Nov 12 12:42 1985 hl Page 1

THE. DESIGN DOCUMENTS

1. ACP OVERVIEW by Dipu‘Bose.

2. ACP DETAILED DESIGN:by Asim: Mehta.

3. UNIBUS DESIGN by Asim Mehta.

4. RSX-11M to RSX-11M-PLUS DESIGN: NOTES by Asim’ Mehta.
5. TELNET SERVER DESIGN. by Asim Mehta.

Oct 17 10:58 1985 acp.overview.doc Page 1

DESIGN OVERVIEW OF THE EXOS DRIVER/ACP
FOR RSX~-11M SYSTEMS

by

Dipu Bose

1. I/0 PHILOSOPHY OF RSX-11M

Memory constraints and compatability between different versions of
RSX-11M dominated the design philosophy and the strategy used in
creating the RSX-11M Operating System. To meet its performance and
space goals, the RSX-11M I/0 system attempts to centralize the

common functions,thus eliminating the inclusion of repeatative code in
each and every driver in the system. To achieve this, tabular data
structures are designed in the system, which are used to drive the
centralized routines. The effect is to reduce substantially the size
of individual I/O drivers.

2. THE STRUCTURE OF THE I/Q DRIVER

The next few sections describe the I/0 driver structure of RSX-11M.
Refer to the "Guide to writing an I/0 driver" Manual for more
detailed and thorough treatment.

The Executive processes I/0 requests using the following :
. Ancillary Control Processor (ACP)
« A collection of Executive components consisting of

a. QIO directive processing
b. I/0 related subroutines
c. The I/0 drivers

2.1 An ACP is responsible for maintaining the structures and
integrity of the device (or a collection of devices) related
data structures. It is an asynchronous privileged task which
implements a protocol (or set of services) for a class of a
device. It functions as an extension of the Executive and
frequently operates with Executive privilege. Since an ACP is
a task, it has all the attributes of a task together with the
ability to receive I/O packets from other tasks, as a process.
The latter attribute permits it to act as an I/0 handler, which
can compete with user tasks for system resources more equitably
than an I/0 driver could. This is because an I/0 driver has no
task identity of its own. Also unlike the I/0 driver, an ACP
can perform I/0 to other devices during the processing of an
I1/0 request.

2.2 The QIO directive is the lowest level of task I/0. Any task

Oct 17 10:58 1985 acp.overview.doc Page 2

2.3

2.4

3.

can issue a QIO directive which allows direct control over
devices that are connected to a system and have an I/O
driver. The QIO directive forces all I/0 requests from user
tasks to go through the Executive. The Executive works to
prevent tasks from destructively interfering with each other
and with the Executive itself.

An I/0 driver is an asynchronous process (not a task) that
calls and is called by the Executive to serivce an external
I/0 device or devices. The role of an I/0 driver in the
RSX~-11M I/0 structure is specific and limited. A driver
performs the following functions @

2.3.1 Receives and serivces interrupts from its I/0 devices.

2.3.2 Initiates I/O operations when requested to do so by the
Executive.

2.3.3 Cancels in-progress I/0 operations.

2.3.4 Performs other (device-specific) functions upon power

failures and device time-out.

As an integral part of the Executive, a driver possesses its
own context, allows or disallows interrupts, and synchronizes
its access to shared data bases with that of other Executive
processes. A driver can handle several device controllers,
all operating in parallel.

Every I/0 driver in the RSX-11M system has the following entry
points:

a. Device interrupts
b. I/0 initiator

c. Device time=-out
d. Cancel I/0

e. Power failure

Apart from the first entry point, which is entered by hardware
device interrupts, all are entered by calls from the Executive.

I/0 Related Subroutines

RSX-11M provides a set of centralized subroutines which operate
on the centralized data bases and give the user a significant
amount of flexibility while maintaining the integrity and
uniformity in coding. Also a significant amount of code
repeatation can be avoided with their proficient use.

I/0 RELATED DATA STRUCTURE

An 1/0 driver interacts with the following data structures :

a.

Device Control Block (DCB)

Oct 17 10:58 1985 acp.overview.doc Page 3

b.
c.
d.
e.
f.
e.

Unit Control Block (UCB)
Status Control Block (SCB)
The I/0 Packet

The I/0 Queue

The Fork List

Device Interrupt Vectors

The first four of these data structures are especially important to
the driver because it is by means of these data structures that all
I/0 operations are effected. They also serve as communication and
co-ordination vehicles between the Executive and individual drivers.
Entry to a driver following a device interrupt is accomplished through
the appropriate hardware device interrupt vector/s.

The Device Control Block (DCB)

At least one DCB exists for each type of device appearing in
a system. The function of the DCB is to describe the static
characteristics of both the device controller and the units
attached to the controller. All the DCB's in a system forms
a forward link list, with the last DCB having a link to
Zero.

The Unit Control Block (UCB)

One UCB exists for each device unit attached to a system.
Much of the information in the UCB is static, though a few
dynamic parameters exist. From the UCB, however, it is
possible to access most of the other structures in the I/0
data base. Few of its contents are used and modified by both
Executive and the driver.

The Status Control Block (SCB)

One SCB exists for each device controller in the system. This
is true even if the controller handles more than one device
unit, Most of the information in the SCB is dynamic. Both

the Executive and the driver use the SCB.

The I/0 Packet

The I/0 Packet is built dynamically during the QIO directive
processing and is subsequently delivered to the driver by

a call to the system Executive. No static fields exist with
respect to a driver and is generated mostly from the
information passed in the directive parameter block.

I/0 Queue

The QIO directive after successfully generating an I/0

packet inserts it into a device-specefic, priority oriented
ordered list of packets called I/0 Queue. Each I/0 queue
listhead is located in the SCB to which the I/O request apply.
When a device needs work, it requests the Executive to dequeue
the next I/0 packet and delivers it to the requesting driver.

Oct 17 10:58 1985 acp.overview.doc Page 4

Normally the driver does not directly manipulate the I/0O queue.
f. Fork List

Fork List is a mechanism by which RSX-11M splits off a process
that requires access to shared data bases, or that require

more CPU time to process an interrupt. A process that calls
$FORK(an executive routine), requests the Executive to
transform it into a 'fork process' and place it in a fork list.
A call to $FORK saves a 'snapshot'" of the process (R4,R5 and
PC) in a fork block. This fork block is queued on the fork
list in first-in-first—out order.

g. The Device Interrupt Vector

The device interrupt vector consists of two consecutive words
giving the address of the interrupt service routine and the
priority at which it is to run. The low four bits of the second
word of the interrupt vector must contain the number of the
controller that interrupts through this vector. This
requirement enables a driver to service several controllers
with a few code changes.

4. EXECUTIVE SERVICES :

The Executive provides services related to I/0 drivers that can be
categorized as pre- and post— driver initiation. The pre initiation
services are those performed by the Executive during its processing
of a QIO directive. Its goal is to extract from the QIO directive

all I/0 support functions not directly related to the actual issuance
of a function request to a device.

The post initiation services are made available to the driver after it
has been given control, either by the Executive or as the result of an
interrupt. They are available as needed by means of Executive calls.

5. ASYNCHRONOUS SYSTEM TRAPS (AST)

The primary purpose of an AST is to inform the task that a certain
event has occurred. For example, the completion of an I/0 operation.

As soon as the task has serviced the event, it can return to the
interrupted code. When an AST occurs, the Executive pushes the task's
Wait For Mask Word, the DSW, the PSW and the PC into the task's stack.
This information saves the state of the task so that the AST service
routine has access to all the available Executive services. Most of the
Executive directive calls has an optional AST entry point, such that
AST occurs upon a certain condition, e.g. an I/0 completion, so that
some user specified operation could now be done at that entry point.

Oct 17 10:58 1985 acp.overview.doc Page 5

6.

FLOW OF AN I/O REQUEST

The flow of an I/0 request, issued by the user by issuing a QIO
directive, is as follows

6.1

6.2

6.3

6.4

Task igssues QIO directive.

QIO processing.

6.2.1 First level validity checks.
The QIO directive processor validates the Logical Unit
Number (LUN) and UCB pointer.

6.2.2 Redirect Algorithm .
Because the Unit Control Block (UCB) may have been
dynamically redirected by an MCR redirect command, the
QIO directive traces the redirect linkage until the
target UCB is found.

6.2.3 Additional Validity Checks.

The Event Flag Number (EFN) and the address of the I/O
status block (IOSB) are validated. The event flag is
reset and the I/0 status block is cleared.

Executive obtains storage for and creates an I/0 packet.

The QIO directive processor now requires an 18-word block of
dynamic storage for use as an I/0 packet. It inserts into the
packet, data items that are used subsequently by both the
Executive and the driver in fulfilling the I/O request. Most
items originate in the requesting task's directive parameter
block (DPB).

Executive validates the function requested.

The function is one of the four possible types :

. Control
« No-op

. ACP

. Transfer

Control functions are queued to the driver. If the function is
I0.KIL, the driver is called at its cancel I/0 entry point. The
I0.KIL request is then completed sucessfully.

No-op functions do not result in data transfers. The Executive

Oct 17 10:58 1985 acp.overview.doc Page 6

"performs" them without calling the driver. No-ops return a
status of IS.SUC in the I/0 status block.

ACP functions are those functions which are to be processed by
the ACP. The Executive queues the I/O packet to the ACP and
issues a run request of the ACP, if it is stopped.

Transfer functions are address checked and queued to the
proper driver. Then the driver is called at its initiator entry
point.

6.5 Driver Processing

6.5.1 Request work

To obtain work, the driver calls the $GTPKT routine.
$GTPKT either provides work, if it exists, or informs
the driver that no work is available, or that the SCB
is busy. If no work exists, the driver returns to its
caller. If work is available, $GTPKT sets the device
controller and unit to "busy", dequeues an I/0 request
packet and returns to the driver.

If UC.QUE is set, the packet is passed to the driver
at its initiator entry point, The driver is entered

at its entry point with some registers set to specific
values like address of I/0 packet, address of the UCB
and etc. If the request is to be processed by an ACP,
the packet is queued to the ACP.

6.5.2 Issue I/O

From the available data structures, the driver
initiates the required I/0 operation and returns to its
caller. A subsequent interrupt may inform the driver
that the initiated function is complete, assuming the
device is interrupt driven.

6.6 Interrupt Processing.

When a previously issued I/O operation interrupts the driver,
the interrupt causes a direct entry into the driver, which
processes the interrupt according to the programming protocol.
According to the protocol, the driver may process the interrupt
at priority 7, at the priority of the interrupting device, or
at fork level. If the processing of the I/0 request associated
with the interrupt is still incomplete, the driver initiates
further I/0 to the device. When the processing of an I/0
request is complete, the driver calls $IODON.

6.7 1/0 Done Processing

Oct 17 10:58 1985 acp.overview.doc Page 7

$IODON removes the '"busy" status from the device unit and
controller, queues an AST, if required, and determines if a
checkpoint request pending for the issuing task can now be
effected. The IOSB and event flag, if specified, are updated
and $IODON returns to the driver. The driver branches to its
initiator entry point and looks for more work. This procedure
is followed until the driver finds the queue empty, whereupon
the driver returns to its caller.

Eventually, the processor is granted to another ready-to-run
task that issues a QIO directive, starting the I/0 flow anew.

8. DESIGN PHILOSOPHY FOR THE EXOS DRIVER

The EX0S front-end Ethernet Controller board is modelled as a
controller of a single devive-unit which supports multiple paths of
communication with the network and the board itself. These paths
are called channels and are designated by a channel descriptor
number, called the channel number. The channels grossly correspond
to a socket (an end-point in the network communication) or a

path for obtaining services from the front-end (e.g. initializing
and configuring the board , downloading protocol software to the
board's memory, etc).

The user program should create a channel either for administrative
operations or to obtain services from the network. 1In either case the
user should use the channel number, which the driver software returns to
him in response to an open channel call, for subsequent operations. The
channel provides the user task a protection mechanism from destructively
interfering with each others path of communication. For example, a
socket created by one task cannot be accessed by another task.

One of the major decisions in the design of the EXO0S driver was to
attach an Auxilliary Control Processor with the driver. A substantial
amount of drivers work is done by the ACP. In fact, ACP is the central
routine which does all the work and the driver just acts as an traffic
controller, routing all the requests from the users to the ACP. The
reason behind taking this decision are:

. to overcome the 16 KB of driver space restriction: As the
driver accesses the 8 KB of the I/0 page and 20 KB of the
system executive space (executive routines and data), it
has only 16 KB left to itself.

. to minimise processing time at the interrupt level at the
drivers interrupt entry point by waking up the ACP from
this point and letting it do the work at task level.

. to exploit the task feature of the ACP, which makes it
overlayable and also let it compete for other system
resources equitaibly with other tasks in the system. It

Oct 17 10:58 1985 acp.overview.doc Page 8

9.1

9.2

9.3

allows ACP to get services fron other devices as well (via
QIO'S).

. to have overall design simplicity for easy maintainance and
also portability to other variations of RSX~-11M operating
systems like RSX-11M-PLUS and Micro RSX.

IMPLEMENTATION DETAILS

General Information

The driver's role in the EXOS I/O handler package is very

small and limited only to that of an I/O request traffic
controller., ACP is the major module in this package which

does most of the work. The management and processing of the
EX0S-HOST Message queue (refer to chapter 4 of EXOS 203

Manual) is done by the ACP. This message queue forms a

part of the ACP's local data area which is physically

shared (better say accessed) by the EXOS front-end. All
transactions with the EXOS is done via the ACP. Interrupts from
the board are received by the driver at its interrupt entry
point, The driver passess on this information to the ACP by just
waking it up.

I1/0 requests received by the driver are queued to the ACP by
the driver after a minimal processing. The driver address
checks the user buffers (if specified) and relocates their
virtual addresses in terms of kernel APR 6. It also rearranges
the function dependent parameters in the I/0 packet and then
queues the packet to the ACP requesting for work.

Driver Data Structures:

A Device Control block (DCB), an Unit Control Block (UCB)

and a Status Control Block were defined for the EXO0S device
driver. The logical name for the EX0S device was given 'ZE'
and is defined in the DCB. Most of the functions are defined
as Control functions so that the driver receives the request
first and then queues the same request to the ACP after some
processgsing. The IO.ATT & IO.DET are made No-op functions.

The UC.QUE bit is set in the U.CTL byte of the UCB. This tells
the QIO executive routine to call the Driver at its initiator
entry point and pass the I/0 packet without queueing it in the
driver's I/0 queue. Also the UC.KIL bit is set so that the
driver is called on a cancel I/0 request, even if the unit is
not busy.

ACP Data Structure

Oct 17 10:58 1985 acp.overview.doc Page 9

There is a special data structure in the ACP, called Channel
Descriptor, which keeps all channel related information. The
structure of the Channel descriptor is

struct channel f{ /* channel control block */
Uchar ch_type; /* type of the Channel */
Uchar ch _flag; /* protection flags */
Ushort ch_tcb; /% owner task's TCB address */
Ushort rundn_cnt; /% I/0 rundown count on this channel */
union §
Ushort ch_soid; /* socket id returned by EX0S */
struct { /* EX0S memory pointer v/

Ushort basej
Ushort off}
}

} ch_des[MAXCHANNEL];

This control block keeps sufficient information for channel
managements.

The Message Queue forms a major data structure of the ACP
task. The format and fields of the Message Queue are defined
in the EX0S 203 Manual.

9.4 QIO Processing

Once the Executive receives a QIO request, it does a first

level of validity check as described in section 6.2. It then
creates an I/0 packet and fills up the appropriate fields from
the Directive Parameter Block specified by the user. Since all
the I/0 functions are control functions and the UC.QUE bit is
set, the executive calls the driver at its initiator entry point
and passes the address of I/O packet to it. This prevents user
context switching so that the driver can execute and relocate
the user specified buffers while the user context is intact.

9.5 Driver Processing

The Driver, upon receiving an I/0 packet, does some processing.
It first address checks the user buffer and then relocates

the buffer in terms of kernel APR 6. It places the relocated
address in the I/0 packet itself by slightly rearranging the
parameters. After this it simply queues the packet to the ACP.
Queueing of I/0 packet is not priority oriented but in first-
in-first-out order. So the ACP receives the request in the

same order as they have been issued by the user.

9.6 Interrupt Processing

Oct 17 10:58 1985 acp.overview.doc Page 10

The processing time at the interrupt level is minimised by
letting the ACP do the work. Whenever the driver is entered
at its interrupt entry point it immediately goes to the fork
level and then unstops the ACP and returns. No processing

of the EXOS Reply Message Queue is done by the driver. The
ACP systematically processes the Reply Message Queue whenever
it is unstopped.

9.7 ACP Processing

The ACP iterates an eternal loop. Wnen there is no work

pending for the ACP it stops itself and goes to sleep.

It is woken up by the driver either from the initiator

routine, interrrupt service routine or cancel I/0 routine.

It first dequeues a packet from its external queue and if it

is successful it calls the routines that process the request by
filling up the appropriate fields in the appropriate message
area and then passing the control of the message queue to the
EX0S. The EX0S, to give a reply to a request, willl interrupt
the host and the ACP get control as it is unstopped by the
driver and calls the routines that process the replies. The
actions taken in the request and reply processing are dependent
on the function codes in the I/0O packet (for requests) and the
request codes of the message area (for the replies).

The detailed descriptions of the ACP processing is given in the
additional design/maintainance document for the ACP/driver.

Nov 9 17:40 1985 acp.design.doc Page 1

DESIGN/MAINTAINANCE DOCUMENTATION FOR THE
EXOS DRIVER/ACP FOR THE
RSX~-11M/RSX-11M-PLUS
0.S.

by
Asim K. Mehta

1. INTRODUCTION:

The preliminary design overview of the driver/ACP is given in the
DESIGN OVERVIEW OF THE EX0S DRIVEV/ACP document by Dipu Bose. That document
describes the basic I/0 philosophy of the RSX-11M systems, I/0 related data
structures, I/0 related system protocols to be followed by the device drivers,
etc, and the reasons for the important decesions like having the ACP as a
gseparate entity which does all the I/O related operations and that the driver is
just a traffic controller for the I/0 requests for the EXOS board, etc.

This document will describe the implementation and minor design issues
related to the ACP only. A separate document describes the changes made to the
RSX-11M driver/ACP to make it work on the RSX~11M-PLUS system. Another document
describes the design issues for the driver on the UNIBUS machine.

2. THE MAIN ACP FLOW:

The file acproot.c contains the main ACP routine " main()". First the
local initialization of some data structures is done in the routine "init()".
Then the TCB address of the ACP is stored in the ZE UCB in the C - callable
macro routine "acpucb()". For the UNIBUS machine this routine also fetches
the physical 22-bit address of the start of the local pool into a local data
structure. Then unibus initialization is done for the UNIBUS machines. (refer to
the unibus doc for more info on this). After these initialization routines, the
main loop of the acp code starts. First a packet is dequeued from the acp's
external queue and if no packet is available or if no work is pending then the
ACP goes off to sleep (all this is done in the C - callable macro routine
"dqpkt()"). On waking up the ACP first looks for a packet and if none is
available it sees if any work is pending. If so then it returns and does the
required processing of the pending work or the processing of the packet, if one
was dequeued.

Unless the main do-while loop gets a configuration request for the board
and the board gets successfully initialized, the routine "drive()" is not
entered. When the board gets ready, this routine is entered and it goes into
an eternal loop constantly looking for work. If none is found then it stops
(sleeps). On getting work it first checks if the request is for board
initialization or not. If so then it serves that request and if not then it puts
the I/0 packet into an internal queue which is serviced later on in the routine
"request()". Then it enters the routine "answer()" where it first checks if
any replies have come from the board or not and if so then it serves those
replies in the routine "reply()". After the reply processing is over it goes
and serves the requests if there are any free slots available in the message
queue through which the ACP will communicate with the board. The routine
"request()" is called where the I/O packets are served until they get exhausted
or they can no-longer be served due to lack of some resources. In this case
they are again put in the internal queue so that in the next iteration of the
eternal loop it might get a chance to be served if that resource has been freed.

Nov 9 17:40 1985 acp.design.doc Page 2

3. THE REQUEST PROCESSING:

The requests are of two major kinds. One is the kind which does not
require any participation from the board in honouring the request and the other
kind is which requires it. The former are serviced immediately by the main
ACP routines - " main()" and "drive()". The latter kinds of requests are put
into an internal queue which is serviced by the routine "request()" whenever a
slot in the message area is available for communicating with the board.

Inside the routine "request()", first, the I/0 packet is dequeued from
the internal queue. Then the control is passed to the appropriate routine
according to the function code. The types of requests here are the kinds which
just require the board's local statistics and perform operations local to the
board and are not involved with the network ("admin()"), the kinds which require
the access opearations for the socket ("access()"), the kinds that indulge in
data transfer operations to the network ('transfer()"), and the kinds involved
in the socket control operations ("excontrol()").

The kinds of requests that are served directly by the main ACP routines
are the ones that involve opening/closing of sockets ("opench()" & "closech()"),
board setup and initialization procedures ("exsetup()"), the seek operation on
the board's memory, retrieval of the configuration message, unselect request
("fin pen()") and preparing the urgent requests.

The requests that require the participation of the board are first
transfered to the board via the message queue and the I/0 packet address is put
in a pending I/0 list which is to be processed by the reply processing. The
requests not requiring the participation of the board are finished immediately,
after they are serviced, by calling the routine "ackuser()" which calls $IOFIN.

For the requests put in the pending list, the I/0 rundown count for that
channel is incremented showing it as busy.

4. THE REPLY PROCESSING:

The routine "answer()" is called whenever the acp is woken up. Here the
message area (rmsg_area) is scanned to see if any slot has a reply for the host
from the board. If it does then it retrieves the I/0 packet address from the
nm userid field of the message area and calls the routine "reply()" which does
the actual replying for the board to the user, according to the kind of function
code, of cource.

The reply routine just fills in the return status nm reply into the
I1/0 status block and then finishes the I/0 by calling the routine "ackuser()".
This C - callable macro routine calls $IOFIN fot the purpose. The I/0 rundown
count for this channel is decremented indicating an I/0 was complete. This is
done for almost all the kinds of requests (unless otherwise dictated by the
request! - as in the case of the reply for the select request in which if the
socket is not yet ready the packet is put back into the pending list and it is
considered that the I/0 has not yet finished since one more reply is expected
from the board to indicate that the socket is ready for read/write and it is
then that the I/0 is considered finished and the I/0 rundown count is
decremented) .

5. DESCRIPTION OF THE DIFFERENT MECHANISMS:
5.1 OPENING/CLOSING OF A CHANNEL:

These operations are essential for the user to request if any kind of
communication with the board (involving the network or not) is desired. There

Nov 9 17:40 1985 acp.design.doc Page 3

exists an array of 40 channel descriptors which means 40 concurrent channels or
paths for communicating with the board can be opened simultaneously. These
descriptors are similar to file descriptors and contain information like the
type of the channel: {can be administrative or can correspond to a socket for
communicating with the network or can be free - not assigned}; they contain
flags indicating the status of the channel at run-time: {opened in read/write
mode, whether privileged or not, whether marked for close or not}j; They contain
the owner of this channel: {the TCB address of the issuing task - used as the
ownership ID of the user}; the rundown count: {contains the number of concurrent
I1/0's active on the channel (mechanism described later)}; and it contains the
socket ID: {returned by the board if opened for networking operations or it
may contain the memory locator of the EXOS memory if the channel is opened
for administrative operations}.

These operations are immediate ones. They are serviced immediatly
in the main ACP loops and the result is returned to the user.

5.1.1 OPENING A CHANNEL:

The routine "opench()" in file opench.c is called for the purpose of
opening a channel. The channel which is marked CH FREE is searched sequentially
and the channel number (ch no) of the first available free channel is returned
to the user. The privilege of the user is checked in the routine "getpriv()" by
checking the task and the terminal privilege of the user. If both are privileged
then the flag CH PRIV is set in the ch flag field of the ch des[ch nol. If the
channel is requested to be opened in the write mode, the flag CH WRITE is set.

5.1.2 CLOSING A CHANNEL:

The routine '"closech()" in the file opench.c is called for the purpose.
First it is checked if the channel number specified is in range (<=40) and if
the ID (TCB address) is correct. If so then it checks whether the rundown count
is not zero. If it isn't zero that means some I/O is already pending on the
channel and hence the channel cannot be really closed. This is so because if,
for example, a read is pending and the socket is closed and the user task exits,
then if some other task is shceduled to reside in the same memory area as the
task which had the read pending, then the DMA from the board may still be on and
that may curropt the new task in the memory and cause problems. Hence,
the task is blocked until the reply for that read comes. That's the main reason
for having this rundown count mechanism. If some I/0 is pending then it is
marked for close - CH MCLOSE and the I/O packet for the close request is put in
another queue called the mrkcls (marked for close) queue. This means no further
requests will be entertained on this channel and as soon as the replies for the
pending requests arrive the channel is closed whenever the rundown count becomes
zero. While the channel is in the process of being closed, all the fields are
reset, the channel is marked CH FREE. If there are any replies pending on this
channel number that are requests to the board for closing the socket, then these
are no longer useful as the socket has already been closed and all the I/O is
finished on this channel. This packet is dequeued from the mrkcls queue and that
I1/0 is finished by calling "ackuser()" routine. There may be more than one
request for closing the channel (in some cases where two SOCLOSEs are issued for
the same channel!) and so all are finished.

5.2 I/0 RUNDOWN:

The file cancel.c contains the routine "io rundown()" which finishes
all the pending and outstanding I/0's when the board has to be re-initialized.

Nov 9 17:40 1985 acp.design.doc Page 4

All the open channels excepting the one opened for re-initialization are closed.
The internal queue contains the requests for all the outstanding I/0's, the
pending I/0's are in the io_pend queue and the marked for close packets are in
the mrkcls queue. These queues are emptied off by finishing all the I/0's in
them by calling the routine "ackuser()" for all the I/0's except the IO KIL and
I0 TEL packets which are not the regular I/0 packets buts are the ones allocated
in the ZE and the ZT drivers respectively for the purpose of IO KIL and TELNET.
These packets are deallocated back to the system pool by calling the C -
callable macro routine "dealoc b()".

NOTE: Now that the pseudo function code TS HNG has been added for the purpose
of hanging up a telnet connection when a bye is given, a hangup packet
might be caught up in the internal queue when the request for re-
initialization comes. Hence this packet must also be deallocated back
into the system pool. (this is not being done now)

Also, if the local pool is allocated by the requests (in the case of
UNIBUS machines), then it is deallocated.

5.3 IOKILL MECHANISM:

This is the mechanism to finish all the I/0's of a particular task
either when it is aborted or when it itself issues a QIO IO.KIL to finish off
all the I/0's before exiting. After this the control comes to the cancel entry
point of the ZE driver. Here a dummy IO KIL packet is allocated from the system
pool and sent to the ACP via a $EXRQP.

Here, in the ACP, when the IO KIL request is received, the control comes
to the routine "iokill()". It first checks if any channel is open for that task
(done in routine "srchn()"). If so then it issues an SOCLOSE request to the
board, increments the rundown count and returns. When the reply for this SOCLOSE
arrives, the IO KIL packet is put into the internal queue so that again this
routine is called in the next request cycle and any other open socket for this
task is also closed in a simialr way. The rundown count is decremented and the
channel is closed (if the rundown count is zero). When control again comes to
this routine and if no open channel is found, then all the packets belonging to
this task are finished off in the routine "remque()" and the current IO KIL
packet is deallocated.

5.4 SELECT AND UNSELECT PROCESSING:

Select is a mechanism for the user tasks to know whether a socket is
ready for read or write so that he can issue a read or a write which would be
sure to succeed and take lesser time. The board immediately gives a reply and
indicates in the reply field whether the socket is ready or not. If it is not
ready then the I/0 request packet is put into the pending list and the rundown
count is not decremented (described above). If it is ready then the user is
informed of this by calling "ackuser()". If the socket is not ready then the
board is expected to give a reply some time later indicating a selected socket.
This reply is supposed to be unsolicited and the request code is not SOSELECT
but SOSELWAKEUP. The user may not want to wait for that long. Or even if he
waits the I/0 rundown count remains non-zero and the task cannot be aborted. In
that case the user can issue a QIO IO ACS!SA USL (UNSELECT) request which
informs the ACP to finish off the pending select request regardless of the
socket being ready or not.

This request (SOSELECT) is unlike other requests in the sense that all
the other requests use the nm userid field for filling the io_pkt address to

Nov 9 17:40 1985 acp.design.doc Page 5

recognize the owner of that request but this request uses the nm proc field

of the structure Sock select so this has to be handled differently by the reply
routines. The nm proc field's MSB has to be a zero for correct operation. This
means that the I/0 packet address higher than 0x8000 will cause all sorts of
problems in the board code. Since the I/0 packet address is always on an even
boundary, it is shifted one bit to the right and then stored in the nm proc
field, After it is retrieved from the reply message, it is again shifted one bit
to the left and then compared to the actual address in the pending list. This
causes the MSB to remain reset. The mechanism used for the purpose of
fulfilling the protocol of select and unselect is as follows:

When the request for select is made the field i_prm5 of the io_pkt

is used as a status word which is initially set to NOREPLY which indicates that
no reply has yet come. When the first reply comes it is set to ~NOREPLY which
indicates a reply has indeed come. This is done because if the first reply has
not yet come and if a request for unselect comes then the routine "fin pen()"
is called with the parameter SA USL and in this routine this bit is tested for
the first reply and if it hasn't yet come then the status word is set as
UNSELECT(ed) and nothing else is done. Now when the first reply comes it is
tested for UNSELECT and if it is true then a normal reply is given back to the
user and the packet is not put in the pending list as would be done after the
first reply. This would unselect the select request. Now, if the first reply has
come when "fin pen()" is called, then that packet is finished off by the
"ackuser()" routine and also the AST field of the I/O packet is reset so that
control does not come to the ast service routine for the select request in the
user Task after a request has been given for unselecting the socket.

5.5 OUT OF BAND PROCESSING:

The out of band mechanism is one in which a user can either send
out-of-band packets to the remote systems or receive them from the remote
systems. The sending of out-of-band packets is a very straight forward mechanism
but receiving the packets can become a pain if none is received and the user
wants to exit from his task. An I/0 will remain pending and the task will
remain marked for abort and will hang. When a socket is closed, and if an out-of
~band request is pending, which will be a very common case because while the
out of band request is pending and if the user task exits or if he aborts the
task, then the control comes to the "iokill()" routine which issues an SOCLOSE
to the board for that socket. This will still not force a reply for the 00B
request because there are no OOB packets available. Hence, when the reply for
the SOCLOSE comes the routine "fin pen()", with the parameter as SA ROO i.e.
remove out of band request, is called. This routine removes the OOB packet
from the pending list and finishes the I/0 on it by calling "ackuser()" and it
also decrements the rundown count. This will cause the channel to close which
in turn will cause the task to abort peacefully.

5.6 SETUP PROCESS:

The routine "exsetup()" is called when the request is made to the
ACP for initializing/configuring the board - IO EXCIEX INI. This routine is
called with a parameter called the setup mode. If it is 0x80 then infinite
timeout is specified for debugging purposes with the ON-BOARD debugger.

In the setup process, the important data structure is the configuration
message which contains information like the interrupt vectot address, the start
of the message area, the types of longwords used by the host (byte swapped or
not), status bytes, the reply status bytes, etc. The start physical address of
this configuration message is passed to the board software by writing it byte by

Nov 9 17:40 1985 acp.design.doc Page 6

byte into the PORTB and reading the status from the PORTA.

First the host message area is setup in a way specified in the EXO0S 203
manual. The offsets in the message area are calculated by finding the
differences between the physcal addresses (which are calculated by the routine
"reloc()"). The field in the configuraiton message for the start of the physical
address is a longword and is an 18-bit value for the UNIBUS and a 22-bit value
for the Q-BUS. After preparing the configuration message, the board is reset by
writing a 0 into PORTA., After a 2 second delay the PORTB is read to find out
whether the board has been initialized or not. If mode is 0x80 then infinite
timeout is given for the board to get reset else only 2 sconds are given for
resetting the board. The value of the PORTB is stored and later initialized to
the im dummy2 field of the configuration message. The netload program uses this
field to indicate whether the loopback test failed or not (that is if the
Xceiver cable is in or not). Then the start physical address of the
configuration message is passed to the board by writing it into the PORTB. This
address is calculated by the "reloc()" routine for the Q-BUS software but this
22-bit physical address is loaded into the UMR address and the 18-bit address
is passed as the physical start address of the configuration message. (described
in detail in the UNIBUS doc)

After the board is reset and it gets the configuraiton message, it
prepares its local copy of the configuration message and sets up its message
queues. After this the board is ready to take on any requests from the host and
the host is prepared to take any unsolicited replies or solicited ones.

6. RESOURCE USAGE BY THE ACP/DRIVER:

This section describes some of the important system resource usage by
the driver and the ACP.

6.1 MEMORY:

The driver size for the Q-BUS systems is only about 1KB. But for the
UNIBUS systems it is the full 8KW as 7KW out of the 8KW are taken up by the
local pool for intermediate bufferring. The ACP's size is almost 6KW for the
UNIBUS systems and about 5.5KW for the Q-BUS systems.

6.2 SYSTEM POOL USAGE:

The driver uses the system pool only when the control comes to the
cancel entry point. Here it allocates a packet from the system pool to queue
to the ACP., It is deallocated in the ACP.

Depending on the number of requests made to the ACP at one time if the
network is slow or if the board is slow in responding to the requests then all
the I/0 packets are hung up in the pending list of the ACP and this causes a
depletion of the system pool. the size of the packet for RSX-11M systems is
36 bytes and for RSX-11M-PLUS is 40 bytes. Telnet also uses up a lot of system
pool as described in it's respective document.

The driver data base is located in the the system pool. There is only
one DCB, one UCB and one SCB for the RSX-11M systems and an additional CTB and a
KRB/SCB combination for the RSX-11M-PLUS systems and together they take up about
110 bytes for the RSX-11M systems and about 140 bytes for the RSX-11M-PLUS
systems.

6.3 EVENT FLAGS:

The event flag number 8 is used by the dealy routine after it marks the

Nov 9 17:40 1985 acp.design.doc Page 7

time by spaecifying the event flag 8 and then waiting for event flag 8 to set.
If an AST routine is added in the ACP (some reason knwn only to the person who
will add it!!) it must not use this event flag or any other used in the QIO
calls in the ACP. The telnet requests also use the efn 1 for QIO's to the
ZTDRV for input and output interrupts.

6.4 CPU TIME:

The driver hardly uses the CPU time since as soon as it gets a request,
after a bit of processing, it queues the request to the ACP and returns back to
the system. The ACP is in a forever loop and it seems as though it might take up
a lot of CPU time but most of the time it is stopped and waiting for a request
to come and it would then wake up. If the traffic is more then the CPU time
usage will be more.

6.5 LUN'S:

The ZEACP task does not use any file system so it really does not need
to specify more LUN's than are assigned to it by default by the task builder.
But the routines for telnet require to issue QIO's to the the ZTDRV and they
assign the LUN 7 dynamically to one of the 8 units whichever is required to
communicate with.

7. ENHANCEMENTS AND IMPROVEMENTS:
7.1 CHANGE IN THE DATA BASE:

There is one change that is suggested to be made in the data base for
the ZE driver., The CSR address is to be stored in the KRB of the data base and
it has to be a valid one because the CON task, while putiing the device
controller online, probes at this address in the I/0 page to see if the device
is actually present or not. Hence, this field will have to be initialized to a
global symbol which will be initialized during task build time and its value
will correspond to the actual CSR on the particulare host system which the end
user will supply during the build time.

At present the interrupt address is initialized in a similar way. This
is only required for the RSX-11M-PLUS systems and not for the RSX-11M but since
the data base is generic for both, the change will affect bothe distributions(?)

7.2 ADDING MORE CALLS TO THE DRIVER:

If, in the future, another QIO call is to be added for the driver, then
it can be done very simply. It's mask will have to be added into the D.MSK field
of the DCB and a case statement is to be added in the request routine's switch
statement and the serving routine can be called here. If it requires to give an
immediate reply to the user then the inform bit should be set and so on. All the
protocols used by other requests should be followed - if the message slot is not
used then the action bit is not set and in that case the slot is returned
unused. Similarly the case statement is to be added in the reply routine for the
reply processing.

Oct 18 15:01 1985 wunibus.design.doc Page 1

THE DESIGN/MAINTAINANCE DOCUMENTATION FOR
THE RSX-11M/RSX-11M-PLUS
UNIBUS SOFTWARE

by

Asim K. Mehta

Note: Adequate knowledge about the design of the EX0S driver and ACP for the
RSX-11M/RSX-11M-PLUS (Q-BUS) systems is required to thoroughly
understand the design of the UNIBUS software for the same Operating
systems (it is described in the relevant design/maintainance document).

1. INTRODUCTION:

The whole driver/ACP software is written in such a way, that, for the
respective type of the bus, Q-BUS or UNIBUS, the build procedure will
conditionally compile and task-build the software to suit the type of the
system.

The main difference in the Q-BUS and the UNIBUS software is the use of
the UNIBUS mapping registers for transfering data to/from the board to the host
memory. This document will describe in detail how these are allocated, how they
are used in data transfers, etc.

2. DESIGN DETAILS:
2.1 UMR REQUIREMENTS:

With one UMR, a transfer of a maximum of 4KW of data can take place. The
ACP requires about 1KB of memory for the message area and this piece of memory
is shared by both the host and the board. Both of them require to utilize this
space almost simultaneously and hence this area has to be mapped by one UMR all
the time. This UMR is allocated during initialization time of the ACP and is
loaded with the 22-bit physical address of the start of the message area.

For data transfers from user tasks to the board memory and vice-versa,
ideally, for each request one UMR (per 4KW) would be assigned for the transfer
and would be loaded with the physical address of the start of the user buffer.
For a write request this sounds quite 0.K. but if a read is requested then it
may hang forever thus tieing up the system resources (UMR's) and degrading
system performance because there are only 32 UMR's available for the whole
system including for the disc I/0 and other peripheral I/O.

To solve this problem, a fixed local pool of about 14KB is allocated in
the ZE (EX0S) driver virtual space which uses only less than 1KB of virtual
memory for its code. This is further subdivided into fixed parts of 1KB each
so that each can be allocated for a request (which will NOT specify more than
1KB as the buffer size) and then deallocated when the request is over. If all
the buffers get allocated then the requesting task would be blocked until a
buffer is freed when the request is made again for a buffer in the pool.

For this pool area only two UMR's would be required for as long as the
ACP is running. The contents of the user buffer would first have to be
trangfered to the allocated buffer for a write request and the board is to be
informed about the 18-bit physical address corresponding to the start of the
allocated buffer which is the UMR originally allocated plus the buffer no. times
the size of the buffer. The buffers starting at the address greater then 4KW

Oct 18 15:01 1985 unibus.design.doc Page 2

from the start of the pool are assigned the second UMR's 18-bit address plus
their no. times their size. The first UMR is loaded with the 22-bit physical
start address of the pool area and the next UMR is loaded with the start of the
pool 22-bit physical address plus 4KW.

Hence, the total consumption of the UMR's is three for almost all of the
time.

2.2 VIRTUAL TO PHYSICAL ADDRESS CALCULATION:

The virtual address is converted into the 22-bit physical address with
the use of the system routine $RELOC. This routine is called with the virtual
address as the input in RO and it returns the relocated address in two
registers. Rl contains the relocation bias and R2 contains displacement bias in
the block plus 140000 (PAR6 bias). Actually the relocation bias is the higher
16-bits of the physical address and the lower 6 bits of the displacement bias
are the lower 6-bits of the physical address because the relocation bias is to
be loaded into the PAR6 and the displacement bias contains the the virtaul
address to be actually addressed. The displacement bias's higher 3 bits are 6
which select the APR 6 and hence the required physical memory will be addressed.
But we donot need to address the physical memory but to calculate it and this is
simply done by manipulating (by shifting and masking) these two registers to get
the higher 6-bits of the physical address in one word and the lower 16-bits in
another. The routine "RELOC::" actually does this in the ACP and also the power
up for RSX-11M and load for RSX-11M-PLUS entry points do the same.

2.3 LOCAL POOL ALLOCATION:

The local pool for intermediate bufferring is allocated in the driver
virtual space beginning exactly after 1KW from the start of the driver code
area. This is done while the driver is being loaded. The driver is called at its
power fail entry point while it is being loaded for RSX-11M systems and at the
loadable driver entry point for the RSX-11M-PLUS systems. Here the driver
calculates the physical address of the start of the pool area and stores it in
two words in the UCB - at U.ACP+2 and U.ACP+4 with the lower 16 bits in the
higher word and the higher 6 bits in the lower word. Now that the start of the
local pool is in the system pool (UCB), the ACP can easily access it.

2.4 UMR ASSIGNMENT:

The three required UMR's are assigned at initialization time of the ACP.
The routine $ASUMR is called for the purpose and not $STMAP or $STMPl as these
calls are for assigning UMR's for the duration of the data transfer and are
deassigned as soon as the I/0 is finished by the Executive and the ACP does not
keep much of the control of the UMR's. $ASUMR just assigns the UMR's and it is
the the ACP's responsibility to deassign them (which is done when the ACP is
aborted for restaring the network or shutting it down by the call to the routine
$DEUMR).

The routine "ass umr()" is called at initialization time by the routine
"uni ini()" which actually does this assignment and initialization of the UMR's.
There exists a 6-word Unibus Mapping Register Assignment Block in the SCB of the
driver data base. The start address to this block and the no. of UMR's to be
assigned in one of it's fields is passed as the input to $ASUMR. This routine,
called at system state (done in Macro routine ".AS.UMR::"), returns the UMR
address and the 18-bit physical address mapped by this UMR (giving the UMR
number from the higher 5-bits) in the different fields of the UMR Assignment

Oct 18 15:01 1985 wunibus.design.doc Page 3

Block. The no. of UMR's specified will map 4KW of physical memory each, and
these 4KW of memory mapped by each UMR's will have to be contiguous in the
physical memory. For this reason, two UMR's are assigned first for the pool area
and one assigned later for the message area and it's UMR Assignment Block is
allocated from the system pool.

2.4 DETAILS OF FORMING THE 18-BIT UNIBUS ADDRESS AND LOADING OF THE UMR'S:

The UMR Assignment Block contains 6-Words as described in the section
7.4.2 of the Guide for writing I/0 drivers manual for RSX-11M-PLUS. After the
call to $ASUMR, the field M.UMRA is initialized with the address of the UMR
(in the I/0 page). The field M.UMVL is initialized with the lower 16-bits of
the 18-bit address mapped by the first assignd UMR. The bits 4 and 5 (counting
from 0,1,... onwards) of the field M.UMVH are initialized with the two higher
order bits of the 18-bit unibus addresss. The higher 5-bits of the 18-bit unibus
address determine the number of the UMR that will map the physical memory. This
UMR is to be loaded with the 22-bit physical address of the buffer the
peripheral device has to communicate with. To access the next contiguous UMR,
the UMR number is calculated by fetching the high 5-bits of the 18-bit physical
address and then adding one to this to get the higher order 5-bits of the new
18-bit unibus address of which the lower order 13 bits are same as the previous
UMR.

The Unibus Mapping Registers are actually a set of 32 two word pairs in
the I/0 page starting at the location called UBMPR. The two words hold the 22-
bit physical address to be mapped by that particular UMR. The address of the
UMR is in the field M.UMRA in the UMR Assignment Block and the lower order 16-
bits are loaded into the lower word and the higher order 6-bits in the higher
order word (This is done by simple move instructions).

2.5 LOADING THE UMR'S:

The first UMR is loaded with the start physical address of the pool area
and the next one with the start address plus 4KW. The third UMR is loaded with
the start physical address of the message area. All the fields in the
configuration message related to the message area are just offsets relative to
this start address. Under normal circumstances these UMR initializations would
remain permanent.But during the time when the board is being setup, the board
needs to read the configuration message directly from the host memory. This
requires a UMR assigned and loaded with the start of the configuration message
for a short duration of time. This is temporarily done in the routine
"exsetup()" and the UMR is reloaded with the start of the pool area when the
board has finished reading the cofiguration message and has initialized the
board and its message queues.

2.6 DEASSIGNING THE UMR'S:

At initialization time (in the routine "uni ini()") a system call
SREX$S is made (from the routine "srex()", which specifies the routine 'DE.UMR"
so that control comes to this macro routine whenever the ACP is aborted or it
exits. This routine calls the system routine $DEUMR to deallocate all the three
UMR's with the input as the start of the UMR Assignment Blocks and then exits
the ACP peacefully.

2.7 LOCAL POOL MANAGEMENT:

An image of the local pool (struct pool im in file unidata.h) is kept

Oct 18 15:01 1985 wunibus.design.doc Page 4

in the ACP which holds information about the allocation of the buffers and the
owners of the allocated buffers. The pool im structure is as follows:

#define POOL BUFS 14
struct pool im {
Ushort statej
struct iopkt *owner;
} pool im[POOL BUFS] = {0};

The state field indicates whether the particular buffer is allocated or not. The
owner field contains the address of the I/0 packet which corresponds to the I/0
request from the user task.

2.7.1 POOL ALLOCATION:

The pool allocation is done (in routine 'getpool()") by first finding
a free buffer and in the process also finding the buffer number from the pool
image. The I/0 packet address, which is passed as the first parameter to this
routine, is stored in the owner field of the pool image. The 18-bit physical
address is calculated by adding the buffer size times the number of the buffer
to the start 18-bit physical address of the start of the local pool. This 18-bit
start address is calculated during the UMR assignment time after the UMRs are
assigned from the information present in the UMR Assignment Block and stored in
a global variable (unilbuf) for the pool management routines to use. If the
buffer number turns out to be greater than 8, then the 18-bit address of the
next 4KW of the local pool is taken which is stored in another global variable
(uni2buf). These variables are long words.

2.7.2 DATA TRANFER TO/FROM USER/POOL ADDRESS SPACE:

The second parameter to the 'getpool()" routine indicates whether the
requested buffer is for a read or a write request. If it is for a read request
then the parameter is 0 and 1 if it is a write request. For a write request, the
routine copies the contents of the user's buffer into the buffer in the local
pool allocated for the purpose. For this copying, the Macro routine "acopy()" is
called which calls the system routine $BLXIO to do the transfer of the data from
the user's area to the driver's area where the local pool is situated. This
routine need the relocated addresses of the source and the destination buffers.
The relocated address for the user's buffer is already present in the I/0 packet
but the relocated address of the pool area is calculated at initialization time
by the Macro routine "REL.POOL::" and stored in global variables rellbuf and
rel2buf for the lst and 2nd 4KW of the local pool respectively.

2.7.3 POOL DEALLOCATION:

The routine to free the buffer, when the request is over and the reply
has arrived, is "freepool()". The first parameter is the I/O packet address for
which the request was made and the second one indicates whether the request was
for read or write (0 or a 1 resp.). The pool image is searched for an entry
corresponding to the I/0 packet address passed as the lst parameter and if a
match is found then that entry's status field is initialized as DEALLOCTED. If
the request had been for a read then the data from the pool is transfered to the
user's area by the same routine "acopy()". For a write request nothing is done.

There are requests that require both read/write kind of interaction with
the board like the requests for ARP, ROUTE etc. The '"getpool()" and the

Oct 18 15:01 1985 unibus.design.doc Page 5

"freepool()" routines are both called with the second parameter as 1 so that the
user's read/write requests are both honoured.

3. CHANGES IN THE XOSLIB TO PASS ONLY 1KB OF DATA TO THE ACP FOR UNIBUS M/C's:

The routine which finally does the QIO to the board - "libemt()" - is
modified for the purpose. A global integer called unibus is initialized to 0
at compile time and this indicates a Q-BUS machine. If it is 0 then libemt
does not check the buffer size and directly passes the buffer and the buffer
size to the board (ACP). But if it is set to 1, then libemt breaks up the buffer
into 1KB blocks and issues QIO's in a sequence with each having no more than 1KB
of data to be transfered. The value of unibus is zapped to 1 for UNIBUS M/C's.

4. LIMITATIONS:
4,1 SPEED:

The main limitation with respect to the Q-BUS driver/ACP is the speed
of data transfer. Since intermediate buffering is inevitable in the UNIBUS
design, as described above, the time taken to first transfer the data from user
buffer to pool area or vice versa is an extra burden and slows down the data
transfer by about 40%.

4.2 EXHAUSTION OF POOL SPACE:

If there are many tasks requesting for the pool space for data transfer
the pool area might get exhausted and in such a happening the ACP will put the
requesting task's I/0 packet in a secondary queue which is again put into the
internal queue after all requests are honoured and so again they become eligible
for requesting the pool and again, if no pool has become free then the process
is repeated until a buffer gets free and then this request is honoured. During
all this time the buffers are not free, the task will keep waiting and hence
will eat up that memory space as it cannot be checkpointed during the time
the buffered I/0 is in process. This is because task checkpointing during the
buffered I/0 is not implemented because the same code is being used for the
Q-BUS machines which donot indulge in buffered I/0. To implement this the code
size would increase and would further complicate the already complicated logic
of the ACP making it difficult to maintain.

4.3 BUFFER SIZE:

The buffer size specified by the user should not be greater than 1KB
and if it is then an error status is returned and the request is not honoured.
The user is advised to do a series of QIO's to transfer more than 1KB of data
This might further slow down the process of data transfer.

4.4 INEFFICIENT USE OF THE POOL AREA:

The pool is divided into 14 buffers of exactly 1KB size. This means that
for a data transfer of less than a hundred bytes would use up 1KB of pool space
and a task requesting more than 1KB would then have to wait. This limitation
is due to the simpplified approach used in managing the pool and thus keeping
the size of the ACP to the minimum and the code simple. This problem would arise
only when the traffic is very high and all the pool space gets exhausted but
normal circumstances when one FTP client and one FTP server plus a telnet
client are running there wont be any problem depending on how fast the network

Oct 18 15:01 1985 wunibus.design.doc Page 6

is.
4,5 UNIBUS FOR PDP-11/70

It is not certain that the current software would run properly for the
PDP-11/70 processor since that processor uses the MASSBUS. Unless this software
is tested on such a machine nothing can be said about its performance on that
machine but the best edducated guess is that it shiould work!

5. ENHANCEMENTS AND IMPROVEMENTS:
5.1 POOL MANAGEMENT:

This could be made more complex by making it to allocate any given
numbers of bytes in a way similar to the "malloc()" and "free()" routines
in a high level language run time support. But an upper limit of 2 or 4KW would
anyway will have to be put because if, for example, the "TTCP" program does a
read for 4KW in loopback mode then the other TTCP will have to do a write of
4KW and hence they would both be hung up for ever. Hence, the complexity is the
main thing that will increase for better pool management.

5.2 TASK CHECKPOINTING DURING THE INTERMEDIATE BUFFERRING:

As described in the limitations this feature is not implemented but it
can be done by using the routines $TSTBF, $INIBF and $QUEBF as described in the
Guide to writing I/O drivers for RSX~11M-PLUS, section 1.4.8. This feature would
definitely improve system performance as the memory would not be tied up by the
issuing task as it would be checkpointed. This could be done for both read and
write requests.

Nov 14 12:50 1985 m.to.mplus Page 1

RSX TO MPLUS ---> MAJOR CHANGES

The following changes were necessary to be made in the EXO0S driver
ZEDRV/RTHACP for the RSX-11M to make it possible to run on the RSX-11M-PLUS
operating system.

The RSX-11M-PLUS 0.S. has some added features incorporated to support
different kinds of controllers and the system has taken more control over the
handling of different types of controllers. There are two major data structures
added for this purpose - The CTB (controller table) and the KRB (controller
request block). The CTB defines the type of controller and the KRB describes
individual controllers and their characteristics.

In the existing data structures for the RSX-11M driver the only ones
that have almost remained the same are the DCB (device control block) and the
UCB (unit control block). The SCB (status control block) has changed.

