Advanced Memory Systems

8-Bit NMOS Monolithic Microprocessor

Features

Ease of Use

Static Logic Easy to Debug

- True Single-Step Operation
- Single-Phase TTL-Level Clock Input Simple Interface
 - Non-Critical Timing
- Single +5 Volt Power Supply
- General Purpose Instruction Set
- Tri-State^{*} Output Busses (except A₁₃ and A₁₄)
- Machine Cycle Time of 2.4 μs at 1.25 MHz Clock Frequency
- N-Channel Silicon-Gate MOS Technology
- 40-Pin Ceramic Dual-Inline Package
- TTL-Compatible Inputs and Outputs
- 32K Byte Addressing Range
- Separate Address and Data Lines
- Direct Instructions Take 2, 3 or 4 Cycles
- Uses Standard Low-Cost Semiconductor **Memories**
- Expanding Family of I/O Devices

Ease of Programming

- Fixed Set of 75 Instructions
 - Most Complex Operation Executes in 9.6 μs Fastest Operation Executes in 4.8 μs
- Parallel 8-Bit Binary Operation
- Seven General-Purpose Registers
 - Use as Source or Destination for Arithmetic Operations
 - Use as Index Registers
 - Easy I/O Transfer

* Tri-Share is a registered trademark of National Semiconductor Corp.

- Vector Interrupt Format Easy to Use with Separate I/O Lines
- Return Address Stack, 8 Deep, On Chip Automatic Subroutine Nesting
- Variable-Length Instructions
 - 1, 2, or 3 Byte Lengths
 - Conserves Memory
- Address Capability Up to 32,768 Bytes of Memory
- Flexible Addressing Modes
 - Register
 - Immediate
 - Relative
 - Absolute
 - Indirect
 - Indexed

ADF

Pin Configuration

		~~			
SENSE	1		40		FLAG
ADR 12	2		39		V _{CC}
ADR 11	3		38		CLOCK
ADR 10	4		37	Þ	PAUSE
ADR 9	5		36		OPACK
ADR 8	6		35		RUN/WAIT
ADR 7	7		34		INTACK
ADR 6	8		33		DBUS 0
ADR 5	9		32		DBUS 1
ADR 4	10		31		DBUS 2
ADR 3	11		30		DBUS 3
ADR 2	12		29		DBUS 4
ADR 1	13		28		DBUS 5
ADR 0	14		27		DBUS 6
ADREN	15		26		DBUS 7
RESET	16		25		DBUSEN
INTREO	17		24		OPREQ
ADR 14-D/C	18		23		R/W
ADR 13-E/NE	19		22		WRP
M/IO	20		21		GND
			199		

TOP VIEW

Description

The 2650 microprocessor is a general-purpose, single-chip, fixed instruction set, 8-bit parallel binary device. A general-purpose processor can perform any data manipulation through a stored set of machine instructions. The processor function has been designed to resemble those of conventional binary computers, but will execute variable-length instructions of one to three bytes in length. Binary Coded Decimal (BCD) arithmetic is made possible through use of a special Decimal Adjust Register (DAR) instruction.

The 2650 microprocessor is manufactured using an N-channel silicon-gate process technology. N-channel configuration provides high carrier mobility for high speed, and allows the use of a single 5V power supply. The silicon-gate process contributes to improved speed and better transistor density. Standard 40-pin dual inline packages are used.

The microprocessor contains seven general-purpose registers, each eight bits long. They may be used as sources or destinations for arithmetic operations, as index registers, or for I/O transfers. The processor can address up to 32,768 bytes of memory in four pages of 8,192 bytes each. Processor instructions are one, two or three bytes long, depending on the instruction. Variable-length instructions tend to conserve memory space, since a one- or two-byte instruction may be used rather than a three-byte instruction. The first byte of each instruction always specifies the operation to be performed and the addressing mode to be used. Most instructions use six of the first eight bits for this purpose, with the remaining two bits making up the register field. Some instructions use the full eight bits as an operation code.

