 
DUAP''!'B " HIM.CON'!' •• IREQ, .HWORD &. 
1112914 &. PCU •• PCUDZ.U.B1 &. IMMD 814'" &. CaNT 

ltO &. WORD &. PCU .. PCUDZ.J.4.B4 &. CARHTCTL &. DUAPlTB &. 
HEM.CONT • ,HRBQII"WORD 5. IMMD B"81112 &. CONT 

ALU & WORD &. PCU •• PCUDZ.A5,:85 " C.llI:RICTL &. DAUPUI " 
MIH.CON'l' .. BRJ'Q .. MVOID & IMI1D 111"4 &. CON'1' 

~~~.~0:~R~.;Rig~:~S~RDlfJ::M29:4. C~,.~~u~:~~ ~ g~:~PUH 5. 

INITIALIZE CONSOLE AI19551 

ALU REG.PASSR &. DAB &. WORD &. OIT &. CARRICTL &. 
DATAPATI &. HEM.CONT &. CONTROL ROI1 ... &. CNUB 1fl &. 
IHMD Burn &. CON'I' 

ALU REG,PASSR &. DAB &. WORD &. OlT &. CARRTcn &. 
DUAP.l'l'B &. HEH.CON" &. CON'lROL ROI1 ... &. CN'l'lB 21 &. 
IMMD I""CI " CaNT 

ALO &. WORD &. CONTROL&. DA'l'UA'l'B &. "IH .CONT &. JSI lOW 

ALO REG.PASSI &. DAB & VORD &. OEY &. CIRRYC'1'L " 
DUAPUH &. HEM. CaNT " CO~'l'ROL ROI1.,. &. CNUI 21 " 
IHI1D 111111135 6. CaNT 

Figure 31. Microprogram for 16-8it Computer (Cont.) 



111D05/29 AMDASM MIellO ASSltllILtR. fl.1 
MICROPROGRAM FOR 16 BIT COHPUTER 

e18A ALU 6. WORD 6. CONTROL 6. DlUPATB & HEM.CONT 6. JSB lOW 

elBE 11U Ii. fCU,NOP 6. DATAPUH 6. MiiH.CONT &. JMP START 

elSC 10'1: 

USD 

1l18E 

fllBl 

fI19f 

.1D. 

I 
I 
; 

'lD. iNT': 

fnnl 

81D2 

I 
I 

UD3 INTl: 

.lD4 

I 
I 

"ID!} it.T2: 

nDe 

I 
I 

I 
I 

iHD? iNT3: 
I 
I 

"'''''l1li''''11#111#1#111##1111111111,,,,,1l1li''111111111 

rio WRITE SUnODT!N! 
THE ADDRESS 01 I/O PORT IS IN R1 
TBI DATA TO III VRITTIN IS IN HZ 

ALU YBOS,P!5S &. All 6. CARRTeTL &. OET & WORD 6. 
CONTROL ROM ••• Go CNUB 1t 6. 
DATAPA'l'H ••••• YMIR.LDMAR •••••• 6. MEtI.CONT lEQII.,HREQ •• !1VORD & 
11129114 6. PCU .NOP &. CONT 

l1U nUS,PASS 6. u 6. CARRTCTL &. OET &. WORD & 
CONTROL ROM" I 6. CNTLB 2fl 6-
DATlPll'FI , •••••• LDD ••••• 5. I1EM.CONT REQB.,BREQ.,MWORD Ii. 
11129846. PCU.NOP 6. CONT 

!tU Ii. WORD & CONTROL ,IOEN,. 6. CNTLB BltF! 6. DATAPATB 6. 
HEM.CONT RtQB.,RREQ •• MWORD &. 11'12904 &. PCU.NOP &. LDCT 811111111 

ALU eo iORD &. CONTROL 6. DATAPUH &. 
MEM.CONT •• HRE~ •• t1WORD &. 1M2904 &. PCU.NOP &. RPCT $ 

ALV &. WORD &. CONTROL .IOEN •• &. CNTLB Hllll &. DATAPAT! &. 
MiM.CONT REQ:e •• HREQ •• MWOBD &. 11'1.2904 &. PCU.NOP &. BTN 

VECTO! JUHP ENTRY POI NTS 

ORG BUD. 

IN"rERlIOn e. PC '" liB 

ALV &. WOiD &. CONTROL .IOEN.INTDlS. &. CNTLB BU? &. 
D11'1PITH &. HiM.CONT .... MVORD &. 
AI'129 • .t &. PCU •• PCUDZ.A'.Be &. IMMD H#"'Ul &. CONT 

ALU &. WORD &. CONTROL "INTDIS,INTRIEN &. CNTLB HUD &. 
DAUPATH &. MEM.CONT &. 1M2984 &. PCU.hOP &. CONT 

1Lu &. WORD &. CONTROL • lOiN •• &. CNUB BIIFF &. 
DATAP!TB •••••• LDMAR ••• ,., &. MEM.CONT REQB •• "I1VORD &. 
AM29114 & PCU.NOP &. JMP STARn 

INTERRUPT I. PC = HB 

!LU &. WORD &. CONTROL "INTDrS,INTRlEN &. CNTL! HIIFD &. 
DUAPATH &. MEM.CCNT ., •• MVORD &. 
AI'12914 &. PCU .. PC!JDZ.Ae,!' &. IMMD HnlH &. CaNT 

!LV &. iORD &. CONTROL .10EN,. &. CNTLB HII'll &. 
DA'1'1P1T8 ., •• ,.LDMAR •••••• &. MEM.CONT REQB •••• MVORD &. 
A1129"4 &. PCU. NOP &. JMP SURTi 

INTERRUPT 2. PC .. 18B 

ALU &. WORD &. CONTROL •• INTDIS.INTRIEN &. CNTLIl liUD &. 
LAUP1TR &. MEM.CONT •••• MVORD &. 
1M291H &. PCU ,.PCUDZ.AI.Ill!J &. IMMD HNe018 I). CaNT 

ALU & WORD &. CONTROt .IOEN •• &. CNT1B BIIll &. 
DATAPAT!!. ., •• ,.LDMAR •••••• I). HEM.CONT RIQlI •••• MWORD &. 
A~2904 &. PCU. Nap &. JMP STARTl 

INTERRuPT 3. PC ., lea 

AlU &. WORD &. COt<!TROL •• INTDIS.INTRIEN 5. eNTLIl BOD &. 
DATiPATH I:. MEM,CONT , ••• MWORD &. 
AM2ge4 &. PCU ,.PCUDZ.AII.IlI I). IMMD Huele &. CaNT 

tlD8 
I 
( , 

BID9 It<!T.{: 

91DA 

I 
I 

, 
11011 INT5: 

nDC 

I 
I 

11DD iNTS: 
I 
; 

'IDE 

UDF iNT7: 

"'lEe 

0111 

I 
I 

'11' INTR: 

1111 

0112 

1iH!'3 

01n 

01FF 

I 
I , 

ALU &. WORD &. CONTROL • IOEN., &. eNTLB HII11 oS. 
DA'APATH ••• ' •• LDMAR •••• t. I). MEP1.CONT llEQI! •••• HWORD &. 
.11'12914 &. peU.NOP oS. JMP STARTl 

INTERRUPT 4. pc '" 21B 

!LV &. 'ORD 6. CONTROL .. lNTDIS. INTRlEN &. eNTtIl HII!'D 6. 
D1t!P!TB &. MiM.CONT •••• MWORD &. 
A1'129'4 &. peu "PCUDZ.AI,!IJ I). IMMD allee21 So CONT 

ALU So 'liaRD oS. CONTROL .IOIN .. &. CNTLI! Hd, &. 

D1TAPATH •••••• LDMAR, ••••• I). MEM.CONT REQl, ••• MWORD Ii. 
11'12914 I). PCU. Nap I). JMP SUiTl 

INTERRUPT 5, PC = 248 

AtU &. WORD &. CONTROL .. INTDIS.INTRIIN &. CNTLI! HIIlD &. 
D1t!PATH &. MEM.CONT ' •• ,HWORD &. 
AM2914 oS. PCU "PCUDZ.AI.1II & 111MD H#1t24 & CaNT 

ALU &. WORD &. CONTROL .IOIN •• &. CNTtll KIIFl &. 
DATAPATIJ , ••••• tDMAR •••••• & MYM.CONT REQB •• ,.I'1VORD &. 
AI'12914 &. PCt!. Nap 5. JMP STiR'll 

INTERRUPT 6. PC "" 28H 

!LU &. WORD 6. CONTROt •• 1NTDIS. INTRIEN &. CNTL! Rno &. 
DATAFATB &. M};M.CONT •••• MWORD &. 
11'12904 &. peu •• PCVDZ. AI. Be I). 1MMD HII1I28 5. CONT 

ALU 6. WORD I). CONTROt .10lt<!,. &. CNTLJI Hlln & 
DATAP!TB •••••• LDMAR. , •••• & HEM.CONT REQlI •••• MWORD &. 
AM2984 I). PCU. Nap &. JMP STARTI 

IPriTERRUPT 7, PC = 2CB 

!tU &. WORD &. CONTROL "INTOIS.INTRIEN &. CN'ILlI Iiln'D &. 
OATAPiTB & MEM.CONT ••• tl"WORD &. 
1M2914 & PCU "pcunZ.A.B.B" & IMMD RNel2C &. CONT 

ALu & WORD &. CONTROL .IOlN .. & CNTLB BUF &. 
D1TAPATB •••••• LOM!R" •••• &. MEM.CONT REQ! •••• MVORD &. 
11'12904 & PCU.NOP &. J!1P STARTl 

INTERRUPT HiNOtE! 

ORG B#lFf 

AtU &. WORD &. CONTROL &. 
DATAPATB &. MEl'!. CaNT REQIl.MREQ .. WRITE .HWORD &. 
AI12914 &. PCU.DiC4 &. CONT 

ALU I). WORD &. CONTROL &. 
DATAP11'a •••••• LOMAR •••••• & MEM.CONT •••• MWORD 6-
lM2914 &. PCU.PUSH &. CONT 

!LU &. WORD &. CONTROL 6-
DATAP1TH ••••• PCUT •• LDD ••••• /; t1Et1.CONT REQIl •••• MWORD & 
1M29f4 & PCU.NOP &. CONT 

ALU & \lORD &. CONTROt ... INTRIEN &. CNTL! HII'15 &. 
OA'lAPATH & MEM.CONT REqll.MREQ .. WRlTE.MWORD 6-
AM29.4 &. PCU .NOP & JMPY 

************************************ 
INTERRUPT ENTRY POI NT 

ORG HUFF 

!LU 6. WORD & CONTROL &. 
DATAPATH •••• ,.tDMAR.1DD ••• PSW •• &. MEM.CONT RE~:B.MREQ ••• !1WORD &. 
11'12914 &. PCU.PUSH &. JMP INTR 

END 

Figure 31. Microprogram for 16-8it Computer (Cont.) 

MICROCODE TRANSLATION 

It is often convenient for the microprogrammer to assign ml­
croword fields such that they occupy positions that differ from 
those In the actual hardware implementation. This is often the 
case when the microprogrammer, for convenience, allocates bits 
according to the functions to be performed and then needs to 
translate the object code produced by AMDASM® to be consis­
tent With the hardware microprogram memory design. 

There is another instance where the ability to shift bit assignment 
IS important to the engineer. As a given product evolves, bits may 
be added or deleted from the original microword format. When 
this occurs, a mapping function is desired to minimize hardware 
changes. 

The program in SYSTEM/29® that performs such a mapping 
function is called AMSCRM. The AMSCRM maps the output of 
AMDASM (logical bit pattern) into the bit pattern that is consistent 
With the 16-bIt computer hardware. A table of the logical to physi­
cal mapping IS shown in Table 3. 

ENGINEERING MODEL AND MACROCODE 

With the proper tools - designing, microprogramming, prototyp­
ing, and checking out a new computer design is not overly dif­
ficult. The major tools used for the high-speed 16-bit design 
described In this application note was System 29(1). System 29 is 
a software driven hardware prototyping system which allows 
microprogramming, hardware deSign/checkout, and macropro­
grammmg (programming in the language of the target machine) 
to occur Simultaneously. At the pOint where the design is reason­
ably rigid, and the hardware IS mostly fabricated, System 29 
allows the engineer to create "instant" microprograms to check 
out the new computers' internal data paths. Microprogram 
software support features of System 29 also allow the engineer to 
Single cycle, single Instruction step, instruction trace, and trap on 
pre-specified events coming true. Simultaneously with this initial 
internal check-out, the microcode for some very simple machine 
instruction should be written (i.e., load register, add register, or 
register, etc.). The next step is to check oot-the main memory 
paths with load and store instructions. At this point, a·reasonable 
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Table 3 . 

••• *.*.* ••• * •••••••••••••••••••• -. 
BIT ASSIGNMENT FOR 16-BIT COMPUTER 

•••••• **-.* •• *.* ••• ** ••••••• ** •••• 
BIT POSITION MNEMONIC * DiSCIlPTION 
LOG PHI 

95 95 RTB * REG. FIELD 2 TO B PORT OF AM29.3 
94 SPARE 
&3 SPARE 

92 54 ZZI LOAD Z REG. INTO ZI REG. 
91 94 CCEN AM29U CONDITO~ CODE ENABLE 

AM29.3 ALU CONTROL BITS 

9' 93 WORD • WORD MODE = 0. EYTE MODE = 
89 92 U * ENlBEL A LATCH ON AM2903 
88 91 OEl ENABLE I OUTPUT ON AM2903 
87 9' on IN!!LE B LATCH ON AM2903 
86-78 89-81 18-10 INSTRUCTION LINES FOR AM2983 

DATAPATH BITS 

77 8' ENTIIG * ENABLE TUNSlIR REG 
76 79 LDTREG LOAD TRANSFER REG. 
75 78 ENCTR I-lEG EN!!LE COUNTER 
74 77 INC I-REG INC=1/DEC=0 
73 76 PCUCD PCU TRANSFER CHIP DISABLE 
72 75 PCUI PCU TRANSFER TO Y-BUS 
71 74 LDMAR LOAD MEMORI ADDRESS REGISTER 
7. 73 LDD LOAD D-REGISTER 
69 72 ZII LOAD ZI INTO I nGISTER 
68 71 ENZ' * ENABLE Z' REGISTER TO DA BUS 
67 7' PSW * ENABLE PSW REGISTER TO DA BUS 
66 69 SHTCNEN • SHIFT COUNT AM2910 ADDRESS 
65 68 BRIEN BRANCH INSTRUCTION ENABLE 

AM29'1! PROGRAM CONTROL UNIT 

64 67 PCUI? F TO B-RAM = 1 (DEFAULT). F TO Q-REG = 0 
63 66 PCUI3 ADD = 1 (DEFAULT). SUB = 8 
62-60 65-63 PCUI2-8 PCU SOURCE CONTROL 
59-57 62-60 PCUA2-1 PCU A-RAM SELECT 
56-54 59-57 PCUB2-e PCU B-RAM SELECT 

MEMORY CONTROL 

53 52 REQB BUS REQUEST 
52 51 MREQ MEMORY REQUEST 
51 50 HREQ HOLD REQUEST 
50 49 WRITE MEMon READ = 0 (DEFAULT). MEMORY WRITE = 1 
49 48 MWORD MEMORI BITE OP = 0 (DEFAULT). MEMORY WORD OP = 1 

CONTROL BIT STROBES 

48 56 IMMD • ENABLE IMMEDIATE FIELD TO DA BUS 
47 47 ROM I-REG ENABLE = • (DEFAULT). ROM ENABLE 
46 46 lOEN * I/O CONTROL REGISTER ENABLE 
45 45 INTDIS * AM2914 INTERRUPTS DISABLE 
44 44 INTRLEN AM2914 INSTRUCTION ENABLE 
43 43 SHFUN AM2984 SHIFT ENABLE 

GENERAL PURPOSE CONTROL BITS 

42-35 42-35 CNTLB7-8 BITS TO BE STROBED BY CONTROL STROBES 

AM2904 STATUS REGISTER CONTROL BITS 

34 34 OlCT • OUTPUT ENABLE OF CONDTIONAL TEST 
33 33 EZ * ENABLE ZERO FLAG UPDATI 
32 32 EC * ENABLE CARRY FLAG UPDATE 
31 31 ES • ENULE SIGN FLAG UPDATE 
30 3. EOV! * ENABLE OVERFLOW FLAG UPDATE 
29 29 CEM * ENABLE MACHINE STATUS REGISTER 
28 28 CEU * ENABLE MICROPROGARM STATUS REGISTER 
27 27 112 AM2984 112 CARRY OUT CONTROL 
26 26 111 AM2904 CARRT OUT CONTROL 

TEST BITS 

25-23 25-23 TEST5-3 AM29t4 TEST BITS 
22-2' 22-20 TEST2-/I AM2904 & AM25L S251 TEST BITS 

AM291' SEQUENCE CONTROL 

19-16 19-16 NAC3-B AM2910 NEIT ADDRESS CONTROL 

NEXT MICRO ADDRESS OR IMMEDIATi FIELD 

15-0 15-' M15-' SHARED FIELD FOR NEXT ADDRESS OR IMMD 

END 



instruction sub-set should be microprogrammed (a phase 1 in­
struction set) that will allow a slrTiple monitor to be wntten In the 
target machines's language. This monitor should run on the 
target machine and provide commands for: memory display, 
memory store and jump to memory location. The phase 1 instruc­
tIOn set and simple monitor now provides the baSIC foundation for 
completing the full computer deSign. 

The standard System 29 configuration provides automatically for 
microcode and hardware development. In order to efficiently 
develop and implement the target machine's software, a target 
machine assembler and a mechanism for loading the machine's 
main memory must be provided. System 29 uses an Am9080A 
microprocessor, dual floppy disks, and a full function disk 
operating system to support microprogrammed hardware and 
firmware development. The Am9080A microprocessor can ad­
dress 64k bytes of memory. The disk operating system uses only 
