

Advanced Micro Devices

Bus Interface Products
 Data Book

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics. The performance characteristics listed in this technical manual are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry.

For specific testing details contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.
901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306
'Increasing integration and performance on the system level now require corresponding improvements in bus interface. AMD's Am29C800 and Am29800A families meet this challenge, offering the designer innovative solutions to his interface needs. We are confident that you will find these devices suitable for your most demanding applications.'

Fred J. Roeder Vice-President and Managing Director Logic Products Division

CONTENTS

NUMERICAL DEVICE INDEX vi
INTRODUCTION 1
Am29C800/Am29800A GENERAL PRODUCT INFORMATION
Switching Test Circuit/Switching Test Waveforms 2
Test Philisophy and Methods 4
Capacitive Loading for AC Testing 4
Threshold Testing 4
AC Testing 4
Output Short-Circuit Current Testing 4
Am29800 Typical Capacitance Values 4
Typical Switching Speeds vs. Load Capacitance 4
Typical Switching Speeds vs. Number of Outputs Switching 5
ESD Protection 5
Simultaneous Switching Considerations 5
Description of the Problem 5
Effects of Ground and $V_{c c}$ Bounce 6
System Design Considerations 6
Summary 6
Am29C800 Power Dissipation Considerations 6
Introduction 6
Definition of Terms 6
Power Supply Current Components 6
Back to Basics 7
Total Power Supply Current (An Example) 8
Summary 8
Am29C800 Typical I cCD vs. Frequency Plots 8
PRODUCT SPECIFICATIONS
Am29C800 High-Performance CMOS Bus Interface Family
Am29C821/Am29C823 and Am29C921/Am29C923 High-Performance CMOS Bus Interface Registers 9
Am29C827/Am29C828 and Am29C927/Am29C928 High-Performance CMOS Bus Buffers 16
Am29C833/Am29C853/Am29C855 and Am29C933/Am29C953/Am29C955 High-Performance CMOS Parity Bus Transceivers 22
Am29C841/Am29C843 and Am29C941/Am29C943 High-Performance CMOS Bus Interface Latches 33
Am29C861/Am29C863 and Am29C961/Am29C963 High-Performance CMOS Bus Transceivers 40
Am29C818 CMOS Pipeline Register with SSR Diagnostics 47
Am29800A High-Performance Bipolar Bus Interface Family
Am29821A/Am29823A/Am29825A and Am29921A/Am29923A/Am29925A High-Performance Bus Interface Registers 56
Am29827A/Am29828A High-Performance Buffers 66
Am29833A/Am29853A/Am29855A High-Performance Parity Bus Transceivers 72
Am29841A/Am29843A/Am29845A and Am29941A/Am29943A/Am29945A High-Performance Bus Interface Latches 83
Am29861A/Am29863A High-Performance Bus Transceivers 93
Am29818A Pipeline Register with SSR Diagnostics 101
DEVICE GATE COUNTS 110
PACKAGE OUTLINES 111

NUMERICAL DEVICE INDEX

Am29818A
Am29C818
Am29821A
Am29C821
Am29823A
Am29C823
Am29825A
Am29827A
Am29C827
Am29828A
Am29C828
Am29833A
Am29C833
Am29841A
Am29C841
Am29843A
Am29C843
Am29845A
Am29853A
Am29C853
Am29855A
Am29C855
Am29861A
Am29C861
Am29863A
Am29C863
Am29921A
Am29C921
Am29923A
Am29C923
Am29925A
Am29C927
Am29C928
Am29C933
Am29941A
Am29C941
Am29943A
Am29C943
Am29945A
Am29C953
Am29C955
Am29C961
Am29C963

Bipolar Pipeline Register with SSR Diagnostics 101
CMOS Pipeline Register with SSR Diagnostics................................... 47
High-Performance Bipolar 10-Bit Bus Interface Register 56
High-Performance CMOS 10-Bit Bus Interface Register........................... 9
High-Performance Bipolar 9-Bit Bus Interface Register 56
High-Performance CMOS 9-Bit Bus Interface Register 9
High-Performance Bipolar 8-Bit Bus Interface Register 56
High-Performance Bipolar 10-Bit Noninverting Bus Buffer 66
High-Performance CMOS 10-Bit Noninverting Bus Buffer...................... 16
High-Performance Bipolar 10-Bit Inverting Bus Buffer 66
High-Performance CMOS 10-Bit Inverting Bus Buffer........................... 16
High-Performance Bipolar Parity Bus Transceiver - Register Option.... 72
High-Performance CMOS Parity Bus Transceiver - Register Option 22
High-Performance Bipolar 10-Bit Bus Interface Latch........................... 83
High-Performance CMOS 10-Bit Bus Interface Latch 33
High-Performance Bipolar 9-Bit Bus Interface Latch 83
High-Performance CMOS 9-Bit Bus Interface Latch............................. 33
High-Performance Bipolar 8-Bit Bus Interface Latch 83
High-Performance Bipolar Parity Bus Transceiver - Latch Option 72
High-Performance CMOS Parity Bus Transceiver - Latch Option........ 22
High-Performance Bipolar Parity Bus Transceiver - Latch Option 72
High-Performance CMOS Parity Bus Transceiver - Latch Option......... 22
High-Performance Bipolar 10-Bit Bus Transceiver 93
High-Performance CMOS 10-Bit Bus Transceiver 40
High-Performance Bipolar 9-Bit Bus Transceiver 93
High-Performance CMOS 9-Bit Bus Transceiver.................................. 40
High-Performance Bipolar 10-Bit Bus Interface Register (Center-V V_{CC}-and-GND Pinout)56
High-Performance CMOS 10-Bit Bus Interface Register (Center-V ${ }_{\text {Cc }}$-and-GND Pinout) 9
High-Performance Bipolar 9-Bit Bus Interface Register (Center-V V_{cc}-and-GND Pinout) 56
High-Performance CMOS 9-Bit Bus Interface Register (Center-V Cc^{-}-and-GND Pinout) 9
High-Performance Bipolar 8-Bit Bus Interface Register (Center-V ${ }_{\text {cc }}$-and-GND Pinout) 56
High-Performance CMOS 10-Bit Noninverting Bus Buffer (Center-V ${ }_{c c}$-and-GND Pinout) 16
High-Performance CMOS 10-Bit Inverting Bus Buffer (Center-V $\mathrm{Cc}_{\text {-and-GND Pinout) }}$ 16
High-Performance CMOS Parity Bus Transceiver - Register Option (Center-V V_{cc}-and-GND Pinout) 22
High-Performance Bipolar 10-Bit Bus Interface Latch 83
High-Performance CMOS 10-Bit Bus Interface Latch (Center-V V_{cc}-and-GND Pinout) 33
High-Performance Bipolar 9-Bit Bus Interface Latch 83
High-Performance CMOS 9-Bit Bus Interface Latch (Center-V ${ }_{\text {Cc }}$-and-GND Pinout) 33
High-Performance Bipolar 8-Bit Bus Interface Latch 83
High-Performance CMOS Parity Bus Transceiver - Latch Option (Center-V $\mathrm{VC}_{\text {-and-GND Pinout) }}$ 22
High-Performance CMOS Parity Bus Transceiver - Latch Option (Center-V ${ }_{\mathrm{cc}}$-and-GND Pinout) 22
High-Performance CMOS 10-Bit Bus Transceiver (Center-V Cc^{-}-and-GND Pinout) 40
High-Performance CMOS 9-Bit Bus Transceiver (Center-V Cc^{-}-and-GND Pinout) 40

INTRODUCTION

This document contains product specifications for two series of high-performance bus interface devices - the CMOS Am29C800 Family and the Bipolar Am29800A Family. Together these families provide interface solutions for many system applications, offering a variety of interface functions in 8 -, 9 -, and 10-bit data paths.

The Am29C800 High-Performance CMOS Bus Interface Family provides bipolar-compatible speed performance at a fraction of the static power consumption. This series consists of CMOS registers, latches, buffers, transceivers, parity transceivers, and pipeline registers, all of which are pin-for-pin compatible with their bipolar Am29800A counterparts. Produced with AMD's exclusive CS-11 CMOS process, the Am29C800s feature 24-mA output drive current over the commercial and military operating ranges. In addition, the DC and AC electrical parameters are specified in accordance with the most current recommendations of the JEDEC JC40.2 committee, which is preparing a standard for FCT-compatible CMOS specifications.

The Am29800A High-Performance Bipolar Bus Interface Family is a performance upgrade of AMD's industry-standard Am29800 Family. The new Am29800As offer higher speed and lower power consumption than their predecessors, while maintaining an output drive current of 48 mA (commercial) and 32 mA (military). Am29800A functions include registers, latches, buffers, transceivers, parity transceivers, and pipeline registers, all of which are pin-for-pin compatible with the

Am29800s, as well as the Am29C800s. The Am29800As are produced with AMD's patented IMOX bipolar process, which provides the speed and drive capability necessary for today's high-performance systems.

The Am29C800s and the Am29800As are available in a wide varjety of package options, including 24 -pin slim plastic and ceramic DIPs, 24 -pin ceramic flatpacks, and 28 -pin plastic leaded and ceramic leadless chip carriers. 24-pin plastic small outline packages are planned as future offerings; physical dimensions for each of these package types can be found in the Package Outline section at the end of this data book.
For selected members of the Am29C800 and Am29800A Families, a DIP pinout option, featuring center $V_{c c}$ and GND pins, reduces the lead inductance of the V_{CC} and GND pins. This pinout is achieved by rotating the die 90 degrees inside the DIP package. The bipolar (Am29800A) devices with this "rotated" pinout will be designated Am29900A, and the CMOS (Am29C800) devices with this pinout will be called Am29C900. For specific pinouts and ordering part numbers, see the individual data sheets.

Information common to each of the devices in the Am29C800 and Am29800A families, such as test circuits, waveforms, propagation delay graphs, ESD data, and capacitance data appears at the beginning of the data book. Individual data sheets follow.

For more information, please contact the nearest AMD sales office or representative.

SWITCHING TEST CIRCUIT

THREE-STATE OUTPUTS

TC002682

SWITCH POSITIONS FOR PARAMETER TESTING

Parameter	s Position
$t_{\text {PLH }}$	OPEN
$t_{\text {PHL }}$	OPEN
t_{HZ}	OPEN
t_{ZH}	OPEN
t_{LZ}	CLOSED
t_{ZL}	CLOSED

Note: Switch is closed for tests on open-collector and open-drain outputs.

SWITCHING TEST WAVEFORMS

Enable and Disable Times

WF001271
Pulse Width

TEST PHILOSOPHY AND METHODS

The following points give the general philosophy that we apply to tests that must be properly engineered if they are to be implemented in an automatic testing environment. The specifics of what philosophies are applied to which test are shown in the data sheet and the data sheet reconciliations that follow.

Capacitive Loading for AC Testing

Automatic test equipment (ATE) and its associated hardware has stray capacitance that varies from one type of tester to another, but is generally around 50 pF . This makes it impossible to make direct measurements of parameters that call for smaller capacitive load than the associated stray capacitance. Typical examples of this are the so-called "float delays" that measure the propagation delays into the high-impedance state, and are usually specified at a load capacitance of 5.0 pF . In these cases, the ATE test is performed at the higher load capacitance (typically 50 pF), and engineering correlations based on data taken with a bench setup are used to determine the result at the lower capacitance.

Similarly, a product may be specified at more than one capacitive load. Since the typical ATE is not capable of switching loads in mid-test, it is impractical to make measurements at both capacitances, even though they may both be greater than the stray capacitance. In these cases, a measurement is made at one of the two capacitances. The result at the other capacitance is determined from engineering correlations based on data taken with a bench setup and the knowledge that certain DC tests are performed in order to facilitate this correlation.
AC loads specified in the data sheet are used for bench testing. Automatic tester loads, which simulate the data sheet loads, may be used during production testing.

Threshold Testing

The noise associated with automatic testing, the long inductive cables, and the high gain of devices near threshold frequently give rise to oscillations when testing high-speed circuits. These oscillations are not indicative of a reject device, but instead, of an overtaxed system. To minimize this problem, thresholds are tested at least once for each input pin.

Thereafter, 'hard" HIGH and LOW levels are used for other tests. Generally, this means that function and AC testing are performed at "hard" input levels.

AC Testing

Some AC parameters cannot be measured accurately on automatic testers because of tester limitations. In these cases, the parameter in question is tested by correlating the tester data to bench data.

Certain AC tests are guaranteed by correlating to other tests that have already been performed. In these cases, the redundant tests are not performed.

Output Short-Circuit Current Testing

When performing $I_{s c}$ tests on devices containing latches or registers, great care must be taken that undershoot caused by grounding the high-state output does not trigger parasitic elements, which in turn cause the device to change state. In order to avoid this effect, it is common to make the measurement at a voltage ($\mathrm{V}_{\text {output }}$) that is slightly above ground. The $V_{C C}$ is raised by the same amount so that the result is identical to the $V_{O U T}=0, V_{C C}=$ Max. case.

Am29800 TYPICAL CAPACITANCE VALUES

The following table shows typical zero bias capacitance values for ceramic packages.

Device Family	Output to GND	Output to $\mathbf{V}_{\mathbf{c c}}$	Input to GND	Input to $\mathbf{V}_{\mathbf{c c}}$
Am29C800	10 pF	10 pF	5 pF	5 pF
Am29800A	15 pF	15 pF	10 pF	10 pF

TYPICAL SWITCHING SPEEDS vs. LOAD CAPACITANCE

AC delays in the Am29800 data sheets are specified for unloaded outputs only. The following graphs show the typical effects of increased capacitive loads on propagation delays. Note that these graphs display typical derating, over the entire V_{CC} and temperature range.

TYPICAL SWITCHING SPEEDS vs. NUMBER OF OUTPUTS SWITCHING

Some degradation of propagation delay is normally experienced when several outputs switch simultaneously. By indus-
try convention, data sheet limits are specified for only one output switching. To assist the system designer, we offer the following graphs to estimate speed degradation in the Am29800 Family.

Am29C800
typical
propagation
delay
delay delta
(in ns)

Am29800A
typical
propagation
delay detha
(in ns)

OP002320

Note that these graphs are to be used as design guidelines and should not be used to generate specification limits.

The measurements for deriving this graph were done on a carefully built AC jig in a noise-free environment. All outputs were loaded according to data sheet specifications, and in the case of buffers and transceivers, all inputs were switched simultaneously from the same signal source.

It is important to note that conditions external to the device can also contribute to the speed degradation. For example, inductance of PC board traces, inefficient GROUND and $V_{C C}$ planes, and inadequate bypassing can cause significant GROUND and V_{Cc} bounce which will in turn degrade AC delay when several bits are switched simultaneously. In the case of buffers and transceivers, input signal skew will cause a sustained disturbance of internal threshold due to a protracted GROUND bounce within the device. This can result in further degradation of AC delays. These conditions are applicationspecific. Therefore, if the system designer sees speed degradation much in excess of the guidelines given, a closer look should be taken at board layout and the application.

ESD PROTECTION

All Am29C800 and Am29800A devices are protected from ESD damage up to 2000 V .

SIMULTANEOUS SWITCHING CONSIDERATIONS

High current drive, short propagation delays, and fast logic level transitions at the output are the characteristics of TTLcompatible high-speed bus interface circuits, such as those in the Am29C800 and Am29800A family of products. When they are used in high-performance systems, simultaneous switching of several outputs is a common occurence. During such switching, noise is generated due to rapid changes in the drive currents (di/dt) and their interaction with the parasitic inductance (L) of the bonding wires and package leads associated with the V_{CC}, GROUND, and output terminals. This section describes the nature of this noise, its impact on circuit behavior, and the measures that can be taken by the IC vendor and the system designer to minimize the effects of this noise.

Description of the Problem

The problem is best described with reference to a simplified first-order equivalent circuit of the output of a high-speed bus interface device. Switches S1 and S2 represent active pull-up and pull-down structures. L1, L2, and L3 represent the parasitic lumped inductances associated with the V_{cc}, GROUND, and output terminals of the device. The output switches are designed to carry high currents so that fast TTL logic level transitions can occur at the output in the presence of heavy capacitance loading.

Figure 1. Equivalent Circuit of Bus Interface Output

During the switching of an output, rapid changes occur in the current levels in the V_{cc}, GROUND, and output leads due to the load charging current and the "overlap" current through switches S1 and S2 if these switches turn on simultaneously for a short time. The resulting di/dt and its interaction with L1 and L2 disturb the static voltage levels at the device $V_{C C}$ and GROUND pads. This superimposed noise at the internal power supply nodes is commonly referred to as the ' V_{CC} and GROUND BOUNCE.' Since the magnitude of this noise is a function of di/dt, it is higher when several outputs switch simultaneously.

As an example, consider a 24 -lead ceramic DIP package with a GND pin (pin \#12) inductance of 15 nH . A di/dt of $50 \mathrm{~mA} / \mathrm{ns}$ caused by simultaneous switching of multiple outputs will result in a GROUND bounce of $15 \times 50=750 \mathrm{mV}$ magnitude. Note that parasitic effects external to the package are ignored in this calculation.

Effects of Ground and $V_{\text {cc }}$ Bounce

The total magnitude of the $V_{C C}$ and GROUND noise caused by di/dt and parasitic inductances is a function of circuit configuration, package characteristics, and PC board layout external to the device. Depending on the magnitude of the bounce, one or more of the following effects may occur in a system environment:

1. When several outputs are switching simultaneously, the static logic level of an unswitched output may be disturbed, and may cross the input logic recognition level ($\mathrm{V}_{\mathbb{H}}$ or $\mathrm{V}_{\mathbb{I}}$) of the circuits connected to that output.
2. Non-monotonic transitions may occur at the switched outputs due to violation of noise immunity within the circuit.
3. Circuits with storage elements, such as latches and flipflops, may experience loss of data due to false clocking or latching of erroneous data.
4. A protracted disturbance of voltage levels at internal nodes may cause significant degradation of propagation delays when several outputs are switched simultaneously.

System Design Considerations

The following guidelines will help the system designer minimize the adverse effects of V_{cc} and GROUND bounce when using high-speed interface devices in a high-performance system.

