
EXTRA!

OLE Automation
Programmer’s Reference

Manual 229055 September 1996

The information in these documents is subject to change without notice
and should not be construed as a commitment by Attachmate
Corporation. Attachmate Corporation assumes no responsibility for any
errors that may appear in these documents. The information disclosed
herein is proprietary to Attachmate Corporation and as such, no part of
these publications may be reproduced, disclosed, stored in a retrieval
system or transmitted in any form or by any means, including electronic,
mechanical, photographic or magnetic, without the prior written consent
of Attachmate Corporation.

U.S. GOVERNMENT RESTRICTED RIGHTS

The Licensed Software and documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the
Government is subject to restrictions as set forth in subdivision (c)(1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS
252.27-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/manufacturer is Attachmate Corporation, 3617 - 131st
Avenue SE, Bellevue, Washington, 98006, U.S.A.

Copyright 1985, 1989-1996 Attachmate Corporation
All Rights Reserved. Printed in the U.S.A.

Portions Copyright 1992-1993 Microsoft Corporation. All Rights
Reserved.

Attachmate and EXTRA! are registered trademarks, and QuickPad is a
trademark of Attachmate Corporation.

DEC, VAX, and VMS are registered trademarks of Digital Equipment
Corporation.

IBM and AS/400 are registered trademarks of International Business
Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks, and Visual Basic
and Windows NT are trademarks of Microsoft Corporation.

All other trademarks and registered trademarks are the property of their
respective owners.

For help with this product, contact Attachmate’s Customer Support. (Refer to the
back cover of this manual for the phone number.)

iii

Table of Contents

About This Manual vii

Syntax Conventions vii

Related Documentation viii

Manuals viii

Online Help viii

Let Us Know How We’re Doing ix

Chapter 1: Introduction 1-1

Overview of Objects 1-1

The Object Model 1-2

Retrieving and Referencing Objects 1-3

Overview of Properties 1-6

Properties that Return Objects 1-6

Default Properties 1-7

Overview of Methods 1-7

Chapter 2: Reference to Objects, Properties, and Methods 2-1

Activate Method 2-1

ActiveSession Property 2-2

Application Property 2-3

Area Method 2-5

Area Object 2-8

Bottom Property 2-9

Close Method 2-11

CloseAll Method 2-12

Col Property 2-13

EXTRA! OLE Automation Programmer’s Reference

iv

ColorScheme Property 2-14

Cols Property 2-16

Connected Property 2-17

ConnectionStatus Property 2-19

Copy Method 2-21

Count Property 2-23

Cut Method 2-25

DefaultFilePath Property 2-27

Delete Method 2-28

EditScheme Property 2-30

ErrorStatus Property 2-32

FileTransferHostOS Property 2-34

FileTransferScheme Property 2-36

FullName Property 2-38

GetString Method 2-41

Height Property 2-43

HideAll Method 2-44

HotSpotScheme Property 2-45

Item Method 2-47

JumpNext Method 2-50

KeyboardLocked Property 2-51

KeyMap Property 2-52

Left Property 2-53

MoveRelative Method 2-55

MoveTo Method 2-57

Name Property 2-59

NavigateTo Method 2-62

OIA Object 2-64

Table of Contents

v

OIA Property 2-65

Open Method 2-69

PageRecognitionTime Property 2-70

Parent Property 2-72

Paste Method 2-75

Path Property 2-77

PutString Method 2-79

QuickPad Object 2-81

QuickPads Object 2-82

QuickPads Property 2-83

Quit Method 2-85

ReceiveFile Method 2-86

Right Property 2-88

Row Property 2-90

Rows Property 2-91

Save Method 2-92

SaveAs Method 2-93

Saved Property 2-94

Screen Object 2-95

Screen Property 2-96

Search Method 2-98

Select Method 2-100

SelectAll Method 2-102

Selection Property 2-103

SendFile Method 2-105

SendInput Method 2-107

SendKeys Method 2-109

Session Object 2-115

EXTRA! OLE Automation Programmer’s Reference

vi

Sessions Object 2-116

Sessions Property 2-117

System Object 2-119

TimeoutValue Property 2-120

Toolbar Object 2-122

Toolbars Object 2-123

Toolbars Property 2-124

Top Property 2-126

Type Property 2-129

Updated Property 2-133

Value Property 2-135

Version Property 2-138

ViewStatus Method 2-139

Visible Property 2-140

WaitForCursor Method 2-143

WaitForCursorMove Method 2-145

WaitForKeys Method 2-147

WaitForStream Method 2-149

WaitForString Method 2-151

WaitHostQuiet Method 2-154

Width Property 2-157

WindowState Property 2-158

XStatus Property 2-160

Glossary GL-1

About This Manual

vii

his manual describes the objects, methods, and properties of
EXTRA!, with which you can programmatically access the product

using OLE Automation. The manual introduces you to key OLE
Automation concepts as they relate to EXTRA!, and serves as a reference
to the product’s objects, properties, and methods.

Syntax Conventions
This manual uses the following conventions:

Convention Description

Session, Activate,
Col, Set

Bolded words are reserved, such as object,
property, and method names. Type these
words as they appear in Help.

object, rc, startRow Italicized words indicate placeholders for
object or variable names, text, or values that
you supply.

{3270 | VT | 5250} Braces and vertical bars indicate that you must
enter one of the items.

[,Page] Brackets indicate that a parameter is optional.

... Ellipses indicate that the previous parameter
can be repeated.

_ The underscore is a line-continuation character
used in code examples. Placed at the end of a
line, the character indicates that code
continued from one line to the next is part of
the same logical line.

Note: The line-continuation character is more than notational; you can
include it in your code to break up lines — provided that your macro
language supports it. EXTRA! Basic, Visual Basic 4.0, and Visual Basic,
Applications Edition support the underscore as line-continuation
character. Versions of Visual Basic prior to 4.0 do not.

T

OLE Automation Programmer’s Reference

viii

Related Documentation
In addition to the OLE Automation Programmer’s Reference, EXTRA!
includes the following documentation:

Manuals
• EXTRA! User’s Guide, which includes information about 3270, 5250

and VT file transfer, customizing sessions, printing, and macros.

• EXTRA! Basic Language Reference, which provides a language
overview and summary, as well as an alphabetical reference to
functions and statements.

These manuals can be purchased separately or as a set.

Online Help
EXTRA! includes a comprehensive set of online Help, including help for
the EXTRA! Basic macro language and OLE Automation. If you use
EXTRA! Basic to access the EXTRA! objects, you will find the context-
sensitive help in the Macro Editor especially useful. You can access this
help in the following ways:

• Display a detailed online Help topic about a particular EXTRA! Basic
or OLE Automation element. Highlight the function, statement, or
call in the Editor workspace and press F1. The Help Index is
displayed pointing to the highest-level entry pertaining to the
highlighted language item or object. Choose an appropriate sub-
entry, if desired, and then choose the Display button.

 –or–

From the Macro Editor Functions and Objects browser, highlight an
EXTRA! Basic or OLE Automation element and choose the question
mark button.

• Click the Help button that is located in each Macro Editor dialog box,

• Activate “What’s This” mode by selecting an item in a Macro Editor
dialog box and then clicking the right mouse button, or

• Click on the Help Mode toolbar button, then click on an element in
the Macro Editor user interface.

About This Manual

ix

Let Us Know How We’re Doing
Please fill out the Customer Documentation Feedback Card that comes
with your EXTRA! software package to let us know what you think
about the documentation. Your comments are valuable to us.

Introduction

XTRA! supports OLE Automation, a Microsoft Windows standard
for inter-program communications. As an OLE Automation server,

EXTRA! exposes programmable objects like Session, Screen, and Toolbar,
whose built-in functionality can be accessed by user-written applications.
For example, you could write a PC application that transfers files
between an IBM mainframe, AS/400, and VAX. You would not have to
write the file transfer code, but merely invoke the file transfer
functionality inherent in 3270, 5250, and VT Session objects. To access
automation-enabled objects, you must use a macro or programming
language that supports OLE Automation, such as the EXTRA! Basic
language or Microsoft’s Visual Basic 3.0 or later.

You control objects through their properties and methods, using the dot
syntax of object.property and object.method. This chapter introduces you to
the OLE Automation concepts of objects, properties, and methods.

Overview of Objects
An object is one component of an application, which you can access and
control through the object’s attributes and commands, referred to as
properties and methods. EXTRA! consists of the following objects:

• System — Top-level object, providing access to all objects in EXTRA!.

• Sessions Collection — Manages open session objects.

• Session — Provides access to host data and EXTRA! functionality.

• Screen — Provides access to the contents of the host presentation
space, an area in PC memory that stores the screen data of a display
session.

• Area — Provides access to a defined area of the screen.

• QuickPads Collection — Manages available QuickPad objects. A
QuickPad is a configurable secondary window from which you can
execute EXTRA! commands, macros, and host functions.

• QuickPad — Provides access to a specific QuickPad to be used with
a session.

• Toolbars Collection — Manages available Toolbar objects. A Toolbar
is a configurable bar with buttons from which you can execute
EXTRA! commands, macros, and host functions.

• Toolbar — Provides access to a specific Toolbar to be used with a
session.

E

OLE Automation Programmer’s Reference

1-2

Some of the EXTRA! objects are the same as the visual objects that
appear when you run the application manually, like a session or a
toolbar. Other objects cannot be displayed. For example, an Area object,
which defines a section of a screen, is not visible.

The Object Model
Objects have a hierarchical relationship. As shown in the object model
below, the System object is at the top level; it must be retrieved before
any other objects. Similarly, a Session object must be retrieved before a
Screen object. Subordinate objects like Screen are returned by a property
or method of a different object type, like Session. Objects returned in this
way are referred to as sub-objects.

The shaded objects represent entry points into EXTRA! Objects. You can
start the System object with the CreateObject function. A more direct
way to start a session, however, is by retrieving a Session object from a
file with the GetObject function.

Collection Objects

The object model also shows collection objects — Sessions, QuickPads,
and Toolbars. An object that manages a set of related objects is a
collection. For example, the Sessions object manages individual Session
objects; the Toolbars and QuickPad objects manage Toolbar and
QuickPad objects. Objects within a collection are sometimes referred to
as elements.

Introduction

1-3

A collection, which consists of zero or more elements, includes a Count
property that returns the current number of elements For example, the
expression Sessions.Count returns the number of Session objects that are
currently open.

To retrieve an individual element within a collection, you must identify
the element with the collection’s Item method. The Item method takes a
numeric argument that represents the element’s ordinal position within
the collection. The Item property can also take a string argument that
specifies an element’s name. The following expressions show two ways
to return Session 3, the third element in the Sessions collection object.

Sessions.Item(“Session3”)

–or–

Sessions.Item(3)

Note: Because Item is the default method of collection objects, you do not
have to explicitly specify the method. Session 3 in the collection can also
be referenced with Sessions(3).Close.

Like any returned objects, objects returned by properties and methods of
collections can be assigned to object variables. For example:

Set Ses3 = Sessions(3)

A collection object makes it easy to iterate (perform repetitive actions) on
all of the objects within the collection. Using Microsoft’s Visual Basic, the
For...Each statement is one way to iterate through the elements of a
collection. For example, the following For...Next statement loops through
all open sessions and minimizes their windows.

Dim Ses As Object

For Each Ses in extra.Sessions

Ses.WindowState = xMINIMIZED

Next

Retrieving and Referencing Objects
You can retrieve objects with functions, properties, and methods. To
reference a retrieved object, you must assign it to an object variable.

OLE Automation Programmer’s Reference

1-4

Retrieving Objects

The most direct way to retrieve a Session object is with the GetObject
function, which retrieves a reference to an object from a file. For
example, the following expression retrieves a Session object from the file
Session1.EDP.

GetObject(“Session1.EDP”)

Although this expression does not include a reference to the System
object, which is at the top level of the object hierarchy, it nonetheless
creates a System object before retrieving the Session object.

Each EXTRA! object has properties that return references to other objects.
For example, the expression System.Sessions returns a reference to a
Sessions collection object. The expression Session.Screen returns a
reference to a Screen object.

Some objects also include methods that return references to objects. For
example, the expression Screen.Area(1,1,10,80) returns an Area object
corresponding with an area of the screen.

Referencing Objects

To control a retrieved object, you must assign an object reference to an
object variable. First, declare an object variable with a Dim, Static, or
Global statement. Next, use the Set statement to assign to the object
variable a reference to the object.

Note: The Set statement assigns an object reference to a variable, not a
copy of the object. Therefore, more than one object variable can refer to
the same object. Any change to an object affects all variables that
reference that object.

In the following lines, two object variables are declared. In the first Set
statement, the GetObject function returns a reference to a Session object,
assigned to the object variables Ses1. In the second Set statement, the
Screen property of Ses1 is used. A reference to a Screen object is returned
and assigned to the object variable SessionScreen.

Dim Ses1 As Object, SessionScreen As Object

Set Ses1 = GetObject(“Session1.EDP”)

Set SessionScreen = Ses1.Screen

Object variables are necessary for referencing objects. However, for
objects that must be retrieved but not referenced, it is more efficient to
use a compound statement rather than assigning an object to a variable.

Introduction

1-5

Compound Statements

A compound statement includes a two or more expressions, each of
which returns an object. Compound statements are useful when you
have to traverse the object hierarchy to reference an object. For example,
the following compound statement returns a reference to a Screen object.

Set SessionScreen =

Extra.Sessions(1).Screen.Area(1,1,10,80)

This statement is evaluated as follows:

Expression Object Returned

Extra.Sessions Sessions collection object.

Sessions(1) (equivalent
to Sessions.Item(1))

The first session in the collection.

Screen property of the
first session

Screen object.

The Area method of
the returned Screen
object

An Area object that defines a screen
segment from row 1, column 1 to row 10,
column 80.

Because only the Screen object has to be referenced, the use of the
compound statement is far more efficient than assigning multiple object
references to multiple object variables. Compare the compound
statement to the equivalent set of statements below.

Dim SessionsObj As Object

Dim SessionObj As Object

Dim ScreenObj As Object

Dim AreaObj As Object

Set SessionsObj = extra.Sessions

Set SessionObj = SessionsObj(1)

Set ScreenObj = SessionObj.Screen

Set AreaObj = ScreenObj.Area(1,1,10,80)

OLE Automation Programmer’s Reference

1-6

Overview of Properties
A property is a unique attribute of an object that you can return or set.
To refer to a property, use the following dot syntax:

object.property

Some properties take arguments, which you enclose within parentheses
as follows:

object.property (arg1,arg2,...)

By setting the values of an object’s properties, you change the object’s
characteristics. For example, you can use the ColorScheme property of
the Session object to change a session’s color scheme association. The
following statement sets the color scheme to “Blue Sky.”