the first 32k bytes and the remaining 32k IS used to memory map 
(page) functions from the hardware development Side. Through 
this mechanism, the designer has the ability to directly load and 
manipulate microprograms, monitor hardware functions, etc. 
There are extra enable lines from the page register which allow 
the System 29 user to map other functions into the support 
processor's upper 32k of memory. 

The main memory of this 16-bit high-speed computer design was 
mapped into the support processors upper 32k via one of the 
unused page register enable lines. Besides the normal 16-bit 
interface, a simple 8-bit Interface was added to the main memory 
thus making it a simple two port memory. When the 16-bit com­
puter is ha~ed (via a System 29 command) location 0 of 16-bit 
main memory would be addressed as location 8000 hex of Sys­
tem 29 support processor memory. Location 1 would be 8001,2 
would be 8002, etc. This affected a mechanical link between the 
16-bit prototype design and System 29. 

In order to efficiently write a reasonably complex piece of 
software (such as a simple monitor), an assembler for the target 
instruction set is needed. Since this 16-bIt computer design is not 
exactly like any other 16-bit computer, ready to run software tools 
are not available. A macro assembler is available as an optional 
enhancement to the System 29 software base. Even though this 
macro assembler is for programming in Am90BOA assembly lan­
guage, there is a user installable patch which Will disable all olthe 
Am90BOA operation codes (Figure 32). With this patch installed, 
the user may now write a macro library defining the target 
machine's instruction set. It IS not necessary to code the entire 
instruction set, as the first level of programming for the new 
machine (simple mOnitor, etc.) Will be using only the phase 1 
instruction set. A complete macro library of the AMO hlgh­
speed 16-bit computer phase 1 instruction set is contained in 
Appendix B. 

Now that the tools are In place, it IS relatively simple to code and 
implement a simple monitor for the target machine. Appendix C 
contains the complete simple monitor listing for the AMD high­
speed 16-bit computer. Only the phase 1 instruction set was used 
which does not include byte instruction, call and retum instruc­
tions, stack Instructions, any special instructions, etc. ThiS Simple 
monitor understands three commands: Display (0), Store (S), 
and Jump (J). Typing D followed by an address value Will display 
256 bytes of main memory beginning on the address given 
(rounded back to the nearest eight word boundary). Typing an S 
followed by an address, fOllowed by data, will store the data 
consecutively, on a nibble basis beginning at the given address. 
Typing in J fOllowed by an address will cause the processor to 
begin execution at the main memory location given by the ad­
dress. Commands, addresses, and data must be separated by at 
least one delimiter (space, comma, or penod). 

The change file shown below can be integrated into MAC to produce a new program, which we will call 
MAC29. The MAC29 program will not recognize 8080 mnemonics, but will recognize all the MAC pseudo 
operators and arithmetic functions. 

IH1l9 
"ilIA 
2561 

2444 
2444 C36125 

2561 

2561 FE19 
2563 OA6925 
2566 FEIA 
2568 CIl 

2569 23 
256A 46 
25613 BF 
256C C9 

256D 

R'£ 
PT 
TAREA 

MACRO ASSEMBLER "MAC" CHANGES TO DISABLE 8080 OPCODES. 

EQU 
EQU 
EQU 

ORG 

25 
26 
2561H 

2444H 
JMP TAREA 

ORG TAREA 

;8080 REGISTER NAME 
;PSEUDO OPCODE TYPE 
;FREE AREA IN TOKEN MODULE 

;OVERLAY INX H MOV 8,M RET 

TYPE IS IN THE ACCUMULATOR 
CPI RT ;BELON RT IF ARITH OP 
JC TYPEOK 
CPI PT ;PSEUDO OP? 
RNZ ;RETURN WITH NON-ZERO FLAG 
OTIlERvlISE, PSEUDO OP OR ARITH OP 

TYPEOK: INX H 
~IOV B,M 
CMP A ;SET ZERO FLAG 
RET 

END 

Figure 32. Macro Assembler Disable Opcode Patch. 
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After writing the monitor, and putting it onto floppy disks via the 
System 29 editor, it must be assembled using the modified macro 
assember (described earlier). The result olthe assembly is a hex 
file which is suitable for loading into the 16-bit computer's main 
memory. This hex file is now loaded into support processor mem­
ory beginning at location 8000 hex. As discussed previously, this 
is mapped at location zero in the 16-bit computer's main memory. 
Assuming the microcode is loaded and a terminal is connected to 
the 16-bit computer, the monitor in 16-bit main memory may now 
be executed. The complete System 29 session from editing and 
assembling the monitor to loading and executing it IS given in 
Appendix D. 

SUMMARY 

As can be seen throughout these application notes, designing a 
high performance Bipolar microprocessor system is a straight­
forward task. The Am2900 Family is ideally suited to provide 
building blocks for the various elements of the computer. These 
include the Computer Control Unit, the Central Processing Unit, 
the Program Control Unit, the Interrupt Structure and the various 
bus controls. Together, these elements allow the designer to 

build computers using the current state-of-the-art architecture 
with LSI building blocks. 

As technology improves, Advanced Micro Devices has been able 
to redesign these building blocks to offer increased performance. 
Thus, the Am2901 has evolved through an Am2901A, then an 
Am2901 B and now an Am2901 C is in the planning. In addition, the 
Am2903 offers additional architectural advantages and soon an 
Am29103 will provide additional speed and performance fea­
tures. Similarly, the microprogram sequencer area began with the 
Am2909 and Am2911 ; then was followed by the larger Am291 O. 
Soon, the Am2909A and Am2911 A will provide higher speed in 
the microprogram sequencer area and will be followed by an 
Am2910A. 

Thus, the future for Bipolar LSI building blocks includes not only 
more advanced product designs offering higher levels of integra­
tion and new functions for new architectures, but also offers 
higher performance versions of the already existing products. 
Advanced Micro Devices is committed to providing high perfor­
mance Bipolar LSI circuits utilizing proven technology designed 
to operate over the full military operating range as well as the 
commercial operating range. As always, these products continue 
to meet the performance requirements of MIL-STD-883. 



APPENDIX A 
Complete Description of Instructions 

LOAD 

RR, RS,SS 

OP R1 

RX, RSI 

OP R1 d I 
The second operand IS loaded Into the general register specified 
by R1 . 

STORE 
RR, RS,SS 

OP R1 

RX, RSI 

OP R1 d I 
The first operand specified by R1 is stored at the location 
specified by the second operand. 

ADD 
RR, RS, SS 

OP R1 

RX, RSI 

OP R1 d I 
The first operand IS added to the second operand and replaces 
the first operand. 

ADD WITH CARRY 

RR 

OP R1 I~ 
RX 

OP R1 X2 d I 
The first operand (16 bits) with carry IS added to the second 
operand and replaces the first operand. 

SUBTRACT 

RR, RS,SS 

OP R1 R2 

RX, RSI 

I OP R1 X2 d 

The second operand IS subtracted from the first operand and 
replaces the first operand. 

SUBTRACT WITH CARRY 
RR 

OP R1 R2 

RX 

I OP R1 R2 d 

The second operand (16 bits) with carry IS subtracted from the 
first operand and replaces the first operand. 

AND 

RR, RS,SS 

OP R1 R2 

RX, RSI 

I OP R1 X2 d 

The AND of the first operand and the second operand replaces 
the first operand. 

OR 

RR, RS, SS 

OP R1 R2 

RX, RSI 

I OP R1 X2 d 

The OR of the first operand and the second operand replaces the 
first operand. 
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XOR 

RR, RS,SS 

OP 

RX, RSI 

OP d I 
The logical difference of the first operand and the second operand 
replaces the first operand. 

TEST IMMEDIATE 

MULTIPLY UNSIGNED 

RR 

OP R1 R2 

RX 

I OP R1 X2 d 

The first operand (R1 + 1) is multiplied by the second operand 
and the 32-bit product is contained in R1 and (R1 + 1). R1 must be 
even. 

RX, RSI

1 
LOAD BYTE 

OP I R1 I X2 d _ .....--____ .....--_"'T""_R_R., 

The first operand and the second operand are logically ANDed. I OP 
The contents of R1 and X2 are unchanged. '-------'---"'------' 

COMPARE 
RR, RS,SS 

OP 

RX, RSI 

OP d 

The first operand IS algebraically compared with the second 
operand. The result IS Indicated by the condition code. 

COMPARE LOGICAL 

RR, RS,SS 

The first operand IS compared logically to the second operand. 
The result is Indicated by the condition code. 

MULTIPLY 

RR 

OP 

RX 

RX, RXI 

OP d 

The 8-bit byte stored In the low order byte of the second operand 
location is stored in the low order byte of R1. The high order byte 
of the R1 is set to zero. 

INSERT CHARACTER 

RR,RS 

OP 

RX, RSI 

OP d 

The byte at the second operand location is loaded into the low 
order byte of R1 without changing the contents of the high order 
byte of R1. 

STORE CHARACTER 
STORE BYTE 

OP 

RR, RS 

I R~RSI 

'-__ O_P __ -'-_R_1-L_X_2-L _____ d ____ ----' I OP R1 X2 d I 
The first operand (R1 + 1) is multiplied by the second operand '-------'---"'------'----------.... 
and the 32-blt product IS contained In R1 and R1 + 1 registers. R1 
must be an even address The sign of the proouct is determined 
by the rules of algebra. 

The least significant byte of the first operand is stored In the 
location specified by the second operand. The other byte of the 
second location IS unchanged. 



EXCHANGE BYTE 

RR, RS 

OP 

RX 

OP d I 
The bytes specified by the first and second operands are ex­
changed. When the operand specifies a register (i.e. R

" 
R2) only 

the low order byte IS exchanged. 

BYTE SWAP 

RR, RS 

OP 

RX 

OP d I 
The two bytes of the second operand are swapped and loaded 
mto the register specified by the first operand. 

COMPARE LOGICAL BYTE 

RR, RS 

OP 

OP 

RX, RSI 

d 

The low order byte of the first and second operands are com­
pared. The result IS Indicated In the condition code. 

AND BYTE 

RR, RS 

OP 

RX, RSI 

OR BYTE 

RR, RS 

OP R, R2 

RX, RSI 

I OP R, X2 d 

The OR of the low order bytes specified by the first and second 
operands replace the first operand low order byte. The high order 
byte of R, IS set to zero. 

XOR BYTE 

RR, RX 

OP R, R2 

RX, RSI 

I OP R, X2 d 

The XOR of the low order bytes specified by the first and second 
operands replace the first operand low order byte. The high order 
byte of R, IS set to zero. 

LOAD PROGRAM STATUS WORD 

RX 

d 

A 32-blt new PSW IS loaded from the memory location specified 
by the second operand as the current PSW. 

EXCHANGE PROGRAM STATUS 

RR 

PSW (0:15) .... (R, ) 
R2 .... PSW (0:15) 

STORE PROGRAM STATUS WORD 

L-__ O_P ____ L-R_'~ __ X_2~ ________ d ______ ~1 I OP I ~ I 
The AND of the low order bytes specified by the first second L-_______ "'-_--' __________ .... 

RX 

d 

operands replace the first operand low order byte. The high order 
byte of R, IS set to zeros 

The 32-blt PSW IS stored at the location specified by the second 
operand. 
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SUPERVISOR CALL P/PUSH 

RX RR 

L-__ O __ P __ ~I __ R_,_IL-X_2~ _________ d ________ ~1 ~1 ____ O_P __ ~ __ R_'~_R_2~1 
OLD PSW ...... f (X2) + d) 
f(X2) + d) + 4 ...... NEW PSW 

SET, CLR, COMPLEMENT, TEST BIT PSW 

OP N 

The condition flags in the current PSW are set, cleared, com­
plemented, or tested. N defines the bit(s) to be affected or tested. 

CALL 

RX 

OP d 

Jump to the memory location specified by the second operand 
and push PSW (16:31) onto stack. 

RETURN 

OP x 

POP STACK 