The other major change in the driver code is the Driver Dispatch Table
{(DDT). There are some new entry points that have been added which are helpful
in initializing the driver, getting the controller and units on/off line etc.

l. THE DETAILED DESCRIPTION OF THE CHANGES:
1,1, DCB:
no changes.

1.2. UCB:

U.UCBX is an added field. Also initializing the units as offline.
(they will be made online by the CON task.)

1.3. SCB/KRB:

The SCB and the KRB are to be made contiguous which means no more

than one unit can operate at a time on one controller. Since the EX0S
controller does not use this strategy of physical units attached to the
controller, but has the concept of logical units (channels), this
minimal strategy is maintained. There are some new fields added to the
SCB concerning error logging, I/0 page registers, KRB address, status
fields etc. The KRB has information about the status of each controller,
the interrupt vector address (which was first in the SCB), CSR address,
priority, UCB table, I/0 count, active unit's UCB address etc.

1.4. CTB:

This describes the characteristics of the EXO0S ethernet controller like
the name, status, pointer to DCB etc.

1.5. DDT:

The driver dispatch table is now just a Macro call which initializes
the dispatch table. This contains information regarding the various

entry points to the driver - the four conventional onesj initiator,

cancel, powerfail and timeout plus the new ones specially for the

Nov 14 12:50 1985 m.to.mplus Page 2

RSX-11M~PLUS system - the loadable driver entry point, unload entry
point (these are called while loading and unloading the driver), the
controller and unit online/offline entry points (to perform certain
functions while bringing the controller and units on/off line).

There has been no change in the logical flow of the driver
code but the powerfail entry point for the RSX-11M is now the load
entry point for the RSX-11M-PLUS system.

1.6. ACP:

The ACP, being a task, has not suffered many changes. The only place
where the problem arises is in the file UNIMAC.MAC where the offsets
refering to the SCB are not altogether symbolic and hence the offsets
get changed. Some conditional coding has been added here such that both
the systems would get their respective offsets.

(the conditional coding for UNIBUS and Q-BUS M/C's would remain as such)

Most of the code that has been changed has been condionalized at the
assembly level such that it will also run on the RSX-11M Q-BUS or UNIBUS
systems. Digital only allows user written device driver names staring with 'Z'
for RSX-11M systems and the ones starting with 'J' or 'Q' for RSX-11M-PLUS
systems. But to maintain the simplicity in maintaining the code ,i.e. having one
piece of code conditionally written such that it will run on all the four types
of systems - RSX-11M (UNIBUS and Q-BUS) and RSX-11M-PLUS (UNIBUS and Q-BUS), the
driver on the M-PLUS system was also given the name 'ZE'. This was not according
to the conventions of DEC but, well, our convenience is first preference!

2. CHANGES FOR THE UTILITIES AND XOSLIB IN CHANGING FROM RSX-1M TO
RSX-11M-PLUS:

The main changes made were in the files radix.mac, pasword.mac,
xinitenv.c. These changes were such that these files could also be used for
the RSX-11M systems. The changes were as follows:

1. radix.mac: It did not support the blanks in the input ascii name
and now it does.

2, pasword.mac: There were some potential bugs in the RSX-11M version
which came to light in the M+ software and were fixed.
The account file was not being closed by the login task
because it was first exiting after validating the account.
But when the strategy to keep the login task running all
the time, letting it dequeue packets for validating the
account, was made, the login task never closed the
account file and no other user could login. Earlier, when
it was exiting, the file was being closed.

3. xinitenv.c! The task name of the login and master tasks in the M+
are different from that in the M software. To take care
of these differences the executive call get task info
is called and it is checked which system this task is
running on and then the correct task name is issued in the
send data requests.

Nov 10 11:08 1985 telserv.design.doc Page 1

DESIGN/MAINTAINANCE DOCUMENTATION FOR THE TELNET SERVER
ON RSX-11M/RSX-11M-PLUS

by
Asim K. Mehta

1, INTRODUCTION:

The Telnet server comprises of Three distinct parts:
i) The ON-BOARD Telnet Server (which is downloaded onto the board),
ii) The routines in the ACP which handle the Telnet Server requests and
iii) The Pseudo Terminal Driver which actually serves the remote terminals.

The first part, the ON-BOARD Telnet Server is not host dependent and
will not be discussed here. The second part is the interface between the first
and the third. These other two parts reside on the host and need a thorough
investigation as to how the design was done and how to maintain them.

2. OVERVIEW:

The Board/Host interface regarding telnet is described in the '"ON~BOARD
Telnet Server To Host Interface" by George Powers.

The ACP receives the requests from the remote terminal via the EX0S-to-
HOST message queue and gives back replies to the remote terminal via the HOST-
to-EX0S message queue (The method of the ACP receiving messages and giving back
messages from/to the board is described in the relevant design document). On
receipt of any request/reply for telnet, the ACP dispatches it to the relevant
routine which does the job of interfacing with the Pseudo Terminal Driver/EXO0S
board.

The interface with the Pseudo Terminal Driver (called ZTDRV) is similar
to that of a normal modem multiplexer used with the TTDRV (like the DLV11-E
asynchronous line interface with full modem control). Except for the concept of
ringing, everything else is almost similarly modelled. Ofcourse, there are no
CSR's in our case as it is modelled as a pseudo multiplexer and the input and
output interrupts are simulated from the ACP by QIO calls to ZTDRV.

3. DESIGN DETAILS OF THE BOARD TO HOST (AND VICE-VERSA) INTERFACE FOR TELNET:

The Host and Board communicate via the message queue mechanism and the
Telnet Server requests are distinguished from other requests by the nm request
field of the message structure called Telnet srvr which is initialized as
TSCOMMAND for telnet requests/replies. As soon as the '"request()/reply()"
routines recognise the request to be that for telnet, they pass control to the
routines which handle telnet requests/replies.

If the request is from the board then it is an unsolicited reply for the
ACP and the routine '"reply()" recognises it as one for telnet and calls the
routine '"dispatch()" (in file RTH.C) which dispatches to the correct routine
depending on the telnet command specified in the nm tsrqst field. The following
commands could be expected from the board and the appropriate action is taken as
described below:
(the routines to which the dispatcher dispatches are all in the file RTH.C)

3.1 TSCARON/RLCARON:

This command tells the host that the carrier is ON for a remote terminal
whose pty no. is in the field nm sioid. The dispatcher calls the routine

Nov 10 11:08 1985 telserv.design.doc Page 2

"caron()" which establishes the carrier ON and enables the unit (US.CRW clear
and US.DSB clear) in the ZTDRV database. It also sends a CNTRL'C' to the ZTDRV
as an unsolicited input so that an MCR> prompt is sent to the remote to indicate
a successfully established connection.

3.2 TSCAROFF:

This is sent to the host when the remote terminal wants to break the
connection. The routine "bye()" is called for the purpose. It gives a CNTRL'C'
followed by a '"BYE\r' to the ZTDRV as an unsolicited input which logs off the
user from the system. The “C is given because, for example, just in case text
edition is in progress then the line "BYE\r" will be written as new text instead
of a logout request. "C will put the process in the background and then logout
the user.(Won't work for EDT, though!)

3.3 TSREAD:

The remote terminal sends unsolicited input to the ZTDRV via the read
data stream in the array tsdatal] field of the Telenet_srvr structure. (It may
be just be read data for a process running on the remote terminal and not
unsolicited input!) The routine "zt read()" is called by the dispatcher
("dispatch()") which passes the data to the ZTDRV by a simple QIOW #I0.INP call
which is accepted by the ZTDRV as an input interrupt and the data is input into
the driver and processed normally (described later in this doc as to how).

3.4 TSNVIFUNCT:

These are requests for the standard Network Virtual Terminal Functions
which are described below:
(They are serviced by the routine "nvtfunct()" called by the dispatcher.)

i) A0 - abort O/P - "0 is sent to ZTDRV as an unsolicited input.
ii) AYT - are you there? - ignored as the board takes care.
iii) EC - erase character - BS is sent as an unsolicited input.

iv) EL erase line - "U is sent as an unsolicited input.

v) IP interrupt process - a “C is sent as an unsolicited input.

3.5 TSDOOPT:

The board sends certain telnet options which the client requests and the
host is supposed to fulfil these options as far as possile. The routine
"do option()" is called to set the options. The following are the possible
options that would be asked to be set by the telnet client:

i) TELOPT BINARY - a QIOW #SF.SMC is sent to the ZTDRV to set this
option with the bit TC.BIN set.

ii) TELOPT_ECHO ~ same as TELOPT BINARY but here the bit is TS.NEC
that is cleared to set the echo option,
iii) TELOPT SGA - suppress go ahead - no action is taken.

3.6 TSDONTOPT:

The function "dont option()" is called which calls "do_option()" with
the second parameter non—zero indicating it to reset the options instead of
setting them.

Nov 10 11:08 1985 telserv.design.doc Page 3

3.7 TSWRITE (h2x):

When the System has to send some data to the remote terminal, then the
ZTDRV sends the write data in an I/O packet queued to the ACP via $EXRQF system
call. The function code is a pseudo fn code IO TEL with which the ACP (routine
"request()") recognises the request as one for telnet to be sent to the board.
The routine "telnet()" is called which prepares the message queue (Telnet srvr)
(by calling "wr_to_exos()") from the information present in the packet, and thus
the write data is sent to the remote terminal. Then this packet is deallocated
back to the system pool (as it was allocated in ZTDRV from the system pool and
this is not a regular I/0 packet but one to serve our purpose of sending data
to the board).

3.8 TSWRITE (x2h):

This is a reply from the ON-BOARD telnet server to the last TSWRITE
(h2x) request and this is considered as an output interrupt to the ZTDRV to
signal the completion of an output to the board. The output interrupt is given
as a QIO #I0.0UT in the routine "write reply()" dispatched to by the routine
"dispatch()". This is a simulated output interrupt and the ZTDRV takes this as a
normal QIO request but the controller dependent routine considers it as an O/P
interrupt.

3.9 TSHANGUP (h2x):

This is a request which the host has to make to the ON-BOARD telnet
server when a remote terminal logs out of the system. When the user types in
'bye' or 'logout' as an unsolicited input, the BYE task is invoked which first
logs off the user and then calls the ZTDRV with a QIOW #IO.HNG which gives
control to the time out entry point of the controller dependent routines and
here a packet with a pseudo fn code TS.HNG is created and queued to the ACP
via the $EXRQF system call. The ACP, after getting this packet, gives control
to the routine "hangup()". This routine prepares the message area (Telnet srvr)
and sends the TSHANGUP request to the ON-BOARD telnet server which severs the
connection fot that pseudo tty.

4. ZTDRV - THE TELNET DRIVER:

The ZTDRV is a pseudo terminal driver for the remote terminals and
actually does the character processing. Most of the ZTDRV code stems from the
standard TTDRV code for the RSX-11M/RSX-11M-PLUS systems. The module which
actually does the interfacing with the standard terminal driver code is the
controller dependent routine for the new pseudo controller added into the
existing terminal driver. This pseudo controller is called the DT-11 and the
controller dependent routine is called ZTYT. The reasons for the pseudo
controller not being added to the existing terminal driver are described in the
next section. The code for this pseudo controller dependent routine and the
rest of the TTDRV code plus the changes in it to suit the new pseudo controller
is named ZTDRV - the new pseudo terminal driver for telnet.

4,1 DECESION FOR KEEPING ZTDRV AS A SEPARATE TERMINAL DRIVER:
This decesion was taken for the following reasons:

1. It would be a lot easier to debug a separate driver rather than the
TTDRV which would be already resident and to make some change in the

Nov 10 11:08 1985 telserv.design.doc Page 4

driver, Sysgen would have to be performed all over again to rebuild
it.

2. To add another controller to the existing TTDRV would mean that the
source files of the standard TT driver would have to be modified and
this would mean a re-Sysgen to incorporate the new TT driver with
the pseudo controller. The main aim of the present EX0S software is
to try to incorporate networking on existing systems and it would be
ridiculous to ask the customer to do a SYSGEN to incorporate the
pseudo terminal driver,

3. There are certain terminal characteristics which are necessary for
the pseudo controller like modem support which might not be supported
on the user system. To add that support a re-Sysgen is necessary.

The main drawback of this decesion is the utilization of a lot of
resident memory space - 8KW - as the ZT driver is always resident in the memory
while it is loaded and its data base is always resident while it is unloaded.
And it also utilizes a lot of space from the system pool as will be discussed in
the section for System resource consumption.

4.2 CONTROLLER HANDLING IN A TERMINAL DRIVER:

The TTDRV handles different kinds of controllers especially made by DEC
(e.g. DL,DJ,DZ,DH,DM,etc.) and each is of a different kind and has to be handled
separately by the driver. Most of the code for the TTDRV is common to all the
controllers. But, for their specific functions there are controller dependent
routines which are called upon to do the required specific functions.
A typical flow of a normal controller action would be as follows:

4,2.1 A TYPICAL CONTROLLER ROUTINE FLOW:

When a character is typed from the terminal, an interrupt is raised
which brings control to the input interrupt entry point of the controller dep.
routine. This causes the routine to pass the character to the input character
processing routine common to all the controllers and then if echoing is required
then it is output via the output interrupt routine - the character is first put
in the proper XBUF and the output interrupt is enabled. The controller raises
the output interrupt which means the character has been successfully output and
the control comes to the output interrupt routine., If there are more characters
to be output then the same procedure is followed. When a task has to output any
buffer onto the terminal, then it calls this output interrupt routine and the
same procedure takes place.

When the TT driver wants to stop the output say, when a S arrives, then
the controller dependent routine is called at its stop output entry point. Here
the output interrupts are disabled by setting the appropriate bit in the CSR.
Similarly there are other entry points for other purposes like the resume O/P
entry point, the modem timeout entry point, the power-up entry point, etc which
are called when the appropriate action is required.

4.2,2 DATA BASE RELEVANT TO THE CONTROLLER DEPENDENT ROUTINES:

For the RSX-11M systems the following data structures are relevant for
for the controller dependent routines:

1. The controller type. It is a number given to different controller
types by DEC and the different controller types are accessed by this
number.

Nov 10 11:08 1985 telserv.design.doc Page 5

2. The controller index. For a particular type of a controller, there
may be more than one controllers existing simultaneosly. These are
given numbers called the controller index.

3. The controller table CTBL. This is a dispatch table containing the
addresses of controller dependent routines which are to be called
whenever required by the driver. Each routine has its particular
number and this allows proper dispatch for any controller.

4. The UCB table. This is a table of UCB and the CSR addresses for a
particular type of a controller by which, when it is interrupted,
it can get the UCB and the CSR address of the correct unit by
indexing the table with the controller index which is passed in the
PS word (bits 0-3) when an interrupt arrives.

5. The UCB and the SCB are also extensively used by these routines.

For the RSX-11M-PLUS systems the following data structures are relevant
on top of the ones discussed above for the RSX-11M except the UCB table which is
not used here:

1. The Controller table CTB. This is a data structure in the pool area
and has information like the controller name, addresses of contoller
request blocks, some status information, link to the next controller
table, etc. Each controller type is defined by such a block.

2. The Controller request block KRB. This contains all the information
like the CSR address the controller type, the vector address etc.
Every controller has to have one such block by which its run-time
status, its controller index, etc. can be determined.

3. The SCB and the KRB may be contiguous for controllers having only one
unit and allowing full duplex operation.

Please see the guide to writing I/0 drivers for RSX-11M-PLUS for further

information on these data structures. '

4.3 THE PSEUDO CONTROLLER FOR TELNET:
4.3.1 OVERVIEW:

To interface the telnet protocol to the system, there was a need to
communicate between the terminal driver and the ACP, since it was the ACP that
got all the telnet protocols from the board. The best way was to model a pseudo
controller in the ZTDRV which would do this job. Hence, the main function of
this module would be to somehow take in characters received from the remote
terminal and input them to the input character processing routines of the
terminal driver and to somehow get to output characters to the ACP which could
transfer them to the board and finally to the remote terminal.

4.3.2 NAMING CONVENTIONS AND GENERAL DESCRIPTION:

This controller is called DT-11 and the module which handles this 1is
called ZTYT. The controller number given to this pseudo controller is not fixed
but is so coded that at assembly time it would get the last controller number
after the ones defined by DEC. This is done to take into account the fact that
DEC might upgrade the TTDRV by increasing the number of controllers supported
by the terminal driver and that would conflict with our design. All the
controller dependent routines start with the letter 'Y' and so our controller
dependent routines are called 'YT...' as our controller name is D'T'-1l. An
assembly time label called D$$T11 has to be defined to inform the ZTDRV software
of the existance of such a controller and its value indicates the number of

Nov 10 11:08 1985 telserv.design.doc Page 6

units of these controllers existing (8, in our case, at present).

The controller dependent routines for this controller are added to the
controller table CTBL and hence they would be called whenever there is a request
for this controller. The controller type is stored in the UCB for RSX-11M
(U.CTYP) systems and in the KRB for RSX-11M-PLUS systems (K.PRM)., It is from
here that the driver accesses the controller type and then dispatches to the
required routine.

4.3.3 THE RELEVANT DATABASES:

Besides the data strucures required by the System viz. DCB, UCB and the
S5CB for RSX-11M and on top of these the CTB and KRB for RSX-11M-PLUS there are
a few used by the controller dependent routines for the pseudo controller DT-11.
These are added separately and are described below:

UCBADD --> local storage for UCB address for use by the conroller dep.
routines for the pseudo controller.

LOCBUF =--> stores upto 32 input characters temporarily.

COUNT --> byte count for the I/P characters.

ADLBUF =--> address of pointer to I/P characters.

Also added are the input and output interrupt entry points for the
controller which correspond to the I/0 function codes added - IO.INP and I0.OUT
in the dispatch table for the entry points for different function codes - QPDSP
These are called QPINP and QPOUT. The initiator entry point for the ZTDRV
dispatches to the required routines according to the function codes specified
and hence for IO.INP and I0.OUT the contol comes to QPINP and QPOUT. These
function codes are also added in the DCB for the pre-driver processor to
recognise these I/0 codes.

The UCB table is added just for consistency requirements in the terminal
driver code but here there is no functional use for the UCB table.

All the detailed description of these added data structures are given in
the section on maintainance of the ZTDRV with filenames and line numbers.

In the RSX-11M system there is a DCB describing the device type for the
ZTDRV which has fields describing the legal function codes allowed on this
driver and also types o function codes allowed. There is one DCB for the ZTDRV.
There is one UCB for each unit which has some static and some run-time status
information of the individual units. At present there are only 8 units supported
as more would eat up a lot of system pool. Since each unit is capapble of being
active simultaneously, there exists an SCB for each unit which keeps run-time
information.

For the RSX-11M-PLUS systems in addition to the DCB and UCB's there
exists a CTB, the controller table describing the type of controller supported
by the driver. There is one CTB descrinbing the DT-11 contoller whose name is
'ZT'. There exists a contiguous SCB and KRB combination since each controller
has only one unit attached and also each units is capable of full duplex
operation. The KRB describes each individual controller.

The important fields worth a mention in these data structures are as
as follows:

DCB:
D.NAM --> device name 'ZT' by which the system will recognise the
device.
UCB:

U.CTL --> control flag UC.QUE which calls driver before queueing the

packet.

U.STS --> US.CRW says unit waiting for carrier.

Nov 10 11:08 1985 telserv.design.doc Page 7

US.DSB says unit disabled.
U.CW2 --> U2.RMT says unit is a remote one.
SCB:
S.VEC ——> vector address initialized as 0 since no real interrrupts.
S.CSR ——> CSR address also initialized as 0 since no real device.
KRB:
K.VEC --> vector address initialized as 0 since no real interrupts.
K.CSR --> initialized to the CSR for ZE device - ZECSR - since the 'CON'
task requires to probe into the CSR before putting the devive
or controller ON-LINE. This constant is defines during task
building of the ZTDRV depending on what the actual CSR is.
This is a suggested improvement but presently it is
initialized to 164000.
CTB:
L.NAM --> controller name for the pseudo controler - initialized as
'ZT' since it does not take a separate name from the device
name.
L.KRB -=> table of KRB addresses for all the 8 controllers.

4.3.4 CONTROL FLOW OF TYPICAL TELNET REQUESTS:
The flow of the controller dependent routines is as follows:

When there is a request for making the carrier on from ther board for
a particular pseudo tty then the routine in the ACP sets the unit as '"not
waiting for carrier' and enables the unit. This allows the request to come to
the ZTDRV whenever there is a QIO #I0.INP for unsolicited input. The control
first comes to the initiator entry point ZTINI. This routine dispatches to the
proper function servicing routine using the table QPDSP. The control then comes
to the routine QPINI for the function code IO.INP and to the routine QPOUT for
the function code I0.0UT.

4.3.4.1 QPINP:

In the routine QPINP the input data is transfered into the local data
structure LOCBUF and then one by one each character is input to the input
character processing routine ICHARl. The control flow is modelled similar to
the DLV11-E with modem control. Then, for echoing the character, the start
output routine YTSTAX is called which calls a routine OUTBUF which prepares a
packet of 48 bytes from the system pool and queues it to the ACP via a $EXRQF.
The TCB address of the ACP is found from the ZE data base U.ACP in its UCB,
After the input characters are processed, the routines are called which process
any other packet that would have arrived and also any other type of procesing
like start unsolicited input processing, post fork processing etc.

4.3.4.2 QPOUT, OUTBUF:

For doing an output to the remote terminal, a QIO/QIOW #I0.WLB or IO.WBT
is done which brings control to the controller dependent routine YTSTAX and this
routine calls the routine OUTBUF which creates a packet in which the output data
is stored and queues it to the ACP. After any data is queued to the ACP i.e.
after data is output to the board, there has to be an output interrupt to
acknowledge the completeion of output. The board gives a write reply after every
write to the board and this is considered as the output interrupt and sent as a
QIO #I0.0UT to the ZTDRV which brings control to the routine QPOUT in the ZTYT
module through the initiator entry point ZTINI. Here the routine OUTBUF is

Nov 10 11:08 1985 telserv.design.doc Page 8

called where the output buffer is first checked for any bytes left to be output

and if so then another packet is created and queued to the ACP which again sends
an output interrupt. If there is no data left for output then the routine ODONE

is called which finishes the I/0 by an IOFIN.

4.3.4.3 YTRESX:

The resume output entry point is called whenever there is a ~Q in the
unsolicited input data stream. For a typical controller this routine is supposed
to enable the output interrupts which will resume the output. But here there is
no way of enabling the output interrupt but to simulate one that will cause the
output to resume as the main driver code resets the bit S1.CTS which was set by
a “S. The output interrupt is simulated by sending a dummy packet to the ACP
with byte count as 0 and it recognises this packet and sends a QIO #I0.OUT and
this starts the output in the usual way.

The modem time out entry point is called by the main ZT driver code
whenever an I/0 is cancelled by an I0.KIL (by doing an ABO to a running task
on this terminal) and when a user loggs out and the 'BYE' routine gives a
QIO #I0.HNG to the ZTDRV which calls the controller dependent routine at this
entry point if the unit is a remote one. Here it is first checked if the user
is logged in or not. If logged in then control has come due to an IO.KI1 and
this call is discarded and directly returned to the caller. If not logged in
and if the carrier is still on (i.e. not waiting for carrier) then control has
again for an I0.KIL as user is not logged in but could still run the HELP
facility. If the unit is waiting for a carrier then the control has come
from PPHNG, the routine that services the function code IO.HNG. In this case
a packet with a pesudo function code (the one not described in the DCB) of
TS.HNG is created and sent to the ACP via a $EXRQF (similar to that in YTRESX)
and the ACP calls the routine hangup() to send a TSHANGUP request to the board.
Here the unit ig also disabled (US.DSB) and the routine PPHNG sets the unit as
waiting for carrier.

4.3.4.5 YTUOFF:

For RSX-11M-PLUS systems control comes to this entry point whenever
the unit is brought offline. Here the typeahead buffer is deallocated since
it is allocated in the online entry point for the driver and not deallocated
atall so if a driver is unloaded and loaded again, the previous address of the
typeahead buffer remains in the UCB (which remains resident) and while loading
the driver again the typeahead buffer is not allocated as some garbage address
is present in that filed in the UCB. This causes the system to crash. If the
typeahead buffer is deallocated when the driver is brought offline then that
field is cleared and reloading the driver causes no problems.

4.3.4.6 UNITNO:

This routine calculates the unit number of the unit in question and
stores it into the pty no field of the packet queued to the ACP.

4.3.4.7 GETACP:

This routine gets the TCB address of the ACP from the ZE data base
U.ACP of its UCB and returns it in RO.

Nov 10 11:08 1985 telserv.design.doc Page 9

4.3.4.8 ZTSET:

This is the setup routine for the input interrupt entry point similar
to the TTSET routine in the TTDRV which is common to all the controllers. This
routine's structure is similar to the TTSET's but since TTSET is called at
interrupt level there are some extra things it does over there (calling $FORK
etc.) which are not required here as control comes here via a QIO. This routine
is called as a coroutine from QPINP and when input processing is over control
comes back to ZTSET and here it checks if any other processing is required or
not.

4,3.4.9 YTCOFF::

This is the controller offline entry point for the RSX-11M-PLUS systems
and control comes here while taking the controller offline. Here the Clock Block
that was allocated from the system pool is deallocated back to the system pool.
First the clock block is removed from the clock queue by finding the entry in
the link lisk for clock blocks called $CLKHD and then it is deallocated to the
system pool.

5. RESOURCE USAGE BY THE TELNET DRIVER:
The telnet server, as a whole uses the following system resources:
5.1 SYSTEM POOL:

The main carrier for communication between the different of the Telnet
Server is the I/O packet. This is allocated from the System Pool which is one of
the most critical system resource and the whole performance of the system
depends on this.

The ZTDRV's code size is around 4KW and the rest of the available 4KW
are used up in forming the local pool which is used for allocating all sorts of
buffers for internal use of the driver like the UCB extension, the type—ahead
buffer, the buffers for intermediate bufferring, etc. If for some reason this
local pool gets exhausted due to extensive load, then the system pool is used.
This cannot be estimated but it depends on the load on the ZTDRV (no. of remote
users, no. of tasks running on the remote terminals, etc.).

The data to be output to the board from the ZTDRV is transfered to the
ACP via a packet allocated from the system pool. The size of this packet is 48
bytes. The ACP deallocates this packet only when the request from the ZTDRV is
honoured otherwise it is kept in an internal ACP queue till it is serviced. The
amount of such packets depends on the size of the buffer to be output and if
the rate at which the packets are allocated is higher than the rate at which
they are deallocated, then the system pool might get exhausted. This, again,
depends on the amount of traffic in the ACP. Normally these rates are almost
same.

When the ACP gives an O/P interrupt to the ZTDRV via a QIO #I0.OUT, a
packet is used up for the QIO (18 words for the RSX-11M and 20 words for the
RSX-11M-PLUS). But this packet is given back to the pool as soon as the control
comes to the ZTDRV. Also for the unsolicited input a QIOW is done which uses up
one packet. This is also almost immediately returned to the system pool as soon
as the input data is transfered to the local buffer.

5.2 CPU TIME:

Nov 10 11:08 1985 telserv.design.doc Page 10

Most of the processing takes place at priority 0 and hence it does not
hog the CPU at any time. Since there are no interrupts, the ZTDRV never operates
at interrupt level and this causes no grief for other peripherals.

5.3 UMR'S:

The ZTDRV as such uses no UMR'S as it does not use the UNIBUS but the
ACP does transfer the data to the board via the message area which contantly
uses one UMR for the purpose.

5.4 EVENT FLAGS:

Only the event flag number 1 is used by the ACP for QIO's to the ZTDRV.
So in adding any directive to the ACP this should be taken care of though it
will not cause any trouble as it is used in blocked I/0's.

6. MAINTAINANCE GUIDE FOR THE ZTDRV:

The following is a line-by-line description of the changes done from the
standard TTDRV to the make the ZTDRV. The reasons for the changes are also given
and also their effects on the performance of the telnet operation:

6.1 In all the files of the TTDRV, the .TITLE TT... is changes to ZT...
as these are the module names for the new ZT driver.

6.2 ZTDAT.MAC: LIDENT /04.03/

This file contains all the local data structures for the ZTDRV. These
include the dispatch tables for different function code handlers, for the
controller dependent routines, for the terminal characteristics routines,
character processing routines, etc. Also these contain the definitions for the
different controller types, terminal types, controller tables, etc.

1. Topic: Support for certain terminal characteristics is not there in certain
versions of the RSX~11M. To take care of this sime .IF's have been
added.

Line numbers: 451-460 After ".ENDM ETERM..."
500-504 After '""TERM T.BMPI..."
522-526 After "ETERM T.V132..."
Changes to existing code:

Previously: "TTPHI == T.V2XX"
(The following are the line numbers after the changes)

(The .IF's and their corresponding .ENDC's are added but the rest
already exists)

1. #451 : ",IF DF T.V2XX"

2. #453 : "TTPHI == T.V2Xx"

3. #456 : " IFF"

4, #458 3 "TTPHI == T.BMP1" (added).

5. #460 ",ENDC ;T.V2Xx"

6. #500 : ".IF DF T.V2XX"

7. #502 : "TERM T.V2XX WID=80.,LEN=24,,HHT=1,SCP=1,CUP=3"
8. #504 : ".ENDC 3T.V2XX"

Nov 10 11:08 1985 telserv.design.doc Page 11

2.

9. #522 : " IF DF T.V2XX"

10.#524 : "ETERM T.V2XX ANI=1,DEC=1,AV0=1,EDT=1,SFC=1
11.#526 : ",ENDC ;T.V2XX"

12.#985 : ",IF DF TC.SFcC"

13.#987 : ""MCGEN TC.SFC,U.TSTA+6,S4.SFC 3SOFT CHARACTERS
14,4989 : ".ENDC ;TC.SFC"

Topic: Table of pointers to dispatch tables in controller dependent routines.

line numbers: 530-644 After "ETERM T.V2XX..."

Changes to existing code: Addition of an entry into the dispatch table but
DEC's future releases and addition of new controllers will not affect
our code.

Added code/data structures:

1. #553: "1 = 0"
Constant symbol 'I' added for the purpose of calculating
the controller type (index for these dispatch tables).

2. #558: "I =1+ 2"
Iterate this expression the number of times as there are DEC's
standard controllers so that I gets the value of the last
controller plus 2.

3. #610: "YTINDX == I"
A global symbol defined as the controller type (I) and is used in the
ZT data base SCB and the UCB.

4, #614-644: "$YTTBL..."
The dispatch table for the DT-11 controller with
routine names starting with 'YT' '

Topic: Verification of the value of the function codes and the dispatch table
for processing different function codes before entering a packet in
the I/0 queue.

Line numbers: 709-710 After "ASSUME IO.RTT/400,12,.."
766~-767 and after ".WORD QPRLB..."

Changes to existing code: Addition of entries into the dispatch table
which will affect the future releases if DEC adds new function codes.
There will be a conflict with our function codes (IQO.INP and I10.0UT)
and these have to have values such that they can index the last entries
in the dispatch table which are contiguous entries.

Added code/data structures:

1. #709: "ASSUME I0.INP/400,13"
#710: "ASSUME I0.OUT/400,14"
These function codes are initialized with the values one more than
the highest existing function code value i.e. IO.RTT/400 is 12
and the next higher value is 13 which is for I0.INP/400 and 14 for

10.0UT/400.
2. #7662 " _WORD QPINP"
#767: " WORD QPOUT"

The entries in the dispatch table which are the input and output
interrupt entry points for the DT-1l1 controller.

Nov 10 11:08 1985 telserv.design.doc Page 12

4, Topic: Local data structures added for the YT controller dependent routines.
Line numbers: 1065-1068 After "OPTIMR::.WORD OPTIME..."

Changes to existing code: none.

Additions:

1. #1065: "UCBADD:: .WORD 0"
Storage for the UCB address.

2. #1066: "ADLBUF:: .WORD 0"
Address of the local buffer.

3. #1067: "LOCBUF:: .BLKB 32."
Local buffer for input characters.

4, #1068: "COUNT: : .WORD 0"

Byte count for the input characters.

5. Topic: Data structures are added to include ztdrv's own Clock BLock, Fork
Block and UCB Queue.

Line numbers: 1073-1110 After '"COUNT:: .WORD 0..."
Changes to existing code: none.

Additions:
In all from lines 1073 to 1110:

X1=1
X1=1
.IIF NDF M$$PRO X2=1
.IIF DF M3PRO X2=M$$PRO
.REPT X2
ZT$UQL=.
.IF DF M$$PRO
LCKDF$ SPIN
.IFTF
.IIF NDF $2TUQ $ZTUQ==.
.WORD 0,.-2

..

JIFT

JWORD X1

X1=X1%2

.ENDC

.IIF NDF $ZTFB $ZTFB==.
.WORD 0,0,0,0,0
ZT$UQL==.~ZT$UQL

.ENDR

INDEX TABLE TO ZT DRIVER
UCB QUEUE HEADS AND FORK BLOCKS

as we we ve we

.IF DF M$$PRO

X1=$2TUQ+2
$ZTUQT: :

.REPT M$$PRO

Nov 10 11:08 1985 telserv.design.doc Page 13

JWORD X1

X1=X1+ZT$UQL

.ENDR

.ENDC
;
;
; ZT DRIVER CLOCK BLOCK
;
$ZTCB:: .WORD 0 ; ADDRESS OF THE CLOCK BLOCK

.EVEN

6. Topic: Table of pointers to UCB tables.

Line numbers: 1245-1249 After "TTUCB::..."
1274-1284 After '"DL-11 Data bases..."

Changes to existing code: Addition of one more entry in the Table of
Pointers to the UCB tables for DT-11 controller. This change does not
affect the existing code even if DEC upgrades or introduces support for
more controllers as this entry will always be the last one and will be
indexed by the controller type which is the highest always.

This change will only be valid for RSX-11M systems and not for
RSX-11M-PLUS systems as they donot require these tables.

Additions?
1. #1245: ".,IF DF D$$T11"
2. #1247: ".WORD DTUCB"
3. #1249: "_ENDC D$$TIL1"

4. from #1274-1284:
.IF DF D$$T11

DTUCB:: 3 DT UCB POINTER TABLE
N=0
.REPT D$$T11
.WORD DTUCO+N
=N+4
.ENDR
DTUCO: .BLKW D$$T11%2 3 DT UCB/CSR TABLE

.ENDC ; DF D$$T11

7. Topic: Instructions added and modified to allocate the Clock Block from the
system pool. And the Fork Block is made ZTDRV's and not TTDRV's.

Line numbers: 1661, 1673 and 1877-1886

Changes to existing code:
1. #1661: ""MOV #$ZTFB+10,R1 $GET POINTER TO KINAR6 WORD IN"
2. #1673: '""MOV RO,@#SZTFB+10 ..." commented out.
3. #1877-1886:
"MOV #$DEVHD,RO

35%:
MOV @RO,RO
BEQ 508

CMP D.NAM(RO),#"ZT
BNE 35%

Nov 10 11:08 1985 telserv.design.doc Page 14

CALL $ALCLK
MOV RO,$ZTCB
MOV #TTICK,C.SUB(RO)"

Additions:
1. #1943: "508:"
A label where control comes when the ZT data base is not found.
3. #1944: "RETURN"
When control comes to 50% it just returns and no further action is
taken.

6.3 ZTTBL.MAC: .IDENT /V4.00/

This file contains the driver dispatch table and some routines which
are called when the driver is either loaded or put online etc.

l. Topic: Naming conventions. The start of the dispatch table should start with
the device's nmemonic 'ZT'.

Line numbers: 61 and 1l41.

Changes in the existing code: label names changed.
1. #61: instead of "$TTTBL::" it is now "$ZTTBL::"
2. #141 instead of "$TTTBE::" it is now "$ZTTBE::"

Additions: none.
2. Topic: Addition of the interrupt entry points in the dispatch table.
Line numbers: 135-139 After "Y'X'CTBP::"

Changes in existing code! just added the interrupt entry points for the
new controller and in the end so it will not affect the software if
new controllers are added.

Additions:
1. from #135-139 the following is added:

CASCII /ZT/
.WORD $ZTINP
.WORD $ZTOUT
JWORD O
ZTCTBP::.WORD O

6.4 ZTTAB.MAC: LIDENT /02/

This file contains the data base for the ZTDRV and is coded in such a
way that it will automatically asswemble for RSX-11M or RSX-11M-PLUS systems
and generate the required database for that particular system.

This section describes the type of data base selected for the pseudo
terminal driver and gives the appropriate reasons and also describes the fields
of the data base and their static initialized values.

1. CTB (for RSX-11M-PLUS only):

One CTB describes the type of the controller used - the DT-11 - whose

Nov 10 11:08 1985

telserv.design.doc Page 15

name is 'ZT' (same as the device name).
It's different fields are:

L.ICB
L.LNK
L.NAM
L.DCB
L.NUM
L.STS
L.KRB

-—>
-
-—>
-—>
-—>
-—>
-

interrupt control block - nonexistant.
link to next is 0 as only one controller.
.ASCII /ZT/

pointer to the DCB

number of controllers = 8

status = 0

table of all the 8 KRB address.

2. DCB (for both M and M+):

One DCB exists to describe the type of the device attached to the
controller. The fields are as follows:

D.LNK
D.UCB
D.NAM
D.UNIT
D.UCBL
D.DSP

D.MSK

D.PCB

-—>

->

link field is 0 as driver only supports one device type.
pointer to the first UCB.

.ASCII /zT/

lowest and highest unit nos.

length og the UCB's

pointer to the driver dispatch table now null but later
initialized by the LOA task.

function masks - has all the function codes supported
by the TTDRV plus two function codes IO.INP and I0.OUT
whose mask bits are 13 and 14 respectively.

PCB address of the partition in which the driver will be
loaded - filled by the LOA task.

3. UCB (for both M and M+):

One UCB exists for each unit attached to each controller. Here we have
one unit per controller. The fields are initialized as follows:

U.UAB

-—>

(for M+ only) User account block address — not used.

U.MUP/U.CLI --> mutliuser protection/CLI address used by the main driver

U.LUIC
U.OWN

U.DCB

U.RED
U.CTL

U.8TS
U.UNIT

U.ST2

U.CWl

code.

login uic - initialized to zero - used by the main code.
owning terminal's UCB address if device alocated.
initialized to zero here.

back pointer to the DCB,

redirect UCB address - here redirected to itself.
control flags:

UC.ATT!IUC.PWF!UC.KIL!UC.QUE

Control comes to the driver whenever there is a request
for attaching the terminal(UC.ATT), on powerfailure
(UC.PWF), for an IO KILL requests(UC.KIL), and during
a normal request the packet is not queued to the
driver's internal queue as task context is required to
relocate user specified buffers(UC.QUE).

US.OIU - initialized as output interrupt unexpected.
Physical unit no. i.e. the number of the unit w.r.t.
the ones connected to one controller — here it is 0.

0 for M and US.OFL for M+. For M+ unit is initialized
as being offline and the CON task makes it online.
DV.REC!DV.CCLIDV.TTY

This device is a record oriented device(DV.REC), also
it is a carriage control device(DV.CCL) and it is a
terminal device(DV.TTY).

Nov 10 11:08 1985

U.CW2

U.CW3
U.CW4

U.SCB
U.ATT
U.TUX

U.TSTA

U.TSTA+2 —-->

U.TSTA+4 -->
U.TSTA+6 —=>

U.UIC
U.TLPP
U.TFRQ
U.TFLK
U.TCHP
U.TCVP
U.UIC

U.TTYP
U.TMTI
U.TTAB

U.CTYP

-

telserv.design.doc Page 16

U2.LOG!U2.CRT!U2.LWC!U2 ,RMT

The unit is not loggid in(U2.LOG), the unit is a CRT
terminal (U2.CRT), it is set to lower case(U2.LWC) and
it is a remote terminal(U2.RMT) so that modem facilities
can be availed of.

0

80. The default buffer size of the terminal before
wrap around takes place.

SCB address

0 - attached task's TCB address - run time parameter.
pointer to the UCB extension - 0 - initialized at
initialization time.

unit status - 0.

S2.ACR!S2.FLF

Automatic carriage return and forced line feed.
S3.TAB need for type-ahead buffer.

0

(for M+ only) 0.

lines per page = 24.

0

0

0

0

(for M only) 0.

terminal type 0 - unknown.

modem timer 0.

‘address of the type-ahead buffer - 0 - initialized at

the initialization time.
(for M only) = YTINDX - the controller type.

4, SCB (for RSX-11M only):

There is one SCB for one unit since each unit operate independantly
and have different contexts at the same time. This requires separate
SCB's to store thier run time contexts. The different fields are:

5.LHD

S.PRI
S.VCT
S.ITM
S.CTM
S.CON

S.5TS
5.CSR
5.PKT
S.FRK

-—>

0 and start of the SCB in the two words resp.

This is the I/0 queue list head which is so initialized
but later used by the system and the driver.

Priority of this device - PR5

interupt vector address by 4. Here 0.

initial time out count - 5.

current time out count - 0,

controller index —~ the number of the controller of the
same kind.

0

CSR address - 0.

address of the I/0 packet of the currently active I/0.
Fork link word - 0.

5. Contiguous KRB/SCB (for M+ only):

The ZTDRV requires a contiguous SCB and KRB because only one unit is
supposed to be connected to a controller and in this case context would
have to be saved for only one unit at a time which requires only one
SCB and one KRB for the controller. In the M+ I/O philosophy, in such a
case pool space is saved by avoiding two separate KRB's and SCB's by

Nov 10 11:08 19

85

telserv.design.doc Page 17

making them contiguous and in this case some fields become common to the
the KRB both. The fields are as follows:

SCB and
K.PRM
K.PRI
K.VCT
K.CON
K.I0C
K.STS

K.CSR

K.OFF
K.HPU
K.OWN

K.CRQ

K.FRK/S
S.KS5
S.PKT
S.CTM
S.ITM
S.STS
S.ST3
S.ST2
S.KRB

6.5 ZTMAC.MAC:

This is

-—>

+FRK

device dependent but here the controller type - YTINDX.
priority - PRS.
vector address - 0.

~controller index - for unit n it is n ¥* 2.

I/0 count for the controller - 0.

status - KS.OFL - controller is offline, initially, till
the CON task makes it online.

CSR address = 164000 the CSR for the EXOS board. This

is initialized even though it isn't required because

the CON task probes into the CSR to see if controller is
present or not. The EXOS device has to be present if the
ZTDRV has to become online - hence the initialization.
As an improvemtent this field should be initialized to
the label ZECSR which will be defined during task
building time of the ZTDRV and its value will depend on
the actual CSR of the target system.

offset to the UCB table - 0.

0

Owning UCB address. Initialized as the corresponding
UCB address.

Controller request queue listhead 0 and address of the
SCB which is .,-2

Fork block - 0's,

APR5 of the driver when it calls $FORK

0

0

5 initial time out count.

0

0

$2.CON - indicates that the SCB and KRB are contiguous.
address of the corresponding KRB.

the assembly prefix file for the ZTDRV.

1. Topic: Initialization of some constants used during the assembly time.

Line numbers: 40-45 After The ".MCALL UCBDF$...."

Changes from the existing code/data structures: none.

Additions:
1. #40

"D§$TIL = 10"

The controller DT-11 is recognized throughout the ZTDRV by this
symbol and its value indicates the number of such controllers
exigtant.

2, #41
The
3. #43
The
4. #44
The

.
.

"IO.INP = 5400"

input interrupt I/0 function code.

"I0.0UT = 6000"

output interrupt I/0 function code.

.
.

"10.TEL = 177000"

pseudo function code for telnet requests to the board from the

Nov 10 11:08 1985 telserv.design.doc Page 18

ZTDRV. ('pseudo' because it is not within the allowed 32 legal
function codes but it's purpose is not for the system but local to
the communication between the ZTDRV and the ACP. Since the system
is not comming into the picture (DRQIO) it can be initialized as
it is.

5. #45 "TS.HNG = 176000"
The pseudo function code for the Hangup request to the board. Since
this request is to be handled differently by the ACP (different from
the normal output data TSWRITE requests), it is made into a separate
pseudo function code.

2. Topic: Modem support
Line number: 82 After ".IIF DF P$SGEN,..."

Changes from the existing code:
1. #82 "_,IIF NDF D$$LMD D$SLMD = Q"
D$SLMD, which indicates the modem support for the DLV11-E controller is
forcefully defined to include the modem support routines in the ZTDRV
code at assembly time.
It is suggested that instead of forcefully defining D$$LMD, to inturn
define T$$MOD, T$$MOD should be defined forcefully as follows:
after the line where T$$MOD might get defined in current line number 84,

".IIF NDF T$$MOD T$$MOD = Q"

7. IMPROVEMENTS AND ENHANCEMENTS:
The areas under which some improvement can be made in the ZTDRV are:
7.1 CALLING THE ZTDRV DIRECTLY AND NOT VIA QIO'S:

Some code changes could be made to somehow get the control into the
input and output interrupt entry points directly and not via QIO's from the
ACP. A lot of investigation into the interrupt handling of the executive would
be required for the purpose. If a method to do so is found then it will speed
up the telnet driver manifold and also reduce the size of the ACP.

The best way to do this would be to find the input/output interrupt
entry point addresses and then load the APR 5 with the APR 5 value stored in the
PCB for the ZTDRV and then call those routines directly. This calling cannot be
done inside the ACP or the ZEDRV since they are mapped by the APR 5. It will
have to be done from inside the executive by first calling a routine in the
executive which does this dispatching to the input/output interrupt entry
points. Hence, the problem is to smuggle in a routine into the executive!!

How to do thisg???

7.2 SOME DEBUGGING:

The commented instructions in the routine INIT:: in the file ZTDAT.MAC
cause problems while loading the driver. One has something to do with the fork
block and the other with the clock block (refer to the maintainance guide).
After commenting them there weren't any problems faced so investigation is
required as to why the problems were caused. The problems of the clock block
and the fork block have been solved but the one for the UCB queue is still not.
The ZTDRV uses the TTDRV's UCB queue and some method must be applied to allocate
the UCB queue for ZTDRV from the system pool and deallocate it when the driver
is unloaded. For the clock block, which is allocated from the system pool when

Nov 10 11:08 1985 telserv.design.doc Page 19

the driver is loaded (for RSX-11M systems) or when it's first controller is put
online (for RSX-11M-PLUS systems), it is never deallocated for the RSX-11M
systems because control never comes to the driver while it is being unloaded.
But for the RSX-11M-PLUS systems it is deallocated when the driver receives
control while putting the controller offline. This means that the ZTDRV for the
RSX-11M systems can never be unloaded (only if the system is re-booted) but for
the RSX-1IM-PLUS systems it can be unloaded.

7.3 LOADING THE DRIVER TWICE FOR THE RSX-11M SYSTEMS:

This problem is faced because the driver is called at the power fail
entry point while loading it before the data base is made resident into the
system pool. The INIT routine checks in the device tables if ZT is present or
not. Since it does not find ZT data base during the virgin initialization of
the driver, the local pool is not allocated and initialized and due to this
all the system pool is eaten up. If the driver is loaded once and then again,
the second time around it does find the data base and initializes the local
pool. This double loading and unloading could be avoided by just loading the
driver once and then as soon as the first QIO comes, it would also initialize
the local pool, if it wasn't already done so. This could mean a lot of changes
in the ZTINI.MAC file and hence the maintainance would become more difficult.
Hence, the present scheme is good enough unless there is some way out in the
initialization time only (?7?).

For RSX-11M-PLUS systems this is not a problem because when INIT::
is called the data base is already resident as it is called while making the
controller online AFTER the driver is fully loaded.

During the starting time for the network software the ZTDRV can be
loaded twice and unloaded once to initialize the local pool. The first time it
is unloaded the data base is not yet put in the system pool so the clock block
is also not allocated at that time. It is only allocated when the data base is
found in the system pool.

7.4 ABOUT THE UCB QUEUE:

The $TTUQ data structure, as defined in the file SYSTB.MAC, is for the
purpose of the TTDRV. Since the code for ZTDRV is extracted from the TTDRV code,
this data structure has remained in the ZTDRV code. The UCB queue didn't cause
any problems even though it is meant for the TTDRV since it is a link list of
the UCB addresses and this link list was being shared by both the TTDRV and the
ZTDRV which turns out to be 0.K. This is definitely not advisable and the
ZTDRV's own data structure - $ZTUQ should be defined in the ZTDAT.MAC file
exactly as the ones for the TTDRV are done. But the problem is that since the
systems might just be refering to this data structure, it is advisable to
allocate it from the system pool and store the address of the UCB queue in a
data structure called $ZTUQ and deallocate this back to the system pool when
the driver is unloaded (for RSX-11M-PLUS systems).

7.6 IF TERMINAL IS ATTACHED BY A TASK THEN telnet>q FAILS TO LOGOUT USER:

This problem most generally occurs with terminals running EDT and then
typing the escape character and quiting. This causes the ACP to call the routine
"bye()" and this sends a “C followed by a "BYE\r" as an unsolicited input to the
ZTDRV. If EDT is running then it traps this "C and also the BYE command line.
The terminal remains logged in and EDT keeps running.

The solution to this problem is that instead of giving a “C "BYE\r" as
an unsolicited input to the ZTRDV, a QIOW #I0.HNG should be given to that unit

Nov 10 11:08 1985 telserv.design.doc Page 20

so that control will come to the modem timeout entry point of the controller
dependent routines YTMTIM. Here the routine MHUP should be called which queues

a BYE to the MCR for that terminal and this would cause the terminal to be
logged out. If the user has privilege then the task might be even aborted by the
BYE task.

7.7 CHANGES TO BE MADE IF DEC ADDS NEW QIO CALLS:

If DEC happens to increase the number of QIO calls to the TTDRV then
it will affect our design if we were to upgrade the ZTDRV software. The
following changes will have to be made to live up to this change:

1. The value of the function codes has to be just above the last
highest function code supported by DEC but the overall numbers of
function codes should not exceed 32, This change will have to be made
in the file ZTMAC.MAC.

2. The entries of the input and output interrupt entry points in the
dispatch table for the function codes service routines has to be the
last ones i.e. the QPINP and QPOUT should always be the last entries
in the dispatch table QPDSP. Changes will confine to the file
ZTDAT .MAC.

3. The definitions of the function codes IO INP and IO OUT will have to
be changed in the file exqio.h.

Nov 12 12:45 1985 h2 Page 1

THE 'ZE' DRIVER
or

THE EXOS DRIVER

Oct 17 16:18 1985 zedrv.mac Page 1

.NLIST
«NLIST

filen

we we We we we we

LOCAL

we we we we W

UCBR5:
UCBCAN:
TCBCAN:

CNTBL:

LD$ZE
Z$$E1

=S We we we

LD$ZE
Z$$ELL

“-e we

CND
SYM

ame:?

ZEDRYV:

.TITLE
«IDENT

+ENABL

.MCALL
HWDDF$
UCBDF$
DCBDF$
SCBDF$
TCBDF$
PKTDF$

«PSECT

ZEDRV.MAC

Driver code of the EXCELAN ethernet controller for
RSX-11M on a Q-BUS/UNIBUS system.

ZEDRV
/o1/

LC

HWDDF$,UCBDF$,DCBDF$, SCBDF$, TCBDF$, PKTDF$

ABC

ZESTART = .