Set Session.ColorScheme = “Blue Sky”

You can determine the current color scheme of the session object as well
as set it. The following statement returns the current value of the
ColorScheme property and displays it.

MsgBox Session.ColorScheme

Properties that you can both set and return, like ColorScheme, are read-
write properties. Properties whose values can only be returned are read-
only properties. Most of the System object’s properties are read-only. For
example, you can return the values of the ActiveSession, Version, and
Application properties, but you cannot change their values.

Properties that Return Objects
The value of most properties is either an integer, a character string, or a
Boolean value. However, some properties return an object. In the
statement below, Ses1.Screen returns a reference to a Screen object. Ses1
is an object variable that references a Session object; Screen is a Session
object property. The Set statement assigns the returned Screen object
reference to the object variable SessionScreen.

Set SessionScreen = Ses1.Screen

In the next statement, Extra.ActiveSession.Close, the Session object that
currently has the focus is closed. Extra is an object variable that
references the System object; ActiveSession is a property of the System
object that returns the Session object that currently has the focus. The
Close part of the expression is a method of the Session object.

Extra.ActiveSession.Close

Introduction

1-7

Default Properties
Every object has a default property, that is, a property that does not have
to be explicitly stated in an expression. For example, the Name property
is the default for the Session object. The following two statements both
return the name value for a Session object referred to as Ses1.

SesName = Ses1.Name

–or–

SesName = Ses1

Overview of Methods
A method is a command that directs an object to perform an action. For
example, the JumpNext method of the Sessions object transfers focus
from the currently active session to the next session. The Copy method of
the Screen object copies the selected screen area to the Clipboard.

To refer to a method, use the following dot syntax:

object.method

Some methods take arguments:

object.method arg1,arg2,...

Some methods return values as well:

rc = object.method (arg1,arg2,...)

Note the syntax difference in the last two statements: when the return
value is saved to a variable, the arguments are enclosed in parentheses.
Even if there is no argument list, include parentheses:

rc = object.method ()

Every object has a default method, that is, a method that does not have to
be explicitly stated in an expression. For example, the Item method is the
default method for collection objects. Each of the following two
statements closes the third session in the Sessions collection:

Sessions.Item(3).Close

–or–

Sessions(3).Close

Alphabetical
Reference to

Objects,
Properties, and

Methods

Activate Method

Applies To Objects

Session

Description

Makes the specified session the active window.

Syntax

object.Activate

Element Application

object The Session object.

Activate Method Example
Making each open session the active window, this example displays the
name of the session that is currently active.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes one or more open sessions

Set Sess = Sys.ActiveSession

For i=1 to Sys.Sessions.Count

Set Sess=Sys.Sessions.Item(i)

MsgBox "Activating session " + Sess.Name + "."

Sess.Activate

Next

End Sub

OLE Automation Programmer’s Reference

2-2

ActiveSession Property

Applies To Objects

System

Description

Returns the currently active Session object. Read-only.

Syntax

object.ActiveSession

Element Description

object The System object.

Comments

You can assign the returned object to a variable or property with the Set
statement.

ActiveSession Property Example
After initializing the object variable sess with a reference to the active
session, this example displays the name of the session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

SessionName$ = Sess.Name

MsgBox "The active session is " +SessionName$+"."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-3

Application Property

Applies To Objects

Area, QuickPad, QuickPads. Screen, Session, Sessions,System, Toolbar,
Toolbars

Description

Returns the System object. Read-only.

Syntax

object.Application

Element Description

object One of the above-listed objects.

Application Property Example
This example shows how the System object can be returned from any
object.

Sub Main()

Dim Sys As Object, AllSess As Object, Sess As Object

Dim MyScreen As Object, MyArea As Object

Dim TBars As Object, QPads As Object, MyTBar As Object, _
MyQPads As Object

Set Sys = CreateObject("EXTRA.System")

Set AllSess = Sys.Sessions

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(1, 1, 10, 10, , ,)

Set TBars = Sess.Toolbars

Set QPads = Sess.QuickPads

OLE Automation Programmer’s Reference

2-4

Set MyTBar = TBars(1)

Set MyQPad = QPads(1)

’ All these return the same result.

MsgBox "System.Application = " + Sys.Application.Name

MsgBox "Sessions.Application = " + AllSess.Application.Name

MsgBox "Session.Application = " + Sess.Application

MsgBox "Screen.Application = " + MyScreen.Application.Name

MsgBox "Area.Application = " + MyArea.Application.Name

MsgBox "Toolbars.Application = " + TBars.Application.Name

MsgBox "QuickPads.Application = " + QPads.Application.Name

MsgBox "ToolBar.Application = " + MyTBar.Application.Name

MsgBox "QuickPad.Application = " + MyQPad.Application.Name

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-5

Area Method

Applies To Objects

Screen

Description

Returns an Area object with the defined coordinates.

Syntax

Set rc = object.Area(StartRow, _
StartCol,EndRow,EndCol[,Page][,Type])

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Screen object.

StartRow The row where the selection begins.

StartCol The column where the selection begins.

EndRow The row where the selection ends.

EndCol The column where the selection ends.

Page VT session only—the screen page.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

Type Determines how the coordinates of the
Area object (top, left, bottom, right) are
interpreted when the object is selected.

OLE Automation Programmer’s Reference

2-6

Comments

The Area method requires six parameters. The Page and Type
parameters are optional in the sense that you do not have to specify
values; however, if you don’t specify values for these parameters, they
must be represented by placeholders, namely commas. In the following
statement, the Area method includes six parameters, with the last two
being the comma placeholders for the Page and Type parameters.

Set MyArea = MyScreen.Area(1,1,80,24 , ,)

The Type parameter accepts the following values.

Value Meaning

3 or xBLOCK The Area is selected as a rectangular
range of characters. There is no line
wrapping. This is the default.

2 or xSTREAM The Area is selected as a continuous
stream of characters, from the top left
coordinate to the bottom right
coordinate. If the Area consists of
more than one line, then the selection
wraps to the right of each line.

1 or xPOINT The Area is selected as a single point.
The bottom and right coordinates are
ignored. Not supported by VT
session.

0 or xNONE Invalidates selection of the Area.

Alphabetical Reference to Objects, Properties, and Methods

2-7

Area Method Example
This example returns an Area object and displays the text in the object.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open sessions

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(1,1,MyScreen.Rows,1 , ,)

MsgBox "The text in the first column is " + MyArea.Value + "."

End Sub

OLE Automation Programmer’s Reference

2-8

Area Object

Description

Provides access to a defined area of the screen.

Properties Methods

Application Copy

Bottom Cut

Left Delete

Parent Paste

Right Select

Top

Type

Value

Comments

You can create Area objects using methods and properties of the Screen
object, such as Area and Selection.

Using the methods and properties of an Area object, you can read from
or write to the presentation space, an area in PC memory that stores the
screen data of a terminal session. A presentation space includes data
from the status line (called Operator Information Area in 3270 sessions).
Each presentation space position stores a screen character.

To access the presentation space, you must know the exact number of
rows and columns that an emulated terminal provides. For example, if a
session emulates a terminal supporting 24 rows by 80 columns, you can
reference presentation space positions from row 1, column 1 to row 24,
column 80. For VT sessions, you can also specify the page.

Alphabetical Reference to Objects, Properties, and Methods

2-9

Bottom Property

Applies To Objects

Area

Description

Returns or sets the ending row of the Area object. Read-write.

Syntax

object.Bottom

Element Description

object The Area object.

Comments

You can set the Bottom property to shrink or expand an Area object. For
example, if you initially defined an area with a bottom row of ten, you
can set the bottom row to fifteen, thereby expanding the size of the area.

You can also adjust the size of the Area object with the Top, Left, and
Right properties.

Bottom Property Example
This example uses Top and Bottom properties with an Area object to
narrow a selection on the screen. Then the example uses the Top
property with a Session object to move the session around on the screen.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

OLE Automation Programmer’s Reference

2-10

’ This illustrates the Top and Bottom properties for an Area
’ object. For demonstration purposes, the Select method is used,
’ but it is not required for setting Top and Bottom properties.

MsgBox "Press to demonstrate the Top and Bottom properties _
for Area objects."

Set MyArea = MyScreen.Area(1, 1, MyScreen.Rows, _
MyScreen.Cols,,3)

MyArea.Select

For i = 1 to Int(MyScreen.Rows/2)

 MyArea.Top = MyArea.Top + 1

 MyArea.Select

 MyArea.Bottom = MyArea.Bottom - 1

 MyArea.Select

Next

’ This demonstrates the Top property for a Session object.

MsgBox "Press to demonstrate the Top property for Session _
objects."

Sess.Top = 50

MsgBox "The session top is now at 50. Press to move session _
top to 1"

Sess.Top = 1

MsgBox "The session top is now at 1. Press to move session _
top to 100"

Sess.Top = 100

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-11

Close Method

Applies To Objects

Session

Description

Closes the session.

Syntax

object.Close

Element Application

object The Session object.

Close Method Example
This example closes the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

MsgBox "Press to close session."

Sess.Close

End Sub

OLE Automation Programmer’s Reference

2-12

CloseAll Method

Applies To Objects

Sessions

Description

Closes all active sessions.

Syntax

object.CloseAll

Element Description

object The Sessions objects.

CloseAll Method Example
This example closes all open sessions.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes one or more open sessions

Sys.Sessions.CloseAll

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-13

Col Property

Applies To Objects

Screen

Description

Returns or sets the column position of the cursor. Read-only for VT
sessions.

Syntax

object.Col

Element Description

object The Screen object.

Col Property Example
This example displays the row and column cursor position of the active
session.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

CurrentRow = MyScreen.Row

CurrentCol = MyScreen.Col

MsgBox "The cursor is at " + Str$(CurrentRow) + "," _
+ Str$(CurrentCol) + "."

End Sub

OLE Automation Programmer’s Reference

2-14

ColorScheme Property

Applies To Objects

Session

Description

Returns the name of the color scheme, or sets the color scheme to be
assigned to the session. Read-write.

Syntax

object.ColorScheme

Element Description

object The Session object.

Comments

Until the ColorScheme property has been set, it will return a null string.
When set, the ColorScheme property affects the session in two ways:

• The name value of the ColorScheme property is stored temporarily;
that is, the value is stored only as long as the session remains open.
When you close the session and reopen it, the ColorScheme property
will return a null string.

• The colors assigned to the session are stored permanently; that is, the
colors are stored with the session until you reset the ColorScheme
property. When you close the session and reopen it, the colors last
assigned to the session are used.

Alphabetical Reference to Objects, Properties, and Methods

2-15

ColorScheme Property Example
This example displays the name of the color scheme for the active
session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ Assumes the color scheme has previously been set

MsgBox "The current color scheme is " + _

Sess.ColorScheme + "."

End Sub

OLE Automation Programmer’s Reference

2-16

Cols Property

Applies To Objects

Screen

Description

Returns the number of columns in the presentation space. Read-only.

Syntax

object.Cols

Element Description

object The Screen object.

Cols Property Example
This example displays the number of columns in the Screen object.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

MsgBox "The screen has " + Str$(MyScreen.Cols) + " columns."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-17

Connected Property

Applies To Objects

Session

Description

Returns the connection status of the session -- TRUE if connected, FALSE
if disconnected. The property also connects or disconnects the session.
Read-write.

Syntax

object.Connected

Element Description

object The Session object.

Comments

Setting the Connected property to FALSE is equivalent to choosing the
Disconnect command from the Session menu; setting it to TRUE is
equivalent to choosing the Connect command.

OLE Automation Programmer’s Reference

2-18

Connected Property Example
This example identifies and displays the open sessions that are currently
connected.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes one or more open sessions

SessionCount = Sys.Sessions.Count

For i = 1 to SessionCount

 If Sys.Sessions.Item(i).Connected Then

Connected$ = Connected$ + Sys.Sessions.Item(i).Name + " "

 End If

Next

MsgBox "The following sessions are connected: " + Connected$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-19

ConnectionStatus Property

Applies To Objects

OIA

Description

Returns an integer indicating the status of the connection. Read-only.

Syntax

object.ConnectionStatus

Element Description

object The OIA object.

Comments

The following values indicate the connection state. To return the
property, you can use either a constant or a value.

OIA
Symbol Constant Value Description

xNO_STATUS 0

4B xAPP_OWNED 1 Session is
connected to an
application

4B xSSCP 2 Control program
owned

4B? xUNOWNED 3 Session is not
connected to an
application

OLE Automation Programmer’s Reference

2-20

ConnectionStatus Property Example
This example uses the Screen object’s OIA property to reference the OIA
object. The OIA object is then used to return the session connection
status (ConnectionStatus property).

Sub Main

Dim Sys As Object

Dim Sess As Object

Dim MyScreen As Object

’ This gets the System object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ The following If statement displays status messages pertaining to

’ your host connection.

If MyScreen.OIA.ConnectionStatus = 1 Then

MsgBox "Session currently connected to a mainframe application."

ElseIf MyScreen.OIA.ConnectionStatus = 2 Then

MsgBox "The control program has established contact."

ElseIf MyScreen.OIA.ConnectionStatus = 3 Then

MsgBox "Session not connected to a mainframe application."

End If

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-21

Copy Method

Applies To Objects

Area, Screen

Description

Copies the current selection to the Clipboard.

Syntax

object.Copy

Element Description

object The Area or Screen object.

Comments

To copy data from an Area or Screen object, you must first select the
object with the Select method. (For the Screen object, you can also use the
SelectAll method.)

OLE Automation Programmer’s Reference

2-22

Copy Method Example
This example first copies the entire session screen to the Clipboard, then
copies an area of the screen to the Clipboard.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
My Area As Object

’ Invoke the clipboard viewer

Shell("clipbrd.exe")

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ This example demonstrates the Copy method for Screen objects.

Set MyScreen = Sess.Screen

MyScreen.SelectAll

MyScreen.Copy

MsgBox "The screen was copied to the clipboard. _

Press to copy a smaller area ..."

’ This example demonstrates the Copy method for Area objects.

Set MyArea = MyScreen.Area(1,1,10,10 , ,)

MyArea.Select

MyArea.Copy

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-23

Count Property

Applies To Objects

QuickPads, Sessions, Toolbars

Description

Returns the number of items in the collection of objects. Read-only.

Syntax

object.Count

Element Description

object The above-listed collection objects.

Comments

As described below, the meaning of the returned value depends on the
object.

Object Returned Value

Sessions The number of open sessions.

QuickPads The number of QuickPads available to
the session.

Toolbars The number of Toolbars available to the
session.

OLE Automation Programmer’s Reference

2-24

Count Property Example
This example first counts and displays the names of the open sessions. It
then counts and displays the names of the QuickPads visible for the
active session.