STACK ...... PSW (16:31) 

PUSH 

OP X 

PSW } ..... STACK 
Ro-R,5 

POP 

OP X 

STACK ..... {PSW 
Ro-R'5 

x 

X 

X 

R, THRU R2 ...... STACK 

P/POP 
RR 

OP 

STACK ...... R, THRU R2 

LOAD STACK POINTER 
LOAD STACK LIMIT LOWER 
LOAD STACK LIMIT UPPER 

OP 

STORE STACK POINTER 
STORE STACK LIMIT LOWER 
STORE STACK LIMIT UPPER 

OP 

RX 

d 

RX 

d 

The stack pOint, stack limit lower or upper is read from or written 
Into the address defined by the second operand. 

TRANSLATE 
RR 

OP R, I R2 I 
R, 

LENGTH 

ADDRESS 

ADDRESS 

The addresses specified by R, + 1 and R2 define two tables, R, 
+ 1 address is the top location of a table to be translated, R2 
address the first location of the translation table. The value (one 
by1e) pOinted to be the R, + 1 address IS Indexed by (added to) 
the address value of R2 to find the translation code. ThiS transla­
tion code replaces the value pOinted to by the R, + 1 address. 
After one by1e is translated, the length is decremented and the 
address of R, + 1 Incremented and the instruction repeated, until 
the length equals zero. ThiS Instruction IS Interruptable. If thiS 
instruction IS Interrupted, the PC IS left pOinting to thiS Instruction 
so that thiS Instruction can be resumed after the Interrupt service 
is complete. 



TRANSLATE AND TEST 
RR 

OP 

LENGTH 

ADDRESS 

ADDRESS 

This Instruction proceeds like translate except that the bytes of 
the first operand (defined by R1) are not changed In storage. 
When the bytes of the translate table (R2) the Instruction pro­
ceeds to the next byte of the first operand. If the byte of the 
translate table IS not zero, the Instruction is halted With the ad­
dress pointed to last In the translate table held In register 1. 

MOVE LONG 
RR 

OP 

LENGTH 

ADDRESS 

ADDRESS 

Moves bytes defined by R1 to R2. Both adresses incremented 
after each transfer. This Instruction is Interruptable. 

COMPARE LONG 
RR 

OP R1 I R2 I 
R1 

LENGTH 

ADDRESS 

ADDRESS 

Compares the first operand against the second operand. The 
length IS decremented and the address Incremented after each 
compare. When length = zero of the bytes compared are not 
equal, the instruction is haHed. 

EXECUTE 
RX 

OP d 

The upper 16 bits of the instruction at the second operand is 
'OR'ed with R1 and executed. 

DECIMAL ADD 

OP 

OP d 

Nibbles In operand 1 and operand 2 are added. The result IS 
placed in operand one. 

DECIMAL SUBTRACT 

d 

Nibbles in operand 2 are subtracted from nibbles in operand 1 
and the result is placed In operand 1. 

DECREMENT INDEXES 

OP 

R1 - 1 -+ R1 
R2 - 1 -+ R2 

RR 

One is subtracted from R1 and the result placed back into R1. One 
IS subtracted from R2 and the result placed back Into R2. R1 and 
R2 may specify the same register with wilieftectively subtract two 
from that register. 

SHIFT RIGHT ARITHMETIC 
SHIFT RIGHT DOUBLE ARITHMETIC 

RX, RSI 

OP d 

The contents of R1 for single shifts and R1, R1 + 1 for double 
shifts are shifted the number of places specified by the second 
operand. The sign bit is unchanged. Bits shifted in are set equal to 
the sign bit. Bits shifted out are shifted through the carry bit. 
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ROTATE RIGHT 
ROTATE RIGHT DOUBLE 

RX, RSI 

d 

The contents of R1 for single shifts and R1, R1 + 1 for double 
shifts are rotated right the number of places specified by the 
second operand. 

SHIFT LEFT ARITHMETIC 
SHIFT LEFT DOUBLE ARITHMETIC 

RX, RSI 

OP d 

The contents of R1 for single shifts and R1 + 1 for double shifts 
are shifted left the number of places specified by the second 
operand. The high order bit (sign bit) olthe register a register pair 
is unaffected by the shift. Low order bits are filled with zeros. If a 
bit unlike the sign bit is shifted out of the position adjacent to the 
sign bit, the overflow flag is set. 

ROTATE LEFT 

RX, RSI 

OP N d 

The contents of R1 for single shifts and R1, R1 + 1 for double 
shifts are rotated left, the number of places specified by the 
second operand. 

SHIFT RIGHT LOGICAL 
SHIFT RIGHT DOUBLE LOGICAL 

INPUT WORD 

RR 

OP R1 

RX 

OP d 

One 16-bit word of data is read Into the first operand from the 
device which is addressed by the contents of the second 
operand. 

INPUT BYTE 

RR 

OP 

RX 

OP d 

One byte of data IS read into the low order 8 bits of the first 
operand from the deVice which is addressed by the contents of 
the second operand. 

OUTPUT WORD 

RR 

OP 

RX, RSI RX 

~ ___ O_P __ ~I __ R_1-LI_R_2~1 _________ d ________ ~1 ~1 ____ O_P __ ~ __ R_1~_X_2~ _________ d ________ ~ 
The contents of R1 for single shifts and R1 + 1 for double shifts 
are shifted nght the number of places specified by the second 
operand. High order bits shifted in are zeros, low order bits shifted 
out are shifted through the carry bit. 

SHIFT LEFT LOGICAL 

The 16 bits of R1 IS sent to the device which IS addressed by the 
contents of the second operand. 

OUTPUT BYTE 

RR 

RX,RSI I 
~ ___ O_P ____ ~R_1~~R_2~ _________ d ________ ~1 ~.--------~--~~~ 

SHIFT LEFT DOUBLE LOGICAL 
OP 

The contents of R1 for single shifts and R1, R1 + 1 for double 
shifts are shifted left the number of positions specified by the 
second operand. High order bits shifted out are shifted through 
the carry bit. Zeros are shifted In. R1 for double shifts must be 
even. 

RX 

OP d 

The low order 8 bits of R1 IS sent to the deVice which is addressed 
by the contents of the second operand. 



BRANCH 

RS 

OP 

BRANCH AND LINK 

BALR 

OP R1 

RS 

~ ______ -r __ ~ __ ~~ ______________ R-,X FBA~L~ ____ -r __ ~ __ -, ________________ R-,X 

L-___ O_P ____ ~ __ ~_R_2~ _________ d ________ ~1 I OP 

Unconditionally branch to the location specified by the second 
operand. The first operand IS not used. 

BRANCH ON CONDITION 

RS 

OP CC 

RX 

OP CC d I 
Branch to the location specified by the second operand if the 
condition code specified in the first operand postion is equal to the 
current PSW status bits. 

Condition codes are: 

Carry =B (Slgn=O) 
No Carry =A Minus =F 
Zero =5 (Slgn=1) 
Not Zero =4 1's Comp> =9 
2'sComp> =0 1's Comp< =8 
2'sComp< =3 1's Comp> =C 
2's Comp> =2 1's Comp< =0 
2's Comp< = 1 Overflow =7 
Plus =E Not Overflow =6 

R1 d 

The address of the next sequential instruction IS saved in R1, and 
an unconditional branch to the jump address is taken. 

BRANCH ON INDEX 

BXH HIGH RX 

OP I R1 I X2 d 

BXLE LOW OR EQUAL RX 

I OP I R1 I X2 I d 

R1 is Incremented by the value In R1 + 1, and logically compared 
to the Index limit held In R1 +2. 

INDEX HIGH 

(R1) + (R1 + 1) ~ (R1) 
(R1) :(R1 + 2) 
IF (R1) > (R1 + 2) THEN d + (X2) ~ PSW (16:31) 

IF (R1) "" (R1 + 2) THEN PSW (16:31) + 2 ~ PSW (16:31) 

INDEX LOW OR EQUAL 

(R1) + (R1 + 1) ~ (R1) 
(R1): (R1 + 2) 
(R1) "" (R1 + 2) THEN d + (X2) .... PSW (16:31) 

IF (R1) > (R1 + 2) THEN PSW (16:31) + 2 -+ PSW (16:31) 
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· ; 

· ; 
R0 
R1 
12 
R3 
14 
15 
R6 
R7 
R8 
1I9 
R10 
Rll 
R12 
R13 
1!14 
R15 
XII 
Xl 
12 
13 
14 
15 
16 
17 
IS 
19 
n8 
Xll 
112 
113 
114 
115 

· ; 
cn 
NC? 
Z? 
NZ? 
GT? 
LT? 
GE? 
LE? 
P17 
MI? 
BI7 
LS? 
BS? 
La? 
OV? 
NY? 

· · LR 

, 
; 
; 
All 

, 
; 
; 
SR 

· , 
· NR 

; 

~ 
ORR 

; 
; 
; 
CLR 

APPENDIX B 

••••••••••••••••••• *.**** •• ** ••• 
MACRO DEFINITIONS rOR MICRO/29 

•••••••••••••••••••••••••••••••• 
DEFINITIONS lOR CPU RliiGISTERS 

SIT I 
SilT 1 
SliiT 2 
SIT 3 
SET" 
SliiT 5 
SET 6 
SliiT 7 
SIT 8 
SET 9 
SliiT 10 
SliiT 11 
SET 12 
SIT 13 
SliiT a 
SET 15 
SIT • 
SET 1 
SIT 2 
SET 3 
SET 4 
SIT 5 
SIT 6 
SET 7 
SET 8 
SET 9 
SET 18 
SET 11 
SIT 12 
SET 13 
SIT 14. 
SIT 15 

PRESET CONDITION CaDIS 

CAUT 
NO COlT 
ZERO 
NOT ZIIO 
2'S COMP GaIATlI TUN 
2'S CaMP. LISS THAN 

SET IBB 
SIT 8AB 
SIT 151 
SET 84ft 
SET 8IB 
SIT e31 
SET 121 
SIT .11 
SITUI 
Sit en 
SIT 891 
SET 88B 
SET eCI 
SIT 0DI 
SET 87B 
SET e6B 

2 's CaMP. GlI1TIR THAN all EQUAL TO 
2'S CaMP. LESS THAN all EQUAL TO 
PLUS, SIGN. 8 
MINUS, SIGN· 1 
l'S CaMP. BIGIIlI 
1 's CaMP. LOVER all 51ME 
l'S CaMP. lIGHTER OR SAME 
l'S CaMP. LOVER 
OVERFLOW 
NOT OURlLOV 

==========-=== .. == •• ===_ ••••• = .. =. 
RR TTPI INSTIIUCTIONS 

.. c.,.= .... =========.:= .... == ••••••• = ... 

La LOAD REGISTEI 18 

MACIIO R1,12 
DB 18B,R1*181+12 
ENDM 

AI! ADD IIEGI STEll 11 

MACRO R1,R2 
DB lAI,R1*11B+R2 
ENDH 

SR SUBTRACT REGISTER 1B 

"ACRO Rl,R2 
DB 111,11*101+12 
ENDM 

NR AND REGISTERS 14 

MACIIO R1,R2 
DB HoB,1I1*18B+1I2 
ENDM 

ORR OR REGISTERS 16 

"ACRO I1,R2 
DB 16B,R1*10B+R2 
ENDM 

eLR COMPARE LOGICAL RIGISTEIIS 15 

MACRO 11,12 

· ; 
IR 

; 
; 
ST 

; 
; 
ADD 

, 
~UB 

; 

I> 

; , 
LI 

· , 
NI 

· · 01 

· · II 

; , 
; 
11 

DB 15I,U*18I+i2 
ENDM 

EICLUSlYlii OR RIGISTERS 

MACIO Rl,R2 
DB 17B,Rl*1'B+R2 
INDM 

II T!PI INSTRUCTIONS 

17 

LD LOAD MliiMORT 58 
MACRO I!1,X2,DI 
DB 58I,R1*18B+I2,(D!) SBR 8,(DI) AND Illi 
INDM 

ST STORE IN MEMOIlT 58 

MACIIO Rl, 12, DI 
DB 5eB,U*leB+I2,(DI) Sill 8,(D!) AND errl 
ENDM 

ADD ADD FlIOM MEMOIlY 5A 

MACRO R1,I2,DI 
DB 518,U*18&+12, (D!) SIR 8, (D!) AND erlB 
ENDM 

SUB SUBTRACT nOM MEMORY 5B 

MACIIO Rl,I2,DI 
DB 5BI,I!1*11B+I2,(D!) SBR 8,(DI) AND errl 
ENDM 

AND VITI MEMORT 

MACRO R1,I2,DI 
DB 54I,R1*1011+12,(»I) SIR 8,(DI) AND 0F1B 
liiNDM 

all WITI MEMOIT 56 

MACRO R1,I2,DI 
DB 56B,U*18H+12,(DI) SRR 8,(DI) AND ern 
INDM 

CMP COMPARE VITI MEMORT 55 

MACRO Rl.I2, DI 
DB 55I,R1.18H+12, (D!) SO 8,(DI) AND errl 
ENDM 

IMMEDIATE INSTRUCTIONS 

LI LOAD IMMEDIATE 

MACRO R1,I2 
DB 41B,R1*18I,(2) SRi 8,(12) 1ND IPPJI 
ENDM 

NI AND IMMEDIATE 

MACRO R1,I2 
DB 94B,11*1011,(2) SRi 8,(2) AND errl 
ENDM 

01 OR IMMEDIATE 

MACRO U,I2 
DB 961,11*181, (12) SHR 8,(2) AND errl 
ENDM 

XI UCLUSIVE OR IMMEDIATlii 

MACIO 11,12 
DB 97I,R1*18B,(12) Sill 8,(12) AND errl 
ENDH 

11 ADD IMMEDIATI 

MACRO 11,12 
DB 918,U*18I,(l2) Sill 8.(2) lNDlln 
INDM 

SI SUBTRACT IMMIDIlTlii 

MACIIO 11,12 
DB 9BB,11*10&,(12) SII 8,(2) AND eln 
ENDM 

9~ 

96 

97 

9A 

9B 



, , , 
Bl 

; , 
BC 

, 
; , 
BAL 

CI COHPAU IHHEDI1TB 

MACRO Rl.I2 
DB 95H.Rl*11B.(I2) SHR 8.(2) AND enH 
ENDH 

95 

BRANCH AND CONITIONAL BRANCH INSTRUCTIONS 

IX UNCONDITIONAL BRANCH 

MACRO 11 ,DI 
DB 7U.I1*18B.(D!) SBR 8,(D!) AND I1n 
ENDH 

BC CONDTION.lL BRANCH 

HACRO CC ,12 .DI 

74 

47 

DB 47B.CC*leH+12,(DI) SHR 8,(DI) AND ens 
ENDM 

BAL BRANCII AND LlNI 45 

HACRO Rl,I2,DI 
DB 45H.Rl*1811+12. (D!) SIIR 8,(DI) AND ern 
ENDM 

BALR BRANCH AND LINI REGISTER 

HACRO Rl.R2 
DB 05H ,Rl.10H +R2 
ENDH 

BR BRANCH RIG I STIR UNCONDITONAL 

.5 

h HACRO Rl 
DB 14H,Rl*1IH 
ENDH 

SHIlT AND ROU!! INSfIlUCTIONS 

sa SHIlT LIFT ARITHMETIC 

SLA MACRO Rl. CT 
DB 8BH.Rl.1IH+(CT-l) 
ENDM 

8B 

5L1 

; 
RRL 

iN 

OUT 

SRL SHIlT RIGHT LOGICAL 

MACRO Rl.CT 
DB 88H.R l*18H + (CT-1) 
ENDM 

SLL SHIlT LIlT LOG ICAL 

MACRO Rl, CT 
DB 89H,Rl*1IH+(CT-l) 
ENDM 

SRA SHIlT RIGHT ARITHMETIC 

MACRO i1 ,CT 
DB 8AR,Rl*1IH+(CT-1) 
ENDM 

RRL ROTATE RIGHT 

MACRO Rl,CT 
DB eA8H,Rl*1111+(CT-l) 
END" 

RLL ROTATE LEFT 

MACRO Rl,CT 
DB IUH.Rl*llB+(CT-l) 
ENDM 

I/O INSTRUCTIONS 

IN INPUT 

MACRO 11,I2,DI 
DB 01IB,Rl*leB+I2, (DI) SHR 8. (D!) 
END" 

OUT OUTPUT 

MACRO Rl ,12 .DI 
DB 012H,Rl.1IH+I2, (DIl SHR 8. (DIl 
ENDM 
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FlY! ~ 
FJ'.I!B = 
0A0D .. 

010" 

0'''''''171111 

01111f2+45EIII(lUl28 

0'06+45U0816 

e8Iifj+4SJ;B18(1 

001iJl+45E"'0BC 

1111112+7401"06 

0016+50Jle3EA 

""u,+4120e03E 

"'1!"'45!,,13»8 

0'22+581".31.& 

"'2s+eu. 

""28+5'1I83IC 

812C+412"""D 

eI31!1+45J".3DS 

'"34+8827 

0e36+4!1U.3D6 

1131+581,,3IC 

"e3!+liIne 

011140+501013EE 

1844+41;S"84fiIE 

"""8+414011'e8 