1. GROUND and $V_{c c}$ planes must be used to minimize parasitic effects. Wire-wrap boards will exacerbate the noise problem.
2. Use of sockets or device carriers must be avoided since these will add to the parasitic inductance and increase power supply noise.
3. It is recommended that each device be bypassed directly at the power pins with a high-frequency bypass capacitor in addition to the normal bypassing scheme.
4. Simultaneous switching of several control lines coincident with the switching of multiple outputs should be avoided.
5. Use of a package type that has lower pin parasitics will help minimize the effects of power supply and ground noise. AMD offers surface mount devices (in PLCC, LCC, and SO) and 'rotated-die' devices (Am29C900, Am29900A) which
reduce the lead inductance associated with the V_{CC} and GND pins.
6. If possible, system timing can be adjusted to allow for settling time before reading the data on the bus.
7. External series damping resistors can be used on the outputs that are subjected to simultaneous switching. This will slow down the transition times and reduce di/dt effects.
8. By reducing the loading on the circuits that drive sensitive control lines such as CLOCK, CLEAR, PRESET, and LATCH ENABLE, noise immunity can be improved at these inputs.

Summary

Package lead inductance and other parasitics contribute to the noise induced in high-speed, high-drive integrated circuits. This noise gets worse if multiple outputs are switched simultaneously and can cause performance degradation. The system designer should be aware of the problems associated with high-speed switching and should carefully evaluate the application and system considerations.

Am29C800 POWER DISSIPATION CONSIDERATIONS

Introduction

CMOS bus interface devices (8,9 , and 10 bits wide) are rapidly invading the arena previously dominated by bipolar devices. This is because CMOS technology has made sufficient progress to provide an alternative to bipolar in terms of both highspeed and high-drive. In addition, at low data rates, CMOS devices offer much lower power dissipation when compared with their bipolar counterparts. However, there are some overzealous claims made with regard to this "power advantage." Statements such as "stingy CMOS consumes negligible power when driving high-speed buses" are too general and can be misleading. This report explains the basics of switching in CMOS circuits and provides guidelines for calculating power dissipation in CMOS parallel interface circuits.

Definition of Terms

$I_{\mathrm{CC}(\mathrm{Q})}$ - Quiescent power supply current
$I_{\text {cc(})}$ - Power supply current component per input at TTL HIGH level
$I_{C C(D)}$ - Dynamic power supply current expressed in $\mu \mathrm{A} / \mathrm{MHz} / \mathrm{bit}$
f - Equivalent toggle frequency at the output
C_{i} - Load capacitance per output
C_{i} - Lumped equivalent circuit capacitance per bit

Power Supply Current Components

A CMOS circuit operating in a TTL environment has three power supply current ($I_{c c}$) components. The total $I_{c c}$, when multiplied by V_{cc}, will determine the total power dissipated in the device.

The first component is the quiescent current $l_{\mathrm{CC}(\mathrm{Q})}$. This is the leakage current through the device when all inputs are tied to either V_{cc} rail or GND, and all outputs are open (no load). This current is typically in the microamps region, and represents STAND-BY (or quiescent) power dissipation. Its contribution to the total power dissipation is insignificant at high data rates.

The second component is $\mathrm{I}_{\mathrm{cc}(\mathrm{T}}$, the current in TTL-compatible input stages. Because of the difference in threshold for N channel and P-channel devices, each input stage offers a DC path from V_{CC} to GND. This I_{CC} component is a function of input voltage applied. Figure 2 shows a typical $\mathrm{I}_{\mathrm{CC}(\mathrm{n}}$ characteristic as a function of $\mathrm{V}_{\mathbb{I}}$.

Figure 2. Typical $\mathrm{I}_{\mathbf{c C (T}}$ as a Function of $\mathbf{V}_{\mathbf{I N}}$

Considering 'realistic' worst-case conditions, $I_{\mathrm{cc}(\mathrm{T})}$ is normally specified at $\mathrm{V}_{\mathbb{N}}=3.4 \mathrm{~V}$. Its value is given on a per input basis. To determine the total $\mathrm{I}_{\mathrm{cc}(\mathrm{T}}$ per device, one needs to know the number of inputs and the duty cycle for those inputs in HIGH state.

Note that the $\mathrm{I}_{\mathrm{CC}(\mathrm{T}}$ component applies to CMOS circuits operating in a TTL environment and driven by bipolar TTL circuits. In an all-CMOS environment, the driving signals (input signals) to such interface circuits will be close to V_{CC} rail or GND. In such cases $\mathrm{I}_{\mathrm{CC}(\boldsymbol{T}}$ is not applicable.
The third component is the dynamic power supply current $I_{\text {CC(D). }}$. This current represents the power dissipated in the device in order to charge and discharge internal node capacitances in the device as well as any external load connected to the outputs. This component is a function of operating frequency and load capacitance, and dominates the total $I_{c C}$ at high data rates. Therefore it is discussed in further detail in the following sections.

Back to Basics

Consider a simple buffer gate. Figure 3-1 shows the lumped equivalent capacitance of the circuit internal to the device. This capacitance C_{i} is charged rail-to-rail at frequency f . When the gate has load C_{L} at the output as shown in Figure 3-2, this load is also charged rail-to-rail.

Figure 3-1. Unloaded Buffer

The term "average" rate used in the example above needs some explanation. Since the dynamic I_{cc} is attributed to signal transitions, its value is highest when all outputs have a 1010... pattern at the data rate. However, such a pattern on a continuous basis is not realistic because it does not contain any information, except, of course, in a clock driver application. Therefore, to obtain a "realistic" worst-case $I_{\mathrm{cC}(\mathrm{D})}$, one needs to estimate an average rate based on expected number of transitions. This average rate is lower than the data rate.

Total Power Supply Current (An Example)

For any given condition, the total I_{CC} is given by:

$$
I_{\mathrm{cc}}(\text { total })=I_{\mathrm{cc}(Q)}+I_{\mathrm{cc}(\mathrm{~T}}+I_{\mathrm{cc}(\mathrm{D})}
$$

Consider the following specification for the 10-bit buffer used in the last example:

To find the total I_{Cc} at a data rate of $10 \mathrm{MHz}(50 \%$ duty cycle) when all outputs have $50-\mathrm{pF}$ load:

1. $I_{\mathrm{cC}(\mathrm{O})}=0.15 \mathrm{~mA}$
2. $\mathrm{l}_{\mathrm{CC}(\mathrm{T}}=10$ bits $\times 1.5 \mathrm{~mA}$ per bit $\times 0.5=7.5 \mathrm{~mA}^{*}$

* Control inputs (such as $\overline{\mathrm{OE}}$) are assumed to be at logic LOW; therefore their contribution to $\mathrm{I}_{\mathrm{CC}(\mathrm{T}}$ is ignored.

3. $\mathrm{I}_{\mathrm{CC}(\mathrm{D})} @ 50 \mathrm{pF}=0.2 \frac{50+40}{40}=0.45 \mathrm{~mA} / \mathrm{MHz}$
(see example shown earlier)
Therefore:
$\mathrm{I}_{\mathrm{CC}(\mathrm{D})}$ for the device $=10$ bits $\times 0.45$ per bit $\times 10 \mathrm{MHz}=45$ mA

Total $\mathrm{I}_{\mathrm{CC}}=0.15+7.5+45=52.65 \mathrm{~mA}$

Summary

A system designer needs to consider all components of power supply current, and calculate the total I_{cc} based on the frequency of operation and loading. This is particularly important if CMOS parallel interface devices are used in high-speed bus applications.

Am29C800 TYPICAL I ${ }_{\text {ccd }}$ vs. FREQUENCY PLOTS

For CMOS devices, I_{cc} is very dependent on the frequency of operation. The graphs below show the increase in dynamic I_{cc} as frequency increases. These graphs represent typical performance over the V_{CC} and temperature operating ranges and are not included in production testing.

Am29C861/Am29C863 Am29C833/Am29C853/Am29C855

OP002480

Am29C821／Am29C823 Am29C921／Am29C923
 High－Performance CMOS Bus Interface Registers

DISTINCTIVE CHARACTERISTICS

－High－speed parallel positive edge－triggered registers with D－type flip－flops

- CP－Y propagation delay $=8 \mathrm{~ns}$ typical
－Low standby power
－JEDEC FCT－compatible specs
－ $\mathrm{IOL}^{2}=24 \mathrm{~mA}$ ，Commercial and Military
－Extra－wide（9－and 10－bit）data paths
－Am29C900 DIP pinout option reduces lead inductance on $V_{C C}$ and GND pins

GENERAL DESCRIPTION

The Am29C821 and Am29C823 CMOS Bus Interface Registers are designed to eliminate the extra devices required to buffer stand alone registers and to provide extra data width for wider address／data paths or buses carrying parity．The Am29C800 registers are produced with AMD＇s exclusive CS－11 CMOS process，and feature typical propa－ gation delays of 8 ns ，as well as an output current drive of 24 mA ．

The Am29C821 is a buffered， 10 －bit version of the popular ＇374／＇534 function．The Am29C823 is a 9－bit buffered
register with Clock Enable（ $\overline{\mathrm{EN}}$ ）and Clear（ $\overline{\mathrm{CLR}}$ ）－ideal for parity bus interfacing in high－performance micropro－ grammed systems．

The Am29C821 and Am29C823 are available in the stan－ dard package options：DIPs，PLCCs，LCCs，SOICs，and Flatpacks．In addition，a DIP pinout option，featuring center $V_{C C}$ and GND pins，reduces the lead inductance of the $V_{C C}$ and GND pins．The ordering part numbers for CMOS registers with this pinout are the Am29C921 and Am29C923；their pinouts are shown later in this data sheet．

BLOCK DIAGRAMS

Am29C821

Am29C823

BD005481

CONNECTION DIAGRAMS Top View	
Am29C821 DIPs* LCC**	Am29C921
*Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs. **Also available in 28-Pin PLCC; pinout identical to LCC.	Am29C923 DIPs

LOGIC SYMBOLS

Am29C821

LS000452

Am29C823

FUNCTION TABLES

Am29C821

Inputs			Internal	Outputs	
	$\mathbf{D}_{\mathbf{i}}$	$\mathbf{C P}$	$\overline{\mathbf{Q}_{\mathbf{i}}}$	$\mathbf{Y}_{\mathbf{i}}$	Function
H	L	\uparrow	H	\mathbf{Z}	
H	H	\uparrow	L	\mathbf{Z}	
L	L	\uparrow	H	L	Load
L	H	\uparrow	L	H	

Am29C823

Inputs					Internal	Outputs	
$\overline{\text { OE }}$	CLR	EN	D_{1}	CP	$\overline{\mathbf{a}}_{1}$	r_{1}	Function
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\stackrel{L}{L}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	t	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & z \\ & z \end{aligned}$	Hi-Z
$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\stackrel{L}{\mathrm{~L}}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{array}{\|l\|} \hline x \\ x \end{array}$	$\begin{array}{\|l\|} \hline x \\ x \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	Z_{L}	Clear
$\underset{\mathrm{L}}{\mathrm{H}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}\right.$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{gathered} z \\ N C \end{gathered}$	Hold
H H L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{array}{\|l} \mathrm{L} \\ \mathrm{H} \\ \mathrm{~L} \\ \mathrm{H} \end{array}$	$\begin{aligned} & \dagger \\ & \dagger \\ & \dagger \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & H \end{aligned}$	$\begin{aligned} & Z \\ & Z \\ & L \\ & H \end{aligned}$	Load

NC = No Change
$\uparrow=$ LOW-to-HIGH Transition
Z = High Impedance

ORDERING INFORMATION

Standard Products
AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION

Am29C821 CMOS 10-Bit Register
Am29C823 CMOS 9-Bit Register
Am29C921 CMOS 10-Bit Register (Center-VCC-and-GND Pinout)
Am29C923 CMOS 9-Bit Register (Center-VCC-and-GND Pinout)

Valid Combinations	
AM29C821	PC, PCB, DC, DCB,
AM29C823	DE, SC, JC, LC
AM29C921	PC, PCB, DC, DCB,
AM29C923	DE

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION（Cont＇d．）

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges．APL（Approved Products List）products are fully compliant with MIL－STD－883C requirements．The order number（Valid Combination）for APL products is formed by a combination of：a．Device Number
b．Speed Option（if applicable）
c．Device Class
d．Package Type
e．Lead Finish

Valid Combinations	
AM29C821	／BLA，／BKA，／B3A
AM29C823	
AM29C921	／BLA
AM29C923	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device．Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations．

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

Am29C821／Am29C823

$\mathrm{D}_{\mathrm{i}} \quad$ Data Input（Input）
D_{i} are the register data inputs．
CP Clock Pulse（Input，LOW－to－HIGH Transition）
Clock Pulse is the clock input for the registers．Data is entered into the registers on the LOW－to－HIGH transitions．
$\mathbf{Y}_{\mathbf{i}}$ Data Outputs（Output）
Y_{i} are the three－state outputs．
$\overline{\mathbf{O E}} \overline{\text { Output Enable }}$（Input，Active LOW）
When the $\overline{O E}$ input is HIGH，the Y_{i} outputs are in the high－ impedance state．When $\overline{O E}$ is LOW，the register data is present at the Y_{i} outputs．

Am29C823 only：
EN Clock Enable（Input，Active LOW）
When $\overline{E N}$ is LOW，data on the D_{i} inputs are transferred to the \bar{Q}_{i} outputs on the LOW－to－HIGH clock transition．When $\overline{E N}$ is HIGH，the \bar{Q}_{i} outputs do not change state，regardless of the data or clock input transitions．

CLR Clear（Input，Active LOW）

When CLR is LOW，the internal register is cleared．When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW，the \bar{Q}_{i} outputs are HIGH． When CLR is HIGH，data can be entered into the register．

ABSOLUTE MAXIMUM RATINGS
Storage Temperature \qquad -65 to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous \qquad -0.5 V to +7.0 V
DC Output Voltage........................ 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage......................... 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current: Into Output.............. +50 mA Out of Output-50 mA
DC Input Diode Current: Into Input +20 mA Out of Input - 20 mA
DC Output Current per Pin: ISink $\ldots \ldots+48 \mathrm{~mA}(2 \times \mathrm{lOL})$ ISource $\ldots \ldots .-30 \mathrm{~mA}(2 \times \mathrm{lOH})$ Total DC Ground Current . $\left(\mathrm{n} \times \mathrm{lOL}^{2}+\mathrm{m} \times \mathrm{ICCT}\right.$) mA (Note 1) Total DC VCC Current $\left(\mathrm{n} \times \mathrm{IOH}_{\mathrm{O}}+\mathrm{m} \times \mathrm{I} \mathrm{ICCT}\right) \mathrm{mA}$ (Note 1)
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}). 0 to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) $\ldots \ldots \ldots \ldots \ldots \ldots . .+4.5 \mathrm{~V}$ to +5.5 V
Military (M) and Extended Commercial (E) Devices
Temperature (T_{A}). .. -55 to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}=24 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-1.2	Volts
IL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$				-5	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				10	
IOZH	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=5.5 \mathrm{~V}$ or 2.7 V (Note 3)				+10	$\mu \mathrm{A}$
lozl		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ or GND (Note 3)				-10	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 4)			-60		mA
ICCQ	Static Supply Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	MIL		160	$\mu \mathrm{A}$
				COM'L		120	
ICCT			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\overline{\mathrm{OE}}, \overline{\mathrm{CLR}}, \mathrm{CP},}$		3.0	
${ }^{\prime} \mathrm{CCD} \dagger$	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 5)				275	$\mu \mathrm{A} / \mathrm{MHz}$ Bit

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $\mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITHCING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tplH	Propagation Delay Clock to Y_{i} ($\mathrm{OE}=\mathrm{LOW}$)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		12		14	ns
tpHL				12		14	ns
ts	Data to CP Setup Time		4		6		ns
t_{H}	Data to CP Hold Time		2		3		ns
ts	Enable (EN L) to CP Setup Time		4		6		ns
ts			4		6		ns
${ }_{\text {H }}$	Enable (EN」) to CP Setup Time Enable (EN) Hold Time		2		3		ns
tpHL	Propagation Delay, Clear to Y_{i}			13		15	ns
$t_{\text {REC }}$	Clear ($\overline{\mathrm{CLF}}$ -) to CP Setup Time		4		6		ns
tpWH	Clock Pulse Width		7		11		ns
tpWL			7		11		ns
tpWL	Clear Pulse Width		7		11		ns
$\mathrm{t}_{\mathrm{Z} \mathrm{H}}$	Output Enable Time $\overline{O E}$ L to Y_{i}			12		14	ns
tzL				12		14	ns
t_{Hz}	Output Disable Time $\overline{O E} \Gamma$ to Y_{i}			12		14	ns
tLZ				12		14	ns

[^0]
Am29C827/Am29C828 Am29C927/Am29C928

High-Performance CMOS Bus Buffers

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS buffers and inverters
- D-Y delay $=7$ ns typical

Low standby power

- JEDEC FCT-compatible specs
- lol $=24 \mathrm{~mA}$, Commercial and Military
- 200-mV typical hysteresis on data input ports
- Am29C900 DIP pinout option reduces lead inductance on $V_{C C}$ and GND pins

GENERAL DESCRIPTION

The Am29C827 and Am29C828 CMOS Bus Buffers provide high-performance bus interface buffering for wide address/ data paths or buses carrying parity. Both devices feature 10-bit wide data paths and NORed output enables for maximum control flexibility. The Am29C827 has non-inverting outputs, while the Am29C828 has inverting outputs. Each device has data inputs with $200-\mathrm{mV}$ typical input hysteresis to provide improved noise immunity. The Am29C827 and Am29C828 are produced with AMD's exclusive CS-11 CMOS process, and feature typical propa-
gation delays of 7 ns , as well as an output current drive of 24 mA .