Sub Main()

Dim Sys As Object, Sess As Object, QPad As Object

Set Sys = CreateObject("EXTRA.System")

’Assumes at least one open session

’ This tests the Count property for a Sessions object.

NumberOfSessions = Sys.Sessions.Count

For i = 1 to NumberOfSessions

 OpenSessions$ = OpenSessions$ + _

 Sys.Sessions.Item(i).Name + " "

Next

MsgBox "The following sessions are open: " + OpenSessions$

’ This tests the Count property for a QuickPads object. This
’ example works equally well for toolbars, replacing the
’ QuickPads collection object with a Toolbars collection object.

Set Sess = Sys.ActiveSession

NumberOfQPads = Sess.QuickPads.Count

For i = 1 to NumberOfQPads

 If Sess.QuickPads.Item(i).Visible Then

 VisiblePads$ = VisiblePads$ + _
 Sess.QuickPads.Item(i).Name + " "

 End If

Next

MsgBox "The following QuickPads are visible: " + VisiblePads$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-25

Cut Method

Applies To Objects

Area, Screen

Description

Cuts the current selection to the Clipboard. This method is not supported
by VT sessions.

Syntax

object.Cut

Element Description

object The Area or Screen object.

Comments

To cut data from an Area or Screen object, you must first select the object
with the Select method. (For the Screen object, you can also use the
SelectAll method.)

OLE Automation Programmer’s Reference

2-26

Cut Method Example
This example first cuts an area of the screen to the Clipboard, then cuts
the entire screen to the Clipboard.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Dim MyArea As Object

’ Invoke the clipboard viewer

Shell("clipbrd.exe")

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This example demonstrates the Cut method for Area objects.

Set MyArea = MyScreen.Area(1,1,10,10 , ,)

MyArea.Select

MyArea.Cut

MsgBox "Press to Cut the entire Screen."

’ This example demonstrates the Cut method for Screen objects.

MyScreen.SelectAll

MyScreen.Cut

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-27

DefaultFilePath Property

Applies To Objects

System

Description

Sets or returns the default path specification as a string. This is the path
used for opening session files (the default installation path is
E!PC\SESSIONS). Read-write.

Syntax

object.DefaultFilePath

Element Description

object The System object.

DefaultFilePath Property Example
This example displays the default file path.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

DefaultPath$ = Sys.DefaultFilePath

MsgBox "The current default file path is " + _

DefaultPath$ + "."

End Sub

OLE Automation Programmer’s Reference

2-28

Delete Method

Applies To Objects

Area, Screen

Description

Deletes the current selection. This method is not supported by VT
sessions.

Syntax

object.Delete

Element Description

object The Area or Screen object.

Comments

To delete data from an Area or Screen object, you must first select the
object with the Select method. (For the Screen object, you can also use the
SelectAll method.)

Alphabetical Reference to Objects, Properties, and Methods

2-29

Delete Method Example
This example first deletes an area of the screen (from row 1, column 1 to
row 5 column 5), then deletes an additional ten rows and columns.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Dim MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This example demonstrates the Delete method for Area objects.

Set MyArea = MyScreen.Area(1,1,5,5 , ,3)

MyArea.Select

MyArea.Delete

MsgBox "Press to Delete a larger section of the screen."

’ This example demonstrates the Delete method for Screen
’ objects.

MyScreen.Select10,10,20,20

MyScreen.Delete

End Sub

OLE Automation Programmer’s Reference

2-30

EditScheme Property

Applies To Objects

Session

Description

Returns the name of the edit scheme, or sets the edit scheme to be
assigned to the session. Read-write.

Syntax

object.EditScheme

Element Description

object The Session object.

Comments

Until the EditScheme property has been set, it will return a null string.
When set, the EditScheme property affects the session in two ways:

• The name value of the EditScheme property is stored temporarily;
that is, the value is stored only as long as the session remains open.
When you close the session and reopen it, the EditScheme property
will return a null string.

• The edit settings assigned to the session are stored permanently; that
is, the settings are stored with the session until you reset the
EditScheme property. When you close the session and reopen it, the
edit settings last assigned to the session are used.

Alphabetical Reference to Objects, Properties, and Methods

2-31

EditScheme Property Example
This example displays the name of the edit scheme for the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ Assumes the edit scheme has previously been set

MsgBox "The current edit scheme is " + Sess.EditScheme + "."

End Sub

OLE Automation Programmer’s Reference

2-32

ErrorStatus Property

Applies To Objects

OIA

Description

Returns an integer indicating any error condition. Read-only.

Syntax

object.ErrorStatus

Element Description

object The OIA object.

Comments

The following values indicate the errors returned. To return the
property, you can use either a constant or a value.

OIA
Symbol

Constant Value Description

xNO_STATUS 0

XPROG756 xPROG_CHECK 1 Configuration
mismatch occurred

-+Z_510 xCOMM_CHECK 2 Communications
hardware problem
occurred

x0211 xMACHINE_CHE
CK

3 A problem with the
physical connection
occurred

Alphabetical Reference to Objects, Properties, and Methods

2-33

ErrorStatus Property Example
This example uses the Screen object’s OIA property to reference the OIA
object. The OIA object is then used to return session errors (ErrorStatus
property).

Sub Main

Dim Sys As Object

Dim Sess As Object

Dim MyScreen As Object

’ This gets the System object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ The following If statement displays status messages pertaining to

’ host/client communication.

If MyScreen.OIA.ErrorStatus = 1 Then

MsgBox "A configuration mismatch has occurred."

ElseIf MyScreen.OIA.ErrorStatus = 2 Then

MsgBox "A communications hardware problem has occurred."

ElseIf MyScreen.OIA.ErrorStatus = 3 Then

MsgBox "A physical connection problem has occurred."

End If

End Sub

OLE Automation Programmer’s Reference

2-34

FileTransferHostOS Property

Applies To Objects

Session

Description

Returns or sets the host operating system used by file transfers executed
through OLE Automation. Read-write.

Syntax

object.FileTransferHostOS

Element Description

object The Session object.

Comments

This property should be set prior to executing a file transfer. Valid values
are as follows:

0 - CMS

1 - TSO

2 - CICS

Use this property in conjunction with the FileTransferScheme property.

Alphabetical Reference to Objects, Properties, and Methods

2-35

FileTransferHostOS Property Example

Sub Main

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Select Case Sess.FileTransferHostOS

Case 0

MsgBox "The current file transfer HostOS is CMS"

Case 1

MsgBox "The current file transfer HostOS is TSO"

Case 2

MsgBox "The current file transfer HostOS is CICS"

End Select

End Sub

OLE Automation Programmer’s Reference

2-36

FileTransferScheme Property

Applies To Objects

Session

Description

Returns the name of the file transfer scheme, or sets file transfer scheme
to be assigned to the session. Read-write.

Syntax

object.FileTransferScheme

Element Description

object The Session object.

Comments

Until the FileTransferScheme property has been set, it will return a null
string. When set, the FileTransferScheme property affects the session in
two ways:

• The name value of the FileTransferScheme property is stored
temporarily; that is, the value is stored only as long as the session
remains open. When you close the session and reopen it, the
FileTransferScheme property will return a null string.

• The file transfer settings assigned to the session are stored
permanently; that is, the settings are stored with the session until
you reset the FileTransferScheme property. When you close the
session and reopen it, the file transfer settings last assigned to the
session are used.

Alphabetical Reference to Objects, Properties, and Methods

2-37

FileTransferScheme Property Example
This example displays the name of the file transfer scheme for the active
session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ Assumes the file transfer scheme has previously been set

MsgBox "The current file transfer scheme is " _

+ Sess.FileTransferScheme + "."

End Sub

OLE Automation Programmer’s Reference

2-38

FullName Property

Applies To Objects

QuickPad, Session, System, Toolbar

Description

Returns a string specifying the path and filename. Read-only.

Syntax

object.FullName

Element Description

object One of the above-listed objects.

Comments

Depending on the object, the FullName property returns different
values.

Object Return Value

QuickPad The name of the QuickPad. The default
installation path is E!PC\SCHEMES;
the default extension is EQP.

Session Session filename. Session files are
located in the E!PC\Sessions folder by
default. Display session files have an
EDP extension; printer session files
have an EPP extension.

System Program filename. The filename of the
EXTRA! application is EXTRA.EXE,
located in the folder E!PC.

Toolbar The name of the Toobar. The default
installation path is E!PC\SCHEMES;
the default extension is ETB.

Alphabetical Reference to Objects, Properties, and Methods

2-39

FullName Property Example
This example displays the path and filenames of the following objects:
System, Session, QuickPad, and Toolbar.

Sub Main()

Dim Sys As Object, Sess As Object, QPad As Object, _
TBar As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

’ This example demonstrates how to use the FullName property
’ with the System object.

fqProgram$ = Sys.FullName

MsgBox "The current fully qualified path and filename to E!PC _

is " + fqProgram$ + "."

’ This demonstrates how to use the FullName property with

’ a Session object. Here, the ActiveSession property was used to

’ get a session object.

Set Sess = Sys.ActiveSession

fqProfile$ = Sess.FullName

MsgBox "The fully qualified path and filename to the current _

session profile is " + fqProfile$ + "."

’ This example demonstrates how to use the FullName property

’ with a QuickPad object. Here, the ActiveSession property was

’ used to get a session object.

Set QPad = Sess.QuickPads.Item(1)

QPad.Visible = True

fqQPad$ = QPad.FullName

MsgBox "The fully qualified path and filename to the current _

QuickPad is " + fqQPad$ + "."

OLE Automation Programmer’s Reference

2-40

’ This demonstrates how to use the FullName property with

’ a QuickPad object. The ActiveSession property was used to

’ get a session object.

Set TBar = Sess.Toolbars.Item(1)

TBar.Visible = True

fqTBar$ = TBar.FullName

MsgBox "The fully qualified path and filename to the current _

Toolbar is " + fqTBar$ + "."

MsgBox "Done."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-41

GetString Method

Applies To Objects

Screen

Description

Returns the text from the specified screen location.

Syntax

rc = object.GetString (Row, Col, Length, [Page])

Element Description

rc The returned screen text.

object The Screen object.

Row The row where the text string begins.

Col The column where the text string
begins.

Len The length of the text string.

Page VT session only—the screen page.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

OLE Automation Programmer’s Reference

2-42

GetString Method Example
This example gets and displays the first half of the text on the first row of
the screen.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This example demonstrates using the GetString
’ method to capture the first half of the first line on a
’ screen.

row = 2

col = 1

halfLine = Int(MyScreen.Cols/2)

MyString$ = MyScreen.GetString(row, col, halfLine)

MsgBox "The first " + Str$(halfLine) + " characters of line " _

+ Str$(row) + " is [" + MyString$ + "] ..."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-43

Height Property

Applies To Objects

Session

Description

Returns or sets the height of the session window in pixels. Read-write.

Syntax

object.Height

Element Description

object The Session object.

Height Property Example
After returning the height of the active session window, this example
reduces the height by 50%.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

StartingHeight = Sess.Height

MsgBox "This will shrink the current window by 50% _

(currenty " + Str$(StartingHeight) + " pixels)."

Sess.Height = Int(StartingHeight/2)

End Sub

OLE Automation Programmer’s Reference

2-44

HideAll Method

Applies To Objects

QuickPads, Toolbars

Description

Hides all visible QuickPad or Toolbar objects.

Syntax

object.HideAll

Element Description

object The QuickPads or Toolbars object.

HideAll Method Example
This example displays a prompt for hiding all QuickPads and Toobars of
the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

HideEm = MsgBox("Do you wish to hide all Toolbars and _

QuickPads?", 1,"Hide All ...")

If HideEm=1 Then ’The above message box returns 1 if Okay

 ’is chosen.

 Sess.QuickPads.HideAll

 Sess.Toolbars.HideAll

End If

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-45

HotSpotScheme Property

Applies To Objects

Session

Description

Returns the name of the HotSpot scheme, or sets the hotspot scheme
assigned to the session. Read-write.

Syntax

object.HotSpotScheme

Element Description

object The Session object.

Comments

Until the HotSpotScheme property has been set, it will return a null
string. When set, the HotSpotScheme property affects the session in two
ways:

• The name value of the HotSpotScheme property is stored
temporarily; that is, the value is stored only as long as the session
remains open. When you close the session and reopen it, the
HotSpotScheme property will return a null string.

• The hotspots assigned to the session are stored permanently; that is,
the hotspots are stored with the session until you reset the
HotSpotScheme property. When you close the session and reopen it,
the hotspots last assigned to the session are used.

OLE Automation Programmer’s Reference

2-46

HotSpotScheme Property Example
This example displays the name of the hotspot scheme of the the active
session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’Assumes an open session

MsgBox "The current HotSpot scheme is " + _

Sys.ActiveSession.HotSpotScheme + "."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-47

Item Method

Applies To Objects

Sessions, QuickPads, Toolbars

Description

Returns an element in the collection.

Syntax

object.Item(i)
-or-
object.Item(name)

Object Description

object One of the above-listed objects.

i Numeric index of element in the
collection.

name Name of element in the collection.

Comments

The Item method is the default method for collection objects. The syntax
of the following statements are equivalent:

object.Item(name)
-or-

object(name)

In the first statement, the item is called explicitly; in the second
statement, the item is called implicitly.

For the Sessions collection, the numeric index refers to the sequence that
the sessions were opened. For example, Item(1) refers to the first
session opened, Item(2) refers to the second session opened and so on.
For QuickPads and Toolbars, the numeric index refers to the order in
which these objects were created.

You can assign the returned object to a variable with the Set statement.

OLE Automation Programmer’s Reference

2-48

Item Method Example
This example first displays the names of all open sessions, then displays
the names of all visible QuickPads for the active session. It then goes on
to show the difference between the explicit and implicit use of the Item
method.

Sub Main()

Dim Sys As Object, Sess As Object, QPad As Object

Set Sys = CreateObject("EXTRA.System")

’Assumes at least one open session

’ This tests the Item method for a Sessions object.

NumberOfSessions = Sys.Sessions.Count

For i = 1 to NumberOfSessions

 OpenSessions$ = OpenSessions$ + _
 Sys.Sessions.Item(i).Name + " "

Next

MsgBox "The following sessions are open: " + OpenSessions$

’ This tests the Item method for a QuickPads object. This
’ example works equally well for toolbars. Substitute the
’ QuickPads collection object with a Toolbars collection ob ject.

Set Sess = Sys.ActiveSession

NumberOfQPads = Sess.QuickPads.Count

For i = 1 to NumberOfQPads

 If Sess.QuickPads.Item(i).Visible Then

 VisiblePads$ = VisiblePads$ + Sess.QuickPads.Item(i).Name _
 + " "

 End If

Next

MsgBox "The following QuickPads are visible: " + VisiblePads$

Alphabetical Reference to Objects, Properties, and Methods

2-49

’ There are two ways to make an item call, implicitly or
’ explicitly, and two ways to index it, a numeric index
’ and a string index. The above examples show an explicit
’ call with a numeric index.