The most complex direct instruction is three bytes long and requires 9.6 μ s to execute. This figure assumes that the processor is operating at its maximum clock rate and has an associated memory with cycle and access times of less than one microsecond. The fastest instruction executes in 4.8 μ s. The clock input to the processor is a single-phase pulse train and uses only one interface pin. It requires a normal TTL voltage swing, and no special clock driver is required.

The Data Bus and Address signals are tri-state to provide convenience in system design. Memory and I/O interface signals are asynchronous so that Direct Memory Access (DMA) and multiprocessor operations are easy to implement.

The 2650 microprocessor has a versatile set of addressing modes used to locate operands for operations. The interrupt mechanism is implemented as a single level, address-vectoring type. Address vectoring means that an interrupting device can force the processor to execute code at a device-determined level in memory.

Absolute Maximum Ratings¹

Operating Temperature	0°C to +70°C
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
All Input, Output and Supply Voltages with Respect to Ground (Note 2)	-0.5V to +6V
Power Dissipation	1.6W

NOTES:

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may cause device failures.
- This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

Capacitance

	SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST COND.
1	CIN	Input Capacitance		10	pF	$V_{IN} = 0V,$ $T_A = 0^{\circ}C \text{ to } 70^{\circ}C$
2	COUT	Output Capacitance		10	μL	$V_{OUT} = 0V, =$ $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$

Order Information

CLOCK	PACKAGE	ORDER
PERIOD	TYPE	CODE
800ns	Ceramic DIP	2650-11-6G

SUNNYVALE

PHONE: (408) 734-4330 TWX: (910) 339-9369

BOSTON

PHONE: (617) 259-0050 TWX: (710) 390-1768

CHICAGO

PHONE: (312) 529-1474 TWX: (910) 291-3825

LONDON

PHONE: 01-542-4690 TELEX: 851 928139 CANFOR G

Functional Block Diagram

Major 2650 Registers

PAGE CONTROL

NOTE: NOT ALL INTERNAL REGISTERS ARE SHOWN

Timing Diagrams

The clock input to the 2650 microprocessor provides the basic timing information which the device uses for all internal and external operations. The clock rate determines the instruction execution time, except when limited by external memories and associated devices. The maximum clock rate of the 2650 is 1.25 MHz (one clock period is 80 ns minimum). A unique feature of the microprocessor is that the clock frequency may be slowed to 0Hz, allowing complete timing flexibility for interfacing. This feature permits the clock to be single-stepped to simplify system checkout. It also provides an easy means of stopping the processor. Each 2650 cycle is composed of three clock periods. Direct instructions require either 2, 3 or 4 processor cycles for execution, and therefore will vary from 4.8 to 9.6 μ s in duration.

Note that in the timing diagram for a Memory Read cycle, OPREQ (Operation Request) is the master control signal which coordinates all operations external to the processor. When true, OPREQ indicates that other output signals are valid. During a Memory Read cycle, M/IO is in the M (memory) state, and R/W is in the R (read) state. The address and control lines become valid when OPREQ rises. The data to be read may be returned any time after OPREQ becomes valid. An **OPACK** (Operation Acknowledge) should accompany the read data from the memory. The data and OPACK signals should remain valid for 50 ns after OPREQ falls. If the OPACK signal is delayed by the memory device, the processor will wait until this signal is received. OPREQ is lowered only after receipt of OPACK. The memory device will raise OPACK after OPREQ falls.

Memory Write Sequence

The signals involved with the processor's Memory Write sequence are similar to those used in the Memory/Read cycle, with the following exceptions: (1) the R/W signal is in the W state and (2) the WRP signal provides a positive-going pulse during the write sequence, which may be used as a chip enable command, write pulse, etc.

Interrupt Timin

Memory Read Sequence

Tri-State Bus Timing

AC Characteristics 1, 2, 3, 7

TEST CONDITIONS: $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

Input/Output Timing

The signal exchanges for input/output timing with external devices is very similar to the Memory Read/Write sequences.

	SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITION
1	tсн	Clock High Phase Time	400	10,000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2	t _{CL}	Clock Low Phase Time	400	∞		Compression (Section 4)
3	t _{CP}	Clock Period Time	800	∞		a the state of the second
4	t _{PC}	Processor Cycle Time	2,400	DC		See Note 5
5	tor	OPREQ Pulse Width	2t _{CH} + t _{CL} - 100	∞		& FIRST STORAGE H
6	tCOR	Clock to OPREQ Time	100	500		
7	t _{AOA}	Address Out Available Time		700		1
8	t _{DOA}	Data Out Available Time	—	900		See Note 6
9	t _{CSA}	Control Signal Available Time	50			
10	t _{CSS}	Control Signal Stable Time		1,200		
11	t _{ASB}	Address Stable Time	<u> </u>	230		See Note 7
12	t _{DSB}	Data Stable Time	and the second	420	ns	
13	toas	OPACK Setup Time	60			
14	toad	OPACK Delay Time	0	10,000		Section States
15	toah	OPACK Hold Time	60	-		See Note 6
16	tDID	Data In Delay Time	and the second	150		See Note 6
17	tDIH	Data In Hold Time	250	_		
18	twpd	Write Pulse Delay Time	300	500		See Note 6
19	twpw	Write Pulse Width	t _{CL} – 100	t _{CL}		
20	twpd	Write Pulse From OPREQ	t _{CH} – 200	t _{CH} + 400		a. handasah féd
21	tIRG	INTREQ Setup Time	Constant Hand State	100		See Note 6
22	t _{IRH}	INTREQ Hold Time	0	-		
23	t _{ABD}	Address Bus Delay Time		220		
24	t _{DBD}	Data Bus Delay Time	1	120		at the second loss
25	tort	Output Buffer Rise Time		150		See Note 4

NOTES:

1. Input levels swing between 0.80 and 2.2 volts.

2. Input signal transition times are 20 ns.

3. Timing reference level is 1.5 volts.

4. Load is -100 µA and 100 pf.

5. Processor cycle time consists of three clock periods.

6. Parameter definition change.

7. In order to avoid slowing the processor down, input data must be returned to the processor in 650 ns or less time from the OPREQ edge, at a cycle time of $2.4 \,\mu s$.

DC Characteristics

TEST CONDITIONS: $T_{\Delta} = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

	SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITION
1	ILI	Input Load Current	_	10		V _{IN} = 0 to 5.25V
2	ILOH	Output Leakage Current, High		+ 10	μA	ADREN, DBUSEN = 2.2V, V _{OUT} = 4V
3	ILOL	Output Leakage Current, Low		- 10	Lake !	ADREN, DBUSEN = $2.2V$, $V_{OUT} = 0.45V$
4	Icc	Power Supply Current		150	mA	$V_{CC} = 5.25 V, T_{A} = 0^{\circ} C$
5	VIL	Input Voltage Low	-0.5	0.8		
6	VIH	Input Voltage High	2.2	V _{CC}	V	
7	VOL	Output Voltage Low	0	.45		I _{OL} =1.6 mA
8	V _{OH}	Output Voltage High	2.4	V_{CC} 5		I _{OH} = -100 μA

Instruction Set

The 2650 microprocessor instruction set is powerful, easily understood, and typical of larger computers. Numerous addressing modes provide for one-, two- and three-byte instructions. A complete list of instructions is shown in the following table.

Automatic incrementing or decrementing of an index register is available in the arithmetic indexed instructions. All of the branch instructions except for indexed branching are conditional. Register-to-register instructions are one byte; register-to-storage instructions are two or three bytes long. The two-byte register-to-memory instructions are either immediate or relative addressing types.