The Am29C827 and Am29C828 are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center V_{CC} and GND pins, reduces the lead inductance of the V_{CC} and GND pins. The ordering part numbers for CMOS buffers with this pinout are the Am29C927 and Am29C928; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS

Am29C827 (Noninverting)

BD001092

Am29C828 (Inverting)

BD001093

ORDERING INFORMATION Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

AM29C827	$\frac{P}{1}$ $\frac{\mathrm{c}}{\mathrm{~T}}$	e. OPTIONAL PROCESSING Blank $=$ Standard processing $B=$ Burn-in d. TEMPERATURE RANGE $\mathrm{C}=$ Commercial (0 to $+70^{\circ} \mathrm{C}$) $\mathrm{E}=$ Extended Commercial (-55 to $+125^{\circ} \mathrm{C}$) c. PACKAGE TYPE $\mathrm{P}=24$-Pin Slim Plastic DIP (PD3024) $\mathrm{D}=24$-Pin Slim Ceramic DIP (CD3024) $\mathrm{S}=24$-Pin Plastic Small Outline Package (SO 024) $\mathrm{J}=28$-Pin Plastic Leaded Chip Carrier (PL 028) $\mathrm{L}=28$-Pin Ceramic Leadless Chip Carrier (CL 028)

b. SPEED OPTION

Not Applicable

Valid Combinations	
AM29C827	PC, PCB, DC, DCB,
AM29C828	DE, SC, JC, LC
AM29C927	PC, PCB, DC, DCB,
AM29C928	DE

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges．APL（Approved Products List）products are fully compliant with MIL－STD－883C requirements．The order number（Valid Combination）for APL products is formed by a combination of：a．Device Number
b．Speed Option（if applicable）
c．Device Class
d．Package Type
e．Lead Finish

Valid Combinations	
AM29C827	／BLA，／BKA，／B3A
AM29C828	
AM29C927	
AM29C928	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device．Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations．

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION
$\overline{\mathbf{O E}}_{\mathbf{i}} \quad \overline{\text { Output Enables }}$（Input，Active LOW）
When $\overline{O E}_{1}$ and $\overline{O E}_{2}$ are both LOW，the outputs are enabled． When either one or both are HIGH，the outputs are in the Hi － Z state．
$D_{1} \quad$ Data Inputs（Input）
D_{i} are the 10－bit data inputs．
$\mathbf{Y}_{\mathrm{i}} \quad$ Data Output（Output）
Y_{i} are the 10－bit data outputs．

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
Continuous \qquad -0.5 V to +7.0 V
DC Output Voltage...................... -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage........................ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
D \asymp Output Diode Current: Into Output............... +50 mA
Out of Output -50 mA
DC Input Diode Current: Into Input $\ldots \ldots \ldots \ldots \ldots \ldots .+20 \mathrm{~mA}$
Out of Input-20 mA
DC Output Current per Pin:
Isink. $+48 \mathrm{~mA}(2 \times \mathrm{loL})$
IsOURCE $-30 \mathrm{~mA}(2 \times \mathrm{OH})$
Total DC Ground Current . $\mathrm{n} \times \mathrm{IOL}+\mathrm{m} \times \mathrm{ICCT}$) mA (Note 1) Total DC V $V_{C C}$ Current \ldots. $\left(n \times I_{\mathrm{OH}}+m \times \mathrm{ICCT}\right) \mathrm{mA}$ (Note 1)
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature (T_{A}) 0 to $+70^{\circ} \mathrm{C}$	
Supply Voltage (V_{CC}) +4.5 V to +5.5 V	
Military (M) and Extende) Devices
Temperature (T_{A})	-55 to $+125^{\circ} \mathrm{C}$
Supply Voltage (V_{CC})	4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{array}{\|l\|} \hline V_{C C}=4.5 \mathrm{~V} \\ V_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
vol	Output LOW Voltage	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$	$\mathrm{IOL}=24 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
$V_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{IN}}=-18 \mathrm{~mA}$				-1.2	Volts
IL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-5	
I'H	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				10	
IOZH	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=5.5 \mathrm{~V}$ or 2.7 V (Note 3)				+10	$\mu \mathrm{A}$
lozl		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ or GND (Note 3)				-10	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 4)			-60		mA
ICCO	Static Supply Current	$V_{C C}=5.5 \mathrm{~V}$Outputs Open	$\begin{aligned} & V_{I N}=V_{C C} \\ & \text { or GND } \end{aligned}$	MIL		160	$\mu \mathrm{A}$
				COM'L		120	
I'CT			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$		3.0	
${ }^{\prime} \mathrm{CCD}{ }^{+}$	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \vee$ (Note 5)				275	$\mu \mathrm{A} / \mathrm{MHz} /$ Bit

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $\mathrm{V}_{\mathrm{OUT}}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output should be shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.

+ Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tPLH	Data (D_{i}) to Output $\left(\mathrm{Y}_{\mathrm{i}}\right)$ Am29C827 (Noninverting)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		10		12	ns
tphL				10		12	ns
tPLH	Data $\left(D_{i}\right)$ to Output $\left(Y_{i}\right)$ Am29C828 (Inverting)			10		12	ns
$\mathrm{tPHL}^{\text {che }}$				10		12	ns
t ZH	Output Enable Time $\overline{O E}$ to Y_{i}			13		15	ns
t ZL				13		15	ns
t_{Hz}	Output Disable Time $\overline{O E}$ to Y_{i}			13		15	ns
tLZ				13		15	ns

*See Test Circuit and Waveforms.

Am29C833/Am29C853/Am29C855 Am29C933/Am29C953/Am29C955

High-Performance CMOS Parity Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS bidirectional bus transceivers
- T-R delay $=6$ ns typical
- R-Parity delay $=9 \mathrm{~ns}$ typical
- Error flag with open-drain output
- Generates odd parity for all-zero protection
- Low standby power
- Am29C855 adds new functionality
- 200-mV typical input hysteresis on input data ports
- $\mathrm{IOL}=24 \mathrm{~mA}$, Commercial and Military
- JEDEC FCT-compatible specs
- Am29C900 DIP pinout option reduces lead inductance on V_{CC} and GND pins

GENERAL DESCRIPTION

The Am29C833, Am29C853, and Am29C855 are highperformance CMOS parity bus transceivers designed for two-way communications. Each device can be used as an 8 -bit transceiver, as well as a 9-bit parity checker/generator. In the transmit mode, data is read at the R port and output at the T port with a parity bit. In the receive mode, data and parity are read at the T port, and the data is output at the R port along with the $\overline{E R R}$ flag showing the results of the parity test. Each of these devices is produced with AMD's exclusive CS-11 CMOS process, and features a typical propagation delay of 6 ns , as well as an output current drive of 24 mA .

In the Am29C833, the error flag is clocked and stored in a register which is read at the open-drain ERR output. The $\overline{C L R}$ input is used to clear the error flag register. In the Am29C853, a latch replaces this register, and the $\overline{E N}$ and $\overline{\text { CLR }}$ controls are used to pass, store, sample or clear the error flag output. When both output enables are disabled in the Am29C853 and Am29C833, parity logic defaults to the
transmit mode, so that the ERR pin reflects the parity of the R port. The Am29C855, a variation of the Am29C853, is designed so that when both output enables are HIGH, the ERR pin retains its current state.

The output enables, $\overline{O E R}$ and $\overline{O E T}$, are used to force the port outputs to the high-impedance state so that other devices can drive bus lines directly. In addition, the user can force a parity error by enabling both $\overline{\mathrm{OER}}$ and $\overline{\mathrm{OET}}$ simultaneously. This transmission of inverted parity gives the designer more system diagnostic capability.

The Am29C833, Am29C853, and Am29C855 are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center V_{CC} and GND pins, reduces the lead inductance of the VCC and GND pins. The ordering part numbers for CMOS parity transceivers with this pinout are the Am29C933, Am29C953, and Am29C955; their pinouts are shown later in this data sheet.

SIMPLIFIED BLOCK DIAGRAM

FUNCTION TABLES

Am29C833 (Register Option)

Inputs								Outputs				Function
OET	$\overline{\text { OER }}$	CLR	CLK	$\mathbf{R}_{\mathbf{i}}$	Sum of H's of \mathbf{R}_{1}	T_{1}	$\begin{gathered} \text { Sum of } \\ \text { H's } \\ \left(T_{i}+\text { Parity }\right) \end{gathered}$	R_{1}	$\mathrm{T}_{\mathbf{i}}$	Parity	ERR	
	H H H H	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	NA NA NA NA	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
H H H H	L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$		NA NA NA NA	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	H H L L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline H \\ & H \\ & H \\ & L \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
X	X	L	X	X	X	X	X	X	X	X	H	Clear error flag register.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & t \\ & t \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & L \\ & H \end{aligned}$	$\begin{gathered} x \\ x \\ \text { ODD } \\ \text { EVEN } \end{gathered}$		$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \\ & \mathrm{z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \\ & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & z \\ & z \\ & z \\ & z \end{aligned}$	H H H L	Both transmitting and receiving paths are disabled. Parity logic defaults to transmit mode.
L L L		$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$		$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	H L H L	NA NA NA NA	Forced-error checking.
$\begin{aligned} H & =\text { HIGH } \\ \mathrm{L} & =\text { LOW } \\ \uparrow & =\text { LOW-to-HIGH Transition of Clock } \\ \mathrm{X} & =\text { Don't Care or Irrelevant } \end{aligned}$					Z = High Impedance NA $=$ Not Applicable * $=$ Store the State of the Last Receive Cycle				$\begin{aligned} \text { ODD } & =\text { Odd Number } \\ \text { EVEN } & =\text { Even Number } \\ i & =0,1,2,3,4,5,6,7 \end{aligned}$			

TRUTH TABLE

Error Flag Output

Am29C833

Inputs		Internal to Device	Outputs Pre-state	Output	
CLR	CLK	Point 'P'	$\overline{E R R}_{\mathbf{n}}$-1	ERR	Function
H	\uparrow	H	H	H	Sample
H	\uparrow	X	L	L	(1's
H	\uparrow	L	X	L	Capture)
L	X	X	X	H	Clear

Note: $\overline{\mathrm{OET}}$ is HIGH and $\overline{\mathrm{OER}}$ is LOW.

FUNCTION TABLES (Cont'dAm29C853 (Latch Option)												
Inputs								Outputs				Function
$\overline{\text { OET }}$	OER	$\overline{\text { CLR }}$	EN	RI	Sum of H's of $\mathbf{R}_{\mathbf{l}}$	Ti	Sum of H's ($T_{1}+$ Parity)	RI	Ti	Parity	ERR	
L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$	H H H L	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	L L L	L L L	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & L \end{aligned}$	Receive mode: transmits data from T port to R port, passes parity test resulting in error flag. Transmit path is disabled.
H	L	H	H	NA	NA	X	X	X	NA	NA	*	Store the state of error flag latch.
X	X	L	H	X	X	X	X	X	NA	NA	H	Clear error flag latch.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} x \\ x \\ \text { ODD } \\ \text { EVEN } \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline z \\ & Z \\ & Z \\ & z \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{z} \\ & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & Z \\ & Z \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	Both transmitting and receiving paths are disabled. Parity logic defaults to transmit mode.
L L L L	L L L L	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	H H H L	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \hline \end{aligned}$	H H L L	H H H L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & N A \end{aligned}$	Forced-error checking
Am29C855 (Latch Option)												
Inputs								Outputs				
$\overline{\text { OET }}$	$\overline{\text { OER }}$	CLR	EN	$\mathbf{R I}_{\mathbf{I}}$	$\begin{aligned} & \text { Sum of } \\ & \text { H's } \\ & \text { of } \mathbf{R}_{\mathbf{I}} \\ & \hline \end{aligned}$	Ti	$\begin{aligned} & \text { Sum of L's } \\ & \left(T_{1}+\text { Parity }\right) \end{aligned}$	$\mathbf{R}_{\mathbf{I}}$	$\mathrm{T}_{\mathbf{i}}$	Parity	ERR	Function
L L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \hline N A \\ & \text { NA } \\ & \text { NA } \\ & N A \end{aligned}$	H H L L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	**	Transmit mode: transmits data from R port to T port, generating parity. Receive path is disabled.
H H H H	L L L	L L L	L L L	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L L	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	H H L L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H H L	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	L L L	H H H H	L L L	$\begin{aligned} & \hline \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	H H L L	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	H H L L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\stackrel{\mathrm{L}}{\mathrm{~L}}$	Receive mode: transmits data from T port to R port, passes parity test resulting in error flag. Transmit path is disabled.
H	L	H	H	NA	NA	x	X	X	NA	NA	*	Store the state of error flag latch.
X	X	L	H	x	X	x	x	'	NA	NA	H	Clear error flag latch.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\mathrm{L}}{\mathrm{H}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\frac{-1}{z}$	$\begin{aligned} & z \\ & z \end{aligned}$	$\begin{aligned} & z \\ & z \end{aligned}$	H	Both transmitting and receiving paths are disabled.			
L L L	L L L L	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \\ & \hline \end{aligned}$	NA NA NA NA	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & N A \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & L \\ & H \\ & L \end{aligned}$	*	Forced-error checking.
$\begin{aligned} & \mathrm{H}=\mathrm{HIGH} \\ & L=\text { LOW } \\ & X=\text { Don't Care or Irrelevant } \end{aligned}$					Z = High Impedance NA $=$ Not Applicable * $=$ Store the State of the Last Receive Cycle				$\begin{aligned} \text { ODD } & =\text { Odd Number } \\ \text { EVEN } & =\text { Even Number } \\ i & =0,1,2,3,4,5,6,7 \end{aligned}$			

TRUTH TABLE
 Error Flag Output

Am29C853/Am29C855

Inputs		Internal to Device	Outputs Pre-state	Output	Function
EN	CLR	Point 'P'	$E_{\text {ERR }}^{\text {- }}$ -	ERR	
L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	Pass
L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & L \\ & H \end{aligned}$	$\begin{aligned} & L \\ & L \\ & H \end{aligned}$	Sample (1's Capture)
H	L	X	X	H	Clear
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Store

Note: $\overline{O E T}$ is HIGH and $\overline{O E R}$ is LOW.

ORDERING INFORMATION
 Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valld Combinations	
AM29C833	/BLA, /BKA, /B3A
AM29C853	
AM29C855	
AM29C933	
AM29C953	
AM29C955	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29C833/Am29C853/Am29C855

OER Output Enable-Receive (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{i} and Parity are inputs).
$\overline{\text { OET }} \overline{\text { Output Enable-Transmit }}$ (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} and Parity are outputs).
$\mathbf{R}_{\mathbf{i}}$ Receive Port (Input/Output, Three-State)
R_{i} are the 8 -bit data inputs in the Transmit mode, and the outputs in the Receive mode.

Ti Transmit Port (Input/Output, Three-State)
T_{i} are the 8-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Parity Parity Flag (Input/Output, Three-State)

In the Transmit mode, the Parity signal is an active output used to generate odd parity. In the Receive mode, the $\mathrm{T}_{\mathbf{i}}$ and Parity inputs are combined and checked for odd parity. When both output enables are HIGH, the Parity Flag is in the high impedance state. When both output enables are LOW, the Parity bit forces a parity error.

Am29C833 Only

ERR Error Flag (Output, Open Drain) In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the register is cleared.
CLR Clear (Input, Active LOW)
When CLR goes LOW, the Error Flag Register is cleared (ERR goes HIGH).
CLK Clock (Input, Positive Edge-Triggered) This pin is the clock input for the Error Flag register.

Am29C853/Am29C855 Only

ERR Error Flag (Output, Open Drain)
In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the latch is cleared. In the Am29C855, the error flag will retain its previous state when $\overline{\mathrm{OET}}$ and $\overline{\mathrm{OER}}$ are HIGH.
CLR Clear (Input, Active LOW)
When CLR goes LOW and EN is HIGH, the Error Flag latch is cleared (ERR goes HIGH).
EN Latch Enable (Input, Active LOW) This pin is the latch enable for the Error Flag latch.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad -65 to $+150^{\circ} \mathrm{C}$

Supply Voltage to Ground Potential

Continuous
DC Output Voltage
. \qquad
$\ldots . .-0.5 \mathrm{~V}$ to +7.0 V

DC Output Diode Current: Into Output............... +50 mA
Out of Output -50 mA
DC Input Diode Current: Into Input +20 mA
Out of Input-20 mA
DC Output Current per Pin: Isink.......... $48 \mathrm{~mA}(2 \times \mathrm{lOL})$
ISOURCE $\ldots . .-30 \mathrm{~mA}\left(2 \times \mathrm{l}_{\mathrm{OH}}\right)$
Total DC Ground Current . $\left(\mathrm{n} \times \mathrm{I}_{\mathrm{OL}}+\mathrm{m} \times \mathrm{I}_{\mathrm{CCT}}\right.$) mA (Note 1) Total DC V_{CC} Current $\ldots .\left(\mathrm{n} \times \mathrm{IOH}^{+m \times I} \mathrm{ICCT}\right) \mathrm{mA}$ (Note 1)
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Notes: 1. $n=$ number outputs, $m=$ number of inputs
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds
4. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

			COM'L		MIL		
Parameter Symbol	Parameter Description	Test Conditions*	Min.	Max.	Min.	Max.	Units
tplH	Propagation Delay R_{i} to $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$ to R_{i}	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		15		18	ns
tPHL				15		18	ns
tpLH	Propagation Delay $\mathbf{R}_{\boldsymbol{i}}$ to Parity			19		23	ns
tPHL				19		23	ns
${ }_{\mathrm{Z}}^{\mathrm{ZH}}$	Output Enable Time $\overline{\mathrm{OER}}, \overline{\mathrm{OET}}$ to $\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$ and Parity			15		18	ns
t ZL				15		18	ns
t_{Hz}	Output Disable Time $\overline{O E R}, \overline{\mathrm{OET}}$ to $\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$ and Parity			15		18	ns
thz				15		18	ns
ts	T_{i}, Parity to CLK Setup Time (Note 1)		18		21		ns
${ }_{H}$	T_{i}, Parity to CLK Hold Time (Note 1)		0		2		ns
$t_{\text {REC }}$	Clear ($\overline{\mathrm{CLR}} \Gamma$) to CLK Setup Time (Note 2)		15		18		ns
tpWH	Clock Pulse Width (Note 1)		6		9		ns
tpWL			6		9		ns
tpWL	Clear Pulse Width LOW		6		9		ns
tPHL	Propagation Delay CLK to ERR (Note 1)			15		18	ns
tPLH	Propagation Delay $\overline{\text { CLR }}$ to ERR			20		23	ns
tPLH	Propagation-Delay T_{i}, Parity to $\overline{E R R}$ (PASS Mode Only) Am29C853/854			29		33	ns
tPHL				25		28	ns
tPLH	Propagation Delay $\overline{O E R}$ to Parity			22		25	ns
tPHL				22		25	ns

*See test circuit and waveforms.
Notes: 1. For Am29C853/Am29C855, replace CLK with EN.
2. Applies only to Am29C833.

Am29C841/Am29C843 Am29C941/Am29C943
 High-Performance CMOS Bus Interface Latches

DISTINCTIVE CHARACTERISTICS

- High-speed parallel latches
- D-Y propagation delay $=7$ ns typical
- Low standby power
- $\mathrm{IOL}=24 \mathrm{~mA}$, Commercial and Military
- JEDEC FCT-compatible specs
- Extra-wide (9- and 10-bit) data paths
- Am29C900 DIP pinout option reduces lead inductance on V_{CC} and GND pins

GENERAL DESCRIPTION

The Am29C841 and Am29C843 CMOS Bus Interface Latches are designed to eliminate the extra devices required to buffer stand alone latches and to provide extra data width for wider address/data paths or buses carrying parity. The Am29C800 latches are produced with AMD's exclusive CS-11 CMOS process, and feature typical propagation delays of 7 ns , as well as an output current drive of 24 mA .