DATA

UCBR5 is a local storage to remember UCB address

«BLKW
+BLKW
» BLKW
.IF DF
.IFF

-WORD
IFTF

-—>
1 -—>

([}
o

1

1

1
R$$MPL
$RSSMPL
0
sRSSMPL

Driver is loadable
No controller

Driver dispatch table

.IFT

DDT$

sR$SMPL

ZE,Z$SE11 ,NEW=Y 3 generate dispatch table

Oct 17 16:18 1985 zedrv.mac Page 2

«IFF RSMPL

$ZETBL: :
.WORD ZEINI
.WORD ZECAN
.WORD ZEOUT
.WORD ZEPWF

initiator entry point
cancel entry point
time-out entry point
power fail entry point

e W G we

LENDC ;R$$MPL

This section contains all the I/0 functions and their corresponding I/0
codes with their value, for the ZE ethernet controller device

we we we we

I0.EXC = 002400 EX0S device administratve operation

y
EX.INI = 0000 $ Reset and configure EXO0S
EX.STR = 0001 3 Execute EXOS process
EX.STS = 0005 s Read board's statistics
EX.RST = 0006 $ Read and reset board's statistics
EX.CNF = 0007 3 get configuration message
EX.0PN = 0020 $ Open an administrative channel
EX.CLS = 0021 $ Close administrative channel
EX.POS = 0022 ; seek into EX0S's memory
EX.SAR = 0024 $ set up an ARP table entry
EX.GAR = 0025 5 get an ARP table entry
EX.DAR = 0026 s delete an ARP table entry
EX.ART = 0027 3 add an Routing table entry
EX.DRT = 0030 3 delete an Routing table entry
EX.SRT = 0031 3 fetch an Routing table entry
EX.NRT = 0032 3 fetch next Routing table entry

I0.ACS = 003000 Socket related operations

?
SA.OPN = 0062 $ Open a socket for communication
SA.ACC = 0063 5 Accept connection on a remote socket
SA.CON = 0064 3 Connect to a remote socket
SA,.SAD = 0067 s get socket information
SA.CLS = 0070 $ close a socket connection
SA.SEL = 0073 3 check possibility of I/0 on socket
SA.USL = 0210 3 kill a pending select call
SA.URG = 0200 3 prepare for an urgent message
SA.RO0 = 0220 3 remove oob pkt from the pending list

I0.XFR = 003400 data transfer operations on a socket

?
IX.RDS = 0000 3 read from TCP stream
IX.WRS = 0001 $ write to TCP stream
IX.SND = 0065 3 send datagram to socket
IX.RCV = 0066 3 receive socket datagram

I0.50C = 004000 real socket control operations

?
SO.DON = 0000 ; shutdown read/write operation
SO.SKP = 0001 3 set keep alive
S0.GKP = 0002 3 inspect keep alive
S0.SLG = 0003 3 set linger time
S0.GLG = 0004 s get linger time
$0.S0B = 0005 s send out of band

Oct 17 16:18 1985 =zedrv.mac Page 3

S50.ROB
50.AMK
50.5PG
50.GPG
SO.NRD
50.NBO
S0.ASY

0006
0007
0010
0011
0157
0156
0155

10.LOG = 004400

receive out of band
at out of band mark?
set process group id
get process group id
FIONREAD
FIONBIO
FIOASYNC

we we we we we e we

read error log from EXOS

-

SOICTL = 56 3 size of SOictl structure
CH.WRITE = 1 s open channel in WRITE mode
H
3 ZEINI --> EXOS driver initiator entry point.
H All functions are made control functions. As the UC.QUE bit is
3 set, the QIO directive will pass the I/0O packet, instead of
H queueing it, to the driver so that the user's context is not
H lost. The driver, on receiving a packet, does some address
5 checking depending on the function, and relocates it. It
H also rearranges the driver dependent parametersin the I/0
3 packet. Last three parameters (I.PRM+6 I.PRM+12) are shifted to
H to (I.PRM+12 to I.PRM+20).
H After rearranging and relocating the parameters, the driver
H ingserts the packet into the ACP's queue and wakes it up. Hence,
H the actual queue buils up at the ACP.
5
b
3 INPUTS: When the QIO directive passes the packet to the driver, it
3 passes the following:
1
3 Rl --> Address of the I/0 packet.
3 R4 --> Address of the status control block,
H R5 --> Address of the UCB of the device unit.
H
.PSECT ABC
ZEINI:

we W e we we

TST
BNE
MOV

10%:

“e

folowing four statements are coded temporarily to keep the
address of any UCB stored in the local variable UCBR5 so
that on entry at the interrupt entry point the TCB address
of the ACP can be found;

UCBRS 3 test whether it is already initialised
10% s already initialised
R5,UCBRS s move UCB address in UCBR5S

Oct 17 16:18 1985

e w¥ we we we

708:

“e we we we

80%:

MOV
ADD
MOV
MOV
TST
50B

CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
CMPB
BEQ
CMP
BEQ
CMP
BNE

TST
BNE

MOV

MOV
JMP

MOV

- MOV

zedrv.mac Page 4

shift parameter 4, 5 & 6 by two words

R1,R3
#I.PRM+12,R3
#3,R4
(R3),4(R3)
-(R3)

R4,60%

I.FCN(R1),#I0.ACS!SA.ACC
70%
I.FCN(R1),#I0.ACS!SA.CON
70%
I.FCN(R1),#I0.ACS!SA.OPN
70%
I.FCN(R1),#I0.ACS!SA.SAD
70$
I.FCN+1(R1),#I0.S0C/400
705
I.FCN(R1),#I0.XFR!IX.RCV
70$
I.FCN(R1),#I0.XFR!IX.SND
100%

I.PRM+4(R1)
80$

#IE.SPC&377,R0
R1,R3
500%

(R3),R0
R1,R3

.IF DF A$$CHK!M$SMGE

MOV
CALL
BCC
MOV
JMP

.ENDC

#SOICTL,R1
SACHKB

90%
#IE.SPC&377,R0
5008

we we Wwe we we ws

“we we we we we we

e ae

we ws we we we

Ve e WS WE WE B GE SO WS We W Y Wwe B0

in I/0 packet

move I/0 pkt address in R3
make R3 points to param 6
loop 3 times

shift by two words
decrement R3 by two

loop

check the following function codes whether they have the Soioctl structure
address specified or not. If not then abort that request because that
parameter is essential for these requests to succeed.

is it socket accept request?

if EQ yes

is it socket connect request?

if EQ yes

is it socket open request?

if EQ yes

is it obtain socket address request?
if EQ yes

is it socket control request?

if EQ yes

is it a receive message request?

if EQ yes

is it a sebd message request?

if NE no, so process other requests

is Soioctl structure address there?
if NE then yes so address check and

relocate it.

set illegal or no buffer error
retrieve iopkt address

abort request

address check and relocate parameter #3, if any, which contains the
address to the socket related parameters buffer

move soictl buf address in RO
save I/0 packet address in R3

get size of SOICTL buffer
address check buffer byte algn
if CC ok

set illegal buffer error

abort request

Oct 17 16:18 1985 =zedrv.mac Page 5

90§: CALL $RELOC relocate SOICTL buffer

H
MOV R1,I.PRM+6(R3) 3 move relocation bias
MOV R2,I.PRM+10(R3) ; move displacement bias
MOV R3,R1 ; restore I/0 packet address in Rl

address check and relocate user buffer if neccessary

we we we

100¢:
CMPB I.FCN+1(R1),#I0.XFR/400 ; is it a data transfer request
BEQ 1204 3y if EQ yes
CMPB I.FCN+1(R1),#I0.ACS/400 ; is it socket access request
BEQ 160$ s EQ yes
CMPB I.FCN+1(R1),#I0.S0C/400 ; is it socket control fn
BEQ 160% 3y if EQ yes
CMPB I.FCN+1(R1),#I0.WLB/400 ; is it EXOS memory write fn
BEQ 1208 s if EQ yes
CMPB I.FCN+1(R1),#I0.RLB/400 ; is it EXOS memory read fn
BEQ 120% ;s if EQ yes
CMP I.FCN(R1),#I0.EXC!EX. CNF, is it read config msg fn
BEQ 1208 if EQ yes
CMP I.FCN(R1),#I0.EXC!EX. STS, is it read EXOS stat. fn
BEQ 120% if EQ yes
CMP I.FCN(R1),#I0.EXC!EX. RST, is it read & reset EX0S stat fn
BEQ 1208 if EQ yes
CMP I.FCN(R1),#I0.EXC!EX. SAR, is it set ARP function
BEQ 1208 s if EQ yes
CMP I.FCN(R1),#I0.EXC!EX.GAR; is it get ARP function
BEQ 120% ; if EQ yes
CMP I.FCN(R1),#I0.EXC!EX.DAR; is it delete ARP function
BEQ 120% sy 1f EQ yes
CMP I.FCN(R1),#I0.EXC!EX.ART; is it add an RT entry fn
BEQ 120% s if EQ yes
CMP I.FCN(R1),#I0.EXC!EX.DRT; is it delete an RT entry fn
BEQ 1208 3 1f EQ yes
CMP I.FCN(R1),#I0.EXC!EX.SRT; is it fetch an RT entry fn
BEQ 1208 sy 1f EQ yes
CMP I.FCN(R1),#I0.EXC!EX.NRT; is it fetch next RT entry fn
BEQ 120% ; if EQ yes
CMPB I.FCN+1(R1),#I0.L0OG/400 3 is it read error log fn
BNE 160% $ 1f NE no, then fn have no buf
1206: MOV I.PRM(R1),R0O ; move user buf addr in RO
MOV R1,R3 3 save 1/0 packet address

.IF DF A$$CHK!M$SMCE

MOV I.PRM+2(R1),R1 3 get length of buffer

CALL $ACHKB s address check buffer byte algn
BCC 1408 3 if CC ok

MOV #IE.SPC&377,R0 3 set illegal buffer code

JMP 500$% 3 and abort request

+.ENDC

Oct 17 16:18 1985 =zedrv.mac Page 6

140%: CALL $RELOC

MOV I.PRM+2(R3),I.PRM+4(R3) ; shift byte count by a word
MOV R1,I.PRM(R3) 3 move relocation bias

MOV R2,I.PRM+2(R3) 3 move displacement bias

MOV R3,R1 ; restore address of I/O packet

now queue the iopacket to acp and unstop it

ws @ e

160$: MOV U.ACP(R5),R0 ; get TCB address of ACP task
BNE 200% ; 1f NE acp task is active
MOV #IE.DNR&377,R0 3 else acp not active
MOV R1,R3 ; move I/0 pkt address in R3
JMP 500% 3 abort request
200%: JMP $EXRQP ; que I/0 pkt to acp and wake it
RETURN
500%:
CLR I.PRM+16(R3) ; clear the diagnostic field
JMP $IOFIN ; finish I/0 operation and inform

ZECAN: The cancel I/O entry point. The driver is called at this entry
point by the executive with the following parametrs

R5 -> UCB address

R4 -> SCB address

R3 -> Controller index

Rl -> Address of TCB of current task

RO -> Address of active (if any) I/0 packet

Out of all these parameters we are only interested in the TCB
address. In our case the I/0 packet address will be zero as
we do not remember anything in the SCB

At this point we will create an I/0 packet and fill up its
function code , TCB and UCB fields and then queue the packet
to ACP, which will do the rest of the work.

N S M WS We e WE U e WE WE WS NS WE W we e we

ZECAN: CANCEL IO ENTRY POINT

9
MOV R5,UCBCAN 3 save UCB address
MOV R1,TCBCAN 3 save TCB address of current task
MOV #I .LGTH,R1 3 Allocate an I/0 packet
CALL $ALOCB H
MOV #I0.KIL,I.FCN(RO) 3 move function code
MOV TCBCAN,R5 3 get TCB address of current task
MOV RS,I.TCB(RO) 3y set TCB address
MOV UCBCAN,R5 5 get UCB address
MOV R5,I.UCB(RO) ; move UCB address to packet

Oct 17 16:18 1985 zedrv.mac Page 7

MOV RO,R1 3 set Rl with packet address

MOV U.ACP(R5),R0 3 set RO with ACP address

JMP $EXRQP ; Q pkt & wakeup ACP
$ZELOA/ZEPWF

The loadable driver/power fail entry point is entered upon by the
Executive. The 22-bit physical start address of the local pool is
calulated and stored in the UCB. This setup is only required for
software running on the UNIBUS machines.

Ws e We WS W Bs we W

.IF DF R$$MPL

ZEPWF:
$ZEUNL: :
RETURN
$ZELOA::
.IFF $RSSMPL
ZEPWF:
.ENDC 3R$$MPL
.JF DF UNIBUS
NOP $ breakpoint for XDT
MOV @#KISAR5,R0 3 get start of driver code
OFFSET = LOCPOOL -~ ZESTART
MOV RO,R1 3 copy start of driver code
ASH #-12,R0 3 get lower 6-bits of hi-order addr
BIC #177700,R0 3 mask out remaining high bits
ASH #6,R1 3 get upper 10 bits of lo-order address
BIC #000077,R1 3 mask out remaining bits
ADD #OFFSET,R1 3 get the start of driver's local pool
MOV RO,U.ACP+2(R5) 3 save hi-order physical address and
MOV R1,U.ACP+4(R5) 3 lo-order physical address in UCB
RETURN
.ENDC s UNIBUS
ZEOUT: 3 time-out entry point
.IF DF R$SMPL
ZEKRB: 3 controller on/off line entry point
ZEUCB: 3 unit on/off line entry point

Oct 17 16:18 1985

we W we we we Be we we ws we

semas ¢

-ENDC

RETURN

ZEINT:

.word

$ZEINT::

INTSVS
sec
ror
bcc
return

10%:

LEAVE:

MOV
CALL

MOV
MOV
call
mov
RETURN
ZESIZE
.IF DF

-BLKW

LOCPOOL: :

-BLKW

.ENDC

.END

zedrv.mac Page 8

ZE device driver entry point.

This is a very uncommon way to to handle device interrupts. As
the EXOS device processes all the requests in a pure
asyncchronous way, it is very handy to process the interrupt
service in the ACP which actually has all the necessary
information. Hence, the driver's job is to deflect the interrupt
to the ACP by just unstopping it if it is sleeping.

177776

ZE,PR4,Z$$E1L]
sema

10%

UCBR5,R5
$FORK
UCBRS,R5
U.ACP(R5),R0
$SEXRQU

#177776,sema

. — ZESTART

UNIBUS

1024. - ZESIZE

1

e We we Be Ve ws

we we we we

e we

we we we we we

-

we ae

we

initial value of semaphore

interrupt entry point of ZE device
generate interrupt save code

set carry bit

shift to set semaphore

semaphore OK

return and dismiss interrupt

- B¢ we we

get address of UCB befor calling FORK
create system process

unsave UCB address into R5

move address of the TCB of the ACP
request ACP execution after inserting
the I/0 packet

release semaphore

size of zedrv code area

leave total of lkw before start of
driver's local pool

start of local buffer pool

Oct 17 16:18 1985

«NLIST
NLIST

filename:

ZETAB:

e ws we we we we

TITLE
. IDENT

H System

MCALL
UCBDF$
HWDDF$
SCBDF$
UCBDF$

.PSECT

.GLOBL
-ENABL

$ZEDAT: ¢

.IF DF

.WORD
$CTBO:

.WORD

.ASCII

.WORD

.BYTE

.BYTE
$ZECTB::

.WORD

CND
SYM

ZETAB.MAC

zetab.mac Page 1

The database of the ZE driver is defined as follows.

ZETAB
/01/

Macro Calls

UCBDF$, HWDDF$, SCBDF$, UCBDF$

$$%

$ZEVEC
LC

R$$MPL

N
m
Q
=
[o~]

o e . e st o

.ZC1
.ZEO
/ZE/
0,0

-ae w

-e

ae we we we we -e

-e

-e

we we we we

start of the ZEDRV device table

L.ICB

L.LNK end of CTB list for ZE
L.NAM controller's name
L.DCB

L.NUM no. of controllers
L.STS status

L.KRB

loadable ZEDRV

D.LNK link to next DCB

D.UCB pointer to first UCB

D.NAM device name

D.UNIT lowest and highast unit number

Oct 17 16:18 1985

+WORD
WORD

s ws ee %

e

-

e we

.WORD
.WORD
.WORD
.WORD
«WORD
WORD
-WORD
.WORD
«WORD
ZEST = .
.WORD
.ZEO:
.WORD
.WORD
+IF DF

.BYTE

. IFF

.BYTE

.ENDC

«BYTE
.BYTE

.IF DF

+BYTE

.IFF

.BYTE

.ENDC

.WORD

-WORD

zetab.mac Page 2

ZEND-ZEST
$ZETBL

001777
001747
000030
000000
000000
000000
000000
000000
0

0

«.ZC0
« = 2

UNIBUS

UC.KIL!UC.QUE!UC.PWF!UC.NPR

; UNIBUS
UC.KIL!UC.QUE!UC.PWF
; UNIBUS

0

0

R$$MPL
US.RED!US.PUB!US.OFL
sR$$MPL
US.RED!US.PUB

s RSSMPL

DV.EXT

we we we W Ve we we we we

-e -e

we we

we we

e

e we we we e

D.UCBL lenght of UCB
s D.DSP pointer to device dispatch table

D.MSK

D.PCB

start

U.OWN

U.DCB
U.RED

“we we we

-e we

U.STS

U.UNIT -

legal functions

The following tables define all the legal functions and their subdivisions

in terms of NO-OP's, ACP, CONTROL, TRANSFER functions. Apart from IO.KIL,
I0.ATT and IO.DET, all other functions are made control functions. With

the UC.QUE bit in the U.CTL of the UCB set, the QIO directive will pass the
I/0 packet to the driver without queueing, such that user's context is saved.
The I0_ATT & IO DET functions are made NO-OPS.

0 - 15.

control functions 0 - 15.

NO-OP functions 0 - 15.

ACP functions 0 - 15.

legal functions 16. - 31.
control functions 16. - 31.
NO-OP functions 16. - 31.
ACP functions l6. - 31.
PCB address of driver partition
of UCB

owning terminal's UCB address

back pointer to DCB
redirect pointer

device is an NPR device
control flag byte, call on IO.KILL
and pass packet to driver

status flag U.STS
does not apply

control flag byte, call on I0.KILL
and pass packet to driver

U.ST2 2nd status flag - unit cannot be

redirected
U.CWl characteristic word 1 --> device
is connected to 22-bit direct

addressing controller

U.CW2

char word 2

Oct 17 16:18 1985

ZEND=.

$ZEA::

$ZEO:

«WORD
+WORD
+WORD
.WORD
«BLKW

+IFT

+WORD

IFTF

«WORD

.IF DF

«BLKW

«ENDC

JIFT

.BYTE
«BYTE
+BYTE
.BYTE
«WORD

.WORD
+WORD
.BYTE
-WORD

-WORD
+WORD
+WORD
»WORD
-BYTE
.BYTE
.WORD
.WORD
«WORD

RSMPL
0

UNIBUS

RSMPL

zetab.mac Page 3

we e we

we we we we e

-e

“e

e we

“e

ZE KRB AND SCB - CONTIGUOUS

U.CW3 char word 3

U.CW4 char word 4, no buffer required
U.SCB pointer to SCB

U.ATT attached task UCB

U.BUF, U.BUF+2 & U.CNT

U.UCBX UCB extension

U.ACP TCB address of ZEACP

storage for the staring 22-bit

physical address of the local pool

end of UCB

-ae w

PR4
$ZEVEC/4
0 * 2

0

KS.OFL

164000
ZEA - $ZEA

a8 we we We Be We We WS We we

K.PRI device priority

K.VCT interrupt vector by 4

K.CON controller number times 2
K.IOC I/0 count

K.STS controller specific status
start address of KRB

K.CSR CSR address (default)

K.OFF offset to start of UCB table
K.HPU highest physical unit number
K.OWN UCB of currently active unit

$2.CON!S2.LOG
$ZEA
2

we we we ue we B We s we

S.LHD & K.CRQ

S.FRK fork block

S.KS85 - KISAR5S saved here

S.PKT address of I/0 packet

S.CIM, S.ITM crnt & init., timeout cnts
S.8TS, S.ST3 status bytes

S.8T2

S.KRB currently assigned KRB(the only)
S.RCNT no. of words in I/0 page

Oct 17 16:18 1985 =zetab.mac Page 4

«WORD

«WORD
+BLKW
+WORD

ZEA::

. IFF

$ZEO:
-WORD
.BYTE
.BYTE
.BYTE
«WORD
.WORD
«BLKW

.IF DF

.WORD

we we we

« BLKW
« BLKW
«BLKW
« BLKW
.BLKB
.BLKB
»BLKW

.ENDC
.ENDC
$ZEEND: :

.ZCl = 0
$CTB1 = 0

+END

H
3 END OF KRB/SCB
H

-0 o

-2
,$ZEVEC/4

= b e e e

s UNIBUS

sR$$MPL

e we Wwe we we we we

“e we e we we We we we we

we e we Wwe we we we

-e

we we

S.ROFF offset from S.CSR to start of
device registers

S.EMB for error logging

MAPPING ASSIGNMENT BLOCK

KE.RHB start of UNIBUS mapping

register work area

start of UCB table (non-existant)

device I/0O queue listhead

device priority and vector

current and initial timeout
controller index and device status
CSR address

address of I/0 packet

FORK BLOCK

S.MPR not used here but $IODONE
checks it so we keep it 0

MAPPING ASSIGNMENT BLOCK (FOR UNIBUS MAPPING REGISTER ASSIGNMENT)

M.LNK - link word

M.UMRA - address of lst ass. UMR
M.UMRN - no. of UMR's * 4

M.,UMVL - lo 16-bits mapped by lst UMR
M.UMVH - hi 2-bits mapped by lst UMR
M.BFVH - hi 6-bits of phy buffer addr
M.BFVL - lo 16-bits of phy buf addr

end of ZE data base

end of DCB list for ZE:
end of CTB list for ZE:

end of file ZETAB.MAC

Oct 17 16:18 1985 blddrv.cmd Page 2

PIP LB:[1,54]ZEDRV.STB/PR/OW:RWED/SY:RWED/GR:RWED/WO:R/FO
.ENABLE DISPLAY

Oct 17 16:18 1985 blddrv.cmd Page 1

.ENABLE QUIET
.ENABLE SUBSTITUTION
+.DISABLE DISPLAY

.IFNDF $VRBS .ASK $VRBS Verbose ? [Y/N]

.IFT $VRBS .DISABLE QUIET
.IFNDF $DEL .ASK $DEL Delete source file from current UFD? [Y/N]
.IFNDF $NOPRE .ASK $NOPRE Delete previous version of EXOS software? [Y/N]

. IFDF
.SETS

.ASKS [::$VEC] $VEC Interrupt vector location ? [D

.5:

- we we

MAC ZEDRV=LB:[1,1]EXEMC/ML,LB:[11,10]RSXMC,SY:'<UIC>'ZEDRV
MAC ZETAB=LB:[1,1]EXEMC/ML,LB:[11,10]RSXMC,SY:'<UIC>'ZETAB

$VEC .GOTO 5
$VEC "400"

Assemble the driver code

.IFF $DEL .GOTO 10
PIP ZEDRV.MAC;*,ZETAB.MAC;*/DE

.10:

. ws we e

*
e we B W

-e ws we o

.OPEN
«DATA
.DATA
.DATA
+DATA
+DATA
+DATA
.DATA
.DATA

.CLOSE

s we we

Now build the ZE (EX0S) driver.

Create the input command file for the linker

ZETKB.CMD
LB:[1,54]ZEDRV/-HD/-MM, ,ZEDRV=
ZEDRV,ZETAB
LB:[1,54]RSX11M.STB/SS
LB:[1,1]EXELIB/LB

/

STACK=0
PAR=DRVPAR:120000: 14000
GBLDEF=$ZEVEC: ' $VEC'

Task build driver

.IFT $NOPRE PIP LB:[1,54]ZEDRV.TSK;%*/DE
.IFT $NOPRE PIP LB:[1,54]ZEDRV.STB;*/DE
TKB @'<UIC>'ZETKB

« we we

delete indirect command file

?

PIP '<UIC>'ZETKB.CMD;*/DE
PIP '<UIC>'ZEDRV.OBJ;*/DE
PIP '<UIC>'ZETAB.OBJ;*/DE

.
’
.
’
.
’

P

set protection for the driver

1P LB:[1,54]ZEDRV.TSK/PR/OW:RWED/SY:RWED/CGR:RWED/WO:R/FO

: 400]

Create the task builder input file. Ask for the interrup vector
location use default if the installer does not want to change it.

Oct 17 16:18 1985 blduni.cmd Page 1

.ENABLE QUIET

.ENABLE SUBSTITUTION

.DISABLE DISPLAY

.IFNDF $VRBS .ASK $VRBS Verbose ? [Y/N]

.IFT $VRBS .DISABLE QUIET

.IFNDF $DEL .ASK $DEL Delete source file from current UFD? [Y/N]
.IFNDF $NOPRE .ASK $NOPRE Delete previous version of EX0OS software? [Y/N]
.IFDF $VEC .GOTO 5

.SETS $VEC "400"

.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]

.5

Assemble the driver code

e we ws

MAC ZEDRV=LB:[1,1]EXEMC/ML,LB:[11,10]RSXMC,SY: '<UIC>'UNIBUS,ZEDRV
MAC ZETAB=LB:[1,1]EXEMC/ML,LB:[11,10]RSXMC,SY: " '<UIC>'UNIBUS,ZETAB

.IFF $DEL .GOTO 10
PIP ZEDRV.MAC;*,ZETAB.MAC;*/DE
.10:

Now build the ZE (EX0S) driver.

e ws we we

Create the task builder input file. Ask for the interrup vector
location use default if the installer does not want to change it.

.
@ we we W

Create the input command file for the linker

ws we we o

.OPEN ZETKB.CMD

.DATA LB:[1,54]ZEDRV/-HD/-MM, ,ZEDRV=
.DATA ZEDRV,ZETAB

.DATA LB:[1,54]RSX11M.STB/SS

.DATA LB:[1,1]EXELIB/LB

.DATA /

.DATA STACK=0

.DATA PAR=DRVPAR:120000:14000

.DATA GBLDEF=$ZEVEC:'$VEC'

.CLOSE

Task build driver

we ws e

.IFT $NOPRE PIP LB:[1,54]ZEDRV.TSK;*/DE
.IFT $NOPRE PIP LB:[1,54]ZEDRV.STB;%/DE
TKB @'<UIC>'ZETKB

delete indirect command file

. we s

L]

PIP '<UIC>'ZETKB.CMD;*/DE
PIP '<UIC>'ZEDRV.OBJ;*/DE
PIP '<UIC>'ZETAB.OBJ;*/DE

»

set protection for the driver

3
H
PIP LB:[1,54]ZEDRV.TSK/PR/OW:RWED/SY:RWED/GR:RWED/WO:R/FO

Oct 17 16:18 1985 blduni.cmd Page 2

PIP LB:[1,54]ZEDRV.STB/PR/OW:RWED/SY:RWED/GR:RWED/WO:R/FO
.ENABLE DISPLAY

Oct 17 16:18 1985 tkb.cmd Page 1

zedrv/~hd/-mm,zedrv/-sp,zedrv=
zedrv,zetab,lb:[1,54]rsxllm.stb/ss
1b:[1,1]exelib/1b

/

stack=0

par=drvpar:120000:14000
gbldef=%zevec:400

//

Oct 17 16:18 1985 bld.com Page 1

$
%
$
$
%

skeleton for bld.com

!
!
!
if ""'pl'" .nes. "?" then goto doit
typ sys$input

command file to build the task image
required command files: None
required logical names: None

required parameters:

pl - default directory (default - current directory)
required files: None
required symbols: None
exit
doit:

sv = f§verify(l)
on error then § goto abnormal exit
assign nowhere sys$print

if ""'pl'" .eqs. "" then § pl = "''f$logical("sysS$disk")'''fsdirectory()'"
set def 'pl'
show def

Put your own commands here

!
!
! Make assignment for QBUS RSX11M

!

assign _ dra0O:[qbusllim.] 1lb:

open/write lnkdrv tkb.cmd

write lnkdrv "zedrv/-hd/-mm,zedrv/-sp,zedrv="

write lnkdrv "zedrv,zetab,lb:[1,54]rsxllm.stb/ss"

write lnkdrv "1b:[1,1]exelib/1b"

write lnkdrv "/"

write lnkdrv "stack=0"

write lnkdrv "par=drvpar:120000:14000"

write lnkdrv "gbldef=$zevec:400"

write lnkdev "//"

close lnkdrv

tkb @tkb.cmd

delete tkb.cmd;

1

! Unibus M

deassign 1b

assign _ dra0:[unillm.] 1lb:

open/write lnkdrv tkb.cmd

write lnkdrv "zedrvuni/-hd/-mm,zedrvuni/-sp,zedrvuni="

write lnkdrv "zedrvuni,zetabuni,lb:[1,54]rsxllm.stb/ss"
write lnkdrv "1b:[1,1]exelib/1b"

write lnkdrv "/"

write lnkdrv "stack=0"

write lnkdrv "par=drvpar:120000:14000"

Oct 17 16:18 1985 bld.com Page 2

$ write lnkdrv "gbldef=$zevec:400"

$ write lokdrv "//"

$ close lnkdrv

$ tkb @tkb.cmd

$ delete tkb.cmd}

$ deassign 1b

$!

$! Unibus MPlus

s!

$ assign dra0O:[unillmp.] 1lb:

$ open/write lnkdrv tkb.cmd

$ write lnkdrv "zedrvup/-hd/-mm,zedrvup/-sp,zedrvup="
$ write lnkdrv "zedrvup,zetabup,lb:[1,54]rsxllm.stb/ss"
$ write lnkdrv "1b:[1,1]exelib/1b"

$ write lnkdrv "/"

$ write lnkdrv "stack=0"

$ write lnkdrv "par=drvpar:120000:14000"
lnkdrv "gbldef=$zevec:400"

write lnkdev "//"

close lnkdrv

tkb @tkb.cmd

delete tkb.cmd}

deassign 1b

exit 1

abnormal exit:

deassign 1b

exit 2

<
g
]
e
cr
0]

L L Ay

Oct 17 16:18 1985 cmplbr.com Page 1

P R R R R R R R R R R ETIRGIED R IR TV VA) R R 2 i 2

skeleton for cmplbr.com

!
!
!
if ""'pl'"" .nes. "?" then goto doit
typ sys$input

command file to compile and link the library
required command files: None
required logical names: None

required parameters:
pl - default directory (default - current directory)

required files:
none

required symbols:
none

Note:
You need to edit this file to setup the symbols objlib and inclib as the
file specifications for the the object and include libraries

exit

doit:

sv = f4verify(1l)

on error then $ goto abnormal exit

assign nowhere sys$print

1

! now make assignment for RSX11lM Q-bus version

!

assign dra0:[qbusllim.] 1b:

if "1™ .eqs. " then $ pl = "''f$logical("sys$disk")'''fé¢directory()""
set def 'pl'

show def

show logical 1lb

mac zedrv,zedrv/-sp=1b:[1l,1)exemc/ml,1b:[11,10]rsxmc,sy:[1,2]zedrv

mac zetab,zetab/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,2]zetab

!

! now for unibus

1

assign _ draO:[unillm.] 1b:

show logical 1b

mac zedrvuni,zedrvuni/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,2]unibus,zedrv
mac zetabuni,zetabuni/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,2]unibus,zetab
!

! now for unibus, M~Plus

!

assign draO:[unillmp.] 1b:

show logical 1b

mac zedrvup,zedrvup/—sp=lb:[l,l]exemc/ml,lb:[11,10]rsxmc,sy:[l,2]unibus,zedrv
mac zetabup,zetabup/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,2]unibus,zetab
exit 1

abnormal exit:

exit 2

Oct 17 16:18 1985 deliver.com Page 1

skeleton for deliver.com

$!

$!

$!

$ if "'"'pl'"" .nes. "?" then goto doit

$ typ sys$input

command file to copy the deliver files to manufacturing area

You should modify this file to copy the deliverables to
exos$mfg:[target directory]

required command files: None
required logical names: None
exos$mfg - pseudo disk for deliverables

required parameters: Noe

required files: None
required symbols: None
$ exit

sv = f$verify(0)

on error then $§ goto abnormal exit

assign nowhere sys$print

show def

1

! Put your own commands here

!

copy/log zedrv.mac exos$mfg:[rsx]

copy/log zetab.mac exos$mfg:[rsx]

copy/log blddrv.cmd exos$mfg:[rsx]

copy/log install.cmd exos$mfg:[rsx]

copy/log net. exos$mfg:[rsx]net.

copy/log hosts.net exos$mfg:[rsx]

copy/log hostlocal.net exos$mfg:[rsx]

copy/log tapeins.cmd exos$mfg:[rsx]

copy/log 8030.hlp exos$mfg:[rsx]

copy/log blduni.cmd exos$mfg:[rsxunibus]blddrv.cmd
copy/log instuni.cmd exos$mfg:[rsxunibus]install.cmd
copy/log tapeuni.cmd exos$mfg:[rsxunibus]tapeins.cmd
exit 1

abnormal exit:

exit 2

DL DL DDLUy

Nov 12 13:42 1985 h3 Page 1

THE SOURCE CODE FOR THE ACP

1. The Include *.h files.
2. The Source *.c files.
3. The Assembly routine *.mac files.
4. The Indirect command *.cmd files.

Sep 9 07:48 1985 brdioctl.h Page 1

/%
* filename: BRDIOCTL.H
%/

% This file defines all the equate symbol for the administrative
* device's ioctl commands. Some of them are passed as it is to the
% board, hence should not be modified.

%/

jtdefine BRDINIT (0) /* Reset EX0S devive */
f#define BRDSTART (1) /* start exos running %/
f#define BRDGSTAT (5) /* get board statistics */
#define BRDRSSTAT (6) /* get/reset board statistics¥/
f#define BRDGCONF (7) /* get configuration msg */
f#tdefine BRDADDR (10) /* set exos memory locator */
#define BRDSARP (20) /* set an ARP table entry */
#define BRDGARP (21) /* get an ARP table entry ¥/
f#define BRDDARP (22) /* delete an ARP tbl entry */
#define BRDADDRT (23) /* add routing table entry */
#define BRDDELRT (24) /% delete RT entry %/
#define BRDSHOWRT (25) /* show RT entry */
f#define BRDDISPRT (26) /* display RT entry */

/% Data structure used to send board statistics to host */

struct EXbdstats {

long xmt § /* frames transmitted successfully */
long excess_collj /% xmits aborted due to excess coll */
long late coll; /* xmits aborted due to late coll */
long tdr; /* time domain reflectometer */

long rcvs /* error free frames received */

long align err; /* frames rcvd with alignment err */
long crc_err; [* frames rcvd with crc errors */

long lost_err; /* frames lost due to no buffers */

/% other bits of info about the board */

short fw release; /* firmware release */
short sw _release; /% software release */
short hw_release; /* hardware release ¥*/
s
/%
% Toctl structure for manipulation of the ARP codes
%/
struct EXarp ioctl {
struct sockaddr arp_paj /* protocol address */
struct sockaddr arp haj /* hardware address ¥/
long arp flags; /* flags */

bs

Sep 9 07:48 1985 brdioctl.h Page

f#define ATF COM 2 /%
f#define ATF_PERM 4 /%
#define ATF PUBL 8 /%

2
completed entry */
permanant entry */

respond for another host

%/

Sep 9 07:48 1985 channel.h Page 1

f#define MAXCHANNEL 40

#define CH FREE 0
#define CH_EXO0S 1
f#define CH_SOCKET 2

#define CH WRITE 0x01
#define CH PRIV 0x02
#define CH READ 0x00
f#define CH MCLOSE 0x80
struct channel { /* channel control block ¥/
Uchar ch_type; /* type of channel free, socket & etc */
Uchar ch flag; [* protection flags */
Ushort ch_tcb; /¥ tcb address of the associated task ¥/
Ushort rundn cnt} /% I/O rundown count on this channel ¥/
union {
Ushort ch soid; /* socket id returned by the board */
struct exos_paddr ch addr; /* memory locator of the Exos board */
} ch uj

}s

Sep 9 07:48 1985 defines.h Page 1

/%

* filename: DEFINES.H

%*/
f#define PKT io_pkt->i prm
f#define ex_hd mp=->nm_u.msg_hd
fdefine ex mg mp->nm_u.msg_msg
f#define ex dl mp->nm_u.nm_dload

fdefine ex str mp->nm u.nm start
#define ex emd mp->nm_u.nm_cmd
ffdefine ex pkt mp->nm_u.nm packet
f#define ex ctl mp->nm u.nm_ioctl
ffdefine ex sel mp->nm u.nm select
#define ex oob mp->nm u.nm hasoob
f#define ex tel mp->nm u.nm telnet

[*

* following are some functions defined as macros

%/

#define sametask(chn) ((ch_des[chn].ch tcb==io pkt->i tcb) ? 1 : 0)
#define inrange(chn) (((chn > 0) & (chn < MAXCHANNEL)) ? 1 : 0
#define writeprv(x) ((ch_des[x].ch flag&(CH PRIV|CH WRITE))==(CH P

)
_ _ _ | RIV|CH_WRITE))
#define ch_mfor close(chn) ((ch des[chn].ch flag & CH MCLOSE) ? 1 :

0)

/* dalpkt is defined to be dealoc b after RTH merger */

#define dalpkt(p) dealoc b(p, sizeof(struct iopkt))

/* following is just a dummy structure to be replaced by the actual one */

struct rtentry{
char rt([40];

}s
j#define NOREPLY 0x1
#define UNSELECT 0x2

/*

* the following definitions are included from the actual soioctl.h file
* wused by the board code and other systems. As the SOIOCTL definitions
* formed by these macros cannot be passed as io subfunction codes, the
% final code for the board is made in the acp using these macros.

*/

#define TIOXFIO(y) (('f' << 8) | y)
#define IOXSIO(y) (('s' << 8) | y)

Sep 9 07:48 1985

/%

* filename: EXIOCMD.H

%/
/%

exiocmd.h Page 1

% following are the requests send to the board
% - host to board request must be less than 64 ;

%* flags takes up upper two bits.

%/

#define
#define
f#define
#define
f#tdefine
#define
ftdefine
ftdefine
f#define
#define

f#define
#define
jfdefine

#define
#define

f#define

#define
f#define
jtdefine

ftdefine
jdefine
ftdefine
jtdefine

/% unsolicited messages from board */

#define
#define
jtdefine
jtdefine
jfdefine

#define

#define

jdefine

SOSOCKET
SOACCEPT
SOCONNECT
SOSEND
SORECEIVE
SOSKTADDR
SOCLOSE
SOVERIFY
SOIOCTL
SOSELECT

NET DLOAD
NET ULOAD
NET START

NET GSTAT
NET_RSTAT

NET GCONF

NET SARP
NET GARP
NET DARP

NET ADDRT
NET DELRT
NET_SHOWRT
NET DISPRT

SOSELWAKEUP
SOHASOOB
NET PRINTF
NET_PANIC
IM_ALIVE

TSCOMMAND

REPLY OK

NM_MAGIC DATA

(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)

0
1
2

BRDGSTAT
BRDRSSTAT

BRDGCONF

BRDSARP
BRDGARP
BRDDARP

BRDADDRT
BRDDELRT
BRDSHOWRT
BRDDISPRT

(80)

(81)
100
101
102

40

0x00

0x80

/%
[*
/%

[*
[*

/%
/¥
/%

/%
/%
/%
/%

[*
/%
/%

net download */
net upload */
start downloaded stuff¥/

read net statistics ¥/
read & reset stats ¥/

get configuration msg*/

set ARP */
get ARP */
delete ARP */
add RT entry ¥/
delete RT entry */
show RT */
display RT ¥*/
print out msg */
oh-my-gosh */

I think therfore I am¥/

telnet request code */

all is well %/

Sep 9 07:48 1985 exiocmd.h Page 2

#define MQ_EXOS 0x01 /* exos own Q element */
#define MQ_DONE 0x02 /* exos done with Q elmnt*/
fidefine MQ OVERFLOW 0x04 /* data are too big ¥/

Sep 9 07:48 1985 exos.h Page 1

* filename: EXO0S.H

* Data structures and associted constants definition for the EX0S-203
% ethernet controller , compatable with 3.1 version of the net module.

struct exos paddr{

Ushort base} /* segment value */
Ushort off} /% offset value */
bs

/*

* General headers

*

*/

struct headers {
/* Q or mailbox header */

Ushort mh link; /* exos link address */
Uchar mh_reserved; /* not used must be 0 ¥/
Uchar mh status; [* status of Q element */
Ushort mh_length; /* length of data packet*/
bs

struct messages{ /* Q or mailbox header ¥/
Ushort mh link; /* exos link address %/
Uchar mh_reserved; /* not used must be 0 ¥/
Uchar mh_status; [* status of Q element ¥/
Ushort mh_length; /* length of data packet¥/

/* header in message proper */

short nm soid; /* socket id ¥/
long nm_userid; /* seq # attached to msg¥*/
Uchar nm request; /* command to exos %/
Uchar nm replys; /* reply from exos v/
}s

/%

* NET DLOAD structure

%*

*/

struct net dload{
Ushort mh link; /% exos link address o/
Uchar mh reserved; /* not used must be 0 ¥/
Uchar mh status} /* status of Q element */

Ushort mh:length; /* length of data packet¥/

Sep 9 07:48 1985

exos.h Page 2

/* header in message proper */

short
long

Uchar
Uchar

nm_soid;
nm _userid}
nm_request;
nm_reply;

/%
/%
/*
/%

socket id v/
seq # attached to msg¥/

/* semantic of this structure */

Ushort
long
struct
Uchar
}s

nm_length;
nm_source;
exos_paddr nm dest;
nm_xmbyte;

/* NET START structure */

struct net_start{

mh link;
mh_reserved;
mh_status;
mh_length}

Ushort
Uchar
Uchar
Ushort

/%
/%

[*
[*
/%
/%

command to exos */
reply from exos */
length of data */
source address ¥/

/% destination address

exos link address ¥/
not used must be 0 */
status of Q element */

length of data packet¥/

/* header in message proper */

short nm_soid;
long nm_userid;
Uchar nm_request;
Uchar nm_reply;
short nm_salj
short nm_sa2j

b

/%

* the following messages all

/%
/ ki
/%
/ v

socket id %/
seq # attached to msg¥*/
command to exos */
reply from exos ¥*/

pertain to the tcp/ip/socket

% goftware which runs on the board}

%/
[*

struct Sock pktf{
Ushort
Uchar
Uchar
Ushort

mh link;
mh_reserved;
mh_status;
mh_length;

/%
[
/%
[

SOCK_PKT structure: send/receive data to/from a socket

exos link address */
not used must be 0 */
status of Q element ¥/

length of data packet¥/

/* header in message proper */

short
long
Uchar
Uchar
short
gstruct

nm_soid}
nm_userid;
nm_request
nm_reply;
nm_isaddr;
sockaddr nm saddr;

/%
/%
[*
[
/%

socket. id ¥/
seq # attached to msg*/
command to exos ¥/
reply from exos */
non-zero iff nm sadr */
/* socket address

v/

v/

*/

Sep 9 07:48 1985 exos.h Page 3

long nm_bufaddr; /%* host buffer addr */

Ushort nm_count; /* byte count */

char nm_data; /* place for data */

}s
/* Sock_cmd structure: send/receive command to/from exos ¥/
struct Sock cmd{

Ushort mh_link; /* exos link address */

Uchar mh_reserved; /* not used must be 0 ¥/

Uchar mh_status; /* status of Q element */

Ushort mh length; /* length of data packet*/

/* header in message proper */

short nm soid; /*
long nm_userid; /%
Uchar nm_request; /%
Uchar nm reply; /%

socket id */
seq # attached to msg¥/
command to exos ¥/
reply from exos ¥/

/* semantics of this structure */

short nm isaddr;

struct sockaddr nm_saddr;
struct sockproto nm sproto;
short nm isprotoj /*
short nm_type; /%
short nm options} /%
short nm:iamroot; /*
}s

/* Sock ioctl structure:

struct Sock ioctl{

Ushort mh_link; /¥
Uchar mh reserved; /%
Uchar mh status; /%
Ushort mh_length; /%

/% non-zero iff nm saddr¥/

/* socket address

non-zero iff sproto
family with protocol
flags

is this priv user

socket ioctl command

exos link address
not used must be 0
status of Q element

/* protocol structure

¥/
%/
7':/
*/

%/

*/
v/
*/

length of data packet¥/

/* header in message proper */

short nm_soid; [
long nm_userid; /%
Uchar nm request; /%
Uchar nm reply; /*

socket 1id

%/

seq # attached to msg¥/

command to exos
reply from exos

/* semantics of this structure */

gshort nm_iocemd; /%
char nm_iocdatal[40]; /*
}s

ioctl command
holder for stuff

/* Sock printf structure: printf/panic from exos

struct Sock printf{
Ushort mh_link; /%
Uchar mh reserved; A

exos link address
not used must be 0

v/
de/

Y/
%/

v/

%/
v/

*/
%/

Sep 9 07:48 1985 exos.h Page 4

/% status of Q element ¥/
/* length of data packet¥/

Uchar mh_status;
Ushort mh lengthj;

/* header in message proper */

short nm soid; /* socket id ¥/
long nm userid; /* seq # attached to msg¥*/
Uchar nm_request; /% command to exos %/
Uchar nm_reply; /* reply from exos */

[* semantics of this structure */

short nm dummy; /* align to long word */

char nm_prdata[48]; /* printf data */
b
/* Sock select structure: select on socket i/

struct Sock select{

Ushort mh link; /% exos link address ¥/
Uchar mh reserved; /* not used must be 0 ¥/
Uchar mh status; /* status of Q element */
Ushort mh lengthj /* length of data packet*/

/* header in message proper */

short nm soid; /* socket id */
long nm userid} /* seq # attached to msg¥*/
Uchar nm request; /* command to exos */
Uchar nm reply; /* reply from exos *f
/* semantic of this structure */

short nm_rwj
short nm proc;
short nm selcoll;

s
/* Sock hasoob for when get out-of-band data */

struct Sock hasoob{

/* how to select (read=0/write=1
/* host proc which is selecting
/* number of select collision for host */

Ushort mh link; /* exos link address */
Uchar mh reserved; /* not used must be 0 */
Uchar mh _status; /* status of Q element */
Ushort mh length; /* length of data packet¥/
/* header in message proper */

short nm_soid; /* socket id */
long nm_userid; /* seq # attached to msg*/
Uchar nm _request; /* command to exos ¥/
Uchar nm reply; /* reply from exos Y f

/* semantic of this structure ¥/

short nm sogrp; /* proc group ¥/

Sep 9 07:48 1985 exos.h Page 5

}s

/¥ Telnet srvr structure to hold telnet data *f

struct Telnet srvr {

Ushort mh link; [* exos link address */
Uchar mh_reserved; /* not used must be 0 ¥/
Uchar mh_status; /% status of Q element */
Ushort mh_length; /* length of data packet*/

/* header in message proper */

short nm soid; /* socket id %/
long nm_userid; /* seq # attached to msg*/
Uchar nm_request; /* command to exos ¥/
Uchar nm reply; /* reply from exos ¥/

/* semantics of the structure */

Uchar nm tsrqst; /* telnet server command¥/
Uchar nm tsdlen; /* data length */
char nm_tsdata[32]; /* data buffer %/
}s
/*
* Format of a standard "exos-to-host" or "host-to-exos' message:
- this is what is linked together in a Q which both the host
* and exos manipulates while talking to each other.
* - a message contains:
* ~ a header describing the state of the message and its
* size

*
I

an actual network message

% - (For the host:

% - a link for the host to use to maintain and follow the
* message queue with

%

%/

struct msg{

union exos u {
struct headers msg hdj
gtruct messages msg msg;
struct net_dload nm dload;
struct net start nm start;
struct Sock pkt nm packet;
struct Sock cmd nm_cmd;
struct Sock ioctl nm_ioctl;
struct Sock printf nm printf;
struct Sock select nm select;
struct Sock hasoob nm_hasoobj
struct Telnet srvr nm_telnet;

} nm_uj
struct msg *msg_link;

}s
/*

/* host link to next msg */

Sep 9 07:48 1985 exos.h Page 6

% To run this board, a static data area is kept in the ACP task
% which will contain the linked list of this messages acting as

* ring buffer.

* The [rwlmsg_area structures is used to contain the working
* queues which both the host and exos manipulates

%/
#define NET_RBUFS 7
#define NET WBUFS 7

struct rmsg_area {
Ushort ma_rlink;
struct msg ma_rmsgs[NET RBUFS];
struct msg *ma_lastr;

}s

struct wmsg_area {
Ushort ma_wlink;
struct msg ma_wmsgs[NET WBUFS];
struct msg *ma lastw;

b

"o

/%
I&3
/%
/¥

/¥
/¥
/¥

read
exos
€exos
last

exos
host
last

message queue %/
link to next msg¥/

to host msgs ¥/
examined msg %/

link to queue */
to exos msg */
examined msg ¥/

Oct 4 15:38 1985

[*

Y% These
¥/

define
define
define
define
define
define
define
define
i# define
define
define

exqio.h Page 1

are the DIC and DPB lengths of the Executive directives

QIO 060
QIOW 060
ALUN 020
WISE 010
GTIM 010
SPWN 064
SDRC 036
SDAT 025
STOP 060
RCVD 021
MRKT 024

01
03
07
51
75
13
15
07
3

13
27

/* Executive return status ¥/

define
define
define
define
define
define
define
define
define

/3
% These

wle
Y

[*

IE_BAD
IE_IFC
IE_DNR
IE_SPC
IE_ABO
IE_PRI
IE_DFU
IE_FHE
IE_OFL

are the

=01
=02
-03
=06
-15
-16
=24
=59
-65

/%
/%
/%
/%
/%
/%
/%
/%
/%

function codes related to

bad parameters */
illegal function */
device not ready ¥*/
illegal bufferr ¥/
request aborted ¥/
priv or channel error¥/
no free channel %/
fatal hardware error */
device offline */

the QIO call to the ZE device

* following five codes are already defined in standard rsx header file
* rsx.h and are not defined here only shown under comment for clarity

define IO KIL
define I0 WLB
define I0 RLB
define IO ATT
define I0 DET

*k/

#define IO EXC
jtdefine EX INI
#define EX CNF
ftdefine EX STR
fdefine EX STS
ftdefine EX SAR
jtdefine EX GAR
#define EX DAR
#define EX ART
#define EX DRT
ftdefine EX SRT
#define EX NRT

000012
000400
001000
001400
002000

002400

BRDINIT
BRDGCONF
BRDSTART
BRDGSTAT
BRDSARP
BRDGARP
BRDDARP
BRDADDRT
BRDDELRT
BRDSHOWRT
BRDDISPRT

kill all outstanding request
write to the EX0S memory

read

from the EX0S memory

attach fn: made no-op
detach fn: made no-op

i
U
#
#

/* EX0S board admn. operation */

[%

/%
1&S
/%
/%
/%
/%
/%
/%
[

Reset and configure EXOS

s/

/* get configuration ms
g 24

Execute EXOS procedure
Read network statistics

set up an ARP table entry

Retrive an ARP table entry

Delete an ARP table entry

Add an Routing table entry

Delete an RT entry
Fetch an RT entry
Fetch next RT entry

v f
*/
%/
% [
¥/
%/
%/
v/
v/

Oct 4 15:38 1985 exqio.h Page 2

#define EX_RST BRDRSSTAT /% Read & Reset network stats ¥/
fdefine EX OPN 0020 /% Open an admin channel */
#define EX CLS 0021 /% Close an admin channel %/
#define EX POS BRDADDR /¥ Seek EX0S's memory %/
jtdefine IO_ACS 003000 /% Socket access operations */
#define SA_OPN 50 /* Open a socket ¥/
fdefine SA ACC 51 /* Accept a remote socket */
fdefine SA_CON 52 /% Connect to a remote socket */
#define SA SAD 55 /% get socket informations v/
#define SA CLS 56 /* close an opened socket %/
#define SA SEL 59 /* perform select op on socket¥/
#define SA USL 0210 /% kill the outstanding select call ¥/
#define SA URG 0200 /* prepare for urgent msg *f
ftdefine SA ROO 0220 /* remove oob pkt from pending list */
#define IO XFR 003400 /* data transfer operation ¥/
#define IX RDS 0000 /* read from TCP stream */
#define IX WRS 0001 /* write to TCP stream %/
fidefine IX SND 53 /% send datagram to a socket ¥/
#define IX RCV 54 /* receive socket datagram */
#define IO SOC 004000 /* socket control operations */
#define SO _DON SIOCDONE /* shutdowm r/w on socket %/
#define SO_SKP SIOCSKEEP /* set keep alive %/
f#define SO_GKP SIOCGKEEP /¥ inspect keep alive */
ftdefine SO _SLG SIOCSLINGER /* set linger time */
fdefine SO _GLG STOCGLINGER /* get linger time ¥/
#define SO_SOB SIOCSENDOOB /% send out of band */
#define SO_ROB SIOCRCVOOB /% receive out of bound v/
ftdefine SO_AMK SIOCATMARK /% at oob mark ? ¥*/
#define SO_SPG SIOCSPGRP /* set process group ¥/
#define S0_GPG SIOCGPGRP /* get process group ¥/
#define SO_NRD FIONREAD /% FIONREAD %/
#define SO _NBO FIONBIO /* FIONBIO */
#define 50 ASY FIOASYNC /* FIOASYNC */
#define I0 LOG 004400 /* read error msg from EX0S */
#define I0_TEL 0177000 /¥ telnet server pseudo fn code */
#define TS HNG 0176000 /* hangup carrier pseudo fn code¥*/
/%

% All the Socket related parameters in the QIO call are passed
* throgh the structure "SOictl" defined below.