MNEMONIC	DESCRIPTION OF OPERATION	AFFECTS	CYCLE
LOD LOD Z I R A	Load Register Zero Load Immediate Load Relative Load Absolute	CC (Note 1)	2 2 3 4
STR {Z R A	Store Register Zero (r ≠ 0) Store Relative Store Absolute	=	2 3 4
ADD Z I R A	Add to Register Zero w/wo Carry Add Immediate w/wo Carry Add Relative w/wo Carry Add Absolute w/wo Carry	C, CC (Note 1), IDC, OVF	2 2 3 4
SUB SUB Z I R A	Subtract from Register Zero w/wo Borrow Subtract Immediate w/wo Borrow Subtract Relative w/wo Borrow Subtract Absolute w/wo Borrow	C, CC (Note 1), IDC, OV F	2 2 3 4
DAR	Decimal Adjust Register	CC (Note 2)	3
AND Z I R A	AND to Register Zero (r ≠ 0) AND Immediate AND Relative AND Absolute		2 2 3 4
	Inclusive OR to Register Zero Inclusive OR Immediate Inclusive OR Relative Inclusive OR Absolute	CC (Note 1)	2 2 3 4
EOR EOR Z I R A	Exclusive OR to Register Zero Exclusive OR Immediate Exclusive OR Relative Exclusive OR Absolute		2 2 3 4
(Z	Compare to Register Zero Arithmetic/Logical	CC (Note 3)	2
COM L R	Compare Immediate Arithmetic/Logical Compare Relative Arithmetic/Logical Compare Absolute Arithmetic/Logical	CC (Note 4)	2 3 4
RRR	Rotate Register Right w/wo Carry Rotate Register Left w/wo Carry	C, CC, IDC, OVF	2

Instruction Set Table

Instruction Set Table (cont.)

	MNEMONIC	DESCRIPTION OF OPERATION	AFFECTS	CYCLES
	BCT { R A	Branch on Condition True Relative Branch on Condition True Absolute	방법을 가는 것 않는 것	3
	BCF R	Branch on Condition False Relative Branch on Condition False Absolute		3 3
BRANCH	BRN { R A	Branch on Register Non-Zero Relative Branch on Register Non-Zero Absolute		3 3
BR₽	BIR R A	Branch on Incrementing Register Relative Branch on Incrementing Register Absolute		3 3
	BDR { R A	Branch on Decrementing Register Relative Branch on Decrementing Register Absolute		3 3
	ZBRR	Zero Branch Relative, Unconditional		3
	ВХА	Branch Indexed Absolute, Unconditional (Note 5)		3
빌냔	BST { R A	Branch to Subroutine on Condition True, Relative Branch to Subroutine on Condition True, Absolute		3 3
UTIN H/RE	BSF { R A	Branch to Subroutine on Condition False, Relative Branch to Subroutine on Condition False, Absolute	SP	33
SUBROUTINE BRANCH/RET	BSN { R A	Branch to Subroutine on Non-Zero Register, Relative Branch to Subroutine on Non-Zero Register, Absolute	51	33
U K	ZBSR	Zero Branch to Subroutine Relative, Unconditional		3
о Ш	BSXA	Branch to Subroutine, Indexed, Absolute, Unconditional (Note 5)		3
	RET { C	Return from Subroutine, Conditional Return from Subroutine and Enable Interrupt, Conditional	SP, 11	33
	WRTD	Write Data	-	2
	REDD	Read Data	CC (Note 1)	2
0/	WRTC	Write Control		2
-	REDC	Read Control	CC (Note 1)	2
	WRTE	Write Extended		3
	REDE	Read Extended	CC (Note 1)	3
ы	HALT	Halt, Enter Wait State	— —	2
MISC.	NOP	No Operation	-	2
2	ТМІ	Test Under Mask Immediate	CC (Note 6)	3
SU	LPS { U	Load Program Status, Upper Load Program Status, Lower	F, IJ, SP CC, IDC, RS, WC, OVF, COM, C	22
STATUS	SPS L	Store Program Status, Upper Store Program Status, Lower	CC (Note 1) CC (Note 1)	2 2
	CPS L	Clear Program Status, Upper, Masked Clear Program Status, Lower, Masked	F, II, SP CC, IDC, RS, WC, OVF, COM, C	3 3
PROGRAM	PPS UL	Preset Program Status, Upper, Masked Preset Program Status, Lower, Masked	F, II, SP CC, IDC, RS, WC, OVF, COM, C	3 3
PRC	TPS UL	Test Program Status, Upper, Masked Test Program Status, Lower, Masked	CC (Note 6) CC (Note 6)	3 3

NOTES:

1. Condition code (CC1, CC0): 01 if postive, 00 if zero, 10 if negative.

2. Condition code (CC1, CC0): 01 if R0 > r, 00 if R0 = r, 10 if R0 < r. 3. Condition code (CC1, CC0): 01 if R0 > r, 00 if R0 = r, 10 if R0 < r. 4. Condition code (CC1, CC0): 01 if r > V, 00 if r = V, 10 if r < V. 5. Index register must be register 3 or 3'. 6. Condition code (CC1, CC0): 00 if all selected bits are 1s, 10 if **not** all the selected bits are 1s.