The Am29C841 is a buffered, 10-bit version of the popular '373 function. The Am29C843 is a 9-bit buffered latch with

Preset ($\overline{\text { PRE }}$) and Clear ($\overline{\mathrm{CLR}}$) - ideal for parity bus interfacing in high-performance microprogrammed systems.

The Am29C841 and Am29C843 are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center $V_{C C}$ and GND pins, reduces the lead inductance of the $V_{C C}$ and GND pins. The ordering part numbers for CMOS latches with this pinout are the Am29C941 and Am29C943; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS
Am29C841

Am29C843

CONNECTION DIAGRAMS Top View	
Am29C841 DIPs* LCC**	Am29C941
DIPs* LCC** *Also available in 24 -Pin Flatpack and Small Outline package; pinout identical to DIPs. **Also available in 28-Pin PLCC; pinout identical to LCC.	

LOGIC SYMBOLS

Am29C841

Am29C843

FUNCTION TABLES

Am29C841

Inputs			Internal	Outputs	
	LE	$\mathbf{D}_{\mathbf{i}}$	$\overline{\mathbf{Q}}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{I}}$	Function
H	X	X	X	Z	Hi-Z
H	H	L	H	Z	Hi-Z
H	H	H	L	Z	Hi-Z
H	L	X	NC	Z	Latched (Hi-Z)
L	H	L	H	L	Transparent
L	H	H	L	H	Transparent
L	L	X	NC	NC	Latched

Am29C843

Inputs					Internal	Outputs	
CLR	PRE	OE	LE	D $_{\mathbf{I}}$	$\overline{\mathbf{Q}_{\mathbf{i}}}$	$\mathbf{Y}_{\mathbf{i}}$	Function
H	H	H	X	X	X	Z	Hi-Z
H	H	H	H	H	L	Z	Hi-Z
H	H	H	H	L	H	Z	Hi-Z
H	H	H	L	X	NC	Z	Latched (Hi-Z)
H	H	L	H	H	L	H	Transparent
H	H	L	H	L	H	L	Transparent
H	H	L	L	X	NC	NC	Latched
H	L	L	X	X	L	H	Preset
L	H	L	X	X	H	L	Clear
L	L	L	X	X	H	H	Preset
L	H	H	L	X	L	Z	Latched (Hi-Z)
H	L	H	L	X	L	Z	Latched (Hi-Z)

$\mathrm{H}=\mathrm{HIGH}$
NC $=$ No Change
L = LOW
Z = High Impedance

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations	
AM29C841	PC, PCB, DC, DCB, DE, SC, JC, AM29C843
LC,	
AM29C941	PC, PCB, DC, AM29C943

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29C841	/BLA, /BKA, /B3A
AM29C843	
AM29C941	/BLA
AM29C943	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups

1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29C841/Am29C843

$D_{1} \quad$ Data Inputs (Input)
D_{i} are the latch data inputs.
Y_{i} Data Outputs (Output)
Y_{i} are the three state data outputs.
LE Latch Enable (Input, Active HIGH)
The latches are transparent when LE is HIGH. Input data is latched on a HIGH-to-LOW transition.

$\overline{\text { OE }} \overline{\text { Output Enable }}$ (Input, Active LOW)

When $\overline{O E}$ is LOW, the latch data is passed to the Y_{i} outputs. When $\overline{O E}$ is HIGH, the Y_{i} outputs are in the high impedance state.

Am29C843 Only

$\overline{\text { PRE }} \overline{\text { Preset }}$ (Input, Active LOW)
When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{O E}$ is LOW. $\overline{\text { PRE }}$ overrides the $\overline{C L R}$ pin. $\overline{\text { RRE will set the latch independent of }}$ the state of $\overline{\mathrm{OE}}$.
$\overline{C L R}$ Clear (Input, Active LOW)
When CLR is LOW, the internal latch is cleared. When $\overline{C L R}$ is LOW, the outputs are LOW if $\overline{O E}$ is LOW and PRE is HIGH. When CLR is HIGH, data can be entered into the latch.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad -65 to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous
DC Output Voltage............................. 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
\qquad $-0.5 \vee$ to $+7.0 \vee$

DC Input Voltage -0.5 V to $+\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current: Into Output $+50 \mathrm{~mA}$
Out of Output . 50 mA
DC Input Diode Current: Into Input................... +20 mA
Out of Input \qquad - 20 mA

DC Output Current per Pin: ISINK......... $+48 \mathrm{~mA}(2 \times \mathrm{IOL})$ ISOURCE $\ldots . .-30 \mathrm{~mA}(2 \times \mathrm{IOH})$
Total DC Ground Current . $\left(\mathrm{n} \times \mathrm{IOL}_{\mathrm{O}}+\mathrm{m} \times \mathrm{ICCT}\right) \mathrm{mA}$ (Note 1) Total DC V_{CC} Current $\ldots .\left(\mathrm{n} \times \mathrm{I}_{\mathrm{OH}}+\mathrm{m} \times \mathrm{I}_{\mathrm{CCT}}\right) \mathrm{mA}$ (Note 1)
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
VOL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOL}^{\prime}=24 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
$V_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
IL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-5	
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$				10	
l OZH	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=5.5 \mathrm{~V}$ or 2.7 V (Note 3)				+10	$\mu \mathrm{A}$
Iozl		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$ or GND (Note 3)				-10	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 4)			-60		mA
ICCO	Static Supply Current	$V_{C C}=5.5 \mathrm{~V}$ Outputs Open	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	MIL		160	$\mu \mathrm{A}$
				COM'L		120	
ICCT			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\mathrm{OE}}, \overline{\mathrm{PRE}}$, $\overline{C L R}, ~ L E$		3.0	
${ }^{\text {ICCD }}{ }^{+}$	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 5)				275	$\mu \mathrm{A} / \mathrm{MHz} /$ Bit

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Off-state currents are only tested at worst-case conditions of $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$ or 0.0 V .
4. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
5. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.

+ Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tplH	Data $\left(D_{i}\right)$ to Output $Y_{i}(L E=H I G H)$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		11		14	ns
$t_{\text {PHL }}$				11		14	ns
ts	Data to LE Setup Time		3		3		ns
t_{H}	Data to LE Hold Time		4		4		ns
tplH	Latch Enable (LE) to Y_{i}			12		14	ns
tPHL				12		14	ns
tPLH	Propagation Delay, Preset to Y_{i}			13		15	ns
$t_{\text {PHL }}$				13		15	ns
trec	Preset ($\overline{\mathrm{PRE}}$ -)		4		4		ns
$t_{\text {PLH }}$	Propagation Delay, Clear to Y_{i}			12		14	ns
tpHL				12		14	ns
$t_{\text {REC }}$	Clear (CLR [) to LE Setup Time		3		3		ns
tpWH	LE Pulse Width		6		9		ns
tPWL	Preset Pulse Width		8		12		ns
tPWL	Clear Pulse Width		8		12		ns
t_{ZH}	Output Enable Time $\overline{O E} L^{\text {to }} Y_{i}$			12		14	ns
tzL				12		14	ns
t_{Hz}	Output Disable Time $\overline{O E} 5$ to Y_{i}			12		14	ns
tLz				12		14	ns

*See Test Circuit and Waveforms.

Am29C861/Am29C863 Am29C961/Am29C963

High-Performance CMOS Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- High-speed CMOS bidirectional bus transceivers
- T-R delay $=7$ ns typical
- Low standby power
- JEDEC FCT-compatible specs
- $\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$, Commercial and Military
- $200-\mathrm{mV}$ typical hysteresis on data input ports
- Am29C900 DIP pinout option reduces lead inductance on V_{CC} and GND pins

GENERAL DESCRIPTION

The Am29C861 and Am29C863 CMOS Bus Transceivers provide high-performance bus interface buffering for wide address/data paths or buses carrying parity. The Am29C861 is a 10-bit bidirectional transceiver; the Am29C863 is a 9-bit transceiver with NORed output enables for maximum control flexibility. Each device features data inputs with $200-\mathrm{mV}$ typical input hysteresis to provide improved noise immunity. The Am29C861 and Am29C863 are produced with AMD's exclusive CS-11 CMOS process, and features a typical propagation delay of 7 ns , as well as an output current drive of 24 mA .

The Am29C861 and Am29C863 are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center $V_{C C}$ and GND pins, reduces the lead inductance of the $V_{C C}$ and GND pins. The ordering part numbers for CMOS transceivers with this pinout are the Am29C961 and Am29C963; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS

Am29C861

Am29C863

CONNECTION DIAGRAMS Top View	
Am29C861	Am29C961 DIPs
DIPs* LCC** CD001140 CD001397 *Also available in 24-Pin Flatpack and Small Outline Package; pinout identical to DIPs. **Also available in 28-Pin PLCC; pinout identical to LCC.	Am29C963 DIPs

LOGIC SYMBOLS

Am29C861

LS000372

FUNCTION TABLES

Am29C861

Inputs				Outputs		
$\mathbf{O E T}$	$\overline{\mathrm{OER}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{I}}$	$\mathbf{T}_{\mathbf{i}}$	
L	H	L	N/A	N/A	L	Transmit
L	H	H	N/A	N/A	H	Transmit
H	L	N/A	L	L	N/A	Receive
H	L	N/A	H	H	N/A	Receive
H	H	X	X	Z	Z	Hi-Z

Am29C863

Inputs								Outputs		
$\overline{\mathrm{OET}}_{\mathbf{1}}$	$\overline{\mathrm{OET}}_{\mathbf{2}}$	$\overline{\mathrm{OER}}_{\mathbf{1}}$	$\overline{\mathbf{O E R}}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{I}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{I}}$	Function		
L	L	H	X	L	N/A	N/A	L	Transmit		
L	L	X	H	L	N/A	N/A	L	Transmit		
H	X	L	L	N/A	L	L	N/A	Receive		
X	H	L	L	N/A	L	L	N/A	Receive		
L	L	H	X	H	N/A	N/A	H	Transmit		
L	L	X	H	H	N/A	N/A	H	Transmit		
H	X	L	L	N/A	H	H	N/A	Receive		
X	H	L	L	N/A	H	H	N/A	Receive		
H	X	H	X	X	X	Z	Z	Hi-Z		
X	H	X	H	X	X	Z	Z	Hi-Z		

[^1]X = Don't Care
$\mathrm{N} / \mathrm{A}=$ Not Applicable

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

AM29C861	$\frac{\mathrm{P}}{1}$ $\frac{\mathrm{c}}{\mathrm{C}}$	e. OPTIONAL PROCESSING Blank = Standard processing $\mathrm{B}=\mathrm{Burn}-\mathrm{in}$ d. TEMPERATURE RANGE $\mathrm{C}=$ Commercial (0 to $+70^{\circ} \mathrm{C}$) $E=$ Extended Commercial (-55 to $+125^{\circ} \mathrm{C}$) c. PACKAGE TYPE $\mathrm{P}=24$-Pin Slim Plastic DIP (PD3024) $\mathrm{D}=24$-Pin Slim Ceramic DIP (CD3024) $\mathrm{S}=24$-Pin Plastic Small Outline Package (SO 024) $\mathrm{J}=28$-Pin Plastic Leaded Chip Carrier (PL 028) $\mathrm{L}=28$-Pin Ceramic Leadless Chip Carrier (CL 028)

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION

Am29C861 CMOS 10-Bit Transceiver
Am29C863 CMOS 9-Bit Transceiver
Am29C961 CMOS 10-Bit Transceiver (Center-Vcc-and-GND Pinout)
Am29C963 CMOS 9-Bit Transceiver (Center-VCC-and-GND Pinout)

Valid Combinations	
AM29C861	PC, PCB, DC, DCB, DE, SC, JC, LC
AM29C863	PC, PCB, DC, AM29C961 DCB, DE

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29C861	/BLA, /BKA, /B3A
AM29C863	
AM29C961	/BLA
AM29C963	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29C861

$\overline{\text { OER }} \overline{\text { Output Enable-Receive }}$ (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{i} are inputs).

OET Output Enable-Transmit (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} are output).
$\mathbf{R}_{\mathbf{j}} \quad$ Receive Port (Input/Output)
R_{i} are the 10-bit data inputs in the Transmit mode, and the outputs in the Receive mode.
T_{i} Transmit Port (Input/Output)
T_{i} are the 10-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Am29C863

$\overline{O E R}_{\mathbf{I}} \overline{\text { Output Enables-Receive }}$ (Input, Active LOW) When both $\overline{\mathrm{OER}}_{1}$ and $\overline{\mathrm{OER}}_{2}$ are LOW while $\overline{\mathrm{OET}}_{1}$ or $\overline{\mathrm{OET}}_{2}$ (or both) are HIGH, the device is in the Receive mode (R_{i} are outputs, T_{i} are inputs).
$\overline{O E T}_{\mathbf{i}}$ Output Enables-Transmit (Input, Active LOW) When both $\overline{\mathrm{EET}}_{1}$ and $\overline{\mathrm{OET}}_{2}$ are LOW while $\overline{\mathrm{OER}}_{1}$ or $\overline{\mathrm{OER}}_{2}$ (or both) are HIGH, the device is in the Transmit mode (R_{i} are inputs, T_{i} are outputs).
$\mathbf{R}_{\mathbf{I}} \quad$ Receive Port (Input/Output)
R_{i} are the 9-bit data inputs in the Transmit mode, and the outputs in the Receive mode.
T_{1} Transmit Port (Input/Output)
T_{i} are the 9-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature \qquad -65 to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous
$\ldots . . .-0.5 \vee$ to $+7.0 \vee$
DC Output Voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current: Into Output............. +50 mA Out of Output -50 mA
DC Input Diode Current: Into Input +20 mA
Out of Input- 20 mA
DC Output Current per Pin: ISINK......... $+48 \mathrm{~mA}(2 \times \mathrm{lOL})$ ISOURCE $\ldots . .-30 \mathrm{~mA}\left(2 \times \mathrm{l}_{\mathrm{OH}}\right)$ Total DC Ground Current . $\left(\mathrm{n} \times \mathrm{IOL}+\mathrm{m} \times \mathrm{I}_{\mathrm{CCT}}\right) \mathrm{mA}$ (Note 1) Total DC V $V_{C C}$ Current ($n \times l_{\mathrm{OH}}+\mathrm{m} \times \mathrm{I}_{\mathrm{CCT}}$) mA (Note 1) Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature $\left(T_{A}\right)$..
0 to $+70^{\circ} \mathrm{C}$
Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Military (M) and Extended Commercial (E) Devices

Supply Voltage (V_{CC}) +4.5 V to +5.5 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbols	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
VoL	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{OL}=24 \mathrm{~mA}$			0.5	Volts
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		Volts
$V_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$				-1.2	Volts
ILL	Input LOW Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { Input } \\ & \text { Only } \end{aligned}$	$\mathrm{V}_{\text {IN }}=0.0$			-10	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=0.4$			-5	
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Input Only	$\mathrm{V}_{\text {IN }}=2.7$			5	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=5.5$			10	
IOZH	Output Off-State Current (High Impedance)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { I/O Port } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=$	V		15	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=5.5$	V		20	
lozl		$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & 1 / O \text { Port } \end{aligned}$	$\mathrm{V}_{\text {OUT }}=0.4$			-15	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$			-20	
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}$ (Note 3)			-60		mA
Icco	Static Supply Current	$V_{C C}=5.5 \mathrm{~V},$ Outputs Open	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & G N D \end{aligned}$	MIL		160	$\mu \mathrm{A}$
				COM'L		120	
ICCT			$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}$	Data Input		1.5	mA/Bit
				$\overline{\overline{\mathrm{OER}_{1}}}, \overline{\overline{\mathrm{OER}}_{2}},$		3.0	
${ }^{\prime} \mathrm{CCD}{ }^{\dagger}$	Dynamic Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 4)				400	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} / \mathrm{Bit} \end{gathered}$

Notes: 1. $\mathrm{n}=$ number of outputs, $\mathrm{m}=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
4. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tplH	Propagation Delay from R_{i} to T_{i} or T_{i} to R_{i} Am29861A/Am29863A (Non-inverting)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		10		12	ns
$\mathrm{t}_{\text {PHL }}$				10		12	ns
t_{ZH}	Output Enable Time $\overline{O E T}$ to T_{i} or $\overline{O E R}$ to R_{i}			14		16	ns
tzL				14		16	ns
thz	Output Disable Time OET to T_{i} or OER to R_{i}			14		16	ns
tLZ				14		16	ns

*See Test Circuit and Waveforms.

Am29C818

CMOS Pipeline Register with SSR ${ }^{\text {TM }}$ Diagnostics

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

- High-speed noninverting 8 -bit parallel register for any data path or pipelining application
- WCS (Writable Control Store) pipeline register
- Load WCS from serial register
- Read WCS via serial scan
- Alternate sourced as SN74ACT818
- High-speed 8-bit ''shadow register' with serial shift mode for Serial Shadow Register (SSR) Diagnostics
- Controllability: serial scan in new machine state
- Observability: serial scan out diagnostics routine results
- Low standby power

The Am29C818 is a high-speed, general-purpose pipeline register with an on-board shadow register for performing Serial Shadow Register (SSR) Diagnostics and/or Writable Control Store loading.

The D-to-Y path provides an 8-bit parallel data path pipeline register for normal system operation. The shadow register can load parallel data to or from the pipeline register and can output data through the D input port (as in WCS loading).

The 8-bit shadow register has multiplexer inputs that select parallel inputs from the Y -port or adjacent bits in the shadow register to operate as a shift register. In the serial
shift mode, SDI is shifted into the ' 0 ' location of the Shadow register and the contents of ' 7 ' location appear at the SDO output. This register can then participate in a serial loop throughout the system where normal data, address, status and control registers are replaced with Am29C818 Diagnostic Pipeline Registers. The loop can be used to scan in a complete test routine starting point (data, address, etc.). Then after a specified number of clock cycles, the data clocked out can be compared to the expected results. WCS loading can be accomplished using the same technique. An instruction word can be serially shifted into the shadow register and written into the WCS RAM by enabling the D output.

BLOCK DIAGRAM

*Also available in 24-Pin Flatpack and Small Outline package; pinout identical to DIPs.
**Also available in 28-Pin PLCC; pinout identical to LCC.