014C+,,51111398 

""50+8917 

""52+1851 

""S4+16J'l 

1856+4-75111182 

01115.6. ... 4511.398 

005E+9411"Fl 

"'62+1651 

0864+16rr 

•• 66.4.73111.882 

1161+51531"'" 

.'61+&13111".2 

.1'12+91"'''''2 

.076+4.75.1871: 

817 1+7"'''''4C 

.e7l+415""D0' 

0082+5853 •• ,. 

""86+581"311 

."el+IU' 

".eC+SIIIII3r1 

0198+414.18611 

"894+5854111" 

8,98+555""""8 

.,9C+4.75.IIIIC2 

81'8+55518U& 

eeu·,,756lBl 

81"'8+55588'IC 

81111C+47511"212 

8116+4511."28 

11III"+412eee3F 

0118+4:51113D8 

IIBC+58J:ltil3" 

APPENDIXC 

~*M&CRO 

~ SIr-PlE ,..ON!TOR rOi TBE 1MD U:lS-SPEED lB-BIT COMPUTER 

BT: JIM BRICK 

HlCLIB HICI029 

DATAl IQU 
STUUS: EQU 
~RLJ': EQU 

ORG 

BEGIN: IR 

BlL 

MONLP: BAt 

BlL 

BlL 

BI 

~ROMPT: ST 

L[ 

, 

IAL 

LD .. 
DOCRLJ': ST 

L! 

BlL 

SIL 

Bll 

LD 

BR 

GETIP: S'l' 

L[ 

L[ 

IPLP: BlL 

SLL 

LR 

ORR 

BC 

BlL 

N! 

ORR 

ORR 

BC 

ST 

" 
51 

BC 

Bl 

DOIO'2: LI 

D0101: S! 

, 
LD 

Il 

SClND: S! 

L! 

LD 

CMP 

BC 

CMP 

Be 

CMP 

DC 

IAL 

L[ 

BAL 

LD 

BR 

erJ'P1! 
IrlDB 
eAlDB 

;USAR! D1T&. POR! 1DDRESS 
;US&.IT CONTROL PORT 1DDBESS 
;LINI-1IID, CARRIlGE RETUBN 

RI,U JCLJ&.I R0 

BU,Re,DOClLl iNIW LINE ON CONSOLE 

BU"RI,PROHPT HIP PROHPT 

Ba,Re,GlTIP IGJ1' USERS lip 

Rlt,U,SClNER ;DICODI & EIICUn COMMAND 

Re,MQNLP i RlPE1T LOOP PORlnI!. 

11.1" ,Re ,@PROMPT i SUE I!.1'1' 

; PROHPT CBlR1CTlR ')' 

Ra,III,CITOUT jnOHPT TO CiT 

BU·,RI,@PROHPT i BIStORE RI! 

11< 

Ilt ,It ,lOOCILl ; SUE REf 

i CllLl CODES 

Rtt,RII,cuour ;O/P Ll 

R2,8 iGn CR CODE 

Ilt,I0,CRTOU! ;O/P CR 

1I.1t ,10 ,IDOCRLl iRlSTOII RET 

11< 

R14,R0,6IG!!IP iSAVE RET 

R3, BUFFER i A (liP BUllIR) 

H,tilIJ8IJH HUI 1/P COUNT 

114- ,RIJ ,GETCRR iGIr 1lEl'l' IIp CBARlC!1! 

11,8 ;POSItION IIp ca .... TO HI BtU 

R5,ll ;SAn 81 BTU 

115,115 iflST 11'1' CODE 

Z7,R0,DOlor itO JOl IF ac • ZIRO 

itt,RI,GI'1'C81 iHEX'!' CDRlC'l'ER 

U,I.,l! is''1 ONLY lIP CHA1l1C'J'1R IN LO 

R5,I1 ;COHBINI 'l'WO nus FOR ONI WORD 

115,R15 iTEST RI! CODE 

Z7,RI,DOIOP iTO lor If RC • ZERO 

15,13,1 iDiTA '1'0 I1P BunlR 

B:5 ,8112 ;to NUT BurER SLOT 

B4, ,111112 ; COUNT-2 

Z7,llI,DOIOr2 iSTOP If "'I liP 

BI,IPLP iCONTINUI GET'I'I"G IIp 

15,0DII! ;Ior UtlB M&I LIN! 

R5,1:5,1 ;DAU/lOr '1'0 BurllR 

B14,BI,DQEtIP ;!ESTOII IE! 

.t< 

R1t ,RI,fJlSClNIR i SUI BIT 

Rt,BUPlJl ;1(I/P BUllEl) 

115,14-,1 ;GET COrtl .... D (lIIID rOIHAT) 

R5,BI,DHPCI1D ; D rOR DUHP7 

Z7 ,II ,DUMP ;00 II TRUE 

R5,BI,S'l'RCHD ; S lOR STOn? 

Z7,Be,stoll ;00 STOll IF 'l'BUI 

15,BI,Jf1PCI1D ; J rOR JUMP7 

Z7 ,BI,JUMP iGO JUHP IJ' TIUE 

114,HI,DOCILF iNEW LlNI ON cn 
R2, '7' I 7 

114.R',CIT0U'l' ;UNINOWN COHI11ND 

R1t.R',6ISClKER 

R1. 

;RES'J'OBJ RJ'l' 

0.C2+411111410 

IIIC6+45111304 

00C1+9t60Jl10 

IIICE+41CI'"11 

10D2+5168'404 

8ID6+45111110 

"ID1+412811020 

00D1+t5E8':5DB 

08E2+t5N13D8 

e0l6+45111125 

001:&+41208828 

011li+451883DS 

00r2+4511015C 

eIP6+45i01028 

00U+5S608404 

,,111+9A6.0111 

0112+9BCI"lll 

e1lll6+47t010D2 

010.&+5SE01i13F0 

1101:+0418 

0118+;;8I003f2 

0114+1867 

"116+45110:551 

0111+8867 

011C+45110351 

11211+58118312 

iJ124+0t18 

0126+51118314 

012A+58718",,, 

8121+41D81118 

1132+58670180 

0136+.1867 

8138+t518'35E 

013C+8867 

8131+t51"351 

11t2+4120812' 

114e+451813D8 

01tA+9171111102 

1141+9ID80081 

"152+47188132 

.156+S8ElltilU" 

015A+8I10 

015C+50U0316 

0168+56710114 

1164+41DI,,86 

0168+58671080 

016C+A867 

016E+1826 

0178+t51"'196 

817t+4:51013D8 

1176+8867 

017A+1826 

017C+45E81196 

0180+451103D8 

0184:+9A7881102 

0188+91D01011 

018C+"7UI166 

0190+58i013lE 

1194-+11411 

1196+94-2""0n 

, 
DUMP: LI 

BAL 

N! 

LI 

DI'IPLP: ST 

, 

BAL 

L[ 

Bll 

BlL 

BlL 

L[ 

BlL 

BAL 

BAL 

LD 

A! 

S! 

Be 

LD 

BR 

'J'YPlD: ST 

RRL 

BAL 

SRL 

IAL 

it,BUrOPl I&(ADDRESS PORTION OF BUlllR) 

Rl4,RI,CYlDDR iASCII ADDRESS TO BINARY IN R6 

le,llnn ;BEGIN ON EVIN WORD 10UNDRY 

1I.12,lfi 

R6,R0,D:1P&.D 

lI.1t .RI, TYPAD 

RZ," iSP1CE 

114,BIJ,CRTOUT 

; otp LI NI COUNT 

i SiTE CURRENt Olp ADDRESS 

;'rtPE CURIENT CONTEN'I'S or R6 

iTO CRT 

JlU,II.I,CR'1'OU'1' ;2 SPACES 

lI.1t,RII,DHPOU'1' iPUT OUT Ohl LINE or DUMP Dlr&. 

Jl2," iSPACE 

R14,II,CHTODT iTO CRT 

ilt,RII,TIPLIT ;O/P LITERAL D.1TA 

11.14 ,JlI,DOCRLF ;NEV LINE ON CRT 

16,R',DMPAD i CURRENT DI1I",POUT ADDliESS 

R6,16 aDDRESS NUT Ll1'o1 

lI.12,l ;LINI COUNT -1 

NZ? ,RI,DI'IPLP iLOOP THiU olP DiU 

R14,RI,@SCANJR iRl:STORI liT 

R1< 

Rl4 ,II ,@TlPAD ; SUI BE'J' 

R6,8 ;Bl ADDRISS BYTE 

B14,II.I,BINOU'1' iolp 

itO ADDRISS BY!! 

114,111 ,BINOU'I' ;o/p 

LO Rtt.II.IlI,@'l'JPlD ;1I.S'l0.iE RET 

IR 

DI1POUTI Sf 

LD 

L[ 

DMPLPP: LD 

.RL 

BAL 

SRL 

IAL 

, 

L[ 

ilL 

AI 

S! 

Be 

LD 

BR 

TTPLI'1': ST 

LD 

L[ 

'I'1'PLLP: LD 

HRL 

LR 

BlL 

BlL 

SRL 

LI 

BAL 

BAL 

U 

S! 

BC 

LD 

BI 

DOC IT: NI 

C! 

R1. 

Rl4,R0,6IOMPOUT is.lY1 RET 

R7,RI,DMP.lD rGET OIP DAU ADDRESS 

Rl3,8 iOIP WORD COUNT 

11.6,1'1,0 ;GlT NEI'!' WORD 

R6,8 iiI BTTI lIlS'!' 

Rl" .R8 ,BINOUT iolp 

REI,S itO ITTE 

R14"lI.lI,BINOUT iO/P 

12," ;SPlCI 

Rl'!1.,II.CII.'I'OUT no Cif 

R7,1!II1/f2 ;BUMP lIP DiU 1DDKlSS 

lI.1~,l/fll iVOID COlfN! -1 

NZ7,R',D"PLPP ;LOOP TBIU LINE 

11'!1.,I'.fJlDMPOU'1' ntlSTon BIT 

Il< 

R14,.iI,@TYPLI'l' i SAVE lEt 

R7,RI,DHPAD ;GET DIp DATA lDOiESS 

11.13,8 iWORD COUNT 

R6 ,R'1 ,I ;HlIT Olp WORD 

R6,8 iHI UTI FIRST 

H2,R6 itO olp RIG 

RH,R8,DOCl'l ;CHlC' roll. PRINTABLE CBlRACTlR 

R14,RI,CRTOUT ;'1'0 CRT 

R6,8 ;GET LO BITE 

R2,R6 iTO Olp REG 

R14,RI,Doca ;CBEC&: lOR PRINTABLE CRAIUCfIR 

Rl" ,RI,cnOUT i TO CRT 

R7,0i02 iTO HIl'l' "'ORD 

Rl~,l iWORD COUNT -1 

NZ?,R0,TTPLLP iLOOP TiRU OIP LINE 

lI.14-,R0,@TJPLl'1' illstOn RET 

R1' 

R2.lIIli1rlB 

12,' , 

iGET LOW BTTE 

iBELOW BLANK? 



019A+95200020 

019[+4730IHAA 

01A2+9520007F 

01A6+473E0000 

01AA+4120002E 

01AE+04E!IJ 

01B0+41400410 

01B4+4~E00304 

01B6+58400406 

01BC+17DD 

01:BE+45E001E6 

01C2+58E003F0 

01C6+955000eD 

01CA+475E000i11 

01CE+45E00IFA 

01D2+58E003Fel 

01D6+9550000D 

01DA+475E0000 

01D£+9A400002 

"lE2+740001EE 

01E6+50E0031A 

01EA+58540000 

"lEE+8857 

0110+45E00210 

0IF4+58E003FA 

01F8+04E0 

0IFA+50E003FA 

01FE+58540001!l 

0202+945000FF 

0206+45E0"21" 

021!lA+56E003FA 

"20E+04E0 

0210+50E003FC 

0214+45Eil023C 

0218+58E003FC 

021C+4751000" 

0220+45E0025! 

0224+47300232 

0228+45E00290 

022C+58E0031C 

0230+041:O 

0232+4150000D 

0236+58E003FC 

023A+04E0 

023C""95500020 

0240+475E0000 

0244+9550002E 

0248+475E0000 

024C+955121002C 

0250+475E0000 

0254+9550000D 

0258+04E0 

025A+945000FF 

025E+95500030 

0262+473E"000 

0266+9550003A 

026,1,+47300268 

"26E+95500041 

0272+473E001210 

0276+95500047 

027 A+47300284 

027E+955'11FiFF 

0282+04E0 

" 
C[ 

" 
SETPER: LI .. 
~TORE: LI 

S'l'LP: 

BAL 

lD 

LR 

'BAL 

lD 

CJ 

RC 

BtL 

lD 

CJ 

Be 

AI 

BX 

UPS TOR: ST 

lD 

SRl 

BAt 

lD 

BR 

LOSTOR: ST 

lD 

NI 

BtL 

lD 

BR 

STDATA: ST 

BAt 

lD 

Be 

BAl 

Be 

BAl 

lD 

BR 

SUND: LI 

lD .. 
CKDEL: CI 

Be 

CI 

Be 

CI 

Be 

CI .. 
ASCHEX: NI 

CI 

Be 

CI 

Be 

CI 

Be 

CI 

Be 

CJ 

BR 

VALPH: SI 

L"?,R0,SETPER iSET PERIOD IF TRUE 

RZ,0e7FH 

LT? ,H14,e 

H2,'. ' 

"4 
H4, BUFOPI 

;BELOW DEL? 

JRET IF TRUE (CHAR PRINTAELE) 

j SET PERIOD AS CHARACTER TO PRI 

jA(ADDRESS FIElD) 

R14,U,CVADDR aSCII ADDRESS TO BINARY (IN R6 

R4,H'll ,DATAD ;GET CURRENT IIp DATA ADDRE5S 

R13,R13 ,CLEAR NIBBLE COUNT REG 

R14,R'll,UPSTOR ,UPPER BYTE FIRST 

RI4,R0,@SCANER iGET RET 

R5,0ihmH ,END? (CR = END) 

Z? ,R14,0 iRET IF TRUE 

R14 ,R'll ,LOSTOR iLOWER BTTE 

R14,R0,@SCANER jGET RET 

R5,0'll0DH ,END? 

Z?,R14,'ll iRET IF TRUE 

R4,'ll0'll2 iTO tiEIT WORD 

R0,STLP ,CONTINUE STORING DATA 

R14,Re,@UPSTOR iSAVE RET 

R5,R4,'ll iGET NEIT DATA 

R5,e ,GET HI UTE 

R14 ,Re ,STDAT! j;;O STOHE BYTE 

R14 ,Re ,@UPSTOR ; RESTORE RET 

R14 

R14,R0,@UPS1'OR iSAVE RET 

R5,R4,e 

R5,e0FFH 

JGE'l DATA 

; KEEP LOW BYTE 

Ra,R0,HDATA JGO STORE BYTE 

R14 ,R0 ,@UPSTOR i RESTORE RET 

R14 

R14,R'll,@STDATA JSAVE RET 

RH,R0,CKDU ,CHECK FOR DELIMITEP 

R14,RI1I,@STDATA ,GET RET 

Z?,R14,e JRET IF RC '" 0 

R14,Ra,ASCHEX ;ASCII BYTE TO HEX NIBBLE 

U?,R0,SE'1'ND j.NZ. HC = END 

R14,Re,NIBBLE ,STORE THIS NaBLE 

R14,Re,@STDATA JRESTORE RET 

R14 

R5,000DH ;FAKE EOF 

R14 ,R0 ,@STDATA ,HESTORE RiT 

RJ4 

R5, • 

Z?,IU4,0 

R5,'. ' 

Z?,R14,0 

R5,', , 

Z?,R14.0 

R5, 'll00DH 

R14 

RS ,e0Fi'H 

RS, '0" 

LT?,R14,0 

R5,': ' 

LT?,R0,VNUH 

RS,'A' 

LT?,R14,0 

R5.e047R 

iSPACE? 

iRET IF TRUE 

iPERIOD? 

iRET IF TRUE 

; COMMA? 

iRET IF TRUE 

; CARRIAGE RET? 

JLET CALLER DECIDE 

JLOW EYTE O~LY 

;LOWER THAN '0' ? 

JRET IF TRUE 

;e-9 ? 

;NUHERICAL IF TRUE 

i LOWER THAN • A' ? 

iRET IF TRUE 

j HEX ALPHA? 

LT?,R0,VALPH iHEX ALPHA IF TRUE 

R5,0FFFFH 

R14 

R5,00e7H 

,SET .LT. CC 

iASCI I ADJUST 

2284+9B5000e7 

'll288+9450'll0'llF 

028C+1555 

028E+04E0 

029Q;""o8760e0e 

0294+16DD 

'll296+474002AC 

029A+9AD'll0001 

029E+895B 

02Ae+947'llOFF 

02A4+1675 

02A6+50760eee 

02AA+e4E0 

02ACt95D00e01 

e2B0t474e02C6 

02B4+9AD0e0'lll 

'll2B8+8957 

02BA+9470F0n 

'll2l!E+1675 

'll2ce+50760e00 

02C4+04E0 

02CA+474e02F0 

02CE+9AD0e001 

02D2+8953 

02D4+9470J'Fel' 

02D8+1675 

e2DA+507600£1£1 

02DE+e4E!1l 

02E0+17DD 

02E2+947"'F1F0 

'll2E6H675 

02£8+50760e0e 

021C+9A6e0002 

021'0+04E0 

1112F2+414011141e 

e216+45te0304 

021'A+18FS 

02FC+45EF0ee0 

0300+740000'00' 

e304+5eEe1lJ402 

03e8+1766 

e31U+58540000 

e3eE+8857 

031e+45E0'll25A 

0314+4740'0350 

0318+1665 

031 A+5854e000 

031E+45E0"'25A 

0322+47400350 

0'326+8963 

'll328+1665 

032A+9A401lJ002 

"32E+5854eee'll 

0332+8857 

0334+45E0e25A 

0338+47400354 

033C+8963 

033E+1665 

0340+58540000 

0344+45E0025A 

0'346+47400350 

034C+8963 

VNUM: NI 

C1R 

BR 

~IBBLE: LD 

ORR 

Be 

AI 

S11 

HI 

ORR 

ST 

BR 

NXNIB1: CI 

Be 

AI 

S11 

HI 

ORR 

ST 

BR 

~XNIB2: CI 

, 

Be 

AI 

Sll 

NI 

ORR 

ST 

BR 

NXNIB3: IR 

HI 

ORR 

ST 

AI 

BR 

BAt 

lR 

BAt 

BI 

CVADDR: ST 

Xi 

lD 

SRL 

BAt 

Be 

ORR 

lD 

BAL 

Be 

S11 

ORR 

AI 

lD 

SRl 

BAl 

S11 

DRR 

lD 

BAl 

Be 

S11 

ORR 

R5,0e0FH 

R5,R5 

RJ4 

R7 ,R6 ,0 

R13,R13 

,LOW NIBBLE ONLY 

JRC = ZERO 

JGET OLD DATA 

iR13 = ZERO? 

NZ?,R'll,I'IXNIBl JTEST FOR ONE IF NOT TRUE 

R13,e001 

R5,12 

R7,0FFFH 

R7,R5 

R7,R6,0 

RJ4 

R13,00'lll 

;BUMP NIBBLE COUNTER 

;POSITION THIS NIBBLE 

; PREPARE OLD DATA lOR NEW r.IBEL 

; I NSERT NE~ NIBBLE 

iDATA BACK TO MEMORY 

iNEXT NIBBLE? 

NZ?,R'll,NX~IB2 ;TO NEIT IF NOT THIS 

R13,aa01 j BUMP NIBBLE COUNTER 

R5,8 JPOSITION THIS NIBBLE 

R7,0F0FFH ;PREPARE OLD DATA FOR NEW NlB.BL 

R7,R5 ;INSERT NEW NIBBLE 

R7,R6,0 iDATA BACK TO MEMORY 

14 

R13.e002 iNEXT NIBBLE? 

NZ'I,R0,NINIB3 iTO NEXT IF NOT THIS 

R13,e001 ;BUMP NIBBLE COUNT 

R5,4 

R7,0FF0FH 

R7,R5 

R7,R6,0 

R14 

R13,R13 

R7, eF1'FI2IH 

R? ,R5 

R7,RS,e 

R6,0002 

RI4 

;POSITION THIS NlnLE 

;PREPARE OLD DATA FOR NEW NIBBL 

;INSERT NEW NIBBLE 

;DAT! BACK TO MEMORY 

;1&ST NIBBLE (LSN) 

;PREPARE OLD DATA FOR NEW NIIIBL 

;INSERT NEW NUBLE 

iDATA BACK TO MEHORY 

iBUMP MEM POINTER 

R4,BUFOPI ; A (ADDRESS) 

R14,R0,CVADDR iASCII ADDRESS TO BINARY ADDRES 

;ADDRESS TO R15 

R14,R15,il , JUMP ••• 

R0,BEGIN ; BACK TO MON IT OR IF CALLEE RETU 

R14,R0.@CVADDR JSAVE RET 

R6,R6 

R5,R4,e 

,CLEAR R6 

;GET TWO ADDRESS BYTES 

R5,8 tUPPER BYTE FIRST 

R14,Re,ASCHEX ;ASCII BYTE TO HEX NIBBLE 

NZ? ,Re ,CVHOUT ; STOP IF NOT HEX DATA 

R6,R5 

R5,R4,0 

iFIRST ADDRESS NIBBLE TO R6 

iGET ADDRESS BYTES AGAIN 