Program Status Word

SU	7	6	5	4	3	2	1	0
PS	S	F	11	Not Used	Not Used	SP2	SP1	SPO
1	No. of Concession, Name	Street operations of the	-	-	ALC: NO. OF CO.	AND ADDRESS	Charlen and the	A POST OFFICE
PSL	7	6	5	4	3	2	1	0

S	Sense (Pin 1)
F	Flag (Pin 40)
П 🚽	Interrupt Inhibit
SP2	Stack Pointer Two
SP1	Stack Pointer One
SPO	Stack Pointer Zero

- 0
- Condition Code One Condition Code Zero
- CC1 CC0
- IDC Interdigit Cary
- Register Bank Select RS
- WC With/Without Carry
- OVF Overflow
- COM Logical/Arith. Compare
- С Carry/Borrow Bit

Package Dimensions

Interface Signals

5

TYPE	PIN	ABBREVIATION	FUNCTION	SIGNAL SENSE
GND	21	GND	Ground	GND = 0
PWR	39	Vcc	+5 Volts ± 5%	V _{CC} = 1
INPUT	16	RESET	Chip Reset	RESET = 1 (pulse), causes reset
INPUT	38	CLOCK	Chip Clock	ACTIVE = 1 (10 μ s max.)
INPUT	37	PAUSE	Temp. Halt execution	$\overline{PAUSE} = 0$, temporarily halts execution
INPUT	17	INTREQ	Interrupt Request	INTREQ = 0, requests interrupt
INPUT	36	OPACK	Operation Acknowledge	OPACK = 0, acknowledges operation
INPUT	1	SENSE	Sense	SENSE = 0 (low) or SENSE = 1 (high)
INPUT	15	ADREN	Address Enable	ADREN = 1 drives into third state
INPUT	25	DBUSEN	Data Bus Enable	DBUSEN = 1 drives into third state
IN/OUT	26-33	DBUS0-DBUS7	Data Bus	DBUSn = 0 (Iow), DBUSn = 1 (high)
OUTPUT	2-14	ADR0-ADR 12	Address 0 through 12	ADRn = 0 (low), ADRn = 1 (high)
OUTPUT	19	ADR13 or E/NE	Address 13 or Extended/Non-Extended	Non-Extended = 0, Extended = 1
OUTPUT	18	ADR14 or D/\overline{C}	Address 14 or Data Control	Control = 0, Data 1
OUTPUT	24	OPREQ	Operation Request	OPREQ = 1, requests operation
OUTPUT	20	M/IO	Memory, IO	$\overline{IO} = 0, M = 1$
OUTPUT	23	R/W	Read/Write	R = 0, W = 1
OUTPUT	40	FLAG	Flag Output	FLAG = 1 (high), FLAG = 0 (low)
OUTPUT	34	INTACK	Interrupt Acknowledge	INTACK = 1, acknowledges interrupt
OUTPUT	35	RUN/WAIT	Run/Wait Indicator	RUN = 1, WAIT = 0
OUTPUT	22	WRP	Write Pulse	WRP = 1 (pulse), causes writing

For order information, see page 2.

Printed in U.S.A.

1275 Hammerwood Avenue 🗌 Sunnyvale 🗌 California 94086 📃 Phone: (408) 734-4330 📃 TWX: 910-339-9369

"AMS reserves the right to make data sheet changes at any time without notice, and assumes no responsibility for use. AMS cannot assume any responsibility for any circuit shown or represent that it is free from patent infringement."