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Device Class Type

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests
Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7} \quad$ Parallel Data Inputs (Input/Output)
Parallel data input to the pipeline register or parallel data output from the shadow register (see Function Table for control modes).
DCLK Diagnostics Clock (Input)
Diagnostics/WCS clock for loading shadow register (serial or parallel modes - see Function Table).
MODE Mode Control (Input)
Control input for pipeline register multiplexer and shadow register control (see Function Table).

OEY Y-Port Output Enable (Input: Active LOW) Active LOW output enable for Y-port.

PCLK Pipeline Register Clock (Input) Pipeline register clock input loads D-port or shadow register contents on LOW-to-HIGH transition.
SDI Serial Data Input (Input) Input to shadow register (see Function Table).
SDO Serial Data Input (Output) Output from shadow register.
$\mathbf{Y}_{\mathbf{0}}-\mathbf{Y}_{\mathbf{7}}$ Parallel Data Outputs (Input/Output) Data outputs from the pipeline register and parallel inputs to the shadow register.

FUNCTIONAL DESCRIPTION

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. MODE selects whether
the data source is the data input or the shadow register output. Because of the independence of the clock inputs data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK simultaneously. As long as no setup or hold times are violated, this simultaneous operation is legal.

Inputs				Outputs			Operation
SDI	MODE	DCLK	PCLK	SDO	Shadow Register	Pipeline Register	
X	L	\uparrow	X	S_{7}	$\begin{aligned} & \mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}-1} \\ & \mathrm{~S}_{0}+\mathrm{SDI} \end{aligned}$	NA	Serial Shift; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Disabled
X	L	X	\dagger	S_{7}	NA	$P_{i}-D_{i}$	Normal Load Pipeline Register
L	H	\uparrow	X	SDI	$\mathrm{S}_{\mathrm{i}}+\mathrm{Y}_{\mathrm{i}}$	NA	Load Shadow Register from Y ; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Disabled
X	H	X	\dagger	SDI	NA	$\mathrm{P}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}$	Load Pipeline Register from Shadow Register
H	H	\uparrow	X	SDI	Hold*	NA	Hold Shadow Register; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Enabled*

*Although not shown, Hold is implemented by gating DCLK internally.
FUNCTION TABLE DEFINITIONS
inputs
$H=H I G H$
L = LOW
$X=$ Don't Care
$\uparrow=$ LOW-to-HIGH transition

OUTPUTS

$$
\mathrm{S}_{7}-\mathrm{S}_{0}=\text { Shadow Register outputs }
$$

$\mathrm{P}_{7}-\mathrm{P}_{0}=$ Pipeline Register outputs
$\mathrm{D}_{7}-\mathrm{D}_{0}=$ Data 1/O port
$Y_{7}-Y_{0}=Y 1 / O$ port
NA $=$ Not applicable output is not a function of the specified input combinations.

An Introduction to Serial Shadow Register (SSR) Diagnostics

Diagnostics

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware-related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control and status - to exercise all portions of the system under test. These two capabilities - observability and controllability - provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs, and determine whether the system is functioning correctly.

Testing Combinational

 and Sequential NetworksThe problem of testing a combinational logic network is well understood (Figure 1). Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pin-pointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-atones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set at test vectors will discover.

DF000071

Figure 1. Combinational Logic Network
A sequential network (Figure 2) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best, and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicate or shadow of each state flip/flop in an additional register. The shadow register can be loaded serially via the serial data input (thus the name Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal
state register by selecting the multiplexer and clocking the into the serial register it can be transferred into the internal
state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be
set to a desired state in a simple, quick, and systematic state register with PLCK. This allows any internal state to be
set to a desired state in a simple, quick, and systematic manner.

Internal state information can be sampled by loading the serial register from the state register outputs. This state information register from the state register outputs. This state information
can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs
can be cascaded to make long chains of state information observability. Notice that the serial data inputs and outputs
can be cascaded to make long chains of state information available on a minimum number of connections.

In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled (Figure 4). This means that those techniques which have been developed to test combinational networks
can be applied to any sequential network in which Serial which have been developed to test combinational networks
can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.

DF000051

Serial Shadow Register Diagnostics

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 3 shows the method by which serial shadow register diagnostics accomplishes these two functions.

DF000041
Figure 3. SSR Diagnostics Diagram lishes a logical paln with which inputs can be derned and

Figure 2. Sequential Network
Figure 4. SSR Diagnostics Logical Path

A Typical Computer Architecture with SSR Dlagnostics

When normal pipeline registers are replaced by SSR diagnostics pipeline registers system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable. Figure 5 shows a typical computer system using the Am29C818.

Serial paths have been added to all the important state registers (macro instruction, data, status, address, and micro instruction registers). This extra path will make it easier to diagnose system failures by breaking the feed-back paths and turning sequential state machines into combinatorial logic
blocks. For example, the status outputs of the ALU may be checked by loading the micro instruction register with the necessary micro instruction. The desired ALU function is then executed and the status outputs captured in the status register. The status bits can then be serially shifted out and checked for validity.

A single diagnostic loop was shown in Figure 5 for simplicity, but several loops can be employed in more complicated systems to reduce scan time. Additionally, the Am29C818's can be used to sample intermediate test points not associated with normal state information. These additional test points can further ease diagnostics, testability and debug.

SSR DIAGNOSTICS/WCS PIPELINE REGISTERS
replace normal registers with dagnostics loop

Figure 5. Typical System Configuration

Use of the Am29C818 Pipeline Register in Writable Control Store (WCS) Designs

The Am29C818 SSR diagnostics/WCS Pipeline Register was designed specifically to support writable control store designs. In the past, designers of WCS based systems needed to use an excessive amount of support circuitry to implement a WCS. As shown in Figure 7, additional input and output buffers are necessary to provide paths from the parallel input data bus to the memory, and from the instruction register to the output data bus. The input port is necessary to write data to the control store, initializing the micromemory. The output port provides the access to the instruction register, indirectly allowing the RAM to be read. Additionally, access to the instruction register is useful during system debugging and system diagnostics.

The Am29C818 supports all of the above operations (and more) without any support circuitry. Figure 6 shows a typical WCS design with the Am29C818. Access to memory is now possible over the serial diagnostics port. The instruction register contents may be read by serially shifting the information out on the diagnostics port. Additionally, the instruction register may be written from the serial port via the shadow register. This simplifies system debug and diagnostics operations considerably.

Conclusion

Serial Shadow Register diagnostics provides the observability and controllability necessary to take any sequential network and turn it into a combinational network. This provides a method for pin-pointing digital system hardware failures in a systematic and well-understood fashion.

Figure 6. Am29C818-Based WCS Application

Figure 7. WCS Application without Am29C818s

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Supply Voltage to Ground Potential Continuous \qquad -0.5 V to +7.0 V
DC Output Voltage -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage....................... -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current: Into Output............... +50 mA
Out of Output -50 mA
DC Input Diode Current: Into Input.................... +20 mA Out of Input- 20 mA
DC Output Current per Pin: ISINK.......... $+48 \mathrm{~mA}(2 \times \mathrm{lOL})$
ISOURCE $\ldots . .-30 \mathrm{~mA}$ ($2 \times \mathrm{loH}$)
Total DC Ground Current . $(\mathrm{n} \times \mathrm{lOL}+\mathrm{mx} \mathrm{ICCT}) \mathrm{mA}$ (Note 1) Total DC V_{CC} Current $\ldots .\left(\mathrm{n} \times \mathrm{IOH}_{\mathrm{OH}}+\mathrm{m} \times \mathrm{I}_{\mathrm{CCT}}\right) \mathrm{mA}$ (Note 1)

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{array}{\|l} \hline V_{C C}=4.5 \mathrm{~V} \\ V_{\text {IN }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ \hline \end{array}$	$\mathrm{IOH}^{\prime}=-15 \mathrm{~mA}$		2.4		Volts
$\mathrm{VOL}^{\text {O }}$	Output LOW Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{array}$	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$			0.5	Volts
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 2)			2.0		
V_{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 2)				0.8	Volts
VIC	Input Clamp Voltage	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA} \\ \hline \end{array}$				-1.2	Volts
IL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-5	
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$				5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				10	
lozh	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			15	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}$			20	
Iozl		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-15	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$			-20	
Isc	Output Short-Circuit Current	$\begin{aligned} & V_{\text {CC }}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}(\text { Note 3) } \end{aligned}$			-60		mA
Icco	Static Supply Current	$v_{C C}=5.5 \mathrm{~V}$Outputs Open	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	MIL			$\mu \mathrm{A}$
				COM'L			
ICCT			$\mathrm{V}_{1 \mathrm{~N}}=3.4 \mathrm{~V}$				mA/Bit
iccot ${ }^{\text {d }}$	Dynamic Supply Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$ (Note 4)					$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} / \mathrm{Bit} \end{gathered}$

Notes: 1. $n=$ number of outputs, $m=$ number of inputs.
2. Input thresholds are tested in combination with other DC parameters or by correlation.
3. Not more than one output shorted at a time. Duration should not exceed 100 milliseconds.
4. Measured at a frequency $\leqslant 10 \mathrm{MHz}$ with 50% duty cycle.
\dagger Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
$\begin{aligned} & \text { tpLH } \\ & \text { and } \\ & \text { tpHL } \end{aligned}$	${ }^{\text {PCLK }} \rightarrow \mathrm{Y}_{\mathrm{x}}$	See Test Output Load Conditions		12		14	ns
	MODE \rightarrow SDO			12		14	ns
	SDI-SDO			12		14	ns
	DCLK - SDO			12		14	ns
ts	$\mathrm{D}_{\mathrm{x}} \rightarrow$ PCLK		4		6		ns
	MODE - PCLK		6		8		ns
	$Y_{X} \rightarrow$ DCLK		6		8		ns
	MODE-DCLK		6		8		ns
	SDI_DCLK		6		8		ns
	DCLK, PCLK		20		20		ns
	PCLK \rightarrow DCLK		20		20		ns
${ }^{\text {t }}$	$\mathrm{D}_{\mathrm{x} \rightarrow \text { PCLK }}$		2		2		ns
	MODE, PCLK		2		2		ns
	$Y_{X} \rightarrow$ DCLK		2		2		ns
	MODE - DCLK		2		2		ns
	SDI-DCLK		2		2		ns
tLz	$\overline{\mathrm{OEY}}, \mathrm{Y}_{\mathrm{X}}$			12		14	ns
	DCLK - D_{x}			14		16	ns
${ }_{t} \mathrm{~Hz}$	$\overline{\mathrm{OEY}}-\mathrm{Y}_{\mathrm{x}}$			12		14	ns
	DCLK $-\mathrm{D}_{\mathrm{x}}$			14		16	ns
tzL	$\overline{\mathrm{OEY}}, \mathrm{Y}_{\mathrm{x}}$			14		16	ns
	DCLK $-\mathrm{D}_{\mathrm{x}}$			18		20	ns
${ }_{\text {tz }}$	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{X}}$			14		16	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$			18		20	ns
tpw	PCLK (HIGH and LOW)		8		10		ns
	DCLK (HIGH and LOW)		8		10		ns

Am29821A/Am29823A/Am29825A Am29921A/Am29923A/Am29925A

High-Performance Bus Interface Registers

DISTINCTIVE CHARACTERISTICS

- High-speed parallel positive edge-triggered registers with D-type flip-flops
- CP-Y tPD $=6 \mathrm{~ns}$ typical
- Buffered common Clock Enable ($\overline{\mathrm{EN}}$) and asynchronous Clear input ($\overline{\mathrm{CLR}})$
- Three-state outputs glitch free during power-up and down. Outputs have Schottky clamp to ground
- Iol: 48 mA Commercial, 32 mA Military
- Higher speed, lower power versions of the Am29821, Am29823, \& Am29825
- Am29900A DIP pinout option reduces lead inductance on $V_{C C}$ and GND pins

GENERAL DESCRIPTION

The Am29821A, Am29823A, and Am29825A Buffered Registers are designed to eliminate the extra devices required to buffer stand alone registers and to provide extra data width for address/data paths or buses carrying parity. The Am29800A registers are produced with AMD's exclusive IMOX* bipolar process, and feature typical propagation delays of 6 ns , as well as high-capacitive drive capability.
The Am29821A is a buffered, 10-bit version of the popular ' $374 /$ ' 534 functions. The Am29823A is a 9 -bit wide buffered register with Clock Enable (EN) and Clear ($\overline{\mathrm{CLR}}$) ideal for parity bus interfacing in high-performance microprogrammed systems. The Am29825A, an 8-bit buffered
register, has all the 9-bit controls plus multiple enables ($\overline{\mathrm{OE}}, \overline{\mathrm{OE}}, \overline{\mathrm{OE}}{ }_{3}$) to allow multi-user control of the interface; e.g., $\overline{\mathrm{CS}}, \mathrm{DMA}$, and RD/ $\overline{\mathrm{WR}}$. The device is ideal for use as an output port requiring high $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}$.

The Am29800A registers are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center V_{CC} and GND pins, reduces the lead inductance of the $V_{C C}$ and GND pins. The ordering part numbers for registers with this pinout are the Am29921A, Am29923A, and Am29925A; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS**

Am29821A

BD005501
$\frac{\text { Publication \# }}{07138} \quad \frac{\text { Rev. }}{\mathrm{C}} \quad \frac{\text { Amendment }}{/ 0}$
Issue Date: January 1988

Am29823A

Am29825A

	CONNECTION DIAGRAMS Top View	
	Am29821A DIPs* LCC** CD001360	
	*Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs. **Also available in 28-Pin PLCC; pinout identical to LCC.	

LOGIC SYMBOLS

FUNCTION TABLES

Am29821A

Inputs			Internal	Outputs	Function
$\overline{O E}$	D_{1}	CP	$\overline{\mathbf{Q}}_{\mathbf{i}}$	Y_{1}	
H H	L	\dagger	${ }_{\text {H }}^{\text {L }}$	z	$\mathrm{Hi}-\mathrm{Z}$
L	L H	\dagger	${ }_{\text {H }}^{\text {L }}$	L	Load

$\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
$\dagger=$ LOW-to-HIGH Transition $Z=$ High Impedance

ORDERING INFORMATION
 Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations	
AM29821A	PC, PCB, DC, DCB,
AM29823A	
AM29825A	
AM29921A	
AM29923A	PC, PCB, DC, DCB, DE
AM29925A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

LEAD FINISH
A = Hot Solder DIP
d. PACKAGE TYPE
$\mathrm{L}=24$-Pin Slim Ceramic DIP (CD3024)
$\mathrm{K}=24$-Pin Rectangular Medium Ceramic Flatpack (CFM024)
$3=28$-Pin Ceramic Leadless Chip Carrier (CL 028)
c. DEVICE CLASS
$/ B=$ Class B

Valid Combinations	
AM29821A	/BLA, /BKA, /B3A
AM29823A	
AM29825A	/BLA
AM29921A	
AM29923A	
AM29925A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

$D_{i} \quad$ Data Input (Input)
D_{i} are the register data inputs.
Y_{i} Data Outputs (Output)
Y_{i} are the three-state data outputs.
CP Clock Pulse (Input, LOW-to-HIGH Transition)
Clock Pulse is the clock input for the registers. Data is entered into the registers on LOW-to-HIGH transitions.

Am29821A Only

$\overline{O E}$ Output Enable (Input, Active LOW)

When the $\overline{O E}$ input is HIGH, the Y_{i} outputs are in the highimpedance state. When $\overline{O E}$ is LOW, the register data is transferred to the Y_{i} outputs.

Am29823A Only

$\overline{\text { EN }}$ Clock Enable (Input, Active LOW)

When the $\overline{E N}$ input is LOW, data on the D_{i} inputs are transferred to the \bar{Q}_{i} outputs on the LOW-to-HIGH clock transition. When $\overline{\mathrm{EN}}$ is HIGH, the $\overline{\mathrm{Q}}_{i}$ outputs do not change state, regardless of data or clock input transitions.

$\overline{C L R} \quad \overline{C l e a r}$ (Input, Active LOW)

When CLR is LOW, the internal register is cleared. When $\overline{C L R}$ is LOW and $\overline{O E}$ is LOW, the Y_{i} outputs are LOW. When $\overline{C L R}$ is HIGH, data can be entered into the register.
$\overline{\mathrm{OE}} \overline{\text { Output Enable }}$ (Input, Active LOW)
When the $\overline{\mathrm{OE}}$ input is HIGH, the Y_{i} outputs are put in the high-impedance state. When $\overline{O E}$ is LOW, the register data is passed to the Y_{i} outputs.

Am29825A Only

EN Clock Enable (Input, Active LOW)
When the EN input is LOW, data on the D_{i} inputs are transferred to the $\overline{\mathrm{Q}}_{\mathrm{i}}$ outputs on the LOW-to-HIGH clock transition. When $\overline{\mathrm{EN}}$ is HIGH , the $\overline{\mathrm{Q}}_{\mathrm{i}}$ outputs do not change state, regardless of data or clock input transitions.
$\overline{\text { CLR Clear }}$ (Input, Active LOW)
When CLR is LOW, the internal register is cleared. When $\overline{C L R}$ is LOW and all $\overline{O E}_{i}$ are LOW, the Y_{i} outputs are LOW. When CLR is HIGH, data can be entered into the register.
סE Output Enables (Input, Active LOW)
When $\overline{O E} E_{1}, \overline{O E}_{2}$, and $\overline{O E}_{3}$ are all LOW, register data is passed to the Y_{i} outputs. If any or all $\overline{O E}_{i}$ are HIGH, the Y_{i} outputs are put in a high-impedance state.