R14,Re,ASCHEX JASCII BYTE TO HEX NIBBLE 

NZ? ,R0.CVHOUT ,STOP IF NOT HEX DATA 

R6,4 ,POSITION ADDRESS FOR NEXT NIBB 

R6,R5 ;INSERT NEIT ADDRESS NIBBLE 

R4,0002 iBUMP MEMORY PTR TO NEXT WORD 

R5,R4,0 iNEIT ASCII ADDRESS DATA 

R5,8 ,HIGH BYTE FIRST 

R14,Re,ASCHEX - iASCII BYTE 10 HEX NIBBLE 

NZ?,R0,CVHOTl ;STOP IF NOT HEX DATA 

RS,4 

R6,R5 

R5,R4,0 

iPOSITION ADDRESS FOR NEXT NIBIl 

ilNSERT ",EXT tiIBBLE 

JGET ADDRESS DATA AGAIN 

R14,R0,ASCHEX ;ASCII BYTE TO HEX NUBLE 

Nl?R0,CVHOUT ;STOP IF f.lOT SEX DATA 

R6,4 

R6,R5 

JPOSITION ADDRESS FOR NEXT NIBB 

;INSERT NEXT HUELE 

359 
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1i134E+1665 03CIll+41le,U'1U. 
CVBOU'l': AI U.0""2 t TO NEXT MEMORY WORD CI K1,HeDB jDlT! = eft '1 

e350+9A4"""02 IJ3C4+95U!l0""D 
CVHOTlI 5'1' i4.RfiI,DATAD iSiV! AS DA'l'A ADDRESS BC N11,114,0 an Ir NO 

0354+5e40&416 1Il3C6+47U0ele 
; DO L1 IF fREYOI US "'S eR LD R14.Re ,@CVADDR IUSTOR! Ri'l' BlL Uoi.R0,CR'l'OUT 

121358+58J:BiJ41i12 03CC+45ue3D8 
BR R14 IR HlS,JU5 151:T JiC = ZERO FOR eft 

IZ'35C+04i8 IJ3DIJ+17J'F ; LD H14,HIJ,@\loETCIiR ;RESTORE RITURN 
BINOU'!': 5T 1I1ol,Rf,@BINOUT :SAVI Ri'r 03D2+~aJ""4e0 03:JE+50EIII03l1 

;O/P BYTE TO H2 BR R14 LR Hl.B6 1/13D6+0UI 
8362+1826 

~R'l'OU'f: IN SRl H2,4 ;UPPlIl !dULE FIRST Rl.R0,STUU5 JGET STATUS BYTE 
0364+8823 03D6+.llllllllFn 

HI R2.eeBlH IUIP OhLT GOOD DATA 

" Rl.iN01 ;IHIT'l'J:R EMPTY? 
0366+9420""'U' 03DC+9418ellll 

BAL R14,R0,HEIEX iBINARY NIBBLE TO ASCII BYTE BC h,lIe,CRtOUT iW!IT FOR XMITTER TO EMP'l'Y 
036A+(51"0386 

:NUIILI (BYTE) OUT TO CRT 
03E0+475003D8 

.. L R14.R0.CRTOUT our R.2.R0,DAT! ;O/P DnA TO CRT 
0361+451111113D8 0314+A.2.20111A 

LR R.2,R6 io/P DATA TO R.2 .. .,. 
037.2+1826 83E8+IHEiI 

NI R2,00BFH inEP O"LY LOV NIBBLE ; 
0374+9428008J' 

;BINARY NIBBLI: TO ASCII iTTE ! .. L R14,R0.HEIJI 
@PROMPT DS 0378+45Ei1038f 83U. 

.. L R14,RIII.CRTOUT aND OUT '1'0 CRT 031:C @DOCRLF DS 
037C+45E0e3D8 03EE @GITIP DS 

LD Ra,R0,@lIINOUT : RES'l'ORE RlT 031111 @SCANER DS 
0380+58E003J'E O312 @'1'lPAD DS 

ER R14 03J'.i @DMPOUT DS 
0384+0·U0 0316 @'1'TPLIT DS 

HEIEl: 
O318 @S'I'ORE DS 

CI R2,I0UR i.1-F ? 03J'! @UP5TOIl DS 
0386+952""00.l 031C @STD.1TA D5 

BC MI?H0,CON ;III! 11 NOT TRUE O311 @lIIhOUT DS 
038A+4'1F"039.2 

; 1DJUST FOR 1-1' 
... , @GE'lCHR D5 

AI R2,0807H 0482 @CVADDR OS 
"381:+9120""87 ; 

CON: AI R2.0030H iH.11tE ASCII f'4IiI4 DMPAD: DS 
039.2+9121"8311 111486 DATU: 'S 

BR ". 
DHPCMD: DB "396+O41:0 0408 4420 'D ' 

; "401 :;320 STHCHD: DB 's' 
!lITCHH: ST H14,Ril,@GETCBR iSAYE RET 

111398+5111J:80400 
84fe 4!28 JMPCHD: DII 'J' 

RDCHR: IN Rl ,R0 ,STATUS ;STHIP PARITY 
039C+.1iU0Flll "040E BUllER: DS 2 

NI Rl,0002 ;l/p READY? 0410 BUFOPl: DS 12. 
03AII+941002102 ; 

BC Z?,R0,RDCHR aoop UNTIL CHARACTER READY 
03A4+4750039C 

IN Rl,RIil,DlTA iRUD DATA 0.9" END 
03.16+.1'l.0F111 

NI Rl,f"?lR j nEP ONLY DATA BY'lJ 125A ASCHEI 
"""" BEGIN 

0351 BINOUT 040E BUFFER 0410 BurOPl 
03AC+S.10,,07F ~23C CIDIL "392 CON 0A0D CRLF 111300 CR'l'OU'l' "3.4: CUDOR 

LR R2,Rl ,DATA TO R2 "~54: CVBO'l'1 0350 CVROU'l' Flil DATA "4:1J6 Dun 04" DtlP1D 
03B0+1821 8408 DHPCMD 0"D2 Df1PLP 8132 DMPLPP 0126 DMPOU'l' 0196 DOCIT 

BAL R14,R2I,CHTOUT ilcao liP ""28 DOCRL1 1082 DOIOl 1071 DOE012 01C2 DUHP "398 GETCRR 
03B2+451003D8 

""." GUlP 0386 HEliX 004C IPLP 0'UC JMPCMD 021'2 JUMP 
LR Hl,R2 j DAT! BACK: TO Rl IllA LOS'1'Oi ,/111106 MO"LP "290 NIBBLI 212AC HXNIBl 02C6 NINIJI.2 

03Be+1612 021:/11 NINI)3 "816 PROMPT 039C RDCBR 0/IIBC SCUtR 0232 SITND 
LD Rl4,i",@GETCHR ;Gi'l'RET 01U SE'l'PJR FFn S'l'ATUS 9210 S'l'UT! lIn SrLF "IBe STORE 

03118+58109421" icl41U S'l'RCMD liJue TIPAD 015C UPLIT 21168 TTPLLP 8U6 UPS'l'OI 
LI 1115,-1 ;SIT us .~Z. 0.28. VALPB "2B8 VNUM 03lE /1IBINOUT 0402 @CV!DDR 031'4 @DHPOU'l' 

03BC+41Pe1FFJ' 03EC @DOCRLF It""" @GITCIiR 031E @GE'l'IP "3JA "'PROMPT 13Ft @SCANER 
LI i2.001UH ,Ll CODE IN C.1SE or CR It3J'C @S'l'D.tTA "3F8 @S'rORE "31'2 @'1'TPAD 0316 GrIPLI'1' "3J'1 lIUPSfOR 



APPENDIX D 

The System 29 operating system manages two floppy disk drives, 
A and B. The system Will prompt with a A> or B> depending upon 
which disk the operator selects as the default. Generally, most 
system programs (editors, debuggers, compilers, etc.) are on the 

A disk and most user generated programs (source programs, 
user libraries, special assemblers, etc.) are on the B disk. In the 
following seSSion, lower case letters are what the user typed-In, 
upper case letters are what System 29 responded, and com­
ments (added as a tutorial) are in curly brackets. 

A>ed b: amd16blt.asm 

'e 

A>b: 

B>mac29 amd16bit $ab hb pb sb 

ASM29 VER. 1 0 

0490 

03BH USE FACTOR 

END OF ASSEMBLY 

B>a: 

A>ddt29 h e 

A>set pa 3d 

A>ddt 

DDT VERS 1.4 

#ib:amd16bit.hex 

#r8000 

NEXT'PC END 

840E 0100 577F 

#tc 
A>lbpm m29 wcs cI ul dc 1 

LOADING: M29.0BJ 

{call the editor to edit AMD16BIT.ASM from the B disk} 

{any program additions, changes, and/or deletions go here} 

{exit the editor and save the new AMD16BIT.ASM on the B disk} 

{switch to the B disk as default} 

{use the modified macro assembler (MAC29) to assemble AMD16BIT.ASM and put the 
HEX, PRINT and SYMBOL flies back on to the B disk} 

{switch back to the A disk} 

{run DDT29, Halt the 16-bit computer's clock and EXit DDT29} 

{ set the page register bit to enable the 16-blt computer main memory as 9080 upper 32k} 

{load 9080 DDT} 

{reference the Simple monllor's HEX file on the B disk} 

{read AMD16BIT.HEX into 9080 memory beginning at location 8000 HEX (upper 32k)} 

{exit DDT via control-C} 

{load the 16-bit computer's microcode (phase-1 Instruction set)} 

TITLE: MICROPROGRAM FOR 16-BIT COMPUTER 

VERIFYING: M29.0BJ 

TITLE: MICROPROGRAM FOR 16-BIT COMPUTER 

VERIFY COMPLETE 

A>ddt29 Ir 0 j r {run DDT29, set the instruction address register to zero (IR 0), Jam the address on to the 
microprogram address bus (J), and run the 16-bit computer's clock (R)} 

At this pOint, the AMD 16-blt high speed computer is running 
phase 1 instruction set in microcode and the Simple mOnitor In 
target machine language in 16-bit main memory. A CRT terminal 

set to 9600 baud and connected to console USART can now 
exercise the simple monitor. 
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Memory Board 

The 16-Bit Computer Main Memory board was organized with 8k 
by 16-blt RAM section and a 2k by 16-bit ROM section. The RAM 
section occupies address 0-8k while the ROMs are assigned 
addresses 8k through 10k. The memory word consists of two 
bytes. The least significant address line specified whether high or 
low byte but IS not used In the word mode. The address value from 
the computer is captured In a register at the beginning of the 
cycle; however, the most significant address lines are routed 
straight from the bus to the clock decode logiC to make an early 
decision as to whether the memory board has been selected. 

In the word mode, the read and write transfers are straight for­
ward. For the byte read mode, data is output on bus bits BOo.7 

while B08.15 are forced to zero. DUring byte write mode bus bits 
BOo.7 are duplicated internally on lines 0 0-7 and lines 0 8. 15, The 
signals WRHIGH or WRLOW select which byte In the RAM 
memory IS effected. 

The control logic generates the bus control line sequencing re­
quired by the 16-Bit Computer. The memory read and write timing 
is shown in Figures E1 and E2. The bus controller function is 
simulated for the purposes of the prototype. Bus Request is 
clocked Into a flip-flop and Bus Acknowledge IS returned to the 

computer. The Memory Request signal from the computer ini­
tiates a memory cycle. Fifty nanoseconds later the memory board 
responds with Address Accept. The computer then follows this 
with Data Request. The memory board responds with Data Sync 
and 50 nanoseconds later the data read out of the memory is 
clocked into the output registers and output on the data bus. 
Looking at the memory read timing diagram, it is seen that a read 
cycle is initiated with Memory Request but the data is not sent 
back to the computer until the beginning of the next mlcrocycle. 

The write cycle is extended one oscillator cycle. This is necessary 
with the Am9124 RAMs because the data are not sent to the 
memory board until Data Request goes active (see Figure E2), 
which is 100 nanoseconds into the write cycle. With the clocked 
handshaked memory protocol of the 16-Bit Computer, this is 
eaSily done by delaYing Data Sync one oscillator cycle. Since 
normally a computer performs many more read than writes, this 
Impacts throughput only slightly. 

Additional logiC was appended to allow the memory to be ac­
cessed by the System 29 microprogramming development sys­
tem. The Map Page (MAPP) of System 29 was used to specify the 
memory. The logic Interfaces the control signals required by 
System 29 and the 16-Bit Computer Memory board. With this 
logic, the System 29 user can readily read or write into the 
memory. 
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Figure E2. Memory Write Timing. 
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16·Bit Computer ALU. 
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<~~----------~----~----~--~ 
DA'5 DA,~ DAl] OA" 

"I "I "I' "I 
1-------""'-110 

I-I-========j:::~ I, I, 

1-----""'-11, 
~I., 
~I~ 

rr7 IS 1-------+-, " 
~18 

1-___ ---"'-1 A, 

9 14 15 

.,.- ...... 
CA,i OA,O DA9 DAs 

"I "I "I "I 

"16 
Am2901 A 

PCU 

I-____ ~_'.'-I A, 

, A, 

1--___ ---"'-1 A, 

£A' 
-=-17 

1--------',,' :~ 

Qo~ 
RAMO~ 
CN~ 

19 9 2 

~BJ 
':....!!. Q 3 

~ RAM3 

~G 
~P 

~ CP OE 

I .. 

"" Am2902 

pcu BUS 

I 

16·Bit Computer PCU Memory Address Register. 

OA7 OA6 CAs DA4 

221 231 241 251 

"17 
Am2901A 

YJ Y2 

I I I 39 
38 

~ ~ ~ 

V, 

" 

~ 

Oo .!!... 
RAMo !­

eN ~ 

V, 
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~ , 

" 1 

12 

13 

14 

c, >~ 
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2 
3 
4 

7 
8 

10 
11 

12 

13 

14 

I 

I 
I 

:j3 DA, :jl 2:jO 
231 

12 
D, D, D, D, 

I, 
13 

I, 
1. 

I, 
26 

I, 

~14 
rE I, 

I ~ I, 
7 

I, 

r-! I, 

~ • A, , 
A, 

2 
A, 

f U18 A, 
Am2901A 

-17 
B, 

18 

19 
B, 

B, 

,f B, 

~ Q, 

~ RAM3 

~G 
~P 

If 4~ I I I ,:' ,:' "Y' ,:' 

::-r-
~ 

~ ~ ~ 

~ ~ 

( , . 
J G, P, 

13 

( ~ 

QO~ 
RAMO ~ 

eN r!!----
(M63) 

~ 
,-'/ , 

ADDR BUS . ... ] ~ ~ ~ 
] ] f ] ] ] ] ] 

f fn ~ b g * ;, e ~ g: ~ ~ 

~ ~ ~ 
~ 

~ ~ I i ~ ~ > > 

~ i ~ ~ g g C C C C 

~ ~ ~ C C ~ g ~ ~ 

~ ; W N " 
~ . _ 0 

MAR 
19 16 15 12 9 6 5 2 19 16 15 12 9 6 5 2 

Y7 Y6 Ys Y4 Y3 Y2 Yl Yo 
G~ 

Y7 Ys Ys Y4 Y3 Y2 Yl Yo 

U20 U22 
Am14S373 

OE..!..--.-
Am74S373 

07 0 6 Os D4 D3 02 D1 DO 07 D6 0 5 D4 0 3 02 01 DO 

18 17 14 13 8 7 . , 18 11 14 13 8 7 4 , 

PCU 15 

PCU14 

PCU1J 

PCU12 

PCU 11 

PCUlO 

PCUg 

PCUs 

PCU7 

PCU6 

pcus 
PCU4 

PCU J 

PCU2 

PCU, 

PCU, 
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~ G MAR 

OE r2---- MAROE 

PCUCD (M73) P3-27 

4 U:;' 3 PCU---V (M72) P3-26 

S;: HL A B 
9 BYTE 

CD T/R 
ZERO FILL 

8 12 Y" 

7 
A, B, 

13 Y" 
A, B, 

6 14 Y13 

5 
II;; B, 

15 Y" . A, U21 B, 
16 Y" A4 Am8304B 8 4 
17 Y" , 

A, B, 
Y, 2 

A, B, 
18 , 

A, B, 
19 Y, 

m 
~ 
m 
> 

PCU 
TRANSFER A--e WORD ONLY 

6 U~5 
74508 

~WORDMODE 
s~ 9 HI 6 _ 4 FROM SH2 

8 
CD T/R 12 Y, 

7 
A, B, 

13 Y, 
A, B, 

14 Y, 6 
A, B, 

5 
B, 

15 Y, . A, U23 
16 Y, 

~Am8304BB4 

" Y, , 
2 

A, B, 
18 Y, 

A, B, 
Y, 1 

A, B, 
19 
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'N'{ CO~ 
,NO 

Uil ,M76) 11 

P331 OETAEG 1MT7) 1 _ 

O' 

.. .. 
Q Q , , 

~-----II. II. Go II. lI. II. II. Go 

....... "' ...... '" 