’ This example shows an implicit call with a numeric index.

For i = 1 To NumberOfQPads

 If Sess.QuickPads(i).Visible Then

VisiblePads$ = VisiblePads$ + Sess.QuickPads(i).Name + " "

 End If

Next

MsgBox "The following QuickPads are visible: " + VisiblePads$

’ This example shows an explicit call with a string index.

If Sess.QuickPads.Item("Aid").Visible Then

 MsgBox "The Aid Quick Pad is visible."

End If

’ This example shows an implicit call with a string index.

If Sess.QuickPads("Aid").Visible Then

 MsgBox "The Aid Quick Pad is visible."

End If

End Sub

OLE Automation Programmer’s Reference

2-50

JumpNext Method

Applies To Objects

Sessions

Description

Returns the next open session and gives it the focus.

Syntax

object.JumpNext

Element Description

object The Sessions object.

Comments

The JumpNext method switches focus in the order that the sessions are
opened. If there is only one session open, this method is ignored.

You can assign the returned Session object to a variable with the Set
statement.

JumpNext Method Example
This example gives focus to the next open session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes two or more open sessions

Sys.Sessions.JumpNext

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-51

KeyboardLocked Property

Applies To Objects

Session

Description

Returns or sets the keyboard input state for the session -- TRUE to block
keyboard input; FALSE to accept keyboard input. Read-write.

Syntax

object.KeyboardLocked

Element Description

object The Session object.

Comments

By default, keyboard input from the user is accepted.

KeyboardLocked Property Example
This example tests the keyboard state of the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

If Sess.KeyboardLocked Then

 MsgBox "The keyboard is locked."

Else

 MsgBox "The keyboard is not locked."

End If

End Sub

OLE Automation Programmer’s Reference

2-52

KeyMap Property

Applies To Objects

Session

Description

Returns the name of the keyboard map, or sets the keyboard map to be
assigned to the session. Read-write.

Syntax

object.KeyMap

Element Description

object The Session object.

Comments

The KeyMap property requires a valid keyboard map filename,
including the EKM extension (for example, IBM 3191.EKM).

KeyMap Property Example
This example displays the name of the keyboard map for the active
session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

MsgBox "The current keyboard map is " + Sess.KeyMap + "."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-53

Left Property

Applies To Objects

Area, Session

Description

For the Area object, the Left property returns or sets the screen column
where the area begins. For the Session object, the Left property returns or
sets the horizontal position of the session, in pixels. Read-write.

Syntax

object.Left

Element Description

object The Area or Session object.

Comments

Depending on the object, the Left property has different meanings.

Object Meaning

Area The column where the area starts,
expressed as an integer.

Session The number of pixels between the left
edge of the session window and the left
edge of the screen.

For the Area object, you can set the Left property to shrink or expand the
object. For example, if you initially defined an area with a left column of
two, you can set the left column to four, thereby shrinking the size of the
area. You can also adjust the size of the Area object with the Bottom,
Top, and Right properties.

For the Session object, you can set the Left property to change a session
window’s horizontal position on the screen. To change a session
window’s vertical position, set the Top property.

OLE Automation Programmer’s Reference

2-54

Left Property Example
This example first resets the horizontal position of the active session,
then resets the column where the area begins.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This moves the session to the left of the screen.

Sess.Left = 1

Set MyArea = MyScreen.Area(1,1,MyScreen.Rows,1,,3)

MsgBox "The text in column 1 is: " + MyArea.Value

MyArea.Left = 2

MyArea.Right = 2

MsgBox "The test in column 2 is: " + MyArea.Value

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-55

MoveRelative Method

Applies To Objects

Screen

Description

Moves the cursor a specified number of rows and columns from its
current position. This method is not supported by VT sessions.

Syntax

object.MoveRelative NumOfRows, NumOfCols

Element Description

object The Screen object.

NumrOfRows The number of rows to move.

NumOfCols The number of columns to move.

Comments

To move the cursor to an absolute row and column, use the MoveTo
method.

OLE Automation Programmer’s Reference

2-56

MoveRelative Method Example
This example moves the cursor to twenty-five random positions.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This causes the cursor to run all over the screen

For i = 1 To 25

 Randomize

 dX = Int(Rnd() * 10) - 5

 dY = Int(Rnd() * 10) - 5

 MyScreen.MoveRelative dX, dY

Next

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-57

MoveTo Method

Applies To Objects

Screen

Description

Moves the cursor to the specified location. This method is not supported
by VT sessions.

Syntax

object.MoveTo Row, Col

Element Description

object The Screen object.

Row The row location.

Col The column location.

Comments

To move the cursor to a position relative to its current one, use the
MoveRelative method.

OLE Automation Programmer’s Reference

2-58

MoveTo Method Example
The example moves the cursor to a random row and column on the
screen.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

For i = 1 to 10

 Randomize

 NewRow = Int(MyScreen.Rows*Rnd())+1

 NewCol = Int(MyScreen.Cols*Rnd())+1

 MsgBox "Move to " + Str$(NewRow) + "," + _

 Str$(NewCol) + "."

 MyScreen.MoveTo NewRow,NewCol

Next

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-59

Name Property

Applies To Objects

QuickPad, Screen, Session, System, Toolbar

Description

Returns the name of the object as a string. Read-only. See Comments for
details.

Syntax

object.Name

Element Description

object Any of the above-listed objects.

Comments

As shown below, the Name property has different meanings for different
objects.

Object Meaning

QuickPad The name of the QuickPad.

Screen The name of the screen recorded from
the session window. (From the Tools
menu, choose Record Pages.) The name
appears in the status line of the session
window.

If the screen does not have a name, the
property returns an empty string.

You can move to a named screen with
the NavigateTo method.

Session The name of the session.

System The name of the EXTRA! program.

Toolbar The name of the Toolbar.

OLE Automation Programmer’s Reference

2-60

Name Property Example
This example demonstrates the use of the Name property with System,
Session, QuickPad, and Toolbar objects.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

’ This gets the System object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This is an example of how to use the Name property for the
’ System object.

SysName$ = Sys.Name

MsgBox "The Sys Name is " + SysName$ + "."

’ This is an example of how to use the Name property for the
’ Screen object.

ScreenName$ = MyScreen.Name

MsgBox "The Screen Name is " + ScreenName$ + "."

’ This is an example of how to use the Name property for a
’ Session object.

SessionName$ = Sys.ActiveSession.Name

MsgBox "The Session Name is " + SessionName$ + "."

’ This is an example of how to use the Name property for a
’ QuickPad object. This also shows how the QuickPads object
’ (a collection object)might be used.

Alphabetical Reference to Objects, Properties, and Methods

2-61

For i = 1 to Sess.QuickPads.Count

 If Sess.QuickPads.Item(i).Visible then

 MsgBox "The QuickPad " + Sess.QuickPads.Item(i). Name + _
 " is visible."

 else

 MsgBox "The QuickPad " + Sess.QuickPads.Item(i). Name + " _
 is NOT visible."

 end if

Next

’ This is an example of how to use the Name property for
’ a Toolbar object. This also shows how the Toolbars object
’ (a collection object) might be used.

For i = 1 to Sess.ToolBars.Count

 If Sess.ToolBars.Item(i).Visible then

 MsgBox "The Toolbar " + Sess.ToolBars.Item(i).Name + _
 " is visible."

 else

 MsgBox "The Toolbar " + Sess.ToolBars.Item(i).Name + _
 " is NOT visible."

 end if

Next

MsgBox "Done."

End Sub

OLE Automation Programmer’s Reference

2-62

NavigateTo Method

Applies To Objects

Session

Description

Navigates to a specified host screen, recorded from a session window.

Syntax

rc = object.NavigateTo ([screenName])
-or-
object.NavigateTo [screenName]

Element Description

rc The return value.

object The Session object.

screenName The name of the screen to navigate to.

Return Value Description

TRUE Successful

FALSE The specified screen cannot be
located.
-or-
User canceled out of the dialog box.

Comments

To use this method, you must first record pages from a session.

From the Tools menu, choose Record Pages.

If you do not specify screenName, a dialog box appears for selecting a
screen.

Alphabetical Reference to Objects, Properties, and Methods

2-63

NavigateTo Method Example
The example navigates to a host screen named Page002.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ Note that Page002 must have already been recorded
’ for this to work.

Sess.NavigateTo ("Page002")

End Sub

OLE Automation Programmer’s Reference

2-64

OIA Object

Description

The OIA Object provides information about the Operator Information
Area (OIA) of the host screen. The host OIA provides mainframe and
mainframe connection status information.

Properties

ConnectionStatus Value

ErrorStatus XStatus

Updated

Alphabetical Reference to Objects, Properties, and Methods

2-65

OIA Property

Applies To Objects

Screen

Description

Returns an OIA object.

Syntax

object.OIA

Element Description

object The Screen object.

OLE Automation Programmer’s Reference

2-66

OIA Property Example
This example uses the Screen object’s OIA property to reference the OIA
object. The OIA object is then used to:

• return the OIA image as a character string for parsing and evaluation
(Value property),

• determine whether or not the OIA has been updated since the last
time the OIA object was accessed (Updated property),

• return the status of the XCLOCK portion of the OIA (XStatus
property),

• return the session connection status (ConnectionStatus property),

• and, return session errors (ErrorStatus property).

Sub Main

Dim Sys As Object

Dim Sess As Object

Dim MyScreen As Object

’ This gets the System object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This returns (and displays) the current OIA message as a string.

OIAValue$ = MyScreen.OIA.Value

MsgBox "Current OIA message codes for this session: " + _

OIAValue$

’ The following If statement displays a message if the

’ OIA has been updated.

If MyScreen.OIA.Updated = 1 Then

MsgBox "The OIA has been updated!"

End If

’ The following If statement displays status messages pertaining to

’ user-entered host commands and/or data.

If MyScreen.OIA.XStatus = 1 Then

Alphabetical Reference to Objects, Properties, and Methods

2-67

MsgBox "You have entered an invalid number."

ElseIf MyScreen.OIA.XStatus = 2 Then

MsgBox "You have entered non-numeric data in a numeric field."

ElseIf MyScreen.OIA.XStatus = 3 Then

MsgBox "You have attempted to enter data in a protected field."

ElseIf MyScreen.OIA.XStatus = 4 Then

MsgBox "You have attempted to type past the end of a field."

ElseIf MyScreen.OIA.XStatus = 5 Then

MsgBox "The host is busy processing your request."

ElseIf MyScreen.OIA.XStatus = 6 Then

MsgBox "The function you requested is unavailable."

ElseIf MyScreen.OIA.XStatus = 7 Then

MsgBox "Unable to print to requested printer."

ElseIf MyScreen.OIA.XStatus = 8 Then

MsgBox "The system has locked your keyboard during processing."

ElseIf MyScreen.OIA.XStatus = 9 Then

MsgBox "You have entered an invalid character."

End If

’ The following If statement displays status messages pertaining to

’ your host connection.

If MyScreen.OIA.ConnectionStatus = 1 Then

MsgBox "Session connected to mainframe application."

ElseIf MyScreen.OIA.ConnectionStatus = 2 Then

MsgBox "The control program has established contact."

ElseIf MyScreen.OIA.ConnectionStatus = 3 Then

MsgBox "Session not connected to mainframe application."

End If

’ The following If statement displays status messages pertaining to

’ host/client communication.

OLE Automation Programmer’s Reference

2-68

If MyScreen.OIA.ErrorStatus = 1 Then

MsgBox "A configuration mismatch has occurred."

ElseIf MyScreen.OIA.ErrorStatus = 2 Then

MsgBox "A communications hardware problem has occurred."

ElseIf MyScreen.OIA.ErrorStatus = 3 Then

MsgBox "A physical connection problem has occurred."

End If

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-69

Open Method

Applies To Objects

Sessions

Description

Returns an existing session and adds it to the Sessions collection.

Syntax

object.Open [fileName]

Element Description

object The Sessions object.

fileName The filename of the session, which can
include the path. The file extension is
optional.

Comments

You can assign the returned Session object to a variable with the Set
statement.

Open Method Example
The example opens a session called Session1.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

Sys.Sessions.Open("Session1.EDP")

End Sub

OLE Automation Programmer’s Reference

2-70

PageRecognitionTime Property

Applies To Objects

Session

Description

Returns or sets the recognition time used by the Record Pages feature.
PageRecognitionTime can be an integer between 1 and 20 and indicates
the number of seconds you want to give the host to settle and
“recognize” the host page during the record and playback procedures.
Read-write.

Syntax

object.PageRecognitionTime

Element Description

object The Session object.

Alphabetical Reference to Objects, Properties, and Methods

2-71

PageRecognitionTime Property Example
After determining the current PageRecognitionTime value, this example
prompts the user to set a new PageRecognitionTime.

Sub Main()

Dim Sys As Object

Dim Sess As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ These lines set up the strings to be used in the

’ InputBox dialog

InputPrompt$ = "The current page recognition time value is " _

 + Sess.PageRecognitionTime

InputPrompt$ = InputPrompt$ + " Enter a value to change it."

Title$ = "Set page recognition time value"

Default$ = Str$(Sess.PageRecognitionTime)

NewTime$ = InputBox$(InputPrompt$, Title$, Default$)

’ The PageRecognitionTime property is used to set the host page

’ recognition time value.

Sess.PageRecognitionTime = Val(NewTime$)

MsgBox "The new value is " + Sess.PageRecognitionTime + "."

End Sub

OLE Automation Programmer’s Reference

2-72

Parent Property

Applies To Objects

Area, QuickPad, QuickPads, Screen, Session, Sessions, System, Toolbar,
Toolbars

Description

Returns the parent of the specified object. Read-only.

Syntax

object.Parent

Element Description

object One of the above-listed objects.

Comments

The following table lists the parent of each object.

Object Parent

System System

Sessions System

Session Sessions

Screen Session

Area Screen

QuickPads Session

QuickPad QuickPads

Toolbars Session

Toolbar Toolbars

Alphabetical Reference to Objects, Properties, and Methods

2-73

Parent Property Example
For each of the EXTRA! objects, this example shows how to return its
parent object.

Sub Main()

Dim Sys As Object, AllSess As Object, Sess As Object

Dim MyScreen As Object, MyArea As Object

Dim TBars As Object, QPads As Object, MyTBar As Object, _
MyQPad As Object

Set Sys = CreateObject("EXTRA.System")

Set AllSess = Sys.Sessions

’ Assumes an open session. Retrieve objects.

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(1, 1, 10, 10, , 3)

Set TBars = Sess.Toolbars

Set QPads = Sess.QuickPads

Set MyTBar = TBars(1)

Set MyQPad = QPads(1)

’ The System object is its own parent.