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Commercial (C) Devices
Temperature (T_{A}).

$$
.0 \text { to }+70^{\circ} \mathrm{C}
$$

$$
\text { Supply Voltage }\left(\mathrm{V}_{\mathrm{CC}}\right) \ldots \ldots+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Military (M) and Extended Commercial (E) Devices
Temperature (TC).
-55 to $+125^{\circ} \mathrm{C}$

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4		Volts
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0		
$\mathrm{VOL}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOL}=32 \mathrm{~mA}$		0.5	Volts
			COM'L, $\mathrm{IOL}^{\prime}=48 \mathrm{~mA}$		0.5	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 1)		2.0		Volts
$\mathrm{V}_{\text {iL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)			0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	Volts
I/L	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-500	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
1 OZL	Output Off-State Current (High Impedance)	$V_{C C}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-50	$\mu \mathrm{A}$
1 OZH			$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		50	
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 2)		-75	-250	mA
IOFF	Bus Leakage Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.9 \mathrm{~V}$			100	$\mu \mathrm{A}$
ICC	Supply Current (Note 3)	Am29821A/Am29921A	Outputs LOW		100	mA
			Outputs HIGH		88	
			Outputs Hi-Z		97	
		Am29823A/Am29823A	Outputs LOW		100	mA
			Outputs HIGH		88	
			Outputs Hi-Z		96	
		Am29825A/Am29925A	Outputs LOW		94	mA
			Outputs HIGH		84	
			Outputs Hi-Z		92	

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters.
2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second.
3. Clock input, CP, is HIGH after clocking in data. Parameter tested with $\mathrm{V}_{\mathrm{CC}}=$ Max. and outputs unloaded.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
tplH	Propagation Delay Clock to Y_{i} ($\mathrm{OE}=\mathrm{LOW}$)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & R_{1}=500 \Omega \\ & R_{2}=500 \Omega \end{aligned}$	3.5	8	3.5	9	ns
$\mathrm{t}_{\text {PHL }}$			3.5	10	3.5	11.5	ns
ts	Data to $\overline{C P}$ Setup Time		4		5		ns
t_{H}	Data to CP Hold Time		2		2		ns
ts	Enable (EN L) to CP Setup Time		6		7		ns
ts	Enable (EN- ${ }^{\text {c }}$) to CP Setup Time		4		5		ns
t_{H}	Enable (EN) Hold Time		2		2		ns
tPHL	Propagation Delay, Clear to Y_{i}			14		15	
$t_{\text {REC }}$	Clear (CLR - 5) to CP Setup Time		6		8		ns
tpWH	HIGH		7		8		ns
tpWL	Clock Pulse Width		7		8		ns
tpWL	Clear Pulse Width		6		7		ns
$\mathrm{t}_{\mathrm{Z}} \mathrm{H}$	Output Enable Time $\overline{O E}$ L to Y_{i}			11		12	ns
tzL				12		13	ns
t_{Hz}	Output Disable Time $\overline{\sigma E}$ Г to Y_{i}			8		9	ns
tLz				8		9	ns

*See Test Circuit and Waveforms.

Am29827A/Am29828A

High-Performance Buffers

DISTINCTIVE CHARACTERISTICS

- High-speed buffers and inverters
$-t_{P D}=5.0 \mathrm{~ns}$ Typical
- $200-\mathrm{mV}$ minimum input hysteresis on input data ports
- Three-state outputs glitch-free during power-up and power-down
- Iol: 48 mA Commercial, 32 mA Military
- Higher speed, lower power versions of the Am29827/Am29828

GENERAL DESCRIPTION

The Am29827A and Am29828A Bus Buffers provide highperformance bus interface buffering for wide address/data paths or buses carrying parity. Both devices feature a 10-bit wide data path and NORed output enables for maximum control flexibility. The Am29827A has non-inverting outputs, while the Am29828A has inverting outputs. Each device features data inputs with $200-\mathrm{mV}$ minimum input hysteresis to provide improved noise immunity. The Am29827A and

Am29828A are produced with AMD's proprietary IMOX* bipolar process, and feature typical propagation delays of 5 ns. Package options include DIPs, PLCCs, LCCs, SOICs, and Flatpacks.

Each member of the Am29800A/Am29900A Bus Interface Family is designed to drive high-capacitive loads while providing low-capacitive bus loading at both inputs and outputs.

BLOCK DIAGRAMS

Am29827A

BD001092
Am29828A

BD001093

CONNECTION DIAGRAMS

Top View
Am29827A/Am29828A

*Also available in 24-Pin Flatpack and Small Outline Package; pinout identical to DIPs.
**Also available in 28-Pin PLCC; pinout identical to LCC.

LOGIC SYMBOLS

LS000391

FUNCTION TABLES
Am29827A

Inputs			Outputs	
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{I}}$		
L	L	H	H	
L	L	L	L	Transparent
X	H	X	Z	$\mathrm{Hi}-\mathrm{Z}$
H	X	X	Z	$\mathrm{Hi}-\mathrm{Z}$

$\mathrm{H}=\mathrm{HIGH}$
L = LOW
X = Don't Care
$Z=$ High Impedance

Am29828A

Inputs			Outputs	
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{I}}$		
L	L	H	L	
L	L	L	H	Transparent
X	H	X	Z	$\mathrm{Hi}-\mathrm{Z}$
H	X	X	Z	$\mathrm{Hi}-\mathrm{Z}$

ORDERING INFORMATION

Standard Products
AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29827A	/BLA, /BKA, /B3A
$y n$	

Valld Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests
Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION
$\overline{\mathrm{OE}_{\mathbf{I}}} \overline{\text { Output Enables }}$ (Input, Active LOW)
When both Output Enables are LOW, the outputs are enabled. When either one or both are HIGH, the outputs are $\mathrm{Hi}-\mathrm{Z}$.
D_{1} Data Inputs (Input) D_{i} are the 10-bit data inputs.
Y_{i} Data Outputs (Output)
Y_{i} are the 10-bit data outputs.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65 to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied................................. -55 to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
Continuous \qquad
DC Voltage Applied to Outputs
for High Output State 0.5 V to +5.5 V

DC Input Voltage...............................-1.5 V to +6.0 V
Output Current, into Outputs 100 mA
DC Input Current......................... -30 mA to +5.0 mA
Stresses above those listed under ABSOLUTE MAXIMUM RA'TINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Units
$\mathrm{VOH}_{\mathrm{OH}}$	Output HIGH Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4		V
			$\mathrm{IOH}^{\prime}=-24 \mathrm{~mA}$	2.0		
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{IOL}=32 \mathrm{~mA}$		0.5	V
			COM'L, $\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.5	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All inputs (Note 1)		2.0		V
$V_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)	COM'L		0.8	V
			MIL		0.7	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$			-1.2	V
$\mathrm{V}_{\text {HYST }}$	Input Hysteresis			200		mV
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-0.5	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
IOZH	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
Iozl		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{0}=0.4 \mathrm{~V}$			-50	$\mu \mathrm{A}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 2)		-75	-250	mA
loff	Bus Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.9 \mathrm{~V}$			100	$\mu \mathrm{A}$
ICC	Supply Current	$V_{C C}=5.5 \mathrm{~V}$ Outputs Unloaded	Outputs LOW		80	mA
			Outputs HIGH		55	
			Outputs Hi-Z		70	

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters.
2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

	Parameter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
Parameter Symbol			Min.	Max.	Min.	Max.	
tPLH	Data (D_{i}) to Output $\left(\mathrm{Y}_{\mathrm{i}}\right)$ Am29827A (Noninverting)	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		8		9	ns
tpHL				8		9	ns
tPLH	Data $\left(\mathrm{D}_{\mathrm{i}}\right)$ to Output $\left(\mathrm{Y}_{\mathrm{i}}\right)$ Am29828A (Inverting)			7		8	ns
tpHL				9		10	ns
tzH	Output Enable Time $\bar{O} E$ to Y_{i}			11		12	ns
tzL				12		13	ns
thz	Output Disable Time $\overline{O E}$ to Y_{i}			10		10	ns
tz				10		10	ns

*See Test Circuit and Waveforms.

Am29833A/Am29853A/Am29855A

Parity Bus Transceivers

DISTINCTIVE CHARACTERISTICS

- High-speed bidirectional bus transceivers for processor organized devices
- T-R delay $=6 \mathrm{~ns}$ typical
- R_{i}-Parity delay $=9$ ns typical
- Error flag with open-collector output
- Generates odd parity for all-zero protection
- 200-mV minimum input hysteresis (Commercial) on input data ports
- High drive capability:
- 48 mA Commercial lol
- 32 mA Military lol
- Higher speed, lower power versions of the Am29833 \& Am29853
- Am29855A adds new functionality

GENERAL DESCRIPTION

The Am29833A, Am29853A, and Am29855A are highperformance parity bus transceivers designed for two-way communications. Each device can be used as an 8 -bit transceiver, as well as a 9-bit parity checker/generator. In the transmit mode, data is read at the R port and output at the T port with a parity bit. In the receive mode, data and parity are read at the T port, and the data is output at the R port along with an ERR flag showing the result of the parity test.

In the Am29833A, the error flag is clocked and stored in a register which is read at the open-collector ERR output. The $\overline{C L R}$ input is used to clear the error flag register. In the Am29853A, a latch replaces this register, and the $\overline{E N}$ and $\overline{\mathrm{CLR}}$ controls are used to pass, store, sample or clear the error flag output. When both output enables are disabled in the Am29853A and Am29833A, the parity logic defaults to
the transmit mode, so that the $\overline{\mathrm{ERR}}$ pin reflects the parity of the R port. The Am29855A, a variation of the Am29853A, is designed so that when both output enables are HIGH, the ERR pin retains its current state.

The output enables, $\overline{O E R}$ and $\overline{O E T}$, are used to force the port outputs to the high-impedance state so that other devices can drive bus lines directly. In addition, the user can force a parity error by enabling both $\overline{\mathrm{OER}}$ and $\overline{\mathrm{OET}}$ simultaneously. This transmission of inverted parity gives the designer more system diagnostic capability.

Each of these devices is produced with AMD's proprietary IMOX* bipolar process, and features typical propagation delays of 6 ns , as well as high-capacitive drive capability. Package option s include DIPs, PLCCs, LCCs, SOICs, and Flatpacks.

SIMPLIFIED BLOCK DIAGRAM
Parity Transceivers

BD005541

BLOCK DIAGRAMS*

Am29833A

BD001043

Am29853A

Am29855A

BD005560

Am29833A (Register Option)

Inputs								Outputs				Function
OET	OER	$\overline{\text { CLR }}$	CLK	$\mathbf{R I}_{\mathbf{I}}$	Sum of H's of R_{l}	Ti	$\begin{array}{\|c} \text { Sum of } \\ \text { H's } \\ \left(T_{j}+\text { Parity }\right) \end{array}$	$\mathrm{R}_{\mathbf{1}}$	Ti	Parity	ERR	
L L L	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathbf{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	NA NA NA NA	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & N A \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \\ & L \\ & H \end{aligned}$	NA NA NA NA	Transmit mode: transmits data from R port to T port, generating parity. Recieve path is disabled.
H H H H	L L L L	H H H H	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & \hline N A \\ & N A \\ & N A \\ & N A \end{aligned}$	H H L L	$\begin{aligned} & \text { ODD } \\ & \text { EVEN } \\ & \text { ODD } \\ & \text { EVEN } \end{aligned}$	H H L L	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \\ & N A \\ & N A \end{aligned}$	$\begin{aligned} & H \\ & H \\ & H \\ & \mathbf{H} \end{aligned}$	Receive mode: transmits data from T port to R port with parity test resulting in error flag. Transmit path is disabled.
X	X	L	X	X	X	X	X	X	X	X	H	Clear error flag register.
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathbf{x} \\ & \mathrm{x} \end{aligned}$	\bar{z}	\bar{z}	\bar{z}	H	Both transmitting and receiving paths are disabled.
H H L L L L	H H L L L L	H H X X X X	$\begin{aligned} & 1 \\ & \dagger \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	ODD EVEN ODD EVEN ODD EVEN	$\begin{gathered} x \\ x \\ x \\ N A \\ N A \\ N A \\ N A \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{X} \\ \mathrm{x} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{z} \\ \mathrm{z} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \\ \mathrm{NA} \end{gathered}$	$\begin{aligned} & \hline Z \\ & Z \\ & H \\ & H \\ & H \\ & L \\ & \hline \end{aligned}$	$\begin{aligned} & Z \\ & Z \\ & Z \\ & H \\ & L \\ & H \\ & L \end{aligned}$	$\begin{aligned} & \hline H \\ & L \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & N A \\ & \hline \end{aligned}$	Parity logic defaults to transmit mode. Forced-error checking.
$\begin{aligned} \mathrm{H} & =\text { HIGH } \\ \mathrm{L} & =\text { LOW } \\ \dagger & =\text { LOW-to-HIGH Transition of Clock } \\ \mathrm{X} & =\text { Don't Care } \end{aligned}$					Z = High Impedance NA $=$ Not Applicable * $=$ Store the Error State of the Last Receive Cycle				ODD = Odd Number Even $=$ Even Number $\mathrm{i}=0,1,2,3,4,5,6,7$			

TRUTH TABLE
Error Flag Output
Am29833A

Inputs		Internal to Device	Outputs Pre-state	Output	
CLR	CLK	Point "P'"	ERR $_{\mathbf{n}}$-1	ERR	Function
H	\uparrow	H	H	H	Sample
H	\uparrow	X	L	L	(1's
H	\uparrow	L	X	L	Capture)
L	X	X	X	H	Clear

Note: $\overline{\text { OET }}$ is HIGH and $\overline{\text { OER }}$ is LOW.

TRUTH TABLE

Error Flag Output
Am29853A/Am29855A

Inputs		Internal to Device	Outputs Pre-state	Output	
EN	CLR	Point 'P'	ERR $_{\text {n }}$ - $\mathbf{1}$	ERR	Function
L	L	L	X	L	Pass
L	L	H	X	H	
L	H	L	X	L	Sample
L	H	X	L	L	(1's
L	H	H	H	H	Capture)
H	L	X	X	H	Clear
H	H	X	L	L	Store
H	H	X	H	H	

Note: OET is HIGH and OER is LOW.

ORDERING INFORMATION

Standard Products
AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

. DEVICE NUMBER/DESCRIPTION
Am29833A Parity Transceiver, Register Option
Am29853A Parity Transceiver, Latch Option
Am29855A Parity Transceiver, Latch Option (New Functionality)

Valid Combinations	
AM29833A	PC, PCB, DC, DCB,
AM29853A	
AM29855A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

a. DEVICE NUMBER/DESCRIPTION

Am29833A Parity Transceiver, Register Option
Am29853A Parity Transceiver, Latch Option
Am29855A Parity Transceiver, Latch Option (New Functionality)

Valid Combinations	
AM29833A	/BLA, /BKA, /B3A
AM29853A	
AM29855A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

Am29833A, Am29853A/Am29855A

OER Output Enable-Receive (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{i} and Parity are inputs).

OET Output Enable-Transmit (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} and Parity are outputs).
$\mathbf{R i}_{\mathbf{i}}$ Receive Port (Input/Output, Three-State)
R_{j} are the 8-bit data inputs in the Transmit mode, and the outputs in the Receive mode.
T_{i} Transmit Port (Input/Output, Three-State) T_{i} are the 8-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Parity Parity Flag (Input/Output, Three-State) In the Transmit mode, the Parity signal is an active output used to generate odd parity. In the Receive mode, the T_{i} and Parity inputs are combined and checked for odd parity. When both output enables are HIGH, the Parity Flag is in the high impedance state. When both output enables are LOW, the Parity bit forces a parity error.

Am29833A Only

ERR Error Flag (Output, Open Collector)
In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the register is cleared.
CLR Clear (Input, Active LOW) When CLR goes LOW, the Error Flag Register is cleared (ERR goes HIGH).
CLK Clock (Input, Positive Edge-Triggered)
This pin is the clock input for the Error Flag register.

Am29853A/Am29855A Only

ERR Error Flag (Output, Open Collector)

In the Receive mode, the parity of the T_{i} bits is calculated and compared to the Parity input. ERR goes LOW when the comparison indicates a parity error. ERR stays LOW until the latch is cleared. In the Am29855A, the error flag will retain its previous state when $\overline{O E T}$ and $\overline{O E R}$ are HIGH.

CLR Clear (Input, Active LOW) When CLR goes LOW and EN is HIGH, the Error Flag latch is cleared (ERR goes HIGH).

EN Latch Enable (Input, Active LOW)
This pin is the latch enable for the Error Flag latch.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Max.	Units	
VOH	Output HIGH Voltage (Except $\overline{\mathrm{ERR}}$)	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \end{aligned}$		$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4		V	
				$\mathrm{I}^{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0			
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } \\ & V_{\mathrm{IL}} \end{aligned}$	ERR	$\mathrm{OL}=48 \mathrm{~mA}$		0.5	v	
			All Other Outputs	$\mathrm{I}^{\mathrm{OL}}=32 \mathrm{~mA} \mathrm{MIL}$		0.5		
				$\mathrm{IOL}^{\prime}=48 \mathrm{~mA} \mathrm{COM}{ }^{\prime}$		0.5		
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 1)			2.0		V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)		COM'L		0.8	V	
				MIL		0.7		
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V	
$\mathrm{V}_{\text {HYST }}$	Hysteresis for inputs $\mathrm{R}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}$			COM'L	200		mV	
				MIL	150			
IZL	I/O Port LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$				-550	$\mu \mathrm{A}$	
ILL	Input LOW Current					-0.5	mA	
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$	
$\\|$	Input HIGH Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{I N}=5.5 \mathrm{~V} \end{aligned}$				100	$\mu \mathrm{A}$	
IzH	I/O Port HIGH Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.7 \mathrm{~V}$				100	$\mu \mathrm{A}$	
Izı	I/O Port HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$				150	$\mu \mathrm{A}$	
Isc	Output Short-Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$			-75	-250	mA	
loff	Bus Leakage Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.9 \mathrm{~V}$				100	$\mu \mathrm{A}$	
Icc	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ Outputs Unloaded		Ouputs LOW		180	mA	
				Outputs HIGH		155		
				Outputs Hi-Z		170		

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters. 2. Not more than one output should be shorted at a time. Duration of the short-circuit test should not exceed one second

Am29841A/Am29843A/Am29845A Am29941A/Am29943A/Am29945A

High-Performance Bus Interface Latches

DISTINCTIVE CHARACTERISTICS

- High-speed parallel latches
- transparent tpD $=5.0 \mathrm{~ns}$ typical
- Buffered common latch enable, clear and preset input
- Three-state outputs glitch-free during power-up and down. Outputs have Schottky clamp to ground
- IOL: 48 mA Commercial, 32 mA Military
- Higher speed, lower power versions of the Am29841, Am29843, and Am29845
- Am29900A DIP pinout option reduces lead inductance on $V_{C C}$ and GND pins

GENERAL DESCRIPTION

The Am29841A, Am29843A, and Am29845A Buffered Latches are designed to eliminate the extra devices required to buffer stand alone latches and to provide extra data width for wider address/data paths or buses carrying parity. The Am29800A latches are produced with AMD's exclusive IMOX* bipolar process, and feature typical propagation delays of 5 ns , as well as high-capacitive drive capability.
The Am29841A is a buffered, 10-bit version of the popular '373 function. The Am29843A is a 9-bit wide buffered latch with Preset ($\overline{\mathrm{PRE}}$) and Clear ($\overline{\mathrm{CLR})}$ - ideal for parity bus interfacing in high-performance microprogrammed sys-
tems. The Am29845A, an 8-bit buffered latch, has all the 9 -bit controls, plus multiple enables ($\left.\overline{\mathrm{OE}_{1}}, \overline{\mathrm{OE}_{2}}, \overline{\mathrm{OE}_{3}}\right)$, to allow multi-user control of the interface; e.g., $\overline{\mathrm{CS}}, \mathrm{DMA}$, and RD/WR. The device is ideal for use as an output port requiring high $\mathrm{lOL}^{\prime} / \mathrm{OH}$.
The Am29800A latches are available in the standard package options: DIPs, PLCCs, LCCs, SOICs, and Flatpacks. In addition, a DIP pinout option, featuring center $V_{C C}$ and GND pins, reduces the lead inductance of the $V_{C C}$ and GND pins. The ordering part numbers for latches with this pinout are the Am29941A, Am29943A, and Am29945A; their pinouts are shown later in this data sheet.