%/

struct SO0ictl {
short hassa} /* non-zero if sa specified ¥/
struct sockaddr sa;} /* socket address (optional) */
short hassp} /* non-zero if sp specified ¥/
struct sockproto sp} /* socket protocol (optional) %/
int types /* socket type */
int options; /% options */
/* these are for select () */
int nfd}

long *wp}

Oct 4 15:38 1985 exqio.h Page

long *rp;
long timos

?

Sep 9 07:48 1985 exreg.h Page 1

/7’:
* finename: EXREG.H
%/

/¥

¥ data structures for the Excelan exos/203 ethernet controller

/%
% The exctrl structure is used to maintain the software device during
% its use.

%/
struct exctrl {
Ushort ex port; /% our port address 164000 */
struct init_msg *ex imsg; /* virtual pointer to init msg %/
Ushort ex statej /% state of the controller ¥/
Uchar ex init; /* device has been initialized */
}s
/%
* ex state values
*f
define ST INIT 0x01 /% device has been setup */
define ST WAITING 0x02 [¥* waiting for setup *f
/%
* port address word
%/
define EX PORT 04000 /* port address offset in I/0 page*/
define EX PORTA 0 /* offset for PORTA */
define EX PORTB 2 /* offset for PORTB ¥/
/¥
* macros for ease of use
%/
define PORTA (ex_db.ex port + EX PORTA)
define PORTB (ex_db.ex port + EX PORTB)
[
* bits in port B
%/
define PB_ERROR 001 /% fatal error when 0 */
define PB INT 002 /* exos has interrupted when 1 ¥/

define PB READY 008 /* exos is ready when 0 */

Sep 9 07:48 1985 extypes.h Page 1

/* unsigned data types (shorthand) */
typedef unsigned int Uint;

. typedef long Ulong}
typedef unsigned short Ushort;
typedef char Uchar;

Sep 9 07:48 1985 in.h Page 1
/¥ @(#)in.h 1.3 4/12/85 */

% GAP 1/11/85¢ WA RNTI NG - This file is included by both host
* and board code. Make changes with extreme caution, and test
* effects on both the host and board sides.

/%
* Constants and structures defined by the internet system,
* Per RFC 790, September 1981.

%/

[*

* Protocols

%/
fidefine IPRO _ICMP 1 /* control message protocol */
#define IPPROTO GGP 2 /* gateway~2 (deprecated) */
fdefine IPRO TCP 6 /¥ tep */
j#define IPRO PUP 12 [¥% pup */
#define IPRO UDP 17 /* user datagram protocol */
#define IPRO_RAW 255 /* raw IP packet */
fidefine IPRO_MAX 256

/¥

% Port/socket numbers: network standard functions

%/
#define IPPORT ECHO 7
f#define IPRT DISCARD 9
#define IPRT SYSTAT 11
f#define IPPORT DAYTIME 13
#define IPRT NETSTAT 15
#define IPRT FTP 21
f#define IPPORT TELNET 23
fdefine IPPORT SMTP 25
f#define IPRT TIMESERVER 37
f#define IPPORT NAMESERVER 42

#define IPPORT WHOIS 43

fdefine IPPORT MTP 57

/%

* Port/socket numbers: host specific functions

*f

#define IPRT TFTP 69

#define IPRT RJE 77

#define IPPORT FINGER 79

f#define IPRT TTYLINK 87

#define IPRT SUPDUP 95

/¥

% UNIX TCP sockets

%/

#define IPRT EXECSERVER 512

##define IPPORT LOGINSERVER 513

#define IPPORT CMDSERVER 514

Sep 9 07:48 1985 in.h Page 2

/%

% UNIX UDP sockets

%/

#define IPPORT BIFFUDP 512
jtdefine IPRT_WHOSERVER 513

[

* Ports < IPPORT RESERVED are reserved for
* privileged processes (e.g. root).

*/

fdefine IPPORT RESERVED 1024

/¥

¥ Link numbers

*f

#define IMPLK IP 155

f#define IMPLK LOWEXPER 156

f#define IMPLINK HIGHEXPER 158

[* :

* Internet address (old style... should be updated)

*/

struct in_addr {

union {
struct { char s_bl,s b2,s b3,s b4; } S un b;
struct { unsigned short s wl,s w23 } S un w;
long S_addr; o
} S unj

#define s _addr S un.S addr /* can be used for most tcp & ip code */

#define s host S un.S un b.s b2 /* host on imp */

fidefine s net S _un.S un b.s bl /* network ¥/

fdefine s imp S un.S un w.s w2 /% imp */

#define s_impno S_un.S un b.s b4 [* imp # ¥/

#define s lh S un.S un b.s b3 /* logical host */

#define S baddr S un.S un b

}s

[*

* Macros for dealing with Class A/B/C network

* numbers. High 3 bits of uppermost byte indicates

* how to interpret the remainder of the 32-bit

* Internet address. The macros may be used in time

* time critical sections of code, while subroutine

% versions also exist use in other places.

%/

/*

% GAP 1/10/85: Apparently these are designed to work on internet
% addresses which reside in network order in RAM, if regarded as
* a byte string. Be careful, because 4.2BSD defines just one

* version of these macros, which works on internet addresses only
* after they are swapped into proper order (in a CPU register)

* by ntohl().

/% GAP 1/10/85: Note fancy footwork below to share header with board code */

Sep 9 07:48 1985

#ifdef ONBOARD
#define IN_CLASSA
#define INCA NET
#define INCA LNA
jffdefine INCB
#define INCB NET
#define INCB LNA
#define INCC_NET
#define INCC_LNA
#endif

#ifndef ONBOARD

in.h Page 3

/* board ma

0x00800000L
0x00£f£0000L
0xffOO0ffffL
0x00400000L
Oxf£££0000L
O0x0000f£f£ffL
Oxff£f00ffL
0x0000£f£00L

/* board ma

ke does not define MACHINE type */

/% 8 bits of net # */

16 bits of net # */

24 bits of net # */

ke does not define MACHINE type */

/% 8 bits of net # */

/% 16 bits of net # */

/% 24 bits of net # */

/* Also 8086 XENIX V7 C */

/* 8 bits of net # */

/% 16 bits of net # ¥/

/% 24 bits of net # */

/* XENIX 3.0, Lattice C ¥/

#ifdef VAX

#define IN CLASSA 0x00000080
#define INCA NET 0x000000ff
#define INCA LNA Oxfff£££00
#define INCB 0x00000040

#define INCB_NET 0xO0000ffff
#define INCB LNA 0x££££0000
#define INCC_NET 0x00£££££E
#define INCC LNA 0x££000000
jfendif

#ifdef PDP11

#define IN CLASSA 0x00800000L
f#define INCA NET 0x00££0000L
jidefine INCA LNA OxffOOffffL
#define INCB 0x00400000L
#define INCB NET Oxf££f0000L
jfdefine INCB_LNA 0x0000f£fffL
j#define INCC_NET Oxffff00ffL
#define INCC_LNA 0x0000££00L
#endif

#ifdef 18086

#define IN CLASSA 0x00000080
#define INCA NET 0x000000f£
#define INCA LNA Oxff££f££00
#define INCB 0x00000040

#define INCB_NET 0x0000ffff
ffdefine INCB_LNA 0xf£££0000
fdefine INCC_NET OxQ0ffffff
#define INCC LNA 0x££000000
fendif

#ifdef M68000

#define IN CLASSA 0x80000000L
#define INCA NET 0x£f£000000L
ffdefine INCA LNA Ox00ffffffL
jidefine INCB 0x40000000L
#define INCB_NET 0xf£££0000L
#define INCB_LNA 0x0000f£f£fL
#define INCC_ NET OxffffffO0L
#define INCC LNA 0x000000£fL
#endif

#ifdef Z8000

#define IN CLASSA 0x80000000L
f#define INCA NET 0xf£000000L

/* 8 bits of net # */

/% 16 bits of net # */

/% 24 bits of net # */

/* 8 bits of net # */

/% 16 bits of net # */

[* 24 bits of net # */

/% 8 bits of net # ¥/

Sep 9 07:48 1985 1in.h Page 4

ffdefine INCA LNA OxOQO0ffffffL
f#define INCB 0x40000000L
#define INCB NET Oxff£f0000L
f#define INCB LNA 0x0000ffffL

~
o

¢ 16 bits of net # */

#define INCC NET OxffffffOOL /* 24 bits of net # */

#define INCC_LNA 0x000000ffL

f#endif

#endif ONBOARD /* board make does not define MACHINE type */

#define IN NETOF(in) \
(((in).s_addr&IN CLASSA) == 0 ? (in).s_addr&INCA NET : \
((in).s_addr&INCB) == 0 ? (in).s_addr&INCB NET : \
(in).s_addr&INCC_NET)
#define IN LNAOF(in) \
(((in).s_addr&IN CLASSA) == 0 ? (in).s_addr&INCA LNA : \
((in).s_addr&INCB) == 0 ? (in).s_addr&INCB LNA : \
(in).s_addr&INCC _LNA)

ffdefine INADDR ANY 000000000
[*
% Socket address, internet style.
v/

struct sckadr in {
short sin family;
unsigned short sin port;
struct in_addr sin_addr;
char sin zero[8];

}s

#ifdef KERNEL
long in netof(),in_lnaof();
fendif

Sep 9 07:48 1985 1init.h Page 1

/¥

¥ filename:?

Y% Structure

%/

INIT.H

used for initialization only.

[* some of the dummy entries are due to byte swapping */

gtruct

init _msg {
short im newstyle;

char im_version[4];
char im result;
char im mode;

char im hdfol[2];
char im junk[3];

char im_addrmode;
char im_dummy2;
char im mmsize}

char im byteptn[4]
Ushort im wordptn[2]
long im longptn}
char im_mmap[20];

short im 10loff;
short im 10lseg;

char im nproc;
char im nmb;
char im nslots;
char im nhosts;

/%* "host to exos" stuff */

long im h2exqaddr;
short im h2exoff}

char im:hZextype;
char im_h2exvalue;
long im h2exaddr;

/* "exos to host" stuff */

}s

long im_ex2hqaddr;
short im ex2hoff}

char im:ethtype;
char im_ex2value;
long im_ex2haddr;

/* im mode ¥/

define EXOS_LINKMODE 0
define EXOS HOSTLOAD 1
define EXOS NETLOAD 2

[*
&
[
/%
/%

/%

/%
/¥
/%
[*
/%

/%
/%
/%
/%
/%
/3%

/%
/%
/%
/%
/%

/%
/%
/¥
/*
/%

new style init msg? */
version to the hardware */
completion code ¥/
set to link moce (0) */
host data format option */

host address mode ¥/

memory map size (returned) ¥/
data order byte pattern */
data order word pattern ¥/
data order long pattern */
(rest of) memory map (returned)¥/

movable block offset */
movable block segment */

number of exos 101 processes */
number of exos 101 mailboxes */
number of address slots %/

0

number of hosts == %/

host to exos msg a address */
offset from base of actual q ¥/
interrupt type for h2ex msg q */

interrupt value */
interrupt address *f
exos to host msg q address %/

offset from base of actual q %/
interrupt type for ex2h msg q */
interrupt value v/
interrupt address */

Sep 9 07:48 1985

iopkt.h Page 1

/%
* filename:? IOPKT.H
*/
struct rel addr { /* struct relocated address */
Ushort rel biasj; /% relocation bias */
Ushort dis bias} /* displacement bias */
}s
struct iopkt { /* 1/0 pakcet field definition %/
struct iopkt *i_ lnk; /* link to next I/0 packet */
Uchar i _pri j /* priority of the requesting task’/
Uchar i _efn 3 /% event flag number %/
Ushort i _tcb 3 /% TCB address of requester ¥/
Ushort i _1ln2 ; /% address of second LUT word */
Ushort i_ucb 3 /* address of UCB */
Ushort i fen /% function code + modifier */
struct §
Ushort v_iosb; /* virtual address of IOSB */
struct rel addr r_iosb; /* relocated address of IOSB */
} i iosbs
Ushort i ast 3 /% virtual address of AST routine */
struct {
struct rel addr i_buf}
Ushort i_cntj
struct rel addr 1i_soictlj
Ushort i prmé4;
Ushort i prm5;
Ushort i prm6;
} i _prm;

Sep 9 07:48 1985 rthdata.h Page 1

/%

* filename:? RTHDATA.H

%/

/* DATA STRUCTURES FOR THE TELNET SERVER */

define MAXCNT 1

define ctrl(x) ((x)&037)

define strip(x) ((x)&0177)

define PTYNO 8

define BS 010 /* character back space's ascii value¥/
define TC_BIN 065

define TC_NEC 047

define SFSMC 02440

define MAXBYTVAL 256

[* EX0S-to-host requests are : */

define TSCARON 0 /* x2h: carrier on (open connection) */
define RLCARON 1 /* x2h: carrier on (for rlogin) */

define TSCAROFF 2 /* x2hicarrier off(closed connection)¥*/
define TSREAD 3 /* x2h: read data (net-to-host) */

define TSNVTFUNCT 4 /% x2h: IP, AYT, EC, EL, AO */

define TSDOOPT 5 /* x2h: do BINARY, ECHO, etc */

define TSDONTOPT 6 /% x2h: don't BINARY, ECHO, etc */

/* Host-to-EXO0S request codes ae as follows : %/

define TSWRITE 32 /% h2x: write data */
define TSHANGUP 33 /% h2x: close connection */
/%

* In reply message from the EXOS to the host, nm reply may contain
* the following values, for any request:

*f

define TSERRBADSOID 32
define TSERRPENDING 33
define TSERRCLOSING 34
define TSERRBADREQ 35
define TSERRTOOBIG 36

/% The NVTFUNCT 's ¥/

define 1P 244
define AO 245
define AYT 246
define EC 247
define EL 248

/* The terminal options ¥/

define TELOPT BINARY 0
define TELOPT_ECHO 1
define TELOPT SGA 3

Sep 9 07:48 1985 rthdata.h Page 2

/* Command table structure */

struct cmd {
TEXT tsrqst; /% telnet server command */
int (*handler)();
} cmdtabl[]

TSCARON, caron},

RLCARON, caron},
TSCAROFF, byel},

TSREAD, zt read 1},
TSNVTFUNCT, nvtfunct},
TSDOOPT, do_option},
TSDONTOPT, dont_option },
TSWRITE, wr_reply },

[e Y ana Yana Yana Vace Yana Yana ¥ar sl

}s
/* The following is the status structure for all the pty's */

struct status {

short pty number; /* pty device no. */

short carrier onj /* if 1, then logged on */

short rlogin} /* if 1 then it is a remote login */
int reply pending} /* a counter whose int indicates no.*/

/* of pkts sent to EX0S, */
/* MAX value = MAXCNT */

short echo opt} /* 1If 1, then echo set */
short binary opt; /* If 1, then binary option set */
short sga opt; /[* 1f 1, then sqa option set */
} pty status[] = {
{ 0,0 },

[l = o B = B o B = B e o
A B I . I R
OO0 0000 O0O
L I I I I B I B

[« e e B e B e B o I} o I o
Laad
-

0,0,
0,0,
0,0,
0,0,
0,0,
0,0,
0,0,
0,0,

}3

struct packet {
struct packet *link; /* link word */

Ushort moreto op; /* if 1 then more O/P to come */
Ushort tcb_dummy; /* always zero */

Ushort pty no; /* unit number */

Ushort wucb_ dummy; /* UCB address */

Ushort i fcnj /* always IO TEL = 0177000 ¥/
Ushort request; /* telnet request */
Ushort byte cntj} /* byte count */

char w_datal32]; /* write-data */

}s

Sep 9 07:48 1985

socket.h Page 1

/% @(#)socket.h 1.8 7/29/85 */
4.16 82/06/08

[*
/%

% GAP 1/11/85:
* and board code.

socket.h

WARNING

%/

- This file is included by both host
Make changes with extreme caution, and test

% effects on both the host and board sides.

v/

f#ifdef

#define
jtdefine
ffdefine
#define
#define
ffdefine
jtdefine
#define
ftdefine

#define
#define
f#tdefine
f#define
ftdefine
ffendif

/%

BSD4dot2
accept
connect
gethostname
receive

select
send
socket
socketaddr
shutdown

htonl
htons
ntohl
ntohs

swab
BSD4dot2

ex_accept
ex_connect
ex_gethostname
ex receive
ex_select
ex_send

ex socket
ex_socketaddr
ex_shutdown

ex htonl
ex_htons
ex ntohl
ex_ntohs
ex_swab

% Externally visible attributes of sockets.

s/

%

/

% Socket types.

* gservices, with extra protocol on top of network services

%
* The kernel implement these abstract (session-layer) socket
w
%

if necessary.

¥/
jtdefine
ftdefine
#define
jdefine
f#define
#define

/%

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_RDM
SOCK_ETH
SOCK_ICMP

AU >WOWN =

* Option flags per-socket.

*/
#define
f#tdefine
f#define
#define
#define
#define
#define

SO_DEBUG
SO_ACCEPTCONN
SO_DONTLINGER
SO_KEEPALIVE
SO_DONTROUTE
SO_SMALL
SO_REUSEADDR

0x01
0x02
0x04
0x08
0x10
0x20
0x40

[
/%
/%
/%
/%
/%

/%
/%
/%
/%
/%
/%
1A

stream socket */

datagram socket */

raw-protocol interface */
reliably-delivered message */
link-mode access to e-net packets ¥/
access to ICMP */

turn on debugging info recording */
willing to accept connections */
don't linger on close */

keep connections alive */

just use interface addresses */

use smaller (1/2K) buffer quota */
permit local port ID duplication */

Sep 9 07:48 1985 socket.,h Page 2

%* Generic socket protocol format.

Each process is normally operating in a protocol family,

* whose protocols are used unless the process specifies otherwise.

% Most families supply protocols to the basic socket types. When

% protocols are not present in the family, the higher level (roughly
% IS0 session layer) code in the system layers on the protocols

* to support the socket types.

¥/

struct sockproto {

short sp family; /* protocol family */

short sp protocolj /% protocol within family */
}s
#define PF_UNSPEC 0 /* unspecified */
#define PF_UNIX 1 /* UNIX internal protocol */
#define PF_INET 2 /* internetwork: UDP, TCP, etc. */
#define PF_IMPLINK 3 /* imp link protocols */
#define PF_PUP 4 /* pup protocols: e.g. BSP */
#define PF_CHAOS 5 /* mit CHAOS protocols ¥*/
#define PF_OISCP 6 /* ois communication protocols */
‘#define PF_NBS 7 /* nbs protocols */
fdefine PF_ECMA 8 /* european computer manufacturers */
#define PF_DATAKIT 9 /* datakit protocols */
#define PF_CCITT 10 /* CCITT protocols, X.25 etc */

A3

* Generic socket address format.

% Each process is also operating in an address family, whose

* addresses are assigned unless otherwise requested. The address

% family used affects address properties: whether addresses are

* externalized or internalized, location dependent or independent, etc.
% The address can be defined directly if it fits in 14 bytes, or

* a pointer and length can be given to variable length data.

* We give these as two different structures to allow initialization.

*/

struct sockaddr {

short sa_family; /% address family */

char sa_datal14]; /% up to 14 bytes of direct address */

The first few address families correspond to protocol

% families. Address families unrelated to protocol families
% are also possible.
%/
#define AF_UNSPEC
f#define AF_UNIX
#define AF INET
#define AF_IMPLINK
#define AF PUP
#define AF CHAOS
#define AF_OISCP
fdefine AF NBS

/* unspecified */

/* local to host (pipes, portals) */
/* internetwork: UDP, TCP, etc. */
/* arpanet imp addresses */

/* pup protocols: e.g. BSP */

/* mit CHAOS protocols */

/* ois communication protocols */

/% nbs protocols */

NoOuUMbSsWN~=O

Sep 9 07:48 1985 socket.h Page 3

#define AF_ECMA 8
#define AF DATAKIT 9
ftdefine AF_CCITT 10
#define AF ETHER 11
#define AF_COUNT 12
#define AF ETYPEFILTER 13
f#define AF MAX 14
/*

MWP:

A
/%
/%
/¥
[*
/%

Sockaddr structure for link mode access to

%/

#ifndef u_short
f#define u_short unsigned short
fendif

european computer manufacturers ¥/
datakit protocols */

CCITT protocols, X.25 etc */
Ethernet Address */

A count */

Ethernet filter */

EXOS board.

#define sockaddr link sad link /* for compiler ¥/

struct sockaddr_fink {

short sl family;
u_short sl_types[6];
short sl_zero;

#ifdef ONBOARD
struct enreq *gl pndpkt;
#endif

|H

/* a handy macro */

/% a part-empty pkt on this socket */

#define saptr(x) ((struct sockaddr link *)(((struct socket *)(x))->so pcb))

Sep 9 07:48 1985

/¥

% filename: SOIOCTL.H

%/

soioctl.h Page 1

% This file defines all the equate symbols for socket ioctl
% commands. These values are actually passed onto to the board,
% hence should not be altered.

#define
j#define
#define
ffdefine
f#fdefine
ffdefine
f#define
j#define
jfdefine
{tdefine
{#define

ftdefine
f#define
#define
jtdefine
#define
ftdefine
jtdefine
j#define
#define
j#define
jtdefine
jtdefine
#define

FIONREAD (127)
FIONBIO (126)
FIOASYNC (125)
TIOCPKT (112)

TIOCPKT DATA
TIOCPKT FLUSHREAD
TIOCPKT FLUSHWRITE

TIOCPKT STOP
TIOCPKT START
TIOCPKT NOSTOP
TIOCPKT DOSTOP
SIOCDONE (0) /%
SIOCSKEEP (1) /%
SIOCGKEEP (2) /¥
SIOCSLINGER (3) /¥
SIOCGLINGER (4) /%
SIOCSENDOOB (5) /%
SIOCRCVOOB (6) /*
SIOCATMARK (7) /%
SIOCSPGRP (8) /%
SIOCGPGRP (9) /%
SIOCADDRT (10) /*
SIOCDELRT (11) /*
STOCCHGRT (12) [/

/* on pty:

0x00
0x01
- 0x02
0x04
0x08
0x10
0x20

/*
[*
/%
/%
/%
/%
/*

set/clear packet mode */
data packet */

flush packet */

flush packet */

stop output */

start output */

no more S, ~Q */

now do *§ ~Q */

shutdown read/write on socket */
set keep alive ¥*/

inspect keep alive */

set linger time */

get linger time */

send out of band */

get out of band */

at out of band mark? ¥*/

set process group */

get process group */

add a routing table entry */
delete a routing table entry */
change a routing table entry */

Sep 9 07:48 1985

#define
#define
ftdefine

#define
#define
#define
fdefine

#define
#define

jtdefine
#define
jtdefine
#define

ELMNTBUSY
ELMNTFREE
NULLPOINTER

MAXBUF
BUFSIZE
MAXTIOSB
MAXSOICTL

SOLUN 20
SOEFN 1

NOSOBUF
NOSOIOSB
NOSOICTL
NOFREESOCKET

OO

1024
10

-10
=11
-12
-13

solibdef.h Page

/%
/%
/*

/%
/%
/%
/%

/¥
/¥

the element is busy */
the element is free */
it is pointing to null element */

max no of transfer buffer ¥/
size of each such buffer */
max no of IO status block */
max no of SOictl structure ¥*/

EX0S0 LUN */
efn wf

Sep 9 07:48 1985 wunidata.h Page 1

A

¥ filename? UNIDATA.H

*/

/¥

v This file contains the data structures required for the ACP to
* run on a UNIBUS machine PDP-11/24

*/

#define POOL_BUFS 14 /* 14Kb buffers each of size = BUFSIZE */
f#define ALLOCATED 0x1
#define DEALLOCATED 0x0
f#define POOLBUFSIZE 1024

struct pool im {
Ushort state;
struct iopkt “*owner;

’
struct pool_im pool im[POOL BUFS] = {0}; /* pool's image */

struct rel addr rellbuf
struct rel_addr rel2buf

{0}; /¥ relocated address of lst 4kw of pool */
{0}; /* relocated address of 2nd 4kw of pool */

struct iopkt *sec_que = {0}; /* sec_que for pkts not getting pool space */

unsigned int *umraddr = {0}; /* umr addr of umr of 1lst 4kw of pool */
unsigned int zeucb = 0; /* storage for ZEQ: UCB */

long phy buf = 03 /* physical address of pool v/

long unilbuf = 03 /* 18-bit unibus address of lst 4kw of pool */
long uni2buf = 0} /* 18-bit unibus address of 2nd 4kw of pool */

long uni msg = 03 /% 18-bit unibus address of message area */

Oct 17 16:25 1985 acproot.c Page 1

/*
* filename: ACPROOT.C
*/

[*
%* This is the main root of the acp task. It calls init() to make some local
* initializations.
*/
main()
init(); /* local initializations */
#ifdef DEBUG
qio_write("OUT INIT",9,040);
fendif
if (acpucb()) {

#ifdef UNIBUS

uni_ini(); [* initialize unibus related stuff ¥ f
fendif
do
{
io _pkt = dqpkt(); /* deque an user request */
action = 1j
if (io_pkt){ /* if it's an request e/
chn = PKT.i prmé6; /* get ch # if any %/
switch (io pkt->i fen){ /* check the request ¥/

case I0 KIL:
io kill();
break;

case I0 EXC|EX_OPN:
iosb.cc = 13 iosb.lc = 03
iosb.nread = opench(CH _EX0S, PKT.i prmé4);
if (iosb.nread < 1)
iosb.cc = IE DFU; /* no free channel */
breaks

case I0_EXC|EX CLS:
iosb.cc = 13 iosb.lc = 03
if (inrange(chn) && sametask(chn))
iosb.cc = closech(chn);
break}
case I0 EXC|EX_INI:
iosb.lc = 03
if (inrange(chn) && sametask(chn) && writeprv(chn))
iosb.cc = exsetup(PKT.i prm4);
else
iosb.cc = IE PRI; /* priv or channel error */
break}

default:

Oct 17 16:25 1985 acproot.c Page 2

qio write("error: EXOS not configured",27,040);
iosb.cc = IE DNR; /* device not ready */

}
if (action)
ackuser(io pkt);
}
}while (lex db.ex init);
drive()s
}

else qio write("error: EXOS dev not ready'",25,040);

Oct 30 16:11 1985 answer.c Page 1

/%
* filename: ANSWER.C
x/

* This function scans the entire reply message buffer starting from the next
* to the last message buffer. For each buffer, it checks it's status field.
* If it is owned by the host then it calls a function rprocess, to process

* the reply and updates the status field.

answer()

register int i}
register struct msg *current}
register struct iopkt ‘pending;

#ifdef DEBUG
qio write("answer",7,040);

#endif
current = rmsg_area.ma_lastr; /* start where we left ¥/
while ((current->nm u.msg_hd.mh_status & 0x03) == 0) /* reply for host */
{

mp = current;
switch(ex mg.nm request & 0x7F) {
case SOSELECT:
case SOSELWAKEUP:
ex sel.nm proc <<= 1lj

pending = getpend({struct iopkt *)ex sel.nm proc);

break}
default:
pending = getpend((struct iopkt *)ex mg.nm userid);
break}
}
/* check whether the reply was solicitated */
reply();
if (pending){ /% if it was solicitated ¥/
i = pending->i prm.i prmé6; /* get channel # */
if (inform) { /* only if boards processing is */
ackuser(pending); /* over then acknowlege user Y/
ch des[il].rundn _cnt--; /¥ decrement I/0 rundown count %/
}
if(ch_mfor close(i)){ /* is it marked for close?if s0...%*/
closech(i); /* ...try to close the channel ¥/
}
}
else

j#ifdef DEBUG

qio write("unsolicitated reply", 20,040);
#else

3 /* null statement */

Oct 30 16:11 1985 answer.c Page 2

#endif

rmsg area.ma_lastr = current->msg linkj}
current = current—->msg link}

}

nxtrst = &rmsg_area.ma_lastr->nm u.msg hd.mh_status;

Oct 17 16:25 1985 append.c Page 1

/%

* filename: append.c

append() : this routine appends the requested io pkt to the
I/0 pending list just before sending it to EXO0S

* so that on return it can be double checked for

* issueing IOFIN and differentiate between solicited
* and unsolicited reply from EXOS.

%/

int append()
{
register struct iopkt *next;

if (lio_pend)
io pend = io pkt;

else
{
next = io_pend;
while (next->i lnk) /* reach till end of list */
next = next->i lnk;
next->i lnk = io pkt; /* append it to the end */
}
io pkt=>i lnk = 03 /* terminate the list %/
}
/*

* getpend() ¢ this routine is called to find a match in the list of

* pending I/0 request . If a match is found it returns
* the I/0 packet address.
*f

struct iopkt *getpend(pkt)
struct iopkt *pkts;
{

register struct iopkt *prev, *current;

if (io_pend) /* if at all any request is pending in EX0S */
{
prev = 03
current = io_pend; [* start searching from the begining */
while ((current != pkt) && (current->i lnk != 0))
/* search for a match or end of list */
{

prev = current;
current = current->i lnk;
if (current==pkt) [* if match */

{

if(prev) /% if it is not the first element in the list¥/

Oct 17 16:25 1985 append.c Page 2

prev=>i lnk = current->i lnk;
else

io_pend = current->i lnk;
return(current);

}
else return(0);
}
else return(0);
}

[
* pend list(pkt) ---> This routine checks if the specified packet is in
¥* the pending list and waiting for a reply from the board
*/
[*

* commenting out this whole routine
pend list(pkt)
struct iopkt ¥pkt;

register struct iopkt *current;
if(io_pend) {
current = io_pend; %% gstart of pending list ede
do {

if(current == pkt) *¥* match? ede

return(l); %% yes Yede

current = current->i lnk; *% no - see next¥¥

} while(current);
return(0)}

}

Oct 17 16:25 1985 body.c Page 1

/%

* FILENAME: body.c

*/

include <header.c>
include <acproot.c>
include <drive.c>

include <setup.c>
include <init.c>

include <request.c>
include <append.c>
include <answer.c>

include <gsignaloob.c>
include <reply.c>

include <insert.c>

include <findslot.c>
include <iokill.c>

include <cancel.c>

include <delay.c>

include <opench.c>

include <rth.c>

#ifdef UNIBUS
#include <uniacp.c>
ftendif

Oct 17 16:25 1985 cancel.c Page 1

[*

* filename: CANCEL.C

*/

io_rundown(ch_no) /* cancel all outstanding request */
int ch noj

{

register int i3
register struct iopkt ¥*pkt;

[* close all channels except this one */
for (i=03; i<MAXCHANNEL; i++)
if ((i != ch no) & (ch_des[i]. ch type != CH FREE)) {
ch des[il.rundn_cnt = 0; /* force rundown count to 0 so that channel

may be closed */
closech(i)s

}

/* &ill all outstanding requests from the user */

while(mrkcls) { /* kill all SOCLOSE packets */
pkt = mrkcls}
mrkcls = mrkcls—>i lnk;
iosb.cc = IE ABO;
ackuser(pkt);

}
while(int que)

pkt = int que;
int que = int _que->i lnk;
iosb.cc = IE ABO;
if((pkt—>i fcn == IO KIL) ||
dealoc_b(pkt,sizeof(pkt));
else
ackuser(pkt);

(pkt->i fecn == IO TEL))

while(io pend)
{
pkt = io_pend;
io _pend = io_pend->i_lnk;
iosb.cc = IE ABO;
if((pkt=>i fen == IO KIL) ||

dealoc_b(pkt,sizeof(pkt));

else {

(pkt->i fcn == IO _TEL))

#ifdef UNIBUS

freepool (pkt,0)} /* must free the pool if allocated */
fendif

ackuser(pkt);
}
}

Oct 17 16:25 1985 delay.c Page 1

/%
* filename: DELAY.C
*/

/*

* The delay routine gives a time delay specified by the arguments passed:
* tmag and tunit, If tunit = character 'T' (ticks) then a time dealy of
* (tmag * 20 msec) is obtained.

* If tunit="'S', then a time dealy of tmag seconds is obtained.
*/
delay(tmag,tunit)

int tmag}
char tunit;

{
register int aj
if (tunit == 'T' || tunit == 't')
a=1;
else
a =23 /% default unit is seconds */
emt (MRKT,8,tmag,a,0)}
emt (WISE,8);

Oct 17 16:25 1985 drive.c Page 1

/%
* filename: DRIVE.C
’:'r/

/¥

*»

This is the main control flow routine of the ACP task.Its an
forever loop. While in the loop it first tries to dequeue a
packet from its external queue. These packets are nothing but
user's request queued by driver in packet form to the ACP task.
It returns from the DQPKT procedure iff some work is pending
for it in the form request from the user or reply from EXOS

or already pending requests in its internal queue. If it gets

a request from the user it first checks whether it needs EX0S's
participation or not. If not so, then it immedietly processes
it, otherwise queues it to its own internal FIFO queue. After
that it responds to all the pending reply from EXOS and then
processes the pending user request from its internal queue
subjected to the availability of free slot in the Host-to-EXOS
ring buffer queue. When it can not proceed any further it tries
to deque another packet thus completing a cycle.

ook % %

¥

% % % % % %

E

%

*f
int drive()

{
FOREVER { /* fall into an eternal loop */

io pkt = dqpkt(); /* deque an I/0O packet */

f#ifdef DEBUG
qio write("waked up", 8,040);
#endif

if (io_pkt) /* if any request */
(

int ack = 03 /* do not acknowlege user immedietly */

chn = PKT.i prmé6;
switch (io pkt->i fen) {

case I0 EXC|EX OPN: /* open an admin channel */
iosb.cc=1l; iosb.lc=0;3
iosb.nread = opench(CH EX0S, PKT.i prm4);
if (iosb.nread < 1)

iosb.cc = IE DFU; /* channel open error */
ack = 13
break}
case IO EXC|EX INI: /* reinitialise EXOS v/

josb.cc=1} iosb.lc = 03
if (inrange(chn) && sametask(chn) && writeprv(chn)){

io rundown(chn); /¥ abort all outstanding I/O */
iosb.cc = exsetup(PKT.i prmé4);
}
else iosb.cc = IE PRI} /% priv or channel error */
ack = 13

break}

Oct 17 16:25 1985 drive.c Page 2

case I0 EXC|EX POS: /* position the memory relocator ¥/
iosb.cc= 13 iosb.lc = 03
if (inrange(chn) && sametask(chn)){
ch _des[chn].ch u.ch_addr.base = PKT.i prmé4;
ch des[chn].ch u.ch_addr.off = PKT.i prm5;

-
else iosb.cc = IE PRI;
ack = 13
break;

case IO EXC|EX CNF: /* get configuration message v/
iosb.cc = 1} iosb.lc = 0}

if (inrange(chn) && sametask(chn))
ucopy((char *) &init msg, &PKT.i buf.rel bias,
sizeof (struct init msg));
else
iosb.cc = IE PRI;
ack = 13
break}

case I0 EXC|EX CLS: /* close admin channel */
iosb.cc= 1; iosb.lc = 0%
if (inrange(chn) && sametask(chn))
iosb.cc = closech(chn);
ack=1}
break}

case I0_ACS|SA USL:

iosb.cc = 13 iosb.lc = 03

if (inrange(chn) && sametask(chn))
fin_pen(SA _USL);

else
iosb.cc = IE PRI;

ack = 13

break}

case IO ACS|SA URG: /* prepare for urgent msg */
if (inrange(chn) && sametask(chn))
PKT.i prm4 = ch des[chnl.ch u.ch soid;
/% remember the socket id in the pending packet
for future match on receive of urgent signal */

ch _des[chn].rundn cnt++; /¥ increment I/O rundown count */
append();
break;
default:
insert(); /* put the request in internal queue */
}
if (ack) /* processed request, inform requester ¥/
ackuser(io pkt);
}
answer ()3 /* process reply msg queue */

/* loop to process pending request on availability of free slots */

Oct 17 16:25 1985 drive.c Page 3

while (int que && (free slot = findslot()))
request();

#ifdef UNIBUS
put_sec_que()3 /* put the secondary que onto the top of int que */
f#endif

}

Oct 17 16:25 1985 exvar.c Page 1

* filename: EXVAR.C

* This file defines all global variables for ACP task.
e

struct rmsg_area rmsg_area = {0};

#ifdef UNIBUS
char align[(((sizeof(rmsg_area)/020) * 020) + 020) - sizeof(rmsg_area)] = {0};
[
* align is defined to make sure the unibus address
% corresponding to wmsg area is so aligned that its
* lower 4-bits are always zero - this is for the
* convenience of the board to make the unibus address
* 16-byte aligned.

v'c/
#endif
struct wmsg area wmsg area = {0};
struct 80ictl SOictl = {0}
struct iosb iosb = {0};
struct exctrl ex db = {0};
struct init msg init msg = {0};
struct iopkt *io pkt = {0};
struct iopkt *int que = {0};
struct iopkt *io pend = {0};
struct iopkt *mrkcls = {0};
struct msg *free slot= {0};
struct msg *mp = {0};
Uchar ¥nxtrst = {0}
Uchar *nxtwst = {0}
struct S0ictl param = {0};
Ushort inform = 13
Ushort action = 13
Ushort cmd = 0, subcmd = 03
int chn = 03
struct channel ch des[MAXCHANNEL] = {0};
int h exopnfrwrite = 03
int factor = sizeof(struct headers);
int zeint = 0 /* interrupt vector address */

t
int zeport = 03 /¥* port offset ¥/

Oct 17 16:25 1985 findslot.c Page 1

/%

* filename: FINDSLOT.C

%/

[*

this function checks the status of the next available buffer
in the queue and returns it if it belongs to host otherwise
simply returns null pointer;

*/

struct msg *findslot()

{

register struct msg *current;

current = wmsg area.ma_lastw; /* set to currently available buffer */
if ((current->nm u.msg_hd.mh_status & 03) == 0) /* check the ownership */
{
wmsg_area.ma_lastw = current->msg_link; /¥ set it to the next buffer ¥/
nxtwst = &wmsg area.ma lastw->nm u.msg hd.mh status;
return(current);

}

else
return(0)3 /* return a null pointer */

Oct 17 16:25 1985 header.c Page 1

[*
¥ filename ¢ HEADER.C
¥/

/%
*# this file includes entire environment files

*/
[* define the machine type as RSX */
#define RSX 11

include <std.h>
include <rsx.h>
include <socket.h>
include <soioctl.h>
include <brdioctl.h>
include <in.h>
include <extypes.h>
include <defines.h>
include <exqio.h>
include <exos.h>
include <exiocmd.h>
include <iopkt.h>
include <channel.h>
include <init.h>
include <rthdata.h>
include <exreg.h>
include <exvar.c>

#ifdef UNIBUS
include <unidata.h>
fendif

Oct 17 16:26 1985 init.c Page 1

/%

* filename: INIT.C

v

%

* This function initializes the global variables

¥/

init()

{

}
Ik

clear(&rmsg area, sizeof rmsg area);

clear(&wmsg_area, sizeof wmsg_area);
clear(ch_des,MAXCHANNEL*sizeof(struct channel));
clear(&SOictl, sizeof SOictl);

clear(&iosb, gsizeof iosb)}

clear(&ex db, sizeof (ex db));

clear(&init msg, sizeof init msg);

ex db.ex imsg = &init msg;

ex:db.ex:port = zeport; /¥ zeport = ex port address

* This function clears a buffer p of length size

%/

clear(p,size)
register char *p;
unsigned int sizej

int 13

for(i=03i<sizeji++)
*p++=0;

%/

Oct 17 16:26 1985 insert.c Page 1

/*
¥ filename: INSERT.C
u’f/

/* This routine enters a currently dequeued I/0 packet into
* the ACP's internal FIFO queue
*/

insert()

{

register struct iopkt *next}

#ifdef DEBUG
qio write("insert ",8,040);

frendif
if (lint_que) /* if the queue is empty */
int que = io_pkt; /* make it first element */
else /% else enter it at the end */
{
next = int_ ques
while(next->i lnk) /* fnd the last element */
next = next->i lnk;
next->i lnk = io_pkt; /* insert at the end ¥/
}
io_pkt->i lnk = 03 /% move null to the last link */
}
/%
* CL LIST
v -
* This routine puts a pending IO KIL or an SOCLOSE packet
* into the close list which is used to hold these packets
* untill all I/0 on their corresponding channels is finished.
*/
cl list()
{
register struct iopkt *next}
if(Imrkcls)
mrkcls = io pkt;
else {
next = mrkcls}
while(next->i lnk)
next = next=->i lnk;
next=>i lnk = io_pkt;
}
io_pkt->i lnk = 03
}
/¥
* GET CLS
% -
* This routine gets the SOCLOSE and the IO KIL packets from
* the close list mrkcls and returns their address if a match
* is found corresponding to the channel number passed.

Oct 17 16:26 1985 insert.c Page 2

struct iopkt *get cls(ch no)
int ch noj
{

register struct iopkt *prev, *current;

if (mrkcls) [* if at all any request is pending in EXOS */
{
prev = 03
current = mrkcls} /* start searching from the begining *f
while ((current->i prm.i prmé != ch no) && (current->i lnk != 0))
7% search for a match or end of list */
{

prev = current;
current = current->i lnk;

}
if (current->i prm.i prmé == ch no) /* if match */
{
if(prev) /* if it is not the first element in the list¥/
prev=>i lnk = current->i lnk;
else

mrkcls = current->i lnk;
return(current)}

3

else return(0);

}

else return(0);

Oct 17 16:26 1985 1iokill.c Page 1

/:'c
* filename: IOKILL.C
%/

% this routine closes all opened channel together with any opened
* gocket, after which it issues io-done for all the pending I/O
* request in ACP.

%*/

remque(head ptr) /* remove all request from this que %/
struct iopkt *¥*head ptr;

{

register struct iopkt *prev, *current, *next;

#ifdef DEBUG

qio write("remque", 7,040);
fendif

prev = 03

current = *head ptr;

while (current)

{
next = current -=> i lnk;
if (current->i tcb == io pkt->i tcb) /* I/0 request by same task ¥/
{
if(current->i fen == I0 KIL) /* if it is an IO_KIL packet ¥/
dalpkt(current); /[* then deallocate it */
else {
iosb.cc = IE ABO; /* return abort status to user */
current=>i_ast= 03 /* make sure ast routine is not entered */
ackuser(current)}
}
/* deque the packet from the list */
if (prev)
prev => i 1lnk = next;
else

*head ptr = next}

}

else prev = current}

current = next: /% check next s f
}
}
int srchn (tcb) /% return channel number having same tcb v/
Ushort tcbs
{

register int 1ij

#ifdef DEBUG
qio write("srchn",6,040);
f#endif
for (i=03 i<MAXCHANNEL ; i++) /% search all channels */
if ((ch des[i]. ch tcb == tcb) /¥ channel ownned by this task */
B && !ch mfor close(i)) /* ch not marked for close */

Oct 17 16:26 1985 1iokill.c Page 2

if (ch_des[i].ch type == CH EX0S){ /¥ ch is Admin type */
#ifdef DEBUG
qio write("close admin ch'",15,040);

#endif
closech(i); /[* just close the ch ¥*/
continue; /* search for next ch */
}
else {

ch_des[i].ch_flag |= CH_MCLOSE; /* mark it for close */
#ifdef DEBUG
qio write("return ch",10,040);
fendif
return (i)3 /* return this channel */
3
}
return (0)} /* no more opened channel for this task */

}

extern int cl_list();

int io kill()
{

register int ch no;

/%

* check if there is any opened channel for this task. If so then
* get channel # and issue SOCLOSE request and exit. (in the

* reply routine if it is a reply to SOCLOSE then it checks

* whether the I/O function code in the io packet is IO KIL, and

¥ if so instead of issuing IODONE it again insert the packet to

* the internal I/0O request queue pointed by int que thus allowing
* the ACP to close the second socket, if any).

* Else if there is no opened channel for this task then it goes to
* kill all outstanding I/0 (whether the request has been issued
* to the board or not). Then it issues an IODONE for the IO KIL

* request packet.

%/

#ifdef DEBUG
qio_write("iokill",7,040);
fendif
if (ch_no = srchn(io pkt->i tcb)){
#ifdef DEBUG
qio_write("close ch",9,040);
fendif
PKT.i_prmé = ch_no;
ex mg.nm_soid = ch _des[ch nol.ch _u.ch_soid;
ex mg.mh length = sizeof (struct messages) - factor;
ex mg.nm_request = SOCLOSE;

return (1)} /* send request to board */
}

else /* no more channel remains opened for this task */
{

#ifdef DEBUG

Oct 17 16:26 1985 iokill.c Page 3

qio write("kill all pending I1/0",20,040);
#endif

remque(&int_que); /* remove all pending requests */
/* donot remove outstandig requests as their replies will come from the board ¥/
dalpkt(io pkt); /* deallocate the dummy I/O packet */
action = 03 /* do not take any action after this ¥/
return(IE ABO); /* reply user with termination status */

}

Oct 17 16:26 1985 opench.c Page 1

/7':
* filename: OPENCH.C
7’(/

/%

* this routine first check the privilege of the task, if neccessary
* and then finds a free channel and fils up few fields such as

% channel type, ch flag (mode and protection) and the tcb field.
* If either there is privilege violation or no channel free it is

% immedietly informed to the caller by returning a negative value.

* If everything is fine it returns a channel number to the caller.