MsgBox "System.Parent = " + Sys.Parent.Name

’The parent of a Sessions object is also the System object.

MsgBox "Sessions.Parent = " + AllSess.Parent.Name

’ The parent of a Session object is a Sessions object,
’ whose parent is ...

MsgBox Sess.Parent.Parent.Name

’ The parent of a Screen object is a Session object,
’ whose parent is ...

MsgBox MyScreen.Parent.Parent.Parent.Name

OLE Automation Programmer’s Reference

2-74

’ The parent of a Toolbars object or QuickPads object is also a
’ Session, whose parent is ...

MsgBox TBars.Parent.Parent.Parent.Name

MsgBox QPads.Parent.Parent.Parent.Name

’ The parent of an Area object is a Screen object,
’ whose parent is ...

MsgBox MyArea.Parent.Parent.Parent.Parent.Name

’ The parent of a Toolbar object is a Toolbars object,
’ whose parent is ...

MsgBox MyTBar.Parent.Parent.Parent.Parent.Name

’ The parent of a QuickPad object is a QuickPads object,
’ whose parent is ...

MsgBox MyQPad.Parent.Parent.Parent.Parent.Name

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-75

Paste Method

Applies To Objects

Area, Screen

Description

For the Area object, this method pastes Clipboard text into the object. For
the Screen object, this method pastes Clipboard text at the current
position or over the current selection.

Syntax

object.Paste

Element Description

object The Area or Screen object.

Comments

You must first copy or cut data to the Clipboard, then select the Area or
Screen object (with the Select method) to which you want to paste.

OLE Automation Programmer’s Reference

2-76

Paste Method Example
This example selects a host from the SSCP screen of a DEMO3270.EDP
session.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Dim MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ This example is meant to be run from a DEMO3270 session.
’ This example demonstrates the Paste method for Screen objects.
’ Set MyScreen = Sess.Screen

MyScreen.Select 7,10,7,10

MyScreen.Copy

MyScreen.Select 23,6,23,6

MyScreen.Paste

’ This example demonstrates the Paste method for Area objects.

Set MyArea = MyScreen.Area(9,10,9,10,,3)

MyArea.Select

MyArea.Copy

Set MyArea = MyScreen.Area(23,6,23,6,,3)

MyArea.Select

MyArea.Paste

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-77

Path Property

Applies To Objects

Session, System

Description

For the System object, this property returns the path of the EXTRA!
executable file. For the Session object, this property returns the path of
the session file. The filename is not included. Read-only.

Syntax

object.Path

Element Description

object The System or Session object.

Comments

Session files are located in the Sessions directory by default. A session is
referenced by the name of the file that stores its settings. Display sessions
have an EDP extension; printer sessions have an EPP extension.

OLE Automation Programmer’s Reference

2-78

Path Property Example
This example first displays the path of the System object, then the active
Session object.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

’ This example demonstrates how to use the Path property with
’ the System object.

CurrentProgramPath$ = Sys.Path

MsgBox "The current path to EXTRA! is " + CurrentProgramPath$ _
+ "."

’ This example demonstrates how to use the Path property with a
’ Session object. Here, the ActiveSession property was used to
’ get a session object.

CurrentProfilePath$ = Sys.ActiveSession.Path

MsgBox "The path to the current session profile _
is " + CurrentProfilePath$ + "."

MsgBox "Done."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-79

PutString Method

Applies To Objects

Screen

Description

Puts text in the specified location on the screen. This method is not
supported by VT sessions.

Syntax

object.PutString String,[Row],[Col]

Element Description

object The Screen object.

String Text that you want to put on the screen.

Row The row in which to put the text.
Optional. If this parameter is not
supplied, the current cursor row
position is used.

Col The column in which to put the text.
Optional. If this parameter is not
supplied, the current cursor column
position is used.

OLE Automation Programmer’s Reference

2-80

PutString Method Example
This example puts the string “Hello” on every row of the screen.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

For i = 1 to MyScreen.Rows

 Hello$ = " Hello "

 MyScreen.PutString Hello$,i,1

Next

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-81

QuickPad Object

Description

Provides access to a specific QuickPad.

Properties

Application

FullName

Name

Parent

Visible

Comments

Using the Item method of the QuickPads collection object, you can return
a specific QuickPad object.

OLE Automation Programmer’s Reference

2-82

QuickPads Object
A collection object consisting of individual QuickPad objects.

Properties Methods

Application HideAll

Count Item

Parent

Comments

You can retrieve a QuickPads object with the QuickPads property of the
Session object. For example, as shown in the following code, the
QuickPads object is returned and assigned to the object variable QPcoll.

Dim ses As Object, QPcoll As Object

Set ses = GetObject("Sess1.Ses")

Set QPcoll = ses.QuickPads

Alphabetical Reference to Objects, Properties, and Methods

2-83

QuickPads Property

Applies To Objects

Session

Description

Returns the QuickPads collection containing the individual QuickPad
objects that are currently available to a session. Read-only.

Syntax

Set rc = object.QuickPads

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Session object.

Comments

This collection consists of all of the QuickPads that are in the local and
remote paths. If no QuickPads are available, the object is still returned,
but its Count property is 0.

Once the QuickPads collection object is returned, you can access a
specific Quickpad object. You can do this by using the Item method of
the QuickPads collection object. For example, the following compound
statement returns a reference to a QuickPad object.

Set StandardQP = Extra.QuickPads.Items(1)

If the returned QuickPad is not visible, set its Visible property to TRUE.

OLE Automation Programmer’s Reference

2-84

QuickPads Property Example
This example determines how many QuickPads are available to the
active session (with the aid of the Count property), and then lists them
(with the aid of the Item method).

Sub Main()

Dim Sys As Object, Sess As Object, QPads As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ Assumes that there are one or more QuickPads available

QPadCount = Sess.QuickPads.Count

For i = 1 to QPadCount

 QPadNames$ = QPadNames$ + Sess.QuickPads.Item(i).Name + " "

Next

MsgBox "The number of QuickPads = " + QPadCount + ". _
They are: " + QPadNames$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-85

Quit Method

Applies To Objects

System

Description

Closes all sessions and EXTRA! programs.

Syntax

object.Quit

Element Description

object The System object.

Comments

This method is equivalent to the CloseAll method used with the Sessions
object.

Quit Method Example
This example closes all EXTRA! applications and sessions.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes one or more open session

Sys.Quit

End Sub

OLE Automation Programmer’s Reference

2-86

ReceiveFile Method

Applies To Objects

Session

Description

Receives a file from the host.

Syntax

rc = object.ReceiveFile ([PCFileName [,HostFileName]])
-or-
object.ReceiveFile [PCFileName [,HostFileName]]

Element Description

rc The return value.

object The Session object.

PCFileName The name of the file after it’s
transferred to the PC.

HostFileName The name of the file to transfer from
the host.

Return Value Description

TRUE Successful

FALSE The specified file cannot be located.
-or-
User canceled out of Transfer dialog
box.
-or-
The file transfer was unsuccessful for
any reason.

Alphabetical Reference to Objects, Properties, and Methods

2-87

Comments

If you do not specify HostFileName or PCFileName, the Transfer dialog
box appears where you can select files.

Note that the SendFile and ReceiveFile methods do not support FT5250
(SQL) file transfers. 3270 IND$FILE transfers and FTP file transfers
(using any host) are supported, however.

ReceiveFile Method Example
The example transfers the file “test text” from the host and renames it
“test2.txt” on the PC. Based on the return value of ReceiveFile, the
message box indicates success or failure of the transfer.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Sess.FileTransferScheme = "Text Default"

Sess.FileTransferHostOS = 0 ’0 = CMS

Recv = Sess.ReceiveFile("c:\test2.txt","test text")

If Recv Then MsgBox ("Okay") Else MsgBox ("Error")

End Sub

OLE Automation Programmer’s Reference

2-88

Right Property

Applies To Objects

Area

Description

Returns or sets the column, specified as an integer, where the Area ends.
Read-write.

Syntax

object.Right

Element Description

object The Area object.

Comments

You can set the Right property to shrink or expand an Area object. For
example, if you initially defined an area with a right column of ten, you
can set the right column to fifteen, thereby expanding the size of the area.

You can also adjust the size of the Area object with the Left, Top, and
Bottom properties.

Alphabetical Reference to Objects, Properties, and Methods

2-89

Right Property Example
This example uses the Left and Right properties to reset the column
where the area begins.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(1,1,MyScreen.Rows,1,,3)

MsgBox "The text in column 1 is: " + MyArea.Value

’ This moves the session to the left of the screen.

MyArea.Left = 2

MyArea.Right = 2

MsgBox "The test in column 2 is: " + MyArea.Value

End Sub

OLE Automation Programmer’s Reference

2-90

Row Property

Applies To Objects

Screen

Description

Returns or sets the row position of the cursor. Read-only for VT sessions.

Syntax

object.Row

Element Description

object The Screen object.

Row Property Example
This example displays the row and column cursor position of the active
session.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

CurrentRow = MyScreen.Row

CurrentCol = MyScreen.Col

MsgBox "The cursor is at " + Str$(CurrentRow) + "," + _
Str$(CurrentCol) + "."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-91

Rows Property

Applies To Objects

Screen

Description

Returns the number of rows in the presentation space. Read-only.

Syntax

object.Rows

Element Description

object The Screen object.

Rows Property Example
This example displays the number of rows in the active session.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Dim MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

MsgBox "The screen has " + Str$(MyScreen.Rows) + " rows."

End Sub

OLE Automation Programmer’s Reference

2-92

Save Method

Applies To Objects

Session

Description

Saves the current settings of the session.

Syntax

object.Save

Element Description

object The Session object.

Comments

Use the Saved property to determine the save state of the session.

Save Method Example
This example saves the settings of the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Sess.Save

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-93

SaveAs Method

Applies To Objects

Session

Description

Saves a copy of the specified session to a new file.

Syntax

object.SaveAs [FileName]

Element Description

object The Session object.

FileName The name of the file where the session
is saved.

Comments

If you do not specify FileName, the SaveAs dialog box prompts for one.

SaveAs Method Example
This example saves a copy of the active session to a new session named
SessionX.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Sess.SaveAs ("SessionX")

End Sub

OLE Automation Programmer’s Reference

2-94

Saved Property

Applies To Objects

Session

Description

Returns the save status of the session -- TRUE if the session has been
saved since it was last modified, FALSE if not. Read-only.

Syntax

object.Saved

Element Description

object The Session object.

Saved Property Example
This example illustrates the two values of the Saved property, TRUE or
FALSE.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

If Sess.Saved Then

 MsgBox "This session has not been changed since it was _
 last saved."

Else

 MsgBox "This session HAS been changed since it was _
 last saved."

End If

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-95

Screen Object

Description

Provides access to the contents of the host screen’s presentation space.

Properties Methods

Application Area Select

Col Copy SelectAll

Cols Cut SendInput

Name Delete SendKeys

Row GetString WaitForCursor

OIA MoveRelative WaitForCursorMo
ve

Parent MoveTo WaitForKeys

Rows Paste WaitForStream

Selection PutString WaitForString

Updated Search WaitHostQuiet

Comments

You can retrieve a Screen object with the Screen property of the Session
object. For example, as shown in the following code, the Screen object is
returned and assigned to the object variable SessionScreen.

Dim ses As Object, SessionScreen As Object

Set ses = GetObject("Sess1.Ses")

Set SessionScreen = ses.Screen

To access the presentation space with a Screen object, you must know the
exact number of rows and columns that an emulated terminal provides.
For example, if a session emulates a terminal supporting 24 rows by 80
columns, you can reference presentation space positions from row 1,
column 1 to row 24, column 80. For VT sessions, you can also specify the
page.

OLE Automation Programmer’s Reference

2-96

Screen Property

Applies To Objects

Session

Description

Returns the Screen object associated with the session.

Syntax

Set rc = object.Screen

Element Description

Set The Set statement, required for assigning
an object reference to a variable.

rc The object variable for referencing the
returned object.

object The Session object.

Alphabetical Reference to Objects, Properties, and Methods

2-97

Screen Property Example
This example moves a selected line from the top of the screen to the
bottom.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Dim MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ This example moves a selected line from the top of the screen
’ to the bottom.

Set MyScreen = Sess.Screen

For i = 1 to MyScreen.Rows

 MyScreen.Select i,1,i,MyScreen.Cols

Next

End Sub

OLE Automation Programmer’s Reference

2-98

Search Method

Applies To Objects

Screen

Description

Returns an Area object with the text specified in the search.

Syntax

Set rc = object.Search(Text[,Row][,Col][,Page])

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Screen object.

Row The row where the search begins.

Col The column where the search begins.

Page VT session only—the screen page
where the search begins.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

Comments

If the optional parameters are used, Screen is searched from the specified
starting position. Otherwise, the entire Screen object is searched.

If Search finds the specified text, the coordinate properties (Left, Top,
Right, Bottom) of the returned Area object are set to the starting and
ending row and column positions of the text. The Value property of the
Area object is set to the text located at those coordinates. If the Screen
changes at those coordinates, the Value property of the Area changes.

Alphabetical Reference to Objects, Properties, and Methods

2-99

If Search does not find the specified text, the Area object’s Value
property is set to an empty string, its Type property is set to xNONE,
and its coordinate properties are set to -1.

Search Method Example
This example first finds the input location on the host demonstration
screen (using the SlideShow connection type). It then move the cursor to
the screen position where data is entered.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This will find the input location on the first
’ Slide Show screen.

MyScreen.MoveTo 1, 1

Set MyArea = MyScreen.Search("==>")

MyScreen.MoveTo MyArea.Bottom, MyArea.Right + 2

End Sub

OLE Automation Programmer’s Reference

2-100

Select Method

Applies To Objects

Area, Screen

Description

For the Area object, the method selects the object. For the Screen object,
the method selects the area defined by the coordinates and returns an
Area object.

Area Syntax

object.Select

Element Description

object The Area object.

Screen Syntax

Set rc = object.Select(StartRow, _
StartCol,EndRow,EndCol[,Page])

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Screen object.

StartRow The row where the selection begins.

StartCol The column where the selection begins.

EndRow The row where the selection ends.

Alphabetical Reference to Objects, Properties, and Methods

2-101

Element
(cont.)

Description (cont.)

EndCol The column where the selection ends.

Page VT session only—the screen page.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

Select Method Example
The example first shows how to select an Area object, then a Screen
object.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(5, 5, 10, 10, , 3)

MyArea.Select

MsgBox "Select the Area object ..."

Set MyArea = MyScreen.Select(11, 11, 20, 20)

MsgBox "Select the Screen object ..."

End Sub

OLE Automation Programmer’s Reference

2-102

SelectAll Method

Applies To Objects

Screen

Description

Selects the entire screen and returns an Area object.