BLOCK DIAGRAMS**

Am29841A

[^2]	$\frac{\text { Publication \# }}{07141}$	$\frac{\text { Rev. }}{\mathrm{C}} \quad \frac{\text { Amendment }}{/ 0}$
Issue Date: January 1988		

BLOCK DIAGRAMS (Cont'd.)

Am29843A

Am29845A

CONNECTION DIAGRAMS Top View	
Am29841A DIPs* LCC**	
Am29843A DIPs* LCC**	
Am29845A DIPs* LCC** CD001340 *Also available in 24-Pin Flatpack and Small Outline packages; pinout identical to DIPs. **Also available in $28-$ Pin PLCC; pinout identical to LCC.	

Am29841A

LS000463

Am29843A

LS000473

Am2985A

LS000443

FUNCTION TABLES
Am29841A

Inputs			Internal	Outputs	Function
$\overline{\mathbf{O E}}$	LE	D_{i}	$\overline{\mathbf{Q}}_{\boldsymbol{i}}$	Y_{i}	
H	X	X	X	Z	Hi-Z
H	H	L	H	Z	Hi-Z
H	H	H	L	Z	Hi-Z
H	L	X	NC	Z	Latched (Hi-Z)
L	H	L	H	L	Transparent
L	H	H	L	H	Transparent
L	L	X	NC	NC	Latched
H $=$ HIGH NC $=$ No Change $L=$ LOW $Z=$ High Impeda $X=$ Don't Care					

Am29843A

					Internal	Outputs	
$\mathbf{C L R}$	$\overline{\text { PRE }}$	$\overline{\mathbf{O E}}$	LE	$\mathbf{D}_{\mathbf{I}}$	$\overline{\mathbf{Q}}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{I}}$	
H	H	H	X	X	X	Z	Hi-Z
H	H	H	H	L	H	Z	Hi-Z
H	H	H	H	H	L	Z	Hi-Z
H	H	H	L	X	NC	Z	Latched (Hi-Z)
H	H	L	H	L	H	L	Transparent
H	H	L	H	H	L	H	Transparent
H	H	L	L	X	NC	NC	Latched
H	L	L	X	X	L	H	Preset
L	H	L	X	X	H	L	Clear
L	L	L	X	X	L	H	Preset
L	H	H	L	X	H	Z	Latched (Hi-Z)
H	L	H	L	X	L	Z	Latched (Hi-Z)

Am29845A

OE*	Inputs				$\begin{gathered} \text { Internal } \\ \hline \overline{\mathbf{Q}}_{\mathbf{i}} \\ \hline \end{gathered}$	$\begin{gathered} \text { Outputs } \\ \hline Y_{i} \\ \hline \end{gathered}$	Function
	$\overline{\text { CLR }}$	PRE	LE	D_{1}			
L	H	H	X	X	X	Z	Hi-Z
L	H	H	H	L	H	Z	$\mathrm{Hi}-\mathrm{Z}$
L	H	H	H	H	L	Z	Hi-Z
L	H	H	L	X	NC	Z	Latched (Hi-Z)
H	H	H	H	L	H	L	Transparent
H	H	H	H	H	L	H	Transparent
H	H	H	L	X	NC	NC	Latched
H	H	L	X	X	L	H	Preset
H	L	H	X	X	H	L	Clear
H	L	L	X	X	L	H	Preset
L	L	H	L	X	H	Z	Latched (Hi-Z)
L	H	L	L	X	L	Z	Latched (Hi-Z)

*OE is an Active HIGH internal signal produced as follows:

$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	$\overline{\mathbf{O E}}_{\mathbf{3}}$	$\mathbf{O E}$
H	X	X	L
X	H	X	L
X	X	H	L
L	L	L	H

$\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
NC = No Change
$Z=$ High Impedance $\mathrm{X}=$ Don't Care

ORDERING INFORMATION
 Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

e. OPTIONAL PROCESSING

Blank $=$ Standard processing
$B=$ Burn-in
d. TEMPERATURE RANGE
$\mathrm{C}=$ Commercial (0 to $+70^{\circ} \mathrm{C}$)
$\mathrm{E}=$ Extended Commercial $\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
c. PACKAGE TYPE
$\mathrm{P}=24$-Pin Slim Plastic DIP (PD3024)
D $=24$-Pin Slim Ceramic DIP (CD3024)
$\mathrm{S}=24$-Pin Plastic Small Outline Package (SO 024)
$\mathrm{J}=28$-Pin Plastic Leaded Chip Carrier (PL 028)
$\mathrm{L}=28$-Pin Ceramic Leadless Chip Carrier (CL 028)
b. SPEED OPTION

Not Applicable

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29841A	/BLA, /BKA, /B3A
AM29843A	
AM29845A	
AM29941A	
AM29943A	
AM29945A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.
$\mathrm{D}_{\mathrm{i}} \quad$ Data Inputs (Input)
D_{i} are the latch data inputs.
$\mathbf{Y}_{\mathbf{i}}$ Data Outputs (Output)
Y_{i} are the three-state data outputs.
LE Latch Enable (Input, Active HIGH)
The latches are transparent when LE is HIGH. Input data is latched on a HIGH-to-LOW transition.

Am29841A

$\overline{\mathbf{O E}} \overline{\text { Output Enable (Input, Active LOW) }}$
When $\overline{O E}$ is LOW, the latch data is passed to the Y_{i} outputs. When $\overline{\mathrm{OE}}$ is HIGH, the Y_{i} outputs are in the high-impedance state.

Am29843A
OE Output Enable (Input, Active LOW)
When $\overline{O E}$ is LOW, the latch data is passed to the Y_{i} outputs. When $\overline{O E}$ is HIGH, the Y_{i} outputs are in the high-impedance state.
$\overline{\text { PRE }} \overline{\text { Preset }}$ (Input, Active LOW)
When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if $\overline{\mathrm{OE}}$ is LOW. $\overline{\text { PRE }}$ overrides the $\overline{\mathrm{CLR}}$ pin. $\overline{\mathrm{PRE}}$ will set the latch independent of the state of $\overline{\mathrm{OE}}$.
CLR Clear (Input, Active LOW) When CLR is LOW, the internal latch is cleared. When $\overline{C L R}$ is LOW, the outputs are LOW if $\overline{O E}$ is LOW and $\overline{P R E}$ is HIGH. When CLR is HIGH, data can be entered into the latch.

PIN DESCRIPTION

Am29845A

$\overline{O E}_{1} \overline{\text { Output Enables }}$ (Input, Active LOW) When $\overline{O E}_{1}, \overline{\mathrm{OE}}_{2}$, and $\overline{\mathrm{OE}}_{3}$ are all LOW, the latch data is passed to the Y_{i} outputs. If any or all $\overline{O E}_{i}$ are HIGH, the Y_{i} outputs are put in a high impedance state.
$\overline{\text { PRE }} \overline{\text { Preset }}$ (Input, Active LOW)
When $\overline{\text { PRE }}$ is LOW, the outputs are HIGH if all $\overline{\mathrm{OE}}_{i}$ are LOW. $\overline{\text { PRE }}$ overrides the $\overline{C L R}$ pin. $\overline{\text { PRE }}$ will set the latch independent of the state of $\overline{O E}$.

CLR Clear (Input, Active LOW)

When CLR is LOW, the internal latch is cleared. When CLR is LOW, the Y_{i} outputs are LOW if all $\overline{O E}_{j}$ are LOW and $\overline{\text { PRE }}$ is HIGH. When CLR is HIGH, data can be entered into the latch.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$	2.4		Volts
			$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0		
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$\mathrm{MIL}, \mathrm{l} \mathrm{IL}=32 \mathrm{~mA}$		0.5	Volts
			COM' ${ }^{\text {, }} \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}$		0.5	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs (Note 1)		2.0		Volts
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs (Note 1)			0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2	Volts
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$			-0.5	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
lozl	Output Off-State Current (High Impedance)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-50	$\mu \mathrm{A}$
IOZH			$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		50	
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ (Note 2)		-75	-250	mA
loff	Bus Leakage Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.9 \mathrm{~V}$			100	$\mu \mathrm{A}$
${ }^{\prime} \mathrm{Cc}$	Supply Current	$V_{C C}=5.5 \mathrm{~V}$ Outputs Unloaded	Outputs LOW		97	mA
			Outputs HIGH		70	
			Outputs Hi-Z		81	

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters. 2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second

	SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)									
		Parameter Description		Test Conditions*	COMMERCIAL		MILITARY		Units	
$\begin{gathered} \mathbf{O} \\ \text { N } \\ \text { E } \end{gathered}$	Parameter Symbol			Min.	Max.	Min.	Max.			
	tpLH	Data (D_{i}) to Output $\mathrm{Y}_{\mathrm{i}}(\mathrm{LE}=\mathrm{HIGH})$			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		7		8.5	ns
4	tpHL					9		10	ns	
ホ	ts	Data to LE Setup T		2.5			3.5		ns	
\%	t_{H}	Data to LE Hold Tir		2.5			3.5		ns	
E E	tpLi	Latch Enable (LE) to Y_{i}				12		13	ns	
<	tpHL					12		13	ns	
	tpLH	Propagation Delay, Preset to $\mathrm{Y}_{\mathbf{i}}$				12		14	ns	
	tPHL					12		14	ns	
	$\mathrm{t}_{\text {REC }}$	Preset ($\overline{\text { RE }}$ -) to LE Setup Time		4			5		ns	
	tpLH	Propagation Delay, Clear to Y_{i}				13		14	ns	
	tpHL					13		14	ns	
	$t_{\text {REC }}$	Clear ($\overline{\mathrm{CLF}}$ -) to LE Setup Time		7			8		ns	
	tpWH	LE Pulse Width	HIGH	4			5		ns	
	$t_{\text {PWL }}$	Preset Pulse Width	LOW	5			7		ns	
	tpWL	Clear Pulse Width	LOW	4			5		ns	
	t_{ZH}	Output Enable Time $\overline{O E}$ L to Y_{i}				10.5		13.5	ns	
	tzL					11.5		14.5	ns	
	t_{Hz}	Output Disable Time $\overline{O E}$ 工 to Y_{i}				8		10	ns	
	tLZ					8		10	ns	
	*See Test Circuit and Waveforms.									

Am29861A／Am29863A

High－Performance Bus Transceivers

DISTINCTIVE CHARACTERISTICS

－High－speed symmetrical bidirectional transceivers $-\mathrm{t}_{\mathrm{PD}}=5 \mathrm{~ns}$ typical
－ $200-\mathrm{mV}$ minimum input hysteresis on input data ports
－Three－state outputs glitch－free during power－up and down

The Am29861A and Am29863A Bus Transceivers provide high－performance bus interface buffering for wide address／ data paths or buses carrying parity．The Am29861A is a 10－ bit bidirectional transceiver；the Am29863A is a 9－bit bidirectional transceiver with NORed output enables for maximum control flexibility．Each device features data inputs with $200-\mathrm{mV}$ minimum input hysteresis to provide improved noise immunity．The Am29861A and Am29863A
are produced with AMD＇s proprietary $1 \mathrm{MOX}^{*}$ bipolar pro－ cess，and feature typical propagation delays of 5 ns． Package options include DIPs，PLCCs，LCCs，SOICs，and Flatpacks．

Each member of the Am29800A／Am29900A Bus Interface Family is designed to drive high－capacitive loads while providing low－capacitive bus loading at both the inputs and outputs．

BLOCK DIAGRAMS (Cont'd.)

Am29863A

LOGIC SYMBOLS

Am29861A
Am29863A

LS000382

FUNCTION TABLES

Am29861A

Inputs					Outputs			
OET	OER	$\mathbf{R}_{\mathbf{I}}$	$\mathbf{T}_{\mathbf{I}}$	$\mathbf{R}_{\mathbf{I}}$	$\mathbf{T}_{\mathbf{I}}$	Function		
L	H	L	N/A	N/A	L	Transmit		
L	H	H	N/A	N/A	H	Transmit		
H	L	N/A	L	L	N/A	Receive		
H	L	N/A	H	H	N/A	Receive		
H	H	X	X	Z	Z	Hi-Z		

Inputs							Outputs		
$\overline{\mathrm{OET}}_{\mathbf{1}}$	$\mathrm{OET}_{\mathbf{2}}$	$\overline{\mathrm{OER}}_{\mathbf{1}}$	$\overline{\mathrm{OER}}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{I}}$	$\mathrm{T}_{\mathbf{i}}$	$\mathbf{R}_{\mathbf{I}}$	$\mathrm{T}_{\mathbf{i}}$	Function	
L	L	H	X	L	N/A	N/A	L	Transmit	
L	L	X	H	L	N/A	N/A	L	Transmit	
H	X	L	L	N/A	L	L	N/A	Receive	
X	H	L	L	N/A	L	L	N/A	Receive	
L	L	H	X	H	N/A	N/A	H	Transmit	
L	L	X	H	H	N/A	N/A	H	Transmit	
H	X	L	L	N/A	H	H	N/A	Receive	
X	H	L	L	N/A	H	H	N/A	Receive	
H	X	H	X	X	X	Z	Z	Hi-Z	
X	H	X	H	X	X	Z	Z	Hi-Z	

H	$=H I G H$
L	$=$ LOW
Z	$=$ High Impedance

X = Don't Care N/A $=$ Not Applicable

ORDERING INFORMATION

Standard Products

AMD products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION (Cont'd.)

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

b. SPEED OPTION

Not Applicable
a. DEVICE NUMBER/DESCRIPTION

Am29861A 10-Bit Transceiver
Am29863A 9-Bit Transceiver

Valid Combinations	
AM29861A	/BLA, /BKA, /B3A
AM29863A	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
1, 2, 3, 7, 8, 9, 10, 11.

PIN DESCRIPTION

Am29861A

OER Output Enable-Receive (Input, Active LOW) When LOW in conjunction with OET HIGH, the devices are in the Receive mode (R_{i} are outputs, T_{j} are inputs).

OET Output Enable-Transmit (Input, Active LOW) When LOW in conjunction with OER HIGH, the devices are in the Transmit mode (R_{i} are inputs, T_{i} are output).
$\mathbf{R}_{\mathrm{I}} \quad$ Receive Port (Input/Output)
R_{i} are the 10-bit data inputs in the Transmit mode, and the outputs in the Receive mode.

Ti Transmit Port (Input/Output)
T_{i} are the 10-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

Am29863A

$\overline{\text { OER }} \overline{\text { Output Enables-Receive }}$ (Input, Active LOW) When both $\overline{\mathrm{OER}}_{1}$ and $\overline{\mathrm{OER}}_{2}$ are LOW while $\overline{\mathrm{OET}}_{1}$ or $\overline{\mathrm{OET}}_{2}$ (or both) are HIGH, the device is in the Receive mode (R_{i} are outputs, T_{i} are inputs).
$\overline{\text { OET }_{1}} \overline{\text { Output Enables-Transmit }}$ (Input, Active LOW) When both $\overline{\mathrm{OET}}_{1}$ and $\overline{\mathrm{OET}}_{2}$ are LOW while $\overline{\mathrm{OER}}_{1}$ or $\overline{\mathrm{OER}}_{2}$ (or both) are HIGH, the device is in the Transmit mode ($\mathbf{R}_{\mathbf{i}}$ are inputs, T_{i} are outputs).
$\mathbf{R}_{\mathbf{I}} \quad$ Receive Port (Input/Output) R_{i} are the 9-bit data inputs in the Transmit mode, and the outputs in the Receive mode.

TI Transmit Port (Input/Output)

T_{i} are the 9-bit data outputs in the Transmit mode, and the inputs in the Receive mode.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65 to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential	
DC Voltage Applied to Output	
DC Input Voltage	1.5 V to +6.0
C Output Current, Into	

OPERATING RANGES
Commercial (C) Devices
Temperature $\left(T_{A}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0$ to $+70^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right) \ldots \ldots \ldots \ldots \ldots .4 .5 \mathrm{~V}$ to +5.5 V
Military (M) and Extended Commercial (E) Devices
Temperature $\left(\mathrm{T}_{\mathrm{C}}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots .-55$ to $+125^{\circ} \mathrm{C}$
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right) \ldots \ldots \ldots \ldots \ldots .+4.5 \mathrm{~V}$ to +5.5 V
Operating ranges define those limits between which the
functionality of the device is guaranteed.

SWITCHING CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)							
	Paremeter Description	Test Conditions*	COMMERCIAL		MILITARY		Units
Parameter Symbol			Min.	Max.	Min.	Max.	
tPLH	Propagation Delay from R_{i} to T_{i} or T_{i} to R_{i} Am29861A/Am29863A	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{1}=500 \Omega \\ & \mathrm{R}_{2}=500 \Omega \end{aligned}$		8		9	ns
tPHL				8		9	ns
tzH	Output Enable Time $\overline{\text { OET }}$ to T_{i} or $\overline{O E R}$ to R_{i}			11		12	ns
tZL				12		13	ns
t_{Hz}	Output Disable Time OET to T_{i} or OER to R_{i}			10		10	ns
tLz				10		10	ns

*See Test Circuit and Waveforms.

Am29818A

Pipeline Register with SSR $^{\text {TM }}$ Diagnostics
Higher Speed Version of Am29818

DISTINCTIVE CHARACTERISTICS

- High-speed noninverting 8 -bit parallel register for any data path or pipelining application
- WCS (Writable Control Store) pipeline register
- Load WCS from serial register
- Read WCS via serial scan
- Alternate sourced as SN54/74S818
- High-speed 8-bit 'shadow register" with serial shift mode for Serial Shadow Register (SSR) Diagnostics
- Controllability: serial scan in new machine state
- Observability: serial scan out diagnostics routine results
- Speed comparable with that of 'AS374 register

GENERAL DESCRIPTION

The Am29818A is a high-speed, general-purpose pipeline register with an on-board shadow register for performing Serial Shadow Register (SSR) Diagnostics and/or Writable Control Store loading:

The D-to-Y path provides an 8-bit parallel data path pipeline register for normal system operation. The shadow register can load parallel data to or from the pipeline register and can output data through the D input port (as in WCS loading).