%/

int opench(dev, mode)
int dev, mode}
{

register int i, priv flag = 0;

priv_flag = getpriv(io_pkt->i tcbh); /* get privlege info ¥/

/* Now get a free channel omitting the zeroth one so that
channel # cannot be zero */

for (i = 13 i < MAXCHANNELj; i++)
if (ch des[i].ch type == CH _FREE){

ch des[i].ch type = devs /* either CH EXOS or CH SOCKET */
ch_des[i].ch tcb = io pkt—>i tcb; /* tcb address of the requester/
ch des[i].rundn cnt = 0; /% set initial rundown count as 0 ¥/

if (mode == CH—WRITE)
ch des[il.ch flag |= CH WRITE;
if (Tpriv flag)
ch des[il.ch flag |= CH PRIV;
return (i)} /% return channel # */

return(IE DFU); /% return no free channel ¥/

}
/%

* function closech(ch no) frees an open channel unconditionally
* by clearing all its field;
%/

extern struct iopkt *get cls();

int closech(ch no)
int ch noj
{

register struct iopkt *p}

if (inrange(ch no) && (sametask(ch no) ||
(io_pkt->i fen == IO KIL) || ch mfor_close(ch no)))

if(ch des[ch no]. rundn cnt > 0) { /¥ I/O is pending on this channel¥/
ch des[ch no].ch flag |= CH MCLOSE; /* then mark it for close */
return(l);

Oct 17 16:26 1985 opench.c Page 2

}
else {
ch des[ch no]. ch _type = CH FREE;
ch _des[ch no]. ch flag = 03
ch des[ch no]. ch teb = 03
]
]

ch_des[ch no]. ch u. ch addr. base =
ch_des[ch no]. ch u. ch addr. off =
/* now get the packets from the close list,if any,and iodone them */
while(p = get cls(ch no))

03
0;

ackuser(p);
return (1);
}
}
else return (IE PRI); /* privilege or ownership error */

Oct 25 15:23 1985 reply.c Page 1

/*
* reply() -> this routine post process the request to the board

*/
in; reply()

register int cmd = 03
register int cnt}
register char *pf}

j#ifdef DEBUG
qio_write("REPLY",6,040);
ffendif

switch(cmd = (int) ex _mg.nm_request & O0x7F) { /* the request code */
case SOSELECT:
case SOSELWAKEUP:
io pkt = (struct iopkt *)ex sel.nm proc;
break;
default:
io_pkt = (struct iopkt *)ex mg.nm userid;
break}

chn = PKT.i_prmé6;

iosb.lc = ex mg.nm _reply; /* board reply status */
iosb.cc = 13 /* QIO success %/
iosb.nread = 03

inform = 13 /* acknowledge the user immedietly ¥/

switch (cmd){

case NET ULOAD:

/* copy the content of nm_xmbyte first into a local buffer and
then stick this byte to the first byte of the user buffer
and then fall through the code of NET DLOAD */

bcopy((char *)&ex dl.nm_xmbyte, (char *)¶m, sizeof (char));
ucopy((char *) ¶m, &PKT.i buf.rel bias,
sizeof (char));

case NET DLOAD:
iosb.nread = ex_dl.nm_length; /* no of bytes read */
ch des[chnl.ch u.ch _addr.off += iosb.nread;

#ifdef UNIBUS
freepool(io_pkt,((cmd == NET_ULOCAD) ? 1 : 0));
#endif

break}

case NET START:

case NET GSTAT:
case NET RSTAT:

Oct 25 15:23 1985 reply.c Page 2

case NET SARP:
case NET GARP:
case NET DARP:

case NET ADDRT:
case NET DELRT:
case NET SHOWRT:
case NET DISPRT:

#ifdef UNIBUS
freepool(io pkt,1); /* consider all as read requests */
#endif

breaks

case SOSOCKET:
if (iosb.lc == 0){
ch des[chn].ch u.ch soid = ex cmd.nm_soid;
iosb.nread = chn;} /% return channel # */
}
break}
case SOACCEPT:
case SOCONNECT:
case SOSKTADDR:
if (ex cmd.nm isaddr){
bcopyr(char *)&ex cmd.nm_saddr, (char *)¶m.sa,
sizeof(struct sockaddr));
ucopy((char *) ¶m, &PKT.i soictl.rel bias,
} sizeof (struct sockaddr));

breaks

case SOSEND:
iosb.nread = ex_pkt.nm countj}

f#ifdef UNIBUS
freepool(io pkt,0); [* write request so no Xfer involved here */
#endif

break}

case SORECEIVE:
iosb.nread = ex_pkt.nm count;
if (ex pkt.nm isaddr){
bcopy((char *)&ex pkt.nm saddr, (char *)¶m.sa,
sizeof(struct sockaddr));
if (PKT.i soictl.rel bias)
ucopy((char *)¶m, &PKT.i soictl.rel bias,
sizeof (struct sockaddr))j
}

#ifdef UNIBUS
freepool(io pkt,1);
fendif

break}

Oct 25 15:23 1985 reply.c Page 3

case SOSELWAKEUP: /* socket ready for I/0 */

I1*
In this case the I/O packet address is returned in the
nm_proc field of Sock select structure in the SELECT
request to the board. nm userid field is not used here.
*/

iosb.nread = chn}

break}

case SOSELECT:
PKT.i prm5 &= ~NOREPLY; /* reply has indeed come ! ¥/

if(PKT.i prm5 & UNSELECT) { /* if unselect is requested */
iosb.nread = chnj} /* acknowledge the user normally ¥/
break}
}

if(lex sel.nm reply) { /¥ not ready yet */
inform = 03 /* donot inform user */

io pkt->i Ink = io pend; /* put back the packet in the */
io_pend = io pkt; /* pending list */
}
else
iosb.nread = chn} /* return channel # in 2nd IOSB word */
break;

case SOCLOSE:
if((io_pkt->i_fcn == IO KIL)) { /* issued by io_kill */
io pkt—>1 lnk = 1nt_que, /* put it in internal Q again */
int_que = 1o_pkt'

else
cl list(); /* put the close packet in the close list */
inform = 03 /* donot inform user right now */
ch des[chn].rundn cnt--3/* decrement I/0 rundown count as this I/0 */

/* is to be considered done */
fin pen(SA USL);/* remove select pkts from the pending list */
fin_pen(SA R0O0);/* remove oob pkts from the pending list */
closech(chn); /* close shop in ACP */
breaks}

case SOIOCTL:
switch (ex ctl.nm_iocemd){

case SIOCRCVOOB:
bcopy(ex ctl.nm iocdata, ¶m.hassa, sizeof (char));
ucopy((char *) ¶m, &PKT.i_ soictl.rel bias,
sizeof (char));
break}

case SIOCGKEEP:

case SIOCGLINGER:

case STOCATMARK:

case SIOCGPGRP:
param.hassa = *(short *) ex ctl.nm iocdata;
ucopy((char *) ¶m, &PKT.i soictl.rel bias,

Oct 25 15:23 1985 reply.c Page 4

sizeof (short));
break;

case FIONREAD:
bcopy(ex ctl.nm iocdata,¶m.hassa,sizeof(long));
ucopy((char *) ¶m, &io_pkt.i prm.i soictl.rel_bias,
sizeof (long));
break}

default:
break}
}

break;

case SOHASQOB:

fin pen(SA URG); /* give a signaloob to the user */
inform = 0}
break}
case TSCOMMAND: /* telnet server command */
dispatch(&ex tel);
inform = 03 /* donot do any IODONE on this packet */
break}

case NET PRINTF:
case NET PANIC:
pf = &mp->nm u.nm printf.nm prdataj
for(cnt=03((*pf 1= '"\n') && (*pf l= "\0'))jcnt++,pf++);
qio_write(&mp->nm u.nm_printf.nm_prdata,cnt,0);
if(¥pf == '"\n')
qio_write("\r\n",2,0);

break}
defaut:
break}
}
ex_hd.mh_length = sizeof(union exos u) - sizeof (struct headers);
ex_hd.mh_status |= MQ_EXO0S; /* change ownership */
write_port(PORTB, 0); /* inform EXOS %/

Oct 30 16:12 1985 request.c Page 1

/*
* filename: REQUEST.C
*/

#ifdef UNIBUS
extern long getpool();
f#endif

extern long absadr();

/*
* int admin()

%/

int admin()

{

#ifdef DEBUG
qio_write('"ADMIN",6,040);
#endif

if (inrange(chn) && sametask(chn) && !ch mfor close(chn))
#ifdef UNIBUS
if(PKT.i_cnt > POOLBUFSIZE)
return(IE_SPC); /* return illegal buffer */
fendif

switch (cmd){

case I0 RLB: /* Time being this is equated with IO WLB */
case I0 WLB:
ex dl.mh_length = sizeof(struct net_dload) - factor;

if (cmd == IO WLB){
if (lwriteprv(chn)) return (IE_PRI);
ex dl.nm request = NET DLOAD;

#ifdef UNIBUS
ex dl.nm source = getpool(io pkt,1);

}

else {

#endif

#ifdef UNIBUS
ex dl.nm_source = getpool(io_pkt,0);

fendif
ex dl.nm request = NET ULOAD;
}

ex dl.nm length = PKT.i cnt}

jtifndef UNIBUS

Oct 30 16:12 1985 request.c Page 2

ex_dl.nm source = absadr(& PKT.i buf);
fendif

ch des[chn].ch u.ch addr.base;

ex dl.nm dest.base u 5 X
ch_des[chn].ch_u.ch_addr.off};

ex_dl.nm_dest.off
break}

case IO EXC:
switch (subcmd){

case BRDSTART:
if (writeprv(chn)){
ex hd.mh_length = sizeof(struct net_start) - factor;
ex str.nm request = NET START;
ex_str.nm sal = PKT.i prm4;
ex str.nm sa2 = PKT.i prm5;

}
else return (IE_PRI);
break}

case NET GSTAT:
case NET RSTAT:

case NET SARP:
case NET GARP:
case NET DARP:

case NET ADDRT:
case NET DELRT:
case NET SHOWRT:
case NET DISPRT:
ex hd.mh length
ex pkt.nm soid
ex pkt.nm_request

sizeof(struct Sock pkt) - factor;
'H
subcmd §

#ifdef UNIBUS

ex pkt.nm bufaddr = getpool(io pkt,1);
ftelse

ex_pkt.nm_bufaddr= absadr(&PKT.i buf);
fendif

ex pkt.nm count = PKT.i cnt;
ex pkt.nm isaddr = 0}
switch (subcmd){ /%* check for write protection */

case NET RSTAT:

case NET SARP:
case NET DARP:

case NET ADDRT:
case NET_DELRT:
examine();
if (lwriteprv(chn))
return (IE PRI);

Oct 30 16:12 1985 request.c Page 3

default:;

}
break}
default:
return IE IFC; /* illegal function */
}
break}
default:
break}
return(l);
}
else return (IE PRI);
}
examine()
{
/* a dummy routine to set a breakpoint */
}
int access()
{

if (subcmd == SOSOCKET)
if (chn = opench(CH_SOCKET, CH WRITE))
PKT.i_prm6 = chnj /% store the channel # in I/0 packet¥/

else return (IE DFU); /* channel open error */
else
if (inrange(chn) && sametask(chn) && !ch_mfor_close(chn))
ex mg.nm soid = ch des[chn]l.ch u.ch _soid; /¥ get socket id *f

else return (IE PRI); /¥ error condition */

if ((subcmd != SOCLOSE) && (subcmd != SOSELECT)) /* no soictl struct */
if (PKT.i soictl.rel bias)
scopy(&PKT.1 soictl.rel _bias, sizeof (struct SOictl));
/* copy SOictl buffer from user space to my space in var param */
else return (IE_BAD); /* invalid param */

switch(subecmd){

case SOSOCKET:
case SOACCEPT:
case SOCONNECT:
case SOSKTADDR:
ex hd.mh length = sizeof (struct Sock _cmd) - factor;
if (ex cmd.nm isaddr = param.hassa)
bcopy(¶m.sa, &ex_cmd.nm_saddr, sizeof (struct sockaddr));
if (ex cmd.nm isproto = param. hassp)
bcopy?¶m.sp,&ex cmd.nm_sproto, sizeof(struct sockproto))s;
ex cmd.nm_type = param.typej;
ex_cmd.nm options = param.options;
ex_cmd.nm_iamroot = ((ch_des[chn].ch flag & CH PRIV) 2 1 : 0);
break;

Oct 30 16:12 1985 request.c Page 4

case SOCLOSE:
ex mg.mh_length = sizeof (struct messages) - factor;
break}

case SOSELECT:

ex sel.mh length = sizeof(struct Sock_select) - factors
ex sel.nm rw = PKT.i prmé + 13 /* read = 1 and write = 2 ¥/
ex_sel.nm proc = ((Ushort)io pkt >> 1) & Ox7FFF;

/* pass the pkt address with msb 0 */

PKT.i_prm5 |= NOREPLY ; /* indicate no reply initially */
breaks

default:
return (IE IFC); /* unknown command */

}
ex mg.nm_request = subcmd;
return (1);

}
/*

#* int transfer()

%*/

int transfer()
{
if (inrange(chn) && sametask(chn) && !ch _mfor_close(chn))

{

#ifdef UNIBUS
if(PKT.i cnt > POOLBUFSIZE)
return(IE_SPC); /* return illegal buffer */
ffendif

sizeof(struct Sock pkt) - factor;
ch_des[chn].ch _u.ch _soid;
PKT.i _cntj

ex pkt.mh length
ex pkt.nm soid
ex pkt.nm_count

Wonn

#ifndef UNIBUS
ex pkt.am bufaddr
#endif

absadr(&PKT.i buf);

if ((subcmd == SOSEND) || (subcmd == SORECEIVE))
{

scopy(&PKT.i soictl.rel bias, sizeof(struct SOictl));
if (ex pkt.nm isaddr = param.hassa)
bcopy?¶m.sa, &ex pkt.nm saddr,sizeof(struct sockaddr))s

if ((subcmd == SOSEND) || (subcmd == IX WRS)) {
ex pkt.nm request = SOSEND;

#ifdef UNIBUS
ex_pkt.nm bufaddr = getpool(io pkt,1);
#endif

Oct 30 16:12 1985 request.c Page 5

}
else {
ex pkt.nm request

SORECEIVEj;

#ifdef UNIBUS
ex pkt.nm bufaddr

getpool(io pkt,0);
#endif

return(l);

}
else return (IE_PRI);
}
[*
* int excontrol()
*/

int excontrol()
{
char achar;
short anint}
struct rtentry route;

if (inrange(chn) && sametask(chn) && !ch_mfor_close(chn))
{
ex ctl.mh length
ex ctl.nm request
ex ctl.nm soid

sizeof(struct Sock pkt) - factor;
SOIOCTL;
ch _des[chn].ch _u.ch soid;

switch (subemd) {
case FIONREAD:
case FIONBIO:
case FIOASYNC:

ex_ctl.nm ioccmd = IOXFIO(subcmd);
break;
default:
ex_ctl.nm iocemd = IOXSIO(subemd)s
break;}
}

scopy(&PKT.i soictl.rel bias, sizeof (struct sockaddr));
switch(subemd){

case SIOCGKEEP:

case SIOCGLINGER:

case SIOCRCVOOB:

case SIOCATMARK:

case SIOCGPGRP:

case FIONREAD:
break}

case SIOCSENDOOB:
bcopy(¶m.hassa, &achar, sizeof (achar));

Oct 30 16:12 1985 request.c Page 6

ex ctl.nm iocdatal[0] = achar;
break;

case SIOCSLINGER:

case SIOCSKEEP:

case SIOCSPGRP:

case SIOCDONE:

case FIONBIO:

case FIOASYNC:
becopy(¶m.hassa, &anint, sizeof (anint));
*(short *)ex ctl.nm iocdata = anint;

break;
default:
return(IE_IFC); /% unknown comand */
}
}
else return (IE PRI); /[* if not inrange or sametask ¥%/
return(1); /* else return success ¥/
}
[*
* int request()
*/
request()

register int ex send = 1j

#ifdef DEBUG
qio _write("request",8,040);
frendif

io_pkt= int quej /* deque an packet from internal queue */
int_que = int_que->i_lnk;

io_pkt->i lnk = 03

cmd = io_pkt->i fcn & 0xff003; /* mask lower 8 bits */

subemd = io pkt->i fcn & 0x00£f;/* mask off upper 8 bits */

mp = free slot;

chn = PKT.i prmé; /* channel # if any *f
clear(¶m.hassa, sizeof (struct SOictl));
action = 13 /* take action always unless not restricted by any routine ¥/

if(io_pkt—>i_fen == IO KIL) {
ex_send = io kill();
chn = PKT.i prmé; /% re-initaialize ch # as IO_CAN does¥/
} /* not have any in it */
else
switch (cmd){

case I0 WLB: /* write into EX0S's memory ¥*/
case I0 RLB:
case IO _EXC:

ex send = admin();

break}

Oct 30 16:12 1985 request.c Page 7

I0_AcCS:
ex send
break;

[*

case
access();

I0 XFR:
ex send
break}

case
transfer();

case I0 SOC: /*
ex send

brgak;

excontrol ()}

case I0_TEL:
ex send

break;

telnet();

case TS HNG:
ex send

breaks

hangup()}

default:

ex send IE PRIj

}

if(action) /* send request
if(ex_send > 0){

or acknow

ex mg.nm userid = (long) io_pkt;
ex mg.nm _reply = 03
ex hd.mh_status |= MQ_EX0S;
if(io_pkt){ /* if io_pkt ==

append();

ch des[chn].rundn_cnt++;

}
write port(PORTB, 0); /%
return (1); /%
}
else { [* if ex send < 0 ¥*/

iosb.cc = ex send; A

ackuser(io pkt);
wmsg_area.ma_lastw = mp; /%
nxtwst = &wmsg area.ma_lastw->nm_u

socket access operation */

/% data transfer with the socket */

real socket control operations ¥*/

*/

/* error no such command

lege user */

0 do not append ¥/

/% increment rundown count */
interrupt EX0S */
success */
return errorcode */

release unused slot */
.msg hd.mh status;

}
else /% if not action %/
{
wmsg_area.ma_lastw = mp;
nxtwst = &wmsg_area.ma_lastw->nm u.msg hd.mh _status;
}
}
/* becopy() : copy two buffers by count */

int bcopy(from, to, count)
char *from, *to;
int count}

{

Oct 30 16:12 1985 request.c Page 8

for (3 count > 03 count--)
*to++ = *fromt+s

Oct 17 16:26 1985 rth.c Page 1

/%

* filename: RTH.C

*/
/¥

* Code for RTH -> the telnet server on RSX-11M - The different routines

v/
I&S

*

*/

*

DISPATCH --> this routine calls the relevant routine according to the

received telnet command

struct cmd *getcmd();

dispatch(ser)
struct Telnet srvr *ser;
{
register struct cmd *c}
#ifdef DEBUG
qio write("in dispatch",11,040);
ffendif
if(c = getemd(ser->nm_tsrqst))
(*c~>handler)(ser,0); /* the 2nd param is 0 for do-option routine ¥/
#ifdef DEBUG
_ qio_write("out dispatch ",12,040);
fendif
}
/*
% GETCMD —--> this routine searches for the relevant routine according to
* the given telnet command
%/
struct cmd *
getcmd(req)
TEXT req;
register int is

f#ifdef

f#fendif

#ifdef

f#endif

register struct cmd *tab = cmdtab;

DEBUG
qio write("in getcmd",9,040);

for(i=03i<PTYNO;i++,tab++) {
if(tab->tsrqst == req) {

DEBUG
qio_write("out getcmd ",10,040);

Oct 17 16:26 1985 rth.c Page 2

return(tab);
}
}
if(i == PTYNO)
return(0)

A3
* TELNET--> this routine sends a message to the EXOS for telnet.
*/

telnet()

{
register struct packet *p = (struct packet *)io pkt}
register struct status *st = pty status + p—>pty no;

#ifdef DEBUG
qio write("in telnet",9,040);
fendif

action = 03 /* assuming we are not sending any request to EX0S */
if(p->byte cnt)
if(st->carrier on) {
if(!st->reply pending) {
p—>request = TSWRITE;
wr_to_exos(p); /* write into the wmsg_area ¥/
st->reply pending = 13/% reply is now pending*/
io pkt = 03 /¥ so that it is'nt put in the */
/* pending queue of the ACP */

}

else {

#ifdef DEBUG
qio_write('¥* SEVERE ERROR ** - pkt from ZT before reply",45,040);
#endif

io_pkt = 03

}
else {

* If not logged on then packet cannot go to
* EX0S and hence we give an O/P interrupt and
* also deallocate the packet from ZT.
%/
if(p->moreto_op);
out_int(p->pty_no);

#ifdef DEBUG
qio write('"pkt from ZT lost as not logged in",33,040);
f#endif

}
else {
/* then it is a dummy packet */

Oct 17 16:26 1985 rth.c Page 3

#ifdef

ffendif

}
[%

if(!st->reply pending)
/% then we won't get a write reply from EXOS so give an O/P int. */
out_int(p->pty no);
) _

dealoc_b(p,sizeof(struct packet)); /* deallocate packet from ZT */
DEBUG

qio_write("out telnet ",10,040);

return(1l); /* ex send should always be 1 for telnet */
/* end of wr_to _exos */

* WR_TO EXOS ~- This routine fills up the wmsg_area for telnet

v/

wr_to_exos(p)
struct packet ¥*pj

action = 13 /* we are sending a request to EX0S */
ex_tel.mh_length = sizeof(struct Telnet_srvr) - factor;
ex_tel.nm soid = p=>pty no;

ex tel.nm request TSCOMMAND ;

ex tel.nm tsrqst

- p—>request;
ex tel.nm tsdlen

p—>byte_cnt;}

bcopy(p->w_data,ex tel.nm tsdata,ex tel.nm _tsdlen);

}
[
% CARON
*/
caron(p) /% TSCARON/RLCARON */
struct Telnet srvr *p;
{
register struct status *st = pty status + p->nm_soid;
char ¢ = ctrl('C');
#ifdef DEBUG
qio _write("in caron ",8,040);
#endif
if(st->carrier on)
return(0);
else
if(set_car on(st->pty number)){ /* enable unit and set got carrer */
st~>carrier on = 1; /* say carrier on */
qio_zt(p->nm soid,&c,1);
#ifdef DEBUG

qio write("out caron",9,040);

Oct 17 16:26 1985 rth.c Page 4

f#endif

}

/%
% BYE
%/

static char *bye msg = "BYE\r ";

bye(p) /% TSCAROFF */
struct Telnet srvr ¥*p;
{

register struct status ¥st = pty status + p->nm soid;
char ¢ = ctrl('C');

#ifdef DEBUG
qio write("in bye ",6,040);
fendif

if(!st->carrier on)
return(0);

else {
st->carrier on = 03 /* indicate carrier off */
qio_zt(p->nm soid,&c,1); /* send a “C first */

qio_zt(p->nm_soid,bye_msg,4);

#ifdef DEBUG
qio write("out bye",7,040);

#endif
}
/¥
* ZT READ
*f
zt_read(p) /* TSREAD */
struct Telnet srvr *pj
{

register struct status *st = pty status + p—>nm_soid;

#1fdef DEBUG
qio write("in zt_read ",10,040);
#endif

if(!st->carrier on)
return(0)
else {

#ifdef DEBUG
Lo
int i3
i =03
i="'0"+ p->nm _soid;

Oct 17 16:26 1985 rth.c Page 5

qio write(&i,2,040);
}
ftendif

qio_zt(p->nm_soid,p->nm_tsdata,p->nm tsdlen);

#ifdef DEBUG
qio _write("out zt read",11,040);
f#fendif

}

/%
* WRITE REPLY
%/ -

wr_reply(p) /* TSWRITE (x2h) */
struct Telnet srvr *p;

{

register struct status *st = pty status + p—>nm soid;

#ifdef DEBUG
qio write("in wr_reply",11,040);
f#endif

if(!st->carrier on)
return(0);
else {
if(p->nm_reply == TSERRPENDING)
return{(0);
else {
st=>reply pending = 0;
out_int(p->nm soid);

}

#ifdef DEBUG
qio write('"out wr_reply ",12,040);

f#endif
}
/%
* NVTFUNCT
%/
nvtfunct(p) /% TSNVTFUNCT */
struct Telnet srvr *pj
{

char ch;
register struct status *st = pty status + p—>nm soid;

#ifdef DEBUG
qio write("in nvtfunct",11,040);
f#endif

Oct 17 16:26 1985 rth.c Page 6

if(!st=>carrier on)
return(0);
else {
switch (p->nm tsdata[0]) {
case AO-MAXBYTVAL :
ch = ctrl('0');
break;
case EC-MAXBYTVAL :
ch = BS3
break}
case EL-MAXBYTVAL :
ch = ctrl('U');
break;}
case IP-MAXBYTVAL :
ch = ctrl('c');
breaks
case AYT-MAXBYTVAL:
default:
return}
} /* end of switch ¥/
qio_zt(p->nm_soid,&ch,1);
} /[* end of else */

#ifdef DEBUG
qio write("out nvtfunct ",12,040);

#endif
} /¥ end of nvtfunct() */
[
¥ DO OPTION
*f
do_option(p,t) /% TSDOOPTION */
struct Telnet srvr *pj;
int ts
{

static char stadd[2];
register int i=03
register struct status ¥st = pty status + p—>nm_soid;

#ifdef DEBUG
qio write("in do_option ",12,040);
f#endif

if(!st->carrier_on)
return(0);
else {
switch (p->nm_tsdatal[0]) {
case TELOPT BINARY: {
stadd[0] = TC BIN;
if(e) { [* if £ =1 then it is a dont_option */
st=>binary opt = 03
stadd[1] = 03
break}

Oct 17 16:26 1985 rth.c Page 7

}
else if(1t) {
st=>binary opt = 13
stadd[1] = 13
break}
}
}
case TELOPT ECHO: {
stadd[0] = TC_NEC;
if(e) { /* if £ = 1, it is a dont option */
st=>echo_opt = 03
stadd[1] = 13
break}

else if(lt) {
st—>echo opt = 1;
stadd[1] = 0;
break;
}
}
case TELOPT SGA:
default:
returnjy
} /* end of switch */
qio_smc(p->nm_soid,stadd);
} /* end of else */

#ifdef DEBUG
qio write("out do_option'",13,040);

#endif
} /* end of function ¥*/
[*
* DONT OPTION
%/ -
dont_option(p) /* TSDONTOPTION */
struct Telnet srvr *pj;
{

#ifdef DEBUG
qio write("in dont option '",14,040);
#endif

do_option(p,1);

#ifdef DEBUG
qio_write("out dont_option',15,040);
f#endif

}

/%
* HANGUP

Y

Oct 17 16:26 1985 rth.c Page 8

% % % ¥ %

*/

hangup()
{

}
%

This routine is called from 'request' when a 'BYE' is given
bye the remote user and the 'BYE' task gives a QIO IO.HNG to the ZT
driver which in turn gives a packet to ACP with a func code TS.HNG
and this routine actually sends the request to the board to hangup
the line.

register struct packet *p = (struct packet *)io_pkt}
register struct status *st = pty status + p->pty noj

if(st=>carrier_on){
p—>request = TSHANGUPj
wr_to_exos(p);

st->carrier_on = 03 [* drop carrier */
}
else
action = 03
io pkt = 03

dealoc b(p,sizeof(struct packet)); /* deallocate packet from ZT */
return(l);

* This ends the code for RTH

*/

Oct 17 16:26 1985 setup.c Page 1

/*

* filename: SETUP.C

%/

* exsetup:

*/

- setup message queue
~ send init message to exos
- analyse board response

extern int zeint}
extern long reloc();

#ifdef UNIBUS

extern int *umradd;

extern long unilbuf} /* 18-bit unibus address for local pool ¥/

extern long uni_msg; /* 18-bit unibus address for msg area */

extern long phy buf}
ffendif
int exsetup(mode)

int modej}

{

struct rmsg_area *rmsgarea;

struct wmsg area *wmsgareas

register struct msg “*current, *next

long addr;

long r base, w_base;

Uchar *ap, init_addr[81;

int err, timeout}

register struct init msg *im;

int i3

Uint Xceiver}

rmsgarea = &rmsg area;

wmsgarea = &wmsg_area;

r_base = reloc(rmsgarea) /* rmsgarea base segment addr */
#ifdef UNIBUS

3 /* for UNIBUS the 18-bit addr is l6-byte aligned */
felse |

& Ox3FFFF0; /* in Q-bus make phy-addr l6-byte aligned */
#endif

w_base = reloc(wmsgarea) /* wmsgarea base segment addr */
#ifdef UNIBUS

H /* for phy-addr need not be lb6-byte aligned ¥/
felse

& Ox3FFFFO0; /* for Q-bus it must be lé-byte aligned */
#endif

/* link together the read "exos to host' message queue */

rmsgarea->ma_rlink = (Ushort)(reloc(rmsgarea->ma rmsgs) - r_base);

Oct 17 16:26 1985 setup.c Page 2

/* exos link to read queue ¥/

current = (struct msg *) (&rmsgarea->ma_rmsgs[NET RBUFS-1]);
rmsgarea->ma lastr = rmsgarea—->ma_rmsgs;}
nxtrst = &rmsgarea->ma_lastr->nm u.msg hd.mh status;
for(i=03i<NET RBUFS;i++) {
next =(struct msg *)(&rmsgarea->ma_rmsgs[il);
current->nm _u.msg_hd.mh link = (Ushort)(reloc(next) - r base);
current->nm u.msg_hd.mh_length = sizeof(union exos u)
- sizeof(struct headers);

current->nm u.msg _hd.mh status =3;
current->msg_link = next}
current = nextj
}
/* link together the write "host to exos' message queue */

wmsgarea->ma_wlink = (Ushort)(reloc(wmsgarea->ma wmsgs) - w_base);

current = (struct msg *) (&wmsgarea -> ma_wmsgs[NET WBUFS-1]);

wmsgarea—>ma lastw = wmsgarea ~> ma _WMmSgES 3

nxtwst = &wmsgarea->ma_lastw->nm u.msg_hd.mh _status;

for (i=03i < NET WBUFS,1++) {
next = (struct msg *) (&wmsgarea-> ma_wmsgs[i]);
current->nm u.msg hd.mh link = (Ushort)(reloc(next) - w_base);
current->nm u.msg_hd.mh _length = sizeof (union exos u) -

sizeof(struct headers)j

current=>nm u.msg_hd.mh status = 03
current -> msg_link = next;
current = next}
}
/* setup initialization message */
im = ex db.ex 1msg,
clear(im,sizeof(struct init _msg)); /% clear the init msg area */
im -> im newstyle = 13 /* use new style message */
im -> im result = OxFF; [* reserved */
im => im mode = mode & 0x07F; /* setup mode %/
im->im hdfo[0]=im->im hdfo[l] = 1; /* do auto-byte/word swapping¥*/
im => im_addrmode = 3; /% absolute address mode */

/* data order test patterns ¥/

im => im byteptn[0] = 1;

im -> im byteptn[1] = 3;

im -> im_byteptn[Z] =73

im -> im byteptn[3] = 0XF;

im => im wordptn[O] = 0X1033

im -> im wordptn[l] = 0X70F;

im => im longptn = 0X103070F;

im -> im_10loff = im -> im 10lseg = OXFFFF;
im -> im nhosts 3
im -> im result = im -> im nmb = im -> im nproc = im -> im nslots=0XFF;

Oct 17 16:26 1985 setup.c Page 3

im => im _h2exqaddr =
#ifdef UNIBUS

uni_msg + (w_base - r_base);
ftelse

w_base;
fendif

/* 22 bit physical base address */
im->im h2exoff = (Ushort)(reloc(&wmsgarea->ma wlink) - w base);
/* 16 bit physical address */

03 /* polled by EXO0S */
03

im -=> im h2extype
im => im h2exaddr

im -=> im ex2hqaddr =
#ifdef UNIBUS

uni msg;
felse

r basej
f#endif

/* 22 bit physical base address */
im->im ex2hoff = (Ushort)(reloc(&rmsgarea->ma rlink) - r base);

im -> im_ex2htype = 43 /* bus vectored interrupt */
im -> im ex2haddr = ((long) zeint << 16); /* interrupt address */
/% the address is shifted 16 bit so that lower word remains zero */

/* init message initialization is complete */

/* reset exos by writing onto port Aj then after 2 secs
check the status and report an error v/

write port(PORTA,0);
delay(2,'s'); /* wait for 2 secs for successful initialization */
for(33){
if(((Xceiver = read port(PORTB)) & PB_ERROR) == 0){
/* check if success bit is clear */
if(mode & 0x80) /* if infinite timeout is requested */
continue}
else
return(PB_ERROR);
}

else
breaks
}

init addr[0] = init addr[1] /* move FF ¥/

init_addr[2] = init addr[3] /* move 0 ¥/

addr = reloc(ex db.ex imsg); /* int_addrs(0..3] is init
- as OXFFFF0000 */

o

I
—
“-e we

#ifdef UNIBUS
{

unsigned int *p = (int)&addr}

Oct 17 16:26 1985 setup.c Page 4

*umradd++ = *++p; /* use the first UMR of the pool and load it */
*umradd-- = *--p;
addr = unilbuf; /* 18-bit address */

}
ffendif

for(i = 03 i<é4; i++) {
init_addrs[i+4] = addr;
addr >>= 83

}

/* write the init_addrs to port B preceded by OXFFFF0000 */

#ifdef DEBUG
qio_write("init",5,040);
#endif
for (i =03 1 < 83 i++){
timeout = 100000}
while((read port(PORTB) & PB_READY)&& timeout--)

if(timeout == 0){
if(mode & 0x80){ /[* is infinite timeout requested */
timeout = 1000003
continue}
}
return(read port(PORTB));
}

write port(PORTB,((init_addr[i])&0XFF));
}

#ifdef DEBUG
qio write ("over",5,040);

#endif
delay(2,'s');
for(33){
if(im->im result){
if(mode & 0x80){
delay(2,'s');
continue; /* infinite timeout ¥/
}
ex db.ex_init = 03
break;
}
else {
ex db.ex_init = 13
break}
}
}
#ifdef UNIBUS
{
unsigned int *p = (int)&phy buf}
*umradd++ = *++p; /* restore lst UMR */
*umradd-—- = *--p;

Oct 17 16:26 1985 setup.c Page 5

#endif

im->im dummy2 = Xceiver; /* error status of Xceiver cable */
return(im->im result);

Nov 9 10:57 1985 signaloob.c Page 1

/*
* filename: SIGNALOOB.C
*/

int fin pen(x)
int x3
{
register struct iopkt ¥*pkt, *prev;
int fn_code,b,c,ch no;

prev = 03
pkt = io_pend;

if(x == SA USL)
fn_code = IO ACS|SA SEL;
else - -
fn_code = I0 ACS|SA URG;
¢ = chnj -

while (pkt){
if(x == SA URG){
b = pkt=>i prm.i prmé;
€c = ex_oob.nm_soid;
}
else
b = pkt=>i prm.i_prmé;

if((pkt->i fen == fn_code) && (b == c)){
if(x == SA USL)
if(pkt->i prm.1 _prm5 & NOREPLY){
pkt->i prm.i prm5 |= UNSELECT; /* set it unselect */

prev = pktj
pkt = pkt=>i lnk;
) continue}
if (prev)
prev=>i lnk = pkt->i lnk;
else -
io_pend = pkt->1 Inks
if((x == SA USL) || (x == SA ROO)) /* only for SA USL and SA ROO */
pkt->i ast = 03 " /¥ see that ast is not entered */

ch no = pkt->i prm.i prmé6; /* get the channel nmumber */
if(x == SA URG)

iosb.nread = ch _noj /% return channel number in iosb¥/
ch_des[ch_nol.rundn cnt--; /* rundown the I/O %/
ackuser(pkt)3
}
else

prev = pkt}
pkt = pkt->i lnk;

Oct 17 16:26 1985 uniacp.c Page 1

[*
* filename: UNIACP.C
*/
/%
#* This file contains the 'C' code for incorporating ACP on a UNIBUS M/C
*
/*/
%* UNI_INI
s
* This routine is called for initializing the unibus related
* stuff. It calls a macro routine to assign the UMR's.
*f
uni_ini()
{
srex(); /* specify exit ast for cleanup of UMR's */
clear(pool_im,sizeof pool im);
rel pool(); /* initialize relocated address of pool */
if(lass umr()) {
qio write("* FATAL ** - NO UMR'S AVAILABLE",32,040);
exit ()3
}
/* call a macro routine to assign 3 UMR's for pool
* area and the message area and also load them and
* gave the physical UNIBUS address (18-bit) in a
* global area.
Y f
}
/%
%* GETPOOL
*
* This routine gets a free buffer from the pool and allocates
* it for the requester. This returns the 18-bit UNIBUS address
* of the allocated slot. If allocation fails then the packet is
¥* put in a secondary queue and action is set to 'O' so that the
* board does not get any message for the time being.
*/
long
getpool (pkt,st)

struct iopkt *pkt;

Ushort st;

{
register struct pool im *pl = pool imj
struct rel_addr tmp_addr;
int 13 -

for(i=03i < POOL BUFSji++,pl++)
if(pl->state != ALLOCATED) {
pl->owner = pkt}

pl->state = ALLOCATED;
if(st) { /* if it is a write request then do Xfering */
if(i <= 7) { /* is it within lst 4KW ? */

tmp addr.rel bias = rellbuf.rel bias;

Oct 17 16:26 1985 wuniacp.c Page 2

tmp addr.dis bias = rellbuf.dis bias + (POOLBUFSIZE * i);
}
else {
tmp addr.rel bias
tmp addr.dis bias
}

acopy(&pkt->i prm.i buf,&tmp addr.rel bias,pkt->i_prm.i_cnt);

rel2buf.rel bias;
rel2buf.dis_bias + (POOLBUFSIZE * (i-8));

nn

break}
}
if(i == POOL_BUFS) { /* if no pool available */
action = 03 /* donot send anything to the board */

pkt=>i Ink = sec_quej /% put the pkt on top of the sec que */
sec_que = pkt}
return(0);

}
if(i <=7)
return{unilbuf + (POOLBUFSIZE * i));
else
return(uni2buf + (POOLBUFSIZE * (i - 8)));
}
/*
* PUT SEC_QUE
*/
/%
%*

Puts the secondary que on the top of the internal queue in the reverse
* order i.e. the last element of the sec queue will finally be on top of
* the internal queue.

%/
put_sec_que()
{
register struct iopkt *tmp;
while(sec_que) f{
tmp = sec_que->i_lnk;
sec_que->i_lnk = int_que;
int _que = sec que;
sec_que = tmp}
}
}
/*
* FREEPOOL
¥
* This routine frees the allocated pool and also Xfers the data
¥ which has arrived from the board to the user area.
%/
freepool (pkt,st)

struct iopkt *pkt;
Ushort st}
{

register struct pool im *pl = pool imj

Oct 17 16:26 1985 wuniacp.c Page 3

struct rel addr tmp addr;
register int i3

for(i=03;i < POOL BUFS;i++,pl++)
if(pl->owner == pkt) {
pl->state = DEALLOCATED;
pl->owner = 03
break}
}
if(st) {
if(i <= 7) {
tmp_addr.rel bias
tmp _addr.dis bias
}
else {
tmp addr.rel bias = rel2buf.rel bias;
tmp_addr.dis bias = rel2buf.dis bias + (POOLBUFSIZE * (i - 8));

rellbuf.rel bias;
rellbuf.dis bias + (POOLBUFSIZE * i)}

acopy(&tmp addr.rel bias,&pkt->i prm.i_ buf,pkt->i prm.i_cnt);
/* Xfer read data from pool to the user buffer */

Oct 17 16:25 1985

FILEMANE:

ACPUCB: -->

e B we e B WS Ve we We W we

-e se

.TITLE
. IDENT

s we we we

SYSTEM

-e

.MCALL
UCBDF$
DCBDF$

C$SPRT=0
.PSECT
ACPUCB: :
.IF DF

JSR
MOV

.ENDC
CALL

CLR
MOV
20$: MOV
BEQ
CMP
BNE
INC
MOVB
MOV
MOV
40$: MOV
CLR

ACPUCB.MAC

acpucb.mac Page 1

This routine searches the DCB list and picks up the ZE device
DCB. It then moves the TCB address of the ACP(current) task's
TCB address to the U.ACP field of each UCB of the device.

As it manipulates the system database it first switch itself
to system state such that all other processes are lock, by
calling to $SWSTK routine.

RO returns the completion code 0 --> unsucess 1 --> success

ACPUCB
/01/

MACRO CALLS

UCBDF$,DCBDF'$

C$TEXT,I,RO

CS$SPRT

R5,C$SAV
R5,-(SP)

$SWSTK,RET

succ

#$DEVHD,R2
(R2),R2

60$
#"ZE,D.NAM(R2)
20%

succ
D.UNIT+1(R2),R3
D.UCBL(R2),R4
D.UCB(R2),R2
$TKTCB,U.ACP(R2)
U.CW2(R2)

WO e Ve WS WS e WS Ve BE BE We We B we

N WS S Ve Ve U WE WS BE UE we Ve Ve we

global reference label

make it 'C' callable
save C frame pointer

switch to system state and return to user
state at RET after execution of RETURN
indicate unsuccessful

set pointer to the first DCB

get next DCB address

no more DCB exit, it is unsuccessful exit
is it ZE device ?

if NE nojj go for next DCB

indicate success

get number of UCBs (units)

get size of the UCB

get first UCB address in R2

get ACP(current) task TCB address

clear user characteristics word

Oct 17

604

RET:

succ:

16:25 1985

.IF DF
MOV
MOV
MOV
.ENDC
ADD
DEC
BPL
RETURN
MOV
.IF DF

MOV
JMP

.IFF
RETURN

.ENDC

«BLKW

.PSECT
.EVEN
.END

UNIBUS

U.ACP+2(R2),PHY.BUF 33
U.ACP+4(R2),PHY.BUF+2 HH
HH

R2,ZEUCB

R4 ,R2
R3

408
succ,RO

C$SPRT

(SP)+,RS
C$RET

1

C$TEXT,I,RO

acpucb.mac Page 2

higher order address
lower order address
save UCB address

get next UCB address
decrement UCB count
if PL(us) more UCB

switch to user state

we we we we
we we we we

sreturn result in RO

ad just frame pointer
return to caller

.e we

Oct 17 16:25 1985 dqpkt.mac Page 1

filename: DQPKT.MAC

This routine dequeues a pakcet from the listhead of the ACP task. It first
switches to system state before dequeueing. The address of the dequeued
packet is returned in RO making it callable from C.

$E G G G N0 GF S ES We

C$SPRT=0 3 this routine becomes callable from a C routine
.MCALL TCBDF$, UCBDF$
TCBDF$
UCBDF$
.TITLE DQPKT

.IDENT /01/
+PSECT c$text,i,ro

IOPKT: .BLKW 1 3 local variable to hold I/0 packet address
DQPKT: ¢

.IF DF C$SPRT

JSR R5,c$sav $ save register R2-R5 and adjust stack
MOV R5,-(SP) 3 save RS i.e frame pointer of C routine
«ENDC

CLR I0PKT 3 clear I/0 packet address

SWSTKS$ USR switch to system state to lockout other

processes

MOV $TKTCB,RO get ACP(our) TCB address
ADD #T.RCVL,RO get receive queue listhead
CALL SQRMVF attempt to dequeue packet
BCS 20$ if CS no pakcet
MOV R1,IOPKT return address of I/0 packet
BR 60$ return
204: MOV NXTRST,R2 get pntr to status field of reply Q
BEQ 408 initially the ptr is null and since

there is no job for acp - sleep

BITB #3,(R2) check ownership

WS e UE Ve Ve We We Ve WS WS WS We Ve Ve WMe VS Ve W We ue
W NS WS e e WE Ve Ve Ue W e WSS BS UE S WE We We We Be

BEQ 60$% if EQ owner=host, process reply
TST INT.QUE check if anything pending in internal Q
BEQ 408 if EQ nothing, then sleep
MOV NXTWST,R2 check availibility of free slot
BEQ 408 initially ptr is null so sleep since no job
BITB #3,(R2) check ownership
BEQ 60$ if EQ slot available, procees request
40%: JMP $STPCT go to sleep
608
RETURN 33 return to user state

Oct 17

USR: MOV

IOPKT,RO

«IF DF C$SPRT

MOV
JMP

«IFF

RETURN

-ENDC

ACCKUSER

C function:

Ve Ve WS e We UE We WS Ve Ve We e Wwe WP

ACKUSER::

(SP)+,R5
cbret

ackuser(io_ pkt)
struct iopkt *io pkt;

.IF DF C$SPRT

JSR
MOV
MOV

.ENDC

MOV
MOV
MOV
ADD
MOV
CLR
DEC
BNE

10$:

CALL
MOV
MOV
MOV
CALL

RETURN
RET:

R5,c$sav
R5,-(SP)
4(R5),R3

R3,R0

R3, IOPKT
I1.UCB(R3),R5
#1.PRM,RO
#10,R1

(RO)+

R1

10%

$SWSTK ,RET
I0SB,R0
I0SB+2,R1
IOPKT,R3
$IOFIN

’

.
’
.
?

-e we we

e we we we we we we

16:25 1985 dqpkt.mac Page 2

return I/0 packet address in RO

restore frame pointer of the C routine
$ unsave register and adjust stack & return

this is a C callable routine, which will issue a $IOFIN
to inform the requesting task of IO completion. This is
only compatable with C function call.

IOSB is the address of the IOSB

save register and adjust stack
save frame pointer
move address of I/0 packet

move address of I/O pkt in RO
save I/0 pkt addr

move address of UCB in R5

RO now points to parameter block
clear 8 words in param block
clear parameter word

decrement loop count

switch to system state
move first word of IOSB
move second word of IOSB
get I/0 pkt addr

3 complete io process

return to task state

Oct 17 16:25 1985 dqpkt.mac Page 3

.IF DF C$SPRT

MOV (SP)+,R5 ; restore frame pointer
JMP CSRET $ return to the caller
+IFF

RETURN

.ENDC

This is a 'C' callable routine, which returns the absolute
physical address of an input virtual address.

long reloc(v_addr)
Ushort v_addr;

This routine is also callable from macro, input outputs are
INPUT: RO -> virtual address

OUTPUT: RO -> higher order address word
Rl -> lower order address word

W W Ve WE B e VWS DE BE WS BE BE US WS WS B

RELOC:
.IF DF C$SPRT
JSR R5,C$SAV $ save all register
MOV R5,-(SP) ; save frame pointer
MOV 4(R5),R0 3 get address parameter
.ENDC
CALL $RELOC $ relocate virtual address
BIC #160000,R2 3 mask out APR index and get displacement
MOV R1,R0O $ get relocation bias in RO
ASH #-12,R0 3 get upper 6 (out of 22) bits in RO
BIC #177700,R0 $ mask other 10 bits
ASH #6,R1 s get upper 10 bits of lower 16 bits in Rl
BIS R2,R1 3 append lower 6 bit offset
.IF DF C$SPRT
MOV (SP)+,R5 ; restore frame pointer
JMP CSRET 3 restore all register and return
.IFF
RETURN

.ENDC

Oct 17 16:25 1985 dqpkt.mac Page 4

this is a "C" callable routine which returns the absolute physical
address of an input pointer to a relocated address.

long absadr(reladr)
struct rel addr *reladr;

this routine is also callable from macro with input & output as
INPUT: RO -> pointer to the relocated address

OUTPUT: RO -> higher order physical address
Rl -> lower order physical address

WS e AT WS W e WE Ve WE Ve B BE W Be

ABSADR::
.IF DF C$SPRT

JSR R5,C$SAV 3 save all registers

MOV R5,-(SP) 3 save frame pointer

MOV 4(R5),R0 3 get the input parameter

.ENDC

MOV (RO),R1 ; get relocation bias in Rl

MOV 2(R0O),R2 3 get displacement bias in Rl

BIC #160000,R2 s mask out the APR index

MOV R1,R0O 3 get relocation bias in RO

ASH #-12,R0 3 get lower 6 bits of higher order adr
BIC #177700,R0 3 mask out remaining bits

ASH #6,R1 3 get upper 10 bits of lower address
BIS R2,R1 ; append lower 6 bit offset(displa)

.IF DF C$SPRT

MOV (SP)+,R5 ; retore frame pointer

JMP CSRET 3 restore all register and return
.IFF

RETURN

.ENDC

this is a 'C' callable routine to get the privilege info of a task
g

int getpriv(tcb)
int tcbj /[* tcb address of the task */

ws we we we e we

Oct 17 16:25 1985 dgpkt.mac Page 5

INPUT
OUTPUT

“e we we we

GETPRIV::
+IF DF C$SPRT

JSR R5,C$SAV
MOV R5,-(SP)
MOV 4(R5),R3
.ENDC
CLR RO
BIT T.ST3(R3),#T3.PRV
BEQ 20%
MOV T.UCB(R3),R2
BIT U.CW2(R2),#U2.PRV
BNE 10%
MOV U.DCB(R2),R2
CMP #''C0,D.NAM(R2)
BNE 20%
105:
INC RO
204
.IF DF C$SPRT
MOV (SP)+,R5
JMP CSRET
.IFF
RETURN
.ENDC

.PSECT C$TEXT,I,RO

.EVEN
.END

-e we es

e WS We Ws we we we we Yo

-e

e we

if called from macro , input & outputs are
R3 -> tcb address of the task
RO -> =1 if priv else clear

save all register
save frame pointer
get tcb address

assume non-privilege

test privilege bit

if EQ then task is non-privileged
get the ucb of 'ti:'

test privilege bit

if NE then privileged

get 'TI:' DCB

is it the console?

if NE then no, so non-privileged

output privilege

restore frame pointer
restore register and return

Oct 17 16:25 1985 rthmac.mac Page 1

filename:

language

_e e e we we we

.TITLE
« IDENT

.MCALL
UCBDF$
PKTDF$
DCBDF$
SCBDF$
TCBDF$

IO.INP
I0.0UT

5400
6000

e we e

.psect
«MCALL

OUT.INT::
jsr

MOV
ALUN$S
QIO$S

jmp

“e we we we

QIO.ZT::
jsr

MOV
MOV
MOV
ALUNSS
QIOWSS

jmp

we we we

RTHMAC.MAC

This file contains all the C - callable routines written in MACRO-11 assembly

RTHMAC
/01/

UCBDF$, PKTDF$, DCBDF$, SCBDF$, TCBDF$
, » TTDEF

OUT.INT --> This routine gives an O/P interrupt to ZTDRV

c$text,i,ro

ALUNSS,QI0$S,QIOWSS

R5,c$sav

4(R5),R2 3 get pty no first parameter
#7,#"'2T,R2

#I0.0UT,#7,,44,,

clret

QIO.ZT --> This routine does a QIO IO.INP to ZTDRV which simulates an
I/P interrupt.