~~~~~~~i 
19 16 15 12 9 6 5 2 

I ,I' A,"745314 U2S 

v Y, Y V, V, I 11 Icp Y y~ Y, V, Y, VI Y, Yo I 
o D. D., D. 0\ 0 0 0,. II----~ IOE 0 0 6 0., D. OJ D> 0, 00 

18 !1 14 13 8 1 • 3 18 17 14 13 a 1 4 3 

TRANSFER .,. 
o 0, 0.,0, D, D, 0 00 11--__ -',,'lLcp 0, 0 6 O~ D. 0) 0; 0, 00 

I ,I: Am14S314 

O' 
Y Vb Y,. V, Y, y, y, Yo I I V, "6 y~ V. YJ Y. Y, Yo 

'-:,':'1. -:-:,,+',':'1, ':",,:T-::,. r.,:r.',i-,;i-...J 19 16 15 12 9 6 5 2 

OA 8US 

13 ..... 12 

RTe (MQS) 
7:;04 U96 

DATA BUS 

~;;~~:f~:¥ 
a:.;:.;: a: a: a:.;: Ii: 
~ :! ::! !:! = ~ 01 co 

~i~~~~~~ ~~i~iii~ 
18 17 1413 8 1 4 3 1811 14 U 8 7 4 3 

O. 06 D~ 0.0) O2 0, 00 l'I----'A'11IG 0, OSA:1:~~3 ::7°. 00 I 
OE I DE 

V, '(6 Ys "4 VJ "2 V, Yo -::' VI "6 \Is "4 YJ "1 V, Yo 

19 16 15 12 9 6 S 2 19 16 IS 12 9 6 5 2 

... '" '" .. '" '" _ 0 j;J iI;j N N N N N NL. ____ --+17 

'------_+18 
'-:-_____ +1. 

TO DECODER 
SN' ~ '-: ______ -+2. 

FROM SH6 ---,r-L--,+-,r-.+-,t---------21 

ENCTR ,,'M.,:":-' _.-:-'oIJ E~~AD 0 C B A 

P3·29 l!~..:J CARRY 15 
-'----'-~,-l ENT "m745169 U32 OUTPUT 

I CP UID QD Qc QS QA 

'"0<"" 1M", ' I 

,'B 1 le" IB, IBo; 

TO Am2903 
SN' 

16-Bit Computer Data Path. 



TYPICAL INSTR~ FORMATS 

ADD 
RR (At) + (R2)_(Rl) 

I .. 0. J.' .1:2.1 
M FIELD GENERATES Am2904 TEST 10-3 SIGNALS 

TYPfCALLY 
A1 FlELO--Am2903 _ B INPUTS 
A2 FlELO-Am2903 _ A INPUTS 

17>-------------------, 
18>-------------, 
19>----------, I :---------., I 

SH' 

,....:1I=::o,L:.17~ .. ~'~~:::3D!-!:=:!D,..:7:!-D,.:,· D~:=:!D"'" ...., 
11 CP 

Am74S374 U33 

~3~ 25 (M38) CNTL 83 1'4-38 
(N37) CNTL 82 P4-38 
(M3fI) CNTL B, No37 

26 (M35) CNTL So 
27 
28 
29 
30 

131063 1411 52 

4838 28 18 4A 3A 2A lA 
5 

Am74S257 U35 
15 OE 

4Y 3Y 2Y tV 

12 9 4 

,1A3 1A2 IA, I~ 

TOA!29D3 
SH2 

2A, 

BRANCH IN5Th ENABl£ 19 
2G 

CMOS) ,.,.19 
2Y, 

.1:> 

m 

13 

", 2A, 2A, 

Am74S244 U14 

2Y, 2Y, 

"' § 

7 

~ 
~ 

i 

Am"" 
SH2 

2Y, 

~ 
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C B A B 
4 Am258251 
3 ~ U.t8 
, D, 

, D, 

15 03 

14 0 4 

,," ,," ., 

""'" ... ..... 
3 
4 
5 
6 
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'------+10 12 E~~11 13 

14 
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~'·=I.~"~~~"---+~~---------------------------' 
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~, 
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11 CP 

{ ~15 NDTUSED ~16 
....!.....-.;..17 

~~~~~~~~§18 19 
20 21 

~~~~~EB!E22 23 
24 
25 
26 

16-Bit Computer Microprogram Memory. 
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SYS elK elT 

~ 
'r.=1U5.,~9,'~0 ________________________________________________________________________________ ~>1 

SYS elK D----------''-C\:::I .. 
PH9 9,10 r.:::\ B ,. 2 

cose 

ADDR ACCP 
Pl-30 

REO B 

P3·3 

P1.1S 

,C. 
(BUS) 

P2·22 

SYNC 
Pl·33 

MR 

WA 

D 
P1-13 

(M53) 

~ 

f 
~ 

8P 
EQ(MS2) .,., 

BP 
ITE(M50} 
P4-SO 

I 0 ~ 
508 

" 
, 3 

02 ~u~ 
4 

11 

S04~ '7U96 
10 

, 
~ LiSM 

ADDR ACCP ~ 
~U52 

8 
5 4 

5, e:JU52 

~ 11 

12 U52 

~ 
6 

4 5VR 

PR 
' .......... 4 3 Q~ r.: , 7_ , U54 

,-- CK 8112 

~ '3~'1 
SYNC , 

ii~ r- US9 • 
SOD CUi 

'--;;c" RESET 
7 , 

3 MARDE , USO 
lOSH 3 

8 508 
'VA MREQ FF OVA r, 4 10 

Pii 
US1A 

Pii 8240 1 -
~11 3 , , 18 MREa 11 9 4 16 AD/WAT 

12 U60 , Q ,---- , Q 
I 

P1-20 SO; , U55 P'-34 13 
8240 

CK U71 U4B1A 
11 t--- CK 5112 r- 8112 

ADDR ACCP 10 8 2 · 00 12 iir-SYNC 8 LUs;, r-I- • 
S11 

, 1~ CLR .....,.,-
9 

H-t';;;;;\ • , U60 

SOB 
8P 

ORD(M49) 
~8 

1 o MW 
P4·49 

SOB 1 
OVR DREQFF 'VR 

10 4 
US1B -

Pii 8240 PR , 
11 • 11 9 ~ ..2., - 0 • 14 Wo/BVTE 
~, Q Q 

DATA REO Pl-29 b:; PH7 
OSC"()UT 12 3 20MHz UNC 13 

CK ~~~ 
19 ~ CK U71 US1A 

U94 
8112 

Pl·9 SOB 2 WORD FF 
12 • oj2-- ~ . 