The 8-bit shadow register has multiplexer inputs that select parallel inputs from the Y-port or adjacent bits in the shadow register to operate as a shift register. In the serial
shift mode, SDI is shifted into the ' 0 ' location of the Shadow register and the contents of ' 7 ' location appear at the SDO output. This register can then participate in a serial loop throughout the system where normal data, address, status and control registers are replaced with Am29818A Diagnostic Pipeline Registers. The loop can be used to scan in a complete test routine starting point (data, address, etc.). Then after a specified number of clock cycles, the data clocked out can be compared to the expected results. WCS loading can be accomplished using the same technique. An instruction word can be serially shifted into the shadow register and written into the WCS RAM by enabling the D output.

BLOCK DIAGRAM

CONNECTION DIAGRAMS
 Top View

CD001102
*Also available in 24-Pin Flatpack and Small Outline package; pinout identical to DIPs.
**Also available in 28-Pin PLCC; pinout identical to LCC.

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Package Type
d. Temperature Range
e. Optional Processing

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations	
AM29818A	/BLA, /BKA, /B3A

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests
Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{7} \quad$ Parallel Data Inputs (Input/Output)
Parallel data input to the pipeline register or parallel data output from the shadow register (see Function Table for control modes).
DCLK Diagnostics Clock (Input)
Diagnostics/WCS clock for loading shadow register (serial or parallel modes - see Function Table).
MODE Mode Control (Input)
Control input for pipeline register multiplexer and shadow register control (see Function Table).
$\overline{\mathbf{O E Y}} \quad$ Y-Port Output Enable (Input; Actlve LOW)
Active-LOW output enable for Y-port.

PCLK Pipeline Register Clock (Input)
Pipeline register clock input loads D-port or shadow register contents on LOW-to-HIGH transition.

SDI Serial Data Input (Input)
Input to shadow register (see Function Table).
SDO Serial Data Output (Output)
Output from shadow register.
$\mathbf{Y}_{0}-\mathbf{Y}_{7}$ Parallel Data Outputs (Input/Output)
Data outputs from the pipeline register and parallel inputs to the shadow register.

FUNCTIONAL DESCRIPTION

Data transfers into the shadow register occur on the LOW-toHIGH transition of DCLK. MODE and SDI determines what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCL.K. MODE selects whether
the data source is the data input or the shadow register output. Because of the independence of the clock inputs data can be shifted in the shadow register via DCLK and loaded into the pipeline register from the data input via PCLK simultaneously. As long as no set-up or hold times are violated, this simultaneous operation is legal.

Inputs				Outputs			Operation
SDI	MODE	DCLK	PCLK	SDO	Shadow Register	Pipeline Register	
X	L	\dagger	X	S_{7}	$\begin{aligned} & \mathbf{S}_{\mathbf{i} \leftarrow}+\mathrm{S}_{\mathrm{i}-1} \\ & \mathbf{S}_{0 \leftarrow S D} \end{aligned}$	NA	Serial Shift; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Disabled
X	L	X	\dagger	S_{7}	NA	$\mathrm{P}_{\mathrm{i}} \leftarrow \mathrm{D}_{\mathrm{i}}$	Normal Load Pipeline Register
L	H	\dagger	X	SDI	$\mathrm{S}_{\mathrm{i} \leftarrow}+\mathrm{Y}_{\mathrm{i}}$	NA	Load Shadow Register from Y; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Disabled
X	H	X	\dagger	SDI	NA	$\mathrm{P}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}}$	Load Pipeline Register from Shadow Register
H	H	\dagger	X	SDI	Hold*	NA	Hold Shadow Register; $\mathrm{D}_{7}-\mathrm{D}_{0}$ Enabled*

*Although not shown, Hold is implemented by gating DCLK internally.
FUNCTION TABLE DEFINITIONS

INPUTS

$\mathrm{H}=\mathrm{HIGH}$
$L=L O W$
$X=$ Don't Care
$\uparrow=$ LOW-to-HIGH transition

OUTPUTS

$\mathrm{S}_{7}-\mathrm{S}_{0}=$ Shadow Register outputs
$\mathrm{P}_{7}-\mathrm{P}_{0}=$ Pipeline Register outputs
$\mathrm{D}_{7}-\mathrm{D}_{0}=$ Data $1 / \mathrm{O}$ port
$Y_{7}-Y_{0}=Y_{1 / O}$ port
NA $=$ Not applicable output is not a function of the specified input combinations.

An Introduction to Serial Shadow Register (SSR) Diagnostics

Diagnostics

A diagnostics capability provides the necessary functionality as well as a systematic method for detecting and pin-pointing hardware-related failures in a system. This capability must be able to both observe intermediate test points and control intermediate signals - address, data, control and status - to exercise all portions of the system under test. These two capabilities - observability and controllability - provide the ability to establish a desired set of input conditions and state register values, sample the necessary outputs, and determine whether the system is functioning correctly.

Testing Combinational and Sequential Networks

The problem of testing a combinational logic network is well understood (Figure 1). Sets of input signals (test vectors) are applied to the network and the network outputs are compared to the set of computed outputs (result vectors). In some cases sets of test vectors and result vectors can be generated in a computer-aided environment, minimizing engineering effort. Additionally, fault coverage analysis can be automated to provide a measure of how efficient a set of test vectors is at pin-pointing hardware failures. For example, a popular measure of fault coverage computes the percentage of stuck-atones (nodes with outputs always HIGH) and stuck-at-zeros (nodes with outputs always LOW) a given set at test vectors will discover.

Figure 1. Combinational Logic Network
A sequential network (Figure 2) is much more difficult to test systematically. The outputs of a sequential network depend not only on the present inputs but also on the internal state of the network. Initializing the internal state register to the value necessary to test a given set of inputs is difficult at best, and not easily automated. Additionally, observing the internal state of a sequential network can be very difficult and time consuming if the state information is not directly available. For example, consider the problem of determining the value of an internal 16 -bit counter if only a carry-out signal is available. The counter must be clocked until it reaches the carry-out state and the starting value computed. Up to 65,535 clock cycles may be necessary! An easier method must exist. Serial Shadow Register diagnostics provides this method.

DF000081
Figure 2. Sequential Network

Serlal Shadow Register Dlagnostics

Serial Shadow Register diagnostics provides sufficient observability and controllability to turn any sequential network into a combinational network. This is accomplished by providing the means to both initialize (control) and sample (observe) the state elements of a sequential network. Figure 3 shows the method by which serial shadow register diagnostics accomplishes these two functions.

DF000041
Figure 3. SSR Diagnostics Diagram
Serial Shadow Register diagnostics utilizes an extra multiplexer on the input of each state register and a duplicate or shadow of each state flip/flop in an additional register. The shadow register can be loaded serially via the serial data input (thus the name Serial Shadow Register diagnostics) for controllability. Once the desired state information is loaded into the serial register it can be transferred into the internal state register by selecting the multiplexer and clocking the state register with PLCK. This allows any internal state to be set to a desired state in a simple, quick, and systematic manner.
Internal state information can be sampled by loading the serial register from the state register outputs. This state information can then be shifted out via the serial data output to provide observability. Notice that the serial data inputs and outputs can be cascaded to make long chains of state information available on a minimum number of connections.

In effect, Serial Shadow Register diagnostics breaks the normal feedback path of the sequential network and establishes a logical path with which inputs can be defined and outputs sampled (Figure 4). This means that those techniques which have been developed to test combinational networks can be applied to any sequential network in which Serial Shadow Register diagnostics is utilized.

Figure 4. SSR Diagnostics Logical Path

A Typical Computer Architecture with SSR Diagnostics

When normal pipeline registers are replaced by SSR diagnostics pipeline registers system debug and diagnostics are easily implemented. State information which was inaccessible is now both observable and controllable. Figure 5 shows a typical computer system using the Am29818A.
Serial paths have been added to all the important state registers (macro instruction, data, status, address, and micro instruction registers). This extra path will make it easier to diagnose system failures by breaking the feed-back paths and turning sequential state machines into combinatorial logic
blocks. For example, the status outputs of the ALU may be checked by loading the micro instruction register with the necessary micro instruction. The desired ALU function is then executed and the status outputs captured in the status register. The status bits can then be serially shifted out and checked for validity.

A single diagnostic loop was shown in Figure 5 for simplicity, but several loops can be employed in more complicated systems to reduce scan time. Additionally, the Am29818A's can be used to sample intermediate test points not associated with normal state information. These additional test points can further ease diagnostics, testability and debug.

SSR DIAGNOSTICS/WCS PIPELINE REGISTERS
REPLACE NORMAL REGISTERS WITH DIAGNOSTICS LOOP

Figure 5. Typical System Configuration

Use of the Am29818A Pipeline Register in Writable Control Store (WCS) Designs

The Am29818A SSR diagnostics/WCS Pipeline Register was designed specifically to support writable control store designs. In the past, designers of WCS based systems needed to use an excessive amount of support circuitry to implement a WCS. As shown in Figure 7, additional input and output buffers are necessary to provide paths from the parallel input data bus to the memory, and from the instruction register to the output data bus. The input port is necessary to write data to the control store, initializing the micromemory. The output port provides the access to the instruction register, indirectly allowing the RAM to be read. Additionally, access to the instruction register is useful during system debugging and system diagnostics.

The Am29818A supports all of the above operations (and more) without any support circuitry. Figure 6 shows a typical WCS design with the Am29818A. Access to memory is now possible over the serial diagnostics port. The instruction register contents may be read by serially shifting the information out on the diagnostics port. Additionally, the instruction register may be written from the serial port via the shadow register. This simplifies system debug and diagnostics operations considerably.

Conclusion

Serial Shadow Register diagnostics provides the observability and controllability necessary to take any sequential network and turn it into a combinational network. This provides a method for pin-pointing digital system hardware failures in a systematic and well-understood fashion.

DF000102
Figure 6. Am29818A-Based WCS Application

Figure 7. WCS Application without Am29818As

ABSOLUTE MAXIMUM RATINGS

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential Continuous -0.5 V to +7.0 V
DC Voltage Applied to Outputs
for High Output State-0.5 V to +5.5 V
DC Input Voltage................................-1.5 V to +6.0 V
DC Output Current, into Outputs 100 mA
DC Input Current........................... 30 mA to +5.0 mA
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A,
Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions (Note 1)				Min.	Max.	Units
VOH	Output HIGH Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{\mathrm{IN}}=V_{\mathrm{IH}} \text { or } V_{\mathrm{IL}} \end{aligned}$	$\begin{aligned} & Y_{0}-Y_{7}: I_{O H}=-6 \mathrm{~mA} \\ & D_{0}-D_{7}, S D O: I_{O H}=-1 \mathrm{~mA} \end{aligned}$			2.4		Volts
VOL	Output LOW Voltage	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \\ & V_{I N}=V_{I H} \text { or } V_{I L} \end{aligned}$	$Y_{0}-Y_{7}$		$\mathrm{lOL}^{\prime}=24 \mathrm{~mA}$			0.5
			$\begin{aligned} & D_{0}-D_{7}, \\ & \text { SDO } \end{aligned}$	COM'L	$\mathrm{lOL}=8 \mathrm{~mA}$		0.5	V
				MIL	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.5	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)				2.0		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)					0.8	Volts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$					-1.2	Volts
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$					-0.25	mA
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}$					50	$\mu \mathrm{A}$
1	Input HIGH Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$					1.0	mA
lo	Off-State Current (High Impedance)	$V_{C C}=5.5 \mathrm{~V}$	$\mathrm{V}_{0}=0.5 \mathrm{~V}$				-250	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$				100	
ISC	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (Note 2)	$\mathrm{Y}_{0}-\mathrm{Y}_{7}$			-30	-100	mA
			$\mathrm{D}_{0}-\mathrm{D}_{7}, \mathrm{SDO}$			-15	-50	
loff	Bus Leakage	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.9 \mathrm{~V}$					100	$\mu \mathrm{A}$
ICC	Power Supply Current	$V_{C C}=5.5 \mathrm{~V}$	Outputs Hi-Z				145	mA

Notes: 1. Input thresholds are tested during DC parameter testing, and may be tested in combination with other DC parameters.
2. Not more than one output shorted at a time. Duration of the short-circuit test should not exceed one second.

SWITCHING CHARACTERISTICS

Parameter Symbol	Paramter Description	Test Conditions	COMMERCIAL		MILITARY		Units
			Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$ and ${ }^{\text {tpHL }}$	PCLK $\rightarrow Y_{x}$	See Test Output Load Conditions Below $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		9		12	ns
	MODE \rightarrow SDO			16		18	ns
	SDI \rightarrow SDO			15		18	ns
	DCLK \rightarrow SDO			25		30	ns
ts	$\mathrm{D}_{\mathrm{x}} \rightarrow$ PCLK		4		6		ns
	MODE \rightarrow PCLK		15		15		ns
	$\mathrm{Y}_{\mathrm{X}} \rightarrow$ DCLK		5		5		ns
	MODE \rightarrow DCLK		12		12		ns
	SDI \rightarrow DCLK		10		12		ns
	DCLK \rightarrow PCLK		15		15		ns
	DCLK \rightarrow DCLK		40		45		ns
t_{H}	$\mathrm{D}_{\mathrm{x}} \rightarrow$ PCLK		2		2		ns
	MODE \rightarrow PCLK		0		0		ns
	$Y_{\text {x }} \rightarrow$ DCLK		5		5		ns
	MODE \rightarrow DCLK		2		5		ns
	SDI \rightarrow DCLK		0		0		ns
tLz	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{X}}$			15		20	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$			45		45	ns
$t_{\text {Hz }}$	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{X}}$			25		30	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$			80		90	ns
tzL	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{X}}$			15		20	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$			25		35	ns
$\mathrm{t}_{\mathrm{Z}} \mathrm{H}$	$\overline{\mathrm{OEY}} \rightarrow \mathrm{Y}_{\mathrm{X}}$			15		20	ns
	DCLK $\rightarrow \mathrm{D}_{\mathrm{x}}$			25		30	ns
tpw	PCLK (HIGH and LOW)		10		15		ns
	DCLK (HIGH and LOW)		15		25		ns

SWITCHING TEST CIRCUITS

Part Number	Equivalent Number of Gates
Am29C800 Family	
Am29C818	303
Am29C821	90
Am29C823	96
Am29C827	60
Am29C828	55
Am29C833	139
Am29C841	73
Am29C843	69
Am29C853	135
Am29C855	135
Am29C861	105
Am29C863	98
Am29800A Family	
Am29818A	147
Am29821A	72
Am29823A	72
Am29825A	68
Am29827A	30
Am29828A	40
Am29833A	88
Am29841A	62
Am29843A	58
Am29845A	54
Am29853A	84
Am29855A	85
Am29861A	55
Am29863A	52

PD3024

*For reference only.

PACKAGE OUTLINES (Cont'd.)
PL 028

PID \# $06751 E$

CL 028
 local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

Notes

Notes

Notes

Notes

Notes

ADVANCED MICRO DEVICES

U.S. SALES OFFICES

ALABAMA	(205) 882-9122	MASSACHUSETTS	(617) 273-3970
ARIZONA,		MINNESOTA	(612) 938-0001
Tempe	(602) 242-4400	MISSOURI	(314) 275-4415
CALIFORNIA,		NEW JERSEY	(201) 299-0002
Culver City	(213) 645-1524	NEW YORK,	
Newport Beach	(714) 752-6262	Liverpool	(315) 457-5400
San Diego	(619) 560-7030	Poughkeepsie	(914) 471-8180
Santa Clara	(408) 727-3270	Woodbury	(516) 364-8020
Woodland Hills	(818) 992-4155	NORTH CAROLINA	(919) 847-8471
COLORADO	(303) 741-2900	OREGON	(503) 245-0080
CONNECTICUT	(203) 264-7800	OHIO	(614) 891-6455
FLORIDA,		PENNSYLVANIA,	
Clearwater	(813) 530-9971	Allentown	(215) 398-8006
Ft Lauderdale	(305) 484-8600	Willow Grove	(215) 657-3101
Melbourne	(305) 729-0496	TEXAS,	
Orlando	(305) 859-0831	Austin	(512) 346-7830
GEORGIA	(404) 449-7920	Dallas	(214) 934-9099
ILLINOIS	(312) 773-4422	Houston	(713) 785-9001
INDIANA	(317) 244-7207	WASHINGTON	(206) 455-3600
KANSAS	(913) 451-3115	WISCONSIN	(414) 792-0590
MARYLAND	(301) 796-9310		

INTERNATIONAL SALES OFFICES

NORTH AMERICAN REPRESENTATIVES

CALIFORNIA	
$\mathrm{I}^{2} \mathrm{INC}$	(408) 988-3400
	(408) 496-6868
IDAHO	
INTERMOUNTAIN TECH MKGT	(208) 888-6071
INDIANA	
ELECTRONIC MARKETING CONSULTANTS	(317) 253-1668
IOWA	
LORENZ SALES	(319) 377-4666
KANSAS	
LORENZ SALES	(913) 384-6556
MICHIGAN	
SAI MARKETING CORP	(313) 750-1922
MISSOURI	
LORENZ SALES	(314) 997-4558
NEBRASKA	
LORENZ SALES	(402) 475-4660

NEW MEXICO	
THORSON DESERT STATES	(505) 293-8555
NEW YORK	
NYCOM, INC	(315) 437-8343
OHIO	
Dayton	
DOLFUSS ROOT \& CO	(513) 433-6776
Strongsville	
DOLFUSS ROOT \& CO	(216) 238-0300
PENNSYLVANIA	
DOLFUSS ROOT \& CO	(412) 221-4420
UTAH	
R^{2} MARKETING	(801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.
ADVANCED
MICRO
DEVICES, INC.
901 Thompson Place
P. O. Box 3453
Sunnyvale
California 94088-3000
(408) 732-2400
TELEX: 34-6306
TOLL FREE
(800) 538-8450
APPLICATIONS
HOTLINE
(800) 222-9323
1988 Advanced Micro
Devices, Inc
Printed in USA
AIS-WCP-30M-2/88-0
Order 07175C

[^0]: *See Test Circuit and Waveforms.

[^1]: $H=H I G H$
 L = LOW
 Z = High Impedance

[^2]: ${ }^{\text {* }}$ IMOX is a trademark of Advanced Micro Devices, Inc.
 **See following pages for additional Block Diagrams.