R5,c$sav

4(R5),RO 3 pty_no

6(R5),R1 ; buffer ptr to be ofp
10(R5),R2 3 length of buffer

#7,#"2T,R0
#10.INP,#7,#1,,,,<R1,R2>

cSret 3 return to caller

DEALOC.B --> This routine deallocates a packet back to the system pool

Oct 17 16:25 1985 rthmac.mac Page 2

DEALQOC.B::
jsr R5,c$sav
MOV R5,-(SP)
MOV 6(R5),R1 3 size of pkt to be deallocated
MOV 4(R5),R0 3 address of that pkt
CALL (:gﬁEAC{\> 5 deallocate pkt back to the system pool
e s s also return to task state
MOV (SP)+,R5
jmp cret 3 return to caller

QIO.WRITE --> This routine writes to the tewrminal

we we 2o

QIO.WRITE::

jsr R5,c$sav

MOV R5,-(SP)

MOV 4(R5),R0 ; buffer pointer

MoV 6(R5),R1 ; buffer length

MOV 10(R5),R2 3 vertical format character
QIOW$S #I0.WLB,#5,#1,,,,<R0,R1,R2>

MOV (SP)+,R5

jmp cSret

QI0.SMC --> This routine does a QIO SF.SMC to ZTDRV to set and reset terminal

we e e we

options.
QIO.SMC::
jsr R5,c$sav
MoV R5,-(SP)
MOV 4(R5),R1 ; pty number
MOV 6(R5),R2 3 address of buffer

ALUNS$S #7,#"2T,R1
QIOWS$S #SF.SMC,#7,#1,,,,<R2,#2>

MOV (SP)+,R5
jmp clret

.psect c$data,d,rw

RTVAL:
+WORD 0

.psect c$text,i,ro
SET.CAR.ON::

jsr R5,c$sav

Oct 17 16:25 1985 rthmac.mac Page 3

MOV R5,-(SP)
MOV 4(R5),R0 $ pty number
SWSTKS 30% $3 switch to system state
MOV #$DEVHD,R2 33 start of device tables
10%:
MoV (R2),R2 $3 get next DCB
BEQ 20% 33 1if EQ device not in system
CMP #"ZT,D.NAM(R2) 33 is it the 'ZT' device?
BNE 108 33 if NE no, keep searching
MOV D.UCBL(R2),Rl ;3 get length of UCB
MOV D.UCB(R2),R2 33 get address of first UCB
MUL RO,R1 33 get offset to the correct UCB in Rl
ADD R1,R2 33 get UCB address in R2
BICB #US.DSBIUS.CRW,U.STS(R2) 33 enable unit and not waiting for car.
MOV #1,RTVAL 33 return sucess
RETURN $3 return to user state at 30%
20%:
MOV ##0,RTVAL 33 indicate failure as ZT device not found
RETURN $3 return to user state
30%:
MOV RTVAL,RO $ return value
MOV (SP)+,R5 ; restore frame pointer
jmp cSret

.psect c$text,i,ro

.even

.psect c$data,d,rw

.even

.END s end of file RTHMAC.MAC

Oct 17 16:25 1985 rwport.mac Page 1

filename: RWPORT .MAC
NAME:
SYNOPSIS:
int read port(PORT)
int PORT;
int PORT;
value;

FUNCTION:

WO WS WS Ve WE Ve WS WP UE W Ve B Ut WS BE Ve WS e Be WS W

.TITLE RWPORT
LIDENT /01/
I0PAGE 60000

1
C$SPRT = 0

.PSECT EXSRWI,RO
READ.P::

.IF DF C$SPRT

JSR R5,C$SAV
MOV 4(RS5),R1
.ENDC

MOVB IOPAGE(R1),R0
.IF DF C$SPRT

JMP C$RET

.IFF

RETURN

.ENDC

WRITE,::

.IF DF C$SPRT

int write port(PORT,value)

-e

e we

b

-e

-e

-e

read.port, write.port -- read and write from the port

read port reads the specified port and returns the value

write port writes the given value into the specified address.

read port entry point

save registers if C interface
get port address in I/0 page in Rl

read a byte from port in RO

restore register

return to caller

write port entry point

Oct 17 16:25 1985 rwport.mac Page 2

JSR R5,C$SAV
MoV 4(R5),R1
MOVB 6(R5),R0
.ENDC

MOVB RO,IOPAGE(RL)
.IF DF C$SPRT

JMP C$RET

.IFF

RETURN

.ENDC

.PSECT RWPORT,I,RO

.EVEN
.END

“e we we

-e -e

save all register in C environment
get port address in I/0 page in Rl
move a byte value in RO

write a byte into port

restore register and return

return to caller

Oct 17 16:25 1985

LTITLE
+IDENT

+PSECT

C$SPRT=0

SCOPY
/01/

C$TEXT,I,RO

scopy(from, count)
struct rel addr *from;

Ge Wwe we We we we W Be

FROM:
TO:
COUNT:

SCOPY::

RET:

int count}

«BLKW 1
+BLKW 1
+BLKW 1

.IF DF C$SPRT

JSR R5,C$SAV
MOV R5,-(SP)
MOV 4(R5) ,FROM
11(0)% 6(R5),COUNT
.ENDC

CALL $SWSTK,RET

MOV #PARAM, RO

CALL $RELOC

MOV R1,R3

MOV R2,R4

MOV FROM, RO

MOV (RO)+,R1

MOV (RO),R2

ADD #120000-140000,R
MOV COUNT,RO

CALL $BLXIO
RETURN

.IF DF C$SPRT

MOV (SP)+,R5

JMP CS$RET

.ENDC

wes we B e

we Wwe We we Ve We we we

.
*
.
?
.
’
.
?
.
’
.
?
.
b
.
?

e we

scopy.mac Page 1

SCOPY: this routine copies user soictl buffer into a global
buffer of acp. this routine is "C" callable as

/* pointer to source relocated addr

/% byte count

3 scopy entry point

save all register
save frame pointer

get source relocated addr pointer

get byte count

switch to system state

load RO with the acp buffer

relocate the destination address
move dest relocation bias to R3

move dest displacement bias to R4
get pointer to source relocated addr
source relocation bias

move
move

move
move

*/

e
iy

source disp bias (in terms of APR6)

33 make it APRS bias

byte count
data

return to task state

restore frame pointer

restore register and return

Oct 17 16:25 1985 scopy.mac Page 2

.PSECT C$TEXT,I,RO
.EVEN
.END

Oct 17 16:25 1985 wucopy.mac Page 1

.TITLE UCOPY
.IDENT /01/

.PSECT C$TEXT,I,RO

CS$SPRT=0

-e

UCOPY: this routine copies user soictl buffer from the global
buffer of acp. this routine is ''C" callable as

ucopy(from, to, count)

char *from; /* pointer to source buffer */
struct rel addr *toj /* pointer to dest relocated addr */
int count} /* byte count %/

we we we we we e we W

FROM: .BLKW 1
TO: +BLKW
COUNT: .BLKW 1

—

UCOPY:: $ scopy entry point

.IF DF C$SPRT

JSR R5,C$SAV $ save all register

MOV R5,-(SP) 3 save frame pointer

MOV 4(R5),FROM 3 get source addr pointer

MOV 6(R5),TO ; get dest relocted addr pointer
MOV 10(R5),COUNT ; get byte count

+ENDC

CALL $SWSTK,RET switch to system state

9
MOV FROM,RO 33 load RO with the source buf
CALL $RELOC 33 relocate the source address
ADD #120000-140000,R2 33 make it APR5 bias
MOV TO,RO 53 get pointer to dest relocated addr
MoV (RO)+,R3 ;3 move destination relocation bias
MOV (RO),R4 33 move dest disp bias (in terms of APR6)
MOV COUNT,RO 33 move byte count
CALL $BLXIO 33 move data
RETURN 3y return to task state
RET:
.IF DF C$SPRT
MoV (sP)+,R5 3 restore frame pointer
JMP CS$RET ; restore register and return

.ENDC

Oct 17 16:25 1985 wucopy.mac Page 2

.PSECT CS$TEXT,I,RO
.EVEN
.END

Oct 17 16:25 1985 unibus.mac Page 1

UNIBUS =1

Oct 17 16:25 1985 unimac.mac Page 1
.NLIST SYM

.NLIST CND

filename: UNIACP.MAC

This file contains all the macro routines for incorporating
the ACP on a UNIBUS machine.

we we we we we

.TITLE UNIMAC
.IDENT /01/

ASS.UMR
this routine assigns 3 UMR's for the pool and the message area
and also loads them and also saves the unibus addresses in
some global area so that they can be accessed by other routines.

e ws e B we Ve

.MCALL SCBDF$,UCBDF$
SCBDF$,,SYSDEF
UCBDF$

C$SPRT = 1

.IF DF R$$MPL

S.UNI S.EMB + 2

JIFF ;R$$MPL

5.UNI S.FRK + 14
-ENDC sR$SMPL
SCBDF$

.psect cStext,i,ro

ASS.UMR::

.IF DF C$SPRT

jsr R5,c$sav

MOV R5,-(SP)

.ENDC

MOV ZEUCB,R4 3 get UCB address

MoV U.SCB(R4),R4 3 get SCB address

MOV #10,S.UNI+M.UMRN(R4) ; no, of UMR's to be allocated
MOVB PHY.BUF,S.UNI+M.BFVH(R4); higher order physical address
MoV PHY.BUF+2,S.UNI+M.BFVL(R4) ; lower order address

MOV #S.UNI,RO s

ADD R4,RO point to UMR mapping table

.
b
.
b

CALL +AS.UMR assign the two UMR's

Oct 17 16:25 1985

TST
BEQ
MOV
MOVB
MOV
MOV
ASH
MOV
MOV
BIC
ASR
ASH
BIC
BIS
INC
MOV
MOV
ASH
BIC
BIC
BIS
ASH
MOV
MOV

MOV
Mov
MOV
MOV
MOV
MOV
ADD
ADC
MOV
MOV

MOV
CALL
BCS

MOV
MOV
MOV

MOV
CALL

TST
MOV
MOVB
MOV
MOV

CALL
TST
BEQ

succ
FAILS

M.UMVL(RO),UNI1BUF+2
M.UMVH(RO) ,UNI1BUF

UNI1BUF,R3
R3,Ré4

#-4,R4

R4, UNI1BUF
UNI1BUF+2,R4
#177717,R3
R3

#-13. R4
#177770,R4
R4,R3

R3

R3,R4
UNI1BUF+2,R2
#13.,R3
#017777,R3
#160000,R2
R2,R3

#"3 9R4

R4 ,UNI2BUF
R3,UNI2BUF+2

M.UMRA(RO),R1
R1,UMRADD
PHY.BUF+2,R3
PHY.BUF,R2
R3,(R1)+
R2,(R1)+
#20000,R3

R2

R3,(R1)+
R2,(R1)+

#12.,R1
$ALOCB
FAILS

RO, UMRMSG
#4 ,M. UMRN(RO)
RO,-(SP)

#RMSG.A,-(SP)
RELOC

(SP)+
(SP)+,R2
RO,M.BFVH(R2)
R1,M.BFVL(R2)
R2,R0

«AS.UMR
succ
FAILS

unimac.mac Page 2

GE $% SE WO T We @z \#s

e

WE We WP WS we We We WS WE We Ve e WE Wwe eE

“e We e WE we we we we e e

-s we we

ee ws we

we we we we we we e we

we we we

was it successful?

if EQ then no

save lower order unibus address

save higher order word

get higher order address

copy higher order address

shift bits 4 and 5 to 0 and 1

restore the high order address

lower order address

mask all but bits 4 & 5 in high order
get bits 4 & 5 into 3 & 4

high 3 bits in low 3 bits of low order
mask remaining bits

append bits 0,1 & 2 of 1O to 3 & 4- HO
get next UMR nnumber

save R3 in R4

get lower order address

get lower 3 bits in upper 3

mask out rest of the bits

mask high 3 bits in lower order addr
final lower order address in R3

get bits 3 & 4 in 0 and 1

higher order address 2 bits

lower order address 16 bits

get address of lst UMR

save this address for further use
save lower order address

higher order address

load lower order address

load higher order address

add an equ. of 4KW

load lower order address of next 4kw
higher order address of next &4kw

size of UMR ass. block
allocate it from the system pool
if CS then no system pool available

save ptr to ass. block
No. of UMR's to assign * 4
save RO

lst parameter

call a 'C' callable macro routine
which returns the physical address
pop stack

unsave pointer to UMR ass. block
higher order physical address
lower order physical address
restore RO

assign the UMR
was it successful ?
if EQ no

Oct 17 16:25 1985 unimac.mac Page 3

MOV M.UMVL(RO),UNI .MSG+2 $ lower order unibus address
MOVB M.UMVH(RO),R4 3 higher order unibus address
ASH #-4,R4 3 shift bits 4 & 5 to 0 & 1
MOV R4 ,UNI.MSG $ store higher order address
MoV M.UMRA(RO),R1 ; get UMR address
MOV M.BFVL(RO),(R1)+ $ load lower order address

y

MOVB M.BFVH(RO),(R1) load higher order address

MOV #1,R0 3 return success
BR RTN
FAILS:
MOV #0,R0 $ unsuccessful
RTN:
.IF DF C$SPRT
MOV (SP)+,R5
jmp c$ret
IFF
RETURN
.ENDC
H
s -AS.UMR
H
H This 'mac' callable routine actually goes int system state
3 to assign the UMR's
3
H inputs:
H RO -> address of UMR assignment block with no. of UMR's * 4 to
H assign in M.UMRN
3
.psect c$data,d,rw
SucC: .WWORD O $ return status

.psect c$text,i,ro

LAS.UMR::

SWSTKS$ 20% 33 switch to system state

CALL $ASUMR ;3 assign UMR's

BCS 10% 33 if CS then it fails

MOV #1,s0CC 33 indicate success

RETURN 33 return to task state at 20§
108z

CLR succ $3 indicate failure

RETURN 33 return to task state
2042

RETURN

Oct 17 16:25 1985 wunimac.mac Page 4

REL.POOL

This 'C' callable routine fills up the relocated address of
the pool in the global data structures.

e we we we e we

.psect c$text,i,ro
REL.POOL: :

.IF DF C$SPRT

jsr R5,c$sav

.ENDC

MOV PHY.BUF,R0O s higher order address
MOV PHY.BUF+2,R1 s lower order address

ASHC #10.,R0
ASHC #-10.,R1

calculate rel bias and the disp.

e se

MOV RO,REL1BUF s relocation bias

ADD #140000,R1 ; set displacement

MoV R1,REL1BUF+2 } store it

ADD #200,R0 3 add an eq. of 4KW

MOV RO,REL2BUF 3 rel bias for next 4KW
MOV R1,REL2BUF+2 3 displ bias is same

.IF DF C$SPRT
JMP CSRET
.IFF

RETURN

.ENDC

ACOPY

This 'C' callable routine is used to Xfer data from one part of the
physical memory to the other using inputs as the relocated addresses
of both source and destination.

INPUTS:
RO --> source rel addr pointer
Rl --> destination rel addr pointer
R2 --> byte count

Be We Ve e WE Ve WS Be WE Be We We

.psect c$text,i,ro

Oct 17 16:25 1985

ACOPY::

RET:

SREX::

.IF DF

jsr
MOV
MOV
MOV
MOV
<ENDC
MOV
SWSTK$
MOV
MOV
MOV
MOV
ADD
MOV
CALLR
.IF DF

MOV
jmp

.IFF
RETURN
.ENDC
.psect

+MCALL

.IF DF
jsr
.ENDC
SREX$S
.IF DF
jmp
.IFF

RETURN

C$SPRT

R5,c$sav
R5,-(SP)

4(R5),R0

6(R5),R1
10(R5),R2

R2,R5

RET

(R1)+,R3

(R1)+,R4

(RO)+,R1

(RO),R2
#120000-140000,R2
R5,RO

$BLXIO

C$SPRT

(SP)+,R5
clret

cStext,i,ro

SREXSS,EXITSS

C$SPRT

R5,c$sav

#DE . UMR
C$SPRT

c$ret

unimac.mac Page 5

e e we we we we we e we
D BE BE we Ve We Be e

source relocated addr pointer
destination rel addr pointer
byte count

save count in RS

switch to system state

dest. rel. bias

dest., displ. bias

src rel. bias

src displ. bias

convert src to APRS bias

get byte count

move data and return to task state

Oct 17 16:25 1985 wunimac.mac Page 6

+ENDC
.psect c$data,d,rw

UMRMSG: .WORD 0 address of UMR ass. block for msg area

-e

.psect c$text,i,ro

DE.UMR::
ADD (sp),sp 3 cleanup stack
MOV ZEUCB,R2 s get UCB address
MOV U.SCB(R2),R2 3 get SCB address
ADD #5 .UNI,R2 3 point to UMR ass block for pool area

CALL $DEUMR deallocate the UMR's

-

MOV UMRMSG,R2
MOV R2,R0

get ptr of UMR ass block for msg area
save it

we we

CALL $DEUMR deallocate the UMR

-e

size of this allocated block
deallocate this blopck back to the sys. pool

MoV #12.,R1
CALL $DEACB

we we

EXITS$S exit properly

-e

.psect c$text,i,ro

EXIT.::
.IF DF C$SPRT

jsr R5,c$sav
+ENDC

EXITSS

.IF DF C$SPRT

jmp cret

IFF

RETURN

.ENDC

.psect c$data,d,rw
.even

.psect c$text,i,ro
.even

+.END

Oct 17 16:26 1985 bldacp.cmd Page 1

+ENABLE QUIET

.DISABLE DISPLAY

.IFNDF $VRBS .ASK $VRBS Verbose ? [Y/N]

.IFT $VRBS .DISABLE QUIET

.IFNDF $DEL .ASK $DEL Delete source file from current UFD? [Y/N]

.IFNDF $NOPRE .ASK $NOPRE Delete previous version of EXOS software? [Y/N]

Assemble and build the ACP code.

we we we

.ENABLE SUBSTITUTION

Prepare the indirect input file for the tkb and ask for the EX0S's
port A address offset in the I/0 page. (the virtual address of the
port A is expressed as an offset in the I/0 page).

e« & » o
e Wwe us we we

.IFDF $PORT .GOTO 1
.SETS $PORT "4000"
.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D : 4000] :

.IFDF $VEC .GOTO 5

.SETS $VEC "400"

.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]
W53

Assemble the Macro source code of the ACP.

we we e

5

RWPORT=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'RWPORT
MAC UCOPY=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY:'<UIC>'UCOPY
MAC ScOPY=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY:'<UIC>'SCOPY
MAC ACPUCB=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'ACPUCB
MAC RTHMAC=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY:'<UIC>'RTHMAC
MAC DQPKT=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY:'<UIC>'DQPKT
.9

Delete temporary files

.
.y

.
.y

.IFF $DEL .GOTO 10
PIP ACPUCB.MAC;*/DE
PIP RTHMAC.MAC;*/DE
PIP DQPKT.MAC3;*/DE
PIP RWPORT.MAC;*/DE
PIP SCOPY.MAC;*/DE
PIP UCOPY.MAC;*/DE

—
o
.

task builds the acp and creates the image file in [1,54]

¢ we we we o

.
.o we we

Create the task builder input definition file

.OPEN ACPTKB.CMD

.DATA LB:[1,54]RTHACP/AC:5/-CP=

.DATA RTH/LB:CMDTAB,ACPUCB,DQPKT,RWPORT ,RTHMAC ,UCOPY,SCOPY
.DATA SY:'<UIC>'PROLOGUE/LB:CHDR

.DATA SY:'<UIC>'PROLOGUE/LB,LB:[1,1]EXELIB/LB

Oct 17 16:26 1985 bldacp.cmd Page 2

.DATA LB:[1,54]RSX11M.STB

.DATA /

.DATA UNITS=7

.DATA TASK=...RTH

.DATA GBLPAT=CMDTAB:ZEPORT: '$PORT'
.DATA GBLPAT=CMDTAB:ZEINT:'$VEC'
.DATA ASG=C00:5

.DATA //

.CLOSE

Task build ACP

e we we

.IFT $NOPRE PIP LB:[1,54]RTHACP.TSK;*/DE
TKB @ACPTKB

Delete object files

o we we

b

PIP ACPUCB.OBJ;*/DE

PIP DQPKT.OBJ;*/DE

PIP RWPORT.OBJ;*/DE

PIP RTHMAC.OBJ;*/DE

PIP UCOPY.OBJ}*,SCOPY.OBJ;*/DE
PIP ACPTKB.CMD;*/DE

set appropriate protection for the ACP

HI we ws »
=
e~}

LB:[1,54 JRTHACP.TSK/PR/SY :RWED/OW:RWED/GR : RWED/WO:R/FO
.ENABLE DISPLAY

Oct 17 16:26 1985 blduni.cmd Page 1

.ENABLE QUIET

.DISABLE DISPLAY

.IFNDF $VRBS .ASK $VRBS Verbose ? [Y/N]

.IFT $VRBS .DISABLE QUIET

.IFNDF $DEL .ASK $DEL Delete source file from current UFD? [Y/N]

.IFNDF $NOPRE .ASK $NOPRE Delete previous version of EXOS software? [Y/N]

Assemble and build the ACP code.

*e we e

+ENABLE SUBSTITUTION

.3 Prepare the indirect input file for the tkb and ask for the EX0S's
ort A address offset in the I/O page. (the virtual address of the

ort A is expressed as an offset in the I/0 page).

s P
P

we we we we we

.IFDF $PORT .GOTO 1
.SETS $PORT "4000"
.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D : 4000] :

.IFDF $VEC .COTO 5

.SETS $VEC "400"

.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]
.5:

Assemble the Macro source code of the ACP.

-e we we

RWPORT=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'RWPORT
ucorYy=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'UCOPY
SCOPY=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'SCOPY
ACPUCB=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'UNIBUS,ACPUCB
RTHMAC=1.B:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'RTHMAC
DQPKT=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY: '<UIC>'DQPKT
UNIMAC=LB:[1,1]EXEMC/ML,[11,10]RSXMC,SY:'<UIC>'UNIMAC

REEREEE

.y
.3 Delete temporary files
.9
.IFF $DEL .GOTO 10
PIP ACPUCB.MAC;%/DE
PIP RTHMAC.MAC;*/DE
PIP DQPKT.MAC;*/DE
PIP RWPORT.MAC;*/DE
PIP SCOPY.MAC;*/DE
PIP UCOPY.MAC;*/DE
PIP UNIBUS.MAC;%/DE
PIP UNIMAC.MAC;*/DE

10:

task builds the acp and creates the image file in [1,54]

o we we we

.
we 9o we

Create the task builder input definition file

.OPEN ACPTKB.CMD
.DATA LB:[1,54]RTHACP/AC:5/-CP=

Oct

we we e

17 16:26 1985 blduni.cmd Page 2

.DATA RTH/LB:CMDTAB,ACPUCB,DQPKT,RWPORT,RTHMAC,UCOPY ,UNIMAC, SCOPY
.DATA SY:'<UIC>'PROLOGUE/LB:CHDR

.DATA SY:'<UIC>'PROLOGUE/LB,LB:[1,1]EXELIB/LB
.DATA LB:[1,54]RSX11M.STB

.DATA /

.DATA UNITS=7

.DATA TASK=...RTH

.DATA GBLPAT=CMDTAB:ZEPORT: ' $PORT'

.DATA GBLPAT=CMDTAB:ZEINT:'$VEC'

.DATA ASG=CO00:5

.DATA //

.CLOSE

Task build ACP

.IFT $NOPRE PIP LB:[1,54]RTHACP.TSK;*/DE

TKB

@ACPTKB

?
s Delete object files

’

PIP
PIP
PIP
PIP
PIP
PIP
PIP

.

O we we w
-
vl

ACPUCB.OBJ3*/DE

DQPKT.OBJ 3*/DE

RWPORT.OBJ 3*/DE

RTHMAC.OBJ ;*/DE
UCOPY.OBJ;*,SCOPY.0OBJ3*/DE
ACPTKB.CMD;*/DE
UNIMAC.OBJ;*/DE

set appropriate protection for the ACP

LB:[1,54 JRTHACP.TSK/PR/SY :RWED/OW:RWED/GR :RWED/WO:R/FO
.ENABLE DISPLAY

Oct 17 16:26 1985 tkb.cmd Page 1

RTHACP/AC:5/-CP,RTHACP/-sp/CR=

RTH/LB:CMDTAB,ACPUCB, DQPKT ,RWPORT ,RTHMAC , UCOPY , SCOPY
sy:[1,3]PROLOGUE/LB,LB:[1,1]EXELIB/LB
LB:[1,54]RSX11M.STB

/

UNITS=7

TASK=...RTH

GBLPAT=CMDTAB : ZEPORT :4000
GBLPAT=CMDTAB:ZEINT:400
/1

Oct 17 16:26 1985 altcmplbr.com Page 1

R T R, T 3 7 IR Ve R Ve B VAo IR s dE P vs Vs s Vs RV R R R R RN EEGEGEGEGEGE R

skeleton for cmplbr.com

if "''pl'" .nes. "?" then goto doit
yp sys$input

command file to compile and link the library
required command files: None
required logical names: None

required parameters:
pl - default directory (default - current directory)

required files:
none

required symbols:
none

Note:

You need to edit this file to setup the symbols objlib and inclib as the
file specifications for the the object and include libraries

exit

doit:

sv = f$verify(l)

on error then § goto abnormal exit

assign nowhere sys$print

!

! now make assignment for RSX11M UNIBUS version

!

assign dra0:[unillm.] 1b:

assign draO:[unillm.] 1b0:

if ""'pl™ .eqs. "" then $ pl = "''f$logical("sys$disk")'''fédirectory()'"
set def 'pl'

show def

show logical 1b

!

! now set up environment for C compiler

!

cpp == "mcr cpp"

cpl == "mecr cpl"

cp2 == "mcr cp2"

assign draO:[albert.cutillcpp.exe cpp
assign draO:[albert.cutillcpl.exe cpl
assign draO:[albert.cutillcp2.exe cp2

! go compile all the files

1br rthuni/cr

mac rwportuni,rwportuni/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]rwport
mac ucopyuni,ucopyuni/-sp=lb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]ucopy

mac scopyuni,scopyuni/~sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]scopy

mac acpucbu,acpucbu/-sp=Llb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]unibus,acpuch
mac unimac,unimac/-sp=1lb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]unimac

Oct 17 16:26 1985 altcmplbr.com Page 2

mac rthmacuni,rthmacuni/-sp=1b:[1,1]lexemc/ml,1b:[11,10]rsxmc,sy:[1,3]rthmac
mac dqpktuni,dqpktuni/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]dqpkt

!

! C program

!

cpp -x -i 1b:[1,1]|sy:[10,10]|sy:[1,3] -0 sy:[1,3]cl.tmp sy:[1,3]u.h [1,3]body.c
cpl -o sy:[1,3]c2.tmp sy:[1,3]cl.tmp

cp2 -o sy:[1,3]c3.tmp sy:[1,3]c2.tmp

mac body=c3.tmp

lbr rthuni/rp=body

delete/log cl.tmpj*,c2.tmp3*,c3.tmps*

exit 1

abnormal exit:

exit 2

LN

Oct 17 16:26 1985 bld.com Page 1

$
$
$
$
$

LB

skeleton for bld.com

if "''pl'" .nes. "?" then goto doit
typ sys$input

command file to build the task image
required command files: None
required logical names: None

required parameters:

pl - default directory (default - current directory)
required files: None
required symbols: None

exit

doit:

sv = f§verify(l)

on error then $§ goto abnormal exit

assign nowhere sys$print

if ""'pl'" .eqs. "" then $ pl = "''flogical("sys$disk")'''fédirectory()"'"
set def 'pl'

show def

! Put your own commands here
!
! Make assignment for QBUS RSX11M
!

assign _ dra0:[qbuslim.] 1b:

copy/log prologue.sav prologue.olb

open/write 1lnkdrv tkb.cmd

write lnkdrv "RTHACP/AC:5/-CP,RTHACP/-sp/CR="

write lnkdrv "RTH/LB:CMDTAB,ACPUCB,DQPKT,RWPORT,RTHMAC,UCOPY,SCOPY"
write lnkdrv "sy:[1,3]PROLOGUE/LB,LB:[1,1]EXELIB/LB"
write lnkdrv "LB:[1,54]RSX11M.STB"

write lokdrv "/"

write lnkdrv "UNITS=7"

write lnkdrv 'TASK=...RTH"

write lnkdrv '"GBLPAT=CMDTAB:ZEPORT:4000"

write lnkdrv "GBLPAT=CMDTAB:ZEINT:400"

write lnkdrv "//"

close lnkdrv

tkb @tkb.cmd

delete tkb.cmd}

deassign 1b

!

! Make assignment for UNIBUS RSX1IM

!

assign _ dra0:[unillm.] 1b:

open/write lnkdrv tkb.cmd

write lnkdrv '"RTHACPUNI/AC:5/-CP,RTHACPUNI/-sp/CR="
write lnkdrv '"RTHUNI/LB:CMDTAB,ACPUCBU,DQPKTUNI,RWPORTUNI"

Oct 17 16:26 1985 bld.com Page 2

$ write lnkdrv '"RTHMACUNI,UCOPYUNI,SCOPYUNI"

$ write lnkdrv "UNIMAC"

$ write lnkdrv "sy:[1,3]PROLOGUE/LB,LB:[1,1]EXELIB/LB"
$ write lnkdrv "LB:[1,54]RSX11M.STB"

$ write lnkdrv "/"

$ write lnkdrv "UNITS=7"

$ write lnkdrv '"TASK=...RTH"

$ write lnkdrv "GBLPAT=CMDTAB:ZEPORT:4000"

$ write lnkdrv "GBLPAT=CMDTAB:ZEINT:400"

$ write lnkdrv "//"

$ close lnkdrv

$ tkb @tkb.cmd

$ delete tkb.cmd;

$ deassign 1b

$ 1!

$! Make assignment for UNIBUS RSX11M-Plus

$!

$ assign _ dra0:[unillmp.] 1b:

$ open/write lnkdrv tkb.cmd

$ write lnkdrv "RTHACPUP/AC:5/-CP,RTHACPUP/-sp/CR="
$ write lnkdrv "RTHUP/LB:CMDTAB,ACPUCBU,DQPKTUP,RWPORTUP"
$ write lnkdrv "RTHMACUP,UCOPYUP,SCOPYUP"

$ write lnkdrv "UPMAC"

$ write lnkdrv "sy:[1,3]PROLOGUE/LB,LB:[1,1]EXELIB/LB"
$ write lnkdrv "LB:[1,54]RSX11M.STB"

$ write lokdrv "/"

$ write lokdrv "UNITS=7"

$ write lnkdrv "TASK=...RTH"

$ write lnkdrv "GBLPAT=CMDTAB:ZEPORT:4000"

$ write lnkdrv "GBLPAT=CMDTAB:ZEINT:400"

$ write lnkdrv "//"

$ close lnkdrv

$ tkb @tkb.cmd

$ delete tkb.cmd;

$ deassign 1b

$ exit 1

$ abnormal exit:

$ deassign 1b

$ exit 2

Oct 17 16:26 1985 cmplbr.com Page 1

skeleton for cmplbr.com

$
$
$
$ if "''pl'" .nes. "?" then goto doit

$ typ sys$input

command file to compile and link the library
required command files: None

required logical names: None

required parameters:
pl - default directory (default - current directory)

required files:
none

required symbols:
none

Note:
You need to edit this file to setup the symbols objlib and inclib as the
file specifications for the the object and include libraries

exit

doit:

sv = f$verify(1l)

on error then $ goto abnormal exit

assign nowhere sys$print

!

! now make assignment for RSX11M Q-bus version

!

assign _ draO:[qbusilm.] 1b:

assign dra0:[qbusllm.] 1bO:

if ""'pI™ .eqs. " then $ pl = "''f$logical("sys$disk")' "' 'fédirectory()""
set def 'pl'

show def

show logical 1b

1

! now set up environment for C compiler

!

cpp == "mcr cpp"
cpl == "mcr cpl"
cp2 == "mcr cp2"

assign dra0O:[albert.cutil]cpp.exe cpp

assign draO:[albert.cutillcpl.exe cpl

assign dra0O:[albert.cutil]cp2.exe cp2

]

! go compile all the files

!

lbr rth/cr

mac rwport,rwport/-sp=lb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:{1,3]rwport
mac ucopy,ucopy/-sp=lb:[1l,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]ucopy
mac scopy,scopy/-sp=lb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]scopy
mac acpucb,acpucb/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmec,sy:[1,3]acpuch
rthmac,rthmac/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]rthmac

“LLranLnnnnannnnno-PANDLLDNPLLDLDNLODODLDODDDNLOLUDDNWDUD

3
®
(]

Oct 17 16:26 1985 cmplbr.com Page 2

mac dqpkt,dqpkt/-sp=lb:[1,1]lexemc/ml,1b:[11,10]rsxmc,sy:[1,3]dqpkt
!

! C program

!

cpp -x -i 1b:[1,1]|sy:[10,10]|sy:[1,3] -0 sy:[1,3]lcl.tmp sy:[1,3]body.c
cpl -o sy:[1,3]c2.tmp sy:[1,3]cl.tmp

cp2 -o sy:[1,3]c3.tmp sy:[1,3]c2.tmp

mac body=c3.tmp

lbr rth/rp=body

delete/log cl.tmpj¥*,c2.tmpj¥*,c3.tmp}*

@altcmplbr

@umpcmplbr

exit 1

abnormal exit:

exit 2

V2RV TV R RV R R R R R R ROE RS

Oct 17 16:26 1985 deliver.com Page 1

$!

$ 1 skeleton for deliver.com

$!

$ if "''pl'" .nes. "?" then goto doit
$ typ sys$input

command file to copy the deliver files to manufacturing area
You should modify this file to copy the deliverables to
exos$mfg:[target directory]

required command files: None
required logical names: None
exos$mfg - pseudo disk for deliverables

required parameters: Noe

required files: None

required symbols: None

$ exit

$ doit:

$ sv = fverify(0)

$ on error then § goto abnormal exit

$ assign nowhere sys$print

$ show def

$!

$! Put your own commands here

$!

$ copy/log bldacp.cmd exos$mfg:[rsx]

$ copy/log rth.olb exos$mfg:[rsx]

$ copy/log rwport.mac exos$mfgs[rsx]
$ copy/log ucopy.mac exos$mfg:[rsx]
$ copy/log scopy.mac exos$mfg:[rsx]
$ copy/log acpucb.mac exos$mfg:[rsx]
$ copy/log rthmac.mac exos$mfg:[rsx]
$ copy/log dqpkt.mac exos$mfg:[rsx]
$ copy/log prologue.olb exos$mfg:[rsx]
$ copy/log unibus.mac exos$mfg:[rsxunibus]
$ copy/log rthuni.olb exos$mfg:[rsxunibus]rth.olb
$ copy/log unimac.mac exos$mfg: [rsxunibus]
$ copy/log blduni.cmd exos$mfg:[rsxunibus]lbldacp.cmd
$ exit 1

$ abnormal exit:

$ exit 2

Oct 17 16:26 1985 umpcmplbr.com Page 1

RV RV IV gV V7o R0 I Va9 VAR R R R R R RN E R RCROE R EOEGEEOGEGEG R

skeleton for cmplbr.com

!
!
!
if "''pl'" .nes. "?" then goto doit
typ sys$input

command file to compile and link the library
required command files: None
required logical names: None

required parameters:
pl - default directory (default - current directory)

required files:
none

required symbols:
none

Note:
You need to edit this file to setup the symbols objlib and inclib as the
file specifications for the the object and include libraries
exit
doit:
sv = f4verify(l)
on error then § goto abnormal exit
assign nowhere sys$print
!
! now make assignment for RSX11M-Plus UNIBUS version
!
assign _ dra0:[unillmp.] 1b:
assign dra0:[unillmp.] 1b0:
if ""'pI™ .eqs. "" then $ pl = "''f$logical("sys$disk")'''fsdirectory()'"
set def 'pl'
show def
show logical 1b
!
! now set up environment for C compiler
!
cpp == "mcr cpp"
cpl == "mcr cpl"
cp2 == "mcr cp2"
assign draO:[albert.cutil]cpp.exe cpp
assign dra0:[albert.cutillcpl.exe cpl
assign draO:[albert.cutillcp2.exe cp2
!
! go compile all the files

lbr rthup/cr

mac rwportup,rwportup/-sp=lb:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]rwport
mac ucopyup,ucopyup/=sp=1b:[1,1]lexemc/ml,1b:[11,10]rsxmc,sy:[1,3]ucopy
mac scopyup,scopyup/=sp=lb:[1l,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]scopy

mac acpucbu,acpucbu/-sp=1b:[1,1]exemc/ml,1b:{11,10]rsxmc,sy:[1,3]unibus,acpuch

mac upmac,upmac/=-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]unimac

Oct 17 16:26 1985 umpcmplbr.com Page 2

mac rthmacup,rthmacup/-sp=1b:[1,1]exemc/ml,1b:[11,10]rsxmc,sy:[1,3]rthmac
mac dqpktup,dqpktup/-sp=1b:[1,1]lexemc/ml,1b:[11,10]rsxmc,sy:[1,3]dqpkt

!

!

!

C program

cpp -x -i 1b:[1,1]|sy:[10,10]]|sy:[1,3] -0 sy:[1,3]cl.tmp sy:[1,3]Ju.h [1,3]body.c
cpl -0 sy:[1,3]c2.tmp sy:[1,3]cl.tmp

cp2 -o sy:[1,3]c3.tmp sy:[1,3]c2.tmp

mac body=c3.tmp

lbr rthup/rp=body

delete/log cl.tmpj¥,c2.tmp3*,c3.tmp}*

exit 1

abnormal exit:

exit 2

L L LU DAL

Oct 17 16:18 1985 install.cmd Page 1

COPYRIGHT (c) 1985 BY EXCELAN, INC.
SAN JOSE, CALIFORNIA. ALL RIGHTS RESERVED.

. we we we we

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY
BE USED AND COPIED ONLY IN ACCORDANCE WITH THE
TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO
AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY EXCELAN, INC.

EXCELAN, INC. ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS
NOT SUPPLIED BY EXCELAN, INC.

.ENABLE QUIET

.ENABLE LOWERCASE

.ENABLE GLOBAL

.ENABLE SUBSTITUTION
.IFT <PRIVIL> .GOTO 5
3 Error: You must be privileged in order to install EXO0S 8030 software.
+EXIT
.5

L]
WO W e e Ve WE WU Ve Ve Ve We We BE we e

.DISABLE DISPLAY

.ASK $VRBS Verbose? [Y/N]

.IFT $VRBS .DISABLE QUIET

.ASK $NOPRE Delete previous version of EXO0S software? [Y/N]

.ASK $DEL Delete source file from current UFD in target disk? [Y/N]
.ASK $DRV Build driver and ACP only? [Y/N]

.SETS $VEC "400"

.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]

.SETS $PORT "4000"

.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D : 4000]

.SETN $SESS 1

.ASKN [::$SESS] $SESS Maximum number of concurrent FTP server sessions? [D : 1]

This command file copies the required files from the distribution
floppy

* ws we we we

we we

Ask for source device name

.ASKS $DEV Copy from device [ddnn:]:

.
-e

»
-e

check 1f the device is mounted and mount if necessary

.
-e

.TESTDEVICE 'S$DEV'
.TEST <EXSTRI> "MTD"
.IF <STRLEN> NE 0 .GOTO 10

device not mounted

.. we w

Oct 17 16:18 1985 install.cmd Page 2

MOU '$DEV'EXOS1

we w

start copy

.10

PIP /NV/CD='$DEV'[1,1]BLDDRV.CMD/NM
PIP /NV/CD='$DEV'[1,1]ZEDRV.MAC/NM
PIP /NV/CD='$DEV'[1,1]ZETAB.MAC/NM
PIP /NV/CD="$DEV'[1,1]RTH.OLB/NM
PIP /NV/CD='S$DEV'[1,1]ACPUCB.MAC/NM
PIP /NV/CD='$DEV'[1,1]DQPKT.MAC/NM
PIP /NV/CD='$DEV'[1,1]RWPORT.MAC/NM
PIP /NV/CD='$DEV'[1,1]SCOPY.MAC/NM
PIP /NV/CD='S$DEV'[1,1]UCOPY.MAC/NM
PIP /NV/CD='$DEV'[1,1]RTHMAC.MAC/NM
PIP /NV/CD='$DEV'[1,1]BLDACP.CMD/NM
PIP /NV/CD='$DEV'[1,1]PROLOGUE.OLB/NM
PIP /NV/CD='$DEV'[1,1]bldzt.cmd/NM
DMO '$DEV'

*

$ Please mount floppy labelled EX0S2 in '$4DEV'
14

+ASK MONT Press return when ready:
MOU '$DEV'EX0S2

PIP /NV/CD='$DEV'[1,1]zttab.MAC/NM
PIP /NV/CD='$DEV'[1l,1]ztyt .MAC/NM
PIP /NV/CD='$DEV'[1,1]ztini.MAC/NM
PIP /NV/CD="$DEV'[1,1]ztrw.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztich.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztcan.MAC/NM
DMO '$DEV'

Please mount floppy labelled EX0S3 in '$DEV'

we Ve we

.ASK MONT Press return when ready:
MOU '$DEV'EX0S3

PIP /NV/CD="$DEV'[1,1]ztatt .MAC/NM
PIP /NV/CD='$DEV'[1,1]ztois.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztdat .MAC/NM
PIP /NV/CD='$DEV'[1,1]zttbl.MAC/NM
PIP /NV/CD='$DEV'[1l,1]ztsub.MAC/NM
PIP /NV/cD="$DEV'[1,1]ztcis.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztfp.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztodn.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmis.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmod.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmac.MAC/NM
.15:

o3

R build the driver

.y

@BLDDRV

.IFT $DEL PIP BLDDRV.CMD;/DE

.

.} build the pseudo-terminal driver
@BLDZT

Oct 17 16:18 1985 1install.cmd Page 3

.IFT $DEL PIP BLDZT.CMD;/DE

I3
.9

.3 build the ACP

o3

@BLDACP

.IFT $DEL .AND .IFT $DRV PIP PROLOGUE.OLB;/DE
JIFT $DEL PIP RTH.OLB;/DE

LIFT $DEL PIP BLDACP.CMD;/DE

-

Now copy utilities to various destination location

s

.
-

.IFT $DRV DMO '$DEV'

.IFT $DRV .EXIT

.20

.ASKS DESTUI Please enter the UFD for the EXO0S utilities
.IF DESTUI = "" .GOTO 20

-
.9

.3 Copy task image

.y

.IFF $NOPRE .GOTO 25

PIP 'DESTUI'ARP.TSK;*/DE

PIP 'DESTUI'BSTAT.TSK;*/DE
PIP 'DESTUI 'NETLOAD.TSK;*/DE
PIP 'DESTUI'NETSTAT.TSK;*/DE
PIP 'DESTUI'TTCP.TSK;*/DE
PIP 'DESTUI'XROUTE.TSK;*/DE
PIP 'DESTUI'FTPC.TSK;*/DE
PIP 'DESTUI'FTPDEMON.TSK;*/DE
PIP 'DESTUI'TELNET.TSK;*/DE
PIP 'DESTUI'LOGIN.TSK;*/DE
PIP 'DESTUI'FTPD.TSK}*/DE
252

DMO '$DEV'

Please mount floppy labelled EX0S4 in '$DEV'

e we we

.ASK MONT Press return when ready:

MOU '$DEV'EX0S4

PIP /FO/NV/CD='$DEV'[1,1]LOGIN.OLB/NM
PIP /FO/NV/CD='$DEV'[1,1]PASWORD.MAC/NM
PIP /FO/NV/CD='$DEV'[1,1]ACTFIL.MAC/NM
PIP /FO/NV/CD='$DEV'[1,1]BLDLGN.CMD/NM
@BLDLGN

.IFT $DEL PIP LOGIN.OLB;*/DE

.IFT $DEL PIP BLDLGN.CMD;*/DE

PIP 'DESTUI'/FO/CO/NV/CD=SY:'<UIC>'LOGIN.TSK/NM
PIP LOGIN.TSK;/DE/NM

PIP /FO/NV/CD='$DEV'[1,1]DEMON.OLB/NM
PIP /FO/NV/CD='$DEV'[1,1]RECVAST.MAC/NM
PIP /FO/NV/CD='$DEV'[1,1]BLDDEM.CMD/NM
PIP /FO/NV/CD='$DEV'[1,1]DEMON.MAC/NM
@BLDDEM

.IFT $DEL PIP DEMON.OLB;*/DE

.3.IFT $DEL PIP RECVAST.MAC}*/DE

.IFT $DEL PIP BLDDEM.CMD;*/DE

.IFT $DEL PIP PROLOGUE.OLB;*/DE

Oct 17 16:18 1985 install.cmd Page 4

PIP 'DESTUI'/FO/CO/NV/CD=SY:'<UIC>'FTPDEMON.TSK/NM
PIP FTPDEMON.TSK;/DE/NM

PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]ARP.TSK/NM

PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]BSTAT.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]NETLOAD.TSK/NM
DMO 'S$DEV'

Please mount floppy labelled EX0S5 in '$DEV'

we wes we

«ASK MONT Press return when ready:

MOU '$DEV'EX0SS5

PIP 'DESTUI'/FO/CO/NV/CD="'$DEV'[1,1]NETSTAT.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]TTCP.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1l,1]XROUTE.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]FTPC.TSK/NM
PIP 'DESTUI'/FO/CO/NV/cD='$DEV'[1,1]TELNET.TSK/NM
DMO 'S$DEV'

Please mount floppy labelled EX0S6 in '$DEV'

we e we

+ASK MONT Press return when ready:
MOU 'S$DEV'EX0S6
PIP 'DESTUI'/FO/CO/NV/cD='$DEV'[1,1]FTPD.TSK/NM

-

“e

copy specific programs

.
-e

.IFT $NOPRE PIP 'DESTUI'RHOST.C;*/DE

.IFT $NOPRE PIP 'DESTUI'RADDR.C;*/DE

.IFT $NOPRE PIP 'DESTUI'SOCKET.C}%*/DE

.IFT $NOPRE PIP 'DESTUI'TTCP.C;*/DE

.IFT $NOPRE PIP 'DESTUI'TTCP.H;%/DE

.IFT $NOPRE PIP LB:[1,2]NET.;*/DE

.IFT $NOPRE PIP 'DESTUI'8030.HLP;*/DE

PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]RHOST.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]RADDR.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]SOCKET.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]TTCP.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]TTCP.H/NM
P1P LB:[1,2]/FO/NV/CD="4DEV'[1,1]NET./NM

PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]8030.HLP/NM
.ASK INITHO Do you want to initialize the network addresses file (HOSTS.NET)
.IFF INITHO .GOTO SETLD

.IFT $NOPRE PIP LB:[1,1]HOSTS.NET;*/DE

PIP LB:[1,1]/FO/NV/CD='4$DEV'[1,1]HOSTS.NET/NM
.OPENA LB:[1,1]HOSTS.NET

.ASKS HNAME Name of host

.ASKS HADDR Host internet address

.DATA 'HADDR' 'HNAME' localhost

.CLOSE

.IFT $NOPRE PIP LB:[1,1]HOSTLOCAL.NET;*/DE
pIpP LB:[1,1]/FO/NV/CD="'$DEV'[1,1]HOSTLOCAL.NET/NM

-

Write out the EXOSLOAD command file

-e

.
e

«SETLD:
.IFT $NOPRE PIP LB:[1,1]EXOSLOAD.CMD;*/DE

Oct 17 16:18 1985 1install.cmd Page 5

.OPEN LB:[1,1]EXOSLOAD.CMD
.DATA .ENABLE SUBSTITUTION
.DATA .IFACT DEMTO ABO DEMTO
.DATA .IFACT LGNTO ABO LGNTO
.DATA .IFACT ...DEM ABO ...DEM
.DATA .IFACT ...LGN ABO ...LGN
.SETN LCOUNT 0

.80%:
.IF LCOUNT >= '$SESS' .GOTO 89%
.DATA .IFACT FTDOO'LCOUNT' ABO FTDOO'LCOUNT'
.DATA .IFINS FTDOO'LCOUNT' REM FTDOO'LCOUNT'
.DATA .IFINS XDROO'LCOUNT' REM XDROO'LCOUNT'
.INC LCOUNT
.GOTO 80%

.89%:
.DATA .IFINS ...DEM REM ...DEM
.DATA .IFINS ...ARP REM ...ARP
.DATA .IFINS ...BST REM ...BST
.DATA .IFINS ...FTP REM ...FTP
.DATA .IFINS ...NET REM ...NET
.DATA .IFINS ...TEL REM ...TEL
.DATA .IFINS ...TTC REM ...TTC
.DATA .IFINS ...ROU REM ...ROU
.DATA .IFINS ...NST REM ...NST
.DATA .IFINS ...LGN REM ...LGN
.DATA .IFACT ...RTH ABO ...RTH
.DATA .IFACT RTHTO ABO RTHTO
.DATA .IFINS ...RTH REM ...RTH
.DATA .IF <SYSTEM> <> 6 .GOTO 10%
.DATA .IFLOA ZE: CON OFFLINE ZEA
.DATA .IFLOA ZE: CON OFFLINE ZEO:
.DATA .IFNLOA ZT: .GOTO 10%
.DATA CON OFFLINE ZTA
.DATA CON OFFLINE ZTB
.DATA CON OFFLINE ZTC
.DATA CON OFFLINE ZTD
.DATA CON OFFLINE ZTE
.DATA CON OFFLINE ZTF
.DATA CON OFFLINE ZTH
.DATA CON OFFLINE ZTJ
.DATA CON OFFLINE ZTO:
.DATA CON OFFLINE ZT1:
.DATA CON OFFLINE ZT2:
.DATA CON OFFLINE ZT3:
.DATA CON OFFLINE ZT4:
.DATA CON OFFLINE ZT5:
.DATA CON OFFLINE ZT6:
.DATA CON OFFLINE ZT7:
.DATA .10$:
.DATA .IFLOA ZE: UNL ZE:
.DATA .IFLOA ZT: UNL ZT:
.DATA LOA ZE:/PAR=GEN/HIGH/SIZE=20000
.DATA .IF <SYSTEM> <> 6 LOA ZT:
.DATA .IF <SYSTEM> <> 6 UNL ZT:
.DATA ; You can ignore the error message: ''Loadable driver larger than 4KW"
.DATA LOA ZT:/HIGH/SIZE=20000

Oct 17 16:18 1985

.DATA
.DATA
.DATA
.DATA
.DATA
.DATA
.DATA
. DATA
.DATA
«DATA
.DATA
.DATA
.DATA
.DATA
«DATA
«DATA
«DATA
.DATA
«DATA
.DATA
.DATA
.DATA
.DATA
«DATA
.DATA
«.DATA
+SETN
.DATA
.DATA
.90%:

.IF

.DATA
«DATA

.GOTO
.998§:
.DATA
«DATA
.DATA
.DATA
.DATA

.IF
5

CON
CON
CON
CON
CON
CON
CON
CON
CON
CON
CON

.XQT RTH

INS
INS
INS
INS
INS
INS
INS
INS
INS
INS

LCOUNT 0

install.cmd Page 6

<SYSTEM> <> 6 .GOTO 20%
configure the devices online

ONLINE ZEA

ONLINE ZEO:

SET
SET
SET
SET
SET
SET
SET
SET

ZTA VEC=0
ZTB VEC=0
ZTC VEC=0
ZTD VEC=0
ZTE VEC=0
ZTF VEC=0
ZTH VEC=0
ZTJ VEC=0

ONLINE ALL
.20%:
INS $RTHACP/PRI=150.

'DESTUI'ARP.TSK
'DESTUI 'BSTAT.TSK
'DESTUI'FTPC.TSK
'DESTUI ' FTPDEMON . TSK
'DESTUI 'NETLOAD.TSK
'DESTUI'TELNET.TSK
'"DESTUI'TTCP.TSK
'DESTUI 'XROUTE.TSK
'DESTUI 'NETSTAT.TSK
'DESTUI'LOGIN.TSK

.SETS FTDOPT ""
.IF <SYSTEM> = 6 .SETS FTDOPT ' /XHR=NQO"

LCOUNT >= '$SESS' .GOTO 995%
INS 'DESTUI'FTPD.TSK/TASK=FTD00'LCOUNT'''FTDOPT'"
INS $PIP/TASK=XDROO'LCOUNT'
.INC LCOUNT

905

«ASK DWN
+IFT DWN
.ASK DMN
+IFT DMN
«IFT DMN

.CLOSE
PIP LB:[1,1]EXOSLOAD.CMD/PR/FO

® we we ws we we we we W we

.
we we we we

Do you want to initialize the EXOS front end processor
net

Do you want to start the FTP server

+XQT dem

.XQT lgn

Please add the following line to LB:[1,2]STARTUP.CMD so that the
network is reloaded everytime the system is rebooted.

@LB:[1,1]EXOSLOAD

You may need to edit the file LB:[1,1]EXOSLOAD.CMD to set up the
options in loading the network module.

dismount device

Oct 17 16:18 1985 install.cmd Page 7

DMO '$DEV'

Installation completed. Now you can execute
@LB:[1,1]EXOSLOAD
to start up the network connection.

we we we s

Oct 17 16:18 1985 instuni.cmd Page 1

® we we wes we

.
e W WS Be e Ve WS We We Ve We WS e W we

COPYRIGHT (c) 1985 BY EXCELAN, INC.
SAN JOSE, CALIFORNIA. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY
BE USED AND COPIED ONLY IN ACCORDANCE WITH THE
TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO
AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED,

THE INFORMATION IN THIS SOFTIWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY EXCELAN, INC.

EXCELAN, INC. ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS
NOT SUPPLIED BY EXCELAN, INC.

.ENABLE QUIET
.ENABLE LOWERCASE
.ENABLE GLOBAL
.ENABLE SUBSTITUTION

.IFT <PRIVIL> .GOTO 5

3 Error: You must be privileged in order to install EX0S 8030 software.

LEXIT
o5

o we we ue Ve

o e .
e ae “we we

.
-e

.DISABLE DISPLAY

.ASK $VRBS Verbose? [Y/N]

.IFT $VRBS .DISABLE QUIET

+ASK $NOPRE Delete previous version of EX0S software?

.ASK $DEL Delete source file from current UFD in target disk? [Y/N]

.ASK $DRV Build driver and ACP only? [Y/N]

.SETS $VEC "400"

.ASKS [::$VEC] SVEC Interrupt vector location ? [D :
.SETS $PORT "4000"

.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D :
.SETN $SESS 1

LASKN [::$SESS] $SESS Maximum number of concurrent FTP server sessions? [D

This command file copies the required files from the distribution

floppy

Ask for source device name
.ASKS $DEV Copy from device [ddnn:]:

check if the device is mounted and mount if necessary

.TESTDEVICE '$DEV'
.TEST <EXSTRI> '"MTD"
.IF <STRLEN> NE 0 .GOTO 10

.o we we

device not mounted

[y/w]

400]

4000]

1]

Oct 17 16:18 1985 instuni.cmd Page 2

MOU '$DEV'EXO0S1

.

-

start copy

-e

»
e

.10:

PIP /NV/CD='$DEV'[1,1]BLDDRV.CMD/NM
PIP /NV/CD='$DEV'[1,1]UNIBUS.MAC/NM
PIP /NV/CD='$DEV'[1,1]ZEDRV.MAC/NM
PIP /NV/CD='$DEV'[1,1]ZETAB.MAC/NM
PIP /NV/cD='4$DEV'[1,1]RTH.OLB/NM
PIP /NV/cD='$DEV'[1,1]ACPUCB.MAC/NM
PIP /NV/CD='$DEV'[1,1]DQPKT.MAC/NM
PIP /NV/CD='4$DEV'[1,1]RWPORT.MAC/NM
PIP /NV/CD='$DEV'[1,1]UNIMAC.MAC/NM
PIP /NV/CD='$DEV'[1,1]SCOPY.MAC/NM
PIP /NV/cD="$DEV'[1,1]UCOPY.MAC/NM
PIP /NV/CD='4$DEV'[1,1]RTHMAC.MAC/NM
PIP /NV/CD='S$DEV'[1,1]BLDACP.CMD/NM
PIP /NV/CD='$DEV'[1,1]PROLOGUE.OLB/NM
PIP /NV/CD="$DEV'[1,1]bldzt.cmd/NM
DMO '$DEV'

’
; Please mount floppy labelled EX0S2 in '$DEV'

k4

«.ASK MONT Press return when ready:
MOU '$DEV'EX0S2

PIP /NV/CD='$DEV'[1,1]zttab.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztyt.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztini.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztrw.MAC/NM
PIP /NV/CD='$DEV'[1l,1]ztich.MAC/NM
PIP /NV/CD='S$DEV'[1,1]ztcan.MAC/NM
DMO '$DEV'

as we e

+ASK MONT Press return when ready:
MOU '$DEV'EXO0S3

PIP /NV/CD='$DEV'[1,1]ztatt.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztois.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztdat .MAC/NM
PIP /NV/CD='$DEV'[1,1]zttbl .MAC/NM
PIP /NV/CD='$DEV'[1,1]ztsub.MAC/NM
PIP /NV/CD='"S$DEV'[1,1]ztcis.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztfp.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztodn.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmis.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmod.MAC/NM
PIP /NV/CD='$DEV'[1,1]ztmac.MAC/NM
.15

.3

.3 build the driver

.9

@BLDDRV

.IFT $DEL PIP BLDDRV.CMD;/DE

.y

Please mount floppy labelled EX0S3 in '$DEV'

Oct 17 16:18 1985 instuni.cmd Page 3

.3 build the pseudo-terminal driver
@BLDZT
.IFT $DEL PIP BLDZT.CMD;/DE

-

build the ACP

-e

.
-e

@BLDACP

.IFT $DEL .AND .IFT $DRV PIP PROLOGUE.OLB;/DE
.IFT $DEL PIP RTH.OLBj;/DE

.IFT $DEL PIP BLDACP.CMD;/DE

-

Now copy utilities to various destination location

-

.