CIA 'I ~AESET 15 

VR 
1 2 

;;;; 10 
13 

11 Lo 0 PR US3·6 
LDD (M70) 12 U70 

soo 
U24--11 11 , 

P3-24 

~~~~= ---!.! 
U74 

~ 
P. 8112 

ZI_I(M69) 9 U70 Usa-11 12 

P3-.. 
SOO • 

LOT REGT ~- 14 (U76) , U70 
sou (TO SH 4) --

CLR 

16-Bit Computer Memory and Clock Control. 
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9 
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) 

'-'" 8 10 END 4 4 
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4 U56 6 3 10 WRT 
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1 5112 
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SYSTEM RESET 

8 ~6 ~4 
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JU70 
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V-BUS I 

YOLMO 

34 33 32 31 

lEN I, I, 

Y, Yo Y, Y, Y, Y, Y, 

~MI 

40 M2 

, M, 

25 M4 

23 MS 

21 M6 

19 M, +1 So 12 5, U62 

-::- 11 52 Am2914 

TOSH'~ 
VEe 0 18 Vo 

VEe 1 17 VI 

VEe 2 16 V2 

"'1 29 CLOCK 
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f 
GEN 
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T P, Po P, P, P, 
20 22 24 26 , 
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.-+-+---.;0.3 
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BCD to binary conversion, 155-156 

microcode, 164-165 
Binary conversion, BCD to, 155-156 

microcode, 164-165 
Binary roots, non-restoring, 153-154 

microcode, 162-163 
Binary to BCD conversion, Am2904, 156-158 

microcode, 164-165 
Bipolar microprogram controller, 17 
Bit operations, Am2904, 132 
Bitslicetiming,106-113 
Block diagram: 

Am2903,102 
Am2904,131 
Am2910,231 
Am2914, 212-214 
Am2930,201 
Am2942,250 
Am29705, 105 
DMA peripheral controller, 248 
HEX-29, 278, 280, 282-285 
microcomputer architecture, 10 

Branch and link flow chart, 339, 341 
BRANCH AND LINK instruction description, 355 
Branch and stack instruction, 200 
Branch code, HEX-29 microprogram sequencer, 288 
BRANCH instruction, 14 
BRANCH instruction description, 355 
BRANCH ON CONDITION instruction description, 

355 
BRANCH ON INDEX instruction description, 355 
BRANCH operation, 4 
Branches, conditional, 261-262 
Bulk Memory, 6 
BYTE SWAP instruction description, 351 
Bytes, 8-bit, 191 

Call executive instruction, 275 
CALL instruction description, 352 
Call interrupt service routine microprogram, 220, 

223 
Carry flag, 263 
Carry generate, 94 
Carry-in, 94 
Carry-in control multiplexer instruction codes, 134 
Carry-in multiplexer, Am2904, 132 
Carry lookahead adder, four-bit, 94-95 
Carry lookahead generator, Am2902A, 93-96, 201 
Carry method usages, ripple, 95 
Carry output flag, 99 

Carry propagate, 94 
Cascading the Am2914, 214-215 
CCU (see Computer Control Unit) 
Central processing unit architecture, Super Sixteen, 

321-330 
logic diagrams, 365-384 

Central Processor Unit (CPU), 3-7 
hardware diagram, Am2904, 182-187 
HEX-29 (see HEX-29 CPU) 
with internal high speed registers, 3, 4 
read timing, Super Sixteen, 325 

Centralized DAM, 240 
Channels, 275-276 
Clock, system: 

Am2940,242 
Am2942,251 
8-phase,8 
HEX-29, 278, 281,286 

Clock control, Super Sixteen, 322, 324, 374-375 
Clock pulse (CP), 262 

numbered, 66 
COMPARE instruction description, 350 
COMPARE LOGICAL BYTE instruction description, 

351 
COMPARE LOGICAL instruction description, 350 
COMPARE LONG instruction description, 353 
Computer, stored-program, 3-7 
Co m puter arch itecture, 2-10 

(See also Architecture) 
Computer basics, 3-5 
Computer control flow diagram, 34 
Computer control function flow diagram, 9 
Computer Control Unit (CCU), 5-10 

architecture, 15-17 
using Am2909 and Am29803A, 42-45 
using Am2910, 22-38, 43, 48-49 
using Am2911 and Am29811A, 39 
using Super Sixteen, 322 

set-up for high-speed micro-level interrupt han­
dling,232 

timing, 23-33 
Computer data path, three register, 97 
Computer design, AMD 16-bit (see Super Sixteen) 
Condition code input, 202 
Condition code multiplexer, 15 

Am2904,132 
Condition code output instruction codes, Am2904, 

134 
Condition code register, HEX-29, 263-264 
Condition select multiplexer, 261 
Conditional branch flow chart, 339, 340 
Conditional branches, 261-262 
CONDITIONAL JUMP PIPELINE instruction, 19, 

21-22 
figure, 20 

CONDITIONAL JUMP REGISTER/COUNTER or 
PIPELINE instruction, 21 



CONDITIONAL JUMP REGISTER/COUNTER or 
PIPELINE instruction (Cont.): 

figure, 20 
Conditional jump speed computations, 24, 25, 28, 29 
CONDITIONAL JUMP-TO-SUBROUTINE instruc­

tion, 19, 21 
figure, 20 

CONDITIONAL JUMP VECTOR instruction, 21 
figure, 20 

Conditional jumping, 13-15 
Conditional operation, 4 
Conditional push speed computations, 32 
CONTINUE instruction, 22 

figure, 20 
CONTINUE (CONT) statement, 13 
Control modes, Am2940, 242-243 
Control register: 

Am2940,241 
Am2942,250 

Control store, 260 
Counter register, microprogram, 15 
CP (clock pulse), 66, 262 
CPU (see Central Processor Unit) 
CRT controller: 

AMDASM definition and assembly files, 79-87 
complete wiring diagram for, 50, 52-53 
design of, 47,50-61 
display formats accommodated on, 78-87 
logic diagram, 47, 51 

of interface circuit for, 62,63 
microprogram for, 50,54-56 
principle of operation, 47, 50 
software emulation, 66-67 
of System 29 universal card, 88 
timing considerations, 50, 57-61 
wiring diagrams, 62, 64-65 

Cycle steal method, 240 

D bus, 97 
D input, 101 
Data-Based microinstruction cycle, 35, 36 
Data bus cascading, Am2903, 106 
Data formats, 191 
Data movement, HEX-29 mnemonics, 267 
Data movement capabilities, 7 
Data multiplexer: 

Am2940,242 
Am2942,251 

Data path, 92-187 
Super Sixteen, 324, 370-371 
three register computer, 97 

Data routing, 261-262 
Data transfer control, 240 
Dead page, 274 
DECIMAL ADD instruction description, 353 
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DECIMAL SUBTRACT instruction description, 353 
DECREMENT INDEXES instruction description, 

353 
Defined register class of instructions, 265 
Definition file, AMDASM, 330, 336-337 
Delay, time, using Am2914, 220,224-229 
Delay path, longest signal, 23-24 
Delays, 6 
Depth, memory, 5 
Depth-over-width (d/w) ratio of memory, 10 
Design, microprogrammed, 12-61 
Direct addressing, 7, 265 
Direct memory access (DMA), 6, 238-256 

centralized,240 
control, HEX-29, 301, 305 
distributed,240 
implementation, 240 
I/O system, 240 
peripheral controller block diagram, 248 
repetitive, 240 

Direct memory access (DMA) Address Generator, 
Am2940, 241-249 

Direct memory access (DMA) Controller, 240 
Disk drive management, System 29 operating sys-

tem,361 
Distributed DMA, 240 
Dividend in divide operations, 151 ~ 
Division, two's complement, 150-153 

microcode, 160-161 
Divisor in divide operations, 151 
DMA (see Direct memory access) 
Double-length normalize command, 146-149 

microcode, 162-163 
Double words, 32-bit, 191 
d/w (depth-over-width) ratio of memory, 10 

Effective address, 7 
Emulation, software, of CRT controller, 67-77 
Enable control, extended, 42 
Enable stack signal (FILE ENABLE), 15 
Engineering model Super Sixteen, 346-348 
EXCHANGE BYTE instruction description, 351 
EXCHANGE PROGRAM STATUS instruction de-

scription, 351 
EXECUTE instruction description, 353 
Execution of microinstructions, 13 
Executive interrupts, 207 
Exponent, signed, 191 
Extended enable control, 42 

F bus, 97 
FETCH, overlapping or pipelining, 14-15 
FETCH instruction, 4 
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FETCH microword, 122-124 
Fetch routine, 220, 223, 231 
Fields, microinstruction, 13 
FILE ENABLE (enable stack signal), 15 
Fixed point numbers, 191 
Floating point numbers, 191 
Flow diagram: 

computer control, 34 
computer control function, 9 
read control, 249 

FORMATIING, 13 
Fraction, signed, 191 
Full adder: 

basic, understanding, 93-99 
four-bit ripple-carry, 93 
truth table, 93 

Full adder cells, cascaded, 93 
Full stack, 19 
Function logic, 262 

General purpose (GP) computer, 8 
General register class of instructions, 265 
Generate, carry, 94 
GP (general purpose) computer, 8 

HAL (HEX-29 Assembly Language), 264 
Half sign flag, 263 
HEX-29 Assembly Language (HAL), 264 
HEX-29 CPU, 258-315 

addressing modes, 264-265 
arithmetic operations, 266-267 
block diagram, 278, 280, 282-285 
carry-in control, 290 
condition code control, 290, 298 
condition code register, 263-264 
DMA control, 301, 305 
DMAlrefresh control, 275-276 
features, 259-260 
general specifications, 263-275 
instruction matrix, 273-274 
instruction set, 265-274 
internal CPU registers, 263 
interrupt control, 301-304 
interruptstructure, 275 
macro instructions, 268-272 
microcode, 307-315 
microprogram control, 281, 287-288 
microprogram sequence branch code, 288 
microword memory, 288-290 
operating system for timesharing (HOST), 275 
shift and rotate linkage, 290 
system bus, 276-277 
system clock, 278, 281, 286 
system design goals, 259 

HEX-29 CPU (Cont.): 
system timing, 277-281 

HEX-64KBS static memory card, 306 

ICU (interrupt control units), 215, 219, 220 
Immediate addressing, 7, 265 
Immediate instruction flow chart, 337, 339 
Indexed addressing, 264, 281 
Indirect addressing, 7 
INIT microword, 122, 123 
Initializing the Am2910, 38 
Input, vector, 42-43 
Input bus, Am2901 B, 298,300,301 
INPUT BYTE instruction description, 354 
Input instruction flow chart, 340, 341 
Inp ut!output (see I/O) 
INPUT WORD instruction description, 354 
INSERT CHARACTER instruction description, 350 
Instruction-Based microinstruction cycle, 35 
Instruction control speed computations, 27, 30 
Instruction-data-based microinstruction cycle, 35, 

36 
Instruction Decoder, 9 

Am2903,104 
Am2940, 242 
Am2942,251 

Instruction descriptions, Super Sixteen, 349-355 
Instruction Enable pin, 202 
Instruction formats, 191 

HEX-29,264 
Super Sixteen, 321 

Instruction matrix, HEX-29, 273-274 
Instruction register, 7 
Instruction set, 7 

Am29811A,16 
HEX-29,265-274 

Instruction types, 191-197 
memory immediate instruction, 197 
memory to memory indexed instruction, 196 
memory to memory instruction, 194 
register immediate instruction, 196 
register to indexed memory instruction, 195 
register to memory immediate instruction, 195-

196 
register-to-memory-reference instruction, 193-

194 
register-to-register (RR) instructions, 191 -193 
register with short-i mmediate instruction, 194-

195 
Instructions, 3 

Am2940,243 
Am2942,251-253 
defined registerclassof,265 
executed sequentially, 198 
executing, 4-5 



Instructions (Cont.): 
general register class of, 265 
Super Sixteen, 319-321 
(See a/so Microinstructions) 

Interface circuit for CRT controller, 62, 63 
Intermediate slice (IS), 102 
Internal high speed registers, CPU with, 3, 4 
Interprocessor interrupts, 207 
Interrupt, 206-235 

Super Sixteen, 324, 376-377 
Interrupt acknowledge, 208 
Interrupt control, HEX-29, 301-304 
Interrupt control units (ICU), 215, 219, 220 
Interrupt Controller, 6 
Interrupt driven 1/0,239 
Interrupt example, microprogram level, 229-235 
Interrupt handling: 

computer control unit set-up for high-speed 
micro-level,232 

sequence of events for, 207 -208 
Interrupt masking, 207-208 
Interrupt microprogram, return, 220, 223, 231 
Interrupt nesting, 210 
Interrupt priority encoder, 210-211 
Interrupt recognition, 207 
Interrupt registers, HEX-29, 264 
Interrupt request: 

instruction flow during, 220, 223 
multiple, 209 

daisy chain acknowledge, 209 
single: daisy chain acknowledge, 208 

multiple poll, 208 
Interrupt request clearing, 210 
Interrupt request handling, multiple, 210 
Interrupt request masking, dynamic, 210 
Interrupt request prioritization, 210 
Interrupt request priority threshold, 211 
Interrupt Return instruction, 208 
Interrupt sequence timi ng, 234, 235 
Interrupt service routine, 208 
Interrupt service routine microprogram, call, 220, 

223 
Inte rrupt service routine nesting, 211 
Interrupt structure, 208-209 

general purpose, 210-211 
HEX-29,275 

Interrupts: 
machine versus microprogram level, 207 
microprogram, 43 
priority schemes in, 209-210 
types of, 207 

Intraprocessor interrupts, 207 
Intrasystem interrupts, 207 
Invalid access block, 274 
Invalid instruction trap, 275 
I/O (input/output), 239 

devices, 3, 6 

I/O (input/output) (Cont.): 
DMA,240 
Super Sixteen, 324, 376-377 

write timi ng, 328 
IS (intermediate slice), 102 

JMP (JUMP) instruction, 13 
JUMP, UNCONDITIONAL, 14-15 
JUMP and ZERO (JZ) instruction, 19 

figure, 20 
JUMP (JMP) instruction, 13 
JUMP MAP instruction, 19 

figure, 20 
Jump map speed computations, 26, 29, 30 
JUMP operation, 4 
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JU MP-TO-ONE-OF-TWO-BRANCH-ADDRESSES in­
struction, 17 

JUMP-TO-ONE-OF-TWO-SUBROUTINES instruc­
tion,15,17 

JUMP-TO-SUBROUTINE instruction, 15,200 
Jumping: 

conditional,13-15 
microprogram, 13 

JZ (JUMP and ZERO) instruction, 19,20 

Last-in first-out (LIFO) stacking arrangement, 199 
Latch bypass, 220 
Latency times, 6 
Least significant slice (LSS), 102 
LIFO (last-in first-out) stacking arrangement, 199 
LOAD BYTE instruction description, 350 
LOAD COUNTER AND CONTINUE instruction, 22 

figure, 20 
LOAD instruction description, 349 
Load operations, Am2904, 132 
LOAD PROGRAM STATUS WORD instruction de-

scription, 351 
Load select control function, 14 
LOAD STACK instructions, description of, 352 
Logic diagram: 

Am2902,216 
Super Sixteen CPU, 365-384 

Logic operation with shift speed computations: 
Am2901 A, 109 
Am2903,111 
Am2904, 139, 141 

Logic operation speed computations: 
Am2901 A, 108 
Am2903,110 
Am2904, 138, 140 

Logic symbol, Am2914, 212 
Logical address, 273-274 
Logical data, 191 
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Logical operations, 3 
HEX-29 mnemonics, 267 

Lookahead adder, four-bit carry, 94-95 