Syntax

Set rc = object.SelectAll

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Screen object.

SelectAll Method Example
This example uses SelectAll to create an Area object with the same
coordinates as the Screen object.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This selects the entire screen.

Set MyArea = MyScreen.SelectAll

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-103

Selection Property

Applies To Objects

Screen

Description

Returns an Area object representing the area of the screen currently
selected by the user. Read-only.

Syntax

Set rc = object.Selection

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Screen object.

OLE Automation Programmer’s Reference

2-104

Selection Property Example
Returning an Area object from a user’s selection, the example displays
the coordinates of the object, referred to as MyArea.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, MyArea As
Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This will return the coordinates of the area selected in the
’ current session. Note, that if nothing is selected the area
’ will be empty, i.e., its coordinates will all be -1.

Set MyArea = MyScreen.Selection

MyString$ = MyString$ + "Left = " + Str$(MyArea.Left)

MyString$ = MyString$ + "; Right = " + Str$(MyArea.Right)

MyString$ = MyString$ + "; Top = " + Str$(MyArea.Top)

MyString$ = MyString$ + "; Bottom = " + Str$(MyArea.Bottom)

MsgBox MyString$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-105

SendFile Method

Applies To Objects

Session

Description

Sends a file from the PC to the host.

Syntax

rc = object.SendFile ([PCFileName [,HostFileName]])
-or-
object.SendFile [PCFileName [,HostFileName]]

Element Description

rc The return value.

object The Session object.

PCFileName The name of the file to send to the
host.

HostFileName The name of the file after it’s
transferred to the host.

Return Value Description

TRUE Successful

FALSE The specified file cannot be located.
-or-
User canceled out of Transfer dialog
box.
-or-
The file transfer was unsuccessful for
any reason.

OLE Automation Programmer’s Reference

2-106

Comments

If you do not specify HostFileName or PCFileName, the Transfer dialog
box prompts for files.

Note that the SendFile and ReceiveFile methods do not support FT5250
(SQL) file transfers. 3270 IND$FILE transfers and FTP file transfers
(using any host) are supported, however.

SendFile Method Example
The example transfers the file "test2.txt" from the PC and renames it “test
text” on the host. Based on the return value of SendFile, the message box
indicates success or failure of the transfer.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Sess.FileTransferScheme = "Text Default"

Sess.FileTransferHostOS = 0 ’0 = CMS

Sent = Sess.SendFile("c:\test.txt","test text")

If Sent Then MsgBox ("Sent Okay.") _
Else MsgBox ("Error while sending.")

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-107

SendInput Method

Applies To Objects

Screen

Description

Sends the specified text to the Screen object, simulating incoming data
from the host.

Note: This method is for VT sessions only. (Use the Session.Type
property to determine the session type.)

Syntax

object.SendInput Text

Element Description

object The Screen object.

Text String of ANSII characters, including
control characters like carriage returns
and line feeds.

OLE Automation Programmer’s Reference

2-108

SendInput Method Example
This example inputs a string to a VT terminal session.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ Assumes an open session

Set MyScreen = Sess.Screen

’ This will put Hello User! in the upper left of a VT terminal

VT$ = Chr$(27) + "[H"

MyScreen.SendInput VT$ + " Hello User! "

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-109

SendKeys Method

Applies To Objects

Screen

Description

Sends keystrokes to the host, including function keys. The keystrokes
appear to the session as if they were manually entered by a user.

Syntax

object.SendKeys(String)

Element Description

object The Screen object.

String String of keystrokes, up to 255. You can
specify host function keys as well as
alphanumeric keys.

Comments

To pause your application while the host processes the transmitted
keystrokes, use a wait method, such as WaitForCursor.

Host function keys are specified with mnemonics, which are different for
each type of host -- 3270, 5250, or VT. Use the applicable table below to
identify the mnemonic that represents a particular 3270, 5250, or VT
function key. When you specify a mnemonic, enclose it in angle brackets
(< >). For example, in the following statement, the Screen object uses
the SendKeys method to transmit a Command 1 function to the host.

Screen.SendKeys <Pf1>

OLE Automation Programmer’s Reference

2-110

3270 and 5250 Function Keys Table

3270 Function Key Mnemonic 5250 FunctionKey Mnemonic

Attention Attn Attention Attn

Backspace BackSpace Backspace BackSpace

Backtab
(Left Tab)

BackTab Backtab (Left Tab) BackTab

Caps Lock CapsLock Begin Line BeginLine

Clear Clear Clear Clear

Cursor Down Down Command 1 Pf1

Cursor Left Left Command 2 Pf2

Cursor Left
2 Columns

Left2 Command 3 Pf3

Cursor Right Right Command 4 Pf4

Cursor Right
2 Columns

Right2 Command 5 Pf5

Cursor Select CursorSelect Command 6 Pf6

Cursor Up Up Command 7 Pf7

Delete Char Delete Command 8 Pf8

Duplicate Dup Command 9 Pf9

Enter Enter Command 10 Pf10

Erase EOF EraseEOF Command 11 Pf11

Erase Input EraseInput Command 12 Pf12

FieldMark FieldMark Command 13 Pf13

Home Home Command 14 Pf14

Insert Insert Command 15 Pf15

Left Tab
(Back Tab)

BackTab Command 16 Pf16

New Line NewLine Command 17 Pf17

Pen Select PenSel Command 18 Pf18

Print Print Command 19 Pf19

Reset Reset Command 20 Pf20

Shift ShiftOn Command 21 Pf21

System Request SysReq Command 22 Pf22

Tab (Right Tab) Tab Command 23 Pf23

Pa1 Pa1 Command 24 Pf24

Pa2 Pa2 Cursor Down Down

Pa3 Pa3 Cursor Down 2
rows

Down2

Alphabetical Reference to Objects, Properties, and Methods

2-111

3270 and 5250 Function Keys Table (cont.)

3270 Function Key Mnemonic 5250 FunctionKey Mnemonic

Pf1 Pf1 Cursor Left Left

Pf2 Pf2 Cursor Left 2
columns

Left2

Pf3 Pf3 Cursor Right Right

Pf4 Pf4 Cursor Right 2
columns

Right2

Pf5 Pf5 Cursor Select CursorSelect

Pf6 Pf6 Cursor Up Up

Pf7 Pf7 Cursor Up 2 rows Up2

Pf8 Pf8 Delete Char Delete

Pf9 Pf9 Duplicate Dup

Pf10 Pf10 End of Line EndLine

Pf11 Pf11 Enter Enter

Pf12 Pf12 Erase EOF EraseEOF

Pf13 Pf13 Erase EOL EraseEOL

Pf14 Pf14 Erase Input EraseInput

Pf15 Pf15 Field Exit FieldExit

Pf16 Pf16 Field Mark FieldMark

Pf17 Pf17 Field Minus FieldMinus

Pf18 Pf18 Field Plus FieldPlus

Pf19 Pf19 Help Help

Pf20 Pf20 Home Home

Pf21 Pf21 Insert Mode InsertMode

Pf22 Pf22 Insert Toggle Insert

OLE Automation Programmer’s Reference

2-112

3270 and 5250 Function Keys Table (cont.)

3270 Function Key Mnemonic 5250 FunctionKey Mnemonic

Pf23 Pf23 Left Tab (Back
Tab)

BackTab

Pf24 Pf24 New Line NewLine

Pa1 @x

Pa2 @y

Pa3 @z

Print Print

Reset Reset

Right Tab (Tab) Tab

Roll Down RollDown

Roll Up RollUp

System Request SysReq

Tab (Right Tab) Tab

Test Request TestRequest

Alphabetical Reference to Objects, Properties, and Methods

2-113

VT Function Keys Table

Note: The keypad functions will send either numbers or control
sequences, depending on the current mode of the keypad.

VT Function Keys Mnemonic VT Function
Keys

Mnemonic

Backspace Backspace Find Find

Break Signal Break Insert Insert Here

Compose Sequence Compose Hold Hold

Cursor Down Down Keypad - Keypad -

Cursor Left Left Keypad , Keypad ,

Cursor Right Right Keypad
Enter

Keypad Enter

Cursor Up Up Keypad . Keypad .

Escape Esc Keypad 0 Keypad 0

F1 F1 Keypad 1 Keypad 1

F2 F2 Keypad 2 Keypad 2

F3 F3 Keypad 3 Keypad 3

F4 F4 Keypad 4 Keypad 4

F5 F5 Keypad 5 Keypad 5

F6 F6 Keypad 6 Keypad 6

F7 F7 Keypad 7 Keypad 7

F8 F8 Keypad 8 Keypad 8

F9 F9 Keypad 9 Keypad 9

F10 F10 Next Screen Next

F11 F11 PF1 PF1

F12 F12 PF2 PF2

F13 F13 PF3 PF3

F14 F14 PF4 PF4

F15 F15 Previous
Screen

Prev

F16 F16 Print Screen Print

F17 F17 Remove Remove

F18 F18 Select Select

F19 F19 Setup Setup

F20 F20 Tab Tab

OLE Automation Programmer’s Reference

2-114

SendKeys Method Example
The example uses SendKeys to page through three host demonstration
screens (using the SlideShow connection type). Note that with the
exception of the first instance of SendKeys, this method is only executed
if the WaitForCursor method returns TRUE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

Found1st = MyScreen.WaitForCursor(20, 16)

If Found1st Then

 MyScreen.SendKeys ("user1<Enter>")

 Found2nd = MyScreen.WaitForCursor(23, 1)

 If Found2nd Then

 MyScreen.SendKeys ("logoff<Enter>")

 Found3rd = MyScreen.WaitForCursor(23, 6)

 End If

End If

If Not (Found1st And Found2nd And Found3rd) _
Then MsgBox "Error navigating host screens."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-115

Session Object

Description

Provides access to host data and EXTRA! functionality. The Session
object contains sub-objects, such as the Screen object and the Toolbar
object.

Properties

Application KeyboardLocked Screen

ColorScheme KeyMap Toolbars

Connected Left Top

EditScheme Name Type

FileTransferHostOS PageRecognitionTime Visible

FileTransferScheme Parent Width

FullName Path WindowState

Height QuickPads

HotSpotScheme Saved

Methods

Activate Save

Close SaveAs

NavigateTo SendFile

ReceiveFile

Comments

The most direct way to retrieve a Session object is with the GetObject
function, which retrieves a reference to an object from a file. You can also
use the Sessions object’s Open method.

OLE Automation Programmer’s Reference

2-116

Sessions Object

Description

A collection object consisting of sessions.

Properties Methods

Application CloseAll

Count Item

Parent JumpNext

Open

Comments

The Sessions collection reflects individual sessions that are currently
open. By accessing the Sessions collection, you can cycle through the
sessions and perform actions.

Alphabetical Reference to Objects, Properties, and Methods

2-117

Sessions Property

Applies To Objects

System

Description

Returns the Sessions collection containing the individual Session objects
that are currently open. Read-only.

Syntax

Set rc = object.Sessions

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The System object.

Comments

If no sessions are opened, the object is still returned, but its Count
property is 0.

OLE Automation Programmer’s Reference

2-118

Sessions Property Example
This example determines how many sessions are open (with the aid of
the Count property), and then lists them (with the aid of the Item
method).

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes one or more open sessions

’ This example uses the Sessions property to:
’ 1) get the number of sessions (with the aid of the Count
’ property),
’ 2) list them (with the aid of the Item method).

SessionCount = Sys.Sessions.Count

For i = 1 to SessionCount

 SessNames$ = SessNames$ + Sys.Sessions.Item(i).Name + " "

Next

MsgBox "The number of sessions = " + SessionCount + ". _
They are: " + SessNames$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-119

System Object

Description

Top-level object, providing access to all objects in EXTRA!.

Properties Methods

ActiveSession Sessions Quit

Application TimeoutValue ViewStatus

DefaultFilePath Version

FullName

Name

Parent

Path

OLE Automation Programmer’s Reference

2-120

TimeoutValue Property

Applies To Objects

System

Description

Sets or returns the number of milliseconds used by Wait operations (for
example, Screen.WaitForString and Area.WaitUntilChanged).
Read-write.

Syntax

object.TimeoutValue

Element Description

object The System object.

Comments

The initial default timeout value is 30,000 milliseconds (30 seconds). If
you change TimeoutValue, the new value becomes the default.

Alphabetical Reference to Objects, Properties, and Methods

2-121

TimeoutValue Property Example
After determining the current timeout value, this example prompts the
user to set a new timeout.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

’ These lines set up the strings to be used in the
’ InputBox dialog

InputPrompt$ = "The current timeout value is " + _
Sys.TimeoutValue

InputPrompt$ = InputPrompt$ + " Enter a value to change it."

Title$ = "Set Timeout Value"

Default$ = Str$(Sys.TimeoutValue)

NewTimeout$ = InputBox$(InputPrompt$, Title$, Default$)

’ The TimeoutValue property is used to set the timeout value.

Sys.TimeoutValue = Val(NewTimeout$)

MsgBox "The new value is " + Sys.TimeoutValue + "."

End Sub

OLE Automation Programmer’s Reference

2-122

Toolbar Object

Description

Provides access to a specific Toolbar.

Properties

Application

FullName

Name

Parent

Visible

Comments

Using the Item method of the Toolbars collection object, you can return a
specific Toolbar object.

Alphabetical Reference to Objects, Properties, and Methods

2-123

Toolbars Object

Description

A collection object consisting of individual Toolbar objects.

Properties Methods

Application HideAll

Count Item

Parent

Comments

You can retrieve a Toolbars object with the Toolbars property of the
Session object. For example, as shown in the following code, the Toolbars
object is returned and assigned to the object variable TBcoll.

Dim ses As Object, TBcoll As Object

Set ses = GetObject("Sess1.Ses")

Set TBcoll = ses.Toolbars

OLE Automation Programmer’s Reference

2-124

Toolbars Property
Session

Description

Returns the Toolbars collection containing the individual Toolbar objects
that are currently available to the session. Read-only.

Syntax

Set rc = object.Toolbars

Element Description

Set The Set statement, required for
assigning an object reference to a
variable.

rc The object variable for referencing the
returned object.

object The Session object.

Comments

This collection consists of all of the Toolbars that are in the local and
remote paths. If no Toolbars are available, the object is still returned, but
its Count property is 0.

Once the Toolbars collection object is returned, you can access a specific
Toolbar object. You can do this by using the Item method of the Toolbars
collection object. For example, the following compound statement
returns a reference to a Toolbar object.

Set StandardTB = Extra.Toolbars.Items(1)

If the returned Toolbar is not visible, set its Visible property to TRUE.

Alphabetical Reference to Objects, Properties, and Methods

2-125

Toolbars Property Example
This example determines how many Toolbars are available to the active
session (with the aid of the Count property), and then lists them (with
the aid of the Item method).