L]
-e

.IFT $DRV DMO '$DEV'

.IFT $DRV .EXIT

.20:

.ASKS DESTUI Please enter the UFD for the EXO0S utilities
.IF DESTUI = """ ,GOTO 20

.
.9

o3 Copy task image

.3

.IFF $NOPRE .GOTO 25

PIP 'DESTUI'ARP.TSK;*/DE

PIP 'DESTUI'BSTAT.TSK;*/DE
PIP 'DESTUI'NETLOAD.TSK;*/DE
PIP 'DESTUI'NETSTAT.TSK;*/DE
PIP 'DESTUI'TTCP.TSK;*/DE
PIP 'DESTUI'XROUTE.TSK;*/DE
PIP 'DESTUI'FTPC.TSK;*/DE
PIP 'DESTUI'FTPDEMON.TSK3%*/DE
PIP 'DESTUI'TELNET.TSK;*/DE
PIP 'DESTUI'LOGIN.TSK;*/DE
PIP 'DESTUI'FTPD.TSK;*/DE
.25

DMO 'S$DEV'

Please mount floppy labelled EX0S4 in '$DEV'

e ws we

«ASK MONT Press return when ready:

MOU '$DEV'EX0S4

PIP /FO/NV/CD='$DEV'[1,1]LOGIN.OLB/NM
PIP /FO/NV/CD='$DEV'[1,1]PASWORD.MAC/NM
PIP /FO/NV/CD='$DEV'[1l,1]ACTFIL.MAC/NM
PIP /FO/NV/CD='$DEV'[1,1]BLDLGN.CMD/NM
@BLDLGN

.IFT $DEL PIP LOGIN.OLB;*/DE

.IFT $DEL PIP BLDLGN.CMD;*/DE

PIP 'DESTUI'/FO/CO/NV/CD=8Y:'<UIC>'LOGIN.TSK/NM
PIP LOGIN.TSK;/DE/NM

PIP /FO/NV/CD='$DEV'[1,1]DEMON.OLB/NM
PIP /FO/NV/CD='$DEV'[1,1]RECVAST.MAC/NM
PIP /FO/NV/CD='$DEV'[1,1]BLDDEM.CMD/NM
PIP /FO/NV/CD='$DEV'[1,1]DEMON.MAC/NM
@BLDDEM

.IFT $DEL PIP DEMON.OLB;*/DE

.3.IFT $DEL PIP RECVAST.MAC;*/DE

Oct 17 16:18 1985 instuni.cmd Page &4

.IFT $DEL PIP BLDDEM.CMD;*/DE

.IFT $DEL PIP PROLOGUE.OLB;*/DE

PIP 'DESTUI'/FO/CO/NV/CD=SY:'<UIC>'FTPDEMON.TSK/NM
PIP FTPDEMON.TSK;/DE/NM

PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]ARP.TSK/NM

PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]BSTAT.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD="$DEV'[1,1]NETLOAD.TSK/NM
DMO '$DEV'

Please mount floppy labelled EX0S5 in '$DEV'

-e ws we

.ASK MONT Press return when ready:

MOU '$DEV'EXO0S5

PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]NETSTAT.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]TTCP.TSK/NM
PIP 'DESTUI'/FO/CO/NV/cD='$DEV'[1,1]XROUTE.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]FTPC.TSK/NM
PIP 'DESTUI'/FO/CO/NV/CD='$DEV'[1,1]TELNET.TSK/NM
DMO '$DEV'

Please mount floppy labelled EX0S6 in '$DEV'

we we we

.ASK MONT Press return when ready:
MOU '$DEV'EX0S6
PIP 'DESTUI'/FO/CO/NV/cCD="$DEV'[1,1]FTPD.TSK/NM

copy specific programs

o we 2o

.9

.IFT $NOPRE PIP 'DESTUI'RHOST.C;*/DE

.IFT $NOPRE PIP 'DESTUI'RADDR.C;%*/DE

.IFT $NOPRE PIP 'DESTUI'SOCKET.Cj;%*/DE

.IFT $NOPRE PIP 'DESTUI'TTCP.C;*/DE

.IFT $NOPRE PIP 'DESTUI'TTCP.H;*/DE

.IFT $NOPRE PIP LB:[1,2]NET.;*/DE

.IFT $NOPRE PIP 'DESTUI'8030.HLP;*/DE

PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]RHOST.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]RADDR.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]SOCKET.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]TTCP.C/NM
PIP 'DESTUI'/FO/NV/CD='$DEV'[1l,1]TTCP.H/NM
PIP LB:[1,2]/FO/NV/CD='$DEV'[1,1]INET./NM

PIP 'DESTUI'/FO/NV/CD='$DEV'[1,1]8030.HLP/NM
.ASK INITHO Do you want to initialize the network addresses file (HOSTS.NET)
.IFF INITHO .GOTO SETLD

.IFT $NOPRE PIP LB:[1,1]HOSTS.NET;*/DE

PIP LB:[1,1]/FO/NV/CD="'$DEV'[1,1]HOSTS .NET/NM
.OPENA LB:[1,1]HOSTS.NET

.ASKS HNAME Name of host

.ASKS HADDR Host internet address

.DATA 'HADDR' 'HNAME' localhost

.CLOSE

.IFT $NOPRE PIP LB:[1,1]HOSTLOCAL.NET;*/DE
PIP LB:[1,1]/FO/NvV/CD="'$DEV'[1,1]HOSTLOCAL.NET/NM

Write out the EXOSLOAD command file

e we ‘oo

s

Oct 17 16:18 1985 instuni.cmd Page 5

.SETLD:
.IFT $NOPRE PIP LB:[1,1]EXOSLOAD.CMD;*/DE
.OPEN LB:[1,1]EXOSLOAD.CMD
.DATA .ENABLE SUBSTITUTION
.DATA .IFACT DEMTO ABO DEMTO
.DATA .IFACT LGNTO ABO LGNTO
.DATA .IFACT ...DEM ABO ...DEM
.DATA .IFACT ...LGN ABO ...LGN
.SETN LCOUNT 0
.80§:
.IF LCOUNT >= '$SESS' .GOTO 89%
.DATA .IFACT FTDOO'LCOUNT' ABO FTDOO'LCOUNT'
.DATA .IFINS FTDOO'LCOUNT' REM FTDOO'LCOUNT'
.DATA .IFINS XDROO'LCOUNT' REM XDROO'LCOUNT'
.INC LCOUNT
.GOTO 80%
.89%:
.DATA .IFINS ...DEM REM ...DEM
.DATA .IFINS ...ARP REM ...ARP
.DATA .IFINS ...BST REM ...BST
.DATA .IFINS ...FTP REM ...FTP
.DATA .IFINS ...NET REM ...NET
.DATA .IFINS ...TEL REM ...TEL
.DATA .IFINS ...TTC REM ...TTC
.DATA .IFINS ...ROU REM ...ROU
.DATA .IFINS ...NST REM .,.NST
.DATA .IFINS ...LGN REM ...LGN
.DATA .IFACT ...RTH ABO ...RTH
.DATA .IFACT RTHTO ABO RTHTO
.DATA .IFINS ...RTH REM ...RTH
.DATA .IF <SYSTEM> <> 6 .GOTO 10%
.DATA .IFLOA ZE: CON OFFLINE ZEA
.DATA .IFLOA ZE: CON OFFLINE ZEO:
.DATA .IFNLOA ZT: .GOTO 10%
.DATA CON OFFLINE ZTA
.DATA CON OFFLINE ZTB
.DATA CON OFFLINE ZTC
.DATA CON OFFLINE ZTD
.DATA CON OFFLINE ZTE
.DATA CON OFFLINE ZTF
.DATA CON OFFLINE ZTH
.DATA CON OFFLINE ZTJ
.DATA CON OFFLINE ZTO:
.DATA CON OFFLINE ZTl:
.DATA CON OFFLINE ZT2:
.DATA CON OFFLINE ZT3:
.DATA CON OFFLINE ZTé4:
.DATA CON OFFLINE ZTS:
.DATA CON OFFLINE ZT6:
.DATA CON OFFLINE ZT7:
.DATA .10%:
.DATA .IFLOA ZE: UNL ZE:
.DATA .IFLOA ZT: UNL ZT:
.DATA LOA ZE:/PAR=GEN/HIGH/SIZE=20000
.DATA .IF <SYSTEM> <> 6 LOA ZT:
.DATA .IF <SYSTEM> <> 6 UNL ZT:

Oct 17 16:18 1985 1instuni.cmd Page 6

.DATA ; You can ignore the error message: ''Loadable driver larger than 4KW'"

.DATA LOA ZT:/HIGH/SIZE=20000

.DATA .IF <SYSTEM> <> 6 .GOTO 20$%

.DATA 3 configure the devices online

.DATA CON ONLINE ZEA

.DATA CON ONLINE ZEO:

.DATA CON SET ZTA VEC=0

.DATA CON SET ZTB VEC=0

.DATA CON SET ZTC VEC=0

.DATA CON SET ZTD VEC=0

.DATA CON SET ZTE VEC=0

.DATA CON SET ZTF VEC=0

.DATA CON SET ZTH VEC=0

.DATA CON SET ZTJ VEC=0

.DATA CON ONLINE ALL

+DATA .20§:

.DATA INS $RTHACP/PRI=150.

.DATA .XQT RTH

.DATA INS 'DESTUI'ARP.TSK

.DATA INS 'DESTUI'BSTAT.TSK

.DATA INS 'DESTUI'FTPC.TSK

.DATA INS 'DESTUI'FTPDEMON.TSK

.DATA INS 'DESTUI'NETLOAD.TSK

.DATA INS 'DESTUI'TELNET.TSK

.DATA INS 'DESTUI'TTCP.TSK

.DATA INS 'DESTUI'XROUTE.TSK

.DATA INS 'DESTUI'NETSTAT.TSK

.DATA INS 'DESTUI'LOGIN.TSK

.SETN LCOUNT 0

.DATA .SETS FTDOPT ""

.DATA .IF <SYSTEM> = 6 ,SETS FTDOPT ' /XHR=NO"
.90%:

.IF LCOUNT >= '$SESS' .GOTO 99%

.DATA INS 'DESTUI'FTPD.TSK/TASK=FTDO0O'LCOUNT'''FTDOPT"'

.DATA INS $PIP/TASK=XDROO'LCOUNT'

.INC LCOUNT

.GOTO 90%
.998:

.DATA .ASK DWN Do you want to initialize the EXOS front end processor

.DATA .IFT DWN net

.DATA .ASK DMN Do you want to start the FTP server

.DATA .IFT DMN .XQT dem

.DATA .IFT DMN .XQT lgn

.CLOSE

PIP LB:[1,1]EXOSLOAD.CMD/PR/FO

Please add the following line to LB:[1,2]STARTUP.CMD so that the
network is reloaded everytime the system is rebooted.

@LB:[1,1]EXOSLOAD

You may need to edit the file LB:[1,1]EXOSLOAD.CMD to set up the
options in loading the network module.

o we we we e we Ve we e we

“we e

.

Oct 17 16:18 1985 1instuni.cmd Page 7

dismount device

.
Y]

.
-e

DMO 'S$DEV'

Installation completed. Now you can execute
@LB:[1,1]EXOSLOAD
to start up the network connection.

we we we weo

Oct 17 16:18 1985 tapeins.cmd Page 1

COPYRIGHT (c) 1985 BY EXCELAN, INC.
SAN JOSE, CALIFORNIA. ALL RIGHTS RESERVED.

» we we we we

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY
BE USED AND COPIED ONLY IN ACCORDANCE WITH THE
TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO
AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

THE INFORMATION 1IN THIS SOFTWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY EXCELAN, INC.

* o
WO Ve Be Ve WS WE VS WE W NE Ve UE We WS e

EXCELAN, INC. ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF 1ITS SOFTWARE ON EQUIPMENT THAT IS
NOT SUPPLIED BY EXCELAN, INC.
.ENABLE QUIET
.ENABLE LOWERCASE
.ENABLE GLOBAL
.ENABLE SUBSTITUTION
.IFT <PRIVIL> .GOTO 5
.DISABLE QUIET
3 Error: You must be privileged in order to install EXOS 8030 software.
+EXIT
<5
.IF <uIc> = "[1,100]" .cOTO 7
.DISABLE QUIET '
3 Error: EXOS 8030 must be installed from UIC [1,100]

+EXIT
o7
.DISABLE DISPLAY
+ASK $VRBS Verbose? [Y/N]
.IFT $VRBS .DISABLE QUIET
.ASK $NOPRE Delete previous version of EXOS software? [Y/N]
.ASK $DEL Delete source file from current UFD in target disk? [Y/N]
.ASK $DRV Build driver and ACP only? [Y/N]
.SETS $VEC "400"
.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]
.SETS $PORT '4000"
.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D : 4000]
.SETN $SESS 1
LASKN [::$SESS] $SESS Maximum number of concurrent FTP server sessions? [D : 1]
.9
.} build the driver
R
@BLDDRV
.IFT $DEL PIP BLDDRV.CMDj/DE
.9
.3 build the pseudo-terminal driver
@BLDZT

IFT $DEL PIP BLDZT.CMD;/DE

b4
o} build the ACP

Oct 17 16:18 1985 tapeins.cmd Page 2

*9

@BLDACP

.IFT $DEL .AND .IFT $DRV PIP PROLOGUE.OLB;/DE
.IFT $DEL PIP RTH.OLB;/DE

.IFT $DEL PIP BLDACP.CMD;/DE

-

Now copy utilities to various destination location

“e

.

.
e

«IFT $DRV .EXIT

.20:

.ASKS DESTUI Please enter the UFD for the EXOS utilities
.IF DESTUI = "" .GOTO 20

-

Copy task image

-e

L]
e

.IFF $NOPRE .GOTO 25

PIP 'DESTUI'ARP.TSK;*/DE

PIP 'DESTUI'BSTAT.TSK;*/DE

PIP 'DESTUI'NETLOAD.TSK;*/DE

PIP 'DESTUI'NETSTAT.TSK;*/DE

PIP 'DESTUI'TTCP.TSK;*/DE

PIP 'DESTUI'XROUTE.TSK;*/DE

PIP 'DESTUI'FTPC.TSK;*/DE

PIP 'DESTUI'FTPDEMON.TSK}3*/DE

PIP 'DESTUI'TELNET.TSK;*/DE

PIP 'DESTUI'LOGIN.TSK;*/DE

PIP 'DESTUI'FTPD.TSK;*/DE

«25:

@BLDLGN

.IFT $DEL PIP LOGIN.OLB;*/DE

.IFT $DEL PIP BLDLGN.CMD;*/DE

PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'LOGIN.TSK/NM
@BLDDEM

.IFT $DEL PIP DEMON.OLB;*/DE

.3 IFT $DEL PIP RECVAST.MAC;*/DE

JIFT $DEL PIP BLDDEM.CMDj*/DE

.IFT $DEL PIP PROLOGUE.OLB;*/DE

PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPDEMON.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=8Y:'<UIC>'ARP.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'BSTAT.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'NETLOAD.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=8Y:'<UIC>'NETSTAT.TSK/NM
PIP 'DESTUI'/RE/FQ/CO/NV/CD=8Y:'<UIC>'TTCP.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'XROUTE.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPC.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'TELNET.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPD.TSK/NM

o} copy specific programs

°y

.IFT $NOPRE PIP 'DESTUI'RHOST.C;*/DE
.IFT $NOPRE PIP 'DESTUI'RADDR.C;*/DE
.IFT $NOPRE PIP 'DESTUI'SOCKET.C;*/DE
.IFT $NOPRE PIP 'DESTUI'TTCP.C}*/DE
.IFT $NOPRE PIP 'DESTUI'TTCP.H;*/DE
.IFT $NOPRE PIP LB:[1,2]NET.;*/DE

Oct 17 16:18 1985 tapeins.cmd Page 3

.IFT $NOPRE PIP 'DESTUI'8030.HLP;*/DE

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'RHOST.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'RADDR.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'SOCKET.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=8Y:'<UIC>'TTCP.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'TTCP.H/NM

PIP LB:[1,2]/RE/FO/NV/CD=SY:'<UIC>'NET./NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'8030.HLP/NM

.ASK INITHO Do you want to initialize the network addresses file (HOSTS.NET)
.IFF INITHO .GOTO SETLD

.IFT $NOPRE PIP LB:[1,1]HOSTS.NET;*/DE

PIP LB:[1,1]/RE/FO/NV/CD=SY:'<UIC>'HOSTS .NET/NM
.OPENA LB:[1,1]HOSTS.NET

«ASKS HNAME Name of host

.ASKS HADDR Host internet address

.DATA 'HADDR' 'HNAME' localhost

.CLOSE

.IFT $NOPRE PIP LB:[1,1]HOSTLOCAL.NET;*/DE

PIP LB:[1,1]/RE/FO/NV/CD=SY:'<UIC>'HOSTLOCAL.NET/NM

-

Write out the EXOSLOAD command file

-e

L]
-e

.SETLD:
.IFT $NOPRE PIP LB:[1,1]EXOSLOAD.CMD;*/DE
.OPEN LB:[1,1]EXOSLOAD.CMD
.DATA .ENABLE SUBSTITUTION
.DATA .IFACT DEMTO ABO DEMTO
.DATA .IFACT LGNTO ABO LGNTO
.DATA ,IFACT ...DEM ABO ...DEM
.DATA .IFACT ...LGN ABO ...LGN
.SETN LCOUNT 0
.80%:
.IF LCOUNT >= '$SESS' .GOTO 89$%
.DATA .IFACT FTDOO'LCOUNT' ABO FTDOO'LCOUNT'
.DATA .IFINS FTDOO'LCOUNT' REM FTDOO'LCOUNT'
.DATA .IFINS XDROO'LCOUNT' REM XDROO'LCOUNT'
.INC LCOUNT
.GOTO 80%
.89%:
.DATA .IFINS ...DEM REM ...DEM
.DATA .IFINS ...ARP REM ...ARP
.DATA .IFINS ...BST REM ...BST
.DATA .IFINS ...FTP REM ...FTP
.DATA .IFINS ...NET REM ...NET
.DATA .IFINS ...TEL REM ...TEL
.DATA .IFINS ...TTC REM ...TTC
.DATA .IFINS ...ROU REM ...ROU
.DATA .IFINS ...NST REM ...NST
.DATA .IFINS ...LGN REM ...LGN
.DATA .IFACT ...RTH ABO ...RTH
.DATA .IFACT RTHTO ABO RTHTO
.DATA .IFINS ...RTH REM ...RTH
.DATA .IF <SYSTEM> <> 6 .GOTO 10%
.DATA .IFLOA ZE: CON OFFLINE ZEA
.DATA .IFLOA ZE: CON OFFLINE ZEO:
.DATA .IFNLOA ZT: .GOTO 10%

Oct 17 16:18 1985 tapeins.cmd Page 4

.DATA CON OFFLINE ZTA

.DATA CON OFFLINE ZTB

.DATA CON OFFLINE ZTC

.DATA CON OFFLINE ZTD

.DATA CON OFFLINE ZTE

.DATA CON OFFLINE ZTF

.DATA CON OFFLINE ZTH

.DATA CON OFFLINE ZTJ

.DATA CON OFFLINE ZTO:

.DATA CON OFFLINE ZTl:

.DATA CON OFFLINE ZT2:

.DATA CON OFFLINE ZT3:

.DATA CON OFFLINE ZT4:

.DATA CON OFFLINE ZT5:

.DATA CON OFFLINE ZTé6:

.DATA CON OFFLINE ZT7:

.DATA .10$: u

.DATA .IFLOA ZE: UNL ZE:

.DATA .IFLOA ZT: UNL ZT:

.DATA LOA ZE:/PAR=GEN/HIGH/SIZE=20000

.DATA .IF <SYSTEM> <> 6 LOA ZT:

.DATA .IF <SYSTEM> <> 6 UNL ZT:

.DATA ; You can ignore the error message: "Loadable driver larger than 4KW"

.DATA LOA ZT:/HIGH/SIZE=20000

.DATA .IF <SYSTEM> <> 6 .GOTO 20%

.DATA 3 configure the devices online

.DATA CON ONLINE ZEA

.DATA CON ONLINE ZEO:

.DATA CON SET ZTA VEC=0

.DATA CON SET ZTB VEC=0

.DATA CON SET ZTC VEC=0

.DATA CON SET ZTD VEC=0

.DATA CON SET ZTE VEC=0

+DATA CON SET ZTF VEC=0

.DATA CON SET ZTH VEC=0

.DATA CON SET ZTJ VEC=0

.DATA CON ONLINE ALL

.DATA .208§:

.DATA INS $RTHACP/PRI=150.

.DATA .XQT RTH

.DATA INS 'DESTUI'ARP.TSK

.DATA INS 'DESTUI'BSTAT.TSK

.DATA INS 'DESTUI'FTPC.TSK

.DATA INS 'DESTUI'FTPDEMON.TSK

.DATA INS 'DESTUI'NETLOAD.TSK

.DATA INS 'DESTUI'TELNET.TSK

.DATA INS 'DESTUI'TTCP.TSK

.DATA INS 'DESTUI'XROUTE.TSK

.DATA INS 'DESTUI'NETSTAT.TSK

.DATA INS 'DESTUI'LOGIN.TSK

.SETN LCOUNT 0

.DATA .SETS FTDOPT "

.DATA .IF <SYSTEM> = 6 .SETS FTDOPT ''/XHR=NO"
.90%:

.IF LCOUNT >= '$SESS' .GOTO 99%

.DATA INS 'DESTUI'FTPD.TSK/TASK=FTD0OO'LCOUNT'''FTDOPT''

Oct 17 16:18 1985 tapeins.cmd Page 5

.DATA INS $PIP/TASK=XDROO'LCOUNT'
.INC LCOUNT
.GOTO 90%
.998%:
.DATA .ASK DWN Do you want to initialize the EXOS front end processor
.DATA .IFT DWN net
.DATA .ASK DMN Do you want to start the FTP server
.DATA .IFT DMN .XQT dem
.DATA .IFT DMN .XQT lgn
+CLOSE
PIP LB:[1,1]EXOSLOAD.CMD/PR/FO

Please add the following line to LB:[1,2]STARTUP.CMD so that the
network is reloaded everytime the system is rebooted.

@LB:[1,1]EXOSLOAD

You may need to edit the file LB:[1,1]EXOSLOAD.CMD to set up the
options in loading the network module.

Installation completed. Now you can execute
@LB:[1,1]EXOSLOAD
to start up the network connection.

e we We WE We Ve WS wE We UE e we we

Oct 17 16:18 1985 tapeuni.cmd Page 1

COPYRIGHT (c) 1985 BY EXCELAN, INC.
SAN JOSE, CALIFORNIA. ALL RIGHTS RESERVED.

o we we we we

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY
BE USED AND COPIED ONLY 1IN ACCORDANCE WITH THE
TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE
MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO
AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

3 e & 8 &
Ve WS We Ve s WS W WS WE B WS WS Ws we Be

THE INFORMATION 1IN THIS SOFIWARE IS SUBJECT TO
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED
AS A COMMITMENT BY EXCELAN, INC.

.

EXCELAN, INC. ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS
NOT SUPPLIED BY EXCELAN, INC.
.ENABLE QUIET
.ENABLE LOWERCASE
.ENABLE GLOBAL
.ENABLE SUBSTITUTION
.IFT <PRIVIL> .GOTO 5
.DISABLE QUIET
3 Error: You must be privileged in order to install EX0S 8030 software.
LEXIT
B
JIF <yIc> = "[1,100]" .GOTO 7
.DISABLE QUIET
3 Error: EXOS 8030 must be installed from UIC [1,100]

JEXIT
o7
.DISABLE DISPLAY
.ASK $VRBS Verbose? [Y/N]
.IFT $VRBS .DISABLE QUIET
.ASK $NOPRE Delete previous version of EXOS software? [Y/N]
.ASK $DEL Delete source file from current UFD in target disk? [Y/N]
+ASK $DRV Build driver and ACP only? [Y/N]
.SETS $VEC "400"
.ASKS [::$VEC] $VEC Interrupt vector location ? [D : 400]
.SETS $PORT '4000"
.ASKS [::$PORT] $PORT OFFSET ADDRESS OF PORTA ? [D : 4000]
.SETN $SESS 1
.ASKN [::$SESS] $SESS Maximum number of concurrent FTP server sessions? [D : 1]
R
o3 build the driver
.3
@BLDDRV
.IFT $DEL PIP BLDDRV.CMD}/DE
.3
.} build the pseudo-terminal driver
@BLDZT

.IFT $DEL PIP BLDZT.CMD;/DE

?
o3 build the ACP

Oct 17 16:18 1985 tapeuni.cmd Page 2

LR

@BLDACP

.IFT $DEL .AND .IFT $DRV PIP PROLOGUE.OLB;/DE
.IFT $DEL PIP RTH.OLB;/DE

.IFT $DEL PIP BLDACP.CMD;/DE

-

Now copy utilities to various destination location

-e

3
-e

.IFT $DRV EXIT

.20:

.ASKS DESTUI Please enter the UFD for the EXO0S utilities
.IF DESTUI = "" .GOTO 20

-

Copy task image

e

.

L]
-s

.IFF $NOPRE .GOTO 25

PIP 'DESTUI'ARP.TSK;*/DE

PIP 'DESTUI'BSTAT.TSK;*/DE

PIP 'DESTUI'NETLOAD.TSK;*/DE

PIP 'DESTUI'NETSTAT.TSK;*/DE

PIP 'DESTUI'TTCP.TSK;%*/DE

PIP 'DESTUI'XROUTE.TSK;*/DE

PIP 'DESTUI'FTPC.TSK;*/DE

PIP 'DESTUI'FTPDEMON.TSK;*/DE

PIP 'DESTUI'TELNET.TSK;*/DE

PIP 'DESTUI'LOGIN.TSK;*/DE

PIP 'DESTUI'FTPD.TSK;*/DE

«25:

@BLDLGN

.IFT $DEL PIP LOGIN.OLB;*/DE

.IFT $DEL PIP BLDLGN.CMD;*/DE

PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'LOGIN.TSK/NM
@BLDDEM

LIFT $DEL PIP DEMON.OLB;*/DE

«3.IFT $DEL PIP RECVAST.MAC;*/DE

.IFT $DEL PIP BLDDEM.CMD;*/DE

.IFT $DEL PIP PROLOGUE.OLBj*/DE

PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPDEMON.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'ARP.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=8Y:'<UIC>'BSTAT.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'NETLOAD.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'NETSTAT.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=8Y:'<UIC>'TTCP.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'XROUTE.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPC.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'TELNET.TSK/NM
PIP 'DESTUI'/RE/FO/CO/NV/CD=SY:'<UIC>'FTPD.TSK/NM

-e

copy specific programs

e

.
-e

.IFT $NOPRE PIP 'DESTUI'RHOST.C;*/DE
.IFT $NOPRE PIP 'DESTUI'RADDR.C;*/DE
.IFT $NOPRE PIP 'DESTUI'SOCKET.Cj%*/DE
.IFT $NOPRE PIP 'DESTUI'TTCP.C;*/DE
.IFT $NOPRE PIP 'DESTUI'TTCP.H;*/DE
.IFT $NOPRE PIP LB:[1,2]NET.;*/DE

Oct 17 16:18 1985 tapeuni.cmd Page 3

.IFT $NOPRE PIP 'DESTUI'8030.HLP;*/DE

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'RHOST.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'RADDR.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'SOCKET.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'TTCP.C/NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'TTCP.H/NM

PIP LB:[1,2]/RE/FO/NV/CD=SY:'<UIC>'NET./NM

PIP 'DESTUI'/RE/FO/NV/CD=SY:'<UIC>'8030.HLP/NM
.ASK INITHO Do you want to initialize the network addresses file (HOSTS.NET)
.IFF INITHO .GOTO SETLD

.IFT $NOPRE PIP LB:[1,1]HOSTS.NET;*/DE

PIP LB:[1,1]/RE/FO/NV/CD=SY:'<UIC>'HOSTS.NET/NM
.OPENA LB:[1,1]HOSTS.NET

.ASKS HNAME Name of host

.ASKS HADDR Host internet address

.DATA 'HADDR' 'HNAME' localhost

.CLOSE

.IFT $NOPRE PIP LB:[1,1]HOSTLOCAL.NET;*/DE

PIP LB:[1,1]/RE/FO/NV/CD=SY:'<UIC>'HOSTLOCAL.NET/NM

-

Write out the EXOSLOAD command file

-s

.
e

.SETLD:
.IFT $NOPRE PIP LB:[1,1]EXOSLOAD.CMD;*/DE
.OPEN LB:[1,1]EXOSLOAD.CMD
.DATA .ENABLE SUBSTITUTION
.DATA .IFACT DEMTO ABO DEMTO
.DATA .IFACT LGNTO ABO LGNTO
.DATA .IFACT ...DEM ABO ...DEM
.DATA .IFACT ...LGN ABO ...LGN
.SETN LCOUNT 0
.80%:
.IF LCOUNT >= '$SESS' .GOTO 89%
.DATA .IFACT FTDOO'LCOUNT' ABO FTDOO'LCOUNT'
.DATA .IFINS FTDOO'LCOUNT' REM FTDOO'LCOUNT'
.DATA .IFINS XDROO'LCOUNT' REM XDROO'LCOUNT'
.INC LCOUNT
.GOTO 80%
.898:
.DATA .IFINS ...DEM REM ...DEM
.DATA .IFINS ...ARP REM ...ARP
.DATA .IFINS ...BST REM ...BST
.DATA .IFINS ...FTP REM ...FTP
.DATA .IFINS ...NET REM ...NET
.DATA .IFINS ...TEL REM ...TEL
.DATA .IFINS ...TTC REM ...TTC
.DATA .IFINS ...ROU REM ...ROU
.DATA .IFINS ...NST REM ...NST
.DATA .IFINS ...LGN REM ...LGN
.DATA .IFACT ...RTH ABO ...RTH
.DATA .IFACT RTHTO ABO RTHTO
.DATA .IFINS ...RTH REM ...RTH
.DATA .IF <SYSTEM> <> 6 .GOTO 10%
.DATA .IFLOA ZE: CON OFFLINE ZEA
.DATA .IFLOA ZE: CON OFFLINE ZEO:
.DATA .IFNLOA ZT: .GOTO 10$

Oct 17 16:18 1985 tapeuni.cmd Page 4

.DATA CON OFFLINE ZTA

.DATA CON OFFLINE ZTB

.DATA CON OFFLINE ZTC

.DATA CON OFFLINE ZTD

.DATA CON OFFLINE ZTE

.DATA CON OFFLINE ZTF

.DATA CON OFFLINE ZTH

.DATA CON OFFLINE ZTJ

.DATA CON OFFLINE ZTO:

.DATA CON OFFLINE ZTl:

.DATA CON OFFLINE ZT2:

.DATA CON OFFLINE ZT3:

.DATA CON OFFLINE ZT4:

.DATA CON OFFLINE ZT5:

.DATA CON OFFLINE ZTé6:

.DATA CON OFFLINE ZT7:

.DATA .10%:

.DATA .IFLOA ZE: UNL ZE:

.DATA .IFLOA ZT: UNL ZT:

.DATA LOA ZE:/PAR=GEN/HIGH/SIZE=20000

.DATA .IF <SYSTEM> <> 6 LOA ZT:

.DATA .IF <SYSTEM> <> 6 UNL ZT:

.DATA 3 You can ignore the error message: 'Loadable driver larger than 4KW"

.DATA LOA ZT:/HIGH/SIZE=20000

.DATA .IF <SYSTEM> <> 6 .GOTO 20$

.DATA 3 configure the devices online

.DATA CON ONLINE ZEA

.DATA CON ONLINE ZEO:

.DATA CON SET ZTA VEC=0

.DATA CON SET ZTB VEC=0

.DATA CON SET ZTC VEC=0

.DATA CON SET ZTD VEC=0

.DATA CON SET ZTE VEC=0

.DATA CON SET ZTF VEC=0

.DATA CON SET ZTH VEC=0

.DATA CON SET ZTJ VEC=0

.DATA CON ONLINE ALL

.DATA .20%:

.DATA INS $RTHACP/PRI=150.

.DATA .XQT RTH

.DATA INS 'DESTUI'ARP.TSK

.DATA INS 'DESTUI'BSTAT.TSK

.DATA INS 'DESTUI'FTPC.TSK

.DATA INS 'DESTUI'FTPDEMON.TSK

.DATA INS 'DESTUI'NETLOAD.TSK

.DATA INS 'DESTUI'TELNET.TSK

.DATA INS 'DESTUI'TTCP.TSK

.DATA INS 'DESTUI'XROUTE.TSK

.DATA INS 'DESTUI'NETSTAT.TSK

.DATA INS 'DESTUI'LOGIN.TSK

.SETN LCOUNT 0

.DATA .SETS FTDOPT ""

.DATA .IF <SYSTEM> = 6 .SETS FTDOPT "'/XHR=NO"
.908:

.IF LCOUNT >= '4SESS' .GOTO 99%

.DATA INS 'DESTUI'FTPD,TSK/TASK=FTDOO'LCOUNT'''FTDOPT''

oct 17 16218 1985 tapeuni.cmd Page 5

.DATA INS $PIP/TASK=XDR0OO'LCOUNT'
+ «INC LCOUNT
.GOTO 90$%
.99§:
.DATA .ASK DWN Do you want to initialize the EXOS front end processor
+.DATA .IFT DWN net
.DATA .ASK DMN Do you want to start the FIP server
.DATA .IFT DMN .XQT dem
.DATA .IFT DMN .XQT lgn
.CLOSE
PIP LB:[1,1]EXOSLOAD.CMD/PR/FO

Please add the following line to LB:[1,2]STARTUP.CMD so that the
network is reloaded everytime the system is rebooted.

@LB:[1,1]EXOSLOAD

You may need to edit the file LB:[1,1]EXOSLOAD.CMD to set up the
options in loading the network module.

Installation completed. Now you can execute
@LB:[1,1]EXOSLOAD
to start up the network connection.

WO e e B WS Ve WS NS WS WS WS W Ve

Apr 30 23:05 1986 ftpdemon.h Page 1

1 /7’:
2 * filename: FTPDEMON.H
3 */
4
5 #include <rsxos.h>
6 f#define EXEFN 010001
7 #define MAXCONN 4 /* max. no of connections */
8 #define ACC_EFN 50 /* common event flag no. 50 */
9 #define SLEEP EFN 51 /* common event flag no. 51 */
10 #define TASKNAMLEN 6 /* length of task name */
11 #define FOREVER for(s;
12 #define SDRA 01153
13
14 struct task block {
15 struct task block *link; /% link to next task block */
16 char task name[TASKNAMLEN]; /* task name */
17 int esb[8]; /* exit status block */
18 } tskblk[MAXCONN] = {0};
19
20 /* GLOBAL variables */
21

22 struct task block *rdy2run
23 struct task block *accept on

tskblk; /* ptr to rdy 2 run task */
H /* pointer to task in accept */

[l

25 char cmdlin[] = "INS LB:[1,2]FTPD/TASK=FTDOO ";
26 char line[] = "REM FTDOO ";
27 long cli =0 /* CLI name in RADS50 */

I e 1l

28 int cmdlen H

29 int len = 03

30 int flgbufl[4] = {0} /% event flag buffer */

31 /* int connect = 13} total no of connections */

32 char *ftpemd = (char *) 0;
33 int ftplen = 0%
34 int tcblist[MAXCONN] = {0}; /* pointer to task control block */

Apr 30 23:05 1986 ftpdemon.c Page 1

1 /=

2 * filename: FTPDEMON.C

3 %/

4

5 /%

6 * This file contains the code for the master ftp task which monitors the
7 * generation of different ftp daemons for different connections.

8 f

9

10 #include "ftpdemon.h"
11 extern int ast();

12 extern long radix();
13 int connect = 13

14 extern int ast_recv();
15 main()

16 §

18 priv_user(); /* check user is priv &

19 task is not active */

20 gmer ()

21 emt (SDRA,ast_recv); /% specify receive data ast */

23 initialize();

25 FOREVER {

26 if(lread efn(flgbuf)) { [* is efn 50 clear? */

27 if(rdy2run) { /* any rdy2run task present */
28 emt (SETF,ACC_EFN);/* set common efn 50 to

29 indicate accept is on */
30 ins_spawn(); /* install and spawn one
31 update(); /* update rdy2run pointer
32 }

33 | }

35 emt (ENAR) 3 /* enable ast recognition */

36 emt (STSE, SLEEP_EFN); /% sleep */

37 emt (CLEF,SLEEP EFN); /* clear sleep efn */

38 emt (DSAR); ~ /* disable ast recognition so that it does *
39 /* not interfere with main task's execution */
40 } /% end of FOREVER */

~

44 * INITIALIZE

46 W Initialize the world of MASTER

49 initialize()

50

51 register struct task block *t = tskblk; /* start of task block */
52 int 1,733

54 cli = radix("MCR...");
55 cmdlen = strlen(cmdlin);
56 len = strlen(line);

Apr 30 23:05 1986 ftpdemon.c Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

}
/

}

for(i=0ji<connect;i++) {
teblist[i] = 03
for(j=03j<5;j++)
t->task name[j] = cmdlin[cmdlen - TASKNAMLEN +3j];

t->task name[j] = '0' + i3
t=>link =t + 13
L4+

}
(--t)->link = 03
emt (CLEF,ACC_EFN);
emt (CLEF,SLEEP_EFN);
emt (DSAR); /* disable ast recognition so that ast's do not */
/* bother the masin task */

* UPDATE
* Update rdy2run pointer
*/
update()
accept_on = rdy2run;
rdy2run = rdy2run->link;
accept_on->link = 03
e
* FROM AST
* This routine is called from the AST routine when a task
* exits
%

from ast(p)

int *p;

/* pointer to esb of exit task */

register struct task block *exit task;
int index;

exit task = (struct task block *)(p-4); /* point to start of str. */
exit task->link = rdy2run;
rdy2run = exit task; /* make the exit task the next available */

/* rdy2run task */
line[len - 1] = exit task->task name[TASKNAMLEN -1];/* the task no. */
/*emt (SPWN,cli,0,0,0,0,EXEFN,0,0,1ine,1len,0,C0)3%*/ /* rem task */

[*emt (WISE, 1) 3%/ /* wait for task to get removed */
index = exit task - tskblk;
if(tcblist[index])

mkpriv(tcblist[index]); /% make sure task becomes priv. */
if(accept on == exit task)

emt (CLEF,ACC_EFN)3 /% then task has exit before accept */
emt (SETF,SLEEP EFN); /* unstop the master task */

Apr 30 23:05 1986 ftpdemon.c Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

/%
* INS_SPAWN
* Install and spawn the next rdy2run task
%/
ins_spawn()
{
char msgl26]; _
long t name = radix(rdy2run->task name);
int st;
cmdlin[cmdlen - 1] = rdy2run->task name[TASKNAMLEN -1];
/* now install the task */
/*st = emt(SPWN,c1i,0,0,0,0,EXEFN,0,0,cmdlin,cmdlen,0,CO);*/
/*emt (WTSE, 1) 3%/ /* wait for task to get installed */
/* now spawn the task */
st = emt(SPWN,t name,0,0,0,0,010000,ast,rdy2run->esb,ftpcmd,ftplen,0,0);
if(st == IE ACT)
H /% yet to decide what to do if task is active */
/* such a condition should never arise but if it does*/
/* then what? */
}
/* return the size of string */
strlen(s)
char *s}
{
char *p = s3
while(*p 1= '\0') p++;
return{p - s)3

}

Apr 30 23:05 1986 demon.mac Page 1

1
2 3 FILENAME: DEMON.MAC
3 3
4 This file includes AST service routine for demon. It also has
5 a routine to read EFN 50.
6 3
7 .psect c$text,i,ro
8
9 .MCALL RDAF$S
10 READ.EFN::
11 jsr R5,c$sav
12 Mov 4(R5),R0 3 pointer to a 4 word buffer
13 RDAF$S RO s read all event flags
14 BIT #2,6(R0O) 3 check if event no. 50 is set or clear
15 BNE 10% 3 1f NE then it is set
16 - CLR RO 3 clear return value also
17 10%:
18 jmp c$ret 3 i1f efn is set then return value is > 0
19
20
21 3 GMCR
22
23 .psect c$data,d,rw
24 .mcall DIRS,GMCRS
25 GMCRD:
26 GMCRS$
27 .psect c$text,i,ro
28 GMCR::
29 JSR R5,C$SAV $ save registers
30 DIRS #GMCRD 3 get MCR command line
31 CMP #IE.AST,$DSW 3 check return status
32 BEQ NMCR s if EQ No MCR Command
33 MOV #GMCRD+G .MCRB , FTPCMD 3 get mcr buffer address
34 MOV $DSW,FTPLEN 3 buffer size
35 NMCR:
36
37 JMP C$RET 3 unsave register's and return
38
39 .psect c$data,d,rw
40 tsk:
41
42 .IF DF R$SMPL
43
44 .rad50 /DEMTO/
45
46 .IFF $RSSMPL
47
48 .rad50 /...DEM/
49
50 .ENDC sR$SMPL
51
52 rtncode:
53 .word 0
54 ERL: +ASCIZ /[**FATAL**-—-— USER MUST BE PRIVILEGED/
55 .EVEN

56 ER2:

Apr 30 23:05 1986 demon.mac Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
12
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

<ASCIZ
.EVEN

[**FATAL*%-——-- TASK ALREADY ACTIVE/

.MCALL TCBDF$,UCBDF$,QIOWS$S,EXIT$S,DCBDF$

DCBDF$
TCBDF$
UCBDF$

.psect c$text,i,ro
.ENABL LSB

priv.users:
JSR
CALL
MOV
MOV
BIT
BEQ
CMP
BNE
CMP
BNE
Mov
10%:
MOV
BEQ
CMP
BNE
MOV
208:
BR
ERR1

..

MOV
BR
ERR2:
MOV
RTN:
RETURN
RET:
MOV
BEQ
CMP
BEQ
BR
El: MOV
BR
E2: MOV
BR
sUCC:
JMP
ERMSG:
QIOWSS
EXITSS

RS, C$SAV
$SWSTK,RET
$TKTCB,RO
T.UCB(RO),R1

#U2.PRV,U.CW2(R1

ERR1

tsk,T.NAM(RO)

ERR2

tsk+2,T.NAM+2 (RO

ERR2
#$DEVHD,R1

(R1),R1
20%

#'"C0,D.NAM(R1)

10

D.UCB(R1),T.UCB(

RTN

#-1,RTNCODE
RTN

#-2 ,RTNCODE

RTNCODE , RO
succ
#-1,R0

El

E2

#ER1,R1
ERMSG
#ER2,R1
ERMSG

C$RET

switch to system state

get current TCB address

get TI: UCB address

3 check user is priv.

If EQ user is not priv.

compare first word of task name
If NE task already active.

3 compare second word of task name
if NE task already active

get gevice header

we we we we we B e we e

33 get next DCB address

33 if EQ none

33 1s 1t console

33 1f NE no

RO) 33 get CO UCB address

33 user must be priv.

33 task already active
33 return to task state
33 return value

check error code

s address of error message

3 address of error message

#I0.WVB,#5,#1,,,,<R1,#38.,#40>

.psect c$text,i,ro

Apr 30 23:05 1986 demon.mac Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

mkprivs:

RET1:

AST::

JSR R5,CS$SAV

MOV 4(R5),R0 H
CALL $SWSTK,RET1 5
BIS #T3.PRV,T.ST3(RO)
RETURN

JMP CSRET

.DSABL LSB

.psect c$data,d,rw
.even
.psect c$text,i,ro

.MCALL ASTX$S

MOV RO,-(SP) H
MOV R1,-(SP) H
MOV R2,-(SP) H
MOV R3,-(SP) H
MOV R4,-(SP) H
MOV R5,-(SP) H
MOV 14(spP),-(SP) 3
JSR PC,FROM.AST :
TST (sp)+ ;
MOV (SP)+,R5 H
MOV (sP)+,R4 5
MOV (sP)+,R3 H
MOV (sp)+,R2 3
MOV (sP)+,R1 3
MOV (sp)+,R0 H
TST (sp)+ H
ASTXS$S H
.END

get tcb address
switch to system state
53 make server as priv.

save
save
save
save
save
save

RO
R1
R2
R3
R4
R5

lst param is the esb address on the stack
call C - routine to do the job

pop
pop
pop
pop
pop
pop
pop
pop

of f
off
of f
of f
off
off
of £
of £

param passed
R5
R4
R3
R2
R1
RO
stack for ast

exit from AST routine

Apr 30 23:05 1986 recvast.mac Page 1

LNV PWN -

e ae we

AST.RE::

AGAIN:

10$:

208:

filename: RECVAST .MAC

.title RECVAST
.MACRO SAVE

MOV RO,-(SP)
MOV R1,-(SP)
MoV R2,-(SP)
MOV R3,-(SP)
MoV R4 ,-(SP)
MOV R5,-(SP)
.ENDM

.MACRO UNSAVE

MOV (SP)+,R5
MOV (SP)+,R4
MoV (sp)+,R3
MOV (SP)+,R2
MOV (sp)+,R1
MOV (SP)+,R0
.ENDM

.MCALL TCBDF$,PCBDF$,HDRDF$,RCVD$S,SDATSS ,ASTXSS
TCBDF$

PCBDF$
HDRDF$
.BLKW 15.
.WORD 0

.RAD50 /000/

.enabl 1sb

SAVE $ save all registers

RCVDSS ,#PKT recieve pkt from ftd000 task

9
CcMP #I18.SUC,$DSW scheck for success
BEQ 10 ; If EQ YES
CMP #IE.ITS,$DSW 3 check error code
BEQ EXT 3 no pkt. return
BR ERR error
CALL $SWSTK,RET 3y switch to system state
MOV $SACTHD,RO ; get active task header pointer
CMP T.NAM(RO),PKT ;; compare first word of task
BNE NXT 33 If NE not match , next tcb
CMP T.NAM+2(R0),PKT+2 ;; compare second word of task

BEQ suce 3 If EQ found tcb

Apr 30 23:05 1986 recvast.mac Page 2

57 NXT:

58 MOV T.ACTL(RO),R0O 33 get next tcb address

59 CMP RO, #$HEADR 33 Check if it is last tcb
60 BEQ 308 33 If EQ yes

61 BR 206 33 Loop

62 sUCC:

63 MOVB PKT+5,GRP 33 get group

64 CMP GRP,#10 33 priv uic?

65 BLOS 25% 33 br if yes

66 BIC _#T3.PRV,T.ST3(R0) ;; make child as non-priv.
67 MOV PKT+2,R2 33 get second word of task name
68 SUB BASE,R2 33 calculate index(word)

69 ASL R2 33 index(byte)

70 ADD #TCBLIST,R2 53

71 MOV RO, (R2) 33 save tcb address

72 25%:

73 MOV T.PCB(RO),RO 33 get PCB address of task
74 MoV P.HDR(RO),RO 33 Get header control block
75 MOV PKT+4,H.CUIC(R0) 3; set current task uic as remote user's
76 33 login uic

77 MOV PKT+4,H.DUIC(RO) ;; set default task uic

78

79 30$%:

80 RETURN 33 switch to task state

81 RET:

82 SDAT$S #PKT,#PKT+4 3 send dummy pkt to child task
83 BR AGAIN s go for next pkt.

84 ERR:

85 EXT:

86 UNSAVE

87 3 unsave all registered

88 ASTXSS s exit from AST routine

89

90 .END

May 19 16:57 1986 login.c Page 1

1 #include <rsxos.h>
2 {define EFN 1
3 extern valacnt();
4 extern char *entry;
5 char *msg =" "5
6 main()
7
8 register int i,rs
9 char *p3
10 for(s3) {
11 /%
12 if(emt (RCVX,(long) O,msg) < 0)
13 emt (EXST,-2)3
14 %/
15 if(emt (RCST,(long) O,msg) == IS SET)
16 continue;
17 for(i=43msg[i] 1= '"*'ji++);
18 1++
19 r = valacnt(msg+4,msg+i);
20 *((int *)(msg + 4)) = r;
21 if(r == 0){
22 p = msg+6;
23 *pt = [
24 for(i=03i<3;i++)
25 *p++ = *(entry + A GRP + i)3
26 Fpre = 1,1y
27 for(i=031<33i++)
28 *p++ = *(entry + A MBR + i)j
29 *P++ = ! ';
30 *p++ = '\0';
31 /* now fill in the login default device name starting at 16th */
32 for(i=03i<4si++)
33 *p++ = *(entry + A SYDV + i)3
34 *p+r+ = '\0';
35 }
36 emt (SDAT,*(long*)msg ,msg+4,0);
37 }
38 }
39

40 extern int namflg;
41 extern char *puic;

42

43 accnt(ac)

44 char *acs

45 {

46 int hasbracket = 03

47 int charcount}

48 int leadzero; /* count of leading zeroes needed */
49 char *chptr;

50 char *delimiter; /* delimiter */

51

52 while (¥ac == ' ')

53 ac++} /% skip blank */
54 if ((*ac >= "A') && (¥ac <= '2')) {

55 namflg = 1;

56 return(l);

May 19 16:57 1986 login.c Page 2

57 } else if (%ac == "[') {

58 hasbracket = 13

59 ac++;

60 } else if ((*ac < '0') && (¥ac > '7')) {

61 return(2);

62 }s

63

64 /* now must start with a numeric number %/

65

66 chptr = ac;

67 charcount = 03

68 while ((*chptr != ' ') && (¥chptr != ',')) {

69 if (++charcount > 3)

70 return(2); /* group number too long */
71 chptr++;

72 }s

73

74 delimiter = chptr}

75

76 for (leadzero = 3 - charcount} leadzero > 0; leadzero--)
77 *puic++ = '0';

78 for (chptr = acj; charcount > 03 charcount--) {

79 if ((echptr < '0') || (¥chptr > '7'))

80 return(2); [* syntax error */

81 *puic++ = *chptr++;

82 }s

83

84 while (¥chptr == ' ')

85 chptr++; [* skip blank */

86 if (¢chptr == ',') {

87 chptr++;

88 } else

89 return(2);

90 while (¥chptr == ' ')

91 chptr++; /* skip blank */

92

93 /* now handle the member part */

94 delimiter = chptr;

95 charcount = 03

96 while ((*chptr != "' ') && (*chptr != ']') && (¥chptr != '*')) {
97 if (++charcount > 3)

98 return(2); /* member number too long */
99 chptr++;

100 }s

101

102 if ((*chptr == "]') && (!hasbracket))

103 return(2)

104

105 for (leadzero = 3 - charcount; leadzero > 0; leadzero——)
106 *puic++ = '0';

107 for (chptr = delimiter; charcount > 03 charcount--) {
108 if ((*chptr < '0') || (*chptr > '7'))

109 return(2); /* syntax error */
110 *puict++ = *chptr++;

111 }s

112 if (hasbracket) {

May 19 16:57 1986

113
114
115
116
117
118
119
120

}

login.c Page 3

while (¥chptr != ']"') {

return(0);

if (*chptr == '*')
return(2);

Apr 30 23:05 1986 actfil.mac Page 1

LoOoONAARUVDWN =

.
?
.

O WE e W e e W e e BS S SR O We WE e We e WS we

W WG Be WE WE IS S e UE WS WO e WP e e WE B WE T BT e WE e WS WS B 2e We ae

.TITLE ACTFIL - ACCOUNT FILE CONTROL BLOCKS
NLIST
.IDENT /4.0/

COPYRIGHT (C) 1981 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD
MASSACHUSETTS. ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE
AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS
SOFTWARE OR ANY OTHER COPIES THEREOF, MAY NOT BE PROVIDED OR
OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO AND
OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERED.

THE INFORMATION 1IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY DIGITAL.