LSS (least significant slice), 102 

Mach i ne interrupts versus microprog ra m level i nter­
rupts,207 

Machine level instructions, microprogram instruc­
tions versus, 9-10 

Machine register condition code output, Am2904, 
181 

Machine status register, Am2904, 131 
Machine status register instruction codes, Am2904, 

132,181 
Machines, microprogrammed, 260-262 

versus non-microprogrammed, 8-9 
Macro assembler disable opcode patch, 347 
Macro instructions, HEX-29, 268-272 

(See a/so Instructions) 
Macro library, 347, 356-357 
Mag nitude only arithmetic operation with shift down 

speed computations: 
Am2903,110,112 
Am2904, 140, 142 

Mapping PROM, 15, 17 
MAR (Memory Address Register), 3-6 
Mask bus, 220 
MDR (Memory Data Register), 3-6 
Memory: 

Bulk,6 
depth-over-width ratio of, 10 
microprogram, 8,13 
program to write into, 88-89 
random access (see Random Access Memory) 
read access time of, 5 

Memory access: 
di rect (see Direct memory access) 
random (see Random Access Memory) 

Memory Address Register (MAR), 3-6 
Memory addressing scheme: 

with PC inALU,193 
with PC outsideALU, 197 

Memory board, Super Sixteen, 362, 378-381, 384 
Memory control, Super Sixteen, 322, 324, 374-375 
Memory Data Register (MDR), 3-6 
Memory depth, 5 
Memory immediate instruction, 197 
Memory management, HEX-29, 273-274 
Memory management registers, HEX-29, 264 
Memory mapped 1/0,239 
Memory mapping program address, 273 -274 
Memory read timing, Super Sixteen, 363 
Memory to memory indexed instruction, 196 
Memory to memory instruction, 194 
Memory width, 5 

Memory write timing, Super Sixteen, 364 
Microcode: 

branch and stack instruction, 200 
memory immediate instruction, 197 
memory to memory indexed instruction, 196 
memory to memory instruction, 194 
register immediate instruction, 196 
register short-immediate instruction, 195 
register to indexed memory instruction, 195 
register to memory immediate instruction, 195 
register to memory immediate instruction im-

proved,198 
register-to-memory-reference instruction, 194 
register-to-register instruction, 193 
register-to-register instruction with overlap of 

execute and PC control, 198 
return-from-subroutine instruction, 200 
Super Sixteen, 337-345 

Microcode translation, Super Sixteen, 345, 346 
Mi crocomputer: 

HEX-29 (see HEX-29 CPU) 
16-bit (see Super Sixteen) 

Microinstruction control, Am2901A, 101 
Microinstruction cycle, 35-37 
Microinstruction fields, 13 
Microinstruction format, S.uper Sixteen, 330-337 
Microinstruction set, Am2914, 212-213 
Microinstructions, 13 

execution of, 13 
(See a/so Instructions) 

Micromachine, 7,8-10 
Microprogram: 

Am2904 AMDASM Phase 1 and Phase 2 listing of, 
168-179 

AMDASM definition and assembly files, 79-87 
CRT controller, 50, 54-56 
Super Sixteen, 340, 342-345 

Microprogram control, 260-261 
HEX-29, 281, 287-288 

Microprogram control bits, Am2903,115,122 
Microprogram controller, bipolar, 17 
Microprogram counter (mPC), 18 
M i crop rog ram cou nte r reg i ster, 15 
Microprogram execution, timing diagram of, 37 
Microprogram instructions, machine level instruc-

tionsversus, 9-10 
Microprogram interrupt, 43 
Microprogram jumping, 13 
Microprogram level interrupt: 

example of, 229-235 
versus machi ne i nterru pts, 207 

Microprogram memory, 8,13 
Microprogram sequencer, 260-261 
Microprogram start-up flow chart, 337 
Microprogram state machi ne applications, 33-34 
Microprogram structure, Am2904, 144 -145 
Microprogrammed architecture, 10 



Microprogrammed design, 12-61 
key features of, 13 

Microprogrammed machines, 260-262 
Microprogramming, 259 
Microprogramming control, subroutining in, 15 
Microregister condition code output, Am2904, 181 
Microroutines, sample: 

Am2903,122-125 
Am2904,146-159 

Microstatus register, Am2904, 131 
Microstatus register instruction codes, Am2904, 

132,181 
MicrowordADD, 123, 124 
Microword ADD DIRECT, 123-125 
MicrowordADDIMMEDIATE, 123, 124 
Microword ADD RR1, 123, 125 
Microword FETCH, 122-124 
Microword INIT, 122,123 
Microword memory, HEX-29, 288-290 
Microword register, 14 
Mode control, 240 
Monitor listing, Super Sixteen, 347, 358-360 
Most significant slice (MSS), 102 
MOVE LONG instruction description, 353 
mPC (microprogram counter), 18 
MSS (most significant slice), 102 
Multiplexer (MUX): 

address, 15 
condition code, 15 
data, 242, 251 
three-input, 99 

Multiplication, two's complement, 150 
microcode, 160-161 

MULTIPLY instruction description, 350 
Multiply unsigned instruction, 147,149 

microcode, 160-161 
MULTIPLY UNSIGNED instruction description,350 
Multiprocessor, interrupts in, 207 
MUX (see Multiplexer) 

N output, 102 
Negative numbers, 191 
Negative single-length number, normalized and un­

normalized,147 
Nested subroutine example, 199 
Nesting: 

of interrupt service routines, 211 
of interrupts, 210 

Non-polling versus polling systems, 207 
Non-restoring binary roots, 153-154 

microcode, 162-163 
Normalization microroutine, 146-147 
Normalized negative single-length number, 147 
Normalized positive number, 146 
Numerical value of zero, 191 

OP CODE (operation code), 7, 9 
Operands, 3 

for operations, 7 
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Operating system, System 29, disk drive manage-
ment, 361 

Operation code (OP CODE), 7,9 
Operations, operands for, 7 
OR BYTE instruction description, 351 
OR instruction description, 349 
Output buffers, Am2903, 104 
Output bus, Am2901 B, 298, 299 
OUTPUT BYTE instruction description, 354 
Output flags, 99 
Output instruction flow chart, 340, 341 
OUTPUT WORD instruction description, 354 
Overflow, 95 
Ove rflow detect output flag, 99 
Overflow detection signal (OVR), 93,101,102 
Overlap of execute and PC control, 198 
Overlapping: 

FETCH,14-15 
Super Sixteen, 322 

OVR (overflow detection signal), 93,101,102 

Parallel cascade mode, 214-217 
Parallel look-ahead expansion scheme for Am2930, 

202 
PCU (see Program Control Unit) 
Phase 1 and phase 2 periods, 277 -278 
Physical page zero, 273 
Pin functions, 17 
Pipeline registers, 14-15, 260-261,290,291 
Pipelined microprogram bits, Am2904, 144-146 
Pipelined operations, Super Sixteen, 329-330 
Pipelining: 

FETCH,14-15 
Super Sixteen, 322 

Polling, 6 
versus non-polling systems, 207 

POP instruction description, 352 
POP operation, 18 
Positive numbers, 191 

normalized and unnormalized, 146 
P/POP instruction description, 352 
P/PUSH instruction description, 352 
Priority schemes in interrupt, 209-210 
Program, 3 

to write into character memory, 88-89 
Program control, HEX-29 mnemonics, 267 
Program Control Unit (PCU), 4-6,190-204 

Am2901Aas, 203, 204 
counter-type, 4 
Super Sixteen, 321,368-369 

Program control unit performance, improving, 
197-203 



396 

Program steps, 4 
Programmed I/O, 239 
Programming, 7 

Am2914, 212-213 
PROM,8 

mapping, 15, 17 
Propagate, carry, 94 
Propagation delay calculations: 

on Am2910 microprogram sequencer, 24-27 
for Am2911 and Am29811A design, 24, 28-31 

Propagation delays, combinational: 
Am2901A,126 
Am2903,127 

PUP (push/pop control), 15 
PUSH/CONDITIONAL LOAD COUNTER instruction, 

19-21 
figure, 20 

PUSH instruction description, 352 
PUSH operation, 18 
Push/pop control (PUP), 15 

Q input, 101 
Q register, 99 

Am2903,103-104 

R input field, 99 
Random Access Memory (RAM), 8, 99 

address cascading, Am2903, 106 
shift network, 99 
two-port, 102 
write enable (RAM EN), 99 

Read access time of memory, 5 
Read control flow chart, 249 
Register immediate instruction, 196 
Register operations, Am2904, 132 
Reg ister with short-immediate instruction, 194-195 
Reg ister to indexed memory (RX) instructions, 195 

addressing, 7 
flow chart of, 337, 338 
sequence of, Super Sixteen 328 

Register to memory immediate instruction, 195-196 
Reg ister-to-memory-reference instruction, 193-194 
Reg ister-to-reg ister (RR) instructions, 191-193 

addressing, 7 
flow chart of, 337,338 
sequence of, Super Sixteen, 328 

Registers: 
Am2914, 213-214 
pipeline, 14-15,260-261,290,291 
Working, 3 

Relative addressing, 4-5 
Reliability, system, 277 
Remainder, true value of, 151 

REPEAT LOOP, COUNTER =I ZERO instruction, 21 
figure, 20 

REPEAT PIPELINE REGISTER, COUNTER =I ZERO, 
21 

figure, 20 
Repetitive DMA, 240 
RESET instruction, 18, 19 

figure, 20 
Restore after interrupt service routine, 208 
Return-from-interrupt sequence timing, 234, 235 
Return-from-subroutine command, 198 
RETURN-fROM-SUBROUTINE instruction, 15, 21 

figure, 20 
Return-from-subroutine instruction microcode, 200 
RETURN instruction description, 352 
Return interrupt microprogram, 220,223,231 
Return register, 198 
Ripple carry method usages, 95 
Ripple cascade mode, 214-217 
Ripple expansion scheme for Am2930, 202 
Ripple propagation time, 93 
ROTATE LEfT instruction description, 354 
ROTATE RIGHT instructions, description of, 354 
Rotating structure interrupt scheme, 209-210 
RR instructions [see Register-to-register (RR) in-

structions] 
RX instructions [see Register to indexed memory 

(RX) instructions] 

S (sum output), 93 
S input field, 99 
S/29 (see System/29) 
Save status, 207 
Schottky speeds, standard device, 107 

Am2904,135 
SET, CLR, COMPLEMENT, TEST BIT PSW instruc­

tion description, 352 
Set-up and hold times: 

Am2901A,126 
Am2903,127 

Shift and rotate instruction flow chart, 339, 
341 

Shift-down operations, 115 
SHifT LEfT instructions, description of, 354 
Shift linkage multiplexer instruction codes, 

Am2904,133 
Shift linkage multiplexers, Am2904, 131-132 
Shift network, RAM, 99 
SHifT RIGHT instructions, description of, 353 
Shift-up operations, 115 
Shifter, 3, 4 
Sign bit output flag, 99 
Signal delay path, longest, 23-24 
Single-length normalize command, 146-148 

microcode, 162-163 



Slice: 
intermediate (IS), 102 
least significant (LSS), 102 
most significant (MSS), 102 

Software, 7 
Software emulation of CRT controller, 66-77 
SP (stack pointer), 4,15, 18 
SSI/MSI, 135, 143 
Stack, full, 19 
Stack addressing, 265 
Stack and link, 198 
Stack pointer (SP), 4,15 

built-in, 18 
Standard device Schottky speeds, 107 

Am2904,135 
Static structure interrupt scheme, 209 
Status bus, 220 
Status registers, Am2904, 131 
STORE BYTE instruction description, 350 
STORE CHARACTER instruction description, 350 
STORE instruction description, 349 
STORE PROGRAM STATUS WORD instruction de-

scription, 351 
STORE STACK instructions, description of, 352 
Stored-program computer, 3-7 
Subroutine example, nested, 199 
Subroutine stack architecture, 200 
Subroutining, 198-202 

in microprogramming control, 15 
SUBTRACT instruction description, 349 
SUBTRACT WITH CARRY instruction description, 

349 
Sum output (S), 93 
Super Sixteen, 318-384 

ALU, 321-323, 366-367 
central processing unit architecture, 321-330 

logic diagrams, 365-384 
central processing unit read timing, 325 
clock and memory control, 322, 324, 374-375 
computer control unit, 322 
data path, 324, 370-371 
engineering model, 346-348 
instruction descriptions, 349-355 
instruction format, 321 
instructions, 319-321 
interrupt and I/O, 324,376-377 
I/O write timing, 328 
macro library, 347, 356-357 
memory board, 362, 378-381, 384 
memory read timing, 363 
memory write timing, 364 
mi crocode, 337 -345 
microcode translation, 345, 346 
microinstruction format, 330-337 
microprogram, 340, 342-345 
monitor listing, 347,358-360 
pipelined operations, 329-330 

Super Sixteen (Cont.): 
RR instruction sequence, 328 
RX instruction sequence, 328 
S/29 WCS interface, 382-384 
system organization, 319 

SUPERVISOR CALL instruction description, 
352 

Switching characteristics: 
Am2901A, 125, 126 
Am2903, 125, 127 
preliminary Am2904, 135 

Sync control logic, 232, 233 
System reliability, 277 
System/29, 10,345,347 -348 

operating system disk d rive management, 361 
universal card, 88 
WCS interface, Super Sixteen, 382 -384 

TEST END-OF-LOOP instruction, 22 
figure,20 

TEST IMMEDIATE instruction description, 350 
THREE-WAY BRANCH instruction, 22 

figure,20 
Time delay using Am2914, 220, 224-229 
Timing: 

Am2940, 243-247 
bit slice, 106-113 
CCU, 22-33 
HEX-29 system, 277 -281 
interrupt sequence, 234, 235 
return-from-interrupt sequence, 234.235 

Timing analysis, Am2904, 135 
Timing analysis summary, 144 
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Timi ng considerations, CRT controller, 50, 57 -61 
Timing diagram of microprogram execution, 37 
Transfer complete circuitry: 

Am2940, 242 
Am2942,251 

TRANSLATE AND TEST instruction description, 
353 

TRANSLATE instruction description, 352 
Trap, 275 
Truth table, full adder, 93 
Two-port RAM, 102 
Two's complement arithmetic operation with shift 
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Unconditional operation, 4 
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Unnormalized positive number, 146 
Unsigned multiply, 147,149 
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Vector bus, 220 
Vector generator, 232, 233 
Vector input, 42-43 

Width, memory, 5 
Word count compare mode: 

Am2940,242 
Am2942,251 
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Word count maintenance, 240 
Word count register: 

Am2940,242 
Am2942,251 

Word counter: 
Am2940,242 
Am2942,251 

Word counter carry out mode: 
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Am2942,251 

Word lengths, 191 
Words, 5 

16-bit,191 
Working Registers, 3 
Write-protect bit (WP), 273 
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XOR instruction description, 350 

Y output instruction codes, Am2904, 135 
Y outputs, 101 

th ree-state, 18 

Zero, numerical value of, 191 
Zero detect output flag, 99 
ZERO instruction, 43 
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