Sub Main()

Dim Sys As Object, Sess As Object, TBars As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’ This example uses the Toolbars property to:
’ 1) get the number of Toolbars (with the aid of the Count
’ property)
’ 2) list them (with the aid of the Item method).

TBarCount = Sess.Toolbars.Count

For i = 1 to TBarCount

 TBarNames$ = TBarNames$ + Sess.Toolbars.Item(i).Name + " "

Next

MsgBox "The number of Toolbars = " + TBarCount + ". _
They are: " + TBarNames$

End Sub

OLE Automation Programmer’s Reference

2-126

Top Property

Applies To Objects

Area, Session

Description

For the Area object, the Top property returns or sets the row where the
area begins. For the Session object, the Top property returns or sets the
vertical position of the session, in pixels. Read-write.

Syntax

object.Top

Element Description

object The Area or Session object.

Comments

Depending on the object, the Top property has different meanings.

Object Meaning

Area The row where the area starts,
expressed as an integer.

Session The number of pixels between the top
edge of the session window and the top
of the screen.

For the Area object, you can set the Top property to shrink or expand the
object. For example, if you initially defined an area with a top row of
two, you can set the top row to four, thereby shrinking the size of the
area. You can also adjust the size of the Area object with the Bottom, Left,
and Right properties.

For the Session object, you can set the Top property to change a session
window’s vertical position on the screen. To change a session window's
horizontal position, set the Left property.

Alphabetical Reference to Objects, Properties, and Methods

2-127

Top Property Example
This example uses Top and Bottom properties with an Area object to
narrow a selection on the screen. Then the example uses the Top
property with a Session object to move the session around on the screen.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This illustrates the Top and Bottom properties for an Area
’ object. For demonstration purposes, the Select method is used,
’ but it is not required for setting Top and Bottom properties.

MsgBox "Press to demonstrate the Top and Bottom properties for _
Area objects."

Set MyArea = MyScreen.Area(1, 1, MyScreen.Rows, _
MyScreen.Cols,,3)

MyArea.Select

For i = 1 to Int(MyScreen.Rows/2)

 MyArea.Top = MyArea.Top + 1

 MyArea.Select

 MyArea.Bottom = MyArea.Bottom - 1

 MyArea.Select

Next

’ This demonstrates the Top property for a Session object.

MsgBox "Press to demonstrate the Top property for _
Session objects."

OLE Automation Programmer’s Reference

2-128

Sess.Top = 50

MsgBox "The session top is now at 50. Press to move session _
top to 1"

Sess.Top = 1

MsgBox "The session top is now at 1. Press to move session _
top to 100"

Sess.Top = 100

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-129

Type Property

Applies To Objects

Area, Session

Description

For the Area object, the Type property determines how the Area
coordinates (top, left, bottom, right) are interpreted when the object is
selected. Read-write.

For the Session object, the Type property returns a value indicating the
session type -- 3270, 5250, or VT. Read-only.

Syntax

object.Type

Element Description

object The Area or Session object.

Comments

The following values indicate the Area type. To set the property, you can
use either a constant or a value.

Constant Value Area Type

xBLOCK 3 The Area is selected as a
rectangular range of characters.
There is no line wrapping.

xSTREAM 2 The Area is selected as a
continuous stream of characters,
from the top left coordinate to the
bottom right coordinate. If the
Area consists of more than one
line, then the selection wraps to
the right of each line

xPOINT 1 The Area is selected as a single
point. The bottom and right
coordinates are ignored. Not
supported by VT session.

OLE Automation Programmer’s Reference

2-130

(cont.)

Constant Value Area Type

xNONE 0 Invalidates selection of the Area.

The xNONE value is returned for
an Area object with a Value
property set to an empty string.
Such an object will be created by
the Screen object’s Search
method—if the search string is
not found. You cannot change
the Value property if set to an
empty string.

The following values indicate the Session type. (These values have
constant equivalents.)

Constant Value Session Type

3270SESSION 1 3270

5250SESSION 2 5250

VTSESSION 3 VT

Alphabetical Reference to Objects, Properties, and Methods

2-131

Type Property Example
This example shows how the Type property can be used with the Session
object and the Area object.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

’Using Type with Session object

Select Case Sess.Type

Case 1

 MsgBox "This is a 3270 session."

Case 2

 MsgBox "This is a 5250 session."

Case 3

 MsgBox "This is a VT session."

End Select

’Using Type with Area object

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(5, 5, 10, 10, , 3)

OLE Automation Programmer’s Reference

2-132

Select Case MyArea.Type

Case 0

 MsgBox "The Area type is xNONE."

Case 1

 MsgBox "The Area type is xPOINT."

Case 2

 MsgBox "The Area type is xSTREAM."

Case 3

 MsgBox "The Area type is xBLOCK."

End Select

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-133

Updated Property

Applies To Objects

Screen, OIA

Description

Returns TRUE if the Screen or OIA object has been updated since the last
time this property was checked. If the object has not been updated, the
property returns FALSE. Read-only.

Syntax

object.Updated

Element Description

object The Screen or OIA object.

OLE Automation Programmer’s Reference

2-134

Updated Property Example
This example illustrates the two values of the Updated property, TRUE
or FALSE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ This macro is meant to be run from the start of an IBM SSCP
’ screen. If the’ enter key does not force a screen update,
’ soon enough, the second Updated check will still return false.

If MyScreen.Updated Then

 MsgBox "The screen has been updated."

Else

 MsgBox "The screen has NOT been updated."

End If

MyScreen.SendKeys ("a<Enter>")

If MyScreen.Updated Then

 MsgBox "The screen has been updated."

Else

 MsgBox "The screen has NOT been updated."

End If

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-135

Value Property

Applies To Objects

Area, OIA

Description

Returns (for both Area and OIA objects) or sets (for the Area object only)
the text in the Area or Operator Information Area (OIA). Value is read-
write for the Area object and read-only for the OIA object.

Syntax

object.Value

Element Description

object The Area or OIA object.

Comments

Value is the default property of the Area and OIA objects.

OLE Automation Programmer’s Reference

2-136

Value Property Example
This example uses the Value property to log on to a simulated host
(using the SlideShow connection type). Note that the While...Wend
statement is used to test if the logon screen has appeared. Alternatively,
you can use the WaitForString method to test this condition.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object, _
MyArea As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ Assumes an open session

Set MyScreen = Sess.Screen

Set MyArea = MyScreen.Area(23, 6, 23, 6, , 3)

’ This macro is designed for the "slide show" session

MyArea.Value = "a"

MyScreen.SendKeys ("<Enter>")

Set MyArea = MyScreen.Area(20, 2, 20, 7, , 3)

nCounter = 0

maxCounter = 500

Wait$ = "USERID"

While ((Watch$ <> Wait$) And (nCounter < maxCounter))

 Watch$ = MyArea.Value

 nCounter = nCounter + 1

Wend

Alphabetical Reference to Objects, Properties, and Methods

2-137

If nCounter = maxCounter Then

 MsgBox Wait$ + " not found in time."

Else

 Set MyArea = MyScreen.Area(20, 16, 20, 23, , 3)

 MyArea = "user1"

 ’ This is identical to MyArea.Value = "user1"

 MyScreen.SendKeys ("<Enter>")

End If

End Sub

OLE Automation Programmer’s Reference

2-138

Version Property

Applies To Objects

System

Description

Returns a string identifying the version of EXTRA!. Read-only.

Syntax

object.Version

Element Description

object The System object.

Version Property Example
This example displays the current version of EXTRA!.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

MsgBox "The current version of E!PC is " + Sys.Version + "."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-139

ViewStatus Method

Applies To Objects

System

Description

Starts the Status program.

Syntax

object.ViewStatus

Element Description

object The System object

Comments

The Status application cannot be closed programmatically; it must be
closed manually.

ViewStatus Method Example
This example starts the Status application.

Sub Main()

Dim Sys As Object

Set Sys = CreateObject("EXTRA.System")

Sys.ViewStatus

End Sub

OLE Automation Programmer’s Reference

2-140

Visible Property

Applies To Objects

QuickPad, Session, Toolbar

Description

Sets the object to visible or invisible, or returns its visibility status --
TRUE if visible, FALSE if invisible. Read-write.

Syntax

object.Visible

Element Description

object Any of the above-listed objects.

Comments

By default, a new session does not appear. To make it visible, set the
property to TRUE. Likewise, to make a QuickPad or Toolbar appear, set
its Visible property to TRUE.

Alphabetical Reference to Objects, Properties, and Methods

2-141

Visible Property Example
Using the Visible property, this example indicates which QuickPads are
visible and invisible, then indicates which sessions are visible and
invisible.

Sub Main()

Dim Sys As Object, AllSess As Object, Sess As Object, _
QPads As Object

Set Sys = CreateObject("EXTRA.System")

Set AllSess = Sys.Sessions

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set QPads = Sess.QuickPads

’ This example demonstrates the Visible property with QuickPad
’ objects. This example works equally well for Toolbars by
’ replacing the QuickPads object with a Toolbars object.

For i = 1 To QPads.Count

 If QPads.Item(i).Visible Then

 VisQPads$ = VisQPads$ + QPads.Item(i).Name

 Else

 InvisQPads$ = InvisQPads$ + QPads.Item(i).Name

 End If

Next

MsgBox "The following QuickPads are visible: " + VisQPads$

MsgBox "The following QuickPads are NOT visible: " + InvisQPads$

OLE Automation Programmer’s Reference

2-142

’ Likewise, this example demonstrates the Visible property with
’ Session objects.

For i = 1 To AllSess.Count

 If AllSess.Item(i).Visible Then

 VisSess$ = VisSess$ + AllSess.Item(i).Name

 Else

 InvisSess$ = InvisSess$ + AllSess.Item(i).Name

 End If

Next

MsgBox "The following Sessions are visible: " + VisSess$

MsgBox "The following Sessions are NOT visible: " + InvisSess$

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-143

WaitForCursor Method

Applies To Objects

Screen

Description

Waits until the cursor is at the specified location. The method will wait
for the amount of time set in System.TimeoutValue.

Syntax

rc = object.WaitForCursor (Row [,Col] [,Page]])
-or-
object.WaitForCursor Row [,Col] [,Page]]

Element Description

rc The return value.

object The Screen object.

Row The row where you want the cursor to
appear.

Col The column where you want the cursor
to appear.

Page VT session only—the screen page.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

Return Value Description

TRUE Cursor is at the specified location
within the time specified by
System.TimeoutValue.

FALSE Cursor is not at the specified location
within the time specified by
System.TimeoutValue.

OLE Automation Programmer’s Reference

2-144

Comments

You can set the number of milliseconds to wait by setting the System
object’s TimeoutValue property.

WaitForCursor Method Example
The example uses WaitForCursor and SendKeys to page through three
host demonstration screens (using the SlideShow connection type). Note
that with the exception of the first instance of SendKeys, this method is
only executed if the WaitForCursor method returns TRUE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

Found1st = MyScreen.WaitForCursor(20, 16)

If Found1st Then

 MyScreen.SendKeys ("user1<Enter>")

 Found2nd = MyScreen.WaitForCursor(23, 1)

 If Found2nd Then

 MyScreen.SendKeys ("logoff<Enter>")

 Found3rd = MyScreen.WaitForCursor(23, 6)

 End If

End If

If Not (Found1st And Found2nd And Found3rd) _
Then MsgBox "Error navigating host screens."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-145

WaitForCursorMove Method

Applies To Objects

Screen

Description

Waits until the cursor has moved the specified number of rows and
columns from its current position. The method will wait for the amount
of time set in System.TimeoutValue.

Syntax

rc = object.WaitForCursorMove (NumofRows [,NumofCols]
[,Pages]])
-or-
object.WaitForCursor NumofRows [,NumofCols]
[,NumofPages]]

Element Description

rc The return value.

object The Screen object.

NumofRows The number of rows to move.

NumofCols The number of columns to move.

NumofPages VT session only—the number of screen
pages to move.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

Return Value Description

TRUE Cursor has moved the specified
amount within the time specified by
System.TimeoutValue.

FALSE Cursor has not moved the specified
location within the time specified by
System.TimeoutValue.

OLE Automation Programmer’s Reference

2-146

Comments

You can set the number of milliseconds to wait by setting the System
object’s TimeoutValue property.

WaitForCursorMove Method Example
This example moves the screen cursor and enters input to navigate
through a couple of host demonstration screens (using the SlideShow
connection type).

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ Assumes an open session

Set MyScreen = Sess.Screen

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

’ This uses row and column parameters

Move1st = MyScreen.WaitForCursorMove(-3, 10)

If Move1st Then

 MyScreen.SendKeys ("user1<Enter>")

 ’ This uses only the row optional parameter

 Move2nd = MyScreen.WaitForCursorMove(3)

 If Move2nd Then

MyScreen.SendKeys ("logoff<Enter>")

’ This also uses row parameter only

Move3rd = MyScreen.WaitForCursorMove(0, 5)

 End If

End If

If Not (Move1st And Move2nd And Move3rd) _

Then MsgBox "Error navigating host screens."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-147

WaitForKeys Method

Applies To Objects

Screen

Description

Waits until the user presses a key or for the specified time to elapse
before the program will continue processing.

Syntax

rc = object.WaitForKeys ([Timeout [,UserKeys]])
-or-
object.WaitForKeys [Timeout [,UserKeys]]

Element Description

rc The return value.

object The Screen object.

Timeout The time for the Screen object to wait,
in milliseconds. If no timeout value is
specified, the Screen object waits until a
key is pressed.

UserKeys One or more keys that the user must
press for the program to continue
processing. If no string is specified, any
keystroke will continue program
processing.

Return Value Description

UserKeys The UserKeys keys that the user
pressed.

empty string Indicates that no key was pressed
within the specified time or that the key
that the user pressed was not one of the
UserKeys you supplied in the
WaitForKeys method syntax.

OLE Automation Programmer’s Reference

2-148

WaitForKeys Method Example
The example waits for the user to press the “a” character or for nine
seconds to elapse.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ Method 1: As set in TimeoutValue property,
’ WaitForKeys will wait for nine seconds until
’ the "a" key is pressed

Sys.TimeoutValue = 9000

Wait4Keys$ = MyScreen.WaitForKeys("a")

MsgBox "WaitForKeys returned " + Wait4Keys$ + "."

’ Method 2: As set in the Timeout parameter,
’ WaitForKeys will wait for nine seconds until
’ the "a" key is pressed

Wait4Keys$ = MyScreen.WaitForKeys(9000, "a")

MsgBox "WaitForKeys returned " + Wait4Keys$ + "."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-149

WaitForStream Method

Applies To Objects

Screen

Description

Waits until the specified text appears in the host data stream. The
method will wait for the amount of time set in System.TimeoutValue.