COPYRIGHT (C) 1981 BY DIGITAL EQUIPMENT CORPORATION.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED
OR COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

VERSION 04

BY: H. LEV
DATE: 7/15/75
MODIFIED:

EBO51 21-MAY-77 LOOK FOR ACNT FILE ON LB: RATHER THAN SY:

DG002 LOOK FOR LATEST VERSION OF RSX11l.SYS

MLGO0O7 03-NOV-78 FIND PHYSICAL LB:

MLG044 30-JAN-79 SPOOL LISTING FILE (ACNT)

MLGO81 10-APR-79 DO NOT LEAVE ACCOUNT FILE LOCKED

S5A213 ADD FIELDS FOR SLAVE BIT, DEFAULT CLI NAME
AND CHANGE OPENING OF ACNT FILE

LIST
.MCALL FDBDF$,FDOP$A,FSRSZS

.IF DF R$$MPL

Apr 30 23:05 1986 actfil.mac Page 2

57

58 .MCALL ACTDF$

59

60 .IFF sR$SMPL

61

62 .MACRO ACTDFS$,L,B

63 ASECT

64 .=0

65 A.GRP:'L' .BLKB 3 s GROUP CODE (ASCII)

66 A.MBR:'L' .BLKB 3 3 MEMBER CODE

67 A.PSWD:'L' .BLKB 6 3 PASSWORD

68 A.LNM:'L' .BLKB 14, 3 LAST NAME

69 A.FNM:'L' .BLKB 12. s FIRST NAME

70 A.LDAT:'L' .BLKB 6 3 DATE OF LAST LOG ON (DD/MM/YY HH:MM:SS
71 AJNLOG:'L' .BLKB 2 s TOTAL NUMBER OF LOGONS
72 A.SYDV:'L' .BLKB 4 3 DEFAULT SYSTEM DEVICE
73 LBLKW 1 s UNUSED

74 A.CLI:'L' .BLKW 2 3 RADS0 DEFAULT CLI NAME
75 .BLKW 2 3 UNUSED (FOR COMPATIBILITY W/ MPLUS)
76 A.LPRV:'L' BLKW 1 3 LOGIN PRIVILEGE WORD
77 .BLKW 1 3 UNUSED

78 A.LEN ='B' 128. s LENGTH OF CONTROL BLOCK
79

80 3 BIT DEFINITION ON A.LPRV - LOGIN PRIVILEGES

81 3

82 AL.SLV ='B' 1 3 SLAVE TERMINAL ON LOGIN

83 .PSECT

84 .ENDM

85

86 .ENDC ;R$SMPL

87

88 3

89 3 CONSTANTS

90

91 LUN2 == 2 3 ACCOUNT FILE LUN

92 SBFLEN == 2048. 3 LENCTH OF ACCOUNT FILE BUFFER
93

94 ACTDFS$ <:i>,<=> 3 DEFINE OFFSETS INTO ACCOUNT FILE
95

96 $ACTFL:: FDBDFS$; DEFINE ACCOUNT FILE FDB

97

98 .IF DF R$$MPL

99

100 FDOP$A LUN2,DSPT,,,FA.ENB!FA.DLK!FA.EXC

101

102 IFF s R$SMPL

103

104 FDOP$SA LUN2,DSPT,,,FA.ENB!FA.DLK j; SETUP LUN, DSD, AND F.ACTL
105

106 .ENDC ;R$SMPL
107

108 DSPT: WORD O s DATA SET DESCRIPTOR

109 LWORD O 5 DEVICE NAME (ALUN USED)

110 LWORD 5 H

111 .WORD DIRNAM 3

112 .WORD 9.

Apr 30

113
114
115
116
117
118
119
120
121
122
123

23:05 1986

DIRNAM:
FILNAM:

SACTBF: :

-WORD

.ASCII
.ASCII
.EVEN

FSRSZ$
.BLKB

.EVEN
.END

actfil .mac Page 3

FILNAM

/[0,01/
/RSX11,5YS/

1

$BFLEN

-e

e

b

’

SET UP FOR A FILE IN GET PUT MODE

CREATE ACCOUNT FILE BUFFER

Apr 30 23:05 1986 pasword.mac Page 1

1 3 filename: PASWORD .MAC
2 3
3 3
4 3 This routine is callable from 'C' as well as from a Macro program.
5 3 If C$SSPRT is defined then it becomes callable from 'C'.
6 3
7
8 .MCALL DCBDF$
9 DCBDF$
10 C$$SPRT = 1
11
12 3 DATABASE
13
14 .MCALL QIO$,MRKT$,WTSESS,QIOWSS,ALUNSS,CLOSES
15 .MCALL OPENS$R,FINITS,GETS
16 +MCALL NBOFSL
17
18 .IF DF R$SMPL
19
20 .MCALL OPNS$U
21
22 .IFF ;RS SMPL
23
24 .MCALL OPENS$U
25
26 .ENDC ;R$SMPL
27
28 .psect c$data,d,rw
29 .enabl gbl
30
31 ENCRPT = 0 3 ENCRYPTION SUBROUTINE NOT PRESENT
32 LUN4 = 4 3 LUN FOR SYSTEM DEVICE
33 EFNL = 1 3 EVENT FLAG FOR ALL I/O
34 PSWDBF: .WORD 0 s ADDRESS OF PASSWORD BUFFER
35 uIc: .ASCII /000000/; UIC
36 PUIC:: .WORD UIC s POINTER TO UIC
37 NAME: JASCII / / 3 LAST NAME AREA IF NAME USED
38 .EVEN
39 NBOFSL s DEFINE BLOCK OFFSETS
40
41 FDPB: QIO$ I0.RVB,LUN2,EFN1,,I0SB,,<$ACTBF,$BFLEN,,,1>
42 I0SB: «BLKW 2 3 I/0 STATUS BLOCK
43 OPNERR: .WORD 0 3 A/C FILE OPEN ERROR FLAG
44 FILOPN: .WORD 0 s FILE OPEN IF = 1.
45 NAMFLG: : .WORD O ; NAME FLAG, 0 = A/C, 1 = NAME
46 ENTRY:: .WORD 0 3 ADDRESS OF A/C ENTRY
47 MKT: MRKTS$ 1,60,1 s WAIT FOR 1 SEC
48 FRMPTR: .WORD 0 s C — FRAME POINTER STORAGE
49 ER1: JASCIZ <15>/*%*FATAL*%----CANNOT FIND PHYSICAL LB:/
50 ER2: «ASCIZ <15>/%*FATAL¥**-—--ACCOUNT FILE OPEN ERROR/
51 ER3: WASCIZ <15>/%*FATAL**-———INVALID ACCOUNT/
52 <EVEN
53
54

INPUTS TO MAC CALLABLE ROUTINE
R3 --> POINTER TO ACCOUNT

v
v
we we e

Apr 30 23:05 1986 pasword.mac Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

-e we

R4 --> POINTER TO PASSWORD BUFFER

.psect

VALACNT::

e we we

10%:

12§:

15%:

20%:

306:

406

.IF
jsr
MOV
MOV
MOV
.ENDC

MOV
MOV
CALL
TST
BEQ

CMP
BEQ
JMP

MOV
MOV

MOVB
SOB

MOV

SWSTK$
MOV

CMP
BEQ
MOV
BNE
CLR
RETURN

MOV
MOV
MOV
MOV
SUB

‘MOV

CALL
ADD
BIC
MOV

cStext,i,ro

DF C$SSPRT
R5,c$sav
R5,FRMPTR
4(R5),R3
6(R5),R4

#UIC,PUIC
R3,(SP)
ACCNT

RO

15%

RO, #1
10$
ERR3

#NAME ,R2
#14.,R1

(R3)+,(R2)+
R1,12%

R4 , PSWDBF

508
$DEVHD,R2

D.NAM(R2),#"LB
408
D.LNK(R2),R2
30%

4(spP)

D.UCB(R2),R0
U.RED(RO),RO
U.DCB(RO),R2
D.NAM(R2),4(SP)
D.UCB(R2),R0
D.UCBL(R2),R1
$DIV
D.UNIT(R2),R0O
#177400,R0
R0O,6(SP)

-e we we

e we W Wwe W we ws W we

we e e e

-

e we

e we we we Ve we
e we we we we e

e e we wus US Le We W Be e
Se 2% G ws wE we we s B e

“e e

SAVE FRAME POINTER _
GET POINTER TO ACCOUNT OR NAME
GET POINTER TO PASSWORD

NOW FILL UP UIC AND PASWORD IN THEIR RESPECTIVE PLACES

set up pointer to UIC

PARAM -> POINTER TO ACCOUNT OR NAME
CHECK FOR ACCOUNT OR USER NAME
RETURN CODE

IF EQ THEN ACCNT SPECIFIED CORRECTLY
AND XFERED UIC TO CORRECT PLACE

SEE IF NAME SPECIFIED OR NOT

IF EQ THEN IT IS SPECIFIED

SYNTAX ERROR

ADDRESS OF NAME
LENGTH OF NAME

XFER NAME
LOOP

ADDRESS OF PASSWORD

SWITCH TO SYSTEM STATE
START AT BEGINNING OF DEVICE TABLE

AND LOOK FOR LB:

IF EQ FOUND

NEXT DEVICE

TRY IT!

INDICATE ERROR BY SETTING USER Rl =0
RETURN TO USER STATE

GET UCB ADDRESS

FIND PHYSICAL LB:(I.E. FIRST REDIRECT)
FIND DCB OF PHYSICAL DEVICE

PUT LB DEVICE INTO 1USER STATE Rl
CALCULATE UNIT NO.

CLEAR UNWANTED BITS
PUT UNIT NO. INTO USER STATE R2

Apr 30 23:05 1986 pasword.mac Page 3

113 RETURN 33 RETURN TO TASK STATE

114 50%: 3 REF LABEL

115 CLR OPNERR 3 SET TO OPEN ERROR

116 TST R1 s DID WE FIND PHYSICAL LB:?
117 BNE 603 s IF NE YES

118 JMP ERR1 s NO --- ERROR

119 60$%:

120 CLR N.FID+F.FNB+$ACTFL ; ASSUME NOT OPEN BY FILE ID
121 ALUNSS #LUN2,R1,R2 s ASSIGN LUN TO DEVICE.

122 MOV $TKPS,MKT+M.KTMG 3 USE TICKS/SEC TO MARK TIME FOR 1SEC.
123 70%:

124 CALL OPEN s OPEN ACCOUNT FILE

125 BCC 100% sy IF CC - OPEN SUCCESFUL.
126 CMP OPNERR, #5 3 FIVE FAILURES?

127 BLT 903 3 NO

128 80%:

129 JMP ERR2 s YES

130 90%:

131 DIRS #MKT 3 NO,WAIT FOR 1 SEC

132 BCS 80% s ERROR

133 WTSES$S #1 s WAIT FOR TIME

134 INC OPNERR s INCREMENT TIME TRIED

135 BR 708 s TRY AGAIN

136

137 3 SEARCH FOR ACCOUNT IN FILE

138

139 100§:

140 CALL SEARCH s SEARCH FOR ACCOUNT NUMBER
141 BCC 1108 3 IF CC - OKAY

142 CALL CLOSE 3 CLOSE THE ACNT FILE BEFORE GIVING ERROR
143 JMP ERR3 3 ACCOUNT OR- PASSWORD NOT FOUND
144 1108:

145 CALL CLOSE 3 CLOSE THE ACNT FILE

146 MOV #0,R0 s INDICATE SUCCESSS TO CALLER
147 RET:

148 .IF DF C$$SPRT

149 , MOV FRMPTR,R5 s RESTORE FRAME POINTER

150 jmp c$ret 5 RETURN TO 'C' CALLER

151 .IFF

152 RETURN s RETURN TO 'MAC' CALLER
153 .ENDC

154

155 ERR1:

156 MOV #ERL,R1 s ADDRESS OF ERROR MESSAGE
157 MOV #-1,R0 3 RETURN ERROR CODE

158 BR ERMSG s DISPLAY IT

159 ERR2:

160 MOV #ER2,R1 s ADDRESS OF ERROR MESSAGE
161 MOV #-2,R0 s RETURN ERROR CODE

162 BR ERMSG

163 ERR3:

164 MOV #ER3,R1 3 THIRD ERROR

165 MOV #-3,R0 s RETURN ERROR CODE

166 ERMSG:

167 QIOW$S #IO0.WVB,#5,#1,,,,<R1,#80.,#40>

168 CLR RO 3 SET UNSUCCESSFUL

Apr 30

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

23:05 1986 pasword.mac Page 4

»
9
°
b
.
?
.
?
.
b
.
9
.
?
.
?

562

10%:

124
14%:

158:

176:
18%:

204

25%:

JMP RET 3 RETURN TO CALLER
+
¥ - SEARCH - SEARCH FILE FOR ACCOUNT NUMBER
OUTPUT:

RO - ADDRESS OF ACCOUNT ENTRY
CARRY CLEAR - ACCOUNT FOUND
CARRY SET - ACCOUNT NOT FOUND

EARCH: MOV

CLR
MOV
CLR
CALL
MOV
BEQ
MOV
TST
BEQ
MOV
MOV
MOV
ADD
MOV
MOV
CMPB
BEQ
SEC
BR
DEC
BGT
MOV
BR
CMP
BNE
CMP
BNE
CMP
BNE
MOV

MOV

MOV
CALL
MOV
MOV
MOV
BCC
ADD
SUB
BHI
CMPB
BEQ
TSTB
BMI
ADD
ADC

#FDPB,R4
OPNERR
#1,Q.I0PL+10(R4)
Q.IOPL+6(R4)
QIO
I0SB+2,R2
254

#$ACTBF ,RO
NAMFLG

15%

RO,ENTRY

R1, -(SP)
R2, -(SP)
#A.LNM,RO
#NAME ,R1
#14.,R2
(RO)+,(R1)+
14$

184

R2

125

ENTRY,RO

178
UIC,A.GRP(RO)
20%
UIC+2,A.GRP+2(R0O)
20%
UIC+4,A.MBR+1(RO)
20%

RO,ENTRY
R1,-(SP)
R2,-(SP)
TPSWD
(SP)+,R2
(sp)+,R1
ENTRY,RO

40%

#A.LEN,RO
#A.LEN,R2

10%
#1E.EOF,I0SB
30%

10SB

30%

6 WE B e e RO W BE WS We We MO VS P NS S VNS S WS NS Ve WE WP WS WNE WS Ve WS WS WS WE WS VT WE WS Ve WS WS Ne Ve Ve e Yo Be we

’

GET FILE DPB ADDRESS
ZERQ ATTEMPT COUNT (FOR M+ ONLY)
SET TO START AT VBN 1

READ NEXT BLOCK

GET COUNT OF WORDS READ
ZERO, NO WORDS READ

GET BUFFER ADDRESS

IS NAME SPECIFIED?

NO

YES, SAVE ENTRY ADDRESS
SAVE BYTES LEFT

GET ADDRESS OF LAST NAME
GET ADDRESS OF NAME ENTERED
SET LENGTH OF NAME

NAMES THE SAME?

YES

NO

SO FAR

CONTINUE TILL END
RESTORE ENTRY ADDRESS
NAME IS THE SAME
GROUP CODES MATCH

NO

MAYBE

NO

YES, MEMBER CODES MATCH?
NO

SAVE ENTRY POINTER
SAVE R1 AND R2

CHECK PASSWORD
RESTORE R1 AND R2

RESTORE ENTRY POINTER
PASSWORD CHECKS OUT

POINT TO NEXT ENTRY

COMPUTE WORDS LEFT IN BUFFER
LOOP, MORE LEFT

END OF FILE?

YES

ANY ERRORS?

YES

#$BFLEN/512.,Q.I0PL+10(R4); NO, POINT TO NEXT VBN

Q.IOPL+6(R4)

b

Apr 30

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
2717
278
279
280

23:

30
40

+

P

.
b
.
?
.
9
.
9
.
’
.
b
.
b
.
?
.
y
.
]

10

10
10
10

10

2%

05 1986 pasword.mac Page 5

BR
§ SEC
$: RETURN

Y% — TPSWD - TEST PASSWORD

CARRY SET - INVALID PASSWORD
CARRY CLEAR - GOOD PASSWORD

3%

we we we

READ IN NEXT BUFFER
ERROR, ACCOUNT NOT FOUND

NOTE: THIS CODE ALLOWS PSW/TIME. IF THERE IS A/, IT DISREGARDS
WHAT FOLLOWS BECAUSE, BATCH (ON M+ ONLY) SENDS TIME LIMIT TO BE
DISREGARDED BY HELLO

SWD: MOV
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOV
MOV
MOV

1$: CMPB
BLO
CMPB
BEQ
CMPB
BLOS
CMPB
BHI
BICB
28
INC
DEC
BGT
BR
56:
DEC
BMI
MOVB
BR
851 TST
BEQ
MOV
ADD
CALL
9%: MOV
ADD
MOV
MOV

PSWDBF,R1
4(R1),-(SP)
5(R1),1(SP)
2(R1),-(SP)
3(R1),1(sP)
0(R1),-(SP)
1(R1),1(SP)
SP,R1
RO,-(SP)

#6 ,R0

(R1),#40
105%
(R1),#'/
105%
(R1),#140
102%
(R1),#172
1025

#40, (R1)

R1
RO
101¢
108%

RO

108%
#40,(R1)+
105%
#ENCRPT
109%
SP,RO
#2,R0
ENCRPT
(SP)+,R0
#A . PSWD,R0O
SP,R1
#6.,R2

Mo we Be s e U we e we e

e We We us we Ve we we e

we we we we

We Be We WS We e Me WS e wE we e e

LOCATION OF PASSWORD FIELD
PUT PASSWORD ON STACK

POINT TO PASSWORD
SAVE RO
LENGTH OF PASSWORD FIELD

VALID CHAR?

L0O-NO.

IS IT SLASH (TIME-LIMIT COMING)?
EQ- YES,,TREAT AS END-OF-PASSWORD
LOWER CASE?

NO

MAYBE

NO

CONVERT TO UPPER CASE

LOOK AT NEXT BYTE
DECRM CHAR COUNT

GT- MORE TO DO.

NO NEED TO SPACE FILL.

ANY MORE TO FILL?

MI- NO.

SPACE-IT-OUT!

TRY AGAIN.

PASSWORD ENCRYPTION SUBR PRESENT?
EQ- NO.

SHOW WHERE PASSWORD IS

ENCRYPT THE PASSWORD

RESTORE RO

POINT TO PASSWORD IN FILE

POINT TO (FILLED) ENTERED PASSWORD
SET SIZE OF PASSWORD

Apr 30 23:05 1986 pasword.mac Page 6

281 CMPB (R1)+,(RO)+ ; NO, MATCH?

282 BNE 10% 3 NO, ERROR

283 DEC R2 3 ALL DONE?

284 BGT 28 ; NO, LOOP

285 BR 20$ 3 YES

286 4§: CMPB (RO)+,#' 3 BLANK FROM HERE ON?
287 BNE 10% 3 NO, ERROR

288 DEC R2 ; DONE?

289 BGT 48 ; NO, LOOP

290 BR 20% s YES

291 10%: ADD #6,SP ; CLEAN STACK

292 SEC 3 SET ERROR

293 RETURN H

294 20%: ADD #6,SP 3 CLEAN STACK

295 RETURN 3 RETURN (NO ERROR- ADD CLEARS CARRY)
296

297 3 ¥%% - OPEN - OPEN A FILE

298

299 OPEN:

300 ; NOTE - RECORD LOCKING IS OPTIONAL ON M. THIS IS WHY M IS NOT OPENED
301 ; FOR SHARED ACCESS.

302

303 .IF DF R$$MPL

304

305 OPNS$U #S$ACTFL,,,#FD.RWM ; OPEN FILE

306

307 .IFF s R$SMPL

308

309 OPENS$U #$ACTFL,,,#FD.RWM 3 OPEN FILE

310

311 .ENDC ;R$$MPL

312

313 BCS 10% 3 IF CC ERROR

314 INC FILOPN 3 SET FILE IS OPEN
315 10%:

316 RETURN

317

318

319 ; ¥*¥%% - CLOSE - CLOSE FILE

320

321 CLOSE:

322 TST FILOPN ; IS FILE OPEN?
323 BEQ 10% 3 NO

324 CLR FILOPN s FILE IS NOW CLOSING
325 CLOSE$ #$ACTFL 3 YES - CLOSE FILE
326 10%:

327 RETURN

328

329 ; ¥¥% - QIO - ISSUE QIO

330

331 ; INPUT:

332 R4 - DPB ADDRES

333

334 QIO:

335 DIRS R4 3 ISSUE QIO

336 BCS 10% s ERROR

Apr 30 23:05 1986 pasword.mac Page 7

337
338
339
340
341
342
343
344
345
346

105

MOVB
WTSE$S

RETURN

.psect
.even
.psect
.even
+END

Q.IOEF(R4),R5
R5

cStext,i,ro

c$data,d,rw

e ws

GET EVENT FLAG TO WAIT ON
AND WAIT

Apr 30 22:57 1986 compat.h Page 1

WOV SN -

/* "@a(#)compat.h 1.9 4/15/85" */

/% added by billn */

/* #include <exos/misc.h> */

#ifdef index /* system 3 or 5 */

#include <fcntl.h>

#define dup2(f,n) { close(n); fcntl(f, F DUPFD, n);}
fendif

#ifndef void

#define void int

fendif

#define VOID (void)

#ifndef SIGCHLD
#define SIGCHLD SIGCLD
ffendif

/* end billn */

#ifndef MAXPATHLEN
f#idefine MAXPATHLEN 33
ffendif

#define receive data rec data

ffdefine wait3 wait2

f#define initgroups(a,b)

f#define inappropriate request inapreq

#ifdef BSD4dot2

felse

#ifdef V7

#include <sys/timeb.h>

struct timeval { long tv sec; long tv usec; }3
struct timeb ftimeb;

fdefine gettimeofday(a,b) (ftime (&ftimeb), \
(a)->tv sec = ftimeb.time, (a)->tv usec = ftimeb.millitm)
felse

struct timeval { long tv sec; long tv_usec; };
extern long xtime();

ffdefine gettimeofday(a,b) ((a)->tv _sec = time(0), (a)->tv usec

ffendif V7
ffendif BSD4dot2

#i1ifndef CTRL
ftdefine CTRL(x) 037&'x'
jfendif

#define SOL SOCKET 0
f#fdefine SO_REUSEADDR 0

0)

Apr 30 22:57 1986 libsock.h Page 1

1

2 /%

3 * filename: LIBSOCK.H

L %

5 * this file contains all the system dependent definitions
6 * used in the socket library .

7%

8

9

10

11 extern charv*xstrchr(), Yxstrrchr();

12

13 #define HOSTS "LB:[1,1]HOSTS.NET"

14 #define HOSTSLOCAL "LB:[1,1]HOSTLOCAL.NET"

Apr 30

LCOoONOTWVDWN =

22:57 1986

/*@(#)varpat.h

#define

#define
f#define
f#fdefine
f#fdefine

connected

connecthelp
mdeletehelp
receivehelp
verbosehelp

varpat.h Page 1

1.8 4/11/85%/

conned

connhelp
mdelhelp
recehelp
verbhelp

Apr 30 21:33 1986 accept.c Page 1

1
2 /*x
3 * filename: ACCEPT.C
Py
5
6 #include <xstdio.h>
7 #include <xerrno.h>
8 #include "libhdr.c"
9
10 .
11 <xaccept(s, from)
12 int s}
13 struct sockaddr *from;
14 {
15 register XFILE *file;
16 struct SQictl SQictl;
17 struct 1osb iosb;
18 int ret}
19
20
21 if(s <0 || s > XNFILE)
22 return{(XEBADF);
23 file = & xiob[s];
24 if(!(file-> flag & XUsed))
25 return(XEBADF);
26 SOictl.hassa = from 7 1 : 03
27 ret = libemt(IO ACS|SA ACC, &iosb,0, 0, &SOictl, 0, 0, (int) file-> sys id);
28
29 libcopy(&SOictl.sa,from,sizeof(struct sockaddr));
30 return(ret);
31 }
32
33 /*
34 * Objective of this function is to process different type of error resulting
35 * from a call to the driver via QIO (or emt call in 'C') call. A QIO
36 * executive directive call reports error in two different ways through the
37 % DSW (directive status word) and also in the IO statusblock. Again in the
38 * IOSB it is divided into two parts one device specific and the other generic.
39 * The generic and the dsw are returned to the caller after shifting it by -512
40 * and the device specific code is just sign changed. If all is fine then an
41 * non zero value is returned.
42 */

Apr 30 21:33 1986 alloc.c Page 1

1 /*
2 * FILENAME ALLOC.C
3 %
4 */
5
6 #include <rsxos.h>
7 #include <xstdio.h>
8 typedef int ALIGN; /* forces alignment on PDP-11 */
9
10 union header { /* free block header %/
11 struct { '
12 union header *ptr; /* next free block */
13 unsigned size; /* size of this free block */
14 } s3
15 ALIGN x; /* force allignment of blocks ¥/
16}
17
18 typedef union header HEADER;
19
20
21 static HEADER base = {0}; /* empty list to get started */
22 static HEADER *allocp = XNULL; /* last allocated block */
23

24 char *xmalloc(nbytes) /* genral- purpose storage allocator */
25 wunsigned nbytes;

26 {

27 static HEADER *morecore();

28 register HEADER *p, *q;

29 register int nunits;

30

31 nunits = l+(nbytes+sizeof (HEADER)-1)/sizeof (HEADER);
32 if((q = allocp) == XNULL) { /* no free list yet */
33 __base.s.ptr = allocp = q = & base;

34 __base.s.size = 03

35 }

36 for(p=q->s.ptr; ; q=p, p=p->s.ptr) {

37 if(p->s.size >= nunits) { /¥ big enough */
38 if(p->s.size == nunits) /¥ exactly */
39 q->s.ptr = p—>s.ptr;

40 else { /* allocate tail end */
41 p—->s.size —-= nunits;

42 p += p—>s.sizej

43 p—>s.size = nunits;

44 }

45 allocp = q;

46 return ({char *)(p+l));

47 }

48 if(p == allocp) /* wrapped around free list */
49 if((p = morecore(nunits)) == XNULL)

50 return(XNULL)3; /* none left %/
51 }

52 }

53

54

55 #define NALLOC 16 /* funits to allocate for memory */

Apr 30

57
58
59
60
61
62
63
64
65

66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

21:33 1986 alloc.c Page 2

HEADER *morecore(nu) /* ask system for memory %/
unsigned nu;
{

register char *cp;

register HEADER *up;

register int rnuj

rnu = NALLOC * ((nu+NALLOC-1) / NALLOC);

cp = sbreak(rnu * sizeof(HEADER));

if((int)cp == -1) /* no space at all */
return (XNULL);

up = (HEADER *)cp;

up->s.size = rnu;

xfree((char *)(up+l));

return(allocp);

}
xfree(ap) /* put block ap in free list */
char “*ap;
{
register HEADER *p, *q;
p = (HEADER *)ap -1; /* point to the header */
for(gq=allocp; !(p > q && p < q->s.ptr); q=q->s.ptr)
if(q >= q->s.ptr && (p > q || p < g->s.ptr))
break; /* at one end or other */
if(p+p->s.size == q=->s.ptr) { /* join to upper nbr */
p—>s.slze += q->s.ptr->s.size;
p—>s.ptr = q—=>s.ptr->s.ptr}
} else
P~>s.ptr = q—>s.ptr;
if(gq+q—->s.size == p) { /* join to lower nbr */
q->s.slize += p->s.size;
q->s.ptr = p—>s.ptr;
} else
q->s.ptr = p;
allocp = q3
}
#define EXTK 01531
#define BLK 64
extern int brk;
sbreak(nbytes)
register int nbytes;
{
register int ret = brk;

if(emt(EXTK, l+(nbytes-1)/BLK, 0) >= 0) {
_brk += nbytes;
return ret;

}
/%

xprintf(" Task extention failed %o\n'", rval);

else {

Apr 30 21:33 1986 alloc.c Page 3

113 */
114 return -1; /* No memory
115 }

116 }

Apr 30 21:33 1986 board.c Page 1

OO WN =

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

[*

* filename: BOARD.C

P
%/

#define u_long long
#include <xstdio.h>
#include <xspecial.h>
#include <xerrno.h>
#include <libhdr.c>
#include <brdioctl.h>
#include <init.h>
#include <route.h>

int

brdopen(brd no, mode) /* open an administrative channel */

int brd noj
int mode;}

{

}

int xbrdclose(fd)

int ret;
struct iosb iosbj

if (mode == 1) /* mode is readonly */
mode = 03

else /% else mode is read write */
mode = 13

ret = libemt(IO EXC|EX OPN, &iosb, 0, 0, 0, mode, 0, 0);
if (ret == 0)

ret = iosb.nread; /* return channel # */
return (ret);

/* close an administrative channel

int fd;

{

}

int ret;
struct iosb iosbj

ret = libemt(IO EXC|EX CLS,&iosb,0,0,0,0,0,fd);
return (ret);

int xbrdwrite(sys id, buf, len)
int sys id; /* must have been char *sys id
char *buf}
int len}

{

int fd, ret;
struct iosb io0sb}
register XFILE *file;

ret = libemt(IO WLB,&iosb,buf,len,0,0,0,sys id);
if (ret == 0)

ret = iosb.nread;
return (ret)3

e
w

KX /
n

Apr 30 21:33 1986 board.c Page 2

57 }

58

59 int xbrdread(sys id, buf, len) /* read boards memory */
60 int sys id;

61 char *buf}

62 int lens

63 {

64 int fd, ret;

65 struct i1osb iosb}

66 register XFILE *file;

67

68 ret = libemt (IO RLB,&iosb,buf,len,0,0,0,sys id);

69 if (ret == 0)

70 ret = iosb.nread;

71 return (ret);

72 }

73

74 int xbrdioctl(sys id, cmd, arg)

75 int sys id, cmd;

76 char *arg;

77 |

78 int 1, fd, len = 0, ret;

79 long along = 0;

80 Ushort base = 0 , off = 03

81 char *buf = 03

82 int qio_fn ;

83 struct iosb iosb;

84 register XFILE *file;

85

86 switch (cmd){

87 case BRDINIT:

88 /* translate the mode */

89 base = *(int *) arg; /* mode of configuration */
90 switch (base){

91 case 0: base = 13 /* host down load *f
92 break}

93 case 1: base = 2} /* net down load %/
94 break}

95 case 2: base = 0} /* link level mode */
96 breaks

97 case 0x80: /* infinite timeout */
98 base |= 1} /* include with download mode */
99 break}

100 default:

101 base = 1; /% forced to download mode */
102 }

103 qio fn = I0 EXC|EX_ INI;

104 break}

105

106 case BRDADDR:

107 case BRDSTART:

108 along = *(long *) arg;

109 base = (Ushort)((along >> 16) & 0x0000ffff);
110 off = (Ushort)(along & 0x0000ffff);

111 if (cmd == BRDADDR)

112 qio fn = I0 EXC|EX_POS;

Apr 30 21:33 1986 board.c Page 3

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

}

else
qio_fn = I0 EXC|EX STR;
break}

case BRDGSTAT:
case BRDRSSTAT:
buf = (char *) arg;

len = sizeof (struct EXbdstats)3

if (cmd == BRDGSTAT)
qio fn = IO_EXCIEX_STS;
else
qio_fn = IO EXC|EX RST;
break}

case BRDGCONF:
buf = (char *) arg;
len = sizeof (struct init msg);
qio_fn = IO EXC|EX CNF;
break;

case BRDSARP:
case BRDGARP:
case BRDDARP:
buf = (char *) arg;

len = sizeof(struct EXarp ioctl);

if (cmd == BRDSARP)
qio fn = IO_EXCIEX_SAR;
else if (cmd == BRDGARP)
qio fn = I0 EXC|EX GAR;
else -
gio_fn = IO EXC|EX DAR;
break} h

case BRDADDRT:
case BRDDELRT:
case BRDSHOWRT:
case BRDDISPRT:
buf = (char *) arg}

len = sizeof (struct rtentry);

if (cmd == BRDADDRT)
qio fn = IO EXC|EX ART;
else if (cmd == BRDDELRT)
qio fn = I0 EXC|EX DRT;
else if (cmd == BRDSHOWRT)
qio_fn = IO EXC|EX SRT;
else qio fn = IO EXC|EX NRT;
break;

default:
break}

return (libemt(qio fn, &iosb, buf, len, 0, base,

off, sys id

))

Apr 30 21:33 1986 board.c Page 4

169

170

171 =xbrdopen(brdno, mode)

172

173 int brdno; /* ignore for now */
174 1int modes

175 {

176 int rvalj

177 int exosfd;

178 int ioflags;

179 int uflag;

180 register XFILE *filej

181

182 wuflag = xtranmode(mode, &ioflag);
183 if (uflag < 0)

184 return(uflag);

185 rval = brdopen(l, mode);
186 if(rval < 0)

187 return(rval);

188 exosfd = xnewod(); /* get a free file descriptor */
189 if(exosfd < 0){

190 xbrdclose(rval);

191 return(exosfd);

192

193 file = & xioblexosfdl;

194 file-> flag |= ioflag;

195 file-> sys id = (char *)rval;
196 file-> read = xbrdread;

197 file-> ioctl = xbrdioctl;

198 file—>:write = xbrdwrite}

199 file-> close = xbrdclose;

200 return(exosfd);

201 }

Apr 30

OO~ W W N -

21:33 1986 ©bzero.c Page 1

static char sccsId[] = "@(#)bzero.c 1.4 3/26/85";

/3%
code to make 4.2 style code, sort of, happy.
“f

bzero(pt, len)

/

clear a block

7':/

char *ptj}

int len}

{

for(3 len > 0 3 ——len)
{
*pt++ = 03
}

Apr 30 21:33 1986 catchoob.c Page 1

1 /*
2 * filename: CATCHOOB.C
3 7':/
4
5 4#include <xgenlib.h>
6 dHdefine MAXCHN 40
7 #include "libhdr.c"
8
9 struct _asts _ stast[MAXCHN] = { 0 };
10 extern int _astcatch(); /* this is the ast service routine written in macro */
11
12 int xcatchoob(s, handler)
13 int s}
14 int (*handler)();
15 {
16 register struct iosb *iosbj
17 int ch noj
18 -
19 if (iosb = giosb()){
20 ch no = (int) xiob[s]. sys id; /* get channel number */
21 if (_ stast[ch no].stast == FREE){
22 __stast[ch_noT.stast = USED;
23 __stast[ch nol.xiobno = s; /* store xiob number */
24 __stast[s].userast = handler;
25 emt (QIO,TO ACS|SA URG,SOLUN,0,iosb, astcatch,0,0,0,0,0,ch no);
26
27 else return (-1);
28 }
29 else return (NOSOIOSB);
30 }
31
32 libast(iosb)
33 struct 1osb *iosb}
34 {
35 Ushort ch noj;
36 Ushort s3
37
38 if(iosb) /* if a iosb was specified-- which is in this case */
39 {
40 ch no = iosb->nread; /* this is set in the ACP ¥/
41 fiosb(iosb);
42 __stast[ch nol.stast = FREE; /* mark it free for use */
43 s = stastlch nol.xiobno; /* get file no. */
44 if (_ stast[ch nol.userast)
45 (*__stast[ch_no].userast)(s);
46 }
47 }
48
49 struct iosb *
50 giosb()
51 {
52 return(xmalloc(sizeof (struct iosb)));
53 }
54
55

56 fiosb(iosb)

Apr 30 21:33 1986 catchoob.c Page 2

57 struct 1osb *iosb}
58 {

59 xfree(iosb);
60 }

Apr 30 21:33 1986 chdrl.c Page 1

1 #include <xgenlib.h>

2 #include <fcs.h>

3

4 char *inprm[MAXPRM] = {0}; /* array of pointers to input string */
5

6 extern char xctype[];

7 extern long radix();

8

9

10 cmain(pcli)
11 char *pcli; /% poiter to command line ¥/
12§
13

14 int count = 03
15 char *p = pcli;
16 int i = 33

17

18 while(*p) { *p = tolower(*p); ++p; 1}
19 while(pcli && *pcli) {
20 switch (*pcli) {
21
22 case '<':
23 inprm[O] = pcli + 13
24 break}
25 case '>':
26 inprm[l] = pcli + 13
27 break}
28 case '~':
29 inprm[2] = pcli + 13
30 break;
31 default :
32 inprm[i++] = pcli;
33 count++;
34 }
35 pcli = firstwhite(pcli, ' ')3
36 *peli++ = 03 /* make argumet as string */
37 pcli = skipwhite(pcli, ' ');
38
39 return main(count, &inprm[3]);

Apr 30 21:33 1986 connect.c Page 1

NP WN =

/%
* filename: CONNECT.C

#include <xstdio.h>
#include <xerrno.h>
#include "1libhdr.c"

xconnect(s, addr)
int s3
struct sockaddr *addr;

{

register XFILE *filej
struct SOictl SOictlj
struct iosb iosb}

if(s <0 || s > XNFILE)
return(XEBADF);
file = & xioblsl;
if(!(file-> flag & XUsed))
return(XEBADF);
if (addr){
SOictl . hassa = 13
libcopy(addr,&S0ictl.sa,sizeof (struct sockaddr));

else SOictl.hassa = 03
return(libemt (I0_ACS|SA CON, &iosb,
0, 0, &SOictl, 0, 0, (int) file-> sys id));

Apr 30 21:33 1986 dio.c Page 1

OV DN

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#include <rsxos.h>
#include <xstdio.h>
#include <fcs.h>

extern struct _rcb _rcb[];

struct dblbuf hbuf={0}, nbuf= {0};
/ *

extern int disk efn;

* /

extern char luntbl[];

extern struct dblbuf hbuf,nbufj

#define CNTRLZ 0366

dio(sysid, call,ast,wait)
register struct rcb *sysid;

int (* call)();

int (* ast)();

int (* wait)();

{
static int iosb[2] = {0};
int rval;
int ret;

if(sysid->flags & DBLBUF) {

/*.’.-

disk efn += d _efn();

v/

emt (WTSE,DISKEFN) ; /* stop for any pending i/o */

/% efn is set at ast */
hbuf.stat[hbuf.active] = 0;
hbuf.active = !'hbuf.active;
rval = hbuf.stat[hbuf.activel;
1f(rval > 0) {
emt (CLEF , DISKEFN)
ret = (*call)(sysid->fdb,sysid->bptr,0,iosb,ast);
if(ret <= 0) §
hbuf.stat[lhbuf.active] = rets
emt (SETF , DISKEFN) ;
}
}
sysid->bptr = hbuf.buffer[hbuf.activel;
else {
rval = (*call)(sysid->fdb,sysid->bptr,DISKEFN,io0sb,0);
if(rval > 0) {
(** wait)(sysid->fdb,iosb);
rval = iosb[1l];
}
}
sysid->bnptr = sysid->bptr;
return rval}

}

static char mask[8] = {1, 2, 4, 8, 16, 32, 64, 128};
f#define BYTE 8

Apr 30 21:33 1986 dio.c Page 2

57 #define MAXLUN 255

58 assign{(lun)

59 int lunj

60 {

61 *(luntbl + lun/BYTE) |= mask[lun % BYTE];
62

63 }

64

65 dassign(lun)

66 1int lun;

67 {

68

69 *(luntbl + lun/BYTE) &= ~mask[lun % BYTE];
70 }

71

72 glun()

73 {

74 register int bit = 03

75 int i3

76

77 for (i = 13 i <= MAXLUNj; ++i) {

78 if (1(*(luntbl + i / BYTE) & mask[i % BYTE])) {
79 *(luntbl + i/BYTE) |= mask[iZBYTEI;
80 return i}

81 }

82 }

83 return -1

84

85 }

86

87

88 nstat(iosb)

89 register struct i1osb *iosb;

90 {

91 register int *p;

92

93 p = &nbuf.statl !nbuf.activel;

94 if((iosb->cc >= (unsigned char)0) && (iosb->lc == (unsigned char)0))
95 *p = iosb->nread;

96 else if(iosb->cc < (unsigned char) 0)

97 *p = iosb->cc - 5123

98 else

99 *p = (-(iosb->1lc & 0xFF));

100 emt(SETF, SOEFN); /* socket i/o is completed */
101

102 }

103

104 dstat(iosb)
105 register struct iosb *iosb;

106 §

107 register int *p;

108

109 p = &hbuf.stat[!hbuf.activel;
110 ‘

111 if(iosb->cc == CNTRLZ)

112 *p = 03

Apr 30 21:33 1986 dio.c Page 3

113
114
115
116
117
118
119
120

else if(iosb->cc > 0)

*p = iosb->nread;

else

*p = iosb->cc - 512

emt (SETF, DISKEFN);

/* disk i/o is completed *

Apr 30 21:33 1986 getclient.c Page 1

1 /*

2 RSX version of getclient.

3 %/

4 finclude <xstdio.h>

5 #include <socket.h>

6 #include <rsxos.h>

7 #include <in.h>

8

9 getclient(type, pf, sin, options, typical serv)
10

11 int types

12 struct sockproto *pf;

13 /*

14 struct sockaddr *sinj

15 *

16 struct sckadr in ¥*sinj;

17 int options;

18 int (*typical serv)();

19 {
20 int s}
21 int errno;
22 int status}
23 struct sockaddr from;
24
25 start:
26 s = xsocket(type, pf, sin, options);
27 if (s <0)
28 {
29 xperror(s, "getclient socket');
30 xsleep(5)3
31 goto start;
32 }

33 /*
34 wait for service request

35 */
36 if ((errno = xaccept(s, &from)) < 0)
37 {
38 xperror(errno, ''getclient accept");
39 xclose(s)3
40 xsleep(5)3
41 goto starts
42 }
43 />
44 RSX specific process management
45 %/
46 xspawn() ;
47 (*typical serv)(s, &from);
48 1}

Apr 30 21:33 1986 gethname.c Page 1

#include <rsxos.h>

#include <xstdio.h>

#include <xctype.h>

#include <xerrno.h>

#include <xspecial.h>

#include <libsock.h>

extern char *xstrchr(), *xstrrchr();
10 extern char *firstwhite();

11 extern char *skipwhite();

12 extern char *lastwhite();

OOV =

14 char *

15 xghname(name, nchars)
16 char “*name;
17 int nchars}

19 int od;

20 XFILE *op;

21 char hbuf[XBUFSIZ], *cp, *ahost;
22 int rc}

24 od = xdopen(HOSTS, XFREAD | XFASCII , FILE NAME);
25 if((od < 0) || !'(op = xodopen(od, "r"))){

26 xperror(XEBADF, 'gethname:");

27 rc = 1j

28 goto egress;

29 }

31 while (XNULL != xogets(hbuf, sizeof (hbuf), op)) {
32 *xstrchr(hbuf, '\n') = 0;

33 if (hbuf[0] == '#")

34 continue}

35 for (53) {

36 cp = lastwhite(hbuf, ' ');

37 if (cp == XNULL)

38 break;

39 if (!xstrcmp(cp+l, "localhost™)) {
40 ahost = firstwhite(hbuf, ' ')+13
41 ahost = skipwhite(ahost);

42 cp = firstwhite(ahost, ' ');
43 if (ep)

44 *cp = 03

45 if (xstrlen(ahost)+1l > nchars) §
46 rc = 13

47 goto egress;

48 }

49 xstrcpy(name, ahost);

50 rc = 03

51 goto egress;

53 *cp = 0

-e

Apr 30 21:33 1986 gethname.c Page 2

57 egress:

58 xclose(od);
59 return (rc);
60 }

Apr 30

L OV D WN

21:33 1986 htons.c Page 1

/%
* filename: HTONS.C
:’:/

unsigned short
xhtons(x)
unsigned short x;

{
}

long
xhtonl(x)
long x3
{
union {
long 13
struct {
unsigned short s high, s low;
} sl
} b
h.l = x3
h.sl.s high = xhtons(h.sl.s high);
h.sl.s low = xhtons(h.sl.s low);
return (h.l);
}
unsigned short
xntohs(x)
unsigned short x;
{

return (xhtons(x));

}

return((unsigned short)((x<<8)}|((x>>8)&0xff)));

long
xntohl(x)
long x3

return(xhtons(x))3

}

Apr 30 21:33 1986 Llibhdr.c Page 1

#define PDP11

include <std.h>

include <rsx.h>

include <extypes.h>
include <exiocmd.h>
include <soioctl.h>
10 # include <socket.h>
11 # include <exqio.h>

12 # include <solibdef.h>

W 00N BN
=

15 extern unsigned short ex libinit ;

17 extern int libinit();

18 extern int libemt();

19 /¥ extern int check()3;*/
20 extern int libcopy();

21

22

23 /* below is a definition of a structure for handling user specified

24 AST function calls in the catchoob() library function call */
25

26 {fdefine USED 1
27 f#define FREE 0

28

29 struct _ asts{

30 short stast;

31 short xiobno}

32 int (*userast)();

33 }

34 struct seg addr

35 {

36 Ushort base; /* segment base address */
37 Ushort off; /% segment offset */
38 1

Apr 30 21:33 1986 librts.c Page 1

LR ~NO P WN -

/%

e
iy

ate
w

i
i
i
i

uns
uns

/3':

filename: LIBRTS.C

nclude <std.h>
nclude <rsx.h>
nclude <extypes.h>
nclude <solibdef.h>

igned short ex libinit = 03
igned short unibus = 0} /* if on a UNIBUS m/c */

below is a definition of a structure for handling user specified
AST function calls in the catchoob() library function call ¥/

struct _ asts{

S

hort stast;

int (Yuserast)();

}

struct seg addr

{

}

Ushort base; [* segment base address */
Ushort off; /* segment offset */

?

int libinit()
{
ex libinit = 13

}

int libcopy(from,to,size)
Uchar *from, *toj}
int size;
while (size--)
*to++ = *from++;

Objective of this function is to process different type of error resulting
from a call to the driver via QIO (or emt call in 'C') call. A QIO
executive directive call reports error in two different ways through the

DSW (directive status word) and also in the IO statusblock. Again in the

* I0OSB it is divided into two parts one device specific and the other generic.

o
S

8 /
iy

The generic and the dsw are returned to the caller after shifting it by -512
and the device specific code is just sign changed. If all is fine then an
non zero value 1s returned.

libemt(cmd,iosb,pl,p2,p3,p4,p5,pb)
Ushort cmd}

struct iosb *1iosbj

Ushort pl, p2, p3, p4, p5, pb6;3

Apr 30 21:33 1986 librts.c Page 2

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
117
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

{

int j = 0,dsw;
register int cnt,i}

register int count = 1024; /% 1 KB */
if(p2 <= 0){
cnt = 13
count = 03
}
else
cnt = p2;
for(i = 03 cnt > 03 i++) {
if(({cnt < count) || (lunibus))
count = cnt;
dsw =

emt (QIOW, cmd, SOLUN, SOEFN, iosb, 0, (pl + j),count, p3, p4, p5, pb6);
if((dsw >= 0) && (iosb->cc >= 0) && (iosb->lc == 0)) {

if(p2 <= 0)
return 03
cnt —-= count;
j += iosb->nread;
continue; /* continue on success */
}
else
if(dsw < 0)
return(dsw - 512); /* directive error */
else
if(iosb->cc < 0)
return(iosb->cc - 512); /* generic I/0 error */
else
return(- (iosb->lc & 0xff)); /* device specific error ¥/
}
iosb->nread = j; /* total # of bytes transacted */
return 03 /* return success */

May 19 16:54 1986 main.c Page 1

1

2 /*

3

4 System entry point for client programs running under RSX.
5 Notet: terminal => unbuffered io.
6 */

7 #include <xgenlib.h>

8 #include <xspecial.h>

9 #include <xpwd.h>

10 #include <fcs.h>

11

12 #define SY 054523

13

14 extern xttyread();
15 extern xttywrite();
16 extern xttyclose();
17 extern xnofunc();
18 extern xdread();

19 extern xdwrite();
20 extern xdclose();

22 struct xiobuf xiob[XNFILE] = {0};
23 struct passwd xpassword = {0};
24 struct passwd *pw = &xpassword;

25 struct ttybuf ttybuf = {0};

26 int ttyinput = 03 /% 0 -- interactive . 1 -- non-interactive */
27 struct _rcb rcb[XNFILE] = {0};

28 char luntbl[32] = {0}; [* array of 256 bits used to maintain LUN */
29 int brk = 03 /% USED by C RTS ALLOC & FREE */

30

31 extern char _xctype[];

32 extern char *inprm[];

35 main(argc, argv)
36 int argc;

37 char **argv;

38 {

39 int 13

40 register XFILE *file}
41 char *p3

42 int rvalj

43 int ioflags

44 int mod}

45 int buf[l6];

46 int maxlun;

48 /* initialize xiob structure ¥/
49 for(p=(char *) xiob; p < ((char *) xiob + sizeof xiob);)

50 *p++ = '\0';

51 /* initialize rcb structre */
52 for(i=03 i < XNFILE j ++i)

53 _rcb[il.flags = RFREE;

54 [¥%

55 % initailize terminal I/0 buffer
56 ¥/

May 19 16:54 1986 main.c Page 2

57

58 ttybuf.cur pos = ttybuf.linetty;

59 ttybuf.tsize =03

60

61 for(i = 13 i < 53 i++)

62 emt (ALUN, i, SY, 0);

63 emt(GTSK,buf);

64 brk = buf[13]; /% task size */

65 maxlun = buf[8]; [* # of LUN used */

66 ppasc(pw->cur uic, buf[7]);

67 ppasc(pw->login uic,buf[15]);

68 emt(GLUN,1l,buf); /* get phy. device name */
69 xstrncpy(pw->log dev,buf,2); /* copy device name */

70 pw->log dev[2] = (*((char *) buf + 2)) + 0603 /* get unit # */
71 pw->log_dev[3] = '\0'; /[* make it string */

72 xstrcpy(pw—>cur_dev,pw->log dev);

73

74 while(maxlun) {

75 if(emt (GLUN, maxlun,buf) > 0)

76 assign(maxlun);

77 —-maxlun}

78 '}

79 for(i= 0, file = xstdin § i < 3 § ++i, ++file)
80

81 if(isatty(i)){

82 xttyopen(XFREAD |XFWRITE) ;
83 }

84 else §

85 if(i == 0)
86 mod
87 else
88 mod XFASCII | XFCREAT | XFWRITE;
89 xdopen(inprm[i], mod, FILE NAME);

90

91 if(i==0)

92 xodopen(i, "r")3

93 else {

94 file-> flag |= XIOLBF;

95 file-> cnt = 03

96 xodopen(i , "w")3

97 }

98

99 xputchar('\n');

100

101 clientinit();

102

103 xmain(argc, argv);

104 xexit(0);

105 }

106

107 /*

108 % ISATTY: check object descriptor directs to terminal or not.
109 if it is terminal returns 1 else 0.

110 ¥

111 %/

112

XFASCII | XFREAD;

May 19 16:54 1986 main.c Page 3

113 isatty(od)

114 1int odj

115 {

116 if(tinprm[od])
117

118 if(od == 0)
119 _ttyinput = 1;
120 return(l);
121 }

122 else

123 return(0)3;
124

125 }

126

127

Apr 30 21:33 1986 mkarglist.c Page 1

1/
2 @(#)xmkarglist.c 1.3 3/29/85
3
4 %/
5 #include <rsxos.h>
6
7 #define ARGPOINTERSP 200 /* bytes for storing argument pointers */
8 {#define ARGSPACE 400 /* bytes for storing arguments */
9
10 static char *argbase = {0};
11 static char *stringbase = {0}
12
13
14 char %
15 =xmkarglist(line, count)
16
17 char *line; [¥* IN */
18 int *count; /* OUT */
19 §
20 char **argp;
21 char *slurpstring();
22 char *argvsp;
23 int margc;
24
25 margc = 0;
26 /%
27 Allocate space for argv and tokens in line
28 */
29 if(xstrlen(line) > ARGSPACE)
30 {
31 return((char *¥*)0);
32 }
33 argvsp = xmalloc(ARGPOINTERSP + ARGSPACE);
34 1f(argvsp == (char *)0)
35
36 return{ (char **)0);
37 }
38 argbase = &argvsp[ARGPOINTERSP]; /* store from first of buffer */
39 stringbase = linej /* scan from first of buffer */
40 argp = (char *¥%)argvsp;
41 while (*argp++ = slurpstring())
42 margc++;
43 “*count = margc;
44 return((char **)argvsp);
45 '}
46
47 [*
48 % Parse string into argbuf;
49 * implemented with FSM to
50 * handle quoting and strings
51 %/
52 char *
53 slurpstring()
54
55 int got one = 03
56 register char *sb = stringbase;

Apr 30 21:33 1986 mkarglist.c Page 2

57 register char *ap = argbase;

58 char *tmp = argbase; /* will return this if token found */
59

60 /*

61 Used to return '!' for shell event processing...

62 Ignore significance of "!'.

63 %/

64 50

65 switch (*sb) {

66

67 case '\0':

68 goto OUT;

69

70 case ' ':

71 case '\t':

72 _ sb++; goto 503

73

74 default:

75