Syntax

rc = object.WaitForStream (Text [,IdleTime])
-or-
object.WaitForStream Text [,IdleTime]

Element Description

rc The return value.

object The Screen object.

Text The text string from the host.

IdleTime The number of milliseconds when no
host data is received after the specified
text string has been located.

Return Value Description

TRUE Text is received in the data stream
within the time specified by
System.TimeoutValue.

FALSE Text is not received in the data stream
within the time specified by
System.TimeoutValue.

Comments

If you specify idle time, the method will wait until until the following
two conditions are met: first, the specified text string is received, and
second, after the specified text is received, no additional text is received
for the specified idle time.

OLE Automation Programmer’s Reference

2-150

WaitForStream Method Example
The example uses WaitforStream and SendKeys to page through host
demonstration screens (using the SlideShow connection type). Note that
with the exception of the first instance of SendKeys, this method is only
executed if the WaitForStream method returns TRUE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ Assumes an open session

Set MyScreen = Sess.Screen

’ WaitForStream will wait for up to 9 seconds.

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

’ WaitForStream uses the optional idle time parameter. It will
’ wait until the string is received followed by 2 seconds of
’idle time, or until the System timeout value is reached.

Found1st = MyScreen.WaitForStream("COMMAND ===>", 2000)

If Found1st Then

 MyScreen.SendKeys ("user1<Enter>")

 Found2nd = MyScreen.WaitForStream("Ready;")

 If Found2nd Then

MyScreen.SendKeys ("logoff<Enter>")

Found3rd = MyScreen.WaitForStream("USSMSG10")

 End If

End If

If Not (Found1st And Found2nd And Found3rd) _

Then MsgBox "Error navigating host screens."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-151

WaitForString Method

Applies To Objects

Screen

Description

Waits until the specified text appears on the screen. The Screen object
will wait for the amount of time set in System.TimeoutValue.

Syntax

rc = object.WaitForString (Text [,Row [,Col [,Page]]])

-or-

object.WaitForString String [,Row [,Col [,Page]]]

Element Description

rc The return value.

object The Screen object.

String The text string that you want the Screen
object to wait for.

Row The row where you expect the string to
appear.

Col The column where you expect the
string to appear.

Page VT session only—the screen page.

Note: This parameter is ignored for
release 6.0 of EXTRA!.

OLE Automation Programmer’s Reference

2-152

Return Value Description

TRUE The Screen object has received the text
string in the specified location within
the time specified by
System.TimeoutValue.

FALSE The Screen object has not received the
text string in the specified location
within the time specified by
System.TimeoutValue.

Comments

If you don’t specify a screen location (row, column, or page),
WaitForString can receive the text string in any location to be successful.

Alphabetical Reference to Objects, Properties, and Methods

2-153

WaitForString Method Example
The example uses WaitforString and SendKeys to page through host
demonstration screens (using the SlideShow connection type). Note that
with the exception of the first instance of SendKeys, this method is only
executed if the WaitForString method returns TRUE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

Set Sess = Sys.ActiveSession

’ Assumes an open session

Set MyScreen = Sess.Screen

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

’ This uses row and column optional parameters

Found1st = MyScreen.WaitForString("COMMAND ===>", 23, 2)

If Found1st Then

 MyScreen.SendKeys ("user1<Enter>")

 ’ This uses neither the row nor the column optional parameters

 Found2nd = MyScreen.WaitForString("Ready;")

 If Found2nd Then

 MyScreen.SendKeys ("logoff<Enter>")

 ’ This uses only the row optional parameter

 Found3rd = MyScreen.WaitForString("USSMSG10", 2)

 End If

End If

If Not (Found1st And Found2nd And Found3rd) _

Then MsgBox "Error navigating host screens."

End Sub

OLE Automation Programmer’s Reference

2-154

WaitHostQuiet Method

Applies To Objects

Screen

Description

Waits for the host to not send data for a specified number of
milliseconds. The Screen object will wait for host compliance for the
amount of time set in System.TimeoutValue.

Syntax

rc = object.WaitHostQuiet ([SettleTime])
-or-
object.WaitHostQuiet [SettleTime]

Element Description

rc The return value.

object The Screen object.

SettleTime The amount of time, in milliseconds,
that the host should remain “quiet.” If
SettleTime is not specified, a default
time of 5000 (5 seconds) is assumed.

Return Value Description

TRUE The host was quiet for SettleTime
milliseconds.

FALSE The host was NOT quiet for SettleTime
milliseconds.

Alphabetical Reference to Objects, Properties, and Methods

2-155

Comments

This method can be used to allow time for the host to “settle down”
during potentially busy periods. For instance, in a 3270 session,
WaitHostQuiet is useful after issuing a SendKeys call that contains an
Aid key. The Aid key can result in a change to the host screen and the
host will issue Xclock (busy) messages during this time. Issuing a
WaitHostQuiet call after the SendKeys call pauses processing of your
macro until the host has remained quiet for 5 seconds.

There are two values that can affect the performance of WaitHostQuiet.
These values will need to be set according to the performance of your
particular host environment. The SettleTime parameter controls the
amount of time you want the host to “be quiet.” the default (5000) means
“wait until the host has been quiet for 5 seconds.” In some instances, you
may want to pass in 0. For example, in a 3270 session, WaitHostQuiet(0)
means “wait until the XClock clears.”

The second value that can affect the performance of WaitHostQuiet is
System.TimeoutValue. This value controls how long the macro should
keep waiting for the quiet condition to occur before returning TRUE or
FALSE. For example, if System.TimeoutValue was set to 30000 (30
seconds) and a WaitHostQuiet(10000) is issued, you are requesting to
“wait for the host to be quiet for 10 seconds and if this hasn’t happened
in 30 seconds, return FALSE.”

Tip: WaitForString, WaitForStream, WaitForCursor, and
WaitForCursorMove are other possible options for determining when
the host has finished processing.

OLE Automation Programmer’s Reference

2-156

WaitHostQuiet Method Example
The example uses WaitHostQuiet and SendKeys to page through host
demonstration screens (using the SlideShow connection type). Note that
with the exception of the first instance of SendKeys, this method is only
executed if the WaitHostQuiet method returns TRUE.

Sub Main()

Dim Sys As Object, Sess As Object, MyScreen As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

Sys.TimeoutValue = 9000

’ This will page through a couple of "slide show" host screens.

MyScreen.SendKeys ("a<Enter>")

Wait1st = MyScreen.WaitHostQuiet(9000)

If Wait1st Then

 MyScreen.SendKeys ("user1<Enter>")

 Wait2nd = MyScreen.WaitHostQuiet(9000)

 If Wait2nd Then

 MyScreen.SendKeys ("logoff<Enter>")

 Wait3rd = MyScreen.WaitHostQuiet(9000)

 End If

End If

If Not (Wait1st And Wait2nd And Wait3rd) _

Then MsgBox "Error navigating host screens."

End Sub

Alphabetical Reference to Objects, Properties, and Methods

2-157

Width Property

Applies To Objects

Session

Description

Returns or sets the width of the session window in pixels. Read-write.

Syntax

object.

Element Description

object The Session object.

Width Property Example
After returning the width of the active session window, this example
reduces the width by 50%.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

StartingWidth = Sess.Width

MsgBox "This will shrink the current window by 50% _

(currenty " + StartingWidth + " pixels)."

Sess.Width = Int(StartingWidth/2)

End Sub

OLE Automation Programmer’s Reference

2-158

WindowState Property

Applies To Objects

Session

Description

Returns or sets the state of the session window -- normal, maximized, or
minimized. Read-write.

Syntax

object.WindowState

Element Description

object The Session object.

Comments

The following values indicate the window state. To set the property, you
can use either a constant or a value.

Constant Value Window State

xMINIMIZED 0 Minimized

xNORMAL 1 Normal (not
maximized or
minimized)

xMAXIMIZE
D

2 Maximized

Alphabetical Reference to Objects, Properties, and Methods

2-159

WindowState Property Example
This example sets the three possible window states for the active session.

Sub Main()

Dim Sys As Object, Sess As Object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

MsgBox "Press for Minimized state ..."

Sess.WindowState = 0

MsgBox "Press for Normal state ..."

Sess.WindowState = 1

MsgBox "Press for Maximized state ..."

Sess.WindowState = 2

End Sub

OLE Automation Programmer’s Reference

2-160

XStatus Property

Applies To Objects

OIA

Description

Returns an integer indicating the status of the XCLOCK. Read-only.

Syntax

object.XStatus

Element Description

object The OIA object.

Alphabetical Reference to Objects, Properties, and Methods

2-161

Comments

The following values indicate the XCLOCK state. To return the property,
you can use either a constant or a value.

OIA
Symbol

Constant Value Description

xNO_STATUS 0

X ¥ # xINVALID_NUM 1 User entered an
invalid number

X ¥ NUM xNUM_ONLY 2 User entered
non-numeric
data in a numeric
field

X < ¥ > xPROTECTED_FIELD 3 User typed in a
protected field

X ¥ > xPAST_EOF 4 User typed past
the end of the
field

X () xBUSY 5 Host is busy

X - f xINVALID_FUNC 6 Function is
invalid

X ¥ X xUNAUTHORIZED_PRINT
ER

7 Unauthorized
printer requested

XSYSTEM xSYSTEM 8 System locked
during
processing

X-s xINVALID_CHAR 9 An invalid
character was
entered

OLE Automation Programmer’s Reference

2-162

XStatus Property Example
This example uses the Screen object’s OIA property to reference the OIA
object. The OIA object is then used to return the status of the XCLOCK
portion of the OIA (XStatus property).

Sub Main

Dim Sys As Object

Dim Sess As Object

Dim MyScreen As Object

’ This gets the System object

Set Sys = CreateObject("EXTRA.System")

’ Assumes an open session

Set Sess = Sys.ActiveSession

Set MyScreen = Sess.Screen

’ The following If statement displays status messages pertaining to

’ user-entered host commands and/or data.

If MyScreen.OIA.XStatus = 1 Then

MsgBox "You have entered an invalid number."

ElseIf MyScreen.OIA.XStatus = 2 Then

MsgBox "You have entered non-numeric data in a numeric field."

ElseIf MyScreen.OIA.XStatus = 3 Then

MsgBox "You have attempted to enter data in a protected field."

ElseIf MyScreen.OIA.XStatus = 4 Then

MsgBox "You have attempted to type past the end of a field."

ElseIf MyScreen.OIA.XStatus = 5 Then

MsgBox "The host is busy processing your request."

ElseIf MyScreen.OIA.XStatus = 6 Then

MsgBox "The function you requested is unavailable."

ElseIf MyScreen.OIA.XStatus = 7 Then

MsgBox "Unable to print to requested printer."

Alphabetical Reference to Objects, Properties, and Methods

2-163

ElseIf MyScreen.OIA.XStatus = 8 Then

MsgBox "The system has locked your keyboard during processing."

ElseIf MyScreen.OIA.XStatus = 9 Then

MsgBox "You have entered an invalid character."

End If

End Sub

Glossary
Boolean Value: One of two possible values, TRUE or FALSE.

Collection: An object that manages a set of related objects. For example,
the Sessions object manages individual Session objects; the Toolbars and
QuickPad objects manage Toolbar and Quickpad objects. A collection
object makes it easy to perform repetitive actions on all of the objects
within the collection, such as closing all open sessions.

Color Scheme: A group of settings that specify the colors to be used for a
display session. Only one color scheme can be assigned to a session at
any one time.

Default Property or Method: A property or method of an object that
does not have to be explicitly stated.

The Name property is the default for the Session object. The following
two statements both return the name value for a Session object referred
to as Ses1:

SesName = Ses1.Name
–or–
SesName = Ses1

The Item method is the default method of collection objects. The
following two statements close the third session in the Sessions
collection.

Sessions.Item(3).Close
–or–
Sessions(3).Close

Desktop Layouts: An EXTRA! Basic macro that opens one or more
EXTRA! Personal Client windows in a prearranged position on your
screen.

Edit Scheme: A group of settings that specify operational parameters of
the following Edit menu commands {bmc emdash.bmp} Cut, Copy,
Paste, and Clear. Only one edit scheme can be assigned to a display
session at any one time.

EXTRA! BASIC Macro: A sequence of commands saved in a file, with an
extension of .EBM. The commands consist of statements and functions of
the EXTRA! Basic language, included with EXTRA! Personal Client.

Glossary

GL-2

File Transfer Scheme: A group of settings that specify the file transfer
parameters to be used for a display session. Only one file transfer scheme
can be assigned to a session at any one time.

Hotspot Scheme: A group of settings that specify the Hotspots to be
used for a display session. A Hotspot is an area of the screen defined to
accept mouse input. When clicked, the Hotspot executes a host function.
Only one HotSpot scheme can be assigned to a session at any one time.

Keyboard Map: A group of settings that specify the assignment of host
characters and functions to PC keys.

Method: A command that directs an EXTRA! Personal Client object to
perform an action. For example, the expression Session.Activate makes
the specified session the active one.

Object Hierarchy: The hierarchical organization of EXTRA! Personal
Client objects, which defines the access path to objects. The System object
is at the highest level; it must be retrieved before any other objects.
Similarly, a Session object must be retrieved before a Screen object.

OLE (Object Linking and Embedding) Automation: A Microsoft
Windows standard for communications between applications. Windows
applications that support this standard expose (make available)
programmable objects that can be accessed by programming and macro
languages. You can therefore create custom applications that use the
built-in functionality of objects, which remain external to your
applications. For example, instead of writing code to access mainframe
data, you can have EXTRA! Personal Client objects do it for you.

Parent Object: An object that contains other objects in a hierarchical
relationship. An object contained by a parent is known as a sub-object.
Setting properties or performing methods on a parent object affects its
sub-objects. The System objects is the parent of all EXTRA! Personal
Client objects.

Presentation Space: An area in PC memory that stores the screen data of
a display session. A presentation space includes data from the status line
(called Operator Information Area in 3270 sessions). Each presentation
space position stores a screen character. Using the methods and
properties of Screen or Area objects, you can read from or write to the
presentation space.

Property: A unique attribute of an EXTRA! Personal Client object that
you set or return. For example, the expression rc=Session.Connected
returns a value indicating whether the session was connected to the host.

OLE Automation Programmer’s Reference

GL-3

QuickPad: A configurable secondary window from which you can
execute EXTRA! Personal Client commands, macros, and host functions.
You can use multiple Quickpads with a session. The settings defining a
QuickPad are stored in a file with an EQP extension, located in the
Schemes folder by default.

Xclock: A message that appears in the Operator Information Area (OIA)
of a 3270 session screen, indicating that the mainframe is busy processing
your input.

	Introduction
	Alphabetical Reference to Objects, Properties, and Methods

